]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2021 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int,
55 struct bfd_link_info *);
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || bfd_seek (abfd, offset, SEEK_SET) != 0
301 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
302 shstrtabsize)) == NULL)
303 {
304 /* Once we've failed to read it, make sure we don't keep
305 trying. Otherwise, we'll keep allocating space for
306 the string table over and over. */
307 i_shdrp[shindex]->sh_size = 0;
308 }
309 else
310 shstrtab[shstrtabsize] = '\0';
311 i_shdrp[shindex]->contents = shstrtab;
312 }
313 return (char *) shstrtab;
314 }
315
316 char *
317 bfd_elf_string_from_elf_section (bfd *abfd,
318 unsigned int shindex,
319 unsigned int strindex)
320 {
321 Elf_Internal_Shdr *hdr;
322
323 if (strindex == 0)
324 return "";
325
326 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
327 return NULL;
328
329 hdr = elf_elfsections (abfd)[shindex];
330
331 if (hdr->contents == NULL)
332 {
333 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
334 {
335 /* PR 17512: file: f057ec89. */
336 /* xgettext:c-format */
337 _bfd_error_handler (_("%pB: attempt to load strings from"
338 " a non-string section (number %d)"),
339 abfd, shindex);
340 return NULL;
341 }
342
343 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
344 return NULL;
345 }
346 else
347 {
348 /* PR 24273: The string section's contents may have already
349 been loaded elsewhere, eg because a corrupt file has the
350 string section index in the ELF header pointing at a group
351 section. So be paranoid, and test that the last byte of
352 the section is zero. */
353 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
354 return NULL;
355 }
356
357 if (strindex >= hdr->sh_size)
358 {
359 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
360 _bfd_error_handler
361 /* xgettext:c-format */
362 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
363 abfd, strindex, (uint64_t) hdr->sh_size,
364 (shindex == shstrndx && strindex == hdr->sh_name
365 ? ".shstrtab"
366 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
367 return NULL;
368 }
369
370 return ((char *) hdr->contents) + strindex;
371 }
372
373 /* Read and convert symbols to internal format.
374 SYMCOUNT specifies the number of symbols to read, starting from
375 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
376 are non-NULL, they are used to store the internal symbols, external
377 symbols, and symbol section index extensions, respectively.
378 Returns a pointer to the internal symbol buffer (malloced if necessary)
379 or NULL if there were no symbols or some kind of problem. */
380
381 Elf_Internal_Sym *
382 bfd_elf_get_elf_syms (bfd *ibfd,
383 Elf_Internal_Shdr *symtab_hdr,
384 size_t symcount,
385 size_t symoffset,
386 Elf_Internal_Sym *intsym_buf,
387 void *extsym_buf,
388 Elf_External_Sym_Shndx *extshndx_buf)
389 {
390 Elf_Internal_Shdr *shndx_hdr;
391 void *alloc_ext;
392 const bfd_byte *esym;
393 Elf_External_Sym_Shndx *alloc_extshndx;
394 Elf_External_Sym_Shndx *shndx;
395 Elf_Internal_Sym *alloc_intsym;
396 Elf_Internal_Sym *isym;
397 Elf_Internal_Sym *isymend;
398 const struct elf_backend_data *bed;
399 size_t extsym_size;
400 size_t amt;
401 file_ptr pos;
402
403 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
404 abort ();
405
406 if (symcount == 0)
407 return intsym_buf;
408
409 /* Normal syms might have section extension entries. */
410 shndx_hdr = NULL;
411 if (elf_symtab_shndx_list (ibfd) != NULL)
412 {
413 elf_section_list * entry;
414 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
415
416 /* Find an index section that is linked to this symtab section. */
417 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
418 {
419 /* PR 20063. */
420 if (entry->hdr.sh_link >= elf_numsections (ibfd))
421 continue;
422
423 if (sections[entry->hdr.sh_link] == symtab_hdr)
424 {
425 shndx_hdr = & entry->hdr;
426 break;
427 };
428 }
429
430 if (shndx_hdr == NULL)
431 {
432 if (symtab_hdr == & elf_symtab_hdr (ibfd))
433 /* Not really accurate, but this was how the old code used to work. */
434 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
435 /* Otherwise we do nothing. The assumption is that
436 the index table will not be needed. */
437 }
438 }
439
440 /* Read the symbols. */
441 alloc_ext = NULL;
442 alloc_extshndx = NULL;
443 alloc_intsym = NULL;
444 bed = get_elf_backend_data (ibfd);
445 extsym_size = bed->s->sizeof_sym;
446 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
447 {
448 bfd_set_error (bfd_error_file_too_big);
449 intsym_buf = NULL;
450 goto out;
451 }
452 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
453 if (extsym_buf == NULL)
454 {
455 alloc_ext = bfd_malloc (amt);
456 extsym_buf = alloc_ext;
457 }
458 if (extsym_buf == NULL
459 || bfd_seek (ibfd, pos, SEEK_SET) != 0
460 || bfd_bread (extsym_buf, amt, ibfd) != amt)
461 {
462 intsym_buf = NULL;
463 goto out;
464 }
465
466 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
467 extshndx_buf = NULL;
468 else
469 {
470 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
471 {
472 bfd_set_error (bfd_error_file_too_big);
473 intsym_buf = NULL;
474 goto out;
475 }
476 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
477 if (extshndx_buf == NULL)
478 {
479 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
480 extshndx_buf = alloc_extshndx;
481 }
482 if (extshndx_buf == NULL
483 || bfd_seek (ibfd, pos, SEEK_SET) != 0
484 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
485 {
486 intsym_buf = NULL;
487 goto out;
488 }
489 }
490
491 if (intsym_buf == NULL)
492 {
493 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
494 {
495 bfd_set_error (bfd_error_file_too_big);
496 goto out;
497 }
498 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
499 intsym_buf = alloc_intsym;
500 if (intsym_buf == NULL)
501 goto out;
502 }
503
504 /* Convert the symbols to internal form. */
505 isymend = intsym_buf + symcount;
506 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
507 shndx = extshndx_buf;
508 isym < isymend;
509 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
510 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
511 {
512 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
513 /* xgettext:c-format */
514 _bfd_error_handler (_("%pB symbol number %lu references"
515 " nonexistent SHT_SYMTAB_SHNDX section"),
516 ibfd, (unsigned long) symoffset);
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 free (alloc_ext);
524 free (alloc_extshndx);
525
526 return intsym_buf;
527 }
528
529 /* Look up a symbol name. */
530 const char *
531 bfd_elf_sym_name (bfd *abfd,
532 Elf_Internal_Shdr *symtab_hdr,
533 Elf_Internal_Sym *isym,
534 asection *sym_sec)
535 {
536 const char *name;
537 unsigned int iname = isym->st_name;
538 unsigned int shindex = symtab_hdr->sh_link;
539
540 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
541 /* Check for a bogus st_shndx to avoid crashing. */
542 && isym->st_shndx < elf_numsections (abfd))
543 {
544 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
545 shindex = elf_elfheader (abfd)->e_shstrndx;
546 }
547
548 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
549 if (name == NULL)
550 name = "(null)";
551 else if (sym_sec && *name == '\0')
552 name = bfd_section_name (sym_sec);
553
554 return name;
555 }
556
557 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
558 sections. The first element is the flags, the rest are section
559 pointers. */
560
561 typedef union elf_internal_group {
562 Elf_Internal_Shdr *shdr;
563 unsigned int flags;
564 } Elf_Internal_Group;
565
566 /* Return the name of the group signature symbol. Why isn't the
567 signature just a string? */
568
569 static const char *
570 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
571 {
572 Elf_Internal_Shdr *hdr;
573 unsigned char esym[sizeof (Elf64_External_Sym)];
574 Elf_External_Sym_Shndx eshndx;
575 Elf_Internal_Sym isym;
576
577 /* First we need to ensure the symbol table is available. Make sure
578 that it is a symbol table section. */
579 if (ghdr->sh_link >= elf_numsections (abfd))
580 return NULL;
581 hdr = elf_elfsections (abfd) [ghdr->sh_link];
582 if (hdr->sh_type != SHT_SYMTAB
583 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
584 return NULL;
585
586 /* Go read the symbol. */
587 hdr = &elf_tdata (abfd)->symtab_hdr;
588 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
589 &isym, esym, &eshndx) == NULL)
590 return NULL;
591
592 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
593 }
594
595 /* Set next_in_group list pointer, and group name for NEWSECT. */
596
597 static bfd_boolean
598 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
599 {
600 unsigned int num_group = elf_tdata (abfd)->num_group;
601
602 /* If num_group is zero, read in all SHT_GROUP sections. The count
603 is set to -1 if there are no SHT_GROUP sections. */
604 if (num_group == 0)
605 {
606 unsigned int i, shnum;
607
608 /* First count the number of groups. If we have a SHT_GROUP
609 section with just a flag word (ie. sh_size is 4), ignore it. */
610 shnum = elf_numsections (abfd);
611 num_group = 0;
612
613 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
614 ( (shdr)->sh_type == SHT_GROUP \
615 && (shdr)->sh_size >= minsize \
616 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
617 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
618
619 for (i = 0; i < shnum; i++)
620 {
621 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
622
623 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
624 num_group += 1;
625 }
626
627 if (num_group == 0)
628 {
629 num_group = (unsigned) -1;
630 elf_tdata (abfd)->num_group = num_group;
631 elf_tdata (abfd)->group_sect_ptr = NULL;
632 }
633 else
634 {
635 /* We keep a list of elf section headers for group sections,
636 so we can find them quickly. */
637 size_t amt;
638
639 elf_tdata (abfd)->num_group = num_group;
640 amt = num_group * sizeof (Elf_Internal_Shdr *);
641 elf_tdata (abfd)->group_sect_ptr
642 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
643 if (elf_tdata (abfd)->group_sect_ptr == NULL)
644 return FALSE;
645 num_group = 0;
646
647 for (i = 0; i < shnum; i++)
648 {
649 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
650
651 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
652 {
653 unsigned char *src;
654 Elf_Internal_Group *dest;
655
656 /* Make sure the group section has a BFD section
657 attached to it. */
658 if (!bfd_section_from_shdr (abfd, i))
659 return FALSE;
660
661 /* Add to list of sections. */
662 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
663 num_group += 1;
664
665 /* Read the raw contents. */
666 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
667 shdr->contents = NULL;
668 if (_bfd_mul_overflow (shdr->sh_size,
669 sizeof (*dest) / 4, &amt)
670 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || !(shdr->contents
672 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%pB: invalid size field in group section"
677 " header: %#" PRIx64 ""),
678 abfd, (uint64_t) shdr->sh_size);
679 bfd_set_error (bfd_error_bad_value);
680 -- num_group;
681 continue;
682 }
683
684 /* Translate raw contents, a flag word followed by an
685 array of elf section indices all in target byte order,
686 to the flag word followed by an array of elf section
687 pointers. */
688 src = shdr->contents + shdr->sh_size;
689 dest = (Elf_Internal_Group *) (shdr->contents + amt);
690
691 while (1)
692 {
693 unsigned int idx;
694
695 src -= 4;
696 --dest;
697 idx = H_GET_32 (abfd, src);
698 if (src == shdr->contents)
699 {
700 dest->shdr = NULL;
701 dest->flags = idx;
702 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
703 shdr->bfd_section->flags
704 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
705 break;
706 }
707 if (idx < shnum)
708 {
709 dest->shdr = elf_elfsections (abfd)[idx];
710 /* PR binutils/23199: All sections in a
711 section group should be marked with
712 SHF_GROUP. But some tools generate
713 broken objects without SHF_GROUP. Fix
714 them up here. */
715 dest->shdr->sh_flags |= SHF_GROUP;
716 }
717 if (idx >= shnum
718 || dest->shdr->sh_type == SHT_GROUP)
719 {
720 _bfd_error_handler
721 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
722 abfd, i);
723 dest->shdr = NULL;
724 }
725 }
726 }
727 }
728
729 /* PR 17510: Corrupt binaries might contain invalid groups. */
730 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
731 {
732 elf_tdata (abfd)->num_group = num_group;
733
734 /* If all groups are invalid then fail. */
735 if (num_group == 0)
736 {
737 elf_tdata (abfd)->group_sect_ptr = NULL;
738 elf_tdata (abfd)->num_group = num_group = -1;
739 _bfd_error_handler
740 (_("%pB: no valid group sections found"), abfd);
741 bfd_set_error (bfd_error_bad_value);
742 }
743 }
744 }
745 }
746
747 if (num_group != (unsigned) -1)
748 {
749 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
750 unsigned int j;
751
752 for (j = 0; j < num_group; j++)
753 {
754 /* Begin search from previous found group. */
755 unsigned i = (j + search_offset) % num_group;
756
757 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
758 Elf_Internal_Group *idx;
759 bfd_size_type n_elt;
760
761 if (shdr == NULL)
762 continue;
763
764 idx = (Elf_Internal_Group *) shdr->contents;
765 if (idx == NULL || shdr->sh_size < 4)
766 {
767 /* See PR 21957 for a reproducer. */
768 /* xgettext:c-format */
769 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
770 abfd, shdr->bfd_section);
771 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
772 bfd_set_error (bfd_error_bad_value);
773 return FALSE;
774 }
775 n_elt = shdr->sh_size / 4;
776
777 /* Look through this group's sections to see if current
778 section is a member. */
779 while (--n_elt != 0)
780 if ((++idx)->shdr == hdr)
781 {
782 asection *s = NULL;
783
784 /* We are a member of this group. Go looking through
785 other members to see if any others are linked via
786 next_in_group. */
787 idx = (Elf_Internal_Group *) shdr->contents;
788 n_elt = shdr->sh_size / 4;
789 while (--n_elt != 0)
790 if ((++idx)->shdr != NULL
791 && (s = idx->shdr->bfd_section) != NULL
792 && elf_next_in_group (s) != NULL)
793 break;
794 if (n_elt != 0)
795 {
796 /* Snarf the group name from other member, and
797 insert current section in circular list. */
798 elf_group_name (newsect) = elf_group_name (s);
799 elf_next_in_group (newsect) = elf_next_in_group (s);
800 elf_next_in_group (s) = newsect;
801 }
802 else
803 {
804 const char *gname;
805
806 gname = group_signature (abfd, shdr);
807 if (gname == NULL)
808 return FALSE;
809 elf_group_name (newsect) = gname;
810
811 /* Start a circular list with one element. */
812 elf_next_in_group (newsect) = newsect;
813 }
814
815 /* If the group section has been created, point to the
816 new member. */
817 if (shdr->bfd_section != NULL)
818 elf_next_in_group (shdr->bfd_section) = newsect;
819
820 elf_tdata (abfd)->group_search_offset = i;
821 j = num_group - 1;
822 break;
823 }
824 }
825 }
826
827 if (elf_group_name (newsect) == NULL)
828 {
829 /* xgettext:c-format */
830 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
831 abfd, newsect);
832 return FALSE;
833 }
834 return TRUE;
835 }
836
837 bfd_boolean
838 _bfd_elf_setup_sections (bfd *abfd)
839 {
840 unsigned int i;
841 unsigned int num_group = elf_tdata (abfd)->num_group;
842 bfd_boolean result = TRUE;
843 asection *s;
844
845 /* Process SHF_LINK_ORDER. */
846 for (s = abfd->sections; s != NULL; s = s->next)
847 {
848 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
849 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
850 {
851 unsigned int elfsec = this_hdr->sh_link;
852 /* An sh_link value of 0 is now allowed. It indicates that linked
853 to section has already been discarded, but that the current
854 section has been retained for some other reason. This linking
855 section is still a candidate for later garbage collection
856 however. */
857 if (elfsec == 0)
858 {
859 elf_linked_to_section (s) = NULL;
860 }
861 else
862 {
863 asection *linksec = NULL;
864
865 if (elfsec < elf_numsections (abfd))
866 {
867 this_hdr = elf_elfsections (abfd)[elfsec];
868 linksec = this_hdr->bfd_section;
869 }
870
871 /* PR 1991, 2008:
872 Some strip/objcopy may leave an incorrect value in
873 sh_link. We don't want to proceed. */
874 if (linksec == NULL)
875 {
876 _bfd_error_handler
877 /* xgettext:c-format */
878 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
879 s->owner, elfsec, s);
880 result = FALSE;
881 }
882
883 elf_linked_to_section (s) = linksec;
884 }
885 }
886 else if (this_hdr->sh_type == SHT_GROUP
887 && elf_next_in_group (s) == NULL)
888 {
889 _bfd_error_handler
890 /* xgettext:c-format */
891 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
892 abfd, elf_section_data (s)->this_idx);
893 result = FALSE;
894 }
895 }
896
897 /* Process section groups. */
898 if (num_group == (unsigned) -1)
899 return result;
900
901 for (i = 0; i < num_group; i++)
902 {
903 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
904 Elf_Internal_Group *idx;
905 unsigned int n_elt;
906
907 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
908 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
909 {
910 _bfd_error_handler
911 /* xgettext:c-format */
912 (_("%pB: section group entry number %u is corrupt"),
913 abfd, i);
914 result = FALSE;
915 continue;
916 }
917
918 idx = (Elf_Internal_Group *) shdr->contents;
919 n_elt = shdr->sh_size / 4;
920
921 while (--n_elt != 0)
922 {
923 ++ idx;
924
925 if (idx->shdr == NULL)
926 continue;
927 else if (idx->shdr->bfd_section)
928 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
929 else if (idx->shdr->sh_type != SHT_RELA
930 && idx->shdr->sh_type != SHT_REL)
931 {
932 /* There are some unknown sections in the group. */
933 _bfd_error_handler
934 /* xgettext:c-format */
935 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
936 abfd,
937 idx->shdr->sh_type,
938 bfd_elf_string_from_elf_section (abfd,
939 (elf_elfheader (abfd)
940 ->e_shstrndx),
941 idx->shdr->sh_name),
942 shdr->bfd_section);
943 result = FALSE;
944 }
945 }
946 }
947
948 return result;
949 }
950
951 bfd_boolean
952 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
953 {
954 return elf_next_in_group (sec) != NULL;
955 }
956
957 const char *
958 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
959 {
960 if (elf_sec_group (sec) != NULL)
961 return elf_group_name (sec);
962 return NULL;
963 }
964
965 static char *
966 convert_debug_to_zdebug (bfd *abfd, const char *name)
967 {
968 unsigned int len = strlen (name);
969 char *new_name = bfd_alloc (abfd, len + 2);
970 if (new_name == NULL)
971 return NULL;
972 new_name[0] = '.';
973 new_name[1] = 'z';
974 memcpy (new_name + 2, name + 1, len);
975 return new_name;
976 }
977
978 static char *
979 convert_zdebug_to_debug (bfd *abfd, const char *name)
980 {
981 unsigned int len = strlen (name);
982 char *new_name = bfd_alloc (abfd, len);
983 if (new_name == NULL)
984 return NULL;
985 new_name[0] = '.';
986 memcpy (new_name + 1, name + 2, len - 1);
987 return new_name;
988 }
989
990 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
991
992 struct lto_section
993 {
994 int16_t major_version;
995 int16_t minor_version;
996 unsigned char slim_object;
997
998 /* Flags is a private field that is not defined publicly. */
999 uint16_t flags;
1000 };
1001
1002 /* Make a BFD section from an ELF section. We store a pointer to the
1003 BFD section in the bfd_section field of the header. */
1004
1005 bfd_boolean
1006 _bfd_elf_make_section_from_shdr (bfd *abfd,
1007 Elf_Internal_Shdr *hdr,
1008 const char *name,
1009 int shindex)
1010 {
1011 asection *newsect;
1012 flagword flags;
1013 const struct elf_backend_data *bed;
1014 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
1015
1016 if (hdr->bfd_section != NULL)
1017 return TRUE;
1018
1019 newsect = bfd_make_section_anyway (abfd, name);
1020 if (newsect == NULL)
1021 return FALSE;
1022
1023 hdr->bfd_section = newsect;
1024 elf_section_data (newsect)->this_hdr = *hdr;
1025 elf_section_data (newsect)->this_idx = shindex;
1026
1027 /* Always use the real type/flags. */
1028 elf_section_type (newsect) = hdr->sh_type;
1029 elf_section_flags (newsect) = hdr->sh_flags;
1030
1031 newsect->filepos = hdr->sh_offset;
1032
1033 flags = SEC_NO_FLAGS;
1034 if (hdr->sh_type != SHT_NOBITS)
1035 flags |= SEC_HAS_CONTENTS;
1036 if (hdr->sh_type == SHT_GROUP)
1037 flags |= SEC_GROUP;
1038 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1039 {
1040 flags |= SEC_ALLOC;
1041 if (hdr->sh_type != SHT_NOBITS)
1042 flags |= SEC_LOAD;
1043 }
1044 if ((hdr->sh_flags & SHF_WRITE) == 0)
1045 flags |= SEC_READONLY;
1046 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1047 flags |= SEC_CODE;
1048 else if ((flags & SEC_LOAD) != 0)
1049 flags |= SEC_DATA;
1050 if ((hdr->sh_flags & SHF_MERGE) != 0)
1051 {
1052 flags |= SEC_MERGE;
1053 newsect->entsize = hdr->sh_entsize;
1054 }
1055 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1056 flags |= SEC_STRINGS;
1057 if (hdr->sh_flags & SHF_GROUP)
1058 if (!setup_group (abfd, hdr, newsect))
1059 return FALSE;
1060 if ((hdr->sh_flags & SHF_TLS) != 0)
1061 flags |= SEC_THREAD_LOCAL;
1062 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1063 flags |= SEC_EXCLUDE;
1064
1065 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1066 {
1067 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1068 but binutils as of 2019-07-23 did not set the EI_OSABI header
1069 byte. */
1070 case ELFOSABI_GNU:
1071 case ELFOSABI_FREEBSD:
1072 if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0)
1073 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain;
1074 /* Fall through */
1075 case ELFOSABI_NONE:
1076 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1077 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1078 break;
1079 }
1080
1081 if ((flags & SEC_ALLOC) == 0)
1082 {
1083 /* The debugging sections appear to be recognized only by name,
1084 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1085 if (name [0] == '.')
1086 {
1087 if (strncmp (name, ".debug", 6) == 0
1088 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1089 || strncmp (name, ".zdebug", 7) == 0)
1090 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1091 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1092 || strncmp (name, ".note.gnu", 9) == 0)
1093 {
1094 flags |= SEC_ELF_OCTETS;
1095 opb = 1;
1096 }
1097 else if (strncmp (name, ".line", 5) == 0
1098 || strncmp (name, ".stab", 5) == 0
1099 || strcmp (name, ".gdb_index") == 0)
1100 flags |= SEC_DEBUGGING;
1101 }
1102 }
1103
1104 if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb)
1105 || !bfd_set_section_size (newsect, hdr->sh_size)
1106 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1107 return FALSE;
1108
1109 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1110 only link a single copy of the section. This is used to support
1111 g++. g++ will emit each template expansion in its own section.
1112 The symbols will be defined as weak, so that multiple definitions
1113 are permitted. The GNU linker extension is to actually discard
1114 all but one of the sections. */
1115 if (CONST_STRNEQ (name, ".gnu.linkonce")
1116 && elf_next_in_group (newsect) == NULL)
1117 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1118
1119 if (!bfd_set_section_flags (newsect, flags))
1120 return FALSE;
1121
1122 bed = get_elf_backend_data (abfd);
1123 if (bed->elf_backend_section_flags)
1124 if (!bed->elf_backend_section_flags (hdr))
1125 return FALSE;
1126
1127 /* We do not parse the PT_NOTE segments as we are interested even in the
1128 separate debug info files which may have the segments offsets corrupted.
1129 PT_NOTEs from the core files are currently not parsed using BFD. */
1130 if (hdr->sh_type == SHT_NOTE)
1131 {
1132 bfd_byte *contents;
1133
1134 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1135 return FALSE;
1136
1137 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1138 hdr->sh_offset, hdr->sh_addralign);
1139 free (contents);
1140 }
1141
1142 if ((newsect->flags & SEC_ALLOC) != 0)
1143 {
1144 Elf_Internal_Phdr *phdr;
1145 unsigned int i, nload;
1146
1147 /* Some ELF linkers produce binaries with all the program header
1148 p_paddr fields zero. If we have such a binary with more than
1149 one PT_LOAD header, then leave the section lma equal to vma
1150 so that we don't create sections with overlapping lma. */
1151 phdr = elf_tdata (abfd)->phdr;
1152 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1153 if (phdr->p_paddr != 0)
1154 break;
1155 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1156 ++nload;
1157 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1158 return TRUE;
1159
1160 phdr = elf_tdata (abfd)->phdr;
1161 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1162 {
1163 if (((phdr->p_type == PT_LOAD
1164 && (hdr->sh_flags & SHF_TLS) == 0)
1165 || phdr->p_type == PT_TLS)
1166 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1167 {
1168 if ((newsect->flags & SEC_LOAD) == 0)
1169 newsect->lma = (phdr->p_paddr
1170 + hdr->sh_addr - phdr->p_vaddr) / opb;
1171 else
1172 /* We used to use the same adjustment for SEC_LOAD
1173 sections, but that doesn't work if the segment
1174 is packed with code from multiple VMAs.
1175 Instead we calculate the section LMA based on
1176 the segment LMA. It is assumed that the
1177 segment will contain sections with contiguous
1178 LMAs, even if the VMAs are not. */
1179 newsect->lma = (phdr->p_paddr
1180 + hdr->sh_offset - phdr->p_offset) / opb;
1181
1182 /* With contiguous segments, we can't tell from file
1183 offsets whether a section with zero size should
1184 be placed at the end of one segment or the
1185 beginning of the next. Decide based on vaddr. */
1186 if (hdr->sh_addr >= phdr->p_vaddr
1187 && (hdr->sh_addr + hdr->sh_size
1188 <= phdr->p_vaddr + phdr->p_memsz))
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Compress/decompress DWARF debug sections with names: .debug_* and
1195 .zdebug_*, after the section flags is set. */
1196 if ((newsect->flags & SEC_DEBUGGING)
1197 && ((name[1] == 'd' && name[6] == '_')
1198 || (name[1] == 'z' && name[7] == '_')))
1199 {
1200 enum { nothing, compress, decompress } action = nothing;
1201 int compression_header_size;
1202 bfd_size_type uncompressed_size;
1203 unsigned int uncompressed_align_power;
1204 bfd_boolean compressed
1205 = bfd_is_section_compressed_with_header (abfd, newsect,
1206 &compression_header_size,
1207 &uncompressed_size,
1208 &uncompressed_align_power);
1209 if (compressed)
1210 {
1211 /* Compressed section. Check if we should decompress. */
1212 if ((abfd->flags & BFD_DECOMPRESS))
1213 action = decompress;
1214 }
1215
1216 /* Compress the uncompressed section or convert from/to .zdebug*
1217 section. Check if we should compress. */
1218 if (action == nothing)
1219 {
1220 if (newsect->size != 0
1221 && (abfd->flags & BFD_COMPRESS)
1222 && compression_header_size >= 0
1223 && uncompressed_size > 0
1224 && (!compressed
1225 || ((compression_header_size > 0)
1226 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1227 action = compress;
1228 else
1229 return TRUE;
1230 }
1231
1232 if (action == compress)
1233 {
1234 if (!bfd_init_section_compress_status (abfd, newsect))
1235 {
1236 _bfd_error_handler
1237 /* xgettext:c-format */
1238 (_("%pB: unable to initialize compress status for section %s"),
1239 abfd, name);
1240 return FALSE;
1241 }
1242 }
1243 else
1244 {
1245 if (!bfd_init_section_decompress_status (abfd, newsect))
1246 {
1247 _bfd_error_handler
1248 /* xgettext:c-format */
1249 (_("%pB: unable to initialize decompress status for section %s"),
1250 abfd, name);
1251 return FALSE;
1252 }
1253 }
1254
1255 if (abfd->is_linker_input)
1256 {
1257 if (name[1] == 'z'
1258 && (action == decompress
1259 || (action == compress
1260 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1261 {
1262 /* Convert section name from .zdebug_* to .debug_* so
1263 that linker will consider this section as a debug
1264 section. */
1265 char *new_name = convert_zdebug_to_debug (abfd, name);
1266 if (new_name == NULL)
1267 return FALSE;
1268 bfd_rename_section (newsect, new_name);
1269 }
1270 }
1271 else
1272 /* For objdump, don't rename the section. For objcopy, delay
1273 section rename to elf_fake_sections. */
1274 newsect->flags |= SEC_ELF_RENAME;
1275 }
1276
1277 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1278 section. */
1279 const char *lto_section_name = ".gnu.lto_.lto.";
1280 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1281 {
1282 struct lto_section lsection;
1283 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1284 sizeof (struct lto_section)))
1285 abfd->lto_slim_object = lsection.slim_object;
1286 }
1287
1288 return TRUE;
1289 }
1290
1291 const char *const bfd_elf_section_type_names[] =
1292 {
1293 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1294 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1295 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1296 };
1297
1298 /* ELF relocs are against symbols. If we are producing relocatable
1299 output, and the reloc is against an external symbol, and nothing
1300 has given us any additional addend, the resulting reloc will also
1301 be against the same symbol. In such a case, we don't want to
1302 change anything about the way the reloc is handled, since it will
1303 all be done at final link time. Rather than put special case code
1304 into bfd_perform_relocation, all the reloc types use this howto
1305 function. It just short circuits the reloc if producing
1306 relocatable output against an external symbol. */
1307
1308 bfd_reloc_status_type
1309 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1310 arelent *reloc_entry,
1311 asymbol *symbol,
1312 void *data ATTRIBUTE_UNUSED,
1313 asection *input_section,
1314 bfd *output_bfd,
1315 char **error_message ATTRIBUTE_UNUSED)
1316 {
1317 if (output_bfd != NULL
1318 && (symbol->flags & BSF_SECTION_SYM) == 0
1319 && (! reloc_entry->howto->partial_inplace
1320 || reloc_entry->addend == 0))
1321 {
1322 reloc_entry->address += input_section->output_offset;
1323 return bfd_reloc_ok;
1324 }
1325
1326 return bfd_reloc_continue;
1327 }
1328 \f
1329 /* Returns TRUE if section A matches section B.
1330 Names, addresses and links may be different, but everything else
1331 should be the same. */
1332
1333 static bfd_boolean
1334 section_match (const Elf_Internal_Shdr * a,
1335 const Elf_Internal_Shdr * b)
1336 {
1337 if (a->sh_type != b->sh_type
1338 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1339 || a->sh_addralign != b->sh_addralign
1340 || a->sh_entsize != b->sh_entsize)
1341 return FALSE;
1342 if (a->sh_type == SHT_SYMTAB
1343 || a->sh_type == SHT_STRTAB)
1344 return TRUE;
1345 return a->sh_size == b->sh_size;
1346 }
1347
1348 /* Find a section in OBFD that has the same characteristics
1349 as IHEADER. Return the index of this section or SHN_UNDEF if
1350 none can be found. Check's section HINT first, as this is likely
1351 to be the correct section. */
1352
1353 static unsigned int
1354 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1355 const unsigned int hint)
1356 {
1357 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1358 unsigned int i;
1359
1360 BFD_ASSERT (iheader != NULL);
1361
1362 /* See PR 20922 for a reproducer of the NULL test. */
1363 if (hint < elf_numsections (obfd)
1364 && oheaders[hint] != NULL
1365 && section_match (oheaders[hint], iheader))
1366 return hint;
1367
1368 for (i = 1; i < elf_numsections (obfd); i++)
1369 {
1370 Elf_Internal_Shdr * oheader = oheaders[i];
1371
1372 if (oheader == NULL)
1373 continue;
1374 if (section_match (oheader, iheader))
1375 /* FIXME: Do we care if there is a potential for
1376 multiple matches ? */
1377 return i;
1378 }
1379
1380 return SHN_UNDEF;
1381 }
1382
1383 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1384 Processor specific section, based upon a matching input section.
1385 Returns TRUE upon success, FALSE otherwise. */
1386
1387 static bfd_boolean
1388 copy_special_section_fields (const bfd *ibfd,
1389 bfd *obfd,
1390 const Elf_Internal_Shdr *iheader,
1391 Elf_Internal_Shdr *oheader,
1392 const unsigned int secnum)
1393 {
1394 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1395 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1396 bfd_boolean changed = FALSE;
1397 unsigned int sh_link;
1398
1399 if (oheader->sh_type == SHT_NOBITS)
1400 {
1401 /* This is a feature for objcopy --only-keep-debug:
1402 When a section's type is changed to NOBITS, we preserve
1403 the sh_link and sh_info fields so that they can be
1404 matched up with the original.
1405
1406 Note: Strictly speaking these assignments are wrong.
1407 The sh_link and sh_info fields should point to the
1408 relevent sections in the output BFD, which may not be in
1409 the same location as they were in the input BFD. But
1410 the whole point of this action is to preserve the
1411 original values of the sh_link and sh_info fields, so
1412 that they can be matched up with the section headers in
1413 the original file. So strictly speaking we may be
1414 creating an invalid ELF file, but it is only for a file
1415 that just contains debug info and only for sections
1416 without any contents. */
1417 if (oheader->sh_link == 0)
1418 oheader->sh_link = iheader->sh_link;
1419 if (oheader->sh_info == 0)
1420 oheader->sh_info = iheader->sh_info;
1421 return TRUE;
1422 }
1423
1424 /* Allow the target a chance to decide how these fields should be set. */
1425 if (bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1426 iheader, oheader))
1427 return TRUE;
1428
1429 /* We have an iheader which might match oheader, and which has non-zero
1430 sh_info and/or sh_link fields. Attempt to follow those links and find
1431 the section in the output bfd which corresponds to the linked section
1432 in the input bfd. */
1433 if (iheader->sh_link != SHN_UNDEF)
1434 {
1435 /* See PR 20931 for a reproducer. */
1436 if (iheader->sh_link >= elf_numsections (ibfd))
1437 {
1438 _bfd_error_handler
1439 /* xgettext:c-format */
1440 (_("%pB: invalid sh_link field (%d) in section number %d"),
1441 ibfd, iheader->sh_link, secnum);
1442 return FALSE;
1443 }
1444
1445 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1446 if (sh_link != SHN_UNDEF)
1447 {
1448 oheader->sh_link = sh_link;
1449 changed = TRUE;
1450 }
1451 else
1452 /* FIXME: Should we install iheader->sh_link
1453 if we could not find a match ? */
1454 _bfd_error_handler
1455 /* xgettext:c-format */
1456 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1457 }
1458
1459 if (iheader->sh_info)
1460 {
1461 /* The sh_info field can hold arbitrary information, but if the
1462 SHF_LINK_INFO flag is set then it should be interpreted as a
1463 section index. */
1464 if (iheader->sh_flags & SHF_INFO_LINK)
1465 {
1466 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1467 iheader->sh_info);
1468 if (sh_link != SHN_UNDEF)
1469 oheader->sh_flags |= SHF_INFO_LINK;
1470 }
1471 else
1472 /* No idea what it means - just copy it. */
1473 sh_link = iheader->sh_info;
1474
1475 if (sh_link != SHN_UNDEF)
1476 {
1477 oheader->sh_info = sh_link;
1478 changed = TRUE;
1479 }
1480 else
1481 _bfd_error_handler
1482 /* xgettext:c-format */
1483 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1484 }
1485
1486 return changed;
1487 }
1488
1489 /* Copy the program header and other data from one object module to
1490 another. */
1491
1492 bfd_boolean
1493 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1494 {
1495 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1496 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1497 const struct elf_backend_data *bed;
1498 unsigned int i;
1499
1500 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1501 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1502 return TRUE;
1503
1504 if (!elf_flags_init (obfd))
1505 {
1506 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1507 elf_flags_init (obfd) = TRUE;
1508 }
1509
1510 elf_gp (obfd) = elf_gp (ibfd);
1511
1512 /* Also copy the EI_OSABI field. */
1513 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1514 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1515
1516 /* If set, copy the EI_ABIVERSION field. */
1517 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1518 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1519 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1520
1521 /* Copy object attributes. */
1522 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1523
1524 if (iheaders == NULL || oheaders == NULL)
1525 return TRUE;
1526
1527 bed = get_elf_backend_data (obfd);
1528
1529 /* Possibly copy other fields in the section header. */
1530 for (i = 1; i < elf_numsections (obfd); i++)
1531 {
1532 unsigned int j;
1533 Elf_Internal_Shdr * oheader = oheaders[i];
1534
1535 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1536 because of a special case need for generating separate debug info
1537 files. See below for more details. */
1538 if (oheader == NULL
1539 || (oheader->sh_type != SHT_NOBITS
1540 && oheader->sh_type < SHT_LOOS))
1541 continue;
1542
1543 /* Ignore empty sections, and sections whose
1544 fields have already been initialised. */
1545 if (oheader->sh_size == 0
1546 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1547 continue;
1548
1549 /* Scan for the matching section in the input bfd.
1550 First we try for a direct mapping between the input and output sections. */
1551 for (j = 1; j < elf_numsections (ibfd); j++)
1552 {
1553 const Elf_Internal_Shdr * iheader = iheaders[j];
1554
1555 if (iheader == NULL)
1556 continue;
1557
1558 if (oheader->bfd_section != NULL
1559 && iheader->bfd_section != NULL
1560 && iheader->bfd_section->output_section != NULL
1561 && iheader->bfd_section->output_section == oheader->bfd_section)
1562 {
1563 /* We have found a connection from the input section to the
1564 output section. Attempt to copy the header fields. If
1565 this fails then do not try any further sections - there
1566 should only be a one-to-one mapping between input and output. */
1567 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1568 j = elf_numsections (ibfd);
1569 break;
1570 }
1571 }
1572
1573 if (j < elf_numsections (ibfd))
1574 continue;
1575
1576 /* That failed. So try to deduce the corresponding input section.
1577 Unfortunately we cannot compare names as the output string table
1578 is empty, so instead we check size, address and type. */
1579 for (j = 1; j < elf_numsections (ibfd); j++)
1580 {
1581 const Elf_Internal_Shdr * iheader = iheaders[j];
1582
1583 if (iheader == NULL)
1584 continue;
1585
1586 /* Try matching fields in the input section's header.
1587 Since --only-keep-debug turns all non-debug sections into
1588 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1589 input type. */
1590 if ((oheader->sh_type == SHT_NOBITS
1591 || iheader->sh_type == oheader->sh_type)
1592 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1593 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1594 && iheader->sh_addralign == oheader->sh_addralign
1595 && iheader->sh_entsize == oheader->sh_entsize
1596 && iheader->sh_size == oheader->sh_size
1597 && iheader->sh_addr == oheader->sh_addr
1598 && (iheader->sh_info != oheader->sh_info
1599 || iheader->sh_link != oheader->sh_link))
1600 {
1601 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1602 break;
1603 }
1604 }
1605
1606 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1607 {
1608 /* Final attempt. Call the backend copy function
1609 with a NULL input section. */
1610 (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd,
1611 NULL, oheader);
1612 }
1613 }
1614
1615 return TRUE;
1616 }
1617
1618 static const char *
1619 get_segment_type (unsigned int p_type)
1620 {
1621 const char *pt;
1622 switch (p_type)
1623 {
1624 case PT_NULL: pt = "NULL"; break;
1625 case PT_LOAD: pt = "LOAD"; break;
1626 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1627 case PT_INTERP: pt = "INTERP"; break;
1628 case PT_NOTE: pt = "NOTE"; break;
1629 case PT_SHLIB: pt = "SHLIB"; break;
1630 case PT_PHDR: pt = "PHDR"; break;
1631 case PT_TLS: pt = "TLS"; break;
1632 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1633 case PT_GNU_STACK: pt = "STACK"; break;
1634 case PT_GNU_RELRO: pt = "RELRO"; break;
1635 default: pt = NULL; break;
1636 }
1637 return pt;
1638 }
1639
1640 /* Print out the program headers. */
1641
1642 bfd_boolean
1643 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1644 {
1645 FILE *f = (FILE *) farg;
1646 Elf_Internal_Phdr *p;
1647 asection *s;
1648 bfd_byte *dynbuf = NULL;
1649
1650 p = elf_tdata (abfd)->phdr;
1651 if (p != NULL)
1652 {
1653 unsigned int i, c;
1654
1655 fprintf (f, _("\nProgram Header:\n"));
1656 c = elf_elfheader (abfd)->e_phnum;
1657 for (i = 0; i < c; i++, p++)
1658 {
1659 const char *pt = get_segment_type (p->p_type);
1660 char buf[20];
1661
1662 if (pt == NULL)
1663 {
1664 sprintf (buf, "0x%lx", p->p_type);
1665 pt = buf;
1666 }
1667 fprintf (f, "%8s off 0x", pt);
1668 bfd_fprintf_vma (abfd, f, p->p_offset);
1669 fprintf (f, " vaddr 0x");
1670 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1671 fprintf (f, " paddr 0x");
1672 bfd_fprintf_vma (abfd, f, p->p_paddr);
1673 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1674 fprintf (f, " filesz 0x");
1675 bfd_fprintf_vma (abfd, f, p->p_filesz);
1676 fprintf (f, " memsz 0x");
1677 bfd_fprintf_vma (abfd, f, p->p_memsz);
1678 fprintf (f, " flags %c%c%c",
1679 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1680 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1681 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1682 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1683 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1684 fprintf (f, "\n");
1685 }
1686 }
1687
1688 s = bfd_get_section_by_name (abfd, ".dynamic");
1689 if (s != NULL)
1690 {
1691 unsigned int elfsec;
1692 unsigned long shlink;
1693 bfd_byte *extdyn, *extdynend;
1694 size_t extdynsize;
1695 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1696
1697 fprintf (f, _("\nDynamic Section:\n"));
1698
1699 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1700 goto error_return;
1701
1702 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1703 if (elfsec == SHN_BAD)
1704 goto error_return;
1705 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1706
1707 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1708 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1709
1710 extdyn = dynbuf;
1711 /* PR 17512: file: 6f427532. */
1712 if (s->size < extdynsize)
1713 goto error_return;
1714 extdynend = extdyn + s->size;
1715 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1716 Fix range check. */
1717 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1718 {
1719 Elf_Internal_Dyn dyn;
1720 const char *name = "";
1721 char ab[20];
1722 bfd_boolean stringp;
1723 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1724
1725 (*swap_dyn_in) (abfd, extdyn, &dyn);
1726
1727 if (dyn.d_tag == DT_NULL)
1728 break;
1729
1730 stringp = FALSE;
1731 switch (dyn.d_tag)
1732 {
1733 default:
1734 if (bed->elf_backend_get_target_dtag)
1735 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1736
1737 if (!strcmp (name, ""))
1738 {
1739 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1740 name = ab;
1741 }
1742 break;
1743
1744 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1745 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1746 case DT_PLTGOT: name = "PLTGOT"; break;
1747 case DT_HASH: name = "HASH"; break;
1748 case DT_STRTAB: name = "STRTAB"; break;
1749 case DT_SYMTAB: name = "SYMTAB"; break;
1750 case DT_RELA: name = "RELA"; break;
1751 case DT_RELASZ: name = "RELASZ"; break;
1752 case DT_RELAENT: name = "RELAENT"; break;
1753 case DT_STRSZ: name = "STRSZ"; break;
1754 case DT_SYMENT: name = "SYMENT"; break;
1755 case DT_INIT: name = "INIT"; break;
1756 case DT_FINI: name = "FINI"; break;
1757 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1758 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1759 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1760 case DT_REL: name = "REL"; break;
1761 case DT_RELSZ: name = "RELSZ"; break;
1762 case DT_RELENT: name = "RELENT"; break;
1763 case DT_PLTREL: name = "PLTREL"; break;
1764 case DT_DEBUG: name = "DEBUG"; break;
1765 case DT_TEXTREL: name = "TEXTREL"; break;
1766 case DT_JMPREL: name = "JMPREL"; break;
1767 case DT_BIND_NOW: name = "BIND_NOW"; break;
1768 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1769 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1770 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1771 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1772 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1773 case DT_FLAGS: name = "FLAGS"; break;
1774 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1775 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1776 case DT_CHECKSUM: name = "CHECKSUM"; break;
1777 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1778 case DT_MOVEENT: name = "MOVEENT"; break;
1779 case DT_MOVESZ: name = "MOVESZ"; break;
1780 case DT_FEATURE: name = "FEATURE"; break;
1781 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1782 case DT_SYMINSZ: name = "SYMINSZ"; break;
1783 case DT_SYMINENT: name = "SYMINENT"; break;
1784 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1785 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1786 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1787 case DT_PLTPAD: name = "PLTPAD"; break;
1788 case DT_MOVETAB: name = "MOVETAB"; break;
1789 case DT_SYMINFO: name = "SYMINFO"; break;
1790 case DT_RELACOUNT: name = "RELACOUNT"; break;
1791 case DT_RELCOUNT: name = "RELCOUNT"; break;
1792 case DT_FLAGS_1: name = "FLAGS_1"; break;
1793 case DT_VERSYM: name = "VERSYM"; break;
1794 case DT_VERDEF: name = "VERDEF"; break;
1795 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1796 case DT_VERNEED: name = "VERNEED"; break;
1797 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1798 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1799 case DT_USED: name = "USED"; break;
1800 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1801 case DT_GNU_HASH: name = "GNU_HASH"; break;
1802 }
1803
1804 fprintf (f, " %-20s ", name);
1805 if (! stringp)
1806 {
1807 fprintf (f, "0x");
1808 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1809 }
1810 else
1811 {
1812 const char *string;
1813 unsigned int tagv = dyn.d_un.d_val;
1814
1815 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1816 if (string == NULL)
1817 goto error_return;
1818 fprintf (f, "%s", string);
1819 }
1820 fprintf (f, "\n");
1821 }
1822
1823 free (dynbuf);
1824 dynbuf = NULL;
1825 }
1826
1827 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1828 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1829 {
1830 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1831 return FALSE;
1832 }
1833
1834 if (elf_dynverdef (abfd) != 0)
1835 {
1836 Elf_Internal_Verdef *t;
1837
1838 fprintf (f, _("\nVersion definitions:\n"));
1839 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1840 {
1841 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1842 t->vd_flags, t->vd_hash,
1843 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1844 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1845 {
1846 Elf_Internal_Verdaux *a;
1847
1848 fprintf (f, "\t");
1849 for (a = t->vd_auxptr->vda_nextptr;
1850 a != NULL;
1851 a = a->vda_nextptr)
1852 fprintf (f, "%s ",
1853 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1854 fprintf (f, "\n");
1855 }
1856 }
1857 }
1858
1859 if (elf_dynverref (abfd) != 0)
1860 {
1861 Elf_Internal_Verneed *t;
1862
1863 fprintf (f, _("\nVersion References:\n"));
1864 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 fprintf (f, _(" required from %s:\n"),
1869 t->vn_filename ? t->vn_filename : "<corrupt>");
1870 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1871 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1872 a->vna_flags, a->vna_other,
1873 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1874 }
1875 }
1876
1877 return TRUE;
1878
1879 error_return:
1880 free (dynbuf);
1881 return FALSE;
1882 }
1883
1884 /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE
1885 and return symbol version for symbol version itself. */
1886
1887 const char *
1888 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1889 bfd_boolean base_p,
1890 bfd_boolean *hidden)
1891 {
1892 const char *version_string = NULL;
1893 if (elf_dynversym (abfd) != 0
1894 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1895 {
1896 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1897
1898 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1899 vernum &= VERSYM_VERSION;
1900
1901 if (vernum == 0)
1902 version_string = "";
1903 else if (vernum == 1
1904 && (vernum > elf_tdata (abfd)->cverdefs
1905 || (elf_tdata (abfd)->verdef[0].vd_flags
1906 == VER_FLG_BASE)))
1907 version_string = base_p ? "Base" : "";
1908 else if (vernum <= elf_tdata (abfd)->cverdefs)
1909 {
1910 const char *nodename
1911 = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1912 version_string = "";
1913 if (base_p
1914 || nodename == NULL
1915 || symbol->name == NULL
1916 || strcmp (symbol->name, nodename) != 0)
1917 version_string = nodename;
1918 }
1919 else
1920 {
1921 Elf_Internal_Verneed *t;
1922
1923 version_string = _("<corrupt>");
1924 for (t = elf_tdata (abfd)->verref;
1925 t != NULL;
1926 t = t->vn_nextref)
1927 {
1928 Elf_Internal_Vernaux *a;
1929
1930 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1931 {
1932 if (a->vna_other == vernum)
1933 {
1934 version_string = a->vna_nodename;
1935 break;
1936 }
1937 }
1938 }
1939 }
1940 }
1941 return version_string;
1942 }
1943
1944 /* Display ELF-specific fields of a symbol. */
1945
1946 void
1947 bfd_elf_print_symbol (bfd *abfd,
1948 void *filep,
1949 asymbol *symbol,
1950 bfd_print_symbol_type how)
1951 {
1952 FILE *file = (FILE *) filep;
1953 switch (how)
1954 {
1955 case bfd_print_symbol_name:
1956 fprintf (file, "%s", symbol->name);
1957 break;
1958 case bfd_print_symbol_more:
1959 fprintf (file, "elf ");
1960 bfd_fprintf_vma (abfd, file, symbol->value);
1961 fprintf (file, " %x", symbol->flags);
1962 break;
1963 case bfd_print_symbol_all:
1964 {
1965 const char *section_name;
1966 const char *name = NULL;
1967 const struct elf_backend_data *bed;
1968 unsigned char st_other;
1969 bfd_vma val;
1970 const char *version_string;
1971 bfd_boolean hidden;
1972
1973 section_name = symbol->section ? symbol->section->name : "(*none*)";
1974
1975 bed = get_elf_backend_data (abfd);
1976 if (bed->elf_backend_print_symbol_all)
1977 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1978
1979 if (name == NULL)
1980 {
1981 name = symbol->name;
1982 bfd_print_symbol_vandf (abfd, file, symbol);
1983 }
1984
1985 fprintf (file, " %s\t", section_name);
1986 /* Print the "other" value for a symbol. For common symbols,
1987 we've already printed the size; now print the alignment.
1988 For other symbols, we have no specified alignment, and
1989 we've printed the address; now print the size. */
1990 if (symbol->section && bfd_is_com_section (symbol->section))
1991 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1992 else
1993 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1994 bfd_fprintf_vma (abfd, file, val);
1995
1996 /* If we have version information, print it. */
1997 version_string = _bfd_elf_get_symbol_version_string (abfd,
1998 symbol,
1999 TRUE,
2000 &hidden);
2001 if (version_string)
2002 {
2003 if (!hidden)
2004 fprintf (file, " %-11s", version_string);
2005 else
2006 {
2007 int i;
2008
2009 fprintf (file, " (%s)", version_string);
2010 for (i = 10 - strlen (version_string); i > 0; --i)
2011 putc (' ', file);
2012 }
2013 }
2014
2015 /* If the st_other field is not zero, print it. */
2016 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2017
2018 switch (st_other)
2019 {
2020 case 0: break;
2021 case STV_INTERNAL: fprintf (file, " .internal"); break;
2022 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2023 case STV_PROTECTED: fprintf (file, " .protected"); break;
2024 default:
2025 /* Some other non-defined flags are also present, so print
2026 everything hex. */
2027 fprintf (file, " 0x%02x", (unsigned int) st_other);
2028 }
2029
2030 fprintf (file, " %s", name);
2031 }
2032 break;
2033 }
2034 }
2035 \f
2036 /* ELF .o/exec file reading */
2037
2038 /* Create a new bfd section from an ELF section header. */
2039
2040 bfd_boolean
2041 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2042 {
2043 Elf_Internal_Shdr *hdr;
2044 Elf_Internal_Ehdr *ehdr;
2045 const struct elf_backend_data *bed;
2046 const char *name;
2047 bfd_boolean ret = TRUE;
2048
2049 if (shindex >= elf_numsections (abfd))
2050 return FALSE;
2051
2052 /* PR17512: A corrupt ELF binary might contain a loop of sections via
2053 sh_link or sh_info. Detect this here, by refusing to load a
2054 section that we are already in the process of loading. */
2055 if (elf_tdata (abfd)->being_created[shindex])
2056 {
2057 _bfd_error_handler
2058 (_("%pB: warning: loop in section dependencies detected"), abfd);
2059 return FALSE;
2060 }
2061 elf_tdata (abfd)->being_created[shindex] = TRUE;
2062
2063 hdr = elf_elfsections (abfd)[shindex];
2064 ehdr = elf_elfheader (abfd);
2065 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2066 hdr->sh_name);
2067 if (name == NULL)
2068 goto fail;
2069
2070 bed = get_elf_backend_data (abfd);
2071 switch (hdr->sh_type)
2072 {
2073 case SHT_NULL:
2074 /* Inactive section. Throw it away. */
2075 goto success;
2076
2077 case SHT_PROGBITS: /* Normal section with contents. */
2078 case SHT_NOBITS: /* .bss section. */
2079 case SHT_HASH: /* .hash section. */
2080 case SHT_NOTE: /* .note section. */
2081 case SHT_INIT_ARRAY: /* .init_array section. */
2082 case SHT_FINI_ARRAY: /* .fini_array section. */
2083 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2084 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2085 case SHT_GNU_HASH: /* .gnu.hash section. */
2086 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2087 goto success;
2088
2089 case SHT_DYNAMIC: /* Dynamic linking information. */
2090 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2091 goto fail;
2092
2093 if (hdr->sh_link > elf_numsections (abfd))
2094 {
2095 /* PR 10478: Accept Solaris binaries with a sh_link
2096 field set to SHN_BEFORE or SHN_AFTER. */
2097 switch (bfd_get_arch (abfd))
2098 {
2099 case bfd_arch_i386:
2100 case bfd_arch_sparc:
2101 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2102 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2103 break;
2104 /* Otherwise fall through. */
2105 default:
2106 goto fail;
2107 }
2108 }
2109 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2110 goto fail;
2111 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2112 {
2113 Elf_Internal_Shdr *dynsymhdr;
2114
2115 /* The shared libraries distributed with hpux11 have a bogus
2116 sh_link field for the ".dynamic" section. Find the
2117 string table for the ".dynsym" section instead. */
2118 if (elf_dynsymtab (abfd) != 0)
2119 {
2120 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2121 hdr->sh_link = dynsymhdr->sh_link;
2122 }
2123 else
2124 {
2125 unsigned int i, num_sec;
2126
2127 num_sec = elf_numsections (abfd);
2128 for (i = 1; i < num_sec; i++)
2129 {
2130 dynsymhdr = elf_elfsections (abfd)[i];
2131 if (dynsymhdr->sh_type == SHT_DYNSYM)
2132 {
2133 hdr->sh_link = dynsymhdr->sh_link;
2134 break;
2135 }
2136 }
2137 }
2138 }
2139 goto success;
2140
2141 case SHT_SYMTAB: /* A symbol table. */
2142 if (elf_onesymtab (abfd) == shindex)
2143 goto success;
2144
2145 if (hdr->sh_entsize != bed->s->sizeof_sym)
2146 goto fail;
2147
2148 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2149 {
2150 if (hdr->sh_size != 0)
2151 goto fail;
2152 /* Some assemblers erroneously set sh_info to one with a
2153 zero sh_size. ld sees this as a global symbol count
2154 of (unsigned) -1. Fix it here. */
2155 hdr->sh_info = 0;
2156 goto success;
2157 }
2158
2159 /* PR 18854: A binary might contain more than one symbol table.
2160 Unusual, but possible. Warn, but continue. */
2161 if (elf_onesymtab (abfd) != 0)
2162 {
2163 _bfd_error_handler
2164 /* xgettext:c-format */
2165 (_("%pB: warning: multiple symbol tables detected"
2166 " - ignoring the table in section %u"),
2167 abfd, shindex);
2168 goto success;
2169 }
2170 elf_onesymtab (abfd) = shindex;
2171 elf_symtab_hdr (abfd) = *hdr;
2172 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2173 abfd->flags |= HAS_SYMS;
2174
2175 /* Sometimes a shared object will map in the symbol table. If
2176 SHF_ALLOC is set, and this is a shared object, then we also
2177 treat this section as a BFD section. We can not base the
2178 decision purely on SHF_ALLOC, because that flag is sometimes
2179 set in a relocatable object file, which would confuse the
2180 linker. */
2181 if ((hdr->sh_flags & SHF_ALLOC) != 0
2182 && (abfd->flags & DYNAMIC) != 0
2183 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2184 shindex))
2185 goto fail;
2186
2187 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2188 can't read symbols without that section loaded as well. It
2189 is most likely specified by the next section header. */
2190 {
2191 elf_section_list * entry;
2192 unsigned int i, num_sec;
2193
2194 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2195 if (entry->hdr.sh_link == shindex)
2196 goto success;
2197
2198 num_sec = elf_numsections (abfd);
2199 for (i = shindex + 1; i < num_sec; i++)
2200 {
2201 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2202
2203 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2204 && hdr2->sh_link == shindex)
2205 break;
2206 }
2207
2208 if (i == num_sec)
2209 for (i = 1; i < shindex; i++)
2210 {
2211 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2212
2213 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2214 && hdr2->sh_link == shindex)
2215 break;
2216 }
2217
2218 if (i != shindex)
2219 ret = bfd_section_from_shdr (abfd, i);
2220 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2221 goto success;
2222 }
2223
2224 case SHT_DYNSYM: /* A dynamic symbol table. */
2225 if (elf_dynsymtab (abfd) == shindex)
2226 goto success;
2227
2228 if (hdr->sh_entsize != bed->s->sizeof_sym)
2229 goto fail;
2230
2231 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2232 {
2233 if (hdr->sh_size != 0)
2234 goto fail;
2235
2236 /* Some linkers erroneously set sh_info to one with a
2237 zero sh_size. ld sees this as a global symbol count
2238 of (unsigned) -1. Fix it here. */
2239 hdr->sh_info = 0;
2240 goto success;
2241 }
2242
2243 /* PR 18854: A binary might contain more than one dynamic symbol table.
2244 Unusual, but possible. Warn, but continue. */
2245 if (elf_dynsymtab (abfd) != 0)
2246 {
2247 _bfd_error_handler
2248 /* xgettext:c-format */
2249 (_("%pB: warning: multiple dynamic symbol tables detected"
2250 " - ignoring the table in section %u"),
2251 abfd, shindex);
2252 goto success;
2253 }
2254 elf_dynsymtab (abfd) = shindex;
2255 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2256 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2257 abfd->flags |= HAS_SYMS;
2258
2259 /* Besides being a symbol table, we also treat this as a regular
2260 section, so that objcopy can handle it. */
2261 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2262 goto success;
2263
2264 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2265 {
2266 elf_section_list * entry;
2267
2268 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2269 if (entry->ndx == shindex)
2270 goto success;
2271
2272 entry = bfd_alloc (abfd, sizeof (*entry));
2273 if (entry == NULL)
2274 goto fail;
2275 entry->ndx = shindex;
2276 entry->hdr = * hdr;
2277 entry->next = elf_symtab_shndx_list (abfd);
2278 elf_symtab_shndx_list (abfd) = entry;
2279 elf_elfsections (abfd)[shindex] = & entry->hdr;
2280 goto success;
2281 }
2282
2283 case SHT_STRTAB: /* A string table. */
2284 if (hdr->bfd_section != NULL)
2285 goto success;
2286
2287 if (ehdr->e_shstrndx == shindex)
2288 {
2289 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2290 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2291 goto success;
2292 }
2293
2294 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2295 {
2296 symtab_strtab:
2297 elf_tdata (abfd)->strtab_hdr = *hdr;
2298 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2299 goto success;
2300 }
2301
2302 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2303 {
2304 dynsymtab_strtab:
2305 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2306 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2307 elf_elfsections (abfd)[shindex] = hdr;
2308 /* We also treat this as a regular section, so that objcopy
2309 can handle it. */
2310 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2311 shindex);
2312 goto success;
2313 }
2314
2315 /* If the string table isn't one of the above, then treat it as a
2316 regular section. We need to scan all the headers to be sure,
2317 just in case this strtab section appeared before the above. */
2318 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2319 {
2320 unsigned int i, num_sec;
2321
2322 num_sec = elf_numsections (abfd);
2323 for (i = 1; i < num_sec; i++)
2324 {
2325 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2326 if (hdr2->sh_link == shindex)
2327 {
2328 /* Prevent endless recursion on broken objects. */
2329 if (i == shindex)
2330 goto fail;
2331 if (! bfd_section_from_shdr (abfd, i))
2332 goto fail;
2333 if (elf_onesymtab (abfd) == i)
2334 goto symtab_strtab;
2335 if (elf_dynsymtab (abfd) == i)
2336 goto dynsymtab_strtab;
2337 }
2338 }
2339 }
2340 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2341 goto success;
2342
2343 case SHT_REL:
2344 case SHT_RELA:
2345 /* *These* do a lot of work -- but build no sections! */
2346 {
2347 asection *target_sect;
2348 Elf_Internal_Shdr *hdr2, **p_hdr;
2349 unsigned int num_sec = elf_numsections (abfd);
2350 struct bfd_elf_section_data *esdt;
2351
2352 if (hdr->sh_entsize
2353 != (bfd_size_type) (hdr->sh_type == SHT_REL
2354 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2355 goto fail;
2356
2357 /* Check for a bogus link to avoid crashing. */
2358 if (hdr->sh_link >= num_sec)
2359 {
2360 _bfd_error_handler
2361 /* xgettext:c-format */
2362 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2363 abfd, hdr->sh_link, name, shindex);
2364 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2365 shindex);
2366 goto success;
2367 }
2368
2369 /* For some incomprehensible reason Oracle distributes
2370 libraries for Solaris in which some of the objects have
2371 bogus sh_link fields. It would be nice if we could just
2372 reject them, but, unfortunately, some people need to use
2373 them. We scan through the section headers; if we find only
2374 one suitable symbol table, we clobber the sh_link to point
2375 to it. I hope this doesn't break anything.
2376
2377 Don't do it on executable nor shared library. */
2378 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2379 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2380 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2381 {
2382 unsigned int scan;
2383 int found;
2384
2385 found = 0;
2386 for (scan = 1; scan < num_sec; scan++)
2387 {
2388 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2389 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2390 {
2391 if (found != 0)
2392 {
2393 found = 0;
2394 break;
2395 }
2396 found = scan;
2397 }
2398 }
2399 if (found != 0)
2400 hdr->sh_link = found;
2401 }
2402
2403 /* Get the symbol table. */
2404 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2405 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2406 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2407 goto fail;
2408
2409 /* If this is an alloc section in an executable or shared
2410 library, or the reloc section does not use the main symbol
2411 table we don't treat it as a reloc section. BFD can't
2412 adequately represent such a section, so at least for now,
2413 we don't try. We just present it as a normal section. We
2414 also can't use it as a reloc section if it points to the
2415 null section, an invalid section, another reloc section, or
2416 its sh_link points to the null section. */
2417 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2418 && (hdr->sh_flags & SHF_ALLOC) != 0)
2419 || hdr->sh_link == SHN_UNDEF
2420 || hdr->sh_link != elf_onesymtab (abfd)
2421 || hdr->sh_info == SHN_UNDEF
2422 || hdr->sh_info >= num_sec
2423 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2424 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2425 {
2426 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2427 shindex);
2428 goto success;
2429 }
2430
2431 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2432 goto fail;
2433
2434 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2435 if (target_sect == NULL)
2436 goto fail;
2437
2438 esdt = elf_section_data (target_sect);
2439 if (hdr->sh_type == SHT_RELA)
2440 p_hdr = &esdt->rela.hdr;
2441 else
2442 p_hdr = &esdt->rel.hdr;
2443
2444 /* PR 17512: file: 0b4f81b7.
2445 Also see PR 24456, for a file which deliberately has two reloc
2446 sections. */
2447 if (*p_hdr != NULL)
2448 {
2449 if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex))
2450 {
2451 _bfd_error_handler
2452 /* xgettext:c-format */
2453 (_("%pB: warning: secondary relocation section '%s' "
2454 "for section %pA found - ignoring"),
2455 abfd, name, target_sect);
2456 }
2457 goto success;
2458 }
2459
2460 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2461 if (hdr2 == NULL)
2462 goto fail;
2463 *hdr2 = *hdr;
2464 *p_hdr = hdr2;
2465 elf_elfsections (abfd)[shindex] = hdr2;
2466 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2467 * bed->s->int_rels_per_ext_rel);
2468 target_sect->flags |= SEC_RELOC;
2469 target_sect->relocation = NULL;
2470 target_sect->rel_filepos = hdr->sh_offset;
2471 /* In the section to which the relocations apply, mark whether
2472 its relocations are of the REL or RELA variety. */
2473 if (hdr->sh_size != 0)
2474 {
2475 if (hdr->sh_type == SHT_RELA)
2476 target_sect->use_rela_p = 1;
2477 }
2478 abfd->flags |= HAS_RELOC;
2479 goto success;
2480 }
2481
2482 case SHT_GNU_verdef:
2483 elf_dynverdef (abfd) = shindex;
2484 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2485 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2486 goto success;
2487
2488 case SHT_GNU_versym:
2489 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2490 goto fail;
2491
2492 elf_dynversym (abfd) = shindex;
2493 elf_tdata (abfd)->dynversym_hdr = *hdr;
2494 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2495 goto success;
2496
2497 case SHT_GNU_verneed:
2498 elf_dynverref (abfd) = shindex;
2499 elf_tdata (abfd)->dynverref_hdr = *hdr;
2500 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2501 goto success;
2502
2503 case SHT_SHLIB:
2504 goto success;
2505
2506 case SHT_GROUP:
2507 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2508 goto fail;
2509
2510 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2511 goto fail;
2512
2513 goto success;
2514
2515 default:
2516 /* Possibly an attributes section. */
2517 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2518 || hdr->sh_type == bed->obj_attrs_section_type)
2519 {
2520 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2521 goto fail;
2522 _bfd_elf_parse_attributes (abfd, hdr);
2523 goto success;
2524 }
2525
2526 /* Check for any processor-specific section types. */
2527 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2528 goto success;
2529
2530 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2531 {
2532 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2533 /* FIXME: How to properly handle allocated section reserved
2534 for applications? */
2535 _bfd_error_handler
2536 /* xgettext:c-format */
2537 (_("%pB: unknown type [%#x] section `%s'"),
2538 abfd, hdr->sh_type, name);
2539 else
2540 {
2541 /* Allow sections reserved for applications. */
2542 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2543 shindex);
2544 goto success;
2545 }
2546 }
2547 else if (hdr->sh_type >= SHT_LOPROC
2548 && hdr->sh_type <= SHT_HIPROC)
2549 /* FIXME: We should handle this section. */
2550 _bfd_error_handler
2551 /* xgettext:c-format */
2552 (_("%pB: unknown type [%#x] section `%s'"),
2553 abfd, hdr->sh_type, name);
2554 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2555 {
2556 /* Unrecognised OS-specific sections. */
2557 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2558 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2559 required to correctly process the section and the file should
2560 be rejected with an error message. */
2561 _bfd_error_handler
2562 /* xgettext:c-format */
2563 (_("%pB: unknown type [%#x] section `%s'"),
2564 abfd, hdr->sh_type, name);
2565 else
2566 {
2567 /* Otherwise it should be processed. */
2568 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2569 goto success;
2570 }
2571 }
2572 else
2573 /* FIXME: We should handle this section. */
2574 _bfd_error_handler
2575 /* xgettext:c-format */
2576 (_("%pB: unknown type [%#x] section `%s'"),
2577 abfd, hdr->sh_type, name);
2578
2579 goto fail;
2580 }
2581
2582 fail:
2583 ret = FALSE;
2584 success:
2585 elf_tdata (abfd)->being_created[shindex] = FALSE;
2586 return ret;
2587 }
2588
2589 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2590
2591 Elf_Internal_Sym *
2592 bfd_sym_from_r_symndx (struct sym_cache *cache,
2593 bfd *abfd,
2594 unsigned long r_symndx)
2595 {
2596 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2597
2598 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2599 {
2600 Elf_Internal_Shdr *symtab_hdr;
2601 unsigned char esym[sizeof (Elf64_External_Sym)];
2602 Elf_External_Sym_Shndx eshndx;
2603
2604 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2605 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2606 &cache->sym[ent], esym, &eshndx) == NULL)
2607 return NULL;
2608
2609 if (cache->abfd != abfd)
2610 {
2611 memset (cache->indx, -1, sizeof (cache->indx));
2612 cache->abfd = abfd;
2613 }
2614 cache->indx[ent] = r_symndx;
2615 }
2616
2617 return &cache->sym[ent];
2618 }
2619
2620 /* Given an ELF section number, retrieve the corresponding BFD
2621 section. */
2622
2623 asection *
2624 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2625 {
2626 if (sec_index >= elf_numsections (abfd))
2627 return NULL;
2628 return elf_elfsections (abfd)[sec_index]->bfd_section;
2629 }
2630
2631 static const struct bfd_elf_special_section special_sections_b[] =
2632 {
2633 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2634 { NULL, 0, 0, 0, 0 }
2635 };
2636
2637 static const struct bfd_elf_special_section special_sections_c[] =
2638 {
2639 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2640 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2641 { NULL, 0, 0, 0, 0 }
2642 };
2643
2644 static const struct bfd_elf_special_section special_sections_d[] =
2645 {
2646 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2647 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2648 /* There are more DWARF sections than these, but they needn't be added here
2649 unless you have to cope with broken compilers that don't emit section
2650 attributes or you want to help the user writing assembler. */
2651 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2652 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2653 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2655 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2656 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2657 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2658 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2659 { NULL, 0, 0, 0, 0 }
2660 };
2661
2662 static const struct bfd_elf_special_section special_sections_f[] =
2663 {
2664 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2665 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2666 { NULL, 0 , 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_g[] =
2670 {
2671 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2672 { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2673 { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2674 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2675 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2676 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2677 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2678 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2679 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2680 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2681 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_h[] =
2686 {
2687 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2688 { NULL, 0, 0, 0, 0 }
2689 };
2690
2691 static const struct bfd_elf_special_section special_sections_i[] =
2692 {
2693 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2694 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2695 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2696 { NULL, 0, 0, 0, 0 }
2697 };
2698
2699 static const struct bfd_elf_special_section special_sections_l[] =
2700 {
2701 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2702 { NULL, 0, 0, 0, 0 }
2703 };
2704
2705 static const struct bfd_elf_special_section special_sections_n[] =
2706 {
2707 { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2708 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2709 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2710 { NULL, 0, 0, 0, 0 }
2711 };
2712
2713 static const struct bfd_elf_special_section special_sections_p[] =
2714 {
2715 { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2716 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2717 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_r[] =
2722 {
2723 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2724 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2725 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2726 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2727 { NULL, 0, 0, 0, 0 }
2728 };
2729
2730 static const struct bfd_elf_special_section special_sections_s[] =
2731 {
2732 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2733 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2734 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2735 /* See struct bfd_elf_special_section declaration for the semantics of
2736 this special case where .prefix_length != strlen (.prefix). */
2737 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2738 { NULL, 0, 0, 0, 0 }
2739 };
2740
2741 static const struct bfd_elf_special_section special_sections_t[] =
2742 {
2743 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2744 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2745 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2746 { NULL, 0, 0, 0, 0 }
2747 };
2748
2749 static const struct bfd_elf_special_section special_sections_z[] =
2750 {
2751 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2752 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2753 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2754 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2755 { NULL, 0, 0, 0, 0 }
2756 };
2757
2758 static const struct bfd_elf_special_section * const special_sections[] =
2759 {
2760 special_sections_b, /* 'b' */
2761 special_sections_c, /* 'c' */
2762 special_sections_d, /* 'd' */
2763 NULL, /* 'e' */
2764 special_sections_f, /* 'f' */
2765 special_sections_g, /* 'g' */
2766 special_sections_h, /* 'h' */
2767 special_sections_i, /* 'i' */
2768 NULL, /* 'j' */
2769 NULL, /* 'k' */
2770 special_sections_l, /* 'l' */
2771 NULL, /* 'm' */
2772 special_sections_n, /* 'n' */
2773 NULL, /* 'o' */
2774 special_sections_p, /* 'p' */
2775 NULL, /* 'q' */
2776 special_sections_r, /* 'r' */
2777 special_sections_s, /* 's' */
2778 special_sections_t, /* 't' */
2779 NULL, /* 'u' */
2780 NULL, /* 'v' */
2781 NULL, /* 'w' */
2782 NULL, /* 'x' */
2783 NULL, /* 'y' */
2784 special_sections_z /* 'z' */
2785 };
2786
2787 const struct bfd_elf_special_section *
2788 _bfd_elf_get_special_section (const char *name,
2789 const struct bfd_elf_special_section *spec,
2790 unsigned int rela)
2791 {
2792 int i;
2793 int len;
2794
2795 len = strlen (name);
2796
2797 for (i = 0; spec[i].prefix != NULL; i++)
2798 {
2799 int suffix_len;
2800 int prefix_len = spec[i].prefix_length;
2801
2802 if (len < prefix_len)
2803 continue;
2804 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2805 continue;
2806
2807 suffix_len = spec[i].suffix_length;
2808 if (suffix_len <= 0)
2809 {
2810 if (name[prefix_len] != 0)
2811 {
2812 if (suffix_len == 0)
2813 continue;
2814 if (name[prefix_len] != '.'
2815 && (suffix_len == -2
2816 || (rela && spec[i].type == SHT_REL)))
2817 continue;
2818 }
2819 }
2820 else
2821 {
2822 if (len < prefix_len + suffix_len)
2823 continue;
2824 if (memcmp (name + len - suffix_len,
2825 spec[i].prefix + prefix_len,
2826 suffix_len) != 0)
2827 continue;
2828 }
2829 return &spec[i];
2830 }
2831
2832 return NULL;
2833 }
2834
2835 const struct bfd_elf_special_section *
2836 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2837 {
2838 int i;
2839 const struct bfd_elf_special_section *spec;
2840 const struct elf_backend_data *bed;
2841
2842 /* See if this is one of the special sections. */
2843 if (sec->name == NULL)
2844 return NULL;
2845
2846 bed = get_elf_backend_data (abfd);
2847 spec = bed->special_sections;
2848 if (spec)
2849 {
2850 spec = _bfd_elf_get_special_section (sec->name,
2851 bed->special_sections,
2852 sec->use_rela_p);
2853 if (spec != NULL)
2854 return spec;
2855 }
2856
2857 if (sec->name[0] != '.')
2858 return NULL;
2859
2860 i = sec->name[1] - 'b';
2861 if (i < 0 || i > 'z' - 'b')
2862 return NULL;
2863
2864 spec = special_sections[i];
2865
2866 if (spec == NULL)
2867 return NULL;
2868
2869 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2870 }
2871
2872 bfd_boolean
2873 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2874 {
2875 struct bfd_elf_section_data *sdata;
2876 const struct elf_backend_data *bed;
2877 const struct bfd_elf_special_section *ssect;
2878
2879 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2880 if (sdata == NULL)
2881 {
2882 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2883 sizeof (*sdata));
2884 if (sdata == NULL)
2885 return FALSE;
2886 sec->used_by_bfd = sdata;
2887 }
2888
2889 /* Indicate whether or not this section should use RELA relocations. */
2890 bed = get_elf_backend_data (abfd);
2891 sec->use_rela_p = bed->default_use_rela_p;
2892
2893 /* Set up ELF section type and flags for newly created sections, if
2894 there is an ABI mandated section. */
2895 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2896 if (ssect != NULL)
2897 {
2898 elf_section_type (sec) = ssect->type;
2899 elf_section_flags (sec) = ssect->attr;
2900 }
2901
2902 return _bfd_generic_new_section_hook (abfd, sec);
2903 }
2904
2905 /* Create a new bfd section from an ELF program header.
2906
2907 Since program segments have no names, we generate a synthetic name
2908 of the form segment<NUM>, where NUM is generally the index in the
2909 program header table. For segments that are split (see below) we
2910 generate the names segment<NUM>a and segment<NUM>b.
2911
2912 Note that some program segments may have a file size that is different than
2913 (less than) the memory size. All this means is that at execution the
2914 system must allocate the amount of memory specified by the memory size,
2915 but only initialize it with the first "file size" bytes read from the
2916 file. This would occur for example, with program segments consisting
2917 of combined data+bss.
2918
2919 To handle the above situation, this routine generates TWO bfd sections
2920 for the single program segment. The first has the length specified by
2921 the file size of the segment, and the second has the length specified
2922 by the difference between the two sizes. In effect, the segment is split
2923 into its initialized and uninitialized parts.
2924
2925 */
2926
2927 bfd_boolean
2928 _bfd_elf_make_section_from_phdr (bfd *abfd,
2929 Elf_Internal_Phdr *hdr,
2930 int hdr_index,
2931 const char *type_name)
2932 {
2933 asection *newsect;
2934 char *name;
2935 char namebuf[64];
2936 size_t len;
2937 int split;
2938 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
2939
2940 split = ((hdr->p_memsz > 0)
2941 && (hdr->p_filesz > 0)
2942 && (hdr->p_memsz > hdr->p_filesz));
2943
2944 if (hdr->p_filesz > 0)
2945 {
2946 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2947 len = strlen (namebuf) + 1;
2948 name = (char *) bfd_alloc (abfd, len);
2949 if (!name)
2950 return FALSE;
2951 memcpy (name, namebuf, len);
2952 newsect = bfd_make_section (abfd, name);
2953 if (newsect == NULL)
2954 return FALSE;
2955 newsect->vma = hdr->p_vaddr / opb;
2956 newsect->lma = hdr->p_paddr / opb;
2957 newsect->size = hdr->p_filesz;
2958 newsect->filepos = hdr->p_offset;
2959 newsect->flags |= SEC_HAS_CONTENTS;
2960 newsect->alignment_power = bfd_log2 (hdr->p_align);
2961 if (hdr->p_type == PT_LOAD)
2962 {
2963 newsect->flags |= SEC_ALLOC;
2964 newsect->flags |= SEC_LOAD;
2965 if (hdr->p_flags & PF_X)
2966 {
2967 /* FIXME: all we known is that it has execute PERMISSION,
2968 may be data. */
2969 newsect->flags |= SEC_CODE;
2970 }
2971 }
2972 if (!(hdr->p_flags & PF_W))
2973 {
2974 newsect->flags |= SEC_READONLY;
2975 }
2976 }
2977
2978 if (hdr->p_memsz > hdr->p_filesz)
2979 {
2980 bfd_vma align;
2981
2982 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2983 len = strlen (namebuf) + 1;
2984 name = (char *) bfd_alloc (abfd, len);
2985 if (!name)
2986 return FALSE;
2987 memcpy (name, namebuf, len);
2988 newsect = bfd_make_section (abfd, name);
2989 if (newsect == NULL)
2990 return FALSE;
2991 newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb;
2992 newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb;
2993 newsect->size = hdr->p_memsz - hdr->p_filesz;
2994 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2995 align = newsect->vma & -newsect->vma;
2996 if (align == 0 || align > hdr->p_align)
2997 align = hdr->p_align;
2998 newsect->alignment_power = bfd_log2 (align);
2999 if (hdr->p_type == PT_LOAD)
3000 {
3001 newsect->flags |= SEC_ALLOC;
3002 if (hdr->p_flags & PF_X)
3003 newsect->flags |= SEC_CODE;
3004 }
3005 if (!(hdr->p_flags & PF_W))
3006 newsect->flags |= SEC_READONLY;
3007 }
3008
3009 return TRUE;
3010 }
3011
3012 static bfd_boolean
3013 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3014 {
3015 /* The return value is ignored. Build-ids are considered optional. */
3016 if (templ->xvec->flavour == bfd_target_elf_flavour)
3017 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3018 (templ, offset);
3019 return FALSE;
3020 }
3021
3022 bfd_boolean
3023 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3024 {
3025 const struct elf_backend_data *bed;
3026
3027 switch (hdr->p_type)
3028 {
3029 case PT_NULL:
3030 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3031
3032 case PT_LOAD:
3033 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3034 return FALSE;
3035 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3036 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3037 return TRUE;
3038
3039 case PT_DYNAMIC:
3040 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3041
3042 case PT_INTERP:
3043 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3044
3045 case PT_NOTE:
3046 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3047 return FALSE;
3048 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3049 hdr->p_align))
3050 return FALSE;
3051 return TRUE;
3052
3053 case PT_SHLIB:
3054 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3055
3056 case PT_PHDR:
3057 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3058
3059 case PT_GNU_EH_FRAME:
3060 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3061 "eh_frame_hdr");
3062
3063 case PT_GNU_STACK:
3064 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3065
3066 case PT_GNU_RELRO:
3067 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3068
3069 default:
3070 /* Check for any processor-specific program segment types. */
3071 bed = get_elf_backend_data (abfd);
3072 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3073 }
3074 }
3075
3076 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3077 REL or RELA. */
3078
3079 Elf_Internal_Shdr *
3080 _bfd_elf_single_rel_hdr (asection *sec)
3081 {
3082 if (elf_section_data (sec)->rel.hdr)
3083 {
3084 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3085 return elf_section_data (sec)->rel.hdr;
3086 }
3087 else
3088 return elf_section_data (sec)->rela.hdr;
3089 }
3090
3091 static bfd_boolean
3092 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3093 Elf_Internal_Shdr *rel_hdr,
3094 const char *sec_name,
3095 bfd_boolean use_rela_p)
3096 {
3097 char *name = (char *) bfd_alloc (abfd,
3098 sizeof ".rela" + strlen (sec_name));
3099 if (name == NULL)
3100 return FALSE;
3101
3102 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3103 rel_hdr->sh_name =
3104 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3105 FALSE);
3106 if (rel_hdr->sh_name == (unsigned int) -1)
3107 return FALSE;
3108
3109 return TRUE;
3110 }
3111
3112 /* Allocate and initialize a section-header for a new reloc section,
3113 containing relocations against ASECT. It is stored in RELDATA. If
3114 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3115 relocations. */
3116
3117 static bfd_boolean
3118 _bfd_elf_init_reloc_shdr (bfd *abfd,
3119 struct bfd_elf_section_reloc_data *reldata,
3120 const char *sec_name,
3121 bfd_boolean use_rela_p,
3122 bfd_boolean delay_st_name_p)
3123 {
3124 Elf_Internal_Shdr *rel_hdr;
3125 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3126
3127 BFD_ASSERT (reldata->hdr == NULL);
3128 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3129 reldata->hdr = rel_hdr;
3130
3131 if (delay_st_name_p)
3132 rel_hdr->sh_name = (unsigned int) -1;
3133 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3134 use_rela_p))
3135 return FALSE;
3136 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3137 rel_hdr->sh_entsize = (use_rela_p
3138 ? bed->s->sizeof_rela
3139 : bed->s->sizeof_rel);
3140 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3141 rel_hdr->sh_flags = 0;
3142 rel_hdr->sh_addr = 0;
3143 rel_hdr->sh_size = 0;
3144 rel_hdr->sh_offset = 0;
3145
3146 return TRUE;
3147 }
3148
3149 /* Return the default section type based on the passed in section flags. */
3150
3151 int
3152 bfd_elf_get_default_section_type (flagword flags)
3153 {
3154 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3155 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3156 return SHT_NOBITS;
3157 return SHT_PROGBITS;
3158 }
3159
3160 struct fake_section_arg
3161 {
3162 struct bfd_link_info *link_info;
3163 bfd_boolean failed;
3164 };
3165
3166 /* Set up an ELF internal section header for a section. */
3167
3168 static void
3169 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3170 {
3171 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3172 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3173 struct bfd_elf_section_data *esd = elf_section_data (asect);
3174 Elf_Internal_Shdr *this_hdr;
3175 unsigned int sh_type;
3176 const char *name = asect->name;
3177 bfd_boolean delay_st_name_p = FALSE;
3178 bfd_vma mask;
3179
3180 if (arg->failed)
3181 {
3182 /* We already failed; just get out of the bfd_map_over_sections
3183 loop. */
3184 return;
3185 }
3186
3187 this_hdr = &esd->this_hdr;
3188
3189 if (arg->link_info)
3190 {
3191 /* ld: compress DWARF debug sections with names: .debug_*. */
3192 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3193 && (asect->flags & SEC_DEBUGGING)
3194 && name[1] == 'd'
3195 && name[6] == '_')
3196 {
3197 /* Set SEC_ELF_COMPRESS to indicate this section should be
3198 compressed. */
3199 asect->flags |= SEC_ELF_COMPRESS;
3200 /* If this section will be compressed, delay adding section
3201 name to section name section after it is compressed in
3202 _bfd_elf_assign_file_positions_for_non_load. */
3203 delay_st_name_p = TRUE;
3204 }
3205 }
3206 else if ((asect->flags & SEC_ELF_RENAME))
3207 {
3208 /* objcopy: rename output DWARF debug section. */
3209 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3210 {
3211 /* When we decompress or compress with SHF_COMPRESSED,
3212 convert section name from .zdebug_* to .debug_* if
3213 needed. */
3214 if (name[1] == 'z')
3215 {
3216 char *new_name = convert_zdebug_to_debug (abfd, name);
3217 if (new_name == NULL)
3218 {
3219 arg->failed = TRUE;
3220 return;
3221 }
3222 name = new_name;
3223 }
3224 }
3225 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3226 {
3227 /* PR binutils/18087: Compression does not always make a
3228 section smaller. So only rename the section when
3229 compression has actually taken place. If input section
3230 name is .zdebug_*, we should never compress it again. */
3231 char *new_name = convert_debug_to_zdebug (abfd, name);
3232 if (new_name == NULL)
3233 {
3234 arg->failed = TRUE;
3235 return;
3236 }
3237 BFD_ASSERT (name[1] != 'z');
3238 name = new_name;
3239 }
3240 }
3241
3242 if (delay_st_name_p)
3243 this_hdr->sh_name = (unsigned int) -1;
3244 else
3245 {
3246 this_hdr->sh_name
3247 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3248 name, FALSE);
3249 if (this_hdr->sh_name == (unsigned int) -1)
3250 {
3251 arg->failed = TRUE;
3252 return;
3253 }
3254 }
3255
3256 /* Don't clear sh_flags. Assembler may set additional bits. */
3257
3258 if ((asect->flags & SEC_ALLOC) != 0
3259 || asect->user_set_vma)
3260 this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect);
3261 else
3262 this_hdr->sh_addr = 0;
3263
3264 this_hdr->sh_offset = 0;
3265 this_hdr->sh_size = asect->size;
3266 this_hdr->sh_link = 0;
3267 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3268 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3269 {
3270 _bfd_error_handler
3271 /* xgettext:c-format */
3272 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3273 abfd, asect->alignment_power, asect);
3274 arg->failed = TRUE;
3275 return;
3276 }
3277 /* Set sh_addralign to the highest power of two given by alignment
3278 consistent with the section VMA. Linker scripts can force VMA. */
3279 mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr;
3280 this_hdr->sh_addralign = mask & -mask;
3281 /* The sh_entsize and sh_info fields may have been set already by
3282 copy_private_section_data. */
3283
3284 this_hdr->bfd_section = asect;
3285 this_hdr->contents = NULL;
3286
3287 /* If the section type is unspecified, we set it based on
3288 asect->flags. */
3289 if ((asect->flags & SEC_GROUP) != 0)
3290 sh_type = SHT_GROUP;
3291 else
3292 sh_type = bfd_elf_get_default_section_type (asect->flags);
3293
3294 if (this_hdr->sh_type == SHT_NULL)
3295 this_hdr->sh_type = sh_type;
3296 else if (this_hdr->sh_type == SHT_NOBITS
3297 && sh_type == SHT_PROGBITS
3298 && (asect->flags & SEC_ALLOC) != 0)
3299 {
3300 /* Warn if we are changing a NOBITS section to PROGBITS, but
3301 allow the link to proceed. This can happen when users link
3302 non-bss input sections to bss output sections, or emit data
3303 to a bss output section via a linker script. */
3304 _bfd_error_handler
3305 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3306 this_hdr->sh_type = sh_type;
3307 }
3308
3309 switch (this_hdr->sh_type)
3310 {
3311 default:
3312 break;
3313
3314 case SHT_STRTAB:
3315 case SHT_NOTE:
3316 case SHT_NOBITS:
3317 case SHT_PROGBITS:
3318 break;
3319
3320 case SHT_INIT_ARRAY:
3321 case SHT_FINI_ARRAY:
3322 case SHT_PREINIT_ARRAY:
3323 this_hdr->sh_entsize = bed->s->arch_size / 8;
3324 break;
3325
3326 case SHT_HASH:
3327 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3328 break;
3329
3330 case SHT_DYNSYM:
3331 this_hdr->sh_entsize = bed->s->sizeof_sym;
3332 break;
3333
3334 case SHT_DYNAMIC:
3335 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3336 break;
3337
3338 case SHT_RELA:
3339 if (get_elf_backend_data (abfd)->may_use_rela_p)
3340 this_hdr->sh_entsize = bed->s->sizeof_rela;
3341 break;
3342
3343 case SHT_REL:
3344 if (get_elf_backend_data (abfd)->may_use_rel_p)
3345 this_hdr->sh_entsize = bed->s->sizeof_rel;
3346 break;
3347
3348 case SHT_GNU_versym:
3349 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3350 break;
3351
3352 case SHT_GNU_verdef:
3353 this_hdr->sh_entsize = 0;
3354 /* objcopy or strip will copy over sh_info, but may not set
3355 cverdefs. The linker will set cverdefs, but sh_info will be
3356 zero. */
3357 if (this_hdr->sh_info == 0)
3358 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3359 else
3360 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3361 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3362 break;
3363
3364 case SHT_GNU_verneed:
3365 this_hdr->sh_entsize = 0;
3366 /* objcopy or strip will copy over sh_info, but may not set
3367 cverrefs. The linker will set cverrefs, but sh_info will be
3368 zero. */
3369 if (this_hdr->sh_info == 0)
3370 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3371 else
3372 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3373 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3374 break;
3375
3376 case SHT_GROUP:
3377 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3378 break;
3379
3380 case SHT_GNU_HASH:
3381 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3382 break;
3383 }
3384
3385 if ((asect->flags & SEC_ALLOC) != 0)
3386 this_hdr->sh_flags |= SHF_ALLOC;
3387 if ((asect->flags & SEC_READONLY) == 0)
3388 this_hdr->sh_flags |= SHF_WRITE;
3389 if ((asect->flags & SEC_CODE) != 0)
3390 this_hdr->sh_flags |= SHF_EXECINSTR;
3391 if ((asect->flags & SEC_MERGE) != 0)
3392 {
3393 this_hdr->sh_flags |= SHF_MERGE;
3394 this_hdr->sh_entsize = asect->entsize;
3395 }
3396 if ((asect->flags & SEC_STRINGS) != 0)
3397 this_hdr->sh_flags |= SHF_STRINGS;
3398 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3399 this_hdr->sh_flags |= SHF_GROUP;
3400 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3401 {
3402 this_hdr->sh_flags |= SHF_TLS;
3403 if (asect->size == 0
3404 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3405 {
3406 struct bfd_link_order *o = asect->map_tail.link_order;
3407
3408 this_hdr->sh_size = 0;
3409 if (o != NULL)
3410 {
3411 this_hdr->sh_size = o->offset + o->size;
3412 if (this_hdr->sh_size != 0)
3413 this_hdr->sh_type = SHT_NOBITS;
3414 }
3415 }
3416 }
3417 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3418 this_hdr->sh_flags |= SHF_EXCLUDE;
3419
3420 /* If the section has relocs, set up a section header for the
3421 SHT_REL[A] section. If two relocation sections are required for
3422 this section, it is up to the processor-specific back-end to
3423 create the other. */
3424 if ((asect->flags & SEC_RELOC) != 0)
3425 {
3426 /* When doing a relocatable link, create both REL and RELA sections if
3427 needed. */
3428 if (arg->link_info
3429 /* Do the normal setup if we wouldn't create any sections here. */
3430 && esd->rel.count + esd->rela.count > 0
3431 && (bfd_link_relocatable (arg->link_info)
3432 || arg->link_info->emitrelocations))
3433 {
3434 if (esd->rel.count && esd->rel.hdr == NULL
3435 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3436 FALSE, delay_st_name_p))
3437 {
3438 arg->failed = TRUE;
3439 return;
3440 }
3441 if (esd->rela.count && esd->rela.hdr == NULL
3442 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3443 TRUE, delay_st_name_p))
3444 {
3445 arg->failed = TRUE;
3446 return;
3447 }
3448 }
3449 else if (!_bfd_elf_init_reloc_shdr (abfd,
3450 (asect->use_rela_p
3451 ? &esd->rela : &esd->rel),
3452 name,
3453 asect->use_rela_p,
3454 delay_st_name_p))
3455 {
3456 arg->failed = TRUE;
3457 return;
3458 }
3459 }
3460
3461 /* Check for processor-specific section types. */
3462 sh_type = this_hdr->sh_type;
3463 if (bed->elf_backend_fake_sections
3464 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3465 {
3466 arg->failed = TRUE;
3467 return;
3468 }
3469
3470 if (sh_type == SHT_NOBITS && asect->size != 0)
3471 {
3472 /* Don't change the header type from NOBITS if we are being
3473 called for objcopy --only-keep-debug. */
3474 this_hdr->sh_type = sh_type;
3475 }
3476 }
3477
3478 /* Fill in the contents of a SHT_GROUP section. Called from
3479 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3480 when ELF targets use the generic linker, ld. Called for ld -r
3481 from bfd_elf_final_link. */
3482
3483 void
3484 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3485 {
3486 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3487 asection *elt, *first;
3488 unsigned char *loc;
3489 bfd_boolean gas;
3490
3491 /* Ignore linker created group section. See elfNN_ia64_object_p in
3492 elfxx-ia64.c. */
3493 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3494 || sec->size == 0
3495 || *failedptr)
3496 return;
3497
3498 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3499 {
3500 unsigned long symindx = 0;
3501
3502 /* elf_group_id will have been set up by objcopy and the
3503 generic linker. */
3504 if (elf_group_id (sec) != NULL)
3505 symindx = elf_group_id (sec)->udata.i;
3506
3507 if (symindx == 0)
3508 {
3509 /* If called from the assembler, swap_out_syms will have set up
3510 elf_section_syms.
3511 PR 25699: A corrupt input file could contain bogus group info. */
3512 if (elf_section_syms (abfd) == NULL)
3513 {
3514 *failedptr = TRUE;
3515 return;
3516 }
3517 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3518 }
3519 elf_section_data (sec)->this_hdr.sh_info = symindx;
3520 }
3521 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3522 {
3523 /* The ELF backend linker sets sh_info to -2 when the group
3524 signature symbol is global, and thus the index can't be
3525 set until all local symbols are output. */
3526 asection *igroup;
3527 struct bfd_elf_section_data *sec_data;
3528 unsigned long symndx;
3529 unsigned long extsymoff;
3530 struct elf_link_hash_entry *h;
3531
3532 /* The point of this little dance to the first SHF_GROUP section
3533 then back to the SHT_GROUP section is that this gets us to
3534 the SHT_GROUP in the input object. */
3535 igroup = elf_sec_group (elf_next_in_group (sec));
3536 sec_data = elf_section_data (igroup);
3537 symndx = sec_data->this_hdr.sh_info;
3538 extsymoff = 0;
3539 if (!elf_bad_symtab (igroup->owner))
3540 {
3541 Elf_Internal_Shdr *symtab_hdr;
3542
3543 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3544 extsymoff = symtab_hdr->sh_info;
3545 }
3546 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3547 while (h->root.type == bfd_link_hash_indirect
3548 || h->root.type == bfd_link_hash_warning)
3549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3550
3551 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3552 }
3553
3554 /* The contents won't be allocated for "ld -r" or objcopy. */
3555 gas = TRUE;
3556 if (sec->contents == NULL)
3557 {
3558 gas = FALSE;
3559 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3560
3561 /* Arrange for the section to be written out. */
3562 elf_section_data (sec)->this_hdr.contents = sec->contents;
3563 if (sec->contents == NULL)
3564 {
3565 *failedptr = TRUE;
3566 return;
3567 }
3568 }
3569
3570 loc = sec->contents + sec->size;
3571
3572 /* Get the pointer to the first section in the group that gas
3573 squirreled away here. objcopy arranges for this to be set to the
3574 start of the input section group. */
3575 first = elt = elf_next_in_group (sec);
3576
3577 /* First element is a flag word. Rest of section is elf section
3578 indices for all the sections of the group. Write them backwards
3579 just to keep the group in the same order as given in .section
3580 directives, not that it matters. */
3581 while (elt != NULL)
3582 {
3583 asection *s;
3584
3585 s = elt;
3586 if (!gas)
3587 s = s->output_section;
3588 if (s != NULL
3589 && !bfd_is_abs_section (s))
3590 {
3591 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3592 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3593
3594 if (elf_sec->rel.hdr != NULL
3595 && (gas
3596 || (input_elf_sec->rel.hdr != NULL
3597 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3598 {
3599 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3600 loc -= 4;
3601 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3602 }
3603 if (elf_sec->rela.hdr != NULL
3604 && (gas
3605 || (input_elf_sec->rela.hdr != NULL
3606 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3607 {
3608 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3609 loc -= 4;
3610 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3611 }
3612 loc -= 4;
3613 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3614 }
3615 elt = elf_next_in_group (elt);
3616 if (elt == first)
3617 break;
3618 }
3619
3620 loc -= 4;
3621 BFD_ASSERT (loc == sec->contents);
3622
3623 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3624 }
3625
3626 /* Given NAME, the name of a relocation section stripped of its
3627 .rel/.rela prefix, return the section in ABFD to which the
3628 relocations apply. */
3629
3630 asection *
3631 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3632 {
3633 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3634 section likely apply to .got.plt or .got section. */
3635 if (get_elf_backend_data (abfd)->want_got_plt
3636 && strcmp (name, ".plt") == 0)
3637 {
3638 asection *sec;
3639
3640 name = ".got.plt";
3641 sec = bfd_get_section_by_name (abfd, name);
3642 if (sec != NULL)
3643 return sec;
3644 name = ".got";
3645 }
3646
3647 return bfd_get_section_by_name (abfd, name);
3648 }
3649
3650 /* Return the section to which RELOC_SEC applies. */
3651
3652 static asection *
3653 elf_get_reloc_section (asection *reloc_sec)
3654 {
3655 const char *name;
3656 unsigned int type;
3657 bfd *abfd;
3658 const struct elf_backend_data *bed;
3659
3660 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3661 if (type != SHT_REL && type != SHT_RELA)
3662 return NULL;
3663
3664 /* We look up the section the relocs apply to by name. */
3665 name = reloc_sec->name;
3666 if (strncmp (name, ".rel", 4) != 0)
3667 return NULL;
3668 name += 4;
3669 if (type == SHT_RELA && *name++ != 'a')
3670 return NULL;
3671
3672 abfd = reloc_sec->owner;
3673 bed = get_elf_backend_data (abfd);
3674 return bed->get_reloc_section (abfd, name);
3675 }
3676
3677 /* Assign all ELF section numbers. The dummy first section is handled here
3678 too. The link/info pointers for the standard section types are filled
3679 in here too, while we're at it. LINK_INFO will be 0 when arriving
3680 here for objcopy, and when using the generic ELF linker. */
3681
3682 static bfd_boolean
3683 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3684 {
3685 struct elf_obj_tdata *t = elf_tdata (abfd);
3686 asection *sec;
3687 unsigned int section_number;
3688 Elf_Internal_Shdr **i_shdrp;
3689 struct bfd_elf_section_data *d;
3690 bfd_boolean need_symtab;
3691 size_t amt;
3692
3693 section_number = 1;
3694
3695 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3696
3697 /* SHT_GROUP sections are in relocatable files only. */
3698 if (link_info == NULL || !link_info->resolve_section_groups)
3699 {
3700 size_t reloc_count = 0;
3701
3702 /* Put SHT_GROUP sections first. */
3703 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3704 {
3705 d = elf_section_data (sec);
3706
3707 if (d->this_hdr.sh_type == SHT_GROUP)
3708 {
3709 if (sec->flags & SEC_LINKER_CREATED)
3710 {
3711 /* Remove the linker created SHT_GROUP sections. */
3712 bfd_section_list_remove (abfd, sec);
3713 abfd->section_count--;
3714 }
3715 else
3716 d->this_idx = section_number++;
3717 }
3718
3719 /* Count relocations. */
3720 reloc_count += sec->reloc_count;
3721 }
3722
3723 /* Clear HAS_RELOC if there are no relocations. */
3724 if (reloc_count == 0)
3725 abfd->flags &= ~HAS_RELOC;
3726 }
3727
3728 for (sec = abfd->sections; sec; sec = sec->next)
3729 {
3730 d = elf_section_data (sec);
3731
3732 if (d->this_hdr.sh_type != SHT_GROUP)
3733 d->this_idx = section_number++;
3734 if (d->this_hdr.sh_name != (unsigned int) -1)
3735 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3736 if (d->rel.hdr)
3737 {
3738 d->rel.idx = section_number++;
3739 if (d->rel.hdr->sh_name != (unsigned int) -1)
3740 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3741 }
3742 else
3743 d->rel.idx = 0;
3744
3745 if (d->rela.hdr)
3746 {
3747 d->rela.idx = section_number++;
3748 if (d->rela.hdr->sh_name != (unsigned int) -1)
3749 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3750 }
3751 else
3752 d->rela.idx = 0;
3753 }
3754
3755 need_symtab = (bfd_get_symcount (abfd) > 0
3756 || (link_info == NULL
3757 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3758 == HAS_RELOC)));
3759 if (need_symtab)
3760 {
3761 elf_onesymtab (abfd) = section_number++;
3762 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3763 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3764 {
3765 elf_section_list *entry;
3766
3767 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3768
3769 entry = bfd_zalloc (abfd, sizeof (*entry));
3770 entry->ndx = section_number++;
3771 elf_symtab_shndx_list (abfd) = entry;
3772 entry->hdr.sh_name
3773 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3774 ".symtab_shndx", FALSE);
3775 if (entry->hdr.sh_name == (unsigned int) -1)
3776 return FALSE;
3777 }
3778 elf_strtab_sec (abfd) = section_number++;
3779 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3780 }
3781
3782 elf_shstrtab_sec (abfd) = section_number++;
3783 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3784 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3785
3786 if (section_number >= SHN_LORESERVE)
3787 {
3788 /* xgettext:c-format */
3789 _bfd_error_handler (_("%pB: too many sections: %u"),
3790 abfd, section_number);
3791 return FALSE;
3792 }
3793
3794 elf_numsections (abfd) = section_number;
3795 elf_elfheader (abfd)->e_shnum = section_number;
3796
3797 /* Set up the list of section header pointers, in agreement with the
3798 indices. */
3799 amt = section_number * sizeof (Elf_Internal_Shdr *);
3800 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3801 if (i_shdrp == NULL)
3802 return FALSE;
3803
3804 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3805 sizeof (Elf_Internal_Shdr));
3806 if (i_shdrp[0] == NULL)
3807 {
3808 bfd_release (abfd, i_shdrp);
3809 return FALSE;
3810 }
3811
3812 elf_elfsections (abfd) = i_shdrp;
3813
3814 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3815 if (need_symtab)
3816 {
3817 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3818 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3819 {
3820 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3821 BFD_ASSERT (entry != NULL);
3822 i_shdrp[entry->ndx] = & entry->hdr;
3823 entry->hdr.sh_link = elf_onesymtab (abfd);
3824 }
3825 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3826 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3827 }
3828
3829 for (sec = abfd->sections; sec; sec = sec->next)
3830 {
3831 asection *s;
3832
3833 d = elf_section_data (sec);
3834
3835 i_shdrp[d->this_idx] = &d->this_hdr;
3836 if (d->rel.idx != 0)
3837 i_shdrp[d->rel.idx] = d->rel.hdr;
3838 if (d->rela.idx != 0)
3839 i_shdrp[d->rela.idx] = d->rela.hdr;
3840
3841 /* Fill in the sh_link and sh_info fields while we're at it. */
3842
3843 /* sh_link of a reloc section is the section index of the symbol
3844 table. sh_info is the section index of the section to which
3845 the relocation entries apply. */
3846 if (d->rel.idx != 0)
3847 {
3848 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3849 d->rel.hdr->sh_info = d->this_idx;
3850 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3851 }
3852 if (d->rela.idx != 0)
3853 {
3854 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3855 d->rela.hdr->sh_info = d->this_idx;
3856 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3857 }
3858
3859 /* We need to set up sh_link for SHF_LINK_ORDER. */
3860 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3861 {
3862 s = elf_linked_to_section (sec);
3863 /* We can now have a NULL linked section pointer.
3864 This happens when the sh_link field is 0, which is done
3865 when a linked to section is discarded but the linking
3866 section has been retained for some reason. */
3867 if (s)
3868 {
3869 /* Check discarded linkonce section. */
3870 if (discarded_section (s))
3871 {
3872 asection *kept;
3873 _bfd_error_handler
3874 /* xgettext:c-format */
3875 (_("%pB: sh_link of section `%pA' points to"
3876 " discarded section `%pA' of `%pB'"),
3877 abfd, d->this_hdr.bfd_section, s, s->owner);
3878 /* Point to the kept section if it has the same
3879 size as the discarded one. */
3880 kept = _bfd_elf_check_kept_section (s, link_info);
3881 if (kept == NULL)
3882 {
3883 bfd_set_error (bfd_error_bad_value);
3884 return FALSE;
3885 }
3886 s = kept;
3887 }
3888 /* Handle objcopy. */
3889 else if (s->output_section == NULL)
3890 {
3891 _bfd_error_handler
3892 /* xgettext:c-format */
3893 (_("%pB: sh_link of section `%pA' points to"
3894 " removed section `%pA' of `%pB'"),
3895 abfd, d->this_hdr.bfd_section, s, s->owner);
3896 bfd_set_error (bfd_error_bad_value);
3897 return FALSE;
3898 }
3899 s = s->output_section;
3900 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3901 }
3902 }
3903
3904 switch (d->this_hdr.sh_type)
3905 {
3906 case SHT_REL:
3907 case SHT_RELA:
3908 /* A reloc section which we are treating as a normal BFD
3909 section. sh_link is the section index of the symbol
3910 table. sh_info is the section index of the section to
3911 which the relocation entries apply. We assume that an
3912 allocated reloc section uses the dynamic symbol table.
3913 FIXME: How can we be sure? */
3914 s = bfd_get_section_by_name (abfd, ".dynsym");
3915 if (s != NULL)
3916 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3917
3918 s = elf_get_reloc_section (sec);
3919 if (s != NULL)
3920 {
3921 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3922 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3923 }
3924 break;
3925
3926 case SHT_STRTAB:
3927 /* We assume that a section named .stab*str is a stabs
3928 string section. We look for a section with the same name
3929 but without the trailing ``str'', and set its sh_link
3930 field to point to this section. */
3931 if (CONST_STRNEQ (sec->name, ".stab")
3932 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3933 {
3934 size_t len;
3935 char *alc;
3936
3937 len = strlen (sec->name);
3938 alc = (char *) bfd_malloc (len - 2);
3939 if (alc == NULL)
3940 return FALSE;
3941 memcpy (alc, sec->name, len - 3);
3942 alc[len - 3] = '\0';
3943 s = bfd_get_section_by_name (abfd, alc);
3944 free (alc);
3945 if (s != NULL)
3946 {
3947 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3948
3949 /* This is a .stab section. */
3950 elf_section_data (s)->this_hdr.sh_entsize = 12;
3951 }
3952 }
3953 break;
3954
3955 case SHT_DYNAMIC:
3956 case SHT_DYNSYM:
3957 case SHT_GNU_verneed:
3958 case SHT_GNU_verdef:
3959 /* sh_link is the section header index of the string table
3960 used for the dynamic entries, or the symbol table, or the
3961 version strings. */
3962 s = bfd_get_section_by_name (abfd, ".dynstr");
3963 if (s != NULL)
3964 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3965 break;
3966
3967 case SHT_GNU_LIBLIST:
3968 /* sh_link is the section header index of the prelink library
3969 list used for the dynamic entries, or the symbol table, or
3970 the version strings. */
3971 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3972 ? ".dynstr" : ".gnu.libstr");
3973 if (s != NULL)
3974 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3975 break;
3976
3977 case SHT_HASH:
3978 case SHT_GNU_HASH:
3979 case SHT_GNU_versym:
3980 /* sh_link is the section header index of the symbol table
3981 this hash table or version table is for. */
3982 s = bfd_get_section_by_name (abfd, ".dynsym");
3983 if (s != NULL)
3984 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3985 break;
3986
3987 case SHT_GROUP:
3988 d->this_hdr.sh_link = elf_onesymtab (abfd);
3989 }
3990 }
3991
3992 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3993 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3994 debug section name from .debug_* to .zdebug_* if needed. */
3995
3996 return TRUE;
3997 }
3998
3999 static bfd_boolean
4000 sym_is_global (bfd *abfd, asymbol *sym)
4001 {
4002 /* If the backend has a special mapping, use it. */
4003 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4004 if (bed->elf_backend_sym_is_global)
4005 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4006
4007 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4008 || bfd_is_und_section (bfd_asymbol_section (sym))
4009 || bfd_is_com_section (bfd_asymbol_section (sym)));
4010 }
4011
4012 /* Filter global symbols of ABFD to include in the import library. All
4013 SYMCOUNT symbols of ABFD can be examined from their pointers in
4014 SYMS. Pointers of symbols to keep should be stored contiguously at
4015 the beginning of that array.
4016
4017 Returns the number of symbols to keep. */
4018
4019 unsigned int
4020 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4021 asymbol **syms, long symcount)
4022 {
4023 long src_count, dst_count = 0;
4024
4025 for (src_count = 0; src_count < symcount; src_count++)
4026 {
4027 asymbol *sym = syms[src_count];
4028 char *name = (char *) bfd_asymbol_name (sym);
4029 struct bfd_link_hash_entry *h;
4030
4031 if (!sym_is_global (abfd, sym))
4032 continue;
4033
4034 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4035 if (h == NULL)
4036 continue;
4037 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4038 continue;
4039 if (h->linker_def || h->ldscript_def)
4040 continue;
4041
4042 syms[dst_count++] = sym;
4043 }
4044
4045 syms[dst_count] = NULL;
4046
4047 return dst_count;
4048 }
4049
4050 /* Don't output section symbols for sections that are not going to be
4051 output, that are duplicates or there is no BFD section. */
4052
4053 static bfd_boolean
4054 ignore_section_sym (bfd *abfd, asymbol *sym)
4055 {
4056 elf_symbol_type *type_ptr;
4057
4058 if (sym == NULL)
4059 return FALSE;
4060
4061 if ((sym->flags & BSF_SECTION_SYM) == 0)
4062 return FALSE;
4063
4064 if (sym->section == NULL)
4065 return TRUE;
4066
4067 type_ptr = elf_symbol_from (sym);
4068 return ((type_ptr != NULL
4069 && type_ptr->internal_elf_sym.st_shndx != 0
4070 && bfd_is_abs_section (sym->section))
4071 || !(sym->section->owner == abfd
4072 || (sym->section->output_section != NULL
4073 && sym->section->output_section->owner == abfd
4074 && sym->section->output_offset == 0)
4075 || bfd_is_abs_section (sym->section)));
4076 }
4077
4078 /* Map symbol from it's internal number to the external number, moving
4079 all local symbols to be at the head of the list. */
4080
4081 static bfd_boolean
4082 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4083 {
4084 unsigned int symcount = bfd_get_symcount (abfd);
4085 asymbol **syms = bfd_get_outsymbols (abfd);
4086 asymbol **sect_syms;
4087 unsigned int num_locals = 0;
4088 unsigned int num_globals = 0;
4089 unsigned int num_locals2 = 0;
4090 unsigned int num_globals2 = 0;
4091 unsigned int max_index = 0;
4092 unsigned int idx;
4093 asection *asect;
4094 asymbol **new_syms;
4095 size_t amt;
4096
4097 #ifdef DEBUG
4098 fprintf (stderr, "elf_map_symbols\n");
4099 fflush (stderr);
4100 #endif
4101
4102 for (asect = abfd->sections; asect; asect = asect->next)
4103 {
4104 if (max_index < asect->index)
4105 max_index = asect->index;
4106 }
4107
4108 max_index++;
4109 amt = max_index * sizeof (asymbol *);
4110 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4111 if (sect_syms == NULL)
4112 return FALSE;
4113 elf_section_syms (abfd) = sect_syms;
4114 elf_num_section_syms (abfd) = max_index;
4115
4116 /* Init sect_syms entries for any section symbols we have already
4117 decided to output. */
4118 for (idx = 0; idx < symcount; idx++)
4119 {
4120 asymbol *sym = syms[idx];
4121
4122 if ((sym->flags & BSF_SECTION_SYM) != 0
4123 && sym->value == 0
4124 && !ignore_section_sym (abfd, sym)
4125 && !bfd_is_abs_section (sym->section))
4126 {
4127 asection *sec = sym->section;
4128
4129 if (sec->owner != abfd)
4130 sec = sec->output_section;
4131
4132 sect_syms[sec->index] = syms[idx];
4133 }
4134 }
4135
4136 /* Classify all of the symbols. */
4137 for (idx = 0; idx < symcount; idx++)
4138 {
4139 if (sym_is_global (abfd, syms[idx]))
4140 num_globals++;
4141 else if (!ignore_section_sym (abfd, syms[idx]))
4142 num_locals++;
4143 }
4144
4145 /* We will be adding a section symbol for each normal BFD section. Most
4146 sections will already have a section symbol in outsymbols, but
4147 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4148 at least in that case. */
4149 for (asect = abfd->sections; asect; asect = asect->next)
4150 {
4151 if (sect_syms[asect->index] == NULL)
4152 {
4153 if (!sym_is_global (abfd, asect->symbol))
4154 num_locals++;
4155 else
4156 num_globals++;
4157 }
4158 }
4159
4160 /* Now sort the symbols so the local symbols are first. */
4161 amt = (num_locals + num_globals) * sizeof (asymbol *);
4162 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4163 if (new_syms == NULL)
4164 return FALSE;
4165
4166 for (idx = 0; idx < symcount; idx++)
4167 {
4168 asymbol *sym = syms[idx];
4169 unsigned int i;
4170
4171 if (sym_is_global (abfd, sym))
4172 i = num_locals + num_globals2++;
4173 else if (!ignore_section_sym (abfd, sym))
4174 i = num_locals2++;
4175 else
4176 continue;
4177 new_syms[i] = sym;
4178 sym->udata.i = i + 1;
4179 }
4180 for (asect = abfd->sections; asect; asect = asect->next)
4181 {
4182 if (sect_syms[asect->index] == NULL)
4183 {
4184 asymbol *sym = asect->symbol;
4185 unsigned int i;
4186
4187 sect_syms[asect->index] = sym;
4188 if (!sym_is_global (abfd, sym))
4189 i = num_locals2++;
4190 else
4191 i = num_locals + num_globals2++;
4192 new_syms[i] = sym;
4193 sym->udata.i = i + 1;
4194 }
4195 }
4196
4197 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4198
4199 *pnum_locals = num_locals;
4200 return TRUE;
4201 }
4202
4203 /* Align to the maximum file alignment that could be required for any
4204 ELF data structure. */
4205
4206 static inline file_ptr
4207 align_file_position (file_ptr off, int align)
4208 {
4209 return (off + align - 1) & ~(align - 1);
4210 }
4211
4212 /* Assign a file position to a section, optionally aligning to the
4213 required section alignment. */
4214
4215 file_ptr
4216 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4217 file_ptr offset,
4218 bfd_boolean align)
4219 {
4220 if (align && i_shdrp->sh_addralign > 1)
4221 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4222 i_shdrp->sh_offset = offset;
4223 if (i_shdrp->bfd_section != NULL)
4224 i_shdrp->bfd_section->filepos = offset;
4225 if (i_shdrp->sh_type != SHT_NOBITS)
4226 offset += i_shdrp->sh_size;
4227 return offset;
4228 }
4229
4230 /* Compute the file positions we are going to put the sections at, and
4231 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4232 is not NULL, this is being called by the ELF backend linker. */
4233
4234 bfd_boolean
4235 _bfd_elf_compute_section_file_positions (bfd *abfd,
4236 struct bfd_link_info *link_info)
4237 {
4238 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4239 struct fake_section_arg fsargs;
4240 bfd_boolean failed;
4241 struct elf_strtab_hash *strtab = NULL;
4242 Elf_Internal_Shdr *shstrtab_hdr;
4243 bfd_boolean need_symtab;
4244
4245 if (abfd->output_has_begun)
4246 return TRUE;
4247
4248 /* Do any elf backend specific processing first. */
4249 if (bed->elf_backend_begin_write_processing)
4250 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4251
4252 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4253 return FALSE;
4254
4255 fsargs.failed = FALSE;
4256 fsargs.link_info = link_info;
4257 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4258 if (fsargs.failed)
4259 return FALSE;
4260
4261 if (!assign_section_numbers (abfd, link_info))
4262 return FALSE;
4263
4264 /* The backend linker builds symbol table information itself. */
4265 need_symtab = (link_info == NULL
4266 && (bfd_get_symcount (abfd) > 0
4267 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4268 == HAS_RELOC)));
4269 if (need_symtab)
4270 {
4271 /* Non-zero if doing a relocatable link. */
4272 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4273
4274 if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info))
4275 return FALSE;
4276 }
4277
4278 failed = FALSE;
4279 if (link_info == NULL)
4280 {
4281 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4282 if (failed)
4283 return FALSE;
4284 }
4285
4286 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4287 /* sh_name was set in init_file_header. */
4288 shstrtab_hdr->sh_type = SHT_STRTAB;
4289 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4290 shstrtab_hdr->sh_addr = 0;
4291 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4292 shstrtab_hdr->sh_entsize = 0;
4293 shstrtab_hdr->sh_link = 0;
4294 shstrtab_hdr->sh_info = 0;
4295 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4296 shstrtab_hdr->sh_addralign = 1;
4297
4298 if (!assign_file_positions_except_relocs (abfd, link_info))
4299 return FALSE;
4300
4301 if (need_symtab)
4302 {
4303 file_ptr off;
4304 Elf_Internal_Shdr *hdr;
4305
4306 off = elf_next_file_pos (abfd);
4307
4308 hdr = & elf_symtab_hdr (abfd);
4309 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4310
4311 if (elf_symtab_shndx_list (abfd) != NULL)
4312 {
4313 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4314 if (hdr->sh_size != 0)
4315 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4316 /* FIXME: What about other symtab_shndx sections in the list ? */
4317 }
4318
4319 hdr = &elf_tdata (abfd)->strtab_hdr;
4320 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4321
4322 elf_next_file_pos (abfd) = off;
4323
4324 /* Now that we know where the .strtab section goes, write it
4325 out. */
4326 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4327 || ! _bfd_elf_strtab_emit (abfd, strtab))
4328 return FALSE;
4329 _bfd_elf_strtab_free (strtab);
4330 }
4331
4332 abfd->output_has_begun = TRUE;
4333
4334 return TRUE;
4335 }
4336
4337 /* Make an initial estimate of the size of the program header. If we
4338 get the number wrong here, we'll redo section placement. */
4339
4340 static bfd_size_type
4341 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4342 {
4343 size_t segs;
4344 asection *s;
4345 const struct elf_backend_data *bed;
4346
4347 /* Assume we will need exactly two PT_LOAD segments: one for text
4348 and one for data. */
4349 segs = 2;
4350
4351 s = bfd_get_section_by_name (abfd, ".interp");
4352 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4353 {
4354 /* If we have a loadable interpreter section, we need a
4355 PT_INTERP segment. In this case, assume we also need a
4356 PT_PHDR segment, although that may not be true for all
4357 targets. */
4358 segs += 2;
4359 }
4360
4361 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4362 {
4363 /* We need a PT_DYNAMIC segment. */
4364 ++segs;
4365 }
4366
4367 if (info != NULL && info->relro)
4368 {
4369 /* We need a PT_GNU_RELRO segment. */
4370 ++segs;
4371 }
4372
4373 if (elf_eh_frame_hdr (abfd))
4374 {
4375 /* We need a PT_GNU_EH_FRAME segment. */
4376 ++segs;
4377 }
4378
4379 if (elf_stack_flags (abfd))
4380 {
4381 /* We need a PT_GNU_STACK segment. */
4382 ++segs;
4383 }
4384
4385 s = bfd_get_section_by_name (abfd,
4386 NOTE_GNU_PROPERTY_SECTION_NAME);
4387 if (s != NULL && s->size != 0)
4388 {
4389 /* We need a PT_GNU_PROPERTY segment. */
4390 ++segs;
4391 }
4392
4393 for (s = abfd->sections; s != NULL; s = s->next)
4394 {
4395 if ((s->flags & SEC_LOAD) != 0
4396 && elf_section_type (s) == SHT_NOTE)
4397 {
4398 unsigned int alignment_power;
4399 /* We need a PT_NOTE segment. */
4400 ++segs;
4401 /* Try to create just one PT_NOTE segment for all adjacent
4402 loadable SHT_NOTE sections. gABI requires that within a
4403 PT_NOTE segment (and also inside of each SHT_NOTE section)
4404 each note should have the same alignment. So we check
4405 whether the sections are correctly aligned. */
4406 alignment_power = s->alignment_power;
4407 while (s->next != NULL
4408 && s->next->alignment_power == alignment_power
4409 && (s->next->flags & SEC_LOAD) != 0
4410 && elf_section_type (s->next) == SHT_NOTE)
4411 s = s->next;
4412 }
4413 }
4414
4415 for (s = abfd->sections; s != NULL; s = s->next)
4416 {
4417 if (s->flags & SEC_THREAD_LOCAL)
4418 {
4419 /* We need a PT_TLS segment. */
4420 ++segs;
4421 break;
4422 }
4423 }
4424
4425 bed = get_elf_backend_data (abfd);
4426
4427 if ((abfd->flags & D_PAGED) != 0
4428 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4429 {
4430 /* Add a PT_GNU_MBIND segment for each mbind section. */
4431 bfd_vma commonpagesize;
4432 unsigned int page_align_power;
4433
4434 if (info != NULL)
4435 commonpagesize = info->commonpagesize;
4436 else
4437 commonpagesize = bed->commonpagesize;
4438 page_align_power = bfd_log2 (commonpagesize);
4439 for (s = abfd->sections; s != NULL; s = s->next)
4440 if (elf_section_flags (s) & SHF_GNU_MBIND)
4441 {
4442 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4443 {
4444 _bfd_error_handler
4445 /* xgettext:c-format */
4446 (_("%pB: GNU_MBIND section `%pA' has invalid "
4447 "sh_info field: %d"),
4448 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4449 continue;
4450 }
4451 /* Align mbind section to page size. */
4452 if (s->alignment_power < page_align_power)
4453 s->alignment_power = page_align_power;
4454 segs ++;
4455 }
4456 }
4457
4458 /* Let the backend count up any program headers it might need. */
4459 if (bed->elf_backend_additional_program_headers)
4460 {
4461 int a;
4462
4463 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4464 if (a == -1)
4465 abort ();
4466 segs += a;
4467 }
4468
4469 return segs * bed->s->sizeof_phdr;
4470 }
4471
4472 /* Find the segment that contains the output_section of section. */
4473
4474 Elf_Internal_Phdr *
4475 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4476 {
4477 struct elf_segment_map *m;
4478 Elf_Internal_Phdr *p;
4479
4480 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4481 m != NULL;
4482 m = m->next, p++)
4483 {
4484 int i;
4485
4486 for (i = m->count - 1; i >= 0; i--)
4487 if (m->sections[i] == section)
4488 return p;
4489 }
4490
4491 return NULL;
4492 }
4493
4494 /* Create a mapping from a set of sections to a program segment. */
4495
4496 static struct elf_segment_map *
4497 make_mapping (bfd *abfd,
4498 asection **sections,
4499 unsigned int from,
4500 unsigned int to,
4501 bfd_boolean phdr)
4502 {
4503 struct elf_segment_map *m;
4504 unsigned int i;
4505 asection **hdrpp;
4506 size_t amt;
4507
4508 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4509 amt += (to - from) * sizeof (asection *);
4510 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4511 if (m == NULL)
4512 return NULL;
4513 m->next = NULL;
4514 m->p_type = PT_LOAD;
4515 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4516 m->sections[i - from] = *hdrpp;
4517 m->count = to - from;
4518
4519 if (from == 0 && phdr)
4520 {
4521 /* Include the headers in the first PT_LOAD segment. */
4522 m->includes_filehdr = 1;
4523 m->includes_phdrs = 1;
4524 }
4525
4526 return m;
4527 }
4528
4529 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4530 on failure. */
4531
4532 struct elf_segment_map *
4533 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4534 {
4535 struct elf_segment_map *m;
4536
4537 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4538 sizeof (struct elf_segment_map));
4539 if (m == NULL)
4540 return NULL;
4541 m->next = NULL;
4542 m->p_type = PT_DYNAMIC;
4543 m->count = 1;
4544 m->sections[0] = dynsec;
4545
4546 return m;
4547 }
4548
4549 /* Possibly add or remove segments from the segment map. */
4550
4551 static bfd_boolean
4552 elf_modify_segment_map (bfd *abfd,
4553 struct bfd_link_info *info,
4554 bfd_boolean remove_empty_load)
4555 {
4556 struct elf_segment_map **m;
4557 const struct elf_backend_data *bed;
4558
4559 /* The placement algorithm assumes that non allocated sections are
4560 not in PT_LOAD segments. We ensure this here by removing such
4561 sections from the segment map. We also remove excluded
4562 sections. Finally, any PT_LOAD segment without sections is
4563 removed. */
4564 m = &elf_seg_map (abfd);
4565 while (*m)
4566 {
4567 unsigned int i, new_count;
4568
4569 for (new_count = 0, i = 0; i < (*m)->count; i++)
4570 {
4571 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4572 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4573 || (*m)->p_type != PT_LOAD))
4574 {
4575 (*m)->sections[new_count] = (*m)->sections[i];
4576 new_count++;
4577 }
4578 }
4579 (*m)->count = new_count;
4580
4581 if (remove_empty_load
4582 && (*m)->p_type == PT_LOAD
4583 && (*m)->count == 0
4584 && !(*m)->includes_phdrs)
4585 *m = (*m)->next;
4586 else
4587 m = &(*m)->next;
4588 }
4589
4590 bed = get_elf_backend_data (abfd);
4591 if (bed->elf_backend_modify_segment_map != NULL)
4592 {
4593 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4594 return FALSE;
4595 }
4596
4597 return TRUE;
4598 }
4599
4600 #define IS_TBSS(s) \
4601 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4602
4603 /* Set up a mapping from BFD sections to program segments. */
4604
4605 bfd_boolean
4606 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4607 {
4608 unsigned int count;
4609 struct elf_segment_map *m;
4610 asection **sections = NULL;
4611 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4612 bfd_boolean no_user_phdrs;
4613
4614 no_user_phdrs = elf_seg_map (abfd) == NULL;
4615
4616 if (info != NULL)
4617 info->user_phdrs = !no_user_phdrs;
4618
4619 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4620 {
4621 asection *s;
4622 unsigned int i;
4623 struct elf_segment_map *mfirst;
4624 struct elf_segment_map **pm;
4625 asection *last_hdr;
4626 bfd_vma last_size;
4627 unsigned int hdr_index;
4628 bfd_vma maxpagesize;
4629 asection **hdrpp;
4630 bfd_boolean phdr_in_segment;
4631 bfd_boolean writable;
4632 bfd_boolean executable;
4633 unsigned int tls_count = 0;
4634 asection *first_tls = NULL;
4635 asection *first_mbind = NULL;
4636 asection *dynsec, *eh_frame_hdr;
4637 size_t amt;
4638 bfd_vma addr_mask, wrap_to = 0; /* Bytes. */
4639 bfd_size_type phdr_size; /* Octets/bytes. */
4640 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
4641
4642 /* Select the allocated sections, and sort them. */
4643
4644 amt = bfd_count_sections (abfd) * sizeof (asection *);
4645 sections = (asection **) bfd_malloc (amt);
4646 if (sections == NULL)
4647 goto error_return;
4648
4649 /* Calculate top address, avoiding undefined behaviour of shift
4650 left operator when shift count is equal to size of type
4651 being shifted. */
4652 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4653 addr_mask = (addr_mask << 1) + 1;
4654
4655 i = 0;
4656 for (s = abfd->sections; s != NULL; s = s->next)
4657 {
4658 if ((s->flags & SEC_ALLOC) != 0)
4659 {
4660 /* target_index is unused until bfd_elf_final_link
4661 starts output of section symbols. Use it to make
4662 qsort stable. */
4663 s->target_index = i;
4664 sections[i] = s;
4665 ++i;
4666 /* A wrapping section potentially clashes with header. */
4667 if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask))
4668 wrap_to = (s->lma + s->size / opb) & addr_mask;
4669 }
4670 }
4671 BFD_ASSERT (i <= bfd_count_sections (abfd));
4672 count = i;
4673
4674 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4675
4676 phdr_size = elf_program_header_size (abfd);
4677 if (phdr_size == (bfd_size_type) -1)
4678 phdr_size = get_program_header_size (abfd, info);
4679 phdr_size += bed->s->sizeof_ehdr;
4680 /* phdr_size is compared to LMA values which are in bytes. */
4681 phdr_size /= opb;
4682 if (info != NULL)
4683 maxpagesize = info->maxpagesize;
4684 else
4685 maxpagesize = bed->maxpagesize;
4686 if (maxpagesize == 0)
4687 maxpagesize = 1;
4688 phdr_in_segment = info != NULL && info->load_phdrs;
4689 if (count != 0
4690 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4691 >= (phdr_size & (maxpagesize - 1))))
4692 /* For compatibility with old scripts that may not be using
4693 SIZEOF_HEADERS, add headers when it looks like space has
4694 been left for them. */
4695 phdr_in_segment = TRUE;
4696
4697 /* Build the mapping. */
4698 mfirst = NULL;
4699 pm = &mfirst;
4700
4701 /* If we have a .interp section, then create a PT_PHDR segment for
4702 the program headers and a PT_INTERP segment for the .interp
4703 section. */
4704 s = bfd_get_section_by_name (abfd, ".interp");
4705 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4706 {
4707 amt = sizeof (struct elf_segment_map);
4708 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4709 if (m == NULL)
4710 goto error_return;
4711 m->next = NULL;
4712 m->p_type = PT_PHDR;
4713 m->p_flags = PF_R;
4714 m->p_flags_valid = 1;
4715 m->includes_phdrs = 1;
4716 phdr_in_segment = TRUE;
4717 *pm = m;
4718 pm = &m->next;
4719
4720 amt = sizeof (struct elf_segment_map);
4721 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4722 if (m == NULL)
4723 goto error_return;
4724 m->next = NULL;
4725 m->p_type = PT_INTERP;
4726 m->count = 1;
4727 m->sections[0] = s;
4728
4729 *pm = m;
4730 pm = &m->next;
4731 }
4732
4733 /* Look through the sections. We put sections in the same program
4734 segment when the start of the second section can be placed within
4735 a few bytes of the end of the first section. */
4736 last_hdr = NULL;
4737 last_size = 0;
4738 hdr_index = 0;
4739 writable = FALSE;
4740 executable = FALSE;
4741 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4742 if (dynsec != NULL
4743 && (dynsec->flags & SEC_LOAD) == 0)
4744 dynsec = NULL;
4745
4746 if ((abfd->flags & D_PAGED) == 0)
4747 phdr_in_segment = FALSE;
4748
4749 /* Deal with -Ttext or something similar such that the first section
4750 is not adjacent to the program headers. This is an
4751 approximation, since at this point we don't know exactly how many
4752 program headers we will need. */
4753 if (phdr_in_segment && count > 0)
4754 {
4755 bfd_vma phdr_lma; /* Bytes. */
4756 bfd_boolean separate_phdr = FALSE;
4757
4758 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4759 if (info != NULL
4760 && info->separate_code
4761 && (sections[0]->flags & SEC_CODE) != 0)
4762 {
4763 /* If data sections should be separate from code and
4764 thus not executable, and the first section is
4765 executable then put the file and program headers in
4766 their own PT_LOAD. */
4767 separate_phdr = TRUE;
4768 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4769 == (sections[0]->lma & addr_mask & -maxpagesize)))
4770 {
4771 /* The file and program headers are currently on the
4772 same page as the first section. Put them on the
4773 previous page if we can. */
4774 if (phdr_lma >= maxpagesize)
4775 phdr_lma -= maxpagesize;
4776 else
4777 separate_phdr = FALSE;
4778 }
4779 }
4780 if ((sections[0]->lma & addr_mask) < phdr_lma
4781 || (sections[0]->lma & addr_mask) < phdr_size)
4782 /* If file and program headers would be placed at the end
4783 of memory then it's probably better to omit them. */
4784 phdr_in_segment = FALSE;
4785 else if (phdr_lma < wrap_to)
4786 /* If a section wraps around to where we'll be placing
4787 file and program headers, then the headers will be
4788 overwritten. */
4789 phdr_in_segment = FALSE;
4790 else if (separate_phdr)
4791 {
4792 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4793 if (m == NULL)
4794 goto error_return;
4795 m->p_paddr = phdr_lma * opb;
4796 m->p_vaddr_offset
4797 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4798 m->p_paddr_valid = 1;
4799 *pm = m;
4800 pm = &m->next;
4801 phdr_in_segment = FALSE;
4802 }
4803 }
4804
4805 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4806 {
4807 asection *hdr;
4808 bfd_boolean new_segment;
4809
4810 hdr = *hdrpp;
4811
4812 /* See if this section and the last one will fit in the same
4813 segment. */
4814
4815 if (last_hdr == NULL)
4816 {
4817 /* If we don't have a segment yet, then we don't need a new
4818 one (we build the last one after this loop). */
4819 new_segment = FALSE;
4820 }
4821 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4822 {
4823 /* If this section has a different relation between the
4824 virtual address and the load address, then we need a new
4825 segment. */
4826 new_segment = TRUE;
4827 }
4828 else if (hdr->lma < last_hdr->lma + last_size
4829 || last_hdr->lma + last_size < last_hdr->lma)
4830 {
4831 /* If this section has a load address that makes it overlap
4832 the previous section, then we need a new segment. */
4833 new_segment = TRUE;
4834 }
4835 else if ((abfd->flags & D_PAGED) != 0
4836 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4837 == (hdr->lma & -maxpagesize)))
4838 {
4839 /* If we are demand paged then we can't map two disk
4840 pages onto the same memory page. */
4841 new_segment = FALSE;
4842 }
4843 /* In the next test we have to be careful when last_hdr->lma is close
4844 to the end of the address space. If the aligned address wraps
4845 around to the start of the address space, then there are no more
4846 pages left in memory and it is OK to assume that the current
4847 section can be included in the current segment. */
4848 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4849 + maxpagesize > last_hdr->lma)
4850 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4851 + maxpagesize <= hdr->lma))
4852 {
4853 /* If putting this section in this segment would force us to
4854 skip a page in the segment, then we need a new segment. */
4855 new_segment = TRUE;
4856 }
4857 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4858 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4859 {
4860 /* We don't want to put a loaded section after a
4861 nonloaded (ie. bss style) section in the same segment
4862 as that will force the non-loaded section to be loaded.
4863 Consider .tbss sections as loaded for this purpose. */
4864 new_segment = TRUE;
4865 }
4866 else if ((abfd->flags & D_PAGED) == 0)
4867 {
4868 /* If the file is not demand paged, which means that we
4869 don't require the sections to be correctly aligned in the
4870 file, then there is no other reason for a new segment. */
4871 new_segment = FALSE;
4872 }
4873 else if (info != NULL
4874 && info->separate_code
4875 && executable != ((hdr->flags & SEC_CODE) != 0))
4876 {
4877 new_segment = TRUE;
4878 }
4879 else if (! writable
4880 && (hdr->flags & SEC_READONLY) == 0)
4881 {
4882 /* We don't want to put a writable section in a read only
4883 segment. */
4884 new_segment = TRUE;
4885 }
4886 else
4887 {
4888 /* Otherwise, we can use the same segment. */
4889 new_segment = FALSE;
4890 }
4891
4892 /* Allow interested parties a chance to override our decision. */
4893 if (last_hdr != NULL
4894 && info != NULL
4895 && info->callbacks->override_segment_assignment != NULL)
4896 new_segment
4897 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4898 last_hdr,
4899 new_segment);
4900
4901 if (! new_segment)
4902 {
4903 if ((hdr->flags & SEC_READONLY) == 0)
4904 writable = TRUE;
4905 if ((hdr->flags & SEC_CODE) != 0)
4906 executable = TRUE;
4907 last_hdr = hdr;
4908 /* .tbss sections effectively have zero size. */
4909 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4910 continue;
4911 }
4912
4913 /* We need a new program segment. We must create a new program
4914 header holding all the sections from hdr_index until hdr. */
4915
4916 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4917 if (m == NULL)
4918 goto error_return;
4919
4920 *pm = m;
4921 pm = &m->next;
4922
4923 if ((hdr->flags & SEC_READONLY) == 0)
4924 writable = TRUE;
4925 else
4926 writable = FALSE;
4927
4928 if ((hdr->flags & SEC_CODE) == 0)
4929 executable = FALSE;
4930 else
4931 executable = TRUE;
4932
4933 last_hdr = hdr;
4934 /* .tbss sections effectively have zero size. */
4935 last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb;
4936 hdr_index = i;
4937 phdr_in_segment = FALSE;
4938 }
4939
4940 /* Create a final PT_LOAD program segment, but not if it's just
4941 for .tbss. */
4942 if (last_hdr != NULL
4943 && (i - hdr_index != 1
4944 || !IS_TBSS (last_hdr)))
4945 {
4946 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4947 if (m == NULL)
4948 goto error_return;
4949
4950 *pm = m;
4951 pm = &m->next;
4952 }
4953
4954 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4955 if (dynsec != NULL)
4956 {
4957 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4958 if (m == NULL)
4959 goto error_return;
4960 *pm = m;
4961 pm = &m->next;
4962 }
4963
4964 /* For each batch of consecutive loadable SHT_NOTE sections,
4965 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4966 because if we link together nonloadable .note sections and
4967 loadable .note sections, we will generate two .note sections
4968 in the output file. */
4969 for (s = abfd->sections; s != NULL; s = s->next)
4970 {
4971 if ((s->flags & SEC_LOAD) != 0
4972 && elf_section_type (s) == SHT_NOTE)
4973 {
4974 asection *s2;
4975 unsigned int alignment_power = s->alignment_power;
4976
4977 count = 1;
4978 for (s2 = s; s2->next != NULL; s2 = s2->next)
4979 {
4980 if (s2->next->alignment_power == alignment_power
4981 && (s2->next->flags & SEC_LOAD) != 0
4982 && elf_section_type (s2->next) == SHT_NOTE
4983 && align_power (s2->lma + s2->size / opb,
4984 alignment_power)
4985 == s2->next->lma)
4986 count++;
4987 else
4988 break;
4989 }
4990 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4991 amt += count * sizeof (asection *);
4992 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4993 if (m == NULL)
4994 goto error_return;
4995 m->next = NULL;
4996 m->p_type = PT_NOTE;
4997 m->count = count;
4998 while (count > 1)
4999 {
5000 m->sections[m->count - count--] = s;
5001 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5002 s = s->next;
5003 }
5004 m->sections[m->count - 1] = s;
5005 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5006 *pm = m;
5007 pm = &m->next;
5008 }
5009 if (s->flags & SEC_THREAD_LOCAL)
5010 {
5011 if (! tls_count)
5012 first_tls = s;
5013 tls_count++;
5014 }
5015 if (first_mbind == NULL
5016 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5017 first_mbind = s;
5018 }
5019
5020 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5021 if (tls_count > 0)
5022 {
5023 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5024 amt += tls_count * sizeof (asection *);
5025 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5026 if (m == NULL)
5027 goto error_return;
5028 m->next = NULL;
5029 m->p_type = PT_TLS;
5030 m->count = tls_count;
5031 /* Mandated PF_R. */
5032 m->p_flags = PF_R;
5033 m->p_flags_valid = 1;
5034 s = first_tls;
5035 for (i = 0; i < tls_count; ++i)
5036 {
5037 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5038 {
5039 _bfd_error_handler
5040 (_("%pB: TLS sections are not adjacent:"), abfd);
5041 s = first_tls;
5042 i = 0;
5043 while (i < tls_count)
5044 {
5045 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5046 {
5047 _bfd_error_handler (_(" TLS: %pA"), s);
5048 i++;
5049 }
5050 else
5051 _bfd_error_handler (_(" non-TLS: %pA"), s);
5052 s = s->next;
5053 }
5054 bfd_set_error (bfd_error_bad_value);
5055 goto error_return;
5056 }
5057 m->sections[i] = s;
5058 s = s->next;
5059 }
5060
5061 *pm = m;
5062 pm = &m->next;
5063 }
5064
5065 if (first_mbind
5066 && (abfd->flags & D_PAGED) != 0
5067 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5068 for (s = first_mbind; s != NULL; s = s->next)
5069 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5070 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5071 {
5072 /* Mandated PF_R. */
5073 unsigned long p_flags = PF_R;
5074 if ((s->flags & SEC_READONLY) == 0)
5075 p_flags |= PF_W;
5076 if ((s->flags & SEC_CODE) != 0)
5077 p_flags |= PF_X;
5078
5079 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5080 m = bfd_zalloc (abfd, amt);
5081 if (m == NULL)
5082 goto error_return;
5083 m->next = NULL;
5084 m->p_type = (PT_GNU_MBIND_LO
5085 + elf_section_data (s)->this_hdr.sh_info);
5086 m->count = 1;
5087 m->p_flags_valid = 1;
5088 m->sections[0] = s;
5089 m->p_flags = p_flags;
5090
5091 *pm = m;
5092 pm = &m->next;
5093 }
5094
5095 s = bfd_get_section_by_name (abfd,
5096 NOTE_GNU_PROPERTY_SECTION_NAME);
5097 if (s != NULL && s->size != 0)
5098 {
5099 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5100 m = bfd_zalloc (abfd, amt);
5101 if (m == NULL)
5102 goto error_return;
5103 m->next = NULL;
5104 m->p_type = PT_GNU_PROPERTY;
5105 m->count = 1;
5106 m->p_flags_valid = 1;
5107 m->sections[0] = s;
5108 m->p_flags = PF_R;
5109 *pm = m;
5110 pm = &m->next;
5111 }
5112
5113 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5114 segment. */
5115 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5116 if (eh_frame_hdr != NULL
5117 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5118 {
5119 amt = sizeof (struct elf_segment_map);
5120 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5121 if (m == NULL)
5122 goto error_return;
5123 m->next = NULL;
5124 m->p_type = PT_GNU_EH_FRAME;
5125 m->count = 1;
5126 m->sections[0] = eh_frame_hdr->output_section;
5127
5128 *pm = m;
5129 pm = &m->next;
5130 }
5131
5132 if (elf_stack_flags (abfd))
5133 {
5134 amt = sizeof (struct elf_segment_map);
5135 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5136 if (m == NULL)
5137 goto error_return;
5138 m->next = NULL;
5139 m->p_type = PT_GNU_STACK;
5140 m->p_flags = elf_stack_flags (abfd);
5141 m->p_align = bed->stack_align;
5142 m->p_flags_valid = 1;
5143 m->p_align_valid = m->p_align != 0;
5144 if (info->stacksize > 0)
5145 {
5146 m->p_size = info->stacksize;
5147 m->p_size_valid = 1;
5148 }
5149
5150 *pm = m;
5151 pm = &m->next;
5152 }
5153
5154 if (info != NULL && info->relro)
5155 {
5156 for (m = mfirst; m != NULL; m = m->next)
5157 {
5158 if (m->p_type == PT_LOAD
5159 && m->count != 0
5160 && m->sections[0]->vma >= info->relro_start
5161 && m->sections[0]->vma < info->relro_end)
5162 {
5163 i = m->count;
5164 while (--i != (unsigned) -1)
5165 {
5166 if (m->sections[i]->size > 0
5167 && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5168 == (SEC_LOAD | SEC_HAS_CONTENTS))
5169 break;
5170 }
5171
5172 if (i != (unsigned) -1)
5173 break;
5174 }
5175 }
5176
5177 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5178 if (m != NULL)
5179 {
5180 amt = sizeof (struct elf_segment_map);
5181 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5182 if (m == NULL)
5183 goto error_return;
5184 m->next = NULL;
5185 m->p_type = PT_GNU_RELRO;
5186 *pm = m;
5187 pm = &m->next;
5188 }
5189 }
5190
5191 free (sections);
5192 elf_seg_map (abfd) = mfirst;
5193 }
5194
5195 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5196 return FALSE;
5197
5198 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5199 ++count;
5200 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5201
5202 return TRUE;
5203
5204 error_return:
5205 free (sections);
5206 return FALSE;
5207 }
5208
5209 /* Sort sections by address. */
5210
5211 static int
5212 elf_sort_sections (const void *arg1, const void *arg2)
5213 {
5214 const asection *sec1 = *(const asection **) arg1;
5215 const asection *sec2 = *(const asection **) arg2;
5216 bfd_size_type size1, size2;
5217
5218 /* Sort by LMA first, since this is the address used to
5219 place the section into a segment. */
5220 if (sec1->lma < sec2->lma)
5221 return -1;
5222 else if (sec1->lma > sec2->lma)
5223 return 1;
5224
5225 /* Then sort by VMA. Normally the LMA and the VMA will be
5226 the same, and this will do nothing. */
5227 if (sec1->vma < sec2->vma)
5228 return -1;
5229 else if (sec1->vma > sec2->vma)
5230 return 1;
5231
5232 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5233
5234 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \
5235 && (x)->size != 0)
5236
5237 if (TOEND (sec1))
5238 {
5239 if (!TOEND (sec2))
5240 return 1;
5241 }
5242 else if (TOEND (sec2))
5243 return -1;
5244
5245 #undef TOEND
5246
5247 /* Sort by size, to put zero sized sections
5248 before others at the same address. */
5249
5250 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5251 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5252
5253 if (size1 < size2)
5254 return -1;
5255 if (size1 > size2)
5256 return 1;
5257
5258 return sec1->target_index - sec2->target_index;
5259 }
5260
5261 /* This qsort comparison functions sorts PT_LOAD segments first and
5262 by p_paddr, for assign_file_positions_for_load_sections. */
5263
5264 static int
5265 elf_sort_segments (const void *arg1, const void *arg2)
5266 {
5267 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5268 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5269
5270 if (m1->p_type != m2->p_type)
5271 {
5272 if (m1->p_type == PT_NULL)
5273 return 1;
5274 if (m2->p_type == PT_NULL)
5275 return -1;
5276 return m1->p_type < m2->p_type ? -1 : 1;
5277 }
5278 if (m1->includes_filehdr != m2->includes_filehdr)
5279 return m1->includes_filehdr ? -1 : 1;
5280 if (m1->no_sort_lma != m2->no_sort_lma)
5281 return m1->no_sort_lma ? -1 : 1;
5282 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5283 {
5284 bfd_vma lma1, lma2; /* Octets. */
5285 lma1 = 0;
5286 if (m1->p_paddr_valid)
5287 lma1 = m1->p_paddr;
5288 else if (m1->count != 0)
5289 {
5290 unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner,
5291 m1->sections[0]);
5292 lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb;
5293 }
5294 lma2 = 0;
5295 if (m2->p_paddr_valid)
5296 lma2 = m2->p_paddr;
5297 else if (m2->count != 0)
5298 {
5299 unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner,
5300 m2->sections[0]);
5301 lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb;
5302 }
5303 if (lma1 != lma2)
5304 return lma1 < lma2 ? -1 : 1;
5305 }
5306 if (m1->idx != m2->idx)
5307 return m1->idx < m2->idx ? -1 : 1;
5308 return 0;
5309 }
5310
5311 /* Ian Lance Taylor writes:
5312
5313 We shouldn't be using % with a negative signed number. That's just
5314 not good. We have to make sure either that the number is not
5315 negative, or that the number has an unsigned type. When the types
5316 are all the same size they wind up as unsigned. When file_ptr is a
5317 larger signed type, the arithmetic winds up as signed long long,
5318 which is wrong.
5319
5320 What we're trying to say here is something like ``increase OFF by
5321 the least amount that will cause it to be equal to the VMA modulo
5322 the page size.'' */
5323 /* In other words, something like:
5324
5325 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5326 off_offset = off % bed->maxpagesize;
5327 if (vma_offset < off_offset)
5328 adjustment = vma_offset + bed->maxpagesize - off_offset;
5329 else
5330 adjustment = vma_offset - off_offset;
5331
5332 which can be collapsed into the expression below. */
5333
5334 static file_ptr
5335 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5336 {
5337 /* PR binutils/16199: Handle an alignment of zero. */
5338 if (maxpagesize == 0)
5339 maxpagesize = 1;
5340 return ((vma - off) % maxpagesize);
5341 }
5342
5343 static void
5344 print_segment_map (const struct elf_segment_map *m)
5345 {
5346 unsigned int j;
5347 const char *pt = get_segment_type (m->p_type);
5348 char buf[32];
5349
5350 if (pt == NULL)
5351 {
5352 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5353 sprintf (buf, "LOPROC+%7.7x",
5354 (unsigned int) (m->p_type - PT_LOPROC));
5355 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5356 sprintf (buf, "LOOS+%7.7x",
5357 (unsigned int) (m->p_type - PT_LOOS));
5358 else
5359 snprintf (buf, sizeof (buf), "%8.8x",
5360 (unsigned int) m->p_type);
5361 pt = buf;
5362 }
5363 fflush (stdout);
5364 fprintf (stderr, "%s:", pt);
5365 for (j = 0; j < m->count; j++)
5366 fprintf (stderr, " %s", m->sections [j]->name);
5367 putc ('\n',stderr);
5368 fflush (stderr);
5369 }
5370
5371 static bfd_boolean
5372 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5373 {
5374 void *buf;
5375 bfd_boolean ret;
5376
5377 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5378 return FALSE;
5379 buf = bfd_zmalloc (len);
5380 if (buf == NULL)
5381 return FALSE;
5382 ret = bfd_bwrite (buf, len, abfd) == len;
5383 free (buf);
5384 return ret;
5385 }
5386
5387 /* Assign file positions to the sections based on the mapping from
5388 sections to segments. This function also sets up some fields in
5389 the file header. */
5390
5391 static bfd_boolean
5392 assign_file_positions_for_load_sections (bfd *abfd,
5393 struct bfd_link_info *link_info)
5394 {
5395 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5396 struct elf_segment_map *m;
5397 struct elf_segment_map *phdr_load_seg;
5398 Elf_Internal_Phdr *phdrs;
5399 Elf_Internal_Phdr *p;
5400 file_ptr off; /* Octets. */
5401 bfd_size_type maxpagesize;
5402 unsigned int alloc, actual;
5403 unsigned int i, j;
5404 struct elf_segment_map **sorted_seg_map;
5405 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
5406
5407 if (link_info == NULL
5408 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5409 return FALSE;
5410
5411 alloc = 0;
5412 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5413 m->idx = alloc++;
5414
5415 if (alloc)
5416 {
5417 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5418 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5419 }
5420 else
5421 {
5422 /* PR binutils/12467. */
5423 elf_elfheader (abfd)->e_phoff = 0;
5424 elf_elfheader (abfd)->e_phentsize = 0;
5425 }
5426
5427 elf_elfheader (abfd)->e_phnum = alloc;
5428
5429 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5430 {
5431 actual = alloc;
5432 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5433 }
5434 else
5435 {
5436 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5437 BFD_ASSERT (elf_program_header_size (abfd)
5438 == actual * bed->s->sizeof_phdr);
5439 BFD_ASSERT (actual >= alloc);
5440 }
5441
5442 if (alloc == 0)
5443 {
5444 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5445 return TRUE;
5446 }
5447
5448 /* We're writing the size in elf_program_header_size (abfd),
5449 see assign_file_positions_except_relocs, so make sure we have
5450 that amount allocated, with trailing space cleared.
5451 The variable alloc contains the computed need, while
5452 elf_program_header_size (abfd) contains the size used for the
5453 layout.
5454 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5455 where the layout is forced to according to a larger size in the
5456 last iterations for the testcase ld-elf/header. */
5457 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5458 + alloc * sizeof (*sorted_seg_map)));
5459 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5460 elf_tdata (abfd)->phdr = phdrs;
5461 if (phdrs == NULL)
5462 return FALSE;
5463
5464 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5465 {
5466 sorted_seg_map[j] = m;
5467 /* If elf_segment_map is not from map_sections_to_segments, the
5468 sections may not be correctly ordered. NOTE: sorting should
5469 not be done to the PT_NOTE section of a corefile, which may
5470 contain several pseudo-sections artificially created by bfd.
5471 Sorting these pseudo-sections breaks things badly. */
5472 if (m->count > 1
5473 && !(elf_elfheader (abfd)->e_type == ET_CORE
5474 && m->p_type == PT_NOTE))
5475 {
5476 for (i = 0; i < m->count; i++)
5477 m->sections[i]->target_index = i;
5478 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5479 elf_sort_sections);
5480 }
5481 }
5482 if (alloc > 1)
5483 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5484 elf_sort_segments);
5485
5486 maxpagesize = 1;
5487 if ((abfd->flags & D_PAGED) != 0)
5488 {
5489 if (link_info != NULL)
5490 maxpagesize = link_info->maxpagesize;
5491 else
5492 maxpagesize = bed->maxpagesize;
5493 }
5494
5495 /* Sections must map to file offsets past the ELF file header. */
5496 off = bed->s->sizeof_ehdr;
5497 /* And if one of the PT_LOAD headers doesn't include the program
5498 headers then we'll be mapping program headers in the usual
5499 position after the ELF file header. */
5500 phdr_load_seg = NULL;
5501 for (j = 0; j < alloc; j++)
5502 {
5503 m = sorted_seg_map[j];
5504 if (m->p_type != PT_LOAD)
5505 break;
5506 if (m->includes_phdrs)
5507 {
5508 phdr_load_seg = m;
5509 break;
5510 }
5511 }
5512 if (phdr_load_seg == NULL)
5513 off += actual * bed->s->sizeof_phdr;
5514
5515 for (j = 0; j < alloc; j++)
5516 {
5517 asection **secpp;
5518 bfd_vma off_adjust; /* Octets. */
5519 bfd_boolean no_contents;
5520
5521 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5522 number of sections with contents contributing to both p_filesz
5523 and p_memsz, followed by a number of sections with no contents
5524 that just contribute to p_memsz. In this loop, OFF tracks next
5525 available file offset for PT_LOAD and PT_NOTE segments. */
5526 m = sorted_seg_map[j];
5527 p = phdrs + m->idx;
5528 p->p_type = m->p_type;
5529 p->p_flags = m->p_flags;
5530
5531 if (m->count == 0)
5532 p->p_vaddr = m->p_vaddr_offset * opb;
5533 else
5534 p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb;
5535
5536 if (m->p_paddr_valid)
5537 p->p_paddr = m->p_paddr;
5538 else if (m->count == 0)
5539 p->p_paddr = 0;
5540 else
5541 p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb;
5542
5543 if (p->p_type == PT_LOAD
5544 && (abfd->flags & D_PAGED) != 0)
5545 {
5546 /* p_align in demand paged PT_LOAD segments effectively stores
5547 the maximum page size. When copying an executable with
5548 objcopy, we set m->p_align from the input file. Use this
5549 value for maxpagesize rather than bed->maxpagesize, which
5550 may be different. Note that we use maxpagesize for PT_TLS
5551 segment alignment later in this function, so we are relying
5552 on at least one PT_LOAD segment appearing before a PT_TLS
5553 segment. */
5554 if (m->p_align_valid)
5555 maxpagesize = m->p_align;
5556
5557 p->p_align = maxpagesize;
5558 }
5559 else if (m->p_align_valid)
5560 p->p_align = m->p_align;
5561 else if (m->count == 0)
5562 p->p_align = 1 << bed->s->log_file_align;
5563
5564 if (m == phdr_load_seg)
5565 {
5566 if (!m->includes_filehdr)
5567 p->p_offset = off;
5568 off += actual * bed->s->sizeof_phdr;
5569 }
5570
5571 no_contents = FALSE;
5572 off_adjust = 0;
5573 if (p->p_type == PT_LOAD
5574 && m->count > 0)
5575 {
5576 bfd_size_type align; /* Bytes. */
5577 unsigned int align_power = 0;
5578
5579 if (m->p_align_valid)
5580 align = p->p_align;
5581 else
5582 {
5583 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5584 {
5585 unsigned int secalign;
5586
5587 secalign = bfd_section_alignment (*secpp);
5588 if (secalign > align_power)
5589 align_power = secalign;
5590 }
5591 align = (bfd_size_type) 1 << align_power;
5592 if (align < maxpagesize)
5593 align = maxpagesize;
5594 }
5595
5596 for (i = 0; i < m->count; i++)
5597 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5598 /* If we aren't making room for this section, then
5599 it must be SHT_NOBITS regardless of what we've
5600 set via struct bfd_elf_special_section. */
5601 elf_section_type (m->sections[i]) = SHT_NOBITS;
5602
5603 /* Find out whether this segment contains any loadable
5604 sections. */
5605 no_contents = TRUE;
5606 for (i = 0; i < m->count; i++)
5607 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5608 {
5609 no_contents = FALSE;
5610 break;
5611 }
5612
5613 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb);
5614
5615 /* Broken hardware and/or kernel require that files do not
5616 map the same page with different permissions on some hppa
5617 processors. */
5618 if (j != 0
5619 && (abfd->flags & D_PAGED) != 0
5620 && bed->no_page_alias
5621 && (off & (maxpagesize - 1)) != 0
5622 && ((off & -maxpagesize)
5623 == ((off + off_adjust) & -maxpagesize)))
5624 off_adjust += maxpagesize;
5625 off += off_adjust;
5626 if (no_contents)
5627 {
5628 /* We shouldn't need to align the segment on disk since
5629 the segment doesn't need file space, but the gABI
5630 arguably requires the alignment and glibc ld.so
5631 checks it. So to comply with the alignment
5632 requirement but not waste file space, we adjust
5633 p_offset for just this segment. (OFF_ADJUST is
5634 subtracted from OFF later.) This may put p_offset
5635 past the end of file, but that shouldn't matter. */
5636 }
5637 else
5638 off_adjust = 0;
5639 }
5640 /* Make sure the .dynamic section is the first section in the
5641 PT_DYNAMIC segment. */
5642 else if (p->p_type == PT_DYNAMIC
5643 && m->count > 1
5644 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5645 {
5646 _bfd_error_handler
5647 (_("%pB: The first section in the PT_DYNAMIC segment"
5648 " is not the .dynamic section"),
5649 abfd);
5650 bfd_set_error (bfd_error_bad_value);
5651 return FALSE;
5652 }
5653 /* Set the note section type to SHT_NOTE. */
5654 else if (p->p_type == PT_NOTE)
5655 for (i = 0; i < m->count; i++)
5656 elf_section_type (m->sections[i]) = SHT_NOTE;
5657
5658 if (m->includes_filehdr)
5659 {
5660 if (!m->p_flags_valid)
5661 p->p_flags |= PF_R;
5662 p->p_filesz = bed->s->sizeof_ehdr;
5663 p->p_memsz = bed->s->sizeof_ehdr;
5664 if (p->p_type == PT_LOAD)
5665 {
5666 if (m->count > 0)
5667 {
5668 if (p->p_vaddr < (bfd_vma) off
5669 || (!m->p_paddr_valid
5670 && p->p_paddr < (bfd_vma) off))
5671 {
5672 _bfd_error_handler
5673 (_("%pB: not enough room for program headers,"
5674 " try linking with -N"),
5675 abfd);
5676 bfd_set_error (bfd_error_bad_value);
5677 return FALSE;
5678 }
5679 p->p_vaddr -= off;
5680 if (!m->p_paddr_valid)
5681 p->p_paddr -= off;
5682 }
5683 }
5684 else if (sorted_seg_map[0]->includes_filehdr)
5685 {
5686 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5687 p->p_vaddr = filehdr->p_vaddr;
5688 if (!m->p_paddr_valid)
5689 p->p_paddr = filehdr->p_paddr;
5690 }
5691 }
5692
5693 if (m->includes_phdrs)
5694 {
5695 if (!m->p_flags_valid)
5696 p->p_flags |= PF_R;
5697 p->p_filesz += actual * bed->s->sizeof_phdr;
5698 p->p_memsz += actual * bed->s->sizeof_phdr;
5699 if (!m->includes_filehdr)
5700 {
5701 if (p->p_type == PT_LOAD)
5702 {
5703 elf_elfheader (abfd)->e_phoff = p->p_offset;
5704 if (m->count > 0)
5705 {
5706 p->p_vaddr -= off - p->p_offset;
5707 if (!m->p_paddr_valid)
5708 p->p_paddr -= off - p->p_offset;
5709 }
5710 }
5711 else if (phdr_load_seg != NULL)
5712 {
5713 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5714 bfd_vma phdr_off = 0; /* Octets. */
5715 if (phdr_load_seg->includes_filehdr)
5716 phdr_off = bed->s->sizeof_ehdr;
5717 p->p_vaddr = phdr->p_vaddr + phdr_off;
5718 if (!m->p_paddr_valid)
5719 p->p_paddr = phdr->p_paddr + phdr_off;
5720 p->p_offset = phdr->p_offset + phdr_off;
5721 }
5722 else
5723 p->p_offset = bed->s->sizeof_ehdr;
5724 }
5725 }
5726
5727 if (p->p_type == PT_LOAD
5728 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5729 {
5730 if (!m->includes_filehdr && !m->includes_phdrs)
5731 {
5732 p->p_offset = off;
5733 if (no_contents)
5734 {
5735 /* Put meaningless p_offset for PT_LOAD segments
5736 without file contents somewhere within the first
5737 page, in an attempt to not point past EOF. */
5738 bfd_size_type align = maxpagesize;
5739 if (align < p->p_align)
5740 align = p->p_align;
5741 if (align < 1)
5742 align = 1;
5743 p->p_offset = off % align;
5744 }
5745 }
5746 else
5747 {
5748 file_ptr adjust; /* Octets. */
5749
5750 adjust = off - (p->p_offset + p->p_filesz);
5751 if (!no_contents)
5752 p->p_filesz += adjust;
5753 p->p_memsz += adjust;
5754 }
5755 }
5756
5757 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5758 maps. Set filepos for sections in PT_LOAD segments, and in
5759 core files, for sections in PT_NOTE segments.
5760 assign_file_positions_for_non_load_sections will set filepos
5761 for other sections and update p_filesz for other segments. */
5762 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5763 {
5764 asection *sec;
5765 bfd_size_type align;
5766 Elf_Internal_Shdr *this_hdr;
5767
5768 sec = *secpp;
5769 this_hdr = &elf_section_data (sec)->this_hdr;
5770 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5771
5772 if ((p->p_type == PT_LOAD
5773 || p->p_type == PT_TLS)
5774 && (this_hdr->sh_type != SHT_NOBITS
5775 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5776 && ((this_hdr->sh_flags & SHF_TLS) == 0
5777 || p->p_type == PT_TLS))))
5778 {
5779 bfd_vma p_start = p->p_paddr; /* Octets. */
5780 bfd_vma p_end = p_start + p->p_memsz; /* Octets. */
5781 bfd_vma s_start = sec->lma * opb; /* Octets. */
5782 bfd_vma adjust = s_start - p_end; /* Octets. */
5783
5784 if (adjust != 0
5785 && (s_start < p_end
5786 || p_end < p_start))
5787 {
5788 _bfd_error_handler
5789 /* xgettext:c-format */
5790 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5791 abfd, sec, (uint64_t) s_start / opb,
5792 (uint64_t) p_end / opb);
5793 adjust = 0;
5794 sec->lma = p_end / opb;
5795 }
5796 p->p_memsz += adjust;
5797
5798 if (p->p_type == PT_LOAD)
5799 {
5800 if (this_hdr->sh_type != SHT_NOBITS)
5801 {
5802 off_adjust = 0;
5803 if (p->p_filesz + adjust < p->p_memsz)
5804 {
5805 /* We have a PROGBITS section following NOBITS ones.
5806 Allocate file space for the NOBITS section(s) and
5807 zero it. */
5808 adjust = p->p_memsz - p->p_filesz;
5809 if (!write_zeros (abfd, off, adjust))
5810 return FALSE;
5811 }
5812 }
5813 /* We only adjust sh_offset in SHT_NOBITS sections
5814 as would seem proper for their address when the
5815 section is first in the segment. sh_offset
5816 doesn't really have any significance for
5817 SHT_NOBITS anyway, apart from a notional position
5818 relative to other sections. Historically we
5819 didn't bother with adjusting sh_offset and some
5820 programs depend on it not being adjusted. See
5821 pr12921 and pr25662. */
5822 if (this_hdr->sh_type != SHT_NOBITS || i == 0)
5823 {
5824 off += adjust;
5825 if (this_hdr->sh_type == SHT_NOBITS)
5826 off_adjust += adjust;
5827 }
5828 }
5829 if (this_hdr->sh_type != SHT_NOBITS)
5830 p->p_filesz += adjust;
5831 }
5832
5833 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5834 {
5835 /* The section at i == 0 is the one that actually contains
5836 everything. */
5837 if (i == 0)
5838 {
5839 this_hdr->sh_offset = sec->filepos = off;
5840 off += this_hdr->sh_size;
5841 p->p_filesz = this_hdr->sh_size;
5842 p->p_memsz = 0;
5843 p->p_align = 1;
5844 }
5845 else
5846 {
5847 /* The rest are fake sections that shouldn't be written. */
5848 sec->filepos = 0;
5849 sec->size = 0;
5850 sec->flags = 0;
5851 continue;
5852 }
5853 }
5854 else
5855 {
5856 if (p->p_type == PT_LOAD)
5857 {
5858 this_hdr->sh_offset = sec->filepos = off;
5859 if (this_hdr->sh_type != SHT_NOBITS)
5860 off += this_hdr->sh_size;
5861 }
5862 else if (this_hdr->sh_type == SHT_NOBITS
5863 && (this_hdr->sh_flags & SHF_TLS) != 0
5864 && this_hdr->sh_offset == 0)
5865 {
5866 /* This is a .tbss section that didn't get a PT_LOAD.
5867 (See _bfd_elf_map_sections_to_segments "Create a
5868 final PT_LOAD".) Set sh_offset to the value it
5869 would have if we had created a zero p_filesz and
5870 p_memsz PT_LOAD header for the section. This
5871 also makes the PT_TLS header have the same
5872 p_offset value. */
5873 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5874 off, align);
5875 this_hdr->sh_offset = sec->filepos = off + adjust;
5876 }
5877
5878 if (this_hdr->sh_type != SHT_NOBITS)
5879 {
5880 p->p_filesz += this_hdr->sh_size;
5881 /* A load section without SHF_ALLOC is something like
5882 a note section in a PT_NOTE segment. These take
5883 file space but are not loaded into memory. */
5884 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5885 p->p_memsz += this_hdr->sh_size;
5886 }
5887 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5888 {
5889 if (p->p_type == PT_TLS)
5890 p->p_memsz += this_hdr->sh_size;
5891
5892 /* .tbss is special. It doesn't contribute to p_memsz of
5893 normal segments. */
5894 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5895 p->p_memsz += this_hdr->sh_size;
5896 }
5897
5898 if (align > p->p_align
5899 && !m->p_align_valid
5900 && (p->p_type != PT_LOAD
5901 || (abfd->flags & D_PAGED) == 0))
5902 p->p_align = align;
5903 }
5904
5905 if (!m->p_flags_valid)
5906 {
5907 p->p_flags |= PF_R;
5908 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5909 p->p_flags |= PF_X;
5910 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5911 p->p_flags |= PF_W;
5912 }
5913 }
5914
5915 off -= off_adjust;
5916
5917 /* PR ld/20815 - Check that the program header segment, if
5918 present, will be loaded into memory. */
5919 if (p->p_type == PT_PHDR
5920 && phdr_load_seg == NULL
5921 && !(bed->elf_backend_allow_non_load_phdr != NULL
5922 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5923 {
5924 /* The fix for this error is usually to edit the linker script being
5925 used and set up the program headers manually. Either that or
5926 leave room for the headers at the start of the SECTIONS. */
5927 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5928 " by LOAD segment"),
5929 abfd);
5930 if (link_info == NULL)
5931 return FALSE;
5932 /* Arrange for the linker to exit with an error, deleting
5933 the output file unless --noinhibit-exec is given. */
5934 link_info->callbacks->info ("%X");
5935 }
5936
5937 /* Check that all sections are in a PT_LOAD segment.
5938 Don't check funky gdb generated core files. */
5939 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5940 {
5941 bfd_boolean check_vma = TRUE;
5942
5943 for (i = 1; i < m->count; i++)
5944 if (m->sections[i]->vma == m->sections[i - 1]->vma
5945 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5946 ->this_hdr), p) != 0
5947 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5948 ->this_hdr), p) != 0)
5949 {
5950 /* Looks like we have overlays packed into the segment. */
5951 check_vma = FALSE;
5952 break;
5953 }
5954
5955 for (i = 0; i < m->count; i++)
5956 {
5957 Elf_Internal_Shdr *this_hdr;
5958 asection *sec;
5959
5960 sec = m->sections[i];
5961 this_hdr = &(elf_section_data(sec)->this_hdr);
5962 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5963 && !ELF_TBSS_SPECIAL (this_hdr, p))
5964 {
5965 _bfd_error_handler
5966 /* xgettext:c-format */
5967 (_("%pB: section `%pA' can't be allocated in segment %d"),
5968 abfd, sec, j);
5969 print_segment_map (m);
5970 }
5971 }
5972 }
5973 }
5974
5975 elf_next_file_pos (abfd) = off;
5976
5977 if (link_info != NULL
5978 && phdr_load_seg != NULL
5979 && phdr_load_seg->includes_filehdr)
5980 {
5981 /* There is a segment that contains both the file headers and the
5982 program headers, so provide a symbol __ehdr_start pointing there.
5983 A program can use this to examine itself robustly. */
5984
5985 struct elf_link_hash_entry *hash
5986 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5987 FALSE, FALSE, TRUE);
5988 /* If the symbol was referenced and not defined, define it. */
5989 if (hash != NULL
5990 && (hash->root.type == bfd_link_hash_new
5991 || hash->root.type == bfd_link_hash_undefined
5992 || hash->root.type == bfd_link_hash_undefweak
5993 || hash->root.type == bfd_link_hash_common))
5994 {
5995 asection *s = NULL;
5996 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb;
5997
5998 if (phdr_load_seg->count != 0)
5999 /* The segment contains sections, so use the first one. */
6000 s = phdr_load_seg->sections[0];
6001 else
6002 /* Use the first (i.e. lowest-addressed) section in any segment. */
6003 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6004 if (m->p_type == PT_LOAD && m->count != 0)
6005 {
6006 s = m->sections[0];
6007 break;
6008 }
6009
6010 if (s != NULL)
6011 {
6012 hash->root.u.def.value = filehdr_vaddr - s->vma;
6013 hash->root.u.def.section = s;
6014 }
6015 else
6016 {
6017 hash->root.u.def.value = filehdr_vaddr;
6018 hash->root.u.def.section = bfd_abs_section_ptr;
6019 }
6020
6021 hash->root.type = bfd_link_hash_defined;
6022 hash->def_regular = 1;
6023 hash->non_elf = 0;
6024 }
6025 }
6026
6027 return TRUE;
6028 }
6029
6030 /* Determine if a bfd is a debuginfo file. Unfortunately there
6031 is no defined method for detecting such files, so we have to
6032 use heuristics instead. */
6033
6034 bfd_boolean
6035 is_debuginfo_file (bfd *abfd)
6036 {
6037 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6038 return FALSE;
6039
6040 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6041 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6042 Elf_Internal_Shdr **headerp;
6043
6044 for (headerp = start_headers; headerp < end_headers; headerp ++)
6045 {
6046 Elf_Internal_Shdr *header = * headerp;
6047
6048 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6049 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6050 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6051 && header->sh_type != SHT_NOBITS
6052 && header->sh_type != SHT_NOTE)
6053 return FALSE;
6054 }
6055
6056 return TRUE;
6057 }
6058
6059 /* Assign file positions for the other sections, except for compressed debugging
6060 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6061
6062 static bfd_boolean
6063 assign_file_positions_for_non_load_sections (bfd *abfd,
6064 struct bfd_link_info *link_info)
6065 {
6066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6067 Elf_Internal_Shdr **i_shdrpp;
6068 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6069 Elf_Internal_Phdr *phdrs;
6070 Elf_Internal_Phdr *p;
6071 struct elf_segment_map *m;
6072 file_ptr off;
6073 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
6074 bfd_vma maxpagesize;
6075
6076 if (link_info != NULL)
6077 maxpagesize = link_info->maxpagesize;
6078 else
6079 maxpagesize = bed->maxpagesize;
6080 i_shdrpp = elf_elfsections (abfd);
6081 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6082 off = elf_next_file_pos (abfd);
6083 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6084 {
6085 Elf_Internal_Shdr *hdr;
6086
6087 hdr = *hdrpp;
6088 if (hdr->bfd_section != NULL
6089 && (hdr->bfd_section->filepos != 0
6090 || (hdr->sh_type == SHT_NOBITS
6091 && hdr->contents == NULL)))
6092 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6093 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6094 {
6095 if (hdr->sh_size != 0
6096 /* PR 24717 - debuginfo files are known to be not strictly
6097 compliant with the ELF standard. In particular they often
6098 have .note.gnu.property sections that are outside of any
6099 loadable segment. This is not a problem for such files,
6100 so do not warn about them. */
6101 && ! is_debuginfo_file (abfd))
6102 _bfd_error_handler
6103 /* xgettext:c-format */
6104 (_("%pB: warning: allocated section `%s' not in segment"),
6105 abfd,
6106 (hdr->bfd_section == NULL
6107 ? "*unknown*"
6108 : hdr->bfd_section->name));
6109 /* We don't need to page align empty sections. */
6110 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6111 off += vma_page_aligned_bias (hdr->sh_addr, off,
6112 maxpagesize);
6113 else
6114 off += vma_page_aligned_bias (hdr->sh_addr, off,
6115 hdr->sh_addralign);
6116 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6117 FALSE);
6118 }
6119 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6120 && hdr->bfd_section == NULL)
6121 /* We don't know the offset of these sections yet: their size has
6122 not been decided. */
6123 || (hdr->bfd_section != NULL
6124 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6125 || (bfd_section_is_ctf (hdr->bfd_section)
6126 && abfd->is_linker_output)))
6127 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6128 || (elf_symtab_shndx_list (abfd) != NULL
6129 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6130 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6131 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6132 hdr->sh_offset = -1;
6133 else
6134 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6135 }
6136 elf_next_file_pos (abfd) = off;
6137
6138 /* Now that we have set the section file positions, we can set up
6139 the file positions for the non PT_LOAD segments. */
6140 phdrs = elf_tdata (abfd)->phdr;
6141 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6142 {
6143 if (p->p_type == PT_GNU_RELRO)
6144 {
6145 bfd_vma start, end; /* Bytes. */
6146 bfd_boolean ok;
6147
6148 if (link_info != NULL)
6149 {
6150 /* During linking the range of the RELRO segment is passed
6151 in link_info. Note that there may be padding between
6152 relro_start and the first RELRO section. */
6153 start = link_info->relro_start;
6154 end = link_info->relro_end;
6155 }
6156 else if (m->count != 0)
6157 {
6158 if (!m->p_size_valid)
6159 abort ();
6160 start = m->sections[0]->vma;
6161 end = start + m->p_size / opb;
6162 }
6163 else
6164 {
6165 start = 0;
6166 end = 0;
6167 }
6168
6169 ok = FALSE;
6170 if (start < end)
6171 {
6172 struct elf_segment_map *lm;
6173 const Elf_Internal_Phdr *lp;
6174 unsigned int i;
6175
6176 /* Find a LOAD segment containing a section in the RELRO
6177 segment. */
6178 for (lm = elf_seg_map (abfd), lp = phdrs;
6179 lm != NULL;
6180 lm = lm->next, lp++)
6181 {
6182 if (lp->p_type == PT_LOAD
6183 && lm->count != 0
6184 && (lm->sections[lm->count - 1]->vma
6185 + (!IS_TBSS (lm->sections[lm->count - 1])
6186 ? lm->sections[lm->count - 1]->size / opb
6187 : 0)) > start
6188 && lm->sections[0]->vma < end)
6189 break;
6190 }
6191
6192 if (lm != NULL)
6193 {
6194 /* Find the section starting the RELRO segment. */
6195 for (i = 0; i < lm->count; i++)
6196 {
6197 asection *s = lm->sections[i];
6198 if (s->vma >= start
6199 && s->vma < end
6200 && s->size != 0)
6201 break;
6202 }
6203
6204 if (i < lm->count)
6205 {
6206 p->p_vaddr = lm->sections[i]->vma * opb;
6207 p->p_paddr = lm->sections[i]->lma * opb;
6208 p->p_offset = lm->sections[i]->filepos;
6209 p->p_memsz = end * opb - p->p_vaddr;
6210 p->p_filesz = p->p_memsz;
6211
6212 /* The RELRO segment typically ends a few bytes
6213 into .got.plt but other layouts are possible.
6214 In cases where the end does not match any
6215 loaded section (for instance is in file
6216 padding), trim p_filesz back to correspond to
6217 the end of loaded section contents. */
6218 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6219 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6220
6221 /* Preserve the alignment and flags if they are
6222 valid. The gold linker generates RW/4 for
6223 the PT_GNU_RELRO section. It is better for
6224 objcopy/strip to honor these attributes
6225 otherwise gdb will choke when using separate
6226 debug files. */
6227 if (!m->p_align_valid)
6228 p->p_align = 1;
6229 if (!m->p_flags_valid)
6230 p->p_flags = PF_R;
6231 ok = TRUE;
6232 }
6233 }
6234 }
6235 if (link_info != NULL)
6236 BFD_ASSERT (ok);
6237 if (!ok)
6238 memset (p, 0, sizeof *p);
6239 }
6240 else if (p->p_type == PT_GNU_STACK)
6241 {
6242 if (m->p_size_valid)
6243 p->p_memsz = m->p_size;
6244 }
6245 else if (m->count != 0)
6246 {
6247 unsigned int i;
6248
6249 if (p->p_type != PT_LOAD
6250 && (p->p_type != PT_NOTE
6251 || bfd_get_format (abfd) != bfd_core))
6252 {
6253 /* A user specified segment layout may include a PHDR
6254 segment that overlaps with a LOAD segment... */
6255 if (p->p_type == PT_PHDR)
6256 {
6257 m->count = 0;
6258 continue;
6259 }
6260
6261 if (m->includes_filehdr || m->includes_phdrs)
6262 {
6263 /* PR 17512: file: 2195325e. */
6264 _bfd_error_handler
6265 (_("%pB: error: non-load segment %d includes file header "
6266 "and/or program header"),
6267 abfd, (int) (p - phdrs));
6268 return FALSE;
6269 }
6270
6271 p->p_filesz = 0;
6272 p->p_offset = m->sections[0]->filepos;
6273 for (i = m->count; i-- != 0;)
6274 {
6275 asection *sect = m->sections[i];
6276 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6277 if (hdr->sh_type != SHT_NOBITS)
6278 {
6279 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6280 + hdr->sh_size);
6281 break;
6282 }
6283 }
6284 }
6285 }
6286 }
6287
6288 return TRUE;
6289 }
6290
6291 static elf_section_list *
6292 find_section_in_list (unsigned int i, elf_section_list * list)
6293 {
6294 for (;list != NULL; list = list->next)
6295 if (list->ndx == i)
6296 break;
6297 return list;
6298 }
6299
6300 /* Work out the file positions of all the sections. This is called by
6301 _bfd_elf_compute_section_file_positions. All the section sizes and
6302 VMAs must be known before this is called.
6303
6304 Reloc sections come in two flavours: Those processed specially as
6305 "side-channel" data attached to a section to which they apply, and those that
6306 bfd doesn't process as relocations. The latter sort are stored in a normal
6307 bfd section by bfd_section_from_shdr. We don't consider the former sort
6308 here, unless they form part of the loadable image. Reloc sections not
6309 assigned here (and compressed debugging sections and CTF sections which
6310 nothing else in the file can rely upon) will be handled later by
6311 assign_file_positions_for_relocs.
6312
6313 We also don't set the positions of the .symtab and .strtab here. */
6314
6315 static bfd_boolean
6316 assign_file_positions_except_relocs (bfd *abfd,
6317 struct bfd_link_info *link_info)
6318 {
6319 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6320 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6321 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6322 unsigned int alloc;
6323
6324 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6325 && bfd_get_format (abfd) != bfd_core)
6326 {
6327 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6328 unsigned int num_sec = elf_numsections (abfd);
6329 Elf_Internal_Shdr **hdrpp;
6330 unsigned int i;
6331 file_ptr off;
6332
6333 /* Start after the ELF header. */
6334 off = i_ehdrp->e_ehsize;
6335
6336 /* We are not creating an executable, which means that we are
6337 not creating a program header, and that the actual order of
6338 the sections in the file is unimportant. */
6339 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6340 {
6341 Elf_Internal_Shdr *hdr;
6342
6343 hdr = *hdrpp;
6344 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6345 && hdr->bfd_section == NULL)
6346 /* Do not assign offsets for these sections yet: we don't know
6347 their sizes. */
6348 || (hdr->bfd_section != NULL
6349 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6350 || (bfd_section_is_ctf (hdr->bfd_section)
6351 && abfd->is_linker_output)))
6352 || i == elf_onesymtab (abfd)
6353 || (elf_symtab_shndx_list (abfd) != NULL
6354 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6355 || i == elf_strtab_sec (abfd)
6356 || i == elf_shstrtab_sec (abfd))
6357 {
6358 hdr->sh_offset = -1;
6359 }
6360 else
6361 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6362 }
6363
6364 elf_next_file_pos (abfd) = off;
6365 elf_program_header_size (abfd) = 0;
6366 }
6367 else
6368 {
6369 /* Assign file positions for the loaded sections based on the
6370 assignment of sections to segments. */
6371 if (!assign_file_positions_for_load_sections (abfd, link_info))
6372 return FALSE;
6373
6374 /* And for non-load sections. */
6375 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6376 return FALSE;
6377 }
6378
6379 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6380 return FALSE;
6381
6382 /* Write out the program headers. */
6383 alloc = i_ehdrp->e_phnum;
6384 if (alloc != 0)
6385 {
6386 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6387 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6388 return FALSE;
6389 }
6390
6391 return TRUE;
6392 }
6393
6394 bfd_boolean
6395 _bfd_elf_init_file_header (bfd *abfd,
6396 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6397 {
6398 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6399 struct elf_strtab_hash *shstrtab;
6400 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6401
6402 i_ehdrp = elf_elfheader (abfd);
6403
6404 shstrtab = _bfd_elf_strtab_init ();
6405 if (shstrtab == NULL)
6406 return FALSE;
6407
6408 elf_shstrtab (abfd) = shstrtab;
6409
6410 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6411 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6412 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6413 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6414
6415 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6416 i_ehdrp->e_ident[EI_DATA] =
6417 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6418 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6419
6420 if ((abfd->flags & DYNAMIC) != 0)
6421 i_ehdrp->e_type = ET_DYN;
6422 else if ((abfd->flags & EXEC_P) != 0)
6423 i_ehdrp->e_type = ET_EXEC;
6424 else if (bfd_get_format (abfd) == bfd_core)
6425 i_ehdrp->e_type = ET_CORE;
6426 else
6427 i_ehdrp->e_type = ET_REL;
6428
6429 switch (bfd_get_arch (abfd))
6430 {
6431 case bfd_arch_unknown:
6432 i_ehdrp->e_machine = EM_NONE;
6433 break;
6434
6435 /* There used to be a long list of cases here, each one setting
6436 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6437 in the corresponding bfd definition. To avoid duplication,
6438 the switch was removed. Machines that need special handling
6439 can generally do it in elf_backend_final_write_processing(),
6440 unless they need the information earlier than the final write.
6441 Such need can generally be supplied by replacing the tests for
6442 e_machine with the conditions used to determine it. */
6443 default:
6444 i_ehdrp->e_machine = bed->elf_machine_code;
6445 }
6446
6447 i_ehdrp->e_version = bed->s->ev_current;
6448 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6449
6450 /* No program header, for now. */
6451 i_ehdrp->e_phoff = 0;
6452 i_ehdrp->e_phentsize = 0;
6453 i_ehdrp->e_phnum = 0;
6454
6455 /* Each bfd section is section header entry. */
6456 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6457 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6458
6459 elf_tdata (abfd)->symtab_hdr.sh_name =
6460 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6461 elf_tdata (abfd)->strtab_hdr.sh_name =
6462 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6463 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6464 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6465 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6466 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6467 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6468 return FALSE;
6469
6470 return TRUE;
6471 }
6472
6473 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6474
6475 FIXME: We used to have code here to sort the PT_LOAD segments into
6476 ascending order, as per the ELF spec. But this breaks some programs,
6477 including the Linux kernel. But really either the spec should be
6478 changed or the programs updated. */
6479
6480 bfd_boolean
6481 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6482 {
6483 if (link_info != NULL && bfd_link_pie (link_info))
6484 {
6485 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6486 unsigned int num_segments = i_ehdrp->e_phnum;
6487 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6488 Elf_Internal_Phdr *segment = tdata->phdr;
6489 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6490
6491 /* Find the lowest p_vaddr in PT_LOAD segments. */
6492 bfd_vma p_vaddr = (bfd_vma) -1;
6493 for (; segment < end_segment; segment++)
6494 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6495 p_vaddr = segment->p_vaddr;
6496
6497 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6498 segments is non-zero. */
6499 if (p_vaddr)
6500 i_ehdrp->e_type = ET_EXEC;
6501 }
6502 return TRUE;
6503 }
6504
6505 /* Assign file positions for all the reloc sections which are not part
6506 of the loadable file image, and the file position of section headers. */
6507
6508 static bfd_boolean
6509 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6510 {
6511 file_ptr off;
6512 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6513 Elf_Internal_Shdr *shdrp;
6514 Elf_Internal_Ehdr *i_ehdrp;
6515 const struct elf_backend_data *bed;
6516
6517 off = elf_next_file_pos (abfd);
6518
6519 shdrpp = elf_elfsections (abfd);
6520 end_shdrpp = shdrpp + elf_numsections (abfd);
6521 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6522 {
6523 shdrp = *shdrpp;
6524 if (shdrp->sh_offset == -1)
6525 {
6526 asection *sec = shdrp->bfd_section;
6527 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6528 || shdrp->sh_type == SHT_RELA);
6529 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6530 if (is_rel
6531 || is_ctf
6532 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6533 {
6534 if (!is_rel && !is_ctf)
6535 {
6536 const char *name = sec->name;
6537 struct bfd_elf_section_data *d;
6538
6539 /* Compress DWARF debug sections. */
6540 if (!bfd_compress_section (abfd, sec,
6541 shdrp->contents))
6542 return FALSE;
6543
6544 if (sec->compress_status == COMPRESS_SECTION_DONE
6545 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6546 {
6547 /* If section is compressed with zlib-gnu, convert
6548 section name from .debug_* to .zdebug_*. */
6549 char *new_name
6550 = convert_debug_to_zdebug (abfd, name);
6551 if (new_name == NULL)
6552 return FALSE;
6553 name = new_name;
6554 }
6555 /* Add section name to section name section. */
6556 if (shdrp->sh_name != (unsigned int) -1)
6557 abort ();
6558 shdrp->sh_name
6559 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6560 name, FALSE);
6561 d = elf_section_data (sec);
6562
6563 /* Add reloc section name to section name section. */
6564 if (d->rel.hdr
6565 && !_bfd_elf_set_reloc_sh_name (abfd,
6566 d->rel.hdr,
6567 name, FALSE))
6568 return FALSE;
6569 if (d->rela.hdr
6570 && !_bfd_elf_set_reloc_sh_name (abfd,
6571 d->rela.hdr,
6572 name, TRUE))
6573 return FALSE;
6574
6575 /* Update section size and contents. */
6576 shdrp->sh_size = sec->size;
6577 shdrp->contents = sec->contents;
6578 shdrp->bfd_section->contents = NULL;
6579 }
6580 else if (is_ctf)
6581 {
6582 /* Update section size and contents. */
6583 shdrp->sh_size = sec->size;
6584 shdrp->contents = sec->contents;
6585 }
6586
6587 off = _bfd_elf_assign_file_position_for_section (shdrp,
6588 off,
6589 TRUE);
6590 }
6591 }
6592 }
6593
6594 /* Place section name section after DWARF debug sections have been
6595 compressed. */
6596 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6597 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6598 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6599 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6600
6601 /* Place the section headers. */
6602 i_ehdrp = elf_elfheader (abfd);
6603 bed = get_elf_backend_data (abfd);
6604 off = align_file_position (off, 1 << bed->s->log_file_align);
6605 i_ehdrp->e_shoff = off;
6606 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6607 elf_next_file_pos (abfd) = off;
6608
6609 return TRUE;
6610 }
6611
6612 bfd_boolean
6613 _bfd_elf_write_object_contents (bfd *abfd)
6614 {
6615 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6616 Elf_Internal_Shdr **i_shdrp;
6617 bfd_boolean failed;
6618 unsigned int count, num_sec;
6619 struct elf_obj_tdata *t;
6620
6621 if (! abfd->output_has_begun
6622 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6623 return FALSE;
6624 /* Do not rewrite ELF data when the BFD has been opened for update.
6625 abfd->output_has_begun was set to TRUE on opening, so creation of new
6626 sections, and modification of existing section sizes was restricted.
6627 This means the ELF header, program headers and section headers can't have
6628 changed.
6629 If the contents of any sections has been modified, then those changes have
6630 already been written to the BFD. */
6631 else if (abfd->direction == both_direction)
6632 {
6633 BFD_ASSERT (abfd->output_has_begun);
6634 return TRUE;
6635 }
6636
6637 i_shdrp = elf_elfsections (abfd);
6638
6639 failed = FALSE;
6640 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6641 if (failed)
6642 return FALSE;
6643
6644 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6645 return FALSE;
6646
6647 /* After writing the headers, we need to write the sections too... */
6648 num_sec = elf_numsections (abfd);
6649 for (count = 1; count < num_sec; count++)
6650 {
6651 i_shdrp[count]->sh_name
6652 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6653 i_shdrp[count]->sh_name);
6654 if (bed->elf_backend_section_processing)
6655 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6656 return FALSE;
6657 if (i_shdrp[count]->contents)
6658 {
6659 bfd_size_type amt = i_shdrp[count]->sh_size;
6660
6661 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6662 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6663 return FALSE;
6664 }
6665 }
6666
6667 /* Write out the section header names. */
6668 t = elf_tdata (abfd);
6669 if (elf_shstrtab (abfd) != NULL
6670 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6671 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6672 return FALSE;
6673
6674 if (!(*bed->elf_backend_final_write_processing) (abfd))
6675 return FALSE;
6676
6677 if (!bed->s->write_shdrs_and_ehdr (abfd))
6678 return FALSE;
6679
6680 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6681 if (t->o->build_id.after_write_object_contents != NULL)
6682 return (*t->o->build_id.after_write_object_contents) (abfd);
6683
6684 return TRUE;
6685 }
6686
6687 bfd_boolean
6688 _bfd_elf_write_corefile_contents (bfd *abfd)
6689 {
6690 /* Hopefully this can be done just like an object file. */
6691 return _bfd_elf_write_object_contents (abfd);
6692 }
6693
6694 /* Given a section, search the header to find them. */
6695
6696 unsigned int
6697 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6698 {
6699 const struct elf_backend_data *bed;
6700 unsigned int sec_index;
6701
6702 if (elf_section_data (asect) != NULL
6703 && elf_section_data (asect)->this_idx != 0)
6704 return elf_section_data (asect)->this_idx;
6705
6706 if (bfd_is_abs_section (asect))
6707 sec_index = SHN_ABS;
6708 else if (bfd_is_com_section (asect))
6709 sec_index = SHN_COMMON;
6710 else if (bfd_is_und_section (asect))
6711 sec_index = SHN_UNDEF;
6712 else
6713 sec_index = SHN_BAD;
6714
6715 bed = get_elf_backend_data (abfd);
6716 if (bed->elf_backend_section_from_bfd_section)
6717 {
6718 int retval = sec_index;
6719
6720 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6721 return retval;
6722 }
6723
6724 if (sec_index == SHN_BAD)
6725 bfd_set_error (bfd_error_nonrepresentable_section);
6726
6727 return sec_index;
6728 }
6729
6730 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6731 on error. */
6732
6733 int
6734 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6735 {
6736 asymbol *asym_ptr = *asym_ptr_ptr;
6737 int idx;
6738 flagword flags = asym_ptr->flags;
6739
6740 /* When gas creates relocations against local labels, it creates its
6741 own symbol for the section, but does put the symbol into the
6742 symbol chain, so udata is 0. When the linker is generating
6743 relocatable output, this section symbol may be for one of the
6744 input sections rather than the output section. */
6745 if (asym_ptr->udata.i == 0
6746 && (flags & BSF_SECTION_SYM)
6747 && asym_ptr->section)
6748 {
6749 asection *sec;
6750 int indx;
6751
6752 sec = asym_ptr->section;
6753 if (sec->owner != abfd && sec->output_section != NULL)
6754 sec = sec->output_section;
6755 if (sec->owner == abfd
6756 && (indx = sec->index) < elf_num_section_syms (abfd)
6757 && elf_section_syms (abfd)[indx] != NULL)
6758 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6759 }
6760
6761 idx = asym_ptr->udata.i;
6762
6763 if (idx == 0)
6764 {
6765 /* This case can occur when using --strip-symbol on a symbol
6766 which is used in a relocation entry. */
6767 _bfd_error_handler
6768 /* xgettext:c-format */
6769 (_("%pB: symbol `%s' required but not present"),
6770 abfd, bfd_asymbol_name (asym_ptr));
6771 bfd_set_error (bfd_error_no_symbols);
6772 return -1;
6773 }
6774
6775 #if DEBUG & 4
6776 {
6777 fprintf (stderr,
6778 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6779 (long) asym_ptr, asym_ptr->name, idx, flags);
6780 fflush (stderr);
6781 }
6782 #endif
6783
6784 return idx;
6785 }
6786
6787 /* Rewrite program header information. */
6788
6789 static bfd_boolean
6790 rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize)
6791 {
6792 Elf_Internal_Ehdr *iehdr;
6793 struct elf_segment_map *map;
6794 struct elf_segment_map *map_first;
6795 struct elf_segment_map **pointer_to_map;
6796 Elf_Internal_Phdr *segment;
6797 asection *section;
6798 unsigned int i;
6799 unsigned int num_segments;
6800 bfd_boolean phdr_included = FALSE;
6801 bfd_boolean p_paddr_valid;
6802 struct elf_segment_map *phdr_adjust_seg = NULL;
6803 unsigned int phdr_adjust_num = 0;
6804 const struct elf_backend_data *bed;
6805 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
6806
6807 bed = get_elf_backend_data (ibfd);
6808 iehdr = elf_elfheader (ibfd);
6809
6810 map_first = NULL;
6811 pointer_to_map = &map_first;
6812
6813 num_segments = elf_elfheader (ibfd)->e_phnum;
6814
6815 /* Returns the end address of the segment + 1. */
6816 #define SEGMENT_END(segment, start) \
6817 (start + (segment->p_memsz > segment->p_filesz \
6818 ? segment->p_memsz : segment->p_filesz))
6819
6820 #define SECTION_SIZE(section, segment) \
6821 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6822 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6823 ? section->size : 0)
6824
6825 /* Returns TRUE if the given section is contained within
6826 the given segment. VMA addresses are compared. */
6827 #define IS_CONTAINED_BY_VMA(section, segment, opb) \
6828 (section->vma * (opb) >= segment->p_vaddr \
6829 && (section->vma * (opb) + SECTION_SIZE (section, segment) \
6830 <= (SEGMENT_END (segment, segment->p_vaddr))))
6831
6832 /* Returns TRUE if the given section is contained within
6833 the given segment. LMA addresses are compared. */
6834 #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \
6835 (section->lma * (opb) >= base \
6836 && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \
6837 && (section->lma * (opb) + SECTION_SIZE (section, segment) \
6838 <= SEGMENT_END (segment, base)))
6839
6840 /* Handle PT_NOTE segment. */
6841 #define IS_NOTE(p, s) \
6842 (p->p_type == PT_NOTE \
6843 && elf_section_type (s) == SHT_NOTE \
6844 && (bfd_vma) s->filepos >= p->p_offset \
6845 && ((bfd_vma) s->filepos + s->size \
6846 <= p->p_offset + p->p_filesz))
6847
6848 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6849 etc. */
6850 #define IS_COREFILE_NOTE(p, s) \
6851 (IS_NOTE (p, s) \
6852 && bfd_get_format (ibfd) == bfd_core \
6853 && s->vma == 0 \
6854 && s->lma == 0)
6855
6856 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6857 linker, which generates a PT_INTERP section with p_vaddr and
6858 p_memsz set to 0. */
6859 #define IS_SOLARIS_PT_INTERP(p, s) \
6860 (p->p_vaddr == 0 \
6861 && p->p_paddr == 0 \
6862 && p->p_memsz == 0 \
6863 && p->p_filesz > 0 \
6864 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6865 && s->size > 0 \
6866 && (bfd_vma) s->filepos >= p->p_offset \
6867 && ((bfd_vma) s->filepos + s->size \
6868 <= p->p_offset + p->p_filesz))
6869
6870 /* Decide if the given section should be included in the given segment.
6871 A section will be included if:
6872 1. It is within the address space of the segment -- we use the LMA
6873 if that is set for the segment and the VMA otherwise,
6874 2. It is an allocated section or a NOTE section in a PT_NOTE
6875 segment.
6876 3. There is an output section associated with it,
6877 4. The section has not already been allocated to a previous segment.
6878 5. PT_GNU_STACK segments do not include any sections.
6879 6. PT_TLS segment includes only SHF_TLS sections.
6880 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6881 8. PT_DYNAMIC should not contain empty sections at the beginning
6882 (with the possible exception of .dynamic). */
6883 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \
6884 ((((segment->p_paddr \
6885 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \
6886 : IS_CONTAINED_BY_VMA (section, segment, opb)) \
6887 && (section->flags & SEC_ALLOC) != 0) \
6888 || IS_NOTE (segment, section)) \
6889 && segment->p_type != PT_GNU_STACK \
6890 && (segment->p_type != PT_TLS \
6891 || (section->flags & SEC_THREAD_LOCAL)) \
6892 && (segment->p_type == PT_LOAD \
6893 || segment->p_type == PT_TLS \
6894 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6895 && (segment->p_type != PT_DYNAMIC \
6896 || SECTION_SIZE (section, segment) > 0 \
6897 || (segment->p_paddr \
6898 ? segment->p_paddr != section->lma * (opb) \
6899 : segment->p_vaddr != section->vma * (opb)) \
6900 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6901 && (segment->p_type != PT_LOAD || !section->segment_mark))
6902
6903 /* If the output section of a section in the input segment is NULL,
6904 it is removed from the corresponding output segment. */
6905 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \
6906 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \
6907 && section->output_section != NULL)
6908
6909 /* Returns TRUE iff seg1 starts after the end of seg2. */
6910 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6911 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6912
6913 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6914 their VMA address ranges and their LMA address ranges overlap.
6915 It is possible to have overlapping VMA ranges without overlapping LMA
6916 ranges. RedBoot images for example can have both .data and .bss mapped
6917 to the same VMA range, but with the .data section mapped to a different
6918 LMA. */
6919 #define SEGMENT_OVERLAPS(seg1, seg2) \
6920 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6921 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6922 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6923 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6924
6925 /* Initialise the segment mark field. */
6926 for (section = ibfd->sections; section != NULL; section = section->next)
6927 section->segment_mark = FALSE;
6928
6929 /* The Solaris linker creates program headers in which all the
6930 p_paddr fields are zero. When we try to objcopy or strip such a
6931 file, we get confused. Check for this case, and if we find it
6932 don't set the p_paddr_valid fields. */
6933 p_paddr_valid = FALSE;
6934 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6935 i < num_segments;
6936 i++, segment++)
6937 if (segment->p_paddr != 0)
6938 {
6939 p_paddr_valid = TRUE;
6940 break;
6941 }
6942
6943 /* Scan through the segments specified in the program header
6944 of the input BFD. For this first scan we look for overlaps
6945 in the loadable segments. These can be created by weird
6946 parameters to objcopy. Also, fix some solaris weirdness. */
6947 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6948 i < num_segments;
6949 i++, segment++)
6950 {
6951 unsigned int j;
6952 Elf_Internal_Phdr *segment2;
6953
6954 if (segment->p_type == PT_INTERP)
6955 for (section = ibfd->sections; section; section = section->next)
6956 if (IS_SOLARIS_PT_INTERP (segment, section))
6957 {
6958 /* Mininal change so that the normal section to segment
6959 assignment code will work. */
6960 segment->p_vaddr = section->vma * opb;
6961 break;
6962 }
6963
6964 if (segment->p_type != PT_LOAD)
6965 {
6966 /* Remove PT_GNU_RELRO segment. */
6967 if (segment->p_type == PT_GNU_RELRO)
6968 segment->p_type = PT_NULL;
6969 continue;
6970 }
6971
6972 /* Determine if this segment overlaps any previous segments. */
6973 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6974 {
6975 bfd_signed_vma extra_length;
6976
6977 if (segment2->p_type != PT_LOAD
6978 || !SEGMENT_OVERLAPS (segment, segment2))
6979 continue;
6980
6981 /* Merge the two segments together. */
6982 if (segment2->p_vaddr < segment->p_vaddr)
6983 {
6984 /* Extend SEGMENT2 to include SEGMENT and then delete
6985 SEGMENT. */
6986 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6987 - SEGMENT_END (segment2, segment2->p_vaddr));
6988
6989 if (extra_length > 0)
6990 {
6991 segment2->p_memsz += extra_length;
6992 segment2->p_filesz += extra_length;
6993 }
6994
6995 segment->p_type = PT_NULL;
6996
6997 /* Since we have deleted P we must restart the outer loop. */
6998 i = 0;
6999 segment = elf_tdata (ibfd)->phdr;
7000 break;
7001 }
7002 else
7003 {
7004 /* Extend SEGMENT to include SEGMENT2 and then delete
7005 SEGMENT2. */
7006 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7007 - SEGMENT_END (segment, segment->p_vaddr));
7008
7009 if (extra_length > 0)
7010 {
7011 segment->p_memsz += extra_length;
7012 segment->p_filesz += extra_length;
7013 }
7014
7015 segment2->p_type = PT_NULL;
7016 }
7017 }
7018 }
7019
7020 /* The second scan attempts to assign sections to segments. */
7021 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7022 i < num_segments;
7023 i++, segment++)
7024 {
7025 unsigned int section_count;
7026 asection **sections;
7027 asection *output_section;
7028 unsigned int isec;
7029 asection *matching_lma;
7030 asection *suggested_lma;
7031 unsigned int j;
7032 size_t amt;
7033 asection *first_section;
7034
7035 if (segment->p_type == PT_NULL)
7036 continue;
7037
7038 first_section = NULL;
7039 /* Compute how many sections might be placed into this segment. */
7040 for (section = ibfd->sections, section_count = 0;
7041 section != NULL;
7042 section = section->next)
7043 {
7044 /* Find the first section in the input segment, which may be
7045 removed from the corresponding output segment. */
7046 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb))
7047 {
7048 if (first_section == NULL)
7049 first_section = section;
7050 if (section->output_section != NULL)
7051 ++section_count;
7052 }
7053 }
7054
7055 /* Allocate a segment map big enough to contain
7056 all of the sections we have selected. */
7057 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7058 amt += section_count * sizeof (asection *);
7059 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7060 if (map == NULL)
7061 return FALSE;
7062
7063 /* Initialise the fields of the segment map. Default to
7064 using the physical address of the segment in the input BFD. */
7065 map->next = NULL;
7066 map->p_type = segment->p_type;
7067 map->p_flags = segment->p_flags;
7068 map->p_flags_valid = 1;
7069
7070 if (map->p_type == PT_LOAD
7071 && (ibfd->flags & D_PAGED) != 0
7072 && maxpagesize > 1
7073 && segment->p_align > 1)
7074 {
7075 map->p_align = segment->p_align;
7076 if (segment->p_align > maxpagesize)
7077 map->p_align = maxpagesize;
7078 map->p_align_valid = 1;
7079 }
7080
7081 /* If the first section in the input segment is removed, there is
7082 no need to preserve segment physical address in the corresponding
7083 output segment. */
7084 if (!first_section || first_section->output_section != NULL)
7085 {
7086 map->p_paddr = segment->p_paddr;
7087 map->p_paddr_valid = p_paddr_valid;
7088 }
7089
7090 /* Determine if this segment contains the ELF file header
7091 and if it contains the program headers themselves. */
7092 map->includes_filehdr = (segment->p_offset == 0
7093 && segment->p_filesz >= iehdr->e_ehsize);
7094 map->includes_phdrs = 0;
7095
7096 if (!phdr_included || segment->p_type != PT_LOAD)
7097 {
7098 map->includes_phdrs =
7099 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7100 && (segment->p_offset + segment->p_filesz
7101 >= ((bfd_vma) iehdr->e_phoff
7102 + iehdr->e_phnum * iehdr->e_phentsize)));
7103
7104 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7105 phdr_included = TRUE;
7106 }
7107
7108 if (section_count == 0)
7109 {
7110 /* Special segments, such as the PT_PHDR segment, may contain
7111 no sections, but ordinary, loadable segments should contain
7112 something. They are allowed by the ELF spec however, so only
7113 a warning is produced.
7114 There is however the valid use case of embedded systems which
7115 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7116 flash memory with zeros. No warning is shown for that case. */
7117 if (segment->p_type == PT_LOAD
7118 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7119 /* xgettext:c-format */
7120 _bfd_error_handler
7121 (_("%pB: warning: empty loadable segment detected"
7122 " at vaddr=%#" PRIx64 ", is this intentional?"),
7123 ibfd, (uint64_t) segment->p_vaddr);
7124
7125 map->p_vaddr_offset = segment->p_vaddr / opb;
7126 map->count = 0;
7127 *pointer_to_map = map;
7128 pointer_to_map = &map->next;
7129
7130 continue;
7131 }
7132
7133 /* Now scan the sections in the input BFD again and attempt
7134 to add their corresponding output sections to the segment map.
7135 The problem here is how to handle an output section which has
7136 been moved (ie had its LMA changed). There are four possibilities:
7137
7138 1. None of the sections have been moved.
7139 In this case we can continue to use the segment LMA from the
7140 input BFD.
7141
7142 2. All of the sections have been moved by the same amount.
7143 In this case we can change the segment's LMA to match the LMA
7144 of the first section.
7145
7146 3. Some of the sections have been moved, others have not.
7147 In this case those sections which have not been moved can be
7148 placed in the current segment which will have to have its size,
7149 and possibly its LMA changed, and a new segment or segments will
7150 have to be created to contain the other sections.
7151
7152 4. The sections have been moved, but not by the same amount.
7153 In this case we can change the segment's LMA to match the LMA
7154 of the first section and we will have to create a new segment
7155 or segments to contain the other sections.
7156
7157 In order to save time, we allocate an array to hold the section
7158 pointers that we are interested in. As these sections get assigned
7159 to a segment, they are removed from this array. */
7160
7161 amt = section_count * sizeof (asection *);
7162 sections = (asection **) bfd_malloc (amt);
7163 if (sections == NULL)
7164 return FALSE;
7165
7166 /* Step One: Scan for segment vs section LMA conflicts.
7167 Also add the sections to the section array allocated above.
7168 Also add the sections to the current segment. In the common
7169 case, where the sections have not been moved, this means that
7170 we have completely filled the segment, and there is nothing
7171 more to do. */
7172 isec = 0;
7173 matching_lma = NULL;
7174 suggested_lma = NULL;
7175
7176 for (section = first_section, j = 0;
7177 section != NULL;
7178 section = section->next)
7179 {
7180 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb))
7181 {
7182 output_section = section->output_section;
7183
7184 sections[j++] = section;
7185
7186 /* The Solaris native linker always sets p_paddr to 0.
7187 We try to catch that case here, and set it to the
7188 correct value. Note - some backends require that
7189 p_paddr be left as zero. */
7190 if (!p_paddr_valid
7191 && segment->p_vaddr != 0
7192 && !bed->want_p_paddr_set_to_zero
7193 && isec == 0
7194 && output_section->lma != 0
7195 && (align_power (segment->p_vaddr
7196 + (map->includes_filehdr
7197 ? iehdr->e_ehsize : 0)
7198 + (map->includes_phdrs
7199 ? iehdr->e_phnum * iehdr->e_phentsize
7200 : 0),
7201 output_section->alignment_power * opb)
7202 == (output_section->vma * opb)))
7203 map->p_paddr = segment->p_vaddr;
7204
7205 /* Match up the physical address of the segment with the
7206 LMA address of the output section. */
7207 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7208 opb)
7209 || IS_COREFILE_NOTE (segment, section)
7210 || (bed->want_p_paddr_set_to_zero
7211 && IS_CONTAINED_BY_VMA (output_section, segment, opb)))
7212 {
7213 if (matching_lma == NULL
7214 || output_section->lma < matching_lma->lma)
7215 matching_lma = output_section;
7216
7217 /* We assume that if the section fits within the segment
7218 then it does not overlap any other section within that
7219 segment. */
7220 map->sections[isec++] = output_section;
7221 }
7222 else if (suggested_lma == NULL)
7223 suggested_lma = output_section;
7224
7225 if (j == section_count)
7226 break;
7227 }
7228 }
7229
7230 BFD_ASSERT (j == section_count);
7231
7232 /* Step Two: Adjust the physical address of the current segment,
7233 if necessary. */
7234 if (isec == section_count)
7235 {
7236 /* All of the sections fitted within the segment as currently
7237 specified. This is the default case. Add the segment to
7238 the list of built segments and carry on to process the next
7239 program header in the input BFD. */
7240 map->count = section_count;
7241 *pointer_to_map = map;
7242 pointer_to_map = &map->next;
7243
7244 if (p_paddr_valid
7245 && !bed->want_p_paddr_set_to_zero)
7246 {
7247 bfd_vma hdr_size = 0;
7248 if (map->includes_filehdr)
7249 hdr_size = iehdr->e_ehsize;
7250 if (map->includes_phdrs)
7251 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7252
7253 /* Account for padding before the first section in the
7254 segment. */
7255 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7256 - matching_lma->lma);
7257 }
7258
7259 free (sections);
7260 continue;
7261 }
7262 else
7263 {
7264 /* Change the current segment's physical address to match
7265 the LMA of the first section that fitted, or if no
7266 section fitted, the first section. */
7267 if (matching_lma == NULL)
7268 matching_lma = suggested_lma;
7269
7270 map->p_paddr = matching_lma->lma * opb;
7271
7272 /* Offset the segment physical address from the lma
7273 to allow for space taken up by elf headers. */
7274 if (map->includes_phdrs)
7275 {
7276 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7277
7278 /* iehdr->e_phnum is just an estimate of the number
7279 of program headers that we will need. Make a note
7280 here of the number we used and the segment we chose
7281 to hold these headers, so that we can adjust the
7282 offset when we know the correct value. */
7283 phdr_adjust_num = iehdr->e_phnum;
7284 phdr_adjust_seg = map;
7285 }
7286
7287 if (map->includes_filehdr)
7288 {
7289 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7290 map->p_paddr -= iehdr->e_ehsize;
7291 /* We've subtracted off the size of headers from the
7292 first section lma, but there may have been some
7293 alignment padding before that section too. Try to
7294 account for that by adjusting the segment lma down to
7295 the same alignment. */
7296 if (segment->p_align != 0 && segment->p_align < align)
7297 align = segment->p_align;
7298 map->p_paddr &= -(align * opb);
7299 }
7300 }
7301
7302 /* Step Three: Loop over the sections again, this time assigning
7303 those that fit to the current segment and removing them from the
7304 sections array; but making sure not to leave large gaps. Once all
7305 possible sections have been assigned to the current segment it is
7306 added to the list of built segments and if sections still remain
7307 to be assigned, a new segment is constructed before repeating
7308 the loop. */
7309 isec = 0;
7310 do
7311 {
7312 map->count = 0;
7313 suggested_lma = NULL;
7314
7315 /* Fill the current segment with sections that fit. */
7316 for (j = 0; j < section_count; j++)
7317 {
7318 section = sections[j];
7319
7320 if (section == NULL)
7321 continue;
7322
7323 output_section = section->output_section;
7324
7325 BFD_ASSERT (output_section != NULL);
7326
7327 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr,
7328 opb)
7329 || IS_COREFILE_NOTE (segment, section))
7330 {
7331 if (map->count == 0)
7332 {
7333 /* If the first section in a segment does not start at
7334 the beginning of the segment, then something is
7335 wrong. */
7336 if (align_power (map->p_paddr
7337 + (map->includes_filehdr
7338 ? iehdr->e_ehsize : 0)
7339 + (map->includes_phdrs
7340 ? iehdr->e_phnum * iehdr->e_phentsize
7341 : 0),
7342 output_section->alignment_power * opb)
7343 != output_section->lma * opb)
7344 goto sorry;
7345 }
7346 else
7347 {
7348 asection *prev_sec;
7349
7350 prev_sec = map->sections[map->count - 1];
7351
7352 /* If the gap between the end of the previous section
7353 and the start of this section is more than
7354 maxpagesize then we need to start a new segment. */
7355 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7356 maxpagesize)
7357 < BFD_ALIGN (output_section->lma, maxpagesize))
7358 || (prev_sec->lma + prev_sec->size
7359 > output_section->lma))
7360 {
7361 if (suggested_lma == NULL)
7362 suggested_lma = output_section;
7363
7364 continue;
7365 }
7366 }
7367
7368 map->sections[map->count++] = output_section;
7369 ++isec;
7370 sections[j] = NULL;
7371 if (segment->p_type == PT_LOAD)
7372 section->segment_mark = TRUE;
7373 }
7374 else if (suggested_lma == NULL)
7375 suggested_lma = output_section;
7376 }
7377
7378 /* PR 23932. A corrupt input file may contain sections that cannot
7379 be assigned to any segment - because for example they have a
7380 negative size - or segments that do not contain any sections.
7381 But there are also valid reasons why a segment can be empty.
7382 So allow a count of zero. */
7383
7384 /* Add the current segment to the list of built segments. */
7385 *pointer_to_map = map;
7386 pointer_to_map = &map->next;
7387
7388 if (isec < section_count)
7389 {
7390 /* We still have not allocated all of the sections to
7391 segments. Create a new segment here, initialise it
7392 and carry on looping. */
7393 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7394 amt += section_count * sizeof (asection *);
7395 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7396 if (map == NULL)
7397 {
7398 free (sections);
7399 return FALSE;
7400 }
7401
7402 /* Initialise the fields of the segment map. Set the physical
7403 physical address to the LMA of the first section that has
7404 not yet been assigned. */
7405 map->next = NULL;
7406 map->p_type = segment->p_type;
7407 map->p_flags = segment->p_flags;
7408 map->p_flags_valid = 1;
7409 map->p_paddr = suggested_lma->lma * opb;
7410 map->p_paddr_valid = p_paddr_valid;
7411 map->includes_filehdr = 0;
7412 map->includes_phdrs = 0;
7413 }
7414
7415 continue;
7416 sorry:
7417 bfd_set_error (bfd_error_sorry);
7418 free (sections);
7419 return FALSE;
7420 }
7421 while (isec < section_count);
7422
7423 free (sections);
7424 }
7425
7426 elf_seg_map (obfd) = map_first;
7427
7428 /* If we had to estimate the number of program headers that were
7429 going to be needed, then check our estimate now and adjust
7430 the offset if necessary. */
7431 if (phdr_adjust_seg != NULL)
7432 {
7433 unsigned int count;
7434
7435 for (count = 0, map = map_first; map != NULL; map = map->next)
7436 count++;
7437
7438 if (count > phdr_adjust_num)
7439 phdr_adjust_seg->p_paddr
7440 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7441
7442 for (map = map_first; map != NULL; map = map->next)
7443 if (map->p_type == PT_PHDR)
7444 {
7445 bfd_vma adjust
7446 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7447 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7448 break;
7449 }
7450 }
7451
7452 #undef SEGMENT_END
7453 #undef SECTION_SIZE
7454 #undef IS_CONTAINED_BY_VMA
7455 #undef IS_CONTAINED_BY_LMA
7456 #undef IS_NOTE
7457 #undef IS_COREFILE_NOTE
7458 #undef IS_SOLARIS_PT_INTERP
7459 #undef IS_SECTION_IN_INPUT_SEGMENT
7460 #undef INCLUDE_SECTION_IN_SEGMENT
7461 #undef SEGMENT_AFTER_SEGMENT
7462 #undef SEGMENT_OVERLAPS
7463 return TRUE;
7464 }
7465
7466 /* Copy ELF program header information. */
7467
7468 static bfd_boolean
7469 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7470 {
7471 Elf_Internal_Ehdr *iehdr;
7472 struct elf_segment_map *map;
7473 struct elf_segment_map *map_first;
7474 struct elf_segment_map **pointer_to_map;
7475 Elf_Internal_Phdr *segment;
7476 unsigned int i;
7477 unsigned int num_segments;
7478 bfd_boolean phdr_included = FALSE;
7479 bfd_boolean p_paddr_valid;
7480 unsigned int opb = bfd_octets_per_byte (ibfd, NULL);
7481
7482 iehdr = elf_elfheader (ibfd);
7483
7484 map_first = NULL;
7485 pointer_to_map = &map_first;
7486
7487 /* If all the segment p_paddr fields are zero, don't set
7488 map->p_paddr_valid. */
7489 p_paddr_valid = FALSE;
7490 num_segments = elf_elfheader (ibfd)->e_phnum;
7491 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7492 i < num_segments;
7493 i++, segment++)
7494 if (segment->p_paddr != 0)
7495 {
7496 p_paddr_valid = TRUE;
7497 break;
7498 }
7499
7500 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7501 i < num_segments;
7502 i++, segment++)
7503 {
7504 asection *section;
7505 unsigned int section_count;
7506 size_t amt;
7507 Elf_Internal_Shdr *this_hdr;
7508 asection *first_section = NULL;
7509 asection *lowest_section;
7510
7511 /* Compute how many sections are in this segment. */
7512 for (section = ibfd->sections, section_count = 0;
7513 section != NULL;
7514 section = section->next)
7515 {
7516 this_hdr = &(elf_section_data(section)->this_hdr);
7517 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7518 {
7519 if (first_section == NULL)
7520 first_section = section;
7521 section_count++;
7522 }
7523 }
7524
7525 /* Allocate a segment map big enough to contain
7526 all of the sections we have selected. */
7527 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7528 amt += section_count * sizeof (asection *);
7529 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7530 if (map == NULL)
7531 return FALSE;
7532
7533 /* Initialize the fields of the output segment map with the
7534 input segment. */
7535 map->next = NULL;
7536 map->p_type = segment->p_type;
7537 map->p_flags = segment->p_flags;
7538 map->p_flags_valid = 1;
7539 map->p_paddr = segment->p_paddr;
7540 map->p_paddr_valid = p_paddr_valid;
7541 map->p_align = segment->p_align;
7542 map->p_align_valid = 1;
7543 map->p_vaddr_offset = 0;
7544
7545 if (map->p_type == PT_GNU_RELRO
7546 || map->p_type == PT_GNU_STACK)
7547 {
7548 /* The PT_GNU_RELRO segment may contain the first a few
7549 bytes in the .got.plt section even if the whole .got.plt
7550 section isn't in the PT_GNU_RELRO segment. We won't
7551 change the size of the PT_GNU_RELRO segment.
7552 Similarly, PT_GNU_STACK size is significant on uclinux
7553 systems. */
7554 map->p_size = segment->p_memsz;
7555 map->p_size_valid = 1;
7556 }
7557
7558 /* Determine if this segment contains the ELF file header
7559 and if it contains the program headers themselves. */
7560 map->includes_filehdr = (segment->p_offset == 0
7561 && segment->p_filesz >= iehdr->e_ehsize);
7562
7563 map->includes_phdrs = 0;
7564 if (! phdr_included || segment->p_type != PT_LOAD)
7565 {
7566 map->includes_phdrs =
7567 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7568 && (segment->p_offset + segment->p_filesz
7569 >= ((bfd_vma) iehdr->e_phoff
7570 + iehdr->e_phnum * iehdr->e_phentsize)));
7571
7572 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7573 phdr_included = TRUE;
7574 }
7575
7576 lowest_section = NULL;
7577 if (section_count != 0)
7578 {
7579 unsigned int isec = 0;
7580
7581 for (section = first_section;
7582 section != NULL;
7583 section = section->next)
7584 {
7585 this_hdr = &(elf_section_data(section)->this_hdr);
7586 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7587 {
7588 map->sections[isec++] = section->output_section;
7589 if ((section->flags & SEC_ALLOC) != 0)
7590 {
7591 bfd_vma seg_off;
7592
7593 if (lowest_section == NULL
7594 || section->lma < lowest_section->lma)
7595 lowest_section = section;
7596
7597 /* Section lmas are set up from PT_LOAD header
7598 p_paddr in _bfd_elf_make_section_from_shdr.
7599 If this header has a p_paddr that disagrees
7600 with the section lma, flag the p_paddr as
7601 invalid. */
7602 if ((section->flags & SEC_LOAD) != 0)
7603 seg_off = this_hdr->sh_offset - segment->p_offset;
7604 else
7605 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7606 if (section->lma * opb - segment->p_paddr != seg_off)
7607 map->p_paddr_valid = FALSE;
7608 }
7609 if (isec == section_count)
7610 break;
7611 }
7612 }
7613 }
7614
7615 if (section_count == 0)
7616 map->p_vaddr_offset = segment->p_vaddr / opb;
7617 else if (map->p_paddr_valid)
7618 {
7619 /* Account for padding before the first section in the segment. */
7620 bfd_vma hdr_size = 0;
7621 if (map->includes_filehdr)
7622 hdr_size = iehdr->e_ehsize;
7623 if (map->includes_phdrs)
7624 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7625
7626 map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb
7627 - (lowest_section ? lowest_section->lma : 0));
7628 }
7629
7630 map->count = section_count;
7631 *pointer_to_map = map;
7632 pointer_to_map = &map->next;
7633 }
7634
7635 elf_seg_map (obfd) = map_first;
7636 return TRUE;
7637 }
7638
7639 /* Copy private BFD data. This copies or rewrites ELF program header
7640 information. */
7641
7642 static bfd_boolean
7643 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7644 {
7645 bfd_vma maxpagesize;
7646
7647 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7648 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7649 return TRUE;
7650
7651 if (elf_tdata (ibfd)->phdr == NULL)
7652 return TRUE;
7653
7654 if (ibfd->xvec == obfd->xvec)
7655 {
7656 /* Check to see if any sections in the input BFD
7657 covered by ELF program header have changed. */
7658 Elf_Internal_Phdr *segment;
7659 asection *section, *osec;
7660 unsigned int i, num_segments;
7661 Elf_Internal_Shdr *this_hdr;
7662 const struct elf_backend_data *bed;
7663
7664 bed = get_elf_backend_data (ibfd);
7665
7666 /* Regenerate the segment map if p_paddr is set to 0. */
7667 if (bed->want_p_paddr_set_to_zero)
7668 goto rewrite;
7669
7670 /* Initialize the segment mark field. */
7671 for (section = obfd->sections; section != NULL;
7672 section = section->next)
7673 section->segment_mark = FALSE;
7674
7675 num_segments = elf_elfheader (ibfd)->e_phnum;
7676 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7677 i < num_segments;
7678 i++, segment++)
7679 {
7680 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7681 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7682 which severly confuses things, so always regenerate the segment
7683 map in this case. */
7684 if (segment->p_paddr == 0
7685 && segment->p_memsz == 0
7686 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7687 goto rewrite;
7688
7689 for (section = ibfd->sections;
7690 section != NULL; section = section->next)
7691 {
7692 /* We mark the output section so that we know it comes
7693 from the input BFD. */
7694 osec = section->output_section;
7695 if (osec)
7696 osec->segment_mark = TRUE;
7697
7698 /* Check if this section is covered by the segment. */
7699 this_hdr = &(elf_section_data(section)->this_hdr);
7700 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7701 {
7702 /* FIXME: Check if its output section is changed or
7703 removed. What else do we need to check? */
7704 if (osec == NULL
7705 || section->flags != osec->flags
7706 || section->lma != osec->lma
7707 || section->vma != osec->vma
7708 || section->size != osec->size
7709 || section->rawsize != osec->rawsize
7710 || section->alignment_power != osec->alignment_power)
7711 goto rewrite;
7712 }
7713 }
7714 }
7715
7716 /* Check to see if any output section do not come from the
7717 input BFD. */
7718 for (section = obfd->sections; section != NULL;
7719 section = section->next)
7720 {
7721 if (!section->segment_mark)
7722 goto rewrite;
7723 else
7724 section->segment_mark = FALSE;
7725 }
7726
7727 return copy_elf_program_header (ibfd, obfd);
7728 }
7729
7730 rewrite:
7731 maxpagesize = 0;
7732 if (ibfd->xvec == obfd->xvec)
7733 {
7734 /* When rewriting program header, set the output maxpagesize to
7735 the maximum alignment of input PT_LOAD segments. */
7736 Elf_Internal_Phdr *segment;
7737 unsigned int i;
7738 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7739
7740 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7741 i < num_segments;
7742 i++, segment++)
7743 if (segment->p_type == PT_LOAD
7744 && maxpagesize < segment->p_align)
7745 {
7746 /* PR 17512: file: f17299af. */
7747 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7748 /* xgettext:c-format */
7749 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7750 PRIx64 " is too large"),
7751 ibfd, (uint64_t) segment->p_align);
7752 else
7753 maxpagesize = segment->p_align;
7754 }
7755 }
7756 if (maxpagesize == 0)
7757 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
7758
7759 return rewrite_elf_program_header (ibfd, obfd, maxpagesize);
7760 }
7761
7762 /* Initialize private output section information from input section. */
7763
7764 bfd_boolean
7765 _bfd_elf_init_private_section_data (bfd *ibfd,
7766 asection *isec,
7767 bfd *obfd,
7768 asection *osec,
7769 struct bfd_link_info *link_info)
7770
7771 {
7772 Elf_Internal_Shdr *ihdr, *ohdr;
7773 bfd_boolean final_link = (link_info != NULL
7774 && !bfd_link_relocatable (link_info));
7775
7776 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7777 || obfd->xvec->flavour != bfd_target_elf_flavour)
7778 return TRUE;
7779
7780 BFD_ASSERT (elf_section_data (osec) != NULL);
7781
7782 /* If this is a known ABI section, ELF section type and flags may
7783 have been set up when OSEC was created. For normal sections we
7784 allow the user to override the type and flags other than
7785 SHF_MASKOS and SHF_MASKPROC. */
7786 if (elf_section_type (osec) == SHT_PROGBITS
7787 || elf_section_type (osec) == SHT_NOTE
7788 || elf_section_type (osec) == SHT_NOBITS)
7789 elf_section_type (osec) = SHT_NULL;
7790 /* For objcopy and relocatable link, copy the ELF section type from
7791 the input file if the BFD section flags are the same. (If they
7792 are different the user may be doing something like
7793 "objcopy --set-section-flags .text=alloc,data".) For a final
7794 link allow some flags that the linker clears to differ. */
7795 if (elf_section_type (osec) == SHT_NULL
7796 && (osec->flags == isec->flags
7797 || (final_link
7798 && ((osec->flags ^ isec->flags)
7799 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7800 elf_section_type (osec) = elf_section_type (isec);
7801
7802 /* FIXME: Is this correct for all OS/PROC specific flags? */
7803 elf_section_flags (osec) = (elf_section_flags (isec)
7804 & (SHF_MASKOS | SHF_MASKPROC));
7805
7806 /* Copy sh_info from input for mbind section. */
7807 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7808 && elf_section_flags (isec) & SHF_GNU_MBIND)
7809 elf_section_data (osec)->this_hdr.sh_info
7810 = elf_section_data (isec)->this_hdr.sh_info;
7811
7812 /* Set things up for objcopy and relocatable link. The output
7813 SHT_GROUP section will have its elf_next_in_group pointing back
7814 to the input group members. Ignore linker created group section.
7815 See elfNN_ia64_object_p in elfxx-ia64.c. */
7816 if ((link_info == NULL
7817 || !link_info->resolve_section_groups)
7818 && (elf_sec_group (isec) == NULL
7819 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7820 {
7821 if (elf_section_flags (isec) & SHF_GROUP)
7822 elf_section_flags (osec) |= SHF_GROUP;
7823 elf_next_in_group (osec) = elf_next_in_group (isec);
7824 elf_section_data (osec)->group = elf_section_data (isec)->group;
7825 }
7826
7827 /* If not decompress, preserve SHF_COMPRESSED. */
7828 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7829 elf_section_flags (osec) |= (elf_section_flags (isec)
7830 & SHF_COMPRESSED);
7831
7832 ihdr = &elf_section_data (isec)->this_hdr;
7833
7834 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7835 don't use the output section of the linked-to section since it
7836 may be NULL at this point. */
7837 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7838 {
7839 ohdr = &elf_section_data (osec)->this_hdr;
7840 ohdr->sh_flags |= SHF_LINK_ORDER;
7841 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7842 }
7843
7844 osec->use_rela_p = isec->use_rela_p;
7845
7846 return TRUE;
7847 }
7848
7849 /* Copy private section information. This copies over the entsize
7850 field, and sometimes the info field. */
7851
7852 bfd_boolean
7853 _bfd_elf_copy_private_section_data (bfd *ibfd,
7854 asection *isec,
7855 bfd *obfd,
7856 asection *osec)
7857 {
7858 Elf_Internal_Shdr *ihdr, *ohdr;
7859
7860 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7861 || obfd->xvec->flavour != bfd_target_elf_flavour)
7862 return TRUE;
7863
7864 ihdr = &elf_section_data (isec)->this_hdr;
7865 ohdr = &elf_section_data (osec)->this_hdr;
7866
7867 ohdr->sh_entsize = ihdr->sh_entsize;
7868
7869 if (ihdr->sh_type == SHT_SYMTAB
7870 || ihdr->sh_type == SHT_DYNSYM
7871 || ihdr->sh_type == SHT_GNU_verneed
7872 || ihdr->sh_type == SHT_GNU_verdef)
7873 ohdr->sh_info = ihdr->sh_info;
7874
7875 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7876 NULL);
7877 }
7878
7879 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7880 necessary if we are removing either the SHT_GROUP section or any of
7881 the group member sections. DISCARDED is the value that a section's
7882 output_section has if the section will be discarded, NULL when this
7883 function is called from objcopy, bfd_abs_section_ptr when called
7884 from the linker. */
7885
7886 bfd_boolean
7887 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7888 {
7889 asection *isec;
7890
7891 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7892 if (elf_section_type (isec) == SHT_GROUP)
7893 {
7894 asection *first = elf_next_in_group (isec);
7895 asection *s = first;
7896 bfd_size_type removed = 0;
7897
7898 while (s != NULL)
7899 {
7900 /* If this member section is being output but the
7901 SHT_GROUP section is not, then clear the group info
7902 set up by _bfd_elf_copy_private_section_data. */
7903 if (s->output_section != discarded
7904 && isec->output_section == discarded)
7905 {
7906 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7907 elf_group_name (s->output_section) = NULL;
7908 }
7909 else
7910 {
7911 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7912 if (s->output_section == discarded
7913 && isec->output_section != discarded)
7914 {
7915 /* Conversely, if the member section is not being
7916 output but the SHT_GROUP section is, then adjust
7917 its size. */
7918 removed += 4;
7919 if (elf_sec->rel.hdr != NULL
7920 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7921 removed += 4;
7922 if (elf_sec->rela.hdr != NULL
7923 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7924 removed += 4;
7925 }
7926 else
7927 {
7928 /* Also adjust for zero-sized relocation member
7929 section. */
7930 if (elf_sec->rel.hdr != NULL
7931 && elf_sec->rel.hdr->sh_size == 0)
7932 removed += 4;
7933 if (elf_sec->rela.hdr != NULL
7934 && elf_sec->rela.hdr->sh_size == 0)
7935 removed += 4;
7936 }
7937 }
7938 s = elf_next_in_group (s);
7939 if (s == first)
7940 break;
7941 }
7942 if (removed != 0)
7943 {
7944 if (discarded != NULL)
7945 {
7946 /* If we've been called for ld -r, then we need to
7947 adjust the input section size. */
7948 if (isec->rawsize == 0)
7949 isec->rawsize = isec->size;
7950 isec->size = isec->rawsize - removed;
7951 if (isec->size <= 4)
7952 {
7953 isec->size = 0;
7954 isec->flags |= SEC_EXCLUDE;
7955 }
7956 }
7957 else
7958 {
7959 /* Adjust the output section size when called from
7960 objcopy. */
7961 isec->output_section->size -= removed;
7962 if (isec->output_section->size <= 4)
7963 {
7964 isec->output_section->size = 0;
7965 isec->output_section->flags |= SEC_EXCLUDE;
7966 }
7967 }
7968 }
7969 }
7970
7971 return TRUE;
7972 }
7973
7974 /* Copy private header information. */
7975
7976 bfd_boolean
7977 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7978 {
7979 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7980 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7981 return TRUE;
7982
7983 /* Copy over private BFD data if it has not already been copied.
7984 This must be done here, rather than in the copy_private_bfd_data
7985 entry point, because the latter is called after the section
7986 contents have been set, which means that the program headers have
7987 already been worked out. */
7988 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7989 {
7990 if (! copy_private_bfd_data (ibfd, obfd))
7991 return FALSE;
7992 }
7993
7994 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7995 }
7996
7997 /* Copy private symbol information. If this symbol is in a section
7998 which we did not map into a BFD section, try to map the section
7999 index correctly. We use special macro definitions for the mapped
8000 section indices; these definitions are interpreted by the
8001 swap_out_syms function. */
8002
8003 #define MAP_ONESYMTAB (SHN_HIOS + 1)
8004 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
8005 #define MAP_STRTAB (SHN_HIOS + 3)
8006 #define MAP_SHSTRTAB (SHN_HIOS + 4)
8007 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
8008
8009 bfd_boolean
8010 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
8011 asymbol *isymarg,
8012 bfd *obfd,
8013 asymbol *osymarg)
8014 {
8015 elf_symbol_type *isym, *osym;
8016
8017 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
8018 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
8019 return TRUE;
8020
8021 isym = elf_symbol_from (isymarg);
8022 osym = elf_symbol_from (osymarg);
8023
8024 if (isym != NULL
8025 && isym->internal_elf_sym.st_shndx != 0
8026 && osym != NULL
8027 && bfd_is_abs_section (isym->symbol.section))
8028 {
8029 unsigned int shndx;
8030
8031 shndx = isym->internal_elf_sym.st_shndx;
8032 if (shndx == elf_onesymtab (ibfd))
8033 shndx = MAP_ONESYMTAB;
8034 else if (shndx == elf_dynsymtab (ibfd))
8035 shndx = MAP_DYNSYMTAB;
8036 else if (shndx == elf_strtab_sec (ibfd))
8037 shndx = MAP_STRTAB;
8038 else if (shndx == elf_shstrtab_sec (ibfd))
8039 shndx = MAP_SHSTRTAB;
8040 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
8041 shndx = MAP_SYM_SHNDX;
8042 osym->internal_elf_sym.st_shndx = shndx;
8043 }
8044
8045 return TRUE;
8046 }
8047
8048 /* Swap out the symbols. */
8049
8050 static bfd_boolean
8051 swap_out_syms (bfd *abfd,
8052 struct elf_strtab_hash **sttp,
8053 int relocatable_p,
8054 struct bfd_link_info *info)
8055 {
8056 const struct elf_backend_data *bed;
8057 unsigned int symcount;
8058 asymbol **syms;
8059 struct elf_strtab_hash *stt;
8060 Elf_Internal_Shdr *symtab_hdr;
8061 Elf_Internal_Shdr *symtab_shndx_hdr;
8062 Elf_Internal_Shdr *symstrtab_hdr;
8063 struct elf_sym_strtab *symstrtab;
8064 bfd_byte *outbound_syms;
8065 bfd_byte *outbound_shndx;
8066 unsigned long outbound_syms_index;
8067 unsigned long outbound_shndx_index;
8068 unsigned int idx;
8069 unsigned int num_locals;
8070 size_t amt;
8071 bfd_boolean name_local_sections;
8072
8073 if (!elf_map_symbols (abfd, &num_locals))
8074 return FALSE;
8075
8076 /* Dump out the symtabs. */
8077 stt = _bfd_elf_strtab_init ();
8078 if (stt == NULL)
8079 return FALSE;
8080
8081 bed = get_elf_backend_data (abfd);
8082 symcount = bfd_get_symcount (abfd);
8083 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8084 symtab_hdr->sh_type = SHT_SYMTAB;
8085 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8086 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8087 symtab_hdr->sh_info = num_locals + 1;
8088 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8089
8090 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8091 symstrtab_hdr->sh_type = SHT_STRTAB;
8092
8093 /* Allocate buffer to swap out the .strtab section. */
8094 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8095 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8096 {
8097 bfd_set_error (bfd_error_no_memory);
8098 _bfd_elf_strtab_free (stt);
8099 return FALSE;
8100 }
8101
8102 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8103 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8104 {
8105 error_no_mem:
8106 bfd_set_error (bfd_error_no_memory);
8107 error_return:
8108 free (symstrtab);
8109 _bfd_elf_strtab_free (stt);
8110 return FALSE;
8111 }
8112 symtab_hdr->contents = outbound_syms;
8113 outbound_syms_index = 0;
8114
8115 outbound_shndx = NULL;
8116 outbound_shndx_index = 0;
8117
8118 if (elf_symtab_shndx_list (abfd))
8119 {
8120 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8121 if (symtab_shndx_hdr->sh_name != 0)
8122 {
8123 if (_bfd_mul_overflow (symcount + 1,
8124 sizeof (Elf_External_Sym_Shndx), &amt))
8125 goto error_no_mem;
8126 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8127 if (outbound_shndx == NULL)
8128 goto error_return;
8129
8130 symtab_shndx_hdr->contents = outbound_shndx;
8131 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8132 symtab_shndx_hdr->sh_size = amt;
8133 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8134 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8135 }
8136 /* FIXME: What about any other headers in the list ? */
8137 }
8138
8139 /* Now generate the data (for "contents"). */
8140 {
8141 /* Fill in zeroth symbol and swap it out. */
8142 Elf_Internal_Sym sym;
8143 sym.st_name = 0;
8144 sym.st_value = 0;
8145 sym.st_size = 0;
8146 sym.st_info = 0;
8147 sym.st_other = 0;
8148 sym.st_shndx = SHN_UNDEF;
8149 sym.st_target_internal = 0;
8150 symstrtab[0].sym = sym;
8151 symstrtab[0].dest_index = outbound_syms_index;
8152 symstrtab[0].destshndx_index = outbound_shndx_index;
8153 outbound_syms_index++;
8154 if (outbound_shndx != NULL)
8155 outbound_shndx_index++;
8156 }
8157
8158 name_local_sections
8159 = (bed->elf_backend_name_local_section_symbols
8160 && bed->elf_backend_name_local_section_symbols (abfd));
8161
8162 syms = bfd_get_outsymbols (abfd);
8163 for (idx = 0; idx < symcount;)
8164 {
8165 Elf_Internal_Sym sym;
8166 bfd_vma value = syms[idx]->value;
8167 elf_symbol_type *type_ptr;
8168 flagword flags = syms[idx]->flags;
8169 int type;
8170
8171 if (!name_local_sections
8172 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8173 {
8174 /* Local section symbols have no name. */
8175 sym.st_name = (unsigned long) -1;
8176 }
8177 else
8178 {
8179 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8180 to get the final offset for st_name. */
8181 sym.st_name
8182 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8183 FALSE);
8184 if (sym.st_name == (unsigned long) -1)
8185 goto error_return;
8186 }
8187
8188 type_ptr = elf_symbol_from (syms[idx]);
8189
8190 if ((flags & BSF_SECTION_SYM) == 0
8191 && bfd_is_com_section (syms[idx]->section))
8192 {
8193 /* ELF common symbols put the alignment into the `value' field,
8194 and the size into the `size' field. This is backwards from
8195 how BFD handles it, so reverse it here. */
8196 sym.st_size = value;
8197 if (type_ptr == NULL
8198 || type_ptr->internal_elf_sym.st_value == 0)
8199 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8200 else
8201 sym.st_value = type_ptr->internal_elf_sym.st_value;
8202 sym.st_shndx = _bfd_elf_section_from_bfd_section
8203 (abfd, syms[idx]->section);
8204 }
8205 else
8206 {
8207 asection *sec = syms[idx]->section;
8208 unsigned int shndx;
8209
8210 if (sec->output_section)
8211 {
8212 value += sec->output_offset;
8213 sec = sec->output_section;
8214 }
8215
8216 /* Don't add in the section vma for relocatable output. */
8217 if (! relocatable_p)
8218 value += sec->vma;
8219 sym.st_value = value;
8220 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8221
8222 if (bfd_is_abs_section (sec)
8223 && type_ptr != NULL
8224 && type_ptr->internal_elf_sym.st_shndx != 0)
8225 {
8226 /* This symbol is in a real ELF section which we did
8227 not create as a BFD section. Undo the mapping done
8228 by copy_private_symbol_data. */
8229 shndx = type_ptr->internal_elf_sym.st_shndx;
8230 switch (shndx)
8231 {
8232 case MAP_ONESYMTAB:
8233 shndx = elf_onesymtab (abfd);
8234 break;
8235 case MAP_DYNSYMTAB:
8236 shndx = elf_dynsymtab (abfd);
8237 break;
8238 case MAP_STRTAB:
8239 shndx = elf_strtab_sec (abfd);
8240 break;
8241 case MAP_SHSTRTAB:
8242 shndx = elf_shstrtab_sec (abfd);
8243 break;
8244 case MAP_SYM_SHNDX:
8245 if (elf_symtab_shndx_list (abfd))
8246 shndx = elf_symtab_shndx_list (abfd)->ndx;
8247 break;
8248 case SHN_COMMON:
8249 case SHN_ABS:
8250 shndx = SHN_ABS;
8251 break;
8252 default:
8253 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8254 {
8255 if (bed->symbol_section_index)
8256 shndx = bed->symbol_section_index (abfd, type_ptr);
8257 /* Otherwise just leave the index alone. */
8258 }
8259 else
8260 {
8261 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8262 _bfd_error_handler (_("%pB: \
8263 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8264 abfd, shndx);
8265 shndx = SHN_ABS;
8266 }
8267 break;
8268 }
8269 }
8270 else
8271 {
8272 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8273
8274 if (shndx == SHN_BAD)
8275 {
8276 asection *sec2;
8277
8278 /* Writing this would be a hell of a lot easier if
8279 we had some decent documentation on bfd, and
8280 knew what to expect of the library, and what to
8281 demand of applications. For example, it
8282 appears that `objcopy' might not set the
8283 section of a symbol to be a section that is
8284 actually in the output file. */
8285 sec2 = bfd_get_section_by_name (abfd, sec->name);
8286 if (sec2 != NULL)
8287 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8288 if (shndx == SHN_BAD)
8289 {
8290 /* xgettext:c-format */
8291 _bfd_error_handler
8292 (_("unable to find equivalent output section"
8293 " for symbol '%s' from section '%s'"),
8294 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8295 sec->name);
8296 bfd_set_error (bfd_error_invalid_operation);
8297 goto error_return;
8298 }
8299 }
8300 }
8301
8302 sym.st_shndx = shndx;
8303 }
8304
8305 if ((flags & BSF_THREAD_LOCAL) != 0)
8306 type = STT_TLS;
8307 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8308 type = STT_GNU_IFUNC;
8309 else if ((flags & BSF_FUNCTION) != 0)
8310 type = STT_FUNC;
8311 else if ((flags & BSF_OBJECT) != 0)
8312 type = STT_OBJECT;
8313 else if ((flags & BSF_RELC) != 0)
8314 type = STT_RELC;
8315 else if ((flags & BSF_SRELC) != 0)
8316 type = STT_SRELC;
8317 else
8318 type = STT_NOTYPE;
8319
8320 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8321 type = STT_TLS;
8322
8323 /* Processor-specific types. */
8324 if (type_ptr != NULL
8325 && bed->elf_backend_get_symbol_type)
8326 type = ((*bed->elf_backend_get_symbol_type)
8327 (&type_ptr->internal_elf_sym, type));
8328
8329 if (flags & BSF_SECTION_SYM)
8330 {
8331 if (flags & BSF_GLOBAL)
8332 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8333 else
8334 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8335 }
8336 else if (bfd_is_com_section (syms[idx]->section))
8337 {
8338 if (type != STT_TLS)
8339 {
8340 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8341 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8342 ? STT_COMMON : STT_OBJECT);
8343 else
8344 type = ((flags & BSF_ELF_COMMON) != 0
8345 ? STT_COMMON : STT_OBJECT);
8346 }
8347 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8348 }
8349 else if (bfd_is_und_section (syms[idx]->section))
8350 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8351 ? STB_WEAK
8352 : STB_GLOBAL),
8353 type);
8354 else if (flags & BSF_FILE)
8355 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8356 else
8357 {
8358 int bind = STB_LOCAL;
8359
8360 if (flags & BSF_LOCAL)
8361 bind = STB_LOCAL;
8362 else if (flags & BSF_GNU_UNIQUE)
8363 bind = STB_GNU_UNIQUE;
8364 else if (flags & BSF_WEAK)
8365 bind = STB_WEAK;
8366 else if (flags & BSF_GLOBAL)
8367 bind = STB_GLOBAL;
8368
8369 sym.st_info = ELF_ST_INFO (bind, type);
8370 }
8371
8372 if (type_ptr != NULL)
8373 {
8374 sym.st_other = type_ptr->internal_elf_sym.st_other;
8375 sym.st_target_internal
8376 = type_ptr->internal_elf_sym.st_target_internal;
8377 }
8378 else
8379 {
8380 sym.st_other = 0;
8381 sym.st_target_internal = 0;
8382 }
8383
8384 idx++;
8385 symstrtab[idx].sym = sym;
8386 symstrtab[idx].dest_index = outbound_syms_index;
8387 symstrtab[idx].destshndx_index = outbound_shndx_index;
8388
8389 outbound_syms_index++;
8390 if (outbound_shndx != NULL)
8391 outbound_shndx_index++;
8392 }
8393
8394 /* Finalize the .strtab section. */
8395 _bfd_elf_strtab_finalize (stt);
8396
8397 /* Swap out the .strtab section. */
8398 for (idx = 0; idx <= symcount; idx++)
8399 {
8400 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8401 if (elfsym->sym.st_name == (unsigned long) -1)
8402 elfsym->sym.st_name = 0;
8403 else
8404 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8405 elfsym->sym.st_name);
8406 if (info && info->callbacks->ctf_new_symbol)
8407 info->callbacks->ctf_new_symbol (elfsym->dest_index,
8408 &elfsym->sym);
8409
8410 /* Inform the linker of the addition of this symbol. */
8411
8412 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8413 (outbound_syms
8414 + (elfsym->dest_index
8415 * bed->s->sizeof_sym)),
8416 (outbound_shndx
8417 + (elfsym->destshndx_index
8418 * sizeof (Elf_External_Sym_Shndx))));
8419 }
8420 free (symstrtab);
8421
8422 *sttp = stt;
8423 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8424 symstrtab_hdr->sh_type = SHT_STRTAB;
8425 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8426 symstrtab_hdr->sh_addr = 0;
8427 symstrtab_hdr->sh_entsize = 0;
8428 symstrtab_hdr->sh_link = 0;
8429 symstrtab_hdr->sh_info = 0;
8430 symstrtab_hdr->sh_addralign = 1;
8431
8432 return TRUE;
8433 }
8434
8435 /* Return the number of bytes required to hold the symtab vector.
8436
8437 Note that we base it on the count plus 1, since we will null terminate
8438 the vector allocated based on this size. However, the ELF symbol table
8439 always has a dummy entry as symbol #0, so it ends up even. */
8440
8441 long
8442 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8443 {
8444 bfd_size_type symcount;
8445 long symtab_size;
8446 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8447
8448 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8449 if (symcount > LONG_MAX / sizeof (asymbol *))
8450 {
8451 bfd_set_error (bfd_error_file_too_big);
8452 return -1;
8453 }
8454 symtab_size = symcount * (sizeof (asymbol *));
8455 if (symcount == 0)
8456 symtab_size = sizeof (asymbol *);
8457 else if (!bfd_write_p (abfd))
8458 {
8459 ufile_ptr filesize = bfd_get_file_size (abfd);
8460
8461 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8462 {
8463 bfd_set_error (bfd_error_file_truncated);
8464 return -1;
8465 }
8466 }
8467
8468 return symtab_size;
8469 }
8470
8471 long
8472 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8473 {
8474 bfd_size_type symcount;
8475 long symtab_size;
8476 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8477
8478 if (elf_dynsymtab (abfd) == 0)
8479 {
8480 bfd_set_error (bfd_error_invalid_operation);
8481 return -1;
8482 }
8483
8484 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8485 if (symcount > LONG_MAX / sizeof (asymbol *))
8486 {
8487 bfd_set_error (bfd_error_file_too_big);
8488 return -1;
8489 }
8490 symtab_size = symcount * (sizeof (asymbol *));
8491 if (symcount == 0)
8492 symtab_size = sizeof (asymbol *);
8493 else if (!bfd_write_p (abfd))
8494 {
8495 ufile_ptr filesize = bfd_get_file_size (abfd);
8496
8497 if (filesize != 0 && (unsigned long) symtab_size > filesize)
8498 {
8499 bfd_set_error (bfd_error_file_truncated);
8500 return -1;
8501 }
8502 }
8503
8504 return symtab_size;
8505 }
8506
8507 long
8508 _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
8509 {
8510 if (asect->reloc_count != 0 && !bfd_write_p (abfd))
8511 {
8512 /* Sanity check reloc section size. */
8513 struct bfd_elf_section_data *d = elf_section_data (asect);
8514 Elf_Internal_Shdr *rel_hdr = &d->this_hdr;
8515 bfd_size_type ext_rel_size = rel_hdr->sh_size;
8516 ufile_ptr filesize = bfd_get_file_size (abfd);
8517
8518 if (filesize != 0 && ext_rel_size > filesize)
8519 {
8520 bfd_set_error (bfd_error_file_truncated);
8521 return -1;
8522 }
8523 }
8524
8525 #if SIZEOF_LONG == SIZEOF_INT
8526 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8527 {
8528 bfd_set_error (bfd_error_file_too_big);
8529 return -1;
8530 }
8531 #endif
8532 return (asect->reloc_count + 1) * sizeof (arelent *);
8533 }
8534
8535 /* Canonicalize the relocs. */
8536
8537 long
8538 _bfd_elf_canonicalize_reloc (bfd *abfd,
8539 sec_ptr section,
8540 arelent **relptr,
8541 asymbol **symbols)
8542 {
8543 arelent *tblptr;
8544 unsigned int i;
8545 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8546
8547 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8548 return -1;
8549
8550 tblptr = section->relocation;
8551 for (i = 0; i < section->reloc_count; i++)
8552 *relptr++ = tblptr++;
8553
8554 *relptr = NULL;
8555
8556 return section->reloc_count;
8557 }
8558
8559 long
8560 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8561 {
8562 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8563 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8564
8565 if (symcount >= 0)
8566 abfd->symcount = symcount;
8567 return symcount;
8568 }
8569
8570 long
8571 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8572 asymbol **allocation)
8573 {
8574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8575 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8576
8577 if (symcount >= 0)
8578 abfd->dynsymcount = symcount;
8579 return symcount;
8580 }
8581
8582 /* Return the size required for the dynamic reloc entries. Any loadable
8583 section that was actually installed in the BFD, and has type SHT_REL
8584 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8585 dynamic reloc section. */
8586
8587 long
8588 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8589 {
8590 bfd_size_type count, ext_rel_size;
8591 asection *s;
8592
8593 if (elf_dynsymtab (abfd) == 0)
8594 {
8595 bfd_set_error (bfd_error_invalid_operation);
8596 return -1;
8597 }
8598
8599 count = 1;
8600 ext_rel_size = 0;
8601 for (s = abfd->sections; s != NULL; s = s->next)
8602 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8603 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8604 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8605 {
8606 ext_rel_size += s->size;
8607 if (ext_rel_size < s->size)
8608 {
8609 bfd_set_error (bfd_error_file_truncated);
8610 return -1;
8611 }
8612 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8613 if (count > LONG_MAX / sizeof (arelent *))
8614 {
8615 bfd_set_error (bfd_error_file_too_big);
8616 return -1;
8617 }
8618 }
8619 if (count > 1 && !bfd_write_p (abfd))
8620 {
8621 /* Sanity check reloc section sizes. */
8622 ufile_ptr filesize = bfd_get_file_size (abfd);
8623 if (filesize != 0 && ext_rel_size > filesize)
8624 {
8625 bfd_set_error (bfd_error_file_truncated);
8626 return -1;
8627 }
8628 }
8629 return count * sizeof (arelent *);
8630 }
8631
8632 /* Canonicalize the dynamic relocation entries. Note that we return the
8633 dynamic relocations as a single block, although they are actually
8634 associated with particular sections; the interface, which was
8635 designed for SunOS style shared libraries, expects that there is only
8636 one set of dynamic relocs. Any loadable section that was actually
8637 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8638 dynamic symbol table, is considered to be a dynamic reloc section. */
8639
8640 long
8641 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8642 arelent **storage,
8643 asymbol **syms)
8644 {
8645 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8646 asection *s;
8647 long ret;
8648
8649 if (elf_dynsymtab (abfd) == 0)
8650 {
8651 bfd_set_error (bfd_error_invalid_operation);
8652 return -1;
8653 }
8654
8655 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8656 ret = 0;
8657 for (s = abfd->sections; s != NULL; s = s->next)
8658 {
8659 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8660 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8661 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8662 {
8663 arelent *p;
8664 long count, i;
8665
8666 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8667 return -1;
8668 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8669 p = s->relocation;
8670 for (i = 0; i < count; i++)
8671 *storage++ = p++;
8672 ret += count;
8673 }
8674 }
8675
8676 *storage = NULL;
8677
8678 return ret;
8679 }
8680 \f
8681 /* Read in the version information. */
8682
8683 bfd_boolean
8684 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8685 {
8686 bfd_byte *contents = NULL;
8687 unsigned int freeidx = 0;
8688 size_t amt;
8689
8690 if (elf_dynverref (abfd) != 0)
8691 {
8692 Elf_Internal_Shdr *hdr;
8693 Elf_External_Verneed *everneed;
8694 Elf_Internal_Verneed *iverneed;
8695 unsigned int i;
8696 bfd_byte *contents_end;
8697
8698 hdr = &elf_tdata (abfd)->dynverref_hdr;
8699
8700 if (hdr->sh_info == 0
8701 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8702 {
8703 error_return_bad_verref:
8704 _bfd_error_handler
8705 (_("%pB: .gnu.version_r invalid entry"), abfd);
8706 bfd_set_error (bfd_error_bad_value);
8707 error_return_verref:
8708 elf_tdata (abfd)->verref = NULL;
8709 elf_tdata (abfd)->cverrefs = 0;
8710 goto error_return;
8711 }
8712
8713 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8714 goto error_return_verref;
8715 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8716 if (contents == NULL)
8717 goto error_return_verref;
8718
8719 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8720 {
8721 bfd_set_error (bfd_error_file_too_big);
8722 goto error_return_verref;
8723 }
8724 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8725 if (elf_tdata (abfd)->verref == NULL)
8726 goto error_return_verref;
8727
8728 BFD_ASSERT (sizeof (Elf_External_Verneed)
8729 == sizeof (Elf_External_Vernaux));
8730 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8731 everneed = (Elf_External_Verneed *) contents;
8732 iverneed = elf_tdata (abfd)->verref;
8733 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8734 {
8735 Elf_External_Vernaux *evernaux;
8736 Elf_Internal_Vernaux *ivernaux;
8737 unsigned int j;
8738
8739 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8740
8741 iverneed->vn_bfd = abfd;
8742
8743 iverneed->vn_filename =
8744 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8745 iverneed->vn_file);
8746 if (iverneed->vn_filename == NULL)
8747 goto error_return_bad_verref;
8748
8749 if (iverneed->vn_cnt == 0)
8750 iverneed->vn_auxptr = NULL;
8751 else
8752 {
8753 if (_bfd_mul_overflow (iverneed->vn_cnt,
8754 sizeof (Elf_Internal_Vernaux), &amt))
8755 {
8756 bfd_set_error (bfd_error_file_too_big);
8757 goto error_return_verref;
8758 }
8759 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8760 bfd_alloc (abfd, amt);
8761 if (iverneed->vn_auxptr == NULL)
8762 goto error_return_verref;
8763 }
8764
8765 if (iverneed->vn_aux
8766 > (size_t) (contents_end - (bfd_byte *) everneed))
8767 goto error_return_bad_verref;
8768
8769 evernaux = ((Elf_External_Vernaux *)
8770 ((bfd_byte *) everneed + iverneed->vn_aux));
8771 ivernaux = iverneed->vn_auxptr;
8772 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8773 {
8774 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8775
8776 ivernaux->vna_nodename =
8777 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8778 ivernaux->vna_name);
8779 if (ivernaux->vna_nodename == NULL)
8780 goto error_return_bad_verref;
8781
8782 if (ivernaux->vna_other > freeidx)
8783 freeidx = ivernaux->vna_other;
8784
8785 ivernaux->vna_nextptr = NULL;
8786 if (ivernaux->vna_next == 0)
8787 {
8788 iverneed->vn_cnt = j + 1;
8789 break;
8790 }
8791 if (j + 1 < iverneed->vn_cnt)
8792 ivernaux->vna_nextptr = ivernaux + 1;
8793
8794 if (ivernaux->vna_next
8795 > (size_t) (contents_end - (bfd_byte *) evernaux))
8796 goto error_return_bad_verref;
8797
8798 evernaux = ((Elf_External_Vernaux *)
8799 ((bfd_byte *) evernaux + ivernaux->vna_next));
8800 }
8801
8802 iverneed->vn_nextref = NULL;
8803 if (iverneed->vn_next == 0)
8804 break;
8805 if (i + 1 < hdr->sh_info)
8806 iverneed->vn_nextref = iverneed + 1;
8807
8808 if (iverneed->vn_next
8809 > (size_t) (contents_end - (bfd_byte *) everneed))
8810 goto error_return_bad_verref;
8811
8812 everneed = ((Elf_External_Verneed *)
8813 ((bfd_byte *) everneed + iverneed->vn_next));
8814 }
8815 elf_tdata (abfd)->cverrefs = i;
8816
8817 free (contents);
8818 contents = NULL;
8819 }
8820
8821 if (elf_dynverdef (abfd) != 0)
8822 {
8823 Elf_Internal_Shdr *hdr;
8824 Elf_External_Verdef *everdef;
8825 Elf_Internal_Verdef *iverdef;
8826 Elf_Internal_Verdef *iverdefarr;
8827 Elf_Internal_Verdef iverdefmem;
8828 unsigned int i;
8829 unsigned int maxidx;
8830 bfd_byte *contents_end_def, *contents_end_aux;
8831
8832 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8833
8834 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8835 {
8836 error_return_bad_verdef:
8837 _bfd_error_handler
8838 (_("%pB: .gnu.version_d invalid entry"), abfd);
8839 bfd_set_error (bfd_error_bad_value);
8840 error_return_verdef:
8841 elf_tdata (abfd)->verdef = NULL;
8842 elf_tdata (abfd)->cverdefs = 0;
8843 goto error_return;
8844 }
8845
8846 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8847 goto error_return_verdef;
8848 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8849 if (contents == NULL)
8850 goto error_return_verdef;
8851
8852 BFD_ASSERT (sizeof (Elf_External_Verdef)
8853 >= sizeof (Elf_External_Verdaux));
8854 contents_end_def = contents + hdr->sh_size
8855 - sizeof (Elf_External_Verdef);
8856 contents_end_aux = contents + hdr->sh_size
8857 - sizeof (Elf_External_Verdaux);
8858
8859 /* We know the number of entries in the section but not the maximum
8860 index. Therefore we have to run through all entries and find
8861 the maximum. */
8862 everdef = (Elf_External_Verdef *) contents;
8863 maxidx = 0;
8864 for (i = 0; i < hdr->sh_info; ++i)
8865 {
8866 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8867
8868 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8869 goto error_return_bad_verdef;
8870 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8871 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8872
8873 if (iverdefmem.vd_next == 0)
8874 break;
8875
8876 if (iverdefmem.vd_next
8877 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8878 goto error_return_bad_verdef;
8879
8880 everdef = ((Elf_External_Verdef *)
8881 ((bfd_byte *) everdef + iverdefmem.vd_next));
8882 }
8883
8884 if (default_imported_symver)
8885 {
8886 if (freeidx > maxidx)
8887 maxidx = ++freeidx;
8888 else
8889 freeidx = ++maxidx;
8890 }
8891 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8892 {
8893 bfd_set_error (bfd_error_file_too_big);
8894 goto error_return_verdef;
8895 }
8896 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8897 if (elf_tdata (abfd)->verdef == NULL)
8898 goto error_return_verdef;
8899
8900 elf_tdata (abfd)->cverdefs = maxidx;
8901
8902 everdef = (Elf_External_Verdef *) contents;
8903 iverdefarr = elf_tdata (abfd)->verdef;
8904 for (i = 0; i < hdr->sh_info; i++)
8905 {
8906 Elf_External_Verdaux *everdaux;
8907 Elf_Internal_Verdaux *iverdaux;
8908 unsigned int j;
8909
8910 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8911
8912 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8913 goto error_return_bad_verdef;
8914
8915 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8916 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8917
8918 iverdef->vd_bfd = abfd;
8919
8920 if (iverdef->vd_cnt == 0)
8921 iverdef->vd_auxptr = NULL;
8922 else
8923 {
8924 if (_bfd_mul_overflow (iverdef->vd_cnt,
8925 sizeof (Elf_Internal_Verdaux), &amt))
8926 {
8927 bfd_set_error (bfd_error_file_too_big);
8928 goto error_return_verdef;
8929 }
8930 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8931 bfd_alloc (abfd, amt);
8932 if (iverdef->vd_auxptr == NULL)
8933 goto error_return_verdef;
8934 }
8935
8936 if (iverdef->vd_aux
8937 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8938 goto error_return_bad_verdef;
8939
8940 everdaux = ((Elf_External_Verdaux *)
8941 ((bfd_byte *) everdef + iverdef->vd_aux));
8942 iverdaux = iverdef->vd_auxptr;
8943 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8944 {
8945 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8946
8947 iverdaux->vda_nodename =
8948 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8949 iverdaux->vda_name);
8950 if (iverdaux->vda_nodename == NULL)
8951 goto error_return_bad_verdef;
8952
8953 iverdaux->vda_nextptr = NULL;
8954 if (iverdaux->vda_next == 0)
8955 {
8956 iverdef->vd_cnt = j + 1;
8957 break;
8958 }
8959 if (j + 1 < iverdef->vd_cnt)
8960 iverdaux->vda_nextptr = iverdaux + 1;
8961
8962 if (iverdaux->vda_next
8963 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8964 goto error_return_bad_verdef;
8965
8966 everdaux = ((Elf_External_Verdaux *)
8967 ((bfd_byte *) everdaux + iverdaux->vda_next));
8968 }
8969
8970 iverdef->vd_nodename = NULL;
8971 if (iverdef->vd_cnt)
8972 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8973
8974 iverdef->vd_nextdef = NULL;
8975 if (iverdef->vd_next == 0)
8976 break;
8977 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8978 iverdef->vd_nextdef = iverdef + 1;
8979
8980 everdef = ((Elf_External_Verdef *)
8981 ((bfd_byte *) everdef + iverdef->vd_next));
8982 }
8983
8984 free (contents);
8985 contents = NULL;
8986 }
8987 else if (default_imported_symver)
8988 {
8989 if (freeidx < 3)
8990 freeidx = 3;
8991 else
8992 freeidx++;
8993
8994 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
8995 {
8996 bfd_set_error (bfd_error_file_too_big);
8997 goto error_return;
8998 }
8999 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
9000 if (elf_tdata (abfd)->verdef == NULL)
9001 goto error_return;
9002
9003 elf_tdata (abfd)->cverdefs = freeidx;
9004 }
9005
9006 /* Create a default version based on the soname. */
9007 if (default_imported_symver)
9008 {
9009 Elf_Internal_Verdef *iverdef;
9010 Elf_Internal_Verdaux *iverdaux;
9011
9012 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
9013
9014 iverdef->vd_version = VER_DEF_CURRENT;
9015 iverdef->vd_flags = 0;
9016 iverdef->vd_ndx = freeidx;
9017 iverdef->vd_cnt = 1;
9018
9019 iverdef->vd_bfd = abfd;
9020
9021 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
9022 if (iverdef->vd_nodename == NULL)
9023 goto error_return_verdef;
9024 iverdef->vd_nextdef = NULL;
9025 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
9026 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
9027 if (iverdef->vd_auxptr == NULL)
9028 goto error_return_verdef;
9029
9030 iverdaux = iverdef->vd_auxptr;
9031 iverdaux->vda_nodename = iverdef->vd_nodename;
9032 }
9033
9034 return TRUE;
9035
9036 error_return:
9037 free (contents);
9038 return FALSE;
9039 }
9040 \f
9041 asymbol *
9042 _bfd_elf_make_empty_symbol (bfd *abfd)
9043 {
9044 elf_symbol_type *newsym;
9045
9046 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
9047 if (!newsym)
9048 return NULL;
9049 newsym->symbol.the_bfd = abfd;
9050 return &newsym->symbol;
9051 }
9052
9053 void
9054 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
9055 asymbol *symbol,
9056 symbol_info *ret)
9057 {
9058 bfd_symbol_info (symbol, ret);
9059 }
9060
9061 /* Return whether a symbol name implies a local symbol. Most targets
9062 use this function for the is_local_label_name entry point, but some
9063 override it. */
9064
9065 bfd_boolean
9066 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
9067 const char *name)
9068 {
9069 /* Normal local symbols start with ``.L''. */
9070 if (name[0] == '.' && name[1] == 'L')
9071 return TRUE;
9072
9073 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
9074 DWARF debugging symbols starting with ``..''. */
9075 if (name[0] == '.' && name[1] == '.')
9076 return TRUE;
9077
9078 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
9079 emitting DWARF debugging output. I suspect this is actually a
9080 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
9081 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
9082 underscore to be emitted on some ELF targets). For ease of use,
9083 we treat such symbols as local. */
9084 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
9085 return TRUE;
9086
9087 /* Treat assembler generated fake symbols, dollar local labels and
9088 forward-backward labels (aka local labels) as locals.
9089 These labels have the form:
9090
9091 L0^A.* (fake symbols)
9092
9093 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
9094
9095 Versions which start with .L will have already been matched above,
9096 so we only need to match the rest. */
9097 if (name[0] == 'L' && ISDIGIT (name[1]))
9098 {
9099 bfd_boolean ret = FALSE;
9100 const char * p;
9101 char c;
9102
9103 for (p = name + 2; (c = *p); p++)
9104 {
9105 if (c == 1 || c == 2)
9106 {
9107 if (c == 1 && p == name + 2)
9108 /* A fake symbol. */
9109 return TRUE;
9110
9111 /* FIXME: We are being paranoid here and treating symbols like
9112 L0^Bfoo as if there were non-local, on the grounds that the
9113 assembler will never generate them. But can any symbol
9114 containing an ASCII value in the range 1-31 ever be anything
9115 other than some kind of local ? */
9116 ret = TRUE;
9117 }
9118
9119 if (! ISDIGIT (c))
9120 {
9121 ret = FALSE;
9122 break;
9123 }
9124 }
9125 return ret;
9126 }
9127
9128 return FALSE;
9129 }
9130
9131 alent *
9132 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9133 asymbol *symbol ATTRIBUTE_UNUSED)
9134 {
9135 abort ();
9136 return NULL;
9137 }
9138
9139 bfd_boolean
9140 _bfd_elf_set_arch_mach (bfd *abfd,
9141 enum bfd_architecture arch,
9142 unsigned long machine)
9143 {
9144 /* If this isn't the right architecture for this backend, and this
9145 isn't the generic backend, fail. */
9146 if (arch != get_elf_backend_data (abfd)->arch
9147 && arch != bfd_arch_unknown
9148 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9149 return FALSE;
9150
9151 return bfd_default_set_arch_mach (abfd, arch, machine);
9152 }
9153
9154 /* Find the nearest line to a particular section and offset,
9155 for error reporting. */
9156
9157 bfd_boolean
9158 _bfd_elf_find_nearest_line (bfd *abfd,
9159 asymbol **symbols,
9160 asection *section,
9161 bfd_vma offset,
9162 const char **filename_ptr,
9163 const char **functionname_ptr,
9164 unsigned int *line_ptr,
9165 unsigned int *discriminator_ptr)
9166 {
9167 bfd_boolean found;
9168
9169 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9170 filename_ptr, functionname_ptr,
9171 line_ptr, discriminator_ptr,
9172 dwarf_debug_sections,
9173 &elf_tdata (abfd)->dwarf2_find_line_info))
9174 return TRUE;
9175
9176 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9177 filename_ptr, functionname_ptr, line_ptr))
9178 {
9179 if (!*functionname_ptr)
9180 _bfd_elf_find_function (abfd, symbols, section, offset,
9181 *filename_ptr ? NULL : filename_ptr,
9182 functionname_ptr);
9183 return TRUE;
9184 }
9185
9186 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9187 &found, filename_ptr,
9188 functionname_ptr, line_ptr,
9189 &elf_tdata (abfd)->line_info))
9190 return FALSE;
9191 if (found && (*functionname_ptr || *line_ptr))
9192 return TRUE;
9193
9194 if (symbols == NULL)
9195 return FALSE;
9196
9197 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9198 filename_ptr, functionname_ptr))
9199 return FALSE;
9200
9201 *line_ptr = 0;
9202 return TRUE;
9203 }
9204
9205 /* Find the line for a symbol. */
9206
9207 bfd_boolean
9208 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9209 const char **filename_ptr, unsigned int *line_ptr)
9210 {
9211 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9212 filename_ptr, NULL, line_ptr, NULL,
9213 dwarf_debug_sections,
9214 &elf_tdata (abfd)->dwarf2_find_line_info);
9215 }
9216
9217 /* After a call to bfd_find_nearest_line, successive calls to
9218 bfd_find_inliner_info can be used to get source information about
9219 each level of function inlining that terminated at the address
9220 passed to bfd_find_nearest_line. Currently this is only supported
9221 for DWARF2 with appropriate DWARF3 extensions. */
9222
9223 bfd_boolean
9224 _bfd_elf_find_inliner_info (bfd *abfd,
9225 const char **filename_ptr,
9226 const char **functionname_ptr,
9227 unsigned int *line_ptr)
9228 {
9229 bfd_boolean found;
9230 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9231 functionname_ptr, line_ptr,
9232 & elf_tdata (abfd)->dwarf2_find_line_info);
9233 return found;
9234 }
9235
9236 int
9237 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9238 {
9239 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9240 int ret = bed->s->sizeof_ehdr;
9241
9242 if (!bfd_link_relocatable (info))
9243 {
9244 bfd_size_type phdr_size = elf_program_header_size (abfd);
9245
9246 if (phdr_size == (bfd_size_type) -1)
9247 {
9248 struct elf_segment_map *m;
9249
9250 phdr_size = 0;
9251 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9252 phdr_size += bed->s->sizeof_phdr;
9253
9254 if (phdr_size == 0)
9255 phdr_size = get_program_header_size (abfd, info);
9256 }
9257
9258 elf_program_header_size (abfd) = phdr_size;
9259 ret += phdr_size;
9260 }
9261
9262 return ret;
9263 }
9264
9265 bfd_boolean
9266 _bfd_elf_set_section_contents (bfd *abfd,
9267 sec_ptr section,
9268 const void *location,
9269 file_ptr offset,
9270 bfd_size_type count)
9271 {
9272 Elf_Internal_Shdr *hdr;
9273 file_ptr pos;
9274
9275 if (! abfd->output_has_begun
9276 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9277 return FALSE;
9278
9279 if (!count)
9280 return TRUE;
9281
9282 hdr = &elf_section_data (section)->this_hdr;
9283 if (hdr->sh_offset == (file_ptr) -1)
9284 {
9285 unsigned char *contents;
9286
9287 if (bfd_section_is_ctf (section))
9288 /* Nothing to do with this section: the contents are generated
9289 later. */
9290 return TRUE;
9291
9292 if ((section->flags & SEC_ELF_COMPRESS) == 0)
9293 {
9294 _bfd_error_handler
9295 (_("%pB:%pA: error: attempting to write into an unallocated compressed section"),
9296 abfd, section);
9297 bfd_set_error (bfd_error_invalid_operation);
9298 return FALSE;
9299 }
9300
9301 if ((offset + count) > hdr->sh_size)
9302 {
9303 _bfd_error_handler
9304 (_("%pB:%pA: error: attempting to write over the end of the section"),
9305 abfd, section);
9306
9307 bfd_set_error (bfd_error_invalid_operation);
9308 return FALSE;
9309 }
9310
9311 contents = hdr->contents;
9312 if (contents == NULL)
9313 {
9314 _bfd_error_handler
9315 (_("%pB:%pA: error: attempting to write section into an empty buffer"),
9316 abfd, section);
9317
9318 bfd_set_error (bfd_error_invalid_operation);
9319 return FALSE;
9320 }
9321
9322 memcpy (contents + offset, location, count);
9323 return TRUE;
9324 }
9325
9326 pos = hdr->sh_offset + offset;
9327 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9328 || bfd_bwrite (location, count, abfd) != count)
9329 return FALSE;
9330
9331 return TRUE;
9332 }
9333
9334 bfd_boolean
9335 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9336 arelent *cache_ptr ATTRIBUTE_UNUSED,
9337 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9338 {
9339 abort ();
9340 return FALSE;
9341 }
9342
9343 /* Try to convert a non-ELF reloc into an ELF one. */
9344
9345 bfd_boolean
9346 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9347 {
9348 /* Check whether we really have an ELF howto. */
9349
9350 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9351 {
9352 bfd_reloc_code_real_type code;
9353 reloc_howto_type *howto;
9354
9355 /* Alien reloc: Try to determine its type to replace it with an
9356 equivalent ELF reloc. */
9357
9358 if (areloc->howto->pc_relative)
9359 {
9360 switch (areloc->howto->bitsize)
9361 {
9362 case 8:
9363 code = BFD_RELOC_8_PCREL;
9364 break;
9365 case 12:
9366 code = BFD_RELOC_12_PCREL;
9367 break;
9368 case 16:
9369 code = BFD_RELOC_16_PCREL;
9370 break;
9371 case 24:
9372 code = BFD_RELOC_24_PCREL;
9373 break;
9374 case 32:
9375 code = BFD_RELOC_32_PCREL;
9376 break;
9377 case 64:
9378 code = BFD_RELOC_64_PCREL;
9379 break;
9380 default:
9381 goto fail;
9382 }
9383
9384 howto = bfd_reloc_type_lookup (abfd, code);
9385
9386 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9387 {
9388 if (howto->pcrel_offset)
9389 areloc->addend += areloc->address;
9390 else
9391 areloc->addend -= areloc->address; /* addend is unsigned!! */
9392 }
9393 }
9394 else
9395 {
9396 switch (areloc->howto->bitsize)
9397 {
9398 case 8:
9399 code = BFD_RELOC_8;
9400 break;
9401 case 14:
9402 code = BFD_RELOC_14;
9403 break;
9404 case 16:
9405 code = BFD_RELOC_16;
9406 break;
9407 case 26:
9408 code = BFD_RELOC_26;
9409 break;
9410 case 32:
9411 code = BFD_RELOC_32;
9412 break;
9413 case 64:
9414 code = BFD_RELOC_64;
9415 break;
9416 default:
9417 goto fail;
9418 }
9419
9420 howto = bfd_reloc_type_lookup (abfd, code);
9421 }
9422
9423 if (howto)
9424 areloc->howto = howto;
9425 else
9426 goto fail;
9427 }
9428
9429 return TRUE;
9430
9431 fail:
9432 /* xgettext:c-format */
9433 _bfd_error_handler (_("%pB: %s unsupported"),
9434 abfd, areloc->howto->name);
9435 bfd_set_error (bfd_error_sorry);
9436 return FALSE;
9437 }
9438
9439 bfd_boolean
9440 _bfd_elf_close_and_cleanup (bfd *abfd)
9441 {
9442 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9443 if (tdata != NULL
9444 && (bfd_get_format (abfd) == bfd_object
9445 || bfd_get_format (abfd) == bfd_core))
9446 {
9447 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9448 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9449 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9450 }
9451
9452 return _bfd_generic_close_and_cleanup (abfd);
9453 }
9454
9455 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9456 in the relocation's offset. Thus we cannot allow any sort of sanity
9457 range-checking to interfere. There is nothing else to do in processing
9458 this reloc. */
9459
9460 bfd_reloc_status_type
9461 _bfd_elf_rel_vtable_reloc_fn
9462 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9463 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9464 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9465 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9466 {
9467 return bfd_reloc_ok;
9468 }
9469 \f
9470 /* Elf core file support. Much of this only works on native
9471 toolchains, since we rely on knowing the
9472 machine-dependent procfs structure in order to pick
9473 out details about the corefile. */
9474
9475 #ifdef HAVE_SYS_PROCFS_H
9476 # include <sys/procfs.h>
9477 #endif
9478
9479 /* Return a PID that identifies a "thread" for threaded cores, or the
9480 PID of the main process for non-threaded cores. */
9481
9482 static int
9483 elfcore_make_pid (bfd *abfd)
9484 {
9485 int pid;
9486
9487 pid = elf_tdata (abfd)->core->lwpid;
9488 if (pid == 0)
9489 pid = elf_tdata (abfd)->core->pid;
9490
9491 return pid;
9492 }
9493
9494 /* If there isn't a section called NAME, make one, using
9495 data from SECT. Note, this function will generate a
9496 reference to NAME, so you shouldn't deallocate or
9497 overwrite it. */
9498
9499 static bfd_boolean
9500 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9501 {
9502 asection *sect2;
9503
9504 if (bfd_get_section_by_name (abfd, name) != NULL)
9505 return TRUE;
9506
9507 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9508 if (sect2 == NULL)
9509 return FALSE;
9510
9511 sect2->size = sect->size;
9512 sect2->filepos = sect->filepos;
9513 sect2->alignment_power = sect->alignment_power;
9514 return TRUE;
9515 }
9516
9517 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9518 actually creates up to two pseudosections:
9519 - For the single-threaded case, a section named NAME, unless
9520 such a section already exists.
9521 - For the multi-threaded case, a section named "NAME/PID", where
9522 PID is elfcore_make_pid (abfd).
9523 Both pseudosections have identical contents. */
9524 bfd_boolean
9525 _bfd_elfcore_make_pseudosection (bfd *abfd,
9526 char *name,
9527 size_t size,
9528 ufile_ptr filepos)
9529 {
9530 char buf[100];
9531 char *threaded_name;
9532 size_t len;
9533 asection *sect;
9534
9535 /* Build the section name. */
9536
9537 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9538 len = strlen (buf) + 1;
9539 threaded_name = (char *) bfd_alloc (abfd, len);
9540 if (threaded_name == NULL)
9541 return FALSE;
9542 memcpy (threaded_name, buf, len);
9543
9544 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9545 SEC_HAS_CONTENTS);
9546 if (sect == NULL)
9547 return FALSE;
9548 sect->size = size;
9549 sect->filepos = filepos;
9550 sect->alignment_power = 2;
9551
9552 return elfcore_maybe_make_sect (abfd, name, sect);
9553 }
9554
9555 static bfd_boolean
9556 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9557 size_t offs)
9558 {
9559 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9560 SEC_HAS_CONTENTS);
9561
9562 if (sect == NULL)
9563 return FALSE;
9564
9565 sect->size = note->descsz - offs;
9566 sect->filepos = note->descpos + offs;
9567 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9568
9569 return TRUE;
9570 }
9571
9572 /* prstatus_t exists on:
9573 solaris 2.5+
9574 linux 2.[01] + glibc
9575 unixware 4.2
9576 */
9577
9578 #if defined (HAVE_PRSTATUS_T)
9579
9580 static bfd_boolean
9581 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9582 {
9583 size_t size;
9584 int offset;
9585
9586 if (note->descsz == sizeof (prstatus_t))
9587 {
9588 prstatus_t prstat;
9589
9590 size = sizeof (prstat.pr_reg);
9591 offset = offsetof (prstatus_t, pr_reg);
9592 memcpy (&prstat, note->descdata, sizeof (prstat));
9593
9594 /* Do not overwrite the core signal if it
9595 has already been set by another thread. */
9596 if (elf_tdata (abfd)->core->signal == 0)
9597 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9598 if (elf_tdata (abfd)->core->pid == 0)
9599 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9600
9601 /* pr_who exists on:
9602 solaris 2.5+
9603 unixware 4.2
9604 pr_who doesn't exist on:
9605 linux 2.[01]
9606 */
9607 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9608 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9609 #else
9610 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9611 #endif
9612 }
9613 #if defined (HAVE_PRSTATUS32_T)
9614 else if (note->descsz == sizeof (prstatus32_t))
9615 {
9616 /* 64-bit host, 32-bit corefile */
9617 prstatus32_t prstat;
9618
9619 size = sizeof (prstat.pr_reg);
9620 offset = offsetof (prstatus32_t, pr_reg);
9621 memcpy (&prstat, note->descdata, sizeof (prstat));
9622
9623 /* Do not overwrite the core signal if it
9624 has already been set by another thread. */
9625 if (elf_tdata (abfd)->core->signal == 0)
9626 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9627 if (elf_tdata (abfd)->core->pid == 0)
9628 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9629
9630 /* pr_who exists on:
9631 solaris 2.5+
9632 unixware 4.2
9633 pr_who doesn't exist on:
9634 linux 2.[01]
9635 */
9636 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9637 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9638 #else
9639 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9640 #endif
9641 }
9642 #endif /* HAVE_PRSTATUS32_T */
9643 else
9644 {
9645 /* Fail - we don't know how to handle any other
9646 note size (ie. data object type). */
9647 return TRUE;
9648 }
9649
9650 /* Make a ".reg/999" section and a ".reg" section. */
9651 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9652 size, note->descpos + offset);
9653 }
9654 #endif /* defined (HAVE_PRSTATUS_T) */
9655
9656 /* Create a pseudosection containing the exact contents of NOTE. */
9657 static bfd_boolean
9658 elfcore_make_note_pseudosection (bfd *abfd,
9659 char *name,
9660 Elf_Internal_Note *note)
9661 {
9662 return _bfd_elfcore_make_pseudosection (abfd, name,
9663 note->descsz, note->descpos);
9664 }
9665
9666 /* There isn't a consistent prfpregset_t across platforms,
9667 but it doesn't matter, because we don't have to pick this
9668 data structure apart. */
9669
9670 static bfd_boolean
9671 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9672 {
9673 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9674 }
9675
9676 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9677 type of NT_PRXFPREG. Just include the whole note's contents
9678 literally. */
9679
9680 static bfd_boolean
9681 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9682 {
9683 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9684 }
9685
9686 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9687 with a note type of NT_X86_XSTATE. Just include the whole note's
9688 contents literally. */
9689
9690 static bfd_boolean
9691 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9692 {
9693 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9694 }
9695
9696 static bfd_boolean
9697 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9698 {
9699 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9700 }
9701
9702 static bfd_boolean
9703 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9704 {
9705 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9706 }
9707
9708 static bfd_boolean
9709 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9710 {
9711 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9712 }
9713
9714 static bfd_boolean
9715 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9716 {
9717 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9718 }
9719
9720 static bfd_boolean
9721 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9722 {
9723 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9724 }
9725
9726 static bfd_boolean
9727 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9728 {
9729 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9730 }
9731
9732 static bfd_boolean
9733 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9734 {
9735 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9736 }
9737
9738 static bfd_boolean
9739 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9740 {
9741 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9742 }
9743
9744 static bfd_boolean
9745 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9746 {
9747 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9748 }
9749
9750 static bfd_boolean
9751 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9752 {
9753 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9754 }
9755
9756 static bfd_boolean
9757 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9758 {
9759 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9760 }
9761
9762 static bfd_boolean
9763 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9764 {
9765 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9766 }
9767
9768 static bfd_boolean
9769 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9770 {
9771 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9772 }
9773
9774 static bfd_boolean
9775 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9776 {
9777 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9778 }
9779
9780 static bfd_boolean
9781 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9782 {
9783 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9784 }
9785
9786 static bfd_boolean
9787 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9788 {
9789 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9790 }
9791
9792 static bfd_boolean
9793 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9794 {
9795 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9796 }
9797
9798 static bfd_boolean
9799 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9800 {
9801 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9802 }
9803
9804 static bfd_boolean
9805 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9806 {
9807 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9808 }
9809
9810 static bfd_boolean
9811 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9812 {
9813 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9814 }
9815
9816 static bfd_boolean
9817 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9818 {
9819 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9820 }
9821
9822 static bfd_boolean
9823 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9824 {
9825 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9826 }
9827
9828 static bfd_boolean
9829 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9830 {
9831 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9832 }
9833
9834 static bfd_boolean
9835 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9836 {
9837 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9838 }
9839
9840 static bfd_boolean
9841 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9842 {
9843 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9844 }
9845
9846 static bfd_boolean
9847 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9848 {
9849 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9850 }
9851
9852 static bfd_boolean
9853 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9854 {
9855 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9856 }
9857
9858 static bfd_boolean
9859 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9860 {
9861 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9862 }
9863
9864 static bfd_boolean
9865 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9868 }
9869
9870 static bfd_boolean
9871 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9872 {
9873 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9874 }
9875
9876 static bfd_boolean
9877 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9878 {
9879 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9880 }
9881
9882 static bfd_boolean
9883 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9884 {
9885 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9886 }
9887
9888 static bfd_boolean
9889 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9890 {
9891 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9892 }
9893
9894 static bfd_boolean
9895 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9896 {
9897 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9898 }
9899
9900 static bfd_boolean
9901 elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note)
9902 {
9903 return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note);
9904 }
9905
9906 #if defined (HAVE_PRPSINFO_T)
9907 typedef prpsinfo_t elfcore_psinfo_t;
9908 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9909 typedef prpsinfo32_t elfcore_psinfo32_t;
9910 #endif
9911 #endif
9912
9913 #if defined (HAVE_PSINFO_T)
9914 typedef psinfo_t elfcore_psinfo_t;
9915 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9916 typedef psinfo32_t elfcore_psinfo32_t;
9917 #endif
9918 #endif
9919
9920 /* return a malloc'ed copy of a string at START which is at
9921 most MAX bytes long, possibly without a terminating '\0'.
9922 the copy will always have a terminating '\0'. */
9923
9924 char *
9925 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9926 {
9927 char *dups;
9928 char *end = (char *) memchr (start, '\0', max);
9929 size_t len;
9930
9931 if (end == NULL)
9932 len = max;
9933 else
9934 len = end - start;
9935
9936 dups = (char *) bfd_alloc (abfd, len + 1);
9937 if (dups == NULL)
9938 return NULL;
9939
9940 memcpy (dups, start, len);
9941 dups[len] = '\0';
9942
9943 return dups;
9944 }
9945
9946 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9947 static bfd_boolean
9948 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9949 {
9950 if (note->descsz == sizeof (elfcore_psinfo_t))
9951 {
9952 elfcore_psinfo_t psinfo;
9953
9954 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9955
9956 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9957 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9958 #endif
9959 elf_tdata (abfd)->core->program
9960 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9961 sizeof (psinfo.pr_fname));
9962
9963 elf_tdata (abfd)->core->command
9964 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9965 sizeof (psinfo.pr_psargs));
9966 }
9967 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9968 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9969 {
9970 /* 64-bit host, 32-bit corefile */
9971 elfcore_psinfo32_t psinfo;
9972
9973 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9974
9975 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9976 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9977 #endif
9978 elf_tdata (abfd)->core->program
9979 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9980 sizeof (psinfo.pr_fname));
9981
9982 elf_tdata (abfd)->core->command
9983 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9984 sizeof (psinfo.pr_psargs));
9985 }
9986 #endif
9987
9988 else
9989 {
9990 /* Fail - we don't know how to handle any other
9991 note size (ie. data object type). */
9992 return TRUE;
9993 }
9994
9995 /* Note that for some reason, a spurious space is tacked
9996 onto the end of the args in some (at least one anyway)
9997 implementations, so strip it off if it exists. */
9998
9999 {
10000 char *command = elf_tdata (abfd)->core->command;
10001 int n = strlen (command);
10002
10003 if (0 < n && command[n - 1] == ' ')
10004 command[n - 1] = '\0';
10005 }
10006
10007 return TRUE;
10008 }
10009 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
10010
10011 #if defined (HAVE_PSTATUS_T)
10012 static bfd_boolean
10013 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
10014 {
10015 if (note->descsz == sizeof (pstatus_t)
10016 #if defined (HAVE_PXSTATUS_T)
10017 || note->descsz == sizeof (pxstatus_t)
10018 #endif
10019 )
10020 {
10021 pstatus_t pstat;
10022
10023 memcpy (&pstat, note->descdata, sizeof (pstat));
10024
10025 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10026 }
10027 #if defined (HAVE_PSTATUS32_T)
10028 else if (note->descsz == sizeof (pstatus32_t))
10029 {
10030 /* 64-bit host, 32-bit corefile */
10031 pstatus32_t pstat;
10032
10033 memcpy (&pstat, note->descdata, sizeof (pstat));
10034
10035 elf_tdata (abfd)->core->pid = pstat.pr_pid;
10036 }
10037 #endif
10038 /* Could grab some more details from the "representative"
10039 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
10040 NT_LWPSTATUS note, presumably. */
10041
10042 return TRUE;
10043 }
10044 #endif /* defined (HAVE_PSTATUS_T) */
10045
10046 #if defined (HAVE_LWPSTATUS_T)
10047 static bfd_boolean
10048 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
10049 {
10050 lwpstatus_t lwpstat;
10051 char buf[100];
10052 char *name;
10053 size_t len;
10054 asection *sect;
10055
10056 if (note->descsz != sizeof (lwpstat)
10057 #if defined (HAVE_LWPXSTATUS_T)
10058 && note->descsz != sizeof (lwpxstatus_t)
10059 #endif
10060 )
10061 return TRUE;
10062
10063 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
10064
10065 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
10066 /* Do not overwrite the core signal if it has already been set by
10067 another thread. */
10068 if (elf_tdata (abfd)->core->signal == 0)
10069 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
10070
10071 /* Make a ".reg/999" section. */
10072
10073 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
10074 len = strlen (buf) + 1;
10075 name = bfd_alloc (abfd, len);
10076 if (name == NULL)
10077 return FALSE;
10078 memcpy (name, buf, len);
10079
10080 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10081 if (sect == NULL)
10082 return FALSE;
10083
10084 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10085 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
10086 sect->filepos = note->descpos
10087 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
10088 #endif
10089
10090 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10091 sect->size = sizeof (lwpstat.pr_reg);
10092 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
10093 #endif
10094
10095 sect->alignment_power = 2;
10096
10097 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
10098 return FALSE;
10099
10100 /* Make a ".reg2/999" section */
10101
10102 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
10103 len = strlen (buf) + 1;
10104 name = bfd_alloc (abfd, len);
10105 if (name == NULL)
10106 return FALSE;
10107 memcpy (name, buf, len);
10108
10109 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10110 if (sect == NULL)
10111 return FALSE;
10112
10113 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10114 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
10115 sect->filepos = note->descpos
10116 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
10117 #endif
10118
10119 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
10120 sect->size = sizeof (lwpstat.pr_fpreg);
10121 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
10122 #endif
10123
10124 sect->alignment_power = 2;
10125
10126 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
10127 }
10128 #endif /* defined (HAVE_LWPSTATUS_T) */
10129
10130 /* These constants, and the structure offsets used below, are defined by
10131 Cygwin's core_dump.h */
10132 #define NOTE_INFO_PROCESS 1
10133 #define NOTE_INFO_THREAD 2
10134 #define NOTE_INFO_MODULE 3
10135 #define NOTE_INFO_MODULE64 4
10136
10137 static bfd_boolean
10138 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
10139 {
10140 char buf[30];
10141 char *name;
10142 size_t len;
10143 unsigned int name_size;
10144 asection *sect;
10145 unsigned int type;
10146 int is_active_thread;
10147 bfd_vma base_addr;
10148
10149 if (note->descsz < 4)
10150 return TRUE;
10151
10152 if (! CONST_STRNEQ (note->namedata, "win32"))
10153 return TRUE;
10154
10155 type = bfd_get_32 (abfd, note->descdata);
10156
10157 struct {
10158 const char *type_name;
10159 unsigned long min_size;
10160 } size_check[] =
10161 {
10162 { "NOTE_INFO_PROCESS", 12 },
10163 { "NOTE_INFO_THREAD", 12 },
10164 { "NOTE_INFO_MODULE", 12 },
10165 { "NOTE_INFO_MODULE64", 16 },
10166 };
10167
10168 if (type > (sizeof(size_check)/sizeof(size_check[0])))
10169 return TRUE;
10170
10171 if (note->descsz < size_check[type - 1].min_size)
10172 {
10173 _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"),
10174 abfd, size_check[type - 1].type_name, note->descsz);
10175 return TRUE;
10176 }
10177
10178 switch (type)
10179 {
10180 case NOTE_INFO_PROCESS:
10181 /* FIXME: need to add ->core->command. */
10182 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4);
10183 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8);
10184 break;
10185
10186 case NOTE_INFO_THREAD:
10187 /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT
10188 structure. */
10189 /* thread_info.tid */
10190 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4));
10191
10192 len = strlen (buf) + 1;
10193 name = (char *) bfd_alloc (abfd, len);
10194 if (name == NULL)
10195 return FALSE;
10196
10197 memcpy (name, buf, len);
10198
10199 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10200 if (sect == NULL)
10201 return FALSE;
10202
10203 /* sizeof (thread_info.thread_context) */
10204 sect->size = note->descsz - 12;
10205 /* offsetof (thread_info.thread_context) */
10206 sect->filepos = note->descpos + 12;
10207 sect->alignment_power = 2;
10208
10209 /* thread_info.is_active_thread */
10210 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10211
10212 if (is_active_thread)
10213 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10214 return FALSE;
10215 break;
10216
10217 case NOTE_INFO_MODULE:
10218 case NOTE_INFO_MODULE64:
10219 /* Make a ".module/xxxxxxxx" section. */
10220 if (type == NOTE_INFO_MODULE)
10221 {
10222 /* module_info.base_address */
10223 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10224 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10225 /* module_info.module_name_size */
10226 name_size = bfd_get_32 (abfd, note->descdata + 8);
10227 }
10228 else /* NOTE_INFO_MODULE64 */
10229 {
10230 /* module_info.base_address */
10231 base_addr = bfd_get_64 (abfd, note->descdata + 4);
10232 sprintf (buf, ".module/%016lx", (unsigned long) base_addr);
10233 /* module_info.module_name_size */
10234 name_size = bfd_get_32 (abfd, note->descdata + 12);
10235 }
10236
10237 len = strlen (buf) + 1;
10238 name = (char *) bfd_alloc (abfd, len);
10239 if (name == NULL)
10240 return FALSE;
10241
10242 memcpy (name, buf, len);
10243
10244 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10245
10246 if (sect == NULL)
10247 return FALSE;
10248
10249 if (note->descsz < 12 + name_size)
10250 {
10251 _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"),
10252 abfd, note->descsz, name_size);
10253 return TRUE;
10254 }
10255
10256 sect->size = note->descsz;
10257 sect->filepos = note->descpos;
10258 sect->alignment_power = 2;
10259 break;
10260
10261 default:
10262 return TRUE;
10263 }
10264
10265 return TRUE;
10266 }
10267
10268 static bfd_boolean
10269 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10270 {
10271 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10272
10273 switch (note->type)
10274 {
10275 default:
10276 return TRUE;
10277
10278 case NT_PRSTATUS:
10279 if (bed->elf_backend_grok_prstatus)
10280 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10281 return TRUE;
10282 #if defined (HAVE_PRSTATUS_T)
10283 return elfcore_grok_prstatus (abfd, note);
10284 #else
10285 return TRUE;
10286 #endif
10287
10288 #if defined (HAVE_PSTATUS_T)
10289 case NT_PSTATUS:
10290 return elfcore_grok_pstatus (abfd, note);
10291 #endif
10292
10293 #if defined (HAVE_LWPSTATUS_T)
10294 case NT_LWPSTATUS:
10295 return elfcore_grok_lwpstatus (abfd, note);
10296 #endif
10297
10298 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10299 return elfcore_grok_prfpreg (abfd, note);
10300
10301 case NT_WIN32PSTATUS:
10302 return elfcore_grok_win32pstatus (abfd, note);
10303
10304 case NT_PRXFPREG: /* Linux SSE extension */
10305 if (note->namesz == 6
10306 && strcmp (note->namedata, "LINUX") == 0)
10307 return elfcore_grok_prxfpreg (abfd, note);
10308 else
10309 return TRUE;
10310
10311 case NT_X86_XSTATE: /* Linux XSAVE extension */
10312 if (note->namesz == 6
10313 && strcmp (note->namedata, "LINUX") == 0)
10314 return elfcore_grok_xstatereg (abfd, note);
10315 else
10316 return TRUE;
10317
10318 case NT_PPC_VMX:
10319 if (note->namesz == 6
10320 && strcmp (note->namedata, "LINUX") == 0)
10321 return elfcore_grok_ppc_vmx (abfd, note);
10322 else
10323 return TRUE;
10324
10325 case NT_PPC_VSX:
10326 if (note->namesz == 6
10327 && strcmp (note->namedata, "LINUX") == 0)
10328 return elfcore_grok_ppc_vsx (abfd, note);
10329 else
10330 return TRUE;
10331
10332 case NT_PPC_TAR:
10333 if (note->namesz == 6
10334 && strcmp (note->namedata, "LINUX") == 0)
10335 return elfcore_grok_ppc_tar (abfd, note);
10336 else
10337 return TRUE;
10338
10339 case NT_PPC_PPR:
10340 if (note->namesz == 6
10341 && strcmp (note->namedata, "LINUX") == 0)
10342 return elfcore_grok_ppc_ppr (abfd, note);
10343 else
10344 return TRUE;
10345
10346 case NT_PPC_DSCR:
10347 if (note->namesz == 6
10348 && strcmp (note->namedata, "LINUX") == 0)
10349 return elfcore_grok_ppc_dscr (abfd, note);
10350 else
10351 return TRUE;
10352
10353 case NT_PPC_EBB:
10354 if (note->namesz == 6
10355 && strcmp (note->namedata, "LINUX") == 0)
10356 return elfcore_grok_ppc_ebb (abfd, note);
10357 else
10358 return TRUE;
10359
10360 case NT_PPC_PMU:
10361 if (note->namesz == 6
10362 && strcmp (note->namedata, "LINUX") == 0)
10363 return elfcore_grok_ppc_pmu (abfd, note);
10364 else
10365 return TRUE;
10366
10367 case NT_PPC_TM_CGPR:
10368 if (note->namesz == 6
10369 && strcmp (note->namedata, "LINUX") == 0)
10370 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10371 else
10372 return TRUE;
10373
10374 case NT_PPC_TM_CFPR:
10375 if (note->namesz == 6
10376 && strcmp (note->namedata, "LINUX") == 0)
10377 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10378 else
10379 return TRUE;
10380
10381 case NT_PPC_TM_CVMX:
10382 if (note->namesz == 6
10383 && strcmp (note->namedata, "LINUX") == 0)
10384 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10385 else
10386 return TRUE;
10387
10388 case NT_PPC_TM_CVSX:
10389 if (note->namesz == 6
10390 && strcmp (note->namedata, "LINUX") == 0)
10391 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10392 else
10393 return TRUE;
10394
10395 case NT_PPC_TM_SPR:
10396 if (note->namesz == 6
10397 && strcmp (note->namedata, "LINUX") == 0)
10398 return elfcore_grok_ppc_tm_spr (abfd, note);
10399 else
10400 return TRUE;
10401
10402 case NT_PPC_TM_CTAR:
10403 if (note->namesz == 6
10404 && strcmp (note->namedata, "LINUX") == 0)
10405 return elfcore_grok_ppc_tm_ctar (abfd, note);
10406 else
10407 return TRUE;
10408
10409 case NT_PPC_TM_CPPR:
10410 if (note->namesz == 6
10411 && strcmp (note->namedata, "LINUX") == 0)
10412 return elfcore_grok_ppc_tm_cppr (abfd, note);
10413 else
10414 return TRUE;
10415
10416 case NT_PPC_TM_CDSCR:
10417 if (note->namesz == 6
10418 && strcmp (note->namedata, "LINUX") == 0)
10419 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10420 else
10421 return TRUE;
10422
10423 case NT_S390_HIGH_GPRS:
10424 if (note->namesz == 6
10425 && strcmp (note->namedata, "LINUX") == 0)
10426 return elfcore_grok_s390_high_gprs (abfd, note);
10427 else
10428 return TRUE;
10429
10430 case NT_S390_TIMER:
10431 if (note->namesz == 6
10432 && strcmp (note->namedata, "LINUX") == 0)
10433 return elfcore_grok_s390_timer (abfd, note);
10434 else
10435 return TRUE;
10436
10437 case NT_S390_TODCMP:
10438 if (note->namesz == 6
10439 && strcmp (note->namedata, "LINUX") == 0)
10440 return elfcore_grok_s390_todcmp (abfd, note);
10441 else
10442 return TRUE;
10443
10444 case NT_S390_TODPREG:
10445 if (note->namesz == 6
10446 && strcmp (note->namedata, "LINUX") == 0)
10447 return elfcore_grok_s390_todpreg (abfd, note);
10448 else
10449 return TRUE;
10450
10451 case NT_S390_CTRS:
10452 if (note->namesz == 6
10453 && strcmp (note->namedata, "LINUX") == 0)
10454 return elfcore_grok_s390_ctrs (abfd, note);
10455 else
10456 return TRUE;
10457
10458 case NT_S390_PREFIX:
10459 if (note->namesz == 6
10460 && strcmp (note->namedata, "LINUX") == 0)
10461 return elfcore_grok_s390_prefix (abfd, note);
10462 else
10463 return TRUE;
10464
10465 case NT_S390_LAST_BREAK:
10466 if (note->namesz == 6
10467 && strcmp (note->namedata, "LINUX") == 0)
10468 return elfcore_grok_s390_last_break (abfd, note);
10469 else
10470 return TRUE;
10471
10472 case NT_S390_SYSTEM_CALL:
10473 if (note->namesz == 6
10474 && strcmp (note->namedata, "LINUX") == 0)
10475 return elfcore_grok_s390_system_call (abfd, note);
10476 else
10477 return TRUE;
10478
10479 case NT_S390_TDB:
10480 if (note->namesz == 6
10481 && strcmp (note->namedata, "LINUX") == 0)
10482 return elfcore_grok_s390_tdb (abfd, note);
10483 else
10484 return TRUE;
10485
10486 case NT_S390_VXRS_LOW:
10487 if (note->namesz == 6
10488 && strcmp (note->namedata, "LINUX") == 0)
10489 return elfcore_grok_s390_vxrs_low (abfd, note);
10490 else
10491 return TRUE;
10492
10493 case NT_S390_VXRS_HIGH:
10494 if (note->namesz == 6
10495 && strcmp (note->namedata, "LINUX") == 0)
10496 return elfcore_grok_s390_vxrs_high (abfd, note);
10497 else
10498 return TRUE;
10499
10500 case NT_S390_GS_CB:
10501 if (note->namesz == 6
10502 && strcmp (note->namedata, "LINUX") == 0)
10503 return elfcore_grok_s390_gs_cb (abfd, note);
10504 else
10505 return TRUE;
10506
10507 case NT_S390_GS_BC:
10508 if (note->namesz == 6
10509 && strcmp (note->namedata, "LINUX") == 0)
10510 return elfcore_grok_s390_gs_bc (abfd, note);
10511 else
10512 return TRUE;
10513
10514 case NT_ARC_V2:
10515 if (note->namesz == 6
10516 && strcmp (note->namedata, "LINUX") == 0)
10517 return elfcore_grok_arc_v2 (abfd, note);
10518 else
10519 return TRUE;
10520
10521 case NT_ARM_VFP:
10522 if (note->namesz == 6
10523 && strcmp (note->namedata, "LINUX") == 0)
10524 return elfcore_grok_arm_vfp (abfd, note);
10525 else
10526 return TRUE;
10527
10528 case NT_ARM_TLS:
10529 if (note->namesz == 6
10530 && strcmp (note->namedata, "LINUX") == 0)
10531 return elfcore_grok_aarch_tls (abfd, note);
10532 else
10533 return TRUE;
10534
10535 case NT_ARM_HW_BREAK:
10536 if (note->namesz == 6
10537 && strcmp (note->namedata, "LINUX") == 0)
10538 return elfcore_grok_aarch_hw_break (abfd, note);
10539 else
10540 return TRUE;
10541
10542 case NT_ARM_HW_WATCH:
10543 if (note->namesz == 6
10544 && strcmp (note->namedata, "LINUX") == 0)
10545 return elfcore_grok_aarch_hw_watch (abfd, note);
10546 else
10547 return TRUE;
10548
10549 case NT_ARM_SVE:
10550 if (note->namesz == 6
10551 && strcmp (note->namedata, "LINUX") == 0)
10552 return elfcore_grok_aarch_sve (abfd, note);
10553 else
10554 return TRUE;
10555
10556 case NT_ARM_PAC_MASK:
10557 if (note->namesz == 6
10558 && strcmp (note->namedata, "LINUX") == 0)
10559 return elfcore_grok_aarch_pauth (abfd, note);
10560 else
10561 return TRUE;
10562
10563 case NT_PRPSINFO:
10564 case NT_PSINFO:
10565 if (bed->elf_backend_grok_psinfo)
10566 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10567 return TRUE;
10568 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10569 return elfcore_grok_psinfo (abfd, note);
10570 #else
10571 return TRUE;
10572 #endif
10573
10574 case NT_AUXV:
10575 return elfcore_make_auxv_note_section (abfd, note, 0);
10576
10577 case NT_FILE:
10578 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10579 note);
10580
10581 case NT_SIGINFO:
10582 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10583 note);
10584
10585 }
10586 }
10587
10588 static bfd_boolean
10589 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10590 {
10591 struct bfd_build_id* build_id;
10592
10593 if (note->descsz == 0)
10594 return FALSE;
10595
10596 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10597 if (build_id == NULL)
10598 return FALSE;
10599
10600 build_id->size = note->descsz;
10601 memcpy (build_id->data, note->descdata, note->descsz);
10602 abfd->build_id = build_id;
10603
10604 return TRUE;
10605 }
10606
10607 static bfd_boolean
10608 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10609 {
10610 switch (note->type)
10611 {
10612 default:
10613 return TRUE;
10614
10615 case NT_GNU_PROPERTY_TYPE_0:
10616 return _bfd_elf_parse_gnu_properties (abfd, note);
10617
10618 case NT_GNU_BUILD_ID:
10619 return elfobj_grok_gnu_build_id (abfd, note);
10620 }
10621 }
10622
10623 static bfd_boolean
10624 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10625 {
10626 struct sdt_note *cur =
10627 (struct sdt_note *) bfd_alloc (abfd,
10628 sizeof (struct sdt_note) + note->descsz);
10629
10630 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10631 cur->size = (bfd_size_type) note->descsz;
10632 memcpy (cur->data, note->descdata, note->descsz);
10633
10634 elf_tdata (abfd)->sdt_note_head = cur;
10635
10636 return TRUE;
10637 }
10638
10639 static bfd_boolean
10640 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10641 {
10642 switch (note->type)
10643 {
10644 case NT_STAPSDT:
10645 return elfobj_grok_stapsdt_note_1 (abfd, note);
10646
10647 default:
10648 return TRUE;
10649 }
10650 }
10651
10652 static bfd_boolean
10653 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10654 {
10655 size_t offset;
10656
10657 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10658 {
10659 case ELFCLASS32:
10660 if (note->descsz < 108)
10661 return FALSE;
10662 break;
10663
10664 case ELFCLASS64:
10665 if (note->descsz < 120)
10666 return FALSE;
10667 break;
10668
10669 default:
10670 return FALSE;
10671 }
10672
10673 /* Check for version 1 in pr_version. */
10674 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10675 return FALSE;
10676
10677 offset = 4;
10678
10679 /* Skip over pr_psinfosz. */
10680 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10681 offset += 4;
10682 else
10683 {
10684 offset += 4; /* Padding before pr_psinfosz. */
10685 offset += 8;
10686 }
10687
10688 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10689 elf_tdata (abfd)->core->program
10690 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10691 offset += 17;
10692
10693 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10694 elf_tdata (abfd)->core->command
10695 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10696 offset += 81;
10697
10698 /* Padding before pr_pid. */
10699 offset += 2;
10700
10701 /* The pr_pid field was added in version "1a". */
10702 if (note->descsz < offset + 4)
10703 return TRUE;
10704
10705 elf_tdata (abfd)->core->pid
10706 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10707
10708 return TRUE;
10709 }
10710
10711 static bfd_boolean
10712 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10713 {
10714 size_t offset;
10715 size_t size;
10716 size_t min_size;
10717
10718 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10719 Also compute minimum size of this note. */
10720 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10721 {
10722 case ELFCLASS32:
10723 offset = 4 + 4;
10724 min_size = offset + (4 * 2) + 4 + 4 + 4;
10725 break;
10726
10727 case ELFCLASS64:
10728 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10729 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10730 break;
10731
10732 default:
10733 return FALSE;
10734 }
10735
10736 if (note->descsz < min_size)
10737 return FALSE;
10738
10739 /* Check for version 1 in pr_version. */
10740 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10741 return FALSE;
10742
10743 /* Extract size of pr_reg from pr_gregsetsz. */
10744 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10745 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10746 {
10747 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10748 offset += 4 * 2;
10749 }
10750 else
10751 {
10752 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10753 offset += 8 * 2;
10754 }
10755
10756 /* Skip over pr_osreldate. */
10757 offset += 4;
10758
10759 /* Read signal from pr_cursig. */
10760 if (elf_tdata (abfd)->core->signal == 0)
10761 elf_tdata (abfd)->core->signal
10762 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10763 offset += 4;
10764
10765 /* Read TID from pr_pid. */
10766 elf_tdata (abfd)->core->lwpid
10767 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10768 offset += 4;
10769
10770 /* Padding before pr_reg. */
10771 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10772 offset += 4;
10773
10774 /* Make sure that there is enough data remaining in the note. */
10775 if ((note->descsz - offset) < size)
10776 return FALSE;
10777
10778 /* Make a ".reg/999" section and a ".reg" section. */
10779 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10780 size, note->descpos + offset);
10781 }
10782
10783 static bfd_boolean
10784 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10785 {
10786 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10787
10788 switch (note->type)
10789 {
10790 case NT_PRSTATUS:
10791 if (bed->elf_backend_grok_freebsd_prstatus)
10792 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10793 return TRUE;
10794 return elfcore_grok_freebsd_prstatus (abfd, note);
10795
10796 case NT_FPREGSET:
10797 return elfcore_grok_prfpreg (abfd, note);
10798
10799 case NT_PRPSINFO:
10800 return elfcore_grok_freebsd_psinfo (abfd, note);
10801
10802 case NT_FREEBSD_THRMISC:
10803 if (note->namesz == 8)
10804 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10805 else
10806 return TRUE;
10807
10808 case NT_FREEBSD_PROCSTAT_PROC:
10809 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10810 note);
10811
10812 case NT_FREEBSD_PROCSTAT_FILES:
10813 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10814 note);
10815
10816 case NT_FREEBSD_PROCSTAT_VMMAP:
10817 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10818 note);
10819
10820 case NT_FREEBSD_PROCSTAT_AUXV:
10821 return elfcore_make_auxv_note_section (abfd, note, 4);
10822
10823 case NT_X86_XSTATE:
10824 if (note->namesz == 8)
10825 return elfcore_grok_xstatereg (abfd, note);
10826 else
10827 return TRUE;
10828
10829 case NT_FREEBSD_PTLWPINFO:
10830 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10831 note);
10832
10833 case NT_ARM_VFP:
10834 return elfcore_grok_arm_vfp (abfd, note);
10835
10836 default:
10837 return TRUE;
10838 }
10839 }
10840
10841 static bfd_boolean
10842 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10843 {
10844 char *cp;
10845
10846 cp = strchr (note->namedata, '@');
10847 if (cp != NULL)
10848 {
10849 *lwpidp = atoi(cp + 1);
10850 return TRUE;
10851 }
10852 return FALSE;
10853 }
10854
10855 static bfd_boolean
10856 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10857 {
10858 if (note->descsz <= 0x7c + 31)
10859 return FALSE;
10860
10861 /* Signal number at offset 0x08. */
10862 elf_tdata (abfd)->core->signal
10863 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10864
10865 /* Process ID at offset 0x50. */
10866 elf_tdata (abfd)->core->pid
10867 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10868
10869 /* Command name at 0x7c (max 32 bytes, including nul). */
10870 elf_tdata (abfd)->core->command
10871 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10872
10873 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10874 note);
10875 }
10876
10877 static bfd_boolean
10878 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10879 {
10880 int lwp;
10881
10882 if (elfcore_netbsd_get_lwpid (note, &lwp))
10883 elf_tdata (abfd)->core->lwpid = lwp;
10884
10885 switch (note->type)
10886 {
10887 case NT_NETBSDCORE_PROCINFO:
10888 /* NetBSD-specific core "procinfo". Note that we expect to
10889 find this note before any of the others, which is fine,
10890 since the kernel writes this note out first when it
10891 creates a core file. */
10892 return elfcore_grok_netbsd_procinfo (abfd, note);
10893 #ifdef NT_NETBSDCORE_AUXV
10894 case NT_NETBSDCORE_AUXV:
10895 /* NetBSD-specific Elf Auxiliary Vector data. */
10896 return elfcore_make_auxv_note_section (abfd, note, 4);
10897 #endif
10898 #ifdef NT_NETBSDCORE_LWPSTATUS
10899 case NT_NETBSDCORE_LWPSTATUS:
10900 return elfcore_make_note_pseudosection (abfd,
10901 ".note.netbsdcore.lwpstatus",
10902 note);
10903 #endif
10904 default:
10905 break;
10906 }
10907
10908 /* As of March 2020 there are no other machine-independent notes
10909 defined for NetBSD core files. If the note type is less
10910 than the start of the machine-dependent note types, we don't
10911 understand it. */
10912
10913 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10914 return TRUE;
10915
10916
10917 switch (bfd_get_arch (abfd))
10918 {
10919 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10920 PT_GETFPREGS == mach+2. */
10921
10922 case bfd_arch_aarch64:
10923 case bfd_arch_alpha:
10924 case bfd_arch_sparc:
10925 switch (note->type)
10926 {
10927 case NT_NETBSDCORE_FIRSTMACH+0:
10928 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10929
10930 case NT_NETBSDCORE_FIRSTMACH+2:
10931 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10932
10933 default:
10934 return TRUE;
10935 }
10936
10937 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10938 There's also old PT___GETREGS40 == mach + 1 for old reg
10939 structure which lacks GBR. */
10940
10941 case bfd_arch_sh:
10942 switch (note->type)
10943 {
10944 case NT_NETBSDCORE_FIRSTMACH+3:
10945 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10946
10947 case NT_NETBSDCORE_FIRSTMACH+5:
10948 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10949
10950 default:
10951 return TRUE;
10952 }
10953
10954 /* On all other arch's, PT_GETREGS == mach+1 and
10955 PT_GETFPREGS == mach+3. */
10956
10957 default:
10958 switch (note->type)
10959 {
10960 case NT_NETBSDCORE_FIRSTMACH+1:
10961 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10962
10963 case NT_NETBSDCORE_FIRSTMACH+3:
10964 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10965
10966 default:
10967 return TRUE;
10968 }
10969 }
10970 /* NOTREACHED */
10971 }
10972
10973 static bfd_boolean
10974 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10975 {
10976 if (note->descsz <= 0x48 + 31)
10977 return FALSE;
10978
10979 /* Signal number at offset 0x08. */
10980 elf_tdata (abfd)->core->signal
10981 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10982
10983 /* Process ID at offset 0x20. */
10984 elf_tdata (abfd)->core->pid
10985 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10986
10987 /* Command name at 0x48 (max 32 bytes, including nul). */
10988 elf_tdata (abfd)->core->command
10989 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10990
10991 return TRUE;
10992 }
10993
10994 static bfd_boolean
10995 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10996 {
10997 if (note->type == NT_OPENBSD_PROCINFO)
10998 return elfcore_grok_openbsd_procinfo (abfd, note);
10999
11000 if (note->type == NT_OPENBSD_REGS)
11001 return elfcore_make_note_pseudosection (abfd, ".reg", note);
11002
11003 if (note->type == NT_OPENBSD_FPREGS)
11004 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
11005
11006 if (note->type == NT_OPENBSD_XFPREGS)
11007 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
11008
11009 if (note->type == NT_OPENBSD_AUXV)
11010 return elfcore_make_auxv_note_section (abfd, note, 0);
11011
11012 if (note->type == NT_OPENBSD_WCOOKIE)
11013 {
11014 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
11015 SEC_HAS_CONTENTS);
11016
11017 if (sect == NULL)
11018 return FALSE;
11019 sect->size = note->descsz;
11020 sect->filepos = note->descpos;
11021 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
11022
11023 return TRUE;
11024 }
11025
11026 return TRUE;
11027 }
11028
11029 static bfd_boolean
11030 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
11031 {
11032 void *ddata = note->descdata;
11033 char buf[100];
11034 char *name;
11035 asection *sect;
11036 short sig;
11037 unsigned flags;
11038
11039 if (note->descsz < 16)
11040 return FALSE;
11041
11042 /* nto_procfs_status 'pid' field is at offset 0. */
11043 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
11044
11045 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
11046 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
11047
11048 /* nto_procfs_status 'flags' field is at offset 8. */
11049 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
11050
11051 /* nto_procfs_status 'what' field is at offset 14. */
11052 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
11053 {
11054 elf_tdata (abfd)->core->signal = sig;
11055 elf_tdata (abfd)->core->lwpid = *tid;
11056 }
11057
11058 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
11059 do not come from signals so we make sure we set the current
11060 thread just in case. */
11061 if (flags & 0x00000080)
11062 elf_tdata (abfd)->core->lwpid = *tid;
11063
11064 /* Make a ".qnx_core_status/%d" section. */
11065 sprintf (buf, ".qnx_core_status/%ld", *tid);
11066
11067 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11068 if (name == NULL)
11069 return FALSE;
11070 strcpy (name, buf);
11071
11072 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11073 if (sect == NULL)
11074 return FALSE;
11075
11076 sect->size = note->descsz;
11077 sect->filepos = note->descpos;
11078 sect->alignment_power = 2;
11079
11080 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
11081 }
11082
11083 static bfd_boolean
11084 elfcore_grok_nto_regs (bfd *abfd,
11085 Elf_Internal_Note *note,
11086 long tid,
11087 char *base)
11088 {
11089 char buf[100];
11090 char *name;
11091 asection *sect;
11092
11093 /* Make a "(base)/%d" section. */
11094 sprintf (buf, "%s/%ld", base, tid);
11095
11096 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
11097 if (name == NULL)
11098 return FALSE;
11099 strcpy (name, buf);
11100
11101 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11102 if (sect == NULL)
11103 return FALSE;
11104
11105 sect->size = note->descsz;
11106 sect->filepos = note->descpos;
11107 sect->alignment_power = 2;
11108
11109 /* This is the current thread. */
11110 if (elf_tdata (abfd)->core->lwpid == tid)
11111 return elfcore_maybe_make_sect (abfd, base, sect);
11112
11113 return TRUE;
11114 }
11115
11116 #define BFD_QNT_CORE_INFO 7
11117 #define BFD_QNT_CORE_STATUS 8
11118 #define BFD_QNT_CORE_GREG 9
11119 #define BFD_QNT_CORE_FPREG 10
11120
11121 static bfd_boolean
11122 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
11123 {
11124 /* Every GREG section has a STATUS section before it. Store the
11125 tid from the previous call to pass down to the next gregs
11126 function. */
11127 static long tid = 1;
11128
11129 switch (note->type)
11130 {
11131 case BFD_QNT_CORE_INFO:
11132 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
11133 case BFD_QNT_CORE_STATUS:
11134 return elfcore_grok_nto_status (abfd, note, &tid);
11135 case BFD_QNT_CORE_GREG:
11136 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
11137 case BFD_QNT_CORE_FPREG:
11138 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
11139 default:
11140 return TRUE;
11141 }
11142 }
11143
11144 static bfd_boolean
11145 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
11146 {
11147 char *name;
11148 asection *sect;
11149 size_t len;
11150
11151 /* Use note name as section name. */
11152 len = note->namesz;
11153 name = (char *) bfd_alloc (abfd, len);
11154 if (name == NULL)
11155 return FALSE;
11156 memcpy (name, note->namedata, len);
11157 name[len - 1] = '\0';
11158
11159 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
11160 if (sect == NULL)
11161 return FALSE;
11162
11163 sect->size = note->descsz;
11164 sect->filepos = note->descpos;
11165 sect->alignment_power = 1;
11166
11167 return TRUE;
11168 }
11169
11170 /* Function: elfcore_write_note
11171
11172 Inputs:
11173 buffer to hold note, and current size of buffer
11174 name of note
11175 type of note
11176 data for note
11177 size of data for note
11178
11179 Writes note to end of buffer. ELF64 notes are written exactly as
11180 for ELF32, despite the current (as of 2006) ELF gabi specifying
11181 that they ought to have 8-byte namesz and descsz field, and have
11182 8-byte alignment. Other writers, eg. Linux kernel, do the same.
11183
11184 Return:
11185 Pointer to realloc'd buffer, *BUFSIZ updated. */
11186
11187 char *
11188 elfcore_write_note (bfd *abfd,
11189 char *buf,
11190 int *bufsiz,
11191 const char *name,
11192 int type,
11193 const void *input,
11194 int size)
11195 {
11196 Elf_External_Note *xnp;
11197 size_t namesz;
11198 size_t newspace;
11199 char *dest;
11200
11201 namesz = 0;
11202 if (name != NULL)
11203 namesz = strlen (name) + 1;
11204
11205 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11206
11207 buf = (char *) realloc (buf, *bufsiz + newspace);
11208 if (buf == NULL)
11209 return buf;
11210 dest = buf + *bufsiz;
11211 *bufsiz += newspace;
11212 xnp = (Elf_External_Note *) dest;
11213 H_PUT_32 (abfd, namesz, xnp->namesz);
11214 H_PUT_32 (abfd, size, xnp->descsz);
11215 H_PUT_32 (abfd, type, xnp->type);
11216 dest = xnp->name;
11217 if (name != NULL)
11218 {
11219 memcpy (dest, name, namesz);
11220 dest += namesz;
11221 while (namesz & 3)
11222 {
11223 *dest++ = '\0';
11224 ++namesz;
11225 }
11226 }
11227 memcpy (dest, input, size);
11228 dest += size;
11229 while (size & 3)
11230 {
11231 *dest++ = '\0';
11232 ++size;
11233 }
11234 return buf;
11235 }
11236
11237 /* gcc-8 warns (*) on all the strncpy calls in this function about
11238 possible string truncation. The "truncation" is not a bug. We
11239 have an external representation of structs with fields that are not
11240 necessarily NULL terminated and corresponding internal
11241 representation fields that are one larger so that they can always
11242 be NULL terminated.
11243 gcc versions between 4.2 and 4.6 do not allow pragma control of
11244 diagnostics inside functions, giving a hard error if you try to use
11245 the finer control available with later versions.
11246 gcc prior to 4.2 warns about diagnostic push and pop.
11247 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11248 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11249 (*) Depending on your system header files! */
11250 #if GCC_VERSION >= 8000
11251 # pragma GCC diagnostic push
11252 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11253 #endif
11254 char *
11255 elfcore_write_prpsinfo (bfd *abfd,
11256 char *buf,
11257 int *bufsiz,
11258 const char *fname,
11259 const char *psargs)
11260 {
11261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11262
11263 if (bed->elf_backend_write_core_note != NULL)
11264 {
11265 char *ret;
11266 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11267 NT_PRPSINFO, fname, psargs);
11268 if (ret != NULL)
11269 return ret;
11270 }
11271
11272 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11273 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11274 if (bed->s->elfclass == ELFCLASS32)
11275 {
11276 # if defined (HAVE_PSINFO32_T)
11277 psinfo32_t data;
11278 int note_type = NT_PSINFO;
11279 # else
11280 prpsinfo32_t data;
11281 int note_type = NT_PRPSINFO;
11282 # endif
11283
11284 memset (&data, 0, sizeof (data));
11285 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11286 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11287 return elfcore_write_note (abfd, buf, bufsiz,
11288 "CORE", note_type, &data, sizeof (data));
11289 }
11290 else
11291 # endif
11292 {
11293 # if defined (HAVE_PSINFO_T)
11294 psinfo_t data;
11295 int note_type = NT_PSINFO;
11296 # else
11297 prpsinfo_t data;
11298 int note_type = NT_PRPSINFO;
11299 # endif
11300
11301 memset (&data, 0, sizeof (data));
11302 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11303 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11304 return elfcore_write_note (abfd, buf, bufsiz,
11305 "CORE", note_type, &data, sizeof (data));
11306 }
11307 #endif /* PSINFO_T or PRPSINFO_T */
11308
11309 free (buf);
11310 return NULL;
11311 }
11312 #if GCC_VERSION >= 8000
11313 # pragma GCC diagnostic pop
11314 #endif
11315
11316 char *
11317 elfcore_write_linux_prpsinfo32
11318 (bfd *abfd, char *buf, int *bufsiz,
11319 const struct elf_internal_linux_prpsinfo *prpsinfo)
11320 {
11321 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11322 {
11323 struct elf_external_linux_prpsinfo32_ugid16 data;
11324
11325 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11326 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11327 &data, sizeof (data));
11328 }
11329 else
11330 {
11331 struct elf_external_linux_prpsinfo32_ugid32 data;
11332
11333 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11334 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11335 &data, sizeof (data));
11336 }
11337 }
11338
11339 char *
11340 elfcore_write_linux_prpsinfo64
11341 (bfd *abfd, char *buf, int *bufsiz,
11342 const struct elf_internal_linux_prpsinfo *prpsinfo)
11343 {
11344 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11345 {
11346 struct elf_external_linux_prpsinfo64_ugid16 data;
11347
11348 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11349 return elfcore_write_note (abfd, buf, bufsiz,
11350 "CORE", NT_PRPSINFO, &data, sizeof (data));
11351 }
11352 else
11353 {
11354 struct elf_external_linux_prpsinfo64_ugid32 data;
11355
11356 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11357 return elfcore_write_note (abfd, buf, bufsiz,
11358 "CORE", NT_PRPSINFO, &data, sizeof (data));
11359 }
11360 }
11361
11362 char *
11363 elfcore_write_prstatus (bfd *abfd,
11364 char *buf,
11365 int *bufsiz,
11366 long pid,
11367 int cursig,
11368 const void *gregs)
11369 {
11370 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11371
11372 if (bed->elf_backend_write_core_note != NULL)
11373 {
11374 char *ret;
11375 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11376 NT_PRSTATUS,
11377 pid, cursig, gregs);
11378 if (ret != NULL)
11379 return ret;
11380 }
11381
11382 #if defined (HAVE_PRSTATUS_T)
11383 #if defined (HAVE_PRSTATUS32_T)
11384 if (bed->s->elfclass == ELFCLASS32)
11385 {
11386 prstatus32_t prstat;
11387
11388 memset (&prstat, 0, sizeof (prstat));
11389 prstat.pr_pid = pid;
11390 prstat.pr_cursig = cursig;
11391 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11392 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11393 NT_PRSTATUS, &prstat, sizeof (prstat));
11394 }
11395 else
11396 #endif
11397 {
11398 prstatus_t prstat;
11399
11400 memset (&prstat, 0, sizeof (prstat));
11401 prstat.pr_pid = pid;
11402 prstat.pr_cursig = cursig;
11403 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11404 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11405 NT_PRSTATUS, &prstat, sizeof (prstat));
11406 }
11407 #endif /* HAVE_PRSTATUS_T */
11408
11409 free (buf);
11410 return NULL;
11411 }
11412
11413 #if defined (HAVE_LWPSTATUS_T)
11414 char *
11415 elfcore_write_lwpstatus (bfd *abfd,
11416 char *buf,
11417 int *bufsiz,
11418 long pid,
11419 int cursig,
11420 const void *gregs)
11421 {
11422 lwpstatus_t lwpstat;
11423 const char *note_name = "CORE";
11424
11425 memset (&lwpstat, 0, sizeof (lwpstat));
11426 lwpstat.pr_lwpid = pid >> 16;
11427 lwpstat.pr_cursig = cursig;
11428 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11429 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11430 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11431 #if !defined(gregs)
11432 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11433 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11434 #else
11435 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11436 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11437 #endif
11438 #endif
11439 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11440 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11441 }
11442 #endif /* HAVE_LWPSTATUS_T */
11443
11444 #if defined (HAVE_PSTATUS_T)
11445 char *
11446 elfcore_write_pstatus (bfd *abfd,
11447 char *buf,
11448 int *bufsiz,
11449 long pid,
11450 int cursig ATTRIBUTE_UNUSED,
11451 const void *gregs ATTRIBUTE_UNUSED)
11452 {
11453 const char *note_name = "CORE";
11454 #if defined (HAVE_PSTATUS32_T)
11455 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11456
11457 if (bed->s->elfclass == ELFCLASS32)
11458 {
11459 pstatus32_t pstat;
11460
11461 memset (&pstat, 0, sizeof (pstat));
11462 pstat.pr_pid = pid & 0xffff;
11463 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11464 NT_PSTATUS, &pstat, sizeof (pstat));
11465 return buf;
11466 }
11467 else
11468 #endif
11469 {
11470 pstatus_t pstat;
11471
11472 memset (&pstat, 0, sizeof (pstat));
11473 pstat.pr_pid = pid & 0xffff;
11474 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11475 NT_PSTATUS, &pstat, sizeof (pstat));
11476 return buf;
11477 }
11478 }
11479 #endif /* HAVE_PSTATUS_T */
11480
11481 char *
11482 elfcore_write_prfpreg (bfd *abfd,
11483 char *buf,
11484 int *bufsiz,
11485 const void *fpregs,
11486 int size)
11487 {
11488 const char *note_name = "CORE";
11489 return elfcore_write_note (abfd, buf, bufsiz,
11490 note_name, NT_FPREGSET, fpregs, size);
11491 }
11492
11493 char *
11494 elfcore_write_prxfpreg (bfd *abfd,
11495 char *buf,
11496 int *bufsiz,
11497 const void *xfpregs,
11498 int size)
11499 {
11500 char *note_name = "LINUX";
11501 return elfcore_write_note (abfd, buf, bufsiz,
11502 note_name, NT_PRXFPREG, xfpregs, size);
11503 }
11504
11505 char *
11506 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11507 const void *xfpregs, int size)
11508 {
11509 char *note_name;
11510 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11511 note_name = "FreeBSD";
11512 else
11513 note_name = "LINUX";
11514 return elfcore_write_note (abfd, buf, bufsiz,
11515 note_name, NT_X86_XSTATE, xfpregs, size);
11516 }
11517
11518 char *
11519 elfcore_write_ppc_vmx (bfd *abfd,
11520 char *buf,
11521 int *bufsiz,
11522 const void *ppc_vmx,
11523 int size)
11524 {
11525 char *note_name = "LINUX";
11526 return elfcore_write_note (abfd, buf, bufsiz,
11527 note_name, NT_PPC_VMX, ppc_vmx, size);
11528 }
11529
11530 char *
11531 elfcore_write_ppc_vsx (bfd *abfd,
11532 char *buf,
11533 int *bufsiz,
11534 const void *ppc_vsx,
11535 int size)
11536 {
11537 char *note_name = "LINUX";
11538 return elfcore_write_note (abfd, buf, bufsiz,
11539 note_name, NT_PPC_VSX, ppc_vsx, size);
11540 }
11541
11542 char *
11543 elfcore_write_ppc_tar (bfd *abfd,
11544 char *buf,
11545 int *bufsiz,
11546 const void *ppc_tar,
11547 int size)
11548 {
11549 char *note_name = "LINUX";
11550 return elfcore_write_note (abfd, buf, bufsiz,
11551 note_name, NT_PPC_TAR, ppc_tar, size);
11552 }
11553
11554 char *
11555 elfcore_write_ppc_ppr (bfd *abfd,
11556 char *buf,
11557 int *bufsiz,
11558 const void *ppc_ppr,
11559 int size)
11560 {
11561 char *note_name = "LINUX";
11562 return elfcore_write_note (abfd, buf, bufsiz,
11563 note_name, NT_PPC_PPR, ppc_ppr, size);
11564 }
11565
11566 char *
11567 elfcore_write_ppc_dscr (bfd *abfd,
11568 char *buf,
11569 int *bufsiz,
11570 const void *ppc_dscr,
11571 int size)
11572 {
11573 char *note_name = "LINUX";
11574 return elfcore_write_note (abfd, buf, bufsiz,
11575 note_name, NT_PPC_DSCR, ppc_dscr, size);
11576 }
11577
11578 char *
11579 elfcore_write_ppc_ebb (bfd *abfd,
11580 char *buf,
11581 int *bufsiz,
11582 const void *ppc_ebb,
11583 int size)
11584 {
11585 char *note_name = "LINUX";
11586 return elfcore_write_note (abfd, buf, bufsiz,
11587 note_name, NT_PPC_EBB, ppc_ebb, size);
11588 }
11589
11590 char *
11591 elfcore_write_ppc_pmu (bfd *abfd,
11592 char *buf,
11593 int *bufsiz,
11594 const void *ppc_pmu,
11595 int size)
11596 {
11597 char *note_name = "LINUX";
11598 return elfcore_write_note (abfd, buf, bufsiz,
11599 note_name, NT_PPC_PMU, ppc_pmu, size);
11600 }
11601
11602 char *
11603 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11604 char *buf,
11605 int *bufsiz,
11606 const void *ppc_tm_cgpr,
11607 int size)
11608 {
11609 char *note_name = "LINUX";
11610 return elfcore_write_note (abfd, buf, bufsiz,
11611 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11612 }
11613
11614 char *
11615 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11616 char *buf,
11617 int *bufsiz,
11618 const void *ppc_tm_cfpr,
11619 int size)
11620 {
11621 char *note_name = "LINUX";
11622 return elfcore_write_note (abfd, buf, bufsiz,
11623 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11624 }
11625
11626 char *
11627 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11628 char *buf,
11629 int *bufsiz,
11630 const void *ppc_tm_cvmx,
11631 int size)
11632 {
11633 char *note_name = "LINUX";
11634 return elfcore_write_note (abfd, buf, bufsiz,
11635 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11636 }
11637
11638 char *
11639 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11640 char *buf,
11641 int *bufsiz,
11642 const void *ppc_tm_cvsx,
11643 int size)
11644 {
11645 char *note_name = "LINUX";
11646 return elfcore_write_note (abfd, buf, bufsiz,
11647 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11648 }
11649
11650 char *
11651 elfcore_write_ppc_tm_spr (bfd *abfd,
11652 char *buf,
11653 int *bufsiz,
11654 const void *ppc_tm_spr,
11655 int size)
11656 {
11657 char *note_name = "LINUX";
11658 return elfcore_write_note (abfd, buf, bufsiz,
11659 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11660 }
11661
11662 char *
11663 elfcore_write_ppc_tm_ctar (bfd *abfd,
11664 char *buf,
11665 int *bufsiz,
11666 const void *ppc_tm_ctar,
11667 int size)
11668 {
11669 char *note_name = "LINUX";
11670 return elfcore_write_note (abfd, buf, bufsiz,
11671 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11672 }
11673
11674 char *
11675 elfcore_write_ppc_tm_cppr (bfd *abfd,
11676 char *buf,
11677 int *bufsiz,
11678 const void *ppc_tm_cppr,
11679 int size)
11680 {
11681 char *note_name = "LINUX";
11682 return elfcore_write_note (abfd, buf, bufsiz,
11683 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11684 }
11685
11686 char *
11687 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11688 char *buf,
11689 int *bufsiz,
11690 const void *ppc_tm_cdscr,
11691 int size)
11692 {
11693 char *note_name = "LINUX";
11694 return elfcore_write_note (abfd, buf, bufsiz,
11695 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11696 }
11697
11698 static char *
11699 elfcore_write_s390_high_gprs (bfd *abfd,
11700 char *buf,
11701 int *bufsiz,
11702 const void *s390_high_gprs,
11703 int size)
11704 {
11705 char *note_name = "LINUX";
11706 return elfcore_write_note (abfd, buf, bufsiz,
11707 note_name, NT_S390_HIGH_GPRS,
11708 s390_high_gprs, size);
11709 }
11710
11711 char *
11712 elfcore_write_s390_timer (bfd *abfd,
11713 char *buf,
11714 int *bufsiz,
11715 const void *s390_timer,
11716 int size)
11717 {
11718 char *note_name = "LINUX";
11719 return elfcore_write_note (abfd, buf, bufsiz,
11720 note_name, NT_S390_TIMER, s390_timer, size);
11721 }
11722
11723 char *
11724 elfcore_write_s390_todcmp (bfd *abfd,
11725 char *buf,
11726 int *bufsiz,
11727 const void *s390_todcmp,
11728 int size)
11729 {
11730 char *note_name = "LINUX";
11731 return elfcore_write_note (abfd, buf, bufsiz,
11732 note_name, NT_S390_TODCMP, s390_todcmp, size);
11733 }
11734
11735 char *
11736 elfcore_write_s390_todpreg (bfd *abfd,
11737 char *buf,
11738 int *bufsiz,
11739 const void *s390_todpreg,
11740 int size)
11741 {
11742 char *note_name = "LINUX";
11743 return elfcore_write_note (abfd, buf, bufsiz,
11744 note_name, NT_S390_TODPREG, s390_todpreg, size);
11745 }
11746
11747 char *
11748 elfcore_write_s390_ctrs (bfd *abfd,
11749 char *buf,
11750 int *bufsiz,
11751 const void *s390_ctrs,
11752 int size)
11753 {
11754 char *note_name = "LINUX";
11755 return elfcore_write_note (abfd, buf, bufsiz,
11756 note_name, NT_S390_CTRS, s390_ctrs, size);
11757 }
11758
11759 char *
11760 elfcore_write_s390_prefix (bfd *abfd,
11761 char *buf,
11762 int *bufsiz,
11763 const void *s390_prefix,
11764 int size)
11765 {
11766 char *note_name = "LINUX";
11767 return elfcore_write_note (abfd, buf, bufsiz,
11768 note_name, NT_S390_PREFIX, s390_prefix, size);
11769 }
11770
11771 char *
11772 elfcore_write_s390_last_break (bfd *abfd,
11773 char *buf,
11774 int *bufsiz,
11775 const void *s390_last_break,
11776 int size)
11777 {
11778 char *note_name = "LINUX";
11779 return elfcore_write_note (abfd, buf, bufsiz,
11780 note_name, NT_S390_LAST_BREAK,
11781 s390_last_break, size);
11782 }
11783
11784 char *
11785 elfcore_write_s390_system_call (bfd *abfd,
11786 char *buf,
11787 int *bufsiz,
11788 const void *s390_system_call,
11789 int size)
11790 {
11791 char *note_name = "LINUX";
11792 return elfcore_write_note (abfd, buf, bufsiz,
11793 note_name, NT_S390_SYSTEM_CALL,
11794 s390_system_call, size);
11795 }
11796
11797 char *
11798 elfcore_write_s390_tdb (bfd *abfd,
11799 char *buf,
11800 int *bufsiz,
11801 const void *s390_tdb,
11802 int size)
11803 {
11804 char *note_name = "LINUX";
11805 return elfcore_write_note (abfd, buf, bufsiz,
11806 note_name, NT_S390_TDB, s390_tdb, size);
11807 }
11808
11809 char *
11810 elfcore_write_s390_vxrs_low (bfd *abfd,
11811 char *buf,
11812 int *bufsiz,
11813 const void *s390_vxrs_low,
11814 int size)
11815 {
11816 char *note_name = "LINUX";
11817 return elfcore_write_note (abfd, buf, bufsiz,
11818 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11819 }
11820
11821 char *
11822 elfcore_write_s390_vxrs_high (bfd *abfd,
11823 char *buf,
11824 int *bufsiz,
11825 const void *s390_vxrs_high,
11826 int size)
11827 {
11828 char *note_name = "LINUX";
11829 return elfcore_write_note (abfd, buf, bufsiz,
11830 note_name, NT_S390_VXRS_HIGH,
11831 s390_vxrs_high, size);
11832 }
11833
11834 char *
11835 elfcore_write_s390_gs_cb (bfd *abfd,
11836 char *buf,
11837 int *bufsiz,
11838 const void *s390_gs_cb,
11839 int size)
11840 {
11841 char *note_name = "LINUX";
11842 return elfcore_write_note (abfd, buf, bufsiz,
11843 note_name, NT_S390_GS_CB,
11844 s390_gs_cb, size);
11845 }
11846
11847 char *
11848 elfcore_write_s390_gs_bc (bfd *abfd,
11849 char *buf,
11850 int *bufsiz,
11851 const void *s390_gs_bc,
11852 int size)
11853 {
11854 char *note_name = "LINUX";
11855 return elfcore_write_note (abfd, buf, bufsiz,
11856 note_name, NT_S390_GS_BC,
11857 s390_gs_bc, size);
11858 }
11859
11860 char *
11861 elfcore_write_arm_vfp (bfd *abfd,
11862 char *buf,
11863 int *bufsiz,
11864 const void *arm_vfp,
11865 int size)
11866 {
11867 char *note_name = "LINUX";
11868 return elfcore_write_note (abfd, buf, bufsiz,
11869 note_name, NT_ARM_VFP, arm_vfp, size);
11870 }
11871
11872 char *
11873 elfcore_write_aarch_tls (bfd *abfd,
11874 char *buf,
11875 int *bufsiz,
11876 const void *aarch_tls,
11877 int size)
11878 {
11879 char *note_name = "LINUX";
11880 return elfcore_write_note (abfd, buf, bufsiz,
11881 note_name, NT_ARM_TLS, aarch_tls, size);
11882 }
11883
11884 char *
11885 elfcore_write_aarch_hw_break (bfd *abfd,
11886 char *buf,
11887 int *bufsiz,
11888 const void *aarch_hw_break,
11889 int size)
11890 {
11891 char *note_name = "LINUX";
11892 return elfcore_write_note (abfd, buf, bufsiz,
11893 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11894 }
11895
11896 char *
11897 elfcore_write_aarch_hw_watch (bfd *abfd,
11898 char *buf,
11899 int *bufsiz,
11900 const void *aarch_hw_watch,
11901 int size)
11902 {
11903 char *note_name = "LINUX";
11904 return elfcore_write_note (abfd, buf, bufsiz,
11905 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11906 }
11907
11908 char *
11909 elfcore_write_aarch_sve (bfd *abfd,
11910 char *buf,
11911 int *bufsiz,
11912 const void *aarch_sve,
11913 int size)
11914 {
11915 char *note_name = "LINUX";
11916 return elfcore_write_note (abfd, buf, bufsiz,
11917 note_name, NT_ARM_SVE, aarch_sve, size);
11918 }
11919
11920 char *
11921 elfcore_write_aarch_pauth (bfd *abfd,
11922 char *buf,
11923 int *bufsiz,
11924 const void *aarch_pauth,
11925 int size)
11926 {
11927 char *note_name = "LINUX";
11928 return elfcore_write_note (abfd, buf, bufsiz,
11929 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11930 }
11931
11932 char *
11933 elfcore_write_arc_v2 (bfd *abfd,
11934 char *buf,
11935 int *bufsiz,
11936 const void *arc_v2,
11937 int size)
11938 {
11939 char *note_name = "LINUX";
11940 return elfcore_write_note (abfd, buf, bufsiz,
11941 note_name, NT_ARC_V2, arc_v2, size);
11942 }
11943
11944 char *
11945 elfcore_write_register_note (bfd *abfd,
11946 char *buf,
11947 int *bufsiz,
11948 const char *section,
11949 const void *data,
11950 int size)
11951 {
11952 if (strcmp (section, ".reg2") == 0)
11953 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11954 if (strcmp (section, ".reg-xfp") == 0)
11955 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11956 if (strcmp (section, ".reg-xstate") == 0)
11957 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11958 if (strcmp (section, ".reg-ppc-vmx") == 0)
11959 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11960 if (strcmp (section, ".reg-ppc-vsx") == 0)
11961 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11962 if (strcmp (section, ".reg-ppc-tar") == 0)
11963 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11964 if (strcmp (section, ".reg-ppc-ppr") == 0)
11965 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11966 if (strcmp (section, ".reg-ppc-dscr") == 0)
11967 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11968 if (strcmp (section, ".reg-ppc-ebb") == 0)
11969 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11970 if (strcmp (section, ".reg-ppc-pmu") == 0)
11971 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11972 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11973 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11974 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11975 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11976 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11977 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11978 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11979 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11980 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11981 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11982 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11983 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11984 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11985 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11986 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11987 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11988 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11989 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11990 if (strcmp (section, ".reg-s390-timer") == 0)
11991 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11992 if (strcmp (section, ".reg-s390-todcmp") == 0)
11993 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11994 if (strcmp (section, ".reg-s390-todpreg") == 0)
11995 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11996 if (strcmp (section, ".reg-s390-ctrs") == 0)
11997 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11998 if (strcmp (section, ".reg-s390-prefix") == 0)
11999 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
12000 if (strcmp (section, ".reg-s390-last-break") == 0)
12001 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
12002 if (strcmp (section, ".reg-s390-system-call") == 0)
12003 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
12004 if (strcmp (section, ".reg-s390-tdb") == 0)
12005 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
12006 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
12007 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
12008 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
12009 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
12010 if (strcmp (section, ".reg-s390-gs-cb") == 0)
12011 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
12012 if (strcmp (section, ".reg-s390-gs-bc") == 0)
12013 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
12014 if (strcmp (section, ".reg-arm-vfp") == 0)
12015 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
12016 if (strcmp (section, ".reg-aarch-tls") == 0)
12017 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
12018 if (strcmp (section, ".reg-aarch-hw-break") == 0)
12019 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
12020 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
12021 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
12022 if (strcmp (section, ".reg-aarch-sve") == 0)
12023 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
12024 if (strcmp (section, ".reg-aarch-pauth") == 0)
12025 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
12026 if (strcmp (section, ".reg-arc-v2") == 0)
12027 return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size);
12028 return NULL;
12029 }
12030
12031 static bfd_boolean
12032 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
12033 size_t align)
12034 {
12035 char *p;
12036
12037 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
12038 gABI specifies that PT_NOTE alignment should be aligned to 4
12039 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
12040 align is less than 4, we use 4 byte alignment. */
12041 if (align < 4)
12042 align = 4;
12043 if (align != 4 && align != 8)
12044 return FALSE;
12045
12046 p = buf;
12047 while (p < buf + size)
12048 {
12049 Elf_External_Note *xnp = (Elf_External_Note *) p;
12050 Elf_Internal_Note in;
12051
12052 if (offsetof (Elf_External_Note, name) > buf - p + size)
12053 return FALSE;
12054
12055 in.type = H_GET_32 (abfd, xnp->type);
12056
12057 in.namesz = H_GET_32 (abfd, xnp->namesz);
12058 in.namedata = xnp->name;
12059 if (in.namesz > buf - in.namedata + size)
12060 return FALSE;
12061
12062 in.descsz = H_GET_32 (abfd, xnp->descsz);
12063 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
12064 in.descpos = offset + (in.descdata - buf);
12065 if (in.descsz != 0
12066 && (in.descdata >= buf + size
12067 || in.descsz > buf - in.descdata + size))
12068 return FALSE;
12069
12070 switch (bfd_get_format (abfd))
12071 {
12072 default:
12073 return TRUE;
12074
12075 case bfd_core:
12076 {
12077 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
12078 struct
12079 {
12080 const char * string;
12081 size_t len;
12082 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
12083 }
12084 grokers[] =
12085 {
12086 GROKER_ELEMENT ("", elfcore_grok_note),
12087 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
12088 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
12089 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
12090 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
12091 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
12092 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
12093 };
12094 #undef GROKER_ELEMENT
12095 int i;
12096
12097 for (i = ARRAY_SIZE (grokers); i--;)
12098 {
12099 if (in.namesz >= grokers[i].len
12100 && strncmp (in.namedata, grokers[i].string,
12101 grokers[i].len) == 0)
12102 {
12103 if (! grokers[i].func (abfd, & in))
12104 return FALSE;
12105 break;
12106 }
12107 }
12108 break;
12109 }
12110
12111 case bfd_object:
12112 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
12113 {
12114 if (! elfobj_grok_gnu_note (abfd, &in))
12115 return FALSE;
12116 }
12117 else if (in.namesz == sizeof "stapsdt"
12118 && strcmp (in.namedata, "stapsdt") == 0)
12119 {
12120 if (! elfobj_grok_stapsdt_note (abfd, &in))
12121 return FALSE;
12122 }
12123 break;
12124 }
12125
12126 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
12127 }
12128
12129 return TRUE;
12130 }
12131
12132 bfd_boolean
12133 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
12134 size_t align)
12135 {
12136 char *buf;
12137
12138 if (size == 0 || (size + 1) == 0)
12139 return TRUE;
12140
12141 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
12142 return FALSE;
12143
12144 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
12145 if (buf == NULL)
12146 return FALSE;
12147
12148 /* PR 17512: file: ec08f814
12149 0-termintate the buffer so that string searches will not overflow. */
12150 buf[size] = 0;
12151
12152 if (!elf_parse_notes (abfd, buf, size, offset, align))
12153 {
12154 free (buf);
12155 return FALSE;
12156 }
12157
12158 free (buf);
12159 return TRUE;
12160 }
12161 \f
12162 /* Providing external access to the ELF program header table. */
12163
12164 /* Return an upper bound on the number of bytes required to store a
12165 copy of ABFD's program header table entries. Return -1 if an error
12166 occurs; bfd_get_error will return an appropriate code. */
12167
12168 long
12169 bfd_get_elf_phdr_upper_bound (bfd *abfd)
12170 {
12171 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12172 {
12173 bfd_set_error (bfd_error_wrong_format);
12174 return -1;
12175 }
12176
12177 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
12178 }
12179
12180 /* Copy ABFD's program header table entries to *PHDRS. The entries
12181 will be stored as an array of Elf_Internal_Phdr structures, as
12182 defined in include/elf/internal.h. To find out how large the
12183 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
12184
12185 Return the number of program header table entries read, or -1 if an
12186 error occurs; bfd_get_error will return an appropriate code. */
12187
12188 int
12189 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
12190 {
12191 int num_phdrs;
12192
12193 if (abfd->xvec->flavour != bfd_target_elf_flavour)
12194 {
12195 bfd_set_error (bfd_error_wrong_format);
12196 return -1;
12197 }
12198
12199 num_phdrs = elf_elfheader (abfd)->e_phnum;
12200 if (num_phdrs != 0)
12201 memcpy (phdrs, elf_tdata (abfd)->phdr,
12202 num_phdrs * sizeof (Elf_Internal_Phdr));
12203
12204 return num_phdrs;
12205 }
12206
12207 enum elf_reloc_type_class
12208 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
12209 const asection *rel_sec ATTRIBUTE_UNUSED,
12210 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
12211 {
12212 return reloc_class_normal;
12213 }
12214
12215 /* For RELA architectures, return the relocation value for a
12216 relocation against a local symbol. */
12217
12218 bfd_vma
12219 _bfd_elf_rela_local_sym (bfd *abfd,
12220 Elf_Internal_Sym *sym,
12221 asection **psec,
12222 Elf_Internal_Rela *rel)
12223 {
12224 asection *sec = *psec;
12225 bfd_vma relocation;
12226
12227 relocation = (sec->output_section->vma
12228 + sec->output_offset
12229 + sym->st_value);
12230 if ((sec->flags & SEC_MERGE)
12231 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12232 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12233 {
12234 rel->r_addend =
12235 _bfd_merged_section_offset (abfd, psec,
12236 elf_section_data (sec)->sec_info,
12237 sym->st_value + rel->r_addend);
12238 if (sec != *psec)
12239 {
12240 /* If we have changed the section, and our original section is
12241 marked with SEC_EXCLUDE, it means that the original
12242 SEC_MERGE section has been completely subsumed in some
12243 other SEC_MERGE section. In this case, we need to leave
12244 some info around for --emit-relocs. */
12245 if ((sec->flags & SEC_EXCLUDE) != 0)
12246 sec->kept_section = *psec;
12247 sec = *psec;
12248 }
12249 rel->r_addend -= relocation;
12250 rel->r_addend += sec->output_section->vma + sec->output_offset;
12251 }
12252 return relocation;
12253 }
12254
12255 bfd_vma
12256 _bfd_elf_rel_local_sym (bfd *abfd,
12257 Elf_Internal_Sym *sym,
12258 asection **psec,
12259 bfd_vma addend)
12260 {
12261 asection *sec = *psec;
12262
12263 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12264 return sym->st_value + addend;
12265
12266 return _bfd_merged_section_offset (abfd, psec,
12267 elf_section_data (sec)->sec_info,
12268 sym->st_value + addend);
12269 }
12270
12271 /* Adjust an address within a section. Given OFFSET within SEC, return
12272 the new offset within the section, based upon changes made to the
12273 section. Returns -1 if the offset is now invalid.
12274 The offset (in abnd out) is in target sized bytes, however big a
12275 byte may be. */
12276
12277 bfd_vma
12278 _bfd_elf_section_offset (bfd *abfd,
12279 struct bfd_link_info *info,
12280 asection *sec,
12281 bfd_vma offset)
12282 {
12283 switch (sec->sec_info_type)
12284 {
12285 case SEC_INFO_TYPE_STABS:
12286 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12287 offset);
12288 case SEC_INFO_TYPE_EH_FRAME:
12289 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12290
12291 default:
12292 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12293 {
12294 /* Reverse the offset. */
12295 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12296 bfd_size_type address_size = bed->s->arch_size / 8;
12297
12298 /* address_size and sec->size are in octets. Convert
12299 to bytes before subtracting the original offset. */
12300 offset = ((sec->size - address_size)
12301 / bfd_octets_per_byte (abfd, sec) - offset);
12302 }
12303 return offset;
12304 }
12305 }
12306 \f
12307 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12308 reconstruct an ELF file by reading the segments out of remote memory
12309 based on the ELF file header at EHDR_VMA and the ELF program headers it
12310 points to. If not null, *LOADBASEP is filled in with the difference
12311 between the VMAs from which the segments were read, and the VMAs the
12312 file headers (and hence BFD's idea of each section's VMA) put them at.
12313
12314 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12315 remote memory at target address VMA into the local buffer at MYADDR; it
12316 should return zero on success or an `errno' code on failure. TEMPL must
12317 be a BFD for an ELF target with the word size and byte order found in
12318 the remote memory. */
12319
12320 bfd *
12321 bfd_elf_bfd_from_remote_memory
12322 (bfd *templ,
12323 bfd_vma ehdr_vma,
12324 bfd_size_type size,
12325 bfd_vma *loadbasep,
12326 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12327 {
12328 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12329 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12330 }
12331 \f
12332 long
12333 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12334 long symcount ATTRIBUTE_UNUSED,
12335 asymbol **syms ATTRIBUTE_UNUSED,
12336 long dynsymcount,
12337 asymbol **dynsyms,
12338 asymbol **ret)
12339 {
12340 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12341 asection *relplt;
12342 asymbol *s;
12343 const char *relplt_name;
12344 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12345 arelent *p;
12346 long count, i, n;
12347 size_t size;
12348 Elf_Internal_Shdr *hdr;
12349 char *names;
12350 asection *plt;
12351
12352 *ret = NULL;
12353
12354 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12355 return 0;
12356
12357 if (dynsymcount <= 0)
12358 return 0;
12359
12360 if (!bed->plt_sym_val)
12361 return 0;
12362
12363 relplt_name = bed->relplt_name;
12364 if (relplt_name == NULL)
12365 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12366 relplt = bfd_get_section_by_name (abfd, relplt_name);
12367 if (relplt == NULL)
12368 return 0;
12369
12370 hdr = &elf_section_data (relplt)->this_hdr;
12371 if (hdr->sh_link != elf_dynsymtab (abfd)
12372 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12373 return 0;
12374
12375 plt = bfd_get_section_by_name (abfd, ".plt");
12376 if (plt == NULL)
12377 return 0;
12378
12379 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12380 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12381 return -1;
12382
12383 count = relplt->size / hdr->sh_entsize;
12384 size = count * sizeof (asymbol);
12385 p = relplt->relocation;
12386 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12387 {
12388 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12389 if (p->addend != 0)
12390 {
12391 #ifdef BFD64
12392 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12393 #else
12394 size += sizeof ("+0x") - 1 + 8;
12395 #endif
12396 }
12397 }
12398
12399 s = *ret = (asymbol *) bfd_malloc (size);
12400 if (s == NULL)
12401 return -1;
12402
12403 names = (char *) (s + count);
12404 p = relplt->relocation;
12405 n = 0;
12406 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12407 {
12408 size_t len;
12409 bfd_vma addr;
12410
12411 addr = bed->plt_sym_val (i, plt, p);
12412 if (addr == (bfd_vma) -1)
12413 continue;
12414
12415 *s = **p->sym_ptr_ptr;
12416 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12417 we are defining a symbol, ensure one of them is set. */
12418 if ((s->flags & BSF_LOCAL) == 0)
12419 s->flags |= BSF_GLOBAL;
12420 s->flags |= BSF_SYNTHETIC;
12421 s->section = plt;
12422 s->value = addr - plt->vma;
12423 s->name = names;
12424 s->udata.p = NULL;
12425 len = strlen ((*p->sym_ptr_ptr)->name);
12426 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12427 names += len;
12428 if (p->addend != 0)
12429 {
12430 char buf[30], *a;
12431
12432 memcpy (names, "+0x", sizeof ("+0x") - 1);
12433 names += sizeof ("+0x") - 1;
12434 bfd_sprintf_vma (abfd, buf, p->addend);
12435 for (a = buf; *a == '0'; ++a)
12436 ;
12437 len = strlen (a);
12438 memcpy (names, a, len);
12439 names += len;
12440 }
12441 memcpy (names, "@plt", sizeof ("@plt"));
12442 names += sizeof ("@plt");
12443 ++s, ++n;
12444 }
12445
12446 return n;
12447 }
12448
12449 /* It is only used by x86-64 so far.
12450 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12451 but current usage would allow all of _bfd_std_section to be zero. */
12452 static const asymbol lcomm_sym
12453 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12454 asection _bfd_elf_large_com_section
12455 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12456 "LARGE_COMMON", 0, SEC_IS_COMMON);
12457
12458 bfd_boolean
12459 _bfd_elf_final_write_processing (bfd *abfd)
12460 {
12461 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12462
12463 i_ehdrp = elf_elfheader (abfd);
12464
12465 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12466 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12467
12468 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12469 SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type
12470 or STB_GNU_UNIQUE binding. */
12471 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12472 {
12473 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12474 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12475 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12476 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12477 {
12478 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12479 _bfd_error_handler (_("GNU_MBIND section is supported only by GNU "
12480 "and FreeBSD targets"));
12481 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12482 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported "
12483 "only by GNU and FreeBSD targets"));
12484 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12485 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported "
12486 "only by GNU and FreeBSD targets"));
12487 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain)
12488 _bfd_error_handler (_("GNU_RETAIN section is supported "
12489 "only by GNU and FreeBSD targets"));
12490 bfd_set_error (bfd_error_sorry);
12491 return FALSE;
12492 }
12493 }
12494 return TRUE;
12495 }
12496
12497
12498 /* Return TRUE for ELF symbol types that represent functions.
12499 This is the default version of this function, which is sufficient for
12500 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12501
12502 bfd_boolean
12503 _bfd_elf_is_function_type (unsigned int type)
12504 {
12505 return (type == STT_FUNC
12506 || type == STT_GNU_IFUNC);
12507 }
12508
12509 /* If the ELF symbol SYM might be a function in SEC, return the
12510 function size and set *CODE_OFF to the function's entry point,
12511 otherwise return zero. */
12512
12513 bfd_size_type
12514 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12515 bfd_vma *code_off)
12516 {
12517 bfd_size_type size;
12518
12519 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12520 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12521 || sym->section != sec)
12522 return 0;
12523
12524 *code_off = sym->value;
12525 size = 0;
12526 if (!(sym->flags & BSF_SYNTHETIC))
12527 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12528 if (size == 0)
12529 size = 1;
12530 return size;
12531 }
12532
12533 /* Set to non-zero to enable some debug messages. */
12534 #define DEBUG_SECONDARY_RELOCS 0
12535
12536 /* An internal-to-the-bfd-library only section type
12537 used to indicate a cached secondary reloc section. */
12538 #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA)
12539
12540 /* Create a BFD section to hold a secondary reloc section. */
12541
12542 bfd_boolean
12543 _bfd_elf_init_secondary_reloc_section (bfd * abfd,
12544 Elf_Internal_Shdr *hdr,
12545 const char * name,
12546 unsigned int shindex)
12547 {
12548 /* We only support RELA secondary relocs. */
12549 if (hdr->sh_type != SHT_RELA)
12550 return FALSE;
12551
12552 #if DEBUG_SECONDARY_RELOCS
12553 fprintf (stderr, "secondary reloc section %s encountered\n", name);
12554 #endif
12555 hdr->sh_type = SHT_SECONDARY_RELOC;
12556 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
12557 }
12558
12559 /* Read in any secondary relocs associated with SEC. */
12560
12561 bfd_boolean
12562 _bfd_elf_slurp_secondary_reloc_section (bfd * abfd,
12563 asection * sec,
12564 asymbol ** symbols,
12565 bfd_boolean dynamic)
12566 {
12567 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12568 asection * relsec;
12569 bfd_boolean result = TRUE;
12570 bfd_vma (*r_sym) (bfd_vma);
12571
12572 #if BFD_DEFAULT_TARGET_SIZE > 32
12573 if (bfd_arch_bits_per_address (abfd) != 32)
12574 r_sym = elf64_r_sym;
12575 else
12576 #endif
12577 r_sym = elf32_r_sym;
12578
12579 /* Discover if there are any secondary reloc sections
12580 associated with SEC. */
12581 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12582 {
12583 Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr;
12584
12585 if (hdr->sh_type == SHT_SECONDARY_RELOC
12586 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx
12587 && (hdr->sh_entsize == ebd->s->sizeof_rel
12588 || hdr->sh_entsize == ebd->s->sizeof_rela))
12589 {
12590 bfd_byte * native_relocs;
12591 bfd_byte * native_reloc;
12592 arelent * internal_relocs;
12593 arelent * internal_reloc;
12594 unsigned int i;
12595 unsigned int entsize;
12596 unsigned int symcount;
12597 unsigned int reloc_count;
12598 size_t amt;
12599
12600 if (ebd->elf_info_to_howto == NULL)
12601 return FALSE;
12602
12603 #if DEBUG_SECONDARY_RELOCS
12604 fprintf (stderr, "read secondary relocs for %s from %s\n",
12605 sec->name, relsec->name);
12606 #endif
12607 entsize = hdr->sh_entsize;
12608
12609 native_relocs = bfd_malloc (hdr->sh_size);
12610 if (native_relocs == NULL)
12611 {
12612 result = FALSE;
12613 continue;
12614 }
12615
12616 reloc_count = NUM_SHDR_ENTRIES (hdr);
12617 if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt))
12618 {
12619 free (native_relocs);
12620 bfd_set_error (bfd_error_file_too_big);
12621 result = FALSE;
12622 continue;
12623 }
12624
12625 internal_relocs = (arelent *) bfd_alloc (abfd, amt);
12626 if (internal_relocs == NULL)
12627 {
12628 free (native_relocs);
12629 result = FALSE;
12630 continue;
12631 }
12632
12633 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
12634 || (bfd_bread (native_relocs, hdr->sh_size, abfd)
12635 != hdr->sh_size))
12636 {
12637 free (native_relocs);
12638 /* The internal_relocs will be freed when
12639 the memory for the bfd is released. */
12640 result = FALSE;
12641 continue;
12642 }
12643
12644 if (dynamic)
12645 symcount = bfd_get_dynamic_symcount (abfd);
12646 else
12647 symcount = bfd_get_symcount (abfd);
12648
12649 for (i = 0, internal_reloc = internal_relocs,
12650 native_reloc = native_relocs;
12651 i < reloc_count;
12652 i++, internal_reloc++, native_reloc += entsize)
12653 {
12654 bfd_boolean res;
12655 Elf_Internal_Rela rela;
12656
12657 if (entsize == ebd->s->sizeof_rel)
12658 ebd->s->swap_reloc_in (abfd, native_reloc, & rela);
12659 else /* entsize == ebd->s->sizeof_rela */
12660 ebd->s->swap_reloca_in (abfd, native_reloc, & rela);
12661
12662 /* The address of an ELF reloc is section relative for an object
12663 file, and absolute for an executable file or shared library.
12664 The address of a normal BFD reloc is always section relative,
12665 and the address of a dynamic reloc is absolute.. */
12666 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
12667 internal_reloc->address = rela.r_offset;
12668 else
12669 internal_reloc->address = rela.r_offset - sec->vma;
12670
12671 if (r_sym (rela.r_info) == STN_UNDEF)
12672 {
12673 /* FIXME: This and the error case below mean that we
12674 have a symbol on relocs that is not elf_symbol_type. */
12675 internal_reloc->sym_ptr_ptr =
12676 bfd_abs_section_ptr->symbol_ptr_ptr;
12677 }
12678 else if (r_sym (rela.r_info) > symcount)
12679 {
12680 _bfd_error_handler
12681 /* xgettext:c-format */
12682 (_("%pB(%pA): relocation %d has invalid symbol index %ld"),
12683 abfd, sec, i, (long) r_sym (rela.r_info));
12684 bfd_set_error (bfd_error_bad_value);
12685 internal_reloc->sym_ptr_ptr =
12686 bfd_abs_section_ptr->symbol_ptr_ptr;
12687 result = FALSE;
12688 }
12689 else
12690 {
12691 asymbol **ps;
12692
12693 ps = symbols + r_sym (rela.r_info) - 1;
12694 internal_reloc->sym_ptr_ptr = ps;
12695 /* Make sure that this symbol is not removed by strip. */
12696 (*ps)->flags |= BSF_KEEP;
12697 }
12698
12699 internal_reloc->addend = rela.r_addend;
12700
12701 res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela);
12702 if (! res || internal_reloc->howto == NULL)
12703 {
12704 #if DEBUG_SECONDARY_RELOCS
12705 fprintf (stderr, "there is no howto associated with reloc %lx\n",
12706 rela.r_info);
12707 #endif
12708 result = FALSE;
12709 }
12710 }
12711
12712 free (native_relocs);
12713 /* Store the internal relocs. */
12714 elf_section_data (relsec)->sec_info = internal_relocs;
12715 }
12716 }
12717
12718 return result;
12719 }
12720
12721 /* Set the ELF section header fields of an output secondary reloc section. */
12722
12723 bfd_boolean
12724 _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED,
12725 bfd * obfd ATTRIBUTE_UNUSED,
12726 const Elf_Internal_Shdr * isection,
12727 Elf_Internal_Shdr * osection)
12728 {
12729 asection * isec;
12730 asection * osec;
12731 struct bfd_elf_section_data * esd;
12732
12733 if (isection == NULL)
12734 return FALSE;
12735
12736 if (isection->sh_type != SHT_SECONDARY_RELOC)
12737 return TRUE;
12738
12739 isec = isection->bfd_section;
12740 if (isec == NULL)
12741 return FALSE;
12742
12743 osec = osection->bfd_section;
12744 if (osec == NULL)
12745 return FALSE;
12746
12747 esd = elf_section_data (osec);
12748 BFD_ASSERT (esd->sec_info == NULL);
12749 esd->sec_info = elf_section_data (isec)->sec_info;
12750 osection->sh_type = SHT_RELA;
12751 osection->sh_link = elf_onesymtab (obfd);
12752 if (osection->sh_link == 0)
12753 {
12754 /* There is no symbol table - we are hosed... */
12755 _bfd_error_handler
12756 /* xgettext:c-format */
12757 (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"),
12758 obfd, osec);
12759 bfd_set_error (bfd_error_bad_value);
12760 return FALSE;
12761 }
12762
12763 /* Find the output section that corresponds to the isection's sh_info link. */
12764 if (isection->sh_info == 0
12765 || isection->sh_info >= elf_numsections (ibfd))
12766 {
12767 _bfd_error_handler
12768 /* xgettext:c-format */
12769 (_("%pB(%pA): info section index is invalid"),
12770 obfd, osec);
12771 bfd_set_error (bfd_error_bad_value);
12772 return FALSE;
12773 }
12774
12775 isection = elf_elfsections (ibfd)[isection->sh_info];
12776
12777 if (isection == NULL
12778 || isection->bfd_section == NULL
12779 || isection->bfd_section->output_section == NULL)
12780 {
12781 _bfd_error_handler
12782 /* xgettext:c-format */
12783 (_("%pB(%pA): info section index cannot be set because the section is not in the output"),
12784 obfd, osec);
12785 bfd_set_error (bfd_error_bad_value);
12786 return FALSE;
12787 }
12788
12789 esd = elf_section_data (isection->bfd_section->output_section);
12790 BFD_ASSERT (esd != NULL);
12791 osection->sh_info = esd->this_idx;
12792 esd->has_secondary_relocs = TRUE;
12793 #if DEBUG_SECONDARY_RELOCS
12794 fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n",
12795 osec->name, osection->sh_link, osection->sh_info);
12796 fprintf (stderr, "mark section %s as having secondary relocs\n",
12797 bfd_section_name (isection->bfd_section->output_section));
12798 #endif
12799
12800 return TRUE;
12801 }
12802
12803 /* Write out a secondary reloc section.
12804
12805 FIXME: Currently this function can result in a serious performance penalty
12806 for files with secondary relocs and lots of sections. The proper way to
12807 fix this is for _bfd_elf_copy_special_section_fields() to chain secondary
12808 relocs together and then to have this function just walk that chain. */
12809
12810 bfd_boolean
12811 _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec)
12812 {
12813 const struct elf_backend_data * const ebd = get_elf_backend_data (abfd);
12814 bfd_vma addr_offset;
12815 asection * relsec;
12816 bfd_vma (*r_info) (bfd_vma, bfd_vma);
12817 bfd_boolean result = TRUE;
12818
12819 if (sec == NULL)
12820 return FALSE;
12821
12822 #if BFD_DEFAULT_TARGET_SIZE > 32
12823 if (bfd_arch_bits_per_address (abfd) != 32)
12824 r_info = elf64_r_info;
12825 else
12826 #endif
12827 r_info = elf32_r_info;
12828
12829 /* The address of an ELF reloc is section relative for an object
12830 file, and absolute for an executable file or shared library.
12831 The address of a BFD reloc is always section relative. */
12832 addr_offset = 0;
12833 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
12834 addr_offset = sec->vma;
12835
12836 /* Discover if there are any secondary reloc sections
12837 associated with SEC. */
12838 for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next)
12839 {
12840 const struct bfd_elf_section_data * const esd = elf_section_data (relsec);
12841 Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr;
12842
12843 if (hdr->sh_type == SHT_RELA
12844 && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx)
12845 {
12846 asymbol * last_sym;
12847 int last_sym_idx;
12848 unsigned int reloc_count;
12849 unsigned int idx;
12850 unsigned int entsize;
12851 arelent * src_irel;
12852 bfd_byte * dst_rela;
12853
12854 if (hdr->contents != NULL)
12855 {
12856 _bfd_error_handler
12857 /* xgettext:c-format */
12858 (_("%pB(%pA): error: secondary reloc section processed twice"),
12859 abfd, relsec);
12860 bfd_set_error (bfd_error_bad_value);
12861 result = FALSE;
12862 continue;
12863 }
12864
12865 entsize = hdr->sh_entsize;
12866 if (entsize == 0)
12867 {
12868 _bfd_error_handler
12869 /* xgettext:c-format */
12870 (_("%pB(%pA): error: secondary reloc section has zero sized entries"),
12871 abfd, relsec);
12872 bfd_set_error (bfd_error_bad_value);
12873 result = FALSE;
12874 continue;
12875 }
12876 else if (entsize != ebd->s->sizeof_rel
12877 && entsize != ebd->s->sizeof_rela)
12878 {
12879 _bfd_error_handler
12880 /* xgettext:c-format */
12881 (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"),
12882 abfd, relsec);
12883 bfd_set_error (bfd_error_bad_value);
12884 result = FALSE;
12885 continue;
12886 }
12887
12888 reloc_count = hdr->sh_size / entsize;
12889 if (reloc_count <= 0)
12890 {
12891 _bfd_error_handler
12892 /* xgettext:c-format */
12893 (_("%pB(%pA): error: secondary reloc section is empty!"),
12894 abfd, relsec);
12895 bfd_set_error (bfd_error_bad_value);
12896 result = FALSE;
12897 continue;
12898 }
12899
12900 hdr->contents = bfd_alloc (abfd, hdr->sh_size);
12901 if (hdr->contents == NULL)
12902 continue;
12903
12904 #if DEBUG_SECONDARY_RELOCS
12905 fprintf (stderr, "write %u secondary relocs for %s from %s\n",
12906 reloc_count, sec->name, relsec->name);
12907 #endif
12908 last_sym = NULL;
12909 last_sym_idx = 0;
12910 dst_rela = hdr->contents;
12911 src_irel = (arelent *) esd->sec_info;
12912 if (src_irel == NULL)
12913 {
12914 _bfd_error_handler
12915 /* xgettext:c-format */
12916 (_("%pB(%pA): error: internal relocs missing for secondary reloc section"),
12917 abfd, relsec);
12918 bfd_set_error (bfd_error_bad_value);
12919 result = FALSE;
12920 continue;
12921 }
12922
12923 for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize)
12924 {
12925 Elf_Internal_Rela src_rela;
12926 arelent *ptr;
12927 asymbol *sym;
12928 int n;
12929
12930 ptr = src_irel + idx;
12931 if (ptr == NULL)
12932 {
12933 _bfd_error_handler
12934 /* xgettext:c-format */
12935 (_("%pB(%pA): error: reloc table entry %u is empty"),
12936 abfd, relsec, idx);
12937 bfd_set_error (bfd_error_bad_value);
12938 result = FALSE;
12939 break;
12940 }
12941
12942 if (ptr->sym_ptr_ptr == NULL)
12943 {
12944 /* FIXME: Is this an error ? */
12945 n = 0;
12946 }
12947 else
12948 {
12949 sym = *ptr->sym_ptr_ptr;
12950
12951 if (sym == last_sym)
12952 n = last_sym_idx;
12953 else
12954 {
12955 n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym);
12956 if (n < 0)
12957 {
12958 _bfd_error_handler
12959 /* xgettext:c-format */
12960 (_("%pB(%pA): error: secondary reloc %u references a missing symbol"),
12961 abfd, relsec, idx);
12962 bfd_set_error (bfd_error_bad_value);
12963 result = FALSE;
12964 n = 0;
12965 }
12966
12967 last_sym = sym;
12968 last_sym_idx = n;
12969 }
12970
12971 if (sym->the_bfd != NULL
12972 && sym->the_bfd->xvec != abfd->xvec
12973 && ! _bfd_elf_validate_reloc (abfd, ptr))
12974 {
12975 _bfd_error_handler
12976 /* xgettext:c-format */
12977 (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"),
12978 abfd, relsec, idx);
12979 bfd_set_error (bfd_error_bad_value);
12980 result = FALSE;
12981 n = 0;
12982 }
12983 }
12984
12985 src_rela.r_offset = ptr->address + addr_offset;
12986 if (ptr->howto == NULL)
12987 {
12988 _bfd_error_handler
12989 /* xgettext:c-format */
12990 (_("%pB(%pA): error: secondary reloc %u is of an unknown type"),
12991 abfd, relsec, idx);
12992 bfd_set_error (bfd_error_bad_value);
12993 result = FALSE;
12994 src_rela.r_info = r_info (0, 0);
12995 }
12996 else
12997 src_rela.r_info = r_info (n, ptr->howto->type);
12998 src_rela.r_addend = ptr->addend;
12999
13000 if (entsize == ebd->s->sizeof_rel)
13001 ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela);
13002 else /* entsize == ebd->s->sizeof_rela */
13003 ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela);
13004 }
13005 }
13006 }
13007
13008 return result;
13009 }