]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-arm.c
2008-03-07 Paul Brook <paul@codesourcery.com>
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 #ifndef NUM_ELEM
31 #define NUM_ELEM(a) (sizeof (a) / (sizeof (a)[0]))
32 #endif
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto 0
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 static struct elf_backend_data elf32_arm_vxworks_bed;
67
68 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
69 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
70 in that slot. */
71
72 static reloc_howto_type elf32_arm_howto_table_1[] =
73 {
74 /* No relocation */
75 HOWTO (R_ARM_NONE, /* type */
76 0, /* rightshift */
77 0, /* size (0 = byte, 1 = short, 2 = long) */
78 0, /* bitsize */
79 FALSE, /* pc_relative */
80 0, /* bitpos */
81 complain_overflow_dont,/* complain_on_overflow */
82 bfd_elf_generic_reloc, /* special_function */
83 "R_ARM_NONE", /* name */
84 FALSE, /* partial_inplace */
85 0, /* src_mask */
86 0, /* dst_mask */
87 FALSE), /* pcrel_offset */
88
89 HOWTO (R_ARM_PC24, /* type */
90 2, /* rightshift */
91 2, /* size (0 = byte, 1 = short, 2 = long) */
92 24, /* bitsize */
93 TRUE, /* pc_relative */
94 0, /* bitpos */
95 complain_overflow_signed,/* complain_on_overflow */
96 bfd_elf_generic_reloc, /* special_function */
97 "R_ARM_PC24", /* name */
98 FALSE, /* partial_inplace */
99 0x00ffffff, /* src_mask */
100 0x00ffffff, /* dst_mask */
101 TRUE), /* pcrel_offset */
102
103 /* 32 bit absolute */
104 HOWTO (R_ARM_ABS32, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_bitfield,/* complain_on_overflow */
111 bfd_elf_generic_reloc, /* special_function */
112 "R_ARM_ABS32", /* name */
113 FALSE, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE), /* pcrel_offset */
117
118 /* standard 32bit pc-relative reloc */
119 HOWTO (R_ARM_REL32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 TRUE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield,/* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_ARM_REL32", /* name */
128 FALSE, /* partial_inplace */
129 0xffffffff, /* src_mask */
130 0xffffffff, /* dst_mask */
131 TRUE), /* pcrel_offset */
132
133 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
134 HOWTO (R_ARM_LDR_PC_G0, /* type */
135 0, /* rightshift */
136 0, /* size (0 = byte, 1 = short, 2 = long) */
137 32, /* bitsize */
138 TRUE, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_dont,/* complain_on_overflow */
141 bfd_elf_generic_reloc, /* special_function */
142 "R_ARM_LDR_PC_G0", /* name */
143 FALSE, /* partial_inplace */
144 0xffffffff, /* src_mask */
145 0xffffffff, /* dst_mask */
146 TRUE), /* pcrel_offset */
147
148 /* 16 bit absolute */
149 HOWTO (R_ARM_ABS16, /* type */
150 0, /* rightshift */
151 1, /* size (0 = byte, 1 = short, 2 = long) */
152 16, /* bitsize */
153 FALSE, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_bitfield,/* complain_on_overflow */
156 bfd_elf_generic_reloc, /* special_function */
157 "R_ARM_ABS16", /* name */
158 FALSE, /* partial_inplace */
159 0x0000ffff, /* src_mask */
160 0x0000ffff, /* dst_mask */
161 FALSE), /* pcrel_offset */
162
163 /* 12 bit absolute */
164 HOWTO (R_ARM_ABS12, /* type */
165 0, /* rightshift */
166 2, /* size (0 = byte, 1 = short, 2 = long) */
167 12, /* bitsize */
168 FALSE, /* pc_relative */
169 0, /* bitpos */
170 complain_overflow_bitfield,/* complain_on_overflow */
171 bfd_elf_generic_reloc, /* special_function */
172 "R_ARM_ABS12", /* name */
173 FALSE, /* partial_inplace */
174 0x00000fff, /* src_mask */
175 0x00000fff, /* dst_mask */
176 FALSE), /* pcrel_offset */
177
178 HOWTO (R_ARM_THM_ABS5, /* type */
179 6, /* rightshift */
180 1, /* size (0 = byte, 1 = short, 2 = long) */
181 5, /* bitsize */
182 FALSE, /* pc_relative */
183 0, /* bitpos */
184 complain_overflow_bitfield,/* complain_on_overflow */
185 bfd_elf_generic_reloc, /* special_function */
186 "R_ARM_THM_ABS5", /* name */
187 FALSE, /* partial_inplace */
188 0x000007e0, /* src_mask */
189 0x000007e0, /* dst_mask */
190 FALSE), /* pcrel_offset */
191
192 /* 8 bit absolute */
193 HOWTO (R_ARM_ABS8, /* type */
194 0, /* rightshift */
195 0, /* size (0 = byte, 1 = short, 2 = long) */
196 8, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_bitfield,/* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_ARM_ABS8", /* name */
202 FALSE, /* partial_inplace */
203 0x000000ff, /* src_mask */
204 0x000000ff, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 HOWTO (R_ARM_SBREL32, /* type */
208 0, /* rightshift */
209 2, /* size (0 = byte, 1 = short, 2 = long) */
210 32, /* bitsize */
211 FALSE, /* pc_relative */
212 0, /* bitpos */
213 complain_overflow_dont,/* complain_on_overflow */
214 bfd_elf_generic_reloc, /* special_function */
215 "R_ARM_SBREL32", /* name */
216 FALSE, /* partial_inplace */
217 0xffffffff, /* src_mask */
218 0xffffffff, /* dst_mask */
219 FALSE), /* pcrel_offset */
220
221 HOWTO (R_ARM_THM_CALL, /* type */
222 1, /* rightshift */
223 2, /* size (0 = byte, 1 = short, 2 = long) */
224 25, /* bitsize */
225 TRUE, /* pc_relative */
226 0, /* bitpos */
227 complain_overflow_signed,/* complain_on_overflow */
228 bfd_elf_generic_reloc, /* special_function */
229 "R_ARM_THM_CALL", /* name */
230 FALSE, /* partial_inplace */
231 0x07ff07ff, /* src_mask */
232 0x07ff07ff, /* dst_mask */
233 TRUE), /* pcrel_offset */
234
235 HOWTO (R_ARM_THM_PC8, /* type */
236 1, /* rightshift */
237 1, /* size (0 = byte, 1 = short, 2 = long) */
238 8, /* bitsize */
239 TRUE, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_signed,/* complain_on_overflow */
242 bfd_elf_generic_reloc, /* special_function */
243 "R_ARM_THM_PC8", /* name */
244 FALSE, /* partial_inplace */
245 0x000000ff, /* src_mask */
246 0x000000ff, /* dst_mask */
247 TRUE), /* pcrel_offset */
248
249 HOWTO (R_ARM_BREL_ADJ, /* type */
250 1, /* rightshift */
251 1, /* size (0 = byte, 1 = short, 2 = long) */
252 32, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_signed,/* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_ARM_BREL_ADJ", /* name */
258 FALSE, /* partial_inplace */
259 0xffffffff, /* src_mask */
260 0xffffffff, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 HOWTO (R_ARM_SWI24, /* type */
264 0, /* rightshift */
265 0, /* size (0 = byte, 1 = short, 2 = long) */
266 0, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_signed,/* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_ARM_SWI24", /* name */
272 FALSE, /* partial_inplace */
273 0x00000000, /* src_mask */
274 0x00000000, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 HOWTO (R_ARM_THM_SWI8, /* type */
278 0, /* rightshift */
279 0, /* size (0 = byte, 1 = short, 2 = long) */
280 0, /* bitsize */
281 FALSE, /* pc_relative */
282 0, /* bitpos */
283 complain_overflow_signed,/* complain_on_overflow */
284 bfd_elf_generic_reloc, /* special_function */
285 "R_ARM_SWI8", /* name */
286 FALSE, /* partial_inplace */
287 0x00000000, /* src_mask */
288 0x00000000, /* dst_mask */
289 FALSE), /* pcrel_offset */
290
291 /* BLX instruction for the ARM. */
292 HOWTO (R_ARM_XPC25, /* type */
293 2, /* rightshift */
294 2, /* size (0 = byte, 1 = short, 2 = long) */
295 25, /* bitsize */
296 TRUE, /* pc_relative */
297 0, /* bitpos */
298 complain_overflow_signed,/* complain_on_overflow */
299 bfd_elf_generic_reloc, /* special_function */
300 "R_ARM_XPC25", /* name */
301 FALSE, /* partial_inplace */
302 0x00ffffff, /* src_mask */
303 0x00ffffff, /* dst_mask */
304 TRUE), /* pcrel_offset */
305
306 /* BLX instruction for the Thumb. */
307 HOWTO (R_ARM_THM_XPC22, /* type */
308 2, /* rightshift */
309 2, /* size (0 = byte, 1 = short, 2 = long) */
310 22, /* bitsize */
311 TRUE, /* pc_relative */
312 0, /* bitpos */
313 complain_overflow_signed,/* complain_on_overflow */
314 bfd_elf_generic_reloc, /* special_function */
315 "R_ARM_THM_XPC22", /* name */
316 FALSE, /* partial_inplace */
317 0x07ff07ff, /* src_mask */
318 0x07ff07ff, /* dst_mask */
319 TRUE), /* pcrel_offset */
320
321 /* Dynamic TLS relocations. */
322
323 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
324 0, /* rightshift */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
326 32, /* bitsize */
327 FALSE, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_bitfield,/* complain_on_overflow */
330 bfd_elf_generic_reloc, /* special_function */
331 "R_ARM_TLS_DTPMOD32", /* name */
332 TRUE, /* partial_inplace */
333 0xffffffff, /* src_mask */
334 0xffffffff, /* dst_mask */
335 FALSE), /* pcrel_offset */
336
337 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
338 0, /* rightshift */
339 2, /* size (0 = byte, 1 = short, 2 = long) */
340 32, /* bitsize */
341 FALSE, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_bitfield,/* complain_on_overflow */
344 bfd_elf_generic_reloc, /* special_function */
345 "R_ARM_TLS_DTPOFF32", /* name */
346 TRUE, /* partial_inplace */
347 0xffffffff, /* src_mask */
348 0xffffffff, /* dst_mask */
349 FALSE), /* pcrel_offset */
350
351 HOWTO (R_ARM_TLS_TPOFF32, /* type */
352 0, /* rightshift */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
354 32, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_bitfield,/* complain_on_overflow */
358 bfd_elf_generic_reloc, /* special_function */
359 "R_ARM_TLS_TPOFF32", /* name */
360 TRUE, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* Relocs used in ARM Linux */
366
367 HOWTO (R_ARM_COPY, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 32, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_bitfield,/* complain_on_overflow */
374 bfd_elf_generic_reloc, /* special_function */
375 "R_ARM_COPY", /* name */
376 TRUE, /* partial_inplace */
377 0xffffffff, /* src_mask */
378 0xffffffff, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 HOWTO (R_ARM_GLOB_DAT, /* type */
382 0, /* rightshift */
383 2, /* size (0 = byte, 1 = short, 2 = long) */
384 32, /* bitsize */
385 FALSE, /* pc_relative */
386 0, /* bitpos */
387 complain_overflow_bitfield,/* complain_on_overflow */
388 bfd_elf_generic_reloc, /* special_function */
389 "R_ARM_GLOB_DAT", /* name */
390 TRUE, /* partial_inplace */
391 0xffffffff, /* src_mask */
392 0xffffffff, /* dst_mask */
393 FALSE), /* pcrel_offset */
394
395 HOWTO (R_ARM_JUMP_SLOT, /* type */
396 0, /* rightshift */
397 2, /* size (0 = byte, 1 = short, 2 = long) */
398 32, /* bitsize */
399 FALSE, /* pc_relative */
400 0, /* bitpos */
401 complain_overflow_bitfield,/* complain_on_overflow */
402 bfd_elf_generic_reloc, /* special_function */
403 "R_ARM_JUMP_SLOT", /* name */
404 TRUE, /* partial_inplace */
405 0xffffffff, /* src_mask */
406 0xffffffff, /* dst_mask */
407 FALSE), /* pcrel_offset */
408
409 HOWTO (R_ARM_RELATIVE, /* type */
410 0, /* rightshift */
411 2, /* size (0 = byte, 1 = short, 2 = long) */
412 32, /* bitsize */
413 FALSE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_bitfield,/* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 "R_ARM_RELATIVE", /* name */
418 TRUE, /* partial_inplace */
419 0xffffffff, /* src_mask */
420 0xffffffff, /* dst_mask */
421 FALSE), /* pcrel_offset */
422
423 HOWTO (R_ARM_GOTOFF32, /* type */
424 0, /* rightshift */
425 2, /* size (0 = byte, 1 = short, 2 = long) */
426 32, /* bitsize */
427 FALSE, /* pc_relative */
428 0, /* bitpos */
429 complain_overflow_bitfield,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_ARM_GOTOFF32", /* name */
432 TRUE, /* partial_inplace */
433 0xffffffff, /* src_mask */
434 0xffffffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436
437 HOWTO (R_ARM_GOTPC, /* type */
438 0, /* rightshift */
439 2, /* size (0 = byte, 1 = short, 2 = long) */
440 32, /* bitsize */
441 TRUE, /* pc_relative */
442 0, /* bitpos */
443 complain_overflow_bitfield,/* complain_on_overflow */
444 bfd_elf_generic_reloc, /* special_function */
445 "R_ARM_GOTPC", /* name */
446 TRUE, /* partial_inplace */
447 0xffffffff, /* src_mask */
448 0xffffffff, /* dst_mask */
449 TRUE), /* pcrel_offset */
450
451 HOWTO (R_ARM_GOT32, /* type */
452 0, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 32, /* bitsize */
455 FALSE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_bitfield,/* complain_on_overflow */
458 bfd_elf_generic_reloc, /* special_function */
459 "R_ARM_GOT32", /* name */
460 TRUE, /* partial_inplace */
461 0xffffffff, /* src_mask */
462 0xffffffff, /* dst_mask */
463 FALSE), /* pcrel_offset */
464
465 HOWTO (R_ARM_PLT32, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 24, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_bitfield,/* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 "R_ARM_PLT32", /* name */
474 FALSE, /* partial_inplace */
475 0x00ffffff, /* src_mask */
476 0x00ffffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_ARM_CALL, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 24, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed,/* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 "R_ARM_CALL", /* name */
488 FALSE, /* partial_inplace */
489 0x00ffffff, /* src_mask */
490 0x00ffffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_ARM_JUMP24, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 24, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed,/* complain_on_overflow */
500 bfd_elf_generic_reloc, /* special_function */
501 "R_ARM_JUMP24", /* name */
502 FALSE, /* partial_inplace */
503 0x00ffffff, /* src_mask */
504 0x00ffffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_ARM_THM_JUMP24, /* type */
508 1, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 24, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed,/* complain_on_overflow */
514 bfd_elf_generic_reloc, /* special_function */
515 "R_ARM_THM_JUMP24", /* name */
516 FALSE, /* partial_inplace */
517 0x07ff2fff, /* src_mask */
518 0x07ff2fff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 HOWTO (R_ARM_BASE_ABS, /* type */
522 0, /* rightshift */
523 2, /* size (0 = byte, 1 = short, 2 = long) */
524 32, /* bitsize */
525 FALSE, /* pc_relative */
526 0, /* bitpos */
527 complain_overflow_dont,/* complain_on_overflow */
528 bfd_elf_generic_reloc, /* special_function */
529 "R_ARM_BASE_ABS", /* name */
530 FALSE, /* partial_inplace */
531 0xffffffff, /* src_mask */
532 0xffffffff, /* dst_mask */
533 FALSE), /* pcrel_offset */
534
535 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
536 0, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 12, /* bitsize */
539 TRUE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont,/* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 "R_ARM_ALU_PCREL_7_0", /* name */
544 FALSE, /* partial_inplace */
545 0x00000fff, /* src_mask */
546 0x00000fff, /* dst_mask */
547 TRUE), /* pcrel_offset */
548
549 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 12, /* bitsize */
553 TRUE, /* pc_relative */
554 8, /* bitpos */
555 complain_overflow_dont,/* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_ARM_ALU_PCREL_15_8",/* name */
558 FALSE, /* partial_inplace */
559 0x00000fff, /* src_mask */
560 0x00000fff, /* dst_mask */
561 TRUE), /* pcrel_offset */
562
563 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
564 0, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 12, /* bitsize */
567 TRUE, /* pc_relative */
568 16, /* bitpos */
569 complain_overflow_dont,/* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 "R_ARM_ALU_PCREL_23_15",/* name */
572 FALSE, /* partial_inplace */
573 0x00000fff, /* src_mask */
574 0x00000fff, /* dst_mask */
575 TRUE), /* pcrel_offset */
576
577 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
578 0, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 12, /* bitsize */
581 FALSE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_dont,/* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
585 "R_ARM_LDR_SBREL_11_0",/* name */
586 FALSE, /* partial_inplace */
587 0x00000fff, /* src_mask */
588 0x00000fff, /* dst_mask */
589 FALSE), /* pcrel_offset */
590
591 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 8, /* bitsize */
595 FALSE, /* pc_relative */
596 12, /* bitpos */
597 complain_overflow_dont,/* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 "R_ARM_ALU_SBREL_19_12",/* name */
600 FALSE, /* partial_inplace */
601 0x000ff000, /* src_mask */
602 0x000ff000, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
606 0, /* rightshift */
607 2, /* size (0 = byte, 1 = short, 2 = long) */
608 8, /* bitsize */
609 FALSE, /* pc_relative */
610 20, /* bitpos */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_ARM_ALU_SBREL_27_20",/* name */
614 FALSE, /* partial_inplace */
615 0x0ff00000, /* src_mask */
616 0x0ff00000, /* dst_mask */
617 FALSE), /* pcrel_offset */
618
619 HOWTO (R_ARM_TARGET1, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 32, /* bitsize */
623 FALSE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_ARM_TARGET1", /* name */
628 FALSE, /* partial_inplace */
629 0xffffffff, /* src_mask */
630 0xffffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632
633 HOWTO (R_ARM_ROSEGREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 FALSE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_dont,/* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_ARM_ROSEGREL32", /* name */
642 FALSE, /* partial_inplace */
643 0xffffffff, /* src_mask */
644 0xffffffff, /* dst_mask */
645 FALSE), /* pcrel_offset */
646
647 HOWTO (R_ARM_V4BX, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 FALSE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_dont,/* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_ARM_V4BX", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 FALSE), /* pcrel_offset */
660
661 HOWTO (R_ARM_TARGET2, /* type */
662 0, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 32, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed,/* complain_on_overflow */
668 bfd_elf_generic_reloc, /* special_function */
669 "R_ARM_TARGET2", /* name */
670 FALSE, /* partial_inplace */
671 0xffffffff, /* src_mask */
672 0xffffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 HOWTO (R_ARM_PREL31, /* type */
676 0, /* rightshift */
677 2, /* size (0 = byte, 1 = short, 2 = long) */
678 31, /* bitsize */
679 TRUE, /* pc_relative */
680 0, /* bitpos */
681 complain_overflow_signed,/* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "R_ARM_PREL31", /* name */
684 FALSE, /* partial_inplace */
685 0x7fffffff, /* src_mask */
686 0x7fffffff, /* dst_mask */
687 TRUE), /* pcrel_offset */
688
689 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
690 0, /* rightshift */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont,/* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
697 "R_ARM_MOVW_ABS_NC", /* name */
698 FALSE, /* partial_inplace */
699 0x000f0fff, /* src_mask */
700 0x000f0fff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 HOWTO (R_ARM_MOVT_ABS, /* type */
704 0, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 16, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_bitfield,/* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 "R_ARM_MOVT_ABS", /* name */
712 FALSE, /* partial_inplace */
713 0x000f0fff, /* src_mask */
714 0x000f0fff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
718 0, /* rightshift */
719 2, /* size (0 = byte, 1 = short, 2 = long) */
720 16, /* bitsize */
721 TRUE, /* pc_relative */
722 0, /* bitpos */
723 complain_overflow_dont,/* complain_on_overflow */
724 bfd_elf_generic_reloc, /* special_function */
725 "R_ARM_MOVW_PREL_NC", /* name */
726 FALSE, /* partial_inplace */
727 0x000f0fff, /* src_mask */
728 0x000f0fff, /* dst_mask */
729 TRUE), /* pcrel_offset */
730
731 HOWTO (R_ARM_MOVT_PREL, /* type */
732 0, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 16, /* bitsize */
735 TRUE, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_bitfield,/* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 "R_ARM_MOVT_PREL", /* name */
740 FALSE, /* partial_inplace */
741 0x000f0fff, /* src_mask */
742 0x000f0fff, /* dst_mask */
743 TRUE), /* pcrel_offset */
744
745 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
746 0, /* rightshift */
747 2, /* size (0 = byte, 1 = short, 2 = long) */
748 16, /* bitsize */
749 FALSE, /* pc_relative */
750 0, /* bitpos */
751 complain_overflow_dont,/* complain_on_overflow */
752 bfd_elf_generic_reloc, /* special_function */
753 "R_ARM_THM_MOVW_ABS_NC",/* name */
754 FALSE, /* partial_inplace */
755 0x040f70ff, /* src_mask */
756 0x040f70ff, /* dst_mask */
757 FALSE), /* pcrel_offset */
758
759 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
760 0, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 16, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_bitfield,/* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 "R_ARM_THM_MOVT_ABS", /* name */
768 FALSE, /* partial_inplace */
769 0x040f70ff, /* src_mask */
770 0x040f70ff, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
774 0, /* rightshift */
775 2, /* size (0 = byte, 1 = short, 2 = long) */
776 16, /* bitsize */
777 TRUE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont,/* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_ARM_THM_MOVW_PREL_NC",/* name */
782 FALSE, /* partial_inplace */
783 0x040f70ff, /* src_mask */
784 0x040f70ff, /* dst_mask */
785 TRUE), /* pcrel_offset */
786
787 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
788 0, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 16, /* bitsize */
791 TRUE, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_bitfield,/* complain_on_overflow */
794 bfd_elf_generic_reloc, /* special_function */
795 "R_ARM_THM_MOVT_PREL", /* name */
796 FALSE, /* partial_inplace */
797 0x040f70ff, /* src_mask */
798 0x040f70ff, /* dst_mask */
799 TRUE), /* pcrel_offset */
800
801 HOWTO (R_ARM_THM_JUMP19, /* type */
802 1, /* rightshift */
803 2, /* size (0 = byte, 1 = short, 2 = long) */
804 19, /* bitsize */
805 TRUE, /* pc_relative */
806 0, /* bitpos */
807 complain_overflow_signed,/* complain_on_overflow */
808 bfd_elf_generic_reloc, /* special_function */
809 "R_ARM_THM_JUMP19", /* name */
810 FALSE, /* partial_inplace */
811 0x043f2fff, /* src_mask */
812 0x043f2fff, /* dst_mask */
813 TRUE), /* pcrel_offset */
814
815 HOWTO (R_ARM_THM_JUMP6, /* type */
816 1, /* rightshift */
817 1, /* size (0 = byte, 1 = short, 2 = long) */
818 6, /* bitsize */
819 TRUE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_unsigned,/* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_ARM_THM_JUMP6", /* name */
824 FALSE, /* partial_inplace */
825 0x02f8, /* src_mask */
826 0x02f8, /* dst_mask */
827 TRUE), /* pcrel_offset */
828
829 /* These are declared as 13-bit signed relocations because we can
830 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
831 versa. */
832 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
833 0, /* rightshift */
834 2, /* size (0 = byte, 1 = short, 2 = long) */
835 13, /* bitsize */
836 TRUE, /* pc_relative */
837 0, /* bitpos */
838 complain_overflow_dont,/* complain_on_overflow */
839 bfd_elf_generic_reloc, /* special_function */
840 "R_ARM_THM_ALU_PREL_11_0",/* name */
841 FALSE, /* partial_inplace */
842 0xffffffff, /* src_mask */
843 0xffffffff, /* dst_mask */
844 TRUE), /* pcrel_offset */
845
846 HOWTO (R_ARM_THM_PC12, /* type */
847 0, /* rightshift */
848 2, /* size (0 = byte, 1 = short, 2 = long) */
849 13, /* bitsize */
850 TRUE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_dont,/* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 "R_ARM_THM_PC12", /* name */
855 FALSE, /* partial_inplace */
856 0xffffffff, /* src_mask */
857 0xffffffff, /* dst_mask */
858 TRUE), /* pcrel_offset */
859
860 HOWTO (R_ARM_ABS32_NOI, /* type */
861 0, /* rightshift */
862 2, /* size (0 = byte, 1 = short, 2 = long) */
863 32, /* bitsize */
864 FALSE, /* pc_relative */
865 0, /* bitpos */
866 complain_overflow_dont,/* complain_on_overflow */
867 bfd_elf_generic_reloc, /* special_function */
868 "R_ARM_ABS32_NOI", /* name */
869 FALSE, /* partial_inplace */
870 0xffffffff, /* src_mask */
871 0xffffffff, /* dst_mask */
872 FALSE), /* pcrel_offset */
873
874 HOWTO (R_ARM_REL32_NOI, /* type */
875 0, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 32, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont,/* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 "R_ARM_REL32_NOI", /* name */
883 FALSE, /* partial_inplace */
884 0xffffffff, /* src_mask */
885 0xffffffff, /* dst_mask */
886 FALSE), /* pcrel_offset */
887
888 /* Group relocations. */
889
890 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
891 0, /* rightshift */
892 2, /* size (0 = byte, 1 = short, 2 = long) */
893 32, /* bitsize */
894 TRUE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont,/* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_ARM_ALU_PC_G0_NC", /* name */
899 FALSE, /* partial_inplace */
900 0xffffffff, /* src_mask */
901 0xffffffff, /* dst_mask */
902 TRUE), /* pcrel_offset */
903
904 HOWTO (R_ARM_ALU_PC_G0, /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 32, /* bitsize */
908 TRUE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont,/* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 "R_ARM_ALU_PC_G0", /* name */
913 FALSE, /* partial_inplace */
914 0xffffffff, /* src_mask */
915 0xffffffff, /* dst_mask */
916 TRUE), /* pcrel_offset */
917
918 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
919 0, /* rightshift */
920 2, /* size (0 = byte, 1 = short, 2 = long) */
921 32, /* bitsize */
922 TRUE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont,/* complain_on_overflow */
925 bfd_elf_generic_reloc, /* special_function */
926 "R_ARM_ALU_PC_G1_NC", /* name */
927 FALSE, /* partial_inplace */
928 0xffffffff, /* src_mask */
929 0xffffffff, /* dst_mask */
930 TRUE), /* pcrel_offset */
931
932 HOWTO (R_ARM_ALU_PC_G1, /* type */
933 0, /* rightshift */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
935 32, /* bitsize */
936 TRUE, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_dont,/* complain_on_overflow */
939 bfd_elf_generic_reloc, /* special_function */
940 "R_ARM_ALU_PC_G1", /* name */
941 FALSE, /* partial_inplace */
942 0xffffffff, /* src_mask */
943 0xffffffff, /* dst_mask */
944 TRUE), /* pcrel_offset */
945
946 HOWTO (R_ARM_ALU_PC_G2, /* type */
947 0, /* rightshift */
948 2, /* size (0 = byte, 1 = short, 2 = long) */
949 32, /* bitsize */
950 TRUE, /* pc_relative */
951 0, /* bitpos */
952 complain_overflow_dont,/* complain_on_overflow */
953 bfd_elf_generic_reloc, /* special_function */
954 "R_ARM_ALU_PC_G2", /* name */
955 FALSE, /* partial_inplace */
956 0xffffffff, /* src_mask */
957 0xffffffff, /* dst_mask */
958 TRUE), /* pcrel_offset */
959
960 HOWTO (R_ARM_LDR_PC_G1, /* type */
961 0, /* rightshift */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
963 32, /* bitsize */
964 TRUE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont,/* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 "R_ARM_LDR_PC_G1", /* name */
969 FALSE, /* partial_inplace */
970 0xffffffff, /* src_mask */
971 0xffffffff, /* dst_mask */
972 TRUE), /* pcrel_offset */
973
974 HOWTO (R_ARM_LDR_PC_G2, /* type */
975 0, /* rightshift */
976 2, /* size (0 = byte, 1 = short, 2 = long) */
977 32, /* bitsize */
978 TRUE, /* pc_relative */
979 0, /* bitpos */
980 complain_overflow_dont,/* complain_on_overflow */
981 bfd_elf_generic_reloc, /* special_function */
982 "R_ARM_LDR_PC_G2", /* name */
983 FALSE, /* partial_inplace */
984 0xffffffff, /* src_mask */
985 0xffffffff, /* dst_mask */
986 TRUE), /* pcrel_offset */
987
988 HOWTO (R_ARM_LDRS_PC_G0, /* type */
989 0, /* rightshift */
990 2, /* size (0 = byte, 1 = short, 2 = long) */
991 32, /* bitsize */
992 TRUE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_dont,/* complain_on_overflow */
995 bfd_elf_generic_reloc, /* special_function */
996 "R_ARM_LDRS_PC_G0", /* name */
997 FALSE, /* partial_inplace */
998 0xffffffff, /* src_mask */
999 0xffffffff, /* dst_mask */
1000 TRUE), /* pcrel_offset */
1001
1002 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1003 0, /* rightshift */
1004 2, /* size (0 = byte, 1 = short, 2 = long) */
1005 32, /* bitsize */
1006 TRUE, /* pc_relative */
1007 0, /* bitpos */
1008 complain_overflow_dont,/* complain_on_overflow */
1009 bfd_elf_generic_reloc, /* special_function */
1010 "R_ARM_LDRS_PC_G1", /* name */
1011 FALSE, /* partial_inplace */
1012 0xffffffff, /* src_mask */
1013 0xffffffff, /* dst_mask */
1014 TRUE), /* pcrel_offset */
1015
1016 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1017 0, /* rightshift */
1018 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 32, /* bitsize */
1020 TRUE, /* pc_relative */
1021 0, /* bitpos */
1022 complain_overflow_dont,/* complain_on_overflow */
1023 bfd_elf_generic_reloc, /* special_function */
1024 "R_ARM_LDRS_PC_G2", /* name */
1025 FALSE, /* partial_inplace */
1026 0xffffffff, /* src_mask */
1027 0xffffffff, /* dst_mask */
1028 TRUE), /* pcrel_offset */
1029
1030 HOWTO (R_ARM_LDC_PC_G0, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 32, /* bitsize */
1034 TRUE, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont,/* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_ARM_LDC_PC_G0", /* name */
1039 FALSE, /* partial_inplace */
1040 0xffffffff, /* src_mask */
1041 0xffffffff, /* dst_mask */
1042 TRUE), /* pcrel_offset */
1043
1044 HOWTO (R_ARM_LDC_PC_G1, /* type */
1045 0, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 32, /* bitsize */
1048 TRUE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 "R_ARM_LDC_PC_G1", /* name */
1053 FALSE, /* partial_inplace */
1054 0xffffffff, /* src_mask */
1055 0xffffffff, /* dst_mask */
1056 TRUE), /* pcrel_offset */
1057
1058 HOWTO (R_ARM_LDC_PC_G2, /* type */
1059 0, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 32, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont,/* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 "R_ARM_LDC_PC_G2", /* name */
1067 FALSE, /* partial_inplace */
1068 0xffffffff, /* src_mask */
1069 0xffffffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1073 0, /* rightshift */
1074 2, /* size (0 = byte, 1 = short, 2 = long) */
1075 32, /* bitsize */
1076 TRUE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_dont,/* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_ARM_ALU_SB_G0_NC", /* name */
1081 FALSE, /* partial_inplace */
1082 0xffffffff, /* src_mask */
1083 0xffffffff, /* dst_mask */
1084 TRUE), /* pcrel_offset */
1085
1086 HOWTO (R_ARM_ALU_SB_G0, /* type */
1087 0, /* rightshift */
1088 2, /* size (0 = byte, 1 = short, 2 = long) */
1089 32, /* bitsize */
1090 TRUE, /* pc_relative */
1091 0, /* bitpos */
1092 complain_overflow_dont,/* complain_on_overflow */
1093 bfd_elf_generic_reloc, /* special_function */
1094 "R_ARM_ALU_SB_G0", /* name */
1095 FALSE, /* partial_inplace */
1096 0xffffffff, /* src_mask */
1097 0xffffffff, /* dst_mask */
1098 TRUE), /* pcrel_offset */
1099
1100 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1101 0, /* rightshift */
1102 2, /* size (0 = byte, 1 = short, 2 = long) */
1103 32, /* bitsize */
1104 TRUE, /* pc_relative */
1105 0, /* bitpos */
1106 complain_overflow_dont,/* complain_on_overflow */
1107 bfd_elf_generic_reloc, /* special_function */
1108 "R_ARM_ALU_SB_G1_NC", /* name */
1109 FALSE, /* partial_inplace */
1110 0xffffffff, /* src_mask */
1111 0xffffffff, /* dst_mask */
1112 TRUE), /* pcrel_offset */
1113
1114 HOWTO (R_ARM_ALU_SB_G1, /* type */
1115 0, /* rightshift */
1116 2, /* size (0 = byte, 1 = short, 2 = long) */
1117 32, /* bitsize */
1118 TRUE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_dont,/* complain_on_overflow */
1121 bfd_elf_generic_reloc, /* special_function */
1122 "R_ARM_ALU_SB_G1", /* name */
1123 FALSE, /* partial_inplace */
1124 0xffffffff, /* src_mask */
1125 0xffffffff, /* dst_mask */
1126 TRUE), /* pcrel_offset */
1127
1128 HOWTO (R_ARM_ALU_SB_G2, /* type */
1129 0, /* rightshift */
1130 2, /* size (0 = byte, 1 = short, 2 = long) */
1131 32, /* bitsize */
1132 TRUE, /* pc_relative */
1133 0, /* bitpos */
1134 complain_overflow_dont,/* complain_on_overflow */
1135 bfd_elf_generic_reloc, /* special_function */
1136 "R_ARM_ALU_SB_G2", /* name */
1137 FALSE, /* partial_inplace */
1138 0xffffffff, /* src_mask */
1139 0xffffffff, /* dst_mask */
1140 TRUE), /* pcrel_offset */
1141
1142 HOWTO (R_ARM_LDR_SB_G0, /* type */
1143 0, /* rightshift */
1144 2, /* size (0 = byte, 1 = short, 2 = long) */
1145 32, /* bitsize */
1146 TRUE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_dont,/* complain_on_overflow */
1149 bfd_elf_generic_reloc, /* special_function */
1150 "R_ARM_LDR_SB_G0", /* name */
1151 FALSE, /* partial_inplace */
1152 0xffffffff, /* src_mask */
1153 0xffffffff, /* dst_mask */
1154 TRUE), /* pcrel_offset */
1155
1156 HOWTO (R_ARM_LDR_SB_G1, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 32, /* bitsize */
1160 TRUE, /* pc_relative */
1161 0, /* bitpos */
1162 complain_overflow_dont,/* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_ARM_LDR_SB_G1", /* name */
1165 FALSE, /* partial_inplace */
1166 0xffffffff, /* src_mask */
1167 0xffffffff, /* dst_mask */
1168 TRUE), /* pcrel_offset */
1169
1170 HOWTO (R_ARM_LDR_SB_G2, /* type */
1171 0, /* rightshift */
1172 2, /* size (0 = byte, 1 = short, 2 = long) */
1173 32, /* bitsize */
1174 TRUE, /* pc_relative */
1175 0, /* bitpos */
1176 complain_overflow_dont,/* complain_on_overflow */
1177 bfd_elf_generic_reloc, /* special_function */
1178 "R_ARM_LDR_SB_G2", /* name */
1179 FALSE, /* partial_inplace */
1180 0xffffffff, /* src_mask */
1181 0xffffffff, /* dst_mask */
1182 TRUE), /* pcrel_offset */
1183
1184 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1185 0, /* rightshift */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1187 32, /* bitsize */
1188 TRUE, /* pc_relative */
1189 0, /* bitpos */
1190 complain_overflow_dont,/* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 "R_ARM_LDRS_SB_G0", /* name */
1193 FALSE, /* partial_inplace */
1194 0xffffffff, /* src_mask */
1195 0xffffffff, /* dst_mask */
1196 TRUE), /* pcrel_offset */
1197
1198 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1199 0, /* rightshift */
1200 2, /* size (0 = byte, 1 = short, 2 = long) */
1201 32, /* bitsize */
1202 TRUE, /* pc_relative */
1203 0, /* bitpos */
1204 complain_overflow_dont,/* complain_on_overflow */
1205 bfd_elf_generic_reloc, /* special_function */
1206 "R_ARM_LDRS_SB_G1", /* name */
1207 FALSE, /* partial_inplace */
1208 0xffffffff, /* src_mask */
1209 0xffffffff, /* dst_mask */
1210 TRUE), /* pcrel_offset */
1211
1212 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1213 0, /* rightshift */
1214 2, /* size (0 = byte, 1 = short, 2 = long) */
1215 32, /* bitsize */
1216 TRUE, /* pc_relative */
1217 0, /* bitpos */
1218 complain_overflow_dont,/* complain_on_overflow */
1219 bfd_elf_generic_reloc, /* special_function */
1220 "R_ARM_LDRS_SB_G2", /* name */
1221 FALSE, /* partial_inplace */
1222 0xffffffff, /* src_mask */
1223 0xffffffff, /* dst_mask */
1224 TRUE), /* pcrel_offset */
1225
1226 HOWTO (R_ARM_LDC_SB_G0, /* type */
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 TRUE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont,/* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_ARM_LDC_SB_G0", /* name */
1235 FALSE, /* partial_inplace */
1236 0xffffffff, /* src_mask */
1237 0xffffffff, /* dst_mask */
1238 TRUE), /* pcrel_offset */
1239
1240 HOWTO (R_ARM_LDC_SB_G1, /* type */
1241 0, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 32, /* bitsize */
1244 TRUE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_dont,/* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 "R_ARM_LDC_SB_G1", /* name */
1249 FALSE, /* partial_inplace */
1250 0xffffffff, /* src_mask */
1251 0xffffffff, /* dst_mask */
1252 TRUE), /* pcrel_offset */
1253
1254 HOWTO (R_ARM_LDC_SB_G2, /* type */
1255 0, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 32, /* bitsize */
1258 TRUE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont,/* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 "R_ARM_LDC_SB_G2", /* name */
1263 FALSE, /* partial_inplace */
1264 0xffffffff, /* src_mask */
1265 0xffffffff, /* dst_mask */
1266 TRUE), /* pcrel_offset */
1267
1268 /* End of group relocations. */
1269
1270 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1271 0, /* rightshift */
1272 2, /* size (0 = byte, 1 = short, 2 = long) */
1273 16, /* bitsize */
1274 FALSE, /* pc_relative */
1275 0, /* bitpos */
1276 complain_overflow_dont,/* complain_on_overflow */
1277 bfd_elf_generic_reloc, /* special_function */
1278 "R_ARM_MOVW_BREL_NC", /* name */
1279 FALSE, /* partial_inplace */
1280 0x0000ffff, /* src_mask */
1281 0x0000ffff, /* dst_mask */
1282 FALSE), /* pcrel_offset */
1283
1284 HOWTO (R_ARM_MOVT_BREL, /* type */
1285 0, /* rightshift */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1287 16, /* bitsize */
1288 FALSE, /* pc_relative */
1289 0, /* bitpos */
1290 complain_overflow_bitfield,/* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 "R_ARM_MOVT_BREL", /* name */
1293 FALSE, /* partial_inplace */
1294 0x0000ffff, /* src_mask */
1295 0x0000ffff, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1297
1298 HOWTO (R_ARM_MOVW_BREL, /* type */
1299 0, /* rightshift */
1300 2, /* size (0 = byte, 1 = short, 2 = long) */
1301 16, /* bitsize */
1302 FALSE, /* pc_relative */
1303 0, /* bitpos */
1304 complain_overflow_dont,/* complain_on_overflow */
1305 bfd_elf_generic_reloc, /* special_function */
1306 "R_ARM_MOVW_BREL", /* name */
1307 FALSE, /* partial_inplace */
1308 0x0000ffff, /* src_mask */
1309 0x0000ffff, /* dst_mask */
1310 FALSE), /* pcrel_offset */
1311
1312 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1313 0, /* rightshift */
1314 2, /* size (0 = byte, 1 = short, 2 = long) */
1315 16, /* bitsize */
1316 FALSE, /* pc_relative */
1317 0, /* bitpos */
1318 complain_overflow_dont,/* complain_on_overflow */
1319 bfd_elf_generic_reloc, /* special_function */
1320 "R_ARM_THM_MOVW_BREL_NC",/* name */
1321 FALSE, /* partial_inplace */
1322 0x040f70ff, /* src_mask */
1323 0x040f70ff, /* dst_mask */
1324 FALSE), /* pcrel_offset */
1325
1326 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1327 0, /* rightshift */
1328 2, /* size (0 = byte, 1 = short, 2 = long) */
1329 16, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_bitfield,/* complain_on_overflow */
1333 bfd_elf_generic_reloc, /* special_function */
1334 "R_ARM_THM_MOVT_BREL", /* name */
1335 FALSE, /* partial_inplace */
1336 0x040f70ff, /* src_mask */
1337 0x040f70ff, /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1341 0, /* rightshift */
1342 2, /* size (0 = byte, 1 = short, 2 = long) */
1343 16, /* bitsize */
1344 FALSE, /* pc_relative */
1345 0, /* bitpos */
1346 complain_overflow_dont,/* complain_on_overflow */
1347 bfd_elf_generic_reloc, /* special_function */
1348 "R_ARM_THM_MOVW_BREL", /* name */
1349 FALSE, /* partial_inplace */
1350 0x040f70ff, /* src_mask */
1351 0x040f70ff, /* dst_mask */
1352 FALSE), /* pcrel_offset */
1353
1354 EMPTY_HOWTO (90), /* unallocated */
1355 EMPTY_HOWTO (91),
1356 EMPTY_HOWTO (92),
1357 EMPTY_HOWTO (93),
1358
1359 HOWTO (R_ARM_PLT32_ABS, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_dont,/* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 "R_ARM_PLT32_ABS", /* name */
1368 FALSE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_GOT_ABS, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 32, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_GOT_ABS", /* name */
1382 FALSE, /* partial_inplace */
1383 0xffffffff, /* src_mask */
1384 0xffffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_GOT_PREL, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 32, /* bitsize */
1391 TRUE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_dont, /* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_GOT_PREL", /* name */
1396 FALSE, /* partial_inplace */
1397 0xffffffff, /* src_mask */
1398 0xffffffff, /* dst_mask */
1399 TRUE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_GOT_BREL12, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 12, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_bitfield,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_GOT_BREL12", /* name */
1410 FALSE, /* partial_inplace */
1411 0x00000fff, /* src_mask */
1412 0x00000fff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_GOTOFF12, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 12, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_bitfield,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_GOTOFF12", /* name */
1424 FALSE, /* partial_inplace */
1425 0x00000fff, /* src_mask */
1426 0x00000fff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1430
1431 /* GNU extension to record C++ vtable member usage */
1432 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 0, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1440 "R_ARM_GNU_VTENTRY", /* name */
1441 FALSE, /* partial_inplace */
1442 0, /* src_mask */
1443 0, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 /* GNU extension to record C++ vtable hierarchy */
1447 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1448 0, /* rightshift */
1449 2, /* size (0 = byte, 1 = short, 2 = long) */
1450 0, /* bitsize */
1451 FALSE, /* pc_relative */
1452 0, /* bitpos */
1453 complain_overflow_dont, /* complain_on_overflow */
1454 NULL, /* special_function */
1455 "R_ARM_GNU_VTINHERIT", /* name */
1456 FALSE, /* partial_inplace */
1457 0, /* src_mask */
1458 0, /* dst_mask */
1459 FALSE), /* pcrel_offset */
1460
1461 HOWTO (R_ARM_THM_JUMP11, /* type */
1462 1, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 11, /* bitsize */
1465 TRUE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 bfd_elf_generic_reloc, /* special_function */
1469 "R_ARM_THM_JUMP11", /* name */
1470 FALSE, /* partial_inplace */
1471 0x000007ff, /* src_mask */
1472 0x000007ff, /* dst_mask */
1473 TRUE), /* pcrel_offset */
1474
1475 HOWTO (R_ARM_THM_JUMP8, /* type */
1476 1, /* rightshift */
1477 1, /* size (0 = byte, 1 = short, 2 = long) */
1478 8, /* bitsize */
1479 TRUE, /* pc_relative */
1480 0, /* bitpos */
1481 complain_overflow_signed, /* complain_on_overflow */
1482 bfd_elf_generic_reloc, /* special_function */
1483 "R_ARM_THM_JUMP8", /* name */
1484 FALSE, /* partial_inplace */
1485 0x000000ff, /* src_mask */
1486 0x000000ff, /* dst_mask */
1487 TRUE), /* pcrel_offset */
1488
1489 /* TLS relocations */
1490 HOWTO (R_ARM_TLS_GD32, /* type */
1491 0, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 32, /* bitsize */
1494 FALSE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_bitfield,/* complain_on_overflow */
1497 NULL, /* special_function */
1498 "R_ARM_TLS_GD32", /* name */
1499 TRUE, /* partial_inplace */
1500 0xffffffff, /* src_mask */
1501 0xffffffff, /* dst_mask */
1502 FALSE), /* pcrel_offset */
1503
1504 HOWTO (R_ARM_TLS_LDM32, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 32, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_bitfield,/* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 "R_ARM_TLS_LDM32", /* name */
1513 TRUE, /* partial_inplace */
1514 0xffffffff, /* src_mask */
1515 0xffffffff, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_TLS_LDO32, /* type */
1519 0, /* rightshift */
1520 2, /* size (0 = byte, 1 = short, 2 = long) */
1521 32, /* bitsize */
1522 FALSE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_bitfield,/* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_TLS_LDO32", /* name */
1527 TRUE, /* partial_inplace */
1528 0xffffffff, /* src_mask */
1529 0xffffffff, /* dst_mask */
1530 FALSE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_TLS_IE32, /* type */
1533 0, /* rightshift */
1534 2, /* size (0 = byte, 1 = short, 2 = long) */
1535 32, /* bitsize */
1536 FALSE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_bitfield,/* complain_on_overflow */
1539 NULL, /* special_function */
1540 "R_ARM_TLS_IE32", /* name */
1541 TRUE, /* partial_inplace */
1542 0xffffffff, /* src_mask */
1543 0xffffffff, /* dst_mask */
1544 FALSE), /* pcrel_offset */
1545
1546 HOWTO (R_ARM_TLS_LE32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 bfd_elf_generic_reloc, /* special_function */
1554 "R_ARM_TLS_LE32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDO12, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 12, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDO12", /* name */
1569 FALSE, /* partial_inplace */
1570 0x00000fff, /* src_mask */
1571 0x00000fff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LE12, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 12, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LE12", /* name */
1583 FALSE, /* partial_inplace */
1584 0x00000fff, /* src_mask */
1585 0x00000fff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE12GP, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 12, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 bfd_elf_generic_reloc, /* special_function */
1596 "R_ARM_TLS_IE12GP", /* name */
1597 FALSE, /* partial_inplace */
1598 0x00000fff, /* src_mask */
1599 0x00000fff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601 };
1602
1603 /* 112-127 private relocations
1604 128 R_ARM_ME_TOO, obsolete
1605 129-255 unallocated in AAELF.
1606
1607 249-255 extended, currently unused, relocations: */
1608
1609 static reloc_howto_type elf32_arm_howto_table_2[4] =
1610 {
1611 HOWTO (R_ARM_RREL32, /* type */
1612 0, /* rightshift */
1613 0, /* size (0 = byte, 1 = short, 2 = long) */
1614 0, /* bitsize */
1615 FALSE, /* pc_relative */
1616 0, /* bitpos */
1617 complain_overflow_dont,/* complain_on_overflow */
1618 bfd_elf_generic_reloc, /* special_function */
1619 "R_ARM_RREL32", /* name */
1620 FALSE, /* partial_inplace */
1621 0, /* src_mask */
1622 0, /* dst_mask */
1623 FALSE), /* pcrel_offset */
1624
1625 HOWTO (R_ARM_RABS32, /* type */
1626 0, /* rightshift */
1627 0, /* size (0 = byte, 1 = short, 2 = long) */
1628 0, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont,/* complain_on_overflow */
1632 bfd_elf_generic_reloc, /* special_function */
1633 "R_ARM_RABS32", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 HOWTO (R_ARM_RPC24, /* type */
1640 0, /* rightshift */
1641 0, /* size (0 = byte, 1 = short, 2 = long) */
1642 0, /* bitsize */
1643 FALSE, /* pc_relative */
1644 0, /* bitpos */
1645 complain_overflow_dont,/* complain_on_overflow */
1646 bfd_elf_generic_reloc, /* special_function */
1647 "R_ARM_RPC24", /* name */
1648 FALSE, /* partial_inplace */
1649 0, /* src_mask */
1650 0, /* dst_mask */
1651 FALSE), /* pcrel_offset */
1652
1653 HOWTO (R_ARM_RBASE, /* type */
1654 0, /* rightshift */
1655 0, /* size (0 = byte, 1 = short, 2 = long) */
1656 0, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_dont,/* complain_on_overflow */
1660 bfd_elf_generic_reloc, /* special_function */
1661 "R_ARM_RBASE", /* name */
1662 FALSE, /* partial_inplace */
1663 0, /* src_mask */
1664 0, /* dst_mask */
1665 FALSE) /* pcrel_offset */
1666 };
1667
1668 static reloc_howto_type *
1669 elf32_arm_howto_from_type (unsigned int r_type)
1670 {
1671 if (r_type < NUM_ELEM (elf32_arm_howto_table_1))
1672 return &elf32_arm_howto_table_1[r_type];
1673
1674 if (r_type >= R_ARM_RREL32
1675 && r_type < R_ARM_RREL32 + NUM_ELEM (elf32_arm_howto_table_2))
1676 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1677
1678 return NULL;
1679 }
1680
1681 static void
1682 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1683 Elf_Internal_Rela * elf_reloc)
1684 {
1685 unsigned int r_type;
1686
1687 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1688 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1689 }
1690
1691 struct elf32_arm_reloc_map
1692 {
1693 bfd_reloc_code_real_type bfd_reloc_val;
1694 unsigned char elf_reloc_val;
1695 };
1696
1697 /* All entries in this list must also be present in elf32_arm_howto_table. */
1698 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1699 {
1700 {BFD_RELOC_NONE, R_ARM_NONE},
1701 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1702 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1703 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1704 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1705 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1706 {BFD_RELOC_32, R_ARM_ABS32},
1707 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1708 {BFD_RELOC_8, R_ARM_ABS8},
1709 {BFD_RELOC_16, R_ARM_ABS16},
1710 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1711 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1718 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1719 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1720 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1721 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1722 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1723 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1724 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1725 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1726 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1727 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1728 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1729 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1730 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1731 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1732 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1733 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1734 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1735 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1736 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1737 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1738 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1739 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1740 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1741 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1743 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1745 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1746 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1747 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1748 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1749 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1750 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1751 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1752 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1753 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1754 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1755 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1756 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1757 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1758 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1759 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1760 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1761 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1762 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1763 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1764 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1765 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1766 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1767 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1768 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1769 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1770 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1771 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1772 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1773 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1774 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1775 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1776 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1777 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1778 };
1779
1780 static reloc_howto_type *
1781 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1782 bfd_reloc_code_real_type code)
1783 {
1784 unsigned int i;
1785 for (i = 0; i < NUM_ELEM (elf32_arm_reloc_map); i ++)
1786 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1787 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1788
1789 return NULL;
1790 }
1791
1792 static reloc_howto_type *
1793 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1794 const char *r_name)
1795 {
1796 unsigned int i;
1797
1798 for (i = 0;
1799 i < (sizeof (elf32_arm_howto_table_1)
1800 / sizeof (elf32_arm_howto_table_1[0]));
1801 i++)
1802 if (elf32_arm_howto_table_1[i].name != NULL
1803 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1804 return &elf32_arm_howto_table_1[i];
1805
1806 for (i = 0;
1807 i < (sizeof (elf32_arm_howto_table_2)
1808 / sizeof (elf32_arm_howto_table_2[0]));
1809 i++)
1810 if (elf32_arm_howto_table_2[i].name != NULL
1811 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1812 return &elf32_arm_howto_table_2[i];
1813
1814 return NULL;
1815 }
1816
1817 /* Support for core dump NOTE sections */
1818 static bfd_boolean
1819 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1820 {
1821 int offset;
1822 size_t size;
1823
1824 switch (note->descsz)
1825 {
1826 default:
1827 return FALSE;
1828
1829 case 148: /* Linux/ARM 32-bit*/
1830 /* pr_cursig */
1831 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1832
1833 /* pr_pid */
1834 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1835
1836 /* pr_reg */
1837 offset = 72;
1838 size = 72;
1839
1840 break;
1841 }
1842
1843 /* Make a ".reg/999" section. */
1844 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1845 size, note->descpos + offset);
1846 }
1847
1848 static bfd_boolean
1849 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1850 {
1851 switch (note->descsz)
1852 {
1853 default:
1854 return FALSE;
1855
1856 case 124: /* Linux/ARM elf_prpsinfo */
1857 elf_tdata (abfd)->core_program
1858 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1859 elf_tdata (abfd)->core_command
1860 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1861 }
1862
1863 /* Note that for some reason, a spurious space is tacked
1864 onto the end of the args in some (at least one anyway)
1865 implementations, so strip it off if it exists. */
1866
1867 {
1868 char *command = elf_tdata (abfd)->core_command;
1869 int n = strlen (command);
1870
1871 if (0 < n && command[n - 1] == ' ')
1872 command[n - 1] = '\0';
1873 }
1874
1875 return TRUE;
1876 }
1877
1878 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1879 #define TARGET_LITTLE_NAME "elf32-littlearm"
1880 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1881 #define TARGET_BIG_NAME "elf32-bigarm"
1882
1883 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1884 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1885
1886 typedef unsigned long int insn32;
1887 typedef unsigned short int insn16;
1888
1889 /* In lieu of proper flags, assume all EABIv4 or later objects are
1890 interworkable. */
1891 #define INTERWORK_FLAG(abfd) \
1892 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1893 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1894
1895 /* The linker script knows the section names for placement.
1896 The entry_names are used to do simple name mangling on the stubs.
1897 Given a function name, and its type, the stub can be found. The
1898 name can be changed. The only requirement is the %s be present. */
1899 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1900 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1901
1902 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1903 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1904
1905 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1906 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1907
1908 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1909 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1910
1911 /* The name of the dynamic interpreter. This is put in the .interp
1912 section. */
1913 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1914
1915 #ifdef FOUR_WORD_PLT
1916
1917 /* The first entry in a procedure linkage table looks like
1918 this. It is set up so that any shared library function that is
1919 called before the relocation has been set up calls the dynamic
1920 linker first. */
1921 static const bfd_vma elf32_arm_plt0_entry [] =
1922 {
1923 0xe52de004, /* str lr, [sp, #-4]! */
1924 0xe59fe010, /* ldr lr, [pc, #16] */
1925 0xe08fe00e, /* add lr, pc, lr */
1926 0xe5bef008, /* ldr pc, [lr, #8]! */
1927 };
1928
1929 /* Subsequent entries in a procedure linkage table look like
1930 this. */
1931 static const bfd_vma elf32_arm_plt_entry [] =
1932 {
1933 0xe28fc600, /* add ip, pc, #NN */
1934 0xe28cca00, /* add ip, ip, #NN */
1935 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1936 0x00000000, /* unused */
1937 };
1938
1939 #else
1940
1941 /* The first entry in a procedure linkage table looks like
1942 this. It is set up so that any shared library function that is
1943 called before the relocation has been set up calls the dynamic
1944 linker first. */
1945 static const bfd_vma elf32_arm_plt0_entry [] =
1946 {
1947 0xe52de004, /* str lr, [sp, #-4]! */
1948 0xe59fe004, /* ldr lr, [pc, #4] */
1949 0xe08fe00e, /* add lr, pc, lr */
1950 0xe5bef008, /* ldr pc, [lr, #8]! */
1951 0x00000000, /* &GOT[0] - . */
1952 };
1953
1954 /* Subsequent entries in a procedure linkage table look like
1955 this. */
1956 static const bfd_vma elf32_arm_plt_entry [] =
1957 {
1958 0xe28fc600, /* add ip, pc, #0xNN00000 */
1959 0xe28cca00, /* add ip, ip, #0xNN000 */
1960 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1961 };
1962
1963 #endif
1964
1965 /* The format of the first entry in the procedure linkage table
1966 for a VxWorks executable. */
1967 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1968 {
1969 0xe52dc008, /* str ip,[sp,#-8]! */
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf008, /* ldr pc,[ip,#8] */
1972 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1973 };
1974
1975 /* The format of subsequent entries in a VxWorks executable. */
1976 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1977 {
1978 0xe59fc000, /* ldr ip,[pc] */
1979 0xe59cf000, /* ldr pc,[ip] */
1980 0x00000000, /* .long @got */
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xea000000, /* b _PLT */
1983 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1984 };
1985
1986 /* The format of entries in a VxWorks shared library. */
1987 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1988 {
1989 0xe59fc000, /* ldr ip,[pc] */
1990 0xe79cf009, /* ldr pc,[ip,r9] */
1991 0x00000000, /* .long @got */
1992 0xe59fc000, /* ldr ip,[pc] */
1993 0xe599f008, /* ldr pc,[r9,#8] */
1994 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1995 };
1996
1997 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1998 #define PLT_THUMB_STUB_SIZE 4
1999 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2000 {
2001 0x4778, /* bx pc */
2002 0x46c0 /* nop */
2003 };
2004
2005 /* The entries in a PLT when using a DLL-based target with multiple
2006 address spaces. */
2007 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2008 {
2009 0xe51ff004, /* ldr pc, [pc, #-4] */
2010 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2011 };
2012
2013 /* Used to build a map of a section. This is required for mixed-endian
2014 code/data. */
2015
2016 typedef struct elf32_elf_section_map
2017 {
2018 bfd_vma vma;
2019 char type;
2020 }
2021 elf32_arm_section_map;
2022
2023 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2024
2025 typedef enum
2026 {
2027 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2028 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2029 VFP11_ERRATUM_ARM_VENEER,
2030 VFP11_ERRATUM_THUMB_VENEER
2031 }
2032 elf32_vfp11_erratum_type;
2033
2034 typedef struct elf32_vfp11_erratum_list
2035 {
2036 struct elf32_vfp11_erratum_list *next;
2037 bfd_vma vma;
2038 union
2039 {
2040 struct
2041 {
2042 struct elf32_vfp11_erratum_list *veneer;
2043 unsigned int vfp_insn;
2044 } b;
2045 struct
2046 {
2047 struct elf32_vfp11_erratum_list *branch;
2048 unsigned int id;
2049 } v;
2050 } u;
2051 elf32_vfp11_erratum_type type;
2052 }
2053 elf32_vfp11_erratum_list;
2054
2055 typedef struct _arm_elf_section_data
2056 {
2057 struct bfd_elf_section_data elf;
2058 unsigned int mapcount;
2059 unsigned int mapsize;
2060 elf32_arm_section_map *map;
2061 unsigned int erratumcount;
2062 elf32_vfp11_erratum_list *erratumlist;
2063 }
2064 _arm_elf_section_data;
2065
2066 #define elf32_arm_section_data(sec) \
2067 ((_arm_elf_section_data *) elf_section_data (sec))
2068
2069 /* The size of the thread control block. */
2070 #define TCB_SIZE 8
2071
2072 struct elf_arm_obj_tdata
2073 {
2074 struct elf_obj_tdata root;
2075
2076 /* tls_type for each local got entry. */
2077 char *local_got_tls_type;
2078
2079 /* Zero to warn when linking objects with incompatible enum sizes. */
2080 int no_enum_size_warning;
2081 };
2082
2083 #define elf_arm_tdata(bfd) \
2084 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2085
2086 #define elf32_arm_local_got_tls_type(bfd) \
2087 (elf_arm_tdata (bfd)->local_got_tls_type)
2088
2089 #define is_arm_elf(bfd) \
2090 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2091 && elf_tdata (bfd) != NULL \
2092 && elf_object_id (bfd) == ARM_ELF_TDATA)
2093
2094 static bfd_boolean
2095 elf32_arm_mkobject (bfd *abfd)
2096 {
2097 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2098 ARM_ELF_TDATA);
2099 }
2100
2101 /* The ARM linker needs to keep track of the number of relocs that it
2102 decides to copy in check_relocs for each symbol. This is so that
2103 it can discard PC relative relocs if it doesn't need them when
2104 linking with -Bsymbolic. We store the information in a field
2105 extending the regular ELF linker hash table. */
2106
2107 /* This structure keeps track of the number of relocs we have copied
2108 for a given symbol. */
2109 struct elf32_arm_relocs_copied
2110 {
2111 /* Next section. */
2112 struct elf32_arm_relocs_copied * next;
2113 /* A section in dynobj. */
2114 asection * section;
2115 /* Number of relocs copied in this section. */
2116 bfd_size_type count;
2117 /* Number of PC-relative relocs copied in this section. */
2118 bfd_size_type pc_count;
2119 };
2120
2121 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2122
2123 /* Arm ELF linker hash entry. */
2124 struct elf32_arm_link_hash_entry
2125 {
2126 struct elf_link_hash_entry root;
2127
2128 /* Number of PC relative relocs copied for this symbol. */
2129 struct elf32_arm_relocs_copied * relocs_copied;
2130
2131 /* We reference count Thumb references to a PLT entry separately,
2132 so that we can emit the Thumb trampoline only if needed. */
2133 bfd_signed_vma plt_thumb_refcount;
2134
2135 /* Some references from Thumb code may be eliminated by BL->BLX
2136 conversion, so record them separately. */
2137 bfd_signed_vma plt_maybe_thumb_refcount;
2138
2139 /* Since PLT entries have variable size if the Thumb prologue is
2140 used, we need to record the index into .got.plt instead of
2141 recomputing it from the PLT offset. */
2142 bfd_signed_vma plt_got_offset;
2143
2144 #define GOT_UNKNOWN 0
2145 #define GOT_NORMAL 1
2146 #define GOT_TLS_GD 2
2147 #define GOT_TLS_IE 4
2148 unsigned char tls_type;
2149
2150 /* The symbol marking the real symbol location for exported thumb
2151 symbols with Arm stubs. */
2152 struct elf_link_hash_entry *export_glue;
2153 };
2154
2155 /* Traverse an arm ELF linker hash table. */
2156 #define elf32_arm_link_hash_traverse(table, func, info) \
2157 (elf_link_hash_traverse \
2158 (&(table)->root, \
2159 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2160 (info)))
2161
2162 /* Get the ARM elf linker hash table from a link_info structure. */
2163 #define elf32_arm_hash_table(info) \
2164 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2165
2166 /* ARM ELF linker hash table. */
2167 struct elf32_arm_link_hash_table
2168 {
2169 /* The main hash table. */
2170 struct elf_link_hash_table root;
2171
2172 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2173 bfd_size_type thumb_glue_size;
2174
2175 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2176 bfd_size_type arm_glue_size;
2177
2178 /* The size in bytes of section containing the ARMv4 BX veneers. */
2179 bfd_size_type bx_glue_size;
2180
2181 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2182 veneer has been populated. */
2183 bfd_vma bx_glue_offset[15];
2184
2185 /* The size in bytes of the section containing glue for VFP11 erratum
2186 veneers. */
2187 bfd_size_type vfp11_erratum_glue_size;
2188
2189 /* An arbitrary input BFD chosen to hold the glue sections. */
2190 bfd * bfd_of_glue_owner;
2191
2192 /* Nonzero to output a BE8 image. */
2193 int byteswap_code;
2194
2195 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2196 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2197 int target1_is_rel;
2198
2199 /* The relocation to use for R_ARM_TARGET2 relocations. */
2200 int target2_reloc;
2201
2202 /* 0 = Ignore R_ARM_V4BX.
2203 1 = Convert BX to MOV PC.
2204 2 = Generate v4 interworing stubs. */
2205 int fix_v4bx;
2206
2207 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2208 int use_blx;
2209
2210 /* What sort of code sequences we should look for which may trigger the
2211 VFP11 denorm erratum. */
2212 bfd_arm_vfp11_fix vfp11_fix;
2213
2214 /* Global counter for the number of fixes we have emitted. */
2215 int num_vfp11_fixes;
2216
2217 /* Nonzero to force PIC branch veneers. */
2218 int pic_veneer;
2219
2220 /* The number of bytes in the initial entry in the PLT. */
2221 bfd_size_type plt_header_size;
2222
2223 /* The number of bytes in the subsequent PLT etries. */
2224 bfd_size_type plt_entry_size;
2225
2226 /* True if the target system is VxWorks. */
2227 int vxworks_p;
2228
2229 /* True if the target system is Symbian OS. */
2230 int symbian_p;
2231
2232 /* True if the target uses REL relocations. */
2233 int use_rel;
2234
2235 /* Short-cuts to get to dynamic linker sections. */
2236 asection *sgot;
2237 asection *sgotplt;
2238 asection *srelgot;
2239 asection *splt;
2240 asection *srelplt;
2241 asection *sdynbss;
2242 asection *srelbss;
2243
2244 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2245 asection *srelplt2;
2246
2247 /* Data for R_ARM_TLS_LDM32 relocations. */
2248 union {
2249 bfd_signed_vma refcount;
2250 bfd_vma offset;
2251 } tls_ldm_got;
2252
2253 /* Small local sym to section mapping cache. */
2254 struct sym_sec_cache sym_sec;
2255
2256 /* For convenience in allocate_dynrelocs. */
2257 bfd * obfd;
2258 };
2259
2260 /* Create an entry in an ARM ELF linker hash table. */
2261
2262 static struct bfd_hash_entry *
2263 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2264 struct bfd_hash_table * table,
2265 const char * string)
2266 {
2267 struct elf32_arm_link_hash_entry * ret =
2268 (struct elf32_arm_link_hash_entry *) entry;
2269
2270 /* Allocate the structure if it has not already been allocated by a
2271 subclass. */
2272 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
2273 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2274 if (ret == NULL)
2275 return (struct bfd_hash_entry *) ret;
2276
2277 /* Call the allocation method of the superclass. */
2278 ret = ((struct elf32_arm_link_hash_entry *)
2279 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2280 table, string));
2281 if (ret != NULL)
2282 {
2283 ret->relocs_copied = NULL;
2284 ret->tls_type = GOT_UNKNOWN;
2285 ret->plt_thumb_refcount = 0;
2286 ret->plt_maybe_thumb_refcount = 0;
2287 ret->plt_got_offset = -1;
2288 ret->export_glue = NULL;
2289 }
2290
2291 return (struct bfd_hash_entry *) ret;
2292 }
2293
2294 /* Return true if NAME is the name of the relocation section associated
2295 with S. */
2296
2297 static bfd_boolean
2298 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2299 const char *name, asection *s)
2300 {
2301 if (htab->use_rel)
2302 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2303 else
2304 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2305 }
2306
2307 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2308 shortcuts to them in our hash table. */
2309
2310 static bfd_boolean
2311 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2312 {
2313 struct elf32_arm_link_hash_table *htab;
2314
2315 htab = elf32_arm_hash_table (info);
2316 /* BPABI objects never have a GOT, or associated sections. */
2317 if (htab->symbian_p)
2318 return TRUE;
2319
2320 if (! _bfd_elf_create_got_section (dynobj, info))
2321 return FALSE;
2322
2323 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2324 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2325 if (!htab->sgot || !htab->sgotplt)
2326 abort ();
2327
2328 htab->srelgot = bfd_make_section_with_flags (dynobj,
2329 RELOC_SECTION (htab, ".got"),
2330 (SEC_ALLOC | SEC_LOAD
2331 | SEC_HAS_CONTENTS
2332 | SEC_IN_MEMORY
2333 | SEC_LINKER_CREATED
2334 | SEC_READONLY));
2335 if (htab->srelgot == NULL
2336 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2337 return FALSE;
2338 return TRUE;
2339 }
2340
2341 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2342 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2343 hash table. */
2344
2345 static bfd_boolean
2346 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2347 {
2348 struct elf32_arm_link_hash_table *htab;
2349
2350 htab = elf32_arm_hash_table (info);
2351 if (!htab->sgot && !create_got_section (dynobj, info))
2352 return FALSE;
2353
2354 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2355 return FALSE;
2356
2357 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2358 htab->srelplt = bfd_get_section_by_name (dynobj,
2359 RELOC_SECTION (htab, ".plt"));
2360 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2361 if (!info->shared)
2362 htab->srelbss = bfd_get_section_by_name (dynobj,
2363 RELOC_SECTION (htab, ".bss"));
2364
2365 if (htab->vxworks_p)
2366 {
2367 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2368 return FALSE;
2369
2370 if (info->shared)
2371 {
2372 htab->plt_header_size = 0;
2373 htab->plt_entry_size
2374 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2375 }
2376 else
2377 {
2378 htab->plt_header_size
2379 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2380 htab->plt_entry_size
2381 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2382 }
2383 }
2384
2385 if (!htab->splt
2386 || !htab->srelplt
2387 || !htab->sdynbss
2388 || (!info->shared && !htab->srelbss))
2389 abort ();
2390
2391 return TRUE;
2392 }
2393
2394 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2395
2396 static void
2397 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *dir,
2399 struct elf_link_hash_entry *ind)
2400 {
2401 struct elf32_arm_link_hash_entry *edir, *eind;
2402
2403 edir = (struct elf32_arm_link_hash_entry *) dir;
2404 eind = (struct elf32_arm_link_hash_entry *) ind;
2405
2406 if (eind->relocs_copied != NULL)
2407 {
2408 if (edir->relocs_copied != NULL)
2409 {
2410 struct elf32_arm_relocs_copied **pp;
2411 struct elf32_arm_relocs_copied *p;
2412
2413 /* Add reloc counts against the indirect sym to the direct sym
2414 list. Merge any entries against the same section. */
2415 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2416 {
2417 struct elf32_arm_relocs_copied *q;
2418
2419 for (q = edir->relocs_copied; q != NULL; q = q->next)
2420 if (q->section == p->section)
2421 {
2422 q->pc_count += p->pc_count;
2423 q->count += p->count;
2424 *pp = p->next;
2425 break;
2426 }
2427 if (q == NULL)
2428 pp = &p->next;
2429 }
2430 *pp = edir->relocs_copied;
2431 }
2432
2433 edir->relocs_copied = eind->relocs_copied;
2434 eind->relocs_copied = NULL;
2435 }
2436
2437 if (ind->root.type == bfd_link_hash_indirect)
2438 {
2439 /* Copy over PLT info. */
2440 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2441 eind->plt_thumb_refcount = 0;
2442 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2443 eind->plt_maybe_thumb_refcount = 0;
2444
2445 if (dir->got.refcount <= 0)
2446 {
2447 edir->tls_type = eind->tls_type;
2448 eind->tls_type = GOT_UNKNOWN;
2449 }
2450 }
2451
2452 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2453 }
2454
2455 /* Create an ARM elf linker hash table. */
2456
2457 static struct bfd_link_hash_table *
2458 elf32_arm_link_hash_table_create (bfd *abfd)
2459 {
2460 struct elf32_arm_link_hash_table *ret;
2461 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2462
2463 ret = bfd_malloc (amt);
2464 if (ret == NULL)
2465 return NULL;
2466
2467 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2468 elf32_arm_link_hash_newfunc,
2469 sizeof (struct elf32_arm_link_hash_entry)))
2470 {
2471 free (ret);
2472 return NULL;
2473 }
2474
2475 ret->sgot = NULL;
2476 ret->sgotplt = NULL;
2477 ret->srelgot = NULL;
2478 ret->splt = NULL;
2479 ret->srelplt = NULL;
2480 ret->sdynbss = NULL;
2481 ret->srelbss = NULL;
2482 ret->srelplt2 = NULL;
2483 ret->thumb_glue_size = 0;
2484 ret->arm_glue_size = 0;
2485 ret->bx_glue_size = 0;
2486 memset (ret->bx_glue_offset, 0, sizeof(ret->bx_glue_offset));
2487 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2488 ret->vfp11_erratum_glue_size = 0;
2489 ret->num_vfp11_fixes = 0;
2490 ret->bfd_of_glue_owner = NULL;
2491 ret->byteswap_code = 0;
2492 ret->target1_is_rel = 0;
2493 ret->target2_reloc = R_ARM_NONE;
2494 #ifdef FOUR_WORD_PLT
2495 ret->plt_header_size = 16;
2496 ret->plt_entry_size = 16;
2497 #else
2498 ret->plt_header_size = 20;
2499 ret->plt_entry_size = 12;
2500 #endif
2501 ret->fix_v4bx = 0;
2502 ret->use_blx = 0;
2503 ret->vxworks_p = 0;
2504 ret->symbian_p = 0;
2505 ret->use_rel = 1;
2506 ret->sym_sec.abfd = NULL;
2507 ret->obfd = abfd;
2508 ret->tls_ldm_got.refcount = 0;
2509
2510 return &ret->root.root;
2511 }
2512
2513 /* Locate the Thumb encoded calling stub for NAME. */
2514
2515 static struct elf_link_hash_entry *
2516 find_thumb_glue (struct bfd_link_info *link_info,
2517 const char *name,
2518 char **error_message)
2519 {
2520 char *tmp_name;
2521 struct elf_link_hash_entry *hash;
2522 struct elf32_arm_link_hash_table *hash_table;
2523
2524 /* We need a pointer to the armelf specific hash table. */
2525 hash_table = elf32_arm_hash_table (link_info);
2526
2527 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2528 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2529
2530 BFD_ASSERT (tmp_name);
2531
2532 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2533
2534 hash = elf_link_hash_lookup
2535 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2536
2537 if (hash == NULL
2538 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
2539 tmp_name, name) == -1)
2540 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2541
2542 free (tmp_name);
2543
2544 return hash;
2545 }
2546
2547 /* Locate the ARM encoded calling stub for NAME. */
2548
2549 static struct elf_link_hash_entry *
2550 find_arm_glue (struct bfd_link_info *link_info,
2551 const char *name,
2552 char **error_message)
2553 {
2554 char *tmp_name;
2555 struct elf_link_hash_entry *myh;
2556 struct elf32_arm_link_hash_table *hash_table;
2557
2558 /* We need a pointer to the elfarm specific hash table. */
2559 hash_table = elf32_arm_hash_table (link_info);
2560
2561 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2562 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2563
2564 BFD_ASSERT (tmp_name);
2565
2566 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2567
2568 myh = elf_link_hash_lookup
2569 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2570
2571 if (myh == NULL
2572 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
2573 tmp_name, name) == -1)
2574 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2575
2576 free (tmp_name);
2577
2578 return myh;
2579 }
2580
2581 /* ARM->Thumb glue (static images):
2582
2583 .arm
2584 __func_from_arm:
2585 ldr r12, __func_addr
2586 bx r12
2587 __func_addr:
2588 .word func @ behave as if you saw a ARM_32 reloc.
2589
2590 (v5t static images)
2591 .arm
2592 __func_from_arm:
2593 ldr pc, __func_addr
2594 __func_addr:
2595 .word func @ behave as if you saw a ARM_32 reloc.
2596
2597 (relocatable images)
2598 .arm
2599 __func_from_arm:
2600 ldr r12, __func_offset
2601 add r12, r12, pc
2602 bx r12
2603 __func_offset:
2604 .word func - .
2605 */
2606
2607 #define ARM2THUMB_STATIC_GLUE_SIZE 12
2608 static const insn32 a2t1_ldr_insn = 0xe59fc000;
2609 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
2610 static const insn32 a2t3_func_addr_insn = 0x00000001;
2611
2612 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
2613 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
2614 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
2615
2616 #define ARM2THUMB_PIC_GLUE_SIZE 16
2617 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
2618 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
2619 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
2620
2621 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
2622
2623 .thumb .thumb
2624 .align 2 .align 2
2625 __func_from_thumb: __func_from_thumb:
2626 bx pc push {r6, lr}
2627 nop ldr r6, __func_addr
2628 .arm mov lr, pc
2629 __func_change_to_arm: bx r6
2630 b func .arm
2631 __func_back_to_thumb:
2632 ldmia r13! {r6, lr}
2633 bx lr
2634 __func_addr:
2635 .word func */
2636
2637 #define THUMB2ARM_GLUE_SIZE 8
2638 static const insn16 t2a1_bx_pc_insn = 0x4778;
2639 static const insn16 t2a2_noop_insn = 0x46c0;
2640 static const insn32 t2a3_b_insn = 0xea000000;
2641
2642 #define VFP11_ERRATUM_VENEER_SIZE 8
2643
2644 #define ARM_BX_VENEER_SIZE 12
2645 static const insn32 armbx1_tst_insn = 0xe3100001;
2646 static const insn32 armbx2_moveq_insn = 0x01a0f000;
2647 static const insn32 armbx3_bx_insn = 0xe12fff10;
2648
2649 #ifndef ELFARM_NABI_C_INCLUDED
2650 bfd_boolean
2651 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
2652 {
2653 asection * s;
2654 bfd_byte * foo;
2655 struct elf32_arm_link_hash_table * globals;
2656
2657 globals = elf32_arm_hash_table (info);
2658
2659 BFD_ASSERT (globals != NULL);
2660
2661 if (globals->arm_glue_size != 0)
2662 {
2663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2664
2665 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2666 ARM2THUMB_GLUE_SECTION_NAME);
2667
2668 BFD_ASSERT (s != NULL);
2669
2670 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
2671
2672 BFD_ASSERT (s->size == globals->arm_glue_size);
2673 s->contents = foo;
2674 }
2675
2676 if (globals->thumb_glue_size != 0)
2677 {
2678 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2679
2680 s = bfd_get_section_by_name
2681 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2682
2683 BFD_ASSERT (s != NULL);
2684
2685 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
2686
2687 BFD_ASSERT (s->size == globals->thumb_glue_size);
2688 s->contents = foo;
2689 }
2690
2691 if (globals->vfp11_erratum_glue_size != 0)
2692 {
2693 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2694
2695 s = bfd_get_section_by_name
2696 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2697
2698 BFD_ASSERT (s != NULL);
2699
2700 foo = bfd_alloc (globals->bfd_of_glue_owner,
2701 globals->vfp11_erratum_glue_size);
2702
2703 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
2704 s->contents = foo;
2705 }
2706
2707 if (globals->bx_glue_size != 0)
2708 {
2709 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2710
2711 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2712 ARM_BX_GLUE_SECTION_NAME);
2713
2714 BFD_ASSERT (s != NULL);
2715
2716 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
2717
2718 BFD_ASSERT (s->size == globals->bx_glue_size);
2719 s->contents = foo;
2720 }
2721
2722 return TRUE;
2723 }
2724
2725 /* Allocate space and symbols for calling a Thumb function from Arm mode.
2726 returns the symbol identifying teh stub. */
2727 static struct elf_link_hash_entry *
2728 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
2729 struct elf_link_hash_entry * h)
2730 {
2731 const char * name = h->root.root.string;
2732 asection * s;
2733 char * tmp_name;
2734 struct elf_link_hash_entry * myh;
2735 struct bfd_link_hash_entry * bh;
2736 struct elf32_arm_link_hash_table * globals;
2737 bfd_vma val;
2738 bfd_size_type size;
2739
2740 globals = elf32_arm_hash_table (link_info);
2741
2742 BFD_ASSERT (globals != NULL);
2743 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2744
2745 s = bfd_get_section_by_name
2746 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
2747
2748 BFD_ASSERT (s != NULL);
2749
2750 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2751
2752 BFD_ASSERT (tmp_name);
2753
2754 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2755
2756 myh = elf_link_hash_lookup
2757 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
2758
2759 if (myh != NULL)
2760 {
2761 /* We've already seen this guy. */
2762 free (tmp_name);
2763 return myh;
2764 }
2765
2766 /* The only trick here is using hash_table->arm_glue_size as the value.
2767 Even though the section isn't allocated yet, this is where we will be
2768 putting it. */
2769 bh = NULL;
2770 val = globals->arm_glue_size + 1;
2771 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2772 tmp_name, BSF_GLOBAL, s, val,
2773 NULL, TRUE, FALSE, &bh);
2774
2775 myh = (struct elf_link_hash_entry *) bh;
2776 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2777 myh->forced_local = 1;
2778
2779 free (tmp_name);
2780
2781 if (link_info->shared || globals->root.is_relocatable_executable
2782 || globals->pic_veneer)
2783 size = ARM2THUMB_PIC_GLUE_SIZE;
2784 else if (globals->use_blx)
2785 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
2786 else
2787 size = ARM2THUMB_STATIC_GLUE_SIZE;
2788
2789 s->size += size;
2790 globals->arm_glue_size += size;
2791
2792 return myh;
2793 }
2794
2795 static void
2796 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
2797 struct elf_link_hash_entry *h)
2798 {
2799 const char *name = h->root.root.string;
2800 asection *s;
2801 char *tmp_name;
2802 struct elf_link_hash_entry *myh;
2803 struct bfd_link_hash_entry *bh;
2804 struct elf32_arm_link_hash_table *hash_table;
2805 bfd_vma val;
2806
2807 hash_table = elf32_arm_hash_table (link_info);
2808
2809 BFD_ASSERT (hash_table != NULL);
2810 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2811
2812 s = bfd_get_section_by_name
2813 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2814
2815 BFD_ASSERT (s != NULL);
2816
2817 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2818 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2819
2820 BFD_ASSERT (tmp_name);
2821
2822 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2823
2824 myh = elf_link_hash_lookup
2825 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2826
2827 if (myh != NULL)
2828 {
2829 /* We've already seen this guy. */
2830 free (tmp_name);
2831 return;
2832 }
2833
2834 bh = NULL;
2835 val = hash_table->thumb_glue_size + 1;
2836 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2837 tmp_name, BSF_GLOBAL, s, val,
2838 NULL, TRUE, FALSE, &bh);
2839
2840 /* If we mark it 'Thumb', the disassembler will do a better job. */
2841 myh = (struct elf_link_hash_entry *) bh;
2842 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
2843 myh->forced_local = 1;
2844
2845 free (tmp_name);
2846
2847 #define CHANGE_TO_ARM "__%s_change_to_arm"
2848 #define BACK_FROM_ARM "__%s_back_from_arm"
2849
2850 /* Allocate another symbol to mark where we switch to Arm mode. */
2851 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2852 + strlen (CHANGE_TO_ARM) + 1);
2853
2854 BFD_ASSERT (tmp_name);
2855
2856 sprintf (tmp_name, CHANGE_TO_ARM, name);
2857
2858 bh = NULL;
2859 val = hash_table->thumb_glue_size + 4,
2860 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2861 tmp_name, BSF_LOCAL, s, val,
2862 NULL, TRUE, FALSE, &bh);
2863
2864 free (tmp_name);
2865
2866 s->size += THUMB2ARM_GLUE_SIZE;
2867 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
2868
2869 return;
2870 }
2871
2872
2873 /* Allocate space for ARMv4 BX veneers. */
2874
2875 static void
2876 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
2877 {
2878 asection * s;
2879 struct elf32_arm_link_hash_table *globals;
2880 char *tmp_name;
2881 struct elf_link_hash_entry *myh;
2882 struct bfd_link_hash_entry *bh;
2883 bfd_vma val;
2884
2885 /* BX PC does not need a veneer. */
2886 if (reg == 15)
2887 return;
2888
2889 globals = elf32_arm_hash_table (link_info);
2890
2891 BFD_ASSERT (globals != NULL);
2892 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2893
2894 /* Check if this veneer has already been allocated. */
2895 if (globals->bx_glue_offset[reg])
2896 return;
2897
2898 s = bfd_get_section_by_name
2899 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
2900
2901 BFD_ASSERT (s != NULL);
2902
2903 /* Add symbol for veneer. */
2904 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
2905
2906 BFD_ASSERT (tmp_name);
2907
2908 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
2909
2910 myh = elf_link_hash_lookup
2911 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
2912
2913 BFD_ASSERT (myh == NULL);
2914
2915 bh = NULL;
2916 val = globals->bx_glue_size;
2917 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2918 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
2919 NULL, TRUE, FALSE, &bh);
2920
2921 myh = (struct elf_link_hash_entry *) bh;
2922 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2923 myh->forced_local = 1;
2924
2925 s->size += ARM_BX_VENEER_SIZE;
2926 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
2927 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
2928 }
2929
2930
2931 /* Add an entry to the code/data map for section SEC. */
2932
2933 static void
2934 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
2935 {
2936 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
2937 unsigned int newidx;
2938
2939 if (sec_data->map == NULL)
2940 {
2941 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
2942 sec_data->mapcount = 0;
2943 sec_data->mapsize = 1;
2944 }
2945
2946 newidx = sec_data->mapcount++;
2947
2948 if (sec_data->mapcount > sec_data->mapsize)
2949 {
2950 sec_data->mapsize *= 2;
2951 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
2952 * sizeof (elf32_arm_section_map));
2953 }
2954
2955 if (sec_data->map)
2956 {
2957 sec_data->map[newidx].vma = vma;
2958 sec_data->map[newidx].type = type;
2959 }
2960 }
2961
2962
2963 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
2964 veneers are handled for now. */
2965
2966 static bfd_vma
2967 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
2968 elf32_vfp11_erratum_list *branch,
2969 bfd *branch_bfd,
2970 asection *branch_sec,
2971 unsigned int offset)
2972 {
2973 asection *s;
2974 struct elf32_arm_link_hash_table *hash_table;
2975 char *tmp_name;
2976 struct elf_link_hash_entry *myh;
2977 struct bfd_link_hash_entry *bh;
2978 bfd_vma val;
2979 struct _arm_elf_section_data *sec_data;
2980 int errcount;
2981 elf32_vfp11_erratum_list *newerr;
2982
2983 hash_table = elf32_arm_hash_table (link_info);
2984
2985 BFD_ASSERT (hash_table != NULL);
2986 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2987
2988 s = bfd_get_section_by_name
2989 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2990
2991 sec_data = elf32_arm_section_data (s);
2992
2993 BFD_ASSERT (s != NULL);
2994
2995 tmp_name = bfd_malloc ((bfd_size_type) strlen
2996 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
2997
2998 BFD_ASSERT (tmp_name);
2999
3000 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3001 hash_table->num_vfp11_fixes);
3002
3003 myh = elf_link_hash_lookup
3004 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
3005
3006 BFD_ASSERT (myh == NULL);
3007
3008 bh = NULL;
3009 val = hash_table->vfp11_erratum_glue_size;
3010 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
3011 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
3012 NULL, TRUE, FALSE, &bh);
3013
3014 myh = (struct elf_link_hash_entry *) bh;
3015 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3016 myh->forced_local = 1;
3017
3018 /* Link veneer back to calling location. */
3019 errcount = ++(sec_data->erratumcount);
3020 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3021
3022 newerr->type = VFP11_ERRATUM_ARM_VENEER;
3023 newerr->vma = -1;
3024 newerr->u.v.branch = branch;
3025 newerr->u.v.id = hash_table->num_vfp11_fixes;
3026 branch->u.b.veneer = newerr;
3027
3028 newerr->next = sec_data->erratumlist;
3029 sec_data->erratumlist = newerr;
3030
3031 /* A symbol for the return from the veneer. */
3032 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
3033 hash_table->num_vfp11_fixes);
3034
3035 myh = elf_link_hash_lookup
3036 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
3037
3038 if (myh != NULL)
3039 abort ();
3040
3041 bh = NULL;
3042 val = offset + 4;
3043 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
3044 branch_sec, val, NULL, TRUE, FALSE, &bh);
3045
3046 myh = (struct elf_link_hash_entry *) bh;
3047 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3048 myh->forced_local = 1;
3049
3050 free (tmp_name);
3051
3052 /* Generate a mapping symbol for the veneer section, and explicitly add an
3053 entry for that symbol to the code/data map for the section. */
3054 if (hash_table->vfp11_erratum_glue_size == 0)
3055 {
3056 bh = NULL;
3057 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
3058 ever requires this erratum fix. */
3059 _bfd_generic_link_add_one_symbol (link_info,
3060 hash_table->bfd_of_glue_owner, "$a",
3061 BSF_LOCAL, s, 0, NULL,
3062 TRUE, FALSE, &bh);
3063
3064 myh = (struct elf_link_hash_entry *) bh;
3065 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
3066 myh->forced_local = 1;
3067
3068 /* The elf32_arm_init_maps function only cares about symbols from input
3069 BFDs. We must make a note of this generated mapping symbol
3070 ourselves so that code byteswapping works properly in
3071 elf32_arm_write_section. */
3072 elf32_arm_section_map_add (s, 'a', 0);
3073 }
3074
3075 s->size += VFP11_ERRATUM_VENEER_SIZE;
3076 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
3077 hash_table->num_vfp11_fixes++;
3078
3079 /* The offset of the veneer. */
3080 return val;
3081 }
3082
3083 /* Add the glue sections to ABFD. This function is called from the
3084 linker scripts in ld/emultempl/{armelf}.em. */
3085
3086 bfd_boolean
3087 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
3088 struct bfd_link_info *info)
3089 {
3090 flagword flags;
3091 asection *sec;
3092
3093 /* If we are only performing a partial
3094 link do not bother adding the glue. */
3095 if (info->relocatable)
3096 return TRUE;
3097
3098 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
3099
3100 if (sec == NULL)
3101 {
3102 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
3103 will prevent elf_link_input_bfd() from processing the contents
3104 of this section. */
3105 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3106 | SEC_CODE | SEC_READONLY);
3107
3108 sec = bfd_make_section_with_flags (abfd,
3109 ARM2THUMB_GLUE_SECTION_NAME,
3110 flags);
3111
3112 if (sec == NULL
3113 || !bfd_set_section_alignment (abfd, sec, 2))
3114 return FALSE;
3115
3116 /* Set the gc mark to prevent the section from being removed by garbage
3117 collection, despite the fact that no relocs refer to this section. */
3118 sec->gc_mark = 1;
3119 }
3120
3121 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
3122
3123 if (sec == NULL)
3124 {
3125 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3126 | SEC_CODE | SEC_READONLY);
3127
3128 sec = bfd_make_section_with_flags (abfd,
3129 THUMB2ARM_GLUE_SECTION_NAME,
3130 flags);
3131
3132 if (sec == NULL
3133 || !bfd_set_section_alignment (abfd, sec, 2))
3134 return FALSE;
3135
3136 sec->gc_mark = 1;
3137 }
3138
3139 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
3140
3141 if (sec == NULL)
3142 {
3143 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3144 | SEC_CODE | SEC_READONLY);
3145
3146 sec = bfd_make_section_with_flags (abfd,
3147 VFP11_ERRATUM_VENEER_SECTION_NAME,
3148 flags);
3149
3150 if (sec == NULL
3151 || !bfd_set_section_alignment (abfd, sec, 2))
3152 return FALSE;
3153
3154 sec->gc_mark = 1;
3155 }
3156
3157 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
3158
3159 if (sec == NULL)
3160 {
3161 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3162 | SEC_CODE | SEC_READONLY);
3163
3164 sec = bfd_make_section_with_flags (abfd,
3165 ARM_BX_GLUE_SECTION_NAME,
3166 flags);
3167
3168 if (sec == NULL
3169 || !bfd_set_section_alignment (abfd, sec, 2))
3170 return FALSE;
3171
3172 sec->gc_mark = 1;
3173 }
3174
3175 return TRUE;
3176 }
3177
3178 /* Select a BFD to be used to hold the sections used by the glue code.
3179 This function is called from the linker scripts in ld/emultempl/
3180 {armelf/pe}.em */
3181
3182 bfd_boolean
3183 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
3184 {
3185 struct elf32_arm_link_hash_table *globals;
3186
3187 /* If we are only performing a partial link
3188 do not bother getting a bfd to hold the glue. */
3189 if (info->relocatable)
3190 return TRUE;
3191
3192 /* Make sure we don't attach the glue sections to a dynamic object. */
3193 BFD_ASSERT (!(abfd->flags & DYNAMIC));
3194
3195 globals = elf32_arm_hash_table (info);
3196
3197 BFD_ASSERT (globals != NULL);
3198
3199 if (globals->bfd_of_glue_owner != NULL)
3200 return TRUE;
3201
3202 /* Save the bfd for later use. */
3203 globals->bfd_of_glue_owner = abfd;
3204
3205 return TRUE;
3206 }
3207
3208 static void check_use_blx(struct elf32_arm_link_hash_table *globals)
3209 {
3210 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3211 Tag_CPU_arch) > 2)
3212 globals->use_blx = 1;
3213 }
3214
3215 bfd_boolean
3216 bfd_elf32_arm_process_before_allocation (bfd *abfd,
3217 struct bfd_link_info *link_info)
3218 {
3219 Elf_Internal_Shdr *symtab_hdr;
3220 Elf_Internal_Rela *internal_relocs = NULL;
3221 Elf_Internal_Rela *irel, *irelend;
3222 bfd_byte *contents = NULL;
3223
3224 asection *sec;
3225 struct elf32_arm_link_hash_table *globals;
3226
3227 /* If we are only performing a partial link do not bother
3228 to construct any glue. */
3229 if (link_info->relocatable)
3230 return TRUE;
3231
3232 /* Here we have a bfd that is to be included on the link. We have a
3233 hook to do reloc rummaging, before section sizes are nailed down. */
3234 globals = elf32_arm_hash_table (link_info);
3235
3236 BFD_ASSERT (globals != NULL);
3237
3238 check_use_blx (globals);
3239
3240 if (globals->byteswap_code && !bfd_big_endian (abfd))
3241 {
3242 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
3243 abfd);
3244 return FALSE;
3245 }
3246
3247 /* PR 5398: If we have not decided to include any loadable sections in
3248 the output then we will not have a glue owner bfd. This is OK, it
3249 just means that there is nothing else for us to do here. */
3250 if (globals->bfd_of_glue_owner == NULL)
3251 return TRUE;
3252
3253 /* Rummage around all the relocs and map the glue vectors. */
3254 sec = abfd->sections;
3255
3256 if (sec == NULL)
3257 return TRUE;
3258
3259 for (; sec != NULL; sec = sec->next)
3260 {
3261 if (sec->reloc_count == 0)
3262 continue;
3263
3264 if ((sec->flags & SEC_EXCLUDE) != 0)
3265 continue;
3266
3267 symtab_hdr = & elf_symtab_hdr (abfd);
3268
3269 /* Load the relocs. */
3270 internal_relocs
3271 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
3272 (Elf_Internal_Rela *) NULL, FALSE);
3273
3274 if (internal_relocs == NULL)
3275 goto error_return;
3276
3277 irelend = internal_relocs + sec->reloc_count;
3278 for (irel = internal_relocs; irel < irelend; irel++)
3279 {
3280 long r_type;
3281 unsigned long r_index;
3282
3283 struct elf_link_hash_entry *h;
3284
3285 r_type = ELF32_R_TYPE (irel->r_info);
3286 r_index = ELF32_R_SYM (irel->r_info);
3287
3288 /* These are the only relocation types we care about. */
3289 if ( r_type != R_ARM_PC24
3290 && r_type != R_ARM_PLT32
3291 && r_type != R_ARM_CALL
3292 && r_type != R_ARM_JUMP24
3293 && r_type != R_ARM_THM_CALL
3294 && r_type != R_ARM_THM_JUMP24
3295 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
3296 continue;
3297
3298 /* Get the section contents if we haven't done so already. */
3299 if (contents == NULL)
3300 {
3301 /* Get cached copy if it exists. */
3302 if (elf_section_data (sec)->this_hdr.contents != NULL)
3303 contents = elf_section_data (sec)->this_hdr.contents;
3304 else
3305 {
3306 /* Go get them off disk. */
3307 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3308 goto error_return;
3309 }
3310 }
3311
3312 if (r_type == R_ARM_V4BX)
3313 {
3314 int reg;
3315
3316 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
3317 record_arm_bx_glue (link_info, reg);
3318 continue;
3319 }
3320
3321 /* If the relocation is not against a symbol it cannot concern us. */
3322 h = NULL;
3323
3324 /* We don't care about local symbols. */
3325 if (r_index < symtab_hdr->sh_info)
3326 continue;
3327
3328 /* This is an external symbol. */
3329 r_index -= symtab_hdr->sh_info;
3330 h = (struct elf_link_hash_entry *)
3331 elf_sym_hashes (abfd)[r_index];
3332
3333 /* If the relocation is against a static symbol it must be within
3334 the current section and so cannot be a cross ARM/Thumb relocation. */
3335 if (h == NULL)
3336 continue;
3337
3338 /* If the call will go through a PLT entry then we do not need
3339 glue. */
3340 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
3341 continue;
3342
3343 switch (r_type)
3344 {
3345 case R_ARM_PC24:
3346 case R_ARM_PLT32:
3347 case R_ARM_CALL:
3348 case R_ARM_JUMP24:
3349 /* This one is a call from arm code. We need to look up
3350 the target of the call. If it is a thumb target, we
3351 insert glue. */
3352 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC
3353 && !(r_type == R_ARM_CALL && globals->use_blx))
3354 record_arm_to_thumb_glue (link_info, h);
3355 break;
3356
3357 case R_ARM_THM_CALL:
3358 case R_ARM_THM_JUMP24:
3359 /* This one is a call from thumb code. We look
3360 up the target of the call. If it is not a thumb
3361 target, we insert glue. */
3362 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
3363 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
3364 && h->root.type != bfd_link_hash_undefweak)
3365 record_thumb_to_arm_glue (link_info, h);
3366 break;
3367
3368 default:
3369 abort ();
3370 }
3371 }
3372
3373 if (contents != NULL
3374 && elf_section_data (sec)->this_hdr.contents != contents)
3375 free (contents);
3376 contents = NULL;
3377
3378 if (internal_relocs != NULL
3379 && elf_section_data (sec)->relocs != internal_relocs)
3380 free (internal_relocs);
3381 internal_relocs = NULL;
3382 }
3383
3384 return TRUE;
3385
3386 error_return:
3387 if (contents != NULL
3388 && elf_section_data (sec)->this_hdr.contents != contents)
3389 free (contents);
3390 if (internal_relocs != NULL
3391 && elf_section_data (sec)->relocs != internal_relocs)
3392 free (internal_relocs);
3393
3394 return FALSE;
3395 }
3396 #endif
3397
3398
3399 /* Initialise maps of ARM/Thumb/data for input BFDs. */
3400
3401 void
3402 bfd_elf32_arm_init_maps (bfd *abfd)
3403 {
3404 Elf_Internal_Sym *isymbuf;
3405 Elf_Internal_Shdr *hdr;
3406 unsigned int i, localsyms;
3407
3408 if ((abfd->flags & DYNAMIC) != 0)
3409 return;
3410
3411 hdr = & elf_symtab_hdr (abfd);
3412 localsyms = hdr->sh_info;
3413
3414 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3415 should contain the number of local symbols, which should come before any
3416 global symbols. Mapping symbols are always local. */
3417 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
3418 NULL);
3419
3420 /* No internal symbols read? Skip this BFD. */
3421 if (isymbuf == NULL)
3422 return;
3423
3424 for (i = 0; i < localsyms; i++)
3425 {
3426 Elf_Internal_Sym *isym = &isymbuf[i];
3427 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3428 const char *name;
3429
3430 if (sec != NULL
3431 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3432 {
3433 name = bfd_elf_string_from_elf_section (abfd,
3434 hdr->sh_link, isym->st_name);
3435
3436 if (bfd_is_arm_special_symbol_name (name,
3437 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
3438 elf32_arm_section_map_add (sec, name[1], isym->st_value);
3439 }
3440 }
3441 }
3442
3443
3444 void
3445 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
3446 {
3447 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3448 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
3449
3450 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
3451 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
3452 {
3453 switch (globals->vfp11_fix)
3454 {
3455 case BFD_ARM_VFP11_FIX_DEFAULT:
3456 case BFD_ARM_VFP11_FIX_NONE:
3457 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3458 break;
3459
3460 default:
3461 /* Give a warning, but do as the user requests anyway. */
3462 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
3463 "workaround is not necessary for target architecture"), obfd);
3464 }
3465 }
3466 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
3467 /* For earlier architectures, we might need the workaround, but do not
3468 enable it by default. If users is running with broken hardware, they
3469 must enable the erratum fix explicitly. */
3470 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3471 }
3472
3473
3474 enum bfd_arm_vfp11_pipe {
3475 VFP11_FMAC,
3476 VFP11_LS,
3477 VFP11_DS,
3478 VFP11_BAD
3479 };
3480
3481 /* Return a VFP register number. This is encoded as RX:X for single-precision
3482 registers, or X:RX for double-precision registers, where RX is the group of
3483 four bits in the instruction encoding and X is the single extension bit.
3484 RX and X fields are specified using their lowest (starting) bit. The return
3485 value is:
3486
3487 0...31: single-precision registers s0...s31
3488 32...63: double-precision registers d0...d31.
3489
3490 Although X should be zero for VFP11 (encoding d0...d15 only), we might
3491 encounter VFP3 instructions, so we allow the full range for DP registers. */
3492
3493 static unsigned int
3494 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
3495 unsigned int x)
3496 {
3497 if (is_double)
3498 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
3499 else
3500 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
3501 }
3502
3503 /* Set bits in *WMASK according to a register number REG as encoded by
3504 bfd_arm_vfp11_regno(). Ignore d16-d31. */
3505
3506 static void
3507 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
3508 {
3509 if (reg < 32)
3510 *wmask |= 1 << reg;
3511 else if (reg < 48)
3512 *wmask |= 3 << ((reg - 32) * 2);
3513 }
3514
3515 /* Return TRUE if WMASK overwrites anything in REGS. */
3516
3517 static bfd_boolean
3518 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
3519 {
3520 int i;
3521
3522 for (i = 0; i < numregs; i++)
3523 {
3524 unsigned int reg = regs[i];
3525
3526 if (reg < 32 && (wmask & (1 << reg)) != 0)
3527 return TRUE;
3528
3529 reg -= 32;
3530
3531 if (reg >= 16)
3532 continue;
3533
3534 if ((wmask & (3 << (reg * 2))) != 0)
3535 return TRUE;
3536 }
3537
3538 return FALSE;
3539 }
3540
3541 /* In this function, we're interested in two things: finding input registers
3542 for VFP data-processing instructions, and finding the set of registers which
3543 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
3544 hold the written set, so FLDM etc. are easy to deal with (we're only
3545 interested in 32 SP registers or 16 dp registers, due to the VFP version
3546 implemented by the chip in question). DP registers are marked by setting
3547 both SP registers in the write mask). */
3548
3549 static enum bfd_arm_vfp11_pipe
3550 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
3551 int *numregs)
3552 {
3553 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
3554 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
3555
3556 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
3557 {
3558 unsigned int pqrs;
3559 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3560 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3561
3562 pqrs = ((insn & 0x00800000) >> 20)
3563 | ((insn & 0x00300000) >> 19)
3564 | ((insn & 0x00000040) >> 6);
3565
3566 switch (pqrs)
3567 {
3568 case 0: /* fmac[sd]. */
3569 case 1: /* fnmac[sd]. */
3570 case 2: /* fmsc[sd]. */
3571 case 3: /* fnmsc[sd]. */
3572 pipe = VFP11_FMAC;
3573 bfd_arm_vfp11_write_mask (destmask, fd);
3574 regs[0] = fd;
3575 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3576 regs[2] = fm;
3577 *numregs = 3;
3578 break;
3579
3580 case 4: /* fmul[sd]. */
3581 case 5: /* fnmul[sd]. */
3582 case 6: /* fadd[sd]. */
3583 case 7: /* fsub[sd]. */
3584 pipe = VFP11_FMAC;
3585 goto vfp_binop;
3586
3587 case 8: /* fdiv[sd]. */
3588 pipe = VFP11_DS;
3589 vfp_binop:
3590 bfd_arm_vfp11_write_mask (destmask, fd);
3591 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3592 regs[1] = fm;
3593 *numregs = 2;
3594 break;
3595
3596 case 15: /* extended opcode. */
3597 {
3598 unsigned int extn = ((insn >> 15) & 0x1e)
3599 | ((insn >> 7) & 1);
3600
3601 switch (extn)
3602 {
3603 case 0: /* fcpy[sd]. */
3604 case 1: /* fabs[sd]. */
3605 case 2: /* fneg[sd]. */
3606 case 8: /* fcmp[sd]. */
3607 case 9: /* fcmpe[sd]. */
3608 case 10: /* fcmpz[sd]. */
3609 case 11: /* fcmpez[sd]. */
3610 case 16: /* fuito[sd]. */
3611 case 17: /* fsito[sd]. */
3612 case 24: /* ftoui[sd]. */
3613 case 25: /* ftouiz[sd]. */
3614 case 26: /* ftosi[sd]. */
3615 case 27: /* ftosiz[sd]. */
3616 /* These instructions will not bounce due to underflow. */
3617 *numregs = 0;
3618 pipe = VFP11_FMAC;
3619 break;
3620
3621 case 3: /* fsqrt[sd]. */
3622 /* fsqrt cannot underflow, but it can (perhaps) overwrite
3623 registers to cause the erratum in previous instructions. */
3624 bfd_arm_vfp11_write_mask (destmask, fd);
3625 pipe = VFP11_DS;
3626 break;
3627
3628 case 15: /* fcvt{ds,sd}. */
3629 {
3630 int rnum = 0;
3631
3632 bfd_arm_vfp11_write_mask (destmask, fd);
3633
3634 /* Only FCVTSD can underflow. */
3635 if ((insn & 0x100) != 0)
3636 regs[rnum++] = fm;
3637
3638 *numregs = rnum;
3639
3640 pipe = VFP11_FMAC;
3641 }
3642 break;
3643
3644 default:
3645 return VFP11_BAD;
3646 }
3647 }
3648 break;
3649
3650 default:
3651 return VFP11_BAD;
3652 }
3653 }
3654 /* Two-register transfer. */
3655 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
3656 {
3657 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3658
3659 if ((insn & 0x100000) == 0)
3660 {
3661 if (is_double)
3662 bfd_arm_vfp11_write_mask (destmask, fm);
3663 else
3664 {
3665 bfd_arm_vfp11_write_mask (destmask, fm);
3666 bfd_arm_vfp11_write_mask (destmask, fm + 1);
3667 }
3668 }
3669
3670 pipe = VFP11_LS;
3671 }
3672 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
3673 {
3674 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3675 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
3676
3677 switch (puw)
3678 {
3679 case 0: /* Two-reg transfer. We should catch these above. */
3680 abort ();
3681
3682 case 2: /* fldm[sdx]. */
3683 case 3:
3684 case 5:
3685 {
3686 unsigned int i, offset = insn & 0xff;
3687
3688 if (is_double)
3689 offset >>= 1;
3690
3691 for (i = fd; i < fd + offset; i++)
3692 bfd_arm_vfp11_write_mask (destmask, i);
3693 }
3694 break;
3695
3696 case 4: /* fld[sd]. */
3697 case 6:
3698 bfd_arm_vfp11_write_mask (destmask, fd);
3699 break;
3700
3701 default:
3702 return VFP11_BAD;
3703 }
3704
3705 pipe = VFP11_LS;
3706 }
3707 /* Single-register transfer. Note L==0. */
3708 else if ((insn & 0x0f100e10) == 0x0e000a10)
3709 {
3710 unsigned int opcode = (insn >> 21) & 7;
3711 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
3712
3713 switch (opcode)
3714 {
3715 case 0: /* fmsr/fmdlr. */
3716 case 1: /* fmdhr. */
3717 /* Mark fmdhr and fmdlr as writing to the whole of the DP
3718 destination register. I don't know if this is exactly right,
3719 but it is the conservative choice. */
3720 bfd_arm_vfp11_write_mask (destmask, fn);
3721 break;
3722
3723 case 7: /* fmxr. */
3724 break;
3725 }
3726
3727 pipe = VFP11_LS;
3728 }
3729
3730 return pipe;
3731 }
3732
3733
3734 static int elf32_arm_compare_mapping (const void * a, const void * b);
3735
3736
3737 /* Look for potentially-troublesome code sequences which might trigger the
3738 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
3739 (available from ARM) for details of the erratum. A short version is
3740 described in ld.texinfo. */
3741
3742 bfd_boolean
3743 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
3744 {
3745 asection *sec;
3746 bfd_byte *contents = NULL;
3747 int state = 0;
3748 int regs[3], numregs = 0;
3749 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3750 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
3751
3752 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
3753 The states transition as follows:
3754
3755 0 -> 1 (vector) or 0 -> 2 (scalar)
3756 A VFP FMAC-pipeline instruction has been seen. Fill
3757 regs[0]..regs[numregs-1] with its input operands. Remember this
3758 instruction in 'first_fmac'.
3759
3760 1 -> 2
3761 Any instruction, except for a VFP instruction which overwrites
3762 regs[*].
3763
3764 1 -> 3 [ -> 0 ] or
3765 2 -> 3 [ -> 0 ]
3766 A VFP instruction has been seen which overwrites any of regs[*].
3767 We must make a veneer! Reset state to 0 before examining next
3768 instruction.
3769
3770 2 -> 0
3771 If we fail to match anything in state 2, reset to state 0 and reset
3772 the instruction pointer to the instruction after 'first_fmac'.
3773
3774 If the VFP11 vector mode is in use, there must be at least two unrelated
3775 instructions between anti-dependent VFP11 instructions to properly avoid
3776 triggering the erratum, hence the use of the extra state 1.
3777 */
3778
3779 /* If we are only performing a partial link do not bother
3780 to construct any glue. */
3781 if (link_info->relocatable)
3782 return TRUE;
3783
3784 /* Skip if this bfd does not correspond to an ELF image. */
3785 if (! is_arm_elf (abfd))
3786 return TRUE;
3787
3788 /* We should have chosen a fix type by the time we get here. */
3789 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
3790
3791 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
3792 return TRUE;
3793
3794 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3795 {
3796 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
3797 struct _arm_elf_section_data *sec_data;
3798
3799 /* If we don't have executable progbits, we're not interested in this
3800 section. Also skip if section is to be excluded. */
3801 if (elf_section_type (sec) != SHT_PROGBITS
3802 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
3803 || (sec->flags & SEC_EXCLUDE) != 0
3804 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
3805 continue;
3806
3807 sec_data = elf32_arm_section_data (sec);
3808
3809 if (sec_data->mapcount == 0)
3810 continue;
3811
3812 if (elf_section_data (sec)->this_hdr.contents != NULL)
3813 contents = elf_section_data (sec)->this_hdr.contents;
3814 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3815 goto error_return;
3816
3817 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
3818 elf32_arm_compare_mapping);
3819
3820 for (span = 0; span < sec_data->mapcount; span++)
3821 {
3822 unsigned int span_start = sec_data->map[span].vma;
3823 unsigned int span_end = (span == sec_data->mapcount - 1)
3824 ? sec->size : sec_data->map[span + 1].vma;
3825 char span_type = sec_data->map[span].type;
3826
3827 /* FIXME: Only ARM mode is supported at present. We may need to
3828 support Thumb-2 mode also at some point. */
3829 if (span_type != 'a')
3830 continue;
3831
3832 for (i = span_start; i < span_end;)
3833 {
3834 unsigned int next_i = i + 4;
3835 unsigned int insn = bfd_big_endian (abfd)
3836 ? (contents[i] << 24)
3837 | (contents[i + 1] << 16)
3838 | (contents[i + 2] << 8)
3839 | contents[i + 3]
3840 : (contents[i + 3] << 24)
3841 | (contents[i + 2] << 16)
3842 | (contents[i + 1] << 8)
3843 | contents[i];
3844 unsigned int writemask = 0;
3845 enum bfd_arm_vfp11_pipe pipe;
3846
3847 switch (state)
3848 {
3849 case 0:
3850 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
3851 &numregs);
3852 /* I'm assuming the VFP11 erratum can trigger with denorm
3853 operands on either the FMAC or the DS pipeline. This might
3854 lead to slightly overenthusiastic veneer insertion. */
3855 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
3856 {
3857 state = use_vector ? 1 : 2;
3858 first_fmac = i;
3859 veneer_of_insn = insn;
3860 }
3861 break;
3862
3863 case 1:
3864 {
3865 int other_regs[3], other_numregs;
3866 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3867 other_regs,
3868 &other_numregs);
3869 if (pipe != VFP11_BAD
3870 && bfd_arm_vfp11_antidependency (writemask, regs,
3871 numregs))
3872 state = 3;
3873 else
3874 state = 2;
3875 }
3876 break;
3877
3878 case 2:
3879 {
3880 int other_regs[3], other_numregs;
3881 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3882 other_regs,
3883 &other_numregs);
3884 if (pipe != VFP11_BAD
3885 && bfd_arm_vfp11_antidependency (writemask, regs,
3886 numregs))
3887 state = 3;
3888 else
3889 {
3890 state = 0;
3891 next_i = first_fmac + 4;
3892 }
3893 }
3894 break;
3895
3896 case 3:
3897 abort (); /* Should be unreachable. */
3898 }
3899
3900 if (state == 3)
3901 {
3902 elf32_vfp11_erratum_list *newerr
3903 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3904 int errcount;
3905
3906 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
3907
3908 newerr->u.b.vfp_insn = veneer_of_insn;
3909
3910 switch (span_type)
3911 {
3912 case 'a':
3913 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
3914 break;
3915
3916 default:
3917 abort ();
3918 }
3919
3920 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
3921 first_fmac);
3922
3923 newerr->vma = -1;
3924
3925 newerr->next = sec_data->erratumlist;
3926 sec_data->erratumlist = newerr;
3927
3928 state = 0;
3929 }
3930
3931 i = next_i;
3932 }
3933 }
3934
3935 if (contents != NULL
3936 && elf_section_data (sec)->this_hdr.contents != contents)
3937 free (contents);
3938 contents = NULL;
3939 }
3940
3941 return TRUE;
3942
3943 error_return:
3944 if (contents != NULL
3945 && elf_section_data (sec)->this_hdr.contents != contents)
3946 free (contents);
3947
3948 return FALSE;
3949 }
3950
3951 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
3952 after sections have been laid out, using specially-named symbols. */
3953
3954 void
3955 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
3956 struct bfd_link_info *link_info)
3957 {
3958 asection *sec;
3959 struct elf32_arm_link_hash_table *globals;
3960 char *tmp_name;
3961
3962 if (link_info->relocatable)
3963 return;
3964
3965 /* Skip if this bfd does not correspond to an ELF image. */
3966 if (! is_arm_elf (abfd))
3967 return;
3968
3969 globals = elf32_arm_hash_table (link_info);
3970
3971 tmp_name = bfd_malloc ((bfd_size_type) strlen
3972 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
3973
3974 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3975 {
3976 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
3977 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
3978
3979 for (; errnode != NULL; errnode = errnode->next)
3980 {
3981 struct elf_link_hash_entry *myh;
3982 bfd_vma vma;
3983
3984 switch (errnode->type)
3985 {
3986 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
3987 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
3988 /* Find veneer symbol. */
3989 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3990 errnode->u.b.veneer->u.v.id);
3991
3992 myh = elf_link_hash_lookup
3993 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3994
3995 if (myh == NULL)
3996 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3997 "`%s'"), abfd, tmp_name);
3998
3999 vma = myh->root.u.def.section->output_section->vma
4000 + myh->root.u.def.section->output_offset
4001 + myh->root.u.def.value;
4002
4003 errnode->u.b.veneer->vma = vma;
4004 break;
4005
4006 case VFP11_ERRATUM_ARM_VENEER:
4007 case VFP11_ERRATUM_THUMB_VENEER:
4008 /* Find return location. */
4009 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4010 errnode->u.v.id);
4011
4012 myh = elf_link_hash_lookup
4013 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4014
4015 if (myh == NULL)
4016 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
4017 "`%s'"), abfd, tmp_name);
4018
4019 vma = myh->root.u.def.section->output_section->vma
4020 + myh->root.u.def.section->output_offset
4021 + myh->root.u.def.value;
4022
4023 errnode->u.v.branch->vma = vma;
4024 break;
4025
4026 default:
4027 abort ();
4028 }
4029 }
4030 }
4031
4032 free (tmp_name);
4033 }
4034
4035
4036 /* Set target relocation values needed during linking. */
4037
4038 void
4039 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
4040 struct bfd_link_info *link_info,
4041 int target1_is_rel,
4042 char * target2_type,
4043 int fix_v4bx,
4044 int use_blx,
4045 bfd_arm_vfp11_fix vfp11_fix,
4046 int no_enum_warn, int pic_veneer)
4047 {
4048 struct elf32_arm_link_hash_table *globals;
4049
4050 globals = elf32_arm_hash_table (link_info);
4051
4052 globals->target1_is_rel = target1_is_rel;
4053 if (strcmp (target2_type, "rel") == 0)
4054 globals->target2_reloc = R_ARM_REL32;
4055 else if (strcmp (target2_type, "abs") == 0)
4056 globals->target2_reloc = R_ARM_ABS32;
4057 else if (strcmp (target2_type, "got-rel") == 0)
4058 globals->target2_reloc = R_ARM_GOT_PREL;
4059 else
4060 {
4061 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
4062 target2_type);
4063 }
4064 globals->fix_v4bx = fix_v4bx;
4065 globals->use_blx |= use_blx;
4066 globals->vfp11_fix = vfp11_fix;
4067 globals->pic_veneer = pic_veneer;
4068
4069 BFD_ASSERT (is_arm_elf (output_bfd));
4070 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4071 }
4072
4073 /* The thumb form of a long branch is a bit finicky, because the offset
4074 encoding is split over two fields, each in it's own instruction. They
4075 can occur in any order. So given a thumb form of long branch, and an
4076 offset, insert the offset into the thumb branch and return finished
4077 instruction.
4078
4079 It takes two thumb instructions to encode the target address. Each has
4080 11 bits to invest. The upper 11 bits are stored in one (identified by
4081 H-0.. see below), the lower 11 bits are stored in the other (identified
4082 by H-1).
4083
4084 Combine together and shifted left by 1 (it's a half word address) and
4085 there you have it.
4086
4087 Op: 1111 = F,
4088 H-0, upper address-0 = 000
4089 Op: 1111 = F,
4090 H-1, lower address-0 = 800
4091
4092 They can be ordered either way, but the arm tools I've seen always put
4093 the lower one first. It probably doesn't matter. krk@cygnus.com
4094
4095 XXX: Actually the order does matter. The second instruction (H-1)
4096 moves the computed address into the PC, so it must be the second one
4097 in the sequence. The problem, however is that whilst little endian code
4098 stores the instructions in HI then LOW order, big endian code does the
4099 reverse. nickc@cygnus.com. */
4100
4101 #define LOW_HI_ORDER 0xF800F000
4102 #define HI_LOW_ORDER 0xF000F800
4103
4104 static insn32
4105 insert_thumb_branch (insn32 br_insn, int rel_off)
4106 {
4107 unsigned int low_bits;
4108 unsigned int high_bits;
4109
4110 BFD_ASSERT ((rel_off & 1) != 1);
4111
4112 rel_off >>= 1; /* Half word aligned address. */
4113 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
4114 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
4115
4116 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
4117 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
4118 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
4119 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
4120 else
4121 /* FIXME: abort is probably not the right call. krk@cygnus.com */
4122 abort (); /* Error - not a valid branch instruction form. */
4123
4124 return br_insn;
4125 }
4126
4127
4128 /* Store an Arm insn into an output section not processed by
4129 elf32_arm_write_section. */
4130
4131 static void
4132 put_arm_insn (struct elf32_arm_link_hash_table *htab,
4133 bfd * output_bfd, bfd_vma val, void * ptr)
4134 {
4135 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4136 bfd_putl32 (val, ptr);
4137 else
4138 bfd_putb32 (val, ptr);
4139 }
4140
4141
4142 /* Store a 16-bit Thumb insn into an output section not processed by
4143 elf32_arm_write_section. */
4144
4145 static void
4146 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
4147 bfd * output_bfd, bfd_vma val, void * ptr)
4148 {
4149 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4150 bfd_putl16 (val, ptr);
4151 else
4152 bfd_putb16 (val, ptr);
4153 }
4154
4155
4156 /* Thumb code calling an ARM function. */
4157
4158 static int
4159 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
4160 const char * name,
4161 bfd * input_bfd,
4162 bfd * output_bfd,
4163 asection * input_section,
4164 bfd_byte * hit_data,
4165 asection * sym_sec,
4166 bfd_vma offset,
4167 bfd_signed_vma addend,
4168 bfd_vma val,
4169 char **error_message)
4170 {
4171 asection * s = 0;
4172 bfd_vma my_offset;
4173 unsigned long int tmp;
4174 long int ret_offset;
4175 struct elf_link_hash_entry * myh;
4176 struct elf32_arm_link_hash_table * globals;
4177
4178 myh = find_thumb_glue (info, name, error_message);
4179 if (myh == NULL)
4180 return FALSE;
4181
4182 globals = elf32_arm_hash_table (info);
4183
4184 BFD_ASSERT (globals != NULL);
4185 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4186
4187 my_offset = myh->root.u.def.value;
4188
4189 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4190 THUMB2ARM_GLUE_SECTION_NAME);
4191
4192 BFD_ASSERT (s != NULL);
4193 BFD_ASSERT (s->contents != NULL);
4194 BFD_ASSERT (s->output_section != NULL);
4195
4196 if ((my_offset & 0x01) == 0x01)
4197 {
4198 if (sym_sec != NULL
4199 && sym_sec->owner != NULL
4200 && !INTERWORK_FLAG (sym_sec->owner))
4201 {
4202 (*_bfd_error_handler)
4203 (_("%B(%s): warning: interworking not enabled.\n"
4204 " first occurrence: %B: thumb call to arm"),
4205 sym_sec->owner, input_bfd, name);
4206
4207 return FALSE;
4208 }
4209
4210 --my_offset;
4211 myh->root.u.def.value = my_offset;
4212
4213 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
4214 s->contents + my_offset);
4215
4216 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
4217 s->contents + my_offset + 2);
4218
4219 ret_offset =
4220 /* Address of destination of the stub. */
4221 ((bfd_signed_vma) val)
4222 - ((bfd_signed_vma)
4223 /* Offset from the start of the current section
4224 to the start of the stubs. */
4225 (s->output_offset
4226 /* Offset of the start of this stub from the start of the stubs. */
4227 + my_offset
4228 /* Address of the start of the current section. */
4229 + s->output_section->vma)
4230 /* The branch instruction is 4 bytes into the stub. */
4231 + 4
4232 /* ARM branches work from the pc of the instruction + 8. */
4233 + 8);
4234
4235 put_arm_insn (globals, output_bfd,
4236 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
4237 s->contents + my_offset + 4);
4238 }
4239
4240 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
4241
4242 /* Now go back and fix up the original BL insn to point to here. */
4243 ret_offset =
4244 /* Address of where the stub is located. */
4245 (s->output_section->vma + s->output_offset + my_offset)
4246 /* Address of where the BL is located. */
4247 - (input_section->output_section->vma + input_section->output_offset
4248 + offset)
4249 /* Addend in the relocation. */
4250 - addend
4251 /* Biassing for PC-relative addressing. */
4252 - 8;
4253
4254 tmp = bfd_get_32 (input_bfd, hit_data
4255 - input_section->vma);
4256
4257 bfd_put_32 (output_bfd,
4258 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
4259 hit_data - input_section->vma);
4260
4261 return TRUE;
4262 }
4263
4264 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
4265
4266 static struct elf_link_hash_entry *
4267 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
4268 const char * name,
4269 bfd * input_bfd,
4270 bfd * output_bfd,
4271 asection * sym_sec,
4272 bfd_vma val,
4273 asection *s,
4274 char **error_message)
4275 {
4276 bfd_vma my_offset;
4277 long int ret_offset;
4278 struct elf_link_hash_entry * myh;
4279 struct elf32_arm_link_hash_table * globals;
4280
4281 myh = find_arm_glue (info, name, error_message);
4282 if (myh == NULL)
4283 return NULL;
4284
4285 globals = elf32_arm_hash_table (info);
4286
4287 BFD_ASSERT (globals != NULL);
4288 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4289
4290 my_offset = myh->root.u.def.value;
4291
4292 if ((my_offset & 0x01) == 0x01)
4293 {
4294 if (sym_sec != NULL
4295 && sym_sec->owner != NULL
4296 && !INTERWORK_FLAG (sym_sec->owner))
4297 {
4298 (*_bfd_error_handler)
4299 (_("%B(%s): warning: interworking not enabled.\n"
4300 " first occurrence: %B: arm call to thumb"),
4301 sym_sec->owner, input_bfd, name);
4302 }
4303
4304 --my_offset;
4305 myh->root.u.def.value = my_offset;
4306
4307 if (info->shared || globals->root.is_relocatable_executable
4308 || globals->pic_veneer)
4309 {
4310 /* For relocatable objects we can't use absolute addresses,
4311 so construct the address from a relative offset. */
4312 /* TODO: If the offset is small it's probably worth
4313 constructing the address with adds. */
4314 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
4315 s->contents + my_offset);
4316 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
4317 s->contents + my_offset + 4);
4318 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
4319 s->contents + my_offset + 8);
4320 /* Adjust the offset by 4 for the position of the add,
4321 and 8 for the pipeline offset. */
4322 ret_offset = (val - (s->output_offset
4323 + s->output_section->vma
4324 + my_offset + 12))
4325 | 1;
4326 bfd_put_32 (output_bfd, ret_offset,
4327 s->contents + my_offset + 12);
4328 }
4329 else if (globals->use_blx)
4330 {
4331 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
4332 s->contents + my_offset);
4333
4334 /* It's a thumb address. Add the low order bit. */
4335 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
4336 s->contents + my_offset + 4);
4337 }
4338 else
4339 {
4340 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
4341 s->contents + my_offset);
4342
4343 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
4344 s->contents + my_offset + 4);
4345
4346 /* It's a thumb address. Add the low order bit. */
4347 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
4348 s->contents + my_offset + 8);
4349 }
4350 }
4351
4352 BFD_ASSERT (my_offset <= globals->arm_glue_size);
4353
4354 return myh;
4355 }
4356
4357 /* Arm code calling a Thumb function. */
4358
4359 static int
4360 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
4361 const char * name,
4362 bfd * input_bfd,
4363 bfd * output_bfd,
4364 asection * input_section,
4365 bfd_byte * hit_data,
4366 asection * sym_sec,
4367 bfd_vma offset,
4368 bfd_signed_vma addend,
4369 bfd_vma val,
4370 char **error_message)
4371 {
4372 unsigned long int tmp;
4373 bfd_vma my_offset;
4374 asection * s;
4375 long int ret_offset;
4376 struct elf_link_hash_entry * myh;
4377 struct elf32_arm_link_hash_table * globals;
4378
4379 globals = elf32_arm_hash_table (info);
4380
4381 BFD_ASSERT (globals != NULL);
4382 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4383
4384 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4385 ARM2THUMB_GLUE_SECTION_NAME);
4386 BFD_ASSERT (s != NULL);
4387 BFD_ASSERT (s->contents != NULL);
4388 BFD_ASSERT (s->output_section != NULL);
4389
4390 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
4391 sym_sec, val, s, error_message);
4392 if (!myh)
4393 return FALSE;
4394
4395 my_offset = myh->root.u.def.value;
4396 tmp = bfd_get_32 (input_bfd, hit_data);
4397 tmp = tmp & 0xFF000000;
4398
4399 /* Somehow these are both 4 too far, so subtract 8. */
4400 ret_offset = (s->output_offset
4401 + my_offset
4402 + s->output_section->vma
4403 - (input_section->output_offset
4404 + input_section->output_section->vma
4405 + offset + addend)
4406 - 8);
4407
4408 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
4409
4410 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
4411
4412 return TRUE;
4413 }
4414
4415 /* Populate Arm stub for an exported Thumb function. */
4416
4417 static bfd_boolean
4418 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
4419 {
4420 struct bfd_link_info * info = (struct bfd_link_info *) inf;
4421 asection * s;
4422 struct elf_link_hash_entry * myh;
4423 struct elf32_arm_link_hash_entry *eh;
4424 struct elf32_arm_link_hash_table * globals;
4425 asection *sec;
4426 bfd_vma val;
4427 char *error_message;
4428
4429 eh = elf32_arm_hash_entry(h);
4430 /* Allocate stubs for exported Thumb functions on v4t. */
4431 if (eh->export_glue == NULL)
4432 return TRUE;
4433
4434 globals = elf32_arm_hash_table (info);
4435
4436 BFD_ASSERT (globals != NULL);
4437 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4438
4439 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4440 ARM2THUMB_GLUE_SECTION_NAME);
4441 BFD_ASSERT (s != NULL);
4442 BFD_ASSERT (s->contents != NULL);
4443 BFD_ASSERT (s->output_section != NULL);
4444
4445 sec = eh->export_glue->root.u.def.section;
4446
4447 BFD_ASSERT (sec->output_section != NULL);
4448
4449 val = eh->export_glue->root.u.def.value + sec->output_offset
4450 + sec->output_section->vma;
4451 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
4452 h->root.u.def.section->owner,
4453 globals->obfd, sec, val, s,
4454 &error_message);
4455 BFD_ASSERT (myh);
4456 return TRUE;
4457 }
4458
4459 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
4460
4461 static bfd_vma
4462 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
4463 {
4464 bfd_byte *p;
4465 bfd_vma glue_addr;
4466 asection *s;
4467 struct elf32_arm_link_hash_table *globals;
4468
4469 globals = elf32_arm_hash_table (info);
4470
4471 BFD_ASSERT (globals != NULL);
4472 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4473
4474 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4475 ARM_BX_GLUE_SECTION_NAME);
4476 BFD_ASSERT (s != NULL);
4477 BFD_ASSERT (s->contents != NULL);
4478 BFD_ASSERT (s->output_section != NULL);
4479
4480 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
4481
4482 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
4483
4484 if ((globals->bx_glue_offset[reg] & 1) == 0)
4485 {
4486 p = s->contents + glue_addr;
4487 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
4488 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
4489 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
4490 globals->bx_glue_offset[reg] |= 1;
4491 }
4492
4493 return glue_addr + s->output_section->vma + s->output_offset;
4494 }
4495
4496 /* Generate Arm stubs for exported Thumb symbols. */
4497 static void
4498 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
4499 struct bfd_link_info *link_info)
4500 {
4501 struct elf32_arm_link_hash_table * globals;
4502
4503 if (!link_info)
4504 return;
4505
4506 globals = elf32_arm_hash_table (link_info);
4507 /* If blx is available then exported Thumb symbols are OK and there is
4508 nothing to do. */
4509 if (globals->use_blx)
4510 return;
4511
4512 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
4513 link_info);
4514 }
4515
4516 /* Some relocations map to different relocations depending on the
4517 target. Return the real relocation. */
4518 static int
4519 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
4520 int r_type)
4521 {
4522 switch (r_type)
4523 {
4524 case R_ARM_TARGET1:
4525 if (globals->target1_is_rel)
4526 return R_ARM_REL32;
4527 else
4528 return R_ARM_ABS32;
4529
4530 case R_ARM_TARGET2:
4531 return globals->target2_reloc;
4532
4533 default:
4534 return r_type;
4535 }
4536 }
4537
4538 /* Return the base VMA address which should be subtracted from real addresses
4539 when resolving @dtpoff relocation.
4540 This is PT_TLS segment p_vaddr. */
4541
4542 static bfd_vma
4543 dtpoff_base (struct bfd_link_info *info)
4544 {
4545 /* If tls_sec is NULL, we should have signalled an error already. */
4546 if (elf_hash_table (info)->tls_sec == NULL)
4547 return 0;
4548 return elf_hash_table (info)->tls_sec->vma;
4549 }
4550
4551 /* Return the relocation value for @tpoff relocation
4552 if STT_TLS virtual address is ADDRESS. */
4553
4554 static bfd_vma
4555 tpoff (struct bfd_link_info *info, bfd_vma address)
4556 {
4557 struct elf_link_hash_table *htab = elf_hash_table (info);
4558 bfd_vma base;
4559
4560 /* If tls_sec is NULL, we should have signalled an error already. */
4561 if (htab->tls_sec == NULL)
4562 return 0;
4563 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
4564 return address - htab->tls_sec->vma + base;
4565 }
4566
4567 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
4568 VALUE is the relocation value. */
4569
4570 static bfd_reloc_status_type
4571 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
4572 {
4573 if (value > 0xfff)
4574 return bfd_reloc_overflow;
4575
4576 value |= bfd_get_32 (abfd, data) & 0xfffff000;
4577 bfd_put_32 (abfd, value, data);
4578 return bfd_reloc_ok;
4579 }
4580
4581 /* For a given value of n, calculate the value of G_n as required to
4582 deal with group relocations. We return it in the form of an
4583 encoded constant-and-rotation, together with the final residual. If n is
4584 specified as less than zero, then final_residual is filled with the
4585 input value and no further action is performed. */
4586
4587 static bfd_vma
4588 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
4589 {
4590 int current_n;
4591 bfd_vma g_n;
4592 bfd_vma encoded_g_n = 0;
4593 bfd_vma residual = value; /* Also known as Y_n. */
4594
4595 for (current_n = 0; current_n <= n; current_n++)
4596 {
4597 int shift;
4598
4599 /* Calculate which part of the value to mask. */
4600 if (residual == 0)
4601 shift = 0;
4602 else
4603 {
4604 int msb;
4605
4606 /* Determine the most significant bit in the residual and
4607 align the resulting value to a 2-bit boundary. */
4608 for (msb = 30; msb >= 0; msb -= 2)
4609 if (residual & (3 << msb))
4610 break;
4611
4612 /* The desired shift is now (msb - 6), or zero, whichever
4613 is the greater. */
4614 shift = msb - 6;
4615 if (shift < 0)
4616 shift = 0;
4617 }
4618
4619 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
4620 g_n = residual & (0xff << shift);
4621 encoded_g_n = (g_n >> shift)
4622 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4623
4624 /* Calculate the residual for the next time around. */
4625 residual &= ~g_n;
4626 }
4627
4628 *final_residual = residual;
4629
4630 return encoded_g_n;
4631 }
4632
4633 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
4634 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
4635 static int
4636 identify_add_or_sub(bfd_vma insn)
4637 {
4638 int opcode = insn & 0x1e00000;
4639
4640 if (opcode == 1 << 23) /* ADD */
4641 return 1;
4642
4643 if (opcode == 1 << 22) /* SUB */
4644 return -1;
4645
4646 return 0;
4647 }
4648
4649 /* Determine if we're dealing with a Thumb-2 object. */
4650
4651 static int using_thumb2 (struct elf32_arm_link_hash_table *globals)
4652 {
4653 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4654 Tag_CPU_arch);
4655 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
4656 }
4657
4658 /* Perform a relocation as part of a final link. */
4659
4660 static bfd_reloc_status_type
4661 elf32_arm_final_link_relocate (reloc_howto_type * howto,
4662 bfd * input_bfd,
4663 bfd * output_bfd,
4664 asection * input_section,
4665 bfd_byte * contents,
4666 Elf_Internal_Rela * rel,
4667 bfd_vma value,
4668 struct bfd_link_info * info,
4669 asection * sym_sec,
4670 const char * sym_name,
4671 int sym_flags,
4672 struct elf_link_hash_entry * h,
4673 bfd_boolean * unresolved_reloc_p,
4674 char **error_message)
4675 {
4676 unsigned long r_type = howto->type;
4677 unsigned long r_symndx;
4678 bfd_byte * hit_data = contents + rel->r_offset;
4679 bfd * dynobj = NULL;
4680 Elf_Internal_Shdr * symtab_hdr;
4681 struct elf_link_hash_entry ** sym_hashes;
4682 bfd_vma * local_got_offsets;
4683 asection * sgot = NULL;
4684 asection * splt = NULL;
4685 asection * sreloc = NULL;
4686 bfd_vma addend;
4687 bfd_signed_vma signed_addend;
4688 struct elf32_arm_link_hash_table * globals;
4689
4690 globals = elf32_arm_hash_table (info);
4691
4692 BFD_ASSERT (is_arm_elf (input_bfd));
4693
4694 /* Some relocation types map to different relocations depending on the
4695 target. We pick the right one here. */
4696 r_type = arm_real_reloc_type (globals, r_type);
4697 if (r_type != howto->type)
4698 howto = elf32_arm_howto_from_type (r_type);
4699
4700 /* If the start address has been set, then set the EF_ARM_HASENTRY
4701 flag. Setting this more than once is redundant, but the cost is
4702 not too high, and it keeps the code simple.
4703
4704 The test is done here, rather than somewhere else, because the
4705 start address is only set just before the final link commences.
4706
4707 Note - if the user deliberately sets a start address of 0, the
4708 flag will not be set. */
4709 if (bfd_get_start_address (output_bfd) != 0)
4710 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
4711
4712 dynobj = elf_hash_table (info)->dynobj;
4713 if (dynobj)
4714 {
4715 sgot = bfd_get_section_by_name (dynobj, ".got");
4716 splt = bfd_get_section_by_name (dynobj, ".plt");
4717 }
4718 symtab_hdr = & elf_symtab_hdr (input_bfd);
4719 sym_hashes = elf_sym_hashes (input_bfd);
4720 local_got_offsets = elf_local_got_offsets (input_bfd);
4721 r_symndx = ELF32_R_SYM (rel->r_info);
4722
4723 if (globals->use_rel)
4724 {
4725 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
4726
4727 if (addend & ((howto->src_mask + 1) >> 1))
4728 {
4729 signed_addend = -1;
4730 signed_addend &= ~ howto->src_mask;
4731 signed_addend |= addend;
4732 }
4733 else
4734 signed_addend = addend;
4735 }
4736 else
4737 addend = signed_addend = rel->r_addend;
4738
4739 switch (r_type)
4740 {
4741 case R_ARM_NONE:
4742 /* We don't need to find a value for this symbol. It's just a
4743 marker. */
4744 *unresolved_reloc_p = FALSE;
4745 return bfd_reloc_ok;
4746
4747 case R_ARM_ABS12:
4748 if (!globals->vxworks_p)
4749 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4750
4751 case R_ARM_PC24:
4752 case R_ARM_ABS32:
4753 case R_ARM_ABS32_NOI:
4754 case R_ARM_REL32:
4755 case R_ARM_REL32_NOI:
4756 case R_ARM_CALL:
4757 case R_ARM_JUMP24:
4758 case R_ARM_XPC25:
4759 case R_ARM_PREL31:
4760 case R_ARM_PLT32:
4761 /* Handle relocations which should use the PLT entry. ABS32/REL32
4762 will use the symbol's value, which may point to a PLT entry, but we
4763 don't need to handle that here. If we created a PLT entry, all
4764 branches in this object should go to it. */
4765 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
4766 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
4767 && h != NULL
4768 && splt != NULL
4769 && h->plt.offset != (bfd_vma) -1)
4770 {
4771 /* If we've created a .plt section, and assigned a PLT entry to
4772 this function, it should not be known to bind locally. If
4773 it were, we would have cleared the PLT entry. */
4774 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
4775
4776 value = (splt->output_section->vma
4777 + splt->output_offset
4778 + h->plt.offset);
4779 *unresolved_reloc_p = FALSE;
4780 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4781 contents, rel->r_offset, value,
4782 rel->r_addend);
4783 }
4784
4785 /* When generating a shared object or relocatable executable, these
4786 relocations are copied into the output file to be resolved at
4787 run time. */
4788 if ((info->shared || globals->root.is_relocatable_executable)
4789 && (input_section->flags & SEC_ALLOC)
4790 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
4791 || !SYMBOL_CALLS_LOCAL (info, h))
4792 && (h == NULL
4793 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4794 || h->root.type != bfd_link_hash_undefweak)
4795 && r_type != R_ARM_PC24
4796 && r_type != R_ARM_CALL
4797 && r_type != R_ARM_JUMP24
4798 && r_type != R_ARM_PREL31
4799 && r_type != R_ARM_PLT32)
4800 {
4801 Elf_Internal_Rela outrel;
4802 bfd_byte *loc;
4803 bfd_boolean skip, relocate;
4804
4805 *unresolved_reloc_p = FALSE;
4806
4807 if (sreloc == NULL)
4808 {
4809 const char * name;
4810
4811 name = (bfd_elf_string_from_elf_section
4812 (input_bfd,
4813 elf_elfheader (input_bfd)->e_shstrndx,
4814 elf_section_data (input_section)->rel_hdr.sh_name));
4815 if (name == NULL)
4816 return bfd_reloc_notsupported;
4817
4818 BFD_ASSERT (reloc_section_p (globals, name, input_section));
4819
4820 sreloc = bfd_get_section_by_name (dynobj, name);
4821 BFD_ASSERT (sreloc != NULL);
4822 }
4823
4824 skip = FALSE;
4825 relocate = FALSE;
4826
4827 outrel.r_addend = addend;
4828 outrel.r_offset =
4829 _bfd_elf_section_offset (output_bfd, info, input_section,
4830 rel->r_offset);
4831 if (outrel.r_offset == (bfd_vma) -1)
4832 skip = TRUE;
4833 else if (outrel.r_offset == (bfd_vma) -2)
4834 skip = TRUE, relocate = TRUE;
4835 outrel.r_offset += (input_section->output_section->vma
4836 + input_section->output_offset);
4837
4838 if (skip)
4839 memset (&outrel, 0, sizeof outrel);
4840 else if (h != NULL
4841 && h->dynindx != -1
4842 && (!info->shared
4843 || !info->symbolic
4844 || !h->def_regular))
4845 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4846 else
4847 {
4848 int symbol;
4849
4850 /* This symbol is local, or marked to become local. */
4851 if (sym_flags == STT_ARM_TFUNC)
4852 value |= 1;
4853 if (globals->symbian_p)
4854 {
4855 asection *osec;
4856
4857 /* On Symbian OS, the data segment and text segement
4858 can be relocated independently. Therefore, we
4859 must indicate the segment to which this
4860 relocation is relative. The BPABI allows us to
4861 use any symbol in the right segment; we just use
4862 the section symbol as it is convenient. (We
4863 cannot use the symbol given by "h" directly as it
4864 will not appear in the dynamic symbol table.)
4865
4866 Note that the dynamic linker ignores the section
4867 symbol value, so we don't subtract osec->vma
4868 from the emitted reloc addend. */
4869 if (sym_sec)
4870 osec = sym_sec->output_section;
4871 else
4872 osec = input_section->output_section;
4873 symbol = elf_section_data (osec)->dynindx;
4874 if (symbol == 0)
4875 {
4876 struct elf_link_hash_table *htab = elf_hash_table (info);
4877
4878 if ((osec->flags & SEC_READONLY) == 0
4879 && htab->data_index_section != NULL)
4880 osec = htab->data_index_section;
4881 else
4882 osec = htab->text_index_section;
4883 symbol = elf_section_data (osec)->dynindx;
4884 }
4885 BFD_ASSERT (symbol != 0);
4886 }
4887 else
4888 /* On SVR4-ish systems, the dynamic loader cannot
4889 relocate the text and data segments independently,
4890 so the symbol does not matter. */
4891 symbol = 0;
4892 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
4893 if (globals->use_rel)
4894 relocate = TRUE;
4895 else
4896 outrel.r_addend += value;
4897 }
4898
4899 loc = sreloc->contents;
4900 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
4901 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
4902
4903 /* If this reloc is against an external symbol, we do not want to
4904 fiddle with the addend. Otherwise, we need to include the symbol
4905 value so that it becomes an addend for the dynamic reloc. */
4906 if (! relocate)
4907 return bfd_reloc_ok;
4908
4909 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4910 contents, rel->r_offset, value,
4911 (bfd_vma) 0);
4912 }
4913 else switch (r_type)
4914 {
4915 case R_ARM_ABS12:
4916 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4917
4918 case R_ARM_XPC25: /* Arm BLX instruction. */
4919 case R_ARM_CALL:
4920 case R_ARM_JUMP24:
4921 case R_ARM_PC24: /* Arm B/BL instruction */
4922 case R_ARM_PLT32:
4923 if (r_type == R_ARM_XPC25)
4924 {
4925 /* Check for Arm calling Arm function. */
4926 /* FIXME: Should we translate the instruction into a BL
4927 instruction instead ? */
4928 if (sym_flags != STT_ARM_TFUNC)
4929 (*_bfd_error_handler)
4930 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
4931 input_bfd,
4932 h ? h->root.root.string : "(local)");
4933 }
4934 else if (r_type != R_ARM_CALL || !globals->use_blx)
4935 {
4936 /* Check for Arm calling Thumb function. */
4937 if (sym_flags == STT_ARM_TFUNC)
4938 {
4939 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
4940 output_bfd, input_section,
4941 hit_data, sym_sec, rel->r_offset,
4942 signed_addend, value,
4943 error_message))
4944 return bfd_reloc_ok;
4945 else
4946 return bfd_reloc_dangerous;
4947 }
4948 }
4949
4950 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
4951 where:
4952 S is the address of the symbol in the relocation.
4953 P is address of the instruction being relocated.
4954 A is the addend (extracted from the instruction) in bytes.
4955
4956 S is held in 'value'.
4957 P is the base address of the section containing the
4958 instruction plus the offset of the reloc into that
4959 section, ie:
4960 (input_section->output_section->vma +
4961 input_section->output_offset +
4962 rel->r_offset).
4963 A is the addend, converted into bytes, ie:
4964 (signed_addend * 4)
4965
4966 Note: None of these operations have knowledge of the pipeline
4967 size of the processor, thus it is up to the assembler to
4968 encode this information into the addend. */
4969 value -= (input_section->output_section->vma
4970 + input_section->output_offset);
4971 value -= rel->r_offset;
4972 if (globals->use_rel)
4973 value += (signed_addend << howto->size);
4974 else
4975 /* RELA addends do not have to be adjusted by howto->size. */
4976 value += signed_addend;
4977
4978 signed_addend = value;
4979 signed_addend >>= howto->rightshift;
4980
4981 /* A branch to an undefined weak symbol is turned into a jump to
4982 the next instruction. */
4983 if (h && h->root.type == bfd_link_hash_undefweak)
4984 {
4985 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
4986 | 0x0affffff;
4987 }
4988 else
4989 {
4990 /* Perform a signed range check. */
4991 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
4992 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
4993 return bfd_reloc_overflow;
4994
4995 addend = (value & 2);
4996
4997 value = (signed_addend & howto->dst_mask)
4998 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
4999
5000 /* Set the H bit in the BLX instruction. */
5001 if (sym_flags == STT_ARM_TFUNC)
5002 {
5003 if (addend)
5004 value |= (1 << 24);
5005 else
5006 value &= ~(bfd_vma)(1 << 24);
5007 }
5008 if (r_type == R_ARM_CALL)
5009 {
5010 /* Select the correct instruction (BL or BLX). */
5011 if (sym_flags == STT_ARM_TFUNC)
5012 value |= (1 << 28);
5013 else
5014 {
5015 value &= ~(bfd_vma)(1 << 28);
5016 value |= (1 << 24);
5017 }
5018 }
5019 }
5020 break;
5021
5022 case R_ARM_ABS32:
5023 value += addend;
5024 if (sym_flags == STT_ARM_TFUNC)
5025 value |= 1;
5026 break;
5027
5028 case R_ARM_ABS32_NOI:
5029 value += addend;
5030 break;
5031
5032 case R_ARM_REL32:
5033 value += addend;
5034 if (sym_flags == STT_ARM_TFUNC)
5035 value |= 1;
5036 value -= (input_section->output_section->vma
5037 + input_section->output_offset + rel->r_offset);
5038 break;
5039
5040 case R_ARM_REL32_NOI:
5041 value += addend;
5042 value -= (input_section->output_section->vma
5043 + input_section->output_offset + rel->r_offset);
5044 break;
5045
5046 case R_ARM_PREL31:
5047 value -= (input_section->output_section->vma
5048 + input_section->output_offset + rel->r_offset);
5049 value += signed_addend;
5050 if (! h || h->root.type != bfd_link_hash_undefweak)
5051 {
5052 /* Check for overflow */
5053 if ((value ^ (value >> 1)) & (1 << 30))
5054 return bfd_reloc_overflow;
5055 }
5056 value &= 0x7fffffff;
5057 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
5058 if (sym_flags == STT_ARM_TFUNC)
5059 value |= 1;
5060 break;
5061 }
5062
5063 bfd_put_32 (input_bfd, value, hit_data);
5064 return bfd_reloc_ok;
5065
5066 case R_ARM_ABS8:
5067 value += addend;
5068 if ((long) value > 0x7f || (long) value < -0x80)
5069 return bfd_reloc_overflow;
5070
5071 bfd_put_8 (input_bfd, value, hit_data);
5072 return bfd_reloc_ok;
5073
5074 case R_ARM_ABS16:
5075 value += addend;
5076
5077 if ((long) value > 0x7fff || (long) value < -0x8000)
5078 return bfd_reloc_overflow;
5079
5080 bfd_put_16 (input_bfd, value, hit_data);
5081 return bfd_reloc_ok;
5082
5083 case R_ARM_THM_ABS5:
5084 /* Support ldr and str instructions for the thumb. */
5085 if (globals->use_rel)
5086 {
5087 /* Need to refetch addend. */
5088 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5089 /* ??? Need to determine shift amount from operand size. */
5090 addend >>= howto->rightshift;
5091 }
5092 value += addend;
5093
5094 /* ??? Isn't value unsigned? */
5095 if ((long) value > 0x1f || (long) value < -0x10)
5096 return bfd_reloc_overflow;
5097
5098 /* ??? Value needs to be properly shifted into place first. */
5099 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
5100 bfd_put_16 (input_bfd, value, hit_data);
5101 return bfd_reloc_ok;
5102
5103 case R_ARM_THM_ALU_PREL_11_0:
5104 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
5105 {
5106 bfd_vma insn;
5107 bfd_signed_vma relocation;
5108
5109 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
5110 | bfd_get_16 (input_bfd, hit_data + 2);
5111
5112 if (globals->use_rel)
5113 {
5114 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
5115 | ((insn & (1 << 26)) >> 15);
5116 if (insn & 0xf00000)
5117 signed_addend = -signed_addend;
5118 }
5119
5120 relocation = value + signed_addend;
5121 relocation -= (input_section->output_section->vma
5122 + input_section->output_offset
5123 + rel->r_offset);
5124
5125 value = abs (relocation);
5126
5127 if (value >= 0x1000)
5128 return bfd_reloc_overflow;
5129
5130 insn = (insn & 0xfb0f8f00) | (value & 0xff)
5131 | ((value & 0x700) << 4)
5132 | ((value & 0x800) << 15);
5133 if (relocation < 0)
5134 insn |= 0xa00000;
5135
5136 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5137 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5138
5139 return bfd_reloc_ok;
5140 }
5141
5142 case R_ARM_THM_PC12:
5143 /* Corresponds to: ldr.w reg, [pc, #offset]. */
5144 {
5145 bfd_vma insn;
5146 bfd_signed_vma relocation;
5147
5148 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
5149 | bfd_get_16 (input_bfd, hit_data + 2);
5150
5151 if (globals->use_rel)
5152 {
5153 signed_addend = insn & 0xfff;
5154 if (!(insn & (1 << 23)))
5155 signed_addend = -signed_addend;
5156 }
5157
5158 relocation = value + signed_addend;
5159 relocation -= (input_section->output_section->vma
5160 + input_section->output_offset
5161 + rel->r_offset);
5162
5163 value = abs (relocation);
5164
5165 if (value >= 0x1000)
5166 return bfd_reloc_overflow;
5167
5168 insn = (insn & 0xff7ff000) | value;
5169 if (relocation >= 0)
5170 insn |= (1 << 23);
5171
5172 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5173 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5174
5175 return bfd_reloc_ok;
5176 }
5177
5178 case R_ARM_THM_XPC22:
5179 case R_ARM_THM_CALL:
5180 case R_ARM_THM_JUMP24:
5181 /* Thumb BL (branch long instruction). */
5182 {
5183 bfd_vma relocation;
5184 bfd_vma reloc_sign;
5185 bfd_boolean overflow = FALSE;
5186 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5187 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5188 bfd_signed_vma reloc_signed_max;
5189 bfd_signed_vma reloc_signed_min;
5190 bfd_vma check;
5191 bfd_signed_vma signed_check;
5192 int bitsize;
5193 int thumb2 = using_thumb2 (globals);
5194
5195 /* A branch to an undefined weak symbol is turned into a jump to
5196 the next instruction. */
5197 if (h && h->root.type == bfd_link_hash_undefweak)
5198 {
5199 bfd_put_16 (input_bfd, 0xe000, hit_data);
5200 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
5201 return bfd_reloc_ok;
5202 }
5203
5204 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
5205 with Thumb-1) involving the J1 and J2 bits. */
5206 if (globals->use_rel)
5207 {
5208 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
5209 bfd_vma upper = upper_insn & 0x3ff;
5210 bfd_vma lower = lower_insn & 0x7ff;
5211 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
5212 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
5213 bfd_vma i1 = j1 ^ s ? 0 : 1;
5214 bfd_vma i2 = j2 ^ s ? 0 : 1;
5215
5216 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
5217 /* Sign extend. */
5218 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
5219
5220 signed_addend = addend;
5221 }
5222
5223 if (r_type == R_ARM_THM_XPC22)
5224 {
5225 /* Check for Thumb to Thumb call. */
5226 /* FIXME: Should we translate the instruction into a BL
5227 instruction instead ? */
5228 if (sym_flags == STT_ARM_TFUNC)
5229 (*_bfd_error_handler)
5230 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
5231 input_bfd,
5232 h ? h->root.root.string : "(local)");
5233 }
5234 else
5235 {
5236 /* If it is not a call to Thumb, assume call to Arm.
5237 If it is a call relative to a section name, then it is not a
5238 function call at all, but rather a long jump. Calls through
5239 the PLT do not require stubs. */
5240 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
5241 && (h == NULL || splt == NULL
5242 || h->plt.offset == (bfd_vma) -1))
5243 {
5244 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5245 {
5246 /* Convert BL to BLX. */
5247 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5248 }
5249 else if (elf32_thumb_to_arm_stub
5250 (info, sym_name, input_bfd, output_bfd, input_section,
5251 hit_data, sym_sec, rel->r_offset, signed_addend, value,
5252 error_message))
5253 return bfd_reloc_ok;
5254 else
5255 return bfd_reloc_dangerous;
5256 }
5257 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
5258 && r_type == R_ARM_THM_CALL)
5259 {
5260 /* Make sure this is a BL. */
5261 lower_insn |= 0x1800;
5262 }
5263 }
5264
5265 /* Handle calls via the PLT. */
5266 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5267 {
5268 value = (splt->output_section->vma
5269 + splt->output_offset
5270 + h->plt.offset);
5271 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5272 {
5273 /* If the Thumb BLX instruction is available, convert the
5274 BL to a BLX instruction to call the ARM-mode PLT entry. */
5275 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5276 }
5277 else
5278 /* Target the Thumb stub before the ARM PLT entry. */
5279 value -= PLT_THUMB_STUB_SIZE;
5280 *unresolved_reloc_p = FALSE;
5281 }
5282
5283 relocation = value + signed_addend;
5284
5285 relocation -= (input_section->output_section->vma
5286 + input_section->output_offset
5287 + rel->r_offset);
5288
5289 check = relocation >> howto->rightshift;
5290
5291 /* If this is a signed value, the rightshift just dropped
5292 leading 1 bits (assuming twos complement). */
5293 if ((bfd_signed_vma) relocation >= 0)
5294 signed_check = check;
5295 else
5296 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5297
5298 /* Calculate the permissable maximum and minimum values for
5299 this relocation according to whether we're relocating for
5300 Thumb-2 or not. */
5301 bitsize = howto->bitsize;
5302 if (!thumb2)
5303 bitsize -= 2;
5304 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
5305 reloc_signed_min = ~reloc_signed_max;
5306
5307 /* Assumes two's complement. */
5308 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5309 overflow = TRUE;
5310
5311 if ((lower_insn & 0x5000) == 0x4000)
5312 /* For a BLX instruction, make sure that the relocation is rounded up
5313 to a word boundary. This follows the semantics of the instruction
5314 which specifies that bit 1 of the target address will come from bit
5315 1 of the base address. */
5316 relocation = (relocation + 2) & ~ 3;
5317
5318 /* Put RELOCATION back into the insn. Assumes two's complement.
5319 We use the Thumb-2 encoding, which is safe even if dealing with
5320 a Thumb-1 instruction by virtue of our overflow check above. */
5321 reloc_sign = (signed_check < 0) ? 1 : 0;
5322 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
5323 | ((relocation >> 12) & 0x3ff)
5324 | (reloc_sign << 10);
5325 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
5326 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
5327 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
5328 | ((relocation >> 1) & 0x7ff);
5329
5330 /* Put the relocated value back in the object file: */
5331 bfd_put_16 (input_bfd, upper_insn, hit_data);
5332 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5333
5334 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5335 }
5336 break;
5337
5338 case R_ARM_THM_JUMP19:
5339 /* Thumb32 conditional branch instruction. */
5340 {
5341 bfd_vma relocation;
5342 bfd_boolean overflow = FALSE;
5343 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5344 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5345 bfd_signed_vma reloc_signed_max = 0xffffe;
5346 bfd_signed_vma reloc_signed_min = -0x100000;
5347 bfd_signed_vma signed_check;
5348
5349 /* Need to refetch the addend, reconstruct the top three bits,
5350 and squish the two 11 bit pieces together. */
5351 if (globals->use_rel)
5352 {
5353 bfd_vma S = (upper_insn & 0x0400) >> 10;
5354 bfd_vma upper = (upper_insn & 0x003f);
5355 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
5356 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
5357 bfd_vma lower = (lower_insn & 0x07ff);
5358
5359 upper |= J1 << 6;
5360 upper |= J2 << 7;
5361 upper |= (!S) << 8;
5362 upper -= 0x0100; /* Sign extend. */
5363
5364 addend = (upper << 12) | (lower << 1);
5365 signed_addend = addend;
5366 }
5367
5368 /* Handle calls via the PLT. */
5369 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5370 {
5371 value = (splt->output_section->vma
5372 + splt->output_offset
5373 + h->plt.offset);
5374 /* Target the Thumb stub before the ARM PLT entry. */
5375 value -= PLT_THUMB_STUB_SIZE;
5376 *unresolved_reloc_p = FALSE;
5377 }
5378
5379 /* ??? Should handle interworking? GCC might someday try to
5380 use this for tail calls. */
5381
5382 relocation = value + signed_addend;
5383 relocation -= (input_section->output_section->vma
5384 + input_section->output_offset
5385 + rel->r_offset);
5386 signed_check = (bfd_signed_vma) relocation;
5387
5388 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5389 overflow = TRUE;
5390
5391 /* Put RELOCATION back into the insn. */
5392 {
5393 bfd_vma S = (relocation & 0x00100000) >> 20;
5394 bfd_vma J2 = (relocation & 0x00080000) >> 19;
5395 bfd_vma J1 = (relocation & 0x00040000) >> 18;
5396 bfd_vma hi = (relocation & 0x0003f000) >> 12;
5397 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5398
5399 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
5400 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
5401 }
5402
5403 /* Put the relocated value back in the object file: */
5404 bfd_put_16 (input_bfd, upper_insn, hit_data);
5405 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5406
5407 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5408 }
5409
5410 case R_ARM_THM_JUMP11:
5411 case R_ARM_THM_JUMP8:
5412 case R_ARM_THM_JUMP6:
5413 /* Thumb B (branch) instruction). */
5414 {
5415 bfd_signed_vma relocation;
5416 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
5417 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5418 bfd_signed_vma signed_check;
5419
5420 /* CZB cannot jump backward. */
5421 if (r_type == R_ARM_THM_JUMP6)
5422 reloc_signed_min = 0;
5423
5424 if (globals->use_rel)
5425 {
5426 /* Need to refetch addend. */
5427 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5428 if (addend & ((howto->src_mask + 1) >> 1))
5429 {
5430 signed_addend = -1;
5431 signed_addend &= ~ howto->src_mask;
5432 signed_addend |= addend;
5433 }
5434 else
5435 signed_addend = addend;
5436 /* The value in the insn has been right shifted. We need to
5437 undo this, so that we can perform the address calculation
5438 in terms of bytes. */
5439 signed_addend <<= howto->rightshift;
5440 }
5441 relocation = value + signed_addend;
5442
5443 relocation -= (input_section->output_section->vma
5444 + input_section->output_offset
5445 + rel->r_offset);
5446
5447 relocation >>= howto->rightshift;
5448 signed_check = relocation;
5449
5450 if (r_type == R_ARM_THM_JUMP6)
5451 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
5452 else
5453 relocation &= howto->dst_mask;
5454 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
5455
5456 bfd_put_16 (input_bfd, relocation, hit_data);
5457
5458 /* Assumes two's complement. */
5459 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5460 return bfd_reloc_overflow;
5461
5462 return bfd_reloc_ok;
5463 }
5464
5465 case R_ARM_ALU_PCREL7_0:
5466 case R_ARM_ALU_PCREL15_8:
5467 case R_ARM_ALU_PCREL23_15:
5468 {
5469 bfd_vma insn;
5470 bfd_vma relocation;
5471
5472 insn = bfd_get_32 (input_bfd, hit_data);
5473 if (globals->use_rel)
5474 {
5475 /* Extract the addend. */
5476 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
5477 signed_addend = addend;
5478 }
5479 relocation = value + signed_addend;
5480
5481 relocation -= (input_section->output_section->vma
5482 + input_section->output_offset
5483 + rel->r_offset);
5484 insn = (insn & ~0xfff)
5485 | ((howto->bitpos << 7) & 0xf00)
5486 | ((relocation >> howto->bitpos) & 0xff);
5487 bfd_put_32 (input_bfd, value, hit_data);
5488 }
5489 return bfd_reloc_ok;
5490
5491 case R_ARM_GNU_VTINHERIT:
5492 case R_ARM_GNU_VTENTRY:
5493 return bfd_reloc_ok;
5494
5495 case R_ARM_GOTOFF32:
5496 /* Relocation is relative to the start of the
5497 global offset table. */
5498
5499 BFD_ASSERT (sgot != NULL);
5500 if (sgot == NULL)
5501 return bfd_reloc_notsupported;
5502
5503 /* If we are addressing a Thumb function, we need to adjust the
5504 address by one, so that attempts to call the function pointer will
5505 correctly interpret it as Thumb code. */
5506 if (sym_flags == STT_ARM_TFUNC)
5507 value += 1;
5508
5509 /* Note that sgot->output_offset is not involved in this
5510 calculation. We always want the start of .got. If we
5511 define _GLOBAL_OFFSET_TABLE in a different way, as is
5512 permitted by the ABI, we might have to change this
5513 calculation. */
5514 value -= sgot->output_section->vma;
5515 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5516 contents, rel->r_offset, value,
5517 rel->r_addend);
5518
5519 case R_ARM_GOTPC:
5520 /* Use global offset table as symbol value. */
5521 BFD_ASSERT (sgot != NULL);
5522
5523 if (sgot == NULL)
5524 return bfd_reloc_notsupported;
5525
5526 *unresolved_reloc_p = FALSE;
5527 value = sgot->output_section->vma;
5528 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5529 contents, rel->r_offset, value,
5530 rel->r_addend);
5531
5532 case R_ARM_GOT32:
5533 case R_ARM_GOT_PREL:
5534 /* Relocation is to the entry for this symbol in the
5535 global offset table. */
5536 if (sgot == NULL)
5537 return bfd_reloc_notsupported;
5538
5539 if (h != NULL)
5540 {
5541 bfd_vma off;
5542 bfd_boolean dyn;
5543
5544 off = h->got.offset;
5545 BFD_ASSERT (off != (bfd_vma) -1);
5546 dyn = globals->root.dynamic_sections_created;
5547
5548 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5549 || (info->shared
5550 && SYMBOL_REFERENCES_LOCAL (info, h))
5551 || (ELF_ST_VISIBILITY (h->other)
5552 && h->root.type == bfd_link_hash_undefweak))
5553 {
5554 /* This is actually a static link, or it is a -Bsymbolic link
5555 and the symbol is defined locally. We must initialize this
5556 entry in the global offset table. Since the offset must
5557 always be a multiple of 4, we use the least significant bit
5558 to record whether we have initialized it already.
5559
5560 When doing a dynamic link, we create a .rel(a).got relocation
5561 entry to initialize the value. This is done in the
5562 finish_dynamic_symbol routine. */
5563 if ((off & 1) != 0)
5564 off &= ~1;
5565 else
5566 {
5567 /* If we are addressing a Thumb function, we need to
5568 adjust the address by one, so that attempts to
5569 call the function pointer will correctly
5570 interpret it as Thumb code. */
5571 if (sym_flags == STT_ARM_TFUNC)
5572 value |= 1;
5573
5574 bfd_put_32 (output_bfd, value, sgot->contents + off);
5575 h->got.offset |= 1;
5576 }
5577 }
5578 else
5579 *unresolved_reloc_p = FALSE;
5580
5581 value = sgot->output_offset + off;
5582 }
5583 else
5584 {
5585 bfd_vma off;
5586
5587 BFD_ASSERT (local_got_offsets != NULL &&
5588 local_got_offsets[r_symndx] != (bfd_vma) -1);
5589
5590 off = local_got_offsets[r_symndx];
5591
5592 /* The offset must always be a multiple of 4. We use the
5593 least significant bit to record whether we have already
5594 generated the necessary reloc. */
5595 if ((off & 1) != 0)
5596 off &= ~1;
5597 else
5598 {
5599 /* If we are addressing a Thumb function, we need to
5600 adjust the address by one, so that attempts to
5601 call the function pointer will correctly
5602 interpret it as Thumb code. */
5603 if (sym_flags == STT_ARM_TFUNC)
5604 value |= 1;
5605
5606 if (globals->use_rel)
5607 bfd_put_32 (output_bfd, value, sgot->contents + off);
5608
5609 if (info->shared)
5610 {
5611 asection * srelgot;
5612 Elf_Internal_Rela outrel;
5613 bfd_byte *loc;
5614
5615 srelgot = (bfd_get_section_by_name
5616 (dynobj, RELOC_SECTION (globals, ".got")));
5617 BFD_ASSERT (srelgot != NULL);
5618
5619 outrel.r_addend = addend + value;
5620 outrel.r_offset = (sgot->output_section->vma
5621 + sgot->output_offset
5622 + off);
5623 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
5624 loc = srelgot->contents;
5625 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
5626 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5627 }
5628
5629 local_got_offsets[r_symndx] |= 1;
5630 }
5631
5632 value = sgot->output_offset + off;
5633 }
5634 if (r_type != R_ARM_GOT32)
5635 value += sgot->output_section->vma;
5636
5637 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5638 contents, rel->r_offset, value,
5639 rel->r_addend);
5640
5641 case R_ARM_TLS_LDO32:
5642 value = value - dtpoff_base (info);
5643
5644 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5645 contents, rel->r_offset, value,
5646 rel->r_addend);
5647
5648 case R_ARM_TLS_LDM32:
5649 {
5650 bfd_vma off;
5651
5652 if (globals->sgot == NULL)
5653 abort ();
5654
5655 off = globals->tls_ldm_got.offset;
5656
5657 if ((off & 1) != 0)
5658 off &= ~1;
5659 else
5660 {
5661 /* If we don't know the module number, create a relocation
5662 for it. */
5663 if (info->shared)
5664 {
5665 Elf_Internal_Rela outrel;
5666 bfd_byte *loc;
5667
5668 if (globals->srelgot == NULL)
5669 abort ();
5670
5671 outrel.r_addend = 0;
5672 outrel.r_offset = (globals->sgot->output_section->vma
5673 + globals->sgot->output_offset + off);
5674 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
5675
5676 if (globals->use_rel)
5677 bfd_put_32 (output_bfd, outrel.r_addend,
5678 globals->sgot->contents + off);
5679
5680 loc = globals->srelgot->contents;
5681 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
5682 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5683 }
5684 else
5685 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
5686
5687 globals->tls_ldm_got.offset |= 1;
5688 }
5689
5690 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5691 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5692
5693 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5694 contents, rel->r_offset, value,
5695 rel->r_addend);
5696 }
5697
5698 case R_ARM_TLS_GD32:
5699 case R_ARM_TLS_IE32:
5700 {
5701 bfd_vma off;
5702 int indx;
5703 char tls_type;
5704
5705 if (globals->sgot == NULL)
5706 abort ();
5707
5708 indx = 0;
5709 if (h != NULL)
5710 {
5711 bfd_boolean dyn;
5712 dyn = globals->root.dynamic_sections_created;
5713 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5714 && (!info->shared
5715 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5716 {
5717 *unresolved_reloc_p = FALSE;
5718 indx = h->dynindx;
5719 }
5720 off = h->got.offset;
5721 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
5722 }
5723 else
5724 {
5725 if (local_got_offsets == NULL)
5726 abort ();
5727 off = local_got_offsets[r_symndx];
5728 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
5729 }
5730
5731 if (tls_type == GOT_UNKNOWN)
5732 abort ();
5733
5734 if ((off & 1) != 0)
5735 off &= ~1;
5736 else
5737 {
5738 bfd_boolean need_relocs = FALSE;
5739 Elf_Internal_Rela outrel;
5740 bfd_byte *loc = NULL;
5741 int cur_off = off;
5742
5743 /* The GOT entries have not been initialized yet. Do it
5744 now, and emit any relocations. If both an IE GOT and a
5745 GD GOT are necessary, we emit the GD first. */
5746
5747 if ((info->shared || indx != 0)
5748 && (h == NULL
5749 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5750 || h->root.type != bfd_link_hash_undefweak))
5751 {
5752 need_relocs = TRUE;
5753 if (globals->srelgot == NULL)
5754 abort ();
5755 loc = globals->srelgot->contents;
5756 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
5757 }
5758
5759 if (tls_type & GOT_TLS_GD)
5760 {
5761 if (need_relocs)
5762 {
5763 outrel.r_addend = 0;
5764 outrel.r_offset = (globals->sgot->output_section->vma
5765 + globals->sgot->output_offset
5766 + cur_off);
5767 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
5768
5769 if (globals->use_rel)
5770 bfd_put_32 (output_bfd, outrel.r_addend,
5771 globals->sgot->contents + cur_off);
5772
5773 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5774 globals->srelgot->reloc_count++;
5775 loc += RELOC_SIZE (globals);
5776
5777 if (indx == 0)
5778 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5779 globals->sgot->contents + cur_off + 4);
5780 else
5781 {
5782 outrel.r_addend = 0;
5783 outrel.r_info = ELF32_R_INFO (indx,
5784 R_ARM_TLS_DTPOFF32);
5785 outrel.r_offset += 4;
5786
5787 if (globals->use_rel)
5788 bfd_put_32 (output_bfd, outrel.r_addend,
5789 globals->sgot->contents + cur_off + 4);
5790
5791
5792 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5793 globals->srelgot->reloc_count++;
5794 loc += RELOC_SIZE (globals);
5795 }
5796 }
5797 else
5798 {
5799 /* If we are not emitting relocations for a
5800 general dynamic reference, then we must be in a
5801 static link or an executable link with the
5802 symbol binding locally. Mark it as belonging
5803 to module 1, the executable. */
5804 bfd_put_32 (output_bfd, 1,
5805 globals->sgot->contents + cur_off);
5806 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5807 globals->sgot->contents + cur_off + 4);
5808 }
5809
5810 cur_off += 8;
5811 }
5812
5813 if (tls_type & GOT_TLS_IE)
5814 {
5815 if (need_relocs)
5816 {
5817 if (indx == 0)
5818 outrel.r_addend = value - dtpoff_base (info);
5819 else
5820 outrel.r_addend = 0;
5821 outrel.r_offset = (globals->sgot->output_section->vma
5822 + globals->sgot->output_offset
5823 + cur_off);
5824 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
5825
5826 if (globals->use_rel)
5827 bfd_put_32 (output_bfd, outrel.r_addend,
5828 globals->sgot->contents + cur_off);
5829
5830 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5831 globals->srelgot->reloc_count++;
5832 loc += RELOC_SIZE (globals);
5833 }
5834 else
5835 bfd_put_32 (output_bfd, tpoff (info, value),
5836 globals->sgot->contents + cur_off);
5837 cur_off += 4;
5838 }
5839
5840 if (h != NULL)
5841 h->got.offset |= 1;
5842 else
5843 local_got_offsets[r_symndx] |= 1;
5844 }
5845
5846 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
5847 off += 8;
5848 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5849 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5850
5851 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5852 contents, rel->r_offset, value,
5853 rel->r_addend);
5854 }
5855
5856 case R_ARM_TLS_LE32:
5857 if (info->shared)
5858 {
5859 (*_bfd_error_handler)
5860 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
5861 input_bfd, input_section,
5862 (long) rel->r_offset, howto->name);
5863 return FALSE;
5864 }
5865 else
5866 value = tpoff (info, value);
5867
5868 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5869 contents, rel->r_offset, value,
5870 rel->r_addend);
5871
5872 case R_ARM_V4BX:
5873 if (globals->fix_v4bx)
5874 {
5875 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5876
5877 /* Ensure that we have a BX instruction. */
5878 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
5879
5880 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
5881 {
5882 /* Branch to veneer. */
5883 bfd_vma glue_addr;
5884 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
5885 glue_addr -= input_section->output_section->vma
5886 + input_section->output_offset
5887 + rel->r_offset + 8;
5888 insn = (insn & 0xf0000000) | 0x0a000000
5889 | ((glue_addr >> 2) & 0x00ffffff);
5890 }
5891 else
5892 {
5893 /* Preserve Rm (lowest four bits) and the condition code
5894 (highest four bits). Other bits encode MOV PC,Rm. */
5895 insn = (insn & 0xf000000f) | 0x01a0f000;
5896 }
5897
5898 bfd_put_32 (input_bfd, insn, hit_data);
5899 }
5900 return bfd_reloc_ok;
5901
5902 case R_ARM_MOVW_ABS_NC:
5903 case R_ARM_MOVT_ABS:
5904 case R_ARM_MOVW_PREL_NC:
5905 case R_ARM_MOVT_PREL:
5906 /* Until we properly support segment-base-relative addressing then
5907 we assume the segment base to be zero, as for the group relocations.
5908 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
5909 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
5910 case R_ARM_MOVW_BREL_NC:
5911 case R_ARM_MOVW_BREL:
5912 case R_ARM_MOVT_BREL:
5913 {
5914 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5915
5916 if (globals->use_rel)
5917 {
5918 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
5919 signed_addend = (addend ^ 0x8000) - 0x8000;
5920 }
5921
5922 value += signed_addend;
5923
5924 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
5925 value -= (input_section->output_section->vma
5926 + input_section->output_offset + rel->r_offset);
5927
5928 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
5929 return bfd_reloc_overflow;
5930
5931 if (sym_flags == STT_ARM_TFUNC)
5932 value |= 1;
5933
5934 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
5935 || r_type == R_ARM_MOVT_BREL)
5936 value >>= 16;
5937
5938 insn &= 0xfff0f000;
5939 insn |= value & 0xfff;
5940 insn |= (value & 0xf000) << 4;
5941 bfd_put_32 (input_bfd, insn, hit_data);
5942 }
5943 return bfd_reloc_ok;
5944
5945 case R_ARM_THM_MOVW_ABS_NC:
5946 case R_ARM_THM_MOVT_ABS:
5947 case R_ARM_THM_MOVW_PREL_NC:
5948 case R_ARM_THM_MOVT_PREL:
5949 /* Until we properly support segment-base-relative addressing then
5950 we assume the segment base to be zero, as for the above relocations.
5951 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
5952 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
5953 as R_ARM_THM_MOVT_ABS. */
5954 case R_ARM_THM_MOVW_BREL_NC:
5955 case R_ARM_THM_MOVW_BREL:
5956 case R_ARM_THM_MOVT_BREL:
5957 {
5958 bfd_vma insn;
5959
5960 insn = bfd_get_16 (input_bfd, hit_data) << 16;
5961 insn |= bfd_get_16 (input_bfd, hit_data + 2);
5962
5963 if (globals->use_rel)
5964 {
5965 addend = ((insn >> 4) & 0xf000)
5966 | ((insn >> 15) & 0x0800)
5967 | ((insn >> 4) & 0x0700)
5968 | (insn & 0x00ff);
5969 signed_addend = (addend ^ 0x8000) - 0x8000;
5970 }
5971
5972 value += signed_addend;
5973
5974 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
5975 value -= (input_section->output_section->vma
5976 + input_section->output_offset + rel->r_offset);
5977
5978 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
5979 return bfd_reloc_overflow;
5980
5981 if (sym_flags == STT_ARM_TFUNC)
5982 value |= 1;
5983
5984 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
5985 || r_type == R_ARM_THM_MOVT_BREL)
5986 value >>= 16;
5987
5988 insn &= 0xfbf08f00;
5989 insn |= (value & 0xf000) << 4;
5990 insn |= (value & 0x0800) << 15;
5991 insn |= (value & 0x0700) << 4;
5992 insn |= (value & 0x00ff);
5993
5994 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5995 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5996 }
5997 return bfd_reloc_ok;
5998
5999 case R_ARM_ALU_PC_G0_NC:
6000 case R_ARM_ALU_PC_G1_NC:
6001 case R_ARM_ALU_PC_G0:
6002 case R_ARM_ALU_PC_G1:
6003 case R_ARM_ALU_PC_G2:
6004 case R_ARM_ALU_SB_G0_NC:
6005 case R_ARM_ALU_SB_G1_NC:
6006 case R_ARM_ALU_SB_G0:
6007 case R_ARM_ALU_SB_G1:
6008 case R_ARM_ALU_SB_G2:
6009 {
6010 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6011 bfd_vma pc = input_section->output_section->vma
6012 + input_section->output_offset + rel->r_offset;
6013 /* sb should be the origin of the *segment* containing the symbol.
6014 It is not clear how to obtain this OS-dependent value, so we
6015 make an arbitrary choice of zero. */
6016 bfd_vma sb = 0;
6017 bfd_vma residual;
6018 bfd_vma g_n;
6019 bfd_signed_vma signed_value;
6020 int group = 0;
6021
6022 /* Determine which group of bits to select. */
6023 switch (r_type)
6024 {
6025 case R_ARM_ALU_PC_G0_NC:
6026 case R_ARM_ALU_PC_G0:
6027 case R_ARM_ALU_SB_G0_NC:
6028 case R_ARM_ALU_SB_G0:
6029 group = 0;
6030 break;
6031
6032 case R_ARM_ALU_PC_G1_NC:
6033 case R_ARM_ALU_PC_G1:
6034 case R_ARM_ALU_SB_G1_NC:
6035 case R_ARM_ALU_SB_G1:
6036 group = 1;
6037 break;
6038
6039 case R_ARM_ALU_PC_G2:
6040 case R_ARM_ALU_SB_G2:
6041 group = 2;
6042 break;
6043
6044 default:
6045 abort();
6046 }
6047
6048 /* If REL, extract the addend from the insn. If RELA, it will
6049 have already been fetched for us. */
6050 if (globals->use_rel)
6051 {
6052 int negative;
6053 bfd_vma constant = insn & 0xff;
6054 bfd_vma rotation = (insn & 0xf00) >> 8;
6055
6056 if (rotation == 0)
6057 signed_addend = constant;
6058 else
6059 {
6060 /* Compensate for the fact that in the instruction, the
6061 rotation is stored in multiples of 2 bits. */
6062 rotation *= 2;
6063
6064 /* Rotate "constant" right by "rotation" bits. */
6065 signed_addend = (constant >> rotation) |
6066 (constant << (8 * sizeof (bfd_vma) - rotation));
6067 }
6068
6069 /* Determine if the instruction is an ADD or a SUB.
6070 (For REL, this determines the sign of the addend.) */
6071 negative = identify_add_or_sub (insn);
6072 if (negative == 0)
6073 {
6074 (*_bfd_error_handler)
6075 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
6076 input_bfd, input_section,
6077 (long) rel->r_offset, howto->name);
6078 return bfd_reloc_overflow;
6079 }
6080
6081 signed_addend *= negative;
6082 }
6083
6084 /* Compute the value (X) to go in the place. */
6085 if (r_type == R_ARM_ALU_PC_G0_NC
6086 || r_type == R_ARM_ALU_PC_G1_NC
6087 || r_type == R_ARM_ALU_PC_G0
6088 || r_type == R_ARM_ALU_PC_G1
6089 || r_type == R_ARM_ALU_PC_G2)
6090 /* PC relative. */
6091 signed_value = value - pc + signed_addend;
6092 else
6093 /* Section base relative. */
6094 signed_value = value - sb + signed_addend;
6095
6096 /* If the target symbol is a Thumb function, then set the
6097 Thumb bit in the address. */
6098 if (sym_flags == STT_ARM_TFUNC)
6099 signed_value |= 1;
6100
6101 /* Calculate the value of the relevant G_n, in encoded
6102 constant-with-rotation format. */
6103 g_n = calculate_group_reloc_mask (abs (signed_value), group,
6104 &residual);
6105
6106 /* Check for overflow if required. */
6107 if ((r_type == R_ARM_ALU_PC_G0
6108 || r_type == R_ARM_ALU_PC_G1
6109 || r_type == R_ARM_ALU_PC_G2
6110 || r_type == R_ARM_ALU_SB_G0
6111 || r_type == R_ARM_ALU_SB_G1
6112 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
6113 {
6114 (*_bfd_error_handler)
6115 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6116 input_bfd, input_section,
6117 (long) rel->r_offset, abs (signed_value), howto->name);
6118 return bfd_reloc_overflow;
6119 }
6120
6121 /* Mask out the value and the ADD/SUB part of the opcode; take care
6122 not to destroy the S bit. */
6123 insn &= 0xff1ff000;
6124
6125 /* Set the opcode according to whether the value to go in the
6126 place is negative. */
6127 if (signed_value < 0)
6128 insn |= 1 << 22;
6129 else
6130 insn |= 1 << 23;
6131
6132 /* Encode the offset. */
6133 insn |= g_n;
6134
6135 bfd_put_32 (input_bfd, insn, hit_data);
6136 }
6137 return bfd_reloc_ok;
6138
6139 case R_ARM_LDR_PC_G0:
6140 case R_ARM_LDR_PC_G1:
6141 case R_ARM_LDR_PC_G2:
6142 case R_ARM_LDR_SB_G0:
6143 case R_ARM_LDR_SB_G1:
6144 case R_ARM_LDR_SB_G2:
6145 {
6146 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6147 bfd_vma pc = input_section->output_section->vma
6148 + input_section->output_offset + rel->r_offset;
6149 bfd_vma sb = 0; /* See note above. */
6150 bfd_vma residual;
6151 bfd_signed_vma signed_value;
6152 int group = 0;
6153
6154 /* Determine which groups of bits to calculate. */
6155 switch (r_type)
6156 {
6157 case R_ARM_LDR_PC_G0:
6158 case R_ARM_LDR_SB_G0:
6159 group = 0;
6160 break;
6161
6162 case R_ARM_LDR_PC_G1:
6163 case R_ARM_LDR_SB_G1:
6164 group = 1;
6165 break;
6166
6167 case R_ARM_LDR_PC_G2:
6168 case R_ARM_LDR_SB_G2:
6169 group = 2;
6170 break;
6171
6172 default:
6173 abort();
6174 }
6175
6176 /* If REL, extract the addend from the insn. If RELA, it will
6177 have already been fetched for us. */
6178 if (globals->use_rel)
6179 {
6180 int negative = (insn & (1 << 23)) ? 1 : -1;
6181 signed_addend = negative * (insn & 0xfff);
6182 }
6183
6184 /* Compute the value (X) to go in the place. */
6185 if (r_type == R_ARM_LDR_PC_G0
6186 || r_type == R_ARM_LDR_PC_G1
6187 || r_type == R_ARM_LDR_PC_G2)
6188 /* PC relative. */
6189 signed_value = value - pc + signed_addend;
6190 else
6191 /* Section base relative. */
6192 signed_value = value - sb + signed_addend;
6193
6194 /* Calculate the value of the relevant G_{n-1} to obtain
6195 the residual at that stage. */
6196 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6197
6198 /* Check for overflow. */
6199 if (residual >= 0x1000)
6200 {
6201 (*_bfd_error_handler)
6202 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6203 input_bfd, input_section,
6204 (long) rel->r_offset, abs (signed_value), howto->name);
6205 return bfd_reloc_overflow;
6206 }
6207
6208 /* Mask out the value and U bit. */
6209 insn &= 0xff7ff000;
6210
6211 /* Set the U bit if the value to go in the place is non-negative. */
6212 if (signed_value >= 0)
6213 insn |= 1 << 23;
6214
6215 /* Encode the offset. */
6216 insn |= residual;
6217
6218 bfd_put_32 (input_bfd, insn, hit_data);
6219 }
6220 return bfd_reloc_ok;
6221
6222 case R_ARM_LDRS_PC_G0:
6223 case R_ARM_LDRS_PC_G1:
6224 case R_ARM_LDRS_PC_G2:
6225 case R_ARM_LDRS_SB_G0:
6226 case R_ARM_LDRS_SB_G1:
6227 case R_ARM_LDRS_SB_G2:
6228 {
6229 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6230 bfd_vma pc = input_section->output_section->vma
6231 + input_section->output_offset + rel->r_offset;
6232 bfd_vma sb = 0; /* See note above. */
6233 bfd_vma residual;
6234 bfd_signed_vma signed_value;
6235 int group = 0;
6236
6237 /* Determine which groups of bits to calculate. */
6238 switch (r_type)
6239 {
6240 case R_ARM_LDRS_PC_G0:
6241 case R_ARM_LDRS_SB_G0:
6242 group = 0;
6243 break;
6244
6245 case R_ARM_LDRS_PC_G1:
6246 case R_ARM_LDRS_SB_G1:
6247 group = 1;
6248 break;
6249
6250 case R_ARM_LDRS_PC_G2:
6251 case R_ARM_LDRS_SB_G2:
6252 group = 2;
6253 break;
6254
6255 default:
6256 abort();
6257 }
6258
6259 /* If REL, extract the addend from the insn. If RELA, it will
6260 have already been fetched for us. */
6261 if (globals->use_rel)
6262 {
6263 int negative = (insn & (1 << 23)) ? 1 : -1;
6264 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
6265 }
6266
6267 /* Compute the value (X) to go in the place. */
6268 if (r_type == R_ARM_LDRS_PC_G0
6269 || r_type == R_ARM_LDRS_PC_G1
6270 || r_type == R_ARM_LDRS_PC_G2)
6271 /* PC relative. */
6272 signed_value = value - pc + signed_addend;
6273 else
6274 /* Section base relative. */
6275 signed_value = value - sb + signed_addend;
6276
6277 /* Calculate the value of the relevant G_{n-1} to obtain
6278 the residual at that stage. */
6279 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6280
6281 /* Check for overflow. */
6282 if (residual >= 0x100)
6283 {
6284 (*_bfd_error_handler)
6285 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6286 input_bfd, input_section,
6287 (long) rel->r_offset, abs (signed_value), howto->name);
6288 return bfd_reloc_overflow;
6289 }
6290
6291 /* Mask out the value and U bit. */
6292 insn &= 0xff7ff0f0;
6293
6294 /* Set the U bit if the value to go in the place is non-negative. */
6295 if (signed_value >= 0)
6296 insn |= 1 << 23;
6297
6298 /* Encode the offset. */
6299 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
6300
6301 bfd_put_32 (input_bfd, insn, hit_data);
6302 }
6303 return bfd_reloc_ok;
6304
6305 case R_ARM_LDC_PC_G0:
6306 case R_ARM_LDC_PC_G1:
6307 case R_ARM_LDC_PC_G2:
6308 case R_ARM_LDC_SB_G0:
6309 case R_ARM_LDC_SB_G1:
6310 case R_ARM_LDC_SB_G2:
6311 {
6312 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6313 bfd_vma pc = input_section->output_section->vma
6314 + input_section->output_offset + rel->r_offset;
6315 bfd_vma sb = 0; /* See note above. */
6316 bfd_vma residual;
6317 bfd_signed_vma signed_value;
6318 int group = 0;
6319
6320 /* Determine which groups of bits to calculate. */
6321 switch (r_type)
6322 {
6323 case R_ARM_LDC_PC_G0:
6324 case R_ARM_LDC_SB_G0:
6325 group = 0;
6326 break;
6327
6328 case R_ARM_LDC_PC_G1:
6329 case R_ARM_LDC_SB_G1:
6330 group = 1;
6331 break;
6332
6333 case R_ARM_LDC_PC_G2:
6334 case R_ARM_LDC_SB_G2:
6335 group = 2;
6336 break;
6337
6338 default:
6339 abort();
6340 }
6341
6342 /* If REL, extract the addend from the insn. If RELA, it will
6343 have already been fetched for us. */
6344 if (globals->use_rel)
6345 {
6346 int negative = (insn & (1 << 23)) ? 1 : -1;
6347 signed_addend = negative * ((insn & 0xff) << 2);
6348 }
6349
6350 /* Compute the value (X) to go in the place. */
6351 if (r_type == R_ARM_LDC_PC_G0
6352 || r_type == R_ARM_LDC_PC_G1
6353 || r_type == R_ARM_LDC_PC_G2)
6354 /* PC relative. */
6355 signed_value = value - pc + signed_addend;
6356 else
6357 /* Section base relative. */
6358 signed_value = value - sb + signed_addend;
6359
6360 /* Calculate the value of the relevant G_{n-1} to obtain
6361 the residual at that stage. */
6362 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6363
6364 /* Check for overflow. (The absolute value to go in the place must be
6365 divisible by four and, after having been divided by four, must
6366 fit in eight bits.) */
6367 if ((residual & 0x3) != 0 || residual >= 0x400)
6368 {
6369 (*_bfd_error_handler)
6370 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6371 input_bfd, input_section,
6372 (long) rel->r_offset, abs (signed_value), howto->name);
6373 return bfd_reloc_overflow;
6374 }
6375
6376 /* Mask out the value and U bit. */
6377 insn &= 0xff7fff00;
6378
6379 /* Set the U bit if the value to go in the place is non-negative. */
6380 if (signed_value >= 0)
6381 insn |= 1 << 23;
6382
6383 /* Encode the offset. */
6384 insn |= residual >> 2;
6385
6386 bfd_put_32 (input_bfd, insn, hit_data);
6387 }
6388 return bfd_reloc_ok;
6389
6390 default:
6391 return bfd_reloc_notsupported;
6392 }
6393 }
6394
6395 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
6396 static void
6397 arm_add_to_rel (bfd * abfd,
6398 bfd_byte * address,
6399 reloc_howto_type * howto,
6400 bfd_signed_vma increment)
6401 {
6402 bfd_signed_vma addend;
6403
6404 if (howto->type == R_ARM_THM_CALL
6405 || howto->type == R_ARM_THM_JUMP24)
6406 {
6407 int upper_insn, lower_insn;
6408 int upper, lower;
6409
6410 upper_insn = bfd_get_16 (abfd, address);
6411 lower_insn = bfd_get_16 (abfd, address + 2);
6412 upper = upper_insn & 0x7ff;
6413 lower = lower_insn & 0x7ff;
6414
6415 addend = (upper << 12) | (lower << 1);
6416 addend += increment;
6417 addend >>= 1;
6418
6419 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
6420 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
6421
6422 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
6423 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
6424 }
6425 else
6426 {
6427 bfd_vma contents;
6428
6429 contents = bfd_get_32 (abfd, address);
6430
6431 /* Get the (signed) value from the instruction. */
6432 addend = contents & howto->src_mask;
6433 if (addend & ((howto->src_mask + 1) >> 1))
6434 {
6435 bfd_signed_vma mask;
6436
6437 mask = -1;
6438 mask &= ~ howto->src_mask;
6439 addend |= mask;
6440 }
6441
6442 /* Add in the increment, (which is a byte value). */
6443 switch (howto->type)
6444 {
6445 default:
6446 addend += increment;
6447 break;
6448
6449 case R_ARM_PC24:
6450 case R_ARM_PLT32:
6451 case R_ARM_CALL:
6452 case R_ARM_JUMP24:
6453 addend <<= howto->size;
6454 addend += increment;
6455
6456 /* Should we check for overflow here ? */
6457
6458 /* Drop any undesired bits. */
6459 addend >>= howto->rightshift;
6460 break;
6461 }
6462
6463 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
6464
6465 bfd_put_32 (abfd, contents, address);
6466 }
6467 }
6468
6469 #define IS_ARM_TLS_RELOC(R_TYPE) \
6470 ((R_TYPE) == R_ARM_TLS_GD32 \
6471 || (R_TYPE) == R_ARM_TLS_LDO32 \
6472 || (R_TYPE) == R_ARM_TLS_LDM32 \
6473 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
6474 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
6475 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
6476 || (R_TYPE) == R_ARM_TLS_LE32 \
6477 || (R_TYPE) == R_ARM_TLS_IE32)
6478
6479 /* Relocate an ARM ELF section. */
6480 static bfd_boolean
6481 elf32_arm_relocate_section (bfd * output_bfd,
6482 struct bfd_link_info * info,
6483 bfd * input_bfd,
6484 asection * input_section,
6485 bfd_byte * contents,
6486 Elf_Internal_Rela * relocs,
6487 Elf_Internal_Sym * local_syms,
6488 asection ** local_sections)
6489 {
6490 Elf_Internal_Shdr *symtab_hdr;
6491 struct elf_link_hash_entry **sym_hashes;
6492 Elf_Internal_Rela *rel;
6493 Elf_Internal_Rela *relend;
6494 const char *name;
6495 struct elf32_arm_link_hash_table * globals;
6496
6497 globals = elf32_arm_hash_table (info);
6498
6499 symtab_hdr = & elf_symtab_hdr (input_bfd);
6500 sym_hashes = elf_sym_hashes (input_bfd);
6501
6502 rel = relocs;
6503 relend = relocs + input_section->reloc_count;
6504 for (; rel < relend; rel++)
6505 {
6506 int r_type;
6507 reloc_howto_type * howto;
6508 unsigned long r_symndx;
6509 Elf_Internal_Sym * sym;
6510 asection * sec;
6511 struct elf_link_hash_entry * h;
6512 bfd_vma relocation;
6513 bfd_reloc_status_type r;
6514 arelent bfd_reloc;
6515 char sym_type;
6516 bfd_boolean unresolved_reloc = FALSE;
6517 char *error_message = NULL;
6518
6519 r_symndx = ELF32_R_SYM (rel->r_info);
6520 r_type = ELF32_R_TYPE (rel->r_info);
6521 r_type = arm_real_reloc_type (globals, r_type);
6522
6523 if ( r_type == R_ARM_GNU_VTENTRY
6524 || r_type == R_ARM_GNU_VTINHERIT)
6525 continue;
6526
6527 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
6528 howto = bfd_reloc.howto;
6529
6530 h = NULL;
6531 sym = NULL;
6532 sec = NULL;
6533
6534 if (r_symndx < symtab_hdr->sh_info)
6535 {
6536 sym = local_syms + r_symndx;
6537 sym_type = ELF32_ST_TYPE (sym->st_info);
6538 sec = local_sections[r_symndx];
6539 if (globals->use_rel)
6540 {
6541 relocation = (sec->output_section->vma
6542 + sec->output_offset
6543 + sym->st_value);
6544 if (!info->relocatable
6545 && (sec->flags & SEC_MERGE)
6546 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6547 {
6548 asection *msec;
6549 bfd_vma addend, value;
6550
6551 switch (r_type)
6552 {
6553 case R_ARM_MOVW_ABS_NC:
6554 case R_ARM_MOVT_ABS:
6555 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6556 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
6557 addend = (addend ^ 0x8000) - 0x8000;
6558 break;
6559
6560 case R_ARM_THM_MOVW_ABS_NC:
6561 case R_ARM_THM_MOVT_ABS:
6562 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
6563 << 16;
6564 value |= bfd_get_16 (input_bfd,
6565 contents + rel->r_offset + 2);
6566 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
6567 | ((value & 0x04000000) >> 15);
6568 addend = (addend ^ 0x8000) - 0x8000;
6569 break;
6570
6571 default:
6572 if (howto->rightshift
6573 || (howto->src_mask & (howto->src_mask + 1)))
6574 {
6575 (*_bfd_error_handler)
6576 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
6577 input_bfd, input_section,
6578 (long) rel->r_offset, howto->name);
6579 return FALSE;
6580 }
6581
6582 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6583
6584 /* Get the (signed) value from the instruction. */
6585 addend = value & howto->src_mask;
6586 if (addend & ((howto->src_mask + 1) >> 1))
6587 {
6588 bfd_signed_vma mask;
6589
6590 mask = -1;
6591 mask &= ~ howto->src_mask;
6592 addend |= mask;
6593 }
6594 break;
6595 }
6596
6597 msec = sec;
6598 addend =
6599 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
6600 - relocation;
6601 addend += msec->output_section->vma + msec->output_offset;
6602
6603 /* Cases here must match those in the preceeding
6604 switch statement. */
6605 switch (r_type)
6606 {
6607 case R_ARM_MOVW_ABS_NC:
6608 case R_ARM_MOVT_ABS:
6609 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
6610 | (addend & 0xfff);
6611 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6612 break;
6613
6614 case R_ARM_THM_MOVW_ABS_NC:
6615 case R_ARM_THM_MOVT_ABS:
6616 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
6617 | (addend & 0xff) | ((addend & 0x0800) << 15);
6618 bfd_put_16 (input_bfd, value >> 16,
6619 contents + rel->r_offset);
6620 bfd_put_16 (input_bfd, value,
6621 contents + rel->r_offset + 2);
6622 break;
6623
6624 default:
6625 value = (value & ~ howto->dst_mask)
6626 | (addend & howto->dst_mask);
6627 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6628 break;
6629 }
6630 }
6631 }
6632 else
6633 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6634 }
6635 else
6636 {
6637 bfd_boolean warned;
6638
6639 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6640 r_symndx, symtab_hdr, sym_hashes,
6641 h, sec, relocation,
6642 unresolved_reloc, warned);
6643
6644 sym_type = h->type;
6645 }
6646
6647 if (sec != NULL && elf_discarded_section (sec))
6648 {
6649 /* For relocs against symbols from removed linkonce sections,
6650 or sections discarded by a linker script, we just want the
6651 section contents zeroed. Avoid any special processing. */
6652 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
6653 rel->r_info = 0;
6654 rel->r_addend = 0;
6655 continue;
6656 }
6657
6658 if (info->relocatable)
6659 {
6660 /* This is a relocatable link. We don't have to change
6661 anything, unless the reloc is against a section symbol,
6662 in which case we have to adjust according to where the
6663 section symbol winds up in the output section. */
6664 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6665 {
6666 if (globals->use_rel)
6667 arm_add_to_rel (input_bfd, contents + rel->r_offset,
6668 howto, (bfd_signed_vma) sec->output_offset);
6669 else
6670 rel->r_addend += sec->output_offset;
6671 }
6672 continue;
6673 }
6674
6675 if (h != NULL)
6676 name = h->root.root.string;
6677 else
6678 {
6679 name = (bfd_elf_string_from_elf_section
6680 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6681 if (name == NULL || *name == '\0')
6682 name = bfd_section_name (input_bfd, sec);
6683 }
6684
6685 if (r_symndx != 0
6686 && r_type != R_ARM_NONE
6687 && (h == NULL
6688 || h->root.type == bfd_link_hash_defined
6689 || h->root.type == bfd_link_hash_defweak)
6690 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
6691 {
6692 (*_bfd_error_handler)
6693 ((sym_type == STT_TLS
6694 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6695 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6696 input_bfd,
6697 input_section,
6698 (long) rel->r_offset,
6699 howto->name,
6700 name);
6701 }
6702
6703 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
6704 input_section, contents, rel,
6705 relocation, info, sec, name,
6706 (h ? ELF_ST_TYPE (h->type) :
6707 ELF_ST_TYPE (sym->st_info)), h,
6708 &unresolved_reloc, &error_message);
6709
6710 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6711 because such sections are not SEC_ALLOC and thus ld.so will
6712 not process them. */
6713 if (unresolved_reloc
6714 && !((input_section->flags & SEC_DEBUGGING) != 0
6715 && h->def_dynamic))
6716 {
6717 (*_bfd_error_handler)
6718 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6719 input_bfd,
6720 input_section,
6721 (long) rel->r_offset,
6722 howto->name,
6723 h->root.root.string);
6724 return FALSE;
6725 }
6726
6727 if (r != bfd_reloc_ok)
6728 {
6729 switch (r)
6730 {
6731 case bfd_reloc_overflow:
6732 /* If the overflowing reloc was to an undefined symbol,
6733 we have already printed one error message and there
6734 is no point complaining again. */
6735 if ((! h ||
6736 h->root.type != bfd_link_hash_undefined)
6737 && (!((*info->callbacks->reloc_overflow)
6738 (info, (h ? &h->root : NULL), name, howto->name,
6739 (bfd_vma) 0, input_bfd, input_section,
6740 rel->r_offset))))
6741 return FALSE;
6742 break;
6743
6744 case bfd_reloc_undefined:
6745 if (!((*info->callbacks->undefined_symbol)
6746 (info, name, input_bfd, input_section,
6747 rel->r_offset, TRUE)))
6748 return FALSE;
6749 break;
6750
6751 case bfd_reloc_outofrange:
6752 error_message = _("out of range");
6753 goto common_error;
6754
6755 case bfd_reloc_notsupported:
6756 error_message = _("unsupported relocation");
6757 goto common_error;
6758
6759 case bfd_reloc_dangerous:
6760 /* error_message should already be set. */
6761 goto common_error;
6762
6763 default:
6764 error_message = _("unknown error");
6765 /* fall through */
6766
6767 common_error:
6768 BFD_ASSERT (error_message != NULL);
6769 if (!((*info->callbacks->reloc_dangerous)
6770 (info, error_message, input_bfd, input_section,
6771 rel->r_offset)))
6772 return FALSE;
6773 break;
6774 }
6775 }
6776 }
6777
6778 return TRUE;
6779 }
6780
6781 /* Set the right machine number. */
6782
6783 static bfd_boolean
6784 elf32_arm_object_p (bfd *abfd)
6785 {
6786 unsigned int mach;
6787
6788 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
6789
6790 if (mach != bfd_mach_arm_unknown)
6791 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6792
6793 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
6794 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
6795
6796 else
6797 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6798
6799 return TRUE;
6800 }
6801
6802 /* Function to keep ARM specific flags in the ELF header. */
6803
6804 static bfd_boolean
6805 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
6806 {
6807 if (elf_flags_init (abfd)
6808 && elf_elfheader (abfd)->e_flags != flags)
6809 {
6810 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
6811 {
6812 if (flags & EF_ARM_INTERWORK)
6813 (*_bfd_error_handler)
6814 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
6815 abfd);
6816 else
6817 _bfd_error_handler
6818 (_("Warning: Clearing the interworking flag of %B due to outside request"),
6819 abfd);
6820 }
6821 }
6822 else
6823 {
6824 elf_elfheader (abfd)->e_flags = flags;
6825 elf_flags_init (abfd) = TRUE;
6826 }
6827
6828 return TRUE;
6829 }
6830
6831 /* Copy backend specific data from one object module to another. */
6832
6833 static bfd_boolean
6834 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6835 {
6836 flagword in_flags;
6837 flagword out_flags;
6838
6839 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
6840 return TRUE;
6841
6842 in_flags = elf_elfheader (ibfd)->e_flags;
6843 out_flags = elf_elfheader (obfd)->e_flags;
6844
6845 if (elf_flags_init (obfd)
6846 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
6847 && in_flags != out_flags)
6848 {
6849 /* Cannot mix APCS26 and APCS32 code. */
6850 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
6851 return FALSE;
6852
6853 /* Cannot mix float APCS and non-float APCS code. */
6854 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
6855 return FALSE;
6856
6857 /* If the src and dest have different interworking flags
6858 then turn off the interworking bit. */
6859 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
6860 {
6861 if (out_flags & EF_ARM_INTERWORK)
6862 _bfd_error_handler
6863 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
6864 obfd, ibfd);
6865
6866 in_flags &= ~EF_ARM_INTERWORK;
6867 }
6868
6869 /* Likewise for PIC, though don't warn for this case. */
6870 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
6871 in_flags &= ~EF_ARM_PIC;
6872 }
6873
6874 elf_elfheader (obfd)->e_flags = in_flags;
6875 elf_flags_init (obfd) = TRUE;
6876
6877 /* Also copy the EI_OSABI field. */
6878 elf_elfheader (obfd)->e_ident[EI_OSABI] =
6879 elf_elfheader (ibfd)->e_ident[EI_OSABI];
6880
6881 /* Copy object attributes. */
6882 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6883
6884 return TRUE;
6885 }
6886
6887 /* Values for Tag_ABI_PCS_R9_use. */
6888 enum
6889 {
6890 AEABI_R9_V6,
6891 AEABI_R9_SB,
6892 AEABI_R9_TLS,
6893 AEABI_R9_unused
6894 };
6895
6896 /* Values for Tag_ABI_PCS_RW_data. */
6897 enum
6898 {
6899 AEABI_PCS_RW_data_absolute,
6900 AEABI_PCS_RW_data_PCrel,
6901 AEABI_PCS_RW_data_SBrel,
6902 AEABI_PCS_RW_data_unused
6903 };
6904
6905 /* Values for Tag_ABI_enum_size. */
6906 enum
6907 {
6908 AEABI_enum_unused,
6909 AEABI_enum_short,
6910 AEABI_enum_wide,
6911 AEABI_enum_forced_wide
6912 };
6913
6914 /* Determine whether an object attribute tag takes an integer, a
6915 string or both. */
6916 static int
6917 elf32_arm_obj_attrs_arg_type (int tag)
6918 {
6919 if (tag == Tag_compatibility)
6920 return 3;
6921 else if (tag == 4 || tag == 5)
6922 return 2;
6923 else if (tag < 32)
6924 return 1;
6925 else
6926 return (tag & 1) != 0 ? 2 : 1;
6927 }
6928
6929 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
6930 are conflicting attributes. */
6931 static bfd_boolean
6932 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
6933 {
6934 obj_attribute *in_attr;
6935 obj_attribute *out_attr;
6936 obj_attribute_list *in_list;
6937 /* Some tags have 0 = don't care, 1 = strong requirement,
6938 2 = weak requirement. */
6939 static const int order_312[3] = {3, 1, 2};
6940 int i;
6941
6942 if (!elf_known_obj_attributes_proc (obfd)[0].i)
6943 {
6944 /* This is the first object. Copy the attributes. */
6945 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6946
6947 /* Use the Tag_null value to indicate the attributes have been
6948 initialized. */
6949 elf_known_obj_attributes_proc (obfd)[0].i = 1;
6950
6951 return TRUE;
6952 }
6953
6954 in_attr = elf_known_obj_attributes_proc (ibfd);
6955 out_attr = elf_known_obj_attributes_proc (obfd);
6956 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
6957 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
6958 {
6959 /* Ignore mismatches if teh object doesn't use floating point. */
6960 if (out_attr[Tag_ABI_FP_number_model].i == 0)
6961 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
6962 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
6963 {
6964 _bfd_error_handler
6965 (_("ERROR: %B uses VFP register arguments, %B does not"),
6966 ibfd, obfd);
6967 return FALSE;
6968 }
6969 }
6970
6971 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
6972 {
6973 /* Merge this attribute with existing attributes. */
6974 switch (i)
6975 {
6976 case Tag_CPU_raw_name:
6977 case Tag_CPU_name:
6978 /* Use whichever has the greatest architecture requirements. We
6979 won't necessarily have both the above tags, so make sure input
6980 name is non-NULL. */
6981 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
6982 && in_attr[i].s)
6983 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
6984 break;
6985
6986 case Tag_ABI_optimization_goals:
6987 case Tag_ABI_FP_optimization_goals:
6988 /* Use the first value seen. */
6989 break;
6990
6991 case Tag_CPU_arch:
6992 case Tag_ARM_ISA_use:
6993 case Tag_THUMB_ISA_use:
6994 case Tag_VFP_arch:
6995 case Tag_WMMX_arch:
6996 case Tag_NEON_arch:
6997 /* ??? Do NEON and WMMX conflict? */
6998 case Tag_ABI_FP_rounding:
6999 case Tag_ABI_FP_denormal:
7000 case Tag_ABI_FP_exceptions:
7001 case Tag_ABI_FP_user_exceptions:
7002 case Tag_ABI_FP_number_model:
7003 case Tag_ABI_align8_preserved:
7004 case Tag_ABI_HardFP_use:
7005 /* Use the largest value specified. */
7006 if (in_attr[i].i > out_attr[i].i)
7007 out_attr[i].i = in_attr[i].i;
7008 break;
7009
7010 case Tag_CPU_arch_profile:
7011 /* Warn if conflicting architecture profiles used. */
7012 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
7013 {
7014 _bfd_error_handler
7015 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
7016 ibfd, in_attr[i].i, out_attr[i].i);
7017 return FALSE;
7018 }
7019 if (in_attr[i].i)
7020 out_attr[i].i = in_attr[i].i;
7021 break;
7022 case Tag_PCS_config:
7023 if (out_attr[i].i == 0)
7024 out_attr[i].i = in_attr[i].i;
7025 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
7026 {
7027 /* It's sometimes ok to mix different configs, so this is only
7028 a warning. */
7029 _bfd_error_handler
7030 (_("Warning: %B: Conflicting platform configuration"), ibfd);
7031 }
7032 break;
7033 case Tag_ABI_PCS_R9_use:
7034 if (in_attr[i].i != out_attr[i].i
7035 && out_attr[i].i != AEABI_R9_unused
7036 && in_attr[i].i != AEABI_R9_unused)
7037 {
7038 _bfd_error_handler
7039 (_("ERROR: %B: Conflicting use of R9"), ibfd);
7040 return FALSE;
7041 }
7042 if (out_attr[i].i == AEABI_R9_unused)
7043 out_attr[i].i = in_attr[i].i;
7044 break;
7045 case Tag_ABI_PCS_RW_data:
7046 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
7047 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
7048 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
7049 {
7050 _bfd_error_handler
7051 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
7052 ibfd);
7053 return FALSE;
7054 }
7055 /* Use the smallest value specified. */
7056 if (in_attr[i].i < out_attr[i].i)
7057 out_attr[i].i = in_attr[i].i;
7058 break;
7059 case Tag_ABI_PCS_RO_data:
7060 /* Use the smallest value specified. */
7061 if (in_attr[i].i < out_attr[i].i)
7062 out_attr[i].i = in_attr[i].i;
7063 break;
7064 case Tag_ABI_PCS_GOT_use:
7065 if (in_attr[i].i > 2 || out_attr[i].i > 2
7066 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7067 out_attr[i].i = in_attr[i].i;
7068 break;
7069 case Tag_ABI_PCS_wchar_t:
7070 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
7071 {
7072 _bfd_error_handler
7073 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
7074 return FALSE;
7075 }
7076 if (in_attr[i].i)
7077 out_attr[i].i = in_attr[i].i;
7078 break;
7079 case Tag_ABI_align8_needed:
7080 /* ??? Check against Tag_ABI_align8_preserved. */
7081 if (in_attr[i].i > 2 || out_attr[i].i > 2
7082 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7083 out_attr[i].i = in_attr[i].i;
7084 break;
7085 case Tag_ABI_enum_size:
7086 if (in_attr[i].i != AEABI_enum_unused)
7087 {
7088 if (out_attr[i].i == AEABI_enum_unused
7089 || out_attr[i].i == AEABI_enum_forced_wide)
7090 {
7091 /* The existing object is compatible with anything.
7092 Use whatever requirements the new object has. */
7093 out_attr[i].i = in_attr[i].i;
7094 }
7095 else if (in_attr[i].i != AEABI_enum_forced_wide
7096 && out_attr[i].i != in_attr[i].i
7097 && !elf_arm_tdata (obfd)->no_enum_size_warning)
7098 {
7099 const char *aeabi_enum_names[] =
7100 { "", "variable-size", "32-bit", "" };
7101 _bfd_error_handler
7102 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
7103 ibfd, aeabi_enum_names[in_attr[i].i],
7104 aeabi_enum_names[out_attr[i].i]);
7105 }
7106 }
7107 break;
7108 case Tag_ABI_VFP_args:
7109 /* Aready done. */
7110 break;
7111 case Tag_ABI_WMMX_args:
7112 if (in_attr[i].i != out_attr[i].i)
7113 {
7114 _bfd_error_handler
7115 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
7116 ibfd, obfd);
7117 return FALSE;
7118 }
7119 break;
7120 default: /* All known attributes should be explicitly covered. */
7121 abort ();
7122 }
7123
7124 if (in_attr[i].type && !out_attr[i].type)
7125 switch (in_attr[i].type)
7126 {
7127 case 1:
7128 if (out_attr[i].i)
7129 out_attr[i].type = 1;
7130 break;
7131
7132 case 2:
7133 if (out_attr[i].s)
7134 out_attr[i].type = 2;
7135 break;
7136
7137 default:
7138 abort ();
7139 }
7140 }
7141
7142 /* Merge Tag_compatibility attributes and any common GNU ones. */
7143 _bfd_elf_merge_object_attributes (ibfd, obfd);
7144
7145 /* Check for any attributes not known on ARM. */
7146 in_list = elf_other_obj_attributes_proc (ibfd);
7147 while (in_list && in_list->tag == Tag_compatibility)
7148 in_list = in_list->next;
7149
7150 for (; in_list; in_list = in_list->next)
7151 {
7152 if ((in_list->tag & 128) < 64)
7153 {
7154 _bfd_error_handler
7155 (_("Warning: %B: Unknown EABI object attribute %d"),
7156 ibfd, in_list->tag);
7157 break;
7158 }
7159 }
7160 return TRUE;
7161 }
7162
7163
7164 /* Return TRUE if the two EABI versions are incompatible. */
7165
7166 static bfd_boolean
7167 elf32_arm_versions_compatible (unsigned iver, unsigned over)
7168 {
7169 /* v4 and v5 are the same spec before and after it was released,
7170 so allow mixing them. */
7171 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
7172 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
7173 return TRUE;
7174
7175 return (iver == over);
7176 }
7177
7178 /* Merge backend specific data from an object file to the output
7179 object file when linking. */
7180
7181 static bfd_boolean
7182 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
7183 {
7184 flagword out_flags;
7185 flagword in_flags;
7186 bfd_boolean flags_compatible = TRUE;
7187 asection *sec;
7188
7189 /* Check if we have the same endianess. */
7190 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
7191 return FALSE;
7192
7193 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
7194 return TRUE;
7195
7196 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
7197 return FALSE;
7198
7199 /* The input BFD must have had its flags initialised. */
7200 /* The following seems bogus to me -- The flags are initialized in
7201 the assembler but I don't think an elf_flags_init field is
7202 written into the object. */
7203 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7204
7205 in_flags = elf_elfheader (ibfd)->e_flags;
7206 out_flags = elf_elfheader (obfd)->e_flags;
7207
7208 if (!elf_flags_init (obfd))
7209 {
7210 /* If the input is the default architecture and had the default
7211 flags then do not bother setting the flags for the output
7212 architecture, instead allow future merges to do this. If no
7213 future merges ever set these flags then they will retain their
7214 uninitialised values, which surprise surprise, correspond
7215 to the default values. */
7216 if (bfd_get_arch_info (ibfd)->the_default
7217 && elf_elfheader (ibfd)->e_flags == 0)
7218 return TRUE;
7219
7220 elf_flags_init (obfd) = TRUE;
7221 elf_elfheader (obfd)->e_flags = in_flags;
7222
7223 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7224 && bfd_get_arch_info (obfd)->the_default)
7225 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
7226
7227 return TRUE;
7228 }
7229
7230 /* Determine what should happen if the input ARM architecture
7231 does not match the output ARM architecture. */
7232 if (! bfd_arm_merge_machines (ibfd, obfd))
7233 return FALSE;
7234
7235 /* Identical flags must be compatible. */
7236 if (in_flags == out_flags)
7237 return TRUE;
7238
7239 /* Check to see if the input BFD actually contains any sections. If
7240 not, its flags may not have been initialised either, but it
7241 cannot actually cause any incompatiblity. Do not short-circuit
7242 dynamic objects; their section list may be emptied by
7243 elf_link_add_object_symbols.
7244
7245 Also check to see if there are no code sections in the input.
7246 In this case there is no need to check for code specific flags.
7247 XXX - do we need to worry about floating-point format compatability
7248 in data sections ? */
7249 if (!(ibfd->flags & DYNAMIC))
7250 {
7251 bfd_boolean null_input_bfd = TRUE;
7252 bfd_boolean only_data_sections = TRUE;
7253
7254 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7255 {
7256 /* Ignore synthetic glue sections. */
7257 if (strcmp (sec->name, ".glue_7")
7258 && strcmp (sec->name, ".glue_7t"))
7259 {
7260 if ((bfd_get_section_flags (ibfd, sec)
7261 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7262 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7263 only_data_sections = FALSE;
7264
7265 null_input_bfd = FALSE;
7266 break;
7267 }
7268 }
7269
7270 if (null_input_bfd || only_data_sections)
7271 return TRUE;
7272 }
7273
7274 /* Complain about various flag mismatches. */
7275 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
7276 EF_ARM_EABI_VERSION (out_flags)))
7277 {
7278 _bfd_error_handler
7279 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
7280 ibfd, obfd,
7281 (in_flags & EF_ARM_EABIMASK) >> 24,
7282 (out_flags & EF_ARM_EABIMASK) >> 24);
7283 return FALSE;
7284 }
7285
7286 /* Not sure what needs to be checked for EABI versions >= 1. */
7287 /* VxWorks libraries do not use these flags. */
7288 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
7289 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
7290 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
7291 {
7292 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7293 {
7294 _bfd_error_handler
7295 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
7296 ibfd, obfd,
7297 in_flags & EF_ARM_APCS_26 ? 26 : 32,
7298 out_flags & EF_ARM_APCS_26 ? 26 : 32);
7299 flags_compatible = FALSE;
7300 }
7301
7302 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7303 {
7304 if (in_flags & EF_ARM_APCS_FLOAT)
7305 _bfd_error_handler
7306 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
7307 ibfd, obfd);
7308 else
7309 _bfd_error_handler
7310 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
7311 ibfd, obfd);
7312
7313 flags_compatible = FALSE;
7314 }
7315
7316 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
7317 {
7318 if (in_flags & EF_ARM_VFP_FLOAT)
7319 _bfd_error_handler
7320 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
7321 ibfd, obfd);
7322 else
7323 _bfd_error_handler
7324 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
7325 ibfd, obfd);
7326
7327 flags_compatible = FALSE;
7328 }
7329
7330 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
7331 {
7332 if (in_flags & EF_ARM_MAVERICK_FLOAT)
7333 _bfd_error_handler
7334 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
7335 ibfd, obfd);
7336 else
7337 _bfd_error_handler
7338 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
7339 ibfd, obfd);
7340
7341 flags_compatible = FALSE;
7342 }
7343
7344 #ifdef EF_ARM_SOFT_FLOAT
7345 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
7346 {
7347 /* We can allow interworking between code that is VFP format
7348 layout, and uses either soft float or integer regs for
7349 passing floating point arguments and results. We already
7350 know that the APCS_FLOAT flags match; similarly for VFP
7351 flags. */
7352 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
7353 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
7354 {
7355 if (in_flags & EF_ARM_SOFT_FLOAT)
7356 _bfd_error_handler
7357 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
7358 ibfd, obfd);
7359 else
7360 _bfd_error_handler
7361 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
7362 ibfd, obfd);
7363
7364 flags_compatible = FALSE;
7365 }
7366 }
7367 #endif
7368
7369 /* Interworking mismatch is only a warning. */
7370 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7371 {
7372 if (in_flags & EF_ARM_INTERWORK)
7373 {
7374 _bfd_error_handler
7375 (_("Warning: %B supports interworking, whereas %B does not"),
7376 ibfd, obfd);
7377 }
7378 else
7379 {
7380 _bfd_error_handler
7381 (_("Warning: %B does not support interworking, whereas %B does"),
7382 ibfd, obfd);
7383 }
7384 }
7385 }
7386
7387 return flags_compatible;
7388 }
7389
7390 /* Display the flags field. */
7391
7392 static bfd_boolean
7393 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
7394 {
7395 FILE * file = (FILE *) ptr;
7396 unsigned long flags;
7397
7398 BFD_ASSERT (abfd != NULL && ptr != NULL);
7399
7400 /* Print normal ELF private data. */
7401 _bfd_elf_print_private_bfd_data (abfd, ptr);
7402
7403 flags = elf_elfheader (abfd)->e_flags;
7404 /* Ignore init flag - it may not be set, despite the flags field
7405 containing valid data. */
7406
7407 /* xgettext:c-format */
7408 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7409
7410 switch (EF_ARM_EABI_VERSION (flags))
7411 {
7412 case EF_ARM_EABI_UNKNOWN:
7413 /* The following flag bits are GNU extensions and not part of the
7414 official ARM ELF extended ABI. Hence they are only decoded if
7415 the EABI version is not set. */
7416 if (flags & EF_ARM_INTERWORK)
7417 fprintf (file, _(" [interworking enabled]"));
7418
7419 if (flags & EF_ARM_APCS_26)
7420 fprintf (file, " [APCS-26]");
7421 else
7422 fprintf (file, " [APCS-32]");
7423
7424 if (flags & EF_ARM_VFP_FLOAT)
7425 fprintf (file, _(" [VFP float format]"));
7426 else if (flags & EF_ARM_MAVERICK_FLOAT)
7427 fprintf (file, _(" [Maverick float format]"));
7428 else
7429 fprintf (file, _(" [FPA float format]"));
7430
7431 if (flags & EF_ARM_APCS_FLOAT)
7432 fprintf (file, _(" [floats passed in float registers]"));
7433
7434 if (flags & EF_ARM_PIC)
7435 fprintf (file, _(" [position independent]"));
7436
7437 if (flags & EF_ARM_NEW_ABI)
7438 fprintf (file, _(" [new ABI]"));
7439
7440 if (flags & EF_ARM_OLD_ABI)
7441 fprintf (file, _(" [old ABI]"));
7442
7443 if (flags & EF_ARM_SOFT_FLOAT)
7444 fprintf (file, _(" [software FP]"));
7445
7446 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
7447 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
7448 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
7449 | EF_ARM_MAVERICK_FLOAT);
7450 break;
7451
7452 case EF_ARM_EABI_VER1:
7453 fprintf (file, _(" [Version1 EABI]"));
7454
7455 if (flags & EF_ARM_SYMSARESORTED)
7456 fprintf (file, _(" [sorted symbol table]"));
7457 else
7458 fprintf (file, _(" [unsorted symbol table]"));
7459
7460 flags &= ~ EF_ARM_SYMSARESORTED;
7461 break;
7462
7463 case EF_ARM_EABI_VER2:
7464 fprintf (file, _(" [Version2 EABI]"));
7465
7466 if (flags & EF_ARM_SYMSARESORTED)
7467 fprintf (file, _(" [sorted symbol table]"));
7468 else
7469 fprintf (file, _(" [unsorted symbol table]"));
7470
7471 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
7472 fprintf (file, _(" [dynamic symbols use segment index]"));
7473
7474 if (flags & EF_ARM_MAPSYMSFIRST)
7475 fprintf (file, _(" [mapping symbols precede others]"));
7476
7477 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
7478 | EF_ARM_MAPSYMSFIRST);
7479 break;
7480
7481 case EF_ARM_EABI_VER3:
7482 fprintf (file, _(" [Version3 EABI]"));
7483 break;
7484
7485 case EF_ARM_EABI_VER4:
7486 fprintf (file, _(" [Version4 EABI]"));
7487 goto eabi;
7488
7489 case EF_ARM_EABI_VER5:
7490 fprintf (file, _(" [Version5 EABI]"));
7491 eabi:
7492 if (flags & EF_ARM_BE8)
7493 fprintf (file, _(" [BE8]"));
7494
7495 if (flags & EF_ARM_LE8)
7496 fprintf (file, _(" [LE8]"));
7497
7498 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
7499 break;
7500
7501 default:
7502 fprintf (file, _(" <EABI version unrecognised>"));
7503 break;
7504 }
7505
7506 flags &= ~ EF_ARM_EABIMASK;
7507
7508 if (flags & EF_ARM_RELEXEC)
7509 fprintf (file, _(" [relocatable executable]"));
7510
7511 if (flags & EF_ARM_HASENTRY)
7512 fprintf (file, _(" [has entry point]"));
7513
7514 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
7515
7516 if (flags)
7517 fprintf (file, _("<Unrecognised flag bits set>"));
7518
7519 fputc ('\n', file);
7520
7521 return TRUE;
7522 }
7523
7524 static int
7525 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
7526 {
7527 switch (ELF_ST_TYPE (elf_sym->st_info))
7528 {
7529 case STT_ARM_TFUNC:
7530 return ELF_ST_TYPE (elf_sym->st_info);
7531
7532 case STT_ARM_16BIT:
7533 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
7534 This allows us to distinguish between data used by Thumb instructions
7535 and non-data (which is probably code) inside Thumb regions of an
7536 executable. */
7537 if (type != STT_OBJECT && type != STT_TLS)
7538 return ELF_ST_TYPE (elf_sym->st_info);
7539 break;
7540
7541 default:
7542 break;
7543 }
7544
7545 return type;
7546 }
7547
7548 static asection *
7549 elf32_arm_gc_mark_hook (asection *sec,
7550 struct bfd_link_info *info,
7551 Elf_Internal_Rela *rel,
7552 struct elf_link_hash_entry *h,
7553 Elf_Internal_Sym *sym)
7554 {
7555 if (h != NULL)
7556 switch (ELF32_R_TYPE (rel->r_info))
7557 {
7558 case R_ARM_GNU_VTINHERIT:
7559 case R_ARM_GNU_VTENTRY:
7560 return NULL;
7561 }
7562
7563 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
7564 }
7565
7566 /* Update the got entry reference counts for the section being removed. */
7567
7568 static bfd_boolean
7569 elf32_arm_gc_sweep_hook (bfd * abfd,
7570 struct bfd_link_info * info,
7571 asection * sec,
7572 const Elf_Internal_Rela * relocs)
7573 {
7574 Elf_Internal_Shdr *symtab_hdr;
7575 struct elf_link_hash_entry **sym_hashes;
7576 bfd_signed_vma *local_got_refcounts;
7577 const Elf_Internal_Rela *rel, *relend;
7578 struct elf32_arm_link_hash_table * globals;
7579
7580 if (info->relocatable)
7581 return TRUE;
7582
7583 globals = elf32_arm_hash_table (info);
7584
7585 elf_section_data (sec)->local_dynrel = NULL;
7586
7587 symtab_hdr = & elf_symtab_hdr (abfd);
7588 sym_hashes = elf_sym_hashes (abfd);
7589 local_got_refcounts = elf_local_got_refcounts (abfd);
7590
7591 check_use_blx(globals);
7592
7593 relend = relocs + sec->reloc_count;
7594 for (rel = relocs; rel < relend; rel++)
7595 {
7596 unsigned long r_symndx;
7597 struct elf_link_hash_entry *h = NULL;
7598 int r_type;
7599
7600 r_symndx = ELF32_R_SYM (rel->r_info);
7601 if (r_symndx >= symtab_hdr->sh_info)
7602 {
7603 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7604 while (h->root.type == bfd_link_hash_indirect
7605 || h->root.type == bfd_link_hash_warning)
7606 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7607 }
7608
7609 r_type = ELF32_R_TYPE (rel->r_info);
7610 r_type = arm_real_reloc_type (globals, r_type);
7611 switch (r_type)
7612 {
7613 case R_ARM_GOT32:
7614 case R_ARM_GOT_PREL:
7615 case R_ARM_TLS_GD32:
7616 case R_ARM_TLS_IE32:
7617 if (h != NULL)
7618 {
7619 if (h->got.refcount > 0)
7620 h->got.refcount -= 1;
7621 }
7622 else if (local_got_refcounts != NULL)
7623 {
7624 if (local_got_refcounts[r_symndx] > 0)
7625 local_got_refcounts[r_symndx] -= 1;
7626 }
7627 break;
7628
7629 case R_ARM_TLS_LDM32:
7630 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
7631 break;
7632
7633 case R_ARM_ABS32:
7634 case R_ARM_ABS32_NOI:
7635 case R_ARM_REL32:
7636 case R_ARM_REL32_NOI:
7637 case R_ARM_PC24:
7638 case R_ARM_PLT32:
7639 case R_ARM_CALL:
7640 case R_ARM_JUMP24:
7641 case R_ARM_PREL31:
7642 case R_ARM_THM_CALL:
7643 case R_ARM_THM_JUMP24:
7644 case R_ARM_THM_JUMP19:
7645 case R_ARM_MOVW_ABS_NC:
7646 case R_ARM_MOVT_ABS:
7647 case R_ARM_MOVW_PREL_NC:
7648 case R_ARM_MOVT_PREL:
7649 case R_ARM_THM_MOVW_ABS_NC:
7650 case R_ARM_THM_MOVT_ABS:
7651 case R_ARM_THM_MOVW_PREL_NC:
7652 case R_ARM_THM_MOVT_PREL:
7653 /* Should the interworking branches be here also? */
7654
7655 if (h != NULL)
7656 {
7657 struct elf32_arm_link_hash_entry *eh;
7658 struct elf32_arm_relocs_copied **pp;
7659 struct elf32_arm_relocs_copied *p;
7660
7661 eh = (struct elf32_arm_link_hash_entry *) h;
7662
7663 if (h->plt.refcount > 0)
7664 {
7665 h->plt.refcount -= 1;
7666 if (r_type == R_ARM_THM_CALL)
7667 eh->plt_maybe_thumb_refcount--;
7668
7669 if (r_type == R_ARM_THM_JUMP24
7670 || r_type == R_ARM_THM_JUMP19)
7671 eh->plt_thumb_refcount--;
7672 }
7673
7674 if (r_type == R_ARM_ABS32
7675 || r_type == R_ARM_REL32
7676 || r_type == R_ARM_ABS32_NOI
7677 || r_type == R_ARM_REL32_NOI)
7678 {
7679 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
7680 pp = &p->next)
7681 if (p->section == sec)
7682 {
7683 p->count -= 1;
7684 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
7685 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
7686 p->pc_count -= 1;
7687 if (p->count == 0)
7688 *pp = p->next;
7689 break;
7690 }
7691 }
7692 }
7693 break;
7694
7695 default:
7696 break;
7697 }
7698 }
7699
7700 return TRUE;
7701 }
7702
7703 /* Look through the relocs for a section during the first phase. */
7704
7705 static bfd_boolean
7706 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
7707 asection *sec, const Elf_Internal_Rela *relocs)
7708 {
7709 Elf_Internal_Shdr *symtab_hdr;
7710 struct elf_link_hash_entry **sym_hashes;
7711 const Elf_Internal_Rela *rel;
7712 const Elf_Internal_Rela *rel_end;
7713 bfd *dynobj;
7714 asection *sreloc;
7715 bfd_vma *local_got_offsets;
7716 struct elf32_arm_link_hash_table *htab;
7717 bfd_boolean needs_plt;
7718
7719 if (info->relocatable)
7720 return TRUE;
7721
7722 BFD_ASSERT (is_arm_elf (abfd));
7723
7724 htab = elf32_arm_hash_table (info);
7725 sreloc = NULL;
7726
7727 /* Create dynamic sections for relocatable executables so that we can
7728 copy relocations. */
7729 if (htab->root.is_relocatable_executable
7730 && ! htab->root.dynamic_sections_created)
7731 {
7732 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
7733 return FALSE;
7734 }
7735
7736 dynobj = elf_hash_table (info)->dynobj;
7737 local_got_offsets = elf_local_got_offsets (abfd);
7738
7739 symtab_hdr = & elf_symtab_hdr (abfd);
7740 sym_hashes = elf_sym_hashes (abfd);
7741
7742 rel_end = relocs + sec->reloc_count;
7743 for (rel = relocs; rel < rel_end; rel++)
7744 {
7745 struct elf_link_hash_entry *h;
7746 struct elf32_arm_link_hash_entry *eh;
7747 unsigned long r_symndx;
7748 int r_type;
7749
7750 r_symndx = ELF32_R_SYM (rel->r_info);
7751 r_type = ELF32_R_TYPE (rel->r_info);
7752 r_type = arm_real_reloc_type (htab, r_type);
7753
7754 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7755 {
7756 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7757 r_symndx);
7758 return FALSE;
7759 }
7760
7761 if (r_symndx < symtab_hdr->sh_info)
7762 h = NULL;
7763 else
7764 {
7765 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7766 while (h->root.type == bfd_link_hash_indirect
7767 || h->root.type == bfd_link_hash_warning)
7768 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7769 }
7770
7771 eh = (struct elf32_arm_link_hash_entry *) h;
7772
7773 switch (r_type)
7774 {
7775 case R_ARM_GOT32:
7776 case R_ARM_GOT_PREL:
7777 case R_ARM_TLS_GD32:
7778 case R_ARM_TLS_IE32:
7779 /* This symbol requires a global offset table entry. */
7780 {
7781 int tls_type, old_tls_type;
7782
7783 switch (r_type)
7784 {
7785 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
7786 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
7787 default: tls_type = GOT_NORMAL; break;
7788 }
7789
7790 if (h != NULL)
7791 {
7792 h->got.refcount++;
7793 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
7794 }
7795 else
7796 {
7797 bfd_signed_vma *local_got_refcounts;
7798
7799 /* This is a global offset table entry for a local symbol. */
7800 local_got_refcounts = elf_local_got_refcounts (abfd);
7801 if (local_got_refcounts == NULL)
7802 {
7803 bfd_size_type size;
7804
7805 size = symtab_hdr->sh_info;
7806 size *= (sizeof (bfd_signed_vma) + sizeof(char));
7807 local_got_refcounts = bfd_zalloc (abfd, size);
7808 if (local_got_refcounts == NULL)
7809 return FALSE;
7810 elf_local_got_refcounts (abfd) = local_got_refcounts;
7811 elf32_arm_local_got_tls_type (abfd)
7812 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
7813 }
7814 local_got_refcounts[r_symndx] += 1;
7815 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
7816 }
7817
7818 /* We will already have issued an error message if there is a
7819 TLS / non-TLS mismatch, based on the symbol type. We don't
7820 support any linker relaxations. So just combine any TLS
7821 types needed. */
7822 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
7823 && tls_type != GOT_NORMAL)
7824 tls_type |= old_tls_type;
7825
7826 if (old_tls_type != tls_type)
7827 {
7828 if (h != NULL)
7829 elf32_arm_hash_entry (h)->tls_type = tls_type;
7830 else
7831 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
7832 }
7833 }
7834 /* Fall through */
7835
7836 case R_ARM_TLS_LDM32:
7837 if (r_type == R_ARM_TLS_LDM32)
7838 htab->tls_ldm_got.refcount++;
7839 /* Fall through */
7840
7841 case R_ARM_GOTOFF32:
7842 case R_ARM_GOTPC:
7843 if (htab->sgot == NULL)
7844 {
7845 if (htab->root.dynobj == NULL)
7846 htab->root.dynobj = abfd;
7847 if (!create_got_section (htab->root.dynobj, info))
7848 return FALSE;
7849 }
7850 break;
7851
7852 case R_ARM_ABS12:
7853 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
7854 ldr __GOTT_INDEX__ offsets. */
7855 if (!htab->vxworks_p)
7856 break;
7857 /* Fall through */
7858
7859 case R_ARM_PC24:
7860 case R_ARM_PLT32:
7861 case R_ARM_CALL:
7862 case R_ARM_JUMP24:
7863 case R_ARM_PREL31:
7864 case R_ARM_THM_CALL:
7865 case R_ARM_THM_JUMP24:
7866 case R_ARM_THM_JUMP19:
7867 needs_plt = 1;
7868 goto normal_reloc;
7869
7870 case R_ARM_ABS32:
7871 case R_ARM_ABS32_NOI:
7872 case R_ARM_REL32:
7873 case R_ARM_REL32_NOI:
7874 case R_ARM_MOVW_ABS_NC:
7875 case R_ARM_MOVT_ABS:
7876 case R_ARM_MOVW_PREL_NC:
7877 case R_ARM_MOVT_PREL:
7878 case R_ARM_THM_MOVW_ABS_NC:
7879 case R_ARM_THM_MOVT_ABS:
7880 case R_ARM_THM_MOVW_PREL_NC:
7881 case R_ARM_THM_MOVT_PREL:
7882 needs_plt = 0;
7883 normal_reloc:
7884
7885 /* Should the interworking branches be listed here? */
7886 if (h != NULL)
7887 {
7888 /* If this reloc is in a read-only section, we might
7889 need a copy reloc. We can't check reliably at this
7890 stage whether the section is read-only, as input
7891 sections have not yet been mapped to output sections.
7892 Tentatively set the flag for now, and correct in
7893 adjust_dynamic_symbol. */
7894 if (!info->shared)
7895 h->non_got_ref = 1;
7896
7897 /* We may need a .plt entry if the function this reloc
7898 refers to is in a different object. We can't tell for
7899 sure yet, because something later might force the
7900 symbol local. */
7901 if (needs_plt)
7902 h->needs_plt = 1;
7903
7904 /* If we create a PLT entry, this relocation will reference
7905 it, even if it's an ABS32 relocation. */
7906 h->plt.refcount += 1;
7907
7908 /* It's too early to use htab->use_blx here, so we have to
7909 record possible blx references separately from
7910 relocs that definitely need a thumb stub. */
7911
7912 if (r_type == R_ARM_THM_CALL)
7913 eh->plt_maybe_thumb_refcount += 1;
7914
7915 if (r_type == R_ARM_THM_JUMP24
7916 || r_type == R_ARM_THM_JUMP19)
7917 eh->plt_thumb_refcount += 1;
7918 }
7919
7920 /* If we are creating a shared library or relocatable executable,
7921 and this is a reloc against a global symbol, or a non PC
7922 relative reloc against a local symbol, then we need to copy
7923 the reloc into the shared library. However, if we are linking
7924 with -Bsymbolic, we do not need to copy a reloc against a
7925 global symbol which is defined in an object we are
7926 including in the link (i.e., DEF_REGULAR is set). At
7927 this point we have not seen all the input files, so it is
7928 possible that DEF_REGULAR is not set now but will be set
7929 later (it is never cleared). We account for that
7930 possibility below by storing information in the
7931 relocs_copied field of the hash table entry. */
7932 if ((info->shared || htab->root.is_relocatable_executable)
7933 && (sec->flags & SEC_ALLOC) != 0
7934 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
7935 || (h != NULL && ! h->needs_plt
7936 && (! info->symbolic || ! h->def_regular))))
7937 {
7938 struct elf32_arm_relocs_copied *p, **head;
7939
7940 /* When creating a shared object, we must copy these
7941 reloc types into the output file. We create a reloc
7942 section in dynobj and make room for this reloc. */
7943 if (sreloc == NULL)
7944 {
7945 const char * name;
7946
7947 name = (bfd_elf_string_from_elf_section
7948 (abfd,
7949 elf_elfheader (abfd)->e_shstrndx,
7950 elf_section_data (sec)->rel_hdr.sh_name));
7951 if (name == NULL)
7952 return FALSE;
7953
7954 BFD_ASSERT (reloc_section_p (htab, name, sec));
7955
7956 sreloc = bfd_get_section_by_name (dynobj, name);
7957 if (sreloc == NULL)
7958 {
7959 flagword flags;
7960
7961 flags = (SEC_HAS_CONTENTS | SEC_READONLY
7962 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
7963 if ((sec->flags & SEC_ALLOC) != 0
7964 /* BPABI objects never have dynamic
7965 relocations mapped. */
7966 && !htab->symbian_p)
7967 flags |= SEC_ALLOC | SEC_LOAD;
7968 sreloc = bfd_make_section_with_flags (dynobj,
7969 name,
7970 flags);
7971 if (sreloc == NULL
7972 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
7973 return FALSE;
7974 }
7975
7976 elf_section_data (sec)->sreloc = sreloc;
7977 }
7978
7979 /* If this is a global symbol, we count the number of
7980 relocations we need for this symbol. */
7981 if (h != NULL)
7982 {
7983 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
7984 }
7985 else
7986 {
7987 /* Track dynamic relocs needed for local syms too.
7988 We really need local syms available to do this
7989 easily. Oh well. */
7990
7991 asection *s;
7992 void *vpp;
7993
7994 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
7995 sec, r_symndx);
7996 if (s == NULL)
7997 return FALSE;
7998
7999 vpp = &elf_section_data (s)->local_dynrel;
8000 head = (struct elf32_arm_relocs_copied **) vpp;
8001 }
8002
8003 p = *head;
8004 if (p == NULL || p->section != sec)
8005 {
8006 bfd_size_type amt = sizeof *p;
8007
8008 p = bfd_alloc (htab->root.dynobj, amt);
8009 if (p == NULL)
8010 return FALSE;
8011 p->next = *head;
8012 *head = p;
8013 p->section = sec;
8014 p->count = 0;
8015 p->pc_count = 0;
8016 }
8017
8018 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
8019 p->pc_count += 1;
8020 p->count += 1;
8021 }
8022 break;
8023
8024 /* This relocation describes the C++ object vtable hierarchy.
8025 Reconstruct it for later use during GC. */
8026 case R_ARM_GNU_VTINHERIT:
8027 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8028 return FALSE;
8029 break;
8030
8031 /* This relocation describes which C++ vtable entries are actually
8032 used. Record for later use during GC. */
8033 case R_ARM_GNU_VTENTRY:
8034 BFD_ASSERT (h != NULL);
8035 if (h != NULL
8036 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8037 return FALSE;
8038 break;
8039 }
8040 }
8041
8042 return TRUE;
8043 }
8044
8045 /* Unwinding tables are not referenced directly. This pass marks them as
8046 required if the corresponding code section is marked. */
8047
8048 static bfd_boolean
8049 elf32_arm_gc_mark_extra_sections(struct bfd_link_info *info,
8050 elf_gc_mark_hook_fn gc_mark_hook)
8051 {
8052 bfd *sub;
8053 Elf_Internal_Shdr **elf_shdrp;
8054 bfd_boolean again;
8055
8056 /* Marking EH data may cause additional code sections to be marked,
8057 requiring multiple passes. */
8058 again = TRUE;
8059 while (again)
8060 {
8061 again = FALSE;
8062 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8063 {
8064 asection *o;
8065
8066 if (! is_arm_elf (sub))
8067 continue;
8068
8069 elf_shdrp = elf_elfsections (sub);
8070 for (o = sub->sections; o != NULL; o = o->next)
8071 {
8072 Elf_Internal_Shdr *hdr;
8073
8074 hdr = &elf_section_data (o)->this_hdr;
8075 if (hdr->sh_type == SHT_ARM_EXIDX && hdr->sh_link
8076 && !o->gc_mark
8077 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
8078 {
8079 again = TRUE;
8080 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8081 return FALSE;
8082 }
8083 }
8084 }
8085 }
8086
8087 return TRUE;
8088 }
8089
8090 /* Treat mapping symbols as special target symbols. */
8091
8092 static bfd_boolean
8093 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
8094 {
8095 return bfd_is_arm_special_symbol_name (sym->name,
8096 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
8097 }
8098
8099 /* This is a copy of elf_find_function() from elf.c except that
8100 ARM mapping symbols are ignored when looking for function names
8101 and STT_ARM_TFUNC is considered to a function type. */
8102
8103 static bfd_boolean
8104 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
8105 asection * section,
8106 asymbol ** symbols,
8107 bfd_vma offset,
8108 const char ** filename_ptr,
8109 const char ** functionname_ptr)
8110 {
8111 const char * filename = NULL;
8112 asymbol * func = NULL;
8113 bfd_vma low_func = 0;
8114 asymbol ** p;
8115
8116 for (p = symbols; *p != NULL; p++)
8117 {
8118 elf_symbol_type *q;
8119
8120 q = (elf_symbol_type *) *p;
8121
8122 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
8123 {
8124 default:
8125 break;
8126 case STT_FILE:
8127 filename = bfd_asymbol_name (&q->symbol);
8128 break;
8129 case STT_FUNC:
8130 case STT_ARM_TFUNC:
8131 case STT_NOTYPE:
8132 /* Skip mapping symbols. */
8133 if ((q->symbol.flags & BSF_LOCAL)
8134 && bfd_is_arm_special_symbol_name (q->symbol.name,
8135 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
8136 continue;
8137 /* Fall through. */
8138 if (bfd_get_section (&q->symbol) == section
8139 && q->symbol.value >= low_func
8140 && q->symbol.value <= offset)
8141 {
8142 func = (asymbol *) q;
8143 low_func = q->symbol.value;
8144 }
8145 break;
8146 }
8147 }
8148
8149 if (func == NULL)
8150 return FALSE;
8151
8152 if (filename_ptr)
8153 *filename_ptr = filename;
8154 if (functionname_ptr)
8155 *functionname_ptr = bfd_asymbol_name (func);
8156
8157 return TRUE;
8158 }
8159
8160
8161 /* Find the nearest line to a particular section and offset, for error
8162 reporting. This code is a duplicate of the code in elf.c, except
8163 that it uses arm_elf_find_function. */
8164
8165 static bfd_boolean
8166 elf32_arm_find_nearest_line (bfd * abfd,
8167 asection * section,
8168 asymbol ** symbols,
8169 bfd_vma offset,
8170 const char ** filename_ptr,
8171 const char ** functionname_ptr,
8172 unsigned int * line_ptr)
8173 {
8174 bfd_boolean found = FALSE;
8175
8176 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
8177
8178 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8179 filename_ptr, functionname_ptr,
8180 line_ptr, 0,
8181 & elf_tdata (abfd)->dwarf2_find_line_info))
8182 {
8183 if (!*functionname_ptr)
8184 arm_elf_find_function (abfd, section, symbols, offset,
8185 *filename_ptr ? NULL : filename_ptr,
8186 functionname_ptr);
8187
8188 return TRUE;
8189 }
8190
8191 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8192 & found, filename_ptr,
8193 functionname_ptr, line_ptr,
8194 & elf_tdata (abfd)->line_info))
8195 return FALSE;
8196
8197 if (found && (*functionname_ptr || *line_ptr))
8198 return TRUE;
8199
8200 if (symbols == NULL)
8201 return FALSE;
8202
8203 if (! arm_elf_find_function (abfd, section, symbols, offset,
8204 filename_ptr, functionname_ptr))
8205 return FALSE;
8206
8207 *line_ptr = 0;
8208 return TRUE;
8209 }
8210
8211 static bfd_boolean
8212 elf32_arm_find_inliner_info (bfd * abfd,
8213 const char ** filename_ptr,
8214 const char ** functionname_ptr,
8215 unsigned int * line_ptr)
8216 {
8217 bfd_boolean found;
8218 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8219 functionname_ptr, line_ptr,
8220 & elf_tdata (abfd)->dwarf2_find_line_info);
8221 return found;
8222 }
8223
8224 /* Adjust a symbol defined by a dynamic object and referenced by a
8225 regular object. The current definition is in some section of the
8226 dynamic object, but we're not including those sections. We have to
8227 change the definition to something the rest of the link can
8228 understand. */
8229
8230 static bfd_boolean
8231 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
8232 struct elf_link_hash_entry * h)
8233 {
8234 bfd * dynobj;
8235 asection * s;
8236 struct elf32_arm_link_hash_entry * eh;
8237 struct elf32_arm_link_hash_table *globals;
8238
8239 globals = elf32_arm_hash_table (info);
8240 dynobj = elf_hash_table (info)->dynobj;
8241
8242 /* Make sure we know what is going on here. */
8243 BFD_ASSERT (dynobj != NULL
8244 && (h->needs_plt
8245 || h->u.weakdef != NULL
8246 || (h->def_dynamic
8247 && h->ref_regular
8248 && !h->def_regular)));
8249
8250 eh = (struct elf32_arm_link_hash_entry *) h;
8251
8252 /* If this is a function, put it in the procedure linkage table. We
8253 will fill in the contents of the procedure linkage table later,
8254 when we know the address of the .got section. */
8255 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
8256 || h->needs_plt)
8257 {
8258 if (h->plt.refcount <= 0
8259 || SYMBOL_CALLS_LOCAL (info, h)
8260 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8261 && h->root.type == bfd_link_hash_undefweak))
8262 {
8263 /* This case can occur if we saw a PLT32 reloc in an input
8264 file, but the symbol was never referred to by a dynamic
8265 object, or if all references were garbage collected. In
8266 such a case, we don't actually need to build a procedure
8267 linkage table, and we can just do a PC24 reloc instead. */
8268 h->plt.offset = (bfd_vma) -1;
8269 eh->plt_thumb_refcount = 0;
8270 eh->plt_maybe_thumb_refcount = 0;
8271 h->needs_plt = 0;
8272 }
8273
8274 return TRUE;
8275 }
8276 else
8277 {
8278 /* It's possible that we incorrectly decided a .plt reloc was
8279 needed for an R_ARM_PC24 or similar reloc to a non-function sym
8280 in check_relocs. We can't decide accurately between function
8281 and non-function syms in check-relocs; Objects loaded later in
8282 the link may change h->type. So fix it now. */
8283 h->plt.offset = (bfd_vma) -1;
8284 eh->plt_thumb_refcount = 0;
8285 eh->plt_maybe_thumb_refcount = 0;
8286 }
8287
8288 /* If this is a weak symbol, and there is a real definition, the
8289 processor independent code will have arranged for us to see the
8290 real definition first, and we can just use the same value. */
8291 if (h->u.weakdef != NULL)
8292 {
8293 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8294 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8295 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8296 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8297 return TRUE;
8298 }
8299
8300 /* If there are no non-GOT references, we do not need a copy
8301 relocation. */
8302 if (!h->non_got_ref)
8303 return TRUE;
8304
8305 /* This is a reference to a symbol defined by a dynamic object which
8306 is not a function. */
8307
8308 /* If we are creating a shared library, we must presume that the
8309 only references to the symbol are via the global offset table.
8310 For such cases we need not do anything here; the relocations will
8311 be handled correctly by relocate_section. Relocatable executables
8312 can reference data in shared objects directly, so we don't need to
8313 do anything here. */
8314 if (info->shared || globals->root.is_relocatable_executable)
8315 return TRUE;
8316
8317 if (h->size == 0)
8318 {
8319 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
8320 h->root.root.string);
8321 return TRUE;
8322 }
8323
8324 /* We must allocate the symbol in our .dynbss section, which will
8325 become part of the .bss section of the executable. There will be
8326 an entry for this symbol in the .dynsym section. The dynamic
8327 object will contain position independent code, so all references
8328 from the dynamic object to this symbol will go through the global
8329 offset table. The dynamic linker will use the .dynsym entry to
8330 determine the address it must put in the global offset table, so
8331 both the dynamic object and the regular object will refer to the
8332 same memory location for the variable. */
8333 s = bfd_get_section_by_name (dynobj, ".dynbss");
8334 BFD_ASSERT (s != NULL);
8335
8336 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
8337 copy the initial value out of the dynamic object and into the
8338 runtime process image. We need to remember the offset into the
8339 .rel(a).bss section we are going to use. */
8340 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8341 {
8342 asection *srel;
8343
8344 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
8345 BFD_ASSERT (srel != NULL);
8346 srel->size += RELOC_SIZE (globals);
8347 h->needs_copy = 1;
8348 }
8349
8350 return _bfd_elf_adjust_dynamic_copy (h, s);
8351 }
8352
8353 /* Allocate space in .plt, .got and associated reloc sections for
8354 dynamic relocs. */
8355
8356 static bfd_boolean
8357 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
8358 {
8359 struct bfd_link_info *info;
8360 struct elf32_arm_link_hash_table *htab;
8361 struct elf32_arm_link_hash_entry *eh;
8362 struct elf32_arm_relocs_copied *p;
8363 bfd_signed_vma thumb_refs;
8364
8365 eh = (struct elf32_arm_link_hash_entry *) h;
8366
8367 if (h->root.type == bfd_link_hash_indirect)
8368 return TRUE;
8369
8370 if (h->root.type == bfd_link_hash_warning)
8371 /* When warning symbols are created, they **replace** the "real"
8372 entry in the hash table, thus we never get to see the real
8373 symbol in a hash traversal. So look at it now. */
8374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8375
8376 info = (struct bfd_link_info *) inf;
8377 htab = elf32_arm_hash_table (info);
8378
8379 if (htab->root.dynamic_sections_created
8380 && h->plt.refcount > 0)
8381 {
8382 /* Make sure this symbol is output as a dynamic symbol.
8383 Undefined weak syms won't yet be marked as dynamic. */
8384 if (h->dynindx == -1
8385 && !h->forced_local)
8386 {
8387 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8388 return FALSE;
8389 }
8390
8391 if (info->shared
8392 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8393 {
8394 asection *s = htab->splt;
8395
8396 /* If this is the first .plt entry, make room for the special
8397 first entry. */
8398 if (s->size == 0)
8399 s->size += htab->plt_header_size;
8400
8401 h->plt.offset = s->size;
8402
8403 /* If we will insert a Thumb trampoline before this PLT, leave room
8404 for it. */
8405 thumb_refs = eh->plt_thumb_refcount;
8406 if (!htab->use_blx)
8407 thumb_refs += eh->plt_maybe_thumb_refcount;
8408
8409 if (thumb_refs > 0)
8410 {
8411 h->plt.offset += PLT_THUMB_STUB_SIZE;
8412 s->size += PLT_THUMB_STUB_SIZE;
8413 }
8414
8415 /* If this symbol is not defined in a regular file, and we are
8416 not generating a shared library, then set the symbol to this
8417 location in the .plt. This is required to make function
8418 pointers compare as equal between the normal executable and
8419 the shared library. */
8420 if (! info->shared
8421 && !h->def_regular)
8422 {
8423 h->root.u.def.section = s;
8424 h->root.u.def.value = h->plt.offset;
8425
8426 /* Make sure the function is not marked as Thumb, in case
8427 it is the target of an ABS32 relocation, which will
8428 point to the PLT entry. */
8429 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
8430 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8431 }
8432
8433 /* Make room for this entry. */
8434 s->size += htab->plt_entry_size;
8435
8436 if (!htab->symbian_p)
8437 {
8438 /* We also need to make an entry in the .got.plt section, which
8439 will be placed in the .got section by the linker script. */
8440 eh->plt_got_offset = htab->sgotplt->size;
8441 htab->sgotplt->size += 4;
8442 }
8443
8444 /* We also need to make an entry in the .rel(a).plt section. */
8445 htab->srelplt->size += RELOC_SIZE (htab);
8446
8447 /* VxWorks executables have a second set of relocations for
8448 each PLT entry. They go in a separate relocation section,
8449 which is processed by the kernel loader. */
8450 if (htab->vxworks_p && !info->shared)
8451 {
8452 /* There is a relocation for the initial PLT entry:
8453 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
8454 if (h->plt.offset == htab->plt_header_size)
8455 htab->srelplt2->size += RELOC_SIZE (htab);
8456
8457 /* There are two extra relocations for each subsequent
8458 PLT entry: an R_ARM_32 relocation for the GOT entry,
8459 and an R_ARM_32 relocation for the PLT entry. */
8460 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
8461 }
8462 }
8463 else
8464 {
8465 h->plt.offset = (bfd_vma) -1;
8466 h->needs_plt = 0;
8467 }
8468 }
8469 else
8470 {
8471 h->plt.offset = (bfd_vma) -1;
8472 h->needs_plt = 0;
8473 }
8474
8475 if (h->got.refcount > 0)
8476 {
8477 asection *s;
8478 bfd_boolean dyn;
8479 int tls_type = elf32_arm_hash_entry (h)->tls_type;
8480 int indx;
8481
8482 /* Make sure this symbol is output as a dynamic symbol.
8483 Undefined weak syms won't yet be marked as dynamic. */
8484 if (h->dynindx == -1
8485 && !h->forced_local)
8486 {
8487 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8488 return FALSE;
8489 }
8490
8491 if (!htab->symbian_p)
8492 {
8493 s = htab->sgot;
8494 h->got.offset = s->size;
8495
8496 if (tls_type == GOT_UNKNOWN)
8497 abort ();
8498
8499 if (tls_type == GOT_NORMAL)
8500 /* Non-TLS symbols need one GOT slot. */
8501 s->size += 4;
8502 else
8503 {
8504 if (tls_type & GOT_TLS_GD)
8505 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
8506 s->size += 8;
8507 if (tls_type & GOT_TLS_IE)
8508 /* R_ARM_TLS_IE32 needs one GOT slot. */
8509 s->size += 4;
8510 }
8511
8512 dyn = htab->root.dynamic_sections_created;
8513
8514 indx = 0;
8515 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8516 && (!info->shared
8517 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8518 indx = h->dynindx;
8519
8520 if (tls_type != GOT_NORMAL
8521 && (info->shared || indx != 0)
8522 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8523 || h->root.type != bfd_link_hash_undefweak))
8524 {
8525 if (tls_type & GOT_TLS_IE)
8526 htab->srelgot->size += RELOC_SIZE (htab);
8527
8528 if (tls_type & GOT_TLS_GD)
8529 htab->srelgot->size += RELOC_SIZE (htab);
8530
8531 if ((tls_type & GOT_TLS_GD) && indx != 0)
8532 htab->srelgot->size += RELOC_SIZE (htab);
8533 }
8534 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8535 || h->root.type != bfd_link_hash_undefweak)
8536 && (info->shared
8537 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8538 htab->srelgot->size += RELOC_SIZE (htab);
8539 }
8540 }
8541 else
8542 h->got.offset = (bfd_vma) -1;
8543
8544 /* Allocate stubs for exported Thumb functions on v4t. */
8545 if (!htab->use_blx && h->dynindx != -1
8546 && h->def_regular
8547 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
8548 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
8549 {
8550 struct elf_link_hash_entry * th;
8551 struct bfd_link_hash_entry * bh;
8552 struct elf_link_hash_entry * myh;
8553 char name[1024];
8554 asection *s;
8555 bh = NULL;
8556 /* Create a new symbol to regist the real location of the function. */
8557 s = h->root.u.def.section;
8558 sprintf(name, "__real_%s", h->root.root.string);
8559 _bfd_generic_link_add_one_symbol (info, s->owner,
8560 name, BSF_GLOBAL, s,
8561 h->root.u.def.value,
8562 NULL, TRUE, FALSE, &bh);
8563
8564 myh = (struct elf_link_hash_entry *) bh;
8565 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
8566 myh->forced_local = 1;
8567 eh->export_glue = myh;
8568 th = record_arm_to_thumb_glue (info, h);
8569 /* Point the symbol at the stub. */
8570 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8571 h->root.u.def.section = th->root.u.def.section;
8572 h->root.u.def.value = th->root.u.def.value & ~1;
8573 }
8574
8575 if (eh->relocs_copied == NULL)
8576 return TRUE;
8577
8578 /* In the shared -Bsymbolic case, discard space allocated for
8579 dynamic pc-relative relocs against symbols which turn out to be
8580 defined in regular objects. For the normal shared case, discard
8581 space for pc-relative relocs that have become local due to symbol
8582 visibility changes. */
8583
8584 if (info->shared || htab->root.is_relocatable_executable)
8585 {
8586 /* The only relocs that use pc_count are R_ARM_REL32 and
8587 R_ARM_REL32_NOI, which will appear on something like
8588 ".long foo - .". We want calls to protected symbols to resolve
8589 directly to the function rather than going via the plt. If people
8590 want function pointer comparisons to work as expected then they
8591 should avoid writing assembly like ".long foo - .". */
8592 if (SYMBOL_CALLS_LOCAL (info, h))
8593 {
8594 struct elf32_arm_relocs_copied **pp;
8595
8596 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
8597 {
8598 p->count -= p->pc_count;
8599 p->pc_count = 0;
8600 if (p->count == 0)
8601 *pp = p->next;
8602 else
8603 pp = &p->next;
8604 }
8605 }
8606
8607 /* Also discard relocs on undefined weak syms with non-default
8608 visibility. */
8609 if (eh->relocs_copied != NULL
8610 && h->root.type == bfd_link_hash_undefweak)
8611 {
8612 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8613 eh->relocs_copied = NULL;
8614
8615 /* Make sure undefined weak symbols are output as a dynamic
8616 symbol in PIEs. */
8617 else if (h->dynindx == -1
8618 && !h->forced_local)
8619 {
8620 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8621 return FALSE;
8622 }
8623 }
8624
8625 else if (htab->root.is_relocatable_executable && h->dynindx == -1
8626 && h->root.type == bfd_link_hash_new)
8627 {
8628 /* Output absolute symbols so that we can create relocations
8629 against them. For normal symbols we output a relocation
8630 against the section that contains them. */
8631 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8632 return FALSE;
8633 }
8634
8635 }
8636 else
8637 {
8638 /* For the non-shared case, discard space for relocs against
8639 symbols which turn out to need copy relocs or are not
8640 dynamic. */
8641
8642 if (!h->non_got_ref
8643 && ((h->def_dynamic
8644 && !h->def_regular)
8645 || (htab->root.dynamic_sections_created
8646 && (h->root.type == bfd_link_hash_undefweak
8647 || h->root.type == bfd_link_hash_undefined))))
8648 {
8649 /* Make sure this symbol is output as a dynamic symbol.
8650 Undefined weak syms won't yet be marked as dynamic. */
8651 if (h->dynindx == -1
8652 && !h->forced_local)
8653 {
8654 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8655 return FALSE;
8656 }
8657
8658 /* If that succeeded, we know we'll be keeping all the
8659 relocs. */
8660 if (h->dynindx != -1)
8661 goto keep;
8662 }
8663
8664 eh->relocs_copied = NULL;
8665
8666 keep: ;
8667 }
8668
8669 /* Finally, allocate space. */
8670 for (p = eh->relocs_copied; p != NULL; p = p->next)
8671 {
8672 asection *sreloc = elf_section_data (p->section)->sreloc;
8673 sreloc->size += p->count * RELOC_SIZE (htab);
8674 }
8675
8676 return TRUE;
8677 }
8678
8679 /* Find any dynamic relocs that apply to read-only sections. */
8680
8681 static bfd_boolean
8682 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
8683 {
8684 struct elf32_arm_link_hash_entry *eh;
8685 struct elf32_arm_relocs_copied *p;
8686
8687 if (h->root.type == bfd_link_hash_warning)
8688 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8689
8690 eh = (struct elf32_arm_link_hash_entry *) h;
8691 for (p = eh->relocs_copied; p != NULL; p = p->next)
8692 {
8693 asection *s = p->section;
8694
8695 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8696 {
8697 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8698
8699 info->flags |= DF_TEXTREL;
8700
8701 /* Not an error, just cut short the traversal. */
8702 return FALSE;
8703 }
8704 }
8705 return TRUE;
8706 }
8707
8708 void
8709 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
8710 int byteswap_code)
8711 {
8712 struct elf32_arm_link_hash_table *globals;
8713
8714 globals = elf32_arm_hash_table (info);
8715 globals->byteswap_code = byteswap_code;
8716 }
8717
8718 /* Set the sizes of the dynamic sections. */
8719
8720 static bfd_boolean
8721 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
8722 struct bfd_link_info * info)
8723 {
8724 bfd * dynobj;
8725 asection * s;
8726 bfd_boolean plt;
8727 bfd_boolean relocs;
8728 bfd *ibfd;
8729 struct elf32_arm_link_hash_table *htab;
8730
8731 htab = elf32_arm_hash_table (info);
8732 dynobj = elf_hash_table (info)->dynobj;
8733 BFD_ASSERT (dynobj != NULL);
8734 check_use_blx (htab);
8735
8736 if (elf_hash_table (info)->dynamic_sections_created)
8737 {
8738 /* Set the contents of the .interp section to the interpreter. */
8739 if (info->executable)
8740 {
8741 s = bfd_get_section_by_name (dynobj, ".interp");
8742 BFD_ASSERT (s != NULL);
8743 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8744 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8745 }
8746 }
8747
8748 /* Set up .got offsets for local syms, and space for local dynamic
8749 relocs. */
8750 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8751 {
8752 bfd_signed_vma *local_got;
8753 bfd_signed_vma *end_local_got;
8754 char *local_tls_type;
8755 bfd_size_type locsymcount;
8756 Elf_Internal_Shdr *symtab_hdr;
8757 asection *srel;
8758
8759 if (! is_arm_elf (ibfd))
8760 continue;
8761
8762 for (s = ibfd->sections; s != NULL; s = s->next)
8763 {
8764 struct elf32_arm_relocs_copied *p;
8765
8766 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8767 {
8768 if (!bfd_is_abs_section (p->section)
8769 && bfd_is_abs_section (p->section->output_section))
8770 {
8771 /* Input section has been discarded, either because
8772 it is a copy of a linkonce section or due to
8773 linker script /DISCARD/, so we'll be discarding
8774 the relocs too. */
8775 }
8776 else if (p->count != 0)
8777 {
8778 srel = elf_section_data (p->section)->sreloc;
8779 srel->size += p->count * RELOC_SIZE (htab);
8780 if ((p->section->output_section->flags & SEC_READONLY) != 0)
8781 info->flags |= DF_TEXTREL;
8782 }
8783 }
8784 }
8785
8786 local_got = elf_local_got_refcounts (ibfd);
8787 if (!local_got)
8788 continue;
8789
8790 symtab_hdr = & elf_symtab_hdr (ibfd);
8791 locsymcount = symtab_hdr->sh_info;
8792 end_local_got = local_got + locsymcount;
8793 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
8794 s = htab->sgot;
8795 srel = htab->srelgot;
8796 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
8797 {
8798 if (*local_got > 0)
8799 {
8800 *local_got = s->size;
8801 if (*local_tls_type & GOT_TLS_GD)
8802 /* TLS_GD relocs need an 8-byte structure in the GOT. */
8803 s->size += 8;
8804 if (*local_tls_type & GOT_TLS_IE)
8805 s->size += 4;
8806 if (*local_tls_type == GOT_NORMAL)
8807 s->size += 4;
8808
8809 if (info->shared || *local_tls_type == GOT_TLS_GD)
8810 srel->size += RELOC_SIZE (htab);
8811 }
8812 else
8813 *local_got = (bfd_vma) -1;
8814 }
8815 }
8816
8817 if (htab->tls_ldm_got.refcount > 0)
8818 {
8819 /* Allocate two GOT entries and one dynamic relocation (if necessary)
8820 for R_ARM_TLS_LDM32 relocations. */
8821 htab->tls_ldm_got.offset = htab->sgot->size;
8822 htab->sgot->size += 8;
8823 if (info->shared)
8824 htab->srelgot->size += RELOC_SIZE (htab);
8825 }
8826 else
8827 htab->tls_ldm_got.offset = -1;
8828
8829 /* Allocate global sym .plt and .got entries, and space for global
8830 sym dynamic relocs. */
8831 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
8832
8833 /* Here we rummage through the found bfds to collect glue information. */
8834 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8835 {
8836 if (! is_arm_elf (ibfd))
8837 continue;
8838
8839 /* Initialise mapping tables for code/data. */
8840 bfd_elf32_arm_init_maps (ibfd);
8841
8842 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
8843 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
8844 /* xgettext:c-format */
8845 _bfd_error_handler (_("Errors encountered processing file %s"),
8846 ibfd->filename);
8847 }
8848
8849 /* The check_relocs and adjust_dynamic_symbol entry points have
8850 determined the sizes of the various dynamic sections. Allocate
8851 memory for them. */
8852 plt = FALSE;
8853 relocs = FALSE;
8854 for (s = dynobj->sections; s != NULL; s = s->next)
8855 {
8856 const char * name;
8857
8858 if ((s->flags & SEC_LINKER_CREATED) == 0)
8859 continue;
8860
8861 /* It's OK to base decisions on the section name, because none
8862 of the dynobj section names depend upon the input files. */
8863 name = bfd_get_section_name (dynobj, s);
8864
8865 if (strcmp (name, ".plt") == 0)
8866 {
8867 /* Remember whether there is a PLT. */
8868 plt = s->size != 0;
8869 }
8870 else if (CONST_STRNEQ (name, ".rel"))
8871 {
8872 if (s->size != 0)
8873 {
8874 /* Remember whether there are any reloc sections other
8875 than .rel(a).plt and .rela.plt.unloaded. */
8876 if (s != htab->srelplt && s != htab->srelplt2)
8877 relocs = TRUE;
8878
8879 /* We use the reloc_count field as a counter if we need
8880 to copy relocs into the output file. */
8881 s->reloc_count = 0;
8882 }
8883 }
8884 else if (! CONST_STRNEQ (name, ".got")
8885 && strcmp (name, ".dynbss") != 0)
8886 {
8887 /* It's not one of our sections, so don't allocate space. */
8888 continue;
8889 }
8890
8891 if (s->size == 0)
8892 {
8893 /* If we don't need this section, strip it from the
8894 output file. This is mostly to handle .rel(a).bss and
8895 .rel(a).plt. We must create both sections in
8896 create_dynamic_sections, because they must be created
8897 before the linker maps input sections to output
8898 sections. The linker does that before
8899 adjust_dynamic_symbol is called, and it is that
8900 function which decides whether anything needs to go
8901 into these sections. */
8902 s->flags |= SEC_EXCLUDE;
8903 continue;
8904 }
8905
8906 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8907 continue;
8908
8909 /* Allocate memory for the section contents. */
8910 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8911 if (s->contents == NULL)
8912 return FALSE;
8913 }
8914
8915 if (elf_hash_table (info)->dynamic_sections_created)
8916 {
8917 /* Add some entries to the .dynamic section. We fill in the
8918 values later, in elf32_arm_finish_dynamic_sections, but we
8919 must add the entries now so that we get the correct size for
8920 the .dynamic section. The DT_DEBUG entry is filled in by the
8921 dynamic linker and used by the debugger. */
8922 #define add_dynamic_entry(TAG, VAL) \
8923 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8924
8925 if (info->executable)
8926 {
8927 if (!add_dynamic_entry (DT_DEBUG, 0))
8928 return FALSE;
8929 }
8930
8931 if (plt)
8932 {
8933 if ( !add_dynamic_entry (DT_PLTGOT, 0)
8934 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8935 || !add_dynamic_entry (DT_PLTREL,
8936 htab->use_rel ? DT_REL : DT_RELA)
8937 || !add_dynamic_entry (DT_JMPREL, 0))
8938 return FALSE;
8939 }
8940
8941 if (relocs)
8942 {
8943 if (htab->use_rel)
8944 {
8945 if (!add_dynamic_entry (DT_REL, 0)
8946 || !add_dynamic_entry (DT_RELSZ, 0)
8947 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
8948 return FALSE;
8949 }
8950 else
8951 {
8952 if (!add_dynamic_entry (DT_RELA, 0)
8953 || !add_dynamic_entry (DT_RELASZ, 0)
8954 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8955 return FALSE;
8956 }
8957 }
8958
8959 /* If any dynamic relocs apply to a read-only section,
8960 then we need a DT_TEXTREL entry. */
8961 if ((info->flags & DF_TEXTREL) == 0)
8962 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
8963 (PTR) info);
8964
8965 if ((info->flags & DF_TEXTREL) != 0)
8966 {
8967 if (!add_dynamic_entry (DT_TEXTREL, 0))
8968 return FALSE;
8969 }
8970 if (htab->vxworks_p
8971 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8972 return FALSE;
8973 }
8974 #undef add_dynamic_entry
8975
8976 return TRUE;
8977 }
8978
8979 /* Finish up dynamic symbol handling. We set the contents of various
8980 dynamic sections here. */
8981
8982 static bfd_boolean
8983 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
8984 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
8985 {
8986 bfd * dynobj;
8987 struct elf32_arm_link_hash_table *htab;
8988 struct elf32_arm_link_hash_entry *eh;
8989
8990 dynobj = elf_hash_table (info)->dynobj;
8991 htab = elf32_arm_hash_table (info);
8992 eh = (struct elf32_arm_link_hash_entry *) h;
8993
8994 if (h->plt.offset != (bfd_vma) -1)
8995 {
8996 asection * splt;
8997 asection * srel;
8998 bfd_byte *loc;
8999 bfd_vma plt_index;
9000 Elf_Internal_Rela rel;
9001
9002 /* This symbol has an entry in the procedure linkage table. Set
9003 it up. */
9004
9005 BFD_ASSERT (h->dynindx != -1);
9006
9007 splt = bfd_get_section_by_name (dynobj, ".plt");
9008 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
9009 BFD_ASSERT (splt != NULL && srel != NULL);
9010
9011 /* Fill in the entry in the procedure linkage table. */
9012 if (htab->symbian_p)
9013 {
9014 put_arm_insn (htab, output_bfd,
9015 elf32_arm_symbian_plt_entry[0],
9016 splt->contents + h->plt.offset);
9017 bfd_put_32 (output_bfd,
9018 elf32_arm_symbian_plt_entry[1],
9019 splt->contents + h->plt.offset + 4);
9020
9021 /* Fill in the entry in the .rel.plt section. */
9022 rel.r_offset = (splt->output_section->vma
9023 + splt->output_offset
9024 + h->plt.offset + 4);
9025 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9026
9027 /* Get the index in the procedure linkage table which
9028 corresponds to this symbol. This is the index of this symbol
9029 in all the symbols for which we are making plt entries. The
9030 first entry in the procedure linkage table is reserved. */
9031 plt_index = ((h->plt.offset - htab->plt_header_size)
9032 / htab->plt_entry_size);
9033 }
9034 else
9035 {
9036 bfd_vma got_offset, got_address, plt_address;
9037 bfd_vma got_displacement;
9038 asection * sgot;
9039 bfd_byte * ptr;
9040
9041 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9042 BFD_ASSERT (sgot != NULL);
9043
9044 /* Get the offset into the .got.plt table of the entry that
9045 corresponds to this function. */
9046 got_offset = eh->plt_got_offset;
9047
9048 /* Get the index in the procedure linkage table which
9049 corresponds to this symbol. This is the index of this symbol
9050 in all the symbols for which we are making plt entries. The
9051 first three entries in .got.plt are reserved; after that
9052 symbols appear in the same order as in .plt. */
9053 plt_index = (got_offset - 12) / 4;
9054
9055 /* Calculate the address of the GOT entry. */
9056 got_address = (sgot->output_section->vma
9057 + sgot->output_offset
9058 + got_offset);
9059
9060 /* ...and the address of the PLT entry. */
9061 plt_address = (splt->output_section->vma
9062 + splt->output_offset
9063 + h->plt.offset);
9064
9065 ptr = htab->splt->contents + h->plt.offset;
9066 if (htab->vxworks_p && info->shared)
9067 {
9068 unsigned int i;
9069 bfd_vma val;
9070
9071 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9072 {
9073 val = elf32_arm_vxworks_shared_plt_entry[i];
9074 if (i == 2)
9075 val |= got_address - sgot->output_section->vma;
9076 if (i == 5)
9077 val |= plt_index * RELOC_SIZE (htab);
9078 if (i == 2 || i == 5)
9079 bfd_put_32 (output_bfd, val, ptr);
9080 else
9081 put_arm_insn (htab, output_bfd, val, ptr);
9082 }
9083 }
9084 else if (htab->vxworks_p)
9085 {
9086 unsigned int i;
9087 bfd_vma val;
9088
9089 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9090 {
9091 val = elf32_arm_vxworks_exec_plt_entry[i];
9092 if (i == 2)
9093 val |= got_address;
9094 if (i == 4)
9095 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
9096 if (i == 5)
9097 val |= plt_index * RELOC_SIZE (htab);
9098 if (i == 2 || i == 5)
9099 bfd_put_32 (output_bfd, val, ptr);
9100 else
9101 put_arm_insn (htab, output_bfd, val, ptr);
9102 }
9103
9104 loc = (htab->srelplt2->contents
9105 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9106
9107 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9108 referencing the GOT for this PLT entry. */
9109 rel.r_offset = plt_address + 8;
9110 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9111 rel.r_addend = got_offset;
9112 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9113 loc += RELOC_SIZE (htab);
9114
9115 /* Create the R_ARM_ABS32 relocation referencing the
9116 beginning of the PLT for this GOT entry. */
9117 rel.r_offset = got_address;
9118 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9119 rel.r_addend = 0;
9120 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9121 }
9122 else
9123 {
9124 bfd_signed_vma thumb_refs;
9125 /* Calculate the displacement between the PLT slot and the
9126 entry in the GOT. The eight-byte offset accounts for the
9127 value produced by adding to pc in the first instruction
9128 of the PLT stub. */
9129 got_displacement = got_address - (plt_address + 8);
9130
9131 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9132
9133 thumb_refs = eh->plt_thumb_refcount;
9134 if (!htab->use_blx)
9135 thumb_refs += eh->plt_maybe_thumb_refcount;
9136
9137 if (thumb_refs > 0)
9138 {
9139 put_thumb_insn (htab, output_bfd,
9140 elf32_arm_plt_thumb_stub[0], ptr - 4);
9141 put_thumb_insn (htab, output_bfd,
9142 elf32_arm_plt_thumb_stub[1], ptr - 2);
9143 }
9144
9145 put_arm_insn (htab, output_bfd,
9146 elf32_arm_plt_entry[0]
9147 | ((got_displacement & 0x0ff00000) >> 20),
9148 ptr + 0);
9149 put_arm_insn (htab, output_bfd,
9150 elf32_arm_plt_entry[1]
9151 | ((got_displacement & 0x000ff000) >> 12),
9152 ptr+ 4);
9153 put_arm_insn (htab, output_bfd,
9154 elf32_arm_plt_entry[2]
9155 | (got_displacement & 0x00000fff),
9156 ptr + 8);
9157 #ifdef FOUR_WORD_PLT
9158 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
9159 #endif
9160 }
9161
9162 /* Fill in the entry in the global offset table. */
9163 bfd_put_32 (output_bfd,
9164 (splt->output_section->vma
9165 + splt->output_offset),
9166 sgot->contents + got_offset);
9167
9168 /* Fill in the entry in the .rel(a).plt section. */
9169 rel.r_addend = 0;
9170 rel.r_offset = got_address;
9171 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
9172 }
9173
9174 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9175 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9176
9177 if (!h->def_regular)
9178 {
9179 /* Mark the symbol as undefined, rather than as defined in
9180 the .plt section. Leave the value alone. */
9181 sym->st_shndx = SHN_UNDEF;
9182 /* If the symbol is weak, we do need to clear the value.
9183 Otherwise, the PLT entry would provide a definition for
9184 the symbol even if the symbol wasn't defined anywhere,
9185 and so the symbol would never be NULL. */
9186 if (!h->ref_regular_nonweak)
9187 sym->st_value = 0;
9188 }
9189 }
9190
9191 if (h->got.offset != (bfd_vma) -1
9192 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
9193 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
9194 {
9195 asection * sgot;
9196 asection * srel;
9197 Elf_Internal_Rela rel;
9198 bfd_byte *loc;
9199 bfd_vma offset;
9200
9201 /* This symbol has an entry in the global offset table. Set it
9202 up. */
9203 sgot = bfd_get_section_by_name (dynobj, ".got");
9204 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
9205 BFD_ASSERT (sgot != NULL && srel != NULL);
9206
9207 offset = (h->got.offset & ~(bfd_vma) 1);
9208 rel.r_addend = 0;
9209 rel.r_offset = (sgot->output_section->vma
9210 + sgot->output_offset
9211 + offset);
9212
9213 /* If this is a static link, or it is a -Bsymbolic link and the
9214 symbol is defined locally or was forced to be local because
9215 of a version file, we just want to emit a RELATIVE reloc.
9216 The entry in the global offset table will already have been
9217 initialized in the relocate_section function. */
9218 if (info->shared
9219 && SYMBOL_REFERENCES_LOCAL (info, h))
9220 {
9221 BFD_ASSERT((h->got.offset & 1) != 0);
9222 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9223 if (!htab->use_rel)
9224 {
9225 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
9226 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9227 }
9228 }
9229 else
9230 {
9231 BFD_ASSERT((h->got.offset & 1) == 0);
9232 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9233 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9234 }
9235
9236 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
9237 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9238 }
9239
9240 if (h->needs_copy)
9241 {
9242 asection * s;
9243 Elf_Internal_Rela rel;
9244 bfd_byte *loc;
9245
9246 /* This symbol needs a copy reloc. Set it up. */
9247 BFD_ASSERT (h->dynindx != -1
9248 && (h->root.type == bfd_link_hash_defined
9249 || h->root.type == bfd_link_hash_defweak));
9250
9251 s = bfd_get_section_by_name (h->root.u.def.section->owner,
9252 RELOC_SECTION (htab, ".bss"));
9253 BFD_ASSERT (s != NULL);
9254
9255 rel.r_addend = 0;
9256 rel.r_offset = (h->root.u.def.value
9257 + h->root.u.def.section->output_section->vma
9258 + h->root.u.def.section->output_offset);
9259 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
9260 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9261 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9262 }
9263
9264 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
9265 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
9266 to the ".got" section. */
9267 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
9268 || (!htab->vxworks_p && h == htab->root.hgot))
9269 sym->st_shndx = SHN_ABS;
9270
9271 return TRUE;
9272 }
9273
9274 /* Finish up the dynamic sections. */
9275
9276 static bfd_boolean
9277 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
9278 {
9279 bfd * dynobj;
9280 asection * sgot;
9281 asection * sdyn;
9282
9283 dynobj = elf_hash_table (info)->dynobj;
9284
9285 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9286 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
9287 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9288
9289 if (elf_hash_table (info)->dynamic_sections_created)
9290 {
9291 asection *splt;
9292 Elf32_External_Dyn *dyncon, *dynconend;
9293 struct elf32_arm_link_hash_table *htab;
9294
9295 htab = elf32_arm_hash_table (info);
9296 splt = bfd_get_section_by_name (dynobj, ".plt");
9297 BFD_ASSERT (splt != NULL && sdyn != NULL);
9298
9299 dyncon = (Elf32_External_Dyn *) sdyn->contents;
9300 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9301
9302 for (; dyncon < dynconend; dyncon++)
9303 {
9304 Elf_Internal_Dyn dyn;
9305 const char * name;
9306 asection * s;
9307
9308 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
9309
9310 switch (dyn.d_tag)
9311 {
9312 unsigned int type;
9313
9314 default:
9315 if (htab->vxworks_p
9316 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9317 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9318 break;
9319
9320 case DT_HASH:
9321 name = ".hash";
9322 goto get_vma_if_bpabi;
9323 case DT_STRTAB:
9324 name = ".dynstr";
9325 goto get_vma_if_bpabi;
9326 case DT_SYMTAB:
9327 name = ".dynsym";
9328 goto get_vma_if_bpabi;
9329 case DT_VERSYM:
9330 name = ".gnu.version";
9331 goto get_vma_if_bpabi;
9332 case DT_VERDEF:
9333 name = ".gnu.version_d";
9334 goto get_vma_if_bpabi;
9335 case DT_VERNEED:
9336 name = ".gnu.version_r";
9337 goto get_vma_if_bpabi;
9338
9339 case DT_PLTGOT:
9340 name = ".got";
9341 goto get_vma;
9342 case DT_JMPREL:
9343 name = RELOC_SECTION (htab, ".plt");
9344 get_vma:
9345 s = bfd_get_section_by_name (output_bfd, name);
9346 BFD_ASSERT (s != NULL);
9347 if (!htab->symbian_p)
9348 dyn.d_un.d_ptr = s->vma;
9349 else
9350 /* In the BPABI, tags in the PT_DYNAMIC section point
9351 at the file offset, not the memory address, for the
9352 convenience of the post linker. */
9353 dyn.d_un.d_ptr = s->filepos;
9354 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9355 break;
9356
9357 get_vma_if_bpabi:
9358 if (htab->symbian_p)
9359 goto get_vma;
9360 break;
9361
9362 case DT_PLTRELSZ:
9363 s = bfd_get_section_by_name (output_bfd,
9364 RELOC_SECTION (htab, ".plt"));
9365 BFD_ASSERT (s != NULL);
9366 dyn.d_un.d_val = s->size;
9367 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9368 break;
9369
9370 case DT_RELSZ:
9371 case DT_RELASZ:
9372 if (!htab->symbian_p)
9373 {
9374 /* My reading of the SVR4 ABI indicates that the
9375 procedure linkage table relocs (DT_JMPREL) should be
9376 included in the overall relocs (DT_REL). This is
9377 what Solaris does. However, UnixWare can not handle
9378 that case. Therefore, we override the DT_RELSZ entry
9379 here to make it not include the JMPREL relocs. Since
9380 the linker script arranges for .rel(a).plt to follow all
9381 other relocation sections, we don't have to worry
9382 about changing the DT_REL entry. */
9383 s = bfd_get_section_by_name (output_bfd,
9384 RELOC_SECTION (htab, ".plt"));
9385 if (s != NULL)
9386 dyn.d_un.d_val -= s->size;
9387 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9388 break;
9389 }
9390 /* Fall through */
9391
9392 case DT_REL:
9393 case DT_RELA:
9394 /* In the BPABI, the DT_REL tag must point at the file
9395 offset, not the VMA, of the first relocation
9396 section. So, we use code similar to that in
9397 elflink.c, but do not check for SHF_ALLOC on the
9398 relcoation section, since relocations sections are
9399 never allocated under the BPABI. The comments above
9400 about Unixware notwithstanding, we include all of the
9401 relocations here. */
9402 if (htab->symbian_p)
9403 {
9404 unsigned int i;
9405 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9406 ? SHT_REL : SHT_RELA);
9407 dyn.d_un.d_val = 0;
9408 for (i = 1; i < elf_numsections (output_bfd); i++)
9409 {
9410 Elf_Internal_Shdr *hdr
9411 = elf_elfsections (output_bfd)[i];
9412 if (hdr->sh_type == type)
9413 {
9414 if (dyn.d_tag == DT_RELSZ
9415 || dyn.d_tag == DT_RELASZ)
9416 dyn.d_un.d_val += hdr->sh_size;
9417 else if ((ufile_ptr) hdr->sh_offset
9418 <= dyn.d_un.d_val - 1)
9419 dyn.d_un.d_val = hdr->sh_offset;
9420 }
9421 }
9422 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9423 }
9424 break;
9425
9426 /* Set the bottom bit of DT_INIT/FINI if the
9427 corresponding function is Thumb. */
9428 case DT_INIT:
9429 name = info->init_function;
9430 goto get_sym;
9431 case DT_FINI:
9432 name = info->fini_function;
9433 get_sym:
9434 /* If it wasn't set by elf_bfd_final_link
9435 then there is nothing to adjust. */
9436 if (dyn.d_un.d_val != 0)
9437 {
9438 struct elf_link_hash_entry * eh;
9439
9440 eh = elf_link_hash_lookup (elf_hash_table (info), name,
9441 FALSE, FALSE, TRUE);
9442 if (eh != (struct elf_link_hash_entry *) NULL
9443 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
9444 {
9445 dyn.d_un.d_val |= 1;
9446 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9447 }
9448 }
9449 break;
9450 }
9451 }
9452
9453 /* Fill in the first entry in the procedure linkage table. */
9454 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
9455 {
9456 const bfd_vma *plt0_entry;
9457 bfd_vma got_address, plt_address, got_displacement;
9458
9459 /* Calculate the addresses of the GOT and PLT. */
9460 got_address = sgot->output_section->vma + sgot->output_offset;
9461 plt_address = splt->output_section->vma + splt->output_offset;
9462
9463 if (htab->vxworks_p)
9464 {
9465 /* The VxWorks GOT is relocated by the dynamic linker.
9466 Therefore, we must emit relocations rather than simply
9467 computing the values now. */
9468 Elf_Internal_Rela rel;
9469
9470 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
9471 put_arm_insn (htab, output_bfd, plt0_entry[0],
9472 splt->contents + 0);
9473 put_arm_insn (htab, output_bfd, plt0_entry[1],
9474 splt->contents + 4);
9475 put_arm_insn (htab, output_bfd, plt0_entry[2],
9476 splt->contents + 8);
9477 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
9478
9479 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
9480 rel.r_offset = plt_address + 12;
9481 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9482 rel.r_addend = 0;
9483 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
9484 htab->srelplt2->contents);
9485 }
9486 else
9487 {
9488 got_displacement = got_address - (plt_address + 16);
9489
9490 plt0_entry = elf32_arm_plt0_entry;
9491 put_arm_insn (htab, output_bfd, plt0_entry[0],
9492 splt->contents + 0);
9493 put_arm_insn (htab, output_bfd, plt0_entry[1],
9494 splt->contents + 4);
9495 put_arm_insn (htab, output_bfd, plt0_entry[2],
9496 splt->contents + 8);
9497 put_arm_insn (htab, output_bfd, plt0_entry[3],
9498 splt->contents + 12);
9499
9500 #ifdef FOUR_WORD_PLT
9501 /* The displacement value goes in the otherwise-unused
9502 last word of the second entry. */
9503 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
9504 #else
9505 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
9506 #endif
9507 }
9508 }
9509
9510 /* UnixWare sets the entsize of .plt to 4, although that doesn't
9511 really seem like the right value. */
9512 if (splt->output_section->owner == output_bfd)
9513 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
9514
9515 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
9516 {
9517 /* Correct the .rel(a).plt.unloaded relocations. They will have
9518 incorrect symbol indexes. */
9519 int num_plts;
9520 unsigned char *p;
9521
9522 num_plts = ((htab->splt->size - htab->plt_header_size)
9523 / htab->plt_entry_size);
9524 p = htab->srelplt2->contents + RELOC_SIZE (htab);
9525
9526 for (; num_plts; num_plts--)
9527 {
9528 Elf_Internal_Rela rel;
9529
9530 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9531 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9532 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9533 p += RELOC_SIZE (htab);
9534
9535 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9536 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9537 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9538 p += RELOC_SIZE (htab);
9539 }
9540 }
9541 }
9542
9543 /* Fill in the first three entries in the global offset table. */
9544 if (sgot)
9545 {
9546 if (sgot->size > 0)
9547 {
9548 if (sdyn == NULL)
9549 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
9550 else
9551 bfd_put_32 (output_bfd,
9552 sdyn->output_section->vma + sdyn->output_offset,
9553 sgot->contents);
9554 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
9555 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
9556 }
9557
9558 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
9559 }
9560
9561 return TRUE;
9562 }
9563
9564 static void
9565 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9566 {
9567 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9568 struct elf32_arm_link_hash_table *globals;
9569
9570 i_ehdrp = elf_elfheader (abfd);
9571
9572 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
9573 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
9574 else
9575 i_ehdrp->e_ident[EI_OSABI] = 0;
9576 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
9577
9578 if (link_info)
9579 {
9580 globals = elf32_arm_hash_table (link_info);
9581 if (globals->byteswap_code)
9582 i_ehdrp->e_flags |= EF_ARM_BE8;
9583 }
9584 }
9585
9586 static enum elf_reloc_type_class
9587 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
9588 {
9589 switch ((int) ELF32_R_TYPE (rela->r_info))
9590 {
9591 case R_ARM_RELATIVE:
9592 return reloc_class_relative;
9593 case R_ARM_JUMP_SLOT:
9594 return reloc_class_plt;
9595 case R_ARM_COPY:
9596 return reloc_class_copy;
9597 default:
9598 return reloc_class_normal;
9599 }
9600 }
9601
9602 /* Set the right machine number for an Arm ELF file. */
9603
9604 static bfd_boolean
9605 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
9606 {
9607 if (hdr->sh_type == SHT_NOTE)
9608 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
9609
9610 return TRUE;
9611 }
9612
9613 static void
9614 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
9615 {
9616 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
9617 }
9618
9619 /* Return TRUE if this is an unwinding table entry. */
9620
9621 static bfd_boolean
9622 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
9623 {
9624 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
9625 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
9626 }
9627
9628
9629 /* Set the type and flags for an ARM section. We do this by
9630 the section name, which is a hack, but ought to work. */
9631
9632 static bfd_boolean
9633 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
9634 {
9635 const char * name;
9636
9637 name = bfd_get_section_name (abfd, sec);
9638
9639 if (is_arm_elf_unwind_section_name (abfd, name))
9640 {
9641 hdr->sh_type = SHT_ARM_EXIDX;
9642 hdr->sh_flags |= SHF_LINK_ORDER;
9643 }
9644 return TRUE;
9645 }
9646
9647 /* Handle an ARM specific section when reading an object file. This is
9648 called when bfd_section_from_shdr finds a section with an unknown
9649 type. */
9650
9651 static bfd_boolean
9652 elf32_arm_section_from_shdr (bfd *abfd,
9653 Elf_Internal_Shdr * hdr,
9654 const char *name,
9655 int shindex)
9656 {
9657 /* There ought to be a place to keep ELF backend specific flags, but
9658 at the moment there isn't one. We just keep track of the
9659 sections by their name, instead. Fortunately, the ABI gives
9660 names for all the ARM specific sections, so we will probably get
9661 away with this. */
9662 switch (hdr->sh_type)
9663 {
9664 case SHT_ARM_EXIDX:
9665 case SHT_ARM_PREEMPTMAP:
9666 case SHT_ARM_ATTRIBUTES:
9667 break;
9668
9669 default:
9670 return FALSE;
9671 }
9672
9673 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
9674 return FALSE;
9675
9676 return TRUE;
9677 }
9678
9679 /* A structure used to record a list of sections, independently
9680 of the next and prev fields in the asection structure. */
9681 typedef struct section_list
9682 {
9683 asection * sec;
9684 struct section_list * next;
9685 struct section_list * prev;
9686 }
9687 section_list;
9688
9689 /* Unfortunately we need to keep a list of sections for which
9690 an _arm_elf_section_data structure has been allocated. This
9691 is because it is possible for functions like elf32_arm_write_section
9692 to be called on a section which has had an elf_data_structure
9693 allocated for it (and so the used_by_bfd field is valid) but
9694 for which the ARM extended version of this structure - the
9695 _arm_elf_section_data structure - has not been allocated. */
9696 static section_list * sections_with_arm_elf_section_data = NULL;
9697
9698 static void
9699 record_section_with_arm_elf_section_data (asection * sec)
9700 {
9701 struct section_list * entry;
9702
9703 entry = bfd_malloc (sizeof (* entry));
9704 if (entry == NULL)
9705 return;
9706 entry->sec = sec;
9707 entry->next = sections_with_arm_elf_section_data;
9708 entry->prev = NULL;
9709 if (entry->next != NULL)
9710 entry->next->prev = entry;
9711 sections_with_arm_elf_section_data = entry;
9712 }
9713
9714 static struct section_list *
9715 find_arm_elf_section_entry (asection * sec)
9716 {
9717 struct section_list * entry;
9718 static struct section_list * last_entry = NULL;
9719
9720 /* This is a short cut for the typical case where the sections are added
9721 to the sections_with_arm_elf_section_data list in forward order and
9722 then looked up here in backwards order. This makes a real difference
9723 to the ld-srec/sec64k.exp linker test. */
9724 entry = sections_with_arm_elf_section_data;
9725 if (last_entry != NULL)
9726 {
9727 if (last_entry->sec == sec)
9728 entry = last_entry;
9729 else if (last_entry->next != NULL
9730 && last_entry->next->sec == sec)
9731 entry = last_entry->next;
9732 }
9733
9734 for (; entry; entry = entry->next)
9735 if (entry->sec == sec)
9736 break;
9737
9738 if (entry)
9739 /* Record the entry prior to this one - it is the entry we are most
9740 likely to want to locate next time. Also this way if we have been
9741 called from unrecord_section_with_arm_elf_section_data() we will not
9742 be caching a pointer that is about to be freed. */
9743 last_entry = entry->prev;
9744
9745 return entry;
9746 }
9747
9748 static _arm_elf_section_data *
9749 get_arm_elf_section_data (asection * sec)
9750 {
9751 struct section_list * entry;
9752
9753 entry = find_arm_elf_section_entry (sec);
9754
9755 if (entry)
9756 return elf32_arm_section_data (entry->sec);
9757 else
9758 return NULL;
9759 }
9760
9761 static void
9762 unrecord_section_with_arm_elf_section_data (asection * sec)
9763 {
9764 struct section_list * entry;
9765
9766 entry = find_arm_elf_section_entry (sec);
9767
9768 if (entry)
9769 {
9770 if (entry->prev != NULL)
9771 entry->prev->next = entry->next;
9772 if (entry->next != NULL)
9773 entry->next->prev = entry->prev;
9774 if (entry == sections_with_arm_elf_section_data)
9775 sections_with_arm_elf_section_data = entry->next;
9776 free (entry);
9777 }
9778 }
9779
9780
9781 typedef struct
9782 {
9783 void *finfo;
9784 struct bfd_link_info *info;
9785 asection *sec;
9786 int sec_shndx;
9787 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
9788 asection *, struct elf_link_hash_entry *);
9789 } output_arch_syminfo;
9790
9791 enum map_symbol_type
9792 {
9793 ARM_MAP_ARM,
9794 ARM_MAP_THUMB,
9795 ARM_MAP_DATA
9796 };
9797
9798
9799 /* Output a single PLT mapping symbol. */
9800
9801 static bfd_boolean
9802 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
9803 enum map_symbol_type type,
9804 bfd_vma offset)
9805 {
9806 static const char *names[3] = {"$a", "$t", "$d"};
9807 struct elf32_arm_link_hash_table *htab;
9808 Elf_Internal_Sym sym;
9809
9810 htab = elf32_arm_hash_table (osi->info);
9811 sym.st_value = osi->sec->output_section->vma
9812 + osi->sec->output_offset
9813 + offset;
9814 sym.st_size = 0;
9815 sym.st_other = 0;
9816 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
9817 sym.st_shndx = osi->sec_shndx;
9818 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
9819 return FALSE;
9820 return TRUE;
9821 }
9822
9823
9824 /* Output mapping symbols for PLT entries associated with H. */
9825
9826 static bfd_boolean
9827 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
9828 {
9829 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
9830 struct elf32_arm_link_hash_table *htab;
9831 struct elf32_arm_link_hash_entry *eh;
9832 bfd_vma addr;
9833
9834 htab = elf32_arm_hash_table (osi->info);
9835
9836 if (h->root.type == bfd_link_hash_indirect)
9837 return TRUE;
9838
9839 if (h->root.type == bfd_link_hash_warning)
9840 /* When warning symbols are created, they **replace** the "real"
9841 entry in the hash table, thus we never get to see the real
9842 symbol in a hash traversal. So look at it now. */
9843 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9844
9845 if (h->plt.offset == (bfd_vma) -1)
9846 return TRUE;
9847
9848 eh = (struct elf32_arm_link_hash_entry *) h;
9849 addr = h->plt.offset;
9850 if (htab->symbian_p)
9851 {
9852 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9853 return FALSE;
9854 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
9855 return FALSE;
9856 }
9857 else if (htab->vxworks_p)
9858 {
9859 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9860 return FALSE;
9861 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
9862 return FALSE;
9863 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
9864 return FALSE;
9865 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
9866 return FALSE;
9867 }
9868 else
9869 {
9870 bfd_signed_vma thumb_refs;
9871
9872 thumb_refs = eh->plt_thumb_refcount;
9873 if (!htab->use_blx)
9874 thumb_refs += eh->plt_maybe_thumb_refcount;
9875
9876 if (thumb_refs > 0)
9877 {
9878 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
9879 return FALSE;
9880 }
9881 #ifdef FOUR_WORD_PLT
9882 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9883 return FALSE;
9884 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
9885 return FALSE;
9886 #else
9887 /* A three-word PLT with no Thumb thunk contains only Arm code,
9888 so only need to output a mapping symbol for the first PLT entry and
9889 entries with thumb thunks. */
9890 if (thumb_refs > 0 || addr == 20)
9891 {
9892 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9893 return FALSE;
9894 }
9895 #endif
9896 }
9897
9898 return TRUE;
9899 }
9900
9901
9902 /* Output mapping symbols for linker generated sections. */
9903
9904 static bfd_boolean
9905 elf32_arm_output_arch_local_syms (bfd *output_bfd,
9906 struct bfd_link_info *info,
9907 void *finfo, bfd_boolean (*func) (void *, const char *,
9908 Elf_Internal_Sym *,
9909 asection *,
9910 struct elf_link_hash_entry *))
9911 {
9912 output_arch_syminfo osi;
9913 struct elf32_arm_link_hash_table *htab;
9914 bfd_vma offset;
9915 bfd_size_type size;
9916
9917 htab = elf32_arm_hash_table (info);
9918 check_use_blx(htab);
9919
9920 osi.finfo = finfo;
9921 osi.info = info;
9922 osi.func = func;
9923
9924 /* ARM->Thumb glue. */
9925 if (htab->arm_glue_size > 0)
9926 {
9927 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9928 ARM2THUMB_GLUE_SECTION_NAME);
9929
9930 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9931 (output_bfd, osi.sec->output_section);
9932 if (info->shared || htab->root.is_relocatable_executable
9933 || htab->pic_veneer)
9934 size = ARM2THUMB_PIC_GLUE_SIZE;
9935 else if (htab->use_blx)
9936 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
9937 else
9938 size = ARM2THUMB_STATIC_GLUE_SIZE;
9939
9940 for (offset = 0; offset < htab->arm_glue_size; offset += size)
9941 {
9942 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
9943 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
9944 }
9945 }
9946
9947 /* Thumb->ARM glue. */
9948 if (htab->thumb_glue_size > 0)
9949 {
9950 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9951 THUMB2ARM_GLUE_SECTION_NAME);
9952
9953 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9954 (output_bfd, osi.sec->output_section);
9955 size = THUMB2ARM_GLUE_SIZE;
9956
9957 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
9958 {
9959 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
9960 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
9961 }
9962 }
9963
9964 /* ARMv4 BX veneers. */
9965 if (htab->bx_glue_size > 0)
9966 {
9967 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9968 ARM_BX_GLUE_SECTION_NAME);
9969
9970 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9971 (output_bfd, osi.sec->output_section);
9972
9973 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0);
9974 }
9975
9976 /* Finally, output mapping symbols for the PLT. */
9977 if (!htab->splt || htab->splt->size == 0)
9978 return TRUE;
9979
9980 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9981 htab->splt->output_section);
9982 osi.sec = htab->splt;
9983 /* Output mapping symbols for the plt header. SymbianOS does not have a
9984 plt header. */
9985 if (htab->vxworks_p)
9986 {
9987 /* VxWorks shared libraries have no PLT header. */
9988 if (!info->shared)
9989 {
9990 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9991 return FALSE;
9992 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
9993 return FALSE;
9994 }
9995 }
9996 else if (!htab->symbian_p)
9997 {
9998 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9999 return FALSE;
10000 #ifndef FOUR_WORD_PLT
10001 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
10002 return FALSE;
10003 #endif
10004 }
10005
10006 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
10007 return TRUE;
10008 }
10009
10010 /* Allocate target specific section data. */
10011
10012 static bfd_boolean
10013 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
10014 {
10015 if (!sec->used_by_bfd)
10016 {
10017 _arm_elf_section_data *sdata;
10018 bfd_size_type amt = sizeof (*sdata);
10019
10020 sdata = bfd_zalloc (abfd, amt);
10021 if (sdata == NULL)
10022 return FALSE;
10023 sec->used_by_bfd = sdata;
10024 }
10025
10026 record_section_with_arm_elf_section_data (sec);
10027
10028 return _bfd_elf_new_section_hook (abfd, sec);
10029 }
10030
10031
10032 /* Used to order a list of mapping symbols by address. */
10033
10034 static int
10035 elf32_arm_compare_mapping (const void * a, const void * b)
10036 {
10037 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
10038 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
10039
10040 if (amap->vma > bmap->vma)
10041 return 1;
10042 else if (amap->vma < bmap->vma)
10043 return -1;
10044 else if (amap->type > bmap->type)
10045 /* Ensure results do not depend on the host qsort for objects with
10046 multiple mapping symbols at the same address by sorting on type
10047 after vma. */
10048 return 1;
10049 else if (amap->type < bmap->type)
10050 return -1;
10051 else
10052 return 0;
10053 }
10054
10055
10056 /* Do code byteswapping. Return FALSE afterwards so that the section is
10057 written out as normal. */
10058
10059 static bfd_boolean
10060 elf32_arm_write_section (bfd *output_bfd,
10061 struct bfd_link_info *link_info, asection *sec,
10062 bfd_byte *contents)
10063 {
10064 int mapcount, errcount;
10065 _arm_elf_section_data *arm_data;
10066 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
10067 elf32_arm_section_map *map;
10068 elf32_vfp11_erratum_list *errnode;
10069 bfd_vma ptr;
10070 bfd_vma end;
10071 bfd_vma offset = sec->output_section->vma + sec->output_offset;
10072 bfd_byte tmp;
10073 int i;
10074
10075 /* If this section has not been allocated an _arm_elf_section_data
10076 structure then we cannot record anything. */
10077 arm_data = get_arm_elf_section_data (sec);
10078 if (arm_data == NULL)
10079 return FALSE;
10080
10081 mapcount = arm_data->mapcount;
10082 map = arm_data->map;
10083 errcount = arm_data->erratumcount;
10084
10085 if (errcount != 0)
10086 {
10087 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
10088
10089 for (errnode = arm_data->erratumlist; errnode != 0;
10090 errnode = errnode->next)
10091 {
10092 bfd_vma index = errnode->vma - offset;
10093
10094 switch (errnode->type)
10095 {
10096 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
10097 {
10098 bfd_vma branch_to_veneer;
10099 /* Original condition code of instruction, plus bit mask for
10100 ARM B instruction. */
10101 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
10102 | 0x0a000000;
10103
10104 /* The instruction is before the label. */
10105 index -= 4;
10106
10107 /* Above offset included in -4 below. */
10108 branch_to_veneer = errnode->u.b.veneer->vma
10109 - errnode->vma - 4;
10110
10111 if ((signed) branch_to_veneer < -(1 << 25)
10112 || (signed) branch_to_veneer >= (1 << 25))
10113 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10114 "range"), output_bfd);
10115
10116 insn |= (branch_to_veneer >> 2) & 0xffffff;
10117 contents[endianflip ^ index] = insn & 0xff;
10118 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10119 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10120 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10121 }
10122 break;
10123
10124 case VFP11_ERRATUM_ARM_VENEER:
10125 {
10126 bfd_vma branch_from_veneer;
10127 unsigned int insn;
10128
10129 /* Take size of veneer into account. */
10130 branch_from_veneer = errnode->u.v.branch->vma
10131 - errnode->vma - 12;
10132
10133 if ((signed) branch_from_veneer < -(1 << 25)
10134 || (signed) branch_from_veneer >= (1 << 25))
10135 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10136 "range"), output_bfd);
10137
10138 /* Original instruction. */
10139 insn = errnode->u.v.branch->u.b.vfp_insn;
10140 contents[endianflip ^ index] = insn & 0xff;
10141 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10142 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10143 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10144
10145 /* Branch back to insn after original insn. */
10146 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
10147 contents[endianflip ^ (index + 4)] = insn & 0xff;
10148 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
10149 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
10150 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
10151 }
10152 break;
10153
10154 default:
10155 abort ();
10156 }
10157 }
10158 }
10159
10160 if (mapcount == 0)
10161 return FALSE;
10162
10163 if (globals->byteswap_code)
10164 {
10165 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
10166
10167 ptr = map[0].vma;
10168 for (i = 0; i < mapcount; i++)
10169 {
10170 if (i == mapcount - 1)
10171 end = sec->size;
10172 else
10173 end = map[i + 1].vma;
10174
10175 switch (map[i].type)
10176 {
10177 case 'a':
10178 /* Byte swap code words. */
10179 while (ptr + 3 < end)
10180 {
10181 tmp = contents[ptr];
10182 contents[ptr] = contents[ptr + 3];
10183 contents[ptr + 3] = tmp;
10184 tmp = contents[ptr + 1];
10185 contents[ptr + 1] = contents[ptr + 2];
10186 contents[ptr + 2] = tmp;
10187 ptr += 4;
10188 }
10189 break;
10190
10191 case 't':
10192 /* Byte swap code halfwords. */
10193 while (ptr + 1 < end)
10194 {
10195 tmp = contents[ptr];
10196 contents[ptr] = contents[ptr + 1];
10197 contents[ptr + 1] = tmp;
10198 ptr += 2;
10199 }
10200 break;
10201
10202 case 'd':
10203 /* Leave data alone. */
10204 break;
10205 }
10206 ptr = end;
10207 }
10208 }
10209
10210 free (map);
10211 arm_data->mapcount = 0;
10212 arm_data->mapsize = 0;
10213 arm_data->map = NULL;
10214 unrecord_section_with_arm_elf_section_data (sec);
10215
10216 return FALSE;
10217 }
10218
10219 static void
10220 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
10221 asection * sec,
10222 void * ignore ATTRIBUTE_UNUSED)
10223 {
10224 unrecord_section_with_arm_elf_section_data (sec);
10225 }
10226
10227 static bfd_boolean
10228 elf32_arm_close_and_cleanup (bfd * abfd)
10229 {
10230 if (abfd->sections)
10231 bfd_map_over_sections (abfd,
10232 unrecord_section_via_map_over_sections,
10233 NULL);
10234
10235 return _bfd_elf_close_and_cleanup (abfd);
10236 }
10237
10238 static bfd_boolean
10239 elf32_arm_bfd_free_cached_info (bfd * abfd)
10240 {
10241 if (abfd->sections)
10242 bfd_map_over_sections (abfd,
10243 unrecord_section_via_map_over_sections,
10244 NULL);
10245
10246 return _bfd_free_cached_info (abfd);
10247 }
10248
10249 /* Display STT_ARM_TFUNC symbols as functions. */
10250
10251 static void
10252 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
10253 asymbol *asym)
10254 {
10255 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
10256
10257 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
10258 elfsym->symbol.flags |= BSF_FUNCTION;
10259 }
10260
10261
10262 /* Mangle thumb function symbols as we read them in. */
10263
10264 static bfd_boolean
10265 elf32_arm_swap_symbol_in (bfd * abfd,
10266 const void *psrc,
10267 const void *pshn,
10268 Elf_Internal_Sym *dst)
10269 {
10270 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
10271 return FALSE;
10272
10273 /* New EABI objects mark thumb function symbols by setting the low bit of
10274 the address. Turn these into STT_ARM_TFUNC. */
10275 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
10276 && (dst->st_value & 1))
10277 {
10278 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
10279 dst->st_value &= ~(bfd_vma) 1;
10280 }
10281 return TRUE;
10282 }
10283
10284
10285 /* Mangle thumb function symbols as we write them out. */
10286
10287 static void
10288 elf32_arm_swap_symbol_out (bfd *abfd,
10289 const Elf_Internal_Sym *src,
10290 void *cdst,
10291 void *shndx)
10292 {
10293 Elf_Internal_Sym newsym;
10294
10295 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
10296 of the address set, as per the new EABI. We do this unconditionally
10297 because objcopy does not set the elf header flags until after
10298 it writes out the symbol table. */
10299 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
10300 {
10301 newsym = *src;
10302 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
10303 if (newsym.st_shndx != SHN_UNDEF)
10304 {
10305 /* Do this only for defined symbols. At link type, the static
10306 linker will simulate the work of dynamic linker of resolving
10307 symbols and will carry over the thumbness of found symbols to
10308 the output symbol table. It's not clear how it happens, but
10309 the thumbness of undefined symbols can well be different at
10310 runtime, and writing '1' for them will be confusing for users
10311 and possibly for dynamic linker itself.
10312 */
10313 newsym.st_value |= 1;
10314 }
10315
10316 src = &newsym;
10317 }
10318 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
10319 }
10320
10321 /* Add the PT_ARM_EXIDX program header. */
10322
10323 static bfd_boolean
10324 elf32_arm_modify_segment_map (bfd *abfd,
10325 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10326 {
10327 struct elf_segment_map *m;
10328 asection *sec;
10329
10330 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10331 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10332 {
10333 /* If there is already a PT_ARM_EXIDX header, then we do not
10334 want to add another one. This situation arises when running
10335 "strip"; the input binary already has the header. */
10336 m = elf_tdata (abfd)->segment_map;
10337 while (m && m->p_type != PT_ARM_EXIDX)
10338 m = m->next;
10339 if (!m)
10340 {
10341 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
10342 if (m == NULL)
10343 return FALSE;
10344 m->p_type = PT_ARM_EXIDX;
10345 m->count = 1;
10346 m->sections[0] = sec;
10347
10348 m->next = elf_tdata (abfd)->segment_map;
10349 elf_tdata (abfd)->segment_map = m;
10350 }
10351 }
10352
10353 return TRUE;
10354 }
10355
10356 /* We may add a PT_ARM_EXIDX program header. */
10357
10358 static int
10359 elf32_arm_additional_program_headers (bfd *abfd,
10360 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10361 {
10362 asection *sec;
10363
10364 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10365 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10366 return 1;
10367 else
10368 return 0;
10369 }
10370
10371 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
10372 static bfd_boolean
10373 elf32_arm_is_function_type (unsigned int type)
10374 {
10375 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
10376 }
10377
10378 /* We use this to override swap_symbol_in and swap_symbol_out. */
10379 const struct elf_size_info elf32_arm_size_info = {
10380 sizeof (Elf32_External_Ehdr),
10381 sizeof (Elf32_External_Phdr),
10382 sizeof (Elf32_External_Shdr),
10383 sizeof (Elf32_External_Rel),
10384 sizeof (Elf32_External_Rela),
10385 sizeof (Elf32_External_Sym),
10386 sizeof (Elf32_External_Dyn),
10387 sizeof (Elf_External_Note),
10388 4,
10389 1,
10390 32, 2,
10391 ELFCLASS32, EV_CURRENT,
10392 bfd_elf32_write_out_phdrs,
10393 bfd_elf32_write_shdrs_and_ehdr,
10394 bfd_elf32_checksum_contents,
10395 bfd_elf32_write_relocs,
10396 elf32_arm_swap_symbol_in,
10397 elf32_arm_swap_symbol_out,
10398 bfd_elf32_slurp_reloc_table,
10399 bfd_elf32_slurp_symbol_table,
10400 bfd_elf32_swap_dyn_in,
10401 bfd_elf32_swap_dyn_out,
10402 bfd_elf32_swap_reloc_in,
10403 bfd_elf32_swap_reloc_out,
10404 bfd_elf32_swap_reloca_in,
10405 bfd_elf32_swap_reloca_out
10406 };
10407
10408 #define ELF_ARCH bfd_arch_arm
10409 #define ELF_MACHINE_CODE EM_ARM
10410 #ifdef __QNXTARGET__
10411 #define ELF_MAXPAGESIZE 0x1000
10412 #else
10413 #define ELF_MAXPAGESIZE 0x8000
10414 #endif
10415 #define ELF_MINPAGESIZE 0x1000
10416 #define ELF_COMMONPAGESIZE 0x1000
10417
10418 #define bfd_elf32_mkobject elf32_arm_mkobject
10419
10420 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
10421 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
10422 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
10423 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
10424 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
10425 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
10426 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
10427 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
10428 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
10429 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
10430 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
10431 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
10432 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
10433
10434 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
10435 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
10436 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
10437 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
10438 #define elf_backend_check_relocs elf32_arm_check_relocs
10439 #define elf_backend_relocate_section elf32_arm_relocate_section
10440 #define elf_backend_write_section elf32_arm_write_section
10441 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
10442 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
10443 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
10444 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
10445 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
10446 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
10447 #define elf_backend_post_process_headers elf32_arm_post_process_headers
10448 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
10449 #define elf_backend_object_p elf32_arm_object_p
10450 #define elf_backend_section_flags elf32_arm_section_flags
10451 #define elf_backend_fake_sections elf32_arm_fake_sections
10452 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
10453 #define elf_backend_final_write_processing elf32_arm_final_write_processing
10454 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
10455 #define elf_backend_symbol_processing elf32_arm_symbol_processing
10456 #define elf_backend_size_info elf32_arm_size_info
10457 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
10458 #define elf_backend_additional_program_headers \
10459 elf32_arm_additional_program_headers
10460 #define elf_backend_output_arch_local_syms \
10461 elf32_arm_output_arch_local_syms
10462 #define elf_backend_begin_write_processing \
10463 elf32_arm_begin_write_processing
10464 #define elf_backend_is_function_type elf32_arm_is_function_type
10465
10466 #define elf_backend_can_refcount 1
10467 #define elf_backend_can_gc_sections 1
10468 #define elf_backend_plt_readonly 1
10469 #define elf_backend_want_got_plt 1
10470 #define elf_backend_want_plt_sym 0
10471 #define elf_backend_may_use_rel_p 1
10472 #define elf_backend_may_use_rela_p 0
10473 #define elf_backend_default_use_rela_p 0
10474
10475 #define elf_backend_got_header_size 12
10476
10477 #undef elf_backend_obj_attrs_vendor
10478 #define elf_backend_obj_attrs_vendor "aeabi"
10479 #undef elf_backend_obj_attrs_section
10480 #define elf_backend_obj_attrs_section ".ARM.attributes"
10481 #undef elf_backend_obj_attrs_arg_type
10482 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
10483 #undef elf_backend_obj_attrs_section_type
10484 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
10485
10486 #include "elf32-target.h"
10487
10488 /* VxWorks Targets */
10489
10490 #undef TARGET_LITTLE_SYM
10491 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
10492 #undef TARGET_LITTLE_NAME
10493 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
10494 #undef TARGET_BIG_SYM
10495 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
10496 #undef TARGET_BIG_NAME
10497 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
10498
10499 /* Like elf32_arm_link_hash_table_create -- but overrides
10500 appropriately for VxWorks. */
10501 static struct bfd_link_hash_table *
10502 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
10503 {
10504 struct bfd_link_hash_table *ret;
10505
10506 ret = elf32_arm_link_hash_table_create (abfd);
10507 if (ret)
10508 {
10509 struct elf32_arm_link_hash_table *htab
10510 = (struct elf32_arm_link_hash_table *) ret;
10511 htab->use_rel = 0;
10512 htab->vxworks_p = 1;
10513 }
10514 return ret;
10515 }
10516
10517 static void
10518 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
10519 {
10520 elf32_arm_final_write_processing (abfd, linker);
10521 elf_vxworks_final_write_processing (abfd, linker);
10522 }
10523
10524 #undef elf32_bed
10525 #define elf32_bed elf32_arm_vxworks_bed
10526
10527 #undef bfd_elf32_bfd_link_hash_table_create
10528 #define bfd_elf32_bfd_link_hash_table_create \
10529 elf32_arm_vxworks_link_hash_table_create
10530 #undef elf_backend_add_symbol_hook
10531 #define elf_backend_add_symbol_hook \
10532 elf_vxworks_add_symbol_hook
10533 #undef elf_backend_final_write_processing
10534 #define elf_backend_final_write_processing \
10535 elf32_arm_vxworks_final_write_processing
10536 #undef elf_backend_emit_relocs
10537 #define elf_backend_emit_relocs \
10538 elf_vxworks_emit_relocs
10539
10540 #undef elf_backend_may_use_rel_p
10541 #define elf_backend_may_use_rel_p 0
10542 #undef elf_backend_may_use_rela_p
10543 #define elf_backend_may_use_rela_p 1
10544 #undef elf_backend_default_use_rela_p
10545 #define elf_backend_default_use_rela_p 1
10546 #undef elf_backend_want_plt_sym
10547 #define elf_backend_want_plt_sym 1
10548 #undef ELF_MAXPAGESIZE
10549 #define ELF_MAXPAGESIZE 0x1000
10550
10551 #include "elf32-target.h"
10552
10553
10554 /* Symbian OS Targets */
10555
10556 #undef TARGET_LITTLE_SYM
10557 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
10558 #undef TARGET_LITTLE_NAME
10559 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
10560 #undef TARGET_BIG_SYM
10561 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
10562 #undef TARGET_BIG_NAME
10563 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
10564
10565 /* Like elf32_arm_link_hash_table_create -- but overrides
10566 appropriately for Symbian OS. */
10567 static struct bfd_link_hash_table *
10568 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
10569 {
10570 struct bfd_link_hash_table *ret;
10571
10572 ret = elf32_arm_link_hash_table_create (abfd);
10573 if (ret)
10574 {
10575 struct elf32_arm_link_hash_table *htab
10576 = (struct elf32_arm_link_hash_table *)ret;
10577 /* There is no PLT header for Symbian OS. */
10578 htab->plt_header_size = 0;
10579 /* The PLT entries are each three instructions. */
10580 htab->plt_entry_size = 4 * NUM_ELEM (elf32_arm_symbian_plt_entry);
10581 htab->symbian_p = 1;
10582 /* Symbian uses armv5t or above, so use_blx is always true. */
10583 htab->use_blx = 1;
10584 htab->root.is_relocatable_executable = 1;
10585 }
10586 return ret;
10587 }
10588
10589 static const struct bfd_elf_special_section
10590 elf32_arm_symbian_special_sections[] =
10591 {
10592 /* In a BPABI executable, the dynamic linking sections do not go in
10593 the loadable read-only segment. The post-linker may wish to
10594 refer to these sections, but they are not part of the final
10595 program image. */
10596 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
10597 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
10598 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
10599 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
10600 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
10601 /* These sections do not need to be writable as the SymbianOS
10602 postlinker will arrange things so that no dynamic relocation is
10603 required. */
10604 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
10605 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
10606 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
10607 { NULL, 0, 0, 0, 0 }
10608 };
10609
10610 static void
10611 elf32_arm_symbian_begin_write_processing (bfd *abfd,
10612 struct bfd_link_info *link_info)
10613 {
10614 /* BPABI objects are never loaded directly by an OS kernel; they are
10615 processed by a postlinker first, into an OS-specific format. If
10616 the D_PAGED bit is set on the file, BFD will align segments on
10617 page boundaries, so that an OS can directly map the file. With
10618 BPABI objects, that just results in wasted space. In addition,
10619 because we clear the D_PAGED bit, map_sections_to_segments will
10620 recognize that the program headers should not be mapped into any
10621 loadable segment. */
10622 abfd->flags &= ~D_PAGED;
10623 elf32_arm_begin_write_processing(abfd, link_info);
10624 }
10625
10626 static bfd_boolean
10627 elf32_arm_symbian_modify_segment_map (bfd *abfd,
10628 struct bfd_link_info *info)
10629 {
10630 struct elf_segment_map *m;
10631 asection *dynsec;
10632
10633 /* BPABI shared libraries and executables should have a PT_DYNAMIC
10634 segment. However, because the .dynamic section is not marked
10635 with SEC_LOAD, the generic ELF code will not create such a
10636 segment. */
10637 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
10638 if (dynsec)
10639 {
10640 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10641 if (m->p_type == PT_DYNAMIC)
10642 break;
10643
10644 if (m == NULL)
10645 {
10646 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
10647 m->next = elf_tdata (abfd)->segment_map;
10648 elf_tdata (abfd)->segment_map = m;
10649 }
10650 }
10651
10652 /* Also call the generic arm routine. */
10653 return elf32_arm_modify_segment_map (abfd, info);
10654 }
10655
10656 #undef elf32_bed
10657 #define elf32_bed elf32_arm_symbian_bed
10658
10659 /* The dynamic sections are not allocated on SymbianOS; the postlinker
10660 will process them and then discard them. */
10661 #undef ELF_DYNAMIC_SEC_FLAGS
10662 #define ELF_DYNAMIC_SEC_FLAGS \
10663 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
10664
10665 #undef bfd_elf32_bfd_link_hash_table_create
10666 #define bfd_elf32_bfd_link_hash_table_create \
10667 elf32_arm_symbian_link_hash_table_create
10668 #undef elf_backend_add_symbol_hook
10669
10670 #undef elf_backend_special_sections
10671 #define elf_backend_special_sections elf32_arm_symbian_special_sections
10672
10673 #undef elf_backend_begin_write_processing
10674 #define elf_backend_begin_write_processing \
10675 elf32_arm_symbian_begin_write_processing
10676 #undef elf_backend_final_write_processing
10677 #define elf_backend_final_write_processing \
10678 elf32_arm_final_write_processing
10679 #undef elf_backend_emit_relocs
10680
10681 #undef elf_backend_modify_segment_map
10682 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
10683
10684 /* There is no .got section for BPABI objects, and hence no header. */
10685 #undef elf_backend_got_header_size
10686 #define elf_backend_got_header_size 0
10687
10688 /* Similarly, there is no .got.plt section. */
10689 #undef elf_backend_want_got_plt
10690 #define elf_backend_want_got_plt 0
10691
10692 #undef elf_backend_may_use_rel_p
10693 #define elf_backend_may_use_rel_p 1
10694 #undef elf_backend_may_use_rela_p
10695 #define elf_backend_may_use_rela_p 0
10696 #undef elf_backend_default_use_rela_p
10697 #define elf_backend_default_use_rela_p 0
10698 #undef elf_backend_want_plt_sym
10699 #define elf_backend_want_plt_sym 0
10700 #undef ELF_MAXPAGESIZE
10701 #define ELF_MAXPAGESIZE 0x8000
10702
10703 #include "elf32-target.h"