]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
Remove syntactic sugar
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2016 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 unsigned int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Short-cuts to get to dynamic linker sections. */
278 asection *sgot;
279 asection *srelgot;
280 asection *splt;
281 asection *srelplt;
282 asection *sdynbss;
283 asection *srelbss;
284
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
289
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
292
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
298
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
301
302 /* Small local sym cache. */
303 struct sym_cache sym_cache;
304
305 /* Data for LDM relocations. */
306 union
307 {
308 bfd_signed_vma refcount;
309 bfd_vma offset;
310 } tls_ldm_got;
311 };
312
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Assorted hash table functions. */
338
339 /* Initialize an entry in the stub hash table. */
340
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
345 {
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
349 {
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
354 }
355
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
359 {
360 struct elf32_hppa_stub_hash_entry *hsh;
361
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
371 }
372
373 return entry;
374 }
375
376 /* Initialize an entry in the link hash table. */
377
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
382 {
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
386 {
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
391 }
392
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
396 {
397 struct elf32_hppa_link_hash_entry *hh;
398
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
405 }
406
407 return entry;
408 }
409
410 /* Free the derived linker hash table. */
411
412 static void
413 elf32_hppa_link_hash_table_free (bfd *obfd)
414 {
415 struct elf32_hppa_link_hash_table *htab
416 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
417
418 bfd_hash_table_free (&htab->bstab);
419 _bfd_elf_link_hash_table_free (obfd);
420 }
421
422 /* Create the derived linker hash table. The PA ELF port uses the derived
423 hash table to keep information specific to the PA ELF linker (without
424 using static variables). */
425
426 static struct bfd_link_hash_table *
427 elf32_hppa_link_hash_table_create (bfd *abfd)
428 {
429 struct elf32_hppa_link_hash_table *htab;
430 bfd_size_type amt = sizeof (*htab);
431
432 htab = bfd_zmalloc (amt);
433 if (htab == NULL)
434 return NULL;
435
436 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
437 sizeof (struct elf32_hppa_link_hash_entry),
438 HPPA32_ELF_DATA))
439 {
440 free (htab);
441 return NULL;
442 }
443
444 /* Init the stub hash table too. */
445 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
446 sizeof (struct elf32_hppa_stub_hash_entry)))
447 {
448 _bfd_elf_link_hash_table_free (abfd);
449 return NULL;
450 }
451 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
452
453 htab->text_segment_base = (bfd_vma) -1;
454 htab->data_segment_base = (bfd_vma) -1;
455 return &htab->etab.root;
456 }
457
458 /* Initialize the linker stubs BFD so that we can use it for linker
459 created dynamic sections. */
460
461 void
462 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
463 {
464 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
465
466 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
467 htab->etab.dynobj = abfd;
468 }
469
470 /* Build a name for an entry in the stub hash table. */
471
472 static char *
473 hppa_stub_name (const asection *input_section,
474 const asection *sym_sec,
475 const struct elf32_hppa_link_hash_entry *hh,
476 const Elf_Internal_Rela *rela)
477 {
478 char *stub_name;
479 bfd_size_type len;
480
481 if (hh)
482 {
483 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
484 stub_name = bfd_malloc (len);
485 if (stub_name != NULL)
486 sprintf (stub_name, "%08x_%s+%x",
487 input_section->id & 0xffffffff,
488 hh_name (hh),
489 (int) rela->r_addend & 0xffffffff);
490 }
491 else
492 {
493 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
494 stub_name = bfd_malloc (len);
495 if (stub_name != NULL)
496 sprintf (stub_name, "%08x_%x:%x+%x",
497 input_section->id & 0xffffffff,
498 sym_sec->id & 0xffffffff,
499 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
500 (int) rela->r_addend & 0xffffffff);
501 }
502 return stub_name;
503 }
504
505 /* Look up an entry in the stub hash. Stub entries are cached because
506 creating the stub name takes a bit of time. */
507
508 static struct elf32_hppa_stub_hash_entry *
509 hppa_get_stub_entry (const asection *input_section,
510 const asection *sym_sec,
511 struct elf32_hppa_link_hash_entry *hh,
512 const Elf_Internal_Rela *rela,
513 struct elf32_hppa_link_hash_table *htab)
514 {
515 struct elf32_hppa_stub_hash_entry *hsh_entry;
516 const asection *id_sec;
517
518 /* If this input section is part of a group of sections sharing one
519 stub section, then use the id of the first section in the group.
520 Stub names need to include a section id, as there may well be
521 more than one stub used to reach say, printf, and we need to
522 distinguish between them. */
523 id_sec = htab->stub_group[input_section->id].link_sec;
524
525 if (hh != NULL && hh->hsh_cache != NULL
526 && hh->hsh_cache->hh == hh
527 && hh->hsh_cache->id_sec == id_sec)
528 {
529 hsh_entry = hh->hsh_cache;
530 }
531 else
532 {
533 char *stub_name;
534
535 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
536 if (stub_name == NULL)
537 return NULL;
538
539 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
540 stub_name, FALSE, FALSE);
541 if (hh != NULL)
542 hh->hsh_cache = hsh_entry;
543
544 free (stub_name);
545 }
546
547 return hsh_entry;
548 }
549
550 /* Add a new stub entry to the stub hash. Not all fields of the new
551 stub entry are initialised. */
552
553 static struct elf32_hppa_stub_hash_entry *
554 hppa_add_stub (const char *stub_name,
555 asection *section,
556 struct elf32_hppa_link_hash_table *htab)
557 {
558 asection *link_sec;
559 asection *stub_sec;
560 struct elf32_hppa_stub_hash_entry *hsh;
561
562 link_sec = htab->stub_group[section->id].link_sec;
563 stub_sec = htab->stub_group[section->id].stub_sec;
564 if (stub_sec == NULL)
565 {
566 stub_sec = htab->stub_group[link_sec->id].stub_sec;
567 if (stub_sec == NULL)
568 {
569 size_t namelen;
570 bfd_size_type len;
571 char *s_name;
572
573 namelen = strlen (link_sec->name);
574 len = namelen + sizeof (STUB_SUFFIX);
575 s_name = bfd_alloc (htab->stub_bfd, len);
576 if (s_name == NULL)
577 return NULL;
578
579 memcpy (s_name, link_sec->name, namelen);
580 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
581 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
582 if (stub_sec == NULL)
583 return NULL;
584 htab->stub_group[link_sec->id].stub_sec = stub_sec;
585 }
586 htab->stub_group[section->id].stub_sec = stub_sec;
587 }
588
589 /* Enter this entry into the linker stub hash table. */
590 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
591 TRUE, FALSE);
592 if (hsh == NULL)
593 {
594 _bfd_error_handler (_("%B: cannot create stub entry %s"),
595 section->owner, stub_name);
596 return NULL;
597 }
598
599 hsh->stub_sec = stub_sec;
600 hsh->stub_offset = 0;
601 hsh->id_sec = link_sec;
602 return hsh;
603 }
604
605 /* Determine the type of stub needed, if any, for a call. */
606
607 static enum elf32_hppa_stub_type
608 hppa_type_of_stub (asection *input_sec,
609 const Elf_Internal_Rela *rela,
610 struct elf32_hppa_link_hash_entry *hh,
611 bfd_vma destination,
612 struct bfd_link_info *info)
613 {
614 bfd_vma location;
615 bfd_vma branch_offset;
616 bfd_vma max_branch_offset;
617 unsigned int r_type;
618
619 if (hh != NULL
620 && hh->eh.plt.offset != (bfd_vma) -1
621 && hh->eh.dynindx != -1
622 && !hh->plabel
623 && (bfd_link_pic (info)
624 || !hh->eh.def_regular
625 || hh->eh.root.type == bfd_link_hash_defweak))
626 {
627 /* We need an import stub. Decide between hppa_stub_import
628 and hppa_stub_import_shared later. */
629 return hppa_stub_import;
630 }
631
632 /* Determine where the call point is. */
633 location = (input_sec->output_offset
634 + input_sec->output_section->vma
635 + rela->r_offset);
636
637 branch_offset = destination - location - 8;
638 r_type = ELF32_R_TYPE (rela->r_info);
639
640 /* Determine if a long branch stub is needed. parisc branch offsets
641 are relative to the second instruction past the branch, ie. +8
642 bytes on from the branch instruction location. The offset is
643 signed and counts in units of 4 bytes. */
644 if (r_type == (unsigned int) R_PARISC_PCREL17F)
645 max_branch_offset = (1 << (17 - 1)) << 2;
646
647 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
648 max_branch_offset = (1 << (12 - 1)) << 2;
649
650 else /* R_PARISC_PCREL22F. */
651 max_branch_offset = (1 << (22 - 1)) << 2;
652
653 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
654 return hppa_stub_long_branch;
655
656 return hppa_stub_none;
657 }
658
659 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
660 IN_ARG contains the link info pointer. */
661
662 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
663 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
664
665 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
666 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
667 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
668
669 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
670 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
671 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
672 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
673
674 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
675 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
676
677 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
678 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
679 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
680 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
681
682 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
683 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
684 #define NOP 0x08000240 /* nop */
685 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
686 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
687 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
688
689 #ifndef R19_STUBS
690 #define R19_STUBS 1
691 #endif
692
693 #if R19_STUBS
694 #define LDW_R1_DLT LDW_R1_R19
695 #else
696 #define LDW_R1_DLT LDW_R1_DP
697 #endif
698
699 static bfd_boolean
700 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
701 {
702 struct elf32_hppa_stub_hash_entry *hsh;
703 struct bfd_link_info *info;
704 struct elf32_hppa_link_hash_table *htab;
705 asection *stub_sec;
706 bfd *stub_bfd;
707 bfd_byte *loc;
708 bfd_vma sym_value;
709 bfd_vma insn;
710 bfd_vma off;
711 int val;
712 int size;
713
714 /* Massage our args to the form they really have. */
715 hsh = hppa_stub_hash_entry (bh);
716 info = (struct bfd_link_info *)in_arg;
717
718 htab = hppa_link_hash_table (info);
719 if (htab == NULL)
720 return FALSE;
721
722 stub_sec = hsh->stub_sec;
723
724 /* Make a note of the offset within the stubs for this entry. */
725 hsh->stub_offset = stub_sec->size;
726 loc = stub_sec->contents + hsh->stub_offset;
727
728 stub_bfd = stub_sec->owner;
729
730 switch (hsh->stub_type)
731 {
732 case hppa_stub_long_branch:
733 /* Create the long branch. A long branch is formed with "ldil"
734 loading the upper bits of the target address into a register,
735 then branching with "be" which adds in the lower bits.
736 The "be" has its delay slot nullified. */
737 sym_value = (hsh->target_value
738 + hsh->target_section->output_offset
739 + hsh->target_section->output_section->vma);
740
741 val = hppa_field_adjust (sym_value, 0, e_lrsel);
742 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
743 bfd_put_32 (stub_bfd, insn, loc);
744
745 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
746 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
747 bfd_put_32 (stub_bfd, insn, loc + 4);
748
749 size = 8;
750 break;
751
752 case hppa_stub_long_branch_shared:
753 /* Branches are relative. This is where we are going to. */
754 sym_value = (hsh->target_value
755 + hsh->target_section->output_offset
756 + hsh->target_section->output_section->vma);
757
758 /* And this is where we are coming from, more or less. */
759 sym_value -= (hsh->stub_offset
760 + stub_sec->output_offset
761 + stub_sec->output_section->vma);
762
763 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
764 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
765 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
766 bfd_put_32 (stub_bfd, insn, loc + 4);
767
768 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
769 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
770 bfd_put_32 (stub_bfd, insn, loc + 8);
771 size = 12;
772 break;
773
774 case hppa_stub_import:
775 case hppa_stub_import_shared:
776 off = hsh->hh->eh.plt.offset;
777 if (off >= (bfd_vma) -2)
778 abort ();
779
780 off &= ~ (bfd_vma) 1;
781 sym_value = (off
782 + htab->splt->output_offset
783 + htab->splt->output_section->vma
784 - elf_gp (htab->splt->output_section->owner));
785
786 insn = ADDIL_DP;
787 #if R19_STUBS
788 if (hsh->stub_type == hppa_stub_import_shared)
789 insn = ADDIL_R19;
790 #endif
791 val = hppa_field_adjust (sym_value, 0, e_lrsel),
792 insn = hppa_rebuild_insn ((int) insn, val, 21);
793 bfd_put_32 (stub_bfd, insn, loc);
794
795 /* It is critical to use lrsel/rrsel here because we are using
796 two different offsets (+0 and +4) from sym_value. If we use
797 lsel/rsel then with unfortunate sym_values we will round
798 sym_value+4 up to the next 2k block leading to a mis-match
799 between the lsel and rsel value. */
800 val = hppa_field_adjust (sym_value, 0, e_rrsel);
801 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
802 bfd_put_32 (stub_bfd, insn, loc + 4);
803
804 if (htab->multi_subspace)
805 {
806 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
807 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
808 bfd_put_32 (stub_bfd, insn, loc + 8);
809
810 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
811 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
812 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
813 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
814
815 size = 28;
816 }
817 else
818 {
819 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
820 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
821 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
822 bfd_put_32 (stub_bfd, insn, loc + 12);
823
824 size = 16;
825 }
826
827 break;
828
829 case hppa_stub_export:
830 /* Branches are relative. This is where we are going to. */
831 sym_value = (hsh->target_value
832 + hsh->target_section->output_offset
833 + hsh->target_section->output_section->vma);
834
835 /* And this is where we are coming from. */
836 sym_value -= (hsh->stub_offset
837 + stub_sec->output_offset
838 + stub_sec->output_section->vma);
839
840 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
841 && (!htab->has_22bit_branch
842 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
843 {
844 _bfd_error_handler
845 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
846 hsh->target_section->owner,
847 stub_sec,
848 (long) hsh->stub_offset,
849 hsh->bh_root.string);
850 bfd_set_error (bfd_error_bad_value);
851 return FALSE;
852 }
853
854 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
855 if (!htab->has_22bit_branch)
856 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
857 else
858 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
859 bfd_put_32 (stub_bfd, insn, loc);
860
861 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
862 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
863 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
864 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
865 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
866
867 /* Point the function symbol at the stub. */
868 hsh->hh->eh.root.u.def.section = stub_sec;
869 hsh->hh->eh.root.u.def.value = stub_sec->size;
870
871 size = 24;
872 break;
873
874 default:
875 BFD_FAIL ();
876 return FALSE;
877 }
878
879 stub_sec->size += size;
880 return TRUE;
881 }
882
883 #undef LDIL_R1
884 #undef BE_SR4_R1
885 #undef BL_R1
886 #undef ADDIL_R1
887 #undef DEPI_R1
888 #undef LDW_R1_R21
889 #undef LDW_R1_DLT
890 #undef LDW_R1_R19
891 #undef ADDIL_R19
892 #undef LDW_R1_DP
893 #undef LDSID_R21_R1
894 #undef MTSP_R1
895 #undef BE_SR0_R21
896 #undef STW_RP
897 #undef BV_R0_R21
898 #undef BL_RP
899 #undef NOP
900 #undef LDW_RP
901 #undef LDSID_RP_R1
902 #undef BE_SR0_RP
903
904 /* As above, but don't actually build the stub. Just bump offset so
905 we know stub section sizes. */
906
907 static bfd_boolean
908 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
909 {
910 struct elf32_hppa_stub_hash_entry *hsh;
911 struct elf32_hppa_link_hash_table *htab;
912 int size;
913
914 /* Massage our args to the form they really have. */
915 hsh = hppa_stub_hash_entry (bh);
916 htab = in_arg;
917
918 if (hsh->stub_type == hppa_stub_long_branch)
919 size = 8;
920 else if (hsh->stub_type == hppa_stub_long_branch_shared)
921 size = 12;
922 else if (hsh->stub_type == hppa_stub_export)
923 size = 24;
924 else /* hppa_stub_import or hppa_stub_import_shared. */
925 {
926 if (htab->multi_subspace)
927 size = 28;
928 else
929 size = 16;
930 }
931
932 hsh->stub_sec->size += size;
933 return TRUE;
934 }
935
936 /* Return nonzero if ABFD represents an HPPA ELF32 file.
937 Additionally we set the default architecture and machine. */
938
939 static bfd_boolean
940 elf32_hppa_object_p (bfd *abfd)
941 {
942 Elf_Internal_Ehdr * i_ehdrp;
943 unsigned int flags;
944
945 i_ehdrp = elf_elfheader (abfd);
946 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
947 {
948 /* GCC on hppa-linux produces binaries with OSABI=GNU,
949 but the kernel produces corefiles with OSABI=SysV. */
950 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
951 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
952 return FALSE;
953 }
954 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
955 {
956 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
957 but the kernel produces corefiles with OSABI=SysV. */
958 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
959 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
960 return FALSE;
961 }
962 else
963 {
964 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
965 return FALSE;
966 }
967
968 flags = i_ehdrp->e_flags;
969 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
970 {
971 case EFA_PARISC_1_0:
972 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
973 case EFA_PARISC_1_1:
974 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
975 case EFA_PARISC_2_0:
976 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
977 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
978 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
979 }
980 return TRUE;
981 }
982
983 /* Create the .plt and .got sections, and set up our hash table
984 short-cuts to various dynamic sections. */
985
986 static bfd_boolean
987 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
988 {
989 struct elf32_hppa_link_hash_table *htab;
990 struct elf_link_hash_entry *eh;
991
992 /* Don't try to create the .plt and .got twice. */
993 htab = hppa_link_hash_table (info);
994 if (htab == NULL)
995 return FALSE;
996 if (htab->splt != NULL)
997 return TRUE;
998
999 /* Call the generic code to do most of the work. */
1000 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1001 return FALSE;
1002
1003 htab->splt = bfd_get_linker_section (abfd, ".plt");
1004 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
1005
1006 htab->sgot = bfd_get_linker_section (abfd, ".got");
1007 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
1008
1009 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
1010 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
1011
1012 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1013 application, because __canonicalize_funcptr_for_compare needs it. */
1014 eh = elf_hash_table (info)->hgot;
1015 eh->forced_local = 0;
1016 eh->other = STV_DEFAULT;
1017 return bfd_elf_link_record_dynamic_symbol (info, eh);
1018 }
1019
1020 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1021
1022 static void
1023 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1024 struct elf_link_hash_entry *eh_dir,
1025 struct elf_link_hash_entry *eh_ind)
1026 {
1027 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1028
1029 hh_dir = hppa_elf_hash_entry (eh_dir);
1030 hh_ind = hppa_elf_hash_entry (eh_ind);
1031
1032 if (hh_ind->dyn_relocs != NULL)
1033 {
1034 if (hh_dir->dyn_relocs != NULL)
1035 {
1036 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1037 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1038
1039 /* Add reloc counts against the indirect sym to the direct sym
1040 list. Merge any entries against the same section. */
1041 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1042 {
1043 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1044
1045 for (hdh_q = hh_dir->dyn_relocs;
1046 hdh_q != NULL;
1047 hdh_q = hdh_q->hdh_next)
1048 if (hdh_q->sec == hdh_p->sec)
1049 {
1050 #if RELATIVE_DYNRELOCS
1051 hdh_q->relative_count += hdh_p->relative_count;
1052 #endif
1053 hdh_q->count += hdh_p->count;
1054 *hdh_pp = hdh_p->hdh_next;
1055 break;
1056 }
1057 if (hdh_q == NULL)
1058 hdh_pp = &hdh_p->hdh_next;
1059 }
1060 *hdh_pp = hh_dir->dyn_relocs;
1061 }
1062
1063 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1064 hh_ind->dyn_relocs = NULL;
1065 }
1066
1067 if (ELIMINATE_COPY_RELOCS
1068 && eh_ind->root.type != bfd_link_hash_indirect
1069 && eh_dir->dynamic_adjusted)
1070 {
1071 /* If called to transfer flags for a weakdef during processing
1072 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1073 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1074 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1075 eh_dir->ref_regular |= eh_ind->ref_regular;
1076 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1077 eh_dir->needs_plt |= eh_ind->needs_plt;
1078 }
1079 else
1080 {
1081 if (eh_ind->root.type == bfd_link_hash_indirect
1082 && eh_dir->got.refcount <= 0)
1083 {
1084 hh_dir->tls_type = hh_ind->tls_type;
1085 hh_ind->tls_type = GOT_UNKNOWN;
1086 }
1087
1088 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1089 }
1090 }
1091
1092 static int
1093 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1094 int r_type, int is_local ATTRIBUTE_UNUSED)
1095 {
1096 /* For now we don't support linker optimizations. */
1097 return r_type;
1098 }
1099
1100 /* Return a pointer to the local GOT, PLT and TLS reference counts
1101 for ABFD. Returns NULL if the storage allocation fails. */
1102
1103 static bfd_signed_vma *
1104 hppa32_elf_local_refcounts (bfd *abfd)
1105 {
1106 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1107 bfd_signed_vma *local_refcounts;
1108
1109 local_refcounts = elf_local_got_refcounts (abfd);
1110 if (local_refcounts == NULL)
1111 {
1112 bfd_size_type size;
1113
1114 /* Allocate space for local GOT and PLT reference
1115 counts. Done this way to save polluting elf_obj_tdata
1116 with another target specific pointer. */
1117 size = symtab_hdr->sh_info;
1118 size *= 2 * sizeof (bfd_signed_vma);
1119 /* Add in space to store the local GOT TLS types. */
1120 size += symtab_hdr->sh_info;
1121 local_refcounts = bfd_zalloc (abfd, size);
1122 if (local_refcounts == NULL)
1123 return NULL;
1124 elf_local_got_refcounts (abfd) = local_refcounts;
1125 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1126 symtab_hdr->sh_info);
1127 }
1128 return local_refcounts;
1129 }
1130
1131
1132 /* Look through the relocs for a section during the first phase, and
1133 calculate needed space in the global offset table, procedure linkage
1134 table, and dynamic reloc sections. At this point we haven't
1135 necessarily read all the input files. */
1136
1137 static bfd_boolean
1138 elf32_hppa_check_relocs (bfd *abfd,
1139 struct bfd_link_info *info,
1140 asection *sec,
1141 const Elf_Internal_Rela *relocs)
1142 {
1143 Elf_Internal_Shdr *symtab_hdr;
1144 struct elf_link_hash_entry **eh_syms;
1145 const Elf_Internal_Rela *rela;
1146 const Elf_Internal_Rela *rela_end;
1147 struct elf32_hppa_link_hash_table *htab;
1148 asection *sreloc;
1149 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1150
1151 if (bfd_link_relocatable (info))
1152 return TRUE;
1153
1154 htab = hppa_link_hash_table (info);
1155 if (htab == NULL)
1156 return FALSE;
1157 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1158 eh_syms = elf_sym_hashes (abfd);
1159 sreloc = NULL;
1160
1161 rela_end = relocs + sec->reloc_count;
1162 for (rela = relocs; rela < rela_end; rela++)
1163 {
1164 enum {
1165 NEED_GOT = 1,
1166 NEED_PLT = 2,
1167 NEED_DYNREL = 4,
1168 PLT_PLABEL = 8
1169 };
1170
1171 unsigned int r_symndx, r_type;
1172 struct elf32_hppa_link_hash_entry *hh;
1173 int need_entry = 0;
1174
1175 r_symndx = ELF32_R_SYM (rela->r_info);
1176
1177 if (r_symndx < symtab_hdr->sh_info)
1178 hh = NULL;
1179 else
1180 {
1181 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1182 while (hh->eh.root.type == bfd_link_hash_indirect
1183 || hh->eh.root.type == bfd_link_hash_warning)
1184 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1185
1186 /* PR15323, ref flags aren't set for references in the same
1187 object. */
1188 hh->eh.root.non_ir_ref = 1;
1189 }
1190
1191 r_type = ELF32_R_TYPE (rela->r_info);
1192 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1193
1194 switch (r_type)
1195 {
1196 case R_PARISC_DLTIND14F:
1197 case R_PARISC_DLTIND14R:
1198 case R_PARISC_DLTIND21L:
1199 /* This symbol requires a global offset table entry. */
1200 need_entry = NEED_GOT;
1201 break;
1202
1203 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1204 case R_PARISC_PLABEL21L:
1205 case R_PARISC_PLABEL32:
1206 /* If the addend is non-zero, we break badly. */
1207 if (rela->r_addend != 0)
1208 abort ();
1209
1210 /* If we are creating a shared library, then we need to
1211 create a PLT entry for all PLABELs, because PLABELs with
1212 local symbols may be passed via a pointer to another
1213 object. Additionally, output a dynamic relocation
1214 pointing to the PLT entry.
1215
1216 For executables, the original 32-bit ABI allowed two
1217 different styles of PLABELs (function pointers): For
1218 global functions, the PLABEL word points into the .plt
1219 two bytes past a (function address, gp) pair, and for
1220 local functions the PLABEL points directly at the
1221 function. The magic +2 for the first type allows us to
1222 differentiate between the two. As you can imagine, this
1223 is a real pain when it comes to generating code to call
1224 functions indirectly or to compare function pointers.
1225 We avoid the mess by always pointing a PLABEL into the
1226 .plt, even for local functions. */
1227 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1228 break;
1229
1230 case R_PARISC_PCREL12F:
1231 htab->has_12bit_branch = 1;
1232 goto branch_common;
1233
1234 case R_PARISC_PCREL17C:
1235 case R_PARISC_PCREL17F:
1236 htab->has_17bit_branch = 1;
1237 goto branch_common;
1238
1239 case R_PARISC_PCREL22F:
1240 htab->has_22bit_branch = 1;
1241 branch_common:
1242 /* Function calls might need to go through the .plt, and
1243 might require long branch stubs. */
1244 if (hh == NULL)
1245 {
1246 /* We know local syms won't need a .plt entry, and if
1247 they need a long branch stub we can't guarantee that
1248 we can reach the stub. So just flag an error later
1249 if we're doing a shared link and find we need a long
1250 branch stub. */
1251 continue;
1252 }
1253 else
1254 {
1255 /* Global symbols will need a .plt entry if they remain
1256 global, and in most cases won't need a long branch
1257 stub. Unfortunately, we have to cater for the case
1258 where a symbol is forced local by versioning, or due
1259 to symbolic linking, and we lose the .plt entry. */
1260 need_entry = NEED_PLT;
1261 if (hh->eh.type == STT_PARISC_MILLI)
1262 need_entry = 0;
1263 }
1264 break;
1265
1266 case R_PARISC_SEGBASE: /* Used to set segment base. */
1267 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1268 case R_PARISC_PCREL14F: /* PC relative load/store. */
1269 case R_PARISC_PCREL14R:
1270 case R_PARISC_PCREL17R: /* External branches. */
1271 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1272 case R_PARISC_PCREL32:
1273 /* We don't need to propagate the relocation if linking a
1274 shared object since these are section relative. */
1275 continue;
1276
1277 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1278 case R_PARISC_DPREL14R:
1279 case R_PARISC_DPREL21L:
1280 if (bfd_link_pic (info))
1281 {
1282 _bfd_error_handler
1283 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1284 abfd,
1285 elf_hppa_howto_table[r_type].name);
1286 bfd_set_error (bfd_error_bad_value);
1287 return FALSE;
1288 }
1289 /* Fall through. */
1290
1291 case R_PARISC_DIR17F: /* Used for external branches. */
1292 case R_PARISC_DIR17R:
1293 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1294 case R_PARISC_DIR14R:
1295 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1296 case R_PARISC_DIR32: /* .word relocs. */
1297 /* We may want to output a dynamic relocation later. */
1298 need_entry = NEED_DYNREL;
1299 break;
1300
1301 /* This relocation describes the C++ object vtable hierarchy.
1302 Reconstruct it for later use during GC. */
1303 case R_PARISC_GNU_VTINHERIT:
1304 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1305 return FALSE;
1306 continue;
1307
1308 /* This relocation describes which C++ vtable entries are actually
1309 used. Record for later use during GC. */
1310 case R_PARISC_GNU_VTENTRY:
1311 BFD_ASSERT (hh != NULL);
1312 if (hh != NULL
1313 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1314 return FALSE;
1315 continue;
1316
1317 case R_PARISC_TLS_GD21L:
1318 case R_PARISC_TLS_GD14R:
1319 case R_PARISC_TLS_LDM21L:
1320 case R_PARISC_TLS_LDM14R:
1321 need_entry = NEED_GOT;
1322 break;
1323
1324 case R_PARISC_TLS_IE21L:
1325 case R_PARISC_TLS_IE14R:
1326 if (bfd_link_pic (info))
1327 info->flags |= DF_STATIC_TLS;
1328 need_entry = NEED_GOT;
1329 break;
1330
1331 default:
1332 continue;
1333 }
1334
1335 /* Now carry out our orders. */
1336 if (need_entry & NEED_GOT)
1337 {
1338 switch (r_type)
1339 {
1340 default:
1341 tls_type = GOT_NORMAL;
1342 break;
1343 case R_PARISC_TLS_GD21L:
1344 case R_PARISC_TLS_GD14R:
1345 tls_type |= GOT_TLS_GD;
1346 break;
1347 case R_PARISC_TLS_LDM21L:
1348 case R_PARISC_TLS_LDM14R:
1349 tls_type |= GOT_TLS_LDM;
1350 break;
1351 case R_PARISC_TLS_IE21L:
1352 case R_PARISC_TLS_IE14R:
1353 tls_type |= GOT_TLS_IE;
1354 break;
1355 }
1356
1357 /* Allocate space for a GOT entry, as well as a dynamic
1358 relocation for this entry. */
1359 if (htab->sgot == NULL)
1360 {
1361 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1362 return FALSE;
1363 }
1364
1365 if (r_type == R_PARISC_TLS_LDM21L
1366 || r_type == R_PARISC_TLS_LDM14R)
1367 htab->tls_ldm_got.refcount += 1;
1368 else
1369 {
1370 if (hh != NULL)
1371 {
1372 hh->eh.got.refcount += 1;
1373 old_tls_type = hh->tls_type;
1374 }
1375 else
1376 {
1377 bfd_signed_vma *local_got_refcounts;
1378
1379 /* This is a global offset table entry for a local symbol. */
1380 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1381 if (local_got_refcounts == NULL)
1382 return FALSE;
1383 local_got_refcounts[r_symndx] += 1;
1384
1385 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1386 }
1387
1388 tls_type |= old_tls_type;
1389
1390 if (old_tls_type != tls_type)
1391 {
1392 if (hh != NULL)
1393 hh->tls_type = tls_type;
1394 else
1395 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1396 }
1397
1398 }
1399 }
1400
1401 if (need_entry & NEED_PLT)
1402 {
1403 /* If we are creating a shared library, and this is a reloc
1404 against a weak symbol or a global symbol in a dynamic
1405 object, then we will be creating an import stub and a
1406 .plt entry for the symbol. Similarly, on a normal link
1407 to symbols defined in a dynamic object we'll need the
1408 import stub and a .plt entry. We don't know yet whether
1409 the symbol is defined or not, so make an entry anyway and
1410 clean up later in adjust_dynamic_symbol. */
1411 if ((sec->flags & SEC_ALLOC) != 0)
1412 {
1413 if (hh != NULL)
1414 {
1415 hh->eh.needs_plt = 1;
1416 hh->eh.plt.refcount += 1;
1417
1418 /* If this .plt entry is for a plabel, mark it so
1419 that adjust_dynamic_symbol will keep the entry
1420 even if it appears to be local. */
1421 if (need_entry & PLT_PLABEL)
1422 hh->plabel = 1;
1423 }
1424 else if (need_entry & PLT_PLABEL)
1425 {
1426 bfd_signed_vma *local_got_refcounts;
1427 bfd_signed_vma *local_plt_refcounts;
1428
1429 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1430 if (local_got_refcounts == NULL)
1431 return FALSE;
1432 local_plt_refcounts = (local_got_refcounts
1433 + symtab_hdr->sh_info);
1434 local_plt_refcounts[r_symndx] += 1;
1435 }
1436 }
1437 }
1438
1439 if (need_entry & NEED_DYNREL)
1440 {
1441 /* Flag this symbol as having a non-got, non-plt reference
1442 so that we generate copy relocs if it turns out to be
1443 dynamic. */
1444 if (hh != NULL && !bfd_link_pic (info))
1445 hh->eh.non_got_ref = 1;
1446
1447 /* If we are creating a shared library then we need to copy
1448 the reloc into the shared library. However, if we are
1449 linking with -Bsymbolic, we need only copy absolute
1450 relocs or relocs against symbols that are not defined in
1451 an object we are including in the link. PC- or DP- or
1452 DLT-relative relocs against any local sym or global sym
1453 with DEF_REGULAR set, can be discarded. At this point we
1454 have not seen all the input files, so it is possible that
1455 DEF_REGULAR is not set now but will be set later (it is
1456 never cleared). We account for that possibility below by
1457 storing information in the dyn_relocs field of the
1458 hash table entry.
1459
1460 A similar situation to the -Bsymbolic case occurs when
1461 creating shared libraries and symbol visibility changes
1462 render the symbol local.
1463
1464 As it turns out, all the relocs we will be creating here
1465 are absolute, so we cannot remove them on -Bsymbolic
1466 links or visibility changes anyway. A STUB_REL reloc
1467 is absolute too, as in that case it is the reloc in the
1468 stub we will be creating, rather than copying the PCREL
1469 reloc in the branch.
1470
1471 If on the other hand, we are creating an executable, we
1472 may need to keep relocations for symbols satisfied by a
1473 dynamic library if we manage to avoid copy relocs for the
1474 symbol. */
1475 if ((bfd_link_pic (info)
1476 && (sec->flags & SEC_ALLOC) != 0
1477 && (IS_ABSOLUTE_RELOC (r_type)
1478 || (hh != NULL
1479 && (!SYMBOLIC_BIND (info, &hh->eh)
1480 || hh->eh.root.type == bfd_link_hash_defweak
1481 || !hh->eh.def_regular))))
1482 || (ELIMINATE_COPY_RELOCS
1483 && !bfd_link_pic (info)
1484 && (sec->flags & SEC_ALLOC) != 0
1485 && hh != NULL
1486 && (hh->eh.root.type == bfd_link_hash_defweak
1487 || !hh->eh.def_regular)))
1488 {
1489 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1490 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1491
1492 /* Create a reloc section in dynobj and make room for
1493 this reloc. */
1494 if (sreloc == NULL)
1495 {
1496 sreloc = _bfd_elf_make_dynamic_reloc_section
1497 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1498
1499 if (sreloc == NULL)
1500 {
1501 bfd_set_error (bfd_error_bad_value);
1502 return FALSE;
1503 }
1504 }
1505
1506 /* If this is a global symbol, we count the number of
1507 relocations we need for this symbol. */
1508 if (hh != NULL)
1509 {
1510 hdh_head = &hh->dyn_relocs;
1511 }
1512 else
1513 {
1514 /* Track dynamic relocs needed for local syms too.
1515 We really need local syms available to do this
1516 easily. Oh well. */
1517 asection *sr;
1518 void *vpp;
1519 Elf_Internal_Sym *isym;
1520
1521 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1522 abfd, r_symndx);
1523 if (isym == NULL)
1524 return FALSE;
1525
1526 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1527 if (sr == NULL)
1528 sr = sec;
1529
1530 vpp = &elf_section_data (sr)->local_dynrel;
1531 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1532 }
1533
1534 hdh_p = *hdh_head;
1535 if (hdh_p == NULL || hdh_p->sec != sec)
1536 {
1537 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1538 if (hdh_p == NULL)
1539 return FALSE;
1540 hdh_p->hdh_next = *hdh_head;
1541 *hdh_head = hdh_p;
1542 hdh_p->sec = sec;
1543 hdh_p->count = 0;
1544 #if RELATIVE_DYNRELOCS
1545 hdh_p->relative_count = 0;
1546 #endif
1547 }
1548
1549 hdh_p->count += 1;
1550 #if RELATIVE_DYNRELOCS
1551 if (!IS_ABSOLUTE_RELOC (rtype))
1552 hdh_p->relative_count += 1;
1553 #endif
1554 }
1555 }
1556 }
1557
1558 return TRUE;
1559 }
1560
1561 /* Return the section that should be marked against garbage collection
1562 for a given relocation. */
1563
1564 static asection *
1565 elf32_hppa_gc_mark_hook (asection *sec,
1566 struct bfd_link_info *info,
1567 Elf_Internal_Rela *rela,
1568 struct elf_link_hash_entry *hh,
1569 Elf_Internal_Sym *sym)
1570 {
1571 if (hh != NULL)
1572 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1573 {
1574 case R_PARISC_GNU_VTINHERIT:
1575 case R_PARISC_GNU_VTENTRY:
1576 return NULL;
1577 }
1578
1579 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1580 }
1581
1582 /* Update the got and plt entry reference counts for the section being
1583 removed. */
1584
1585 static bfd_boolean
1586 elf32_hppa_gc_sweep_hook (bfd *abfd,
1587 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1588 asection *sec,
1589 const Elf_Internal_Rela *relocs)
1590 {
1591 Elf_Internal_Shdr *symtab_hdr;
1592 struct elf_link_hash_entry **eh_syms;
1593 bfd_signed_vma *local_got_refcounts;
1594 bfd_signed_vma *local_plt_refcounts;
1595 const Elf_Internal_Rela *rela, *relend;
1596 struct elf32_hppa_link_hash_table *htab;
1597
1598 if (bfd_link_relocatable (info))
1599 return TRUE;
1600
1601 htab = hppa_link_hash_table (info);
1602 if (htab == NULL)
1603 return FALSE;
1604
1605 elf_section_data (sec)->local_dynrel = NULL;
1606
1607 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1608 eh_syms = elf_sym_hashes (abfd);
1609 local_got_refcounts = elf_local_got_refcounts (abfd);
1610 local_plt_refcounts = local_got_refcounts;
1611 if (local_plt_refcounts != NULL)
1612 local_plt_refcounts += symtab_hdr->sh_info;
1613
1614 relend = relocs + sec->reloc_count;
1615 for (rela = relocs; rela < relend; rela++)
1616 {
1617 unsigned long r_symndx;
1618 unsigned int r_type;
1619 struct elf_link_hash_entry *eh = NULL;
1620
1621 r_symndx = ELF32_R_SYM (rela->r_info);
1622 if (r_symndx >= symtab_hdr->sh_info)
1623 {
1624 struct elf32_hppa_link_hash_entry *hh;
1625 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1626 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1627
1628 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1629 while (eh->root.type == bfd_link_hash_indirect
1630 || eh->root.type == bfd_link_hash_warning)
1631 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1632 hh = hppa_elf_hash_entry (eh);
1633
1634 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1635 if (hdh_p->sec == sec)
1636 {
1637 /* Everything must go for SEC. */
1638 *hdh_pp = hdh_p->hdh_next;
1639 break;
1640 }
1641 }
1642
1643 r_type = ELF32_R_TYPE (rela->r_info);
1644 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1645
1646 switch (r_type)
1647 {
1648 case R_PARISC_DLTIND14F:
1649 case R_PARISC_DLTIND14R:
1650 case R_PARISC_DLTIND21L:
1651 case R_PARISC_TLS_GD21L:
1652 case R_PARISC_TLS_GD14R:
1653 case R_PARISC_TLS_IE21L:
1654 case R_PARISC_TLS_IE14R:
1655 if (eh != NULL)
1656 {
1657 if (eh->got.refcount > 0)
1658 eh->got.refcount -= 1;
1659 }
1660 else if (local_got_refcounts != NULL)
1661 {
1662 if (local_got_refcounts[r_symndx] > 0)
1663 local_got_refcounts[r_symndx] -= 1;
1664 }
1665 break;
1666
1667 case R_PARISC_TLS_LDM21L:
1668 case R_PARISC_TLS_LDM14R:
1669 htab->tls_ldm_got.refcount -= 1;
1670 break;
1671
1672 case R_PARISC_PCREL12F:
1673 case R_PARISC_PCREL17C:
1674 case R_PARISC_PCREL17F:
1675 case R_PARISC_PCREL22F:
1676 if (eh != NULL)
1677 {
1678 if (eh->plt.refcount > 0)
1679 eh->plt.refcount -= 1;
1680 }
1681 break;
1682
1683 case R_PARISC_PLABEL14R:
1684 case R_PARISC_PLABEL21L:
1685 case R_PARISC_PLABEL32:
1686 if (eh != NULL)
1687 {
1688 if (eh->plt.refcount > 0)
1689 eh->plt.refcount -= 1;
1690 }
1691 else if (local_plt_refcounts != NULL)
1692 {
1693 if (local_plt_refcounts[r_symndx] > 0)
1694 local_plt_refcounts[r_symndx] -= 1;
1695 }
1696 break;
1697
1698 default:
1699 break;
1700 }
1701 }
1702
1703 return TRUE;
1704 }
1705
1706 /* Support for core dump NOTE sections. */
1707
1708 static bfd_boolean
1709 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1710 {
1711 int offset;
1712 size_t size;
1713
1714 switch (note->descsz)
1715 {
1716 default:
1717 return FALSE;
1718
1719 case 396: /* Linux/hppa */
1720 /* pr_cursig */
1721 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1722
1723 /* pr_pid */
1724 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1725
1726 /* pr_reg */
1727 offset = 72;
1728 size = 320;
1729
1730 break;
1731 }
1732
1733 /* Make a ".reg/999" section. */
1734 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1735 size, note->descpos + offset);
1736 }
1737
1738 static bfd_boolean
1739 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1740 {
1741 switch (note->descsz)
1742 {
1743 default:
1744 return FALSE;
1745
1746 case 124: /* Linux/hppa elf_prpsinfo. */
1747 elf_tdata (abfd)->core->program
1748 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1749 elf_tdata (abfd)->core->command
1750 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1751 }
1752
1753 /* Note that for some reason, a spurious space is tacked
1754 onto the end of the args in some (at least one anyway)
1755 implementations, so strip it off if it exists. */
1756 {
1757 char *command = elf_tdata (abfd)->core->command;
1758 int n = strlen (command);
1759
1760 if (0 < n && command[n - 1] == ' ')
1761 command[n - 1] = '\0';
1762 }
1763
1764 return TRUE;
1765 }
1766
1767 /* Our own version of hide_symbol, so that we can keep plt entries for
1768 plabels. */
1769
1770 static void
1771 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1772 struct elf_link_hash_entry *eh,
1773 bfd_boolean force_local)
1774 {
1775 if (force_local)
1776 {
1777 eh->forced_local = 1;
1778 if (eh->dynindx != -1)
1779 {
1780 eh->dynindx = -1;
1781 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1782 eh->dynstr_index);
1783 }
1784
1785 /* PR 16082: Remove version information from hidden symbol. */
1786 eh->verinfo.verdef = NULL;
1787 eh->verinfo.vertree = NULL;
1788 }
1789
1790 /* STT_GNU_IFUNC symbol must go through PLT. */
1791 if (! hppa_elf_hash_entry (eh)->plabel
1792 && eh->type != STT_GNU_IFUNC)
1793 {
1794 eh->needs_plt = 0;
1795 eh->plt = elf_hash_table (info)->init_plt_offset;
1796 }
1797 }
1798
1799 /* Adjust a symbol defined by a dynamic object and referenced by a
1800 regular object. The current definition is in some section of the
1801 dynamic object, but we're not including those sections. We have to
1802 change the definition to something the rest of the link can
1803 understand. */
1804
1805 static bfd_boolean
1806 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1807 struct elf_link_hash_entry *eh)
1808 {
1809 struct elf32_hppa_link_hash_table *htab;
1810 asection *sec;
1811
1812 /* If this is a function, put it in the procedure linkage table. We
1813 will fill in the contents of the procedure linkage table later. */
1814 if (eh->type == STT_FUNC
1815 || eh->needs_plt)
1816 {
1817 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1818 The refcounts are not reliable when it has been hidden since
1819 hide_symbol can be called before the plabel flag is set. */
1820 if (hppa_elf_hash_entry (eh)->plabel
1821 && eh->plt.refcount <= 0)
1822 eh->plt.refcount = 1;
1823
1824 if (eh->plt.refcount <= 0
1825 || (eh->def_regular
1826 && eh->root.type != bfd_link_hash_defweak
1827 && ! hppa_elf_hash_entry (eh)->plabel
1828 && (!bfd_link_pic (info) || SYMBOLIC_BIND (info, eh))))
1829 {
1830 /* The .plt entry is not needed when:
1831 a) Garbage collection has removed all references to the
1832 symbol, or
1833 b) We know for certain the symbol is defined in this
1834 object, and it's not a weak definition, nor is the symbol
1835 used by a plabel relocation. Either this object is the
1836 application or we are doing a shared symbolic link. */
1837
1838 eh->plt.offset = (bfd_vma) -1;
1839 eh->needs_plt = 0;
1840 }
1841
1842 return TRUE;
1843 }
1844 else
1845 eh->plt.offset = (bfd_vma) -1;
1846
1847 /* If this is a weak symbol, and there is a real definition, the
1848 processor independent code will have arranged for us to see the
1849 real definition first, and we can just use the same value. */
1850 if (eh->u.weakdef != NULL)
1851 {
1852 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1853 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1854 abort ();
1855 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1856 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1857 if (ELIMINATE_COPY_RELOCS)
1858 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1859 return TRUE;
1860 }
1861
1862 /* This is a reference to a symbol defined by a dynamic object which
1863 is not a function. */
1864
1865 /* If we are creating a shared library, we must presume that the
1866 only references to the symbol are via the global offset table.
1867 For such cases we need not do anything here; the relocations will
1868 be handled correctly by relocate_section. */
1869 if (bfd_link_pic (info))
1870 return TRUE;
1871
1872 /* If there are no references to this symbol that do not use the
1873 GOT, we don't need to generate a copy reloc. */
1874 if (!eh->non_got_ref)
1875 return TRUE;
1876
1877 if (ELIMINATE_COPY_RELOCS)
1878 {
1879 struct elf32_hppa_link_hash_entry *hh;
1880 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1881
1882 hh = hppa_elf_hash_entry (eh);
1883 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1884 {
1885 sec = hdh_p->sec->output_section;
1886 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1887 break;
1888 }
1889
1890 /* If we didn't find any dynamic relocs in read-only sections, then
1891 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1892 if (hdh_p == NULL)
1893 {
1894 eh->non_got_ref = 0;
1895 return TRUE;
1896 }
1897 }
1898
1899 /* We must allocate the symbol in our .dynbss section, which will
1900 become part of the .bss section of the executable. There will be
1901 an entry for this symbol in the .dynsym section. The dynamic
1902 object will contain position independent code, so all references
1903 from the dynamic object to this symbol will go through the global
1904 offset table. The dynamic linker will use the .dynsym entry to
1905 determine the address it must put in the global offset table, so
1906 both the dynamic object and the regular object will refer to the
1907 same memory location for the variable. */
1908
1909 htab = hppa_link_hash_table (info);
1910 if (htab == NULL)
1911 return FALSE;
1912
1913 /* We must generate a COPY reloc to tell the dynamic linker to
1914 copy the initial value out of the dynamic object and into the
1915 runtime process image. */
1916 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1917 {
1918 htab->srelbss->size += sizeof (Elf32_External_Rela);
1919 eh->needs_copy = 1;
1920 }
1921
1922 sec = htab->sdynbss;
1923
1924 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1925 }
1926
1927 /* Allocate space in the .plt for entries that won't have relocations.
1928 ie. plabel entries. */
1929
1930 static bfd_boolean
1931 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1932 {
1933 struct bfd_link_info *info;
1934 struct elf32_hppa_link_hash_table *htab;
1935 struct elf32_hppa_link_hash_entry *hh;
1936 asection *sec;
1937
1938 if (eh->root.type == bfd_link_hash_indirect)
1939 return TRUE;
1940
1941 info = (struct bfd_link_info *) inf;
1942 hh = hppa_elf_hash_entry (eh);
1943 htab = hppa_link_hash_table (info);
1944 if (htab == NULL)
1945 return FALSE;
1946
1947 if (htab->etab.dynamic_sections_created
1948 && eh->plt.refcount > 0)
1949 {
1950 /* Make sure this symbol is output as a dynamic symbol.
1951 Undefined weak syms won't yet be marked as dynamic. */
1952 if (eh->dynindx == -1
1953 && !eh->forced_local
1954 && eh->type != STT_PARISC_MILLI)
1955 {
1956 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1957 return FALSE;
1958 }
1959
1960 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1961 {
1962 /* Allocate these later. From this point on, h->plabel
1963 means that the plt entry is only used by a plabel.
1964 We'll be using a normal plt entry for this symbol, so
1965 clear the plabel indicator. */
1966
1967 hh->plabel = 0;
1968 }
1969 else if (hh->plabel)
1970 {
1971 /* Make an entry in the .plt section for plabel references
1972 that won't have a .plt entry for other reasons. */
1973 sec = htab->splt;
1974 eh->plt.offset = sec->size;
1975 sec->size += PLT_ENTRY_SIZE;
1976 }
1977 else
1978 {
1979 /* No .plt entry needed. */
1980 eh->plt.offset = (bfd_vma) -1;
1981 eh->needs_plt = 0;
1982 }
1983 }
1984 else
1985 {
1986 eh->plt.offset = (bfd_vma) -1;
1987 eh->needs_plt = 0;
1988 }
1989
1990 return TRUE;
1991 }
1992
1993 /* Allocate space in .plt, .got and associated reloc sections for
1994 global syms. */
1995
1996 static bfd_boolean
1997 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1998 {
1999 struct bfd_link_info *info;
2000 struct elf32_hppa_link_hash_table *htab;
2001 asection *sec;
2002 struct elf32_hppa_link_hash_entry *hh;
2003 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2004
2005 if (eh->root.type == bfd_link_hash_indirect)
2006 return TRUE;
2007
2008 info = inf;
2009 htab = hppa_link_hash_table (info);
2010 if (htab == NULL)
2011 return FALSE;
2012
2013 hh = hppa_elf_hash_entry (eh);
2014
2015 if (htab->etab.dynamic_sections_created
2016 && eh->plt.offset != (bfd_vma) -1
2017 && !hh->plabel
2018 && eh->plt.refcount > 0)
2019 {
2020 /* Make an entry in the .plt section. */
2021 sec = htab->splt;
2022 eh->plt.offset = sec->size;
2023 sec->size += PLT_ENTRY_SIZE;
2024
2025 /* We also need to make an entry in the .rela.plt section. */
2026 htab->srelplt->size += sizeof (Elf32_External_Rela);
2027 htab->need_plt_stub = 1;
2028 }
2029
2030 if (eh->got.refcount > 0)
2031 {
2032 /* Make sure this symbol is output as a dynamic symbol.
2033 Undefined weak syms won't yet be marked as dynamic. */
2034 if (eh->dynindx == -1
2035 && !eh->forced_local
2036 && eh->type != STT_PARISC_MILLI)
2037 {
2038 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2039 return FALSE;
2040 }
2041
2042 sec = htab->sgot;
2043 eh->got.offset = sec->size;
2044 sec->size += GOT_ENTRY_SIZE;
2045 /* R_PARISC_TLS_GD* needs two GOT entries */
2046 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2047 sec->size += GOT_ENTRY_SIZE * 2;
2048 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2049 sec->size += GOT_ENTRY_SIZE;
2050 if (htab->etab.dynamic_sections_created
2051 && (bfd_link_pic (info)
2052 || (eh->dynindx != -1
2053 && !eh->forced_local)))
2054 {
2055 htab->srelgot->size += sizeof (Elf32_External_Rela);
2056 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2057 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2058 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2059 htab->srelgot->size += sizeof (Elf32_External_Rela);
2060 }
2061 }
2062 else
2063 eh->got.offset = (bfd_vma) -1;
2064
2065 if (hh->dyn_relocs == NULL)
2066 return TRUE;
2067
2068 /* If this is a -Bsymbolic shared link, then we need to discard all
2069 space allocated for dynamic pc-relative relocs against symbols
2070 defined in a regular object. For the normal shared case, discard
2071 space for relocs that have become local due to symbol visibility
2072 changes. */
2073 if (bfd_link_pic (info))
2074 {
2075 #if RELATIVE_DYNRELOCS
2076 if (SYMBOL_CALLS_LOCAL (info, eh))
2077 {
2078 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2079
2080 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2081 {
2082 hdh_p->count -= hdh_p->relative_count;
2083 hdh_p->relative_count = 0;
2084 if (hdh_p->count == 0)
2085 *hdh_pp = hdh_p->hdh_next;
2086 else
2087 hdh_pp = &hdh_p->hdh_next;
2088 }
2089 }
2090 #endif
2091
2092 /* Also discard relocs on undefined weak syms with non-default
2093 visibility. */
2094 if (hh->dyn_relocs != NULL
2095 && eh->root.type == bfd_link_hash_undefweak)
2096 {
2097 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2098 hh->dyn_relocs = NULL;
2099
2100 /* Make sure undefined weak symbols are output as a dynamic
2101 symbol in PIEs. */
2102 else if (eh->dynindx == -1
2103 && !eh->forced_local)
2104 {
2105 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2106 return FALSE;
2107 }
2108 }
2109 }
2110 else
2111 {
2112 /* For the non-shared case, discard space for relocs against
2113 symbols which turn out to need copy relocs or are not
2114 dynamic. */
2115
2116 if (!eh->non_got_ref
2117 && ((ELIMINATE_COPY_RELOCS
2118 && eh->def_dynamic
2119 && !eh->def_regular)
2120 || (htab->etab.dynamic_sections_created
2121 && (eh->root.type == bfd_link_hash_undefweak
2122 || eh->root.type == bfd_link_hash_undefined))))
2123 {
2124 /* Make sure this symbol is output as a dynamic symbol.
2125 Undefined weak syms won't yet be marked as dynamic. */
2126 if (eh->dynindx == -1
2127 && !eh->forced_local
2128 && eh->type != STT_PARISC_MILLI)
2129 {
2130 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2131 return FALSE;
2132 }
2133
2134 /* If that succeeded, we know we'll be keeping all the
2135 relocs. */
2136 if (eh->dynindx != -1)
2137 goto keep;
2138 }
2139
2140 hh->dyn_relocs = NULL;
2141 return TRUE;
2142
2143 keep: ;
2144 }
2145
2146 /* Finally, allocate space. */
2147 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2148 {
2149 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2150 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2151 }
2152
2153 return TRUE;
2154 }
2155
2156 /* This function is called via elf_link_hash_traverse to force
2157 millicode symbols local so they do not end up as globals in the
2158 dynamic symbol table. We ought to be able to do this in
2159 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2160 for all dynamic symbols. Arguably, this is a bug in
2161 elf_adjust_dynamic_symbol. */
2162
2163 static bfd_boolean
2164 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2165 struct bfd_link_info *info)
2166 {
2167 if (eh->type == STT_PARISC_MILLI
2168 && !eh->forced_local)
2169 {
2170 elf32_hppa_hide_symbol (info, eh, TRUE);
2171 }
2172 return TRUE;
2173 }
2174
2175 /* Find any dynamic relocs that apply to read-only sections. */
2176
2177 static bfd_boolean
2178 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2179 {
2180 struct elf32_hppa_link_hash_entry *hh;
2181 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2182
2183 hh = hppa_elf_hash_entry (eh);
2184 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2185 {
2186 asection *sec = hdh_p->sec->output_section;
2187
2188 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2189 {
2190 struct bfd_link_info *info = inf;
2191
2192 info->flags |= DF_TEXTREL;
2193
2194 /* Not an error, just cut short the traversal. */
2195 return FALSE;
2196 }
2197 }
2198 return TRUE;
2199 }
2200
2201 /* Set the sizes of the dynamic sections. */
2202
2203 static bfd_boolean
2204 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2205 struct bfd_link_info *info)
2206 {
2207 struct elf32_hppa_link_hash_table *htab;
2208 bfd *dynobj;
2209 bfd *ibfd;
2210 asection *sec;
2211 bfd_boolean relocs;
2212
2213 htab = hppa_link_hash_table (info);
2214 if (htab == NULL)
2215 return FALSE;
2216
2217 dynobj = htab->etab.dynobj;
2218 if (dynobj == NULL)
2219 abort ();
2220
2221 if (htab->etab.dynamic_sections_created)
2222 {
2223 /* Set the contents of the .interp section to the interpreter. */
2224 if (bfd_link_executable (info) && !info->nointerp)
2225 {
2226 sec = bfd_get_linker_section (dynobj, ".interp");
2227 if (sec == NULL)
2228 abort ();
2229 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2230 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2231 }
2232
2233 /* Force millicode symbols local. */
2234 elf_link_hash_traverse (&htab->etab,
2235 clobber_millicode_symbols,
2236 info);
2237 }
2238
2239 /* Set up .got and .plt offsets for local syms, and space for local
2240 dynamic relocs. */
2241 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2242 {
2243 bfd_signed_vma *local_got;
2244 bfd_signed_vma *end_local_got;
2245 bfd_signed_vma *local_plt;
2246 bfd_signed_vma *end_local_plt;
2247 bfd_size_type locsymcount;
2248 Elf_Internal_Shdr *symtab_hdr;
2249 asection *srel;
2250 char *local_tls_type;
2251
2252 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2253 continue;
2254
2255 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2256 {
2257 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2258
2259 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2260 elf_section_data (sec)->local_dynrel);
2261 hdh_p != NULL;
2262 hdh_p = hdh_p->hdh_next)
2263 {
2264 if (!bfd_is_abs_section (hdh_p->sec)
2265 && bfd_is_abs_section (hdh_p->sec->output_section))
2266 {
2267 /* Input section has been discarded, either because
2268 it is a copy of a linkonce section or due to
2269 linker script /DISCARD/, so we'll be discarding
2270 the relocs too. */
2271 }
2272 else if (hdh_p->count != 0)
2273 {
2274 srel = elf_section_data (hdh_p->sec)->sreloc;
2275 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2276 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2277 info->flags |= DF_TEXTREL;
2278 }
2279 }
2280 }
2281
2282 local_got = elf_local_got_refcounts (ibfd);
2283 if (!local_got)
2284 continue;
2285
2286 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2287 locsymcount = symtab_hdr->sh_info;
2288 end_local_got = local_got + locsymcount;
2289 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2290 sec = htab->sgot;
2291 srel = htab->srelgot;
2292 for (; local_got < end_local_got; ++local_got)
2293 {
2294 if (*local_got > 0)
2295 {
2296 *local_got = sec->size;
2297 sec->size += GOT_ENTRY_SIZE;
2298 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2299 sec->size += 2 * GOT_ENTRY_SIZE;
2300 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2301 sec->size += GOT_ENTRY_SIZE;
2302 if (bfd_link_pic (info))
2303 {
2304 srel->size += sizeof (Elf32_External_Rela);
2305 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2306 srel->size += 2 * sizeof (Elf32_External_Rela);
2307 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2308 srel->size += sizeof (Elf32_External_Rela);
2309 }
2310 }
2311 else
2312 *local_got = (bfd_vma) -1;
2313
2314 ++local_tls_type;
2315 }
2316
2317 local_plt = end_local_got;
2318 end_local_plt = local_plt + locsymcount;
2319 if (! htab->etab.dynamic_sections_created)
2320 {
2321 /* Won't be used, but be safe. */
2322 for (; local_plt < end_local_plt; ++local_plt)
2323 *local_plt = (bfd_vma) -1;
2324 }
2325 else
2326 {
2327 sec = htab->splt;
2328 srel = htab->srelplt;
2329 for (; local_plt < end_local_plt; ++local_plt)
2330 {
2331 if (*local_plt > 0)
2332 {
2333 *local_plt = sec->size;
2334 sec->size += PLT_ENTRY_SIZE;
2335 if (bfd_link_pic (info))
2336 srel->size += sizeof (Elf32_External_Rela);
2337 }
2338 else
2339 *local_plt = (bfd_vma) -1;
2340 }
2341 }
2342 }
2343
2344 if (htab->tls_ldm_got.refcount > 0)
2345 {
2346 /* Allocate 2 got entries and 1 dynamic reloc for
2347 R_PARISC_TLS_DTPMOD32 relocs. */
2348 htab->tls_ldm_got.offset = htab->sgot->size;
2349 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2350 htab->srelgot->size += sizeof (Elf32_External_Rela);
2351 }
2352 else
2353 htab->tls_ldm_got.offset = -1;
2354
2355 /* Do all the .plt entries without relocs first. The dynamic linker
2356 uses the last .plt reloc to find the end of the .plt (and hence
2357 the start of the .got) for lazy linking. */
2358 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2359
2360 /* Allocate global sym .plt and .got entries, and space for global
2361 sym dynamic relocs. */
2362 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2363
2364 /* The check_relocs and adjust_dynamic_symbol entry points have
2365 determined the sizes of the various dynamic sections. Allocate
2366 memory for them. */
2367 relocs = FALSE;
2368 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2369 {
2370 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2371 continue;
2372
2373 if (sec == htab->splt)
2374 {
2375 if (htab->need_plt_stub)
2376 {
2377 /* Make space for the plt stub at the end of the .plt
2378 section. We want this stub right at the end, up
2379 against the .got section. */
2380 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2381 int pltalign = bfd_section_alignment (dynobj, sec);
2382 bfd_size_type mask;
2383
2384 if (gotalign > pltalign)
2385 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2386 mask = ((bfd_size_type) 1 << gotalign) - 1;
2387 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2388 }
2389 }
2390 else if (sec == htab->sgot
2391 || sec == htab->sdynbss)
2392 ;
2393 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2394 {
2395 if (sec->size != 0)
2396 {
2397 /* Remember whether there are any reloc sections other
2398 than .rela.plt. */
2399 if (sec != htab->srelplt)
2400 relocs = TRUE;
2401
2402 /* We use the reloc_count field as a counter if we need
2403 to copy relocs into the output file. */
2404 sec->reloc_count = 0;
2405 }
2406 }
2407 else
2408 {
2409 /* It's not one of our sections, so don't allocate space. */
2410 continue;
2411 }
2412
2413 if (sec->size == 0)
2414 {
2415 /* If we don't need this section, strip it from the
2416 output file. This is mostly to handle .rela.bss and
2417 .rela.plt. We must create both sections in
2418 create_dynamic_sections, because they must be created
2419 before the linker maps input sections to output
2420 sections. The linker does that before
2421 adjust_dynamic_symbol is called, and it is that
2422 function which decides whether anything needs to go
2423 into these sections. */
2424 sec->flags |= SEC_EXCLUDE;
2425 continue;
2426 }
2427
2428 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2429 continue;
2430
2431 /* Allocate memory for the section contents. Zero it, because
2432 we may not fill in all the reloc sections. */
2433 sec->contents = bfd_zalloc (dynobj, sec->size);
2434 if (sec->contents == NULL)
2435 return FALSE;
2436 }
2437
2438 if (htab->etab.dynamic_sections_created)
2439 {
2440 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2441 actually has nothing to do with the PLT, it is how we
2442 communicate the LTP value of a load module to the dynamic
2443 linker. */
2444 #define add_dynamic_entry(TAG, VAL) \
2445 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2446
2447 if (!add_dynamic_entry (DT_PLTGOT, 0))
2448 return FALSE;
2449
2450 /* Add some entries to the .dynamic section. We fill in the
2451 values later, in elf32_hppa_finish_dynamic_sections, but we
2452 must add the entries now so that we get the correct size for
2453 the .dynamic section. The DT_DEBUG entry is filled in by the
2454 dynamic linker and used by the debugger. */
2455 if (bfd_link_executable (info))
2456 {
2457 if (!add_dynamic_entry (DT_DEBUG, 0))
2458 return FALSE;
2459 }
2460
2461 if (htab->srelplt->size != 0)
2462 {
2463 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2464 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2465 || !add_dynamic_entry (DT_JMPREL, 0))
2466 return FALSE;
2467 }
2468
2469 if (relocs)
2470 {
2471 if (!add_dynamic_entry (DT_RELA, 0)
2472 || !add_dynamic_entry (DT_RELASZ, 0)
2473 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2474 return FALSE;
2475
2476 /* If any dynamic relocs apply to a read-only section,
2477 then we need a DT_TEXTREL entry. */
2478 if ((info->flags & DF_TEXTREL) == 0)
2479 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2480
2481 if ((info->flags & DF_TEXTREL) != 0)
2482 {
2483 if (!add_dynamic_entry (DT_TEXTREL, 0))
2484 return FALSE;
2485 }
2486 }
2487 }
2488 #undef add_dynamic_entry
2489
2490 return TRUE;
2491 }
2492
2493 /* External entry points for sizing and building linker stubs. */
2494
2495 /* Set up various things so that we can make a list of input sections
2496 for each output section included in the link. Returns -1 on error,
2497 0 when no stubs will be needed, and 1 on success. */
2498
2499 int
2500 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2501 {
2502 bfd *input_bfd;
2503 unsigned int bfd_count;
2504 unsigned int top_id, top_index;
2505 asection *section;
2506 asection **input_list, **list;
2507 bfd_size_type amt;
2508 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2509
2510 if (htab == NULL)
2511 return -1;
2512
2513 /* Count the number of input BFDs and find the top input section id. */
2514 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2515 input_bfd != NULL;
2516 input_bfd = input_bfd->link.next)
2517 {
2518 bfd_count += 1;
2519 for (section = input_bfd->sections;
2520 section != NULL;
2521 section = section->next)
2522 {
2523 if (top_id < section->id)
2524 top_id = section->id;
2525 }
2526 }
2527 htab->bfd_count = bfd_count;
2528
2529 amt = sizeof (struct map_stub) * (top_id + 1);
2530 htab->stub_group = bfd_zmalloc (amt);
2531 if (htab->stub_group == NULL)
2532 return -1;
2533
2534 /* We can't use output_bfd->section_count here to find the top output
2535 section index as some sections may have been removed, and
2536 strip_excluded_output_sections doesn't renumber the indices. */
2537 for (section = output_bfd->sections, top_index = 0;
2538 section != NULL;
2539 section = section->next)
2540 {
2541 if (top_index < section->index)
2542 top_index = section->index;
2543 }
2544
2545 htab->top_index = top_index;
2546 amt = sizeof (asection *) * (top_index + 1);
2547 input_list = bfd_malloc (amt);
2548 htab->input_list = input_list;
2549 if (input_list == NULL)
2550 return -1;
2551
2552 /* For sections we aren't interested in, mark their entries with a
2553 value we can check later. */
2554 list = input_list + top_index;
2555 do
2556 *list = bfd_abs_section_ptr;
2557 while (list-- != input_list);
2558
2559 for (section = output_bfd->sections;
2560 section != NULL;
2561 section = section->next)
2562 {
2563 if ((section->flags & SEC_CODE) != 0)
2564 input_list[section->index] = NULL;
2565 }
2566
2567 return 1;
2568 }
2569
2570 /* The linker repeatedly calls this function for each input section,
2571 in the order that input sections are linked into output sections.
2572 Build lists of input sections to determine groupings between which
2573 we may insert linker stubs. */
2574
2575 void
2576 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2577 {
2578 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2579
2580 if (htab == NULL)
2581 return;
2582
2583 if (isec->output_section->index <= htab->top_index)
2584 {
2585 asection **list = htab->input_list + isec->output_section->index;
2586 if (*list != bfd_abs_section_ptr)
2587 {
2588 /* Steal the link_sec pointer for our list. */
2589 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2590 /* This happens to make the list in reverse order,
2591 which is what we want. */
2592 PREV_SEC (isec) = *list;
2593 *list = isec;
2594 }
2595 }
2596 }
2597
2598 /* See whether we can group stub sections together. Grouping stub
2599 sections may result in fewer stubs. More importantly, we need to
2600 put all .init* and .fini* stubs at the beginning of the .init or
2601 .fini output sections respectively, because glibc splits the
2602 _init and _fini functions into multiple parts. Putting a stub in
2603 the middle of a function is not a good idea. */
2604
2605 static void
2606 group_sections (struct elf32_hppa_link_hash_table *htab,
2607 bfd_size_type stub_group_size,
2608 bfd_boolean stubs_always_before_branch)
2609 {
2610 asection **list = htab->input_list + htab->top_index;
2611 do
2612 {
2613 asection *tail = *list;
2614 if (tail == bfd_abs_section_ptr)
2615 continue;
2616 while (tail != NULL)
2617 {
2618 asection *curr;
2619 asection *prev;
2620 bfd_size_type total;
2621 bfd_boolean big_sec;
2622
2623 curr = tail;
2624 total = tail->size;
2625 big_sec = total >= stub_group_size;
2626
2627 while ((prev = PREV_SEC (curr)) != NULL
2628 && ((total += curr->output_offset - prev->output_offset)
2629 < stub_group_size))
2630 curr = prev;
2631
2632 /* OK, the size from the start of CURR to the end is less
2633 than 240000 bytes and thus can be handled by one stub
2634 section. (or the tail section is itself larger than
2635 240000 bytes, in which case we may be toast.)
2636 We should really be keeping track of the total size of
2637 stubs added here, as stubs contribute to the final output
2638 section size. That's a little tricky, and this way will
2639 only break if stubs added total more than 22144 bytes, or
2640 2768 long branch stubs. It seems unlikely for more than
2641 2768 different functions to be called, especially from
2642 code only 240000 bytes long. This limit used to be
2643 250000, but c++ code tends to generate lots of little
2644 functions, and sometimes violated the assumption. */
2645 do
2646 {
2647 prev = PREV_SEC (tail);
2648 /* Set up this stub group. */
2649 htab->stub_group[tail->id].link_sec = curr;
2650 }
2651 while (tail != curr && (tail = prev) != NULL);
2652
2653 /* But wait, there's more! Input sections up to 240000
2654 bytes before the stub section can be handled by it too.
2655 Don't do this if we have a really large section after the
2656 stubs, as adding more stubs increases the chance that
2657 branches may not reach into the stub section. */
2658 if (!stubs_always_before_branch && !big_sec)
2659 {
2660 total = 0;
2661 while (prev != NULL
2662 && ((total += tail->output_offset - prev->output_offset)
2663 < stub_group_size))
2664 {
2665 tail = prev;
2666 prev = PREV_SEC (tail);
2667 htab->stub_group[tail->id].link_sec = curr;
2668 }
2669 }
2670 tail = prev;
2671 }
2672 }
2673 while (list-- != htab->input_list);
2674 free (htab->input_list);
2675 #undef PREV_SEC
2676 }
2677
2678 /* Read in all local syms for all input bfds, and create hash entries
2679 for export stubs if we are building a multi-subspace shared lib.
2680 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2681
2682 static int
2683 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2684 {
2685 unsigned int bfd_indx;
2686 Elf_Internal_Sym *local_syms, **all_local_syms;
2687 int stub_changed = 0;
2688 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2689
2690 if (htab == NULL)
2691 return -1;
2692
2693 /* We want to read in symbol extension records only once. To do this
2694 we need to read in the local symbols in parallel and save them for
2695 later use; so hold pointers to the local symbols in an array. */
2696 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2697 all_local_syms = bfd_zmalloc (amt);
2698 htab->all_local_syms = all_local_syms;
2699 if (all_local_syms == NULL)
2700 return -1;
2701
2702 /* Walk over all the input BFDs, swapping in local symbols.
2703 If we are creating a shared library, create hash entries for the
2704 export stubs. */
2705 for (bfd_indx = 0;
2706 input_bfd != NULL;
2707 input_bfd = input_bfd->link.next, bfd_indx++)
2708 {
2709 Elf_Internal_Shdr *symtab_hdr;
2710
2711 /* We'll need the symbol table in a second. */
2712 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2713 if (symtab_hdr->sh_info == 0)
2714 continue;
2715
2716 /* We need an array of the local symbols attached to the input bfd. */
2717 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2718 if (local_syms == NULL)
2719 {
2720 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2721 symtab_hdr->sh_info, 0,
2722 NULL, NULL, NULL);
2723 /* Cache them for elf_link_input_bfd. */
2724 symtab_hdr->contents = (unsigned char *) local_syms;
2725 }
2726 if (local_syms == NULL)
2727 return -1;
2728
2729 all_local_syms[bfd_indx] = local_syms;
2730
2731 if (bfd_link_pic (info) && htab->multi_subspace)
2732 {
2733 struct elf_link_hash_entry **eh_syms;
2734 struct elf_link_hash_entry **eh_symend;
2735 unsigned int symcount;
2736
2737 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2738 - symtab_hdr->sh_info);
2739 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2740 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2741
2742 /* Look through the global syms for functions; We need to
2743 build export stubs for all globally visible functions. */
2744 for (; eh_syms < eh_symend; eh_syms++)
2745 {
2746 struct elf32_hppa_link_hash_entry *hh;
2747
2748 hh = hppa_elf_hash_entry (*eh_syms);
2749
2750 while (hh->eh.root.type == bfd_link_hash_indirect
2751 || hh->eh.root.type == bfd_link_hash_warning)
2752 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2753
2754 /* At this point in the link, undefined syms have been
2755 resolved, so we need to check that the symbol was
2756 defined in this BFD. */
2757 if ((hh->eh.root.type == bfd_link_hash_defined
2758 || hh->eh.root.type == bfd_link_hash_defweak)
2759 && hh->eh.type == STT_FUNC
2760 && hh->eh.root.u.def.section->output_section != NULL
2761 && (hh->eh.root.u.def.section->output_section->owner
2762 == output_bfd)
2763 && hh->eh.root.u.def.section->owner == input_bfd
2764 && hh->eh.def_regular
2765 && !hh->eh.forced_local
2766 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2767 {
2768 asection *sec;
2769 const char *stub_name;
2770 struct elf32_hppa_stub_hash_entry *hsh;
2771
2772 sec = hh->eh.root.u.def.section;
2773 stub_name = hh_name (hh);
2774 hsh = hppa_stub_hash_lookup (&htab->bstab,
2775 stub_name,
2776 FALSE, FALSE);
2777 if (hsh == NULL)
2778 {
2779 hsh = hppa_add_stub (stub_name, sec, htab);
2780 if (!hsh)
2781 return -1;
2782
2783 hsh->target_value = hh->eh.root.u.def.value;
2784 hsh->target_section = hh->eh.root.u.def.section;
2785 hsh->stub_type = hppa_stub_export;
2786 hsh->hh = hh;
2787 stub_changed = 1;
2788 }
2789 else
2790 {
2791 _bfd_error_handler (_("%B: duplicate export stub %s"),
2792 input_bfd, stub_name);
2793 }
2794 }
2795 }
2796 }
2797 }
2798
2799 return stub_changed;
2800 }
2801
2802 /* Determine and set the size of the stub section for a final link.
2803
2804 The basic idea here is to examine all the relocations looking for
2805 PC-relative calls to a target that is unreachable with a "bl"
2806 instruction. */
2807
2808 bfd_boolean
2809 elf32_hppa_size_stubs
2810 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2811 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2812 asection * (*add_stub_section) (const char *, asection *),
2813 void (*layout_sections_again) (void))
2814 {
2815 bfd_size_type stub_group_size;
2816 bfd_boolean stubs_always_before_branch;
2817 bfd_boolean stub_changed;
2818 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2819
2820 if (htab == NULL)
2821 return FALSE;
2822
2823 /* Stash our params away. */
2824 htab->stub_bfd = stub_bfd;
2825 htab->multi_subspace = multi_subspace;
2826 htab->add_stub_section = add_stub_section;
2827 htab->layout_sections_again = layout_sections_again;
2828 stubs_always_before_branch = group_size < 0;
2829 if (group_size < 0)
2830 stub_group_size = -group_size;
2831 else
2832 stub_group_size = group_size;
2833 if (stub_group_size == 1)
2834 {
2835 /* Default values. */
2836 if (stubs_always_before_branch)
2837 {
2838 stub_group_size = 7680000;
2839 if (htab->has_17bit_branch || htab->multi_subspace)
2840 stub_group_size = 240000;
2841 if (htab->has_12bit_branch)
2842 stub_group_size = 7500;
2843 }
2844 else
2845 {
2846 stub_group_size = 6971392;
2847 if (htab->has_17bit_branch || htab->multi_subspace)
2848 stub_group_size = 217856;
2849 if (htab->has_12bit_branch)
2850 stub_group_size = 6808;
2851 }
2852 }
2853
2854 group_sections (htab, stub_group_size, stubs_always_before_branch);
2855
2856 switch (get_local_syms (output_bfd, info->input_bfds, info))
2857 {
2858 default:
2859 if (htab->all_local_syms)
2860 goto error_ret_free_local;
2861 return FALSE;
2862
2863 case 0:
2864 stub_changed = FALSE;
2865 break;
2866
2867 case 1:
2868 stub_changed = TRUE;
2869 break;
2870 }
2871
2872 while (1)
2873 {
2874 bfd *input_bfd;
2875 unsigned int bfd_indx;
2876 asection *stub_sec;
2877
2878 for (input_bfd = info->input_bfds, bfd_indx = 0;
2879 input_bfd != NULL;
2880 input_bfd = input_bfd->link.next, bfd_indx++)
2881 {
2882 Elf_Internal_Shdr *symtab_hdr;
2883 asection *section;
2884 Elf_Internal_Sym *local_syms;
2885
2886 /* We'll need the symbol table in a second. */
2887 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2888 if (symtab_hdr->sh_info == 0)
2889 continue;
2890
2891 local_syms = htab->all_local_syms[bfd_indx];
2892
2893 /* Walk over each section attached to the input bfd. */
2894 for (section = input_bfd->sections;
2895 section != NULL;
2896 section = section->next)
2897 {
2898 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2899
2900 /* If there aren't any relocs, then there's nothing more
2901 to do. */
2902 if ((section->flags & SEC_RELOC) == 0
2903 || section->reloc_count == 0)
2904 continue;
2905
2906 /* If this section is a link-once section that will be
2907 discarded, then don't create any stubs. */
2908 if (section->output_section == NULL
2909 || section->output_section->owner != output_bfd)
2910 continue;
2911
2912 /* Get the relocs. */
2913 internal_relocs
2914 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2915 info->keep_memory);
2916 if (internal_relocs == NULL)
2917 goto error_ret_free_local;
2918
2919 /* Now examine each relocation. */
2920 irela = internal_relocs;
2921 irelaend = irela + section->reloc_count;
2922 for (; irela < irelaend; irela++)
2923 {
2924 unsigned int r_type, r_indx;
2925 enum elf32_hppa_stub_type stub_type;
2926 struct elf32_hppa_stub_hash_entry *hsh;
2927 asection *sym_sec;
2928 bfd_vma sym_value;
2929 bfd_vma destination;
2930 struct elf32_hppa_link_hash_entry *hh;
2931 char *stub_name;
2932 const asection *id_sec;
2933
2934 r_type = ELF32_R_TYPE (irela->r_info);
2935 r_indx = ELF32_R_SYM (irela->r_info);
2936
2937 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2938 {
2939 bfd_set_error (bfd_error_bad_value);
2940 error_ret_free_internal:
2941 if (elf_section_data (section)->relocs == NULL)
2942 free (internal_relocs);
2943 goto error_ret_free_local;
2944 }
2945
2946 /* Only look for stubs on call instructions. */
2947 if (r_type != (unsigned int) R_PARISC_PCREL12F
2948 && r_type != (unsigned int) R_PARISC_PCREL17F
2949 && r_type != (unsigned int) R_PARISC_PCREL22F)
2950 continue;
2951
2952 /* Now determine the call target, its name, value,
2953 section. */
2954 sym_sec = NULL;
2955 sym_value = 0;
2956 destination = 0;
2957 hh = NULL;
2958 if (r_indx < symtab_hdr->sh_info)
2959 {
2960 /* It's a local symbol. */
2961 Elf_Internal_Sym *sym;
2962 Elf_Internal_Shdr *hdr;
2963 unsigned int shndx;
2964
2965 sym = local_syms + r_indx;
2966 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2967 sym_value = sym->st_value;
2968 shndx = sym->st_shndx;
2969 if (shndx < elf_numsections (input_bfd))
2970 {
2971 hdr = elf_elfsections (input_bfd)[shndx];
2972 sym_sec = hdr->bfd_section;
2973 destination = (sym_value + irela->r_addend
2974 + sym_sec->output_offset
2975 + sym_sec->output_section->vma);
2976 }
2977 }
2978 else
2979 {
2980 /* It's an external symbol. */
2981 int e_indx;
2982
2983 e_indx = r_indx - symtab_hdr->sh_info;
2984 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2985
2986 while (hh->eh.root.type == bfd_link_hash_indirect
2987 || hh->eh.root.type == bfd_link_hash_warning)
2988 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2989
2990 if (hh->eh.root.type == bfd_link_hash_defined
2991 || hh->eh.root.type == bfd_link_hash_defweak)
2992 {
2993 sym_sec = hh->eh.root.u.def.section;
2994 sym_value = hh->eh.root.u.def.value;
2995 if (sym_sec->output_section != NULL)
2996 destination = (sym_value + irela->r_addend
2997 + sym_sec->output_offset
2998 + sym_sec->output_section->vma);
2999 }
3000 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3001 {
3002 if (! bfd_link_pic (info))
3003 continue;
3004 }
3005 else if (hh->eh.root.type == bfd_link_hash_undefined)
3006 {
3007 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3008 && (ELF_ST_VISIBILITY (hh->eh.other)
3009 == STV_DEFAULT)
3010 && hh->eh.type != STT_PARISC_MILLI))
3011 continue;
3012 }
3013 else
3014 {
3015 bfd_set_error (bfd_error_bad_value);
3016 goto error_ret_free_internal;
3017 }
3018 }
3019
3020 /* Determine what (if any) linker stub is needed. */
3021 stub_type = hppa_type_of_stub (section, irela, hh,
3022 destination, info);
3023 if (stub_type == hppa_stub_none)
3024 continue;
3025
3026 /* Support for grouping stub sections. */
3027 id_sec = htab->stub_group[section->id].link_sec;
3028
3029 /* Get the name of this stub. */
3030 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3031 if (!stub_name)
3032 goto error_ret_free_internal;
3033
3034 hsh = hppa_stub_hash_lookup (&htab->bstab,
3035 stub_name,
3036 FALSE, FALSE);
3037 if (hsh != NULL)
3038 {
3039 /* The proper stub has already been created. */
3040 free (stub_name);
3041 continue;
3042 }
3043
3044 hsh = hppa_add_stub (stub_name, section, htab);
3045 if (hsh == NULL)
3046 {
3047 free (stub_name);
3048 goto error_ret_free_internal;
3049 }
3050
3051 hsh->target_value = sym_value;
3052 hsh->target_section = sym_sec;
3053 hsh->stub_type = stub_type;
3054 if (bfd_link_pic (info))
3055 {
3056 if (stub_type == hppa_stub_import)
3057 hsh->stub_type = hppa_stub_import_shared;
3058 else if (stub_type == hppa_stub_long_branch)
3059 hsh->stub_type = hppa_stub_long_branch_shared;
3060 }
3061 hsh->hh = hh;
3062 stub_changed = TRUE;
3063 }
3064
3065 /* We're done with the internal relocs, free them. */
3066 if (elf_section_data (section)->relocs == NULL)
3067 free (internal_relocs);
3068 }
3069 }
3070
3071 if (!stub_changed)
3072 break;
3073
3074 /* OK, we've added some stubs. Find out the new size of the
3075 stub sections. */
3076 for (stub_sec = htab->stub_bfd->sections;
3077 stub_sec != NULL;
3078 stub_sec = stub_sec->next)
3079 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3080 stub_sec->size = 0;
3081
3082 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3083
3084 /* Ask the linker to do its stuff. */
3085 (*htab->layout_sections_again) ();
3086 stub_changed = FALSE;
3087 }
3088
3089 free (htab->all_local_syms);
3090 return TRUE;
3091
3092 error_ret_free_local:
3093 free (htab->all_local_syms);
3094 return FALSE;
3095 }
3096
3097 /* For a final link, this function is called after we have sized the
3098 stubs to provide a value for __gp. */
3099
3100 bfd_boolean
3101 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3102 {
3103 struct bfd_link_hash_entry *h;
3104 asection *sec = NULL;
3105 bfd_vma gp_val = 0;
3106 struct elf32_hppa_link_hash_table *htab;
3107
3108 htab = hppa_link_hash_table (info);
3109 if (htab == NULL)
3110 return FALSE;
3111
3112 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3113
3114 if (h != NULL
3115 && (h->type == bfd_link_hash_defined
3116 || h->type == bfd_link_hash_defweak))
3117 {
3118 gp_val = h->u.def.value;
3119 sec = h->u.def.section;
3120 }
3121 else
3122 {
3123 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3124 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3125
3126 /* Choose to point our LTP at, in this order, one of .plt, .got,
3127 or .data, if these sections exist. In the case of choosing
3128 .plt try to make the LTP ideal for addressing anywhere in the
3129 .plt or .got with a 14 bit signed offset. Typically, the end
3130 of the .plt is the start of the .got, so choose .plt + 0x2000
3131 if either the .plt or .got is larger than 0x2000. If both
3132 the .plt and .got are smaller than 0x2000, choose the end of
3133 the .plt section. */
3134 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3135 ? NULL : splt;
3136 if (sec != NULL)
3137 {
3138 gp_val = sec->size;
3139 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3140 {
3141 gp_val = 0x2000;
3142 }
3143 }
3144 else
3145 {
3146 sec = sgot;
3147 if (sec != NULL)
3148 {
3149 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3150 {
3151 /* We know we don't have a .plt. If .got is large,
3152 offset our LTP. */
3153 if (sec->size > 0x2000)
3154 gp_val = 0x2000;
3155 }
3156 }
3157 else
3158 {
3159 /* No .plt or .got. Who cares what the LTP is? */
3160 sec = bfd_get_section_by_name (abfd, ".data");
3161 }
3162 }
3163
3164 if (h != NULL)
3165 {
3166 h->type = bfd_link_hash_defined;
3167 h->u.def.value = gp_val;
3168 if (sec != NULL)
3169 h->u.def.section = sec;
3170 else
3171 h->u.def.section = bfd_abs_section_ptr;
3172 }
3173 }
3174
3175 if (sec != NULL && sec->output_section != NULL)
3176 gp_val += sec->output_section->vma + sec->output_offset;
3177
3178 elf_gp (abfd) = gp_val;
3179 return TRUE;
3180 }
3181
3182 /* Build all the stubs associated with the current output file. The
3183 stubs are kept in a hash table attached to the main linker hash
3184 table. We also set up the .plt entries for statically linked PIC
3185 functions here. This function is called via hppaelf_finish in the
3186 linker. */
3187
3188 bfd_boolean
3189 elf32_hppa_build_stubs (struct bfd_link_info *info)
3190 {
3191 asection *stub_sec;
3192 struct bfd_hash_table *table;
3193 struct elf32_hppa_link_hash_table *htab;
3194
3195 htab = hppa_link_hash_table (info);
3196 if (htab == NULL)
3197 return FALSE;
3198
3199 for (stub_sec = htab->stub_bfd->sections;
3200 stub_sec != NULL;
3201 stub_sec = stub_sec->next)
3202 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3203 && stub_sec->size != 0)
3204 {
3205 /* Allocate memory to hold the linker stubs. */
3206 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3207 if (stub_sec->contents == NULL)
3208 return FALSE;
3209 stub_sec->size = 0;
3210 }
3211
3212 /* Build the stubs as directed by the stub hash table. */
3213 table = &htab->bstab;
3214 bfd_hash_traverse (table, hppa_build_one_stub, info);
3215
3216 return TRUE;
3217 }
3218
3219 /* Return the base vma address which should be subtracted from the real
3220 address when resolving a dtpoff relocation.
3221 This is PT_TLS segment p_vaddr. */
3222
3223 static bfd_vma
3224 dtpoff_base (struct bfd_link_info *info)
3225 {
3226 /* If tls_sec is NULL, we should have signalled an error already. */
3227 if (elf_hash_table (info)->tls_sec == NULL)
3228 return 0;
3229 return elf_hash_table (info)->tls_sec->vma;
3230 }
3231
3232 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3233
3234 static bfd_vma
3235 tpoff (struct bfd_link_info *info, bfd_vma address)
3236 {
3237 struct elf_link_hash_table *htab = elf_hash_table (info);
3238
3239 /* If tls_sec is NULL, we should have signalled an error already. */
3240 if (htab->tls_sec == NULL)
3241 return 0;
3242 /* hppa TLS ABI is variant I and static TLS block start just after
3243 tcbhead structure which has 2 pointer fields. */
3244 return (address - htab->tls_sec->vma
3245 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3246 }
3247
3248 /* Perform a final link. */
3249
3250 static bfd_boolean
3251 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3252 {
3253 struct stat buf;
3254
3255 /* Invoke the regular ELF linker to do all the work. */
3256 if (!bfd_elf_final_link (abfd, info))
3257 return FALSE;
3258
3259 /* If we're producing a final executable, sort the contents of the
3260 unwind section. */
3261 if (bfd_link_relocatable (info))
3262 return TRUE;
3263
3264 /* Do not attempt to sort non-regular files. This is here
3265 especially for configure scripts and kernel builds which run
3266 tests with "ld [...] -o /dev/null". */
3267 if (stat (abfd->filename, &buf) != 0
3268 || !S_ISREG(buf.st_mode))
3269 return TRUE;
3270
3271 return elf_hppa_sort_unwind (abfd);
3272 }
3273
3274 /* Record the lowest address for the data and text segments. */
3275
3276 static void
3277 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3278 {
3279 struct elf32_hppa_link_hash_table *htab;
3280
3281 htab = (struct elf32_hppa_link_hash_table*) data;
3282 if (htab == NULL)
3283 return;
3284
3285 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3286 {
3287 bfd_vma value;
3288 Elf_Internal_Phdr *p;
3289
3290 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3291 BFD_ASSERT (p != NULL);
3292 value = p->p_vaddr;
3293
3294 if ((section->flags & SEC_READONLY) != 0)
3295 {
3296 if (value < htab->text_segment_base)
3297 htab->text_segment_base = value;
3298 }
3299 else
3300 {
3301 if (value < htab->data_segment_base)
3302 htab->data_segment_base = value;
3303 }
3304 }
3305 }
3306
3307 /* Perform a relocation as part of a final link. */
3308
3309 static bfd_reloc_status_type
3310 final_link_relocate (asection *input_section,
3311 bfd_byte *contents,
3312 const Elf_Internal_Rela *rela,
3313 bfd_vma value,
3314 struct elf32_hppa_link_hash_table *htab,
3315 asection *sym_sec,
3316 struct elf32_hppa_link_hash_entry *hh,
3317 struct bfd_link_info *info)
3318 {
3319 int insn;
3320 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3321 unsigned int orig_r_type = r_type;
3322 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3323 int r_format = howto->bitsize;
3324 enum hppa_reloc_field_selector_type_alt r_field;
3325 bfd *input_bfd = input_section->owner;
3326 bfd_vma offset = rela->r_offset;
3327 bfd_vma max_branch_offset = 0;
3328 bfd_byte *hit_data = contents + offset;
3329 bfd_signed_vma addend = rela->r_addend;
3330 bfd_vma location;
3331 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3332 int val;
3333
3334 if (r_type == R_PARISC_NONE)
3335 return bfd_reloc_ok;
3336
3337 insn = bfd_get_32 (input_bfd, hit_data);
3338
3339 /* Find out where we are and where we're going. */
3340 location = (offset +
3341 input_section->output_offset +
3342 input_section->output_section->vma);
3343
3344 /* If we are not building a shared library, convert DLTIND relocs to
3345 DPREL relocs. */
3346 if (!bfd_link_pic (info))
3347 {
3348 switch (r_type)
3349 {
3350 case R_PARISC_DLTIND21L:
3351 case R_PARISC_TLS_GD21L:
3352 case R_PARISC_TLS_LDM21L:
3353 case R_PARISC_TLS_IE21L:
3354 r_type = R_PARISC_DPREL21L;
3355 break;
3356
3357 case R_PARISC_DLTIND14R:
3358 case R_PARISC_TLS_GD14R:
3359 case R_PARISC_TLS_LDM14R:
3360 case R_PARISC_TLS_IE14R:
3361 r_type = R_PARISC_DPREL14R;
3362 break;
3363
3364 case R_PARISC_DLTIND14F:
3365 r_type = R_PARISC_DPREL14F;
3366 break;
3367 }
3368 }
3369
3370 switch (r_type)
3371 {
3372 case R_PARISC_PCREL12F:
3373 case R_PARISC_PCREL17F:
3374 case R_PARISC_PCREL22F:
3375 /* If this call should go via the plt, find the import stub in
3376 the stub hash. */
3377 if (sym_sec == NULL
3378 || sym_sec->output_section == NULL
3379 || (hh != NULL
3380 && hh->eh.plt.offset != (bfd_vma) -1
3381 && hh->eh.dynindx != -1
3382 && !hh->plabel
3383 && (bfd_link_pic (info)
3384 || !hh->eh.def_regular
3385 || hh->eh.root.type == bfd_link_hash_defweak)))
3386 {
3387 hsh = hppa_get_stub_entry (input_section, sym_sec,
3388 hh, rela, htab);
3389 if (hsh != NULL)
3390 {
3391 value = (hsh->stub_offset
3392 + hsh->stub_sec->output_offset
3393 + hsh->stub_sec->output_section->vma);
3394 addend = 0;
3395 }
3396 else if (sym_sec == NULL && hh != NULL
3397 && hh->eh.root.type == bfd_link_hash_undefweak)
3398 {
3399 /* It's OK if undefined weak. Calls to undefined weak
3400 symbols behave as if the "called" function
3401 immediately returns. We can thus call to a weak
3402 function without first checking whether the function
3403 is defined. */
3404 value = location;
3405 addend = 8;
3406 }
3407 else
3408 return bfd_reloc_undefined;
3409 }
3410 /* Fall thru. */
3411
3412 case R_PARISC_PCREL21L:
3413 case R_PARISC_PCREL17C:
3414 case R_PARISC_PCREL17R:
3415 case R_PARISC_PCREL14R:
3416 case R_PARISC_PCREL14F:
3417 case R_PARISC_PCREL32:
3418 /* Make it a pc relative offset. */
3419 value -= location;
3420 addend -= 8;
3421 break;
3422
3423 case R_PARISC_DPREL21L:
3424 case R_PARISC_DPREL14R:
3425 case R_PARISC_DPREL14F:
3426 /* Convert instructions that use the linkage table pointer (r19) to
3427 instructions that use the global data pointer (dp). This is the
3428 most efficient way of using PIC code in an incomplete executable,
3429 but the user must follow the standard runtime conventions for
3430 accessing data for this to work. */
3431 if (orig_r_type != r_type)
3432 {
3433 if (r_type == R_PARISC_DPREL21L)
3434 {
3435 /* GCC sometimes uses a register other than r19 for the
3436 operation, so we must convert any addil instruction
3437 that uses this relocation. */
3438 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3439 insn = ADDIL_DP;
3440 else
3441 /* We must have a ldil instruction. It's too hard to find
3442 and convert the associated add instruction, so issue an
3443 error. */
3444 _bfd_error_handler
3445 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3446 input_bfd,
3447 input_section,
3448 (long) offset,
3449 howto->name,
3450 insn);
3451 }
3452 else if (r_type == R_PARISC_DPREL14F)
3453 {
3454 /* This must be a format 1 load/store. Change the base
3455 register to dp. */
3456 insn = (insn & 0xfc1ffff) | (27 << 21);
3457 }
3458 }
3459
3460 /* For all the DP relative relocations, we need to examine the symbol's
3461 section. If it has no section or if it's a code section, then
3462 "data pointer relative" makes no sense. In that case we don't
3463 adjust the "value", and for 21 bit addil instructions, we change the
3464 source addend register from %dp to %r0. This situation commonly
3465 arises for undefined weak symbols and when a variable's "constness"
3466 is declared differently from the way the variable is defined. For
3467 instance: "extern int foo" with foo defined as "const int foo". */
3468 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3469 {
3470 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3471 == (((int) OP_ADDIL << 26) | (27 << 21)))
3472 {
3473 insn &= ~ (0x1f << 21);
3474 }
3475 /* Now try to make things easy for the dynamic linker. */
3476
3477 break;
3478 }
3479 /* Fall thru. */
3480
3481 case R_PARISC_DLTIND21L:
3482 case R_PARISC_DLTIND14R:
3483 case R_PARISC_DLTIND14F:
3484 case R_PARISC_TLS_GD21L:
3485 case R_PARISC_TLS_LDM21L:
3486 case R_PARISC_TLS_IE21L:
3487 case R_PARISC_TLS_GD14R:
3488 case R_PARISC_TLS_LDM14R:
3489 case R_PARISC_TLS_IE14R:
3490 value -= elf_gp (input_section->output_section->owner);
3491 break;
3492
3493 case R_PARISC_SEGREL32:
3494 if ((sym_sec->flags & SEC_CODE) != 0)
3495 value -= htab->text_segment_base;
3496 else
3497 value -= htab->data_segment_base;
3498 break;
3499
3500 default:
3501 break;
3502 }
3503
3504 switch (r_type)
3505 {
3506 case R_PARISC_DIR32:
3507 case R_PARISC_DIR14F:
3508 case R_PARISC_DIR17F:
3509 case R_PARISC_PCREL17C:
3510 case R_PARISC_PCREL14F:
3511 case R_PARISC_PCREL32:
3512 case R_PARISC_DPREL14F:
3513 case R_PARISC_PLABEL32:
3514 case R_PARISC_DLTIND14F:
3515 case R_PARISC_SEGBASE:
3516 case R_PARISC_SEGREL32:
3517 case R_PARISC_TLS_DTPMOD32:
3518 case R_PARISC_TLS_DTPOFF32:
3519 case R_PARISC_TLS_TPREL32:
3520 r_field = e_fsel;
3521 break;
3522
3523 case R_PARISC_DLTIND21L:
3524 case R_PARISC_PCREL21L:
3525 case R_PARISC_PLABEL21L:
3526 r_field = e_lsel;
3527 break;
3528
3529 case R_PARISC_DIR21L:
3530 case R_PARISC_DPREL21L:
3531 case R_PARISC_TLS_GD21L:
3532 case R_PARISC_TLS_LDM21L:
3533 case R_PARISC_TLS_LDO21L:
3534 case R_PARISC_TLS_IE21L:
3535 case R_PARISC_TLS_LE21L:
3536 r_field = e_lrsel;
3537 break;
3538
3539 case R_PARISC_PCREL17R:
3540 case R_PARISC_PCREL14R:
3541 case R_PARISC_PLABEL14R:
3542 case R_PARISC_DLTIND14R:
3543 r_field = e_rsel;
3544 break;
3545
3546 case R_PARISC_DIR17R:
3547 case R_PARISC_DIR14R:
3548 case R_PARISC_DPREL14R:
3549 case R_PARISC_TLS_GD14R:
3550 case R_PARISC_TLS_LDM14R:
3551 case R_PARISC_TLS_LDO14R:
3552 case R_PARISC_TLS_IE14R:
3553 case R_PARISC_TLS_LE14R:
3554 r_field = e_rrsel;
3555 break;
3556
3557 case R_PARISC_PCREL12F:
3558 case R_PARISC_PCREL17F:
3559 case R_PARISC_PCREL22F:
3560 r_field = e_fsel;
3561
3562 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3563 {
3564 max_branch_offset = (1 << (17-1)) << 2;
3565 }
3566 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3567 {
3568 max_branch_offset = (1 << (12-1)) << 2;
3569 }
3570 else
3571 {
3572 max_branch_offset = (1 << (22-1)) << 2;
3573 }
3574
3575 /* sym_sec is NULL on undefined weak syms or when shared on
3576 undefined syms. We've already checked for a stub for the
3577 shared undefined case. */
3578 if (sym_sec == NULL)
3579 break;
3580
3581 /* If the branch is out of reach, then redirect the
3582 call to the local stub for this function. */
3583 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3584 {
3585 hsh = hppa_get_stub_entry (input_section, sym_sec,
3586 hh, rela, htab);
3587 if (hsh == NULL)
3588 return bfd_reloc_undefined;
3589
3590 /* Munge up the value and addend so that we call the stub
3591 rather than the procedure directly. */
3592 value = (hsh->stub_offset
3593 + hsh->stub_sec->output_offset
3594 + hsh->stub_sec->output_section->vma
3595 - location);
3596 addend = -8;
3597 }
3598 break;
3599
3600 /* Something we don't know how to handle. */
3601 default:
3602 return bfd_reloc_notsupported;
3603 }
3604
3605 /* Make sure we can reach the stub. */
3606 if (max_branch_offset != 0
3607 && value + addend + max_branch_offset >= 2*max_branch_offset)
3608 {
3609 _bfd_error_handler
3610 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3611 input_bfd,
3612 input_section,
3613 (long) offset,
3614 hsh->bh_root.string);
3615 bfd_set_error (bfd_error_bad_value);
3616 return bfd_reloc_notsupported;
3617 }
3618
3619 val = hppa_field_adjust (value, addend, r_field);
3620
3621 switch (r_type)
3622 {
3623 case R_PARISC_PCREL12F:
3624 case R_PARISC_PCREL17C:
3625 case R_PARISC_PCREL17F:
3626 case R_PARISC_PCREL17R:
3627 case R_PARISC_PCREL22F:
3628 case R_PARISC_DIR17F:
3629 case R_PARISC_DIR17R:
3630 /* This is a branch. Divide the offset by four.
3631 Note that we need to decide whether it's a branch or
3632 otherwise by inspecting the reloc. Inspecting insn won't
3633 work as insn might be from a .word directive. */
3634 val >>= 2;
3635 break;
3636
3637 default:
3638 break;
3639 }
3640
3641 insn = hppa_rebuild_insn (insn, val, r_format);
3642
3643 /* Update the instruction word. */
3644 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3645 return bfd_reloc_ok;
3646 }
3647
3648 /* Relocate an HPPA ELF section. */
3649
3650 static bfd_boolean
3651 elf32_hppa_relocate_section (bfd *output_bfd,
3652 struct bfd_link_info *info,
3653 bfd *input_bfd,
3654 asection *input_section,
3655 bfd_byte *contents,
3656 Elf_Internal_Rela *relocs,
3657 Elf_Internal_Sym *local_syms,
3658 asection **local_sections)
3659 {
3660 bfd_vma *local_got_offsets;
3661 struct elf32_hppa_link_hash_table *htab;
3662 Elf_Internal_Shdr *symtab_hdr;
3663 Elf_Internal_Rela *rela;
3664 Elf_Internal_Rela *relend;
3665
3666 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3667
3668 htab = hppa_link_hash_table (info);
3669 if (htab == NULL)
3670 return FALSE;
3671
3672 local_got_offsets = elf_local_got_offsets (input_bfd);
3673
3674 rela = relocs;
3675 relend = relocs + input_section->reloc_count;
3676 for (; rela < relend; rela++)
3677 {
3678 unsigned int r_type;
3679 reloc_howto_type *howto;
3680 unsigned int r_symndx;
3681 struct elf32_hppa_link_hash_entry *hh;
3682 Elf_Internal_Sym *sym;
3683 asection *sym_sec;
3684 bfd_vma relocation;
3685 bfd_reloc_status_type rstatus;
3686 const char *sym_name;
3687 bfd_boolean plabel;
3688 bfd_boolean warned_undef;
3689
3690 r_type = ELF32_R_TYPE (rela->r_info);
3691 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3692 {
3693 bfd_set_error (bfd_error_bad_value);
3694 return FALSE;
3695 }
3696 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3697 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3698 continue;
3699
3700 r_symndx = ELF32_R_SYM (rela->r_info);
3701 hh = NULL;
3702 sym = NULL;
3703 sym_sec = NULL;
3704 warned_undef = FALSE;
3705 if (r_symndx < symtab_hdr->sh_info)
3706 {
3707 /* This is a local symbol, h defaults to NULL. */
3708 sym = local_syms + r_symndx;
3709 sym_sec = local_sections[r_symndx];
3710 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3711 }
3712 else
3713 {
3714 struct elf_link_hash_entry *eh;
3715 bfd_boolean unresolved_reloc, ignored;
3716 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3717
3718 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3719 r_symndx, symtab_hdr, sym_hashes,
3720 eh, sym_sec, relocation,
3721 unresolved_reloc, warned_undef,
3722 ignored);
3723
3724 if (!bfd_link_relocatable (info)
3725 && relocation == 0
3726 && eh->root.type != bfd_link_hash_defined
3727 && eh->root.type != bfd_link_hash_defweak
3728 && eh->root.type != bfd_link_hash_undefweak)
3729 {
3730 if (info->unresolved_syms_in_objects == RM_IGNORE
3731 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3732 && eh->type == STT_PARISC_MILLI)
3733 {
3734 (*info->callbacks->undefined_symbol)
3735 (info, eh_name (eh), input_bfd,
3736 input_section, rela->r_offset, FALSE);
3737 warned_undef = TRUE;
3738 }
3739 }
3740 hh = hppa_elf_hash_entry (eh);
3741 }
3742
3743 if (sym_sec != NULL && discarded_section (sym_sec))
3744 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3745 rela, 1, relend,
3746 elf_hppa_howto_table + r_type, 0,
3747 contents);
3748
3749 if (bfd_link_relocatable (info))
3750 continue;
3751
3752 /* Do any required modifications to the relocation value, and
3753 determine what types of dynamic info we need to output, if
3754 any. */
3755 plabel = 0;
3756 switch (r_type)
3757 {
3758 case R_PARISC_DLTIND14F:
3759 case R_PARISC_DLTIND14R:
3760 case R_PARISC_DLTIND21L:
3761 {
3762 bfd_vma off;
3763 bfd_boolean do_got = 0;
3764
3765 /* Relocation is to the entry for this symbol in the
3766 global offset table. */
3767 if (hh != NULL)
3768 {
3769 bfd_boolean dyn;
3770
3771 off = hh->eh.got.offset;
3772 dyn = htab->etab.dynamic_sections_created;
3773 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3774 bfd_link_pic (info),
3775 &hh->eh))
3776 {
3777 /* If we aren't going to call finish_dynamic_symbol,
3778 then we need to handle initialisation of the .got
3779 entry and create needed relocs here. Since the
3780 offset must always be a multiple of 4, we use the
3781 least significant bit to record whether we have
3782 initialised it already. */
3783 if ((off & 1) != 0)
3784 off &= ~1;
3785 else
3786 {
3787 hh->eh.got.offset |= 1;
3788 do_got = 1;
3789 }
3790 }
3791 }
3792 else
3793 {
3794 /* Local symbol case. */
3795 if (local_got_offsets == NULL)
3796 abort ();
3797
3798 off = local_got_offsets[r_symndx];
3799
3800 /* The offset must always be a multiple of 4. We use
3801 the least significant bit to record whether we have
3802 already generated the necessary reloc. */
3803 if ((off & 1) != 0)
3804 off &= ~1;
3805 else
3806 {
3807 local_got_offsets[r_symndx] |= 1;
3808 do_got = 1;
3809 }
3810 }
3811
3812 if (do_got)
3813 {
3814 if (bfd_link_pic (info))
3815 {
3816 /* Output a dynamic relocation for this GOT entry.
3817 In this case it is relative to the base of the
3818 object because the symbol index is zero. */
3819 Elf_Internal_Rela outrel;
3820 bfd_byte *loc;
3821 asection *sec = htab->srelgot;
3822
3823 outrel.r_offset = (off
3824 + htab->sgot->output_offset
3825 + htab->sgot->output_section->vma);
3826 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3827 outrel.r_addend = relocation;
3828 loc = sec->contents;
3829 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3830 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3831 }
3832 else
3833 bfd_put_32 (output_bfd, relocation,
3834 htab->sgot->contents + off);
3835 }
3836
3837 if (off >= (bfd_vma) -2)
3838 abort ();
3839
3840 /* Add the base of the GOT to the relocation value. */
3841 relocation = (off
3842 + htab->sgot->output_offset
3843 + htab->sgot->output_section->vma);
3844 }
3845 break;
3846
3847 case R_PARISC_SEGREL32:
3848 /* If this is the first SEGREL relocation, then initialize
3849 the segment base values. */
3850 if (htab->text_segment_base == (bfd_vma) -1)
3851 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3852 break;
3853
3854 case R_PARISC_PLABEL14R:
3855 case R_PARISC_PLABEL21L:
3856 case R_PARISC_PLABEL32:
3857 if (htab->etab.dynamic_sections_created)
3858 {
3859 bfd_vma off;
3860 bfd_boolean do_plt = 0;
3861 /* If we have a global symbol with a PLT slot, then
3862 redirect this relocation to it. */
3863 if (hh != NULL)
3864 {
3865 off = hh->eh.plt.offset;
3866 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3867 bfd_link_pic (info),
3868 &hh->eh))
3869 {
3870 /* In a non-shared link, adjust_dynamic_symbols
3871 isn't called for symbols forced local. We
3872 need to write out the plt entry here. */
3873 if ((off & 1) != 0)
3874 off &= ~1;
3875 else
3876 {
3877 hh->eh.plt.offset |= 1;
3878 do_plt = 1;
3879 }
3880 }
3881 }
3882 else
3883 {
3884 bfd_vma *local_plt_offsets;
3885
3886 if (local_got_offsets == NULL)
3887 abort ();
3888
3889 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3890 off = local_plt_offsets[r_symndx];
3891
3892 /* As for the local .got entry case, we use the last
3893 bit to record whether we've already initialised
3894 this local .plt entry. */
3895 if ((off & 1) != 0)
3896 off &= ~1;
3897 else
3898 {
3899 local_plt_offsets[r_symndx] |= 1;
3900 do_plt = 1;
3901 }
3902 }
3903
3904 if (do_plt)
3905 {
3906 if (bfd_link_pic (info))
3907 {
3908 /* Output a dynamic IPLT relocation for this
3909 PLT entry. */
3910 Elf_Internal_Rela outrel;
3911 bfd_byte *loc;
3912 asection *s = htab->srelplt;
3913
3914 outrel.r_offset = (off
3915 + htab->splt->output_offset
3916 + htab->splt->output_section->vma);
3917 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3918 outrel.r_addend = relocation;
3919 loc = s->contents;
3920 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3921 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3922 }
3923 else
3924 {
3925 bfd_put_32 (output_bfd,
3926 relocation,
3927 htab->splt->contents + off);
3928 bfd_put_32 (output_bfd,
3929 elf_gp (htab->splt->output_section->owner),
3930 htab->splt->contents + off + 4);
3931 }
3932 }
3933
3934 if (off >= (bfd_vma) -2)
3935 abort ();
3936
3937 /* PLABELs contain function pointers. Relocation is to
3938 the entry for the function in the .plt. The magic +2
3939 offset signals to $$dyncall that the function pointer
3940 is in the .plt and thus has a gp pointer too.
3941 Exception: Undefined PLABELs should have a value of
3942 zero. */
3943 if (hh == NULL
3944 || (hh->eh.root.type != bfd_link_hash_undefweak
3945 && hh->eh.root.type != bfd_link_hash_undefined))
3946 {
3947 relocation = (off
3948 + htab->splt->output_offset
3949 + htab->splt->output_section->vma
3950 + 2);
3951 }
3952 plabel = 1;
3953 }
3954 /* Fall through and possibly emit a dynamic relocation. */
3955
3956 case R_PARISC_DIR17F:
3957 case R_PARISC_DIR17R:
3958 case R_PARISC_DIR14F:
3959 case R_PARISC_DIR14R:
3960 case R_PARISC_DIR21L:
3961 case R_PARISC_DPREL14F:
3962 case R_PARISC_DPREL14R:
3963 case R_PARISC_DPREL21L:
3964 case R_PARISC_DIR32:
3965 if ((input_section->flags & SEC_ALLOC) == 0)
3966 break;
3967
3968 /* The reloc types handled here and this conditional
3969 expression must match the code in ..check_relocs and
3970 allocate_dynrelocs. ie. We need exactly the same condition
3971 as in ..check_relocs, with some extra conditions (dynindx
3972 test in this case) to cater for relocs removed by
3973 allocate_dynrelocs. If you squint, the non-shared test
3974 here does indeed match the one in ..check_relocs, the
3975 difference being that here we test DEF_DYNAMIC as well as
3976 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3977 which is why we can't use just that test here.
3978 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3979 there all files have not been loaded. */
3980 if ((bfd_link_pic (info)
3981 && (hh == NULL
3982 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3983 || hh->eh.root.type != bfd_link_hash_undefweak)
3984 && (IS_ABSOLUTE_RELOC (r_type)
3985 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3986 || (!bfd_link_pic (info)
3987 && hh != NULL
3988 && hh->eh.dynindx != -1
3989 && !hh->eh.non_got_ref
3990 && ((ELIMINATE_COPY_RELOCS
3991 && hh->eh.def_dynamic
3992 && !hh->eh.def_regular)
3993 || hh->eh.root.type == bfd_link_hash_undefweak
3994 || hh->eh.root.type == bfd_link_hash_undefined)))
3995 {
3996 Elf_Internal_Rela outrel;
3997 bfd_boolean skip;
3998 asection *sreloc;
3999 bfd_byte *loc;
4000
4001 /* When generating a shared object, these relocations
4002 are copied into the output file to be resolved at run
4003 time. */
4004
4005 outrel.r_addend = rela->r_addend;
4006 outrel.r_offset =
4007 _bfd_elf_section_offset (output_bfd, info, input_section,
4008 rela->r_offset);
4009 skip = (outrel.r_offset == (bfd_vma) -1
4010 || outrel.r_offset == (bfd_vma) -2);
4011 outrel.r_offset += (input_section->output_offset
4012 + input_section->output_section->vma);
4013
4014 if (skip)
4015 {
4016 memset (&outrel, 0, sizeof (outrel));
4017 }
4018 else if (hh != NULL
4019 && hh->eh.dynindx != -1
4020 && (plabel
4021 || !IS_ABSOLUTE_RELOC (r_type)
4022 || !bfd_link_pic (info)
4023 || !SYMBOLIC_BIND (info, &hh->eh)
4024 || !hh->eh.def_regular))
4025 {
4026 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4027 }
4028 else /* It's a local symbol, or one marked to become local. */
4029 {
4030 int indx = 0;
4031
4032 /* Add the absolute offset of the symbol. */
4033 outrel.r_addend += relocation;
4034
4035 /* Global plabels need to be processed by the
4036 dynamic linker so that functions have at most one
4037 fptr. For this reason, we need to differentiate
4038 between global and local plabels, which we do by
4039 providing the function symbol for a global plabel
4040 reloc, and no symbol for local plabels. */
4041 if (! plabel
4042 && sym_sec != NULL
4043 && sym_sec->output_section != NULL
4044 && ! bfd_is_abs_section (sym_sec))
4045 {
4046 asection *osec;
4047
4048 osec = sym_sec->output_section;
4049 indx = elf_section_data (osec)->dynindx;
4050 if (indx == 0)
4051 {
4052 osec = htab->etab.text_index_section;
4053 indx = elf_section_data (osec)->dynindx;
4054 }
4055 BFD_ASSERT (indx != 0);
4056
4057 /* We are turning this relocation into one
4058 against a section symbol, so subtract out the
4059 output section's address but not the offset
4060 of the input section in the output section. */
4061 outrel.r_addend -= osec->vma;
4062 }
4063
4064 outrel.r_info = ELF32_R_INFO (indx, r_type);
4065 }
4066 sreloc = elf_section_data (input_section)->sreloc;
4067 if (sreloc == NULL)
4068 abort ();
4069
4070 loc = sreloc->contents;
4071 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4072 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4073 }
4074 break;
4075
4076 case R_PARISC_TLS_LDM21L:
4077 case R_PARISC_TLS_LDM14R:
4078 {
4079 bfd_vma off;
4080
4081 off = htab->tls_ldm_got.offset;
4082 if (off & 1)
4083 off &= ~1;
4084 else
4085 {
4086 Elf_Internal_Rela outrel;
4087 bfd_byte *loc;
4088
4089 outrel.r_offset = (off
4090 + htab->sgot->output_section->vma
4091 + htab->sgot->output_offset);
4092 outrel.r_addend = 0;
4093 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4094 loc = htab->srelgot->contents;
4095 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4096
4097 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4098 htab->tls_ldm_got.offset |= 1;
4099 }
4100
4101 /* Add the base of the GOT to the relocation value. */
4102 relocation = (off
4103 + htab->sgot->output_offset
4104 + htab->sgot->output_section->vma);
4105
4106 break;
4107 }
4108
4109 case R_PARISC_TLS_LDO21L:
4110 case R_PARISC_TLS_LDO14R:
4111 relocation -= dtpoff_base (info);
4112 break;
4113
4114 case R_PARISC_TLS_GD21L:
4115 case R_PARISC_TLS_GD14R:
4116 case R_PARISC_TLS_IE21L:
4117 case R_PARISC_TLS_IE14R:
4118 {
4119 bfd_vma off;
4120 int indx;
4121 char tls_type;
4122
4123 indx = 0;
4124 if (hh != NULL)
4125 {
4126 bfd_boolean dyn;
4127 dyn = htab->etab.dynamic_sections_created;
4128
4129 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
4130 bfd_link_pic (info),
4131 &hh->eh)
4132 && (!bfd_link_pic (info)
4133 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4134 {
4135 indx = hh->eh.dynindx;
4136 }
4137 off = hh->eh.got.offset;
4138 tls_type = hh->tls_type;
4139 }
4140 else
4141 {
4142 off = local_got_offsets[r_symndx];
4143 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4144 }
4145
4146 if (tls_type == GOT_UNKNOWN)
4147 abort ();
4148
4149 if ((off & 1) != 0)
4150 off &= ~1;
4151 else
4152 {
4153 bfd_boolean need_relocs = FALSE;
4154 Elf_Internal_Rela outrel;
4155 bfd_byte *loc = NULL;
4156 int cur_off = off;
4157
4158 /* The GOT entries have not been initialized yet. Do it
4159 now, and emit any relocations. If both an IE GOT and a
4160 GD GOT are necessary, we emit the GD first. */
4161
4162 if ((bfd_link_pic (info) || indx != 0)
4163 && (hh == NULL
4164 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4165 || hh->eh.root.type != bfd_link_hash_undefweak))
4166 {
4167 need_relocs = TRUE;
4168 loc = htab->srelgot->contents;
4169 /* FIXME (CAO): Should this be reloc_count++ ? */
4170 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4171 }
4172
4173 if (tls_type & GOT_TLS_GD)
4174 {
4175 if (need_relocs)
4176 {
4177 outrel.r_offset = (cur_off
4178 + htab->sgot->output_section->vma
4179 + htab->sgot->output_offset);
4180 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4181 outrel.r_addend = 0;
4182 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4183 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4184 htab->srelgot->reloc_count++;
4185 loc += sizeof (Elf32_External_Rela);
4186
4187 if (indx == 0)
4188 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4189 htab->sgot->contents + cur_off + 4);
4190 else
4191 {
4192 bfd_put_32 (output_bfd, 0,
4193 htab->sgot->contents + cur_off + 4);
4194 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4195 outrel.r_offset += 4;
4196 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4197 htab->srelgot->reloc_count++;
4198 loc += sizeof (Elf32_External_Rela);
4199 }
4200 }
4201 else
4202 {
4203 /* If we are not emitting relocations for a
4204 general dynamic reference, then we must be in a
4205 static link or an executable link with the
4206 symbol binding locally. Mark it as belonging
4207 to module 1, the executable. */
4208 bfd_put_32 (output_bfd, 1,
4209 htab->sgot->contents + cur_off);
4210 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4211 htab->sgot->contents + cur_off + 4);
4212 }
4213
4214
4215 cur_off += 8;
4216 }
4217
4218 if (tls_type & GOT_TLS_IE)
4219 {
4220 if (need_relocs)
4221 {
4222 outrel.r_offset = (cur_off
4223 + htab->sgot->output_section->vma
4224 + htab->sgot->output_offset);
4225 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4226
4227 if (indx == 0)
4228 outrel.r_addend = relocation - dtpoff_base (info);
4229 else
4230 outrel.r_addend = 0;
4231
4232 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4233 htab->srelgot->reloc_count++;
4234 loc += sizeof (Elf32_External_Rela);
4235 }
4236 else
4237 bfd_put_32 (output_bfd, tpoff (info, relocation),
4238 htab->sgot->contents + cur_off);
4239
4240 cur_off += 4;
4241 }
4242
4243 if (hh != NULL)
4244 hh->eh.got.offset |= 1;
4245 else
4246 local_got_offsets[r_symndx] |= 1;
4247 }
4248
4249 if ((tls_type & GOT_TLS_GD)
4250 && r_type != R_PARISC_TLS_GD21L
4251 && r_type != R_PARISC_TLS_GD14R)
4252 off += 2 * GOT_ENTRY_SIZE;
4253
4254 /* Add the base of the GOT to the relocation value. */
4255 relocation = (off
4256 + htab->sgot->output_offset
4257 + htab->sgot->output_section->vma);
4258
4259 break;
4260 }
4261
4262 case R_PARISC_TLS_LE21L:
4263 case R_PARISC_TLS_LE14R:
4264 {
4265 relocation = tpoff (info, relocation);
4266 break;
4267 }
4268 break;
4269
4270 default:
4271 break;
4272 }
4273
4274 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4275 htab, sym_sec, hh, info);
4276
4277 if (rstatus == bfd_reloc_ok)
4278 continue;
4279
4280 if (hh != NULL)
4281 sym_name = hh_name (hh);
4282 else
4283 {
4284 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4285 symtab_hdr->sh_link,
4286 sym->st_name);
4287 if (sym_name == NULL)
4288 return FALSE;
4289 if (*sym_name == '\0')
4290 sym_name = bfd_section_name (input_bfd, sym_sec);
4291 }
4292
4293 howto = elf_hppa_howto_table + r_type;
4294
4295 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4296 {
4297 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4298 {
4299 _bfd_error_handler
4300 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4301 input_bfd,
4302 input_section,
4303 (long) rela->r_offset,
4304 howto->name,
4305 sym_name);
4306 bfd_set_error (bfd_error_bad_value);
4307 return FALSE;
4308 }
4309 }
4310 else
4311 (*info->callbacks->reloc_overflow)
4312 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4313 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4314 }
4315
4316 return TRUE;
4317 }
4318
4319 /* Finish up dynamic symbol handling. We set the contents of various
4320 dynamic sections here. */
4321
4322 static bfd_boolean
4323 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4324 struct bfd_link_info *info,
4325 struct elf_link_hash_entry *eh,
4326 Elf_Internal_Sym *sym)
4327 {
4328 struct elf32_hppa_link_hash_table *htab;
4329 Elf_Internal_Rela rela;
4330 bfd_byte *loc;
4331
4332 htab = hppa_link_hash_table (info);
4333 if (htab == NULL)
4334 return FALSE;
4335
4336 if (eh->plt.offset != (bfd_vma) -1)
4337 {
4338 bfd_vma value;
4339
4340 if (eh->plt.offset & 1)
4341 abort ();
4342
4343 /* This symbol has an entry in the procedure linkage table. Set
4344 it up.
4345
4346 The format of a plt entry is
4347 <funcaddr>
4348 <__gp>
4349 */
4350 value = 0;
4351 if (eh->root.type == bfd_link_hash_defined
4352 || eh->root.type == bfd_link_hash_defweak)
4353 {
4354 value = eh->root.u.def.value;
4355 if (eh->root.u.def.section->output_section != NULL)
4356 value += (eh->root.u.def.section->output_offset
4357 + eh->root.u.def.section->output_section->vma);
4358 }
4359
4360 /* Create a dynamic IPLT relocation for this entry. */
4361 rela.r_offset = (eh->plt.offset
4362 + htab->splt->output_offset
4363 + htab->splt->output_section->vma);
4364 if (eh->dynindx != -1)
4365 {
4366 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4367 rela.r_addend = 0;
4368 }
4369 else
4370 {
4371 /* This symbol has been marked to become local, and is
4372 used by a plabel so must be kept in the .plt. */
4373 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4374 rela.r_addend = value;
4375 }
4376
4377 loc = htab->srelplt->contents;
4378 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4379 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4380
4381 if (!eh->def_regular)
4382 {
4383 /* Mark the symbol as undefined, rather than as defined in
4384 the .plt section. Leave the value alone. */
4385 sym->st_shndx = SHN_UNDEF;
4386 }
4387 }
4388
4389 if (eh->got.offset != (bfd_vma) -1
4390 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4391 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4392 {
4393 /* This symbol has an entry in the global offset table. Set it
4394 up. */
4395
4396 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4397 + htab->sgot->output_offset
4398 + htab->sgot->output_section->vma);
4399
4400 /* If this is a -Bsymbolic link and the symbol is defined
4401 locally or was forced to be local because of a version file,
4402 we just want to emit a RELATIVE reloc. The entry in the
4403 global offset table will already have been initialized in the
4404 relocate_section function. */
4405 if (bfd_link_pic (info)
4406 && (SYMBOLIC_BIND (info, eh) || eh->dynindx == -1)
4407 && eh->def_regular)
4408 {
4409 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4410 rela.r_addend = (eh->root.u.def.value
4411 + eh->root.u.def.section->output_offset
4412 + eh->root.u.def.section->output_section->vma);
4413 }
4414 else
4415 {
4416 if ((eh->got.offset & 1) != 0)
4417 abort ();
4418
4419 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4420 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4421 rela.r_addend = 0;
4422 }
4423
4424 loc = htab->srelgot->contents;
4425 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4426 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4427 }
4428
4429 if (eh->needs_copy)
4430 {
4431 asection *sec;
4432
4433 /* This symbol needs a copy reloc. Set it up. */
4434
4435 if (! (eh->dynindx != -1
4436 && (eh->root.type == bfd_link_hash_defined
4437 || eh->root.type == bfd_link_hash_defweak)))
4438 abort ();
4439
4440 sec = htab->srelbss;
4441
4442 rela.r_offset = (eh->root.u.def.value
4443 + eh->root.u.def.section->output_offset
4444 + eh->root.u.def.section->output_section->vma);
4445 rela.r_addend = 0;
4446 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4447 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4448 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4449 }
4450
4451 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4452 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4453 {
4454 sym->st_shndx = SHN_ABS;
4455 }
4456
4457 return TRUE;
4458 }
4459
4460 /* Used to decide how to sort relocs in an optimal manner for the
4461 dynamic linker, before writing them out. */
4462
4463 static enum elf_reloc_type_class
4464 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4465 const asection *rel_sec ATTRIBUTE_UNUSED,
4466 const Elf_Internal_Rela *rela)
4467 {
4468 /* Handle TLS relocs first; we don't want them to be marked
4469 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4470 check below. */
4471 switch ((int) ELF32_R_TYPE (rela->r_info))
4472 {
4473 case R_PARISC_TLS_DTPMOD32:
4474 case R_PARISC_TLS_DTPOFF32:
4475 case R_PARISC_TLS_TPREL32:
4476 return reloc_class_normal;
4477 }
4478
4479 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4480 return reloc_class_relative;
4481
4482 switch ((int) ELF32_R_TYPE (rela->r_info))
4483 {
4484 case R_PARISC_IPLT:
4485 return reloc_class_plt;
4486 case R_PARISC_COPY:
4487 return reloc_class_copy;
4488 default:
4489 return reloc_class_normal;
4490 }
4491 }
4492
4493 /* Finish up the dynamic sections. */
4494
4495 static bfd_boolean
4496 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4497 struct bfd_link_info *info)
4498 {
4499 bfd *dynobj;
4500 struct elf32_hppa_link_hash_table *htab;
4501 asection *sdyn;
4502 asection * sgot;
4503
4504 htab = hppa_link_hash_table (info);
4505 if (htab == NULL)
4506 return FALSE;
4507
4508 dynobj = htab->etab.dynobj;
4509
4510 sgot = htab->sgot;
4511 /* A broken linker script might have discarded the dynamic sections.
4512 Catch this here so that we do not seg-fault later on. */
4513 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4514 return FALSE;
4515
4516 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4517
4518 if (htab->etab.dynamic_sections_created)
4519 {
4520 Elf32_External_Dyn *dyncon, *dynconend;
4521
4522 if (sdyn == NULL)
4523 abort ();
4524
4525 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4526 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4527 for (; dyncon < dynconend; dyncon++)
4528 {
4529 Elf_Internal_Dyn dyn;
4530 asection *s;
4531
4532 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4533
4534 switch (dyn.d_tag)
4535 {
4536 default:
4537 continue;
4538
4539 case DT_PLTGOT:
4540 /* Use PLTGOT to set the GOT register. */
4541 dyn.d_un.d_ptr = elf_gp (output_bfd);
4542 break;
4543
4544 case DT_JMPREL:
4545 s = htab->srelplt;
4546 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4547 break;
4548
4549 case DT_PLTRELSZ:
4550 s = htab->srelplt;
4551 dyn.d_un.d_val = s->size;
4552 break;
4553
4554 case DT_RELASZ:
4555 /* Don't count procedure linkage table relocs in the
4556 overall reloc count. */
4557 s = htab->srelplt;
4558 if (s == NULL)
4559 continue;
4560 dyn.d_un.d_val -= s->size;
4561 break;
4562
4563 case DT_RELA:
4564 /* We may not be using the standard ELF linker script.
4565 If .rela.plt is the first .rela section, we adjust
4566 DT_RELA to not include it. */
4567 s = htab->srelplt;
4568 if (s == NULL)
4569 continue;
4570 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4571 continue;
4572 dyn.d_un.d_ptr += s->size;
4573 break;
4574 }
4575
4576 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4577 }
4578 }
4579
4580 if (sgot != NULL && sgot->size != 0)
4581 {
4582 /* Fill in the first entry in the global offset table.
4583 We use it to point to our dynamic section, if we have one. */
4584 bfd_put_32 (output_bfd,
4585 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4586 sgot->contents);
4587
4588 /* The second entry is reserved for use by the dynamic linker. */
4589 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4590
4591 /* Set .got entry size. */
4592 elf_section_data (sgot->output_section)
4593 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4594 }
4595
4596 if (htab->splt != NULL && htab->splt->size != 0)
4597 {
4598 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4599 plt stubs and as such the section does not hold a table of fixed-size
4600 entries. */
4601 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize = 0;
4602
4603 if (htab->need_plt_stub)
4604 {
4605 /* Set up the .plt stub. */
4606 memcpy (htab->splt->contents
4607 + htab->splt->size - sizeof (plt_stub),
4608 plt_stub, sizeof (plt_stub));
4609
4610 if ((htab->splt->output_offset
4611 + htab->splt->output_section->vma
4612 + htab->splt->size)
4613 != (sgot->output_offset
4614 + sgot->output_section->vma))
4615 {
4616 _bfd_error_handler
4617 (_(".got section not immediately after .plt section"));
4618 return FALSE;
4619 }
4620 }
4621 }
4622
4623 return TRUE;
4624 }
4625
4626 /* Called when writing out an object file to decide the type of a
4627 symbol. */
4628 static int
4629 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4630 {
4631 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4632 return STT_PARISC_MILLI;
4633 else
4634 return type;
4635 }
4636
4637 /* Misc BFD support code. */
4638 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4639 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4640 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4641 #define elf_info_to_howto elf_hppa_info_to_howto
4642 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4643
4644 /* Stuff for the BFD linker. */
4645 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4646 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4647 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4648 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4649 #define elf_backend_check_relocs elf32_hppa_check_relocs
4650 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4651 #define elf_backend_fake_sections elf_hppa_fake_sections
4652 #define elf_backend_relocate_section elf32_hppa_relocate_section
4653 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4654 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4655 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4656 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4657 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4658 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4659 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4660 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4661 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4662 #define elf_backend_object_p elf32_hppa_object_p
4663 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4664 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4665 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4666 #define elf_backend_action_discarded elf_hppa_action_discarded
4667
4668 #define elf_backend_can_gc_sections 1
4669 #define elf_backend_can_refcount 1
4670 #define elf_backend_plt_alignment 2
4671 #define elf_backend_want_got_plt 0
4672 #define elf_backend_plt_readonly 0
4673 #define elf_backend_want_plt_sym 0
4674 #define elf_backend_got_header_size 8
4675 #define elf_backend_rela_normal 1
4676
4677 #define TARGET_BIG_SYM hppa_elf32_vec
4678 #define TARGET_BIG_NAME "elf32-hppa"
4679 #define ELF_ARCH bfd_arch_hppa
4680 #define ELF_TARGET_ID HPPA32_ELF_DATA
4681 #define ELF_MACHINE_CODE EM_PARISC
4682 #define ELF_MAXPAGESIZE 0x1000
4683 #define ELF_OSABI ELFOSABI_HPUX
4684 #define elf32_bed elf32_hppa_hpux_bed
4685
4686 #include "elf32-target.h"
4687
4688 #undef TARGET_BIG_SYM
4689 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4690 #undef TARGET_BIG_NAME
4691 #define TARGET_BIG_NAME "elf32-hppa-linux"
4692 #undef ELF_OSABI
4693 #define ELF_OSABI ELFOSABI_GNU
4694 #undef elf32_bed
4695 #define elf32_bed elf32_hppa_linux_bed
4696
4697 #include "elf32-target.h"
4698
4699 #undef TARGET_BIG_SYM
4700 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4701 #undef TARGET_BIG_NAME
4702 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4703 #undef ELF_OSABI
4704 #define ELF_OSABI ELFOSABI_NETBSD
4705 #undef elf32_bed
4706 #define elf32_bed elf32_hppa_netbsd_bed
4707
4708 #include "elf32-target.h"