]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf.c
PR25196, abort in rewrite_elf_program_header
[thirdparty/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2019 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean prep_headers (bfd *);
55 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
57 file_ptr offset, size_t align);
58
59 /* Swap version information in and out. The version information is
60 currently size independent. If that ever changes, this code will
61 need to move into elfcode.h. */
62
63 /* Swap in a Verdef structure. */
64
65 void
66 _bfd_elf_swap_verdef_in (bfd *abfd,
67 const Elf_External_Verdef *src,
68 Elf_Internal_Verdef *dst)
69 {
70 dst->vd_version = H_GET_16 (abfd, src->vd_version);
71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
76 dst->vd_next = H_GET_32 (abfd, src->vd_next);
77 }
78
79 /* Swap out a Verdef structure. */
80
81 void
82 _bfd_elf_swap_verdef_out (bfd *abfd,
83 const Elf_Internal_Verdef *src,
84 Elf_External_Verdef *dst)
85 {
86 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
92 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
93 }
94
95 /* Swap in a Verdaux structure. */
96
97 void
98 _bfd_elf_swap_verdaux_in (bfd *abfd,
99 const Elf_External_Verdaux *src,
100 Elf_Internal_Verdaux *dst)
101 {
102 dst->vda_name = H_GET_32 (abfd, src->vda_name);
103 dst->vda_next = H_GET_32 (abfd, src->vda_next);
104 }
105
106 /* Swap out a Verdaux structure. */
107
108 void
109 _bfd_elf_swap_verdaux_out (bfd *abfd,
110 const Elf_Internal_Verdaux *src,
111 Elf_External_Verdaux *dst)
112 {
113 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
114 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
115 }
116
117 /* Swap in a Verneed structure. */
118
119 void
120 _bfd_elf_swap_verneed_in (bfd *abfd,
121 const Elf_External_Verneed *src,
122 Elf_Internal_Verneed *dst)
123 {
124 dst->vn_version = H_GET_16 (abfd, src->vn_version);
125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
126 dst->vn_file = H_GET_32 (abfd, src->vn_file);
127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
128 dst->vn_next = H_GET_32 (abfd, src->vn_next);
129 }
130
131 /* Swap out a Verneed structure. */
132
133 void
134 _bfd_elf_swap_verneed_out (bfd *abfd,
135 const Elf_Internal_Verneed *src,
136 Elf_External_Verneed *dst)
137 {
138 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
140 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
142 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
143 }
144
145 /* Swap in a Vernaux structure. */
146
147 void
148 _bfd_elf_swap_vernaux_in (bfd *abfd,
149 const Elf_External_Vernaux *src,
150 Elf_Internal_Vernaux *dst)
151 {
152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
154 dst->vna_other = H_GET_16 (abfd, src->vna_other);
155 dst->vna_name = H_GET_32 (abfd, src->vna_name);
156 dst->vna_next = H_GET_32 (abfd, src->vna_next);
157 }
158
159 /* Swap out a Vernaux structure. */
160
161 void
162 _bfd_elf_swap_vernaux_out (bfd *abfd,
163 const Elf_Internal_Vernaux *src,
164 Elf_External_Vernaux *dst)
165 {
166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
168 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
169 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
170 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
171 }
172
173 /* Swap in a Versym structure. */
174
175 void
176 _bfd_elf_swap_versym_in (bfd *abfd,
177 const Elf_External_Versym *src,
178 Elf_Internal_Versym *dst)
179 {
180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
181 }
182
183 /* Swap out a Versym structure. */
184
185 void
186 _bfd_elf_swap_versym_out (bfd *abfd,
187 const Elf_Internal_Versym *src,
188 Elf_External_Versym *dst)
189 {
190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
191 }
192
193 /* Standard ELF hash function. Do not change this function; you will
194 cause invalid hash tables to be generated. */
195
196 unsigned long
197 bfd_elf_hash (const char *namearg)
198 {
199 const unsigned char *name = (const unsigned char *) namearg;
200 unsigned long h = 0;
201 unsigned long g;
202 int ch;
203
204 while ((ch = *name++) != '\0')
205 {
206 h = (h << 4) + ch;
207 if ((g = (h & 0xf0000000)) != 0)
208 {
209 h ^= g >> 24;
210 /* The ELF ABI says `h &= ~g', but this is equivalent in
211 this case and on some machines one insn instead of two. */
212 h ^= g;
213 }
214 }
215 return h & 0xffffffff;
216 }
217
218 /* DT_GNU_HASH hash function. Do not change this function; you will
219 cause invalid hash tables to be generated. */
220
221 unsigned long
222 bfd_elf_gnu_hash (const char *namearg)
223 {
224 const unsigned char *name = (const unsigned char *) namearg;
225 unsigned long h = 5381;
226 unsigned char ch;
227
228 while ((ch = *name++) != '\0')
229 h = (h << 5) + h + ch;
230 return h & 0xffffffff;
231 }
232
233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
235 bfd_boolean
236 bfd_elf_allocate_object (bfd *abfd,
237 size_t object_size,
238 enum elf_target_id object_id)
239 {
240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
241 abfd->tdata.any = bfd_zalloc (abfd, object_size);
242 if (abfd->tdata.any == NULL)
243 return FALSE;
244
245 elf_object_id (abfd) = object_id;
246 if (abfd->direction != read_direction)
247 {
248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
249 if (o == NULL)
250 return FALSE;
251 elf_tdata (abfd)->o = o;
252 elf_program_header_size (abfd) = (bfd_size_type) -1;
253 }
254 return TRUE;
255 }
256
257
258 bfd_boolean
259 bfd_elf_make_object (bfd *abfd)
260 {
261 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
263 bed->target_id);
264 }
265
266 bfd_boolean
267 bfd_elf_mkcorefile (bfd *abfd)
268 {
269 /* I think this can be done just like an object file. */
270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
271 return FALSE;
272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
273 return elf_tdata (abfd)->core != NULL;
274 }
275
276 char *
277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
278 {
279 Elf_Internal_Shdr **i_shdrp;
280 bfd_byte *shstrtab = NULL;
281 file_ptr offset;
282 bfd_size_type shstrtabsize;
283
284 i_shdrp = elf_elfsections (abfd);
285 if (i_shdrp == 0
286 || shindex >= elf_numsections (abfd)
287 || i_shdrp[shindex] == 0)
288 return NULL;
289
290 shstrtab = i_shdrp[shindex]->contents;
291 if (shstrtab == NULL)
292 {
293 /* No cached one, attempt to read, and cache what we read. */
294 offset = i_shdrp[shindex]->sh_offset;
295 shstrtabsize = i_shdrp[shindex]->sh_size;
296
297 /* Allocate and clear an extra byte at the end, to prevent crashes
298 in case the string table is not terminated. */
299 if (shstrtabsize + 1 <= 1
300 || shstrtabsize > bfd_get_file_size (abfd)
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%pB: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352 else
353 {
354 /* PR 24273: The string section's contents may have already
355 been loaded elsewhere, eg because a corrupt file has the
356 string section index in the ELF header pointing at a group
357 section. So be paranoid, and test that the last byte of
358 the section is zero. */
359 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
360 return NULL;
361 }
362
363 if (strindex >= hdr->sh_size)
364 {
365 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
366 _bfd_error_handler
367 /* xgettext:c-format */
368 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
369 abfd, strindex, (uint64_t) hdr->sh_size,
370 (shindex == shstrndx && strindex == hdr->sh_name
371 ? ".shstrtab"
372 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
373 return NULL;
374 }
375
376 return ((char *) hdr->contents) + strindex;
377 }
378
379 /* Read and convert symbols to internal format.
380 SYMCOUNT specifies the number of symbols to read, starting from
381 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
382 are non-NULL, they are used to store the internal symbols, external
383 symbols, and symbol section index extensions, respectively.
384 Returns a pointer to the internal symbol buffer (malloced if necessary)
385 or NULL if there were no symbols or some kind of problem. */
386
387 Elf_Internal_Sym *
388 bfd_elf_get_elf_syms (bfd *ibfd,
389 Elf_Internal_Shdr *symtab_hdr,
390 size_t symcount,
391 size_t symoffset,
392 Elf_Internal_Sym *intsym_buf,
393 void *extsym_buf,
394 Elf_External_Sym_Shndx *extshndx_buf)
395 {
396 Elf_Internal_Shdr *shndx_hdr;
397 void *alloc_ext;
398 const bfd_byte *esym;
399 Elf_External_Sym_Shndx *alloc_extshndx;
400 Elf_External_Sym_Shndx *shndx;
401 Elf_Internal_Sym *alloc_intsym;
402 Elf_Internal_Sym *isym;
403 Elf_Internal_Sym *isymend;
404 const struct elf_backend_data *bed;
405 size_t extsym_size;
406 bfd_size_type amt;
407 file_ptr pos;
408
409 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
410 abort ();
411
412 if (symcount == 0)
413 return intsym_buf;
414
415 /* Normal syms might have section extension entries. */
416 shndx_hdr = NULL;
417 if (elf_symtab_shndx_list (ibfd) != NULL)
418 {
419 elf_section_list * entry;
420 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
421
422 /* Find an index section that is linked to this symtab section. */
423 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
424 {
425 /* PR 20063. */
426 if (entry->hdr.sh_link >= elf_numsections (ibfd))
427 continue;
428
429 if (sections[entry->hdr.sh_link] == symtab_hdr)
430 {
431 shndx_hdr = & entry->hdr;
432 break;
433 };
434 }
435
436 if (shndx_hdr == NULL)
437 {
438 if (symtab_hdr == & elf_symtab_hdr (ibfd))
439 /* Not really accurate, but this was how the old code used to work. */
440 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
441 /* Otherwise we do nothing. The assumption is that
442 the index table will not be needed. */
443 }
444 }
445
446 /* Read the symbols. */
447 alloc_ext = NULL;
448 alloc_extshndx = NULL;
449 alloc_intsym = NULL;
450 bed = get_elf_backend_data (ibfd);
451 extsym_size = bed->s->sizeof_sym;
452 amt = (bfd_size_type) symcount * extsym_size;
453 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
454 if (extsym_buf == NULL)
455 {
456 alloc_ext = bfd_malloc2 (symcount, extsym_size);
457 extsym_buf = alloc_ext;
458 }
459 if (extsym_buf == NULL
460 || bfd_seek (ibfd, pos, SEEK_SET) != 0
461 || bfd_bread (extsym_buf, amt, ibfd) != amt)
462 {
463 intsym_buf = NULL;
464 goto out;
465 }
466
467 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
468 extshndx_buf = NULL;
469 else
470 {
471 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
472 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
473 if (extshndx_buf == NULL)
474 {
475 alloc_extshndx = (Elf_External_Sym_Shndx *)
476 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
477 extshndx_buf = alloc_extshndx;
478 }
479 if (extshndx_buf == NULL
480 || bfd_seek (ibfd, pos, SEEK_SET) != 0
481 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
482 {
483 intsym_buf = NULL;
484 goto out;
485 }
486 }
487
488 if (intsym_buf == NULL)
489 {
490 alloc_intsym = (Elf_Internal_Sym *)
491 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
492 intsym_buf = alloc_intsym;
493 if (intsym_buf == NULL)
494 goto out;
495 }
496
497 /* Convert the symbols to internal form. */
498 isymend = intsym_buf + symcount;
499 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
500 shndx = extshndx_buf;
501 isym < isymend;
502 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
503 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
504 {
505 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
506 /* xgettext:c-format */
507 _bfd_error_handler (_("%pB symbol number %lu references"
508 " nonexistent SHT_SYMTAB_SHNDX section"),
509 ibfd, (unsigned long) symoffset);
510 if (alloc_intsym != NULL)
511 free (alloc_intsym);
512 intsym_buf = NULL;
513 goto out;
514 }
515
516 out:
517 if (alloc_ext != NULL)
518 free (alloc_ext);
519 if (alloc_extshndx != NULL)
520 free (alloc_extshndx);
521
522 return intsym_buf;
523 }
524
525 /* Look up a symbol name. */
526 const char *
527 bfd_elf_sym_name (bfd *abfd,
528 Elf_Internal_Shdr *symtab_hdr,
529 Elf_Internal_Sym *isym,
530 asection *sym_sec)
531 {
532 const char *name;
533 unsigned int iname = isym->st_name;
534 unsigned int shindex = symtab_hdr->sh_link;
535
536 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
537 /* Check for a bogus st_shndx to avoid crashing. */
538 && isym->st_shndx < elf_numsections (abfd))
539 {
540 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
541 shindex = elf_elfheader (abfd)->e_shstrndx;
542 }
543
544 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
545 if (name == NULL)
546 name = "(null)";
547 else if (sym_sec && *name == '\0')
548 name = bfd_section_name (sym_sec);
549
550 return name;
551 }
552
553 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
554 sections. The first element is the flags, the rest are section
555 pointers. */
556
557 typedef union elf_internal_group {
558 Elf_Internal_Shdr *shdr;
559 unsigned int flags;
560 } Elf_Internal_Group;
561
562 /* Return the name of the group signature symbol. Why isn't the
563 signature just a string? */
564
565 static const char *
566 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
567 {
568 Elf_Internal_Shdr *hdr;
569 unsigned char esym[sizeof (Elf64_External_Sym)];
570 Elf_External_Sym_Shndx eshndx;
571 Elf_Internal_Sym isym;
572
573 /* First we need to ensure the symbol table is available. Make sure
574 that it is a symbol table section. */
575 if (ghdr->sh_link >= elf_numsections (abfd))
576 return NULL;
577 hdr = elf_elfsections (abfd) [ghdr->sh_link];
578 if (hdr->sh_type != SHT_SYMTAB
579 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
580 return NULL;
581
582 /* Go read the symbol. */
583 hdr = &elf_tdata (abfd)->symtab_hdr;
584 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
585 &isym, esym, &eshndx) == NULL)
586 return NULL;
587
588 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
589 }
590
591 /* Set next_in_group list pointer, and group name for NEWSECT. */
592
593 static bfd_boolean
594 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
595 {
596 unsigned int num_group = elf_tdata (abfd)->num_group;
597
598 /* If num_group is zero, read in all SHT_GROUP sections. The count
599 is set to -1 if there are no SHT_GROUP sections. */
600 if (num_group == 0)
601 {
602 unsigned int i, shnum;
603
604 /* First count the number of groups. If we have a SHT_GROUP
605 section with just a flag word (ie. sh_size is 4), ignore it. */
606 shnum = elf_numsections (abfd);
607 num_group = 0;
608
609 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
610 ( (shdr)->sh_type == SHT_GROUP \
611 && (shdr)->sh_size >= minsize \
612 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
613 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
614
615 for (i = 0; i < shnum; i++)
616 {
617 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
618
619 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
620 num_group += 1;
621 }
622
623 if (num_group == 0)
624 {
625 num_group = (unsigned) -1;
626 elf_tdata (abfd)->num_group = num_group;
627 elf_tdata (abfd)->group_sect_ptr = NULL;
628 }
629 else
630 {
631 /* We keep a list of elf section headers for group sections,
632 so we can find them quickly. */
633 bfd_size_type amt;
634
635 elf_tdata (abfd)->num_group = num_group;
636 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
637 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
638 if (elf_tdata (abfd)->group_sect_ptr == NULL)
639 return FALSE;
640 memset (elf_tdata (abfd)->group_sect_ptr, 0,
641 num_group * sizeof (Elf_Internal_Shdr *));
642 num_group = 0;
643
644 for (i = 0; i < shnum; i++)
645 {
646 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
647
648 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
649 {
650 unsigned char *src;
651 Elf_Internal_Group *dest;
652
653 /* Make sure the group section has a BFD section
654 attached to it. */
655 if (!bfd_section_from_shdr (abfd, i))
656 return FALSE;
657
658 /* Add to list of sections. */
659 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
660 num_group += 1;
661
662 /* Read the raw contents. */
663 BFD_ASSERT (sizeof (*dest) >= 4);
664 amt = shdr->sh_size * sizeof (*dest) / 4;
665 shdr->contents = (unsigned char *)
666 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
667 /* PR binutils/4110: Handle corrupt group headers. */
668 if (shdr->contents == NULL)
669 {
670 _bfd_error_handler
671 /* xgettext:c-format */
672 (_("%pB: corrupt size field in group section"
673 " header: %#" PRIx64),
674 abfd, (uint64_t) shdr->sh_size);
675 bfd_set_error (bfd_error_bad_value);
676 -- num_group;
677 continue;
678 }
679
680 memset (shdr->contents, 0, amt);
681
682 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
683 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
684 != shdr->sh_size))
685 {
686 _bfd_error_handler
687 /* xgettext:c-format */
688 (_("%pB: invalid size field in group section"
689 " header: %#" PRIx64 ""),
690 abfd, (uint64_t) shdr->sh_size);
691 bfd_set_error (bfd_error_bad_value);
692 -- num_group;
693 /* PR 17510: If the group contents are even
694 partially corrupt, do not allow any of the
695 contents to be used. */
696 memset (shdr->contents, 0, amt);
697 continue;
698 }
699
700 /* Translate raw contents, a flag word followed by an
701 array of elf section indices all in target byte order,
702 to the flag word followed by an array of elf section
703 pointers. */
704 src = shdr->contents + shdr->sh_size;
705 dest = (Elf_Internal_Group *) (shdr->contents + amt);
706
707 while (1)
708 {
709 unsigned int idx;
710
711 src -= 4;
712 --dest;
713 idx = H_GET_32 (abfd, src);
714 if (src == shdr->contents)
715 {
716 dest->flags = idx;
717 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
718 shdr->bfd_section->flags
719 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
720 break;
721 }
722 if (idx < shnum)
723 {
724 dest->shdr = elf_elfsections (abfd)[idx];
725 /* PR binutils/23199: All sections in a
726 section group should be marked with
727 SHF_GROUP. But some tools generate
728 broken objects without SHF_GROUP. Fix
729 them up here. */
730 dest->shdr->sh_flags |= SHF_GROUP;
731 }
732 if (idx >= shnum
733 || dest->shdr->sh_type == SHT_GROUP)
734 {
735 _bfd_error_handler
736 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
737 abfd, i);
738 dest->shdr = NULL;
739 }
740 }
741 }
742 }
743
744 /* PR 17510: Corrupt binaries might contain invalid groups. */
745 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
746 {
747 elf_tdata (abfd)->num_group = num_group;
748
749 /* If all groups are invalid then fail. */
750 if (num_group == 0)
751 {
752 elf_tdata (abfd)->group_sect_ptr = NULL;
753 elf_tdata (abfd)->num_group = num_group = -1;
754 _bfd_error_handler
755 (_("%pB: no valid group sections found"), abfd);
756 bfd_set_error (bfd_error_bad_value);
757 }
758 }
759 }
760 }
761
762 if (num_group != (unsigned) -1)
763 {
764 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
765 unsigned int j;
766
767 for (j = 0; j < num_group; j++)
768 {
769 /* Begin search from previous found group. */
770 unsigned i = (j + search_offset) % num_group;
771
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx;
774 bfd_size_type n_elt;
775
776 if (shdr == NULL)
777 continue;
778
779 idx = (Elf_Internal_Group *) shdr->contents;
780 if (idx == NULL || shdr->sh_size < 4)
781 {
782 /* See PR 21957 for a reproducer. */
783 /* xgettext:c-format */
784 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
785 abfd, shdr->bfd_section);
786 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
787 bfd_set_error (bfd_error_bad_value);
788 return FALSE;
789 }
790 n_elt = shdr->sh_size / 4;
791
792 /* Look through this group's sections to see if current
793 section is a member. */
794 while (--n_elt != 0)
795 if ((++idx)->shdr == hdr)
796 {
797 asection *s = NULL;
798
799 /* We are a member of this group. Go looking through
800 other members to see if any others are linked via
801 next_in_group. */
802 idx = (Elf_Internal_Group *) shdr->contents;
803 n_elt = shdr->sh_size / 4;
804 while (--n_elt != 0)
805 if ((++idx)->shdr != NULL
806 && (s = idx->shdr->bfd_section) != NULL
807 && elf_next_in_group (s) != NULL)
808 break;
809 if (n_elt != 0)
810 {
811 /* Snarf the group name from other member, and
812 insert current section in circular list. */
813 elf_group_name (newsect) = elf_group_name (s);
814 elf_next_in_group (newsect) = elf_next_in_group (s);
815 elf_next_in_group (s) = newsect;
816 }
817 else
818 {
819 const char *gname;
820
821 gname = group_signature (abfd, shdr);
822 if (gname == NULL)
823 return FALSE;
824 elf_group_name (newsect) = gname;
825
826 /* Start a circular list with one element. */
827 elf_next_in_group (newsect) = newsect;
828 }
829
830 /* If the group section has been created, point to the
831 new member. */
832 if (shdr->bfd_section != NULL)
833 elf_next_in_group (shdr->bfd_section) = newsect;
834
835 elf_tdata (abfd)->group_search_offset = i;
836 j = num_group - 1;
837 break;
838 }
839 }
840 }
841
842 if (elf_group_name (newsect) == NULL)
843 {
844 /* xgettext:c-format */
845 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
846 abfd, newsect);
847 return FALSE;
848 }
849 return TRUE;
850 }
851
852 bfd_boolean
853 _bfd_elf_setup_sections (bfd *abfd)
854 {
855 unsigned int i;
856 unsigned int num_group = elf_tdata (abfd)->num_group;
857 bfd_boolean result = TRUE;
858 asection *s;
859
860 /* Process SHF_LINK_ORDER. */
861 for (s = abfd->sections; s != NULL; s = s->next)
862 {
863 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
864 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
865 {
866 unsigned int elfsec = this_hdr->sh_link;
867 /* FIXME: The old Intel compiler and old strip/objcopy may
868 not set the sh_link or sh_info fields. Hence we could
869 get the situation where elfsec is 0. */
870 if (elfsec == 0)
871 {
872 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
873 if (bed->link_order_error_handler)
874 bed->link_order_error_handler
875 /* xgettext:c-format */
876 (_("%pB: warning: sh_link not set for section `%pA'"),
877 abfd, s);
878 }
879 else
880 {
881 asection *linksec = NULL;
882
883 if (elfsec < elf_numsections (abfd))
884 {
885 this_hdr = elf_elfsections (abfd)[elfsec];
886 linksec = this_hdr->bfd_section;
887 }
888
889 /* PR 1991, 2008:
890 Some strip/objcopy may leave an incorrect value in
891 sh_link. We don't want to proceed. */
892 if (linksec == NULL)
893 {
894 _bfd_error_handler
895 /* xgettext:c-format */
896 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
897 s->owner, elfsec, s);
898 result = FALSE;
899 }
900
901 elf_linked_to_section (s) = linksec;
902 }
903 }
904 else if (this_hdr->sh_type == SHT_GROUP
905 && elf_next_in_group (s) == NULL)
906 {
907 _bfd_error_handler
908 /* xgettext:c-format */
909 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
910 abfd, elf_section_data (s)->this_idx);
911 result = FALSE;
912 }
913 }
914
915 /* Process section groups. */
916 if (num_group == (unsigned) -1)
917 return result;
918
919 for (i = 0; i < num_group; i++)
920 {
921 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
922 Elf_Internal_Group *idx;
923 unsigned int n_elt;
924
925 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
926 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
927 {
928 _bfd_error_handler
929 /* xgettext:c-format */
930 (_("%pB: section group entry number %u is corrupt"),
931 abfd, i);
932 result = FALSE;
933 continue;
934 }
935
936 idx = (Elf_Internal_Group *) shdr->contents;
937 n_elt = shdr->sh_size / 4;
938
939 while (--n_elt != 0)
940 {
941 ++ idx;
942
943 if (idx->shdr == NULL)
944 continue;
945 else if (idx->shdr->bfd_section)
946 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
947 else if (idx->shdr->sh_type != SHT_RELA
948 && idx->shdr->sh_type != SHT_REL)
949 {
950 /* There are some unknown sections in the group. */
951 _bfd_error_handler
952 /* xgettext:c-format */
953 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
954 abfd,
955 idx->shdr->sh_type,
956 bfd_elf_string_from_elf_section (abfd,
957 (elf_elfheader (abfd)
958 ->e_shstrndx),
959 idx->shdr->sh_name),
960 shdr->bfd_section);
961 result = FALSE;
962 }
963 }
964 }
965
966 return result;
967 }
968
969 bfd_boolean
970 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
971 {
972 return elf_next_in_group (sec) != NULL;
973 }
974
975 const char *
976 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
977 {
978 if (elf_sec_group (sec) != NULL)
979 return elf_group_name (sec);
980 return NULL;
981 }
982
983 static char *
984 convert_debug_to_zdebug (bfd *abfd, const char *name)
985 {
986 unsigned int len = strlen (name);
987 char *new_name = bfd_alloc (abfd, len + 2);
988 if (new_name == NULL)
989 return NULL;
990 new_name[0] = '.';
991 new_name[1] = 'z';
992 memcpy (new_name + 2, name + 1, len);
993 return new_name;
994 }
995
996 static char *
997 convert_zdebug_to_debug (bfd *abfd, const char *name)
998 {
999 unsigned int len = strlen (name);
1000 char *new_name = bfd_alloc (abfd, len);
1001 if (new_name == NULL)
1002 return NULL;
1003 new_name[0] = '.';
1004 memcpy (new_name + 1, name + 2, len - 1);
1005 return new_name;
1006 }
1007
1008 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
1009
1010 struct lto_section
1011 {
1012 int16_t major_version;
1013 int16_t minor_version;
1014 unsigned char slim_object;
1015
1016 /* Flags is a private field that is not defined publicly. */
1017 uint16_t flags;
1018 };
1019
1020 /* Make a BFD section from an ELF section. We store a pointer to the
1021 BFD section in the bfd_section field of the header. */
1022
1023 bfd_boolean
1024 _bfd_elf_make_section_from_shdr (bfd *abfd,
1025 Elf_Internal_Shdr *hdr,
1026 const char *name,
1027 int shindex)
1028 {
1029 asection *newsect;
1030 flagword flags;
1031 const struct elf_backend_data *bed;
1032
1033 if (hdr->bfd_section != NULL)
1034 return TRUE;
1035
1036 newsect = bfd_make_section_anyway (abfd, name);
1037 if (newsect == NULL)
1038 return FALSE;
1039
1040 hdr->bfd_section = newsect;
1041 elf_section_data (newsect)->this_hdr = *hdr;
1042 elf_section_data (newsect)->this_idx = shindex;
1043
1044 /* Always use the real type/flags. */
1045 elf_section_type (newsect) = hdr->sh_type;
1046 elf_section_flags (newsect) = hdr->sh_flags;
1047
1048 newsect->filepos = hdr->sh_offset;
1049
1050 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1051 || !bfd_set_section_size (newsect, hdr->sh_size)
1052 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1053 return FALSE;
1054
1055 flags = SEC_NO_FLAGS;
1056 if (hdr->sh_type != SHT_NOBITS)
1057 flags |= SEC_HAS_CONTENTS;
1058 if (hdr->sh_type == SHT_GROUP)
1059 flags |= SEC_GROUP;
1060 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1061 {
1062 flags |= SEC_ALLOC;
1063 if (hdr->sh_type != SHT_NOBITS)
1064 flags |= SEC_LOAD;
1065 }
1066 if ((hdr->sh_flags & SHF_WRITE) == 0)
1067 flags |= SEC_READONLY;
1068 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1069 flags |= SEC_CODE;
1070 else if ((flags & SEC_LOAD) != 0)
1071 flags |= SEC_DATA;
1072 if ((hdr->sh_flags & SHF_MERGE) != 0)
1073 {
1074 flags |= SEC_MERGE;
1075 newsect->entsize = hdr->sh_entsize;
1076 }
1077 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1078 flags |= SEC_STRINGS;
1079 if (hdr->sh_flags & SHF_GROUP)
1080 if (!setup_group (abfd, hdr, newsect))
1081 return FALSE;
1082 if ((hdr->sh_flags & SHF_TLS) != 0)
1083 flags |= SEC_THREAD_LOCAL;
1084 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1085 flags |= SEC_EXCLUDE;
1086
1087 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1088 {
1089 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1090 but binutils as of 2019-07-23 did not set the EI_OSABI header
1091 byte. */
1092 case ELFOSABI_NONE:
1093 case ELFOSABI_GNU:
1094 case ELFOSABI_FREEBSD:
1095 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1096 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1097 break;
1098 }
1099
1100 if ((flags & SEC_ALLOC) == 0)
1101 {
1102 /* The debugging sections appear to be recognized only by name,
1103 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1104 if (name [0] == '.')
1105 {
1106 const char *p;
1107 int n;
1108 if (name[1] == 'd')
1109 p = ".debug", n = 6;
1110 else if (name[1] == 'g' && name[2] == 'n')
1111 p = ".gnu.linkonce.wi.", n = 17;
1112 else if (name[1] == 'g' && name[2] == 'd')
1113 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1114 else if (name[1] == 'l')
1115 p = ".line", n = 5;
1116 else if (name[1] == 's')
1117 p = ".stab", n = 5;
1118 else if (name[1] == 'z')
1119 p = ".zdebug", n = 7;
1120 else
1121 p = NULL, n = 0;
1122 if (p != NULL && strncmp (name, p, n) == 0)
1123 flags |= SEC_DEBUGGING;
1124 }
1125 }
1126
1127 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1128 only link a single copy of the section. This is used to support
1129 g++. g++ will emit each template expansion in its own section.
1130 The symbols will be defined as weak, so that multiple definitions
1131 are permitted. The GNU linker extension is to actually discard
1132 all but one of the sections. */
1133 if (CONST_STRNEQ (name, ".gnu.linkonce")
1134 && elf_next_in_group (newsect) == NULL)
1135 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1136
1137 bed = get_elf_backend_data (abfd);
1138 if (bed->elf_backend_section_flags)
1139 if (! bed->elf_backend_section_flags (&flags, hdr))
1140 return FALSE;
1141
1142 if (!bfd_set_section_flags (newsect, flags))
1143 return FALSE;
1144
1145 /* We do not parse the PT_NOTE segments as we are interested even in the
1146 separate debug info files which may have the segments offsets corrupted.
1147 PT_NOTEs from the core files are currently not parsed using BFD. */
1148 if (hdr->sh_type == SHT_NOTE)
1149 {
1150 bfd_byte *contents;
1151
1152 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1153 return FALSE;
1154
1155 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1156 hdr->sh_offset, hdr->sh_addralign);
1157 free (contents);
1158 }
1159
1160 if ((flags & SEC_ALLOC) != 0)
1161 {
1162 Elf_Internal_Phdr *phdr;
1163 unsigned int i, nload;
1164
1165 /* Some ELF linkers produce binaries with all the program header
1166 p_paddr fields zero. If we have such a binary with more than
1167 one PT_LOAD header, then leave the section lma equal to vma
1168 so that we don't create sections with overlapping lma. */
1169 phdr = elf_tdata (abfd)->phdr;
1170 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1171 if (phdr->p_paddr != 0)
1172 break;
1173 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1174 ++nload;
1175 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1176 return TRUE;
1177
1178 phdr = elf_tdata (abfd)->phdr;
1179 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1180 {
1181 if (((phdr->p_type == PT_LOAD
1182 && (hdr->sh_flags & SHF_TLS) == 0)
1183 || phdr->p_type == PT_TLS)
1184 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1185 {
1186 if ((flags & SEC_LOAD) == 0)
1187 newsect->lma = (phdr->p_paddr
1188 + hdr->sh_addr - phdr->p_vaddr);
1189 else
1190 /* We used to use the same adjustment for SEC_LOAD
1191 sections, but that doesn't work if the segment
1192 is packed with code from multiple VMAs.
1193 Instead we calculate the section LMA based on
1194 the segment LMA. It is assumed that the
1195 segment will contain sections with contiguous
1196 LMAs, even if the VMAs are not. */
1197 newsect->lma = (phdr->p_paddr
1198 + hdr->sh_offset - phdr->p_offset);
1199
1200 /* With contiguous segments, we can't tell from file
1201 offsets whether a section with zero size should
1202 be placed at the end of one segment or the
1203 beginning of the next. Decide based on vaddr. */
1204 if (hdr->sh_addr >= phdr->p_vaddr
1205 && (hdr->sh_addr + hdr->sh_size
1206 <= phdr->p_vaddr + phdr->p_memsz))
1207 break;
1208 }
1209 }
1210 }
1211
1212 /* Compress/decompress DWARF debug sections with names: .debug_* and
1213 .zdebug_*, after the section flags is set. */
1214 if ((flags & SEC_DEBUGGING)
1215 && ((name[1] == 'd' && name[6] == '_')
1216 || (name[1] == 'z' && name[7] == '_')))
1217 {
1218 enum { nothing, compress, decompress } action = nothing;
1219 int compression_header_size;
1220 bfd_size_type uncompressed_size;
1221 unsigned int uncompressed_align_power;
1222 bfd_boolean compressed
1223 = bfd_is_section_compressed_with_header (abfd, newsect,
1224 &compression_header_size,
1225 &uncompressed_size,
1226 &uncompressed_align_power);
1227 if (compressed)
1228 {
1229 /* Compressed section. Check if we should decompress. */
1230 if ((abfd->flags & BFD_DECOMPRESS))
1231 action = decompress;
1232 }
1233
1234 /* Compress the uncompressed section or convert from/to .zdebug*
1235 section. Check if we should compress. */
1236 if (action == nothing)
1237 {
1238 if (newsect->size != 0
1239 && (abfd->flags & BFD_COMPRESS)
1240 && compression_header_size >= 0
1241 && uncompressed_size > 0
1242 && (!compressed
1243 || ((compression_header_size > 0)
1244 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1245 action = compress;
1246 else
1247 return TRUE;
1248 }
1249
1250 if (action == compress)
1251 {
1252 if (!bfd_init_section_compress_status (abfd, newsect))
1253 {
1254 _bfd_error_handler
1255 /* xgettext:c-format */
1256 (_("%pB: unable to initialize compress status for section %s"),
1257 abfd, name);
1258 return FALSE;
1259 }
1260 }
1261 else
1262 {
1263 if (!bfd_init_section_decompress_status (abfd, newsect))
1264 {
1265 _bfd_error_handler
1266 /* xgettext:c-format */
1267 (_("%pB: unable to initialize decompress status for section %s"),
1268 abfd, name);
1269 return FALSE;
1270 }
1271 }
1272
1273 if (abfd->is_linker_input)
1274 {
1275 if (name[1] == 'z'
1276 && (action == decompress
1277 || (action == compress
1278 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1279 {
1280 /* Convert section name from .zdebug_* to .debug_* so
1281 that linker will consider this section as a debug
1282 section. */
1283 char *new_name = convert_zdebug_to_debug (abfd, name);
1284 if (new_name == NULL)
1285 return FALSE;
1286 bfd_rename_section (newsect, new_name);
1287 }
1288 }
1289 else
1290 /* For objdump, don't rename the section. For objcopy, delay
1291 section rename to elf_fake_sections. */
1292 newsect->flags |= SEC_ELF_RENAME;
1293 }
1294
1295 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1296 section. */
1297 const char *lto_section_name = ".gnu.lto_.lto.";
1298 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1299 {
1300 struct lto_section lsection;
1301 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1302 sizeof (struct lto_section)))
1303 abfd->lto_slim_object = lsection.slim_object;
1304 }
1305
1306 return TRUE;
1307 }
1308
1309 const char *const bfd_elf_section_type_names[] =
1310 {
1311 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1312 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1313 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1314 };
1315
1316 /* ELF relocs are against symbols. If we are producing relocatable
1317 output, and the reloc is against an external symbol, and nothing
1318 has given us any additional addend, the resulting reloc will also
1319 be against the same symbol. In such a case, we don't want to
1320 change anything about the way the reloc is handled, since it will
1321 all be done at final link time. Rather than put special case code
1322 into bfd_perform_relocation, all the reloc types use this howto
1323 function. It just short circuits the reloc if producing
1324 relocatable output against an external symbol. */
1325
1326 bfd_reloc_status_type
1327 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1328 arelent *reloc_entry,
1329 asymbol *symbol,
1330 void *data ATTRIBUTE_UNUSED,
1331 asection *input_section,
1332 bfd *output_bfd,
1333 char **error_message ATTRIBUTE_UNUSED)
1334 {
1335 if (output_bfd != NULL
1336 && (symbol->flags & BSF_SECTION_SYM) == 0
1337 && (! reloc_entry->howto->partial_inplace
1338 || reloc_entry->addend == 0))
1339 {
1340 reloc_entry->address += input_section->output_offset;
1341 return bfd_reloc_ok;
1342 }
1343
1344 return bfd_reloc_continue;
1345 }
1346 \f
1347 /* Returns TRUE if section A matches section B.
1348 Names, addresses and links may be different, but everything else
1349 should be the same. */
1350
1351 static bfd_boolean
1352 section_match (const Elf_Internal_Shdr * a,
1353 const Elf_Internal_Shdr * b)
1354 {
1355 if (a->sh_type != b->sh_type
1356 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1357 || a->sh_addralign != b->sh_addralign
1358 || a->sh_entsize != b->sh_entsize)
1359 return FALSE;
1360 if (a->sh_type == SHT_SYMTAB
1361 || a->sh_type == SHT_STRTAB)
1362 return TRUE;
1363 return a->sh_size == b->sh_size;
1364 }
1365
1366 /* Find a section in OBFD that has the same characteristics
1367 as IHEADER. Return the index of this section or SHN_UNDEF if
1368 none can be found. Check's section HINT first, as this is likely
1369 to be the correct section. */
1370
1371 static unsigned int
1372 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1373 const unsigned int hint)
1374 {
1375 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1376 unsigned int i;
1377
1378 BFD_ASSERT (iheader != NULL);
1379
1380 /* See PR 20922 for a reproducer of the NULL test. */
1381 if (hint < elf_numsections (obfd)
1382 && oheaders[hint] != NULL
1383 && section_match (oheaders[hint], iheader))
1384 return hint;
1385
1386 for (i = 1; i < elf_numsections (obfd); i++)
1387 {
1388 Elf_Internal_Shdr * oheader = oheaders[i];
1389
1390 if (oheader == NULL)
1391 continue;
1392 if (section_match (oheader, iheader))
1393 /* FIXME: Do we care if there is a potential for
1394 multiple matches ? */
1395 return i;
1396 }
1397
1398 return SHN_UNDEF;
1399 }
1400
1401 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1402 Processor specific section, based upon a matching input section.
1403 Returns TRUE upon success, FALSE otherwise. */
1404
1405 static bfd_boolean
1406 copy_special_section_fields (const bfd *ibfd,
1407 bfd *obfd,
1408 const Elf_Internal_Shdr *iheader,
1409 Elf_Internal_Shdr *oheader,
1410 const unsigned int secnum)
1411 {
1412 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1413 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1414 bfd_boolean changed = FALSE;
1415 unsigned int sh_link;
1416
1417 if (oheader->sh_type == SHT_NOBITS)
1418 {
1419 /* This is a feature for objcopy --only-keep-debug:
1420 When a section's type is changed to NOBITS, we preserve
1421 the sh_link and sh_info fields so that they can be
1422 matched up with the original.
1423
1424 Note: Strictly speaking these assignments are wrong.
1425 The sh_link and sh_info fields should point to the
1426 relevent sections in the output BFD, which may not be in
1427 the same location as they were in the input BFD. But
1428 the whole point of this action is to preserve the
1429 original values of the sh_link and sh_info fields, so
1430 that they can be matched up with the section headers in
1431 the original file. So strictly speaking we may be
1432 creating an invalid ELF file, but it is only for a file
1433 that just contains debug info and only for sections
1434 without any contents. */
1435 if (oheader->sh_link == 0)
1436 oheader->sh_link = iheader->sh_link;
1437 if (oheader->sh_info == 0)
1438 oheader->sh_info = iheader->sh_info;
1439 return TRUE;
1440 }
1441
1442 /* Allow the target a chance to decide how these fields should be set. */
1443 if (bed->elf_backend_copy_special_section_fields != NULL
1444 && bed->elf_backend_copy_special_section_fields
1445 (ibfd, obfd, iheader, oheader))
1446 return TRUE;
1447
1448 /* We have an iheader which might match oheader, and which has non-zero
1449 sh_info and/or sh_link fields. Attempt to follow those links and find
1450 the section in the output bfd which corresponds to the linked section
1451 in the input bfd. */
1452 if (iheader->sh_link != SHN_UNDEF)
1453 {
1454 /* See PR 20931 for a reproducer. */
1455 if (iheader->sh_link >= elf_numsections (ibfd))
1456 {
1457 _bfd_error_handler
1458 /* xgettext:c-format */
1459 (_("%pB: invalid sh_link field (%d) in section number %d"),
1460 ibfd, iheader->sh_link, secnum);
1461 return FALSE;
1462 }
1463
1464 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1465 if (sh_link != SHN_UNDEF)
1466 {
1467 oheader->sh_link = sh_link;
1468 changed = TRUE;
1469 }
1470 else
1471 /* FIXME: Should we install iheader->sh_link
1472 if we could not find a match ? */
1473 _bfd_error_handler
1474 /* xgettext:c-format */
1475 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1476 }
1477
1478 if (iheader->sh_info)
1479 {
1480 /* The sh_info field can hold arbitrary information, but if the
1481 SHF_LINK_INFO flag is set then it should be interpreted as a
1482 section index. */
1483 if (iheader->sh_flags & SHF_INFO_LINK)
1484 {
1485 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1486 iheader->sh_info);
1487 if (sh_link != SHN_UNDEF)
1488 oheader->sh_flags |= SHF_INFO_LINK;
1489 }
1490 else
1491 /* No idea what it means - just copy it. */
1492 sh_link = iheader->sh_info;
1493
1494 if (sh_link != SHN_UNDEF)
1495 {
1496 oheader->sh_info = sh_link;
1497 changed = TRUE;
1498 }
1499 else
1500 _bfd_error_handler
1501 /* xgettext:c-format */
1502 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1503 }
1504
1505 return changed;
1506 }
1507
1508 /* Copy the program header and other data from one object module to
1509 another. */
1510
1511 bfd_boolean
1512 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1513 {
1514 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1515 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1516 const struct elf_backend_data *bed;
1517 unsigned int i;
1518
1519 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1520 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1521 return TRUE;
1522
1523 if (!elf_flags_init (obfd))
1524 {
1525 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1526 elf_flags_init (obfd) = TRUE;
1527 }
1528
1529 elf_gp (obfd) = elf_gp (ibfd);
1530
1531 /* Also copy the EI_OSABI field. */
1532 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1533 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1534
1535 /* If set, copy the EI_ABIVERSION field. */
1536 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1537 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1538 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1539
1540 /* Copy object attributes. */
1541 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1542
1543 if (iheaders == NULL || oheaders == NULL)
1544 return TRUE;
1545
1546 bed = get_elf_backend_data (obfd);
1547
1548 /* Possibly copy other fields in the section header. */
1549 for (i = 1; i < elf_numsections (obfd); i++)
1550 {
1551 unsigned int j;
1552 Elf_Internal_Shdr * oheader = oheaders[i];
1553
1554 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1555 because of a special case need for generating separate debug info
1556 files. See below for more details. */
1557 if (oheader == NULL
1558 || (oheader->sh_type != SHT_NOBITS
1559 && oheader->sh_type < SHT_LOOS))
1560 continue;
1561
1562 /* Ignore empty sections, and sections whose
1563 fields have already been initialised. */
1564 if (oheader->sh_size == 0
1565 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1566 continue;
1567
1568 /* Scan for the matching section in the input bfd.
1569 First we try for a direct mapping between the input and output sections. */
1570 for (j = 1; j < elf_numsections (ibfd); j++)
1571 {
1572 const Elf_Internal_Shdr * iheader = iheaders[j];
1573
1574 if (iheader == NULL)
1575 continue;
1576
1577 if (oheader->bfd_section != NULL
1578 && iheader->bfd_section != NULL
1579 && iheader->bfd_section->output_section != NULL
1580 && iheader->bfd_section->output_section == oheader->bfd_section)
1581 {
1582 /* We have found a connection from the input section to the
1583 output section. Attempt to copy the header fields. If
1584 this fails then do not try any further sections - there
1585 should only be a one-to-one mapping between input and output. */
1586 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1587 j = elf_numsections (ibfd);
1588 break;
1589 }
1590 }
1591
1592 if (j < elf_numsections (ibfd))
1593 continue;
1594
1595 /* That failed. So try to deduce the corresponding input section.
1596 Unfortunately we cannot compare names as the output string table
1597 is empty, so instead we check size, address and type. */
1598 for (j = 1; j < elf_numsections (ibfd); j++)
1599 {
1600 const Elf_Internal_Shdr * iheader = iheaders[j];
1601
1602 if (iheader == NULL)
1603 continue;
1604
1605 /* Try matching fields in the input section's header.
1606 Since --only-keep-debug turns all non-debug sections into
1607 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1608 input type. */
1609 if ((oheader->sh_type == SHT_NOBITS
1610 || iheader->sh_type == oheader->sh_type)
1611 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1612 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1613 && iheader->sh_addralign == oheader->sh_addralign
1614 && iheader->sh_entsize == oheader->sh_entsize
1615 && iheader->sh_size == oheader->sh_size
1616 && iheader->sh_addr == oheader->sh_addr
1617 && (iheader->sh_info != oheader->sh_info
1618 || iheader->sh_link != oheader->sh_link))
1619 {
1620 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1621 break;
1622 }
1623 }
1624
1625 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1626 {
1627 /* Final attempt. Call the backend copy function
1628 with a NULL input section. */
1629 if (bed->elf_backend_copy_special_section_fields != NULL)
1630 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1631 }
1632 }
1633
1634 return TRUE;
1635 }
1636
1637 static const char *
1638 get_segment_type (unsigned int p_type)
1639 {
1640 const char *pt;
1641 switch (p_type)
1642 {
1643 case PT_NULL: pt = "NULL"; break;
1644 case PT_LOAD: pt = "LOAD"; break;
1645 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1646 case PT_INTERP: pt = "INTERP"; break;
1647 case PT_NOTE: pt = "NOTE"; break;
1648 case PT_SHLIB: pt = "SHLIB"; break;
1649 case PT_PHDR: pt = "PHDR"; break;
1650 case PT_TLS: pt = "TLS"; break;
1651 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1652 case PT_GNU_STACK: pt = "STACK"; break;
1653 case PT_GNU_RELRO: pt = "RELRO"; break;
1654 default: pt = NULL; break;
1655 }
1656 return pt;
1657 }
1658
1659 /* Print out the program headers. */
1660
1661 bfd_boolean
1662 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1663 {
1664 FILE *f = (FILE *) farg;
1665 Elf_Internal_Phdr *p;
1666 asection *s;
1667 bfd_byte *dynbuf = NULL;
1668
1669 p = elf_tdata (abfd)->phdr;
1670 if (p != NULL)
1671 {
1672 unsigned int i, c;
1673
1674 fprintf (f, _("\nProgram Header:\n"));
1675 c = elf_elfheader (abfd)->e_phnum;
1676 for (i = 0; i < c; i++, p++)
1677 {
1678 const char *pt = get_segment_type (p->p_type);
1679 char buf[20];
1680
1681 if (pt == NULL)
1682 {
1683 sprintf (buf, "0x%lx", p->p_type);
1684 pt = buf;
1685 }
1686 fprintf (f, "%8s off 0x", pt);
1687 bfd_fprintf_vma (abfd, f, p->p_offset);
1688 fprintf (f, " vaddr 0x");
1689 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1690 fprintf (f, " paddr 0x");
1691 bfd_fprintf_vma (abfd, f, p->p_paddr);
1692 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1693 fprintf (f, " filesz 0x");
1694 bfd_fprintf_vma (abfd, f, p->p_filesz);
1695 fprintf (f, " memsz 0x");
1696 bfd_fprintf_vma (abfd, f, p->p_memsz);
1697 fprintf (f, " flags %c%c%c",
1698 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1699 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1700 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1701 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1702 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1703 fprintf (f, "\n");
1704 }
1705 }
1706
1707 s = bfd_get_section_by_name (abfd, ".dynamic");
1708 if (s != NULL)
1709 {
1710 unsigned int elfsec;
1711 unsigned long shlink;
1712 bfd_byte *extdyn, *extdynend;
1713 size_t extdynsize;
1714 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1715
1716 fprintf (f, _("\nDynamic Section:\n"));
1717
1718 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1719 goto error_return;
1720
1721 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1722 if (elfsec == SHN_BAD)
1723 goto error_return;
1724 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1725
1726 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1727 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1728
1729 extdyn = dynbuf;
1730 /* PR 17512: file: 6f427532. */
1731 if (s->size < extdynsize)
1732 goto error_return;
1733 extdynend = extdyn + s->size;
1734 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1735 Fix range check. */
1736 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1737 {
1738 Elf_Internal_Dyn dyn;
1739 const char *name = "";
1740 char ab[20];
1741 bfd_boolean stringp;
1742 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1743
1744 (*swap_dyn_in) (abfd, extdyn, &dyn);
1745
1746 if (dyn.d_tag == DT_NULL)
1747 break;
1748
1749 stringp = FALSE;
1750 switch (dyn.d_tag)
1751 {
1752 default:
1753 if (bed->elf_backend_get_target_dtag)
1754 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1755
1756 if (!strcmp (name, ""))
1757 {
1758 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1759 name = ab;
1760 }
1761 break;
1762
1763 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1764 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1765 case DT_PLTGOT: name = "PLTGOT"; break;
1766 case DT_HASH: name = "HASH"; break;
1767 case DT_STRTAB: name = "STRTAB"; break;
1768 case DT_SYMTAB: name = "SYMTAB"; break;
1769 case DT_RELA: name = "RELA"; break;
1770 case DT_RELASZ: name = "RELASZ"; break;
1771 case DT_RELAENT: name = "RELAENT"; break;
1772 case DT_STRSZ: name = "STRSZ"; break;
1773 case DT_SYMENT: name = "SYMENT"; break;
1774 case DT_INIT: name = "INIT"; break;
1775 case DT_FINI: name = "FINI"; break;
1776 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1777 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1778 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1779 case DT_REL: name = "REL"; break;
1780 case DT_RELSZ: name = "RELSZ"; break;
1781 case DT_RELENT: name = "RELENT"; break;
1782 case DT_PLTREL: name = "PLTREL"; break;
1783 case DT_DEBUG: name = "DEBUG"; break;
1784 case DT_TEXTREL: name = "TEXTREL"; break;
1785 case DT_JMPREL: name = "JMPREL"; break;
1786 case DT_BIND_NOW: name = "BIND_NOW"; break;
1787 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1788 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1789 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1790 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1791 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1792 case DT_FLAGS: name = "FLAGS"; break;
1793 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1794 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1795 case DT_CHECKSUM: name = "CHECKSUM"; break;
1796 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1797 case DT_MOVEENT: name = "MOVEENT"; break;
1798 case DT_MOVESZ: name = "MOVESZ"; break;
1799 case DT_FEATURE: name = "FEATURE"; break;
1800 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1801 case DT_SYMINSZ: name = "SYMINSZ"; break;
1802 case DT_SYMINENT: name = "SYMINENT"; break;
1803 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1804 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1805 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1806 case DT_PLTPAD: name = "PLTPAD"; break;
1807 case DT_MOVETAB: name = "MOVETAB"; break;
1808 case DT_SYMINFO: name = "SYMINFO"; break;
1809 case DT_RELACOUNT: name = "RELACOUNT"; break;
1810 case DT_RELCOUNT: name = "RELCOUNT"; break;
1811 case DT_FLAGS_1: name = "FLAGS_1"; break;
1812 case DT_VERSYM: name = "VERSYM"; break;
1813 case DT_VERDEF: name = "VERDEF"; break;
1814 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1815 case DT_VERNEED: name = "VERNEED"; break;
1816 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1817 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1818 case DT_USED: name = "USED"; break;
1819 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1820 case DT_GNU_HASH: name = "GNU_HASH"; break;
1821 }
1822
1823 fprintf (f, " %-20s ", name);
1824 if (! stringp)
1825 {
1826 fprintf (f, "0x");
1827 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1828 }
1829 else
1830 {
1831 const char *string;
1832 unsigned int tagv = dyn.d_un.d_val;
1833
1834 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1835 if (string == NULL)
1836 goto error_return;
1837 fprintf (f, "%s", string);
1838 }
1839 fprintf (f, "\n");
1840 }
1841
1842 free (dynbuf);
1843 dynbuf = NULL;
1844 }
1845
1846 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1847 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1848 {
1849 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1850 return FALSE;
1851 }
1852
1853 if (elf_dynverdef (abfd) != 0)
1854 {
1855 Elf_Internal_Verdef *t;
1856
1857 fprintf (f, _("\nVersion definitions:\n"));
1858 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1859 {
1860 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1861 t->vd_flags, t->vd_hash,
1862 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1863 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1864 {
1865 Elf_Internal_Verdaux *a;
1866
1867 fprintf (f, "\t");
1868 for (a = t->vd_auxptr->vda_nextptr;
1869 a != NULL;
1870 a = a->vda_nextptr)
1871 fprintf (f, "%s ",
1872 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1873 fprintf (f, "\n");
1874 }
1875 }
1876 }
1877
1878 if (elf_dynverref (abfd) != 0)
1879 {
1880 Elf_Internal_Verneed *t;
1881
1882 fprintf (f, _("\nVersion References:\n"));
1883 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1884 {
1885 Elf_Internal_Vernaux *a;
1886
1887 fprintf (f, _(" required from %s:\n"),
1888 t->vn_filename ? t->vn_filename : "<corrupt>");
1889 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1890 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1891 a->vna_flags, a->vna_other,
1892 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1893 }
1894 }
1895
1896 return TRUE;
1897
1898 error_return:
1899 if (dynbuf != NULL)
1900 free (dynbuf);
1901 return FALSE;
1902 }
1903
1904 /* Get version string. */
1905
1906 const char *
1907 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1908 bfd_boolean *hidden)
1909 {
1910 const char *version_string = NULL;
1911 if (elf_dynversym (abfd) != 0
1912 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1913 {
1914 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1915
1916 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1917 vernum &= VERSYM_VERSION;
1918
1919 if (vernum == 0)
1920 version_string = "";
1921 else if (vernum == 1
1922 && (vernum > elf_tdata (abfd)->cverdefs
1923 || (elf_tdata (abfd)->verdef[0].vd_flags
1924 == VER_FLG_BASE)))
1925 version_string = "Base";
1926 else if (vernum <= elf_tdata (abfd)->cverdefs)
1927 version_string =
1928 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1929 else
1930 {
1931 Elf_Internal_Verneed *t;
1932
1933 version_string = _("<corrupt>");
1934 for (t = elf_tdata (abfd)->verref;
1935 t != NULL;
1936 t = t->vn_nextref)
1937 {
1938 Elf_Internal_Vernaux *a;
1939
1940 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1941 {
1942 if (a->vna_other == vernum)
1943 {
1944 version_string = a->vna_nodename;
1945 break;
1946 }
1947 }
1948 }
1949 }
1950 }
1951 return version_string;
1952 }
1953
1954 /* Display ELF-specific fields of a symbol. */
1955
1956 void
1957 bfd_elf_print_symbol (bfd *abfd,
1958 void *filep,
1959 asymbol *symbol,
1960 bfd_print_symbol_type how)
1961 {
1962 FILE *file = (FILE *) filep;
1963 switch (how)
1964 {
1965 case bfd_print_symbol_name:
1966 fprintf (file, "%s", symbol->name);
1967 break;
1968 case bfd_print_symbol_more:
1969 fprintf (file, "elf ");
1970 bfd_fprintf_vma (abfd, file, symbol->value);
1971 fprintf (file, " %x", symbol->flags);
1972 break;
1973 case bfd_print_symbol_all:
1974 {
1975 const char *section_name;
1976 const char *name = NULL;
1977 const struct elf_backend_data *bed;
1978 unsigned char st_other;
1979 bfd_vma val;
1980 const char *version_string;
1981 bfd_boolean hidden;
1982
1983 section_name = symbol->section ? symbol->section->name : "(*none*)";
1984
1985 bed = get_elf_backend_data (abfd);
1986 if (bed->elf_backend_print_symbol_all)
1987 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1988
1989 if (name == NULL)
1990 {
1991 name = symbol->name;
1992 bfd_print_symbol_vandf (abfd, file, symbol);
1993 }
1994
1995 fprintf (file, " %s\t", section_name);
1996 /* Print the "other" value for a symbol. For common symbols,
1997 we've already printed the size; now print the alignment.
1998 For other symbols, we have no specified alignment, and
1999 we've printed the address; now print the size. */
2000 if (symbol->section && bfd_is_com_section (symbol->section))
2001 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
2002 else
2003 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
2004 bfd_fprintf_vma (abfd, file, val);
2005
2006 /* If we have version information, print it. */
2007 version_string = _bfd_elf_get_symbol_version_string (abfd,
2008 symbol,
2009 &hidden);
2010 if (version_string)
2011 {
2012 if (!hidden)
2013 fprintf (file, " %-11s", version_string);
2014 else
2015 {
2016 int i;
2017
2018 fprintf (file, " (%s)", version_string);
2019 for (i = 10 - strlen (version_string); i > 0; --i)
2020 putc (' ', file);
2021 }
2022 }
2023
2024 /* If the st_other field is not zero, print it. */
2025 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2026
2027 switch (st_other)
2028 {
2029 case 0: break;
2030 case STV_INTERNAL: fprintf (file, " .internal"); break;
2031 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2032 case STV_PROTECTED: fprintf (file, " .protected"); break;
2033 default:
2034 /* Some other non-defined flags are also present, so print
2035 everything hex. */
2036 fprintf (file, " 0x%02x", (unsigned int) st_other);
2037 }
2038
2039 fprintf (file, " %s", name);
2040 }
2041 break;
2042 }
2043 }
2044 \f
2045 /* ELF .o/exec file reading */
2046
2047 /* Create a new bfd section from an ELF section header. */
2048
2049 bfd_boolean
2050 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2051 {
2052 Elf_Internal_Shdr *hdr;
2053 Elf_Internal_Ehdr *ehdr;
2054 const struct elf_backend_data *bed;
2055 const char *name;
2056 bfd_boolean ret = TRUE;
2057 static bfd_boolean * sections_being_created = NULL;
2058 static bfd * sections_being_created_abfd = NULL;
2059 static unsigned int nesting = 0;
2060
2061 if (shindex >= elf_numsections (abfd))
2062 return FALSE;
2063
2064 if (++ nesting > 3)
2065 {
2066 /* PR17512: A corrupt ELF binary might contain a recursive group of
2067 sections, with each the string indices pointing to the next in the
2068 loop. Detect this here, by refusing to load a section that we are
2069 already in the process of loading. We only trigger this test if
2070 we have nested at least three sections deep as normal ELF binaries
2071 can expect to recurse at least once.
2072
2073 FIXME: It would be better if this array was attached to the bfd,
2074 rather than being held in a static pointer. */
2075
2076 if (sections_being_created_abfd != abfd)
2077 sections_being_created = NULL;
2078 if (sections_being_created == NULL)
2079 {
2080 sections_being_created = (bfd_boolean *)
2081 bfd_zalloc2 (abfd, elf_numsections (abfd), sizeof (bfd_boolean));
2082 sections_being_created_abfd = abfd;
2083 }
2084 if (sections_being_created [shindex])
2085 {
2086 _bfd_error_handler
2087 (_("%pB: warning: loop in section dependencies detected"), abfd);
2088 return FALSE;
2089 }
2090 sections_being_created [shindex] = TRUE;
2091 }
2092
2093 hdr = elf_elfsections (abfd)[shindex];
2094 ehdr = elf_elfheader (abfd);
2095 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2096 hdr->sh_name);
2097 if (name == NULL)
2098 goto fail;
2099
2100 bed = get_elf_backend_data (abfd);
2101 switch (hdr->sh_type)
2102 {
2103 case SHT_NULL:
2104 /* Inactive section. Throw it away. */
2105 goto success;
2106
2107 case SHT_PROGBITS: /* Normal section with contents. */
2108 case SHT_NOBITS: /* .bss section. */
2109 case SHT_HASH: /* .hash section. */
2110 case SHT_NOTE: /* .note section. */
2111 case SHT_INIT_ARRAY: /* .init_array section. */
2112 case SHT_FINI_ARRAY: /* .fini_array section. */
2113 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2114 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2115 case SHT_GNU_HASH: /* .gnu.hash section. */
2116 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2117 goto success;
2118
2119 case SHT_DYNAMIC: /* Dynamic linking information. */
2120 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2121 goto fail;
2122
2123 if (hdr->sh_link > elf_numsections (abfd))
2124 {
2125 /* PR 10478: Accept Solaris binaries with a sh_link
2126 field set to SHN_BEFORE or SHN_AFTER. */
2127 switch (bfd_get_arch (abfd))
2128 {
2129 case bfd_arch_i386:
2130 case bfd_arch_sparc:
2131 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2132 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2133 break;
2134 /* Otherwise fall through. */
2135 default:
2136 goto fail;
2137 }
2138 }
2139 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2140 goto fail;
2141 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2142 {
2143 Elf_Internal_Shdr *dynsymhdr;
2144
2145 /* The shared libraries distributed with hpux11 have a bogus
2146 sh_link field for the ".dynamic" section. Find the
2147 string table for the ".dynsym" section instead. */
2148 if (elf_dynsymtab (abfd) != 0)
2149 {
2150 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2151 hdr->sh_link = dynsymhdr->sh_link;
2152 }
2153 else
2154 {
2155 unsigned int i, num_sec;
2156
2157 num_sec = elf_numsections (abfd);
2158 for (i = 1; i < num_sec; i++)
2159 {
2160 dynsymhdr = elf_elfsections (abfd)[i];
2161 if (dynsymhdr->sh_type == SHT_DYNSYM)
2162 {
2163 hdr->sh_link = dynsymhdr->sh_link;
2164 break;
2165 }
2166 }
2167 }
2168 }
2169 goto success;
2170
2171 case SHT_SYMTAB: /* A symbol table. */
2172 if (elf_onesymtab (abfd) == shindex)
2173 goto success;
2174
2175 if (hdr->sh_entsize != bed->s->sizeof_sym)
2176 goto fail;
2177
2178 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2179 {
2180 if (hdr->sh_size != 0)
2181 goto fail;
2182 /* Some assemblers erroneously set sh_info to one with a
2183 zero sh_size. ld sees this as a global symbol count
2184 of (unsigned) -1. Fix it here. */
2185 hdr->sh_info = 0;
2186 goto success;
2187 }
2188
2189 /* PR 18854: A binary might contain more than one symbol table.
2190 Unusual, but possible. Warn, but continue. */
2191 if (elf_onesymtab (abfd) != 0)
2192 {
2193 _bfd_error_handler
2194 /* xgettext:c-format */
2195 (_("%pB: warning: multiple symbol tables detected"
2196 " - ignoring the table in section %u"),
2197 abfd, shindex);
2198 goto success;
2199 }
2200 elf_onesymtab (abfd) = shindex;
2201 elf_symtab_hdr (abfd) = *hdr;
2202 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2203 abfd->flags |= HAS_SYMS;
2204
2205 /* Sometimes a shared object will map in the symbol table. If
2206 SHF_ALLOC is set, and this is a shared object, then we also
2207 treat this section as a BFD section. We can not base the
2208 decision purely on SHF_ALLOC, because that flag is sometimes
2209 set in a relocatable object file, which would confuse the
2210 linker. */
2211 if ((hdr->sh_flags & SHF_ALLOC) != 0
2212 && (abfd->flags & DYNAMIC) != 0
2213 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2214 shindex))
2215 goto fail;
2216
2217 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2218 can't read symbols without that section loaded as well. It
2219 is most likely specified by the next section header. */
2220 {
2221 elf_section_list * entry;
2222 unsigned int i, num_sec;
2223
2224 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2225 if (entry->hdr.sh_link == shindex)
2226 goto success;
2227
2228 num_sec = elf_numsections (abfd);
2229 for (i = shindex + 1; i < num_sec; i++)
2230 {
2231 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2232
2233 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2234 && hdr2->sh_link == shindex)
2235 break;
2236 }
2237
2238 if (i == num_sec)
2239 for (i = 1; i < shindex; i++)
2240 {
2241 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2242
2243 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2244 && hdr2->sh_link == shindex)
2245 break;
2246 }
2247
2248 if (i != shindex)
2249 ret = bfd_section_from_shdr (abfd, i);
2250 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2251 goto success;
2252 }
2253
2254 case SHT_DYNSYM: /* A dynamic symbol table. */
2255 if (elf_dynsymtab (abfd) == shindex)
2256 goto success;
2257
2258 if (hdr->sh_entsize != bed->s->sizeof_sym)
2259 goto fail;
2260
2261 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2262 {
2263 if (hdr->sh_size != 0)
2264 goto fail;
2265
2266 /* Some linkers erroneously set sh_info to one with a
2267 zero sh_size. ld sees this as a global symbol count
2268 of (unsigned) -1. Fix it here. */
2269 hdr->sh_info = 0;
2270 goto success;
2271 }
2272
2273 /* PR 18854: A binary might contain more than one dynamic symbol table.
2274 Unusual, but possible. Warn, but continue. */
2275 if (elf_dynsymtab (abfd) != 0)
2276 {
2277 _bfd_error_handler
2278 /* xgettext:c-format */
2279 (_("%pB: warning: multiple dynamic symbol tables detected"
2280 " - ignoring the table in section %u"),
2281 abfd, shindex);
2282 goto success;
2283 }
2284 elf_dynsymtab (abfd) = shindex;
2285 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2286 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2287 abfd->flags |= HAS_SYMS;
2288
2289 /* Besides being a symbol table, we also treat this as a regular
2290 section, so that objcopy can handle it. */
2291 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2292 goto success;
2293
2294 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2295 {
2296 elf_section_list * entry;
2297
2298 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2299 if (entry->ndx == shindex)
2300 goto success;
2301
2302 entry = bfd_alloc (abfd, sizeof (*entry));
2303 if (entry == NULL)
2304 goto fail;
2305 entry->ndx = shindex;
2306 entry->hdr = * hdr;
2307 entry->next = elf_symtab_shndx_list (abfd);
2308 elf_symtab_shndx_list (abfd) = entry;
2309 elf_elfsections (abfd)[shindex] = & entry->hdr;
2310 goto success;
2311 }
2312
2313 case SHT_STRTAB: /* A string table. */
2314 if (hdr->bfd_section != NULL)
2315 goto success;
2316
2317 if (ehdr->e_shstrndx == shindex)
2318 {
2319 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2320 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2321 goto success;
2322 }
2323
2324 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2325 {
2326 symtab_strtab:
2327 elf_tdata (abfd)->strtab_hdr = *hdr;
2328 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2329 goto success;
2330 }
2331
2332 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2333 {
2334 dynsymtab_strtab:
2335 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2336 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2337 elf_elfsections (abfd)[shindex] = hdr;
2338 /* We also treat this as a regular section, so that objcopy
2339 can handle it. */
2340 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2341 shindex);
2342 goto success;
2343 }
2344
2345 /* If the string table isn't one of the above, then treat it as a
2346 regular section. We need to scan all the headers to be sure,
2347 just in case this strtab section appeared before the above. */
2348 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2349 {
2350 unsigned int i, num_sec;
2351
2352 num_sec = elf_numsections (abfd);
2353 for (i = 1; i < num_sec; i++)
2354 {
2355 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2356 if (hdr2->sh_link == shindex)
2357 {
2358 /* Prevent endless recursion on broken objects. */
2359 if (i == shindex)
2360 goto fail;
2361 if (! bfd_section_from_shdr (abfd, i))
2362 goto fail;
2363 if (elf_onesymtab (abfd) == i)
2364 goto symtab_strtab;
2365 if (elf_dynsymtab (abfd) == i)
2366 goto dynsymtab_strtab;
2367 }
2368 }
2369 }
2370 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2371 goto success;
2372
2373 case SHT_REL:
2374 case SHT_RELA:
2375 /* *These* do a lot of work -- but build no sections! */
2376 {
2377 asection *target_sect;
2378 Elf_Internal_Shdr *hdr2, **p_hdr;
2379 unsigned int num_sec = elf_numsections (abfd);
2380 struct bfd_elf_section_data *esdt;
2381
2382 if (hdr->sh_entsize
2383 != (bfd_size_type) (hdr->sh_type == SHT_REL
2384 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2385 goto fail;
2386
2387 /* Check for a bogus link to avoid crashing. */
2388 if (hdr->sh_link >= num_sec)
2389 {
2390 _bfd_error_handler
2391 /* xgettext:c-format */
2392 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2393 abfd, hdr->sh_link, name, shindex);
2394 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2395 shindex);
2396 goto success;
2397 }
2398
2399 /* For some incomprehensible reason Oracle distributes
2400 libraries for Solaris in which some of the objects have
2401 bogus sh_link fields. It would be nice if we could just
2402 reject them, but, unfortunately, some people need to use
2403 them. We scan through the section headers; if we find only
2404 one suitable symbol table, we clobber the sh_link to point
2405 to it. I hope this doesn't break anything.
2406
2407 Don't do it on executable nor shared library. */
2408 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2409 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2410 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2411 {
2412 unsigned int scan;
2413 int found;
2414
2415 found = 0;
2416 for (scan = 1; scan < num_sec; scan++)
2417 {
2418 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2419 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2420 {
2421 if (found != 0)
2422 {
2423 found = 0;
2424 break;
2425 }
2426 found = scan;
2427 }
2428 }
2429 if (found != 0)
2430 hdr->sh_link = found;
2431 }
2432
2433 /* Get the symbol table. */
2434 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2435 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2436 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2437 goto fail;
2438
2439 /* If this is an alloc section in an executable or shared
2440 library, or the reloc section does not use the main symbol
2441 table we don't treat it as a reloc section. BFD can't
2442 adequately represent such a section, so at least for now,
2443 we don't try. We just present it as a normal section. We
2444 also can't use it as a reloc section if it points to the
2445 null section, an invalid section, another reloc section, or
2446 its sh_link points to the null section. */
2447 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2448 && (hdr->sh_flags & SHF_ALLOC) != 0)
2449 || hdr->sh_link == SHN_UNDEF
2450 || hdr->sh_link != elf_onesymtab (abfd)
2451 || hdr->sh_info == SHN_UNDEF
2452 || hdr->sh_info >= num_sec
2453 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2454 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2455 {
2456 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2457 shindex);
2458 goto success;
2459 }
2460
2461 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2462 goto fail;
2463
2464 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2465 if (target_sect == NULL)
2466 goto fail;
2467
2468 esdt = elf_section_data (target_sect);
2469 if (hdr->sh_type == SHT_RELA)
2470 p_hdr = &esdt->rela.hdr;
2471 else
2472 p_hdr = &esdt->rel.hdr;
2473
2474 /* PR 17512: file: 0b4f81b7.
2475 Also see PR 24456, for a file which deliberately has two reloc
2476 sections. */
2477 if (*p_hdr != NULL)
2478 {
2479 _bfd_error_handler
2480 /* xgettext:c-format */
2481 (_("%pB: warning: multiple relocation sections for section %pA \
2482 found - ignoring all but the first"),
2483 abfd, target_sect);
2484 goto success;
2485 }
2486 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2487 if (hdr2 == NULL)
2488 goto fail;
2489 *hdr2 = *hdr;
2490 *p_hdr = hdr2;
2491 elf_elfsections (abfd)[shindex] = hdr2;
2492 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2493 * bed->s->int_rels_per_ext_rel);
2494 target_sect->flags |= SEC_RELOC;
2495 target_sect->relocation = NULL;
2496 target_sect->rel_filepos = hdr->sh_offset;
2497 /* In the section to which the relocations apply, mark whether
2498 its relocations are of the REL or RELA variety. */
2499 if (hdr->sh_size != 0)
2500 {
2501 if (hdr->sh_type == SHT_RELA)
2502 target_sect->use_rela_p = 1;
2503 }
2504 abfd->flags |= HAS_RELOC;
2505 goto success;
2506 }
2507
2508 case SHT_GNU_verdef:
2509 elf_dynverdef (abfd) = shindex;
2510 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2511 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2512 goto success;
2513
2514 case SHT_GNU_versym:
2515 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2516 goto fail;
2517
2518 elf_dynversym (abfd) = shindex;
2519 elf_tdata (abfd)->dynversym_hdr = *hdr;
2520 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2521 goto success;
2522
2523 case SHT_GNU_verneed:
2524 elf_dynverref (abfd) = shindex;
2525 elf_tdata (abfd)->dynverref_hdr = *hdr;
2526 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2527 goto success;
2528
2529 case SHT_SHLIB:
2530 goto success;
2531
2532 case SHT_GROUP:
2533 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2534 goto fail;
2535
2536 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2537 goto fail;
2538
2539 goto success;
2540
2541 default:
2542 /* Possibly an attributes section. */
2543 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2544 || hdr->sh_type == bed->obj_attrs_section_type)
2545 {
2546 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2547 goto fail;
2548 _bfd_elf_parse_attributes (abfd, hdr);
2549 goto success;
2550 }
2551
2552 /* Check for any processor-specific section types. */
2553 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2554 goto success;
2555
2556 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2557 {
2558 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2559 /* FIXME: How to properly handle allocated section reserved
2560 for applications? */
2561 _bfd_error_handler
2562 /* xgettext:c-format */
2563 (_("%pB: unknown type [%#x] section `%s'"),
2564 abfd, hdr->sh_type, name);
2565 else
2566 {
2567 /* Allow sections reserved for applications. */
2568 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2569 shindex);
2570 goto success;
2571 }
2572 }
2573 else if (hdr->sh_type >= SHT_LOPROC
2574 && hdr->sh_type <= SHT_HIPROC)
2575 /* FIXME: We should handle this section. */
2576 _bfd_error_handler
2577 /* xgettext:c-format */
2578 (_("%pB: unknown type [%#x] section `%s'"),
2579 abfd, hdr->sh_type, name);
2580 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2581 {
2582 /* Unrecognised OS-specific sections. */
2583 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2584 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2585 required to correctly process the section and the file should
2586 be rejected with an error message. */
2587 _bfd_error_handler
2588 /* xgettext:c-format */
2589 (_("%pB: unknown type [%#x] section `%s'"),
2590 abfd, hdr->sh_type, name);
2591 else
2592 {
2593 /* Otherwise it should be processed. */
2594 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2595 goto success;
2596 }
2597 }
2598 else
2599 /* FIXME: We should handle this section. */
2600 _bfd_error_handler
2601 /* xgettext:c-format */
2602 (_("%pB: unknown type [%#x] section `%s'"),
2603 abfd, hdr->sh_type, name);
2604
2605 goto fail;
2606 }
2607
2608 fail:
2609 ret = FALSE;
2610 success:
2611 if (sections_being_created && sections_being_created_abfd == abfd)
2612 sections_being_created [shindex] = FALSE;
2613 if (-- nesting == 0)
2614 {
2615 sections_being_created = NULL;
2616 sections_being_created_abfd = abfd;
2617 }
2618 return ret;
2619 }
2620
2621 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2622
2623 Elf_Internal_Sym *
2624 bfd_sym_from_r_symndx (struct sym_cache *cache,
2625 bfd *abfd,
2626 unsigned long r_symndx)
2627 {
2628 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2629
2630 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2631 {
2632 Elf_Internal_Shdr *symtab_hdr;
2633 unsigned char esym[sizeof (Elf64_External_Sym)];
2634 Elf_External_Sym_Shndx eshndx;
2635
2636 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2637 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2638 &cache->sym[ent], esym, &eshndx) == NULL)
2639 return NULL;
2640
2641 if (cache->abfd != abfd)
2642 {
2643 memset (cache->indx, -1, sizeof (cache->indx));
2644 cache->abfd = abfd;
2645 }
2646 cache->indx[ent] = r_symndx;
2647 }
2648
2649 return &cache->sym[ent];
2650 }
2651
2652 /* Given an ELF section number, retrieve the corresponding BFD
2653 section. */
2654
2655 asection *
2656 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2657 {
2658 if (sec_index >= elf_numsections (abfd))
2659 return NULL;
2660 return elf_elfsections (abfd)[sec_index]->bfd_section;
2661 }
2662
2663 static const struct bfd_elf_special_section special_sections_b[] =
2664 {
2665 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2666 { NULL, 0, 0, 0, 0 }
2667 };
2668
2669 static const struct bfd_elf_special_section special_sections_c[] =
2670 {
2671 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2672 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_d[] =
2677 {
2678 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2679 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2680 /* There are more DWARF sections than these, but they needn't be added here
2681 unless you have to cope with broken compilers that don't emit section
2682 attributes or you want to help the user writing assembler. */
2683 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2684 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2685 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2686 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2687 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2688 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2689 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2690 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2691 { NULL, 0, 0, 0, 0 }
2692 };
2693
2694 static const struct bfd_elf_special_section special_sections_f[] =
2695 {
2696 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2697 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2698 { NULL, 0 , 0, 0, 0 }
2699 };
2700
2701 static const struct bfd_elf_special_section special_sections_g[] =
2702 {
2703 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2704 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2705 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2706 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2707 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2708 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2709 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2710 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2711 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2712 { NULL, 0, 0, 0, 0 }
2713 };
2714
2715 static const struct bfd_elf_special_section special_sections_h[] =
2716 {
2717 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2718 { NULL, 0, 0, 0, 0 }
2719 };
2720
2721 static const struct bfd_elf_special_section special_sections_i[] =
2722 {
2723 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2724 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2725 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2726 { NULL, 0, 0, 0, 0 }
2727 };
2728
2729 static const struct bfd_elf_special_section special_sections_l[] =
2730 {
2731 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2732 { NULL, 0, 0, 0, 0 }
2733 };
2734
2735 static const struct bfd_elf_special_section special_sections_n[] =
2736 {
2737 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2738 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2739 { NULL, 0, 0, 0, 0 }
2740 };
2741
2742 static const struct bfd_elf_special_section special_sections_p[] =
2743 {
2744 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2745 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2746 { NULL, 0, 0, 0, 0 }
2747 };
2748
2749 static const struct bfd_elf_special_section special_sections_r[] =
2750 {
2751 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2752 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2753 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2754 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2755 { NULL, 0, 0, 0, 0 }
2756 };
2757
2758 static const struct bfd_elf_special_section special_sections_s[] =
2759 {
2760 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2761 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2762 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2763 /* See struct bfd_elf_special_section declaration for the semantics of
2764 this special case where .prefix_length != strlen (.prefix). */
2765 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 static const struct bfd_elf_special_section special_sections_t[] =
2770 {
2771 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2772 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2773 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2774 { NULL, 0, 0, 0, 0 }
2775 };
2776
2777 static const struct bfd_elf_special_section special_sections_z[] =
2778 {
2779 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2780 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2781 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2782 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2783 { NULL, 0, 0, 0, 0 }
2784 };
2785
2786 static const struct bfd_elf_special_section * const special_sections[] =
2787 {
2788 special_sections_b, /* 'b' */
2789 special_sections_c, /* 'c' */
2790 special_sections_d, /* 'd' */
2791 NULL, /* 'e' */
2792 special_sections_f, /* 'f' */
2793 special_sections_g, /* 'g' */
2794 special_sections_h, /* 'h' */
2795 special_sections_i, /* 'i' */
2796 NULL, /* 'j' */
2797 NULL, /* 'k' */
2798 special_sections_l, /* 'l' */
2799 NULL, /* 'm' */
2800 special_sections_n, /* 'n' */
2801 NULL, /* 'o' */
2802 special_sections_p, /* 'p' */
2803 NULL, /* 'q' */
2804 special_sections_r, /* 'r' */
2805 special_sections_s, /* 's' */
2806 special_sections_t, /* 't' */
2807 NULL, /* 'u' */
2808 NULL, /* 'v' */
2809 NULL, /* 'w' */
2810 NULL, /* 'x' */
2811 NULL, /* 'y' */
2812 special_sections_z /* 'z' */
2813 };
2814
2815 const struct bfd_elf_special_section *
2816 _bfd_elf_get_special_section (const char *name,
2817 const struct bfd_elf_special_section *spec,
2818 unsigned int rela)
2819 {
2820 int i;
2821 int len;
2822
2823 len = strlen (name);
2824
2825 for (i = 0; spec[i].prefix != NULL; i++)
2826 {
2827 int suffix_len;
2828 int prefix_len = spec[i].prefix_length;
2829
2830 if (len < prefix_len)
2831 continue;
2832 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2833 continue;
2834
2835 suffix_len = spec[i].suffix_length;
2836 if (suffix_len <= 0)
2837 {
2838 if (name[prefix_len] != 0)
2839 {
2840 if (suffix_len == 0)
2841 continue;
2842 if (name[prefix_len] != '.'
2843 && (suffix_len == -2
2844 || (rela && spec[i].type == SHT_REL)))
2845 continue;
2846 }
2847 }
2848 else
2849 {
2850 if (len < prefix_len + suffix_len)
2851 continue;
2852 if (memcmp (name + len - suffix_len,
2853 spec[i].prefix + prefix_len,
2854 suffix_len) != 0)
2855 continue;
2856 }
2857 return &spec[i];
2858 }
2859
2860 return NULL;
2861 }
2862
2863 const struct bfd_elf_special_section *
2864 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2865 {
2866 int i;
2867 const struct bfd_elf_special_section *spec;
2868 const struct elf_backend_data *bed;
2869
2870 /* See if this is one of the special sections. */
2871 if (sec->name == NULL)
2872 return NULL;
2873
2874 bed = get_elf_backend_data (abfd);
2875 spec = bed->special_sections;
2876 if (spec)
2877 {
2878 spec = _bfd_elf_get_special_section (sec->name,
2879 bed->special_sections,
2880 sec->use_rela_p);
2881 if (spec != NULL)
2882 return spec;
2883 }
2884
2885 if (sec->name[0] != '.')
2886 return NULL;
2887
2888 i = sec->name[1] - 'b';
2889 if (i < 0 || i > 'z' - 'b')
2890 return NULL;
2891
2892 spec = special_sections[i];
2893
2894 if (spec == NULL)
2895 return NULL;
2896
2897 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2898 }
2899
2900 bfd_boolean
2901 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2902 {
2903 struct bfd_elf_section_data *sdata;
2904 const struct elf_backend_data *bed;
2905 const struct bfd_elf_special_section *ssect;
2906
2907 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2908 if (sdata == NULL)
2909 {
2910 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2911 sizeof (*sdata));
2912 if (sdata == NULL)
2913 return FALSE;
2914 sec->used_by_bfd = sdata;
2915 }
2916
2917 /* Indicate whether or not this section should use RELA relocations. */
2918 bed = get_elf_backend_data (abfd);
2919 sec->use_rela_p = bed->default_use_rela_p;
2920
2921 /* When we read a file, we don't need to set ELF section type and
2922 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2923 anyway. We will set ELF section type and flags for all linker
2924 created sections. If user specifies BFD section flags, we will
2925 set ELF section type and flags based on BFD section flags in
2926 elf_fake_sections. Special handling for .init_array/.fini_array
2927 output sections since they may contain .ctors/.dtors input
2928 sections. We don't want _bfd_elf_init_private_section_data to
2929 copy ELF section type from .ctors/.dtors input sections. */
2930 if (abfd->direction != read_direction
2931 || (sec->flags & SEC_LINKER_CREATED) != 0)
2932 {
2933 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2934 if (ssect != NULL
2935 && (!sec->flags
2936 || (sec->flags & SEC_LINKER_CREATED) != 0
2937 || ssect->type == SHT_INIT_ARRAY
2938 || ssect->type == SHT_FINI_ARRAY))
2939 {
2940 elf_section_type (sec) = ssect->type;
2941 elf_section_flags (sec) = ssect->attr;
2942 }
2943 }
2944
2945 return _bfd_generic_new_section_hook (abfd, sec);
2946 }
2947
2948 /* Create a new bfd section from an ELF program header.
2949
2950 Since program segments have no names, we generate a synthetic name
2951 of the form segment<NUM>, where NUM is generally the index in the
2952 program header table. For segments that are split (see below) we
2953 generate the names segment<NUM>a and segment<NUM>b.
2954
2955 Note that some program segments may have a file size that is different than
2956 (less than) the memory size. All this means is that at execution the
2957 system must allocate the amount of memory specified by the memory size,
2958 but only initialize it with the first "file size" bytes read from the
2959 file. This would occur for example, with program segments consisting
2960 of combined data+bss.
2961
2962 To handle the above situation, this routine generates TWO bfd sections
2963 for the single program segment. The first has the length specified by
2964 the file size of the segment, and the second has the length specified
2965 by the difference between the two sizes. In effect, the segment is split
2966 into its initialized and uninitialized parts.
2967
2968 */
2969
2970 bfd_boolean
2971 _bfd_elf_make_section_from_phdr (bfd *abfd,
2972 Elf_Internal_Phdr *hdr,
2973 int hdr_index,
2974 const char *type_name)
2975 {
2976 asection *newsect;
2977 char *name;
2978 char namebuf[64];
2979 size_t len;
2980 int split;
2981
2982 split = ((hdr->p_memsz > 0)
2983 && (hdr->p_filesz > 0)
2984 && (hdr->p_memsz > hdr->p_filesz));
2985
2986 if (hdr->p_filesz > 0)
2987 {
2988 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2989 len = strlen (namebuf) + 1;
2990 name = (char *) bfd_alloc (abfd, len);
2991 if (!name)
2992 return FALSE;
2993 memcpy (name, namebuf, len);
2994 newsect = bfd_make_section (abfd, name);
2995 if (newsect == NULL)
2996 return FALSE;
2997 newsect->vma = hdr->p_vaddr;
2998 newsect->lma = hdr->p_paddr;
2999 newsect->size = hdr->p_filesz;
3000 newsect->filepos = hdr->p_offset;
3001 newsect->flags |= SEC_HAS_CONTENTS;
3002 newsect->alignment_power = bfd_log2 (hdr->p_align);
3003 if (hdr->p_type == PT_LOAD)
3004 {
3005 newsect->flags |= SEC_ALLOC;
3006 newsect->flags |= SEC_LOAD;
3007 if (hdr->p_flags & PF_X)
3008 {
3009 /* FIXME: all we known is that it has execute PERMISSION,
3010 may be data. */
3011 newsect->flags |= SEC_CODE;
3012 }
3013 }
3014 if (!(hdr->p_flags & PF_W))
3015 {
3016 newsect->flags |= SEC_READONLY;
3017 }
3018 }
3019
3020 if (hdr->p_memsz > hdr->p_filesz)
3021 {
3022 bfd_vma align;
3023
3024 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3025 len = strlen (namebuf) + 1;
3026 name = (char *) bfd_alloc (abfd, len);
3027 if (!name)
3028 return FALSE;
3029 memcpy (name, namebuf, len);
3030 newsect = bfd_make_section (abfd, name);
3031 if (newsect == NULL)
3032 return FALSE;
3033 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3034 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3035 newsect->size = hdr->p_memsz - hdr->p_filesz;
3036 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3037 align = newsect->vma & -newsect->vma;
3038 if (align == 0 || align > hdr->p_align)
3039 align = hdr->p_align;
3040 newsect->alignment_power = bfd_log2 (align);
3041 if (hdr->p_type == PT_LOAD)
3042 {
3043 /* Hack for gdb. Segments that have not been modified do
3044 not have their contents written to a core file, on the
3045 assumption that a debugger can find the contents in the
3046 executable. We flag this case by setting the fake
3047 section size to zero. Note that "real" bss sections will
3048 always have their contents dumped to the core file. */
3049 if (bfd_get_format (abfd) == bfd_core)
3050 newsect->size = 0;
3051 newsect->flags |= SEC_ALLOC;
3052 if (hdr->p_flags & PF_X)
3053 newsect->flags |= SEC_CODE;
3054 }
3055 if (!(hdr->p_flags & PF_W))
3056 newsect->flags |= SEC_READONLY;
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 static bfd_boolean
3063 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3064 {
3065 /* The return value is ignored. Build-ids are considered optional. */
3066 if (templ->xvec->flavour == bfd_target_elf_flavour)
3067 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3068 (templ, offset);
3069 return FALSE;
3070 }
3071
3072 bfd_boolean
3073 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3074 {
3075 const struct elf_backend_data *bed;
3076
3077 switch (hdr->p_type)
3078 {
3079 case PT_NULL:
3080 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3081
3082 case PT_LOAD:
3083 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3084 return FALSE;
3085 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3086 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3087 return TRUE;
3088
3089 case PT_DYNAMIC:
3090 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3091
3092 case PT_INTERP:
3093 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3094
3095 case PT_NOTE:
3096 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3097 return FALSE;
3098 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3099 hdr->p_align))
3100 return FALSE;
3101 return TRUE;
3102
3103 case PT_SHLIB:
3104 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3105
3106 case PT_PHDR:
3107 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3108
3109 case PT_GNU_EH_FRAME:
3110 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3111 "eh_frame_hdr");
3112
3113 case PT_GNU_STACK:
3114 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3115
3116 case PT_GNU_RELRO:
3117 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3118
3119 default:
3120 /* Check for any processor-specific program segment types. */
3121 bed = get_elf_backend_data (abfd);
3122 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3123 }
3124 }
3125
3126 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3127 REL or RELA. */
3128
3129 Elf_Internal_Shdr *
3130 _bfd_elf_single_rel_hdr (asection *sec)
3131 {
3132 if (elf_section_data (sec)->rel.hdr)
3133 {
3134 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3135 return elf_section_data (sec)->rel.hdr;
3136 }
3137 else
3138 return elf_section_data (sec)->rela.hdr;
3139 }
3140
3141 static bfd_boolean
3142 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3143 Elf_Internal_Shdr *rel_hdr,
3144 const char *sec_name,
3145 bfd_boolean use_rela_p)
3146 {
3147 char *name = (char *) bfd_alloc (abfd,
3148 sizeof ".rela" + strlen (sec_name));
3149 if (name == NULL)
3150 return FALSE;
3151
3152 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3153 rel_hdr->sh_name =
3154 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3155 FALSE);
3156 if (rel_hdr->sh_name == (unsigned int) -1)
3157 return FALSE;
3158
3159 return TRUE;
3160 }
3161
3162 /* Allocate and initialize a section-header for a new reloc section,
3163 containing relocations against ASECT. It is stored in RELDATA. If
3164 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3165 relocations. */
3166
3167 static bfd_boolean
3168 _bfd_elf_init_reloc_shdr (bfd *abfd,
3169 struct bfd_elf_section_reloc_data *reldata,
3170 const char *sec_name,
3171 bfd_boolean use_rela_p,
3172 bfd_boolean delay_st_name_p)
3173 {
3174 Elf_Internal_Shdr *rel_hdr;
3175 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3176
3177 BFD_ASSERT (reldata->hdr == NULL);
3178 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3179 reldata->hdr = rel_hdr;
3180
3181 if (delay_st_name_p)
3182 rel_hdr->sh_name = (unsigned int) -1;
3183 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3184 use_rela_p))
3185 return FALSE;
3186 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3187 rel_hdr->sh_entsize = (use_rela_p
3188 ? bed->s->sizeof_rela
3189 : bed->s->sizeof_rel);
3190 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3191 rel_hdr->sh_flags = 0;
3192 rel_hdr->sh_addr = 0;
3193 rel_hdr->sh_size = 0;
3194 rel_hdr->sh_offset = 0;
3195
3196 return TRUE;
3197 }
3198
3199 /* Return the default section type based on the passed in section flags. */
3200
3201 int
3202 bfd_elf_get_default_section_type (flagword flags)
3203 {
3204 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3205 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3206 return SHT_NOBITS;
3207 return SHT_PROGBITS;
3208 }
3209
3210 struct fake_section_arg
3211 {
3212 struct bfd_link_info *link_info;
3213 bfd_boolean failed;
3214 };
3215
3216 /* Set up an ELF internal section header for a section. */
3217
3218 static void
3219 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3220 {
3221 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3223 struct bfd_elf_section_data *esd = elf_section_data (asect);
3224 Elf_Internal_Shdr *this_hdr;
3225 unsigned int sh_type;
3226 const char *name = asect->name;
3227 bfd_boolean delay_st_name_p = FALSE;
3228
3229 if (arg->failed)
3230 {
3231 /* We already failed; just get out of the bfd_map_over_sections
3232 loop. */
3233 return;
3234 }
3235
3236 this_hdr = &esd->this_hdr;
3237
3238 if (arg->link_info)
3239 {
3240 /* ld: compress DWARF debug sections with names: .debug_*. */
3241 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3242 && (asect->flags & SEC_DEBUGGING)
3243 && name[1] == 'd'
3244 && name[6] == '_')
3245 {
3246 /* Set SEC_ELF_COMPRESS to indicate this section should be
3247 compressed. */
3248 asect->flags |= SEC_ELF_COMPRESS;
3249
3250 /* If this section will be compressed, delay adding section
3251 name to section name section after it is compressed in
3252 _bfd_elf_assign_file_positions_for_non_load. */
3253 delay_st_name_p = TRUE;
3254 }
3255 }
3256 else if ((asect->flags & SEC_ELF_RENAME))
3257 {
3258 /* objcopy: rename output DWARF debug section. */
3259 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3260 {
3261 /* When we decompress or compress with SHF_COMPRESSED,
3262 convert section name from .zdebug_* to .debug_* if
3263 needed. */
3264 if (name[1] == 'z')
3265 {
3266 char *new_name = convert_zdebug_to_debug (abfd, name);
3267 if (new_name == NULL)
3268 {
3269 arg->failed = TRUE;
3270 return;
3271 }
3272 name = new_name;
3273 }
3274 }
3275 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3276 {
3277 /* PR binutils/18087: Compression does not always make a
3278 section smaller. So only rename the section when
3279 compression has actually taken place. If input section
3280 name is .zdebug_*, we should never compress it again. */
3281 char *new_name = convert_debug_to_zdebug (abfd, name);
3282 if (new_name == NULL)
3283 {
3284 arg->failed = TRUE;
3285 return;
3286 }
3287 BFD_ASSERT (name[1] != 'z');
3288 name = new_name;
3289 }
3290 }
3291
3292 if (delay_st_name_p)
3293 this_hdr->sh_name = (unsigned int) -1;
3294 else
3295 {
3296 this_hdr->sh_name
3297 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3298 name, FALSE);
3299 if (this_hdr->sh_name == (unsigned int) -1)
3300 {
3301 arg->failed = TRUE;
3302 return;
3303 }
3304 }
3305
3306 /* Don't clear sh_flags. Assembler may set additional bits. */
3307
3308 if ((asect->flags & SEC_ALLOC) != 0
3309 || asect->user_set_vma)
3310 this_hdr->sh_addr = asect->vma;
3311 else
3312 this_hdr->sh_addr = 0;
3313
3314 this_hdr->sh_offset = 0;
3315 this_hdr->sh_size = asect->size;
3316 this_hdr->sh_link = 0;
3317 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3318 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3319 {
3320 _bfd_error_handler
3321 /* xgettext:c-format */
3322 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3323 abfd, asect->alignment_power, asect);
3324 arg->failed = TRUE;
3325 return;
3326 }
3327 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3328 /* The sh_entsize and sh_info fields may have been set already by
3329 copy_private_section_data. */
3330
3331 this_hdr->bfd_section = asect;
3332 this_hdr->contents = NULL;
3333
3334 /* If the section type is unspecified, we set it based on
3335 asect->flags. */
3336 if ((asect->flags & SEC_GROUP) != 0)
3337 sh_type = SHT_GROUP;
3338 else
3339 sh_type = bfd_elf_get_default_section_type (asect->flags);
3340
3341 if (this_hdr->sh_type == SHT_NULL)
3342 this_hdr->sh_type = sh_type;
3343 else if (this_hdr->sh_type == SHT_NOBITS
3344 && sh_type == SHT_PROGBITS
3345 && (asect->flags & SEC_ALLOC) != 0)
3346 {
3347 /* Warn if we are changing a NOBITS section to PROGBITS, but
3348 allow the link to proceed. This can happen when users link
3349 non-bss input sections to bss output sections, or emit data
3350 to a bss output section via a linker script. */
3351 _bfd_error_handler
3352 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3353 this_hdr->sh_type = sh_type;
3354 }
3355
3356 switch (this_hdr->sh_type)
3357 {
3358 default:
3359 break;
3360
3361 case SHT_STRTAB:
3362 case SHT_NOTE:
3363 case SHT_NOBITS:
3364 case SHT_PROGBITS:
3365 break;
3366
3367 case SHT_INIT_ARRAY:
3368 case SHT_FINI_ARRAY:
3369 case SHT_PREINIT_ARRAY:
3370 this_hdr->sh_entsize = bed->s->arch_size / 8;
3371 break;
3372
3373 case SHT_HASH:
3374 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3375 break;
3376
3377 case SHT_DYNSYM:
3378 this_hdr->sh_entsize = bed->s->sizeof_sym;
3379 break;
3380
3381 case SHT_DYNAMIC:
3382 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3383 break;
3384
3385 case SHT_RELA:
3386 if (get_elf_backend_data (abfd)->may_use_rela_p)
3387 this_hdr->sh_entsize = bed->s->sizeof_rela;
3388 break;
3389
3390 case SHT_REL:
3391 if (get_elf_backend_data (abfd)->may_use_rel_p)
3392 this_hdr->sh_entsize = bed->s->sizeof_rel;
3393 break;
3394
3395 case SHT_GNU_versym:
3396 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3397 break;
3398
3399 case SHT_GNU_verdef:
3400 this_hdr->sh_entsize = 0;
3401 /* objcopy or strip will copy over sh_info, but may not set
3402 cverdefs. The linker will set cverdefs, but sh_info will be
3403 zero. */
3404 if (this_hdr->sh_info == 0)
3405 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3406 else
3407 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3408 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3409 break;
3410
3411 case SHT_GNU_verneed:
3412 this_hdr->sh_entsize = 0;
3413 /* objcopy or strip will copy over sh_info, but may not set
3414 cverrefs. The linker will set cverrefs, but sh_info will be
3415 zero. */
3416 if (this_hdr->sh_info == 0)
3417 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3418 else
3419 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3420 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3421 break;
3422
3423 case SHT_GROUP:
3424 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3425 break;
3426
3427 case SHT_GNU_HASH:
3428 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3429 break;
3430 }
3431
3432 if ((asect->flags & SEC_ALLOC) != 0)
3433 this_hdr->sh_flags |= SHF_ALLOC;
3434 if ((asect->flags & SEC_READONLY) == 0)
3435 this_hdr->sh_flags |= SHF_WRITE;
3436 if ((asect->flags & SEC_CODE) != 0)
3437 this_hdr->sh_flags |= SHF_EXECINSTR;
3438 if ((asect->flags & SEC_MERGE) != 0)
3439 {
3440 this_hdr->sh_flags |= SHF_MERGE;
3441 this_hdr->sh_entsize = asect->entsize;
3442 }
3443 if ((asect->flags & SEC_STRINGS) != 0)
3444 this_hdr->sh_flags |= SHF_STRINGS;
3445 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3446 this_hdr->sh_flags |= SHF_GROUP;
3447 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3448 {
3449 this_hdr->sh_flags |= SHF_TLS;
3450 if (asect->size == 0
3451 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3452 {
3453 struct bfd_link_order *o = asect->map_tail.link_order;
3454
3455 this_hdr->sh_size = 0;
3456 if (o != NULL)
3457 {
3458 this_hdr->sh_size = o->offset + o->size;
3459 if (this_hdr->sh_size != 0)
3460 this_hdr->sh_type = SHT_NOBITS;
3461 }
3462 }
3463 }
3464 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3465 this_hdr->sh_flags |= SHF_EXCLUDE;
3466
3467 /* If the section has relocs, set up a section header for the
3468 SHT_REL[A] section. If two relocation sections are required for
3469 this section, it is up to the processor-specific back-end to
3470 create the other. */
3471 if ((asect->flags & SEC_RELOC) != 0)
3472 {
3473 /* When doing a relocatable link, create both REL and RELA sections if
3474 needed. */
3475 if (arg->link_info
3476 /* Do the normal setup if we wouldn't create any sections here. */
3477 && esd->rel.count + esd->rela.count > 0
3478 && (bfd_link_relocatable (arg->link_info)
3479 || arg->link_info->emitrelocations))
3480 {
3481 if (esd->rel.count && esd->rel.hdr == NULL
3482 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3483 FALSE, delay_st_name_p))
3484 {
3485 arg->failed = TRUE;
3486 return;
3487 }
3488 if (esd->rela.count && esd->rela.hdr == NULL
3489 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3490 TRUE, delay_st_name_p))
3491 {
3492 arg->failed = TRUE;
3493 return;
3494 }
3495 }
3496 else if (!_bfd_elf_init_reloc_shdr (abfd,
3497 (asect->use_rela_p
3498 ? &esd->rela : &esd->rel),
3499 name,
3500 asect->use_rela_p,
3501 delay_st_name_p))
3502 {
3503 arg->failed = TRUE;
3504 return;
3505 }
3506 }
3507
3508 /* Check for processor-specific section types. */
3509 sh_type = this_hdr->sh_type;
3510 if (bed->elf_backend_fake_sections
3511 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3512 {
3513 arg->failed = TRUE;
3514 return;
3515 }
3516
3517 if (sh_type == SHT_NOBITS && asect->size != 0)
3518 {
3519 /* Don't change the header type from NOBITS if we are being
3520 called for objcopy --only-keep-debug. */
3521 this_hdr->sh_type = sh_type;
3522 }
3523 }
3524
3525 /* Fill in the contents of a SHT_GROUP section. Called from
3526 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3527 when ELF targets use the generic linker, ld. Called for ld -r
3528 from bfd_elf_final_link. */
3529
3530 void
3531 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3532 {
3533 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3534 asection *elt, *first;
3535 unsigned char *loc;
3536 bfd_boolean gas;
3537
3538 /* Ignore linker created group section. See elfNN_ia64_object_p in
3539 elfxx-ia64.c. */
3540 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3541 || sec->size == 0
3542 || *failedptr)
3543 return;
3544
3545 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3546 {
3547 unsigned long symindx = 0;
3548
3549 /* elf_group_id will have been set up by objcopy and the
3550 generic linker. */
3551 if (elf_group_id (sec) != NULL)
3552 symindx = elf_group_id (sec)->udata.i;
3553
3554 if (symindx == 0)
3555 {
3556 /* If called from the assembler, swap_out_syms will have set up
3557 elf_section_syms. */
3558 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3559 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3560 }
3561 elf_section_data (sec)->this_hdr.sh_info = symindx;
3562 }
3563 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3564 {
3565 /* The ELF backend linker sets sh_info to -2 when the group
3566 signature symbol is global, and thus the index can't be
3567 set until all local symbols are output. */
3568 asection *igroup;
3569 struct bfd_elf_section_data *sec_data;
3570 unsigned long symndx;
3571 unsigned long extsymoff;
3572 struct elf_link_hash_entry *h;
3573
3574 /* The point of this little dance to the first SHF_GROUP section
3575 then back to the SHT_GROUP section is that this gets us to
3576 the SHT_GROUP in the input object. */
3577 igroup = elf_sec_group (elf_next_in_group (sec));
3578 sec_data = elf_section_data (igroup);
3579 symndx = sec_data->this_hdr.sh_info;
3580 extsymoff = 0;
3581 if (!elf_bad_symtab (igroup->owner))
3582 {
3583 Elf_Internal_Shdr *symtab_hdr;
3584
3585 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3586 extsymoff = symtab_hdr->sh_info;
3587 }
3588 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3589 while (h->root.type == bfd_link_hash_indirect
3590 || h->root.type == bfd_link_hash_warning)
3591 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3592
3593 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3594 }
3595
3596 /* The contents won't be allocated for "ld -r" or objcopy. */
3597 gas = TRUE;
3598 if (sec->contents == NULL)
3599 {
3600 gas = FALSE;
3601 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3602
3603 /* Arrange for the section to be written out. */
3604 elf_section_data (sec)->this_hdr.contents = sec->contents;
3605 if (sec->contents == NULL)
3606 {
3607 *failedptr = TRUE;
3608 return;
3609 }
3610 }
3611
3612 loc = sec->contents + sec->size;
3613
3614 /* Get the pointer to the first section in the group that gas
3615 squirreled away here. objcopy arranges for this to be set to the
3616 start of the input section group. */
3617 first = elt = elf_next_in_group (sec);
3618
3619 /* First element is a flag word. Rest of section is elf section
3620 indices for all the sections of the group. Write them backwards
3621 just to keep the group in the same order as given in .section
3622 directives, not that it matters. */
3623 while (elt != NULL)
3624 {
3625 asection *s;
3626
3627 s = elt;
3628 if (!gas)
3629 s = s->output_section;
3630 if (s != NULL
3631 && !bfd_is_abs_section (s))
3632 {
3633 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3634 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3635
3636 if (elf_sec->rel.hdr != NULL
3637 && (gas
3638 || (input_elf_sec->rel.hdr != NULL
3639 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3640 {
3641 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3642 loc -= 4;
3643 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3644 }
3645 if (elf_sec->rela.hdr != NULL
3646 && (gas
3647 || (input_elf_sec->rela.hdr != NULL
3648 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3649 {
3650 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3651 loc -= 4;
3652 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3653 }
3654 loc -= 4;
3655 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3656 }
3657 elt = elf_next_in_group (elt);
3658 if (elt == first)
3659 break;
3660 }
3661
3662 loc -= 4;
3663 BFD_ASSERT (loc == sec->contents);
3664
3665 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3666 }
3667
3668 /* Given NAME, the name of a relocation section stripped of its
3669 .rel/.rela prefix, return the section in ABFD to which the
3670 relocations apply. */
3671
3672 asection *
3673 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3674 {
3675 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3676 section likely apply to .got.plt or .got section. */
3677 if (get_elf_backend_data (abfd)->want_got_plt
3678 && strcmp (name, ".plt") == 0)
3679 {
3680 asection *sec;
3681
3682 name = ".got.plt";
3683 sec = bfd_get_section_by_name (abfd, name);
3684 if (sec != NULL)
3685 return sec;
3686 name = ".got";
3687 }
3688
3689 return bfd_get_section_by_name (abfd, name);
3690 }
3691
3692 /* Return the section to which RELOC_SEC applies. */
3693
3694 static asection *
3695 elf_get_reloc_section (asection *reloc_sec)
3696 {
3697 const char *name;
3698 unsigned int type;
3699 bfd *abfd;
3700 const struct elf_backend_data *bed;
3701
3702 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3703 if (type != SHT_REL && type != SHT_RELA)
3704 return NULL;
3705
3706 /* We look up the section the relocs apply to by name. */
3707 name = reloc_sec->name;
3708 if (strncmp (name, ".rel", 4) != 0)
3709 return NULL;
3710 name += 4;
3711 if (type == SHT_RELA && *name++ != 'a')
3712 return NULL;
3713
3714 abfd = reloc_sec->owner;
3715 bed = get_elf_backend_data (abfd);
3716 return bed->get_reloc_section (abfd, name);
3717 }
3718
3719 /* Assign all ELF section numbers. The dummy first section is handled here
3720 too. The link/info pointers for the standard section types are filled
3721 in here too, while we're at it. */
3722
3723 static bfd_boolean
3724 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3725 {
3726 struct elf_obj_tdata *t = elf_tdata (abfd);
3727 asection *sec;
3728 unsigned int section_number;
3729 Elf_Internal_Shdr **i_shdrp;
3730 struct bfd_elf_section_data *d;
3731 bfd_boolean need_symtab;
3732
3733 section_number = 1;
3734
3735 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3736
3737 /* SHT_GROUP sections are in relocatable files only. */
3738 if (link_info == NULL || !link_info->resolve_section_groups)
3739 {
3740 size_t reloc_count = 0;
3741
3742 /* Put SHT_GROUP sections first. */
3743 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3744 {
3745 d = elf_section_data (sec);
3746
3747 if (d->this_hdr.sh_type == SHT_GROUP)
3748 {
3749 if (sec->flags & SEC_LINKER_CREATED)
3750 {
3751 /* Remove the linker created SHT_GROUP sections. */
3752 bfd_section_list_remove (abfd, sec);
3753 abfd->section_count--;
3754 }
3755 else
3756 d->this_idx = section_number++;
3757 }
3758
3759 /* Count relocations. */
3760 reloc_count += sec->reloc_count;
3761 }
3762
3763 /* Clear HAS_RELOC if there are no relocations. */
3764 if (reloc_count == 0)
3765 abfd->flags &= ~HAS_RELOC;
3766 }
3767
3768 for (sec = abfd->sections; sec; sec = sec->next)
3769 {
3770 d = elf_section_data (sec);
3771
3772 if (d->this_hdr.sh_type != SHT_GROUP)
3773 d->this_idx = section_number++;
3774 if (d->this_hdr.sh_name != (unsigned int) -1)
3775 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3776 if (d->rel.hdr)
3777 {
3778 d->rel.idx = section_number++;
3779 if (d->rel.hdr->sh_name != (unsigned int) -1)
3780 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3781 }
3782 else
3783 d->rel.idx = 0;
3784
3785 if (d->rela.hdr)
3786 {
3787 d->rela.idx = section_number++;
3788 if (d->rela.hdr->sh_name != (unsigned int) -1)
3789 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3790 }
3791 else
3792 d->rela.idx = 0;
3793 }
3794
3795 need_symtab = (bfd_get_symcount (abfd) > 0
3796 || (link_info == NULL
3797 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3798 == HAS_RELOC)));
3799 if (need_symtab)
3800 {
3801 elf_onesymtab (abfd) = section_number++;
3802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3803 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3804 {
3805 elf_section_list *entry;
3806
3807 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3808
3809 entry = bfd_zalloc (abfd, sizeof (*entry));
3810 entry->ndx = section_number++;
3811 elf_symtab_shndx_list (abfd) = entry;
3812 entry->hdr.sh_name
3813 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3814 ".symtab_shndx", FALSE);
3815 if (entry->hdr.sh_name == (unsigned int) -1)
3816 return FALSE;
3817 }
3818 elf_strtab_sec (abfd) = section_number++;
3819 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3820 }
3821
3822 elf_shstrtab_sec (abfd) = section_number++;
3823 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3824 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3825
3826 if (section_number >= SHN_LORESERVE)
3827 {
3828 /* xgettext:c-format */
3829 _bfd_error_handler (_("%pB: too many sections: %u"),
3830 abfd, section_number);
3831 return FALSE;
3832 }
3833
3834 elf_numsections (abfd) = section_number;
3835 elf_elfheader (abfd)->e_shnum = section_number;
3836
3837 /* Set up the list of section header pointers, in agreement with the
3838 indices. */
3839 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3840 sizeof (Elf_Internal_Shdr *));
3841 if (i_shdrp == NULL)
3842 return FALSE;
3843
3844 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3845 sizeof (Elf_Internal_Shdr));
3846 if (i_shdrp[0] == NULL)
3847 {
3848 bfd_release (abfd, i_shdrp);
3849 return FALSE;
3850 }
3851
3852 elf_elfsections (abfd) = i_shdrp;
3853
3854 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3855 if (need_symtab)
3856 {
3857 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3858 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3859 {
3860 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3861 BFD_ASSERT (entry != NULL);
3862 i_shdrp[entry->ndx] = & entry->hdr;
3863 entry->hdr.sh_link = elf_onesymtab (abfd);
3864 }
3865 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3866 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3867 }
3868
3869 for (sec = abfd->sections; sec; sec = sec->next)
3870 {
3871 asection *s;
3872
3873 d = elf_section_data (sec);
3874
3875 i_shdrp[d->this_idx] = &d->this_hdr;
3876 if (d->rel.idx != 0)
3877 i_shdrp[d->rel.idx] = d->rel.hdr;
3878 if (d->rela.idx != 0)
3879 i_shdrp[d->rela.idx] = d->rela.hdr;
3880
3881 /* Fill in the sh_link and sh_info fields while we're at it. */
3882
3883 /* sh_link of a reloc section is the section index of the symbol
3884 table. sh_info is the section index of the section to which
3885 the relocation entries apply. */
3886 if (d->rel.idx != 0)
3887 {
3888 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3889 d->rel.hdr->sh_info = d->this_idx;
3890 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3891 }
3892 if (d->rela.idx != 0)
3893 {
3894 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3895 d->rela.hdr->sh_info = d->this_idx;
3896 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3897 }
3898
3899 /* We need to set up sh_link for SHF_LINK_ORDER. */
3900 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3901 {
3902 s = elf_linked_to_section (sec);
3903 if (s)
3904 {
3905 /* elf_linked_to_section points to the input section. */
3906 if (link_info != NULL)
3907 {
3908 /* Check discarded linkonce section. */
3909 if (discarded_section (s))
3910 {
3911 asection *kept;
3912 _bfd_error_handler
3913 /* xgettext:c-format */
3914 (_("%pB: sh_link of section `%pA' points to"
3915 " discarded section `%pA' of `%pB'"),
3916 abfd, d->this_hdr.bfd_section,
3917 s, s->owner);
3918 /* Point to the kept section if it has the same
3919 size as the discarded one. */
3920 kept = _bfd_elf_check_kept_section (s, link_info);
3921 if (kept == NULL)
3922 {
3923 bfd_set_error (bfd_error_bad_value);
3924 return FALSE;
3925 }
3926 s = kept;
3927 }
3928
3929 s = s->output_section;
3930 BFD_ASSERT (s != NULL);
3931 }
3932 else
3933 {
3934 /* Handle objcopy. */
3935 if (s->output_section == NULL)
3936 {
3937 _bfd_error_handler
3938 /* xgettext:c-format */
3939 (_("%pB: sh_link of section `%pA' points to"
3940 " removed section `%pA' of `%pB'"),
3941 abfd, d->this_hdr.bfd_section, s, s->owner);
3942 bfd_set_error (bfd_error_bad_value);
3943 return FALSE;
3944 }
3945 s = s->output_section;
3946 }
3947 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3948 }
3949 else
3950 {
3951 /* PR 290:
3952 The Intel C compiler generates SHT_IA_64_UNWIND with
3953 SHF_LINK_ORDER. But it doesn't set the sh_link or
3954 sh_info fields. Hence we could get the situation
3955 where s is NULL. */
3956 const struct elf_backend_data *bed
3957 = get_elf_backend_data (abfd);
3958 if (bed->link_order_error_handler)
3959 bed->link_order_error_handler
3960 /* xgettext:c-format */
3961 (_("%pB: warning: sh_link not set for section `%pA'"),
3962 abfd, sec);
3963 }
3964 }
3965
3966 switch (d->this_hdr.sh_type)
3967 {
3968 case SHT_REL:
3969 case SHT_RELA:
3970 /* A reloc section which we are treating as a normal BFD
3971 section. sh_link is the section index of the symbol
3972 table. sh_info is the section index of the section to
3973 which the relocation entries apply. We assume that an
3974 allocated reloc section uses the dynamic symbol table.
3975 FIXME: How can we be sure? */
3976 s = bfd_get_section_by_name (abfd, ".dynsym");
3977 if (s != NULL)
3978 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3979
3980 s = elf_get_reloc_section (sec);
3981 if (s != NULL)
3982 {
3983 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3984 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3985 }
3986 break;
3987
3988 case SHT_STRTAB:
3989 /* We assume that a section named .stab*str is a stabs
3990 string section. We look for a section with the same name
3991 but without the trailing ``str'', and set its sh_link
3992 field to point to this section. */
3993 if (CONST_STRNEQ (sec->name, ".stab")
3994 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3995 {
3996 size_t len;
3997 char *alc;
3998
3999 len = strlen (sec->name);
4000 alc = (char *) bfd_malloc (len - 2);
4001 if (alc == NULL)
4002 return FALSE;
4003 memcpy (alc, sec->name, len - 3);
4004 alc[len - 3] = '\0';
4005 s = bfd_get_section_by_name (abfd, alc);
4006 free (alc);
4007 if (s != NULL)
4008 {
4009 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
4010
4011 /* This is a .stab section. */
4012 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
4013 elf_section_data (s)->this_hdr.sh_entsize
4014 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
4015 }
4016 }
4017 break;
4018
4019 case SHT_DYNAMIC:
4020 case SHT_DYNSYM:
4021 case SHT_GNU_verneed:
4022 case SHT_GNU_verdef:
4023 /* sh_link is the section header index of the string table
4024 used for the dynamic entries, or the symbol table, or the
4025 version strings. */
4026 s = bfd_get_section_by_name (abfd, ".dynstr");
4027 if (s != NULL)
4028 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4029 break;
4030
4031 case SHT_GNU_LIBLIST:
4032 /* sh_link is the section header index of the prelink library
4033 list used for the dynamic entries, or the symbol table, or
4034 the version strings. */
4035 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4036 ? ".dynstr" : ".gnu.libstr");
4037 if (s != NULL)
4038 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4039 break;
4040
4041 case SHT_HASH:
4042 case SHT_GNU_HASH:
4043 case SHT_GNU_versym:
4044 /* sh_link is the section header index of the symbol table
4045 this hash table or version table is for. */
4046 s = bfd_get_section_by_name (abfd, ".dynsym");
4047 if (s != NULL)
4048 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4049 break;
4050
4051 case SHT_GROUP:
4052 d->this_hdr.sh_link = elf_onesymtab (abfd);
4053 }
4054 }
4055
4056 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4057 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4058 debug section name from .debug_* to .zdebug_* if needed. */
4059
4060 return TRUE;
4061 }
4062
4063 static bfd_boolean
4064 sym_is_global (bfd *abfd, asymbol *sym)
4065 {
4066 /* If the backend has a special mapping, use it. */
4067 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4068 if (bed->elf_backend_sym_is_global)
4069 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4070
4071 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4072 || bfd_is_und_section (bfd_asymbol_section (sym))
4073 || bfd_is_com_section (bfd_asymbol_section (sym)));
4074 }
4075
4076 /* Filter global symbols of ABFD to include in the import library. All
4077 SYMCOUNT symbols of ABFD can be examined from their pointers in
4078 SYMS. Pointers of symbols to keep should be stored contiguously at
4079 the beginning of that array.
4080
4081 Returns the number of symbols to keep. */
4082
4083 unsigned int
4084 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4085 asymbol **syms, long symcount)
4086 {
4087 long src_count, dst_count = 0;
4088
4089 for (src_count = 0; src_count < symcount; src_count++)
4090 {
4091 asymbol *sym = syms[src_count];
4092 char *name = (char *) bfd_asymbol_name (sym);
4093 struct bfd_link_hash_entry *h;
4094
4095 if (!sym_is_global (abfd, sym))
4096 continue;
4097
4098 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4099 if (h == NULL)
4100 continue;
4101 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4102 continue;
4103 if (h->linker_def || h->ldscript_def)
4104 continue;
4105
4106 syms[dst_count++] = sym;
4107 }
4108
4109 syms[dst_count] = NULL;
4110
4111 return dst_count;
4112 }
4113
4114 /* Don't output section symbols for sections that are not going to be
4115 output, that are duplicates or there is no BFD section. */
4116
4117 static bfd_boolean
4118 ignore_section_sym (bfd *abfd, asymbol *sym)
4119 {
4120 elf_symbol_type *type_ptr;
4121
4122 if (sym == NULL)
4123 return FALSE;
4124
4125 if ((sym->flags & BSF_SECTION_SYM) == 0)
4126 return FALSE;
4127
4128 if (sym->section == NULL)
4129 return TRUE;
4130
4131 type_ptr = elf_symbol_from (abfd, sym);
4132 return ((type_ptr != NULL
4133 && type_ptr->internal_elf_sym.st_shndx != 0
4134 && bfd_is_abs_section (sym->section))
4135 || !(sym->section->owner == abfd
4136 || (sym->section->output_section != NULL
4137 && sym->section->output_section->owner == abfd
4138 && sym->section->output_offset == 0)
4139 || bfd_is_abs_section (sym->section)));
4140 }
4141
4142 /* Map symbol from it's internal number to the external number, moving
4143 all local symbols to be at the head of the list. */
4144
4145 static bfd_boolean
4146 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4147 {
4148 unsigned int symcount = bfd_get_symcount (abfd);
4149 asymbol **syms = bfd_get_outsymbols (abfd);
4150 asymbol **sect_syms;
4151 unsigned int num_locals = 0;
4152 unsigned int num_globals = 0;
4153 unsigned int num_locals2 = 0;
4154 unsigned int num_globals2 = 0;
4155 unsigned int max_index = 0;
4156 unsigned int idx;
4157 asection *asect;
4158 asymbol **new_syms;
4159
4160 #ifdef DEBUG
4161 fprintf (stderr, "elf_map_symbols\n");
4162 fflush (stderr);
4163 #endif
4164
4165 for (asect = abfd->sections; asect; asect = asect->next)
4166 {
4167 if (max_index < asect->index)
4168 max_index = asect->index;
4169 }
4170
4171 max_index++;
4172 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4173 if (sect_syms == NULL)
4174 return FALSE;
4175 elf_section_syms (abfd) = sect_syms;
4176 elf_num_section_syms (abfd) = max_index;
4177
4178 /* Init sect_syms entries for any section symbols we have already
4179 decided to output. */
4180 for (idx = 0; idx < symcount; idx++)
4181 {
4182 asymbol *sym = syms[idx];
4183
4184 if ((sym->flags & BSF_SECTION_SYM) != 0
4185 && sym->value == 0
4186 && !ignore_section_sym (abfd, sym)
4187 && !bfd_is_abs_section (sym->section))
4188 {
4189 asection *sec = sym->section;
4190
4191 if (sec->owner != abfd)
4192 sec = sec->output_section;
4193
4194 sect_syms[sec->index] = syms[idx];
4195 }
4196 }
4197
4198 /* Classify all of the symbols. */
4199 for (idx = 0; idx < symcount; idx++)
4200 {
4201 if (sym_is_global (abfd, syms[idx]))
4202 num_globals++;
4203 else if (!ignore_section_sym (abfd, syms[idx]))
4204 num_locals++;
4205 }
4206
4207 /* We will be adding a section symbol for each normal BFD section. Most
4208 sections will already have a section symbol in outsymbols, but
4209 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4210 at least in that case. */
4211 for (asect = abfd->sections; asect; asect = asect->next)
4212 {
4213 if (sect_syms[asect->index] == NULL)
4214 {
4215 if (!sym_is_global (abfd, asect->symbol))
4216 num_locals++;
4217 else
4218 num_globals++;
4219 }
4220 }
4221
4222 /* Now sort the symbols so the local symbols are first. */
4223 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4224 sizeof (asymbol *));
4225
4226 if (new_syms == NULL)
4227 return FALSE;
4228
4229 for (idx = 0; idx < symcount; idx++)
4230 {
4231 asymbol *sym = syms[idx];
4232 unsigned int i;
4233
4234 if (sym_is_global (abfd, sym))
4235 i = num_locals + num_globals2++;
4236 else if (!ignore_section_sym (abfd, sym))
4237 i = num_locals2++;
4238 else
4239 continue;
4240 new_syms[i] = sym;
4241 sym->udata.i = i + 1;
4242 }
4243 for (asect = abfd->sections; asect; asect = asect->next)
4244 {
4245 if (sect_syms[asect->index] == NULL)
4246 {
4247 asymbol *sym = asect->symbol;
4248 unsigned int i;
4249
4250 sect_syms[asect->index] = sym;
4251 if (!sym_is_global (abfd, sym))
4252 i = num_locals2++;
4253 else
4254 i = num_locals + num_globals2++;
4255 new_syms[i] = sym;
4256 sym->udata.i = i + 1;
4257 }
4258 }
4259
4260 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4261
4262 *pnum_locals = num_locals;
4263 return TRUE;
4264 }
4265
4266 /* Align to the maximum file alignment that could be required for any
4267 ELF data structure. */
4268
4269 static inline file_ptr
4270 align_file_position (file_ptr off, int align)
4271 {
4272 return (off + align - 1) & ~(align - 1);
4273 }
4274
4275 /* Assign a file position to a section, optionally aligning to the
4276 required section alignment. */
4277
4278 file_ptr
4279 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4280 file_ptr offset,
4281 bfd_boolean align)
4282 {
4283 if (align && i_shdrp->sh_addralign > 1)
4284 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4285 i_shdrp->sh_offset = offset;
4286 if (i_shdrp->bfd_section != NULL)
4287 i_shdrp->bfd_section->filepos = offset;
4288 if (i_shdrp->sh_type != SHT_NOBITS)
4289 offset += i_shdrp->sh_size;
4290 return offset;
4291 }
4292
4293 /* Compute the file positions we are going to put the sections at, and
4294 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4295 is not NULL, this is being called by the ELF backend linker. */
4296
4297 bfd_boolean
4298 _bfd_elf_compute_section_file_positions (bfd *abfd,
4299 struct bfd_link_info *link_info)
4300 {
4301 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4302 struct fake_section_arg fsargs;
4303 bfd_boolean failed;
4304 struct elf_strtab_hash *strtab = NULL;
4305 Elf_Internal_Shdr *shstrtab_hdr;
4306 bfd_boolean need_symtab;
4307
4308 if (abfd->output_has_begun)
4309 return TRUE;
4310
4311 /* Do any elf backend specific processing first. */
4312 if (bed->elf_backend_begin_write_processing)
4313 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4314
4315 if (! prep_headers (abfd))
4316 return FALSE;
4317
4318 /* Post process the headers if necessary. */
4319 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4320
4321 fsargs.failed = FALSE;
4322 fsargs.link_info = link_info;
4323 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4324 if (fsargs.failed)
4325 return FALSE;
4326
4327 if (!assign_section_numbers (abfd, link_info))
4328 return FALSE;
4329
4330 /* The backend linker builds symbol table information itself. */
4331 need_symtab = (link_info == NULL
4332 && (bfd_get_symcount (abfd) > 0
4333 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4334 == HAS_RELOC)));
4335 if (need_symtab)
4336 {
4337 /* Non-zero if doing a relocatable link. */
4338 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4339
4340 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4341 return FALSE;
4342 }
4343
4344 failed = FALSE;
4345 if (link_info == NULL)
4346 {
4347 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4348 if (failed)
4349 return FALSE;
4350 }
4351
4352 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4353 /* sh_name was set in prep_headers. */
4354 shstrtab_hdr->sh_type = SHT_STRTAB;
4355 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4356 shstrtab_hdr->sh_addr = 0;
4357 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4358 shstrtab_hdr->sh_entsize = 0;
4359 shstrtab_hdr->sh_link = 0;
4360 shstrtab_hdr->sh_info = 0;
4361 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4362 shstrtab_hdr->sh_addralign = 1;
4363
4364 if (!assign_file_positions_except_relocs (abfd, link_info))
4365 return FALSE;
4366
4367 if (need_symtab)
4368 {
4369 file_ptr off;
4370 Elf_Internal_Shdr *hdr;
4371
4372 off = elf_next_file_pos (abfd);
4373
4374 hdr = & elf_symtab_hdr (abfd);
4375 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4376
4377 if (elf_symtab_shndx_list (abfd) != NULL)
4378 {
4379 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4380 if (hdr->sh_size != 0)
4381 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4382 /* FIXME: What about other symtab_shndx sections in the list ? */
4383 }
4384
4385 hdr = &elf_tdata (abfd)->strtab_hdr;
4386 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4387
4388 elf_next_file_pos (abfd) = off;
4389
4390 /* Now that we know where the .strtab section goes, write it
4391 out. */
4392 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4393 || ! _bfd_elf_strtab_emit (abfd, strtab))
4394 return FALSE;
4395 _bfd_elf_strtab_free (strtab);
4396 }
4397
4398 abfd->output_has_begun = TRUE;
4399
4400 return TRUE;
4401 }
4402
4403 /* Make an initial estimate of the size of the program header. If we
4404 get the number wrong here, we'll redo section placement. */
4405
4406 static bfd_size_type
4407 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4408 {
4409 size_t segs;
4410 asection *s;
4411 const struct elf_backend_data *bed;
4412
4413 /* Assume we will need exactly two PT_LOAD segments: one for text
4414 and one for data. */
4415 segs = 2;
4416
4417 s = bfd_get_section_by_name (abfd, ".interp");
4418 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4419 {
4420 /* If we have a loadable interpreter section, we need a
4421 PT_INTERP segment. In this case, assume we also need a
4422 PT_PHDR segment, although that may not be true for all
4423 targets. */
4424 segs += 2;
4425 }
4426
4427 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4428 {
4429 /* We need a PT_DYNAMIC segment. */
4430 ++segs;
4431 }
4432
4433 if (info != NULL && info->relro)
4434 {
4435 /* We need a PT_GNU_RELRO segment. */
4436 ++segs;
4437 }
4438
4439 if (elf_eh_frame_hdr (abfd))
4440 {
4441 /* We need a PT_GNU_EH_FRAME segment. */
4442 ++segs;
4443 }
4444
4445 if (elf_stack_flags (abfd))
4446 {
4447 /* We need a PT_GNU_STACK segment. */
4448 ++segs;
4449 }
4450
4451 s = bfd_get_section_by_name (abfd,
4452 NOTE_GNU_PROPERTY_SECTION_NAME);
4453 if (s != NULL && s->size != 0)
4454 {
4455 /* We need a PT_GNU_PROPERTY segment. */
4456 ++segs;
4457 }
4458
4459 for (s = abfd->sections; s != NULL; s = s->next)
4460 {
4461 if ((s->flags & SEC_LOAD) != 0
4462 && elf_section_type (s) == SHT_NOTE)
4463 {
4464 unsigned int alignment_power;
4465 /* We need a PT_NOTE segment. */
4466 ++segs;
4467 /* Try to create just one PT_NOTE segment for all adjacent
4468 loadable SHT_NOTE sections. gABI requires that within a
4469 PT_NOTE segment (and also inside of each SHT_NOTE section)
4470 each note should have the same alignment. So we check
4471 whether the sections are correctly aligned. */
4472 alignment_power = s->alignment_power;
4473 while (s->next != NULL
4474 && s->next->alignment_power == alignment_power
4475 && (s->next->flags & SEC_LOAD) != 0
4476 && elf_section_type (s->next) == SHT_NOTE)
4477 s = s->next;
4478 }
4479 }
4480
4481 for (s = abfd->sections; s != NULL; s = s->next)
4482 {
4483 if (s->flags & SEC_THREAD_LOCAL)
4484 {
4485 /* We need a PT_TLS segment. */
4486 ++segs;
4487 break;
4488 }
4489 }
4490
4491 bed = get_elf_backend_data (abfd);
4492
4493 if ((abfd->flags & D_PAGED) != 0
4494 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4495 {
4496 /* Add a PT_GNU_MBIND segment for each mbind section. */
4497 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4498 for (s = abfd->sections; s != NULL; s = s->next)
4499 if (elf_section_flags (s) & SHF_GNU_MBIND)
4500 {
4501 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4502 {
4503 _bfd_error_handler
4504 /* xgettext:c-format */
4505 (_("%pB: GNU_MBIND section `%pA' has invalid "
4506 "sh_info field: %d"),
4507 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4508 continue;
4509 }
4510 /* Align mbind section to page size. */
4511 if (s->alignment_power < page_align_power)
4512 s->alignment_power = page_align_power;
4513 segs ++;
4514 }
4515 }
4516
4517 /* Let the backend count up any program headers it might need. */
4518 if (bed->elf_backend_additional_program_headers)
4519 {
4520 int a;
4521
4522 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4523 if (a == -1)
4524 abort ();
4525 segs += a;
4526 }
4527
4528 return segs * bed->s->sizeof_phdr;
4529 }
4530
4531 /* Find the segment that contains the output_section of section. */
4532
4533 Elf_Internal_Phdr *
4534 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4535 {
4536 struct elf_segment_map *m;
4537 Elf_Internal_Phdr *p;
4538
4539 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4540 m != NULL;
4541 m = m->next, p++)
4542 {
4543 int i;
4544
4545 for (i = m->count - 1; i >= 0; i--)
4546 if (m->sections[i] == section)
4547 return p;
4548 }
4549
4550 return NULL;
4551 }
4552
4553 /* Create a mapping from a set of sections to a program segment. */
4554
4555 static struct elf_segment_map *
4556 make_mapping (bfd *abfd,
4557 asection **sections,
4558 unsigned int from,
4559 unsigned int to,
4560 bfd_boolean phdr)
4561 {
4562 struct elf_segment_map *m;
4563 unsigned int i;
4564 asection **hdrpp;
4565 bfd_size_type amt;
4566
4567 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4568 amt += (to - from) * sizeof (asection *);
4569 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4570 if (m == NULL)
4571 return NULL;
4572 m->next = NULL;
4573 m->p_type = PT_LOAD;
4574 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4575 m->sections[i - from] = *hdrpp;
4576 m->count = to - from;
4577
4578 if (from == 0 && phdr)
4579 {
4580 /* Include the headers in the first PT_LOAD segment. */
4581 m->includes_filehdr = 1;
4582 m->includes_phdrs = 1;
4583 }
4584
4585 return m;
4586 }
4587
4588 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4589 on failure. */
4590
4591 struct elf_segment_map *
4592 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4593 {
4594 struct elf_segment_map *m;
4595
4596 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4597 sizeof (struct elf_segment_map));
4598 if (m == NULL)
4599 return NULL;
4600 m->next = NULL;
4601 m->p_type = PT_DYNAMIC;
4602 m->count = 1;
4603 m->sections[0] = dynsec;
4604
4605 return m;
4606 }
4607
4608 /* Possibly add or remove segments from the segment map. */
4609
4610 static bfd_boolean
4611 elf_modify_segment_map (bfd *abfd,
4612 struct bfd_link_info *info,
4613 bfd_boolean remove_empty_load)
4614 {
4615 struct elf_segment_map **m;
4616 const struct elf_backend_data *bed;
4617
4618 /* The placement algorithm assumes that non allocated sections are
4619 not in PT_LOAD segments. We ensure this here by removing such
4620 sections from the segment map. We also remove excluded
4621 sections. Finally, any PT_LOAD segment without sections is
4622 removed. */
4623 m = &elf_seg_map (abfd);
4624 while (*m)
4625 {
4626 unsigned int i, new_count;
4627
4628 for (new_count = 0, i = 0; i < (*m)->count; i++)
4629 {
4630 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4631 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4632 || (*m)->p_type != PT_LOAD))
4633 {
4634 (*m)->sections[new_count] = (*m)->sections[i];
4635 new_count++;
4636 }
4637 }
4638 (*m)->count = new_count;
4639
4640 if (remove_empty_load
4641 && (*m)->p_type == PT_LOAD
4642 && (*m)->count == 0
4643 && !(*m)->includes_phdrs)
4644 *m = (*m)->next;
4645 else
4646 m = &(*m)->next;
4647 }
4648
4649 bed = get_elf_backend_data (abfd);
4650 if (bed->elf_backend_modify_segment_map != NULL)
4651 {
4652 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4653 return FALSE;
4654 }
4655
4656 return TRUE;
4657 }
4658
4659 #define IS_TBSS(s) \
4660 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4661
4662 /* Set up a mapping from BFD sections to program segments. */
4663
4664 bfd_boolean
4665 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4666 {
4667 unsigned int count;
4668 struct elf_segment_map *m;
4669 asection **sections = NULL;
4670 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4671 bfd_boolean no_user_phdrs;
4672
4673 no_user_phdrs = elf_seg_map (abfd) == NULL;
4674
4675 if (info != NULL)
4676 info->user_phdrs = !no_user_phdrs;
4677
4678 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4679 {
4680 asection *s;
4681 unsigned int i;
4682 struct elf_segment_map *mfirst;
4683 struct elf_segment_map **pm;
4684 asection *last_hdr;
4685 bfd_vma last_size;
4686 unsigned int hdr_index;
4687 bfd_vma maxpagesize;
4688 asection **hdrpp;
4689 bfd_boolean phdr_in_segment;
4690 bfd_boolean writable;
4691 bfd_boolean executable;
4692 int tls_count = 0;
4693 asection *first_tls = NULL;
4694 asection *first_mbind = NULL;
4695 asection *dynsec, *eh_frame_hdr;
4696 bfd_size_type amt;
4697 bfd_vma addr_mask, wrap_to = 0;
4698 bfd_size_type phdr_size;
4699
4700 /* Select the allocated sections, and sort them. */
4701
4702 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4703 sizeof (asection *));
4704 if (sections == NULL)
4705 goto error_return;
4706
4707 /* Calculate top address, avoiding undefined behaviour of shift
4708 left operator when shift count is equal to size of type
4709 being shifted. */
4710 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4711 addr_mask = (addr_mask << 1) + 1;
4712
4713 i = 0;
4714 for (s = abfd->sections; s != NULL; s = s->next)
4715 {
4716 if ((s->flags & SEC_ALLOC) != 0)
4717 {
4718 /* target_index is unused until bfd_elf_final_link
4719 starts output of section symbols. Use it to make
4720 qsort stable. */
4721 s->target_index = i;
4722 sections[i] = s;
4723 ++i;
4724 /* A wrapping section potentially clashes with header. */
4725 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4726 wrap_to = (s->lma + s->size) & addr_mask;
4727 }
4728 }
4729 BFD_ASSERT (i <= bfd_count_sections (abfd));
4730 count = i;
4731
4732 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4733
4734 phdr_size = elf_program_header_size (abfd);
4735 if (phdr_size == (bfd_size_type) -1)
4736 phdr_size = get_program_header_size (abfd, info);
4737 phdr_size += bed->s->sizeof_ehdr;
4738 maxpagesize = bed->maxpagesize;
4739 if (maxpagesize == 0)
4740 maxpagesize = 1;
4741 phdr_in_segment = info != NULL && info->load_phdrs;
4742 if (count != 0
4743 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4744 >= (phdr_size & (maxpagesize - 1))))
4745 /* For compatibility with old scripts that may not be using
4746 SIZEOF_HEADERS, add headers when it looks like space has
4747 been left for them. */
4748 phdr_in_segment = TRUE;
4749
4750 /* Build the mapping. */
4751 mfirst = NULL;
4752 pm = &mfirst;
4753
4754 /* If we have a .interp section, then create a PT_PHDR segment for
4755 the program headers and a PT_INTERP segment for the .interp
4756 section. */
4757 s = bfd_get_section_by_name (abfd, ".interp");
4758 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4759 {
4760 amt = sizeof (struct elf_segment_map);
4761 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4762 if (m == NULL)
4763 goto error_return;
4764 m->next = NULL;
4765 m->p_type = PT_PHDR;
4766 m->p_flags = PF_R;
4767 m->p_flags_valid = 1;
4768 m->includes_phdrs = 1;
4769 phdr_in_segment = TRUE;
4770 *pm = m;
4771 pm = &m->next;
4772
4773 amt = sizeof (struct elf_segment_map);
4774 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4775 if (m == NULL)
4776 goto error_return;
4777 m->next = NULL;
4778 m->p_type = PT_INTERP;
4779 m->count = 1;
4780 m->sections[0] = s;
4781
4782 *pm = m;
4783 pm = &m->next;
4784 }
4785
4786 /* Look through the sections. We put sections in the same program
4787 segment when the start of the second section can be placed within
4788 a few bytes of the end of the first section. */
4789 last_hdr = NULL;
4790 last_size = 0;
4791 hdr_index = 0;
4792 writable = FALSE;
4793 executable = FALSE;
4794 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4795 if (dynsec != NULL
4796 && (dynsec->flags & SEC_LOAD) == 0)
4797 dynsec = NULL;
4798
4799 if ((abfd->flags & D_PAGED) == 0)
4800 phdr_in_segment = FALSE;
4801
4802 /* Deal with -Ttext or something similar such that the first section
4803 is not adjacent to the program headers. This is an
4804 approximation, since at this point we don't know exactly how many
4805 program headers we will need. */
4806 if (phdr_in_segment && count > 0)
4807 {
4808 bfd_vma phdr_lma;
4809 bfd_boolean separate_phdr = FALSE;
4810
4811 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4812 if (info != NULL
4813 && info->separate_code
4814 && (sections[0]->flags & SEC_CODE) != 0)
4815 {
4816 /* If data sections should be separate from code and
4817 thus not executable, and the first section is
4818 executable then put the file and program headers in
4819 their own PT_LOAD. */
4820 separate_phdr = TRUE;
4821 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4822 == (sections[0]->lma & addr_mask & -maxpagesize)))
4823 {
4824 /* The file and program headers are currently on the
4825 same page as the first section. Put them on the
4826 previous page if we can. */
4827 if (phdr_lma >= maxpagesize)
4828 phdr_lma -= maxpagesize;
4829 else
4830 separate_phdr = FALSE;
4831 }
4832 }
4833 if ((sections[0]->lma & addr_mask) < phdr_lma
4834 || (sections[0]->lma & addr_mask) < phdr_size)
4835 /* If file and program headers would be placed at the end
4836 of memory then it's probably better to omit them. */
4837 phdr_in_segment = FALSE;
4838 else if (phdr_lma < wrap_to)
4839 /* If a section wraps around to where we'll be placing
4840 file and program headers, then the headers will be
4841 overwritten. */
4842 phdr_in_segment = FALSE;
4843 else if (separate_phdr)
4844 {
4845 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4846 if (m == NULL)
4847 goto error_return;
4848 m->p_paddr = phdr_lma;
4849 m->p_vaddr_offset
4850 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4851 m->p_paddr_valid = 1;
4852 *pm = m;
4853 pm = &m->next;
4854 phdr_in_segment = FALSE;
4855 }
4856 }
4857
4858 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4859 {
4860 asection *hdr;
4861 bfd_boolean new_segment;
4862
4863 hdr = *hdrpp;
4864
4865 /* See if this section and the last one will fit in the same
4866 segment. */
4867
4868 if (last_hdr == NULL)
4869 {
4870 /* If we don't have a segment yet, then we don't need a new
4871 one (we build the last one after this loop). */
4872 new_segment = FALSE;
4873 }
4874 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4875 {
4876 /* If this section has a different relation between the
4877 virtual address and the load address, then we need a new
4878 segment. */
4879 new_segment = TRUE;
4880 }
4881 else if (hdr->lma < last_hdr->lma + last_size
4882 || last_hdr->lma + last_size < last_hdr->lma)
4883 {
4884 /* If this section has a load address that makes it overlap
4885 the previous section, then we need a new segment. */
4886 new_segment = TRUE;
4887 }
4888 else if ((abfd->flags & D_PAGED) != 0
4889 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4890 == (hdr->lma & -maxpagesize)))
4891 {
4892 /* If we are demand paged then we can't map two disk
4893 pages onto the same memory page. */
4894 new_segment = FALSE;
4895 }
4896 /* In the next test we have to be careful when last_hdr->lma is close
4897 to the end of the address space. If the aligned address wraps
4898 around to the start of the address space, then there are no more
4899 pages left in memory and it is OK to assume that the current
4900 section can be included in the current segment. */
4901 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4902 + maxpagesize > last_hdr->lma)
4903 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4904 + maxpagesize <= hdr->lma))
4905 {
4906 /* If putting this section in this segment would force us to
4907 skip a page in the segment, then we need a new segment. */
4908 new_segment = TRUE;
4909 }
4910 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4911 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4912 {
4913 /* We don't want to put a loaded section after a
4914 nonloaded (ie. bss style) section in the same segment
4915 as that will force the non-loaded section to be loaded.
4916 Consider .tbss sections as loaded for this purpose. */
4917 new_segment = TRUE;
4918 }
4919 else if ((abfd->flags & D_PAGED) == 0)
4920 {
4921 /* If the file is not demand paged, which means that we
4922 don't require the sections to be correctly aligned in the
4923 file, then there is no other reason for a new segment. */
4924 new_segment = FALSE;
4925 }
4926 else if (info != NULL
4927 && info->separate_code
4928 && executable != ((hdr->flags & SEC_CODE) != 0))
4929 {
4930 new_segment = TRUE;
4931 }
4932 else if (! writable
4933 && (hdr->flags & SEC_READONLY) == 0)
4934 {
4935 /* We don't want to put a writable section in a read only
4936 segment. */
4937 new_segment = TRUE;
4938 }
4939 else
4940 {
4941 /* Otherwise, we can use the same segment. */
4942 new_segment = FALSE;
4943 }
4944
4945 /* Allow interested parties a chance to override our decision. */
4946 if (last_hdr != NULL
4947 && info != NULL
4948 && info->callbacks->override_segment_assignment != NULL)
4949 new_segment
4950 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4951 last_hdr,
4952 new_segment);
4953
4954 if (! new_segment)
4955 {
4956 if ((hdr->flags & SEC_READONLY) == 0)
4957 writable = TRUE;
4958 if ((hdr->flags & SEC_CODE) != 0)
4959 executable = TRUE;
4960 last_hdr = hdr;
4961 /* .tbss sections effectively have zero size. */
4962 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4963 continue;
4964 }
4965
4966 /* We need a new program segment. We must create a new program
4967 header holding all the sections from hdr_index until hdr. */
4968
4969 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4970 if (m == NULL)
4971 goto error_return;
4972
4973 *pm = m;
4974 pm = &m->next;
4975
4976 if ((hdr->flags & SEC_READONLY) == 0)
4977 writable = TRUE;
4978 else
4979 writable = FALSE;
4980
4981 if ((hdr->flags & SEC_CODE) == 0)
4982 executable = FALSE;
4983 else
4984 executable = TRUE;
4985
4986 last_hdr = hdr;
4987 /* .tbss sections effectively have zero size. */
4988 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4989 hdr_index = i;
4990 phdr_in_segment = FALSE;
4991 }
4992
4993 /* Create a final PT_LOAD program segment, but not if it's just
4994 for .tbss. */
4995 if (last_hdr != NULL
4996 && (i - hdr_index != 1
4997 || !IS_TBSS (last_hdr)))
4998 {
4999 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
5000 if (m == NULL)
5001 goto error_return;
5002
5003 *pm = m;
5004 pm = &m->next;
5005 }
5006
5007 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
5008 if (dynsec != NULL)
5009 {
5010 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
5011 if (m == NULL)
5012 goto error_return;
5013 *pm = m;
5014 pm = &m->next;
5015 }
5016
5017 /* For each batch of consecutive loadable SHT_NOTE sections,
5018 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5019 because if we link together nonloadable .note sections and
5020 loadable .note sections, we will generate two .note sections
5021 in the output file. */
5022 for (s = abfd->sections; s != NULL; s = s->next)
5023 {
5024 if ((s->flags & SEC_LOAD) != 0
5025 && elf_section_type (s) == SHT_NOTE)
5026 {
5027 asection *s2;
5028 unsigned int alignment_power = s->alignment_power;
5029
5030 count = 1;
5031 for (s2 = s; s2->next != NULL; s2 = s2->next)
5032 {
5033 if (s2->next->alignment_power == alignment_power
5034 && (s2->next->flags & SEC_LOAD) != 0
5035 && elf_section_type (s2->next) == SHT_NOTE
5036 && align_power (s2->lma + s2->size,
5037 alignment_power)
5038 == s2->next->lma)
5039 count++;
5040 else
5041 break;
5042 }
5043 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5044 amt += count * sizeof (asection *);
5045 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5046 if (m == NULL)
5047 goto error_return;
5048 m->next = NULL;
5049 m->p_type = PT_NOTE;
5050 m->count = count;
5051 while (count > 1)
5052 {
5053 m->sections[m->count - count--] = s;
5054 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5055 s = s->next;
5056 }
5057 m->sections[m->count - 1] = s;
5058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5059 *pm = m;
5060 pm = &m->next;
5061 }
5062 if (s->flags & SEC_THREAD_LOCAL)
5063 {
5064 if (! tls_count)
5065 first_tls = s;
5066 tls_count++;
5067 }
5068 if (first_mbind == NULL
5069 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5070 first_mbind = s;
5071 }
5072
5073 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5074 if (tls_count > 0)
5075 {
5076 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5077 amt += tls_count * sizeof (asection *);
5078 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5079 if (m == NULL)
5080 goto error_return;
5081 m->next = NULL;
5082 m->p_type = PT_TLS;
5083 m->count = tls_count;
5084 /* Mandated PF_R. */
5085 m->p_flags = PF_R;
5086 m->p_flags_valid = 1;
5087 s = first_tls;
5088 for (i = 0; i < (unsigned int) tls_count; ++i)
5089 {
5090 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5091 {
5092 _bfd_error_handler
5093 (_("%pB: TLS sections are not adjacent:"), abfd);
5094 s = first_tls;
5095 i = 0;
5096 while (i < (unsigned int) tls_count)
5097 {
5098 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5099 {
5100 _bfd_error_handler (_(" TLS: %pA"), s);
5101 i++;
5102 }
5103 else
5104 _bfd_error_handler (_(" non-TLS: %pA"), s);
5105 s = s->next;
5106 }
5107 bfd_set_error (bfd_error_bad_value);
5108 goto error_return;
5109 }
5110 m->sections[i] = s;
5111 s = s->next;
5112 }
5113
5114 *pm = m;
5115 pm = &m->next;
5116 }
5117
5118 if (first_mbind
5119 && (abfd->flags & D_PAGED) != 0
5120 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5121 for (s = first_mbind; s != NULL; s = s->next)
5122 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5123 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5124 {
5125 /* Mandated PF_R. */
5126 unsigned long p_flags = PF_R;
5127 if ((s->flags & SEC_READONLY) == 0)
5128 p_flags |= PF_W;
5129 if ((s->flags & SEC_CODE) != 0)
5130 p_flags |= PF_X;
5131
5132 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5133 m = bfd_zalloc (abfd, amt);
5134 if (m == NULL)
5135 goto error_return;
5136 m->next = NULL;
5137 m->p_type = (PT_GNU_MBIND_LO
5138 + elf_section_data (s)->this_hdr.sh_info);
5139 m->count = 1;
5140 m->p_flags_valid = 1;
5141 m->sections[0] = s;
5142 m->p_flags = p_flags;
5143
5144 *pm = m;
5145 pm = &m->next;
5146 }
5147
5148 s = bfd_get_section_by_name (abfd,
5149 NOTE_GNU_PROPERTY_SECTION_NAME);
5150 if (s != NULL && s->size != 0)
5151 {
5152 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5153 m = bfd_zalloc (abfd, amt);
5154 if (m == NULL)
5155 goto error_return;
5156 m->next = NULL;
5157 m->p_type = PT_GNU_PROPERTY;
5158 m->count = 1;
5159 m->p_flags_valid = 1;
5160 m->sections[0] = s;
5161 m->p_flags = PF_R;
5162 *pm = m;
5163 pm = &m->next;
5164 }
5165
5166 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5167 segment. */
5168 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5169 if (eh_frame_hdr != NULL
5170 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5171 {
5172 amt = sizeof (struct elf_segment_map);
5173 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5174 if (m == NULL)
5175 goto error_return;
5176 m->next = NULL;
5177 m->p_type = PT_GNU_EH_FRAME;
5178 m->count = 1;
5179 m->sections[0] = eh_frame_hdr->output_section;
5180
5181 *pm = m;
5182 pm = &m->next;
5183 }
5184
5185 if (elf_stack_flags (abfd))
5186 {
5187 amt = sizeof (struct elf_segment_map);
5188 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5189 if (m == NULL)
5190 goto error_return;
5191 m->next = NULL;
5192 m->p_type = PT_GNU_STACK;
5193 m->p_flags = elf_stack_flags (abfd);
5194 m->p_align = bed->stack_align;
5195 m->p_flags_valid = 1;
5196 m->p_align_valid = m->p_align != 0;
5197 if (info->stacksize > 0)
5198 {
5199 m->p_size = info->stacksize;
5200 m->p_size_valid = 1;
5201 }
5202
5203 *pm = m;
5204 pm = &m->next;
5205 }
5206
5207 if (info != NULL && info->relro)
5208 {
5209 for (m = mfirst; m != NULL; m = m->next)
5210 {
5211 if (m->p_type == PT_LOAD
5212 && m->count != 0
5213 && m->sections[0]->vma >= info->relro_start
5214 && m->sections[0]->vma < info->relro_end)
5215 {
5216 i = m->count;
5217 while (--i != (unsigned) -1)
5218 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5219 == (SEC_LOAD | SEC_HAS_CONTENTS))
5220 break;
5221
5222 if (i != (unsigned) -1)
5223 break;
5224 }
5225 }
5226
5227 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5228 if (m != NULL)
5229 {
5230 amt = sizeof (struct elf_segment_map);
5231 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5232 if (m == NULL)
5233 goto error_return;
5234 m->next = NULL;
5235 m->p_type = PT_GNU_RELRO;
5236 *pm = m;
5237 pm = &m->next;
5238 }
5239 }
5240
5241 free (sections);
5242 elf_seg_map (abfd) = mfirst;
5243 }
5244
5245 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5246 return FALSE;
5247
5248 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5249 ++count;
5250 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5251
5252 return TRUE;
5253
5254 error_return:
5255 if (sections != NULL)
5256 free (sections);
5257 return FALSE;
5258 }
5259
5260 /* Sort sections by address. */
5261
5262 static int
5263 elf_sort_sections (const void *arg1, const void *arg2)
5264 {
5265 const asection *sec1 = *(const asection **) arg1;
5266 const asection *sec2 = *(const asection **) arg2;
5267 bfd_size_type size1, size2;
5268
5269 /* Sort by LMA first, since this is the address used to
5270 place the section into a segment. */
5271 if (sec1->lma < sec2->lma)
5272 return -1;
5273 else if (sec1->lma > sec2->lma)
5274 return 1;
5275
5276 /* Then sort by VMA. Normally the LMA and the VMA will be
5277 the same, and this will do nothing. */
5278 if (sec1->vma < sec2->vma)
5279 return -1;
5280 else if (sec1->vma > sec2->vma)
5281 return 1;
5282
5283 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5284
5285 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5286
5287 if (TOEND (sec1))
5288 {
5289 if (!TOEND (sec2))
5290 return 1;
5291 }
5292 else if (TOEND (sec2))
5293 return -1;
5294
5295 #undef TOEND
5296
5297 /* Sort by size, to put zero sized sections
5298 before others at the same address. */
5299
5300 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5301 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5302
5303 if (size1 < size2)
5304 return -1;
5305 if (size1 > size2)
5306 return 1;
5307
5308 return sec1->target_index - sec2->target_index;
5309 }
5310
5311 /* This qsort comparison functions sorts PT_LOAD segments first and
5312 by p_paddr, for assign_file_positions_for_load_sections. */
5313
5314 static int
5315 elf_sort_segments (const void *arg1, const void *arg2)
5316 {
5317 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5318 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5319
5320 if (m1->p_type != m2->p_type)
5321 {
5322 if (m1->p_type == PT_NULL)
5323 return 1;
5324 if (m2->p_type == PT_NULL)
5325 return -1;
5326 return m1->p_type < m2->p_type ? -1 : 1;
5327 }
5328 if (m1->includes_filehdr != m2->includes_filehdr)
5329 return m1->includes_filehdr ? -1 : 1;
5330 if (m1->no_sort_lma != m2->no_sort_lma)
5331 return m1->no_sort_lma ? -1 : 1;
5332 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5333 {
5334 bfd_vma lma1, lma2;
5335 lma1 = 0;
5336 if (m1->p_paddr_valid)
5337 lma1 = m1->p_paddr;
5338 else if (m1->count != 0)
5339 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5340 lma2 = 0;
5341 if (m2->p_paddr_valid)
5342 lma2 = m2->p_paddr;
5343 else if (m2->count != 0)
5344 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5345 if (lma1 != lma2)
5346 return lma1 < lma2 ? -1 : 1;
5347 }
5348 if (m1->idx != m2->idx)
5349 return m1->idx < m2->idx ? -1 : 1;
5350 return 0;
5351 }
5352
5353 /* Ian Lance Taylor writes:
5354
5355 We shouldn't be using % with a negative signed number. That's just
5356 not good. We have to make sure either that the number is not
5357 negative, or that the number has an unsigned type. When the types
5358 are all the same size they wind up as unsigned. When file_ptr is a
5359 larger signed type, the arithmetic winds up as signed long long,
5360 which is wrong.
5361
5362 What we're trying to say here is something like ``increase OFF by
5363 the least amount that will cause it to be equal to the VMA modulo
5364 the page size.'' */
5365 /* In other words, something like:
5366
5367 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5368 off_offset = off % bed->maxpagesize;
5369 if (vma_offset < off_offset)
5370 adjustment = vma_offset + bed->maxpagesize - off_offset;
5371 else
5372 adjustment = vma_offset - off_offset;
5373
5374 which can be collapsed into the expression below. */
5375
5376 static file_ptr
5377 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5378 {
5379 /* PR binutils/16199: Handle an alignment of zero. */
5380 if (maxpagesize == 0)
5381 maxpagesize = 1;
5382 return ((vma - off) % maxpagesize);
5383 }
5384
5385 static void
5386 print_segment_map (const struct elf_segment_map *m)
5387 {
5388 unsigned int j;
5389 const char *pt = get_segment_type (m->p_type);
5390 char buf[32];
5391
5392 if (pt == NULL)
5393 {
5394 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5395 sprintf (buf, "LOPROC+%7.7x",
5396 (unsigned int) (m->p_type - PT_LOPROC));
5397 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5398 sprintf (buf, "LOOS+%7.7x",
5399 (unsigned int) (m->p_type - PT_LOOS));
5400 else
5401 snprintf (buf, sizeof (buf), "%8.8x",
5402 (unsigned int) m->p_type);
5403 pt = buf;
5404 }
5405 fflush (stdout);
5406 fprintf (stderr, "%s:", pt);
5407 for (j = 0; j < m->count; j++)
5408 fprintf (stderr, " %s", m->sections [j]->name);
5409 putc ('\n',stderr);
5410 fflush (stderr);
5411 }
5412
5413 static bfd_boolean
5414 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5415 {
5416 void *buf;
5417 bfd_boolean ret;
5418
5419 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5420 return FALSE;
5421 buf = bfd_zmalloc (len);
5422 if (buf == NULL)
5423 return FALSE;
5424 ret = bfd_bwrite (buf, len, abfd) == len;
5425 free (buf);
5426 return ret;
5427 }
5428
5429 /* Assign file positions to the sections based on the mapping from
5430 sections to segments. This function also sets up some fields in
5431 the file header. */
5432
5433 static bfd_boolean
5434 assign_file_positions_for_load_sections (bfd *abfd,
5435 struct bfd_link_info *link_info)
5436 {
5437 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5438 struct elf_segment_map *m;
5439 struct elf_segment_map *phdr_load_seg;
5440 Elf_Internal_Phdr *phdrs;
5441 Elf_Internal_Phdr *p;
5442 file_ptr off;
5443 bfd_size_type maxpagesize;
5444 unsigned int alloc, actual;
5445 unsigned int i, j;
5446 struct elf_segment_map **sorted_seg_map;
5447
5448 if (link_info == NULL
5449 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5450 return FALSE;
5451
5452 alloc = 0;
5453 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5454 m->idx = alloc++;
5455
5456 if (alloc)
5457 {
5458 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5459 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5460 }
5461 else
5462 {
5463 /* PR binutils/12467. */
5464 elf_elfheader (abfd)->e_phoff = 0;
5465 elf_elfheader (abfd)->e_phentsize = 0;
5466 }
5467
5468 elf_elfheader (abfd)->e_phnum = alloc;
5469
5470 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5471 {
5472 actual = alloc;
5473 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5474 }
5475 else
5476 {
5477 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5478 BFD_ASSERT (elf_program_header_size (abfd)
5479 == actual * bed->s->sizeof_phdr);
5480 BFD_ASSERT (actual >= alloc);
5481 }
5482
5483 if (alloc == 0)
5484 {
5485 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5486 return TRUE;
5487 }
5488
5489 /* We're writing the size in elf_program_header_size (abfd),
5490 see assign_file_positions_except_relocs, so make sure we have
5491 that amount allocated, with trailing space cleared.
5492 The variable alloc contains the computed need, while
5493 elf_program_header_size (abfd) contains the size used for the
5494 layout.
5495 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5496 where the layout is forced to according to a larger size in the
5497 last iterations for the testcase ld-elf/header. */
5498 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5499 + alloc * sizeof (*sorted_seg_map)));
5500 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5501 elf_tdata (abfd)->phdr = phdrs;
5502 if (phdrs == NULL)
5503 return FALSE;
5504
5505 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5506 {
5507 sorted_seg_map[j] = m;
5508 /* If elf_segment_map is not from map_sections_to_segments, the
5509 sections may not be correctly ordered. NOTE: sorting should
5510 not be done to the PT_NOTE section of a corefile, which may
5511 contain several pseudo-sections artificially created by bfd.
5512 Sorting these pseudo-sections breaks things badly. */
5513 if (m->count > 1
5514 && !(elf_elfheader (abfd)->e_type == ET_CORE
5515 && m->p_type == PT_NOTE))
5516 {
5517 for (i = 0; i < m->count; i++)
5518 m->sections[i]->target_index = i;
5519 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5520 elf_sort_sections);
5521 }
5522 }
5523 if (alloc > 1)
5524 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5525 elf_sort_segments);
5526
5527 maxpagesize = 1;
5528 if ((abfd->flags & D_PAGED) != 0)
5529 maxpagesize = bed->maxpagesize;
5530
5531 /* Sections must map to file offsets past the ELF file header. */
5532 off = bed->s->sizeof_ehdr;
5533 /* And if one of the PT_LOAD headers doesn't include the program
5534 headers then we'll be mapping program headers in the usual
5535 position after the ELF file header. */
5536 phdr_load_seg = NULL;
5537 for (j = 0; j < alloc; j++)
5538 {
5539 m = sorted_seg_map[j];
5540 if (m->p_type != PT_LOAD)
5541 break;
5542 if (m->includes_phdrs)
5543 {
5544 phdr_load_seg = m;
5545 break;
5546 }
5547 }
5548 if (phdr_load_seg == NULL)
5549 off += actual * bed->s->sizeof_phdr;
5550
5551 for (j = 0; j < alloc; j++)
5552 {
5553 asection **secpp;
5554 bfd_vma off_adjust;
5555 bfd_boolean no_contents;
5556
5557 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5558 number of sections with contents contributing to both p_filesz
5559 and p_memsz, followed by a number of sections with no contents
5560 that just contribute to p_memsz. In this loop, OFF tracks next
5561 available file offset for PT_LOAD and PT_NOTE segments. */
5562 m = sorted_seg_map[j];
5563 p = phdrs + m->idx;
5564 p->p_type = m->p_type;
5565 p->p_flags = m->p_flags;
5566
5567 if (m->count == 0)
5568 p->p_vaddr = m->p_vaddr_offset;
5569 else
5570 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5571
5572 if (m->p_paddr_valid)
5573 p->p_paddr = m->p_paddr;
5574 else if (m->count == 0)
5575 p->p_paddr = 0;
5576 else
5577 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5578
5579 if (p->p_type == PT_LOAD
5580 && (abfd->flags & D_PAGED) != 0)
5581 {
5582 /* p_align in demand paged PT_LOAD segments effectively stores
5583 the maximum page size. When copying an executable with
5584 objcopy, we set m->p_align from the input file. Use this
5585 value for maxpagesize rather than bed->maxpagesize, which
5586 may be different. Note that we use maxpagesize for PT_TLS
5587 segment alignment later in this function, so we are relying
5588 on at least one PT_LOAD segment appearing before a PT_TLS
5589 segment. */
5590 if (m->p_align_valid)
5591 maxpagesize = m->p_align;
5592
5593 p->p_align = maxpagesize;
5594 }
5595 else if (m->p_align_valid)
5596 p->p_align = m->p_align;
5597 else if (m->count == 0)
5598 p->p_align = 1 << bed->s->log_file_align;
5599
5600 if (m == phdr_load_seg)
5601 {
5602 if (!m->includes_filehdr)
5603 p->p_offset = off;
5604 off += actual * bed->s->sizeof_phdr;
5605 }
5606
5607 no_contents = FALSE;
5608 off_adjust = 0;
5609 if (p->p_type == PT_LOAD
5610 && m->count > 0)
5611 {
5612 bfd_size_type align;
5613 unsigned int align_power = 0;
5614
5615 if (m->p_align_valid)
5616 align = p->p_align;
5617 else
5618 {
5619 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5620 {
5621 unsigned int secalign;
5622
5623 secalign = bfd_section_alignment (*secpp);
5624 if (secalign > align_power)
5625 align_power = secalign;
5626 }
5627 align = (bfd_size_type) 1 << align_power;
5628 if (align < maxpagesize)
5629 align = maxpagesize;
5630 }
5631
5632 for (i = 0; i < m->count; i++)
5633 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5634 /* If we aren't making room for this section, then
5635 it must be SHT_NOBITS regardless of what we've
5636 set via struct bfd_elf_special_section. */
5637 elf_section_type (m->sections[i]) = SHT_NOBITS;
5638
5639 /* Find out whether this segment contains any loadable
5640 sections. */
5641 no_contents = TRUE;
5642 for (i = 0; i < m->count; i++)
5643 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5644 {
5645 no_contents = FALSE;
5646 break;
5647 }
5648
5649 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5650
5651 /* Broken hardware and/or kernel require that files do not
5652 map the same page with different permissions on some hppa
5653 processors. */
5654 if (j != 0
5655 && (abfd->flags & D_PAGED) != 0
5656 && bed->no_page_alias
5657 && (off & (maxpagesize - 1)) != 0
5658 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5659 off_adjust += maxpagesize;
5660 off += off_adjust;
5661 if (no_contents)
5662 {
5663 /* We shouldn't need to align the segment on disk since
5664 the segment doesn't need file space, but the gABI
5665 arguably requires the alignment and glibc ld.so
5666 checks it. So to comply with the alignment
5667 requirement but not waste file space, we adjust
5668 p_offset for just this segment. (OFF_ADJUST is
5669 subtracted from OFF later.) This may put p_offset
5670 past the end of file, but that shouldn't matter. */
5671 }
5672 else
5673 off_adjust = 0;
5674 }
5675 /* Make sure the .dynamic section is the first section in the
5676 PT_DYNAMIC segment. */
5677 else if (p->p_type == PT_DYNAMIC
5678 && m->count > 1
5679 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5680 {
5681 _bfd_error_handler
5682 (_("%pB: The first section in the PT_DYNAMIC segment"
5683 " is not the .dynamic section"),
5684 abfd);
5685 bfd_set_error (bfd_error_bad_value);
5686 return FALSE;
5687 }
5688 /* Set the note section type to SHT_NOTE. */
5689 else if (p->p_type == PT_NOTE)
5690 for (i = 0; i < m->count; i++)
5691 elf_section_type (m->sections[i]) = SHT_NOTE;
5692
5693 if (m->includes_filehdr)
5694 {
5695 if (!m->p_flags_valid)
5696 p->p_flags |= PF_R;
5697 p->p_filesz = bed->s->sizeof_ehdr;
5698 p->p_memsz = bed->s->sizeof_ehdr;
5699 if (p->p_type == PT_LOAD)
5700 {
5701 if (m->count > 0)
5702 {
5703 if (p->p_vaddr < (bfd_vma) off
5704 || (!m->p_paddr_valid
5705 && p->p_paddr < (bfd_vma) off))
5706 {
5707 _bfd_error_handler
5708 (_("%pB: not enough room for program headers,"
5709 " try linking with -N"),
5710 abfd);
5711 bfd_set_error (bfd_error_bad_value);
5712 return FALSE;
5713 }
5714 p->p_vaddr -= off;
5715 if (!m->p_paddr_valid)
5716 p->p_paddr -= off;
5717 }
5718 }
5719 else if (sorted_seg_map[0]->includes_filehdr)
5720 {
5721 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5722 p->p_vaddr = filehdr->p_vaddr;
5723 if (!m->p_paddr_valid)
5724 p->p_paddr = filehdr->p_paddr;
5725 }
5726 }
5727
5728 if (m->includes_phdrs)
5729 {
5730 if (!m->p_flags_valid)
5731 p->p_flags |= PF_R;
5732 p->p_filesz += actual * bed->s->sizeof_phdr;
5733 p->p_memsz += actual * bed->s->sizeof_phdr;
5734 if (!m->includes_filehdr)
5735 {
5736 if (p->p_type == PT_LOAD)
5737 {
5738 elf_elfheader (abfd)->e_phoff = p->p_offset;
5739 if (m->count > 0)
5740 {
5741 p->p_vaddr -= off - p->p_offset;
5742 if (!m->p_paddr_valid)
5743 p->p_paddr -= off - p->p_offset;
5744 }
5745 }
5746 else if (phdr_load_seg != NULL)
5747 {
5748 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5749 bfd_vma phdr_off = 0;
5750 if (phdr_load_seg->includes_filehdr)
5751 phdr_off = bed->s->sizeof_ehdr;
5752 p->p_vaddr = phdr->p_vaddr + phdr_off;
5753 if (!m->p_paddr_valid)
5754 p->p_paddr = phdr->p_paddr + phdr_off;
5755 p->p_offset = phdr->p_offset + phdr_off;
5756 }
5757 else
5758 p->p_offset = bed->s->sizeof_ehdr;
5759 }
5760 }
5761
5762 if (p->p_type == PT_LOAD
5763 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5764 {
5765 if (!m->includes_filehdr && !m->includes_phdrs)
5766 p->p_offset = off;
5767 else
5768 {
5769 file_ptr adjust;
5770
5771 adjust = off - (p->p_offset + p->p_filesz);
5772 if (!no_contents)
5773 p->p_filesz += adjust;
5774 p->p_memsz += adjust;
5775 }
5776 }
5777
5778 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5779 maps. Set filepos for sections in PT_LOAD segments, and in
5780 core files, for sections in PT_NOTE segments.
5781 assign_file_positions_for_non_load_sections will set filepos
5782 for other sections and update p_filesz for other segments. */
5783 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5784 {
5785 asection *sec;
5786 bfd_size_type align;
5787 Elf_Internal_Shdr *this_hdr;
5788
5789 sec = *secpp;
5790 this_hdr = &elf_section_data (sec)->this_hdr;
5791 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5792
5793 if ((p->p_type == PT_LOAD
5794 || p->p_type == PT_TLS)
5795 && (this_hdr->sh_type != SHT_NOBITS
5796 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5797 && ((this_hdr->sh_flags & SHF_TLS) == 0
5798 || p->p_type == PT_TLS))))
5799 {
5800 bfd_vma p_start = p->p_paddr;
5801 bfd_vma p_end = p_start + p->p_memsz;
5802 bfd_vma s_start = sec->lma;
5803 bfd_vma adjust = s_start - p_end;
5804
5805 if (adjust != 0
5806 && (s_start < p_end
5807 || p_end < p_start))
5808 {
5809 _bfd_error_handler
5810 /* xgettext:c-format */
5811 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5812 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5813 adjust = 0;
5814 sec->lma = p_end;
5815 }
5816 p->p_memsz += adjust;
5817
5818 if (this_hdr->sh_type != SHT_NOBITS)
5819 {
5820 if (p->p_type == PT_LOAD)
5821 {
5822 if (p->p_filesz + adjust < p->p_memsz)
5823 {
5824 /* We have a PROGBITS section following NOBITS ones.
5825 Allocate file space for the NOBITS section(s) and
5826 zero it. */
5827 adjust = p->p_memsz - p->p_filesz;
5828 if (!write_zeros (abfd, off, adjust))
5829 return FALSE;
5830 }
5831 off += adjust;
5832 }
5833 p->p_filesz += adjust;
5834 }
5835 }
5836
5837 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5838 {
5839 /* The section at i == 0 is the one that actually contains
5840 everything. */
5841 if (i == 0)
5842 {
5843 this_hdr->sh_offset = sec->filepos = off;
5844 off += this_hdr->sh_size;
5845 p->p_filesz = this_hdr->sh_size;
5846 p->p_memsz = 0;
5847 p->p_align = 1;
5848 }
5849 else
5850 {
5851 /* The rest are fake sections that shouldn't be written. */
5852 sec->filepos = 0;
5853 sec->size = 0;
5854 sec->flags = 0;
5855 continue;
5856 }
5857 }
5858 else
5859 {
5860 if (p->p_type == PT_LOAD)
5861 {
5862 this_hdr->sh_offset = sec->filepos = off;
5863 if (this_hdr->sh_type != SHT_NOBITS)
5864 off += this_hdr->sh_size;
5865 }
5866 else if (this_hdr->sh_type == SHT_NOBITS
5867 && (this_hdr->sh_flags & SHF_TLS) != 0
5868 && this_hdr->sh_offset == 0)
5869 {
5870 /* This is a .tbss section that didn't get a PT_LOAD.
5871 (See _bfd_elf_map_sections_to_segments "Create a
5872 final PT_LOAD".) Set sh_offset to the value it
5873 would have if we had created a zero p_filesz and
5874 p_memsz PT_LOAD header for the section. This
5875 also makes the PT_TLS header have the same
5876 p_offset value. */
5877 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5878 off, align);
5879 this_hdr->sh_offset = sec->filepos = off + adjust;
5880 }
5881
5882 if (this_hdr->sh_type != SHT_NOBITS)
5883 {
5884 p->p_filesz += this_hdr->sh_size;
5885 /* A load section without SHF_ALLOC is something like
5886 a note section in a PT_NOTE segment. These take
5887 file space but are not loaded into memory. */
5888 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5889 p->p_memsz += this_hdr->sh_size;
5890 }
5891 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5892 {
5893 if (p->p_type == PT_TLS)
5894 p->p_memsz += this_hdr->sh_size;
5895
5896 /* .tbss is special. It doesn't contribute to p_memsz of
5897 normal segments. */
5898 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5899 p->p_memsz += this_hdr->sh_size;
5900 }
5901
5902 if (align > p->p_align
5903 && !m->p_align_valid
5904 && (p->p_type != PT_LOAD
5905 || (abfd->flags & D_PAGED) == 0))
5906 p->p_align = align;
5907 }
5908
5909 if (!m->p_flags_valid)
5910 {
5911 p->p_flags |= PF_R;
5912 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5913 p->p_flags |= PF_X;
5914 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5915 p->p_flags |= PF_W;
5916 }
5917 }
5918
5919 off -= off_adjust;
5920
5921 /* PR ld/20815 - Check that the program header segment, if
5922 present, will be loaded into memory. */
5923 if (p->p_type == PT_PHDR
5924 && phdr_load_seg == NULL
5925 && !(bed->elf_backend_allow_non_load_phdr != NULL
5926 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5927 {
5928 /* The fix for this error is usually to edit the linker script being
5929 used and set up the program headers manually. Either that or
5930 leave room for the headers at the start of the SECTIONS. */
5931 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5932 " by LOAD segment"),
5933 abfd);
5934 return FALSE;
5935 }
5936
5937 /* Check that all sections are in a PT_LOAD segment.
5938 Don't check funky gdb generated core files. */
5939 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5940 {
5941 bfd_boolean check_vma = TRUE;
5942
5943 for (i = 1; i < m->count; i++)
5944 if (m->sections[i]->vma == m->sections[i - 1]->vma
5945 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5946 ->this_hdr), p) != 0
5947 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5948 ->this_hdr), p) != 0)
5949 {
5950 /* Looks like we have overlays packed into the segment. */
5951 check_vma = FALSE;
5952 break;
5953 }
5954
5955 for (i = 0; i < m->count; i++)
5956 {
5957 Elf_Internal_Shdr *this_hdr;
5958 asection *sec;
5959
5960 sec = m->sections[i];
5961 this_hdr = &(elf_section_data(sec)->this_hdr);
5962 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5963 && !ELF_TBSS_SPECIAL (this_hdr, p))
5964 {
5965 _bfd_error_handler
5966 /* xgettext:c-format */
5967 (_("%pB: section `%pA' can't be allocated in segment %d"),
5968 abfd, sec, j);
5969 print_segment_map (m);
5970 }
5971 }
5972 }
5973 }
5974
5975 elf_next_file_pos (abfd) = off;
5976
5977 if (link_info != NULL
5978 && phdr_load_seg != NULL
5979 && phdr_load_seg->includes_filehdr)
5980 {
5981 /* There is a segment that contains both the file headers and the
5982 program headers, so provide a symbol __ehdr_start pointing there.
5983 A program can use this to examine itself robustly. */
5984
5985 struct elf_link_hash_entry *hash
5986 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5987 FALSE, FALSE, TRUE);
5988 /* If the symbol was referenced and not defined, define it. */
5989 if (hash != NULL
5990 && (hash->root.type == bfd_link_hash_new
5991 || hash->root.type == bfd_link_hash_undefined
5992 || hash->root.type == bfd_link_hash_undefweak
5993 || hash->root.type == bfd_link_hash_common))
5994 {
5995 asection *s = NULL;
5996 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5997
5998 if (phdr_load_seg->count != 0)
5999 /* The segment contains sections, so use the first one. */
6000 s = phdr_load_seg->sections[0];
6001 else
6002 /* Use the first (i.e. lowest-addressed) section in any segment. */
6003 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6004 if (m->p_type == PT_LOAD && m->count != 0)
6005 {
6006 s = m->sections[0];
6007 break;
6008 }
6009
6010 if (s != NULL)
6011 {
6012 hash->root.u.def.value = filehdr_vaddr - s->vma;
6013 hash->root.u.def.section = s;
6014 }
6015 else
6016 {
6017 hash->root.u.def.value = filehdr_vaddr;
6018 hash->root.u.def.section = bfd_abs_section_ptr;
6019 }
6020
6021 hash->root.type = bfd_link_hash_defined;
6022 hash->def_regular = 1;
6023 hash->non_elf = 0;
6024 }
6025 }
6026
6027 return TRUE;
6028 }
6029
6030 /* Determine if a bfd is a debuginfo file. Unfortunately there
6031 is no defined method for detecting such files, so we have to
6032 use heuristics instead. */
6033
6034 bfd_boolean
6035 is_debuginfo_file (bfd *abfd)
6036 {
6037 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6038 return FALSE;
6039
6040 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6041 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6042 Elf_Internal_Shdr **headerp;
6043
6044 for (headerp = start_headers; headerp < end_headers; headerp ++)
6045 {
6046 Elf_Internal_Shdr *header = * headerp;
6047
6048 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6049 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6050 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6051 && header->sh_type != SHT_NOBITS
6052 && header->sh_type != SHT_NOTE)
6053 return FALSE;
6054 }
6055
6056 return TRUE;
6057 }
6058
6059 /* Assign file positions for the other sections, except for compressed debugging
6060 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6061
6062 static bfd_boolean
6063 assign_file_positions_for_non_load_sections (bfd *abfd,
6064 struct bfd_link_info *link_info)
6065 {
6066 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6067 Elf_Internal_Shdr **i_shdrpp;
6068 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6069 Elf_Internal_Phdr *phdrs;
6070 Elf_Internal_Phdr *p;
6071 struct elf_segment_map *m;
6072 file_ptr off;
6073
6074 i_shdrpp = elf_elfsections (abfd);
6075 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6076 off = elf_next_file_pos (abfd);
6077 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6078 {
6079 Elf_Internal_Shdr *hdr;
6080
6081 hdr = *hdrpp;
6082 if (hdr->bfd_section != NULL
6083 && (hdr->bfd_section->filepos != 0
6084 || (hdr->sh_type == SHT_NOBITS
6085 && hdr->contents == NULL)))
6086 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6087 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6088 {
6089 if (hdr->sh_size != 0
6090 /* PR 24717 - debuginfo files are known to be not strictly
6091 compliant with the ELF standard. In particular they often
6092 have .note.gnu.property sections that are outside of any
6093 loadable segment. This is not a problem for such files,
6094 so do not warn about them. */
6095 && ! is_debuginfo_file (abfd))
6096 _bfd_error_handler
6097 /* xgettext:c-format */
6098 (_("%pB: warning: allocated section `%s' not in segment"),
6099 abfd,
6100 (hdr->bfd_section == NULL
6101 ? "*unknown*"
6102 : hdr->bfd_section->name));
6103 /* We don't need to page align empty sections. */
6104 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6105 off += vma_page_aligned_bias (hdr->sh_addr, off,
6106 bed->maxpagesize);
6107 else
6108 off += vma_page_aligned_bias (hdr->sh_addr, off,
6109 hdr->sh_addralign);
6110 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6111 FALSE);
6112 }
6113 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6114 && hdr->bfd_section == NULL)
6115 /* We don't know the offset of these sections yet: their size has
6116 not been decided. */
6117 || (hdr->bfd_section != NULL
6118 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6119 || (bfd_section_is_ctf (hdr->bfd_section)
6120 && abfd->is_linker_output)))
6121 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6122 || (elf_symtab_shndx_list (abfd) != NULL
6123 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6124 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6125 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6126 hdr->sh_offset = -1;
6127 else
6128 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6129 }
6130 elf_next_file_pos (abfd) = off;
6131
6132 /* Now that we have set the section file positions, we can set up
6133 the file positions for the non PT_LOAD segments. */
6134 phdrs = elf_tdata (abfd)->phdr;
6135 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6136 {
6137 if (p->p_type == PT_GNU_RELRO)
6138 {
6139 bfd_vma start, end;
6140 bfd_boolean ok;
6141
6142 if (link_info != NULL)
6143 {
6144 /* During linking the range of the RELRO segment is passed
6145 in link_info. Note that there may be padding between
6146 relro_start and the first RELRO section. */
6147 start = link_info->relro_start;
6148 end = link_info->relro_end;
6149 }
6150 else if (m->count != 0)
6151 {
6152 if (!m->p_size_valid)
6153 abort ();
6154 start = m->sections[0]->vma;
6155 end = start + m->p_size;
6156 }
6157 else
6158 {
6159 start = 0;
6160 end = 0;
6161 }
6162
6163 ok = FALSE;
6164 if (start < end)
6165 {
6166 struct elf_segment_map *lm;
6167 const Elf_Internal_Phdr *lp;
6168 unsigned int i;
6169
6170 /* Find a LOAD segment containing a section in the RELRO
6171 segment. */
6172 for (lm = elf_seg_map (abfd), lp = phdrs;
6173 lm != NULL;
6174 lm = lm->next, lp++)
6175 {
6176 if (lp->p_type == PT_LOAD
6177 && lm->count != 0
6178 && (lm->sections[lm->count - 1]->vma
6179 + (!IS_TBSS (lm->sections[lm->count - 1])
6180 ? lm->sections[lm->count - 1]->size
6181 : 0)) > start
6182 && lm->sections[0]->vma < end)
6183 break;
6184 }
6185
6186 if (lm != NULL)
6187 {
6188 /* Find the section starting the RELRO segment. */
6189 for (i = 0; i < lm->count; i++)
6190 {
6191 asection *s = lm->sections[i];
6192 if (s->vma >= start
6193 && s->vma < end
6194 && s->size != 0)
6195 break;
6196 }
6197
6198 if (i < lm->count)
6199 {
6200 p->p_vaddr = lm->sections[i]->vma;
6201 p->p_paddr = lm->sections[i]->lma;
6202 p->p_offset = lm->sections[i]->filepos;
6203 p->p_memsz = end - p->p_vaddr;
6204 p->p_filesz = p->p_memsz;
6205
6206 /* The RELRO segment typically ends a few bytes
6207 into .got.plt but other layouts are possible.
6208 In cases where the end does not match any
6209 loaded section (for instance is in file
6210 padding), trim p_filesz back to correspond to
6211 the end of loaded section contents. */
6212 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6213 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6214
6215 /* Preserve the alignment and flags if they are
6216 valid. The gold linker generates RW/4 for
6217 the PT_GNU_RELRO section. It is better for
6218 objcopy/strip to honor these attributes
6219 otherwise gdb will choke when using separate
6220 debug files. */
6221 if (!m->p_align_valid)
6222 p->p_align = 1;
6223 if (!m->p_flags_valid)
6224 p->p_flags = PF_R;
6225 ok = TRUE;
6226 }
6227 }
6228 }
6229 if (link_info != NULL)
6230 BFD_ASSERT (ok);
6231 if (!ok)
6232 memset (p, 0, sizeof *p);
6233 }
6234 else if (p->p_type == PT_GNU_STACK)
6235 {
6236 if (m->p_size_valid)
6237 p->p_memsz = m->p_size;
6238 }
6239 else if (m->count != 0)
6240 {
6241 unsigned int i;
6242
6243 if (p->p_type != PT_LOAD
6244 && (p->p_type != PT_NOTE
6245 || bfd_get_format (abfd) != bfd_core))
6246 {
6247 /* A user specified segment layout may include a PHDR
6248 segment that overlaps with a LOAD segment... */
6249 if (p->p_type == PT_PHDR)
6250 {
6251 m->count = 0;
6252 continue;
6253 }
6254
6255 if (m->includes_filehdr || m->includes_phdrs)
6256 {
6257 /* PR 17512: file: 2195325e. */
6258 _bfd_error_handler
6259 (_("%pB: error: non-load segment %d includes file header "
6260 "and/or program header"),
6261 abfd, (int) (p - phdrs));
6262 return FALSE;
6263 }
6264
6265 p->p_filesz = 0;
6266 p->p_offset = m->sections[0]->filepos;
6267 for (i = m->count; i-- != 0;)
6268 {
6269 asection *sect = m->sections[i];
6270 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6271 if (hdr->sh_type != SHT_NOBITS)
6272 {
6273 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6274 + hdr->sh_size);
6275 break;
6276 }
6277 }
6278 }
6279 }
6280 }
6281
6282 return TRUE;
6283 }
6284
6285 static elf_section_list *
6286 find_section_in_list (unsigned int i, elf_section_list * list)
6287 {
6288 for (;list != NULL; list = list->next)
6289 if (list->ndx == i)
6290 break;
6291 return list;
6292 }
6293
6294 /* Work out the file positions of all the sections. This is called by
6295 _bfd_elf_compute_section_file_positions. All the section sizes and
6296 VMAs must be known before this is called.
6297
6298 Reloc sections come in two flavours: Those processed specially as
6299 "side-channel" data attached to a section to which they apply, and those that
6300 bfd doesn't process as relocations. The latter sort are stored in a normal
6301 bfd section by bfd_section_from_shdr. We don't consider the former sort
6302 here, unless they form part of the loadable image. Reloc sections not
6303 assigned here (and compressed debugging sections and CTF sections which
6304 nothing else in the file can rely upon) will be handled later by
6305 assign_file_positions_for_relocs.
6306
6307 We also don't set the positions of the .symtab and .strtab here. */
6308
6309 static bfd_boolean
6310 assign_file_positions_except_relocs (bfd *abfd,
6311 struct bfd_link_info *link_info)
6312 {
6313 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6314 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6315 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6316
6317 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6318 && bfd_get_format (abfd) != bfd_core)
6319 {
6320 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6321 unsigned int num_sec = elf_numsections (abfd);
6322 Elf_Internal_Shdr **hdrpp;
6323 unsigned int i;
6324 file_ptr off;
6325
6326 /* Start after the ELF header. */
6327 off = i_ehdrp->e_ehsize;
6328
6329 /* We are not creating an executable, which means that we are
6330 not creating a program header, and that the actual order of
6331 the sections in the file is unimportant. */
6332 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6333 {
6334 Elf_Internal_Shdr *hdr;
6335
6336 hdr = *hdrpp;
6337 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6338 && hdr->bfd_section == NULL)
6339 /* Do not assign offsets for these sections yet: we don't know
6340 their sizes. */
6341 || (hdr->bfd_section != NULL
6342 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6343 || (bfd_section_is_ctf (hdr->bfd_section)
6344 && abfd->is_linker_output)))
6345 || i == elf_onesymtab (abfd)
6346 || (elf_symtab_shndx_list (abfd) != NULL
6347 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6348 || i == elf_strtab_sec (abfd)
6349 || i == elf_shstrtab_sec (abfd))
6350 {
6351 hdr->sh_offset = -1;
6352 }
6353 else
6354 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6355 }
6356
6357 elf_next_file_pos (abfd) = off;
6358 }
6359 else
6360 {
6361 unsigned int alloc;
6362
6363 /* Assign file positions for the loaded sections based on the
6364 assignment of sections to segments. */
6365 if (!assign_file_positions_for_load_sections (abfd, link_info))
6366 return FALSE;
6367
6368 /* And for non-load sections. */
6369 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6370 return FALSE;
6371
6372 if (bed->elf_backend_modify_program_headers != NULL)
6373 {
6374 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6375 return FALSE;
6376 }
6377
6378 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6379 if (link_info != NULL && bfd_link_pie (link_info))
6380 {
6381 unsigned int num_segments = i_ehdrp->e_phnum;
6382 Elf_Internal_Phdr *segment = tdata->phdr;
6383 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6384
6385 /* Find the lowest p_vaddr in PT_LOAD segments. */
6386 bfd_vma p_vaddr = (bfd_vma) -1;
6387 for (; segment < end_segment; segment++)
6388 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6389 p_vaddr = segment->p_vaddr;
6390
6391 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6392 segments is non-zero. */
6393 if (p_vaddr)
6394 i_ehdrp->e_type = ET_EXEC;
6395 }
6396
6397 /* Write out the program headers.
6398 FIXME: We used to have code here to sort the PT_LOAD segments into
6399 ascending order, as per the ELF spec. But this breaks some programs,
6400 including the Linux kernel. But really either the spec should be
6401 changed or the programs updated. */
6402 alloc = i_ehdrp->e_phnum;
6403 if (alloc == 0)
6404 return TRUE;
6405
6406 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6407 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6408 return FALSE;
6409 }
6410
6411 return TRUE;
6412 }
6413
6414 static bfd_boolean
6415 prep_headers (bfd *abfd)
6416 {
6417 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6418 struct elf_strtab_hash *shstrtab;
6419 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6420
6421 i_ehdrp = elf_elfheader (abfd);
6422
6423 shstrtab = _bfd_elf_strtab_init ();
6424 if (shstrtab == NULL)
6425 return FALSE;
6426
6427 elf_shstrtab (abfd) = shstrtab;
6428
6429 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6430 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6431 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6432 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6433
6434 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6435 i_ehdrp->e_ident[EI_DATA] =
6436 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6437 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6438
6439 if ((abfd->flags & DYNAMIC) != 0)
6440 i_ehdrp->e_type = ET_DYN;
6441 else if ((abfd->flags & EXEC_P) != 0)
6442 i_ehdrp->e_type = ET_EXEC;
6443 else if (bfd_get_format (abfd) == bfd_core)
6444 i_ehdrp->e_type = ET_CORE;
6445 else
6446 i_ehdrp->e_type = ET_REL;
6447
6448 switch (bfd_get_arch (abfd))
6449 {
6450 case bfd_arch_unknown:
6451 i_ehdrp->e_machine = EM_NONE;
6452 break;
6453
6454 /* There used to be a long list of cases here, each one setting
6455 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6456 in the corresponding bfd definition. To avoid duplication,
6457 the switch was removed. Machines that need special handling
6458 can generally do it in elf_backend_final_write_processing(),
6459 unless they need the information earlier than the final write.
6460 Such need can generally be supplied by replacing the tests for
6461 e_machine with the conditions used to determine it. */
6462 default:
6463 i_ehdrp->e_machine = bed->elf_machine_code;
6464 }
6465
6466 i_ehdrp->e_version = bed->s->ev_current;
6467 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6468
6469 /* No program header, for now. */
6470 i_ehdrp->e_phoff = 0;
6471 i_ehdrp->e_phentsize = 0;
6472 i_ehdrp->e_phnum = 0;
6473
6474 /* Each bfd section is section header entry. */
6475 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6476 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6477
6478 /* If we're building an executable, we'll need a program header table. */
6479 if (abfd->flags & EXEC_P)
6480 /* It all happens later. */
6481 ;
6482 else
6483 {
6484 i_ehdrp->e_phentsize = 0;
6485 i_ehdrp->e_phoff = 0;
6486 }
6487
6488 elf_tdata (abfd)->symtab_hdr.sh_name =
6489 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6490 elf_tdata (abfd)->strtab_hdr.sh_name =
6491 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6492 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6493 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6494 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6495 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6496 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6497 return FALSE;
6498
6499 return TRUE;
6500 }
6501
6502 /* Assign file positions for all the reloc sections which are not part
6503 of the loadable file image, and the file position of section headers. */
6504
6505 static bfd_boolean
6506 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6507 {
6508 file_ptr off;
6509 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6510 Elf_Internal_Shdr *shdrp;
6511 Elf_Internal_Ehdr *i_ehdrp;
6512 const struct elf_backend_data *bed;
6513
6514 off = elf_next_file_pos (abfd);
6515
6516 shdrpp = elf_elfsections (abfd);
6517 end_shdrpp = shdrpp + elf_numsections (abfd);
6518 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6519 {
6520 shdrp = *shdrpp;
6521 if (shdrp->sh_offset == -1)
6522 {
6523 asection *sec = shdrp->bfd_section;
6524 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6525 || shdrp->sh_type == SHT_RELA);
6526 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6527 if (is_rel
6528 || is_ctf
6529 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6530 {
6531 if (!is_rel && !is_ctf)
6532 {
6533 const char *name = sec->name;
6534 struct bfd_elf_section_data *d;
6535
6536 /* Compress DWARF debug sections. */
6537 if (!bfd_compress_section (abfd, sec,
6538 shdrp->contents))
6539 return FALSE;
6540
6541 if (sec->compress_status == COMPRESS_SECTION_DONE
6542 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6543 {
6544 /* If section is compressed with zlib-gnu, convert
6545 section name from .debug_* to .zdebug_*. */
6546 char *new_name
6547 = convert_debug_to_zdebug (abfd, name);
6548 if (new_name == NULL)
6549 return FALSE;
6550 name = new_name;
6551 }
6552 /* Add section name to section name section. */
6553 if (shdrp->sh_name != (unsigned int) -1)
6554 abort ();
6555 shdrp->sh_name
6556 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6557 name, FALSE);
6558 d = elf_section_data (sec);
6559
6560 /* Add reloc section name to section name section. */
6561 if (d->rel.hdr
6562 && !_bfd_elf_set_reloc_sh_name (abfd,
6563 d->rel.hdr,
6564 name, FALSE))
6565 return FALSE;
6566 if (d->rela.hdr
6567 && !_bfd_elf_set_reloc_sh_name (abfd,
6568 d->rela.hdr,
6569 name, TRUE))
6570 return FALSE;
6571
6572 /* Update section size and contents. */
6573 shdrp->sh_size = sec->size;
6574 shdrp->contents = sec->contents;
6575 shdrp->bfd_section->contents = NULL;
6576 }
6577 else if (is_ctf)
6578 {
6579 /* Update section size and contents. */
6580 shdrp->sh_size = sec->size;
6581 shdrp->contents = sec->contents;
6582 }
6583
6584 off = _bfd_elf_assign_file_position_for_section (shdrp,
6585 off,
6586 TRUE);
6587 }
6588 }
6589 }
6590
6591 /* Place section name section after DWARF debug sections have been
6592 compressed. */
6593 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6594 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6595 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6596 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6597
6598 /* Place the section headers. */
6599 i_ehdrp = elf_elfheader (abfd);
6600 bed = get_elf_backend_data (abfd);
6601 off = align_file_position (off, 1 << bed->s->log_file_align);
6602 i_ehdrp->e_shoff = off;
6603 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6604 elf_next_file_pos (abfd) = off;
6605
6606 return TRUE;
6607 }
6608
6609 bfd_boolean
6610 _bfd_elf_write_object_contents (bfd *abfd)
6611 {
6612 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6613 Elf_Internal_Shdr **i_shdrp;
6614 bfd_boolean failed;
6615 unsigned int count, num_sec;
6616 struct elf_obj_tdata *t;
6617
6618 if (! abfd->output_has_begun
6619 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6620 return FALSE;
6621 /* Do not rewrite ELF data when the BFD has been opened for update.
6622 abfd->output_has_begun was set to TRUE on opening, so creation of new
6623 sections, and modification of existing section sizes was restricted.
6624 This means the ELF header, program headers and section headers can't have
6625 changed.
6626 If the contents of any sections has been modified, then those changes have
6627 already been written to the BFD. */
6628 else if (abfd->direction == both_direction)
6629 {
6630 BFD_ASSERT (abfd->output_has_begun);
6631 return TRUE;
6632 }
6633
6634 i_shdrp = elf_elfsections (abfd);
6635
6636 failed = FALSE;
6637 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6638 if (failed)
6639 return FALSE;
6640
6641 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6642 return FALSE;
6643
6644 /* After writing the headers, we need to write the sections too... */
6645 num_sec = elf_numsections (abfd);
6646 for (count = 1; count < num_sec; count++)
6647 {
6648 i_shdrp[count]->sh_name
6649 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6650 i_shdrp[count]->sh_name);
6651 if (bed->elf_backend_section_processing)
6652 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6653 return FALSE;
6654 if (i_shdrp[count]->contents)
6655 {
6656 bfd_size_type amt = i_shdrp[count]->sh_size;
6657
6658 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6659 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6660 return FALSE;
6661 }
6662 }
6663
6664 /* Write out the section header names. */
6665 t = elf_tdata (abfd);
6666 if (elf_shstrtab (abfd) != NULL
6667 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6668 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6669 return FALSE;
6670
6671 if (!(*bed->elf_backend_final_write_processing) (abfd))
6672 return FALSE;
6673
6674 if (!bed->s->write_shdrs_and_ehdr (abfd))
6675 return FALSE;
6676
6677 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6678 if (t->o->build_id.after_write_object_contents != NULL)
6679 return (*t->o->build_id.after_write_object_contents) (abfd);
6680
6681 return TRUE;
6682 }
6683
6684 bfd_boolean
6685 _bfd_elf_write_corefile_contents (bfd *abfd)
6686 {
6687 /* Hopefully this can be done just like an object file. */
6688 return _bfd_elf_write_object_contents (abfd);
6689 }
6690
6691 /* Given a section, search the header to find them. */
6692
6693 unsigned int
6694 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6695 {
6696 const struct elf_backend_data *bed;
6697 unsigned int sec_index;
6698
6699 if (elf_section_data (asect) != NULL
6700 && elf_section_data (asect)->this_idx != 0)
6701 return elf_section_data (asect)->this_idx;
6702
6703 if (bfd_is_abs_section (asect))
6704 sec_index = SHN_ABS;
6705 else if (bfd_is_com_section (asect))
6706 sec_index = SHN_COMMON;
6707 else if (bfd_is_und_section (asect))
6708 sec_index = SHN_UNDEF;
6709 else
6710 sec_index = SHN_BAD;
6711
6712 bed = get_elf_backend_data (abfd);
6713 if (bed->elf_backend_section_from_bfd_section)
6714 {
6715 int retval = sec_index;
6716
6717 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6718 return retval;
6719 }
6720
6721 if (sec_index == SHN_BAD)
6722 bfd_set_error (bfd_error_nonrepresentable_section);
6723
6724 return sec_index;
6725 }
6726
6727 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6728 on error. */
6729
6730 int
6731 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6732 {
6733 asymbol *asym_ptr = *asym_ptr_ptr;
6734 int idx;
6735 flagword flags = asym_ptr->flags;
6736
6737 /* When gas creates relocations against local labels, it creates its
6738 own symbol for the section, but does put the symbol into the
6739 symbol chain, so udata is 0. When the linker is generating
6740 relocatable output, this section symbol may be for one of the
6741 input sections rather than the output section. */
6742 if (asym_ptr->udata.i == 0
6743 && (flags & BSF_SECTION_SYM)
6744 && asym_ptr->section)
6745 {
6746 asection *sec;
6747 int indx;
6748
6749 sec = asym_ptr->section;
6750 if (sec->owner != abfd && sec->output_section != NULL)
6751 sec = sec->output_section;
6752 if (sec->owner == abfd
6753 && (indx = sec->index) < elf_num_section_syms (abfd)
6754 && elf_section_syms (abfd)[indx] != NULL)
6755 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6756 }
6757
6758 idx = asym_ptr->udata.i;
6759
6760 if (idx == 0)
6761 {
6762 /* This case can occur when using --strip-symbol on a symbol
6763 which is used in a relocation entry. */
6764 _bfd_error_handler
6765 /* xgettext:c-format */
6766 (_("%pB: symbol `%s' required but not present"),
6767 abfd, bfd_asymbol_name (asym_ptr));
6768 bfd_set_error (bfd_error_no_symbols);
6769 return -1;
6770 }
6771
6772 #if DEBUG & 4
6773 {
6774 fprintf (stderr,
6775 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6776 (long) asym_ptr, asym_ptr->name, idx, flags);
6777 fflush (stderr);
6778 }
6779 #endif
6780
6781 return idx;
6782 }
6783
6784 /* Rewrite program header information. */
6785
6786 static bfd_boolean
6787 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6788 {
6789 Elf_Internal_Ehdr *iehdr;
6790 struct elf_segment_map *map;
6791 struct elf_segment_map *map_first;
6792 struct elf_segment_map **pointer_to_map;
6793 Elf_Internal_Phdr *segment;
6794 asection *section;
6795 unsigned int i;
6796 unsigned int num_segments;
6797 bfd_boolean phdr_included = FALSE;
6798 bfd_boolean p_paddr_valid;
6799 bfd_vma maxpagesize;
6800 struct elf_segment_map *phdr_adjust_seg = NULL;
6801 unsigned int phdr_adjust_num = 0;
6802 const struct elf_backend_data *bed;
6803
6804 bed = get_elf_backend_data (ibfd);
6805 iehdr = elf_elfheader (ibfd);
6806
6807 map_first = NULL;
6808 pointer_to_map = &map_first;
6809
6810 num_segments = elf_elfheader (ibfd)->e_phnum;
6811 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6812
6813 /* Returns the end address of the segment + 1. */
6814 #define SEGMENT_END(segment, start) \
6815 (start + (segment->p_memsz > segment->p_filesz \
6816 ? segment->p_memsz : segment->p_filesz))
6817
6818 #define SECTION_SIZE(section, segment) \
6819 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6820 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6821 ? section->size : 0)
6822
6823 /* Returns TRUE if the given section is contained within
6824 the given segment. VMA addresses are compared. */
6825 #define IS_CONTAINED_BY_VMA(section, segment) \
6826 (section->vma >= segment->p_vaddr \
6827 && (section->vma + SECTION_SIZE (section, segment) \
6828 <= (SEGMENT_END (segment, segment->p_vaddr))))
6829
6830 /* Returns TRUE if the given section is contained within
6831 the given segment. LMA addresses are compared. */
6832 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6833 (section->lma >= base \
6834 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6835 && (section->lma + SECTION_SIZE (section, segment) \
6836 <= SEGMENT_END (segment, base)))
6837
6838 /* Handle PT_NOTE segment. */
6839 #define IS_NOTE(p, s) \
6840 (p->p_type == PT_NOTE \
6841 && elf_section_type (s) == SHT_NOTE \
6842 && (bfd_vma) s->filepos >= p->p_offset \
6843 && ((bfd_vma) s->filepos + s->size \
6844 <= p->p_offset + p->p_filesz))
6845
6846 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6847 etc. */
6848 #define IS_COREFILE_NOTE(p, s) \
6849 (IS_NOTE (p, s) \
6850 && bfd_get_format (ibfd) == bfd_core \
6851 && s->vma == 0 \
6852 && s->lma == 0)
6853
6854 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6855 linker, which generates a PT_INTERP section with p_vaddr and
6856 p_memsz set to 0. */
6857 #define IS_SOLARIS_PT_INTERP(p, s) \
6858 (p->p_vaddr == 0 \
6859 && p->p_paddr == 0 \
6860 && p->p_memsz == 0 \
6861 && p->p_filesz > 0 \
6862 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6863 && s->size > 0 \
6864 && (bfd_vma) s->filepos >= p->p_offset \
6865 && ((bfd_vma) s->filepos + s->size \
6866 <= p->p_offset + p->p_filesz))
6867
6868 /* Decide if the given section should be included in the given segment.
6869 A section will be included if:
6870 1. It is within the address space of the segment -- we use the LMA
6871 if that is set for the segment and the VMA otherwise,
6872 2. It is an allocated section or a NOTE section in a PT_NOTE
6873 segment.
6874 3. There is an output section associated with it,
6875 4. The section has not already been allocated to a previous segment.
6876 5. PT_GNU_STACK segments do not include any sections.
6877 6. PT_TLS segment includes only SHF_TLS sections.
6878 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6879 8. PT_DYNAMIC should not contain empty sections at the beginning
6880 (with the possible exception of .dynamic). */
6881 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6882 ((((segment->p_paddr \
6883 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6884 : IS_CONTAINED_BY_VMA (section, segment)) \
6885 && (section->flags & SEC_ALLOC) != 0) \
6886 || IS_NOTE (segment, section)) \
6887 && segment->p_type != PT_GNU_STACK \
6888 && (segment->p_type != PT_TLS \
6889 || (section->flags & SEC_THREAD_LOCAL)) \
6890 && (segment->p_type == PT_LOAD \
6891 || segment->p_type == PT_TLS \
6892 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6893 && (segment->p_type != PT_DYNAMIC \
6894 || SECTION_SIZE (section, segment) > 0 \
6895 || (segment->p_paddr \
6896 ? segment->p_paddr != section->lma \
6897 : segment->p_vaddr != section->vma) \
6898 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6899 && (segment->p_type != PT_LOAD || !section->segment_mark))
6900
6901 /* If the output section of a section in the input segment is NULL,
6902 it is removed from the corresponding output segment. */
6903 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6904 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6905 && section->output_section != NULL)
6906
6907 /* Returns TRUE iff seg1 starts after the end of seg2. */
6908 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6909 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6910
6911 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6912 their VMA address ranges and their LMA address ranges overlap.
6913 It is possible to have overlapping VMA ranges without overlapping LMA
6914 ranges. RedBoot images for example can have both .data and .bss mapped
6915 to the same VMA range, but with the .data section mapped to a different
6916 LMA. */
6917 #define SEGMENT_OVERLAPS(seg1, seg2) \
6918 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6919 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6920 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6921 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6922
6923 /* Initialise the segment mark field. */
6924 for (section = ibfd->sections; section != NULL; section = section->next)
6925 section->segment_mark = FALSE;
6926
6927 /* The Solaris linker creates program headers in which all the
6928 p_paddr fields are zero. When we try to objcopy or strip such a
6929 file, we get confused. Check for this case, and if we find it
6930 don't set the p_paddr_valid fields. */
6931 p_paddr_valid = FALSE;
6932 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6933 i < num_segments;
6934 i++, segment++)
6935 if (segment->p_paddr != 0)
6936 {
6937 p_paddr_valid = TRUE;
6938 break;
6939 }
6940
6941 /* Scan through the segments specified in the program header
6942 of the input BFD. For this first scan we look for overlaps
6943 in the loadable segments. These can be created by weird
6944 parameters to objcopy. Also, fix some solaris weirdness. */
6945 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6946 i < num_segments;
6947 i++, segment++)
6948 {
6949 unsigned int j;
6950 Elf_Internal_Phdr *segment2;
6951
6952 if (segment->p_type == PT_INTERP)
6953 for (section = ibfd->sections; section; section = section->next)
6954 if (IS_SOLARIS_PT_INTERP (segment, section))
6955 {
6956 /* Mininal change so that the normal section to segment
6957 assignment code will work. */
6958 segment->p_vaddr = section->vma;
6959 break;
6960 }
6961
6962 if (segment->p_type != PT_LOAD)
6963 {
6964 /* Remove PT_GNU_RELRO segment. */
6965 if (segment->p_type == PT_GNU_RELRO)
6966 segment->p_type = PT_NULL;
6967 continue;
6968 }
6969
6970 /* Determine if this segment overlaps any previous segments. */
6971 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6972 {
6973 bfd_signed_vma extra_length;
6974
6975 if (segment2->p_type != PT_LOAD
6976 || !SEGMENT_OVERLAPS (segment, segment2))
6977 continue;
6978
6979 /* Merge the two segments together. */
6980 if (segment2->p_vaddr < segment->p_vaddr)
6981 {
6982 /* Extend SEGMENT2 to include SEGMENT and then delete
6983 SEGMENT. */
6984 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6985 - SEGMENT_END (segment2, segment2->p_vaddr));
6986
6987 if (extra_length > 0)
6988 {
6989 segment2->p_memsz += extra_length;
6990 segment2->p_filesz += extra_length;
6991 }
6992
6993 segment->p_type = PT_NULL;
6994
6995 /* Since we have deleted P we must restart the outer loop. */
6996 i = 0;
6997 segment = elf_tdata (ibfd)->phdr;
6998 break;
6999 }
7000 else
7001 {
7002 /* Extend SEGMENT to include SEGMENT2 and then delete
7003 SEGMENT2. */
7004 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7005 - SEGMENT_END (segment, segment->p_vaddr));
7006
7007 if (extra_length > 0)
7008 {
7009 segment->p_memsz += extra_length;
7010 segment->p_filesz += extra_length;
7011 }
7012
7013 segment2->p_type = PT_NULL;
7014 }
7015 }
7016 }
7017
7018 /* The second scan attempts to assign sections to segments. */
7019 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7020 i < num_segments;
7021 i++, segment++)
7022 {
7023 unsigned int section_count;
7024 asection **sections;
7025 asection *output_section;
7026 unsigned int isec;
7027 asection *matching_lma;
7028 asection *suggested_lma;
7029 unsigned int j;
7030 bfd_size_type amt;
7031 asection *first_section;
7032
7033 if (segment->p_type == PT_NULL)
7034 continue;
7035
7036 first_section = NULL;
7037 /* Compute how many sections might be placed into this segment. */
7038 for (section = ibfd->sections, section_count = 0;
7039 section != NULL;
7040 section = section->next)
7041 {
7042 /* Find the first section in the input segment, which may be
7043 removed from the corresponding output segment. */
7044 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7045 {
7046 if (first_section == NULL)
7047 first_section = section;
7048 if (section->output_section != NULL)
7049 ++section_count;
7050 }
7051 }
7052
7053 /* Allocate a segment map big enough to contain
7054 all of the sections we have selected. */
7055 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7056 amt += (bfd_size_type) section_count * sizeof (asection *);
7057 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7058 if (map == NULL)
7059 return FALSE;
7060
7061 /* Initialise the fields of the segment map. Default to
7062 using the physical address of the segment in the input BFD. */
7063 map->next = NULL;
7064 map->p_type = segment->p_type;
7065 map->p_flags = segment->p_flags;
7066 map->p_flags_valid = 1;
7067
7068 /* If the first section in the input segment is removed, there is
7069 no need to preserve segment physical address in the corresponding
7070 output segment. */
7071 if (!first_section || first_section->output_section != NULL)
7072 {
7073 map->p_paddr = segment->p_paddr;
7074 map->p_paddr_valid = p_paddr_valid;
7075 }
7076
7077 /* Determine if this segment contains the ELF file header
7078 and if it contains the program headers themselves. */
7079 map->includes_filehdr = (segment->p_offset == 0
7080 && segment->p_filesz >= iehdr->e_ehsize);
7081 map->includes_phdrs = 0;
7082
7083 if (!phdr_included || segment->p_type != PT_LOAD)
7084 {
7085 map->includes_phdrs =
7086 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7087 && (segment->p_offset + segment->p_filesz
7088 >= ((bfd_vma) iehdr->e_phoff
7089 + iehdr->e_phnum * iehdr->e_phentsize)));
7090
7091 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7092 phdr_included = TRUE;
7093 }
7094
7095 if (section_count == 0)
7096 {
7097 /* Special segments, such as the PT_PHDR segment, may contain
7098 no sections, but ordinary, loadable segments should contain
7099 something. They are allowed by the ELF spec however, so only
7100 a warning is produced.
7101 There is however the valid use case of embedded systems which
7102 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7103 flash memory with zeros. No warning is shown for that case. */
7104 if (segment->p_type == PT_LOAD
7105 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7106 /* xgettext:c-format */
7107 _bfd_error_handler
7108 (_("%pB: warning: empty loadable segment detected"
7109 " at vaddr=%#" PRIx64 ", is this intentional?"),
7110 ibfd, (uint64_t) segment->p_vaddr);
7111
7112 map->p_vaddr_offset = segment->p_vaddr;
7113 map->count = 0;
7114 *pointer_to_map = map;
7115 pointer_to_map = &map->next;
7116
7117 continue;
7118 }
7119
7120 /* Now scan the sections in the input BFD again and attempt
7121 to add their corresponding output sections to the segment map.
7122 The problem here is how to handle an output section which has
7123 been moved (ie had its LMA changed). There are four possibilities:
7124
7125 1. None of the sections have been moved.
7126 In this case we can continue to use the segment LMA from the
7127 input BFD.
7128
7129 2. All of the sections have been moved by the same amount.
7130 In this case we can change the segment's LMA to match the LMA
7131 of the first section.
7132
7133 3. Some of the sections have been moved, others have not.
7134 In this case those sections which have not been moved can be
7135 placed in the current segment which will have to have its size,
7136 and possibly its LMA changed, and a new segment or segments will
7137 have to be created to contain the other sections.
7138
7139 4. The sections have been moved, but not by the same amount.
7140 In this case we can change the segment's LMA to match the LMA
7141 of the first section and we will have to create a new segment
7142 or segments to contain the other sections.
7143
7144 In order to save time, we allocate an array to hold the section
7145 pointers that we are interested in. As these sections get assigned
7146 to a segment, they are removed from this array. */
7147
7148 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
7149 if (sections == NULL)
7150 return FALSE;
7151
7152 /* Step One: Scan for segment vs section LMA conflicts.
7153 Also add the sections to the section array allocated above.
7154 Also add the sections to the current segment. In the common
7155 case, where the sections have not been moved, this means that
7156 we have completely filled the segment, and there is nothing
7157 more to do. */
7158 isec = 0;
7159 matching_lma = NULL;
7160 suggested_lma = NULL;
7161
7162 for (section = first_section, j = 0;
7163 section != NULL;
7164 section = section->next)
7165 {
7166 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7167 {
7168 output_section = section->output_section;
7169
7170 sections[j++] = section;
7171
7172 /* The Solaris native linker always sets p_paddr to 0.
7173 We try to catch that case here, and set it to the
7174 correct value. Note - some backends require that
7175 p_paddr be left as zero. */
7176 if (!p_paddr_valid
7177 && segment->p_vaddr != 0
7178 && !bed->want_p_paddr_set_to_zero
7179 && isec == 0
7180 && output_section->lma != 0
7181 && (align_power (segment->p_vaddr
7182 + (map->includes_filehdr
7183 ? iehdr->e_ehsize : 0)
7184 + (map->includes_phdrs
7185 ? iehdr->e_phnum * iehdr->e_phentsize
7186 : 0),
7187 output_section->alignment_power)
7188 == output_section->vma))
7189 map->p_paddr = segment->p_vaddr;
7190
7191 /* Match up the physical address of the segment with the
7192 LMA address of the output section. */
7193 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7194 || IS_COREFILE_NOTE (segment, section)
7195 || (bed->want_p_paddr_set_to_zero
7196 && IS_CONTAINED_BY_VMA (output_section, segment)))
7197 {
7198 if (matching_lma == NULL
7199 || output_section->lma < matching_lma->lma)
7200 matching_lma = output_section;
7201
7202 /* We assume that if the section fits within the segment
7203 then it does not overlap any other section within that
7204 segment. */
7205 map->sections[isec++] = output_section;
7206 }
7207 else if (suggested_lma == NULL)
7208 suggested_lma = output_section;
7209
7210 if (j == section_count)
7211 break;
7212 }
7213 }
7214
7215 BFD_ASSERT (j == section_count);
7216
7217 /* Step Two: Adjust the physical address of the current segment,
7218 if necessary. */
7219 if (isec == section_count)
7220 {
7221 /* All of the sections fitted within the segment as currently
7222 specified. This is the default case. Add the segment to
7223 the list of built segments and carry on to process the next
7224 program header in the input BFD. */
7225 map->count = section_count;
7226 *pointer_to_map = map;
7227 pointer_to_map = &map->next;
7228
7229 if (p_paddr_valid
7230 && !bed->want_p_paddr_set_to_zero)
7231 {
7232 bfd_vma hdr_size = 0;
7233 if (map->includes_filehdr)
7234 hdr_size = iehdr->e_ehsize;
7235 if (map->includes_phdrs)
7236 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7237
7238 /* Account for padding before the first section in the
7239 segment. */
7240 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7241 }
7242
7243 free (sections);
7244 continue;
7245 }
7246 else
7247 {
7248 /* Change the current segment's physical address to match
7249 the LMA of the first section that fitted, or if no
7250 section fitted, the first section. */
7251 if (matching_lma == NULL)
7252 matching_lma = suggested_lma;
7253
7254 map->p_paddr = matching_lma->lma;
7255
7256 /* Offset the segment physical address from the lma
7257 to allow for space taken up by elf headers. */
7258 if (map->includes_phdrs)
7259 {
7260 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7261
7262 /* iehdr->e_phnum is just an estimate of the number
7263 of program headers that we will need. Make a note
7264 here of the number we used and the segment we chose
7265 to hold these headers, so that we can adjust the
7266 offset when we know the correct value. */
7267 phdr_adjust_num = iehdr->e_phnum;
7268 phdr_adjust_seg = map;
7269 }
7270
7271 if (map->includes_filehdr)
7272 {
7273 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7274 map->p_paddr -= iehdr->e_ehsize;
7275 /* We've subtracted off the size of headers from the
7276 first section lma, but there may have been some
7277 alignment padding before that section too. Try to
7278 account for that by adjusting the segment lma down to
7279 the same alignment. */
7280 if (segment->p_align != 0 && segment->p_align < align)
7281 align = segment->p_align;
7282 map->p_paddr &= -align;
7283 }
7284 }
7285
7286 /* Step Three: Loop over the sections again, this time assigning
7287 those that fit to the current segment and removing them from the
7288 sections array; but making sure not to leave large gaps. Once all
7289 possible sections have been assigned to the current segment it is
7290 added to the list of built segments and if sections still remain
7291 to be assigned, a new segment is constructed before repeating
7292 the loop. */
7293 isec = 0;
7294 do
7295 {
7296 map->count = 0;
7297 suggested_lma = NULL;
7298
7299 /* Fill the current segment with sections that fit. */
7300 for (j = 0; j < section_count; j++)
7301 {
7302 section = sections[j];
7303
7304 if (section == NULL)
7305 continue;
7306
7307 output_section = section->output_section;
7308
7309 BFD_ASSERT (output_section != NULL);
7310
7311 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7312 || IS_COREFILE_NOTE (segment, section))
7313 {
7314 if (map->count == 0)
7315 {
7316 /* If the first section in a segment does not start at
7317 the beginning of the segment, then something is
7318 wrong. */
7319 if (align_power (map->p_paddr
7320 + (map->includes_filehdr
7321 ? iehdr->e_ehsize : 0)
7322 + (map->includes_phdrs
7323 ? iehdr->e_phnum * iehdr->e_phentsize
7324 : 0),
7325 output_section->alignment_power)
7326 != output_section->lma)
7327 goto sorry;
7328 }
7329 else
7330 {
7331 asection *prev_sec;
7332
7333 prev_sec = map->sections[map->count - 1];
7334
7335 /* If the gap between the end of the previous section
7336 and the start of this section is more than
7337 maxpagesize then we need to start a new segment. */
7338 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7339 maxpagesize)
7340 < BFD_ALIGN (output_section->lma, maxpagesize))
7341 || (prev_sec->lma + prev_sec->size
7342 > output_section->lma))
7343 {
7344 if (suggested_lma == NULL)
7345 suggested_lma = output_section;
7346
7347 continue;
7348 }
7349 }
7350
7351 map->sections[map->count++] = output_section;
7352 ++isec;
7353 sections[j] = NULL;
7354 if (segment->p_type == PT_LOAD)
7355 section->segment_mark = TRUE;
7356 }
7357 else if (suggested_lma == NULL)
7358 suggested_lma = output_section;
7359 }
7360
7361 /* PR 23932. A corrupt input file may contain sections that cannot
7362 be assigned to any segment - because for example they have a
7363 negative size - or segments that do not contain any sections. */
7364 if (map->count == 0)
7365 {
7366 sorry:
7367 bfd_set_error (bfd_error_sorry);
7368 free (sections);
7369 return FALSE;
7370 }
7371
7372 /* Add the current segment to the list of built segments. */
7373 *pointer_to_map = map;
7374 pointer_to_map = &map->next;
7375
7376 if (isec < section_count)
7377 {
7378 /* We still have not allocated all of the sections to
7379 segments. Create a new segment here, initialise it
7380 and carry on looping. */
7381 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7382 amt += (bfd_size_type) section_count * sizeof (asection *);
7383 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7384 if (map == NULL)
7385 {
7386 free (sections);
7387 return FALSE;
7388 }
7389
7390 /* Initialise the fields of the segment map. Set the physical
7391 physical address to the LMA of the first section that has
7392 not yet been assigned. */
7393 map->next = NULL;
7394 map->p_type = segment->p_type;
7395 map->p_flags = segment->p_flags;
7396 map->p_flags_valid = 1;
7397 map->p_paddr = suggested_lma->lma;
7398 map->p_paddr_valid = p_paddr_valid;
7399 map->includes_filehdr = 0;
7400 map->includes_phdrs = 0;
7401 }
7402 }
7403 while (isec < section_count);
7404
7405 free (sections);
7406 }
7407
7408 elf_seg_map (obfd) = map_first;
7409
7410 /* If we had to estimate the number of program headers that were
7411 going to be needed, then check our estimate now and adjust
7412 the offset if necessary. */
7413 if (phdr_adjust_seg != NULL)
7414 {
7415 unsigned int count;
7416
7417 for (count = 0, map = map_first; map != NULL; map = map->next)
7418 count++;
7419
7420 if (count > phdr_adjust_num)
7421 phdr_adjust_seg->p_paddr
7422 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7423
7424 for (map = map_first; map != NULL; map = map->next)
7425 if (map->p_type == PT_PHDR)
7426 {
7427 bfd_vma adjust
7428 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7429 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7430 break;
7431 }
7432 }
7433
7434 #undef SEGMENT_END
7435 #undef SECTION_SIZE
7436 #undef IS_CONTAINED_BY_VMA
7437 #undef IS_CONTAINED_BY_LMA
7438 #undef IS_NOTE
7439 #undef IS_COREFILE_NOTE
7440 #undef IS_SOLARIS_PT_INTERP
7441 #undef IS_SECTION_IN_INPUT_SEGMENT
7442 #undef INCLUDE_SECTION_IN_SEGMENT
7443 #undef SEGMENT_AFTER_SEGMENT
7444 #undef SEGMENT_OVERLAPS
7445 return TRUE;
7446 }
7447
7448 /* Copy ELF program header information. */
7449
7450 static bfd_boolean
7451 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7452 {
7453 Elf_Internal_Ehdr *iehdr;
7454 struct elf_segment_map *map;
7455 struct elf_segment_map *map_first;
7456 struct elf_segment_map **pointer_to_map;
7457 Elf_Internal_Phdr *segment;
7458 unsigned int i;
7459 unsigned int num_segments;
7460 bfd_boolean phdr_included = FALSE;
7461 bfd_boolean p_paddr_valid;
7462
7463 iehdr = elf_elfheader (ibfd);
7464
7465 map_first = NULL;
7466 pointer_to_map = &map_first;
7467
7468 /* If all the segment p_paddr fields are zero, don't set
7469 map->p_paddr_valid. */
7470 p_paddr_valid = FALSE;
7471 num_segments = elf_elfheader (ibfd)->e_phnum;
7472 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7473 i < num_segments;
7474 i++, segment++)
7475 if (segment->p_paddr != 0)
7476 {
7477 p_paddr_valid = TRUE;
7478 break;
7479 }
7480
7481 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7482 i < num_segments;
7483 i++, segment++)
7484 {
7485 asection *section;
7486 unsigned int section_count;
7487 bfd_size_type amt;
7488 Elf_Internal_Shdr *this_hdr;
7489 asection *first_section = NULL;
7490 asection *lowest_section;
7491
7492 /* Compute how many sections are in this segment. */
7493 for (section = ibfd->sections, section_count = 0;
7494 section != NULL;
7495 section = section->next)
7496 {
7497 this_hdr = &(elf_section_data(section)->this_hdr);
7498 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7499 {
7500 if (first_section == NULL)
7501 first_section = section;
7502 section_count++;
7503 }
7504 }
7505
7506 /* Allocate a segment map big enough to contain
7507 all of the sections we have selected. */
7508 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7509 amt += (bfd_size_type) section_count * sizeof (asection *);
7510 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7511 if (map == NULL)
7512 return FALSE;
7513
7514 /* Initialize the fields of the output segment map with the
7515 input segment. */
7516 map->next = NULL;
7517 map->p_type = segment->p_type;
7518 map->p_flags = segment->p_flags;
7519 map->p_flags_valid = 1;
7520 map->p_paddr = segment->p_paddr;
7521 map->p_paddr_valid = p_paddr_valid;
7522 map->p_align = segment->p_align;
7523 map->p_align_valid = 1;
7524 map->p_vaddr_offset = 0;
7525
7526 if (map->p_type == PT_GNU_RELRO
7527 || map->p_type == PT_GNU_STACK)
7528 {
7529 /* The PT_GNU_RELRO segment may contain the first a few
7530 bytes in the .got.plt section even if the whole .got.plt
7531 section isn't in the PT_GNU_RELRO segment. We won't
7532 change the size of the PT_GNU_RELRO segment.
7533 Similarly, PT_GNU_STACK size is significant on uclinux
7534 systems. */
7535 map->p_size = segment->p_memsz;
7536 map->p_size_valid = 1;
7537 }
7538
7539 /* Determine if this segment contains the ELF file header
7540 and if it contains the program headers themselves. */
7541 map->includes_filehdr = (segment->p_offset == 0
7542 && segment->p_filesz >= iehdr->e_ehsize);
7543
7544 map->includes_phdrs = 0;
7545 if (! phdr_included || segment->p_type != PT_LOAD)
7546 {
7547 map->includes_phdrs =
7548 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7549 && (segment->p_offset + segment->p_filesz
7550 >= ((bfd_vma) iehdr->e_phoff
7551 + iehdr->e_phnum * iehdr->e_phentsize)));
7552
7553 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7554 phdr_included = TRUE;
7555 }
7556
7557 lowest_section = NULL;
7558 if (section_count != 0)
7559 {
7560 unsigned int isec = 0;
7561
7562 for (section = first_section;
7563 section != NULL;
7564 section = section->next)
7565 {
7566 this_hdr = &(elf_section_data(section)->this_hdr);
7567 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7568 {
7569 map->sections[isec++] = section->output_section;
7570 if ((section->flags & SEC_ALLOC) != 0)
7571 {
7572 bfd_vma seg_off;
7573
7574 if (lowest_section == NULL
7575 || section->lma < lowest_section->lma)
7576 lowest_section = section;
7577
7578 /* Section lmas are set up from PT_LOAD header
7579 p_paddr in _bfd_elf_make_section_from_shdr.
7580 If this header has a p_paddr that disagrees
7581 with the section lma, flag the p_paddr as
7582 invalid. */
7583 if ((section->flags & SEC_LOAD) != 0)
7584 seg_off = this_hdr->sh_offset - segment->p_offset;
7585 else
7586 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7587 if (section->lma - segment->p_paddr != seg_off)
7588 map->p_paddr_valid = FALSE;
7589 }
7590 if (isec == section_count)
7591 break;
7592 }
7593 }
7594 }
7595
7596 if (section_count == 0)
7597 map->p_vaddr_offset = segment->p_vaddr;
7598 else if (map->p_paddr_valid)
7599 {
7600 /* Account for padding before the first section in the segment. */
7601 bfd_vma hdr_size = 0;
7602 if (map->includes_filehdr)
7603 hdr_size = iehdr->e_ehsize;
7604 if (map->includes_phdrs)
7605 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7606
7607 map->p_vaddr_offset = (map->p_paddr + hdr_size
7608 - (lowest_section ? lowest_section->lma : 0));
7609 }
7610
7611 map->count = section_count;
7612 *pointer_to_map = map;
7613 pointer_to_map = &map->next;
7614 }
7615
7616 elf_seg_map (obfd) = map_first;
7617 return TRUE;
7618 }
7619
7620 /* Copy private BFD data. This copies or rewrites ELF program header
7621 information. */
7622
7623 static bfd_boolean
7624 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7625 {
7626 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7627 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7628 return TRUE;
7629
7630 if (elf_tdata (ibfd)->phdr == NULL)
7631 return TRUE;
7632
7633 if (ibfd->xvec == obfd->xvec)
7634 {
7635 /* Check to see if any sections in the input BFD
7636 covered by ELF program header have changed. */
7637 Elf_Internal_Phdr *segment;
7638 asection *section, *osec;
7639 unsigned int i, num_segments;
7640 Elf_Internal_Shdr *this_hdr;
7641 const struct elf_backend_data *bed;
7642
7643 bed = get_elf_backend_data (ibfd);
7644
7645 /* Regenerate the segment map if p_paddr is set to 0. */
7646 if (bed->want_p_paddr_set_to_zero)
7647 goto rewrite;
7648
7649 /* Initialize the segment mark field. */
7650 for (section = obfd->sections; section != NULL;
7651 section = section->next)
7652 section->segment_mark = FALSE;
7653
7654 num_segments = elf_elfheader (ibfd)->e_phnum;
7655 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7656 i < num_segments;
7657 i++, segment++)
7658 {
7659 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7660 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7661 which severly confuses things, so always regenerate the segment
7662 map in this case. */
7663 if (segment->p_paddr == 0
7664 && segment->p_memsz == 0
7665 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7666 goto rewrite;
7667
7668 for (section = ibfd->sections;
7669 section != NULL; section = section->next)
7670 {
7671 /* We mark the output section so that we know it comes
7672 from the input BFD. */
7673 osec = section->output_section;
7674 if (osec)
7675 osec->segment_mark = TRUE;
7676
7677 /* Check if this section is covered by the segment. */
7678 this_hdr = &(elf_section_data(section)->this_hdr);
7679 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7680 {
7681 /* FIXME: Check if its output section is changed or
7682 removed. What else do we need to check? */
7683 if (osec == NULL
7684 || section->flags != osec->flags
7685 || section->lma != osec->lma
7686 || section->vma != osec->vma
7687 || section->size != osec->size
7688 || section->rawsize != osec->rawsize
7689 || section->alignment_power != osec->alignment_power)
7690 goto rewrite;
7691 }
7692 }
7693 }
7694
7695 /* Check to see if any output section do not come from the
7696 input BFD. */
7697 for (section = obfd->sections; section != NULL;
7698 section = section->next)
7699 {
7700 if (!section->segment_mark)
7701 goto rewrite;
7702 else
7703 section->segment_mark = FALSE;
7704 }
7705
7706 return copy_elf_program_header (ibfd, obfd);
7707 }
7708
7709 rewrite:
7710 if (ibfd->xvec == obfd->xvec)
7711 {
7712 /* When rewriting program header, set the output maxpagesize to
7713 the maximum alignment of input PT_LOAD segments. */
7714 Elf_Internal_Phdr *segment;
7715 unsigned int i;
7716 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7717 bfd_vma maxpagesize = 0;
7718
7719 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7720 i < num_segments;
7721 i++, segment++)
7722 if (segment->p_type == PT_LOAD
7723 && maxpagesize < segment->p_align)
7724 {
7725 /* PR 17512: file: f17299af. */
7726 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7727 /* xgettext:c-format */
7728 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7729 PRIx64 " is too large"),
7730 ibfd, (uint64_t) segment->p_align);
7731 else
7732 maxpagesize = segment->p_align;
7733 }
7734
7735 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7736 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7737 }
7738
7739 return rewrite_elf_program_header (ibfd, obfd);
7740 }
7741
7742 /* Initialize private output section information from input section. */
7743
7744 bfd_boolean
7745 _bfd_elf_init_private_section_data (bfd *ibfd,
7746 asection *isec,
7747 bfd *obfd,
7748 asection *osec,
7749 struct bfd_link_info *link_info)
7750
7751 {
7752 Elf_Internal_Shdr *ihdr, *ohdr;
7753 bfd_boolean final_link = (link_info != NULL
7754 && !bfd_link_relocatable (link_info));
7755
7756 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7757 || obfd->xvec->flavour != bfd_target_elf_flavour)
7758 return TRUE;
7759
7760 BFD_ASSERT (elf_section_data (osec) != NULL);
7761
7762 /* For objcopy and relocatable link, don't copy the output ELF
7763 section type from input if the output BFD section flags have been
7764 set to something different. For a final link allow some flags
7765 that the linker clears to differ. */
7766 if (elf_section_type (osec) == SHT_NULL
7767 && (osec->flags == isec->flags
7768 || (final_link
7769 && ((osec->flags ^ isec->flags)
7770 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7771 elf_section_type (osec) = elf_section_type (isec);
7772
7773 /* FIXME: Is this correct for all OS/PROC specific flags? */
7774 elf_section_flags (osec) |= (elf_section_flags (isec)
7775 & (SHF_MASKOS | SHF_MASKPROC));
7776
7777 /* Copy sh_info from input for mbind section. */
7778 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7779 && elf_section_flags (isec) & SHF_GNU_MBIND)
7780 elf_section_data (osec)->this_hdr.sh_info
7781 = elf_section_data (isec)->this_hdr.sh_info;
7782
7783 /* Set things up for objcopy and relocatable link. The output
7784 SHT_GROUP section will have its elf_next_in_group pointing back
7785 to the input group members. Ignore linker created group section.
7786 See elfNN_ia64_object_p in elfxx-ia64.c. */
7787 if ((link_info == NULL
7788 || !link_info->resolve_section_groups)
7789 && (elf_sec_group (isec) == NULL
7790 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7791 {
7792 if (elf_section_flags (isec) & SHF_GROUP)
7793 elf_section_flags (osec) |= SHF_GROUP;
7794 elf_next_in_group (osec) = elf_next_in_group (isec);
7795 elf_section_data (osec)->group = elf_section_data (isec)->group;
7796 }
7797
7798 /* If not decompress, preserve SHF_COMPRESSED. */
7799 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7800 elf_section_flags (osec) |= (elf_section_flags (isec)
7801 & SHF_COMPRESSED);
7802
7803 ihdr = &elf_section_data (isec)->this_hdr;
7804
7805 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7806 don't use the output section of the linked-to section since it
7807 may be NULL at this point. */
7808 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7809 {
7810 ohdr = &elf_section_data (osec)->this_hdr;
7811 ohdr->sh_flags |= SHF_LINK_ORDER;
7812 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7813 }
7814
7815 osec->use_rela_p = isec->use_rela_p;
7816
7817 return TRUE;
7818 }
7819
7820 /* Copy private section information. This copies over the entsize
7821 field, and sometimes the info field. */
7822
7823 bfd_boolean
7824 _bfd_elf_copy_private_section_data (bfd *ibfd,
7825 asection *isec,
7826 bfd *obfd,
7827 asection *osec)
7828 {
7829 Elf_Internal_Shdr *ihdr, *ohdr;
7830
7831 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7832 || obfd->xvec->flavour != bfd_target_elf_flavour)
7833 return TRUE;
7834
7835 ihdr = &elf_section_data (isec)->this_hdr;
7836 ohdr = &elf_section_data (osec)->this_hdr;
7837
7838 ohdr->sh_entsize = ihdr->sh_entsize;
7839
7840 if (ihdr->sh_type == SHT_SYMTAB
7841 || ihdr->sh_type == SHT_DYNSYM
7842 || ihdr->sh_type == SHT_GNU_verneed
7843 || ihdr->sh_type == SHT_GNU_verdef)
7844 ohdr->sh_info = ihdr->sh_info;
7845
7846 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7847 NULL);
7848 }
7849
7850 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7851 necessary if we are removing either the SHT_GROUP section or any of
7852 the group member sections. DISCARDED is the value that a section's
7853 output_section has if the section will be discarded, NULL when this
7854 function is called from objcopy, bfd_abs_section_ptr when called
7855 from the linker. */
7856
7857 bfd_boolean
7858 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7859 {
7860 asection *isec;
7861
7862 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7863 if (elf_section_type (isec) == SHT_GROUP)
7864 {
7865 asection *first = elf_next_in_group (isec);
7866 asection *s = first;
7867 bfd_size_type removed = 0;
7868
7869 while (s != NULL)
7870 {
7871 /* If this member section is being output but the
7872 SHT_GROUP section is not, then clear the group info
7873 set up by _bfd_elf_copy_private_section_data. */
7874 if (s->output_section != discarded
7875 && isec->output_section == discarded)
7876 {
7877 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7878 elf_group_name (s->output_section) = NULL;
7879 }
7880 /* Conversely, if the member section is not being output
7881 but the SHT_GROUP section is, then adjust its size. */
7882 else if (s->output_section == discarded
7883 && isec->output_section != discarded)
7884 {
7885 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7886 removed += 4;
7887 if (elf_sec->rel.hdr != NULL
7888 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7889 removed += 4;
7890 if (elf_sec->rela.hdr != NULL
7891 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7892 removed += 4;
7893 }
7894 s = elf_next_in_group (s);
7895 if (s == first)
7896 break;
7897 }
7898 if (removed != 0)
7899 {
7900 if (discarded != NULL)
7901 {
7902 /* If we've been called for ld -r, then we need to
7903 adjust the input section size. */
7904 if (isec->rawsize == 0)
7905 isec->rawsize = isec->size;
7906 isec->size = isec->rawsize - removed;
7907 if (isec->size <= 4)
7908 {
7909 isec->size = 0;
7910 isec->flags |= SEC_EXCLUDE;
7911 }
7912 }
7913 else
7914 {
7915 /* Adjust the output section size when called from
7916 objcopy. */
7917 isec->output_section->size -= removed;
7918 if (isec->output_section->size <= 4)
7919 {
7920 isec->output_section->size = 0;
7921 isec->output_section->flags |= SEC_EXCLUDE;
7922 }
7923 }
7924 }
7925 }
7926
7927 return TRUE;
7928 }
7929
7930 /* Copy private header information. */
7931
7932 bfd_boolean
7933 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7934 {
7935 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7936 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7937 return TRUE;
7938
7939 /* Copy over private BFD data if it has not already been copied.
7940 This must be done here, rather than in the copy_private_bfd_data
7941 entry point, because the latter is called after the section
7942 contents have been set, which means that the program headers have
7943 already been worked out. */
7944 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7945 {
7946 if (! copy_private_bfd_data (ibfd, obfd))
7947 return FALSE;
7948 }
7949
7950 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7951 }
7952
7953 /* Copy private symbol information. If this symbol is in a section
7954 which we did not map into a BFD section, try to map the section
7955 index correctly. We use special macro definitions for the mapped
7956 section indices; these definitions are interpreted by the
7957 swap_out_syms function. */
7958
7959 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7960 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7961 #define MAP_STRTAB (SHN_HIOS + 3)
7962 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7963 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7964
7965 bfd_boolean
7966 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7967 asymbol *isymarg,
7968 bfd *obfd,
7969 asymbol *osymarg)
7970 {
7971 elf_symbol_type *isym, *osym;
7972
7973 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7974 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7975 return TRUE;
7976
7977 isym = elf_symbol_from (ibfd, isymarg);
7978 osym = elf_symbol_from (obfd, osymarg);
7979
7980 if (isym != NULL
7981 && isym->internal_elf_sym.st_shndx != 0
7982 && osym != NULL
7983 && bfd_is_abs_section (isym->symbol.section))
7984 {
7985 unsigned int shndx;
7986
7987 shndx = isym->internal_elf_sym.st_shndx;
7988 if (shndx == elf_onesymtab (ibfd))
7989 shndx = MAP_ONESYMTAB;
7990 else if (shndx == elf_dynsymtab (ibfd))
7991 shndx = MAP_DYNSYMTAB;
7992 else if (shndx == elf_strtab_sec (ibfd))
7993 shndx = MAP_STRTAB;
7994 else if (shndx == elf_shstrtab_sec (ibfd))
7995 shndx = MAP_SHSTRTAB;
7996 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7997 shndx = MAP_SYM_SHNDX;
7998 osym->internal_elf_sym.st_shndx = shndx;
7999 }
8000
8001 return TRUE;
8002 }
8003
8004 /* Swap out the symbols. */
8005
8006 static bfd_boolean
8007 swap_out_syms (bfd *abfd,
8008 struct elf_strtab_hash **sttp,
8009 int relocatable_p)
8010 {
8011 const struct elf_backend_data *bed;
8012 int symcount;
8013 asymbol **syms;
8014 struct elf_strtab_hash *stt;
8015 Elf_Internal_Shdr *symtab_hdr;
8016 Elf_Internal_Shdr *symtab_shndx_hdr;
8017 Elf_Internal_Shdr *symstrtab_hdr;
8018 struct elf_sym_strtab *symstrtab;
8019 bfd_byte *outbound_syms;
8020 bfd_byte *outbound_shndx;
8021 unsigned long outbound_syms_index;
8022 unsigned long outbound_shndx_index;
8023 int idx;
8024 unsigned int num_locals;
8025 bfd_size_type amt;
8026 bfd_boolean name_local_sections;
8027
8028 if (!elf_map_symbols (abfd, &num_locals))
8029 return FALSE;
8030
8031 /* Dump out the symtabs. */
8032 stt = _bfd_elf_strtab_init ();
8033 if (stt == NULL)
8034 return FALSE;
8035
8036 bed = get_elf_backend_data (abfd);
8037 symcount = bfd_get_symcount (abfd);
8038 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8039 symtab_hdr->sh_type = SHT_SYMTAB;
8040 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8041 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8042 symtab_hdr->sh_info = num_locals + 1;
8043 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8044
8045 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8046 symstrtab_hdr->sh_type = SHT_STRTAB;
8047
8048 /* Allocate buffer to swap out the .strtab section. */
8049 symstrtab = (struct elf_sym_strtab *) bfd_malloc2 (symcount + 1,
8050 sizeof (*symstrtab));
8051 if (symstrtab == NULL)
8052 {
8053 _bfd_elf_strtab_free (stt);
8054 return FALSE;
8055 }
8056
8057 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
8058 bed->s->sizeof_sym);
8059 if (outbound_syms == NULL)
8060 {
8061 error_return:
8062 _bfd_elf_strtab_free (stt);
8063 free (symstrtab);
8064 return FALSE;
8065 }
8066 symtab_hdr->contents = outbound_syms;
8067 outbound_syms_index = 0;
8068
8069 outbound_shndx = NULL;
8070 outbound_shndx_index = 0;
8071
8072 if (elf_symtab_shndx_list (abfd))
8073 {
8074 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8075 if (symtab_shndx_hdr->sh_name != 0)
8076 {
8077 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
8078 outbound_shndx = (bfd_byte *)
8079 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
8080 if (outbound_shndx == NULL)
8081 goto error_return;
8082
8083 symtab_shndx_hdr->contents = outbound_shndx;
8084 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8085 symtab_shndx_hdr->sh_size = amt;
8086 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8087 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8088 }
8089 /* FIXME: What about any other headers in the list ? */
8090 }
8091
8092 /* Now generate the data (for "contents"). */
8093 {
8094 /* Fill in zeroth symbol and swap it out. */
8095 Elf_Internal_Sym sym;
8096 sym.st_name = 0;
8097 sym.st_value = 0;
8098 sym.st_size = 0;
8099 sym.st_info = 0;
8100 sym.st_other = 0;
8101 sym.st_shndx = SHN_UNDEF;
8102 sym.st_target_internal = 0;
8103 symstrtab[0].sym = sym;
8104 symstrtab[0].dest_index = outbound_syms_index;
8105 symstrtab[0].destshndx_index = outbound_shndx_index;
8106 outbound_syms_index++;
8107 if (outbound_shndx != NULL)
8108 outbound_shndx_index++;
8109 }
8110
8111 name_local_sections
8112 = (bed->elf_backend_name_local_section_symbols
8113 && bed->elf_backend_name_local_section_symbols (abfd));
8114
8115 syms = bfd_get_outsymbols (abfd);
8116 for (idx = 0; idx < symcount;)
8117 {
8118 Elf_Internal_Sym sym;
8119 bfd_vma value = syms[idx]->value;
8120 elf_symbol_type *type_ptr;
8121 flagword flags = syms[idx]->flags;
8122 int type;
8123
8124 if (!name_local_sections
8125 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8126 {
8127 /* Local section symbols have no name. */
8128 sym.st_name = (unsigned long) -1;
8129 }
8130 else
8131 {
8132 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8133 to get the final offset for st_name. */
8134 sym.st_name
8135 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8136 FALSE);
8137 if (sym.st_name == (unsigned long) -1)
8138 goto error_return;
8139 }
8140
8141 type_ptr = elf_symbol_from (abfd, syms[idx]);
8142
8143 if ((flags & BSF_SECTION_SYM) == 0
8144 && bfd_is_com_section (syms[idx]->section))
8145 {
8146 /* ELF common symbols put the alignment into the `value' field,
8147 and the size into the `size' field. This is backwards from
8148 how BFD handles it, so reverse it here. */
8149 sym.st_size = value;
8150 if (type_ptr == NULL
8151 || type_ptr->internal_elf_sym.st_value == 0)
8152 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8153 else
8154 sym.st_value = type_ptr->internal_elf_sym.st_value;
8155 sym.st_shndx = _bfd_elf_section_from_bfd_section
8156 (abfd, syms[idx]->section);
8157 }
8158 else
8159 {
8160 asection *sec = syms[idx]->section;
8161 unsigned int shndx;
8162
8163 if (sec->output_section)
8164 {
8165 value += sec->output_offset;
8166 sec = sec->output_section;
8167 }
8168
8169 /* Don't add in the section vma for relocatable output. */
8170 if (! relocatable_p)
8171 value += sec->vma;
8172 sym.st_value = value;
8173 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8174
8175 if (bfd_is_abs_section (sec)
8176 && type_ptr != NULL
8177 && type_ptr->internal_elf_sym.st_shndx != 0)
8178 {
8179 /* This symbol is in a real ELF section which we did
8180 not create as a BFD section. Undo the mapping done
8181 by copy_private_symbol_data. */
8182 shndx = type_ptr->internal_elf_sym.st_shndx;
8183 switch (shndx)
8184 {
8185 case MAP_ONESYMTAB:
8186 shndx = elf_onesymtab (abfd);
8187 break;
8188 case MAP_DYNSYMTAB:
8189 shndx = elf_dynsymtab (abfd);
8190 break;
8191 case MAP_STRTAB:
8192 shndx = elf_strtab_sec (abfd);
8193 break;
8194 case MAP_SHSTRTAB:
8195 shndx = elf_shstrtab_sec (abfd);
8196 break;
8197 case MAP_SYM_SHNDX:
8198 if (elf_symtab_shndx_list (abfd))
8199 shndx = elf_symtab_shndx_list (abfd)->ndx;
8200 break;
8201 default:
8202 shndx = SHN_ABS;
8203 break;
8204 }
8205 }
8206 else
8207 {
8208 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8209
8210 if (shndx == SHN_BAD)
8211 {
8212 asection *sec2;
8213
8214 /* Writing this would be a hell of a lot easier if
8215 we had some decent documentation on bfd, and
8216 knew what to expect of the library, and what to
8217 demand of applications. For example, it
8218 appears that `objcopy' might not set the
8219 section of a symbol to be a section that is
8220 actually in the output file. */
8221 sec2 = bfd_get_section_by_name (abfd, sec->name);
8222 if (sec2 != NULL)
8223 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8224 if (shndx == SHN_BAD)
8225 {
8226 /* xgettext:c-format */
8227 _bfd_error_handler
8228 (_("unable to find equivalent output section"
8229 " for symbol '%s' from section '%s'"),
8230 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8231 sec->name);
8232 bfd_set_error (bfd_error_invalid_operation);
8233 goto error_return;
8234 }
8235 }
8236 }
8237
8238 sym.st_shndx = shndx;
8239 }
8240
8241 if ((flags & BSF_THREAD_LOCAL) != 0)
8242 type = STT_TLS;
8243 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8244 type = STT_GNU_IFUNC;
8245 else if ((flags & BSF_FUNCTION) != 0)
8246 type = STT_FUNC;
8247 else if ((flags & BSF_OBJECT) != 0)
8248 type = STT_OBJECT;
8249 else if ((flags & BSF_RELC) != 0)
8250 type = STT_RELC;
8251 else if ((flags & BSF_SRELC) != 0)
8252 type = STT_SRELC;
8253 else
8254 type = STT_NOTYPE;
8255
8256 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8257 type = STT_TLS;
8258
8259 /* Processor-specific types. */
8260 if (type_ptr != NULL
8261 && bed->elf_backend_get_symbol_type)
8262 type = ((*bed->elf_backend_get_symbol_type)
8263 (&type_ptr->internal_elf_sym, type));
8264
8265 if (flags & BSF_SECTION_SYM)
8266 {
8267 if (flags & BSF_GLOBAL)
8268 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8269 else
8270 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8271 }
8272 else if (bfd_is_com_section (syms[idx]->section))
8273 {
8274 if (type != STT_TLS)
8275 {
8276 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8277 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8278 ? STT_COMMON : STT_OBJECT);
8279 else
8280 type = ((flags & BSF_ELF_COMMON) != 0
8281 ? STT_COMMON : STT_OBJECT);
8282 }
8283 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8284 }
8285 else if (bfd_is_und_section (syms[idx]->section))
8286 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8287 ? STB_WEAK
8288 : STB_GLOBAL),
8289 type);
8290 else if (flags & BSF_FILE)
8291 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8292 else
8293 {
8294 int bind = STB_LOCAL;
8295
8296 if (flags & BSF_LOCAL)
8297 bind = STB_LOCAL;
8298 else if (flags & BSF_GNU_UNIQUE)
8299 bind = STB_GNU_UNIQUE;
8300 else if (flags & BSF_WEAK)
8301 bind = STB_WEAK;
8302 else if (flags & BSF_GLOBAL)
8303 bind = STB_GLOBAL;
8304
8305 sym.st_info = ELF_ST_INFO (bind, type);
8306 }
8307
8308 if (type_ptr != NULL)
8309 {
8310 sym.st_other = type_ptr->internal_elf_sym.st_other;
8311 sym.st_target_internal
8312 = type_ptr->internal_elf_sym.st_target_internal;
8313 }
8314 else
8315 {
8316 sym.st_other = 0;
8317 sym.st_target_internal = 0;
8318 }
8319
8320 idx++;
8321 symstrtab[idx].sym = sym;
8322 symstrtab[idx].dest_index = outbound_syms_index;
8323 symstrtab[idx].destshndx_index = outbound_shndx_index;
8324
8325 outbound_syms_index++;
8326 if (outbound_shndx != NULL)
8327 outbound_shndx_index++;
8328 }
8329
8330 /* Finalize the .strtab section. */
8331 _bfd_elf_strtab_finalize (stt);
8332
8333 /* Swap out the .strtab section. */
8334 for (idx = 0; idx <= symcount; idx++)
8335 {
8336 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8337 if (elfsym->sym.st_name == (unsigned long) -1)
8338 elfsym->sym.st_name = 0;
8339 else
8340 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8341 elfsym->sym.st_name);
8342 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8343 (outbound_syms
8344 + (elfsym->dest_index
8345 * bed->s->sizeof_sym)),
8346 (outbound_shndx
8347 + (elfsym->destshndx_index
8348 * sizeof (Elf_External_Sym_Shndx))));
8349 }
8350 free (symstrtab);
8351
8352 *sttp = stt;
8353 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8354 symstrtab_hdr->sh_type = SHT_STRTAB;
8355 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8356 symstrtab_hdr->sh_addr = 0;
8357 symstrtab_hdr->sh_entsize = 0;
8358 symstrtab_hdr->sh_link = 0;
8359 symstrtab_hdr->sh_info = 0;
8360 symstrtab_hdr->sh_addralign = 1;
8361
8362 return TRUE;
8363 }
8364
8365 /* Return the number of bytes required to hold the symtab vector.
8366
8367 Note that we base it on the count plus 1, since we will null terminate
8368 the vector allocated based on this size. However, the ELF symbol table
8369 always has a dummy entry as symbol #0, so it ends up even. */
8370
8371 long
8372 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8373 {
8374 bfd_size_type symcount;
8375 long symtab_size;
8376 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8377
8378 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8379 if (symcount >= LONG_MAX / sizeof (asymbol *))
8380 {
8381 bfd_set_error (bfd_error_file_too_big);
8382 return -1;
8383 }
8384 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8385 if (symcount > 0)
8386 symtab_size -= sizeof (asymbol *);
8387
8388 return symtab_size;
8389 }
8390
8391 long
8392 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8393 {
8394 bfd_size_type symcount;
8395 long symtab_size;
8396 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8397
8398 if (elf_dynsymtab (abfd) == 0)
8399 {
8400 bfd_set_error (bfd_error_invalid_operation);
8401 return -1;
8402 }
8403
8404 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8405 if (symcount >= LONG_MAX / sizeof (asymbol *))
8406 {
8407 bfd_set_error (bfd_error_file_too_big);
8408 return -1;
8409 }
8410 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8411 if (symcount > 0)
8412 symtab_size -= sizeof (asymbol *);
8413
8414 return symtab_size;
8415 }
8416
8417 long
8418 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8419 sec_ptr asect)
8420 {
8421 #if SIZEOF_LONG == SIZEOF_INT
8422 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8423 {
8424 bfd_set_error (bfd_error_file_too_big);
8425 return -1;
8426 }
8427 #endif
8428 return (asect->reloc_count + 1) * sizeof (arelent *);
8429 }
8430
8431 /* Canonicalize the relocs. */
8432
8433 long
8434 _bfd_elf_canonicalize_reloc (bfd *abfd,
8435 sec_ptr section,
8436 arelent **relptr,
8437 asymbol **symbols)
8438 {
8439 arelent *tblptr;
8440 unsigned int i;
8441 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8442
8443 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8444 return -1;
8445
8446 tblptr = section->relocation;
8447 for (i = 0; i < section->reloc_count; i++)
8448 *relptr++ = tblptr++;
8449
8450 *relptr = NULL;
8451
8452 return section->reloc_count;
8453 }
8454
8455 long
8456 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8457 {
8458 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8459 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8460
8461 if (symcount >= 0)
8462 abfd->symcount = symcount;
8463 return symcount;
8464 }
8465
8466 long
8467 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8468 asymbol **allocation)
8469 {
8470 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8471 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8472
8473 if (symcount >= 0)
8474 abfd->dynsymcount = symcount;
8475 return symcount;
8476 }
8477
8478 /* Return the size required for the dynamic reloc entries. Any loadable
8479 section that was actually installed in the BFD, and has type SHT_REL
8480 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8481 dynamic reloc section. */
8482
8483 long
8484 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8485 {
8486 bfd_size_type count;
8487 asection *s;
8488
8489 if (elf_dynsymtab (abfd) == 0)
8490 {
8491 bfd_set_error (bfd_error_invalid_operation);
8492 return -1;
8493 }
8494
8495 count = 1;
8496 for (s = abfd->sections; s != NULL; s = s->next)
8497 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8498 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8499 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8500 {
8501 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8502 if (count > LONG_MAX / sizeof (arelent *))
8503 {
8504 bfd_set_error (bfd_error_file_too_big);
8505 return -1;
8506 }
8507 }
8508 return count * sizeof (arelent *);
8509 }
8510
8511 /* Canonicalize the dynamic relocation entries. Note that we return the
8512 dynamic relocations as a single block, although they are actually
8513 associated with particular sections; the interface, which was
8514 designed for SunOS style shared libraries, expects that there is only
8515 one set of dynamic relocs. Any loadable section that was actually
8516 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8517 dynamic symbol table, is considered to be a dynamic reloc section. */
8518
8519 long
8520 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8521 arelent **storage,
8522 asymbol **syms)
8523 {
8524 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8525 asection *s;
8526 long ret;
8527
8528 if (elf_dynsymtab (abfd) == 0)
8529 {
8530 bfd_set_error (bfd_error_invalid_operation);
8531 return -1;
8532 }
8533
8534 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8535 ret = 0;
8536 for (s = abfd->sections; s != NULL; s = s->next)
8537 {
8538 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8539 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8540 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8541 {
8542 arelent *p;
8543 long count, i;
8544
8545 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8546 return -1;
8547 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8548 p = s->relocation;
8549 for (i = 0; i < count; i++)
8550 *storage++ = p++;
8551 ret += count;
8552 }
8553 }
8554
8555 *storage = NULL;
8556
8557 return ret;
8558 }
8559 \f
8560 /* Read in the version information. */
8561
8562 bfd_boolean
8563 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8564 {
8565 bfd_byte *contents = NULL;
8566 unsigned int freeidx = 0;
8567
8568 if (elf_dynverref (abfd) != 0)
8569 {
8570 Elf_Internal_Shdr *hdr;
8571 Elf_External_Verneed *everneed;
8572 Elf_Internal_Verneed *iverneed;
8573 unsigned int i;
8574 bfd_byte *contents_end;
8575
8576 hdr = &elf_tdata (abfd)->dynverref_hdr;
8577
8578 if (hdr->sh_info == 0
8579 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8580 {
8581 error_return_bad_verref:
8582 _bfd_error_handler
8583 (_("%pB: .gnu.version_r invalid entry"), abfd);
8584 bfd_set_error (bfd_error_bad_value);
8585 error_return_verref:
8586 elf_tdata (abfd)->verref = NULL;
8587 elf_tdata (abfd)->cverrefs = 0;
8588 goto error_return;
8589 }
8590
8591 ufile_ptr filesize = bfd_get_file_size (abfd);
8592 if (filesize > 0 && filesize < hdr->sh_size)
8593 {
8594 /* PR 24708: Avoid attempts to allocate a ridiculous amount
8595 of memory. */
8596 bfd_set_error (bfd_error_no_memory);
8597 _bfd_error_handler
8598 /* xgettext:c-format */
8599 (_("error: %pB version reference section is too large (%#" PRIx64 " bytes)"),
8600 abfd, (uint64_t) hdr->sh_size);
8601 goto error_return_verref;
8602 }
8603 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8604 if (contents == NULL)
8605 goto error_return_verref;
8606
8607 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8608 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8609 goto error_return_verref;
8610
8611 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8612 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8613
8614 if (elf_tdata (abfd)->verref == NULL)
8615 goto error_return_verref;
8616
8617 BFD_ASSERT (sizeof (Elf_External_Verneed)
8618 == sizeof (Elf_External_Vernaux));
8619 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8620 everneed = (Elf_External_Verneed *) contents;
8621 iverneed = elf_tdata (abfd)->verref;
8622 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8623 {
8624 Elf_External_Vernaux *evernaux;
8625 Elf_Internal_Vernaux *ivernaux;
8626 unsigned int j;
8627
8628 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8629
8630 iverneed->vn_bfd = abfd;
8631
8632 iverneed->vn_filename =
8633 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8634 iverneed->vn_file);
8635 if (iverneed->vn_filename == NULL)
8636 goto error_return_bad_verref;
8637
8638 if (iverneed->vn_cnt == 0)
8639 iverneed->vn_auxptr = NULL;
8640 else
8641 {
8642 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8643 bfd_alloc2 (abfd, iverneed->vn_cnt,
8644 sizeof (Elf_Internal_Vernaux));
8645 if (iverneed->vn_auxptr == NULL)
8646 goto error_return_verref;
8647 }
8648
8649 if (iverneed->vn_aux
8650 > (size_t) (contents_end - (bfd_byte *) everneed))
8651 goto error_return_bad_verref;
8652
8653 evernaux = ((Elf_External_Vernaux *)
8654 ((bfd_byte *) everneed + iverneed->vn_aux));
8655 ivernaux = iverneed->vn_auxptr;
8656 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8657 {
8658 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8659
8660 ivernaux->vna_nodename =
8661 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8662 ivernaux->vna_name);
8663 if (ivernaux->vna_nodename == NULL)
8664 goto error_return_bad_verref;
8665
8666 if (ivernaux->vna_other > freeidx)
8667 freeidx = ivernaux->vna_other;
8668
8669 ivernaux->vna_nextptr = NULL;
8670 if (ivernaux->vna_next == 0)
8671 {
8672 iverneed->vn_cnt = j + 1;
8673 break;
8674 }
8675 if (j + 1 < iverneed->vn_cnt)
8676 ivernaux->vna_nextptr = ivernaux + 1;
8677
8678 if (ivernaux->vna_next
8679 > (size_t) (contents_end - (bfd_byte *) evernaux))
8680 goto error_return_bad_verref;
8681
8682 evernaux = ((Elf_External_Vernaux *)
8683 ((bfd_byte *) evernaux + ivernaux->vna_next));
8684 }
8685
8686 iverneed->vn_nextref = NULL;
8687 if (iverneed->vn_next == 0)
8688 break;
8689 if (i + 1 < hdr->sh_info)
8690 iverneed->vn_nextref = iverneed + 1;
8691
8692 if (iverneed->vn_next
8693 > (size_t) (contents_end - (bfd_byte *) everneed))
8694 goto error_return_bad_verref;
8695
8696 everneed = ((Elf_External_Verneed *)
8697 ((bfd_byte *) everneed + iverneed->vn_next));
8698 }
8699 elf_tdata (abfd)->cverrefs = i;
8700
8701 free (contents);
8702 contents = NULL;
8703 }
8704
8705 if (elf_dynverdef (abfd) != 0)
8706 {
8707 Elf_Internal_Shdr *hdr;
8708 Elf_External_Verdef *everdef;
8709 Elf_Internal_Verdef *iverdef;
8710 Elf_Internal_Verdef *iverdefarr;
8711 Elf_Internal_Verdef iverdefmem;
8712 unsigned int i;
8713 unsigned int maxidx;
8714 bfd_byte *contents_end_def, *contents_end_aux;
8715
8716 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8717
8718 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8719 {
8720 error_return_bad_verdef:
8721 _bfd_error_handler
8722 (_("%pB: .gnu.version_d invalid entry"), abfd);
8723 bfd_set_error (bfd_error_bad_value);
8724 error_return_verdef:
8725 elf_tdata (abfd)->verdef = NULL;
8726 elf_tdata (abfd)->cverdefs = 0;
8727 goto error_return;
8728 }
8729
8730 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8731 if (contents == NULL)
8732 goto error_return_verdef;
8733 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8734 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8735 goto error_return_verdef;
8736
8737 BFD_ASSERT (sizeof (Elf_External_Verdef)
8738 >= sizeof (Elf_External_Verdaux));
8739 contents_end_def = contents + hdr->sh_size
8740 - sizeof (Elf_External_Verdef);
8741 contents_end_aux = contents + hdr->sh_size
8742 - sizeof (Elf_External_Verdaux);
8743
8744 /* We know the number of entries in the section but not the maximum
8745 index. Therefore we have to run through all entries and find
8746 the maximum. */
8747 everdef = (Elf_External_Verdef *) contents;
8748 maxidx = 0;
8749 for (i = 0; i < hdr->sh_info; ++i)
8750 {
8751 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8752
8753 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8754 goto error_return_bad_verdef;
8755 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8756 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8757
8758 if (iverdefmem.vd_next == 0)
8759 break;
8760
8761 if (iverdefmem.vd_next
8762 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8763 goto error_return_bad_verdef;
8764
8765 everdef = ((Elf_External_Verdef *)
8766 ((bfd_byte *) everdef + iverdefmem.vd_next));
8767 }
8768
8769 if (default_imported_symver)
8770 {
8771 if (freeidx > maxidx)
8772 maxidx = ++freeidx;
8773 else
8774 freeidx = ++maxidx;
8775 }
8776
8777 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8778 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8779 if (elf_tdata (abfd)->verdef == NULL)
8780 goto error_return_verdef;
8781
8782 elf_tdata (abfd)->cverdefs = maxidx;
8783
8784 everdef = (Elf_External_Verdef *) contents;
8785 iverdefarr = elf_tdata (abfd)->verdef;
8786 for (i = 0; i < hdr->sh_info; i++)
8787 {
8788 Elf_External_Verdaux *everdaux;
8789 Elf_Internal_Verdaux *iverdaux;
8790 unsigned int j;
8791
8792 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8793
8794 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8795 goto error_return_bad_verdef;
8796
8797 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8798 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8799
8800 iverdef->vd_bfd = abfd;
8801
8802 if (iverdef->vd_cnt == 0)
8803 iverdef->vd_auxptr = NULL;
8804 else
8805 {
8806 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8807 bfd_alloc2 (abfd, iverdef->vd_cnt,
8808 sizeof (Elf_Internal_Verdaux));
8809 if (iverdef->vd_auxptr == NULL)
8810 goto error_return_verdef;
8811 }
8812
8813 if (iverdef->vd_aux
8814 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8815 goto error_return_bad_verdef;
8816
8817 everdaux = ((Elf_External_Verdaux *)
8818 ((bfd_byte *) everdef + iverdef->vd_aux));
8819 iverdaux = iverdef->vd_auxptr;
8820 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8821 {
8822 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8823
8824 iverdaux->vda_nodename =
8825 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8826 iverdaux->vda_name);
8827 if (iverdaux->vda_nodename == NULL)
8828 goto error_return_bad_verdef;
8829
8830 iverdaux->vda_nextptr = NULL;
8831 if (iverdaux->vda_next == 0)
8832 {
8833 iverdef->vd_cnt = j + 1;
8834 break;
8835 }
8836 if (j + 1 < iverdef->vd_cnt)
8837 iverdaux->vda_nextptr = iverdaux + 1;
8838
8839 if (iverdaux->vda_next
8840 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8841 goto error_return_bad_verdef;
8842
8843 everdaux = ((Elf_External_Verdaux *)
8844 ((bfd_byte *) everdaux + iverdaux->vda_next));
8845 }
8846
8847 iverdef->vd_nodename = NULL;
8848 if (iverdef->vd_cnt)
8849 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8850
8851 iverdef->vd_nextdef = NULL;
8852 if (iverdef->vd_next == 0)
8853 break;
8854 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8855 iverdef->vd_nextdef = iverdef + 1;
8856
8857 everdef = ((Elf_External_Verdef *)
8858 ((bfd_byte *) everdef + iverdef->vd_next));
8859 }
8860
8861 free (contents);
8862 contents = NULL;
8863 }
8864 else if (default_imported_symver)
8865 {
8866 if (freeidx < 3)
8867 freeidx = 3;
8868 else
8869 freeidx++;
8870
8871 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8872 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8873 if (elf_tdata (abfd)->verdef == NULL)
8874 goto error_return;
8875
8876 elf_tdata (abfd)->cverdefs = freeidx;
8877 }
8878
8879 /* Create a default version based on the soname. */
8880 if (default_imported_symver)
8881 {
8882 Elf_Internal_Verdef *iverdef;
8883 Elf_Internal_Verdaux *iverdaux;
8884
8885 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8886
8887 iverdef->vd_version = VER_DEF_CURRENT;
8888 iverdef->vd_flags = 0;
8889 iverdef->vd_ndx = freeidx;
8890 iverdef->vd_cnt = 1;
8891
8892 iverdef->vd_bfd = abfd;
8893
8894 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8895 if (iverdef->vd_nodename == NULL)
8896 goto error_return_verdef;
8897 iverdef->vd_nextdef = NULL;
8898 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8899 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8900 if (iverdef->vd_auxptr == NULL)
8901 goto error_return_verdef;
8902
8903 iverdaux = iverdef->vd_auxptr;
8904 iverdaux->vda_nodename = iverdef->vd_nodename;
8905 }
8906
8907 return TRUE;
8908
8909 error_return:
8910 if (contents != NULL)
8911 free (contents);
8912 return FALSE;
8913 }
8914 \f
8915 asymbol *
8916 _bfd_elf_make_empty_symbol (bfd *abfd)
8917 {
8918 elf_symbol_type *newsym;
8919
8920 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8921 if (!newsym)
8922 return NULL;
8923 newsym->symbol.the_bfd = abfd;
8924 return &newsym->symbol;
8925 }
8926
8927 void
8928 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8929 asymbol *symbol,
8930 symbol_info *ret)
8931 {
8932 bfd_symbol_info (symbol, ret);
8933 }
8934
8935 /* Return whether a symbol name implies a local symbol. Most targets
8936 use this function for the is_local_label_name entry point, but some
8937 override it. */
8938
8939 bfd_boolean
8940 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8941 const char *name)
8942 {
8943 /* Normal local symbols start with ``.L''. */
8944 if (name[0] == '.' && name[1] == 'L')
8945 return TRUE;
8946
8947 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8948 DWARF debugging symbols starting with ``..''. */
8949 if (name[0] == '.' && name[1] == '.')
8950 return TRUE;
8951
8952 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8953 emitting DWARF debugging output. I suspect this is actually a
8954 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8955 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8956 underscore to be emitted on some ELF targets). For ease of use,
8957 we treat such symbols as local. */
8958 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8959 return TRUE;
8960
8961 /* Treat assembler generated fake symbols, dollar local labels and
8962 forward-backward labels (aka local labels) as locals.
8963 These labels have the form:
8964
8965 L0^A.* (fake symbols)
8966
8967 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8968
8969 Versions which start with .L will have already been matched above,
8970 so we only need to match the rest. */
8971 if (name[0] == 'L' && ISDIGIT (name[1]))
8972 {
8973 bfd_boolean ret = FALSE;
8974 const char * p;
8975 char c;
8976
8977 for (p = name + 2; (c = *p); p++)
8978 {
8979 if (c == 1 || c == 2)
8980 {
8981 if (c == 1 && p == name + 2)
8982 /* A fake symbol. */
8983 return TRUE;
8984
8985 /* FIXME: We are being paranoid here and treating symbols like
8986 L0^Bfoo as if there were non-local, on the grounds that the
8987 assembler will never generate them. But can any symbol
8988 containing an ASCII value in the range 1-31 ever be anything
8989 other than some kind of local ? */
8990 ret = TRUE;
8991 }
8992
8993 if (! ISDIGIT (c))
8994 {
8995 ret = FALSE;
8996 break;
8997 }
8998 }
8999 return ret;
9000 }
9001
9002 return FALSE;
9003 }
9004
9005 alent *
9006 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9007 asymbol *symbol ATTRIBUTE_UNUSED)
9008 {
9009 abort ();
9010 return NULL;
9011 }
9012
9013 bfd_boolean
9014 _bfd_elf_set_arch_mach (bfd *abfd,
9015 enum bfd_architecture arch,
9016 unsigned long machine)
9017 {
9018 /* If this isn't the right architecture for this backend, and this
9019 isn't the generic backend, fail. */
9020 if (arch != get_elf_backend_data (abfd)->arch
9021 && arch != bfd_arch_unknown
9022 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9023 return FALSE;
9024
9025 return bfd_default_set_arch_mach (abfd, arch, machine);
9026 }
9027
9028 /* Find the nearest line to a particular section and offset,
9029 for error reporting. */
9030
9031 bfd_boolean
9032 _bfd_elf_find_nearest_line (bfd *abfd,
9033 asymbol **symbols,
9034 asection *section,
9035 bfd_vma offset,
9036 const char **filename_ptr,
9037 const char **functionname_ptr,
9038 unsigned int *line_ptr,
9039 unsigned int *discriminator_ptr)
9040 {
9041 bfd_boolean found;
9042
9043 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9044 filename_ptr, functionname_ptr,
9045 line_ptr, discriminator_ptr,
9046 dwarf_debug_sections,
9047 &elf_tdata (abfd)->dwarf2_find_line_info)
9048 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9049 filename_ptr, functionname_ptr,
9050 line_ptr))
9051 {
9052 if (!*functionname_ptr)
9053 _bfd_elf_find_function (abfd, symbols, section, offset,
9054 *filename_ptr ? NULL : filename_ptr,
9055 functionname_ptr);
9056 return TRUE;
9057 }
9058
9059 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9060 &found, filename_ptr,
9061 functionname_ptr, line_ptr,
9062 &elf_tdata (abfd)->line_info))
9063 return FALSE;
9064 if (found && (*functionname_ptr || *line_ptr))
9065 return TRUE;
9066
9067 if (symbols == NULL)
9068 return FALSE;
9069
9070 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9071 filename_ptr, functionname_ptr))
9072 return FALSE;
9073
9074 *line_ptr = 0;
9075 return TRUE;
9076 }
9077
9078 /* Find the line for a symbol. */
9079
9080 bfd_boolean
9081 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9082 const char **filename_ptr, unsigned int *line_ptr)
9083 {
9084 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9085 filename_ptr, NULL, line_ptr, NULL,
9086 dwarf_debug_sections,
9087 &elf_tdata (abfd)->dwarf2_find_line_info);
9088 }
9089
9090 /* After a call to bfd_find_nearest_line, successive calls to
9091 bfd_find_inliner_info can be used to get source information about
9092 each level of function inlining that terminated at the address
9093 passed to bfd_find_nearest_line. Currently this is only supported
9094 for DWARF2 with appropriate DWARF3 extensions. */
9095
9096 bfd_boolean
9097 _bfd_elf_find_inliner_info (bfd *abfd,
9098 const char **filename_ptr,
9099 const char **functionname_ptr,
9100 unsigned int *line_ptr)
9101 {
9102 bfd_boolean found;
9103 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9104 functionname_ptr, line_ptr,
9105 & elf_tdata (abfd)->dwarf2_find_line_info);
9106 return found;
9107 }
9108
9109 int
9110 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9111 {
9112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9113 int ret = bed->s->sizeof_ehdr;
9114
9115 if (!bfd_link_relocatable (info))
9116 {
9117 bfd_size_type phdr_size = elf_program_header_size (abfd);
9118
9119 if (phdr_size == (bfd_size_type) -1)
9120 {
9121 struct elf_segment_map *m;
9122
9123 phdr_size = 0;
9124 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9125 phdr_size += bed->s->sizeof_phdr;
9126
9127 if (phdr_size == 0)
9128 phdr_size = get_program_header_size (abfd, info);
9129 }
9130
9131 elf_program_header_size (abfd) = phdr_size;
9132 ret += phdr_size;
9133 }
9134
9135 return ret;
9136 }
9137
9138 bfd_boolean
9139 _bfd_elf_set_section_contents (bfd *abfd,
9140 sec_ptr section,
9141 const void *location,
9142 file_ptr offset,
9143 bfd_size_type count)
9144 {
9145 Elf_Internal_Shdr *hdr;
9146 file_ptr pos;
9147
9148 if (! abfd->output_has_begun
9149 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9150 return FALSE;
9151
9152 if (!count)
9153 return TRUE;
9154
9155 hdr = &elf_section_data (section)->this_hdr;
9156 if (hdr->sh_offset == (file_ptr) -1)
9157 {
9158 if (bfd_section_is_ctf (section))
9159 /* Nothing to do with this section: the contents are generated
9160 later. */
9161 return TRUE;
9162
9163 /* We must compress this section. Write output to the buffer. */
9164 unsigned char *contents = hdr->contents;
9165 if ((offset + count) > hdr->sh_size
9166 || (section->flags & SEC_ELF_COMPRESS) == 0
9167 || contents == NULL)
9168 abort ();
9169 memcpy (contents + offset, location, count);
9170 return TRUE;
9171 }
9172 pos = hdr->sh_offset + offset;
9173 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9174 || bfd_bwrite (location, count, abfd) != count)
9175 return FALSE;
9176
9177 return TRUE;
9178 }
9179
9180 bfd_boolean
9181 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9182 arelent *cache_ptr ATTRIBUTE_UNUSED,
9183 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9184 {
9185 abort ();
9186 return FALSE;
9187 }
9188
9189 /* Try to convert a non-ELF reloc into an ELF one. */
9190
9191 bfd_boolean
9192 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9193 {
9194 /* Check whether we really have an ELF howto. */
9195
9196 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9197 {
9198 bfd_reloc_code_real_type code;
9199 reloc_howto_type *howto;
9200
9201 /* Alien reloc: Try to determine its type to replace it with an
9202 equivalent ELF reloc. */
9203
9204 if (areloc->howto->pc_relative)
9205 {
9206 switch (areloc->howto->bitsize)
9207 {
9208 case 8:
9209 code = BFD_RELOC_8_PCREL;
9210 break;
9211 case 12:
9212 code = BFD_RELOC_12_PCREL;
9213 break;
9214 case 16:
9215 code = BFD_RELOC_16_PCREL;
9216 break;
9217 case 24:
9218 code = BFD_RELOC_24_PCREL;
9219 break;
9220 case 32:
9221 code = BFD_RELOC_32_PCREL;
9222 break;
9223 case 64:
9224 code = BFD_RELOC_64_PCREL;
9225 break;
9226 default:
9227 goto fail;
9228 }
9229
9230 howto = bfd_reloc_type_lookup (abfd, code);
9231
9232 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
9233 {
9234 if (howto->pcrel_offset)
9235 areloc->addend += areloc->address;
9236 else
9237 areloc->addend -= areloc->address; /* addend is unsigned!! */
9238 }
9239 }
9240 else
9241 {
9242 switch (areloc->howto->bitsize)
9243 {
9244 case 8:
9245 code = BFD_RELOC_8;
9246 break;
9247 case 14:
9248 code = BFD_RELOC_14;
9249 break;
9250 case 16:
9251 code = BFD_RELOC_16;
9252 break;
9253 case 26:
9254 code = BFD_RELOC_26;
9255 break;
9256 case 32:
9257 code = BFD_RELOC_32;
9258 break;
9259 case 64:
9260 code = BFD_RELOC_64;
9261 break;
9262 default:
9263 goto fail;
9264 }
9265
9266 howto = bfd_reloc_type_lookup (abfd, code);
9267 }
9268
9269 if (howto)
9270 areloc->howto = howto;
9271 else
9272 goto fail;
9273 }
9274
9275 return TRUE;
9276
9277 fail:
9278 /* xgettext:c-format */
9279 _bfd_error_handler (_("%pB: %s unsupported"),
9280 abfd, areloc->howto->name);
9281 bfd_set_error (bfd_error_sorry);
9282 return FALSE;
9283 }
9284
9285 bfd_boolean
9286 _bfd_elf_close_and_cleanup (bfd *abfd)
9287 {
9288 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9289 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9290 {
9291 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9292 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9293 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9294 }
9295
9296 return _bfd_generic_close_and_cleanup (abfd);
9297 }
9298
9299 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9300 in the relocation's offset. Thus we cannot allow any sort of sanity
9301 range-checking to interfere. There is nothing else to do in processing
9302 this reloc. */
9303
9304 bfd_reloc_status_type
9305 _bfd_elf_rel_vtable_reloc_fn
9306 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9307 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9308 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9309 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9310 {
9311 return bfd_reloc_ok;
9312 }
9313 \f
9314 /* Elf core file support. Much of this only works on native
9315 toolchains, since we rely on knowing the
9316 machine-dependent procfs structure in order to pick
9317 out details about the corefile. */
9318
9319 #ifdef HAVE_SYS_PROCFS_H
9320 /* Needed for new procfs interface on sparc-solaris. */
9321 # define _STRUCTURED_PROC 1
9322 # include <sys/procfs.h>
9323 #endif
9324
9325 /* Return a PID that identifies a "thread" for threaded cores, or the
9326 PID of the main process for non-threaded cores. */
9327
9328 static int
9329 elfcore_make_pid (bfd *abfd)
9330 {
9331 int pid;
9332
9333 pid = elf_tdata (abfd)->core->lwpid;
9334 if (pid == 0)
9335 pid = elf_tdata (abfd)->core->pid;
9336
9337 return pid;
9338 }
9339
9340 /* If there isn't a section called NAME, make one, using
9341 data from SECT. Note, this function will generate a
9342 reference to NAME, so you shouldn't deallocate or
9343 overwrite it. */
9344
9345 static bfd_boolean
9346 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9347 {
9348 asection *sect2;
9349
9350 if (bfd_get_section_by_name (abfd, name) != NULL)
9351 return TRUE;
9352
9353 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9354 if (sect2 == NULL)
9355 return FALSE;
9356
9357 sect2->size = sect->size;
9358 sect2->filepos = sect->filepos;
9359 sect2->alignment_power = sect->alignment_power;
9360 return TRUE;
9361 }
9362
9363 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9364 actually creates up to two pseudosections:
9365 - For the single-threaded case, a section named NAME, unless
9366 such a section already exists.
9367 - For the multi-threaded case, a section named "NAME/PID", where
9368 PID is elfcore_make_pid (abfd).
9369 Both pseudosections have identical contents. */
9370 bfd_boolean
9371 _bfd_elfcore_make_pseudosection (bfd *abfd,
9372 char *name,
9373 size_t size,
9374 ufile_ptr filepos)
9375 {
9376 char buf[100];
9377 char *threaded_name;
9378 size_t len;
9379 asection *sect;
9380
9381 /* Build the section name. */
9382
9383 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9384 len = strlen (buf) + 1;
9385 threaded_name = (char *) bfd_alloc (abfd, len);
9386 if (threaded_name == NULL)
9387 return FALSE;
9388 memcpy (threaded_name, buf, len);
9389
9390 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9391 SEC_HAS_CONTENTS);
9392 if (sect == NULL)
9393 return FALSE;
9394 sect->size = size;
9395 sect->filepos = filepos;
9396 sect->alignment_power = 2;
9397
9398 return elfcore_maybe_make_sect (abfd, name, sect);
9399 }
9400
9401 static bfd_boolean
9402 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9403 size_t offs)
9404 {
9405 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9406 SEC_HAS_CONTENTS);
9407
9408 if (sect == NULL)
9409 return FALSE;
9410
9411 sect->size = note->descsz - offs;
9412 sect->filepos = note->descpos + offs;
9413 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9414
9415 return TRUE;
9416 }
9417
9418 /* prstatus_t exists on:
9419 solaris 2.5+
9420 linux 2.[01] + glibc
9421 unixware 4.2
9422 */
9423
9424 #if defined (HAVE_PRSTATUS_T)
9425
9426 static bfd_boolean
9427 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9428 {
9429 size_t size;
9430 int offset;
9431
9432 if (note->descsz == sizeof (prstatus_t))
9433 {
9434 prstatus_t prstat;
9435
9436 size = sizeof (prstat.pr_reg);
9437 offset = offsetof (prstatus_t, pr_reg);
9438 memcpy (&prstat, note->descdata, sizeof (prstat));
9439
9440 /* Do not overwrite the core signal if it
9441 has already been set by another thread. */
9442 if (elf_tdata (abfd)->core->signal == 0)
9443 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9444 if (elf_tdata (abfd)->core->pid == 0)
9445 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9446
9447 /* pr_who exists on:
9448 solaris 2.5+
9449 unixware 4.2
9450 pr_who doesn't exist on:
9451 linux 2.[01]
9452 */
9453 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9454 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9455 #else
9456 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9457 #endif
9458 }
9459 #if defined (HAVE_PRSTATUS32_T)
9460 else if (note->descsz == sizeof (prstatus32_t))
9461 {
9462 /* 64-bit host, 32-bit corefile */
9463 prstatus32_t prstat;
9464
9465 size = sizeof (prstat.pr_reg);
9466 offset = offsetof (prstatus32_t, pr_reg);
9467 memcpy (&prstat, note->descdata, sizeof (prstat));
9468
9469 /* Do not overwrite the core signal if it
9470 has already been set by another thread. */
9471 if (elf_tdata (abfd)->core->signal == 0)
9472 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9473 if (elf_tdata (abfd)->core->pid == 0)
9474 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9475
9476 /* pr_who exists on:
9477 solaris 2.5+
9478 unixware 4.2
9479 pr_who doesn't exist on:
9480 linux 2.[01]
9481 */
9482 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9483 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9484 #else
9485 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9486 #endif
9487 }
9488 #endif /* HAVE_PRSTATUS32_T */
9489 else
9490 {
9491 /* Fail - we don't know how to handle any other
9492 note size (ie. data object type). */
9493 return TRUE;
9494 }
9495
9496 /* Make a ".reg/999" section and a ".reg" section. */
9497 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9498 size, note->descpos + offset);
9499 }
9500 #endif /* defined (HAVE_PRSTATUS_T) */
9501
9502 /* Create a pseudosection containing the exact contents of NOTE. */
9503 static bfd_boolean
9504 elfcore_make_note_pseudosection (bfd *abfd,
9505 char *name,
9506 Elf_Internal_Note *note)
9507 {
9508 return _bfd_elfcore_make_pseudosection (abfd, name,
9509 note->descsz, note->descpos);
9510 }
9511
9512 /* There isn't a consistent prfpregset_t across platforms,
9513 but it doesn't matter, because we don't have to pick this
9514 data structure apart. */
9515
9516 static bfd_boolean
9517 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9518 {
9519 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9520 }
9521
9522 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9523 type of NT_PRXFPREG. Just include the whole note's contents
9524 literally. */
9525
9526 static bfd_boolean
9527 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9528 {
9529 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9530 }
9531
9532 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9533 with a note type of NT_X86_XSTATE. Just include the whole note's
9534 contents literally. */
9535
9536 static bfd_boolean
9537 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9538 {
9539 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9540 }
9541
9542 static bfd_boolean
9543 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9544 {
9545 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9546 }
9547
9548 static bfd_boolean
9549 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9550 {
9551 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9552 }
9553
9554 static bfd_boolean
9555 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9556 {
9557 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9558 }
9559
9560 static bfd_boolean
9561 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9562 {
9563 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9564 }
9565
9566 static bfd_boolean
9567 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9568 {
9569 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9570 }
9571
9572 static bfd_boolean
9573 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9574 {
9575 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9576 }
9577
9578 static bfd_boolean
9579 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9580 {
9581 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9582 }
9583
9584 static bfd_boolean
9585 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9586 {
9587 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9588 }
9589
9590 static bfd_boolean
9591 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9592 {
9593 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9594 }
9595
9596 static bfd_boolean
9597 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9598 {
9599 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9600 }
9601
9602 static bfd_boolean
9603 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9604 {
9605 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9606 }
9607
9608 static bfd_boolean
9609 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9610 {
9611 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9612 }
9613
9614 static bfd_boolean
9615 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9616 {
9617 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9618 }
9619
9620 static bfd_boolean
9621 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9622 {
9623 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9624 }
9625
9626 static bfd_boolean
9627 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9628 {
9629 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9630 }
9631
9632 static bfd_boolean
9633 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9634 {
9635 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9636 }
9637
9638 static bfd_boolean
9639 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9640 {
9641 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9642 }
9643
9644 static bfd_boolean
9645 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9646 {
9647 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9648 }
9649
9650 static bfd_boolean
9651 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9652 {
9653 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9654 }
9655
9656 static bfd_boolean
9657 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9658 {
9659 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9660 }
9661
9662 static bfd_boolean
9663 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9664 {
9665 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9666 }
9667
9668 static bfd_boolean
9669 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9670 {
9671 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9672 }
9673
9674 static bfd_boolean
9675 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9676 {
9677 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9678 }
9679
9680 static bfd_boolean
9681 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9682 {
9683 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9684 }
9685
9686 static bfd_boolean
9687 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9688 {
9689 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9690 }
9691
9692 static bfd_boolean
9693 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9694 {
9695 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9696 }
9697
9698 static bfd_boolean
9699 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9700 {
9701 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9702 }
9703
9704 static bfd_boolean
9705 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9706 {
9707 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9708 }
9709
9710 static bfd_boolean
9711 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9712 {
9713 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9714 }
9715
9716 static bfd_boolean
9717 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9718 {
9719 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9720 }
9721
9722 static bfd_boolean
9723 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9724 {
9725 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9726 }
9727
9728 static bfd_boolean
9729 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9730 {
9731 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9732 }
9733
9734 static bfd_boolean
9735 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9736 {
9737 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9738 }
9739
9740 static bfd_boolean
9741 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9742 {
9743 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9744 }
9745
9746 #if defined (HAVE_PRPSINFO_T)
9747 typedef prpsinfo_t elfcore_psinfo_t;
9748 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9749 typedef prpsinfo32_t elfcore_psinfo32_t;
9750 #endif
9751 #endif
9752
9753 #if defined (HAVE_PSINFO_T)
9754 typedef psinfo_t elfcore_psinfo_t;
9755 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9756 typedef psinfo32_t elfcore_psinfo32_t;
9757 #endif
9758 #endif
9759
9760 /* return a malloc'ed copy of a string at START which is at
9761 most MAX bytes long, possibly without a terminating '\0'.
9762 the copy will always have a terminating '\0'. */
9763
9764 char *
9765 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9766 {
9767 char *dups;
9768 char *end = (char *) memchr (start, '\0', max);
9769 size_t len;
9770
9771 if (end == NULL)
9772 len = max;
9773 else
9774 len = end - start;
9775
9776 dups = (char *) bfd_alloc (abfd, len + 1);
9777 if (dups == NULL)
9778 return NULL;
9779
9780 memcpy (dups, start, len);
9781 dups[len] = '\0';
9782
9783 return dups;
9784 }
9785
9786 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9787 static bfd_boolean
9788 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9789 {
9790 if (note->descsz == sizeof (elfcore_psinfo_t))
9791 {
9792 elfcore_psinfo_t psinfo;
9793
9794 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9795
9796 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9797 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9798 #endif
9799 elf_tdata (abfd)->core->program
9800 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9801 sizeof (psinfo.pr_fname));
9802
9803 elf_tdata (abfd)->core->command
9804 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9805 sizeof (psinfo.pr_psargs));
9806 }
9807 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9808 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9809 {
9810 /* 64-bit host, 32-bit corefile */
9811 elfcore_psinfo32_t psinfo;
9812
9813 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9814
9815 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9816 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9817 #endif
9818 elf_tdata (abfd)->core->program
9819 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9820 sizeof (psinfo.pr_fname));
9821
9822 elf_tdata (abfd)->core->command
9823 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9824 sizeof (psinfo.pr_psargs));
9825 }
9826 #endif
9827
9828 else
9829 {
9830 /* Fail - we don't know how to handle any other
9831 note size (ie. data object type). */
9832 return TRUE;
9833 }
9834
9835 /* Note that for some reason, a spurious space is tacked
9836 onto the end of the args in some (at least one anyway)
9837 implementations, so strip it off if it exists. */
9838
9839 {
9840 char *command = elf_tdata (abfd)->core->command;
9841 int n = strlen (command);
9842
9843 if (0 < n && command[n - 1] == ' ')
9844 command[n - 1] = '\0';
9845 }
9846
9847 return TRUE;
9848 }
9849 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9850
9851 #if defined (HAVE_PSTATUS_T)
9852 static bfd_boolean
9853 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9854 {
9855 if (note->descsz == sizeof (pstatus_t)
9856 #if defined (HAVE_PXSTATUS_T)
9857 || note->descsz == sizeof (pxstatus_t)
9858 #endif
9859 )
9860 {
9861 pstatus_t pstat;
9862
9863 memcpy (&pstat, note->descdata, sizeof (pstat));
9864
9865 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9866 }
9867 #if defined (HAVE_PSTATUS32_T)
9868 else if (note->descsz == sizeof (pstatus32_t))
9869 {
9870 /* 64-bit host, 32-bit corefile */
9871 pstatus32_t pstat;
9872
9873 memcpy (&pstat, note->descdata, sizeof (pstat));
9874
9875 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9876 }
9877 #endif
9878 /* Could grab some more details from the "representative"
9879 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9880 NT_LWPSTATUS note, presumably. */
9881
9882 return TRUE;
9883 }
9884 #endif /* defined (HAVE_PSTATUS_T) */
9885
9886 #if defined (HAVE_LWPSTATUS_T)
9887 static bfd_boolean
9888 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9889 {
9890 lwpstatus_t lwpstat;
9891 char buf[100];
9892 char *name;
9893 size_t len;
9894 asection *sect;
9895
9896 if (note->descsz != sizeof (lwpstat)
9897 #if defined (HAVE_LWPXSTATUS_T)
9898 && note->descsz != sizeof (lwpxstatus_t)
9899 #endif
9900 )
9901 return TRUE;
9902
9903 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9904
9905 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9906 /* Do not overwrite the core signal if it has already been set by
9907 another thread. */
9908 if (elf_tdata (abfd)->core->signal == 0)
9909 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9910
9911 /* Make a ".reg/999" section. */
9912
9913 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9914 len = strlen (buf) + 1;
9915 name = bfd_alloc (abfd, len);
9916 if (name == NULL)
9917 return FALSE;
9918 memcpy (name, buf, len);
9919
9920 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9921 if (sect == NULL)
9922 return FALSE;
9923
9924 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9925 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9926 sect->filepos = note->descpos
9927 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9928 #endif
9929
9930 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9931 sect->size = sizeof (lwpstat.pr_reg);
9932 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9933 #endif
9934
9935 sect->alignment_power = 2;
9936
9937 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9938 return FALSE;
9939
9940 /* Make a ".reg2/999" section */
9941
9942 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9943 len = strlen (buf) + 1;
9944 name = bfd_alloc (abfd, len);
9945 if (name == NULL)
9946 return FALSE;
9947 memcpy (name, buf, len);
9948
9949 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9950 if (sect == NULL)
9951 return FALSE;
9952
9953 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9954 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9955 sect->filepos = note->descpos
9956 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9957 #endif
9958
9959 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9960 sect->size = sizeof (lwpstat.pr_fpreg);
9961 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9962 #endif
9963
9964 sect->alignment_power = 2;
9965
9966 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9967 }
9968 #endif /* defined (HAVE_LWPSTATUS_T) */
9969
9970 static bfd_boolean
9971 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9972 {
9973 char buf[30];
9974 char *name;
9975 size_t len;
9976 asection *sect;
9977 int type;
9978 int is_active_thread;
9979 bfd_vma base_addr;
9980
9981 if (note->descsz < 728)
9982 return TRUE;
9983
9984 if (! CONST_STRNEQ (note->namedata, "win32"))
9985 return TRUE;
9986
9987 type = bfd_get_32 (abfd, note->descdata);
9988
9989 switch (type)
9990 {
9991 case 1 /* NOTE_INFO_PROCESS */:
9992 /* FIXME: need to add ->core->command. */
9993 /* process_info.pid */
9994 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9995 /* process_info.signal */
9996 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9997 break;
9998
9999 case 2 /* NOTE_INFO_THREAD */:
10000 /* Make a ".reg/999" section. */
10001 /* thread_info.tid */
10002 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10003
10004 len = strlen (buf) + 1;
10005 name = (char *) bfd_alloc (abfd, len);
10006 if (name == NULL)
10007 return FALSE;
10008
10009 memcpy (name, buf, len);
10010
10011 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10012 if (sect == NULL)
10013 return FALSE;
10014
10015 /* sizeof (thread_info.thread_context) */
10016 sect->size = 716;
10017 /* offsetof (thread_info.thread_context) */
10018 sect->filepos = note->descpos + 12;
10019 sect->alignment_power = 2;
10020
10021 /* thread_info.is_active_thread */
10022 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10023
10024 if (is_active_thread)
10025 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10026 return FALSE;
10027 break;
10028
10029 case 3 /* NOTE_INFO_MODULE */:
10030 /* Make a ".module/xxxxxxxx" section. */
10031 /* module_info.base_address */
10032 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10033 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10034
10035 len = strlen (buf) + 1;
10036 name = (char *) bfd_alloc (abfd, len);
10037 if (name == NULL)
10038 return FALSE;
10039
10040 memcpy (name, buf, len);
10041
10042 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10043
10044 if (sect == NULL)
10045 return FALSE;
10046
10047 sect->size = note->descsz;
10048 sect->filepos = note->descpos;
10049 sect->alignment_power = 2;
10050 break;
10051
10052 default:
10053 return TRUE;
10054 }
10055
10056 return TRUE;
10057 }
10058
10059 static bfd_boolean
10060 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10061 {
10062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10063
10064 switch (note->type)
10065 {
10066 default:
10067 return TRUE;
10068
10069 case NT_PRSTATUS:
10070 if (bed->elf_backend_grok_prstatus)
10071 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10072 return TRUE;
10073 #if defined (HAVE_PRSTATUS_T)
10074 return elfcore_grok_prstatus (abfd, note);
10075 #else
10076 return TRUE;
10077 #endif
10078
10079 #if defined (HAVE_PSTATUS_T)
10080 case NT_PSTATUS:
10081 return elfcore_grok_pstatus (abfd, note);
10082 #endif
10083
10084 #if defined (HAVE_LWPSTATUS_T)
10085 case NT_LWPSTATUS:
10086 return elfcore_grok_lwpstatus (abfd, note);
10087 #endif
10088
10089 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10090 return elfcore_grok_prfpreg (abfd, note);
10091
10092 case NT_WIN32PSTATUS:
10093 return elfcore_grok_win32pstatus (abfd, note);
10094
10095 case NT_PRXFPREG: /* Linux SSE extension */
10096 if (note->namesz == 6
10097 && strcmp (note->namedata, "LINUX") == 0)
10098 return elfcore_grok_prxfpreg (abfd, note);
10099 else
10100 return TRUE;
10101
10102 case NT_X86_XSTATE: /* Linux XSAVE extension */
10103 if (note->namesz == 6
10104 && strcmp (note->namedata, "LINUX") == 0)
10105 return elfcore_grok_xstatereg (abfd, note);
10106 else
10107 return TRUE;
10108
10109 case NT_PPC_VMX:
10110 if (note->namesz == 6
10111 && strcmp (note->namedata, "LINUX") == 0)
10112 return elfcore_grok_ppc_vmx (abfd, note);
10113 else
10114 return TRUE;
10115
10116 case NT_PPC_VSX:
10117 if (note->namesz == 6
10118 && strcmp (note->namedata, "LINUX") == 0)
10119 return elfcore_grok_ppc_vsx (abfd, note);
10120 else
10121 return TRUE;
10122
10123 case NT_PPC_TAR:
10124 if (note->namesz == 6
10125 && strcmp (note->namedata, "LINUX") == 0)
10126 return elfcore_grok_ppc_tar (abfd, note);
10127 else
10128 return TRUE;
10129
10130 case NT_PPC_PPR:
10131 if (note->namesz == 6
10132 && strcmp (note->namedata, "LINUX") == 0)
10133 return elfcore_grok_ppc_ppr (abfd, note);
10134 else
10135 return TRUE;
10136
10137 case NT_PPC_DSCR:
10138 if (note->namesz == 6
10139 && strcmp (note->namedata, "LINUX") == 0)
10140 return elfcore_grok_ppc_dscr (abfd, note);
10141 else
10142 return TRUE;
10143
10144 case NT_PPC_EBB:
10145 if (note->namesz == 6
10146 && strcmp (note->namedata, "LINUX") == 0)
10147 return elfcore_grok_ppc_ebb (abfd, note);
10148 else
10149 return TRUE;
10150
10151 case NT_PPC_PMU:
10152 if (note->namesz == 6
10153 && strcmp (note->namedata, "LINUX") == 0)
10154 return elfcore_grok_ppc_pmu (abfd, note);
10155 else
10156 return TRUE;
10157
10158 case NT_PPC_TM_CGPR:
10159 if (note->namesz == 6
10160 && strcmp (note->namedata, "LINUX") == 0)
10161 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10162 else
10163 return TRUE;
10164
10165 case NT_PPC_TM_CFPR:
10166 if (note->namesz == 6
10167 && strcmp (note->namedata, "LINUX") == 0)
10168 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10169 else
10170 return TRUE;
10171
10172 case NT_PPC_TM_CVMX:
10173 if (note->namesz == 6
10174 && strcmp (note->namedata, "LINUX") == 0)
10175 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10176 else
10177 return TRUE;
10178
10179 case NT_PPC_TM_CVSX:
10180 if (note->namesz == 6
10181 && strcmp (note->namedata, "LINUX") == 0)
10182 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10183 else
10184 return TRUE;
10185
10186 case NT_PPC_TM_SPR:
10187 if (note->namesz == 6
10188 && strcmp (note->namedata, "LINUX") == 0)
10189 return elfcore_grok_ppc_tm_spr (abfd, note);
10190 else
10191 return TRUE;
10192
10193 case NT_PPC_TM_CTAR:
10194 if (note->namesz == 6
10195 && strcmp (note->namedata, "LINUX") == 0)
10196 return elfcore_grok_ppc_tm_ctar (abfd, note);
10197 else
10198 return TRUE;
10199
10200 case NT_PPC_TM_CPPR:
10201 if (note->namesz == 6
10202 && strcmp (note->namedata, "LINUX") == 0)
10203 return elfcore_grok_ppc_tm_cppr (abfd, note);
10204 else
10205 return TRUE;
10206
10207 case NT_PPC_TM_CDSCR:
10208 if (note->namesz == 6
10209 && strcmp (note->namedata, "LINUX") == 0)
10210 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10211 else
10212 return TRUE;
10213
10214 case NT_S390_HIGH_GPRS:
10215 if (note->namesz == 6
10216 && strcmp (note->namedata, "LINUX") == 0)
10217 return elfcore_grok_s390_high_gprs (abfd, note);
10218 else
10219 return TRUE;
10220
10221 case NT_S390_TIMER:
10222 if (note->namesz == 6
10223 && strcmp (note->namedata, "LINUX") == 0)
10224 return elfcore_grok_s390_timer (abfd, note);
10225 else
10226 return TRUE;
10227
10228 case NT_S390_TODCMP:
10229 if (note->namesz == 6
10230 && strcmp (note->namedata, "LINUX") == 0)
10231 return elfcore_grok_s390_todcmp (abfd, note);
10232 else
10233 return TRUE;
10234
10235 case NT_S390_TODPREG:
10236 if (note->namesz == 6
10237 && strcmp (note->namedata, "LINUX") == 0)
10238 return elfcore_grok_s390_todpreg (abfd, note);
10239 else
10240 return TRUE;
10241
10242 case NT_S390_CTRS:
10243 if (note->namesz == 6
10244 && strcmp (note->namedata, "LINUX") == 0)
10245 return elfcore_grok_s390_ctrs (abfd, note);
10246 else
10247 return TRUE;
10248
10249 case NT_S390_PREFIX:
10250 if (note->namesz == 6
10251 && strcmp (note->namedata, "LINUX") == 0)
10252 return elfcore_grok_s390_prefix (abfd, note);
10253 else
10254 return TRUE;
10255
10256 case NT_S390_LAST_BREAK:
10257 if (note->namesz == 6
10258 && strcmp (note->namedata, "LINUX") == 0)
10259 return elfcore_grok_s390_last_break (abfd, note);
10260 else
10261 return TRUE;
10262
10263 case NT_S390_SYSTEM_CALL:
10264 if (note->namesz == 6
10265 && strcmp (note->namedata, "LINUX") == 0)
10266 return elfcore_grok_s390_system_call (abfd, note);
10267 else
10268 return TRUE;
10269
10270 case NT_S390_TDB:
10271 if (note->namesz == 6
10272 && strcmp (note->namedata, "LINUX") == 0)
10273 return elfcore_grok_s390_tdb (abfd, note);
10274 else
10275 return TRUE;
10276
10277 case NT_S390_VXRS_LOW:
10278 if (note->namesz == 6
10279 && strcmp (note->namedata, "LINUX") == 0)
10280 return elfcore_grok_s390_vxrs_low (abfd, note);
10281 else
10282 return TRUE;
10283
10284 case NT_S390_VXRS_HIGH:
10285 if (note->namesz == 6
10286 && strcmp (note->namedata, "LINUX") == 0)
10287 return elfcore_grok_s390_vxrs_high (abfd, note);
10288 else
10289 return TRUE;
10290
10291 case NT_S390_GS_CB:
10292 if (note->namesz == 6
10293 && strcmp (note->namedata, "LINUX") == 0)
10294 return elfcore_grok_s390_gs_cb (abfd, note);
10295 else
10296 return TRUE;
10297
10298 case NT_S390_GS_BC:
10299 if (note->namesz == 6
10300 && strcmp (note->namedata, "LINUX") == 0)
10301 return elfcore_grok_s390_gs_bc (abfd, note);
10302 else
10303 return TRUE;
10304
10305 case NT_ARM_VFP:
10306 if (note->namesz == 6
10307 && strcmp (note->namedata, "LINUX") == 0)
10308 return elfcore_grok_arm_vfp (abfd, note);
10309 else
10310 return TRUE;
10311
10312 case NT_ARM_TLS:
10313 if (note->namesz == 6
10314 && strcmp (note->namedata, "LINUX") == 0)
10315 return elfcore_grok_aarch_tls (abfd, note);
10316 else
10317 return TRUE;
10318
10319 case NT_ARM_HW_BREAK:
10320 if (note->namesz == 6
10321 && strcmp (note->namedata, "LINUX") == 0)
10322 return elfcore_grok_aarch_hw_break (abfd, note);
10323 else
10324 return TRUE;
10325
10326 case NT_ARM_HW_WATCH:
10327 if (note->namesz == 6
10328 && strcmp (note->namedata, "LINUX") == 0)
10329 return elfcore_grok_aarch_hw_watch (abfd, note);
10330 else
10331 return TRUE;
10332
10333 case NT_ARM_SVE:
10334 if (note->namesz == 6
10335 && strcmp (note->namedata, "LINUX") == 0)
10336 return elfcore_grok_aarch_sve (abfd, note);
10337 else
10338 return TRUE;
10339
10340 case NT_ARM_PAC_MASK:
10341 if (note->namesz == 6
10342 && strcmp (note->namedata, "LINUX") == 0)
10343 return elfcore_grok_aarch_pauth (abfd, note);
10344 else
10345 return TRUE;
10346
10347 case NT_PRPSINFO:
10348 case NT_PSINFO:
10349 if (bed->elf_backend_grok_psinfo)
10350 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10351 return TRUE;
10352 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10353 return elfcore_grok_psinfo (abfd, note);
10354 #else
10355 return TRUE;
10356 #endif
10357
10358 case NT_AUXV:
10359 return elfcore_make_auxv_note_section (abfd, note, 0);
10360
10361 case NT_FILE:
10362 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10363 note);
10364
10365 case NT_SIGINFO:
10366 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10367 note);
10368
10369 }
10370 }
10371
10372 static bfd_boolean
10373 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10374 {
10375 struct bfd_build_id* build_id;
10376
10377 if (note->descsz == 0)
10378 return FALSE;
10379
10380 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10381 if (build_id == NULL)
10382 return FALSE;
10383
10384 build_id->size = note->descsz;
10385 memcpy (build_id->data, note->descdata, note->descsz);
10386 abfd->build_id = build_id;
10387
10388 return TRUE;
10389 }
10390
10391 static bfd_boolean
10392 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10393 {
10394 switch (note->type)
10395 {
10396 default:
10397 return TRUE;
10398
10399 case NT_GNU_PROPERTY_TYPE_0:
10400 return _bfd_elf_parse_gnu_properties (abfd, note);
10401
10402 case NT_GNU_BUILD_ID:
10403 return elfobj_grok_gnu_build_id (abfd, note);
10404 }
10405 }
10406
10407 static bfd_boolean
10408 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10409 {
10410 struct sdt_note *cur =
10411 (struct sdt_note *) bfd_alloc (abfd,
10412 sizeof (struct sdt_note) + note->descsz);
10413
10414 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10415 cur->size = (bfd_size_type) note->descsz;
10416 memcpy (cur->data, note->descdata, note->descsz);
10417
10418 elf_tdata (abfd)->sdt_note_head = cur;
10419
10420 return TRUE;
10421 }
10422
10423 static bfd_boolean
10424 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10425 {
10426 switch (note->type)
10427 {
10428 case NT_STAPSDT:
10429 return elfobj_grok_stapsdt_note_1 (abfd, note);
10430
10431 default:
10432 return TRUE;
10433 }
10434 }
10435
10436 static bfd_boolean
10437 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10438 {
10439 size_t offset;
10440
10441 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10442 {
10443 case ELFCLASS32:
10444 if (note->descsz < 108)
10445 return FALSE;
10446 break;
10447
10448 case ELFCLASS64:
10449 if (note->descsz < 120)
10450 return FALSE;
10451 break;
10452
10453 default:
10454 return FALSE;
10455 }
10456
10457 /* Check for version 1 in pr_version. */
10458 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10459 return FALSE;
10460
10461 offset = 4;
10462
10463 /* Skip over pr_psinfosz. */
10464 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10465 offset += 4;
10466 else
10467 {
10468 offset += 4; /* Padding before pr_psinfosz. */
10469 offset += 8;
10470 }
10471
10472 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10473 elf_tdata (abfd)->core->program
10474 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10475 offset += 17;
10476
10477 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10478 elf_tdata (abfd)->core->command
10479 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10480 offset += 81;
10481
10482 /* Padding before pr_pid. */
10483 offset += 2;
10484
10485 /* The pr_pid field was added in version "1a". */
10486 if (note->descsz < offset + 4)
10487 return TRUE;
10488
10489 elf_tdata (abfd)->core->pid
10490 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10491
10492 return TRUE;
10493 }
10494
10495 static bfd_boolean
10496 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10497 {
10498 size_t offset;
10499 size_t size;
10500 size_t min_size;
10501
10502 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10503 Also compute minimum size of this note. */
10504 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10505 {
10506 case ELFCLASS32:
10507 offset = 4 + 4;
10508 min_size = offset + (4 * 2) + 4 + 4 + 4;
10509 break;
10510
10511 case ELFCLASS64:
10512 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10513 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10514 break;
10515
10516 default:
10517 return FALSE;
10518 }
10519
10520 if (note->descsz < min_size)
10521 return FALSE;
10522
10523 /* Check for version 1 in pr_version. */
10524 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10525 return FALSE;
10526
10527 /* Extract size of pr_reg from pr_gregsetsz. */
10528 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10529 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10530 {
10531 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10532 offset += 4 * 2;
10533 }
10534 else
10535 {
10536 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10537 offset += 8 * 2;
10538 }
10539
10540 /* Skip over pr_osreldate. */
10541 offset += 4;
10542
10543 /* Read signal from pr_cursig. */
10544 if (elf_tdata (abfd)->core->signal == 0)
10545 elf_tdata (abfd)->core->signal
10546 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10547 offset += 4;
10548
10549 /* Read TID from pr_pid. */
10550 elf_tdata (abfd)->core->lwpid
10551 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10552 offset += 4;
10553
10554 /* Padding before pr_reg. */
10555 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10556 offset += 4;
10557
10558 /* Make sure that there is enough data remaining in the note. */
10559 if ((note->descsz - offset) < size)
10560 return FALSE;
10561
10562 /* Make a ".reg/999" section and a ".reg" section. */
10563 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10564 size, note->descpos + offset);
10565 }
10566
10567 static bfd_boolean
10568 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10569 {
10570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10571
10572 switch (note->type)
10573 {
10574 case NT_PRSTATUS:
10575 if (bed->elf_backend_grok_freebsd_prstatus)
10576 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10577 return TRUE;
10578 return elfcore_grok_freebsd_prstatus (abfd, note);
10579
10580 case NT_FPREGSET:
10581 return elfcore_grok_prfpreg (abfd, note);
10582
10583 case NT_PRPSINFO:
10584 return elfcore_grok_freebsd_psinfo (abfd, note);
10585
10586 case NT_FREEBSD_THRMISC:
10587 if (note->namesz == 8)
10588 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10589 else
10590 return TRUE;
10591
10592 case NT_FREEBSD_PROCSTAT_PROC:
10593 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10594 note);
10595
10596 case NT_FREEBSD_PROCSTAT_FILES:
10597 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10598 note);
10599
10600 case NT_FREEBSD_PROCSTAT_VMMAP:
10601 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10602 note);
10603
10604 case NT_FREEBSD_PROCSTAT_AUXV:
10605 return elfcore_make_auxv_note_section (abfd, note, 4);
10606
10607 case NT_X86_XSTATE:
10608 if (note->namesz == 8)
10609 return elfcore_grok_xstatereg (abfd, note);
10610 else
10611 return TRUE;
10612
10613 case NT_FREEBSD_PTLWPINFO:
10614 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10615 note);
10616
10617 case NT_ARM_VFP:
10618 return elfcore_grok_arm_vfp (abfd, note);
10619
10620 default:
10621 return TRUE;
10622 }
10623 }
10624
10625 static bfd_boolean
10626 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10627 {
10628 char *cp;
10629
10630 cp = strchr (note->namedata, '@');
10631 if (cp != NULL)
10632 {
10633 *lwpidp = atoi(cp + 1);
10634 return TRUE;
10635 }
10636 return FALSE;
10637 }
10638
10639 static bfd_boolean
10640 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10641 {
10642 if (note->descsz <= 0x7c + 31)
10643 return FALSE;
10644
10645 /* Signal number at offset 0x08. */
10646 elf_tdata (abfd)->core->signal
10647 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10648
10649 /* Process ID at offset 0x50. */
10650 elf_tdata (abfd)->core->pid
10651 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10652
10653 /* Command name at 0x7c (max 32 bytes, including nul). */
10654 elf_tdata (abfd)->core->command
10655 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10656
10657 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10658 note);
10659 }
10660
10661 static bfd_boolean
10662 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10663 {
10664 int lwp;
10665
10666 if (elfcore_netbsd_get_lwpid (note, &lwp))
10667 elf_tdata (abfd)->core->lwpid = lwp;
10668
10669 switch (note->type)
10670 {
10671 case NT_NETBSDCORE_PROCINFO:
10672 /* NetBSD-specific core "procinfo". Note that we expect to
10673 find this note before any of the others, which is fine,
10674 since the kernel writes this note out first when it
10675 creates a core file. */
10676 return elfcore_grok_netbsd_procinfo (abfd, note);
10677 #ifdef NT_NETBSDCORE_AUXV
10678 case NT_NETBSDCORE_AUXV:
10679 /* NetBSD-specific Elf Auxiliary Vector data. */
10680 return elfcore_make_auxv_note_section (abfd, note, 4);
10681 #endif
10682 default:
10683 break;
10684 }
10685
10686 /* As of March 2017 there are no other machine-independent notes
10687 defined for NetBSD core files. If the note type is less
10688 than the start of the machine-dependent note types, we don't
10689 understand it. */
10690
10691 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10692 return TRUE;
10693
10694
10695 switch (bfd_get_arch (abfd))
10696 {
10697 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10698 PT_GETFPREGS == mach+2. */
10699
10700 case bfd_arch_alpha:
10701 case bfd_arch_sparc:
10702 switch (note->type)
10703 {
10704 case NT_NETBSDCORE_FIRSTMACH+0:
10705 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10706
10707 case NT_NETBSDCORE_FIRSTMACH+2:
10708 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10709
10710 default:
10711 return TRUE;
10712 }
10713
10714 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10715 There's also old PT___GETREGS40 == mach + 1 for old reg
10716 structure which lacks GBR. */
10717
10718 case bfd_arch_sh:
10719 switch (note->type)
10720 {
10721 case NT_NETBSDCORE_FIRSTMACH+3:
10722 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10723
10724 case NT_NETBSDCORE_FIRSTMACH+5:
10725 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10726
10727 default:
10728 return TRUE;
10729 }
10730
10731 /* On all other arch's, PT_GETREGS == mach+1 and
10732 PT_GETFPREGS == mach+3. */
10733
10734 default:
10735 switch (note->type)
10736 {
10737 case NT_NETBSDCORE_FIRSTMACH+1:
10738 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10739
10740 case NT_NETBSDCORE_FIRSTMACH+3:
10741 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10742
10743 default:
10744 return TRUE;
10745 }
10746 }
10747 /* NOTREACHED */
10748 }
10749
10750 static bfd_boolean
10751 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10752 {
10753 if (note->descsz <= 0x48 + 31)
10754 return FALSE;
10755
10756 /* Signal number at offset 0x08. */
10757 elf_tdata (abfd)->core->signal
10758 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10759
10760 /* Process ID at offset 0x20. */
10761 elf_tdata (abfd)->core->pid
10762 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10763
10764 /* Command name at 0x48 (max 32 bytes, including nul). */
10765 elf_tdata (abfd)->core->command
10766 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10767
10768 return TRUE;
10769 }
10770
10771 static bfd_boolean
10772 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10773 {
10774 if (note->type == NT_OPENBSD_PROCINFO)
10775 return elfcore_grok_openbsd_procinfo (abfd, note);
10776
10777 if (note->type == NT_OPENBSD_REGS)
10778 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10779
10780 if (note->type == NT_OPENBSD_FPREGS)
10781 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10782
10783 if (note->type == NT_OPENBSD_XFPREGS)
10784 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10785
10786 if (note->type == NT_OPENBSD_AUXV)
10787 return elfcore_make_auxv_note_section (abfd, note, 0);
10788
10789 if (note->type == NT_OPENBSD_WCOOKIE)
10790 {
10791 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10792 SEC_HAS_CONTENTS);
10793
10794 if (sect == NULL)
10795 return FALSE;
10796 sect->size = note->descsz;
10797 sect->filepos = note->descpos;
10798 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10799
10800 return TRUE;
10801 }
10802
10803 return TRUE;
10804 }
10805
10806 static bfd_boolean
10807 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10808 {
10809 void *ddata = note->descdata;
10810 char buf[100];
10811 char *name;
10812 asection *sect;
10813 short sig;
10814 unsigned flags;
10815
10816 if (note->descsz < 16)
10817 return FALSE;
10818
10819 /* nto_procfs_status 'pid' field is at offset 0. */
10820 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10821
10822 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10823 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10824
10825 /* nto_procfs_status 'flags' field is at offset 8. */
10826 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10827
10828 /* nto_procfs_status 'what' field is at offset 14. */
10829 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10830 {
10831 elf_tdata (abfd)->core->signal = sig;
10832 elf_tdata (abfd)->core->lwpid = *tid;
10833 }
10834
10835 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10836 do not come from signals so we make sure we set the current
10837 thread just in case. */
10838 if (flags & 0x00000080)
10839 elf_tdata (abfd)->core->lwpid = *tid;
10840
10841 /* Make a ".qnx_core_status/%d" section. */
10842 sprintf (buf, ".qnx_core_status/%ld", *tid);
10843
10844 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10845 if (name == NULL)
10846 return FALSE;
10847 strcpy (name, buf);
10848
10849 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10850 if (sect == NULL)
10851 return FALSE;
10852
10853 sect->size = note->descsz;
10854 sect->filepos = note->descpos;
10855 sect->alignment_power = 2;
10856
10857 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10858 }
10859
10860 static bfd_boolean
10861 elfcore_grok_nto_regs (bfd *abfd,
10862 Elf_Internal_Note *note,
10863 long tid,
10864 char *base)
10865 {
10866 char buf[100];
10867 char *name;
10868 asection *sect;
10869
10870 /* Make a "(base)/%d" section. */
10871 sprintf (buf, "%s/%ld", base, tid);
10872
10873 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10874 if (name == NULL)
10875 return FALSE;
10876 strcpy (name, buf);
10877
10878 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10879 if (sect == NULL)
10880 return FALSE;
10881
10882 sect->size = note->descsz;
10883 sect->filepos = note->descpos;
10884 sect->alignment_power = 2;
10885
10886 /* This is the current thread. */
10887 if (elf_tdata (abfd)->core->lwpid == tid)
10888 return elfcore_maybe_make_sect (abfd, base, sect);
10889
10890 return TRUE;
10891 }
10892
10893 #define BFD_QNT_CORE_INFO 7
10894 #define BFD_QNT_CORE_STATUS 8
10895 #define BFD_QNT_CORE_GREG 9
10896 #define BFD_QNT_CORE_FPREG 10
10897
10898 static bfd_boolean
10899 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10900 {
10901 /* Every GREG section has a STATUS section before it. Store the
10902 tid from the previous call to pass down to the next gregs
10903 function. */
10904 static long tid = 1;
10905
10906 switch (note->type)
10907 {
10908 case BFD_QNT_CORE_INFO:
10909 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10910 case BFD_QNT_CORE_STATUS:
10911 return elfcore_grok_nto_status (abfd, note, &tid);
10912 case BFD_QNT_CORE_GREG:
10913 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10914 case BFD_QNT_CORE_FPREG:
10915 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10916 default:
10917 return TRUE;
10918 }
10919 }
10920
10921 static bfd_boolean
10922 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10923 {
10924 char *name;
10925 asection *sect;
10926 size_t len;
10927
10928 /* Use note name as section name. */
10929 len = note->namesz;
10930 name = (char *) bfd_alloc (abfd, len);
10931 if (name == NULL)
10932 return FALSE;
10933 memcpy (name, note->namedata, len);
10934 name[len - 1] = '\0';
10935
10936 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10937 if (sect == NULL)
10938 return FALSE;
10939
10940 sect->size = note->descsz;
10941 sect->filepos = note->descpos;
10942 sect->alignment_power = 1;
10943
10944 return TRUE;
10945 }
10946
10947 /* Function: elfcore_write_note
10948
10949 Inputs:
10950 buffer to hold note, and current size of buffer
10951 name of note
10952 type of note
10953 data for note
10954 size of data for note
10955
10956 Writes note to end of buffer. ELF64 notes are written exactly as
10957 for ELF32, despite the current (as of 2006) ELF gabi specifying
10958 that they ought to have 8-byte namesz and descsz field, and have
10959 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10960
10961 Return:
10962 Pointer to realloc'd buffer, *BUFSIZ updated. */
10963
10964 char *
10965 elfcore_write_note (bfd *abfd,
10966 char *buf,
10967 int *bufsiz,
10968 const char *name,
10969 int type,
10970 const void *input,
10971 int size)
10972 {
10973 Elf_External_Note *xnp;
10974 size_t namesz;
10975 size_t newspace;
10976 char *dest;
10977
10978 namesz = 0;
10979 if (name != NULL)
10980 namesz = strlen (name) + 1;
10981
10982 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10983
10984 buf = (char *) realloc (buf, *bufsiz + newspace);
10985 if (buf == NULL)
10986 return buf;
10987 dest = buf + *bufsiz;
10988 *bufsiz += newspace;
10989 xnp = (Elf_External_Note *) dest;
10990 H_PUT_32 (abfd, namesz, xnp->namesz);
10991 H_PUT_32 (abfd, size, xnp->descsz);
10992 H_PUT_32 (abfd, type, xnp->type);
10993 dest = xnp->name;
10994 if (name != NULL)
10995 {
10996 memcpy (dest, name, namesz);
10997 dest += namesz;
10998 while (namesz & 3)
10999 {
11000 *dest++ = '\0';
11001 ++namesz;
11002 }
11003 }
11004 memcpy (dest, input, size);
11005 dest += size;
11006 while (size & 3)
11007 {
11008 *dest++ = '\0';
11009 ++size;
11010 }
11011 return buf;
11012 }
11013
11014 /* gcc-8 warns (*) on all the strncpy calls in this function about
11015 possible string truncation. The "truncation" is not a bug. We
11016 have an external representation of structs with fields that are not
11017 necessarily NULL terminated and corresponding internal
11018 representation fields that are one larger so that they can always
11019 be NULL terminated.
11020 gcc versions between 4.2 and 4.6 do not allow pragma control of
11021 diagnostics inside functions, giving a hard error if you try to use
11022 the finer control available with later versions.
11023 gcc prior to 4.2 warns about diagnostic push and pop.
11024 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11025 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11026 (*) Depending on your system header files! */
11027 #if GCC_VERSION >= 8000
11028 # pragma GCC diagnostic push
11029 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11030 #endif
11031 char *
11032 elfcore_write_prpsinfo (bfd *abfd,
11033 char *buf,
11034 int *bufsiz,
11035 const char *fname,
11036 const char *psargs)
11037 {
11038 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11039
11040 if (bed->elf_backend_write_core_note != NULL)
11041 {
11042 char *ret;
11043 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11044 NT_PRPSINFO, fname, psargs);
11045 if (ret != NULL)
11046 return ret;
11047 }
11048
11049 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11050 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11051 if (bed->s->elfclass == ELFCLASS32)
11052 {
11053 # if defined (HAVE_PSINFO32_T)
11054 psinfo32_t data;
11055 int note_type = NT_PSINFO;
11056 # else
11057 prpsinfo32_t data;
11058 int note_type = NT_PRPSINFO;
11059 # endif
11060
11061 memset (&data, 0, sizeof (data));
11062 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11063 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11064 return elfcore_write_note (abfd, buf, bufsiz,
11065 "CORE", note_type, &data, sizeof (data));
11066 }
11067 else
11068 # endif
11069 {
11070 # if defined (HAVE_PSINFO_T)
11071 psinfo_t data;
11072 int note_type = NT_PSINFO;
11073 # else
11074 prpsinfo_t data;
11075 int note_type = NT_PRPSINFO;
11076 # endif
11077
11078 memset (&data, 0, sizeof (data));
11079 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11080 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11081 return elfcore_write_note (abfd, buf, bufsiz,
11082 "CORE", note_type, &data, sizeof (data));
11083 }
11084 #endif /* PSINFO_T or PRPSINFO_T */
11085
11086 free (buf);
11087 return NULL;
11088 }
11089 #if GCC_VERSION >= 8000
11090 # pragma GCC diagnostic pop
11091 #endif
11092
11093 char *
11094 elfcore_write_linux_prpsinfo32
11095 (bfd *abfd, char *buf, int *bufsiz,
11096 const struct elf_internal_linux_prpsinfo *prpsinfo)
11097 {
11098 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11099 {
11100 struct elf_external_linux_prpsinfo32_ugid16 data;
11101
11102 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11103 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11104 &data, sizeof (data));
11105 }
11106 else
11107 {
11108 struct elf_external_linux_prpsinfo32_ugid32 data;
11109
11110 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11111 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11112 &data, sizeof (data));
11113 }
11114 }
11115
11116 char *
11117 elfcore_write_linux_prpsinfo64
11118 (bfd *abfd, char *buf, int *bufsiz,
11119 const struct elf_internal_linux_prpsinfo *prpsinfo)
11120 {
11121 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11122 {
11123 struct elf_external_linux_prpsinfo64_ugid16 data;
11124
11125 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11126 return elfcore_write_note (abfd, buf, bufsiz,
11127 "CORE", NT_PRPSINFO, &data, sizeof (data));
11128 }
11129 else
11130 {
11131 struct elf_external_linux_prpsinfo64_ugid32 data;
11132
11133 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11134 return elfcore_write_note (abfd, buf, bufsiz,
11135 "CORE", NT_PRPSINFO, &data, sizeof (data));
11136 }
11137 }
11138
11139 char *
11140 elfcore_write_prstatus (bfd *abfd,
11141 char *buf,
11142 int *bufsiz,
11143 long pid,
11144 int cursig,
11145 const void *gregs)
11146 {
11147 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11148
11149 if (bed->elf_backend_write_core_note != NULL)
11150 {
11151 char *ret;
11152 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11153 NT_PRSTATUS,
11154 pid, cursig, gregs);
11155 if (ret != NULL)
11156 return ret;
11157 }
11158
11159 #if defined (HAVE_PRSTATUS_T)
11160 #if defined (HAVE_PRSTATUS32_T)
11161 if (bed->s->elfclass == ELFCLASS32)
11162 {
11163 prstatus32_t prstat;
11164
11165 memset (&prstat, 0, sizeof (prstat));
11166 prstat.pr_pid = pid;
11167 prstat.pr_cursig = cursig;
11168 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11169 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11170 NT_PRSTATUS, &prstat, sizeof (prstat));
11171 }
11172 else
11173 #endif
11174 {
11175 prstatus_t prstat;
11176
11177 memset (&prstat, 0, sizeof (prstat));
11178 prstat.pr_pid = pid;
11179 prstat.pr_cursig = cursig;
11180 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11181 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11182 NT_PRSTATUS, &prstat, sizeof (prstat));
11183 }
11184 #endif /* HAVE_PRSTATUS_T */
11185
11186 free (buf);
11187 return NULL;
11188 }
11189
11190 #if defined (HAVE_LWPSTATUS_T)
11191 char *
11192 elfcore_write_lwpstatus (bfd *abfd,
11193 char *buf,
11194 int *bufsiz,
11195 long pid,
11196 int cursig,
11197 const void *gregs)
11198 {
11199 lwpstatus_t lwpstat;
11200 const char *note_name = "CORE";
11201
11202 memset (&lwpstat, 0, sizeof (lwpstat));
11203 lwpstat.pr_lwpid = pid >> 16;
11204 lwpstat.pr_cursig = cursig;
11205 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11206 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11207 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11208 #if !defined(gregs)
11209 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11210 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11211 #else
11212 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11213 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11214 #endif
11215 #endif
11216 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11217 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11218 }
11219 #endif /* HAVE_LWPSTATUS_T */
11220
11221 #if defined (HAVE_PSTATUS_T)
11222 char *
11223 elfcore_write_pstatus (bfd *abfd,
11224 char *buf,
11225 int *bufsiz,
11226 long pid,
11227 int cursig ATTRIBUTE_UNUSED,
11228 const void *gregs ATTRIBUTE_UNUSED)
11229 {
11230 const char *note_name = "CORE";
11231 #if defined (HAVE_PSTATUS32_T)
11232 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11233
11234 if (bed->s->elfclass == ELFCLASS32)
11235 {
11236 pstatus32_t pstat;
11237
11238 memset (&pstat, 0, sizeof (pstat));
11239 pstat.pr_pid = pid & 0xffff;
11240 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11241 NT_PSTATUS, &pstat, sizeof (pstat));
11242 return buf;
11243 }
11244 else
11245 #endif
11246 {
11247 pstatus_t pstat;
11248
11249 memset (&pstat, 0, sizeof (pstat));
11250 pstat.pr_pid = pid & 0xffff;
11251 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11252 NT_PSTATUS, &pstat, sizeof (pstat));
11253 return buf;
11254 }
11255 }
11256 #endif /* HAVE_PSTATUS_T */
11257
11258 char *
11259 elfcore_write_prfpreg (bfd *abfd,
11260 char *buf,
11261 int *bufsiz,
11262 const void *fpregs,
11263 int size)
11264 {
11265 const char *note_name = "CORE";
11266 return elfcore_write_note (abfd, buf, bufsiz,
11267 note_name, NT_FPREGSET, fpregs, size);
11268 }
11269
11270 char *
11271 elfcore_write_prxfpreg (bfd *abfd,
11272 char *buf,
11273 int *bufsiz,
11274 const void *xfpregs,
11275 int size)
11276 {
11277 char *note_name = "LINUX";
11278 return elfcore_write_note (abfd, buf, bufsiz,
11279 note_name, NT_PRXFPREG, xfpregs, size);
11280 }
11281
11282 char *
11283 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11284 const void *xfpregs, int size)
11285 {
11286 char *note_name;
11287 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11288 note_name = "FreeBSD";
11289 else
11290 note_name = "LINUX";
11291 return elfcore_write_note (abfd, buf, bufsiz,
11292 note_name, NT_X86_XSTATE, xfpregs, size);
11293 }
11294
11295 char *
11296 elfcore_write_ppc_vmx (bfd *abfd,
11297 char *buf,
11298 int *bufsiz,
11299 const void *ppc_vmx,
11300 int size)
11301 {
11302 char *note_name = "LINUX";
11303 return elfcore_write_note (abfd, buf, bufsiz,
11304 note_name, NT_PPC_VMX, ppc_vmx, size);
11305 }
11306
11307 char *
11308 elfcore_write_ppc_vsx (bfd *abfd,
11309 char *buf,
11310 int *bufsiz,
11311 const void *ppc_vsx,
11312 int size)
11313 {
11314 char *note_name = "LINUX";
11315 return elfcore_write_note (abfd, buf, bufsiz,
11316 note_name, NT_PPC_VSX, ppc_vsx, size);
11317 }
11318
11319 char *
11320 elfcore_write_ppc_tar (bfd *abfd,
11321 char *buf,
11322 int *bufsiz,
11323 const void *ppc_tar,
11324 int size)
11325 {
11326 char *note_name = "LINUX";
11327 return elfcore_write_note (abfd, buf, bufsiz,
11328 note_name, NT_PPC_TAR, ppc_tar, size);
11329 }
11330
11331 char *
11332 elfcore_write_ppc_ppr (bfd *abfd,
11333 char *buf,
11334 int *bufsiz,
11335 const void *ppc_ppr,
11336 int size)
11337 {
11338 char *note_name = "LINUX";
11339 return elfcore_write_note (abfd, buf, bufsiz,
11340 note_name, NT_PPC_PPR, ppc_ppr, size);
11341 }
11342
11343 char *
11344 elfcore_write_ppc_dscr (bfd *abfd,
11345 char *buf,
11346 int *bufsiz,
11347 const void *ppc_dscr,
11348 int size)
11349 {
11350 char *note_name = "LINUX";
11351 return elfcore_write_note (abfd, buf, bufsiz,
11352 note_name, NT_PPC_DSCR, ppc_dscr, size);
11353 }
11354
11355 char *
11356 elfcore_write_ppc_ebb (bfd *abfd,
11357 char *buf,
11358 int *bufsiz,
11359 const void *ppc_ebb,
11360 int size)
11361 {
11362 char *note_name = "LINUX";
11363 return elfcore_write_note (abfd, buf, bufsiz,
11364 note_name, NT_PPC_EBB, ppc_ebb, size);
11365 }
11366
11367 char *
11368 elfcore_write_ppc_pmu (bfd *abfd,
11369 char *buf,
11370 int *bufsiz,
11371 const void *ppc_pmu,
11372 int size)
11373 {
11374 char *note_name = "LINUX";
11375 return elfcore_write_note (abfd, buf, bufsiz,
11376 note_name, NT_PPC_PMU, ppc_pmu, size);
11377 }
11378
11379 char *
11380 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11381 char *buf,
11382 int *bufsiz,
11383 const void *ppc_tm_cgpr,
11384 int size)
11385 {
11386 char *note_name = "LINUX";
11387 return elfcore_write_note (abfd, buf, bufsiz,
11388 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11389 }
11390
11391 char *
11392 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11393 char *buf,
11394 int *bufsiz,
11395 const void *ppc_tm_cfpr,
11396 int size)
11397 {
11398 char *note_name = "LINUX";
11399 return elfcore_write_note (abfd, buf, bufsiz,
11400 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11401 }
11402
11403 char *
11404 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11405 char *buf,
11406 int *bufsiz,
11407 const void *ppc_tm_cvmx,
11408 int size)
11409 {
11410 char *note_name = "LINUX";
11411 return elfcore_write_note (abfd, buf, bufsiz,
11412 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11413 }
11414
11415 char *
11416 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11417 char *buf,
11418 int *bufsiz,
11419 const void *ppc_tm_cvsx,
11420 int size)
11421 {
11422 char *note_name = "LINUX";
11423 return elfcore_write_note (abfd, buf, bufsiz,
11424 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11425 }
11426
11427 char *
11428 elfcore_write_ppc_tm_spr (bfd *abfd,
11429 char *buf,
11430 int *bufsiz,
11431 const void *ppc_tm_spr,
11432 int size)
11433 {
11434 char *note_name = "LINUX";
11435 return elfcore_write_note (abfd, buf, bufsiz,
11436 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11437 }
11438
11439 char *
11440 elfcore_write_ppc_tm_ctar (bfd *abfd,
11441 char *buf,
11442 int *bufsiz,
11443 const void *ppc_tm_ctar,
11444 int size)
11445 {
11446 char *note_name = "LINUX";
11447 return elfcore_write_note (abfd, buf, bufsiz,
11448 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11449 }
11450
11451 char *
11452 elfcore_write_ppc_tm_cppr (bfd *abfd,
11453 char *buf,
11454 int *bufsiz,
11455 const void *ppc_tm_cppr,
11456 int size)
11457 {
11458 char *note_name = "LINUX";
11459 return elfcore_write_note (abfd, buf, bufsiz,
11460 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11461 }
11462
11463 char *
11464 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11465 char *buf,
11466 int *bufsiz,
11467 const void *ppc_tm_cdscr,
11468 int size)
11469 {
11470 char *note_name = "LINUX";
11471 return elfcore_write_note (abfd, buf, bufsiz,
11472 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11473 }
11474
11475 static char *
11476 elfcore_write_s390_high_gprs (bfd *abfd,
11477 char *buf,
11478 int *bufsiz,
11479 const void *s390_high_gprs,
11480 int size)
11481 {
11482 char *note_name = "LINUX";
11483 return elfcore_write_note (abfd, buf, bufsiz,
11484 note_name, NT_S390_HIGH_GPRS,
11485 s390_high_gprs, size);
11486 }
11487
11488 char *
11489 elfcore_write_s390_timer (bfd *abfd,
11490 char *buf,
11491 int *bufsiz,
11492 const void *s390_timer,
11493 int size)
11494 {
11495 char *note_name = "LINUX";
11496 return elfcore_write_note (abfd, buf, bufsiz,
11497 note_name, NT_S390_TIMER, s390_timer, size);
11498 }
11499
11500 char *
11501 elfcore_write_s390_todcmp (bfd *abfd,
11502 char *buf,
11503 int *bufsiz,
11504 const void *s390_todcmp,
11505 int size)
11506 {
11507 char *note_name = "LINUX";
11508 return elfcore_write_note (abfd, buf, bufsiz,
11509 note_name, NT_S390_TODCMP, s390_todcmp, size);
11510 }
11511
11512 char *
11513 elfcore_write_s390_todpreg (bfd *abfd,
11514 char *buf,
11515 int *bufsiz,
11516 const void *s390_todpreg,
11517 int size)
11518 {
11519 char *note_name = "LINUX";
11520 return elfcore_write_note (abfd, buf, bufsiz,
11521 note_name, NT_S390_TODPREG, s390_todpreg, size);
11522 }
11523
11524 char *
11525 elfcore_write_s390_ctrs (bfd *abfd,
11526 char *buf,
11527 int *bufsiz,
11528 const void *s390_ctrs,
11529 int size)
11530 {
11531 char *note_name = "LINUX";
11532 return elfcore_write_note (abfd, buf, bufsiz,
11533 note_name, NT_S390_CTRS, s390_ctrs, size);
11534 }
11535
11536 char *
11537 elfcore_write_s390_prefix (bfd *abfd,
11538 char *buf,
11539 int *bufsiz,
11540 const void *s390_prefix,
11541 int size)
11542 {
11543 char *note_name = "LINUX";
11544 return elfcore_write_note (abfd, buf, bufsiz,
11545 note_name, NT_S390_PREFIX, s390_prefix, size);
11546 }
11547
11548 char *
11549 elfcore_write_s390_last_break (bfd *abfd,
11550 char *buf,
11551 int *bufsiz,
11552 const void *s390_last_break,
11553 int size)
11554 {
11555 char *note_name = "LINUX";
11556 return elfcore_write_note (abfd, buf, bufsiz,
11557 note_name, NT_S390_LAST_BREAK,
11558 s390_last_break, size);
11559 }
11560
11561 char *
11562 elfcore_write_s390_system_call (bfd *abfd,
11563 char *buf,
11564 int *bufsiz,
11565 const void *s390_system_call,
11566 int size)
11567 {
11568 char *note_name = "LINUX";
11569 return elfcore_write_note (abfd, buf, bufsiz,
11570 note_name, NT_S390_SYSTEM_CALL,
11571 s390_system_call, size);
11572 }
11573
11574 char *
11575 elfcore_write_s390_tdb (bfd *abfd,
11576 char *buf,
11577 int *bufsiz,
11578 const void *s390_tdb,
11579 int size)
11580 {
11581 char *note_name = "LINUX";
11582 return elfcore_write_note (abfd, buf, bufsiz,
11583 note_name, NT_S390_TDB, s390_tdb, size);
11584 }
11585
11586 char *
11587 elfcore_write_s390_vxrs_low (bfd *abfd,
11588 char *buf,
11589 int *bufsiz,
11590 const void *s390_vxrs_low,
11591 int size)
11592 {
11593 char *note_name = "LINUX";
11594 return elfcore_write_note (abfd, buf, bufsiz,
11595 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11596 }
11597
11598 char *
11599 elfcore_write_s390_vxrs_high (bfd *abfd,
11600 char *buf,
11601 int *bufsiz,
11602 const void *s390_vxrs_high,
11603 int size)
11604 {
11605 char *note_name = "LINUX";
11606 return elfcore_write_note (abfd, buf, bufsiz,
11607 note_name, NT_S390_VXRS_HIGH,
11608 s390_vxrs_high, size);
11609 }
11610
11611 char *
11612 elfcore_write_s390_gs_cb (bfd *abfd,
11613 char *buf,
11614 int *bufsiz,
11615 const void *s390_gs_cb,
11616 int size)
11617 {
11618 char *note_name = "LINUX";
11619 return elfcore_write_note (abfd, buf, bufsiz,
11620 note_name, NT_S390_GS_CB,
11621 s390_gs_cb, size);
11622 }
11623
11624 char *
11625 elfcore_write_s390_gs_bc (bfd *abfd,
11626 char *buf,
11627 int *bufsiz,
11628 const void *s390_gs_bc,
11629 int size)
11630 {
11631 char *note_name = "LINUX";
11632 return elfcore_write_note (abfd, buf, bufsiz,
11633 note_name, NT_S390_GS_BC,
11634 s390_gs_bc, size);
11635 }
11636
11637 char *
11638 elfcore_write_arm_vfp (bfd *abfd,
11639 char *buf,
11640 int *bufsiz,
11641 const void *arm_vfp,
11642 int size)
11643 {
11644 char *note_name = "LINUX";
11645 return elfcore_write_note (abfd, buf, bufsiz,
11646 note_name, NT_ARM_VFP, arm_vfp, size);
11647 }
11648
11649 char *
11650 elfcore_write_aarch_tls (bfd *abfd,
11651 char *buf,
11652 int *bufsiz,
11653 const void *aarch_tls,
11654 int size)
11655 {
11656 char *note_name = "LINUX";
11657 return elfcore_write_note (abfd, buf, bufsiz,
11658 note_name, NT_ARM_TLS, aarch_tls, size);
11659 }
11660
11661 char *
11662 elfcore_write_aarch_hw_break (bfd *abfd,
11663 char *buf,
11664 int *bufsiz,
11665 const void *aarch_hw_break,
11666 int size)
11667 {
11668 char *note_name = "LINUX";
11669 return elfcore_write_note (abfd, buf, bufsiz,
11670 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11671 }
11672
11673 char *
11674 elfcore_write_aarch_hw_watch (bfd *abfd,
11675 char *buf,
11676 int *bufsiz,
11677 const void *aarch_hw_watch,
11678 int size)
11679 {
11680 char *note_name = "LINUX";
11681 return elfcore_write_note (abfd, buf, bufsiz,
11682 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11683 }
11684
11685 char *
11686 elfcore_write_aarch_sve (bfd *abfd,
11687 char *buf,
11688 int *bufsiz,
11689 const void *aarch_sve,
11690 int size)
11691 {
11692 char *note_name = "LINUX";
11693 return elfcore_write_note (abfd, buf, bufsiz,
11694 note_name, NT_ARM_SVE, aarch_sve, size);
11695 }
11696
11697 char *
11698 elfcore_write_aarch_pauth (bfd *abfd,
11699 char *buf,
11700 int *bufsiz,
11701 const void *aarch_pauth,
11702 int size)
11703 {
11704 char *note_name = "LINUX";
11705 return elfcore_write_note (abfd, buf, bufsiz,
11706 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11707 }
11708
11709 char *
11710 elfcore_write_register_note (bfd *abfd,
11711 char *buf,
11712 int *bufsiz,
11713 const char *section,
11714 const void *data,
11715 int size)
11716 {
11717 if (strcmp (section, ".reg2") == 0)
11718 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11719 if (strcmp (section, ".reg-xfp") == 0)
11720 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11721 if (strcmp (section, ".reg-xstate") == 0)
11722 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11723 if (strcmp (section, ".reg-ppc-vmx") == 0)
11724 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11725 if (strcmp (section, ".reg-ppc-vsx") == 0)
11726 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11727 if (strcmp (section, ".reg-ppc-tar") == 0)
11728 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11729 if (strcmp (section, ".reg-ppc-ppr") == 0)
11730 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11731 if (strcmp (section, ".reg-ppc-dscr") == 0)
11732 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11733 if (strcmp (section, ".reg-ppc-ebb") == 0)
11734 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11735 if (strcmp (section, ".reg-ppc-pmu") == 0)
11736 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11737 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11738 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11739 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11740 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11741 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11742 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11743 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11744 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11745 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11746 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11747 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11748 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11749 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11750 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11751 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11752 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11753 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11754 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11755 if (strcmp (section, ".reg-s390-timer") == 0)
11756 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11757 if (strcmp (section, ".reg-s390-todcmp") == 0)
11758 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11759 if (strcmp (section, ".reg-s390-todpreg") == 0)
11760 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11761 if (strcmp (section, ".reg-s390-ctrs") == 0)
11762 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11763 if (strcmp (section, ".reg-s390-prefix") == 0)
11764 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11765 if (strcmp (section, ".reg-s390-last-break") == 0)
11766 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11767 if (strcmp (section, ".reg-s390-system-call") == 0)
11768 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11769 if (strcmp (section, ".reg-s390-tdb") == 0)
11770 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11771 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11772 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11773 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11774 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11775 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11776 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11777 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11778 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11779 if (strcmp (section, ".reg-arm-vfp") == 0)
11780 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11781 if (strcmp (section, ".reg-aarch-tls") == 0)
11782 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11783 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11784 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11785 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11786 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11787 if (strcmp (section, ".reg-aarch-sve") == 0)
11788 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11789 if (strcmp (section, ".reg-aarch-pauth") == 0)
11790 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11791 return NULL;
11792 }
11793
11794 static bfd_boolean
11795 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11796 size_t align)
11797 {
11798 char *p;
11799
11800 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11801 gABI specifies that PT_NOTE alignment should be aligned to 4
11802 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11803 align is less than 4, we use 4 byte alignment. */
11804 if (align < 4)
11805 align = 4;
11806 if (align != 4 && align != 8)
11807 return FALSE;
11808
11809 p = buf;
11810 while (p < buf + size)
11811 {
11812 Elf_External_Note *xnp = (Elf_External_Note *) p;
11813 Elf_Internal_Note in;
11814
11815 if (offsetof (Elf_External_Note, name) > buf - p + size)
11816 return FALSE;
11817
11818 in.type = H_GET_32 (abfd, xnp->type);
11819
11820 in.namesz = H_GET_32 (abfd, xnp->namesz);
11821 in.namedata = xnp->name;
11822 if (in.namesz > buf - in.namedata + size)
11823 return FALSE;
11824
11825 in.descsz = H_GET_32 (abfd, xnp->descsz);
11826 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11827 in.descpos = offset + (in.descdata - buf);
11828 if (in.descsz != 0
11829 && (in.descdata >= buf + size
11830 || in.descsz > buf - in.descdata + size))
11831 return FALSE;
11832
11833 switch (bfd_get_format (abfd))
11834 {
11835 default:
11836 return TRUE;
11837
11838 case bfd_core:
11839 {
11840 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11841 struct
11842 {
11843 const char * string;
11844 size_t len;
11845 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11846 }
11847 grokers[] =
11848 {
11849 GROKER_ELEMENT ("", elfcore_grok_note),
11850 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11851 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11852 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11853 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11854 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11855 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11856 };
11857 #undef GROKER_ELEMENT
11858 int i;
11859
11860 for (i = ARRAY_SIZE (grokers); i--;)
11861 {
11862 if (in.namesz >= grokers[i].len
11863 && strncmp (in.namedata, grokers[i].string,
11864 grokers[i].len) == 0)
11865 {
11866 if (! grokers[i].func (abfd, & in))
11867 return FALSE;
11868 break;
11869 }
11870 }
11871 break;
11872 }
11873
11874 case bfd_object:
11875 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11876 {
11877 if (! elfobj_grok_gnu_note (abfd, &in))
11878 return FALSE;
11879 }
11880 else if (in.namesz == sizeof "stapsdt"
11881 && strcmp (in.namedata, "stapsdt") == 0)
11882 {
11883 if (! elfobj_grok_stapsdt_note (abfd, &in))
11884 return FALSE;
11885 }
11886 break;
11887 }
11888
11889 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11890 }
11891
11892 return TRUE;
11893 }
11894
11895 bfd_boolean
11896 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11897 size_t align)
11898 {
11899 char *buf;
11900
11901 if (size == 0 || (size + 1) == 0)
11902 return TRUE;
11903
11904 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11905 return FALSE;
11906
11907 buf = (char *) bfd_malloc (size + 1);
11908 if (buf == NULL)
11909 return FALSE;
11910
11911 /* PR 17512: file: ec08f814
11912 0-termintate the buffer so that string searches will not overflow. */
11913 buf[size] = 0;
11914
11915 if (bfd_bread (buf, size, abfd) != size
11916 || !elf_parse_notes (abfd, buf, size, offset, align))
11917 {
11918 free (buf);
11919 return FALSE;
11920 }
11921
11922 free (buf);
11923 return TRUE;
11924 }
11925 \f
11926 /* Providing external access to the ELF program header table. */
11927
11928 /* Return an upper bound on the number of bytes required to store a
11929 copy of ABFD's program header table entries. Return -1 if an error
11930 occurs; bfd_get_error will return an appropriate code. */
11931
11932 long
11933 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11934 {
11935 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11936 {
11937 bfd_set_error (bfd_error_wrong_format);
11938 return -1;
11939 }
11940
11941 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11942 }
11943
11944 /* Copy ABFD's program header table entries to *PHDRS. The entries
11945 will be stored as an array of Elf_Internal_Phdr structures, as
11946 defined in include/elf/internal.h. To find out how large the
11947 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11948
11949 Return the number of program header table entries read, or -1 if an
11950 error occurs; bfd_get_error will return an appropriate code. */
11951
11952 int
11953 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11954 {
11955 int num_phdrs;
11956
11957 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11958 {
11959 bfd_set_error (bfd_error_wrong_format);
11960 return -1;
11961 }
11962
11963 num_phdrs = elf_elfheader (abfd)->e_phnum;
11964 if (num_phdrs != 0)
11965 memcpy (phdrs, elf_tdata (abfd)->phdr,
11966 num_phdrs * sizeof (Elf_Internal_Phdr));
11967
11968 return num_phdrs;
11969 }
11970
11971 enum elf_reloc_type_class
11972 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11973 const asection *rel_sec ATTRIBUTE_UNUSED,
11974 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11975 {
11976 return reloc_class_normal;
11977 }
11978
11979 /* For RELA architectures, return the relocation value for a
11980 relocation against a local symbol. */
11981
11982 bfd_vma
11983 _bfd_elf_rela_local_sym (bfd *abfd,
11984 Elf_Internal_Sym *sym,
11985 asection **psec,
11986 Elf_Internal_Rela *rel)
11987 {
11988 asection *sec = *psec;
11989 bfd_vma relocation;
11990
11991 relocation = (sec->output_section->vma
11992 + sec->output_offset
11993 + sym->st_value);
11994 if ((sec->flags & SEC_MERGE)
11995 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11996 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11997 {
11998 rel->r_addend =
11999 _bfd_merged_section_offset (abfd, psec,
12000 elf_section_data (sec)->sec_info,
12001 sym->st_value + rel->r_addend);
12002 if (sec != *psec)
12003 {
12004 /* If we have changed the section, and our original section is
12005 marked with SEC_EXCLUDE, it means that the original
12006 SEC_MERGE section has been completely subsumed in some
12007 other SEC_MERGE section. In this case, we need to leave
12008 some info around for --emit-relocs. */
12009 if ((sec->flags & SEC_EXCLUDE) != 0)
12010 sec->kept_section = *psec;
12011 sec = *psec;
12012 }
12013 rel->r_addend -= relocation;
12014 rel->r_addend += sec->output_section->vma + sec->output_offset;
12015 }
12016 return relocation;
12017 }
12018
12019 bfd_vma
12020 _bfd_elf_rel_local_sym (bfd *abfd,
12021 Elf_Internal_Sym *sym,
12022 asection **psec,
12023 bfd_vma addend)
12024 {
12025 asection *sec = *psec;
12026
12027 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12028 return sym->st_value + addend;
12029
12030 return _bfd_merged_section_offset (abfd, psec,
12031 elf_section_data (sec)->sec_info,
12032 sym->st_value + addend);
12033 }
12034
12035 /* Adjust an address within a section. Given OFFSET within SEC, return
12036 the new offset within the section, based upon changes made to the
12037 section. Returns -1 if the offset is now invalid.
12038 The offset (in abnd out) is in target sized bytes, however big a
12039 byte may be. */
12040
12041 bfd_vma
12042 _bfd_elf_section_offset (bfd *abfd,
12043 struct bfd_link_info *info,
12044 asection *sec,
12045 bfd_vma offset)
12046 {
12047 switch (sec->sec_info_type)
12048 {
12049 case SEC_INFO_TYPE_STABS:
12050 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12051 offset);
12052 case SEC_INFO_TYPE_EH_FRAME:
12053 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12054
12055 default:
12056 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12057 {
12058 /* Reverse the offset. */
12059 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12060 bfd_size_type address_size = bed->s->arch_size / 8;
12061
12062 /* address_size and sec->size are in octets. Convert
12063 to bytes before subtracting the original offset. */
12064 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
12065 }
12066 return offset;
12067 }
12068 }
12069 \f
12070 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12071 reconstruct an ELF file by reading the segments out of remote memory
12072 based on the ELF file header at EHDR_VMA and the ELF program headers it
12073 points to. If not null, *LOADBASEP is filled in with the difference
12074 between the VMAs from which the segments were read, and the VMAs the
12075 file headers (and hence BFD's idea of each section's VMA) put them at.
12076
12077 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12078 remote memory at target address VMA into the local buffer at MYADDR; it
12079 should return zero on success or an `errno' code on failure. TEMPL must
12080 be a BFD for an ELF target with the word size and byte order found in
12081 the remote memory. */
12082
12083 bfd *
12084 bfd_elf_bfd_from_remote_memory
12085 (bfd *templ,
12086 bfd_vma ehdr_vma,
12087 bfd_size_type size,
12088 bfd_vma *loadbasep,
12089 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12090 {
12091 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12092 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12093 }
12094 \f
12095 long
12096 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12097 long symcount ATTRIBUTE_UNUSED,
12098 asymbol **syms ATTRIBUTE_UNUSED,
12099 long dynsymcount,
12100 asymbol **dynsyms,
12101 asymbol **ret)
12102 {
12103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12104 asection *relplt;
12105 asymbol *s;
12106 const char *relplt_name;
12107 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12108 arelent *p;
12109 long count, i, n;
12110 size_t size;
12111 Elf_Internal_Shdr *hdr;
12112 char *names;
12113 asection *plt;
12114
12115 *ret = NULL;
12116
12117 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12118 return 0;
12119
12120 if (dynsymcount <= 0)
12121 return 0;
12122
12123 if (!bed->plt_sym_val)
12124 return 0;
12125
12126 relplt_name = bed->relplt_name;
12127 if (relplt_name == NULL)
12128 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12129 relplt = bfd_get_section_by_name (abfd, relplt_name);
12130 if (relplt == NULL)
12131 return 0;
12132
12133 hdr = &elf_section_data (relplt)->this_hdr;
12134 if (hdr->sh_link != elf_dynsymtab (abfd)
12135 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12136 return 0;
12137
12138 plt = bfd_get_section_by_name (abfd, ".plt");
12139 if (plt == NULL)
12140 return 0;
12141
12142 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12143 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12144 return -1;
12145
12146 count = relplt->size / hdr->sh_entsize;
12147 size = count * sizeof (asymbol);
12148 p = relplt->relocation;
12149 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12150 {
12151 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12152 if (p->addend != 0)
12153 {
12154 #ifdef BFD64
12155 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12156 #else
12157 size += sizeof ("+0x") - 1 + 8;
12158 #endif
12159 }
12160 }
12161
12162 s = *ret = (asymbol *) bfd_malloc (size);
12163 if (s == NULL)
12164 return -1;
12165
12166 names = (char *) (s + count);
12167 p = relplt->relocation;
12168 n = 0;
12169 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12170 {
12171 size_t len;
12172 bfd_vma addr;
12173
12174 addr = bed->plt_sym_val (i, plt, p);
12175 if (addr == (bfd_vma) -1)
12176 continue;
12177
12178 *s = **p->sym_ptr_ptr;
12179 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12180 we are defining a symbol, ensure one of them is set. */
12181 if ((s->flags & BSF_LOCAL) == 0)
12182 s->flags |= BSF_GLOBAL;
12183 s->flags |= BSF_SYNTHETIC;
12184 s->section = plt;
12185 s->value = addr - plt->vma;
12186 s->name = names;
12187 s->udata.p = NULL;
12188 len = strlen ((*p->sym_ptr_ptr)->name);
12189 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12190 names += len;
12191 if (p->addend != 0)
12192 {
12193 char buf[30], *a;
12194
12195 memcpy (names, "+0x", sizeof ("+0x") - 1);
12196 names += sizeof ("+0x") - 1;
12197 bfd_sprintf_vma (abfd, buf, p->addend);
12198 for (a = buf; *a == '0'; ++a)
12199 ;
12200 len = strlen (a);
12201 memcpy (names, a, len);
12202 names += len;
12203 }
12204 memcpy (names, "@plt", sizeof ("@plt"));
12205 names += sizeof ("@plt");
12206 ++s, ++n;
12207 }
12208
12209 return n;
12210 }
12211
12212 /* It is only used by x86-64 so far.
12213 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12214 but current usage would allow all of _bfd_std_section to be zero. */
12215 static const asymbol lcomm_sym
12216 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12217 asection _bfd_elf_large_com_section
12218 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12219 "LARGE_COMMON", 0, SEC_IS_COMMON);
12220
12221 void
12222 _bfd_elf_post_process_headers (bfd *abfd ATTRIBUTE_UNUSED,
12223 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12224 {
12225 }
12226
12227 bfd_boolean
12228 _bfd_elf_final_write_processing (bfd *abfd)
12229 {
12230 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12231
12232 i_ehdrp = elf_elfheader (abfd);
12233
12234 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12235 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12236
12237 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12238 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12239 STB_GNU_UNIQUE binding. */
12240 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12241 {
12242 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12243 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12244 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12245 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12246 {
12247 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12248 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12249 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12250 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12251 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12252 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12253 bfd_set_error (bfd_error_sorry);
12254 return FALSE;
12255 }
12256 }
12257 return TRUE;
12258 }
12259
12260
12261 /* Return TRUE for ELF symbol types that represent functions.
12262 This is the default version of this function, which is sufficient for
12263 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12264
12265 bfd_boolean
12266 _bfd_elf_is_function_type (unsigned int type)
12267 {
12268 return (type == STT_FUNC
12269 || type == STT_GNU_IFUNC);
12270 }
12271
12272 /* If the ELF symbol SYM might be a function in SEC, return the
12273 function size and set *CODE_OFF to the function's entry point,
12274 otherwise return zero. */
12275
12276 bfd_size_type
12277 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12278 bfd_vma *code_off)
12279 {
12280 bfd_size_type size;
12281
12282 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12283 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12284 || sym->section != sec)
12285 return 0;
12286
12287 *code_off = sym->value;
12288 size = 0;
12289 if (!(sym->flags & BSF_SYNTHETIC))
12290 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12291 if (size == 0)
12292 size = 1;
12293 return size;
12294 }