]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-hppa.c
PR ld/13991
[thirdparty/binutils-gdb.git] / bfd / elf32-hppa.c
1 /* BFD back-end for HP PA-RISC ELF files.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 Original code by
7 Center for Software Science
8 Department of Computer Science
9 University of Utah
10 Largely rewritten by Alan Modra <alan@linuxcare.com.au>
11 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
12 TLS support written by Randolph Chung <tausq@debian.org>
13
14 This file is part of BFD, the Binary File Descriptor library.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
29 MA 02110-1301, USA. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/hppa.h"
36 #include "libhppa.h"
37 #include "elf32-hppa.h"
38 #define ARCH_SIZE 32
39 #include "elf32-hppa.h"
40 #include "elf-hppa.h"
41
42 /* In order to gain some understanding of code in this file without
43 knowing all the intricate details of the linker, note the
44 following:
45
46 Functions named elf32_hppa_* are called by external routines, other
47 functions are only called locally. elf32_hppa_* functions appear
48 in this file more or less in the order in which they are called
49 from external routines. eg. elf32_hppa_check_relocs is called
50 early in the link process, elf32_hppa_finish_dynamic_sections is
51 one of the last functions. */
52
53 /* We use two hash tables to hold information for linking PA ELF objects.
54
55 The first is the elf32_hppa_link_hash_table which is derived
56 from the standard ELF linker hash table. We use this as a place to
57 attach other hash tables and static information.
58
59 The second is the stub hash table which is derived from the
60 base BFD hash table. The stub hash table holds the information
61 necessary to build the linker stubs during a link.
62
63 There are a number of different stubs generated by the linker.
64
65 Long branch stub:
66 : ldil LR'X,%r1
67 : be,n RR'X(%sr4,%r1)
68
69 PIC long branch stub:
70 : b,l .+8,%r1
71 : addil LR'X - ($PIC_pcrel$0 - 4),%r1
72 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
73
74 Import stub to call shared library routine from normal object file
75 (single sub-space version)
76 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
77 : ldw RR'lt_ptr+ltoff(%r1),%r21
78 : bv %r0(%r21)
79 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
80
81 Import stub to call shared library routine from shared library
82 (single sub-space version)
83 : addil LR'ltoff,%r19 ; get procedure entry point
84 : ldw RR'ltoff(%r1),%r21
85 : bv %r0(%r21)
86 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
87
88 Import stub to call shared library routine from normal object file
89 (multiple sub-space support)
90 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
91 : ldw RR'lt_ptr+ltoff(%r1),%r21
92 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
93 : ldsid (%r21),%r1
94 : mtsp %r1,%sr0
95 : be 0(%sr0,%r21) ; branch to target
96 : stw %rp,-24(%sp) ; save rp
97
98 Import stub to call shared library routine from shared library
99 (multiple sub-space support)
100 : addil LR'ltoff,%r19 ; get procedure entry point
101 : ldw RR'ltoff(%r1),%r21
102 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
103 : ldsid (%r21),%r1
104 : mtsp %r1,%sr0
105 : be 0(%sr0,%r21) ; branch to target
106 : stw %rp,-24(%sp) ; save rp
107
108 Export stub to return from shared lib routine (multiple sub-space support)
109 One of these is created for each exported procedure in a shared
110 library (and stored in the shared lib). Shared lib routines are
111 called via the first instruction in the export stub so that we can
112 do an inter-space return. Not required for single sub-space.
113 : bl,n X,%rp ; trap the return
114 : nop
115 : ldw -24(%sp),%rp ; restore the original rp
116 : ldsid (%rp),%r1
117 : mtsp %r1,%sr0
118 : be,n 0(%sr0,%rp) ; inter-space return. */
119
120
121 /* Variable names follow a coding style.
122 Please follow this (Apps Hungarian) style:
123
124 Structure/Variable Prefix
125 elf_link_hash_table "etab"
126 elf_link_hash_entry "eh"
127
128 elf32_hppa_link_hash_table "htab"
129 elf32_hppa_link_hash_entry "hh"
130
131 bfd_hash_table "btab"
132 bfd_hash_entry "bh"
133
134 bfd_hash_table containing stubs "bstab"
135 elf32_hppa_stub_hash_entry "hsh"
136
137 elf32_hppa_dyn_reloc_entry "hdh"
138
139 Always remember to use GNU Coding Style. */
140
141 #define PLT_ENTRY_SIZE 8
142 #define GOT_ENTRY_SIZE 4
143 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
144
145 static const bfd_byte plt_stub[] =
146 {
147 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
148 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
149 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
150 #define PLT_STUB_ENTRY (3*4)
151 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
152 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
153 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
154 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
155 };
156
157 /* Section name for stubs is the associated section name plus this
158 string. */
159 #define STUB_SUFFIX ".stub"
160
161 /* We don't need to copy certain PC- or GP-relative dynamic relocs
162 into a shared object's dynamic section. All the relocs of the
163 limited class we are interested in, are absolute. */
164 #ifndef RELATIVE_DYNRELOCS
165 #define RELATIVE_DYNRELOCS 0
166 #define IS_ABSOLUTE_RELOC(r_type) 1
167 #endif
168
169 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
170 copying dynamic variables from a shared lib into an app's dynbss
171 section, and instead use a dynamic relocation to point into the
172 shared lib. */
173 #define ELIMINATE_COPY_RELOCS 1
174
175 enum elf32_hppa_stub_type
176 {
177 hppa_stub_long_branch,
178 hppa_stub_long_branch_shared,
179 hppa_stub_import,
180 hppa_stub_import_shared,
181 hppa_stub_export,
182 hppa_stub_none
183 };
184
185 struct elf32_hppa_stub_hash_entry
186 {
187 /* Base hash table entry structure. */
188 struct bfd_hash_entry bh_root;
189
190 /* The stub section. */
191 asection *stub_sec;
192
193 /* Offset within stub_sec of the beginning of this stub. */
194 bfd_vma stub_offset;
195
196 /* Given the symbol's value and its section we can determine its final
197 value when building the stubs (so the stub knows where to jump. */
198 bfd_vma target_value;
199 asection *target_section;
200
201 enum elf32_hppa_stub_type stub_type;
202
203 /* The symbol table entry, if any, that this was derived from. */
204 struct elf32_hppa_link_hash_entry *hh;
205
206 /* Where this stub is being called from, or, in the case of combined
207 stub sections, the first input section in the group. */
208 asection *id_sec;
209 };
210
211 struct elf32_hppa_link_hash_entry
212 {
213 struct elf_link_hash_entry eh;
214
215 /* A pointer to the most recently used stub hash entry against this
216 symbol. */
217 struct elf32_hppa_stub_hash_entry *hsh_cache;
218
219 /* Used to count relocations for delayed sizing of relocation
220 sections. */
221 struct elf32_hppa_dyn_reloc_entry
222 {
223 /* Next relocation in the chain. */
224 struct elf32_hppa_dyn_reloc_entry *hdh_next;
225
226 /* The input section of the reloc. */
227 asection *sec;
228
229 /* Number of relocs copied in this section. */
230 bfd_size_type count;
231
232 #if RELATIVE_DYNRELOCS
233 /* Number of relative relocs copied for the input section. */
234 bfd_size_type relative_count;
235 #endif
236 } *dyn_relocs;
237
238 enum
239 {
240 GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
241 } tls_type;
242
243 /* Set if this symbol is used by a plabel reloc. */
244 unsigned int plabel:1;
245 };
246
247 struct elf32_hppa_link_hash_table
248 {
249 /* The main hash table. */
250 struct elf_link_hash_table etab;
251
252 /* The stub hash table. */
253 struct bfd_hash_table bstab;
254
255 /* Linker stub bfd. */
256 bfd *stub_bfd;
257
258 /* Linker call-backs. */
259 asection * (*add_stub_section) (const char *, asection *);
260 void (*layout_sections_again) (void);
261
262 /* Array to keep track of which stub sections have been created, and
263 information on stub grouping. */
264 struct map_stub
265 {
266 /* This is the section to which stubs in the group will be
267 attached. */
268 asection *link_sec;
269 /* The stub section. */
270 asection *stub_sec;
271 } *stub_group;
272
273 /* Assorted information used by elf32_hppa_size_stubs. */
274 unsigned int bfd_count;
275 int top_index;
276 asection **input_list;
277 Elf_Internal_Sym **all_local_syms;
278
279 /* Short-cuts to get to dynamic linker sections. */
280 asection *sgot;
281 asection *srelgot;
282 asection *splt;
283 asection *srelplt;
284 asection *sdynbss;
285 asection *srelbss;
286
287 /* Used during a final link to store the base of the text and data
288 segments so that we can perform SEGREL relocations. */
289 bfd_vma text_segment_base;
290 bfd_vma data_segment_base;
291
292 /* Whether we support multiple sub-spaces for shared libs. */
293 unsigned int multi_subspace:1;
294
295 /* Flags set when various size branches are detected. Used to
296 select suitable defaults for the stub group size. */
297 unsigned int has_12bit_branch:1;
298 unsigned int has_17bit_branch:1;
299 unsigned int has_22bit_branch:1;
300
301 /* Set if we need a .plt stub to support lazy dynamic linking. */
302 unsigned int need_plt_stub:1;
303
304 /* Small local sym cache. */
305 struct sym_cache sym_cache;
306
307 /* Data for LDM relocations. */
308 union
309 {
310 bfd_signed_vma refcount;
311 bfd_vma offset;
312 } tls_ldm_got;
313 };
314
315 /* Various hash macros and functions. */
316 #define hppa_link_hash_table(p) \
317 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
318 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
319
320 #define hppa_elf_hash_entry(ent) \
321 ((struct elf32_hppa_link_hash_entry *)(ent))
322
323 #define hppa_stub_hash_entry(ent) \
324 ((struct elf32_hppa_stub_hash_entry *)(ent))
325
326 #define hppa_stub_hash_lookup(table, string, create, copy) \
327 ((struct elf32_hppa_stub_hash_entry *) \
328 bfd_hash_lookup ((table), (string), (create), (copy)))
329
330 #define hppa_elf_local_got_tls_type(abfd) \
331 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
332
333 #define hh_name(hh) \
334 (hh ? hh->eh.root.root.string : "<undef>")
335
336 #define eh_name(eh) \
337 (eh ? eh->root.root.string : "<undef>")
338
339 /* Assorted hash table functions. */
340
341 /* Initialize an entry in the stub hash table. */
342
343 static struct bfd_hash_entry *
344 stub_hash_newfunc (struct bfd_hash_entry *entry,
345 struct bfd_hash_table *table,
346 const char *string)
347 {
348 /* Allocate the structure if it has not already been allocated by a
349 subclass. */
350 if (entry == NULL)
351 {
352 entry = bfd_hash_allocate (table,
353 sizeof (struct elf32_hppa_stub_hash_entry));
354 if (entry == NULL)
355 return entry;
356 }
357
358 /* Call the allocation method of the superclass. */
359 entry = bfd_hash_newfunc (entry, table, string);
360 if (entry != NULL)
361 {
362 struct elf32_hppa_stub_hash_entry *hsh;
363
364 /* Initialize the local fields. */
365 hsh = hppa_stub_hash_entry (entry);
366 hsh->stub_sec = NULL;
367 hsh->stub_offset = 0;
368 hsh->target_value = 0;
369 hsh->target_section = NULL;
370 hsh->stub_type = hppa_stub_long_branch;
371 hsh->hh = NULL;
372 hsh->id_sec = NULL;
373 }
374
375 return entry;
376 }
377
378 /* Initialize an entry in the link hash table. */
379
380 static struct bfd_hash_entry *
381 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
382 struct bfd_hash_table *table,
383 const char *string)
384 {
385 /* Allocate the structure if it has not already been allocated by a
386 subclass. */
387 if (entry == NULL)
388 {
389 entry = bfd_hash_allocate (table,
390 sizeof (struct elf32_hppa_link_hash_entry));
391 if (entry == NULL)
392 return entry;
393 }
394
395 /* Call the allocation method of the superclass. */
396 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
397 if (entry != NULL)
398 {
399 struct elf32_hppa_link_hash_entry *hh;
400
401 /* Initialize the local fields. */
402 hh = hppa_elf_hash_entry (entry);
403 hh->hsh_cache = NULL;
404 hh->dyn_relocs = NULL;
405 hh->plabel = 0;
406 hh->tls_type = GOT_UNKNOWN;
407 }
408
409 return entry;
410 }
411
412 /* Create the derived linker hash table. The PA ELF port uses the derived
413 hash table to keep information specific to the PA ELF linker (without
414 using static variables). */
415
416 static struct bfd_link_hash_table *
417 elf32_hppa_link_hash_table_create (bfd *abfd)
418 {
419 struct elf32_hppa_link_hash_table *htab;
420 bfd_size_type amt = sizeof (*htab);
421
422 htab = bfd_malloc (amt);
423 if (htab == NULL)
424 return NULL;
425
426 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
427 sizeof (struct elf32_hppa_link_hash_entry),
428 HPPA32_ELF_DATA))
429 {
430 free (htab);
431 return NULL;
432 }
433
434 /* Init the stub hash table too. */
435 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
436 sizeof (struct elf32_hppa_stub_hash_entry)))
437 return NULL;
438
439 htab->stub_bfd = NULL;
440 htab->add_stub_section = NULL;
441 htab->layout_sections_again = NULL;
442 htab->stub_group = NULL;
443 htab->sgot = NULL;
444 htab->srelgot = NULL;
445 htab->splt = NULL;
446 htab->srelplt = NULL;
447 htab->sdynbss = NULL;
448 htab->srelbss = NULL;
449 htab->text_segment_base = (bfd_vma) -1;
450 htab->data_segment_base = (bfd_vma) -1;
451 htab->multi_subspace = 0;
452 htab->has_12bit_branch = 0;
453 htab->has_17bit_branch = 0;
454 htab->has_22bit_branch = 0;
455 htab->need_plt_stub = 0;
456 htab->sym_cache.abfd = NULL;
457 htab->tls_ldm_got.refcount = 0;
458
459 return &htab->etab.root;
460 }
461
462 /* Free the derived linker hash table. */
463
464 static void
465 elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
466 {
467 struct elf32_hppa_link_hash_table *htab
468 = (struct elf32_hppa_link_hash_table *) btab;
469
470 bfd_hash_table_free (&htab->bstab);
471 _bfd_generic_link_hash_table_free (btab);
472 }
473
474 /* Build a name for an entry in the stub hash table. */
475
476 static char *
477 hppa_stub_name (const asection *input_section,
478 const asection *sym_sec,
479 const struct elf32_hppa_link_hash_entry *hh,
480 const Elf_Internal_Rela *rela)
481 {
482 char *stub_name;
483 bfd_size_type len;
484
485 if (hh)
486 {
487 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
488 stub_name = bfd_malloc (len);
489 if (stub_name != NULL)
490 sprintf (stub_name, "%08x_%s+%x",
491 input_section->id & 0xffffffff,
492 hh_name (hh),
493 (int) rela->r_addend & 0xffffffff);
494 }
495 else
496 {
497 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
498 stub_name = bfd_malloc (len);
499 if (stub_name != NULL)
500 sprintf (stub_name, "%08x_%x:%x+%x",
501 input_section->id & 0xffffffff,
502 sym_sec->id & 0xffffffff,
503 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
504 (int) rela->r_addend & 0xffffffff);
505 }
506 return stub_name;
507 }
508
509 /* Look up an entry in the stub hash. Stub entries are cached because
510 creating the stub name takes a bit of time. */
511
512 static struct elf32_hppa_stub_hash_entry *
513 hppa_get_stub_entry (const asection *input_section,
514 const asection *sym_sec,
515 struct elf32_hppa_link_hash_entry *hh,
516 const Elf_Internal_Rela *rela,
517 struct elf32_hppa_link_hash_table *htab)
518 {
519 struct elf32_hppa_stub_hash_entry *hsh_entry;
520 const asection *id_sec;
521
522 /* If this input section is part of a group of sections sharing one
523 stub section, then use the id of the first section in the group.
524 Stub names need to include a section id, as there may well be
525 more than one stub used to reach say, printf, and we need to
526 distinguish between them. */
527 id_sec = htab->stub_group[input_section->id].link_sec;
528
529 if (hh != NULL && hh->hsh_cache != NULL
530 && hh->hsh_cache->hh == hh
531 && hh->hsh_cache->id_sec == id_sec)
532 {
533 hsh_entry = hh->hsh_cache;
534 }
535 else
536 {
537 char *stub_name;
538
539 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
540 if (stub_name == NULL)
541 return NULL;
542
543 hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
544 stub_name, FALSE, FALSE);
545 if (hh != NULL)
546 hh->hsh_cache = hsh_entry;
547
548 free (stub_name);
549 }
550
551 return hsh_entry;
552 }
553
554 /* Add a new stub entry to the stub hash. Not all fields of the new
555 stub entry are initialised. */
556
557 static struct elf32_hppa_stub_hash_entry *
558 hppa_add_stub (const char *stub_name,
559 asection *section,
560 struct elf32_hppa_link_hash_table *htab)
561 {
562 asection *link_sec;
563 asection *stub_sec;
564 struct elf32_hppa_stub_hash_entry *hsh;
565
566 link_sec = htab->stub_group[section->id].link_sec;
567 stub_sec = htab->stub_group[section->id].stub_sec;
568 if (stub_sec == NULL)
569 {
570 stub_sec = htab->stub_group[link_sec->id].stub_sec;
571 if (stub_sec == NULL)
572 {
573 size_t namelen;
574 bfd_size_type len;
575 char *s_name;
576
577 namelen = strlen (link_sec->name);
578 len = namelen + sizeof (STUB_SUFFIX);
579 s_name = bfd_alloc (htab->stub_bfd, len);
580 if (s_name == NULL)
581 return NULL;
582
583 memcpy (s_name, link_sec->name, namelen);
584 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
585 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
586 if (stub_sec == NULL)
587 return NULL;
588 htab->stub_group[link_sec->id].stub_sec = stub_sec;
589 }
590 htab->stub_group[section->id].stub_sec = stub_sec;
591 }
592
593 /* Enter this entry into the linker stub hash table. */
594 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
595 TRUE, FALSE);
596 if (hsh == NULL)
597 {
598 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
599 section->owner,
600 stub_name);
601 return NULL;
602 }
603
604 hsh->stub_sec = stub_sec;
605 hsh->stub_offset = 0;
606 hsh->id_sec = link_sec;
607 return hsh;
608 }
609
610 /* Determine the type of stub needed, if any, for a call. */
611
612 static enum elf32_hppa_stub_type
613 hppa_type_of_stub (asection *input_sec,
614 const Elf_Internal_Rela *rela,
615 struct elf32_hppa_link_hash_entry *hh,
616 bfd_vma destination,
617 struct bfd_link_info *info)
618 {
619 bfd_vma location;
620 bfd_vma branch_offset;
621 bfd_vma max_branch_offset;
622 unsigned int r_type;
623
624 if (hh != NULL
625 && hh->eh.plt.offset != (bfd_vma) -1
626 && hh->eh.dynindx != -1
627 && !hh->plabel
628 && (info->shared
629 || !hh->eh.def_regular
630 || hh->eh.root.type == bfd_link_hash_defweak))
631 {
632 /* We need an import stub. Decide between hppa_stub_import
633 and hppa_stub_import_shared later. */
634 return hppa_stub_import;
635 }
636
637 /* Determine where the call point is. */
638 location = (input_sec->output_offset
639 + input_sec->output_section->vma
640 + rela->r_offset);
641
642 branch_offset = destination - location - 8;
643 r_type = ELF32_R_TYPE (rela->r_info);
644
645 /* Determine if a long branch stub is needed. parisc branch offsets
646 are relative to the second instruction past the branch, ie. +8
647 bytes on from the branch instruction location. The offset is
648 signed and counts in units of 4 bytes. */
649 if (r_type == (unsigned int) R_PARISC_PCREL17F)
650 max_branch_offset = (1 << (17 - 1)) << 2;
651
652 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
653 max_branch_offset = (1 << (12 - 1)) << 2;
654
655 else /* R_PARISC_PCREL22F. */
656 max_branch_offset = (1 << (22 - 1)) << 2;
657
658 if (branch_offset + max_branch_offset >= 2*max_branch_offset)
659 return hppa_stub_long_branch;
660
661 return hppa_stub_none;
662 }
663
664 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
665 IN_ARG contains the link info pointer. */
666
667 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
668 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
669
670 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */
671 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
672 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
673
674 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
675 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
676 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
677 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
678
679 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
680 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
681
682 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
683 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
684 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
685 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
686
687 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
688 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
689 #define NOP 0x08000240 /* nop */
690 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
691 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
692 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
693
694 #ifndef R19_STUBS
695 #define R19_STUBS 1
696 #endif
697
698 #if R19_STUBS
699 #define LDW_R1_DLT LDW_R1_R19
700 #else
701 #define LDW_R1_DLT LDW_R1_DP
702 #endif
703
704 static bfd_boolean
705 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
706 {
707 struct elf32_hppa_stub_hash_entry *hsh;
708 struct bfd_link_info *info;
709 struct elf32_hppa_link_hash_table *htab;
710 asection *stub_sec;
711 bfd *stub_bfd;
712 bfd_byte *loc;
713 bfd_vma sym_value;
714 bfd_vma insn;
715 bfd_vma off;
716 int val;
717 int size;
718
719 /* Massage our args to the form they really have. */
720 hsh = hppa_stub_hash_entry (bh);
721 info = (struct bfd_link_info *)in_arg;
722
723 htab = hppa_link_hash_table (info);
724 if (htab == NULL)
725 return FALSE;
726
727 stub_sec = hsh->stub_sec;
728
729 /* Make a note of the offset within the stubs for this entry. */
730 hsh->stub_offset = stub_sec->size;
731 loc = stub_sec->contents + hsh->stub_offset;
732
733 stub_bfd = stub_sec->owner;
734
735 switch (hsh->stub_type)
736 {
737 case hppa_stub_long_branch:
738 /* Create the long branch. A long branch is formed with "ldil"
739 loading the upper bits of the target address into a register,
740 then branching with "be" which adds in the lower bits.
741 The "be" has its delay slot nullified. */
742 sym_value = (hsh->target_value
743 + hsh->target_section->output_offset
744 + hsh->target_section->output_section->vma);
745
746 val = hppa_field_adjust (sym_value, 0, e_lrsel);
747 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
748 bfd_put_32 (stub_bfd, insn, loc);
749
750 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
751 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
752 bfd_put_32 (stub_bfd, insn, loc + 4);
753
754 size = 8;
755 break;
756
757 case hppa_stub_long_branch_shared:
758 /* Branches are relative. This is where we are going to. */
759 sym_value = (hsh->target_value
760 + hsh->target_section->output_offset
761 + hsh->target_section->output_section->vma);
762
763 /* And this is where we are coming from, more or less. */
764 sym_value -= (hsh->stub_offset
765 + stub_sec->output_offset
766 + stub_sec->output_section->vma);
767
768 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
769 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
770 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
771 bfd_put_32 (stub_bfd, insn, loc + 4);
772
773 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
774 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
775 bfd_put_32 (stub_bfd, insn, loc + 8);
776 size = 12;
777 break;
778
779 case hppa_stub_import:
780 case hppa_stub_import_shared:
781 off = hsh->hh->eh.plt.offset;
782 if (off >= (bfd_vma) -2)
783 abort ();
784
785 off &= ~ (bfd_vma) 1;
786 sym_value = (off
787 + htab->splt->output_offset
788 + htab->splt->output_section->vma
789 - elf_gp (htab->splt->output_section->owner));
790
791 insn = ADDIL_DP;
792 #if R19_STUBS
793 if (hsh->stub_type == hppa_stub_import_shared)
794 insn = ADDIL_R19;
795 #endif
796 val = hppa_field_adjust (sym_value, 0, e_lrsel),
797 insn = hppa_rebuild_insn ((int) insn, val, 21);
798 bfd_put_32 (stub_bfd, insn, loc);
799
800 /* It is critical to use lrsel/rrsel here because we are using
801 two different offsets (+0 and +4) from sym_value. If we use
802 lsel/rsel then with unfortunate sym_values we will round
803 sym_value+4 up to the next 2k block leading to a mis-match
804 between the lsel and rsel value. */
805 val = hppa_field_adjust (sym_value, 0, e_rrsel);
806 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
807 bfd_put_32 (stub_bfd, insn, loc + 4);
808
809 if (htab->multi_subspace)
810 {
811 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
812 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
813 bfd_put_32 (stub_bfd, insn, loc + 8);
814
815 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
816 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
817 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
818 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
819
820 size = 28;
821 }
822 else
823 {
824 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
825 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
826 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
827 bfd_put_32 (stub_bfd, insn, loc + 12);
828
829 size = 16;
830 }
831
832 break;
833
834 case hppa_stub_export:
835 /* Branches are relative. This is where we are going to. */
836 sym_value = (hsh->target_value
837 + hsh->target_section->output_offset
838 + hsh->target_section->output_section->vma);
839
840 /* And this is where we are coming from. */
841 sym_value -= (hsh->stub_offset
842 + stub_sec->output_offset
843 + stub_sec->output_section->vma);
844
845 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
846 && (!htab->has_22bit_branch
847 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
848 {
849 (*_bfd_error_handler)
850 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
851 hsh->target_section->owner,
852 stub_sec,
853 (long) hsh->stub_offset,
854 hsh->bh_root.string);
855 bfd_set_error (bfd_error_bad_value);
856 return FALSE;
857 }
858
859 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
860 if (!htab->has_22bit_branch)
861 insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
862 else
863 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
864 bfd_put_32 (stub_bfd, insn, loc);
865
866 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
867 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
868 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
869 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
870 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
871
872 /* Point the function symbol at the stub. */
873 hsh->hh->eh.root.u.def.section = stub_sec;
874 hsh->hh->eh.root.u.def.value = stub_sec->size;
875
876 size = 24;
877 break;
878
879 default:
880 BFD_FAIL ();
881 return FALSE;
882 }
883
884 stub_sec->size += size;
885 return TRUE;
886 }
887
888 #undef LDIL_R1
889 #undef BE_SR4_R1
890 #undef BL_R1
891 #undef ADDIL_R1
892 #undef DEPI_R1
893 #undef LDW_R1_R21
894 #undef LDW_R1_DLT
895 #undef LDW_R1_R19
896 #undef ADDIL_R19
897 #undef LDW_R1_DP
898 #undef LDSID_R21_R1
899 #undef MTSP_R1
900 #undef BE_SR0_R21
901 #undef STW_RP
902 #undef BV_R0_R21
903 #undef BL_RP
904 #undef NOP
905 #undef LDW_RP
906 #undef LDSID_RP_R1
907 #undef BE_SR0_RP
908
909 /* As above, but don't actually build the stub. Just bump offset so
910 we know stub section sizes. */
911
912 static bfd_boolean
913 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
914 {
915 struct elf32_hppa_stub_hash_entry *hsh;
916 struct elf32_hppa_link_hash_table *htab;
917 int size;
918
919 /* Massage our args to the form they really have. */
920 hsh = hppa_stub_hash_entry (bh);
921 htab = in_arg;
922
923 if (hsh->stub_type == hppa_stub_long_branch)
924 size = 8;
925 else if (hsh->stub_type == hppa_stub_long_branch_shared)
926 size = 12;
927 else if (hsh->stub_type == hppa_stub_export)
928 size = 24;
929 else /* hppa_stub_import or hppa_stub_import_shared. */
930 {
931 if (htab->multi_subspace)
932 size = 28;
933 else
934 size = 16;
935 }
936
937 hsh->stub_sec->size += size;
938 return TRUE;
939 }
940
941 /* Return nonzero if ABFD represents an HPPA ELF32 file.
942 Additionally we set the default architecture and machine. */
943
944 static bfd_boolean
945 elf32_hppa_object_p (bfd *abfd)
946 {
947 Elf_Internal_Ehdr * i_ehdrp;
948 unsigned int flags;
949
950 i_ehdrp = elf_elfheader (abfd);
951 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
952 {
953 /* GCC on hppa-linux produces binaries with OSABI=GNU,
954 but the kernel produces corefiles with OSABI=SysV. */
955 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
956 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
957 return FALSE;
958 }
959 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
960 {
961 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
962 but the kernel produces corefiles with OSABI=SysV. */
963 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
964 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
965 return FALSE;
966 }
967 else
968 {
969 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
970 return FALSE;
971 }
972
973 flags = i_ehdrp->e_flags;
974 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
975 {
976 case EFA_PARISC_1_0:
977 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
978 case EFA_PARISC_1_1:
979 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
980 case EFA_PARISC_2_0:
981 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
982 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
983 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
984 }
985 return TRUE;
986 }
987
988 /* Create the .plt and .got sections, and set up our hash table
989 short-cuts to various dynamic sections. */
990
991 static bfd_boolean
992 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
993 {
994 struct elf32_hppa_link_hash_table *htab;
995 struct elf_link_hash_entry *eh;
996
997 /* Don't try to create the .plt and .got twice. */
998 htab = hppa_link_hash_table (info);
999 if (htab == NULL)
1000 return FALSE;
1001 if (htab->splt != NULL)
1002 return TRUE;
1003
1004 /* Call the generic code to do most of the work. */
1005 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1006 return FALSE;
1007
1008 htab->splt = bfd_get_section_by_name (abfd, ".plt");
1009 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
1010
1011 htab->sgot = bfd_get_section_by_name (abfd, ".got");
1012 htab->srelgot = bfd_get_section_by_name (abfd, ".rela.got");
1013
1014 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
1015 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
1016
1017 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
1018 application, because __canonicalize_funcptr_for_compare needs it. */
1019 eh = elf_hash_table (info)->hgot;
1020 eh->forced_local = 0;
1021 eh->other = STV_DEFAULT;
1022 return bfd_elf_link_record_dynamic_symbol (info, eh);
1023 }
1024
1025 /* Copy the extra info we tack onto an elf_link_hash_entry. */
1026
1027 static void
1028 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1029 struct elf_link_hash_entry *eh_dir,
1030 struct elf_link_hash_entry *eh_ind)
1031 {
1032 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1033
1034 hh_dir = hppa_elf_hash_entry (eh_dir);
1035 hh_ind = hppa_elf_hash_entry (eh_ind);
1036
1037 if (hh_ind->dyn_relocs != NULL)
1038 {
1039 if (hh_dir->dyn_relocs != NULL)
1040 {
1041 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1042 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1043
1044 /* Add reloc counts against the indirect sym to the direct sym
1045 list. Merge any entries against the same section. */
1046 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1047 {
1048 struct elf32_hppa_dyn_reloc_entry *hdh_q;
1049
1050 for (hdh_q = hh_dir->dyn_relocs;
1051 hdh_q != NULL;
1052 hdh_q = hdh_q->hdh_next)
1053 if (hdh_q->sec == hdh_p->sec)
1054 {
1055 #if RELATIVE_DYNRELOCS
1056 hdh_q->relative_count += hdh_p->relative_count;
1057 #endif
1058 hdh_q->count += hdh_p->count;
1059 *hdh_pp = hdh_p->hdh_next;
1060 break;
1061 }
1062 if (hdh_q == NULL)
1063 hdh_pp = &hdh_p->hdh_next;
1064 }
1065 *hdh_pp = hh_dir->dyn_relocs;
1066 }
1067
1068 hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1069 hh_ind->dyn_relocs = NULL;
1070 }
1071
1072 if (ELIMINATE_COPY_RELOCS
1073 && eh_ind->root.type != bfd_link_hash_indirect
1074 && eh_dir->dynamic_adjusted)
1075 {
1076 /* If called to transfer flags for a weakdef during processing
1077 of elf_adjust_dynamic_symbol, don't copy non_got_ref.
1078 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
1079 eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
1080 eh_dir->ref_regular |= eh_ind->ref_regular;
1081 eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
1082 eh_dir->needs_plt |= eh_ind->needs_plt;
1083 }
1084 else
1085 {
1086 if (eh_ind->root.type == bfd_link_hash_indirect
1087 && eh_dir->got.refcount <= 0)
1088 {
1089 hh_dir->tls_type = hh_ind->tls_type;
1090 hh_ind->tls_type = GOT_UNKNOWN;
1091 }
1092
1093 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1094 }
1095 }
1096
1097 static int
1098 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1099 int r_type, int is_local ATTRIBUTE_UNUSED)
1100 {
1101 /* For now we don't support linker optimizations. */
1102 return r_type;
1103 }
1104
1105 /* Return a pointer to the local GOT, PLT and TLS reference counts
1106 for ABFD. Returns NULL if the storage allocation fails. */
1107
1108 static bfd_signed_vma *
1109 hppa32_elf_local_refcounts (bfd *abfd)
1110 {
1111 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1112 bfd_signed_vma *local_refcounts;
1113
1114 local_refcounts = elf_local_got_refcounts (abfd);
1115 if (local_refcounts == NULL)
1116 {
1117 bfd_size_type size;
1118
1119 /* Allocate space for local GOT and PLT reference
1120 counts. Done this way to save polluting elf_obj_tdata
1121 with another target specific pointer. */
1122 size = symtab_hdr->sh_info;
1123 size *= 2 * sizeof (bfd_signed_vma);
1124 /* Add in space to store the local GOT TLS types. */
1125 size += symtab_hdr->sh_info;
1126 local_refcounts = bfd_zalloc (abfd, size);
1127 if (local_refcounts == NULL)
1128 return NULL;
1129 elf_local_got_refcounts (abfd) = local_refcounts;
1130 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1131 symtab_hdr->sh_info);
1132 }
1133 return local_refcounts;
1134 }
1135
1136
1137 /* Look through the relocs for a section during the first phase, and
1138 calculate needed space in the global offset table, procedure linkage
1139 table, and dynamic reloc sections. At this point we haven't
1140 necessarily read all the input files. */
1141
1142 static bfd_boolean
1143 elf32_hppa_check_relocs (bfd *abfd,
1144 struct bfd_link_info *info,
1145 asection *sec,
1146 const Elf_Internal_Rela *relocs)
1147 {
1148 Elf_Internal_Shdr *symtab_hdr;
1149 struct elf_link_hash_entry **eh_syms;
1150 const Elf_Internal_Rela *rela;
1151 const Elf_Internal_Rela *rela_end;
1152 struct elf32_hppa_link_hash_table *htab;
1153 asection *sreloc;
1154 int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
1155
1156 if (info->relocatable)
1157 return TRUE;
1158
1159 htab = hppa_link_hash_table (info);
1160 if (htab == NULL)
1161 return FALSE;
1162 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1163 eh_syms = elf_sym_hashes (abfd);
1164 sreloc = NULL;
1165
1166 rela_end = relocs + sec->reloc_count;
1167 for (rela = relocs; rela < rela_end; rela++)
1168 {
1169 enum {
1170 NEED_GOT = 1,
1171 NEED_PLT = 2,
1172 NEED_DYNREL = 4,
1173 PLT_PLABEL = 8
1174 };
1175
1176 unsigned int r_symndx, r_type;
1177 struct elf32_hppa_link_hash_entry *hh;
1178 int need_entry = 0;
1179
1180 r_symndx = ELF32_R_SYM (rela->r_info);
1181
1182 if (r_symndx < symtab_hdr->sh_info)
1183 hh = NULL;
1184 else
1185 {
1186 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1187 while (hh->eh.root.type == bfd_link_hash_indirect
1188 || hh->eh.root.type == bfd_link_hash_warning)
1189 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1190 }
1191
1192 r_type = ELF32_R_TYPE (rela->r_info);
1193 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1194
1195 switch (r_type)
1196 {
1197 case R_PARISC_DLTIND14F:
1198 case R_PARISC_DLTIND14R:
1199 case R_PARISC_DLTIND21L:
1200 /* This symbol requires a global offset table entry. */
1201 need_entry = NEED_GOT;
1202 break;
1203
1204 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
1205 case R_PARISC_PLABEL21L:
1206 case R_PARISC_PLABEL32:
1207 /* If the addend is non-zero, we break badly. */
1208 if (rela->r_addend != 0)
1209 abort ();
1210
1211 /* If we are creating a shared library, then we need to
1212 create a PLT entry for all PLABELs, because PLABELs with
1213 local symbols may be passed via a pointer to another
1214 object. Additionally, output a dynamic relocation
1215 pointing to the PLT entry.
1216
1217 For executables, the original 32-bit ABI allowed two
1218 different styles of PLABELs (function pointers): For
1219 global functions, the PLABEL word points into the .plt
1220 two bytes past a (function address, gp) pair, and for
1221 local functions the PLABEL points directly at the
1222 function. The magic +2 for the first type allows us to
1223 differentiate between the two. As you can imagine, this
1224 is a real pain when it comes to generating code to call
1225 functions indirectly or to compare function pointers.
1226 We avoid the mess by always pointing a PLABEL into the
1227 .plt, even for local functions. */
1228 need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
1229 break;
1230
1231 case R_PARISC_PCREL12F:
1232 htab->has_12bit_branch = 1;
1233 goto branch_common;
1234
1235 case R_PARISC_PCREL17C:
1236 case R_PARISC_PCREL17F:
1237 htab->has_17bit_branch = 1;
1238 goto branch_common;
1239
1240 case R_PARISC_PCREL22F:
1241 htab->has_22bit_branch = 1;
1242 branch_common:
1243 /* Function calls might need to go through the .plt, and
1244 might require long branch stubs. */
1245 if (hh == NULL)
1246 {
1247 /* We know local syms won't need a .plt entry, and if
1248 they need a long branch stub we can't guarantee that
1249 we can reach the stub. So just flag an error later
1250 if we're doing a shared link and find we need a long
1251 branch stub. */
1252 continue;
1253 }
1254 else
1255 {
1256 /* Global symbols will need a .plt entry if they remain
1257 global, and in most cases won't need a long branch
1258 stub. Unfortunately, we have to cater for the case
1259 where a symbol is forced local by versioning, or due
1260 to symbolic linking, and we lose the .plt entry. */
1261 need_entry = NEED_PLT;
1262 if (hh->eh.type == STT_PARISC_MILLI)
1263 need_entry = 0;
1264 }
1265 break;
1266
1267 case R_PARISC_SEGBASE: /* Used to set segment base. */
1268 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
1269 case R_PARISC_PCREL14F: /* PC relative load/store. */
1270 case R_PARISC_PCREL14R:
1271 case R_PARISC_PCREL17R: /* External branches. */
1272 case R_PARISC_PCREL21L: /* As above, and for load/store too. */
1273 case R_PARISC_PCREL32:
1274 /* We don't need to propagate the relocation if linking a
1275 shared object since these are section relative. */
1276 continue;
1277
1278 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
1279 case R_PARISC_DPREL14R:
1280 case R_PARISC_DPREL21L:
1281 if (info->shared)
1282 {
1283 (*_bfd_error_handler)
1284 (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1285 abfd,
1286 elf_hppa_howto_table[r_type].name);
1287 bfd_set_error (bfd_error_bad_value);
1288 return FALSE;
1289 }
1290 /* Fall through. */
1291
1292 case R_PARISC_DIR17F: /* Used for external branches. */
1293 case R_PARISC_DIR17R:
1294 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
1295 case R_PARISC_DIR14R:
1296 case R_PARISC_DIR21L: /* As above, and for ext branches too. */
1297 case R_PARISC_DIR32: /* .word relocs. */
1298 /* We may want to output a dynamic relocation later. */
1299 need_entry = NEED_DYNREL;
1300 break;
1301
1302 /* This relocation describes the C++ object vtable hierarchy.
1303 Reconstruct it for later use during GC. */
1304 case R_PARISC_GNU_VTINHERIT:
1305 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1306 return FALSE;
1307 continue;
1308
1309 /* This relocation describes which C++ vtable entries are actually
1310 used. Record for later use during GC. */
1311 case R_PARISC_GNU_VTENTRY:
1312 BFD_ASSERT (hh != NULL);
1313 if (hh != NULL
1314 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1315 return FALSE;
1316 continue;
1317
1318 case R_PARISC_TLS_GD21L:
1319 case R_PARISC_TLS_GD14R:
1320 case R_PARISC_TLS_LDM21L:
1321 case R_PARISC_TLS_LDM14R:
1322 need_entry = NEED_GOT;
1323 break;
1324
1325 case R_PARISC_TLS_IE21L:
1326 case R_PARISC_TLS_IE14R:
1327 if (info->shared)
1328 info->flags |= DF_STATIC_TLS;
1329 need_entry = NEED_GOT;
1330 break;
1331
1332 default:
1333 continue;
1334 }
1335
1336 /* Now carry out our orders. */
1337 if (need_entry & NEED_GOT)
1338 {
1339 switch (r_type)
1340 {
1341 default:
1342 tls_type = GOT_NORMAL;
1343 break;
1344 case R_PARISC_TLS_GD21L:
1345 case R_PARISC_TLS_GD14R:
1346 tls_type |= GOT_TLS_GD;
1347 break;
1348 case R_PARISC_TLS_LDM21L:
1349 case R_PARISC_TLS_LDM14R:
1350 tls_type |= GOT_TLS_LDM;
1351 break;
1352 case R_PARISC_TLS_IE21L:
1353 case R_PARISC_TLS_IE14R:
1354 tls_type |= GOT_TLS_IE;
1355 break;
1356 }
1357
1358 /* Allocate space for a GOT entry, as well as a dynamic
1359 relocation for this entry. */
1360 if (htab->sgot == NULL)
1361 {
1362 if (htab->etab.dynobj == NULL)
1363 htab->etab.dynobj = abfd;
1364 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1365 return FALSE;
1366 }
1367
1368 if (r_type == R_PARISC_TLS_LDM21L
1369 || r_type == R_PARISC_TLS_LDM14R)
1370 htab->tls_ldm_got.refcount += 1;
1371 else
1372 {
1373 if (hh != NULL)
1374 {
1375 hh->eh.got.refcount += 1;
1376 old_tls_type = hh->tls_type;
1377 }
1378 else
1379 {
1380 bfd_signed_vma *local_got_refcounts;
1381
1382 /* This is a global offset table entry for a local symbol. */
1383 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1384 if (local_got_refcounts == NULL)
1385 return FALSE;
1386 local_got_refcounts[r_symndx] += 1;
1387
1388 old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
1389 }
1390
1391 tls_type |= old_tls_type;
1392
1393 if (old_tls_type != tls_type)
1394 {
1395 if (hh != NULL)
1396 hh->tls_type = tls_type;
1397 else
1398 hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
1399 }
1400
1401 }
1402 }
1403
1404 if (need_entry & NEED_PLT)
1405 {
1406 /* If we are creating a shared library, and this is a reloc
1407 against a weak symbol or a global symbol in a dynamic
1408 object, then we will be creating an import stub and a
1409 .plt entry for the symbol. Similarly, on a normal link
1410 to symbols defined in a dynamic object we'll need the
1411 import stub and a .plt entry. We don't know yet whether
1412 the symbol is defined or not, so make an entry anyway and
1413 clean up later in adjust_dynamic_symbol. */
1414 if ((sec->flags & SEC_ALLOC) != 0)
1415 {
1416 if (hh != NULL)
1417 {
1418 hh->eh.needs_plt = 1;
1419 hh->eh.plt.refcount += 1;
1420
1421 /* If this .plt entry is for a plabel, mark it so
1422 that adjust_dynamic_symbol will keep the entry
1423 even if it appears to be local. */
1424 if (need_entry & PLT_PLABEL)
1425 hh->plabel = 1;
1426 }
1427 else if (need_entry & PLT_PLABEL)
1428 {
1429 bfd_signed_vma *local_got_refcounts;
1430 bfd_signed_vma *local_plt_refcounts;
1431
1432 local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1433 if (local_got_refcounts == NULL)
1434 return FALSE;
1435 local_plt_refcounts = (local_got_refcounts
1436 + symtab_hdr->sh_info);
1437 local_plt_refcounts[r_symndx] += 1;
1438 }
1439 }
1440 }
1441
1442 if (need_entry & NEED_DYNREL)
1443 {
1444 /* Flag this symbol as having a non-got, non-plt reference
1445 so that we generate copy relocs if it turns out to be
1446 dynamic. */
1447 if (hh != NULL && !info->shared)
1448 hh->eh.non_got_ref = 1;
1449
1450 /* If we are creating a shared library then we need to copy
1451 the reloc into the shared library. However, if we are
1452 linking with -Bsymbolic, we need only copy absolute
1453 relocs or relocs against symbols that are not defined in
1454 an object we are including in the link. PC- or DP- or
1455 DLT-relative relocs against any local sym or global sym
1456 with DEF_REGULAR set, can be discarded. At this point we
1457 have not seen all the input files, so it is possible that
1458 DEF_REGULAR is not set now but will be set later (it is
1459 never cleared). We account for that possibility below by
1460 storing information in the dyn_relocs field of the
1461 hash table entry.
1462
1463 A similar situation to the -Bsymbolic case occurs when
1464 creating shared libraries and symbol visibility changes
1465 render the symbol local.
1466
1467 As it turns out, all the relocs we will be creating here
1468 are absolute, so we cannot remove them on -Bsymbolic
1469 links or visibility changes anyway. A STUB_REL reloc
1470 is absolute too, as in that case it is the reloc in the
1471 stub we will be creating, rather than copying the PCREL
1472 reloc in the branch.
1473
1474 If on the other hand, we are creating an executable, we
1475 may need to keep relocations for symbols satisfied by a
1476 dynamic library if we manage to avoid copy relocs for the
1477 symbol. */
1478 if ((info->shared
1479 && (sec->flags & SEC_ALLOC) != 0
1480 && (IS_ABSOLUTE_RELOC (r_type)
1481 || (hh != NULL
1482 && (!info->symbolic
1483 || hh->eh.root.type == bfd_link_hash_defweak
1484 || !hh->eh.def_regular))))
1485 || (ELIMINATE_COPY_RELOCS
1486 && !info->shared
1487 && (sec->flags & SEC_ALLOC) != 0
1488 && hh != NULL
1489 && (hh->eh.root.type == bfd_link_hash_defweak
1490 || !hh->eh.def_regular)))
1491 {
1492 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1493 struct elf32_hppa_dyn_reloc_entry **hdh_head;
1494
1495 /* Create a reloc section in dynobj and make room for
1496 this reloc. */
1497 if (sreloc == NULL)
1498 {
1499 if (htab->etab.dynobj == NULL)
1500 htab->etab.dynobj = abfd;
1501
1502 sreloc = _bfd_elf_make_dynamic_reloc_section
1503 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1504
1505 if (sreloc == NULL)
1506 {
1507 bfd_set_error (bfd_error_bad_value);
1508 return FALSE;
1509 }
1510 }
1511
1512 /* If this is a global symbol, we count the number of
1513 relocations we need for this symbol. */
1514 if (hh != NULL)
1515 {
1516 hdh_head = &hh->dyn_relocs;
1517 }
1518 else
1519 {
1520 /* Track dynamic relocs needed for local syms too.
1521 We really need local syms available to do this
1522 easily. Oh well. */
1523 asection *sr;
1524 void *vpp;
1525 Elf_Internal_Sym *isym;
1526
1527 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1528 abfd, r_symndx);
1529 if (isym == NULL)
1530 return FALSE;
1531
1532 sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1533 if (sr == NULL)
1534 sr = sec;
1535
1536 vpp = &elf_section_data (sr)->local_dynrel;
1537 hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
1538 }
1539
1540 hdh_p = *hdh_head;
1541 if (hdh_p == NULL || hdh_p->sec != sec)
1542 {
1543 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1544 if (hdh_p == NULL)
1545 return FALSE;
1546 hdh_p->hdh_next = *hdh_head;
1547 *hdh_head = hdh_p;
1548 hdh_p->sec = sec;
1549 hdh_p->count = 0;
1550 #if RELATIVE_DYNRELOCS
1551 hdh_p->relative_count = 0;
1552 #endif
1553 }
1554
1555 hdh_p->count += 1;
1556 #if RELATIVE_DYNRELOCS
1557 if (!IS_ABSOLUTE_RELOC (rtype))
1558 hdh_p->relative_count += 1;
1559 #endif
1560 }
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* Return the section that should be marked against garbage collection
1568 for a given relocation. */
1569
1570 static asection *
1571 elf32_hppa_gc_mark_hook (asection *sec,
1572 struct bfd_link_info *info,
1573 Elf_Internal_Rela *rela,
1574 struct elf_link_hash_entry *hh,
1575 Elf_Internal_Sym *sym)
1576 {
1577 if (hh != NULL)
1578 switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1579 {
1580 case R_PARISC_GNU_VTINHERIT:
1581 case R_PARISC_GNU_VTENTRY:
1582 return NULL;
1583 }
1584
1585 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1586 }
1587
1588 /* Update the got and plt entry reference counts for the section being
1589 removed. */
1590
1591 static bfd_boolean
1592 elf32_hppa_gc_sweep_hook (bfd *abfd,
1593 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1594 asection *sec,
1595 const Elf_Internal_Rela *relocs)
1596 {
1597 Elf_Internal_Shdr *symtab_hdr;
1598 struct elf_link_hash_entry **eh_syms;
1599 bfd_signed_vma *local_got_refcounts;
1600 bfd_signed_vma *local_plt_refcounts;
1601 const Elf_Internal_Rela *rela, *relend;
1602 struct elf32_hppa_link_hash_table *htab;
1603
1604 if (info->relocatable)
1605 return TRUE;
1606
1607 htab = hppa_link_hash_table (info);
1608 if (htab == NULL)
1609 return FALSE;
1610
1611 elf_section_data (sec)->local_dynrel = NULL;
1612
1613 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1614 eh_syms = elf_sym_hashes (abfd);
1615 local_got_refcounts = elf_local_got_refcounts (abfd);
1616 local_plt_refcounts = local_got_refcounts;
1617 if (local_plt_refcounts != NULL)
1618 local_plt_refcounts += symtab_hdr->sh_info;
1619
1620 relend = relocs + sec->reloc_count;
1621 for (rela = relocs; rela < relend; rela++)
1622 {
1623 unsigned long r_symndx;
1624 unsigned int r_type;
1625 struct elf_link_hash_entry *eh = NULL;
1626
1627 r_symndx = ELF32_R_SYM (rela->r_info);
1628 if (r_symndx >= symtab_hdr->sh_info)
1629 {
1630 struct elf32_hppa_link_hash_entry *hh;
1631 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
1632 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1633
1634 eh = eh_syms[r_symndx - symtab_hdr->sh_info];
1635 while (eh->root.type == bfd_link_hash_indirect
1636 || eh->root.type == bfd_link_hash_warning)
1637 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
1638 hh = hppa_elf_hash_entry (eh);
1639
1640 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
1641 if (hdh_p->sec == sec)
1642 {
1643 /* Everything must go for SEC. */
1644 *hdh_pp = hdh_p->hdh_next;
1645 break;
1646 }
1647 }
1648
1649 r_type = ELF32_R_TYPE (rela->r_info);
1650 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
1651
1652 switch (r_type)
1653 {
1654 case R_PARISC_DLTIND14F:
1655 case R_PARISC_DLTIND14R:
1656 case R_PARISC_DLTIND21L:
1657 case R_PARISC_TLS_GD21L:
1658 case R_PARISC_TLS_GD14R:
1659 case R_PARISC_TLS_IE21L:
1660 case R_PARISC_TLS_IE14R:
1661 if (eh != NULL)
1662 {
1663 if (eh->got.refcount > 0)
1664 eh->got.refcount -= 1;
1665 }
1666 else if (local_got_refcounts != NULL)
1667 {
1668 if (local_got_refcounts[r_symndx] > 0)
1669 local_got_refcounts[r_symndx] -= 1;
1670 }
1671 break;
1672
1673 case R_PARISC_TLS_LDM21L:
1674 case R_PARISC_TLS_LDM14R:
1675 htab->tls_ldm_got.refcount -= 1;
1676 break;
1677
1678 case R_PARISC_PCREL12F:
1679 case R_PARISC_PCREL17C:
1680 case R_PARISC_PCREL17F:
1681 case R_PARISC_PCREL22F:
1682 if (eh != NULL)
1683 {
1684 if (eh->plt.refcount > 0)
1685 eh->plt.refcount -= 1;
1686 }
1687 break;
1688
1689 case R_PARISC_PLABEL14R:
1690 case R_PARISC_PLABEL21L:
1691 case R_PARISC_PLABEL32:
1692 if (eh != NULL)
1693 {
1694 if (eh->plt.refcount > 0)
1695 eh->plt.refcount -= 1;
1696 }
1697 else if (local_plt_refcounts != NULL)
1698 {
1699 if (local_plt_refcounts[r_symndx] > 0)
1700 local_plt_refcounts[r_symndx] -= 1;
1701 }
1702 break;
1703
1704 default:
1705 break;
1706 }
1707 }
1708
1709 return TRUE;
1710 }
1711
1712 /* Support for core dump NOTE sections. */
1713
1714 static bfd_boolean
1715 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1716 {
1717 int offset;
1718 size_t size;
1719
1720 switch (note->descsz)
1721 {
1722 default:
1723 return FALSE;
1724
1725 case 396: /* Linux/hppa */
1726 /* pr_cursig */
1727 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1728
1729 /* pr_pid */
1730 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1731
1732 /* pr_reg */
1733 offset = 72;
1734 size = 320;
1735
1736 break;
1737 }
1738
1739 /* Make a ".reg/999" section. */
1740 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1741 size, note->descpos + offset);
1742 }
1743
1744 static bfd_boolean
1745 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1746 {
1747 switch (note->descsz)
1748 {
1749 default:
1750 return FALSE;
1751
1752 case 124: /* Linux/hppa elf_prpsinfo. */
1753 elf_tdata (abfd)->core_program
1754 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1755 elf_tdata (abfd)->core_command
1756 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1757 }
1758
1759 /* Note that for some reason, a spurious space is tacked
1760 onto the end of the args in some (at least one anyway)
1761 implementations, so strip it off if it exists. */
1762 {
1763 char *command = elf_tdata (abfd)->core_command;
1764 int n = strlen (command);
1765
1766 if (0 < n && command[n - 1] == ' ')
1767 command[n - 1] = '\0';
1768 }
1769
1770 return TRUE;
1771 }
1772
1773 /* Our own version of hide_symbol, so that we can keep plt entries for
1774 plabels. */
1775
1776 static void
1777 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1778 struct elf_link_hash_entry *eh,
1779 bfd_boolean force_local)
1780 {
1781 if (force_local)
1782 {
1783 eh->forced_local = 1;
1784 if (eh->dynindx != -1)
1785 {
1786 eh->dynindx = -1;
1787 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1788 eh->dynstr_index);
1789 }
1790 }
1791
1792 /* STT_GNU_IFUNC symbol must go through PLT. */
1793 if (! hppa_elf_hash_entry (eh)->plabel
1794 && eh->type != STT_GNU_IFUNC)
1795 {
1796 eh->needs_plt = 0;
1797 eh->plt = elf_hash_table (info)->init_plt_offset;
1798 }
1799 }
1800
1801 /* Adjust a symbol defined by a dynamic object and referenced by a
1802 regular object. The current definition is in some section of the
1803 dynamic object, but we're not including those sections. We have to
1804 change the definition to something the rest of the link can
1805 understand. */
1806
1807 static bfd_boolean
1808 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1809 struct elf_link_hash_entry *eh)
1810 {
1811 struct elf32_hppa_link_hash_table *htab;
1812 asection *sec;
1813
1814 /* If this is a function, put it in the procedure linkage table. We
1815 will fill in the contents of the procedure linkage table later. */
1816 if (eh->type == STT_FUNC
1817 || eh->needs_plt)
1818 {
1819 /* If the symbol is used by a plabel, we must allocate a PLT slot.
1820 The refcounts are not reliable when it has been hidden since
1821 hide_symbol can be called before the plabel flag is set. */
1822 if (hppa_elf_hash_entry (eh)->plabel
1823 && eh->plt.refcount <= 0)
1824 eh->plt.refcount = 1;
1825
1826 if (eh->plt.refcount <= 0
1827 || (eh->def_regular
1828 && eh->root.type != bfd_link_hash_defweak
1829 && ! hppa_elf_hash_entry (eh)->plabel
1830 && (!info->shared || info->symbolic)))
1831 {
1832 /* The .plt entry is not needed when:
1833 a) Garbage collection has removed all references to the
1834 symbol, or
1835 b) We know for certain the symbol is defined in this
1836 object, and it's not a weak definition, nor is the symbol
1837 used by a plabel relocation. Either this object is the
1838 application or we are doing a shared symbolic link. */
1839
1840 eh->plt.offset = (bfd_vma) -1;
1841 eh->needs_plt = 0;
1842 }
1843
1844 return TRUE;
1845 }
1846 else
1847 eh->plt.offset = (bfd_vma) -1;
1848
1849 /* If this is a weak symbol, and there is a real definition, the
1850 processor independent code will have arranged for us to see the
1851 real definition first, and we can just use the same value. */
1852 if (eh->u.weakdef != NULL)
1853 {
1854 if (eh->u.weakdef->root.type != bfd_link_hash_defined
1855 && eh->u.weakdef->root.type != bfd_link_hash_defweak)
1856 abort ();
1857 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1858 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1859 if (ELIMINATE_COPY_RELOCS)
1860 eh->non_got_ref = eh->u.weakdef->non_got_ref;
1861 return TRUE;
1862 }
1863
1864 /* This is a reference to a symbol defined by a dynamic object which
1865 is not a function. */
1866
1867 /* If we are creating a shared library, we must presume that the
1868 only references to the symbol are via the global offset table.
1869 For such cases we need not do anything here; the relocations will
1870 be handled correctly by relocate_section. */
1871 if (info->shared)
1872 return TRUE;
1873
1874 /* If there are no references to this symbol that do not use the
1875 GOT, we don't need to generate a copy reloc. */
1876 if (!eh->non_got_ref)
1877 return TRUE;
1878
1879 if (ELIMINATE_COPY_RELOCS)
1880 {
1881 struct elf32_hppa_link_hash_entry *hh;
1882 struct elf32_hppa_dyn_reloc_entry *hdh_p;
1883
1884 hh = hppa_elf_hash_entry (eh);
1885 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
1886 {
1887 sec = hdh_p->sec->output_section;
1888 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1889 break;
1890 }
1891
1892 /* If we didn't find any dynamic relocs in read-only sections, then
1893 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1894 if (hdh_p == NULL)
1895 {
1896 eh->non_got_ref = 0;
1897 return TRUE;
1898 }
1899 }
1900
1901 /* We must allocate the symbol in our .dynbss section, which will
1902 become part of the .bss section of the executable. There will be
1903 an entry for this symbol in the .dynsym section. The dynamic
1904 object will contain position independent code, so all references
1905 from the dynamic object to this symbol will go through the global
1906 offset table. The dynamic linker will use the .dynsym entry to
1907 determine the address it must put in the global offset table, so
1908 both the dynamic object and the regular object will refer to the
1909 same memory location for the variable. */
1910
1911 htab = hppa_link_hash_table (info);
1912 if (htab == NULL)
1913 return FALSE;
1914
1915 /* We must generate a COPY reloc to tell the dynamic linker to
1916 copy the initial value out of the dynamic object and into the
1917 runtime process image. */
1918 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1919 {
1920 htab->srelbss->size += sizeof (Elf32_External_Rela);
1921 eh->needs_copy = 1;
1922 }
1923
1924 sec = htab->sdynbss;
1925
1926 return _bfd_elf_adjust_dynamic_copy (eh, sec);
1927 }
1928
1929 /* Allocate space in the .plt for entries that won't have relocations.
1930 ie. plabel entries. */
1931
1932 static bfd_boolean
1933 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1934 {
1935 struct bfd_link_info *info;
1936 struct elf32_hppa_link_hash_table *htab;
1937 struct elf32_hppa_link_hash_entry *hh;
1938 asection *sec;
1939
1940 if (eh->root.type == bfd_link_hash_indirect)
1941 return TRUE;
1942
1943 info = (struct bfd_link_info *) inf;
1944 hh = hppa_elf_hash_entry (eh);
1945 htab = hppa_link_hash_table (info);
1946 if (htab == NULL)
1947 return FALSE;
1948
1949 if (htab->etab.dynamic_sections_created
1950 && eh->plt.refcount > 0)
1951 {
1952 /* Make sure this symbol is output as a dynamic symbol.
1953 Undefined weak syms won't yet be marked as dynamic. */
1954 if (eh->dynindx == -1
1955 && !eh->forced_local
1956 && eh->type != STT_PARISC_MILLI)
1957 {
1958 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
1959 return FALSE;
1960 }
1961
1962 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
1963 {
1964 /* Allocate these later. From this point on, h->plabel
1965 means that the plt entry is only used by a plabel.
1966 We'll be using a normal plt entry for this symbol, so
1967 clear the plabel indicator. */
1968
1969 hh->plabel = 0;
1970 }
1971 else if (hh->plabel)
1972 {
1973 /* Make an entry in the .plt section for plabel references
1974 that won't have a .plt entry for other reasons. */
1975 sec = htab->splt;
1976 eh->plt.offset = sec->size;
1977 sec->size += PLT_ENTRY_SIZE;
1978 }
1979 else
1980 {
1981 /* No .plt entry needed. */
1982 eh->plt.offset = (bfd_vma) -1;
1983 eh->needs_plt = 0;
1984 }
1985 }
1986 else
1987 {
1988 eh->plt.offset = (bfd_vma) -1;
1989 eh->needs_plt = 0;
1990 }
1991
1992 return TRUE;
1993 }
1994
1995 /* Allocate space in .plt, .got and associated reloc sections for
1996 global syms. */
1997
1998 static bfd_boolean
1999 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2000 {
2001 struct bfd_link_info *info;
2002 struct elf32_hppa_link_hash_table *htab;
2003 asection *sec;
2004 struct elf32_hppa_link_hash_entry *hh;
2005 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2006
2007 if (eh->root.type == bfd_link_hash_indirect)
2008 return TRUE;
2009
2010 info = inf;
2011 htab = hppa_link_hash_table (info);
2012 if (htab == NULL)
2013 return FALSE;
2014
2015 hh = hppa_elf_hash_entry (eh);
2016
2017 if (htab->etab.dynamic_sections_created
2018 && eh->plt.offset != (bfd_vma) -1
2019 && !hh->plabel
2020 && eh->plt.refcount > 0)
2021 {
2022 /* Make an entry in the .plt section. */
2023 sec = htab->splt;
2024 eh->plt.offset = sec->size;
2025 sec->size += PLT_ENTRY_SIZE;
2026
2027 /* We also need to make an entry in the .rela.plt section. */
2028 htab->srelplt->size += sizeof (Elf32_External_Rela);
2029 htab->need_plt_stub = 1;
2030 }
2031
2032 if (eh->got.refcount > 0)
2033 {
2034 /* Make sure this symbol is output as a dynamic symbol.
2035 Undefined weak syms won't yet be marked as dynamic. */
2036 if (eh->dynindx == -1
2037 && !eh->forced_local
2038 && eh->type != STT_PARISC_MILLI)
2039 {
2040 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2041 return FALSE;
2042 }
2043
2044 sec = htab->sgot;
2045 eh->got.offset = sec->size;
2046 sec->size += GOT_ENTRY_SIZE;
2047 /* R_PARISC_TLS_GD* needs two GOT entries */
2048 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2049 sec->size += GOT_ENTRY_SIZE * 2;
2050 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2051 sec->size += GOT_ENTRY_SIZE;
2052 if (htab->etab.dynamic_sections_created
2053 && (info->shared
2054 || (eh->dynindx != -1
2055 && !eh->forced_local)))
2056 {
2057 htab->srelgot->size += sizeof (Elf32_External_Rela);
2058 if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2059 htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
2060 else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2061 htab->srelgot->size += sizeof (Elf32_External_Rela);
2062 }
2063 }
2064 else
2065 eh->got.offset = (bfd_vma) -1;
2066
2067 if (hh->dyn_relocs == NULL)
2068 return TRUE;
2069
2070 /* If this is a -Bsymbolic shared link, then we need to discard all
2071 space allocated for dynamic pc-relative relocs against symbols
2072 defined in a regular object. For the normal shared case, discard
2073 space for relocs that have become local due to symbol visibility
2074 changes. */
2075 if (info->shared)
2076 {
2077 #if RELATIVE_DYNRELOCS
2078 if (SYMBOL_CALLS_LOCAL (info, eh))
2079 {
2080 struct elf32_hppa_dyn_reloc_entry **hdh_pp;
2081
2082 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2083 {
2084 hdh_p->count -= hdh_p->relative_count;
2085 hdh_p->relative_count = 0;
2086 if (hdh_p->count == 0)
2087 *hdh_pp = hdh_p->hdh_next;
2088 else
2089 hdh_pp = &hdh_p->hdh_next;
2090 }
2091 }
2092 #endif
2093
2094 /* Also discard relocs on undefined weak syms with non-default
2095 visibility. */
2096 if (hh->dyn_relocs != NULL
2097 && eh->root.type == bfd_link_hash_undefweak)
2098 {
2099 if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
2100 hh->dyn_relocs = NULL;
2101
2102 /* Make sure undefined weak symbols are output as a dynamic
2103 symbol in PIEs. */
2104 else if (eh->dynindx == -1
2105 && !eh->forced_local)
2106 {
2107 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2108 return FALSE;
2109 }
2110 }
2111 }
2112 else
2113 {
2114 /* For the non-shared case, discard space for relocs against
2115 symbols which turn out to need copy relocs or are not
2116 dynamic. */
2117
2118 if (!eh->non_got_ref
2119 && ((ELIMINATE_COPY_RELOCS
2120 && eh->def_dynamic
2121 && !eh->def_regular)
2122 || (htab->etab.dynamic_sections_created
2123 && (eh->root.type == bfd_link_hash_undefweak
2124 || eh->root.type == bfd_link_hash_undefined))))
2125 {
2126 /* Make sure this symbol is output as a dynamic symbol.
2127 Undefined weak syms won't yet be marked as dynamic. */
2128 if (eh->dynindx == -1
2129 && !eh->forced_local
2130 && eh->type != STT_PARISC_MILLI)
2131 {
2132 if (! bfd_elf_link_record_dynamic_symbol (info, eh))
2133 return FALSE;
2134 }
2135
2136 /* If that succeeded, we know we'll be keeping all the
2137 relocs. */
2138 if (eh->dynindx != -1)
2139 goto keep;
2140 }
2141
2142 hh->dyn_relocs = NULL;
2143 return TRUE;
2144
2145 keep: ;
2146 }
2147
2148 /* Finally, allocate space. */
2149 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2150 {
2151 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2152 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2153 }
2154
2155 return TRUE;
2156 }
2157
2158 /* This function is called via elf_link_hash_traverse to force
2159 millicode symbols local so they do not end up as globals in the
2160 dynamic symbol table. We ought to be able to do this in
2161 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2162 for all dynamic symbols. Arguably, this is a bug in
2163 elf_adjust_dynamic_symbol. */
2164
2165 static bfd_boolean
2166 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2167 struct bfd_link_info *info)
2168 {
2169 if (eh->type == STT_PARISC_MILLI
2170 && !eh->forced_local)
2171 {
2172 elf32_hppa_hide_symbol (info, eh, TRUE);
2173 }
2174 return TRUE;
2175 }
2176
2177 /* Find any dynamic relocs that apply to read-only sections. */
2178
2179 static bfd_boolean
2180 readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
2181 {
2182 struct elf32_hppa_link_hash_entry *hh;
2183 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2184
2185 hh = hppa_elf_hash_entry (eh);
2186 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
2187 {
2188 asection *sec = hdh_p->sec->output_section;
2189
2190 if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
2191 {
2192 struct bfd_link_info *info = inf;
2193
2194 info->flags |= DF_TEXTREL;
2195
2196 /* Not an error, just cut short the traversal. */
2197 return FALSE;
2198 }
2199 }
2200 return TRUE;
2201 }
2202
2203 /* Set the sizes of the dynamic sections. */
2204
2205 static bfd_boolean
2206 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2207 struct bfd_link_info *info)
2208 {
2209 struct elf32_hppa_link_hash_table *htab;
2210 bfd *dynobj;
2211 bfd *ibfd;
2212 asection *sec;
2213 bfd_boolean relocs;
2214
2215 htab = hppa_link_hash_table (info);
2216 if (htab == NULL)
2217 return FALSE;
2218
2219 dynobj = htab->etab.dynobj;
2220 if (dynobj == NULL)
2221 abort ();
2222
2223 if (htab->etab.dynamic_sections_created)
2224 {
2225 /* Set the contents of the .interp section to the interpreter. */
2226 if (info->executable)
2227 {
2228 sec = bfd_get_section_by_name (dynobj, ".interp");
2229 if (sec == NULL)
2230 abort ();
2231 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2232 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2233 }
2234
2235 /* Force millicode symbols local. */
2236 elf_link_hash_traverse (&htab->etab,
2237 clobber_millicode_symbols,
2238 info);
2239 }
2240
2241 /* Set up .got and .plt offsets for local syms, and space for local
2242 dynamic relocs. */
2243 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2244 {
2245 bfd_signed_vma *local_got;
2246 bfd_signed_vma *end_local_got;
2247 bfd_signed_vma *local_plt;
2248 bfd_signed_vma *end_local_plt;
2249 bfd_size_type locsymcount;
2250 Elf_Internal_Shdr *symtab_hdr;
2251 asection *srel;
2252 char *local_tls_type;
2253
2254 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2255 continue;
2256
2257 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2258 {
2259 struct elf32_hppa_dyn_reloc_entry *hdh_p;
2260
2261 for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
2262 elf_section_data (sec)->local_dynrel);
2263 hdh_p != NULL;
2264 hdh_p = hdh_p->hdh_next)
2265 {
2266 if (!bfd_is_abs_section (hdh_p->sec)
2267 && bfd_is_abs_section (hdh_p->sec->output_section))
2268 {
2269 /* Input section has been discarded, either because
2270 it is a copy of a linkonce section or due to
2271 linker script /DISCARD/, so we'll be discarding
2272 the relocs too. */
2273 }
2274 else if (hdh_p->count != 0)
2275 {
2276 srel = elf_section_data (hdh_p->sec)->sreloc;
2277 srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2278 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2279 info->flags |= DF_TEXTREL;
2280 }
2281 }
2282 }
2283
2284 local_got = elf_local_got_refcounts (ibfd);
2285 if (!local_got)
2286 continue;
2287
2288 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2289 locsymcount = symtab_hdr->sh_info;
2290 end_local_got = local_got + locsymcount;
2291 local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2292 sec = htab->sgot;
2293 srel = htab->srelgot;
2294 for (; local_got < end_local_got; ++local_got)
2295 {
2296 if (*local_got > 0)
2297 {
2298 *local_got = sec->size;
2299 sec->size += GOT_ENTRY_SIZE;
2300 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2301 sec->size += 2 * GOT_ENTRY_SIZE;
2302 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2303 sec->size += GOT_ENTRY_SIZE;
2304 if (info->shared)
2305 {
2306 srel->size += sizeof (Elf32_External_Rela);
2307 if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
2308 srel->size += 2 * sizeof (Elf32_External_Rela);
2309 else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
2310 srel->size += sizeof (Elf32_External_Rela);
2311 }
2312 }
2313 else
2314 *local_got = (bfd_vma) -1;
2315
2316 ++local_tls_type;
2317 }
2318
2319 local_plt = end_local_got;
2320 end_local_plt = local_plt + locsymcount;
2321 if (! htab->etab.dynamic_sections_created)
2322 {
2323 /* Won't be used, but be safe. */
2324 for (; local_plt < end_local_plt; ++local_plt)
2325 *local_plt = (bfd_vma) -1;
2326 }
2327 else
2328 {
2329 sec = htab->splt;
2330 srel = htab->srelplt;
2331 for (; local_plt < end_local_plt; ++local_plt)
2332 {
2333 if (*local_plt > 0)
2334 {
2335 *local_plt = sec->size;
2336 sec->size += PLT_ENTRY_SIZE;
2337 if (info->shared)
2338 srel->size += sizeof (Elf32_External_Rela);
2339 }
2340 else
2341 *local_plt = (bfd_vma) -1;
2342 }
2343 }
2344 }
2345
2346 if (htab->tls_ldm_got.refcount > 0)
2347 {
2348 /* Allocate 2 got entries and 1 dynamic reloc for
2349 R_PARISC_TLS_DTPMOD32 relocs. */
2350 htab->tls_ldm_got.offset = htab->sgot->size;
2351 htab->sgot->size += (GOT_ENTRY_SIZE * 2);
2352 htab->srelgot->size += sizeof (Elf32_External_Rela);
2353 }
2354 else
2355 htab->tls_ldm_got.offset = -1;
2356
2357 /* Do all the .plt entries without relocs first. The dynamic linker
2358 uses the last .plt reloc to find the end of the .plt (and hence
2359 the start of the .got) for lazy linking. */
2360 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2361
2362 /* Allocate global sym .plt and .got entries, and space for global
2363 sym dynamic relocs. */
2364 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2365
2366 /* The check_relocs and adjust_dynamic_symbol entry points have
2367 determined the sizes of the various dynamic sections. Allocate
2368 memory for them. */
2369 relocs = FALSE;
2370 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2371 {
2372 if ((sec->flags & SEC_LINKER_CREATED) == 0)
2373 continue;
2374
2375 if (sec == htab->splt)
2376 {
2377 if (htab->need_plt_stub)
2378 {
2379 /* Make space for the plt stub at the end of the .plt
2380 section. We want this stub right at the end, up
2381 against the .got section. */
2382 int gotalign = bfd_section_alignment (dynobj, htab->sgot);
2383 int pltalign = bfd_section_alignment (dynobj, sec);
2384 bfd_size_type mask;
2385
2386 if (gotalign > pltalign)
2387 bfd_set_section_alignment (dynobj, sec, gotalign);
2388 mask = ((bfd_size_type) 1 << gotalign) - 1;
2389 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2390 }
2391 }
2392 else if (sec == htab->sgot
2393 || sec == htab->sdynbss)
2394 ;
2395 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2396 {
2397 if (sec->size != 0)
2398 {
2399 /* Remember whether there are any reloc sections other
2400 than .rela.plt. */
2401 if (sec != htab->srelplt)
2402 relocs = TRUE;
2403
2404 /* We use the reloc_count field as a counter if we need
2405 to copy relocs into the output file. */
2406 sec->reloc_count = 0;
2407 }
2408 }
2409 else
2410 {
2411 /* It's not one of our sections, so don't allocate space. */
2412 continue;
2413 }
2414
2415 if (sec->size == 0)
2416 {
2417 /* If we don't need this section, strip it from the
2418 output file. This is mostly to handle .rela.bss and
2419 .rela.plt. We must create both sections in
2420 create_dynamic_sections, because they must be created
2421 before the linker maps input sections to output
2422 sections. The linker does that before
2423 adjust_dynamic_symbol is called, and it is that
2424 function which decides whether anything needs to go
2425 into these sections. */
2426 sec->flags |= SEC_EXCLUDE;
2427 continue;
2428 }
2429
2430 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2431 continue;
2432
2433 /* Allocate memory for the section contents. Zero it, because
2434 we may not fill in all the reloc sections. */
2435 sec->contents = bfd_zalloc (dynobj, sec->size);
2436 if (sec->contents == NULL)
2437 return FALSE;
2438 }
2439
2440 if (htab->etab.dynamic_sections_created)
2441 {
2442 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
2443 actually has nothing to do with the PLT, it is how we
2444 communicate the LTP value of a load module to the dynamic
2445 linker. */
2446 #define add_dynamic_entry(TAG, VAL) \
2447 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2448
2449 if (!add_dynamic_entry (DT_PLTGOT, 0))
2450 return FALSE;
2451
2452 /* Add some entries to the .dynamic section. We fill in the
2453 values later, in elf32_hppa_finish_dynamic_sections, but we
2454 must add the entries now so that we get the correct size for
2455 the .dynamic section. The DT_DEBUG entry is filled in by the
2456 dynamic linker and used by the debugger. */
2457 if (info->executable)
2458 {
2459 if (!add_dynamic_entry (DT_DEBUG, 0))
2460 return FALSE;
2461 }
2462
2463 if (htab->srelplt->size != 0)
2464 {
2465 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2466 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2467 || !add_dynamic_entry (DT_JMPREL, 0))
2468 return FALSE;
2469 }
2470
2471 if (relocs)
2472 {
2473 if (!add_dynamic_entry (DT_RELA, 0)
2474 || !add_dynamic_entry (DT_RELASZ, 0)
2475 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2476 return FALSE;
2477
2478 /* If any dynamic relocs apply to a read-only section,
2479 then we need a DT_TEXTREL entry. */
2480 if ((info->flags & DF_TEXTREL) == 0)
2481 elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
2482
2483 if ((info->flags & DF_TEXTREL) != 0)
2484 {
2485 if (!add_dynamic_entry (DT_TEXTREL, 0))
2486 return FALSE;
2487 }
2488 }
2489 }
2490 #undef add_dynamic_entry
2491
2492 return TRUE;
2493 }
2494
2495 /* External entry points for sizing and building linker stubs. */
2496
2497 /* Set up various things so that we can make a list of input sections
2498 for each output section included in the link. Returns -1 on error,
2499 0 when no stubs will be needed, and 1 on success. */
2500
2501 int
2502 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2503 {
2504 bfd *input_bfd;
2505 unsigned int bfd_count;
2506 int top_id, top_index;
2507 asection *section;
2508 asection **input_list, **list;
2509 bfd_size_type amt;
2510 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2511
2512 if (htab == NULL)
2513 return -1;
2514
2515 /* Count the number of input BFDs and find the top input section id. */
2516 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2517 input_bfd != NULL;
2518 input_bfd = input_bfd->link_next)
2519 {
2520 bfd_count += 1;
2521 for (section = input_bfd->sections;
2522 section != NULL;
2523 section = section->next)
2524 {
2525 if (top_id < section->id)
2526 top_id = section->id;
2527 }
2528 }
2529 htab->bfd_count = bfd_count;
2530
2531 amt = sizeof (struct map_stub) * (top_id + 1);
2532 htab->stub_group = bfd_zmalloc (amt);
2533 if (htab->stub_group == NULL)
2534 return -1;
2535
2536 /* We can't use output_bfd->section_count here to find the top output
2537 section index as some sections may have been removed, and
2538 strip_excluded_output_sections doesn't renumber the indices. */
2539 for (section = output_bfd->sections, top_index = 0;
2540 section != NULL;
2541 section = section->next)
2542 {
2543 if (top_index < section->index)
2544 top_index = section->index;
2545 }
2546
2547 htab->top_index = top_index;
2548 amt = sizeof (asection *) * (top_index + 1);
2549 input_list = bfd_malloc (amt);
2550 htab->input_list = input_list;
2551 if (input_list == NULL)
2552 return -1;
2553
2554 /* For sections we aren't interested in, mark their entries with a
2555 value we can check later. */
2556 list = input_list + top_index;
2557 do
2558 *list = bfd_abs_section_ptr;
2559 while (list-- != input_list);
2560
2561 for (section = output_bfd->sections;
2562 section != NULL;
2563 section = section->next)
2564 {
2565 if ((section->flags & SEC_CODE) != 0)
2566 input_list[section->index] = NULL;
2567 }
2568
2569 return 1;
2570 }
2571
2572 /* The linker repeatedly calls this function for each input section,
2573 in the order that input sections are linked into output sections.
2574 Build lists of input sections to determine groupings between which
2575 we may insert linker stubs. */
2576
2577 void
2578 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2579 {
2580 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2581
2582 if (htab == NULL)
2583 return;
2584
2585 if (isec->output_section->index <= htab->top_index)
2586 {
2587 asection **list = htab->input_list + isec->output_section->index;
2588 if (*list != bfd_abs_section_ptr)
2589 {
2590 /* Steal the link_sec pointer for our list. */
2591 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2592 /* This happens to make the list in reverse order,
2593 which is what we want. */
2594 PREV_SEC (isec) = *list;
2595 *list = isec;
2596 }
2597 }
2598 }
2599
2600 /* See whether we can group stub sections together. Grouping stub
2601 sections may result in fewer stubs. More importantly, we need to
2602 put all .init* and .fini* stubs at the beginning of the .init or
2603 .fini output sections respectively, because glibc splits the
2604 _init and _fini functions into multiple parts. Putting a stub in
2605 the middle of a function is not a good idea. */
2606
2607 static void
2608 group_sections (struct elf32_hppa_link_hash_table *htab,
2609 bfd_size_type stub_group_size,
2610 bfd_boolean stubs_always_before_branch)
2611 {
2612 asection **list = htab->input_list + htab->top_index;
2613 do
2614 {
2615 asection *tail = *list;
2616 if (tail == bfd_abs_section_ptr)
2617 continue;
2618 while (tail != NULL)
2619 {
2620 asection *curr;
2621 asection *prev;
2622 bfd_size_type total;
2623 bfd_boolean big_sec;
2624
2625 curr = tail;
2626 total = tail->size;
2627 big_sec = total >= stub_group_size;
2628
2629 while ((prev = PREV_SEC (curr)) != NULL
2630 && ((total += curr->output_offset - prev->output_offset)
2631 < stub_group_size))
2632 curr = prev;
2633
2634 /* OK, the size from the start of CURR to the end is less
2635 than 240000 bytes and thus can be handled by one stub
2636 section. (or the tail section is itself larger than
2637 240000 bytes, in which case we may be toast.)
2638 We should really be keeping track of the total size of
2639 stubs added here, as stubs contribute to the final output
2640 section size. That's a little tricky, and this way will
2641 only break if stubs added total more than 22144 bytes, or
2642 2768 long branch stubs. It seems unlikely for more than
2643 2768 different functions to be called, especially from
2644 code only 240000 bytes long. This limit used to be
2645 250000, but c++ code tends to generate lots of little
2646 functions, and sometimes violated the assumption. */
2647 do
2648 {
2649 prev = PREV_SEC (tail);
2650 /* Set up this stub group. */
2651 htab->stub_group[tail->id].link_sec = curr;
2652 }
2653 while (tail != curr && (tail = prev) != NULL);
2654
2655 /* But wait, there's more! Input sections up to 240000
2656 bytes before the stub section can be handled by it too.
2657 Don't do this if we have a really large section after the
2658 stubs, as adding more stubs increases the chance that
2659 branches may not reach into the stub section. */
2660 if (!stubs_always_before_branch && !big_sec)
2661 {
2662 total = 0;
2663 while (prev != NULL
2664 && ((total += tail->output_offset - prev->output_offset)
2665 < stub_group_size))
2666 {
2667 tail = prev;
2668 prev = PREV_SEC (tail);
2669 htab->stub_group[tail->id].link_sec = curr;
2670 }
2671 }
2672 tail = prev;
2673 }
2674 }
2675 while (list-- != htab->input_list);
2676 free (htab->input_list);
2677 #undef PREV_SEC
2678 }
2679
2680 /* Read in all local syms for all input bfds, and create hash entries
2681 for export stubs if we are building a multi-subspace shared lib.
2682 Returns -1 on error, 1 if export stubs created, 0 otherwise. */
2683
2684 static int
2685 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2686 {
2687 unsigned int bfd_indx;
2688 Elf_Internal_Sym *local_syms, **all_local_syms;
2689 int stub_changed = 0;
2690 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2691
2692 if (htab == NULL)
2693 return -1;
2694
2695 /* We want to read in symbol extension records only once. To do this
2696 we need to read in the local symbols in parallel and save them for
2697 later use; so hold pointers to the local symbols in an array. */
2698 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2699 all_local_syms = bfd_zmalloc (amt);
2700 htab->all_local_syms = all_local_syms;
2701 if (all_local_syms == NULL)
2702 return -1;
2703
2704 /* Walk over all the input BFDs, swapping in local symbols.
2705 If we are creating a shared library, create hash entries for the
2706 export stubs. */
2707 for (bfd_indx = 0;
2708 input_bfd != NULL;
2709 input_bfd = input_bfd->link_next, bfd_indx++)
2710 {
2711 Elf_Internal_Shdr *symtab_hdr;
2712
2713 /* We'll need the symbol table in a second. */
2714 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2715 if (symtab_hdr->sh_info == 0)
2716 continue;
2717
2718 /* We need an array of the local symbols attached to the input bfd. */
2719 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2720 if (local_syms == NULL)
2721 {
2722 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2723 symtab_hdr->sh_info, 0,
2724 NULL, NULL, NULL);
2725 /* Cache them for elf_link_input_bfd. */
2726 symtab_hdr->contents = (unsigned char *) local_syms;
2727 }
2728 if (local_syms == NULL)
2729 return -1;
2730
2731 all_local_syms[bfd_indx] = local_syms;
2732
2733 if (info->shared && htab->multi_subspace)
2734 {
2735 struct elf_link_hash_entry **eh_syms;
2736 struct elf_link_hash_entry **eh_symend;
2737 unsigned int symcount;
2738
2739 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2740 - symtab_hdr->sh_info);
2741 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2742 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2743
2744 /* Look through the global syms for functions; We need to
2745 build export stubs for all globally visible functions. */
2746 for (; eh_syms < eh_symend; eh_syms++)
2747 {
2748 struct elf32_hppa_link_hash_entry *hh;
2749
2750 hh = hppa_elf_hash_entry (*eh_syms);
2751
2752 while (hh->eh.root.type == bfd_link_hash_indirect
2753 || hh->eh.root.type == bfd_link_hash_warning)
2754 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2755
2756 /* At this point in the link, undefined syms have been
2757 resolved, so we need to check that the symbol was
2758 defined in this BFD. */
2759 if ((hh->eh.root.type == bfd_link_hash_defined
2760 || hh->eh.root.type == bfd_link_hash_defweak)
2761 && hh->eh.type == STT_FUNC
2762 && hh->eh.root.u.def.section->output_section != NULL
2763 && (hh->eh.root.u.def.section->output_section->owner
2764 == output_bfd)
2765 && hh->eh.root.u.def.section->owner == input_bfd
2766 && hh->eh.def_regular
2767 && !hh->eh.forced_local
2768 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2769 {
2770 asection *sec;
2771 const char *stub_name;
2772 struct elf32_hppa_stub_hash_entry *hsh;
2773
2774 sec = hh->eh.root.u.def.section;
2775 stub_name = hh_name (hh);
2776 hsh = hppa_stub_hash_lookup (&htab->bstab,
2777 stub_name,
2778 FALSE, FALSE);
2779 if (hsh == NULL)
2780 {
2781 hsh = hppa_add_stub (stub_name, sec, htab);
2782 if (!hsh)
2783 return -1;
2784
2785 hsh->target_value = hh->eh.root.u.def.value;
2786 hsh->target_section = hh->eh.root.u.def.section;
2787 hsh->stub_type = hppa_stub_export;
2788 hsh->hh = hh;
2789 stub_changed = 1;
2790 }
2791 else
2792 {
2793 (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
2794 input_bfd,
2795 stub_name);
2796 }
2797 }
2798 }
2799 }
2800 }
2801
2802 return stub_changed;
2803 }
2804
2805 /* Determine and set the size of the stub section for a final link.
2806
2807 The basic idea here is to examine all the relocations looking for
2808 PC-relative calls to a target that is unreachable with a "bl"
2809 instruction. */
2810
2811 bfd_boolean
2812 elf32_hppa_size_stubs
2813 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2814 bfd_boolean multi_subspace, bfd_signed_vma group_size,
2815 asection * (*add_stub_section) (const char *, asection *),
2816 void (*layout_sections_again) (void))
2817 {
2818 bfd_size_type stub_group_size;
2819 bfd_boolean stubs_always_before_branch;
2820 bfd_boolean stub_changed;
2821 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2822
2823 if (htab == NULL)
2824 return FALSE;
2825
2826 /* Stash our params away. */
2827 htab->stub_bfd = stub_bfd;
2828 htab->multi_subspace = multi_subspace;
2829 htab->add_stub_section = add_stub_section;
2830 htab->layout_sections_again = layout_sections_again;
2831 stubs_always_before_branch = group_size < 0;
2832 if (group_size < 0)
2833 stub_group_size = -group_size;
2834 else
2835 stub_group_size = group_size;
2836 if (stub_group_size == 1)
2837 {
2838 /* Default values. */
2839 if (stubs_always_before_branch)
2840 {
2841 stub_group_size = 7680000;
2842 if (htab->has_17bit_branch || htab->multi_subspace)
2843 stub_group_size = 240000;
2844 if (htab->has_12bit_branch)
2845 stub_group_size = 7500;
2846 }
2847 else
2848 {
2849 stub_group_size = 6971392;
2850 if (htab->has_17bit_branch || htab->multi_subspace)
2851 stub_group_size = 217856;
2852 if (htab->has_12bit_branch)
2853 stub_group_size = 6808;
2854 }
2855 }
2856
2857 group_sections (htab, stub_group_size, stubs_always_before_branch);
2858
2859 switch (get_local_syms (output_bfd, info->input_bfds, info))
2860 {
2861 default:
2862 if (htab->all_local_syms)
2863 goto error_ret_free_local;
2864 return FALSE;
2865
2866 case 0:
2867 stub_changed = FALSE;
2868 break;
2869
2870 case 1:
2871 stub_changed = TRUE;
2872 break;
2873 }
2874
2875 while (1)
2876 {
2877 bfd *input_bfd;
2878 unsigned int bfd_indx;
2879 asection *stub_sec;
2880
2881 for (input_bfd = info->input_bfds, bfd_indx = 0;
2882 input_bfd != NULL;
2883 input_bfd = input_bfd->link_next, bfd_indx++)
2884 {
2885 Elf_Internal_Shdr *symtab_hdr;
2886 asection *section;
2887 Elf_Internal_Sym *local_syms;
2888
2889 /* We'll need the symbol table in a second. */
2890 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2891 if (symtab_hdr->sh_info == 0)
2892 continue;
2893
2894 local_syms = htab->all_local_syms[bfd_indx];
2895
2896 /* Walk over each section attached to the input bfd. */
2897 for (section = input_bfd->sections;
2898 section != NULL;
2899 section = section->next)
2900 {
2901 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2902
2903 /* If there aren't any relocs, then there's nothing more
2904 to do. */
2905 if ((section->flags & SEC_RELOC) == 0
2906 || section->reloc_count == 0)
2907 continue;
2908
2909 /* If this section is a link-once section that will be
2910 discarded, then don't create any stubs. */
2911 if (section->output_section == NULL
2912 || section->output_section->owner != output_bfd)
2913 continue;
2914
2915 /* Get the relocs. */
2916 internal_relocs
2917 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2918 info->keep_memory);
2919 if (internal_relocs == NULL)
2920 goto error_ret_free_local;
2921
2922 /* Now examine each relocation. */
2923 irela = internal_relocs;
2924 irelaend = irela + section->reloc_count;
2925 for (; irela < irelaend; irela++)
2926 {
2927 unsigned int r_type, r_indx;
2928 enum elf32_hppa_stub_type stub_type;
2929 struct elf32_hppa_stub_hash_entry *hsh;
2930 asection *sym_sec;
2931 bfd_vma sym_value;
2932 bfd_vma destination;
2933 struct elf32_hppa_link_hash_entry *hh;
2934 char *stub_name;
2935 const asection *id_sec;
2936
2937 r_type = ELF32_R_TYPE (irela->r_info);
2938 r_indx = ELF32_R_SYM (irela->r_info);
2939
2940 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2941 {
2942 bfd_set_error (bfd_error_bad_value);
2943 error_ret_free_internal:
2944 if (elf_section_data (section)->relocs == NULL)
2945 free (internal_relocs);
2946 goto error_ret_free_local;
2947 }
2948
2949 /* Only look for stubs on call instructions. */
2950 if (r_type != (unsigned int) R_PARISC_PCREL12F
2951 && r_type != (unsigned int) R_PARISC_PCREL17F
2952 && r_type != (unsigned int) R_PARISC_PCREL22F)
2953 continue;
2954
2955 /* Now determine the call target, its name, value,
2956 section. */
2957 sym_sec = NULL;
2958 sym_value = 0;
2959 destination = 0;
2960 hh = NULL;
2961 if (r_indx < symtab_hdr->sh_info)
2962 {
2963 /* It's a local symbol. */
2964 Elf_Internal_Sym *sym;
2965 Elf_Internal_Shdr *hdr;
2966 unsigned int shndx;
2967
2968 sym = local_syms + r_indx;
2969 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2970 sym_value = sym->st_value;
2971 shndx = sym->st_shndx;
2972 if (shndx < elf_numsections (input_bfd))
2973 {
2974 hdr = elf_elfsections (input_bfd)[shndx];
2975 sym_sec = hdr->bfd_section;
2976 destination = (sym_value + irela->r_addend
2977 + sym_sec->output_offset
2978 + sym_sec->output_section->vma);
2979 }
2980 }
2981 else
2982 {
2983 /* It's an external symbol. */
2984 int e_indx;
2985
2986 e_indx = r_indx - symtab_hdr->sh_info;
2987 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2988
2989 while (hh->eh.root.type == bfd_link_hash_indirect
2990 || hh->eh.root.type == bfd_link_hash_warning)
2991 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2992
2993 if (hh->eh.root.type == bfd_link_hash_defined
2994 || hh->eh.root.type == bfd_link_hash_defweak)
2995 {
2996 sym_sec = hh->eh.root.u.def.section;
2997 sym_value = hh->eh.root.u.def.value;
2998 if (sym_sec->output_section != NULL)
2999 destination = (sym_value + irela->r_addend
3000 + sym_sec->output_offset
3001 + sym_sec->output_section->vma);
3002 }
3003 else if (hh->eh.root.type == bfd_link_hash_undefweak)
3004 {
3005 if (! info->shared)
3006 continue;
3007 }
3008 else if (hh->eh.root.type == bfd_link_hash_undefined)
3009 {
3010 if (! (info->unresolved_syms_in_objects == RM_IGNORE
3011 && (ELF_ST_VISIBILITY (hh->eh.other)
3012 == STV_DEFAULT)
3013 && hh->eh.type != STT_PARISC_MILLI))
3014 continue;
3015 }
3016 else
3017 {
3018 bfd_set_error (bfd_error_bad_value);
3019 goto error_ret_free_internal;
3020 }
3021 }
3022
3023 /* Determine what (if any) linker stub is needed. */
3024 stub_type = hppa_type_of_stub (section, irela, hh,
3025 destination, info);
3026 if (stub_type == hppa_stub_none)
3027 continue;
3028
3029 /* Support for grouping stub sections. */
3030 id_sec = htab->stub_group[section->id].link_sec;
3031
3032 /* Get the name of this stub. */
3033 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
3034 if (!stub_name)
3035 goto error_ret_free_internal;
3036
3037 hsh = hppa_stub_hash_lookup (&htab->bstab,
3038 stub_name,
3039 FALSE, FALSE);
3040 if (hsh != NULL)
3041 {
3042 /* The proper stub has already been created. */
3043 free (stub_name);
3044 continue;
3045 }
3046
3047 hsh = hppa_add_stub (stub_name, section, htab);
3048 if (hsh == NULL)
3049 {
3050 free (stub_name);
3051 goto error_ret_free_internal;
3052 }
3053
3054 hsh->target_value = sym_value;
3055 hsh->target_section = sym_sec;
3056 hsh->stub_type = stub_type;
3057 if (info->shared)
3058 {
3059 if (stub_type == hppa_stub_import)
3060 hsh->stub_type = hppa_stub_import_shared;
3061 else if (stub_type == hppa_stub_long_branch)
3062 hsh->stub_type = hppa_stub_long_branch_shared;
3063 }
3064 hsh->hh = hh;
3065 stub_changed = TRUE;
3066 }
3067
3068 /* We're done with the internal relocs, free them. */
3069 if (elf_section_data (section)->relocs == NULL)
3070 free (internal_relocs);
3071 }
3072 }
3073
3074 if (!stub_changed)
3075 break;
3076
3077 /* OK, we've added some stubs. Find out the new size of the
3078 stub sections. */
3079 for (stub_sec = htab->stub_bfd->sections;
3080 stub_sec != NULL;
3081 stub_sec = stub_sec->next)
3082 stub_sec->size = 0;
3083
3084 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
3085
3086 /* Ask the linker to do its stuff. */
3087 (*htab->layout_sections_again) ();
3088 stub_changed = FALSE;
3089 }
3090
3091 free (htab->all_local_syms);
3092 return TRUE;
3093
3094 error_ret_free_local:
3095 free (htab->all_local_syms);
3096 return FALSE;
3097 }
3098
3099 /* For a final link, this function is called after we have sized the
3100 stubs to provide a value for __gp. */
3101
3102 bfd_boolean
3103 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3104 {
3105 struct bfd_link_hash_entry *h;
3106 asection *sec = NULL;
3107 bfd_vma gp_val = 0;
3108 struct elf32_hppa_link_hash_table *htab;
3109
3110 htab = hppa_link_hash_table (info);
3111 if (htab == NULL)
3112 return FALSE;
3113
3114 h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
3115
3116 if (h != NULL
3117 && (h->type == bfd_link_hash_defined
3118 || h->type == bfd_link_hash_defweak))
3119 {
3120 gp_val = h->u.def.value;
3121 sec = h->u.def.section;
3122 }
3123 else
3124 {
3125 asection *splt = bfd_get_section_by_name (abfd, ".plt");
3126 asection *sgot = bfd_get_section_by_name (abfd, ".got");
3127
3128 /* Choose to point our LTP at, in this order, one of .plt, .got,
3129 or .data, if these sections exist. In the case of choosing
3130 .plt try to make the LTP ideal for addressing anywhere in the
3131 .plt or .got with a 14 bit signed offset. Typically, the end
3132 of the .plt is the start of the .got, so choose .plt + 0x2000
3133 if either the .plt or .got is larger than 0x2000. If both
3134 the .plt and .got are smaller than 0x2000, choose the end of
3135 the .plt section. */
3136 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3137 ? NULL : splt;
3138 if (sec != NULL)
3139 {
3140 gp_val = sec->size;
3141 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3142 {
3143 gp_val = 0x2000;
3144 }
3145 }
3146 else
3147 {
3148 sec = sgot;
3149 if (sec != NULL)
3150 {
3151 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3152 {
3153 /* We know we don't have a .plt. If .got is large,
3154 offset our LTP. */
3155 if (sec->size > 0x2000)
3156 gp_val = 0x2000;
3157 }
3158 }
3159 else
3160 {
3161 /* No .plt or .got. Who cares what the LTP is? */
3162 sec = bfd_get_section_by_name (abfd, ".data");
3163 }
3164 }
3165
3166 if (h != NULL)
3167 {
3168 h->type = bfd_link_hash_defined;
3169 h->u.def.value = gp_val;
3170 if (sec != NULL)
3171 h->u.def.section = sec;
3172 else
3173 h->u.def.section = bfd_abs_section_ptr;
3174 }
3175 }
3176
3177 if (sec != NULL && sec->output_section != NULL)
3178 gp_val += sec->output_section->vma + sec->output_offset;
3179
3180 elf_gp (abfd) = gp_val;
3181 return TRUE;
3182 }
3183
3184 /* Build all the stubs associated with the current output file. The
3185 stubs are kept in a hash table attached to the main linker hash
3186 table. We also set up the .plt entries for statically linked PIC
3187 functions here. This function is called via hppaelf_finish in the
3188 linker. */
3189
3190 bfd_boolean
3191 elf32_hppa_build_stubs (struct bfd_link_info *info)
3192 {
3193 asection *stub_sec;
3194 struct bfd_hash_table *table;
3195 struct elf32_hppa_link_hash_table *htab;
3196
3197 htab = hppa_link_hash_table (info);
3198 if (htab == NULL)
3199 return FALSE;
3200
3201 for (stub_sec = htab->stub_bfd->sections;
3202 stub_sec != NULL;
3203 stub_sec = stub_sec->next)
3204 {
3205 bfd_size_type size;
3206
3207 /* Allocate memory to hold the linker stubs. */
3208 size = stub_sec->size;
3209 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3210 if (stub_sec->contents == NULL && size != 0)
3211 return FALSE;
3212 stub_sec->size = 0;
3213 }
3214
3215 /* Build the stubs as directed by the stub hash table. */
3216 table = &htab->bstab;
3217 bfd_hash_traverse (table, hppa_build_one_stub, info);
3218
3219 return TRUE;
3220 }
3221
3222 /* Return the base vma address which should be subtracted from the real
3223 address when resolving a dtpoff relocation.
3224 This is PT_TLS segment p_vaddr. */
3225
3226 static bfd_vma
3227 dtpoff_base (struct bfd_link_info *info)
3228 {
3229 /* If tls_sec is NULL, we should have signalled an error already. */
3230 if (elf_hash_table (info)->tls_sec == NULL)
3231 return 0;
3232 return elf_hash_table (info)->tls_sec->vma;
3233 }
3234
3235 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
3236
3237 static bfd_vma
3238 tpoff (struct bfd_link_info *info, bfd_vma address)
3239 {
3240 struct elf_link_hash_table *htab = elf_hash_table (info);
3241
3242 /* If tls_sec is NULL, we should have signalled an error already. */
3243 if (htab->tls_sec == NULL)
3244 return 0;
3245 /* hppa TLS ABI is variant I and static TLS block start just after
3246 tcbhead structure which has 2 pointer fields. */
3247 return (address - htab->tls_sec->vma
3248 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3249 }
3250
3251 /* Perform a final link. */
3252
3253 static bfd_boolean
3254 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3255 {
3256 /* Invoke the regular ELF linker to do all the work. */
3257 if (!bfd_elf_final_link (abfd, info))
3258 return FALSE;
3259
3260 /* If we're producing a final executable, sort the contents of the
3261 unwind section. */
3262 if (info->relocatable)
3263 return TRUE;
3264
3265 return elf_hppa_sort_unwind (abfd);
3266 }
3267
3268 /* Record the lowest address for the data and text segments. */
3269
3270 static void
3271 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3272 {
3273 struct elf32_hppa_link_hash_table *htab;
3274
3275 htab = (struct elf32_hppa_link_hash_table*) data;
3276 if (htab == NULL)
3277 return;
3278
3279 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3280 {
3281 bfd_vma value;
3282 Elf_Internal_Phdr *p;
3283
3284 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3285 BFD_ASSERT (p != NULL);
3286 value = p->p_vaddr;
3287
3288 if ((section->flags & SEC_READONLY) != 0)
3289 {
3290 if (value < htab->text_segment_base)
3291 htab->text_segment_base = value;
3292 }
3293 else
3294 {
3295 if (value < htab->data_segment_base)
3296 htab->data_segment_base = value;
3297 }
3298 }
3299 }
3300
3301 /* Perform a relocation as part of a final link. */
3302
3303 static bfd_reloc_status_type
3304 final_link_relocate (asection *input_section,
3305 bfd_byte *contents,
3306 const Elf_Internal_Rela *rela,
3307 bfd_vma value,
3308 struct elf32_hppa_link_hash_table *htab,
3309 asection *sym_sec,
3310 struct elf32_hppa_link_hash_entry *hh,
3311 struct bfd_link_info *info)
3312 {
3313 int insn;
3314 unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3315 unsigned int orig_r_type = r_type;
3316 reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3317 int r_format = howto->bitsize;
3318 enum hppa_reloc_field_selector_type_alt r_field;
3319 bfd *input_bfd = input_section->owner;
3320 bfd_vma offset = rela->r_offset;
3321 bfd_vma max_branch_offset = 0;
3322 bfd_byte *hit_data = contents + offset;
3323 bfd_signed_vma addend = rela->r_addend;
3324 bfd_vma location;
3325 struct elf32_hppa_stub_hash_entry *hsh = NULL;
3326 int val;
3327
3328 if (r_type == R_PARISC_NONE)
3329 return bfd_reloc_ok;
3330
3331 insn = bfd_get_32 (input_bfd, hit_data);
3332
3333 /* Find out where we are and where we're going. */
3334 location = (offset +
3335 input_section->output_offset +
3336 input_section->output_section->vma);
3337
3338 /* If we are not building a shared library, convert DLTIND relocs to
3339 DPREL relocs. */
3340 if (!info->shared)
3341 {
3342 switch (r_type)
3343 {
3344 case R_PARISC_DLTIND21L:
3345 case R_PARISC_TLS_GD21L:
3346 case R_PARISC_TLS_LDM21L:
3347 case R_PARISC_TLS_IE21L:
3348 r_type = R_PARISC_DPREL21L;
3349 break;
3350
3351 case R_PARISC_DLTIND14R:
3352 case R_PARISC_TLS_GD14R:
3353 case R_PARISC_TLS_LDM14R:
3354 case R_PARISC_TLS_IE14R:
3355 r_type = R_PARISC_DPREL14R;
3356 break;
3357
3358 case R_PARISC_DLTIND14F:
3359 r_type = R_PARISC_DPREL14F;
3360 break;
3361 }
3362 }
3363
3364 switch (r_type)
3365 {
3366 case R_PARISC_PCREL12F:
3367 case R_PARISC_PCREL17F:
3368 case R_PARISC_PCREL22F:
3369 /* If this call should go via the plt, find the import stub in
3370 the stub hash. */
3371 if (sym_sec == NULL
3372 || sym_sec->output_section == NULL
3373 || (hh != NULL
3374 && hh->eh.plt.offset != (bfd_vma) -1
3375 && hh->eh.dynindx != -1
3376 && !hh->plabel
3377 && (info->shared
3378 || !hh->eh.def_regular
3379 || hh->eh.root.type == bfd_link_hash_defweak)))
3380 {
3381 hsh = hppa_get_stub_entry (input_section, sym_sec,
3382 hh, rela, htab);
3383 if (hsh != NULL)
3384 {
3385 value = (hsh->stub_offset
3386 + hsh->stub_sec->output_offset
3387 + hsh->stub_sec->output_section->vma);
3388 addend = 0;
3389 }
3390 else if (sym_sec == NULL && hh != NULL
3391 && hh->eh.root.type == bfd_link_hash_undefweak)
3392 {
3393 /* It's OK if undefined weak. Calls to undefined weak
3394 symbols behave as if the "called" function
3395 immediately returns. We can thus call to a weak
3396 function without first checking whether the function
3397 is defined. */
3398 value = location;
3399 addend = 8;
3400 }
3401 else
3402 return bfd_reloc_undefined;
3403 }
3404 /* Fall thru. */
3405
3406 case R_PARISC_PCREL21L:
3407 case R_PARISC_PCREL17C:
3408 case R_PARISC_PCREL17R:
3409 case R_PARISC_PCREL14R:
3410 case R_PARISC_PCREL14F:
3411 case R_PARISC_PCREL32:
3412 /* Make it a pc relative offset. */
3413 value -= location;
3414 addend -= 8;
3415 break;
3416
3417 case R_PARISC_DPREL21L:
3418 case R_PARISC_DPREL14R:
3419 case R_PARISC_DPREL14F:
3420 /* Convert instructions that use the linkage table pointer (r19) to
3421 instructions that use the global data pointer (dp). This is the
3422 most efficient way of using PIC code in an incomplete executable,
3423 but the user must follow the standard runtime conventions for
3424 accessing data for this to work. */
3425 if (orig_r_type != r_type)
3426 {
3427 if (r_type == R_PARISC_DPREL21L)
3428 {
3429 /* GCC sometimes uses a register other than r19 for the
3430 operation, so we must convert any addil instruction
3431 that uses this relocation. */
3432 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3433 insn = ADDIL_DP;
3434 else
3435 /* We must have a ldil instruction. It's too hard to find
3436 and convert the associated add instruction, so issue an
3437 error. */
3438 (*_bfd_error_handler)
3439 (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
3440 input_bfd,
3441 input_section,
3442 (long) offset,
3443 howto->name,
3444 insn);
3445 }
3446 else if (r_type == R_PARISC_DPREL14F)
3447 {
3448 /* This must be a format 1 load/store. Change the base
3449 register to dp. */
3450 insn = (insn & 0xfc1ffff) | (27 << 21);
3451 }
3452 }
3453
3454 /* For all the DP relative relocations, we need to examine the symbol's
3455 section. If it has no section or if it's a code section, then
3456 "data pointer relative" makes no sense. In that case we don't
3457 adjust the "value", and for 21 bit addil instructions, we change the
3458 source addend register from %dp to %r0. This situation commonly
3459 arises for undefined weak symbols and when a variable's "constness"
3460 is declared differently from the way the variable is defined. For
3461 instance: "extern int foo" with foo defined as "const int foo". */
3462 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3463 {
3464 if ((insn & ((0x3f << 26) | (0x1f << 21)))
3465 == (((int) OP_ADDIL << 26) | (27 << 21)))
3466 {
3467 insn &= ~ (0x1f << 21);
3468 }
3469 /* Now try to make things easy for the dynamic linker. */
3470
3471 break;
3472 }
3473 /* Fall thru. */
3474
3475 case R_PARISC_DLTIND21L:
3476 case R_PARISC_DLTIND14R:
3477 case R_PARISC_DLTIND14F:
3478 case R_PARISC_TLS_GD21L:
3479 case R_PARISC_TLS_LDM21L:
3480 case R_PARISC_TLS_IE21L:
3481 case R_PARISC_TLS_GD14R:
3482 case R_PARISC_TLS_LDM14R:
3483 case R_PARISC_TLS_IE14R:
3484 value -= elf_gp (input_section->output_section->owner);
3485 break;
3486
3487 case R_PARISC_SEGREL32:
3488 if ((sym_sec->flags & SEC_CODE) != 0)
3489 value -= htab->text_segment_base;
3490 else
3491 value -= htab->data_segment_base;
3492 break;
3493
3494 default:
3495 break;
3496 }
3497
3498 switch (r_type)
3499 {
3500 case R_PARISC_DIR32:
3501 case R_PARISC_DIR14F:
3502 case R_PARISC_DIR17F:
3503 case R_PARISC_PCREL17C:
3504 case R_PARISC_PCREL14F:
3505 case R_PARISC_PCREL32:
3506 case R_PARISC_DPREL14F:
3507 case R_PARISC_PLABEL32:
3508 case R_PARISC_DLTIND14F:
3509 case R_PARISC_SEGBASE:
3510 case R_PARISC_SEGREL32:
3511 case R_PARISC_TLS_DTPMOD32:
3512 case R_PARISC_TLS_DTPOFF32:
3513 case R_PARISC_TLS_TPREL32:
3514 r_field = e_fsel;
3515 break;
3516
3517 case R_PARISC_DLTIND21L:
3518 case R_PARISC_PCREL21L:
3519 case R_PARISC_PLABEL21L:
3520 r_field = e_lsel;
3521 break;
3522
3523 case R_PARISC_DIR21L:
3524 case R_PARISC_DPREL21L:
3525 case R_PARISC_TLS_GD21L:
3526 case R_PARISC_TLS_LDM21L:
3527 case R_PARISC_TLS_LDO21L:
3528 case R_PARISC_TLS_IE21L:
3529 case R_PARISC_TLS_LE21L:
3530 r_field = e_lrsel;
3531 break;
3532
3533 case R_PARISC_PCREL17R:
3534 case R_PARISC_PCREL14R:
3535 case R_PARISC_PLABEL14R:
3536 case R_PARISC_DLTIND14R:
3537 r_field = e_rsel;
3538 break;
3539
3540 case R_PARISC_DIR17R:
3541 case R_PARISC_DIR14R:
3542 case R_PARISC_DPREL14R:
3543 case R_PARISC_TLS_GD14R:
3544 case R_PARISC_TLS_LDM14R:
3545 case R_PARISC_TLS_LDO14R:
3546 case R_PARISC_TLS_IE14R:
3547 case R_PARISC_TLS_LE14R:
3548 r_field = e_rrsel;
3549 break;
3550
3551 case R_PARISC_PCREL12F:
3552 case R_PARISC_PCREL17F:
3553 case R_PARISC_PCREL22F:
3554 r_field = e_fsel;
3555
3556 if (r_type == (unsigned int) R_PARISC_PCREL17F)
3557 {
3558 max_branch_offset = (1 << (17-1)) << 2;
3559 }
3560 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3561 {
3562 max_branch_offset = (1 << (12-1)) << 2;
3563 }
3564 else
3565 {
3566 max_branch_offset = (1 << (22-1)) << 2;
3567 }
3568
3569 /* sym_sec is NULL on undefined weak syms or when shared on
3570 undefined syms. We've already checked for a stub for the
3571 shared undefined case. */
3572 if (sym_sec == NULL)
3573 break;
3574
3575 /* If the branch is out of reach, then redirect the
3576 call to the local stub for this function. */
3577 if (value + addend + max_branch_offset >= 2*max_branch_offset)
3578 {
3579 hsh = hppa_get_stub_entry (input_section, sym_sec,
3580 hh, rela, htab);
3581 if (hsh == NULL)
3582 return bfd_reloc_undefined;
3583
3584 /* Munge up the value and addend so that we call the stub
3585 rather than the procedure directly. */
3586 value = (hsh->stub_offset
3587 + hsh->stub_sec->output_offset
3588 + hsh->stub_sec->output_section->vma
3589 - location);
3590 addend = -8;
3591 }
3592 break;
3593
3594 /* Something we don't know how to handle. */
3595 default:
3596 return bfd_reloc_notsupported;
3597 }
3598
3599 /* Make sure we can reach the stub. */
3600 if (max_branch_offset != 0
3601 && value + addend + max_branch_offset >= 2*max_branch_offset)
3602 {
3603 (*_bfd_error_handler)
3604 (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
3605 input_bfd,
3606 input_section,
3607 (long) offset,
3608 hsh->bh_root.string);
3609 bfd_set_error (bfd_error_bad_value);
3610 return bfd_reloc_notsupported;
3611 }
3612
3613 val = hppa_field_adjust (value, addend, r_field);
3614
3615 switch (r_type)
3616 {
3617 case R_PARISC_PCREL12F:
3618 case R_PARISC_PCREL17C:
3619 case R_PARISC_PCREL17F:
3620 case R_PARISC_PCREL17R:
3621 case R_PARISC_PCREL22F:
3622 case R_PARISC_DIR17F:
3623 case R_PARISC_DIR17R:
3624 /* This is a branch. Divide the offset by four.
3625 Note that we need to decide whether it's a branch or
3626 otherwise by inspecting the reloc. Inspecting insn won't
3627 work as insn might be from a .word directive. */
3628 val >>= 2;
3629 break;
3630
3631 default:
3632 break;
3633 }
3634
3635 insn = hppa_rebuild_insn (insn, val, r_format);
3636
3637 /* Update the instruction word. */
3638 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3639 return bfd_reloc_ok;
3640 }
3641
3642 /* Relocate an HPPA ELF section. */
3643
3644 static bfd_boolean
3645 elf32_hppa_relocate_section (bfd *output_bfd,
3646 struct bfd_link_info *info,
3647 bfd *input_bfd,
3648 asection *input_section,
3649 bfd_byte *contents,
3650 Elf_Internal_Rela *relocs,
3651 Elf_Internal_Sym *local_syms,
3652 asection **local_sections)
3653 {
3654 bfd_vma *local_got_offsets;
3655 struct elf32_hppa_link_hash_table *htab;
3656 Elf_Internal_Shdr *symtab_hdr;
3657 Elf_Internal_Rela *rela;
3658 Elf_Internal_Rela *relend;
3659
3660 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3661
3662 htab = hppa_link_hash_table (info);
3663 if (htab == NULL)
3664 return FALSE;
3665
3666 local_got_offsets = elf_local_got_offsets (input_bfd);
3667
3668 rela = relocs;
3669 relend = relocs + input_section->reloc_count;
3670 for (; rela < relend; rela++)
3671 {
3672 unsigned int r_type;
3673 reloc_howto_type *howto;
3674 unsigned int r_symndx;
3675 struct elf32_hppa_link_hash_entry *hh;
3676 Elf_Internal_Sym *sym;
3677 asection *sym_sec;
3678 bfd_vma relocation;
3679 bfd_reloc_status_type rstatus;
3680 const char *sym_name;
3681 bfd_boolean plabel;
3682 bfd_boolean warned_undef;
3683
3684 r_type = ELF32_R_TYPE (rela->r_info);
3685 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3686 {
3687 bfd_set_error (bfd_error_bad_value);
3688 return FALSE;
3689 }
3690 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3691 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3692 continue;
3693
3694 r_symndx = ELF32_R_SYM (rela->r_info);
3695 hh = NULL;
3696 sym = NULL;
3697 sym_sec = NULL;
3698 warned_undef = FALSE;
3699 if (r_symndx < symtab_hdr->sh_info)
3700 {
3701 /* This is a local symbol, h defaults to NULL. */
3702 sym = local_syms + r_symndx;
3703 sym_sec = local_sections[r_symndx];
3704 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3705 }
3706 else
3707 {
3708 struct elf_link_hash_entry *eh;
3709 bfd_boolean unresolved_reloc;
3710 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3711
3712 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3713 r_symndx, symtab_hdr, sym_hashes,
3714 eh, sym_sec, relocation,
3715 unresolved_reloc, warned_undef);
3716
3717 if (!info->relocatable
3718 && relocation == 0
3719 && eh->root.type != bfd_link_hash_defined
3720 && eh->root.type != bfd_link_hash_defweak
3721 && eh->root.type != bfd_link_hash_undefweak)
3722 {
3723 if (info->unresolved_syms_in_objects == RM_IGNORE
3724 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3725 && eh->type == STT_PARISC_MILLI)
3726 {
3727 if (! info->callbacks->undefined_symbol
3728 (info, eh_name (eh), input_bfd,
3729 input_section, rela->r_offset, FALSE))
3730 return FALSE;
3731 warned_undef = TRUE;
3732 }
3733 }
3734 hh = hppa_elf_hash_entry (eh);
3735 }
3736
3737 if (sym_sec != NULL && discarded_section (sym_sec))
3738 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3739 rela, relend,
3740 elf_hppa_howto_table + r_type,
3741 contents);
3742
3743 if (info->relocatable)
3744 continue;
3745
3746 /* Do any required modifications to the relocation value, and
3747 determine what types of dynamic info we need to output, if
3748 any. */
3749 plabel = 0;
3750 switch (r_type)
3751 {
3752 case R_PARISC_DLTIND14F:
3753 case R_PARISC_DLTIND14R:
3754 case R_PARISC_DLTIND21L:
3755 {
3756 bfd_vma off;
3757 bfd_boolean do_got = 0;
3758
3759 /* Relocation is to the entry for this symbol in the
3760 global offset table. */
3761 if (hh != NULL)
3762 {
3763 bfd_boolean dyn;
3764
3765 off = hh->eh.got.offset;
3766 dyn = htab->etab.dynamic_sections_created;
3767 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
3768 &hh->eh))
3769 {
3770 /* If we aren't going to call finish_dynamic_symbol,
3771 then we need to handle initialisation of the .got
3772 entry and create needed relocs here. Since the
3773 offset must always be a multiple of 4, we use the
3774 least significant bit to record whether we have
3775 initialised it already. */
3776 if ((off & 1) != 0)
3777 off &= ~1;
3778 else
3779 {
3780 hh->eh.got.offset |= 1;
3781 do_got = 1;
3782 }
3783 }
3784 }
3785 else
3786 {
3787 /* Local symbol case. */
3788 if (local_got_offsets == NULL)
3789 abort ();
3790
3791 off = local_got_offsets[r_symndx];
3792
3793 /* The offset must always be a multiple of 4. We use
3794 the least significant bit to record whether we have
3795 already generated the necessary reloc. */
3796 if ((off & 1) != 0)
3797 off &= ~1;
3798 else
3799 {
3800 local_got_offsets[r_symndx] |= 1;
3801 do_got = 1;
3802 }
3803 }
3804
3805 if (do_got)
3806 {
3807 if (info->shared)
3808 {
3809 /* Output a dynamic relocation for this GOT entry.
3810 In this case it is relative to the base of the
3811 object because the symbol index is zero. */
3812 Elf_Internal_Rela outrel;
3813 bfd_byte *loc;
3814 asection *sec = htab->srelgot;
3815
3816 outrel.r_offset = (off
3817 + htab->sgot->output_offset
3818 + htab->sgot->output_section->vma);
3819 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3820 outrel.r_addend = relocation;
3821 loc = sec->contents;
3822 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3823 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3824 }
3825 else
3826 bfd_put_32 (output_bfd, relocation,
3827 htab->sgot->contents + off);
3828 }
3829
3830 if (off >= (bfd_vma) -2)
3831 abort ();
3832
3833 /* Add the base of the GOT to the relocation value. */
3834 relocation = (off
3835 + htab->sgot->output_offset
3836 + htab->sgot->output_section->vma);
3837 }
3838 break;
3839
3840 case R_PARISC_SEGREL32:
3841 /* If this is the first SEGREL relocation, then initialize
3842 the segment base values. */
3843 if (htab->text_segment_base == (bfd_vma) -1)
3844 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3845 break;
3846
3847 case R_PARISC_PLABEL14R:
3848 case R_PARISC_PLABEL21L:
3849 case R_PARISC_PLABEL32:
3850 if (htab->etab.dynamic_sections_created)
3851 {
3852 bfd_vma off;
3853 bfd_boolean do_plt = 0;
3854 /* If we have a global symbol with a PLT slot, then
3855 redirect this relocation to it. */
3856 if (hh != NULL)
3857 {
3858 off = hh->eh.plt.offset;
3859 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
3860 &hh->eh))
3861 {
3862 /* In a non-shared link, adjust_dynamic_symbols
3863 isn't called for symbols forced local. We
3864 need to write out the plt entry here. */
3865 if ((off & 1) != 0)
3866 off &= ~1;
3867 else
3868 {
3869 hh->eh.plt.offset |= 1;
3870 do_plt = 1;
3871 }
3872 }
3873 }
3874 else
3875 {
3876 bfd_vma *local_plt_offsets;
3877
3878 if (local_got_offsets == NULL)
3879 abort ();
3880
3881 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3882 off = local_plt_offsets[r_symndx];
3883
3884 /* As for the local .got entry case, we use the last
3885 bit to record whether we've already initialised
3886 this local .plt entry. */
3887 if ((off & 1) != 0)
3888 off &= ~1;
3889 else
3890 {
3891 local_plt_offsets[r_symndx] |= 1;
3892 do_plt = 1;
3893 }
3894 }
3895
3896 if (do_plt)
3897 {
3898 if (info->shared)
3899 {
3900 /* Output a dynamic IPLT relocation for this
3901 PLT entry. */
3902 Elf_Internal_Rela outrel;
3903 bfd_byte *loc;
3904 asection *s = htab->srelplt;
3905
3906 outrel.r_offset = (off
3907 + htab->splt->output_offset
3908 + htab->splt->output_section->vma);
3909 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3910 outrel.r_addend = relocation;
3911 loc = s->contents;
3912 loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3913 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3914 }
3915 else
3916 {
3917 bfd_put_32 (output_bfd,
3918 relocation,
3919 htab->splt->contents + off);
3920 bfd_put_32 (output_bfd,
3921 elf_gp (htab->splt->output_section->owner),
3922 htab->splt->contents + off + 4);
3923 }
3924 }
3925
3926 if (off >= (bfd_vma) -2)
3927 abort ();
3928
3929 /* PLABELs contain function pointers. Relocation is to
3930 the entry for the function in the .plt. The magic +2
3931 offset signals to $$dyncall that the function pointer
3932 is in the .plt and thus has a gp pointer too.
3933 Exception: Undefined PLABELs should have a value of
3934 zero. */
3935 if (hh == NULL
3936 || (hh->eh.root.type != bfd_link_hash_undefweak
3937 && hh->eh.root.type != bfd_link_hash_undefined))
3938 {
3939 relocation = (off
3940 + htab->splt->output_offset
3941 + htab->splt->output_section->vma
3942 + 2);
3943 }
3944 plabel = 1;
3945 }
3946 /* Fall through and possibly emit a dynamic relocation. */
3947
3948 case R_PARISC_DIR17F:
3949 case R_PARISC_DIR17R:
3950 case R_PARISC_DIR14F:
3951 case R_PARISC_DIR14R:
3952 case R_PARISC_DIR21L:
3953 case R_PARISC_DPREL14F:
3954 case R_PARISC_DPREL14R:
3955 case R_PARISC_DPREL21L:
3956 case R_PARISC_DIR32:
3957 if ((input_section->flags & SEC_ALLOC) == 0)
3958 break;
3959
3960 /* The reloc types handled here and this conditional
3961 expression must match the code in ..check_relocs and
3962 allocate_dynrelocs. ie. We need exactly the same condition
3963 as in ..check_relocs, with some extra conditions (dynindx
3964 test in this case) to cater for relocs removed by
3965 allocate_dynrelocs. If you squint, the non-shared test
3966 here does indeed match the one in ..check_relocs, the
3967 difference being that here we test DEF_DYNAMIC as well as
3968 !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
3969 which is why we can't use just that test here.
3970 Conversely, DEF_DYNAMIC can't be used in check_relocs as
3971 there all files have not been loaded. */
3972 if ((info->shared
3973 && (hh == NULL
3974 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
3975 || hh->eh.root.type != bfd_link_hash_undefweak)
3976 && (IS_ABSOLUTE_RELOC (r_type)
3977 || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
3978 || (!info->shared
3979 && hh != NULL
3980 && hh->eh.dynindx != -1
3981 && !hh->eh.non_got_ref
3982 && ((ELIMINATE_COPY_RELOCS
3983 && hh->eh.def_dynamic
3984 && !hh->eh.def_regular)
3985 || hh->eh.root.type == bfd_link_hash_undefweak
3986 || hh->eh.root.type == bfd_link_hash_undefined)))
3987 {
3988 Elf_Internal_Rela outrel;
3989 bfd_boolean skip;
3990 asection *sreloc;
3991 bfd_byte *loc;
3992
3993 /* When generating a shared object, these relocations
3994 are copied into the output file to be resolved at run
3995 time. */
3996
3997 outrel.r_addend = rela->r_addend;
3998 outrel.r_offset =
3999 _bfd_elf_section_offset (output_bfd, info, input_section,
4000 rela->r_offset);
4001 skip = (outrel.r_offset == (bfd_vma) -1
4002 || outrel.r_offset == (bfd_vma) -2);
4003 outrel.r_offset += (input_section->output_offset
4004 + input_section->output_section->vma);
4005
4006 if (skip)
4007 {
4008 memset (&outrel, 0, sizeof (outrel));
4009 }
4010 else if (hh != NULL
4011 && hh->eh.dynindx != -1
4012 && (plabel
4013 || !IS_ABSOLUTE_RELOC (r_type)
4014 || !info->shared
4015 || !info->symbolic
4016 || !hh->eh.def_regular))
4017 {
4018 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
4019 }
4020 else /* It's a local symbol, or one marked to become local. */
4021 {
4022 int indx = 0;
4023
4024 /* Add the absolute offset of the symbol. */
4025 outrel.r_addend += relocation;
4026
4027 /* Global plabels need to be processed by the
4028 dynamic linker so that functions have at most one
4029 fptr. For this reason, we need to differentiate
4030 between global and local plabels, which we do by
4031 providing the function symbol for a global plabel
4032 reloc, and no symbol for local plabels. */
4033 if (! plabel
4034 && sym_sec != NULL
4035 && sym_sec->output_section != NULL
4036 && ! bfd_is_abs_section (sym_sec))
4037 {
4038 asection *osec;
4039
4040 osec = sym_sec->output_section;
4041 indx = elf_section_data (osec)->dynindx;
4042 if (indx == 0)
4043 {
4044 osec = htab->etab.text_index_section;
4045 indx = elf_section_data (osec)->dynindx;
4046 }
4047 BFD_ASSERT (indx != 0);
4048
4049 /* We are turning this relocation into one
4050 against a section symbol, so subtract out the
4051 output section's address but not the offset
4052 of the input section in the output section. */
4053 outrel.r_addend -= osec->vma;
4054 }
4055
4056 outrel.r_info = ELF32_R_INFO (indx, r_type);
4057 }
4058 sreloc = elf_section_data (input_section)->sreloc;
4059 if (sreloc == NULL)
4060 abort ();
4061
4062 loc = sreloc->contents;
4063 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4064 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4065 }
4066 break;
4067
4068 case R_PARISC_TLS_LDM21L:
4069 case R_PARISC_TLS_LDM14R:
4070 {
4071 bfd_vma off;
4072
4073 off = htab->tls_ldm_got.offset;
4074 if (off & 1)
4075 off &= ~1;
4076 else
4077 {
4078 Elf_Internal_Rela outrel;
4079 bfd_byte *loc;
4080
4081 outrel.r_offset = (off
4082 + htab->sgot->output_section->vma
4083 + htab->sgot->output_offset);
4084 outrel.r_addend = 0;
4085 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
4086 loc = htab->srelgot->contents;
4087 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4088
4089 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4090 htab->tls_ldm_got.offset |= 1;
4091 }
4092
4093 /* Add the base of the GOT to the relocation value. */
4094 relocation = (off
4095 + htab->sgot->output_offset
4096 + htab->sgot->output_section->vma);
4097
4098 break;
4099 }
4100
4101 case R_PARISC_TLS_LDO21L:
4102 case R_PARISC_TLS_LDO14R:
4103 relocation -= dtpoff_base (info);
4104 break;
4105
4106 case R_PARISC_TLS_GD21L:
4107 case R_PARISC_TLS_GD14R:
4108 case R_PARISC_TLS_IE21L:
4109 case R_PARISC_TLS_IE14R:
4110 {
4111 bfd_vma off;
4112 int indx;
4113 char tls_type;
4114
4115 indx = 0;
4116 if (hh != NULL)
4117 {
4118 bfd_boolean dyn;
4119 dyn = htab->etab.dynamic_sections_created;
4120
4121 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
4122 && (!info->shared
4123 || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4124 {
4125 indx = hh->eh.dynindx;
4126 }
4127 off = hh->eh.got.offset;
4128 tls_type = hh->tls_type;
4129 }
4130 else
4131 {
4132 off = local_got_offsets[r_symndx];
4133 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4134 }
4135
4136 if (tls_type == GOT_UNKNOWN)
4137 abort ();
4138
4139 if ((off & 1) != 0)
4140 off &= ~1;
4141 else
4142 {
4143 bfd_boolean need_relocs = FALSE;
4144 Elf_Internal_Rela outrel;
4145 bfd_byte *loc = NULL;
4146 int cur_off = off;
4147
4148 /* The GOT entries have not been initialized yet. Do it
4149 now, and emit any relocations. If both an IE GOT and a
4150 GD GOT are necessary, we emit the GD first. */
4151
4152 if ((info->shared || indx != 0)
4153 && (hh == NULL
4154 || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
4155 || hh->eh.root.type != bfd_link_hash_undefweak))
4156 {
4157 need_relocs = TRUE;
4158 loc = htab->srelgot->contents;
4159 /* FIXME (CAO): Should this be reloc_count++ ? */
4160 loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
4161 }
4162
4163 if (tls_type & GOT_TLS_GD)
4164 {
4165 if (need_relocs)
4166 {
4167 outrel.r_offset = (cur_off
4168 + htab->sgot->output_section->vma
4169 + htab->sgot->output_offset);
4170 outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
4171 outrel.r_addend = 0;
4172 bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
4173 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4174 htab->srelgot->reloc_count++;
4175 loc += sizeof (Elf32_External_Rela);
4176
4177 if (indx == 0)
4178 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4179 htab->sgot->contents + cur_off + 4);
4180 else
4181 {
4182 bfd_put_32 (output_bfd, 0,
4183 htab->sgot->contents + cur_off + 4);
4184 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4185 outrel.r_offset += 4;
4186 bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
4187 htab->srelgot->reloc_count++;
4188 loc += sizeof (Elf32_External_Rela);
4189 }
4190 }
4191 else
4192 {
4193 /* If we are not emitting relocations for a
4194 general dynamic reference, then we must be in a
4195 static link or an executable link with the
4196 symbol binding locally. Mark it as belonging
4197 to module 1, the executable. */
4198 bfd_put_32 (output_bfd, 1,
4199 htab->sgot->contents + cur_off);
4200 bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4201 htab->sgot->contents + cur_off + 4);
4202 }
4203
4204
4205 cur_off += 8;
4206 }
4207
4208 if (tls_type & GOT_TLS_IE)
4209 {
4210 if (need_relocs)
4211 {
4212 outrel.r_offset = (cur_off
4213 + htab->sgot->output_section->vma
4214 + htab->sgot->output_offset);
4215 outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
4216
4217 if (indx == 0)
4218 outrel.r_addend = relocation - dtpoff_base (info);
4219 else
4220 outrel.r_addend = 0;
4221
4222 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4223 htab->srelgot->reloc_count++;
4224 loc += sizeof (Elf32_External_Rela);
4225 }
4226 else
4227 bfd_put_32 (output_bfd, tpoff (info, relocation),
4228 htab->sgot->contents + cur_off);
4229
4230 cur_off += 4;
4231 }
4232
4233 if (hh != NULL)
4234 hh->eh.got.offset |= 1;
4235 else
4236 local_got_offsets[r_symndx] |= 1;
4237 }
4238
4239 if ((tls_type & GOT_TLS_GD)
4240 && r_type != R_PARISC_TLS_GD21L
4241 && r_type != R_PARISC_TLS_GD14R)
4242 off += 2 * GOT_ENTRY_SIZE;
4243
4244 /* Add the base of the GOT to the relocation value. */
4245 relocation = (off
4246 + htab->sgot->output_offset
4247 + htab->sgot->output_section->vma);
4248
4249 break;
4250 }
4251
4252 case R_PARISC_TLS_LE21L:
4253 case R_PARISC_TLS_LE14R:
4254 {
4255 relocation = tpoff (info, relocation);
4256 break;
4257 }
4258 break;
4259
4260 default:
4261 break;
4262 }
4263
4264 rstatus = final_link_relocate (input_section, contents, rela, relocation,
4265 htab, sym_sec, hh, info);
4266
4267 if (rstatus == bfd_reloc_ok)
4268 continue;
4269
4270 if (hh != NULL)
4271 sym_name = hh_name (hh);
4272 else
4273 {
4274 sym_name = bfd_elf_string_from_elf_section (input_bfd,
4275 symtab_hdr->sh_link,
4276 sym->st_name);
4277 if (sym_name == NULL)
4278 return FALSE;
4279 if (*sym_name == '\0')
4280 sym_name = bfd_section_name (input_bfd, sym_sec);
4281 }
4282
4283 howto = elf_hppa_howto_table + r_type;
4284
4285 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4286 {
4287 if (rstatus == bfd_reloc_notsupported || !warned_undef)
4288 {
4289 (*_bfd_error_handler)
4290 (_("%B(%A+0x%lx): cannot handle %s for %s"),
4291 input_bfd,
4292 input_section,
4293 (long) rela->r_offset,
4294 howto->name,
4295 sym_name);
4296 bfd_set_error (bfd_error_bad_value);
4297 return FALSE;
4298 }
4299 }
4300 else
4301 {
4302 if (!((*info->callbacks->reloc_overflow)
4303 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4304 (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
4305 return FALSE;
4306 }
4307 }
4308
4309 return TRUE;
4310 }
4311
4312 /* Finish up dynamic symbol handling. We set the contents of various
4313 dynamic sections here. */
4314
4315 static bfd_boolean
4316 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4317 struct bfd_link_info *info,
4318 struct elf_link_hash_entry *eh,
4319 Elf_Internal_Sym *sym)
4320 {
4321 struct elf32_hppa_link_hash_table *htab;
4322 Elf_Internal_Rela rela;
4323 bfd_byte *loc;
4324
4325 htab = hppa_link_hash_table (info);
4326 if (htab == NULL)
4327 return FALSE;
4328
4329 if (eh->plt.offset != (bfd_vma) -1)
4330 {
4331 bfd_vma value;
4332
4333 if (eh->plt.offset & 1)
4334 abort ();
4335
4336 /* This symbol has an entry in the procedure linkage table. Set
4337 it up.
4338
4339 The format of a plt entry is
4340 <funcaddr>
4341 <__gp>
4342 */
4343 value = 0;
4344 if (eh->root.type == bfd_link_hash_defined
4345 || eh->root.type == bfd_link_hash_defweak)
4346 {
4347 value = eh->root.u.def.value;
4348 if (eh->root.u.def.section->output_section != NULL)
4349 value += (eh->root.u.def.section->output_offset
4350 + eh->root.u.def.section->output_section->vma);
4351 }
4352
4353 /* Create a dynamic IPLT relocation for this entry. */
4354 rela.r_offset = (eh->plt.offset
4355 + htab->splt->output_offset
4356 + htab->splt->output_section->vma);
4357 if (eh->dynindx != -1)
4358 {
4359 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4360 rela.r_addend = 0;
4361 }
4362 else
4363 {
4364 /* This symbol has been marked to become local, and is
4365 used by a plabel so must be kept in the .plt. */
4366 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4367 rela.r_addend = value;
4368 }
4369
4370 loc = htab->srelplt->contents;
4371 loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4372 bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
4373
4374 if (!eh->def_regular)
4375 {
4376 /* Mark the symbol as undefined, rather than as defined in
4377 the .plt section. Leave the value alone. */
4378 sym->st_shndx = SHN_UNDEF;
4379 }
4380 }
4381
4382 if (eh->got.offset != (bfd_vma) -1
4383 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
4384 && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
4385 {
4386 /* This symbol has an entry in the global offset table. Set it
4387 up. */
4388
4389 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4390 + htab->sgot->output_offset
4391 + htab->sgot->output_section->vma);
4392
4393 /* If this is a -Bsymbolic link and the symbol is defined
4394 locally or was forced to be local because of a version file,
4395 we just want to emit a RELATIVE reloc. The entry in the
4396 global offset table will already have been initialized in the
4397 relocate_section function. */
4398 if (info->shared
4399 && (info->symbolic || eh->dynindx == -1)
4400 && eh->def_regular)
4401 {
4402 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4403 rela.r_addend = (eh->root.u.def.value
4404 + eh->root.u.def.section->output_offset
4405 + eh->root.u.def.section->output_section->vma);
4406 }
4407 else
4408 {
4409 if ((eh->got.offset & 1) != 0)
4410 abort ();
4411
4412 bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
4413 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4414 rela.r_addend = 0;
4415 }
4416
4417 loc = htab->srelgot->contents;
4418 loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
4419 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4420 }
4421
4422 if (eh->needs_copy)
4423 {
4424 asection *sec;
4425
4426 /* This symbol needs a copy reloc. Set it up. */
4427
4428 if (! (eh->dynindx != -1
4429 && (eh->root.type == bfd_link_hash_defined
4430 || eh->root.type == bfd_link_hash_defweak)))
4431 abort ();
4432
4433 sec = htab->srelbss;
4434
4435 rela.r_offset = (eh->root.u.def.value
4436 + eh->root.u.def.section->output_offset
4437 + eh->root.u.def.section->output_section->vma);
4438 rela.r_addend = 0;
4439 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4440 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4441 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4442 }
4443
4444 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
4445 if (eh_name (eh)[0] == '_'
4446 && (strcmp (eh_name (eh), "_DYNAMIC") == 0
4447 || eh == htab->etab.hgot))
4448 {
4449 sym->st_shndx = SHN_ABS;
4450 }
4451
4452 return TRUE;
4453 }
4454
4455 /* Used to decide how to sort relocs in an optimal manner for the
4456 dynamic linker, before writing them out. */
4457
4458 static enum elf_reloc_type_class
4459 elf32_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
4460 {
4461 /* Handle TLS relocs first; we don't want them to be marked
4462 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4463 check below. */
4464 switch ((int) ELF32_R_TYPE (rela->r_info))
4465 {
4466 case R_PARISC_TLS_DTPMOD32:
4467 case R_PARISC_TLS_DTPOFF32:
4468 case R_PARISC_TLS_TPREL32:
4469 return reloc_class_normal;
4470 }
4471
4472 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4473 return reloc_class_relative;
4474
4475 switch ((int) ELF32_R_TYPE (rela->r_info))
4476 {
4477 case R_PARISC_IPLT:
4478 return reloc_class_plt;
4479 case R_PARISC_COPY:
4480 return reloc_class_copy;
4481 default:
4482 return reloc_class_normal;
4483 }
4484 }
4485
4486 /* Finish up the dynamic sections. */
4487
4488 static bfd_boolean
4489 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4490 struct bfd_link_info *info)
4491 {
4492 bfd *dynobj;
4493 struct elf32_hppa_link_hash_table *htab;
4494 asection *sdyn;
4495 asection * sgot;
4496
4497 htab = hppa_link_hash_table (info);
4498 if (htab == NULL)
4499 return FALSE;
4500
4501 dynobj = htab->etab.dynobj;
4502
4503 sgot = htab->sgot;
4504 /* A broken linker script might have discarded the dynamic sections.
4505 Catch this here so that we do not seg-fault later on. */
4506 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4507 return FALSE;
4508
4509 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4510
4511 if (htab->etab.dynamic_sections_created)
4512 {
4513 Elf32_External_Dyn *dyncon, *dynconend;
4514
4515 if (sdyn == NULL)
4516 abort ();
4517
4518 dyncon = (Elf32_External_Dyn *) sdyn->contents;
4519 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4520 for (; dyncon < dynconend; dyncon++)
4521 {
4522 Elf_Internal_Dyn dyn;
4523 asection *s;
4524
4525 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4526
4527 switch (dyn.d_tag)
4528 {
4529 default:
4530 continue;
4531
4532 case DT_PLTGOT:
4533 /* Use PLTGOT to set the GOT register. */
4534 dyn.d_un.d_ptr = elf_gp (output_bfd);
4535 break;
4536
4537 case DT_JMPREL:
4538 s = htab->srelplt;
4539 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4540 break;
4541
4542 case DT_PLTRELSZ:
4543 s = htab->srelplt;
4544 dyn.d_un.d_val = s->size;
4545 break;
4546
4547 case DT_RELASZ:
4548 /* Don't count procedure linkage table relocs in the
4549 overall reloc count. */
4550 s = htab->srelplt;
4551 if (s == NULL)
4552 continue;
4553 dyn.d_un.d_val -= s->size;
4554 break;
4555
4556 case DT_RELA:
4557 /* We may not be using the standard ELF linker script.
4558 If .rela.plt is the first .rela section, we adjust
4559 DT_RELA to not include it. */
4560 s = htab->srelplt;
4561 if (s == NULL)
4562 continue;
4563 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
4564 continue;
4565 dyn.d_un.d_ptr += s->size;
4566 break;
4567 }
4568
4569 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4570 }
4571 }
4572
4573 if (sgot != NULL && sgot->size != 0)
4574 {
4575 /* Fill in the first entry in the global offset table.
4576 We use it to point to our dynamic section, if we have one. */
4577 bfd_put_32 (output_bfd,
4578 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4579 sgot->contents);
4580
4581 /* The second entry is reserved for use by the dynamic linker. */
4582 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4583
4584 /* Set .got entry size. */
4585 elf_section_data (sgot->output_section)
4586 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4587 }
4588
4589 if (htab->splt != NULL && htab->splt->size != 0)
4590 {
4591 /* Set plt entry size. */
4592 elf_section_data (htab->splt->output_section)
4593 ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
4594
4595 if (htab->need_plt_stub)
4596 {
4597 /* Set up the .plt stub. */
4598 memcpy (htab->splt->contents
4599 + htab->splt->size - sizeof (plt_stub),
4600 plt_stub, sizeof (plt_stub));
4601
4602 if ((htab->splt->output_offset
4603 + htab->splt->output_section->vma
4604 + htab->splt->size)
4605 != (sgot->output_offset
4606 + sgot->output_section->vma))
4607 {
4608 (*_bfd_error_handler)
4609 (_(".got section not immediately after .plt section"));
4610 return FALSE;
4611 }
4612 }
4613 }
4614
4615 return TRUE;
4616 }
4617
4618 /* Called when writing out an object file to decide the type of a
4619 symbol. */
4620 static int
4621 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4622 {
4623 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4624 return STT_PARISC_MILLI;
4625 else
4626 return type;
4627 }
4628
4629 /* Misc BFD support code. */
4630 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
4631 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4632 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4633 #define elf_info_to_howto elf_hppa_info_to_howto
4634 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4635
4636 /* Stuff for the BFD linker. */
4637 #define bfd_elf32_bfd_final_link elf32_hppa_final_link
4638 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4639 #define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
4640 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
4641 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
4642 #define elf_backend_check_relocs elf32_hppa_check_relocs
4643 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
4644 #define elf_backend_fake_sections elf_hppa_fake_sections
4645 #define elf_backend_relocate_section elf32_hppa_relocate_section
4646 #define elf_backend_hide_symbol elf32_hppa_hide_symbol
4647 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
4648 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
4649 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
4650 #define elf_backend_init_index_section _bfd_elf_init_1_index_section
4651 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
4652 #define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
4653 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
4654 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
4655 #define elf_backend_object_p elf32_hppa_object_p
4656 #define elf_backend_final_write_processing elf_hppa_final_write_processing
4657 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4658 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
4659 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
4660 #define elf_backend_action_discarded elf_hppa_action_discarded
4661
4662 #define elf_backend_can_gc_sections 1
4663 #define elf_backend_can_refcount 1
4664 #define elf_backend_plt_alignment 2
4665 #define elf_backend_want_got_plt 0
4666 #define elf_backend_plt_readonly 0
4667 #define elf_backend_want_plt_sym 0
4668 #define elf_backend_got_header_size 8
4669 #define elf_backend_rela_normal 1
4670
4671 #define TARGET_BIG_SYM bfd_elf32_hppa_vec
4672 #define TARGET_BIG_NAME "elf32-hppa"
4673 #define ELF_ARCH bfd_arch_hppa
4674 #define ELF_TARGET_ID HPPA32_ELF_DATA
4675 #define ELF_MACHINE_CODE EM_PARISC
4676 #define ELF_MAXPAGESIZE 0x1000
4677 #define ELF_OSABI ELFOSABI_HPUX
4678 #define elf32_bed elf32_hppa_hpux_bed
4679
4680 #include "elf32-target.h"
4681
4682 #undef TARGET_BIG_SYM
4683 #define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
4684 #undef TARGET_BIG_NAME
4685 #define TARGET_BIG_NAME "elf32-hppa-linux"
4686 #undef ELF_OSABI
4687 #define ELF_OSABI ELFOSABI_GNU
4688 #undef elf32_bed
4689 #define elf32_bed elf32_hppa_linux_bed
4690
4691 #include "elf32-target.h"
4692
4693 #undef TARGET_BIG_SYM
4694 #define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
4695 #undef TARGET_BIG_NAME
4696 #define TARGET_BIG_NAME "elf32-hppa-netbsd"
4697 #undef ELF_OSABI
4698 #define ELF_OSABI ELFOSABI_NETBSD
4699 #undef elf32_bed
4700 #define elf32_bed elf32_hppa_netbsd_bed
4701
4702 #include "elf32-target.h"