]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
Don't call bfd_link_hash_table_free
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright (C) 1990-2014 Free Software Foundation, Inc.
3
4 Original code by
5 Center for Software Science
6 Department of Computer Science
7 University of Utah
8 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10 TLS support written by Randolph Chung <tausq@debian.org>
11
12 This file is part of BFD, the Binary File Descriptor library.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program; if not, write to the Free Software
26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27 MA 02110-1301, USA. */
28
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE 32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39
40 /* In order to gain some understanding of code in this file without
41 knowing all the intricate details of the linker, note the
42 following:
43
44 Functions named elf32_hppa_* are called by external routines, other
45 functions are only called locally. elf32_hppa_* functions appear
46 in this file more or less in the order in which they are called
47 from external routines. eg. elf32_hppa_check_relocs is called
48 early in the link process, elf32_hppa_finish_dynamic_sections is
49 one of the last functions. */
50
51 /* We use two hash tables to hold information for linking PA ELF objects.
52
53 The first is the elf32_hppa_link_hash_table which is derived
54 from the standard ELF linker hash table. We use this as a place to
55 attach other hash tables and static information.
56
57 The second is the stub hash table which is derived from the
58 base BFD hash table. The stub hash table holds the information
59 necessary to build the linker stubs during a link.
60
61 There are a number of different stubs generated by the linker.
62
63 Long branch stub:
64 : ldil LR'X,%r1
65 : be,n RR'X(%sr4,%r1)
66
67 PIC long branch stub:
68 : b,l .+8,%r1
69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71
72 Import stub to call shared library routine from normal object file
73 (single sub-space version)
74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
75 : ldw RR'lt_ptr+ltoff(%r1),%r21
76 : bv %r0(%r21)
77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
78
79 Import stub to call shared library routine from shared library
80 (single sub-space version)
81 : addil LR'ltoff,%r19 ; get procedure entry point
82 : ldw RR'ltoff(%r1),%r21
83 : bv %r0(%r21)
84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
85
86 Import stub to call shared library routine from normal object file
87 (multiple sub-space support)
88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
89 : ldw RR'lt_ptr+ltoff(%r1),%r21
90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
91 : ldsid (%r21),%r1
92 : mtsp %r1,%sr0
93 : be 0(%sr0,%r21) ; branch to target
94 : stw %rp,-24(%sp) ; save rp
95
96 Import stub to call shared library routine from shared library
97 (multiple sub-space support)
98 : addil LR'ltoff,%r19 ; get procedure entry point
99 : ldw RR'ltoff(%r1),%r21
100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
101 : ldsid (%r21),%r1
102 : mtsp %r1,%sr0
103 : be 0(%sr0,%r21) ; branch to target
104 : stw %rp,-24(%sp) ; save rp
105
106 Export stub to return from shared lib routine (multiple sub-space support)
107 One of these is created for each exported procedure in a shared
108 library (and stored in the shared lib). Shared lib routines are
109 called via the first instruction in the export stub so that we can
110 do an inter-space return. Not required for single sub-space.
111 : bl,n X,%rp ; trap the return
112 : nop
113 : ldw -24(%sp),%rp ; restore the original rp
114 : ldsid (%rp),%r1
115 : mtsp %r1,%sr0
116 : be,n 0(%sr0,%rp) ; inter-space return. */
117
118
119 /* Variable names follow a coding style.
120 Please follow this (Apps Hungarian) style:
121
122 Structure/Variable Prefix
123 elf_link_hash_table "etab"
124 elf_link_hash_entry "eh"
125
126 elf32_hppa_link_hash_table "htab"
127 elf32_hppa_link_hash_entry "hh"
128
129 bfd_hash_table "btab"
130 bfd_hash_entry "bh"
131
132 bfd_hash_table containing stubs "bstab"
133 elf32_hppa_stub_hash_entry "hsh"
134
135 elf32_hppa_dyn_reloc_entry "hdh"
136
137 Always remember to use GNU Coding Style. */
138
139 #define PLT_ENTRY_SIZE 8
140 #define GOT_ENTRY_SIZE 4
141 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
142
143 static const bfd_byte plt_stub[] =
144 {
145 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
146 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
147 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
148 #define PLT_STUB_ENTRY (3*4)
149 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
150 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
151 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
152 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
153 };
154
155 /* Section name for stubs is the associated section name plus this
156 string. */
157 #define STUB_SUFFIX ".stub"
158
159 /* We don't need to copy certain PC- or GP-relative dynamic relocs
160 into a shared object's dynamic section. All the relocs of the
161 limited class we are interested in, are absolute. */
162 #ifndef RELATIVE_DYNRELOCS
163 #define RELATIVE_DYNRELOCS 0
164 #define IS_ABSOLUTE_RELOC(r_type) 1
165 #endif
166
167 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
168 copying dynamic variables from a shared lib into an app's dynbss
169 section, and instead use a dynamic relocation to point into the
170 shared lib. */
171 #define ELIMINATE_COPY_RELOCS 1
172
173 enum elf32_hppa_stub_type
174 {
175 hppa_stub_long_branch,
176 hppa_stub_long_branch_shared,
177 hppa_stub_import,
178 hppa_stub_import_shared,
179 hppa_stub_export,
180 hppa_stub_none
181 };
182
183 struct elf32_hppa_stub_hash_entry
184 {
185 /* Base hash table entry structure. */
186 struct bfd_hash_entry bh_root;
187
188 /* The stub section. */
189 asection *stub_sec;
190
191 /* Offset within stub_sec of the beginning of this stub. */
192 bfd_vma stub_offset;
193
194 /* Given the symbol's value and its section we can determine its final
195 value when building the stubs (so the stub knows where to jump. */
196 bfd_vma target_value;
197 asection *target_section;
198
199 enum elf32_hppa_stub_type stub_type;
200
201 /* The symbol table entry, if any, that this was derived from. */
202 struct elf32_hppa_link_hash_entry *hh;
203
204 /* Where this stub is being called from, or, in the case of combined
205 stub sections, the first input section in the group. */
206 asection *id_sec;
207 };
208
209 struct elf32_hppa_link_hash_entry
210 {
211 struct elf_link_hash_entry eh;
212
213 /* A pointer to the most recently used stub hash entry against this
214 symbol. */
215 struct elf32_hppa_stub_hash_entry *hsh_cache;
216
217 /* Used to count relocations for delayed sizing of relocation
218 sections. */
219 struct elf32_hppa_dyn_reloc_entry
220 {
221 /* Next relocation in the chain. */
222 struct elf32_hppa_dyn_reloc_entry *hdh_next;
223
224 /* The input section of the reloc. */
225 asection *sec;
226
227 /* Number of relocs copied in this section. */
228 bfd_size_type count;
229
230 #if RELATIVE_DYNRELOCS
231 /* Number of relative relocs copied for the input section. */
232 bfd_size_type relative_count;
233 #endif
234 } *dyn_relocs;
235
236 enum
237 {
238 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
239 } tls_type;
240
241 /* Set if this symbol is used by a plabel reloc. */
242 unsigned int plabel:1;
243 };
244
245 struct elf32_hppa_link_hash_table
246 {
247 /* The main hash table. */
248 struct elf_link_hash_table etab;
249
250 /* The stub hash table. */
251 struct bfd_hash_table bstab;
252
253 /* Linker stub bfd. */
254 bfd *stub_bfd;
255
256 /* Linker call-backs. */
257 asection * (*add_stub_section) (const char *, asection *);
258 void (*layout_sections_again) (void);
259
260 /* Array to keep track of which stub sections have been created, and
261 information on stub grouping. */
262 struct map_stub
263 {
264 /* This is the section to which stubs in the group will be
265 attached. */
266 asection *link_sec;
267 /* The stub section. */
268 asection *stub_sec;
269 } *stub_group;
270
271 /* Assorted information used by elf32_hppa_size_stubs. */
272 unsigned int bfd_count;
273 int top_index;
274 asection **input_list;
275 Elf_Internal_Sym **all_local_syms;
276
277 /* Short-cuts to get to dynamic linker sections. */
278 asection *sgot;
279 asection *srelgot;
280 asection *splt;
281 asection *srelplt;
282 asection *sdynbss;
283 asection *srelbss;
284
285 /* Used during a final link to store the base of the text and data
286 segments so that we can perform SEGREL relocations. */
287 bfd_vma text_segment_base;
288 bfd_vma data_segment_base;
289
290 /* Whether we support multiple sub-spaces for shared libs. */
291 unsigned int multi_subspace:1;
292
293 /* Flags set when various size branches are detected. Used to
294 select suitable defaults for the stub group size. */
295 unsigned int has_12bit_branch:1;
296 unsigned int has_17bit_branch:1;
297 unsigned int has_22bit_branch:1;
298
299 /* Set if we need a .plt stub to support lazy dynamic linking. */
300 unsigned int need_plt_stub:1;
301
302 /* Small local sym cache. */
303 struct sym_cache sym_cache;
304
305 /* Data for LDM relocations. */
306 union
307 {
308 bfd_signed_vma refcount;
309 bfd_vma offset;
310 } tls_ldm_got;
311 };
312
313 /* Various hash macros and functions. */
314 #define hppa_link_hash_table(p) \
315 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
316 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
317
318 #define hppa_elf_hash_entry(ent) \
319 ((struct elf32_hppa_link_hash_entry *)(ent))
320
321 #define hppa_stub_hash_entry(ent) \
322 ((struct elf32_hppa_stub_hash_entry *)(ent))
323
324 #define hppa_stub_hash_lookup(table, string, create, copy) \
325 ((struct elf32_hppa_stub_hash_entry *) \
326 bfd_hash_lookup ((table), (string), (create), (copy)))
327
328 #define hppa_elf_local_got_tls_type(abfd) \
329 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
330
331 #define hh_name(hh) \
332 (hh ? hh->eh.root.root.string : "<undef>")
333
334 #define eh_name(eh) \
335 (eh ? eh->root.root.string : "<undef>")
336
337 /* Assorted hash table functions. */
338
339 /* Initialize an entry in the stub hash table. */
340
341 static struct bfd_hash_entry *
342 stub_hash_newfunc (struct bfd_hash_entry *entry,
343 struct bfd_hash_table *table,
344 const char *string)
345 {
346 /* Allocate the structure if it has not already been allocated by a
347 subclass. */
348 if (entry == NULL)
349 {
350 entry = bfd_hash_allocate (table,
351 sizeof (struct elf32_hppa_stub_hash_entry));
352 if (entry == NULL)
353 return entry;
354 }
355
356 /* Call the allocation method of the superclass. */
357 entry = bfd_hash_newfunc (entry, table, string);
358 if (entry != NULL)
359 {
360 struct elf32_hppa_stub_hash_entry *hsh;
361
362 /* Initialize the local fields. */
363 hsh = hppa_stub_hash_entry (entry);
364 hsh->stub_sec = NULL;
365 hsh->stub_offset = 0;
366 hsh->target_value = 0;
367 hsh->target_section = NULL;
368 hsh->stub_type = hppa_stub_long_branch;
369 hsh->hh = NULL;
370 hsh->id_sec = NULL;
371 }
372
373 return entry;
374 }
375
376 /* Initialize an entry in the link hash table. */
377
378 static struct bfd_hash_entry *
379 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
380 struct bfd_hash_table *table,
381 const char *string)
382 {
383 /* Allocate the structure if it has not already been allocated by a
384 subclass. */
385 if (entry == NULL)
386 {
387 entry = bfd_hash_allocate (table,
388 sizeof (struct elf32_hppa_link_hash_entry));
389 if (entry == NULL)
390 return entry;
391 }
392
393 /* Call the allocation method of the superclass. */
394 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
395 if (entry != NULL)
396 {
397 struct elf32_hppa_link_hash_entry *hh;
398
399 /* Initialize the local fields. */
400 hh = hppa_elf_hash_entry (entry);
401 hh->hsh_cache = NULL;
402 hh->dyn_relocs = NULL;
403 hh->plabel = 0;
404 hh->tls_type = GOT_UNKNOWN;
405 }
406
407 return entry;
408 }
409
410 /* Free the derived linker hash table. */
411
412 static void
413 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
414 {
415 struct elf32_hppa_link_hash_table *htab
416 = (struct elf32_hppa_link_hash_table *) btab;
417
418 bfd_hash_table_free (&htab->bstab);
419 _bfd_elf_link_hash_table_free (btab);
420 }
421
422 /* Create the derived linker hash table. The PA ELF port uses the derived
423 hash table to keep information specific to the PA ELF linker (without
424 using static variables). */
425
426 static struct bfd_link_hash_table *
427 elf32_hppa_link_hash_table_create (bfd *abfd)
428 {
429 struct elf32_hppa_link_hash_table *htab;
430 bfd_size_type amt = sizeof (*htab);
431
432 htab = bfd_zmalloc (amt);
433 if (htab == NULL)
434 return NULL;
435
436 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
437 sizeof (struct elf32_hppa_link_hash_entry),
438 HPPA32_ELF_DATA))
439 {
440 free (htab);
441 return NULL;
442 }
443
444 /* Init the stub hash table too. */
445 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
446 sizeof (struct elf32_hppa_stub_hash_entry)))
447 return NULL;
448 (void) elf32_hppa_link_hash_table_free;
449
450 htab->text_segment_base = (bfd_vma) -1;
451 htab->data_segment_base = (bfd_vma) -1;
452 return &htab->etab.root;
453 }
454
455 /* Build a name for an entry in the stub hash table. */
456
457 static char *
458 hppa_stub_name (const asection *input_section,
459 const asection *sym_sec,
460 const struct elf32_hppa_link_hash_entry *hh,
461 const Elf_Internal_Rela *rela)
462 {
463 char *stub_name;
464 bfd_size_type len;
465
466 if (hh)
467 {
468 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
469 stub_name = bfd_malloc (len);
470 if (stub_name != NULL)
471 sprintf (stub_name, "%08x_%s+%x",
472 input_section->id & 0xffffffff,
473 hh_name (hh),
474 (int) rela->r_addend & 0xffffffff);
475 }
476 else
477 {
478 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
479 stub_name = bfd_malloc (len);
480 if (stub_name != NULL)
481 sprintf (stub_name, "%08x_%x:%x+%x",
482 input_section->id & 0xffffffff,
483 sym_sec->id & 0xffffffff,
484 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
485 (int) rela->r_addend & 0xffffffff);
486 }
487 return stub_name;
488 }
489
490 /* Look up an entry in the stub hash. Stub entries are cached because
491 creating the stub name takes a bit of time. */
492
493 static struct elf32_hppa_stub_hash_entry *
494 hppa_get_stub_entry (const asection *input_section,
495 const asection *sym_sec,
496 struct elf32_hppa_link_hash_entry *hh,
497 const Elf_Internal_Rela *rela,
498 struct elf32_hppa_link_hash_table *htab)
499 {
500 struct elf32_hppa_stub_hash_entry *hsh_entry;
501 const asection *id_sec;
502
503 /* If this input section is part of a group of sections sharing one
504 stub section, then use the id of the first section in the group.
505 Stub names need to include a section id, as there may well be
506 more than one stub used to reach say, printf, and we need to
507 distinguish between them. */
508 id_sec = htab->stub_group[input_section->id].link_sec;
509
510 if (hh != NULL && hh->hsh_cache != NULL
511 && hh->hsh_cache->hh == hh
512 && hh->hsh_cache->id_sec == id_sec)
513 {
514 hsh_entry = hh->hsh_cache;
515 }
516 else
517 {
518 char *stub_name;
519
520 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
521 if (stub_name == NULL)
522 return NULL;
523
524 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
525 stub_name, FALSE, FALSE);
526 if (hh != NULL)
527 hh->hsh_cache = hsh_entry;
528
529 free (stub_name);
530 }
531
532 return hsh_entry;
533 }
534
535 /* Add a new stub entry to the stub hash. Not all fields of the new
536 stub entry are initialised. */
537
538 static struct elf32_hppa_stub_hash_entry *
539 hppa_add_stub (const char *stub_name,
540 asection *section,
541 struct elf32_hppa_link_hash_table *htab)
542 {
543 asection *link_sec;
544 asection *stub_sec;
545 struct elf32_hppa_stub_hash_entry *hsh;
546
547 link_sec = htab->stub_group[section->id].link_sec;
548 stub_sec = htab->stub_group[section->id].stub_sec;
549 if (stub_sec == NULL)
550 {
551 stub_sec = htab->stub_group[link_sec->id].stub_sec;
552 if (stub_sec == NULL)
553 {
554 size_t namelen;
555 bfd_size_type len;
556 char *s_name;
557
558 namelen = strlen (link_sec->name);
559 len = namelen + sizeof (STUB_SUFFIX);
560 s_name = bfd_alloc (htab->stub_bfd, len);
561 if (s_name == NULL)
562 return NULL;
563
564 memcpy (s_name, link_sec->name, namelen);
565 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
566 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
567 if (stub_sec == NULL)
568 return NULL;
569 htab->stub_group[link_sec->id].stub_sec = stub_sec;
570 }
571 htab->stub_group[section->id].stub_sec = stub_sec;
572 }
573
574 /* Enter this entry into the linker stub hash table. */
575 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
576 TRUE, FALSE);
577 if (hsh == NULL)
578 {
579 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
580 section->owner,
581 stub_name);
582 return NULL;
583 }
584
585 hsh->stub_sec = stub_sec;
586 hsh->stub_offset = 0;
587 hsh->id_sec = link_sec;
588 return hsh;
589 }
590
591 /* Determine the type of stub needed, if any, for a call. */
592
593 static enum elf32_hppa_stub_type
594 hppa_type_of_stub (asection *input_sec,
595 const Elf_Internal_Rela *rela,
596 struct elf32_hppa_link_hash_entry *hh,
597 bfd_vma destination,
598 struct bfd_link_info *info)
599 {
600 bfd_vma location;
601 bfd_vma branch_offset;
602 bfd_vma max_branch_offset;
603 unsigned int r_type;
604
605 if (hh != NULL
606 && hh->eh.plt.offset != (bfd_vma) -1
607 && hh->eh.dynindx != -1
608 && !hh->plabel
609 && (info->shared
610 || !hh->eh.def_regular
611 || hh->eh.root.type == bfd_link_hash_defweak))
612 {
613 /* We need an import stub. Decide between hppa_stub_import
614 and hppa_stub_import_shared later. */
615 return hppa_stub_import;
616 }
617
618 /* Determine where the call point is. */
619 location = (input_sec->output_offset
620 + input_sec->output_section->vma
621 + rela->r_offset);
622
623 branch_offset = destination - location - 8;
624 r_type = ELF32_R_TYPE (rela->r_info);
625
626 /* Determine if a long branch stub is needed. parisc branch offsets
627 are relative to the second instruction past the branch, ie. +8
628 bytes on from the branch instruction location. The offset is
629 signed and counts in units of 4 bytes. */
630 if (r_type == (unsigned int) R_PARISC_PCREL17F)
631 max_branch_offset = (1 << (17 - 1)) << 2;
632
633 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
634 max_branch_offset = (1 << (12 - 1)) << 2;
635
636 else /* R_PARISC_PCREL22F. */
637 max_branch_offset = (1 << (22 - 1)) << 2;
638
639 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
640 return hppa_stub_long_branch;
641
642 return hppa_stub_none;
643 }
644
645 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
646 IN_ARG contains the link info pointer. */
647
648 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
649 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
650
651 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
652 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
653 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
654
655 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
656 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
657 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
658 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
659
660 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
661 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
662
663 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
664 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
665 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
666 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
667
668 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
669 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
670 #define NOP 0x08000240 /* nop */
671 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
672 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
673 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
674
675 #ifndef R19_STUBS
676 #define R19_STUBS 1
677 #endif
678
679 #if R19_STUBS
680 #define LDW_R1_DLT LDW_R1_R19
681 #else
682 #define LDW_R1_DLT LDW_R1_DP
683 #endif
684
685 static bfd_boolean
686 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
687 {
688 struct elf32_hppa_stub_hash_entry *hsh;
689 struct bfd_link_info *info;
690 struct elf32_hppa_link_hash_table *htab;
691 asection *stub_sec;
692 bfd *stub_bfd;
693 bfd_byte *loc;
694 bfd_vma sym_value;
695 bfd_vma insn;
696 bfd_vma off;
697 int val;
698 int size;
699
700 /* Massage our args to the form they really have. */
701 hsh = hppa_stub_hash_entry (bh);
702 info = (struct bfd_link_info *)in_arg;
703
704 htab = hppa_link_hash_table (info);
705 if (htab == NULL)
706 return FALSE;
707
708 stub_sec = hsh->stub_sec;
709
710 /* Make a note of the offset within the stubs for this entry. */
711 hsh->stub_offset = stub_sec->size;
712 loc = stub_sec->contents + hsh->stub_offset;
713
714 stub_bfd = stub_sec->owner;
715
716 switch (hsh->stub_type)
717 {
718 case hppa_stub_long_branch:
719 /* Create the long branch. A long branch is formed with "ldil"
720 loading the upper bits of the target address into a register,
721 then branching with "be" which adds in the lower bits.
722 The "be" has its delay slot nullified. */
723 sym_value = (hsh->target_value
724 + hsh->target_section->output_offset
725 + hsh->target_section->output_section->vma);
726
727 val = hppa_field_adjust (sym_value, 0, e_lrsel);
728 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
729 bfd_put_32 (stub_bfd, insn, loc);
730
731 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
732 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
733 bfd_put_32 (stub_bfd, insn, loc + 4);
734
735 size = 8;
736 break;
737
738 case hppa_stub_long_branch_shared:
739 /* Branches are relative. This is where we are going to. */
740 sym_value = (hsh->target_value
741 + hsh->target_section->output_offset
742 + hsh->target_section->output_section->vma);
743
744 /* And this is where we are coming from, more or less. */
745 sym_value -= (hsh->stub_offset
746 + stub_sec->output_offset
747 + stub_sec->output_section->vma);
748
749 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
750 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
751 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
755 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
756 bfd_put_32 (stub_bfd, insn, loc + 8);
757 size = 12;
758 break;
759
760 case hppa_stub_import:
761 case hppa_stub_import_shared:
762 off = hsh->hh->eh.plt.offset;
763 if (off >= (bfd_vma) -2)
764 abort ();
765
766 off &= ~ (bfd_vma) 1;
767 sym_value = (off
768 + htab->splt->output_offset
769 + htab->splt->output_section->vma
770 - elf_gp (htab->splt->output_section->owner));
771
772 insn = ADDIL_DP;
773 #if R19_STUBS
774 if (hsh->stub_type == hppa_stub_import_shared)
775 insn = ADDIL_R19;
776 #endif
777 val = hppa_field_adjust (sym_value, 0, e_lrsel),
778 insn = hppa_rebuild_insn ((int) insn, val, 21);
779 bfd_put_32 (stub_bfd, insn, loc);
780
781 /* It is critical to use lrsel/rrsel here because we are using
782 two different offsets (+0 and +4) from sym_value. If we use
783 lsel/rsel then with unfortunate sym_values we will round
784 sym_value+4 up to the next 2k block leading to a mis-match
785 between the lsel and rsel value. */
786 val = hppa_field_adjust (sym_value, 0, e_rrsel);
787 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
788 bfd_put_32 (stub_bfd, insn, loc + 4);
789
790 if (htab->multi_subspace)
791 {
792 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
793 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
794 bfd_put_32 (stub_bfd, insn, loc + 8);
795
796 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
797 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
798 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
799 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
800
801 size = 28;
802 }
803 else
804 {
805 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
806 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
807 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
808 bfd_put_32 (stub_bfd, insn, loc + 12);
809
810 size = 16;
811 }
812
813 break;
814
815 case hppa_stub_export:
816 /* Branches are relative. This is where we are going to. */
817 sym_value = (hsh->target_value
818 + hsh->target_section->output_offset
819 + hsh->target_section->output_section->vma);
820
821 /* And this is where we are coming from. */
822 sym_value -= (hsh->stub_offset
823 + stub_sec->output_offset
824 + stub_sec->output_section->vma);
825
826 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
827 && (!htab->has_22bit_branch
828 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
829 {
830 (*_bfd_error_handler)
831 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
832 hsh->target_section->owner,
833 stub_sec,
834 (long) hsh->stub_offset,
835 hsh->bh_root.string);
836 bfd_set_error (bfd_error_bad_value);
837 return FALSE;
838 }
839
840 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
841 if (!htab->has_22bit_branch)
842 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
843 else
844 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
845 bfd_put_32 (stub_bfd, insn, loc);
846
847 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
848 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
849 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
850 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
851 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
852
853 /* Point the function symbol at the stub. */
854 hsh->hh->eh.root.u.def.section = stub_sec;
855 hsh->hh->eh.root.u.def.value = stub_sec->size;
856
857 size = 24;
858 break;
859
860 default:
861 BFD_FAIL ();
862 return FALSE;
863 }
864
865 stub_sec->size += size;
866 return TRUE;
867 }
868
869 #undef LDIL_R1
870 #undef BE_SR4_R1
871 #undef BL_R1
872 #undef ADDIL_R1
873 #undef DEPI_R1
874 #undef LDW_R1_R21
875 #undef LDW_R1_DLT
876 #undef LDW_R1_R19
877 #undef ADDIL_R19
878 #undef LDW_R1_DP
879 #undef LDSID_R21_R1
880 #undef MTSP_R1
881 #undef BE_SR0_R21
882 #undef STW_RP
883 #undef BV_R0_R21
884 #undef BL_RP
885 #undef NOP
886 #undef LDW_RP
887 #undef LDSID_RP_R1
888 #undef BE_SR0_RP
889
890 /* As above, but don't actually build the stub. Just bump offset so
891 we know stub section sizes. */
892
893 static bfd_boolean
894 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
895 {
896 struct elf32_hppa_stub_hash_entry *hsh;
897 struct elf32_hppa_link_hash_table *htab;
898 int size;
899
900 /* Massage our args to the form they really have. */
901 hsh = hppa_stub_hash_entry (bh);
902 htab = in_arg;
903
904 if (hsh->stub_type == hppa_stub_long_branch)
905 size = 8;
906 else if (hsh->stub_type == hppa_stub_long_branch_shared)
907 size = 12;
908 else if (hsh->stub_type == hppa_stub_export)
909 size = 24;
910 else /* hppa_stub_import or hppa_stub_import_shared. */
911 {
912 if (htab->multi_subspace)
913 size = 28;
914 else
915 size = 16;
916 }
917
918 hsh->stub_sec->size += size;
919 return TRUE;
920 }
921
922 /* Return nonzero if ABFD represents an HPPA ELF32 file.
923 Additionally we set the default architecture and machine. */
924
925 static bfd_boolean
926 elf32_hppa_object_p (bfd *abfd)
927 {
928 Elf_Internal_Ehdr * i_ehdrp;
929 unsigned int flags;
930
931 i_ehdrp = elf_elfheader (abfd);
932 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
933 {
934 /* GCC on hppa-linux produces binaries with OSABI=GNU,
935 but the kernel produces corefiles with OSABI=SysV. */
936 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
937 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
938 return FALSE;
939 }
940 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
941 {
942 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
943 but the kernel produces corefiles with OSABI=SysV. */
944 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
945 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
946 return FALSE;
947 }
948 else
949 {
950 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
951 return FALSE;
952 }
953
954 flags = i_ehdrp->e_flags;
955 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
956 {
957 case EFA_PARISC_1_0:
958 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
959 case EFA_PARISC_1_1:
960 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
961 case EFA_PARISC_2_0:
962 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
963 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
964 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
965 }
966 return TRUE;
967 }
968
969 /* Create the .plt and .got sections, and set up our hash table
970 short-cuts to various dynamic sections. */
971
972 static bfd_boolean
973 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
974 {
975 struct elf32_hppa_link_hash_table *htab;
976 struct elf_link_hash_entry *eh;
977
978 /* Don't try to create the .plt and .got twice. */
979 htab = hppa_link_hash_table (info);
980 if (htab == NULL)
981 return FALSE;
982 if (htab->splt != NULL)
983 return TRUE;
984
985 /* Call the generic code to do most of the work. */
986 if (! _bfd_elf_create_dynamic_sections (abfd, info))
987 return FALSE;
988
989 htab->splt = bfd_get_linker_section (abfd, ".plt");
990 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
991
992 htab->sgot = bfd_get_linker_section (abfd, ".got");
993 htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
994
995 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
996 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
997
998 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
999 application, because __canonicalize_funcptr_for_compare needs it. */
1000 eh = elf_hash_table (info)->hgot;
1001 eh->forced_local = 0;
1002 eh->other = STV_DEFAULT;
1003 return bfd_elf_link_record_dynamic_symbol (info, eh);
1004 }
1005
1006 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1007
1008 static void
1009 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1010 struct elf_link_hash_entry *eh_dir,
1011 struct elf_link_hash_entry *eh_ind)
1012 {
1013 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1014
1015 hh_dir = hppa_elf_hash_entry (eh_dir);
1016 hh_ind = hppa_elf_hash_entry (eh_ind);
1017
1018 if (hh_ind->dyn_relocs != NULL)
1019 {
1020 if (hh_dir->dyn_relocs != NULL)
1021 {
1022 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1023 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1024
1025 /* Add reloc counts against the indirect sym to the direct sym
1026 list. Merge any entries against the same section. */
1027 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1028 {
1029 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1030
1031 for (hdh_q = hh_dir->dyn_relocs;
1032 hdh_q != NULL;
1033 hdh_q = hdh_q->hdh_next)
1034 if (hdh_q->sec == hdh_p->sec)
1035 {
1036 #if RELATIVE_DYNRELOCS
1037 hdh_q->relative_count += hdh_p->relative_count;
1038 #endif
1039 hdh_q->count += hdh_p->count;
1040 *hdh_pp = hdh_p->hdh_next;
1041 break;
1042 }
1043 if (hdh_q == NULL)
1044 hdh_pp = &hdh_p->hdh_next;
1045 }
1046 *hdh_pp = hh_dir->dyn_relocs;
1047 }
1048
1049 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1050 hh_ind->dyn_relocs = NULL;
1051 }
1052
1053 if (ELIMINATE_COPY_RELOCS
1054 && eh_ind->root.type != bfd_link_hash_indirect
1055 && eh_dir->dynamic_adjusted)
1056 {
1057 /* If called to transfer flags for a weakdef during processing
1058 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1059 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1060 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1061 eh_dir->ref_regular |= eh_ind->ref_regular;
1062 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1063 eh_dir->needs_plt |= eh_ind->needs_plt;
1064 }
1065 else
1066 {
1067 if (eh_ind->root.type == bfd_link_hash_indirect
1068 && eh_dir->got.refcount <= 0)
1069 {
1070 hh_dir->tls_type = hh_ind->tls_type;
1071 hh_ind->tls_type = GOT_UNKNOWN;
1072 }
1073
1074 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1075 }
1076 }
1077
1078 static int
1079 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1080 int r_type, int is_local ATTRIBUTE_UNUSED)
1081 {
1082 /* For now we don't support linker optimizations. */
1083 return r_type;
1084 }
1085
1086 /* Return a pointer to the local GOT, PLT and TLS reference counts
1087 for ABFD. Returns NULL if the storage allocation fails. */
1088
1089 static bfd_signed_vma *
1090 hppa32_elf_local_refcounts (bfd *abfd)
1091 {
1092 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1093 bfd_signed_vma *local_refcounts;
1094
1095 local_refcounts = elf_local_got_refcounts (abfd);
1096 if (local_refcounts == NULL)
1097 {
1098 bfd_size_type size;
1099
1100 /* Allocate space for local GOT and PLT reference
1101 counts. Done this way to save polluting elf_obj_tdata
1102 with another target specific pointer. */
1103 size = symtab_hdr->sh_info;
1104 size *= 2 * sizeof (bfd_signed_vma);
1105 /* Add in space to store the local GOT TLS types. */
1106 size += symtab_hdr->sh_info;
1107 local_refcounts = bfd_zalloc (abfd, size);
1108 if (local_refcounts == NULL)
1109 return NULL;
1110 elf_local_got_refcounts (abfd) = local_refcounts;
1111 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1112 symtab_hdr->sh_info);
1113 }
1114 return local_refcounts;
1115 }
1116
1117
1118 /* Look through the relocs for a section during the first phase, and
1119 calculate needed space in the global offset table, procedure linkage
1120 table, and dynamic reloc sections. At this point we haven't
1121 necessarily read all the input files. */
1122
1123 static bfd_boolean
1124 elf32_hppa_check_relocs (bfd *abfd,
1125 struct bfd_link_info *info,
1126 asection *sec,
1127 const Elf_Internal_Rela *relocs)
1128 {
1129 Elf_Internal_Shdr *symtab_hdr;
1130 struct elf_link_hash_entry **eh_syms;
1131 const Elf_Internal_Rela *rela;
1132 const Elf_Internal_Rela *rela_end;
1133 struct elf32_hppa_link_hash_table *htab;
1134 asection *sreloc;
1135 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1136
1137 if (info->relocatable)
1138 return TRUE;
1139
1140 htab = hppa_link_hash_table (info);
1141 if (htab == NULL)
1142 return FALSE;
1143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1144 eh_syms = elf_sym_hashes (abfd);
1145 sreloc = NULL;
1146
1147 rela_end = relocs + sec->reloc_count;
1148 for (rela = relocs; rela < rela_end; rela++)
1149 {
1150 enum {
1151 NEED_GOT = 1,
1152 NEED_PLT = 2,
1153 NEED_DYNREL = 4,
1154 PLT_PLABEL = 8
1155 };
1156
1157 unsigned int r_symndx, r_type;
1158 struct elf32_hppa_link_hash_entry *hh;
1159 int need_entry = 0;
1160
1161 r_symndx = ELF32_R_SYM (rela->r_info);
1162
1163 if (r_symndx < symtab_hdr->sh_info)
1164 hh = NULL;
1165 else
1166 {
1167 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1168 while (hh->eh.root.type == bfd_link_hash_indirect
1169 || hh->eh.root.type == bfd_link_hash_warning)
1170 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1171
1172 /* PR15323, ref flags aren't set for references in the same
1173 object. */
1174 hh->eh.root.non_ir_ref = 1;
1175 }
1176
1177 r_type = ELF32_R_TYPE (rela->r_info);
1178 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1179
1180 switch (r_type)
1181 {
1182 case R_PARISC_DLTIND14F:
1183 case R_PARISC_DLTIND14R:
1184 case R_PARISC_DLTIND21L:
1185 /* This symbol requires a global offset table entry. */
1186 need_entry = NEED_GOT;
1187 break;
1188
1189 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1190 case R_PARISC_PLABEL21L:
1191 case R_PARISC_PLABEL32:
1192 /* If the addend is non-zero, we break badly. */
1193 if (rela->r_addend != 0)
1194 abort ();
1195
1196 /* If we are creating a shared library, then we need to
1197 create a PLT entry for all PLABELs, because PLABELs with
1198 local symbols may be passed via a pointer to another
1199 object. Additionally, output a dynamic relocation
1200 pointing to the PLT entry.
1201
1202 For executables, the original 32-bit ABI allowed two
1203 different styles of PLABELs (function pointers): For
1204 global functions, the PLABEL word points into the .plt
1205 two bytes past a (function address, gp) pair, and for
1206 local functions the PLABEL points directly at the
1207 function. The magic +2 for the first type allows us to
1208 differentiate between the two. As you can imagine, this
1209 is a real pain when it comes to generating code to call
1210 functions indirectly or to compare function pointers.
1211 We avoid the mess by always pointing a PLABEL into the
1212 .plt, even for local functions. */
1213 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1214 break;
1215
1216 case R_PARISC_PCREL12F:
1217 htab->has_12bit_branch = 1;
1218 goto branch_common;
1219
1220 case R_PARISC_PCREL17C:
1221 case R_PARISC_PCREL17F:
1222 htab->has_17bit_branch = 1;
1223 goto branch_common;
1224
1225 case R_PARISC_PCREL22F:
1226 htab->has_22bit_branch = 1;
1227 branch_common:
1228 /* Function calls might need to go through the .plt, and
1229 might require long branch stubs. */
1230 if (hh == NULL)
1231 {
1232 /* We know local syms won't need a .plt entry, and if
1233 they need a long branch stub we can't guarantee that
1234 we can reach the stub. So just flag an error later
1235 if we're doing a shared link and find we need a long
1236 branch stub. */
1237 continue;
1238 }
1239 else
1240 {
1241 /* Global symbols will need a .plt entry if they remain
1242 global, and in most cases won't need a long branch
1243 stub. Unfortunately, we have to cater for the case
1244 where a symbol is forced local by versioning, or due
1245 to symbolic linking, and we lose the .plt entry. */
1246 need_entry = NEED_PLT;
1247 if (hh->eh.type == STT_PARISC_MILLI)
1248 need_entry = 0;
1249 }
1250 break;
1251
1252 case R_PARISC_SEGBASE: /* Used to set segment base. */
1253 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1254 case R_PARISC_PCREL14F: /* PC relative load/store. */
1255 case R_PARISC_PCREL14R:
1256 case R_PARISC_PCREL17R: /* External branches. */
1257 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1258 case R_PARISC_PCREL32:
1259 /* We don't need to propagate the relocation if linking a
1260 shared object since these are section relative. */
1261 continue;
1262
1263 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1264 case R_PARISC_DPREL14R:
1265 case R_PARISC_DPREL21L:
1266 if (info->shared)
1267 {
1268 (*_bfd_error_handler)
1269 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1270 abfd,
1271 elf_hppa_howto_table[r_type].name);
1272 bfd_set_error (bfd_error_bad_value);
1273 return FALSE;
1274 }
1275 /* Fall through. */
1276
1277 case R_PARISC_DIR17F: /* Used for external branches. */
1278 case R_PARISC_DIR17R:
1279 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1280 case R_PARISC_DIR14R:
1281 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1282 case R_PARISC_DIR32: /* .word relocs. */
1283 /* We may want to output a dynamic relocation later. */
1284 need_entry = NEED_DYNREL;
1285 break;
1286
1287 /* This relocation describes the C++ object vtable hierarchy.
1288 Reconstruct it for later use during GC. */
1289 case R_PARISC_GNU_VTINHERIT:
1290 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1291 return FALSE;
1292 continue;
1293
1294 /* This relocation describes which C++ vtable entries are actually
1295 used. Record for later use during GC. */
1296 case R_PARISC_GNU_VTENTRY:
1297 BFD_ASSERT (hh != NULL);
1298 if (hh != NULL
1299 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1300 return FALSE;
1301 continue;
1302
1303 case R_PARISC_TLS_GD21L:
1304 case R_PARISC_TLS_GD14R:
1305 case R_PARISC_TLS_LDM21L:
1306 case R_PARISC_TLS_LDM14R:
1307 need_entry = NEED_GOT;
1308 break;
1309
1310 case R_PARISC_TLS_IE21L:
1311 case R_PARISC_TLS_IE14R:
1312 if (info->shared)
1313 info->flags |= DF_STATIC_TLS;
1314 need_entry = NEED_GOT;
1315 break;
1316
1317 default:
1318 continue;
1319 }
1320
1321 /* Now carry out our orders. */
1322 if (need_entry & NEED_GOT)
1323 {
1324 switch (r_type)
1325 {
1326 default:
1327 tls_type = GOT_NORMAL;
1328 break;
1329 case R_PARISC_TLS_GD21L:
1330 case R_PARISC_TLS_GD14R:
1331 tls_type |= GOT_TLS_GD;
1332 break;
1333 case R_PARISC_TLS_LDM21L:
1334 case R_PARISC_TLS_LDM14R:
1335 tls_type |= GOT_TLS_LDM;
1336 break;
1337 case R_PARISC_TLS_IE21L:
1338 case R_PARISC_TLS_IE14R:
1339 tls_type |= GOT_TLS_IE;
1340 break;
1341 }
1342
1343 /* Allocate space for a GOT entry, as well as a dynamic
1344 relocation for this entry. */
1345 if (htab->sgot == NULL)
1346 {
1347 if (htab->etab.dynobj == NULL)
1348 htab->etab.dynobj = abfd;
1349 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1350 return FALSE;
1351 }
1352
1353 if (r_type == R_PARISC_TLS_LDM21L
1354 || r_type == R_PARISC_TLS_LDM14R)
1355 htab->tls_ldm_got.refcount += 1;
1356 else
1357 {
1358 if (hh != NULL)
1359 {
1360 hh->eh.got.refcount += 1;
1361 old_tls_type = hh->tls_type;
1362 }
1363 else
1364 {
1365 bfd_signed_vma *local_got_refcounts;
1366
1367 /* This is a global offset table entry for a local symbol. */
1368 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1369 if (local_got_refcounts == NULL)
1370 return FALSE;
1371 local_got_refcounts[r_symndx] += 1;
1372
1373 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1374 }
1375
1376 tls_type |= old_tls_type;
1377
1378 if (old_tls_type != tls_type)
1379 {
1380 if (hh != NULL)
1381 hh->tls_type = tls_type;
1382 else
1383 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1384 }
1385
1386 }
1387 }
1388
1389 if (need_entry & NEED_PLT)
1390 {
1391 /* If we are creating a shared library, and this is a reloc
1392 against a weak symbol or a global symbol in a dynamic
1393 object, then we will be creating an import stub and a
1394 .plt entry for the symbol. Similarly, on a normal link
1395 to symbols defined in a dynamic object we'll need the
1396 import stub and a .plt entry. We don't know yet whether
1397 the symbol is defined or not, so make an entry anyway and
1398 clean up later in adjust_dynamic_symbol. */
1399 if ((sec->flags & SEC_ALLOC) != 0)
1400 {
1401 if (hh != NULL)
1402 {
1403 hh->eh.needs_plt = 1;
1404 hh->eh.plt.refcount += 1;
1405
1406 /* If this .plt entry is for a plabel, mark it so
1407 that adjust_dynamic_symbol will keep the entry
1408 even if it appears to be local. */
1409 if (need_entry & PLT_PLABEL)
1410 hh->plabel = 1;
1411 }
1412 else if (need_entry & PLT_PLABEL)
1413 {
1414 bfd_signed_vma *local_got_refcounts;
1415 bfd_signed_vma *local_plt_refcounts;
1416
1417 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1418 if (local_got_refcounts == NULL)
1419 return FALSE;
1420 local_plt_refcounts = (local_got_refcounts
1421 + symtab_hdr->sh_info);
1422 local_plt_refcounts[r_symndx] += 1;
1423 }
1424 }
1425 }
1426
1427 if (need_entry & NEED_DYNREL)
1428 {
1429 /* Flag this symbol as having a non-got, non-plt reference
1430 so that we generate copy relocs if it turns out to be
1431 dynamic. */
1432 if (hh != NULL && !info->shared)
1433 hh->eh.non_got_ref = 1;
1434
1435 /* If we are creating a shared library then we need to copy
1436 the reloc into the shared library. However, if we are
1437 linking with -Bsymbolic, we need only copy absolute
1438 relocs or relocs against symbols that are not defined in
1439 an object we are including in the link. PC- or DP- or
1440 DLT-relative relocs against any local sym or global sym
1441 with DEF_REGULAR set, can be discarded. At this point we
1442 have not seen all the input files, so it is possible that
1443 DEF_REGULAR is not set now but will be set later (it is
1444 never cleared). We account for that possibility below by
1445 storing information in the dyn_relocs field of the
1446 hash table entry.
1447
1448 A similar situation to the -Bsymbolic case occurs when
1449 creating shared libraries and symbol visibility changes
1450 render the symbol local.
1451
1452 As it turns out, all the relocs we will be creating here
1453 are absolute, so we cannot remove them on -Bsymbolic
1454 links or visibility changes anyway. A STUB_REL reloc
1455 is absolute too, as in that case it is the reloc in the
1456 stub we will be creating, rather than copying the PCREL
1457 reloc in the branch.
1458
1459 If on the other hand, we are creating an executable, we
1460 may need to keep relocations for symbols satisfied by a
1461 dynamic library if we manage to avoid copy relocs for the
1462 symbol. */
1463 if ((info->shared
1464 && (sec->flags & SEC_ALLOC) != 0
1465 && (IS_ABSOLUTE_RELOC (r_type)
1466 || (hh != NULL
1467 && (!info->symbolic
1468 || hh->eh.root.type == bfd_link_hash_defweak
1469 || !hh->eh.def_regular))))
1470 || (ELIMINATE_COPY_RELOCS
1471 && !info->shared
1472 && (sec->flags & SEC_ALLOC) != 0
1473 && hh != NULL
1474 && (hh->eh.root.type == bfd_link_hash_defweak
1475 || !hh->eh.def_regular)))
1476 {
1477 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1478 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1479
1480 /* Create a reloc section in dynobj and make room for
1481 this reloc. */
1482 if (sreloc == NULL)
1483 {
1484 if (htab->etab.dynobj == NULL)
1485 htab->etab.dynobj = abfd;
1486
1487 sreloc = _bfd_elf_make_dynamic_reloc_section
1488 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1489
1490 if (sreloc == NULL)
1491 {
1492 bfd_set_error (bfd_error_bad_value);
1493 return FALSE;
1494 }
1495 }
1496
1497 /* If this is a global symbol, we count the number of
1498 relocations we need for this symbol. */
1499 if (hh != NULL)
1500 {
1501 hdh_head = &hh->dyn_relocs;
1502 }
1503 else
1504 {
1505 /* Track dynamic relocs needed for local syms too.
1506 We really need local syms available to do this
1507 easily. Oh well. */
1508 asection *sr;
1509 void *vpp;
1510 Elf_Internal_Sym *isym;
1511
1512 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1513 abfd, r_symndx);
1514 if (isym == NULL)
1515 return FALSE;
1516
1517 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1518 if (sr == NULL)
1519 sr = sec;
1520
1521 vpp = &elf_section_data (sr)->local_dynrel;
1522 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1523 }
1524
1525 hdh_p = *hdh_head;
1526 if (hdh_p == NULL || hdh_p->sec != sec)
1527 {
1528 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1529 if (hdh_p == NULL)
1530 return FALSE;
1531 hdh_p->hdh_next = *hdh_head;
1532 *hdh_head = hdh_p;
1533 hdh_p->sec = sec;
1534 hdh_p->count = 0;
1535 #if RELATIVE_DYNRELOCS
1536 hdh_p->relative_count = 0;
1537 #endif
1538 }
1539
1540 hdh_p->count += 1;
1541 #if RELATIVE_DYNRELOCS
1542 if (!IS_ABSOLUTE_RELOC (rtype))
1543 hdh_p->relative_count += 1;
1544 #endif
1545 }
1546 }
1547 }
1548
1549 return TRUE;
1550 }
1551
1552 /* Return the section that should be marked against garbage collection
1553 for a given relocation. */
1554
1555 static asection *
1556 elf32_hppa_gc_mark_hook (asection *sec,
1557 struct bfd_link_info *info,
1558 Elf_Internal_Rela *rela,
1559 struct elf_link_hash_entry *hh,
1560 Elf_Internal_Sym *sym)
1561 {
1562 if (hh != NULL)
1563 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1564 {
1565 case R_PARISC_GNU_VTINHERIT:
1566 case R_PARISC_GNU_VTENTRY:
1567 return NULL;
1568 }
1569
1570 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1571 }
1572
1573 /* Update the got and plt entry reference counts for the section being
1574 removed. */
1575
1576 static bfd_boolean
1577 elf32_hppa_gc_sweep_hook (bfd *abfd,
1578 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1579 asection *sec,
1580 const Elf_Internal_Rela *relocs)
1581 {
1582 Elf_Internal_Shdr *symtab_hdr;
1583 struct elf_link_hash_entry **eh_syms;
1584 bfd_signed_vma *local_got_refcounts;
1585 bfd_signed_vma *local_plt_refcounts;
1586 const Elf_Internal_Rela *rela, *relend;
1587 struct elf32_hppa_link_hash_table *htab;
1588
1589 if (info->relocatable)
1590 return TRUE;
1591
1592 htab = hppa_link_hash_table (info);
1593 if (htab == NULL)
1594 return FALSE;
1595
1596 elf_section_data (sec)->local_dynrel = NULL;
1597
1598 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1599 eh_syms = elf_sym_hashes (abfd);
1600 local_got_refcounts = elf_local_got_refcounts (abfd);
1601 local_plt_refcounts = local_got_refcounts;
1602 if (local_plt_refcounts != NULL)
1603 local_plt_refcounts += symtab_hdr->sh_info;
1604
1605 relend = relocs + sec->reloc_count;
1606 for (rela = relocs; rela < relend; rela++)
1607 {
1608 unsigned long r_symndx;
1609 unsigned int r_type;
1610 struct elf_link_hash_entry *eh = NULL;
1611
1612 r_symndx = ELF32_R_SYM (rela->r_info);
1613 if (r_symndx >= symtab_hdr->sh_info)
1614 {
1615 struct elf32_hppa_link_hash_entry *hh;
1616 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1617 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1618
1619 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1620 while (eh->root.type == bfd_link_hash_indirect
1621 || eh->root.type == bfd_link_hash_warning)
1622 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1623 hh = hppa_elf_hash_entry (eh);
1624
1625 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1626 if (hdh_p->sec == sec)
1627 {
1628 /* Everything must go for SEC. */
1629 *hdh_pp = hdh_p->hdh_next;
1630 break;
1631 }
1632 }
1633
1634 r_type = ELF32_R_TYPE (rela->r_info);
1635 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1636
1637 switch (r_type)
1638 {
1639 case R_PARISC_DLTIND14F:
1640 case R_PARISC_DLTIND14R:
1641 case R_PARISC_DLTIND21L:
1642 case R_PARISC_TLS_GD21L:
1643 case R_PARISC_TLS_GD14R:
1644 case R_PARISC_TLS_IE21L:
1645 case R_PARISC_TLS_IE14R:
1646 if (eh != NULL)
1647 {
1648 if (eh->got.refcount > 0)
1649 eh->got.refcount -= 1;
1650 }
1651 else if (local_got_refcounts != NULL)
1652 {
1653 if (local_got_refcounts[r_symndx] > 0)
1654 local_got_refcounts[r_symndx] -= 1;
1655 }
1656 break;
1657
1658 case R_PARISC_TLS_LDM21L:
1659 case R_PARISC_TLS_LDM14R:
1660 htab->tls_ldm_got.refcount -= 1;
1661 break;
1662
1663 case R_PARISC_PCREL12F:
1664 case R_PARISC_PCREL17C:
1665 case R_PARISC_PCREL17F:
1666 case R_PARISC_PCREL22F:
1667 if (eh != NULL)
1668 {
1669 if (eh->plt.refcount > 0)
1670 eh->plt.refcount -= 1;
1671 }
1672 break;
1673
1674 case R_PARISC_PLABEL14R:
1675 case R_PARISC_PLABEL21L:
1676 case R_PARISC_PLABEL32:
1677 if (eh != NULL)
1678 {
1679 if (eh->plt.refcount > 0)
1680 eh->plt.refcount -= 1;
1681 }
1682 else if (local_plt_refcounts != NULL)
1683 {
1684 if (local_plt_refcounts[r_symndx] > 0)
1685 local_plt_refcounts[r_symndx] -= 1;
1686 }
1687 break;
1688
1689 default:
1690 break;
1691 }
1692 }
1693
1694 return TRUE;
1695 }
1696
1697 /* Support for core dump NOTE sections. */
1698
1699 static bfd_boolean
1700 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1701 {
1702 int offset;
1703 size_t size;
1704
1705 switch (note->descsz)
1706 {
1707 default:
1708 return FALSE;
1709
1710 case 396: /* Linux/hppa */
1711 /* pr_cursig */
1712 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1713
1714 /* pr_pid */
1715 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1716
1717 /* pr_reg */
1718 offset = 72;
1719 size = 320;
1720
1721 break;
1722 }
1723
1724 /* Make a ".reg/999" section. */
1725 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1726 size, note->descpos + offset);
1727 }
1728
1729 static bfd_boolean
1730 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1731 {
1732 switch (note->descsz)
1733 {
1734 default:
1735 return FALSE;
1736
1737 case 124: /* Linux/hppa elf_prpsinfo. */
1738 elf_tdata (abfd)->core->program
1739 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1740 elf_tdata (abfd)->core->command
1741 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1742 }
1743
1744 /* Note that for some reason, a spurious space is tacked
1745 onto the end of the args in some (at least one anyway)
1746 implementations, so strip it off if it exists. */
1747 {
1748 char *command = elf_tdata (abfd)->core->command;
1749 int n = strlen (command);
1750
1751 if (0 < n && command[n - 1] == ' ')
1752 command[n - 1] = '\0';
1753 }
1754
1755 return TRUE;
1756 }
1757
1758 /* Our own version of hide_symbol, so that we can keep plt entries for
1759 plabels. */
1760
1761 static void
1762 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1763 struct elf_link_hash_entry *eh,
1764 bfd_boolean force_local)
1765 {
1766 if (force_local)
1767 {
1768 eh->forced_local = 1;
1769 if (eh->dynindx != -1)
1770 {
1771 eh->dynindx = -1;
1772 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1773 eh->dynstr_index);
1774 }
1775
1776 /* PR 16082: Remove version information from hidden symbol. */
1777 eh->verinfo.verdef = NULL;
1778 eh->verinfo.vertree = NULL;
1779 }
1780
1781 /* STT_GNU_IFUNC symbol must go through PLT. */
1782 if (! hppa_elf_hash_entry (eh)->plabel
1783 && eh->type != STT_GNU_IFUNC)
1784 {
1785 eh->needs_plt = 0;
1786 eh->plt = elf_hash_table (info)->init_plt_offset;
1787 }
1788 }
1789
1790 /* Adjust a symbol defined by a dynamic object and referenced by a
1791 regular object. The current definition is in some section of the
1792 dynamic object, but we're not including those sections. We have to
1793 change the definition to something the rest of the link can
1794 understand. */
1795
1796 static bfd_boolean
1797 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1798 struct elf_link_hash_entry *eh)
1799 {
1800 struct elf32_hppa_link_hash_table *htab;
1801 asection *sec;
1802
1803 /* If this is a function, put it in the procedure linkage table. We
1804 will fill in the contents of the procedure linkage table later. */
1805 if (eh->type == STT_FUNC
1806 || eh->needs_plt)
1807 {
1808 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1809 The refcounts are not reliable when it has been hidden since
1810 hide_symbol can be called before the plabel flag is set. */
1811 if (hppa_elf_hash_entry (eh)->plabel
1812 && eh->plt.refcount <= 0)
1813 eh->plt.refcount = 1;
1814
1815 if (eh->plt.refcount <= 0
1816 || (eh->def_regular
1817 && eh->root.type != bfd_link_hash_defweak
1818 && ! hppa_elf_hash_entry (eh)->plabel
1819 && (!info->shared || info->symbolic)))
1820 {
1821 /* The .plt entry is not needed when:
1822 a) Garbage collection has removed all references to the
1823 symbol, or
1824 b) We know for certain the symbol is defined in this
1825 object, and it's not a weak definition, nor is the symbol
1826 used by a plabel relocation. Either this object is the
1827 application or we are doing a shared symbolic link. */
1828
1829 eh->plt.offset = (bfd_vma) -1;
1830 eh->needs_plt = 0;
1831 }
1832
1833 return TRUE;
1834 }
1835 else
1836 eh->plt.offset = (bfd_vma) -1;
1837
1838 /* If this is a weak symbol, and there is a real definition, the
1839 processor independent code will have arranged for us to see the
1840 real definition first, and we can just use the same value. */
1841 if (eh->u.weakdef != NULL)
1842 {
1843 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1844 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1845 abort ();
1846 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1847 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1848 if (ELIMINATE_COPY_RELOCS)
1849 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1850 return TRUE;
1851 }
1852
1853 /* This is a reference to a symbol defined by a dynamic object which
1854 is not a function. */
1855
1856 /* If we are creating a shared library, we must presume that the
1857 only references to the symbol are via the global offset table.
1858 For such cases we need not do anything here; the relocations will
1859 be handled correctly by relocate_section. */
1860 if (info->shared)
1861 return TRUE;
1862
1863 /* If there are no references to this symbol that do not use the
1864 GOT, we don't need to generate a copy reloc. */
1865 if (!eh->non_got_ref)
1866 return TRUE;
1867
1868 if (ELIMINATE_COPY_RELOCS)
1869 {
1870 struct elf32_hppa_link_hash_entry *hh;
1871 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1872
1873 hh = hppa_elf_hash_entry (eh);
1874 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1875 {
1876 sec = hdh_p->sec->output_section;
1877 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1878 break;
1879 }
1880
1881 /* If we didn't find any dynamic relocs in read-only sections, then
1882 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1883 if (hdh_p == NULL)
1884 {
1885 eh->non_got_ref = 0;
1886 return TRUE;
1887 }
1888 }
1889
1890 /* We must allocate the symbol in our .dynbss section, which will
1891 become part of the .bss section of the executable. There will be
1892 an entry for this symbol in the .dynsym section. The dynamic
1893 object will contain position independent code, so all references
1894 from the dynamic object to this symbol will go through the global
1895 offset table. The dynamic linker will use the .dynsym entry to
1896 determine the address it must put in the global offset table, so
1897 both the dynamic object and the regular object will refer to the
1898 same memory location for the variable. */
1899
1900 htab = hppa_link_hash_table (info);
1901 if (htab == NULL)
1902 return FALSE;
1903
1904 /* We must generate a COPY reloc to tell the dynamic linker to
1905 copy the initial value out of the dynamic object and into the
1906 runtime process image. */
1907 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1908 {
1909 htab->srelbss->size += sizeof (Elf32_External_Rela);
1910 eh->needs_copy = 1;
1911 }
1912
1913 sec = htab->sdynbss;
1914
1915 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1916 }
1917
1918 /* Allocate space in the .plt for entries that won't have relocations.
1919 ie. plabel entries. */
1920
1921 static bfd_boolean
1922 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1923 {
1924 struct bfd_link_info *info;
1925 struct elf32_hppa_link_hash_table *htab;
1926 struct elf32_hppa_link_hash_entry *hh;
1927 asection *sec;
1928
1929 if (eh->root.type == bfd_link_hash_indirect)
1930 return TRUE;
1931
1932 info = (struct bfd_link_info *) inf;
1933 hh = hppa_elf_hash_entry (eh);
1934 htab = hppa_link_hash_table (info);
1935 if (htab == NULL)
1936 return FALSE;
1937
1938 if (htab->etab.dynamic_sections_created
1939 && eh->plt.refcount > 0)
1940 {
1941 /* Make sure this symbol is output as a dynamic symbol.
1942 Undefined weak syms won't yet be marked as dynamic. */
1943 if (eh->dynindx == -1
1944 && !eh->forced_local
1945 && eh->type != STT_PARISC_MILLI)
1946 {
1947 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1948 return FALSE;
1949 }
1950
1951 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1952 {
1953 /* Allocate these later. From this point on, h->plabel
1954 means that the plt entry is only used by a plabel.
1955 We'll be using a normal plt entry for this symbol, so
1956 clear the plabel indicator. */
1957
1958 hh->plabel = 0;
1959 }
1960 else if (hh->plabel)
1961 {
1962 /* Make an entry in the .plt section for plabel references
1963 that won't have a .plt entry for other reasons. */
1964 sec = htab->splt;
1965 eh->plt.offset = sec->size;
1966 sec->size += PLT_ENTRY_SIZE;
1967 }
1968 else
1969 {
1970 /* No .plt entry needed. */
1971 eh->plt.offset = (bfd_vma) -1;
1972 eh->needs_plt = 0;
1973 }
1974 }
1975 else
1976 {
1977 eh->plt.offset = (bfd_vma) -1;
1978 eh->needs_plt = 0;
1979 }
1980
1981 return TRUE;
1982 }
1983
1984 /* Allocate space in .plt, .got and associated reloc sections for
1985 global syms. */
1986
1987 static bfd_boolean
1988 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1989 {
1990 struct bfd_link_info *info;
1991 struct elf32_hppa_link_hash_table *htab;
1992 asection *sec;
1993 struct elf32_hppa_link_hash_entry *hh;
1994 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1995
1996 if (eh->root.type == bfd_link_hash_indirect)
1997 return TRUE;
1998
1999 info = inf;
2000 htab = hppa_link_hash_table (info);
2001 if (htab == NULL)
2002 return FALSE;
2003
2004 hh = hppa_elf_hash_entry (eh);
2005
2006 if (htab->etab.dynamic_sections_created
2007 && eh->plt.offset != (bfd_vma) -1
2008 && !hh->plabel
2009 && eh->plt.refcount > 0)
2010 {
2011 /* Make an entry in the .plt section. */
2012 sec = htab->splt;
2013 eh->plt.offset = sec->size;
2014 sec->size += PLT_ENTRY_SIZE;
2015
2016 /* We also need to make an entry in the .rela.plt section. */
2017 htab->srelplt->size += sizeof (Elf32_External_Rela);
2018 htab->need_plt_stub = 1;
2019 }
2020
2021 if (eh->got.refcount > 0)
2022 {
2023 /* Make sure this symbol is output as a dynamic symbol.
2024 Undefined weak syms won't yet be marked as dynamic. */
2025 if (eh->dynindx == -1
2026 && !eh->forced_local
2027 && eh->type != STT_PARISC_MILLI)
2028 {
2029 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2030 return FALSE;
2031 }
2032
2033 sec = htab->sgot;
2034 eh->got.offset = sec->size;
2035 sec->size += GOT_ENTRY_SIZE;
2036 /* R_PARISC_TLS_GD* needs two GOT entries */
2037 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2038 sec->size += GOT_ENTRY_SIZE * 2;
2039 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2040 sec->size += GOT_ENTRY_SIZE;
2041 if (htab->etab.dynamic_sections_created
2042 && (info->shared
2043 || (eh->dynindx != -1
2044 && !eh->forced_local)))
2045 {
2046 htab->srelgot->size += sizeof (Elf32_External_Rela);
2047 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2048 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2049 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2050 htab->srelgot->size += sizeof (Elf32_External_Rela);
2051 }
2052 }
2053 else
2054 eh->got.offset = (bfd_vma) -1;
2055
2056 if (hh->dyn_relocs == NULL)
2057 return TRUE;
2058
2059 /* If this is a -Bsymbolic shared link, then we need to discard all
2060 space allocated for dynamic pc-relative relocs against symbols
2061 defined in a regular object. For the normal shared case, discard
2062 space for relocs that have become local due to symbol visibility
2063 changes. */
2064 if (info->shared)
2065 {
2066 #if RELATIVE_DYNRELOCS
2067 if (SYMBOL_CALLS_LOCAL (info, eh))
2068 {
2069 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2070
2071 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2072 {
2073 hdh_p->count -= hdh_p->relative_count;
2074 hdh_p->relative_count = 0;
2075 if (hdh_p->count == 0)
2076 *hdh_pp = hdh_p->hdh_next;
2077 else
2078 hdh_pp = &hdh_p->hdh_next;
2079 }
2080 }
2081 #endif
2082
2083 /* Also discard relocs on undefined weak syms with non-default
2084 visibility. */
2085 if (hh->dyn_relocs != NULL
2086 && eh->root.type == bfd_link_hash_undefweak)
2087 {
2088 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2089 hh->dyn_relocs = NULL;
2090
2091 /* Make sure undefined weak symbols are output as a dynamic
2092 symbol in PIEs. */
2093 else if (eh->dynindx == -1
2094 && !eh->forced_local)
2095 {
2096 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2097 return FALSE;
2098 }
2099 }
2100 }
2101 else
2102 {
2103 /* For the non-shared case, discard space for relocs against
2104 symbols which turn out to need copy relocs or are not
2105 dynamic. */
2106
2107 if (!eh->non_got_ref
2108 && ((ELIMINATE_COPY_RELOCS
2109 && eh->def_dynamic
2110 && !eh->def_regular)
2111 || (htab->etab.dynamic_sections_created
2112 && (eh->root.type == bfd_link_hash_undefweak
2113 || eh->root.type == bfd_link_hash_undefined))))
2114 {
2115 /* Make sure this symbol is output as a dynamic symbol.
2116 Undefined weak syms won't yet be marked as dynamic. */
2117 if (eh->dynindx == -1
2118 && !eh->forced_local
2119 && eh->type != STT_PARISC_MILLI)
2120 {
2121 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2122 return FALSE;
2123 }
2124
2125 /* If that succeeded, we know we'll be keeping all the
2126 relocs. */
2127 if (eh->dynindx != -1)
2128 goto keep;
2129 }
2130
2131 hh->dyn_relocs = NULL;
2132 return TRUE;
2133
2134 keep: ;
2135 }
2136
2137 /* Finally, allocate space. */
2138 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2139 {
2140 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2141 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2142 }
2143
2144 return TRUE;
2145 }
2146
2147 /* This function is called via elf_link_hash_traverse to force
2148 millicode symbols local so they do not end up as globals in the
2149 dynamic symbol table. We ought to be able to do this in
2150 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2151 for all dynamic symbols. Arguably, this is a bug in
2152 elf_adjust_dynamic_symbol. */
2153
2154 static bfd_boolean
2155 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2156 struct bfd_link_info *info)
2157 {
2158 if (eh->type == STT_PARISC_MILLI
2159 && !eh->forced_local)
2160 {
2161 elf32_hppa_hide_symbol (info, eh, TRUE);
2162 }
2163 return TRUE;
2164 }
2165
2166 /* Find any dynamic relocs that apply to read-only sections. */
2167
2168 static bfd_boolean
2169 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2170 {
2171 struct elf32_hppa_link_hash_entry *hh;
2172 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2173
2174 hh = hppa_elf_hash_entry (eh);
2175 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2176 {
2177 asection *sec = hdh_p->sec->output_section;
2178
2179 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2180 {
2181 struct bfd_link_info *info = inf;
2182
2183 info->flags |= DF_TEXTREL;
2184
2185 /* Not an error, just cut short the traversal. */
2186 return FALSE;
2187 }
2188 }
2189 return TRUE;
2190 }
2191
2192 /* Set the sizes of the dynamic sections. */
2193
2194 static bfd_boolean
2195 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2196 struct bfd_link_info *info)
2197 {
2198 struct elf32_hppa_link_hash_table *htab;
2199 bfd *dynobj;
2200 bfd *ibfd;
2201 asection *sec;
2202 bfd_boolean relocs;
2203
2204 htab = hppa_link_hash_table (info);
2205 if (htab == NULL)
2206 return FALSE;
2207
2208 dynobj = htab->etab.dynobj;
2209 if (dynobj == NULL)
2210 abort ();
2211
2212 if (htab->etab.dynamic_sections_created)
2213 {
2214 /* Set the contents of the .interp section to the interpreter. */
2215 if (info->executable)
2216 {
2217 sec = bfd_get_linker_section (dynobj, ".interp");
2218 if (sec == NULL)
2219 abort ();
2220 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2221 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2222 }
2223
2224 /* Force millicode symbols local. */
2225 elf_link_hash_traverse (&htab->etab,
2226 clobber_millicode_symbols,
2227 info);
2228 }
2229
2230 /* Set up .got and .plt offsets for local syms, and space for local
2231 dynamic relocs. */
2232 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2233 {
2234 bfd_signed_vma *local_got;
2235 bfd_signed_vma *end_local_got;
2236 bfd_signed_vma *local_plt;
2237 bfd_signed_vma *end_local_plt;
2238 bfd_size_type locsymcount;
2239 Elf_Internal_Shdr *symtab_hdr;
2240 asection *srel;
2241 char *local_tls_type;
2242
2243 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2244 continue;
2245
2246 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2247 {
2248 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2249
2250 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2251 elf_section_data (sec)->local_dynrel);
2252 hdh_p != NULL;
2253 hdh_p = hdh_p->hdh_next)
2254 {
2255 if (!bfd_is_abs_section (hdh_p->sec)
2256 && bfd_is_abs_section (hdh_p->sec->output_section))
2257 {
2258 /* Input section has been discarded, either because
2259 it is a copy of a linkonce section or due to
2260 linker script /DISCARD/, so we'll be discarding
2261 the relocs too. */
2262 }
2263 else if (hdh_p->count != 0)
2264 {
2265 srel = elf_section_data (hdh_p->sec)->sreloc;
2266 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2267 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2268 info->flags |= DF_TEXTREL;
2269 }
2270 }
2271 }
2272
2273 local_got = elf_local_got_refcounts (ibfd);
2274 if (!local_got)
2275 continue;
2276
2277 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2278 locsymcount = symtab_hdr->sh_info;
2279 end_local_got = local_got + locsymcount;
2280 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2281 sec = htab->sgot;
2282 srel = htab->srelgot;
2283 for (; local_got < end_local_got; ++local_got)
2284 {
2285 if (*local_got > 0)
2286 {
2287 *local_got = sec->size;
2288 sec->size += GOT_ENTRY_SIZE;
2289 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2290 sec->size += 2 * GOT_ENTRY_SIZE;
2291 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2292 sec->size += GOT_ENTRY_SIZE;
2293 if (info->shared)
2294 {
2295 srel->size += sizeof (Elf32_External_Rela);
2296 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2297 srel->size += 2 * sizeof (Elf32_External_Rela);
2298 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2299 srel->size += sizeof (Elf32_External_Rela);
2300 }
2301 }
2302 else
2303 *local_got = (bfd_vma) -1;
2304
2305 ++local_tls_type;
2306 }
2307
2308 local_plt = end_local_got;
2309 end_local_plt = local_plt + locsymcount;
2310 if (! htab->etab.dynamic_sections_created)
2311 {
2312 /* Won't be used, but be safe. */
2313 for (; local_plt < end_local_plt; ++local_plt)
2314 *local_plt = (bfd_vma) -1;
2315 }
2316 else
2317 {
2318 sec = htab->splt;
2319 srel = htab->srelplt;
2320 for (; local_plt < end_local_plt; ++local_plt)
2321 {
2322 if (*local_plt > 0)
2323 {
2324 *local_plt = sec->size;
2325 sec->size += PLT_ENTRY_SIZE;
2326 if (info->shared)
2327 srel->size += sizeof (Elf32_External_Rela);
2328 }
2329 else
2330 *local_plt = (bfd_vma) -1;
2331 }
2332 }
2333 }
2334
2335 if (htab->tls_ldm_got.refcount > 0)
2336 {
2337 /* Allocate 2 got entries and 1 dynamic reloc for
2338 R_PARISC_TLS_DTPMOD32 relocs. */
2339 htab->tls_ldm_got.offset = htab->sgot->size;
2340 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2341 htab->srelgot->size += sizeof (Elf32_External_Rela);
2342 }
2343 else
2344 htab->tls_ldm_got.offset = -1;
2345
2346 /* Do all the .plt entries without relocs first. The dynamic linker
2347 uses the last .plt reloc to find the end of the .plt (and hence
2348 the start of the .got) for lazy linking. */
2349 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2350
2351 /* Allocate global sym .plt and .got entries, and space for global
2352 sym dynamic relocs. */
2353 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2354
2355 /* The check_relocs and adjust_dynamic_symbol entry points have
2356 determined the sizes of the various dynamic sections. Allocate
2357 memory for them. */
2358 relocs = FALSE;
2359 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2360 {
2361 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2362 continue;
2363
2364 if (sec == htab->splt)
2365 {
2366 if (htab->need_plt_stub)
2367 {
2368 /* Make space for the plt stub at the end of the .plt
2369 section. We want this stub right at the end, up
2370 against the .got section. */
2371 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2372 int pltalign = bfd_section_alignment (dynobj, sec);
2373 bfd_size_type mask;
2374
2375 if (gotalign > pltalign)
2376 (void) bfd_set_section_alignment (dynobj, sec, gotalign);
2377 mask = ((bfd_size_type) 1 << gotalign) - 1;
2378 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2379 }
2380 }
2381 else if (sec == htab->sgot
2382 || sec == htab->sdynbss)
2383 ;
2384 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2385 {
2386 if (sec->size != 0)
2387 {
2388 /* Remember whether there are any reloc sections other
2389 than .rela.plt. */
2390 if (sec != htab->srelplt)
2391 relocs = TRUE;
2392
2393 /* We use the reloc_count field as a counter if we need
2394 to copy relocs into the output file. */
2395 sec->reloc_count = 0;
2396 }
2397 }
2398 else
2399 {
2400 /* It's not one of our sections, so don't allocate space. */
2401 continue;
2402 }
2403
2404 if (sec->size == 0)
2405 {
2406 /* If we don't need this section, strip it from the
2407 output file. This is mostly to handle .rela.bss and
2408 .rela.plt. We must create both sections in
2409 create_dynamic_sections, because they must be created
2410 before the linker maps input sections to output
2411 sections. The linker does that before
2412 adjust_dynamic_symbol is called, and it is that
2413 function which decides whether anything needs to go
2414 into these sections. */
2415 sec->flags |= SEC_EXCLUDE;
2416 continue;
2417 }
2418
2419 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2420 continue;
2421
2422 /* Allocate memory for the section contents. Zero it, because
2423 we may not fill in all the reloc sections. */
2424 sec->contents = bfd_zalloc (dynobj, sec->size);
2425 if (sec->contents == NULL)
2426 return FALSE;
2427 }
2428
2429 if (htab->etab.dynamic_sections_created)
2430 {
2431 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2432 actually has nothing to do with the PLT, it is how we
2433 communicate the LTP value of a load module to the dynamic
2434 linker. */
2435 #define add_dynamic_entry(TAG, VAL) \
2436 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2437
2438 if (!add_dynamic_entry (DT_PLTGOT, 0))
2439 return FALSE;
2440
2441 /* Add some entries to the .dynamic section. We fill in the
2442 values later, in elf32_hppa_finish_dynamic_sections, but we
2443 must add the entries now so that we get the correct size for
2444 the .dynamic section. The DT_DEBUG entry is filled in by the
2445 dynamic linker and used by the debugger. */
2446 if (info->executable)
2447 {
2448 if (!add_dynamic_entry (DT_DEBUG, 0))
2449 return FALSE;
2450 }
2451
2452 if (htab->srelplt->size != 0)
2453 {
2454 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2455 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2456 || !add_dynamic_entry (DT_JMPREL, 0))
2457 return FALSE;
2458 }
2459
2460 if (relocs)
2461 {
2462 if (!add_dynamic_entry (DT_RELA, 0)
2463 || !add_dynamic_entry (DT_RELASZ, 0)
2464 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2465 return FALSE;
2466
2467 /* If any dynamic relocs apply to a read-only section,
2468 then we need a DT_TEXTREL entry. */
2469 if ((info->flags & DF_TEXTREL) == 0)
2470 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2471
2472 if ((info->flags & DF_TEXTREL) != 0)
2473 {
2474 if (!add_dynamic_entry (DT_TEXTREL, 0))
2475 return FALSE;
2476 }
2477 }
2478 }
2479 #undef add_dynamic_entry
2480
2481 return TRUE;
2482 }
2483
2484 /* External entry points for sizing and building linker stubs. */
2485
2486 /* Set up various things so that we can make a list of input sections
2487 for each output section included in the link. Returns -1 on error,
2488 0 when no stubs will be needed, and 1 on success. */
2489
2490 int
2491 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2492 {
2493 bfd *input_bfd;
2494 unsigned int bfd_count;
2495 int top_id, top_index;
2496 asection *section;
2497 asection **input_list, **list;
2498 bfd_size_type amt;
2499 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2500
2501 if (htab == NULL)
2502 return -1;
2503
2504 /* Count the number of input BFDs and find the top input section id. */
2505 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2506 input_bfd != NULL;
2507 input_bfd = input_bfd->link.next)
2508 {
2509 bfd_count += 1;
2510 for (section = input_bfd->sections;
2511 section != NULL;
2512 section = section->next)
2513 {
2514 if (top_id < section->id)
2515 top_id = section->id;
2516 }
2517 }
2518 htab->bfd_count = bfd_count;
2519
2520 amt = sizeof (struct map_stub) * (top_id + 1);
2521 htab->stub_group = bfd_zmalloc (amt);
2522 if (htab->stub_group == NULL)
2523 return -1;
2524
2525 /* We can't use output_bfd->section_count here to find the top output
2526 section index as some sections may have been removed, and
2527 strip_excluded_output_sections doesn't renumber the indices. */
2528 for (section = output_bfd->sections, top_index = 0;
2529 section != NULL;
2530 section = section->next)
2531 {
2532 if (top_index < section->index)
2533 top_index = section->index;
2534 }
2535
2536 htab->top_index = top_index;
2537 amt = sizeof (asection *) * (top_index + 1);
2538 input_list = bfd_malloc (amt);
2539 htab->input_list = input_list;
2540 if (input_list == NULL)
2541 return -1;
2542
2543 /* For sections we aren't interested in, mark their entries with a
2544 value we can check later. */
2545 list = input_list + top_index;
2546 do
2547 *list = bfd_abs_section_ptr;
2548 while (list-- != input_list);
2549
2550 for (section = output_bfd->sections;
2551 section != NULL;
2552 section = section->next)
2553 {
2554 if ((section->flags & SEC_CODE) != 0)
2555 input_list[section->index] = NULL;
2556 }
2557
2558 return 1;
2559 }
2560
2561 /* The linker repeatedly calls this function for each input section,
2562 in the order that input sections are linked into output sections.
2563 Build lists of input sections to determine groupings between which
2564 we may insert linker stubs. */
2565
2566 void
2567 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2568 {
2569 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2570
2571 if (htab == NULL)
2572 return;
2573
2574 if (isec->output_section->index <= htab->top_index)
2575 {
2576 asection **list = htab->input_list + isec->output_section->index;
2577 if (*list != bfd_abs_section_ptr)
2578 {
2579 /* Steal the link_sec pointer for our list. */
2580 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2581 /* This happens to make the list in reverse order,
2582 which is what we want. */
2583 PREV_SEC (isec) = *list;
2584 *list = isec;
2585 }
2586 }
2587 }
2588
2589 /* See whether we can group stub sections together. Grouping stub
2590 sections may result in fewer stubs. More importantly, we need to
2591 put all .init* and .fini* stubs at the beginning of the .init or
2592 .fini output sections respectively, because glibc splits the
2593 _init and _fini functions into multiple parts. Putting a stub in
2594 the middle of a function is not a good idea. */
2595
2596 static void
2597 group_sections (struct elf32_hppa_link_hash_table *htab,
2598 bfd_size_type stub_group_size,
2599 bfd_boolean stubs_always_before_branch)
2600 {
2601 asection **list = htab->input_list + htab->top_index;
2602 do
2603 {
2604 asection *tail = *list;
2605 if (tail == bfd_abs_section_ptr)
2606 continue;
2607 while (tail != NULL)
2608 {
2609 asection *curr;
2610 asection *prev;
2611 bfd_size_type total;
2612 bfd_boolean big_sec;
2613
2614 curr = tail;
2615 total = tail->size;
2616 big_sec = total >= stub_group_size;
2617
2618 while ((prev = PREV_SEC (curr)) != NULL
2619 && ((total += curr->output_offset - prev->output_offset)
2620 < stub_group_size))
2621 curr = prev;
2622
2623 /* OK, the size from the start of CURR to the end is less
2624 than 240000 bytes and thus can be handled by one stub
2625 section. (or the tail section is itself larger than
2626 240000 bytes, in which case we may be toast.)
2627 We should really be keeping track of the total size of
2628 stubs added here, as stubs contribute to the final output
2629 section size. That's a little tricky, and this way will
2630 only break if stubs added total more than 22144 bytes, or
2631 2768 long branch stubs. It seems unlikely for more than
2632 2768 different functions to be called, especially from
2633 code only 240000 bytes long. This limit used to be
2634 250000, but c++ code tends to generate lots of little
2635 functions, and sometimes violated the assumption. */
2636 do
2637 {
2638 prev = PREV_SEC (tail);
2639 /* Set up this stub group. */
2640 htab->stub_group[tail->id].link_sec = curr;
2641 }
2642 while (tail != curr && (tail = prev) != NULL);
2643
2644 /* But wait, there's more! Input sections up to 240000
2645 bytes before the stub section can be handled by it too.
2646 Don't do this if we have a really large section after the
2647 stubs, as adding more stubs increases the chance that
2648 branches may not reach into the stub section. */
2649 if (!stubs_always_before_branch && !big_sec)
2650 {
2651 total = 0;
2652 while (prev != NULL
2653 && ((total += tail->output_offset - prev->output_offset)
2654 < stub_group_size))
2655 {
2656 tail = prev;
2657 prev = PREV_SEC (tail);
2658 htab->stub_group[tail->id].link_sec = curr;
2659 }
2660 }
2661 tail = prev;
2662 }
2663 }
2664 while (list-- != htab->input_list);
2665 free (htab->input_list);
2666 #undef PREV_SEC
2667 }
2668
2669 /* Read in all local syms for all input bfds, and create hash entries
2670 for export stubs if we are building a multi-subspace shared lib.
2671 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2672
2673 static int
2674 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2675 {
2676 unsigned int bfd_indx;
2677 Elf_Internal_Sym *local_syms, **all_local_syms;
2678 int stub_changed = 0;
2679 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2680
2681 if (htab == NULL)
2682 return -1;
2683
2684 /* We want to read in symbol extension records only once. To do this
2685 we need to read in the local symbols in parallel and save them for
2686 later use; so hold pointers to the local symbols in an array. */
2687 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2688 all_local_syms = bfd_zmalloc (amt);
2689 htab->all_local_syms = all_local_syms;
2690 if (all_local_syms == NULL)
2691 return -1;
2692
2693 /* Walk over all the input BFDs, swapping in local symbols.
2694 If we are creating a shared library, create hash entries for the
2695 export stubs. */
2696 for (bfd_indx = 0;
2697 input_bfd != NULL;
2698 input_bfd = input_bfd->link.next, bfd_indx++)
2699 {
2700 Elf_Internal_Shdr *symtab_hdr;
2701
2702 /* We'll need the symbol table in a second. */
2703 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2704 if (symtab_hdr->sh_info == 0)
2705 continue;
2706
2707 /* We need an array of the local symbols attached to the input bfd. */
2708 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2709 if (local_syms == NULL)
2710 {
2711 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2712 symtab_hdr->sh_info, 0,
2713 NULL, NULL, NULL);
2714 /* Cache them for elf_link_input_bfd. */
2715 symtab_hdr->contents = (unsigned char *) local_syms;
2716 }
2717 if (local_syms == NULL)
2718 return -1;
2719
2720 all_local_syms[bfd_indx] = local_syms;
2721
2722 if (info->shared && htab->multi_subspace)
2723 {
2724 struct elf_link_hash_entry **eh_syms;
2725 struct elf_link_hash_entry **eh_symend;
2726 unsigned int symcount;
2727
2728 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2729 - symtab_hdr->sh_info);
2730 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2731 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2732
2733 /* Look through the global syms for functions; We need to
2734 build export stubs for all globally visible functions. */
2735 for (; eh_syms < eh_symend; eh_syms++)
2736 {
2737 struct elf32_hppa_link_hash_entry *hh;
2738
2739 hh = hppa_elf_hash_entry (*eh_syms);
2740
2741 while (hh->eh.root.type == bfd_link_hash_indirect
2742 || hh->eh.root.type == bfd_link_hash_warning)
2743 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2744
2745 /* At this point in the link, undefined syms have been
2746 resolved, so we need to check that the symbol was
2747 defined in this BFD. */
2748 if ((hh->eh.root.type == bfd_link_hash_defined
2749 || hh->eh.root.type == bfd_link_hash_defweak)
2750 && hh->eh.type == STT_FUNC
2751 && hh->eh.root.u.def.section->output_section != NULL
2752 && (hh->eh.root.u.def.section->output_section->owner
2753 == output_bfd)
2754 && hh->eh.root.u.def.section->owner == input_bfd
2755 && hh->eh.def_regular
2756 && !hh->eh.forced_local
2757 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2758 {
2759 asection *sec;
2760 const char *stub_name;
2761 struct elf32_hppa_stub_hash_entry *hsh;
2762
2763 sec = hh->eh.root.u.def.section;
2764 stub_name = hh_name (hh);
2765 hsh = hppa_stub_hash_lookup (&htab->bstab,
2766 stub_name,
2767 FALSE, FALSE);
2768 if (hsh == NULL)
2769 {
2770 hsh = hppa_add_stub (stub_name, sec, htab);
2771 if (!hsh)
2772 return -1;
2773
2774 hsh->target_value = hh->eh.root.u.def.value;
2775 hsh->target_section = hh->eh.root.u.def.section;
2776 hsh->stub_type = hppa_stub_export;
2777 hsh->hh = hh;
2778 stub_changed = 1;
2779 }
2780 else
2781 {
2782 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2783 input_bfd,
2784 stub_name);
2785 }
2786 }
2787 }
2788 }
2789 }
2790
2791 return stub_changed;
2792 }
2793
2794 /* Determine and set the size of the stub section for a final link.
2795
2796 The basic idea here is to examine all the relocations looking for
2797 PC-relative calls to a target that is unreachable with a "bl"
2798 instruction. */
2799
2800 bfd_boolean
2801 elf32_hppa_size_stubs
2802 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2803 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2804 asection * (*add_stub_section) (const char *, asection *),
2805 void (*layout_sections_again) (void))
2806 {
2807 bfd_size_type stub_group_size;
2808 bfd_boolean stubs_always_before_branch;
2809 bfd_boolean stub_changed;
2810 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2811
2812 if (htab == NULL)
2813 return FALSE;
2814
2815 /* Stash our params away. */
2816 htab->stub_bfd = stub_bfd;
2817 htab->multi_subspace = multi_subspace;
2818 htab->add_stub_section = add_stub_section;
2819 htab->layout_sections_again = layout_sections_again;
2820 stubs_always_before_branch = group_size < 0;
2821 if (group_size < 0)
2822 stub_group_size = -group_size;
2823 else
2824 stub_group_size = group_size;
2825 if (stub_group_size == 1)
2826 {
2827 /* Default values. */
2828 if (stubs_always_before_branch)
2829 {
2830 stub_group_size = 7680000;
2831 if (htab->has_17bit_branch || htab->multi_subspace)
2832 stub_group_size = 240000;
2833 if (htab->has_12bit_branch)
2834 stub_group_size = 7500;
2835 }
2836 else
2837 {
2838 stub_group_size = 6971392;
2839 if (htab->has_17bit_branch || htab->multi_subspace)
2840 stub_group_size = 217856;
2841 if (htab->has_12bit_branch)
2842 stub_group_size = 6808;
2843 }
2844 }
2845
2846 group_sections (htab, stub_group_size, stubs_always_before_branch);
2847
2848 switch (get_local_syms (output_bfd, info->input_bfds, info))
2849 {
2850 default:
2851 if (htab->all_local_syms)
2852 goto error_ret_free_local;
2853 return FALSE;
2854
2855 case 0:
2856 stub_changed = FALSE;
2857 break;
2858
2859 case 1:
2860 stub_changed = TRUE;
2861 break;
2862 }
2863
2864 while (1)
2865 {
2866 bfd *input_bfd;
2867 unsigned int bfd_indx;
2868 asection *stub_sec;
2869
2870 for (input_bfd = info->input_bfds, bfd_indx = 0;
2871 input_bfd != NULL;
2872 input_bfd = input_bfd->link.next, bfd_indx++)
2873 {
2874 Elf_Internal_Shdr *symtab_hdr;
2875 asection *section;
2876 Elf_Internal_Sym *local_syms;
2877
2878 /* We'll need the symbol table in a second. */
2879 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2880 if (symtab_hdr->sh_info == 0)
2881 continue;
2882
2883 local_syms = htab->all_local_syms[bfd_indx];
2884
2885 /* Walk over each section attached to the input bfd. */
2886 for (section = input_bfd->sections;
2887 section != NULL;
2888 section = section->next)
2889 {
2890 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2891
2892 /* If there aren't any relocs, then there's nothing more
2893 to do. */
2894 if ((section->flags & SEC_RELOC) == 0
2895 || section->reloc_count == 0)
2896 continue;
2897
2898 /* If this section is a link-once section that will be
2899 discarded, then don't create any stubs. */
2900 if (section->output_section == NULL
2901 || section->output_section->owner != output_bfd)
2902 continue;
2903
2904 /* Get the relocs. */
2905 internal_relocs
2906 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2907 info->keep_memory);
2908 if (internal_relocs == NULL)
2909 goto error_ret_free_local;
2910
2911 /* Now examine each relocation. */
2912 irela = internal_relocs;
2913 irelaend = irela + section->reloc_count;
2914 for (; irela < irelaend; irela++)
2915 {
2916 unsigned int r_type, r_indx;
2917 enum elf32_hppa_stub_type stub_type;
2918 struct elf32_hppa_stub_hash_entry *hsh;
2919 asection *sym_sec;
2920 bfd_vma sym_value;
2921 bfd_vma destination;
2922 struct elf32_hppa_link_hash_entry *hh;
2923 char *stub_name;
2924 const asection *id_sec;
2925
2926 r_type = ELF32_R_TYPE (irela->r_info);
2927 r_indx = ELF32_R_SYM (irela->r_info);
2928
2929 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2930 {
2931 bfd_set_error (bfd_error_bad_value);
2932 error_ret_free_internal:
2933 if (elf_section_data (section)->relocs == NULL)
2934 free (internal_relocs);
2935 goto error_ret_free_local;
2936 }
2937
2938 /* Only look for stubs on call instructions. */
2939 if (r_type != (unsigned int) R_PARISC_PCREL12F
2940 && r_type != (unsigned int) R_PARISC_PCREL17F
2941 && r_type != (unsigned int) R_PARISC_PCREL22F)
2942 continue;
2943
2944 /* Now determine the call target, its name, value,
2945 section. */
2946 sym_sec = NULL;
2947 sym_value = 0;
2948 destination = 0;
2949 hh = NULL;
2950 if (r_indx < symtab_hdr->sh_info)
2951 {
2952 /* It's a local symbol. */
2953 Elf_Internal_Sym *sym;
2954 Elf_Internal_Shdr *hdr;
2955 unsigned int shndx;
2956
2957 sym = local_syms + r_indx;
2958 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2959 sym_value = sym->st_value;
2960 shndx = sym->st_shndx;
2961 if (shndx < elf_numsections (input_bfd))
2962 {
2963 hdr = elf_elfsections (input_bfd)[shndx];
2964 sym_sec = hdr->bfd_section;
2965 destination = (sym_value + irela->r_addend
2966 + sym_sec->output_offset
2967 + sym_sec->output_section->vma);
2968 }
2969 }
2970 else
2971 {
2972 /* It's an external symbol. */
2973 int e_indx;
2974
2975 e_indx = r_indx - symtab_hdr->sh_info;
2976 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2977
2978 while (hh->eh.root.type == bfd_link_hash_indirect
2979 || hh->eh.root.type == bfd_link_hash_warning)
2980 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2981
2982 if (hh->eh.root.type == bfd_link_hash_defined
2983 || hh->eh.root.type == bfd_link_hash_defweak)
2984 {
2985 sym_sec = hh->eh.root.u.def.section;
2986 sym_value = hh->eh.root.u.def.value;
2987 if (sym_sec->output_section != NULL)
2988 destination = (sym_value + irela->r_addend
2989 + sym_sec->output_offset
2990 + sym_sec->output_section->vma);
2991 }
2992 else if (hh->eh.root.type == bfd_link_hash_undefweak)
2993 {
2994 if (! info->shared)
2995 continue;
2996 }
2997 else if (hh->eh.root.type == bfd_link_hash_undefined)
2998 {
2999 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3000 && (ELF_ST_VISIBILITY (hh->eh.other)
3001 == STV_DEFAULT)
3002 && hh->eh.type != STT_PARISC_MILLI))
3003 continue;
3004 }
3005 else
3006 {
3007 bfd_set_error (bfd_error_bad_value);
3008 goto error_ret_free_internal;
3009 }
3010 }
3011
3012 /* Determine what (if any) linker stub is needed. */
3013 stub_type = hppa_type_of_stub (section, irela, hh,
3014 destination, info);
3015 if (stub_type == hppa_stub_none)
3016 continue;
3017
3018 /* Support for grouping stub sections. */
3019 id_sec = htab->stub_group[section->id].link_sec;
3020
3021 /* Get the name of this stub. */
3022 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3023 if (!stub_name)
3024 goto error_ret_free_internal;
3025
3026 hsh = hppa_stub_hash_lookup (&htab->bstab,
3027 stub_name,
3028 FALSE, FALSE);
3029 if (hsh != NULL)
3030 {
3031 /* The proper stub has already been created. */
3032 free (stub_name);
3033 continue;
3034 }
3035
3036 hsh = hppa_add_stub (stub_name, section, htab);
3037 if (hsh == NULL)
3038 {
3039 free (stub_name);
3040 goto error_ret_free_internal;
3041 }
3042
3043 hsh->target_value = sym_value;
3044 hsh->target_section = sym_sec;
3045 hsh->stub_type = stub_type;
3046 if (info->shared)
3047 {
3048 if (stub_type == hppa_stub_import)
3049 hsh->stub_type = hppa_stub_import_shared;
3050 else if (stub_type == hppa_stub_long_branch)
3051 hsh->stub_type = hppa_stub_long_branch_shared;
3052 }
3053 hsh->hh = hh;
3054 stub_changed = TRUE;
3055 }
3056
3057 /* We're done with the internal relocs, free them. */
3058 if (elf_section_data (section)->relocs == NULL)
3059 free (internal_relocs);
3060 }
3061 }
3062
3063 if (!stub_changed)
3064 break;
3065
3066 /* OK, we've added some stubs. Find out the new size of the
3067 stub sections. */
3068 for (stub_sec = htab->stub_bfd->sections;
3069 stub_sec != NULL;
3070 stub_sec = stub_sec->next)
3071 stub_sec->size = 0;
3072
3073 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3074
3075 /* Ask the linker to do its stuff. */
3076 (*htab->layout_sections_again) ();
3077 stub_changed = FALSE;
3078 }
3079
3080 free (htab->all_local_syms);
3081 return TRUE;
3082
3083 error_ret_free_local:
3084 free (htab->all_local_syms);
3085 return FALSE;
3086 }
3087
3088 /* For a final link, this function is called after we have sized the
3089 stubs to provide a value for __gp. */
3090
3091 bfd_boolean
3092 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3093 {
3094 struct bfd_link_hash_entry *h;
3095 asection *sec = NULL;
3096 bfd_vma gp_val = 0;
3097 struct elf32_hppa_link_hash_table *htab;
3098
3099 htab = hppa_link_hash_table (info);
3100 if (htab == NULL)
3101 return FALSE;
3102
3103 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3104
3105 if (h != NULL
3106 && (h->type == bfd_link_hash_defined
3107 || h->type == bfd_link_hash_defweak))
3108 {
3109 gp_val = h->u.def.value;
3110 sec = h->u.def.section;
3111 }
3112 else
3113 {
3114 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3115 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3116
3117 /* Choose to point our LTP at, in this order, one of .plt, .got,
3118 or .data, if these sections exist. In the case of choosing
3119 .plt try to make the LTP ideal for addressing anywhere in the
3120 .plt or .got with a 14 bit signed offset. Typically, the end
3121 of the .plt is the start of the .got, so choose .plt + 0x2000
3122 if either the .plt or .got is larger than 0x2000. If both
3123 the .plt and .got are smaller than 0x2000, choose the end of
3124 the .plt section. */
3125 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3126 ? NULL : splt;
3127 if (sec != NULL)
3128 {
3129 gp_val = sec->size;
3130 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3131 {
3132 gp_val = 0x2000;
3133 }
3134 }
3135 else
3136 {
3137 sec = sgot;
3138 if (sec != NULL)
3139 {
3140 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3141 {
3142 /* We know we don't have a .plt. If .got is large,
3143 offset our LTP. */
3144 if (sec->size > 0x2000)
3145 gp_val = 0x2000;
3146 }
3147 }
3148 else
3149 {
3150 /* No .plt or .got. Who cares what the LTP is? */
3151 sec = bfd_get_section_by_name (abfd, ".data");
3152 }
3153 }
3154
3155 if (h != NULL)
3156 {
3157 h->type = bfd_link_hash_defined;
3158 h->u.def.value = gp_val;
3159 if (sec != NULL)
3160 h->u.def.section = sec;
3161 else
3162 h->u.def.section = bfd_abs_section_ptr;
3163 }
3164 }
3165
3166 if (sec != NULL && sec->output_section != NULL)
3167 gp_val += sec->output_section->vma + sec->output_offset;
3168
3169 elf_gp (abfd) = gp_val;
3170 return TRUE;
3171 }
3172
3173 /* Build all the stubs associated with the current output file. The
3174 stubs are kept in a hash table attached to the main linker hash
3175 table. We also set up the .plt entries for statically linked PIC
3176 functions here. This function is called via hppaelf_finish in the
3177 linker. */
3178
3179 bfd_boolean
3180 elf32_hppa_build_stubs (struct bfd_link_info *info)
3181 {
3182 asection *stub_sec;
3183 struct bfd_hash_table *table;
3184 struct elf32_hppa_link_hash_table *htab;
3185
3186 htab = hppa_link_hash_table (info);
3187 if (htab == NULL)
3188 return FALSE;
3189
3190 for (stub_sec = htab->stub_bfd->sections;
3191 stub_sec != NULL;
3192 stub_sec = stub_sec->next)
3193 {
3194 bfd_size_type size;
3195
3196 /* Allocate memory to hold the linker stubs. */
3197 size = stub_sec->size;
3198 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3199 if (stub_sec->contents == NULL && size != 0)
3200 return FALSE;
3201 stub_sec->size = 0;
3202 }
3203
3204 /* Build the stubs as directed by the stub hash table. */
3205 table = &htab->bstab;
3206 bfd_hash_traverse (table, hppa_build_one_stub, info);
3207
3208 return TRUE;
3209 }
3210
3211 /* Return the base vma address which should be subtracted from the real
3212 address when resolving a dtpoff relocation.
3213 This is PT_TLS segment p_vaddr. */
3214
3215 static bfd_vma
3216 dtpoff_base (struct bfd_link_info *info)
3217 {
3218 /* If tls_sec is NULL, we should have signalled an error already. */
3219 if (elf_hash_table (info)->tls_sec == NULL)
3220 return 0;
3221 return elf_hash_table (info)->tls_sec->vma;
3222 }
3223
3224 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3225
3226 static bfd_vma
3227 tpoff (struct bfd_link_info *info, bfd_vma address)
3228 {
3229 struct elf_link_hash_table *htab = elf_hash_table (info);
3230
3231 /* If tls_sec is NULL, we should have signalled an error already. */
3232 if (htab->tls_sec == NULL)
3233 return 0;
3234 /* hppa TLS ABI is variant I and static TLS block start just after
3235 tcbhead structure which has 2 pointer fields. */
3236 return (address - htab->tls_sec->vma
3237 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3238 }
3239
3240 /* Perform a final link. */
3241
3242 static bfd_boolean
3243 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3244 {
3245 /* Invoke the regular ELF linker to do all the work. */
3246 if (!bfd_elf_final_link (abfd, info))
3247 return FALSE;
3248
3249 /* If we're producing a final executable, sort the contents of the
3250 unwind section. */
3251 if (info->relocatable)
3252 return TRUE;
3253
3254 return elf_hppa_sort_unwind (abfd);
3255 }
3256
3257 /* Record the lowest address for the data and text segments. */
3258
3259 static void
3260 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3261 {
3262 struct elf32_hppa_link_hash_table *htab;
3263
3264 htab = (struct elf32_hppa_link_hash_table*) data;
3265 if (htab == NULL)
3266 return;
3267
3268 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3269 {
3270 bfd_vma value;
3271 Elf_Internal_Phdr *p;
3272
3273 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3274 BFD_ASSERT (p != NULL);
3275 value = p->p_vaddr;
3276
3277 if ((section->flags & SEC_READONLY) != 0)
3278 {
3279 if (value < htab->text_segment_base)
3280 htab->text_segment_base = value;
3281 }
3282 else
3283 {
3284 if (value < htab->data_segment_base)
3285 htab->data_segment_base = value;
3286 }
3287 }
3288 }
3289
3290 /* Perform a relocation as part of a final link. */
3291
3292 static bfd_reloc_status_type
3293 final_link_relocate (asection *input_section,
3294 bfd_byte *contents,
3295 const Elf_Internal_Rela *rela,
3296 bfd_vma value,
3297 struct elf32_hppa_link_hash_table *htab,
3298 asection *sym_sec,
3299 struct elf32_hppa_link_hash_entry *hh,
3300 struct bfd_link_info *info)
3301 {
3302 int insn;
3303 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3304 unsigned int orig_r_type = r_type;
3305 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3306 int r_format = howto->bitsize;
3307 enum hppa_reloc_field_selector_type_alt r_field;
3308 bfd *input_bfd = input_section->owner;
3309 bfd_vma offset = rela->r_offset;
3310 bfd_vma max_branch_offset = 0;
3311 bfd_byte *hit_data = contents + offset;
3312 bfd_signed_vma addend = rela->r_addend;
3313 bfd_vma location;
3314 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3315 int val;
3316
3317 if (r_type == R_PARISC_NONE)
3318 return bfd_reloc_ok;
3319
3320 insn = bfd_get_32 (input_bfd, hit_data);
3321
3322 /* Find out where we are and where we're going. */
3323 location = (offset +
3324 input_section->output_offset +
3325 input_section->output_section->vma);
3326
3327 /* If we are not building a shared library, convert DLTIND relocs to
3328 DPREL relocs. */
3329 if (!info->shared)
3330 {
3331 switch (r_type)
3332 {
3333 case R_PARISC_DLTIND21L:
3334 case R_PARISC_TLS_GD21L:
3335 case R_PARISC_TLS_LDM21L:
3336 case R_PARISC_TLS_IE21L:
3337 r_type = R_PARISC_DPREL21L;
3338 break;
3339
3340 case R_PARISC_DLTIND14R:
3341 case R_PARISC_TLS_GD14R:
3342 case R_PARISC_TLS_LDM14R:
3343 case R_PARISC_TLS_IE14R:
3344 r_type = R_PARISC_DPREL14R;
3345 break;
3346
3347 case R_PARISC_DLTIND14F:
3348 r_type = R_PARISC_DPREL14F;
3349 break;
3350 }
3351 }
3352
3353 switch (r_type)
3354 {
3355 case R_PARISC_PCREL12F:
3356 case R_PARISC_PCREL17F:
3357 case R_PARISC_PCREL22F:
3358 /* If this call should go via the plt, find the import stub in
3359 the stub hash. */
3360 if (sym_sec == NULL
3361 || sym_sec->output_section == NULL
3362 || (hh != NULL
3363 && hh->eh.plt.offset != (bfd_vma) -1
3364 && hh->eh.dynindx != -1
3365 && !hh->plabel
3366 && (info->shared
3367 || !hh->eh.def_regular
3368 || hh->eh.root.type == bfd_link_hash_defweak)))
3369 {
3370 hsh = hppa_get_stub_entry (input_section, sym_sec,
3371 hh, rela, htab);
3372 if (hsh != NULL)
3373 {
3374 value = (hsh->stub_offset
3375 + hsh->stub_sec->output_offset
3376 + hsh->stub_sec->output_section->vma);
3377 addend = 0;
3378 }
3379 else if (sym_sec == NULL && hh != NULL
3380 && hh->eh.root.type == bfd_link_hash_undefweak)
3381 {
3382 /* It's OK if undefined weak. Calls to undefined weak
3383 symbols behave as if the "called" function
3384 immediately returns. We can thus call to a weak
3385 function without first checking whether the function
3386 is defined. */
3387 value = location;
3388 addend = 8;
3389 }
3390 else
3391 return bfd_reloc_undefined;
3392 }
3393 /* Fall thru. */
3394
3395 case R_PARISC_PCREL21L:
3396 case R_PARISC_PCREL17C:
3397 case R_PARISC_PCREL17R:
3398 case R_PARISC_PCREL14R:
3399 case R_PARISC_PCREL14F:
3400 case R_PARISC_PCREL32:
3401 /* Make it a pc relative offset. */
3402 value -= location;
3403 addend -= 8;
3404 break;
3405
3406 case R_PARISC_DPREL21L:
3407 case R_PARISC_DPREL14R:
3408 case R_PARISC_DPREL14F:
3409 /* Convert instructions that use the linkage table pointer (r19) to
3410 instructions that use the global data pointer (dp). This is the
3411 most efficient way of using PIC code in an incomplete executable,
3412 but the user must follow the standard runtime conventions for
3413 accessing data for this to work. */
3414 if (orig_r_type != r_type)
3415 {
3416 if (r_type == R_PARISC_DPREL21L)
3417 {
3418 /* GCC sometimes uses a register other than r19 for the
3419 operation, so we must convert any addil instruction
3420 that uses this relocation. */
3421 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3422 insn = ADDIL_DP;
3423 else
3424 /* We must have a ldil instruction. It's too hard to find
3425 and convert the associated add instruction, so issue an
3426 error. */
3427 (*_bfd_error_handler)
3428 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3429 input_bfd,
3430 input_section,
3431 (long) offset,
3432 howto->name,
3433 insn);
3434 }
3435 else if (r_type == R_PARISC_DPREL14F)
3436 {
3437 /* This must be a format 1 load/store. Change the base
3438 register to dp. */
3439 insn = (insn & 0xfc1ffff) | (27 << 21);
3440 }
3441 }
3442
3443 /* For all the DP relative relocations, we need to examine the symbol's
3444 section. If it has no section or if it's a code section, then
3445 "data pointer relative" makes no sense. In that case we don't
3446 adjust the "value", and for 21 bit addil instructions, we change the
3447 source addend register from %dp to %r0. This situation commonly
3448 arises for undefined weak symbols and when a variable's "constness"
3449 is declared differently from the way the variable is defined. For
3450 instance: "extern int foo" with foo defined as "const int foo". */
3451 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3452 {
3453 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3454 == (((int) OP_ADDIL << 26) | (27 << 21)))
3455 {
3456 insn &= ~ (0x1f << 21);
3457 }
3458 /* Now try to make things easy for the dynamic linker. */
3459
3460 break;
3461 }
3462 /* Fall thru. */
3463
3464 case R_PARISC_DLTIND21L:
3465 case R_PARISC_DLTIND14R:
3466 case R_PARISC_DLTIND14F:
3467 case R_PARISC_TLS_GD21L:
3468 case R_PARISC_TLS_LDM21L:
3469 case R_PARISC_TLS_IE21L:
3470 case R_PARISC_TLS_GD14R:
3471 case R_PARISC_TLS_LDM14R:
3472 case R_PARISC_TLS_IE14R:
3473 value -= elf_gp (input_section->output_section->owner);
3474 break;
3475
3476 case R_PARISC_SEGREL32:
3477 if ((sym_sec->flags & SEC_CODE) != 0)
3478 value -= htab->text_segment_base;
3479 else
3480 value -= htab->data_segment_base;
3481 break;
3482
3483 default:
3484 break;
3485 }
3486
3487 switch (r_type)
3488 {
3489 case R_PARISC_DIR32:
3490 case R_PARISC_DIR14F:
3491 case R_PARISC_DIR17F:
3492 case R_PARISC_PCREL17C:
3493 case R_PARISC_PCREL14F:
3494 case R_PARISC_PCREL32:
3495 case R_PARISC_DPREL14F:
3496 case R_PARISC_PLABEL32:
3497 case R_PARISC_DLTIND14F:
3498 case R_PARISC_SEGBASE:
3499 case R_PARISC_SEGREL32:
3500 case R_PARISC_TLS_DTPMOD32:
3501 case R_PARISC_TLS_DTPOFF32:
3502 case R_PARISC_TLS_TPREL32:
3503 r_field = e_fsel;
3504 break;
3505
3506 case R_PARISC_DLTIND21L:
3507 case R_PARISC_PCREL21L:
3508 case R_PARISC_PLABEL21L:
3509 r_field = e_lsel;
3510 break;
3511
3512 case R_PARISC_DIR21L:
3513 case R_PARISC_DPREL21L:
3514 case R_PARISC_TLS_GD21L:
3515 case R_PARISC_TLS_LDM21L:
3516 case R_PARISC_TLS_LDO21L:
3517 case R_PARISC_TLS_IE21L:
3518 case R_PARISC_TLS_LE21L:
3519 r_field = e_lrsel;
3520 break;
3521
3522 case R_PARISC_PCREL17R:
3523 case R_PARISC_PCREL14R:
3524 case R_PARISC_PLABEL14R:
3525 case R_PARISC_DLTIND14R:
3526 r_field = e_rsel;
3527 break;
3528
3529 case R_PARISC_DIR17R:
3530 case R_PARISC_DIR14R:
3531 case R_PARISC_DPREL14R:
3532 case R_PARISC_TLS_GD14R:
3533 case R_PARISC_TLS_LDM14R:
3534 case R_PARISC_TLS_LDO14R:
3535 case R_PARISC_TLS_IE14R:
3536 case R_PARISC_TLS_LE14R:
3537 r_field = e_rrsel;
3538 break;
3539
3540 case R_PARISC_PCREL12F:
3541 case R_PARISC_PCREL17F:
3542 case R_PARISC_PCREL22F:
3543 r_field = e_fsel;
3544
3545 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3546 {
3547 max_branch_offset = (1 << (17-1)) << 2;
3548 }
3549 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3550 {
3551 max_branch_offset = (1 << (12-1)) << 2;
3552 }
3553 else
3554 {
3555 max_branch_offset = (1 << (22-1)) << 2;
3556 }
3557
3558 /* sym_sec is NULL on undefined weak syms or when shared on
3559 undefined syms. We've already checked for a stub for the
3560 shared undefined case. */
3561 if (sym_sec == NULL)
3562 break;
3563
3564 /* If the branch is out of reach, then redirect the
3565 call to the local stub for this function. */
3566 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3567 {
3568 hsh = hppa_get_stub_entry (input_section, sym_sec,
3569 hh, rela, htab);
3570 if (hsh == NULL)
3571 return bfd_reloc_undefined;
3572
3573 /* Munge up the value and addend so that we call the stub
3574 rather than the procedure directly. */
3575 value = (hsh->stub_offset
3576 + hsh->stub_sec->output_offset
3577 + hsh->stub_sec->output_section->vma
3578 - location);
3579 addend = -8;
3580 }
3581 break;
3582
3583 /* Something we don't know how to handle. */
3584 default:
3585 return bfd_reloc_notsupported;
3586 }
3587
3588 /* Make sure we can reach the stub. */
3589 if (max_branch_offset != 0
3590 && value + addend + max_branch_offset >= 2*max_branch_offset)
3591 {
3592 (*_bfd_error_handler)
3593 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3594 input_bfd,
3595 input_section,
3596 (long) offset,
3597 hsh->bh_root.string);
3598 bfd_set_error (bfd_error_bad_value);
3599 return bfd_reloc_notsupported;
3600 }
3601
3602 val = hppa_field_adjust (value, addend, r_field);
3603
3604 switch (r_type)
3605 {
3606 case R_PARISC_PCREL12F:
3607 case R_PARISC_PCREL17C:
3608 case R_PARISC_PCREL17F:
3609 case R_PARISC_PCREL17R:
3610 case R_PARISC_PCREL22F:
3611 case R_PARISC_DIR17F:
3612 case R_PARISC_DIR17R:
3613 /* This is a branch. Divide the offset by four.
3614 Note that we need to decide whether it's a branch or
3615 otherwise by inspecting the reloc. Inspecting insn won't
3616 work as insn might be from a .word directive. */
3617 val >>= 2;
3618 break;
3619
3620 default:
3621 break;
3622 }
3623
3624 insn = hppa_rebuild_insn (insn, val, r_format);
3625
3626 /* Update the instruction word. */
3627 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3628 return bfd_reloc_ok;
3629 }
3630
3631 /* Relocate an HPPA ELF section. */
3632
3633 static bfd_boolean
3634 elf32_hppa_relocate_section (bfd *output_bfd,
3635 struct bfd_link_info *info,
3636 bfd *input_bfd,
3637 asection *input_section,
3638 bfd_byte *contents,
3639 Elf_Internal_Rela *relocs,
3640 Elf_Internal_Sym *local_syms,
3641 asection **local_sections)
3642 {
3643 bfd_vma *local_got_offsets;
3644 struct elf32_hppa_link_hash_table *htab;
3645 Elf_Internal_Shdr *symtab_hdr;
3646 Elf_Internal_Rela *rela;
3647 Elf_Internal_Rela *relend;
3648
3649 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3650
3651 htab = hppa_link_hash_table (info);
3652 if (htab == NULL)
3653 return FALSE;
3654
3655 local_got_offsets = elf_local_got_offsets (input_bfd);
3656
3657 rela = relocs;
3658 relend = relocs + input_section->reloc_count;
3659 for (; rela < relend; rela++)
3660 {
3661 unsigned int r_type;
3662 reloc_howto_type *howto;
3663 unsigned int r_symndx;
3664 struct elf32_hppa_link_hash_entry *hh;
3665 Elf_Internal_Sym *sym;
3666 asection *sym_sec;
3667 bfd_vma relocation;
3668 bfd_reloc_status_type rstatus;
3669 const char *sym_name;
3670 bfd_boolean plabel;
3671 bfd_boolean warned_undef;
3672
3673 r_type = ELF32_R_TYPE (rela->r_info);
3674 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3675 {
3676 bfd_set_error (bfd_error_bad_value);
3677 return FALSE;
3678 }
3679 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3680 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3681 continue;
3682
3683 r_symndx = ELF32_R_SYM (rela->r_info);
3684 hh = NULL;
3685 sym = NULL;
3686 sym_sec = NULL;
3687 warned_undef = FALSE;
3688 if (r_symndx < symtab_hdr->sh_info)
3689 {
3690 /* This is a local symbol, h defaults to NULL. */
3691 sym = local_syms + r_symndx;
3692 sym_sec = local_sections[r_symndx];
3693 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3694 }
3695 else
3696 {
3697 struct elf_link_hash_entry *eh;
3698 bfd_boolean unresolved_reloc, ignored;
3699 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3700
3701 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3702 r_symndx, symtab_hdr, sym_hashes,
3703 eh, sym_sec, relocation,
3704 unresolved_reloc, warned_undef,
3705 ignored);
3706
3707 if (!info->relocatable
3708 && relocation == 0
3709 && eh->root.type != bfd_link_hash_defined
3710 && eh->root.type != bfd_link_hash_defweak
3711 && eh->root.type != bfd_link_hash_undefweak)
3712 {
3713 if (info->unresolved_syms_in_objects == RM_IGNORE
3714 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3715 && eh->type == STT_PARISC_MILLI)
3716 {
3717 if (! info->callbacks->undefined_symbol
3718 (info, eh_name (eh), input_bfd,
3719 input_section, rela->r_offset, FALSE))
3720 return FALSE;
3721 warned_undef = TRUE;
3722 }
3723 }
3724 hh = hppa_elf_hash_entry (eh);
3725 }
3726
3727 if (sym_sec != NULL && discarded_section (sym_sec))
3728 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3729 rela, 1, relend,
3730 elf_hppa_howto_table + r_type, 0,
3731 contents);
3732
3733 if (info->relocatable)
3734 continue;
3735
3736 /* Do any required modifications to the relocation value, and
3737 determine what types of dynamic info we need to output, if
3738 any. */
3739 plabel = 0;
3740 switch (r_type)
3741 {
3742 case R_PARISC_DLTIND14F:
3743 case R_PARISC_DLTIND14R:
3744 case R_PARISC_DLTIND21L:
3745 {
3746 bfd_vma off;
3747 bfd_boolean do_got = 0;
3748
3749 /* Relocation is to the entry for this symbol in the
3750 global offset table. */
3751 if (hh != NULL)
3752 {
3753 bfd_boolean dyn;
3754
3755 off = hh->eh.got.offset;
3756 dyn = htab->etab.dynamic_sections_created;
3757 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3758 &hh->eh))
3759 {
3760 /* If we aren't going to call finish_dynamic_symbol,
3761 then we need to handle initialisation of the .got
3762 entry and create needed relocs here. Since the
3763 offset must always be a multiple of 4, we use the
3764 least significant bit to record whether we have
3765 initialised it already. */
3766 if ((off & 1) != 0)
3767 off &= ~1;
3768 else
3769 {
3770 hh->eh.got.offset |= 1;
3771 do_got = 1;
3772 }
3773 }
3774 }
3775 else
3776 {
3777 /* Local symbol case. */
3778 if (local_got_offsets == NULL)
3779 abort ();
3780
3781 off = local_got_offsets[r_symndx];
3782
3783 /* The offset must always be a multiple of 4. We use
3784 the least significant bit to record whether we have
3785 already generated the necessary reloc. */
3786 if ((off & 1) != 0)
3787 off &= ~1;
3788 else
3789 {
3790 local_got_offsets[r_symndx] |= 1;
3791 do_got = 1;
3792 }
3793 }
3794
3795 if (do_got)
3796 {
3797 if (info->shared)
3798 {
3799 /* Output a dynamic relocation for this GOT entry.
3800 In this case it is relative to the base of the
3801 object because the symbol index is zero. */
3802 Elf_Internal_Rela outrel;
3803 bfd_byte *loc;
3804 asection *sec = htab->srelgot;
3805
3806 outrel.r_offset = (off
3807 + htab->sgot->output_offset
3808 + htab->sgot->output_section->vma);
3809 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3810 outrel.r_addend = relocation;
3811 loc = sec->contents;
3812 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3813 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3814 }
3815 else
3816 bfd_put_32 (output_bfd, relocation,
3817 htab->sgot->contents + off);
3818 }
3819
3820 if (off >= (bfd_vma) -2)
3821 abort ();
3822
3823 /* Add the base of the GOT to the relocation value. */
3824 relocation = (off
3825 + htab->sgot->output_offset
3826 + htab->sgot->output_section->vma);
3827 }
3828 break;
3829
3830 case R_PARISC_SEGREL32:
3831 /* If this is the first SEGREL relocation, then initialize
3832 the segment base values. */
3833 if (htab->text_segment_base == (bfd_vma) -1)
3834 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3835 break;
3836
3837 case R_PARISC_PLABEL14R:
3838 case R_PARISC_PLABEL21L:
3839 case R_PARISC_PLABEL32:
3840 if (htab->etab.dynamic_sections_created)
3841 {
3842 bfd_vma off;
3843 bfd_boolean do_plt = 0;
3844 /* If we have a global symbol with a PLT slot, then
3845 redirect this relocation to it. */
3846 if (hh != NULL)
3847 {
3848 off = hh->eh.plt.offset;
3849 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3850 &hh->eh))
3851 {
3852 /* In a non-shared link, adjust_dynamic_symbols
3853 isn't called for symbols forced local. We
3854 need to write out the plt entry here. */
3855 if ((off & 1) != 0)
3856 off &= ~1;
3857 else
3858 {
3859 hh->eh.plt.offset |= 1;
3860 do_plt = 1;
3861 }
3862 }
3863 }
3864 else
3865 {
3866 bfd_vma *local_plt_offsets;
3867
3868 if (local_got_offsets == NULL)
3869 abort ();
3870
3871 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3872 off = local_plt_offsets[r_symndx];
3873
3874 /* As for the local .got entry case, we use the last
3875 bit to record whether we've already initialised
3876 this local .plt entry. */
3877 if ((off & 1) != 0)
3878 off &= ~1;
3879 else
3880 {
3881 local_plt_offsets[r_symndx] |= 1;
3882 do_plt = 1;
3883 }
3884 }
3885
3886 if (do_plt)
3887 {
3888 if (info->shared)
3889 {
3890 /* Output a dynamic IPLT relocation for this
3891 PLT entry. */
3892 Elf_Internal_Rela outrel;
3893 bfd_byte *loc;
3894 asection *s = htab->srelplt;
3895
3896 outrel.r_offset = (off
3897 + htab->splt->output_offset
3898 + htab->splt->output_section->vma);
3899 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3900 outrel.r_addend = relocation;
3901 loc = s->contents;
3902 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3903 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3904 }
3905 else
3906 {
3907 bfd_put_32 (output_bfd,
3908 relocation,
3909 htab->splt->contents + off);
3910 bfd_put_32 (output_bfd,
3911 elf_gp (htab->splt->output_section->owner),
3912 htab->splt->contents + off + 4);
3913 }
3914 }
3915
3916 if (off >= (bfd_vma) -2)
3917 abort ();
3918
3919 /* PLABELs contain function pointers. Relocation is to
3920 the entry for the function in the .plt. The magic +2
3921 offset signals to $$dyncall that the function pointer
3922 is in the .plt and thus has a gp pointer too.
3923 Exception: Undefined PLABELs should have a value of
3924 zero. */
3925 if (hh == NULL
3926 || (hh->eh.root.type != bfd_link_hash_undefweak
3927 && hh->eh.root.type != bfd_link_hash_undefined))
3928 {
3929 relocation = (off
3930 + htab->splt->output_offset
3931 + htab->splt->output_section->vma
3932 + 2);
3933 }
3934 plabel = 1;
3935 }
3936 /* Fall through and possibly emit a dynamic relocation. */
3937
3938 case R_PARISC_DIR17F:
3939 case R_PARISC_DIR17R:
3940 case R_PARISC_DIR14F:
3941 case R_PARISC_DIR14R:
3942 case R_PARISC_DIR21L:
3943 case R_PARISC_DPREL14F:
3944 case R_PARISC_DPREL14R:
3945 case R_PARISC_DPREL21L:
3946 case R_PARISC_DIR32:
3947 if ((input_section->flags & SEC_ALLOC) == 0)
3948 break;
3949
3950 /* The reloc types handled here and this conditional
3951 expression must match the code in ..check_relocs and
3952 allocate_dynrelocs. ie. We need exactly the same condition
3953 as in ..check_relocs, with some extra conditions (dynindx
3954 test in this case) to cater for relocs removed by
3955 allocate_dynrelocs. If you squint, the non-shared test
3956 here does indeed match the one in ..check_relocs, the
3957 difference being that here we test DEF_DYNAMIC as well as
3958 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3959 which is why we can't use just that test here.
3960 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3961 there all files have not been loaded. */
3962 if ((info->shared
3963 && (hh == NULL
3964 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3965 || hh->eh.root.type != bfd_link_hash_undefweak)
3966 && (IS_ABSOLUTE_RELOC (r_type)
3967 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3968 || (!info->shared
3969 && hh != NULL
3970 && hh->eh.dynindx != -1
3971 && !hh->eh.non_got_ref
3972 && ((ELIMINATE_COPY_RELOCS
3973 && hh->eh.def_dynamic
3974 && !hh->eh.def_regular)
3975 || hh->eh.root.type == bfd_link_hash_undefweak
3976 || hh->eh.root.type == bfd_link_hash_undefined)))
3977 {
3978 Elf_Internal_Rela outrel;
3979 bfd_boolean skip;
3980 asection *sreloc;
3981 bfd_byte *loc;
3982
3983 /* When generating a shared object, these relocations
3984 are copied into the output file to be resolved at run
3985 time. */
3986
3987 outrel.r_addend = rela->r_addend;
3988 outrel.r_offset =
3989 _bfd_elf_section_offset (output_bfd, info, input_section,
3990 rela->r_offset);
3991 skip = (outrel.r_offset == (bfd_vma) -1
3992 || outrel.r_offset == (bfd_vma) -2);
3993 outrel.r_offset += (input_section->output_offset
3994 + input_section->output_section->vma);
3995
3996 if (skip)
3997 {
3998 memset (&outrel, 0, sizeof (outrel));
3999 }
4000 else if (hh != NULL
4001 && hh->eh.dynindx != -1
4002 && (plabel
4003 || !IS_ABSOLUTE_RELOC (r_type)
4004 || !info->shared
4005 || !info->symbolic
4006 || !hh->eh.def_regular))
4007 {
4008 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4009 }
4010 else /* It's a local symbol, or one marked to become local. */
4011 {
4012 int indx = 0;
4013
4014 /* Add the absolute offset of the symbol. */
4015 outrel.r_addend += relocation;
4016
4017 /* Global plabels need to be processed by the
4018 dynamic linker so that functions have at most one
4019 fptr. For this reason, we need to differentiate
4020 between global and local plabels, which we do by
4021 providing the function symbol for a global plabel
4022 reloc, and no symbol for local plabels. */
4023 if (! plabel
4024 && sym_sec != NULL
4025 && sym_sec->output_section != NULL
4026 && ! bfd_is_abs_section (sym_sec))
4027 {
4028 asection *osec;
4029
4030 osec = sym_sec->output_section;
4031 indx = elf_section_data (osec)->dynindx;
4032 if (indx == 0)
4033 {
4034 osec = htab->etab.text_index_section;
4035 indx = elf_section_data (osec)->dynindx;
4036 }
4037 BFD_ASSERT (indx != 0);
4038
4039 /* We are turning this relocation into one
4040 against a section symbol, so subtract out the
4041 output section's address but not the offset
4042 of the input section in the output section. */
4043 outrel.r_addend -= osec->vma;
4044 }
4045
4046 outrel.r_info = ELF32_R_INFO (indx, r_type);
4047 }
4048 sreloc = elf_section_data (input_section)->sreloc;
4049 if (sreloc == NULL)
4050 abort ();
4051
4052 loc = sreloc->contents;
4053 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4054 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4055 }
4056 break;
4057
4058 case R_PARISC_TLS_LDM21L:
4059 case R_PARISC_TLS_LDM14R:
4060 {
4061 bfd_vma off;
4062
4063 off = htab->tls_ldm_got.offset;
4064 if (off & 1)
4065 off &= ~1;
4066 else
4067 {
4068 Elf_Internal_Rela outrel;
4069 bfd_byte *loc;
4070
4071 outrel.r_offset = (off
4072 + htab->sgot->output_section->vma
4073 + htab->sgot->output_offset);
4074 outrel.r_addend = 0;
4075 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4076 loc = htab->srelgot->contents;
4077 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4078
4079 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4080 htab->tls_ldm_got.offset |= 1;
4081 }
4082
4083 /* Add the base of the GOT to the relocation value. */
4084 relocation = (off
4085 + htab->sgot->output_offset
4086 + htab->sgot->output_section->vma);
4087
4088 break;
4089 }
4090
4091 case R_PARISC_TLS_LDO21L:
4092 case R_PARISC_TLS_LDO14R:
4093 relocation -= dtpoff_base (info);
4094 break;
4095
4096 case R_PARISC_TLS_GD21L:
4097 case R_PARISC_TLS_GD14R:
4098 case R_PARISC_TLS_IE21L:
4099 case R_PARISC_TLS_IE14R:
4100 {
4101 bfd_vma off;
4102 int indx;
4103 char tls_type;
4104
4105 indx = 0;
4106 if (hh != NULL)
4107 {
4108 bfd_boolean dyn;
4109 dyn = htab->etab.dynamic_sections_created;
4110
4111 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4112 && (!info->shared
4113 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4114 {
4115 indx = hh->eh.dynindx;
4116 }
4117 off = hh->eh.got.offset;
4118 tls_type = hh->tls_type;
4119 }
4120 else
4121 {
4122 off = local_got_offsets[r_symndx];
4123 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4124 }
4125
4126 if (tls_type == GOT_UNKNOWN)
4127 abort ();
4128
4129 if ((off & 1) != 0)
4130 off &= ~1;
4131 else
4132 {
4133 bfd_boolean need_relocs = FALSE;
4134 Elf_Internal_Rela outrel;
4135 bfd_byte *loc = NULL;
4136 int cur_off = off;
4137
4138 /* The GOT entries have not been initialized yet. Do it
4139 now, and emit any relocations. If both an IE GOT and a
4140 GD GOT are necessary, we emit the GD first. */
4141
4142 if ((info->shared || indx != 0)
4143 && (hh == NULL
4144 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4145 || hh->eh.root.type != bfd_link_hash_undefweak))
4146 {
4147 need_relocs = TRUE;
4148 loc = htab->srelgot->contents;
4149 /* FIXME (CAO): Should this be reloc_count++ ? */
4150 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4151 }
4152
4153 if (tls_type & GOT_TLS_GD)
4154 {
4155 if (need_relocs)
4156 {
4157 outrel.r_offset = (cur_off
4158 + htab->sgot->output_section->vma
4159 + htab->sgot->output_offset);
4160 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4161 outrel.r_addend = 0;
4162 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4163 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4164 htab->srelgot->reloc_count++;
4165 loc += sizeof (Elf32_External_Rela);
4166
4167 if (indx == 0)
4168 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4169 htab->sgot->contents + cur_off + 4);
4170 else
4171 {
4172 bfd_put_32 (output_bfd, 0,
4173 htab->sgot->contents + cur_off + 4);
4174 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4175 outrel.r_offset += 4;
4176 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4177 htab->srelgot->reloc_count++;
4178 loc += sizeof (Elf32_External_Rela);
4179 }
4180 }
4181 else
4182 {
4183 /* If we are not emitting relocations for a
4184 general dynamic reference, then we must be in a
4185 static link or an executable link with the
4186 symbol binding locally. Mark it as belonging
4187 to module 1, the executable. */
4188 bfd_put_32 (output_bfd, 1,
4189 htab->sgot->contents + cur_off);
4190 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4191 htab->sgot->contents + cur_off + 4);
4192 }
4193
4194
4195 cur_off += 8;
4196 }
4197
4198 if (tls_type & GOT_TLS_IE)
4199 {
4200 if (need_relocs)
4201 {
4202 outrel.r_offset = (cur_off
4203 + htab->sgot->output_section->vma
4204 + htab->sgot->output_offset);
4205 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4206
4207 if (indx == 0)
4208 outrel.r_addend = relocation - dtpoff_base (info);
4209 else
4210 outrel.r_addend = 0;
4211
4212 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4213 htab->srelgot->reloc_count++;
4214 loc += sizeof (Elf32_External_Rela);
4215 }
4216 else
4217 bfd_put_32 (output_bfd, tpoff (info, relocation),
4218 htab->sgot->contents + cur_off);
4219
4220 cur_off += 4;
4221 }
4222
4223 if (hh != NULL)
4224 hh->eh.got.offset |= 1;
4225 else
4226 local_got_offsets[r_symndx] |= 1;
4227 }
4228
4229 if ((tls_type & GOT_TLS_GD)
4230 && r_type != R_PARISC_TLS_GD21L
4231 && r_type != R_PARISC_TLS_GD14R)
4232 off += 2 * GOT_ENTRY_SIZE;
4233
4234 /* Add the base of the GOT to the relocation value. */
4235 relocation = (off
4236 + htab->sgot->output_offset
4237 + htab->sgot->output_section->vma);
4238
4239 break;
4240 }
4241
4242 case R_PARISC_TLS_LE21L:
4243 case R_PARISC_TLS_LE14R:
4244 {
4245 relocation = tpoff (info, relocation);
4246 break;
4247 }
4248 break;
4249
4250 default:
4251 break;
4252 }
4253
4254 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4255 htab, sym_sec, hh, info);
4256
4257 if (rstatus == bfd_reloc_ok)
4258 continue;
4259
4260 if (hh != NULL)
4261 sym_name = hh_name (hh);
4262 else
4263 {
4264 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4265 symtab_hdr->sh_link,
4266 sym->st_name);
4267 if (sym_name == NULL)
4268 return FALSE;
4269 if (*sym_name == '\0')
4270 sym_name = bfd_section_name (input_bfd, sym_sec);
4271 }
4272
4273 howto = elf_hppa_howto_table + r_type;
4274
4275 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4276 {
4277 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4278 {
4279 (*_bfd_error_handler)
4280 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4281 input_bfd,
4282 input_section,
4283 (long) rela->r_offset,
4284 howto->name,
4285 sym_name);
4286 bfd_set_error (bfd_error_bad_value);
4287 return FALSE;
4288 }
4289 }
4290 else
4291 {
4292 if (!((*info->callbacks->reloc_overflow)
4293 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4294 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4295 return FALSE;
4296 }
4297 }
4298
4299 return TRUE;
4300 }
4301
4302 /* Finish up dynamic symbol handling. We set the contents of various
4303 dynamic sections here. */
4304
4305 static bfd_boolean
4306 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4307 struct bfd_link_info *info,
4308 struct elf_link_hash_entry *eh,
4309 Elf_Internal_Sym *sym)
4310 {
4311 struct elf32_hppa_link_hash_table *htab;
4312 Elf_Internal_Rela rela;
4313 bfd_byte *loc;
4314
4315 htab = hppa_link_hash_table (info);
4316 if (htab == NULL)
4317 return FALSE;
4318
4319 if (eh->plt.offset != (bfd_vma) -1)
4320 {
4321 bfd_vma value;
4322
4323 if (eh->plt.offset & 1)
4324 abort ();
4325
4326 /* This symbol has an entry in the procedure linkage table. Set
4327 it up.
4328
4329 The format of a plt entry is
4330 <funcaddr>
4331 <__gp>
4332 */
4333 value = 0;
4334 if (eh->root.type == bfd_link_hash_defined
4335 || eh->root.type == bfd_link_hash_defweak)
4336 {
4337 value = eh->root.u.def.value;
4338 if (eh->root.u.def.section->output_section != NULL)
4339 value += (eh->root.u.def.section->output_offset
4340 + eh->root.u.def.section->output_section->vma);
4341 }
4342
4343 /* Create a dynamic IPLT relocation for this entry. */
4344 rela.r_offset = (eh->plt.offset
4345 + htab->splt->output_offset
4346 + htab->splt->output_section->vma);
4347 if (eh->dynindx != -1)
4348 {
4349 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4350 rela.r_addend = 0;
4351 }
4352 else
4353 {
4354 /* This symbol has been marked to become local, and is
4355 used by a plabel so must be kept in the .plt. */
4356 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4357 rela.r_addend = value;
4358 }
4359
4360 loc = htab->srelplt->contents;
4361 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4362 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4363
4364 if (!eh->def_regular)
4365 {
4366 /* Mark the symbol as undefined, rather than as defined in
4367 the .plt section. Leave the value alone. */
4368 sym->st_shndx = SHN_UNDEF;
4369 }
4370 }
4371
4372 if (eh->got.offset != (bfd_vma) -1
4373 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4374 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4375 {
4376 /* This symbol has an entry in the global offset table. Set it
4377 up. */
4378
4379 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4380 + htab->sgot->output_offset
4381 + htab->sgot->output_section->vma);
4382
4383 /* If this is a -Bsymbolic link and the symbol is defined
4384 locally or was forced to be local because of a version file,
4385 we just want to emit a RELATIVE reloc. The entry in the
4386 global offset table will already have been initialized in the
4387 relocate_section function. */
4388 if (info->shared
4389 && (info->symbolic || eh->dynindx == -1)
4390 && eh->def_regular)
4391 {
4392 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4393 rela.r_addend = (eh->root.u.def.value
4394 + eh->root.u.def.section->output_offset
4395 + eh->root.u.def.section->output_section->vma);
4396 }
4397 else
4398 {
4399 if ((eh->got.offset & 1) != 0)
4400 abort ();
4401
4402 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4403 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4404 rela.r_addend = 0;
4405 }
4406
4407 loc = htab->srelgot->contents;
4408 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4409 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4410 }
4411
4412 if (eh->needs_copy)
4413 {
4414 asection *sec;
4415
4416 /* This symbol needs a copy reloc. Set it up. */
4417
4418 if (! (eh->dynindx != -1
4419 && (eh->root.type == bfd_link_hash_defined
4420 || eh->root.type == bfd_link_hash_defweak)))
4421 abort ();
4422
4423 sec = htab->srelbss;
4424
4425 rela.r_offset = (eh->root.u.def.value
4426 + eh->root.u.def.section->output_offset
4427 + eh->root.u.def.section->output_section->vma);
4428 rela.r_addend = 0;
4429 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4430 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4431 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4432 }
4433
4434 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4435 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4436 {
4437 sym->st_shndx = SHN_ABS;
4438 }
4439
4440 return TRUE;
4441 }
4442
4443 /* Used to decide how to sort relocs in an optimal manner for the
4444 dynamic linker, before writing them out. */
4445
4446 static enum elf_reloc_type_class
4447 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4448 const asection *rel_sec ATTRIBUTE_UNUSED,
4449 const Elf_Internal_Rela *rela)
4450 {
4451 /* Handle TLS relocs first; we don't want them to be marked
4452 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4453 check below. */
4454 switch ((int) ELF32_R_TYPE (rela->r_info))
4455 {
4456 case R_PARISC_TLS_DTPMOD32:
4457 case R_PARISC_TLS_DTPOFF32:
4458 case R_PARISC_TLS_TPREL32:
4459 return reloc_class_normal;
4460 }
4461
4462 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4463 return reloc_class_relative;
4464
4465 switch ((int) ELF32_R_TYPE (rela->r_info))
4466 {
4467 case R_PARISC_IPLT:
4468 return reloc_class_plt;
4469 case R_PARISC_COPY:
4470 return reloc_class_copy;
4471 default:
4472 return reloc_class_normal;
4473 }
4474 }
4475
4476 /* Finish up the dynamic sections. */
4477
4478 static bfd_boolean
4479 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4480 struct bfd_link_info *info)
4481 {
4482 bfd *dynobj;
4483 struct elf32_hppa_link_hash_table *htab;
4484 asection *sdyn;
4485 asection * sgot;
4486
4487 htab = hppa_link_hash_table (info);
4488 if (htab == NULL)
4489 return FALSE;
4490
4491 dynobj = htab->etab.dynobj;
4492
4493 sgot = htab->sgot;
4494 /* A broken linker script might have discarded the dynamic sections.
4495 Catch this here so that we do not seg-fault later on. */
4496 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4497 return FALSE;
4498
4499 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4500
4501 if (htab->etab.dynamic_sections_created)
4502 {
4503 Elf32_External_Dyn *dyncon, *dynconend;
4504
4505 if (sdyn == NULL)
4506 abort ();
4507
4508 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4509 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4510 for (; dyncon < dynconend; dyncon++)
4511 {
4512 Elf_Internal_Dyn dyn;
4513 asection *s;
4514
4515 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4516
4517 switch (dyn.d_tag)
4518 {
4519 default:
4520 continue;
4521
4522 case DT_PLTGOT:
4523 /* Use PLTGOT to set the GOT register. */
4524 dyn.d_un.d_ptr = elf_gp (output_bfd);
4525 break;
4526
4527 case DT_JMPREL:
4528 s = htab->srelplt;
4529 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4530 break;
4531
4532 case DT_PLTRELSZ:
4533 s = htab->srelplt;
4534 dyn.d_un.d_val = s->size;
4535 break;
4536
4537 case DT_RELASZ:
4538 /* Don't count procedure linkage table relocs in the
4539 overall reloc count. */
4540 s = htab->srelplt;
4541 if (s == NULL)
4542 continue;
4543 dyn.d_un.d_val -= s->size;
4544 break;
4545
4546 case DT_RELA:
4547 /* We may not be using the standard ELF linker script.
4548 If .rela.plt is the first .rela section, we adjust
4549 DT_RELA to not include it. */
4550 s = htab->srelplt;
4551 if (s == NULL)
4552 continue;
4553 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4554 continue;
4555 dyn.d_un.d_ptr += s->size;
4556 break;
4557 }
4558
4559 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4560 }
4561 }
4562
4563 if (sgot != NULL && sgot->size != 0)
4564 {
4565 /* Fill in the first entry in the global offset table.
4566 We use it to point to our dynamic section, if we have one. */
4567 bfd_put_32 (output_bfd,
4568 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4569 sgot->contents);
4570
4571 /* The second entry is reserved for use by the dynamic linker. */
4572 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4573
4574 /* Set .got entry size. */
4575 elf_section_data (sgot->output_section)
4576 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4577 }
4578
4579 if (htab->splt != NULL && htab->splt->size != 0)
4580 {
4581 /* Set plt entry size. */
4582 elf_section_data (htab->splt->output_section)
4583 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4584
4585 if (htab->need_plt_stub)
4586 {
4587 /* Set up the .plt stub. */
4588 memcpy (htab->splt->contents
4589 + htab->splt->size - sizeof (plt_stub),
4590 plt_stub, sizeof (plt_stub));
4591
4592 if ((htab->splt->output_offset
4593 + htab->splt->output_section->vma
4594 + htab->splt->size)
4595 != (sgot->output_offset
4596 + sgot->output_section->vma))
4597 {
4598 (*_bfd_error_handler)
4599 (_(".got section not immediately after .plt section"));
4600 return FALSE;
4601 }
4602 }
4603 }
4604
4605 return TRUE;
4606 }
4607
4608 /* Called when writing out an object file to decide the type of a
4609 symbol. */
4610 static int
4611 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4612 {
4613 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4614 return STT_PARISC_MILLI;
4615 else
4616 return type;
4617 }
4618
4619 /* Misc BFD support code. */
4620 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4621 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4622 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4623 #define elf_info_to_howto elf_hppa_info_to_howto
4624 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4625
4626 /* Stuff for the BFD linker. */
4627 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4628 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4629 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4630 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4631 #define elf_backend_check_relocs elf32_hppa_check_relocs
4632 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4633 #define elf_backend_fake_sections elf_hppa_fake_sections
4634 #define elf_backend_relocate_section elf32_hppa_relocate_section
4635 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4636 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4637 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4638 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4639 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4640 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4641 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4642 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4643 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4644 #define elf_backend_object_p elf32_hppa_object_p
4645 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4646 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4647 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4648 #define elf_backend_action_discarded elf_hppa_action_discarded
4649
4650 #define elf_backend_can_gc_sections 1
4651 #define elf_backend_can_refcount 1
4652 #define elf_backend_plt_alignment 2
4653 #define elf_backend_want_got_plt 0
4654 #define elf_backend_plt_readonly 0
4655 #define elf_backend_want_plt_sym 0
4656 #define elf_backend_got_header_size 8
4657 #define elf_backend_rela_normal 1
4658
4659 #define TARGET_BIG_SYM hppa_elf32_vec
4660 #define TARGET_BIG_NAME "elf32-hppa"
4661 #define ELF_ARCH bfd_arch_hppa
4662 #define ELF_TARGET_ID HPPA32_ELF_DATA
4663 #define ELF_MACHINE_CODE EM_PARISC
4664 #define ELF_MAXPAGESIZE 0x1000
4665 #define ELF_OSABI ELFOSABI_HPUX
4666 #define elf32_bed elf32_hppa_hpux_bed
4667
4668 #include "elf32-target.h"
4669
4670 #undef TARGET_BIG_SYM
4671 #define TARGET_BIG_SYM hppa_elf32_linux_vec
4672 #undef TARGET_BIG_NAME
4673 #define TARGET_BIG_NAME "elf32-hppa-linux"
4674 #undef ELF_OSABI
4675 #define ELF_OSABI ELFOSABI_GNU
4676 #undef elf32_bed
4677 #define elf32_bed elf32_hppa_linux_bed
4678
4679 #include "elf32-target.h"
4680
4681 #undef TARGET_BIG_SYM
4682 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec
4683 #undef TARGET_BIG_NAME
4684 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4685 #undef ELF_OSABI
4686 #define ELF_OSABI ELFOSABI_NETBSD
4687 #undef elf32_bed
4688 #define elf32_bed elf32_hppa_netbsd_bed
4689
4690 #include "elf32-target.h"