]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
Use bfd_get_filename throughout bfd
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2020 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
75 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
76 : ldw 0(%r22),%r21 ; get procedure entry point
77 : bv %r0(%r21)
78 : ldw 4(%r22),%r19 ; get new dlt value.
79
80 Import stub to call shared library routine from shared library
81 (single sub-space version)
82 : addil LR'ltoff,%r19 ; get PLT address
83 : ldo RR'ltoff(%r1),%r22
84 : ldw 0(%r22),%r21 ; get procedure entry point
85 : bv %r0(%r21)
86 : ldw 4(%r22),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get PLT address
91 : ldo RR'lt_ptr+ltoff(%r1),%r22 ;
92 : ldw 0(%r22),%r21 ; get procedure entry point
93 : ldsid (%r21),%r1 ; get target sid
94 : ldw 4(%r22),%r19 ; get new dlt value.
95 : mtsp %r1,%sr0
96 : be 0(%sr0,%r21) ; branch to target
97 : stw %rp,-24(%sp) ; save rp
98
99 Import stub to call shared library routine from shared library
100 (multiple sub-space support)
101 : addil LR'ltoff,%r19 ; get PLT address
102 : ldo RR'ltoff(%r1),%r22
103 : ldw 0(%r22),%r21 ; get procedure entry point
104 : ldsid (%r21),%r1 ; get target sid
105 : ldw 4(%r22),%r19 ; get new dlt value.
106 : mtsp %r1,%sr0
107 : be 0(%sr0,%r21) ; branch to target
108 : stw %rp,-24(%sp) ; save rp
109
110 Export stub to return from shared lib routine (multiple sub-space support)
111 One of these is created for each exported procedure in a shared
112 library (and stored in the shared lib). Shared lib routines are
113 called via the first instruction in the export stub so that we can
114 do an inter-space return. Not required for single sub-space.
115 : bl,n X,%rp ; trap the return
116 : nop
117 : ldw -24(%sp),%rp ; restore the original rp
118 : ldsid (%rp),%r1
119 : mtsp %r1,%sr0
120 : be,n 0(%sr0,%rp) ; inter-space return. */
121
122
123 /* Variable names follow a coding style.
124 Please follow this (Apps Hungarian) style:
125
126 Structure/Variable Prefix
127 elf_link_hash_table "etab"
128 elf_link_hash_entry "eh"
129
130 elf32_hppa_link_hash_table "htab"
131 elf32_hppa_link_hash_entry "hh"
132
133 bfd_hash_table "btab"
134 bfd_hash_entry "bh"
135
136 bfd_hash_table containing stubs "bstab"
137 elf32_hppa_stub_hash_entry "hsh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define LONG_BRANCH_STUB_SIZE 8
144 #define LONG_BRANCH_SHARED_STUB_SIZE 12
145 #define IMPORT_STUB_SIZE 20
146 #define IMPORT_SHARED_STUB_SIZE 32
147 #define EXPORT_STUB_SIZE 24
148 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
149
150 static const bfd_byte plt_stub[] =
151 {
152 0x0e, 0x80, 0x10, 0x95, /* 1: ldw 0(%r20),%r21 */
153 0xea, 0xa0, 0xc0, 0x00, /* bv %r0(%r21) */
154 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
155 #define PLT_STUB_ENTRY (3*4)
156 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
157 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
158 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
159 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
160 };
161
162 /* Section name for stubs is the associated section name plus this
163 string. */
164 #define STUB_SUFFIX ".stub"
165
166 /* We don't need to copy certain PC- or GP-relative dynamic relocs
167 into a shared object's dynamic section. All the relocs of the
168 limited class we are interested in, are absolute. */
169 #ifndef RELATIVE_DYNRELOCS
170 #define RELATIVE_DYNRELOCS 0
171 #define IS_ABSOLUTE_RELOC(r_type) 1
172 #define pc_dynrelocs(hh) 0
173 #endif
174
175 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
176 copying dynamic variables from a shared lib into an app's dynbss
177 section, and instead use a dynamic relocation to point into the
178 shared lib. */
179 #define ELIMINATE_COPY_RELOCS 1
180
181 enum elf32_hppa_stub_type
182 {
183 hppa_stub_long_branch,
184 hppa_stub_long_branch_shared,
185 hppa_stub_import,
186 hppa_stub_import_shared,
187 hppa_stub_export,
188 hppa_stub_none
189 };
190
191 struct elf32_hppa_stub_hash_entry
192 {
193 /* Base hash table entry structure. */
194 struct bfd_hash_entry bh_root;
195
196 /* The stub section. */
197 asection *stub_sec;
198
199 /* Offset within stub_sec of the beginning of this stub. */
200 bfd_vma stub_offset;
201
202 /* Given the symbol's value and its section we can determine its final
203 value when building the stubs (so the stub knows where to jump. */
204 bfd_vma target_value;
205 asection *target_section;
206
207 enum elf32_hppa_stub_type stub_type;
208
209 /* The symbol table entry, if any, that this was derived from. */
210 struct elf32_hppa_link_hash_entry *hh;
211
212 /* Where this stub is being called from, or, in the case of combined
213 stub sections, the first input section in the group. */
214 asection *id_sec;
215 };
216
217 enum _tls_type
218 {
219 GOT_UNKNOWN = 0,
220 GOT_NORMAL = 1,
221 GOT_TLS_GD = 2,
222 GOT_TLS_LDM = 4,
223 GOT_TLS_IE = 8
224 };
225
226 struct elf32_hppa_link_hash_entry
227 {
228 struct elf_link_hash_entry eh;
229
230 /* A pointer to the most recently used stub hash entry against this
231 symbol. */
232 struct elf32_hppa_stub_hash_entry *hsh_cache;
233
234 /* Used to count relocations for delayed sizing of relocation
235 sections. */
236 struct elf_dyn_relocs *dyn_relocs;
237
238 ENUM_BITFIELD (_tls_type) tls_type : 8;
239
240 /* Set if this symbol is used by a plabel reloc. */
241 unsigned int plabel:1;
242 };
243
244 struct elf32_hppa_link_hash_table
245 {
246 /* The main hash table. */
247 struct elf_link_hash_table etab;
248
249 /* The stub hash table. */
250 struct bfd_hash_table bstab;
251
252 /* Linker stub bfd. */
253 bfd *stub_bfd;
254
255 /* Linker call-backs. */
256 asection * (*add_stub_section) (const char *, asection *);
257 void (*layout_sections_again) (void);
258
259 /* Array to keep track of which stub sections have been created, and
260 information on stub grouping. */
261 struct map_stub
262 {
263 /* This is the section to which stubs in the group will be
264 attached. */
265 asection *link_sec;
266 /* The stub section. */
267 asection *stub_sec;
268 } *stub_group;
269
270 /* Assorted information used by elf32_hppa_size_stubs. */
271 unsigned int bfd_count;
272 unsigned int top_index;
273 asection **input_list;
274 Elf_Internal_Sym **all_local_syms;
275
276 /* Used during a final link to store the base of the text and data
277 segments so that we can perform SEGREL relocations. */
278 bfd_vma text_segment_base;
279 bfd_vma data_segment_base;
280
281 /* Whether we support multiple sub-spaces for shared libs. */
282 unsigned int multi_subspace:1;
283
284 /* Flags set when various size branches are detected. Used to
285 select suitable defaults for the stub group size. */
286 unsigned int has_12bit_branch:1;
287 unsigned int has_17bit_branch:1;
288 unsigned int has_22bit_branch:1;
289
290 /* Set if we need a .plt stub to support lazy dynamic linking. */
291 unsigned int need_plt_stub:1;
292
293 /* Small local sym cache. */
294 struct sym_cache sym_cache;
295
296 /* Data for LDM relocations. */
297 union
298 {
299 bfd_signed_vma refcount;
300 bfd_vma offset;
301 } tls_ldm_got;
302 };
303
304 /* Various hash macros and functions. */
305 #define hppa_link_hash_table(p) \
306 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
307 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
308
309 #define hppa_elf_hash_entry(ent) \
310 ((struct elf32_hppa_link_hash_entry *)(ent))
311
312 #define hppa_stub_hash_entry(ent) \
313 ((struct elf32_hppa_stub_hash_entry *)(ent))
314
315 #define hppa_stub_hash_lookup(table, string, create, copy) \
316 ((struct elf32_hppa_stub_hash_entry *) \
317 bfd_hash_lookup ((table), (string), (create), (copy)))
318
319 #define hppa_elf_local_got_tls_type(abfd) \
320 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
321
322 #define hh_name(hh) \
323 (hh ? hh->eh.root.root.string : "<undef>")
324
325 #define eh_name(eh) \
326 (eh ? eh->root.root.string : "<undef>")
327
328 /* Assorted hash table functions. */
329
330 /* Initialize an entry in the stub hash table. */
331
332 static struct bfd_hash_entry *
333 stub_hash_newfunc (struct bfd_hash_entry *entry,
334 struct bfd_hash_table *table,
335 const char *string)
336 {
337 /* Allocate the structure if it has not already been allocated by a
338 subclass. */
339 if (entry == NULL)
340 {
341 entry = bfd_hash_allocate (table,
342 sizeof (struct elf32_hppa_stub_hash_entry));
343 if (entry == NULL)
344 return entry;
345 }
346
347 /* Call the allocation method of the superclass. */
348 entry = bfd_hash_newfunc (entry, table, string);
349 if (entry != NULL)
350 {
351 struct elf32_hppa_stub_hash_entry *hsh;
352
353 /* Initialize the local fields. */
354 hsh = hppa_stub_hash_entry (entry);
355 hsh->stub_sec = NULL;
356 hsh->stub_offset = 0;
357 hsh->target_value = 0;
358 hsh->target_section = NULL;
359 hsh->stub_type = hppa_stub_long_branch;
360 hsh->hh = NULL;
361 hsh->id_sec = NULL;
362 }
363
364 return entry;
365 }
366
367 /* Initialize an entry in the link hash table. */
368
369 static struct bfd_hash_entry *
370 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
371 struct bfd_hash_table *table,
372 const char *string)
373 {
374 /* Allocate the structure if it has not already been allocated by a
375 subclass. */
376 if (entry == NULL)
377 {
378 entry = bfd_hash_allocate (table,
379 sizeof (struct elf32_hppa_link_hash_entry));
380 if (entry == NULL)
381 return entry;
382 }
383
384 /* Call the allocation method of the superclass. */
385 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
386 if (entry != NULL)
387 {
388 struct elf32_hppa_link_hash_entry *hh;
389
390 /* Initialize the local fields. */
391 hh = hppa_elf_hash_entry (entry);
392 hh->hsh_cache = NULL;
393 hh->dyn_relocs = NULL;
394 hh->plabel = 0;
395 hh->tls_type = GOT_UNKNOWN;
396 }
397
398 return entry;
399 }
400
401 /* Free the derived linker hash table. */
402
403 static void
404 elf32_hppa_link_hash_table_free (bfd *obfd)
405 {
406 struct elf32_hppa_link_hash_table *htab
407 = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
408
409 bfd_hash_table_free (&htab->bstab);
410 _bfd_elf_link_hash_table_free (obfd);
411 }
412
413 /* Create the derived linker hash table. The PA ELF port uses the derived
414 hash table to keep information specific to the PA ELF linker (without
415 using static variables). */
416
417 static struct bfd_link_hash_table *
418 elf32_hppa_link_hash_table_create (bfd *abfd)
419 {
420 struct elf32_hppa_link_hash_table *htab;
421 size_t amt = sizeof (*htab);
422
423 htab = bfd_zmalloc (amt);
424 if (htab == NULL)
425 return NULL;
426
427 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
428 sizeof (struct elf32_hppa_link_hash_entry),
429 HPPA32_ELF_DATA))
430 {
431 free (htab);
432 return NULL;
433 }
434
435 /* Init the stub hash table too. */
436 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
437 sizeof (struct elf32_hppa_stub_hash_entry)))
438 {
439 _bfd_elf_link_hash_table_free (abfd);
440 return NULL;
441 }
442 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
443
444 htab->text_segment_base = (bfd_vma) -1;
445 htab->data_segment_base = (bfd_vma) -1;
446 return &htab->etab.root;
447 }
448
449 /* Initialize the linker stubs BFD so that we can use it for linker
450 created dynamic sections. */
451
452 void
453 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
454 {
455 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
456
457 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
458 htab->etab.dynobj = abfd;
459 }
460
461 /* Build a name for an entry in the stub hash table. */
462
463 static char *
464 hppa_stub_name (const asection *input_section,
465 const asection *sym_sec,
466 const struct elf32_hppa_link_hash_entry *hh,
467 const Elf_Internal_Rela *rela)
468 {
469 char *stub_name;
470 bfd_size_type len;
471
472 if (hh)
473 {
474 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
475 stub_name = bfd_malloc (len);
476 if (stub_name != NULL)
477 sprintf (stub_name, "%08x_%s+%x",
478 input_section->id & 0xffffffff,
479 hh_name (hh),
480 (int) rela->r_addend & 0xffffffff);
481 }
482 else
483 {
484 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
485 stub_name = bfd_malloc (len);
486 if (stub_name != NULL)
487 sprintf (stub_name, "%08x_%x:%x+%x",
488 input_section->id & 0xffffffff,
489 sym_sec->id & 0xffffffff,
490 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
491 (int) rela->r_addend & 0xffffffff);
492 }
493 return stub_name;
494 }
495
496 /* Look up an entry in the stub hash. Stub entries are cached because
497 creating the stub name takes a bit of time. */
498
499 static struct elf32_hppa_stub_hash_entry *
500 hppa_get_stub_entry (const asection *input_section,
501 const asection *sym_sec,
502 struct elf32_hppa_link_hash_entry *hh,
503 const Elf_Internal_Rela *rela,
504 struct elf32_hppa_link_hash_table *htab)
505 {
506 struct elf32_hppa_stub_hash_entry *hsh_entry;
507 const asection *id_sec;
508
509 /* If this input section is part of a group of sections sharing one
510 stub section, then use the id of the first section in the group.
511 Stub names need to include a section id, as there may well be
512 more than one stub used to reach say, printf, and we need to
513 distinguish between them. */
514 id_sec = htab->stub_group[input_section->id].link_sec;
515 if (id_sec == NULL)
516 return NULL;
517
518 if (hh != NULL && hh->hsh_cache != NULL
519 && hh->hsh_cache->hh == hh
520 && hh->hsh_cache->id_sec == id_sec)
521 {
522 hsh_entry = hh->hsh_cache;
523 }
524 else
525 {
526 char *stub_name;
527
528 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
529 if (stub_name == NULL)
530 return NULL;
531
532 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
533 stub_name, FALSE, FALSE);
534 if (hh != NULL)
535 hh->hsh_cache = hsh_entry;
536
537 free (stub_name);
538 }
539
540 return hsh_entry;
541 }
542
543 /* Add a new stub entry to the stub hash. Not all fields of the new
544 stub entry are initialised. */
545
546 static struct elf32_hppa_stub_hash_entry *
547 hppa_add_stub (const char *stub_name,
548 asection *section,
549 struct elf32_hppa_link_hash_table *htab)
550 {
551 asection *link_sec;
552 asection *stub_sec;
553 struct elf32_hppa_stub_hash_entry *hsh;
554
555 link_sec = htab->stub_group[section->id].link_sec;
556 stub_sec = htab->stub_group[section->id].stub_sec;
557 if (stub_sec == NULL)
558 {
559 stub_sec = htab->stub_group[link_sec->id].stub_sec;
560 if (stub_sec == NULL)
561 {
562 size_t namelen;
563 bfd_size_type len;
564 char *s_name;
565
566 namelen = strlen (link_sec->name);
567 len = namelen + sizeof (STUB_SUFFIX);
568 s_name = bfd_alloc (htab->stub_bfd, len);
569 if (s_name == NULL)
570 return NULL;
571
572 memcpy (s_name, link_sec->name, namelen);
573 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
574 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
575 if (stub_sec == NULL)
576 return NULL;
577 htab->stub_group[link_sec->id].stub_sec = stub_sec;
578 }
579 htab->stub_group[section->id].stub_sec = stub_sec;
580 }
581
582 /* Enter this entry into the linker stub hash table. */
583 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
584 TRUE, FALSE);
585 if (hsh == NULL)
586 {
587 /* xgettext:c-format */
588 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
589 section->owner, stub_name);
590 return NULL;
591 }
592
593 hsh->stub_sec = stub_sec;
594 hsh->stub_offset = 0;
595 hsh->id_sec = link_sec;
596 return hsh;
597 }
598
599 /* Determine the type of stub needed, if any, for a call. */
600
601 static enum elf32_hppa_stub_type
602 hppa_type_of_stub (asection *input_sec,
603 const Elf_Internal_Rela *rela,
604 struct elf32_hppa_link_hash_entry *hh,
605 bfd_vma destination,
606 struct bfd_link_info *info)
607 {
608 bfd_vma location;
609 bfd_vma branch_offset;
610 bfd_vma max_branch_offset;
611 unsigned int r_type;
612
613 if (hh != NULL
614 && hh->eh.plt.offset != (bfd_vma) -1
615 && hh->eh.dynindx != -1
616 && !hh->plabel
617 && (bfd_link_pic (info)
618 || !hh->eh.def_regular
619 || hh->eh.root.type == bfd_link_hash_defweak))
620 {
621 /* We need an import stub. Decide between hppa_stub_import
622 and hppa_stub_import_shared later. */
623 return hppa_stub_import;
624 }
625
626 if (destination == (bfd_vma) -1)
627 return hppa_stub_none;
628
629 /* Determine where the call point is. */
630 location = (input_sec->output_offset
631 + input_sec->output_section->vma
632 + rela->r_offset);
633
634 branch_offset = destination - location - 8;
635 r_type = ELF32_R_TYPE (rela->r_info);
636
637 /* Determine if a long branch stub is needed. parisc branch offsets
638 are relative to the second instruction past the branch, ie. +8
639 bytes on from the branch instruction location. The offset is
640 signed and counts in units of 4 bytes. */
641 if (r_type == (unsigned int) R_PARISC_PCREL17F)
642 max_branch_offset = (1 << (17 - 1)) << 2;
643
644 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
645 max_branch_offset = (1 << (12 - 1)) << 2;
646
647 else /* R_PARISC_PCREL22F. */
648 max_branch_offset = (1 << (22 - 1)) << 2;
649
650 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
651 return hppa_stub_long_branch;
652
653 return hppa_stub_none;
654 }
655
656 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
657 IN_ARG contains the link info pointer. */
658
659 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
660 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
661
662 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
663 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
664 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
665
666 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
667 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
668 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
669 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
670
671 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
672 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
673
674 #define LDO_R1_R22 0x34360000 /* ldo RR'XXX(%r1),%r22 */
675 #define LDW_R22_R21 0x0ec01095 /* ldw 0(%r22),%r21 */
676 #define LDW_R22_R19 0x0ec81093 /* ldw 4(%r22),%r19 */
677
678 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
679 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
680 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
681 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
682
683 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
684 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
685 #define NOP 0x08000240 /* nop */
686 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
687 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
688 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
689
690 #ifndef R19_STUBS
691 #define R19_STUBS 1
692 #endif
693
694 #if R19_STUBS
695 #define LDW_R1_DLT LDW_R1_R19
696 #else
697 #define LDW_R1_DLT LDW_R1_DP
698 #endif
699
700 static bfd_boolean
701 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
702 {
703 struct elf32_hppa_stub_hash_entry *hsh;
704 struct bfd_link_info *info;
705 struct elf32_hppa_link_hash_table *htab;
706 asection *stub_sec;
707 bfd *stub_bfd;
708 bfd_byte *loc;
709 bfd_vma sym_value;
710 bfd_vma insn;
711 bfd_vma off;
712 int val;
713 int size;
714
715 /* Massage our args to the form they really have. */
716 hsh = hppa_stub_hash_entry (bh);
717 info = (struct bfd_link_info *)in_arg;
718
719 htab = hppa_link_hash_table (info);
720 if (htab == NULL)
721 return FALSE;
722
723 stub_sec = hsh->stub_sec;
724
725 /* Make a note of the offset within the stubs for this entry. */
726 hsh->stub_offset = stub_sec->size;
727 loc = stub_sec->contents + hsh->stub_offset;
728
729 stub_bfd = stub_sec->owner;
730
731 switch (hsh->stub_type)
732 {
733 case hppa_stub_long_branch:
734 /* Fail if the target section could not be assigned to an output
735 section. The user should fix his linker script. */
736 if (hsh->target_section->output_section == NULL
737 && info->non_contiguous_regions)
738 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output "
739 "section. Retry without "
740 "--enable-non-contiguous-regions.\n"),
741 hsh->target_section);
742
743 /* Create the long branch. A long branch is formed with "ldil"
744 loading the upper bits of the target address into a register,
745 then branching with "be" which adds in the lower bits.
746 The "be" has its delay slot nullified. */
747 sym_value = (hsh->target_value
748 + hsh->target_section->output_offset
749 + hsh->target_section->output_section->vma);
750
751 val = hppa_field_adjust (sym_value, 0, e_lrsel);
752 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
753 bfd_put_32 (stub_bfd, insn, loc);
754
755 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
756 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
757 bfd_put_32 (stub_bfd, insn, loc + 4);
758
759 size = LONG_BRANCH_STUB_SIZE;
760 break;
761
762 case hppa_stub_long_branch_shared:
763 /* Fail if the target section could not be assigned to an output
764 section. The user should fix his linker script. */
765 if (hsh->target_section->output_section == NULL
766 && info->non_contiguous_regions)
767 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
768 "section. Retry without "
769 "--enable-non-contiguous-regions.\n"),
770 hsh->target_section);
771
772 /* Branches are relative. This is where we are going to. */
773 sym_value = (hsh->target_value
774 + hsh->target_section->output_offset
775 + hsh->target_section->output_section->vma);
776
777 /* And this is where we are coming from, more or less. */
778 sym_value -= (hsh->stub_offset
779 + stub_sec->output_offset
780 + stub_sec->output_section->vma);
781
782 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
783 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
784 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
785 bfd_put_32 (stub_bfd, insn, loc + 4);
786
787 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
788 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
789 bfd_put_32 (stub_bfd, insn, loc + 8);
790 size = LONG_BRANCH_SHARED_STUB_SIZE;
791 break;
792
793 case hppa_stub_import:
794 case hppa_stub_import_shared:
795 off = hsh->hh->eh.plt.offset;
796 if (off >= (bfd_vma) -2)
797 abort ();
798
799 off &= ~ (bfd_vma) 1;
800 sym_value = (off
801 + htab->etab.splt->output_offset
802 + htab->etab.splt->output_section->vma
803 - elf_gp (htab->etab.splt->output_section->owner));
804
805 insn = ADDIL_DP;
806 #if R19_STUBS
807 if (hsh->stub_type == hppa_stub_import_shared)
808 insn = ADDIL_R19;
809 #endif
810
811 /* Load function descriptor address into register %r22. It is
812 sometimes needed for lazy binding. */
813 val = hppa_field_adjust (sym_value, 0, e_lrsel),
814 insn = hppa_rebuild_insn ((int) insn, val, 21);
815 bfd_put_32 (stub_bfd, insn, loc);
816
817 val = hppa_field_adjust (sym_value, 0, e_rrsel);
818 insn = hppa_rebuild_insn ((int) LDO_R1_R22, val, 14);
819 bfd_put_32 (stub_bfd, insn, loc + 4);
820
821 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R21, loc + 8);
822
823 if (htab->multi_subspace)
824 {
825 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
826 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
827 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 20);
828 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 24);
829 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 28);
830
831 size = IMPORT_SHARED_STUB_SIZE;
832 }
833 else
834 {
835 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 12);
836 bfd_put_32 (stub_bfd, (bfd_vma) LDW_R22_R19, loc + 16);
837
838 size = IMPORT_STUB_SIZE;
839 }
840
841 break;
842
843 case hppa_stub_export:
844 /* Fail if the target section could not be assigned to an output
845 section. The user should fix his linker script. */
846 if (hsh->target_section->output_section == NULL
847 && info->non_contiguous_regions)
848 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output "
849 "section. Retry without "
850 "--enable-non-contiguous-regions.\n"),
851 hsh->target_section);
852
853 /* Branches are relative. This is where we are going to. */
854 sym_value = (hsh->target_value
855 + hsh->target_section->output_offset
856 + hsh->target_section->output_section->vma);
857
858 /* And this is where we are coming from. */
859 sym_value -= (hsh->stub_offset
860 + stub_sec->output_offset
861 + stub_sec->output_section->vma);
862
863 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
864 && (!htab->has_22bit_branch
865 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
866 {
867 _bfd_error_handler
868 /* xgettext:c-format */
869 (_("%pB(%pA+%#" PRIx64 "): "
870 "cannot reach %s, recompile with -ffunction-sections"),
871 hsh->target_section->owner,
872 stub_sec,
873 (uint64_t) hsh->stub_offset,
874 hsh->bh_root.string);
875 bfd_set_error (bfd_error_bad_value);
876 return FALSE;
877 }
878
879 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
880 if (!htab->has_22bit_branch)
881 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
882 else
883 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
884 bfd_put_32 (stub_bfd, insn, loc);
885
886 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
887 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
888 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
889 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
890 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
891
892 /* Point the function symbol at the stub. */
893 hsh->hh->eh.root.u.def.section = stub_sec;
894 hsh->hh->eh.root.u.def.value = stub_sec->size;
895
896 size = EXPORT_STUB_SIZE;
897 break;
898
899 default:
900 BFD_FAIL ();
901 return FALSE;
902 }
903
904 stub_sec->size += size;
905 return TRUE;
906 }
907
908 #undef LDIL_R1
909 #undef BE_SR4_R1
910 #undef BL_R1
911 #undef ADDIL_R1
912 #undef DEPI_R1
913 #undef LDW_R1_R21
914 #undef LDW_R1_DLT
915 #undef LDW_R1_R19
916 #undef ADDIL_R19
917 #undef LDW_R1_DP
918 #undef LDSID_R21_R1
919 #undef MTSP_R1
920 #undef BE_SR0_R21
921 #undef STW_RP
922 #undef BV_R0_R21
923 #undef BL_RP
924 #undef NOP
925 #undef LDW_RP
926 #undef LDSID_RP_R1
927 #undef BE_SR0_RP
928
929 /* As above, but don't actually build the stub. Just bump offset so
930 we know stub section sizes. */
931
932 static bfd_boolean
933 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
934 {
935 struct elf32_hppa_stub_hash_entry *hsh;
936 struct elf32_hppa_link_hash_table *htab;
937 int size;
938
939 /* Massage our args to the form they really have. */
940 hsh = hppa_stub_hash_entry (bh);
941 htab = in_arg;
942
943 if (hsh->stub_type == hppa_stub_long_branch)
944 size = LONG_BRANCH_STUB_SIZE;
945 else if (hsh->stub_type == hppa_stub_long_branch_shared)
946 size = LONG_BRANCH_SHARED_STUB_SIZE;
947 else if (hsh->stub_type == hppa_stub_export)
948 size = EXPORT_STUB_SIZE;
949 else /* hppa_stub_import or hppa_stub_import_shared. */
950 {
951 if (htab->multi_subspace)
952 size = IMPORT_SHARED_STUB_SIZE;
953 else
954 size = IMPORT_STUB_SIZE;
955 }
956
957 hsh->stub_sec->size += size;
958 return TRUE;
959 }
960
961 /* Return nonzero if ABFD represents an HPPA ELF32 file.
962 Additionally we set the default architecture and machine. */
963
964 static bfd_boolean
965 elf32_hppa_object_p (bfd *abfd)
966 {
967 Elf_Internal_Ehdr * i_ehdrp;
968 unsigned int flags;
969
970 i_ehdrp = elf_elfheader (abfd);
971 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
972 {
973 /* GCC on hppa-linux produces binaries with OSABI=GNU,
974 but the kernel produces corefiles with OSABI=SysV. */
975 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
976 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
977 return FALSE;
978 }
979 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
980 {
981 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
982 but the kernel produces corefiles with OSABI=SysV. */
983 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
984 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
985 return FALSE;
986 }
987 else
988 {
989 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
990 return FALSE;
991 }
992
993 flags = i_ehdrp->e_flags;
994 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
995 {
996 case EFA_PARISC_1_0:
997 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
998 case EFA_PARISC_1_1:
999 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
1000 case EFA_PARISC_2_0:
1001 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
1002 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
1003 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
1004 }
1005 return TRUE;
1006 }
1007
1008 /* Create the .plt and .got sections, and set up our hash table
1009 short-cuts to various dynamic sections. */
1010
1011 static bfd_boolean
1012 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1013 {
1014 struct elf32_hppa_link_hash_table *htab;
1015 struct elf_link_hash_entry *eh;
1016
1017 /* Don't try to create the .plt and .got twice. */
1018 htab = hppa_link_hash_table (info);
1019 if (htab == NULL)
1020 return FALSE;
1021 if (htab->etab.splt != NULL)
1022 return TRUE;
1023
1024 /* Call the generic code to do most of the work. */
1025 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1026 return FALSE;
1027
1028 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1029 application, because __canonicalize_funcptr_for_compare needs it. */
1030 eh = elf_hash_table (info)->hgot;
1031 eh->forced_local = 0;
1032 eh->other = STV_DEFAULT;
1033 return bfd_elf_link_record_dynamic_symbol (info, eh);
1034 }
1035
1036 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1037
1038 static void
1039 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1040 struct elf_link_hash_entry *eh_dir,
1041 struct elf_link_hash_entry *eh_ind)
1042 {
1043 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1044
1045 hh_dir = hppa_elf_hash_entry (eh_dir);
1046 hh_ind = hppa_elf_hash_entry (eh_ind);
1047
1048 if (hh_ind->dyn_relocs != NULL
1049 && eh_ind->root.type == bfd_link_hash_indirect)
1050 {
1051 if (hh_dir->dyn_relocs != NULL)
1052 {
1053 struct elf_dyn_relocs **hdh_pp;
1054 struct elf_dyn_relocs *hdh_p;
1055
1056 /* Add reloc counts against the indirect sym to the direct sym
1057 list. Merge any entries against the same section. */
1058 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1059 {
1060 struct elf_dyn_relocs *hdh_q;
1061
1062 for (hdh_q = hh_dir->dyn_relocs;
1063 hdh_q != NULL;
1064 hdh_q = hdh_q->next)
1065 if (hdh_q->sec == hdh_p->sec)
1066 {
1067 #if RELATIVE_DYNRELOCS
1068 hdh_q->pc_count += hdh_p->pc_count;
1069 #endif
1070 hdh_q->count += hdh_p->count;
1071 *hdh_pp = hdh_p->next;
1072 break;
1073 }
1074 if (hdh_q == NULL)
1075 hdh_pp = &hdh_p->next;
1076 }
1077 *hdh_pp = hh_dir->dyn_relocs;
1078 }
1079
1080 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1081 hh_ind->dyn_relocs = NULL;
1082 }
1083
1084 if (eh_ind->root.type == bfd_link_hash_indirect)
1085 {
1086 hh_dir->plabel |= hh_ind->plabel;
1087 hh_dir->tls_type |= hh_ind->tls_type;
1088 hh_ind->tls_type = GOT_UNKNOWN;
1089 }
1090
1091 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1092 }
1093
1094 static int
1095 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1096 int r_type, int is_local ATTRIBUTE_UNUSED)
1097 {
1098 /* For now we don't support linker optimizations. */
1099 return r_type;
1100 }
1101
1102 /* Return a pointer to the local GOT, PLT and TLS reference counts
1103 for ABFD. Returns NULL if the storage allocation fails. */
1104
1105 static bfd_signed_vma *
1106 hppa32_elf_local_refcounts (bfd *abfd)
1107 {
1108 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1109 bfd_signed_vma *local_refcounts;
1110
1111 local_refcounts = elf_local_got_refcounts (abfd);
1112 if (local_refcounts == NULL)
1113 {
1114 bfd_size_type size;
1115
1116 /* Allocate space for local GOT and PLT reference
1117 counts. Done this way to save polluting elf_obj_tdata
1118 with another target specific pointer. */
1119 size = symtab_hdr->sh_info;
1120 size *= 2 * sizeof (bfd_signed_vma);
1121 /* Add in space to store the local GOT TLS types. */
1122 size += symtab_hdr->sh_info;
1123 local_refcounts = bfd_zalloc (abfd, size);
1124 if (local_refcounts == NULL)
1125 return NULL;
1126 elf_local_got_refcounts (abfd) = local_refcounts;
1127 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1128 symtab_hdr->sh_info);
1129 }
1130 return local_refcounts;
1131 }
1132
1133
1134 /* Look through the relocs for a section during the first phase, and
1135 calculate needed space in the global offset table, procedure linkage
1136 table, and dynamic reloc sections. At this point we haven't
1137 necessarily read all the input files. */
1138
1139 static bfd_boolean
1140 elf32_hppa_check_relocs (bfd *abfd,
1141 struct bfd_link_info *info,
1142 asection *sec,
1143 const Elf_Internal_Rela *relocs)
1144 {
1145 Elf_Internal_Shdr *symtab_hdr;
1146 struct elf_link_hash_entry **eh_syms;
1147 const Elf_Internal_Rela *rela;
1148 const Elf_Internal_Rela *rela_end;
1149 struct elf32_hppa_link_hash_table *htab;
1150 asection *sreloc;
1151
1152 if (bfd_link_relocatable (info))
1153 return TRUE;
1154
1155 htab = hppa_link_hash_table (info);
1156 if (htab == NULL)
1157 return FALSE;
1158 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1159 eh_syms = elf_sym_hashes (abfd);
1160 sreloc = NULL;
1161
1162 rela_end = relocs + sec->reloc_count;
1163 for (rela = relocs; rela < rela_end; rela++)
1164 {
1165 enum {
1166 NEED_GOT = 1,
1167 NEED_PLT = 2,
1168 NEED_DYNREL = 4,
1169 PLT_PLABEL = 8
1170 };
1171
1172 unsigned int r_symndx, r_type;
1173 struct elf32_hppa_link_hash_entry *hh;
1174 int need_entry = 0;
1175
1176 r_symndx = ELF32_R_SYM (rela->r_info);
1177
1178 if (r_symndx < symtab_hdr->sh_info)
1179 hh = NULL;
1180 else
1181 {
1182 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1183 while (hh->eh.root.type == bfd_link_hash_indirect
1184 || hh->eh.root.type == bfd_link_hash_warning)
1185 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1186 }
1187
1188 r_type = ELF32_R_TYPE (rela->r_info);
1189 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1190
1191 switch (r_type)
1192 {
1193 case R_PARISC_DLTIND14F:
1194 case R_PARISC_DLTIND14R:
1195 case R_PARISC_DLTIND21L:
1196 /* This symbol requires a global offset table entry. */
1197 need_entry = NEED_GOT;
1198 break;
1199
1200 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1201 case R_PARISC_PLABEL21L:
1202 case R_PARISC_PLABEL32:
1203 /* If the addend is non-zero, we break badly. */
1204 if (rela->r_addend != 0)
1205 abort ();
1206
1207 /* If we are creating a shared library, then we need to
1208 create a PLT entry for all PLABELs, because PLABELs with
1209 local symbols may be passed via a pointer to another
1210 object. Additionally, output a dynamic relocation
1211 pointing to the PLT entry.
1212
1213 For executables, the original 32-bit ABI allowed two
1214 different styles of PLABELs (function pointers): For
1215 global functions, the PLABEL word points into the .plt
1216 two bytes past a (function address, gp) pair, and for
1217 local functions the PLABEL points directly at the
1218 function. The magic +2 for the first type allows us to
1219 differentiate between the two. As you can imagine, this
1220 is a real pain when it comes to generating code to call
1221 functions indirectly or to compare function pointers.
1222 We avoid the mess by always pointing a PLABEL into the
1223 .plt, even for local functions. */
1224 need_entry = PLT_PLABEL | NEED_PLT;
1225 if (bfd_link_pic (info))
1226 need_entry |= NEED_DYNREL;
1227 break;
1228
1229 case R_PARISC_PCREL12F:
1230 htab->has_12bit_branch = 1;
1231 goto branch_common;
1232
1233 case R_PARISC_PCREL17C:
1234 case R_PARISC_PCREL17F:
1235 htab->has_17bit_branch = 1;
1236 goto branch_common;
1237
1238 case R_PARISC_PCREL22F:
1239 htab->has_22bit_branch = 1;
1240 branch_common:
1241 /* Function calls might need to go through the .plt, and
1242 might require long branch stubs. */
1243 if (hh == NULL)
1244 {
1245 /* We know local syms won't need a .plt entry, and if
1246 they need a long branch stub we can't guarantee that
1247 we can reach the stub. So just flag an error later
1248 if we're doing a shared link and find we need a long
1249 branch stub. */
1250 continue;
1251 }
1252 else
1253 {
1254 /* Global symbols will need a .plt entry if they remain
1255 global, and in most cases won't need a long branch
1256 stub. Unfortunately, we have to cater for the case
1257 where a symbol is forced local by versioning, or due
1258 to symbolic linking, and we lose the .plt entry. */
1259 need_entry = NEED_PLT;
1260 if (hh->eh.type == STT_PARISC_MILLI)
1261 need_entry = 0;
1262 }
1263 break;
1264
1265 case R_PARISC_SEGBASE: /* Used to set segment base. */
1266 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1267 case R_PARISC_PCREL14F: /* PC relative load/store. */
1268 case R_PARISC_PCREL14R:
1269 case R_PARISC_PCREL17R: /* External branches. */
1270 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1271 case R_PARISC_PCREL32:
1272 /* We don't need to propagate the relocation if linking a
1273 shared object since these are section relative. */
1274 continue;
1275
1276 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1277 case R_PARISC_DPREL14R:
1278 case R_PARISC_DPREL21L:
1279 if (bfd_link_pic (info))
1280 {
1281 _bfd_error_handler
1282 /* xgettext:c-format */
1283 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1284 abfd,
1285 elf_hppa_howto_table[r_type].name);
1286 bfd_set_error (bfd_error_bad_value);
1287 return FALSE;
1288 }
1289 /* Fall through. */
1290
1291 case R_PARISC_DIR17F: /* Used for external branches. */
1292 case R_PARISC_DIR17R:
1293 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1294 case R_PARISC_DIR14R:
1295 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1296 case R_PARISC_DIR32: /* .word relocs. */
1297 /* We may want to output a dynamic relocation later. */
1298 need_entry = NEED_DYNREL;
1299 break;
1300
1301 /* This relocation describes the C++ object vtable hierarchy.
1302 Reconstruct it for later use during GC. */
1303 case R_PARISC_GNU_VTINHERIT:
1304 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1305 return FALSE;
1306 continue;
1307
1308 /* This relocation describes which C++ vtable entries are actually
1309 used. Record for later use during GC. */
1310 case R_PARISC_GNU_VTENTRY:
1311 if (!bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1312 return FALSE;
1313 continue;
1314
1315 case R_PARISC_TLS_GD21L:
1316 case R_PARISC_TLS_GD14R:
1317 case R_PARISC_TLS_LDM21L:
1318 case R_PARISC_TLS_LDM14R:
1319 need_entry = NEED_GOT;
1320 break;
1321
1322 case R_PARISC_TLS_IE21L:
1323 case R_PARISC_TLS_IE14R:
1324 if (bfd_link_dll (info))
1325 info->flags |= DF_STATIC_TLS;
1326 need_entry = NEED_GOT;
1327 break;
1328
1329 default:
1330 continue;
1331 }
1332
1333 /* Now carry out our orders. */
1334 if (need_entry & NEED_GOT)
1335 {
1336 int tls_type = GOT_NORMAL;
1337
1338 switch (r_type)
1339 {
1340 default:
1341 break;
1342 case R_PARISC_TLS_GD21L:
1343 case R_PARISC_TLS_GD14R:
1344 tls_type = GOT_TLS_GD;
1345 break;
1346 case R_PARISC_TLS_LDM21L:
1347 case R_PARISC_TLS_LDM14R:
1348 tls_type = GOT_TLS_LDM;
1349 break;
1350 case R_PARISC_TLS_IE21L:
1351 case R_PARISC_TLS_IE14R:
1352 tls_type = GOT_TLS_IE;
1353 break;
1354 }
1355
1356 /* Allocate space for a GOT entry, as well as a dynamic
1357 relocation for this entry. */
1358 if (htab->etab.sgot == NULL)
1359 {
1360 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1361 return FALSE;
1362 }
1363
1364 if (hh != NULL)
1365 {
1366 if (tls_type == GOT_TLS_LDM)
1367 htab->tls_ldm_got.refcount += 1;
1368 else
1369 hh->eh.got.refcount += 1;
1370 hh->tls_type |= tls_type;
1371 }
1372 else
1373 {
1374 bfd_signed_vma *local_got_refcounts;
1375
1376 /* This is a global offset table entry for a local symbol. */
1377 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1378 if (local_got_refcounts == NULL)
1379 return FALSE;
1380 if (tls_type == GOT_TLS_LDM)
1381 htab->tls_ldm_got.refcount += 1;
1382 else
1383 local_got_refcounts[r_symndx] += 1;
1384
1385 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1386 }
1387 }
1388
1389 if (need_entry & NEED_PLT)
1390 {
1391 /* If we are creating a shared library, and this is a reloc
1392 against a weak symbol or a global symbol in a dynamic
1393 object, then we will be creating an import stub and a
1394 .plt entry for the symbol. Similarly, on a normal link
1395 to symbols defined in a dynamic object we'll need the
1396 import stub and a .plt entry. We don't know yet whether
1397 the symbol is defined or not, so make an entry anyway and
1398 clean up later in adjust_dynamic_symbol. */
1399 if ((sec->flags & SEC_ALLOC) != 0)
1400 {
1401 if (hh != NULL)
1402 {
1403 hh->eh.needs_plt = 1;
1404 hh->eh.plt.refcount += 1;
1405
1406 /* If this .plt entry is for a plabel, mark it so
1407 that adjust_dynamic_symbol will keep the entry
1408 even if it appears to be local. */
1409 if (need_entry & PLT_PLABEL)
1410 hh->plabel = 1;
1411 }
1412 else if (need_entry & PLT_PLABEL)
1413 {
1414 bfd_signed_vma *local_got_refcounts;
1415 bfd_signed_vma *local_plt_refcounts;
1416
1417 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1418 if (local_got_refcounts == NULL)
1419 return FALSE;
1420 local_plt_refcounts = (local_got_refcounts
1421 + symtab_hdr->sh_info);
1422 local_plt_refcounts[r_symndx] += 1;
1423 }
1424 }
1425 }
1426
1427 if ((need_entry & NEED_DYNREL) != 0
1428 && (sec->flags & SEC_ALLOC) != 0)
1429 {
1430 /* Flag this symbol as having a non-got, non-plt reference
1431 so that we generate copy relocs if it turns out to be
1432 dynamic. */
1433 if (hh != NULL)
1434 hh->eh.non_got_ref = 1;
1435
1436 /* If we are creating a shared library then we need to copy
1437 the reloc into the shared library. However, if we are
1438 linking with -Bsymbolic, we need only copy absolute
1439 relocs or relocs against symbols that are not defined in
1440 an object we are including in the link. PC- or DP- or
1441 DLT-relative relocs against any local sym or global sym
1442 with DEF_REGULAR set, can be discarded. At this point we
1443 have not seen all the input files, so it is possible that
1444 DEF_REGULAR is not set now but will be set later (it is
1445 never cleared). We account for that possibility below by
1446 storing information in the dyn_relocs field of the
1447 hash table entry.
1448
1449 A similar situation to the -Bsymbolic case occurs when
1450 creating shared libraries and symbol visibility changes
1451 render the symbol local.
1452
1453 As it turns out, all the relocs we will be creating here
1454 are absolute, so we cannot remove them on -Bsymbolic
1455 links or visibility changes anyway. A STUB_REL reloc
1456 is absolute too, as in that case it is the reloc in the
1457 stub we will be creating, rather than copying the PCREL
1458 reloc in the branch.
1459
1460 If on the other hand, we are creating an executable, we
1461 may need to keep relocations for symbols satisfied by a
1462 dynamic library if we manage to avoid copy relocs for the
1463 symbol. */
1464 if ((bfd_link_pic (info)
1465 && (IS_ABSOLUTE_RELOC (r_type)
1466 || (hh != NULL
1467 && (!SYMBOLIC_BIND (info, &hh->eh)
1468 || hh->eh.root.type == bfd_link_hash_defweak
1469 || !hh->eh.def_regular))))
1470 || (ELIMINATE_COPY_RELOCS
1471 && !bfd_link_pic (info)
1472 && hh != NULL
1473 && (hh->eh.root.type == bfd_link_hash_defweak
1474 || !hh->eh.def_regular)))
1475 {
1476 struct elf_dyn_relocs *hdh_p;
1477 struct elf_dyn_relocs **hdh_head;
1478
1479 /* Create a reloc section in dynobj and make room for
1480 this reloc. */
1481 if (sreloc == NULL)
1482 {
1483 sreloc = _bfd_elf_make_dynamic_reloc_section
1484 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1485
1486 if (sreloc == NULL)
1487 {
1488 bfd_set_error (bfd_error_bad_value);
1489 return FALSE;
1490 }
1491 }
1492
1493 /* If this is a global symbol, we count the number of
1494 relocations we need for this symbol. */
1495 if (hh != NULL)
1496 {
1497 hdh_head = &hh->dyn_relocs;
1498 }
1499 else
1500 {
1501 /* Track dynamic relocs needed for local syms too.
1502 We really need local syms available to do this
1503 easily. Oh well. */
1504 asection *sr;
1505 void *vpp;
1506 Elf_Internal_Sym *isym;
1507
1508 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1509 abfd, r_symndx);
1510 if (isym == NULL)
1511 return FALSE;
1512
1513 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1514 if (sr == NULL)
1515 sr = sec;
1516
1517 vpp = &elf_section_data (sr)->local_dynrel;
1518 hdh_head = (struct elf_dyn_relocs **) vpp;
1519 }
1520
1521 hdh_p = *hdh_head;
1522 if (hdh_p == NULL || hdh_p->sec != sec)
1523 {
1524 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1525 if (hdh_p == NULL)
1526 return FALSE;
1527 hdh_p->next = *hdh_head;
1528 *hdh_head = hdh_p;
1529 hdh_p->sec = sec;
1530 hdh_p->count = 0;
1531 #if RELATIVE_DYNRELOCS
1532 hdh_p->pc_count = 0;
1533 #endif
1534 }
1535
1536 hdh_p->count += 1;
1537 #if RELATIVE_DYNRELOCS
1538 if (!IS_ABSOLUTE_RELOC (rtype))
1539 hdh_p->pc_count += 1;
1540 #endif
1541 }
1542 }
1543 }
1544
1545 return TRUE;
1546 }
1547
1548 /* Return the section that should be marked against garbage collection
1549 for a given relocation. */
1550
1551 static asection *
1552 elf32_hppa_gc_mark_hook (asection *sec,
1553 struct bfd_link_info *info,
1554 Elf_Internal_Rela *rela,
1555 struct elf_link_hash_entry *hh,
1556 Elf_Internal_Sym *sym)
1557 {
1558 if (hh != NULL)
1559 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1560 {
1561 case R_PARISC_GNU_VTINHERIT:
1562 case R_PARISC_GNU_VTENTRY:
1563 return NULL;
1564 }
1565
1566 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1567 }
1568
1569 /* Support for core dump NOTE sections. */
1570
1571 static bfd_boolean
1572 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1573 {
1574 int offset;
1575 size_t size;
1576
1577 switch (note->descsz)
1578 {
1579 default:
1580 return FALSE;
1581
1582 case 396: /* Linux/hppa */
1583 /* pr_cursig */
1584 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1585
1586 /* pr_pid */
1587 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1588
1589 /* pr_reg */
1590 offset = 72;
1591 size = 320;
1592
1593 break;
1594 }
1595
1596 /* Make a ".reg/999" section. */
1597 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1598 size, note->descpos + offset);
1599 }
1600
1601 static bfd_boolean
1602 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1603 {
1604 switch (note->descsz)
1605 {
1606 default:
1607 return FALSE;
1608
1609 case 124: /* Linux/hppa elf_prpsinfo. */
1610 elf_tdata (abfd)->core->program
1611 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1612 elf_tdata (abfd)->core->command
1613 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1614 }
1615
1616 /* Note that for some reason, a spurious space is tacked
1617 onto the end of the args in some (at least one anyway)
1618 implementations, so strip it off if it exists. */
1619 {
1620 char *command = elf_tdata (abfd)->core->command;
1621 int n = strlen (command);
1622
1623 if (0 < n && command[n - 1] == ' ')
1624 command[n - 1] = '\0';
1625 }
1626
1627 return TRUE;
1628 }
1629
1630 /* Our own version of hide_symbol, so that we can keep plt entries for
1631 plabels. */
1632
1633 static void
1634 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1635 struct elf_link_hash_entry *eh,
1636 bfd_boolean force_local)
1637 {
1638 if (force_local)
1639 {
1640 eh->forced_local = 1;
1641 if (eh->dynindx != -1)
1642 {
1643 eh->dynindx = -1;
1644 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1645 eh->dynstr_index);
1646 }
1647
1648 /* PR 16082: Remove version information from hidden symbol. */
1649 eh->verinfo.verdef = NULL;
1650 eh->verinfo.vertree = NULL;
1651 }
1652
1653 /* STT_GNU_IFUNC symbol must go through PLT. */
1654 if (! hppa_elf_hash_entry (eh)->plabel
1655 && eh->type != STT_GNU_IFUNC)
1656 {
1657 eh->needs_plt = 0;
1658 eh->plt = elf_hash_table (info)->init_plt_offset;
1659 }
1660 }
1661
1662 /* Find any dynamic relocs that apply to read-only sections. */
1663
1664 static asection *
1665 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1666 {
1667 struct elf32_hppa_link_hash_entry *hh;
1668 struct elf_dyn_relocs *hdh_p;
1669
1670 hh = hppa_elf_hash_entry (eh);
1671 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1672 {
1673 asection *sec = hdh_p->sec->output_section;
1674
1675 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1676 return hdh_p->sec;
1677 }
1678 return NULL;
1679 }
1680
1681 /* Return true if we have dynamic relocs against H or any of its weak
1682 aliases, that apply to read-only sections. Cannot be used after
1683 size_dynamic_sections. */
1684
1685 static bfd_boolean
1686 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1687 {
1688 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1689 do
1690 {
1691 if (readonly_dynrelocs (&hh->eh))
1692 return TRUE;
1693 hh = hppa_elf_hash_entry (hh->eh.u.alias);
1694 } while (hh != NULL && &hh->eh != eh);
1695
1696 return FALSE;
1697 }
1698
1699 /* Adjust a symbol defined by a dynamic object and referenced by a
1700 regular object. The current definition is in some section of the
1701 dynamic object, but we're not including those sections. We have to
1702 change the definition to something the rest of the link can
1703 understand. */
1704
1705 static bfd_boolean
1706 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1707 struct elf_link_hash_entry *eh)
1708 {
1709 struct elf32_hppa_link_hash_table *htab;
1710 asection *sec, *srel;
1711
1712 /* If this is a function, put it in the procedure linkage table. We
1713 will fill in the contents of the procedure linkage table later. */
1714 if (eh->type == STT_FUNC
1715 || eh->needs_plt)
1716 {
1717 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1718 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1719 /* Discard dyn_relocs when non-pic if we've decided that a
1720 function symbol is local. */
1721 if (!bfd_link_pic (info) && local)
1722 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1723
1724 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1725 The refcounts are not reliable when it has been hidden since
1726 hide_symbol can be called before the plabel flag is set. */
1727 if (hppa_elf_hash_entry (eh)->plabel)
1728 eh->plt.refcount = 1;
1729
1730 /* Note that unlike some other backends, the refcount is not
1731 incremented for a non-call (and non-plabel) function reference. */
1732 else if (eh->plt.refcount <= 0
1733 || local)
1734 {
1735 /* The .plt entry is not needed when:
1736 a) Garbage collection has removed all references to the
1737 symbol, or
1738 b) We know for certain the symbol is defined in this
1739 object, and it's not a weak definition, nor is the symbol
1740 used by a plabel relocation. Either this object is the
1741 application or we are doing a shared symbolic link. */
1742 eh->plt.offset = (bfd_vma) -1;
1743 eh->needs_plt = 0;
1744 }
1745
1746 /* Unlike other targets, elf32-hppa.c does not define a function
1747 symbol in a non-pic executable on PLT stub code, so we don't
1748 have a local definition in that case. ie. dyn_relocs can't
1749 be discarded. */
1750
1751 /* Function symbols can't have copy relocs. */
1752 return TRUE;
1753 }
1754 else
1755 eh->plt.offset = (bfd_vma) -1;
1756
1757 htab = hppa_link_hash_table (info);
1758 if (htab == NULL)
1759 return FALSE;
1760
1761 /* If this is a weak symbol, and there is a real definition, the
1762 processor independent code will have arranged for us to see the
1763 real definition first, and we can just use the same value. */
1764 if (eh->is_weakalias)
1765 {
1766 struct elf_link_hash_entry *def = weakdef (eh);
1767 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1768 eh->root.u.def.section = def->root.u.def.section;
1769 eh->root.u.def.value = def->root.u.def.value;
1770 if (def->root.u.def.section == htab->etab.sdynbss
1771 || def->root.u.def.section == htab->etab.sdynrelro)
1772 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1773 return TRUE;
1774 }
1775
1776 /* This is a reference to a symbol defined by a dynamic object which
1777 is not a function. */
1778
1779 /* If we are creating a shared library, we must presume that the
1780 only references to the symbol are via the global offset table.
1781 For such cases we need not do anything here; the relocations will
1782 be handled correctly by relocate_section. */
1783 if (bfd_link_pic (info))
1784 return TRUE;
1785
1786 /* If there are no references to this symbol that do not use the
1787 GOT, we don't need to generate a copy reloc. */
1788 if (!eh->non_got_ref)
1789 return TRUE;
1790
1791 /* If -z nocopyreloc was given, we won't generate them either. */
1792 if (info->nocopyreloc)
1793 return TRUE;
1794
1795 /* If we don't find any dynamic relocs in read-only sections, then
1796 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1797 if (ELIMINATE_COPY_RELOCS
1798 && !alias_readonly_dynrelocs (eh))
1799 return TRUE;
1800
1801 /* We must allocate the symbol in our .dynbss section, which will
1802 become part of the .bss section of the executable. There will be
1803 an entry for this symbol in the .dynsym section. The dynamic
1804 object will contain position independent code, so all references
1805 from the dynamic object to this symbol will go through the global
1806 offset table. The dynamic linker will use the .dynsym entry to
1807 determine the address it must put in the global offset table, so
1808 both the dynamic object and the regular object will refer to the
1809 same memory location for the variable. */
1810 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1811 {
1812 sec = htab->etab.sdynrelro;
1813 srel = htab->etab.sreldynrelro;
1814 }
1815 else
1816 {
1817 sec = htab->etab.sdynbss;
1818 srel = htab->etab.srelbss;
1819 }
1820 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1821 {
1822 /* We must generate a COPY reloc to tell the dynamic linker to
1823 copy the initial value out of the dynamic object and into the
1824 runtime process image. */
1825 srel->size += sizeof (Elf32_External_Rela);
1826 eh->needs_copy = 1;
1827 }
1828
1829 /* We no longer want dyn_relocs. */
1830 hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1831 return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1832 }
1833
1834 /* If EH is undefined, make it dynamic if that makes sense. */
1835
1836 static bfd_boolean
1837 ensure_undef_dynamic (struct bfd_link_info *info,
1838 struct elf_link_hash_entry *eh)
1839 {
1840 struct elf_link_hash_table *htab = elf_hash_table (info);
1841
1842 if (htab->dynamic_sections_created
1843 && (eh->root.type == bfd_link_hash_undefweak
1844 || eh->root.type == bfd_link_hash_undefined)
1845 && eh->dynindx == -1
1846 && !eh->forced_local
1847 && eh->type != STT_PARISC_MILLI
1848 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1849 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1850 return bfd_elf_link_record_dynamic_symbol (info, eh);
1851 return TRUE;
1852 }
1853
1854 /* Allocate space in the .plt for entries that won't have relocations.
1855 ie. plabel entries. */
1856
1857 static bfd_boolean
1858 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1859 {
1860 struct bfd_link_info *info;
1861 struct elf32_hppa_link_hash_table *htab;
1862 struct elf32_hppa_link_hash_entry *hh;
1863 asection *sec;
1864
1865 if (eh->root.type == bfd_link_hash_indirect)
1866 return TRUE;
1867
1868 info = (struct bfd_link_info *) inf;
1869 hh = hppa_elf_hash_entry (eh);
1870 htab = hppa_link_hash_table (info);
1871 if (htab == NULL)
1872 return FALSE;
1873
1874 if (htab->etab.dynamic_sections_created
1875 && eh->plt.refcount > 0)
1876 {
1877 if (!ensure_undef_dynamic (info, eh))
1878 return FALSE;
1879
1880 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1881 {
1882 /* Allocate these later. From this point on, h->plabel
1883 means that the plt entry is only used by a plabel.
1884 We'll be using a normal plt entry for this symbol, so
1885 clear the plabel indicator. */
1886
1887 hh->plabel = 0;
1888 }
1889 else if (hh->plabel)
1890 {
1891 /* Make an entry in the .plt section for plabel references
1892 that won't have a .plt entry for other reasons. */
1893 sec = htab->etab.splt;
1894 eh->plt.offset = sec->size;
1895 sec->size += PLT_ENTRY_SIZE;
1896 if (bfd_link_pic (info))
1897 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1898 }
1899 else
1900 {
1901 /* No .plt entry needed. */
1902 eh->plt.offset = (bfd_vma) -1;
1903 eh->needs_plt = 0;
1904 }
1905 }
1906 else
1907 {
1908 eh->plt.offset = (bfd_vma) -1;
1909 eh->needs_plt = 0;
1910 }
1911
1912 return TRUE;
1913 }
1914
1915 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */
1916
1917 static inline unsigned int
1918 got_entries_needed (int tls_type)
1919 {
1920 unsigned int need = 0;
1921
1922 if ((tls_type & GOT_NORMAL) != 0)
1923 need += GOT_ENTRY_SIZE;
1924 if ((tls_type & GOT_TLS_GD) != 0)
1925 need += GOT_ENTRY_SIZE * 2;
1926 if ((tls_type & GOT_TLS_IE) != 0)
1927 need += GOT_ENTRY_SIZE;
1928 return need;
1929 }
1930
1931 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1932 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be
1933 calculated at link time. DTPREL_KNOWN says the same for a DTPREL
1934 offset. */
1935
1936 static inline unsigned int
1937 got_relocs_needed (int tls_type, unsigned int need,
1938 bfd_boolean dtprel_known, bfd_boolean tprel_known)
1939 {
1940 /* All the entries we allocated need relocs.
1941 Except for GD and IE with local symbols. */
1942 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1943 need -= GOT_ENTRY_SIZE;
1944 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1945 need -= GOT_ENTRY_SIZE;
1946 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1947 }
1948
1949 /* Allocate space in .plt, .got and associated reloc sections for
1950 global syms. */
1951
1952 static bfd_boolean
1953 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1954 {
1955 struct bfd_link_info *info;
1956 struct elf32_hppa_link_hash_table *htab;
1957 asection *sec;
1958 struct elf32_hppa_link_hash_entry *hh;
1959 struct elf_dyn_relocs *hdh_p;
1960
1961 if (eh->root.type == bfd_link_hash_indirect)
1962 return TRUE;
1963
1964 info = inf;
1965 htab = hppa_link_hash_table (info);
1966 if (htab == NULL)
1967 return FALSE;
1968
1969 hh = hppa_elf_hash_entry (eh);
1970
1971 if (htab->etab.dynamic_sections_created
1972 && eh->plt.offset != (bfd_vma) -1
1973 && !hh->plabel
1974 && eh->plt.refcount > 0)
1975 {
1976 /* Make an entry in the .plt section. */
1977 sec = htab->etab.splt;
1978 eh->plt.offset = sec->size;
1979 sec->size += PLT_ENTRY_SIZE;
1980
1981 /* We also need to make an entry in the .rela.plt section. */
1982 htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1983 htab->need_plt_stub = 1;
1984 }
1985
1986 if (eh->got.refcount > 0)
1987 {
1988 unsigned int need;
1989
1990 if (!ensure_undef_dynamic (info, eh))
1991 return FALSE;
1992
1993 sec = htab->etab.sgot;
1994 eh->got.offset = sec->size;
1995 need = got_entries_needed (hh->tls_type);
1996 sec->size += need;
1997 if (htab->etab.dynamic_sections_created
1998 && (bfd_link_dll (info)
1999 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
2000 || (eh->dynindx != -1
2001 && !SYMBOL_REFERENCES_LOCAL (info, eh)))
2002 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2003 {
2004 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
2005 htab->etab.srelgot->size
2006 += got_relocs_needed (hh->tls_type, need, local,
2007 local && bfd_link_executable (info));
2008 }
2009 }
2010 else
2011 eh->got.offset = (bfd_vma) -1;
2012
2013 /* If no dynamic sections we can't have dynamic relocs. */
2014 if (!htab->etab.dynamic_sections_created)
2015 hh->dyn_relocs = NULL;
2016
2017 /* Discard relocs on undefined syms with non-default visibility. */
2018 else if ((eh->root.type == bfd_link_hash_undefined
2019 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2020 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
2021 hh->dyn_relocs = NULL;
2022
2023 if (hh->dyn_relocs == NULL)
2024 return TRUE;
2025
2026 /* If this is a -Bsymbolic shared link, then we need to discard all
2027 space allocated for dynamic pc-relative relocs against symbols
2028 defined in a regular object. For the normal shared case, discard
2029 space for relocs that have become local due to symbol visibility
2030 changes. */
2031 if (bfd_link_pic (info))
2032 {
2033 #if RELATIVE_DYNRELOCS
2034 if (SYMBOL_CALLS_LOCAL (info, eh))
2035 {
2036 struct elf_dyn_relocs **hdh_pp;
2037
2038 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2039 {
2040 hdh_p->count -= hdh_p->pc_count;
2041 hdh_p->pc_count = 0;
2042 if (hdh_p->count == 0)
2043 *hdh_pp = hdh_p->next;
2044 else
2045 hdh_pp = &hdh_p->next;
2046 }
2047 }
2048 #endif
2049
2050 if (hh->dyn_relocs != NULL)
2051 {
2052 if (!ensure_undef_dynamic (info, eh))
2053 return FALSE;
2054 }
2055 }
2056 else if (ELIMINATE_COPY_RELOCS)
2057 {
2058 /* For the non-shared case, discard space for relocs against
2059 symbols which turn out to need copy relocs or are not
2060 dynamic. */
2061
2062 if (eh->dynamic_adjusted
2063 && !eh->def_regular
2064 && !ELF_COMMON_DEF_P (eh))
2065 {
2066 if (!ensure_undef_dynamic (info, eh))
2067 return FALSE;
2068
2069 if (eh->dynindx == -1)
2070 hh->dyn_relocs = NULL;
2071 }
2072 else
2073 hh->dyn_relocs = NULL;
2074 }
2075
2076 /* Finally, allocate space. */
2077 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2078 {
2079 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2080 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2081 }
2082
2083 return TRUE;
2084 }
2085
2086 /* This function is called via elf_link_hash_traverse to force
2087 millicode symbols local so they do not end up as globals in the
2088 dynamic symbol table. We ought to be able to do this in
2089 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2090 for all dynamic symbols. Arguably, this is a bug in
2091 elf_adjust_dynamic_symbol. */
2092
2093 static bfd_boolean
2094 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2095 struct bfd_link_info *info)
2096 {
2097 if (eh->type == STT_PARISC_MILLI
2098 && !eh->forced_local)
2099 {
2100 elf32_hppa_hide_symbol (info, eh, TRUE);
2101 }
2102 return TRUE;
2103 }
2104
2105 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2106 read-only sections. */
2107
2108 static bfd_boolean
2109 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2110 {
2111 asection *sec;
2112
2113 if (eh->root.type == bfd_link_hash_indirect)
2114 return TRUE;
2115
2116 sec = readonly_dynrelocs (eh);
2117 if (sec != NULL)
2118 {
2119 struct bfd_link_info *info = (struct bfd_link_info *) inf;
2120
2121 info->flags |= DF_TEXTREL;
2122 info->callbacks->minfo
2123 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2124 sec->owner, eh->root.root.string, sec);
2125
2126 /* Not an error, just cut short the traversal. */
2127 return FALSE;
2128 }
2129 return TRUE;
2130 }
2131
2132 /* Set the sizes of the dynamic sections. */
2133
2134 static bfd_boolean
2135 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2136 struct bfd_link_info *info)
2137 {
2138 struct elf32_hppa_link_hash_table *htab;
2139 bfd *dynobj;
2140 bfd *ibfd;
2141 asection *sec;
2142 bfd_boolean relocs;
2143
2144 htab = hppa_link_hash_table (info);
2145 if (htab == NULL)
2146 return FALSE;
2147
2148 dynobj = htab->etab.dynobj;
2149 if (dynobj == NULL)
2150 abort ();
2151
2152 if (htab->etab.dynamic_sections_created)
2153 {
2154 /* Set the contents of the .interp section to the interpreter. */
2155 if (bfd_link_executable (info) && !info->nointerp)
2156 {
2157 sec = bfd_get_linker_section (dynobj, ".interp");
2158 if (sec == NULL)
2159 abort ();
2160 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2161 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2162 }
2163
2164 /* Force millicode symbols local. */
2165 elf_link_hash_traverse (&htab->etab,
2166 clobber_millicode_symbols,
2167 info);
2168 }
2169
2170 /* Set up .got and .plt offsets for local syms, and space for local
2171 dynamic relocs. */
2172 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2173 {
2174 bfd_signed_vma *local_got;
2175 bfd_signed_vma *end_local_got;
2176 bfd_signed_vma *local_plt;
2177 bfd_signed_vma *end_local_plt;
2178 bfd_size_type locsymcount;
2179 Elf_Internal_Shdr *symtab_hdr;
2180 asection *srel;
2181 char *local_tls_type;
2182
2183 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2184 continue;
2185
2186 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2187 {
2188 struct elf_dyn_relocs *hdh_p;
2189
2190 for (hdh_p = ((struct elf_dyn_relocs *)
2191 elf_section_data (sec)->local_dynrel);
2192 hdh_p != NULL;
2193 hdh_p = hdh_p->next)
2194 {
2195 if (!bfd_is_abs_section (hdh_p->sec)
2196 && bfd_is_abs_section (hdh_p->sec->output_section))
2197 {
2198 /* Input section has been discarded, either because
2199 it is a copy of a linkonce section or due to
2200 linker script /DISCARD/, so we'll be discarding
2201 the relocs too. */
2202 }
2203 else if (hdh_p->count != 0)
2204 {
2205 srel = elf_section_data (hdh_p->sec)->sreloc;
2206 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2207 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2208 info->flags |= DF_TEXTREL;
2209 }
2210 }
2211 }
2212
2213 local_got = elf_local_got_refcounts (ibfd);
2214 if (!local_got)
2215 continue;
2216
2217 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2218 locsymcount = symtab_hdr->sh_info;
2219 end_local_got = local_got + locsymcount;
2220 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2221 sec = htab->etab.sgot;
2222 srel = htab->etab.srelgot;
2223 for (; local_got < end_local_got; ++local_got)
2224 {
2225 if (*local_got > 0)
2226 {
2227 unsigned int need;
2228
2229 *local_got = sec->size;
2230 need = got_entries_needed (*local_tls_type);
2231 sec->size += need;
2232 if (bfd_link_dll (info)
2233 || (bfd_link_pic (info)
2234 && (*local_tls_type & GOT_NORMAL) != 0))
2235 htab->etab.srelgot->size
2236 += got_relocs_needed (*local_tls_type, need, TRUE,
2237 bfd_link_executable (info));
2238 }
2239 else
2240 *local_got = (bfd_vma) -1;
2241
2242 ++local_tls_type;
2243 }
2244
2245 local_plt = end_local_got;
2246 end_local_plt = local_plt + locsymcount;
2247 if (! htab->etab.dynamic_sections_created)
2248 {
2249 /* Won't be used, but be safe. */
2250 for (; local_plt < end_local_plt; ++local_plt)
2251 *local_plt = (bfd_vma) -1;
2252 }
2253 else
2254 {
2255 sec = htab->etab.splt;
2256 srel = htab->etab.srelplt;
2257 for (; local_plt < end_local_plt; ++local_plt)
2258 {
2259 if (*local_plt > 0)
2260 {
2261 *local_plt = sec->size;
2262 sec->size += PLT_ENTRY_SIZE;
2263 if (bfd_link_pic (info))
2264 srel->size += sizeof (Elf32_External_Rela);
2265 }
2266 else
2267 *local_plt = (bfd_vma) -1;
2268 }
2269 }
2270 }
2271
2272 if (htab->tls_ldm_got.refcount > 0)
2273 {
2274 /* Allocate 2 got entries and 1 dynamic reloc for
2275 R_PARISC_TLS_DTPMOD32 relocs. */
2276 htab->tls_ldm_got.offset = htab->etab.sgot->size;
2277 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2278 htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2279 }
2280 else
2281 htab->tls_ldm_got.offset = -1;
2282
2283 /* Do all the .plt entries without relocs first. The dynamic linker
2284 uses the last .plt reloc to find the end of the .plt (and hence
2285 the start of the .got) for lazy linking. */
2286 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2287
2288 /* Allocate global sym .plt and .got entries, and space for global
2289 sym dynamic relocs. */
2290 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2291
2292 /* The check_relocs and adjust_dynamic_symbol entry points have
2293 determined the sizes of the various dynamic sections. Allocate
2294 memory for them. */
2295 relocs = FALSE;
2296 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2297 {
2298 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2299 continue;
2300
2301 if (sec == htab->etab.splt)
2302 {
2303 if (htab->need_plt_stub)
2304 {
2305 /* Make space for the plt stub at the end of the .plt
2306 section. We want this stub right at the end, up
2307 against the .got section. */
2308 int gotalign = bfd_section_alignment (htab->etab.sgot);
2309 int pltalign = bfd_section_alignment (sec);
2310 int align = gotalign > 3 ? gotalign : 3;
2311 bfd_size_type mask;
2312
2313 if (align > pltalign)
2314 bfd_set_section_alignment (sec, align);
2315 mask = ((bfd_size_type) 1 << gotalign) - 1;
2316 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2317 }
2318 }
2319 else if (sec == htab->etab.sgot
2320 || sec == htab->etab.sdynbss
2321 || sec == htab->etab.sdynrelro)
2322 ;
2323 else if (CONST_STRNEQ (bfd_section_name (sec), ".rela"))
2324 {
2325 if (sec->size != 0)
2326 {
2327 /* Remember whether there are any reloc sections other
2328 than .rela.plt. */
2329 if (sec != htab->etab.srelplt)
2330 relocs = TRUE;
2331
2332 /* We use the reloc_count field as a counter if we need
2333 to copy relocs into the output file. */
2334 sec->reloc_count = 0;
2335 }
2336 }
2337 else
2338 {
2339 /* It's not one of our sections, so don't allocate space. */
2340 continue;
2341 }
2342
2343 if (sec->size == 0)
2344 {
2345 /* If we don't need this section, strip it from the
2346 output file. This is mostly to handle .rela.bss and
2347 .rela.plt. We must create both sections in
2348 create_dynamic_sections, because they must be created
2349 before the linker maps input sections to output
2350 sections. The linker does that before
2351 adjust_dynamic_symbol is called, and it is that
2352 function which decides whether anything needs to go
2353 into these sections. */
2354 sec->flags |= SEC_EXCLUDE;
2355 continue;
2356 }
2357
2358 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2359 continue;
2360
2361 /* Allocate memory for the section contents. Zero it, because
2362 we may not fill in all the reloc sections. */
2363 sec->contents = bfd_zalloc (dynobj, sec->size);
2364 if (sec->contents == NULL)
2365 return FALSE;
2366 }
2367
2368 if (htab->etab.dynamic_sections_created)
2369 {
2370 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2371 actually has nothing to do with the PLT, it is how we
2372 communicate the LTP value of a load module to the dynamic
2373 linker. */
2374 #define add_dynamic_entry(TAG, VAL) \
2375 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2376
2377 if (!add_dynamic_entry (DT_PLTGOT, 0))
2378 return FALSE;
2379
2380 /* Add some entries to the .dynamic section. We fill in the
2381 values later, in elf32_hppa_finish_dynamic_sections, but we
2382 must add the entries now so that we get the correct size for
2383 the .dynamic section. The DT_DEBUG entry is filled in by the
2384 dynamic linker and used by the debugger. */
2385 if (bfd_link_executable (info))
2386 {
2387 if (!add_dynamic_entry (DT_DEBUG, 0))
2388 return FALSE;
2389 }
2390
2391 if (htab->etab.srelplt->size != 0)
2392 {
2393 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2394 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2395 || !add_dynamic_entry (DT_JMPREL, 0))
2396 return FALSE;
2397 }
2398
2399 if (relocs)
2400 {
2401 if (!add_dynamic_entry (DT_RELA, 0)
2402 || !add_dynamic_entry (DT_RELASZ, 0)
2403 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2404 return FALSE;
2405
2406 /* If any dynamic relocs apply to a read-only section,
2407 then we need a DT_TEXTREL entry. */
2408 if ((info->flags & DF_TEXTREL) == 0)
2409 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2410
2411 if ((info->flags & DF_TEXTREL) != 0)
2412 {
2413 if (!add_dynamic_entry (DT_TEXTREL, 0))
2414 return FALSE;
2415 }
2416 }
2417 }
2418 #undef add_dynamic_entry
2419
2420 return TRUE;
2421 }
2422
2423 /* External entry points for sizing and building linker stubs. */
2424
2425 /* Set up various things so that we can make a list of input sections
2426 for each output section included in the link. Returns -1 on error,
2427 0 when no stubs will be needed, and 1 on success. */
2428
2429 int
2430 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2431 {
2432 bfd *input_bfd;
2433 unsigned int bfd_count;
2434 unsigned int top_id, top_index;
2435 asection *section;
2436 asection **input_list, **list;
2437 size_t amt;
2438 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2439
2440 if (htab == NULL)
2441 return -1;
2442
2443 /* Count the number of input BFDs and find the top input section id. */
2444 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2445 input_bfd != NULL;
2446 input_bfd = input_bfd->link.next)
2447 {
2448 bfd_count += 1;
2449 for (section = input_bfd->sections;
2450 section != NULL;
2451 section = section->next)
2452 {
2453 if (top_id < section->id)
2454 top_id = section->id;
2455 }
2456 }
2457 htab->bfd_count = bfd_count;
2458
2459 amt = sizeof (struct map_stub) * (top_id + 1);
2460 htab->stub_group = bfd_zmalloc (amt);
2461 if (htab->stub_group == NULL)
2462 return -1;
2463
2464 /* We can't use output_bfd->section_count here to find the top output
2465 section index as some sections may have been removed, and
2466 strip_excluded_output_sections doesn't renumber the indices. */
2467 for (section = output_bfd->sections, top_index = 0;
2468 section != NULL;
2469 section = section->next)
2470 {
2471 if (top_index < section->index)
2472 top_index = section->index;
2473 }
2474
2475 htab->top_index = top_index;
2476 amt = sizeof (asection *) * (top_index + 1);
2477 input_list = bfd_malloc (amt);
2478 htab->input_list = input_list;
2479 if (input_list == NULL)
2480 return -1;
2481
2482 /* For sections we aren't interested in, mark their entries with a
2483 value we can check later. */
2484 list = input_list + top_index;
2485 do
2486 *list = bfd_abs_section_ptr;
2487 while (list-- != input_list);
2488
2489 for (section = output_bfd->sections;
2490 section != NULL;
2491 section = section->next)
2492 {
2493 if ((section->flags & SEC_CODE) != 0)
2494 input_list[section->index] = NULL;
2495 }
2496
2497 return 1;
2498 }
2499
2500 /* The linker repeatedly calls this function for each input section,
2501 in the order that input sections are linked into output sections.
2502 Build lists of input sections to determine groupings between which
2503 we may insert linker stubs. */
2504
2505 void
2506 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2507 {
2508 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2509
2510 if (htab == NULL)
2511 return;
2512
2513 if (isec->output_section->index <= htab->top_index)
2514 {
2515 asection **list = htab->input_list + isec->output_section->index;
2516 if (*list != bfd_abs_section_ptr)
2517 {
2518 /* Steal the link_sec pointer for our list. */
2519 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2520 /* This happens to make the list in reverse order,
2521 which is what we want. */
2522 PREV_SEC (isec) = *list;
2523 *list = isec;
2524 }
2525 }
2526 }
2527
2528 /* See whether we can group stub sections together. Grouping stub
2529 sections may result in fewer stubs. More importantly, we need to
2530 put all .init* and .fini* stubs at the beginning of the .init or
2531 .fini output sections respectively, because glibc splits the
2532 _init and _fini functions into multiple parts. Putting a stub in
2533 the middle of a function is not a good idea. */
2534
2535 static void
2536 group_sections (struct elf32_hppa_link_hash_table *htab,
2537 bfd_size_type stub_group_size,
2538 bfd_boolean stubs_always_before_branch)
2539 {
2540 asection **list = htab->input_list + htab->top_index;
2541 do
2542 {
2543 asection *tail = *list;
2544 if (tail == bfd_abs_section_ptr)
2545 continue;
2546 while (tail != NULL)
2547 {
2548 asection *curr;
2549 asection *prev;
2550 bfd_size_type total;
2551 bfd_boolean big_sec;
2552
2553 curr = tail;
2554 total = tail->size;
2555 big_sec = total >= stub_group_size;
2556
2557 while ((prev = PREV_SEC (curr)) != NULL
2558 && ((total += curr->output_offset - prev->output_offset)
2559 < stub_group_size))
2560 curr = prev;
2561
2562 /* OK, the size from the start of CURR to the end is less
2563 than 240000 bytes and thus can be handled by one stub
2564 section. (or the tail section is itself larger than
2565 240000 bytes, in which case we may be toast.)
2566 We should really be keeping track of the total size of
2567 stubs added here, as stubs contribute to the final output
2568 section size. That's a little tricky, and this way will
2569 only break if stubs added total more than 22144 bytes, or
2570 2768 long branch stubs. It seems unlikely for more than
2571 2768 different functions to be called, especially from
2572 code only 240000 bytes long. This limit used to be
2573 250000, but c++ code tends to generate lots of little
2574 functions, and sometimes violated the assumption. */
2575 do
2576 {
2577 prev = PREV_SEC (tail);
2578 /* Set up this stub group. */
2579 htab->stub_group[tail->id].link_sec = curr;
2580 }
2581 while (tail != curr && (tail = prev) != NULL);
2582
2583 /* But wait, there's more! Input sections up to 240000
2584 bytes before the stub section can be handled by it too.
2585 Don't do this if we have a really large section after the
2586 stubs, as adding more stubs increases the chance that
2587 branches may not reach into the stub section. */
2588 if (!stubs_always_before_branch && !big_sec)
2589 {
2590 total = 0;
2591 while (prev != NULL
2592 && ((total += tail->output_offset - prev->output_offset)
2593 < stub_group_size))
2594 {
2595 tail = prev;
2596 prev = PREV_SEC (tail);
2597 htab->stub_group[tail->id].link_sec = curr;
2598 }
2599 }
2600 tail = prev;
2601 }
2602 }
2603 while (list-- != htab->input_list);
2604 free (htab->input_list);
2605 #undef PREV_SEC
2606 }
2607
2608 /* Read in all local syms for all input bfds, and create hash entries
2609 for export stubs if we are building a multi-subspace shared lib.
2610 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2611
2612 static int
2613 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2614 {
2615 unsigned int bfd_indx;
2616 Elf_Internal_Sym *local_syms, **all_local_syms;
2617 int stub_changed = 0;
2618 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2619
2620 if (htab == NULL)
2621 return -1;
2622
2623 /* We want to read in symbol extension records only once. To do this
2624 we need to read in the local symbols in parallel and save them for
2625 later use; so hold pointers to the local symbols in an array. */
2626 size_t amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2627 all_local_syms = bfd_zmalloc (amt);
2628 htab->all_local_syms = all_local_syms;
2629 if (all_local_syms == NULL)
2630 return -1;
2631
2632 /* Walk over all the input BFDs, swapping in local symbols.
2633 If we are creating a shared library, create hash entries for the
2634 export stubs. */
2635 for (bfd_indx = 0;
2636 input_bfd != NULL;
2637 input_bfd = input_bfd->link.next, bfd_indx++)
2638 {
2639 Elf_Internal_Shdr *symtab_hdr;
2640
2641 /* We'll need the symbol table in a second. */
2642 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2643 if (symtab_hdr->sh_info == 0)
2644 continue;
2645
2646 /* We need an array of the local symbols attached to the input bfd. */
2647 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2648 if (local_syms == NULL)
2649 {
2650 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2651 symtab_hdr->sh_info, 0,
2652 NULL, NULL, NULL);
2653 /* Cache them for elf_link_input_bfd. */
2654 symtab_hdr->contents = (unsigned char *) local_syms;
2655 }
2656 if (local_syms == NULL)
2657 return -1;
2658
2659 all_local_syms[bfd_indx] = local_syms;
2660
2661 if (bfd_link_pic (info) && htab->multi_subspace)
2662 {
2663 struct elf_link_hash_entry **eh_syms;
2664 struct elf_link_hash_entry **eh_symend;
2665 unsigned int symcount;
2666
2667 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2668 - symtab_hdr->sh_info);
2669 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2670 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2671
2672 /* Look through the global syms for functions; We need to
2673 build export stubs for all globally visible functions. */
2674 for (; eh_syms < eh_symend; eh_syms++)
2675 {
2676 struct elf32_hppa_link_hash_entry *hh;
2677
2678 hh = hppa_elf_hash_entry (*eh_syms);
2679
2680 while (hh->eh.root.type == bfd_link_hash_indirect
2681 || hh->eh.root.type == bfd_link_hash_warning)
2682 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2683
2684 /* At this point in the link, undefined syms have been
2685 resolved, so we need to check that the symbol was
2686 defined in this BFD. */
2687 if ((hh->eh.root.type == bfd_link_hash_defined
2688 || hh->eh.root.type == bfd_link_hash_defweak)
2689 && hh->eh.type == STT_FUNC
2690 && hh->eh.root.u.def.section->output_section != NULL
2691 && (hh->eh.root.u.def.section->output_section->owner
2692 == output_bfd)
2693 && hh->eh.root.u.def.section->owner == input_bfd
2694 && hh->eh.def_regular
2695 && !hh->eh.forced_local
2696 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2697 {
2698 asection *sec;
2699 const char *stub_name;
2700 struct elf32_hppa_stub_hash_entry *hsh;
2701
2702 sec = hh->eh.root.u.def.section;
2703 stub_name = hh_name (hh);
2704 hsh = hppa_stub_hash_lookup (&htab->bstab,
2705 stub_name,
2706 FALSE, FALSE);
2707 if (hsh == NULL)
2708 {
2709 hsh = hppa_add_stub (stub_name, sec, htab);
2710 if (!hsh)
2711 return -1;
2712
2713 hsh->target_value = hh->eh.root.u.def.value;
2714 hsh->target_section = hh->eh.root.u.def.section;
2715 hsh->stub_type = hppa_stub_export;
2716 hsh->hh = hh;
2717 stub_changed = 1;
2718 }
2719 else
2720 {
2721 /* xgettext:c-format */
2722 _bfd_error_handler (_("%pB: duplicate export stub %s"),
2723 input_bfd, stub_name);
2724 }
2725 }
2726 }
2727 }
2728 }
2729
2730 return stub_changed;
2731 }
2732
2733 /* Determine and set the size of the stub section for a final link.
2734
2735 The basic idea here is to examine all the relocations looking for
2736 PC-relative calls to a target that is unreachable with a "bl"
2737 instruction. */
2738
2739 bfd_boolean
2740 elf32_hppa_size_stubs
2741 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2742 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2743 asection * (*add_stub_section) (const char *, asection *),
2744 void (*layout_sections_again) (void))
2745 {
2746 bfd_size_type stub_group_size;
2747 bfd_boolean stubs_always_before_branch;
2748 bfd_boolean stub_changed;
2749 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2750
2751 if (htab == NULL)
2752 return FALSE;
2753
2754 /* Stash our params away. */
2755 htab->stub_bfd = stub_bfd;
2756 htab->multi_subspace = multi_subspace;
2757 htab->add_stub_section = add_stub_section;
2758 htab->layout_sections_again = layout_sections_again;
2759 stubs_always_before_branch = group_size < 0;
2760 if (group_size < 0)
2761 stub_group_size = -group_size;
2762 else
2763 stub_group_size = group_size;
2764 if (stub_group_size == 1)
2765 {
2766 /* Default values. */
2767 if (stubs_always_before_branch)
2768 {
2769 stub_group_size = 7680000;
2770 if (htab->has_17bit_branch || htab->multi_subspace)
2771 stub_group_size = 240000;
2772 if (htab->has_12bit_branch)
2773 stub_group_size = 7500;
2774 }
2775 else
2776 {
2777 stub_group_size = 6971392;
2778 if (htab->has_17bit_branch || htab->multi_subspace)
2779 stub_group_size = 217856;
2780 if (htab->has_12bit_branch)
2781 stub_group_size = 6808;
2782 }
2783 }
2784
2785 group_sections (htab, stub_group_size, stubs_always_before_branch);
2786
2787 switch (get_local_syms (output_bfd, info->input_bfds, info))
2788 {
2789 default:
2790 if (htab->all_local_syms)
2791 goto error_ret_free_local;
2792 return FALSE;
2793
2794 case 0:
2795 stub_changed = FALSE;
2796 break;
2797
2798 case 1:
2799 stub_changed = TRUE;
2800 break;
2801 }
2802
2803 while (1)
2804 {
2805 bfd *input_bfd;
2806 unsigned int bfd_indx;
2807 asection *stub_sec;
2808
2809 for (input_bfd = info->input_bfds, bfd_indx = 0;
2810 input_bfd != NULL;
2811 input_bfd = input_bfd->link.next, bfd_indx++)
2812 {
2813 Elf_Internal_Shdr *symtab_hdr;
2814 asection *section;
2815 Elf_Internal_Sym *local_syms;
2816
2817 /* We'll need the symbol table in a second. */
2818 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2819 if (symtab_hdr->sh_info == 0)
2820 continue;
2821
2822 local_syms = htab->all_local_syms[bfd_indx];
2823
2824 /* Walk over each section attached to the input bfd. */
2825 for (section = input_bfd->sections;
2826 section != NULL;
2827 section = section->next)
2828 {
2829 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2830
2831 /* If there aren't any relocs, then there's nothing more
2832 to do. */
2833 if ((section->flags & SEC_RELOC) == 0
2834 || (section->flags & SEC_ALLOC) == 0
2835 || (section->flags & SEC_LOAD) == 0
2836 || (section->flags & SEC_CODE) == 0
2837 || section->reloc_count == 0)
2838 continue;
2839
2840 /* If this section is a link-once section that will be
2841 discarded, then don't create any stubs. */
2842 if (section->output_section == NULL
2843 || section->output_section->owner != output_bfd)
2844 continue;
2845
2846 /* Get the relocs. */
2847 internal_relocs
2848 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2849 info->keep_memory);
2850 if (internal_relocs == NULL)
2851 goto error_ret_free_local;
2852
2853 /* Now examine each relocation. */
2854 irela = internal_relocs;
2855 irelaend = irela + section->reloc_count;
2856 for (; irela < irelaend; irela++)
2857 {
2858 unsigned int r_type, r_indx;
2859 enum elf32_hppa_stub_type stub_type;
2860 struct elf32_hppa_stub_hash_entry *hsh;
2861 asection *sym_sec;
2862 bfd_vma sym_value;
2863 bfd_vma destination;
2864 struct elf32_hppa_link_hash_entry *hh;
2865 char *stub_name;
2866 const asection *id_sec;
2867
2868 r_type = ELF32_R_TYPE (irela->r_info);
2869 r_indx = ELF32_R_SYM (irela->r_info);
2870
2871 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2872 {
2873 bfd_set_error (bfd_error_bad_value);
2874 error_ret_free_internal:
2875 if (elf_section_data (section)->relocs == NULL)
2876 free (internal_relocs);
2877 goto error_ret_free_local;
2878 }
2879
2880 /* Only look for stubs on call instructions. */
2881 if (r_type != (unsigned int) R_PARISC_PCREL12F
2882 && r_type != (unsigned int) R_PARISC_PCREL17F
2883 && r_type != (unsigned int) R_PARISC_PCREL22F)
2884 continue;
2885
2886 /* Now determine the call target, its name, value,
2887 section. */
2888 sym_sec = NULL;
2889 sym_value = 0;
2890 destination = -1;
2891 hh = NULL;
2892 if (r_indx < symtab_hdr->sh_info)
2893 {
2894 /* It's a local symbol. */
2895 Elf_Internal_Sym *sym;
2896 Elf_Internal_Shdr *hdr;
2897 unsigned int shndx;
2898
2899 sym = local_syms + r_indx;
2900 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2901 sym_value = sym->st_value;
2902 shndx = sym->st_shndx;
2903 if (shndx < elf_numsections (input_bfd))
2904 {
2905 hdr = elf_elfsections (input_bfd)[shndx];
2906 sym_sec = hdr->bfd_section;
2907 destination = (sym_value + irela->r_addend
2908 + sym_sec->output_offset
2909 + sym_sec->output_section->vma);
2910 }
2911 }
2912 else
2913 {
2914 /* It's an external symbol. */
2915 int e_indx;
2916
2917 e_indx = r_indx - symtab_hdr->sh_info;
2918 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2919
2920 while (hh->eh.root.type == bfd_link_hash_indirect
2921 || hh->eh.root.type == bfd_link_hash_warning)
2922 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2923
2924 if (hh->eh.root.type == bfd_link_hash_defined
2925 || hh->eh.root.type == bfd_link_hash_defweak)
2926 {
2927 sym_sec = hh->eh.root.u.def.section;
2928 sym_value = hh->eh.root.u.def.value;
2929 if (sym_sec->output_section != NULL)
2930 destination = (sym_value + irela->r_addend
2931 + sym_sec->output_offset
2932 + sym_sec->output_section->vma);
2933 }
2934 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2935 {
2936 if (! bfd_link_pic (info))
2937 continue;
2938 }
2939 else if (hh->eh.root.type == bfd_link_hash_undefined)
2940 {
2941 if (! (info->unresolved_syms_in_objects == RM_IGNORE
2942 && (ELF_ST_VISIBILITY (hh->eh.other)
2943 == STV_DEFAULT)
2944 && hh->eh.type != STT_PARISC_MILLI))
2945 continue;
2946 }
2947 else
2948 {
2949 bfd_set_error (bfd_error_bad_value);
2950 goto error_ret_free_internal;
2951 }
2952 }
2953
2954 /* Determine what (if any) linker stub is needed. */
2955 stub_type = hppa_type_of_stub (section, irela, hh,
2956 destination, info);
2957 if (stub_type == hppa_stub_none)
2958 continue;
2959
2960 /* Support for grouping stub sections. */
2961 id_sec = htab->stub_group[section->id].link_sec;
2962
2963 /* Get the name of this stub. */
2964 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2965 if (!stub_name)
2966 goto error_ret_free_internal;
2967
2968 hsh = hppa_stub_hash_lookup (&htab->bstab,
2969 stub_name,
2970 FALSE, FALSE);
2971 if (hsh != NULL)
2972 {
2973 /* The proper stub has already been created. */
2974 free (stub_name);
2975 continue;
2976 }
2977
2978 hsh = hppa_add_stub (stub_name, section, htab);
2979 if (hsh == NULL)
2980 {
2981 free (stub_name);
2982 goto error_ret_free_internal;
2983 }
2984
2985 hsh->target_value = sym_value;
2986 hsh->target_section = sym_sec;
2987 hsh->stub_type = stub_type;
2988 if (bfd_link_pic (info))
2989 {
2990 if (stub_type == hppa_stub_import)
2991 hsh->stub_type = hppa_stub_import_shared;
2992 else if (stub_type == hppa_stub_long_branch)
2993 hsh->stub_type = hppa_stub_long_branch_shared;
2994 }
2995 hsh->hh = hh;
2996 stub_changed = TRUE;
2997 }
2998
2999 /* We're done with the internal relocs, free them. */
3000 if (elf_section_data (section)->relocs == NULL)
3001 free (internal_relocs);
3002 }
3003 }
3004
3005 if (!stub_changed)
3006 break;
3007
3008 /* OK, we've added some stubs. Find out the new size of the
3009 stub sections. */
3010 for (stub_sec = htab->stub_bfd->sections;
3011 stub_sec != NULL;
3012 stub_sec = stub_sec->next)
3013 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
3014 stub_sec->size = 0;
3015
3016 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3017
3018 /* Ask the linker to do its stuff. */
3019 (*htab->layout_sections_again) ();
3020 stub_changed = FALSE;
3021 }
3022
3023 free (htab->all_local_syms);
3024 return TRUE;
3025
3026 error_ret_free_local:
3027 free (htab->all_local_syms);
3028 return FALSE;
3029 }
3030
3031 /* For a final link, this function is called after we have sized the
3032 stubs to provide a value for __gp. */
3033
3034 bfd_boolean
3035 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3036 {
3037 struct bfd_link_hash_entry *h;
3038 asection *sec = NULL;
3039 bfd_vma gp_val = 0;
3040
3041 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3042
3043 if (h != NULL
3044 && (h->type == bfd_link_hash_defined
3045 || h->type == bfd_link_hash_defweak))
3046 {
3047 gp_val = h->u.def.value;
3048 sec = h->u.def.section;
3049 }
3050 else
3051 {
3052 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3053 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3054
3055 /* Choose to point our LTP at, in this order, one of .plt, .got,
3056 or .data, if these sections exist. In the case of choosing
3057 .plt try to make the LTP ideal for addressing anywhere in the
3058 .plt or .got with a 14 bit signed offset. Typically, the end
3059 of the .plt is the start of the .got, so choose .plt + 0x2000
3060 if either the .plt or .got is larger than 0x2000. If both
3061 the .plt and .got are smaller than 0x2000, choose the end of
3062 the .plt section. */
3063 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3064 ? NULL : splt;
3065 if (sec != NULL)
3066 {
3067 gp_val = sec->size;
3068 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3069 {
3070 gp_val = 0x2000;
3071 }
3072 }
3073 else
3074 {
3075 sec = sgot;
3076 if (sec != NULL)
3077 {
3078 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3079 {
3080 /* We know we don't have a .plt. If .got is large,
3081 offset our LTP. */
3082 if (sec->size > 0x2000)
3083 gp_val = 0x2000;
3084 }
3085 }
3086 else
3087 {
3088 /* No .plt or .got. Who cares what the LTP is? */
3089 sec = bfd_get_section_by_name (abfd, ".data");
3090 }
3091 }
3092
3093 if (h != NULL)
3094 {
3095 h->type = bfd_link_hash_defined;
3096 h->u.def.value = gp_val;
3097 if (sec != NULL)
3098 h->u.def.section = sec;
3099 else
3100 h->u.def.section = bfd_abs_section_ptr;
3101 }
3102 }
3103
3104 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3105 {
3106 if (sec != NULL && sec->output_section != NULL)
3107 gp_val += sec->output_section->vma + sec->output_offset;
3108
3109 elf_gp (abfd) = gp_val;
3110 }
3111 return TRUE;
3112 }
3113
3114 /* Build all the stubs associated with the current output file. The
3115 stubs are kept in a hash table attached to the main linker hash
3116 table. We also set up the .plt entries for statically linked PIC
3117 functions here. This function is called via hppaelf_finish in the
3118 linker. */
3119
3120 bfd_boolean
3121 elf32_hppa_build_stubs (struct bfd_link_info *info)
3122 {
3123 asection *stub_sec;
3124 struct bfd_hash_table *table;
3125 struct elf32_hppa_link_hash_table *htab;
3126
3127 htab = hppa_link_hash_table (info);
3128 if (htab == NULL)
3129 return FALSE;
3130
3131 for (stub_sec = htab->stub_bfd->sections;
3132 stub_sec != NULL;
3133 stub_sec = stub_sec->next)
3134 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3135 && stub_sec->size != 0)
3136 {
3137 /* Allocate memory to hold the linker stubs. */
3138 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3139 if (stub_sec->contents == NULL)
3140 return FALSE;
3141 stub_sec->size = 0;
3142 }
3143
3144 /* Build the stubs as directed by the stub hash table. */
3145 table = &htab->bstab;
3146 bfd_hash_traverse (table, hppa_build_one_stub, info);
3147
3148 return TRUE;
3149 }
3150
3151 /* Return the base vma address which should be subtracted from the real
3152 address when resolving a dtpoff relocation.
3153 This is PT_TLS segment p_vaddr. */
3154
3155 static bfd_vma
3156 dtpoff_base (struct bfd_link_info *info)
3157 {
3158 /* If tls_sec is NULL, we should have signalled an error already. */
3159 if (elf_hash_table (info)->tls_sec == NULL)
3160 return 0;
3161 return elf_hash_table (info)->tls_sec->vma;
3162 }
3163
3164 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3165
3166 static bfd_vma
3167 tpoff (struct bfd_link_info *info, bfd_vma address)
3168 {
3169 struct elf_link_hash_table *htab = elf_hash_table (info);
3170
3171 /* If tls_sec is NULL, we should have signalled an error already. */
3172 if (htab->tls_sec == NULL)
3173 return 0;
3174 /* hppa TLS ABI is variant I and static TLS block start just after
3175 tcbhead structure which has 2 pointer fields. */
3176 return (address - htab->tls_sec->vma
3177 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3178 }
3179
3180 /* Perform a final link. */
3181
3182 static bfd_boolean
3183 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3184 {
3185 struct stat buf;
3186
3187 /* Invoke the regular ELF linker to do all the work. */
3188 if (!bfd_elf_final_link (abfd, info))
3189 return FALSE;
3190
3191 /* If we're producing a final executable, sort the contents of the
3192 unwind section. */
3193 if (bfd_link_relocatable (info))
3194 return TRUE;
3195
3196 /* Do not attempt to sort non-regular files. This is here
3197 especially for configure scripts and kernel builds which run
3198 tests with "ld [...] -o /dev/null". */
3199 if (stat (bfd_get_filename (abfd), &buf) != 0
3200 || !S_ISREG(buf.st_mode))
3201 return TRUE;
3202
3203 return elf_hppa_sort_unwind (abfd);
3204 }
3205
3206 /* Record the lowest address for the data and text segments. */
3207
3208 static void
3209 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3210 {
3211 struct elf32_hppa_link_hash_table *htab;
3212
3213 htab = (struct elf32_hppa_link_hash_table*) data;
3214 if (htab == NULL)
3215 return;
3216
3217 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3218 {
3219 bfd_vma value;
3220 Elf_Internal_Phdr *p;
3221
3222 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3223 BFD_ASSERT (p != NULL);
3224 value = p->p_vaddr;
3225
3226 if ((section->flags & SEC_READONLY) != 0)
3227 {
3228 if (value < htab->text_segment_base)
3229 htab->text_segment_base = value;
3230 }
3231 else
3232 {
3233 if (value < htab->data_segment_base)
3234 htab->data_segment_base = value;
3235 }
3236 }
3237 }
3238
3239 /* Perform a relocation as part of a final link. */
3240
3241 static bfd_reloc_status_type
3242 final_link_relocate (asection *input_section,
3243 bfd_byte *contents,
3244 const Elf_Internal_Rela *rela,
3245 bfd_vma value,
3246 struct elf32_hppa_link_hash_table *htab,
3247 asection *sym_sec,
3248 struct elf32_hppa_link_hash_entry *hh,
3249 struct bfd_link_info *info)
3250 {
3251 unsigned int insn;
3252 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3253 unsigned int orig_r_type = r_type;
3254 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3255 int r_format = howto->bitsize;
3256 enum hppa_reloc_field_selector_type_alt r_field;
3257 bfd *input_bfd = input_section->owner;
3258 bfd_vma offset = rela->r_offset;
3259 bfd_vma max_branch_offset = 0;
3260 bfd_byte *hit_data = contents + offset;
3261 bfd_signed_vma addend = rela->r_addend;
3262 bfd_vma location;
3263 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3264 int val;
3265
3266 if (r_type == R_PARISC_NONE)
3267 return bfd_reloc_ok;
3268
3269 insn = bfd_get_32 (input_bfd, hit_data);
3270
3271 /* Find out where we are and where we're going. */
3272 location = (offset +
3273 input_section->output_offset +
3274 input_section->output_section->vma);
3275
3276 /* If we are not building a shared library, convert DLTIND relocs to
3277 DPREL relocs. */
3278 if (!bfd_link_pic (info))
3279 {
3280 switch (r_type)
3281 {
3282 case R_PARISC_DLTIND21L:
3283 case R_PARISC_TLS_GD21L:
3284 case R_PARISC_TLS_LDM21L:
3285 case R_PARISC_TLS_IE21L:
3286 r_type = R_PARISC_DPREL21L;
3287 break;
3288
3289 case R_PARISC_DLTIND14R:
3290 case R_PARISC_TLS_GD14R:
3291 case R_PARISC_TLS_LDM14R:
3292 case R_PARISC_TLS_IE14R:
3293 r_type = R_PARISC_DPREL14R;
3294 break;
3295
3296 case R_PARISC_DLTIND14F:
3297 r_type = R_PARISC_DPREL14F;
3298 break;
3299 }
3300 }
3301
3302 switch (r_type)
3303 {
3304 case R_PARISC_PCREL12F:
3305 case R_PARISC_PCREL17F:
3306 case R_PARISC_PCREL22F:
3307 /* If this call should go via the plt, find the import stub in
3308 the stub hash. */
3309 if (sym_sec == NULL
3310 || sym_sec->output_section == NULL
3311 || (hh != NULL
3312 && hh->eh.plt.offset != (bfd_vma) -1
3313 && hh->eh.dynindx != -1
3314 && !hh->plabel
3315 && (bfd_link_pic (info)
3316 || !hh->eh.def_regular
3317 || hh->eh.root.type == bfd_link_hash_defweak)))
3318 {
3319 hsh = hppa_get_stub_entry (input_section, sym_sec,
3320 hh, rela, htab);
3321 if (hsh != NULL)
3322 {
3323 value = (hsh->stub_offset
3324 + hsh->stub_sec->output_offset
3325 + hsh->stub_sec->output_section->vma);
3326 addend = 0;
3327 }
3328 else if (sym_sec == NULL && hh != NULL
3329 && hh->eh.root.type == bfd_link_hash_undefweak)
3330 {
3331 /* It's OK if undefined weak. Calls to undefined weak
3332 symbols behave as if the "called" function
3333 immediately returns. We can thus call to a weak
3334 function without first checking whether the function
3335 is defined. */
3336 value = location;
3337 addend = 8;
3338 }
3339 else
3340 return bfd_reloc_undefined;
3341 }
3342 /* Fall thru. */
3343
3344 case R_PARISC_PCREL21L:
3345 case R_PARISC_PCREL17C:
3346 case R_PARISC_PCREL17R:
3347 case R_PARISC_PCREL14R:
3348 case R_PARISC_PCREL14F:
3349 case R_PARISC_PCREL32:
3350 /* Make it a pc relative offset. */
3351 value -= location;
3352 addend -= 8;
3353 break;
3354
3355 case R_PARISC_DPREL21L:
3356 case R_PARISC_DPREL14R:
3357 case R_PARISC_DPREL14F:
3358 /* Convert instructions that use the linkage table pointer (r19) to
3359 instructions that use the global data pointer (dp). This is the
3360 most efficient way of using PIC code in an incomplete executable,
3361 but the user must follow the standard runtime conventions for
3362 accessing data for this to work. */
3363 if (orig_r_type != r_type)
3364 {
3365 if (r_type == R_PARISC_DPREL21L)
3366 {
3367 /* GCC sometimes uses a register other than r19 for the
3368 operation, so we must convert any addil instruction
3369 that uses this relocation. */
3370 if ((insn & 0xfc000000) == OP_ADDIL << 26)
3371 insn = ADDIL_DP;
3372 else
3373 /* We must have a ldil instruction. It's too hard to find
3374 and convert the associated add instruction, so issue an
3375 error. */
3376 _bfd_error_handler
3377 /* xgettext:c-format */
3378 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3379 "is not supported in a non-shared link"),
3380 input_bfd,
3381 input_section,
3382 (uint64_t) offset,
3383 howto->name,
3384 insn);
3385 }
3386 else if (r_type == R_PARISC_DPREL14F)
3387 {
3388 /* This must be a format 1 load/store. Change the base
3389 register to dp. */
3390 insn = (insn & 0xfc1ffff) | (27 << 21);
3391 }
3392 }
3393
3394 /* For all the DP relative relocations, we need to examine the symbol's
3395 section. If it has no section or if it's a code section, then
3396 "data pointer relative" makes no sense. In that case we don't
3397 adjust the "value", and for 21 bit addil instructions, we change the
3398 source addend register from %dp to %r0. This situation commonly
3399 arises for undefined weak symbols and when a variable's "constness"
3400 is declared differently from the way the variable is defined. For
3401 instance: "extern int foo" with foo defined as "const int foo". */
3402 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3403 {
3404 if ((insn & ((0x3fu << 26) | (0x1f << 21)))
3405 == ((OP_ADDIL << 26) | (27 << 21)))
3406 {
3407 insn &= ~ (0x1f << 21);
3408 }
3409 /* Now try to make things easy for the dynamic linker. */
3410
3411 break;
3412 }
3413 /* Fall thru. */
3414
3415 case R_PARISC_DLTIND21L:
3416 case R_PARISC_DLTIND14R:
3417 case R_PARISC_DLTIND14F:
3418 case R_PARISC_TLS_GD21L:
3419 case R_PARISC_TLS_LDM21L:
3420 case R_PARISC_TLS_IE21L:
3421 case R_PARISC_TLS_GD14R:
3422 case R_PARISC_TLS_LDM14R:
3423 case R_PARISC_TLS_IE14R:
3424 value -= elf_gp (input_section->output_section->owner);
3425 break;
3426
3427 case R_PARISC_SEGREL32:
3428 if ((sym_sec->flags & SEC_CODE) != 0)
3429 value -= htab->text_segment_base;
3430 else
3431 value -= htab->data_segment_base;
3432 break;
3433
3434 default:
3435 break;
3436 }
3437
3438 switch (r_type)
3439 {
3440 case R_PARISC_DIR32:
3441 case R_PARISC_DIR14F:
3442 case R_PARISC_DIR17F:
3443 case R_PARISC_PCREL17C:
3444 case R_PARISC_PCREL14F:
3445 case R_PARISC_PCREL32:
3446 case R_PARISC_DPREL14F:
3447 case R_PARISC_PLABEL32:
3448 case R_PARISC_DLTIND14F:
3449 case R_PARISC_SEGBASE:
3450 case R_PARISC_SEGREL32:
3451 case R_PARISC_TLS_DTPMOD32:
3452 case R_PARISC_TLS_DTPOFF32:
3453 case R_PARISC_TLS_TPREL32:
3454 r_field = e_fsel;
3455 break;
3456
3457 case R_PARISC_DLTIND21L:
3458 case R_PARISC_PCREL21L:
3459 case R_PARISC_PLABEL21L:
3460 r_field = e_lsel;
3461 break;
3462
3463 case R_PARISC_DIR21L:
3464 case R_PARISC_DPREL21L:
3465 case R_PARISC_TLS_GD21L:
3466 case R_PARISC_TLS_LDM21L:
3467 case R_PARISC_TLS_LDO21L:
3468 case R_PARISC_TLS_IE21L:
3469 case R_PARISC_TLS_LE21L:
3470 r_field = e_lrsel;
3471 break;
3472
3473 case R_PARISC_PCREL17R:
3474 case R_PARISC_PCREL14R:
3475 case R_PARISC_PLABEL14R:
3476 case R_PARISC_DLTIND14R:
3477 r_field = e_rsel;
3478 break;
3479
3480 case R_PARISC_DIR17R:
3481 case R_PARISC_DIR14R:
3482 case R_PARISC_DPREL14R:
3483 case R_PARISC_TLS_GD14R:
3484 case R_PARISC_TLS_LDM14R:
3485 case R_PARISC_TLS_LDO14R:
3486 case R_PARISC_TLS_IE14R:
3487 case R_PARISC_TLS_LE14R:
3488 r_field = e_rrsel;
3489 break;
3490
3491 case R_PARISC_PCREL12F:
3492 case R_PARISC_PCREL17F:
3493 case R_PARISC_PCREL22F:
3494 r_field = e_fsel;
3495
3496 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3497 {
3498 max_branch_offset = (1 << (17-1)) << 2;
3499 }
3500 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3501 {
3502 max_branch_offset = (1 << (12-1)) << 2;
3503 }
3504 else
3505 {
3506 max_branch_offset = (1 << (22-1)) << 2;
3507 }
3508
3509 /* sym_sec is NULL on undefined weak syms or when shared on
3510 undefined syms. We've already checked for a stub for the
3511 shared undefined case. */
3512 if (sym_sec == NULL)
3513 break;
3514
3515 /* If the branch is out of reach, then redirect the
3516 call to the local stub for this function. */
3517 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3518 {
3519 hsh = hppa_get_stub_entry (input_section, sym_sec,
3520 hh, rela, htab);
3521 if (hsh == NULL)
3522 return bfd_reloc_undefined;
3523
3524 /* Munge up the value and addend so that we call the stub
3525 rather than the procedure directly. */
3526 value = (hsh->stub_offset
3527 + hsh->stub_sec->output_offset
3528 + hsh->stub_sec->output_section->vma
3529 - location);
3530 addend = -8;
3531 }
3532 break;
3533
3534 /* Something we don't know how to handle. */
3535 default:
3536 return bfd_reloc_notsupported;
3537 }
3538
3539 /* Make sure we can reach the stub. */
3540 if (max_branch_offset != 0
3541 && value + addend + max_branch_offset >= 2*max_branch_offset)
3542 {
3543 _bfd_error_handler
3544 /* xgettext:c-format */
3545 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3546 "recompile with -ffunction-sections"),
3547 input_bfd,
3548 input_section,
3549 (uint64_t) offset,
3550 hsh->bh_root.string);
3551 bfd_set_error (bfd_error_bad_value);
3552 return bfd_reloc_notsupported;
3553 }
3554
3555 val = hppa_field_adjust (value, addend, r_field);
3556
3557 switch (r_type)
3558 {
3559 case R_PARISC_PCREL12F:
3560 case R_PARISC_PCREL17C:
3561 case R_PARISC_PCREL17F:
3562 case R_PARISC_PCREL17R:
3563 case R_PARISC_PCREL22F:
3564 case R_PARISC_DIR17F:
3565 case R_PARISC_DIR17R:
3566 /* This is a branch. Divide the offset by four.
3567 Note that we need to decide whether it's a branch or
3568 otherwise by inspecting the reloc. Inspecting insn won't
3569 work as insn might be from a .word directive. */
3570 val >>= 2;
3571 break;
3572
3573 default:
3574 break;
3575 }
3576
3577 insn = hppa_rebuild_insn (insn, val, r_format);
3578
3579 /* Update the instruction word. */
3580 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3581 return bfd_reloc_ok;
3582 }
3583
3584 /* Relocate an HPPA ELF section. */
3585
3586 static bfd_boolean
3587 elf32_hppa_relocate_section (bfd *output_bfd,
3588 struct bfd_link_info *info,
3589 bfd *input_bfd,
3590 asection *input_section,
3591 bfd_byte *contents,
3592 Elf_Internal_Rela *relocs,
3593 Elf_Internal_Sym *local_syms,
3594 asection **local_sections)
3595 {
3596 bfd_vma *local_got_offsets;
3597 struct elf32_hppa_link_hash_table *htab;
3598 Elf_Internal_Shdr *symtab_hdr;
3599 Elf_Internal_Rela *rela;
3600 Elf_Internal_Rela *relend;
3601
3602 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3603
3604 htab = hppa_link_hash_table (info);
3605 if (htab == NULL)
3606 return FALSE;
3607
3608 local_got_offsets = elf_local_got_offsets (input_bfd);
3609
3610 rela = relocs;
3611 relend = relocs + input_section->reloc_count;
3612 for (; rela < relend; rela++)
3613 {
3614 unsigned int r_type;
3615 reloc_howto_type *howto;
3616 unsigned int r_symndx;
3617 struct elf32_hppa_link_hash_entry *hh;
3618 Elf_Internal_Sym *sym;
3619 asection *sym_sec;
3620 bfd_vma relocation;
3621 bfd_reloc_status_type rstatus;
3622 const char *sym_name;
3623 bfd_boolean plabel;
3624 bfd_boolean warned_undef;
3625
3626 r_type = ELF32_R_TYPE (rela->r_info);
3627 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3628 {
3629 bfd_set_error (bfd_error_bad_value);
3630 return FALSE;
3631 }
3632 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3633 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3634 continue;
3635
3636 r_symndx = ELF32_R_SYM (rela->r_info);
3637 hh = NULL;
3638 sym = NULL;
3639 sym_sec = NULL;
3640 warned_undef = FALSE;
3641 if (r_symndx < symtab_hdr->sh_info)
3642 {
3643 /* This is a local symbol, h defaults to NULL. */
3644 sym = local_syms + r_symndx;
3645 sym_sec = local_sections[r_symndx];
3646 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3647 }
3648 else
3649 {
3650 struct elf_link_hash_entry *eh;
3651 bfd_boolean unresolved_reloc, ignored;
3652 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3653
3654 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3655 r_symndx, symtab_hdr, sym_hashes,
3656 eh, sym_sec, relocation,
3657 unresolved_reloc, warned_undef,
3658 ignored);
3659
3660 if (!bfd_link_relocatable (info)
3661 && relocation == 0
3662 && eh->root.type != bfd_link_hash_defined
3663 && eh->root.type != bfd_link_hash_defweak
3664 && eh->root.type != bfd_link_hash_undefweak)
3665 {
3666 if (info->unresolved_syms_in_objects == RM_IGNORE
3667 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3668 && eh->type == STT_PARISC_MILLI)
3669 {
3670 (*info->callbacks->undefined_symbol)
3671 (info, eh_name (eh), input_bfd,
3672 input_section, rela->r_offset, FALSE);
3673 warned_undef = TRUE;
3674 }
3675 }
3676 hh = hppa_elf_hash_entry (eh);
3677 }
3678
3679 if (sym_sec != NULL && discarded_section (sym_sec))
3680 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3681 rela, 1, relend,
3682 elf_hppa_howto_table + r_type, 0,
3683 contents);
3684
3685 if (bfd_link_relocatable (info))
3686 continue;
3687
3688 /* Do any required modifications to the relocation value, and
3689 determine what types of dynamic info we need to output, if
3690 any. */
3691 plabel = 0;
3692 switch (r_type)
3693 {
3694 case R_PARISC_DLTIND14F:
3695 case R_PARISC_DLTIND14R:
3696 case R_PARISC_DLTIND21L:
3697 {
3698 bfd_vma off;
3699 bfd_boolean do_got = FALSE;
3700 bfd_boolean reloc = bfd_link_pic (info);
3701
3702 /* Relocation is to the entry for this symbol in the
3703 global offset table. */
3704 if (hh != NULL)
3705 {
3706 bfd_boolean dyn;
3707
3708 off = hh->eh.got.offset;
3709 dyn = htab->etab.dynamic_sections_created;
3710 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3711 && (reloc
3712 || (hh->eh.dynindx != -1
3713 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3714 if (!reloc
3715 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3716 bfd_link_pic (info),
3717 &hh->eh))
3718 {
3719 /* If we aren't going to call finish_dynamic_symbol,
3720 then we need to handle initialisation of the .got
3721 entry and create needed relocs here. Since the
3722 offset must always be a multiple of 4, we use the
3723 least significant bit to record whether we have
3724 initialised it already. */
3725 if ((off & 1) != 0)
3726 off &= ~1;
3727 else
3728 {
3729 hh->eh.got.offset |= 1;
3730 do_got = TRUE;
3731 }
3732 }
3733 }
3734 else
3735 {
3736 /* Local symbol case. */
3737 if (local_got_offsets == NULL)
3738 abort ();
3739
3740 off = local_got_offsets[r_symndx];
3741
3742 /* The offset must always be a multiple of 4. We use
3743 the least significant bit to record whether we have
3744 already generated the necessary reloc. */
3745 if ((off & 1) != 0)
3746 off &= ~1;
3747 else
3748 {
3749 local_got_offsets[r_symndx] |= 1;
3750 do_got = TRUE;
3751 }
3752 }
3753
3754 if (do_got)
3755 {
3756 if (reloc)
3757 {
3758 /* Output a dynamic relocation for this GOT entry.
3759 In this case it is relative to the base of the
3760 object because the symbol index is zero. */
3761 Elf_Internal_Rela outrel;
3762 bfd_byte *loc;
3763 asection *sec = htab->etab.srelgot;
3764
3765 outrel.r_offset = (off
3766 + htab->etab.sgot->output_offset
3767 + htab->etab.sgot->output_section->vma);
3768 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3769 outrel.r_addend = relocation;
3770 loc = sec->contents;
3771 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3772 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3773 }
3774 else
3775 bfd_put_32 (output_bfd, relocation,
3776 htab->etab.sgot->contents + off);
3777 }
3778
3779 if (off >= (bfd_vma) -2)
3780 abort ();
3781
3782 /* Add the base of the GOT to the relocation value. */
3783 relocation = (off
3784 + htab->etab.sgot->output_offset
3785 + htab->etab.sgot->output_section->vma);
3786 }
3787 break;
3788
3789 case R_PARISC_SEGREL32:
3790 /* If this is the first SEGREL relocation, then initialize
3791 the segment base values. */
3792 if (htab->text_segment_base == (bfd_vma) -1)
3793 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3794 break;
3795
3796 case R_PARISC_PLABEL14R:
3797 case R_PARISC_PLABEL21L:
3798 case R_PARISC_PLABEL32:
3799 if (htab->etab.dynamic_sections_created)
3800 {
3801 bfd_vma off;
3802 bfd_boolean do_plt = 0;
3803 /* If we have a global symbol with a PLT slot, then
3804 redirect this relocation to it. */
3805 if (hh != NULL)
3806 {
3807 off = hh->eh.plt.offset;
3808 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3809 bfd_link_pic (info),
3810 &hh->eh))
3811 {
3812 /* In a non-shared link, adjust_dynamic_symbol
3813 isn't called for symbols forced local. We
3814 need to write out the plt entry here. */
3815 if ((off & 1) != 0)
3816 off &= ~1;
3817 else
3818 {
3819 hh->eh.plt.offset |= 1;
3820 do_plt = 1;
3821 }
3822 }
3823 }
3824 else
3825 {
3826 bfd_vma *local_plt_offsets;
3827
3828 if (local_got_offsets == NULL)
3829 abort ();
3830
3831 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3832 off = local_plt_offsets[r_symndx];
3833
3834 /* As for the local .got entry case, we use the last
3835 bit to record whether we've already initialised
3836 this local .plt entry. */
3837 if ((off & 1) != 0)
3838 off &= ~1;
3839 else
3840 {
3841 local_plt_offsets[r_symndx] |= 1;
3842 do_plt = 1;
3843 }
3844 }
3845
3846 if (do_plt)
3847 {
3848 if (bfd_link_pic (info))
3849 {
3850 /* Output a dynamic IPLT relocation for this
3851 PLT entry. */
3852 Elf_Internal_Rela outrel;
3853 bfd_byte *loc;
3854 asection *s = htab->etab.srelplt;
3855
3856 outrel.r_offset = (off
3857 + htab->etab.splt->output_offset
3858 + htab->etab.splt->output_section->vma);
3859 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3860 outrel.r_addend = relocation;
3861 loc = s->contents;
3862 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3863 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3864 }
3865 else
3866 {
3867 bfd_put_32 (output_bfd,
3868 relocation,
3869 htab->etab.splt->contents + off);
3870 bfd_put_32 (output_bfd,
3871 elf_gp (htab->etab.splt->output_section->owner),
3872 htab->etab.splt->contents + off + 4);
3873 }
3874 }
3875
3876 if (off >= (bfd_vma) -2)
3877 abort ();
3878
3879 /* PLABELs contain function pointers. Relocation is to
3880 the entry for the function in the .plt. The magic +2
3881 offset signals to $$dyncall that the function pointer
3882 is in the .plt and thus has a gp pointer too.
3883 Exception: Undefined PLABELs should have a value of
3884 zero. */
3885 if (hh == NULL
3886 || (hh->eh.root.type != bfd_link_hash_undefweak
3887 && hh->eh.root.type != bfd_link_hash_undefined))
3888 {
3889 relocation = (off
3890 + htab->etab.splt->output_offset
3891 + htab->etab.splt->output_section->vma
3892 + 2);
3893 }
3894 plabel = 1;
3895 }
3896 /* Fall through. */
3897
3898 case R_PARISC_DIR17F:
3899 case R_PARISC_DIR17R:
3900 case R_PARISC_DIR14F:
3901 case R_PARISC_DIR14R:
3902 case R_PARISC_DIR21L:
3903 case R_PARISC_DPREL14F:
3904 case R_PARISC_DPREL14R:
3905 case R_PARISC_DPREL21L:
3906 case R_PARISC_DIR32:
3907 if ((input_section->flags & SEC_ALLOC) == 0)
3908 break;
3909
3910 if (bfd_link_pic (info)
3911 ? ((hh == NULL
3912 || hh->dyn_relocs != NULL)
3913 && ((hh != NULL && pc_dynrelocs (hh))
3914 || IS_ABSOLUTE_RELOC (r_type)))
3915 : (hh != NULL
3916 && hh->dyn_relocs != NULL))
3917 {
3918 Elf_Internal_Rela outrel;
3919 bfd_boolean skip;
3920 asection *sreloc;
3921 bfd_byte *loc;
3922
3923 /* When generating a shared object, these relocations
3924 are copied into the output file to be resolved at run
3925 time. */
3926
3927 outrel.r_addend = rela->r_addend;
3928 outrel.r_offset =
3929 _bfd_elf_section_offset (output_bfd, info, input_section,
3930 rela->r_offset);
3931 skip = (outrel.r_offset == (bfd_vma) -1
3932 || outrel.r_offset == (bfd_vma) -2);
3933 outrel.r_offset += (input_section->output_offset
3934 + input_section->output_section->vma);
3935
3936 if (skip)
3937 {
3938 memset (&outrel, 0, sizeof (outrel));
3939 }
3940 else if (hh != NULL
3941 && hh->eh.dynindx != -1
3942 && (plabel
3943 || !IS_ABSOLUTE_RELOC (r_type)
3944 || !bfd_link_pic (info)
3945 || !SYMBOLIC_BIND (info, &hh->eh)
3946 || !hh->eh.def_regular))
3947 {
3948 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3949 }
3950 else /* It's a local symbol, or one marked to become local. */
3951 {
3952 int indx = 0;
3953
3954 /* Add the absolute offset of the symbol. */
3955 outrel.r_addend += relocation;
3956
3957 /* Global plabels need to be processed by the
3958 dynamic linker so that functions have at most one
3959 fptr. For this reason, we need to differentiate
3960 between global and local plabels, which we do by
3961 providing the function symbol for a global plabel
3962 reloc, and no symbol for local plabels. */
3963 if (! plabel
3964 && sym_sec != NULL
3965 && sym_sec->output_section != NULL
3966 && ! bfd_is_abs_section (sym_sec))
3967 {
3968 asection *osec;
3969
3970 osec = sym_sec->output_section;
3971 indx = elf_section_data (osec)->dynindx;
3972 if (indx == 0)
3973 {
3974 osec = htab->etab.text_index_section;
3975 indx = elf_section_data (osec)->dynindx;
3976 }
3977 BFD_ASSERT (indx != 0);
3978
3979 /* We are turning this relocation into one
3980 against a section symbol, so subtract out the
3981 output section's address but not the offset
3982 of the input section in the output section. */
3983 outrel.r_addend -= osec->vma;
3984 }
3985
3986 outrel.r_info = ELF32_R_INFO (indx, r_type);
3987 }
3988 sreloc = elf_section_data (input_section)->sreloc;
3989 if (sreloc == NULL)
3990 abort ();
3991
3992 loc = sreloc->contents;
3993 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3994 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3995 }
3996 break;
3997
3998 case R_PARISC_TLS_LDM21L:
3999 case R_PARISC_TLS_LDM14R:
4000 {
4001 bfd_vma off;
4002
4003 off = htab->tls_ldm_got.offset;
4004 if (off & 1)
4005 off &= ~1;
4006 else
4007 {
4008 Elf_Internal_Rela outrel;
4009 bfd_byte *loc;
4010
4011 outrel.r_offset = (off
4012 + htab->etab.sgot->output_section->vma
4013 + htab->etab.sgot->output_offset);
4014 outrel.r_addend = 0;
4015 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4016 loc = htab->etab.srelgot->contents;
4017 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4018
4019 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4020 htab->tls_ldm_got.offset |= 1;
4021 }
4022
4023 /* Add the base of the GOT to the relocation value. */
4024 relocation = (off
4025 + htab->etab.sgot->output_offset
4026 + htab->etab.sgot->output_section->vma);
4027
4028 break;
4029 }
4030
4031 case R_PARISC_TLS_LDO21L:
4032 case R_PARISC_TLS_LDO14R:
4033 relocation -= dtpoff_base (info);
4034 break;
4035
4036 case R_PARISC_TLS_GD21L:
4037 case R_PARISC_TLS_GD14R:
4038 case R_PARISC_TLS_IE21L:
4039 case R_PARISC_TLS_IE14R:
4040 {
4041 bfd_vma off;
4042 int indx;
4043 char tls_type;
4044
4045 indx = 0;
4046 if (hh != NULL)
4047 {
4048 if (!htab->etab.dynamic_sections_created
4049 || hh->eh.dynindx == -1
4050 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4051 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4052 /* This is actually a static link, or it is a
4053 -Bsymbolic link and the symbol is defined
4054 locally, or the symbol was forced to be local
4055 because of a version file. */
4056 ;
4057 else
4058 indx = hh->eh.dynindx;
4059 off = hh->eh.got.offset;
4060 tls_type = hh->tls_type;
4061 }
4062 else
4063 {
4064 off = local_got_offsets[r_symndx];
4065 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4066 }
4067
4068 if (tls_type == GOT_UNKNOWN)
4069 abort ();
4070
4071 if ((off & 1) != 0)
4072 off &= ~1;
4073 else
4074 {
4075 bfd_boolean need_relocs = FALSE;
4076 Elf_Internal_Rela outrel;
4077 bfd_byte *loc = NULL;
4078 int cur_off = off;
4079
4080 /* The GOT entries have not been initialized yet. Do it
4081 now, and emit any relocations. If both an IE GOT and a
4082 GD GOT are necessary, we emit the GD first. */
4083
4084 if (indx != 0
4085 || (bfd_link_dll (info)
4086 && (hh == NULL
4087 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4088 {
4089 need_relocs = TRUE;
4090 loc = htab->etab.srelgot->contents;
4091 loc += (htab->etab.srelgot->reloc_count
4092 * sizeof (Elf32_External_Rela));
4093 }
4094
4095 if (tls_type & GOT_TLS_GD)
4096 {
4097 if (need_relocs)
4098 {
4099 outrel.r_offset
4100 = (cur_off
4101 + htab->etab.sgot->output_section->vma
4102 + htab->etab.sgot->output_offset);
4103 outrel.r_info
4104 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4105 outrel.r_addend = 0;
4106 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4107 htab->etab.srelgot->reloc_count++;
4108 loc += sizeof (Elf32_External_Rela);
4109 bfd_put_32 (output_bfd, 0,
4110 htab->etab.sgot->contents + cur_off);
4111 }
4112 else
4113 /* If we are not emitting relocations for a
4114 general dynamic reference, then we must be in a
4115 static link or an executable link with the
4116 symbol binding locally. Mark it as belonging
4117 to module 1, the executable. */
4118 bfd_put_32 (output_bfd, 1,
4119 htab->etab.sgot->contents + cur_off);
4120
4121 if (indx != 0)
4122 {
4123 outrel.r_info
4124 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4125 outrel.r_offset += 4;
4126 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4127 htab->etab.srelgot->reloc_count++;
4128 loc += sizeof (Elf32_External_Rela);
4129 bfd_put_32 (output_bfd, 0,
4130 htab->etab.sgot->contents + cur_off + 4);
4131 }
4132 else
4133 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4134 htab->etab.sgot->contents + cur_off + 4);
4135 cur_off += 8;
4136 }
4137
4138 if (tls_type & GOT_TLS_IE)
4139 {
4140 if (need_relocs
4141 && !(bfd_link_executable (info)
4142 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4143 {
4144 outrel.r_offset
4145 = (cur_off
4146 + htab->etab.sgot->output_section->vma
4147 + htab->etab.sgot->output_offset);
4148 outrel.r_info = ELF32_R_INFO (indx,
4149 R_PARISC_TLS_TPREL32);
4150 if (indx == 0)
4151 outrel.r_addend = relocation - dtpoff_base (info);
4152 else
4153 outrel.r_addend = 0;
4154 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4155 htab->etab.srelgot->reloc_count++;
4156 loc += sizeof (Elf32_External_Rela);
4157 }
4158 else
4159 bfd_put_32 (output_bfd, tpoff (info, relocation),
4160 htab->etab.sgot->contents + cur_off);
4161 cur_off += 4;
4162 }
4163
4164 if (hh != NULL)
4165 hh->eh.got.offset |= 1;
4166 else
4167 local_got_offsets[r_symndx] |= 1;
4168 }
4169
4170 if ((tls_type & GOT_NORMAL) != 0
4171 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4172 {
4173 if (hh != NULL)
4174 _bfd_error_handler (_("%s has both normal and TLS relocs"),
4175 hh_name (hh));
4176 else
4177 {
4178 Elf_Internal_Sym *isym
4179 = bfd_sym_from_r_symndx (&htab->sym_cache,
4180 input_bfd, r_symndx);
4181 if (isym == NULL)
4182 return FALSE;
4183 sym_name
4184 = bfd_elf_string_from_elf_section (input_bfd,
4185 symtab_hdr->sh_link,
4186 isym->st_name);
4187 if (sym_name == NULL)
4188 return FALSE;
4189 if (*sym_name == '\0')
4190 sym_name = bfd_section_name (sym_sec);
4191 _bfd_error_handler
4192 (_("%pB:%s has both normal and TLS relocs"),
4193 input_bfd, sym_name);
4194 }
4195 bfd_set_error (bfd_error_bad_value);
4196 return FALSE;
4197 }
4198
4199 if ((tls_type & GOT_TLS_GD)
4200 && r_type != R_PARISC_TLS_GD21L
4201 && r_type != R_PARISC_TLS_GD14R)
4202 off += 2 * GOT_ENTRY_SIZE;
4203
4204 /* Add the base of the GOT to the relocation value. */
4205 relocation = (off
4206 + htab->etab.sgot->output_offset
4207 + htab->etab.sgot->output_section->vma);
4208
4209 break;
4210 }
4211
4212 case R_PARISC_TLS_LE21L:
4213 case R_PARISC_TLS_LE14R:
4214 {
4215 relocation = tpoff (info, relocation);
4216 break;
4217 }
4218 break;
4219
4220 default:
4221 break;
4222 }
4223
4224 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4225 htab, sym_sec, hh, info);
4226
4227 if (rstatus == bfd_reloc_ok)
4228 continue;
4229
4230 if (hh != NULL)
4231 sym_name = hh_name (hh);
4232 else
4233 {
4234 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4235 symtab_hdr->sh_link,
4236 sym->st_name);
4237 if (sym_name == NULL)
4238 return FALSE;
4239 if (*sym_name == '\0')
4240 sym_name = bfd_section_name (sym_sec);
4241 }
4242
4243 howto = elf_hppa_howto_table + r_type;
4244
4245 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4246 {
4247 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4248 {
4249 _bfd_error_handler
4250 /* xgettext:c-format */
4251 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4252 input_bfd,
4253 input_section,
4254 (uint64_t) rela->r_offset,
4255 howto->name,
4256 sym_name);
4257 bfd_set_error (bfd_error_bad_value);
4258 return FALSE;
4259 }
4260 }
4261 else
4262 (*info->callbacks->reloc_overflow)
4263 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4264 (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4265 }
4266
4267 return TRUE;
4268 }
4269
4270 /* Finish up dynamic symbol handling. We set the contents of various
4271 dynamic sections here. */
4272
4273 static bfd_boolean
4274 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4275 struct bfd_link_info *info,
4276 struct elf_link_hash_entry *eh,
4277 Elf_Internal_Sym *sym)
4278 {
4279 struct elf32_hppa_link_hash_table *htab;
4280 Elf_Internal_Rela rela;
4281 bfd_byte *loc;
4282
4283 htab = hppa_link_hash_table (info);
4284 if (htab == NULL)
4285 return FALSE;
4286
4287 if (eh->plt.offset != (bfd_vma) -1)
4288 {
4289 bfd_vma value;
4290
4291 if (eh->plt.offset & 1)
4292 abort ();
4293
4294 /* This symbol has an entry in the procedure linkage table. Set
4295 it up.
4296
4297 The format of a plt entry is
4298 <funcaddr>
4299 <__gp>
4300 */
4301 value = 0;
4302 if (eh->root.type == bfd_link_hash_defined
4303 || eh->root.type == bfd_link_hash_defweak)
4304 {
4305 value = eh->root.u.def.value;
4306 if (eh->root.u.def.section->output_section != NULL)
4307 value += (eh->root.u.def.section->output_offset
4308 + eh->root.u.def.section->output_section->vma);
4309 }
4310
4311 /* Create a dynamic IPLT relocation for this entry. */
4312 rela.r_offset = (eh->plt.offset
4313 + htab->etab.splt->output_offset
4314 + htab->etab.splt->output_section->vma);
4315 if (eh->dynindx != -1)
4316 {
4317 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4318 rela.r_addend = 0;
4319 }
4320 else
4321 {
4322 /* This symbol has been marked to become local, and is
4323 used by a plabel so must be kept in the .plt. */
4324 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4325 rela.r_addend = value;
4326 }
4327
4328 loc = htab->etab.srelplt->contents;
4329 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4330 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4331
4332 if (!eh->def_regular)
4333 {
4334 /* Mark the symbol as undefined, rather than as defined in
4335 the .plt section. Leave the value alone. */
4336 sym->st_shndx = SHN_UNDEF;
4337 }
4338 }
4339
4340 if (eh->got.offset != (bfd_vma) -1
4341 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4342 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4343 {
4344 bfd_boolean is_dyn = (eh->dynindx != -1
4345 && !SYMBOL_REFERENCES_LOCAL (info, eh));
4346
4347 if (is_dyn || bfd_link_pic (info))
4348 {
4349 /* This symbol has an entry in the global offset table. Set
4350 it up. */
4351
4352 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4353 + htab->etab.sgot->output_offset
4354 + htab->etab.sgot->output_section->vma);
4355
4356 /* If this is a -Bsymbolic link and the symbol is defined
4357 locally or was forced to be local because of a version
4358 file, we just want to emit a RELATIVE reloc. The entry
4359 in the global offset table will already have been
4360 initialized in the relocate_section function. */
4361 if (!is_dyn)
4362 {
4363 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4364 rela.r_addend = (eh->root.u.def.value
4365 + eh->root.u.def.section->output_offset
4366 + eh->root.u.def.section->output_section->vma);
4367 }
4368 else
4369 {
4370 if ((eh->got.offset & 1) != 0)
4371 abort ();
4372
4373 bfd_put_32 (output_bfd, 0,
4374 htab->etab.sgot->contents + (eh->got.offset & ~1));
4375 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4376 rela.r_addend = 0;
4377 }
4378
4379 loc = htab->etab.srelgot->contents;
4380 loc += (htab->etab.srelgot->reloc_count++
4381 * sizeof (Elf32_External_Rela));
4382 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4383 }
4384 }
4385
4386 if (eh->needs_copy)
4387 {
4388 asection *sec;
4389
4390 /* This symbol needs a copy reloc. Set it up. */
4391
4392 if (! (eh->dynindx != -1
4393 && (eh->root.type == bfd_link_hash_defined
4394 || eh->root.type == bfd_link_hash_defweak)))
4395 abort ();
4396
4397 rela.r_offset = (eh->root.u.def.value
4398 + eh->root.u.def.section->output_offset
4399 + eh->root.u.def.section->output_section->vma);
4400 rela.r_addend = 0;
4401 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4402 if (eh->root.u.def.section == htab->etab.sdynrelro)
4403 sec = htab->etab.sreldynrelro;
4404 else
4405 sec = htab->etab.srelbss;
4406 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4407 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4408 }
4409
4410 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4411 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4412 {
4413 sym->st_shndx = SHN_ABS;
4414 }
4415
4416 return TRUE;
4417 }
4418
4419 /* Used to decide how to sort relocs in an optimal manner for the
4420 dynamic linker, before writing them out. */
4421
4422 static enum elf_reloc_type_class
4423 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4424 const asection *rel_sec ATTRIBUTE_UNUSED,
4425 const Elf_Internal_Rela *rela)
4426 {
4427 /* Handle TLS relocs first; we don't want them to be marked
4428 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4429 check below. */
4430 switch ((int) ELF32_R_TYPE (rela->r_info))
4431 {
4432 case R_PARISC_TLS_DTPMOD32:
4433 case R_PARISC_TLS_DTPOFF32:
4434 case R_PARISC_TLS_TPREL32:
4435 return reloc_class_normal;
4436 }
4437
4438 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4439 return reloc_class_relative;
4440
4441 switch ((int) ELF32_R_TYPE (rela->r_info))
4442 {
4443 case R_PARISC_IPLT:
4444 return reloc_class_plt;
4445 case R_PARISC_COPY:
4446 return reloc_class_copy;
4447 default:
4448 return reloc_class_normal;
4449 }
4450 }
4451
4452 /* Finish up the dynamic sections. */
4453
4454 static bfd_boolean
4455 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4456 struct bfd_link_info *info)
4457 {
4458 bfd *dynobj;
4459 struct elf32_hppa_link_hash_table *htab;
4460 asection *sdyn;
4461 asection * sgot;
4462
4463 htab = hppa_link_hash_table (info);
4464 if (htab == NULL)
4465 return FALSE;
4466
4467 dynobj = htab->etab.dynobj;
4468
4469 sgot = htab->etab.sgot;
4470 /* A broken linker script might have discarded the dynamic sections.
4471 Catch this here so that we do not seg-fault later on. */
4472 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4473 return FALSE;
4474
4475 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4476
4477 if (htab->etab.dynamic_sections_created)
4478 {
4479 Elf32_External_Dyn *dyncon, *dynconend;
4480
4481 if (sdyn == NULL)
4482 abort ();
4483
4484 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4485 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4486 for (; dyncon < dynconend; dyncon++)
4487 {
4488 Elf_Internal_Dyn dyn;
4489 asection *s;
4490
4491 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4492
4493 switch (dyn.d_tag)
4494 {
4495 default:
4496 continue;
4497
4498 case DT_PLTGOT:
4499 /* Use PLTGOT to set the GOT register. */
4500 dyn.d_un.d_ptr = elf_gp (output_bfd);
4501 break;
4502
4503 case DT_JMPREL:
4504 s = htab->etab.srelplt;
4505 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4506 break;
4507
4508 case DT_PLTRELSZ:
4509 s = htab->etab.srelplt;
4510 dyn.d_un.d_val = s->size;
4511 break;
4512 }
4513
4514 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4515 }
4516 }
4517
4518 if (sgot != NULL && sgot->size != 0)
4519 {
4520 /* Fill in the first entry in the global offset table.
4521 We use it to point to our dynamic section, if we have one. */
4522 bfd_put_32 (output_bfd,
4523 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4524 sgot->contents);
4525
4526 /* The second entry is reserved for use by the dynamic linker. */
4527 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4528
4529 /* Set .got entry size. */
4530 elf_section_data (sgot->output_section)
4531 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4532 }
4533
4534 if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4535 {
4536 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4537 plt stubs and as such the section does not hold a table of fixed-size
4538 entries. */
4539 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4540
4541 if (htab->need_plt_stub)
4542 {
4543 /* Set up the .plt stub. */
4544 memcpy (htab->etab.splt->contents
4545 + htab->etab.splt->size - sizeof (plt_stub),
4546 plt_stub, sizeof (plt_stub));
4547
4548 if ((htab->etab.splt->output_offset
4549 + htab->etab.splt->output_section->vma
4550 + htab->etab.splt->size)
4551 != (sgot->output_offset
4552 + sgot->output_section->vma))
4553 {
4554 _bfd_error_handler
4555 (_(".got section not immediately after .plt section"));
4556 return FALSE;
4557 }
4558 }
4559 }
4560
4561 return TRUE;
4562 }
4563
4564 /* Called when writing out an object file to decide the type of a
4565 symbol. */
4566 static int
4567 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4568 {
4569 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4570 return STT_PARISC_MILLI;
4571 else
4572 return type;
4573 }
4574
4575 /* Misc BFD support code. */
4576 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4577 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4578 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4579 #define elf_info_to_howto elf_hppa_info_to_howto
4580 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4581
4582 /* Stuff for the BFD linker. */
4583 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4584 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4585 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4586 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4587 #define elf_backend_check_relocs elf32_hppa_check_relocs
4588 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
4589 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4590 #define elf_backend_fake_sections elf_hppa_fake_sections
4591 #define elf_backend_relocate_section elf32_hppa_relocate_section
4592 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4593 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4594 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4595 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4596 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4597 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4598 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4599 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4600 #define elf_backend_object_p elf32_hppa_object_p
4601 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4602 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4603 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4604 #define elf_backend_action_discarded elf_hppa_action_discarded
4605
4606 #define elf_backend_can_gc_sections 1
4607 #define elf_backend_can_refcount 1
4608 #define elf_backend_plt_alignment 2
4609 #define elf_backend_want_got_plt 0
4610 #define elf_backend_plt_readonly 0
4611 #define elf_backend_want_plt_sym 0
4612 #define elf_backend_got_header_size 8
4613 #define elf_backend_want_dynrelro 1
4614 #define elf_backend_rela_normal 1
4615 #define elf_backend_dtrel_excludes_plt 1
4616 #define elf_backend_no_page_alias 1
4617
4618 #define TARGET_BIG_SYM hppa_elf32_vec
4619 #define TARGET_BIG_NAME "elf32-hppa"
4620 #define ELF_ARCH bfd_arch_hppa
4621 #define ELF_TARGET_ID HPPA32_ELF_DATA
4622 #define ELF_MACHINE_CODE EM_PARISC
4623 #define ELF_MAXPAGESIZE 0x1000
4624 #define ELF_OSABI ELFOSABI_HPUX
4625 #define elf32_bed elf32_hppa_hpux_bed
4626
4627 #include "elf32-target.h"
4628
4629 #undef TARGET_BIG_SYM
4630 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4631 #undef TARGET_BIG_NAME
4632 #define TARGET_BIG_NAME "elf32-hppa-linux"
4633 #undef ELF_OSABI
4634 #define ELF_OSABI ELFOSABI_GNU
4635 #undef elf32_bed
4636 #define elf32_bed elf32_hppa_linux_bed
4637
4638 #include "elf32-target.h"
4639
4640 #undef TARGET_BIG_SYM
4641 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4642 #undef TARGET_BIG_NAME
4643 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4644 #undef ELF_OSABI
4645 #define ELF_OSABI ELFOSABI_NETBSD
4646 #undef elf32_bed
4647 #define elf32_bed elf32_hppa_netbsd_bed
4648
4649 #include "elf32-target.h"