]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-xtensa.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
36 #define OCTETS_PER_BYTE(ABFD, SEC) 1
37
38 #define XTENSA_NO_NOP_REMOVAL 0
39
40 #ifndef XSHAL_ABI
41 #define XSHAL_ABI 0
42 #endif
43
44 #ifndef XTHAL_ABI_UNDEFINED
45 #define XTHAL_ABI_UNDEFINED -1
46 #endif
47
48 #ifndef XTHAL_ABI_WINDOWED
49 #define XTHAL_ABI_WINDOWED 0
50 #endif
51
52 #ifndef XTHAL_ABI_CALL0
53 #define XTHAL_ABI_CALL0 1
54 #endif
55
56 /* Local helper functions. */
57
58 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
59 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
60 static bfd_reloc_status_type bfd_elf_xtensa_reloc
61 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
62 static bfd_boolean do_fix_for_relocatable_link
63 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
64 static void do_fix_for_final_link
65 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
66
67 /* Local functions to handle Xtensa configurability. */
68
69 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
70 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
71 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
72 static xtensa_opcode get_const16_opcode (void);
73 static xtensa_opcode get_l32r_opcode (void);
74 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
75 static int get_relocation_opnd (xtensa_opcode, int);
76 static int get_relocation_slot (int);
77 static xtensa_opcode get_relocation_opcode
78 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
79 static bfd_boolean is_l32r_relocation
80 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
81 static bfd_boolean is_alt_relocation (int);
82 static bfd_boolean is_operand_relocation (int);
83 static bfd_size_type insn_decode_len
84 (bfd_byte *, bfd_size_type, bfd_size_type);
85 static int insn_num_slots
86 (bfd_byte *, bfd_size_type, bfd_size_type);
87 static xtensa_opcode insn_decode_opcode
88 (bfd_byte *, bfd_size_type, bfd_size_type, int);
89 static bfd_boolean check_branch_target_aligned
90 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
91 static bfd_boolean check_loop_aligned
92 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
93 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
94 static bfd_size_type get_asm_simplify_size
95 (bfd_byte *, bfd_size_type, bfd_size_type);
96
97 /* Functions for link-time code simplifications. */
98
99 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
100 (bfd_byte *, bfd_vma, bfd_vma, char **);
101 static bfd_reloc_status_type contract_asm_expansion
102 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
103 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
104 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
105
106 /* Access to internal relocations, section contents and symbols. */
107
108 static Elf_Internal_Rela *retrieve_internal_relocs
109 (bfd *, asection *, bfd_boolean);
110 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
111 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
112 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
113 static void pin_contents (asection *, bfd_byte *);
114 static void release_contents (asection *, bfd_byte *);
115 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
116
117 /* Miscellaneous utility functions. */
118
119 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
120 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
121 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
122 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
123 (bfd *, unsigned long);
124 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
125 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
126 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
127 static bfd_boolean xtensa_is_property_section (asection *);
128 static bfd_boolean xtensa_is_insntable_section (asection *);
129 static bfd_boolean xtensa_is_littable_section (asection *);
130 static bfd_boolean xtensa_is_proptable_section (asection *);
131 static int internal_reloc_compare (const void *, const void *);
132 static int internal_reloc_matches (const void *, const void *);
133 static asection *xtensa_get_property_section (asection *, const char *);
134 static flagword xtensa_get_property_predef_flags (asection *);
135
136 /* Other functions called directly by the linker. */
137
138 typedef void (*deps_callback_t)
139 (asection *, bfd_vma, asection *, bfd_vma, void *);
140 extern bfd_boolean xtensa_callback_required_dependence
141 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
142
143
144 /* Globally visible flag for choosing size optimization of NOP removal
145 instead of branch-target-aware minimization for NOP removal.
146 When nonzero, narrow all instructions and remove all NOPs possible
147 around longcall expansions. */
148
149 int elf32xtensa_size_opt;
150
151
152 /* The "new_section_hook" is used to set up a per-section
153 "xtensa_relax_info" data structure with additional information used
154 during relaxation. */
155
156 typedef struct xtensa_relax_info_struct xtensa_relax_info;
157
158
159 /* The GNU tools do not easily allow extending interfaces to pass around
160 the pointer to the Xtensa ISA information, so instead we add a global
161 variable here (in BFD) that can be used by any of the tools that need
162 this information. */
163
164 xtensa_isa xtensa_default_isa;
165
166
167 /* When this is true, relocations may have been modified to refer to
168 symbols from other input files. The per-section list of "fix"
169 records needs to be checked when resolving relocations. */
170
171 static bfd_boolean relaxing_section = FALSE;
172
173 /* When this is true, during final links, literals that cannot be
174 coalesced and their relocations may be moved to other sections. */
175
176 int elf32xtensa_no_literal_movement = 1;
177
178 /* Place property records for a section into individual property section
179 with xt.prop. prefix. */
180
181 bfd_boolean elf32xtensa_separate_props = FALSE;
182
183 /* Xtensa ABI. It affects PLT entry code. */
184
185 int elf32xtensa_abi = XTHAL_ABI_UNDEFINED;
186
187 /* Rename one of the generic section flags to better document how it
188 is used here. */
189 /* Whether relocations have been processed. */
190 #define reloc_done sec_flg0
191 \f
192 static reloc_howto_type elf_howto_table[] =
193 {
194 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
195 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
196 FALSE, 0, 0, FALSE),
197 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
198 bfd_elf_xtensa_reloc, "R_XTENSA_32",
199 TRUE, 0xffffffff, 0xffffffff, FALSE),
200
201 /* Replace a 32-bit value with a value from the runtime linker (only
202 used by linker-generated stub functions). The r_addend value is
203 special: 1 means to substitute a pointer to the runtime linker's
204 dynamic resolver function; 2 means to substitute the link map for
205 the shared object. */
206 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
207 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
208
209 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
210 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
211 FALSE, 0, 0xffffffff, FALSE),
212 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
213 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
214 FALSE, 0, 0xffffffff, FALSE),
215 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
216 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
217 FALSE, 0, 0xffffffff, FALSE),
218 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
219 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
220 FALSE, 0, 0xffffffff, FALSE),
221
222 EMPTY_HOWTO (7),
223
224 /* Old relocations for backward compatibility. */
225 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
226 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
227 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
228 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
229 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
230 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
231
232 /* Assembly auto-expansion. */
233 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
235 /* Relax assembly auto-expansion. */
236 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
238
239 EMPTY_HOWTO (13),
240
241 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
242 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
243 FALSE, 0, 0xffffffff, TRUE),
244
245 /* GNU extension to record C++ vtable hierarchy. */
246 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
247 NULL, "R_XTENSA_GNU_VTINHERIT",
248 FALSE, 0, 0, FALSE),
249 /* GNU extension to record C++ vtable member usage. */
250 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
251 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
252 FALSE, 0, 0, FALSE),
253
254 /* Relocations for supporting difference of symbols. */
255 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
256 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
257 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
258 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
259 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
260 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
261
262 /* General immediate operand relocations. */
263 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
264 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
265 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
293
294 /* "Alternate" relocations. The meaning of these is opcode-specific. */
295 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
296 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
297 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
299 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
300 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
301 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
303 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
305 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
306 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
307 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
309 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
311 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
312 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
313 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
315 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
317 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
318 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
319 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
320 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
321 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
322 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
323 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
324 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
325
326 /* TLS relocations. */
327 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
328 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
329 FALSE, 0, 0xffffffff, FALSE),
330 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
331 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
332 FALSE, 0, 0xffffffff, FALSE),
333 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
334 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
335 FALSE, 0, 0xffffffff, FALSE),
336 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
337 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
338 FALSE, 0, 0xffffffff, FALSE),
339 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
340 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
341 FALSE, 0, 0, FALSE),
342 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
343 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
344 FALSE, 0, 0, FALSE),
345 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
346 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
347 FALSE, 0, 0, FALSE),
348
349 HOWTO (R_XTENSA_PDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
350 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF8", FALSE, 0, 0xff, FALSE),
351 HOWTO (R_XTENSA_PDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
352 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF16", FALSE, 0, 0xffff, FALSE),
353 HOWTO (R_XTENSA_PDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
354 bfd_elf_xtensa_reloc, "R_XTENSA_PDIFF32", FALSE, 0, 0xffffffff, FALSE),
355
356 HOWTO (R_XTENSA_NDIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield,
357 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF8", FALSE, 0, 0xff, FALSE),
358 HOWTO (R_XTENSA_NDIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
359 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF16", FALSE, 0, 0xffff, FALSE),
360 HOWTO (R_XTENSA_NDIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
361 bfd_elf_xtensa_reloc, "R_XTENSA_NDIFF32", FALSE, 0, 0xffffffff, FALSE),
362 };
363
364 #if DEBUG_GEN_RELOC
365 #define TRACE(str) \
366 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
367 #else
368 #define TRACE(str)
369 #endif
370
371 static reloc_howto_type *
372 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
373 bfd_reloc_code_real_type code)
374 {
375 switch (code)
376 {
377 case BFD_RELOC_NONE:
378 TRACE ("BFD_RELOC_NONE");
379 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
380
381 case BFD_RELOC_32:
382 TRACE ("BFD_RELOC_32");
383 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
384
385 case BFD_RELOC_32_PCREL:
386 TRACE ("BFD_RELOC_32_PCREL");
387 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
388
389 case BFD_RELOC_XTENSA_DIFF8:
390 TRACE ("BFD_RELOC_XTENSA_DIFF8");
391 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
392
393 case BFD_RELOC_XTENSA_DIFF16:
394 TRACE ("BFD_RELOC_XTENSA_DIFF16");
395 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
396
397 case BFD_RELOC_XTENSA_DIFF32:
398 TRACE ("BFD_RELOC_XTENSA_DIFF32");
399 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
400
401 case BFD_RELOC_XTENSA_PDIFF8:
402 TRACE ("BFD_RELOC_XTENSA_PDIFF8");
403 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF8 ];
404
405 case BFD_RELOC_XTENSA_PDIFF16:
406 TRACE ("BFD_RELOC_XTENSA_PDIFF16");
407 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF16 ];
408
409 case BFD_RELOC_XTENSA_PDIFF32:
410 TRACE ("BFD_RELOC_XTENSA_PDIFF32");
411 return &elf_howto_table[(unsigned) R_XTENSA_PDIFF32 ];
412
413 case BFD_RELOC_XTENSA_NDIFF8:
414 TRACE ("BFD_RELOC_XTENSA_NDIFF8");
415 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF8 ];
416
417 case BFD_RELOC_XTENSA_NDIFF16:
418 TRACE ("BFD_RELOC_XTENSA_NDIFF16");
419 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF16 ];
420
421 case BFD_RELOC_XTENSA_NDIFF32:
422 TRACE ("BFD_RELOC_XTENSA_NDIFF32");
423 return &elf_howto_table[(unsigned) R_XTENSA_NDIFF32 ];
424
425 case BFD_RELOC_XTENSA_RTLD:
426 TRACE ("BFD_RELOC_XTENSA_RTLD");
427 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
428
429 case BFD_RELOC_XTENSA_GLOB_DAT:
430 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
431 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
432
433 case BFD_RELOC_XTENSA_JMP_SLOT:
434 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
435 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
436
437 case BFD_RELOC_XTENSA_RELATIVE:
438 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
439 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
440
441 case BFD_RELOC_XTENSA_PLT:
442 TRACE ("BFD_RELOC_XTENSA_PLT");
443 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
444
445 case BFD_RELOC_XTENSA_OP0:
446 TRACE ("BFD_RELOC_XTENSA_OP0");
447 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
448
449 case BFD_RELOC_XTENSA_OP1:
450 TRACE ("BFD_RELOC_XTENSA_OP1");
451 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
452
453 case BFD_RELOC_XTENSA_OP2:
454 TRACE ("BFD_RELOC_XTENSA_OP2");
455 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
456
457 case BFD_RELOC_XTENSA_ASM_EXPAND:
458 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
459 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
460
461 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
462 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
463 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
464
465 case BFD_RELOC_VTABLE_INHERIT:
466 TRACE ("BFD_RELOC_VTABLE_INHERIT");
467 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
468
469 case BFD_RELOC_VTABLE_ENTRY:
470 TRACE ("BFD_RELOC_VTABLE_ENTRY");
471 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
472
473 case BFD_RELOC_XTENSA_TLSDESC_FN:
474 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
475 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
476
477 case BFD_RELOC_XTENSA_TLSDESC_ARG:
478 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
479 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
480
481 case BFD_RELOC_XTENSA_TLS_DTPOFF:
482 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
483 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
484
485 case BFD_RELOC_XTENSA_TLS_TPOFF:
486 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
487 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
488
489 case BFD_RELOC_XTENSA_TLS_FUNC:
490 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
491 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
492
493 case BFD_RELOC_XTENSA_TLS_ARG:
494 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
495 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
496
497 case BFD_RELOC_XTENSA_TLS_CALL:
498 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
499 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
500
501 default:
502 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
503 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
504 {
505 unsigned n = (R_XTENSA_SLOT0_OP +
506 (code - BFD_RELOC_XTENSA_SLOT0_OP));
507 return &elf_howto_table[n];
508 }
509
510 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
511 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
512 {
513 unsigned n = (R_XTENSA_SLOT0_ALT +
514 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
515 return &elf_howto_table[n];
516 }
517
518 break;
519 }
520
521 /* xgettext:c-format */
522 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
523 bfd_set_error (bfd_error_bad_value);
524 TRACE ("Unknown");
525 return NULL;
526 }
527
528 static reloc_howto_type *
529 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
530 const char *r_name)
531 {
532 unsigned int i;
533
534 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
535 if (elf_howto_table[i].name != NULL
536 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
537 return &elf_howto_table[i];
538
539 return NULL;
540 }
541
542
543 /* Given an ELF "rela" relocation, find the corresponding howto and record
544 it in the BFD internal arelent representation of the relocation. */
545
546 static bfd_boolean
547 elf_xtensa_info_to_howto_rela (bfd *abfd,
548 arelent *cache_ptr,
549 Elf_Internal_Rela *dst)
550 {
551 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
552
553 if (r_type >= (unsigned int) R_XTENSA_max)
554 {
555 /* xgettext:c-format */
556 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
557 abfd, r_type);
558 bfd_set_error (bfd_error_bad_value);
559 return FALSE;
560 }
561 cache_ptr->howto = &elf_howto_table[r_type];
562 return TRUE;
563 }
564
565 \f
566 /* Functions for the Xtensa ELF linker. */
567
568 /* The name of the dynamic interpreter. This is put in the .interp
569 section. */
570
571 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
572
573 /* The size in bytes of an entry in the procedure linkage table.
574 (This does _not_ include the space for the literals associated with
575 the PLT entry.) */
576
577 #define PLT_ENTRY_SIZE 16
578
579 /* For _really_ large PLTs, we may need to alternate between literals
580 and code to keep the literals within the 256K range of the L32R
581 instructions in the code. It's unlikely that anyone would ever need
582 such a big PLT, but an arbitrary limit on the PLT size would be bad.
583 Thus, we split the PLT into chunks. Since there's very little
584 overhead (2 extra literals) for each chunk, the chunk size is kept
585 small so that the code for handling multiple chunks get used and
586 tested regularly. With 254 entries, there are 1K of literals for
587 each chunk, and that seems like a nice round number. */
588
589 #define PLT_ENTRIES_PER_CHUNK 254
590
591 /* PLT entries are actually used as stub functions for lazy symbol
592 resolution. Once the symbol is resolved, the stub function is never
593 invoked. Note: the 32-byte frame size used here cannot be changed
594 without a corresponding change in the runtime linker. */
595
596 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
597 {
598 {
599 0x6c, 0x10, 0x04, /* entry sp, 32 */
600 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
601 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
602 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
603 0x0a, 0x80, 0x00, /* jx a8 */
604 0 /* unused */
605 },
606 {
607 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
608 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
609 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
610 0x0a, 0x80, 0x00, /* jx a8 */
611 0 /* unused */
612 }
613 };
614
615 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
616 {
617 {
618 0x36, 0x41, 0x00, /* entry sp, 32 */
619 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
620 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
621 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
622 0xa0, 0x08, 0x00, /* jx a8 */
623 0 /* unused */
624 },
625 {
626 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
627 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
628 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
629 0xa0, 0x08, 0x00, /* jx a8 */
630 0 /* unused */
631 }
632 };
633
634 /* The size of the thread control block. */
635 #define TCB_SIZE 8
636
637 struct elf_xtensa_link_hash_entry
638 {
639 struct elf_link_hash_entry elf;
640
641 bfd_signed_vma tlsfunc_refcount;
642
643 #define GOT_UNKNOWN 0
644 #define GOT_NORMAL 1
645 #define GOT_TLS_GD 2 /* global or local dynamic */
646 #define GOT_TLS_IE 4 /* initial or local exec */
647 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
648 unsigned char tls_type;
649 };
650
651 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
652
653 struct elf_xtensa_obj_tdata
654 {
655 struct elf_obj_tdata root;
656
657 /* tls_type for each local got entry. */
658 char *local_got_tls_type;
659
660 bfd_signed_vma *local_tlsfunc_refcounts;
661 };
662
663 #define elf_xtensa_tdata(abfd) \
664 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
665
666 #define elf_xtensa_local_got_tls_type(abfd) \
667 (elf_xtensa_tdata (abfd)->local_got_tls_type)
668
669 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
670 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
671
672 #define is_xtensa_elf(bfd) \
673 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
674 && elf_tdata (bfd) != NULL \
675 && elf_object_id (bfd) == XTENSA_ELF_DATA)
676
677 static bfd_boolean
678 elf_xtensa_mkobject (bfd *abfd)
679 {
680 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
681 XTENSA_ELF_DATA);
682 }
683
684 /* Xtensa ELF linker hash table. */
685
686 struct elf_xtensa_link_hash_table
687 {
688 struct elf_link_hash_table elf;
689
690 /* Short-cuts to get to dynamic linker sections. */
691 asection *sgotloc;
692 asection *spltlittbl;
693
694 /* Total count of PLT relocations seen during check_relocs.
695 The actual PLT code must be split into multiple sections and all
696 the sections have to be created before size_dynamic_sections,
697 where we figure out the exact number of PLT entries that will be
698 needed. It is OK if this count is an overestimate, e.g., some
699 relocations may be removed by GC. */
700 int plt_reloc_count;
701
702 struct elf_xtensa_link_hash_entry *tlsbase;
703 };
704
705 /* Get the Xtensa ELF linker hash table from a link_info structure. */
706
707 #define elf_xtensa_hash_table(p) \
708 ((is_elf_hash_table ((p)->hash) \
709 && elf_hash_table_id (elf_hash_table (p)) == XTENSA_ELF_DATA) \
710 ? (struct elf_xtensa_link_hash_table *) (p)->hash : NULL)
711
712 /* Create an entry in an Xtensa ELF linker hash table. */
713
714 static struct bfd_hash_entry *
715 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
716 struct bfd_hash_table *table,
717 const char *string)
718 {
719 /* Allocate the structure if it has not already been allocated by a
720 subclass. */
721 if (entry == NULL)
722 {
723 entry = bfd_hash_allocate (table,
724 sizeof (struct elf_xtensa_link_hash_entry));
725 if (entry == NULL)
726 return entry;
727 }
728
729 /* Call the allocation method of the superclass. */
730 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
731 if (entry != NULL)
732 {
733 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
734 eh->tlsfunc_refcount = 0;
735 eh->tls_type = GOT_UNKNOWN;
736 }
737
738 return entry;
739 }
740
741 /* Create an Xtensa ELF linker hash table. */
742
743 static struct bfd_link_hash_table *
744 elf_xtensa_link_hash_table_create (bfd *abfd)
745 {
746 struct elf_link_hash_entry *tlsbase;
747 struct elf_xtensa_link_hash_table *ret;
748 size_t amt = sizeof (struct elf_xtensa_link_hash_table);
749
750 ret = bfd_zmalloc (amt);
751 if (ret == NULL)
752 return NULL;
753
754 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
755 elf_xtensa_link_hash_newfunc,
756 sizeof (struct elf_xtensa_link_hash_entry),
757 XTENSA_ELF_DATA))
758 {
759 free (ret);
760 return NULL;
761 }
762
763 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
764 for it later. */
765 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
766 TRUE, FALSE, FALSE);
767 tlsbase->root.type = bfd_link_hash_new;
768 tlsbase->root.u.undef.abfd = NULL;
769 tlsbase->non_elf = 0;
770 ret->elf.dt_pltgot_required = TRUE;
771 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
772 ret->tlsbase->tls_type = GOT_UNKNOWN;
773
774 return &ret->elf.root;
775 }
776
777 /* Copy the extra info we tack onto an elf_link_hash_entry. */
778
779 static void
780 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
781 struct elf_link_hash_entry *dir,
782 struct elf_link_hash_entry *ind)
783 {
784 struct elf_xtensa_link_hash_entry *edir, *eind;
785
786 edir = elf_xtensa_hash_entry (dir);
787 eind = elf_xtensa_hash_entry (ind);
788
789 if (ind->root.type == bfd_link_hash_indirect)
790 {
791 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
792 eind->tlsfunc_refcount = 0;
793
794 if (dir->got.refcount <= 0)
795 {
796 edir->tls_type = eind->tls_type;
797 eind->tls_type = GOT_UNKNOWN;
798 }
799 }
800
801 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
802 }
803
804 static inline bfd_boolean
805 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
806 struct bfd_link_info *info)
807 {
808 /* Check if we should do dynamic things to this symbol. The
809 "ignore_protected" argument need not be set, because Xtensa code
810 does not require special handling of STV_PROTECTED to make function
811 pointer comparisons work properly. The PLT addresses are never
812 used for function pointers. */
813
814 return _bfd_elf_dynamic_symbol_p (h, info, 0);
815 }
816
817 \f
818 static int
819 property_table_compare (const void *ap, const void *bp)
820 {
821 const property_table_entry *a = (const property_table_entry *) ap;
822 const property_table_entry *b = (const property_table_entry *) bp;
823
824 if (a->address == b->address)
825 {
826 if (a->size != b->size)
827 return (a->size - b->size);
828
829 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
830 return ((b->flags & XTENSA_PROP_ALIGN)
831 - (a->flags & XTENSA_PROP_ALIGN));
832
833 if ((a->flags & XTENSA_PROP_ALIGN)
834 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
835 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
836 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
837 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
838
839 if ((a->flags & XTENSA_PROP_UNREACHABLE)
840 != (b->flags & XTENSA_PROP_UNREACHABLE))
841 return ((b->flags & XTENSA_PROP_UNREACHABLE)
842 - (a->flags & XTENSA_PROP_UNREACHABLE));
843
844 return (a->flags - b->flags);
845 }
846
847 return (a->address - b->address);
848 }
849
850
851 static int
852 property_table_matches (const void *ap, const void *bp)
853 {
854 const property_table_entry *a = (const property_table_entry *) ap;
855 const property_table_entry *b = (const property_table_entry *) bp;
856
857 /* Check if one entry overlaps with the other. */
858 if ((b->address >= a->address && b->address < (a->address + a->size))
859 || (a->address >= b->address && a->address < (b->address + b->size)))
860 return 0;
861
862 return (a->address - b->address);
863 }
864
865
866 /* Get the literal table or property table entries for the given
867 section. Sets TABLE_P and returns the number of entries. On
868 error, returns a negative value. */
869
870 int
871 xtensa_read_table_entries (bfd *abfd,
872 asection *section,
873 property_table_entry **table_p,
874 const char *sec_name,
875 bfd_boolean output_addr)
876 {
877 asection *table_section;
878 bfd_size_type table_size = 0;
879 bfd_byte *table_data;
880 property_table_entry *blocks;
881 int blk, block_count;
882 bfd_size_type num_records;
883 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
884 bfd_vma section_addr, off;
885 flagword predef_flags;
886 bfd_size_type table_entry_size, section_limit;
887
888 if (!section
889 || !(section->flags & SEC_ALLOC)
890 || (section->flags & SEC_DEBUGGING))
891 {
892 *table_p = NULL;
893 return 0;
894 }
895
896 table_section = xtensa_get_property_section (section, sec_name);
897 if (table_section)
898 table_size = table_section->size;
899
900 if (table_size == 0)
901 {
902 *table_p = NULL;
903 return 0;
904 }
905
906 predef_flags = xtensa_get_property_predef_flags (table_section);
907 table_entry_size = 12;
908 if (predef_flags)
909 table_entry_size -= 4;
910
911 num_records = table_size / table_entry_size;
912 table_data = retrieve_contents (abfd, table_section, TRUE);
913 blocks = (property_table_entry *)
914 bfd_malloc (num_records * sizeof (property_table_entry));
915 block_count = 0;
916
917 if (output_addr)
918 section_addr = section->output_section->vma + section->output_offset;
919 else
920 section_addr = section->vma;
921
922 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
923 if (internal_relocs && !table_section->reloc_done)
924 {
925 qsort (internal_relocs, table_section->reloc_count,
926 sizeof (Elf_Internal_Rela), internal_reloc_compare);
927 irel = internal_relocs;
928 }
929 else
930 irel = NULL;
931
932 section_limit = bfd_get_section_limit (abfd, section);
933 rel_end = internal_relocs + table_section->reloc_count;
934
935 for (off = 0; off < table_size; off += table_entry_size)
936 {
937 bfd_vma address = bfd_get_32 (abfd, table_data + off);
938
939 /* Skip any relocations before the current offset. This should help
940 avoid confusion caused by unexpected relocations for the preceding
941 table entry. */
942 while (irel &&
943 (irel->r_offset < off
944 || (irel->r_offset == off
945 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
946 {
947 irel += 1;
948 if (irel >= rel_end)
949 irel = 0;
950 }
951
952 if (irel && irel->r_offset == off)
953 {
954 bfd_vma sym_off;
955 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
956 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
957
958 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
959 continue;
960
961 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
962 BFD_ASSERT (sym_off == 0);
963 address += (section_addr + sym_off + irel->r_addend);
964 }
965 else
966 {
967 if (address < section_addr
968 || address >= section_addr + section_limit)
969 continue;
970 }
971
972 blocks[block_count].address = address;
973 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
974 if (predef_flags)
975 blocks[block_count].flags = predef_flags;
976 else
977 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
978 block_count++;
979 }
980
981 release_contents (table_section, table_data);
982 release_internal_relocs (table_section, internal_relocs);
983
984 if (block_count > 0)
985 {
986 /* Now sort them into address order for easy reference. */
987 qsort (blocks, block_count, sizeof (property_table_entry),
988 property_table_compare);
989
990 /* Check that the table contents are valid. Problems may occur,
991 for example, if an unrelocated object file is stripped. */
992 for (blk = 1; blk < block_count; blk++)
993 {
994 /* The only circumstance where two entries may legitimately
995 have the same address is when one of them is a zero-size
996 placeholder to mark a place where fill can be inserted.
997 The zero-size entry should come first. */
998 if (blocks[blk - 1].address == blocks[blk].address &&
999 blocks[blk - 1].size != 0)
1000 {
1001 /* xgettext:c-format */
1002 _bfd_error_handler (_("%pB(%pA): invalid property table"),
1003 abfd, section);
1004 bfd_set_error (bfd_error_bad_value);
1005 free (blocks);
1006 return -1;
1007 }
1008 }
1009 }
1010
1011 *table_p = blocks;
1012 return block_count;
1013 }
1014
1015
1016 static property_table_entry *
1017 elf_xtensa_find_property_entry (property_table_entry *property_table,
1018 int property_table_size,
1019 bfd_vma addr)
1020 {
1021 property_table_entry entry;
1022 property_table_entry *rv;
1023
1024 if (property_table_size == 0)
1025 return NULL;
1026
1027 entry.address = addr;
1028 entry.size = 1;
1029 entry.flags = 0;
1030
1031 rv = bsearch (&entry, property_table, property_table_size,
1032 sizeof (property_table_entry), property_table_matches);
1033 return rv;
1034 }
1035
1036
1037 static bfd_boolean
1038 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
1039 int lit_table_size,
1040 bfd_vma addr)
1041 {
1042 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
1043 return TRUE;
1044
1045 return FALSE;
1046 }
1047
1048 \f
1049 /* Look through the relocs for a section during the first phase, and
1050 calculate needed space in the dynamic reloc sections. */
1051
1052 static bfd_boolean
1053 elf_xtensa_check_relocs (bfd *abfd,
1054 struct bfd_link_info *info,
1055 asection *sec,
1056 const Elf_Internal_Rela *relocs)
1057 {
1058 struct elf_xtensa_link_hash_table *htab;
1059 Elf_Internal_Shdr *symtab_hdr;
1060 struct elf_link_hash_entry **sym_hashes;
1061 const Elf_Internal_Rela *rel;
1062 const Elf_Internal_Rela *rel_end;
1063
1064 if (bfd_link_relocatable (info))
1065 return TRUE;
1066
1067 BFD_ASSERT (is_xtensa_elf (abfd));
1068
1069 htab = elf_xtensa_hash_table (info);
1070 if (htab == NULL)
1071 return FALSE;
1072
1073 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1074 sym_hashes = elf_sym_hashes (abfd);
1075
1076 rel_end = relocs + sec->reloc_count;
1077 for (rel = relocs; rel < rel_end; rel++)
1078 {
1079 unsigned int r_type;
1080 unsigned r_symndx;
1081 struct elf_link_hash_entry *h = NULL;
1082 struct elf_xtensa_link_hash_entry *eh;
1083 int tls_type, old_tls_type;
1084 bfd_boolean is_got = FALSE;
1085 bfd_boolean is_plt = FALSE;
1086 bfd_boolean is_tlsfunc = FALSE;
1087
1088 r_symndx = ELF32_R_SYM (rel->r_info);
1089 r_type = ELF32_R_TYPE (rel->r_info);
1090
1091 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1092 {
1093 /* xgettext:c-format */
1094 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1095 abfd, r_symndx);
1096 return FALSE;
1097 }
1098
1099 if (r_symndx >= symtab_hdr->sh_info)
1100 {
1101 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1102 while (h->root.type == bfd_link_hash_indirect
1103 || h->root.type == bfd_link_hash_warning)
1104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1105 }
1106 eh = elf_xtensa_hash_entry (h);
1107
1108 switch (r_type)
1109 {
1110 case R_XTENSA_TLSDESC_FN:
1111 if (bfd_link_pic (info))
1112 {
1113 tls_type = GOT_TLS_GD;
1114 is_got = TRUE;
1115 is_tlsfunc = TRUE;
1116 }
1117 else
1118 tls_type = GOT_TLS_IE;
1119 break;
1120
1121 case R_XTENSA_TLSDESC_ARG:
1122 if (bfd_link_pic (info))
1123 {
1124 tls_type = GOT_TLS_GD;
1125 is_got = TRUE;
1126 }
1127 else
1128 {
1129 tls_type = GOT_TLS_IE;
1130 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1131 is_got = TRUE;
1132 }
1133 break;
1134
1135 case R_XTENSA_TLS_DTPOFF:
1136 if (bfd_link_pic (info))
1137 tls_type = GOT_TLS_GD;
1138 else
1139 tls_type = GOT_TLS_IE;
1140 break;
1141
1142 case R_XTENSA_TLS_TPOFF:
1143 tls_type = GOT_TLS_IE;
1144 if (bfd_link_pic (info))
1145 info->flags |= DF_STATIC_TLS;
1146 if (bfd_link_pic (info) || h)
1147 is_got = TRUE;
1148 break;
1149
1150 case R_XTENSA_32:
1151 tls_type = GOT_NORMAL;
1152 is_got = TRUE;
1153 break;
1154
1155 case R_XTENSA_PLT:
1156 tls_type = GOT_NORMAL;
1157 is_plt = TRUE;
1158 break;
1159
1160 case R_XTENSA_GNU_VTINHERIT:
1161 /* This relocation describes the C++ object vtable hierarchy.
1162 Reconstruct it for later use during GC. */
1163 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1164 return FALSE;
1165 continue;
1166
1167 case R_XTENSA_GNU_VTENTRY:
1168 /* This relocation describes which C++ vtable entries are actually
1169 used. Record for later use during GC. */
1170 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1171 return FALSE;
1172 continue;
1173
1174 default:
1175 /* Nothing to do for any other relocations. */
1176 continue;
1177 }
1178
1179 if (h)
1180 {
1181 if (is_plt)
1182 {
1183 if (h->plt.refcount <= 0)
1184 {
1185 h->needs_plt = 1;
1186 h->plt.refcount = 1;
1187 }
1188 else
1189 h->plt.refcount += 1;
1190
1191 /* Keep track of the total PLT relocation count even if we
1192 don't yet know whether the dynamic sections will be
1193 created. */
1194 htab->plt_reloc_count += 1;
1195
1196 if (elf_hash_table (info)->dynamic_sections_created)
1197 {
1198 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1199 return FALSE;
1200 }
1201 }
1202 else if (is_got)
1203 {
1204 if (h->got.refcount <= 0)
1205 h->got.refcount = 1;
1206 else
1207 h->got.refcount += 1;
1208 }
1209
1210 if (is_tlsfunc)
1211 eh->tlsfunc_refcount += 1;
1212
1213 old_tls_type = eh->tls_type;
1214 }
1215 else
1216 {
1217 /* Allocate storage the first time. */
1218 if (elf_local_got_refcounts (abfd) == NULL)
1219 {
1220 bfd_size_type size = symtab_hdr->sh_info;
1221 void *mem;
1222
1223 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1224 if (mem == NULL)
1225 return FALSE;
1226 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1227
1228 mem = bfd_zalloc (abfd, size);
1229 if (mem == NULL)
1230 return FALSE;
1231 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1232
1233 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1234 if (mem == NULL)
1235 return FALSE;
1236 elf_xtensa_local_tlsfunc_refcounts (abfd)
1237 = (bfd_signed_vma *) mem;
1238 }
1239
1240 /* This is a global offset table entry for a local symbol. */
1241 if (is_got || is_plt)
1242 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1243
1244 if (is_tlsfunc)
1245 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1246
1247 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1248 }
1249
1250 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1251 tls_type |= old_tls_type;
1252 /* If a TLS symbol is accessed using IE at least once,
1253 there is no point to use a dynamic model for it. */
1254 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1255 && ((old_tls_type & GOT_TLS_GD) == 0
1256 || (tls_type & GOT_TLS_IE) == 0))
1257 {
1258 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1259 tls_type = old_tls_type;
1260 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1261 tls_type |= old_tls_type;
1262 else
1263 {
1264 _bfd_error_handler
1265 /* xgettext:c-format */
1266 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1267 abfd,
1268 h ? h->root.root.string : "<local>");
1269 return FALSE;
1270 }
1271 }
1272
1273 if (old_tls_type != tls_type)
1274 {
1275 if (eh)
1276 eh->tls_type = tls_type;
1277 else
1278 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1279 }
1280 }
1281
1282 return TRUE;
1283 }
1284
1285
1286 static void
1287 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1288 struct elf_link_hash_entry *h)
1289 {
1290 if (bfd_link_pic (info))
1291 {
1292 if (h->plt.refcount > 0)
1293 {
1294 /* For shared objects, there's no need for PLT entries for local
1295 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1296 if (h->got.refcount < 0)
1297 h->got.refcount = 0;
1298 h->got.refcount += h->plt.refcount;
1299 h->plt.refcount = 0;
1300 }
1301 }
1302 else
1303 {
1304 /* Don't need any dynamic relocations at all. */
1305 h->plt.refcount = 0;
1306 h->got.refcount = 0;
1307 }
1308 }
1309
1310
1311 static void
1312 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1313 struct elf_link_hash_entry *h,
1314 bfd_boolean force_local)
1315 {
1316 /* For a shared link, move the plt refcount to the got refcount to leave
1317 space for RELATIVE relocs. */
1318 elf_xtensa_make_sym_local (info, h);
1319
1320 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1321 }
1322
1323
1324 /* Return the section that should be marked against GC for a given
1325 relocation. */
1326
1327 static asection *
1328 elf_xtensa_gc_mark_hook (asection *sec,
1329 struct bfd_link_info *info,
1330 Elf_Internal_Rela *rel,
1331 struct elf_link_hash_entry *h,
1332 Elf_Internal_Sym *sym)
1333 {
1334 /* Property sections are marked "KEEP" in the linker scripts, but they
1335 should not cause other sections to be marked. (This approach relies
1336 on elf_xtensa_discard_info to remove property table entries that
1337 describe discarded sections. Alternatively, it might be more
1338 efficient to avoid using "KEEP" in the linker scripts and instead use
1339 the gc_mark_extra_sections hook to mark only the property sections
1340 that describe marked sections. That alternative does not work well
1341 with the current property table sections, which do not correspond
1342 one-to-one with the sections they describe, but that should be fixed
1343 someday.) */
1344 if (xtensa_is_property_section (sec))
1345 return NULL;
1346
1347 if (h != NULL)
1348 switch (ELF32_R_TYPE (rel->r_info))
1349 {
1350 case R_XTENSA_GNU_VTINHERIT:
1351 case R_XTENSA_GNU_VTENTRY:
1352 return NULL;
1353 }
1354
1355 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1356 }
1357
1358
1359 /* Create all the dynamic sections. */
1360
1361 static bfd_boolean
1362 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1363 {
1364 struct elf_xtensa_link_hash_table *htab;
1365 flagword flags, noalloc_flags;
1366
1367 htab = elf_xtensa_hash_table (info);
1368 if (htab == NULL)
1369 return FALSE;
1370
1371 /* First do all the standard stuff. */
1372 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1373 return FALSE;
1374
1375 /* Create any extra PLT sections in case check_relocs has already
1376 been called on all the non-dynamic input files. */
1377 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1378 return FALSE;
1379
1380 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1381 | SEC_LINKER_CREATED | SEC_READONLY);
1382 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1383
1384 /* Mark the ".got.plt" section READONLY. */
1385 if (htab->elf.sgotplt == NULL
1386 || !bfd_set_section_flags (htab->elf.sgotplt, flags))
1387 return FALSE;
1388
1389 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1390 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1391 flags);
1392 if (htab->sgotloc == NULL
1393 || !bfd_set_section_alignment (htab->sgotloc, 2))
1394 return FALSE;
1395
1396 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1397 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1398 noalloc_flags);
1399 if (htab->spltlittbl == NULL
1400 || !bfd_set_section_alignment (htab->spltlittbl, 2))
1401 return FALSE;
1402
1403 return TRUE;
1404 }
1405
1406
1407 static bfd_boolean
1408 add_extra_plt_sections (struct bfd_link_info *info, int count)
1409 {
1410 bfd *dynobj = elf_hash_table (info)->dynobj;
1411 int chunk;
1412
1413 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1414 ".got.plt" sections. */
1415 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1416 {
1417 char *sname;
1418 flagword flags;
1419 asection *s;
1420
1421 /* Stop when we find a section has already been created. */
1422 if (elf_xtensa_get_plt_section (info, chunk))
1423 break;
1424
1425 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1426 | SEC_LINKER_CREATED | SEC_READONLY);
1427
1428 sname = (char *) bfd_malloc (10);
1429 sprintf (sname, ".plt.%u", chunk);
1430 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1431 if (s == NULL
1432 || !bfd_set_section_alignment (s, 2))
1433 return FALSE;
1434
1435 sname = (char *) bfd_malloc (14);
1436 sprintf (sname, ".got.plt.%u", chunk);
1437 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1438 if (s == NULL
1439 || !bfd_set_section_alignment (s, 2))
1440 return FALSE;
1441 }
1442
1443 return TRUE;
1444 }
1445
1446
1447 /* Adjust a symbol defined by a dynamic object and referenced by a
1448 regular object. The current definition is in some section of the
1449 dynamic object, but we're not including those sections. We have to
1450 change the definition to something the rest of the link can
1451 understand. */
1452
1453 static bfd_boolean
1454 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1455 struct elf_link_hash_entry *h)
1456 {
1457 /* If this is a weak symbol, and there is a real definition, the
1458 processor independent code will have arranged for us to see the
1459 real definition first, and we can just use the same value. */
1460 if (h->is_weakalias)
1461 {
1462 struct elf_link_hash_entry *def = weakdef (h);
1463 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1464 h->root.u.def.section = def->root.u.def.section;
1465 h->root.u.def.value = def->root.u.def.value;
1466 return TRUE;
1467 }
1468
1469 /* This is a reference to a symbol defined by a dynamic object. The
1470 reference must go through the GOT, so there's no need for COPY relocs,
1471 .dynbss, etc. */
1472
1473 return TRUE;
1474 }
1475
1476
1477 static bfd_boolean
1478 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1479 {
1480 struct bfd_link_info *info;
1481 struct elf_xtensa_link_hash_table *htab;
1482 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1483
1484 if (h->root.type == bfd_link_hash_indirect)
1485 return TRUE;
1486
1487 info = (struct bfd_link_info *) arg;
1488 htab = elf_xtensa_hash_table (info);
1489 if (htab == NULL)
1490 return FALSE;
1491
1492 /* If we saw any use of an IE model for this symbol, we can then optimize
1493 away GOT entries for any TLSDESC_FN relocs. */
1494 if ((eh->tls_type & GOT_TLS_IE) != 0)
1495 {
1496 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1497 h->got.refcount -= eh->tlsfunc_refcount;
1498 }
1499
1500 if (! elf_xtensa_dynamic_symbol_p (h, info))
1501 elf_xtensa_make_sym_local (info, h);
1502
1503 if (! elf_xtensa_dynamic_symbol_p (h, info)
1504 && h->root.type == bfd_link_hash_undefweak)
1505 return TRUE;
1506
1507 if (h->plt.refcount > 0)
1508 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1509
1510 if (h->got.refcount > 0)
1511 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1512
1513 return TRUE;
1514 }
1515
1516
1517 static void
1518 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1519 {
1520 struct elf_xtensa_link_hash_table *htab;
1521 bfd *i;
1522
1523 htab = elf_xtensa_hash_table (info);
1524 if (htab == NULL)
1525 return;
1526
1527 for (i = info->input_bfds; i; i = i->link.next)
1528 {
1529 bfd_signed_vma *local_got_refcounts;
1530 bfd_size_type j, cnt;
1531 Elf_Internal_Shdr *symtab_hdr;
1532
1533 local_got_refcounts = elf_local_got_refcounts (i);
1534 if (!local_got_refcounts)
1535 continue;
1536
1537 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1538 cnt = symtab_hdr->sh_info;
1539
1540 for (j = 0; j < cnt; ++j)
1541 {
1542 /* If we saw any use of an IE model for this symbol, we can
1543 then optimize away GOT entries for any TLSDESC_FN relocs. */
1544 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1545 {
1546 bfd_signed_vma *tlsfunc_refcount
1547 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1548 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1549 local_got_refcounts[j] -= *tlsfunc_refcount;
1550 }
1551
1552 if (local_got_refcounts[j] > 0)
1553 htab->elf.srelgot->size += (local_got_refcounts[j]
1554 * sizeof (Elf32_External_Rela));
1555 }
1556 }
1557 }
1558
1559
1560 /* Set the sizes of the dynamic sections. */
1561
1562 static bfd_boolean
1563 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1564 struct bfd_link_info *info)
1565 {
1566 struct elf_xtensa_link_hash_table *htab;
1567 bfd *dynobj, *abfd;
1568 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1569 bfd_boolean relplt, relgot;
1570 int plt_entries, plt_chunks, chunk;
1571
1572 plt_entries = 0;
1573 plt_chunks = 0;
1574
1575 htab = elf_xtensa_hash_table (info);
1576 if (htab == NULL)
1577 return FALSE;
1578
1579 dynobj = elf_hash_table (info)->dynobj;
1580 if (dynobj == NULL)
1581 abort ();
1582 srelgot = htab->elf.srelgot;
1583 srelplt = htab->elf.srelplt;
1584
1585 if (elf_hash_table (info)->dynamic_sections_created)
1586 {
1587 BFD_ASSERT (htab->elf.srelgot != NULL
1588 && htab->elf.srelplt != NULL
1589 && htab->elf.sgot != NULL
1590 && htab->spltlittbl != NULL
1591 && htab->sgotloc != NULL);
1592
1593 /* Set the contents of the .interp section to the interpreter. */
1594 if (bfd_link_executable (info) && !info->nointerp)
1595 {
1596 s = bfd_get_linker_section (dynobj, ".interp");
1597 if (s == NULL)
1598 abort ();
1599 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1600 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1601 }
1602
1603 /* Allocate room for one word in ".got". */
1604 htab->elf.sgot->size = 4;
1605
1606 /* Allocate space in ".rela.got" for literals that reference global
1607 symbols and space in ".rela.plt" for literals that have PLT
1608 entries. */
1609 elf_link_hash_traverse (elf_hash_table (info),
1610 elf_xtensa_allocate_dynrelocs,
1611 (void *) info);
1612
1613 /* If we are generating a shared object, we also need space in
1614 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1615 reference local symbols. */
1616 if (bfd_link_pic (info))
1617 elf_xtensa_allocate_local_got_size (info);
1618
1619 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1620 each PLT entry, we need the PLT code plus a 4-byte literal.
1621 For each chunk of ".plt", we also need two more 4-byte
1622 literals, two corresponding entries in ".rela.got", and an
1623 8-byte entry in ".xt.lit.plt". */
1624 spltlittbl = htab->spltlittbl;
1625 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1626 plt_chunks =
1627 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1628
1629 /* Iterate over all the PLT chunks, including any extra sections
1630 created earlier because the initial count of PLT relocations
1631 was an overestimate. */
1632 for (chunk = 0;
1633 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1634 chunk++)
1635 {
1636 int chunk_entries;
1637
1638 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1639 BFD_ASSERT (sgotplt != NULL);
1640
1641 if (chunk < plt_chunks - 1)
1642 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1643 else if (chunk == plt_chunks - 1)
1644 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1645 else
1646 chunk_entries = 0;
1647
1648 if (chunk_entries != 0)
1649 {
1650 sgotplt->size = 4 * (chunk_entries + 2);
1651 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1652 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1653 spltlittbl->size += 8;
1654 }
1655 else
1656 {
1657 sgotplt->size = 0;
1658 splt->size = 0;
1659 }
1660 }
1661
1662 /* Allocate space in ".got.loc" to match the total size of all the
1663 literal tables. */
1664 sgotloc = htab->sgotloc;
1665 sgotloc->size = spltlittbl->size;
1666 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1667 {
1668 if (abfd->flags & DYNAMIC)
1669 continue;
1670 for (s = abfd->sections; s != NULL; s = s->next)
1671 {
1672 if (! discarded_section (s)
1673 && xtensa_is_littable_section (s)
1674 && s != spltlittbl)
1675 sgotloc->size += s->size;
1676 }
1677 }
1678 }
1679
1680 /* Allocate memory for dynamic sections. */
1681 relplt = FALSE;
1682 relgot = FALSE;
1683 for (s = dynobj->sections; s != NULL; s = s->next)
1684 {
1685 const char *name;
1686
1687 if ((s->flags & SEC_LINKER_CREATED) == 0)
1688 continue;
1689
1690 /* It's OK to base decisions on the section name, because none
1691 of the dynobj section names depend upon the input files. */
1692 name = bfd_section_name (s);
1693
1694 if (CONST_STRNEQ (name, ".rela"))
1695 {
1696 if (s->size != 0)
1697 {
1698 if (strcmp (name, ".rela.plt") == 0)
1699 relplt = TRUE;
1700 else if (strcmp (name, ".rela.got") == 0)
1701 relgot = TRUE;
1702
1703 /* We use the reloc_count field as a counter if we need
1704 to copy relocs into the output file. */
1705 s->reloc_count = 0;
1706 }
1707 }
1708 else if (! CONST_STRNEQ (name, ".plt.")
1709 && ! CONST_STRNEQ (name, ".got.plt.")
1710 && strcmp (name, ".got") != 0
1711 && strcmp (name, ".plt") != 0
1712 && strcmp (name, ".got.plt") != 0
1713 && strcmp (name, ".xt.lit.plt") != 0
1714 && strcmp (name, ".got.loc") != 0)
1715 {
1716 /* It's not one of our sections, so don't allocate space. */
1717 continue;
1718 }
1719
1720 if (s->size == 0)
1721 {
1722 /* If we don't need this section, strip it from the output
1723 file. We must create the ".plt*" and ".got.plt*"
1724 sections in create_dynamic_sections and/or check_relocs
1725 based on a conservative estimate of the PLT relocation
1726 count, because the sections must be created before the
1727 linker maps input sections to output sections. The
1728 linker does that before size_dynamic_sections, where we
1729 compute the exact size of the PLT, so there may be more
1730 of these sections than are actually needed. */
1731 s->flags |= SEC_EXCLUDE;
1732 }
1733 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1734 {
1735 /* Allocate memory for the section contents. */
1736 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1737 if (s->contents == NULL)
1738 return FALSE;
1739 }
1740 }
1741
1742 if (elf_hash_table (info)->dynamic_sections_created)
1743 {
1744 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1745 known until finish_dynamic_sections, but we need to get the relocs
1746 in place before they are sorted. */
1747 for (chunk = 0; chunk < plt_chunks; chunk++)
1748 {
1749 Elf_Internal_Rela irela;
1750 bfd_byte *loc;
1751
1752 irela.r_offset = 0;
1753 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1754 irela.r_addend = 0;
1755
1756 loc = (srelgot->contents
1757 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1758 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1759 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1760 loc + sizeof (Elf32_External_Rela));
1761 srelgot->reloc_count += 2;
1762 }
1763
1764 /* Add some entries to the .dynamic section. We fill in the
1765 values later, in elf_xtensa_finish_dynamic_sections, but we
1766 must add the entries now so that we get the correct size for
1767 the .dynamic section. The DT_DEBUG entry is filled in by the
1768 dynamic linker and used by the debugger. */
1769 #define add_dynamic_entry(TAG, VAL) \
1770 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1771
1772 if (!_bfd_elf_add_dynamic_tags (output_bfd, info,
1773 relplt || relgot))
1774 return FALSE;
1775
1776 if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1777 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1778 return FALSE;
1779 }
1780 #undef add_dynamic_entry
1781
1782 return TRUE;
1783 }
1784
1785 static bfd_boolean
1786 elf_xtensa_always_size_sections (bfd *output_bfd,
1787 struct bfd_link_info *info)
1788 {
1789 struct elf_xtensa_link_hash_table *htab;
1790 asection *tls_sec;
1791
1792 htab = elf_xtensa_hash_table (info);
1793 if (htab == NULL)
1794 return FALSE;
1795
1796 tls_sec = htab->elf.tls_sec;
1797
1798 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1799 {
1800 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1801 struct bfd_link_hash_entry *bh = &tlsbase->root;
1802 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1803
1804 tlsbase->type = STT_TLS;
1805 if (!(_bfd_generic_link_add_one_symbol
1806 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1807 tls_sec, 0, NULL, FALSE,
1808 bed->collect, &bh)))
1809 return FALSE;
1810 tlsbase->def_regular = 1;
1811 tlsbase->other = STV_HIDDEN;
1812 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1813 }
1814
1815 return TRUE;
1816 }
1817
1818 \f
1819 /* Return the base VMA address which should be subtracted from real addresses
1820 when resolving @dtpoff relocation.
1821 This is PT_TLS segment p_vaddr. */
1822
1823 static bfd_vma
1824 dtpoff_base (struct bfd_link_info *info)
1825 {
1826 /* If tls_sec is NULL, we should have signalled an error already. */
1827 if (elf_hash_table (info)->tls_sec == NULL)
1828 return 0;
1829 return elf_hash_table (info)->tls_sec->vma;
1830 }
1831
1832 /* Return the relocation value for @tpoff relocation
1833 if STT_TLS virtual address is ADDRESS. */
1834
1835 static bfd_vma
1836 tpoff (struct bfd_link_info *info, bfd_vma address)
1837 {
1838 struct elf_link_hash_table *htab = elf_hash_table (info);
1839 bfd_vma base;
1840
1841 /* If tls_sec is NULL, we should have signalled an error already. */
1842 if (htab->tls_sec == NULL)
1843 return 0;
1844 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1845 return address - htab->tls_sec->vma + base;
1846 }
1847
1848 /* Perform the specified relocation. The instruction at (contents + address)
1849 is modified to set one operand to represent the value in "relocation". The
1850 operand position is determined by the relocation type recorded in the
1851 howto. */
1852
1853 #define CALL_SEGMENT_BITS (30)
1854 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1855
1856 static bfd_reloc_status_type
1857 elf_xtensa_do_reloc (reloc_howto_type *howto,
1858 bfd *abfd,
1859 asection *input_section,
1860 bfd_vma relocation,
1861 bfd_byte *contents,
1862 bfd_vma address,
1863 bfd_boolean is_weak_undef,
1864 char **error_message)
1865 {
1866 xtensa_format fmt;
1867 xtensa_opcode opcode;
1868 xtensa_isa isa = xtensa_default_isa;
1869 static xtensa_insnbuf ibuff = NULL;
1870 static xtensa_insnbuf sbuff = NULL;
1871 bfd_vma self_address;
1872 bfd_size_type input_size;
1873 int opnd, slot;
1874 uint32 newval;
1875
1876 if (!ibuff)
1877 {
1878 ibuff = xtensa_insnbuf_alloc (isa);
1879 sbuff = xtensa_insnbuf_alloc (isa);
1880 }
1881
1882 input_size = bfd_get_section_limit (abfd, input_section);
1883
1884 /* Calculate the PC address for this instruction. */
1885 self_address = (input_section->output_section->vma
1886 + input_section->output_offset
1887 + address);
1888
1889 switch (howto->type)
1890 {
1891 case R_XTENSA_NONE:
1892 case R_XTENSA_DIFF8:
1893 case R_XTENSA_DIFF16:
1894 case R_XTENSA_DIFF32:
1895 case R_XTENSA_PDIFF8:
1896 case R_XTENSA_PDIFF16:
1897 case R_XTENSA_PDIFF32:
1898 case R_XTENSA_NDIFF8:
1899 case R_XTENSA_NDIFF16:
1900 case R_XTENSA_NDIFF32:
1901 case R_XTENSA_TLS_FUNC:
1902 case R_XTENSA_TLS_ARG:
1903 case R_XTENSA_TLS_CALL:
1904 return bfd_reloc_ok;
1905
1906 case R_XTENSA_ASM_EXPAND:
1907 if (!is_weak_undef)
1908 {
1909 /* Check for windowed CALL across a 1GB boundary. */
1910 opcode = get_expanded_call_opcode (contents + address,
1911 input_size - address, 0);
1912 if (is_windowed_call_opcode (opcode))
1913 {
1914 if ((self_address >> CALL_SEGMENT_BITS)
1915 != (relocation >> CALL_SEGMENT_BITS))
1916 {
1917 *error_message = "windowed longcall crosses 1GB boundary; "
1918 "return may fail";
1919 return bfd_reloc_dangerous;
1920 }
1921 }
1922 }
1923 return bfd_reloc_ok;
1924
1925 case R_XTENSA_ASM_SIMPLIFY:
1926 {
1927 /* Convert the L32R/CALLX to CALL. */
1928 bfd_reloc_status_type retval =
1929 elf_xtensa_do_asm_simplify (contents, address, input_size,
1930 error_message);
1931 if (retval != bfd_reloc_ok)
1932 return bfd_reloc_dangerous;
1933
1934 /* The CALL needs to be relocated. Continue below for that part. */
1935 address += 3;
1936 self_address += 3;
1937 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1938 }
1939 break;
1940
1941 case R_XTENSA_32:
1942 {
1943 bfd_vma x;
1944 x = bfd_get_32 (abfd, contents + address);
1945 x = x + relocation;
1946 bfd_put_32 (abfd, x, contents + address);
1947 }
1948 return bfd_reloc_ok;
1949
1950 case R_XTENSA_32_PCREL:
1951 bfd_put_32 (abfd, relocation - self_address, contents + address);
1952 return bfd_reloc_ok;
1953
1954 case R_XTENSA_PLT:
1955 case R_XTENSA_TLSDESC_FN:
1956 case R_XTENSA_TLSDESC_ARG:
1957 case R_XTENSA_TLS_DTPOFF:
1958 case R_XTENSA_TLS_TPOFF:
1959 bfd_put_32 (abfd, relocation, contents + address);
1960 return bfd_reloc_ok;
1961 }
1962
1963 /* Only instruction slot-specific relocations handled below.... */
1964 slot = get_relocation_slot (howto->type);
1965 if (slot == XTENSA_UNDEFINED)
1966 {
1967 *error_message = "unexpected relocation";
1968 return bfd_reloc_dangerous;
1969 }
1970
1971 /* Read the instruction into a buffer and decode the opcode. */
1972 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1973 input_size - address);
1974 fmt = xtensa_format_decode (isa, ibuff);
1975 if (fmt == XTENSA_UNDEFINED)
1976 {
1977 *error_message = "cannot decode instruction format";
1978 return bfd_reloc_dangerous;
1979 }
1980
1981 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1982
1983 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1984 if (opcode == XTENSA_UNDEFINED)
1985 {
1986 *error_message = "cannot decode instruction opcode";
1987 return bfd_reloc_dangerous;
1988 }
1989
1990 /* Check for opcode-specific "alternate" relocations. */
1991 if (is_alt_relocation (howto->type))
1992 {
1993 if (opcode == get_l32r_opcode ())
1994 {
1995 /* Handle the special-case of non-PC-relative L32R instructions. */
1996 bfd *output_bfd = input_section->output_section->owner;
1997 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1998 if (!lit4_sec)
1999 {
2000 *error_message = "relocation references missing .lit4 section";
2001 return bfd_reloc_dangerous;
2002 }
2003 self_address = ((lit4_sec->vma & ~0xfff)
2004 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2005 newval = relocation;
2006 opnd = 1;
2007 }
2008 else if (opcode == get_const16_opcode ())
2009 {
2010 /* ALT used for high 16 bits.
2011 Ignore 32-bit overflow. */
2012 newval = (relocation >> 16) & 0xffff;
2013 opnd = 1;
2014 }
2015 else
2016 {
2017 /* No other "alternate" relocations currently defined. */
2018 *error_message = "unexpected relocation";
2019 return bfd_reloc_dangerous;
2020 }
2021 }
2022 else /* Not an "alternate" relocation.... */
2023 {
2024 if (opcode == get_const16_opcode ())
2025 {
2026 newval = relocation & 0xffff;
2027 opnd = 1;
2028 }
2029 else
2030 {
2031 /* ...normal PC-relative relocation.... */
2032
2033 /* Determine which operand is being relocated. */
2034 opnd = get_relocation_opnd (opcode, howto->type);
2035 if (opnd == XTENSA_UNDEFINED)
2036 {
2037 *error_message = "unexpected relocation";
2038 return bfd_reloc_dangerous;
2039 }
2040
2041 if (!howto->pc_relative)
2042 {
2043 *error_message = "expected PC-relative relocation";
2044 return bfd_reloc_dangerous;
2045 }
2046
2047 newval = relocation;
2048 }
2049 }
2050
2051 /* Apply the relocation. */
2052 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2053 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2054 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2055 sbuff, newval))
2056 {
2057 const char *opname = xtensa_opcode_name (isa, opcode);
2058 const char *msg;
2059
2060 msg = "cannot encode";
2061 if (is_direct_call_opcode (opcode))
2062 {
2063 if ((relocation & 0x3) != 0)
2064 msg = "misaligned call target";
2065 else
2066 msg = "call target out of range";
2067 }
2068 else if (opcode == get_l32r_opcode ())
2069 {
2070 if ((relocation & 0x3) != 0)
2071 msg = "misaligned literal target";
2072 else if (is_alt_relocation (howto->type))
2073 msg = "literal target out of range (too many literals)";
2074 else if (self_address > relocation)
2075 msg = "literal target out of range (try using text-section-literals)";
2076 else
2077 msg = "literal placed after use";
2078 }
2079
2080 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2081 return bfd_reloc_dangerous;
2082 }
2083
2084 /* Check for calls across 1GB boundaries. */
2085 if (is_direct_call_opcode (opcode)
2086 && is_windowed_call_opcode (opcode))
2087 {
2088 if ((self_address >> CALL_SEGMENT_BITS)
2089 != (relocation >> CALL_SEGMENT_BITS))
2090 {
2091 *error_message =
2092 "windowed call crosses 1GB boundary; return may fail";
2093 return bfd_reloc_dangerous;
2094 }
2095 }
2096
2097 /* Write the modified instruction back out of the buffer. */
2098 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2099 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2100 input_size - address);
2101 return bfd_reloc_ok;
2102 }
2103
2104
2105 static char *
2106 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2107 {
2108 /* To reduce the size of the memory leak,
2109 we only use a single message buffer. */
2110 static bfd_size_type alloc_size = 0;
2111 static char *message = NULL;
2112 bfd_size_type orig_len, len = 0;
2113 bfd_boolean is_append;
2114 va_list ap;
2115
2116 va_start (ap, arglen);
2117
2118 is_append = (origmsg == message);
2119
2120 orig_len = strlen (origmsg);
2121 len = orig_len + strlen (fmt) + arglen + 20;
2122 if (len > alloc_size)
2123 {
2124 message = (char *) bfd_realloc_or_free (message, len);
2125 alloc_size = len;
2126 }
2127 if (message != NULL)
2128 {
2129 if (!is_append)
2130 memcpy (message, origmsg, orig_len);
2131 vsprintf (message + orig_len, fmt, ap);
2132 }
2133 va_end (ap);
2134 return message;
2135 }
2136
2137
2138 /* This function is registered as the "special_function" in the
2139 Xtensa howto for handling simplify operations.
2140 bfd_perform_relocation / bfd_install_relocation use it to
2141 perform (install) the specified relocation. Since this replaces the code
2142 in bfd_perform_relocation, it is basically an Xtensa-specific,
2143 stripped-down version of bfd_perform_relocation. */
2144
2145 static bfd_reloc_status_type
2146 bfd_elf_xtensa_reloc (bfd *abfd,
2147 arelent *reloc_entry,
2148 asymbol *symbol,
2149 void *data,
2150 asection *input_section,
2151 bfd *output_bfd,
2152 char **error_message)
2153 {
2154 bfd_vma relocation;
2155 bfd_reloc_status_type flag;
2156 bfd_size_type octets = (reloc_entry->address
2157 * OCTETS_PER_BYTE (abfd, input_section));
2158 bfd_vma output_base = 0;
2159 reloc_howto_type *howto = reloc_entry->howto;
2160 asection *reloc_target_output_section;
2161 bfd_boolean is_weak_undef;
2162
2163 if (!xtensa_default_isa)
2164 xtensa_default_isa = xtensa_isa_init (0, 0);
2165
2166 /* ELF relocs are against symbols. If we are producing relocatable
2167 output, and the reloc is against an external symbol, the resulting
2168 reloc will also be against the same symbol. In such a case, we
2169 don't want to change anything about the way the reloc is handled,
2170 since it will all be done at final link time. This test is similar
2171 to what bfd_elf_generic_reloc does except that it lets relocs with
2172 howto->partial_inplace go through even if the addend is non-zero.
2173 (The real problem is that partial_inplace is set for XTENSA_32
2174 relocs to begin with, but that's a long story and there's little we
2175 can do about it now....) */
2176
2177 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2178 {
2179 reloc_entry->address += input_section->output_offset;
2180 return bfd_reloc_ok;
2181 }
2182
2183 /* Is the address of the relocation really within the section? */
2184 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2185 return bfd_reloc_outofrange;
2186
2187 /* Work out which section the relocation is targeted at and the
2188 initial relocation command value. */
2189
2190 /* Get symbol value. (Common symbols are special.) */
2191 if (bfd_is_com_section (symbol->section))
2192 relocation = 0;
2193 else
2194 relocation = symbol->value;
2195
2196 reloc_target_output_section = symbol->section->output_section;
2197
2198 /* Convert input-section-relative symbol value to absolute. */
2199 if ((output_bfd && !howto->partial_inplace)
2200 || reloc_target_output_section == NULL)
2201 output_base = 0;
2202 else
2203 output_base = reloc_target_output_section->vma;
2204
2205 relocation += output_base + symbol->section->output_offset;
2206
2207 /* Add in supplied addend. */
2208 relocation += reloc_entry->addend;
2209
2210 /* Here the variable relocation holds the final address of the
2211 symbol we are relocating against, plus any addend. */
2212 if (output_bfd)
2213 {
2214 if (!howto->partial_inplace)
2215 {
2216 /* This is a partial relocation, and we want to apply the relocation
2217 to the reloc entry rather than the raw data. Everything except
2218 relocations against section symbols has already been handled
2219 above. */
2220
2221 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2222 reloc_entry->addend = relocation;
2223 reloc_entry->address += input_section->output_offset;
2224 return bfd_reloc_ok;
2225 }
2226 else
2227 {
2228 reloc_entry->address += input_section->output_offset;
2229 reloc_entry->addend = 0;
2230 }
2231 }
2232
2233 is_weak_undef = (bfd_is_und_section (symbol->section)
2234 && (symbol->flags & BSF_WEAK) != 0);
2235 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2236 (bfd_byte *) data, (bfd_vma) octets,
2237 is_weak_undef, error_message);
2238
2239 if (flag == bfd_reloc_dangerous)
2240 {
2241 /* Add the symbol name to the error message. */
2242 if (! *error_message)
2243 *error_message = "";
2244 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2245 strlen (symbol->name) + 17,
2246 symbol->name,
2247 (unsigned long) reloc_entry->addend);
2248 }
2249
2250 return flag;
2251 }
2252
2253 int xtensa_abi_choice (void)
2254 {
2255 if (elf32xtensa_abi == XTHAL_ABI_UNDEFINED)
2256 return XSHAL_ABI;
2257 else
2258 return elf32xtensa_abi;
2259 }
2260
2261 /* Set up an entry in the procedure linkage table. */
2262
2263 static bfd_vma
2264 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2265 bfd *output_bfd,
2266 unsigned reloc_index)
2267 {
2268 asection *splt, *sgotplt;
2269 bfd_vma plt_base, got_base;
2270 bfd_vma code_offset, lit_offset, abi_offset;
2271 int chunk;
2272 int abi = xtensa_abi_choice ();
2273
2274 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2275 splt = elf_xtensa_get_plt_section (info, chunk);
2276 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2277 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2278
2279 plt_base = splt->output_section->vma + splt->output_offset;
2280 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2281
2282 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2283 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2284
2285 /* Fill in the literal entry. This is the offset of the dynamic
2286 relocation entry. */
2287 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2288 sgotplt->contents + lit_offset);
2289
2290 /* Fill in the entry in the procedure linkage table. */
2291 memcpy (splt->contents + code_offset,
2292 (bfd_big_endian (output_bfd)
2293 ? elf_xtensa_be_plt_entry[abi != XTHAL_ABI_WINDOWED]
2294 : elf_xtensa_le_plt_entry[abi != XTHAL_ABI_WINDOWED]),
2295 PLT_ENTRY_SIZE);
2296 abi_offset = abi == XTHAL_ABI_WINDOWED ? 3 : 0;
2297 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2298 plt_base + code_offset + abi_offset),
2299 splt->contents + code_offset + abi_offset + 1);
2300 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2301 plt_base + code_offset + abi_offset + 3),
2302 splt->contents + code_offset + abi_offset + 4);
2303 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2304 plt_base + code_offset + abi_offset + 6),
2305 splt->contents + code_offset + abi_offset + 7);
2306
2307 return plt_base + code_offset;
2308 }
2309
2310
2311 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2312
2313 static bfd_boolean
2314 replace_tls_insn (Elf_Internal_Rela *rel,
2315 bfd *abfd,
2316 asection *input_section,
2317 bfd_byte *contents,
2318 bfd_boolean is_ld_model,
2319 char **error_message)
2320 {
2321 static xtensa_insnbuf ibuff = NULL;
2322 static xtensa_insnbuf sbuff = NULL;
2323 xtensa_isa isa = xtensa_default_isa;
2324 xtensa_format fmt;
2325 xtensa_opcode old_op, new_op;
2326 bfd_size_type input_size;
2327 int r_type;
2328 unsigned dest_reg, src_reg;
2329
2330 if (ibuff == NULL)
2331 {
2332 ibuff = xtensa_insnbuf_alloc (isa);
2333 sbuff = xtensa_insnbuf_alloc (isa);
2334 }
2335
2336 input_size = bfd_get_section_limit (abfd, input_section);
2337
2338 /* Read the instruction into a buffer and decode the opcode. */
2339 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2340 input_size - rel->r_offset);
2341 fmt = xtensa_format_decode (isa, ibuff);
2342 if (fmt == XTENSA_UNDEFINED)
2343 {
2344 *error_message = "cannot decode instruction format";
2345 return FALSE;
2346 }
2347
2348 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2349 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2350
2351 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2352 if (old_op == XTENSA_UNDEFINED)
2353 {
2354 *error_message = "cannot decode instruction opcode";
2355 return FALSE;
2356 }
2357
2358 r_type = ELF32_R_TYPE (rel->r_info);
2359 switch (r_type)
2360 {
2361 case R_XTENSA_TLS_FUNC:
2362 case R_XTENSA_TLS_ARG:
2363 if (old_op != get_l32r_opcode ()
2364 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2365 sbuff, &dest_reg) != 0)
2366 {
2367 *error_message = "cannot extract L32R destination for TLS access";
2368 return FALSE;
2369 }
2370 break;
2371
2372 case R_XTENSA_TLS_CALL:
2373 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2374 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2375 sbuff, &src_reg) != 0)
2376 {
2377 *error_message = "cannot extract CALLXn operands for TLS access";
2378 return FALSE;
2379 }
2380 break;
2381
2382 default:
2383 abort ();
2384 }
2385
2386 if (is_ld_model)
2387 {
2388 switch (r_type)
2389 {
2390 case R_XTENSA_TLS_FUNC:
2391 case R_XTENSA_TLS_ARG:
2392 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2393 versions of Xtensa). */
2394 new_op = xtensa_opcode_lookup (isa, "nop");
2395 if (new_op == XTENSA_UNDEFINED)
2396 {
2397 new_op = xtensa_opcode_lookup (isa, "or");
2398 if (new_op == XTENSA_UNDEFINED
2399 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2400 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2401 sbuff, 1) != 0
2402 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2403 sbuff, 1) != 0
2404 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2405 sbuff, 1) != 0)
2406 {
2407 *error_message = "cannot encode OR for TLS access";
2408 return FALSE;
2409 }
2410 }
2411 else
2412 {
2413 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2414 {
2415 *error_message = "cannot encode NOP for TLS access";
2416 return FALSE;
2417 }
2418 }
2419 break;
2420
2421 case R_XTENSA_TLS_CALL:
2422 /* Read THREADPTR into the CALLX's return value register. */
2423 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2424 if (new_op == XTENSA_UNDEFINED
2425 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2426 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2427 sbuff, dest_reg + 2) != 0)
2428 {
2429 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2430 return FALSE;
2431 }
2432 break;
2433 }
2434 }
2435 else
2436 {
2437 switch (r_type)
2438 {
2439 case R_XTENSA_TLS_FUNC:
2440 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2441 if (new_op == XTENSA_UNDEFINED
2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2444 sbuff, dest_reg) != 0)
2445 {
2446 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2447 return FALSE;
2448 }
2449 break;
2450
2451 case R_XTENSA_TLS_ARG:
2452 /* Nothing to do. Keep the original L32R instruction. */
2453 return TRUE;
2454
2455 case R_XTENSA_TLS_CALL:
2456 /* Add the CALLX's src register (holding the THREADPTR value)
2457 to the first argument register (holding the offset) and put
2458 the result in the CALLX's return value register. */
2459 new_op = xtensa_opcode_lookup (isa, "add");
2460 if (new_op == XTENSA_UNDEFINED
2461 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2462 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2463 sbuff, dest_reg + 2) != 0
2464 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2465 sbuff, dest_reg + 2) != 0
2466 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2467 sbuff, src_reg) != 0)
2468 {
2469 *error_message = "cannot encode ADD for TLS access";
2470 return FALSE;
2471 }
2472 break;
2473 }
2474 }
2475
2476 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2477 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2478 input_size - rel->r_offset);
2479
2480 return TRUE;
2481 }
2482
2483
2484 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2485 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2486 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2487 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2488 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2489 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2490 || (R_TYPE) == R_XTENSA_TLS_ARG \
2491 || (R_TYPE) == R_XTENSA_TLS_CALL)
2492
2493 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2494 both relocatable and final links. */
2495
2496 static bfd_boolean
2497 elf_xtensa_relocate_section (bfd *output_bfd,
2498 struct bfd_link_info *info,
2499 bfd *input_bfd,
2500 asection *input_section,
2501 bfd_byte *contents,
2502 Elf_Internal_Rela *relocs,
2503 Elf_Internal_Sym *local_syms,
2504 asection **local_sections)
2505 {
2506 struct elf_xtensa_link_hash_table *htab;
2507 Elf_Internal_Shdr *symtab_hdr;
2508 Elf_Internal_Rela *rel;
2509 Elf_Internal_Rela *relend;
2510 struct elf_link_hash_entry **sym_hashes;
2511 property_table_entry *lit_table = 0;
2512 int ltblsize = 0;
2513 char *local_got_tls_types;
2514 char *error_message = NULL;
2515 bfd_size_type input_size;
2516 int tls_type;
2517
2518 if (!xtensa_default_isa)
2519 xtensa_default_isa = xtensa_isa_init (0, 0);
2520
2521 if (!is_xtensa_elf (input_bfd))
2522 {
2523 bfd_set_error (bfd_error_wrong_format);
2524 return FALSE;
2525 }
2526
2527 htab = elf_xtensa_hash_table (info);
2528 if (htab == NULL)
2529 return FALSE;
2530
2531 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2532 sym_hashes = elf_sym_hashes (input_bfd);
2533 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2534
2535 if (elf_hash_table (info)->dynamic_sections_created)
2536 {
2537 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2538 &lit_table, XTENSA_LIT_SEC_NAME,
2539 TRUE);
2540 if (ltblsize < 0)
2541 return FALSE;
2542 }
2543
2544 input_size = bfd_get_section_limit (input_bfd, input_section);
2545
2546 rel = relocs;
2547 relend = relocs + input_section->reloc_count;
2548 for (; rel < relend; rel++)
2549 {
2550 int r_type;
2551 reloc_howto_type *howto;
2552 unsigned long r_symndx;
2553 struct elf_link_hash_entry *h;
2554 Elf_Internal_Sym *sym;
2555 char sym_type;
2556 const char *name;
2557 asection *sec;
2558 bfd_vma relocation;
2559 bfd_reloc_status_type r;
2560 bfd_boolean is_weak_undef;
2561 bfd_boolean unresolved_reloc;
2562 bfd_boolean warned;
2563 bfd_boolean dynamic_symbol;
2564
2565 r_type = ELF32_R_TYPE (rel->r_info);
2566 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2567 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2568 continue;
2569
2570 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2571 {
2572 bfd_set_error (bfd_error_bad_value);
2573 return FALSE;
2574 }
2575 howto = &elf_howto_table[r_type];
2576
2577 r_symndx = ELF32_R_SYM (rel->r_info);
2578
2579 h = NULL;
2580 sym = NULL;
2581 sec = NULL;
2582 is_weak_undef = FALSE;
2583 unresolved_reloc = FALSE;
2584 warned = FALSE;
2585
2586 if (howto->partial_inplace && !bfd_link_relocatable (info))
2587 {
2588 /* Because R_XTENSA_32 was made partial_inplace to fix some
2589 problems with DWARF info in partial links, there may be
2590 an addend stored in the contents. Take it out of there
2591 and move it back into the addend field of the reloc. */
2592 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2593 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2594 }
2595
2596 if (r_symndx < symtab_hdr->sh_info)
2597 {
2598 sym = local_syms + r_symndx;
2599 sym_type = ELF32_ST_TYPE (sym->st_info);
2600 sec = local_sections[r_symndx];
2601 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2602 }
2603 else
2604 {
2605 bfd_boolean ignored;
2606
2607 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2608 r_symndx, symtab_hdr, sym_hashes,
2609 h, sec, relocation,
2610 unresolved_reloc, warned, ignored);
2611
2612 if (relocation == 0
2613 && !unresolved_reloc
2614 && h->root.type == bfd_link_hash_undefweak)
2615 is_weak_undef = TRUE;
2616
2617 sym_type = h->type;
2618 }
2619
2620 if (sec != NULL && discarded_section (sec))
2621 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2622 rel, 1, relend, howto, 0, contents);
2623
2624 if (bfd_link_relocatable (info))
2625 {
2626 bfd_vma dest_addr;
2627 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2628
2629 /* This is a relocatable link.
2630 1) If the reloc is against a section symbol, adjust
2631 according to the output section.
2632 2) If there is a new target for this relocation,
2633 the new target will be in the same output section.
2634 We adjust the relocation by the output section
2635 difference. */
2636
2637 if (relaxing_section)
2638 {
2639 /* Check if this references a section in another input file. */
2640 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2641 contents))
2642 return FALSE;
2643 }
2644
2645 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2646 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2647
2648 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2649 {
2650 error_message = NULL;
2651 /* Convert ASM_SIMPLIFY into the simpler relocation
2652 so that they never escape a relaxing link. */
2653 r = contract_asm_expansion (contents, input_size, rel,
2654 &error_message);
2655 if (r != bfd_reloc_ok)
2656 (*info->callbacks->reloc_dangerous)
2657 (info, error_message,
2658 input_bfd, input_section, rel->r_offset);
2659
2660 r_type = ELF32_R_TYPE (rel->r_info);
2661 }
2662
2663 /* This is a relocatable link, so we don't have to change
2664 anything unless the reloc is against a section symbol,
2665 in which case we have to adjust according to where the
2666 section symbol winds up in the output section. */
2667 if (r_symndx < symtab_hdr->sh_info)
2668 {
2669 sym = local_syms + r_symndx;
2670 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2671 {
2672 sec = local_sections[r_symndx];
2673 rel->r_addend += sec->output_offset + sym->st_value;
2674 }
2675 }
2676
2677 /* If there is an addend with a partial_inplace howto,
2678 then move the addend to the contents. This is a hack
2679 to work around problems with DWARF in relocatable links
2680 with some previous version of BFD. Now we can't easily get
2681 rid of the hack without breaking backward compatibility.... */
2682 r = bfd_reloc_ok;
2683 howto = &elf_howto_table[r_type];
2684 if (howto->partial_inplace && rel->r_addend)
2685 {
2686 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2687 rel->r_addend, contents,
2688 rel->r_offset, FALSE,
2689 &error_message);
2690 rel->r_addend = 0;
2691 }
2692 else
2693 {
2694 /* Put the correct bits in the target instruction, even
2695 though the relocation will still be present in the output
2696 file. This makes disassembly clearer, as well as
2697 allowing loadable kernel modules to work without needing
2698 relocations on anything other than calls and l32r's. */
2699
2700 /* If it is not in the same section, there is nothing we can do. */
2701 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2702 sym_sec->output_section == input_section->output_section)
2703 {
2704 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2705 dest_addr, contents,
2706 rel->r_offset, FALSE,
2707 &error_message);
2708 }
2709 }
2710 if (r != bfd_reloc_ok)
2711 (*info->callbacks->reloc_dangerous)
2712 (info, error_message,
2713 input_bfd, input_section, rel->r_offset);
2714
2715 /* Done with work for relocatable link; continue with next reloc. */
2716 continue;
2717 }
2718
2719 /* This is a final link. */
2720
2721 if (relaxing_section)
2722 {
2723 /* Check if this references a section in another input file. */
2724 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2725 &relocation);
2726 }
2727
2728 /* Sanity check the address. */
2729 if (rel->r_offset >= input_size
2730 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2731 {
2732 _bfd_error_handler
2733 /* xgettext:c-format */
2734 (_("%pB(%pA+%#" PRIx64 "): "
2735 "relocation offset out of range (size=%#" PRIx64 ")"),
2736 input_bfd, input_section, (uint64_t) rel->r_offset,
2737 (uint64_t) input_size);
2738 bfd_set_error (bfd_error_bad_value);
2739 return FALSE;
2740 }
2741
2742 if (h != NULL)
2743 name = h->root.root.string;
2744 else
2745 {
2746 name = (bfd_elf_string_from_elf_section
2747 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2748 if (name == NULL || *name == '\0')
2749 name = bfd_section_name (sec);
2750 }
2751
2752 if (r_symndx != STN_UNDEF
2753 && r_type != R_XTENSA_NONE
2754 && (h == NULL
2755 || h->root.type == bfd_link_hash_defined
2756 || h->root.type == bfd_link_hash_defweak)
2757 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2758 {
2759 _bfd_error_handler
2760 ((sym_type == STT_TLS
2761 /* xgettext:c-format */
2762 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2763 /* xgettext:c-format */
2764 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2765 input_bfd,
2766 input_section,
2767 (uint64_t) rel->r_offset,
2768 howto->name,
2769 name);
2770 }
2771
2772 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2773
2774 tls_type = GOT_UNKNOWN;
2775 if (h)
2776 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2777 else if (local_got_tls_types)
2778 tls_type = local_got_tls_types [r_symndx];
2779
2780 switch (r_type)
2781 {
2782 case R_XTENSA_32:
2783 case R_XTENSA_PLT:
2784 if (elf_hash_table (info)->dynamic_sections_created
2785 && (input_section->flags & SEC_ALLOC) != 0
2786 && (dynamic_symbol || bfd_link_pic (info)))
2787 {
2788 Elf_Internal_Rela outrel;
2789 bfd_byte *loc;
2790 asection *srel;
2791
2792 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2793 srel = htab->elf.srelplt;
2794 else
2795 srel = htab->elf.srelgot;
2796
2797 BFD_ASSERT (srel != NULL);
2798
2799 outrel.r_offset =
2800 _bfd_elf_section_offset (output_bfd, info,
2801 input_section, rel->r_offset);
2802
2803 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2804 memset (&outrel, 0, sizeof outrel);
2805 else
2806 {
2807 outrel.r_offset += (input_section->output_section->vma
2808 + input_section->output_offset);
2809
2810 /* Complain if the relocation is in a read-only section
2811 and not in a literal pool. */
2812 if ((input_section->flags & SEC_READONLY) != 0
2813 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2814 outrel.r_offset))
2815 {
2816 error_message =
2817 _("dynamic relocation in read-only section");
2818 (*info->callbacks->reloc_dangerous)
2819 (info, error_message,
2820 input_bfd, input_section, rel->r_offset);
2821 }
2822
2823 if (dynamic_symbol)
2824 {
2825 outrel.r_addend = rel->r_addend;
2826 rel->r_addend = 0;
2827
2828 if (r_type == R_XTENSA_32)
2829 {
2830 outrel.r_info =
2831 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2832 relocation = 0;
2833 }
2834 else /* r_type == R_XTENSA_PLT */
2835 {
2836 outrel.r_info =
2837 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2838
2839 /* Create the PLT entry and set the initial
2840 contents of the literal entry to the address of
2841 the PLT entry. */
2842 relocation =
2843 elf_xtensa_create_plt_entry (info, output_bfd,
2844 srel->reloc_count);
2845 }
2846 unresolved_reloc = FALSE;
2847 }
2848 else if (!is_weak_undef)
2849 {
2850 /* Generate a RELATIVE relocation. */
2851 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2852 outrel.r_addend = 0;
2853 }
2854 else
2855 {
2856 continue;
2857 }
2858 }
2859
2860 loc = (srel->contents
2861 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2862 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2863 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2864 <= srel->size);
2865 }
2866 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2867 {
2868 /* This should only happen for non-PIC code, which is not
2869 supposed to be used on systems with dynamic linking.
2870 Just ignore these relocations. */
2871 continue;
2872 }
2873 break;
2874
2875 case R_XTENSA_TLS_TPOFF:
2876 /* Switch to LE model for local symbols in an executable. */
2877 if (! bfd_link_pic (info) && ! dynamic_symbol)
2878 {
2879 relocation = tpoff (info, relocation);
2880 break;
2881 }
2882 /* fall through */
2883
2884 case R_XTENSA_TLSDESC_FN:
2885 case R_XTENSA_TLSDESC_ARG:
2886 {
2887 if (r_type == R_XTENSA_TLSDESC_FN)
2888 {
2889 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2890 r_type = R_XTENSA_NONE;
2891 }
2892 else if (r_type == R_XTENSA_TLSDESC_ARG)
2893 {
2894 if (bfd_link_pic (info))
2895 {
2896 if ((tls_type & GOT_TLS_IE) != 0)
2897 r_type = R_XTENSA_TLS_TPOFF;
2898 }
2899 else
2900 {
2901 r_type = R_XTENSA_TLS_TPOFF;
2902 if (! dynamic_symbol)
2903 {
2904 relocation = tpoff (info, relocation);
2905 break;
2906 }
2907 }
2908 }
2909
2910 if (r_type == R_XTENSA_NONE)
2911 /* Nothing to do here; skip to the next reloc. */
2912 continue;
2913
2914 if (! elf_hash_table (info)->dynamic_sections_created)
2915 {
2916 error_message =
2917 _("TLS relocation invalid without dynamic sections");
2918 (*info->callbacks->reloc_dangerous)
2919 (info, error_message,
2920 input_bfd, input_section, rel->r_offset);
2921 }
2922 else
2923 {
2924 Elf_Internal_Rela outrel;
2925 bfd_byte *loc;
2926 asection *srel = htab->elf.srelgot;
2927 int indx;
2928
2929 outrel.r_offset = (input_section->output_section->vma
2930 + input_section->output_offset
2931 + rel->r_offset);
2932
2933 /* Complain if the relocation is in a read-only section
2934 and not in a literal pool. */
2935 if ((input_section->flags & SEC_READONLY) != 0
2936 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2937 outrel.r_offset))
2938 {
2939 error_message =
2940 _("dynamic relocation in read-only section");
2941 (*info->callbacks->reloc_dangerous)
2942 (info, error_message,
2943 input_bfd, input_section, rel->r_offset);
2944 }
2945
2946 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2947 if (indx == 0)
2948 outrel.r_addend = relocation - dtpoff_base (info);
2949 else
2950 outrel.r_addend = 0;
2951 rel->r_addend = 0;
2952
2953 outrel.r_info = ELF32_R_INFO (indx, r_type);
2954 relocation = 0;
2955 unresolved_reloc = FALSE;
2956
2957 BFD_ASSERT (srel);
2958 loc = (srel->contents
2959 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2960 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2961 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2962 <= srel->size);
2963 }
2964 }
2965 break;
2966
2967 case R_XTENSA_TLS_DTPOFF:
2968 if (! bfd_link_pic (info))
2969 /* Switch from LD model to LE model. */
2970 relocation = tpoff (info, relocation);
2971 else
2972 relocation -= dtpoff_base (info);
2973 break;
2974
2975 case R_XTENSA_TLS_FUNC:
2976 case R_XTENSA_TLS_ARG:
2977 case R_XTENSA_TLS_CALL:
2978 /* Check if optimizing to IE or LE model. */
2979 if ((tls_type & GOT_TLS_IE) != 0)
2980 {
2981 bfd_boolean is_ld_model =
2982 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2983 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2984 is_ld_model, &error_message))
2985 (*info->callbacks->reloc_dangerous)
2986 (info, error_message,
2987 input_bfd, input_section, rel->r_offset);
2988
2989 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2990 {
2991 /* Skip subsequent relocations on the same instruction. */
2992 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2993 rel++;
2994 }
2995 }
2996 continue;
2997
2998 default:
2999 if (elf_hash_table (info)->dynamic_sections_created
3000 && dynamic_symbol && (is_operand_relocation (r_type)
3001 || r_type == R_XTENSA_32_PCREL))
3002 {
3003 error_message =
3004 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3005 strlen (name) + 2, name);
3006 (*info->callbacks->reloc_dangerous)
3007 (info, error_message, input_bfd, input_section, rel->r_offset);
3008 continue;
3009 }
3010 break;
3011 }
3012
3013 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3014 because such sections are not SEC_ALLOC and thus ld.so will
3015 not process them. */
3016 if (unresolved_reloc
3017 && !((input_section->flags & SEC_DEBUGGING) != 0
3018 && h->def_dynamic)
3019 && _bfd_elf_section_offset (output_bfd, info, input_section,
3020 rel->r_offset) != (bfd_vma) -1)
3021 {
3022 _bfd_error_handler
3023 /* xgettext:c-format */
3024 (_("%pB(%pA+%#" PRIx64 "): "
3025 "unresolvable %s relocation against symbol `%s'"),
3026 input_bfd,
3027 input_section,
3028 (uint64_t) rel->r_offset,
3029 howto->name,
3030 name);
3031 return FALSE;
3032 }
3033
3034 /* TLS optimizations may have changed r_type; update "howto". */
3035 howto = &elf_howto_table[r_type];
3036
3037 /* There's no point in calling bfd_perform_relocation here.
3038 Just go directly to our "special function". */
3039 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3040 relocation + rel->r_addend,
3041 contents, rel->r_offset, is_weak_undef,
3042 &error_message);
3043
3044 if (r != bfd_reloc_ok && !warned)
3045 {
3046 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3047 BFD_ASSERT (error_message != NULL);
3048
3049 if (rel->r_addend == 0)
3050 error_message = vsprint_msg (error_message, ": %s",
3051 strlen (name) + 2, name);
3052 else
3053 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3054 strlen (name) + 22,
3055 name, (int) rel->r_addend);
3056
3057 (*info->callbacks->reloc_dangerous)
3058 (info, error_message, input_bfd, input_section, rel->r_offset);
3059 }
3060 }
3061
3062 free (lit_table);
3063 input_section->reloc_done = TRUE;
3064
3065 return TRUE;
3066 }
3067
3068
3069 /* Finish up dynamic symbol handling. There's not much to do here since
3070 the PLT and GOT entries are all set up by relocate_section. */
3071
3072 static bfd_boolean
3073 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3074 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3075 struct elf_link_hash_entry *h,
3076 Elf_Internal_Sym *sym)
3077 {
3078 if (h->needs_plt && !h->def_regular)
3079 {
3080 /* Mark the symbol as undefined, rather than as defined in
3081 the .plt section. Leave the value alone. */
3082 sym->st_shndx = SHN_UNDEF;
3083 /* If the symbol is weak, we do need to clear the value.
3084 Otherwise, the PLT entry would provide a definition for
3085 the symbol even if the symbol wasn't defined anywhere,
3086 and so the symbol would never be NULL. */
3087 if (!h->ref_regular_nonweak)
3088 sym->st_value = 0;
3089 }
3090
3091 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3092 if (h == elf_hash_table (info)->hdynamic
3093 || h == elf_hash_table (info)->hgot)
3094 sym->st_shndx = SHN_ABS;
3095
3096 return TRUE;
3097 }
3098
3099
3100 /* Combine adjacent literal table entries in the output. Adjacent
3101 entries within each input section may have been removed during
3102 relaxation, but we repeat the process here, even though it's too late
3103 to shrink the output section, because it's important to minimize the
3104 number of literal table entries to reduce the start-up work for the
3105 runtime linker. Returns the number of remaining table entries or -1
3106 on error. */
3107
3108 static int
3109 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3110 asection *sxtlit,
3111 asection *sgotloc)
3112 {
3113 bfd_byte *contents;
3114 property_table_entry *table;
3115 bfd_size_type section_size, sgotloc_size;
3116 bfd_vma offset;
3117 int n, m, num;
3118
3119 section_size = sxtlit->size;
3120 if (section_size == 0)
3121 return 0;
3122
3123 BFD_ASSERT (section_size % 8 == 0);
3124 num = section_size / 8;
3125
3126 sgotloc_size = sgotloc->size;
3127 if (sgotloc_size != section_size)
3128 {
3129 _bfd_error_handler
3130 (_("internal inconsistency in size of .got.loc section"));
3131 return -1;
3132 }
3133
3134 table = bfd_malloc (num * sizeof (property_table_entry));
3135 if (table == 0)
3136 return -1;
3137
3138 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3139 propagates to the output section, where it doesn't really apply and
3140 where it breaks the following call to bfd_malloc_and_get_section. */
3141 sxtlit->flags &= ~SEC_IN_MEMORY;
3142
3143 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3144 {
3145 free (contents);
3146 free (table);
3147 return -1;
3148 }
3149
3150 /* There should never be any relocations left at this point, so this
3151 is quite a bit easier than what is done during relaxation. */
3152
3153 /* Copy the raw contents into a property table array and sort it. */
3154 offset = 0;
3155 for (n = 0; n < num; n++)
3156 {
3157 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3158 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3159 offset += 8;
3160 }
3161 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3162
3163 for (n = 0; n < num; n++)
3164 {
3165 bfd_boolean remove_entry = FALSE;
3166
3167 if (table[n].size == 0)
3168 remove_entry = TRUE;
3169 else if (n > 0
3170 && (table[n-1].address + table[n-1].size == table[n].address))
3171 {
3172 table[n-1].size += table[n].size;
3173 remove_entry = TRUE;
3174 }
3175
3176 if (remove_entry)
3177 {
3178 for (m = n; m < num - 1; m++)
3179 {
3180 table[m].address = table[m+1].address;
3181 table[m].size = table[m+1].size;
3182 }
3183
3184 n--;
3185 num--;
3186 }
3187 }
3188
3189 /* Copy the data back to the raw contents. */
3190 offset = 0;
3191 for (n = 0; n < num; n++)
3192 {
3193 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3194 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3195 offset += 8;
3196 }
3197
3198 /* Clear the removed bytes. */
3199 if ((bfd_size_type) (num * 8) < section_size)
3200 memset (&contents[num * 8], 0, section_size - num * 8);
3201
3202 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3203 section_size))
3204 return -1;
3205
3206 /* Copy the contents to ".got.loc". */
3207 memcpy (sgotloc->contents, contents, section_size);
3208
3209 free (contents);
3210 free (table);
3211 return num;
3212 }
3213
3214
3215 /* Finish up the dynamic sections. */
3216
3217 static bfd_boolean
3218 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3219 struct bfd_link_info *info)
3220 {
3221 struct elf_xtensa_link_hash_table *htab;
3222 bfd *dynobj;
3223 asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3224 Elf32_External_Dyn *dyncon, *dynconend;
3225 int num_xtlit_entries = 0;
3226
3227 if (! elf_hash_table (info)->dynamic_sections_created)
3228 return TRUE;
3229
3230 htab = elf_xtensa_hash_table (info);
3231 if (htab == NULL)
3232 return FALSE;
3233
3234 dynobj = elf_hash_table (info)->dynobj;
3235 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3236 BFD_ASSERT (sdyn != NULL);
3237
3238 /* Set the first entry in the global offset table to the address of
3239 the dynamic section. */
3240 sgot = htab->elf.sgot;
3241 if (sgot)
3242 {
3243 BFD_ASSERT (sgot->size == 4);
3244 if (sdyn == NULL)
3245 bfd_put_32 (output_bfd, 0, sgot->contents);
3246 else
3247 bfd_put_32 (output_bfd,
3248 sdyn->output_section->vma + sdyn->output_offset,
3249 sgot->contents);
3250 }
3251
3252 srelplt = htab->elf.srelplt;
3253 srelgot = htab->elf.srelgot;
3254 if (srelplt && srelplt->size != 0)
3255 {
3256 asection *sgotplt, *spltlittbl;
3257 int chunk, plt_chunks, plt_entries;
3258 Elf_Internal_Rela irela;
3259 bfd_byte *loc;
3260 unsigned rtld_reloc;
3261
3262 spltlittbl = htab->spltlittbl;
3263 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3264
3265 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3266 of them follow immediately after.... */
3267 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3268 {
3269 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3270 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3271 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3272 break;
3273 }
3274 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3275
3276 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3277 plt_chunks =
3278 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3279
3280 for (chunk = 0; chunk < plt_chunks; chunk++)
3281 {
3282 int chunk_entries = 0;
3283
3284 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3285 BFD_ASSERT (sgotplt != NULL);
3286
3287 /* Emit special RTLD relocations for the first two entries in
3288 each chunk of the .got.plt section. */
3289
3290 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3291 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3292 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3293 irela.r_offset = (sgotplt->output_section->vma
3294 + sgotplt->output_offset);
3295 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3296 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3297 rtld_reloc += 1;
3298 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3299
3300 /* Next literal immediately follows the first. */
3301 loc += sizeof (Elf32_External_Rela);
3302 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3303 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3304 irela.r_offset = (sgotplt->output_section->vma
3305 + sgotplt->output_offset + 4);
3306 /* Tell rtld to set value to object's link map. */
3307 irela.r_addend = 2;
3308 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3309 rtld_reloc += 1;
3310 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3311
3312 /* Fill in the literal table. */
3313 if (chunk < plt_chunks - 1)
3314 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3315 else
3316 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3317
3318 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3319 bfd_put_32 (output_bfd,
3320 sgotplt->output_section->vma + sgotplt->output_offset,
3321 spltlittbl->contents + (chunk * 8) + 0);
3322 bfd_put_32 (output_bfd,
3323 8 + (chunk_entries * 4),
3324 spltlittbl->contents + (chunk * 8) + 4);
3325 }
3326
3327 /* The .xt.lit.plt section has just been modified. This must
3328 happen before the code below which combines adjacent literal
3329 table entries, and the .xt.lit.plt contents have to be forced to
3330 the output here. */
3331 if (! bfd_set_section_contents (output_bfd,
3332 spltlittbl->output_section,
3333 spltlittbl->contents,
3334 spltlittbl->output_offset,
3335 spltlittbl->size))
3336 return FALSE;
3337 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3338 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3339 }
3340
3341 /* All the dynamic relocations have been emitted at this point.
3342 Make sure the relocation sections are the correct size. */
3343 if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3344 * srelgot->reloc_count))
3345 || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3346 * srelplt->reloc_count)))
3347 abort ();
3348
3349 /* Combine adjacent literal table entries. */
3350 BFD_ASSERT (! bfd_link_relocatable (info));
3351 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3352 sgotloc = htab->sgotloc;
3353 BFD_ASSERT (sgotloc);
3354 if (sxtlit)
3355 {
3356 num_xtlit_entries =
3357 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3358 if (num_xtlit_entries < 0)
3359 return FALSE;
3360 }
3361
3362 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3363 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3364 for (; dyncon < dynconend; dyncon++)
3365 {
3366 Elf_Internal_Dyn dyn;
3367
3368 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3369
3370 switch (dyn.d_tag)
3371 {
3372 default:
3373 break;
3374
3375 case DT_XTENSA_GOT_LOC_SZ:
3376 dyn.d_un.d_val = num_xtlit_entries;
3377 break;
3378
3379 case DT_XTENSA_GOT_LOC_OFF:
3380 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3381 + htab->sgotloc->output_offset);
3382 break;
3383
3384 case DT_PLTGOT:
3385 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3386 + htab->elf.sgot->output_offset);
3387 break;
3388
3389 case DT_JMPREL:
3390 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3391 + htab->elf.srelplt->output_offset);
3392 break;
3393
3394 case DT_PLTRELSZ:
3395 dyn.d_un.d_val = htab->elf.srelplt->size;
3396 break;
3397 }
3398
3399 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3400 }
3401
3402 return TRUE;
3403 }
3404
3405 \f
3406 /* Functions for dealing with the e_flags field. */
3407
3408 /* Merge backend specific data from an object file to the output
3409 object file when linking. */
3410
3411 static bfd_boolean
3412 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3413 {
3414 bfd *obfd = info->output_bfd;
3415 unsigned out_mach, in_mach;
3416 flagword out_flag, in_flag;
3417
3418 /* Check if we have the same endianness. */
3419 if (!_bfd_generic_verify_endian_match (ibfd, info))
3420 return FALSE;
3421
3422 /* Don't even pretend to support mixed-format linking. */
3423 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3424 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3425 return FALSE;
3426
3427 out_flag = elf_elfheader (obfd)->e_flags;
3428 in_flag = elf_elfheader (ibfd)->e_flags;
3429
3430 out_mach = out_flag & EF_XTENSA_MACH;
3431 in_mach = in_flag & EF_XTENSA_MACH;
3432 if (out_mach != in_mach)
3433 {
3434 _bfd_error_handler
3435 /* xgettext:c-format */
3436 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3437 ibfd, out_mach, in_mach);
3438 bfd_set_error (bfd_error_wrong_format);
3439 return FALSE;
3440 }
3441
3442 if (! elf_flags_init (obfd))
3443 {
3444 elf_flags_init (obfd) = TRUE;
3445 elf_elfheader (obfd)->e_flags = in_flag;
3446
3447 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3448 && bfd_get_arch_info (obfd)->the_default)
3449 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3450 bfd_get_mach (ibfd));
3451
3452 return TRUE;
3453 }
3454
3455 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3456 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3457
3458 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3459 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3460
3461 return TRUE;
3462 }
3463
3464
3465 static bfd_boolean
3466 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3467 {
3468 BFD_ASSERT (!elf_flags_init (abfd)
3469 || elf_elfheader (abfd)->e_flags == flags);
3470
3471 elf_elfheader (abfd)->e_flags |= flags;
3472 elf_flags_init (abfd) = TRUE;
3473
3474 return TRUE;
3475 }
3476
3477
3478 static bfd_boolean
3479 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3480 {
3481 FILE *f = (FILE *) farg;
3482 flagword e_flags = elf_elfheader (abfd)->e_flags;
3483
3484 fprintf (f, "\nXtensa header:\n");
3485 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3486 fprintf (f, "\nMachine = Base\n");
3487 else
3488 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3489
3490 fprintf (f, "Insn tables = %s\n",
3491 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3492
3493 fprintf (f, "Literal tables = %s\n",
3494 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3495
3496 return _bfd_elf_print_private_bfd_data (abfd, farg);
3497 }
3498
3499
3500 /* Set the right machine number for an Xtensa ELF file. */
3501
3502 static bfd_boolean
3503 elf_xtensa_object_p (bfd *abfd)
3504 {
3505 int mach;
3506 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3507
3508 switch (arch)
3509 {
3510 case E_XTENSA_MACH:
3511 mach = bfd_mach_xtensa;
3512 break;
3513 default:
3514 return FALSE;
3515 }
3516
3517 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3518 return TRUE;
3519 }
3520
3521
3522 /* The final processing done just before writing out an Xtensa ELF object
3523 file. This gets the Xtensa architecture right based on the machine
3524 number. */
3525
3526 static bfd_boolean
3527 elf_xtensa_final_write_processing (bfd *abfd)
3528 {
3529 int mach;
3530 unsigned long val = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3531
3532 switch (mach = bfd_get_mach (abfd))
3533 {
3534 case bfd_mach_xtensa:
3535 val = E_XTENSA_MACH;
3536 break;
3537 default:
3538 break;
3539 }
3540
3541 elf_elfheader (abfd)->e_flags &= ~EF_XTENSA_MACH;
3542 elf_elfheader (abfd)->e_flags |= val;
3543 return _bfd_elf_final_write_processing (abfd);
3544 }
3545
3546
3547 static enum elf_reloc_type_class
3548 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3549 const asection *rel_sec ATTRIBUTE_UNUSED,
3550 const Elf_Internal_Rela *rela)
3551 {
3552 switch ((int) ELF32_R_TYPE (rela->r_info))
3553 {
3554 case R_XTENSA_RELATIVE:
3555 return reloc_class_relative;
3556 case R_XTENSA_JMP_SLOT:
3557 return reloc_class_plt;
3558 default:
3559 return reloc_class_normal;
3560 }
3561 }
3562
3563 \f
3564 static bfd_boolean
3565 elf_xtensa_discard_info_for_section (bfd *abfd,
3566 struct elf_reloc_cookie *cookie,
3567 struct bfd_link_info *info,
3568 asection *sec)
3569 {
3570 bfd_byte *contents;
3571 bfd_vma offset, actual_offset;
3572 bfd_size_type removed_bytes = 0;
3573 bfd_size_type entry_size;
3574
3575 if (sec->output_section
3576 && bfd_is_abs_section (sec->output_section))
3577 return FALSE;
3578
3579 if (xtensa_is_proptable_section (sec))
3580 entry_size = 12;
3581 else
3582 entry_size = 8;
3583
3584 if (sec->size == 0 || sec->size % entry_size != 0)
3585 return FALSE;
3586
3587 contents = retrieve_contents (abfd, sec, info->keep_memory);
3588 if (!contents)
3589 return FALSE;
3590
3591 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3592 if (!cookie->rels)
3593 {
3594 release_contents (sec, contents);
3595 return FALSE;
3596 }
3597
3598 /* Sort the relocations. They should already be in order when
3599 relaxation is enabled, but it might not be. */
3600 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3601 internal_reloc_compare);
3602
3603 cookie->rel = cookie->rels;
3604 cookie->relend = cookie->rels + sec->reloc_count;
3605
3606 for (offset = 0; offset < sec->size; offset += entry_size)
3607 {
3608 actual_offset = offset - removed_bytes;
3609
3610 /* The ...symbol_deleted_p function will skip over relocs but it
3611 won't adjust their offsets, so do that here. */
3612 while (cookie->rel < cookie->relend
3613 && cookie->rel->r_offset < offset)
3614 {
3615 cookie->rel->r_offset -= removed_bytes;
3616 cookie->rel++;
3617 }
3618
3619 while (cookie->rel < cookie->relend
3620 && cookie->rel->r_offset == offset)
3621 {
3622 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3623 {
3624 /* Remove the table entry. (If the reloc type is NONE, then
3625 the entry has already been merged with another and deleted
3626 during relaxation.) */
3627 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3628 {
3629 /* Shift the contents up. */
3630 if (offset + entry_size < sec->size)
3631 memmove (&contents[actual_offset],
3632 &contents[actual_offset + entry_size],
3633 sec->size - offset - entry_size);
3634 removed_bytes += entry_size;
3635 }
3636
3637 /* Remove this relocation. */
3638 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3639 }
3640
3641 /* Adjust the relocation offset for previous removals. This
3642 should not be done before calling ...symbol_deleted_p
3643 because it might mess up the offset comparisons there.
3644 Make sure the offset doesn't underflow in the case where
3645 the first entry is removed. */
3646 if (cookie->rel->r_offset >= removed_bytes)
3647 cookie->rel->r_offset -= removed_bytes;
3648 else
3649 cookie->rel->r_offset = 0;
3650
3651 cookie->rel++;
3652 }
3653 }
3654
3655 if (removed_bytes != 0)
3656 {
3657 /* Adjust any remaining relocs (shouldn't be any). */
3658 for (; cookie->rel < cookie->relend; cookie->rel++)
3659 {
3660 if (cookie->rel->r_offset >= removed_bytes)
3661 cookie->rel->r_offset -= removed_bytes;
3662 else
3663 cookie->rel->r_offset = 0;
3664 }
3665
3666 /* Clear the removed bytes. */
3667 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3668
3669 pin_contents (sec, contents);
3670 pin_internal_relocs (sec, cookie->rels);
3671
3672 /* Shrink size. */
3673 if (sec->rawsize == 0)
3674 sec->rawsize = sec->size;
3675 sec->size -= removed_bytes;
3676
3677 if (xtensa_is_littable_section (sec))
3678 {
3679 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3680 if (sgotloc)
3681 sgotloc->size -= removed_bytes;
3682 }
3683 }
3684 else
3685 {
3686 release_contents (sec, contents);
3687 release_internal_relocs (sec, cookie->rels);
3688 }
3689
3690 return (removed_bytes != 0);
3691 }
3692
3693
3694 static bfd_boolean
3695 elf_xtensa_discard_info (bfd *abfd,
3696 struct elf_reloc_cookie *cookie,
3697 struct bfd_link_info *info)
3698 {
3699 asection *sec;
3700 bfd_boolean changed = FALSE;
3701
3702 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3703 {
3704 if (xtensa_is_property_section (sec))
3705 {
3706 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3707 changed = TRUE;
3708 }
3709 }
3710
3711 return changed;
3712 }
3713
3714
3715 static bfd_boolean
3716 elf_xtensa_ignore_discarded_relocs (asection *sec)
3717 {
3718 return xtensa_is_property_section (sec);
3719 }
3720
3721
3722 static unsigned int
3723 elf_xtensa_action_discarded (asection *sec)
3724 {
3725 if (strcmp (".xt_except_table", sec->name) == 0)
3726 return 0;
3727
3728 if (strcmp (".xt_except_desc", sec->name) == 0)
3729 return 0;
3730
3731 return _bfd_elf_default_action_discarded (sec);
3732 }
3733
3734 \f
3735 /* Support for core dump NOTE sections. */
3736
3737 static bfd_boolean
3738 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3739 {
3740 int offset;
3741 unsigned int size;
3742
3743 /* The size for Xtensa is variable, so don't try to recognize the format
3744 based on the size. Just assume this is GNU/Linux. */
3745
3746 /* pr_cursig */
3747 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3748
3749 /* pr_pid */
3750 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3751
3752 /* pr_reg */
3753 offset = 72;
3754 size = note->descsz - offset - 4;
3755
3756 /* Make a ".reg/999" section. */
3757 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3758 size, note->descpos + offset);
3759 }
3760
3761
3762 static bfd_boolean
3763 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3764 {
3765 switch (note->descsz)
3766 {
3767 default:
3768 return FALSE;
3769
3770 case 128: /* GNU/Linux elf_prpsinfo */
3771 elf_tdata (abfd)->core->program
3772 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3773 elf_tdata (abfd)->core->command
3774 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3775 }
3776
3777 /* Note that for some reason, a spurious space is tacked
3778 onto the end of the args in some (at least one anyway)
3779 implementations, so strip it off if it exists. */
3780
3781 {
3782 char *command = elf_tdata (abfd)->core->command;
3783 int n = strlen (command);
3784
3785 if (0 < n && command[n - 1] == ' ')
3786 command[n - 1] = '\0';
3787 }
3788
3789 return TRUE;
3790 }
3791
3792 \f
3793 /* Generic Xtensa configurability stuff. */
3794
3795 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3796 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3797 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3798 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3799 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3800 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3801 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3802 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3803
3804 static void
3805 init_call_opcodes (void)
3806 {
3807 if (callx0_op == XTENSA_UNDEFINED)
3808 {
3809 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3810 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3811 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3812 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3813 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3814 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3815 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3816 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3817 }
3818 }
3819
3820
3821 static bfd_boolean
3822 is_indirect_call_opcode (xtensa_opcode opcode)
3823 {
3824 init_call_opcodes ();
3825 return (opcode == callx0_op
3826 || opcode == callx4_op
3827 || opcode == callx8_op
3828 || opcode == callx12_op);
3829 }
3830
3831
3832 static bfd_boolean
3833 is_direct_call_opcode (xtensa_opcode opcode)
3834 {
3835 init_call_opcodes ();
3836 return (opcode == call0_op
3837 || opcode == call4_op
3838 || opcode == call8_op
3839 || opcode == call12_op);
3840 }
3841
3842
3843 static bfd_boolean
3844 is_windowed_call_opcode (xtensa_opcode opcode)
3845 {
3846 init_call_opcodes ();
3847 return (opcode == call4_op
3848 || opcode == call8_op
3849 || opcode == call12_op
3850 || opcode == callx4_op
3851 || opcode == callx8_op
3852 || opcode == callx12_op);
3853 }
3854
3855
3856 static bfd_boolean
3857 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3858 {
3859 unsigned dst = (unsigned) -1;
3860
3861 init_call_opcodes ();
3862 if (opcode == callx0_op)
3863 dst = 0;
3864 else if (opcode == callx4_op)
3865 dst = 4;
3866 else if (opcode == callx8_op)
3867 dst = 8;
3868 else if (opcode == callx12_op)
3869 dst = 12;
3870
3871 if (dst == (unsigned) -1)
3872 return FALSE;
3873
3874 *pdst = dst;
3875 return TRUE;
3876 }
3877
3878
3879 static xtensa_opcode
3880 get_const16_opcode (void)
3881 {
3882 static bfd_boolean done_lookup = FALSE;
3883 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3884 if (!done_lookup)
3885 {
3886 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3887 done_lookup = TRUE;
3888 }
3889 return const16_opcode;
3890 }
3891
3892
3893 static xtensa_opcode
3894 get_l32r_opcode (void)
3895 {
3896 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3897 static bfd_boolean done_lookup = FALSE;
3898
3899 if (!done_lookup)
3900 {
3901 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3902 done_lookup = TRUE;
3903 }
3904 return l32r_opcode;
3905 }
3906
3907
3908 static bfd_vma
3909 l32r_offset (bfd_vma addr, bfd_vma pc)
3910 {
3911 bfd_vma offset;
3912
3913 offset = addr - ((pc+3) & -4);
3914 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3915 offset = (signed int) offset >> 2;
3916 BFD_ASSERT ((signed int) offset >> 16 == -1);
3917 return offset;
3918 }
3919
3920
3921 static xtensa_opcode
3922 get_rsr_lend_opcode (void)
3923 {
3924 static xtensa_opcode rsr_lend_opcode = XTENSA_UNDEFINED;
3925 static bfd_boolean done_lookup = FALSE;
3926 if (!done_lookup)
3927 {
3928 rsr_lend_opcode = xtensa_opcode_lookup (xtensa_default_isa, "rsr.lend");
3929 done_lookup = TRUE;
3930 }
3931 return rsr_lend_opcode;
3932 }
3933
3934 static xtensa_opcode
3935 get_wsr_lbeg_opcode (void)
3936 {
3937 static xtensa_opcode wsr_lbeg_opcode = XTENSA_UNDEFINED;
3938 static bfd_boolean done_lookup = FALSE;
3939 if (!done_lookup)
3940 {
3941 wsr_lbeg_opcode = xtensa_opcode_lookup (xtensa_default_isa, "wsr.lbeg");
3942 done_lookup = TRUE;
3943 }
3944 return wsr_lbeg_opcode;
3945 }
3946
3947
3948 static int
3949 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3950 {
3951 xtensa_isa isa = xtensa_default_isa;
3952 int last_immed, last_opnd, opi;
3953
3954 if (opcode == XTENSA_UNDEFINED)
3955 return XTENSA_UNDEFINED;
3956
3957 /* Find the last visible PC-relative immediate operand for the opcode.
3958 If there are no PC-relative immediates, then choose the last visible
3959 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3960 last_immed = XTENSA_UNDEFINED;
3961 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3962 for (opi = last_opnd - 1; opi >= 0; opi--)
3963 {
3964 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3965 continue;
3966 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3967 {
3968 last_immed = opi;
3969 break;
3970 }
3971 if (last_immed == XTENSA_UNDEFINED
3972 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3973 last_immed = opi;
3974 }
3975 if (last_immed < 0)
3976 return XTENSA_UNDEFINED;
3977
3978 /* If the operand number was specified in an old-style relocation,
3979 check for consistency with the operand computed above. */
3980 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3981 {
3982 int reloc_opnd = r_type - R_XTENSA_OP0;
3983 if (reloc_opnd != last_immed)
3984 return XTENSA_UNDEFINED;
3985 }
3986
3987 return last_immed;
3988 }
3989
3990
3991 int
3992 get_relocation_slot (int r_type)
3993 {
3994 switch (r_type)
3995 {
3996 case R_XTENSA_OP0:
3997 case R_XTENSA_OP1:
3998 case R_XTENSA_OP2:
3999 return 0;
4000
4001 default:
4002 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4003 return r_type - R_XTENSA_SLOT0_OP;
4004 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4005 return r_type - R_XTENSA_SLOT0_ALT;
4006 break;
4007 }
4008
4009 return XTENSA_UNDEFINED;
4010 }
4011
4012
4013 /* Get the opcode for a relocation. */
4014
4015 static xtensa_opcode
4016 get_relocation_opcode (bfd *abfd,
4017 asection *sec,
4018 bfd_byte *contents,
4019 Elf_Internal_Rela *irel)
4020 {
4021 static xtensa_insnbuf ibuff = NULL;
4022 static xtensa_insnbuf sbuff = NULL;
4023 xtensa_isa isa = xtensa_default_isa;
4024 xtensa_format fmt;
4025 int slot;
4026
4027 if (contents == NULL)
4028 return XTENSA_UNDEFINED;
4029
4030 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4031 return XTENSA_UNDEFINED;
4032
4033 if (ibuff == NULL)
4034 {
4035 ibuff = xtensa_insnbuf_alloc (isa);
4036 sbuff = xtensa_insnbuf_alloc (isa);
4037 }
4038
4039 /* Decode the instruction. */
4040 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4041 sec->size - irel->r_offset);
4042 fmt = xtensa_format_decode (isa, ibuff);
4043 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4044 if (slot == XTENSA_UNDEFINED)
4045 return XTENSA_UNDEFINED;
4046 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4047 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4048 }
4049
4050
4051 bfd_boolean
4052 is_l32r_relocation (bfd *abfd,
4053 asection *sec,
4054 bfd_byte *contents,
4055 Elf_Internal_Rela *irel)
4056 {
4057 xtensa_opcode opcode;
4058 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4059 return FALSE;
4060 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4061 return (opcode == get_l32r_opcode ());
4062 }
4063
4064
4065 static bfd_size_type
4066 get_asm_simplify_size (bfd_byte *contents,
4067 bfd_size_type content_len,
4068 bfd_size_type offset)
4069 {
4070 bfd_size_type insnlen, size = 0;
4071
4072 /* Decode the size of the next two instructions. */
4073 insnlen = insn_decode_len (contents, content_len, offset);
4074 if (insnlen == 0)
4075 return 0;
4076
4077 size += insnlen;
4078
4079 insnlen = insn_decode_len (contents, content_len, offset + size);
4080 if (insnlen == 0)
4081 return 0;
4082
4083 size += insnlen;
4084 return size;
4085 }
4086
4087
4088 bfd_boolean
4089 is_alt_relocation (int r_type)
4090 {
4091 return (r_type >= R_XTENSA_SLOT0_ALT
4092 && r_type <= R_XTENSA_SLOT14_ALT);
4093 }
4094
4095
4096 bfd_boolean
4097 is_operand_relocation (int r_type)
4098 {
4099 switch (r_type)
4100 {
4101 case R_XTENSA_OP0:
4102 case R_XTENSA_OP1:
4103 case R_XTENSA_OP2:
4104 return TRUE;
4105
4106 default:
4107 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4108 return TRUE;
4109 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4110 return TRUE;
4111 break;
4112 }
4113
4114 return FALSE;
4115 }
4116
4117
4118 #define MIN_INSN_LENGTH 2
4119
4120 /* Return 0 if it fails to decode. */
4121
4122 bfd_size_type
4123 insn_decode_len (bfd_byte *contents,
4124 bfd_size_type content_len,
4125 bfd_size_type offset)
4126 {
4127 int insn_len;
4128 xtensa_isa isa = xtensa_default_isa;
4129 xtensa_format fmt;
4130 static xtensa_insnbuf ibuff = NULL;
4131
4132 if (offset + MIN_INSN_LENGTH > content_len)
4133 return 0;
4134
4135 if (ibuff == NULL)
4136 ibuff = xtensa_insnbuf_alloc (isa);
4137 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4138 content_len - offset);
4139 fmt = xtensa_format_decode (isa, ibuff);
4140 if (fmt == XTENSA_UNDEFINED)
4141 return 0;
4142 insn_len = xtensa_format_length (isa, fmt);
4143 if (insn_len == XTENSA_UNDEFINED)
4144 return 0;
4145 return insn_len;
4146 }
4147
4148 int
4149 insn_num_slots (bfd_byte *contents,
4150 bfd_size_type content_len,
4151 bfd_size_type offset)
4152 {
4153 xtensa_isa isa = xtensa_default_isa;
4154 xtensa_format fmt;
4155 static xtensa_insnbuf ibuff = NULL;
4156
4157 if (offset + MIN_INSN_LENGTH > content_len)
4158 return XTENSA_UNDEFINED;
4159
4160 if (ibuff == NULL)
4161 ibuff = xtensa_insnbuf_alloc (isa);
4162 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4163 content_len - offset);
4164 fmt = xtensa_format_decode (isa, ibuff);
4165 if (fmt == XTENSA_UNDEFINED)
4166 return XTENSA_UNDEFINED;
4167 return xtensa_format_num_slots (isa, fmt);
4168 }
4169
4170
4171 /* Decode the opcode for a single slot instruction.
4172 Return 0 if it fails to decode or the instruction is multi-slot. */
4173
4174 xtensa_opcode
4175 insn_decode_opcode (bfd_byte *contents,
4176 bfd_size_type content_len,
4177 bfd_size_type offset,
4178 int slot)
4179 {
4180 xtensa_isa isa = xtensa_default_isa;
4181 xtensa_format fmt;
4182 static xtensa_insnbuf insnbuf = NULL;
4183 static xtensa_insnbuf slotbuf = NULL;
4184
4185 if (offset + MIN_INSN_LENGTH > content_len)
4186 return XTENSA_UNDEFINED;
4187
4188 if (insnbuf == NULL)
4189 {
4190 insnbuf = xtensa_insnbuf_alloc (isa);
4191 slotbuf = xtensa_insnbuf_alloc (isa);
4192 }
4193
4194 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4195 content_len - offset);
4196 fmt = xtensa_format_decode (isa, insnbuf);
4197 if (fmt == XTENSA_UNDEFINED)
4198 return XTENSA_UNDEFINED;
4199
4200 if (slot >= xtensa_format_num_slots (isa, fmt))
4201 return XTENSA_UNDEFINED;
4202
4203 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4204 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4205 }
4206
4207
4208 /* The offset is the offset in the contents.
4209 The address is the address of that offset. */
4210
4211 static bfd_boolean
4212 check_branch_target_aligned (bfd_byte *contents,
4213 bfd_size_type content_length,
4214 bfd_vma offset,
4215 bfd_vma address)
4216 {
4217 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4218 if (insn_len == 0)
4219 return FALSE;
4220 return check_branch_target_aligned_address (address, insn_len);
4221 }
4222
4223
4224 static bfd_boolean
4225 check_loop_aligned (bfd_byte *contents,
4226 bfd_size_type content_length,
4227 bfd_vma offset,
4228 bfd_vma address)
4229 {
4230 bfd_size_type loop_len, insn_len;
4231 xtensa_opcode opcode;
4232
4233 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4234 if (opcode == XTENSA_UNDEFINED
4235 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4236 {
4237 BFD_ASSERT (FALSE);
4238 return FALSE;
4239 }
4240
4241 loop_len = insn_decode_len (contents, content_length, offset);
4242 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4243 if (loop_len == 0 || insn_len == 0)
4244 {
4245 BFD_ASSERT (FALSE);
4246 return FALSE;
4247 }
4248
4249 /* If this is relaxed loop, analyze first instruction of the actual loop
4250 body. It must be at offset 27 from the loop instruction address. */
4251 if (insn_len == 3
4252 && insn_num_slots (contents, content_length, offset + loop_len) == 1
4253 && insn_decode_opcode (contents, content_length,
4254 offset + loop_len, 0) == get_rsr_lend_opcode()
4255 && insn_decode_len (contents, content_length, offset + loop_len + 3) == 3
4256 && insn_num_slots (contents, content_length, offset + loop_len + 3) == 1
4257 && insn_decode_opcode (contents, content_length,
4258 offset + loop_len + 3, 0) == get_wsr_lbeg_opcode())
4259 {
4260 loop_len = 27;
4261 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4262 }
4263 return check_branch_target_aligned_address (address + loop_len, insn_len);
4264 }
4265
4266
4267 static bfd_boolean
4268 check_branch_target_aligned_address (bfd_vma addr, int len)
4269 {
4270 if (len == 8)
4271 return (addr % 8 == 0);
4272 return ((addr >> 2) == ((addr + len - 1) >> 2));
4273 }
4274
4275 \f
4276 /* Instruction widening and narrowing. */
4277
4278 /* When FLIX is available we need to access certain instructions only
4279 when they are 16-bit or 24-bit instructions. This table caches
4280 information about such instructions by walking through all the
4281 opcodes and finding the smallest single-slot format into which each
4282 can be encoded. */
4283
4284 static xtensa_format *op_single_fmt_table = NULL;
4285
4286
4287 static void
4288 init_op_single_format_table (void)
4289 {
4290 xtensa_isa isa = xtensa_default_isa;
4291 xtensa_insnbuf ibuf;
4292 xtensa_opcode opcode;
4293 xtensa_format fmt;
4294 int num_opcodes;
4295
4296 if (op_single_fmt_table)
4297 return;
4298
4299 ibuf = xtensa_insnbuf_alloc (isa);
4300 num_opcodes = xtensa_isa_num_opcodes (isa);
4301
4302 op_single_fmt_table = (xtensa_format *)
4303 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4304 for (opcode = 0; opcode < num_opcodes; opcode++)
4305 {
4306 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4307 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4308 {
4309 if (xtensa_format_num_slots (isa, fmt) == 1
4310 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4311 {
4312 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4313 int fmt_length = xtensa_format_length (isa, fmt);
4314 if (old_fmt == XTENSA_UNDEFINED
4315 || fmt_length < xtensa_format_length (isa, old_fmt))
4316 op_single_fmt_table[opcode] = fmt;
4317 }
4318 }
4319 }
4320 xtensa_insnbuf_free (isa, ibuf);
4321 }
4322
4323
4324 static xtensa_format
4325 get_single_format (xtensa_opcode opcode)
4326 {
4327 init_op_single_format_table ();
4328 return op_single_fmt_table[opcode];
4329 }
4330
4331
4332 /* For the set of narrowable instructions we do NOT include the
4333 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4334 involved during linker relaxation that may require these to
4335 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4336 requires special case code to ensure it only works when op1 == op2. */
4337
4338 struct string_pair
4339 {
4340 const char *wide;
4341 const char *narrow;
4342 };
4343
4344 const struct string_pair narrowable[] =
4345 {
4346 { "add", "add.n" },
4347 { "addi", "addi.n" },
4348 { "addmi", "addi.n" },
4349 { "l32i", "l32i.n" },
4350 { "movi", "movi.n" },
4351 { "ret", "ret.n" },
4352 { "retw", "retw.n" },
4353 { "s32i", "s32i.n" },
4354 { "or", "mov.n" } /* special case only when op1 == op2 */
4355 };
4356
4357 const struct string_pair widenable[] =
4358 {
4359 { "add", "add.n" },
4360 { "addi", "addi.n" },
4361 { "addmi", "addi.n" },
4362 { "beqz", "beqz.n" },
4363 { "bnez", "bnez.n" },
4364 { "l32i", "l32i.n" },
4365 { "movi", "movi.n" },
4366 { "ret", "ret.n" },
4367 { "retw", "retw.n" },
4368 { "s32i", "s32i.n" },
4369 { "or", "mov.n" } /* special case only when op1 == op2 */
4370 };
4371
4372
4373 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4374 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4375 return the instruction buffer holding the narrow instruction. Otherwise,
4376 return 0. The set of valid narrowing are specified by a string table
4377 but require some special case operand checks in some cases. */
4378
4379 static xtensa_insnbuf
4380 can_narrow_instruction (xtensa_insnbuf slotbuf,
4381 xtensa_format fmt,
4382 xtensa_opcode opcode)
4383 {
4384 xtensa_isa isa = xtensa_default_isa;
4385 xtensa_format o_fmt;
4386 unsigned opi;
4387
4388 static xtensa_insnbuf o_insnbuf = NULL;
4389 static xtensa_insnbuf o_slotbuf = NULL;
4390
4391 if (o_insnbuf == NULL)
4392 {
4393 o_insnbuf = xtensa_insnbuf_alloc (isa);
4394 o_slotbuf = xtensa_insnbuf_alloc (isa);
4395 }
4396
4397 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4398 {
4399 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4400
4401 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4402 {
4403 uint32 value, newval;
4404 int i, operand_count, o_operand_count;
4405 xtensa_opcode o_opcode;
4406
4407 /* Address does not matter in this case. We might need to
4408 fix it to handle branches/jumps. */
4409 bfd_vma self_address = 0;
4410
4411 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4412 if (o_opcode == XTENSA_UNDEFINED)
4413 return 0;
4414 o_fmt = get_single_format (o_opcode);
4415 if (o_fmt == XTENSA_UNDEFINED)
4416 return 0;
4417
4418 if (xtensa_format_length (isa, fmt) != 3
4419 || xtensa_format_length (isa, o_fmt) != 2)
4420 return 0;
4421
4422 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4423 operand_count = xtensa_opcode_num_operands (isa, opcode);
4424 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4425
4426 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4427 return 0;
4428
4429 if (!is_or)
4430 {
4431 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4432 return 0;
4433 }
4434 else
4435 {
4436 uint32 rawval0, rawval1, rawval2;
4437
4438 if (o_operand_count + 1 != operand_count
4439 || xtensa_operand_get_field (isa, opcode, 0,
4440 fmt, 0, slotbuf, &rawval0) != 0
4441 || xtensa_operand_get_field (isa, opcode, 1,
4442 fmt, 0, slotbuf, &rawval1) != 0
4443 || xtensa_operand_get_field (isa, opcode, 2,
4444 fmt, 0, slotbuf, &rawval2) != 0
4445 || rawval1 != rawval2
4446 || rawval0 == rawval1 /* it is a nop */)
4447 return 0;
4448 }
4449
4450 for (i = 0; i < o_operand_count; ++i)
4451 {
4452 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4453 slotbuf, &value)
4454 || xtensa_operand_decode (isa, opcode, i, &value))
4455 return 0;
4456
4457 /* PC-relative branches need adjustment, but
4458 the PC-rel operand will always have a relocation. */
4459 newval = value;
4460 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4461 self_address)
4462 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4463 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4464 o_slotbuf, newval))
4465 return 0;
4466 }
4467
4468 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4469 return 0;
4470
4471 return o_insnbuf;
4472 }
4473 }
4474 return 0;
4475 }
4476
4477
4478 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4479 the action in-place directly into the contents and return TRUE. Otherwise,
4480 the return value is FALSE and the contents are not modified. */
4481
4482 static bfd_boolean
4483 narrow_instruction (bfd_byte *contents,
4484 bfd_size_type content_length,
4485 bfd_size_type offset)
4486 {
4487 xtensa_opcode opcode;
4488 bfd_size_type insn_len;
4489 xtensa_isa isa = xtensa_default_isa;
4490 xtensa_format fmt;
4491 xtensa_insnbuf o_insnbuf;
4492
4493 static xtensa_insnbuf insnbuf = NULL;
4494 static xtensa_insnbuf slotbuf = NULL;
4495
4496 if (insnbuf == NULL)
4497 {
4498 insnbuf = xtensa_insnbuf_alloc (isa);
4499 slotbuf = xtensa_insnbuf_alloc (isa);
4500 }
4501
4502 BFD_ASSERT (offset < content_length);
4503
4504 if (content_length < 2)
4505 return FALSE;
4506
4507 /* We will hand-code a few of these for a little while.
4508 These have all been specified in the assembler aleady. */
4509 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4510 content_length - offset);
4511 fmt = xtensa_format_decode (isa, insnbuf);
4512 if (xtensa_format_num_slots (isa, fmt) != 1)
4513 return FALSE;
4514
4515 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4516 return FALSE;
4517
4518 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4519 if (opcode == XTENSA_UNDEFINED)
4520 return FALSE;
4521 insn_len = xtensa_format_length (isa, fmt);
4522 if (insn_len > content_length)
4523 return FALSE;
4524
4525 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4526 if (o_insnbuf)
4527 {
4528 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4529 content_length - offset);
4530 return TRUE;
4531 }
4532
4533 return FALSE;
4534 }
4535
4536
4537 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4538 "density" instruction to a standard 3-byte instruction. If it is valid,
4539 return the instruction buffer holding the wide instruction. Otherwise,
4540 return 0. The set of valid widenings are specified by a string table
4541 but require some special case operand checks in some cases. */
4542
4543 static xtensa_insnbuf
4544 can_widen_instruction (xtensa_insnbuf slotbuf,
4545 xtensa_format fmt,
4546 xtensa_opcode opcode)
4547 {
4548 xtensa_isa isa = xtensa_default_isa;
4549 xtensa_format o_fmt;
4550 unsigned opi;
4551
4552 static xtensa_insnbuf o_insnbuf = NULL;
4553 static xtensa_insnbuf o_slotbuf = NULL;
4554
4555 if (o_insnbuf == NULL)
4556 {
4557 o_insnbuf = xtensa_insnbuf_alloc (isa);
4558 o_slotbuf = xtensa_insnbuf_alloc (isa);
4559 }
4560
4561 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4562 {
4563 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4564 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4565 || strcmp ("bnez", widenable[opi].wide) == 0);
4566
4567 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4568 {
4569 uint32 value, newval;
4570 int i, operand_count, o_operand_count, check_operand_count;
4571 xtensa_opcode o_opcode;
4572
4573 /* Address does not matter in this case. We might need to fix it
4574 to handle branches/jumps. */
4575 bfd_vma self_address = 0;
4576
4577 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4578 if (o_opcode == XTENSA_UNDEFINED)
4579 return 0;
4580 o_fmt = get_single_format (o_opcode);
4581 if (o_fmt == XTENSA_UNDEFINED)
4582 return 0;
4583
4584 if (xtensa_format_length (isa, fmt) != 2
4585 || xtensa_format_length (isa, o_fmt) != 3)
4586 return 0;
4587
4588 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4589 operand_count = xtensa_opcode_num_operands (isa, opcode);
4590 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4591 check_operand_count = o_operand_count;
4592
4593 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4594 return 0;
4595
4596 if (!is_or)
4597 {
4598 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4599 return 0;
4600 }
4601 else
4602 {
4603 uint32 rawval0, rawval1;
4604
4605 if (o_operand_count != operand_count + 1
4606 || xtensa_operand_get_field (isa, opcode, 0,
4607 fmt, 0, slotbuf, &rawval0) != 0
4608 || xtensa_operand_get_field (isa, opcode, 1,
4609 fmt, 0, slotbuf, &rawval1) != 0
4610 || rawval0 == rawval1 /* it is a nop */)
4611 return 0;
4612 }
4613 if (is_branch)
4614 check_operand_count--;
4615
4616 for (i = 0; i < check_operand_count; i++)
4617 {
4618 int new_i = i;
4619 if (is_or && i == o_operand_count - 1)
4620 new_i = i - 1;
4621 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4622 slotbuf, &value)
4623 || xtensa_operand_decode (isa, opcode, new_i, &value))
4624 return 0;
4625
4626 /* PC-relative branches need adjustment, but
4627 the PC-rel operand will always have a relocation. */
4628 newval = value;
4629 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4630 self_address)
4631 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4632 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4633 o_slotbuf, newval))
4634 return 0;
4635 }
4636
4637 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4638 return 0;
4639
4640 return o_insnbuf;
4641 }
4642 }
4643 return 0;
4644 }
4645
4646
4647 /* Attempt to widen an instruction. If the widening is valid, perform
4648 the action in-place directly into the contents and return TRUE. Otherwise,
4649 the return value is FALSE and the contents are not modified. */
4650
4651 static bfd_boolean
4652 widen_instruction (bfd_byte *contents,
4653 bfd_size_type content_length,
4654 bfd_size_type offset)
4655 {
4656 xtensa_opcode opcode;
4657 bfd_size_type insn_len;
4658 xtensa_isa isa = xtensa_default_isa;
4659 xtensa_format fmt;
4660 xtensa_insnbuf o_insnbuf;
4661
4662 static xtensa_insnbuf insnbuf = NULL;
4663 static xtensa_insnbuf slotbuf = NULL;
4664
4665 if (insnbuf == NULL)
4666 {
4667 insnbuf = xtensa_insnbuf_alloc (isa);
4668 slotbuf = xtensa_insnbuf_alloc (isa);
4669 }
4670
4671 BFD_ASSERT (offset < content_length);
4672
4673 if (content_length < 2)
4674 return FALSE;
4675
4676 /* We will hand-code a few of these for a little while.
4677 These have all been specified in the assembler aleady. */
4678 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4679 content_length - offset);
4680 fmt = xtensa_format_decode (isa, insnbuf);
4681 if (xtensa_format_num_slots (isa, fmt) != 1)
4682 return FALSE;
4683
4684 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4685 return FALSE;
4686
4687 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4688 if (opcode == XTENSA_UNDEFINED)
4689 return FALSE;
4690 insn_len = xtensa_format_length (isa, fmt);
4691 if (insn_len > content_length)
4692 return FALSE;
4693
4694 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4695 if (o_insnbuf)
4696 {
4697 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4698 content_length - offset);
4699 return TRUE;
4700 }
4701 return FALSE;
4702 }
4703
4704 \f
4705 /* Code for transforming CALLs at link-time. */
4706
4707 static bfd_reloc_status_type
4708 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4709 bfd_vma address,
4710 bfd_vma content_length,
4711 char **error_message)
4712 {
4713 static xtensa_insnbuf insnbuf = NULL;
4714 static xtensa_insnbuf slotbuf = NULL;
4715 xtensa_format core_format = XTENSA_UNDEFINED;
4716 xtensa_opcode opcode;
4717 xtensa_opcode direct_call_opcode;
4718 xtensa_isa isa = xtensa_default_isa;
4719 bfd_byte *chbuf = contents + address;
4720 int opn;
4721
4722 if (insnbuf == NULL)
4723 {
4724 insnbuf = xtensa_insnbuf_alloc (isa);
4725 slotbuf = xtensa_insnbuf_alloc (isa);
4726 }
4727
4728 if (content_length < address)
4729 {
4730 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4731 return bfd_reloc_other;
4732 }
4733
4734 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4735 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4736 if (direct_call_opcode == XTENSA_UNDEFINED)
4737 {
4738 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4739 return bfd_reloc_other;
4740 }
4741
4742 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4743 core_format = xtensa_format_lookup (isa, "x24");
4744 opcode = xtensa_opcode_lookup (isa, "or");
4745 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4746 for (opn = 0; opn < 3; opn++)
4747 {
4748 uint32 regno = 1;
4749 xtensa_operand_encode (isa, opcode, opn, &regno);
4750 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4751 slotbuf, regno);
4752 }
4753 xtensa_format_encode (isa, core_format, insnbuf);
4754 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4755 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4756
4757 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4758 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4759 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4760
4761 xtensa_format_encode (isa, core_format, insnbuf);
4762 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4763 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4764 content_length - address - 3);
4765
4766 return bfd_reloc_ok;
4767 }
4768
4769
4770 static bfd_reloc_status_type
4771 contract_asm_expansion (bfd_byte *contents,
4772 bfd_vma content_length,
4773 Elf_Internal_Rela *irel,
4774 char **error_message)
4775 {
4776 bfd_reloc_status_type retval =
4777 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4778 error_message);
4779
4780 if (retval != bfd_reloc_ok)
4781 return bfd_reloc_dangerous;
4782
4783 /* Update the irel->r_offset field so that the right immediate and
4784 the right instruction are modified during the relocation. */
4785 irel->r_offset += 3;
4786 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4787 return bfd_reloc_ok;
4788 }
4789
4790
4791 static xtensa_opcode
4792 swap_callx_for_call_opcode (xtensa_opcode opcode)
4793 {
4794 init_call_opcodes ();
4795
4796 if (opcode == callx0_op) return call0_op;
4797 if (opcode == callx4_op) return call4_op;
4798 if (opcode == callx8_op) return call8_op;
4799 if (opcode == callx12_op) return call12_op;
4800
4801 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4802 return XTENSA_UNDEFINED;
4803 }
4804
4805
4806 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4807 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4808 If not, return XTENSA_UNDEFINED. */
4809
4810 #define L32R_TARGET_REG_OPERAND 0
4811 #define CONST16_TARGET_REG_OPERAND 0
4812 #define CALLN_SOURCE_OPERAND 0
4813
4814 static xtensa_opcode
4815 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4816 {
4817 static xtensa_insnbuf insnbuf = NULL;
4818 static xtensa_insnbuf slotbuf = NULL;
4819 xtensa_format fmt;
4820 xtensa_opcode opcode;
4821 xtensa_isa isa = xtensa_default_isa;
4822 uint32 regno, const16_regno, call_regno;
4823 int offset = 0;
4824
4825 if (insnbuf == NULL)
4826 {
4827 insnbuf = xtensa_insnbuf_alloc (isa);
4828 slotbuf = xtensa_insnbuf_alloc (isa);
4829 }
4830
4831 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4832 fmt = xtensa_format_decode (isa, insnbuf);
4833 if (fmt == XTENSA_UNDEFINED
4834 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4835 return XTENSA_UNDEFINED;
4836
4837 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4838 if (opcode == XTENSA_UNDEFINED)
4839 return XTENSA_UNDEFINED;
4840
4841 if (opcode == get_l32r_opcode ())
4842 {
4843 if (p_uses_l32r)
4844 *p_uses_l32r = TRUE;
4845 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4846 fmt, 0, slotbuf, &regno)
4847 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4848 &regno))
4849 return XTENSA_UNDEFINED;
4850 }
4851 else if (opcode == get_const16_opcode ())
4852 {
4853 if (p_uses_l32r)
4854 *p_uses_l32r = FALSE;
4855 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4856 fmt, 0, slotbuf, &regno)
4857 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4858 &regno))
4859 return XTENSA_UNDEFINED;
4860
4861 /* Check that the next instruction is also CONST16. */
4862 offset += xtensa_format_length (isa, fmt);
4863 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4864 fmt = xtensa_format_decode (isa, insnbuf);
4865 if (fmt == XTENSA_UNDEFINED
4866 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4867 return XTENSA_UNDEFINED;
4868 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4869 if (opcode != get_const16_opcode ())
4870 return XTENSA_UNDEFINED;
4871
4872 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4873 fmt, 0, slotbuf, &const16_regno)
4874 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4875 &const16_regno)
4876 || const16_regno != regno)
4877 return XTENSA_UNDEFINED;
4878 }
4879 else
4880 return XTENSA_UNDEFINED;
4881
4882 /* Next instruction should be an CALLXn with operand 0 == regno. */
4883 offset += xtensa_format_length (isa, fmt);
4884 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4885 fmt = xtensa_format_decode (isa, insnbuf);
4886 if (fmt == XTENSA_UNDEFINED
4887 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4888 return XTENSA_UNDEFINED;
4889 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4890 if (opcode == XTENSA_UNDEFINED
4891 || !is_indirect_call_opcode (opcode))
4892 return XTENSA_UNDEFINED;
4893
4894 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4895 fmt, 0, slotbuf, &call_regno)
4896 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4897 &call_regno))
4898 return XTENSA_UNDEFINED;
4899
4900 if (call_regno != regno)
4901 return XTENSA_UNDEFINED;
4902
4903 return opcode;
4904 }
4905
4906 \f
4907 /* Data structures used during relaxation. */
4908
4909 /* r_reloc: relocation values. */
4910
4911 /* Through the relaxation process, we need to keep track of the values
4912 that will result from evaluating relocations. The standard ELF
4913 relocation structure is not sufficient for this purpose because we're
4914 operating on multiple input files at once, so we need to know which
4915 input file a relocation refers to. The r_reloc structure thus
4916 records both the input file (bfd) and ELF relocation.
4917
4918 For efficiency, an r_reloc also contains a "target_offset" field to
4919 cache the target-section-relative offset value that is represented by
4920 the relocation.
4921
4922 The r_reloc also contains a virtual offset that allows multiple
4923 inserted literals to be placed at the same "address" with
4924 different offsets. */
4925
4926 typedef struct r_reloc_struct r_reloc;
4927
4928 struct r_reloc_struct
4929 {
4930 bfd *abfd;
4931 Elf_Internal_Rela rela;
4932 bfd_vma target_offset;
4933 bfd_vma virtual_offset;
4934 };
4935
4936
4937 /* The r_reloc structure is included by value in literal_value, but not
4938 every literal_value has an associated relocation -- some are simple
4939 constants. In such cases, we set all the fields in the r_reloc
4940 struct to zero. The r_reloc_is_const function should be used to
4941 detect this case. */
4942
4943 static bfd_boolean
4944 r_reloc_is_const (const r_reloc *r_rel)
4945 {
4946 return (r_rel->abfd == NULL);
4947 }
4948
4949
4950 static bfd_vma
4951 r_reloc_get_target_offset (const r_reloc *r_rel)
4952 {
4953 bfd_vma target_offset;
4954 unsigned long r_symndx;
4955
4956 BFD_ASSERT (!r_reloc_is_const (r_rel));
4957 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4958 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4959 return (target_offset + r_rel->rela.r_addend);
4960 }
4961
4962
4963 static struct elf_link_hash_entry *
4964 r_reloc_get_hash_entry (const r_reloc *r_rel)
4965 {
4966 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4967 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4968 }
4969
4970
4971 static asection *
4972 r_reloc_get_section (const r_reloc *r_rel)
4973 {
4974 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4975 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4976 }
4977
4978
4979 static bfd_boolean
4980 r_reloc_is_defined (const r_reloc *r_rel)
4981 {
4982 asection *sec;
4983 if (r_rel == NULL)
4984 return FALSE;
4985
4986 sec = r_reloc_get_section (r_rel);
4987 if (sec == bfd_abs_section_ptr
4988 || sec == bfd_com_section_ptr
4989 || sec == bfd_und_section_ptr)
4990 return FALSE;
4991 return TRUE;
4992 }
4993
4994
4995 static void
4996 r_reloc_init (r_reloc *r_rel,
4997 bfd *abfd,
4998 Elf_Internal_Rela *irel,
4999 bfd_byte *contents,
5000 bfd_size_type content_length)
5001 {
5002 int r_type;
5003 reloc_howto_type *howto;
5004
5005 if (irel)
5006 {
5007 r_rel->rela = *irel;
5008 r_rel->abfd = abfd;
5009 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
5010 r_rel->virtual_offset = 0;
5011 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
5012 howto = &elf_howto_table[r_type];
5013 if (howto->partial_inplace)
5014 {
5015 bfd_vma inplace_val;
5016 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5017
5018 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5019 r_rel->target_offset += inplace_val;
5020 }
5021 }
5022 else
5023 memset (r_rel, 0, sizeof (r_reloc));
5024 }
5025
5026
5027 #if DEBUG
5028
5029 static void
5030 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5031 {
5032 if (r_reloc_is_defined (r_rel))
5033 {
5034 asection *sec = r_reloc_get_section (r_rel);
5035 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5036 }
5037 else if (r_reloc_get_hash_entry (r_rel))
5038 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5039 else
5040 fprintf (fp, " ?? + ");
5041
5042 fprintf_vma (fp, r_rel->target_offset);
5043 if (r_rel->virtual_offset)
5044 {
5045 fprintf (fp, " + ");
5046 fprintf_vma (fp, r_rel->virtual_offset);
5047 }
5048
5049 fprintf (fp, ")");
5050 }
5051
5052 #endif /* DEBUG */
5053
5054 \f
5055 /* source_reloc: relocations that reference literals. */
5056
5057 /* To determine whether literals can be coalesced, we need to first
5058 record all the relocations that reference the literals. The
5059 source_reloc structure below is used for this purpose. The
5060 source_reloc entries are kept in a per-literal-section array, sorted
5061 by offset within the literal section (i.e., target offset).
5062
5063 The source_sec and r_rel.rela.r_offset fields identify the source of
5064 the relocation. The r_rel field records the relocation value, i.e.,
5065 the offset of the literal being referenced. The opnd field is needed
5066 to determine the range of the immediate field to which the relocation
5067 applies, so we can determine whether another literal with the same
5068 value is within range. The is_null field is true when the relocation
5069 is being removed (e.g., when an L32R is being removed due to a CALLX
5070 that is converted to a direct CALL). */
5071
5072 typedef struct source_reloc_struct source_reloc;
5073
5074 struct source_reloc_struct
5075 {
5076 asection *source_sec;
5077 r_reloc r_rel;
5078 xtensa_opcode opcode;
5079 int opnd;
5080 bfd_boolean is_null;
5081 bfd_boolean is_abs_literal;
5082 };
5083
5084
5085 static void
5086 init_source_reloc (source_reloc *reloc,
5087 asection *source_sec,
5088 const r_reloc *r_rel,
5089 xtensa_opcode opcode,
5090 int opnd,
5091 bfd_boolean is_abs_literal)
5092 {
5093 reloc->source_sec = source_sec;
5094 reloc->r_rel = *r_rel;
5095 reloc->opcode = opcode;
5096 reloc->opnd = opnd;
5097 reloc->is_null = FALSE;
5098 reloc->is_abs_literal = is_abs_literal;
5099 }
5100
5101
5102 /* Find the source_reloc for a particular source offset and relocation
5103 type. Note that the array is sorted by _target_ offset, so this is
5104 just a linear search. */
5105
5106 static source_reloc *
5107 find_source_reloc (source_reloc *src_relocs,
5108 int src_count,
5109 asection *sec,
5110 Elf_Internal_Rela *irel)
5111 {
5112 int i;
5113
5114 for (i = 0; i < src_count; i++)
5115 {
5116 if (src_relocs[i].source_sec == sec
5117 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5118 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5119 == ELF32_R_TYPE (irel->r_info)))
5120 return &src_relocs[i];
5121 }
5122
5123 return NULL;
5124 }
5125
5126
5127 static int
5128 source_reloc_compare (const void *ap, const void *bp)
5129 {
5130 const source_reloc *a = (const source_reloc *) ap;
5131 const source_reloc *b = (const source_reloc *) bp;
5132
5133 if (a->r_rel.target_offset != b->r_rel.target_offset)
5134 return (a->r_rel.target_offset - b->r_rel.target_offset);
5135
5136 /* We don't need to sort on these criteria for correctness,
5137 but enforcing a more strict ordering prevents unstable qsort
5138 from behaving differently with different implementations.
5139 Without the code below we get correct but different results
5140 on Solaris 2.7 and 2.8. We would like to always produce the
5141 same results no matter the host. */
5142
5143 if ((!a->is_null) - (!b->is_null))
5144 return ((!a->is_null) - (!b->is_null));
5145 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5146 }
5147
5148 \f
5149 /* Literal values and value hash tables. */
5150
5151 /* Literals with the same value can be coalesced. The literal_value
5152 structure records the value of a literal: the "r_rel" field holds the
5153 information from the relocation on the literal (if there is one) and
5154 the "value" field holds the contents of the literal word itself.
5155
5156 The value_map structure records a literal value along with the
5157 location of a literal holding that value. The value_map hash table
5158 is indexed by the literal value, so that we can quickly check if a
5159 particular literal value has been seen before and is thus a candidate
5160 for coalescing. */
5161
5162 typedef struct literal_value_struct literal_value;
5163 typedef struct value_map_struct value_map;
5164 typedef struct value_map_hash_table_struct value_map_hash_table;
5165
5166 struct literal_value_struct
5167 {
5168 r_reloc r_rel;
5169 unsigned long value;
5170 bfd_boolean is_abs_literal;
5171 };
5172
5173 struct value_map_struct
5174 {
5175 literal_value val; /* The literal value. */
5176 r_reloc loc; /* Location of the literal. */
5177 value_map *next;
5178 };
5179
5180 struct value_map_hash_table_struct
5181 {
5182 unsigned bucket_count;
5183 value_map **buckets;
5184 unsigned count;
5185 bfd_boolean has_last_loc;
5186 r_reloc last_loc;
5187 };
5188
5189
5190 static void
5191 init_literal_value (literal_value *lit,
5192 const r_reloc *r_rel,
5193 unsigned long value,
5194 bfd_boolean is_abs_literal)
5195 {
5196 lit->r_rel = *r_rel;
5197 lit->value = value;
5198 lit->is_abs_literal = is_abs_literal;
5199 }
5200
5201
5202 static bfd_boolean
5203 literal_value_equal (const literal_value *src1,
5204 const literal_value *src2,
5205 bfd_boolean final_static_link)
5206 {
5207 struct elf_link_hash_entry *h1, *h2;
5208
5209 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5210 return FALSE;
5211
5212 if (r_reloc_is_const (&src1->r_rel))
5213 return (src1->value == src2->value);
5214
5215 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5216 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5217 return FALSE;
5218
5219 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5220 return FALSE;
5221
5222 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5223 return FALSE;
5224
5225 if (src1->value != src2->value)
5226 return FALSE;
5227
5228 /* Now check for the same section (if defined) or the same elf_hash
5229 (if undefined or weak). */
5230 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5231 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5232 if (r_reloc_is_defined (&src1->r_rel)
5233 && (final_static_link
5234 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5235 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5236 {
5237 if (r_reloc_get_section (&src1->r_rel)
5238 != r_reloc_get_section (&src2->r_rel))
5239 return FALSE;
5240 }
5241 else
5242 {
5243 /* Require that the hash entries (i.e., symbols) be identical. */
5244 if (h1 != h2 || h1 == 0)
5245 return FALSE;
5246 }
5247
5248 if (src1->is_abs_literal != src2->is_abs_literal)
5249 return FALSE;
5250
5251 return TRUE;
5252 }
5253
5254
5255 /* Must be power of 2. */
5256 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5257
5258 static value_map_hash_table *
5259 value_map_hash_table_init (void)
5260 {
5261 value_map_hash_table *values;
5262
5263 values = (value_map_hash_table *)
5264 bfd_zmalloc (sizeof (value_map_hash_table));
5265 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5266 values->count = 0;
5267 values->buckets = (value_map **)
5268 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5269 if (values->buckets == NULL)
5270 {
5271 free (values);
5272 return NULL;
5273 }
5274 values->has_last_loc = FALSE;
5275
5276 return values;
5277 }
5278
5279
5280 static void
5281 value_map_hash_table_delete (value_map_hash_table *table)
5282 {
5283 free (table->buckets);
5284 free (table);
5285 }
5286
5287
5288 static unsigned
5289 hash_bfd_vma (bfd_vma val)
5290 {
5291 return (val >> 2) + (val >> 10);
5292 }
5293
5294
5295 static unsigned
5296 literal_value_hash (const literal_value *src)
5297 {
5298 unsigned hash_val;
5299
5300 hash_val = hash_bfd_vma (src->value);
5301 if (!r_reloc_is_const (&src->r_rel))
5302 {
5303 void *sec_or_hash;
5304
5305 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5306 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5307 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5308
5309 /* Now check for the same section and the same elf_hash. */
5310 if (r_reloc_is_defined (&src->r_rel))
5311 sec_or_hash = r_reloc_get_section (&src->r_rel);
5312 else
5313 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5314 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5315 }
5316 return hash_val;
5317 }
5318
5319
5320 /* Check if the specified literal_value has been seen before. */
5321
5322 static value_map *
5323 value_map_get_cached_value (value_map_hash_table *map,
5324 const literal_value *val,
5325 bfd_boolean final_static_link)
5326 {
5327 value_map *map_e;
5328 value_map *bucket;
5329 unsigned idx;
5330
5331 idx = literal_value_hash (val);
5332 idx = idx & (map->bucket_count - 1);
5333 bucket = map->buckets[idx];
5334 for (map_e = bucket; map_e; map_e = map_e->next)
5335 {
5336 if (literal_value_equal (&map_e->val, val, final_static_link))
5337 return map_e;
5338 }
5339 return NULL;
5340 }
5341
5342
5343 /* Record a new literal value. It is illegal to call this if VALUE
5344 already has an entry here. */
5345
5346 static value_map *
5347 add_value_map (value_map_hash_table *map,
5348 const literal_value *val,
5349 const r_reloc *loc,
5350 bfd_boolean final_static_link)
5351 {
5352 value_map **bucket_p;
5353 unsigned idx;
5354
5355 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5356 if (val_e == NULL)
5357 {
5358 bfd_set_error (bfd_error_no_memory);
5359 return NULL;
5360 }
5361
5362 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5363 val_e->val = *val;
5364 val_e->loc = *loc;
5365
5366 idx = literal_value_hash (val);
5367 idx = idx & (map->bucket_count - 1);
5368 bucket_p = &map->buckets[idx];
5369
5370 val_e->next = *bucket_p;
5371 *bucket_p = val_e;
5372 map->count++;
5373 /* FIXME: Consider resizing the hash table if we get too many entries. */
5374
5375 return val_e;
5376 }
5377
5378 \f
5379 /* Lists of text actions (ta_) for narrowing, widening, longcall
5380 conversion, space fill, code & literal removal, etc. */
5381
5382 /* The following text actions are generated:
5383
5384 "ta_remove_insn" remove an instruction or instructions
5385 "ta_remove_longcall" convert longcall to call
5386 "ta_convert_longcall" convert longcall to nop/call
5387 "ta_narrow_insn" narrow a wide instruction
5388 "ta_widen" widen a narrow instruction
5389 "ta_fill" add fill or remove fill
5390 removed < 0 is a fill; branches to the fill address will be
5391 changed to address + fill size (e.g., address - removed)
5392 removed >= 0 branches to the fill address will stay unchanged
5393 "ta_remove_literal" remove a literal; this action is
5394 indicated when a literal is removed
5395 or replaced.
5396 "ta_add_literal" insert a new literal; this action is
5397 indicated when a literal has been moved.
5398 It may use a virtual_offset because
5399 multiple literals can be placed at the
5400 same location.
5401
5402 For each of these text actions, we also record the number of bytes
5403 removed by performing the text action. In the case of a "ta_widen"
5404 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5405
5406 typedef struct text_action_struct text_action;
5407 typedef struct text_action_list_struct text_action_list;
5408 typedef enum text_action_enum_t text_action_t;
5409
5410 enum text_action_enum_t
5411 {
5412 ta_none,
5413 ta_remove_insn, /* removed = -size */
5414 ta_remove_longcall, /* removed = -size */
5415 ta_convert_longcall, /* removed = 0 */
5416 ta_narrow_insn, /* removed = -1 */
5417 ta_widen_insn, /* removed = +1 */
5418 ta_fill, /* removed = +size */
5419 ta_remove_literal,
5420 ta_add_literal
5421 };
5422
5423
5424 /* Structure for a text action record. */
5425 struct text_action_struct
5426 {
5427 text_action_t action;
5428 asection *sec; /* Optional */
5429 bfd_vma offset;
5430 bfd_vma virtual_offset; /* Zero except for adding literals. */
5431 int removed_bytes;
5432 literal_value value; /* Only valid when adding literals. */
5433 };
5434
5435 struct removal_by_action_entry_struct
5436 {
5437 bfd_vma offset;
5438 int removed;
5439 int eq_removed;
5440 int eq_removed_before_fill;
5441 };
5442 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5443
5444 struct removal_by_action_map_struct
5445 {
5446 unsigned n_entries;
5447 removal_by_action_entry *entry;
5448 };
5449 typedef struct removal_by_action_map_struct removal_by_action_map;
5450
5451
5452 /* List of all of the actions taken on a text section. */
5453 struct text_action_list_struct
5454 {
5455 unsigned count;
5456 splay_tree tree;
5457 removal_by_action_map map;
5458 };
5459
5460
5461 static text_action *
5462 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5463 {
5464 text_action a;
5465
5466 /* It is not necessary to fill at the end of a section. */
5467 if (sec->size == offset)
5468 return NULL;
5469
5470 a.offset = offset;
5471 a.action = ta_fill;
5472
5473 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5474 if (node)
5475 return (text_action *)node->value;
5476 return NULL;
5477 }
5478
5479
5480 static int
5481 compute_removed_action_diff (const text_action *ta,
5482 asection *sec,
5483 bfd_vma offset,
5484 int removed,
5485 int removable_space)
5486 {
5487 int new_removed;
5488 int current_removed = 0;
5489
5490 if (ta)
5491 current_removed = ta->removed_bytes;
5492
5493 BFD_ASSERT (ta == NULL || ta->offset == offset);
5494 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5495
5496 /* It is not necessary to fill at the end of a section. Clean this up. */
5497 if (sec->size == offset)
5498 new_removed = removable_space - 0;
5499 else
5500 {
5501 int space;
5502 int added = -removed - current_removed;
5503 /* Ignore multiples of the section alignment. */
5504 added = ((1 << sec->alignment_power) - 1) & added;
5505 new_removed = (-added);
5506
5507 /* Modify for removable. */
5508 space = removable_space - new_removed;
5509 new_removed = (removable_space
5510 - (((1 << sec->alignment_power) - 1) & space));
5511 }
5512 return (new_removed - current_removed);
5513 }
5514
5515
5516 static void
5517 adjust_fill_action (text_action *ta, int fill_diff)
5518 {
5519 ta->removed_bytes += fill_diff;
5520 }
5521
5522
5523 static int
5524 text_action_compare (splay_tree_key a, splay_tree_key b)
5525 {
5526 text_action *pa = (text_action *)a;
5527 text_action *pb = (text_action *)b;
5528 static const int action_priority[] =
5529 {
5530 [ta_fill] = 0,
5531 [ta_none] = 1,
5532 [ta_convert_longcall] = 2,
5533 [ta_narrow_insn] = 3,
5534 [ta_remove_insn] = 4,
5535 [ta_remove_longcall] = 5,
5536 [ta_remove_literal] = 6,
5537 [ta_widen_insn] = 7,
5538 [ta_add_literal] = 8,
5539 };
5540
5541 if (pa->offset == pb->offset)
5542 {
5543 if (pa->action == pb->action)
5544 return 0;
5545 return action_priority[pa->action] - action_priority[pb->action];
5546 }
5547 else
5548 return pa->offset < pb->offset ? -1 : 1;
5549 }
5550
5551 static text_action *
5552 action_first (text_action_list *action_list)
5553 {
5554 splay_tree_node node = splay_tree_min (action_list->tree);
5555 return node ? (text_action *)node->value : NULL;
5556 }
5557
5558 static text_action *
5559 action_next (text_action_list *action_list, text_action *action)
5560 {
5561 splay_tree_node node = splay_tree_successor (action_list->tree,
5562 (splay_tree_key)action);
5563 return node ? (text_action *)node->value : NULL;
5564 }
5565
5566 /* Add a modification action to the text. For the case of adding or
5567 removing space, modify any current fill and assume that
5568 "unreachable_space" bytes can be freely contracted. Note that a
5569 negative removed value is a fill. */
5570
5571 static void
5572 text_action_add (text_action_list *l,
5573 text_action_t action,
5574 asection *sec,
5575 bfd_vma offset,
5576 int removed)
5577 {
5578 text_action *ta;
5579 text_action a;
5580
5581 /* It is not necessary to fill at the end of a section. */
5582 if (action == ta_fill && sec->size == offset)
5583 return;
5584
5585 /* It is not necessary to fill 0 bytes. */
5586 if (action == ta_fill && removed == 0)
5587 return;
5588
5589 a.action = action;
5590 a.offset = offset;
5591
5592 if (action == ta_fill)
5593 {
5594 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5595
5596 if (node)
5597 {
5598 ta = (text_action *)node->value;
5599 ta->removed_bytes += removed;
5600 return;
5601 }
5602 }
5603 else
5604 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5605
5606 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5607 ta->action = action;
5608 ta->sec = sec;
5609 ta->offset = offset;
5610 ta->removed_bytes = removed;
5611 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5612 ++l->count;
5613 }
5614
5615
5616 static void
5617 text_action_add_literal (text_action_list *l,
5618 text_action_t action,
5619 const r_reloc *loc,
5620 const literal_value *value,
5621 int removed)
5622 {
5623 text_action *ta;
5624 asection *sec = r_reloc_get_section (loc);
5625 bfd_vma offset = loc->target_offset;
5626 bfd_vma virtual_offset = loc->virtual_offset;
5627
5628 BFD_ASSERT (action == ta_add_literal);
5629
5630 /* Create a new record and fill it up. */
5631 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5632 ta->action = action;
5633 ta->sec = sec;
5634 ta->offset = offset;
5635 ta->virtual_offset = virtual_offset;
5636 ta->value = *value;
5637 ta->removed_bytes = removed;
5638
5639 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5640 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5641 ++l->count;
5642 }
5643
5644
5645 /* Find the total offset adjustment for the relaxations specified by
5646 text_actions, beginning from a particular starting action. This is
5647 typically used from offset_with_removed_text to search an entire list of
5648 actions, but it may also be called directly when adjusting adjacent offsets
5649 so that each search may begin where the previous one left off. */
5650
5651 static int
5652 removed_by_actions (text_action_list *action_list,
5653 text_action **p_start_action,
5654 bfd_vma offset,
5655 bfd_boolean before_fill)
5656 {
5657 text_action *r;
5658 int removed = 0;
5659
5660 r = *p_start_action;
5661 if (r)
5662 {
5663 splay_tree_node node = splay_tree_lookup (action_list->tree,
5664 (splay_tree_key)r);
5665 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5666 }
5667
5668 while (r)
5669 {
5670 if (r->offset > offset)
5671 break;
5672
5673 if (r->offset == offset
5674 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5675 break;
5676
5677 removed += r->removed_bytes;
5678
5679 r = action_next (action_list, r);
5680 }
5681
5682 *p_start_action = r;
5683 return removed;
5684 }
5685
5686
5687 static bfd_vma
5688 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5689 {
5690 text_action *r = action_first (action_list);
5691
5692 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5693 }
5694
5695
5696 static unsigned
5697 action_list_count (text_action_list *action_list)
5698 {
5699 return action_list->count;
5700 }
5701
5702 typedef struct map_action_fn_context_struct map_action_fn_context;
5703 struct map_action_fn_context_struct
5704 {
5705 int removed;
5706 removal_by_action_map map;
5707 bfd_boolean eq_complete;
5708 };
5709
5710 static int
5711 map_action_fn (splay_tree_node node, void *p)
5712 {
5713 map_action_fn_context *ctx = p;
5714 text_action *r = (text_action *)node->value;
5715 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5716
5717 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5718 {
5719 --ientry;
5720 }
5721 else
5722 {
5723 ++ctx->map.n_entries;
5724 ctx->eq_complete = FALSE;
5725 ientry->offset = r->offset;
5726 ientry->eq_removed_before_fill = ctx->removed;
5727 }
5728
5729 if (!ctx->eq_complete)
5730 {
5731 if (r->action != ta_fill || r->removed_bytes >= 0)
5732 {
5733 ientry->eq_removed = ctx->removed;
5734 ctx->eq_complete = TRUE;
5735 }
5736 else
5737 ientry->eq_removed = ctx->removed + r->removed_bytes;
5738 }
5739
5740 ctx->removed += r->removed_bytes;
5741 ientry->removed = ctx->removed;
5742 return 0;
5743 }
5744
5745 static void
5746 map_removal_by_action (text_action_list *action_list)
5747 {
5748 map_action_fn_context ctx;
5749
5750 ctx.removed = 0;
5751 ctx.map.n_entries = 0;
5752 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5753 sizeof (removal_by_action_entry));
5754 ctx.eq_complete = FALSE;
5755
5756 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5757 action_list->map = ctx.map;
5758 }
5759
5760 static int
5761 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5762 bfd_boolean before_fill)
5763 {
5764 unsigned a, b;
5765
5766 if (!action_list->map.entry)
5767 map_removal_by_action (action_list);
5768
5769 if (!action_list->map.n_entries)
5770 return 0;
5771
5772 a = 0;
5773 b = action_list->map.n_entries;
5774
5775 while (b - a > 1)
5776 {
5777 unsigned c = (a + b) / 2;
5778
5779 if (action_list->map.entry[c].offset <= offset)
5780 a = c;
5781 else
5782 b = c;
5783 }
5784
5785 if (action_list->map.entry[a].offset < offset)
5786 {
5787 return action_list->map.entry[a].removed;
5788 }
5789 else if (action_list->map.entry[a].offset == offset)
5790 {
5791 return before_fill ?
5792 action_list->map.entry[a].eq_removed_before_fill :
5793 action_list->map.entry[a].eq_removed;
5794 }
5795 else
5796 {
5797 return 0;
5798 }
5799 }
5800
5801 static bfd_vma
5802 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5803 {
5804 int removed = removed_by_actions_map (action_list, offset, FALSE);
5805 return offset - removed;
5806 }
5807
5808
5809 /* The find_insn_action routine will only find non-fill actions. */
5810
5811 static text_action *
5812 find_insn_action (text_action_list *action_list, bfd_vma offset)
5813 {
5814 static const text_action_t action[] =
5815 {
5816 ta_convert_longcall,
5817 ta_remove_longcall,
5818 ta_widen_insn,
5819 ta_narrow_insn,
5820 ta_remove_insn,
5821 };
5822 text_action a;
5823 unsigned i;
5824
5825 a.offset = offset;
5826 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5827 {
5828 splay_tree_node node;
5829
5830 a.action = action[i];
5831 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5832 if (node)
5833 return (text_action *)node->value;
5834 }
5835 return NULL;
5836 }
5837
5838
5839 #if DEBUG
5840
5841 static void
5842 print_action (FILE *fp, text_action *r)
5843 {
5844 const char *t = "unknown";
5845 switch (r->action)
5846 {
5847 case ta_remove_insn:
5848 t = "remove_insn"; break;
5849 case ta_remove_longcall:
5850 t = "remove_longcall"; break;
5851 case ta_convert_longcall:
5852 t = "convert_longcall"; break;
5853 case ta_narrow_insn:
5854 t = "narrow_insn"; break;
5855 case ta_widen_insn:
5856 t = "widen_insn"; break;
5857 case ta_fill:
5858 t = "fill"; break;
5859 case ta_none:
5860 t = "none"; break;
5861 case ta_remove_literal:
5862 t = "remove_literal"; break;
5863 case ta_add_literal:
5864 t = "add_literal"; break;
5865 }
5866
5867 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5868 r->sec->owner->filename,
5869 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5870 }
5871
5872 static int
5873 print_action_list_fn (splay_tree_node node, void *p)
5874 {
5875 text_action *r = (text_action *)node->value;
5876
5877 print_action (p, r);
5878 return 0;
5879 }
5880
5881 static void
5882 print_action_list (FILE *fp, text_action_list *action_list)
5883 {
5884 fprintf (fp, "Text Action\n");
5885 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5886 }
5887
5888 #endif /* DEBUG */
5889
5890 \f
5891 /* Lists of literals being coalesced or removed. */
5892
5893 /* In the usual case, the literal identified by "from" is being
5894 coalesced with another literal identified by "to". If the literal is
5895 unused and is being removed altogether, "to.abfd" will be NULL.
5896 The removed_literal entries are kept on a per-section list, sorted
5897 by the "from" offset field. */
5898
5899 typedef struct removed_literal_struct removed_literal;
5900 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5901 typedef struct removed_literal_list_struct removed_literal_list;
5902
5903 struct removed_literal_struct
5904 {
5905 r_reloc from;
5906 r_reloc to;
5907 removed_literal *next;
5908 };
5909
5910 struct removed_literal_map_entry_struct
5911 {
5912 bfd_vma addr;
5913 removed_literal *literal;
5914 };
5915
5916 struct removed_literal_list_struct
5917 {
5918 removed_literal *head;
5919 removed_literal *tail;
5920
5921 unsigned n_map;
5922 removed_literal_map_entry *map;
5923 };
5924
5925
5926 /* Record that the literal at "from" is being removed. If "to" is not
5927 NULL, the "from" literal is being coalesced with the "to" literal. */
5928
5929 static void
5930 add_removed_literal (removed_literal_list *removed_list,
5931 const r_reloc *from,
5932 const r_reloc *to)
5933 {
5934 removed_literal *r, *new_r, *next_r;
5935
5936 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5937
5938 new_r->from = *from;
5939 if (to)
5940 new_r->to = *to;
5941 else
5942 new_r->to.abfd = NULL;
5943 new_r->next = NULL;
5944
5945 r = removed_list->head;
5946 if (r == NULL)
5947 {
5948 removed_list->head = new_r;
5949 removed_list->tail = new_r;
5950 }
5951 /* Special check for common case of append. */
5952 else if (removed_list->tail->from.target_offset < from->target_offset)
5953 {
5954 removed_list->tail->next = new_r;
5955 removed_list->tail = new_r;
5956 }
5957 else
5958 {
5959 while (r->from.target_offset < from->target_offset && r->next)
5960 {
5961 r = r->next;
5962 }
5963 next_r = r->next;
5964 r->next = new_r;
5965 new_r->next = next_r;
5966 if (next_r == NULL)
5967 removed_list->tail = new_r;
5968 }
5969 }
5970
5971 static void
5972 map_removed_literal (removed_literal_list *removed_list)
5973 {
5974 unsigned n_map = 0;
5975 unsigned i;
5976 removed_literal_map_entry *map = NULL;
5977 removed_literal *r = removed_list->head;
5978
5979 for (i = 0; r; ++i, r = r->next)
5980 {
5981 if (i == n_map)
5982 {
5983 n_map = (n_map * 2) + 2;
5984 map = bfd_realloc (map, n_map * sizeof (*map));
5985 }
5986 map[i].addr = r->from.target_offset;
5987 map[i].literal = r;
5988 }
5989 removed_list->map = map;
5990 removed_list->n_map = i;
5991 }
5992
5993 static int
5994 removed_literal_compare (const void *a, const void *b)
5995 {
5996 const bfd_vma *key = a;
5997 const removed_literal_map_entry *memb = b;
5998
5999 if (*key == memb->addr)
6000 return 0;
6001 else
6002 return *key < memb->addr ? -1 : 1;
6003 }
6004
6005 /* Check if the list of removed literals contains an entry for the
6006 given address. Return the entry if found. */
6007
6008 static removed_literal *
6009 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
6010 {
6011 removed_literal_map_entry *p;
6012 removed_literal *r = NULL;
6013
6014 if (removed_list->map == NULL)
6015 map_removed_literal (removed_list);
6016
6017 if (removed_list->map != NULL)
6018 {
6019 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6020 sizeof (*removed_list->map), removed_literal_compare);
6021 if (p)
6022 {
6023 while (p != removed_list->map && (p - 1)->addr == addr)
6024 --p;
6025 r = p->literal;
6026 }
6027 }
6028 return r;
6029 }
6030
6031
6032 #if DEBUG
6033
6034 static void
6035 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6036 {
6037 removed_literal *r;
6038 r = removed_list->head;
6039 if (r)
6040 fprintf (fp, "Removed Literals\n");
6041 for (; r != NULL; r = r->next)
6042 {
6043 print_r_reloc (fp, &r->from);
6044 fprintf (fp, " => ");
6045 if (r->to.abfd == NULL)
6046 fprintf (fp, "REMOVED");
6047 else
6048 print_r_reloc (fp, &r->to);
6049 fprintf (fp, "\n");
6050 }
6051 }
6052
6053 #endif /* DEBUG */
6054
6055 \f
6056 /* Per-section data for relaxation. */
6057
6058 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6059
6060 struct xtensa_relax_info_struct
6061 {
6062 bfd_boolean is_relaxable_literal_section;
6063 bfd_boolean is_relaxable_asm_section;
6064 int visited; /* Number of times visited. */
6065
6066 source_reloc *src_relocs; /* Array[src_count]. */
6067 int src_count;
6068 int src_next; /* Next src_relocs entry to assign. */
6069
6070 removed_literal_list removed_list;
6071 text_action_list action_list;
6072
6073 reloc_bfd_fix *fix_list;
6074 reloc_bfd_fix *fix_array;
6075 unsigned fix_array_count;
6076
6077 /* Support for expanding the reloc array that is stored
6078 in the section structure. If the relocations have been
6079 reallocated, the newly allocated relocations will be referenced
6080 here along with the actual size allocated. The relocation
6081 count will always be found in the section structure. */
6082 Elf_Internal_Rela *allocated_relocs;
6083 unsigned relocs_count;
6084 unsigned allocated_relocs_count;
6085 };
6086
6087 struct elf_xtensa_section_data
6088 {
6089 struct bfd_elf_section_data elf;
6090 xtensa_relax_info relax_info;
6091 };
6092
6093
6094 static bfd_boolean
6095 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6096 {
6097 if (!sec->used_by_bfd)
6098 {
6099 struct elf_xtensa_section_data *sdata;
6100 size_t amt = sizeof (*sdata);
6101
6102 sdata = bfd_zalloc (abfd, amt);
6103 if (sdata == NULL)
6104 return FALSE;
6105 sec->used_by_bfd = sdata;
6106 }
6107
6108 return _bfd_elf_new_section_hook (abfd, sec);
6109 }
6110
6111
6112 static xtensa_relax_info *
6113 get_xtensa_relax_info (asection *sec)
6114 {
6115 struct elf_xtensa_section_data *section_data;
6116
6117 /* No info available if no section or if it is an output section. */
6118 if (!sec || sec == sec->output_section)
6119 return NULL;
6120
6121 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6122 return &section_data->relax_info;
6123 }
6124
6125
6126 static void
6127 init_xtensa_relax_info (asection *sec)
6128 {
6129 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6130
6131 relax_info->is_relaxable_literal_section = FALSE;
6132 relax_info->is_relaxable_asm_section = FALSE;
6133 relax_info->visited = 0;
6134
6135 relax_info->src_relocs = NULL;
6136 relax_info->src_count = 0;
6137 relax_info->src_next = 0;
6138
6139 relax_info->removed_list.head = NULL;
6140 relax_info->removed_list.tail = NULL;
6141
6142 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6143 NULL, NULL);
6144 relax_info->action_list.map.n_entries = 0;
6145 relax_info->action_list.map.entry = NULL;
6146
6147 relax_info->fix_list = NULL;
6148 relax_info->fix_array = NULL;
6149 relax_info->fix_array_count = 0;
6150
6151 relax_info->allocated_relocs = NULL;
6152 relax_info->relocs_count = 0;
6153 relax_info->allocated_relocs_count = 0;
6154 }
6155
6156 \f
6157 /* Coalescing literals may require a relocation to refer to a section in
6158 a different input file, but the standard relocation information
6159 cannot express that. Instead, the reloc_bfd_fix structures are used
6160 to "fix" the relocations that refer to sections in other input files.
6161 These structures are kept on per-section lists. The "src_type" field
6162 records the relocation type in case there are multiple relocations on
6163 the same location. FIXME: This is ugly; an alternative might be to
6164 add new symbols with the "owner" field to some other input file. */
6165
6166 struct reloc_bfd_fix_struct
6167 {
6168 asection *src_sec;
6169 bfd_vma src_offset;
6170 unsigned src_type; /* Relocation type. */
6171
6172 asection *target_sec;
6173 bfd_vma target_offset;
6174 bfd_boolean translated;
6175
6176 reloc_bfd_fix *next;
6177 };
6178
6179
6180 static reloc_bfd_fix *
6181 reloc_bfd_fix_init (asection *src_sec,
6182 bfd_vma src_offset,
6183 unsigned src_type,
6184 asection *target_sec,
6185 bfd_vma target_offset,
6186 bfd_boolean translated)
6187 {
6188 reloc_bfd_fix *fix;
6189
6190 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6191 fix->src_sec = src_sec;
6192 fix->src_offset = src_offset;
6193 fix->src_type = src_type;
6194 fix->target_sec = target_sec;
6195 fix->target_offset = target_offset;
6196 fix->translated = translated;
6197
6198 return fix;
6199 }
6200
6201
6202 static void
6203 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6204 {
6205 xtensa_relax_info *relax_info;
6206
6207 relax_info = get_xtensa_relax_info (src_sec);
6208 fix->next = relax_info->fix_list;
6209 relax_info->fix_list = fix;
6210 }
6211
6212
6213 static int
6214 fix_compare (const void *ap, const void *bp)
6215 {
6216 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6217 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6218
6219 if (a->src_offset != b->src_offset)
6220 return (a->src_offset - b->src_offset);
6221 return (a->src_type - b->src_type);
6222 }
6223
6224
6225 static void
6226 cache_fix_array (asection *sec)
6227 {
6228 unsigned i, count = 0;
6229 reloc_bfd_fix *r;
6230 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6231
6232 if (relax_info == NULL)
6233 return;
6234 if (relax_info->fix_list == NULL)
6235 return;
6236
6237 for (r = relax_info->fix_list; r != NULL; r = r->next)
6238 count++;
6239
6240 relax_info->fix_array =
6241 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6242 relax_info->fix_array_count = count;
6243
6244 r = relax_info->fix_list;
6245 for (i = 0; i < count; i++, r = r->next)
6246 {
6247 relax_info->fix_array[count - 1 - i] = *r;
6248 relax_info->fix_array[count - 1 - i].next = NULL;
6249 }
6250
6251 qsort (relax_info->fix_array, relax_info->fix_array_count,
6252 sizeof (reloc_bfd_fix), fix_compare);
6253 }
6254
6255
6256 static reloc_bfd_fix *
6257 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6258 {
6259 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6260 reloc_bfd_fix *rv;
6261 reloc_bfd_fix key;
6262
6263 if (relax_info == NULL)
6264 return NULL;
6265 if (relax_info->fix_list == NULL)
6266 return NULL;
6267
6268 if (relax_info->fix_array == NULL)
6269 cache_fix_array (sec);
6270
6271 key.src_offset = offset;
6272 key.src_type = type;
6273 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6274 sizeof (reloc_bfd_fix), fix_compare);
6275 return rv;
6276 }
6277
6278 \f
6279 /* Section caching. */
6280
6281 typedef struct section_cache_struct section_cache_t;
6282
6283 struct section_cache_struct
6284 {
6285 asection *sec;
6286
6287 bfd_byte *contents; /* Cache of the section contents. */
6288 bfd_size_type content_length;
6289
6290 property_table_entry *ptbl; /* Cache of the section property table. */
6291 unsigned pte_count;
6292
6293 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6294 unsigned reloc_count;
6295 };
6296
6297
6298 static void
6299 init_section_cache (section_cache_t *sec_cache)
6300 {
6301 memset (sec_cache, 0, sizeof (*sec_cache));
6302 }
6303
6304
6305 static void
6306 free_section_cache (section_cache_t *sec_cache)
6307 {
6308 if (sec_cache->sec)
6309 {
6310 release_contents (sec_cache->sec, sec_cache->contents);
6311 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6312 free (sec_cache->ptbl);
6313 }
6314 }
6315
6316
6317 static bfd_boolean
6318 section_cache_section (section_cache_t *sec_cache,
6319 asection *sec,
6320 struct bfd_link_info *link_info)
6321 {
6322 bfd *abfd;
6323 property_table_entry *prop_table = NULL;
6324 int ptblsize = 0;
6325 bfd_byte *contents = NULL;
6326 Elf_Internal_Rela *internal_relocs = NULL;
6327 bfd_size_type sec_size;
6328
6329 if (sec == NULL)
6330 return FALSE;
6331 if (sec == sec_cache->sec)
6332 return TRUE;
6333
6334 abfd = sec->owner;
6335 sec_size = bfd_get_section_limit (abfd, sec);
6336
6337 /* Get the contents. */
6338 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6339 if (contents == NULL && sec_size != 0)
6340 goto err;
6341
6342 /* Get the relocations. */
6343 internal_relocs = retrieve_internal_relocs (abfd, sec,
6344 link_info->keep_memory);
6345
6346 /* Get the entry table. */
6347 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6348 XTENSA_PROP_SEC_NAME, FALSE);
6349 if (ptblsize < 0)
6350 goto err;
6351
6352 /* Fill in the new section cache. */
6353 free_section_cache (sec_cache);
6354 init_section_cache (sec_cache);
6355
6356 sec_cache->sec = sec;
6357 sec_cache->contents = contents;
6358 sec_cache->content_length = sec_size;
6359 sec_cache->relocs = internal_relocs;
6360 sec_cache->reloc_count = sec->reloc_count;
6361 sec_cache->pte_count = ptblsize;
6362 sec_cache->ptbl = prop_table;
6363
6364 return TRUE;
6365
6366 err:
6367 release_contents (sec, contents);
6368 release_internal_relocs (sec, internal_relocs);
6369 free (prop_table);
6370 return FALSE;
6371 }
6372
6373 \f
6374 /* Extended basic blocks. */
6375
6376 /* An ebb_struct represents an Extended Basic Block. Within this
6377 range, we guarantee that all instructions are decodable, the
6378 property table entries are contiguous, and no property table
6379 specifies a segment that cannot have instructions moved. This
6380 structure contains caches of the contents, property table and
6381 relocations for the specified section for easy use. The range is
6382 specified by ranges of indices for the byte offset, property table
6383 offsets and relocation offsets. These must be consistent. */
6384
6385 typedef struct ebb_struct ebb_t;
6386
6387 struct ebb_struct
6388 {
6389 asection *sec;
6390
6391 bfd_byte *contents; /* Cache of the section contents. */
6392 bfd_size_type content_length;
6393
6394 property_table_entry *ptbl; /* Cache of the section property table. */
6395 unsigned pte_count;
6396
6397 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6398 unsigned reloc_count;
6399
6400 bfd_vma start_offset; /* Offset in section. */
6401 unsigned start_ptbl_idx; /* Offset in the property table. */
6402 unsigned start_reloc_idx; /* Offset in the relocations. */
6403
6404 bfd_vma end_offset;
6405 unsigned end_ptbl_idx;
6406 unsigned end_reloc_idx;
6407
6408 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6409
6410 /* The unreachable property table at the end of this set of blocks;
6411 NULL if the end is not an unreachable block. */
6412 property_table_entry *ends_unreachable;
6413 };
6414
6415
6416 enum ebb_target_enum
6417 {
6418 EBB_NO_ALIGN = 0,
6419 EBB_DESIRE_TGT_ALIGN,
6420 EBB_REQUIRE_TGT_ALIGN,
6421 EBB_REQUIRE_LOOP_ALIGN,
6422 EBB_REQUIRE_ALIGN
6423 };
6424
6425
6426 /* proposed_action_struct is similar to the text_action_struct except
6427 that is represents a potential transformation, not one that will
6428 occur. We build a list of these for an extended basic block
6429 and use them to compute the actual actions desired. We must be
6430 careful that the entire set of actual actions we perform do not
6431 break any relocations that would fit if the actions were not
6432 performed. */
6433
6434 typedef struct proposed_action_struct proposed_action;
6435
6436 struct proposed_action_struct
6437 {
6438 enum ebb_target_enum align_type; /* for the target alignment */
6439 bfd_vma alignment_pow;
6440 text_action_t action;
6441 bfd_vma offset;
6442 int removed_bytes;
6443 bfd_boolean do_action; /* If false, then we will not perform the action. */
6444 };
6445
6446
6447 /* The ebb_constraint_struct keeps a set of proposed actions for an
6448 extended basic block. */
6449
6450 typedef struct ebb_constraint_struct ebb_constraint;
6451
6452 struct ebb_constraint_struct
6453 {
6454 ebb_t ebb;
6455 bfd_boolean start_movable;
6456
6457 /* Bytes of extra space at the beginning if movable. */
6458 int start_extra_space;
6459
6460 enum ebb_target_enum start_align;
6461
6462 bfd_boolean end_movable;
6463
6464 /* Bytes of extra space at the end if movable. */
6465 int end_extra_space;
6466
6467 unsigned action_count;
6468 unsigned action_allocated;
6469
6470 /* Array of proposed actions. */
6471 proposed_action *actions;
6472
6473 /* Action alignments -- one for each proposed action. */
6474 enum ebb_target_enum *action_aligns;
6475 };
6476
6477
6478 static void
6479 init_ebb_constraint (ebb_constraint *c)
6480 {
6481 memset (c, 0, sizeof (ebb_constraint));
6482 }
6483
6484
6485 static void
6486 free_ebb_constraint (ebb_constraint *c)
6487 {
6488 free (c->actions);
6489 }
6490
6491
6492 static void
6493 init_ebb (ebb_t *ebb,
6494 asection *sec,
6495 bfd_byte *contents,
6496 bfd_size_type content_length,
6497 property_table_entry *prop_table,
6498 unsigned ptblsize,
6499 Elf_Internal_Rela *internal_relocs,
6500 unsigned reloc_count)
6501 {
6502 memset (ebb, 0, sizeof (ebb_t));
6503 ebb->sec = sec;
6504 ebb->contents = contents;
6505 ebb->content_length = content_length;
6506 ebb->ptbl = prop_table;
6507 ebb->pte_count = ptblsize;
6508 ebb->relocs = internal_relocs;
6509 ebb->reloc_count = reloc_count;
6510 ebb->start_offset = 0;
6511 ebb->end_offset = ebb->content_length - 1;
6512 ebb->start_ptbl_idx = 0;
6513 ebb->end_ptbl_idx = ptblsize;
6514 ebb->start_reloc_idx = 0;
6515 ebb->end_reloc_idx = reloc_count;
6516 }
6517
6518
6519 /* Extend the ebb to all decodable contiguous sections. The algorithm
6520 for building a basic block around an instruction is to push it
6521 forward until we hit the end of a section, an unreachable block or
6522 a block that cannot be transformed. Then we push it backwards
6523 searching for similar conditions. */
6524
6525 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6526 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6527 static bfd_size_type insn_block_decodable_len
6528 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6529
6530 static bfd_boolean
6531 extend_ebb_bounds (ebb_t *ebb)
6532 {
6533 if (!extend_ebb_bounds_forward (ebb))
6534 return FALSE;
6535 if (!extend_ebb_bounds_backward (ebb))
6536 return FALSE;
6537 return TRUE;
6538 }
6539
6540
6541 static bfd_boolean
6542 extend_ebb_bounds_forward (ebb_t *ebb)
6543 {
6544 property_table_entry *the_entry, *new_entry;
6545
6546 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6547
6548 /* Stop when (1) we cannot decode an instruction, (2) we are at
6549 the end of the property tables, (3) we hit a non-contiguous property
6550 table entry, (4) we hit a NO_TRANSFORM region. */
6551
6552 while (1)
6553 {
6554 bfd_vma entry_end;
6555 bfd_size_type insn_block_len;
6556
6557 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6558 insn_block_len =
6559 insn_block_decodable_len (ebb->contents, ebb->content_length,
6560 ebb->end_offset,
6561 entry_end - ebb->end_offset);
6562 if (insn_block_len != (entry_end - ebb->end_offset))
6563 {
6564 _bfd_error_handler
6565 /* xgettext:c-format */
6566 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6567 "possible configuration mismatch"),
6568 ebb->sec->owner, ebb->sec,
6569 (uint64_t) (ebb->end_offset + insn_block_len));
6570 return FALSE;
6571 }
6572 ebb->end_offset += insn_block_len;
6573
6574 if (ebb->end_offset == ebb->sec->size)
6575 ebb->ends_section = TRUE;
6576
6577 /* Update the reloc counter. */
6578 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6579 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6580 < ebb->end_offset))
6581 {
6582 ebb->end_reloc_idx++;
6583 }
6584
6585 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6586 return TRUE;
6587
6588 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6589 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6590 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6591 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6592 break;
6593
6594 if (the_entry->address + the_entry->size != new_entry->address)
6595 break;
6596
6597 the_entry = new_entry;
6598 ebb->end_ptbl_idx++;
6599 }
6600
6601 /* Quick check for an unreachable or end of file just at the end. */
6602 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6603 {
6604 if (ebb->end_offset == ebb->content_length)
6605 ebb->ends_section = TRUE;
6606 }
6607 else
6608 {
6609 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6610 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6611 && the_entry->address + the_entry->size == new_entry->address)
6612 ebb->ends_unreachable = new_entry;
6613 }
6614
6615 /* Any other ending requires exact alignment. */
6616 return TRUE;
6617 }
6618
6619
6620 static bfd_boolean
6621 extend_ebb_bounds_backward (ebb_t *ebb)
6622 {
6623 property_table_entry *the_entry, *new_entry;
6624
6625 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6626
6627 /* Stop when (1) we cannot decode the instructions in the current entry.
6628 (2) we are at the beginning of the property tables, (3) we hit a
6629 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6630
6631 while (1)
6632 {
6633 bfd_vma block_begin;
6634 bfd_size_type insn_block_len;
6635
6636 block_begin = the_entry->address - ebb->sec->vma;
6637 insn_block_len =
6638 insn_block_decodable_len (ebb->contents, ebb->content_length,
6639 block_begin,
6640 ebb->start_offset - block_begin);
6641 if (insn_block_len != ebb->start_offset - block_begin)
6642 {
6643 _bfd_error_handler
6644 /* xgettext:c-format */
6645 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6646 "possible configuration mismatch"),
6647 ebb->sec->owner, ebb->sec,
6648 (uint64_t) (ebb->end_offset + insn_block_len));
6649 return FALSE;
6650 }
6651 ebb->start_offset -= insn_block_len;
6652
6653 /* Update the reloc counter. */
6654 while (ebb->start_reloc_idx > 0
6655 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6656 >= ebb->start_offset))
6657 {
6658 ebb->start_reloc_idx--;
6659 }
6660
6661 if (ebb->start_ptbl_idx == 0)
6662 return TRUE;
6663
6664 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6665 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6666 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6667 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6668 return TRUE;
6669 if (new_entry->address + new_entry->size != the_entry->address)
6670 return TRUE;
6671
6672 the_entry = new_entry;
6673 ebb->start_ptbl_idx--;
6674 }
6675 return TRUE;
6676 }
6677
6678
6679 static bfd_size_type
6680 insn_block_decodable_len (bfd_byte *contents,
6681 bfd_size_type content_len,
6682 bfd_vma block_offset,
6683 bfd_size_type block_len)
6684 {
6685 bfd_vma offset = block_offset;
6686
6687 while (offset < block_offset + block_len)
6688 {
6689 bfd_size_type insn_len = 0;
6690
6691 insn_len = insn_decode_len (contents, content_len, offset);
6692 if (insn_len == 0)
6693 return (offset - block_offset);
6694 offset += insn_len;
6695 }
6696 return (offset - block_offset);
6697 }
6698
6699
6700 static void
6701 ebb_propose_action (ebb_constraint *c,
6702 enum ebb_target_enum align_type,
6703 bfd_vma alignment_pow,
6704 text_action_t action,
6705 bfd_vma offset,
6706 int removed_bytes,
6707 bfd_boolean do_action)
6708 {
6709 proposed_action *act;
6710
6711 if (c->action_allocated <= c->action_count)
6712 {
6713 unsigned new_allocated, i;
6714 proposed_action *new_actions;
6715
6716 new_allocated = (c->action_count + 2) * 2;
6717 new_actions = (proposed_action *)
6718 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6719
6720 for (i = 0; i < c->action_count; i++)
6721 new_actions[i] = c->actions[i];
6722 free (c->actions);
6723 c->actions = new_actions;
6724 c->action_allocated = new_allocated;
6725 }
6726
6727 act = &c->actions[c->action_count];
6728 act->align_type = align_type;
6729 act->alignment_pow = alignment_pow;
6730 act->action = action;
6731 act->offset = offset;
6732 act->removed_bytes = removed_bytes;
6733 act->do_action = do_action;
6734
6735 c->action_count++;
6736 }
6737
6738 \f
6739 /* Access to internal relocations, section contents and symbols. */
6740
6741 /* During relaxation, we need to modify relocations, section contents,
6742 and symbol definitions, and we need to keep the original values from
6743 being reloaded from the input files, i.e., we need to "pin" the
6744 modified values in memory. We also want to continue to observe the
6745 setting of the "keep-memory" flag. The following functions wrap the
6746 standard BFD functions to take care of this for us. */
6747
6748 static Elf_Internal_Rela *
6749 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6750 {
6751 Elf_Internal_Rela *internal_relocs;
6752
6753 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6754 return NULL;
6755
6756 internal_relocs = elf_section_data (sec)->relocs;
6757 if (internal_relocs == NULL)
6758 internal_relocs = (_bfd_elf_link_read_relocs
6759 (abfd, sec, NULL, NULL, keep_memory));
6760 return internal_relocs;
6761 }
6762
6763
6764 static void
6765 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6766 {
6767 elf_section_data (sec)->relocs = internal_relocs;
6768 }
6769
6770
6771 static void
6772 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6773 {
6774 if (elf_section_data (sec)->relocs != internal_relocs)
6775 free (internal_relocs);
6776 }
6777
6778
6779 static bfd_byte *
6780 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6781 {
6782 bfd_byte *contents;
6783 bfd_size_type sec_size;
6784
6785 sec_size = bfd_get_section_limit (abfd, sec);
6786 contents = elf_section_data (sec)->this_hdr.contents;
6787
6788 if (contents == NULL && sec_size != 0)
6789 {
6790 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6791 {
6792 free (contents);
6793 return NULL;
6794 }
6795 if (keep_memory)
6796 elf_section_data (sec)->this_hdr.contents = contents;
6797 }
6798 return contents;
6799 }
6800
6801
6802 static void
6803 pin_contents (asection *sec, bfd_byte *contents)
6804 {
6805 elf_section_data (sec)->this_hdr.contents = contents;
6806 }
6807
6808
6809 static void
6810 release_contents (asection *sec, bfd_byte *contents)
6811 {
6812 if (elf_section_data (sec)->this_hdr.contents != contents)
6813 free (contents);
6814 }
6815
6816
6817 static Elf_Internal_Sym *
6818 retrieve_local_syms (bfd *input_bfd)
6819 {
6820 Elf_Internal_Shdr *symtab_hdr;
6821 Elf_Internal_Sym *isymbuf;
6822 size_t locsymcount;
6823
6824 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6825 locsymcount = symtab_hdr->sh_info;
6826
6827 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6828 if (isymbuf == NULL && locsymcount != 0)
6829 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6830 NULL, NULL, NULL);
6831
6832 /* Save the symbols for this input file so they won't be read again. */
6833 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6834 symtab_hdr->contents = (unsigned char *) isymbuf;
6835
6836 return isymbuf;
6837 }
6838
6839 \f
6840 /* Code for link-time relaxation. */
6841
6842 /* Initialization for relaxation: */
6843 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6844 static bfd_boolean find_relaxable_sections
6845 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6846 static bfd_boolean collect_source_relocs
6847 (bfd *, asection *, struct bfd_link_info *);
6848 static bfd_boolean is_resolvable_asm_expansion
6849 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6850 bfd_boolean *);
6851 static Elf_Internal_Rela *find_associated_l32r_irel
6852 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6853 static bfd_boolean compute_text_actions
6854 (bfd *, asection *, struct bfd_link_info *);
6855 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6856 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6857 typedef struct reloc_range_list_struct reloc_range_list;
6858 static bfd_boolean check_section_ebb_pcrels_fit
6859 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6860 reloc_range_list *, const ebb_constraint *,
6861 const xtensa_opcode *);
6862 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6863 static void text_action_add_proposed
6864 (text_action_list *, const ebb_constraint *, asection *);
6865
6866 /* First pass: */
6867 static bfd_boolean compute_removed_literals
6868 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6869 static Elf_Internal_Rela *get_irel_at_offset
6870 (asection *, Elf_Internal_Rela *, bfd_vma);
6871 static bfd_boolean is_removable_literal
6872 (const source_reloc *, int, const source_reloc *, int, asection *,
6873 property_table_entry *, int);
6874 static bfd_boolean remove_dead_literal
6875 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6876 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6877 static bfd_boolean identify_literal_placement
6878 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6879 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6880 source_reloc *, property_table_entry *, int, section_cache_t *,
6881 bfd_boolean);
6882 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6883 static bfd_boolean coalesce_shared_literal
6884 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6885 static bfd_boolean move_shared_literal
6886 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6887 int, const r_reloc *, const literal_value *, section_cache_t *);
6888
6889 /* Second pass: */
6890 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6891 static bfd_boolean translate_section_fixes (asection *);
6892 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6893 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6894 static void shrink_dynamic_reloc_sections
6895 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6896 static bfd_boolean move_literal
6897 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6898 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6899 static bfd_boolean relax_property_section
6900 (bfd *, asection *, struct bfd_link_info *);
6901
6902 /* Third pass: */
6903 static bfd_boolean relax_section_symbols (bfd *, asection *);
6904
6905
6906 static bfd_boolean
6907 elf_xtensa_relax_section (bfd *abfd,
6908 asection *sec,
6909 struct bfd_link_info *link_info,
6910 bfd_boolean *again)
6911 {
6912 static value_map_hash_table *values = NULL;
6913 static bfd_boolean relocations_analyzed = FALSE;
6914 xtensa_relax_info *relax_info;
6915
6916 if (!relocations_analyzed)
6917 {
6918 /* Do some overall initialization for relaxation. */
6919 values = value_map_hash_table_init ();
6920 if (values == NULL)
6921 return FALSE;
6922 relaxing_section = TRUE;
6923 if (!analyze_relocations (link_info))
6924 return FALSE;
6925 relocations_analyzed = TRUE;
6926 }
6927 *again = FALSE;
6928
6929 /* Don't mess with linker-created sections. */
6930 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6931 return TRUE;
6932
6933 relax_info = get_xtensa_relax_info (sec);
6934 BFD_ASSERT (relax_info != NULL);
6935
6936 switch (relax_info->visited)
6937 {
6938 case 0:
6939 /* Note: It would be nice to fold this pass into
6940 analyze_relocations, but it is important for this step that the
6941 sections be examined in link order. */
6942 if (!compute_removed_literals (abfd, sec, link_info, values))
6943 return FALSE;
6944 *again = TRUE;
6945 break;
6946
6947 case 1:
6948 if (values)
6949 value_map_hash_table_delete (values);
6950 values = NULL;
6951 if (!relax_section (abfd, sec, link_info))
6952 return FALSE;
6953 *again = TRUE;
6954 break;
6955
6956 case 2:
6957 if (!relax_section_symbols (abfd, sec))
6958 return FALSE;
6959 break;
6960 }
6961
6962 relax_info->visited++;
6963 return TRUE;
6964 }
6965
6966 \f
6967 /* Initialization for relaxation. */
6968
6969 /* This function is called once at the start of relaxation. It scans
6970 all the input sections and marks the ones that are relaxable (i.e.,
6971 literal sections with L32R relocations against them), and then
6972 collects source_reloc information for all the relocations against
6973 those relaxable sections. During this process, it also detects
6974 longcalls, i.e., calls relaxed by the assembler into indirect
6975 calls, that can be optimized back into direct calls. Within each
6976 extended basic block (ebb) containing an optimized longcall, it
6977 computes a set of "text actions" that can be performed to remove
6978 the L32R associated with the longcall while optionally preserving
6979 branch target alignments. */
6980
6981 static bfd_boolean
6982 analyze_relocations (struct bfd_link_info *link_info)
6983 {
6984 bfd *abfd;
6985 asection *sec;
6986 bfd_boolean is_relaxable = FALSE;
6987
6988 /* Initialize the per-section relaxation info. */
6989 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6990 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6991 {
6992 init_xtensa_relax_info (sec);
6993 }
6994
6995 /* Mark relaxable sections (and count relocations against each one). */
6996 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6997 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6998 {
6999 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
7000 return FALSE;
7001 }
7002
7003 /* Bail out if there are no relaxable sections. */
7004 if (!is_relaxable)
7005 return TRUE;
7006
7007 /* Allocate space for source_relocs. */
7008 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7009 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7010 {
7011 xtensa_relax_info *relax_info;
7012
7013 relax_info = get_xtensa_relax_info (sec);
7014 if (relax_info->is_relaxable_literal_section
7015 || relax_info->is_relaxable_asm_section)
7016 {
7017 relax_info->src_relocs = (source_reloc *)
7018 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7019 }
7020 else
7021 relax_info->src_count = 0;
7022 }
7023
7024 /* Collect info on relocations against each relaxable section. */
7025 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7026 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7027 {
7028 if (!collect_source_relocs (abfd, sec, link_info))
7029 return FALSE;
7030 }
7031
7032 /* Compute the text actions. */
7033 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7034 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7035 {
7036 if (!compute_text_actions (abfd, sec, link_info))
7037 return FALSE;
7038 }
7039
7040 return TRUE;
7041 }
7042
7043
7044 /* Find all the sections that might be relaxed. The motivation for
7045 this pass is that collect_source_relocs() needs to record _all_ the
7046 relocations that target each relaxable section. That is expensive
7047 and unnecessary unless the target section is actually going to be
7048 relaxed. This pass identifies all such sections by checking if
7049 they have L32Rs pointing to them. In the process, the total number
7050 of relocations targeting each section is also counted so that we
7051 know how much space to allocate for source_relocs against each
7052 relaxable literal section. */
7053
7054 static bfd_boolean
7055 find_relaxable_sections (bfd *abfd,
7056 asection *sec,
7057 struct bfd_link_info *link_info,
7058 bfd_boolean *is_relaxable_p)
7059 {
7060 Elf_Internal_Rela *internal_relocs;
7061 bfd_byte *contents;
7062 bfd_boolean ok = TRUE;
7063 unsigned i;
7064 xtensa_relax_info *source_relax_info;
7065 bfd_boolean is_l32r_reloc;
7066
7067 internal_relocs = retrieve_internal_relocs (abfd, sec,
7068 link_info->keep_memory);
7069 if (internal_relocs == NULL)
7070 return ok;
7071
7072 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7073 if (contents == NULL && sec->size != 0)
7074 {
7075 ok = FALSE;
7076 goto error_return;
7077 }
7078
7079 source_relax_info = get_xtensa_relax_info (sec);
7080 for (i = 0; i < sec->reloc_count; i++)
7081 {
7082 Elf_Internal_Rela *irel = &internal_relocs[i];
7083 r_reloc r_rel;
7084 asection *target_sec;
7085 xtensa_relax_info *target_relax_info;
7086
7087 /* If this section has not already been marked as "relaxable", and
7088 if it contains any ASM_EXPAND relocations (marking expanded
7089 longcalls) that can be optimized into direct calls, then mark
7090 the section as "relaxable". */
7091 if (source_relax_info
7092 && !source_relax_info->is_relaxable_asm_section
7093 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7094 {
7095 bfd_boolean is_reachable = FALSE;
7096 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7097 link_info, &is_reachable)
7098 && is_reachable)
7099 {
7100 source_relax_info->is_relaxable_asm_section = TRUE;
7101 *is_relaxable_p = TRUE;
7102 }
7103 }
7104
7105 r_reloc_init (&r_rel, abfd, irel, contents,
7106 bfd_get_section_limit (abfd, sec));
7107
7108 target_sec = r_reloc_get_section (&r_rel);
7109 target_relax_info = get_xtensa_relax_info (target_sec);
7110 if (!target_relax_info)
7111 continue;
7112
7113 /* Count PC-relative operand relocations against the target section.
7114 Note: The conditions tested here must match the conditions under
7115 which init_source_reloc is called in collect_source_relocs(). */
7116 is_l32r_reloc = FALSE;
7117 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7118 {
7119 xtensa_opcode opcode =
7120 get_relocation_opcode (abfd, sec, contents, irel);
7121 if (opcode != XTENSA_UNDEFINED)
7122 {
7123 is_l32r_reloc = (opcode == get_l32r_opcode ());
7124 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7125 || is_l32r_reloc)
7126 target_relax_info->src_count++;
7127 }
7128 }
7129
7130 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7131 {
7132 /* Mark the target section as relaxable. */
7133 target_relax_info->is_relaxable_literal_section = TRUE;
7134 *is_relaxable_p = TRUE;
7135 }
7136 }
7137
7138 error_return:
7139 release_contents (sec, contents);
7140 release_internal_relocs (sec, internal_relocs);
7141 return ok;
7142 }
7143
7144
7145 /* Record _all_ the relocations that point to relaxable sections, and
7146 get rid of ASM_EXPAND relocs by either converting them to
7147 ASM_SIMPLIFY or by removing them. */
7148
7149 static bfd_boolean
7150 collect_source_relocs (bfd *abfd,
7151 asection *sec,
7152 struct bfd_link_info *link_info)
7153 {
7154 Elf_Internal_Rela *internal_relocs;
7155 bfd_byte *contents;
7156 bfd_boolean ok = TRUE;
7157 unsigned i;
7158 bfd_size_type sec_size;
7159
7160 internal_relocs = retrieve_internal_relocs (abfd, sec,
7161 link_info->keep_memory);
7162 if (internal_relocs == NULL)
7163 return ok;
7164
7165 sec_size = bfd_get_section_limit (abfd, sec);
7166 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7167 if (contents == NULL && sec_size != 0)
7168 {
7169 ok = FALSE;
7170 goto error_return;
7171 }
7172
7173 /* Record relocations against relaxable literal sections. */
7174 for (i = 0; i < sec->reloc_count; i++)
7175 {
7176 Elf_Internal_Rela *irel = &internal_relocs[i];
7177 r_reloc r_rel;
7178 asection *target_sec;
7179 xtensa_relax_info *target_relax_info;
7180
7181 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7182
7183 target_sec = r_reloc_get_section (&r_rel);
7184 target_relax_info = get_xtensa_relax_info (target_sec);
7185
7186 if (target_relax_info
7187 && (target_relax_info->is_relaxable_literal_section
7188 || target_relax_info->is_relaxable_asm_section))
7189 {
7190 xtensa_opcode opcode = XTENSA_UNDEFINED;
7191 int opnd = -1;
7192 bfd_boolean is_abs_literal = FALSE;
7193
7194 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7195 {
7196 /* None of the current alternate relocs are PC-relative,
7197 and only PC-relative relocs matter here. However, we
7198 still need to record the opcode for literal
7199 coalescing. */
7200 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7201 if (opcode == get_l32r_opcode ())
7202 {
7203 is_abs_literal = TRUE;
7204 opnd = 1;
7205 }
7206 else
7207 opcode = XTENSA_UNDEFINED;
7208 }
7209 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7210 {
7211 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7212 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7213 }
7214
7215 if (opcode != XTENSA_UNDEFINED)
7216 {
7217 int src_next = target_relax_info->src_next++;
7218 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7219
7220 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7221 is_abs_literal);
7222 }
7223 }
7224 }
7225
7226 /* Now get rid of ASM_EXPAND relocations. At this point, the
7227 src_relocs array for the target literal section may still be
7228 incomplete, but it must at least contain the entries for the L32R
7229 relocations associated with ASM_EXPANDs because they were just
7230 added in the preceding loop over the relocations. */
7231
7232 for (i = 0; i < sec->reloc_count; i++)
7233 {
7234 Elf_Internal_Rela *irel = &internal_relocs[i];
7235 bfd_boolean is_reachable;
7236
7237 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7238 &is_reachable))
7239 continue;
7240
7241 if (is_reachable)
7242 {
7243 Elf_Internal_Rela *l32r_irel;
7244 r_reloc r_rel;
7245 asection *target_sec;
7246 xtensa_relax_info *target_relax_info;
7247
7248 /* Mark the source_reloc for the L32R so that it will be
7249 removed in compute_removed_literals(), along with the
7250 associated literal. */
7251 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7252 irel, internal_relocs);
7253 if (l32r_irel == NULL)
7254 continue;
7255
7256 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7257
7258 target_sec = r_reloc_get_section (&r_rel);
7259 target_relax_info = get_xtensa_relax_info (target_sec);
7260
7261 if (target_relax_info
7262 && (target_relax_info->is_relaxable_literal_section
7263 || target_relax_info->is_relaxable_asm_section))
7264 {
7265 source_reloc *s_reloc;
7266
7267 /* Search the source_relocs for the entry corresponding to
7268 the l32r_irel. Note: The src_relocs array is not yet
7269 sorted, but it wouldn't matter anyway because we're
7270 searching by source offset instead of target offset. */
7271 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7272 target_relax_info->src_next,
7273 sec, l32r_irel);
7274 BFD_ASSERT (s_reloc);
7275 s_reloc->is_null = TRUE;
7276 }
7277
7278 /* Convert this reloc to ASM_SIMPLIFY. */
7279 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7280 R_XTENSA_ASM_SIMPLIFY);
7281 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7282
7283 pin_internal_relocs (sec, internal_relocs);
7284 }
7285 else
7286 {
7287 /* It is resolvable but doesn't reach. We resolve now
7288 by eliminating the relocation -- the call will remain
7289 expanded into L32R/CALLX. */
7290 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7291 pin_internal_relocs (sec, internal_relocs);
7292 }
7293 }
7294
7295 error_return:
7296 release_contents (sec, contents);
7297 release_internal_relocs (sec, internal_relocs);
7298 return ok;
7299 }
7300
7301
7302 /* Return TRUE if the asm expansion can be resolved. Generally it can
7303 be resolved on a final link or when a partial link locates it in the
7304 same section as the target. Set "is_reachable" flag if the target of
7305 the call is within the range of a direct call, given the current VMA
7306 for this section and the target section. */
7307
7308 bfd_boolean
7309 is_resolvable_asm_expansion (bfd *abfd,
7310 asection *sec,
7311 bfd_byte *contents,
7312 Elf_Internal_Rela *irel,
7313 struct bfd_link_info *link_info,
7314 bfd_boolean *is_reachable_p)
7315 {
7316 asection *target_sec;
7317 asection *s;
7318 bfd_vma first_vma;
7319 bfd_vma last_vma;
7320 unsigned int first_align;
7321 unsigned int adjust;
7322 bfd_vma target_offset;
7323 r_reloc r_rel;
7324 xtensa_opcode opcode, direct_call_opcode;
7325 bfd_vma self_address;
7326 bfd_vma dest_address;
7327 bfd_boolean uses_l32r;
7328 bfd_size_type sec_size;
7329
7330 *is_reachable_p = FALSE;
7331
7332 if (contents == NULL)
7333 return FALSE;
7334
7335 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7336 return FALSE;
7337
7338 sec_size = bfd_get_section_limit (abfd, sec);
7339 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7340 sec_size - irel->r_offset, &uses_l32r);
7341 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7342 if (!uses_l32r)
7343 return FALSE;
7344
7345 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7346 if (direct_call_opcode == XTENSA_UNDEFINED)
7347 return FALSE;
7348
7349 /* Check and see that the target resolves. */
7350 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7351 if (!r_reloc_is_defined (&r_rel))
7352 return FALSE;
7353
7354 target_sec = r_reloc_get_section (&r_rel);
7355 target_offset = r_rel.target_offset;
7356
7357 /* If the target is in a shared library, then it doesn't reach. This
7358 isn't supposed to come up because the compiler should never generate
7359 non-PIC calls on systems that use shared libraries, but the linker
7360 shouldn't crash regardless. */
7361 if (!target_sec->output_section)
7362 return FALSE;
7363
7364 /* For relocatable sections, we can only simplify when the output
7365 section of the target is the same as the output section of the
7366 source. */
7367 if (bfd_link_relocatable (link_info)
7368 && (target_sec->output_section != sec->output_section
7369 || is_reloc_sym_weak (abfd, irel)))
7370 return FALSE;
7371
7372 if (target_sec->output_section != sec->output_section)
7373 {
7374 /* If the two sections are sufficiently far away that relaxation
7375 might take the call out of range, we can't simplify. For
7376 example, a positive displacement call into another memory
7377 could get moved to a lower address due to literal removal,
7378 but the destination won't move, and so the displacment might
7379 get larger.
7380
7381 If the displacement is negative, assume the destination could
7382 move as far back as the start of the output section. The
7383 self_address will be at least as far into the output section
7384 as it is prior to relaxation.
7385
7386 If the displacement is postive, assume the destination will be in
7387 it's pre-relaxed location (because relaxation only makes sections
7388 smaller). The self_address could go all the way to the beginning
7389 of the output section. */
7390
7391 dest_address = target_sec->output_section->vma;
7392 self_address = sec->output_section->vma;
7393
7394 if (sec->output_section->vma > target_sec->output_section->vma)
7395 self_address += sec->output_offset + irel->r_offset + 3;
7396 else
7397 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7398 /* Call targets should be four-byte aligned. */
7399 dest_address = (dest_address + 3) & ~3;
7400 }
7401 else
7402 {
7403
7404 self_address = (sec->output_section->vma
7405 + sec->output_offset + irel->r_offset + 3);
7406 dest_address = (target_sec->output_section->vma
7407 + target_sec->output_offset + target_offset);
7408 }
7409
7410 /* Adjust addresses with alignments for the worst case to see if call insn
7411 can fit. Don't relax l32r + callx to call if the target can be out of
7412 range due to alignment.
7413 Caller and target addresses are highest and lowest address.
7414 Search all sections between caller and target, looking for max alignment.
7415 The adjustment is max alignment bytes. If the alignment at the lowest
7416 address is less than the adjustment, apply the adjustment to highest
7417 address. */
7418
7419 /* Start from lowest address.
7420 Lowest address aligmnet is from input section.
7421 Initial alignment (adjust) is from input section. */
7422 if (dest_address > self_address)
7423 {
7424 s = sec->output_section;
7425 last_vma = dest_address;
7426 first_align = sec->alignment_power;
7427 adjust = target_sec->alignment_power;
7428 }
7429 else
7430 {
7431 s = target_sec->output_section;
7432 last_vma = self_address;
7433 first_align = target_sec->alignment_power;
7434 adjust = sec->alignment_power;
7435 }
7436
7437 first_vma = s->vma;
7438
7439 /* Find the largest alignment in output section list. */
7440 for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7441 {
7442 if (s->alignment_power > adjust)
7443 adjust = s->alignment_power;
7444 }
7445
7446 if (adjust > first_align)
7447 {
7448 /* Alignment may enlarge the range, adjust highest address. */
7449 adjust = 1 << adjust;
7450 if (dest_address > self_address)
7451 {
7452 dest_address += adjust;
7453 }
7454 else
7455 {
7456 self_address += adjust;
7457 }
7458 }
7459
7460 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7461 self_address, dest_address);
7462
7463 if ((self_address >> CALL_SEGMENT_BITS) !=
7464 (dest_address >> CALL_SEGMENT_BITS))
7465 return FALSE;
7466
7467 return TRUE;
7468 }
7469
7470
7471 static Elf_Internal_Rela *
7472 find_associated_l32r_irel (bfd *abfd,
7473 asection *sec,
7474 bfd_byte *contents,
7475 Elf_Internal_Rela *other_irel,
7476 Elf_Internal_Rela *internal_relocs)
7477 {
7478 unsigned i;
7479
7480 for (i = 0; i < sec->reloc_count; i++)
7481 {
7482 Elf_Internal_Rela *irel = &internal_relocs[i];
7483
7484 if (irel == other_irel)
7485 continue;
7486 if (irel->r_offset != other_irel->r_offset)
7487 continue;
7488 if (is_l32r_relocation (abfd, sec, contents, irel))
7489 return irel;
7490 }
7491
7492 return NULL;
7493 }
7494
7495
7496 static xtensa_opcode *
7497 build_reloc_opcodes (bfd *abfd,
7498 asection *sec,
7499 bfd_byte *contents,
7500 Elf_Internal_Rela *internal_relocs)
7501 {
7502 unsigned i;
7503 xtensa_opcode *reloc_opcodes =
7504 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7505 for (i = 0; i < sec->reloc_count; i++)
7506 {
7507 Elf_Internal_Rela *irel = &internal_relocs[i];
7508 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7509 }
7510 return reloc_opcodes;
7511 }
7512
7513 struct reloc_range_struct
7514 {
7515 bfd_vma addr;
7516 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7517 /* Original irel index in the array of relocations for a section. */
7518 unsigned irel_index;
7519 };
7520 typedef struct reloc_range_struct reloc_range;
7521
7522 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7523 struct reloc_range_list_entry_struct
7524 {
7525 reloc_range_list_entry *next;
7526 reloc_range_list_entry *prev;
7527 Elf_Internal_Rela *irel;
7528 xtensa_opcode opcode;
7529 int opnum;
7530 };
7531
7532 struct reloc_range_list_struct
7533 {
7534 /* The rest of the structure is only meaningful when ok is TRUE. */
7535 bfd_boolean ok;
7536
7537 unsigned n_range; /* Number of range markers. */
7538 reloc_range *range; /* Sorted range markers. */
7539
7540 unsigned first; /* Index of a first range element in the list. */
7541 unsigned last; /* One past index of a last range element in the list. */
7542
7543 unsigned n_list; /* Number of list elements. */
7544 reloc_range_list_entry *reloc; /* */
7545 reloc_range_list_entry list_root;
7546 };
7547
7548 static int
7549 reloc_range_compare (const void *a, const void *b)
7550 {
7551 const reloc_range *ra = a;
7552 const reloc_range *rb = b;
7553
7554 if (ra->addr != rb->addr)
7555 return ra->addr < rb->addr ? -1 : 1;
7556 if (ra->add != rb->add)
7557 return ra->add ? -1 : 1;
7558 return 0;
7559 }
7560
7561 static void
7562 build_reloc_ranges (bfd *abfd, asection *sec,
7563 bfd_byte *contents,
7564 Elf_Internal_Rela *internal_relocs,
7565 xtensa_opcode *reloc_opcodes,
7566 reloc_range_list *list)
7567 {
7568 unsigned i;
7569 size_t n = 0;
7570 size_t max_n = 0;
7571 reloc_range *ranges = NULL;
7572 reloc_range_list_entry *reloc =
7573 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7574
7575 memset (list, 0, sizeof (*list));
7576 list->ok = TRUE;
7577
7578 for (i = 0; i < sec->reloc_count; i++)
7579 {
7580 Elf_Internal_Rela *irel = &internal_relocs[i];
7581 int r_type = ELF32_R_TYPE (irel->r_info);
7582 reloc_howto_type *howto = &elf_howto_table[r_type];
7583 r_reloc r_rel;
7584
7585 if (r_type == R_XTENSA_ASM_SIMPLIFY
7586 || r_type == R_XTENSA_32_PCREL
7587 || !howto->pc_relative)
7588 continue;
7589
7590 r_reloc_init (&r_rel, abfd, irel, contents,
7591 bfd_get_section_limit (abfd, sec));
7592
7593 if (r_reloc_get_section (&r_rel) != sec)
7594 continue;
7595
7596 if (n + 2 > max_n)
7597 {
7598 max_n = (max_n + 2) * 2;
7599 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7600 }
7601
7602 ranges[n].addr = irel->r_offset;
7603 ranges[n + 1].addr = r_rel.target_offset;
7604
7605 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7606 ranges[n + 1].add = !ranges[n].add;
7607
7608 ranges[n].irel_index = i;
7609 ranges[n + 1].irel_index = i;
7610
7611 n += 2;
7612
7613 reloc[i].irel = irel;
7614
7615 /* Every relocation won't possibly be checked in the optimized version of
7616 check_section_ebb_pcrels_fit, so this needs to be done here. */
7617 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7618 {
7619 /* None of the current alternate relocs are PC-relative,
7620 and only PC-relative relocs matter here. */
7621 }
7622 else
7623 {
7624 xtensa_opcode opcode;
7625 int opnum;
7626
7627 if (reloc_opcodes)
7628 opcode = reloc_opcodes[i];
7629 else
7630 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7631
7632 if (opcode == XTENSA_UNDEFINED)
7633 {
7634 list->ok = FALSE;
7635 break;
7636 }
7637
7638 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7639 if (opnum == XTENSA_UNDEFINED)
7640 {
7641 list->ok = FALSE;
7642 break;
7643 }
7644
7645 /* Record relocation opcode and opnum as we've calculated them
7646 anyway and they won't change. */
7647 reloc[i].opcode = opcode;
7648 reloc[i].opnum = opnum;
7649 }
7650 }
7651
7652 if (list->ok)
7653 {
7654 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7655 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7656
7657 list->n_range = n;
7658 list->range = ranges;
7659 list->reloc = reloc;
7660 list->list_root.prev = &list->list_root;
7661 list->list_root.next = &list->list_root;
7662 }
7663 else
7664 {
7665 free (ranges);
7666 free (reloc);
7667 }
7668 }
7669
7670 static void reloc_range_list_append (reloc_range_list *list,
7671 unsigned irel_index)
7672 {
7673 reloc_range_list_entry *entry = list->reloc + irel_index;
7674
7675 entry->prev = list->list_root.prev;
7676 entry->next = &list->list_root;
7677 entry->prev->next = entry;
7678 entry->next->prev = entry;
7679 ++list->n_list;
7680 }
7681
7682 static void reloc_range_list_remove (reloc_range_list *list,
7683 unsigned irel_index)
7684 {
7685 reloc_range_list_entry *entry = list->reloc + irel_index;
7686
7687 entry->next->prev = entry->prev;
7688 entry->prev->next = entry->next;
7689 --list->n_list;
7690 }
7691
7692 /* Update relocation list object so that it lists all relocations that cross
7693 [first; last] range. Range bounds should not decrease with successive
7694 invocations. */
7695 static void reloc_range_list_update_range (reloc_range_list *list,
7696 bfd_vma first, bfd_vma last)
7697 {
7698 /* This should not happen: EBBs are iterated from lower addresses to higher.
7699 But even if that happens there's no need to break: just flush current list
7700 and start from scratch. */
7701 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7702 (list->first > 0 && list->range[list->first - 1].addr >= first))
7703 {
7704 list->first = 0;
7705 list->last = 0;
7706 list->n_list = 0;
7707 list->list_root.next = &list->list_root;
7708 list->list_root.prev = &list->list_root;
7709 fprintf (stderr, "%s: move backwards requested\n", __func__);
7710 }
7711
7712 for (; list->last < list->n_range &&
7713 list->range[list->last].addr <= last; ++list->last)
7714 if (list->range[list->last].add)
7715 reloc_range_list_append (list, list->range[list->last].irel_index);
7716
7717 for (; list->first < list->n_range &&
7718 list->range[list->first].addr < first; ++list->first)
7719 if (!list->range[list->first].add)
7720 reloc_range_list_remove (list, list->range[list->first].irel_index);
7721 }
7722
7723 static void free_reloc_range_list (reloc_range_list *list)
7724 {
7725 free (list->range);
7726 free (list->reloc);
7727 }
7728
7729 /* The compute_text_actions function will build a list of potential
7730 transformation actions for code in the extended basic block of each
7731 longcall that is optimized to a direct call. From this list we
7732 generate a set of actions to actually perform that optimizes for
7733 space and, if not using size_opt, maintains branch target
7734 alignments.
7735
7736 These actions to be performed are placed on a per-section list.
7737 The actual changes are performed by relax_section() in the second
7738 pass. */
7739
7740 bfd_boolean
7741 compute_text_actions (bfd *abfd,
7742 asection *sec,
7743 struct bfd_link_info *link_info)
7744 {
7745 xtensa_opcode *reloc_opcodes = NULL;
7746 xtensa_relax_info *relax_info;
7747 bfd_byte *contents;
7748 Elf_Internal_Rela *internal_relocs;
7749 bfd_boolean ok = TRUE;
7750 unsigned i;
7751 property_table_entry *prop_table = 0;
7752 int ptblsize = 0;
7753 bfd_size_type sec_size;
7754 reloc_range_list relevant_relocs;
7755
7756 relax_info = get_xtensa_relax_info (sec);
7757 BFD_ASSERT (relax_info);
7758 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7759
7760 /* Do nothing if the section contains no optimized longcalls. */
7761 if (!relax_info->is_relaxable_asm_section)
7762 return ok;
7763
7764 internal_relocs = retrieve_internal_relocs (abfd, sec,
7765 link_info->keep_memory);
7766
7767 if (internal_relocs)
7768 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7769 internal_reloc_compare);
7770
7771 sec_size = bfd_get_section_limit (abfd, sec);
7772 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7773 if (contents == NULL && sec_size != 0)
7774 {
7775 ok = FALSE;
7776 goto error_return;
7777 }
7778
7779 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7780 XTENSA_PROP_SEC_NAME, FALSE);
7781 if (ptblsize < 0)
7782 {
7783 ok = FALSE;
7784 goto error_return;
7785 }
7786
7787 /* Precompute the opcode for each relocation. */
7788 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7789
7790 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7791 &relevant_relocs);
7792
7793 for (i = 0; i < sec->reloc_count; i++)
7794 {
7795 Elf_Internal_Rela *irel = &internal_relocs[i];
7796 bfd_vma r_offset;
7797 property_table_entry *the_entry;
7798 int ptbl_idx;
7799 ebb_t *ebb;
7800 ebb_constraint ebb_table;
7801 bfd_size_type simplify_size;
7802
7803 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7804 continue;
7805 r_offset = irel->r_offset;
7806
7807 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7808 if (simplify_size == 0)
7809 {
7810 _bfd_error_handler
7811 /* xgettext:c-format */
7812 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7813 "XTENSA_ASM_SIMPLIFY relocation; "
7814 "possible configuration mismatch"),
7815 sec->owner, sec, (uint64_t) r_offset);
7816 continue;
7817 }
7818
7819 /* If the instruction table is not around, then don't do this
7820 relaxation. */
7821 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7822 sec->vma + irel->r_offset);
7823 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7824 {
7825 text_action_add (&relax_info->action_list,
7826 ta_convert_longcall, sec, r_offset,
7827 0);
7828 continue;
7829 }
7830
7831 /* If the next longcall happens to be at the same address as an
7832 unreachable section of size 0, then skip forward. */
7833 ptbl_idx = the_entry - prop_table;
7834 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7835 && the_entry->size == 0
7836 && ptbl_idx + 1 < ptblsize
7837 && (prop_table[ptbl_idx + 1].address
7838 == prop_table[ptbl_idx].address))
7839 {
7840 ptbl_idx++;
7841 the_entry++;
7842 }
7843
7844 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7845 /* NO_REORDER is OK */
7846 continue;
7847
7848 init_ebb_constraint (&ebb_table);
7849 ebb = &ebb_table.ebb;
7850 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7851 internal_relocs, sec->reloc_count);
7852 ebb->start_offset = r_offset + simplify_size;
7853 ebb->end_offset = r_offset + simplify_size;
7854 ebb->start_ptbl_idx = ptbl_idx;
7855 ebb->end_ptbl_idx = ptbl_idx;
7856 ebb->start_reloc_idx = i;
7857 ebb->end_reloc_idx = i;
7858
7859 if (!extend_ebb_bounds (ebb)
7860 || !compute_ebb_proposed_actions (&ebb_table)
7861 || !compute_ebb_actions (&ebb_table)
7862 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7863 internal_relocs,
7864 &relevant_relocs,
7865 &ebb_table, reloc_opcodes)
7866 || !check_section_ebb_reduces (&ebb_table))
7867 {
7868 /* If anything goes wrong or we get unlucky and something does
7869 not fit, with our plan because of expansion between
7870 critical branches, just convert to a NOP. */
7871
7872 text_action_add (&relax_info->action_list,
7873 ta_convert_longcall, sec, r_offset, 0);
7874 i = ebb_table.ebb.end_reloc_idx;
7875 free_ebb_constraint (&ebb_table);
7876 continue;
7877 }
7878
7879 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7880
7881 /* Update the index so we do not go looking at the relocations
7882 we have already processed. */
7883 i = ebb_table.ebb.end_reloc_idx;
7884 free_ebb_constraint (&ebb_table);
7885 }
7886
7887 free_reloc_range_list (&relevant_relocs);
7888
7889 #if DEBUG
7890 if (action_list_count (&relax_info->action_list))
7891 print_action_list (stderr, &relax_info->action_list);
7892 #endif
7893
7894 error_return:
7895 release_contents (sec, contents);
7896 release_internal_relocs (sec, internal_relocs);
7897 free (prop_table);
7898 free (reloc_opcodes);
7899
7900 return ok;
7901 }
7902
7903
7904 /* Do not widen an instruction if it is preceeded by a
7905 loop opcode. It might cause misalignment. */
7906
7907 static bfd_boolean
7908 prev_instr_is_a_loop (bfd_byte *contents,
7909 bfd_size_type content_length,
7910 bfd_size_type offset)
7911 {
7912 xtensa_opcode prev_opcode;
7913
7914 if (offset < 3)
7915 return FALSE;
7916 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7917 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7918 }
7919
7920
7921 /* Find all of the possible actions for an extended basic block. */
7922
7923 bfd_boolean
7924 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7925 {
7926 const ebb_t *ebb = &ebb_table->ebb;
7927 unsigned rel_idx = ebb->start_reloc_idx;
7928 property_table_entry *entry, *start_entry, *end_entry;
7929 bfd_vma offset = 0;
7930 xtensa_isa isa = xtensa_default_isa;
7931 xtensa_format fmt;
7932 static xtensa_insnbuf insnbuf = NULL;
7933 static xtensa_insnbuf slotbuf = NULL;
7934
7935 if (insnbuf == NULL)
7936 {
7937 insnbuf = xtensa_insnbuf_alloc (isa);
7938 slotbuf = xtensa_insnbuf_alloc (isa);
7939 }
7940
7941 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7942 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7943
7944 for (entry = start_entry; entry <= end_entry; entry++)
7945 {
7946 bfd_vma start_offset, end_offset;
7947 bfd_size_type insn_len;
7948
7949 start_offset = entry->address - ebb->sec->vma;
7950 end_offset = entry->address + entry->size - ebb->sec->vma;
7951
7952 if (entry == start_entry)
7953 start_offset = ebb->start_offset;
7954 if (entry == end_entry)
7955 end_offset = ebb->end_offset;
7956 offset = start_offset;
7957
7958 if (offset == entry->address - ebb->sec->vma
7959 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7960 {
7961 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7962 BFD_ASSERT (offset != end_offset);
7963 if (offset == end_offset)
7964 return FALSE;
7965
7966 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7967 offset);
7968 if (insn_len == 0)
7969 goto decode_error;
7970
7971 if (check_branch_target_aligned_address (offset, insn_len))
7972 align_type = EBB_REQUIRE_TGT_ALIGN;
7973
7974 ebb_propose_action (ebb_table, align_type, 0,
7975 ta_none, offset, 0, TRUE);
7976 }
7977
7978 while (offset != end_offset)
7979 {
7980 Elf_Internal_Rela *irel;
7981 xtensa_opcode opcode;
7982
7983 while (rel_idx < ebb->end_reloc_idx
7984 && (ebb->relocs[rel_idx].r_offset < offset
7985 || (ebb->relocs[rel_idx].r_offset == offset
7986 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7987 != R_XTENSA_ASM_SIMPLIFY))))
7988 rel_idx++;
7989
7990 /* Check for longcall. */
7991 irel = &ebb->relocs[rel_idx];
7992 if (irel->r_offset == offset
7993 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7994 {
7995 bfd_size_type simplify_size;
7996
7997 simplify_size = get_asm_simplify_size (ebb->contents,
7998 ebb->content_length,
7999 irel->r_offset);
8000 if (simplify_size == 0)
8001 goto decode_error;
8002
8003 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8004 ta_convert_longcall, offset, 0, TRUE);
8005
8006 offset += simplify_size;
8007 continue;
8008 }
8009
8010 if (offset + MIN_INSN_LENGTH > ebb->content_length)
8011 goto decode_error;
8012 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
8013 ebb->content_length - offset);
8014 fmt = xtensa_format_decode (isa, insnbuf);
8015 if (fmt == XTENSA_UNDEFINED)
8016 goto decode_error;
8017 insn_len = xtensa_format_length (isa, fmt);
8018 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
8019 goto decode_error;
8020
8021 if (xtensa_format_num_slots (isa, fmt) != 1)
8022 {
8023 offset += insn_len;
8024 continue;
8025 }
8026
8027 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8028 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8029 if (opcode == XTENSA_UNDEFINED)
8030 goto decode_error;
8031
8032 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
8033 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8034 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
8035 {
8036 /* Add an instruction narrow action. */
8037 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8038 ta_narrow_insn, offset, 0, FALSE);
8039 }
8040 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
8041 && can_widen_instruction (slotbuf, fmt, opcode) != 0
8042 && ! prev_instr_is_a_loop (ebb->contents,
8043 ebb->content_length, offset))
8044 {
8045 /* Add an instruction widen action. */
8046 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8047 ta_widen_insn, offset, 0, FALSE);
8048 }
8049 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
8050 {
8051 /* Check for branch targets. */
8052 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
8053 ta_none, offset, 0, TRUE);
8054 }
8055
8056 offset += insn_len;
8057 }
8058 }
8059
8060 if (ebb->ends_unreachable)
8061 {
8062 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8063 ta_fill, ebb->end_offset, 0, TRUE);
8064 }
8065
8066 return TRUE;
8067
8068 decode_error:
8069 _bfd_error_handler
8070 /* xgettext:c-format */
8071 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
8072 "possible configuration mismatch"),
8073 ebb->sec->owner, ebb->sec, (uint64_t) offset);
8074 return FALSE;
8075 }
8076
8077
8078 /* After all of the information has collected about the
8079 transformations possible in an EBB, compute the appropriate actions
8080 here in compute_ebb_actions. We still must check later to make
8081 sure that the actions do not break any relocations. The algorithm
8082 used here is pretty greedy. Basically, it removes as many no-ops
8083 as possible so that the end of the EBB has the same alignment
8084 characteristics as the original. First, it uses narrowing, then
8085 fill space at the end of the EBB, and finally widenings. If that
8086 does not work, it tries again with one fewer no-op removed. The
8087 optimization will only be performed if all of the branch targets
8088 that were aligned before transformation are also aligned after the
8089 transformation.
8090
8091 When the size_opt flag is set, ignore the branch target alignments,
8092 narrow all wide instructions, and remove all no-ops unless the end
8093 of the EBB prevents it. */
8094
8095 bfd_boolean
8096 compute_ebb_actions (ebb_constraint *ebb_table)
8097 {
8098 unsigned i = 0;
8099 unsigned j;
8100 int removed_bytes = 0;
8101 ebb_t *ebb = &ebb_table->ebb;
8102 unsigned seg_idx_start = 0;
8103 unsigned seg_idx_end = 0;
8104
8105 /* We perform this like the assembler relaxation algorithm: Start by
8106 assuming all instructions are narrow and all no-ops removed; then
8107 walk through.... */
8108
8109 /* For each segment of this that has a solid constraint, check to
8110 see if there are any combinations that will keep the constraint.
8111 If so, use it. */
8112 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8113 {
8114 bfd_boolean requires_text_end_align = FALSE;
8115 unsigned longcall_count = 0;
8116 unsigned longcall_convert_count = 0;
8117 unsigned narrowable_count = 0;
8118 unsigned narrowable_convert_count = 0;
8119 unsigned widenable_count = 0;
8120 unsigned widenable_convert_count = 0;
8121
8122 proposed_action *action = NULL;
8123 int align = (1 << ebb_table->ebb.sec->alignment_power);
8124
8125 seg_idx_start = seg_idx_end;
8126
8127 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8128 {
8129 action = &ebb_table->actions[i];
8130 if (action->action == ta_convert_longcall)
8131 longcall_count++;
8132 if (action->action == ta_narrow_insn)
8133 narrowable_count++;
8134 if (action->action == ta_widen_insn)
8135 widenable_count++;
8136 if (action->action == ta_fill)
8137 break;
8138 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8139 break;
8140 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8141 && !elf32xtensa_size_opt)
8142 break;
8143 }
8144 seg_idx_end = i;
8145
8146 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8147 requires_text_end_align = TRUE;
8148
8149 if (elf32xtensa_size_opt && !requires_text_end_align
8150 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8151 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8152 {
8153 longcall_convert_count = longcall_count;
8154 narrowable_convert_count = narrowable_count;
8155 widenable_convert_count = 0;
8156 }
8157 else
8158 {
8159 /* There is a constraint. Convert the max number of longcalls. */
8160 narrowable_convert_count = 0;
8161 longcall_convert_count = 0;
8162 widenable_convert_count = 0;
8163
8164 for (j = 0; j < longcall_count; j++)
8165 {
8166 int removed = (longcall_count - j) * 3 & (align - 1);
8167 unsigned desire_narrow = (align - removed) & (align - 1);
8168 unsigned desire_widen = removed;
8169 if (desire_narrow <= narrowable_count)
8170 {
8171 narrowable_convert_count = desire_narrow;
8172 narrowable_convert_count +=
8173 (align * ((narrowable_count - narrowable_convert_count)
8174 / align));
8175 longcall_convert_count = (longcall_count - j);
8176 widenable_convert_count = 0;
8177 break;
8178 }
8179 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8180 {
8181 narrowable_convert_count = 0;
8182 longcall_convert_count = longcall_count - j;
8183 widenable_convert_count = desire_widen;
8184 break;
8185 }
8186 }
8187 }
8188
8189 /* Now the number of conversions are saved. Do them. */
8190 for (i = seg_idx_start; i < seg_idx_end; i++)
8191 {
8192 action = &ebb_table->actions[i];
8193 switch (action->action)
8194 {
8195 case ta_convert_longcall:
8196 if (longcall_convert_count != 0)
8197 {
8198 action->action = ta_remove_longcall;
8199 action->do_action = TRUE;
8200 action->removed_bytes += 3;
8201 longcall_convert_count--;
8202 }
8203 break;
8204 case ta_narrow_insn:
8205 if (narrowable_convert_count != 0)
8206 {
8207 action->do_action = TRUE;
8208 action->removed_bytes += 1;
8209 narrowable_convert_count--;
8210 }
8211 break;
8212 case ta_widen_insn:
8213 if (widenable_convert_count != 0)
8214 {
8215 action->do_action = TRUE;
8216 action->removed_bytes -= 1;
8217 widenable_convert_count--;
8218 }
8219 break;
8220 default:
8221 break;
8222 }
8223 }
8224 }
8225
8226 /* Now we move on to some local opts. Try to remove each of the
8227 remaining longcalls. */
8228
8229 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8230 {
8231 removed_bytes = 0;
8232 for (i = 0; i < ebb_table->action_count; i++)
8233 {
8234 int old_removed_bytes = removed_bytes;
8235 proposed_action *action = &ebb_table->actions[i];
8236
8237 if (action->do_action && action->action == ta_convert_longcall)
8238 {
8239 bfd_boolean bad_alignment = FALSE;
8240 removed_bytes += 3;
8241 for (j = i + 1; j < ebb_table->action_count; j++)
8242 {
8243 proposed_action *new_action = &ebb_table->actions[j];
8244 bfd_vma offset = new_action->offset;
8245 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8246 {
8247 if (!check_branch_target_aligned
8248 (ebb_table->ebb.contents,
8249 ebb_table->ebb.content_length,
8250 offset, offset - removed_bytes))
8251 {
8252 bad_alignment = TRUE;
8253 break;
8254 }
8255 }
8256 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8257 {
8258 if (!check_loop_aligned (ebb_table->ebb.contents,
8259 ebb_table->ebb.content_length,
8260 offset,
8261 offset - removed_bytes))
8262 {
8263 bad_alignment = TRUE;
8264 break;
8265 }
8266 }
8267 if (new_action->action == ta_narrow_insn
8268 && !new_action->do_action
8269 && ebb_table->ebb.sec->alignment_power == 2)
8270 {
8271 /* Narrow an instruction and we are done. */
8272 new_action->do_action = TRUE;
8273 new_action->removed_bytes += 1;
8274 bad_alignment = FALSE;
8275 break;
8276 }
8277 if (new_action->action == ta_widen_insn
8278 && new_action->do_action
8279 && ebb_table->ebb.sec->alignment_power == 2)
8280 {
8281 /* Narrow an instruction and we are done. */
8282 new_action->do_action = FALSE;
8283 new_action->removed_bytes += 1;
8284 bad_alignment = FALSE;
8285 break;
8286 }
8287 if (new_action->do_action)
8288 removed_bytes += new_action->removed_bytes;
8289 }
8290 if (!bad_alignment)
8291 {
8292 action->removed_bytes += 3;
8293 action->action = ta_remove_longcall;
8294 action->do_action = TRUE;
8295 }
8296 }
8297 removed_bytes = old_removed_bytes;
8298 if (action->do_action)
8299 removed_bytes += action->removed_bytes;
8300 }
8301 }
8302
8303 removed_bytes = 0;
8304 for (i = 0; i < ebb_table->action_count; ++i)
8305 {
8306 proposed_action *action = &ebb_table->actions[i];
8307 if (action->do_action)
8308 removed_bytes += action->removed_bytes;
8309 }
8310
8311 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8312 && ebb->ends_unreachable)
8313 {
8314 proposed_action *action;
8315 int br;
8316 int extra_space;
8317
8318 BFD_ASSERT (ebb_table->action_count != 0);
8319 action = &ebb_table->actions[ebb_table->action_count - 1];
8320 BFD_ASSERT (action->action == ta_fill);
8321 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8322
8323 extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8324 br = action->removed_bytes + removed_bytes + extra_space;
8325 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8326
8327 action->removed_bytes = extra_space - br;
8328 }
8329 return TRUE;
8330 }
8331
8332
8333 /* The xlate_map is a sorted array of address mappings designed to
8334 answer the offset_with_removed_text() query with a binary search instead
8335 of a linear search through the section's action_list. */
8336
8337 typedef struct xlate_map_entry xlate_map_entry_t;
8338 typedef struct xlate_map xlate_map_t;
8339
8340 struct xlate_map_entry
8341 {
8342 bfd_vma orig_address;
8343 bfd_vma new_address;
8344 unsigned size;
8345 };
8346
8347 struct xlate_map
8348 {
8349 unsigned entry_count;
8350 xlate_map_entry_t *entry;
8351 };
8352
8353
8354 static int
8355 xlate_compare (const void *a_v, const void *b_v)
8356 {
8357 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8358 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8359 if (a->orig_address < b->orig_address)
8360 return -1;
8361 if (a->orig_address > (b->orig_address + b->size - 1))
8362 return 1;
8363 return 0;
8364 }
8365
8366
8367 static bfd_vma
8368 xlate_offset_with_removed_text (const xlate_map_t *map,
8369 text_action_list *action_list,
8370 bfd_vma offset)
8371 {
8372 void *r;
8373 xlate_map_entry_t *e;
8374 struct xlate_map_entry se;
8375
8376 if (map == NULL)
8377 return offset_with_removed_text (action_list, offset);
8378
8379 if (map->entry_count == 0)
8380 return offset;
8381
8382 se.orig_address = offset;
8383 r = bsearch (&se, map->entry, map->entry_count,
8384 sizeof (xlate_map_entry_t), &xlate_compare);
8385 e = (xlate_map_entry_t *) r;
8386
8387 /* There could be a jump past the end of the section,
8388 allow it using the last xlate map entry to translate its address. */
8389 if (e == NULL)
8390 {
8391 e = map->entry + map->entry_count - 1;
8392 if (xlate_compare (&se, e) <= 0)
8393 e = NULL;
8394 }
8395 BFD_ASSERT (e != NULL);
8396 if (e == NULL)
8397 return offset;
8398 return e->new_address - e->orig_address + offset;
8399 }
8400
8401 typedef struct xlate_map_context_struct xlate_map_context;
8402 struct xlate_map_context_struct
8403 {
8404 xlate_map_t *map;
8405 xlate_map_entry_t *current_entry;
8406 int removed;
8407 };
8408
8409 static int
8410 xlate_map_fn (splay_tree_node node, void *p)
8411 {
8412 text_action *r = (text_action *)node->value;
8413 xlate_map_context *ctx = p;
8414 unsigned orig_size = 0;
8415
8416 switch (r->action)
8417 {
8418 case ta_none:
8419 case ta_remove_insn:
8420 case ta_convert_longcall:
8421 case ta_remove_literal:
8422 case ta_add_literal:
8423 break;
8424 case ta_remove_longcall:
8425 orig_size = 6;
8426 break;
8427 case ta_narrow_insn:
8428 orig_size = 3;
8429 break;
8430 case ta_widen_insn:
8431 orig_size = 2;
8432 break;
8433 case ta_fill:
8434 break;
8435 }
8436 ctx->current_entry->size =
8437 r->offset + orig_size - ctx->current_entry->orig_address;
8438 if (ctx->current_entry->size != 0)
8439 {
8440 ctx->current_entry++;
8441 ctx->map->entry_count++;
8442 }
8443 ctx->current_entry->orig_address = r->offset + orig_size;
8444 ctx->removed += r->removed_bytes;
8445 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8446 ctx->current_entry->size = 0;
8447 return 0;
8448 }
8449
8450 /* Build a binary searchable offset translation map from a section's
8451 action list. */
8452
8453 static xlate_map_t *
8454 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8455 {
8456 text_action_list *action_list = &relax_info->action_list;
8457 unsigned num_actions = 0;
8458 xlate_map_context ctx;
8459
8460 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8461
8462 if (ctx.map == NULL)
8463 return NULL;
8464
8465 num_actions = action_list_count (action_list);
8466 ctx.map->entry = (xlate_map_entry_t *)
8467 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8468 if (ctx.map->entry == NULL)
8469 {
8470 free (ctx.map);
8471 return NULL;
8472 }
8473 ctx.map->entry_count = 0;
8474
8475 ctx.removed = 0;
8476 ctx.current_entry = &ctx.map->entry[0];
8477
8478 ctx.current_entry->orig_address = 0;
8479 ctx.current_entry->new_address = 0;
8480 ctx.current_entry->size = 0;
8481
8482 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8483
8484 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8485 - ctx.current_entry->orig_address);
8486 if (ctx.current_entry->size != 0)
8487 ctx.map->entry_count++;
8488
8489 return ctx.map;
8490 }
8491
8492
8493 /* Free an offset translation map. */
8494
8495 static void
8496 free_xlate_map (xlate_map_t *map)
8497 {
8498 if (map)
8499 {
8500 free (map->entry);
8501 free (map);
8502 }
8503 }
8504
8505
8506 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8507 relocations in a section will fit if a proposed set of actions
8508 are performed. */
8509
8510 static bfd_boolean
8511 check_section_ebb_pcrels_fit (bfd *abfd,
8512 asection *sec,
8513 bfd_byte *contents,
8514 Elf_Internal_Rela *internal_relocs,
8515 reloc_range_list *relevant_relocs,
8516 const ebb_constraint *constraint,
8517 const xtensa_opcode *reloc_opcodes)
8518 {
8519 unsigned i, j;
8520 unsigned n = sec->reloc_count;
8521 Elf_Internal_Rela *irel;
8522 xlate_map_t *xmap = NULL;
8523 bfd_boolean ok = TRUE;
8524 xtensa_relax_info *relax_info;
8525 reloc_range_list_entry *entry = NULL;
8526
8527 relax_info = get_xtensa_relax_info (sec);
8528
8529 if (relax_info && sec->reloc_count > 100)
8530 {
8531 xmap = build_xlate_map (sec, relax_info);
8532 /* NULL indicates out of memory, but the slow version
8533 can still be used. */
8534 }
8535
8536 if (relevant_relocs && constraint->action_count)
8537 {
8538 if (!relevant_relocs->ok)
8539 {
8540 ok = FALSE;
8541 n = 0;
8542 }
8543 else
8544 {
8545 bfd_vma min_offset, max_offset;
8546 min_offset = max_offset = constraint->actions[0].offset;
8547
8548 for (i = 1; i < constraint->action_count; ++i)
8549 {
8550 proposed_action *action = &constraint->actions[i];
8551 bfd_vma offset = action->offset;
8552
8553 if (offset < min_offset)
8554 min_offset = offset;
8555 if (offset > max_offset)
8556 max_offset = offset;
8557 }
8558 reloc_range_list_update_range (relevant_relocs, min_offset,
8559 max_offset);
8560 n = relevant_relocs->n_list;
8561 entry = &relevant_relocs->list_root;
8562 }
8563 }
8564 else
8565 {
8566 relevant_relocs = NULL;
8567 }
8568
8569 for (i = 0; i < n; i++)
8570 {
8571 r_reloc r_rel;
8572 bfd_vma orig_self_offset, orig_target_offset;
8573 bfd_vma self_offset, target_offset;
8574 int r_type;
8575 reloc_howto_type *howto;
8576 int self_removed_bytes, target_removed_bytes;
8577
8578 if (relevant_relocs)
8579 {
8580 entry = entry->next;
8581 irel = entry->irel;
8582 }
8583 else
8584 {
8585 irel = internal_relocs + i;
8586 }
8587 r_type = ELF32_R_TYPE (irel->r_info);
8588
8589 howto = &elf_howto_table[r_type];
8590 /* We maintain the required invariant: PC-relative relocations
8591 that fit before linking must fit after linking. Thus we only
8592 need to deal with relocations to the same section that are
8593 PC-relative. */
8594 if (r_type == R_XTENSA_ASM_SIMPLIFY
8595 || r_type == R_XTENSA_32_PCREL
8596 || !howto->pc_relative)
8597 continue;
8598
8599 r_reloc_init (&r_rel, abfd, irel, contents,
8600 bfd_get_section_limit (abfd, sec));
8601
8602 if (r_reloc_get_section (&r_rel) != sec)
8603 continue;
8604
8605 orig_self_offset = irel->r_offset;
8606 orig_target_offset = r_rel.target_offset;
8607
8608 self_offset = orig_self_offset;
8609 target_offset = orig_target_offset;
8610
8611 if (relax_info)
8612 {
8613 self_offset =
8614 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8615 orig_self_offset);
8616 target_offset =
8617 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8618 orig_target_offset);
8619 }
8620
8621 self_removed_bytes = 0;
8622 target_removed_bytes = 0;
8623
8624 for (j = 0; j < constraint->action_count; ++j)
8625 {
8626 proposed_action *action = &constraint->actions[j];
8627 bfd_vma offset = action->offset;
8628 int removed_bytes = action->removed_bytes;
8629 if (offset < orig_self_offset
8630 || (offset == orig_self_offset && action->action == ta_fill
8631 && action->removed_bytes < 0))
8632 self_removed_bytes += removed_bytes;
8633 if (offset < orig_target_offset
8634 || (offset == orig_target_offset && action->action == ta_fill
8635 && action->removed_bytes < 0))
8636 target_removed_bytes += removed_bytes;
8637 }
8638 self_offset -= self_removed_bytes;
8639 target_offset -= target_removed_bytes;
8640
8641 /* Try to encode it. Get the operand and check. */
8642 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8643 {
8644 /* None of the current alternate relocs are PC-relative,
8645 and only PC-relative relocs matter here. */
8646 }
8647 else
8648 {
8649 xtensa_opcode opcode;
8650 int opnum;
8651
8652 if (relevant_relocs)
8653 {
8654 opcode = entry->opcode;
8655 opnum = entry->opnum;
8656 }
8657 else
8658 {
8659 if (reloc_opcodes)
8660 opcode = reloc_opcodes[relevant_relocs ?
8661 (unsigned)(entry - relevant_relocs->reloc) : i];
8662 else
8663 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8664 if (opcode == XTENSA_UNDEFINED)
8665 {
8666 ok = FALSE;
8667 break;
8668 }
8669
8670 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8671 if (opnum == XTENSA_UNDEFINED)
8672 {
8673 ok = FALSE;
8674 break;
8675 }
8676 }
8677
8678 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8679 {
8680 ok = FALSE;
8681 break;
8682 }
8683 }
8684 }
8685
8686 free_xlate_map (xmap);
8687
8688 return ok;
8689 }
8690
8691
8692 static bfd_boolean
8693 check_section_ebb_reduces (const ebb_constraint *constraint)
8694 {
8695 int removed = 0;
8696 unsigned i;
8697
8698 for (i = 0; i < constraint->action_count; i++)
8699 {
8700 const proposed_action *action = &constraint->actions[i];
8701 if (action->do_action)
8702 removed += action->removed_bytes;
8703 }
8704 if (removed < 0)
8705 return FALSE;
8706
8707 return TRUE;
8708 }
8709
8710
8711 void
8712 text_action_add_proposed (text_action_list *l,
8713 const ebb_constraint *ebb_table,
8714 asection *sec)
8715 {
8716 unsigned i;
8717
8718 for (i = 0; i < ebb_table->action_count; i++)
8719 {
8720 proposed_action *action = &ebb_table->actions[i];
8721
8722 if (!action->do_action)
8723 continue;
8724 switch (action->action)
8725 {
8726 case ta_remove_insn:
8727 case ta_remove_longcall:
8728 case ta_convert_longcall:
8729 case ta_narrow_insn:
8730 case ta_widen_insn:
8731 case ta_fill:
8732 case ta_remove_literal:
8733 text_action_add (l, action->action, sec, action->offset,
8734 action->removed_bytes);
8735 break;
8736 case ta_none:
8737 break;
8738 default:
8739 BFD_ASSERT (0);
8740 break;
8741 }
8742 }
8743 }
8744
8745
8746 int
8747 xtensa_compute_fill_extra_space (property_table_entry *entry)
8748 {
8749 int fill_extra_space;
8750
8751 if (!entry)
8752 return 0;
8753
8754 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8755 return 0;
8756
8757 fill_extra_space = entry->size;
8758 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8759 {
8760 /* Fill bytes for alignment:
8761 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8762 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8763 int nsm = (1 << pow) - 1;
8764 bfd_vma addr = entry->address + entry->size;
8765 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8766 fill_extra_space += align_fill;
8767 }
8768 return fill_extra_space;
8769 }
8770
8771 \f
8772 /* First relaxation pass. */
8773
8774 /* If the section contains relaxable literals, check each literal to
8775 see if it has the same value as another literal that has already
8776 been seen, either in the current section or a previous one. If so,
8777 add an entry to the per-section list of removed literals. The
8778 actual changes are deferred until the next pass. */
8779
8780 static bfd_boolean
8781 compute_removed_literals (bfd *abfd,
8782 asection *sec,
8783 struct bfd_link_info *link_info,
8784 value_map_hash_table *values)
8785 {
8786 xtensa_relax_info *relax_info;
8787 bfd_byte *contents;
8788 Elf_Internal_Rela *internal_relocs;
8789 source_reloc *src_relocs, *rel;
8790 bfd_boolean ok = TRUE;
8791 property_table_entry *prop_table = NULL;
8792 int ptblsize;
8793 int i, prev_i;
8794 bfd_boolean last_loc_is_prev = FALSE;
8795 bfd_vma last_target_offset = 0;
8796 section_cache_t target_sec_cache;
8797 bfd_size_type sec_size;
8798
8799 init_section_cache (&target_sec_cache);
8800
8801 /* Do nothing if it is not a relaxable literal section. */
8802 relax_info = get_xtensa_relax_info (sec);
8803 BFD_ASSERT (relax_info);
8804 if (!relax_info->is_relaxable_literal_section)
8805 return ok;
8806
8807 internal_relocs = retrieve_internal_relocs (abfd, sec,
8808 link_info->keep_memory);
8809
8810 sec_size = bfd_get_section_limit (abfd, sec);
8811 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8812 if (contents == NULL && sec_size != 0)
8813 {
8814 ok = FALSE;
8815 goto error_return;
8816 }
8817
8818 /* Sort the source_relocs by target offset. */
8819 src_relocs = relax_info->src_relocs;
8820 qsort (src_relocs, relax_info->src_count,
8821 sizeof (source_reloc), source_reloc_compare);
8822 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8823 internal_reloc_compare);
8824
8825 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8826 XTENSA_PROP_SEC_NAME, FALSE);
8827 if (ptblsize < 0)
8828 {
8829 ok = FALSE;
8830 goto error_return;
8831 }
8832
8833 prev_i = -1;
8834 for (i = 0; i < relax_info->src_count; i++)
8835 {
8836 Elf_Internal_Rela *irel = NULL;
8837
8838 rel = &src_relocs[i];
8839 if (get_l32r_opcode () != rel->opcode)
8840 continue;
8841 irel = get_irel_at_offset (sec, internal_relocs,
8842 rel->r_rel.target_offset);
8843
8844 /* If the relocation on this is not a simple R_XTENSA_32 or
8845 R_XTENSA_PLT then do not consider it. This may happen when
8846 the difference of two symbols is used in a literal. */
8847 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8848 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8849 continue;
8850
8851 /* If the target_offset for this relocation is the same as the
8852 previous relocation, then we've already considered whether the
8853 literal can be coalesced. Skip to the next one.... */
8854 if (i != 0 && prev_i != -1
8855 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8856 continue;
8857 prev_i = i;
8858
8859 if (last_loc_is_prev &&
8860 last_target_offset + 4 != rel->r_rel.target_offset)
8861 last_loc_is_prev = FALSE;
8862
8863 /* Check if the relocation was from an L32R that is being removed
8864 because a CALLX was converted to a direct CALL, and check if
8865 there are no other relocations to the literal. */
8866 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8867 sec, prop_table, ptblsize))
8868 {
8869 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8870 irel, rel, prop_table, ptblsize))
8871 {
8872 ok = FALSE;
8873 goto error_return;
8874 }
8875 last_target_offset = rel->r_rel.target_offset;
8876 continue;
8877 }
8878
8879 if (!identify_literal_placement (abfd, sec, contents, link_info,
8880 values,
8881 &last_loc_is_prev, irel,
8882 relax_info->src_count - i, rel,
8883 prop_table, ptblsize,
8884 &target_sec_cache, rel->is_abs_literal))
8885 {
8886 ok = FALSE;
8887 goto error_return;
8888 }
8889 last_target_offset = rel->r_rel.target_offset;
8890 }
8891
8892 #if DEBUG
8893 print_removed_literals (stderr, &relax_info->removed_list);
8894 print_action_list (stderr, &relax_info->action_list);
8895 #endif /* DEBUG */
8896
8897 error_return:
8898 free (prop_table);
8899 free_section_cache (&target_sec_cache);
8900
8901 release_contents (sec, contents);
8902 release_internal_relocs (sec, internal_relocs);
8903 return ok;
8904 }
8905
8906
8907 static Elf_Internal_Rela *
8908 get_irel_at_offset (asection *sec,
8909 Elf_Internal_Rela *internal_relocs,
8910 bfd_vma offset)
8911 {
8912 unsigned i;
8913 Elf_Internal_Rela *irel;
8914 unsigned r_type;
8915 Elf_Internal_Rela key;
8916
8917 if (!internal_relocs)
8918 return NULL;
8919
8920 key.r_offset = offset;
8921 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8922 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8923 if (!irel)
8924 return NULL;
8925
8926 /* bsearch does not guarantee which will be returned if there are
8927 multiple matches. We need the first that is not an alignment. */
8928 i = irel - internal_relocs;
8929 while (i > 0)
8930 {
8931 if (internal_relocs[i-1].r_offset != offset)
8932 break;
8933 i--;
8934 }
8935 for ( ; i < sec->reloc_count; i++)
8936 {
8937 irel = &internal_relocs[i];
8938 r_type = ELF32_R_TYPE (irel->r_info);
8939 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8940 return irel;
8941 }
8942
8943 return NULL;
8944 }
8945
8946
8947 bfd_boolean
8948 is_removable_literal (const source_reloc *rel,
8949 int i,
8950 const source_reloc *src_relocs,
8951 int src_count,
8952 asection *sec,
8953 property_table_entry *prop_table,
8954 int ptblsize)
8955 {
8956 const source_reloc *curr_rel;
8957 property_table_entry *entry;
8958
8959 if (!rel->is_null)
8960 return FALSE;
8961
8962 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8963 sec->vma + rel->r_rel.target_offset);
8964 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8965 return FALSE;
8966
8967 for (++i; i < src_count; ++i)
8968 {
8969 curr_rel = &src_relocs[i];
8970 /* If all others have the same target offset.... */
8971 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8972 return TRUE;
8973
8974 if (!curr_rel->is_null
8975 && !xtensa_is_property_section (curr_rel->source_sec)
8976 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8977 return FALSE;
8978 }
8979 return TRUE;
8980 }
8981
8982
8983 bfd_boolean
8984 remove_dead_literal (bfd *abfd,
8985 asection *sec,
8986 struct bfd_link_info *link_info,
8987 Elf_Internal_Rela *internal_relocs,
8988 Elf_Internal_Rela *irel,
8989 source_reloc *rel,
8990 property_table_entry *prop_table,
8991 int ptblsize)
8992 {
8993 property_table_entry *entry;
8994 xtensa_relax_info *relax_info;
8995
8996 relax_info = get_xtensa_relax_info (sec);
8997 if (!relax_info)
8998 return FALSE;
8999
9000 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9001 sec->vma + rel->r_rel.target_offset);
9002
9003 /* Mark the unused literal so that it will be removed. */
9004 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
9005
9006 text_action_add (&relax_info->action_list,
9007 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9008
9009 /* If the section is 4-byte aligned, do not add fill. */
9010 if (sec->alignment_power > 2)
9011 {
9012 int fill_extra_space;
9013 bfd_vma entry_sec_offset;
9014 text_action *fa;
9015 property_table_entry *the_add_entry;
9016 int removed_diff;
9017
9018 if (entry)
9019 entry_sec_offset = entry->address - sec->vma + entry->size;
9020 else
9021 entry_sec_offset = rel->r_rel.target_offset + 4;
9022
9023 /* If the literal range is at the end of the section,
9024 do not add fill. */
9025 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9026 entry_sec_offset);
9027 fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
9028
9029 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9030 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9031 -4, fill_extra_space);
9032 if (fa)
9033 adjust_fill_action (fa, removed_diff);
9034 else
9035 text_action_add (&relax_info->action_list,
9036 ta_fill, sec, entry_sec_offset, removed_diff);
9037 }
9038
9039 /* Zero out the relocation on this literal location. */
9040 if (irel)
9041 {
9042 if (elf_hash_table (link_info)->dynamic_sections_created)
9043 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9044
9045 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9046 pin_internal_relocs (sec, internal_relocs);
9047 }
9048
9049 /* Do not modify "last_loc_is_prev". */
9050 return TRUE;
9051 }
9052
9053
9054 bfd_boolean
9055 identify_literal_placement (bfd *abfd,
9056 asection *sec,
9057 bfd_byte *contents,
9058 struct bfd_link_info *link_info,
9059 value_map_hash_table *values,
9060 bfd_boolean *last_loc_is_prev_p,
9061 Elf_Internal_Rela *irel,
9062 int remaining_src_rels,
9063 source_reloc *rel,
9064 property_table_entry *prop_table,
9065 int ptblsize,
9066 section_cache_t *target_sec_cache,
9067 bfd_boolean is_abs_literal)
9068 {
9069 literal_value val;
9070 value_map *val_map;
9071 xtensa_relax_info *relax_info;
9072 bfd_boolean literal_placed = FALSE;
9073 r_reloc r_rel;
9074 unsigned long value;
9075 bfd_boolean final_static_link;
9076 bfd_size_type sec_size;
9077
9078 relax_info = get_xtensa_relax_info (sec);
9079 if (!relax_info)
9080 return FALSE;
9081
9082 sec_size = bfd_get_section_limit (abfd, sec);
9083
9084 final_static_link =
9085 (!bfd_link_relocatable (link_info)
9086 && !elf_hash_table (link_info)->dynamic_sections_created);
9087
9088 /* The placement algorithm first checks to see if the literal is
9089 already in the value map. If so and the value map is reachable
9090 from all uses, then the literal is moved to that location. If
9091 not, then we identify the last location where a fresh literal was
9092 placed. If the literal can be safely moved there, then we do so.
9093 If not, then we assume that the literal is not to move and leave
9094 the literal where it is, marking it as the last literal
9095 location. */
9096
9097 /* Find the literal value. */
9098 value = 0;
9099 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9100 if (!irel)
9101 {
9102 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9103 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9104 }
9105 init_literal_value (&val, &r_rel, value, is_abs_literal);
9106
9107 /* Check if we've seen another literal with the same value that
9108 is in the same output section. */
9109 val_map = value_map_get_cached_value (values, &val, final_static_link);
9110
9111 if (val_map
9112 && (r_reloc_get_section (&val_map->loc)->output_section
9113 == sec->output_section)
9114 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9115 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9116 {
9117 /* No change to last_loc_is_prev. */
9118 literal_placed = TRUE;
9119 }
9120
9121 /* For relocatable links, do not try to move literals. To do it
9122 correctly might increase the number of relocations in an input
9123 section making the default relocatable linking fail. */
9124 if (!bfd_link_relocatable (link_info) && !literal_placed
9125 && values->has_last_loc && !(*last_loc_is_prev_p))
9126 {
9127 asection *target_sec = r_reloc_get_section (&values->last_loc);
9128 if (target_sec && target_sec->output_section == sec->output_section)
9129 {
9130 /* Increment the virtual offset. */
9131 r_reloc try_loc = values->last_loc;
9132 try_loc.virtual_offset += 4;
9133
9134 /* There is a last loc that was in the same output section. */
9135 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9136 && move_shared_literal (sec, link_info, rel,
9137 prop_table, ptblsize,
9138 &try_loc, &val, target_sec_cache))
9139 {
9140 values->last_loc.virtual_offset += 4;
9141 literal_placed = TRUE;
9142 if (!val_map)
9143 val_map = add_value_map (values, &val, &try_loc,
9144 final_static_link);
9145 else
9146 val_map->loc = try_loc;
9147 }
9148 }
9149 }
9150
9151 if (!literal_placed)
9152 {
9153 /* Nothing worked, leave the literal alone but update the last loc. */
9154 values->has_last_loc = TRUE;
9155 values->last_loc = rel->r_rel;
9156 if (!val_map)
9157 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9158 else
9159 val_map->loc = rel->r_rel;
9160 *last_loc_is_prev_p = TRUE;
9161 }
9162
9163 return TRUE;
9164 }
9165
9166
9167 /* Check if the original relocations (presumably on L32R instructions)
9168 identified by reloc[0..N] can be changed to reference the literal
9169 identified by r_rel. If r_rel is out of range for any of the
9170 original relocations, then we don't want to coalesce the original
9171 literal with the one at r_rel. We only check reloc[0..N], where the
9172 offsets are all the same as for reloc[0] (i.e., they're all
9173 referencing the same literal) and where N is also bounded by the
9174 number of remaining entries in the "reloc" array. The "reloc" array
9175 is sorted by target offset so we know all the entries for the same
9176 literal will be contiguous. */
9177
9178 static bfd_boolean
9179 relocations_reach (source_reloc *reloc,
9180 int remaining_relocs,
9181 const r_reloc *r_rel)
9182 {
9183 bfd_vma from_offset, source_address, dest_address;
9184 asection *sec;
9185 int i;
9186
9187 if (!r_reloc_is_defined (r_rel))
9188 return FALSE;
9189
9190 sec = r_reloc_get_section (r_rel);
9191 from_offset = reloc[0].r_rel.target_offset;
9192
9193 for (i = 0; i < remaining_relocs; i++)
9194 {
9195 if (reloc[i].r_rel.target_offset != from_offset)
9196 break;
9197
9198 /* Ignore relocations that have been removed. */
9199 if (reloc[i].is_null)
9200 continue;
9201
9202 /* The original and new output section for these must be the same
9203 in order to coalesce. */
9204 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9205 != sec->output_section)
9206 return FALSE;
9207
9208 /* Absolute literals in the same output section can always be
9209 combined. */
9210 if (reloc[i].is_abs_literal)
9211 continue;
9212
9213 /* A literal with no PC-relative relocations can be moved anywhere. */
9214 if (reloc[i].opnd != -1)
9215 {
9216 /* Otherwise, check to see that it fits. */
9217 source_address = (reloc[i].source_sec->output_section->vma
9218 + reloc[i].source_sec->output_offset
9219 + reloc[i].r_rel.rela.r_offset);
9220 dest_address = (sec->output_section->vma
9221 + sec->output_offset
9222 + r_rel->target_offset);
9223
9224 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9225 source_address, dest_address))
9226 return FALSE;
9227 }
9228 }
9229
9230 return TRUE;
9231 }
9232
9233
9234 /* Move a literal to another literal location because it is
9235 the same as the other literal value. */
9236
9237 static bfd_boolean
9238 coalesce_shared_literal (asection *sec,
9239 source_reloc *rel,
9240 property_table_entry *prop_table,
9241 int ptblsize,
9242 value_map *val_map)
9243 {
9244 property_table_entry *entry;
9245 text_action *fa;
9246 property_table_entry *the_add_entry;
9247 int removed_diff;
9248 xtensa_relax_info *relax_info;
9249
9250 relax_info = get_xtensa_relax_info (sec);
9251 if (!relax_info)
9252 return FALSE;
9253
9254 entry = elf_xtensa_find_property_entry
9255 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9256 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9257 return TRUE;
9258
9259 /* Mark that the literal will be coalesced. */
9260 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9261
9262 text_action_add (&relax_info->action_list,
9263 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9264
9265 /* If the section is 4-byte aligned, do not add fill. */
9266 if (sec->alignment_power > 2)
9267 {
9268 int fill_extra_space;
9269 bfd_vma entry_sec_offset;
9270
9271 if (entry)
9272 entry_sec_offset = entry->address - sec->vma + entry->size;
9273 else
9274 entry_sec_offset = rel->r_rel.target_offset + 4;
9275
9276 /* If the literal range is at the end of the section,
9277 do not add fill. */
9278 fill_extra_space = 0;
9279 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9280 entry_sec_offset);
9281 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9282 fill_extra_space = the_add_entry->size;
9283
9284 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9285 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9286 -4, fill_extra_space);
9287 if (fa)
9288 adjust_fill_action (fa, removed_diff);
9289 else
9290 text_action_add (&relax_info->action_list,
9291 ta_fill, sec, entry_sec_offset, removed_diff);
9292 }
9293
9294 return TRUE;
9295 }
9296
9297
9298 /* Move a literal to another location. This may actually increase the
9299 total amount of space used because of alignments so we need to do
9300 this carefully. Also, it may make a branch go out of range. */
9301
9302 static bfd_boolean
9303 move_shared_literal (asection *sec,
9304 struct bfd_link_info *link_info,
9305 source_reloc *rel,
9306 property_table_entry *prop_table,
9307 int ptblsize,
9308 const r_reloc *target_loc,
9309 const literal_value *lit_value,
9310 section_cache_t *target_sec_cache)
9311 {
9312 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9313 text_action *fa, *target_fa;
9314 int removed_diff;
9315 xtensa_relax_info *relax_info, *target_relax_info;
9316 asection *target_sec;
9317 ebb_t *ebb;
9318 ebb_constraint ebb_table;
9319 bfd_boolean relocs_fit;
9320
9321 /* If this routine always returns FALSE, the literals that cannot be
9322 coalesced will not be moved. */
9323 if (elf32xtensa_no_literal_movement)
9324 return FALSE;
9325
9326 relax_info = get_xtensa_relax_info (sec);
9327 if (!relax_info)
9328 return FALSE;
9329
9330 target_sec = r_reloc_get_section (target_loc);
9331 target_relax_info = get_xtensa_relax_info (target_sec);
9332
9333 /* Literals to undefined sections may not be moved because they
9334 must report an error. */
9335 if (bfd_is_und_section (target_sec))
9336 return FALSE;
9337
9338 src_entry = elf_xtensa_find_property_entry
9339 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9340
9341 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9342 return FALSE;
9343
9344 target_entry = elf_xtensa_find_property_entry
9345 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9346 target_sec->vma + target_loc->target_offset);
9347
9348 if (!target_entry)
9349 return FALSE;
9350
9351 /* Make sure that we have not broken any branches. */
9352 relocs_fit = FALSE;
9353
9354 init_ebb_constraint (&ebb_table);
9355 ebb = &ebb_table.ebb;
9356 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9357 target_sec_cache->content_length,
9358 target_sec_cache->ptbl, target_sec_cache->pte_count,
9359 target_sec_cache->relocs, target_sec_cache->reloc_count);
9360
9361 /* Propose to add 4 bytes + worst-case alignment size increase to
9362 destination. */
9363 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9364 ta_fill, target_loc->target_offset,
9365 -4 - (1 << target_sec->alignment_power), TRUE);
9366
9367 /* Check all of the PC-relative relocations to make sure they still fit. */
9368 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9369 target_sec_cache->contents,
9370 target_sec_cache->relocs, NULL,
9371 &ebb_table, NULL);
9372
9373 if (!relocs_fit)
9374 return FALSE;
9375
9376 text_action_add_literal (&target_relax_info->action_list,
9377 ta_add_literal, target_loc, lit_value, -4);
9378
9379 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9380 {
9381 /* May need to add or remove some fill to maintain alignment. */
9382 int fill_extra_space;
9383 bfd_vma entry_sec_offset;
9384
9385 entry_sec_offset =
9386 target_entry->address - target_sec->vma + target_entry->size;
9387
9388 /* If the literal range is at the end of the section,
9389 do not add fill. */
9390 fill_extra_space = 0;
9391 the_add_entry =
9392 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9393 target_sec_cache->pte_count,
9394 entry_sec_offset);
9395 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9396 fill_extra_space = the_add_entry->size;
9397
9398 target_fa = find_fill_action (&target_relax_info->action_list,
9399 target_sec, entry_sec_offset);
9400 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9401 entry_sec_offset, 4,
9402 fill_extra_space);
9403 if (target_fa)
9404 adjust_fill_action (target_fa, removed_diff);
9405 else
9406 text_action_add (&target_relax_info->action_list,
9407 ta_fill, target_sec, entry_sec_offset, removed_diff);
9408 }
9409
9410 /* Mark that the literal will be moved to the new location. */
9411 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9412
9413 /* Remove the literal. */
9414 text_action_add (&relax_info->action_list,
9415 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9416
9417 /* If the section is 4-byte aligned, do not add fill. */
9418 if (sec->alignment_power > 2 && target_entry != src_entry)
9419 {
9420 int fill_extra_space;
9421 bfd_vma entry_sec_offset;
9422
9423 if (src_entry)
9424 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9425 else
9426 entry_sec_offset = rel->r_rel.target_offset+4;
9427
9428 /* If the literal range is at the end of the section,
9429 do not add fill. */
9430 fill_extra_space = 0;
9431 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9432 entry_sec_offset);
9433 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9434 fill_extra_space = the_add_entry->size;
9435
9436 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9437 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9438 -4, fill_extra_space);
9439 if (fa)
9440 adjust_fill_action (fa, removed_diff);
9441 else
9442 text_action_add (&relax_info->action_list,
9443 ta_fill, sec, entry_sec_offset, removed_diff);
9444 }
9445
9446 return TRUE;
9447 }
9448
9449 \f
9450 /* Second relaxation pass. */
9451
9452 static int
9453 action_remove_bytes_fn (splay_tree_node node, void *p)
9454 {
9455 bfd_size_type *final_size = p;
9456 text_action *action = (text_action *)node->value;
9457
9458 *final_size -= action->removed_bytes;
9459 return 0;
9460 }
9461
9462 /* Modify all of the relocations to point to the right spot, and if this
9463 is a relaxable section, delete the unwanted literals and fix the
9464 section size. */
9465
9466 bfd_boolean
9467 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9468 {
9469 Elf_Internal_Rela *internal_relocs;
9470 xtensa_relax_info *relax_info;
9471 bfd_byte *contents;
9472 bfd_boolean ok = TRUE;
9473 unsigned i;
9474 bfd_boolean rv = FALSE;
9475 bfd_boolean virtual_action;
9476 bfd_size_type sec_size;
9477
9478 sec_size = bfd_get_section_limit (abfd, sec);
9479 relax_info = get_xtensa_relax_info (sec);
9480 BFD_ASSERT (relax_info);
9481
9482 /* First translate any of the fixes that have been added already. */
9483 translate_section_fixes (sec);
9484
9485 /* Handle property sections (e.g., literal tables) specially. */
9486 if (xtensa_is_property_section (sec))
9487 {
9488 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9489 return relax_property_section (abfd, sec, link_info);
9490 }
9491
9492 internal_relocs = retrieve_internal_relocs (abfd, sec,
9493 link_info->keep_memory);
9494 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9495 return TRUE;
9496
9497 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9498 if (contents == NULL && sec_size != 0)
9499 {
9500 ok = FALSE;
9501 goto error_return;
9502 }
9503
9504 if (internal_relocs)
9505 {
9506 for (i = 0; i < sec->reloc_count; i++)
9507 {
9508 Elf_Internal_Rela *irel;
9509 xtensa_relax_info *target_relax_info;
9510 bfd_vma source_offset, old_source_offset;
9511 r_reloc r_rel;
9512 unsigned r_type;
9513 asection *target_sec;
9514
9515 /* Locally change the source address.
9516 Translate the target to the new target address.
9517 If it points to this section and has been removed,
9518 NULLify it.
9519 Write it back. */
9520
9521 irel = &internal_relocs[i];
9522 source_offset = irel->r_offset;
9523 old_source_offset = source_offset;
9524
9525 r_type = ELF32_R_TYPE (irel->r_info);
9526 r_reloc_init (&r_rel, abfd, irel, contents,
9527 bfd_get_section_limit (abfd, sec));
9528
9529 /* If this section could have changed then we may need to
9530 change the relocation's offset. */
9531
9532 if (relax_info->is_relaxable_literal_section
9533 || relax_info->is_relaxable_asm_section)
9534 {
9535 pin_internal_relocs (sec, internal_relocs);
9536
9537 if (r_type != R_XTENSA_NONE
9538 && find_removed_literal (&relax_info->removed_list,
9539 irel->r_offset))
9540 {
9541 /* Remove this relocation. */
9542 if (elf_hash_table (link_info)->dynamic_sections_created)
9543 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9544 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9545 irel->r_offset = offset_with_removed_text_map
9546 (&relax_info->action_list, irel->r_offset);
9547 continue;
9548 }
9549
9550 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9551 {
9552 text_action *action =
9553 find_insn_action (&relax_info->action_list,
9554 irel->r_offset);
9555 if (action && (action->action == ta_convert_longcall
9556 || action->action == ta_remove_longcall))
9557 {
9558 bfd_reloc_status_type retval;
9559 char *error_message = NULL;
9560
9561 retval = contract_asm_expansion (contents, sec_size,
9562 irel, &error_message);
9563 if (retval != bfd_reloc_ok)
9564 {
9565 (*link_info->callbacks->reloc_dangerous)
9566 (link_info, error_message, abfd, sec,
9567 irel->r_offset);
9568 goto error_return;
9569 }
9570 /* Update the action so that the code that moves
9571 the contents will do the right thing. */
9572 /* ta_remove_longcall and ta_remove_insn actions are
9573 grouped together in the tree as well as
9574 ta_convert_longcall and ta_none, so that changes below
9575 can be done w/o removing and reinserting action into
9576 the tree. */
9577
9578 if (action->action == ta_remove_longcall)
9579 action->action = ta_remove_insn;
9580 else
9581 action->action = ta_none;
9582 /* Refresh the info in the r_rel. */
9583 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9584 r_type = ELF32_R_TYPE (irel->r_info);
9585 }
9586 }
9587
9588 source_offset = offset_with_removed_text_map
9589 (&relax_info->action_list, irel->r_offset);
9590 irel->r_offset = source_offset;
9591 }
9592
9593 /* If the target section could have changed then
9594 we may need to change the relocation's target offset. */
9595
9596 target_sec = r_reloc_get_section (&r_rel);
9597
9598 /* For a reference to a discarded section from a DWARF section,
9599 i.e., where action_discarded is PRETEND, the symbol will
9600 eventually be modified to refer to the kept section (at least if
9601 the kept and discarded sections are the same size). Anticipate
9602 that here and adjust things accordingly. */
9603 if (! elf_xtensa_ignore_discarded_relocs (sec)
9604 && elf_xtensa_action_discarded (sec) == PRETEND
9605 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9606 && target_sec != NULL
9607 && discarded_section (target_sec))
9608 {
9609 /* It would be natural to call _bfd_elf_check_kept_section
9610 here, but it's not exported from elflink.c. It's also a
9611 fairly expensive check. Adjusting the relocations to the
9612 discarded section is fairly harmless; it will only adjust
9613 some addends and difference values. If it turns out that
9614 _bfd_elf_check_kept_section fails later, it won't matter,
9615 so just compare the section names to find the right group
9616 member. */
9617 asection *kept = target_sec->kept_section;
9618 if (kept != NULL)
9619 {
9620 if ((kept->flags & SEC_GROUP) != 0)
9621 {
9622 asection *first = elf_next_in_group (kept);
9623 asection *s = first;
9624
9625 kept = NULL;
9626 while (s != NULL)
9627 {
9628 if (strcmp (s->name, target_sec->name) == 0)
9629 {
9630 kept = s;
9631 break;
9632 }
9633 s = elf_next_in_group (s);
9634 if (s == first)
9635 break;
9636 }
9637 }
9638 }
9639 if (kept != NULL
9640 && ((target_sec->rawsize != 0
9641 ? target_sec->rawsize : target_sec->size)
9642 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9643 target_sec = kept;
9644 }
9645
9646 target_relax_info = get_xtensa_relax_info (target_sec);
9647 if (target_relax_info
9648 && (target_relax_info->is_relaxable_literal_section
9649 || target_relax_info->is_relaxable_asm_section))
9650 {
9651 r_reloc new_reloc;
9652 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9653
9654 if (r_type == R_XTENSA_DIFF8
9655 || r_type == R_XTENSA_DIFF16
9656 || r_type == R_XTENSA_DIFF32
9657 || r_type == R_XTENSA_PDIFF8
9658 || r_type == R_XTENSA_PDIFF16
9659 || r_type == R_XTENSA_PDIFF32
9660 || r_type == R_XTENSA_NDIFF8
9661 || r_type == R_XTENSA_NDIFF16
9662 || r_type == R_XTENSA_NDIFF32)
9663 {
9664 bfd_signed_vma diff_value = 0;
9665 bfd_vma new_end_offset, diff_mask = 0;
9666
9667 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9668 {
9669 (*link_info->callbacks->reloc_dangerous)
9670 (link_info, _("invalid relocation address"),
9671 abfd, sec, old_source_offset);
9672 goto error_return;
9673 }
9674
9675 switch (r_type)
9676 {
9677 case R_XTENSA_DIFF8:
9678 diff_mask = 0x7f;
9679 diff_value =
9680 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9681 break;
9682 case R_XTENSA_DIFF16:
9683 diff_mask = 0x7fff;
9684 diff_value =
9685 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9686 break;
9687 case R_XTENSA_DIFF32:
9688 diff_mask = 0x7fffffff;
9689 diff_value =
9690 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9691 break;
9692 case R_XTENSA_PDIFF8:
9693 case R_XTENSA_NDIFF8:
9694 diff_mask = 0xff;
9695 diff_value =
9696 bfd_get_8 (abfd, &contents[old_source_offset]);
9697 break;
9698 case R_XTENSA_PDIFF16:
9699 case R_XTENSA_NDIFF16:
9700 diff_mask = 0xffff;
9701 diff_value =
9702 bfd_get_16 (abfd, &contents[old_source_offset]);
9703 break;
9704 case R_XTENSA_PDIFF32:
9705 case R_XTENSA_NDIFF32:
9706 diff_mask = 0xffffffff;
9707 diff_value =
9708 bfd_get_32 (abfd, &contents[old_source_offset]);
9709 break;
9710 }
9711
9712 if (r_type >= R_XTENSA_NDIFF8
9713 && r_type <= R_XTENSA_NDIFF32
9714 && diff_value)
9715 diff_value |= ~diff_mask;
9716
9717 new_end_offset = offset_with_removed_text_map
9718 (&target_relax_info->action_list,
9719 r_rel.target_offset + diff_value);
9720 diff_value = new_end_offset - new_reloc.target_offset;
9721
9722 switch (r_type)
9723 {
9724 case R_XTENSA_DIFF8:
9725 bfd_put_signed_8 (abfd, diff_value,
9726 &contents[old_source_offset]);
9727 break;
9728 case R_XTENSA_DIFF16:
9729 bfd_put_signed_16 (abfd, diff_value,
9730 &contents[old_source_offset]);
9731 break;
9732 case R_XTENSA_DIFF32:
9733 bfd_put_signed_32 (abfd, diff_value,
9734 &contents[old_source_offset]);
9735 break;
9736 case R_XTENSA_PDIFF8:
9737 case R_XTENSA_NDIFF8:
9738 bfd_put_8 (abfd, diff_value,
9739 &contents[old_source_offset]);
9740 break;
9741 case R_XTENSA_PDIFF16:
9742 case R_XTENSA_NDIFF16:
9743 bfd_put_16 (abfd, diff_value,
9744 &contents[old_source_offset]);
9745 break;
9746 case R_XTENSA_PDIFF32:
9747 case R_XTENSA_NDIFF32:
9748 bfd_put_32 (abfd, diff_value,
9749 &contents[old_source_offset]);
9750 break;
9751 }
9752
9753 /* Check for overflow. Sign bits must be all zeroes or
9754 all ones. When sign bits are all ones diff_value
9755 may not be zero. */
9756 if (((diff_value & ~diff_mask) != 0
9757 && (diff_value & ~diff_mask) != ~diff_mask)
9758 || (diff_value && (bfd_vma) diff_value == ~diff_mask))
9759 {
9760 (*link_info->callbacks->reloc_dangerous)
9761 (link_info, _("overflow after relaxation"),
9762 abfd, sec, old_source_offset);
9763 goto error_return;
9764 }
9765
9766 pin_contents (sec, contents);
9767 }
9768
9769 /* If the relocation still references a section in the same
9770 input file, modify the relocation directly instead of
9771 adding a "fix" record. */
9772 if (target_sec->owner == abfd)
9773 {
9774 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9775 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9776 irel->r_addend = new_reloc.rela.r_addend;
9777 pin_internal_relocs (sec, internal_relocs);
9778 }
9779 else
9780 {
9781 bfd_vma addend_displacement;
9782 reloc_bfd_fix *fix;
9783
9784 addend_displacement =
9785 new_reloc.target_offset + new_reloc.virtual_offset;
9786 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9787 target_sec,
9788 addend_displacement, TRUE);
9789 add_fix (sec, fix);
9790 }
9791 }
9792 }
9793 }
9794
9795 if ((relax_info->is_relaxable_literal_section
9796 || relax_info->is_relaxable_asm_section)
9797 && action_list_count (&relax_info->action_list))
9798 {
9799 /* Walk through the planned actions and build up a table
9800 of move, copy and fill records. Use the move, copy and
9801 fill records to perform the actions once. */
9802
9803 bfd_size_type final_size, copy_size, orig_insn_size;
9804 bfd_byte *scratch = NULL;
9805 bfd_byte *dup_contents = NULL;
9806 bfd_size_type orig_size = sec->size;
9807 bfd_vma orig_dot = 0;
9808 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9809 orig dot in physical memory. */
9810 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9811 bfd_vma dup_dot = 0;
9812
9813 text_action *action;
9814
9815 final_size = sec->size;
9816
9817 splay_tree_foreach (relax_info->action_list.tree,
9818 action_remove_bytes_fn, &final_size);
9819 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9820 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9821
9822 /* The dot is the current fill location. */
9823 #if DEBUG
9824 print_action_list (stderr, &relax_info->action_list);
9825 #endif
9826
9827 for (action = action_first (&relax_info->action_list); action;
9828 action = action_next (&relax_info->action_list, action))
9829 {
9830 virtual_action = FALSE;
9831 if (action->offset > orig_dot)
9832 {
9833 orig_dot += orig_dot_copied;
9834 orig_dot_copied = 0;
9835 orig_dot_vo = 0;
9836 /* Out of the virtual world. */
9837 }
9838
9839 if (action->offset > orig_dot)
9840 {
9841 copy_size = action->offset - orig_dot;
9842 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9843 orig_dot += copy_size;
9844 dup_dot += copy_size;
9845 BFD_ASSERT (action->offset == orig_dot);
9846 }
9847 else if (action->offset < orig_dot)
9848 {
9849 if (action->action == ta_fill
9850 && action->offset - action->removed_bytes == orig_dot)
9851 {
9852 /* This is OK because the fill only effects the dup_dot. */
9853 }
9854 else if (action->action == ta_add_literal)
9855 {
9856 /* TBD. Might need to handle this. */
9857 }
9858 }
9859 if (action->offset == orig_dot)
9860 {
9861 if (action->virtual_offset > orig_dot_vo)
9862 {
9863 if (orig_dot_vo == 0)
9864 {
9865 /* Need to copy virtual_offset bytes. Probably four. */
9866 copy_size = action->virtual_offset - orig_dot_vo;
9867 memmove (&dup_contents[dup_dot],
9868 &contents[orig_dot], copy_size);
9869 orig_dot_copied = copy_size;
9870 dup_dot += copy_size;
9871 }
9872 virtual_action = TRUE;
9873 }
9874 else
9875 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9876 }
9877 switch (action->action)
9878 {
9879 case ta_remove_literal:
9880 case ta_remove_insn:
9881 BFD_ASSERT (action->removed_bytes >= 0);
9882 orig_dot += action->removed_bytes;
9883 break;
9884
9885 case ta_narrow_insn:
9886 orig_insn_size = 3;
9887 copy_size = 2;
9888 memmove (scratch, &contents[orig_dot], orig_insn_size);
9889 BFD_ASSERT (action->removed_bytes == 1);
9890 rv = narrow_instruction (scratch, final_size, 0);
9891 BFD_ASSERT (rv);
9892 memmove (&dup_contents[dup_dot], scratch, copy_size);
9893 orig_dot += orig_insn_size;
9894 dup_dot += copy_size;
9895 break;
9896
9897 case ta_fill:
9898 if (action->removed_bytes >= 0)
9899 orig_dot += action->removed_bytes;
9900 else
9901 {
9902 /* Already zeroed in dup_contents. Just bump the
9903 counters. */
9904 dup_dot += (-action->removed_bytes);
9905 }
9906 break;
9907
9908 case ta_none:
9909 BFD_ASSERT (action->removed_bytes == 0);
9910 break;
9911
9912 case ta_convert_longcall:
9913 case ta_remove_longcall:
9914 /* These will be removed or converted before we get here. */
9915 BFD_ASSERT (0);
9916 break;
9917
9918 case ta_widen_insn:
9919 orig_insn_size = 2;
9920 copy_size = 3;
9921 memmove (scratch, &contents[orig_dot], orig_insn_size);
9922 BFD_ASSERT (action->removed_bytes == -1);
9923 rv = widen_instruction (scratch, final_size, 0);
9924 BFD_ASSERT (rv);
9925 memmove (&dup_contents[dup_dot], scratch, copy_size);
9926 orig_dot += orig_insn_size;
9927 dup_dot += copy_size;
9928 break;
9929
9930 case ta_add_literal:
9931 orig_insn_size = 0;
9932 copy_size = 4;
9933 BFD_ASSERT (action->removed_bytes == -4);
9934 /* TBD -- place the literal value here and insert
9935 into the table. */
9936 memset (&dup_contents[dup_dot], 0, 4);
9937 pin_internal_relocs (sec, internal_relocs);
9938 pin_contents (sec, contents);
9939
9940 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9941 relax_info, &internal_relocs, &action->value))
9942 goto error_return;
9943
9944 if (virtual_action)
9945 orig_dot_vo += copy_size;
9946
9947 orig_dot += orig_insn_size;
9948 dup_dot += copy_size;
9949 break;
9950
9951 default:
9952 /* Not implemented yet. */
9953 BFD_ASSERT (0);
9954 break;
9955 }
9956
9957 BFD_ASSERT (dup_dot <= final_size);
9958 BFD_ASSERT (orig_dot <= orig_size);
9959 }
9960
9961 orig_dot += orig_dot_copied;
9962 orig_dot_copied = 0;
9963
9964 if (orig_dot != orig_size)
9965 {
9966 copy_size = orig_size - orig_dot;
9967 BFD_ASSERT (orig_size > orig_dot);
9968 BFD_ASSERT (dup_dot + copy_size == final_size);
9969 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9970 orig_dot += copy_size;
9971 dup_dot += copy_size;
9972 }
9973 BFD_ASSERT (orig_size == orig_dot);
9974 BFD_ASSERT (final_size == dup_dot);
9975
9976 /* Move the dup_contents back. */
9977 if (final_size > orig_size)
9978 {
9979 /* Contents need to be reallocated. Swap the dup_contents into
9980 contents. */
9981 sec->contents = dup_contents;
9982 free (contents);
9983 contents = dup_contents;
9984 pin_contents (sec, contents);
9985 }
9986 else
9987 {
9988 BFD_ASSERT (final_size <= orig_size);
9989 memset (contents, 0, orig_size);
9990 memcpy (contents, dup_contents, final_size);
9991 free (dup_contents);
9992 }
9993 free (scratch);
9994 pin_contents (sec, contents);
9995
9996 if (sec->rawsize == 0)
9997 sec->rawsize = sec->size;
9998 sec->size = final_size;
9999 }
10000
10001 error_return:
10002 release_internal_relocs (sec, internal_relocs);
10003 release_contents (sec, contents);
10004 return ok;
10005 }
10006
10007
10008 static bfd_boolean
10009 translate_section_fixes (asection *sec)
10010 {
10011 xtensa_relax_info *relax_info;
10012 reloc_bfd_fix *r;
10013
10014 relax_info = get_xtensa_relax_info (sec);
10015 if (!relax_info)
10016 return TRUE;
10017
10018 for (r = relax_info->fix_list; r != NULL; r = r->next)
10019 if (!translate_reloc_bfd_fix (r))
10020 return FALSE;
10021
10022 return TRUE;
10023 }
10024
10025
10026 /* Translate a fix given the mapping in the relax info for the target
10027 section. If it has already been translated, no work is required. */
10028
10029 static bfd_boolean
10030 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
10031 {
10032 reloc_bfd_fix new_fix;
10033 asection *sec;
10034 xtensa_relax_info *relax_info;
10035 removed_literal *removed;
10036 bfd_vma new_offset, target_offset;
10037
10038 if (fix->translated)
10039 return TRUE;
10040
10041 sec = fix->target_sec;
10042 target_offset = fix->target_offset;
10043
10044 relax_info = get_xtensa_relax_info (sec);
10045 if (!relax_info)
10046 {
10047 fix->translated = TRUE;
10048 return TRUE;
10049 }
10050
10051 new_fix = *fix;
10052
10053 /* The fix does not need to be translated if the section cannot change. */
10054 if (!relax_info->is_relaxable_literal_section
10055 && !relax_info->is_relaxable_asm_section)
10056 {
10057 fix->translated = TRUE;
10058 return TRUE;
10059 }
10060
10061 /* If the literal has been moved and this relocation was on an
10062 opcode, then the relocation should move to the new literal
10063 location. Otherwise, the relocation should move within the
10064 section. */
10065
10066 removed = FALSE;
10067 if (is_operand_relocation (fix->src_type))
10068 {
10069 /* Check if the original relocation is against a literal being
10070 removed. */
10071 removed = find_removed_literal (&relax_info->removed_list,
10072 target_offset);
10073 }
10074
10075 if (removed)
10076 {
10077 asection *new_sec;
10078
10079 /* The fact that there is still a relocation to this literal indicates
10080 that the literal is being coalesced, not simply removed. */
10081 BFD_ASSERT (removed->to.abfd != NULL);
10082
10083 /* This was moved to some other address (possibly another section). */
10084 new_sec = r_reloc_get_section (&removed->to);
10085 if (new_sec != sec)
10086 {
10087 sec = new_sec;
10088 relax_info = get_xtensa_relax_info (sec);
10089 if (!relax_info ||
10090 (!relax_info->is_relaxable_literal_section
10091 && !relax_info->is_relaxable_asm_section))
10092 {
10093 target_offset = removed->to.target_offset;
10094 new_fix.target_sec = new_sec;
10095 new_fix.target_offset = target_offset;
10096 new_fix.translated = TRUE;
10097 *fix = new_fix;
10098 return TRUE;
10099 }
10100 }
10101 target_offset = removed->to.target_offset;
10102 new_fix.target_sec = new_sec;
10103 }
10104
10105 /* The target address may have been moved within its section. */
10106 new_offset = offset_with_removed_text (&relax_info->action_list,
10107 target_offset);
10108
10109 new_fix.target_offset = new_offset;
10110 new_fix.target_offset = new_offset;
10111 new_fix.translated = TRUE;
10112 *fix = new_fix;
10113 return TRUE;
10114 }
10115
10116
10117 /* Fix up a relocation to take account of removed literals. */
10118
10119 static asection *
10120 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10121 {
10122 xtensa_relax_info *relax_info;
10123 removed_literal *removed;
10124 bfd_vma target_offset, base_offset;
10125
10126 *new_rel = *orig_rel;
10127
10128 if (!r_reloc_is_defined (orig_rel))
10129 return sec ;
10130
10131 relax_info = get_xtensa_relax_info (sec);
10132 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10133 || relax_info->is_relaxable_asm_section));
10134
10135 target_offset = orig_rel->target_offset;
10136
10137 removed = FALSE;
10138 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10139 {
10140 /* Check if the original relocation is against a literal being
10141 removed. */
10142 removed = find_removed_literal (&relax_info->removed_list,
10143 target_offset);
10144 }
10145 if (removed && removed->to.abfd)
10146 {
10147 asection *new_sec;
10148
10149 /* The fact that there is still a relocation to this literal indicates
10150 that the literal is being coalesced, not simply removed. */
10151 BFD_ASSERT (removed->to.abfd != NULL);
10152
10153 /* This was moved to some other address
10154 (possibly in another section). */
10155 *new_rel = removed->to;
10156 new_sec = r_reloc_get_section (new_rel);
10157 if (new_sec != sec)
10158 {
10159 sec = new_sec;
10160 relax_info = get_xtensa_relax_info (sec);
10161 if (!relax_info
10162 || (!relax_info->is_relaxable_literal_section
10163 && !relax_info->is_relaxable_asm_section))
10164 return sec;
10165 }
10166 target_offset = new_rel->target_offset;
10167 }
10168
10169 /* Find the base offset of the reloc symbol, excluding any addend from the
10170 reloc or from the section contents (for a partial_inplace reloc). Then
10171 find the adjusted values of the offsets due to relaxation. The base
10172 offset is needed to determine the change to the reloc's addend; the reloc
10173 addend should not be adjusted due to relaxations located before the base
10174 offset. */
10175
10176 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10177 if (base_offset <= target_offset)
10178 {
10179 int base_removed = removed_by_actions_map (&relax_info->action_list,
10180 base_offset, FALSE);
10181 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10182 target_offset, FALSE) -
10183 base_removed;
10184
10185 new_rel->target_offset = target_offset - base_removed - addend_removed;
10186 new_rel->rela.r_addend -= addend_removed;
10187 }
10188 else
10189 {
10190 /* Handle a negative addend. The base offset comes first. */
10191 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10192 target_offset, FALSE);
10193 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10194 base_offset, FALSE) -
10195 tgt_removed;
10196
10197 new_rel->target_offset = target_offset - tgt_removed;
10198 new_rel->rela.r_addend += addend_removed;
10199 }
10200
10201 return sec;
10202 }
10203
10204
10205 /* For dynamic links, there may be a dynamic relocation for each
10206 literal. The number of dynamic relocations must be computed in
10207 size_dynamic_sections, which occurs before relaxation. When a
10208 literal is removed, this function checks if there is a corresponding
10209 dynamic relocation and shrinks the size of the appropriate dynamic
10210 relocation section accordingly. At this point, the contents of the
10211 dynamic relocation sections have not yet been filled in, so there's
10212 nothing else that needs to be done. */
10213
10214 static void
10215 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10216 bfd *abfd,
10217 asection *input_section,
10218 Elf_Internal_Rela *rel)
10219 {
10220 struct elf_xtensa_link_hash_table *htab;
10221 Elf_Internal_Shdr *symtab_hdr;
10222 struct elf_link_hash_entry **sym_hashes;
10223 unsigned long r_symndx;
10224 int r_type;
10225 struct elf_link_hash_entry *h;
10226 bfd_boolean dynamic_symbol;
10227
10228 htab = elf_xtensa_hash_table (info);
10229 if (htab == NULL)
10230 return;
10231
10232 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10233 sym_hashes = elf_sym_hashes (abfd);
10234
10235 r_type = ELF32_R_TYPE (rel->r_info);
10236 r_symndx = ELF32_R_SYM (rel->r_info);
10237
10238 if (r_symndx < symtab_hdr->sh_info)
10239 h = NULL;
10240 else
10241 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10242
10243 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10244
10245 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10246 && (input_section->flags & SEC_ALLOC) != 0
10247 && (dynamic_symbol
10248 || (bfd_link_pic (info)
10249 && (!h || h->root.type != bfd_link_hash_undefweak))))
10250 {
10251 asection *srel;
10252 bfd_boolean is_plt = FALSE;
10253
10254 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10255 {
10256 srel = htab->elf.srelplt;
10257 is_plt = TRUE;
10258 }
10259 else
10260 srel = htab->elf.srelgot;
10261
10262 /* Reduce size of the .rela.* section by one reloc. */
10263 BFD_ASSERT (srel != NULL);
10264 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10265 srel->size -= sizeof (Elf32_External_Rela);
10266
10267 if (is_plt)
10268 {
10269 asection *splt, *sgotplt, *srelgot;
10270 int reloc_index, chunk;
10271
10272 /* Find the PLT reloc index of the entry being removed. This
10273 is computed from the size of ".rela.plt". It is needed to
10274 figure out which PLT chunk to resize. Usually "last index
10275 = size - 1" since the index starts at zero, but in this
10276 context, the size has just been decremented so there's no
10277 need to subtract one. */
10278 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10279
10280 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10281 splt = elf_xtensa_get_plt_section (info, chunk);
10282 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10283 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10284
10285 /* Check if an entire PLT chunk has just been eliminated. */
10286 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10287 {
10288 /* The two magic GOT entries for that chunk can go away. */
10289 srelgot = htab->elf.srelgot;
10290 BFD_ASSERT (srelgot != NULL);
10291 srelgot->reloc_count -= 2;
10292 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10293 sgotplt->size -= 8;
10294
10295 /* There should be only one entry left (and it will be
10296 removed below). */
10297 BFD_ASSERT (sgotplt->size == 4);
10298 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10299 }
10300
10301 BFD_ASSERT (sgotplt->size >= 4);
10302 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10303
10304 sgotplt->size -= 4;
10305 splt->size -= PLT_ENTRY_SIZE;
10306 }
10307 }
10308 }
10309
10310
10311 /* Take an r_rel and move it to another section. This usually
10312 requires extending the interal_relocation array and pinning it. If
10313 the original r_rel is from the same BFD, we can complete this here.
10314 Otherwise, we add a fix record to let the final link fix the
10315 appropriate address. Contents and internal relocations for the
10316 section must be pinned after calling this routine. */
10317
10318 static bfd_boolean
10319 move_literal (bfd *abfd,
10320 struct bfd_link_info *link_info,
10321 asection *sec,
10322 bfd_vma offset,
10323 bfd_byte *contents,
10324 xtensa_relax_info *relax_info,
10325 Elf_Internal_Rela **internal_relocs_p,
10326 const literal_value *lit)
10327 {
10328 Elf_Internal_Rela *new_relocs = NULL;
10329 size_t new_relocs_count = 0;
10330 Elf_Internal_Rela this_rela;
10331 const r_reloc *r_rel;
10332
10333 r_rel = &lit->r_rel;
10334 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10335
10336 if (r_reloc_is_const (r_rel))
10337 bfd_put_32 (abfd, lit->value, contents + offset);
10338 else
10339 {
10340 int r_type;
10341 unsigned i;
10342 reloc_bfd_fix *fix;
10343 unsigned insert_at;
10344
10345 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10346
10347 /* This is the difficult case. We have to create a fix up. */
10348 this_rela.r_offset = offset;
10349 this_rela.r_info = ELF32_R_INFO (0, r_type);
10350 this_rela.r_addend =
10351 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10352 bfd_put_32 (abfd, lit->value, contents + offset);
10353
10354 /* Currently, we cannot move relocations during a relocatable link. */
10355 BFD_ASSERT (!bfd_link_relocatable (link_info));
10356 fix = reloc_bfd_fix_init (sec, offset, r_type,
10357 r_reloc_get_section (r_rel),
10358 r_rel->target_offset + r_rel->virtual_offset,
10359 FALSE);
10360 /* We also need to mark that relocations are needed here. */
10361 sec->flags |= SEC_RELOC;
10362
10363 translate_reloc_bfd_fix (fix);
10364 /* This fix has not yet been translated. */
10365 add_fix (sec, fix);
10366
10367 /* Add the relocation. If we have already allocated our own
10368 space for the relocations and we have room for more, then use
10369 it. Otherwise, allocate new space and move the literals. */
10370 insert_at = sec->reloc_count;
10371 for (i = 0; i < sec->reloc_count; ++i)
10372 {
10373 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10374 {
10375 insert_at = i;
10376 break;
10377 }
10378 }
10379
10380 if (*internal_relocs_p != relax_info->allocated_relocs
10381 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10382 {
10383 BFD_ASSERT (relax_info->allocated_relocs == NULL
10384 || sec->reloc_count == relax_info->relocs_count);
10385
10386 if (relax_info->allocated_relocs_count == 0)
10387 new_relocs_count = (sec->reloc_count + 2) * 2;
10388 else
10389 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10390
10391 new_relocs = (Elf_Internal_Rela *)
10392 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10393 if (!new_relocs)
10394 return FALSE;
10395
10396 /* We could handle this more quickly by finding the split point. */
10397 if (insert_at != 0)
10398 memcpy (new_relocs, *internal_relocs_p,
10399 insert_at * sizeof (Elf_Internal_Rela));
10400
10401 new_relocs[insert_at] = this_rela;
10402
10403 if (insert_at != sec->reloc_count)
10404 memcpy (new_relocs + insert_at + 1,
10405 (*internal_relocs_p) + insert_at,
10406 (sec->reloc_count - insert_at)
10407 * sizeof (Elf_Internal_Rela));
10408
10409 if (*internal_relocs_p != relax_info->allocated_relocs)
10410 {
10411 /* The first time we re-allocate, we can only free the
10412 old relocs if they were allocated with bfd_malloc.
10413 This is not true when keep_memory is in effect. */
10414 if (!link_info->keep_memory)
10415 free (*internal_relocs_p);
10416 }
10417 else
10418 free (*internal_relocs_p);
10419 relax_info->allocated_relocs = new_relocs;
10420 relax_info->allocated_relocs_count = new_relocs_count;
10421 elf_section_data (sec)->relocs = new_relocs;
10422 sec->reloc_count++;
10423 relax_info->relocs_count = sec->reloc_count;
10424 *internal_relocs_p = new_relocs;
10425 }
10426 else
10427 {
10428 if (insert_at != sec->reloc_count)
10429 {
10430 unsigned idx;
10431 for (idx = sec->reloc_count; idx > insert_at; idx--)
10432 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10433 }
10434 (*internal_relocs_p)[insert_at] = this_rela;
10435 sec->reloc_count++;
10436 if (relax_info->allocated_relocs)
10437 relax_info->relocs_count = sec->reloc_count;
10438 }
10439 }
10440 return TRUE;
10441 }
10442
10443
10444 /* This is similar to relax_section except that when a target is moved,
10445 we shift addresses up. We also need to modify the size. This
10446 algorithm does NOT allow for relocations into the middle of the
10447 property sections. */
10448
10449 static bfd_boolean
10450 relax_property_section (bfd *abfd,
10451 asection *sec,
10452 struct bfd_link_info *link_info)
10453 {
10454 Elf_Internal_Rela *internal_relocs;
10455 bfd_byte *contents;
10456 unsigned i;
10457 bfd_boolean ok = TRUE;
10458 bfd_boolean is_full_prop_section;
10459 size_t last_zfill_target_offset = 0;
10460 asection *last_zfill_target_sec = NULL;
10461 bfd_size_type sec_size;
10462 bfd_size_type entry_size;
10463
10464 sec_size = bfd_get_section_limit (abfd, sec);
10465 internal_relocs = retrieve_internal_relocs (abfd, sec,
10466 link_info->keep_memory);
10467 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10468 if (contents == NULL && sec_size != 0)
10469 {
10470 ok = FALSE;
10471 goto error_return;
10472 }
10473
10474 is_full_prop_section = xtensa_is_proptable_section (sec);
10475 if (is_full_prop_section)
10476 entry_size = 12;
10477 else
10478 entry_size = 8;
10479
10480 if (internal_relocs)
10481 {
10482 for (i = 0; i < sec->reloc_count; i++)
10483 {
10484 Elf_Internal_Rela *irel;
10485 xtensa_relax_info *target_relax_info;
10486 unsigned r_type;
10487 asection *target_sec;
10488 literal_value val;
10489 bfd_byte *size_p, *flags_p;
10490
10491 /* Locally change the source address.
10492 Translate the target to the new target address.
10493 If it points to this section and has been removed, MOVE IT.
10494 Also, don't forget to modify the associated SIZE at
10495 (offset + 4). */
10496
10497 irel = &internal_relocs[i];
10498 r_type = ELF32_R_TYPE (irel->r_info);
10499 if (r_type == R_XTENSA_NONE)
10500 continue;
10501
10502 /* Find the literal value. */
10503 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10504 size_p = &contents[irel->r_offset + 4];
10505 flags_p = NULL;
10506 if (is_full_prop_section)
10507 flags_p = &contents[irel->r_offset + 8];
10508 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10509
10510 target_sec = r_reloc_get_section (&val.r_rel);
10511 target_relax_info = get_xtensa_relax_info (target_sec);
10512
10513 if (target_relax_info
10514 && (target_relax_info->is_relaxable_literal_section
10515 || target_relax_info->is_relaxable_asm_section ))
10516 {
10517 /* Translate the relocation's destination. */
10518 bfd_vma old_offset = val.r_rel.target_offset;
10519 bfd_vma new_offset;
10520 long old_size, new_size;
10521 int removed_by_old_offset =
10522 removed_by_actions_map (&target_relax_info->action_list,
10523 old_offset, FALSE);
10524 new_offset = old_offset - removed_by_old_offset;
10525
10526 /* Assert that we are not out of bounds. */
10527 old_size = bfd_get_32 (abfd, size_p);
10528 new_size = old_size;
10529
10530 if (old_size == 0)
10531 {
10532 /* Only the first zero-sized unreachable entry is
10533 allowed to expand. In this case the new offset
10534 should be the offset before the fill and the new
10535 size is the expansion size. For other zero-sized
10536 entries the resulting size should be zero with an
10537 offset before or after the fill address depending
10538 on whether the expanding unreachable entry
10539 preceeds it. */
10540 if (last_zfill_target_sec == 0
10541 || last_zfill_target_sec != target_sec
10542 || last_zfill_target_offset != old_offset)
10543 {
10544 bfd_vma new_end_offset = new_offset;
10545
10546 /* Recompute the new_offset, but this time don't
10547 include any fill inserted by relaxation. */
10548 removed_by_old_offset =
10549 removed_by_actions_map (&target_relax_info->action_list,
10550 old_offset, TRUE);
10551 new_offset = old_offset - removed_by_old_offset;
10552
10553 /* If it is not unreachable and we have not yet
10554 seen an unreachable at this address, place it
10555 before the fill address. */
10556 if (flags_p && (bfd_get_32 (abfd, flags_p)
10557 & XTENSA_PROP_UNREACHABLE) != 0)
10558 {
10559 new_size = new_end_offset - new_offset;
10560
10561 last_zfill_target_sec = target_sec;
10562 last_zfill_target_offset = old_offset;
10563 }
10564 }
10565 }
10566 else
10567 {
10568 int removed_by_old_offset_size =
10569 removed_by_actions_map (&target_relax_info->action_list,
10570 old_offset + old_size, TRUE);
10571 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10572 }
10573
10574 if (new_size != old_size)
10575 {
10576 bfd_put_32 (abfd, new_size, size_p);
10577 pin_contents (sec, contents);
10578 }
10579
10580 if (new_offset != old_offset)
10581 {
10582 bfd_vma diff = new_offset - old_offset;
10583 irel->r_addend += diff;
10584 pin_internal_relocs (sec, internal_relocs);
10585 }
10586 }
10587 }
10588 }
10589
10590 /* Combine adjacent property table entries. This is also done in
10591 finish_dynamic_sections() but at that point it's too late to
10592 reclaim the space in the output section, so we do this twice. */
10593
10594 if (internal_relocs && (!bfd_link_relocatable (link_info)
10595 || xtensa_is_littable_section (sec)))
10596 {
10597 Elf_Internal_Rela *last_irel = NULL;
10598 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10599 int removed_bytes = 0;
10600 bfd_vma offset;
10601 flagword predef_flags;
10602
10603 predef_flags = xtensa_get_property_predef_flags (sec);
10604
10605 /* Walk over memory and relocations at the same time.
10606 This REQUIRES that the internal_relocs be sorted by offset. */
10607 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10608 internal_reloc_compare);
10609
10610 pin_internal_relocs (sec, internal_relocs);
10611 pin_contents (sec, contents);
10612
10613 next_rel = internal_relocs;
10614 rel_end = internal_relocs + sec->reloc_count;
10615
10616 BFD_ASSERT (sec->size % entry_size == 0);
10617
10618 for (offset = 0; offset < sec->size; offset += entry_size)
10619 {
10620 Elf_Internal_Rela *offset_rel, *extra_rel;
10621 bfd_vma bytes_to_remove, size, actual_offset;
10622 bfd_boolean remove_this_rel;
10623 flagword flags;
10624
10625 /* Find the first relocation for the entry at the current offset.
10626 Adjust the offsets of any extra relocations for the previous
10627 entry. */
10628 offset_rel = NULL;
10629 if (next_rel)
10630 {
10631 for (irel = next_rel; irel < rel_end; irel++)
10632 {
10633 if ((irel->r_offset == offset
10634 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10635 || irel->r_offset > offset)
10636 {
10637 offset_rel = irel;
10638 break;
10639 }
10640 irel->r_offset -= removed_bytes;
10641 }
10642 }
10643
10644 /* Find the next relocation (if there are any left). */
10645 extra_rel = NULL;
10646 if (offset_rel)
10647 {
10648 for (irel = offset_rel + 1; irel < rel_end; irel++)
10649 {
10650 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10651 {
10652 extra_rel = irel;
10653 break;
10654 }
10655 }
10656 }
10657
10658 /* Check if there are relocations on the current entry. There
10659 should usually be a relocation on the offset field. If there
10660 are relocations on the size or flags, then we can't optimize
10661 this entry. Also, find the next relocation to examine on the
10662 next iteration. */
10663 if (offset_rel)
10664 {
10665 if (offset_rel->r_offset >= offset + entry_size)
10666 {
10667 next_rel = offset_rel;
10668 /* There are no relocations on the current entry, but we
10669 might still be able to remove it if the size is zero. */
10670 offset_rel = NULL;
10671 }
10672 else if (offset_rel->r_offset > offset
10673 || (extra_rel
10674 && extra_rel->r_offset < offset + entry_size))
10675 {
10676 /* There is a relocation on the size or flags, so we can't
10677 do anything with this entry. Continue with the next. */
10678 next_rel = offset_rel;
10679 continue;
10680 }
10681 else
10682 {
10683 BFD_ASSERT (offset_rel->r_offset == offset);
10684 offset_rel->r_offset -= removed_bytes;
10685 next_rel = offset_rel + 1;
10686 }
10687 }
10688 else
10689 next_rel = NULL;
10690
10691 remove_this_rel = FALSE;
10692 bytes_to_remove = 0;
10693 actual_offset = offset - removed_bytes;
10694 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10695
10696 if (is_full_prop_section)
10697 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10698 else
10699 flags = predef_flags;
10700
10701 if (size == 0
10702 && (flags & XTENSA_PROP_ALIGN) == 0
10703 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10704 {
10705 /* Always remove entries with zero size and no alignment. */
10706 bytes_to_remove = entry_size;
10707 if (offset_rel)
10708 remove_this_rel = TRUE;
10709 }
10710 else if (offset_rel
10711 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10712 {
10713 if (last_irel)
10714 {
10715 flagword old_flags;
10716 bfd_vma old_size =
10717 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10718 bfd_vma old_address =
10719 (last_irel->r_addend
10720 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10721 bfd_vma new_address =
10722 (offset_rel->r_addend
10723 + bfd_get_32 (abfd, &contents[actual_offset]));
10724 if (is_full_prop_section)
10725 old_flags = bfd_get_32
10726 (abfd, &contents[last_irel->r_offset + 8]);
10727 else
10728 old_flags = predef_flags;
10729
10730 if ((ELF32_R_SYM (offset_rel->r_info)
10731 == ELF32_R_SYM (last_irel->r_info))
10732 && old_address + old_size == new_address
10733 && old_flags == flags
10734 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10735 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10736 {
10737 /* Fix the old size. */
10738 bfd_put_32 (abfd, old_size + size,
10739 &contents[last_irel->r_offset + 4]);
10740 bytes_to_remove = entry_size;
10741 remove_this_rel = TRUE;
10742 }
10743 else
10744 last_irel = offset_rel;
10745 }
10746 else
10747 last_irel = offset_rel;
10748 }
10749
10750 if (remove_this_rel)
10751 {
10752 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10753 offset_rel->r_offset = 0;
10754 }
10755
10756 if (bytes_to_remove != 0)
10757 {
10758 removed_bytes += bytes_to_remove;
10759 if (offset + bytes_to_remove < sec->size)
10760 memmove (&contents[actual_offset],
10761 &contents[actual_offset + bytes_to_remove],
10762 sec->size - offset - bytes_to_remove);
10763 }
10764 }
10765
10766 if (removed_bytes)
10767 {
10768 /* Fix up any extra relocations on the last entry. */
10769 for (irel = next_rel; irel < rel_end; irel++)
10770 irel->r_offset -= removed_bytes;
10771
10772 /* Clear the removed bytes. */
10773 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10774
10775 if (sec->rawsize == 0)
10776 sec->rawsize = sec->size;
10777 sec->size -= removed_bytes;
10778
10779 if (xtensa_is_littable_section (sec))
10780 {
10781 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10782 if (sgotloc)
10783 sgotloc->size -= removed_bytes;
10784 }
10785 }
10786 }
10787
10788 error_return:
10789 release_internal_relocs (sec, internal_relocs);
10790 release_contents (sec, contents);
10791 return ok;
10792 }
10793
10794 \f
10795 /* Third relaxation pass. */
10796
10797 /* Change symbol values to account for removed literals. */
10798
10799 bfd_boolean
10800 relax_section_symbols (bfd *abfd, asection *sec)
10801 {
10802 xtensa_relax_info *relax_info;
10803 unsigned int sec_shndx;
10804 Elf_Internal_Shdr *symtab_hdr;
10805 Elf_Internal_Sym *isymbuf;
10806 unsigned i, num_syms, num_locals;
10807
10808 relax_info = get_xtensa_relax_info (sec);
10809 BFD_ASSERT (relax_info);
10810
10811 if (!relax_info->is_relaxable_literal_section
10812 && !relax_info->is_relaxable_asm_section)
10813 return TRUE;
10814
10815 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10816
10817 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10818 isymbuf = retrieve_local_syms (abfd);
10819
10820 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10821 num_locals = symtab_hdr->sh_info;
10822
10823 /* Adjust the local symbols defined in this section. */
10824 for (i = 0; i < num_locals; i++)
10825 {
10826 Elf_Internal_Sym *isym = &isymbuf[i];
10827
10828 if (isym->st_shndx == sec_shndx)
10829 {
10830 bfd_vma orig_addr = isym->st_value;
10831 int removed = removed_by_actions_map (&relax_info->action_list,
10832 orig_addr, FALSE);
10833
10834 isym->st_value -= removed;
10835 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10836 isym->st_size -=
10837 removed_by_actions_map (&relax_info->action_list,
10838 orig_addr + isym->st_size, FALSE) -
10839 removed;
10840 }
10841 }
10842
10843 /* Now adjust the global symbols defined in this section. */
10844 for (i = 0; i < (num_syms - num_locals); i++)
10845 {
10846 struct elf_link_hash_entry *sym_hash;
10847
10848 sym_hash = elf_sym_hashes (abfd)[i];
10849
10850 if (sym_hash->root.type == bfd_link_hash_warning)
10851 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10852
10853 if ((sym_hash->root.type == bfd_link_hash_defined
10854 || sym_hash->root.type == bfd_link_hash_defweak)
10855 && sym_hash->root.u.def.section == sec)
10856 {
10857 bfd_vma orig_addr = sym_hash->root.u.def.value;
10858 int removed = removed_by_actions_map (&relax_info->action_list,
10859 orig_addr, FALSE);
10860
10861 sym_hash->root.u.def.value -= removed;
10862
10863 if (sym_hash->type == STT_FUNC)
10864 sym_hash->size -=
10865 removed_by_actions_map (&relax_info->action_list,
10866 orig_addr + sym_hash->size, FALSE) -
10867 removed;
10868 }
10869 }
10870
10871 return TRUE;
10872 }
10873
10874 \f
10875 /* "Fix" handling functions, called while performing relocations. */
10876
10877 static bfd_boolean
10878 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10879 bfd *input_bfd,
10880 asection *input_section,
10881 bfd_byte *contents)
10882 {
10883 r_reloc r_rel;
10884 asection *sec, *old_sec;
10885 bfd_vma old_offset;
10886 int r_type = ELF32_R_TYPE (rel->r_info);
10887 reloc_bfd_fix *fix;
10888
10889 if (r_type == R_XTENSA_NONE)
10890 return TRUE;
10891
10892 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10893 if (!fix)
10894 return TRUE;
10895
10896 r_reloc_init (&r_rel, input_bfd, rel, contents,
10897 bfd_get_section_limit (input_bfd, input_section));
10898 old_sec = r_reloc_get_section (&r_rel);
10899 old_offset = r_rel.target_offset;
10900
10901 if (!old_sec || !r_reloc_is_defined (&r_rel))
10902 {
10903 if (r_type != R_XTENSA_ASM_EXPAND)
10904 {
10905 _bfd_error_handler
10906 /* xgettext:c-format */
10907 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10908 input_bfd, input_section, (uint64_t) rel->r_offset,
10909 elf_howto_table[r_type].name);
10910 return FALSE;
10911 }
10912 /* Leave it be. Resolution will happen in a later stage. */
10913 }
10914 else
10915 {
10916 sec = fix->target_sec;
10917 rel->r_addend += ((sec->output_offset + fix->target_offset)
10918 - (old_sec->output_offset + old_offset));
10919 }
10920 return TRUE;
10921 }
10922
10923
10924 static void
10925 do_fix_for_final_link (Elf_Internal_Rela *rel,
10926 bfd *input_bfd,
10927 asection *input_section,
10928 bfd_byte *contents,
10929 bfd_vma *relocationp)
10930 {
10931 asection *sec;
10932 int r_type = ELF32_R_TYPE (rel->r_info);
10933 reloc_bfd_fix *fix;
10934 bfd_vma fixup_diff;
10935
10936 if (r_type == R_XTENSA_NONE)
10937 return;
10938
10939 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10940 if (!fix)
10941 return;
10942
10943 sec = fix->target_sec;
10944
10945 fixup_diff = rel->r_addend;
10946 if (elf_howto_table[fix->src_type].partial_inplace)
10947 {
10948 bfd_vma inplace_val;
10949 BFD_ASSERT (fix->src_offset
10950 < bfd_get_section_limit (input_bfd, input_section));
10951 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10952 fixup_diff += inplace_val;
10953 }
10954
10955 *relocationp = (sec->output_section->vma
10956 + sec->output_offset
10957 + fix->target_offset - fixup_diff);
10958 }
10959
10960 \f
10961 /* Miscellaneous utility functions.... */
10962
10963 static asection *
10964 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10965 {
10966 bfd *dynobj;
10967 char plt_name[17];
10968
10969 if (chunk == 0)
10970 return elf_hash_table (info)->splt;
10971
10972 dynobj = elf_hash_table (info)->dynobj;
10973 sprintf (plt_name, ".plt.%u", chunk);
10974 return bfd_get_linker_section (dynobj, plt_name);
10975 }
10976
10977
10978 static asection *
10979 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10980 {
10981 bfd *dynobj;
10982 char got_name[21];
10983
10984 if (chunk == 0)
10985 return elf_hash_table (info)->sgotplt;
10986
10987 dynobj = elf_hash_table (info)->dynobj;
10988 sprintf (got_name, ".got.plt.%u", chunk);
10989 return bfd_get_linker_section (dynobj, got_name);
10990 }
10991
10992
10993 /* Get the input section for a given symbol index.
10994 If the symbol is:
10995 . a section symbol, return the section;
10996 . a common symbol, return the common section;
10997 . an undefined symbol, return the undefined section;
10998 . an indirect symbol, follow the links;
10999 . an absolute value, return the absolute section. */
11000
11001 static asection *
11002 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
11003 {
11004 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11005 asection *target_sec = NULL;
11006 if (r_symndx < symtab_hdr->sh_info)
11007 {
11008 Elf_Internal_Sym *isymbuf;
11009 unsigned int section_index;
11010
11011 isymbuf = retrieve_local_syms (abfd);
11012 section_index = isymbuf[r_symndx].st_shndx;
11013
11014 if (section_index == SHN_UNDEF)
11015 target_sec = bfd_und_section_ptr;
11016 else if (section_index == SHN_ABS)
11017 target_sec = bfd_abs_section_ptr;
11018 else if (section_index == SHN_COMMON)
11019 target_sec = bfd_com_section_ptr;
11020 else
11021 target_sec = bfd_section_from_elf_index (abfd, section_index);
11022 }
11023 else
11024 {
11025 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11026 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
11027
11028 while (h->root.type == bfd_link_hash_indirect
11029 || h->root.type == bfd_link_hash_warning)
11030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11031
11032 switch (h->root.type)
11033 {
11034 case bfd_link_hash_defined:
11035 case bfd_link_hash_defweak:
11036 target_sec = h->root.u.def.section;
11037 break;
11038 case bfd_link_hash_common:
11039 target_sec = bfd_com_section_ptr;
11040 break;
11041 case bfd_link_hash_undefined:
11042 case bfd_link_hash_undefweak:
11043 target_sec = bfd_und_section_ptr;
11044 break;
11045 default: /* New indirect warning. */
11046 target_sec = bfd_und_section_ptr;
11047 break;
11048 }
11049 }
11050 return target_sec;
11051 }
11052
11053
11054 static struct elf_link_hash_entry *
11055 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
11056 {
11057 unsigned long indx;
11058 struct elf_link_hash_entry *h;
11059 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11060
11061 if (r_symndx < symtab_hdr->sh_info)
11062 return NULL;
11063
11064 indx = r_symndx - symtab_hdr->sh_info;
11065 h = elf_sym_hashes (abfd)[indx];
11066 while (h->root.type == bfd_link_hash_indirect
11067 || h->root.type == bfd_link_hash_warning)
11068 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11069 return h;
11070 }
11071
11072
11073 /* Get the section-relative offset for a symbol number. */
11074
11075 static bfd_vma
11076 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
11077 {
11078 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11079 bfd_vma offset = 0;
11080
11081 if (r_symndx < symtab_hdr->sh_info)
11082 {
11083 Elf_Internal_Sym *isymbuf;
11084 isymbuf = retrieve_local_syms (abfd);
11085 offset = isymbuf[r_symndx].st_value;
11086 }
11087 else
11088 {
11089 unsigned long indx = r_symndx - symtab_hdr->sh_info;
11090 struct elf_link_hash_entry *h =
11091 elf_sym_hashes (abfd)[indx];
11092
11093 while (h->root.type == bfd_link_hash_indirect
11094 || h->root.type == bfd_link_hash_warning)
11095 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11096 if (h->root.type == bfd_link_hash_defined
11097 || h->root.type == bfd_link_hash_defweak)
11098 offset = h->root.u.def.value;
11099 }
11100 return offset;
11101 }
11102
11103
11104 static bfd_boolean
11105 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
11106 {
11107 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
11108 struct elf_link_hash_entry *h;
11109
11110 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11111 if (h && h->root.type == bfd_link_hash_defweak)
11112 return TRUE;
11113 return FALSE;
11114 }
11115
11116
11117 static bfd_boolean
11118 pcrel_reloc_fits (xtensa_opcode opc,
11119 int opnd,
11120 bfd_vma self_address,
11121 bfd_vma dest_address)
11122 {
11123 xtensa_isa isa = xtensa_default_isa;
11124 uint32 valp = dest_address;
11125 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11126 || xtensa_operand_encode (isa, opc, opnd, &valp))
11127 return FALSE;
11128 return TRUE;
11129 }
11130
11131
11132 static bfd_boolean
11133 xtensa_is_property_section (asection *sec)
11134 {
11135 if (xtensa_is_insntable_section (sec)
11136 || xtensa_is_littable_section (sec)
11137 || xtensa_is_proptable_section (sec))
11138 return TRUE;
11139
11140 return FALSE;
11141 }
11142
11143
11144 static bfd_boolean
11145 xtensa_is_insntable_section (asection *sec)
11146 {
11147 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11148 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11149 return TRUE;
11150
11151 return FALSE;
11152 }
11153
11154
11155 static bfd_boolean
11156 xtensa_is_littable_section (asection *sec)
11157 {
11158 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11159 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11160 return TRUE;
11161
11162 return FALSE;
11163 }
11164
11165
11166 static bfd_boolean
11167 xtensa_is_proptable_section (asection *sec)
11168 {
11169 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11170 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11171 return TRUE;
11172
11173 return FALSE;
11174 }
11175
11176
11177 static int
11178 internal_reloc_compare (const void *ap, const void *bp)
11179 {
11180 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11181 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11182
11183 if (a->r_offset != b->r_offset)
11184 return (a->r_offset - b->r_offset);
11185
11186 /* We don't need to sort on these criteria for correctness,
11187 but enforcing a more strict ordering prevents unstable qsort
11188 from behaving differently with different implementations.
11189 Without the code below we get correct but different results
11190 on Solaris 2.7 and 2.8. We would like to always produce the
11191 same results no matter the host. */
11192
11193 if (a->r_info != b->r_info)
11194 return (a->r_info - b->r_info);
11195
11196 return (a->r_addend - b->r_addend);
11197 }
11198
11199
11200 static int
11201 internal_reloc_matches (const void *ap, const void *bp)
11202 {
11203 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11204 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11205
11206 /* Check if one entry overlaps with the other; this shouldn't happen
11207 except when searching for a match. */
11208 return (a->r_offset - b->r_offset);
11209 }
11210
11211
11212 /* Predicate function used to look up a section in a particular group. */
11213
11214 static bfd_boolean
11215 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11216 {
11217 const char *gname = inf;
11218 const char *group_name = elf_group_name (sec);
11219
11220 return (group_name == gname
11221 || (group_name != NULL
11222 && gname != NULL
11223 && strcmp (group_name, gname) == 0));
11224 }
11225
11226
11227 static char *
11228 xtensa_add_names (const char *base, const char *suffix)
11229 {
11230 if (suffix)
11231 {
11232 size_t base_len = strlen (base);
11233 size_t suffix_len = strlen (suffix);
11234 char *str = bfd_malloc (base_len + suffix_len + 1);
11235
11236 memcpy (str, base, base_len);
11237 memcpy (str + base_len, suffix, suffix_len + 1);
11238 return str;
11239 }
11240 else
11241 {
11242 return strdup (base);
11243 }
11244 }
11245
11246 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11247
11248 static char *
11249 xtensa_property_section_name (asection *sec, const char *base_name,
11250 bfd_boolean separate_sections)
11251 {
11252 const char *suffix, *group_name;
11253 char *prop_sec_name;
11254
11255 group_name = elf_group_name (sec);
11256 if (group_name)
11257 {
11258 suffix = strrchr (sec->name, '.');
11259 if (suffix == sec->name)
11260 suffix = 0;
11261 prop_sec_name = xtensa_add_names (base_name, suffix);
11262 }
11263 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11264 {
11265 char *linkonce_kind = 0;
11266
11267 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11268 linkonce_kind = "x.";
11269 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11270 linkonce_kind = "p.";
11271 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11272 linkonce_kind = "prop.";
11273 else
11274 abort ();
11275
11276 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11277 + strlen (linkonce_kind) + 1);
11278 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11279 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11280
11281 suffix = sec->name + linkonce_len;
11282 /* For backward compatibility, replace "t." instead of inserting
11283 the new linkonce_kind (but not for "prop" sections). */
11284 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11285 suffix += 2;
11286 strcat (prop_sec_name + linkonce_len, suffix);
11287 }
11288 else
11289 {
11290 prop_sec_name = xtensa_add_names (base_name,
11291 separate_sections ? sec->name : NULL);
11292 }
11293
11294 return prop_sec_name;
11295 }
11296
11297
11298 static asection *
11299 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11300 bfd_boolean separate_section)
11301 {
11302 char *prop_sec_name;
11303 asection *prop_sec;
11304
11305 prop_sec_name = xtensa_property_section_name (sec, base_name,
11306 separate_section);
11307 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11308 match_section_group,
11309 (void *) elf_group_name (sec));
11310 free (prop_sec_name);
11311 return prop_sec;
11312 }
11313
11314 static asection *
11315 xtensa_get_property_section (asection *sec, const char *base_name)
11316 {
11317 asection *prop_sec;
11318
11319 /* Try individual property section first. */
11320 prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11321
11322 /* Refer to a common property section if individual is not present. */
11323 if (!prop_sec)
11324 prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11325
11326 return prop_sec;
11327 }
11328
11329
11330 asection *
11331 xtensa_make_property_section (asection *sec, const char *base_name)
11332 {
11333 char *prop_sec_name;
11334 asection *prop_sec;
11335
11336 /* Check if the section already exists. */
11337 prop_sec_name = xtensa_property_section_name (sec, base_name,
11338 elf32xtensa_separate_props);
11339 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11340 match_section_group,
11341 (void *) elf_group_name (sec));
11342 /* If not, create it. */
11343 if (! prop_sec)
11344 {
11345 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11346 flags |= (bfd_section_flags (sec)
11347 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11348
11349 prop_sec = bfd_make_section_anyway_with_flags
11350 (sec->owner, strdup (prop_sec_name), flags);
11351 if (! prop_sec)
11352 return 0;
11353
11354 elf_group_name (prop_sec) = elf_group_name (sec);
11355 }
11356
11357 free (prop_sec_name);
11358 return prop_sec;
11359 }
11360
11361
11362 flagword
11363 xtensa_get_property_predef_flags (asection *sec)
11364 {
11365 if (xtensa_is_insntable_section (sec))
11366 return (XTENSA_PROP_INSN
11367 | XTENSA_PROP_NO_TRANSFORM
11368 | XTENSA_PROP_INSN_NO_REORDER);
11369
11370 if (xtensa_is_littable_section (sec))
11371 return (XTENSA_PROP_LITERAL
11372 | XTENSA_PROP_NO_TRANSFORM
11373 | XTENSA_PROP_INSN_NO_REORDER);
11374
11375 return 0;
11376 }
11377
11378 \f
11379 /* Other functions called directly by the linker. */
11380
11381 bfd_boolean
11382 xtensa_callback_required_dependence (bfd *abfd,
11383 asection *sec,
11384 struct bfd_link_info *link_info,
11385 deps_callback_t callback,
11386 void *closure)
11387 {
11388 Elf_Internal_Rela *internal_relocs;
11389 bfd_byte *contents;
11390 unsigned i;
11391 bfd_boolean ok = TRUE;
11392 bfd_size_type sec_size;
11393
11394 sec_size = bfd_get_section_limit (abfd, sec);
11395
11396 /* ".plt*" sections have no explicit relocations but they contain L32R
11397 instructions that reference the corresponding ".got.plt*" sections. */
11398 if ((sec->flags & SEC_LINKER_CREATED) != 0
11399 && CONST_STRNEQ (sec->name, ".plt"))
11400 {
11401 asection *sgotplt;
11402
11403 /* Find the corresponding ".got.plt*" section. */
11404 if (sec->name[4] == '\0')
11405 sgotplt = elf_hash_table (link_info)->sgotplt;
11406 else
11407 {
11408 char got_name[14];
11409 int chunk = 0;
11410
11411 BFD_ASSERT (sec->name[4] == '.');
11412 chunk = strtol (&sec->name[5], NULL, 10);
11413
11414 sprintf (got_name, ".got.plt.%u", chunk);
11415 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11416 }
11417 BFD_ASSERT (sgotplt);
11418
11419 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11420 section referencing a literal at the very beginning of
11421 ".got.plt". This is very close to the real dependence, anyway. */
11422 (*callback) (sec, sec_size, sgotplt, 0, closure);
11423 }
11424
11425 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11426 when building uclibc, which runs "ld -b binary /dev/null". */
11427 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11428 return ok;
11429
11430 internal_relocs = retrieve_internal_relocs (abfd, sec,
11431 link_info->keep_memory);
11432 if (internal_relocs == NULL
11433 || sec->reloc_count == 0)
11434 return ok;
11435
11436 /* Cache the contents for the duration of this scan. */
11437 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11438 if (contents == NULL && sec_size != 0)
11439 {
11440 ok = FALSE;
11441 goto error_return;
11442 }
11443
11444 if (!xtensa_default_isa)
11445 xtensa_default_isa = xtensa_isa_init (0, 0);
11446
11447 for (i = 0; i < sec->reloc_count; i++)
11448 {
11449 Elf_Internal_Rela *irel = &internal_relocs[i];
11450 if (is_l32r_relocation (abfd, sec, contents, irel))
11451 {
11452 r_reloc l32r_rel;
11453 asection *target_sec;
11454 bfd_vma target_offset;
11455
11456 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11457 target_sec = NULL;
11458 target_offset = 0;
11459 /* L32Rs must be local to the input file. */
11460 if (r_reloc_is_defined (&l32r_rel))
11461 {
11462 target_sec = r_reloc_get_section (&l32r_rel);
11463 target_offset = l32r_rel.target_offset;
11464 }
11465 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11466 closure);
11467 }
11468 }
11469
11470 error_return:
11471 release_internal_relocs (sec, internal_relocs);
11472 release_contents (sec, contents);
11473 return ok;
11474 }
11475
11476 /* The default literal sections should always be marked as "code" (i.e.,
11477 SHF_EXECINSTR). This is particularly important for the Linux kernel
11478 module loader so that the literals are not placed after the text. */
11479 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11480 {
11481 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11482 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11483 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11484 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11485 { NULL, 0, 0, 0, 0 }
11486 };
11487 \f
11488 #define ELF_TARGET_ID XTENSA_ELF_DATA
11489 #ifndef ELF_ARCH
11490 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11491 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11492 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11493 #define TARGET_BIG_NAME "elf32-xtensa-be"
11494 #define ELF_ARCH bfd_arch_xtensa
11495
11496 #define ELF_MACHINE_CODE EM_XTENSA
11497 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11498
11499 #define ELF_MAXPAGESIZE 0x1000
11500 #endif /* ELF_ARCH */
11501
11502 #define elf_backend_can_gc_sections 1
11503 #define elf_backend_can_refcount 1
11504 #define elf_backend_plt_readonly 1
11505 #define elf_backend_got_header_size 4
11506 #define elf_backend_want_dynbss 0
11507 #define elf_backend_want_got_plt 1
11508 #define elf_backend_dtrel_excludes_plt 1
11509
11510 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11511
11512 #define bfd_elf32_mkobject elf_xtensa_mkobject
11513
11514 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11515 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11516 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11517 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11518 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11519 #define bfd_elf32_bfd_reloc_name_lookup \
11520 elf_xtensa_reloc_name_lookup
11521 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11522 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11523
11524 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11525 #define elf_backend_check_relocs elf_xtensa_check_relocs
11526 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11527 #define elf_backend_discard_info elf_xtensa_discard_info
11528 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11529 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11530 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11531 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11532 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11533 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11534 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11535 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11536 #define elf_backend_object_p elf_xtensa_object_p
11537 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11538 #define elf_backend_relocate_section elf_xtensa_relocate_section
11539 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11540 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11541 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11542 #define elf_backend_special_sections elf_xtensa_special_sections
11543 #define elf_backend_action_discarded elf_xtensa_action_discarded
11544 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11545
11546 #include "elf32-target.h"