]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-m68hc1x.c
04bd7ccde3cc4283de47e3b0a9183c341e8952f4
[thirdparty/binutils-gdb.git] / bfd / elf32-m68hc1x.c
1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF
2 Copyright (C) 1999-2022 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf32-m68hc1x.h"
28 #include "elf/m68hc11.h"
29 #include "opcode/m68hc11.h"
30 #include "libiberty.h"
31
32 #define m68hc12_stub_hash_lookup(table, string, create, copy) \
33 ((struct elf32_m68hc11_stub_hash_entry *) \
34 bfd_hash_lookup ((table), (string), (create), (copy)))
35
36 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub
37 (const char *stub_name,
38 asection *section,
39 struct m68hc11_elf_link_hash_table *htab);
40
41 static struct bfd_hash_entry *stub_hash_newfunc
42 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
43
44 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info,
45 const char* name, bfd_vma value,
46 asection* sec);
47
48 static bool m68hc11_elf_export_one_stub
49 (struct bfd_hash_entry *gen_entry, void *in_arg);
50
51 static void scan_sections_for_abi (bfd*, asection*, void *);
52
53 struct m68hc11_scan_param
54 {
55 struct m68hc11_page_info* pinfo;
56 bool use_memory_banks;
57 };
58
59
60 /* Destroy a 68HC11/68HC12 ELF linker hash table. */
61
62 static void
63 m68hc11_elf_bfd_link_hash_table_free (bfd *obfd)
64 {
65 struct m68hc11_elf_link_hash_table *ret
66 = (struct m68hc11_elf_link_hash_table *) obfd->link.hash;
67
68 bfd_hash_table_free (ret->stub_hash_table);
69 free (ret->stub_hash_table);
70 _bfd_elf_link_hash_table_free (obfd);
71 }
72
73 /* Create a 68HC11/68HC12 ELF linker hash table. */
74
75 struct m68hc11_elf_link_hash_table*
76 m68hc11_elf_hash_table_create (bfd *abfd)
77 {
78 struct m68hc11_elf_link_hash_table *ret;
79 size_t amt = sizeof (struct m68hc11_elf_link_hash_table);
80
81 ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt);
82 if (ret == (struct m68hc11_elf_link_hash_table *) NULL)
83 return NULL;
84
85 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
86 _bfd_elf_link_hash_newfunc,
87 sizeof (struct elf_link_hash_entry),
88 M68HC11_ELF_DATA))
89 {
90 free (ret);
91 return NULL;
92 }
93
94 /* Init the stub hash table too. */
95 amt = sizeof (struct bfd_hash_table);
96 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt);
97 if (ret->stub_hash_table == NULL)
98 {
99 _bfd_elf_link_hash_table_free (abfd);
100 return NULL;
101 }
102 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc,
103 sizeof (struct elf32_m68hc11_stub_hash_entry)))
104 {
105 free (ret->stub_hash_table);
106 _bfd_elf_link_hash_table_free (abfd);
107 return NULL;
108 }
109 ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free;
110
111 return ret;
112 }
113
114 /* Assorted hash table functions. */
115
116 /* Initialize an entry in the stub hash table. */
117
118 static struct bfd_hash_entry *
119 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,
120 const char *string)
121 {
122 /* Allocate the structure if it has not already been allocated by a
123 subclass. */
124 if (entry == NULL)
125 {
126 entry = bfd_hash_allocate (table,
127 sizeof (struct elf32_m68hc11_stub_hash_entry));
128 if (entry == NULL)
129 return entry;
130 }
131
132 /* Call the allocation method of the superclass. */
133 entry = bfd_hash_newfunc (entry, table, string);
134 if (entry != NULL)
135 {
136 struct elf32_m68hc11_stub_hash_entry *eh;
137
138 /* Initialize the local fields. */
139 eh = (struct elf32_m68hc11_stub_hash_entry *) entry;
140 eh->stub_sec = NULL;
141 eh->stub_offset = 0;
142 eh->target_value = 0;
143 eh->target_section = NULL;
144 }
145
146 return entry;
147 }
148
149 /* Add a new stub entry to the stub hash. Not all fields of the new
150 stub entry are initialised. */
151
152 static struct elf32_m68hc11_stub_hash_entry *
153 m68hc12_add_stub (const char *stub_name, asection *section,
154 struct m68hc11_elf_link_hash_table *htab)
155 {
156 struct elf32_m68hc11_stub_hash_entry *stub_entry;
157
158 /* Enter this entry into the linker stub hash table. */
159 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name,
160 true, false);
161 if (stub_entry == NULL)
162 {
163 /* xgettext:c-format */
164 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
165 section->owner, stub_name);
166 return NULL;
167 }
168
169 if (htab->stub_section == 0)
170 {
171 htab->stub_section = (*htab->add_stub_section) (".tramp",
172 htab->tramp_section);
173 }
174
175 stub_entry->stub_sec = htab->stub_section;
176 stub_entry->stub_offset = 0;
177 return stub_entry;
178 }
179
180 /* Hook called by the linker routine which adds symbols from an object
181 file. We use it for identify far symbols and force a loading of
182 the trampoline handler. */
183
184 bool
185 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
186 Elf_Internal_Sym *sym,
187 const char **namep ATTRIBUTE_UNUSED,
188 flagword *flagsp ATTRIBUTE_UNUSED,
189 asection **secp ATTRIBUTE_UNUSED,
190 bfd_vma *valp ATTRIBUTE_UNUSED)
191 {
192 if (sym->st_other & STO_M68HC12_FAR)
193 {
194 struct elf_link_hash_entry *h;
195
196 h = (struct elf_link_hash_entry *)
197 bfd_link_hash_lookup (info->hash, "__far_trampoline",
198 false, false, false);
199 if (h == NULL)
200 {
201 struct bfd_link_hash_entry* entry = NULL;
202
203 _bfd_generic_link_add_one_symbol (info, abfd,
204 "__far_trampoline",
205 BSF_GLOBAL,
206 bfd_und_section_ptr,
207 (bfd_vma) 0, (const char*) NULL,
208 false, false, &entry);
209 }
210
211 }
212 return true;
213 }
214
215 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and
216 STO_M68HC12_INTERRUPT. */
217
218 void
219 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h,
220 unsigned int st_other,
221 bool definition,
222 bool dynamic ATTRIBUTE_UNUSED)
223 {
224 if (definition)
225 h->other = ((st_other & ~ELF_ST_VISIBILITY (-1))
226 | ELF_ST_VISIBILITY (h->other));
227 }
228
229 /* External entry points for sizing and building linker stubs. */
230
231 /* Set up various things so that we can make a list of input sections
232 for each output section included in the link. Returns -1 on error,
233 0 when no stubs will be needed, and 1 on success. */
234
235 int
236 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
237 {
238 bfd *input_bfd;
239 unsigned int bfd_count;
240 unsigned int top_id, top_index;
241 asection *section;
242 asection **input_list, **list;
243 size_t amt;
244 asection *text_section;
245 struct m68hc11_elf_link_hash_table *htab;
246
247 htab = m68hc11_elf_hash_table (info);
248 if (htab == NULL)
249 return -1;
250
251 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour)
252 return 0;
253
254 /* Count the number of input BFDs and find the top input section id.
255 Also search for an existing ".tramp" section so that we know
256 where generated trampolines must go. Default to ".text" if we
257 can't find it. */
258 htab->tramp_section = 0;
259 text_section = 0;
260 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
261 input_bfd != NULL;
262 input_bfd = input_bfd->link.next)
263 {
264 bfd_count += 1;
265 for (section = input_bfd->sections;
266 section != NULL;
267 section = section->next)
268 {
269 const char *name = bfd_section_name (section);
270
271 if (!strcmp (name, ".tramp"))
272 htab->tramp_section = section;
273
274 if (!strcmp (name, ".text"))
275 text_section = section;
276
277 if (top_id < section->id)
278 top_id = section->id;
279 }
280 }
281 htab->bfd_count = bfd_count;
282 if (htab->tramp_section == 0)
283 htab->tramp_section = text_section;
284
285 /* We can't use output_bfd->section_count here to find the top output
286 section index as some sections may have been removed, and
287 strip_excluded_output_sections doesn't renumber the indices. */
288 for (section = output_bfd->sections, top_index = 0;
289 section != NULL;
290 section = section->next)
291 {
292 if (top_index < section->index)
293 top_index = section->index;
294 }
295
296 htab->top_index = top_index;
297 amt = sizeof (asection *) * (top_index + 1);
298 input_list = (asection **) bfd_malloc (amt);
299 htab->input_list = input_list;
300 if (input_list == NULL)
301 return -1;
302
303 /* For sections we aren't interested in, mark their entries with a
304 value we can check later. */
305 list = input_list + top_index;
306 do
307 *list = bfd_abs_section_ptr;
308 while (list-- != input_list);
309
310 for (section = output_bfd->sections;
311 section != NULL;
312 section = section->next)
313 {
314 if ((section->flags & SEC_CODE) != 0)
315 input_list[section->index] = NULL;
316 }
317
318 return 1;
319 }
320
321 /* Determine and set the size of the stub section for a final link.
322
323 The basic idea here is to examine all the relocations looking for
324 PC-relative calls to a target that is unreachable with a "bl"
325 instruction. */
326
327 bool
328 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd,
329 struct bfd_link_info *info,
330 asection * (*add_stub_section) (const char*, asection*))
331 {
332 bfd *input_bfd;
333 asection *section;
334 Elf_Internal_Sym *local_syms, **all_local_syms;
335 unsigned int bfd_indx, bfd_count;
336 size_t amt;
337 asection *stub_sec;
338 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info);
339
340 if (htab == NULL)
341 return false;
342
343 /* Stash our params away. */
344 htab->stub_bfd = stub_bfd;
345 htab->add_stub_section = add_stub_section;
346
347 /* Count the number of input BFDs and find the top input section id. */
348 for (input_bfd = info->input_bfds, bfd_count = 0;
349 input_bfd != NULL;
350 input_bfd = input_bfd->link.next)
351 bfd_count += 1;
352
353 /* We want to read in symbol extension records only once. To do this
354 we need to read in the local symbols in parallel and save them for
355 later use; so hold pointers to the local symbols in an array. */
356 amt = sizeof (Elf_Internal_Sym *) * bfd_count;
357 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt);
358 if (all_local_syms == NULL)
359 return false;
360
361 /* Walk over all the input BFDs, swapping in local symbols. */
362 for (input_bfd = info->input_bfds, bfd_indx = 0;
363 input_bfd != NULL;
364 input_bfd = input_bfd->link.next, bfd_indx++)
365 {
366 Elf_Internal_Shdr *symtab_hdr;
367
368 /* We'll need the symbol table in a second. */
369 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
370 if (symtab_hdr->sh_info == 0)
371 continue;
372
373 /* We need an array of the local symbols attached to the input bfd. */
374 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
375 if (local_syms == NULL)
376 {
377 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
378 symtab_hdr->sh_info, 0,
379 NULL, NULL, NULL);
380 /* Cache them for elf_link_input_bfd. */
381 symtab_hdr->contents = (unsigned char *) local_syms;
382 }
383 if (local_syms == NULL)
384 {
385 free (all_local_syms);
386 return false;
387 }
388
389 all_local_syms[bfd_indx] = local_syms;
390 }
391
392 for (input_bfd = info->input_bfds, bfd_indx = 0;
393 input_bfd != NULL;
394 input_bfd = input_bfd->link.next, bfd_indx++)
395 {
396 Elf_Internal_Shdr *symtab_hdr;
397 struct elf_link_hash_entry ** sym_hashes;
398
399 sym_hashes = elf_sym_hashes (input_bfd);
400
401 /* We'll need the symbol table in a second. */
402 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
403 if (symtab_hdr->sh_info == 0)
404 continue;
405
406 local_syms = all_local_syms[bfd_indx];
407
408 /* Walk over each section attached to the input bfd. */
409 for (section = input_bfd->sections;
410 section != NULL;
411 section = section->next)
412 {
413 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
414
415 /* If there aren't any relocs, then there's nothing more
416 to do. */
417 if ((section->flags & SEC_RELOC) == 0
418 || section->reloc_count == 0)
419 continue;
420
421 /* If this section is a link-once section that will be
422 discarded, then don't create any stubs. */
423 if (section->output_section == NULL
424 || section->output_section->owner != output_bfd)
425 continue;
426
427 /* Get the relocs. */
428 internal_relocs
429 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
430 (Elf_Internal_Rela *) NULL,
431 info->keep_memory);
432 if (internal_relocs == NULL)
433 goto error_ret_free_local;
434
435 /* Now examine each relocation. */
436 irela = internal_relocs;
437 irelaend = irela + section->reloc_count;
438 for (; irela < irelaend; irela++)
439 {
440 unsigned int r_type, r_indx;
441 struct elf32_m68hc11_stub_hash_entry *stub_entry;
442 asection *sym_sec;
443 bfd_vma sym_value;
444 struct elf_link_hash_entry *hash;
445 const char *stub_name;
446 Elf_Internal_Sym *sym;
447
448 r_type = ELF32_R_TYPE (irela->r_info);
449
450 /* Only look at 16-bit relocs. */
451 if (r_type != (unsigned int) R_M68HC11_16)
452 continue;
453
454 /* Now determine the call target, its name, value,
455 section. */
456 r_indx = ELF32_R_SYM (irela->r_info);
457 if (r_indx < symtab_hdr->sh_info)
458 {
459 /* It's a local symbol. */
460 Elf_Internal_Shdr *hdr;
461 bool is_far;
462
463 sym = local_syms + r_indx;
464 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
465 if (!is_far)
466 continue;
467
468 if (sym->st_shndx >= elf_numsections (input_bfd))
469 sym_sec = NULL;
470 else
471 {
472 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
473 sym_sec = hdr->bfd_section;
474 }
475 stub_name = (bfd_elf_string_from_elf_section
476 (input_bfd, symtab_hdr->sh_link,
477 sym->st_name));
478 sym_value = sym->st_value;
479 hash = NULL;
480 }
481 else
482 {
483 /* It's an external symbol. */
484 int e_indx;
485
486 e_indx = r_indx - symtab_hdr->sh_info;
487 hash = (struct elf_link_hash_entry *)
488 (sym_hashes[e_indx]);
489
490 while (hash->root.type == bfd_link_hash_indirect
491 || hash->root.type == bfd_link_hash_warning)
492 hash = ((struct elf_link_hash_entry *)
493 hash->root.u.i.link);
494
495 if (hash->root.type == bfd_link_hash_defined
496 || hash->root.type == bfd_link_hash_defweak
497 || hash->root.type == bfd_link_hash_new)
498 {
499 if (!(hash->other & STO_M68HC12_FAR))
500 continue;
501 }
502 else if (hash->root.type == bfd_link_hash_undefweak)
503 {
504 continue;
505 }
506 else if (hash->root.type == bfd_link_hash_undefined)
507 {
508 continue;
509 }
510 else
511 {
512 bfd_set_error (bfd_error_bad_value);
513 goto error_ret_free_internal;
514 }
515 sym_sec = hash->root.u.def.section;
516 sym_value = hash->root.u.def.value;
517 stub_name = hash->root.root.string;
518 }
519
520 if (!stub_name)
521 goto error_ret_free_internal;
522
523 stub_entry = m68hc12_stub_hash_lookup
524 (htab->stub_hash_table,
525 stub_name,
526 false, false);
527 if (stub_entry == NULL)
528 {
529 if (add_stub_section == 0)
530 continue;
531
532 stub_entry = m68hc12_add_stub (stub_name, section, htab);
533 if (stub_entry == NULL)
534 {
535 error_ret_free_internal:
536 if (elf_section_data (section)->relocs == NULL)
537 free (internal_relocs);
538 goto error_ret_free_local;
539 }
540 }
541
542 stub_entry->target_value = sym_value;
543 stub_entry->target_section = sym_sec;
544 }
545
546 /* We're done with the internal relocs, free them. */
547 if (elf_section_data (section)->relocs == NULL)
548 free (internal_relocs);
549 }
550 }
551
552 if (add_stub_section)
553 {
554 /* OK, we've added some stubs. Find out the new size of the
555 stub sections. */
556 for (stub_sec = htab->stub_bfd->sections;
557 stub_sec != NULL;
558 stub_sec = stub_sec->next)
559 {
560 stub_sec->size = 0;
561 }
562
563 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab);
564 }
565 free (all_local_syms);
566 return true;
567
568 error_ret_free_local:
569 free (all_local_syms);
570 return false;
571 }
572
573 /* Export the trampoline addresses in the symbol table. */
574 static bool
575 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
576 {
577 struct bfd_link_info *info;
578 struct m68hc11_elf_link_hash_table *htab;
579 struct elf32_m68hc11_stub_hash_entry *stub_entry;
580 char* name;
581 bool result;
582
583 info = (struct bfd_link_info *) in_arg;
584 htab = m68hc11_elf_hash_table (info);
585 if (htab == NULL)
586 return false;
587
588 /* Massage our args to the form they really have. */
589 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry;
590
591 /* Generate the trampoline according to HC11 or HC12. */
592 result = (* htab->build_one_stub) (gen_entry, in_arg);
593
594 /* Make a printable name that does not conflict with the real function. */
595 name = concat ("tramp.", stub_entry->root.string, NULL);
596
597 /* Export the symbol for debugging/disassembling. */
598 m68hc11_elf_set_symbol (htab->stub_bfd, info, name,
599 stub_entry->stub_offset,
600 stub_entry->stub_sec);
601 free (name);
602 return result;
603 }
604
605 /* Export a symbol or set its value and section. */
606 static void
607 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info,
608 const char *name, bfd_vma value, asection *sec)
609 {
610 struct elf_link_hash_entry *h;
611
612 h = (struct elf_link_hash_entry *)
613 bfd_link_hash_lookup (info->hash, name, false, false, false);
614 if (h == NULL)
615 {
616 _bfd_generic_link_add_one_symbol (info, abfd,
617 name,
618 BSF_GLOBAL,
619 sec,
620 value,
621 (const char*) NULL,
622 true, false, NULL);
623 }
624 else
625 {
626 h->root.type = bfd_link_hash_defined;
627 h->root.u.def.value = value;
628 h->root.u.def.section = sec;
629 }
630 }
631
632
633 /* Build all the stubs associated with the current output file. The
634 stubs are kept in a hash table attached to the main linker hash
635 table. This function is called via m68hc12elf_finish in the
636 linker. */
637
638 bool
639 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info)
640 {
641 asection *stub_sec;
642 struct bfd_hash_table *table;
643 struct m68hc11_elf_link_hash_table *htab;
644 struct m68hc11_scan_param param;
645
646 m68hc11_elf_get_bank_parameters (info);
647 htab = m68hc11_elf_hash_table (info);
648 if (htab == NULL)
649 return false;
650
651 for (stub_sec = htab->stub_bfd->sections;
652 stub_sec != NULL;
653 stub_sec = stub_sec->next)
654 {
655 bfd_size_type size;
656
657 /* Allocate memory to hold the linker stubs. */
658 size = stub_sec->size;
659 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
660 if (stub_sec->contents == NULL && size != 0)
661 return false;
662 stub_sec->size = 0;
663 }
664
665 /* Build the stubs as directed by the stub hash table. */
666 table = htab->stub_hash_table;
667 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info);
668
669 /* Scan the output sections to see if we use the memory banks.
670 If so, export the symbols that define how the memory banks
671 are mapped. This is used by gdb and the simulator to obtain
672 the information. It can be used by programs to burn the eprom
673 at the good addresses. */
674 param.use_memory_banks = false;
675 param.pinfo = &htab->pinfo;
676 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
677 if (param.use_memory_banks)
678 {
679 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME,
680 htab->pinfo.bank_physical,
681 bfd_abs_section_ptr);
682 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME,
683 htab->pinfo.bank_virtual,
684 bfd_abs_section_ptr);
685 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME,
686 htab->pinfo.bank_size,
687 bfd_abs_section_ptr);
688 }
689
690 return true;
691 }
692
693 void
694 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info)
695 {
696 unsigned i;
697 struct m68hc11_page_info *pinfo;
698 struct bfd_link_hash_entry *h;
699 struct m68hc11_elf_link_hash_table *htab;
700
701 htab = m68hc11_elf_hash_table (info);
702 if (htab == NULL)
703 return;
704
705 pinfo = & htab->pinfo;
706 if (pinfo->bank_param_initialized)
707 return;
708
709 pinfo->bank_virtual = M68HC12_BANK_VIRT;
710 pinfo->bank_mask = M68HC12_BANK_MASK;
711 pinfo->bank_physical = M68HC12_BANK_BASE;
712 pinfo->bank_shift = M68HC12_BANK_SHIFT;
713 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT;
714
715 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME,
716 false, false, true);
717 if (h != (struct bfd_link_hash_entry*) NULL
718 && h->type == bfd_link_hash_defined)
719 pinfo->bank_physical = (h->u.def.value
720 + h->u.def.section->output_section->vma
721 + h->u.def.section->output_offset);
722
723 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME,
724 false, false, true);
725 if (h != (struct bfd_link_hash_entry*) NULL
726 && h->type == bfd_link_hash_defined)
727 pinfo->bank_virtual = (h->u.def.value
728 + h->u.def.section->output_section->vma
729 + h->u.def.section->output_offset);
730
731 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME,
732 false, false, true);
733 if (h != (struct bfd_link_hash_entry*) NULL
734 && h->type == bfd_link_hash_defined)
735 pinfo->bank_size = (h->u.def.value
736 + h->u.def.section->output_section->vma
737 + h->u.def.section->output_offset);
738
739 pinfo->bank_shift = 0;
740 for (i = pinfo->bank_size; i != 0; i >>= 1)
741 pinfo->bank_shift++;
742 pinfo->bank_shift--;
743 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1;
744 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size;
745 pinfo->bank_param_initialized = 1;
746
747 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", false,
748 false, true);
749 if (h != (struct bfd_link_hash_entry*) NULL
750 && h->type == bfd_link_hash_defined)
751 pinfo->trampoline_addr = (h->u.def.value
752 + h->u.def.section->output_section->vma
753 + h->u.def.section->output_offset);
754 }
755
756 /* Return 1 if the address is in banked memory.
757 This can be applied to a virtual address and to a physical address. */
758 int
759 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr)
760 {
761 if (addr >= pinfo->bank_virtual)
762 return 1;
763
764 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end)
765 return 1;
766
767 return 0;
768 }
769
770 /* Return the physical address seen by the processor, taking
771 into account banked memory. */
772 bfd_vma
773 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr)
774 {
775 if (addr < pinfo->bank_virtual)
776 return addr;
777
778 /* Map the address to the memory bank. */
779 addr -= pinfo->bank_virtual;
780 addr &= pinfo->bank_mask;
781 addr += pinfo->bank_physical;
782 return addr;
783 }
784
785 /* Return the page number corresponding to an address in banked memory. */
786 bfd_vma
787 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr)
788 {
789 if (addr < pinfo->bank_virtual)
790 return 0;
791
792 /* Map the address to the memory bank. */
793 addr -= pinfo->bank_virtual;
794 addr >>= pinfo->bank_shift;
795 addr &= 0x0ff;
796 return addr;
797 }
798
799 /* This function is used for relocs which are only used for relaxing,
800 which the linker should otherwise ignore. */
801
802 bfd_reloc_status_type
803 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED,
804 arelent *reloc_entry,
805 asymbol *symbol ATTRIBUTE_UNUSED,
806 void *data ATTRIBUTE_UNUSED,
807 asection *input_section,
808 bfd *output_bfd,
809 char **error_message ATTRIBUTE_UNUSED)
810 {
811 if (output_bfd != NULL)
812 reloc_entry->address += input_section->output_offset;
813 return bfd_reloc_ok;
814 }
815
816 bfd_reloc_status_type
817 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED,
818 arelent *reloc_entry,
819 asymbol *symbol,
820 void *data ATTRIBUTE_UNUSED,
821 asection *input_section,
822 bfd *output_bfd,
823 char **error_message ATTRIBUTE_UNUSED)
824 {
825 if (output_bfd != (bfd *) NULL
826 && (symbol->flags & BSF_SECTION_SYM) == 0
827 && (! reloc_entry->howto->partial_inplace
828 || reloc_entry->addend == 0))
829 {
830 reloc_entry->address += input_section->output_offset;
831 return bfd_reloc_ok;
832 }
833
834 if (output_bfd != NULL)
835 return bfd_reloc_continue;
836
837 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
838 return bfd_reloc_outofrange;
839
840 abort();
841 }
842
843 /* Look through the relocs for a section during the first phase.
844 Since we don't do .gots or .plts, we just need to consider the
845 virtual table relocs for gc. */
846
847 bool
848 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info,
849 asection *sec, const Elf_Internal_Rela *relocs)
850 {
851 Elf_Internal_Shdr * symtab_hdr;
852 struct elf_link_hash_entry ** sym_hashes;
853 const Elf_Internal_Rela * rel;
854 const Elf_Internal_Rela * rel_end;
855
856 if (bfd_link_relocatable (info))
857 return true;
858
859 symtab_hdr = & elf_tdata (abfd)->symtab_hdr;
860 sym_hashes = elf_sym_hashes (abfd);
861 rel_end = relocs + sec->reloc_count;
862
863 for (rel = relocs; rel < rel_end; rel++)
864 {
865 struct elf_link_hash_entry * h;
866 unsigned long r_symndx;
867
868 r_symndx = ELF32_R_SYM (rel->r_info);
869
870 if (r_symndx < symtab_hdr->sh_info)
871 h = NULL;
872 else
873 {
874 h = sym_hashes [r_symndx - symtab_hdr->sh_info];
875 while (h->root.type == bfd_link_hash_indirect
876 || h->root.type == bfd_link_hash_warning)
877 h = (struct elf_link_hash_entry *) h->root.u.i.link;
878 }
879
880 switch (ELF32_R_TYPE (rel->r_info))
881 {
882 /* This relocation describes the C++ object vtable hierarchy.
883 Reconstruct it for later use during GC. */
884 case R_M68HC11_GNU_VTINHERIT:
885 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
886 return false;
887 break;
888
889 /* This relocation describes which C++ vtable entries are actually
890 used. Record for later use during GC. */
891 case R_M68HC11_GNU_VTENTRY:
892 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
893 return false;
894 break;
895 }
896 }
897
898 return true;
899 }
900
901 static bool ATTRIBUTE_PRINTF (6, 7)
902 reloc_warning (struct bfd_link_info *info, const char *name, bfd *input_bfd,
903 asection *input_section, const Elf_Internal_Rela *rel,
904 const char *fmt, ...)
905 {
906 va_list ap;
907 char *buf;
908 int ret;
909
910 va_start (ap, fmt);
911 ret = vasprintf (&buf, fmt, ap);
912 va_end (ap);
913 if (ret < 0)
914 {
915 bfd_set_error (bfd_error_no_memory);
916 return false;
917 }
918 info->callbacks->warning (info, buf, name, input_bfd, input_section,
919 rel->r_offset);
920 free (buf);
921 return true;
922 }
923
924 /* Relocate a 68hc11/68hc12 ELF section. */
925 int
926 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
927 struct bfd_link_info *info,
928 bfd *input_bfd, asection *input_section,
929 bfd_byte *contents, Elf_Internal_Rela *relocs,
930 Elf_Internal_Sym *local_syms,
931 asection **local_sections)
932 {
933 Elf_Internal_Shdr *symtab_hdr;
934 struct elf_link_hash_entry **sym_hashes;
935 Elf_Internal_Rela *rel, *relend;
936 const char *name = NULL;
937 struct m68hc11_page_info *pinfo;
938 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd);
939 struct m68hc11_elf_link_hash_table *htab;
940 unsigned long e_flags;
941
942 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
943 sym_hashes = elf_sym_hashes (input_bfd);
944 e_flags = elf_elfheader (input_bfd)->e_flags;
945
946 htab = m68hc11_elf_hash_table (info);
947 if (htab == NULL)
948 return false;
949
950 /* Get memory bank parameters. */
951 m68hc11_elf_get_bank_parameters (info);
952
953 pinfo = & htab->pinfo;
954 rel = relocs;
955 relend = relocs + input_section->reloc_count;
956
957 for (; rel < relend; rel++)
958 {
959 int r_type;
960 arelent arel;
961 reloc_howto_type *howto;
962 unsigned long r_symndx;
963 Elf_Internal_Sym *sym;
964 asection *sec;
965 bfd_vma relocation = 0;
966 bfd_reloc_status_type r = bfd_reloc_undefined;
967 bfd_vma phys_page;
968 bfd_vma phys_addr;
969 bfd_vma insn_addr;
970 bfd_vma insn_page;
971 bool is_far = false;
972 bool is_xgate_symbol = false;
973 bool is_section_symbol = false;
974 struct elf_link_hash_entry *h;
975 bfd_vma val;
976 const char *msg;
977
978 r_symndx = ELF32_R_SYM (rel->r_info);
979 r_type = ELF32_R_TYPE (rel->r_info);
980
981 if (r_type == R_M68HC11_GNU_VTENTRY
982 || r_type == R_M68HC11_GNU_VTINHERIT)
983 continue;
984
985 if (! (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel))
986 continue;
987 howto = arel.howto;
988
989 h = NULL;
990 sym = NULL;
991 sec = NULL;
992 if (r_symndx < symtab_hdr->sh_info)
993 {
994 sym = local_syms + r_symndx;
995 sec = local_sections[r_symndx];
996 relocation = (sec->output_section->vma
997 + sec->output_offset
998 + sym->st_value);
999 is_far = (sym && (sym->st_other & STO_M68HC12_FAR));
1000 is_xgate_symbol = (sym && (sym->st_target_internal));
1001 is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION;
1002 }
1003 else
1004 {
1005 bool unresolved_reloc, warned, ignored;
1006
1007 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1008 r_symndx, symtab_hdr, sym_hashes,
1009 h, sec, relocation, unresolved_reloc,
1010 warned, ignored);
1011
1012 is_far = (h && (h->other & STO_M68HC12_FAR));
1013 is_xgate_symbol = (h && (h->target_internal));
1014 }
1015
1016 if (sec != NULL && discarded_section (sec))
1017 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1018 rel, 1, relend, howto, 0, contents);
1019
1020 if (bfd_link_relocatable (info))
1021 {
1022 /* This is a relocatable link. We don't have to change
1023 anything, unless the reloc is against a section symbol,
1024 in which case we have to adjust according to where the
1025 section symbol winds up in the output section. */
1026 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1027 rel->r_addend += sec->output_offset;
1028 continue;
1029 }
1030
1031 if (h != NULL)
1032 name = h->root.root.string;
1033 else
1034 {
1035 name = (bfd_elf_string_from_elf_section
1036 (input_bfd, symtab_hdr->sh_link, sym->st_name));
1037 if (name == NULL || *name == '\0')
1038 name = bfd_section_name (sec);
1039 }
1040
1041 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16)
1042 {
1043 struct elf32_m68hc11_stub_hash_entry* stub;
1044
1045 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table,
1046 name, false, false);
1047 if (stub)
1048 {
1049 relocation = stub->stub_offset
1050 + stub->stub_sec->output_section->vma
1051 + stub->stub_sec->output_offset;
1052 is_far = false;
1053 }
1054 }
1055
1056 /* Do the memory bank mapping. */
1057 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend);
1058 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend);
1059 switch (r_type)
1060 {
1061 case R_M68HC12_LO8XG:
1062 /* This relocation is specific to XGATE IMM16 calls and will precede
1063 a HI8. tc-m68hc11 only generates them in pairs.
1064 Leave the relocation to the HI8XG step. */
1065 r = bfd_reloc_ok;
1066 r_type = R_M68HC11_NONE;
1067 break;
1068
1069 case R_M68HC12_HI8XG:
1070 /* This relocation is specific to XGATE IMM16 calls and must follow
1071 a LO8XG. Does not actually check that it was a LO8XG.
1072 Adjusts high and low bytes. */
1073 relocation = phys_addr;
1074 if ((e_flags & E_M68HC11_XGATE_RAMOFFSET)
1075 && (relocation >= 0x2000))
1076 relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */
1077
1078 /* Fetch 16 bit value including low byte in previous insn. */
1079 val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8)
1080 | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2);
1081
1082 /* Add on value to preserve carry, then write zero to high byte. */
1083 relocation += val;
1084
1085 /* Write out top byte. */
1086 bfd_put_8 (input_bfd, (relocation >> 8) & 0xff,
1087 (bfd_byte*) contents + rel->r_offset);
1088
1089 /* Write out low byte to previous instruction. */
1090 bfd_put_8 (input_bfd, relocation & 0xff,
1091 (bfd_byte*) contents + rel->r_offset - 2);
1092
1093 /* Mark as relocation completed. */
1094 r = bfd_reloc_ok;
1095 r_type = R_M68HC11_NONE;
1096 break;
1097
1098 /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr)
1099 assembler directives. %hi does not support carry. */
1100 case R_M68HC11_HI8:
1101 case R_M68HC11_LO8:
1102 relocation = phys_addr;
1103 break;
1104
1105 case R_M68HC11_24:
1106 /* Reloc used by 68HC12 call instruction. */
1107 bfd_put_16 (input_bfd, phys_addr,
1108 (bfd_byte*) contents + rel->r_offset);
1109 bfd_put_8 (input_bfd, phys_page,
1110 (bfd_byte*) contents + rel->r_offset + 2);
1111 r = bfd_reloc_ok;
1112 r_type = R_M68HC11_NONE;
1113 break;
1114
1115 case R_M68HC11_NONE:
1116 r = bfd_reloc_ok;
1117 break;
1118
1119 case R_M68HC11_LO16:
1120 /* Reloc generated by %addr(expr) gas to obtain the
1121 address as mapped in the memory bank window. */
1122 relocation = phys_addr;
1123 break;
1124
1125 case R_M68HC11_PAGE:
1126 /* Reloc generated by %page(expr) gas to obtain the
1127 page number associated with the address. */
1128 relocation = phys_page;
1129 break;
1130
1131 case R_M68HC11_16:
1132 if (is_far)
1133 {
1134 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1135 _("reference to the far symbol `%s' using a "
1136 "wrong relocation may result in incorrect "
1137 "execution"), name))
1138 return false;
1139 }
1140
1141 /* Get virtual address of instruction having the relocation. */
1142 insn_addr = input_section->output_section->vma
1143 + input_section->output_offset
1144 + rel->r_offset;
1145
1146 insn_page = m68hc11_phys_page (pinfo, insn_addr);
1147
1148 /* If we are linking an S12 instruction against an XGATE symbol, we
1149 need to change the offset of the symbol value so that it's correct
1150 from the S12's perspective. */
1151 if (is_xgate_symbol)
1152 {
1153 /* The ram in the global space is mapped to 0x2000 in the 16-bit
1154 address space for S12 and 0xE000 in the 16-bit address space
1155 for XGATE. */
1156 if (relocation >= 0xE000)
1157 {
1158 /* We offset the address by the difference
1159 between these two mappings. */
1160 relocation -= 0xC000;
1161 break;
1162 }
1163 else
1164 {
1165 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1166 _("XGATE address (%lx) is not within "
1167 "shared RAM(0xE000-0xFFFF), therefore "
1168 "you must manually offset the address, "
1169 "and possibly manage the page, in your "
1170 "code."), (long) phys_addr))
1171 return false;
1172 break;
1173 }
1174 }
1175
1176 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)
1177 && m68hc11_addr_is_banked (pinfo, insn_addr)
1178 && phys_page != insn_page
1179 && !(e_flags & E_M68HC11_NO_BANK_WARNING))
1180 {
1181 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1182 _("banked address [%lx:%04lx] (%lx) is not "
1183 "in the same bank as current banked "
1184 "address [%lx:%04lx] (%lx)"),
1185 (long) phys_page, (long) phys_addr,
1186 (long) (relocation + rel->r_addend),
1187 (long) insn_page,
1188 (long) m68hc11_phys_addr (pinfo, insn_addr),
1189 (long) insn_addr))
1190 return false;
1191 break;
1192 }
1193
1194 if (phys_page != 0 && insn_page == 0)
1195 {
1196 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1197 _("reference to a banked address [%lx:%04lx] "
1198 "in the normal address space at %04lx"),
1199 (long) phys_page, (long) phys_addr,
1200 (long) insn_addr))
1201 return false;
1202 relocation = phys_addr;
1203 break;
1204 }
1205
1206 /* If this is a banked address use the phys_addr so that
1207 we stay in the banked window. */
1208 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend))
1209 relocation = phys_addr;
1210 break;
1211 }
1212
1213 /* If we are linking an XGATE instruction against an S12 symbol, we
1214 need to change the offset of the symbol value so that it's correct
1215 from the XGATE's perspective. */
1216 if (!strcmp (howto->name, "R_XGATE_IMM8_LO")
1217 || !strcmp (howto->name, "R_XGATE_IMM8_HI"))
1218 {
1219 /* We can only offset S12 addresses that lie within the non-paged
1220 area of RAM. */
1221 if (!is_xgate_symbol && !is_section_symbol)
1222 {
1223 /* The ram in the global space is mapped to 0x2000 and stops at
1224 0x4000 in the 16-bit address space for S12 and 0xE000 in the
1225 16-bit address space for XGATE. */
1226 if (relocation >= 0x2000 && relocation < 0x4000)
1227 /* We offset the address by the difference
1228 between these two mappings. */
1229 relocation += 0xC000;
1230 else
1231 {
1232 if (!reloc_warning (info, name, input_bfd, input_section, rel,
1233 _("S12 address (%lx) is not within "
1234 "shared RAM(0x2000-0x4000), therefore "
1235 "you must manually offset the address "
1236 "in your code"), (long) phys_addr))
1237 return false;
1238 break;
1239 }
1240 }
1241 }
1242
1243 if (r_type != R_M68HC11_NONE)
1244 {
1245 if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10))
1246 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1247 contents, rel->r_offset,
1248 relocation - 2, rel->r_addend);
1249 else
1250 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
1251 contents, rel->r_offset,
1252 relocation, rel->r_addend);
1253 }
1254
1255 if (r != bfd_reloc_ok)
1256 {
1257 switch (r)
1258 {
1259 case bfd_reloc_overflow:
1260 (*info->callbacks->reloc_overflow)
1261 (info, NULL, name, howto->name, (bfd_vma) 0,
1262 input_bfd, input_section, rel->r_offset);
1263 break;
1264
1265 case bfd_reloc_undefined:
1266 (*info->callbacks->undefined_symbol)
1267 (info, name, input_bfd, input_section, rel->r_offset, true);
1268 break;
1269
1270 case bfd_reloc_outofrange:
1271 msg = _ ("internal error: out of range error");
1272 goto common_error;
1273
1274 case bfd_reloc_notsupported:
1275 msg = _ ("internal error: unsupported relocation error");
1276 goto common_error;
1277
1278 case bfd_reloc_dangerous:
1279 msg = _ ("internal error: dangerous error");
1280 goto common_error;
1281
1282 default:
1283 msg = _ ("internal error: unknown error");
1284 /* fall through */
1285
1286 common_error:
1287 (*info->callbacks->warning) (info, msg, name, input_bfd,
1288 input_section, rel->r_offset);
1289 break;
1290 }
1291 }
1292 }
1293
1294 return true;
1295 }
1296
1297
1298 \f
1299 /* Set and control ELF flags in ELF header. */
1300
1301 bool
1302 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags)
1303 {
1304 BFD_ASSERT (!elf_flags_init (abfd)
1305 || elf_elfheader (abfd)->e_flags == flags);
1306
1307 elf_elfheader (abfd)->e_flags = flags;
1308 elf_flags_init (abfd) = true;
1309 return true;
1310 }
1311
1312 /* Merge backend specific data from an object file to the output
1313 object file when linking. */
1314
1315 bool
1316 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
1317 {
1318 bfd *obfd = info->output_bfd;
1319 flagword old_flags;
1320 flagword new_flags;
1321 bool ok = true;
1322
1323 /* Check if we have the same endianness */
1324 if (!_bfd_generic_verify_endian_match (ibfd, info))
1325 return false;
1326
1327 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1328 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1329 return true;
1330
1331 new_flags = elf_elfheader (ibfd)->e_flags;
1332 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI;
1333 old_flags = elf_elfheader (obfd)->e_flags;
1334
1335 if (! elf_flags_init (obfd))
1336 {
1337 elf_flags_init (obfd) = true;
1338 elf_elfheader (obfd)->e_flags = new_flags;
1339 elf_elfheader (obfd)->e_ident[EI_CLASS]
1340 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
1341
1342 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
1343 && bfd_get_arch_info (obfd)->the_default)
1344 {
1345 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
1346 bfd_get_mach (ibfd)))
1347 return false;
1348 }
1349
1350 return true;
1351 }
1352
1353 /* Check ABI compatibility. */
1354 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32))
1355 {
1356 _bfd_error_handler
1357 (_("%pB: linking files compiled for 16-bit integers (-mshort) "
1358 "and others for 32-bit integers"), ibfd);
1359 ok = false;
1360 }
1361 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64))
1362 {
1363 _bfd_error_handler
1364 (_("%pB: linking files compiled for 32-bit double (-fshort-double) "
1365 "and others for 64-bit double"), ibfd);
1366 ok = false;
1367 }
1368
1369 /* Processor compatibility. */
1370 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags))
1371 {
1372 _bfd_error_handler
1373 (_("%pB: linking files compiled for HCS12 with "
1374 "others compiled for HC12"), ibfd);
1375 ok = false;
1376 }
1377 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK)
1378 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags)));
1379
1380 elf_elfheader (obfd)->e_flags = new_flags;
1381
1382 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1383 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK);
1384
1385 /* Warn about any other mismatches */
1386 if (new_flags != old_flags)
1387 {
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"),
1391 ibfd, new_flags, old_flags);
1392 ok = false;
1393 }
1394
1395 if (! ok)
1396 {
1397 bfd_set_error (bfd_error_bad_value);
1398 return false;
1399 }
1400
1401 return true;
1402 }
1403
1404 bool
1405 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr)
1406 {
1407 FILE *file = (FILE *) ptr;
1408
1409 BFD_ASSERT (abfd != NULL && ptr != NULL);
1410
1411 /* Print normal ELF private data. */
1412 _bfd_elf_print_private_bfd_data (abfd, ptr);
1413
1414 /* xgettext:c-format */
1415 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1416
1417 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32)
1418 fprintf (file, _("[abi=32-bit int, "));
1419 else
1420 fprintf (file, _("[abi=16-bit int, "));
1421
1422 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64)
1423 fprintf (file, _("64-bit double, "));
1424 else
1425 fprintf (file, _("32-bit double, "));
1426
1427 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0)
1428 fprintf (file, _("cpu=HC11]"));
1429 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH)
1430 fprintf (file, _("cpu=HCS12]"));
1431 else
1432 fprintf (file, _("cpu=HC12]"));
1433
1434 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS)
1435 fprintf (file, _(" [memory=bank-model]"));
1436 else
1437 fprintf (file, _(" [memory=flat]"));
1438
1439 if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET)
1440 fprintf (file, _(" [XGATE RAM offsetting]"));
1441
1442 fputc ('\n', file);
1443
1444 return true;
1445 }
1446
1447 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED,
1448 asection *asect, void *arg)
1449 {
1450 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg;
1451
1452 if (asect->vma >= p->pinfo->bank_virtual)
1453 p->use_memory_banks = true;
1454 }
1455
1456 /* Tweak the OSABI field of the elf header. */
1457
1458 bool
1459 elf32_m68hc11_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
1460 {
1461 struct m68hc11_scan_param param;
1462 struct m68hc11_elf_link_hash_table *htab;
1463
1464 if (!_bfd_elf_init_file_header (abfd, link_info))
1465 return false;
1466
1467 if (link_info == NULL)
1468 return true;
1469
1470 htab = m68hc11_elf_hash_table (link_info);
1471 if (htab == NULL)
1472 return true;
1473
1474 m68hc11_elf_get_bank_parameters (link_info);
1475
1476 param.use_memory_banks = false;
1477 param.pinfo = & htab->pinfo;
1478
1479 bfd_map_over_sections (abfd, scan_sections_for_abi, &param);
1480
1481 if (param.use_memory_banks)
1482 {
1483 Elf_Internal_Ehdr * i_ehdrp;
1484
1485 i_ehdrp = elf_elfheader (abfd);
1486 i_ehdrp->e_flags |= E_M68HC12_BANKS;
1487 }
1488 return true;
1489 }