]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-arm.c
db9566b92916a1f38ec3e69a135fded7dabc7640
[thirdparty/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 0, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 };
1693
1694 /* 160 onwards: */
1695 static reloc_howto_type elf32_arm_howto_table_2[1] =
1696 {
1697 HOWTO (R_ARM_IRELATIVE, /* type */
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
1710 };
1711
1712 /* 249-255 extended, currently unused, relocations: */
1713 static reloc_howto_type elf32_arm_howto_table_3[4] =
1714 {
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1770 };
1771
1772 static reloc_howto_type *
1773 elf32_arm_howto_from_type (unsigned int r_type)
1774 {
1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1776 return &elf32_arm_howto_table_1[r_type];
1777
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780
1781 if (r_type >= R_ARM_RREL32
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1784
1785 return NULL;
1786 }
1787
1788 static void
1789 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1791 {
1792 unsigned int r_type;
1793
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796 }
1797
1798 struct elf32_arm_reloc_map
1799 {
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1802 };
1803
1804 /* All entries in this list must also be present in elf32_arm_howto_table. */
1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806 {
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1893 };
1894
1895 static reloc_howto_type *
1896 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
1898 {
1899 unsigned int i;
1900
1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1904
1905 return NULL;
1906 }
1907
1908 static reloc_howto_type *
1909 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1911 {
1912 unsigned int i;
1913
1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1918
1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1923
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1928
1929 return NULL;
1930 }
1931
1932 /* Support for core dump NOTE sections. */
1933
1934 static bfd_boolean
1935 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1936 {
1937 int offset;
1938 size_t size;
1939
1940 switch (note->descsz)
1941 {
1942 default:
1943 return FALSE;
1944
1945 case 148: /* Linux/ARM 32-bit. */
1946 /* pr_cursig */
1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1948
1949 /* pr_pid */
1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1951
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1955
1956 break;
1957 }
1958
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1962 }
1963
1964 static bfd_boolean
1965 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1966 {
1967 switch (note->descsz)
1968 {
1969 default:
1970 return FALSE;
1971
1972 case 124: /* Linux/ARM elf_prpsinfo. */
1973 elf_tdata (abfd)->core->pid
1974 = bfd_get_32 (abfd, note->descdata + 12);
1975 elf_tdata (abfd)->core->program
1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1977 elf_tdata (abfd)->core->command
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979 }
1980
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
1984 {
1985 char *command = elf_tdata (abfd)->core->command;
1986 int n = strlen (command);
1987
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1990 }
1991
1992 return TRUE;
1993 }
1994
1995 static char *
1996 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1998 {
1999 switch (note_type)
2000 {
2001 default:
2002 return NULL;
2003
2004 case NT_PRPSINFO:
2005 {
2006 char data[124];
2007 va_list ap;
2008
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2014
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2017 }
2018
2019 case NT_PRSTATUS:
2020 {
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2026
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2036
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2039 }
2040 }
2041 }
2042
2043 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2044 #define TARGET_LITTLE_NAME "elf32-littlearm"
2045 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2046 #define TARGET_BIG_NAME "elf32-bigarm"
2047
2048 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2050 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2051
2052 typedef unsigned long int insn32;
2053 typedef unsigned short int insn16;
2054
2055 /* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
2057 #define INTERWORK_FLAG(abfd) \
2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
2061
2062 /* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
2065 name can be changed. The only requirement is the %s be present. */
2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2068
2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2071
2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2074
2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2077
2078 #define STUB_ENTRY_NAME "__%s_veneer"
2079
2080 /* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2083
2084 static const unsigned long tls_trampoline [] =
2085 {
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2089 };
2090
2091 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2092 {
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2100 + dl_tlsdesc_lazy_resolver(GOT) */
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102 };
2103
2104 #ifdef FOUR_WORD_PLT
2105
2106 /* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
2108 called before the relocation has been set up calls the dynamic
2109 linker first. */
2110 static const bfd_vma elf32_arm_plt0_entry [] =
2111 {
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2116 };
2117
2118 /* Subsequent entries in a procedure linkage table look like
2119 this. */
2120 static const bfd_vma elf32_arm_plt_entry [] =
2121 {
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2126 };
2127
2128 #else /* not FOUR_WORD_PLT */
2129
2130 /* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
2134 static const bfd_vma elf32_arm_plt0_entry [] =
2135 {
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2141 };
2142
2143 /* By default subsequent entries in a procedure linkage table look like
2144 this. Offsets that don't fit into 28 bits will cause link error. */
2145 static const bfd_vma elf32_arm_plt_entry_short [] =
2146 {
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150 };
2151
2152 /* When explicitly asked, we'll use this "long" entry format
2153 which can cope with arbitrary displacements. */
2154 static const bfd_vma elf32_arm_plt_entry_long [] =
2155 {
2156 0xe28fc200, /* add ip, pc, #0xN0000000 */
2157 0xe28cc600, /* add ip, ip, #0xNN00000 */
2158 0xe28cca00, /* add ip, ip, #0xNN000 */
2159 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2160 };
2161
2162 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2163
2164 #endif /* not FOUR_WORD_PLT */
2165
2166 /* The first entry in a procedure linkage table looks like this.
2167 It is set up so that any shared library function that is called before the
2168 relocation has been set up calls the dynamic linker first. */
2169 static const bfd_vma elf32_thumb2_plt0_entry [] =
2170 {
2171 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2172 an instruction maybe encoded to one or two array elements. */
2173 0xf8dfb500, /* push {lr} */
2174 0x44fee008, /* ldr.w lr, [pc, #8] */
2175 /* add lr, pc */
2176 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2177 0x00000000, /* &GOT[0] - . */
2178 };
2179
2180 /* Subsequent entries in a procedure linkage table for thumb only target
2181 look like this. */
2182 static const bfd_vma elf32_thumb2_plt_entry [] =
2183 {
2184 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2185 an instruction maybe encoded to one or two array elements. */
2186 0x0c00f240, /* movw ip, #0xNNNN */
2187 0x0c00f2c0, /* movt ip, #0xNNNN */
2188 0xf8dc44fc, /* add ip, pc */
2189 0xbf00f000 /* ldr.w pc, [ip] */
2190 /* nop */
2191 };
2192
2193 /* The format of the first entry in the procedure linkage table
2194 for a VxWorks executable. */
2195 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2196 {
2197 0xe52dc008, /* str ip,[sp,#-8]! */
2198 0xe59fc000, /* ldr ip,[pc] */
2199 0xe59cf008, /* ldr pc,[ip,#8] */
2200 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2201 };
2202
2203 /* The format of subsequent entries in a VxWorks executable. */
2204 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2205 {
2206 0xe59fc000, /* ldr ip,[pc] */
2207 0xe59cf000, /* ldr pc,[ip] */
2208 0x00000000, /* .long @got */
2209 0xe59fc000, /* ldr ip,[pc] */
2210 0xea000000, /* b _PLT */
2211 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2212 };
2213
2214 /* The format of entries in a VxWorks shared library. */
2215 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2216 {
2217 0xe59fc000, /* ldr ip,[pc] */
2218 0xe79cf009, /* ldr pc,[ip,r9] */
2219 0x00000000, /* .long @got */
2220 0xe59fc000, /* ldr ip,[pc] */
2221 0xe599f008, /* ldr pc,[r9,#8] */
2222 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2223 };
2224
2225 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2226 #define PLT_THUMB_STUB_SIZE 4
2227 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2228 {
2229 0x4778, /* bx pc */
2230 0x46c0 /* nop */
2231 };
2232
2233 /* The entries in a PLT when using a DLL-based target with multiple
2234 address spaces. */
2235 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2236 {
2237 0xe51ff004, /* ldr pc, [pc, #-4] */
2238 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2239 };
2240
2241 /* The first entry in a procedure linkage table looks like
2242 this. It is set up so that any shared library function that is
2243 called before the relocation has been set up calls the dynamic
2244 linker first. */
2245 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2246 {
2247 /* First bundle: */
2248 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2249 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2250 0xe08cc00f, /* add ip, ip, pc */
2251 0xe52dc008, /* str ip, [sp, #-8]! */
2252 /* Second bundle: */
2253 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2254 0xe59cc000, /* ldr ip, [ip] */
2255 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2256 0xe12fff1c, /* bx ip */
2257 /* Third bundle: */
2258 0xe320f000, /* nop */
2259 0xe320f000, /* nop */
2260 0xe320f000, /* nop */
2261 /* .Lplt_tail: */
2262 0xe50dc004, /* str ip, [sp, #-4] */
2263 /* Fourth bundle: */
2264 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2265 0xe59cc000, /* ldr ip, [ip] */
2266 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2267 0xe12fff1c, /* bx ip */
2268 };
2269 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2270
2271 /* Subsequent entries in a procedure linkage table look like this. */
2272 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2273 {
2274 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2275 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2276 0xe08cc00f, /* add ip, ip, pc */
2277 0xea000000, /* b .Lplt_tail */
2278 };
2279
2280 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2281 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2282 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2283 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2284 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2285 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2286
2287 enum stub_insn_type
2288 {
2289 THUMB16_TYPE = 1,
2290 THUMB32_TYPE,
2291 ARM_TYPE,
2292 DATA_TYPE
2293 };
2294
2295 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2296 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2297 is inserted in arm_build_one_stub(). */
2298 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2299 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2300 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2301 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2302 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2303 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2304
2305 typedef struct
2306 {
2307 bfd_vma data;
2308 enum stub_insn_type type;
2309 unsigned int r_type;
2310 int reloc_addend;
2311 } insn_sequence;
2312
2313 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2314 to reach the stub if necessary. */
2315 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2316 {
2317 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2318 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2319 };
2320
2321 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2322 available. */
2323 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2324 {
2325 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2326 ARM_INSN (0xe12fff1c), /* bx ip */
2327 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2328 };
2329
2330 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2331 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2332 {
2333 THUMB16_INSN (0xb401), /* push {r0} */
2334 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2335 THUMB16_INSN (0x4684), /* mov ip, r0 */
2336 THUMB16_INSN (0xbc01), /* pop {r0} */
2337 THUMB16_INSN (0x4760), /* bx ip */
2338 THUMB16_INSN (0xbf00), /* nop */
2339 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2340 };
2341
2342 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2343 allowed. */
2344 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2345 {
2346 THUMB16_INSN (0x4778), /* bx pc */
2347 THUMB16_INSN (0x46c0), /* nop */
2348 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2349 ARM_INSN (0xe12fff1c), /* bx ip */
2350 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2351 };
2352
2353 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2354 available. */
2355 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2356 {
2357 THUMB16_INSN (0x4778), /* bx pc */
2358 THUMB16_INSN (0x46c0), /* nop */
2359 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2360 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2361 };
2362
2363 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2364 one, when the destination is close enough. */
2365 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2366 {
2367 THUMB16_INSN (0x4778), /* bx pc */
2368 THUMB16_INSN (0x46c0), /* nop */
2369 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2370 };
2371
2372 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2373 blx to reach the stub if necessary. */
2374 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2375 {
2376 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2377 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2378 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2379 };
2380
2381 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2382 blx to reach the stub if necessary. We can not add into pc;
2383 it is not guaranteed to mode switch (different in ARMv6 and
2384 ARMv7). */
2385 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2386 {
2387 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2388 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2389 ARM_INSN (0xe12fff1c), /* bx ip */
2390 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2391 };
2392
2393 /* V4T ARM -> ARM long branch stub, PIC. */
2394 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2395 {
2396 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2397 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2398 ARM_INSN (0xe12fff1c), /* bx ip */
2399 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2400 };
2401
2402 /* V4T Thumb -> ARM long branch stub, PIC. */
2403 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2404 {
2405 THUMB16_INSN (0x4778), /* bx pc */
2406 THUMB16_INSN (0x46c0), /* nop */
2407 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2408 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2409 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2410 };
2411
2412 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2413 architectures. */
2414 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2415 {
2416 THUMB16_INSN (0xb401), /* push {r0} */
2417 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2418 THUMB16_INSN (0x46fc), /* mov ip, pc */
2419 THUMB16_INSN (0x4484), /* add ip, r0 */
2420 THUMB16_INSN (0xbc01), /* pop {r0} */
2421 THUMB16_INSN (0x4760), /* bx ip */
2422 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2423 };
2424
2425 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2426 allowed. */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2428 {
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2432 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2433 ARM_INSN (0xe12fff1c), /* bx ip */
2434 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2435 };
2436
2437 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2438 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2439 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2440 {
2441 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2442 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2443 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2444 };
2445
2446 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2447 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2448 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2449 {
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2453 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2454 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2455 };
2456
2457 /* NaCl ARM -> ARM long branch stub. */
2458 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2459 {
2460 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2461 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2462 ARM_INSN (0xe12fff1c), /* bx ip */
2463 ARM_INSN (0xe320f000), /* nop */
2464 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2465 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2466 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2467 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2468 };
2469
2470 /* NaCl ARM -> ARM long branch stub, PIC. */
2471 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2472 {
2473 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2474 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2475 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2476 ARM_INSN (0xe12fff1c), /* bx ip */
2477 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2478 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2479 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2480 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2481 };
2482
2483
2484 /* Cortex-A8 erratum-workaround stubs. */
2485
2486 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2487 can't use a conditional branch to reach this stub). */
2488
2489 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2490 {
2491 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2492 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2493 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2494 };
2495
2496 /* Stub used for b.w and bl.w instructions. */
2497
2498 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2499 {
2500 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2501 };
2502
2503 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2504 {
2505 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2506 };
2507
2508 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2509 instruction (which switches to ARM mode) to point to this stub. Jump to the
2510 real destination using an ARM-mode branch. */
2511
2512 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2513 {
2514 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2515 };
2516
2517 /* For each section group there can be a specially created linker section
2518 to hold the stubs for that group. The name of the stub section is based
2519 upon the name of another section within that group with the suffix below
2520 applied.
2521
2522 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2523 create what appeared to be a linker stub section when it actually
2524 contained user code/data. For example, consider this fragment:
2525
2526 const char * stubborn_problems[] = { "np" };
2527
2528 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2529 section called:
2530
2531 .data.rel.local.stubborn_problems
2532
2533 This then causes problems in arm32_arm_build_stubs() as it triggers:
2534
2535 // Ignore non-stub sections.
2536 if (!strstr (stub_sec->name, STUB_SUFFIX))
2537 continue;
2538
2539 And so the section would be ignored instead of being processed. Hence
2540 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2541 C identifier. */
2542 #define STUB_SUFFIX ".__stub"
2543
2544 /* One entry per long/short branch stub defined above. */
2545 #define DEF_STUBS \
2546 DEF_STUB(long_branch_any_any) \
2547 DEF_STUB(long_branch_v4t_arm_thumb) \
2548 DEF_STUB(long_branch_thumb_only) \
2549 DEF_STUB(long_branch_v4t_thumb_thumb) \
2550 DEF_STUB(long_branch_v4t_thumb_arm) \
2551 DEF_STUB(short_branch_v4t_thumb_arm) \
2552 DEF_STUB(long_branch_any_arm_pic) \
2553 DEF_STUB(long_branch_any_thumb_pic) \
2554 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2555 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2556 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2557 DEF_STUB(long_branch_thumb_only_pic) \
2558 DEF_STUB(long_branch_any_tls_pic) \
2559 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2560 DEF_STUB(long_branch_arm_nacl) \
2561 DEF_STUB(long_branch_arm_nacl_pic) \
2562 DEF_STUB(a8_veneer_b_cond) \
2563 DEF_STUB(a8_veneer_b) \
2564 DEF_STUB(a8_veneer_bl) \
2565 DEF_STUB(a8_veneer_blx)
2566
2567 #define DEF_STUB(x) arm_stub_##x,
2568 enum elf32_arm_stub_type
2569 {
2570 arm_stub_none,
2571 DEF_STUBS
2572 /* Note the first a8_veneer type */
2573 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2574 };
2575 #undef DEF_STUB
2576
2577 typedef struct
2578 {
2579 const insn_sequence* template_sequence;
2580 int template_size;
2581 } stub_def;
2582
2583 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2584 static const stub_def stub_definitions[] =
2585 {
2586 {NULL, 0},
2587 DEF_STUBS
2588 };
2589
2590 struct elf32_arm_stub_hash_entry
2591 {
2592 /* Base hash table entry structure. */
2593 struct bfd_hash_entry root;
2594
2595 /* The stub section. */
2596 asection *stub_sec;
2597
2598 /* Offset within stub_sec of the beginning of this stub. */
2599 bfd_vma stub_offset;
2600
2601 /* Given the symbol's value and its section we can determine its final
2602 value when building the stubs (so the stub knows where to jump). */
2603 bfd_vma target_value;
2604 asection *target_section;
2605
2606 /* Offset to apply to relocation referencing target_value. */
2607 bfd_vma target_addend;
2608
2609 /* The instruction which caused this stub to be generated (only valid for
2610 Cortex-A8 erratum workaround stubs at present). */
2611 unsigned long orig_insn;
2612
2613 /* The stub type. */
2614 enum elf32_arm_stub_type stub_type;
2615 /* Its encoding size in bytes. */
2616 int stub_size;
2617 /* Its template. */
2618 const insn_sequence *stub_template;
2619 /* The size of the template (number of entries). */
2620 int stub_template_size;
2621
2622 /* The symbol table entry, if any, that this was derived from. */
2623 struct elf32_arm_link_hash_entry *h;
2624
2625 /* Type of branch. */
2626 enum arm_st_branch_type branch_type;
2627
2628 /* Where this stub is being called from, or, in the case of combined
2629 stub sections, the first input section in the group. */
2630 asection *id_sec;
2631
2632 /* The name for the local symbol at the start of this stub. The
2633 stub name in the hash table has to be unique; this does not, so
2634 it can be friendlier. */
2635 char *output_name;
2636 };
2637
2638 /* Used to build a map of a section. This is required for mixed-endian
2639 code/data. */
2640
2641 typedef struct elf32_elf_section_map
2642 {
2643 bfd_vma vma;
2644 char type;
2645 }
2646 elf32_arm_section_map;
2647
2648 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2649
2650 typedef enum
2651 {
2652 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2653 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2654 VFP11_ERRATUM_ARM_VENEER,
2655 VFP11_ERRATUM_THUMB_VENEER
2656 }
2657 elf32_vfp11_erratum_type;
2658
2659 typedef struct elf32_vfp11_erratum_list
2660 {
2661 struct elf32_vfp11_erratum_list *next;
2662 bfd_vma vma;
2663 union
2664 {
2665 struct
2666 {
2667 struct elf32_vfp11_erratum_list *veneer;
2668 unsigned int vfp_insn;
2669 } b;
2670 struct
2671 {
2672 struct elf32_vfp11_erratum_list *branch;
2673 unsigned int id;
2674 } v;
2675 } u;
2676 elf32_vfp11_erratum_type type;
2677 }
2678 elf32_vfp11_erratum_list;
2679
2680 typedef enum
2681 {
2682 DELETE_EXIDX_ENTRY,
2683 INSERT_EXIDX_CANTUNWIND_AT_END
2684 }
2685 arm_unwind_edit_type;
2686
2687 /* A (sorted) list of edits to apply to an unwind table. */
2688 typedef struct arm_unwind_table_edit
2689 {
2690 arm_unwind_edit_type type;
2691 /* Note: we sometimes want to insert an unwind entry corresponding to a
2692 section different from the one we're currently writing out, so record the
2693 (text) section this edit relates to here. */
2694 asection *linked_section;
2695 unsigned int index;
2696 struct arm_unwind_table_edit *next;
2697 }
2698 arm_unwind_table_edit;
2699
2700 typedef struct _arm_elf_section_data
2701 {
2702 /* Information about mapping symbols. */
2703 struct bfd_elf_section_data elf;
2704 unsigned int mapcount;
2705 unsigned int mapsize;
2706 elf32_arm_section_map *map;
2707 /* Information about CPU errata. */
2708 unsigned int erratumcount;
2709 elf32_vfp11_erratum_list *erratumlist;
2710 /* Information about unwind tables. */
2711 union
2712 {
2713 /* Unwind info attached to a text section. */
2714 struct
2715 {
2716 asection *arm_exidx_sec;
2717 } text;
2718
2719 /* Unwind info attached to an .ARM.exidx section. */
2720 struct
2721 {
2722 arm_unwind_table_edit *unwind_edit_list;
2723 arm_unwind_table_edit *unwind_edit_tail;
2724 } exidx;
2725 } u;
2726 }
2727 _arm_elf_section_data;
2728
2729 #define elf32_arm_section_data(sec) \
2730 ((_arm_elf_section_data *) elf_section_data (sec))
2731
2732 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2733 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2734 so may be created multiple times: we use an array of these entries whilst
2735 relaxing which we can refresh easily, then create stubs for each potentially
2736 erratum-triggering instruction once we've settled on a solution. */
2737
2738 struct a8_erratum_fix
2739 {
2740 bfd *input_bfd;
2741 asection *section;
2742 bfd_vma offset;
2743 bfd_vma addend;
2744 unsigned long orig_insn;
2745 char *stub_name;
2746 enum elf32_arm_stub_type stub_type;
2747 enum arm_st_branch_type branch_type;
2748 };
2749
2750 /* A table of relocs applied to branches which might trigger Cortex-A8
2751 erratum. */
2752
2753 struct a8_erratum_reloc
2754 {
2755 bfd_vma from;
2756 bfd_vma destination;
2757 struct elf32_arm_link_hash_entry *hash;
2758 const char *sym_name;
2759 unsigned int r_type;
2760 enum arm_st_branch_type branch_type;
2761 bfd_boolean non_a8_stub;
2762 };
2763
2764 /* The size of the thread control block. */
2765 #define TCB_SIZE 8
2766
2767 /* ARM-specific information about a PLT entry, over and above the usual
2768 gotplt_union. */
2769 struct arm_plt_info
2770 {
2771 /* We reference count Thumb references to a PLT entry separately,
2772 so that we can emit the Thumb trampoline only if needed. */
2773 bfd_signed_vma thumb_refcount;
2774
2775 /* Some references from Thumb code may be eliminated by BL->BLX
2776 conversion, so record them separately. */
2777 bfd_signed_vma maybe_thumb_refcount;
2778
2779 /* How many of the recorded PLT accesses were from non-call relocations.
2780 This information is useful when deciding whether anything takes the
2781 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2782 non-call references to the function should resolve directly to the
2783 real runtime target. */
2784 unsigned int noncall_refcount;
2785
2786 /* Since PLT entries have variable size if the Thumb prologue is
2787 used, we need to record the index into .got.plt instead of
2788 recomputing it from the PLT offset. */
2789 bfd_signed_vma got_offset;
2790 };
2791
2792 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2793 struct arm_local_iplt_info
2794 {
2795 /* The information that is usually found in the generic ELF part of
2796 the hash table entry. */
2797 union gotplt_union root;
2798
2799 /* The information that is usually found in the ARM-specific part of
2800 the hash table entry. */
2801 struct arm_plt_info arm;
2802
2803 /* A list of all potential dynamic relocations against this symbol. */
2804 struct elf_dyn_relocs *dyn_relocs;
2805 };
2806
2807 struct elf_arm_obj_tdata
2808 {
2809 struct elf_obj_tdata root;
2810
2811 /* tls_type for each local got entry. */
2812 char *local_got_tls_type;
2813
2814 /* GOTPLT entries for TLS descriptors. */
2815 bfd_vma *local_tlsdesc_gotent;
2816
2817 /* Information for local symbols that need entries in .iplt. */
2818 struct arm_local_iplt_info **local_iplt;
2819
2820 /* Zero to warn when linking objects with incompatible enum sizes. */
2821 int no_enum_size_warning;
2822
2823 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2824 int no_wchar_size_warning;
2825 };
2826
2827 #define elf_arm_tdata(bfd) \
2828 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2829
2830 #define elf32_arm_local_got_tls_type(bfd) \
2831 (elf_arm_tdata (bfd)->local_got_tls_type)
2832
2833 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2834 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2835
2836 #define elf32_arm_local_iplt(bfd) \
2837 (elf_arm_tdata (bfd)->local_iplt)
2838
2839 #define is_arm_elf(bfd) \
2840 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2841 && elf_tdata (bfd) != NULL \
2842 && elf_object_id (bfd) == ARM_ELF_DATA)
2843
2844 static bfd_boolean
2845 elf32_arm_mkobject (bfd *abfd)
2846 {
2847 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2848 ARM_ELF_DATA);
2849 }
2850
2851 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2852
2853 /* Arm ELF linker hash entry. */
2854 struct elf32_arm_link_hash_entry
2855 {
2856 struct elf_link_hash_entry root;
2857
2858 /* Track dynamic relocs copied for this symbol. */
2859 struct elf_dyn_relocs *dyn_relocs;
2860
2861 /* ARM-specific PLT information. */
2862 struct arm_plt_info plt;
2863
2864 #define GOT_UNKNOWN 0
2865 #define GOT_NORMAL 1
2866 #define GOT_TLS_GD 2
2867 #define GOT_TLS_IE 4
2868 #define GOT_TLS_GDESC 8
2869 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2870 unsigned int tls_type : 8;
2871
2872 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2873 unsigned int is_iplt : 1;
2874
2875 unsigned int unused : 23;
2876
2877 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2878 starting at the end of the jump table. */
2879 bfd_vma tlsdesc_got;
2880
2881 /* The symbol marking the real symbol location for exported thumb
2882 symbols with Arm stubs. */
2883 struct elf_link_hash_entry *export_glue;
2884
2885 /* A pointer to the most recently used stub hash entry against this
2886 symbol. */
2887 struct elf32_arm_stub_hash_entry *stub_cache;
2888 };
2889
2890 /* Traverse an arm ELF linker hash table. */
2891 #define elf32_arm_link_hash_traverse(table, func, info) \
2892 (elf_link_hash_traverse \
2893 (&(table)->root, \
2894 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2895 (info)))
2896
2897 /* Get the ARM elf linker hash table from a link_info structure. */
2898 #define elf32_arm_hash_table(info) \
2899 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2900 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2901
2902 #define arm_stub_hash_lookup(table, string, create, copy) \
2903 ((struct elf32_arm_stub_hash_entry *) \
2904 bfd_hash_lookup ((table), (string), (create), (copy)))
2905
2906 /* Array to keep track of which stub sections have been created, and
2907 information on stub grouping. */
2908 struct map_stub
2909 {
2910 /* This is the section to which stubs in the group will be
2911 attached. */
2912 asection *link_sec;
2913 /* The stub section. */
2914 asection *stub_sec;
2915 };
2916
2917 #define elf32_arm_compute_jump_table_size(htab) \
2918 ((htab)->next_tls_desc_index * 4)
2919
2920 /* ARM ELF linker hash table. */
2921 struct elf32_arm_link_hash_table
2922 {
2923 /* The main hash table. */
2924 struct elf_link_hash_table root;
2925
2926 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2927 bfd_size_type thumb_glue_size;
2928
2929 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2930 bfd_size_type arm_glue_size;
2931
2932 /* The size in bytes of section containing the ARMv4 BX veneers. */
2933 bfd_size_type bx_glue_size;
2934
2935 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2936 veneer has been populated. */
2937 bfd_vma bx_glue_offset[15];
2938
2939 /* The size in bytes of the section containing glue for VFP11 erratum
2940 veneers. */
2941 bfd_size_type vfp11_erratum_glue_size;
2942
2943 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2944 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2945 elf32_arm_write_section(). */
2946 struct a8_erratum_fix *a8_erratum_fixes;
2947 unsigned int num_a8_erratum_fixes;
2948
2949 /* An arbitrary input BFD chosen to hold the glue sections. */
2950 bfd * bfd_of_glue_owner;
2951
2952 /* Nonzero to output a BE8 image. */
2953 int byteswap_code;
2954
2955 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2956 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2957 int target1_is_rel;
2958
2959 /* The relocation to use for R_ARM_TARGET2 relocations. */
2960 int target2_reloc;
2961
2962 /* 0 = Ignore R_ARM_V4BX.
2963 1 = Convert BX to MOV PC.
2964 2 = Generate v4 interworing stubs. */
2965 int fix_v4bx;
2966
2967 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2968 int fix_cortex_a8;
2969
2970 /* Whether we should fix the ARM1176 BLX immediate issue. */
2971 int fix_arm1176;
2972
2973 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2974 int use_blx;
2975
2976 /* What sort of code sequences we should look for which may trigger the
2977 VFP11 denorm erratum. */
2978 bfd_arm_vfp11_fix vfp11_fix;
2979
2980 /* Global counter for the number of fixes we have emitted. */
2981 int num_vfp11_fixes;
2982
2983 /* Nonzero to force PIC branch veneers. */
2984 int pic_veneer;
2985
2986 /* The number of bytes in the initial entry in the PLT. */
2987 bfd_size_type plt_header_size;
2988
2989 /* The number of bytes in the subsequent PLT etries. */
2990 bfd_size_type plt_entry_size;
2991
2992 /* True if the target system is VxWorks. */
2993 int vxworks_p;
2994
2995 /* True if the target system is Symbian OS. */
2996 int symbian_p;
2997
2998 /* True if the target system is Native Client. */
2999 int nacl_p;
3000
3001 /* True if the target uses REL relocations. */
3002 int use_rel;
3003
3004 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3005 bfd_vma next_tls_desc_index;
3006
3007 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3008 bfd_vma num_tls_desc;
3009
3010 /* Short-cuts to get to dynamic linker sections. */
3011 asection *sdynbss;
3012 asection *srelbss;
3013
3014 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3015 asection *srelplt2;
3016
3017 /* The offset into splt of the PLT entry for the TLS descriptor
3018 resolver. Special values are 0, if not necessary (or not found
3019 to be necessary yet), and -1 if needed but not determined
3020 yet. */
3021 bfd_vma dt_tlsdesc_plt;
3022
3023 /* The offset into sgot of the GOT entry used by the PLT entry
3024 above. */
3025 bfd_vma dt_tlsdesc_got;
3026
3027 /* Offset in .plt section of tls_arm_trampoline. */
3028 bfd_vma tls_trampoline;
3029
3030 /* Data for R_ARM_TLS_LDM32 relocations. */
3031 union
3032 {
3033 bfd_signed_vma refcount;
3034 bfd_vma offset;
3035 } tls_ldm_got;
3036
3037 /* Small local sym cache. */
3038 struct sym_cache sym_cache;
3039
3040 /* For convenience in allocate_dynrelocs. */
3041 bfd * obfd;
3042
3043 /* The amount of space used by the reserved portion of the sgotplt
3044 section, plus whatever space is used by the jump slots. */
3045 bfd_vma sgotplt_jump_table_size;
3046
3047 /* The stub hash table. */
3048 struct bfd_hash_table stub_hash_table;
3049
3050 /* Linker stub bfd. */
3051 bfd *stub_bfd;
3052
3053 /* Linker call-backs. */
3054 asection * (*add_stub_section) (const char *, asection *, unsigned int);
3055 void (*layout_sections_again) (void);
3056
3057 /* Array to keep track of which stub sections have been created, and
3058 information on stub grouping. */
3059 struct map_stub *stub_group;
3060
3061 /* Number of elements in stub_group. */
3062 int top_id;
3063
3064 /* Assorted information used by elf32_arm_size_stubs. */
3065 unsigned int bfd_count;
3066 int top_index;
3067 asection **input_list;
3068 };
3069
3070 /* Create an entry in an ARM ELF linker hash table. */
3071
3072 static struct bfd_hash_entry *
3073 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3074 struct bfd_hash_table * table,
3075 const char * string)
3076 {
3077 struct elf32_arm_link_hash_entry * ret =
3078 (struct elf32_arm_link_hash_entry *) entry;
3079
3080 /* Allocate the structure if it has not already been allocated by a
3081 subclass. */
3082 if (ret == NULL)
3083 ret = (struct elf32_arm_link_hash_entry *)
3084 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3085 if (ret == NULL)
3086 return (struct bfd_hash_entry *) ret;
3087
3088 /* Call the allocation method of the superclass. */
3089 ret = ((struct elf32_arm_link_hash_entry *)
3090 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3091 table, string));
3092 if (ret != NULL)
3093 {
3094 ret->dyn_relocs = NULL;
3095 ret->tls_type = GOT_UNKNOWN;
3096 ret->tlsdesc_got = (bfd_vma) -1;
3097 ret->plt.thumb_refcount = 0;
3098 ret->plt.maybe_thumb_refcount = 0;
3099 ret->plt.noncall_refcount = 0;
3100 ret->plt.got_offset = -1;
3101 ret->is_iplt = FALSE;
3102 ret->export_glue = NULL;
3103
3104 ret->stub_cache = NULL;
3105 }
3106
3107 return (struct bfd_hash_entry *) ret;
3108 }
3109
3110 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3111 symbols. */
3112
3113 static bfd_boolean
3114 elf32_arm_allocate_local_sym_info (bfd *abfd)
3115 {
3116 if (elf_local_got_refcounts (abfd) == NULL)
3117 {
3118 bfd_size_type num_syms;
3119 bfd_size_type size;
3120 char *data;
3121
3122 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3123 size = num_syms * (sizeof (bfd_signed_vma)
3124 + sizeof (struct arm_local_iplt_info *)
3125 + sizeof (bfd_vma)
3126 + sizeof (char));
3127 data = bfd_zalloc (abfd, size);
3128 if (data == NULL)
3129 return FALSE;
3130
3131 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3132 data += num_syms * sizeof (bfd_signed_vma);
3133
3134 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3135 data += num_syms * sizeof (struct arm_local_iplt_info *);
3136
3137 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3138 data += num_syms * sizeof (bfd_vma);
3139
3140 elf32_arm_local_got_tls_type (abfd) = data;
3141 }
3142 return TRUE;
3143 }
3144
3145 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3146 to input bfd ABFD. Create the information if it doesn't already exist.
3147 Return null if an allocation fails. */
3148
3149 static struct arm_local_iplt_info *
3150 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3151 {
3152 struct arm_local_iplt_info **ptr;
3153
3154 if (!elf32_arm_allocate_local_sym_info (abfd))
3155 return NULL;
3156
3157 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3158 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3159 if (*ptr == NULL)
3160 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3161 return *ptr;
3162 }
3163
3164 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3165 in ABFD's symbol table. If the symbol is global, H points to its
3166 hash table entry, otherwise H is null.
3167
3168 Return true if the symbol does have PLT information. When returning
3169 true, point *ROOT_PLT at the target-independent reference count/offset
3170 union and *ARM_PLT at the ARM-specific information. */
3171
3172 static bfd_boolean
3173 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3174 unsigned long r_symndx, union gotplt_union **root_plt,
3175 struct arm_plt_info **arm_plt)
3176 {
3177 struct arm_local_iplt_info *local_iplt;
3178
3179 if (h != NULL)
3180 {
3181 *root_plt = &h->root.plt;
3182 *arm_plt = &h->plt;
3183 return TRUE;
3184 }
3185
3186 if (elf32_arm_local_iplt (abfd) == NULL)
3187 return FALSE;
3188
3189 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3190 if (local_iplt == NULL)
3191 return FALSE;
3192
3193 *root_plt = &local_iplt->root;
3194 *arm_plt = &local_iplt->arm;
3195 return TRUE;
3196 }
3197
3198 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3199 before it. */
3200
3201 static bfd_boolean
3202 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3203 struct arm_plt_info *arm_plt)
3204 {
3205 struct elf32_arm_link_hash_table *htab;
3206
3207 htab = elf32_arm_hash_table (info);
3208 return (arm_plt->thumb_refcount != 0
3209 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3210 }
3211
3212 /* Return a pointer to the head of the dynamic reloc list that should
3213 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3214 ABFD's symbol table. Return null if an error occurs. */
3215
3216 static struct elf_dyn_relocs **
3217 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3218 Elf_Internal_Sym *isym)
3219 {
3220 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3221 {
3222 struct arm_local_iplt_info *local_iplt;
3223
3224 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3225 if (local_iplt == NULL)
3226 return NULL;
3227 return &local_iplt->dyn_relocs;
3228 }
3229 else
3230 {
3231 /* Track dynamic relocs needed for local syms too.
3232 We really need local syms available to do this
3233 easily. Oh well. */
3234 asection *s;
3235 void *vpp;
3236
3237 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3238 if (s == NULL)
3239 abort ();
3240
3241 vpp = &elf_section_data (s)->local_dynrel;
3242 return (struct elf_dyn_relocs **) vpp;
3243 }
3244 }
3245
3246 /* Initialize an entry in the stub hash table. */
3247
3248 static struct bfd_hash_entry *
3249 stub_hash_newfunc (struct bfd_hash_entry *entry,
3250 struct bfd_hash_table *table,
3251 const char *string)
3252 {
3253 /* Allocate the structure if it has not already been allocated by a
3254 subclass. */
3255 if (entry == NULL)
3256 {
3257 entry = (struct bfd_hash_entry *)
3258 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3259 if (entry == NULL)
3260 return entry;
3261 }
3262
3263 /* Call the allocation method of the superclass. */
3264 entry = bfd_hash_newfunc (entry, table, string);
3265 if (entry != NULL)
3266 {
3267 struct elf32_arm_stub_hash_entry *eh;
3268
3269 /* Initialize the local fields. */
3270 eh = (struct elf32_arm_stub_hash_entry *) entry;
3271 eh->stub_sec = NULL;
3272 eh->stub_offset = 0;
3273 eh->target_value = 0;
3274 eh->target_section = NULL;
3275 eh->target_addend = 0;
3276 eh->orig_insn = 0;
3277 eh->stub_type = arm_stub_none;
3278 eh->stub_size = 0;
3279 eh->stub_template = NULL;
3280 eh->stub_template_size = 0;
3281 eh->h = NULL;
3282 eh->id_sec = NULL;
3283 eh->output_name = NULL;
3284 }
3285
3286 return entry;
3287 }
3288
3289 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3290 shortcuts to them in our hash table. */
3291
3292 static bfd_boolean
3293 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3294 {
3295 struct elf32_arm_link_hash_table *htab;
3296
3297 htab = elf32_arm_hash_table (info);
3298 if (htab == NULL)
3299 return FALSE;
3300
3301 /* BPABI objects never have a GOT, or associated sections. */
3302 if (htab->symbian_p)
3303 return TRUE;
3304
3305 if (! _bfd_elf_create_got_section (dynobj, info))
3306 return FALSE;
3307
3308 return TRUE;
3309 }
3310
3311 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3312
3313 static bfd_boolean
3314 create_ifunc_sections (struct bfd_link_info *info)
3315 {
3316 struct elf32_arm_link_hash_table *htab;
3317 const struct elf_backend_data *bed;
3318 bfd *dynobj;
3319 asection *s;
3320 flagword flags;
3321
3322 htab = elf32_arm_hash_table (info);
3323 dynobj = htab->root.dynobj;
3324 bed = get_elf_backend_data (dynobj);
3325 flags = bed->dynamic_sec_flags;
3326
3327 if (htab->root.iplt == NULL)
3328 {
3329 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3330 flags | SEC_READONLY | SEC_CODE);
3331 if (s == NULL
3332 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3333 return FALSE;
3334 htab->root.iplt = s;
3335 }
3336
3337 if (htab->root.irelplt == NULL)
3338 {
3339 s = bfd_make_section_anyway_with_flags (dynobj,
3340 RELOC_SECTION (htab, ".iplt"),
3341 flags | SEC_READONLY);
3342 if (s == NULL
3343 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3344 return FALSE;
3345 htab->root.irelplt = s;
3346 }
3347
3348 if (htab->root.igotplt == NULL)
3349 {
3350 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3351 if (s == NULL
3352 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3353 return FALSE;
3354 htab->root.igotplt = s;
3355 }
3356 return TRUE;
3357 }
3358
3359 /* Determine if we're dealing with a Thumb only architecture. */
3360
3361 static bfd_boolean
3362 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3363 {
3364 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3365 Tag_CPU_arch);
3366 int profile;
3367
3368 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3369 return TRUE;
3370
3371 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3372 return FALSE;
3373
3374 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3375 Tag_CPU_arch_profile);
3376
3377 return profile == 'M';
3378 }
3379
3380 /* Determine if we're dealing with a Thumb-2 object. */
3381
3382 static bfd_boolean
3383 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3384 {
3385 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3386 Tag_CPU_arch);
3387 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3388 }
3389
3390 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3391 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3392 hash table. */
3393
3394 static bfd_boolean
3395 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3396 {
3397 struct elf32_arm_link_hash_table *htab;
3398
3399 htab = elf32_arm_hash_table (info);
3400 if (htab == NULL)
3401 return FALSE;
3402
3403 if (!htab->root.sgot && !create_got_section (dynobj, info))
3404 return FALSE;
3405
3406 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3407 return FALSE;
3408
3409 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3410 if (!info->shared)
3411 htab->srelbss = bfd_get_linker_section (dynobj,
3412 RELOC_SECTION (htab, ".bss"));
3413
3414 if (htab->vxworks_p)
3415 {
3416 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3417 return FALSE;
3418
3419 if (info->shared)
3420 {
3421 htab->plt_header_size = 0;
3422 htab->plt_entry_size
3423 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3424 }
3425 else
3426 {
3427 htab->plt_header_size
3428 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3429 htab->plt_entry_size
3430 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3431 }
3432 }
3433 else
3434 {
3435 /* PR ld/16017
3436 Test for thumb only architectures. Note - we cannot just call
3437 using_thumb_only() as the attributes in the output bfd have not been
3438 initialised at this point, so instead we use the input bfd. */
3439 bfd * saved_obfd = htab->obfd;
3440
3441 htab->obfd = dynobj;
3442 if (using_thumb_only (htab))
3443 {
3444 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3445 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3446 }
3447 htab->obfd = saved_obfd;
3448 }
3449
3450 if (!htab->root.splt
3451 || !htab->root.srelplt
3452 || !htab->sdynbss
3453 || (!info->shared && !htab->srelbss))
3454 abort ();
3455
3456 return TRUE;
3457 }
3458
3459 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3460
3461 static void
3462 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3463 struct elf_link_hash_entry *dir,
3464 struct elf_link_hash_entry *ind)
3465 {
3466 struct elf32_arm_link_hash_entry *edir, *eind;
3467
3468 edir = (struct elf32_arm_link_hash_entry *) dir;
3469 eind = (struct elf32_arm_link_hash_entry *) ind;
3470
3471 if (eind->dyn_relocs != NULL)
3472 {
3473 if (edir->dyn_relocs != NULL)
3474 {
3475 struct elf_dyn_relocs **pp;
3476 struct elf_dyn_relocs *p;
3477
3478 /* Add reloc counts against the indirect sym to the direct sym
3479 list. Merge any entries against the same section. */
3480 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3481 {
3482 struct elf_dyn_relocs *q;
3483
3484 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3485 if (q->sec == p->sec)
3486 {
3487 q->pc_count += p->pc_count;
3488 q->count += p->count;
3489 *pp = p->next;
3490 break;
3491 }
3492 if (q == NULL)
3493 pp = &p->next;
3494 }
3495 *pp = edir->dyn_relocs;
3496 }
3497
3498 edir->dyn_relocs = eind->dyn_relocs;
3499 eind->dyn_relocs = NULL;
3500 }
3501
3502 if (ind->root.type == bfd_link_hash_indirect)
3503 {
3504 /* Copy over PLT info. */
3505 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3506 eind->plt.thumb_refcount = 0;
3507 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3508 eind->plt.maybe_thumb_refcount = 0;
3509 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3510 eind->plt.noncall_refcount = 0;
3511
3512 /* We should only allocate a function to .iplt once the final
3513 symbol information is known. */
3514 BFD_ASSERT (!eind->is_iplt);
3515
3516 if (dir->got.refcount <= 0)
3517 {
3518 edir->tls_type = eind->tls_type;
3519 eind->tls_type = GOT_UNKNOWN;
3520 }
3521 }
3522
3523 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3524 }
3525
3526 /* Create an ARM elf linker hash table. */
3527
3528 static struct bfd_link_hash_table *
3529 elf32_arm_link_hash_table_create (bfd *abfd)
3530 {
3531 struct elf32_arm_link_hash_table *ret;
3532 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3533
3534 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3535 if (ret == NULL)
3536 return NULL;
3537
3538 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3539 elf32_arm_link_hash_newfunc,
3540 sizeof (struct elf32_arm_link_hash_entry),
3541 ARM_ELF_DATA))
3542 {
3543 free (ret);
3544 return NULL;
3545 }
3546
3547 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3548 #ifdef FOUR_WORD_PLT
3549 ret->plt_header_size = 16;
3550 ret->plt_entry_size = 16;
3551 #else
3552 ret->plt_header_size = 20;
3553 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3554 #endif
3555 ret->use_rel = 1;
3556 ret->obfd = abfd;
3557
3558 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3559 sizeof (struct elf32_arm_stub_hash_entry)))
3560 {
3561 free (ret);
3562 return NULL;
3563 }
3564
3565 return &ret->root.root;
3566 }
3567
3568 /* Free the derived linker hash table. */
3569
3570 static void
3571 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3572 {
3573 struct elf32_arm_link_hash_table *ret
3574 = (struct elf32_arm_link_hash_table *) hash;
3575
3576 bfd_hash_table_free (&ret->stub_hash_table);
3577 _bfd_elf_link_hash_table_free (hash);
3578 }
3579
3580 /* Determine what kind of NOPs are available. */
3581
3582 static bfd_boolean
3583 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3584 {
3585 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3586 Tag_CPU_arch);
3587 return arch == TAG_CPU_ARCH_V6T2
3588 || arch == TAG_CPU_ARCH_V6K
3589 || arch == TAG_CPU_ARCH_V7
3590 || arch == TAG_CPU_ARCH_V7E_M;
3591 }
3592
3593 static bfd_boolean
3594 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3595 {
3596 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3597 Tag_CPU_arch);
3598 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3599 || arch == TAG_CPU_ARCH_V7E_M);
3600 }
3601
3602 static bfd_boolean
3603 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3604 {
3605 switch (stub_type)
3606 {
3607 case arm_stub_long_branch_thumb_only:
3608 case arm_stub_long_branch_v4t_thumb_arm:
3609 case arm_stub_short_branch_v4t_thumb_arm:
3610 case arm_stub_long_branch_v4t_thumb_arm_pic:
3611 case arm_stub_long_branch_v4t_thumb_tls_pic:
3612 case arm_stub_long_branch_thumb_only_pic:
3613 return TRUE;
3614 case arm_stub_none:
3615 BFD_FAIL ();
3616 return FALSE;
3617 break;
3618 default:
3619 return FALSE;
3620 }
3621 }
3622
3623 /* Determine the type of stub needed, if any, for a call. */
3624
3625 static enum elf32_arm_stub_type
3626 arm_type_of_stub (struct bfd_link_info *info,
3627 asection *input_sec,
3628 const Elf_Internal_Rela *rel,
3629 unsigned char st_type,
3630 enum arm_st_branch_type *actual_branch_type,
3631 struct elf32_arm_link_hash_entry *hash,
3632 bfd_vma destination,
3633 asection *sym_sec,
3634 bfd *input_bfd,
3635 const char *name)
3636 {
3637 bfd_vma location;
3638 bfd_signed_vma branch_offset;
3639 unsigned int r_type;
3640 struct elf32_arm_link_hash_table * globals;
3641 int thumb2;
3642 int thumb_only;
3643 enum elf32_arm_stub_type stub_type = arm_stub_none;
3644 int use_plt = 0;
3645 enum arm_st_branch_type branch_type = *actual_branch_type;
3646 union gotplt_union *root_plt;
3647 struct arm_plt_info *arm_plt;
3648
3649 if (branch_type == ST_BRANCH_LONG)
3650 return stub_type;
3651
3652 globals = elf32_arm_hash_table (info);
3653 if (globals == NULL)
3654 return stub_type;
3655
3656 thumb_only = using_thumb_only (globals);
3657
3658 thumb2 = using_thumb2 (globals);
3659
3660 /* Determine where the call point is. */
3661 location = (input_sec->output_offset
3662 + input_sec->output_section->vma
3663 + rel->r_offset);
3664
3665 r_type = ELF32_R_TYPE (rel->r_info);
3666
3667 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3668 are considering a function call relocation. */
3669 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3670 && branch_type == ST_BRANCH_TO_ARM)
3671 branch_type = ST_BRANCH_TO_THUMB;
3672
3673 /* For TLS call relocs, it is the caller's responsibility to provide
3674 the address of the appropriate trampoline. */
3675 if (r_type != R_ARM_TLS_CALL
3676 && r_type != R_ARM_THM_TLS_CALL
3677 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3678 &root_plt, &arm_plt)
3679 && root_plt->offset != (bfd_vma) -1)
3680 {
3681 asection *splt;
3682
3683 if (hash == NULL || hash->is_iplt)
3684 splt = globals->root.iplt;
3685 else
3686 splt = globals->root.splt;
3687 if (splt != NULL)
3688 {
3689 use_plt = 1;
3690
3691 /* Note when dealing with PLT entries: the main PLT stub is in
3692 ARM mode, so if the branch is in Thumb mode, another
3693 Thumb->ARM stub will be inserted later just before the ARM
3694 PLT stub. We don't take this extra distance into account
3695 here, because if a long branch stub is needed, we'll add a
3696 Thumb->Arm one and branch directly to the ARM PLT entry
3697 because it avoids spreading offset corrections in several
3698 places. */
3699
3700 destination = (splt->output_section->vma
3701 + splt->output_offset
3702 + root_plt->offset);
3703 st_type = STT_FUNC;
3704 branch_type = ST_BRANCH_TO_ARM;
3705 }
3706 }
3707 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3708 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3709
3710 branch_offset = (bfd_signed_vma)(destination - location);
3711
3712 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3713 || r_type == R_ARM_THM_TLS_CALL)
3714 {
3715 /* Handle cases where:
3716 - this call goes too far (different Thumb/Thumb2 max
3717 distance)
3718 - it's a Thumb->Arm call and blx is not available, or it's a
3719 Thumb->Arm branch (not bl). A stub is needed in this case,
3720 but only if this call is not through a PLT entry. Indeed,
3721 PLT stubs handle mode switching already.
3722 */
3723 if ((!thumb2
3724 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3725 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3726 || (thumb2
3727 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3728 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3729 || (branch_type == ST_BRANCH_TO_ARM
3730 && (((r_type == R_ARM_THM_CALL
3731 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3732 || (r_type == R_ARM_THM_JUMP24))
3733 && !use_plt))
3734 {
3735 if (branch_type == ST_BRANCH_TO_THUMB)
3736 {
3737 /* Thumb to thumb. */
3738 if (!thumb_only)
3739 {
3740 stub_type = (info->shared | globals->pic_veneer)
3741 /* PIC stubs. */
3742 ? ((globals->use_blx
3743 && (r_type == R_ARM_THM_CALL))
3744 /* V5T and above. Stub starts with ARM code, so
3745 we must be able to switch mode before
3746 reaching it, which is only possible for 'bl'
3747 (ie R_ARM_THM_CALL relocation). */
3748 ? arm_stub_long_branch_any_thumb_pic
3749 /* On V4T, use Thumb code only. */
3750 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3751
3752 /* non-PIC stubs. */
3753 : ((globals->use_blx
3754 && (r_type == R_ARM_THM_CALL))
3755 /* V5T and above. */
3756 ? arm_stub_long_branch_any_any
3757 /* V4T. */
3758 : arm_stub_long_branch_v4t_thumb_thumb);
3759 }
3760 else
3761 {
3762 stub_type = (info->shared | globals->pic_veneer)
3763 /* PIC stub. */
3764 ? arm_stub_long_branch_thumb_only_pic
3765 /* non-PIC stub. */
3766 : arm_stub_long_branch_thumb_only;
3767 }
3768 }
3769 else
3770 {
3771 /* Thumb to arm. */
3772 if (sym_sec != NULL
3773 && sym_sec->owner != NULL
3774 && !INTERWORK_FLAG (sym_sec->owner))
3775 {
3776 (*_bfd_error_handler)
3777 (_("%B(%s): warning: interworking not enabled.\n"
3778 " first occurrence: %B: Thumb call to ARM"),
3779 sym_sec->owner, input_bfd, name);
3780 }
3781
3782 stub_type =
3783 (info->shared | globals->pic_veneer)
3784 /* PIC stubs. */
3785 ? (r_type == R_ARM_THM_TLS_CALL
3786 /* TLS PIC stubs */
3787 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3788 : arm_stub_long_branch_v4t_thumb_tls_pic)
3789 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3790 /* V5T PIC and above. */
3791 ? arm_stub_long_branch_any_arm_pic
3792 /* V4T PIC stub. */
3793 : arm_stub_long_branch_v4t_thumb_arm_pic))
3794
3795 /* non-PIC stubs. */
3796 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3797 /* V5T and above. */
3798 ? arm_stub_long_branch_any_any
3799 /* V4T. */
3800 : arm_stub_long_branch_v4t_thumb_arm);
3801
3802 /* Handle v4t short branches. */
3803 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3804 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3805 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3806 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3807 }
3808 }
3809 }
3810 else if (r_type == R_ARM_CALL
3811 || r_type == R_ARM_JUMP24
3812 || r_type == R_ARM_PLT32
3813 || r_type == R_ARM_TLS_CALL)
3814 {
3815 if (branch_type == ST_BRANCH_TO_THUMB)
3816 {
3817 /* Arm to thumb. */
3818
3819 if (sym_sec != NULL
3820 && sym_sec->owner != NULL
3821 && !INTERWORK_FLAG (sym_sec->owner))
3822 {
3823 (*_bfd_error_handler)
3824 (_("%B(%s): warning: interworking not enabled.\n"
3825 " first occurrence: %B: ARM call to Thumb"),
3826 sym_sec->owner, input_bfd, name);
3827 }
3828
3829 /* We have an extra 2-bytes reach because of
3830 the mode change (bit 24 (H) of BLX encoding). */
3831 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3832 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3833 || (r_type == R_ARM_CALL && !globals->use_blx)
3834 || (r_type == R_ARM_JUMP24)
3835 || (r_type == R_ARM_PLT32))
3836 {
3837 stub_type = (info->shared | globals->pic_veneer)
3838 /* PIC stubs. */
3839 ? ((globals->use_blx)
3840 /* V5T and above. */
3841 ? arm_stub_long_branch_any_thumb_pic
3842 /* V4T stub. */
3843 : arm_stub_long_branch_v4t_arm_thumb_pic)
3844
3845 /* non-PIC stubs. */
3846 : ((globals->use_blx)
3847 /* V5T and above. */
3848 ? arm_stub_long_branch_any_any
3849 /* V4T. */
3850 : arm_stub_long_branch_v4t_arm_thumb);
3851 }
3852 }
3853 else
3854 {
3855 /* Arm to arm. */
3856 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3857 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3858 {
3859 stub_type =
3860 (info->shared | globals->pic_veneer)
3861 /* PIC stubs. */
3862 ? (r_type == R_ARM_TLS_CALL
3863 /* TLS PIC Stub */
3864 ? arm_stub_long_branch_any_tls_pic
3865 : (globals->nacl_p
3866 ? arm_stub_long_branch_arm_nacl_pic
3867 : arm_stub_long_branch_any_arm_pic))
3868 /* non-PIC stubs. */
3869 : (globals->nacl_p
3870 ? arm_stub_long_branch_arm_nacl
3871 : arm_stub_long_branch_any_any);
3872 }
3873 }
3874 }
3875
3876 /* If a stub is needed, record the actual destination type. */
3877 if (stub_type != arm_stub_none)
3878 *actual_branch_type = branch_type;
3879
3880 return stub_type;
3881 }
3882
3883 /* Build a name for an entry in the stub hash table. */
3884
3885 static char *
3886 elf32_arm_stub_name (const asection *input_section,
3887 const asection *sym_sec,
3888 const struct elf32_arm_link_hash_entry *hash,
3889 const Elf_Internal_Rela *rel,
3890 enum elf32_arm_stub_type stub_type)
3891 {
3892 char *stub_name;
3893 bfd_size_type len;
3894
3895 if (hash)
3896 {
3897 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3898 stub_name = (char *) bfd_malloc (len);
3899 if (stub_name != NULL)
3900 sprintf (stub_name, "%08x_%s+%x_%d",
3901 input_section->id & 0xffffffff,
3902 hash->root.root.root.string,
3903 (int) rel->r_addend & 0xffffffff,
3904 (int) stub_type);
3905 }
3906 else
3907 {
3908 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3909 stub_name = (char *) bfd_malloc (len);
3910 if (stub_name != NULL)
3911 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3912 input_section->id & 0xffffffff,
3913 sym_sec->id & 0xffffffff,
3914 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3915 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3916 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3917 (int) rel->r_addend & 0xffffffff,
3918 (int) stub_type);
3919 }
3920
3921 return stub_name;
3922 }
3923
3924 /* Look up an entry in the stub hash. Stub entries are cached because
3925 creating the stub name takes a bit of time. */
3926
3927 static struct elf32_arm_stub_hash_entry *
3928 elf32_arm_get_stub_entry (const asection *input_section,
3929 const asection *sym_sec,
3930 struct elf_link_hash_entry *hash,
3931 const Elf_Internal_Rela *rel,
3932 struct elf32_arm_link_hash_table *htab,
3933 enum elf32_arm_stub_type stub_type)
3934 {
3935 struct elf32_arm_stub_hash_entry *stub_entry;
3936 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3937 const asection *id_sec;
3938
3939 if ((input_section->flags & SEC_CODE) == 0)
3940 return NULL;
3941
3942 /* If this input section is part of a group of sections sharing one
3943 stub section, then use the id of the first section in the group.
3944 Stub names need to include a section id, as there may well be
3945 more than one stub used to reach say, printf, and we need to
3946 distinguish between them. */
3947 id_sec = htab->stub_group[input_section->id].link_sec;
3948
3949 if (h != NULL && h->stub_cache != NULL
3950 && h->stub_cache->h == h
3951 && h->stub_cache->id_sec == id_sec
3952 && h->stub_cache->stub_type == stub_type)
3953 {
3954 stub_entry = h->stub_cache;
3955 }
3956 else
3957 {
3958 char *stub_name;
3959
3960 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3961 if (stub_name == NULL)
3962 return NULL;
3963
3964 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3965 stub_name, FALSE, FALSE);
3966 if (h != NULL)
3967 h->stub_cache = stub_entry;
3968
3969 free (stub_name);
3970 }
3971
3972 return stub_entry;
3973 }
3974
3975 /* Find or create a stub section. Returns a pointer to the stub section, and
3976 the section to which the stub section will be attached (in *LINK_SEC_P).
3977 LINK_SEC_P may be NULL. */
3978
3979 static asection *
3980 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3981 struct elf32_arm_link_hash_table *htab)
3982 {
3983 asection *link_sec;
3984 asection *stub_sec;
3985
3986 link_sec = htab->stub_group[section->id].link_sec;
3987 BFD_ASSERT (link_sec != NULL);
3988 stub_sec = htab->stub_group[section->id].stub_sec;
3989
3990 if (stub_sec == NULL)
3991 {
3992 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3993 if (stub_sec == NULL)
3994 {
3995 size_t namelen;
3996 bfd_size_type len;
3997 char *s_name;
3998
3999 namelen = strlen (link_sec->name);
4000 len = namelen + sizeof (STUB_SUFFIX);
4001 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4002 if (s_name == NULL)
4003 return NULL;
4004
4005 memcpy (s_name, link_sec->name, namelen);
4006 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4007 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
4008 htab->nacl_p ? 4 : 3);
4009 if (stub_sec == NULL)
4010 return NULL;
4011 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4012 }
4013 htab->stub_group[section->id].stub_sec = stub_sec;
4014 }
4015
4016 if (link_sec_p)
4017 *link_sec_p = link_sec;
4018
4019 return stub_sec;
4020 }
4021
4022 /* Add a new stub entry to the stub hash. Not all fields of the new
4023 stub entry are initialised. */
4024
4025 static struct elf32_arm_stub_hash_entry *
4026 elf32_arm_add_stub (const char *stub_name,
4027 asection *section,
4028 struct elf32_arm_link_hash_table *htab)
4029 {
4030 asection *link_sec;
4031 asection *stub_sec;
4032 struct elf32_arm_stub_hash_entry *stub_entry;
4033
4034 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4035 if (stub_sec == NULL)
4036 return NULL;
4037
4038 /* Enter this entry into the linker stub hash table. */
4039 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4040 TRUE, FALSE);
4041 if (stub_entry == NULL)
4042 {
4043 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4044 section->owner,
4045 stub_name);
4046 return NULL;
4047 }
4048
4049 stub_entry->stub_sec = stub_sec;
4050 stub_entry->stub_offset = 0;
4051 stub_entry->id_sec = link_sec;
4052
4053 return stub_entry;
4054 }
4055
4056 /* Store an Arm insn into an output section not processed by
4057 elf32_arm_write_section. */
4058
4059 static void
4060 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4061 bfd * output_bfd, bfd_vma val, void * ptr)
4062 {
4063 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4064 bfd_putl32 (val, ptr);
4065 else
4066 bfd_putb32 (val, ptr);
4067 }
4068
4069 /* Store a 16-bit Thumb insn into an output section not processed by
4070 elf32_arm_write_section. */
4071
4072 static void
4073 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4074 bfd * output_bfd, bfd_vma val, void * ptr)
4075 {
4076 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4077 bfd_putl16 (val, ptr);
4078 else
4079 bfd_putb16 (val, ptr);
4080 }
4081
4082 /* If it's possible to change R_TYPE to a more efficient access
4083 model, return the new reloc type. */
4084
4085 static unsigned
4086 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4087 struct elf_link_hash_entry *h)
4088 {
4089 int is_local = (h == NULL);
4090
4091 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4092 return r_type;
4093
4094 /* We do not support relaxations for Old TLS models. */
4095 switch (r_type)
4096 {
4097 case R_ARM_TLS_GOTDESC:
4098 case R_ARM_TLS_CALL:
4099 case R_ARM_THM_TLS_CALL:
4100 case R_ARM_TLS_DESCSEQ:
4101 case R_ARM_THM_TLS_DESCSEQ:
4102 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4103 }
4104
4105 return r_type;
4106 }
4107
4108 static bfd_reloc_status_type elf32_arm_final_link_relocate
4109 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4110 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4111 const char *, unsigned char, enum arm_st_branch_type,
4112 struct elf_link_hash_entry *, bfd_boolean *, char **);
4113
4114 static unsigned int
4115 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4116 {
4117 switch (stub_type)
4118 {
4119 case arm_stub_a8_veneer_b_cond:
4120 case arm_stub_a8_veneer_b:
4121 case arm_stub_a8_veneer_bl:
4122 return 2;
4123
4124 case arm_stub_long_branch_any_any:
4125 case arm_stub_long_branch_v4t_arm_thumb:
4126 case arm_stub_long_branch_thumb_only:
4127 case arm_stub_long_branch_v4t_thumb_thumb:
4128 case arm_stub_long_branch_v4t_thumb_arm:
4129 case arm_stub_short_branch_v4t_thumb_arm:
4130 case arm_stub_long_branch_any_arm_pic:
4131 case arm_stub_long_branch_any_thumb_pic:
4132 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4133 case arm_stub_long_branch_v4t_arm_thumb_pic:
4134 case arm_stub_long_branch_v4t_thumb_arm_pic:
4135 case arm_stub_long_branch_thumb_only_pic:
4136 case arm_stub_long_branch_any_tls_pic:
4137 case arm_stub_long_branch_v4t_thumb_tls_pic:
4138 case arm_stub_a8_veneer_blx:
4139 return 4;
4140
4141 case arm_stub_long_branch_arm_nacl:
4142 case arm_stub_long_branch_arm_nacl_pic:
4143 return 16;
4144
4145 default:
4146 abort (); /* Should be unreachable. */
4147 }
4148 }
4149
4150 static bfd_boolean
4151 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4152 void * in_arg)
4153 {
4154 #define MAXRELOCS 3
4155 struct elf32_arm_stub_hash_entry *stub_entry;
4156 struct elf32_arm_link_hash_table *globals;
4157 struct bfd_link_info *info;
4158 asection *stub_sec;
4159 bfd *stub_bfd;
4160 bfd_byte *loc;
4161 bfd_vma sym_value;
4162 int template_size;
4163 int size;
4164 const insn_sequence *template_sequence;
4165 int i;
4166 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4167 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4168 int nrelocs = 0;
4169
4170 /* Massage our args to the form they really have. */
4171 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4172 info = (struct bfd_link_info *) in_arg;
4173
4174 globals = elf32_arm_hash_table (info);
4175 if (globals == NULL)
4176 return FALSE;
4177
4178 stub_sec = stub_entry->stub_sec;
4179
4180 if ((globals->fix_cortex_a8 < 0)
4181 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4182 /* We have to do less-strictly-aligned fixes last. */
4183 return TRUE;
4184
4185 /* Make a note of the offset within the stubs for this entry. */
4186 stub_entry->stub_offset = stub_sec->size;
4187 loc = stub_sec->contents + stub_entry->stub_offset;
4188
4189 stub_bfd = stub_sec->owner;
4190
4191 /* This is the address of the stub destination. */
4192 sym_value = (stub_entry->target_value
4193 + stub_entry->target_section->output_offset
4194 + stub_entry->target_section->output_section->vma);
4195
4196 template_sequence = stub_entry->stub_template;
4197 template_size = stub_entry->stub_template_size;
4198
4199 size = 0;
4200 for (i = 0; i < template_size; i++)
4201 {
4202 switch (template_sequence[i].type)
4203 {
4204 case THUMB16_TYPE:
4205 {
4206 bfd_vma data = (bfd_vma) template_sequence[i].data;
4207 if (template_sequence[i].reloc_addend != 0)
4208 {
4209 /* We've borrowed the reloc_addend field to mean we should
4210 insert a condition code into this (Thumb-1 branch)
4211 instruction. See THUMB16_BCOND_INSN. */
4212 BFD_ASSERT ((data & 0xff00) == 0xd000);
4213 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4214 }
4215 bfd_put_16 (stub_bfd, data, loc + size);
4216 size += 2;
4217 }
4218 break;
4219
4220 case THUMB32_TYPE:
4221 bfd_put_16 (stub_bfd,
4222 (template_sequence[i].data >> 16) & 0xffff,
4223 loc + size);
4224 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4225 loc + size + 2);
4226 if (template_sequence[i].r_type != R_ARM_NONE)
4227 {
4228 stub_reloc_idx[nrelocs] = i;
4229 stub_reloc_offset[nrelocs++] = size;
4230 }
4231 size += 4;
4232 break;
4233
4234 case ARM_TYPE:
4235 bfd_put_32 (stub_bfd, template_sequence[i].data,
4236 loc + size);
4237 /* Handle cases where the target is encoded within the
4238 instruction. */
4239 if (template_sequence[i].r_type == R_ARM_JUMP24)
4240 {
4241 stub_reloc_idx[nrelocs] = i;
4242 stub_reloc_offset[nrelocs++] = size;
4243 }
4244 size += 4;
4245 break;
4246
4247 case DATA_TYPE:
4248 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4249 stub_reloc_idx[nrelocs] = i;
4250 stub_reloc_offset[nrelocs++] = size;
4251 size += 4;
4252 break;
4253
4254 default:
4255 BFD_FAIL ();
4256 return FALSE;
4257 }
4258 }
4259
4260 stub_sec->size += size;
4261
4262 /* Stub size has already been computed in arm_size_one_stub. Check
4263 consistency. */
4264 BFD_ASSERT (size == stub_entry->stub_size);
4265
4266 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4267 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4268 sym_value |= 1;
4269
4270 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4271 in each stub. */
4272 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4273
4274 for (i = 0; i < nrelocs; i++)
4275 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4276 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4277 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4278 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4279 {
4280 Elf_Internal_Rela rel;
4281 bfd_boolean unresolved_reloc;
4282 char *error_message;
4283 enum arm_st_branch_type branch_type
4284 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4285 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4286 bfd_vma points_to = sym_value + stub_entry->target_addend;
4287
4288 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4289 rel.r_info = ELF32_R_INFO (0,
4290 template_sequence[stub_reloc_idx[i]].r_type);
4291 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4292
4293 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4294 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4295 template should refer back to the instruction after the original
4296 branch. */
4297 points_to = sym_value;
4298
4299 /* There may be unintended consequences if this is not true. */
4300 BFD_ASSERT (stub_entry->h == NULL);
4301
4302 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4303 properly. We should probably use this function unconditionally,
4304 rather than only for certain relocations listed in the enclosing
4305 conditional, for the sake of consistency. */
4306 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4307 (template_sequence[stub_reloc_idx[i]].r_type),
4308 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4309 points_to, info, stub_entry->target_section, "", STT_FUNC,
4310 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4311 &unresolved_reloc, &error_message);
4312 }
4313 else
4314 {
4315 Elf_Internal_Rela rel;
4316 bfd_boolean unresolved_reloc;
4317 char *error_message;
4318 bfd_vma points_to = sym_value + stub_entry->target_addend
4319 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4320
4321 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4322 rel.r_info = ELF32_R_INFO (0,
4323 template_sequence[stub_reloc_idx[i]].r_type);
4324 rel.r_addend = 0;
4325
4326 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4327 (template_sequence[stub_reloc_idx[i]].r_type),
4328 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4329 points_to, info, stub_entry->target_section, "", STT_FUNC,
4330 stub_entry->branch_type,
4331 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4332 &error_message);
4333 }
4334
4335 return TRUE;
4336 #undef MAXRELOCS
4337 }
4338
4339 /* Calculate the template, template size and instruction size for a stub.
4340 Return value is the instruction size. */
4341
4342 static unsigned int
4343 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4344 const insn_sequence **stub_template,
4345 int *stub_template_size)
4346 {
4347 const insn_sequence *template_sequence = NULL;
4348 int template_size = 0, i;
4349 unsigned int size;
4350
4351 template_sequence = stub_definitions[stub_type].template_sequence;
4352 if (stub_template)
4353 *stub_template = template_sequence;
4354
4355 template_size = stub_definitions[stub_type].template_size;
4356 if (stub_template_size)
4357 *stub_template_size = template_size;
4358
4359 size = 0;
4360 for (i = 0; i < template_size; i++)
4361 {
4362 switch (template_sequence[i].type)
4363 {
4364 case THUMB16_TYPE:
4365 size += 2;
4366 break;
4367
4368 case ARM_TYPE:
4369 case THUMB32_TYPE:
4370 case DATA_TYPE:
4371 size += 4;
4372 break;
4373
4374 default:
4375 BFD_FAIL ();
4376 return 0;
4377 }
4378 }
4379
4380 return size;
4381 }
4382
4383 /* As above, but don't actually build the stub. Just bump offset so
4384 we know stub section sizes. */
4385
4386 static bfd_boolean
4387 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4388 void *in_arg ATTRIBUTE_UNUSED)
4389 {
4390 struct elf32_arm_stub_hash_entry *stub_entry;
4391 const insn_sequence *template_sequence;
4392 int template_size, size;
4393
4394 /* Massage our args to the form they really have. */
4395 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4396
4397 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4398 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4399
4400 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4401 &template_size);
4402
4403 stub_entry->stub_size = size;
4404 stub_entry->stub_template = template_sequence;
4405 stub_entry->stub_template_size = template_size;
4406
4407 size = (size + 7) & ~7;
4408 stub_entry->stub_sec->size += size;
4409
4410 return TRUE;
4411 }
4412
4413 /* External entry points for sizing and building linker stubs. */
4414
4415 /* Set up various things so that we can make a list of input sections
4416 for each output section included in the link. Returns -1 on error,
4417 0 when no stubs will be needed, and 1 on success. */
4418
4419 int
4420 elf32_arm_setup_section_lists (bfd *output_bfd,
4421 struct bfd_link_info *info)
4422 {
4423 bfd *input_bfd;
4424 unsigned int bfd_count;
4425 int top_id, top_index;
4426 asection *section;
4427 asection **input_list, **list;
4428 bfd_size_type amt;
4429 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4430
4431 if (htab == NULL)
4432 return 0;
4433 if (! is_elf_hash_table (htab))
4434 return 0;
4435
4436 /* Count the number of input BFDs and find the top input section id. */
4437 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4438 input_bfd != NULL;
4439 input_bfd = input_bfd->link_next)
4440 {
4441 bfd_count += 1;
4442 for (section = input_bfd->sections;
4443 section != NULL;
4444 section = section->next)
4445 {
4446 if (top_id < section->id)
4447 top_id = section->id;
4448 }
4449 }
4450 htab->bfd_count = bfd_count;
4451
4452 amt = sizeof (struct map_stub) * (top_id + 1);
4453 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4454 if (htab->stub_group == NULL)
4455 return -1;
4456 htab->top_id = top_id;
4457
4458 /* We can't use output_bfd->section_count here to find the top output
4459 section index as some sections may have been removed, and
4460 _bfd_strip_section_from_output doesn't renumber the indices. */
4461 for (section = output_bfd->sections, top_index = 0;
4462 section != NULL;
4463 section = section->next)
4464 {
4465 if (top_index < section->index)
4466 top_index = section->index;
4467 }
4468
4469 htab->top_index = top_index;
4470 amt = sizeof (asection *) * (top_index + 1);
4471 input_list = (asection **) bfd_malloc (amt);
4472 htab->input_list = input_list;
4473 if (input_list == NULL)
4474 return -1;
4475
4476 /* For sections we aren't interested in, mark their entries with a
4477 value we can check later. */
4478 list = input_list + top_index;
4479 do
4480 *list = bfd_abs_section_ptr;
4481 while (list-- != input_list);
4482
4483 for (section = output_bfd->sections;
4484 section != NULL;
4485 section = section->next)
4486 {
4487 if ((section->flags & SEC_CODE) != 0)
4488 input_list[section->index] = NULL;
4489 }
4490
4491 return 1;
4492 }
4493
4494 /* The linker repeatedly calls this function for each input section,
4495 in the order that input sections are linked into output sections.
4496 Build lists of input sections to determine groupings between which
4497 we may insert linker stubs. */
4498
4499 void
4500 elf32_arm_next_input_section (struct bfd_link_info *info,
4501 asection *isec)
4502 {
4503 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4504
4505 if (htab == NULL)
4506 return;
4507
4508 if (isec->output_section->index <= htab->top_index)
4509 {
4510 asection **list = htab->input_list + isec->output_section->index;
4511
4512 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4513 {
4514 /* Steal the link_sec pointer for our list. */
4515 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4516 /* This happens to make the list in reverse order,
4517 which we reverse later. */
4518 PREV_SEC (isec) = *list;
4519 *list = isec;
4520 }
4521 }
4522 }
4523
4524 /* See whether we can group stub sections together. Grouping stub
4525 sections may result in fewer stubs. More importantly, we need to
4526 put all .init* and .fini* stubs at the end of the .init or
4527 .fini output sections respectively, because glibc splits the
4528 _init and _fini functions into multiple parts. Putting a stub in
4529 the middle of a function is not a good idea. */
4530
4531 static void
4532 group_sections (struct elf32_arm_link_hash_table *htab,
4533 bfd_size_type stub_group_size,
4534 bfd_boolean stubs_always_after_branch)
4535 {
4536 asection **list = htab->input_list;
4537
4538 do
4539 {
4540 asection *tail = *list;
4541 asection *head;
4542
4543 if (tail == bfd_abs_section_ptr)
4544 continue;
4545
4546 /* Reverse the list: we must avoid placing stubs at the
4547 beginning of the section because the beginning of the text
4548 section may be required for an interrupt vector in bare metal
4549 code. */
4550 #define NEXT_SEC PREV_SEC
4551 head = NULL;
4552 while (tail != NULL)
4553 {
4554 /* Pop from tail. */
4555 asection *item = tail;
4556 tail = PREV_SEC (item);
4557
4558 /* Push on head. */
4559 NEXT_SEC (item) = head;
4560 head = item;
4561 }
4562
4563 while (head != NULL)
4564 {
4565 asection *curr;
4566 asection *next;
4567 bfd_vma stub_group_start = head->output_offset;
4568 bfd_vma end_of_next;
4569
4570 curr = head;
4571 while (NEXT_SEC (curr) != NULL)
4572 {
4573 next = NEXT_SEC (curr);
4574 end_of_next = next->output_offset + next->size;
4575 if (end_of_next - stub_group_start >= stub_group_size)
4576 /* End of NEXT is too far from start, so stop. */
4577 break;
4578 /* Add NEXT to the group. */
4579 curr = next;
4580 }
4581
4582 /* OK, the size from the start to the start of CURR is less
4583 than stub_group_size and thus can be handled by one stub
4584 section. (Or the head section is itself larger than
4585 stub_group_size, in which case we may be toast.)
4586 We should really be keeping track of the total size of
4587 stubs added here, as stubs contribute to the final output
4588 section size. */
4589 do
4590 {
4591 next = NEXT_SEC (head);
4592 /* Set up this stub group. */
4593 htab->stub_group[head->id].link_sec = curr;
4594 }
4595 while (head != curr && (head = next) != NULL);
4596
4597 /* But wait, there's more! Input sections up to stub_group_size
4598 bytes after the stub section can be handled by it too. */
4599 if (!stubs_always_after_branch)
4600 {
4601 stub_group_start = curr->output_offset + curr->size;
4602
4603 while (next != NULL)
4604 {
4605 end_of_next = next->output_offset + next->size;
4606 if (end_of_next - stub_group_start >= stub_group_size)
4607 /* End of NEXT is too far from stubs, so stop. */
4608 break;
4609 /* Add NEXT to the stub group. */
4610 head = next;
4611 next = NEXT_SEC (head);
4612 htab->stub_group[head->id].link_sec = curr;
4613 }
4614 }
4615 head = next;
4616 }
4617 }
4618 while (list++ != htab->input_list + htab->top_index);
4619
4620 free (htab->input_list);
4621 #undef PREV_SEC
4622 #undef NEXT_SEC
4623 }
4624
4625 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4626 erratum fix. */
4627
4628 static int
4629 a8_reloc_compare (const void *a, const void *b)
4630 {
4631 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4632 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4633
4634 if (ra->from < rb->from)
4635 return -1;
4636 else if (ra->from > rb->from)
4637 return 1;
4638 else
4639 return 0;
4640 }
4641
4642 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4643 const char *, char **);
4644
4645 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4646 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4647 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4648 otherwise. */
4649
4650 static bfd_boolean
4651 cortex_a8_erratum_scan (bfd *input_bfd,
4652 struct bfd_link_info *info,
4653 struct a8_erratum_fix **a8_fixes_p,
4654 unsigned int *num_a8_fixes_p,
4655 unsigned int *a8_fix_table_size_p,
4656 struct a8_erratum_reloc *a8_relocs,
4657 unsigned int num_a8_relocs,
4658 unsigned prev_num_a8_fixes,
4659 bfd_boolean *stub_changed_p)
4660 {
4661 asection *section;
4662 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4663 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4664 unsigned int num_a8_fixes = *num_a8_fixes_p;
4665 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4666
4667 if (htab == NULL)
4668 return FALSE;
4669
4670 for (section = input_bfd->sections;
4671 section != NULL;
4672 section = section->next)
4673 {
4674 bfd_byte *contents = NULL;
4675 struct _arm_elf_section_data *sec_data;
4676 unsigned int span;
4677 bfd_vma base_vma;
4678
4679 if (elf_section_type (section) != SHT_PROGBITS
4680 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4681 || (section->flags & SEC_EXCLUDE) != 0
4682 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4683 || (section->output_section == bfd_abs_section_ptr))
4684 continue;
4685
4686 base_vma = section->output_section->vma + section->output_offset;
4687
4688 if (elf_section_data (section)->this_hdr.contents != NULL)
4689 contents = elf_section_data (section)->this_hdr.contents;
4690 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4691 return TRUE;
4692
4693 sec_data = elf32_arm_section_data (section);
4694
4695 for (span = 0; span < sec_data->mapcount; span++)
4696 {
4697 unsigned int span_start = sec_data->map[span].vma;
4698 unsigned int span_end = (span == sec_data->mapcount - 1)
4699 ? section->size : sec_data->map[span + 1].vma;
4700 unsigned int i;
4701 char span_type = sec_data->map[span].type;
4702 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4703
4704 if (span_type != 't')
4705 continue;
4706
4707 /* Span is entirely within a single 4KB region: skip scanning. */
4708 if (((base_vma + span_start) & ~0xfff)
4709 == ((base_vma + span_end) & ~0xfff))
4710 continue;
4711
4712 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4713
4714 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4715 * The branch target is in the same 4KB region as the
4716 first half of the branch.
4717 * The instruction before the branch is a 32-bit
4718 length non-branch instruction. */
4719 for (i = span_start; i < span_end;)
4720 {
4721 unsigned int insn = bfd_getl16 (&contents[i]);
4722 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4723 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4724
4725 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4726 insn_32bit = TRUE;
4727
4728 if (insn_32bit)
4729 {
4730 /* Load the rest of the insn (in manual-friendly order). */
4731 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4732
4733 /* Encoding T4: B<c>.W. */
4734 is_b = (insn & 0xf800d000) == 0xf0009000;
4735 /* Encoding T1: BL<c>.W. */
4736 is_bl = (insn & 0xf800d000) == 0xf000d000;
4737 /* Encoding T2: BLX<c>.W. */
4738 is_blx = (insn & 0xf800d000) == 0xf000c000;
4739 /* Encoding T3: B<c>.W (not permitted in IT block). */
4740 is_bcc = (insn & 0xf800d000) == 0xf0008000
4741 && (insn & 0x07f00000) != 0x03800000;
4742 }
4743
4744 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4745
4746 if (((base_vma + i) & 0xfff) == 0xffe
4747 && insn_32bit
4748 && is_32bit_branch
4749 && last_was_32bit
4750 && ! last_was_branch)
4751 {
4752 bfd_signed_vma offset = 0;
4753 bfd_boolean force_target_arm = FALSE;
4754 bfd_boolean force_target_thumb = FALSE;
4755 bfd_vma target;
4756 enum elf32_arm_stub_type stub_type = arm_stub_none;
4757 struct a8_erratum_reloc key, *found;
4758 bfd_boolean use_plt = FALSE;
4759
4760 key.from = base_vma + i;
4761 found = (struct a8_erratum_reloc *)
4762 bsearch (&key, a8_relocs, num_a8_relocs,
4763 sizeof (struct a8_erratum_reloc),
4764 &a8_reloc_compare);
4765
4766 if (found)
4767 {
4768 char *error_message = NULL;
4769 struct elf_link_hash_entry *entry;
4770
4771 /* We don't care about the error returned from this
4772 function, only if there is glue or not. */
4773 entry = find_thumb_glue (info, found->sym_name,
4774 &error_message);
4775
4776 if (entry)
4777 found->non_a8_stub = TRUE;
4778
4779 /* Keep a simpler condition, for the sake of clarity. */
4780 if (htab->root.splt != NULL && found->hash != NULL
4781 && found->hash->root.plt.offset != (bfd_vma) -1)
4782 use_plt = TRUE;
4783
4784 if (found->r_type == R_ARM_THM_CALL)
4785 {
4786 if (found->branch_type == ST_BRANCH_TO_ARM
4787 || use_plt)
4788 force_target_arm = TRUE;
4789 else
4790 force_target_thumb = TRUE;
4791 }
4792 }
4793
4794 /* Check if we have an offending branch instruction. */
4795
4796 if (found && found->non_a8_stub)
4797 /* We've already made a stub for this instruction, e.g.
4798 it's a long branch or a Thumb->ARM stub. Assume that
4799 stub will suffice to work around the A8 erratum (see
4800 setting of always_after_branch above). */
4801 ;
4802 else if (is_bcc)
4803 {
4804 offset = (insn & 0x7ff) << 1;
4805 offset |= (insn & 0x3f0000) >> 4;
4806 offset |= (insn & 0x2000) ? 0x40000 : 0;
4807 offset |= (insn & 0x800) ? 0x80000 : 0;
4808 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4809 if (offset & 0x100000)
4810 offset |= ~ ((bfd_signed_vma) 0xfffff);
4811 stub_type = arm_stub_a8_veneer_b_cond;
4812 }
4813 else if (is_b || is_bl || is_blx)
4814 {
4815 int s = (insn & 0x4000000) != 0;
4816 int j1 = (insn & 0x2000) != 0;
4817 int j2 = (insn & 0x800) != 0;
4818 int i1 = !(j1 ^ s);
4819 int i2 = !(j2 ^ s);
4820
4821 offset = (insn & 0x7ff) << 1;
4822 offset |= (insn & 0x3ff0000) >> 4;
4823 offset |= i2 << 22;
4824 offset |= i1 << 23;
4825 offset |= s << 24;
4826 if (offset & 0x1000000)
4827 offset |= ~ ((bfd_signed_vma) 0xffffff);
4828
4829 if (is_blx)
4830 offset &= ~ ((bfd_signed_vma) 3);
4831
4832 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4833 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4834 }
4835
4836 if (stub_type != arm_stub_none)
4837 {
4838 bfd_vma pc_for_insn = base_vma + i + 4;
4839
4840 /* The original instruction is a BL, but the target is
4841 an ARM instruction. If we were not making a stub,
4842 the BL would have been converted to a BLX. Use the
4843 BLX stub instead in that case. */
4844 if (htab->use_blx && force_target_arm
4845 && stub_type == arm_stub_a8_veneer_bl)
4846 {
4847 stub_type = arm_stub_a8_veneer_blx;
4848 is_blx = TRUE;
4849 is_bl = FALSE;
4850 }
4851 /* Conversely, if the original instruction was
4852 BLX but the target is Thumb mode, use the BL
4853 stub. */
4854 else if (force_target_thumb
4855 && stub_type == arm_stub_a8_veneer_blx)
4856 {
4857 stub_type = arm_stub_a8_veneer_bl;
4858 is_blx = FALSE;
4859 is_bl = TRUE;
4860 }
4861
4862 if (is_blx)
4863 pc_for_insn &= ~ ((bfd_vma) 3);
4864
4865 /* If we found a relocation, use the proper destination,
4866 not the offset in the (unrelocated) instruction.
4867 Note this is always done if we switched the stub type
4868 above. */
4869 if (found)
4870 offset =
4871 (bfd_signed_vma) (found->destination - pc_for_insn);
4872
4873 /* If the stub will use a Thumb-mode branch to a
4874 PLT target, redirect it to the preceding Thumb
4875 entry point. */
4876 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4877 offset -= PLT_THUMB_STUB_SIZE;
4878
4879 target = pc_for_insn + offset;
4880
4881 /* The BLX stub is ARM-mode code. Adjust the offset to
4882 take the different PC value (+8 instead of +4) into
4883 account. */
4884 if (stub_type == arm_stub_a8_veneer_blx)
4885 offset += 4;
4886
4887 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4888 {
4889 char *stub_name = NULL;
4890
4891 if (num_a8_fixes == a8_fix_table_size)
4892 {
4893 a8_fix_table_size *= 2;
4894 a8_fixes = (struct a8_erratum_fix *)
4895 bfd_realloc (a8_fixes,
4896 sizeof (struct a8_erratum_fix)
4897 * a8_fix_table_size);
4898 }
4899
4900 if (num_a8_fixes < prev_num_a8_fixes)
4901 {
4902 /* If we're doing a subsequent scan,
4903 check if we've found the same fix as
4904 before, and try and reuse the stub
4905 name. */
4906 stub_name = a8_fixes[num_a8_fixes].stub_name;
4907 if ((a8_fixes[num_a8_fixes].section != section)
4908 || (a8_fixes[num_a8_fixes].offset != i))
4909 {
4910 free (stub_name);
4911 stub_name = NULL;
4912 *stub_changed_p = TRUE;
4913 }
4914 }
4915
4916 if (!stub_name)
4917 {
4918 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4919 if (stub_name != NULL)
4920 sprintf (stub_name, "%x:%x", section->id, i);
4921 }
4922
4923 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4924 a8_fixes[num_a8_fixes].section = section;
4925 a8_fixes[num_a8_fixes].offset = i;
4926 a8_fixes[num_a8_fixes].addend = offset;
4927 a8_fixes[num_a8_fixes].orig_insn = insn;
4928 a8_fixes[num_a8_fixes].stub_name = stub_name;
4929 a8_fixes[num_a8_fixes].stub_type = stub_type;
4930 a8_fixes[num_a8_fixes].branch_type =
4931 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4932
4933 num_a8_fixes++;
4934 }
4935 }
4936 }
4937
4938 i += insn_32bit ? 4 : 2;
4939 last_was_32bit = insn_32bit;
4940 last_was_branch = is_32bit_branch;
4941 }
4942 }
4943
4944 if (elf_section_data (section)->this_hdr.contents == NULL)
4945 free (contents);
4946 }
4947
4948 *a8_fixes_p = a8_fixes;
4949 *num_a8_fixes_p = num_a8_fixes;
4950 *a8_fix_table_size_p = a8_fix_table_size;
4951
4952 return FALSE;
4953 }
4954
4955 /* Determine and set the size of the stub section for a final link.
4956
4957 The basic idea here is to examine all the relocations looking for
4958 PC-relative calls to a target that is unreachable with a "bl"
4959 instruction. */
4960
4961 bfd_boolean
4962 elf32_arm_size_stubs (bfd *output_bfd,
4963 bfd *stub_bfd,
4964 struct bfd_link_info *info,
4965 bfd_signed_vma group_size,
4966 asection * (*add_stub_section) (const char *, asection *,
4967 unsigned int),
4968 void (*layout_sections_again) (void))
4969 {
4970 bfd_size_type stub_group_size;
4971 bfd_boolean stubs_always_after_branch;
4972 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4973 struct a8_erratum_fix *a8_fixes = NULL;
4974 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4975 struct a8_erratum_reloc *a8_relocs = NULL;
4976 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4977
4978 if (htab == NULL)
4979 return FALSE;
4980
4981 if (htab->fix_cortex_a8)
4982 {
4983 a8_fixes = (struct a8_erratum_fix *)
4984 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4985 a8_relocs = (struct a8_erratum_reloc *)
4986 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4987 }
4988
4989 /* Propagate mach to stub bfd, because it may not have been
4990 finalized when we created stub_bfd. */
4991 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4992 bfd_get_mach (output_bfd));
4993
4994 /* Stash our params away. */
4995 htab->stub_bfd = stub_bfd;
4996 htab->add_stub_section = add_stub_section;
4997 htab->layout_sections_again = layout_sections_again;
4998 stubs_always_after_branch = group_size < 0;
4999
5000 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5001 as the first half of a 32-bit branch straddling two 4K pages. This is a
5002 crude way of enforcing that. */
5003 if (htab->fix_cortex_a8)
5004 stubs_always_after_branch = 1;
5005
5006 if (group_size < 0)
5007 stub_group_size = -group_size;
5008 else
5009 stub_group_size = group_size;
5010
5011 if (stub_group_size == 1)
5012 {
5013 /* Default values. */
5014 /* Thumb branch range is +-4MB has to be used as the default
5015 maximum size (a given section can contain both ARM and Thumb
5016 code, so the worst case has to be taken into account).
5017
5018 This value is 24K less than that, which allows for 2025
5019 12-byte stubs. If we exceed that, then we will fail to link.
5020 The user will have to relink with an explicit group size
5021 option. */
5022 stub_group_size = 4170000;
5023 }
5024
5025 group_sections (htab, stub_group_size, stubs_always_after_branch);
5026
5027 /* If we're applying the cortex A8 fix, we need to determine the
5028 program header size now, because we cannot change it later --
5029 that could alter section placements. Notice the A8 erratum fix
5030 ends up requiring the section addresses to remain unchanged
5031 modulo the page size. That's something we cannot represent
5032 inside BFD, and we don't want to force the section alignment to
5033 be the page size. */
5034 if (htab->fix_cortex_a8)
5035 (*htab->layout_sections_again) ();
5036
5037 while (1)
5038 {
5039 bfd *input_bfd;
5040 unsigned int bfd_indx;
5041 asection *stub_sec;
5042 bfd_boolean stub_changed = FALSE;
5043 unsigned prev_num_a8_fixes = num_a8_fixes;
5044
5045 num_a8_fixes = 0;
5046 for (input_bfd = info->input_bfds, bfd_indx = 0;
5047 input_bfd != NULL;
5048 input_bfd = input_bfd->link_next, bfd_indx++)
5049 {
5050 Elf_Internal_Shdr *symtab_hdr;
5051 asection *section;
5052 Elf_Internal_Sym *local_syms = NULL;
5053
5054 if (!is_arm_elf (input_bfd))
5055 continue;
5056
5057 num_a8_relocs = 0;
5058
5059 /* We'll need the symbol table in a second. */
5060 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5061 if (symtab_hdr->sh_info == 0)
5062 continue;
5063
5064 /* Walk over each section attached to the input bfd. */
5065 for (section = input_bfd->sections;
5066 section != NULL;
5067 section = section->next)
5068 {
5069 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5070
5071 /* If there aren't any relocs, then there's nothing more
5072 to do. */
5073 if ((section->flags & SEC_RELOC) == 0
5074 || section->reloc_count == 0
5075 || (section->flags & SEC_CODE) == 0)
5076 continue;
5077
5078 /* If this section is a link-once section that will be
5079 discarded, then don't create any stubs. */
5080 if (section->output_section == NULL
5081 || section->output_section->owner != output_bfd)
5082 continue;
5083
5084 /* Get the relocs. */
5085 internal_relocs
5086 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5087 NULL, info->keep_memory);
5088 if (internal_relocs == NULL)
5089 goto error_ret_free_local;
5090
5091 /* Now examine each relocation. */
5092 irela = internal_relocs;
5093 irelaend = irela + section->reloc_count;
5094 for (; irela < irelaend; irela++)
5095 {
5096 unsigned int r_type, r_indx;
5097 enum elf32_arm_stub_type stub_type;
5098 struct elf32_arm_stub_hash_entry *stub_entry;
5099 asection *sym_sec;
5100 bfd_vma sym_value;
5101 bfd_vma destination;
5102 struct elf32_arm_link_hash_entry *hash;
5103 const char *sym_name;
5104 char *stub_name;
5105 const asection *id_sec;
5106 unsigned char st_type;
5107 enum arm_st_branch_type branch_type;
5108 bfd_boolean created_stub = FALSE;
5109
5110 r_type = ELF32_R_TYPE (irela->r_info);
5111 r_indx = ELF32_R_SYM (irela->r_info);
5112
5113 if (r_type >= (unsigned int) R_ARM_max)
5114 {
5115 bfd_set_error (bfd_error_bad_value);
5116 error_ret_free_internal:
5117 if (elf_section_data (section)->relocs == NULL)
5118 free (internal_relocs);
5119 goto error_ret_free_local;
5120 }
5121
5122 hash = NULL;
5123 if (r_indx >= symtab_hdr->sh_info)
5124 hash = elf32_arm_hash_entry
5125 (elf_sym_hashes (input_bfd)
5126 [r_indx - symtab_hdr->sh_info]);
5127
5128 /* Only look for stubs on branch instructions, or
5129 non-relaxed TLSCALL */
5130 if ((r_type != (unsigned int) R_ARM_CALL)
5131 && (r_type != (unsigned int) R_ARM_THM_CALL)
5132 && (r_type != (unsigned int) R_ARM_JUMP24)
5133 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5134 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5135 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5136 && (r_type != (unsigned int) R_ARM_PLT32)
5137 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5138 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5139 && r_type == elf32_arm_tls_transition
5140 (info, r_type, &hash->root)
5141 && ((hash ? hash->tls_type
5142 : (elf32_arm_local_got_tls_type
5143 (input_bfd)[r_indx]))
5144 & GOT_TLS_GDESC) != 0))
5145 continue;
5146
5147 /* Now determine the call target, its name, value,
5148 section. */
5149 sym_sec = NULL;
5150 sym_value = 0;
5151 destination = 0;
5152 sym_name = NULL;
5153
5154 if (r_type == (unsigned int) R_ARM_TLS_CALL
5155 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5156 {
5157 /* A non-relaxed TLS call. The target is the
5158 plt-resident trampoline and nothing to do
5159 with the symbol. */
5160 BFD_ASSERT (htab->tls_trampoline > 0);
5161 sym_sec = htab->root.splt;
5162 sym_value = htab->tls_trampoline;
5163 hash = 0;
5164 st_type = STT_FUNC;
5165 branch_type = ST_BRANCH_TO_ARM;
5166 }
5167 else if (!hash)
5168 {
5169 /* It's a local symbol. */
5170 Elf_Internal_Sym *sym;
5171
5172 if (local_syms == NULL)
5173 {
5174 local_syms
5175 = (Elf_Internal_Sym *) symtab_hdr->contents;
5176 if (local_syms == NULL)
5177 local_syms
5178 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5179 symtab_hdr->sh_info, 0,
5180 NULL, NULL, NULL);
5181 if (local_syms == NULL)
5182 goto error_ret_free_internal;
5183 }
5184
5185 sym = local_syms + r_indx;
5186 if (sym->st_shndx == SHN_UNDEF)
5187 sym_sec = bfd_und_section_ptr;
5188 else if (sym->st_shndx == SHN_ABS)
5189 sym_sec = bfd_abs_section_ptr;
5190 else if (sym->st_shndx == SHN_COMMON)
5191 sym_sec = bfd_com_section_ptr;
5192 else
5193 sym_sec =
5194 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5195
5196 if (!sym_sec)
5197 /* This is an undefined symbol. It can never
5198 be resolved. */
5199 continue;
5200
5201 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5202 sym_value = sym->st_value;
5203 destination = (sym_value + irela->r_addend
5204 + sym_sec->output_offset
5205 + sym_sec->output_section->vma);
5206 st_type = ELF_ST_TYPE (sym->st_info);
5207 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5208 sym_name
5209 = bfd_elf_string_from_elf_section (input_bfd,
5210 symtab_hdr->sh_link,
5211 sym->st_name);
5212 }
5213 else
5214 {
5215 /* It's an external symbol. */
5216 while (hash->root.root.type == bfd_link_hash_indirect
5217 || hash->root.root.type == bfd_link_hash_warning)
5218 hash = ((struct elf32_arm_link_hash_entry *)
5219 hash->root.root.u.i.link);
5220
5221 if (hash->root.root.type == bfd_link_hash_defined
5222 || hash->root.root.type == bfd_link_hash_defweak)
5223 {
5224 sym_sec = hash->root.root.u.def.section;
5225 sym_value = hash->root.root.u.def.value;
5226
5227 struct elf32_arm_link_hash_table *globals =
5228 elf32_arm_hash_table (info);
5229
5230 /* For a destination in a shared library,
5231 use the PLT stub as target address to
5232 decide whether a branch stub is
5233 needed. */
5234 if (globals != NULL
5235 && globals->root.splt != NULL
5236 && hash != NULL
5237 && hash->root.plt.offset != (bfd_vma) -1)
5238 {
5239 sym_sec = globals->root.splt;
5240 sym_value = hash->root.plt.offset;
5241 if (sym_sec->output_section != NULL)
5242 destination = (sym_value
5243 + sym_sec->output_offset
5244 + sym_sec->output_section->vma);
5245 }
5246 else if (sym_sec->output_section != NULL)
5247 destination = (sym_value + irela->r_addend
5248 + sym_sec->output_offset
5249 + sym_sec->output_section->vma);
5250 }
5251 else if ((hash->root.root.type == bfd_link_hash_undefined)
5252 || (hash->root.root.type == bfd_link_hash_undefweak))
5253 {
5254 /* For a shared library, use the PLT stub as
5255 target address to decide whether a long
5256 branch stub is needed.
5257 For absolute code, they cannot be handled. */
5258 struct elf32_arm_link_hash_table *globals =
5259 elf32_arm_hash_table (info);
5260
5261 if (globals != NULL
5262 && globals->root.splt != NULL
5263 && hash != NULL
5264 && hash->root.plt.offset != (bfd_vma) -1)
5265 {
5266 sym_sec = globals->root.splt;
5267 sym_value = hash->root.plt.offset;
5268 if (sym_sec->output_section != NULL)
5269 destination = (sym_value
5270 + sym_sec->output_offset
5271 + sym_sec->output_section->vma);
5272 }
5273 else
5274 continue;
5275 }
5276 else
5277 {
5278 bfd_set_error (bfd_error_bad_value);
5279 goto error_ret_free_internal;
5280 }
5281 st_type = hash->root.type;
5282 branch_type = hash->root.target_internal;
5283 sym_name = hash->root.root.root.string;
5284 }
5285
5286 do
5287 {
5288 /* Determine what (if any) linker stub is needed. */
5289 stub_type = arm_type_of_stub (info, section, irela,
5290 st_type, &branch_type,
5291 hash, destination, sym_sec,
5292 input_bfd, sym_name);
5293 if (stub_type == arm_stub_none)
5294 break;
5295
5296 /* Support for grouping stub sections. */
5297 id_sec = htab->stub_group[section->id].link_sec;
5298
5299 /* Get the name of this stub. */
5300 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5301 irela, stub_type);
5302 if (!stub_name)
5303 goto error_ret_free_internal;
5304
5305 /* We've either created a stub for this reloc already,
5306 or we are about to. */
5307 created_stub = TRUE;
5308
5309 stub_entry = arm_stub_hash_lookup
5310 (&htab->stub_hash_table, stub_name,
5311 FALSE, FALSE);
5312 if (stub_entry != NULL)
5313 {
5314 /* The proper stub has already been created. */
5315 free (stub_name);
5316 stub_entry->target_value = sym_value;
5317 break;
5318 }
5319
5320 stub_entry = elf32_arm_add_stub (stub_name, section,
5321 htab);
5322 if (stub_entry == NULL)
5323 {
5324 free (stub_name);
5325 goto error_ret_free_internal;
5326 }
5327
5328 stub_entry->target_value = sym_value;
5329 stub_entry->target_section = sym_sec;
5330 stub_entry->stub_type = stub_type;
5331 stub_entry->h = hash;
5332 stub_entry->branch_type = branch_type;
5333
5334 if (sym_name == NULL)
5335 sym_name = "unnamed";
5336 stub_entry->output_name = (char *)
5337 bfd_alloc (htab->stub_bfd,
5338 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5339 + strlen (sym_name));
5340 if (stub_entry->output_name == NULL)
5341 {
5342 free (stub_name);
5343 goto error_ret_free_internal;
5344 }
5345
5346 /* For historical reasons, use the existing names for
5347 ARM-to-Thumb and Thumb-to-ARM stubs. */
5348 if ((r_type == (unsigned int) R_ARM_THM_CALL
5349 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5350 && branch_type == ST_BRANCH_TO_ARM)
5351 sprintf (stub_entry->output_name,
5352 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5353 else if ((r_type == (unsigned int) R_ARM_CALL
5354 || r_type == (unsigned int) R_ARM_JUMP24)
5355 && branch_type == ST_BRANCH_TO_THUMB)
5356 sprintf (stub_entry->output_name,
5357 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5358 else
5359 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5360 sym_name);
5361
5362 stub_changed = TRUE;
5363 }
5364 while (0);
5365
5366 /* Look for relocations which might trigger Cortex-A8
5367 erratum. */
5368 if (htab->fix_cortex_a8
5369 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5370 || r_type == (unsigned int) R_ARM_THM_JUMP19
5371 || r_type == (unsigned int) R_ARM_THM_CALL
5372 || r_type == (unsigned int) R_ARM_THM_XPC22))
5373 {
5374 bfd_vma from = section->output_section->vma
5375 + section->output_offset
5376 + irela->r_offset;
5377
5378 if ((from & 0xfff) == 0xffe)
5379 {
5380 /* Found a candidate. Note we haven't checked the
5381 destination is within 4K here: if we do so (and
5382 don't create an entry in a8_relocs) we can't tell
5383 that a branch should have been relocated when
5384 scanning later. */
5385 if (num_a8_relocs == a8_reloc_table_size)
5386 {
5387 a8_reloc_table_size *= 2;
5388 a8_relocs = (struct a8_erratum_reloc *)
5389 bfd_realloc (a8_relocs,
5390 sizeof (struct a8_erratum_reloc)
5391 * a8_reloc_table_size);
5392 }
5393
5394 a8_relocs[num_a8_relocs].from = from;
5395 a8_relocs[num_a8_relocs].destination = destination;
5396 a8_relocs[num_a8_relocs].r_type = r_type;
5397 a8_relocs[num_a8_relocs].branch_type = branch_type;
5398 a8_relocs[num_a8_relocs].sym_name = sym_name;
5399 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5400 a8_relocs[num_a8_relocs].hash = hash;
5401
5402 num_a8_relocs++;
5403 }
5404 }
5405 }
5406
5407 /* We're done with the internal relocs, free them. */
5408 if (elf_section_data (section)->relocs == NULL)
5409 free (internal_relocs);
5410 }
5411
5412 if (htab->fix_cortex_a8)
5413 {
5414 /* Sort relocs which might apply to Cortex-A8 erratum. */
5415 qsort (a8_relocs, num_a8_relocs,
5416 sizeof (struct a8_erratum_reloc),
5417 &a8_reloc_compare);
5418
5419 /* Scan for branches which might trigger Cortex-A8 erratum. */
5420 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5421 &num_a8_fixes, &a8_fix_table_size,
5422 a8_relocs, num_a8_relocs,
5423 prev_num_a8_fixes, &stub_changed)
5424 != 0)
5425 goto error_ret_free_local;
5426 }
5427 }
5428
5429 if (prev_num_a8_fixes != num_a8_fixes)
5430 stub_changed = TRUE;
5431
5432 if (!stub_changed)
5433 break;
5434
5435 /* OK, we've added some stubs. Find out the new size of the
5436 stub sections. */
5437 for (stub_sec = htab->stub_bfd->sections;
5438 stub_sec != NULL;
5439 stub_sec = stub_sec->next)
5440 {
5441 /* Ignore non-stub sections. */
5442 if (!strstr (stub_sec->name, STUB_SUFFIX))
5443 continue;
5444
5445 stub_sec->size = 0;
5446 }
5447
5448 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5449
5450 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5451 if (htab->fix_cortex_a8)
5452 for (i = 0; i < num_a8_fixes; i++)
5453 {
5454 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5455 a8_fixes[i].section, htab);
5456
5457 if (stub_sec == NULL)
5458 goto error_ret_free_local;
5459
5460 stub_sec->size
5461 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5462 NULL);
5463 }
5464
5465
5466 /* Ask the linker to do its stuff. */
5467 (*htab->layout_sections_again) ();
5468 }
5469
5470 /* Add stubs for Cortex-A8 erratum fixes now. */
5471 if (htab->fix_cortex_a8)
5472 {
5473 for (i = 0; i < num_a8_fixes; i++)
5474 {
5475 struct elf32_arm_stub_hash_entry *stub_entry;
5476 char *stub_name = a8_fixes[i].stub_name;
5477 asection *section = a8_fixes[i].section;
5478 unsigned int section_id = a8_fixes[i].section->id;
5479 asection *link_sec = htab->stub_group[section_id].link_sec;
5480 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5481 const insn_sequence *template_sequence;
5482 int template_size, size = 0;
5483
5484 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5485 TRUE, FALSE);
5486 if (stub_entry == NULL)
5487 {
5488 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5489 section->owner,
5490 stub_name);
5491 return FALSE;
5492 }
5493
5494 stub_entry->stub_sec = stub_sec;
5495 stub_entry->stub_offset = 0;
5496 stub_entry->id_sec = link_sec;
5497 stub_entry->stub_type = a8_fixes[i].stub_type;
5498 stub_entry->target_section = a8_fixes[i].section;
5499 stub_entry->target_value = a8_fixes[i].offset;
5500 stub_entry->target_addend = a8_fixes[i].addend;
5501 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5502 stub_entry->branch_type = a8_fixes[i].branch_type;
5503
5504 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5505 &template_sequence,
5506 &template_size);
5507
5508 stub_entry->stub_size = size;
5509 stub_entry->stub_template = template_sequence;
5510 stub_entry->stub_template_size = template_size;
5511 }
5512
5513 /* Stash the Cortex-A8 erratum fix array for use later in
5514 elf32_arm_write_section(). */
5515 htab->a8_erratum_fixes = a8_fixes;
5516 htab->num_a8_erratum_fixes = num_a8_fixes;
5517 }
5518 else
5519 {
5520 htab->a8_erratum_fixes = NULL;
5521 htab->num_a8_erratum_fixes = 0;
5522 }
5523 return TRUE;
5524
5525 error_ret_free_local:
5526 return FALSE;
5527 }
5528
5529 /* Build all the stubs associated with the current output file. The
5530 stubs are kept in a hash table attached to the main linker hash
5531 table. We also set up the .plt entries for statically linked PIC
5532 functions here. This function is called via arm_elf_finish in the
5533 linker. */
5534
5535 bfd_boolean
5536 elf32_arm_build_stubs (struct bfd_link_info *info)
5537 {
5538 asection *stub_sec;
5539 struct bfd_hash_table *table;
5540 struct elf32_arm_link_hash_table *htab;
5541
5542 htab = elf32_arm_hash_table (info);
5543 if (htab == NULL)
5544 return FALSE;
5545
5546 for (stub_sec = htab->stub_bfd->sections;
5547 stub_sec != NULL;
5548 stub_sec = stub_sec->next)
5549 {
5550 bfd_size_type size;
5551
5552 /* Ignore non-stub sections. */
5553 if (!strstr (stub_sec->name, STUB_SUFFIX))
5554 continue;
5555
5556 /* Allocate memory to hold the linker stubs. */
5557 size = stub_sec->size;
5558 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5559 if (stub_sec->contents == NULL && size != 0)
5560 return FALSE;
5561 stub_sec->size = 0;
5562 }
5563
5564 /* Build the stubs as directed by the stub hash table. */
5565 table = &htab->stub_hash_table;
5566 bfd_hash_traverse (table, arm_build_one_stub, info);
5567 if (htab->fix_cortex_a8)
5568 {
5569 /* Place the cortex a8 stubs last. */
5570 htab->fix_cortex_a8 = -1;
5571 bfd_hash_traverse (table, arm_build_one_stub, info);
5572 }
5573
5574 return TRUE;
5575 }
5576
5577 /* Locate the Thumb encoded calling stub for NAME. */
5578
5579 static struct elf_link_hash_entry *
5580 find_thumb_glue (struct bfd_link_info *link_info,
5581 const char *name,
5582 char **error_message)
5583 {
5584 char *tmp_name;
5585 struct elf_link_hash_entry *hash;
5586 struct elf32_arm_link_hash_table *hash_table;
5587
5588 /* We need a pointer to the armelf specific hash table. */
5589 hash_table = elf32_arm_hash_table (link_info);
5590 if (hash_table == NULL)
5591 return NULL;
5592
5593 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5594 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5595
5596 BFD_ASSERT (tmp_name);
5597
5598 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5599
5600 hash = elf_link_hash_lookup
5601 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5602
5603 if (hash == NULL
5604 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5605 tmp_name, name) == -1)
5606 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5607
5608 free (tmp_name);
5609
5610 return hash;
5611 }
5612
5613 /* Locate the ARM encoded calling stub for NAME. */
5614
5615 static struct elf_link_hash_entry *
5616 find_arm_glue (struct bfd_link_info *link_info,
5617 const char *name,
5618 char **error_message)
5619 {
5620 char *tmp_name;
5621 struct elf_link_hash_entry *myh;
5622 struct elf32_arm_link_hash_table *hash_table;
5623
5624 /* We need a pointer to the elfarm specific hash table. */
5625 hash_table = elf32_arm_hash_table (link_info);
5626 if (hash_table == NULL)
5627 return NULL;
5628
5629 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5630 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5631
5632 BFD_ASSERT (tmp_name);
5633
5634 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5635
5636 myh = elf_link_hash_lookup
5637 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5638
5639 if (myh == NULL
5640 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5641 tmp_name, name) == -1)
5642 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5643
5644 free (tmp_name);
5645
5646 return myh;
5647 }
5648
5649 /* ARM->Thumb glue (static images):
5650
5651 .arm
5652 __func_from_arm:
5653 ldr r12, __func_addr
5654 bx r12
5655 __func_addr:
5656 .word func @ behave as if you saw a ARM_32 reloc.
5657
5658 (v5t static images)
5659 .arm
5660 __func_from_arm:
5661 ldr pc, __func_addr
5662 __func_addr:
5663 .word func @ behave as if you saw a ARM_32 reloc.
5664
5665 (relocatable images)
5666 .arm
5667 __func_from_arm:
5668 ldr r12, __func_offset
5669 add r12, r12, pc
5670 bx r12
5671 __func_offset:
5672 .word func - . */
5673
5674 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5675 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5676 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5677 static const insn32 a2t3_func_addr_insn = 0x00000001;
5678
5679 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5680 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5681 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5682
5683 #define ARM2THUMB_PIC_GLUE_SIZE 16
5684 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5685 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5686 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5687
5688 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5689
5690 .thumb .thumb
5691 .align 2 .align 2
5692 __func_from_thumb: __func_from_thumb:
5693 bx pc push {r6, lr}
5694 nop ldr r6, __func_addr
5695 .arm mov lr, pc
5696 b func bx r6
5697 .arm
5698 ;; back_to_thumb
5699 ldmia r13! {r6, lr}
5700 bx lr
5701 __func_addr:
5702 .word func */
5703
5704 #define THUMB2ARM_GLUE_SIZE 8
5705 static const insn16 t2a1_bx_pc_insn = 0x4778;
5706 static const insn16 t2a2_noop_insn = 0x46c0;
5707 static const insn32 t2a3_b_insn = 0xea000000;
5708
5709 #define VFP11_ERRATUM_VENEER_SIZE 8
5710
5711 #define ARM_BX_VENEER_SIZE 12
5712 static const insn32 armbx1_tst_insn = 0xe3100001;
5713 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5714 static const insn32 armbx3_bx_insn = 0xe12fff10;
5715
5716 #ifndef ELFARM_NABI_C_INCLUDED
5717 static void
5718 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5719 {
5720 asection * s;
5721 bfd_byte * contents;
5722
5723 if (size == 0)
5724 {
5725 /* Do not include empty glue sections in the output. */
5726 if (abfd != NULL)
5727 {
5728 s = bfd_get_linker_section (abfd, name);
5729 if (s != NULL)
5730 s->flags |= SEC_EXCLUDE;
5731 }
5732 return;
5733 }
5734
5735 BFD_ASSERT (abfd != NULL);
5736
5737 s = bfd_get_linker_section (abfd, name);
5738 BFD_ASSERT (s != NULL);
5739
5740 contents = (bfd_byte *) bfd_alloc (abfd, size);
5741
5742 BFD_ASSERT (s->size == size);
5743 s->contents = contents;
5744 }
5745
5746 bfd_boolean
5747 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5748 {
5749 struct elf32_arm_link_hash_table * globals;
5750
5751 globals = elf32_arm_hash_table (info);
5752 BFD_ASSERT (globals != NULL);
5753
5754 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5755 globals->arm_glue_size,
5756 ARM2THUMB_GLUE_SECTION_NAME);
5757
5758 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5759 globals->thumb_glue_size,
5760 THUMB2ARM_GLUE_SECTION_NAME);
5761
5762 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5763 globals->vfp11_erratum_glue_size,
5764 VFP11_ERRATUM_VENEER_SECTION_NAME);
5765
5766 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5767 globals->bx_glue_size,
5768 ARM_BX_GLUE_SECTION_NAME);
5769
5770 return TRUE;
5771 }
5772
5773 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5774 returns the symbol identifying the stub. */
5775
5776 static struct elf_link_hash_entry *
5777 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5778 struct elf_link_hash_entry * h)
5779 {
5780 const char * name = h->root.root.string;
5781 asection * s;
5782 char * tmp_name;
5783 struct elf_link_hash_entry * myh;
5784 struct bfd_link_hash_entry * bh;
5785 struct elf32_arm_link_hash_table * globals;
5786 bfd_vma val;
5787 bfd_size_type size;
5788
5789 globals = elf32_arm_hash_table (link_info);
5790 BFD_ASSERT (globals != NULL);
5791 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5792
5793 s = bfd_get_linker_section
5794 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5795
5796 BFD_ASSERT (s != NULL);
5797
5798 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5799 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5800
5801 BFD_ASSERT (tmp_name);
5802
5803 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5804
5805 myh = elf_link_hash_lookup
5806 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5807
5808 if (myh != NULL)
5809 {
5810 /* We've already seen this guy. */
5811 free (tmp_name);
5812 return myh;
5813 }
5814
5815 /* The only trick here is using hash_table->arm_glue_size as the value.
5816 Even though the section isn't allocated yet, this is where we will be
5817 putting it. The +1 on the value marks that the stub has not been
5818 output yet - not that it is a Thumb function. */
5819 bh = NULL;
5820 val = globals->arm_glue_size + 1;
5821 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5822 tmp_name, BSF_GLOBAL, s, val,
5823 NULL, TRUE, FALSE, &bh);
5824
5825 myh = (struct elf_link_hash_entry *) bh;
5826 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5827 myh->forced_local = 1;
5828
5829 free (tmp_name);
5830
5831 if (link_info->shared || globals->root.is_relocatable_executable
5832 || globals->pic_veneer)
5833 size = ARM2THUMB_PIC_GLUE_SIZE;
5834 else if (globals->use_blx)
5835 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5836 else
5837 size = ARM2THUMB_STATIC_GLUE_SIZE;
5838
5839 s->size += size;
5840 globals->arm_glue_size += size;
5841
5842 return myh;
5843 }
5844
5845 /* Allocate space for ARMv4 BX veneers. */
5846
5847 static void
5848 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5849 {
5850 asection * s;
5851 struct elf32_arm_link_hash_table *globals;
5852 char *tmp_name;
5853 struct elf_link_hash_entry *myh;
5854 struct bfd_link_hash_entry *bh;
5855 bfd_vma val;
5856
5857 /* BX PC does not need a veneer. */
5858 if (reg == 15)
5859 return;
5860
5861 globals = elf32_arm_hash_table (link_info);
5862 BFD_ASSERT (globals != NULL);
5863 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5864
5865 /* Check if this veneer has already been allocated. */
5866 if (globals->bx_glue_offset[reg])
5867 return;
5868
5869 s = bfd_get_linker_section
5870 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5871
5872 BFD_ASSERT (s != NULL);
5873
5874 /* Add symbol for veneer. */
5875 tmp_name = (char *)
5876 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5877
5878 BFD_ASSERT (tmp_name);
5879
5880 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5881
5882 myh = elf_link_hash_lookup
5883 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5884
5885 BFD_ASSERT (myh == NULL);
5886
5887 bh = NULL;
5888 val = globals->bx_glue_size;
5889 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5890 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5891 NULL, TRUE, FALSE, &bh);
5892
5893 myh = (struct elf_link_hash_entry *) bh;
5894 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5895 myh->forced_local = 1;
5896
5897 s->size += ARM_BX_VENEER_SIZE;
5898 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5899 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5900 }
5901
5902
5903 /* Add an entry to the code/data map for section SEC. */
5904
5905 static void
5906 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5907 {
5908 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5909 unsigned int newidx;
5910
5911 if (sec_data->map == NULL)
5912 {
5913 sec_data->map = (elf32_arm_section_map *)
5914 bfd_malloc (sizeof (elf32_arm_section_map));
5915 sec_data->mapcount = 0;
5916 sec_data->mapsize = 1;
5917 }
5918
5919 newidx = sec_data->mapcount++;
5920
5921 if (sec_data->mapcount > sec_data->mapsize)
5922 {
5923 sec_data->mapsize *= 2;
5924 sec_data->map = (elf32_arm_section_map *)
5925 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5926 * sizeof (elf32_arm_section_map));
5927 }
5928
5929 if (sec_data->map)
5930 {
5931 sec_data->map[newidx].vma = vma;
5932 sec_data->map[newidx].type = type;
5933 }
5934 }
5935
5936
5937 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5938 veneers are handled for now. */
5939
5940 static bfd_vma
5941 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5942 elf32_vfp11_erratum_list *branch,
5943 bfd *branch_bfd,
5944 asection *branch_sec,
5945 unsigned int offset)
5946 {
5947 asection *s;
5948 struct elf32_arm_link_hash_table *hash_table;
5949 char *tmp_name;
5950 struct elf_link_hash_entry *myh;
5951 struct bfd_link_hash_entry *bh;
5952 bfd_vma val;
5953 struct _arm_elf_section_data *sec_data;
5954 elf32_vfp11_erratum_list *newerr;
5955
5956 hash_table = elf32_arm_hash_table (link_info);
5957 BFD_ASSERT (hash_table != NULL);
5958 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5959
5960 s = bfd_get_linker_section
5961 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5962
5963 sec_data = elf32_arm_section_data (s);
5964
5965 BFD_ASSERT (s != NULL);
5966
5967 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5968 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5969
5970 BFD_ASSERT (tmp_name);
5971
5972 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5973 hash_table->num_vfp11_fixes);
5974
5975 myh = elf_link_hash_lookup
5976 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5977
5978 BFD_ASSERT (myh == NULL);
5979
5980 bh = NULL;
5981 val = hash_table->vfp11_erratum_glue_size;
5982 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5983 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5984 NULL, TRUE, FALSE, &bh);
5985
5986 myh = (struct elf_link_hash_entry *) bh;
5987 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5988 myh->forced_local = 1;
5989
5990 /* Link veneer back to calling location. */
5991 sec_data->erratumcount += 1;
5992 newerr = (elf32_vfp11_erratum_list *)
5993 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5994
5995 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5996 newerr->vma = -1;
5997 newerr->u.v.branch = branch;
5998 newerr->u.v.id = hash_table->num_vfp11_fixes;
5999 branch->u.b.veneer = newerr;
6000
6001 newerr->next = sec_data->erratumlist;
6002 sec_data->erratumlist = newerr;
6003
6004 /* A symbol for the return from the veneer. */
6005 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6006 hash_table->num_vfp11_fixes);
6007
6008 myh = elf_link_hash_lookup
6009 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6010
6011 if (myh != NULL)
6012 abort ();
6013
6014 bh = NULL;
6015 val = offset + 4;
6016 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6017 branch_sec, val, NULL, TRUE, FALSE, &bh);
6018
6019 myh = (struct elf_link_hash_entry *) bh;
6020 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6021 myh->forced_local = 1;
6022
6023 free (tmp_name);
6024
6025 /* Generate a mapping symbol for the veneer section, and explicitly add an
6026 entry for that symbol to the code/data map for the section. */
6027 if (hash_table->vfp11_erratum_glue_size == 0)
6028 {
6029 bh = NULL;
6030 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6031 ever requires this erratum fix. */
6032 _bfd_generic_link_add_one_symbol (link_info,
6033 hash_table->bfd_of_glue_owner, "$a",
6034 BSF_LOCAL, s, 0, NULL,
6035 TRUE, FALSE, &bh);
6036
6037 myh = (struct elf_link_hash_entry *) bh;
6038 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6039 myh->forced_local = 1;
6040
6041 /* The elf32_arm_init_maps function only cares about symbols from input
6042 BFDs. We must make a note of this generated mapping symbol
6043 ourselves so that code byteswapping works properly in
6044 elf32_arm_write_section. */
6045 elf32_arm_section_map_add (s, 'a', 0);
6046 }
6047
6048 s->size += VFP11_ERRATUM_VENEER_SIZE;
6049 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6050 hash_table->num_vfp11_fixes++;
6051
6052 /* The offset of the veneer. */
6053 return val;
6054 }
6055
6056 #define ARM_GLUE_SECTION_FLAGS \
6057 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6058 | SEC_READONLY | SEC_LINKER_CREATED)
6059
6060 /* Create a fake section for use by the ARM backend of the linker. */
6061
6062 static bfd_boolean
6063 arm_make_glue_section (bfd * abfd, const char * name)
6064 {
6065 asection * sec;
6066
6067 sec = bfd_get_linker_section (abfd, name);
6068 if (sec != NULL)
6069 /* Already made. */
6070 return TRUE;
6071
6072 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6073
6074 if (sec == NULL
6075 || !bfd_set_section_alignment (abfd, sec, 2))
6076 return FALSE;
6077
6078 /* Set the gc mark to prevent the section from being removed by garbage
6079 collection, despite the fact that no relocs refer to this section. */
6080 sec->gc_mark = 1;
6081
6082 return TRUE;
6083 }
6084
6085 /* Set size of .plt entries. This function is called from the
6086 linker scripts in ld/emultempl/{armelf}.em. */
6087
6088 void
6089 bfd_elf32_arm_use_long_plt (void)
6090 {
6091 elf32_arm_use_long_plt_entry = TRUE;
6092 }
6093
6094 /* Add the glue sections to ABFD. This function is called from the
6095 linker scripts in ld/emultempl/{armelf}.em. */
6096
6097 bfd_boolean
6098 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6099 struct bfd_link_info *info)
6100 {
6101 /* If we are only performing a partial
6102 link do not bother adding the glue. */
6103 if (info->relocatable)
6104 return TRUE;
6105
6106 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6107 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6108 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6109 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6110 }
6111
6112 /* Select a BFD to be used to hold the sections used by the glue code.
6113 This function is called from the linker scripts in ld/emultempl/
6114 {armelf/pe}.em. */
6115
6116 bfd_boolean
6117 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6118 {
6119 struct elf32_arm_link_hash_table *globals;
6120
6121 /* If we are only performing a partial link
6122 do not bother getting a bfd to hold the glue. */
6123 if (info->relocatable)
6124 return TRUE;
6125
6126 /* Make sure we don't attach the glue sections to a dynamic object. */
6127 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6128
6129 globals = elf32_arm_hash_table (info);
6130 BFD_ASSERT (globals != NULL);
6131
6132 if (globals->bfd_of_glue_owner != NULL)
6133 return TRUE;
6134
6135 /* Save the bfd for later use. */
6136 globals->bfd_of_glue_owner = abfd;
6137
6138 return TRUE;
6139 }
6140
6141 static void
6142 check_use_blx (struct elf32_arm_link_hash_table *globals)
6143 {
6144 int cpu_arch;
6145
6146 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6147 Tag_CPU_arch);
6148
6149 if (globals->fix_arm1176)
6150 {
6151 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6152 globals->use_blx = 1;
6153 }
6154 else
6155 {
6156 if (cpu_arch > TAG_CPU_ARCH_V4T)
6157 globals->use_blx = 1;
6158 }
6159 }
6160
6161 bfd_boolean
6162 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6163 struct bfd_link_info *link_info)
6164 {
6165 Elf_Internal_Shdr *symtab_hdr;
6166 Elf_Internal_Rela *internal_relocs = NULL;
6167 Elf_Internal_Rela *irel, *irelend;
6168 bfd_byte *contents = NULL;
6169
6170 asection *sec;
6171 struct elf32_arm_link_hash_table *globals;
6172
6173 /* If we are only performing a partial link do not bother
6174 to construct any glue. */
6175 if (link_info->relocatable)
6176 return TRUE;
6177
6178 /* Here we have a bfd that is to be included on the link. We have a
6179 hook to do reloc rummaging, before section sizes are nailed down. */
6180 globals = elf32_arm_hash_table (link_info);
6181 BFD_ASSERT (globals != NULL);
6182
6183 check_use_blx (globals);
6184
6185 if (globals->byteswap_code && !bfd_big_endian (abfd))
6186 {
6187 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6188 abfd);
6189 return FALSE;
6190 }
6191
6192 /* PR 5398: If we have not decided to include any loadable sections in
6193 the output then we will not have a glue owner bfd. This is OK, it
6194 just means that there is nothing else for us to do here. */
6195 if (globals->bfd_of_glue_owner == NULL)
6196 return TRUE;
6197
6198 /* Rummage around all the relocs and map the glue vectors. */
6199 sec = abfd->sections;
6200
6201 if (sec == NULL)
6202 return TRUE;
6203
6204 for (; sec != NULL; sec = sec->next)
6205 {
6206 if (sec->reloc_count == 0)
6207 continue;
6208
6209 if ((sec->flags & SEC_EXCLUDE) != 0)
6210 continue;
6211
6212 symtab_hdr = & elf_symtab_hdr (abfd);
6213
6214 /* Load the relocs. */
6215 internal_relocs
6216 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6217
6218 if (internal_relocs == NULL)
6219 goto error_return;
6220
6221 irelend = internal_relocs + sec->reloc_count;
6222 for (irel = internal_relocs; irel < irelend; irel++)
6223 {
6224 long r_type;
6225 unsigned long r_index;
6226
6227 struct elf_link_hash_entry *h;
6228
6229 r_type = ELF32_R_TYPE (irel->r_info);
6230 r_index = ELF32_R_SYM (irel->r_info);
6231
6232 /* These are the only relocation types we care about. */
6233 if ( r_type != R_ARM_PC24
6234 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6235 continue;
6236
6237 /* Get the section contents if we haven't done so already. */
6238 if (contents == NULL)
6239 {
6240 /* Get cached copy if it exists. */
6241 if (elf_section_data (sec)->this_hdr.contents != NULL)
6242 contents = elf_section_data (sec)->this_hdr.contents;
6243 else
6244 {
6245 /* Go get them off disk. */
6246 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6247 goto error_return;
6248 }
6249 }
6250
6251 if (r_type == R_ARM_V4BX)
6252 {
6253 int reg;
6254
6255 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6256 record_arm_bx_glue (link_info, reg);
6257 continue;
6258 }
6259
6260 /* If the relocation is not against a symbol it cannot concern us. */
6261 h = NULL;
6262
6263 /* We don't care about local symbols. */
6264 if (r_index < symtab_hdr->sh_info)
6265 continue;
6266
6267 /* This is an external symbol. */
6268 r_index -= symtab_hdr->sh_info;
6269 h = (struct elf_link_hash_entry *)
6270 elf_sym_hashes (abfd)[r_index];
6271
6272 /* If the relocation is against a static symbol it must be within
6273 the current section and so cannot be a cross ARM/Thumb relocation. */
6274 if (h == NULL)
6275 continue;
6276
6277 /* If the call will go through a PLT entry then we do not need
6278 glue. */
6279 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6280 continue;
6281
6282 switch (r_type)
6283 {
6284 case R_ARM_PC24:
6285 /* This one is a call from arm code. We need to look up
6286 the target of the call. If it is a thumb target, we
6287 insert glue. */
6288 if (h->target_internal == ST_BRANCH_TO_THUMB)
6289 record_arm_to_thumb_glue (link_info, h);
6290 break;
6291
6292 default:
6293 abort ();
6294 }
6295 }
6296
6297 if (contents != NULL
6298 && elf_section_data (sec)->this_hdr.contents != contents)
6299 free (contents);
6300 contents = NULL;
6301
6302 if (internal_relocs != NULL
6303 && elf_section_data (sec)->relocs != internal_relocs)
6304 free (internal_relocs);
6305 internal_relocs = NULL;
6306 }
6307
6308 return TRUE;
6309
6310 error_return:
6311 if (contents != NULL
6312 && elf_section_data (sec)->this_hdr.contents != contents)
6313 free (contents);
6314 if (internal_relocs != NULL
6315 && elf_section_data (sec)->relocs != internal_relocs)
6316 free (internal_relocs);
6317
6318 return FALSE;
6319 }
6320 #endif
6321
6322
6323 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6324
6325 void
6326 bfd_elf32_arm_init_maps (bfd *abfd)
6327 {
6328 Elf_Internal_Sym *isymbuf;
6329 Elf_Internal_Shdr *hdr;
6330 unsigned int i, localsyms;
6331
6332 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6333 if (! is_arm_elf (abfd))
6334 return;
6335
6336 if ((abfd->flags & DYNAMIC) != 0)
6337 return;
6338
6339 hdr = & elf_symtab_hdr (abfd);
6340 localsyms = hdr->sh_info;
6341
6342 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6343 should contain the number of local symbols, which should come before any
6344 global symbols. Mapping symbols are always local. */
6345 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6346 NULL);
6347
6348 /* No internal symbols read? Skip this BFD. */
6349 if (isymbuf == NULL)
6350 return;
6351
6352 for (i = 0; i < localsyms; i++)
6353 {
6354 Elf_Internal_Sym *isym = &isymbuf[i];
6355 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6356 const char *name;
6357
6358 if (sec != NULL
6359 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6360 {
6361 name = bfd_elf_string_from_elf_section (abfd,
6362 hdr->sh_link, isym->st_name);
6363
6364 if (bfd_is_arm_special_symbol_name (name,
6365 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6366 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6367 }
6368 }
6369 }
6370
6371
6372 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6373 say what they wanted. */
6374
6375 void
6376 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6377 {
6378 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6379 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6380
6381 if (globals == NULL)
6382 return;
6383
6384 if (globals->fix_cortex_a8 == -1)
6385 {
6386 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6387 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6388 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6389 || out_attr[Tag_CPU_arch_profile].i == 0))
6390 globals->fix_cortex_a8 = 1;
6391 else
6392 globals->fix_cortex_a8 = 0;
6393 }
6394 }
6395
6396
6397 void
6398 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6399 {
6400 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6401 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6402
6403 if (globals == NULL)
6404 return;
6405 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6406 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6407 {
6408 switch (globals->vfp11_fix)
6409 {
6410 case BFD_ARM_VFP11_FIX_DEFAULT:
6411 case BFD_ARM_VFP11_FIX_NONE:
6412 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6413 break;
6414
6415 default:
6416 /* Give a warning, but do as the user requests anyway. */
6417 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6418 "workaround is not necessary for target architecture"), obfd);
6419 }
6420 }
6421 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6422 /* For earlier architectures, we might need the workaround, but do not
6423 enable it by default. If users is running with broken hardware, they
6424 must enable the erratum fix explicitly. */
6425 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6426 }
6427
6428
6429 enum bfd_arm_vfp11_pipe
6430 {
6431 VFP11_FMAC,
6432 VFP11_LS,
6433 VFP11_DS,
6434 VFP11_BAD
6435 };
6436
6437 /* Return a VFP register number. This is encoded as RX:X for single-precision
6438 registers, or X:RX for double-precision registers, where RX is the group of
6439 four bits in the instruction encoding and X is the single extension bit.
6440 RX and X fields are specified using their lowest (starting) bit. The return
6441 value is:
6442
6443 0...31: single-precision registers s0...s31
6444 32...63: double-precision registers d0...d31.
6445
6446 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6447 encounter VFP3 instructions, so we allow the full range for DP registers. */
6448
6449 static unsigned int
6450 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6451 unsigned int x)
6452 {
6453 if (is_double)
6454 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6455 else
6456 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6457 }
6458
6459 /* Set bits in *WMASK according to a register number REG as encoded by
6460 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6461
6462 static void
6463 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6464 {
6465 if (reg < 32)
6466 *wmask |= 1 << reg;
6467 else if (reg < 48)
6468 *wmask |= 3 << ((reg - 32) * 2);
6469 }
6470
6471 /* Return TRUE if WMASK overwrites anything in REGS. */
6472
6473 static bfd_boolean
6474 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6475 {
6476 int i;
6477
6478 for (i = 0; i < numregs; i++)
6479 {
6480 unsigned int reg = regs[i];
6481
6482 if (reg < 32 && (wmask & (1 << reg)) != 0)
6483 return TRUE;
6484
6485 reg -= 32;
6486
6487 if (reg >= 16)
6488 continue;
6489
6490 if ((wmask & (3 << (reg * 2))) != 0)
6491 return TRUE;
6492 }
6493
6494 return FALSE;
6495 }
6496
6497 /* In this function, we're interested in two things: finding input registers
6498 for VFP data-processing instructions, and finding the set of registers which
6499 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6500 hold the written set, so FLDM etc. are easy to deal with (we're only
6501 interested in 32 SP registers or 16 dp registers, due to the VFP version
6502 implemented by the chip in question). DP registers are marked by setting
6503 both SP registers in the write mask). */
6504
6505 static enum bfd_arm_vfp11_pipe
6506 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6507 int *numregs)
6508 {
6509 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6510 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6511
6512 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6513 {
6514 unsigned int pqrs;
6515 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6516 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6517
6518 pqrs = ((insn & 0x00800000) >> 20)
6519 | ((insn & 0x00300000) >> 19)
6520 | ((insn & 0x00000040) >> 6);
6521
6522 switch (pqrs)
6523 {
6524 case 0: /* fmac[sd]. */
6525 case 1: /* fnmac[sd]. */
6526 case 2: /* fmsc[sd]. */
6527 case 3: /* fnmsc[sd]. */
6528 vpipe = VFP11_FMAC;
6529 bfd_arm_vfp11_write_mask (destmask, fd);
6530 regs[0] = fd;
6531 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6532 regs[2] = fm;
6533 *numregs = 3;
6534 break;
6535
6536 case 4: /* fmul[sd]. */
6537 case 5: /* fnmul[sd]. */
6538 case 6: /* fadd[sd]. */
6539 case 7: /* fsub[sd]. */
6540 vpipe = VFP11_FMAC;
6541 goto vfp_binop;
6542
6543 case 8: /* fdiv[sd]. */
6544 vpipe = VFP11_DS;
6545 vfp_binop:
6546 bfd_arm_vfp11_write_mask (destmask, fd);
6547 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6548 regs[1] = fm;
6549 *numregs = 2;
6550 break;
6551
6552 case 15: /* extended opcode. */
6553 {
6554 unsigned int extn = ((insn >> 15) & 0x1e)
6555 | ((insn >> 7) & 1);
6556
6557 switch (extn)
6558 {
6559 case 0: /* fcpy[sd]. */
6560 case 1: /* fabs[sd]. */
6561 case 2: /* fneg[sd]. */
6562 case 8: /* fcmp[sd]. */
6563 case 9: /* fcmpe[sd]. */
6564 case 10: /* fcmpz[sd]. */
6565 case 11: /* fcmpez[sd]. */
6566 case 16: /* fuito[sd]. */
6567 case 17: /* fsito[sd]. */
6568 case 24: /* ftoui[sd]. */
6569 case 25: /* ftouiz[sd]. */
6570 case 26: /* ftosi[sd]. */
6571 case 27: /* ftosiz[sd]. */
6572 /* These instructions will not bounce due to underflow. */
6573 *numregs = 0;
6574 vpipe = VFP11_FMAC;
6575 break;
6576
6577 case 3: /* fsqrt[sd]. */
6578 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6579 registers to cause the erratum in previous instructions. */
6580 bfd_arm_vfp11_write_mask (destmask, fd);
6581 vpipe = VFP11_DS;
6582 break;
6583
6584 case 15: /* fcvt{ds,sd}. */
6585 {
6586 int rnum = 0;
6587
6588 bfd_arm_vfp11_write_mask (destmask, fd);
6589
6590 /* Only FCVTSD can underflow. */
6591 if ((insn & 0x100) != 0)
6592 regs[rnum++] = fm;
6593
6594 *numregs = rnum;
6595
6596 vpipe = VFP11_FMAC;
6597 }
6598 break;
6599
6600 default:
6601 return VFP11_BAD;
6602 }
6603 }
6604 break;
6605
6606 default:
6607 return VFP11_BAD;
6608 }
6609 }
6610 /* Two-register transfer. */
6611 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6612 {
6613 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6614
6615 if ((insn & 0x100000) == 0)
6616 {
6617 if (is_double)
6618 bfd_arm_vfp11_write_mask (destmask, fm);
6619 else
6620 {
6621 bfd_arm_vfp11_write_mask (destmask, fm);
6622 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6623 }
6624 }
6625
6626 vpipe = VFP11_LS;
6627 }
6628 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6629 {
6630 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6631 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6632
6633 switch (puw)
6634 {
6635 case 0: /* Two-reg transfer. We should catch these above. */
6636 abort ();
6637
6638 case 2: /* fldm[sdx]. */
6639 case 3:
6640 case 5:
6641 {
6642 unsigned int i, offset = insn & 0xff;
6643
6644 if (is_double)
6645 offset >>= 1;
6646
6647 for (i = fd; i < fd + offset; i++)
6648 bfd_arm_vfp11_write_mask (destmask, i);
6649 }
6650 break;
6651
6652 case 4: /* fld[sd]. */
6653 case 6:
6654 bfd_arm_vfp11_write_mask (destmask, fd);
6655 break;
6656
6657 default:
6658 return VFP11_BAD;
6659 }
6660
6661 vpipe = VFP11_LS;
6662 }
6663 /* Single-register transfer. Note L==0. */
6664 else if ((insn & 0x0f100e10) == 0x0e000a10)
6665 {
6666 unsigned int opcode = (insn >> 21) & 7;
6667 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6668
6669 switch (opcode)
6670 {
6671 case 0: /* fmsr/fmdlr. */
6672 case 1: /* fmdhr. */
6673 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6674 destination register. I don't know if this is exactly right,
6675 but it is the conservative choice. */
6676 bfd_arm_vfp11_write_mask (destmask, fn);
6677 break;
6678
6679 case 7: /* fmxr. */
6680 break;
6681 }
6682
6683 vpipe = VFP11_LS;
6684 }
6685
6686 return vpipe;
6687 }
6688
6689
6690 static int elf32_arm_compare_mapping (const void * a, const void * b);
6691
6692
6693 /* Look for potentially-troublesome code sequences which might trigger the
6694 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6695 (available from ARM) for details of the erratum. A short version is
6696 described in ld.texinfo. */
6697
6698 bfd_boolean
6699 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6700 {
6701 asection *sec;
6702 bfd_byte *contents = NULL;
6703 int state = 0;
6704 int regs[3], numregs = 0;
6705 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6706 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6707
6708 if (globals == NULL)
6709 return FALSE;
6710
6711 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6712 The states transition as follows:
6713
6714 0 -> 1 (vector) or 0 -> 2 (scalar)
6715 A VFP FMAC-pipeline instruction has been seen. Fill
6716 regs[0]..regs[numregs-1] with its input operands. Remember this
6717 instruction in 'first_fmac'.
6718
6719 1 -> 2
6720 Any instruction, except for a VFP instruction which overwrites
6721 regs[*].
6722
6723 1 -> 3 [ -> 0 ] or
6724 2 -> 3 [ -> 0 ]
6725 A VFP instruction has been seen which overwrites any of regs[*].
6726 We must make a veneer! Reset state to 0 before examining next
6727 instruction.
6728
6729 2 -> 0
6730 If we fail to match anything in state 2, reset to state 0 and reset
6731 the instruction pointer to the instruction after 'first_fmac'.
6732
6733 If the VFP11 vector mode is in use, there must be at least two unrelated
6734 instructions between anti-dependent VFP11 instructions to properly avoid
6735 triggering the erratum, hence the use of the extra state 1. */
6736
6737 /* If we are only performing a partial link do not bother
6738 to construct any glue. */
6739 if (link_info->relocatable)
6740 return TRUE;
6741
6742 /* Skip if this bfd does not correspond to an ELF image. */
6743 if (! is_arm_elf (abfd))
6744 return TRUE;
6745
6746 /* We should have chosen a fix type by the time we get here. */
6747 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6748
6749 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6750 return TRUE;
6751
6752 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6753 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6754 return TRUE;
6755
6756 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6757 {
6758 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6759 struct _arm_elf_section_data *sec_data;
6760
6761 /* If we don't have executable progbits, we're not interested in this
6762 section. Also skip if section is to be excluded. */
6763 if (elf_section_type (sec) != SHT_PROGBITS
6764 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6765 || (sec->flags & SEC_EXCLUDE) != 0
6766 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6767 || sec->output_section == bfd_abs_section_ptr
6768 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6769 continue;
6770
6771 sec_data = elf32_arm_section_data (sec);
6772
6773 if (sec_data->mapcount == 0)
6774 continue;
6775
6776 if (elf_section_data (sec)->this_hdr.contents != NULL)
6777 contents = elf_section_data (sec)->this_hdr.contents;
6778 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6779 goto error_return;
6780
6781 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6782 elf32_arm_compare_mapping);
6783
6784 for (span = 0; span < sec_data->mapcount; span++)
6785 {
6786 unsigned int span_start = sec_data->map[span].vma;
6787 unsigned int span_end = (span == sec_data->mapcount - 1)
6788 ? sec->size : sec_data->map[span + 1].vma;
6789 char span_type = sec_data->map[span].type;
6790
6791 /* FIXME: Only ARM mode is supported at present. We may need to
6792 support Thumb-2 mode also at some point. */
6793 if (span_type != 'a')
6794 continue;
6795
6796 for (i = span_start; i < span_end;)
6797 {
6798 unsigned int next_i = i + 4;
6799 unsigned int insn = bfd_big_endian (abfd)
6800 ? (contents[i] << 24)
6801 | (contents[i + 1] << 16)
6802 | (contents[i + 2] << 8)
6803 | contents[i + 3]
6804 : (contents[i + 3] << 24)
6805 | (contents[i + 2] << 16)
6806 | (contents[i + 1] << 8)
6807 | contents[i];
6808 unsigned int writemask = 0;
6809 enum bfd_arm_vfp11_pipe vpipe;
6810
6811 switch (state)
6812 {
6813 case 0:
6814 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6815 &numregs);
6816 /* I'm assuming the VFP11 erratum can trigger with denorm
6817 operands on either the FMAC or the DS pipeline. This might
6818 lead to slightly overenthusiastic veneer insertion. */
6819 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6820 {
6821 state = use_vector ? 1 : 2;
6822 first_fmac = i;
6823 veneer_of_insn = insn;
6824 }
6825 break;
6826
6827 case 1:
6828 {
6829 int other_regs[3], other_numregs;
6830 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6831 other_regs,
6832 &other_numregs);
6833 if (vpipe != VFP11_BAD
6834 && bfd_arm_vfp11_antidependency (writemask, regs,
6835 numregs))
6836 state = 3;
6837 else
6838 state = 2;
6839 }
6840 break;
6841
6842 case 2:
6843 {
6844 int other_regs[3], other_numregs;
6845 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6846 other_regs,
6847 &other_numregs);
6848 if (vpipe != VFP11_BAD
6849 && bfd_arm_vfp11_antidependency (writemask, regs,
6850 numregs))
6851 state = 3;
6852 else
6853 {
6854 state = 0;
6855 next_i = first_fmac + 4;
6856 }
6857 }
6858 break;
6859
6860 case 3:
6861 abort (); /* Should be unreachable. */
6862 }
6863
6864 if (state == 3)
6865 {
6866 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6867 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6868
6869 elf32_arm_section_data (sec)->erratumcount += 1;
6870
6871 newerr->u.b.vfp_insn = veneer_of_insn;
6872
6873 switch (span_type)
6874 {
6875 case 'a':
6876 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6877 break;
6878
6879 default:
6880 abort ();
6881 }
6882
6883 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6884 first_fmac);
6885
6886 newerr->vma = -1;
6887
6888 newerr->next = sec_data->erratumlist;
6889 sec_data->erratumlist = newerr;
6890
6891 state = 0;
6892 }
6893
6894 i = next_i;
6895 }
6896 }
6897
6898 if (contents != NULL
6899 && elf_section_data (sec)->this_hdr.contents != contents)
6900 free (contents);
6901 contents = NULL;
6902 }
6903
6904 return TRUE;
6905
6906 error_return:
6907 if (contents != NULL
6908 && elf_section_data (sec)->this_hdr.contents != contents)
6909 free (contents);
6910
6911 return FALSE;
6912 }
6913
6914 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6915 after sections have been laid out, using specially-named symbols. */
6916
6917 void
6918 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6919 struct bfd_link_info *link_info)
6920 {
6921 asection *sec;
6922 struct elf32_arm_link_hash_table *globals;
6923 char *tmp_name;
6924
6925 if (link_info->relocatable)
6926 return;
6927
6928 /* Skip if this bfd does not correspond to an ELF image. */
6929 if (! is_arm_elf (abfd))
6930 return;
6931
6932 globals = elf32_arm_hash_table (link_info);
6933 if (globals == NULL)
6934 return;
6935
6936 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6937 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6938
6939 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6940 {
6941 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6942 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6943
6944 for (; errnode != NULL; errnode = errnode->next)
6945 {
6946 struct elf_link_hash_entry *myh;
6947 bfd_vma vma;
6948
6949 switch (errnode->type)
6950 {
6951 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6952 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6953 /* Find veneer symbol. */
6954 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6955 errnode->u.b.veneer->u.v.id);
6956
6957 myh = elf_link_hash_lookup
6958 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6959
6960 if (myh == NULL)
6961 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6962 "`%s'"), abfd, tmp_name);
6963
6964 vma = myh->root.u.def.section->output_section->vma
6965 + myh->root.u.def.section->output_offset
6966 + myh->root.u.def.value;
6967
6968 errnode->u.b.veneer->vma = vma;
6969 break;
6970
6971 case VFP11_ERRATUM_ARM_VENEER:
6972 case VFP11_ERRATUM_THUMB_VENEER:
6973 /* Find return location. */
6974 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6975 errnode->u.v.id);
6976
6977 myh = elf_link_hash_lookup
6978 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6979
6980 if (myh == NULL)
6981 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6982 "`%s'"), abfd, tmp_name);
6983
6984 vma = myh->root.u.def.section->output_section->vma
6985 + myh->root.u.def.section->output_offset
6986 + myh->root.u.def.value;
6987
6988 errnode->u.v.branch->vma = vma;
6989 break;
6990
6991 default:
6992 abort ();
6993 }
6994 }
6995 }
6996
6997 free (tmp_name);
6998 }
6999
7000
7001 /* Set target relocation values needed during linking. */
7002
7003 void
7004 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7005 struct bfd_link_info *link_info,
7006 int target1_is_rel,
7007 char * target2_type,
7008 int fix_v4bx,
7009 int use_blx,
7010 bfd_arm_vfp11_fix vfp11_fix,
7011 int no_enum_warn, int no_wchar_warn,
7012 int pic_veneer, int fix_cortex_a8,
7013 int fix_arm1176)
7014 {
7015 struct elf32_arm_link_hash_table *globals;
7016
7017 globals = elf32_arm_hash_table (link_info);
7018 if (globals == NULL)
7019 return;
7020
7021 globals->target1_is_rel = target1_is_rel;
7022 if (strcmp (target2_type, "rel") == 0)
7023 globals->target2_reloc = R_ARM_REL32;
7024 else if (strcmp (target2_type, "abs") == 0)
7025 globals->target2_reloc = R_ARM_ABS32;
7026 else if (strcmp (target2_type, "got-rel") == 0)
7027 globals->target2_reloc = R_ARM_GOT_PREL;
7028 else
7029 {
7030 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7031 target2_type);
7032 }
7033 globals->fix_v4bx = fix_v4bx;
7034 globals->use_blx |= use_blx;
7035 globals->vfp11_fix = vfp11_fix;
7036 globals->pic_veneer = pic_veneer;
7037 globals->fix_cortex_a8 = fix_cortex_a8;
7038 globals->fix_arm1176 = fix_arm1176;
7039
7040 BFD_ASSERT (is_arm_elf (output_bfd));
7041 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
7042 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
7043 }
7044
7045 /* Replace the target offset of a Thumb bl or b.w instruction. */
7046
7047 static void
7048 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7049 {
7050 bfd_vma upper;
7051 bfd_vma lower;
7052 int reloc_sign;
7053
7054 BFD_ASSERT ((offset & 1) == 0);
7055
7056 upper = bfd_get_16 (abfd, insn);
7057 lower = bfd_get_16 (abfd, insn + 2);
7058 reloc_sign = (offset < 0) ? 1 : 0;
7059 upper = (upper & ~(bfd_vma) 0x7ff)
7060 | ((offset >> 12) & 0x3ff)
7061 | (reloc_sign << 10);
7062 lower = (lower & ~(bfd_vma) 0x2fff)
7063 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7064 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7065 | ((offset >> 1) & 0x7ff);
7066 bfd_put_16 (abfd, upper, insn);
7067 bfd_put_16 (abfd, lower, insn + 2);
7068 }
7069
7070 /* Thumb code calling an ARM function. */
7071
7072 static int
7073 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7074 const char * name,
7075 bfd * input_bfd,
7076 bfd * output_bfd,
7077 asection * input_section,
7078 bfd_byte * hit_data,
7079 asection * sym_sec,
7080 bfd_vma offset,
7081 bfd_signed_vma addend,
7082 bfd_vma val,
7083 char **error_message)
7084 {
7085 asection * s = 0;
7086 bfd_vma my_offset;
7087 long int ret_offset;
7088 struct elf_link_hash_entry * myh;
7089 struct elf32_arm_link_hash_table * globals;
7090
7091 myh = find_thumb_glue (info, name, error_message);
7092 if (myh == NULL)
7093 return FALSE;
7094
7095 globals = elf32_arm_hash_table (info);
7096 BFD_ASSERT (globals != NULL);
7097 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7098
7099 my_offset = myh->root.u.def.value;
7100
7101 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7102 THUMB2ARM_GLUE_SECTION_NAME);
7103
7104 BFD_ASSERT (s != NULL);
7105 BFD_ASSERT (s->contents != NULL);
7106 BFD_ASSERT (s->output_section != NULL);
7107
7108 if ((my_offset & 0x01) == 0x01)
7109 {
7110 if (sym_sec != NULL
7111 && sym_sec->owner != NULL
7112 && !INTERWORK_FLAG (sym_sec->owner))
7113 {
7114 (*_bfd_error_handler)
7115 (_("%B(%s): warning: interworking not enabled.\n"
7116 " first occurrence: %B: Thumb call to ARM"),
7117 sym_sec->owner, input_bfd, name);
7118
7119 return FALSE;
7120 }
7121
7122 --my_offset;
7123 myh->root.u.def.value = my_offset;
7124
7125 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7126 s->contents + my_offset);
7127
7128 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7129 s->contents + my_offset + 2);
7130
7131 ret_offset =
7132 /* Address of destination of the stub. */
7133 ((bfd_signed_vma) val)
7134 - ((bfd_signed_vma)
7135 /* Offset from the start of the current section
7136 to the start of the stubs. */
7137 (s->output_offset
7138 /* Offset of the start of this stub from the start of the stubs. */
7139 + my_offset
7140 /* Address of the start of the current section. */
7141 + s->output_section->vma)
7142 /* The branch instruction is 4 bytes into the stub. */
7143 + 4
7144 /* ARM branches work from the pc of the instruction + 8. */
7145 + 8);
7146
7147 put_arm_insn (globals, output_bfd,
7148 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7149 s->contents + my_offset + 4);
7150 }
7151
7152 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7153
7154 /* Now go back and fix up the original BL insn to point to here. */
7155 ret_offset =
7156 /* Address of where the stub is located. */
7157 (s->output_section->vma + s->output_offset + my_offset)
7158 /* Address of where the BL is located. */
7159 - (input_section->output_section->vma + input_section->output_offset
7160 + offset)
7161 /* Addend in the relocation. */
7162 - addend
7163 /* Biassing for PC-relative addressing. */
7164 - 8;
7165
7166 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7167
7168 return TRUE;
7169 }
7170
7171 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7172
7173 static struct elf_link_hash_entry *
7174 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7175 const char * name,
7176 bfd * input_bfd,
7177 bfd * output_bfd,
7178 asection * sym_sec,
7179 bfd_vma val,
7180 asection * s,
7181 char ** error_message)
7182 {
7183 bfd_vma my_offset;
7184 long int ret_offset;
7185 struct elf_link_hash_entry * myh;
7186 struct elf32_arm_link_hash_table * globals;
7187
7188 myh = find_arm_glue (info, name, error_message);
7189 if (myh == NULL)
7190 return NULL;
7191
7192 globals = elf32_arm_hash_table (info);
7193 BFD_ASSERT (globals != NULL);
7194 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7195
7196 my_offset = myh->root.u.def.value;
7197
7198 if ((my_offset & 0x01) == 0x01)
7199 {
7200 if (sym_sec != NULL
7201 && sym_sec->owner != NULL
7202 && !INTERWORK_FLAG (sym_sec->owner))
7203 {
7204 (*_bfd_error_handler)
7205 (_("%B(%s): warning: interworking not enabled.\n"
7206 " first occurrence: %B: arm call to thumb"),
7207 sym_sec->owner, input_bfd, name);
7208 }
7209
7210 --my_offset;
7211 myh->root.u.def.value = my_offset;
7212
7213 if (info->shared || globals->root.is_relocatable_executable
7214 || globals->pic_veneer)
7215 {
7216 /* For relocatable objects we can't use absolute addresses,
7217 so construct the address from a relative offset. */
7218 /* TODO: If the offset is small it's probably worth
7219 constructing the address with adds. */
7220 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7221 s->contents + my_offset);
7222 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7223 s->contents + my_offset + 4);
7224 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7225 s->contents + my_offset + 8);
7226 /* Adjust the offset by 4 for the position of the add,
7227 and 8 for the pipeline offset. */
7228 ret_offset = (val - (s->output_offset
7229 + s->output_section->vma
7230 + my_offset + 12))
7231 | 1;
7232 bfd_put_32 (output_bfd, ret_offset,
7233 s->contents + my_offset + 12);
7234 }
7235 else if (globals->use_blx)
7236 {
7237 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7238 s->contents + my_offset);
7239
7240 /* It's a thumb address. Add the low order bit. */
7241 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7242 s->contents + my_offset + 4);
7243 }
7244 else
7245 {
7246 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7247 s->contents + my_offset);
7248
7249 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7250 s->contents + my_offset + 4);
7251
7252 /* It's a thumb address. Add the low order bit. */
7253 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7254 s->contents + my_offset + 8);
7255
7256 my_offset += 12;
7257 }
7258 }
7259
7260 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7261
7262 return myh;
7263 }
7264
7265 /* Arm code calling a Thumb function. */
7266
7267 static int
7268 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7269 const char * name,
7270 bfd * input_bfd,
7271 bfd * output_bfd,
7272 asection * input_section,
7273 bfd_byte * hit_data,
7274 asection * sym_sec,
7275 bfd_vma offset,
7276 bfd_signed_vma addend,
7277 bfd_vma val,
7278 char **error_message)
7279 {
7280 unsigned long int tmp;
7281 bfd_vma my_offset;
7282 asection * s;
7283 long int ret_offset;
7284 struct elf_link_hash_entry * myh;
7285 struct elf32_arm_link_hash_table * globals;
7286
7287 globals = elf32_arm_hash_table (info);
7288 BFD_ASSERT (globals != NULL);
7289 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7290
7291 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7292 ARM2THUMB_GLUE_SECTION_NAME);
7293 BFD_ASSERT (s != NULL);
7294 BFD_ASSERT (s->contents != NULL);
7295 BFD_ASSERT (s->output_section != NULL);
7296
7297 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7298 sym_sec, val, s, error_message);
7299 if (!myh)
7300 return FALSE;
7301
7302 my_offset = myh->root.u.def.value;
7303 tmp = bfd_get_32 (input_bfd, hit_data);
7304 tmp = tmp & 0xFF000000;
7305
7306 /* Somehow these are both 4 too far, so subtract 8. */
7307 ret_offset = (s->output_offset
7308 + my_offset
7309 + s->output_section->vma
7310 - (input_section->output_offset
7311 + input_section->output_section->vma
7312 + offset + addend)
7313 - 8);
7314
7315 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7316
7317 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7318
7319 return TRUE;
7320 }
7321
7322 /* Populate Arm stub for an exported Thumb function. */
7323
7324 static bfd_boolean
7325 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7326 {
7327 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7328 asection * s;
7329 struct elf_link_hash_entry * myh;
7330 struct elf32_arm_link_hash_entry *eh;
7331 struct elf32_arm_link_hash_table * globals;
7332 asection *sec;
7333 bfd_vma val;
7334 char *error_message;
7335
7336 eh = elf32_arm_hash_entry (h);
7337 /* Allocate stubs for exported Thumb functions on v4t. */
7338 if (eh->export_glue == NULL)
7339 return TRUE;
7340
7341 globals = elf32_arm_hash_table (info);
7342 BFD_ASSERT (globals != NULL);
7343 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7344
7345 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7346 ARM2THUMB_GLUE_SECTION_NAME);
7347 BFD_ASSERT (s != NULL);
7348 BFD_ASSERT (s->contents != NULL);
7349 BFD_ASSERT (s->output_section != NULL);
7350
7351 sec = eh->export_glue->root.u.def.section;
7352
7353 BFD_ASSERT (sec->output_section != NULL);
7354
7355 val = eh->export_glue->root.u.def.value + sec->output_offset
7356 + sec->output_section->vma;
7357
7358 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7359 h->root.u.def.section->owner,
7360 globals->obfd, sec, val, s,
7361 &error_message);
7362 BFD_ASSERT (myh);
7363 return TRUE;
7364 }
7365
7366 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7367
7368 static bfd_vma
7369 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7370 {
7371 bfd_byte *p;
7372 bfd_vma glue_addr;
7373 asection *s;
7374 struct elf32_arm_link_hash_table *globals;
7375
7376 globals = elf32_arm_hash_table (info);
7377 BFD_ASSERT (globals != NULL);
7378 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7379
7380 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7381 ARM_BX_GLUE_SECTION_NAME);
7382 BFD_ASSERT (s != NULL);
7383 BFD_ASSERT (s->contents != NULL);
7384 BFD_ASSERT (s->output_section != NULL);
7385
7386 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7387
7388 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7389
7390 if ((globals->bx_glue_offset[reg] & 1) == 0)
7391 {
7392 p = s->contents + glue_addr;
7393 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7394 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7395 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7396 globals->bx_glue_offset[reg] |= 1;
7397 }
7398
7399 return glue_addr + s->output_section->vma + s->output_offset;
7400 }
7401
7402 /* Generate Arm stubs for exported Thumb symbols. */
7403 static void
7404 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7405 struct bfd_link_info *link_info)
7406 {
7407 struct elf32_arm_link_hash_table * globals;
7408
7409 if (link_info == NULL)
7410 /* Ignore this if we are not called by the ELF backend linker. */
7411 return;
7412
7413 globals = elf32_arm_hash_table (link_info);
7414 if (globals == NULL)
7415 return;
7416
7417 /* If blx is available then exported Thumb symbols are OK and there is
7418 nothing to do. */
7419 if (globals->use_blx)
7420 return;
7421
7422 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7423 link_info);
7424 }
7425
7426 /* Reserve space for COUNT dynamic relocations in relocation selection
7427 SRELOC. */
7428
7429 static void
7430 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7431 bfd_size_type count)
7432 {
7433 struct elf32_arm_link_hash_table *htab;
7434
7435 htab = elf32_arm_hash_table (info);
7436 BFD_ASSERT (htab->root.dynamic_sections_created);
7437 if (sreloc == NULL)
7438 abort ();
7439 sreloc->size += RELOC_SIZE (htab) * count;
7440 }
7441
7442 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7443 dynamic, the relocations should go in SRELOC, otherwise they should
7444 go in the special .rel.iplt section. */
7445
7446 static void
7447 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7448 bfd_size_type count)
7449 {
7450 struct elf32_arm_link_hash_table *htab;
7451
7452 htab = elf32_arm_hash_table (info);
7453 if (!htab->root.dynamic_sections_created)
7454 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7455 else
7456 {
7457 BFD_ASSERT (sreloc != NULL);
7458 sreloc->size += RELOC_SIZE (htab) * count;
7459 }
7460 }
7461
7462 /* Add relocation REL to the end of relocation section SRELOC. */
7463
7464 static void
7465 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7466 asection *sreloc, Elf_Internal_Rela *rel)
7467 {
7468 bfd_byte *loc;
7469 struct elf32_arm_link_hash_table *htab;
7470
7471 htab = elf32_arm_hash_table (info);
7472 if (!htab->root.dynamic_sections_created
7473 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7474 sreloc = htab->root.irelplt;
7475 if (sreloc == NULL)
7476 abort ();
7477 loc = sreloc->contents;
7478 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7479 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7480 abort ();
7481 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7482 }
7483
7484 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7485 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7486 to .plt. */
7487
7488 static void
7489 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7490 bfd_boolean is_iplt_entry,
7491 union gotplt_union *root_plt,
7492 struct arm_plt_info *arm_plt)
7493 {
7494 struct elf32_arm_link_hash_table *htab;
7495 asection *splt;
7496 asection *sgotplt;
7497
7498 htab = elf32_arm_hash_table (info);
7499
7500 if (is_iplt_entry)
7501 {
7502 splt = htab->root.iplt;
7503 sgotplt = htab->root.igotplt;
7504
7505 /* NaCl uses a special first entry in .iplt too. */
7506 if (htab->nacl_p && splt->size == 0)
7507 splt->size += htab->plt_header_size;
7508
7509 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7510 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7511 }
7512 else
7513 {
7514 splt = htab->root.splt;
7515 sgotplt = htab->root.sgotplt;
7516
7517 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7518 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7519
7520 /* If this is the first .plt entry, make room for the special
7521 first entry. */
7522 if (splt->size == 0)
7523 splt->size += htab->plt_header_size;
7524 }
7525
7526 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7527 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7528 splt->size += PLT_THUMB_STUB_SIZE;
7529 root_plt->offset = splt->size;
7530 splt->size += htab->plt_entry_size;
7531
7532 if (!htab->symbian_p)
7533 {
7534 /* We also need to make an entry in the .got.plt section, which
7535 will be placed in the .got section by the linker script. */
7536 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7537 sgotplt->size += 4;
7538 }
7539 }
7540
7541 static bfd_vma
7542 arm_movw_immediate (bfd_vma value)
7543 {
7544 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7545 }
7546
7547 static bfd_vma
7548 arm_movt_immediate (bfd_vma value)
7549 {
7550 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7551 }
7552
7553 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7554 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7555 Otherwise, DYNINDX is the index of the symbol in the dynamic
7556 symbol table and SYM_VALUE is undefined.
7557
7558 ROOT_PLT points to the offset of the PLT entry from the start of its
7559 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7560 bookkeeping information.
7561
7562 Returns FALSE if there was a problem. */
7563
7564 static bfd_boolean
7565 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7566 union gotplt_union *root_plt,
7567 struct arm_plt_info *arm_plt,
7568 int dynindx, bfd_vma sym_value)
7569 {
7570 struct elf32_arm_link_hash_table *htab;
7571 asection *sgot;
7572 asection *splt;
7573 asection *srel;
7574 bfd_byte *loc;
7575 bfd_vma plt_index;
7576 Elf_Internal_Rela rel;
7577 bfd_vma plt_header_size;
7578 bfd_vma got_header_size;
7579
7580 htab = elf32_arm_hash_table (info);
7581
7582 /* Pick the appropriate sections and sizes. */
7583 if (dynindx == -1)
7584 {
7585 splt = htab->root.iplt;
7586 sgot = htab->root.igotplt;
7587 srel = htab->root.irelplt;
7588
7589 /* There are no reserved entries in .igot.plt, and no special
7590 first entry in .iplt. */
7591 got_header_size = 0;
7592 plt_header_size = 0;
7593 }
7594 else
7595 {
7596 splt = htab->root.splt;
7597 sgot = htab->root.sgotplt;
7598 srel = htab->root.srelplt;
7599
7600 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7601 plt_header_size = htab->plt_header_size;
7602 }
7603 BFD_ASSERT (splt != NULL && srel != NULL);
7604
7605 /* Fill in the entry in the procedure linkage table. */
7606 if (htab->symbian_p)
7607 {
7608 BFD_ASSERT (dynindx >= 0);
7609 put_arm_insn (htab, output_bfd,
7610 elf32_arm_symbian_plt_entry[0],
7611 splt->contents + root_plt->offset);
7612 bfd_put_32 (output_bfd,
7613 elf32_arm_symbian_plt_entry[1],
7614 splt->contents + root_plt->offset + 4);
7615
7616 /* Fill in the entry in the .rel.plt section. */
7617 rel.r_offset = (splt->output_section->vma
7618 + splt->output_offset
7619 + root_plt->offset + 4);
7620 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7621
7622 /* Get the index in the procedure linkage table which
7623 corresponds to this symbol. This is the index of this symbol
7624 in all the symbols for which we are making plt entries. The
7625 first entry in the procedure linkage table is reserved. */
7626 plt_index = ((root_plt->offset - plt_header_size)
7627 / htab->plt_entry_size);
7628 }
7629 else
7630 {
7631 bfd_vma got_offset, got_address, plt_address;
7632 bfd_vma got_displacement, initial_got_entry;
7633 bfd_byte * ptr;
7634
7635 BFD_ASSERT (sgot != NULL);
7636
7637 /* Get the offset into the .(i)got.plt table of the entry that
7638 corresponds to this function. */
7639 got_offset = (arm_plt->got_offset & -2);
7640
7641 /* Get the index in the procedure linkage table which
7642 corresponds to this symbol. This is the index of this symbol
7643 in all the symbols for which we are making plt entries.
7644 After the reserved .got.plt entries, all symbols appear in
7645 the same order as in .plt. */
7646 plt_index = (got_offset - got_header_size) / 4;
7647
7648 /* Calculate the address of the GOT entry. */
7649 got_address = (sgot->output_section->vma
7650 + sgot->output_offset
7651 + got_offset);
7652
7653 /* ...and the address of the PLT entry. */
7654 plt_address = (splt->output_section->vma
7655 + splt->output_offset
7656 + root_plt->offset);
7657
7658 ptr = splt->contents + root_plt->offset;
7659 if (htab->vxworks_p && info->shared)
7660 {
7661 unsigned int i;
7662 bfd_vma val;
7663
7664 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7665 {
7666 val = elf32_arm_vxworks_shared_plt_entry[i];
7667 if (i == 2)
7668 val |= got_address - sgot->output_section->vma;
7669 if (i == 5)
7670 val |= plt_index * RELOC_SIZE (htab);
7671 if (i == 2 || i == 5)
7672 bfd_put_32 (output_bfd, val, ptr);
7673 else
7674 put_arm_insn (htab, output_bfd, val, ptr);
7675 }
7676 }
7677 else if (htab->vxworks_p)
7678 {
7679 unsigned int i;
7680 bfd_vma val;
7681
7682 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7683 {
7684 val = elf32_arm_vxworks_exec_plt_entry[i];
7685 if (i == 2)
7686 val |= got_address;
7687 if (i == 4)
7688 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7689 if (i == 5)
7690 val |= plt_index * RELOC_SIZE (htab);
7691 if (i == 2 || i == 5)
7692 bfd_put_32 (output_bfd, val, ptr);
7693 else
7694 put_arm_insn (htab, output_bfd, val, ptr);
7695 }
7696
7697 loc = (htab->srelplt2->contents
7698 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7699
7700 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7701 referencing the GOT for this PLT entry. */
7702 rel.r_offset = plt_address + 8;
7703 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7704 rel.r_addend = got_offset;
7705 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7706 loc += RELOC_SIZE (htab);
7707
7708 /* Create the R_ARM_ABS32 relocation referencing the
7709 beginning of the PLT for this GOT entry. */
7710 rel.r_offset = got_address;
7711 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7712 rel.r_addend = 0;
7713 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7714 }
7715 else if (htab->nacl_p)
7716 {
7717 /* Calculate the displacement between the PLT slot and the
7718 common tail that's part of the special initial PLT slot. */
7719 int32_t tail_displacement
7720 = ((splt->output_section->vma + splt->output_offset
7721 + ARM_NACL_PLT_TAIL_OFFSET)
7722 - (plt_address + htab->plt_entry_size + 4));
7723 BFD_ASSERT ((tail_displacement & 3) == 0);
7724 tail_displacement >>= 2;
7725
7726 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7727 || (-tail_displacement & 0xff000000) == 0);
7728
7729 /* Calculate the displacement between the PLT slot and the entry
7730 in the GOT. The offset accounts for the value produced by
7731 adding to pc in the penultimate instruction of the PLT stub. */
7732 got_displacement = (got_address
7733 - (plt_address + htab->plt_entry_size));
7734
7735 /* NaCl does not support interworking at all. */
7736 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7737
7738 put_arm_insn (htab, output_bfd,
7739 elf32_arm_nacl_plt_entry[0]
7740 | arm_movw_immediate (got_displacement),
7741 ptr + 0);
7742 put_arm_insn (htab, output_bfd,
7743 elf32_arm_nacl_plt_entry[1]
7744 | arm_movt_immediate (got_displacement),
7745 ptr + 4);
7746 put_arm_insn (htab, output_bfd,
7747 elf32_arm_nacl_plt_entry[2],
7748 ptr + 8);
7749 put_arm_insn (htab, output_bfd,
7750 elf32_arm_nacl_plt_entry[3]
7751 | (tail_displacement & 0x00ffffff),
7752 ptr + 12);
7753 }
7754 else if (using_thumb_only (htab))
7755 {
7756 /* PR ld/16017: Generate thumb only PLT entries. */
7757 if (!using_thumb2 (htab))
7758 {
7759 /* FIXME: We ought to be able to generate thumb-1 PLT
7760 instructions... */
7761 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
7762 output_bfd);
7763 return FALSE;
7764 }
7765
7766 /* Calculate the displacement between the PLT slot and the entry in
7767 the GOT. The 12-byte offset accounts for the value produced by
7768 adding to pc in the 3rd instruction of the PLT stub. */
7769 got_displacement = got_address - (plt_address + 12);
7770
7771 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
7772 instead of 'put_thumb_insn'. */
7773 put_arm_insn (htab, output_bfd,
7774 elf32_thumb2_plt_entry[0]
7775 | ((got_displacement & 0x000000ff) << 16)
7776 | ((got_displacement & 0x00000700) << 20)
7777 | ((got_displacement & 0x00000800) >> 1)
7778 | ((got_displacement & 0x0000f000) >> 12),
7779 ptr + 0);
7780 put_arm_insn (htab, output_bfd,
7781 elf32_thumb2_plt_entry[1]
7782 | ((got_displacement & 0x00ff0000) )
7783 | ((got_displacement & 0x07000000) << 4)
7784 | ((got_displacement & 0x08000000) >> 17)
7785 | ((got_displacement & 0xf0000000) >> 28),
7786 ptr + 4);
7787 put_arm_insn (htab, output_bfd,
7788 elf32_thumb2_plt_entry[2],
7789 ptr + 8);
7790 put_arm_insn (htab, output_bfd,
7791 elf32_thumb2_plt_entry[3],
7792 ptr + 12);
7793 }
7794 else
7795 {
7796 /* Calculate the displacement between the PLT slot and the
7797 entry in the GOT. The eight-byte offset accounts for the
7798 value produced by adding to pc in the first instruction
7799 of the PLT stub. */
7800 got_displacement = got_address - (plt_address + 8);
7801
7802 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7803 {
7804 put_thumb_insn (htab, output_bfd,
7805 elf32_arm_plt_thumb_stub[0], ptr - 4);
7806 put_thumb_insn (htab, output_bfd,
7807 elf32_arm_plt_thumb_stub[1], ptr - 2);
7808 }
7809
7810 if (!elf32_arm_use_long_plt_entry)
7811 {
7812 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7813
7814 put_arm_insn (htab, output_bfd,
7815 elf32_arm_plt_entry_short[0]
7816 | ((got_displacement & 0x0ff00000) >> 20),
7817 ptr + 0);
7818 put_arm_insn (htab, output_bfd,
7819 elf32_arm_plt_entry_short[1]
7820 | ((got_displacement & 0x000ff000) >> 12),
7821 ptr+ 4);
7822 put_arm_insn (htab, output_bfd,
7823 elf32_arm_plt_entry_short[2]
7824 | (got_displacement & 0x00000fff),
7825 ptr + 8);
7826 #ifdef FOUR_WORD_PLT
7827 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
7828 #endif
7829 }
7830 else
7831 {
7832 put_arm_insn (htab, output_bfd,
7833 elf32_arm_plt_entry_long[0]
7834 | ((got_displacement & 0xf0000000) >> 28),
7835 ptr + 0);
7836 put_arm_insn (htab, output_bfd,
7837 elf32_arm_plt_entry_long[1]
7838 | ((got_displacement & 0x0ff00000) >> 20),
7839 ptr + 4);
7840 put_arm_insn (htab, output_bfd,
7841 elf32_arm_plt_entry_long[2]
7842 | ((got_displacement & 0x000ff000) >> 12),
7843 ptr+ 8);
7844 put_arm_insn (htab, output_bfd,
7845 elf32_arm_plt_entry_long[3]
7846 | (got_displacement & 0x00000fff),
7847 ptr + 12);
7848 }
7849 }
7850
7851 /* Fill in the entry in the .rel(a).(i)plt section. */
7852 rel.r_offset = got_address;
7853 rel.r_addend = 0;
7854 if (dynindx == -1)
7855 {
7856 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7857 The dynamic linker or static executable then calls SYM_VALUE
7858 to determine the correct run-time value of the .igot.plt entry. */
7859 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7860 initial_got_entry = sym_value;
7861 }
7862 else
7863 {
7864 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7865 initial_got_entry = (splt->output_section->vma
7866 + splt->output_offset);
7867 }
7868
7869 /* Fill in the entry in the global offset table. */
7870 bfd_put_32 (output_bfd, initial_got_entry,
7871 sgot->contents + got_offset);
7872 }
7873
7874 if (dynindx == -1)
7875 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7876 else
7877 {
7878 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7879 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7880 }
7881
7882 return TRUE;
7883 }
7884
7885 /* Some relocations map to different relocations depending on the
7886 target. Return the real relocation. */
7887
7888 static int
7889 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7890 int r_type)
7891 {
7892 switch (r_type)
7893 {
7894 case R_ARM_TARGET1:
7895 if (globals->target1_is_rel)
7896 return R_ARM_REL32;
7897 else
7898 return R_ARM_ABS32;
7899
7900 case R_ARM_TARGET2:
7901 return globals->target2_reloc;
7902
7903 default:
7904 return r_type;
7905 }
7906 }
7907
7908 /* Return the base VMA address which should be subtracted from real addresses
7909 when resolving @dtpoff relocation.
7910 This is PT_TLS segment p_vaddr. */
7911
7912 static bfd_vma
7913 dtpoff_base (struct bfd_link_info *info)
7914 {
7915 /* If tls_sec is NULL, we should have signalled an error already. */
7916 if (elf_hash_table (info)->tls_sec == NULL)
7917 return 0;
7918 return elf_hash_table (info)->tls_sec->vma;
7919 }
7920
7921 /* Return the relocation value for @tpoff relocation
7922 if STT_TLS virtual address is ADDRESS. */
7923
7924 static bfd_vma
7925 tpoff (struct bfd_link_info *info, bfd_vma address)
7926 {
7927 struct elf_link_hash_table *htab = elf_hash_table (info);
7928 bfd_vma base;
7929
7930 /* If tls_sec is NULL, we should have signalled an error already. */
7931 if (htab->tls_sec == NULL)
7932 return 0;
7933 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7934 return address - htab->tls_sec->vma + base;
7935 }
7936
7937 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7938 VALUE is the relocation value. */
7939
7940 static bfd_reloc_status_type
7941 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7942 {
7943 if (value > 0xfff)
7944 return bfd_reloc_overflow;
7945
7946 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7947 bfd_put_32 (abfd, value, data);
7948 return bfd_reloc_ok;
7949 }
7950
7951 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7952 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7953 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7954
7955 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7956 is to then call final_link_relocate. Return other values in the
7957 case of error.
7958
7959 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7960 the pre-relaxed code. It would be nice if the relocs were updated
7961 to match the optimization. */
7962
7963 static bfd_reloc_status_type
7964 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7965 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7966 Elf_Internal_Rela *rel, unsigned long is_local)
7967 {
7968 unsigned long insn;
7969
7970 switch (ELF32_R_TYPE (rel->r_info))
7971 {
7972 default:
7973 return bfd_reloc_notsupported;
7974
7975 case R_ARM_TLS_GOTDESC:
7976 if (is_local)
7977 insn = 0;
7978 else
7979 {
7980 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7981 if (insn & 1)
7982 insn -= 5; /* THUMB */
7983 else
7984 insn -= 8; /* ARM */
7985 }
7986 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7987 return bfd_reloc_continue;
7988
7989 case R_ARM_THM_TLS_DESCSEQ:
7990 /* Thumb insn. */
7991 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7992 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7993 {
7994 if (is_local)
7995 /* nop */
7996 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7997 }
7998 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7999 {
8000 if (is_local)
8001 /* nop */
8002 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8003 else
8004 /* ldr rx,[ry] */
8005 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8006 }
8007 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8008 {
8009 if (is_local)
8010 /* nop */
8011 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8012 else
8013 /* mov r0, rx */
8014 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8015 contents + rel->r_offset);
8016 }
8017 else
8018 {
8019 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8020 /* It's a 32 bit instruction, fetch the rest of it for
8021 error generation. */
8022 insn = (insn << 16)
8023 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8024 (*_bfd_error_handler)
8025 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8026 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8027 return bfd_reloc_notsupported;
8028 }
8029 break;
8030
8031 case R_ARM_TLS_DESCSEQ:
8032 /* arm insn. */
8033 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8034 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8035 {
8036 if (is_local)
8037 /* mov rx, ry */
8038 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8039 contents + rel->r_offset);
8040 }
8041 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8042 {
8043 if (is_local)
8044 /* nop */
8045 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8046 else
8047 /* ldr rx,[ry] */
8048 bfd_put_32 (input_bfd, insn & 0xfffff000,
8049 contents + rel->r_offset);
8050 }
8051 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8052 {
8053 if (is_local)
8054 /* nop */
8055 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8056 else
8057 /* mov r0, rx */
8058 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8059 contents + rel->r_offset);
8060 }
8061 else
8062 {
8063 (*_bfd_error_handler)
8064 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8065 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8066 return bfd_reloc_notsupported;
8067 }
8068 break;
8069
8070 case R_ARM_TLS_CALL:
8071 /* GD->IE relaxation, turn the instruction into 'nop' or
8072 'ldr r0, [pc,r0]' */
8073 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8074 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8075 break;
8076
8077 case R_ARM_THM_TLS_CALL:
8078 /* GD->IE relaxation */
8079 if (!is_local)
8080 /* add r0,pc; ldr r0, [r0] */
8081 insn = 0x44786800;
8082 else if (arch_has_thumb2_nop (globals))
8083 /* nop.w */
8084 insn = 0xf3af8000;
8085 else
8086 /* nop; nop */
8087 insn = 0xbf00bf00;
8088
8089 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8090 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8091 break;
8092 }
8093 return bfd_reloc_ok;
8094 }
8095
8096 /* For a given value of n, calculate the value of G_n as required to
8097 deal with group relocations. We return it in the form of an
8098 encoded constant-and-rotation, together with the final residual. If n is
8099 specified as less than zero, then final_residual is filled with the
8100 input value and no further action is performed. */
8101
8102 static bfd_vma
8103 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8104 {
8105 int current_n;
8106 bfd_vma g_n;
8107 bfd_vma encoded_g_n = 0;
8108 bfd_vma residual = value; /* Also known as Y_n. */
8109
8110 for (current_n = 0; current_n <= n; current_n++)
8111 {
8112 int shift;
8113
8114 /* Calculate which part of the value to mask. */
8115 if (residual == 0)
8116 shift = 0;
8117 else
8118 {
8119 int msb;
8120
8121 /* Determine the most significant bit in the residual and
8122 align the resulting value to a 2-bit boundary. */
8123 for (msb = 30; msb >= 0; msb -= 2)
8124 if (residual & (3 << msb))
8125 break;
8126
8127 /* The desired shift is now (msb - 6), or zero, whichever
8128 is the greater. */
8129 shift = msb - 6;
8130 if (shift < 0)
8131 shift = 0;
8132 }
8133
8134 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8135 g_n = residual & (0xff << shift);
8136 encoded_g_n = (g_n >> shift)
8137 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8138
8139 /* Calculate the residual for the next time around. */
8140 residual &= ~g_n;
8141 }
8142
8143 *final_residual = residual;
8144
8145 return encoded_g_n;
8146 }
8147
8148 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8149 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8150
8151 static int
8152 identify_add_or_sub (bfd_vma insn)
8153 {
8154 int opcode = insn & 0x1e00000;
8155
8156 if (opcode == 1 << 23) /* ADD */
8157 return 1;
8158
8159 if (opcode == 1 << 22) /* SUB */
8160 return -1;
8161
8162 return 0;
8163 }
8164
8165 /* Perform a relocation as part of a final link. */
8166
8167 static bfd_reloc_status_type
8168 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8169 bfd * input_bfd,
8170 bfd * output_bfd,
8171 asection * input_section,
8172 bfd_byte * contents,
8173 Elf_Internal_Rela * rel,
8174 bfd_vma value,
8175 struct bfd_link_info * info,
8176 asection * sym_sec,
8177 const char * sym_name,
8178 unsigned char st_type,
8179 enum arm_st_branch_type branch_type,
8180 struct elf_link_hash_entry * h,
8181 bfd_boolean * unresolved_reloc_p,
8182 char ** error_message)
8183 {
8184 unsigned long r_type = howto->type;
8185 unsigned long r_symndx;
8186 bfd_byte * hit_data = contents + rel->r_offset;
8187 bfd_vma * local_got_offsets;
8188 bfd_vma * local_tlsdesc_gotents;
8189 asection * sgot;
8190 asection * splt;
8191 asection * sreloc = NULL;
8192 asection * srelgot;
8193 bfd_vma addend;
8194 bfd_signed_vma signed_addend;
8195 unsigned char dynreloc_st_type;
8196 bfd_vma dynreloc_value;
8197 struct elf32_arm_link_hash_table * globals;
8198 struct elf32_arm_link_hash_entry *eh;
8199 union gotplt_union *root_plt;
8200 struct arm_plt_info *arm_plt;
8201 bfd_vma plt_offset;
8202 bfd_vma gotplt_offset;
8203 bfd_boolean has_iplt_entry;
8204
8205 globals = elf32_arm_hash_table (info);
8206 if (globals == NULL)
8207 return bfd_reloc_notsupported;
8208
8209 BFD_ASSERT (is_arm_elf (input_bfd));
8210
8211 /* Some relocation types map to different relocations depending on the
8212 target. We pick the right one here. */
8213 r_type = arm_real_reloc_type (globals, r_type);
8214
8215 /* It is possible to have linker relaxations on some TLS access
8216 models. Update our information here. */
8217 r_type = elf32_arm_tls_transition (info, r_type, h);
8218
8219 if (r_type != howto->type)
8220 howto = elf32_arm_howto_from_type (r_type);
8221
8222 /* If the start address has been set, then set the EF_ARM_HASENTRY
8223 flag. Setting this more than once is redundant, but the cost is
8224 not too high, and it keeps the code simple.
8225
8226 The test is done here, rather than somewhere else, because the
8227 start address is only set just before the final link commences.
8228
8229 Note - if the user deliberately sets a start address of 0, the
8230 flag will not be set. */
8231 if (bfd_get_start_address (output_bfd) != 0)
8232 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
8233
8234 eh = (struct elf32_arm_link_hash_entry *) h;
8235 sgot = globals->root.sgot;
8236 local_got_offsets = elf_local_got_offsets (input_bfd);
8237 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8238
8239 if (globals->root.dynamic_sections_created)
8240 srelgot = globals->root.srelgot;
8241 else
8242 srelgot = NULL;
8243
8244 r_symndx = ELF32_R_SYM (rel->r_info);
8245
8246 if (globals->use_rel)
8247 {
8248 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8249
8250 if (addend & ((howto->src_mask + 1) >> 1))
8251 {
8252 signed_addend = -1;
8253 signed_addend &= ~ howto->src_mask;
8254 signed_addend |= addend;
8255 }
8256 else
8257 signed_addend = addend;
8258 }
8259 else
8260 addend = signed_addend = rel->r_addend;
8261
8262 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8263 are resolving a function call relocation. */
8264 if (using_thumb_only (globals)
8265 && (r_type == R_ARM_THM_CALL
8266 || r_type == R_ARM_THM_JUMP24)
8267 && branch_type == ST_BRANCH_TO_ARM)
8268 branch_type = ST_BRANCH_TO_THUMB;
8269
8270 /* Record the symbol information that should be used in dynamic
8271 relocations. */
8272 dynreloc_st_type = st_type;
8273 dynreloc_value = value;
8274 if (branch_type == ST_BRANCH_TO_THUMB)
8275 dynreloc_value |= 1;
8276
8277 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8278 VALUE appropriately for relocations that we resolve at link time. */
8279 has_iplt_entry = FALSE;
8280 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8281 && root_plt->offset != (bfd_vma) -1)
8282 {
8283 plt_offset = root_plt->offset;
8284 gotplt_offset = arm_plt->got_offset;
8285
8286 if (h == NULL || eh->is_iplt)
8287 {
8288 has_iplt_entry = TRUE;
8289 splt = globals->root.iplt;
8290
8291 /* Populate .iplt entries here, because not all of them will
8292 be seen by finish_dynamic_symbol. The lower bit is set if
8293 we have already populated the entry. */
8294 if (plt_offset & 1)
8295 plt_offset--;
8296 else
8297 {
8298 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8299 -1, dynreloc_value))
8300 root_plt->offset |= 1;
8301 else
8302 return bfd_reloc_notsupported;
8303 }
8304
8305 /* Static relocations always resolve to the .iplt entry. */
8306 st_type = STT_FUNC;
8307 value = (splt->output_section->vma
8308 + splt->output_offset
8309 + plt_offset);
8310 branch_type = ST_BRANCH_TO_ARM;
8311
8312 /* If there are non-call relocations that resolve to the .iplt
8313 entry, then all dynamic ones must too. */
8314 if (arm_plt->noncall_refcount != 0)
8315 {
8316 dynreloc_st_type = st_type;
8317 dynreloc_value = value;
8318 }
8319 }
8320 else
8321 /* We populate the .plt entry in finish_dynamic_symbol. */
8322 splt = globals->root.splt;
8323 }
8324 else
8325 {
8326 splt = NULL;
8327 plt_offset = (bfd_vma) -1;
8328 gotplt_offset = (bfd_vma) -1;
8329 }
8330
8331 switch (r_type)
8332 {
8333 case R_ARM_NONE:
8334 /* We don't need to find a value for this symbol. It's just a
8335 marker. */
8336 *unresolved_reloc_p = FALSE;
8337 return bfd_reloc_ok;
8338
8339 case R_ARM_ABS12:
8340 if (!globals->vxworks_p)
8341 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8342
8343 case R_ARM_PC24:
8344 case R_ARM_ABS32:
8345 case R_ARM_ABS32_NOI:
8346 case R_ARM_REL32:
8347 case R_ARM_REL32_NOI:
8348 case R_ARM_CALL:
8349 case R_ARM_JUMP24:
8350 case R_ARM_XPC25:
8351 case R_ARM_PREL31:
8352 case R_ARM_PLT32:
8353 /* Handle relocations which should use the PLT entry. ABS32/REL32
8354 will use the symbol's value, which may point to a PLT entry, but we
8355 don't need to handle that here. If we created a PLT entry, all
8356 branches in this object should go to it, except if the PLT is too
8357 far away, in which case a long branch stub should be inserted. */
8358 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8359 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8360 && r_type != R_ARM_CALL
8361 && r_type != R_ARM_JUMP24
8362 && r_type != R_ARM_PLT32)
8363 && plt_offset != (bfd_vma) -1)
8364 {
8365 /* If we've created a .plt section, and assigned a PLT entry
8366 to this function, it must either be a STT_GNU_IFUNC reference
8367 or not be known to bind locally. In other cases, we should
8368 have cleared the PLT entry by now. */
8369 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8370
8371 value = (splt->output_section->vma
8372 + splt->output_offset
8373 + plt_offset);
8374 *unresolved_reloc_p = FALSE;
8375 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8376 contents, rel->r_offset, value,
8377 rel->r_addend);
8378 }
8379
8380 /* When generating a shared object or relocatable executable, these
8381 relocations are copied into the output file to be resolved at
8382 run time. */
8383 if ((info->shared || globals->root.is_relocatable_executable)
8384 && (input_section->flags & SEC_ALLOC)
8385 && !(globals->vxworks_p
8386 && strcmp (input_section->output_section->name,
8387 ".tls_vars") == 0)
8388 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8389 || !SYMBOL_CALLS_LOCAL (info, h))
8390 && !(input_bfd == globals->stub_bfd
8391 && strstr (input_section->name, STUB_SUFFIX))
8392 && (h == NULL
8393 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8394 || h->root.type != bfd_link_hash_undefweak)
8395 && r_type != R_ARM_PC24
8396 && r_type != R_ARM_CALL
8397 && r_type != R_ARM_JUMP24
8398 && r_type != R_ARM_PREL31
8399 && r_type != R_ARM_PLT32)
8400 {
8401 Elf_Internal_Rela outrel;
8402 bfd_boolean skip, relocate;
8403
8404 *unresolved_reloc_p = FALSE;
8405
8406 if (sreloc == NULL && globals->root.dynamic_sections_created)
8407 {
8408 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8409 ! globals->use_rel);
8410
8411 if (sreloc == NULL)
8412 return bfd_reloc_notsupported;
8413 }
8414
8415 skip = FALSE;
8416 relocate = FALSE;
8417
8418 outrel.r_addend = addend;
8419 outrel.r_offset =
8420 _bfd_elf_section_offset (output_bfd, info, input_section,
8421 rel->r_offset);
8422 if (outrel.r_offset == (bfd_vma) -1)
8423 skip = TRUE;
8424 else if (outrel.r_offset == (bfd_vma) -2)
8425 skip = TRUE, relocate = TRUE;
8426 outrel.r_offset += (input_section->output_section->vma
8427 + input_section->output_offset);
8428
8429 if (skip)
8430 memset (&outrel, 0, sizeof outrel);
8431 else if (h != NULL
8432 && h->dynindx != -1
8433 && (!info->shared
8434 || !info->symbolic
8435 || !h->def_regular))
8436 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8437 else
8438 {
8439 int symbol;
8440
8441 /* This symbol is local, or marked to become local. */
8442 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8443 if (globals->symbian_p)
8444 {
8445 asection *osec;
8446
8447 /* On Symbian OS, the data segment and text segement
8448 can be relocated independently. Therefore, we
8449 must indicate the segment to which this
8450 relocation is relative. The BPABI allows us to
8451 use any symbol in the right segment; we just use
8452 the section symbol as it is convenient. (We
8453 cannot use the symbol given by "h" directly as it
8454 will not appear in the dynamic symbol table.)
8455
8456 Note that the dynamic linker ignores the section
8457 symbol value, so we don't subtract osec->vma
8458 from the emitted reloc addend. */
8459 if (sym_sec)
8460 osec = sym_sec->output_section;
8461 else
8462 osec = input_section->output_section;
8463 symbol = elf_section_data (osec)->dynindx;
8464 if (symbol == 0)
8465 {
8466 struct elf_link_hash_table *htab = elf_hash_table (info);
8467
8468 if ((osec->flags & SEC_READONLY) == 0
8469 && htab->data_index_section != NULL)
8470 osec = htab->data_index_section;
8471 else
8472 osec = htab->text_index_section;
8473 symbol = elf_section_data (osec)->dynindx;
8474 }
8475 BFD_ASSERT (symbol != 0);
8476 }
8477 else
8478 /* On SVR4-ish systems, the dynamic loader cannot
8479 relocate the text and data segments independently,
8480 so the symbol does not matter. */
8481 symbol = 0;
8482 if (dynreloc_st_type == STT_GNU_IFUNC)
8483 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8484 to the .iplt entry. Instead, every non-call reference
8485 must use an R_ARM_IRELATIVE relocation to obtain the
8486 correct run-time address. */
8487 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8488 else
8489 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8490 if (globals->use_rel)
8491 relocate = TRUE;
8492 else
8493 outrel.r_addend += dynreloc_value;
8494 }
8495
8496 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8497
8498 /* If this reloc is against an external symbol, we do not want to
8499 fiddle with the addend. Otherwise, we need to include the symbol
8500 value so that it becomes an addend for the dynamic reloc. */
8501 if (! relocate)
8502 return bfd_reloc_ok;
8503
8504 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8505 contents, rel->r_offset,
8506 dynreloc_value, (bfd_vma) 0);
8507 }
8508 else switch (r_type)
8509 {
8510 case R_ARM_ABS12:
8511 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8512
8513 case R_ARM_XPC25: /* Arm BLX instruction. */
8514 case R_ARM_CALL:
8515 case R_ARM_JUMP24:
8516 case R_ARM_PC24: /* Arm B/BL instruction. */
8517 case R_ARM_PLT32:
8518 {
8519 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8520
8521 if (r_type == R_ARM_XPC25)
8522 {
8523 /* Check for Arm calling Arm function. */
8524 /* FIXME: Should we translate the instruction into a BL
8525 instruction instead ? */
8526 if (branch_type != ST_BRANCH_TO_THUMB)
8527 (*_bfd_error_handler)
8528 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8529 input_bfd,
8530 h ? h->root.root.string : "(local)");
8531 }
8532 else if (r_type == R_ARM_PC24)
8533 {
8534 /* Check for Arm calling Thumb function. */
8535 if (branch_type == ST_BRANCH_TO_THUMB)
8536 {
8537 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8538 output_bfd, input_section,
8539 hit_data, sym_sec, rel->r_offset,
8540 signed_addend, value,
8541 error_message))
8542 return bfd_reloc_ok;
8543 else
8544 return bfd_reloc_dangerous;
8545 }
8546 }
8547
8548 /* Check if a stub has to be inserted because the
8549 destination is too far or we are changing mode. */
8550 if ( r_type == R_ARM_CALL
8551 || r_type == R_ARM_JUMP24
8552 || r_type == R_ARM_PLT32)
8553 {
8554 enum elf32_arm_stub_type stub_type = arm_stub_none;
8555 struct elf32_arm_link_hash_entry *hash;
8556
8557 hash = (struct elf32_arm_link_hash_entry *) h;
8558 stub_type = arm_type_of_stub (info, input_section, rel,
8559 st_type, &branch_type,
8560 hash, value, sym_sec,
8561 input_bfd, sym_name);
8562
8563 if (stub_type != arm_stub_none)
8564 {
8565 /* The target is out of reach, so redirect the
8566 branch to the local stub for this function. */
8567 stub_entry = elf32_arm_get_stub_entry (input_section,
8568 sym_sec, h,
8569 rel, globals,
8570 stub_type);
8571 {
8572 if (stub_entry != NULL)
8573 value = (stub_entry->stub_offset
8574 + stub_entry->stub_sec->output_offset
8575 + stub_entry->stub_sec->output_section->vma);
8576
8577 if (plt_offset != (bfd_vma) -1)
8578 *unresolved_reloc_p = FALSE;
8579 }
8580 }
8581 else
8582 {
8583 /* If the call goes through a PLT entry, make sure to
8584 check distance to the right destination address. */
8585 if (plt_offset != (bfd_vma) -1)
8586 {
8587 value = (splt->output_section->vma
8588 + splt->output_offset
8589 + plt_offset);
8590 *unresolved_reloc_p = FALSE;
8591 /* The PLT entry is in ARM mode, regardless of the
8592 target function. */
8593 branch_type = ST_BRANCH_TO_ARM;
8594 }
8595 }
8596 }
8597
8598 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8599 where:
8600 S is the address of the symbol in the relocation.
8601 P is address of the instruction being relocated.
8602 A is the addend (extracted from the instruction) in bytes.
8603
8604 S is held in 'value'.
8605 P is the base address of the section containing the
8606 instruction plus the offset of the reloc into that
8607 section, ie:
8608 (input_section->output_section->vma +
8609 input_section->output_offset +
8610 rel->r_offset).
8611 A is the addend, converted into bytes, ie:
8612 (signed_addend * 4)
8613
8614 Note: None of these operations have knowledge of the pipeline
8615 size of the processor, thus it is up to the assembler to
8616 encode this information into the addend. */
8617 value -= (input_section->output_section->vma
8618 + input_section->output_offset);
8619 value -= rel->r_offset;
8620 if (globals->use_rel)
8621 value += (signed_addend << howto->size);
8622 else
8623 /* RELA addends do not have to be adjusted by howto->size. */
8624 value += signed_addend;
8625
8626 signed_addend = value;
8627 signed_addend >>= howto->rightshift;
8628
8629 /* A branch to an undefined weak symbol is turned into a jump to
8630 the next instruction unless a PLT entry will be created.
8631 Do the same for local undefined symbols (but not for STN_UNDEF).
8632 The jump to the next instruction is optimized as a NOP depending
8633 on the architecture. */
8634 if (h ? (h->root.type == bfd_link_hash_undefweak
8635 && plt_offset == (bfd_vma) -1)
8636 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8637 {
8638 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8639
8640 if (arch_has_arm_nop (globals))
8641 value |= 0x0320f000;
8642 else
8643 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8644 }
8645 else
8646 {
8647 /* Perform a signed range check. */
8648 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8649 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8650 return bfd_reloc_overflow;
8651
8652 addend = (value & 2);
8653
8654 value = (signed_addend & howto->dst_mask)
8655 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8656
8657 if (r_type == R_ARM_CALL)
8658 {
8659 /* Set the H bit in the BLX instruction. */
8660 if (branch_type == ST_BRANCH_TO_THUMB)
8661 {
8662 if (addend)
8663 value |= (1 << 24);
8664 else
8665 value &= ~(bfd_vma)(1 << 24);
8666 }
8667
8668 /* Select the correct instruction (BL or BLX). */
8669 /* Only if we are not handling a BL to a stub. In this
8670 case, mode switching is performed by the stub. */
8671 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8672 value |= (1 << 28);
8673 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8674 {
8675 value &= ~(bfd_vma)(1 << 28);
8676 value |= (1 << 24);
8677 }
8678 }
8679 }
8680 }
8681 break;
8682
8683 case R_ARM_ABS32:
8684 value += addend;
8685 if (branch_type == ST_BRANCH_TO_THUMB)
8686 value |= 1;
8687 break;
8688
8689 case R_ARM_ABS32_NOI:
8690 value += addend;
8691 break;
8692
8693 case R_ARM_REL32:
8694 value += addend;
8695 if (branch_type == ST_BRANCH_TO_THUMB)
8696 value |= 1;
8697 value -= (input_section->output_section->vma
8698 + input_section->output_offset + rel->r_offset);
8699 break;
8700
8701 case R_ARM_REL32_NOI:
8702 value += addend;
8703 value -= (input_section->output_section->vma
8704 + input_section->output_offset + rel->r_offset);
8705 break;
8706
8707 case R_ARM_PREL31:
8708 value -= (input_section->output_section->vma
8709 + input_section->output_offset + rel->r_offset);
8710 value += signed_addend;
8711 if (! h || h->root.type != bfd_link_hash_undefweak)
8712 {
8713 /* Check for overflow. */
8714 if ((value ^ (value >> 1)) & (1 << 30))
8715 return bfd_reloc_overflow;
8716 }
8717 value &= 0x7fffffff;
8718 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8719 if (branch_type == ST_BRANCH_TO_THUMB)
8720 value |= 1;
8721 break;
8722 }
8723
8724 bfd_put_32 (input_bfd, value, hit_data);
8725 return bfd_reloc_ok;
8726
8727 case R_ARM_ABS8:
8728 /* PR 16202: Refectch the addend using the correct size. */
8729 if (globals->use_rel)
8730 addend = bfd_get_8 (input_bfd, hit_data);
8731 value += addend;
8732
8733 /* There is no way to tell whether the user intended to use a signed or
8734 unsigned addend. When checking for overflow we accept either,
8735 as specified by the AAELF. */
8736 if ((long) value > 0xff || (long) value < -0x80)
8737 return bfd_reloc_overflow;
8738
8739 bfd_put_8 (input_bfd, value, hit_data);
8740 return bfd_reloc_ok;
8741
8742 case R_ARM_ABS16:
8743 /* PR 16202: Refectch the addend using the correct size. */
8744 if (globals->use_rel)
8745 addend = bfd_get_16 (input_bfd, hit_data);
8746 value += addend;
8747
8748 /* See comment for R_ARM_ABS8. */
8749 if ((long) value > 0xffff || (long) value < -0x8000)
8750 return bfd_reloc_overflow;
8751
8752 bfd_put_16 (input_bfd, value, hit_data);
8753 return bfd_reloc_ok;
8754
8755 case R_ARM_THM_ABS5:
8756 /* Support ldr and str instructions for the thumb. */
8757 if (globals->use_rel)
8758 {
8759 /* Need to refetch addend. */
8760 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8761 /* ??? Need to determine shift amount from operand size. */
8762 addend >>= howto->rightshift;
8763 }
8764 value += addend;
8765
8766 /* ??? Isn't value unsigned? */
8767 if ((long) value > 0x1f || (long) value < -0x10)
8768 return bfd_reloc_overflow;
8769
8770 /* ??? Value needs to be properly shifted into place first. */
8771 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8772 bfd_put_16 (input_bfd, value, hit_data);
8773 return bfd_reloc_ok;
8774
8775 case R_ARM_THM_ALU_PREL_11_0:
8776 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8777 {
8778 bfd_vma insn;
8779 bfd_signed_vma relocation;
8780
8781 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8782 | bfd_get_16 (input_bfd, hit_data + 2);
8783
8784 if (globals->use_rel)
8785 {
8786 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8787 | ((insn & (1 << 26)) >> 15);
8788 if (insn & 0xf00000)
8789 signed_addend = -signed_addend;
8790 }
8791
8792 relocation = value + signed_addend;
8793 relocation -= Pa (input_section->output_section->vma
8794 + input_section->output_offset
8795 + rel->r_offset);
8796
8797 value = abs (relocation);
8798
8799 if (value >= 0x1000)
8800 return bfd_reloc_overflow;
8801
8802 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8803 | ((value & 0x700) << 4)
8804 | ((value & 0x800) << 15);
8805 if (relocation < 0)
8806 insn |= 0xa00000;
8807
8808 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8809 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8810
8811 return bfd_reloc_ok;
8812 }
8813
8814 case R_ARM_THM_PC8:
8815 /* PR 10073: This reloc is not generated by the GNU toolchain,
8816 but it is supported for compatibility with third party libraries
8817 generated by other compilers, specifically the ARM/IAR. */
8818 {
8819 bfd_vma insn;
8820 bfd_signed_vma relocation;
8821
8822 insn = bfd_get_16 (input_bfd, hit_data);
8823
8824 if (globals->use_rel)
8825 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8826
8827 relocation = value + addend;
8828 relocation -= Pa (input_section->output_section->vma
8829 + input_section->output_offset
8830 + rel->r_offset);
8831
8832 value = abs (relocation);
8833
8834 /* We do not check for overflow of this reloc. Although strictly
8835 speaking this is incorrect, it appears to be necessary in order
8836 to work with IAR generated relocs. Since GCC and GAS do not
8837 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8838 a problem for them. */
8839 value &= 0x3fc;
8840
8841 insn = (insn & 0xff00) | (value >> 2);
8842
8843 bfd_put_16 (input_bfd, insn, hit_data);
8844
8845 return bfd_reloc_ok;
8846 }
8847
8848 case R_ARM_THM_PC12:
8849 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8850 {
8851 bfd_vma insn;
8852 bfd_signed_vma relocation;
8853
8854 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8855 | bfd_get_16 (input_bfd, hit_data + 2);
8856
8857 if (globals->use_rel)
8858 {
8859 signed_addend = insn & 0xfff;
8860 if (!(insn & (1 << 23)))
8861 signed_addend = -signed_addend;
8862 }
8863
8864 relocation = value + signed_addend;
8865 relocation -= Pa (input_section->output_section->vma
8866 + input_section->output_offset
8867 + rel->r_offset);
8868
8869 value = abs (relocation);
8870
8871 if (value >= 0x1000)
8872 return bfd_reloc_overflow;
8873
8874 insn = (insn & 0xff7ff000) | value;
8875 if (relocation >= 0)
8876 insn |= (1 << 23);
8877
8878 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8879 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8880
8881 return bfd_reloc_ok;
8882 }
8883
8884 case R_ARM_THM_XPC22:
8885 case R_ARM_THM_CALL:
8886 case R_ARM_THM_JUMP24:
8887 /* Thumb BL (branch long instruction). */
8888 {
8889 bfd_vma relocation;
8890 bfd_vma reloc_sign;
8891 bfd_boolean overflow = FALSE;
8892 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8893 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8894 bfd_signed_vma reloc_signed_max;
8895 bfd_signed_vma reloc_signed_min;
8896 bfd_vma check;
8897 bfd_signed_vma signed_check;
8898 int bitsize;
8899 const int thumb2 = using_thumb2 (globals);
8900
8901 /* A branch to an undefined weak symbol is turned into a jump to
8902 the next instruction unless a PLT entry will be created.
8903 The jump to the next instruction is optimized as a NOP.W for
8904 Thumb-2 enabled architectures. */
8905 if (h && h->root.type == bfd_link_hash_undefweak
8906 && plt_offset == (bfd_vma) -1)
8907 {
8908 if (arch_has_thumb2_nop (globals))
8909 {
8910 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8911 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8912 }
8913 else
8914 {
8915 bfd_put_16 (input_bfd, 0xe000, hit_data);
8916 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8917 }
8918 return bfd_reloc_ok;
8919 }
8920
8921 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8922 with Thumb-1) involving the J1 and J2 bits. */
8923 if (globals->use_rel)
8924 {
8925 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8926 bfd_vma upper = upper_insn & 0x3ff;
8927 bfd_vma lower = lower_insn & 0x7ff;
8928 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8929 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8930 bfd_vma i1 = j1 ^ s ? 0 : 1;
8931 bfd_vma i2 = j2 ^ s ? 0 : 1;
8932
8933 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8934 /* Sign extend. */
8935 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8936
8937 signed_addend = addend;
8938 }
8939
8940 if (r_type == R_ARM_THM_XPC22)
8941 {
8942 /* Check for Thumb to Thumb call. */
8943 /* FIXME: Should we translate the instruction into a BL
8944 instruction instead ? */
8945 if (branch_type == ST_BRANCH_TO_THUMB)
8946 (*_bfd_error_handler)
8947 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8948 input_bfd,
8949 h ? h->root.root.string : "(local)");
8950 }
8951 else
8952 {
8953 /* If it is not a call to Thumb, assume call to Arm.
8954 If it is a call relative to a section name, then it is not a
8955 function call at all, but rather a long jump. Calls through
8956 the PLT do not require stubs. */
8957 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8958 {
8959 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8960 {
8961 /* Convert BL to BLX. */
8962 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8963 }
8964 else if (( r_type != R_ARM_THM_CALL)
8965 && (r_type != R_ARM_THM_JUMP24))
8966 {
8967 if (elf32_thumb_to_arm_stub
8968 (info, sym_name, input_bfd, output_bfd, input_section,
8969 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8970 error_message))
8971 return bfd_reloc_ok;
8972 else
8973 return bfd_reloc_dangerous;
8974 }
8975 }
8976 else if (branch_type == ST_BRANCH_TO_THUMB
8977 && globals->use_blx
8978 && r_type == R_ARM_THM_CALL)
8979 {
8980 /* Make sure this is a BL. */
8981 lower_insn |= 0x1800;
8982 }
8983 }
8984
8985 enum elf32_arm_stub_type stub_type = arm_stub_none;
8986 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8987 {
8988 /* Check if a stub has to be inserted because the destination
8989 is too far. */
8990 struct elf32_arm_stub_hash_entry *stub_entry;
8991 struct elf32_arm_link_hash_entry *hash;
8992
8993 hash = (struct elf32_arm_link_hash_entry *) h;
8994
8995 stub_type = arm_type_of_stub (info, input_section, rel,
8996 st_type, &branch_type,
8997 hash, value, sym_sec,
8998 input_bfd, sym_name);
8999
9000 if (stub_type != arm_stub_none)
9001 {
9002 /* The target is out of reach or we are changing modes, so
9003 redirect the branch to the local stub for this
9004 function. */
9005 stub_entry = elf32_arm_get_stub_entry (input_section,
9006 sym_sec, h,
9007 rel, globals,
9008 stub_type);
9009 if (stub_entry != NULL)
9010 {
9011 value = (stub_entry->stub_offset
9012 + stub_entry->stub_sec->output_offset
9013 + stub_entry->stub_sec->output_section->vma);
9014
9015 if (plt_offset != (bfd_vma) -1)
9016 *unresolved_reloc_p = FALSE;
9017 }
9018
9019 /* If this call becomes a call to Arm, force BLX. */
9020 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
9021 {
9022 if ((stub_entry
9023 && !arm_stub_is_thumb (stub_entry->stub_type))
9024 || branch_type != ST_BRANCH_TO_THUMB)
9025 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9026 }
9027 }
9028 }
9029
9030 /* Handle calls via the PLT. */
9031 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
9032 {
9033 value = (splt->output_section->vma
9034 + splt->output_offset
9035 + plt_offset);
9036
9037 if (globals->use_blx
9038 && r_type == R_ARM_THM_CALL
9039 && ! using_thumb_only (globals))
9040 {
9041 /* If the Thumb BLX instruction is available, convert
9042 the BL to a BLX instruction to call the ARM-mode
9043 PLT entry. */
9044 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9045 branch_type = ST_BRANCH_TO_ARM;
9046 }
9047 else
9048 {
9049 if (! using_thumb_only (globals))
9050 /* Target the Thumb stub before the ARM PLT entry. */
9051 value -= PLT_THUMB_STUB_SIZE;
9052 branch_type = ST_BRANCH_TO_THUMB;
9053 }
9054 *unresolved_reloc_p = FALSE;
9055 }
9056
9057 relocation = value + signed_addend;
9058
9059 relocation -= (input_section->output_section->vma
9060 + input_section->output_offset
9061 + rel->r_offset);
9062
9063 check = relocation >> howto->rightshift;
9064
9065 /* If this is a signed value, the rightshift just dropped
9066 leading 1 bits (assuming twos complement). */
9067 if ((bfd_signed_vma) relocation >= 0)
9068 signed_check = check;
9069 else
9070 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9071
9072 /* Calculate the permissable maximum and minimum values for
9073 this relocation according to whether we're relocating for
9074 Thumb-2 or not. */
9075 bitsize = howto->bitsize;
9076 if (!thumb2)
9077 bitsize -= 2;
9078 reloc_signed_max = (1 << (bitsize - 1)) - 1;
9079 reloc_signed_min = ~reloc_signed_max;
9080
9081 /* Assumes two's complement. */
9082 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9083 overflow = TRUE;
9084
9085 if ((lower_insn & 0x5000) == 0x4000)
9086 /* For a BLX instruction, make sure that the relocation is rounded up
9087 to a word boundary. This follows the semantics of the instruction
9088 which specifies that bit 1 of the target address will come from bit
9089 1 of the base address. */
9090 relocation = (relocation + 2) & ~ 3;
9091
9092 /* Put RELOCATION back into the insn. Assumes two's complement.
9093 We use the Thumb-2 encoding, which is safe even if dealing with
9094 a Thumb-1 instruction by virtue of our overflow check above. */
9095 reloc_sign = (signed_check < 0) ? 1 : 0;
9096 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
9097 | ((relocation >> 12) & 0x3ff)
9098 | (reloc_sign << 10);
9099 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
9100 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9101 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9102 | ((relocation >> 1) & 0x7ff);
9103
9104 /* Put the relocated value back in the object file: */
9105 bfd_put_16 (input_bfd, upper_insn, hit_data);
9106 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9107
9108 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9109 }
9110 break;
9111
9112 case R_ARM_THM_JUMP19:
9113 /* Thumb32 conditional branch instruction. */
9114 {
9115 bfd_vma relocation;
9116 bfd_boolean overflow = FALSE;
9117 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9118 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9119 bfd_signed_vma reloc_signed_max = 0xffffe;
9120 bfd_signed_vma reloc_signed_min = -0x100000;
9121 bfd_signed_vma signed_check;
9122
9123 /* Need to refetch the addend, reconstruct the top three bits,
9124 and squish the two 11 bit pieces together. */
9125 if (globals->use_rel)
9126 {
9127 bfd_vma S = (upper_insn & 0x0400) >> 10;
9128 bfd_vma upper = (upper_insn & 0x003f);
9129 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9130 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9131 bfd_vma lower = (lower_insn & 0x07ff);
9132
9133 upper |= J1 << 6;
9134 upper |= J2 << 7;
9135 upper |= (!S) << 8;
9136 upper -= 0x0100; /* Sign extend. */
9137
9138 addend = (upper << 12) | (lower << 1);
9139 signed_addend = addend;
9140 }
9141
9142 /* Handle calls via the PLT. */
9143 if (plt_offset != (bfd_vma) -1)
9144 {
9145 value = (splt->output_section->vma
9146 + splt->output_offset
9147 + plt_offset);
9148 /* Target the Thumb stub before the ARM PLT entry. */
9149 value -= PLT_THUMB_STUB_SIZE;
9150 *unresolved_reloc_p = FALSE;
9151 }
9152
9153 /* ??? Should handle interworking? GCC might someday try to
9154 use this for tail calls. */
9155
9156 relocation = value + signed_addend;
9157 relocation -= (input_section->output_section->vma
9158 + input_section->output_offset
9159 + rel->r_offset);
9160 signed_check = (bfd_signed_vma) relocation;
9161
9162 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9163 overflow = TRUE;
9164
9165 /* Put RELOCATION back into the insn. */
9166 {
9167 bfd_vma S = (relocation & 0x00100000) >> 20;
9168 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9169 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9170 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9171 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9172
9173 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9174 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9175 }
9176
9177 /* Put the relocated value back in the object file: */
9178 bfd_put_16 (input_bfd, upper_insn, hit_data);
9179 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9180
9181 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9182 }
9183
9184 case R_ARM_THM_JUMP11:
9185 case R_ARM_THM_JUMP8:
9186 case R_ARM_THM_JUMP6:
9187 /* Thumb B (branch) instruction). */
9188 {
9189 bfd_signed_vma relocation;
9190 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9191 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9192 bfd_signed_vma signed_check;
9193
9194 /* CZB cannot jump backward. */
9195 if (r_type == R_ARM_THM_JUMP6)
9196 reloc_signed_min = 0;
9197
9198 if (globals->use_rel)
9199 {
9200 /* Need to refetch addend. */
9201 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9202 if (addend & ((howto->src_mask + 1) >> 1))
9203 {
9204 signed_addend = -1;
9205 signed_addend &= ~ howto->src_mask;
9206 signed_addend |= addend;
9207 }
9208 else
9209 signed_addend = addend;
9210 /* The value in the insn has been right shifted. We need to
9211 undo this, so that we can perform the address calculation
9212 in terms of bytes. */
9213 signed_addend <<= howto->rightshift;
9214 }
9215 relocation = value + signed_addend;
9216
9217 relocation -= (input_section->output_section->vma
9218 + input_section->output_offset
9219 + rel->r_offset);
9220
9221 relocation >>= howto->rightshift;
9222 signed_check = relocation;
9223
9224 if (r_type == R_ARM_THM_JUMP6)
9225 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9226 else
9227 relocation &= howto->dst_mask;
9228 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9229
9230 bfd_put_16 (input_bfd, relocation, hit_data);
9231
9232 /* Assumes two's complement. */
9233 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9234 return bfd_reloc_overflow;
9235
9236 return bfd_reloc_ok;
9237 }
9238
9239 case R_ARM_ALU_PCREL7_0:
9240 case R_ARM_ALU_PCREL15_8:
9241 case R_ARM_ALU_PCREL23_15:
9242 {
9243 bfd_vma insn;
9244 bfd_vma relocation;
9245
9246 insn = bfd_get_32 (input_bfd, hit_data);
9247 if (globals->use_rel)
9248 {
9249 /* Extract the addend. */
9250 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9251 signed_addend = addend;
9252 }
9253 relocation = value + signed_addend;
9254
9255 relocation -= (input_section->output_section->vma
9256 + input_section->output_offset
9257 + rel->r_offset);
9258 insn = (insn & ~0xfff)
9259 | ((howto->bitpos << 7) & 0xf00)
9260 | ((relocation >> howto->bitpos) & 0xff);
9261 bfd_put_32 (input_bfd, value, hit_data);
9262 }
9263 return bfd_reloc_ok;
9264
9265 case R_ARM_GNU_VTINHERIT:
9266 case R_ARM_GNU_VTENTRY:
9267 return bfd_reloc_ok;
9268
9269 case R_ARM_GOTOFF32:
9270 /* Relocation is relative to the start of the
9271 global offset table. */
9272
9273 BFD_ASSERT (sgot != NULL);
9274 if (sgot == NULL)
9275 return bfd_reloc_notsupported;
9276
9277 /* If we are addressing a Thumb function, we need to adjust the
9278 address by one, so that attempts to call the function pointer will
9279 correctly interpret it as Thumb code. */
9280 if (branch_type == ST_BRANCH_TO_THUMB)
9281 value += 1;
9282
9283 /* Note that sgot->output_offset is not involved in this
9284 calculation. We always want the start of .got. If we
9285 define _GLOBAL_OFFSET_TABLE in a different way, as is
9286 permitted by the ABI, we might have to change this
9287 calculation. */
9288 value -= sgot->output_section->vma;
9289 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9290 contents, rel->r_offset, value,
9291 rel->r_addend);
9292
9293 case R_ARM_GOTPC:
9294 /* Use global offset table as symbol value. */
9295 BFD_ASSERT (sgot != NULL);
9296
9297 if (sgot == NULL)
9298 return bfd_reloc_notsupported;
9299
9300 *unresolved_reloc_p = FALSE;
9301 value = sgot->output_section->vma;
9302 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9303 contents, rel->r_offset, value,
9304 rel->r_addend);
9305
9306 case R_ARM_GOT32:
9307 case R_ARM_GOT_PREL:
9308 /* Relocation is to the entry for this symbol in the
9309 global offset table. */
9310 if (sgot == NULL)
9311 return bfd_reloc_notsupported;
9312
9313 if (dynreloc_st_type == STT_GNU_IFUNC
9314 && plt_offset != (bfd_vma) -1
9315 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9316 {
9317 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9318 symbol, and the relocation resolves directly to the runtime
9319 target rather than to the .iplt entry. This means that any
9320 .got entry would be the same value as the .igot.plt entry,
9321 so there's no point creating both. */
9322 sgot = globals->root.igotplt;
9323 value = sgot->output_offset + gotplt_offset;
9324 }
9325 else if (h != NULL)
9326 {
9327 bfd_vma off;
9328
9329 off = h->got.offset;
9330 BFD_ASSERT (off != (bfd_vma) -1);
9331 if ((off & 1) != 0)
9332 {
9333 /* We have already processsed one GOT relocation against
9334 this symbol. */
9335 off &= ~1;
9336 if (globals->root.dynamic_sections_created
9337 && !SYMBOL_REFERENCES_LOCAL (info, h))
9338 *unresolved_reloc_p = FALSE;
9339 }
9340 else
9341 {
9342 Elf_Internal_Rela outrel;
9343
9344 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
9345 {
9346 /* If the symbol doesn't resolve locally in a static
9347 object, we have an undefined reference. If the
9348 symbol doesn't resolve locally in a dynamic object,
9349 it should be resolved by the dynamic linker. */
9350 if (globals->root.dynamic_sections_created)
9351 {
9352 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9353 *unresolved_reloc_p = FALSE;
9354 }
9355 else
9356 outrel.r_info = 0;
9357 outrel.r_addend = 0;
9358 }
9359 else
9360 {
9361 if (dynreloc_st_type == STT_GNU_IFUNC)
9362 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9363 else if (info->shared &&
9364 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9365 || h->root.type != bfd_link_hash_undefweak))
9366 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9367 else
9368 outrel.r_info = 0;
9369 outrel.r_addend = dynreloc_value;
9370 }
9371
9372 /* The GOT entry is initialized to zero by default.
9373 See if we should install a different value. */
9374 if (outrel.r_addend != 0
9375 && (outrel.r_info == 0 || globals->use_rel))
9376 {
9377 bfd_put_32 (output_bfd, outrel.r_addend,
9378 sgot->contents + off);
9379 outrel.r_addend = 0;
9380 }
9381
9382 if (outrel.r_info != 0)
9383 {
9384 outrel.r_offset = (sgot->output_section->vma
9385 + sgot->output_offset
9386 + off);
9387 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9388 }
9389 h->got.offset |= 1;
9390 }
9391 value = sgot->output_offset + off;
9392 }
9393 else
9394 {
9395 bfd_vma off;
9396
9397 BFD_ASSERT (local_got_offsets != NULL &&
9398 local_got_offsets[r_symndx] != (bfd_vma) -1);
9399
9400 off = local_got_offsets[r_symndx];
9401
9402 /* The offset must always be a multiple of 4. We use the
9403 least significant bit to record whether we have already
9404 generated the necessary reloc. */
9405 if ((off & 1) != 0)
9406 off &= ~1;
9407 else
9408 {
9409 if (globals->use_rel)
9410 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9411
9412 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9413 {
9414 Elf_Internal_Rela outrel;
9415
9416 outrel.r_addend = addend + dynreloc_value;
9417 outrel.r_offset = (sgot->output_section->vma
9418 + sgot->output_offset
9419 + off);
9420 if (dynreloc_st_type == STT_GNU_IFUNC)
9421 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9422 else
9423 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9424 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9425 }
9426
9427 local_got_offsets[r_symndx] |= 1;
9428 }
9429
9430 value = sgot->output_offset + off;
9431 }
9432 if (r_type != R_ARM_GOT32)
9433 value += sgot->output_section->vma;
9434
9435 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9436 contents, rel->r_offset, value,
9437 rel->r_addend);
9438
9439 case R_ARM_TLS_LDO32:
9440 value = value - dtpoff_base (info);
9441
9442 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9443 contents, rel->r_offset, value,
9444 rel->r_addend);
9445
9446 case R_ARM_TLS_LDM32:
9447 {
9448 bfd_vma off;
9449
9450 if (sgot == NULL)
9451 abort ();
9452
9453 off = globals->tls_ldm_got.offset;
9454
9455 if ((off & 1) != 0)
9456 off &= ~1;
9457 else
9458 {
9459 /* If we don't know the module number, create a relocation
9460 for it. */
9461 if (info->shared)
9462 {
9463 Elf_Internal_Rela outrel;
9464
9465 if (srelgot == NULL)
9466 abort ();
9467
9468 outrel.r_addend = 0;
9469 outrel.r_offset = (sgot->output_section->vma
9470 + sgot->output_offset + off);
9471 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9472
9473 if (globals->use_rel)
9474 bfd_put_32 (output_bfd, outrel.r_addend,
9475 sgot->contents + off);
9476
9477 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9478 }
9479 else
9480 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9481
9482 globals->tls_ldm_got.offset |= 1;
9483 }
9484
9485 value = sgot->output_section->vma + sgot->output_offset + off
9486 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9487
9488 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9489 contents, rel->r_offset, value,
9490 rel->r_addend);
9491 }
9492
9493 case R_ARM_TLS_CALL:
9494 case R_ARM_THM_TLS_CALL:
9495 case R_ARM_TLS_GD32:
9496 case R_ARM_TLS_IE32:
9497 case R_ARM_TLS_GOTDESC:
9498 case R_ARM_TLS_DESCSEQ:
9499 case R_ARM_THM_TLS_DESCSEQ:
9500 {
9501 bfd_vma off, offplt;
9502 int indx = 0;
9503 char tls_type;
9504
9505 BFD_ASSERT (sgot != NULL);
9506
9507 if (h != NULL)
9508 {
9509 bfd_boolean dyn;
9510 dyn = globals->root.dynamic_sections_created;
9511 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9512 && (!info->shared
9513 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9514 {
9515 *unresolved_reloc_p = FALSE;
9516 indx = h->dynindx;
9517 }
9518 off = h->got.offset;
9519 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9520 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9521 }
9522 else
9523 {
9524 BFD_ASSERT (local_got_offsets != NULL);
9525 off = local_got_offsets[r_symndx];
9526 offplt = local_tlsdesc_gotents[r_symndx];
9527 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9528 }
9529
9530 /* Linker relaxations happens from one of the
9531 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9532 if (ELF32_R_TYPE(rel->r_info) != r_type)
9533 tls_type = GOT_TLS_IE;
9534
9535 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9536
9537 if ((off & 1) != 0)
9538 off &= ~1;
9539 else
9540 {
9541 bfd_boolean need_relocs = FALSE;
9542 Elf_Internal_Rela outrel;
9543 int cur_off = off;
9544
9545 /* The GOT entries have not been initialized yet. Do it
9546 now, and emit any relocations. If both an IE GOT and a
9547 GD GOT are necessary, we emit the GD first. */
9548
9549 if ((info->shared || indx != 0)
9550 && (h == NULL
9551 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9552 || h->root.type != bfd_link_hash_undefweak))
9553 {
9554 need_relocs = TRUE;
9555 BFD_ASSERT (srelgot != NULL);
9556 }
9557
9558 if (tls_type & GOT_TLS_GDESC)
9559 {
9560 bfd_byte *loc;
9561
9562 /* We should have relaxed, unless this is an undefined
9563 weak symbol. */
9564 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9565 || info->shared);
9566 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9567 <= globals->root.sgotplt->size);
9568
9569 outrel.r_addend = 0;
9570 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9571 + globals->root.sgotplt->output_offset
9572 + offplt
9573 + globals->sgotplt_jump_table_size);
9574
9575 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9576 sreloc = globals->root.srelplt;
9577 loc = sreloc->contents;
9578 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9579 BFD_ASSERT (loc + RELOC_SIZE (globals)
9580 <= sreloc->contents + sreloc->size);
9581
9582 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9583
9584 /* For globals, the first word in the relocation gets
9585 the relocation index and the top bit set, or zero,
9586 if we're binding now. For locals, it gets the
9587 symbol's offset in the tls section. */
9588 bfd_put_32 (output_bfd,
9589 !h ? value - elf_hash_table (info)->tls_sec->vma
9590 : info->flags & DF_BIND_NOW ? 0
9591 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9592 globals->root.sgotplt->contents + offplt
9593 + globals->sgotplt_jump_table_size);
9594
9595 /* Second word in the relocation is always zero. */
9596 bfd_put_32 (output_bfd, 0,
9597 globals->root.sgotplt->contents + offplt
9598 + globals->sgotplt_jump_table_size + 4);
9599 }
9600 if (tls_type & GOT_TLS_GD)
9601 {
9602 if (need_relocs)
9603 {
9604 outrel.r_addend = 0;
9605 outrel.r_offset = (sgot->output_section->vma
9606 + sgot->output_offset
9607 + cur_off);
9608 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9609
9610 if (globals->use_rel)
9611 bfd_put_32 (output_bfd, outrel.r_addend,
9612 sgot->contents + cur_off);
9613
9614 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9615
9616 if (indx == 0)
9617 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9618 sgot->contents + cur_off + 4);
9619 else
9620 {
9621 outrel.r_addend = 0;
9622 outrel.r_info = ELF32_R_INFO (indx,
9623 R_ARM_TLS_DTPOFF32);
9624 outrel.r_offset += 4;
9625
9626 if (globals->use_rel)
9627 bfd_put_32 (output_bfd, outrel.r_addend,
9628 sgot->contents + cur_off + 4);
9629
9630 elf32_arm_add_dynreloc (output_bfd, info,
9631 srelgot, &outrel);
9632 }
9633 }
9634 else
9635 {
9636 /* If we are not emitting relocations for a
9637 general dynamic reference, then we must be in a
9638 static link or an executable link with the
9639 symbol binding locally. Mark it as belonging
9640 to module 1, the executable. */
9641 bfd_put_32 (output_bfd, 1,
9642 sgot->contents + cur_off);
9643 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9644 sgot->contents + cur_off + 4);
9645 }
9646
9647 cur_off += 8;
9648 }
9649
9650 if (tls_type & GOT_TLS_IE)
9651 {
9652 if (need_relocs)
9653 {
9654 if (indx == 0)
9655 outrel.r_addend = value - dtpoff_base (info);
9656 else
9657 outrel.r_addend = 0;
9658 outrel.r_offset = (sgot->output_section->vma
9659 + sgot->output_offset
9660 + cur_off);
9661 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9662
9663 if (globals->use_rel)
9664 bfd_put_32 (output_bfd, outrel.r_addend,
9665 sgot->contents + cur_off);
9666
9667 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9668 }
9669 else
9670 bfd_put_32 (output_bfd, tpoff (info, value),
9671 sgot->contents + cur_off);
9672 cur_off += 4;
9673 }
9674
9675 if (h != NULL)
9676 h->got.offset |= 1;
9677 else
9678 local_got_offsets[r_symndx] |= 1;
9679 }
9680
9681 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9682 off += 8;
9683 else if (tls_type & GOT_TLS_GDESC)
9684 off = offplt;
9685
9686 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9687 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9688 {
9689 bfd_signed_vma offset;
9690 /* TLS stubs are arm mode. The original symbol is a
9691 data object, so branch_type is bogus. */
9692 branch_type = ST_BRANCH_TO_ARM;
9693 enum elf32_arm_stub_type stub_type
9694 = arm_type_of_stub (info, input_section, rel,
9695 st_type, &branch_type,
9696 (struct elf32_arm_link_hash_entry *)h,
9697 globals->tls_trampoline, globals->root.splt,
9698 input_bfd, sym_name);
9699
9700 if (stub_type != arm_stub_none)
9701 {
9702 struct elf32_arm_stub_hash_entry *stub_entry
9703 = elf32_arm_get_stub_entry
9704 (input_section, globals->root.splt, 0, rel,
9705 globals, stub_type);
9706 offset = (stub_entry->stub_offset
9707 + stub_entry->stub_sec->output_offset
9708 + stub_entry->stub_sec->output_section->vma);
9709 }
9710 else
9711 offset = (globals->root.splt->output_section->vma
9712 + globals->root.splt->output_offset
9713 + globals->tls_trampoline);
9714
9715 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9716 {
9717 unsigned long inst;
9718
9719 offset -= (input_section->output_section->vma
9720 + input_section->output_offset
9721 + rel->r_offset + 8);
9722
9723 inst = offset >> 2;
9724 inst &= 0x00ffffff;
9725 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9726 }
9727 else
9728 {
9729 /* Thumb blx encodes the offset in a complicated
9730 fashion. */
9731 unsigned upper_insn, lower_insn;
9732 unsigned neg;
9733
9734 offset -= (input_section->output_section->vma
9735 + input_section->output_offset
9736 + rel->r_offset + 4);
9737
9738 if (stub_type != arm_stub_none
9739 && arm_stub_is_thumb (stub_type))
9740 {
9741 lower_insn = 0xd000;
9742 }
9743 else
9744 {
9745 lower_insn = 0xc000;
9746 /* Round up the offset to a word boundary */
9747 offset = (offset + 2) & ~2;
9748 }
9749
9750 neg = offset < 0;
9751 upper_insn = (0xf000
9752 | ((offset >> 12) & 0x3ff)
9753 | (neg << 10));
9754 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9755 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9756 | ((offset >> 1) & 0x7ff);
9757 bfd_put_16 (input_bfd, upper_insn, hit_data);
9758 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9759 return bfd_reloc_ok;
9760 }
9761 }
9762 /* These relocations needs special care, as besides the fact
9763 they point somewhere in .gotplt, the addend must be
9764 adjusted accordingly depending on the type of instruction
9765 we refer to */
9766 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9767 {
9768 unsigned long data, insn;
9769 unsigned thumb;
9770
9771 data = bfd_get_32 (input_bfd, hit_data);
9772 thumb = data & 1;
9773 data &= ~1u;
9774
9775 if (thumb)
9776 {
9777 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9778 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9779 insn = (insn << 16)
9780 | bfd_get_16 (input_bfd,
9781 contents + rel->r_offset - data + 2);
9782 if ((insn & 0xf800c000) == 0xf000c000)
9783 /* bl/blx */
9784 value = -6;
9785 else if ((insn & 0xffffff00) == 0x4400)
9786 /* add */
9787 value = -5;
9788 else
9789 {
9790 (*_bfd_error_handler)
9791 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9792 input_bfd, input_section,
9793 (unsigned long)rel->r_offset, insn);
9794 return bfd_reloc_notsupported;
9795 }
9796 }
9797 else
9798 {
9799 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9800
9801 switch (insn >> 24)
9802 {
9803 case 0xeb: /* bl */
9804 case 0xfa: /* blx */
9805 value = -4;
9806 break;
9807
9808 case 0xe0: /* add */
9809 value = -8;
9810 break;
9811
9812 default:
9813 (*_bfd_error_handler)
9814 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9815 input_bfd, input_section,
9816 (unsigned long)rel->r_offset, insn);
9817 return bfd_reloc_notsupported;
9818 }
9819 }
9820
9821 value += ((globals->root.sgotplt->output_section->vma
9822 + globals->root.sgotplt->output_offset + off)
9823 - (input_section->output_section->vma
9824 + input_section->output_offset
9825 + rel->r_offset)
9826 + globals->sgotplt_jump_table_size);
9827 }
9828 else
9829 value = ((globals->root.sgot->output_section->vma
9830 + globals->root.sgot->output_offset + off)
9831 - (input_section->output_section->vma
9832 + input_section->output_offset + rel->r_offset));
9833
9834 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9835 contents, rel->r_offset, value,
9836 rel->r_addend);
9837 }
9838
9839 case R_ARM_TLS_LE32:
9840 if (info->shared && !info->pie)
9841 {
9842 (*_bfd_error_handler)
9843 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9844 input_bfd, input_section,
9845 (long) rel->r_offset, howto->name);
9846 return bfd_reloc_notsupported;
9847 }
9848 else
9849 value = tpoff (info, value);
9850
9851 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9852 contents, rel->r_offset, value,
9853 rel->r_addend);
9854
9855 case R_ARM_V4BX:
9856 if (globals->fix_v4bx)
9857 {
9858 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9859
9860 /* Ensure that we have a BX instruction. */
9861 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9862
9863 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9864 {
9865 /* Branch to veneer. */
9866 bfd_vma glue_addr;
9867 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9868 glue_addr -= input_section->output_section->vma
9869 + input_section->output_offset
9870 + rel->r_offset + 8;
9871 insn = (insn & 0xf0000000) | 0x0a000000
9872 | ((glue_addr >> 2) & 0x00ffffff);
9873 }
9874 else
9875 {
9876 /* Preserve Rm (lowest four bits) and the condition code
9877 (highest four bits). Other bits encode MOV PC,Rm. */
9878 insn = (insn & 0xf000000f) | 0x01a0f000;
9879 }
9880
9881 bfd_put_32 (input_bfd, insn, hit_data);
9882 }
9883 return bfd_reloc_ok;
9884
9885 case R_ARM_MOVW_ABS_NC:
9886 case R_ARM_MOVT_ABS:
9887 case R_ARM_MOVW_PREL_NC:
9888 case R_ARM_MOVT_PREL:
9889 /* Until we properly support segment-base-relative addressing then
9890 we assume the segment base to be zero, as for the group relocations.
9891 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9892 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9893 case R_ARM_MOVW_BREL_NC:
9894 case R_ARM_MOVW_BREL:
9895 case R_ARM_MOVT_BREL:
9896 {
9897 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9898
9899 if (globals->use_rel)
9900 {
9901 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9902 signed_addend = (addend ^ 0x8000) - 0x8000;
9903 }
9904
9905 value += signed_addend;
9906
9907 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9908 value -= (input_section->output_section->vma
9909 + input_section->output_offset + rel->r_offset);
9910
9911 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9912 return bfd_reloc_overflow;
9913
9914 if (branch_type == ST_BRANCH_TO_THUMB)
9915 value |= 1;
9916
9917 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9918 || r_type == R_ARM_MOVT_BREL)
9919 value >>= 16;
9920
9921 insn &= 0xfff0f000;
9922 insn |= value & 0xfff;
9923 insn |= (value & 0xf000) << 4;
9924 bfd_put_32 (input_bfd, insn, hit_data);
9925 }
9926 return bfd_reloc_ok;
9927
9928 case R_ARM_THM_MOVW_ABS_NC:
9929 case R_ARM_THM_MOVT_ABS:
9930 case R_ARM_THM_MOVW_PREL_NC:
9931 case R_ARM_THM_MOVT_PREL:
9932 /* Until we properly support segment-base-relative addressing then
9933 we assume the segment base to be zero, as for the above relocations.
9934 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9935 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9936 as R_ARM_THM_MOVT_ABS. */
9937 case R_ARM_THM_MOVW_BREL_NC:
9938 case R_ARM_THM_MOVW_BREL:
9939 case R_ARM_THM_MOVT_BREL:
9940 {
9941 bfd_vma insn;
9942
9943 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9944 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9945
9946 if (globals->use_rel)
9947 {
9948 addend = ((insn >> 4) & 0xf000)
9949 | ((insn >> 15) & 0x0800)
9950 | ((insn >> 4) & 0x0700)
9951 | (insn & 0x00ff);
9952 signed_addend = (addend ^ 0x8000) - 0x8000;
9953 }
9954
9955 value += signed_addend;
9956
9957 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9958 value -= (input_section->output_section->vma
9959 + input_section->output_offset + rel->r_offset);
9960
9961 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9962 return bfd_reloc_overflow;
9963
9964 if (branch_type == ST_BRANCH_TO_THUMB)
9965 value |= 1;
9966
9967 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9968 || r_type == R_ARM_THM_MOVT_BREL)
9969 value >>= 16;
9970
9971 insn &= 0xfbf08f00;
9972 insn |= (value & 0xf000) << 4;
9973 insn |= (value & 0x0800) << 15;
9974 insn |= (value & 0x0700) << 4;
9975 insn |= (value & 0x00ff);
9976
9977 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9978 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9979 }
9980 return bfd_reloc_ok;
9981
9982 case R_ARM_ALU_PC_G0_NC:
9983 case R_ARM_ALU_PC_G1_NC:
9984 case R_ARM_ALU_PC_G0:
9985 case R_ARM_ALU_PC_G1:
9986 case R_ARM_ALU_PC_G2:
9987 case R_ARM_ALU_SB_G0_NC:
9988 case R_ARM_ALU_SB_G1_NC:
9989 case R_ARM_ALU_SB_G0:
9990 case R_ARM_ALU_SB_G1:
9991 case R_ARM_ALU_SB_G2:
9992 {
9993 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9994 bfd_vma pc = input_section->output_section->vma
9995 + input_section->output_offset + rel->r_offset;
9996 /* sb is the origin of the *segment* containing the symbol. */
9997 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
9998 bfd_vma residual;
9999 bfd_vma g_n;
10000 bfd_signed_vma signed_value;
10001 int group = 0;
10002
10003 /* Determine which group of bits to select. */
10004 switch (r_type)
10005 {
10006 case R_ARM_ALU_PC_G0_NC:
10007 case R_ARM_ALU_PC_G0:
10008 case R_ARM_ALU_SB_G0_NC:
10009 case R_ARM_ALU_SB_G0:
10010 group = 0;
10011 break;
10012
10013 case R_ARM_ALU_PC_G1_NC:
10014 case R_ARM_ALU_PC_G1:
10015 case R_ARM_ALU_SB_G1_NC:
10016 case R_ARM_ALU_SB_G1:
10017 group = 1;
10018 break;
10019
10020 case R_ARM_ALU_PC_G2:
10021 case R_ARM_ALU_SB_G2:
10022 group = 2;
10023 break;
10024
10025 default:
10026 abort ();
10027 }
10028
10029 /* If REL, extract the addend from the insn. If RELA, it will
10030 have already been fetched for us. */
10031 if (globals->use_rel)
10032 {
10033 int negative;
10034 bfd_vma constant = insn & 0xff;
10035 bfd_vma rotation = (insn & 0xf00) >> 8;
10036
10037 if (rotation == 0)
10038 signed_addend = constant;
10039 else
10040 {
10041 /* Compensate for the fact that in the instruction, the
10042 rotation is stored in multiples of 2 bits. */
10043 rotation *= 2;
10044
10045 /* Rotate "constant" right by "rotation" bits. */
10046 signed_addend = (constant >> rotation) |
10047 (constant << (8 * sizeof (bfd_vma) - rotation));
10048 }
10049
10050 /* Determine if the instruction is an ADD or a SUB.
10051 (For REL, this determines the sign of the addend.) */
10052 negative = identify_add_or_sub (insn);
10053 if (negative == 0)
10054 {
10055 (*_bfd_error_handler)
10056 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10057 input_bfd, input_section,
10058 (long) rel->r_offset, howto->name);
10059 return bfd_reloc_overflow;
10060 }
10061
10062 signed_addend *= negative;
10063 }
10064
10065 /* Compute the value (X) to go in the place. */
10066 if (r_type == R_ARM_ALU_PC_G0_NC
10067 || r_type == R_ARM_ALU_PC_G1_NC
10068 || r_type == R_ARM_ALU_PC_G0
10069 || r_type == R_ARM_ALU_PC_G1
10070 || r_type == R_ARM_ALU_PC_G2)
10071 /* PC relative. */
10072 signed_value = value - pc + signed_addend;
10073 else
10074 /* Section base relative. */
10075 signed_value = value - sb + signed_addend;
10076
10077 /* If the target symbol is a Thumb function, then set the
10078 Thumb bit in the address. */
10079 if (branch_type == ST_BRANCH_TO_THUMB)
10080 signed_value |= 1;
10081
10082 /* Calculate the value of the relevant G_n, in encoded
10083 constant-with-rotation format. */
10084 g_n = calculate_group_reloc_mask (abs (signed_value), group,
10085 &residual);
10086
10087 /* Check for overflow if required. */
10088 if ((r_type == R_ARM_ALU_PC_G0
10089 || r_type == R_ARM_ALU_PC_G1
10090 || r_type == R_ARM_ALU_PC_G2
10091 || r_type == R_ARM_ALU_SB_G0
10092 || r_type == R_ARM_ALU_SB_G1
10093 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10094 {
10095 (*_bfd_error_handler)
10096 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10097 input_bfd, input_section,
10098 (long) rel->r_offset, abs (signed_value), howto->name);
10099 return bfd_reloc_overflow;
10100 }
10101
10102 /* Mask out the value and the ADD/SUB part of the opcode; take care
10103 not to destroy the S bit. */
10104 insn &= 0xff1ff000;
10105
10106 /* Set the opcode according to whether the value to go in the
10107 place is negative. */
10108 if (signed_value < 0)
10109 insn |= 1 << 22;
10110 else
10111 insn |= 1 << 23;
10112
10113 /* Encode the offset. */
10114 insn |= g_n;
10115
10116 bfd_put_32 (input_bfd, insn, hit_data);
10117 }
10118 return bfd_reloc_ok;
10119
10120 case R_ARM_LDR_PC_G0:
10121 case R_ARM_LDR_PC_G1:
10122 case R_ARM_LDR_PC_G2:
10123 case R_ARM_LDR_SB_G0:
10124 case R_ARM_LDR_SB_G1:
10125 case R_ARM_LDR_SB_G2:
10126 {
10127 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10128 bfd_vma pc = input_section->output_section->vma
10129 + input_section->output_offset + rel->r_offset;
10130 /* sb is the origin of the *segment* containing the symbol. */
10131 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10132 bfd_vma residual;
10133 bfd_signed_vma signed_value;
10134 int group = 0;
10135
10136 /* Determine which groups of bits to calculate. */
10137 switch (r_type)
10138 {
10139 case R_ARM_LDR_PC_G0:
10140 case R_ARM_LDR_SB_G0:
10141 group = 0;
10142 break;
10143
10144 case R_ARM_LDR_PC_G1:
10145 case R_ARM_LDR_SB_G1:
10146 group = 1;
10147 break;
10148
10149 case R_ARM_LDR_PC_G2:
10150 case R_ARM_LDR_SB_G2:
10151 group = 2;
10152 break;
10153
10154 default:
10155 abort ();
10156 }
10157
10158 /* If REL, extract the addend from the insn. If RELA, it will
10159 have already been fetched for us. */
10160 if (globals->use_rel)
10161 {
10162 int negative = (insn & (1 << 23)) ? 1 : -1;
10163 signed_addend = negative * (insn & 0xfff);
10164 }
10165
10166 /* Compute the value (X) to go in the place. */
10167 if (r_type == R_ARM_LDR_PC_G0
10168 || r_type == R_ARM_LDR_PC_G1
10169 || r_type == R_ARM_LDR_PC_G2)
10170 /* PC relative. */
10171 signed_value = value - pc + signed_addend;
10172 else
10173 /* Section base relative. */
10174 signed_value = value - sb + signed_addend;
10175
10176 /* Calculate the value of the relevant G_{n-1} to obtain
10177 the residual at that stage. */
10178 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10179
10180 /* Check for overflow. */
10181 if (residual >= 0x1000)
10182 {
10183 (*_bfd_error_handler)
10184 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10185 input_bfd, input_section,
10186 (long) rel->r_offset, abs (signed_value), howto->name);
10187 return bfd_reloc_overflow;
10188 }
10189
10190 /* Mask out the value and U bit. */
10191 insn &= 0xff7ff000;
10192
10193 /* Set the U bit if the value to go in the place is non-negative. */
10194 if (signed_value >= 0)
10195 insn |= 1 << 23;
10196
10197 /* Encode the offset. */
10198 insn |= residual;
10199
10200 bfd_put_32 (input_bfd, insn, hit_data);
10201 }
10202 return bfd_reloc_ok;
10203
10204 case R_ARM_LDRS_PC_G0:
10205 case R_ARM_LDRS_PC_G1:
10206 case R_ARM_LDRS_PC_G2:
10207 case R_ARM_LDRS_SB_G0:
10208 case R_ARM_LDRS_SB_G1:
10209 case R_ARM_LDRS_SB_G2:
10210 {
10211 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10212 bfd_vma pc = input_section->output_section->vma
10213 + input_section->output_offset + rel->r_offset;
10214 /* sb is the origin of the *segment* containing the symbol. */
10215 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10216 bfd_vma residual;
10217 bfd_signed_vma signed_value;
10218 int group = 0;
10219
10220 /* Determine which groups of bits to calculate. */
10221 switch (r_type)
10222 {
10223 case R_ARM_LDRS_PC_G0:
10224 case R_ARM_LDRS_SB_G0:
10225 group = 0;
10226 break;
10227
10228 case R_ARM_LDRS_PC_G1:
10229 case R_ARM_LDRS_SB_G1:
10230 group = 1;
10231 break;
10232
10233 case R_ARM_LDRS_PC_G2:
10234 case R_ARM_LDRS_SB_G2:
10235 group = 2;
10236 break;
10237
10238 default:
10239 abort ();
10240 }
10241
10242 /* If REL, extract the addend from the insn. If RELA, it will
10243 have already been fetched for us. */
10244 if (globals->use_rel)
10245 {
10246 int negative = (insn & (1 << 23)) ? 1 : -1;
10247 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10248 }
10249
10250 /* Compute the value (X) to go in the place. */
10251 if (r_type == R_ARM_LDRS_PC_G0
10252 || r_type == R_ARM_LDRS_PC_G1
10253 || r_type == R_ARM_LDRS_PC_G2)
10254 /* PC relative. */
10255 signed_value = value - pc + signed_addend;
10256 else
10257 /* Section base relative. */
10258 signed_value = value - sb + signed_addend;
10259
10260 /* Calculate the value of the relevant G_{n-1} to obtain
10261 the residual at that stage. */
10262 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10263
10264 /* Check for overflow. */
10265 if (residual >= 0x100)
10266 {
10267 (*_bfd_error_handler)
10268 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10269 input_bfd, input_section,
10270 (long) rel->r_offset, abs (signed_value), howto->name);
10271 return bfd_reloc_overflow;
10272 }
10273
10274 /* Mask out the value and U bit. */
10275 insn &= 0xff7ff0f0;
10276
10277 /* Set the U bit if the value to go in the place is non-negative. */
10278 if (signed_value >= 0)
10279 insn |= 1 << 23;
10280
10281 /* Encode the offset. */
10282 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10283
10284 bfd_put_32 (input_bfd, insn, hit_data);
10285 }
10286 return bfd_reloc_ok;
10287
10288 case R_ARM_LDC_PC_G0:
10289 case R_ARM_LDC_PC_G1:
10290 case R_ARM_LDC_PC_G2:
10291 case R_ARM_LDC_SB_G0:
10292 case R_ARM_LDC_SB_G1:
10293 case R_ARM_LDC_SB_G2:
10294 {
10295 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10296 bfd_vma pc = input_section->output_section->vma
10297 + input_section->output_offset + rel->r_offset;
10298 /* sb is the origin of the *segment* containing the symbol. */
10299 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10300 bfd_vma residual;
10301 bfd_signed_vma signed_value;
10302 int group = 0;
10303
10304 /* Determine which groups of bits to calculate. */
10305 switch (r_type)
10306 {
10307 case R_ARM_LDC_PC_G0:
10308 case R_ARM_LDC_SB_G0:
10309 group = 0;
10310 break;
10311
10312 case R_ARM_LDC_PC_G1:
10313 case R_ARM_LDC_SB_G1:
10314 group = 1;
10315 break;
10316
10317 case R_ARM_LDC_PC_G2:
10318 case R_ARM_LDC_SB_G2:
10319 group = 2;
10320 break;
10321
10322 default:
10323 abort ();
10324 }
10325
10326 /* If REL, extract the addend from the insn. If RELA, it will
10327 have already been fetched for us. */
10328 if (globals->use_rel)
10329 {
10330 int negative = (insn & (1 << 23)) ? 1 : -1;
10331 signed_addend = negative * ((insn & 0xff) << 2);
10332 }
10333
10334 /* Compute the value (X) to go in the place. */
10335 if (r_type == R_ARM_LDC_PC_G0
10336 || r_type == R_ARM_LDC_PC_G1
10337 || r_type == R_ARM_LDC_PC_G2)
10338 /* PC relative. */
10339 signed_value = value - pc + signed_addend;
10340 else
10341 /* Section base relative. */
10342 signed_value = value - sb + signed_addend;
10343
10344 /* Calculate the value of the relevant G_{n-1} to obtain
10345 the residual at that stage. */
10346 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10347
10348 /* Check for overflow. (The absolute value to go in the place must be
10349 divisible by four and, after having been divided by four, must
10350 fit in eight bits.) */
10351 if ((residual & 0x3) != 0 || residual >= 0x400)
10352 {
10353 (*_bfd_error_handler)
10354 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10355 input_bfd, input_section,
10356 (long) rel->r_offset, abs (signed_value), howto->name);
10357 return bfd_reloc_overflow;
10358 }
10359
10360 /* Mask out the value and U bit. */
10361 insn &= 0xff7fff00;
10362
10363 /* Set the U bit if the value to go in the place is non-negative. */
10364 if (signed_value >= 0)
10365 insn |= 1 << 23;
10366
10367 /* Encode the offset. */
10368 insn |= residual >> 2;
10369
10370 bfd_put_32 (input_bfd, insn, hit_data);
10371 }
10372 return bfd_reloc_ok;
10373
10374 default:
10375 return bfd_reloc_notsupported;
10376 }
10377 }
10378
10379 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10380 static void
10381 arm_add_to_rel (bfd * abfd,
10382 bfd_byte * address,
10383 reloc_howto_type * howto,
10384 bfd_signed_vma increment)
10385 {
10386 bfd_signed_vma addend;
10387
10388 if (howto->type == R_ARM_THM_CALL
10389 || howto->type == R_ARM_THM_JUMP24)
10390 {
10391 int upper_insn, lower_insn;
10392 int upper, lower;
10393
10394 upper_insn = bfd_get_16 (abfd, address);
10395 lower_insn = bfd_get_16 (abfd, address + 2);
10396 upper = upper_insn & 0x7ff;
10397 lower = lower_insn & 0x7ff;
10398
10399 addend = (upper << 12) | (lower << 1);
10400 addend += increment;
10401 addend >>= 1;
10402
10403 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10404 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10405
10406 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10407 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10408 }
10409 else
10410 {
10411 bfd_vma contents;
10412
10413 contents = bfd_get_32 (abfd, address);
10414
10415 /* Get the (signed) value from the instruction. */
10416 addend = contents & howto->src_mask;
10417 if (addend & ((howto->src_mask + 1) >> 1))
10418 {
10419 bfd_signed_vma mask;
10420
10421 mask = -1;
10422 mask &= ~ howto->src_mask;
10423 addend |= mask;
10424 }
10425
10426 /* Add in the increment, (which is a byte value). */
10427 switch (howto->type)
10428 {
10429 default:
10430 addend += increment;
10431 break;
10432
10433 case R_ARM_PC24:
10434 case R_ARM_PLT32:
10435 case R_ARM_CALL:
10436 case R_ARM_JUMP24:
10437 addend <<= howto->size;
10438 addend += increment;
10439
10440 /* Should we check for overflow here ? */
10441
10442 /* Drop any undesired bits. */
10443 addend >>= howto->rightshift;
10444 break;
10445 }
10446
10447 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10448
10449 bfd_put_32 (abfd, contents, address);
10450 }
10451 }
10452
10453 #define IS_ARM_TLS_RELOC(R_TYPE) \
10454 ((R_TYPE) == R_ARM_TLS_GD32 \
10455 || (R_TYPE) == R_ARM_TLS_LDO32 \
10456 || (R_TYPE) == R_ARM_TLS_LDM32 \
10457 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10458 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10459 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10460 || (R_TYPE) == R_ARM_TLS_LE32 \
10461 || (R_TYPE) == R_ARM_TLS_IE32 \
10462 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10463
10464 /* Specific set of relocations for the gnu tls dialect. */
10465 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10466 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10467 || (R_TYPE) == R_ARM_TLS_CALL \
10468 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10469 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10470 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10471
10472 /* Relocate an ARM ELF section. */
10473
10474 static bfd_boolean
10475 elf32_arm_relocate_section (bfd * output_bfd,
10476 struct bfd_link_info * info,
10477 bfd * input_bfd,
10478 asection * input_section,
10479 bfd_byte * contents,
10480 Elf_Internal_Rela * relocs,
10481 Elf_Internal_Sym * local_syms,
10482 asection ** local_sections)
10483 {
10484 Elf_Internal_Shdr *symtab_hdr;
10485 struct elf_link_hash_entry **sym_hashes;
10486 Elf_Internal_Rela *rel;
10487 Elf_Internal_Rela *relend;
10488 const char *name;
10489 struct elf32_arm_link_hash_table * globals;
10490
10491 globals = elf32_arm_hash_table (info);
10492 if (globals == NULL)
10493 return FALSE;
10494
10495 symtab_hdr = & elf_symtab_hdr (input_bfd);
10496 sym_hashes = elf_sym_hashes (input_bfd);
10497
10498 rel = relocs;
10499 relend = relocs + input_section->reloc_count;
10500 for (; rel < relend; rel++)
10501 {
10502 int r_type;
10503 reloc_howto_type * howto;
10504 unsigned long r_symndx;
10505 Elf_Internal_Sym * sym;
10506 asection * sec;
10507 struct elf_link_hash_entry * h;
10508 bfd_vma relocation;
10509 bfd_reloc_status_type r;
10510 arelent bfd_reloc;
10511 char sym_type;
10512 bfd_boolean unresolved_reloc = FALSE;
10513 char *error_message = NULL;
10514
10515 r_symndx = ELF32_R_SYM (rel->r_info);
10516 r_type = ELF32_R_TYPE (rel->r_info);
10517 r_type = arm_real_reloc_type (globals, r_type);
10518
10519 if ( r_type == R_ARM_GNU_VTENTRY
10520 || r_type == R_ARM_GNU_VTINHERIT)
10521 continue;
10522
10523 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10524 howto = bfd_reloc.howto;
10525
10526 h = NULL;
10527 sym = NULL;
10528 sec = NULL;
10529
10530 if (r_symndx < symtab_hdr->sh_info)
10531 {
10532 sym = local_syms + r_symndx;
10533 sym_type = ELF32_ST_TYPE (sym->st_info);
10534 sec = local_sections[r_symndx];
10535
10536 /* An object file might have a reference to a local
10537 undefined symbol. This is a daft object file, but we
10538 should at least do something about it. V4BX & NONE
10539 relocations do not use the symbol and are explicitly
10540 allowed to use the undefined symbol, so allow those.
10541 Likewise for relocations against STN_UNDEF. */
10542 if (r_type != R_ARM_V4BX
10543 && r_type != R_ARM_NONE
10544 && r_symndx != STN_UNDEF
10545 && bfd_is_und_section (sec)
10546 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10547 {
10548 if (!info->callbacks->undefined_symbol
10549 (info, bfd_elf_string_from_elf_section
10550 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10551 input_bfd, input_section,
10552 rel->r_offset, TRUE))
10553 return FALSE;
10554 }
10555
10556 if (globals->use_rel)
10557 {
10558 relocation = (sec->output_section->vma
10559 + sec->output_offset
10560 + sym->st_value);
10561 if (!info->relocatable
10562 && (sec->flags & SEC_MERGE)
10563 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10564 {
10565 asection *msec;
10566 bfd_vma addend, value;
10567
10568 switch (r_type)
10569 {
10570 case R_ARM_MOVW_ABS_NC:
10571 case R_ARM_MOVT_ABS:
10572 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10573 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10574 addend = (addend ^ 0x8000) - 0x8000;
10575 break;
10576
10577 case R_ARM_THM_MOVW_ABS_NC:
10578 case R_ARM_THM_MOVT_ABS:
10579 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10580 << 16;
10581 value |= bfd_get_16 (input_bfd,
10582 contents + rel->r_offset + 2);
10583 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10584 | ((value & 0x04000000) >> 15);
10585 addend = (addend ^ 0x8000) - 0x8000;
10586 break;
10587
10588 default:
10589 if (howto->rightshift
10590 || (howto->src_mask & (howto->src_mask + 1)))
10591 {
10592 (*_bfd_error_handler)
10593 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10594 input_bfd, input_section,
10595 (long) rel->r_offset, howto->name);
10596 return FALSE;
10597 }
10598
10599 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10600
10601 /* Get the (signed) value from the instruction. */
10602 addend = value & howto->src_mask;
10603 if (addend & ((howto->src_mask + 1) >> 1))
10604 {
10605 bfd_signed_vma mask;
10606
10607 mask = -1;
10608 mask &= ~ howto->src_mask;
10609 addend |= mask;
10610 }
10611 break;
10612 }
10613
10614 msec = sec;
10615 addend =
10616 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10617 - relocation;
10618 addend += msec->output_section->vma + msec->output_offset;
10619
10620 /* Cases here must match those in the preceding
10621 switch statement. */
10622 switch (r_type)
10623 {
10624 case R_ARM_MOVW_ABS_NC:
10625 case R_ARM_MOVT_ABS:
10626 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10627 | (addend & 0xfff);
10628 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10629 break;
10630
10631 case R_ARM_THM_MOVW_ABS_NC:
10632 case R_ARM_THM_MOVT_ABS:
10633 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10634 | (addend & 0xff) | ((addend & 0x0800) << 15);
10635 bfd_put_16 (input_bfd, value >> 16,
10636 contents + rel->r_offset);
10637 bfd_put_16 (input_bfd, value,
10638 contents + rel->r_offset + 2);
10639 break;
10640
10641 default:
10642 value = (value & ~ howto->dst_mask)
10643 | (addend & howto->dst_mask);
10644 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10645 break;
10646 }
10647 }
10648 }
10649 else
10650 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10651 }
10652 else
10653 {
10654 bfd_boolean warned, ignored;
10655
10656 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10657 r_symndx, symtab_hdr, sym_hashes,
10658 h, sec, relocation,
10659 unresolved_reloc, warned, ignored);
10660
10661 sym_type = h->type;
10662 }
10663
10664 if (sec != NULL && discarded_section (sec))
10665 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10666 rel, 1, relend, howto, 0, contents);
10667
10668 if (info->relocatable)
10669 {
10670 /* This is a relocatable link. We don't have to change
10671 anything, unless the reloc is against a section symbol,
10672 in which case we have to adjust according to where the
10673 section symbol winds up in the output section. */
10674 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10675 {
10676 if (globals->use_rel)
10677 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10678 howto, (bfd_signed_vma) sec->output_offset);
10679 else
10680 rel->r_addend += sec->output_offset;
10681 }
10682 continue;
10683 }
10684
10685 if (h != NULL)
10686 name = h->root.root.string;
10687 else
10688 {
10689 name = (bfd_elf_string_from_elf_section
10690 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10691 if (name == NULL || *name == '\0')
10692 name = bfd_section_name (input_bfd, sec);
10693 }
10694
10695 if (r_symndx != STN_UNDEF
10696 && r_type != R_ARM_NONE
10697 && (h == NULL
10698 || h->root.type == bfd_link_hash_defined
10699 || h->root.type == bfd_link_hash_defweak)
10700 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10701 {
10702 (*_bfd_error_handler)
10703 ((sym_type == STT_TLS
10704 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10705 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10706 input_bfd,
10707 input_section,
10708 (long) rel->r_offset,
10709 howto->name,
10710 name);
10711 }
10712
10713 /* We call elf32_arm_final_link_relocate unless we're completely
10714 done, i.e., the relaxation produced the final output we want,
10715 and we won't let anybody mess with it. Also, we have to do
10716 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10717 both in relaxed and non-relaxed cases */
10718 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10719 || (IS_ARM_TLS_GNU_RELOC (r_type)
10720 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10721 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10722 & GOT_TLS_GDESC)))
10723 {
10724 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10725 contents, rel, h == NULL);
10726 /* This may have been marked unresolved because it came from
10727 a shared library. But we've just dealt with that. */
10728 unresolved_reloc = 0;
10729 }
10730 else
10731 r = bfd_reloc_continue;
10732
10733 if (r == bfd_reloc_continue)
10734 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10735 input_section, contents, rel,
10736 relocation, info, sec, name, sym_type,
10737 (h ? h->target_internal
10738 : ARM_SYM_BRANCH_TYPE (sym)), h,
10739 &unresolved_reloc, &error_message);
10740
10741 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10742 because such sections are not SEC_ALLOC and thus ld.so will
10743 not process them. */
10744 if (unresolved_reloc
10745 && !((input_section->flags & SEC_DEBUGGING) != 0
10746 && h->def_dynamic)
10747 && _bfd_elf_section_offset (output_bfd, info, input_section,
10748 rel->r_offset) != (bfd_vma) -1)
10749 {
10750 (*_bfd_error_handler)
10751 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10752 input_bfd,
10753 input_section,
10754 (long) rel->r_offset,
10755 howto->name,
10756 h->root.root.string);
10757 return FALSE;
10758 }
10759
10760 if (r != bfd_reloc_ok)
10761 {
10762 switch (r)
10763 {
10764 case bfd_reloc_overflow:
10765 /* If the overflowing reloc was to an undefined symbol,
10766 we have already printed one error message and there
10767 is no point complaining again. */
10768 if ((! h ||
10769 h->root.type != bfd_link_hash_undefined)
10770 && (!((*info->callbacks->reloc_overflow)
10771 (info, (h ? &h->root : NULL), name, howto->name,
10772 (bfd_vma) 0, input_bfd, input_section,
10773 rel->r_offset))))
10774 return FALSE;
10775 break;
10776
10777 case bfd_reloc_undefined:
10778 if (!((*info->callbacks->undefined_symbol)
10779 (info, name, input_bfd, input_section,
10780 rel->r_offset, TRUE)))
10781 return FALSE;
10782 break;
10783
10784 case bfd_reloc_outofrange:
10785 error_message = _("out of range");
10786 goto common_error;
10787
10788 case bfd_reloc_notsupported:
10789 error_message = _("unsupported relocation");
10790 goto common_error;
10791
10792 case bfd_reloc_dangerous:
10793 /* error_message should already be set. */
10794 goto common_error;
10795
10796 default:
10797 error_message = _("unknown error");
10798 /* Fall through. */
10799
10800 common_error:
10801 BFD_ASSERT (error_message != NULL);
10802 if (!((*info->callbacks->reloc_dangerous)
10803 (info, error_message, input_bfd, input_section,
10804 rel->r_offset)))
10805 return FALSE;
10806 break;
10807 }
10808 }
10809 }
10810
10811 return TRUE;
10812 }
10813
10814 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10815 adds the edit to the start of the list. (The list must be built in order of
10816 ascending TINDEX: the function's callers are primarily responsible for
10817 maintaining that condition). */
10818
10819 static void
10820 add_unwind_table_edit (arm_unwind_table_edit **head,
10821 arm_unwind_table_edit **tail,
10822 arm_unwind_edit_type type,
10823 asection *linked_section,
10824 unsigned int tindex)
10825 {
10826 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10827 xmalloc (sizeof (arm_unwind_table_edit));
10828
10829 new_edit->type = type;
10830 new_edit->linked_section = linked_section;
10831 new_edit->index = tindex;
10832
10833 if (tindex > 0)
10834 {
10835 new_edit->next = NULL;
10836
10837 if (*tail)
10838 (*tail)->next = new_edit;
10839
10840 (*tail) = new_edit;
10841
10842 if (!*head)
10843 (*head) = new_edit;
10844 }
10845 else
10846 {
10847 new_edit->next = *head;
10848
10849 if (!*tail)
10850 *tail = new_edit;
10851
10852 *head = new_edit;
10853 }
10854 }
10855
10856 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10857
10858 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10859 static void
10860 adjust_exidx_size(asection *exidx_sec, int adjust)
10861 {
10862 asection *out_sec;
10863
10864 if (!exidx_sec->rawsize)
10865 exidx_sec->rawsize = exidx_sec->size;
10866
10867 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10868 out_sec = exidx_sec->output_section;
10869 /* Adjust size of output section. */
10870 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10871 }
10872
10873 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10874 static void
10875 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10876 {
10877 struct _arm_elf_section_data *exidx_arm_data;
10878
10879 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10880 add_unwind_table_edit (
10881 &exidx_arm_data->u.exidx.unwind_edit_list,
10882 &exidx_arm_data->u.exidx.unwind_edit_tail,
10883 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10884
10885 adjust_exidx_size(exidx_sec, 8);
10886 }
10887
10888 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10889 made to those tables, such that:
10890
10891 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10892 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10893 codes which have been inlined into the index).
10894
10895 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10896
10897 The edits are applied when the tables are written
10898 (in elf32_arm_write_section). */
10899
10900 bfd_boolean
10901 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10902 unsigned int num_text_sections,
10903 struct bfd_link_info *info,
10904 bfd_boolean merge_exidx_entries)
10905 {
10906 bfd *inp;
10907 unsigned int last_second_word = 0, i;
10908 asection *last_exidx_sec = NULL;
10909 asection *last_text_sec = NULL;
10910 int last_unwind_type = -1;
10911
10912 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10913 text sections. */
10914 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10915 {
10916 asection *sec;
10917
10918 for (sec = inp->sections; sec != NULL; sec = sec->next)
10919 {
10920 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10921 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10922
10923 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10924 continue;
10925
10926 if (elf_sec->linked_to)
10927 {
10928 Elf_Internal_Shdr *linked_hdr
10929 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10930 struct _arm_elf_section_data *linked_sec_arm_data
10931 = get_arm_elf_section_data (linked_hdr->bfd_section);
10932
10933 if (linked_sec_arm_data == NULL)
10934 continue;
10935
10936 /* Link this .ARM.exidx section back from the text section it
10937 describes. */
10938 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10939 }
10940 }
10941 }
10942
10943 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10944 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10945 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10946
10947 for (i = 0; i < num_text_sections; i++)
10948 {
10949 asection *sec = text_section_order[i];
10950 asection *exidx_sec;
10951 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10952 struct _arm_elf_section_data *exidx_arm_data;
10953 bfd_byte *contents = NULL;
10954 int deleted_exidx_bytes = 0;
10955 bfd_vma j;
10956 arm_unwind_table_edit *unwind_edit_head = NULL;
10957 arm_unwind_table_edit *unwind_edit_tail = NULL;
10958 Elf_Internal_Shdr *hdr;
10959 bfd *ibfd;
10960
10961 if (arm_data == NULL)
10962 continue;
10963
10964 exidx_sec = arm_data->u.text.arm_exidx_sec;
10965 if (exidx_sec == NULL)
10966 {
10967 /* Section has no unwind data. */
10968 if (last_unwind_type == 0 || !last_exidx_sec)
10969 continue;
10970
10971 /* Ignore zero sized sections. */
10972 if (sec->size == 0)
10973 continue;
10974
10975 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10976 last_unwind_type = 0;
10977 continue;
10978 }
10979
10980 /* Skip /DISCARD/ sections. */
10981 if (bfd_is_abs_section (exidx_sec->output_section))
10982 continue;
10983
10984 hdr = &elf_section_data (exidx_sec)->this_hdr;
10985 if (hdr->sh_type != SHT_ARM_EXIDX)
10986 continue;
10987
10988 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10989 if (exidx_arm_data == NULL)
10990 continue;
10991
10992 ibfd = exidx_sec->owner;
10993
10994 if (hdr->contents != NULL)
10995 contents = hdr->contents;
10996 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10997 /* An error? */
10998 continue;
10999
11000 for (j = 0; j < hdr->sh_size; j += 8)
11001 {
11002 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11003 int unwind_type;
11004 int elide = 0;
11005
11006 /* An EXIDX_CANTUNWIND entry. */
11007 if (second_word == 1)
11008 {
11009 if (last_unwind_type == 0)
11010 elide = 1;
11011 unwind_type = 0;
11012 }
11013 /* Inlined unwinding data. Merge if equal to previous. */
11014 else if ((second_word & 0x80000000) != 0)
11015 {
11016 if (merge_exidx_entries
11017 && last_second_word == second_word && last_unwind_type == 1)
11018 elide = 1;
11019 unwind_type = 1;
11020 last_second_word = second_word;
11021 }
11022 /* Normal table entry. In theory we could merge these too,
11023 but duplicate entries are likely to be much less common. */
11024 else
11025 unwind_type = 2;
11026
11027 if (elide)
11028 {
11029 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11030 DELETE_EXIDX_ENTRY, NULL, j / 8);
11031
11032 deleted_exidx_bytes += 8;
11033 }
11034
11035 last_unwind_type = unwind_type;
11036 }
11037
11038 /* Free contents if we allocated it ourselves. */
11039 if (contents != hdr->contents)
11040 free (contents);
11041
11042 /* Record edits to be applied later (in elf32_arm_write_section). */
11043 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11044 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
11045
11046 if (deleted_exidx_bytes > 0)
11047 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11048
11049 last_exidx_sec = exidx_sec;
11050 last_text_sec = sec;
11051 }
11052
11053 /* Add terminating CANTUNWIND entry. */
11054 if (last_exidx_sec && last_unwind_type != 0)
11055 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11056
11057 return TRUE;
11058 }
11059
11060 static bfd_boolean
11061 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11062 bfd *ibfd, const char *name)
11063 {
11064 asection *sec, *osec;
11065
11066 sec = bfd_get_linker_section (ibfd, name);
11067 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11068 return TRUE;
11069
11070 osec = sec->output_section;
11071 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11072 return TRUE;
11073
11074 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11075 sec->output_offset, sec->size))
11076 return FALSE;
11077
11078 return TRUE;
11079 }
11080
11081 static bfd_boolean
11082 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11083 {
11084 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
11085 asection *sec, *osec;
11086
11087 if (globals == NULL)
11088 return FALSE;
11089
11090 /* Invoke the regular ELF backend linker to do all the work. */
11091 if (!bfd_elf_final_link (abfd, info))
11092 return FALSE;
11093
11094 /* Process stub sections (eg BE8 encoding, ...). */
11095 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11096 int i;
11097 for (i=0; i<htab->top_id; i++)
11098 {
11099 sec = htab->stub_group[i].stub_sec;
11100 /* Only process it once, in its link_sec slot. */
11101 if (sec && i == htab->stub_group[i].link_sec->id)
11102 {
11103 osec = sec->output_section;
11104 elf32_arm_write_section (abfd, info, sec, sec->contents);
11105 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11106 sec->output_offset, sec->size))
11107 return FALSE;
11108 }
11109 }
11110
11111 /* Write out any glue sections now that we have created all the
11112 stubs. */
11113 if (globals->bfd_of_glue_owner != NULL)
11114 {
11115 if (! elf32_arm_output_glue_section (info, abfd,
11116 globals->bfd_of_glue_owner,
11117 ARM2THUMB_GLUE_SECTION_NAME))
11118 return FALSE;
11119
11120 if (! elf32_arm_output_glue_section (info, abfd,
11121 globals->bfd_of_glue_owner,
11122 THUMB2ARM_GLUE_SECTION_NAME))
11123 return FALSE;
11124
11125 if (! elf32_arm_output_glue_section (info, abfd,
11126 globals->bfd_of_glue_owner,
11127 VFP11_ERRATUM_VENEER_SECTION_NAME))
11128 return FALSE;
11129
11130 if (! elf32_arm_output_glue_section (info, abfd,
11131 globals->bfd_of_glue_owner,
11132 ARM_BX_GLUE_SECTION_NAME))
11133 return FALSE;
11134 }
11135
11136 return TRUE;
11137 }
11138
11139 /* Return a best guess for the machine number based on the attributes. */
11140
11141 static unsigned int
11142 bfd_arm_get_mach_from_attributes (bfd * abfd)
11143 {
11144 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11145
11146 switch (arch)
11147 {
11148 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11149 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11150 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11151
11152 case TAG_CPU_ARCH_V5TE:
11153 {
11154 char * name;
11155
11156 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11157 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11158
11159 if (name)
11160 {
11161 if (strcmp (name, "IWMMXT2") == 0)
11162 return bfd_mach_arm_iWMMXt2;
11163
11164 if (strcmp (name, "IWMMXT") == 0)
11165 return bfd_mach_arm_iWMMXt;
11166
11167 if (strcmp (name, "XSCALE") == 0)
11168 {
11169 int wmmx;
11170
11171 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11172 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11173 switch (wmmx)
11174 {
11175 case 1: return bfd_mach_arm_iWMMXt;
11176 case 2: return bfd_mach_arm_iWMMXt2;
11177 default: return bfd_mach_arm_XScale;
11178 }
11179 }
11180 }
11181
11182 return bfd_mach_arm_5TE;
11183 }
11184
11185 default:
11186 return bfd_mach_arm_unknown;
11187 }
11188 }
11189
11190 /* Set the right machine number. */
11191
11192 static bfd_boolean
11193 elf32_arm_object_p (bfd *abfd)
11194 {
11195 unsigned int mach;
11196
11197 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11198
11199 if (mach == bfd_mach_arm_unknown)
11200 {
11201 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11202 mach = bfd_mach_arm_ep9312;
11203 else
11204 mach = bfd_arm_get_mach_from_attributes (abfd);
11205 }
11206
11207 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11208 return TRUE;
11209 }
11210
11211 /* Function to keep ARM specific flags in the ELF header. */
11212
11213 static bfd_boolean
11214 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11215 {
11216 if (elf_flags_init (abfd)
11217 && elf_elfheader (abfd)->e_flags != flags)
11218 {
11219 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11220 {
11221 if (flags & EF_ARM_INTERWORK)
11222 (*_bfd_error_handler)
11223 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11224 abfd);
11225 else
11226 _bfd_error_handler
11227 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11228 abfd);
11229 }
11230 }
11231 else
11232 {
11233 elf_elfheader (abfd)->e_flags = flags;
11234 elf_flags_init (abfd) = TRUE;
11235 }
11236
11237 return TRUE;
11238 }
11239
11240 /* Copy backend specific data from one object module to another. */
11241
11242 static bfd_boolean
11243 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11244 {
11245 flagword in_flags;
11246 flagword out_flags;
11247
11248 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11249 return TRUE;
11250
11251 in_flags = elf_elfheader (ibfd)->e_flags;
11252 out_flags = elf_elfheader (obfd)->e_flags;
11253
11254 if (elf_flags_init (obfd)
11255 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11256 && in_flags != out_flags)
11257 {
11258 /* Cannot mix APCS26 and APCS32 code. */
11259 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11260 return FALSE;
11261
11262 /* Cannot mix float APCS and non-float APCS code. */
11263 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11264 return FALSE;
11265
11266 /* If the src and dest have different interworking flags
11267 then turn off the interworking bit. */
11268 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11269 {
11270 if (out_flags & EF_ARM_INTERWORK)
11271 _bfd_error_handler
11272 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11273 obfd, ibfd);
11274
11275 in_flags &= ~EF_ARM_INTERWORK;
11276 }
11277
11278 /* Likewise for PIC, though don't warn for this case. */
11279 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11280 in_flags &= ~EF_ARM_PIC;
11281 }
11282
11283 elf_elfheader (obfd)->e_flags = in_flags;
11284 elf_flags_init (obfd) = TRUE;
11285
11286 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
11287 }
11288
11289 /* Values for Tag_ABI_PCS_R9_use. */
11290 enum
11291 {
11292 AEABI_R9_V6,
11293 AEABI_R9_SB,
11294 AEABI_R9_TLS,
11295 AEABI_R9_unused
11296 };
11297
11298 /* Values for Tag_ABI_PCS_RW_data. */
11299 enum
11300 {
11301 AEABI_PCS_RW_data_absolute,
11302 AEABI_PCS_RW_data_PCrel,
11303 AEABI_PCS_RW_data_SBrel,
11304 AEABI_PCS_RW_data_unused
11305 };
11306
11307 /* Values for Tag_ABI_enum_size. */
11308 enum
11309 {
11310 AEABI_enum_unused,
11311 AEABI_enum_short,
11312 AEABI_enum_wide,
11313 AEABI_enum_forced_wide
11314 };
11315
11316 /* Determine whether an object attribute tag takes an integer, a
11317 string or both. */
11318
11319 static int
11320 elf32_arm_obj_attrs_arg_type (int tag)
11321 {
11322 if (tag == Tag_compatibility)
11323 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11324 else if (tag == Tag_nodefaults)
11325 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11326 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11327 return ATTR_TYPE_FLAG_STR_VAL;
11328 else if (tag < 32)
11329 return ATTR_TYPE_FLAG_INT_VAL;
11330 else
11331 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11332 }
11333
11334 /* The ABI defines that Tag_conformance should be emitted first, and that
11335 Tag_nodefaults should be second (if either is defined). This sets those
11336 two positions, and bumps up the position of all the remaining tags to
11337 compensate. */
11338 static int
11339 elf32_arm_obj_attrs_order (int num)
11340 {
11341 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11342 return Tag_conformance;
11343 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11344 return Tag_nodefaults;
11345 if ((num - 2) < Tag_nodefaults)
11346 return num - 2;
11347 if ((num - 1) < Tag_conformance)
11348 return num - 1;
11349 return num;
11350 }
11351
11352 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11353 static bfd_boolean
11354 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11355 {
11356 if ((tag & 127) < 64)
11357 {
11358 _bfd_error_handler
11359 (_("%B: Unknown mandatory EABI object attribute %d"),
11360 abfd, tag);
11361 bfd_set_error (bfd_error_bad_value);
11362 return FALSE;
11363 }
11364 else
11365 {
11366 _bfd_error_handler
11367 (_("Warning: %B: Unknown EABI object attribute %d"),
11368 abfd, tag);
11369 return TRUE;
11370 }
11371 }
11372
11373 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11374 Returns -1 if no architecture could be read. */
11375
11376 static int
11377 get_secondary_compatible_arch (bfd *abfd)
11378 {
11379 obj_attribute *attr =
11380 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11381
11382 /* Note: the tag and its argument below are uleb128 values, though
11383 currently-defined values fit in one byte for each. */
11384 if (attr->s
11385 && attr->s[0] == Tag_CPU_arch
11386 && (attr->s[1] & 128) != 128
11387 && attr->s[2] == 0)
11388 return attr->s[1];
11389
11390 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11391 return -1;
11392 }
11393
11394 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11395 The tag is removed if ARCH is -1. */
11396
11397 static void
11398 set_secondary_compatible_arch (bfd *abfd, int arch)
11399 {
11400 obj_attribute *attr =
11401 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11402
11403 if (arch == -1)
11404 {
11405 attr->s = NULL;
11406 return;
11407 }
11408
11409 /* Note: the tag and its argument below are uleb128 values, though
11410 currently-defined values fit in one byte for each. */
11411 if (!attr->s)
11412 attr->s = (char *) bfd_alloc (abfd, 3);
11413 attr->s[0] = Tag_CPU_arch;
11414 attr->s[1] = arch;
11415 attr->s[2] = '\0';
11416 }
11417
11418 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11419 into account. */
11420
11421 static int
11422 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11423 int newtag, int secondary_compat)
11424 {
11425 #define T(X) TAG_CPU_ARCH_##X
11426 int tagl, tagh, result;
11427 const int v6t2[] =
11428 {
11429 T(V6T2), /* PRE_V4. */
11430 T(V6T2), /* V4. */
11431 T(V6T2), /* V4T. */
11432 T(V6T2), /* V5T. */
11433 T(V6T2), /* V5TE. */
11434 T(V6T2), /* V5TEJ. */
11435 T(V6T2), /* V6. */
11436 T(V7), /* V6KZ. */
11437 T(V6T2) /* V6T2. */
11438 };
11439 const int v6k[] =
11440 {
11441 T(V6K), /* PRE_V4. */
11442 T(V6K), /* V4. */
11443 T(V6K), /* V4T. */
11444 T(V6K), /* V5T. */
11445 T(V6K), /* V5TE. */
11446 T(V6K), /* V5TEJ. */
11447 T(V6K), /* V6. */
11448 T(V6KZ), /* V6KZ. */
11449 T(V7), /* V6T2. */
11450 T(V6K) /* V6K. */
11451 };
11452 const int v7[] =
11453 {
11454 T(V7), /* PRE_V4. */
11455 T(V7), /* V4. */
11456 T(V7), /* V4T. */
11457 T(V7), /* V5T. */
11458 T(V7), /* V5TE. */
11459 T(V7), /* V5TEJ. */
11460 T(V7), /* V6. */
11461 T(V7), /* V6KZ. */
11462 T(V7), /* V6T2. */
11463 T(V7), /* V6K. */
11464 T(V7) /* V7. */
11465 };
11466 const int v6_m[] =
11467 {
11468 -1, /* PRE_V4. */
11469 -1, /* V4. */
11470 T(V6K), /* V4T. */
11471 T(V6K), /* V5T. */
11472 T(V6K), /* V5TE. */
11473 T(V6K), /* V5TEJ. */
11474 T(V6K), /* V6. */
11475 T(V6KZ), /* V6KZ. */
11476 T(V7), /* V6T2. */
11477 T(V6K), /* V6K. */
11478 T(V7), /* V7. */
11479 T(V6_M) /* V6_M. */
11480 };
11481 const int v6s_m[] =
11482 {
11483 -1, /* PRE_V4. */
11484 -1, /* V4. */
11485 T(V6K), /* V4T. */
11486 T(V6K), /* V5T. */
11487 T(V6K), /* V5TE. */
11488 T(V6K), /* V5TEJ. */
11489 T(V6K), /* V6. */
11490 T(V6KZ), /* V6KZ. */
11491 T(V7), /* V6T2. */
11492 T(V6K), /* V6K. */
11493 T(V7), /* V7. */
11494 T(V6S_M), /* V6_M. */
11495 T(V6S_M) /* V6S_M. */
11496 };
11497 const int v7e_m[] =
11498 {
11499 -1, /* PRE_V4. */
11500 -1, /* V4. */
11501 T(V7E_M), /* V4T. */
11502 T(V7E_M), /* V5T. */
11503 T(V7E_M), /* V5TE. */
11504 T(V7E_M), /* V5TEJ. */
11505 T(V7E_M), /* V6. */
11506 T(V7E_M), /* V6KZ. */
11507 T(V7E_M), /* V6T2. */
11508 T(V7E_M), /* V6K. */
11509 T(V7E_M), /* V7. */
11510 T(V7E_M), /* V6_M. */
11511 T(V7E_M), /* V6S_M. */
11512 T(V7E_M) /* V7E_M. */
11513 };
11514 const int v8[] =
11515 {
11516 T(V8), /* PRE_V4. */
11517 T(V8), /* V4. */
11518 T(V8), /* V4T. */
11519 T(V8), /* V5T. */
11520 T(V8), /* V5TE. */
11521 T(V8), /* V5TEJ. */
11522 T(V8), /* V6. */
11523 T(V8), /* V6KZ. */
11524 T(V8), /* V6T2. */
11525 T(V8), /* V6K. */
11526 T(V8), /* V7. */
11527 T(V8), /* V6_M. */
11528 T(V8), /* V6S_M. */
11529 T(V8), /* V7E_M. */
11530 T(V8) /* V8. */
11531 };
11532 const int v4t_plus_v6_m[] =
11533 {
11534 -1, /* PRE_V4. */
11535 -1, /* V4. */
11536 T(V4T), /* V4T. */
11537 T(V5T), /* V5T. */
11538 T(V5TE), /* V5TE. */
11539 T(V5TEJ), /* V5TEJ. */
11540 T(V6), /* V6. */
11541 T(V6KZ), /* V6KZ. */
11542 T(V6T2), /* V6T2. */
11543 T(V6K), /* V6K. */
11544 T(V7), /* V7. */
11545 T(V6_M), /* V6_M. */
11546 T(V6S_M), /* V6S_M. */
11547 T(V7E_M), /* V7E_M. */
11548 T(V8), /* V8. */
11549 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11550 };
11551 const int *comb[] =
11552 {
11553 v6t2,
11554 v6k,
11555 v7,
11556 v6_m,
11557 v6s_m,
11558 v7e_m,
11559 v8,
11560 /* Pseudo-architecture. */
11561 v4t_plus_v6_m
11562 };
11563
11564 /* Check we've not got a higher architecture than we know about. */
11565
11566 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11567 {
11568 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11569 return -1;
11570 }
11571
11572 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11573
11574 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11575 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11576 oldtag = T(V4T_PLUS_V6_M);
11577
11578 /* And override the new tag if we have a Tag_also_compatible_with on the
11579 input. */
11580
11581 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11582 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11583 newtag = T(V4T_PLUS_V6_M);
11584
11585 tagl = (oldtag < newtag) ? oldtag : newtag;
11586 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11587
11588 /* Architectures before V6KZ add features monotonically. */
11589 if (tagh <= TAG_CPU_ARCH_V6KZ)
11590 return result;
11591
11592 result = comb[tagh - T(V6T2)][tagl];
11593
11594 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11595 as the canonical version. */
11596 if (result == T(V4T_PLUS_V6_M))
11597 {
11598 result = T(V4T);
11599 *secondary_compat_out = T(V6_M);
11600 }
11601 else
11602 *secondary_compat_out = -1;
11603
11604 if (result == -1)
11605 {
11606 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11607 ibfd, oldtag, newtag);
11608 return -1;
11609 }
11610
11611 return result;
11612 #undef T
11613 }
11614
11615 /* Query attributes object to see if integer divide instructions may be
11616 present in an object. */
11617 static bfd_boolean
11618 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11619 {
11620 int arch = attr[Tag_CPU_arch].i;
11621 int profile = attr[Tag_CPU_arch_profile].i;
11622
11623 switch (attr[Tag_DIV_use].i)
11624 {
11625 case 0:
11626 /* Integer divide allowed if instruction contained in archetecture. */
11627 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11628 return TRUE;
11629 else if (arch >= TAG_CPU_ARCH_V7E_M)
11630 return TRUE;
11631 else
11632 return FALSE;
11633
11634 case 1:
11635 /* Integer divide explicitly prohibited. */
11636 return FALSE;
11637
11638 default:
11639 /* Unrecognised case - treat as allowing divide everywhere. */
11640 case 2:
11641 /* Integer divide allowed in ARM state. */
11642 return TRUE;
11643 }
11644 }
11645
11646 /* Query attributes object to see if integer divide instructions are
11647 forbidden to be in the object. This is not the inverse of
11648 elf32_arm_attributes_accept_div. */
11649 static bfd_boolean
11650 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11651 {
11652 return attr[Tag_DIV_use].i == 1;
11653 }
11654
11655 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11656 are conflicting attributes. */
11657
11658 static bfd_boolean
11659 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11660 {
11661 obj_attribute *in_attr;
11662 obj_attribute *out_attr;
11663 /* Some tags have 0 = don't care, 1 = strong requirement,
11664 2 = weak requirement. */
11665 static const int order_021[3] = {0, 2, 1};
11666 int i;
11667 bfd_boolean result = TRUE;
11668
11669 /* Skip the linker stubs file. This preserves previous behavior
11670 of accepting unknown attributes in the first input file - but
11671 is that a bug? */
11672 if (ibfd->flags & BFD_LINKER_CREATED)
11673 return TRUE;
11674
11675 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11676 {
11677 /* This is the first object. Copy the attributes. */
11678 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11679
11680 out_attr = elf_known_obj_attributes_proc (obfd);
11681
11682 /* Use the Tag_null value to indicate the attributes have been
11683 initialized. */
11684 out_attr[0].i = 1;
11685
11686 /* We do not output objects with Tag_MPextension_use_legacy - we move
11687 the attribute's value to Tag_MPextension_use. */
11688 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11689 {
11690 if (out_attr[Tag_MPextension_use].i != 0
11691 && out_attr[Tag_MPextension_use_legacy].i
11692 != out_attr[Tag_MPextension_use].i)
11693 {
11694 _bfd_error_handler
11695 (_("Error: %B has both the current and legacy "
11696 "Tag_MPextension_use attributes"), ibfd);
11697 result = FALSE;
11698 }
11699
11700 out_attr[Tag_MPextension_use] =
11701 out_attr[Tag_MPextension_use_legacy];
11702 out_attr[Tag_MPextension_use_legacy].type = 0;
11703 out_attr[Tag_MPextension_use_legacy].i = 0;
11704 }
11705
11706 return result;
11707 }
11708
11709 in_attr = elf_known_obj_attributes_proc (ibfd);
11710 out_attr = elf_known_obj_attributes_proc (obfd);
11711 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11712 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11713 {
11714 /* Ignore mismatches if the object doesn't use floating point. */
11715 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11716 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11717 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11718 {
11719 _bfd_error_handler
11720 (_("error: %B uses VFP register arguments, %B does not"),
11721 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11722 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11723 result = FALSE;
11724 }
11725 }
11726
11727 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11728 {
11729 /* Merge this attribute with existing attributes. */
11730 switch (i)
11731 {
11732 case Tag_CPU_raw_name:
11733 case Tag_CPU_name:
11734 /* These are merged after Tag_CPU_arch. */
11735 break;
11736
11737 case Tag_ABI_optimization_goals:
11738 case Tag_ABI_FP_optimization_goals:
11739 /* Use the first value seen. */
11740 break;
11741
11742 case Tag_CPU_arch:
11743 {
11744 int secondary_compat = -1, secondary_compat_out = -1;
11745 unsigned int saved_out_attr = out_attr[i].i;
11746 static const char *name_table[] = {
11747 /* These aren't real CPU names, but we can't guess
11748 that from the architecture version alone. */
11749 "Pre v4",
11750 "ARM v4",
11751 "ARM v4T",
11752 "ARM v5T",
11753 "ARM v5TE",
11754 "ARM v5TEJ",
11755 "ARM v6",
11756 "ARM v6KZ",
11757 "ARM v6T2",
11758 "ARM v6K",
11759 "ARM v7",
11760 "ARM v6-M",
11761 "ARM v6S-M",
11762 "ARM v8"
11763 };
11764
11765 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11766 secondary_compat = get_secondary_compatible_arch (ibfd);
11767 secondary_compat_out = get_secondary_compatible_arch (obfd);
11768 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11769 &secondary_compat_out,
11770 in_attr[i].i,
11771 secondary_compat);
11772 set_secondary_compatible_arch (obfd, secondary_compat_out);
11773
11774 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11775 if (out_attr[i].i == saved_out_attr)
11776 ; /* Leave the names alone. */
11777 else if (out_attr[i].i == in_attr[i].i)
11778 {
11779 /* The output architecture has been changed to match the
11780 input architecture. Use the input names. */
11781 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11782 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11783 : NULL;
11784 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11785 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11786 : NULL;
11787 }
11788 else
11789 {
11790 out_attr[Tag_CPU_name].s = NULL;
11791 out_attr[Tag_CPU_raw_name].s = NULL;
11792 }
11793
11794 /* If we still don't have a value for Tag_CPU_name,
11795 make one up now. Tag_CPU_raw_name remains blank. */
11796 if (out_attr[Tag_CPU_name].s == NULL
11797 && out_attr[i].i < ARRAY_SIZE (name_table))
11798 out_attr[Tag_CPU_name].s =
11799 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11800 }
11801 break;
11802
11803 case Tag_ARM_ISA_use:
11804 case Tag_THUMB_ISA_use:
11805 case Tag_WMMX_arch:
11806 case Tag_Advanced_SIMD_arch:
11807 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11808 case Tag_ABI_FP_rounding:
11809 case Tag_ABI_FP_exceptions:
11810 case Tag_ABI_FP_user_exceptions:
11811 case Tag_ABI_FP_number_model:
11812 case Tag_FP_HP_extension:
11813 case Tag_CPU_unaligned_access:
11814 case Tag_T2EE_use:
11815 case Tag_MPextension_use:
11816 /* Use the largest value specified. */
11817 if (in_attr[i].i > out_attr[i].i)
11818 out_attr[i].i = in_attr[i].i;
11819 break;
11820
11821 case Tag_ABI_align_preserved:
11822 case Tag_ABI_PCS_RO_data:
11823 /* Use the smallest value specified. */
11824 if (in_attr[i].i < out_attr[i].i)
11825 out_attr[i].i = in_attr[i].i;
11826 break;
11827
11828 case Tag_ABI_align_needed:
11829 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11830 && (in_attr[Tag_ABI_align_preserved].i == 0
11831 || out_attr[Tag_ABI_align_preserved].i == 0))
11832 {
11833 /* This error message should be enabled once all non-conformant
11834 binaries in the toolchain have had the attributes set
11835 properly.
11836 _bfd_error_handler
11837 (_("error: %B: 8-byte data alignment conflicts with %B"),
11838 obfd, ibfd);
11839 result = FALSE; */
11840 }
11841 /* Fall through. */
11842 case Tag_ABI_FP_denormal:
11843 case Tag_ABI_PCS_GOT_use:
11844 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11845 value if greater than 2 (for future-proofing). */
11846 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11847 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11848 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11849 out_attr[i].i = in_attr[i].i;
11850 break;
11851
11852 case Tag_Virtualization_use:
11853 /* The virtualization tag effectively stores two bits of
11854 information: the intended use of TrustZone (in bit 0), and the
11855 intended use of Virtualization (in bit 1). */
11856 if (out_attr[i].i == 0)
11857 out_attr[i].i = in_attr[i].i;
11858 else if (in_attr[i].i != 0
11859 && in_attr[i].i != out_attr[i].i)
11860 {
11861 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11862 out_attr[i].i = 3;
11863 else
11864 {
11865 _bfd_error_handler
11866 (_("error: %B: unable to merge virtualization attributes "
11867 "with %B"),
11868 obfd, ibfd);
11869 result = FALSE;
11870 }
11871 }
11872 break;
11873
11874 case Tag_CPU_arch_profile:
11875 if (out_attr[i].i != in_attr[i].i)
11876 {
11877 /* 0 will merge with anything.
11878 'A' and 'S' merge to 'A'.
11879 'R' and 'S' merge to 'R'.
11880 'M' and 'A|R|S' is an error. */
11881 if (out_attr[i].i == 0
11882 || (out_attr[i].i == 'S'
11883 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11884 out_attr[i].i = in_attr[i].i;
11885 else if (in_attr[i].i == 0
11886 || (in_attr[i].i == 'S'
11887 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11888 ; /* Do nothing. */
11889 else
11890 {
11891 _bfd_error_handler
11892 (_("error: %B: Conflicting architecture profiles %c/%c"),
11893 ibfd,
11894 in_attr[i].i ? in_attr[i].i : '0',
11895 out_attr[i].i ? out_attr[i].i : '0');
11896 result = FALSE;
11897 }
11898 }
11899 break;
11900 case Tag_FP_arch:
11901 {
11902 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11903 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11904 when it's 0. It might mean absence of FP hardware if
11905 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11906
11907 #define VFP_VERSION_COUNT 8
11908 static const struct
11909 {
11910 int ver;
11911 int regs;
11912 } vfp_versions[VFP_VERSION_COUNT] =
11913 {
11914 {0, 0},
11915 {1, 16},
11916 {2, 16},
11917 {3, 32},
11918 {3, 16},
11919 {4, 32},
11920 {4, 16},
11921 {8, 32}
11922 };
11923 int ver;
11924 int regs;
11925 int newval;
11926
11927 /* If the output has no requirement about FP hardware,
11928 follow the requirement of the input. */
11929 if (out_attr[i].i == 0)
11930 {
11931 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11932 out_attr[i].i = in_attr[i].i;
11933 out_attr[Tag_ABI_HardFP_use].i
11934 = in_attr[Tag_ABI_HardFP_use].i;
11935 break;
11936 }
11937 /* If the input has no requirement about FP hardware, do
11938 nothing. */
11939 else if (in_attr[i].i == 0)
11940 {
11941 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11942 break;
11943 }
11944
11945 /* Both the input and the output have nonzero Tag_FP_arch.
11946 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11947
11948 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11949 do nothing. */
11950 if (in_attr[Tag_ABI_HardFP_use].i == 0
11951 && out_attr[Tag_ABI_HardFP_use].i == 0)
11952 ;
11953 /* If the input and the output have different Tag_ABI_HardFP_use,
11954 the combination of them is 3 (SP & DP). */
11955 else if (in_attr[Tag_ABI_HardFP_use].i
11956 != out_attr[Tag_ABI_HardFP_use].i)
11957 out_attr[Tag_ABI_HardFP_use].i = 3;
11958
11959 /* Now we can handle Tag_FP_arch. */
11960
11961 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11962 pick the biggest. */
11963 if (in_attr[i].i >= VFP_VERSION_COUNT
11964 && in_attr[i].i > out_attr[i].i)
11965 {
11966 out_attr[i] = in_attr[i];
11967 break;
11968 }
11969 /* The output uses the superset of input features
11970 (ISA version) and registers. */
11971 ver = vfp_versions[in_attr[i].i].ver;
11972 if (ver < vfp_versions[out_attr[i].i].ver)
11973 ver = vfp_versions[out_attr[i].i].ver;
11974 regs = vfp_versions[in_attr[i].i].regs;
11975 if (regs < vfp_versions[out_attr[i].i].regs)
11976 regs = vfp_versions[out_attr[i].i].regs;
11977 /* This assumes all possible supersets are also a valid
11978 options. */
11979 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
11980 {
11981 if (regs == vfp_versions[newval].regs
11982 && ver == vfp_versions[newval].ver)
11983 break;
11984 }
11985 out_attr[i].i = newval;
11986 }
11987 break;
11988 case Tag_PCS_config:
11989 if (out_attr[i].i == 0)
11990 out_attr[i].i = in_attr[i].i;
11991 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
11992 {
11993 /* It's sometimes ok to mix different configs, so this is only
11994 a warning. */
11995 _bfd_error_handler
11996 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11997 }
11998 break;
11999 case Tag_ABI_PCS_R9_use:
12000 if (in_attr[i].i != out_attr[i].i
12001 && out_attr[i].i != AEABI_R9_unused
12002 && in_attr[i].i != AEABI_R9_unused)
12003 {
12004 _bfd_error_handler
12005 (_("error: %B: Conflicting use of R9"), ibfd);
12006 result = FALSE;
12007 }
12008 if (out_attr[i].i == AEABI_R9_unused)
12009 out_attr[i].i = in_attr[i].i;
12010 break;
12011 case Tag_ABI_PCS_RW_data:
12012 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12013 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12014 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12015 {
12016 _bfd_error_handler
12017 (_("error: %B: SB relative addressing conflicts with use of R9"),
12018 ibfd);
12019 result = FALSE;
12020 }
12021 /* Use the smallest value specified. */
12022 if (in_attr[i].i < out_attr[i].i)
12023 out_attr[i].i = in_attr[i].i;
12024 break;
12025 case Tag_ABI_PCS_wchar_t:
12026 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12027 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
12028 {
12029 _bfd_error_handler
12030 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12031 ibfd, in_attr[i].i, out_attr[i].i);
12032 }
12033 else if (in_attr[i].i && !out_attr[i].i)
12034 out_attr[i].i = in_attr[i].i;
12035 break;
12036 case Tag_ABI_enum_size:
12037 if (in_attr[i].i != AEABI_enum_unused)
12038 {
12039 if (out_attr[i].i == AEABI_enum_unused
12040 || out_attr[i].i == AEABI_enum_forced_wide)
12041 {
12042 /* The existing object is compatible with anything.
12043 Use whatever requirements the new object has. */
12044 out_attr[i].i = in_attr[i].i;
12045 }
12046 else if (in_attr[i].i != AEABI_enum_forced_wide
12047 && out_attr[i].i != in_attr[i].i
12048 && !elf_arm_tdata (obfd)->no_enum_size_warning)
12049 {
12050 static const char *aeabi_enum_names[] =
12051 { "", "variable-size", "32-bit", "" };
12052 const char *in_name =
12053 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12054 ? aeabi_enum_names[in_attr[i].i]
12055 : "<unknown>";
12056 const char *out_name =
12057 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12058 ? aeabi_enum_names[out_attr[i].i]
12059 : "<unknown>";
12060 _bfd_error_handler
12061 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
12062 ibfd, in_name, out_name);
12063 }
12064 }
12065 break;
12066 case Tag_ABI_VFP_args:
12067 /* Aready done. */
12068 break;
12069 case Tag_ABI_WMMX_args:
12070 if (in_attr[i].i != out_attr[i].i)
12071 {
12072 _bfd_error_handler
12073 (_("error: %B uses iWMMXt register arguments, %B does not"),
12074 ibfd, obfd);
12075 result = FALSE;
12076 }
12077 break;
12078 case Tag_compatibility:
12079 /* Merged in target-independent code. */
12080 break;
12081 case Tag_ABI_HardFP_use:
12082 /* This is handled along with Tag_FP_arch. */
12083 break;
12084 case Tag_ABI_FP_16bit_format:
12085 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12086 {
12087 if (in_attr[i].i != out_attr[i].i)
12088 {
12089 _bfd_error_handler
12090 (_("error: fp16 format mismatch between %B and %B"),
12091 ibfd, obfd);
12092 result = FALSE;
12093 }
12094 }
12095 if (in_attr[i].i != 0)
12096 out_attr[i].i = in_attr[i].i;
12097 break;
12098
12099 case Tag_DIV_use:
12100 /* A value of zero on input means that the divide instruction may
12101 be used if available in the base architecture as specified via
12102 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12103 the user did not want divide instructions. A value of 2
12104 explicitly means that divide instructions were allowed in ARM
12105 and Thumb state. */
12106 if (in_attr[i].i == out_attr[i].i)
12107 /* Do nothing. */ ;
12108 else if (elf32_arm_attributes_forbid_div (in_attr)
12109 && !elf32_arm_attributes_accept_div (out_attr))
12110 out_attr[i].i = 1;
12111 else if (elf32_arm_attributes_forbid_div (out_attr)
12112 && elf32_arm_attributes_accept_div (in_attr))
12113 out_attr[i].i = in_attr[i].i;
12114 else if (in_attr[i].i == 2)
12115 out_attr[i].i = in_attr[i].i;
12116 break;
12117
12118 case Tag_MPextension_use_legacy:
12119 /* We don't output objects with Tag_MPextension_use_legacy - we
12120 move the value to Tag_MPextension_use. */
12121 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
12122 {
12123 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
12124 {
12125 _bfd_error_handler
12126 (_("%B has has both the current and legacy "
12127 "Tag_MPextension_use attributes"),
12128 ibfd);
12129 result = FALSE;
12130 }
12131 }
12132
12133 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12134 out_attr[Tag_MPextension_use] = in_attr[i];
12135
12136 break;
12137
12138 case Tag_nodefaults:
12139 /* This tag is set if it exists, but the value is unused (and is
12140 typically zero). We don't actually need to do anything here -
12141 the merge happens automatically when the type flags are merged
12142 below. */
12143 break;
12144 case Tag_also_compatible_with:
12145 /* Already done in Tag_CPU_arch. */
12146 break;
12147 case Tag_conformance:
12148 /* Keep the attribute if it matches. Throw it away otherwise.
12149 No attribute means no claim to conform. */
12150 if (!in_attr[i].s || !out_attr[i].s
12151 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12152 out_attr[i].s = NULL;
12153 break;
12154
12155 default:
12156 result
12157 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12158 }
12159
12160 /* If out_attr was copied from in_attr then it won't have a type yet. */
12161 if (in_attr[i].type && !out_attr[i].type)
12162 out_attr[i].type = in_attr[i].type;
12163 }
12164
12165 /* Merge Tag_compatibility attributes and any common GNU ones. */
12166 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12167 return FALSE;
12168
12169 /* Check for any attributes not known on ARM. */
12170 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
12171
12172 return result;
12173 }
12174
12175
12176 /* Return TRUE if the two EABI versions are incompatible. */
12177
12178 static bfd_boolean
12179 elf32_arm_versions_compatible (unsigned iver, unsigned over)
12180 {
12181 /* v4 and v5 are the same spec before and after it was released,
12182 so allow mixing them. */
12183 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12184 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12185 return TRUE;
12186
12187 return (iver == over);
12188 }
12189
12190 /* Merge backend specific data from an object file to the output
12191 object file when linking. */
12192
12193 static bfd_boolean
12194 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
12195
12196 /* Display the flags field. */
12197
12198 static bfd_boolean
12199 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
12200 {
12201 FILE * file = (FILE *) ptr;
12202 unsigned long flags;
12203
12204 BFD_ASSERT (abfd != NULL && ptr != NULL);
12205
12206 /* Print normal ELF private data. */
12207 _bfd_elf_print_private_bfd_data (abfd, ptr);
12208
12209 flags = elf_elfheader (abfd)->e_flags;
12210 /* Ignore init flag - it may not be set, despite the flags field
12211 containing valid data. */
12212
12213 /* xgettext:c-format */
12214 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12215
12216 switch (EF_ARM_EABI_VERSION (flags))
12217 {
12218 case EF_ARM_EABI_UNKNOWN:
12219 /* The following flag bits are GNU extensions and not part of the
12220 official ARM ELF extended ABI. Hence they are only decoded if
12221 the EABI version is not set. */
12222 if (flags & EF_ARM_INTERWORK)
12223 fprintf (file, _(" [interworking enabled]"));
12224
12225 if (flags & EF_ARM_APCS_26)
12226 fprintf (file, " [APCS-26]");
12227 else
12228 fprintf (file, " [APCS-32]");
12229
12230 if (flags & EF_ARM_VFP_FLOAT)
12231 fprintf (file, _(" [VFP float format]"));
12232 else if (flags & EF_ARM_MAVERICK_FLOAT)
12233 fprintf (file, _(" [Maverick float format]"));
12234 else
12235 fprintf (file, _(" [FPA float format]"));
12236
12237 if (flags & EF_ARM_APCS_FLOAT)
12238 fprintf (file, _(" [floats passed in float registers]"));
12239
12240 if (flags & EF_ARM_PIC)
12241 fprintf (file, _(" [position independent]"));
12242
12243 if (flags & EF_ARM_NEW_ABI)
12244 fprintf (file, _(" [new ABI]"));
12245
12246 if (flags & EF_ARM_OLD_ABI)
12247 fprintf (file, _(" [old ABI]"));
12248
12249 if (flags & EF_ARM_SOFT_FLOAT)
12250 fprintf (file, _(" [software FP]"));
12251
12252 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12253 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12254 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12255 | EF_ARM_MAVERICK_FLOAT);
12256 break;
12257
12258 case EF_ARM_EABI_VER1:
12259 fprintf (file, _(" [Version1 EABI]"));
12260
12261 if (flags & EF_ARM_SYMSARESORTED)
12262 fprintf (file, _(" [sorted symbol table]"));
12263 else
12264 fprintf (file, _(" [unsorted symbol table]"));
12265
12266 flags &= ~ EF_ARM_SYMSARESORTED;
12267 break;
12268
12269 case EF_ARM_EABI_VER2:
12270 fprintf (file, _(" [Version2 EABI]"));
12271
12272 if (flags & EF_ARM_SYMSARESORTED)
12273 fprintf (file, _(" [sorted symbol table]"));
12274 else
12275 fprintf (file, _(" [unsorted symbol table]"));
12276
12277 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12278 fprintf (file, _(" [dynamic symbols use segment index]"));
12279
12280 if (flags & EF_ARM_MAPSYMSFIRST)
12281 fprintf (file, _(" [mapping symbols precede others]"));
12282
12283 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12284 | EF_ARM_MAPSYMSFIRST);
12285 break;
12286
12287 case EF_ARM_EABI_VER3:
12288 fprintf (file, _(" [Version3 EABI]"));
12289 break;
12290
12291 case EF_ARM_EABI_VER4:
12292 fprintf (file, _(" [Version4 EABI]"));
12293 goto eabi;
12294
12295 case EF_ARM_EABI_VER5:
12296 fprintf (file, _(" [Version5 EABI]"));
12297
12298 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12299 fprintf (file, _(" [soft-float ABI]"));
12300
12301 if (flags & EF_ARM_ABI_FLOAT_HARD)
12302 fprintf (file, _(" [hard-float ABI]"));
12303
12304 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12305
12306 eabi:
12307 if (flags & EF_ARM_BE8)
12308 fprintf (file, _(" [BE8]"));
12309
12310 if (flags & EF_ARM_LE8)
12311 fprintf (file, _(" [LE8]"));
12312
12313 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12314 break;
12315
12316 default:
12317 fprintf (file, _(" <EABI version unrecognised>"));
12318 break;
12319 }
12320
12321 flags &= ~ EF_ARM_EABIMASK;
12322
12323 if (flags & EF_ARM_RELEXEC)
12324 fprintf (file, _(" [relocatable executable]"));
12325
12326 if (flags & EF_ARM_HASENTRY)
12327 fprintf (file, _(" [has entry point]"));
12328
12329 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12330
12331 if (flags)
12332 fprintf (file, _("<Unrecognised flag bits set>"));
12333
12334 fputc ('\n', file);
12335
12336 return TRUE;
12337 }
12338
12339 static int
12340 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12341 {
12342 switch (ELF_ST_TYPE (elf_sym->st_info))
12343 {
12344 case STT_ARM_TFUNC:
12345 return ELF_ST_TYPE (elf_sym->st_info);
12346
12347 case STT_ARM_16BIT:
12348 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12349 This allows us to distinguish between data used by Thumb instructions
12350 and non-data (which is probably code) inside Thumb regions of an
12351 executable. */
12352 if (type != STT_OBJECT && type != STT_TLS)
12353 return ELF_ST_TYPE (elf_sym->st_info);
12354 break;
12355
12356 default:
12357 break;
12358 }
12359
12360 return type;
12361 }
12362
12363 static asection *
12364 elf32_arm_gc_mark_hook (asection *sec,
12365 struct bfd_link_info *info,
12366 Elf_Internal_Rela *rel,
12367 struct elf_link_hash_entry *h,
12368 Elf_Internal_Sym *sym)
12369 {
12370 if (h != NULL)
12371 switch (ELF32_R_TYPE (rel->r_info))
12372 {
12373 case R_ARM_GNU_VTINHERIT:
12374 case R_ARM_GNU_VTENTRY:
12375 return NULL;
12376 }
12377
12378 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12379 }
12380
12381 /* Update the got entry reference counts for the section being removed. */
12382
12383 static bfd_boolean
12384 elf32_arm_gc_sweep_hook (bfd * abfd,
12385 struct bfd_link_info * info,
12386 asection * sec,
12387 const Elf_Internal_Rela * relocs)
12388 {
12389 Elf_Internal_Shdr *symtab_hdr;
12390 struct elf_link_hash_entry **sym_hashes;
12391 bfd_signed_vma *local_got_refcounts;
12392 const Elf_Internal_Rela *rel, *relend;
12393 struct elf32_arm_link_hash_table * globals;
12394
12395 if (info->relocatable)
12396 return TRUE;
12397
12398 globals = elf32_arm_hash_table (info);
12399 if (globals == NULL)
12400 return FALSE;
12401
12402 elf_section_data (sec)->local_dynrel = NULL;
12403
12404 symtab_hdr = & elf_symtab_hdr (abfd);
12405 sym_hashes = elf_sym_hashes (abfd);
12406 local_got_refcounts = elf_local_got_refcounts (abfd);
12407
12408 check_use_blx (globals);
12409
12410 relend = relocs + sec->reloc_count;
12411 for (rel = relocs; rel < relend; rel++)
12412 {
12413 unsigned long r_symndx;
12414 struct elf_link_hash_entry *h = NULL;
12415 struct elf32_arm_link_hash_entry *eh;
12416 int r_type;
12417 bfd_boolean call_reloc_p;
12418 bfd_boolean may_become_dynamic_p;
12419 bfd_boolean may_need_local_target_p;
12420 union gotplt_union *root_plt;
12421 struct arm_plt_info *arm_plt;
12422
12423 r_symndx = ELF32_R_SYM (rel->r_info);
12424 if (r_symndx >= symtab_hdr->sh_info)
12425 {
12426 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12427 while (h->root.type == bfd_link_hash_indirect
12428 || h->root.type == bfd_link_hash_warning)
12429 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12430 }
12431 eh = (struct elf32_arm_link_hash_entry *) h;
12432
12433 call_reloc_p = FALSE;
12434 may_become_dynamic_p = FALSE;
12435 may_need_local_target_p = FALSE;
12436
12437 r_type = ELF32_R_TYPE (rel->r_info);
12438 r_type = arm_real_reloc_type (globals, r_type);
12439 switch (r_type)
12440 {
12441 case R_ARM_GOT32:
12442 case R_ARM_GOT_PREL:
12443 case R_ARM_TLS_GD32:
12444 case R_ARM_TLS_IE32:
12445 if (h != NULL)
12446 {
12447 if (h->got.refcount > 0)
12448 h->got.refcount -= 1;
12449 }
12450 else if (local_got_refcounts != NULL)
12451 {
12452 if (local_got_refcounts[r_symndx] > 0)
12453 local_got_refcounts[r_symndx] -= 1;
12454 }
12455 break;
12456
12457 case R_ARM_TLS_LDM32:
12458 globals->tls_ldm_got.refcount -= 1;
12459 break;
12460
12461 case R_ARM_PC24:
12462 case R_ARM_PLT32:
12463 case R_ARM_CALL:
12464 case R_ARM_JUMP24:
12465 case R_ARM_PREL31:
12466 case R_ARM_THM_CALL:
12467 case R_ARM_THM_JUMP24:
12468 case R_ARM_THM_JUMP19:
12469 call_reloc_p = TRUE;
12470 may_need_local_target_p = TRUE;
12471 break;
12472
12473 case R_ARM_ABS12:
12474 if (!globals->vxworks_p)
12475 {
12476 may_need_local_target_p = TRUE;
12477 break;
12478 }
12479 /* Fall through. */
12480 case R_ARM_ABS32:
12481 case R_ARM_ABS32_NOI:
12482 case R_ARM_REL32:
12483 case R_ARM_REL32_NOI:
12484 case R_ARM_MOVW_ABS_NC:
12485 case R_ARM_MOVT_ABS:
12486 case R_ARM_MOVW_PREL_NC:
12487 case R_ARM_MOVT_PREL:
12488 case R_ARM_THM_MOVW_ABS_NC:
12489 case R_ARM_THM_MOVT_ABS:
12490 case R_ARM_THM_MOVW_PREL_NC:
12491 case R_ARM_THM_MOVT_PREL:
12492 /* Should the interworking branches be here also? */
12493 if ((info->shared || globals->root.is_relocatable_executable)
12494 && (sec->flags & SEC_ALLOC) != 0)
12495 {
12496 if (h == NULL
12497 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12498 {
12499 call_reloc_p = TRUE;
12500 may_need_local_target_p = TRUE;
12501 }
12502 else
12503 may_become_dynamic_p = TRUE;
12504 }
12505 else
12506 may_need_local_target_p = TRUE;
12507 break;
12508
12509 default:
12510 break;
12511 }
12512
12513 if (may_need_local_target_p
12514 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12515 {
12516 /* If PLT refcount book-keeping is wrong and too low, we'll
12517 see a zero value (going to -1) for the root PLT reference
12518 count. */
12519 if (root_plt->refcount >= 0)
12520 {
12521 BFD_ASSERT (root_plt->refcount != 0);
12522 root_plt->refcount -= 1;
12523 }
12524 else
12525 /* A value of -1 means the symbol has become local, forced
12526 or seeing a hidden definition. Any other negative value
12527 is an error. */
12528 BFD_ASSERT (root_plt->refcount == -1);
12529
12530 if (!call_reloc_p)
12531 arm_plt->noncall_refcount--;
12532
12533 if (r_type == R_ARM_THM_CALL)
12534 arm_plt->maybe_thumb_refcount--;
12535
12536 if (r_type == R_ARM_THM_JUMP24
12537 || r_type == R_ARM_THM_JUMP19)
12538 arm_plt->thumb_refcount--;
12539 }
12540
12541 if (may_become_dynamic_p)
12542 {
12543 struct elf_dyn_relocs **pp;
12544 struct elf_dyn_relocs *p;
12545
12546 if (h != NULL)
12547 pp = &(eh->dyn_relocs);
12548 else
12549 {
12550 Elf_Internal_Sym *isym;
12551
12552 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12553 abfd, r_symndx);
12554 if (isym == NULL)
12555 return FALSE;
12556 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12557 if (pp == NULL)
12558 return FALSE;
12559 }
12560 for (; (p = *pp) != NULL; pp = &p->next)
12561 if (p->sec == sec)
12562 {
12563 /* Everything must go for SEC. */
12564 *pp = p->next;
12565 break;
12566 }
12567 }
12568 }
12569
12570 return TRUE;
12571 }
12572
12573 /* Look through the relocs for a section during the first phase. */
12574
12575 static bfd_boolean
12576 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12577 asection *sec, const Elf_Internal_Rela *relocs)
12578 {
12579 Elf_Internal_Shdr *symtab_hdr;
12580 struct elf_link_hash_entry **sym_hashes;
12581 const Elf_Internal_Rela *rel;
12582 const Elf_Internal_Rela *rel_end;
12583 bfd *dynobj;
12584 asection *sreloc;
12585 struct elf32_arm_link_hash_table *htab;
12586 bfd_boolean call_reloc_p;
12587 bfd_boolean may_become_dynamic_p;
12588 bfd_boolean may_need_local_target_p;
12589 unsigned long nsyms;
12590
12591 if (info->relocatable)
12592 return TRUE;
12593
12594 BFD_ASSERT (is_arm_elf (abfd));
12595
12596 htab = elf32_arm_hash_table (info);
12597 if (htab == NULL)
12598 return FALSE;
12599
12600 sreloc = NULL;
12601
12602 /* Create dynamic sections for relocatable executables so that we can
12603 copy relocations. */
12604 if (htab->root.is_relocatable_executable
12605 && ! htab->root.dynamic_sections_created)
12606 {
12607 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12608 return FALSE;
12609 }
12610
12611 if (htab->root.dynobj == NULL)
12612 htab->root.dynobj = abfd;
12613 if (!create_ifunc_sections (info))
12614 return FALSE;
12615
12616 dynobj = htab->root.dynobj;
12617
12618 symtab_hdr = & elf_symtab_hdr (abfd);
12619 sym_hashes = elf_sym_hashes (abfd);
12620 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12621
12622 rel_end = relocs + sec->reloc_count;
12623 for (rel = relocs; rel < rel_end; rel++)
12624 {
12625 Elf_Internal_Sym *isym;
12626 struct elf_link_hash_entry *h;
12627 struct elf32_arm_link_hash_entry *eh;
12628 unsigned long r_symndx;
12629 int r_type;
12630
12631 r_symndx = ELF32_R_SYM (rel->r_info);
12632 r_type = ELF32_R_TYPE (rel->r_info);
12633 r_type = arm_real_reloc_type (htab, r_type);
12634
12635 if (r_symndx >= nsyms
12636 /* PR 9934: It is possible to have relocations that do not
12637 refer to symbols, thus it is also possible to have an
12638 object file containing relocations but no symbol table. */
12639 && (r_symndx > STN_UNDEF || nsyms > 0))
12640 {
12641 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12642 r_symndx);
12643 return FALSE;
12644 }
12645
12646 h = NULL;
12647 isym = NULL;
12648 if (nsyms > 0)
12649 {
12650 if (r_symndx < symtab_hdr->sh_info)
12651 {
12652 /* A local symbol. */
12653 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12654 abfd, r_symndx);
12655 if (isym == NULL)
12656 return FALSE;
12657 }
12658 else
12659 {
12660 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12661 while (h->root.type == bfd_link_hash_indirect
12662 || h->root.type == bfd_link_hash_warning)
12663 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12664
12665 /* PR15323, ref flags aren't set for references in the
12666 same object. */
12667 h->root.non_ir_ref = 1;
12668 }
12669 }
12670
12671 eh = (struct elf32_arm_link_hash_entry *) h;
12672
12673 call_reloc_p = FALSE;
12674 may_become_dynamic_p = FALSE;
12675 may_need_local_target_p = FALSE;
12676
12677 /* Could be done earlier, if h were already available. */
12678 r_type = elf32_arm_tls_transition (info, r_type, h);
12679 switch (r_type)
12680 {
12681 case R_ARM_GOT32:
12682 case R_ARM_GOT_PREL:
12683 case R_ARM_TLS_GD32:
12684 case R_ARM_TLS_IE32:
12685 case R_ARM_TLS_GOTDESC:
12686 case R_ARM_TLS_DESCSEQ:
12687 case R_ARM_THM_TLS_DESCSEQ:
12688 case R_ARM_TLS_CALL:
12689 case R_ARM_THM_TLS_CALL:
12690 /* This symbol requires a global offset table entry. */
12691 {
12692 int tls_type, old_tls_type;
12693
12694 switch (r_type)
12695 {
12696 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12697
12698 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12699
12700 case R_ARM_TLS_GOTDESC:
12701 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12702 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12703 tls_type = GOT_TLS_GDESC; break;
12704
12705 default: tls_type = GOT_NORMAL; break;
12706 }
12707
12708 if (h != NULL)
12709 {
12710 h->got.refcount++;
12711 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12712 }
12713 else
12714 {
12715 /* This is a global offset table entry for a local symbol. */
12716 if (!elf32_arm_allocate_local_sym_info (abfd))
12717 return FALSE;
12718 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12719 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12720 }
12721
12722 /* If a variable is accessed with both tls methods, two
12723 slots may be created. */
12724 if (GOT_TLS_GD_ANY_P (old_tls_type)
12725 && GOT_TLS_GD_ANY_P (tls_type))
12726 tls_type |= old_tls_type;
12727
12728 /* We will already have issued an error message if there
12729 is a TLS/non-TLS mismatch, based on the symbol
12730 type. So just combine any TLS types needed. */
12731 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12732 && tls_type != GOT_NORMAL)
12733 tls_type |= old_tls_type;
12734
12735 /* If the symbol is accessed in both IE and GDESC
12736 method, we're able to relax. Turn off the GDESC flag,
12737 without messing up with any other kind of tls types
12738 that may be involved */
12739 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12740 tls_type &= ~GOT_TLS_GDESC;
12741
12742 if (old_tls_type != tls_type)
12743 {
12744 if (h != NULL)
12745 elf32_arm_hash_entry (h)->tls_type = tls_type;
12746 else
12747 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12748 }
12749 }
12750 /* Fall through. */
12751
12752 case R_ARM_TLS_LDM32:
12753 if (r_type == R_ARM_TLS_LDM32)
12754 htab->tls_ldm_got.refcount++;
12755 /* Fall through. */
12756
12757 case R_ARM_GOTOFF32:
12758 case R_ARM_GOTPC:
12759 if (htab->root.sgot == NULL
12760 && !create_got_section (htab->root.dynobj, info))
12761 return FALSE;
12762 break;
12763
12764 case R_ARM_PC24:
12765 case R_ARM_PLT32:
12766 case R_ARM_CALL:
12767 case R_ARM_JUMP24:
12768 case R_ARM_PREL31:
12769 case R_ARM_THM_CALL:
12770 case R_ARM_THM_JUMP24:
12771 case R_ARM_THM_JUMP19:
12772 call_reloc_p = TRUE;
12773 may_need_local_target_p = TRUE;
12774 break;
12775
12776 case R_ARM_ABS12:
12777 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12778 ldr __GOTT_INDEX__ offsets. */
12779 if (!htab->vxworks_p)
12780 {
12781 may_need_local_target_p = TRUE;
12782 break;
12783 }
12784 /* Fall through. */
12785
12786 case R_ARM_MOVW_ABS_NC:
12787 case R_ARM_MOVT_ABS:
12788 case R_ARM_THM_MOVW_ABS_NC:
12789 case R_ARM_THM_MOVT_ABS:
12790 if (info->shared)
12791 {
12792 (*_bfd_error_handler)
12793 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12794 abfd, elf32_arm_howto_table_1[r_type].name,
12795 (h) ? h->root.root.string : "a local symbol");
12796 bfd_set_error (bfd_error_bad_value);
12797 return FALSE;
12798 }
12799
12800 /* Fall through. */
12801 case R_ARM_ABS32:
12802 case R_ARM_ABS32_NOI:
12803 case R_ARM_REL32:
12804 case R_ARM_REL32_NOI:
12805 case R_ARM_MOVW_PREL_NC:
12806 case R_ARM_MOVT_PREL:
12807 case R_ARM_THM_MOVW_PREL_NC:
12808 case R_ARM_THM_MOVT_PREL:
12809
12810 /* Should the interworking branches be listed here? */
12811 if ((info->shared || htab->root.is_relocatable_executable)
12812 && (sec->flags & SEC_ALLOC) != 0)
12813 {
12814 if (h == NULL
12815 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12816 {
12817 /* In shared libraries and relocatable executables,
12818 we treat local relative references as calls;
12819 see the related SYMBOL_CALLS_LOCAL code in
12820 allocate_dynrelocs. */
12821 call_reloc_p = TRUE;
12822 may_need_local_target_p = TRUE;
12823 }
12824 else
12825 /* We are creating a shared library or relocatable
12826 executable, and this is a reloc against a global symbol,
12827 or a non-PC-relative reloc against a local symbol.
12828 We may need to copy the reloc into the output. */
12829 may_become_dynamic_p = TRUE;
12830 }
12831 else
12832 may_need_local_target_p = TRUE;
12833 break;
12834
12835 /* This relocation describes the C++ object vtable hierarchy.
12836 Reconstruct it for later use during GC. */
12837 case R_ARM_GNU_VTINHERIT:
12838 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12839 return FALSE;
12840 break;
12841
12842 /* This relocation describes which C++ vtable entries are actually
12843 used. Record for later use during GC. */
12844 case R_ARM_GNU_VTENTRY:
12845 BFD_ASSERT (h != NULL);
12846 if (h != NULL
12847 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12848 return FALSE;
12849 break;
12850 }
12851
12852 if (h != NULL)
12853 {
12854 if (call_reloc_p)
12855 /* We may need a .plt entry if the function this reloc
12856 refers to is in a different object, regardless of the
12857 symbol's type. We can't tell for sure yet, because
12858 something later might force the symbol local. */
12859 h->needs_plt = 1;
12860 else if (may_need_local_target_p)
12861 /* If this reloc is in a read-only section, we might
12862 need a copy reloc. We can't check reliably at this
12863 stage whether the section is read-only, as input
12864 sections have not yet been mapped to output sections.
12865 Tentatively set the flag for now, and correct in
12866 adjust_dynamic_symbol. */
12867 h->non_got_ref = 1;
12868 }
12869
12870 if (may_need_local_target_p
12871 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12872 {
12873 union gotplt_union *root_plt;
12874 struct arm_plt_info *arm_plt;
12875 struct arm_local_iplt_info *local_iplt;
12876
12877 if (h != NULL)
12878 {
12879 root_plt = &h->plt;
12880 arm_plt = &eh->plt;
12881 }
12882 else
12883 {
12884 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12885 if (local_iplt == NULL)
12886 return FALSE;
12887 root_plt = &local_iplt->root;
12888 arm_plt = &local_iplt->arm;
12889 }
12890
12891 /* If the symbol is a function that doesn't bind locally,
12892 this relocation will need a PLT entry. */
12893 if (root_plt->refcount != -1)
12894 root_plt->refcount += 1;
12895
12896 if (!call_reloc_p)
12897 arm_plt->noncall_refcount++;
12898
12899 /* It's too early to use htab->use_blx here, so we have to
12900 record possible blx references separately from
12901 relocs that definitely need a thumb stub. */
12902
12903 if (r_type == R_ARM_THM_CALL)
12904 arm_plt->maybe_thumb_refcount += 1;
12905
12906 if (r_type == R_ARM_THM_JUMP24
12907 || r_type == R_ARM_THM_JUMP19)
12908 arm_plt->thumb_refcount += 1;
12909 }
12910
12911 if (may_become_dynamic_p)
12912 {
12913 struct elf_dyn_relocs *p, **head;
12914
12915 /* Create a reloc section in dynobj. */
12916 if (sreloc == NULL)
12917 {
12918 sreloc = _bfd_elf_make_dynamic_reloc_section
12919 (sec, dynobj, 2, abfd, ! htab->use_rel);
12920
12921 if (sreloc == NULL)
12922 return FALSE;
12923
12924 /* BPABI objects never have dynamic relocations mapped. */
12925 if (htab->symbian_p)
12926 {
12927 flagword flags;
12928
12929 flags = bfd_get_section_flags (dynobj, sreloc);
12930 flags &= ~(SEC_LOAD | SEC_ALLOC);
12931 bfd_set_section_flags (dynobj, sreloc, flags);
12932 }
12933 }
12934
12935 /* If this is a global symbol, count the number of
12936 relocations we need for this symbol. */
12937 if (h != NULL)
12938 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12939 else
12940 {
12941 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12942 if (head == NULL)
12943 return FALSE;
12944 }
12945
12946 p = *head;
12947 if (p == NULL || p->sec != sec)
12948 {
12949 bfd_size_type amt = sizeof *p;
12950
12951 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12952 if (p == NULL)
12953 return FALSE;
12954 p->next = *head;
12955 *head = p;
12956 p->sec = sec;
12957 p->count = 0;
12958 p->pc_count = 0;
12959 }
12960
12961 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12962 p->pc_count += 1;
12963 p->count += 1;
12964 }
12965 }
12966
12967 return TRUE;
12968 }
12969
12970 /* Unwinding tables are not referenced directly. This pass marks them as
12971 required if the corresponding code section is marked. */
12972
12973 static bfd_boolean
12974 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12975 elf_gc_mark_hook_fn gc_mark_hook)
12976 {
12977 bfd *sub;
12978 Elf_Internal_Shdr **elf_shdrp;
12979 bfd_boolean again;
12980
12981 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12982
12983 /* Marking EH data may cause additional code sections to be marked,
12984 requiring multiple passes. */
12985 again = TRUE;
12986 while (again)
12987 {
12988 again = FALSE;
12989 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12990 {
12991 asection *o;
12992
12993 if (! is_arm_elf (sub))
12994 continue;
12995
12996 elf_shdrp = elf_elfsections (sub);
12997 for (o = sub->sections; o != NULL; o = o->next)
12998 {
12999 Elf_Internal_Shdr *hdr;
13000
13001 hdr = &elf_section_data (o)->this_hdr;
13002 if (hdr->sh_type == SHT_ARM_EXIDX
13003 && hdr->sh_link
13004 && hdr->sh_link < elf_numsections (sub)
13005 && !o->gc_mark
13006 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13007 {
13008 again = TRUE;
13009 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13010 return FALSE;
13011 }
13012 }
13013 }
13014 }
13015
13016 return TRUE;
13017 }
13018
13019 /* Treat mapping symbols as special target symbols. */
13020
13021 static bfd_boolean
13022 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13023 {
13024 return bfd_is_arm_special_symbol_name (sym->name,
13025 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
13026 }
13027
13028 /* This is a copy of elf_find_function() from elf.c except that
13029 ARM mapping symbols are ignored when looking for function names
13030 and STT_ARM_TFUNC is considered to a function type. */
13031
13032 static bfd_boolean
13033 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
13034 asection * section,
13035 asymbol ** symbols,
13036 bfd_vma offset,
13037 const char ** filename_ptr,
13038 const char ** functionname_ptr)
13039 {
13040 const char * filename = NULL;
13041 asymbol * func = NULL;
13042 bfd_vma low_func = 0;
13043 asymbol ** p;
13044
13045 for (p = symbols; *p != NULL; p++)
13046 {
13047 elf_symbol_type *q;
13048
13049 q = (elf_symbol_type *) *p;
13050
13051 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13052 {
13053 default:
13054 break;
13055 case STT_FILE:
13056 filename = bfd_asymbol_name (&q->symbol);
13057 break;
13058 case STT_FUNC:
13059 case STT_ARM_TFUNC:
13060 case STT_NOTYPE:
13061 /* Skip mapping symbols. */
13062 if ((q->symbol.flags & BSF_LOCAL)
13063 && bfd_is_arm_special_symbol_name (q->symbol.name,
13064 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
13065 continue;
13066 /* Fall through. */
13067 if (bfd_get_section (&q->symbol) == section
13068 && q->symbol.value >= low_func
13069 && q->symbol.value <= offset)
13070 {
13071 func = (asymbol *) q;
13072 low_func = q->symbol.value;
13073 }
13074 break;
13075 }
13076 }
13077
13078 if (func == NULL)
13079 return FALSE;
13080
13081 if (filename_ptr)
13082 *filename_ptr = filename;
13083 if (functionname_ptr)
13084 *functionname_ptr = bfd_asymbol_name (func);
13085
13086 return TRUE;
13087 }
13088
13089
13090 /* Find the nearest line to a particular section and offset, for error
13091 reporting. This code is a duplicate of the code in elf.c, except
13092 that it uses arm_elf_find_function. */
13093
13094 static bfd_boolean
13095 elf32_arm_find_nearest_line (bfd * abfd,
13096 asection * section,
13097 asymbol ** symbols,
13098 bfd_vma offset,
13099 const char ** filename_ptr,
13100 const char ** functionname_ptr,
13101 unsigned int * line_ptr)
13102 {
13103 bfd_boolean found = FALSE;
13104
13105 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
13106
13107 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
13108 section, symbols, offset,
13109 filename_ptr, functionname_ptr,
13110 line_ptr, NULL, 0,
13111 & elf_tdata (abfd)->dwarf2_find_line_info))
13112 {
13113 if (!*functionname_ptr)
13114 arm_elf_find_function (abfd, section, symbols, offset,
13115 *filename_ptr ? NULL : filename_ptr,
13116 functionname_ptr);
13117
13118 return TRUE;
13119 }
13120
13121 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
13122 & found, filename_ptr,
13123 functionname_ptr, line_ptr,
13124 & elf_tdata (abfd)->line_info))
13125 return FALSE;
13126
13127 if (found && (*functionname_ptr || *line_ptr))
13128 return TRUE;
13129
13130 if (symbols == NULL)
13131 return FALSE;
13132
13133 if (! arm_elf_find_function (abfd, section, symbols, offset,
13134 filename_ptr, functionname_ptr))
13135 return FALSE;
13136
13137 *line_ptr = 0;
13138 return TRUE;
13139 }
13140
13141 static bfd_boolean
13142 elf32_arm_find_inliner_info (bfd * abfd,
13143 const char ** filename_ptr,
13144 const char ** functionname_ptr,
13145 unsigned int * line_ptr)
13146 {
13147 bfd_boolean found;
13148 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13149 functionname_ptr, line_ptr,
13150 & elf_tdata (abfd)->dwarf2_find_line_info);
13151 return found;
13152 }
13153
13154 /* Adjust a symbol defined by a dynamic object and referenced by a
13155 regular object. The current definition is in some section of the
13156 dynamic object, but we're not including those sections. We have to
13157 change the definition to something the rest of the link can
13158 understand. */
13159
13160 static bfd_boolean
13161 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13162 struct elf_link_hash_entry * h)
13163 {
13164 bfd * dynobj;
13165 asection * s;
13166 struct elf32_arm_link_hash_entry * eh;
13167 struct elf32_arm_link_hash_table *globals;
13168
13169 globals = elf32_arm_hash_table (info);
13170 if (globals == NULL)
13171 return FALSE;
13172
13173 dynobj = elf_hash_table (info)->dynobj;
13174
13175 /* Make sure we know what is going on here. */
13176 BFD_ASSERT (dynobj != NULL
13177 && (h->needs_plt
13178 || h->type == STT_GNU_IFUNC
13179 || h->u.weakdef != NULL
13180 || (h->def_dynamic
13181 && h->ref_regular
13182 && !h->def_regular)));
13183
13184 eh = (struct elf32_arm_link_hash_entry *) h;
13185
13186 /* If this is a function, put it in the procedure linkage table. We
13187 will fill in the contents of the procedure linkage table later,
13188 when we know the address of the .got section. */
13189 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
13190 {
13191 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13192 symbol binds locally. */
13193 if (h->plt.refcount <= 0
13194 || (h->type != STT_GNU_IFUNC
13195 && (SYMBOL_CALLS_LOCAL (info, h)
13196 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13197 && h->root.type == bfd_link_hash_undefweak))))
13198 {
13199 /* This case can occur if we saw a PLT32 reloc in an input
13200 file, but the symbol was never referred to by a dynamic
13201 object, or if all references were garbage collected. In
13202 such a case, we don't actually need to build a procedure
13203 linkage table, and we can just do a PC24 reloc instead. */
13204 h->plt.offset = (bfd_vma) -1;
13205 eh->plt.thumb_refcount = 0;
13206 eh->plt.maybe_thumb_refcount = 0;
13207 eh->plt.noncall_refcount = 0;
13208 h->needs_plt = 0;
13209 }
13210
13211 return TRUE;
13212 }
13213 else
13214 {
13215 /* It's possible that we incorrectly decided a .plt reloc was
13216 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13217 in check_relocs. We can't decide accurately between function
13218 and non-function syms in check-relocs; Objects loaded later in
13219 the link may change h->type. So fix it now. */
13220 h->plt.offset = (bfd_vma) -1;
13221 eh->plt.thumb_refcount = 0;
13222 eh->plt.maybe_thumb_refcount = 0;
13223 eh->plt.noncall_refcount = 0;
13224 }
13225
13226 /* If this is a weak symbol, and there is a real definition, the
13227 processor independent code will have arranged for us to see the
13228 real definition first, and we can just use the same value. */
13229 if (h->u.weakdef != NULL)
13230 {
13231 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13232 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13233 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13234 h->root.u.def.value = h->u.weakdef->root.u.def.value;
13235 return TRUE;
13236 }
13237
13238 /* If there are no non-GOT references, we do not need a copy
13239 relocation. */
13240 if (!h->non_got_ref)
13241 return TRUE;
13242
13243 /* This is a reference to a symbol defined by a dynamic object which
13244 is not a function. */
13245
13246 /* If we are creating a shared library, we must presume that the
13247 only references to the symbol are via the global offset table.
13248 For such cases we need not do anything here; the relocations will
13249 be handled correctly by relocate_section. Relocatable executables
13250 can reference data in shared objects directly, so we don't need to
13251 do anything here. */
13252 if (info->shared || globals->root.is_relocatable_executable)
13253 return TRUE;
13254
13255 /* We must allocate the symbol in our .dynbss section, which will
13256 become part of the .bss section of the executable. There will be
13257 an entry for this symbol in the .dynsym section. The dynamic
13258 object will contain position independent code, so all references
13259 from the dynamic object to this symbol will go through the global
13260 offset table. The dynamic linker will use the .dynsym entry to
13261 determine the address it must put in the global offset table, so
13262 both the dynamic object and the regular object will refer to the
13263 same memory location for the variable. */
13264 s = bfd_get_linker_section (dynobj, ".dynbss");
13265 BFD_ASSERT (s != NULL);
13266
13267 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13268 copy the initial value out of the dynamic object and into the
13269 runtime process image. We need to remember the offset into the
13270 .rel(a).bss section we are going to use. */
13271 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13272 {
13273 asection *srel;
13274
13275 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13276 elf32_arm_allocate_dynrelocs (info, srel, 1);
13277 h->needs_copy = 1;
13278 }
13279
13280 return _bfd_elf_adjust_dynamic_copy (h, s);
13281 }
13282
13283 /* Allocate space in .plt, .got and associated reloc sections for
13284 dynamic relocs. */
13285
13286 static bfd_boolean
13287 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13288 {
13289 struct bfd_link_info *info;
13290 struct elf32_arm_link_hash_table *htab;
13291 struct elf32_arm_link_hash_entry *eh;
13292 struct elf_dyn_relocs *p;
13293
13294 if (h->root.type == bfd_link_hash_indirect)
13295 return TRUE;
13296
13297 eh = (struct elf32_arm_link_hash_entry *) h;
13298
13299 info = (struct bfd_link_info *) inf;
13300 htab = elf32_arm_hash_table (info);
13301 if (htab == NULL)
13302 return FALSE;
13303
13304 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13305 && h->plt.refcount > 0)
13306 {
13307 /* Make sure this symbol is output as a dynamic symbol.
13308 Undefined weak syms won't yet be marked as dynamic. */
13309 if (h->dynindx == -1
13310 && !h->forced_local)
13311 {
13312 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13313 return FALSE;
13314 }
13315
13316 /* If the call in the PLT entry binds locally, the associated
13317 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13318 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13319 than the .plt section. */
13320 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13321 {
13322 eh->is_iplt = 1;
13323 if (eh->plt.noncall_refcount == 0
13324 && SYMBOL_REFERENCES_LOCAL (info, h))
13325 /* All non-call references can be resolved directly.
13326 This means that they can (and in some cases, must)
13327 resolve directly to the run-time target, rather than
13328 to the PLT. That in turns means that any .got entry
13329 would be equal to the .igot.plt entry, so there's
13330 no point having both. */
13331 h->got.refcount = 0;
13332 }
13333
13334 if (info->shared
13335 || eh->is_iplt
13336 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13337 {
13338 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13339
13340 /* If this symbol is not defined in a regular file, and we are
13341 not generating a shared library, then set the symbol to this
13342 location in the .plt. This is required to make function
13343 pointers compare as equal between the normal executable and
13344 the shared library. */
13345 if (! info->shared
13346 && !h->def_regular)
13347 {
13348 h->root.u.def.section = htab->root.splt;
13349 h->root.u.def.value = h->plt.offset;
13350
13351 /* Make sure the function is not marked as Thumb, in case
13352 it is the target of an ABS32 relocation, which will
13353 point to the PLT entry. */
13354 h->target_internal = ST_BRANCH_TO_ARM;
13355 }
13356
13357 htab->next_tls_desc_index++;
13358
13359 /* VxWorks executables have a second set of relocations for
13360 each PLT entry. They go in a separate relocation section,
13361 which is processed by the kernel loader. */
13362 if (htab->vxworks_p && !info->shared)
13363 {
13364 /* There is a relocation for the initial PLT entry:
13365 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13366 if (h->plt.offset == htab->plt_header_size)
13367 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13368
13369 /* There are two extra relocations for each subsequent
13370 PLT entry: an R_ARM_32 relocation for the GOT entry,
13371 and an R_ARM_32 relocation for the PLT entry. */
13372 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13373 }
13374 }
13375 else
13376 {
13377 h->plt.offset = (bfd_vma) -1;
13378 h->needs_plt = 0;
13379 }
13380 }
13381 else
13382 {
13383 h->plt.offset = (bfd_vma) -1;
13384 h->needs_plt = 0;
13385 }
13386
13387 eh = (struct elf32_arm_link_hash_entry *) h;
13388 eh->tlsdesc_got = (bfd_vma) -1;
13389
13390 if (h->got.refcount > 0)
13391 {
13392 asection *s;
13393 bfd_boolean dyn;
13394 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13395 int indx;
13396
13397 /* Make sure this symbol is output as a dynamic symbol.
13398 Undefined weak syms won't yet be marked as dynamic. */
13399 if (h->dynindx == -1
13400 && !h->forced_local)
13401 {
13402 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13403 return FALSE;
13404 }
13405
13406 if (!htab->symbian_p)
13407 {
13408 s = htab->root.sgot;
13409 h->got.offset = s->size;
13410
13411 if (tls_type == GOT_UNKNOWN)
13412 abort ();
13413
13414 if (tls_type == GOT_NORMAL)
13415 /* Non-TLS symbols need one GOT slot. */
13416 s->size += 4;
13417 else
13418 {
13419 if (tls_type & GOT_TLS_GDESC)
13420 {
13421 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13422 eh->tlsdesc_got
13423 = (htab->root.sgotplt->size
13424 - elf32_arm_compute_jump_table_size (htab));
13425 htab->root.sgotplt->size += 8;
13426 h->got.offset = (bfd_vma) -2;
13427 /* plt.got_offset needs to know there's a TLS_DESC
13428 reloc in the middle of .got.plt. */
13429 htab->num_tls_desc++;
13430 }
13431
13432 if (tls_type & GOT_TLS_GD)
13433 {
13434 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13435 the symbol is both GD and GDESC, got.offset may
13436 have been overwritten. */
13437 h->got.offset = s->size;
13438 s->size += 8;
13439 }
13440
13441 if (tls_type & GOT_TLS_IE)
13442 /* R_ARM_TLS_IE32 needs one GOT slot. */
13443 s->size += 4;
13444 }
13445
13446 dyn = htab->root.dynamic_sections_created;
13447
13448 indx = 0;
13449 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13450 && (!info->shared
13451 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13452 indx = h->dynindx;
13453
13454 if (tls_type != GOT_NORMAL
13455 && (info->shared || indx != 0)
13456 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13457 || h->root.type != bfd_link_hash_undefweak))
13458 {
13459 if (tls_type & GOT_TLS_IE)
13460 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13461
13462 if (tls_type & GOT_TLS_GD)
13463 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13464
13465 if (tls_type & GOT_TLS_GDESC)
13466 {
13467 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13468 /* GDESC needs a trampoline to jump to. */
13469 htab->tls_trampoline = -1;
13470 }
13471
13472 /* Only GD needs it. GDESC just emits one relocation per
13473 2 entries. */
13474 if ((tls_type & GOT_TLS_GD) && indx != 0)
13475 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13476 }
13477 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
13478 {
13479 if (htab->root.dynamic_sections_created)
13480 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13481 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13482 }
13483 else if (h->type == STT_GNU_IFUNC
13484 && eh->plt.noncall_refcount == 0)
13485 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13486 they all resolve dynamically instead. Reserve room for the
13487 GOT entry's R_ARM_IRELATIVE relocation. */
13488 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13489 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13490 || h->root.type != bfd_link_hash_undefweak))
13491 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13492 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13493 }
13494 }
13495 else
13496 h->got.offset = (bfd_vma) -1;
13497
13498 /* Allocate stubs for exported Thumb functions on v4t. */
13499 if (!htab->use_blx && h->dynindx != -1
13500 && h->def_regular
13501 && h->target_internal == ST_BRANCH_TO_THUMB
13502 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13503 {
13504 struct elf_link_hash_entry * th;
13505 struct bfd_link_hash_entry * bh;
13506 struct elf_link_hash_entry * myh;
13507 char name[1024];
13508 asection *s;
13509 bh = NULL;
13510 /* Create a new symbol to regist the real location of the function. */
13511 s = h->root.u.def.section;
13512 sprintf (name, "__real_%s", h->root.root.string);
13513 _bfd_generic_link_add_one_symbol (info, s->owner,
13514 name, BSF_GLOBAL, s,
13515 h->root.u.def.value,
13516 NULL, TRUE, FALSE, &bh);
13517
13518 myh = (struct elf_link_hash_entry *) bh;
13519 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13520 myh->forced_local = 1;
13521 myh->target_internal = ST_BRANCH_TO_THUMB;
13522 eh->export_glue = myh;
13523 th = record_arm_to_thumb_glue (info, h);
13524 /* Point the symbol at the stub. */
13525 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13526 h->target_internal = ST_BRANCH_TO_ARM;
13527 h->root.u.def.section = th->root.u.def.section;
13528 h->root.u.def.value = th->root.u.def.value & ~1;
13529 }
13530
13531 if (eh->dyn_relocs == NULL)
13532 return TRUE;
13533
13534 /* In the shared -Bsymbolic case, discard space allocated for
13535 dynamic pc-relative relocs against symbols which turn out to be
13536 defined in regular objects. For the normal shared case, discard
13537 space for pc-relative relocs that have become local due to symbol
13538 visibility changes. */
13539
13540 if (info->shared || htab->root.is_relocatable_executable)
13541 {
13542 /* The only relocs that use pc_count are R_ARM_REL32 and
13543 R_ARM_REL32_NOI, which will appear on something like
13544 ".long foo - .". We want calls to protected symbols to resolve
13545 directly to the function rather than going via the plt. If people
13546 want function pointer comparisons to work as expected then they
13547 should avoid writing assembly like ".long foo - .". */
13548 if (SYMBOL_CALLS_LOCAL (info, h))
13549 {
13550 struct elf_dyn_relocs **pp;
13551
13552 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13553 {
13554 p->count -= p->pc_count;
13555 p->pc_count = 0;
13556 if (p->count == 0)
13557 *pp = p->next;
13558 else
13559 pp = &p->next;
13560 }
13561 }
13562
13563 if (htab->vxworks_p)
13564 {
13565 struct elf_dyn_relocs **pp;
13566
13567 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13568 {
13569 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13570 *pp = p->next;
13571 else
13572 pp = &p->next;
13573 }
13574 }
13575
13576 /* Also discard relocs on undefined weak syms with non-default
13577 visibility. */
13578 if (eh->dyn_relocs != NULL
13579 && h->root.type == bfd_link_hash_undefweak)
13580 {
13581 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13582 eh->dyn_relocs = NULL;
13583
13584 /* Make sure undefined weak symbols are output as a dynamic
13585 symbol in PIEs. */
13586 else if (h->dynindx == -1
13587 && !h->forced_local)
13588 {
13589 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13590 return FALSE;
13591 }
13592 }
13593
13594 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13595 && h->root.type == bfd_link_hash_new)
13596 {
13597 /* Output absolute symbols so that we can create relocations
13598 against them. For normal symbols we output a relocation
13599 against the section that contains them. */
13600 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13601 return FALSE;
13602 }
13603
13604 }
13605 else
13606 {
13607 /* For the non-shared case, discard space for relocs against
13608 symbols which turn out to need copy relocs or are not
13609 dynamic. */
13610
13611 if (!h->non_got_ref
13612 && ((h->def_dynamic
13613 && !h->def_regular)
13614 || (htab->root.dynamic_sections_created
13615 && (h->root.type == bfd_link_hash_undefweak
13616 || h->root.type == bfd_link_hash_undefined))))
13617 {
13618 /* Make sure this symbol is output as a dynamic symbol.
13619 Undefined weak syms won't yet be marked as dynamic. */
13620 if (h->dynindx == -1
13621 && !h->forced_local)
13622 {
13623 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13624 return FALSE;
13625 }
13626
13627 /* If that succeeded, we know we'll be keeping all the
13628 relocs. */
13629 if (h->dynindx != -1)
13630 goto keep;
13631 }
13632
13633 eh->dyn_relocs = NULL;
13634
13635 keep: ;
13636 }
13637
13638 /* Finally, allocate space. */
13639 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13640 {
13641 asection *sreloc = elf_section_data (p->sec)->sreloc;
13642 if (h->type == STT_GNU_IFUNC
13643 && eh->plt.noncall_refcount == 0
13644 && SYMBOL_REFERENCES_LOCAL (info, h))
13645 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13646 else
13647 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13648 }
13649
13650 return TRUE;
13651 }
13652
13653 /* Find any dynamic relocs that apply to read-only sections. */
13654
13655 static bfd_boolean
13656 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13657 {
13658 struct elf32_arm_link_hash_entry * eh;
13659 struct elf_dyn_relocs * p;
13660
13661 eh = (struct elf32_arm_link_hash_entry *) h;
13662 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13663 {
13664 asection *s = p->sec;
13665
13666 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13667 {
13668 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13669
13670 info->flags |= DF_TEXTREL;
13671
13672 /* Not an error, just cut short the traversal. */
13673 return FALSE;
13674 }
13675 }
13676 return TRUE;
13677 }
13678
13679 void
13680 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13681 int byteswap_code)
13682 {
13683 struct elf32_arm_link_hash_table *globals;
13684
13685 globals = elf32_arm_hash_table (info);
13686 if (globals == NULL)
13687 return;
13688
13689 globals->byteswap_code = byteswap_code;
13690 }
13691
13692 /* Set the sizes of the dynamic sections. */
13693
13694 static bfd_boolean
13695 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13696 struct bfd_link_info * info)
13697 {
13698 bfd * dynobj;
13699 asection * s;
13700 bfd_boolean plt;
13701 bfd_boolean relocs;
13702 bfd *ibfd;
13703 struct elf32_arm_link_hash_table *htab;
13704
13705 htab = elf32_arm_hash_table (info);
13706 if (htab == NULL)
13707 return FALSE;
13708
13709 dynobj = elf_hash_table (info)->dynobj;
13710 BFD_ASSERT (dynobj != NULL);
13711 check_use_blx (htab);
13712
13713 if (elf_hash_table (info)->dynamic_sections_created)
13714 {
13715 /* Set the contents of the .interp section to the interpreter. */
13716 if (info->executable)
13717 {
13718 s = bfd_get_linker_section (dynobj, ".interp");
13719 BFD_ASSERT (s != NULL);
13720 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13721 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13722 }
13723 }
13724
13725 /* Set up .got offsets for local syms, and space for local dynamic
13726 relocs. */
13727 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13728 {
13729 bfd_signed_vma *local_got;
13730 bfd_signed_vma *end_local_got;
13731 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13732 char *local_tls_type;
13733 bfd_vma *local_tlsdesc_gotent;
13734 bfd_size_type locsymcount;
13735 Elf_Internal_Shdr *symtab_hdr;
13736 asection *srel;
13737 bfd_boolean is_vxworks = htab->vxworks_p;
13738 unsigned int symndx;
13739
13740 if (! is_arm_elf (ibfd))
13741 continue;
13742
13743 for (s = ibfd->sections; s != NULL; s = s->next)
13744 {
13745 struct elf_dyn_relocs *p;
13746
13747 for (p = (struct elf_dyn_relocs *)
13748 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13749 {
13750 if (!bfd_is_abs_section (p->sec)
13751 && bfd_is_abs_section (p->sec->output_section))
13752 {
13753 /* Input section has been discarded, either because
13754 it is a copy of a linkonce section or due to
13755 linker script /DISCARD/, so we'll be discarding
13756 the relocs too. */
13757 }
13758 else if (is_vxworks
13759 && strcmp (p->sec->output_section->name,
13760 ".tls_vars") == 0)
13761 {
13762 /* Relocations in vxworks .tls_vars sections are
13763 handled specially by the loader. */
13764 }
13765 else if (p->count != 0)
13766 {
13767 srel = elf_section_data (p->sec)->sreloc;
13768 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13769 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13770 info->flags |= DF_TEXTREL;
13771 }
13772 }
13773 }
13774
13775 local_got = elf_local_got_refcounts (ibfd);
13776 if (!local_got)
13777 continue;
13778
13779 symtab_hdr = & elf_symtab_hdr (ibfd);
13780 locsymcount = symtab_hdr->sh_info;
13781 end_local_got = local_got + locsymcount;
13782 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13783 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13784 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13785 symndx = 0;
13786 s = htab->root.sgot;
13787 srel = htab->root.srelgot;
13788 for (; local_got < end_local_got;
13789 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13790 ++local_tlsdesc_gotent, ++symndx)
13791 {
13792 *local_tlsdesc_gotent = (bfd_vma) -1;
13793 local_iplt = *local_iplt_ptr;
13794 if (local_iplt != NULL)
13795 {
13796 struct elf_dyn_relocs *p;
13797
13798 if (local_iplt->root.refcount > 0)
13799 {
13800 elf32_arm_allocate_plt_entry (info, TRUE,
13801 &local_iplt->root,
13802 &local_iplt->arm);
13803 if (local_iplt->arm.noncall_refcount == 0)
13804 /* All references to the PLT are calls, so all
13805 non-call references can resolve directly to the
13806 run-time target. This means that the .got entry
13807 would be the same as the .igot.plt entry, so there's
13808 no point creating both. */
13809 *local_got = 0;
13810 }
13811 else
13812 {
13813 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13814 local_iplt->root.offset = (bfd_vma) -1;
13815 }
13816
13817 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13818 {
13819 asection *psrel;
13820
13821 psrel = elf_section_data (p->sec)->sreloc;
13822 if (local_iplt->arm.noncall_refcount == 0)
13823 elf32_arm_allocate_irelocs (info, psrel, p->count);
13824 else
13825 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13826 }
13827 }
13828 if (*local_got > 0)
13829 {
13830 Elf_Internal_Sym *isym;
13831
13832 *local_got = s->size;
13833 if (*local_tls_type & GOT_TLS_GD)
13834 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13835 s->size += 8;
13836 if (*local_tls_type & GOT_TLS_GDESC)
13837 {
13838 *local_tlsdesc_gotent = htab->root.sgotplt->size
13839 - elf32_arm_compute_jump_table_size (htab);
13840 htab->root.sgotplt->size += 8;
13841 *local_got = (bfd_vma) -2;
13842 /* plt.got_offset needs to know there's a TLS_DESC
13843 reloc in the middle of .got.plt. */
13844 htab->num_tls_desc++;
13845 }
13846 if (*local_tls_type & GOT_TLS_IE)
13847 s->size += 4;
13848
13849 if (*local_tls_type & GOT_NORMAL)
13850 {
13851 /* If the symbol is both GD and GDESC, *local_got
13852 may have been overwritten. */
13853 *local_got = s->size;
13854 s->size += 4;
13855 }
13856
13857 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13858 if (isym == NULL)
13859 return FALSE;
13860
13861 /* If all references to an STT_GNU_IFUNC PLT are calls,
13862 then all non-call references, including this GOT entry,
13863 resolve directly to the run-time target. */
13864 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13865 && (local_iplt == NULL
13866 || local_iplt->arm.noncall_refcount == 0))
13867 elf32_arm_allocate_irelocs (info, srel, 1);
13868 else if (info->shared || output_bfd->flags & DYNAMIC)
13869 {
13870 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13871 || *local_tls_type & GOT_TLS_GD)
13872 elf32_arm_allocate_dynrelocs (info, srel, 1);
13873
13874 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13875 {
13876 elf32_arm_allocate_dynrelocs (info,
13877 htab->root.srelplt, 1);
13878 htab->tls_trampoline = -1;
13879 }
13880 }
13881 }
13882 else
13883 *local_got = (bfd_vma) -1;
13884 }
13885 }
13886
13887 if (htab->tls_ldm_got.refcount > 0)
13888 {
13889 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13890 for R_ARM_TLS_LDM32 relocations. */
13891 htab->tls_ldm_got.offset = htab->root.sgot->size;
13892 htab->root.sgot->size += 8;
13893 if (info->shared)
13894 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13895 }
13896 else
13897 htab->tls_ldm_got.offset = -1;
13898
13899 /* Allocate global sym .plt and .got entries, and space for global
13900 sym dynamic relocs. */
13901 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13902
13903 /* Here we rummage through the found bfds to collect glue information. */
13904 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13905 {
13906 if (! is_arm_elf (ibfd))
13907 continue;
13908
13909 /* Initialise mapping tables for code/data. */
13910 bfd_elf32_arm_init_maps (ibfd);
13911
13912 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13913 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13914 /* xgettext:c-format */
13915 _bfd_error_handler (_("Errors encountered processing file %s"),
13916 ibfd->filename);
13917 }
13918
13919 /* Allocate space for the glue sections now that we've sized them. */
13920 bfd_elf32_arm_allocate_interworking_sections (info);
13921
13922 /* For every jump slot reserved in the sgotplt, reloc_count is
13923 incremented. However, when we reserve space for TLS descriptors,
13924 it's not incremented, so in order to compute the space reserved
13925 for them, it suffices to multiply the reloc count by the jump
13926 slot size. */
13927 if (htab->root.srelplt)
13928 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13929
13930 if (htab->tls_trampoline)
13931 {
13932 if (htab->root.splt->size == 0)
13933 htab->root.splt->size += htab->plt_header_size;
13934
13935 htab->tls_trampoline = htab->root.splt->size;
13936 htab->root.splt->size += htab->plt_entry_size;
13937
13938 /* If we're not using lazy TLS relocations, don't generate the
13939 PLT and GOT entries they require. */
13940 if (!(info->flags & DF_BIND_NOW))
13941 {
13942 htab->dt_tlsdesc_got = htab->root.sgot->size;
13943 htab->root.sgot->size += 4;
13944
13945 htab->dt_tlsdesc_plt = htab->root.splt->size;
13946 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13947 }
13948 }
13949
13950 /* The check_relocs and adjust_dynamic_symbol entry points have
13951 determined the sizes of the various dynamic sections. Allocate
13952 memory for them. */
13953 plt = FALSE;
13954 relocs = FALSE;
13955 for (s = dynobj->sections; s != NULL; s = s->next)
13956 {
13957 const char * name;
13958
13959 if ((s->flags & SEC_LINKER_CREATED) == 0)
13960 continue;
13961
13962 /* It's OK to base decisions on the section name, because none
13963 of the dynobj section names depend upon the input files. */
13964 name = bfd_get_section_name (dynobj, s);
13965
13966 if (s == htab->root.splt)
13967 {
13968 /* Remember whether there is a PLT. */
13969 plt = s->size != 0;
13970 }
13971 else if (CONST_STRNEQ (name, ".rel"))
13972 {
13973 if (s->size != 0)
13974 {
13975 /* Remember whether there are any reloc sections other
13976 than .rel(a).plt and .rela.plt.unloaded. */
13977 if (s != htab->root.srelplt && s != htab->srelplt2)
13978 relocs = TRUE;
13979
13980 /* We use the reloc_count field as a counter if we need
13981 to copy relocs into the output file. */
13982 s->reloc_count = 0;
13983 }
13984 }
13985 else if (s != htab->root.sgot
13986 && s != htab->root.sgotplt
13987 && s != htab->root.iplt
13988 && s != htab->root.igotplt
13989 && s != htab->sdynbss)
13990 {
13991 /* It's not one of our sections, so don't allocate space. */
13992 continue;
13993 }
13994
13995 if (s->size == 0)
13996 {
13997 /* If we don't need this section, strip it from the
13998 output file. This is mostly to handle .rel(a).bss and
13999 .rel(a).plt. We must create both sections in
14000 create_dynamic_sections, because they must be created
14001 before the linker maps input sections to output
14002 sections. The linker does that before
14003 adjust_dynamic_symbol is called, and it is that
14004 function which decides whether anything needs to go
14005 into these sections. */
14006 s->flags |= SEC_EXCLUDE;
14007 continue;
14008 }
14009
14010 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14011 continue;
14012
14013 /* Allocate memory for the section contents. */
14014 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
14015 if (s->contents == NULL)
14016 return FALSE;
14017 }
14018
14019 if (elf_hash_table (info)->dynamic_sections_created)
14020 {
14021 /* Add some entries to the .dynamic section. We fill in the
14022 values later, in elf32_arm_finish_dynamic_sections, but we
14023 must add the entries now so that we get the correct size for
14024 the .dynamic section. The DT_DEBUG entry is filled in by the
14025 dynamic linker and used by the debugger. */
14026 #define add_dynamic_entry(TAG, VAL) \
14027 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14028
14029 if (info->executable)
14030 {
14031 if (!add_dynamic_entry (DT_DEBUG, 0))
14032 return FALSE;
14033 }
14034
14035 if (plt)
14036 {
14037 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14038 || !add_dynamic_entry (DT_PLTRELSZ, 0)
14039 || !add_dynamic_entry (DT_PLTREL,
14040 htab->use_rel ? DT_REL : DT_RELA)
14041 || !add_dynamic_entry (DT_JMPREL, 0))
14042 return FALSE;
14043
14044 if (htab->dt_tlsdesc_plt &&
14045 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
14046 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
14047 return FALSE;
14048 }
14049
14050 if (relocs)
14051 {
14052 if (htab->use_rel)
14053 {
14054 if (!add_dynamic_entry (DT_REL, 0)
14055 || !add_dynamic_entry (DT_RELSZ, 0)
14056 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14057 return FALSE;
14058 }
14059 else
14060 {
14061 if (!add_dynamic_entry (DT_RELA, 0)
14062 || !add_dynamic_entry (DT_RELASZ, 0)
14063 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14064 return FALSE;
14065 }
14066 }
14067
14068 /* If any dynamic relocs apply to a read-only section,
14069 then we need a DT_TEXTREL entry. */
14070 if ((info->flags & DF_TEXTREL) == 0)
14071 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14072 info);
14073
14074 if ((info->flags & DF_TEXTREL) != 0)
14075 {
14076 if (!add_dynamic_entry (DT_TEXTREL, 0))
14077 return FALSE;
14078 }
14079 if (htab->vxworks_p
14080 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14081 return FALSE;
14082 }
14083 #undef add_dynamic_entry
14084
14085 return TRUE;
14086 }
14087
14088 /* Size sections even though they're not dynamic. We use it to setup
14089 _TLS_MODULE_BASE_, if needed. */
14090
14091 static bfd_boolean
14092 elf32_arm_always_size_sections (bfd *output_bfd,
14093 struct bfd_link_info *info)
14094 {
14095 asection *tls_sec;
14096
14097 if (info->relocatable)
14098 return TRUE;
14099
14100 tls_sec = elf_hash_table (info)->tls_sec;
14101
14102 if (tls_sec)
14103 {
14104 struct elf_link_hash_entry *tlsbase;
14105
14106 tlsbase = elf_link_hash_lookup
14107 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
14108
14109 if (tlsbase)
14110 {
14111 struct bfd_link_hash_entry *bh = NULL;
14112 const struct elf_backend_data *bed
14113 = get_elf_backend_data (output_bfd);
14114
14115 if (!(_bfd_generic_link_add_one_symbol
14116 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
14117 tls_sec, 0, NULL, FALSE,
14118 bed->collect, &bh)))
14119 return FALSE;
14120
14121 tlsbase->type = STT_TLS;
14122 tlsbase = (struct elf_link_hash_entry *)bh;
14123 tlsbase->def_regular = 1;
14124 tlsbase->other = STV_HIDDEN;
14125 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
14126 }
14127 }
14128 return TRUE;
14129 }
14130
14131 /* Finish up dynamic symbol handling. We set the contents of various
14132 dynamic sections here. */
14133
14134 static bfd_boolean
14135 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14136 struct bfd_link_info * info,
14137 struct elf_link_hash_entry * h,
14138 Elf_Internal_Sym * sym)
14139 {
14140 struct elf32_arm_link_hash_table *htab;
14141 struct elf32_arm_link_hash_entry *eh;
14142
14143 htab = elf32_arm_hash_table (info);
14144 if (htab == NULL)
14145 return FALSE;
14146
14147 eh = (struct elf32_arm_link_hash_entry *) h;
14148
14149 if (h->plt.offset != (bfd_vma) -1)
14150 {
14151 if (!eh->is_iplt)
14152 {
14153 BFD_ASSERT (h->dynindx != -1);
14154 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14155 h->dynindx, 0))
14156 return FALSE;
14157 }
14158
14159 if (!h->def_regular)
14160 {
14161 /* Mark the symbol as undefined, rather than as defined in
14162 the .plt section. Leave the value alone. */
14163 sym->st_shndx = SHN_UNDEF;
14164 /* If the symbol is weak, we do need to clear the value.
14165 Otherwise, the PLT entry would provide a definition for
14166 the symbol even if the symbol wasn't defined anywhere,
14167 and so the symbol would never be NULL. */
14168 if (!h->ref_regular_nonweak)
14169 sym->st_value = 0;
14170 }
14171 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14172 {
14173 /* At least one non-call relocation references this .iplt entry,
14174 so the .iplt entry is the function's canonical address. */
14175 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14176 sym->st_target_internal = ST_BRANCH_TO_ARM;
14177 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14178 (output_bfd, htab->root.iplt->output_section));
14179 sym->st_value = (h->plt.offset
14180 + htab->root.iplt->output_section->vma
14181 + htab->root.iplt->output_offset);
14182 }
14183 }
14184
14185 if (h->needs_copy)
14186 {
14187 asection * s;
14188 Elf_Internal_Rela rel;
14189
14190 /* This symbol needs a copy reloc. Set it up. */
14191 BFD_ASSERT (h->dynindx != -1
14192 && (h->root.type == bfd_link_hash_defined
14193 || h->root.type == bfd_link_hash_defweak));
14194
14195 s = htab->srelbss;
14196 BFD_ASSERT (s != NULL);
14197
14198 rel.r_addend = 0;
14199 rel.r_offset = (h->root.u.def.value
14200 + h->root.u.def.section->output_section->vma
14201 + h->root.u.def.section->output_offset);
14202 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
14203 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
14204 }
14205
14206 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14207 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14208 to the ".got" section. */
14209 if (h == htab->root.hdynamic
14210 || (!htab->vxworks_p && h == htab->root.hgot))
14211 sym->st_shndx = SHN_ABS;
14212
14213 return TRUE;
14214 }
14215
14216 static void
14217 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14218 void *contents,
14219 const unsigned long *template, unsigned count)
14220 {
14221 unsigned ix;
14222
14223 for (ix = 0; ix != count; ix++)
14224 {
14225 unsigned long insn = template[ix];
14226
14227 /* Emit mov pc,rx if bx is not permitted. */
14228 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14229 insn = (insn & 0xf000000f) | 0x01a0f000;
14230 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14231 }
14232 }
14233
14234 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
14235 other variants, NaCl needs this entry in a static executable's
14236 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14237 zero. For .iplt really only the last bundle is useful, and .iplt
14238 could have a shorter first entry, with each individual PLT entry's
14239 relative branch calculated differently so it targets the last
14240 bundle instead of the instruction before it (labelled .Lplt_tail
14241 above). But it's simpler to keep the size and layout of PLT0
14242 consistent with the dynamic case, at the cost of some dead code at
14243 the start of .iplt and the one dead store to the stack at the start
14244 of .Lplt_tail. */
14245 static void
14246 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14247 asection *plt, bfd_vma got_displacement)
14248 {
14249 unsigned int i;
14250
14251 put_arm_insn (htab, output_bfd,
14252 elf32_arm_nacl_plt0_entry[0]
14253 | arm_movw_immediate (got_displacement),
14254 plt->contents + 0);
14255 put_arm_insn (htab, output_bfd,
14256 elf32_arm_nacl_plt0_entry[1]
14257 | arm_movt_immediate (got_displacement),
14258 plt->contents + 4);
14259
14260 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14261 put_arm_insn (htab, output_bfd,
14262 elf32_arm_nacl_plt0_entry[i],
14263 plt->contents + (i * 4));
14264 }
14265
14266 /* Finish up the dynamic sections. */
14267
14268 static bfd_boolean
14269 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14270 {
14271 bfd * dynobj;
14272 asection * sgot;
14273 asection * sdyn;
14274 struct elf32_arm_link_hash_table *htab;
14275
14276 htab = elf32_arm_hash_table (info);
14277 if (htab == NULL)
14278 return FALSE;
14279
14280 dynobj = elf_hash_table (info)->dynobj;
14281
14282 sgot = htab->root.sgotplt;
14283 /* A broken linker script might have discarded the dynamic sections.
14284 Catch this here so that we do not seg-fault later on. */
14285 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14286 return FALSE;
14287 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14288
14289 if (elf_hash_table (info)->dynamic_sections_created)
14290 {
14291 asection *splt;
14292 Elf32_External_Dyn *dyncon, *dynconend;
14293
14294 splt = htab->root.splt;
14295 BFD_ASSERT (splt != NULL && sdyn != NULL);
14296 BFD_ASSERT (htab->symbian_p || sgot != NULL);
14297
14298 dyncon = (Elf32_External_Dyn *) sdyn->contents;
14299 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14300
14301 for (; dyncon < dynconend; dyncon++)
14302 {
14303 Elf_Internal_Dyn dyn;
14304 const char * name;
14305 asection * s;
14306
14307 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14308
14309 switch (dyn.d_tag)
14310 {
14311 unsigned int type;
14312
14313 default:
14314 if (htab->vxworks_p
14315 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14316 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14317 break;
14318
14319 case DT_HASH:
14320 name = ".hash";
14321 goto get_vma_if_bpabi;
14322 case DT_STRTAB:
14323 name = ".dynstr";
14324 goto get_vma_if_bpabi;
14325 case DT_SYMTAB:
14326 name = ".dynsym";
14327 goto get_vma_if_bpabi;
14328 case DT_VERSYM:
14329 name = ".gnu.version";
14330 goto get_vma_if_bpabi;
14331 case DT_VERDEF:
14332 name = ".gnu.version_d";
14333 goto get_vma_if_bpabi;
14334 case DT_VERNEED:
14335 name = ".gnu.version_r";
14336 goto get_vma_if_bpabi;
14337
14338 case DT_PLTGOT:
14339 name = ".got";
14340 goto get_vma;
14341 case DT_JMPREL:
14342 name = RELOC_SECTION (htab, ".plt");
14343 get_vma:
14344 s = bfd_get_section_by_name (output_bfd, name);
14345 if (s == NULL)
14346 {
14347 /* PR ld/14397: Issue an error message if a required section is missing. */
14348 (*_bfd_error_handler)
14349 (_("error: required section '%s' not found in the linker script"), name);
14350 bfd_set_error (bfd_error_invalid_operation);
14351 return FALSE;
14352 }
14353 if (!htab->symbian_p)
14354 dyn.d_un.d_ptr = s->vma;
14355 else
14356 /* In the BPABI, tags in the PT_DYNAMIC section point
14357 at the file offset, not the memory address, for the
14358 convenience of the post linker. */
14359 dyn.d_un.d_ptr = s->filepos;
14360 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14361 break;
14362
14363 get_vma_if_bpabi:
14364 if (htab->symbian_p)
14365 goto get_vma;
14366 break;
14367
14368 case DT_PLTRELSZ:
14369 s = htab->root.srelplt;
14370 BFD_ASSERT (s != NULL);
14371 dyn.d_un.d_val = s->size;
14372 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14373 break;
14374
14375 case DT_RELSZ:
14376 case DT_RELASZ:
14377 if (!htab->symbian_p)
14378 {
14379 /* My reading of the SVR4 ABI indicates that the
14380 procedure linkage table relocs (DT_JMPREL) should be
14381 included in the overall relocs (DT_REL). This is
14382 what Solaris does. However, UnixWare can not handle
14383 that case. Therefore, we override the DT_RELSZ entry
14384 here to make it not include the JMPREL relocs. Since
14385 the linker script arranges for .rel(a).plt to follow all
14386 other relocation sections, we don't have to worry
14387 about changing the DT_REL entry. */
14388 s = htab->root.srelplt;
14389 if (s != NULL)
14390 dyn.d_un.d_val -= s->size;
14391 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14392 break;
14393 }
14394 /* Fall through. */
14395
14396 case DT_REL:
14397 case DT_RELA:
14398 /* In the BPABI, the DT_REL tag must point at the file
14399 offset, not the VMA, of the first relocation
14400 section. So, we use code similar to that in
14401 elflink.c, but do not check for SHF_ALLOC on the
14402 relcoation section, since relocations sections are
14403 never allocated under the BPABI. The comments above
14404 about Unixware notwithstanding, we include all of the
14405 relocations here. */
14406 if (htab->symbian_p)
14407 {
14408 unsigned int i;
14409 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14410 ? SHT_REL : SHT_RELA);
14411 dyn.d_un.d_val = 0;
14412 for (i = 1; i < elf_numsections (output_bfd); i++)
14413 {
14414 Elf_Internal_Shdr *hdr
14415 = elf_elfsections (output_bfd)[i];
14416 if (hdr->sh_type == type)
14417 {
14418 if (dyn.d_tag == DT_RELSZ
14419 || dyn.d_tag == DT_RELASZ)
14420 dyn.d_un.d_val += hdr->sh_size;
14421 else if ((ufile_ptr) hdr->sh_offset
14422 <= dyn.d_un.d_val - 1)
14423 dyn.d_un.d_val = hdr->sh_offset;
14424 }
14425 }
14426 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14427 }
14428 break;
14429
14430 case DT_TLSDESC_PLT:
14431 s = htab->root.splt;
14432 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14433 + htab->dt_tlsdesc_plt);
14434 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14435 break;
14436
14437 case DT_TLSDESC_GOT:
14438 s = htab->root.sgot;
14439 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14440 + htab->dt_tlsdesc_got);
14441 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14442 break;
14443
14444 /* Set the bottom bit of DT_INIT/FINI if the
14445 corresponding function is Thumb. */
14446 case DT_INIT:
14447 name = info->init_function;
14448 goto get_sym;
14449 case DT_FINI:
14450 name = info->fini_function;
14451 get_sym:
14452 /* If it wasn't set by elf_bfd_final_link
14453 then there is nothing to adjust. */
14454 if (dyn.d_un.d_val != 0)
14455 {
14456 struct elf_link_hash_entry * eh;
14457
14458 eh = elf_link_hash_lookup (elf_hash_table (info), name,
14459 FALSE, FALSE, TRUE);
14460 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14461 {
14462 dyn.d_un.d_val |= 1;
14463 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14464 }
14465 }
14466 break;
14467 }
14468 }
14469
14470 /* Fill in the first entry in the procedure linkage table. */
14471 if (splt->size > 0 && htab->plt_header_size)
14472 {
14473 const bfd_vma *plt0_entry;
14474 bfd_vma got_address, plt_address, got_displacement;
14475
14476 /* Calculate the addresses of the GOT and PLT. */
14477 got_address = sgot->output_section->vma + sgot->output_offset;
14478 plt_address = splt->output_section->vma + splt->output_offset;
14479
14480 if (htab->vxworks_p)
14481 {
14482 /* The VxWorks GOT is relocated by the dynamic linker.
14483 Therefore, we must emit relocations rather than simply
14484 computing the values now. */
14485 Elf_Internal_Rela rel;
14486
14487 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14488 put_arm_insn (htab, output_bfd, plt0_entry[0],
14489 splt->contents + 0);
14490 put_arm_insn (htab, output_bfd, plt0_entry[1],
14491 splt->contents + 4);
14492 put_arm_insn (htab, output_bfd, plt0_entry[2],
14493 splt->contents + 8);
14494 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14495
14496 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14497 rel.r_offset = plt_address + 12;
14498 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14499 rel.r_addend = 0;
14500 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14501 htab->srelplt2->contents);
14502 }
14503 else if (htab->nacl_p)
14504 arm_nacl_put_plt0 (htab, output_bfd, splt,
14505 got_address + 8 - (plt_address + 16));
14506 else if (using_thumb_only (htab))
14507 {
14508 got_displacement = got_address - (plt_address + 12);
14509
14510 plt0_entry = elf32_thumb2_plt0_entry;
14511 put_arm_insn (htab, output_bfd, plt0_entry[0],
14512 splt->contents + 0);
14513 put_arm_insn (htab, output_bfd, plt0_entry[1],
14514 splt->contents + 4);
14515 put_arm_insn (htab, output_bfd, plt0_entry[2],
14516 splt->contents + 8);
14517
14518 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
14519 }
14520 else
14521 {
14522 got_displacement = got_address - (plt_address + 16);
14523
14524 plt0_entry = elf32_arm_plt0_entry;
14525 put_arm_insn (htab, output_bfd, plt0_entry[0],
14526 splt->contents + 0);
14527 put_arm_insn (htab, output_bfd, plt0_entry[1],
14528 splt->contents + 4);
14529 put_arm_insn (htab, output_bfd, plt0_entry[2],
14530 splt->contents + 8);
14531 put_arm_insn (htab, output_bfd, plt0_entry[3],
14532 splt->contents + 12);
14533
14534 #ifdef FOUR_WORD_PLT
14535 /* The displacement value goes in the otherwise-unused
14536 last word of the second entry. */
14537 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14538 #else
14539 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14540 #endif
14541 }
14542 }
14543
14544 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14545 really seem like the right value. */
14546 if (splt->output_section->owner == output_bfd)
14547 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14548
14549 if (htab->dt_tlsdesc_plt)
14550 {
14551 bfd_vma got_address
14552 = sgot->output_section->vma + sgot->output_offset;
14553 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14554 + htab->root.sgot->output_offset);
14555 bfd_vma plt_address
14556 = splt->output_section->vma + splt->output_offset;
14557
14558 arm_put_trampoline (htab, output_bfd,
14559 splt->contents + htab->dt_tlsdesc_plt,
14560 dl_tlsdesc_lazy_trampoline, 6);
14561
14562 bfd_put_32 (output_bfd,
14563 gotplt_address + htab->dt_tlsdesc_got
14564 - (plt_address + htab->dt_tlsdesc_plt)
14565 - dl_tlsdesc_lazy_trampoline[6],
14566 splt->contents + htab->dt_tlsdesc_plt + 24);
14567 bfd_put_32 (output_bfd,
14568 got_address - (plt_address + htab->dt_tlsdesc_plt)
14569 - dl_tlsdesc_lazy_trampoline[7],
14570 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14571 }
14572
14573 if (htab->tls_trampoline)
14574 {
14575 arm_put_trampoline (htab, output_bfd,
14576 splt->contents + htab->tls_trampoline,
14577 tls_trampoline, 3);
14578 #ifdef FOUR_WORD_PLT
14579 bfd_put_32 (output_bfd, 0x00000000,
14580 splt->contents + htab->tls_trampoline + 12);
14581 #endif
14582 }
14583
14584 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14585 {
14586 /* Correct the .rel(a).plt.unloaded relocations. They will have
14587 incorrect symbol indexes. */
14588 int num_plts;
14589 unsigned char *p;
14590
14591 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14592 / htab->plt_entry_size);
14593 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14594
14595 for (; num_plts; num_plts--)
14596 {
14597 Elf_Internal_Rela rel;
14598
14599 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14600 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14601 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14602 p += RELOC_SIZE (htab);
14603
14604 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14605 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14606 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14607 p += RELOC_SIZE (htab);
14608 }
14609 }
14610 }
14611
14612 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14613 /* NaCl uses a special first entry in .iplt too. */
14614 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14615
14616 /* Fill in the first three entries in the global offset table. */
14617 if (sgot)
14618 {
14619 if (sgot->size > 0)
14620 {
14621 if (sdyn == NULL)
14622 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14623 else
14624 bfd_put_32 (output_bfd,
14625 sdyn->output_section->vma + sdyn->output_offset,
14626 sgot->contents);
14627 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14628 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14629 }
14630
14631 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14632 }
14633
14634 return TRUE;
14635 }
14636
14637 static void
14638 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14639 {
14640 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14641 struct elf32_arm_link_hash_table *globals;
14642
14643 i_ehdrp = elf_elfheader (abfd);
14644
14645 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14646 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14647 else
14648 _bfd_elf_post_process_headers (abfd, link_info);
14649 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14650
14651 if (link_info)
14652 {
14653 globals = elf32_arm_hash_table (link_info);
14654 if (globals != NULL && globals->byteswap_code)
14655 i_ehdrp->e_flags |= EF_ARM_BE8;
14656 }
14657
14658 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14659 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14660 {
14661 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14662 if (abi)
14663 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14664 else
14665 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14666 }
14667 }
14668
14669 static enum elf_reloc_type_class
14670 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14671 const asection *rel_sec ATTRIBUTE_UNUSED,
14672 const Elf_Internal_Rela *rela)
14673 {
14674 switch ((int) ELF32_R_TYPE (rela->r_info))
14675 {
14676 case R_ARM_RELATIVE:
14677 return reloc_class_relative;
14678 case R_ARM_JUMP_SLOT:
14679 return reloc_class_plt;
14680 case R_ARM_COPY:
14681 return reloc_class_copy;
14682 default:
14683 return reloc_class_normal;
14684 }
14685 }
14686
14687 static void
14688 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14689 {
14690 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14691 }
14692
14693 /* Return TRUE if this is an unwinding table entry. */
14694
14695 static bfd_boolean
14696 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14697 {
14698 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14699 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14700 }
14701
14702
14703 /* Set the type and flags for an ARM section. We do this by
14704 the section name, which is a hack, but ought to work. */
14705
14706 static bfd_boolean
14707 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14708 {
14709 const char * name;
14710
14711 name = bfd_get_section_name (abfd, sec);
14712
14713 if (is_arm_elf_unwind_section_name (abfd, name))
14714 {
14715 hdr->sh_type = SHT_ARM_EXIDX;
14716 hdr->sh_flags |= SHF_LINK_ORDER;
14717 }
14718 return TRUE;
14719 }
14720
14721 /* Handle an ARM specific section when reading an object file. This is
14722 called when bfd_section_from_shdr finds a section with an unknown
14723 type. */
14724
14725 static bfd_boolean
14726 elf32_arm_section_from_shdr (bfd *abfd,
14727 Elf_Internal_Shdr * hdr,
14728 const char *name,
14729 int shindex)
14730 {
14731 /* There ought to be a place to keep ELF backend specific flags, but
14732 at the moment there isn't one. We just keep track of the
14733 sections by their name, instead. Fortunately, the ABI gives
14734 names for all the ARM specific sections, so we will probably get
14735 away with this. */
14736 switch (hdr->sh_type)
14737 {
14738 case SHT_ARM_EXIDX:
14739 case SHT_ARM_PREEMPTMAP:
14740 case SHT_ARM_ATTRIBUTES:
14741 break;
14742
14743 default:
14744 return FALSE;
14745 }
14746
14747 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14748 return FALSE;
14749
14750 return TRUE;
14751 }
14752
14753 static _arm_elf_section_data *
14754 get_arm_elf_section_data (asection * sec)
14755 {
14756 if (sec && sec->owner && is_arm_elf (sec->owner))
14757 return elf32_arm_section_data (sec);
14758 else
14759 return NULL;
14760 }
14761
14762 typedef struct
14763 {
14764 void *flaginfo;
14765 struct bfd_link_info *info;
14766 asection *sec;
14767 int sec_shndx;
14768 int (*func) (void *, const char *, Elf_Internal_Sym *,
14769 asection *, struct elf_link_hash_entry *);
14770 } output_arch_syminfo;
14771
14772 enum map_symbol_type
14773 {
14774 ARM_MAP_ARM,
14775 ARM_MAP_THUMB,
14776 ARM_MAP_DATA
14777 };
14778
14779
14780 /* Output a single mapping symbol. */
14781
14782 static bfd_boolean
14783 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14784 enum map_symbol_type type,
14785 bfd_vma offset)
14786 {
14787 static const char *names[3] = {"$a", "$t", "$d"};
14788 Elf_Internal_Sym sym;
14789
14790 sym.st_value = osi->sec->output_section->vma
14791 + osi->sec->output_offset
14792 + offset;
14793 sym.st_size = 0;
14794 sym.st_other = 0;
14795 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14796 sym.st_shndx = osi->sec_shndx;
14797 sym.st_target_internal = 0;
14798 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14799 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14800 }
14801
14802 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14803 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14804
14805 static bfd_boolean
14806 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14807 bfd_boolean is_iplt_entry_p,
14808 union gotplt_union *root_plt,
14809 struct arm_plt_info *arm_plt)
14810 {
14811 struct elf32_arm_link_hash_table *htab;
14812 bfd_vma addr, plt_header_size;
14813
14814 if (root_plt->offset == (bfd_vma) -1)
14815 return TRUE;
14816
14817 htab = elf32_arm_hash_table (osi->info);
14818 if (htab == NULL)
14819 return FALSE;
14820
14821 if (is_iplt_entry_p)
14822 {
14823 osi->sec = htab->root.iplt;
14824 plt_header_size = 0;
14825 }
14826 else
14827 {
14828 osi->sec = htab->root.splt;
14829 plt_header_size = htab->plt_header_size;
14830 }
14831 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14832 (osi->info->output_bfd, osi->sec->output_section));
14833
14834 addr = root_plt->offset & -2;
14835 if (htab->symbian_p)
14836 {
14837 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14838 return FALSE;
14839 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14840 return FALSE;
14841 }
14842 else if (htab->vxworks_p)
14843 {
14844 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14845 return FALSE;
14846 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14847 return FALSE;
14848 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14849 return FALSE;
14850 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14851 return FALSE;
14852 }
14853 else if (htab->nacl_p)
14854 {
14855 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14856 return FALSE;
14857 }
14858 else if (using_thumb_only (htab))
14859 {
14860 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
14861 return FALSE;
14862 }
14863 else
14864 {
14865 bfd_boolean thumb_stub_p;
14866
14867 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14868 if (thumb_stub_p)
14869 {
14870 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14871 return FALSE;
14872 }
14873 #ifdef FOUR_WORD_PLT
14874 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14875 return FALSE;
14876 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14877 return FALSE;
14878 #else
14879 /* A three-word PLT with no Thumb thunk contains only Arm code,
14880 so only need to output a mapping symbol for the first PLT entry and
14881 entries with thumb thunks. */
14882 if (thumb_stub_p || addr == plt_header_size)
14883 {
14884 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14885 return FALSE;
14886 }
14887 #endif
14888 }
14889
14890 return TRUE;
14891 }
14892
14893 /* Output mapping symbols for PLT entries associated with H. */
14894
14895 static bfd_boolean
14896 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14897 {
14898 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14899 struct elf32_arm_link_hash_entry *eh;
14900
14901 if (h->root.type == bfd_link_hash_indirect)
14902 return TRUE;
14903
14904 if (h->root.type == bfd_link_hash_warning)
14905 /* When warning symbols are created, they **replace** the "real"
14906 entry in the hash table, thus we never get to see the real
14907 symbol in a hash traversal. So look at it now. */
14908 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14909
14910 eh = (struct elf32_arm_link_hash_entry *) h;
14911 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14912 &h->plt, &eh->plt);
14913 }
14914
14915 /* Output a single local symbol for a generated stub. */
14916
14917 static bfd_boolean
14918 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14919 bfd_vma offset, bfd_vma size)
14920 {
14921 Elf_Internal_Sym sym;
14922
14923 sym.st_value = osi->sec->output_section->vma
14924 + osi->sec->output_offset
14925 + offset;
14926 sym.st_size = size;
14927 sym.st_other = 0;
14928 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14929 sym.st_shndx = osi->sec_shndx;
14930 sym.st_target_internal = 0;
14931 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
14932 }
14933
14934 static bfd_boolean
14935 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14936 void * in_arg)
14937 {
14938 struct elf32_arm_stub_hash_entry *stub_entry;
14939 asection *stub_sec;
14940 bfd_vma addr;
14941 char *stub_name;
14942 output_arch_syminfo *osi;
14943 const insn_sequence *template_sequence;
14944 enum stub_insn_type prev_type;
14945 int size;
14946 int i;
14947 enum map_symbol_type sym_type;
14948
14949 /* Massage our args to the form they really have. */
14950 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14951 osi = (output_arch_syminfo *) in_arg;
14952
14953 stub_sec = stub_entry->stub_sec;
14954
14955 /* Ensure this stub is attached to the current section being
14956 processed. */
14957 if (stub_sec != osi->sec)
14958 return TRUE;
14959
14960 addr = (bfd_vma) stub_entry->stub_offset;
14961 stub_name = stub_entry->output_name;
14962
14963 template_sequence = stub_entry->stub_template;
14964 switch (template_sequence[0].type)
14965 {
14966 case ARM_TYPE:
14967 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14968 return FALSE;
14969 break;
14970 case THUMB16_TYPE:
14971 case THUMB32_TYPE:
14972 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14973 stub_entry->stub_size))
14974 return FALSE;
14975 break;
14976 default:
14977 BFD_FAIL ();
14978 return 0;
14979 }
14980
14981 prev_type = DATA_TYPE;
14982 size = 0;
14983 for (i = 0; i < stub_entry->stub_template_size; i++)
14984 {
14985 switch (template_sequence[i].type)
14986 {
14987 case ARM_TYPE:
14988 sym_type = ARM_MAP_ARM;
14989 break;
14990
14991 case THUMB16_TYPE:
14992 case THUMB32_TYPE:
14993 sym_type = ARM_MAP_THUMB;
14994 break;
14995
14996 case DATA_TYPE:
14997 sym_type = ARM_MAP_DATA;
14998 break;
14999
15000 default:
15001 BFD_FAIL ();
15002 return FALSE;
15003 }
15004
15005 if (template_sequence[i].type != prev_type)
15006 {
15007 prev_type = template_sequence[i].type;
15008 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15009 return FALSE;
15010 }
15011
15012 switch (template_sequence[i].type)
15013 {
15014 case ARM_TYPE:
15015 case THUMB32_TYPE:
15016 size += 4;
15017 break;
15018
15019 case THUMB16_TYPE:
15020 size += 2;
15021 break;
15022
15023 case DATA_TYPE:
15024 size += 4;
15025 break;
15026
15027 default:
15028 BFD_FAIL ();
15029 return FALSE;
15030 }
15031 }
15032
15033 return TRUE;
15034 }
15035
15036 /* Output mapping symbols for linker generated sections,
15037 and for those data-only sections that do not have a
15038 $d. */
15039
15040 static bfd_boolean
15041 elf32_arm_output_arch_local_syms (bfd *output_bfd,
15042 struct bfd_link_info *info,
15043 void *flaginfo,
15044 int (*func) (void *, const char *,
15045 Elf_Internal_Sym *,
15046 asection *,
15047 struct elf_link_hash_entry *))
15048 {
15049 output_arch_syminfo osi;
15050 struct elf32_arm_link_hash_table *htab;
15051 bfd_vma offset;
15052 bfd_size_type size;
15053 bfd *input_bfd;
15054
15055 htab = elf32_arm_hash_table (info);
15056 if (htab == NULL)
15057 return FALSE;
15058
15059 check_use_blx (htab);
15060
15061 osi.flaginfo = flaginfo;
15062 osi.info = info;
15063 osi.func = func;
15064
15065 /* Add a $d mapping symbol to data-only sections that
15066 don't have any mapping symbol. This may result in (harmless) redundant
15067 mapping symbols. */
15068 for (input_bfd = info->input_bfds;
15069 input_bfd != NULL;
15070 input_bfd = input_bfd->link_next)
15071 {
15072 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
15073 for (osi.sec = input_bfd->sections;
15074 osi.sec != NULL;
15075 osi.sec = osi.sec->next)
15076 {
15077 if (osi.sec->output_section != NULL
15078 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
15079 != 0)
15080 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
15081 == SEC_HAS_CONTENTS
15082 && get_arm_elf_section_data (osi.sec) != NULL
15083 && get_arm_elf_section_data (osi.sec)->mapcount == 0
15084 && osi.sec->size > 0
15085 && (osi.sec->flags & SEC_EXCLUDE) == 0)
15086 {
15087 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15088 (output_bfd, osi.sec->output_section);
15089 if (osi.sec_shndx != (int)SHN_BAD)
15090 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
15091 }
15092 }
15093 }
15094
15095 /* ARM->Thumb glue. */
15096 if (htab->arm_glue_size > 0)
15097 {
15098 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15099 ARM2THUMB_GLUE_SECTION_NAME);
15100
15101 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15102 (output_bfd, osi.sec->output_section);
15103 if (info->shared || htab->root.is_relocatable_executable
15104 || htab->pic_veneer)
15105 size = ARM2THUMB_PIC_GLUE_SIZE;
15106 else if (htab->use_blx)
15107 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
15108 else
15109 size = ARM2THUMB_STATIC_GLUE_SIZE;
15110
15111 for (offset = 0; offset < htab->arm_glue_size; offset += size)
15112 {
15113 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
15114 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
15115 }
15116 }
15117
15118 /* Thumb->ARM glue. */
15119 if (htab->thumb_glue_size > 0)
15120 {
15121 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15122 THUMB2ARM_GLUE_SECTION_NAME);
15123
15124 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15125 (output_bfd, osi.sec->output_section);
15126 size = THUMB2ARM_GLUE_SIZE;
15127
15128 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
15129 {
15130 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
15131 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
15132 }
15133 }
15134
15135 /* ARMv4 BX veneers. */
15136 if (htab->bx_glue_size > 0)
15137 {
15138 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15139 ARM_BX_GLUE_SECTION_NAME);
15140
15141 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15142 (output_bfd, osi.sec->output_section);
15143
15144 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
15145 }
15146
15147 /* Long calls stubs. */
15148 if (htab->stub_bfd && htab->stub_bfd->sections)
15149 {
15150 asection* stub_sec;
15151
15152 for (stub_sec = htab->stub_bfd->sections;
15153 stub_sec != NULL;
15154 stub_sec = stub_sec->next)
15155 {
15156 /* Ignore non-stub sections. */
15157 if (!strstr (stub_sec->name, STUB_SUFFIX))
15158 continue;
15159
15160 osi.sec = stub_sec;
15161
15162 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15163 (output_bfd, osi.sec->output_section);
15164
15165 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15166 }
15167 }
15168
15169 /* Finally, output mapping symbols for the PLT. */
15170 if (htab->root.splt && htab->root.splt->size > 0)
15171 {
15172 osi.sec = htab->root.splt;
15173 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15174 (output_bfd, osi.sec->output_section));
15175
15176 /* Output mapping symbols for the plt header. SymbianOS does not have a
15177 plt header. */
15178 if (htab->vxworks_p)
15179 {
15180 /* VxWorks shared libraries have no PLT header. */
15181 if (!info->shared)
15182 {
15183 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15184 return FALSE;
15185 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15186 return FALSE;
15187 }
15188 }
15189 else if (htab->nacl_p)
15190 {
15191 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15192 return FALSE;
15193 }
15194 else if (using_thumb_only (htab))
15195 {
15196 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
15197 return FALSE;
15198 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15199 return FALSE;
15200 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
15201 return FALSE;
15202 }
15203 else if (!htab->symbian_p)
15204 {
15205 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15206 return FALSE;
15207 #ifndef FOUR_WORD_PLT
15208 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
15209 return FALSE;
15210 #endif
15211 }
15212 }
15213 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15214 {
15215 /* NaCl uses a special first entry in .iplt too. */
15216 osi.sec = htab->root.iplt;
15217 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15218 (output_bfd, osi.sec->output_section));
15219 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15220 return FALSE;
15221 }
15222 if ((htab->root.splt && htab->root.splt->size > 0)
15223 || (htab->root.iplt && htab->root.iplt->size > 0))
15224 {
15225 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15226 for (input_bfd = info->input_bfds;
15227 input_bfd != NULL;
15228 input_bfd = input_bfd->link_next)
15229 {
15230 struct arm_local_iplt_info **local_iplt;
15231 unsigned int i, num_syms;
15232
15233 local_iplt = elf32_arm_local_iplt (input_bfd);
15234 if (local_iplt != NULL)
15235 {
15236 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15237 for (i = 0; i < num_syms; i++)
15238 if (local_iplt[i] != NULL
15239 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15240 &local_iplt[i]->root,
15241 &local_iplt[i]->arm))
15242 return FALSE;
15243 }
15244 }
15245 }
15246 if (htab->dt_tlsdesc_plt != 0)
15247 {
15248 /* Mapping symbols for the lazy tls trampoline. */
15249 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15250 return FALSE;
15251
15252 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15253 htab->dt_tlsdesc_plt + 24))
15254 return FALSE;
15255 }
15256 if (htab->tls_trampoline != 0)
15257 {
15258 /* Mapping symbols for the tls trampoline. */
15259 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15260 return FALSE;
15261 #ifdef FOUR_WORD_PLT
15262 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15263 htab->tls_trampoline + 12))
15264 return FALSE;
15265 #endif
15266 }
15267
15268 return TRUE;
15269 }
15270
15271 /* Allocate target specific section data. */
15272
15273 static bfd_boolean
15274 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15275 {
15276 if (!sec->used_by_bfd)
15277 {
15278 _arm_elf_section_data *sdata;
15279 bfd_size_type amt = sizeof (*sdata);
15280
15281 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15282 if (sdata == NULL)
15283 return FALSE;
15284 sec->used_by_bfd = sdata;
15285 }
15286
15287 return _bfd_elf_new_section_hook (abfd, sec);
15288 }
15289
15290
15291 /* Used to order a list of mapping symbols by address. */
15292
15293 static int
15294 elf32_arm_compare_mapping (const void * a, const void * b)
15295 {
15296 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15297 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15298
15299 if (amap->vma > bmap->vma)
15300 return 1;
15301 else if (amap->vma < bmap->vma)
15302 return -1;
15303 else if (amap->type > bmap->type)
15304 /* Ensure results do not depend on the host qsort for objects with
15305 multiple mapping symbols at the same address by sorting on type
15306 after vma. */
15307 return 1;
15308 else if (amap->type < bmap->type)
15309 return -1;
15310 else
15311 return 0;
15312 }
15313
15314 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15315
15316 static unsigned long
15317 offset_prel31 (unsigned long addr, bfd_vma offset)
15318 {
15319 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15320 }
15321
15322 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15323 relocations. */
15324
15325 static void
15326 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15327 {
15328 unsigned long first_word = bfd_get_32 (output_bfd, from);
15329 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15330
15331 /* High bit of first word is supposed to be zero. */
15332 if ((first_word & 0x80000000ul) == 0)
15333 first_word = offset_prel31 (first_word, offset);
15334
15335 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15336 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15337 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15338 second_word = offset_prel31 (second_word, offset);
15339
15340 bfd_put_32 (output_bfd, first_word, to);
15341 bfd_put_32 (output_bfd, second_word, to + 4);
15342 }
15343
15344 /* Data for make_branch_to_a8_stub(). */
15345
15346 struct a8_branch_to_stub_data
15347 {
15348 asection *writing_section;
15349 bfd_byte *contents;
15350 };
15351
15352
15353 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15354 places for a particular section. */
15355
15356 static bfd_boolean
15357 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15358 void *in_arg)
15359 {
15360 struct elf32_arm_stub_hash_entry *stub_entry;
15361 struct a8_branch_to_stub_data *data;
15362 bfd_byte *contents;
15363 unsigned long branch_insn;
15364 bfd_vma veneered_insn_loc, veneer_entry_loc;
15365 bfd_signed_vma branch_offset;
15366 bfd *abfd;
15367 unsigned int target;
15368
15369 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15370 data = (struct a8_branch_to_stub_data *) in_arg;
15371
15372 if (stub_entry->target_section != data->writing_section
15373 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15374 return TRUE;
15375
15376 contents = data->contents;
15377
15378 veneered_insn_loc = stub_entry->target_section->output_section->vma
15379 + stub_entry->target_section->output_offset
15380 + stub_entry->target_value;
15381
15382 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15383 + stub_entry->stub_sec->output_offset
15384 + stub_entry->stub_offset;
15385
15386 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15387 veneered_insn_loc &= ~3u;
15388
15389 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15390
15391 abfd = stub_entry->target_section->owner;
15392 target = stub_entry->target_value;
15393
15394 /* We attempt to avoid this condition by setting stubs_always_after_branch
15395 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15396 This check is just to be on the safe side... */
15397 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15398 {
15399 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15400 "allocated in unsafe location"), abfd);
15401 return FALSE;
15402 }
15403
15404 switch (stub_entry->stub_type)
15405 {
15406 case arm_stub_a8_veneer_b:
15407 case arm_stub_a8_veneer_b_cond:
15408 branch_insn = 0xf0009000;
15409 goto jump24;
15410
15411 case arm_stub_a8_veneer_blx:
15412 branch_insn = 0xf000e800;
15413 goto jump24;
15414
15415 case arm_stub_a8_veneer_bl:
15416 {
15417 unsigned int i1, j1, i2, j2, s;
15418
15419 branch_insn = 0xf000d000;
15420
15421 jump24:
15422 if (branch_offset < -16777216 || branch_offset > 16777214)
15423 {
15424 /* There's not much we can do apart from complain if this
15425 happens. */
15426 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15427 "of range (input file too large)"), abfd);
15428 return FALSE;
15429 }
15430
15431 /* i1 = not(j1 eor s), so:
15432 not i1 = j1 eor s
15433 j1 = (not i1) eor s. */
15434
15435 branch_insn |= (branch_offset >> 1) & 0x7ff;
15436 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15437 i2 = (branch_offset >> 22) & 1;
15438 i1 = (branch_offset >> 23) & 1;
15439 s = (branch_offset >> 24) & 1;
15440 j1 = (!i1) ^ s;
15441 j2 = (!i2) ^ s;
15442 branch_insn |= j2 << 11;
15443 branch_insn |= j1 << 13;
15444 branch_insn |= s << 26;
15445 }
15446 break;
15447
15448 default:
15449 BFD_FAIL ();
15450 return FALSE;
15451 }
15452
15453 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15454 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15455
15456 return TRUE;
15457 }
15458
15459 /* Do code byteswapping. Return FALSE afterwards so that the section is
15460 written out as normal. */
15461
15462 static bfd_boolean
15463 elf32_arm_write_section (bfd *output_bfd,
15464 struct bfd_link_info *link_info,
15465 asection *sec,
15466 bfd_byte *contents)
15467 {
15468 unsigned int mapcount, errcount;
15469 _arm_elf_section_data *arm_data;
15470 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15471 elf32_arm_section_map *map;
15472 elf32_vfp11_erratum_list *errnode;
15473 bfd_vma ptr;
15474 bfd_vma end;
15475 bfd_vma offset = sec->output_section->vma + sec->output_offset;
15476 bfd_byte tmp;
15477 unsigned int i;
15478
15479 if (globals == NULL)
15480 return FALSE;
15481
15482 /* If this section has not been allocated an _arm_elf_section_data
15483 structure then we cannot record anything. */
15484 arm_data = get_arm_elf_section_data (sec);
15485 if (arm_data == NULL)
15486 return FALSE;
15487
15488 mapcount = arm_data->mapcount;
15489 map = arm_data->map;
15490 errcount = arm_data->erratumcount;
15491
15492 if (errcount != 0)
15493 {
15494 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15495
15496 for (errnode = arm_data->erratumlist; errnode != 0;
15497 errnode = errnode->next)
15498 {
15499 bfd_vma target = errnode->vma - offset;
15500
15501 switch (errnode->type)
15502 {
15503 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15504 {
15505 bfd_vma branch_to_veneer;
15506 /* Original condition code of instruction, plus bit mask for
15507 ARM B instruction. */
15508 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15509 | 0x0a000000;
15510
15511 /* The instruction is before the label. */
15512 target -= 4;
15513
15514 /* Above offset included in -4 below. */
15515 branch_to_veneer = errnode->u.b.veneer->vma
15516 - errnode->vma - 4;
15517
15518 if ((signed) branch_to_veneer < -(1 << 25)
15519 || (signed) branch_to_veneer >= (1 << 25))
15520 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15521 "range"), output_bfd);
15522
15523 insn |= (branch_to_veneer >> 2) & 0xffffff;
15524 contents[endianflip ^ target] = insn & 0xff;
15525 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15526 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15527 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15528 }
15529 break;
15530
15531 case VFP11_ERRATUM_ARM_VENEER:
15532 {
15533 bfd_vma branch_from_veneer;
15534 unsigned int insn;
15535
15536 /* Take size of veneer into account. */
15537 branch_from_veneer = errnode->u.v.branch->vma
15538 - errnode->vma - 12;
15539
15540 if ((signed) branch_from_veneer < -(1 << 25)
15541 || (signed) branch_from_veneer >= (1 << 25))
15542 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15543 "range"), output_bfd);
15544
15545 /* Original instruction. */
15546 insn = errnode->u.v.branch->u.b.vfp_insn;
15547 contents[endianflip ^ target] = insn & 0xff;
15548 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15549 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15550 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15551
15552 /* Branch back to insn after original insn. */
15553 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15554 contents[endianflip ^ (target + 4)] = insn & 0xff;
15555 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15556 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15557 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15558 }
15559 break;
15560
15561 default:
15562 abort ();
15563 }
15564 }
15565 }
15566
15567 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15568 {
15569 arm_unwind_table_edit *edit_node
15570 = arm_data->u.exidx.unwind_edit_list;
15571 /* Now, sec->size is the size of the section we will write. The original
15572 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15573 markers) was sec->rawsize. (This isn't the case if we perform no
15574 edits, then rawsize will be zero and we should use size). */
15575 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15576 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15577 unsigned int in_index, out_index;
15578 bfd_vma add_to_offsets = 0;
15579
15580 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15581 {
15582 if (edit_node)
15583 {
15584 unsigned int edit_index = edit_node->index;
15585
15586 if (in_index < edit_index && in_index * 8 < input_size)
15587 {
15588 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15589 contents + in_index * 8, add_to_offsets);
15590 out_index++;
15591 in_index++;
15592 }
15593 else if (in_index == edit_index
15594 || (in_index * 8 >= input_size
15595 && edit_index == UINT_MAX))
15596 {
15597 switch (edit_node->type)
15598 {
15599 case DELETE_EXIDX_ENTRY:
15600 in_index++;
15601 add_to_offsets += 8;
15602 break;
15603
15604 case INSERT_EXIDX_CANTUNWIND_AT_END:
15605 {
15606 asection *text_sec = edit_node->linked_section;
15607 bfd_vma text_offset = text_sec->output_section->vma
15608 + text_sec->output_offset
15609 + text_sec->size;
15610 bfd_vma exidx_offset = offset + out_index * 8;
15611 unsigned long prel31_offset;
15612
15613 /* Note: this is meant to be equivalent to an
15614 R_ARM_PREL31 relocation. These synthetic
15615 EXIDX_CANTUNWIND markers are not relocated by the
15616 usual BFD method. */
15617 prel31_offset = (text_offset - exidx_offset)
15618 & 0x7ffffffful;
15619
15620 /* First address we can't unwind. */
15621 bfd_put_32 (output_bfd, prel31_offset,
15622 &edited_contents[out_index * 8]);
15623
15624 /* Code for EXIDX_CANTUNWIND. */
15625 bfd_put_32 (output_bfd, 0x1,
15626 &edited_contents[out_index * 8 + 4]);
15627
15628 out_index++;
15629 add_to_offsets -= 8;
15630 }
15631 break;
15632 }
15633
15634 edit_node = edit_node->next;
15635 }
15636 }
15637 else
15638 {
15639 /* No more edits, copy remaining entries verbatim. */
15640 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15641 contents + in_index * 8, add_to_offsets);
15642 out_index++;
15643 in_index++;
15644 }
15645 }
15646
15647 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15648 bfd_set_section_contents (output_bfd, sec->output_section,
15649 edited_contents,
15650 (file_ptr) sec->output_offset, sec->size);
15651
15652 return TRUE;
15653 }
15654
15655 /* Fix code to point to Cortex-A8 erratum stubs. */
15656 if (globals->fix_cortex_a8)
15657 {
15658 struct a8_branch_to_stub_data data;
15659
15660 data.writing_section = sec;
15661 data.contents = contents;
15662
15663 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15664 &data);
15665 }
15666
15667 if (mapcount == 0)
15668 return FALSE;
15669
15670 if (globals->byteswap_code)
15671 {
15672 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15673
15674 ptr = map[0].vma;
15675 for (i = 0; i < mapcount; i++)
15676 {
15677 if (i == mapcount - 1)
15678 end = sec->size;
15679 else
15680 end = map[i + 1].vma;
15681
15682 switch (map[i].type)
15683 {
15684 case 'a':
15685 /* Byte swap code words. */
15686 while (ptr + 3 < end)
15687 {
15688 tmp = contents[ptr];
15689 contents[ptr] = contents[ptr + 3];
15690 contents[ptr + 3] = tmp;
15691 tmp = contents[ptr + 1];
15692 contents[ptr + 1] = contents[ptr + 2];
15693 contents[ptr + 2] = tmp;
15694 ptr += 4;
15695 }
15696 break;
15697
15698 case 't':
15699 /* Byte swap code halfwords. */
15700 while (ptr + 1 < end)
15701 {
15702 tmp = contents[ptr];
15703 contents[ptr] = contents[ptr + 1];
15704 contents[ptr + 1] = tmp;
15705 ptr += 2;
15706 }
15707 break;
15708
15709 case 'd':
15710 /* Leave data alone. */
15711 break;
15712 }
15713 ptr = end;
15714 }
15715 }
15716
15717 free (map);
15718 arm_data->mapcount = -1;
15719 arm_data->mapsize = 0;
15720 arm_data->map = NULL;
15721
15722 return FALSE;
15723 }
15724
15725 /* Mangle thumb function symbols as we read them in. */
15726
15727 static bfd_boolean
15728 elf32_arm_swap_symbol_in (bfd * abfd,
15729 const void *psrc,
15730 const void *pshn,
15731 Elf_Internal_Sym *dst)
15732 {
15733 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15734 return FALSE;
15735
15736 /* New EABI objects mark thumb function symbols by setting the low bit of
15737 the address. */
15738 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15739 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15740 {
15741 if (dst->st_value & 1)
15742 {
15743 dst->st_value &= ~(bfd_vma) 1;
15744 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15745 }
15746 else
15747 dst->st_target_internal = ST_BRANCH_TO_ARM;
15748 }
15749 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15750 {
15751 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15752 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15753 }
15754 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15755 dst->st_target_internal = ST_BRANCH_LONG;
15756 else
15757 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15758
15759 return TRUE;
15760 }
15761
15762
15763 /* Mangle thumb function symbols as we write them out. */
15764
15765 static void
15766 elf32_arm_swap_symbol_out (bfd *abfd,
15767 const Elf_Internal_Sym *src,
15768 void *cdst,
15769 void *shndx)
15770 {
15771 Elf_Internal_Sym newsym;
15772
15773 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15774 of the address set, as per the new EABI. We do this unconditionally
15775 because objcopy does not set the elf header flags until after
15776 it writes out the symbol table. */
15777 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15778 {
15779 newsym = *src;
15780 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15781 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15782 if (newsym.st_shndx != SHN_UNDEF)
15783 {
15784 /* Do this only for defined symbols. At link type, the static
15785 linker will simulate the work of dynamic linker of resolving
15786 symbols and will carry over the thumbness of found symbols to
15787 the output symbol table. It's not clear how it happens, but
15788 the thumbness of undefined symbols can well be different at
15789 runtime, and writing '1' for them will be confusing for users
15790 and possibly for dynamic linker itself.
15791 */
15792 newsym.st_value |= 1;
15793 }
15794
15795 src = &newsym;
15796 }
15797 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15798 }
15799
15800 /* Add the PT_ARM_EXIDX program header. */
15801
15802 static bfd_boolean
15803 elf32_arm_modify_segment_map (bfd *abfd,
15804 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15805 {
15806 struct elf_segment_map *m;
15807 asection *sec;
15808
15809 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15810 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15811 {
15812 /* If there is already a PT_ARM_EXIDX header, then we do not
15813 want to add another one. This situation arises when running
15814 "strip"; the input binary already has the header. */
15815 m = elf_seg_map (abfd);
15816 while (m && m->p_type != PT_ARM_EXIDX)
15817 m = m->next;
15818 if (!m)
15819 {
15820 m = (struct elf_segment_map *)
15821 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15822 if (m == NULL)
15823 return FALSE;
15824 m->p_type = PT_ARM_EXIDX;
15825 m->count = 1;
15826 m->sections[0] = sec;
15827
15828 m->next = elf_seg_map (abfd);
15829 elf_seg_map (abfd) = m;
15830 }
15831 }
15832
15833 return TRUE;
15834 }
15835
15836 /* We may add a PT_ARM_EXIDX program header. */
15837
15838 static int
15839 elf32_arm_additional_program_headers (bfd *abfd,
15840 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15841 {
15842 asection *sec;
15843
15844 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15845 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15846 return 1;
15847 else
15848 return 0;
15849 }
15850
15851 /* Hook called by the linker routine which adds symbols from an object
15852 file. */
15853
15854 static bfd_boolean
15855 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15856 Elf_Internal_Sym *sym, const char **namep,
15857 flagword *flagsp, asection **secp, bfd_vma *valp)
15858 {
15859 if ((abfd->flags & DYNAMIC) == 0
15860 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15861 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15862 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15863
15864 if (elf32_arm_hash_table (info)->vxworks_p
15865 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15866 flagsp, secp, valp))
15867 return FALSE;
15868
15869 return TRUE;
15870 }
15871
15872 /* We use this to override swap_symbol_in and swap_symbol_out. */
15873 const struct elf_size_info elf32_arm_size_info =
15874 {
15875 sizeof (Elf32_External_Ehdr),
15876 sizeof (Elf32_External_Phdr),
15877 sizeof (Elf32_External_Shdr),
15878 sizeof (Elf32_External_Rel),
15879 sizeof (Elf32_External_Rela),
15880 sizeof (Elf32_External_Sym),
15881 sizeof (Elf32_External_Dyn),
15882 sizeof (Elf_External_Note),
15883 4,
15884 1,
15885 32, 2,
15886 ELFCLASS32, EV_CURRENT,
15887 bfd_elf32_write_out_phdrs,
15888 bfd_elf32_write_shdrs_and_ehdr,
15889 bfd_elf32_checksum_contents,
15890 bfd_elf32_write_relocs,
15891 elf32_arm_swap_symbol_in,
15892 elf32_arm_swap_symbol_out,
15893 bfd_elf32_slurp_reloc_table,
15894 bfd_elf32_slurp_symbol_table,
15895 bfd_elf32_swap_dyn_in,
15896 bfd_elf32_swap_dyn_out,
15897 bfd_elf32_swap_reloc_in,
15898 bfd_elf32_swap_reloc_out,
15899 bfd_elf32_swap_reloca_in,
15900 bfd_elf32_swap_reloca_out
15901 };
15902
15903 #define ELF_ARCH bfd_arch_arm
15904 #define ELF_TARGET_ID ARM_ELF_DATA
15905 #define ELF_MACHINE_CODE EM_ARM
15906 #ifdef __QNXTARGET__
15907 #define ELF_MAXPAGESIZE 0x1000
15908 #else
15909 #define ELF_MAXPAGESIZE 0x8000
15910 #endif
15911 #define ELF_MINPAGESIZE 0x1000
15912 #define ELF_COMMONPAGESIZE 0x1000
15913
15914 #define bfd_elf32_mkobject elf32_arm_mkobject
15915
15916 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15917 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15918 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15919 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15920 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15921 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15922 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15923 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15924 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15925 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15926 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15927 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15928 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15929
15930 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15931 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15932 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15933 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15934 #define elf_backend_check_relocs elf32_arm_check_relocs
15935 #define elf_backend_relocate_section elf32_arm_relocate_section
15936 #define elf_backend_write_section elf32_arm_write_section
15937 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15938 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15939 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15940 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15941 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15942 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15943 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15944 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15945 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15946 #define elf_backend_object_p elf32_arm_object_p
15947 #define elf_backend_fake_sections elf32_arm_fake_sections
15948 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15949 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15950 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15951 #define elf_backend_size_info elf32_arm_size_info
15952 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15953 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15954 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15955 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15956 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15957
15958 #define elf_backend_can_refcount 1
15959 #define elf_backend_can_gc_sections 1
15960 #define elf_backend_plt_readonly 1
15961 #define elf_backend_want_got_plt 1
15962 #define elf_backend_want_plt_sym 0
15963 #define elf_backend_may_use_rel_p 1
15964 #define elf_backend_may_use_rela_p 0
15965 #define elf_backend_default_use_rela_p 0
15966
15967 #define elf_backend_got_header_size 12
15968
15969 #undef elf_backend_obj_attrs_vendor
15970 #define elf_backend_obj_attrs_vendor "aeabi"
15971 #undef elf_backend_obj_attrs_section
15972 #define elf_backend_obj_attrs_section ".ARM.attributes"
15973 #undef elf_backend_obj_attrs_arg_type
15974 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15975 #undef elf_backend_obj_attrs_section_type
15976 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15977 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15978 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15979
15980 #include "elf32-target.h"
15981
15982 /* Native Client targets. */
15983
15984 #undef TARGET_LITTLE_SYM
15985 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15986 #undef TARGET_LITTLE_NAME
15987 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15988 #undef TARGET_BIG_SYM
15989 #define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15990 #undef TARGET_BIG_NAME
15991 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
15992
15993 /* Like elf32_arm_link_hash_table_create -- but overrides
15994 appropriately for NaCl. */
15995
15996 static struct bfd_link_hash_table *
15997 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15998 {
15999 struct bfd_link_hash_table *ret;
16000
16001 ret = elf32_arm_link_hash_table_create (abfd);
16002 if (ret)
16003 {
16004 struct elf32_arm_link_hash_table *htab
16005 = (struct elf32_arm_link_hash_table *) ret;
16006
16007 htab->nacl_p = 1;
16008
16009 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
16010 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
16011 }
16012 return ret;
16013 }
16014
16015 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
16016 really need to use elf32_arm_modify_segment_map. But we do it
16017 anyway just to reduce gratuitous differences with the stock ARM backend. */
16018
16019 static bfd_boolean
16020 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
16021 {
16022 return (elf32_arm_modify_segment_map (abfd, info)
16023 && nacl_modify_segment_map (abfd, info));
16024 }
16025
16026 static void
16027 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
16028 {
16029 elf32_arm_final_write_processing (abfd, linker);
16030 nacl_final_write_processing (abfd, linker);
16031 }
16032
16033
16034 #undef elf32_bed
16035 #define elf32_bed elf32_arm_nacl_bed
16036 #undef bfd_elf32_bfd_link_hash_table_create
16037 #define bfd_elf32_bfd_link_hash_table_create \
16038 elf32_arm_nacl_link_hash_table_create
16039 #undef elf_backend_plt_alignment
16040 #define elf_backend_plt_alignment 4
16041 #undef elf_backend_modify_segment_map
16042 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
16043 #undef elf_backend_modify_program_headers
16044 #define elf_backend_modify_program_headers nacl_modify_program_headers
16045 #undef elf_backend_final_write_processing
16046 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
16047
16048 #undef ELF_MAXPAGESIZE
16049 #define ELF_MAXPAGESIZE 0x10000
16050 #undef ELF_MINPAGESIZE
16051 #undef ELF_COMMONPAGESIZE
16052
16053
16054 #include "elf32-target.h"
16055
16056 /* Reset to defaults. */
16057 #undef elf_backend_plt_alignment
16058 #undef elf_backend_modify_segment_map
16059 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16060 #undef elf_backend_modify_program_headers
16061 #undef elf_backend_final_write_processing
16062 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16063 #undef ELF_MINPAGESIZE
16064 #define ELF_MINPAGESIZE 0x1000
16065 #undef ELF_COMMONPAGESIZE
16066 #define ELF_COMMONPAGESIZE 0x1000
16067
16068
16069 /* VxWorks Targets. */
16070
16071 #undef TARGET_LITTLE_SYM
16072 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
16073 #undef TARGET_LITTLE_NAME
16074 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
16075 #undef TARGET_BIG_SYM
16076 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
16077 #undef TARGET_BIG_NAME
16078 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
16079
16080 /* Like elf32_arm_link_hash_table_create -- but overrides
16081 appropriately for VxWorks. */
16082
16083 static struct bfd_link_hash_table *
16084 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
16085 {
16086 struct bfd_link_hash_table *ret;
16087
16088 ret = elf32_arm_link_hash_table_create (abfd);
16089 if (ret)
16090 {
16091 struct elf32_arm_link_hash_table *htab
16092 = (struct elf32_arm_link_hash_table *) ret;
16093 htab->use_rel = 0;
16094 htab->vxworks_p = 1;
16095 }
16096 return ret;
16097 }
16098
16099 static void
16100 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
16101 {
16102 elf32_arm_final_write_processing (abfd, linker);
16103 elf_vxworks_final_write_processing (abfd, linker);
16104 }
16105
16106 #undef elf32_bed
16107 #define elf32_bed elf32_arm_vxworks_bed
16108
16109 #undef bfd_elf32_bfd_link_hash_table_create
16110 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
16111 #undef elf_backend_final_write_processing
16112 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
16113 #undef elf_backend_emit_relocs
16114 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
16115
16116 #undef elf_backend_may_use_rel_p
16117 #define elf_backend_may_use_rel_p 0
16118 #undef elf_backend_may_use_rela_p
16119 #define elf_backend_may_use_rela_p 1
16120 #undef elf_backend_default_use_rela_p
16121 #define elf_backend_default_use_rela_p 1
16122 #undef elf_backend_want_plt_sym
16123 #define elf_backend_want_plt_sym 1
16124 #undef ELF_MAXPAGESIZE
16125 #define ELF_MAXPAGESIZE 0x1000
16126
16127 #include "elf32-target.h"
16128
16129
16130 /* Merge backend specific data from an object file to the output
16131 object file when linking. */
16132
16133 static bfd_boolean
16134 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
16135 {
16136 flagword out_flags;
16137 flagword in_flags;
16138 bfd_boolean flags_compatible = TRUE;
16139 asection *sec;
16140
16141 /* Check if we have the same endianness. */
16142 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
16143 return FALSE;
16144
16145 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
16146 return TRUE;
16147
16148 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
16149 return FALSE;
16150
16151 /* The input BFD must have had its flags initialised. */
16152 /* The following seems bogus to me -- The flags are initialized in
16153 the assembler but I don't think an elf_flags_init field is
16154 written into the object. */
16155 /* BFD_ASSERT (elf_flags_init (ibfd)); */
16156
16157 in_flags = elf_elfheader (ibfd)->e_flags;
16158 out_flags = elf_elfheader (obfd)->e_flags;
16159
16160 /* In theory there is no reason why we couldn't handle this. However
16161 in practice it isn't even close to working and there is no real
16162 reason to want it. */
16163 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16164 && !(ibfd->flags & DYNAMIC)
16165 && (in_flags & EF_ARM_BE8))
16166 {
16167 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16168 ibfd);
16169 return FALSE;
16170 }
16171
16172 if (!elf_flags_init (obfd))
16173 {
16174 /* If the input is the default architecture and had the default
16175 flags then do not bother setting the flags for the output
16176 architecture, instead allow future merges to do this. If no
16177 future merges ever set these flags then they will retain their
16178 uninitialised values, which surprise surprise, correspond
16179 to the default values. */
16180 if (bfd_get_arch_info (ibfd)->the_default
16181 && elf_elfheader (ibfd)->e_flags == 0)
16182 return TRUE;
16183
16184 elf_flags_init (obfd) = TRUE;
16185 elf_elfheader (obfd)->e_flags = in_flags;
16186
16187 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16188 && bfd_get_arch_info (obfd)->the_default)
16189 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16190
16191 return TRUE;
16192 }
16193
16194 /* Determine what should happen if the input ARM architecture
16195 does not match the output ARM architecture. */
16196 if (! bfd_arm_merge_machines (ibfd, obfd))
16197 return FALSE;
16198
16199 /* Identical flags must be compatible. */
16200 if (in_flags == out_flags)
16201 return TRUE;
16202
16203 /* Check to see if the input BFD actually contains any sections. If
16204 not, its flags may not have been initialised either, but it
16205 cannot actually cause any incompatiblity. Do not short-circuit
16206 dynamic objects; their section list may be emptied by
16207 elf_link_add_object_symbols.
16208
16209 Also check to see if there are no code sections in the input.
16210 In this case there is no need to check for code specific flags.
16211 XXX - do we need to worry about floating-point format compatability
16212 in data sections ? */
16213 if (!(ibfd->flags & DYNAMIC))
16214 {
16215 bfd_boolean null_input_bfd = TRUE;
16216 bfd_boolean only_data_sections = TRUE;
16217
16218 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16219 {
16220 /* Ignore synthetic glue sections. */
16221 if (strcmp (sec->name, ".glue_7")
16222 && strcmp (sec->name, ".glue_7t"))
16223 {
16224 if ((bfd_get_section_flags (ibfd, sec)
16225 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16226 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16227 only_data_sections = FALSE;
16228
16229 null_input_bfd = FALSE;
16230 break;
16231 }
16232 }
16233
16234 if (null_input_bfd || only_data_sections)
16235 return TRUE;
16236 }
16237
16238 /* Complain about various flag mismatches. */
16239 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16240 EF_ARM_EABI_VERSION (out_flags)))
16241 {
16242 _bfd_error_handler
16243 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16244 ibfd, obfd,
16245 (in_flags & EF_ARM_EABIMASK) >> 24,
16246 (out_flags & EF_ARM_EABIMASK) >> 24);
16247 return FALSE;
16248 }
16249
16250 /* Not sure what needs to be checked for EABI versions >= 1. */
16251 /* VxWorks libraries do not use these flags. */
16252 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16253 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16254 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16255 {
16256 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16257 {
16258 _bfd_error_handler
16259 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16260 ibfd, obfd,
16261 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16262 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16263 flags_compatible = FALSE;
16264 }
16265
16266 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16267 {
16268 if (in_flags & EF_ARM_APCS_FLOAT)
16269 _bfd_error_handler
16270 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16271 ibfd, obfd);
16272 else
16273 _bfd_error_handler
16274 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16275 ibfd, obfd);
16276
16277 flags_compatible = FALSE;
16278 }
16279
16280 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16281 {
16282 if (in_flags & EF_ARM_VFP_FLOAT)
16283 _bfd_error_handler
16284 (_("error: %B uses VFP instructions, whereas %B does not"),
16285 ibfd, obfd);
16286 else
16287 _bfd_error_handler
16288 (_("error: %B uses FPA instructions, whereas %B does not"),
16289 ibfd, obfd);
16290
16291 flags_compatible = FALSE;
16292 }
16293
16294 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16295 {
16296 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16297 _bfd_error_handler
16298 (_("error: %B uses Maverick instructions, whereas %B does not"),
16299 ibfd, obfd);
16300 else
16301 _bfd_error_handler
16302 (_("error: %B does not use Maverick instructions, whereas %B does"),
16303 ibfd, obfd);
16304
16305 flags_compatible = FALSE;
16306 }
16307
16308 #ifdef EF_ARM_SOFT_FLOAT
16309 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16310 {
16311 /* We can allow interworking between code that is VFP format
16312 layout, and uses either soft float or integer regs for
16313 passing floating point arguments and results. We already
16314 know that the APCS_FLOAT flags match; similarly for VFP
16315 flags. */
16316 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16317 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16318 {
16319 if (in_flags & EF_ARM_SOFT_FLOAT)
16320 _bfd_error_handler
16321 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16322 ibfd, obfd);
16323 else
16324 _bfd_error_handler
16325 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16326 ibfd, obfd);
16327
16328 flags_compatible = FALSE;
16329 }
16330 }
16331 #endif
16332
16333 /* Interworking mismatch is only a warning. */
16334 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16335 {
16336 if (in_flags & EF_ARM_INTERWORK)
16337 {
16338 _bfd_error_handler
16339 (_("Warning: %B supports interworking, whereas %B does not"),
16340 ibfd, obfd);
16341 }
16342 else
16343 {
16344 _bfd_error_handler
16345 (_("Warning: %B does not support interworking, whereas %B does"),
16346 ibfd, obfd);
16347 }
16348 }
16349 }
16350
16351 return flags_compatible;
16352 }
16353
16354
16355 /* Symbian OS Targets. */
16356
16357 #undef TARGET_LITTLE_SYM
16358 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
16359 #undef TARGET_LITTLE_NAME
16360 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16361 #undef TARGET_BIG_SYM
16362 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
16363 #undef TARGET_BIG_NAME
16364 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16365
16366 /* Like elf32_arm_link_hash_table_create -- but overrides
16367 appropriately for Symbian OS. */
16368
16369 static struct bfd_link_hash_table *
16370 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16371 {
16372 struct bfd_link_hash_table *ret;
16373
16374 ret = elf32_arm_link_hash_table_create (abfd);
16375 if (ret)
16376 {
16377 struct elf32_arm_link_hash_table *htab
16378 = (struct elf32_arm_link_hash_table *)ret;
16379 /* There is no PLT header for Symbian OS. */
16380 htab->plt_header_size = 0;
16381 /* The PLT entries are each one instruction and one word. */
16382 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16383 htab->symbian_p = 1;
16384 /* Symbian uses armv5t or above, so use_blx is always true. */
16385 htab->use_blx = 1;
16386 htab->root.is_relocatable_executable = 1;
16387 }
16388 return ret;
16389 }
16390
16391 static const struct bfd_elf_special_section
16392 elf32_arm_symbian_special_sections[] =
16393 {
16394 /* In a BPABI executable, the dynamic linking sections do not go in
16395 the loadable read-only segment. The post-linker may wish to
16396 refer to these sections, but they are not part of the final
16397 program image. */
16398 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16399 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16400 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16401 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16402 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
16403 /* These sections do not need to be writable as the SymbianOS
16404 postlinker will arrange things so that no dynamic relocation is
16405 required. */
16406 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16407 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16408 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16409 { NULL, 0, 0, 0, 0 }
16410 };
16411
16412 static void
16413 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16414 struct bfd_link_info *link_info)
16415 {
16416 /* BPABI objects are never loaded directly by an OS kernel; they are
16417 processed by a postlinker first, into an OS-specific format. If
16418 the D_PAGED bit is set on the file, BFD will align segments on
16419 page boundaries, so that an OS can directly map the file. With
16420 BPABI objects, that just results in wasted space. In addition,
16421 because we clear the D_PAGED bit, map_sections_to_segments will
16422 recognize that the program headers should not be mapped into any
16423 loadable segment. */
16424 abfd->flags &= ~D_PAGED;
16425 elf32_arm_begin_write_processing (abfd, link_info);
16426 }
16427
16428 static bfd_boolean
16429 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16430 struct bfd_link_info *info)
16431 {
16432 struct elf_segment_map *m;
16433 asection *dynsec;
16434
16435 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16436 segment. However, because the .dynamic section is not marked
16437 with SEC_LOAD, the generic ELF code will not create such a
16438 segment. */
16439 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16440 if (dynsec)
16441 {
16442 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16443 if (m->p_type == PT_DYNAMIC)
16444 break;
16445
16446 if (m == NULL)
16447 {
16448 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16449 m->next = elf_seg_map (abfd);
16450 elf_seg_map (abfd) = m;
16451 }
16452 }
16453
16454 /* Also call the generic arm routine. */
16455 return elf32_arm_modify_segment_map (abfd, info);
16456 }
16457
16458 /* Return address for Ith PLT stub in section PLT, for relocation REL
16459 or (bfd_vma) -1 if it should not be included. */
16460
16461 static bfd_vma
16462 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16463 const arelent *rel ATTRIBUTE_UNUSED)
16464 {
16465 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16466 }
16467
16468
16469 #undef elf32_bed
16470 #define elf32_bed elf32_arm_symbian_bed
16471
16472 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16473 will process them and then discard them. */
16474 #undef ELF_DYNAMIC_SEC_FLAGS
16475 #define ELF_DYNAMIC_SEC_FLAGS \
16476 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16477
16478 #undef elf_backend_emit_relocs
16479
16480 #undef bfd_elf32_bfd_link_hash_table_create
16481 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16482 #undef elf_backend_special_sections
16483 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16484 #undef elf_backend_begin_write_processing
16485 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16486 #undef elf_backend_final_write_processing
16487 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16488
16489 #undef elf_backend_modify_segment_map
16490 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16491
16492 /* There is no .got section for BPABI objects, and hence no header. */
16493 #undef elf_backend_got_header_size
16494 #define elf_backend_got_header_size 0
16495
16496 /* Similarly, there is no .got.plt section. */
16497 #undef elf_backend_want_got_plt
16498 #define elf_backend_want_got_plt 0
16499
16500 #undef elf_backend_plt_sym_val
16501 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16502
16503 #undef elf_backend_may_use_rel_p
16504 #define elf_backend_may_use_rel_p 1
16505 #undef elf_backend_may_use_rela_p
16506 #define elf_backend_may_use_rela_p 0
16507 #undef elf_backend_default_use_rela_p
16508 #define elf_backend_default_use_rela_p 0
16509 #undef elf_backend_want_plt_sym
16510 #define elf_backend_want_plt_sym 0
16511 #undef ELF_MAXPAGESIZE
16512 #define ELF_MAXPAGESIZE 0x8000
16513
16514 #include "elf32-target.h"