]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf32-xtensa.c
Copyright update for binutils
[thirdparty/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 extern asection *xtensa_make_property_section (asection *, const char *);
114 static flagword xtensa_get_property_predef_flags (asection *);
115
116 /* Other functions called directly by the linker. */
117
118 typedef void (*deps_callback_t)
119 (asection *, bfd_vma, asection *, bfd_vma, void *);
120 extern bfd_boolean xtensa_callback_required_dependence
121 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
122
123
124 /* Globally visible flag for choosing size optimization of NOP removal
125 instead of branch-target-aware minimization for NOP removal.
126 When nonzero, narrow all instructions and remove all NOPs possible
127 around longcall expansions. */
128
129 int elf32xtensa_size_opt;
130
131
132 /* The "new_section_hook" is used to set up a per-section
133 "xtensa_relax_info" data structure with additional information used
134 during relaxation. */
135
136 typedef struct xtensa_relax_info_struct xtensa_relax_info;
137
138
139 /* The GNU tools do not easily allow extending interfaces to pass around
140 the pointer to the Xtensa ISA information, so instead we add a global
141 variable here (in BFD) that can be used by any of the tools that need
142 this information. */
143
144 xtensa_isa xtensa_default_isa;
145
146
147 /* When this is true, relocations may have been modified to refer to
148 symbols from other input files. The per-section list of "fix"
149 records needs to be checked when resolving relocations. */
150
151 static bfd_boolean relaxing_section = FALSE;
152
153 /* When this is true, during final links, literals that cannot be
154 coalesced and their relocations may be moved to other sections. */
155
156 int elf32xtensa_no_literal_movement = 1;
157
158 /* Rename one of the generic section flags to better document how it
159 is used here. */
160 /* Whether relocations have been processed. */
161 #define reloc_done sec_flg0
162 \f
163 static reloc_howto_type elf_howto_table[] =
164 {
165 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
166 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
167 FALSE, 0, 0, FALSE),
168 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
169 bfd_elf_xtensa_reloc, "R_XTENSA_32",
170 TRUE, 0xffffffff, 0xffffffff, FALSE),
171
172 /* Replace a 32-bit value with a value from the runtime linker (only
173 used by linker-generated stub functions). The r_addend value is
174 special: 1 means to substitute a pointer to the runtime linker's
175 dynamic resolver function; 2 means to substitute the link map for
176 the shared object. */
177 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
178 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
179
180 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
181 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
182 FALSE, 0, 0xffffffff, FALSE),
183 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
184 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
185 FALSE, 0, 0xffffffff, FALSE),
186 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
187 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
188 FALSE, 0, 0xffffffff, FALSE),
189 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
190 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
191 FALSE, 0, 0xffffffff, FALSE),
192
193 EMPTY_HOWTO (7),
194
195 /* Old relocations for backward compatibility. */
196 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
197 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
198 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
199 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
200 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
202
203 /* Assembly auto-expansion. */
204 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
206 /* Relax assembly auto-expansion. */
207 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
208 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
209
210 EMPTY_HOWTO (13),
211
212 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
213 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
214 FALSE, 0, 0xffffffff, TRUE),
215
216 /* GNU extension to record C++ vtable hierarchy. */
217 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
218 NULL, "R_XTENSA_GNU_VTINHERIT",
219 FALSE, 0, 0, FALSE),
220 /* GNU extension to record C++ vtable member usage. */
221 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
223 FALSE, 0, 0, FALSE),
224
225 /* Relocations for supporting difference of symbols. */
226 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
227 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
228 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
229 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
230 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
231 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
232
233 /* General immediate operand relocations. */
234 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
235 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
236 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
237 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
238 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
240 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
242 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
244 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
246 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
248 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
250 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
252 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
254 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
256 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
258 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
260 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
262 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
264
265 /* "Alternate" relocations. The meaning of these is opcode-specific. */
266 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
268 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
269 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
270 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
272 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
274 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
276 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
278 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
280 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
282 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
284 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
286 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
288 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
290 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
292 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
294 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
296
297 /* TLS relocations. */
298 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
299 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
300 FALSE, 0, 0xffffffff, FALSE),
301 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
302 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
303 FALSE, 0, 0xffffffff, FALSE),
304 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
305 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
306 FALSE, 0, 0xffffffff, FALSE),
307 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
308 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
309 FALSE, 0, 0xffffffff, FALSE),
310 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
311 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
312 FALSE, 0, 0, FALSE),
313 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
314 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
315 FALSE, 0, 0, FALSE),
316 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
317 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
318 FALSE, 0, 0, FALSE),
319 };
320
321 #if DEBUG_GEN_RELOC
322 #define TRACE(str) \
323 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
324 #else
325 #define TRACE(str)
326 #endif
327
328 static reloc_howto_type *
329 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
330 bfd_reloc_code_real_type code)
331 {
332 switch (code)
333 {
334 case BFD_RELOC_NONE:
335 TRACE ("BFD_RELOC_NONE");
336 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
337
338 case BFD_RELOC_32:
339 TRACE ("BFD_RELOC_32");
340 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
341
342 case BFD_RELOC_32_PCREL:
343 TRACE ("BFD_RELOC_32_PCREL");
344 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
345
346 case BFD_RELOC_XTENSA_DIFF8:
347 TRACE ("BFD_RELOC_XTENSA_DIFF8");
348 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
349
350 case BFD_RELOC_XTENSA_DIFF16:
351 TRACE ("BFD_RELOC_XTENSA_DIFF16");
352 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
353
354 case BFD_RELOC_XTENSA_DIFF32:
355 TRACE ("BFD_RELOC_XTENSA_DIFF32");
356 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
357
358 case BFD_RELOC_XTENSA_RTLD:
359 TRACE ("BFD_RELOC_XTENSA_RTLD");
360 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
361
362 case BFD_RELOC_XTENSA_GLOB_DAT:
363 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
364 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
365
366 case BFD_RELOC_XTENSA_JMP_SLOT:
367 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
368 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
369
370 case BFD_RELOC_XTENSA_RELATIVE:
371 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
372 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
373
374 case BFD_RELOC_XTENSA_PLT:
375 TRACE ("BFD_RELOC_XTENSA_PLT");
376 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
377
378 case BFD_RELOC_XTENSA_OP0:
379 TRACE ("BFD_RELOC_XTENSA_OP0");
380 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
381
382 case BFD_RELOC_XTENSA_OP1:
383 TRACE ("BFD_RELOC_XTENSA_OP1");
384 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
385
386 case BFD_RELOC_XTENSA_OP2:
387 TRACE ("BFD_RELOC_XTENSA_OP2");
388 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
389
390 case BFD_RELOC_XTENSA_ASM_EXPAND:
391 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
392 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
393
394 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
395 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
396 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
397
398 case BFD_RELOC_VTABLE_INHERIT:
399 TRACE ("BFD_RELOC_VTABLE_INHERIT");
400 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
401
402 case BFD_RELOC_VTABLE_ENTRY:
403 TRACE ("BFD_RELOC_VTABLE_ENTRY");
404 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
405
406 case BFD_RELOC_XTENSA_TLSDESC_FN:
407 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
408 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
409
410 case BFD_RELOC_XTENSA_TLSDESC_ARG:
411 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
412 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
413
414 case BFD_RELOC_XTENSA_TLS_DTPOFF:
415 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
416 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
417
418 case BFD_RELOC_XTENSA_TLS_TPOFF:
419 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
420 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
421
422 case BFD_RELOC_XTENSA_TLS_FUNC:
423 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
424 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
425
426 case BFD_RELOC_XTENSA_TLS_ARG:
427 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
428 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
429
430 case BFD_RELOC_XTENSA_TLS_CALL:
431 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
432 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
433
434 default:
435 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
436 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
437 {
438 unsigned n = (R_XTENSA_SLOT0_OP +
439 (code - BFD_RELOC_XTENSA_SLOT0_OP));
440 return &elf_howto_table[n];
441 }
442
443 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
444 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
445 {
446 unsigned n = (R_XTENSA_SLOT0_ALT +
447 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
448 return &elf_howto_table[n];
449 }
450
451 break;
452 }
453
454 TRACE ("Unknown");
455 return NULL;
456 }
457
458 static reloc_howto_type *
459 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
460 const char *r_name)
461 {
462 unsigned int i;
463
464 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
465 if (elf_howto_table[i].name != NULL
466 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
467 return &elf_howto_table[i];
468
469 return NULL;
470 }
471
472
473 /* Given an ELF "rela" relocation, find the corresponding howto and record
474 it in the BFD internal arelent representation of the relocation. */
475
476 static void
477 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
478 arelent *cache_ptr,
479 Elf_Internal_Rela *dst)
480 {
481 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
482
483 if (r_type >= (unsigned int) R_XTENSA_max)
484 {
485 _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
486 r_type = 0;
487 }
488 cache_ptr->howto = &elf_howto_table[r_type];
489 }
490
491 \f
492 /* Functions for the Xtensa ELF linker. */
493
494 /* The name of the dynamic interpreter. This is put in the .interp
495 section. */
496
497 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
498
499 /* The size in bytes of an entry in the procedure linkage table.
500 (This does _not_ include the space for the literals associated with
501 the PLT entry.) */
502
503 #define PLT_ENTRY_SIZE 16
504
505 /* For _really_ large PLTs, we may need to alternate between literals
506 and code to keep the literals within the 256K range of the L32R
507 instructions in the code. It's unlikely that anyone would ever need
508 such a big PLT, but an arbitrary limit on the PLT size would be bad.
509 Thus, we split the PLT into chunks. Since there's very little
510 overhead (2 extra literals) for each chunk, the chunk size is kept
511 small so that the code for handling multiple chunks get used and
512 tested regularly. With 254 entries, there are 1K of literals for
513 each chunk, and that seems like a nice round number. */
514
515 #define PLT_ENTRIES_PER_CHUNK 254
516
517 /* PLT entries are actually used as stub functions for lazy symbol
518 resolution. Once the symbol is resolved, the stub function is never
519 invoked. Note: the 32-byte frame size used here cannot be changed
520 without a corresponding change in the runtime linker. */
521
522 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
523 {
524 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
525 0x6c, 0x10, 0x04, /* entry sp, 32 */
526 #endif
527 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
528 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
529 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
530 0x0a, 0x80, 0x00, /* jx a8 */
531 0 /* unused */
532 };
533
534 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
535 {
536 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
537 0x36, 0x41, 0x00, /* entry sp, 32 */
538 #endif
539 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0xa0, 0x08, 0x00, /* jx a8 */
543 0 /* unused */
544 };
545
546 /* The size of the thread control block. */
547 #define TCB_SIZE 8
548
549 struct elf_xtensa_link_hash_entry
550 {
551 struct elf_link_hash_entry elf;
552
553 bfd_signed_vma tlsfunc_refcount;
554
555 #define GOT_UNKNOWN 0
556 #define GOT_NORMAL 1
557 #define GOT_TLS_GD 2 /* global or local dynamic */
558 #define GOT_TLS_IE 4 /* initial or local exec */
559 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
560 unsigned char tls_type;
561 };
562
563 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
564
565 struct elf_xtensa_obj_tdata
566 {
567 struct elf_obj_tdata root;
568
569 /* tls_type for each local got entry. */
570 char *local_got_tls_type;
571
572 bfd_signed_vma *local_tlsfunc_refcounts;
573 };
574
575 #define elf_xtensa_tdata(abfd) \
576 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
577
578 #define elf_xtensa_local_got_tls_type(abfd) \
579 (elf_xtensa_tdata (abfd)->local_got_tls_type)
580
581 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
583
584 #define is_xtensa_elf(bfd) \
585 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586 && elf_tdata (bfd) != NULL \
587 && elf_object_id (bfd) == XTENSA_ELF_DATA)
588
589 static bfd_boolean
590 elf_xtensa_mkobject (bfd *abfd)
591 {
592 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
593 XTENSA_ELF_DATA);
594 }
595
596 /* Xtensa ELF linker hash table. */
597
598 struct elf_xtensa_link_hash_table
599 {
600 struct elf_link_hash_table elf;
601
602 /* Short-cuts to get to dynamic linker sections. */
603 asection *sgot;
604 asection *sgotplt;
605 asection *srelgot;
606 asection *splt;
607 asection *srelplt;
608 asection *sgotloc;
609 asection *spltlittbl;
610
611 /* Total count of PLT relocations seen during check_relocs.
612 The actual PLT code must be split into multiple sections and all
613 the sections have to be created before size_dynamic_sections,
614 where we figure out the exact number of PLT entries that will be
615 needed. It is OK if this count is an overestimate, e.g., some
616 relocations may be removed by GC. */
617 int plt_reloc_count;
618
619 struct elf_xtensa_link_hash_entry *tlsbase;
620 };
621
622 /* Get the Xtensa ELF linker hash table from a link_info structure. */
623
624 #define elf_xtensa_hash_table(p) \
625 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
626 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
627
628 /* Create an entry in an Xtensa ELF linker hash table. */
629
630 static struct bfd_hash_entry *
631 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
632 struct bfd_hash_table *table,
633 const char *string)
634 {
635 /* Allocate the structure if it has not already been allocated by a
636 subclass. */
637 if (entry == NULL)
638 {
639 entry = bfd_hash_allocate (table,
640 sizeof (struct elf_xtensa_link_hash_entry));
641 if (entry == NULL)
642 return entry;
643 }
644
645 /* Call the allocation method of the superclass. */
646 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
647 if (entry != NULL)
648 {
649 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
650 eh->tlsfunc_refcount = 0;
651 eh->tls_type = GOT_UNKNOWN;
652 }
653
654 return entry;
655 }
656
657 /* Create an Xtensa ELF linker hash table. */
658
659 static struct bfd_link_hash_table *
660 elf_xtensa_link_hash_table_create (bfd *abfd)
661 {
662 struct elf_link_hash_entry *tlsbase;
663 struct elf_xtensa_link_hash_table *ret;
664 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
665
666 ret = bfd_zmalloc (amt);
667 if (ret == NULL)
668 return NULL;
669
670 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
671 elf_xtensa_link_hash_newfunc,
672 sizeof (struct elf_xtensa_link_hash_entry),
673 XTENSA_ELF_DATA))
674 {
675 free (ret);
676 return NULL;
677 }
678
679 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
680 for it later. */
681 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
682 TRUE, FALSE, FALSE);
683 tlsbase->root.type = bfd_link_hash_new;
684 tlsbase->root.u.undef.abfd = NULL;
685 tlsbase->non_elf = 0;
686 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
687 ret->tlsbase->tls_type = GOT_UNKNOWN;
688
689 return &ret->elf.root;
690 }
691
692 /* Copy the extra info we tack onto an elf_link_hash_entry. */
693
694 static void
695 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
696 struct elf_link_hash_entry *dir,
697 struct elf_link_hash_entry *ind)
698 {
699 struct elf_xtensa_link_hash_entry *edir, *eind;
700
701 edir = elf_xtensa_hash_entry (dir);
702 eind = elf_xtensa_hash_entry (ind);
703
704 if (ind->root.type == bfd_link_hash_indirect)
705 {
706 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
707 eind->tlsfunc_refcount = 0;
708
709 if (dir->got.refcount <= 0)
710 {
711 edir->tls_type = eind->tls_type;
712 eind->tls_type = GOT_UNKNOWN;
713 }
714 }
715
716 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
717 }
718
719 static inline bfd_boolean
720 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
721 struct bfd_link_info *info)
722 {
723 /* Check if we should do dynamic things to this symbol. The
724 "ignore_protected" argument need not be set, because Xtensa code
725 does not require special handling of STV_PROTECTED to make function
726 pointer comparisons work properly. The PLT addresses are never
727 used for function pointers. */
728
729 return _bfd_elf_dynamic_symbol_p (h, info, 0);
730 }
731
732 \f
733 static int
734 property_table_compare (const void *ap, const void *bp)
735 {
736 const property_table_entry *a = (const property_table_entry *) ap;
737 const property_table_entry *b = (const property_table_entry *) bp;
738
739 if (a->address == b->address)
740 {
741 if (a->size != b->size)
742 return (a->size - b->size);
743
744 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
745 return ((b->flags & XTENSA_PROP_ALIGN)
746 - (a->flags & XTENSA_PROP_ALIGN));
747
748 if ((a->flags & XTENSA_PROP_ALIGN)
749 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
750 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
751 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
752 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
753
754 if ((a->flags & XTENSA_PROP_UNREACHABLE)
755 != (b->flags & XTENSA_PROP_UNREACHABLE))
756 return ((b->flags & XTENSA_PROP_UNREACHABLE)
757 - (a->flags & XTENSA_PROP_UNREACHABLE));
758
759 return (a->flags - b->flags);
760 }
761
762 return (a->address - b->address);
763 }
764
765
766 static int
767 property_table_matches (const void *ap, const void *bp)
768 {
769 const property_table_entry *a = (const property_table_entry *) ap;
770 const property_table_entry *b = (const property_table_entry *) bp;
771
772 /* Check if one entry overlaps with the other. */
773 if ((b->address >= a->address && b->address < (a->address + a->size))
774 || (a->address >= b->address && a->address < (b->address + b->size)))
775 return 0;
776
777 return (a->address - b->address);
778 }
779
780
781 /* Get the literal table or property table entries for the given
782 section. Sets TABLE_P and returns the number of entries. On
783 error, returns a negative value. */
784
785 static int
786 xtensa_read_table_entries (bfd *abfd,
787 asection *section,
788 property_table_entry **table_p,
789 const char *sec_name,
790 bfd_boolean output_addr)
791 {
792 asection *table_section;
793 bfd_size_type table_size = 0;
794 bfd_byte *table_data;
795 property_table_entry *blocks;
796 int blk, block_count;
797 bfd_size_type num_records;
798 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
799 bfd_vma section_addr, off;
800 flagword predef_flags;
801 bfd_size_type table_entry_size, section_limit;
802
803 if (!section
804 || !(section->flags & SEC_ALLOC)
805 || (section->flags & SEC_DEBUGGING))
806 {
807 *table_p = NULL;
808 return 0;
809 }
810
811 table_section = xtensa_get_property_section (section, sec_name);
812 if (table_section)
813 table_size = table_section->size;
814
815 if (table_size == 0)
816 {
817 *table_p = NULL;
818 return 0;
819 }
820
821 predef_flags = xtensa_get_property_predef_flags (table_section);
822 table_entry_size = 12;
823 if (predef_flags)
824 table_entry_size -= 4;
825
826 num_records = table_size / table_entry_size;
827 table_data = retrieve_contents (abfd, table_section, TRUE);
828 blocks = (property_table_entry *)
829 bfd_malloc (num_records * sizeof (property_table_entry));
830 block_count = 0;
831
832 if (output_addr)
833 section_addr = section->output_section->vma + section->output_offset;
834 else
835 section_addr = section->vma;
836
837 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
838 if (internal_relocs && !table_section->reloc_done)
839 {
840 qsort (internal_relocs, table_section->reloc_count,
841 sizeof (Elf_Internal_Rela), internal_reloc_compare);
842 irel = internal_relocs;
843 }
844 else
845 irel = NULL;
846
847 section_limit = bfd_get_section_limit (abfd, section);
848 rel_end = internal_relocs + table_section->reloc_count;
849
850 for (off = 0; off < table_size; off += table_entry_size)
851 {
852 bfd_vma address = bfd_get_32 (abfd, table_data + off);
853
854 /* Skip any relocations before the current offset. This should help
855 avoid confusion caused by unexpected relocations for the preceding
856 table entry. */
857 while (irel &&
858 (irel->r_offset < off
859 || (irel->r_offset == off
860 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
861 {
862 irel += 1;
863 if (irel >= rel_end)
864 irel = 0;
865 }
866
867 if (irel && irel->r_offset == off)
868 {
869 bfd_vma sym_off;
870 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
871 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
872
873 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
874 continue;
875
876 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
877 BFD_ASSERT (sym_off == 0);
878 address += (section_addr + sym_off + irel->r_addend);
879 }
880 else
881 {
882 if (address < section_addr
883 || address >= section_addr + section_limit)
884 continue;
885 }
886
887 blocks[block_count].address = address;
888 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
889 if (predef_flags)
890 blocks[block_count].flags = predef_flags;
891 else
892 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
893 block_count++;
894 }
895
896 release_contents (table_section, table_data);
897 release_internal_relocs (table_section, internal_relocs);
898
899 if (block_count > 0)
900 {
901 /* Now sort them into address order for easy reference. */
902 qsort (blocks, block_count, sizeof (property_table_entry),
903 property_table_compare);
904
905 /* Check that the table contents are valid. Problems may occur,
906 for example, if an unrelocated object file is stripped. */
907 for (blk = 1; blk < block_count; blk++)
908 {
909 /* The only circumstance where two entries may legitimately
910 have the same address is when one of them is a zero-size
911 placeholder to mark a place where fill can be inserted.
912 The zero-size entry should come first. */
913 if (blocks[blk - 1].address == blocks[blk].address &&
914 blocks[blk - 1].size != 0)
915 {
916 (*_bfd_error_handler) (_("%B(%A): invalid property table"),
917 abfd, section);
918 bfd_set_error (bfd_error_bad_value);
919 free (blocks);
920 return -1;
921 }
922 }
923 }
924
925 *table_p = blocks;
926 return block_count;
927 }
928
929
930 static property_table_entry *
931 elf_xtensa_find_property_entry (property_table_entry *property_table,
932 int property_table_size,
933 bfd_vma addr)
934 {
935 property_table_entry entry;
936 property_table_entry *rv;
937
938 if (property_table_size == 0)
939 return NULL;
940
941 entry.address = addr;
942 entry.size = 1;
943 entry.flags = 0;
944
945 rv = bsearch (&entry, property_table, property_table_size,
946 sizeof (property_table_entry), property_table_matches);
947 return rv;
948 }
949
950
951 static bfd_boolean
952 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
953 int lit_table_size,
954 bfd_vma addr)
955 {
956 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
957 return TRUE;
958
959 return FALSE;
960 }
961
962 \f
963 /* Look through the relocs for a section during the first phase, and
964 calculate needed space in the dynamic reloc sections. */
965
966 static bfd_boolean
967 elf_xtensa_check_relocs (bfd *abfd,
968 struct bfd_link_info *info,
969 asection *sec,
970 const Elf_Internal_Rela *relocs)
971 {
972 struct elf_xtensa_link_hash_table *htab;
973 Elf_Internal_Shdr *symtab_hdr;
974 struct elf_link_hash_entry **sym_hashes;
975 const Elf_Internal_Rela *rel;
976 const Elf_Internal_Rela *rel_end;
977
978 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
979 return TRUE;
980
981 BFD_ASSERT (is_xtensa_elf (abfd));
982
983 htab = elf_xtensa_hash_table (info);
984 if (htab == NULL)
985 return FALSE;
986
987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
988 sym_hashes = elf_sym_hashes (abfd);
989
990 rel_end = relocs + sec->reloc_count;
991 for (rel = relocs; rel < rel_end; rel++)
992 {
993 unsigned int r_type;
994 unsigned long r_symndx;
995 struct elf_link_hash_entry *h = NULL;
996 struct elf_xtensa_link_hash_entry *eh;
997 int tls_type, old_tls_type;
998 bfd_boolean is_got = FALSE;
999 bfd_boolean is_plt = FALSE;
1000 bfd_boolean is_tlsfunc = FALSE;
1001
1002 r_symndx = ELF32_R_SYM (rel->r_info);
1003 r_type = ELF32_R_TYPE (rel->r_info);
1004
1005 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1006 {
1007 (*_bfd_error_handler) (_("%B: bad symbol index: %d"),
1008 abfd, r_symndx);
1009 return FALSE;
1010 }
1011
1012 if (r_symndx >= symtab_hdr->sh_info)
1013 {
1014 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1015 while (h->root.type == bfd_link_hash_indirect
1016 || h->root.type == bfd_link_hash_warning)
1017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1018
1019 /* PR15323, ref flags aren't set for references in the same
1020 object. */
1021 h->root.non_ir_ref = 1;
1022 }
1023 eh = elf_xtensa_hash_entry (h);
1024
1025 switch (r_type)
1026 {
1027 case R_XTENSA_TLSDESC_FN:
1028 if (bfd_link_pic (info))
1029 {
1030 tls_type = GOT_TLS_GD;
1031 is_got = TRUE;
1032 is_tlsfunc = TRUE;
1033 }
1034 else
1035 tls_type = GOT_TLS_IE;
1036 break;
1037
1038 case R_XTENSA_TLSDESC_ARG:
1039 if (bfd_link_pic (info))
1040 {
1041 tls_type = GOT_TLS_GD;
1042 is_got = TRUE;
1043 }
1044 else
1045 {
1046 tls_type = GOT_TLS_IE;
1047 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1048 is_got = TRUE;
1049 }
1050 break;
1051
1052 case R_XTENSA_TLS_DTPOFF:
1053 if (bfd_link_pic (info))
1054 tls_type = GOT_TLS_GD;
1055 else
1056 tls_type = GOT_TLS_IE;
1057 break;
1058
1059 case R_XTENSA_TLS_TPOFF:
1060 tls_type = GOT_TLS_IE;
1061 if (bfd_link_pic (info))
1062 info->flags |= DF_STATIC_TLS;
1063 if (bfd_link_pic (info) || h)
1064 is_got = TRUE;
1065 break;
1066
1067 case R_XTENSA_32:
1068 tls_type = GOT_NORMAL;
1069 is_got = TRUE;
1070 break;
1071
1072 case R_XTENSA_PLT:
1073 tls_type = GOT_NORMAL;
1074 is_plt = TRUE;
1075 break;
1076
1077 case R_XTENSA_GNU_VTINHERIT:
1078 /* This relocation describes the C++ object vtable hierarchy.
1079 Reconstruct it for later use during GC. */
1080 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1081 return FALSE;
1082 continue;
1083
1084 case R_XTENSA_GNU_VTENTRY:
1085 /* This relocation describes which C++ vtable entries are actually
1086 used. Record for later use during GC. */
1087 BFD_ASSERT (h != NULL);
1088 if (h != NULL
1089 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1090 return FALSE;
1091 continue;
1092
1093 default:
1094 /* Nothing to do for any other relocations. */
1095 continue;
1096 }
1097
1098 if (h)
1099 {
1100 if (is_plt)
1101 {
1102 if (h->plt.refcount <= 0)
1103 {
1104 h->needs_plt = 1;
1105 h->plt.refcount = 1;
1106 }
1107 else
1108 h->plt.refcount += 1;
1109
1110 /* Keep track of the total PLT relocation count even if we
1111 don't yet know whether the dynamic sections will be
1112 created. */
1113 htab->plt_reloc_count += 1;
1114
1115 if (elf_hash_table (info)->dynamic_sections_created)
1116 {
1117 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1118 return FALSE;
1119 }
1120 }
1121 else if (is_got)
1122 {
1123 if (h->got.refcount <= 0)
1124 h->got.refcount = 1;
1125 else
1126 h->got.refcount += 1;
1127 }
1128
1129 if (is_tlsfunc)
1130 eh->tlsfunc_refcount += 1;
1131
1132 old_tls_type = eh->tls_type;
1133 }
1134 else
1135 {
1136 /* Allocate storage the first time. */
1137 if (elf_local_got_refcounts (abfd) == NULL)
1138 {
1139 bfd_size_type size = symtab_hdr->sh_info;
1140 void *mem;
1141
1142 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1143 if (mem == NULL)
1144 return FALSE;
1145 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1146
1147 mem = bfd_zalloc (abfd, size);
1148 if (mem == NULL)
1149 return FALSE;
1150 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1151
1152 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1153 if (mem == NULL)
1154 return FALSE;
1155 elf_xtensa_local_tlsfunc_refcounts (abfd)
1156 = (bfd_signed_vma *) mem;
1157 }
1158
1159 /* This is a global offset table entry for a local symbol. */
1160 if (is_got || is_plt)
1161 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1162
1163 if (is_tlsfunc)
1164 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1165
1166 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1167 }
1168
1169 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1170 tls_type |= old_tls_type;
1171 /* If a TLS symbol is accessed using IE at least once,
1172 there is no point to use a dynamic model for it. */
1173 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1174 && ((old_tls_type & GOT_TLS_GD) == 0
1175 || (tls_type & GOT_TLS_IE) == 0))
1176 {
1177 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1178 tls_type = old_tls_type;
1179 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1180 tls_type |= old_tls_type;
1181 else
1182 {
1183 (*_bfd_error_handler)
1184 (_("%B: `%s' accessed both as normal and thread local symbol"),
1185 abfd,
1186 h ? h->root.root.string : "<local>");
1187 return FALSE;
1188 }
1189 }
1190
1191 if (old_tls_type != tls_type)
1192 {
1193 if (eh)
1194 eh->tls_type = tls_type;
1195 else
1196 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1197 }
1198 }
1199
1200 return TRUE;
1201 }
1202
1203
1204 static void
1205 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1206 struct elf_link_hash_entry *h)
1207 {
1208 if (bfd_link_pic (info))
1209 {
1210 if (h->plt.refcount > 0)
1211 {
1212 /* For shared objects, there's no need for PLT entries for local
1213 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1214 if (h->got.refcount < 0)
1215 h->got.refcount = 0;
1216 h->got.refcount += h->plt.refcount;
1217 h->plt.refcount = 0;
1218 }
1219 }
1220 else
1221 {
1222 /* Don't need any dynamic relocations at all. */
1223 h->plt.refcount = 0;
1224 h->got.refcount = 0;
1225 }
1226 }
1227
1228
1229 static void
1230 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1231 struct elf_link_hash_entry *h,
1232 bfd_boolean force_local)
1233 {
1234 /* For a shared link, move the plt refcount to the got refcount to leave
1235 space for RELATIVE relocs. */
1236 elf_xtensa_make_sym_local (info, h);
1237
1238 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1239 }
1240
1241
1242 /* Return the section that should be marked against GC for a given
1243 relocation. */
1244
1245 static asection *
1246 elf_xtensa_gc_mark_hook (asection *sec,
1247 struct bfd_link_info *info,
1248 Elf_Internal_Rela *rel,
1249 struct elf_link_hash_entry *h,
1250 Elf_Internal_Sym *sym)
1251 {
1252 /* Property sections are marked "KEEP" in the linker scripts, but they
1253 should not cause other sections to be marked. (This approach relies
1254 on elf_xtensa_discard_info to remove property table entries that
1255 describe discarded sections. Alternatively, it might be more
1256 efficient to avoid using "KEEP" in the linker scripts and instead use
1257 the gc_mark_extra_sections hook to mark only the property sections
1258 that describe marked sections. That alternative does not work well
1259 with the current property table sections, which do not correspond
1260 one-to-one with the sections they describe, but that should be fixed
1261 someday.) */
1262 if (xtensa_is_property_section (sec))
1263 return NULL;
1264
1265 if (h != NULL)
1266 switch (ELF32_R_TYPE (rel->r_info))
1267 {
1268 case R_XTENSA_GNU_VTINHERIT:
1269 case R_XTENSA_GNU_VTENTRY:
1270 return NULL;
1271 }
1272
1273 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1274 }
1275
1276
1277 /* Update the GOT & PLT entry reference counts
1278 for the section being removed. */
1279
1280 static bfd_boolean
1281 elf_xtensa_gc_sweep_hook (bfd *abfd,
1282 struct bfd_link_info *info,
1283 asection *sec,
1284 const Elf_Internal_Rela *relocs)
1285 {
1286 Elf_Internal_Shdr *symtab_hdr;
1287 struct elf_link_hash_entry **sym_hashes;
1288 const Elf_Internal_Rela *rel, *relend;
1289 struct elf_xtensa_link_hash_table *htab;
1290
1291 htab = elf_xtensa_hash_table (info);
1292 if (htab == NULL)
1293 return FALSE;
1294
1295 if (bfd_link_relocatable (info))
1296 return TRUE;
1297
1298 if ((sec->flags & SEC_ALLOC) == 0)
1299 return TRUE;
1300
1301 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1302 sym_hashes = elf_sym_hashes (abfd);
1303
1304 relend = relocs + sec->reloc_count;
1305 for (rel = relocs; rel < relend; rel++)
1306 {
1307 unsigned long r_symndx;
1308 unsigned int r_type;
1309 struct elf_link_hash_entry *h = NULL;
1310 struct elf_xtensa_link_hash_entry *eh;
1311 bfd_boolean is_got = FALSE;
1312 bfd_boolean is_plt = FALSE;
1313 bfd_boolean is_tlsfunc = FALSE;
1314
1315 r_symndx = ELF32_R_SYM (rel->r_info);
1316 if (r_symndx >= symtab_hdr->sh_info)
1317 {
1318 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1319 while (h->root.type == bfd_link_hash_indirect
1320 || h->root.type == bfd_link_hash_warning)
1321 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1322 }
1323 eh = elf_xtensa_hash_entry (h);
1324
1325 r_type = ELF32_R_TYPE (rel->r_info);
1326 switch (r_type)
1327 {
1328 case R_XTENSA_TLSDESC_FN:
1329 if (bfd_link_pic (info))
1330 {
1331 is_got = TRUE;
1332 is_tlsfunc = TRUE;
1333 }
1334 break;
1335
1336 case R_XTENSA_TLSDESC_ARG:
1337 if (bfd_link_pic (info))
1338 is_got = TRUE;
1339 else
1340 {
1341 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1342 is_got = TRUE;
1343 }
1344 break;
1345
1346 case R_XTENSA_TLS_TPOFF:
1347 if (bfd_link_pic (info) || h)
1348 is_got = TRUE;
1349 break;
1350
1351 case R_XTENSA_32:
1352 is_got = TRUE;
1353 break;
1354
1355 case R_XTENSA_PLT:
1356 is_plt = TRUE;
1357 break;
1358
1359 default:
1360 continue;
1361 }
1362
1363 if (h)
1364 {
1365 if (is_plt)
1366 {
1367 /* If the symbol has been localized its plt.refcount got moved
1368 to got.refcount. Handle it as GOT. */
1369 if (h->plt.refcount > 0)
1370 h->plt.refcount--;
1371 else
1372 is_got = TRUE;
1373 }
1374 if (is_got)
1375 {
1376 if (h->got.refcount > 0)
1377 h->got.refcount--;
1378 }
1379 if (is_tlsfunc)
1380 {
1381 if (eh->tlsfunc_refcount > 0)
1382 eh->tlsfunc_refcount--;
1383 }
1384 }
1385 else
1386 {
1387 if (is_got || is_plt)
1388 {
1389 bfd_signed_vma *got_refcount
1390 = &elf_local_got_refcounts (abfd) [r_symndx];
1391 if (*got_refcount > 0)
1392 *got_refcount -= 1;
1393 }
1394 if (is_tlsfunc)
1395 {
1396 bfd_signed_vma *tlsfunc_refcount
1397 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1398 if (*tlsfunc_refcount > 0)
1399 *tlsfunc_refcount -= 1;
1400 }
1401 }
1402 }
1403
1404 return TRUE;
1405 }
1406
1407
1408 /* Create all the dynamic sections. */
1409
1410 static bfd_boolean
1411 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1412 {
1413 struct elf_xtensa_link_hash_table *htab;
1414 flagword flags, noalloc_flags;
1415
1416 htab = elf_xtensa_hash_table (info);
1417 if (htab == NULL)
1418 return FALSE;
1419
1420 /* First do all the standard stuff. */
1421 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1422 return FALSE;
1423 htab->splt = bfd_get_linker_section (dynobj, ".plt");
1424 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt");
1425 htab->sgot = bfd_get_linker_section (dynobj, ".got");
1426 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
1427 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got");
1428
1429 /* Create any extra PLT sections in case check_relocs has already
1430 been called on all the non-dynamic input files. */
1431 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1432 return FALSE;
1433
1434 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1435 | SEC_LINKER_CREATED | SEC_READONLY);
1436 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1437
1438 /* Mark the ".got.plt" section READONLY. */
1439 if (htab->sgotplt == NULL
1440 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags))
1441 return FALSE;
1442
1443 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1444 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1445 flags);
1446 if (htab->sgotloc == NULL
1447 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1448 return FALSE;
1449
1450 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1451 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1452 noalloc_flags);
1453 if (htab->spltlittbl == NULL
1454 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1455 return FALSE;
1456
1457 return TRUE;
1458 }
1459
1460
1461 static bfd_boolean
1462 add_extra_plt_sections (struct bfd_link_info *info, int count)
1463 {
1464 bfd *dynobj = elf_hash_table (info)->dynobj;
1465 int chunk;
1466
1467 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1468 ".got.plt" sections. */
1469 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1470 {
1471 char *sname;
1472 flagword flags;
1473 asection *s;
1474
1475 /* Stop when we find a section has already been created. */
1476 if (elf_xtensa_get_plt_section (info, chunk))
1477 break;
1478
1479 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1480 | SEC_LINKER_CREATED | SEC_READONLY);
1481
1482 sname = (char *) bfd_malloc (10);
1483 sprintf (sname, ".plt.%u", chunk);
1484 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1485 if (s == NULL
1486 || ! bfd_set_section_alignment (dynobj, s, 2))
1487 return FALSE;
1488
1489 sname = (char *) bfd_malloc (14);
1490 sprintf (sname, ".got.plt.%u", chunk);
1491 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1492 if (s == NULL
1493 || ! bfd_set_section_alignment (dynobj, s, 2))
1494 return FALSE;
1495 }
1496
1497 return TRUE;
1498 }
1499
1500
1501 /* Adjust a symbol defined by a dynamic object and referenced by a
1502 regular object. The current definition is in some section of the
1503 dynamic object, but we're not including those sections. We have to
1504 change the definition to something the rest of the link can
1505 understand. */
1506
1507 static bfd_boolean
1508 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1509 struct elf_link_hash_entry *h)
1510 {
1511 /* If this is a weak symbol, and there is a real definition, the
1512 processor independent code will have arranged for us to see the
1513 real definition first, and we can just use the same value. */
1514 if (h->u.weakdef)
1515 {
1516 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1517 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1518 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1519 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1520 return TRUE;
1521 }
1522
1523 /* This is a reference to a symbol defined by a dynamic object. The
1524 reference must go through the GOT, so there's no need for COPY relocs,
1525 .dynbss, etc. */
1526
1527 return TRUE;
1528 }
1529
1530
1531 static bfd_boolean
1532 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1533 {
1534 struct bfd_link_info *info;
1535 struct elf_xtensa_link_hash_table *htab;
1536 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1537
1538 if (h->root.type == bfd_link_hash_indirect)
1539 return TRUE;
1540
1541 info = (struct bfd_link_info *) arg;
1542 htab = elf_xtensa_hash_table (info);
1543 if (htab == NULL)
1544 return FALSE;
1545
1546 /* If we saw any use of an IE model for this symbol, we can then optimize
1547 away GOT entries for any TLSDESC_FN relocs. */
1548 if ((eh->tls_type & GOT_TLS_IE) != 0)
1549 {
1550 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1551 h->got.refcount -= eh->tlsfunc_refcount;
1552 }
1553
1554 if (! elf_xtensa_dynamic_symbol_p (h, info))
1555 elf_xtensa_make_sym_local (info, h);
1556
1557 if (h->plt.refcount > 0)
1558 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1559
1560 if (h->got.refcount > 0)
1561 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1562
1563 return TRUE;
1564 }
1565
1566
1567 static void
1568 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1569 {
1570 struct elf_xtensa_link_hash_table *htab;
1571 bfd *i;
1572
1573 htab = elf_xtensa_hash_table (info);
1574 if (htab == NULL)
1575 return;
1576
1577 for (i = info->input_bfds; i; i = i->link.next)
1578 {
1579 bfd_signed_vma *local_got_refcounts;
1580 bfd_size_type j, cnt;
1581 Elf_Internal_Shdr *symtab_hdr;
1582
1583 local_got_refcounts = elf_local_got_refcounts (i);
1584 if (!local_got_refcounts)
1585 continue;
1586
1587 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1588 cnt = symtab_hdr->sh_info;
1589
1590 for (j = 0; j < cnt; ++j)
1591 {
1592 /* If we saw any use of an IE model for this symbol, we can
1593 then optimize away GOT entries for any TLSDESC_FN relocs. */
1594 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1595 {
1596 bfd_signed_vma *tlsfunc_refcount
1597 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1598 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1599 local_got_refcounts[j] -= *tlsfunc_refcount;
1600 }
1601
1602 if (local_got_refcounts[j] > 0)
1603 htab->srelgot->size += (local_got_refcounts[j]
1604 * sizeof (Elf32_External_Rela));
1605 }
1606 }
1607 }
1608
1609
1610 /* Set the sizes of the dynamic sections. */
1611
1612 static bfd_boolean
1613 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1614 struct bfd_link_info *info)
1615 {
1616 struct elf_xtensa_link_hash_table *htab;
1617 bfd *dynobj, *abfd;
1618 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1619 bfd_boolean relplt, relgot;
1620 int plt_entries, plt_chunks, chunk;
1621
1622 plt_entries = 0;
1623 plt_chunks = 0;
1624
1625 htab = elf_xtensa_hash_table (info);
1626 if (htab == NULL)
1627 return FALSE;
1628
1629 dynobj = elf_hash_table (info)->dynobj;
1630 if (dynobj == NULL)
1631 abort ();
1632 srelgot = htab->srelgot;
1633 srelplt = htab->srelplt;
1634
1635 if (elf_hash_table (info)->dynamic_sections_created)
1636 {
1637 BFD_ASSERT (htab->srelgot != NULL
1638 && htab->srelplt != NULL
1639 && htab->sgot != NULL
1640 && htab->spltlittbl != NULL
1641 && htab->sgotloc != NULL);
1642
1643 /* Set the contents of the .interp section to the interpreter. */
1644 if (bfd_link_executable (info) && !info->nointerp)
1645 {
1646 s = bfd_get_linker_section (dynobj, ".interp");
1647 if (s == NULL)
1648 abort ();
1649 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1650 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1651 }
1652
1653 /* Allocate room for one word in ".got". */
1654 htab->sgot->size = 4;
1655
1656 /* Allocate space in ".rela.got" for literals that reference global
1657 symbols and space in ".rela.plt" for literals that have PLT
1658 entries. */
1659 elf_link_hash_traverse (elf_hash_table (info),
1660 elf_xtensa_allocate_dynrelocs,
1661 (void *) info);
1662
1663 /* If we are generating a shared object, we also need space in
1664 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1665 reference local symbols. */
1666 if (bfd_link_pic (info))
1667 elf_xtensa_allocate_local_got_size (info);
1668
1669 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1670 each PLT entry, we need the PLT code plus a 4-byte literal.
1671 For each chunk of ".plt", we also need two more 4-byte
1672 literals, two corresponding entries in ".rela.got", and an
1673 8-byte entry in ".xt.lit.plt". */
1674 spltlittbl = htab->spltlittbl;
1675 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1676 plt_chunks =
1677 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1678
1679 /* Iterate over all the PLT chunks, including any extra sections
1680 created earlier because the initial count of PLT relocations
1681 was an overestimate. */
1682 for (chunk = 0;
1683 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1684 chunk++)
1685 {
1686 int chunk_entries;
1687
1688 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1689 BFD_ASSERT (sgotplt != NULL);
1690
1691 if (chunk < plt_chunks - 1)
1692 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1693 else if (chunk == plt_chunks - 1)
1694 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1695 else
1696 chunk_entries = 0;
1697
1698 if (chunk_entries != 0)
1699 {
1700 sgotplt->size = 4 * (chunk_entries + 2);
1701 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1702 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1703 spltlittbl->size += 8;
1704 }
1705 else
1706 {
1707 sgotplt->size = 0;
1708 splt->size = 0;
1709 }
1710 }
1711
1712 /* Allocate space in ".got.loc" to match the total size of all the
1713 literal tables. */
1714 sgotloc = htab->sgotloc;
1715 sgotloc->size = spltlittbl->size;
1716 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1717 {
1718 if (abfd->flags & DYNAMIC)
1719 continue;
1720 for (s = abfd->sections; s != NULL; s = s->next)
1721 {
1722 if (! discarded_section (s)
1723 && xtensa_is_littable_section (s)
1724 && s != spltlittbl)
1725 sgotloc->size += s->size;
1726 }
1727 }
1728 }
1729
1730 /* Allocate memory for dynamic sections. */
1731 relplt = FALSE;
1732 relgot = FALSE;
1733 for (s = dynobj->sections; s != NULL; s = s->next)
1734 {
1735 const char *name;
1736
1737 if ((s->flags & SEC_LINKER_CREATED) == 0)
1738 continue;
1739
1740 /* It's OK to base decisions on the section name, because none
1741 of the dynobj section names depend upon the input files. */
1742 name = bfd_get_section_name (dynobj, s);
1743
1744 if (CONST_STRNEQ (name, ".rela"))
1745 {
1746 if (s->size != 0)
1747 {
1748 if (strcmp (name, ".rela.plt") == 0)
1749 relplt = TRUE;
1750 else if (strcmp (name, ".rela.got") == 0)
1751 relgot = TRUE;
1752
1753 /* We use the reloc_count field as a counter if we need
1754 to copy relocs into the output file. */
1755 s->reloc_count = 0;
1756 }
1757 }
1758 else if (! CONST_STRNEQ (name, ".plt.")
1759 && ! CONST_STRNEQ (name, ".got.plt.")
1760 && strcmp (name, ".got") != 0
1761 && strcmp (name, ".plt") != 0
1762 && strcmp (name, ".got.plt") != 0
1763 && strcmp (name, ".xt.lit.plt") != 0
1764 && strcmp (name, ".got.loc") != 0)
1765 {
1766 /* It's not one of our sections, so don't allocate space. */
1767 continue;
1768 }
1769
1770 if (s->size == 0)
1771 {
1772 /* If we don't need this section, strip it from the output
1773 file. We must create the ".plt*" and ".got.plt*"
1774 sections in create_dynamic_sections and/or check_relocs
1775 based on a conservative estimate of the PLT relocation
1776 count, because the sections must be created before the
1777 linker maps input sections to output sections. The
1778 linker does that before size_dynamic_sections, where we
1779 compute the exact size of the PLT, so there may be more
1780 of these sections than are actually needed. */
1781 s->flags |= SEC_EXCLUDE;
1782 }
1783 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1784 {
1785 /* Allocate memory for the section contents. */
1786 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1787 if (s->contents == NULL)
1788 return FALSE;
1789 }
1790 }
1791
1792 if (elf_hash_table (info)->dynamic_sections_created)
1793 {
1794 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1795 known until finish_dynamic_sections, but we need to get the relocs
1796 in place before they are sorted. */
1797 for (chunk = 0; chunk < plt_chunks; chunk++)
1798 {
1799 Elf_Internal_Rela irela;
1800 bfd_byte *loc;
1801
1802 irela.r_offset = 0;
1803 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1804 irela.r_addend = 0;
1805
1806 loc = (srelgot->contents
1807 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1808 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1809 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1810 loc + sizeof (Elf32_External_Rela));
1811 srelgot->reloc_count += 2;
1812 }
1813
1814 /* Add some entries to the .dynamic section. We fill in the
1815 values later, in elf_xtensa_finish_dynamic_sections, but we
1816 must add the entries now so that we get the correct size for
1817 the .dynamic section. The DT_DEBUG entry is filled in by the
1818 dynamic linker and used by the debugger. */
1819 #define add_dynamic_entry(TAG, VAL) \
1820 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1821
1822 if (bfd_link_executable (info))
1823 {
1824 if (!add_dynamic_entry (DT_DEBUG, 0))
1825 return FALSE;
1826 }
1827
1828 if (relplt)
1829 {
1830 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1831 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1832 || !add_dynamic_entry (DT_JMPREL, 0))
1833 return FALSE;
1834 }
1835
1836 if (relgot)
1837 {
1838 if (!add_dynamic_entry (DT_RELA, 0)
1839 || !add_dynamic_entry (DT_RELASZ, 0)
1840 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1841 return FALSE;
1842 }
1843
1844 if (!add_dynamic_entry (DT_PLTGOT, 0)
1845 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1846 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1847 return FALSE;
1848 }
1849 #undef add_dynamic_entry
1850
1851 return TRUE;
1852 }
1853
1854 static bfd_boolean
1855 elf_xtensa_always_size_sections (bfd *output_bfd,
1856 struct bfd_link_info *info)
1857 {
1858 struct elf_xtensa_link_hash_table *htab;
1859 asection *tls_sec;
1860
1861 htab = elf_xtensa_hash_table (info);
1862 if (htab == NULL)
1863 return FALSE;
1864
1865 tls_sec = htab->elf.tls_sec;
1866
1867 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1868 {
1869 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1870 struct bfd_link_hash_entry *bh = &tlsbase->root;
1871 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1872
1873 tlsbase->type = STT_TLS;
1874 if (!(_bfd_generic_link_add_one_symbol
1875 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1876 tls_sec, 0, NULL, FALSE,
1877 bed->collect, &bh)))
1878 return FALSE;
1879 tlsbase->def_regular = 1;
1880 tlsbase->other = STV_HIDDEN;
1881 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1882 }
1883
1884 return TRUE;
1885 }
1886
1887 \f
1888 /* Return the base VMA address which should be subtracted from real addresses
1889 when resolving @dtpoff relocation.
1890 This is PT_TLS segment p_vaddr. */
1891
1892 static bfd_vma
1893 dtpoff_base (struct bfd_link_info *info)
1894 {
1895 /* If tls_sec is NULL, we should have signalled an error already. */
1896 if (elf_hash_table (info)->tls_sec == NULL)
1897 return 0;
1898 return elf_hash_table (info)->tls_sec->vma;
1899 }
1900
1901 /* Return the relocation value for @tpoff relocation
1902 if STT_TLS virtual address is ADDRESS. */
1903
1904 static bfd_vma
1905 tpoff (struct bfd_link_info *info, bfd_vma address)
1906 {
1907 struct elf_link_hash_table *htab = elf_hash_table (info);
1908 bfd_vma base;
1909
1910 /* If tls_sec is NULL, we should have signalled an error already. */
1911 if (htab->tls_sec == NULL)
1912 return 0;
1913 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1914 return address - htab->tls_sec->vma + base;
1915 }
1916
1917 /* Perform the specified relocation. The instruction at (contents + address)
1918 is modified to set one operand to represent the value in "relocation". The
1919 operand position is determined by the relocation type recorded in the
1920 howto. */
1921
1922 #define CALL_SEGMENT_BITS (30)
1923 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1924
1925 static bfd_reloc_status_type
1926 elf_xtensa_do_reloc (reloc_howto_type *howto,
1927 bfd *abfd,
1928 asection *input_section,
1929 bfd_vma relocation,
1930 bfd_byte *contents,
1931 bfd_vma address,
1932 bfd_boolean is_weak_undef,
1933 char **error_message)
1934 {
1935 xtensa_format fmt;
1936 xtensa_opcode opcode;
1937 xtensa_isa isa = xtensa_default_isa;
1938 static xtensa_insnbuf ibuff = NULL;
1939 static xtensa_insnbuf sbuff = NULL;
1940 bfd_vma self_address;
1941 bfd_size_type input_size;
1942 int opnd, slot;
1943 uint32 newval;
1944
1945 if (!ibuff)
1946 {
1947 ibuff = xtensa_insnbuf_alloc (isa);
1948 sbuff = xtensa_insnbuf_alloc (isa);
1949 }
1950
1951 input_size = bfd_get_section_limit (abfd, input_section);
1952
1953 /* Calculate the PC address for this instruction. */
1954 self_address = (input_section->output_section->vma
1955 + input_section->output_offset
1956 + address);
1957
1958 switch (howto->type)
1959 {
1960 case R_XTENSA_NONE:
1961 case R_XTENSA_DIFF8:
1962 case R_XTENSA_DIFF16:
1963 case R_XTENSA_DIFF32:
1964 case R_XTENSA_TLS_FUNC:
1965 case R_XTENSA_TLS_ARG:
1966 case R_XTENSA_TLS_CALL:
1967 return bfd_reloc_ok;
1968
1969 case R_XTENSA_ASM_EXPAND:
1970 if (!is_weak_undef)
1971 {
1972 /* Check for windowed CALL across a 1GB boundary. */
1973 opcode = get_expanded_call_opcode (contents + address,
1974 input_size - address, 0);
1975 if (is_windowed_call_opcode (opcode))
1976 {
1977 if ((self_address >> CALL_SEGMENT_BITS)
1978 != (relocation >> CALL_SEGMENT_BITS))
1979 {
1980 *error_message = "windowed longcall crosses 1GB boundary; "
1981 "return may fail";
1982 return bfd_reloc_dangerous;
1983 }
1984 }
1985 }
1986 return bfd_reloc_ok;
1987
1988 case R_XTENSA_ASM_SIMPLIFY:
1989 {
1990 /* Convert the L32R/CALLX to CALL. */
1991 bfd_reloc_status_type retval =
1992 elf_xtensa_do_asm_simplify (contents, address, input_size,
1993 error_message);
1994 if (retval != bfd_reloc_ok)
1995 return bfd_reloc_dangerous;
1996
1997 /* The CALL needs to be relocated. Continue below for that part. */
1998 address += 3;
1999 self_address += 3;
2000 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
2001 }
2002 break;
2003
2004 case R_XTENSA_32:
2005 {
2006 bfd_vma x;
2007 x = bfd_get_32 (abfd, contents + address);
2008 x = x + relocation;
2009 bfd_put_32 (abfd, x, contents + address);
2010 }
2011 return bfd_reloc_ok;
2012
2013 case R_XTENSA_32_PCREL:
2014 bfd_put_32 (abfd, relocation - self_address, contents + address);
2015 return bfd_reloc_ok;
2016
2017 case R_XTENSA_PLT:
2018 case R_XTENSA_TLSDESC_FN:
2019 case R_XTENSA_TLSDESC_ARG:
2020 case R_XTENSA_TLS_DTPOFF:
2021 case R_XTENSA_TLS_TPOFF:
2022 bfd_put_32 (abfd, relocation, contents + address);
2023 return bfd_reloc_ok;
2024 }
2025
2026 /* Only instruction slot-specific relocations handled below.... */
2027 slot = get_relocation_slot (howto->type);
2028 if (slot == XTENSA_UNDEFINED)
2029 {
2030 *error_message = "unexpected relocation";
2031 return bfd_reloc_dangerous;
2032 }
2033
2034 /* Read the instruction into a buffer and decode the opcode. */
2035 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2036 input_size - address);
2037 fmt = xtensa_format_decode (isa, ibuff);
2038 if (fmt == XTENSA_UNDEFINED)
2039 {
2040 *error_message = "cannot decode instruction format";
2041 return bfd_reloc_dangerous;
2042 }
2043
2044 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2045
2046 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2047 if (opcode == XTENSA_UNDEFINED)
2048 {
2049 *error_message = "cannot decode instruction opcode";
2050 return bfd_reloc_dangerous;
2051 }
2052
2053 /* Check for opcode-specific "alternate" relocations. */
2054 if (is_alt_relocation (howto->type))
2055 {
2056 if (opcode == get_l32r_opcode ())
2057 {
2058 /* Handle the special-case of non-PC-relative L32R instructions. */
2059 bfd *output_bfd = input_section->output_section->owner;
2060 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2061 if (!lit4_sec)
2062 {
2063 *error_message = "relocation references missing .lit4 section";
2064 return bfd_reloc_dangerous;
2065 }
2066 self_address = ((lit4_sec->vma & ~0xfff)
2067 + 0x40000 - 3); /* -3 to compensate for do_reloc */
2068 newval = relocation;
2069 opnd = 1;
2070 }
2071 else if (opcode == get_const16_opcode ())
2072 {
2073 /* ALT used for high 16 bits. */
2074 newval = relocation >> 16;
2075 opnd = 1;
2076 }
2077 else
2078 {
2079 /* No other "alternate" relocations currently defined. */
2080 *error_message = "unexpected relocation";
2081 return bfd_reloc_dangerous;
2082 }
2083 }
2084 else /* Not an "alternate" relocation.... */
2085 {
2086 if (opcode == get_const16_opcode ())
2087 {
2088 newval = relocation & 0xffff;
2089 opnd = 1;
2090 }
2091 else
2092 {
2093 /* ...normal PC-relative relocation.... */
2094
2095 /* Determine which operand is being relocated. */
2096 opnd = get_relocation_opnd (opcode, howto->type);
2097 if (opnd == XTENSA_UNDEFINED)
2098 {
2099 *error_message = "unexpected relocation";
2100 return bfd_reloc_dangerous;
2101 }
2102
2103 if (!howto->pc_relative)
2104 {
2105 *error_message = "expected PC-relative relocation";
2106 return bfd_reloc_dangerous;
2107 }
2108
2109 newval = relocation;
2110 }
2111 }
2112
2113 /* Apply the relocation. */
2114 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2115 || xtensa_operand_encode (isa, opcode, opnd, &newval)
2116 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2117 sbuff, newval))
2118 {
2119 const char *opname = xtensa_opcode_name (isa, opcode);
2120 const char *msg;
2121
2122 msg = "cannot encode";
2123 if (is_direct_call_opcode (opcode))
2124 {
2125 if ((relocation & 0x3) != 0)
2126 msg = "misaligned call target";
2127 else
2128 msg = "call target out of range";
2129 }
2130 else if (opcode == get_l32r_opcode ())
2131 {
2132 if ((relocation & 0x3) != 0)
2133 msg = "misaligned literal target";
2134 else if (is_alt_relocation (howto->type))
2135 msg = "literal target out of range (too many literals)";
2136 else if (self_address > relocation)
2137 msg = "literal target out of range (try using text-section-literals)";
2138 else
2139 msg = "literal placed after use";
2140 }
2141
2142 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2143 return bfd_reloc_dangerous;
2144 }
2145
2146 /* Check for calls across 1GB boundaries. */
2147 if (is_direct_call_opcode (opcode)
2148 && is_windowed_call_opcode (opcode))
2149 {
2150 if ((self_address >> CALL_SEGMENT_BITS)
2151 != (relocation >> CALL_SEGMENT_BITS))
2152 {
2153 *error_message =
2154 "windowed call crosses 1GB boundary; return may fail";
2155 return bfd_reloc_dangerous;
2156 }
2157 }
2158
2159 /* Write the modified instruction back out of the buffer. */
2160 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2161 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2162 input_size - address);
2163 return bfd_reloc_ok;
2164 }
2165
2166
2167 static char *
2168 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2169 {
2170 /* To reduce the size of the memory leak,
2171 we only use a single message buffer. */
2172 static bfd_size_type alloc_size = 0;
2173 static char *message = NULL;
2174 bfd_size_type orig_len, len = 0;
2175 bfd_boolean is_append;
2176 va_list ap;
2177
2178 va_start (ap, arglen);
2179
2180 is_append = (origmsg == message);
2181
2182 orig_len = strlen (origmsg);
2183 len = orig_len + strlen (fmt) + arglen + 20;
2184 if (len > alloc_size)
2185 {
2186 message = (char *) bfd_realloc_or_free (message, len);
2187 alloc_size = len;
2188 }
2189 if (message != NULL)
2190 {
2191 if (!is_append)
2192 memcpy (message, origmsg, orig_len);
2193 vsprintf (message + orig_len, fmt, ap);
2194 }
2195 va_end (ap);
2196 return message;
2197 }
2198
2199
2200 /* This function is registered as the "special_function" in the
2201 Xtensa howto for handling simplify operations.
2202 bfd_perform_relocation / bfd_install_relocation use it to
2203 perform (install) the specified relocation. Since this replaces the code
2204 in bfd_perform_relocation, it is basically an Xtensa-specific,
2205 stripped-down version of bfd_perform_relocation. */
2206
2207 static bfd_reloc_status_type
2208 bfd_elf_xtensa_reloc (bfd *abfd,
2209 arelent *reloc_entry,
2210 asymbol *symbol,
2211 void *data,
2212 asection *input_section,
2213 bfd *output_bfd,
2214 char **error_message)
2215 {
2216 bfd_vma relocation;
2217 bfd_reloc_status_type flag;
2218 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2219 bfd_vma output_base = 0;
2220 reloc_howto_type *howto = reloc_entry->howto;
2221 asection *reloc_target_output_section;
2222 bfd_boolean is_weak_undef;
2223
2224 if (!xtensa_default_isa)
2225 xtensa_default_isa = xtensa_isa_init (0, 0);
2226
2227 /* ELF relocs are against symbols. If we are producing relocatable
2228 output, and the reloc is against an external symbol, the resulting
2229 reloc will also be against the same symbol. In such a case, we
2230 don't want to change anything about the way the reloc is handled,
2231 since it will all be done at final link time. This test is similar
2232 to what bfd_elf_generic_reloc does except that it lets relocs with
2233 howto->partial_inplace go through even if the addend is non-zero.
2234 (The real problem is that partial_inplace is set for XTENSA_32
2235 relocs to begin with, but that's a long story and there's little we
2236 can do about it now....) */
2237
2238 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2239 {
2240 reloc_entry->address += input_section->output_offset;
2241 return bfd_reloc_ok;
2242 }
2243
2244 /* Is the address of the relocation really within the section? */
2245 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2246 return bfd_reloc_outofrange;
2247
2248 /* Work out which section the relocation is targeted at and the
2249 initial relocation command value. */
2250
2251 /* Get symbol value. (Common symbols are special.) */
2252 if (bfd_is_com_section (symbol->section))
2253 relocation = 0;
2254 else
2255 relocation = symbol->value;
2256
2257 reloc_target_output_section = symbol->section->output_section;
2258
2259 /* Convert input-section-relative symbol value to absolute. */
2260 if ((output_bfd && !howto->partial_inplace)
2261 || reloc_target_output_section == NULL)
2262 output_base = 0;
2263 else
2264 output_base = reloc_target_output_section->vma;
2265
2266 relocation += output_base + symbol->section->output_offset;
2267
2268 /* Add in supplied addend. */
2269 relocation += reloc_entry->addend;
2270
2271 /* Here the variable relocation holds the final address of the
2272 symbol we are relocating against, plus any addend. */
2273 if (output_bfd)
2274 {
2275 if (!howto->partial_inplace)
2276 {
2277 /* This is a partial relocation, and we want to apply the relocation
2278 to the reloc entry rather than the raw data. Everything except
2279 relocations against section symbols has already been handled
2280 above. */
2281
2282 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2283 reloc_entry->addend = relocation;
2284 reloc_entry->address += input_section->output_offset;
2285 return bfd_reloc_ok;
2286 }
2287 else
2288 {
2289 reloc_entry->address += input_section->output_offset;
2290 reloc_entry->addend = 0;
2291 }
2292 }
2293
2294 is_weak_undef = (bfd_is_und_section (symbol->section)
2295 && (symbol->flags & BSF_WEAK) != 0);
2296 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2297 (bfd_byte *) data, (bfd_vma) octets,
2298 is_weak_undef, error_message);
2299
2300 if (flag == bfd_reloc_dangerous)
2301 {
2302 /* Add the symbol name to the error message. */
2303 if (! *error_message)
2304 *error_message = "";
2305 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2306 strlen (symbol->name) + 17,
2307 symbol->name,
2308 (unsigned long) reloc_entry->addend);
2309 }
2310
2311 return flag;
2312 }
2313
2314
2315 /* Set up an entry in the procedure linkage table. */
2316
2317 static bfd_vma
2318 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2319 bfd *output_bfd,
2320 unsigned reloc_index)
2321 {
2322 asection *splt, *sgotplt;
2323 bfd_vma plt_base, got_base;
2324 bfd_vma code_offset, lit_offset, abi_offset;
2325 int chunk;
2326
2327 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2328 splt = elf_xtensa_get_plt_section (info, chunk);
2329 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2330 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2331
2332 plt_base = splt->output_section->vma + splt->output_offset;
2333 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2334
2335 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2336 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2337
2338 /* Fill in the literal entry. This is the offset of the dynamic
2339 relocation entry. */
2340 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2341 sgotplt->contents + lit_offset);
2342
2343 /* Fill in the entry in the procedure linkage table. */
2344 memcpy (splt->contents + code_offset,
2345 (bfd_big_endian (output_bfd)
2346 ? elf_xtensa_be_plt_entry
2347 : elf_xtensa_le_plt_entry),
2348 PLT_ENTRY_SIZE);
2349 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2350 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2351 plt_base + code_offset + abi_offset),
2352 splt->contents + code_offset + abi_offset + 1);
2353 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2354 plt_base + code_offset + abi_offset + 3),
2355 splt->contents + code_offset + abi_offset + 4);
2356 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2357 plt_base + code_offset + abi_offset + 6),
2358 splt->contents + code_offset + abi_offset + 7);
2359
2360 return plt_base + code_offset;
2361 }
2362
2363
2364 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2365
2366 static bfd_boolean
2367 replace_tls_insn (Elf_Internal_Rela *rel,
2368 bfd *abfd,
2369 asection *input_section,
2370 bfd_byte *contents,
2371 bfd_boolean is_ld_model,
2372 char **error_message)
2373 {
2374 static xtensa_insnbuf ibuff = NULL;
2375 static xtensa_insnbuf sbuff = NULL;
2376 xtensa_isa isa = xtensa_default_isa;
2377 xtensa_format fmt;
2378 xtensa_opcode old_op, new_op;
2379 bfd_size_type input_size;
2380 int r_type;
2381 unsigned dest_reg, src_reg;
2382
2383 if (ibuff == NULL)
2384 {
2385 ibuff = xtensa_insnbuf_alloc (isa);
2386 sbuff = xtensa_insnbuf_alloc (isa);
2387 }
2388
2389 input_size = bfd_get_section_limit (abfd, input_section);
2390
2391 /* Read the instruction into a buffer and decode the opcode. */
2392 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2393 input_size - rel->r_offset);
2394 fmt = xtensa_format_decode (isa, ibuff);
2395 if (fmt == XTENSA_UNDEFINED)
2396 {
2397 *error_message = "cannot decode instruction format";
2398 return FALSE;
2399 }
2400
2401 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2402 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2403
2404 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2405 if (old_op == XTENSA_UNDEFINED)
2406 {
2407 *error_message = "cannot decode instruction opcode";
2408 return FALSE;
2409 }
2410
2411 r_type = ELF32_R_TYPE (rel->r_info);
2412 switch (r_type)
2413 {
2414 case R_XTENSA_TLS_FUNC:
2415 case R_XTENSA_TLS_ARG:
2416 if (old_op != get_l32r_opcode ()
2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2418 sbuff, &dest_reg) != 0)
2419 {
2420 *error_message = "cannot extract L32R destination for TLS access";
2421 return FALSE;
2422 }
2423 break;
2424
2425 case R_XTENSA_TLS_CALL:
2426 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2427 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2428 sbuff, &src_reg) != 0)
2429 {
2430 *error_message = "cannot extract CALLXn operands for TLS access";
2431 return FALSE;
2432 }
2433 break;
2434
2435 default:
2436 abort ();
2437 }
2438
2439 if (is_ld_model)
2440 {
2441 switch (r_type)
2442 {
2443 case R_XTENSA_TLS_FUNC:
2444 case R_XTENSA_TLS_ARG:
2445 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2446 versions of Xtensa). */
2447 new_op = xtensa_opcode_lookup (isa, "nop");
2448 if (new_op == XTENSA_UNDEFINED)
2449 {
2450 new_op = xtensa_opcode_lookup (isa, "or");
2451 if (new_op == XTENSA_UNDEFINED
2452 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2453 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2454 sbuff, 1) != 0
2455 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2456 sbuff, 1) != 0
2457 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2458 sbuff, 1) != 0)
2459 {
2460 *error_message = "cannot encode OR for TLS access";
2461 return FALSE;
2462 }
2463 }
2464 else
2465 {
2466 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2467 {
2468 *error_message = "cannot encode NOP for TLS access";
2469 return FALSE;
2470 }
2471 }
2472 break;
2473
2474 case R_XTENSA_TLS_CALL:
2475 /* Read THREADPTR into the CALLX's return value register. */
2476 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2477 if (new_op == XTENSA_UNDEFINED
2478 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2479 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2480 sbuff, dest_reg + 2) != 0)
2481 {
2482 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2483 return FALSE;
2484 }
2485 break;
2486 }
2487 }
2488 else
2489 {
2490 switch (r_type)
2491 {
2492 case R_XTENSA_TLS_FUNC:
2493 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2494 if (new_op == XTENSA_UNDEFINED
2495 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2496 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2497 sbuff, dest_reg) != 0)
2498 {
2499 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2500 return FALSE;
2501 }
2502 break;
2503
2504 case R_XTENSA_TLS_ARG:
2505 /* Nothing to do. Keep the original L32R instruction. */
2506 return TRUE;
2507
2508 case R_XTENSA_TLS_CALL:
2509 /* Add the CALLX's src register (holding the THREADPTR value)
2510 to the first argument register (holding the offset) and put
2511 the result in the CALLX's return value register. */
2512 new_op = xtensa_opcode_lookup (isa, "add");
2513 if (new_op == XTENSA_UNDEFINED
2514 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2515 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2516 sbuff, dest_reg + 2) != 0
2517 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2518 sbuff, dest_reg + 2) != 0
2519 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2520 sbuff, src_reg) != 0)
2521 {
2522 *error_message = "cannot encode ADD for TLS access";
2523 return FALSE;
2524 }
2525 break;
2526 }
2527 }
2528
2529 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2530 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2531 input_size - rel->r_offset);
2532
2533 return TRUE;
2534 }
2535
2536
2537 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2538 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2539 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2540 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2541 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2542 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2543 || (R_TYPE) == R_XTENSA_TLS_ARG \
2544 || (R_TYPE) == R_XTENSA_TLS_CALL)
2545
2546 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2547 both relocatable and final links. */
2548
2549 static bfd_boolean
2550 elf_xtensa_relocate_section (bfd *output_bfd,
2551 struct bfd_link_info *info,
2552 bfd *input_bfd,
2553 asection *input_section,
2554 bfd_byte *contents,
2555 Elf_Internal_Rela *relocs,
2556 Elf_Internal_Sym *local_syms,
2557 asection **local_sections)
2558 {
2559 struct elf_xtensa_link_hash_table *htab;
2560 Elf_Internal_Shdr *symtab_hdr;
2561 Elf_Internal_Rela *rel;
2562 Elf_Internal_Rela *relend;
2563 struct elf_link_hash_entry **sym_hashes;
2564 property_table_entry *lit_table = 0;
2565 int ltblsize = 0;
2566 char *local_got_tls_types;
2567 char *error_message = NULL;
2568 bfd_size_type input_size;
2569 int tls_type;
2570
2571 if (!xtensa_default_isa)
2572 xtensa_default_isa = xtensa_isa_init (0, 0);
2573
2574 BFD_ASSERT (is_xtensa_elf (input_bfd));
2575
2576 htab = elf_xtensa_hash_table (info);
2577 if (htab == NULL)
2578 return FALSE;
2579
2580 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2581 sym_hashes = elf_sym_hashes (input_bfd);
2582 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2583
2584 if (elf_hash_table (info)->dynamic_sections_created)
2585 {
2586 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2587 &lit_table, XTENSA_LIT_SEC_NAME,
2588 TRUE);
2589 if (ltblsize < 0)
2590 return FALSE;
2591 }
2592
2593 input_size = bfd_get_section_limit (input_bfd, input_section);
2594
2595 rel = relocs;
2596 relend = relocs + input_section->reloc_count;
2597 for (; rel < relend; rel++)
2598 {
2599 int r_type;
2600 reloc_howto_type *howto;
2601 unsigned long r_symndx;
2602 struct elf_link_hash_entry *h;
2603 Elf_Internal_Sym *sym;
2604 char sym_type;
2605 const char *name;
2606 asection *sec;
2607 bfd_vma relocation;
2608 bfd_reloc_status_type r;
2609 bfd_boolean is_weak_undef;
2610 bfd_boolean unresolved_reloc;
2611 bfd_boolean warned;
2612 bfd_boolean dynamic_symbol;
2613
2614 r_type = ELF32_R_TYPE (rel->r_info);
2615 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2616 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2617 continue;
2618
2619 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2620 {
2621 bfd_set_error (bfd_error_bad_value);
2622 return FALSE;
2623 }
2624 howto = &elf_howto_table[r_type];
2625
2626 r_symndx = ELF32_R_SYM (rel->r_info);
2627
2628 h = NULL;
2629 sym = NULL;
2630 sec = NULL;
2631 is_weak_undef = FALSE;
2632 unresolved_reloc = FALSE;
2633 warned = FALSE;
2634
2635 if (howto->partial_inplace && !bfd_link_relocatable (info))
2636 {
2637 /* Because R_XTENSA_32 was made partial_inplace to fix some
2638 problems with DWARF info in partial links, there may be
2639 an addend stored in the contents. Take it out of there
2640 and move it back into the addend field of the reloc. */
2641 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2642 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2643 }
2644
2645 if (r_symndx < symtab_hdr->sh_info)
2646 {
2647 sym = local_syms + r_symndx;
2648 sym_type = ELF32_ST_TYPE (sym->st_info);
2649 sec = local_sections[r_symndx];
2650 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2651 }
2652 else
2653 {
2654 bfd_boolean ignored;
2655
2656 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2657 r_symndx, symtab_hdr, sym_hashes,
2658 h, sec, relocation,
2659 unresolved_reloc, warned, ignored);
2660
2661 if (relocation == 0
2662 && !unresolved_reloc
2663 && h->root.type == bfd_link_hash_undefweak)
2664 is_weak_undef = TRUE;
2665
2666 sym_type = h->type;
2667 }
2668
2669 if (sec != NULL && discarded_section (sec))
2670 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2671 rel, 1, relend, howto, 0, contents);
2672
2673 if (bfd_link_relocatable (info))
2674 {
2675 bfd_vma dest_addr;
2676 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2677
2678 /* This is a relocatable link.
2679 1) If the reloc is against a section symbol, adjust
2680 according to the output section.
2681 2) If there is a new target for this relocation,
2682 the new target will be in the same output section.
2683 We adjust the relocation by the output section
2684 difference. */
2685
2686 if (relaxing_section)
2687 {
2688 /* Check if this references a section in another input file. */
2689 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2690 contents))
2691 return FALSE;
2692 }
2693
2694 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2695 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2696
2697 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2698 {
2699 error_message = NULL;
2700 /* Convert ASM_SIMPLIFY into the simpler relocation
2701 so that they never escape a relaxing link. */
2702 r = contract_asm_expansion (contents, input_size, rel,
2703 &error_message);
2704 if (r != bfd_reloc_ok)
2705 {
2706 if (!((*info->callbacks->reloc_dangerous)
2707 (info, error_message, input_bfd, input_section,
2708 rel->r_offset)))
2709 return FALSE;
2710 }
2711 r_type = ELF32_R_TYPE (rel->r_info);
2712 }
2713
2714 /* This is a relocatable link, so we don't have to change
2715 anything unless the reloc is against a section symbol,
2716 in which case we have to adjust according to where the
2717 section symbol winds up in the output section. */
2718 if (r_symndx < symtab_hdr->sh_info)
2719 {
2720 sym = local_syms + r_symndx;
2721 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2722 {
2723 sec = local_sections[r_symndx];
2724 rel->r_addend += sec->output_offset + sym->st_value;
2725 }
2726 }
2727
2728 /* If there is an addend with a partial_inplace howto,
2729 then move the addend to the contents. This is a hack
2730 to work around problems with DWARF in relocatable links
2731 with some previous version of BFD. Now we can't easily get
2732 rid of the hack without breaking backward compatibility.... */
2733 r = bfd_reloc_ok;
2734 howto = &elf_howto_table[r_type];
2735 if (howto->partial_inplace && rel->r_addend)
2736 {
2737 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2738 rel->r_addend, contents,
2739 rel->r_offset, FALSE,
2740 &error_message);
2741 rel->r_addend = 0;
2742 }
2743 else
2744 {
2745 /* Put the correct bits in the target instruction, even
2746 though the relocation will still be present in the output
2747 file. This makes disassembly clearer, as well as
2748 allowing loadable kernel modules to work without needing
2749 relocations on anything other than calls and l32r's. */
2750
2751 /* If it is not in the same section, there is nothing we can do. */
2752 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2753 sym_sec->output_section == input_section->output_section)
2754 {
2755 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2756 dest_addr, contents,
2757 rel->r_offset, FALSE,
2758 &error_message);
2759 }
2760 }
2761 if (r != bfd_reloc_ok)
2762 {
2763 if (!((*info->callbacks->reloc_dangerous)
2764 (info, error_message, input_bfd, input_section,
2765 rel->r_offset)))
2766 return FALSE;
2767 }
2768
2769 /* Done with work for relocatable link; continue with next reloc. */
2770 continue;
2771 }
2772
2773 /* This is a final link. */
2774
2775 if (relaxing_section)
2776 {
2777 /* Check if this references a section in another input file. */
2778 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2779 &relocation);
2780 }
2781
2782 /* Sanity check the address. */
2783 if (rel->r_offset >= input_size
2784 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2785 {
2786 (*_bfd_error_handler)
2787 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2788 input_bfd, input_section, rel->r_offset, input_size);
2789 bfd_set_error (bfd_error_bad_value);
2790 return FALSE;
2791 }
2792
2793 if (h != NULL)
2794 name = h->root.root.string;
2795 else
2796 {
2797 name = (bfd_elf_string_from_elf_section
2798 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2799 if (name == NULL || *name == '\0')
2800 name = bfd_section_name (input_bfd, sec);
2801 }
2802
2803 if (r_symndx != STN_UNDEF
2804 && r_type != R_XTENSA_NONE
2805 && (h == NULL
2806 || h->root.type == bfd_link_hash_defined
2807 || h->root.type == bfd_link_hash_defweak)
2808 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2809 {
2810 (*_bfd_error_handler)
2811 ((sym_type == STT_TLS
2812 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2813 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2814 input_bfd,
2815 input_section,
2816 (long) rel->r_offset,
2817 howto->name,
2818 name);
2819 }
2820
2821 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2822
2823 tls_type = GOT_UNKNOWN;
2824 if (h)
2825 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2826 else if (local_got_tls_types)
2827 tls_type = local_got_tls_types [r_symndx];
2828
2829 switch (r_type)
2830 {
2831 case R_XTENSA_32:
2832 case R_XTENSA_PLT:
2833 if (elf_hash_table (info)->dynamic_sections_created
2834 && (input_section->flags & SEC_ALLOC) != 0
2835 && (dynamic_symbol || bfd_link_pic (info)))
2836 {
2837 Elf_Internal_Rela outrel;
2838 bfd_byte *loc;
2839 asection *srel;
2840
2841 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2842 srel = htab->srelplt;
2843 else
2844 srel = htab->srelgot;
2845
2846 BFD_ASSERT (srel != NULL);
2847
2848 outrel.r_offset =
2849 _bfd_elf_section_offset (output_bfd, info,
2850 input_section, rel->r_offset);
2851
2852 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2853 memset (&outrel, 0, sizeof outrel);
2854 else
2855 {
2856 outrel.r_offset += (input_section->output_section->vma
2857 + input_section->output_offset);
2858
2859 /* Complain if the relocation is in a read-only section
2860 and not in a literal pool. */
2861 if ((input_section->flags & SEC_READONLY) != 0
2862 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2863 outrel.r_offset))
2864 {
2865 error_message =
2866 _("dynamic relocation in read-only section");
2867 if (!((*info->callbacks->reloc_dangerous)
2868 (info, error_message, input_bfd, input_section,
2869 rel->r_offset)))
2870 return FALSE;
2871 }
2872
2873 if (dynamic_symbol)
2874 {
2875 outrel.r_addend = rel->r_addend;
2876 rel->r_addend = 0;
2877
2878 if (r_type == R_XTENSA_32)
2879 {
2880 outrel.r_info =
2881 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2882 relocation = 0;
2883 }
2884 else /* r_type == R_XTENSA_PLT */
2885 {
2886 outrel.r_info =
2887 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2888
2889 /* Create the PLT entry and set the initial
2890 contents of the literal entry to the address of
2891 the PLT entry. */
2892 relocation =
2893 elf_xtensa_create_plt_entry (info, output_bfd,
2894 srel->reloc_count);
2895 }
2896 unresolved_reloc = FALSE;
2897 }
2898 else
2899 {
2900 /* Generate a RELATIVE relocation. */
2901 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2902 outrel.r_addend = 0;
2903 }
2904 }
2905
2906 loc = (srel->contents
2907 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2908 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2909 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2910 <= srel->size);
2911 }
2912 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2913 {
2914 /* This should only happen for non-PIC code, which is not
2915 supposed to be used on systems with dynamic linking.
2916 Just ignore these relocations. */
2917 continue;
2918 }
2919 break;
2920
2921 case R_XTENSA_TLS_TPOFF:
2922 /* Switch to LE model for local symbols in an executable. */
2923 if (! bfd_link_pic (info) && ! dynamic_symbol)
2924 {
2925 relocation = tpoff (info, relocation);
2926 break;
2927 }
2928 /* fall through */
2929
2930 case R_XTENSA_TLSDESC_FN:
2931 case R_XTENSA_TLSDESC_ARG:
2932 {
2933 if (r_type == R_XTENSA_TLSDESC_FN)
2934 {
2935 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2936 r_type = R_XTENSA_NONE;
2937 }
2938 else if (r_type == R_XTENSA_TLSDESC_ARG)
2939 {
2940 if (bfd_link_pic (info))
2941 {
2942 if ((tls_type & GOT_TLS_IE) != 0)
2943 r_type = R_XTENSA_TLS_TPOFF;
2944 }
2945 else
2946 {
2947 r_type = R_XTENSA_TLS_TPOFF;
2948 if (! dynamic_symbol)
2949 {
2950 relocation = tpoff (info, relocation);
2951 break;
2952 }
2953 }
2954 }
2955
2956 if (r_type == R_XTENSA_NONE)
2957 /* Nothing to do here; skip to the next reloc. */
2958 continue;
2959
2960 if (! elf_hash_table (info)->dynamic_sections_created)
2961 {
2962 error_message =
2963 _("TLS relocation invalid without dynamic sections");
2964 if (!((*info->callbacks->reloc_dangerous)
2965 (info, error_message, input_bfd, input_section,
2966 rel->r_offset)))
2967 return FALSE;
2968 }
2969 else
2970 {
2971 Elf_Internal_Rela outrel;
2972 bfd_byte *loc;
2973 asection *srel = htab->srelgot;
2974 int indx;
2975
2976 outrel.r_offset = (input_section->output_section->vma
2977 + input_section->output_offset
2978 + rel->r_offset);
2979
2980 /* Complain if the relocation is in a read-only section
2981 and not in a literal pool. */
2982 if ((input_section->flags & SEC_READONLY) != 0
2983 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2984 outrel.r_offset))
2985 {
2986 error_message =
2987 _("dynamic relocation in read-only section");
2988 if (!((*info->callbacks->reloc_dangerous)
2989 (info, error_message, input_bfd, input_section,
2990 rel->r_offset)))
2991 return FALSE;
2992 }
2993
2994 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2995 if (indx == 0)
2996 outrel.r_addend = relocation - dtpoff_base (info);
2997 else
2998 outrel.r_addend = 0;
2999 rel->r_addend = 0;
3000
3001 outrel.r_info = ELF32_R_INFO (indx, r_type);
3002 relocation = 0;
3003 unresolved_reloc = FALSE;
3004
3005 BFD_ASSERT (srel);
3006 loc = (srel->contents
3007 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
3008 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3009 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
3010 <= srel->size);
3011 }
3012 }
3013 break;
3014
3015 case R_XTENSA_TLS_DTPOFF:
3016 if (! bfd_link_pic (info))
3017 /* Switch from LD model to LE model. */
3018 relocation = tpoff (info, relocation);
3019 else
3020 relocation -= dtpoff_base (info);
3021 break;
3022
3023 case R_XTENSA_TLS_FUNC:
3024 case R_XTENSA_TLS_ARG:
3025 case R_XTENSA_TLS_CALL:
3026 /* Check if optimizing to IE or LE model. */
3027 if ((tls_type & GOT_TLS_IE) != 0)
3028 {
3029 bfd_boolean is_ld_model =
3030 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3031 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3032 is_ld_model, &error_message))
3033 {
3034 if (!((*info->callbacks->reloc_dangerous)
3035 (info, error_message, input_bfd, input_section,
3036 rel->r_offset)))
3037 return FALSE;
3038 }
3039
3040 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3041 {
3042 /* Skip subsequent relocations on the same instruction. */
3043 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3044 rel++;
3045 }
3046 }
3047 continue;
3048
3049 default:
3050 if (elf_hash_table (info)->dynamic_sections_created
3051 && dynamic_symbol && (is_operand_relocation (r_type)
3052 || r_type == R_XTENSA_32_PCREL))
3053 {
3054 error_message =
3055 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3056 strlen (name) + 2, name);
3057 if (!((*info->callbacks->reloc_dangerous)
3058 (info, error_message, input_bfd, input_section,
3059 rel->r_offset)))
3060 return FALSE;
3061 continue;
3062 }
3063 break;
3064 }
3065
3066 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3067 because such sections are not SEC_ALLOC and thus ld.so will
3068 not process them. */
3069 if (unresolved_reloc
3070 && !((input_section->flags & SEC_DEBUGGING) != 0
3071 && h->def_dynamic)
3072 && _bfd_elf_section_offset (output_bfd, info, input_section,
3073 rel->r_offset) != (bfd_vma) -1)
3074 {
3075 (*_bfd_error_handler)
3076 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3077 input_bfd,
3078 input_section,
3079 (long) rel->r_offset,
3080 howto->name,
3081 name);
3082 return FALSE;
3083 }
3084
3085 /* TLS optimizations may have changed r_type; update "howto". */
3086 howto = &elf_howto_table[r_type];
3087
3088 /* There's no point in calling bfd_perform_relocation here.
3089 Just go directly to our "special function". */
3090 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3091 relocation + rel->r_addend,
3092 contents, rel->r_offset, is_weak_undef,
3093 &error_message);
3094
3095 if (r != bfd_reloc_ok && !warned)
3096 {
3097 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3098 BFD_ASSERT (error_message != NULL);
3099
3100 if (rel->r_addend == 0)
3101 error_message = vsprint_msg (error_message, ": %s",
3102 strlen (name) + 2, name);
3103 else
3104 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3105 strlen (name) + 22,
3106 name, (int) rel->r_addend);
3107
3108 if (!((*info->callbacks->reloc_dangerous)
3109 (info, error_message, input_bfd, input_section,
3110 rel->r_offset)))
3111 return FALSE;
3112 }
3113 }
3114
3115 if (lit_table)
3116 free (lit_table);
3117
3118 input_section->reloc_done = TRUE;
3119
3120 return TRUE;
3121 }
3122
3123
3124 /* Finish up dynamic symbol handling. There's not much to do here since
3125 the PLT and GOT entries are all set up by relocate_section. */
3126
3127 static bfd_boolean
3128 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3129 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3130 struct elf_link_hash_entry *h,
3131 Elf_Internal_Sym *sym)
3132 {
3133 if (h->needs_plt && !h->def_regular)
3134 {
3135 /* Mark the symbol as undefined, rather than as defined in
3136 the .plt section. Leave the value alone. */
3137 sym->st_shndx = SHN_UNDEF;
3138 /* If the symbol is weak, we do need to clear the value.
3139 Otherwise, the PLT entry would provide a definition for
3140 the symbol even if the symbol wasn't defined anywhere,
3141 and so the symbol would never be NULL. */
3142 if (!h->ref_regular_nonweak)
3143 sym->st_value = 0;
3144 }
3145
3146 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3147 if (h == elf_hash_table (info)->hdynamic
3148 || h == elf_hash_table (info)->hgot)
3149 sym->st_shndx = SHN_ABS;
3150
3151 return TRUE;
3152 }
3153
3154
3155 /* Combine adjacent literal table entries in the output. Adjacent
3156 entries within each input section may have been removed during
3157 relaxation, but we repeat the process here, even though it's too late
3158 to shrink the output section, because it's important to minimize the
3159 number of literal table entries to reduce the start-up work for the
3160 runtime linker. Returns the number of remaining table entries or -1
3161 on error. */
3162
3163 static int
3164 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3165 asection *sxtlit,
3166 asection *sgotloc)
3167 {
3168 bfd_byte *contents;
3169 property_table_entry *table;
3170 bfd_size_type section_size, sgotloc_size;
3171 bfd_vma offset;
3172 int n, m, num;
3173
3174 section_size = sxtlit->size;
3175 BFD_ASSERT (section_size % 8 == 0);
3176 num = section_size / 8;
3177
3178 sgotloc_size = sgotloc->size;
3179 if (sgotloc_size != section_size)
3180 {
3181 (*_bfd_error_handler)
3182 (_("internal inconsistency in size of .got.loc section"));
3183 return -1;
3184 }
3185
3186 table = bfd_malloc (num * sizeof (property_table_entry));
3187 if (table == 0)
3188 return -1;
3189
3190 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3191 propagates to the output section, where it doesn't really apply and
3192 where it breaks the following call to bfd_malloc_and_get_section. */
3193 sxtlit->flags &= ~SEC_IN_MEMORY;
3194
3195 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3196 {
3197 if (contents != 0)
3198 free (contents);
3199 free (table);
3200 return -1;
3201 }
3202
3203 /* There should never be any relocations left at this point, so this
3204 is quite a bit easier than what is done during relaxation. */
3205
3206 /* Copy the raw contents into a property table array and sort it. */
3207 offset = 0;
3208 for (n = 0; n < num; n++)
3209 {
3210 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3211 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3212 offset += 8;
3213 }
3214 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3215
3216 for (n = 0; n < num; n++)
3217 {
3218 bfd_boolean remove_entry = FALSE;
3219
3220 if (table[n].size == 0)
3221 remove_entry = TRUE;
3222 else if (n > 0
3223 && (table[n-1].address + table[n-1].size == table[n].address))
3224 {
3225 table[n-1].size += table[n].size;
3226 remove_entry = TRUE;
3227 }
3228
3229 if (remove_entry)
3230 {
3231 for (m = n; m < num - 1; m++)
3232 {
3233 table[m].address = table[m+1].address;
3234 table[m].size = table[m+1].size;
3235 }
3236
3237 n--;
3238 num--;
3239 }
3240 }
3241
3242 /* Copy the data back to the raw contents. */
3243 offset = 0;
3244 for (n = 0; n < num; n++)
3245 {
3246 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3247 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3248 offset += 8;
3249 }
3250
3251 /* Clear the removed bytes. */
3252 if ((bfd_size_type) (num * 8) < section_size)
3253 memset (&contents[num * 8], 0, section_size - num * 8);
3254
3255 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3256 section_size))
3257 return -1;
3258
3259 /* Copy the contents to ".got.loc". */
3260 memcpy (sgotloc->contents, contents, section_size);
3261
3262 free (contents);
3263 free (table);
3264 return num;
3265 }
3266
3267
3268 /* Finish up the dynamic sections. */
3269
3270 static bfd_boolean
3271 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3272 struct bfd_link_info *info)
3273 {
3274 struct elf_xtensa_link_hash_table *htab;
3275 bfd *dynobj;
3276 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3277 Elf32_External_Dyn *dyncon, *dynconend;
3278 int num_xtlit_entries = 0;
3279
3280 if (! elf_hash_table (info)->dynamic_sections_created)
3281 return TRUE;
3282
3283 htab = elf_xtensa_hash_table (info);
3284 if (htab == NULL)
3285 return FALSE;
3286
3287 dynobj = elf_hash_table (info)->dynobj;
3288 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3289 BFD_ASSERT (sdyn != NULL);
3290
3291 /* Set the first entry in the global offset table to the address of
3292 the dynamic section. */
3293 sgot = htab->sgot;
3294 if (sgot)
3295 {
3296 BFD_ASSERT (sgot->size == 4);
3297 if (sdyn == NULL)
3298 bfd_put_32 (output_bfd, 0, sgot->contents);
3299 else
3300 bfd_put_32 (output_bfd,
3301 sdyn->output_section->vma + sdyn->output_offset,
3302 sgot->contents);
3303 }
3304
3305 srelplt = htab->srelplt;
3306 if (srelplt && srelplt->size != 0)
3307 {
3308 asection *sgotplt, *srelgot, *spltlittbl;
3309 int chunk, plt_chunks, plt_entries;
3310 Elf_Internal_Rela irela;
3311 bfd_byte *loc;
3312 unsigned rtld_reloc;
3313
3314 srelgot = htab->srelgot;
3315 spltlittbl = htab->spltlittbl;
3316 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3317
3318 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3319 of them follow immediately after.... */
3320 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3321 {
3322 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3323 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3324 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3325 break;
3326 }
3327 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3328
3329 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3330 plt_chunks =
3331 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3332
3333 for (chunk = 0; chunk < plt_chunks; chunk++)
3334 {
3335 int chunk_entries = 0;
3336
3337 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3338 BFD_ASSERT (sgotplt != NULL);
3339
3340 /* Emit special RTLD relocations for the first two entries in
3341 each chunk of the .got.plt section. */
3342
3343 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3344 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3345 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3346 irela.r_offset = (sgotplt->output_section->vma
3347 + sgotplt->output_offset);
3348 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3349 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3350 rtld_reloc += 1;
3351 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3352
3353 /* Next literal immediately follows the first. */
3354 loc += sizeof (Elf32_External_Rela);
3355 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3356 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3357 irela.r_offset = (sgotplt->output_section->vma
3358 + sgotplt->output_offset + 4);
3359 /* Tell rtld to set value to object's link map. */
3360 irela.r_addend = 2;
3361 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3362 rtld_reloc += 1;
3363 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3364
3365 /* Fill in the literal table. */
3366 if (chunk < plt_chunks - 1)
3367 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3368 else
3369 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3370
3371 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3372 bfd_put_32 (output_bfd,
3373 sgotplt->output_section->vma + sgotplt->output_offset,
3374 spltlittbl->contents + (chunk * 8) + 0);
3375 bfd_put_32 (output_bfd,
3376 8 + (chunk_entries * 4),
3377 spltlittbl->contents + (chunk * 8) + 4);
3378 }
3379
3380 /* All the dynamic relocations have been emitted at this point.
3381 Make sure the relocation sections are the correct size. */
3382 if (srelgot->size != (sizeof (Elf32_External_Rela)
3383 * srelgot->reloc_count)
3384 || srelplt->size != (sizeof (Elf32_External_Rela)
3385 * srelplt->reloc_count))
3386 abort ();
3387
3388 /* The .xt.lit.plt section has just been modified. This must
3389 happen before the code below which combines adjacent literal
3390 table entries, and the .xt.lit.plt contents have to be forced to
3391 the output here. */
3392 if (! bfd_set_section_contents (output_bfd,
3393 spltlittbl->output_section,
3394 spltlittbl->contents,
3395 spltlittbl->output_offset,
3396 spltlittbl->size))
3397 return FALSE;
3398 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3399 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3400 }
3401
3402 /* Combine adjacent literal table entries. */
3403 BFD_ASSERT (! bfd_link_relocatable (info));
3404 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3405 sgotloc = htab->sgotloc;
3406 BFD_ASSERT (sgotloc);
3407 if (sxtlit)
3408 {
3409 num_xtlit_entries =
3410 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3411 if (num_xtlit_entries < 0)
3412 return FALSE;
3413 }
3414
3415 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3416 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3417 for (; dyncon < dynconend; dyncon++)
3418 {
3419 Elf_Internal_Dyn dyn;
3420
3421 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3422
3423 switch (dyn.d_tag)
3424 {
3425 default:
3426 break;
3427
3428 case DT_XTENSA_GOT_LOC_SZ:
3429 dyn.d_un.d_val = num_xtlit_entries;
3430 break;
3431
3432 case DT_XTENSA_GOT_LOC_OFF:
3433 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma;
3434 break;
3435
3436 case DT_PLTGOT:
3437 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
3438 break;
3439
3440 case DT_JMPREL:
3441 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
3442 break;
3443
3444 case DT_PLTRELSZ:
3445 dyn.d_un.d_val = htab->srelplt->output_section->size;
3446 break;
3447
3448 case DT_RELASZ:
3449 /* Adjust RELASZ to not include JMPREL. This matches what
3450 glibc expects and what is done for several other ELF
3451 targets (e.g., i386, alpha), but the "correct" behavior
3452 seems to be unresolved. Since the linker script arranges
3453 for .rela.plt to follow all other relocation sections, we
3454 don't have to worry about changing the DT_RELA entry. */
3455 if (htab->srelplt)
3456 dyn.d_un.d_val -= htab->srelplt->output_section->size;
3457 break;
3458 }
3459
3460 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3461 }
3462
3463 return TRUE;
3464 }
3465
3466 \f
3467 /* Functions for dealing with the e_flags field. */
3468
3469 /* Merge backend specific data from an object file to the output
3470 object file when linking. */
3471
3472 static bfd_boolean
3473 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
3474 {
3475 unsigned out_mach, in_mach;
3476 flagword out_flag, in_flag;
3477
3478 /* Check if we have the same endianness. */
3479 if (!_bfd_generic_verify_endian_match (ibfd, obfd))
3480 return FALSE;
3481
3482 /* Don't even pretend to support mixed-format linking. */
3483 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3484 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3485 return FALSE;
3486
3487 out_flag = elf_elfheader (obfd)->e_flags;
3488 in_flag = elf_elfheader (ibfd)->e_flags;
3489
3490 out_mach = out_flag & EF_XTENSA_MACH;
3491 in_mach = in_flag & EF_XTENSA_MACH;
3492 if (out_mach != in_mach)
3493 {
3494 (*_bfd_error_handler)
3495 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3496 ibfd, out_mach, in_mach);
3497 bfd_set_error (bfd_error_wrong_format);
3498 return FALSE;
3499 }
3500
3501 if (! elf_flags_init (obfd))
3502 {
3503 elf_flags_init (obfd) = TRUE;
3504 elf_elfheader (obfd)->e_flags = in_flag;
3505
3506 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3507 && bfd_get_arch_info (obfd)->the_default)
3508 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3509 bfd_get_mach (ibfd));
3510
3511 return TRUE;
3512 }
3513
3514 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3515 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3516
3517 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3518 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3519
3520 return TRUE;
3521 }
3522
3523
3524 static bfd_boolean
3525 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3526 {
3527 BFD_ASSERT (!elf_flags_init (abfd)
3528 || elf_elfheader (abfd)->e_flags == flags);
3529
3530 elf_elfheader (abfd)->e_flags |= flags;
3531 elf_flags_init (abfd) = TRUE;
3532
3533 return TRUE;
3534 }
3535
3536
3537 static bfd_boolean
3538 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3539 {
3540 FILE *f = (FILE *) farg;
3541 flagword e_flags = elf_elfheader (abfd)->e_flags;
3542
3543 fprintf (f, "\nXtensa header:\n");
3544 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3545 fprintf (f, "\nMachine = Base\n");
3546 else
3547 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3548
3549 fprintf (f, "Insn tables = %s\n",
3550 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3551
3552 fprintf (f, "Literal tables = %s\n",
3553 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3554
3555 return _bfd_elf_print_private_bfd_data (abfd, farg);
3556 }
3557
3558
3559 /* Set the right machine number for an Xtensa ELF file. */
3560
3561 static bfd_boolean
3562 elf_xtensa_object_p (bfd *abfd)
3563 {
3564 int mach;
3565 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3566
3567 switch (arch)
3568 {
3569 case E_XTENSA_MACH:
3570 mach = bfd_mach_xtensa;
3571 break;
3572 default:
3573 return FALSE;
3574 }
3575
3576 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3577 return TRUE;
3578 }
3579
3580
3581 /* The final processing done just before writing out an Xtensa ELF object
3582 file. This gets the Xtensa architecture right based on the machine
3583 number. */
3584
3585 static void
3586 elf_xtensa_final_write_processing (bfd *abfd,
3587 bfd_boolean linker ATTRIBUTE_UNUSED)
3588 {
3589 int mach;
3590 unsigned long val;
3591
3592 switch (mach = bfd_get_mach (abfd))
3593 {
3594 case bfd_mach_xtensa:
3595 val = E_XTENSA_MACH;
3596 break;
3597 default:
3598 return;
3599 }
3600
3601 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3602 elf_elfheader (abfd)->e_flags |= val;
3603 }
3604
3605
3606 static enum elf_reloc_type_class
3607 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3608 const asection *rel_sec ATTRIBUTE_UNUSED,
3609 const Elf_Internal_Rela *rela)
3610 {
3611 switch ((int) ELF32_R_TYPE (rela->r_info))
3612 {
3613 case R_XTENSA_RELATIVE:
3614 return reloc_class_relative;
3615 case R_XTENSA_JMP_SLOT:
3616 return reloc_class_plt;
3617 default:
3618 return reloc_class_normal;
3619 }
3620 }
3621
3622 \f
3623 static bfd_boolean
3624 elf_xtensa_discard_info_for_section (bfd *abfd,
3625 struct elf_reloc_cookie *cookie,
3626 struct bfd_link_info *info,
3627 asection *sec)
3628 {
3629 bfd_byte *contents;
3630 bfd_vma offset, actual_offset;
3631 bfd_size_type removed_bytes = 0;
3632 bfd_size_type entry_size;
3633
3634 if (sec->output_section
3635 && bfd_is_abs_section (sec->output_section))
3636 return FALSE;
3637
3638 if (xtensa_is_proptable_section (sec))
3639 entry_size = 12;
3640 else
3641 entry_size = 8;
3642
3643 if (sec->size == 0 || sec->size % entry_size != 0)
3644 return FALSE;
3645
3646 contents = retrieve_contents (abfd, sec, info->keep_memory);
3647 if (!contents)
3648 return FALSE;
3649
3650 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3651 if (!cookie->rels)
3652 {
3653 release_contents (sec, contents);
3654 return FALSE;
3655 }
3656
3657 /* Sort the relocations. They should already be in order when
3658 relaxation is enabled, but it might not be. */
3659 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3660 internal_reloc_compare);
3661
3662 cookie->rel = cookie->rels;
3663 cookie->relend = cookie->rels + sec->reloc_count;
3664
3665 for (offset = 0; offset < sec->size; offset += entry_size)
3666 {
3667 actual_offset = offset - removed_bytes;
3668
3669 /* The ...symbol_deleted_p function will skip over relocs but it
3670 won't adjust their offsets, so do that here. */
3671 while (cookie->rel < cookie->relend
3672 && cookie->rel->r_offset < offset)
3673 {
3674 cookie->rel->r_offset -= removed_bytes;
3675 cookie->rel++;
3676 }
3677
3678 while (cookie->rel < cookie->relend
3679 && cookie->rel->r_offset == offset)
3680 {
3681 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3682 {
3683 /* Remove the table entry. (If the reloc type is NONE, then
3684 the entry has already been merged with another and deleted
3685 during relaxation.) */
3686 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3687 {
3688 /* Shift the contents up. */
3689 if (offset + entry_size < sec->size)
3690 memmove (&contents[actual_offset],
3691 &contents[actual_offset + entry_size],
3692 sec->size - offset - entry_size);
3693 removed_bytes += entry_size;
3694 }
3695
3696 /* Remove this relocation. */
3697 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3698 }
3699
3700 /* Adjust the relocation offset for previous removals. This
3701 should not be done before calling ...symbol_deleted_p
3702 because it might mess up the offset comparisons there.
3703 Make sure the offset doesn't underflow in the case where
3704 the first entry is removed. */
3705 if (cookie->rel->r_offset >= removed_bytes)
3706 cookie->rel->r_offset -= removed_bytes;
3707 else
3708 cookie->rel->r_offset = 0;
3709
3710 cookie->rel++;
3711 }
3712 }
3713
3714 if (removed_bytes != 0)
3715 {
3716 /* Adjust any remaining relocs (shouldn't be any). */
3717 for (; cookie->rel < cookie->relend; cookie->rel++)
3718 {
3719 if (cookie->rel->r_offset >= removed_bytes)
3720 cookie->rel->r_offset -= removed_bytes;
3721 else
3722 cookie->rel->r_offset = 0;
3723 }
3724
3725 /* Clear the removed bytes. */
3726 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3727
3728 pin_contents (sec, contents);
3729 pin_internal_relocs (sec, cookie->rels);
3730
3731 /* Shrink size. */
3732 if (sec->rawsize == 0)
3733 sec->rawsize = sec->size;
3734 sec->size -= removed_bytes;
3735
3736 if (xtensa_is_littable_section (sec))
3737 {
3738 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3739 if (sgotloc)
3740 sgotloc->size -= removed_bytes;
3741 }
3742 }
3743 else
3744 {
3745 release_contents (sec, contents);
3746 release_internal_relocs (sec, cookie->rels);
3747 }
3748
3749 return (removed_bytes != 0);
3750 }
3751
3752
3753 static bfd_boolean
3754 elf_xtensa_discard_info (bfd *abfd,
3755 struct elf_reloc_cookie *cookie,
3756 struct bfd_link_info *info)
3757 {
3758 asection *sec;
3759 bfd_boolean changed = FALSE;
3760
3761 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3762 {
3763 if (xtensa_is_property_section (sec))
3764 {
3765 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3766 changed = TRUE;
3767 }
3768 }
3769
3770 return changed;
3771 }
3772
3773
3774 static bfd_boolean
3775 elf_xtensa_ignore_discarded_relocs (asection *sec)
3776 {
3777 return xtensa_is_property_section (sec);
3778 }
3779
3780
3781 static unsigned int
3782 elf_xtensa_action_discarded (asection *sec)
3783 {
3784 if (strcmp (".xt_except_table", sec->name) == 0)
3785 return 0;
3786
3787 if (strcmp (".xt_except_desc", sec->name) == 0)
3788 return 0;
3789
3790 return _bfd_elf_default_action_discarded (sec);
3791 }
3792
3793 \f
3794 /* Support for core dump NOTE sections. */
3795
3796 static bfd_boolean
3797 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3798 {
3799 int offset;
3800 unsigned int size;
3801
3802 /* The size for Xtensa is variable, so don't try to recognize the format
3803 based on the size. Just assume this is GNU/Linux. */
3804
3805 /* pr_cursig */
3806 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3807
3808 /* pr_pid */
3809 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3810
3811 /* pr_reg */
3812 offset = 72;
3813 size = note->descsz - offset - 4;
3814
3815 /* Make a ".reg/999" section. */
3816 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3817 size, note->descpos + offset);
3818 }
3819
3820
3821 static bfd_boolean
3822 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3823 {
3824 switch (note->descsz)
3825 {
3826 default:
3827 return FALSE;
3828
3829 case 128: /* GNU/Linux elf_prpsinfo */
3830 elf_tdata (abfd)->core->program
3831 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3832 elf_tdata (abfd)->core->command
3833 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3834 }
3835
3836 /* Note that for some reason, a spurious space is tacked
3837 onto the end of the args in some (at least one anyway)
3838 implementations, so strip it off if it exists. */
3839
3840 {
3841 char *command = elf_tdata (abfd)->core->command;
3842 int n = strlen (command);
3843
3844 if (0 < n && command[n - 1] == ' ')
3845 command[n - 1] = '\0';
3846 }
3847
3848 return TRUE;
3849 }
3850
3851 \f
3852 /* Generic Xtensa configurability stuff. */
3853
3854 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3855 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3856 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3857 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3858 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3859 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3860 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3861 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3862
3863 static void
3864 init_call_opcodes (void)
3865 {
3866 if (callx0_op == XTENSA_UNDEFINED)
3867 {
3868 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3869 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3870 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3871 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3872 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3873 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3874 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3875 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3876 }
3877 }
3878
3879
3880 static bfd_boolean
3881 is_indirect_call_opcode (xtensa_opcode opcode)
3882 {
3883 init_call_opcodes ();
3884 return (opcode == callx0_op
3885 || opcode == callx4_op
3886 || opcode == callx8_op
3887 || opcode == callx12_op);
3888 }
3889
3890
3891 static bfd_boolean
3892 is_direct_call_opcode (xtensa_opcode opcode)
3893 {
3894 init_call_opcodes ();
3895 return (opcode == call0_op
3896 || opcode == call4_op
3897 || opcode == call8_op
3898 || opcode == call12_op);
3899 }
3900
3901
3902 static bfd_boolean
3903 is_windowed_call_opcode (xtensa_opcode opcode)
3904 {
3905 init_call_opcodes ();
3906 return (opcode == call4_op
3907 || opcode == call8_op
3908 || opcode == call12_op
3909 || opcode == callx4_op
3910 || opcode == callx8_op
3911 || opcode == callx12_op);
3912 }
3913
3914
3915 static bfd_boolean
3916 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3917 {
3918 unsigned dst = (unsigned) -1;
3919
3920 init_call_opcodes ();
3921 if (opcode == callx0_op)
3922 dst = 0;
3923 else if (opcode == callx4_op)
3924 dst = 4;
3925 else if (opcode == callx8_op)
3926 dst = 8;
3927 else if (opcode == callx12_op)
3928 dst = 12;
3929
3930 if (dst == (unsigned) -1)
3931 return FALSE;
3932
3933 *pdst = dst;
3934 return TRUE;
3935 }
3936
3937
3938 static xtensa_opcode
3939 get_const16_opcode (void)
3940 {
3941 static bfd_boolean done_lookup = FALSE;
3942 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3943 if (!done_lookup)
3944 {
3945 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3946 done_lookup = TRUE;
3947 }
3948 return const16_opcode;
3949 }
3950
3951
3952 static xtensa_opcode
3953 get_l32r_opcode (void)
3954 {
3955 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3956 static bfd_boolean done_lookup = FALSE;
3957
3958 if (!done_lookup)
3959 {
3960 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3961 done_lookup = TRUE;
3962 }
3963 return l32r_opcode;
3964 }
3965
3966
3967 static bfd_vma
3968 l32r_offset (bfd_vma addr, bfd_vma pc)
3969 {
3970 bfd_vma offset;
3971
3972 offset = addr - ((pc+3) & -4);
3973 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3974 offset = (signed int) offset >> 2;
3975 BFD_ASSERT ((signed int) offset >> 16 == -1);
3976 return offset;
3977 }
3978
3979
3980 static int
3981 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3982 {
3983 xtensa_isa isa = xtensa_default_isa;
3984 int last_immed, last_opnd, opi;
3985
3986 if (opcode == XTENSA_UNDEFINED)
3987 return XTENSA_UNDEFINED;
3988
3989 /* Find the last visible PC-relative immediate operand for the opcode.
3990 If there are no PC-relative immediates, then choose the last visible
3991 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3992 last_immed = XTENSA_UNDEFINED;
3993 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3994 for (opi = last_opnd - 1; opi >= 0; opi--)
3995 {
3996 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3997 continue;
3998 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3999 {
4000 last_immed = opi;
4001 break;
4002 }
4003 if (last_immed == XTENSA_UNDEFINED
4004 && xtensa_operand_is_register (isa, opcode, opi) == 0)
4005 last_immed = opi;
4006 }
4007 if (last_immed < 0)
4008 return XTENSA_UNDEFINED;
4009
4010 /* If the operand number was specified in an old-style relocation,
4011 check for consistency with the operand computed above. */
4012 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
4013 {
4014 int reloc_opnd = r_type - R_XTENSA_OP0;
4015 if (reloc_opnd != last_immed)
4016 return XTENSA_UNDEFINED;
4017 }
4018
4019 return last_immed;
4020 }
4021
4022
4023 int
4024 get_relocation_slot (int r_type)
4025 {
4026 switch (r_type)
4027 {
4028 case R_XTENSA_OP0:
4029 case R_XTENSA_OP1:
4030 case R_XTENSA_OP2:
4031 return 0;
4032
4033 default:
4034 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4035 return r_type - R_XTENSA_SLOT0_OP;
4036 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4037 return r_type - R_XTENSA_SLOT0_ALT;
4038 break;
4039 }
4040
4041 return XTENSA_UNDEFINED;
4042 }
4043
4044
4045 /* Get the opcode for a relocation. */
4046
4047 static xtensa_opcode
4048 get_relocation_opcode (bfd *abfd,
4049 asection *sec,
4050 bfd_byte *contents,
4051 Elf_Internal_Rela *irel)
4052 {
4053 static xtensa_insnbuf ibuff = NULL;
4054 static xtensa_insnbuf sbuff = NULL;
4055 xtensa_isa isa = xtensa_default_isa;
4056 xtensa_format fmt;
4057 int slot;
4058
4059 if (contents == NULL)
4060 return XTENSA_UNDEFINED;
4061
4062 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4063 return XTENSA_UNDEFINED;
4064
4065 if (ibuff == NULL)
4066 {
4067 ibuff = xtensa_insnbuf_alloc (isa);
4068 sbuff = xtensa_insnbuf_alloc (isa);
4069 }
4070
4071 /* Decode the instruction. */
4072 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4073 sec->size - irel->r_offset);
4074 fmt = xtensa_format_decode (isa, ibuff);
4075 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4076 if (slot == XTENSA_UNDEFINED)
4077 return XTENSA_UNDEFINED;
4078 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4079 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4080 }
4081
4082
4083 bfd_boolean
4084 is_l32r_relocation (bfd *abfd,
4085 asection *sec,
4086 bfd_byte *contents,
4087 Elf_Internal_Rela *irel)
4088 {
4089 xtensa_opcode opcode;
4090 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4091 return FALSE;
4092 opcode = get_relocation_opcode (abfd, sec, contents, irel);
4093 return (opcode == get_l32r_opcode ());
4094 }
4095
4096
4097 static bfd_size_type
4098 get_asm_simplify_size (bfd_byte *contents,
4099 bfd_size_type content_len,
4100 bfd_size_type offset)
4101 {
4102 bfd_size_type insnlen, size = 0;
4103
4104 /* Decode the size of the next two instructions. */
4105 insnlen = insn_decode_len (contents, content_len, offset);
4106 if (insnlen == 0)
4107 return 0;
4108
4109 size += insnlen;
4110
4111 insnlen = insn_decode_len (contents, content_len, offset + size);
4112 if (insnlen == 0)
4113 return 0;
4114
4115 size += insnlen;
4116 return size;
4117 }
4118
4119
4120 bfd_boolean
4121 is_alt_relocation (int r_type)
4122 {
4123 return (r_type >= R_XTENSA_SLOT0_ALT
4124 && r_type <= R_XTENSA_SLOT14_ALT);
4125 }
4126
4127
4128 bfd_boolean
4129 is_operand_relocation (int r_type)
4130 {
4131 switch (r_type)
4132 {
4133 case R_XTENSA_OP0:
4134 case R_XTENSA_OP1:
4135 case R_XTENSA_OP2:
4136 return TRUE;
4137
4138 default:
4139 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4140 return TRUE;
4141 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4142 return TRUE;
4143 break;
4144 }
4145
4146 return FALSE;
4147 }
4148
4149
4150 #define MIN_INSN_LENGTH 2
4151
4152 /* Return 0 if it fails to decode. */
4153
4154 bfd_size_type
4155 insn_decode_len (bfd_byte *contents,
4156 bfd_size_type content_len,
4157 bfd_size_type offset)
4158 {
4159 int insn_len;
4160 xtensa_isa isa = xtensa_default_isa;
4161 xtensa_format fmt;
4162 static xtensa_insnbuf ibuff = NULL;
4163
4164 if (offset + MIN_INSN_LENGTH > content_len)
4165 return 0;
4166
4167 if (ibuff == NULL)
4168 ibuff = xtensa_insnbuf_alloc (isa);
4169 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4170 content_len - offset);
4171 fmt = xtensa_format_decode (isa, ibuff);
4172 if (fmt == XTENSA_UNDEFINED)
4173 return 0;
4174 insn_len = xtensa_format_length (isa, fmt);
4175 if (insn_len == XTENSA_UNDEFINED)
4176 return 0;
4177 return insn_len;
4178 }
4179
4180
4181 /* Decode the opcode for a single slot instruction.
4182 Return 0 if it fails to decode or the instruction is multi-slot. */
4183
4184 xtensa_opcode
4185 insn_decode_opcode (bfd_byte *contents,
4186 bfd_size_type content_len,
4187 bfd_size_type offset,
4188 int slot)
4189 {
4190 xtensa_isa isa = xtensa_default_isa;
4191 xtensa_format fmt;
4192 static xtensa_insnbuf insnbuf = NULL;
4193 static xtensa_insnbuf slotbuf = NULL;
4194
4195 if (offset + MIN_INSN_LENGTH > content_len)
4196 return XTENSA_UNDEFINED;
4197
4198 if (insnbuf == NULL)
4199 {
4200 insnbuf = xtensa_insnbuf_alloc (isa);
4201 slotbuf = xtensa_insnbuf_alloc (isa);
4202 }
4203
4204 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4205 content_len - offset);
4206 fmt = xtensa_format_decode (isa, insnbuf);
4207 if (fmt == XTENSA_UNDEFINED)
4208 return XTENSA_UNDEFINED;
4209
4210 if (slot >= xtensa_format_num_slots (isa, fmt))
4211 return XTENSA_UNDEFINED;
4212
4213 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4214 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4215 }
4216
4217
4218 /* The offset is the offset in the contents.
4219 The address is the address of that offset. */
4220
4221 static bfd_boolean
4222 check_branch_target_aligned (bfd_byte *contents,
4223 bfd_size_type content_length,
4224 bfd_vma offset,
4225 bfd_vma address)
4226 {
4227 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4228 if (insn_len == 0)
4229 return FALSE;
4230 return check_branch_target_aligned_address (address, insn_len);
4231 }
4232
4233
4234 static bfd_boolean
4235 check_loop_aligned (bfd_byte *contents,
4236 bfd_size_type content_length,
4237 bfd_vma offset,
4238 bfd_vma address)
4239 {
4240 bfd_size_type loop_len, insn_len;
4241 xtensa_opcode opcode;
4242
4243 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4244 if (opcode == XTENSA_UNDEFINED
4245 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4246 {
4247 BFD_ASSERT (FALSE);
4248 return FALSE;
4249 }
4250
4251 loop_len = insn_decode_len (contents, content_length, offset);
4252 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4253 if (loop_len == 0 || insn_len == 0)
4254 {
4255 BFD_ASSERT (FALSE);
4256 return FALSE;
4257 }
4258
4259 return check_branch_target_aligned_address (address + loop_len, insn_len);
4260 }
4261
4262
4263 static bfd_boolean
4264 check_branch_target_aligned_address (bfd_vma addr, int len)
4265 {
4266 if (len == 8)
4267 return (addr % 8 == 0);
4268 return ((addr >> 2) == ((addr + len - 1) >> 2));
4269 }
4270
4271 \f
4272 /* Instruction widening and narrowing. */
4273
4274 /* When FLIX is available we need to access certain instructions only
4275 when they are 16-bit or 24-bit instructions. This table caches
4276 information about such instructions by walking through all the
4277 opcodes and finding the smallest single-slot format into which each
4278 can be encoded. */
4279
4280 static xtensa_format *op_single_fmt_table = NULL;
4281
4282
4283 static void
4284 init_op_single_format_table (void)
4285 {
4286 xtensa_isa isa = xtensa_default_isa;
4287 xtensa_insnbuf ibuf;
4288 xtensa_opcode opcode;
4289 xtensa_format fmt;
4290 int num_opcodes;
4291
4292 if (op_single_fmt_table)
4293 return;
4294
4295 ibuf = xtensa_insnbuf_alloc (isa);
4296 num_opcodes = xtensa_isa_num_opcodes (isa);
4297
4298 op_single_fmt_table = (xtensa_format *)
4299 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4300 for (opcode = 0; opcode < num_opcodes; opcode++)
4301 {
4302 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4303 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4304 {
4305 if (xtensa_format_num_slots (isa, fmt) == 1
4306 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4307 {
4308 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4309 int fmt_length = xtensa_format_length (isa, fmt);
4310 if (old_fmt == XTENSA_UNDEFINED
4311 || fmt_length < xtensa_format_length (isa, old_fmt))
4312 op_single_fmt_table[opcode] = fmt;
4313 }
4314 }
4315 }
4316 xtensa_insnbuf_free (isa, ibuf);
4317 }
4318
4319
4320 static xtensa_format
4321 get_single_format (xtensa_opcode opcode)
4322 {
4323 init_op_single_format_table ();
4324 return op_single_fmt_table[opcode];
4325 }
4326
4327
4328 /* For the set of narrowable instructions we do NOT include the
4329 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4330 involved during linker relaxation that may require these to
4331 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4332 requires special case code to ensure it only works when op1 == op2. */
4333
4334 struct string_pair
4335 {
4336 const char *wide;
4337 const char *narrow;
4338 };
4339
4340 struct string_pair narrowable[] =
4341 {
4342 { "add", "add.n" },
4343 { "addi", "addi.n" },
4344 { "addmi", "addi.n" },
4345 { "l32i", "l32i.n" },
4346 { "movi", "movi.n" },
4347 { "ret", "ret.n" },
4348 { "retw", "retw.n" },
4349 { "s32i", "s32i.n" },
4350 { "or", "mov.n" } /* special case only when op1 == op2 */
4351 };
4352
4353 struct string_pair widenable[] =
4354 {
4355 { "add", "add.n" },
4356 { "addi", "addi.n" },
4357 { "addmi", "addi.n" },
4358 { "beqz", "beqz.n" },
4359 { "bnez", "bnez.n" },
4360 { "l32i", "l32i.n" },
4361 { "movi", "movi.n" },
4362 { "ret", "ret.n" },
4363 { "retw", "retw.n" },
4364 { "s32i", "s32i.n" },
4365 { "or", "mov.n" } /* special case only when op1 == op2 */
4366 };
4367
4368
4369 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4370 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4371 return the instruction buffer holding the narrow instruction. Otherwise,
4372 return 0. The set of valid narrowing are specified by a string table
4373 but require some special case operand checks in some cases. */
4374
4375 static xtensa_insnbuf
4376 can_narrow_instruction (xtensa_insnbuf slotbuf,
4377 xtensa_format fmt,
4378 xtensa_opcode opcode)
4379 {
4380 xtensa_isa isa = xtensa_default_isa;
4381 xtensa_format o_fmt;
4382 unsigned opi;
4383
4384 static xtensa_insnbuf o_insnbuf = NULL;
4385 static xtensa_insnbuf o_slotbuf = NULL;
4386
4387 if (o_insnbuf == NULL)
4388 {
4389 o_insnbuf = xtensa_insnbuf_alloc (isa);
4390 o_slotbuf = xtensa_insnbuf_alloc (isa);
4391 }
4392
4393 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4394 {
4395 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4396
4397 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4398 {
4399 uint32 value, newval;
4400 int i, operand_count, o_operand_count;
4401 xtensa_opcode o_opcode;
4402
4403 /* Address does not matter in this case. We might need to
4404 fix it to handle branches/jumps. */
4405 bfd_vma self_address = 0;
4406
4407 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4408 if (o_opcode == XTENSA_UNDEFINED)
4409 return 0;
4410 o_fmt = get_single_format (o_opcode);
4411 if (o_fmt == XTENSA_UNDEFINED)
4412 return 0;
4413
4414 if (xtensa_format_length (isa, fmt) != 3
4415 || xtensa_format_length (isa, o_fmt) != 2)
4416 return 0;
4417
4418 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4419 operand_count = xtensa_opcode_num_operands (isa, opcode);
4420 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4421
4422 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4423 return 0;
4424
4425 if (!is_or)
4426 {
4427 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4428 return 0;
4429 }
4430 else
4431 {
4432 uint32 rawval0, rawval1, rawval2;
4433
4434 if (o_operand_count + 1 != operand_count
4435 || xtensa_operand_get_field (isa, opcode, 0,
4436 fmt, 0, slotbuf, &rawval0) != 0
4437 || xtensa_operand_get_field (isa, opcode, 1,
4438 fmt, 0, slotbuf, &rawval1) != 0
4439 || xtensa_operand_get_field (isa, opcode, 2,
4440 fmt, 0, slotbuf, &rawval2) != 0
4441 || rawval1 != rawval2
4442 || rawval0 == rawval1 /* it is a nop */)
4443 return 0;
4444 }
4445
4446 for (i = 0; i < o_operand_count; ++i)
4447 {
4448 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4449 slotbuf, &value)
4450 || xtensa_operand_decode (isa, opcode, i, &value))
4451 return 0;
4452
4453 /* PC-relative branches need adjustment, but
4454 the PC-rel operand will always have a relocation. */
4455 newval = value;
4456 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4457 self_address)
4458 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4459 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4460 o_slotbuf, newval))
4461 return 0;
4462 }
4463
4464 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4465 return 0;
4466
4467 return o_insnbuf;
4468 }
4469 }
4470 return 0;
4471 }
4472
4473
4474 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4475 the action in-place directly into the contents and return TRUE. Otherwise,
4476 the return value is FALSE and the contents are not modified. */
4477
4478 static bfd_boolean
4479 narrow_instruction (bfd_byte *contents,
4480 bfd_size_type content_length,
4481 bfd_size_type offset)
4482 {
4483 xtensa_opcode opcode;
4484 bfd_size_type insn_len;
4485 xtensa_isa isa = xtensa_default_isa;
4486 xtensa_format fmt;
4487 xtensa_insnbuf o_insnbuf;
4488
4489 static xtensa_insnbuf insnbuf = NULL;
4490 static xtensa_insnbuf slotbuf = NULL;
4491
4492 if (insnbuf == NULL)
4493 {
4494 insnbuf = xtensa_insnbuf_alloc (isa);
4495 slotbuf = xtensa_insnbuf_alloc (isa);
4496 }
4497
4498 BFD_ASSERT (offset < content_length);
4499
4500 if (content_length < 2)
4501 return FALSE;
4502
4503 /* We will hand-code a few of these for a little while.
4504 These have all been specified in the assembler aleady. */
4505 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4506 content_length - offset);
4507 fmt = xtensa_format_decode (isa, insnbuf);
4508 if (xtensa_format_num_slots (isa, fmt) != 1)
4509 return FALSE;
4510
4511 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4512 return FALSE;
4513
4514 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4515 if (opcode == XTENSA_UNDEFINED)
4516 return FALSE;
4517 insn_len = xtensa_format_length (isa, fmt);
4518 if (insn_len > content_length)
4519 return FALSE;
4520
4521 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4522 if (o_insnbuf)
4523 {
4524 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4525 content_length - offset);
4526 return TRUE;
4527 }
4528
4529 return FALSE;
4530 }
4531
4532
4533 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4534 "density" instruction to a standard 3-byte instruction. If it is valid,
4535 return the instruction buffer holding the wide instruction. Otherwise,
4536 return 0. The set of valid widenings are specified by a string table
4537 but require some special case operand checks in some cases. */
4538
4539 static xtensa_insnbuf
4540 can_widen_instruction (xtensa_insnbuf slotbuf,
4541 xtensa_format fmt,
4542 xtensa_opcode opcode)
4543 {
4544 xtensa_isa isa = xtensa_default_isa;
4545 xtensa_format o_fmt;
4546 unsigned opi;
4547
4548 static xtensa_insnbuf o_insnbuf = NULL;
4549 static xtensa_insnbuf o_slotbuf = NULL;
4550
4551 if (o_insnbuf == NULL)
4552 {
4553 o_insnbuf = xtensa_insnbuf_alloc (isa);
4554 o_slotbuf = xtensa_insnbuf_alloc (isa);
4555 }
4556
4557 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4558 {
4559 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4560 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4561 || strcmp ("bnez", widenable[opi].wide) == 0);
4562
4563 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4564 {
4565 uint32 value, newval;
4566 int i, operand_count, o_operand_count, check_operand_count;
4567 xtensa_opcode o_opcode;
4568
4569 /* Address does not matter in this case. We might need to fix it
4570 to handle branches/jumps. */
4571 bfd_vma self_address = 0;
4572
4573 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4574 if (o_opcode == XTENSA_UNDEFINED)
4575 return 0;
4576 o_fmt = get_single_format (o_opcode);
4577 if (o_fmt == XTENSA_UNDEFINED)
4578 return 0;
4579
4580 if (xtensa_format_length (isa, fmt) != 2
4581 || xtensa_format_length (isa, o_fmt) != 3)
4582 return 0;
4583
4584 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4585 operand_count = xtensa_opcode_num_operands (isa, opcode);
4586 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4587 check_operand_count = o_operand_count;
4588
4589 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4590 return 0;
4591
4592 if (!is_or)
4593 {
4594 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4595 return 0;
4596 }
4597 else
4598 {
4599 uint32 rawval0, rawval1;
4600
4601 if (o_operand_count != operand_count + 1
4602 || xtensa_operand_get_field (isa, opcode, 0,
4603 fmt, 0, slotbuf, &rawval0) != 0
4604 || xtensa_operand_get_field (isa, opcode, 1,
4605 fmt, 0, slotbuf, &rawval1) != 0
4606 || rawval0 == rawval1 /* it is a nop */)
4607 return 0;
4608 }
4609 if (is_branch)
4610 check_operand_count--;
4611
4612 for (i = 0; i < check_operand_count; i++)
4613 {
4614 int new_i = i;
4615 if (is_or && i == o_operand_count - 1)
4616 new_i = i - 1;
4617 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4618 slotbuf, &value)
4619 || xtensa_operand_decode (isa, opcode, new_i, &value))
4620 return 0;
4621
4622 /* PC-relative branches need adjustment, but
4623 the PC-rel operand will always have a relocation. */
4624 newval = value;
4625 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4626 self_address)
4627 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4628 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4629 o_slotbuf, newval))
4630 return 0;
4631 }
4632
4633 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4634 return 0;
4635
4636 return o_insnbuf;
4637 }
4638 }
4639 return 0;
4640 }
4641
4642
4643 /* Attempt to widen an instruction. If the widening is valid, perform
4644 the action in-place directly into the contents and return TRUE. Otherwise,
4645 the return value is FALSE and the contents are not modified. */
4646
4647 static bfd_boolean
4648 widen_instruction (bfd_byte *contents,
4649 bfd_size_type content_length,
4650 bfd_size_type offset)
4651 {
4652 xtensa_opcode opcode;
4653 bfd_size_type insn_len;
4654 xtensa_isa isa = xtensa_default_isa;
4655 xtensa_format fmt;
4656 xtensa_insnbuf o_insnbuf;
4657
4658 static xtensa_insnbuf insnbuf = NULL;
4659 static xtensa_insnbuf slotbuf = NULL;
4660
4661 if (insnbuf == NULL)
4662 {
4663 insnbuf = xtensa_insnbuf_alloc (isa);
4664 slotbuf = xtensa_insnbuf_alloc (isa);
4665 }
4666
4667 BFD_ASSERT (offset < content_length);
4668
4669 if (content_length < 2)
4670 return FALSE;
4671
4672 /* We will hand-code a few of these for a little while.
4673 These have all been specified in the assembler aleady. */
4674 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4675 content_length - offset);
4676 fmt = xtensa_format_decode (isa, insnbuf);
4677 if (xtensa_format_num_slots (isa, fmt) != 1)
4678 return FALSE;
4679
4680 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4681 return FALSE;
4682
4683 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4684 if (opcode == XTENSA_UNDEFINED)
4685 return FALSE;
4686 insn_len = xtensa_format_length (isa, fmt);
4687 if (insn_len > content_length)
4688 return FALSE;
4689
4690 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4691 if (o_insnbuf)
4692 {
4693 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4694 content_length - offset);
4695 return TRUE;
4696 }
4697 return FALSE;
4698 }
4699
4700 \f
4701 /* Code for transforming CALLs at link-time. */
4702
4703 static bfd_reloc_status_type
4704 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4705 bfd_vma address,
4706 bfd_vma content_length,
4707 char **error_message)
4708 {
4709 static xtensa_insnbuf insnbuf = NULL;
4710 static xtensa_insnbuf slotbuf = NULL;
4711 xtensa_format core_format = XTENSA_UNDEFINED;
4712 xtensa_opcode opcode;
4713 xtensa_opcode direct_call_opcode;
4714 xtensa_isa isa = xtensa_default_isa;
4715 bfd_byte *chbuf = contents + address;
4716 int opn;
4717
4718 if (insnbuf == NULL)
4719 {
4720 insnbuf = xtensa_insnbuf_alloc (isa);
4721 slotbuf = xtensa_insnbuf_alloc (isa);
4722 }
4723
4724 if (content_length < address)
4725 {
4726 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4727 return bfd_reloc_other;
4728 }
4729
4730 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4731 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4732 if (direct_call_opcode == XTENSA_UNDEFINED)
4733 {
4734 *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4735 return bfd_reloc_other;
4736 }
4737
4738 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4739 core_format = xtensa_format_lookup (isa, "x24");
4740 opcode = xtensa_opcode_lookup (isa, "or");
4741 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4742 for (opn = 0; opn < 3; opn++)
4743 {
4744 uint32 regno = 1;
4745 xtensa_operand_encode (isa, opcode, opn, &regno);
4746 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4747 slotbuf, regno);
4748 }
4749 xtensa_format_encode (isa, core_format, insnbuf);
4750 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4751 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4752
4753 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4754 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4755 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4756
4757 xtensa_format_encode (isa, core_format, insnbuf);
4758 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4759 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4760 content_length - address - 3);
4761
4762 return bfd_reloc_ok;
4763 }
4764
4765
4766 static bfd_reloc_status_type
4767 contract_asm_expansion (bfd_byte *contents,
4768 bfd_vma content_length,
4769 Elf_Internal_Rela *irel,
4770 char **error_message)
4771 {
4772 bfd_reloc_status_type retval =
4773 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4774 error_message);
4775
4776 if (retval != bfd_reloc_ok)
4777 return bfd_reloc_dangerous;
4778
4779 /* Update the irel->r_offset field so that the right immediate and
4780 the right instruction are modified during the relocation. */
4781 irel->r_offset += 3;
4782 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4783 return bfd_reloc_ok;
4784 }
4785
4786
4787 static xtensa_opcode
4788 swap_callx_for_call_opcode (xtensa_opcode opcode)
4789 {
4790 init_call_opcodes ();
4791
4792 if (opcode == callx0_op) return call0_op;
4793 if (opcode == callx4_op) return call4_op;
4794 if (opcode == callx8_op) return call8_op;
4795 if (opcode == callx12_op) return call12_op;
4796
4797 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4798 return XTENSA_UNDEFINED;
4799 }
4800
4801
4802 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4803 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4804 If not, return XTENSA_UNDEFINED. */
4805
4806 #define L32R_TARGET_REG_OPERAND 0
4807 #define CONST16_TARGET_REG_OPERAND 0
4808 #define CALLN_SOURCE_OPERAND 0
4809
4810 static xtensa_opcode
4811 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4812 {
4813 static xtensa_insnbuf insnbuf = NULL;
4814 static xtensa_insnbuf slotbuf = NULL;
4815 xtensa_format fmt;
4816 xtensa_opcode opcode;
4817 xtensa_isa isa = xtensa_default_isa;
4818 uint32 regno, const16_regno, call_regno;
4819 int offset = 0;
4820
4821 if (insnbuf == NULL)
4822 {
4823 insnbuf = xtensa_insnbuf_alloc (isa);
4824 slotbuf = xtensa_insnbuf_alloc (isa);
4825 }
4826
4827 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4828 fmt = xtensa_format_decode (isa, insnbuf);
4829 if (fmt == XTENSA_UNDEFINED
4830 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4831 return XTENSA_UNDEFINED;
4832
4833 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4834 if (opcode == XTENSA_UNDEFINED)
4835 return XTENSA_UNDEFINED;
4836
4837 if (opcode == get_l32r_opcode ())
4838 {
4839 if (p_uses_l32r)
4840 *p_uses_l32r = TRUE;
4841 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4842 fmt, 0, slotbuf, &regno)
4843 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4844 &regno))
4845 return XTENSA_UNDEFINED;
4846 }
4847 else if (opcode == get_const16_opcode ())
4848 {
4849 if (p_uses_l32r)
4850 *p_uses_l32r = FALSE;
4851 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4852 fmt, 0, slotbuf, &regno)
4853 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4854 &regno))
4855 return XTENSA_UNDEFINED;
4856
4857 /* Check that the next instruction is also CONST16. */
4858 offset += xtensa_format_length (isa, fmt);
4859 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4860 fmt = xtensa_format_decode (isa, insnbuf);
4861 if (fmt == XTENSA_UNDEFINED
4862 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4863 return XTENSA_UNDEFINED;
4864 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4865 if (opcode != get_const16_opcode ())
4866 return XTENSA_UNDEFINED;
4867
4868 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4869 fmt, 0, slotbuf, &const16_regno)
4870 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4871 &const16_regno)
4872 || const16_regno != regno)
4873 return XTENSA_UNDEFINED;
4874 }
4875 else
4876 return XTENSA_UNDEFINED;
4877
4878 /* Next instruction should be an CALLXn with operand 0 == regno. */
4879 offset += xtensa_format_length (isa, fmt);
4880 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4881 fmt = xtensa_format_decode (isa, insnbuf);
4882 if (fmt == XTENSA_UNDEFINED
4883 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4884 return XTENSA_UNDEFINED;
4885 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4886 if (opcode == XTENSA_UNDEFINED
4887 || !is_indirect_call_opcode (opcode))
4888 return XTENSA_UNDEFINED;
4889
4890 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4891 fmt, 0, slotbuf, &call_regno)
4892 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4893 &call_regno))
4894 return XTENSA_UNDEFINED;
4895
4896 if (call_regno != regno)
4897 return XTENSA_UNDEFINED;
4898
4899 return opcode;
4900 }
4901
4902 \f
4903 /* Data structures used during relaxation. */
4904
4905 /* r_reloc: relocation values. */
4906
4907 /* Through the relaxation process, we need to keep track of the values
4908 that will result from evaluating relocations. The standard ELF
4909 relocation structure is not sufficient for this purpose because we're
4910 operating on multiple input files at once, so we need to know which
4911 input file a relocation refers to. The r_reloc structure thus
4912 records both the input file (bfd) and ELF relocation.
4913
4914 For efficiency, an r_reloc also contains a "target_offset" field to
4915 cache the target-section-relative offset value that is represented by
4916 the relocation.
4917
4918 The r_reloc also contains a virtual offset that allows multiple
4919 inserted literals to be placed at the same "address" with
4920 different offsets. */
4921
4922 typedef struct r_reloc_struct r_reloc;
4923
4924 struct r_reloc_struct
4925 {
4926 bfd *abfd;
4927 Elf_Internal_Rela rela;
4928 bfd_vma target_offset;
4929 bfd_vma virtual_offset;
4930 };
4931
4932
4933 /* The r_reloc structure is included by value in literal_value, but not
4934 every literal_value has an associated relocation -- some are simple
4935 constants. In such cases, we set all the fields in the r_reloc
4936 struct to zero. The r_reloc_is_const function should be used to
4937 detect this case. */
4938
4939 static bfd_boolean
4940 r_reloc_is_const (const r_reloc *r_rel)
4941 {
4942 return (r_rel->abfd == NULL);
4943 }
4944
4945
4946 static bfd_vma
4947 r_reloc_get_target_offset (const r_reloc *r_rel)
4948 {
4949 bfd_vma target_offset;
4950 unsigned long r_symndx;
4951
4952 BFD_ASSERT (!r_reloc_is_const (r_rel));
4953 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4954 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4955 return (target_offset + r_rel->rela.r_addend);
4956 }
4957
4958
4959 static struct elf_link_hash_entry *
4960 r_reloc_get_hash_entry (const r_reloc *r_rel)
4961 {
4962 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4963 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4964 }
4965
4966
4967 static asection *
4968 r_reloc_get_section (const r_reloc *r_rel)
4969 {
4970 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4971 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4972 }
4973
4974
4975 static bfd_boolean
4976 r_reloc_is_defined (const r_reloc *r_rel)
4977 {
4978 asection *sec;
4979 if (r_rel == NULL)
4980 return FALSE;
4981
4982 sec = r_reloc_get_section (r_rel);
4983 if (sec == bfd_abs_section_ptr
4984 || sec == bfd_com_section_ptr
4985 || sec == bfd_und_section_ptr)
4986 return FALSE;
4987 return TRUE;
4988 }
4989
4990
4991 static void
4992 r_reloc_init (r_reloc *r_rel,
4993 bfd *abfd,
4994 Elf_Internal_Rela *irel,
4995 bfd_byte *contents,
4996 bfd_size_type content_length)
4997 {
4998 int r_type;
4999 reloc_howto_type *howto;
5000
5001 if (irel)
5002 {
5003 r_rel->rela = *irel;
5004 r_rel->abfd = abfd;
5005 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
5006 r_rel->virtual_offset = 0;
5007 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
5008 howto = &elf_howto_table[r_type];
5009 if (howto->partial_inplace)
5010 {
5011 bfd_vma inplace_val;
5012 BFD_ASSERT (r_rel->rela.r_offset < content_length);
5013
5014 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
5015 r_rel->target_offset += inplace_val;
5016 }
5017 }
5018 else
5019 memset (r_rel, 0, sizeof (r_reloc));
5020 }
5021
5022
5023 #if DEBUG
5024
5025 static void
5026 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5027 {
5028 if (r_reloc_is_defined (r_rel))
5029 {
5030 asection *sec = r_reloc_get_section (r_rel);
5031 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5032 }
5033 else if (r_reloc_get_hash_entry (r_rel))
5034 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5035 else
5036 fprintf (fp, " ?? + ");
5037
5038 fprintf_vma (fp, r_rel->target_offset);
5039 if (r_rel->virtual_offset)
5040 {
5041 fprintf (fp, " + ");
5042 fprintf_vma (fp, r_rel->virtual_offset);
5043 }
5044
5045 fprintf (fp, ")");
5046 }
5047
5048 #endif /* DEBUG */
5049
5050 \f
5051 /* source_reloc: relocations that reference literals. */
5052
5053 /* To determine whether literals can be coalesced, we need to first
5054 record all the relocations that reference the literals. The
5055 source_reloc structure below is used for this purpose. The
5056 source_reloc entries are kept in a per-literal-section array, sorted
5057 by offset within the literal section (i.e., target offset).
5058
5059 The source_sec and r_rel.rela.r_offset fields identify the source of
5060 the relocation. The r_rel field records the relocation value, i.e.,
5061 the offset of the literal being referenced. The opnd field is needed
5062 to determine the range of the immediate field to which the relocation
5063 applies, so we can determine whether another literal with the same
5064 value is within range. The is_null field is true when the relocation
5065 is being removed (e.g., when an L32R is being removed due to a CALLX
5066 that is converted to a direct CALL). */
5067
5068 typedef struct source_reloc_struct source_reloc;
5069
5070 struct source_reloc_struct
5071 {
5072 asection *source_sec;
5073 r_reloc r_rel;
5074 xtensa_opcode opcode;
5075 int opnd;
5076 bfd_boolean is_null;
5077 bfd_boolean is_abs_literal;
5078 };
5079
5080
5081 static void
5082 init_source_reloc (source_reloc *reloc,
5083 asection *source_sec,
5084 const r_reloc *r_rel,
5085 xtensa_opcode opcode,
5086 int opnd,
5087 bfd_boolean is_abs_literal)
5088 {
5089 reloc->source_sec = source_sec;
5090 reloc->r_rel = *r_rel;
5091 reloc->opcode = opcode;
5092 reloc->opnd = opnd;
5093 reloc->is_null = FALSE;
5094 reloc->is_abs_literal = is_abs_literal;
5095 }
5096
5097
5098 /* Find the source_reloc for a particular source offset and relocation
5099 type. Note that the array is sorted by _target_ offset, so this is
5100 just a linear search. */
5101
5102 static source_reloc *
5103 find_source_reloc (source_reloc *src_relocs,
5104 int src_count,
5105 asection *sec,
5106 Elf_Internal_Rela *irel)
5107 {
5108 int i;
5109
5110 for (i = 0; i < src_count; i++)
5111 {
5112 if (src_relocs[i].source_sec == sec
5113 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5114 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5115 == ELF32_R_TYPE (irel->r_info)))
5116 return &src_relocs[i];
5117 }
5118
5119 return NULL;
5120 }
5121
5122
5123 static int
5124 source_reloc_compare (const void *ap, const void *bp)
5125 {
5126 const source_reloc *a = (const source_reloc *) ap;
5127 const source_reloc *b = (const source_reloc *) bp;
5128
5129 if (a->r_rel.target_offset != b->r_rel.target_offset)
5130 return (a->r_rel.target_offset - b->r_rel.target_offset);
5131
5132 /* We don't need to sort on these criteria for correctness,
5133 but enforcing a more strict ordering prevents unstable qsort
5134 from behaving differently with different implementations.
5135 Without the code below we get correct but different results
5136 on Solaris 2.7 and 2.8. We would like to always produce the
5137 same results no matter the host. */
5138
5139 if ((!a->is_null) - (!b->is_null))
5140 return ((!a->is_null) - (!b->is_null));
5141 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5142 }
5143
5144 \f
5145 /* Literal values and value hash tables. */
5146
5147 /* Literals with the same value can be coalesced. The literal_value
5148 structure records the value of a literal: the "r_rel" field holds the
5149 information from the relocation on the literal (if there is one) and
5150 the "value" field holds the contents of the literal word itself.
5151
5152 The value_map structure records a literal value along with the
5153 location of a literal holding that value. The value_map hash table
5154 is indexed by the literal value, so that we can quickly check if a
5155 particular literal value has been seen before and is thus a candidate
5156 for coalescing. */
5157
5158 typedef struct literal_value_struct literal_value;
5159 typedef struct value_map_struct value_map;
5160 typedef struct value_map_hash_table_struct value_map_hash_table;
5161
5162 struct literal_value_struct
5163 {
5164 r_reloc r_rel;
5165 unsigned long value;
5166 bfd_boolean is_abs_literal;
5167 };
5168
5169 struct value_map_struct
5170 {
5171 literal_value val; /* The literal value. */
5172 r_reloc loc; /* Location of the literal. */
5173 value_map *next;
5174 };
5175
5176 struct value_map_hash_table_struct
5177 {
5178 unsigned bucket_count;
5179 value_map **buckets;
5180 unsigned count;
5181 bfd_boolean has_last_loc;
5182 r_reloc last_loc;
5183 };
5184
5185
5186 static void
5187 init_literal_value (literal_value *lit,
5188 const r_reloc *r_rel,
5189 unsigned long value,
5190 bfd_boolean is_abs_literal)
5191 {
5192 lit->r_rel = *r_rel;
5193 lit->value = value;
5194 lit->is_abs_literal = is_abs_literal;
5195 }
5196
5197
5198 static bfd_boolean
5199 literal_value_equal (const literal_value *src1,
5200 const literal_value *src2,
5201 bfd_boolean final_static_link)
5202 {
5203 struct elf_link_hash_entry *h1, *h2;
5204
5205 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5206 return FALSE;
5207
5208 if (r_reloc_is_const (&src1->r_rel))
5209 return (src1->value == src2->value);
5210
5211 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5212 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5213 return FALSE;
5214
5215 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5216 return FALSE;
5217
5218 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5219 return FALSE;
5220
5221 if (src1->value != src2->value)
5222 return FALSE;
5223
5224 /* Now check for the same section (if defined) or the same elf_hash
5225 (if undefined or weak). */
5226 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5227 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5228 if (r_reloc_is_defined (&src1->r_rel)
5229 && (final_static_link
5230 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5231 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5232 {
5233 if (r_reloc_get_section (&src1->r_rel)
5234 != r_reloc_get_section (&src2->r_rel))
5235 return FALSE;
5236 }
5237 else
5238 {
5239 /* Require that the hash entries (i.e., symbols) be identical. */
5240 if (h1 != h2 || h1 == 0)
5241 return FALSE;
5242 }
5243
5244 if (src1->is_abs_literal != src2->is_abs_literal)
5245 return FALSE;
5246
5247 return TRUE;
5248 }
5249
5250
5251 /* Must be power of 2. */
5252 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5253
5254 static value_map_hash_table *
5255 value_map_hash_table_init (void)
5256 {
5257 value_map_hash_table *values;
5258
5259 values = (value_map_hash_table *)
5260 bfd_zmalloc (sizeof (value_map_hash_table));
5261 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5262 values->count = 0;
5263 values->buckets = (value_map **)
5264 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5265 if (values->buckets == NULL)
5266 {
5267 free (values);
5268 return NULL;
5269 }
5270 values->has_last_loc = FALSE;
5271
5272 return values;
5273 }
5274
5275
5276 static void
5277 value_map_hash_table_delete (value_map_hash_table *table)
5278 {
5279 free (table->buckets);
5280 free (table);
5281 }
5282
5283
5284 static unsigned
5285 hash_bfd_vma (bfd_vma val)
5286 {
5287 return (val >> 2) + (val >> 10);
5288 }
5289
5290
5291 static unsigned
5292 literal_value_hash (const literal_value *src)
5293 {
5294 unsigned hash_val;
5295
5296 hash_val = hash_bfd_vma (src->value);
5297 if (!r_reloc_is_const (&src->r_rel))
5298 {
5299 void *sec_or_hash;
5300
5301 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5302 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5303 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5304
5305 /* Now check for the same section and the same elf_hash. */
5306 if (r_reloc_is_defined (&src->r_rel))
5307 sec_or_hash = r_reloc_get_section (&src->r_rel);
5308 else
5309 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5310 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5311 }
5312 return hash_val;
5313 }
5314
5315
5316 /* Check if the specified literal_value has been seen before. */
5317
5318 static value_map *
5319 value_map_get_cached_value (value_map_hash_table *map,
5320 const literal_value *val,
5321 bfd_boolean final_static_link)
5322 {
5323 value_map *map_e;
5324 value_map *bucket;
5325 unsigned idx;
5326
5327 idx = literal_value_hash (val);
5328 idx = idx & (map->bucket_count - 1);
5329 bucket = map->buckets[idx];
5330 for (map_e = bucket; map_e; map_e = map_e->next)
5331 {
5332 if (literal_value_equal (&map_e->val, val, final_static_link))
5333 return map_e;
5334 }
5335 return NULL;
5336 }
5337
5338
5339 /* Record a new literal value. It is illegal to call this if VALUE
5340 already has an entry here. */
5341
5342 static value_map *
5343 add_value_map (value_map_hash_table *map,
5344 const literal_value *val,
5345 const r_reloc *loc,
5346 bfd_boolean final_static_link)
5347 {
5348 value_map **bucket_p;
5349 unsigned idx;
5350
5351 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5352 if (val_e == NULL)
5353 {
5354 bfd_set_error (bfd_error_no_memory);
5355 return NULL;
5356 }
5357
5358 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5359 val_e->val = *val;
5360 val_e->loc = *loc;
5361
5362 idx = literal_value_hash (val);
5363 idx = idx & (map->bucket_count - 1);
5364 bucket_p = &map->buckets[idx];
5365
5366 val_e->next = *bucket_p;
5367 *bucket_p = val_e;
5368 map->count++;
5369 /* FIXME: Consider resizing the hash table if we get too many entries. */
5370
5371 return val_e;
5372 }
5373
5374 \f
5375 /* Lists of text actions (ta_) for narrowing, widening, longcall
5376 conversion, space fill, code & literal removal, etc. */
5377
5378 /* The following text actions are generated:
5379
5380 "ta_remove_insn" remove an instruction or instructions
5381 "ta_remove_longcall" convert longcall to call
5382 "ta_convert_longcall" convert longcall to nop/call
5383 "ta_narrow_insn" narrow a wide instruction
5384 "ta_widen" widen a narrow instruction
5385 "ta_fill" add fill or remove fill
5386 removed < 0 is a fill; branches to the fill address will be
5387 changed to address + fill size (e.g., address - removed)
5388 removed >= 0 branches to the fill address will stay unchanged
5389 "ta_remove_literal" remove a literal; this action is
5390 indicated when a literal is removed
5391 or replaced.
5392 "ta_add_literal" insert a new literal; this action is
5393 indicated when a literal has been moved.
5394 It may use a virtual_offset because
5395 multiple literals can be placed at the
5396 same location.
5397
5398 For each of these text actions, we also record the number of bytes
5399 removed by performing the text action. In the case of a "ta_widen"
5400 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5401
5402 typedef struct text_action_struct text_action;
5403 typedef struct text_action_list_struct text_action_list;
5404 typedef enum text_action_enum_t text_action_t;
5405
5406 enum text_action_enum_t
5407 {
5408 ta_none,
5409 ta_remove_insn, /* removed = -size */
5410 ta_remove_longcall, /* removed = -size */
5411 ta_convert_longcall, /* removed = 0 */
5412 ta_narrow_insn, /* removed = -1 */
5413 ta_widen_insn, /* removed = +1 */
5414 ta_fill, /* removed = +size */
5415 ta_remove_literal,
5416 ta_add_literal
5417 };
5418
5419
5420 /* Structure for a text action record. */
5421 struct text_action_struct
5422 {
5423 text_action_t action;
5424 asection *sec; /* Optional */
5425 bfd_vma offset;
5426 bfd_vma virtual_offset; /* Zero except for adding literals. */
5427 int removed_bytes;
5428 literal_value value; /* Only valid when adding literals. */
5429 };
5430
5431 struct removal_by_action_entry_struct
5432 {
5433 bfd_vma offset;
5434 int removed;
5435 int eq_removed;
5436 int eq_removed_before_fill;
5437 };
5438 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5439
5440 struct removal_by_action_map_struct
5441 {
5442 unsigned n_entries;
5443 removal_by_action_entry *entry;
5444 };
5445 typedef struct removal_by_action_map_struct removal_by_action_map;
5446
5447
5448 /* List of all of the actions taken on a text section. */
5449 struct text_action_list_struct
5450 {
5451 unsigned count;
5452 splay_tree tree;
5453 removal_by_action_map map;
5454 };
5455
5456
5457 static text_action *
5458 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5459 {
5460 text_action a;
5461
5462 /* It is not necessary to fill at the end of a section. */
5463 if (sec->size == offset)
5464 return NULL;
5465
5466 a.offset = offset;
5467 a.action = ta_fill;
5468
5469 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5470 if (node)
5471 return (text_action *)node->value;
5472 return NULL;
5473 }
5474
5475
5476 static int
5477 compute_removed_action_diff (const text_action *ta,
5478 asection *sec,
5479 bfd_vma offset,
5480 int removed,
5481 int removable_space)
5482 {
5483 int new_removed;
5484 int current_removed = 0;
5485
5486 if (ta)
5487 current_removed = ta->removed_bytes;
5488
5489 BFD_ASSERT (ta == NULL || ta->offset == offset);
5490 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5491
5492 /* It is not necessary to fill at the end of a section. Clean this up. */
5493 if (sec->size == offset)
5494 new_removed = removable_space - 0;
5495 else
5496 {
5497 int space;
5498 int added = -removed - current_removed;
5499 /* Ignore multiples of the section alignment. */
5500 added = ((1 << sec->alignment_power) - 1) & added;
5501 new_removed = (-added);
5502
5503 /* Modify for removable. */
5504 space = removable_space - new_removed;
5505 new_removed = (removable_space
5506 - (((1 << sec->alignment_power) - 1) & space));
5507 }
5508 return (new_removed - current_removed);
5509 }
5510
5511
5512 static void
5513 adjust_fill_action (text_action *ta, int fill_diff)
5514 {
5515 ta->removed_bytes += fill_diff;
5516 }
5517
5518
5519 static int
5520 text_action_compare (splay_tree_key a, splay_tree_key b)
5521 {
5522 text_action *pa = (text_action *)a;
5523 text_action *pb = (text_action *)b;
5524 static const int action_priority[] =
5525 {
5526 [ta_fill] = 0,
5527 [ta_none] = 1,
5528 [ta_convert_longcall] = 2,
5529 [ta_narrow_insn] = 3,
5530 [ta_remove_insn] = 4,
5531 [ta_remove_longcall] = 5,
5532 [ta_remove_literal] = 6,
5533 [ta_widen_insn] = 7,
5534 [ta_add_literal] = 8,
5535 };
5536
5537 if (pa->offset == pb->offset)
5538 {
5539 if (pa->action == pb->action)
5540 return 0;
5541 return action_priority[pa->action] - action_priority[pb->action];
5542 }
5543 else
5544 return pa->offset < pb->offset ? -1 : 1;
5545 }
5546
5547 static text_action *
5548 action_first (text_action_list *action_list)
5549 {
5550 splay_tree_node node = splay_tree_min (action_list->tree);
5551 return node ? (text_action *)node->value : NULL;
5552 }
5553
5554 static text_action *
5555 action_next (text_action_list *action_list, text_action *action)
5556 {
5557 splay_tree_node node = splay_tree_successor (action_list->tree,
5558 (splay_tree_key)action);
5559 return node ? (text_action *)node->value : NULL;
5560 }
5561
5562 /* Add a modification action to the text. For the case of adding or
5563 removing space, modify any current fill and assume that
5564 "unreachable_space" bytes can be freely contracted. Note that a
5565 negative removed value is a fill. */
5566
5567 static void
5568 text_action_add (text_action_list *l,
5569 text_action_t action,
5570 asection *sec,
5571 bfd_vma offset,
5572 int removed)
5573 {
5574 text_action *ta;
5575 text_action a;
5576
5577 /* It is not necessary to fill at the end of a section. */
5578 if (action == ta_fill && sec->size == offset)
5579 return;
5580
5581 /* It is not necessary to fill 0 bytes. */
5582 if (action == ta_fill && removed == 0)
5583 return;
5584
5585 a.action = action;
5586 a.offset = offset;
5587
5588 if (action == ta_fill)
5589 {
5590 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5591
5592 if (node)
5593 {
5594 ta = (text_action *)node->value;
5595 ta->removed_bytes += removed;
5596 return;
5597 }
5598 }
5599 else
5600 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5601
5602 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5603 ta->action = action;
5604 ta->sec = sec;
5605 ta->offset = offset;
5606 ta->removed_bytes = removed;
5607 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5608 ++l->count;
5609 }
5610
5611
5612 static void
5613 text_action_add_literal (text_action_list *l,
5614 text_action_t action,
5615 const r_reloc *loc,
5616 const literal_value *value,
5617 int removed)
5618 {
5619 text_action *ta;
5620 asection *sec = r_reloc_get_section (loc);
5621 bfd_vma offset = loc->target_offset;
5622 bfd_vma virtual_offset = loc->virtual_offset;
5623
5624 BFD_ASSERT (action == ta_add_literal);
5625
5626 /* Create a new record and fill it up. */
5627 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5628 ta->action = action;
5629 ta->sec = sec;
5630 ta->offset = offset;
5631 ta->virtual_offset = virtual_offset;
5632 ta->value = *value;
5633 ta->removed_bytes = removed;
5634
5635 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5636 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5637 ++l->count;
5638 }
5639
5640
5641 /* Find the total offset adjustment for the relaxations specified by
5642 text_actions, beginning from a particular starting action. This is
5643 typically used from offset_with_removed_text to search an entire list of
5644 actions, but it may also be called directly when adjusting adjacent offsets
5645 so that each search may begin where the previous one left off. */
5646
5647 static int
5648 removed_by_actions (text_action_list *action_list,
5649 text_action **p_start_action,
5650 bfd_vma offset,
5651 bfd_boolean before_fill)
5652 {
5653 text_action *r;
5654 int removed = 0;
5655
5656 r = *p_start_action;
5657 if (r)
5658 {
5659 splay_tree_node node = splay_tree_lookup (action_list->tree,
5660 (splay_tree_key)r);
5661 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5662 }
5663
5664 while (r)
5665 {
5666 if (r->offset > offset)
5667 break;
5668
5669 if (r->offset == offset
5670 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5671 break;
5672
5673 removed += r->removed_bytes;
5674
5675 r = action_next (action_list, r);
5676 }
5677
5678 *p_start_action = r;
5679 return removed;
5680 }
5681
5682
5683 static bfd_vma
5684 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5685 {
5686 text_action *r = action_first (action_list);
5687
5688 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5689 }
5690
5691
5692 static unsigned
5693 action_list_count (text_action_list *action_list)
5694 {
5695 return action_list->count;
5696 }
5697
5698 typedef struct map_action_fn_context_struct map_action_fn_context;
5699 struct map_action_fn_context_struct
5700 {
5701 int removed;
5702 removal_by_action_map map;
5703 bfd_boolean eq_complete;
5704 };
5705
5706 static int
5707 map_action_fn (splay_tree_node node, void *p)
5708 {
5709 map_action_fn_context *ctx = p;
5710 text_action *r = (text_action *)node->value;
5711 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5712
5713 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5714 {
5715 --ientry;
5716 }
5717 else
5718 {
5719 ++ctx->map.n_entries;
5720 ctx->eq_complete = FALSE;
5721 ientry->offset = r->offset;
5722 ientry->eq_removed_before_fill = ctx->removed;
5723 }
5724
5725 if (!ctx->eq_complete)
5726 {
5727 if (r->action != ta_fill || r->removed_bytes >= 0)
5728 {
5729 ientry->eq_removed = ctx->removed;
5730 ctx->eq_complete = TRUE;
5731 }
5732 else
5733 ientry->eq_removed = ctx->removed + r->removed_bytes;
5734 }
5735
5736 ctx->removed += r->removed_bytes;
5737 ientry->removed = ctx->removed;
5738 return 0;
5739 }
5740
5741 static void
5742 map_removal_by_action (text_action_list *action_list)
5743 {
5744 map_action_fn_context ctx;
5745
5746 ctx.removed = 0;
5747 ctx.map.n_entries = 0;
5748 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5749 sizeof (removal_by_action_entry));
5750 ctx.eq_complete = FALSE;
5751
5752 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5753 action_list->map = ctx.map;
5754 }
5755
5756 static int
5757 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5758 bfd_boolean before_fill)
5759 {
5760 unsigned a, b;
5761
5762 if (!action_list->map.entry)
5763 map_removal_by_action (action_list);
5764
5765 if (!action_list->map.n_entries)
5766 return 0;
5767
5768 a = 0;
5769 b = action_list->map.n_entries;
5770
5771 while (b - a > 1)
5772 {
5773 unsigned c = (a + b) / 2;
5774
5775 if (action_list->map.entry[c].offset <= offset)
5776 a = c;
5777 else
5778 b = c;
5779 }
5780
5781 if (action_list->map.entry[a].offset < offset)
5782 {
5783 return action_list->map.entry[a].removed;
5784 }
5785 else if (action_list->map.entry[a].offset == offset)
5786 {
5787 return before_fill ?
5788 action_list->map.entry[a].eq_removed_before_fill :
5789 action_list->map.entry[a].eq_removed;
5790 }
5791 else
5792 {
5793 return 0;
5794 }
5795 }
5796
5797 static bfd_vma
5798 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5799 {
5800 int removed = removed_by_actions_map (action_list, offset, FALSE);
5801 return offset - removed;
5802 }
5803
5804
5805 /* The find_insn_action routine will only find non-fill actions. */
5806
5807 static text_action *
5808 find_insn_action (text_action_list *action_list, bfd_vma offset)
5809 {
5810 static const text_action_t action[] =
5811 {
5812 ta_convert_longcall,
5813 ta_remove_longcall,
5814 ta_widen_insn,
5815 ta_narrow_insn,
5816 ta_remove_insn,
5817 };
5818 text_action a;
5819 unsigned i;
5820
5821 a.offset = offset;
5822 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5823 {
5824 splay_tree_node node;
5825
5826 a.action = action[i];
5827 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5828 if (node)
5829 return (text_action *)node->value;
5830 }
5831 return NULL;
5832 }
5833
5834
5835 #if DEBUG
5836
5837 static void
5838 print_action (FILE *fp, text_action *r)
5839 {
5840 const char *t = "unknown";
5841 switch (r->action)
5842 {
5843 case ta_remove_insn:
5844 t = "remove_insn"; break;
5845 case ta_remove_longcall:
5846 t = "remove_longcall"; break;
5847 case ta_convert_longcall:
5848 t = "convert_longcall"; break;
5849 case ta_narrow_insn:
5850 t = "narrow_insn"; break;
5851 case ta_widen_insn:
5852 t = "widen_insn"; break;
5853 case ta_fill:
5854 t = "fill"; break;
5855 case ta_none:
5856 t = "none"; break;
5857 case ta_remove_literal:
5858 t = "remove_literal"; break;
5859 case ta_add_literal:
5860 t = "add_literal"; break;
5861 }
5862
5863 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5864 r->sec->owner->filename,
5865 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5866 }
5867
5868 static int
5869 print_action_list_fn (splay_tree_node node, void *p)
5870 {
5871 text_action *r = (text_action *)node->value;
5872
5873 print_action (p, r);
5874 return 0;
5875 }
5876
5877 static void
5878 print_action_list (FILE *fp, text_action_list *action_list)
5879 {
5880 fprintf (fp, "Text Action\n");
5881 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5882 }
5883
5884 #endif /* DEBUG */
5885
5886 \f
5887 /* Lists of literals being coalesced or removed. */
5888
5889 /* In the usual case, the literal identified by "from" is being
5890 coalesced with another literal identified by "to". If the literal is
5891 unused and is being removed altogether, "to.abfd" will be NULL.
5892 The removed_literal entries are kept on a per-section list, sorted
5893 by the "from" offset field. */
5894
5895 typedef struct removed_literal_struct removed_literal;
5896 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5897 typedef struct removed_literal_list_struct removed_literal_list;
5898
5899 struct removed_literal_struct
5900 {
5901 r_reloc from;
5902 r_reloc to;
5903 removed_literal *next;
5904 };
5905
5906 struct removed_literal_map_entry_struct
5907 {
5908 bfd_vma addr;
5909 removed_literal *literal;
5910 };
5911
5912 struct removed_literal_list_struct
5913 {
5914 removed_literal *head;
5915 removed_literal *tail;
5916
5917 unsigned n_map;
5918 removed_literal_map_entry *map;
5919 };
5920
5921
5922 /* Record that the literal at "from" is being removed. If "to" is not
5923 NULL, the "from" literal is being coalesced with the "to" literal. */
5924
5925 static void
5926 add_removed_literal (removed_literal_list *removed_list,
5927 const r_reloc *from,
5928 const r_reloc *to)
5929 {
5930 removed_literal *r, *new_r, *next_r;
5931
5932 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5933
5934 new_r->from = *from;
5935 if (to)
5936 new_r->to = *to;
5937 else
5938 new_r->to.abfd = NULL;
5939 new_r->next = NULL;
5940
5941 r = removed_list->head;
5942 if (r == NULL)
5943 {
5944 removed_list->head = new_r;
5945 removed_list->tail = new_r;
5946 }
5947 /* Special check for common case of append. */
5948 else if (removed_list->tail->from.target_offset < from->target_offset)
5949 {
5950 removed_list->tail->next = new_r;
5951 removed_list->tail = new_r;
5952 }
5953 else
5954 {
5955 while (r->from.target_offset < from->target_offset && r->next)
5956 {
5957 r = r->next;
5958 }
5959 next_r = r->next;
5960 r->next = new_r;
5961 new_r->next = next_r;
5962 if (next_r == NULL)
5963 removed_list->tail = new_r;
5964 }
5965 }
5966
5967 static void
5968 map_removed_literal (removed_literal_list *removed_list)
5969 {
5970 unsigned n_map = 0;
5971 unsigned i;
5972 removed_literal_map_entry *map = NULL;
5973 removed_literal *r = removed_list->head;
5974
5975 for (i = 0; r; ++i, r = r->next)
5976 {
5977 if (i == n_map)
5978 {
5979 n_map = (n_map * 2) + 2;
5980 map = bfd_realloc (map, n_map * sizeof (*map));
5981 }
5982 map[i].addr = r->from.target_offset;
5983 map[i].literal = r;
5984 }
5985 removed_list->map = map;
5986 removed_list->n_map = i;
5987 }
5988
5989 static int
5990 removed_literal_compare (const void *a, const void *b)
5991 {
5992 const removed_literal_map_entry *pa = a;
5993 const removed_literal_map_entry *pb = b;
5994
5995 if (pa->addr == pb->addr)
5996 return 0;
5997 else
5998 return pa->addr < pb->addr ? -1 : 1;
5999 }
6000
6001 /* Check if the list of removed literals contains an entry for the
6002 given address. Return the entry if found. */
6003
6004 static removed_literal *
6005 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
6006 {
6007 removed_literal_map_entry *p;
6008 removed_literal *r = NULL;
6009
6010 if (removed_list->map == NULL)
6011 map_removed_literal (removed_list);
6012
6013 p = bsearch (&addr, removed_list->map, removed_list->n_map,
6014 sizeof (*removed_list->map), removed_literal_compare);
6015 if (p)
6016 {
6017 while (p != removed_list->map && (p - 1)->addr == addr)
6018 --p;
6019 r = p->literal;
6020 }
6021 return r;
6022 }
6023
6024
6025 #if DEBUG
6026
6027 static void
6028 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6029 {
6030 removed_literal *r;
6031 r = removed_list->head;
6032 if (r)
6033 fprintf (fp, "Removed Literals\n");
6034 for (; r != NULL; r = r->next)
6035 {
6036 print_r_reloc (fp, &r->from);
6037 fprintf (fp, " => ");
6038 if (r->to.abfd == NULL)
6039 fprintf (fp, "REMOVED");
6040 else
6041 print_r_reloc (fp, &r->to);
6042 fprintf (fp, "\n");
6043 }
6044 }
6045
6046 #endif /* DEBUG */
6047
6048 \f
6049 /* Per-section data for relaxation. */
6050
6051 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6052
6053 struct xtensa_relax_info_struct
6054 {
6055 bfd_boolean is_relaxable_literal_section;
6056 bfd_boolean is_relaxable_asm_section;
6057 int visited; /* Number of times visited. */
6058
6059 source_reloc *src_relocs; /* Array[src_count]. */
6060 int src_count;
6061 int src_next; /* Next src_relocs entry to assign. */
6062
6063 removed_literal_list removed_list;
6064 text_action_list action_list;
6065
6066 reloc_bfd_fix *fix_list;
6067 reloc_bfd_fix *fix_array;
6068 unsigned fix_array_count;
6069
6070 /* Support for expanding the reloc array that is stored
6071 in the section structure. If the relocations have been
6072 reallocated, the newly allocated relocations will be referenced
6073 here along with the actual size allocated. The relocation
6074 count will always be found in the section structure. */
6075 Elf_Internal_Rela *allocated_relocs;
6076 unsigned relocs_count;
6077 unsigned allocated_relocs_count;
6078 };
6079
6080 struct elf_xtensa_section_data
6081 {
6082 struct bfd_elf_section_data elf;
6083 xtensa_relax_info relax_info;
6084 };
6085
6086
6087 static bfd_boolean
6088 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6089 {
6090 if (!sec->used_by_bfd)
6091 {
6092 struct elf_xtensa_section_data *sdata;
6093 bfd_size_type amt = sizeof (*sdata);
6094
6095 sdata = bfd_zalloc (abfd, amt);
6096 if (sdata == NULL)
6097 return FALSE;
6098 sec->used_by_bfd = sdata;
6099 }
6100
6101 return _bfd_elf_new_section_hook (abfd, sec);
6102 }
6103
6104
6105 static xtensa_relax_info *
6106 get_xtensa_relax_info (asection *sec)
6107 {
6108 struct elf_xtensa_section_data *section_data;
6109
6110 /* No info available if no section or if it is an output section. */
6111 if (!sec || sec == sec->output_section)
6112 return NULL;
6113
6114 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6115 return &section_data->relax_info;
6116 }
6117
6118
6119 static void
6120 init_xtensa_relax_info (asection *sec)
6121 {
6122 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6123
6124 relax_info->is_relaxable_literal_section = FALSE;
6125 relax_info->is_relaxable_asm_section = FALSE;
6126 relax_info->visited = 0;
6127
6128 relax_info->src_relocs = NULL;
6129 relax_info->src_count = 0;
6130 relax_info->src_next = 0;
6131
6132 relax_info->removed_list.head = NULL;
6133 relax_info->removed_list.tail = NULL;
6134
6135 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6136 NULL, NULL);
6137 relax_info->action_list.map.n_entries = 0;
6138 relax_info->action_list.map.entry = NULL;
6139
6140 relax_info->fix_list = NULL;
6141 relax_info->fix_array = NULL;
6142 relax_info->fix_array_count = 0;
6143
6144 relax_info->allocated_relocs = NULL;
6145 relax_info->relocs_count = 0;
6146 relax_info->allocated_relocs_count = 0;
6147 }
6148
6149 \f
6150 /* Coalescing literals may require a relocation to refer to a section in
6151 a different input file, but the standard relocation information
6152 cannot express that. Instead, the reloc_bfd_fix structures are used
6153 to "fix" the relocations that refer to sections in other input files.
6154 These structures are kept on per-section lists. The "src_type" field
6155 records the relocation type in case there are multiple relocations on
6156 the same location. FIXME: This is ugly; an alternative might be to
6157 add new symbols with the "owner" field to some other input file. */
6158
6159 struct reloc_bfd_fix_struct
6160 {
6161 asection *src_sec;
6162 bfd_vma src_offset;
6163 unsigned src_type; /* Relocation type. */
6164
6165 asection *target_sec;
6166 bfd_vma target_offset;
6167 bfd_boolean translated;
6168
6169 reloc_bfd_fix *next;
6170 };
6171
6172
6173 static reloc_bfd_fix *
6174 reloc_bfd_fix_init (asection *src_sec,
6175 bfd_vma src_offset,
6176 unsigned src_type,
6177 asection *target_sec,
6178 bfd_vma target_offset,
6179 bfd_boolean translated)
6180 {
6181 reloc_bfd_fix *fix;
6182
6183 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6184 fix->src_sec = src_sec;
6185 fix->src_offset = src_offset;
6186 fix->src_type = src_type;
6187 fix->target_sec = target_sec;
6188 fix->target_offset = target_offset;
6189 fix->translated = translated;
6190
6191 return fix;
6192 }
6193
6194
6195 static void
6196 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6197 {
6198 xtensa_relax_info *relax_info;
6199
6200 relax_info = get_xtensa_relax_info (src_sec);
6201 fix->next = relax_info->fix_list;
6202 relax_info->fix_list = fix;
6203 }
6204
6205
6206 static int
6207 fix_compare (const void *ap, const void *bp)
6208 {
6209 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6210 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6211
6212 if (a->src_offset != b->src_offset)
6213 return (a->src_offset - b->src_offset);
6214 return (a->src_type - b->src_type);
6215 }
6216
6217
6218 static void
6219 cache_fix_array (asection *sec)
6220 {
6221 unsigned i, count = 0;
6222 reloc_bfd_fix *r;
6223 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6224
6225 if (relax_info == NULL)
6226 return;
6227 if (relax_info->fix_list == NULL)
6228 return;
6229
6230 for (r = relax_info->fix_list; r != NULL; r = r->next)
6231 count++;
6232
6233 relax_info->fix_array =
6234 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6235 relax_info->fix_array_count = count;
6236
6237 r = relax_info->fix_list;
6238 for (i = 0; i < count; i++, r = r->next)
6239 {
6240 relax_info->fix_array[count - 1 - i] = *r;
6241 relax_info->fix_array[count - 1 - i].next = NULL;
6242 }
6243
6244 qsort (relax_info->fix_array, relax_info->fix_array_count,
6245 sizeof (reloc_bfd_fix), fix_compare);
6246 }
6247
6248
6249 static reloc_bfd_fix *
6250 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6251 {
6252 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6253 reloc_bfd_fix *rv;
6254 reloc_bfd_fix key;
6255
6256 if (relax_info == NULL)
6257 return NULL;
6258 if (relax_info->fix_list == NULL)
6259 return NULL;
6260
6261 if (relax_info->fix_array == NULL)
6262 cache_fix_array (sec);
6263
6264 key.src_offset = offset;
6265 key.src_type = type;
6266 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6267 sizeof (reloc_bfd_fix), fix_compare);
6268 return rv;
6269 }
6270
6271 \f
6272 /* Section caching. */
6273
6274 typedef struct section_cache_struct section_cache_t;
6275
6276 struct section_cache_struct
6277 {
6278 asection *sec;
6279
6280 bfd_byte *contents; /* Cache of the section contents. */
6281 bfd_size_type content_length;
6282
6283 property_table_entry *ptbl; /* Cache of the section property table. */
6284 unsigned pte_count;
6285
6286 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6287 unsigned reloc_count;
6288 };
6289
6290
6291 static void
6292 init_section_cache (section_cache_t *sec_cache)
6293 {
6294 memset (sec_cache, 0, sizeof (*sec_cache));
6295 }
6296
6297
6298 static void
6299 free_section_cache (section_cache_t *sec_cache)
6300 {
6301 if (sec_cache->sec)
6302 {
6303 release_contents (sec_cache->sec, sec_cache->contents);
6304 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6305 if (sec_cache->ptbl)
6306 free (sec_cache->ptbl);
6307 }
6308 }
6309
6310
6311 static bfd_boolean
6312 section_cache_section (section_cache_t *sec_cache,
6313 asection *sec,
6314 struct bfd_link_info *link_info)
6315 {
6316 bfd *abfd;
6317 property_table_entry *prop_table = NULL;
6318 int ptblsize = 0;
6319 bfd_byte *contents = NULL;
6320 Elf_Internal_Rela *internal_relocs = NULL;
6321 bfd_size_type sec_size;
6322
6323 if (sec == NULL)
6324 return FALSE;
6325 if (sec == sec_cache->sec)
6326 return TRUE;
6327
6328 abfd = sec->owner;
6329 sec_size = bfd_get_section_limit (abfd, sec);
6330
6331 /* Get the contents. */
6332 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6333 if (contents == NULL && sec_size != 0)
6334 goto err;
6335
6336 /* Get the relocations. */
6337 internal_relocs = retrieve_internal_relocs (abfd, sec,
6338 link_info->keep_memory);
6339
6340 /* Get the entry table. */
6341 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6342 XTENSA_PROP_SEC_NAME, FALSE);
6343 if (ptblsize < 0)
6344 goto err;
6345
6346 /* Fill in the new section cache. */
6347 free_section_cache (sec_cache);
6348 init_section_cache (sec_cache);
6349
6350 sec_cache->sec = sec;
6351 sec_cache->contents = contents;
6352 sec_cache->content_length = sec_size;
6353 sec_cache->relocs = internal_relocs;
6354 sec_cache->reloc_count = sec->reloc_count;
6355 sec_cache->pte_count = ptblsize;
6356 sec_cache->ptbl = prop_table;
6357
6358 return TRUE;
6359
6360 err:
6361 release_contents (sec, contents);
6362 release_internal_relocs (sec, internal_relocs);
6363 if (prop_table)
6364 free (prop_table);
6365 return FALSE;
6366 }
6367
6368 \f
6369 /* Extended basic blocks. */
6370
6371 /* An ebb_struct represents an Extended Basic Block. Within this
6372 range, we guarantee that all instructions are decodable, the
6373 property table entries are contiguous, and no property table
6374 specifies a segment that cannot have instructions moved. This
6375 structure contains caches of the contents, property table and
6376 relocations for the specified section for easy use. The range is
6377 specified by ranges of indices for the byte offset, property table
6378 offsets and relocation offsets. These must be consistent. */
6379
6380 typedef struct ebb_struct ebb_t;
6381
6382 struct ebb_struct
6383 {
6384 asection *sec;
6385
6386 bfd_byte *contents; /* Cache of the section contents. */
6387 bfd_size_type content_length;
6388
6389 property_table_entry *ptbl; /* Cache of the section property table. */
6390 unsigned pte_count;
6391
6392 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6393 unsigned reloc_count;
6394
6395 bfd_vma start_offset; /* Offset in section. */
6396 unsigned start_ptbl_idx; /* Offset in the property table. */
6397 unsigned start_reloc_idx; /* Offset in the relocations. */
6398
6399 bfd_vma end_offset;
6400 unsigned end_ptbl_idx;
6401 unsigned end_reloc_idx;
6402
6403 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6404
6405 /* The unreachable property table at the end of this set of blocks;
6406 NULL if the end is not an unreachable block. */
6407 property_table_entry *ends_unreachable;
6408 };
6409
6410
6411 enum ebb_target_enum
6412 {
6413 EBB_NO_ALIGN = 0,
6414 EBB_DESIRE_TGT_ALIGN,
6415 EBB_REQUIRE_TGT_ALIGN,
6416 EBB_REQUIRE_LOOP_ALIGN,
6417 EBB_REQUIRE_ALIGN
6418 };
6419
6420
6421 /* proposed_action_struct is similar to the text_action_struct except
6422 that is represents a potential transformation, not one that will
6423 occur. We build a list of these for an extended basic block
6424 and use them to compute the actual actions desired. We must be
6425 careful that the entire set of actual actions we perform do not
6426 break any relocations that would fit if the actions were not
6427 performed. */
6428
6429 typedef struct proposed_action_struct proposed_action;
6430
6431 struct proposed_action_struct
6432 {
6433 enum ebb_target_enum align_type; /* for the target alignment */
6434 bfd_vma alignment_pow;
6435 text_action_t action;
6436 bfd_vma offset;
6437 int removed_bytes;
6438 bfd_boolean do_action; /* If false, then we will not perform the action. */
6439 };
6440
6441
6442 /* The ebb_constraint_struct keeps a set of proposed actions for an
6443 extended basic block. */
6444
6445 typedef struct ebb_constraint_struct ebb_constraint;
6446
6447 struct ebb_constraint_struct
6448 {
6449 ebb_t ebb;
6450 bfd_boolean start_movable;
6451
6452 /* Bytes of extra space at the beginning if movable. */
6453 int start_extra_space;
6454
6455 enum ebb_target_enum start_align;
6456
6457 bfd_boolean end_movable;
6458
6459 /* Bytes of extra space at the end if movable. */
6460 int end_extra_space;
6461
6462 unsigned action_count;
6463 unsigned action_allocated;
6464
6465 /* Array of proposed actions. */
6466 proposed_action *actions;
6467
6468 /* Action alignments -- one for each proposed action. */
6469 enum ebb_target_enum *action_aligns;
6470 };
6471
6472
6473 static void
6474 init_ebb_constraint (ebb_constraint *c)
6475 {
6476 memset (c, 0, sizeof (ebb_constraint));
6477 }
6478
6479
6480 static void
6481 free_ebb_constraint (ebb_constraint *c)
6482 {
6483 if (c->actions)
6484 free (c->actions);
6485 }
6486
6487
6488 static void
6489 init_ebb (ebb_t *ebb,
6490 asection *sec,
6491 bfd_byte *contents,
6492 bfd_size_type content_length,
6493 property_table_entry *prop_table,
6494 unsigned ptblsize,
6495 Elf_Internal_Rela *internal_relocs,
6496 unsigned reloc_count)
6497 {
6498 memset (ebb, 0, sizeof (ebb_t));
6499 ebb->sec = sec;
6500 ebb->contents = contents;
6501 ebb->content_length = content_length;
6502 ebb->ptbl = prop_table;
6503 ebb->pte_count = ptblsize;
6504 ebb->relocs = internal_relocs;
6505 ebb->reloc_count = reloc_count;
6506 ebb->start_offset = 0;
6507 ebb->end_offset = ebb->content_length - 1;
6508 ebb->start_ptbl_idx = 0;
6509 ebb->end_ptbl_idx = ptblsize;
6510 ebb->start_reloc_idx = 0;
6511 ebb->end_reloc_idx = reloc_count;
6512 }
6513
6514
6515 /* Extend the ebb to all decodable contiguous sections. The algorithm
6516 for building a basic block around an instruction is to push it
6517 forward until we hit the end of a section, an unreachable block or
6518 a block that cannot be transformed. Then we push it backwards
6519 searching for similar conditions. */
6520
6521 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6522 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6523 static bfd_size_type insn_block_decodable_len
6524 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6525
6526 static bfd_boolean
6527 extend_ebb_bounds (ebb_t *ebb)
6528 {
6529 if (!extend_ebb_bounds_forward (ebb))
6530 return FALSE;
6531 if (!extend_ebb_bounds_backward (ebb))
6532 return FALSE;
6533 return TRUE;
6534 }
6535
6536
6537 static bfd_boolean
6538 extend_ebb_bounds_forward (ebb_t *ebb)
6539 {
6540 property_table_entry *the_entry, *new_entry;
6541
6542 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6543
6544 /* Stop when (1) we cannot decode an instruction, (2) we are at
6545 the end of the property tables, (3) we hit a non-contiguous property
6546 table entry, (4) we hit a NO_TRANSFORM region. */
6547
6548 while (1)
6549 {
6550 bfd_vma entry_end;
6551 bfd_size_type insn_block_len;
6552
6553 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6554 insn_block_len =
6555 insn_block_decodable_len (ebb->contents, ebb->content_length,
6556 ebb->end_offset,
6557 entry_end - ebb->end_offset);
6558 if (insn_block_len != (entry_end - ebb->end_offset))
6559 {
6560 (*_bfd_error_handler)
6561 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6562 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6563 return FALSE;
6564 }
6565 ebb->end_offset += insn_block_len;
6566
6567 if (ebb->end_offset == ebb->sec->size)
6568 ebb->ends_section = TRUE;
6569
6570 /* Update the reloc counter. */
6571 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6572 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6573 < ebb->end_offset))
6574 {
6575 ebb->end_reloc_idx++;
6576 }
6577
6578 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6579 return TRUE;
6580
6581 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6582 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6583 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6584 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6585 break;
6586
6587 if (the_entry->address + the_entry->size != new_entry->address)
6588 break;
6589
6590 the_entry = new_entry;
6591 ebb->end_ptbl_idx++;
6592 }
6593
6594 /* Quick check for an unreachable or end of file just at the end. */
6595 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6596 {
6597 if (ebb->end_offset == ebb->content_length)
6598 ebb->ends_section = TRUE;
6599 }
6600 else
6601 {
6602 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6603 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6604 && the_entry->address + the_entry->size == new_entry->address)
6605 ebb->ends_unreachable = new_entry;
6606 }
6607
6608 /* Any other ending requires exact alignment. */
6609 return TRUE;
6610 }
6611
6612
6613 static bfd_boolean
6614 extend_ebb_bounds_backward (ebb_t *ebb)
6615 {
6616 property_table_entry *the_entry, *new_entry;
6617
6618 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6619
6620 /* Stop when (1) we cannot decode the instructions in the current entry.
6621 (2) we are at the beginning of the property tables, (3) we hit a
6622 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6623
6624 while (1)
6625 {
6626 bfd_vma block_begin;
6627 bfd_size_type insn_block_len;
6628
6629 block_begin = the_entry->address - ebb->sec->vma;
6630 insn_block_len =
6631 insn_block_decodable_len (ebb->contents, ebb->content_length,
6632 block_begin,
6633 ebb->start_offset - block_begin);
6634 if (insn_block_len != ebb->start_offset - block_begin)
6635 {
6636 (*_bfd_error_handler)
6637 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6638 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6639 return FALSE;
6640 }
6641 ebb->start_offset -= insn_block_len;
6642
6643 /* Update the reloc counter. */
6644 while (ebb->start_reloc_idx > 0
6645 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6646 >= ebb->start_offset))
6647 {
6648 ebb->start_reloc_idx--;
6649 }
6650
6651 if (ebb->start_ptbl_idx == 0)
6652 return TRUE;
6653
6654 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6655 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6656 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6657 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6658 return TRUE;
6659 if (new_entry->address + new_entry->size != the_entry->address)
6660 return TRUE;
6661
6662 the_entry = new_entry;
6663 ebb->start_ptbl_idx--;
6664 }
6665 return TRUE;
6666 }
6667
6668
6669 static bfd_size_type
6670 insn_block_decodable_len (bfd_byte *contents,
6671 bfd_size_type content_len,
6672 bfd_vma block_offset,
6673 bfd_size_type block_len)
6674 {
6675 bfd_vma offset = block_offset;
6676
6677 while (offset < block_offset + block_len)
6678 {
6679 bfd_size_type insn_len = 0;
6680
6681 insn_len = insn_decode_len (contents, content_len, offset);
6682 if (insn_len == 0)
6683 return (offset - block_offset);
6684 offset += insn_len;
6685 }
6686 return (offset - block_offset);
6687 }
6688
6689
6690 static void
6691 ebb_propose_action (ebb_constraint *c,
6692 enum ebb_target_enum align_type,
6693 bfd_vma alignment_pow,
6694 text_action_t action,
6695 bfd_vma offset,
6696 int removed_bytes,
6697 bfd_boolean do_action)
6698 {
6699 proposed_action *act;
6700
6701 if (c->action_allocated <= c->action_count)
6702 {
6703 unsigned new_allocated, i;
6704 proposed_action *new_actions;
6705
6706 new_allocated = (c->action_count + 2) * 2;
6707 new_actions = (proposed_action *)
6708 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6709
6710 for (i = 0; i < c->action_count; i++)
6711 new_actions[i] = c->actions[i];
6712 if (c->actions)
6713 free (c->actions);
6714 c->actions = new_actions;
6715 c->action_allocated = new_allocated;
6716 }
6717
6718 act = &c->actions[c->action_count];
6719 act->align_type = align_type;
6720 act->alignment_pow = alignment_pow;
6721 act->action = action;
6722 act->offset = offset;
6723 act->removed_bytes = removed_bytes;
6724 act->do_action = do_action;
6725
6726 c->action_count++;
6727 }
6728
6729 \f
6730 /* Access to internal relocations, section contents and symbols. */
6731
6732 /* During relaxation, we need to modify relocations, section contents,
6733 and symbol definitions, and we need to keep the original values from
6734 being reloaded from the input files, i.e., we need to "pin" the
6735 modified values in memory. We also want to continue to observe the
6736 setting of the "keep-memory" flag. The following functions wrap the
6737 standard BFD functions to take care of this for us. */
6738
6739 static Elf_Internal_Rela *
6740 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6741 {
6742 Elf_Internal_Rela *internal_relocs;
6743
6744 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6745 return NULL;
6746
6747 internal_relocs = elf_section_data (sec)->relocs;
6748 if (internal_relocs == NULL)
6749 internal_relocs = (_bfd_elf_link_read_relocs
6750 (abfd, sec, NULL, NULL, keep_memory));
6751 return internal_relocs;
6752 }
6753
6754
6755 static void
6756 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6757 {
6758 elf_section_data (sec)->relocs = internal_relocs;
6759 }
6760
6761
6762 static void
6763 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6764 {
6765 if (internal_relocs
6766 && elf_section_data (sec)->relocs != internal_relocs)
6767 free (internal_relocs);
6768 }
6769
6770
6771 static bfd_byte *
6772 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6773 {
6774 bfd_byte *contents;
6775 bfd_size_type sec_size;
6776
6777 sec_size = bfd_get_section_limit (abfd, sec);
6778 contents = elf_section_data (sec)->this_hdr.contents;
6779
6780 if (contents == NULL && sec_size != 0)
6781 {
6782 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6783 {
6784 if (contents)
6785 free (contents);
6786 return NULL;
6787 }
6788 if (keep_memory)
6789 elf_section_data (sec)->this_hdr.contents = contents;
6790 }
6791 return contents;
6792 }
6793
6794
6795 static void
6796 pin_contents (asection *sec, bfd_byte *contents)
6797 {
6798 elf_section_data (sec)->this_hdr.contents = contents;
6799 }
6800
6801
6802 static void
6803 release_contents (asection *sec, bfd_byte *contents)
6804 {
6805 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6806 free (contents);
6807 }
6808
6809
6810 static Elf_Internal_Sym *
6811 retrieve_local_syms (bfd *input_bfd)
6812 {
6813 Elf_Internal_Shdr *symtab_hdr;
6814 Elf_Internal_Sym *isymbuf;
6815 size_t locsymcount;
6816
6817 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6818 locsymcount = symtab_hdr->sh_info;
6819
6820 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6821 if (isymbuf == NULL && locsymcount != 0)
6822 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6823 NULL, NULL, NULL);
6824
6825 /* Save the symbols for this input file so they won't be read again. */
6826 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6827 symtab_hdr->contents = (unsigned char *) isymbuf;
6828
6829 return isymbuf;
6830 }
6831
6832 \f
6833 /* Code for link-time relaxation. */
6834
6835 /* Initialization for relaxation: */
6836 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6837 static bfd_boolean find_relaxable_sections
6838 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6839 static bfd_boolean collect_source_relocs
6840 (bfd *, asection *, struct bfd_link_info *);
6841 static bfd_boolean is_resolvable_asm_expansion
6842 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6843 bfd_boolean *);
6844 static Elf_Internal_Rela *find_associated_l32r_irel
6845 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6846 static bfd_boolean compute_text_actions
6847 (bfd *, asection *, struct bfd_link_info *);
6848 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6849 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6850 typedef struct reloc_range_list_struct reloc_range_list;
6851 static bfd_boolean check_section_ebb_pcrels_fit
6852 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6853 reloc_range_list *, const ebb_constraint *,
6854 const xtensa_opcode *);
6855 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6856 static void text_action_add_proposed
6857 (text_action_list *, const ebb_constraint *, asection *);
6858 static int compute_fill_extra_space (property_table_entry *);
6859
6860 /* First pass: */
6861 static bfd_boolean compute_removed_literals
6862 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6863 static Elf_Internal_Rela *get_irel_at_offset
6864 (asection *, Elf_Internal_Rela *, bfd_vma);
6865 static bfd_boolean is_removable_literal
6866 (const source_reloc *, int, const source_reloc *, int, asection *,
6867 property_table_entry *, int);
6868 static bfd_boolean remove_dead_literal
6869 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6870 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6871 static bfd_boolean identify_literal_placement
6872 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6873 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6874 source_reloc *, property_table_entry *, int, section_cache_t *,
6875 bfd_boolean);
6876 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6877 static bfd_boolean coalesce_shared_literal
6878 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6879 static bfd_boolean move_shared_literal
6880 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6881 int, const r_reloc *, const literal_value *, section_cache_t *);
6882
6883 /* Second pass: */
6884 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6885 static bfd_boolean translate_section_fixes (asection *);
6886 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6887 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6888 static void shrink_dynamic_reloc_sections
6889 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6890 static bfd_boolean move_literal
6891 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6892 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6893 static bfd_boolean relax_property_section
6894 (bfd *, asection *, struct bfd_link_info *);
6895
6896 /* Third pass: */
6897 static bfd_boolean relax_section_symbols (bfd *, asection *);
6898
6899
6900 static bfd_boolean
6901 elf_xtensa_relax_section (bfd *abfd,
6902 asection *sec,
6903 struct bfd_link_info *link_info,
6904 bfd_boolean *again)
6905 {
6906 static value_map_hash_table *values = NULL;
6907 static bfd_boolean relocations_analyzed = FALSE;
6908 xtensa_relax_info *relax_info;
6909
6910 if (!relocations_analyzed)
6911 {
6912 /* Do some overall initialization for relaxation. */
6913 values = value_map_hash_table_init ();
6914 if (values == NULL)
6915 return FALSE;
6916 relaxing_section = TRUE;
6917 if (!analyze_relocations (link_info))
6918 return FALSE;
6919 relocations_analyzed = TRUE;
6920 }
6921 *again = FALSE;
6922
6923 /* Don't mess with linker-created sections. */
6924 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6925 return TRUE;
6926
6927 relax_info = get_xtensa_relax_info (sec);
6928 BFD_ASSERT (relax_info != NULL);
6929
6930 switch (relax_info->visited)
6931 {
6932 case 0:
6933 /* Note: It would be nice to fold this pass into
6934 analyze_relocations, but it is important for this step that the
6935 sections be examined in link order. */
6936 if (!compute_removed_literals (abfd, sec, link_info, values))
6937 return FALSE;
6938 *again = TRUE;
6939 break;
6940
6941 case 1:
6942 if (values)
6943 value_map_hash_table_delete (values);
6944 values = NULL;
6945 if (!relax_section (abfd, sec, link_info))
6946 return FALSE;
6947 *again = TRUE;
6948 break;
6949
6950 case 2:
6951 if (!relax_section_symbols (abfd, sec))
6952 return FALSE;
6953 break;
6954 }
6955
6956 relax_info->visited++;
6957 return TRUE;
6958 }
6959
6960 \f
6961 /* Initialization for relaxation. */
6962
6963 /* This function is called once at the start of relaxation. It scans
6964 all the input sections and marks the ones that are relaxable (i.e.,
6965 literal sections with L32R relocations against them), and then
6966 collects source_reloc information for all the relocations against
6967 those relaxable sections. During this process, it also detects
6968 longcalls, i.e., calls relaxed by the assembler into indirect
6969 calls, that can be optimized back into direct calls. Within each
6970 extended basic block (ebb) containing an optimized longcall, it
6971 computes a set of "text actions" that can be performed to remove
6972 the L32R associated with the longcall while optionally preserving
6973 branch target alignments. */
6974
6975 static bfd_boolean
6976 analyze_relocations (struct bfd_link_info *link_info)
6977 {
6978 bfd *abfd;
6979 asection *sec;
6980 bfd_boolean is_relaxable = FALSE;
6981
6982 /* Initialize the per-section relaxation info. */
6983 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6984 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6985 {
6986 init_xtensa_relax_info (sec);
6987 }
6988
6989 /* Mark relaxable sections (and count relocations against each one). */
6990 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6991 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6992 {
6993 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6994 return FALSE;
6995 }
6996
6997 /* Bail out if there are no relaxable sections. */
6998 if (!is_relaxable)
6999 return TRUE;
7000
7001 /* Allocate space for source_relocs. */
7002 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7003 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7004 {
7005 xtensa_relax_info *relax_info;
7006
7007 relax_info = get_xtensa_relax_info (sec);
7008 if (relax_info->is_relaxable_literal_section
7009 || relax_info->is_relaxable_asm_section)
7010 {
7011 relax_info->src_relocs = (source_reloc *)
7012 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
7013 }
7014 else
7015 relax_info->src_count = 0;
7016 }
7017
7018 /* Collect info on relocations against each relaxable section. */
7019 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7020 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7021 {
7022 if (!collect_source_relocs (abfd, sec, link_info))
7023 return FALSE;
7024 }
7025
7026 /* Compute the text actions. */
7027 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7028 for (sec = abfd->sections; sec != NULL; sec = sec->next)
7029 {
7030 if (!compute_text_actions (abfd, sec, link_info))
7031 return FALSE;
7032 }
7033
7034 return TRUE;
7035 }
7036
7037
7038 /* Find all the sections that might be relaxed. The motivation for
7039 this pass is that collect_source_relocs() needs to record _all_ the
7040 relocations that target each relaxable section. That is expensive
7041 and unnecessary unless the target section is actually going to be
7042 relaxed. This pass identifies all such sections by checking if
7043 they have L32Rs pointing to them. In the process, the total number
7044 of relocations targeting each section is also counted so that we
7045 know how much space to allocate for source_relocs against each
7046 relaxable literal section. */
7047
7048 static bfd_boolean
7049 find_relaxable_sections (bfd *abfd,
7050 asection *sec,
7051 struct bfd_link_info *link_info,
7052 bfd_boolean *is_relaxable_p)
7053 {
7054 Elf_Internal_Rela *internal_relocs;
7055 bfd_byte *contents;
7056 bfd_boolean ok = TRUE;
7057 unsigned i;
7058 xtensa_relax_info *source_relax_info;
7059 bfd_boolean is_l32r_reloc;
7060
7061 internal_relocs = retrieve_internal_relocs (abfd, sec,
7062 link_info->keep_memory);
7063 if (internal_relocs == NULL)
7064 return ok;
7065
7066 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7067 if (contents == NULL && sec->size != 0)
7068 {
7069 ok = FALSE;
7070 goto error_return;
7071 }
7072
7073 source_relax_info = get_xtensa_relax_info (sec);
7074 for (i = 0; i < sec->reloc_count; i++)
7075 {
7076 Elf_Internal_Rela *irel = &internal_relocs[i];
7077 r_reloc r_rel;
7078 asection *target_sec;
7079 xtensa_relax_info *target_relax_info;
7080
7081 /* If this section has not already been marked as "relaxable", and
7082 if it contains any ASM_EXPAND relocations (marking expanded
7083 longcalls) that can be optimized into direct calls, then mark
7084 the section as "relaxable". */
7085 if (source_relax_info
7086 && !source_relax_info->is_relaxable_asm_section
7087 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7088 {
7089 bfd_boolean is_reachable = FALSE;
7090 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7091 link_info, &is_reachable)
7092 && is_reachable)
7093 {
7094 source_relax_info->is_relaxable_asm_section = TRUE;
7095 *is_relaxable_p = TRUE;
7096 }
7097 }
7098
7099 r_reloc_init (&r_rel, abfd, irel, contents,
7100 bfd_get_section_limit (abfd, sec));
7101
7102 target_sec = r_reloc_get_section (&r_rel);
7103 target_relax_info = get_xtensa_relax_info (target_sec);
7104 if (!target_relax_info)
7105 continue;
7106
7107 /* Count PC-relative operand relocations against the target section.
7108 Note: The conditions tested here must match the conditions under
7109 which init_source_reloc is called in collect_source_relocs(). */
7110 is_l32r_reloc = FALSE;
7111 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7112 {
7113 xtensa_opcode opcode =
7114 get_relocation_opcode (abfd, sec, contents, irel);
7115 if (opcode != XTENSA_UNDEFINED)
7116 {
7117 is_l32r_reloc = (opcode == get_l32r_opcode ());
7118 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7119 || is_l32r_reloc)
7120 target_relax_info->src_count++;
7121 }
7122 }
7123
7124 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7125 {
7126 /* Mark the target section as relaxable. */
7127 target_relax_info->is_relaxable_literal_section = TRUE;
7128 *is_relaxable_p = TRUE;
7129 }
7130 }
7131
7132 error_return:
7133 release_contents (sec, contents);
7134 release_internal_relocs (sec, internal_relocs);
7135 return ok;
7136 }
7137
7138
7139 /* Record _all_ the relocations that point to relaxable sections, and
7140 get rid of ASM_EXPAND relocs by either converting them to
7141 ASM_SIMPLIFY or by removing them. */
7142
7143 static bfd_boolean
7144 collect_source_relocs (bfd *abfd,
7145 asection *sec,
7146 struct bfd_link_info *link_info)
7147 {
7148 Elf_Internal_Rela *internal_relocs;
7149 bfd_byte *contents;
7150 bfd_boolean ok = TRUE;
7151 unsigned i;
7152 bfd_size_type sec_size;
7153
7154 internal_relocs = retrieve_internal_relocs (abfd, sec,
7155 link_info->keep_memory);
7156 if (internal_relocs == NULL)
7157 return ok;
7158
7159 sec_size = bfd_get_section_limit (abfd, sec);
7160 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7161 if (contents == NULL && sec_size != 0)
7162 {
7163 ok = FALSE;
7164 goto error_return;
7165 }
7166
7167 /* Record relocations against relaxable literal sections. */
7168 for (i = 0; i < sec->reloc_count; i++)
7169 {
7170 Elf_Internal_Rela *irel = &internal_relocs[i];
7171 r_reloc r_rel;
7172 asection *target_sec;
7173 xtensa_relax_info *target_relax_info;
7174
7175 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7176
7177 target_sec = r_reloc_get_section (&r_rel);
7178 target_relax_info = get_xtensa_relax_info (target_sec);
7179
7180 if (target_relax_info
7181 && (target_relax_info->is_relaxable_literal_section
7182 || target_relax_info->is_relaxable_asm_section))
7183 {
7184 xtensa_opcode opcode = XTENSA_UNDEFINED;
7185 int opnd = -1;
7186 bfd_boolean is_abs_literal = FALSE;
7187
7188 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7189 {
7190 /* None of the current alternate relocs are PC-relative,
7191 and only PC-relative relocs matter here. However, we
7192 still need to record the opcode for literal
7193 coalescing. */
7194 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7195 if (opcode == get_l32r_opcode ())
7196 {
7197 is_abs_literal = TRUE;
7198 opnd = 1;
7199 }
7200 else
7201 opcode = XTENSA_UNDEFINED;
7202 }
7203 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7204 {
7205 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7206 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7207 }
7208
7209 if (opcode != XTENSA_UNDEFINED)
7210 {
7211 int src_next = target_relax_info->src_next++;
7212 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7213
7214 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7215 is_abs_literal);
7216 }
7217 }
7218 }
7219
7220 /* Now get rid of ASM_EXPAND relocations. At this point, the
7221 src_relocs array for the target literal section may still be
7222 incomplete, but it must at least contain the entries for the L32R
7223 relocations associated with ASM_EXPANDs because they were just
7224 added in the preceding loop over the relocations. */
7225
7226 for (i = 0; i < sec->reloc_count; i++)
7227 {
7228 Elf_Internal_Rela *irel = &internal_relocs[i];
7229 bfd_boolean is_reachable;
7230
7231 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7232 &is_reachable))
7233 continue;
7234
7235 if (is_reachable)
7236 {
7237 Elf_Internal_Rela *l32r_irel;
7238 r_reloc r_rel;
7239 asection *target_sec;
7240 xtensa_relax_info *target_relax_info;
7241
7242 /* Mark the source_reloc for the L32R so that it will be
7243 removed in compute_removed_literals(), along with the
7244 associated literal. */
7245 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7246 irel, internal_relocs);
7247 if (l32r_irel == NULL)
7248 continue;
7249
7250 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7251
7252 target_sec = r_reloc_get_section (&r_rel);
7253 target_relax_info = get_xtensa_relax_info (target_sec);
7254
7255 if (target_relax_info
7256 && (target_relax_info->is_relaxable_literal_section
7257 || target_relax_info->is_relaxable_asm_section))
7258 {
7259 source_reloc *s_reloc;
7260
7261 /* Search the source_relocs for the entry corresponding to
7262 the l32r_irel. Note: The src_relocs array is not yet
7263 sorted, but it wouldn't matter anyway because we're
7264 searching by source offset instead of target offset. */
7265 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7266 target_relax_info->src_next,
7267 sec, l32r_irel);
7268 BFD_ASSERT (s_reloc);
7269 s_reloc->is_null = TRUE;
7270 }
7271
7272 /* Convert this reloc to ASM_SIMPLIFY. */
7273 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7274 R_XTENSA_ASM_SIMPLIFY);
7275 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7276
7277 pin_internal_relocs (sec, internal_relocs);
7278 }
7279 else
7280 {
7281 /* It is resolvable but doesn't reach. We resolve now
7282 by eliminating the relocation -- the call will remain
7283 expanded into L32R/CALLX. */
7284 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7285 pin_internal_relocs (sec, internal_relocs);
7286 }
7287 }
7288
7289 error_return:
7290 release_contents (sec, contents);
7291 release_internal_relocs (sec, internal_relocs);
7292 return ok;
7293 }
7294
7295
7296 /* Return TRUE if the asm expansion can be resolved. Generally it can
7297 be resolved on a final link or when a partial link locates it in the
7298 same section as the target. Set "is_reachable" flag if the target of
7299 the call is within the range of a direct call, given the current VMA
7300 for this section and the target section. */
7301
7302 bfd_boolean
7303 is_resolvable_asm_expansion (bfd *abfd,
7304 asection *sec,
7305 bfd_byte *contents,
7306 Elf_Internal_Rela *irel,
7307 struct bfd_link_info *link_info,
7308 bfd_boolean *is_reachable_p)
7309 {
7310 asection *target_sec;
7311 bfd_vma target_offset;
7312 r_reloc r_rel;
7313 xtensa_opcode opcode, direct_call_opcode;
7314 bfd_vma self_address;
7315 bfd_vma dest_address;
7316 bfd_boolean uses_l32r;
7317 bfd_size_type sec_size;
7318
7319 *is_reachable_p = FALSE;
7320
7321 if (contents == NULL)
7322 return FALSE;
7323
7324 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7325 return FALSE;
7326
7327 sec_size = bfd_get_section_limit (abfd, sec);
7328 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7329 sec_size - irel->r_offset, &uses_l32r);
7330 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7331 if (!uses_l32r)
7332 return FALSE;
7333
7334 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7335 if (direct_call_opcode == XTENSA_UNDEFINED)
7336 return FALSE;
7337
7338 /* Check and see that the target resolves. */
7339 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7340 if (!r_reloc_is_defined (&r_rel))
7341 return FALSE;
7342
7343 target_sec = r_reloc_get_section (&r_rel);
7344 target_offset = r_rel.target_offset;
7345
7346 /* If the target is in a shared library, then it doesn't reach. This
7347 isn't supposed to come up because the compiler should never generate
7348 non-PIC calls on systems that use shared libraries, but the linker
7349 shouldn't crash regardless. */
7350 if (!target_sec->output_section)
7351 return FALSE;
7352
7353 /* For relocatable sections, we can only simplify when the output
7354 section of the target is the same as the output section of the
7355 source. */
7356 if (bfd_link_relocatable (link_info)
7357 && (target_sec->output_section != sec->output_section
7358 || is_reloc_sym_weak (abfd, irel)))
7359 return FALSE;
7360
7361 if (target_sec->output_section != sec->output_section)
7362 {
7363 /* If the two sections are sufficiently far away that relaxation
7364 might take the call out of range, we can't simplify. For
7365 example, a positive displacement call into another memory
7366 could get moved to a lower address due to literal removal,
7367 but the destination won't move, and so the displacment might
7368 get larger.
7369
7370 If the displacement is negative, assume the destination could
7371 move as far back as the start of the output section. The
7372 self_address will be at least as far into the output section
7373 as it is prior to relaxation.
7374
7375 If the displacement is postive, assume the destination will be in
7376 it's pre-relaxed location (because relaxation only makes sections
7377 smaller). The self_address could go all the way to the beginning
7378 of the output section. */
7379
7380 dest_address = target_sec->output_section->vma;
7381 self_address = sec->output_section->vma;
7382
7383 if (sec->output_section->vma > target_sec->output_section->vma)
7384 self_address += sec->output_offset + irel->r_offset + 3;
7385 else
7386 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7387 /* Call targets should be four-byte aligned. */
7388 dest_address = (dest_address + 3) & ~3;
7389 }
7390 else
7391 {
7392
7393 self_address = (sec->output_section->vma
7394 + sec->output_offset + irel->r_offset + 3);
7395 dest_address = (target_sec->output_section->vma
7396 + target_sec->output_offset + target_offset);
7397 }
7398
7399 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7400 self_address, dest_address);
7401
7402 if ((self_address >> CALL_SEGMENT_BITS) !=
7403 (dest_address >> CALL_SEGMENT_BITS))
7404 return FALSE;
7405
7406 return TRUE;
7407 }
7408
7409
7410 static Elf_Internal_Rela *
7411 find_associated_l32r_irel (bfd *abfd,
7412 asection *sec,
7413 bfd_byte *contents,
7414 Elf_Internal_Rela *other_irel,
7415 Elf_Internal_Rela *internal_relocs)
7416 {
7417 unsigned i;
7418
7419 for (i = 0; i < sec->reloc_count; i++)
7420 {
7421 Elf_Internal_Rela *irel = &internal_relocs[i];
7422
7423 if (irel == other_irel)
7424 continue;
7425 if (irel->r_offset != other_irel->r_offset)
7426 continue;
7427 if (is_l32r_relocation (abfd, sec, contents, irel))
7428 return irel;
7429 }
7430
7431 return NULL;
7432 }
7433
7434
7435 static xtensa_opcode *
7436 build_reloc_opcodes (bfd *abfd,
7437 asection *sec,
7438 bfd_byte *contents,
7439 Elf_Internal_Rela *internal_relocs)
7440 {
7441 unsigned i;
7442 xtensa_opcode *reloc_opcodes =
7443 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7444 for (i = 0; i < sec->reloc_count; i++)
7445 {
7446 Elf_Internal_Rela *irel = &internal_relocs[i];
7447 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7448 }
7449 return reloc_opcodes;
7450 }
7451
7452 struct reloc_range_struct
7453 {
7454 bfd_vma addr;
7455 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7456 /* Original irel index in the array of relocations for a section. */
7457 unsigned irel_index;
7458 };
7459 typedef struct reloc_range_struct reloc_range;
7460
7461 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7462 struct reloc_range_list_entry_struct
7463 {
7464 reloc_range_list_entry *next;
7465 reloc_range_list_entry *prev;
7466 Elf_Internal_Rela *irel;
7467 xtensa_opcode opcode;
7468 int opnum;
7469 };
7470
7471 struct reloc_range_list_struct
7472 {
7473 /* The rest of the structure is only meaningful when ok is TRUE. */
7474 bfd_boolean ok;
7475
7476 unsigned n_range; /* Number of range markers. */
7477 reloc_range *range; /* Sorted range markers. */
7478
7479 unsigned first; /* Index of a first range element in the list. */
7480 unsigned last; /* One past index of a last range element in the list. */
7481
7482 unsigned n_list; /* Number of list elements. */
7483 reloc_range_list_entry *reloc; /* */
7484 reloc_range_list_entry list_root;
7485 };
7486
7487 static int
7488 reloc_range_compare (const void *a, const void *b)
7489 {
7490 const reloc_range *ra = a;
7491 const reloc_range *rb = b;
7492
7493 if (ra->addr != rb->addr)
7494 return ra->addr < rb->addr ? -1 : 1;
7495 if (ra->add != rb->add)
7496 return ra->add ? -1 : 1;
7497 return 0;
7498 }
7499
7500 static void
7501 build_reloc_ranges (bfd *abfd, asection *sec,
7502 bfd_byte *contents,
7503 Elf_Internal_Rela *internal_relocs,
7504 xtensa_opcode *reloc_opcodes,
7505 reloc_range_list *list)
7506 {
7507 unsigned i;
7508 size_t n = 0;
7509 size_t max_n = 0;
7510 reloc_range *ranges = NULL;
7511 reloc_range_list_entry *reloc =
7512 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7513
7514 memset (list, 0, sizeof (*list));
7515 list->ok = TRUE;
7516
7517 for (i = 0; i < sec->reloc_count; i++)
7518 {
7519 Elf_Internal_Rela *irel = &internal_relocs[i];
7520 int r_type = ELF32_R_TYPE (irel->r_info);
7521 reloc_howto_type *howto = &elf_howto_table[r_type];
7522 r_reloc r_rel;
7523
7524 if (r_type == R_XTENSA_ASM_SIMPLIFY
7525 || r_type == R_XTENSA_32_PCREL
7526 || !howto->pc_relative)
7527 continue;
7528
7529 r_reloc_init (&r_rel, abfd, irel, contents,
7530 bfd_get_section_limit (abfd, sec));
7531
7532 if (r_reloc_get_section (&r_rel) != sec)
7533 continue;
7534
7535 if (n + 2 > max_n)
7536 {
7537 max_n = (max_n + 2) * 2;
7538 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7539 }
7540
7541 ranges[n].addr = irel->r_offset;
7542 ranges[n + 1].addr = r_rel.target_offset;
7543
7544 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7545 ranges[n + 1].add = !ranges[n].add;
7546
7547 ranges[n].irel_index = i;
7548 ranges[n + 1].irel_index = i;
7549
7550 n += 2;
7551
7552 reloc[i].irel = irel;
7553
7554 /* Every relocation won't possibly be checked in the optimized version of
7555 check_section_ebb_pcrels_fit, so this needs to be done here. */
7556 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7557 {
7558 /* None of the current alternate relocs are PC-relative,
7559 and only PC-relative relocs matter here. */
7560 }
7561 else
7562 {
7563 xtensa_opcode opcode;
7564 int opnum;
7565
7566 if (reloc_opcodes)
7567 opcode = reloc_opcodes[i];
7568 else
7569 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7570
7571 if (opcode == XTENSA_UNDEFINED)
7572 {
7573 list->ok = FALSE;
7574 break;
7575 }
7576
7577 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7578 if (opnum == XTENSA_UNDEFINED)
7579 {
7580 list->ok = FALSE;
7581 break;
7582 }
7583
7584 /* Record relocation opcode and opnum as we've calculated them
7585 anyway and they won't change. */
7586 reloc[i].opcode = opcode;
7587 reloc[i].opnum = opnum;
7588 }
7589 }
7590
7591 if (list->ok)
7592 {
7593 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7594 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7595
7596 list->n_range = n;
7597 list->range = ranges;
7598 list->reloc = reloc;
7599 list->list_root.prev = &list->list_root;
7600 list->list_root.next = &list->list_root;
7601 }
7602 else
7603 {
7604 free (ranges);
7605 free (reloc);
7606 }
7607 }
7608
7609 static void reloc_range_list_append (reloc_range_list *list,
7610 unsigned irel_index)
7611 {
7612 reloc_range_list_entry *entry = list->reloc + irel_index;
7613
7614 entry->prev = list->list_root.prev;
7615 entry->next = &list->list_root;
7616 entry->prev->next = entry;
7617 entry->next->prev = entry;
7618 ++list->n_list;
7619 }
7620
7621 static void reloc_range_list_remove (reloc_range_list *list,
7622 unsigned irel_index)
7623 {
7624 reloc_range_list_entry *entry = list->reloc + irel_index;
7625
7626 entry->next->prev = entry->prev;
7627 entry->prev->next = entry->next;
7628 --list->n_list;
7629 }
7630
7631 /* Update relocation list object so that it lists all relocations that cross
7632 [first; last] range. Range bounds should not decrease with successive
7633 invocations. */
7634 static void reloc_range_list_update_range (reloc_range_list *list,
7635 bfd_vma first, bfd_vma last)
7636 {
7637 /* This should not happen: EBBs are iterated from lower addresses to higher.
7638 But even if that happens there's no need to break: just flush current list
7639 and start from scratch. */
7640 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7641 (list->first > 0 && list->range[list->first - 1].addr >= first))
7642 {
7643 list->first = 0;
7644 list->last = 0;
7645 list->n_list = 0;
7646 list->list_root.next = &list->list_root;
7647 list->list_root.prev = &list->list_root;
7648 fprintf (stderr, "%s: move backwards requested\n", __func__);
7649 }
7650
7651 for (; list->last < list->n_range &&
7652 list->range[list->last].addr <= last; ++list->last)
7653 if (list->range[list->last].add)
7654 reloc_range_list_append (list, list->range[list->last].irel_index);
7655
7656 for (; list->first < list->n_range &&
7657 list->range[list->first].addr < first; ++list->first)
7658 if (!list->range[list->first].add)
7659 reloc_range_list_remove (list, list->range[list->first].irel_index);
7660 }
7661
7662 static void free_reloc_range_list (reloc_range_list *list)
7663 {
7664 free (list->range);
7665 free (list->reloc);
7666 }
7667
7668 /* The compute_text_actions function will build a list of potential
7669 transformation actions for code in the extended basic block of each
7670 longcall that is optimized to a direct call. From this list we
7671 generate a set of actions to actually perform that optimizes for
7672 space and, if not using size_opt, maintains branch target
7673 alignments.
7674
7675 These actions to be performed are placed on a per-section list.
7676 The actual changes are performed by relax_section() in the second
7677 pass. */
7678
7679 bfd_boolean
7680 compute_text_actions (bfd *abfd,
7681 asection *sec,
7682 struct bfd_link_info *link_info)
7683 {
7684 xtensa_opcode *reloc_opcodes = NULL;
7685 xtensa_relax_info *relax_info;
7686 bfd_byte *contents;
7687 Elf_Internal_Rela *internal_relocs;
7688 bfd_boolean ok = TRUE;
7689 unsigned i;
7690 property_table_entry *prop_table = 0;
7691 int ptblsize = 0;
7692 bfd_size_type sec_size;
7693 reloc_range_list relevant_relocs;
7694
7695 relax_info = get_xtensa_relax_info (sec);
7696 BFD_ASSERT (relax_info);
7697 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7698
7699 /* Do nothing if the section contains no optimized longcalls. */
7700 if (!relax_info->is_relaxable_asm_section)
7701 return ok;
7702
7703 internal_relocs = retrieve_internal_relocs (abfd, sec,
7704 link_info->keep_memory);
7705
7706 if (internal_relocs)
7707 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7708 internal_reloc_compare);
7709
7710 sec_size = bfd_get_section_limit (abfd, sec);
7711 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7712 if (contents == NULL && sec_size != 0)
7713 {
7714 ok = FALSE;
7715 goto error_return;
7716 }
7717
7718 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7719 XTENSA_PROP_SEC_NAME, FALSE);
7720 if (ptblsize < 0)
7721 {
7722 ok = FALSE;
7723 goto error_return;
7724 }
7725
7726 /* Precompute the opcode for each relocation. */
7727 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7728
7729 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7730 &relevant_relocs);
7731
7732 for (i = 0; i < sec->reloc_count; i++)
7733 {
7734 Elf_Internal_Rela *irel = &internal_relocs[i];
7735 bfd_vma r_offset;
7736 property_table_entry *the_entry;
7737 int ptbl_idx;
7738 ebb_t *ebb;
7739 ebb_constraint ebb_table;
7740 bfd_size_type simplify_size;
7741
7742 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7743 continue;
7744 r_offset = irel->r_offset;
7745
7746 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7747 if (simplify_size == 0)
7748 {
7749 (*_bfd_error_handler)
7750 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7751 sec->owner, sec, r_offset);
7752 continue;
7753 }
7754
7755 /* If the instruction table is not around, then don't do this
7756 relaxation. */
7757 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7758 sec->vma + irel->r_offset);
7759 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7760 {
7761 text_action_add (&relax_info->action_list,
7762 ta_convert_longcall, sec, r_offset,
7763 0);
7764 continue;
7765 }
7766
7767 /* If the next longcall happens to be at the same address as an
7768 unreachable section of size 0, then skip forward. */
7769 ptbl_idx = the_entry - prop_table;
7770 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7771 && the_entry->size == 0
7772 && ptbl_idx + 1 < ptblsize
7773 && (prop_table[ptbl_idx + 1].address
7774 == prop_table[ptbl_idx].address))
7775 {
7776 ptbl_idx++;
7777 the_entry++;
7778 }
7779
7780 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7781 /* NO_REORDER is OK */
7782 continue;
7783
7784 init_ebb_constraint (&ebb_table);
7785 ebb = &ebb_table.ebb;
7786 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7787 internal_relocs, sec->reloc_count);
7788 ebb->start_offset = r_offset + simplify_size;
7789 ebb->end_offset = r_offset + simplify_size;
7790 ebb->start_ptbl_idx = ptbl_idx;
7791 ebb->end_ptbl_idx = ptbl_idx;
7792 ebb->start_reloc_idx = i;
7793 ebb->end_reloc_idx = i;
7794
7795 if (!extend_ebb_bounds (ebb)
7796 || !compute_ebb_proposed_actions (&ebb_table)
7797 || !compute_ebb_actions (&ebb_table)
7798 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7799 internal_relocs,
7800 &relevant_relocs,
7801 &ebb_table, reloc_opcodes)
7802 || !check_section_ebb_reduces (&ebb_table))
7803 {
7804 /* If anything goes wrong or we get unlucky and something does
7805 not fit, with our plan because of expansion between
7806 critical branches, just convert to a NOP. */
7807
7808 text_action_add (&relax_info->action_list,
7809 ta_convert_longcall, sec, r_offset, 0);
7810 i = ebb_table.ebb.end_reloc_idx;
7811 free_ebb_constraint (&ebb_table);
7812 continue;
7813 }
7814
7815 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7816
7817 /* Update the index so we do not go looking at the relocations
7818 we have already processed. */
7819 i = ebb_table.ebb.end_reloc_idx;
7820 free_ebb_constraint (&ebb_table);
7821 }
7822
7823 free_reloc_range_list (&relevant_relocs);
7824
7825 #if DEBUG
7826 if (action_list_count (&relax_info->action_list))
7827 print_action_list (stderr, &relax_info->action_list);
7828 #endif
7829
7830 error_return:
7831 release_contents (sec, contents);
7832 release_internal_relocs (sec, internal_relocs);
7833 if (prop_table)
7834 free (prop_table);
7835 if (reloc_opcodes)
7836 free (reloc_opcodes);
7837
7838 return ok;
7839 }
7840
7841
7842 /* Do not widen an instruction if it is preceeded by a
7843 loop opcode. It might cause misalignment. */
7844
7845 static bfd_boolean
7846 prev_instr_is_a_loop (bfd_byte *contents,
7847 bfd_size_type content_length,
7848 bfd_size_type offset)
7849 {
7850 xtensa_opcode prev_opcode;
7851
7852 if (offset < 3)
7853 return FALSE;
7854 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7855 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7856 }
7857
7858
7859 /* Find all of the possible actions for an extended basic block. */
7860
7861 bfd_boolean
7862 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7863 {
7864 const ebb_t *ebb = &ebb_table->ebb;
7865 unsigned rel_idx = ebb->start_reloc_idx;
7866 property_table_entry *entry, *start_entry, *end_entry;
7867 bfd_vma offset = 0;
7868 xtensa_isa isa = xtensa_default_isa;
7869 xtensa_format fmt;
7870 static xtensa_insnbuf insnbuf = NULL;
7871 static xtensa_insnbuf slotbuf = NULL;
7872
7873 if (insnbuf == NULL)
7874 {
7875 insnbuf = xtensa_insnbuf_alloc (isa);
7876 slotbuf = xtensa_insnbuf_alloc (isa);
7877 }
7878
7879 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7880 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7881
7882 for (entry = start_entry; entry <= end_entry; entry++)
7883 {
7884 bfd_vma start_offset, end_offset;
7885 bfd_size_type insn_len;
7886
7887 start_offset = entry->address - ebb->sec->vma;
7888 end_offset = entry->address + entry->size - ebb->sec->vma;
7889
7890 if (entry == start_entry)
7891 start_offset = ebb->start_offset;
7892 if (entry == end_entry)
7893 end_offset = ebb->end_offset;
7894 offset = start_offset;
7895
7896 if (offset == entry->address - ebb->sec->vma
7897 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7898 {
7899 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7900 BFD_ASSERT (offset != end_offset);
7901 if (offset == end_offset)
7902 return FALSE;
7903
7904 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7905 offset);
7906 if (insn_len == 0)
7907 goto decode_error;
7908
7909 if (check_branch_target_aligned_address (offset, insn_len))
7910 align_type = EBB_REQUIRE_TGT_ALIGN;
7911
7912 ebb_propose_action (ebb_table, align_type, 0,
7913 ta_none, offset, 0, TRUE);
7914 }
7915
7916 while (offset != end_offset)
7917 {
7918 Elf_Internal_Rela *irel;
7919 xtensa_opcode opcode;
7920
7921 while (rel_idx < ebb->end_reloc_idx
7922 && (ebb->relocs[rel_idx].r_offset < offset
7923 || (ebb->relocs[rel_idx].r_offset == offset
7924 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7925 != R_XTENSA_ASM_SIMPLIFY))))
7926 rel_idx++;
7927
7928 /* Check for longcall. */
7929 irel = &ebb->relocs[rel_idx];
7930 if (irel->r_offset == offset
7931 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7932 {
7933 bfd_size_type simplify_size;
7934
7935 simplify_size = get_asm_simplify_size (ebb->contents,
7936 ebb->content_length,
7937 irel->r_offset);
7938 if (simplify_size == 0)
7939 goto decode_error;
7940
7941 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7942 ta_convert_longcall, offset, 0, TRUE);
7943
7944 offset += simplify_size;
7945 continue;
7946 }
7947
7948 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7949 goto decode_error;
7950 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7951 ebb->content_length - offset);
7952 fmt = xtensa_format_decode (isa, insnbuf);
7953 if (fmt == XTENSA_UNDEFINED)
7954 goto decode_error;
7955 insn_len = xtensa_format_length (isa, fmt);
7956 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7957 goto decode_error;
7958
7959 if (xtensa_format_num_slots (isa, fmt) != 1)
7960 {
7961 offset += insn_len;
7962 continue;
7963 }
7964
7965 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7966 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7967 if (opcode == XTENSA_UNDEFINED)
7968 goto decode_error;
7969
7970 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7971 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7972 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7973 {
7974 /* Add an instruction narrow action. */
7975 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7976 ta_narrow_insn, offset, 0, FALSE);
7977 }
7978 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7979 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7980 && ! prev_instr_is_a_loop (ebb->contents,
7981 ebb->content_length, offset))
7982 {
7983 /* Add an instruction widen action. */
7984 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7985 ta_widen_insn, offset, 0, FALSE);
7986 }
7987 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7988 {
7989 /* Check for branch targets. */
7990 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7991 ta_none, offset, 0, TRUE);
7992 }
7993
7994 offset += insn_len;
7995 }
7996 }
7997
7998 if (ebb->ends_unreachable)
7999 {
8000 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
8001 ta_fill, ebb->end_offset, 0, TRUE);
8002 }
8003
8004 return TRUE;
8005
8006 decode_error:
8007 (*_bfd_error_handler)
8008 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
8009 ebb->sec->owner, ebb->sec, offset);
8010 return FALSE;
8011 }
8012
8013
8014 /* After all of the information has collected about the
8015 transformations possible in an EBB, compute the appropriate actions
8016 here in compute_ebb_actions. We still must check later to make
8017 sure that the actions do not break any relocations. The algorithm
8018 used here is pretty greedy. Basically, it removes as many no-ops
8019 as possible so that the end of the EBB has the same alignment
8020 characteristics as the original. First, it uses narrowing, then
8021 fill space at the end of the EBB, and finally widenings. If that
8022 does not work, it tries again with one fewer no-op removed. The
8023 optimization will only be performed if all of the branch targets
8024 that were aligned before transformation are also aligned after the
8025 transformation.
8026
8027 When the size_opt flag is set, ignore the branch target alignments,
8028 narrow all wide instructions, and remove all no-ops unless the end
8029 of the EBB prevents it. */
8030
8031 bfd_boolean
8032 compute_ebb_actions (ebb_constraint *ebb_table)
8033 {
8034 unsigned i = 0;
8035 unsigned j;
8036 int removed_bytes = 0;
8037 ebb_t *ebb = &ebb_table->ebb;
8038 unsigned seg_idx_start = 0;
8039 unsigned seg_idx_end = 0;
8040
8041 /* We perform this like the assembler relaxation algorithm: Start by
8042 assuming all instructions are narrow and all no-ops removed; then
8043 walk through.... */
8044
8045 /* For each segment of this that has a solid constraint, check to
8046 see if there are any combinations that will keep the constraint.
8047 If so, use it. */
8048 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8049 {
8050 bfd_boolean requires_text_end_align = FALSE;
8051 unsigned longcall_count = 0;
8052 unsigned longcall_convert_count = 0;
8053 unsigned narrowable_count = 0;
8054 unsigned narrowable_convert_count = 0;
8055 unsigned widenable_count = 0;
8056 unsigned widenable_convert_count = 0;
8057
8058 proposed_action *action = NULL;
8059 int align = (1 << ebb_table->ebb.sec->alignment_power);
8060
8061 seg_idx_start = seg_idx_end;
8062
8063 for (i = seg_idx_start; i < ebb_table->action_count; i++)
8064 {
8065 action = &ebb_table->actions[i];
8066 if (action->action == ta_convert_longcall)
8067 longcall_count++;
8068 if (action->action == ta_narrow_insn)
8069 narrowable_count++;
8070 if (action->action == ta_widen_insn)
8071 widenable_count++;
8072 if (action->action == ta_fill)
8073 break;
8074 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8075 break;
8076 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8077 && !elf32xtensa_size_opt)
8078 break;
8079 }
8080 seg_idx_end = i;
8081
8082 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8083 requires_text_end_align = TRUE;
8084
8085 if (elf32xtensa_size_opt && !requires_text_end_align
8086 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8087 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8088 {
8089 longcall_convert_count = longcall_count;
8090 narrowable_convert_count = narrowable_count;
8091 widenable_convert_count = 0;
8092 }
8093 else
8094 {
8095 /* There is a constraint. Convert the max number of longcalls. */
8096 narrowable_convert_count = 0;
8097 longcall_convert_count = 0;
8098 widenable_convert_count = 0;
8099
8100 for (j = 0; j < longcall_count; j++)
8101 {
8102 int removed = (longcall_count - j) * 3 & (align - 1);
8103 unsigned desire_narrow = (align - removed) & (align - 1);
8104 unsigned desire_widen = removed;
8105 if (desire_narrow <= narrowable_count)
8106 {
8107 narrowable_convert_count = desire_narrow;
8108 narrowable_convert_count +=
8109 (align * ((narrowable_count - narrowable_convert_count)
8110 / align));
8111 longcall_convert_count = (longcall_count - j);
8112 widenable_convert_count = 0;
8113 break;
8114 }
8115 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8116 {
8117 narrowable_convert_count = 0;
8118 longcall_convert_count = longcall_count - j;
8119 widenable_convert_count = desire_widen;
8120 break;
8121 }
8122 }
8123 }
8124
8125 /* Now the number of conversions are saved. Do them. */
8126 for (i = seg_idx_start; i < seg_idx_end; i++)
8127 {
8128 action = &ebb_table->actions[i];
8129 switch (action->action)
8130 {
8131 case ta_convert_longcall:
8132 if (longcall_convert_count != 0)
8133 {
8134 action->action = ta_remove_longcall;
8135 action->do_action = TRUE;
8136 action->removed_bytes += 3;
8137 longcall_convert_count--;
8138 }
8139 break;
8140 case ta_narrow_insn:
8141 if (narrowable_convert_count != 0)
8142 {
8143 action->do_action = TRUE;
8144 action->removed_bytes += 1;
8145 narrowable_convert_count--;
8146 }
8147 break;
8148 case ta_widen_insn:
8149 if (widenable_convert_count != 0)
8150 {
8151 action->do_action = TRUE;
8152 action->removed_bytes -= 1;
8153 widenable_convert_count--;
8154 }
8155 break;
8156 default:
8157 break;
8158 }
8159 }
8160 }
8161
8162 /* Now we move on to some local opts. Try to remove each of the
8163 remaining longcalls. */
8164
8165 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8166 {
8167 removed_bytes = 0;
8168 for (i = 0; i < ebb_table->action_count; i++)
8169 {
8170 int old_removed_bytes = removed_bytes;
8171 proposed_action *action = &ebb_table->actions[i];
8172
8173 if (action->do_action && action->action == ta_convert_longcall)
8174 {
8175 bfd_boolean bad_alignment = FALSE;
8176 removed_bytes += 3;
8177 for (j = i + 1; j < ebb_table->action_count; j++)
8178 {
8179 proposed_action *new_action = &ebb_table->actions[j];
8180 bfd_vma offset = new_action->offset;
8181 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8182 {
8183 if (!check_branch_target_aligned
8184 (ebb_table->ebb.contents,
8185 ebb_table->ebb.content_length,
8186 offset, offset - removed_bytes))
8187 {
8188 bad_alignment = TRUE;
8189 break;
8190 }
8191 }
8192 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8193 {
8194 if (!check_loop_aligned (ebb_table->ebb.contents,
8195 ebb_table->ebb.content_length,
8196 offset,
8197 offset - removed_bytes))
8198 {
8199 bad_alignment = TRUE;
8200 break;
8201 }
8202 }
8203 if (new_action->action == ta_narrow_insn
8204 && !new_action->do_action
8205 && ebb_table->ebb.sec->alignment_power == 2)
8206 {
8207 /* Narrow an instruction and we are done. */
8208 new_action->do_action = TRUE;
8209 new_action->removed_bytes += 1;
8210 bad_alignment = FALSE;
8211 break;
8212 }
8213 if (new_action->action == ta_widen_insn
8214 && new_action->do_action
8215 && ebb_table->ebb.sec->alignment_power == 2)
8216 {
8217 /* Narrow an instruction and we are done. */
8218 new_action->do_action = FALSE;
8219 new_action->removed_bytes += 1;
8220 bad_alignment = FALSE;
8221 break;
8222 }
8223 if (new_action->do_action)
8224 removed_bytes += new_action->removed_bytes;
8225 }
8226 if (!bad_alignment)
8227 {
8228 action->removed_bytes += 3;
8229 action->action = ta_remove_longcall;
8230 action->do_action = TRUE;
8231 }
8232 }
8233 removed_bytes = old_removed_bytes;
8234 if (action->do_action)
8235 removed_bytes += action->removed_bytes;
8236 }
8237 }
8238
8239 removed_bytes = 0;
8240 for (i = 0; i < ebb_table->action_count; ++i)
8241 {
8242 proposed_action *action = &ebb_table->actions[i];
8243 if (action->do_action)
8244 removed_bytes += action->removed_bytes;
8245 }
8246
8247 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8248 && ebb->ends_unreachable)
8249 {
8250 proposed_action *action;
8251 int br;
8252 int extra_space;
8253
8254 BFD_ASSERT (ebb_table->action_count != 0);
8255 action = &ebb_table->actions[ebb_table->action_count - 1];
8256 BFD_ASSERT (action->action == ta_fill);
8257 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8258
8259 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8260 br = action->removed_bytes + removed_bytes + extra_space;
8261 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8262
8263 action->removed_bytes = extra_space - br;
8264 }
8265 return TRUE;
8266 }
8267
8268
8269 /* The xlate_map is a sorted array of address mappings designed to
8270 answer the offset_with_removed_text() query with a binary search instead
8271 of a linear search through the section's action_list. */
8272
8273 typedef struct xlate_map_entry xlate_map_entry_t;
8274 typedef struct xlate_map xlate_map_t;
8275
8276 struct xlate_map_entry
8277 {
8278 unsigned orig_address;
8279 unsigned new_address;
8280 unsigned size;
8281 };
8282
8283 struct xlate_map
8284 {
8285 unsigned entry_count;
8286 xlate_map_entry_t *entry;
8287 };
8288
8289
8290 static int
8291 xlate_compare (const void *a_v, const void *b_v)
8292 {
8293 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8294 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8295 if (a->orig_address < b->orig_address)
8296 return -1;
8297 if (a->orig_address > (b->orig_address + b->size - 1))
8298 return 1;
8299 return 0;
8300 }
8301
8302
8303 static bfd_vma
8304 xlate_offset_with_removed_text (const xlate_map_t *map,
8305 text_action_list *action_list,
8306 bfd_vma offset)
8307 {
8308 void *r;
8309 xlate_map_entry_t *e;
8310
8311 if (map == NULL)
8312 return offset_with_removed_text (action_list, offset);
8313
8314 if (map->entry_count == 0)
8315 return offset;
8316
8317 r = bsearch (&offset, map->entry, map->entry_count,
8318 sizeof (xlate_map_entry_t), &xlate_compare);
8319 e = (xlate_map_entry_t *) r;
8320
8321 BFD_ASSERT (e != NULL);
8322 if (e == NULL)
8323 return offset;
8324 return e->new_address - e->orig_address + offset;
8325 }
8326
8327 typedef struct xlate_map_context_struct xlate_map_context;
8328 struct xlate_map_context_struct
8329 {
8330 xlate_map_t *map;
8331 xlate_map_entry_t *current_entry;
8332 int removed;
8333 };
8334
8335 static int
8336 xlate_map_fn (splay_tree_node node, void *p)
8337 {
8338 text_action *r = (text_action *)node->value;
8339 xlate_map_context *ctx = p;
8340 unsigned orig_size = 0;
8341
8342 switch (r->action)
8343 {
8344 case ta_none:
8345 case ta_remove_insn:
8346 case ta_convert_longcall:
8347 case ta_remove_literal:
8348 case ta_add_literal:
8349 break;
8350 case ta_remove_longcall:
8351 orig_size = 6;
8352 break;
8353 case ta_narrow_insn:
8354 orig_size = 3;
8355 break;
8356 case ta_widen_insn:
8357 orig_size = 2;
8358 break;
8359 case ta_fill:
8360 break;
8361 }
8362 ctx->current_entry->size =
8363 r->offset + orig_size - ctx->current_entry->orig_address;
8364 if (ctx->current_entry->size != 0)
8365 {
8366 ctx->current_entry++;
8367 ctx->map->entry_count++;
8368 }
8369 ctx->current_entry->orig_address = r->offset + orig_size;
8370 ctx->removed += r->removed_bytes;
8371 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8372 ctx->current_entry->size = 0;
8373 return 0;
8374 }
8375
8376 /* Build a binary searchable offset translation map from a section's
8377 action list. */
8378
8379 static xlate_map_t *
8380 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8381 {
8382 text_action_list *action_list = &relax_info->action_list;
8383 unsigned num_actions = 0;
8384 xlate_map_context ctx;
8385
8386 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8387
8388 if (ctx.map == NULL)
8389 return NULL;
8390
8391 num_actions = action_list_count (action_list);
8392 ctx.map->entry = (xlate_map_entry_t *)
8393 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8394 if (ctx.map->entry == NULL)
8395 {
8396 free (ctx.map);
8397 return NULL;
8398 }
8399 ctx.map->entry_count = 0;
8400
8401 ctx.removed = 0;
8402 ctx.current_entry = &ctx.map->entry[0];
8403
8404 ctx.current_entry->orig_address = 0;
8405 ctx.current_entry->new_address = 0;
8406 ctx.current_entry->size = 0;
8407
8408 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8409
8410 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8411 - ctx.current_entry->orig_address);
8412 if (ctx.current_entry->size != 0)
8413 ctx.map->entry_count++;
8414
8415 return ctx.map;
8416 }
8417
8418
8419 /* Free an offset translation map. */
8420
8421 static void
8422 free_xlate_map (xlate_map_t *map)
8423 {
8424 if (map && map->entry)
8425 free (map->entry);
8426 if (map)
8427 free (map);
8428 }
8429
8430
8431 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8432 relocations in a section will fit if a proposed set of actions
8433 are performed. */
8434
8435 static bfd_boolean
8436 check_section_ebb_pcrels_fit (bfd *abfd,
8437 asection *sec,
8438 bfd_byte *contents,
8439 Elf_Internal_Rela *internal_relocs,
8440 reloc_range_list *relevant_relocs,
8441 const ebb_constraint *constraint,
8442 const xtensa_opcode *reloc_opcodes)
8443 {
8444 unsigned i, j;
8445 unsigned n = sec->reloc_count;
8446 Elf_Internal_Rela *irel;
8447 xlate_map_t *xmap = NULL;
8448 bfd_boolean ok = TRUE;
8449 xtensa_relax_info *relax_info;
8450 reloc_range_list_entry *entry = NULL;
8451
8452 relax_info = get_xtensa_relax_info (sec);
8453
8454 if (relax_info && sec->reloc_count > 100)
8455 {
8456 xmap = build_xlate_map (sec, relax_info);
8457 /* NULL indicates out of memory, but the slow version
8458 can still be used. */
8459 }
8460
8461 if (relevant_relocs && constraint->action_count)
8462 {
8463 if (!relevant_relocs->ok)
8464 {
8465 ok = FALSE;
8466 n = 0;
8467 }
8468 else
8469 {
8470 bfd_vma min_offset, max_offset;
8471 min_offset = max_offset = constraint->actions[0].offset;
8472
8473 for (i = 1; i < constraint->action_count; ++i)
8474 {
8475 proposed_action *action = &constraint->actions[i];
8476 bfd_vma offset = action->offset;
8477
8478 if (offset < min_offset)
8479 min_offset = offset;
8480 if (offset > max_offset)
8481 max_offset = offset;
8482 }
8483 reloc_range_list_update_range (relevant_relocs, min_offset,
8484 max_offset);
8485 n = relevant_relocs->n_list;
8486 entry = &relevant_relocs->list_root;
8487 }
8488 }
8489 else
8490 {
8491 relevant_relocs = NULL;
8492 }
8493
8494 for (i = 0; i < n; i++)
8495 {
8496 r_reloc r_rel;
8497 bfd_vma orig_self_offset, orig_target_offset;
8498 bfd_vma self_offset, target_offset;
8499 int r_type;
8500 reloc_howto_type *howto;
8501 int self_removed_bytes, target_removed_bytes;
8502
8503 if (relevant_relocs)
8504 {
8505 entry = entry->next;
8506 irel = entry->irel;
8507 }
8508 else
8509 {
8510 irel = internal_relocs + i;
8511 }
8512 r_type = ELF32_R_TYPE (irel->r_info);
8513
8514 howto = &elf_howto_table[r_type];
8515 /* We maintain the required invariant: PC-relative relocations
8516 that fit before linking must fit after linking. Thus we only
8517 need to deal with relocations to the same section that are
8518 PC-relative. */
8519 if (r_type == R_XTENSA_ASM_SIMPLIFY
8520 || r_type == R_XTENSA_32_PCREL
8521 || !howto->pc_relative)
8522 continue;
8523
8524 r_reloc_init (&r_rel, abfd, irel, contents,
8525 bfd_get_section_limit (abfd, sec));
8526
8527 if (r_reloc_get_section (&r_rel) != sec)
8528 continue;
8529
8530 orig_self_offset = irel->r_offset;
8531 orig_target_offset = r_rel.target_offset;
8532
8533 self_offset = orig_self_offset;
8534 target_offset = orig_target_offset;
8535
8536 if (relax_info)
8537 {
8538 self_offset =
8539 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8540 orig_self_offset);
8541 target_offset =
8542 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8543 orig_target_offset);
8544 }
8545
8546 self_removed_bytes = 0;
8547 target_removed_bytes = 0;
8548
8549 for (j = 0; j < constraint->action_count; ++j)
8550 {
8551 proposed_action *action = &constraint->actions[j];
8552 bfd_vma offset = action->offset;
8553 int removed_bytes = action->removed_bytes;
8554 if (offset < orig_self_offset
8555 || (offset == orig_self_offset && action->action == ta_fill
8556 && action->removed_bytes < 0))
8557 self_removed_bytes += removed_bytes;
8558 if (offset < orig_target_offset
8559 || (offset == orig_target_offset && action->action == ta_fill
8560 && action->removed_bytes < 0))
8561 target_removed_bytes += removed_bytes;
8562 }
8563 self_offset -= self_removed_bytes;
8564 target_offset -= target_removed_bytes;
8565
8566 /* Try to encode it. Get the operand and check. */
8567 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8568 {
8569 /* None of the current alternate relocs are PC-relative,
8570 and only PC-relative relocs matter here. */
8571 }
8572 else
8573 {
8574 xtensa_opcode opcode;
8575 int opnum;
8576
8577 if (relevant_relocs)
8578 {
8579 opcode = entry->opcode;
8580 opnum = entry->opnum;
8581 }
8582 else
8583 {
8584 if (reloc_opcodes)
8585 opcode = reloc_opcodes[relevant_relocs ?
8586 (unsigned)(entry - relevant_relocs->reloc) : i];
8587 else
8588 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8589 if (opcode == XTENSA_UNDEFINED)
8590 {
8591 ok = FALSE;
8592 break;
8593 }
8594
8595 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8596 if (opnum == XTENSA_UNDEFINED)
8597 {
8598 ok = FALSE;
8599 break;
8600 }
8601 }
8602
8603 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8604 {
8605 ok = FALSE;
8606 break;
8607 }
8608 }
8609 }
8610
8611 if (xmap)
8612 free_xlate_map (xmap);
8613
8614 return ok;
8615 }
8616
8617
8618 static bfd_boolean
8619 check_section_ebb_reduces (const ebb_constraint *constraint)
8620 {
8621 int removed = 0;
8622 unsigned i;
8623
8624 for (i = 0; i < constraint->action_count; i++)
8625 {
8626 const proposed_action *action = &constraint->actions[i];
8627 if (action->do_action)
8628 removed += action->removed_bytes;
8629 }
8630 if (removed < 0)
8631 return FALSE;
8632
8633 return TRUE;
8634 }
8635
8636
8637 void
8638 text_action_add_proposed (text_action_list *l,
8639 const ebb_constraint *ebb_table,
8640 asection *sec)
8641 {
8642 unsigned i;
8643
8644 for (i = 0; i < ebb_table->action_count; i++)
8645 {
8646 proposed_action *action = &ebb_table->actions[i];
8647
8648 if (!action->do_action)
8649 continue;
8650 switch (action->action)
8651 {
8652 case ta_remove_insn:
8653 case ta_remove_longcall:
8654 case ta_convert_longcall:
8655 case ta_narrow_insn:
8656 case ta_widen_insn:
8657 case ta_fill:
8658 case ta_remove_literal:
8659 text_action_add (l, action->action, sec, action->offset,
8660 action->removed_bytes);
8661 break;
8662 case ta_none:
8663 break;
8664 default:
8665 BFD_ASSERT (0);
8666 break;
8667 }
8668 }
8669 }
8670
8671
8672 int
8673 compute_fill_extra_space (property_table_entry *entry)
8674 {
8675 int fill_extra_space;
8676
8677 if (!entry)
8678 return 0;
8679
8680 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8681 return 0;
8682
8683 fill_extra_space = entry->size;
8684 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8685 {
8686 /* Fill bytes for alignment:
8687 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8688 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8689 int nsm = (1 << pow) - 1;
8690 bfd_vma addr = entry->address + entry->size;
8691 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8692 fill_extra_space += align_fill;
8693 }
8694 return fill_extra_space;
8695 }
8696
8697 \f
8698 /* First relaxation pass. */
8699
8700 /* If the section contains relaxable literals, check each literal to
8701 see if it has the same value as another literal that has already
8702 been seen, either in the current section or a previous one. If so,
8703 add an entry to the per-section list of removed literals. The
8704 actual changes are deferred until the next pass. */
8705
8706 static bfd_boolean
8707 compute_removed_literals (bfd *abfd,
8708 asection *sec,
8709 struct bfd_link_info *link_info,
8710 value_map_hash_table *values)
8711 {
8712 xtensa_relax_info *relax_info;
8713 bfd_byte *contents;
8714 Elf_Internal_Rela *internal_relocs;
8715 source_reloc *src_relocs, *rel;
8716 bfd_boolean ok = TRUE;
8717 property_table_entry *prop_table = NULL;
8718 int ptblsize;
8719 int i, prev_i;
8720 bfd_boolean last_loc_is_prev = FALSE;
8721 bfd_vma last_target_offset = 0;
8722 section_cache_t target_sec_cache;
8723 bfd_size_type sec_size;
8724
8725 init_section_cache (&target_sec_cache);
8726
8727 /* Do nothing if it is not a relaxable literal section. */
8728 relax_info = get_xtensa_relax_info (sec);
8729 BFD_ASSERT (relax_info);
8730 if (!relax_info->is_relaxable_literal_section)
8731 return ok;
8732
8733 internal_relocs = retrieve_internal_relocs (abfd, sec,
8734 link_info->keep_memory);
8735
8736 sec_size = bfd_get_section_limit (abfd, sec);
8737 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8738 if (contents == NULL && sec_size != 0)
8739 {
8740 ok = FALSE;
8741 goto error_return;
8742 }
8743
8744 /* Sort the source_relocs by target offset. */
8745 src_relocs = relax_info->src_relocs;
8746 qsort (src_relocs, relax_info->src_count,
8747 sizeof (source_reloc), source_reloc_compare);
8748 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8749 internal_reloc_compare);
8750
8751 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8752 XTENSA_PROP_SEC_NAME, FALSE);
8753 if (ptblsize < 0)
8754 {
8755 ok = FALSE;
8756 goto error_return;
8757 }
8758
8759 prev_i = -1;
8760 for (i = 0; i < relax_info->src_count; i++)
8761 {
8762 Elf_Internal_Rela *irel = NULL;
8763
8764 rel = &src_relocs[i];
8765 if (get_l32r_opcode () != rel->opcode)
8766 continue;
8767 irel = get_irel_at_offset (sec, internal_relocs,
8768 rel->r_rel.target_offset);
8769
8770 /* If the relocation on this is not a simple R_XTENSA_32 or
8771 R_XTENSA_PLT then do not consider it. This may happen when
8772 the difference of two symbols is used in a literal. */
8773 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8774 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8775 continue;
8776
8777 /* If the target_offset for this relocation is the same as the
8778 previous relocation, then we've already considered whether the
8779 literal can be coalesced. Skip to the next one.... */
8780 if (i != 0 && prev_i != -1
8781 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8782 continue;
8783 prev_i = i;
8784
8785 if (last_loc_is_prev &&
8786 last_target_offset + 4 != rel->r_rel.target_offset)
8787 last_loc_is_prev = FALSE;
8788
8789 /* Check if the relocation was from an L32R that is being removed
8790 because a CALLX was converted to a direct CALL, and check if
8791 there are no other relocations to the literal. */
8792 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8793 sec, prop_table, ptblsize))
8794 {
8795 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8796 irel, rel, prop_table, ptblsize))
8797 {
8798 ok = FALSE;
8799 goto error_return;
8800 }
8801 last_target_offset = rel->r_rel.target_offset;
8802 continue;
8803 }
8804
8805 if (!identify_literal_placement (abfd, sec, contents, link_info,
8806 values,
8807 &last_loc_is_prev, irel,
8808 relax_info->src_count - i, rel,
8809 prop_table, ptblsize,
8810 &target_sec_cache, rel->is_abs_literal))
8811 {
8812 ok = FALSE;
8813 goto error_return;
8814 }
8815 last_target_offset = rel->r_rel.target_offset;
8816 }
8817
8818 #if DEBUG
8819 print_removed_literals (stderr, &relax_info->removed_list);
8820 print_action_list (stderr, &relax_info->action_list);
8821 #endif /* DEBUG */
8822
8823 error_return:
8824 if (prop_table)
8825 free (prop_table);
8826 free_section_cache (&target_sec_cache);
8827
8828 release_contents (sec, contents);
8829 release_internal_relocs (sec, internal_relocs);
8830 return ok;
8831 }
8832
8833
8834 static Elf_Internal_Rela *
8835 get_irel_at_offset (asection *sec,
8836 Elf_Internal_Rela *internal_relocs,
8837 bfd_vma offset)
8838 {
8839 unsigned i;
8840 Elf_Internal_Rela *irel;
8841 unsigned r_type;
8842 Elf_Internal_Rela key;
8843
8844 if (!internal_relocs)
8845 return NULL;
8846
8847 key.r_offset = offset;
8848 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8849 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8850 if (!irel)
8851 return NULL;
8852
8853 /* bsearch does not guarantee which will be returned if there are
8854 multiple matches. We need the first that is not an alignment. */
8855 i = irel - internal_relocs;
8856 while (i > 0)
8857 {
8858 if (internal_relocs[i-1].r_offset != offset)
8859 break;
8860 i--;
8861 }
8862 for ( ; i < sec->reloc_count; i++)
8863 {
8864 irel = &internal_relocs[i];
8865 r_type = ELF32_R_TYPE (irel->r_info);
8866 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8867 return irel;
8868 }
8869
8870 return NULL;
8871 }
8872
8873
8874 bfd_boolean
8875 is_removable_literal (const source_reloc *rel,
8876 int i,
8877 const source_reloc *src_relocs,
8878 int src_count,
8879 asection *sec,
8880 property_table_entry *prop_table,
8881 int ptblsize)
8882 {
8883 const source_reloc *curr_rel;
8884 property_table_entry *entry;
8885
8886 if (!rel->is_null)
8887 return FALSE;
8888
8889 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8890 sec->vma + rel->r_rel.target_offset);
8891 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8892 return FALSE;
8893
8894 for (++i; i < src_count; ++i)
8895 {
8896 curr_rel = &src_relocs[i];
8897 /* If all others have the same target offset.... */
8898 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8899 return TRUE;
8900
8901 if (!curr_rel->is_null
8902 && !xtensa_is_property_section (curr_rel->source_sec)
8903 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8904 return FALSE;
8905 }
8906 return TRUE;
8907 }
8908
8909
8910 bfd_boolean
8911 remove_dead_literal (bfd *abfd,
8912 asection *sec,
8913 struct bfd_link_info *link_info,
8914 Elf_Internal_Rela *internal_relocs,
8915 Elf_Internal_Rela *irel,
8916 source_reloc *rel,
8917 property_table_entry *prop_table,
8918 int ptblsize)
8919 {
8920 property_table_entry *entry;
8921 xtensa_relax_info *relax_info;
8922
8923 relax_info = get_xtensa_relax_info (sec);
8924 if (!relax_info)
8925 return FALSE;
8926
8927 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8928 sec->vma + rel->r_rel.target_offset);
8929
8930 /* Mark the unused literal so that it will be removed. */
8931 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8932
8933 text_action_add (&relax_info->action_list,
8934 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8935
8936 /* If the section is 4-byte aligned, do not add fill. */
8937 if (sec->alignment_power > 2)
8938 {
8939 int fill_extra_space;
8940 bfd_vma entry_sec_offset;
8941 text_action *fa;
8942 property_table_entry *the_add_entry;
8943 int removed_diff;
8944
8945 if (entry)
8946 entry_sec_offset = entry->address - sec->vma + entry->size;
8947 else
8948 entry_sec_offset = rel->r_rel.target_offset + 4;
8949
8950 /* If the literal range is at the end of the section,
8951 do not add fill. */
8952 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8953 entry_sec_offset);
8954 fill_extra_space = compute_fill_extra_space (the_add_entry);
8955
8956 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8957 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8958 -4, fill_extra_space);
8959 if (fa)
8960 adjust_fill_action (fa, removed_diff);
8961 else
8962 text_action_add (&relax_info->action_list,
8963 ta_fill, sec, entry_sec_offset, removed_diff);
8964 }
8965
8966 /* Zero out the relocation on this literal location. */
8967 if (irel)
8968 {
8969 if (elf_hash_table (link_info)->dynamic_sections_created)
8970 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8971
8972 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8973 pin_internal_relocs (sec, internal_relocs);
8974 }
8975
8976 /* Do not modify "last_loc_is_prev". */
8977 return TRUE;
8978 }
8979
8980
8981 bfd_boolean
8982 identify_literal_placement (bfd *abfd,
8983 asection *sec,
8984 bfd_byte *contents,
8985 struct bfd_link_info *link_info,
8986 value_map_hash_table *values,
8987 bfd_boolean *last_loc_is_prev_p,
8988 Elf_Internal_Rela *irel,
8989 int remaining_src_rels,
8990 source_reloc *rel,
8991 property_table_entry *prop_table,
8992 int ptblsize,
8993 section_cache_t *target_sec_cache,
8994 bfd_boolean is_abs_literal)
8995 {
8996 literal_value val;
8997 value_map *val_map;
8998 xtensa_relax_info *relax_info;
8999 bfd_boolean literal_placed = FALSE;
9000 r_reloc r_rel;
9001 unsigned long value;
9002 bfd_boolean final_static_link;
9003 bfd_size_type sec_size;
9004
9005 relax_info = get_xtensa_relax_info (sec);
9006 if (!relax_info)
9007 return FALSE;
9008
9009 sec_size = bfd_get_section_limit (abfd, sec);
9010
9011 final_static_link =
9012 (!bfd_link_relocatable (link_info)
9013 && !elf_hash_table (link_info)->dynamic_sections_created);
9014
9015 /* The placement algorithm first checks to see if the literal is
9016 already in the value map. If so and the value map is reachable
9017 from all uses, then the literal is moved to that location. If
9018 not, then we identify the last location where a fresh literal was
9019 placed. If the literal can be safely moved there, then we do so.
9020 If not, then we assume that the literal is not to move and leave
9021 the literal where it is, marking it as the last literal
9022 location. */
9023
9024 /* Find the literal value. */
9025 value = 0;
9026 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9027 if (!irel)
9028 {
9029 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9030 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9031 }
9032 init_literal_value (&val, &r_rel, value, is_abs_literal);
9033
9034 /* Check if we've seen another literal with the same value that
9035 is in the same output section. */
9036 val_map = value_map_get_cached_value (values, &val, final_static_link);
9037
9038 if (val_map
9039 && (r_reloc_get_section (&val_map->loc)->output_section
9040 == sec->output_section)
9041 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9042 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9043 {
9044 /* No change to last_loc_is_prev. */
9045 literal_placed = TRUE;
9046 }
9047
9048 /* For relocatable links, do not try to move literals. To do it
9049 correctly might increase the number of relocations in an input
9050 section making the default relocatable linking fail. */
9051 if (!bfd_link_relocatable (link_info) && !literal_placed
9052 && values->has_last_loc && !(*last_loc_is_prev_p))
9053 {
9054 asection *target_sec = r_reloc_get_section (&values->last_loc);
9055 if (target_sec && target_sec->output_section == sec->output_section)
9056 {
9057 /* Increment the virtual offset. */
9058 r_reloc try_loc = values->last_loc;
9059 try_loc.virtual_offset += 4;
9060
9061 /* There is a last loc that was in the same output section. */
9062 if (relocations_reach (rel, remaining_src_rels, &try_loc)
9063 && move_shared_literal (sec, link_info, rel,
9064 prop_table, ptblsize,
9065 &try_loc, &val, target_sec_cache))
9066 {
9067 values->last_loc.virtual_offset += 4;
9068 literal_placed = TRUE;
9069 if (!val_map)
9070 val_map = add_value_map (values, &val, &try_loc,
9071 final_static_link);
9072 else
9073 val_map->loc = try_loc;
9074 }
9075 }
9076 }
9077
9078 if (!literal_placed)
9079 {
9080 /* Nothing worked, leave the literal alone but update the last loc. */
9081 values->has_last_loc = TRUE;
9082 values->last_loc = rel->r_rel;
9083 if (!val_map)
9084 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9085 else
9086 val_map->loc = rel->r_rel;
9087 *last_loc_is_prev_p = TRUE;
9088 }
9089
9090 return TRUE;
9091 }
9092
9093
9094 /* Check if the original relocations (presumably on L32R instructions)
9095 identified by reloc[0..N] can be changed to reference the literal
9096 identified by r_rel. If r_rel is out of range for any of the
9097 original relocations, then we don't want to coalesce the original
9098 literal with the one at r_rel. We only check reloc[0..N], where the
9099 offsets are all the same as for reloc[0] (i.e., they're all
9100 referencing the same literal) and where N is also bounded by the
9101 number of remaining entries in the "reloc" array. The "reloc" array
9102 is sorted by target offset so we know all the entries for the same
9103 literal will be contiguous. */
9104
9105 static bfd_boolean
9106 relocations_reach (source_reloc *reloc,
9107 int remaining_relocs,
9108 const r_reloc *r_rel)
9109 {
9110 bfd_vma from_offset, source_address, dest_address;
9111 asection *sec;
9112 int i;
9113
9114 if (!r_reloc_is_defined (r_rel))
9115 return FALSE;
9116
9117 sec = r_reloc_get_section (r_rel);
9118 from_offset = reloc[0].r_rel.target_offset;
9119
9120 for (i = 0; i < remaining_relocs; i++)
9121 {
9122 if (reloc[i].r_rel.target_offset != from_offset)
9123 break;
9124
9125 /* Ignore relocations that have been removed. */
9126 if (reloc[i].is_null)
9127 continue;
9128
9129 /* The original and new output section for these must be the same
9130 in order to coalesce. */
9131 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9132 != sec->output_section)
9133 return FALSE;
9134
9135 /* Absolute literals in the same output section can always be
9136 combined. */
9137 if (reloc[i].is_abs_literal)
9138 continue;
9139
9140 /* A literal with no PC-relative relocations can be moved anywhere. */
9141 if (reloc[i].opnd != -1)
9142 {
9143 /* Otherwise, check to see that it fits. */
9144 source_address = (reloc[i].source_sec->output_section->vma
9145 + reloc[i].source_sec->output_offset
9146 + reloc[i].r_rel.rela.r_offset);
9147 dest_address = (sec->output_section->vma
9148 + sec->output_offset
9149 + r_rel->target_offset);
9150
9151 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9152 source_address, dest_address))
9153 return FALSE;
9154 }
9155 }
9156
9157 return TRUE;
9158 }
9159
9160
9161 /* Move a literal to another literal location because it is
9162 the same as the other literal value. */
9163
9164 static bfd_boolean
9165 coalesce_shared_literal (asection *sec,
9166 source_reloc *rel,
9167 property_table_entry *prop_table,
9168 int ptblsize,
9169 value_map *val_map)
9170 {
9171 property_table_entry *entry;
9172 text_action *fa;
9173 property_table_entry *the_add_entry;
9174 int removed_diff;
9175 xtensa_relax_info *relax_info;
9176
9177 relax_info = get_xtensa_relax_info (sec);
9178 if (!relax_info)
9179 return FALSE;
9180
9181 entry = elf_xtensa_find_property_entry
9182 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9183 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9184 return TRUE;
9185
9186 /* Mark that the literal will be coalesced. */
9187 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9188
9189 text_action_add (&relax_info->action_list,
9190 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9191
9192 /* If the section is 4-byte aligned, do not add fill. */
9193 if (sec->alignment_power > 2)
9194 {
9195 int fill_extra_space;
9196 bfd_vma entry_sec_offset;
9197
9198 if (entry)
9199 entry_sec_offset = entry->address - sec->vma + entry->size;
9200 else
9201 entry_sec_offset = rel->r_rel.target_offset + 4;
9202
9203 /* If the literal range is at the end of the section,
9204 do not add fill. */
9205 fill_extra_space = 0;
9206 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9207 entry_sec_offset);
9208 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9209 fill_extra_space = the_add_entry->size;
9210
9211 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9212 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9213 -4, fill_extra_space);
9214 if (fa)
9215 adjust_fill_action (fa, removed_diff);
9216 else
9217 text_action_add (&relax_info->action_list,
9218 ta_fill, sec, entry_sec_offset, removed_diff);
9219 }
9220
9221 return TRUE;
9222 }
9223
9224
9225 /* Move a literal to another location. This may actually increase the
9226 total amount of space used because of alignments so we need to do
9227 this carefully. Also, it may make a branch go out of range. */
9228
9229 static bfd_boolean
9230 move_shared_literal (asection *sec,
9231 struct bfd_link_info *link_info,
9232 source_reloc *rel,
9233 property_table_entry *prop_table,
9234 int ptblsize,
9235 const r_reloc *target_loc,
9236 const literal_value *lit_value,
9237 section_cache_t *target_sec_cache)
9238 {
9239 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9240 text_action *fa, *target_fa;
9241 int removed_diff;
9242 xtensa_relax_info *relax_info, *target_relax_info;
9243 asection *target_sec;
9244 ebb_t *ebb;
9245 ebb_constraint ebb_table;
9246 bfd_boolean relocs_fit;
9247
9248 /* If this routine always returns FALSE, the literals that cannot be
9249 coalesced will not be moved. */
9250 if (elf32xtensa_no_literal_movement)
9251 return FALSE;
9252
9253 relax_info = get_xtensa_relax_info (sec);
9254 if (!relax_info)
9255 return FALSE;
9256
9257 target_sec = r_reloc_get_section (target_loc);
9258 target_relax_info = get_xtensa_relax_info (target_sec);
9259
9260 /* Literals to undefined sections may not be moved because they
9261 must report an error. */
9262 if (bfd_is_und_section (target_sec))
9263 return FALSE;
9264
9265 src_entry = elf_xtensa_find_property_entry
9266 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9267
9268 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9269 return FALSE;
9270
9271 target_entry = elf_xtensa_find_property_entry
9272 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9273 target_sec->vma + target_loc->target_offset);
9274
9275 if (!target_entry)
9276 return FALSE;
9277
9278 /* Make sure that we have not broken any branches. */
9279 relocs_fit = FALSE;
9280
9281 init_ebb_constraint (&ebb_table);
9282 ebb = &ebb_table.ebb;
9283 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9284 target_sec_cache->content_length,
9285 target_sec_cache->ptbl, target_sec_cache->pte_count,
9286 target_sec_cache->relocs, target_sec_cache->reloc_count);
9287
9288 /* Propose to add 4 bytes + worst-case alignment size increase to
9289 destination. */
9290 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9291 ta_fill, target_loc->target_offset,
9292 -4 - (1 << target_sec->alignment_power), TRUE);
9293
9294 /* Check all of the PC-relative relocations to make sure they still fit. */
9295 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9296 target_sec_cache->contents,
9297 target_sec_cache->relocs, NULL,
9298 &ebb_table, NULL);
9299
9300 if (!relocs_fit)
9301 return FALSE;
9302
9303 text_action_add_literal (&target_relax_info->action_list,
9304 ta_add_literal, target_loc, lit_value, -4);
9305
9306 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9307 {
9308 /* May need to add or remove some fill to maintain alignment. */
9309 int fill_extra_space;
9310 bfd_vma entry_sec_offset;
9311
9312 entry_sec_offset =
9313 target_entry->address - target_sec->vma + target_entry->size;
9314
9315 /* If the literal range is at the end of the section,
9316 do not add fill. */
9317 fill_extra_space = 0;
9318 the_add_entry =
9319 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9320 target_sec_cache->pte_count,
9321 entry_sec_offset);
9322 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9323 fill_extra_space = the_add_entry->size;
9324
9325 target_fa = find_fill_action (&target_relax_info->action_list,
9326 target_sec, entry_sec_offset);
9327 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9328 entry_sec_offset, 4,
9329 fill_extra_space);
9330 if (target_fa)
9331 adjust_fill_action (target_fa, removed_diff);
9332 else
9333 text_action_add (&target_relax_info->action_list,
9334 ta_fill, target_sec, entry_sec_offset, removed_diff);
9335 }
9336
9337 /* Mark that the literal will be moved to the new location. */
9338 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9339
9340 /* Remove the literal. */
9341 text_action_add (&relax_info->action_list,
9342 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9343
9344 /* If the section is 4-byte aligned, do not add fill. */
9345 if (sec->alignment_power > 2 && target_entry != src_entry)
9346 {
9347 int fill_extra_space;
9348 bfd_vma entry_sec_offset;
9349
9350 if (src_entry)
9351 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9352 else
9353 entry_sec_offset = rel->r_rel.target_offset+4;
9354
9355 /* If the literal range is at the end of the section,
9356 do not add fill. */
9357 fill_extra_space = 0;
9358 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9359 entry_sec_offset);
9360 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9361 fill_extra_space = the_add_entry->size;
9362
9363 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9364 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9365 -4, fill_extra_space);
9366 if (fa)
9367 adjust_fill_action (fa, removed_diff);
9368 else
9369 text_action_add (&relax_info->action_list,
9370 ta_fill, sec, entry_sec_offset, removed_diff);
9371 }
9372
9373 return TRUE;
9374 }
9375
9376 \f
9377 /* Second relaxation pass. */
9378
9379 static int
9380 action_remove_bytes_fn (splay_tree_node node, void *p)
9381 {
9382 bfd_size_type *final_size = p;
9383 text_action *action = (text_action *)node->value;
9384
9385 *final_size -= action->removed_bytes;
9386 return 0;
9387 }
9388
9389 /* Modify all of the relocations to point to the right spot, and if this
9390 is a relaxable section, delete the unwanted literals and fix the
9391 section size. */
9392
9393 bfd_boolean
9394 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9395 {
9396 Elf_Internal_Rela *internal_relocs;
9397 xtensa_relax_info *relax_info;
9398 bfd_byte *contents;
9399 bfd_boolean ok = TRUE;
9400 unsigned i;
9401 bfd_boolean rv = FALSE;
9402 bfd_boolean virtual_action;
9403 bfd_size_type sec_size;
9404
9405 sec_size = bfd_get_section_limit (abfd, sec);
9406 relax_info = get_xtensa_relax_info (sec);
9407 BFD_ASSERT (relax_info);
9408
9409 /* First translate any of the fixes that have been added already. */
9410 translate_section_fixes (sec);
9411
9412 /* Handle property sections (e.g., literal tables) specially. */
9413 if (xtensa_is_property_section (sec))
9414 {
9415 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9416 return relax_property_section (abfd, sec, link_info);
9417 }
9418
9419 internal_relocs = retrieve_internal_relocs (abfd, sec,
9420 link_info->keep_memory);
9421 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9422 return TRUE;
9423
9424 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9425 if (contents == NULL && sec_size != 0)
9426 {
9427 ok = FALSE;
9428 goto error_return;
9429 }
9430
9431 if (internal_relocs)
9432 {
9433 for (i = 0; i < sec->reloc_count; i++)
9434 {
9435 Elf_Internal_Rela *irel;
9436 xtensa_relax_info *target_relax_info;
9437 bfd_vma source_offset, old_source_offset;
9438 r_reloc r_rel;
9439 unsigned r_type;
9440 asection *target_sec;
9441
9442 /* Locally change the source address.
9443 Translate the target to the new target address.
9444 If it points to this section and has been removed,
9445 NULLify it.
9446 Write it back. */
9447
9448 irel = &internal_relocs[i];
9449 source_offset = irel->r_offset;
9450 old_source_offset = source_offset;
9451
9452 r_type = ELF32_R_TYPE (irel->r_info);
9453 r_reloc_init (&r_rel, abfd, irel, contents,
9454 bfd_get_section_limit (abfd, sec));
9455
9456 /* If this section could have changed then we may need to
9457 change the relocation's offset. */
9458
9459 if (relax_info->is_relaxable_literal_section
9460 || relax_info->is_relaxable_asm_section)
9461 {
9462 pin_internal_relocs (sec, internal_relocs);
9463
9464 if (r_type != R_XTENSA_NONE
9465 && find_removed_literal (&relax_info->removed_list,
9466 irel->r_offset))
9467 {
9468 /* Remove this relocation. */
9469 if (elf_hash_table (link_info)->dynamic_sections_created)
9470 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9471 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9472 irel->r_offset = offset_with_removed_text_map
9473 (&relax_info->action_list, irel->r_offset);
9474 continue;
9475 }
9476
9477 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9478 {
9479 text_action *action =
9480 find_insn_action (&relax_info->action_list,
9481 irel->r_offset);
9482 if (action && (action->action == ta_convert_longcall
9483 || action->action == ta_remove_longcall))
9484 {
9485 bfd_reloc_status_type retval;
9486 char *error_message = NULL;
9487
9488 retval = contract_asm_expansion (contents, sec_size,
9489 irel, &error_message);
9490 if (retval != bfd_reloc_ok)
9491 {
9492 (*link_info->callbacks->reloc_dangerous)
9493 (link_info, error_message, abfd, sec,
9494 irel->r_offset);
9495 goto error_return;
9496 }
9497 /* Update the action so that the code that moves
9498 the contents will do the right thing. */
9499 /* ta_remove_longcall and ta_remove_insn actions are
9500 grouped together in the tree as well as
9501 ta_convert_longcall and ta_none, so that changes below
9502 can be done w/o removing and reinserting action into
9503 the tree. */
9504
9505 if (action->action == ta_remove_longcall)
9506 action->action = ta_remove_insn;
9507 else
9508 action->action = ta_none;
9509 /* Refresh the info in the r_rel. */
9510 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9511 r_type = ELF32_R_TYPE (irel->r_info);
9512 }
9513 }
9514
9515 source_offset = offset_with_removed_text_map
9516 (&relax_info->action_list, irel->r_offset);
9517 irel->r_offset = source_offset;
9518 }
9519
9520 /* If the target section could have changed then
9521 we may need to change the relocation's target offset. */
9522
9523 target_sec = r_reloc_get_section (&r_rel);
9524
9525 /* For a reference to a discarded section from a DWARF section,
9526 i.e., where action_discarded is PRETEND, the symbol will
9527 eventually be modified to refer to the kept section (at least if
9528 the kept and discarded sections are the same size). Anticipate
9529 that here and adjust things accordingly. */
9530 if (! elf_xtensa_ignore_discarded_relocs (sec)
9531 && elf_xtensa_action_discarded (sec) == PRETEND
9532 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9533 && target_sec != NULL
9534 && discarded_section (target_sec))
9535 {
9536 /* It would be natural to call _bfd_elf_check_kept_section
9537 here, but it's not exported from elflink.c. It's also a
9538 fairly expensive check. Adjusting the relocations to the
9539 discarded section is fairly harmless; it will only adjust
9540 some addends and difference values. If it turns out that
9541 _bfd_elf_check_kept_section fails later, it won't matter,
9542 so just compare the section names to find the right group
9543 member. */
9544 asection *kept = target_sec->kept_section;
9545 if (kept != NULL)
9546 {
9547 if ((kept->flags & SEC_GROUP) != 0)
9548 {
9549 asection *first = elf_next_in_group (kept);
9550 asection *s = first;
9551
9552 kept = NULL;
9553 while (s != NULL)
9554 {
9555 if (strcmp (s->name, target_sec->name) == 0)
9556 {
9557 kept = s;
9558 break;
9559 }
9560 s = elf_next_in_group (s);
9561 if (s == first)
9562 break;
9563 }
9564 }
9565 }
9566 if (kept != NULL
9567 && ((target_sec->rawsize != 0
9568 ? target_sec->rawsize : target_sec->size)
9569 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9570 target_sec = kept;
9571 }
9572
9573 target_relax_info = get_xtensa_relax_info (target_sec);
9574 if (target_relax_info
9575 && (target_relax_info->is_relaxable_literal_section
9576 || target_relax_info->is_relaxable_asm_section))
9577 {
9578 r_reloc new_reloc;
9579 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9580
9581 if (r_type == R_XTENSA_DIFF8
9582 || r_type == R_XTENSA_DIFF16
9583 || r_type == R_XTENSA_DIFF32)
9584 {
9585 bfd_signed_vma diff_value = 0;
9586 bfd_vma new_end_offset, diff_mask = 0;
9587
9588 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9589 {
9590 (*link_info->callbacks->reloc_dangerous)
9591 (link_info, _("invalid relocation address"),
9592 abfd, sec, old_source_offset);
9593 goto error_return;
9594 }
9595
9596 switch (r_type)
9597 {
9598 case R_XTENSA_DIFF8:
9599 diff_value =
9600 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9601 break;
9602 case R_XTENSA_DIFF16:
9603 diff_value =
9604 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9605 break;
9606 case R_XTENSA_DIFF32:
9607 diff_value =
9608 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9609 break;
9610 }
9611
9612 new_end_offset = offset_with_removed_text_map
9613 (&target_relax_info->action_list,
9614 r_rel.target_offset + diff_value);
9615 diff_value = new_end_offset - new_reloc.target_offset;
9616
9617 switch (r_type)
9618 {
9619 case R_XTENSA_DIFF8:
9620 diff_mask = 0x7f;
9621 bfd_put_signed_8 (abfd, diff_value,
9622 &contents[old_source_offset]);
9623 break;
9624 case R_XTENSA_DIFF16:
9625 diff_mask = 0x7fff;
9626 bfd_put_signed_16 (abfd, diff_value,
9627 &contents[old_source_offset]);
9628 break;
9629 case R_XTENSA_DIFF32:
9630 diff_mask = 0x7fffffff;
9631 bfd_put_signed_32 (abfd, diff_value,
9632 &contents[old_source_offset]);
9633 break;
9634 }
9635
9636 /* Check for overflow. Sign bits must be all zeroes or all ones */
9637 if ((diff_value & ~diff_mask) != 0 &&
9638 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9639 {
9640 (*link_info->callbacks->reloc_dangerous)
9641 (link_info, _("overflow after relaxation"),
9642 abfd, sec, old_source_offset);
9643 goto error_return;
9644 }
9645
9646 pin_contents (sec, contents);
9647 }
9648
9649 /* If the relocation still references a section in the same
9650 input file, modify the relocation directly instead of
9651 adding a "fix" record. */
9652 if (target_sec->owner == abfd)
9653 {
9654 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9655 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9656 irel->r_addend = new_reloc.rela.r_addend;
9657 pin_internal_relocs (sec, internal_relocs);
9658 }
9659 else
9660 {
9661 bfd_vma addend_displacement;
9662 reloc_bfd_fix *fix;
9663
9664 addend_displacement =
9665 new_reloc.target_offset + new_reloc.virtual_offset;
9666 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9667 target_sec,
9668 addend_displacement, TRUE);
9669 add_fix (sec, fix);
9670 }
9671 }
9672 }
9673 }
9674
9675 if ((relax_info->is_relaxable_literal_section
9676 || relax_info->is_relaxable_asm_section)
9677 && action_list_count (&relax_info->action_list))
9678 {
9679 /* Walk through the planned actions and build up a table
9680 of move, copy and fill records. Use the move, copy and
9681 fill records to perform the actions once. */
9682
9683 bfd_size_type final_size, copy_size, orig_insn_size;
9684 bfd_byte *scratch = NULL;
9685 bfd_byte *dup_contents = NULL;
9686 bfd_size_type orig_size = sec->size;
9687 bfd_vma orig_dot = 0;
9688 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9689 orig dot in physical memory. */
9690 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9691 bfd_vma dup_dot = 0;
9692
9693 text_action *action;
9694
9695 final_size = sec->size;
9696
9697 splay_tree_foreach (relax_info->action_list.tree,
9698 action_remove_bytes_fn, &final_size);
9699 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9700 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9701
9702 /* The dot is the current fill location. */
9703 #if DEBUG
9704 print_action_list (stderr, &relax_info->action_list);
9705 #endif
9706
9707 for (action = action_first (&relax_info->action_list); action;
9708 action = action_next (&relax_info->action_list, action))
9709 {
9710 virtual_action = FALSE;
9711 if (action->offset > orig_dot)
9712 {
9713 orig_dot += orig_dot_copied;
9714 orig_dot_copied = 0;
9715 orig_dot_vo = 0;
9716 /* Out of the virtual world. */
9717 }
9718
9719 if (action->offset > orig_dot)
9720 {
9721 copy_size = action->offset - orig_dot;
9722 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9723 orig_dot += copy_size;
9724 dup_dot += copy_size;
9725 BFD_ASSERT (action->offset == orig_dot);
9726 }
9727 else if (action->offset < orig_dot)
9728 {
9729 if (action->action == ta_fill
9730 && action->offset - action->removed_bytes == orig_dot)
9731 {
9732 /* This is OK because the fill only effects the dup_dot. */
9733 }
9734 else if (action->action == ta_add_literal)
9735 {
9736 /* TBD. Might need to handle this. */
9737 }
9738 }
9739 if (action->offset == orig_dot)
9740 {
9741 if (action->virtual_offset > orig_dot_vo)
9742 {
9743 if (orig_dot_vo == 0)
9744 {
9745 /* Need to copy virtual_offset bytes. Probably four. */
9746 copy_size = action->virtual_offset - orig_dot_vo;
9747 memmove (&dup_contents[dup_dot],
9748 &contents[orig_dot], copy_size);
9749 orig_dot_copied = copy_size;
9750 dup_dot += copy_size;
9751 }
9752 virtual_action = TRUE;
9753 }
9754 else
9755 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9756 }
9757 switch (action->action)
9758 {
9759 case ta_remove_literal:
9760 case ta_remove_insn:
9761 BFD_ASSERT (action->removed_bytes >= 0);
9762 orig_dot += action->removed_bytes;
9763 break;
9764
9765 case ta_narrow_insn:
9766 orig_insn_size = 3;
9767 copy_size = 2;
9768 memmove (scratch, &contents[orig_dot], orig_insn_size);
9769 BFD_ASSERT (action->removed_bytes == 1);
9770 rv = narrow_instruction (scratch, final_size, 0);
9771 BFD_ASSERT (rv);
9772 memmove (&dup_contents[dup_dot], scratch, copy_size);
9773 orig_dot += orig_insn_size;
9774 dup_dot += copy_size;
9775 break;
9776
9777 case ta_fill:
9778 if (action->removed_bytes >= 0)
9779 orig_dot += action->removed_bytes;
9780 else
9781 {
9782 /* Already zeroed in dup_contents. Just bump the
9783 counters. */
9784 dup_dot += (-action->removed_bytes);
9785 }
9786 break;
9787
9788 case ta_none:
9789 BFD_ASSERT (action->removed_bytes == 0);
9790 break;
9791
9792 case ta_convert_longcall:
9793 case ta_remove_longcall:
9794 /* These will be removed or converted before we get here. */
9795 BFD_ASSERT (0);
9796 break;
9797
9798 case ta_widen_insn:
9799 orig_insn_size = 2;
9800 copy_size = 3;
9801 memmove (scratch, &contents[orig_dot], orig_insn_size);
9802 BFD_ASSERT (action->removed_bytes == -1);
9803 rv = widen_instruction (scratch, final_size, 0);
9804 BFD_ASSERT (rv);
9805 memmove (&dup_contents[dup_dot], scratch, copy_size);
9806 orig_dot += orig_insn_size;
9807 dup_dot += copy_size;
9808 break;
9809
9810 case ta_add_literal:
9811 orig_insn_size = 0;
9812 copy_size = 4;
9813 BFD_ASSERT (action->removed_bytes == -4);
9814 /* TBD -- place the literal value here and insert
9815 into the table. */
9816 memset (&dup_contents[dup_dot], 0, 4);
9817 pin_internal_relocs (sec, internal_relocs);
9818 pin_contents (sec, contents);
9819
9820 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9821 relax_info, &internal_relocs, &action->value))
9822 goto error_return;
9823
9824 if (virtual_action)
9825 orig_dot_vo += copy_size;
9826
9827 orig_dot += orig_insn_size;
9828 dup_dot += copy_size;
9829 break;
9830
9831 default:
9832 /* Not implemented yet. */
9833 BFD_ASSERT (0);
9834 break;
9835 }
9836
9837 BFD_ASSERT (dup_dot <= final_size);
9838 BFD_ASSERT (orig_dot <= orig_size);
9839 }
9840
9841 orig_dot += orig_dot_copied;
9842 orig_dot_copied = 0;
9843
9844 if (orig_dot != orig_size)
9845 {
9846 copy_size = orig_size - orig_dot;
9847 BFD_ASSERT (orig_size > orig_dot);
9848 BFD_ASSERT (dup_dot + copy_size == final_size);
9849 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9850 orig_dot += copy_size;
9851 dup_dot += copy_size;
9852 }
9853 BFD_ASSERT (orig_size == orig_dot);
9854 BFD_ASSERT (final_size == dup_dot);
9855
9856 /* Move the dup_contents back. */
9857 if (final_size > orig_size)
9858 {
9859 /* Contents need to be reallocated. Swap the dup_contents into
9860 contents. */
9861 sec->contents = dup_contents;
9862 free (contents);
9863 contents = dup_contents;
9864 pin_contents (sec, contents);
9865 }
9866 else
9867 {
9868 BFD_ASSERT (final_size <= orig_size);
9869 memset (contents, 0, orig_size);
9870 memcpy (contents, dup_contents, final_size);
9871 free (dup_contents);
9872 }
9873 free (scratch);
9874 pin_contents (sec, contents);
9875
9876 if (sec->rawsize == 0)
9877 sec->rawsize = sec->size;
9878 sec->size = final_size;
9879 }
9880
9881 error_return:
9882 release_internal_relocs (sec, internal_relocs);
9883 release_contents (sec, contents);
9884 return ok;
9885 }
9886
9887
9888 static bfd_boolean
9889 translate_section_fixes (asection *sec)
9890 {
9891 xtensa_relax_info *relax_info;
9892 reloc_bfd_fix *r;
9893
9894 relax_info = get_xtensa_relax_info (sec);
9895 if (!relax_info)
9896 return TRUE;
9897
9898 for (r = relax_info->fix_list; r != NULL; r = r->next)
9899 if (!translate_reloc_bfd_fix (r))
9900 return FALSE;
9901
9902 return TRUE;
9903 }
9904
9905
9906 /* Translate a fix given the mapping in the relax info for the target
9907 section. If it has already been translated, no work is required. */
9908
9909 static bfd_boolean
9910 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9911 {
9912 reloc_bfd_fix new_fix;
9913 asection *sec;
9914 xtensa_relax_info *relax_info;
9915 removed_literal *removed;
9916 bfd_vma new_offset, target_offset;
9917
9918 if (fix->translated)
9919 return TRUE;
9920
9921 sec = fix->target_sec;
9922 target_offset = fix->target_offset;
9923
9924 relax_info = get_xtensa_relax_info (sec);
9925 if (!relax_info)
9926 {
9927 fix->translated = TRUE;
9928 return TRUE;
9929 }
9930
9931 new_fix = *fix;
9932
9933 /* The fix does not need to be translated if the section cannot change. */
9934 if (!relax_info->is_relaxable_literal_section
9935 && !relax_info->is_relaxable_asm_section)
9936 {
9937 fix->translated = TRUE;
9938 return TRUE;
9939 }
9940
9941 /* If the literal has been moved and this relocation was on an
9942 opcode, then the relocation should move to the new literal
9943 location. Otherwise, the relocation should move within the
9944 section. */
9945
9946 removed = FALSE;
9947 if (is_operand_relocation (fix->src_type))
9948 {
9949 /* Check if the original relocation is against a literal being
9950 removed. */
9951 removed = find_removed_literal (&relax_info->removed_list,
9952 target_offset);
9953 }
9954
9955 if (removed)
9956 {
9957 asection *new_sec;
9958
9959 /* The fact that there is still a relocation to this literal indicates
9960 that the literal is being coalesced, not simply removed. */
9961 BFD_ASSERT (removed->to.abfd != NULL);
9962
9963 /* This was moved to some other address (possibly another section). */
9964 new_sec = r_reloc_get_section (&removed->to);
9965 if (new_sec != sec)
9966 {
9967 sec = new_sec;
9968 relax_info = get_xtensa_relax_info (sec);
9969 if (!relax_info ||
9970 (!relax_info->is_relaxable_literal_section
9971 && !relax_info->is_relaxable_asm_section))
9972 {
9973 target_offset = removed->to.target_offset;
9974 new_fix.target_sec = new_sec;
9975 new_fix.target_offset = target_offset;
9976 new_fix.translated = TRUE;
9977 *fix = new_fix;
9978 return TRUE;
9979 }
9980 }
9981 target_offset = removed->to.target_offset;
9982 new_fix.target_sec = new_sec;
9983 }
9984
9985 /* The target address may have been moved within its section. */
9986 new_offset = offset_with_removed_text (&relax_info->action_list,
9987 target_offset);
9988
9989 new_fix.target_offset = new_offset;
9990 new_fix.target_offset = new_offset;
9991 new_fix.translated = TRUE;
9992 *fix = new_fix;
9993 return TRUE;
9994 }
9995
9996
9997 /* Fix up a relocation to take account of removed literals. */
9998
9999 static asection *
10000 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
10001 {
10002 xtensa_relax_info *relax_info;
10003 removed_literal *removed;
10004 bfd_vma target_offset, base_offset;
10005
10006 *new_rel = *orig_rel;
10007
10008 if (!r_reloc_is_defined (orig_rel))
10009 return sec ;
10010
10011 relax_info = get_xtensa_relax_info (sec);
10012 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
10013 || relax_info->is_relaxable_asm_section));
10014
10015 target_offset = orig_rel->target_offset;
10016
10017 removed = FALSE;
10018 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
10019 {
10020 /* Check if the original relocation is against a literal being
10021 removed. */
10022 removed = find_removed_literal (&relax_info->removed_list,
10023 target_offset);
10024 }
10025 if (removed && removed->to.abfd)
10026 {
10027 asection *new_sec;
10028
10029 /* The fact that there is still a relocation to this literal indicates
10030 that the literal is being coalesced, not simply removed. */
10031 BFD_ASSERT (removed->to.abfd != NULL);
10032
10033 /* This was moved to some other address
10034 (possibly in another section). */
10035 *new_rel = removed->to;
10036 new_sec = r_reloc_get_section (new_rel);
10037 if (new_sec != sec)
10038 {
10039 sec = new_sec;
10040 relax_info = get_xtensa_relax_info (sec);
10041 if (!relax_info
10042 || (!relax_info->is_relaxable_literal_section
10043 && !relax_info->is_relaxable_asm_section))
10044 return sec;
10045 }
10046 target_offset = new_rel->target_offset;
10047 }
10048
10049 /* Find the base offset of the reloc symbol, excluding any addend from the
10050 reloc or from the section contents (for a partial_inplace reloc). Then
10051 find the adjusted values of the offsets due to relaxation. The base
10052 offset is needed to determine the change to the reloc's addend; the reloc
10053 addend should not be adjusted due to relaxations located before the base
10054 offset. */
10055
10056 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10057 if (base_offset <= target_offset)
10058 {
10059 int base_removed = removed_by_actions_map (&relax_info->action_list,
10060 base_offset, FALSE);
10061 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10062 target_offset, FALSE) -
10063 base_removed;
10064
10065 new_rel->target_offset = target_offset - base_removed - addend_removed;
10066 new_rel->rela.r_addend -= addend_removed;
10067 }
10068 else
10069 {
10070 /* Handle a negative addend. The base offset comes first. */
10071 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10072 target_offset, FALSE);
10073 int addend_removed = removed_by_actions_map (&relax_info->action_list,
10074 base_offset, FALSE) -
10075 tgt_removed;
10076
10077 new_rel->target_offset = target_offset - tgt_removed;
10078 new_rel->rela.r_addend += addend_removed;
10079 }
10080
10081 return sec;
10082 }
10083
10084
10085 /* For dynamic links, there may be a dynamic relocation for each
10086 literal. The number of dynamic relocations must be computed in
10087 size_dynamic_sections, which occurs before relaxation. When a
10088 literal is removed, this function checks if there is a corresponding
10089 dynamic relocation and shrinks the size of the appropriate dynamic
10090 relocation section accordingly. At this point, the contents of the
10091 dynamic relocation sections have not yet been filled in, so there's
10092 nothing else that needs to be done. */
10093
10094 static void
10095 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10096 bfd *abfd,
10097 asection *input_section,
10098 Elf_Internal_Rela *rel)
10099 {
10100 struct elf_xtensa_link_hash_table *htab;
10101 Elf_Internal_Shdr *symtab_hdr;
10102 struct elf_link_hash_entry **sym_hashes;
10103 unsigned long r_symndx;
10104 int r_type;
10105 struct elf_link_hash_entry *h;
10106 bfd_boolean dynamic_symbol;
10107
10108 htab = elf_xtensa_hash_table (info);
10109 if (htab == NULL)
10110 return;
10111
10112 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10113 sym_hashes = elf_sym_hashes (abfd);
10114
10115 r_type = ELF32_R_TYPE (rel->r_info);
10116 r_symndx = ELF32_R_SYM (rel->r_info);
10117
10118 if (r_symndx < symtab_hdr->sh_info)
10119 h = NULL;
10120 else
10121 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10122
10123 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10124
10125 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10126 && (input_section->flags & SEC_ALLOC) != 0
10127 && (dynamic_symbol || bfd_link_pic (info)))
10128 {
10129 asection *srel;
10130 bfd_boolean is_plt = FALSE;
10131
10132 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10133 {
10134 srel = htab->srelplt;
10135 is_plt = TRUE;
10136 }
10137 else
10138 srel = htab->srelgot;
10139
10140 /* Reduce size of the .rela.* section by one reloc. */
10141 BFD_ASSERT (srel != NULL);
10142 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10143 srel->size -= sizeof (Elf32_External_Rela);
10144
10145 if (is_plt)
10146 {
10147 asection *splt, *sgotplt, *srelgot;
10148 int reloc_index, chunk;
10149
10150 /* Find the PLT reloc index of the entry being removed. This
10151 is computed from the size of ".rela.plt". It is needed to
10152 figure out which PLT chunk to resize. Usually "last index
10153 = size - 1" since the index starts at zero, but in this
10154 context, the size has just been decremented so there's no
10155 need to subtract one. */
10156 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10157
10158 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10159 splt = elf_xtensa_get_plt_section (info, chunk);
10160 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10161 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10162
10163 /* Check if an entire PLT chunk has just been eliminated. */
10164 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10165 {
10166 /* The two magic GOT entries for that chunk can go away. */
10167 srelgot = htab->srelgot;
10168 BFD_ASSERT (srelgot != NULL);
10169 srelgot->reloc_count -= 2;
10170 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10171 sgotplt->size -= 8;
10172
10173 /* There should be only one entry left (and it will be
10174 removed below). */
10175 BFD_ASSERT (sgotplt->size == 4);
10176 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10177 }
10178
10179 BFD_ASSERT (sgotplt->size >= 4);
10180 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10181
10182 sgotplt->size -= 4;
10183 splt->size -= PLT_ENTRY_SIZE;
10184 }
10185 }
10186 }
10187
10188
10189 /* Take an r_rel and move it to another section. This usually
10190 requires extending the interal_relocation array and pinning it. If
10191 the original r_rel is from the same BFD, we can complete this here.
10192 Otherwise, we add a fix record to let the final link fix the
10193 appropriate address. Contents and internal relocations for the
10194 section must be pinned after calling this routine. */
10195
10196 static bfd_boolean
10197 move_literal (bfd *abfd,
10198 struct bfd_link_info *link_info,
10199 asection *sec,
10200 bfd_vma offset,
10201 bfd_byte *contents,
10202 xtensa_relax_info *relax_info,
10203 Elf_Internal_Rela **internal_relocs_p,
10204 const literal_value *lit)
10205 {
10206 Elf_Internal_Rela *new_relocs = NULL;
10207 size_t new_relocs_count = 0;
10208 Elf_Internal_Rela this_rela;
10209 const r_reloc *r_rel;
10210
10211 r_rel = &lit->r_rel;
10212 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10213
10214 if (r_reloc_is_const (r_rel))
10215 bfd_put_32 (abfd, lit->value, contents + offset);
10216 else
10217 {
10218 int r_type;
10219 unsigned i;
10220 reloc_bfd_fix *fix;
10221 unsigned insert_at;
10222
10223 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10224
10225 /* This is the difficult case. We have to create a fix up. */
10226 this_rela.r_offset = offset;
10227 this_rela.r_info = ELF32_R_INFO (0, r_type);
10228 this_rela.r_addend =
10229 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10230 bfd_put_32 (abfd, lit->value, contents + offset);
10231
10232 /* Currently, we cannot move relocations during a relocatable link. */
10233 BFD_ASSERT (!bfd_link_relocatable (link_info));
10234 fix = reloc_bfd_fix_init (sec, offset, r_type,
10235 r_reloc_get_section (r_rel),
10236 r_rel->target_offset + r_rel->virtual_offset,
10237 FALSE);
10238 /* We also need to mark that relocations are needed here. */
10239 sec->flags |= SEC_RELOC;
10240
10241 translate_reloc_bfd_fix (fix);
10242 /* This fix has not yet been translated. */
10243 add_fix (sec, fix);
10244
10245 /* Add the relocation. If we have already allocated our own
10246 space for the relocations and we have room for more, then use
10247 it. Otherwise, allocate new space and move the literals. */
10248 insert_at = sec->reloc_count;
10249 for (i = 0; i < sec->reloc_count; ++i)
10250 {
10251 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10252 {
10253 insert_at = i;
10254 break;
10255 }
10256 }
10257
10258 if (*internal_relocs_p != relax_info->allocated_relocs
10259 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10260 {
10261 BFD_ASSERT (relax_info->allocated_relocs == NULL
10262 || sec->reloc_count == relax_info->relocs_count);
10263
10264 if (relax_info->allocated_relocs_count == 0)
10265 new_relocs_count = (sec->reloc_count + 2) * 2;
10266 else
10267 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10268
10269 new_relocs = (Elf_Internal_Rela *)
10270 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10271 if (!new_relocs)
10272 return FALSE;
10273
10274 /* We could handle this more quickly by finding the split point. */
10275 if (insert_at != 0)
10276 memcpy (new_relocs, *internal_relocs_p,
10277 insert_at * sizeof (Elf_Internal_Rela));
10278
10279 new_relocs[insert_at] = this_rela;
10280
10281 if (insert_at != sec->reloc_count)
10282 memcpy (new_relocs + insert_at + 1,
10283 (*internal_relocs_p) + insert_at,
10284 (sec->reloc_count - insert_at)
10285 * sizeof (Elf_Internal_Rela));
10286
10287 if (*internal_relocs_p != relax_info->allocated_relocs)
10288 {
10289 /* The first time we re-allocate, we can only free the
10290 old relocs if they were allocated with bfd_malloc.
10291 This is not true when keep_memory is in effect. */
10292 if (!link_info->keep_memory)
10293 free (*internal_relocs_p);
10294 }
10295 else
10296 free (*internal_relocs_p);
10297 relax_info->allocated_relocs = new_relocs;
10298 relax_info->allocated_relocs_count = new_relocs_count;
10299 elf_section_data (sec)->relocs = new_relocs;
10300 sec->reloc_count++;
10301 relax_info->relocs_count = sec->reloc_count;
10302 *internal_relocs_p = new_relocs;
10303 }
10304 else
10305 {
10306 if (insert_at != sec->reloc_count)
10307 {
10308 unsigned idx;
10309 for (idx = sec->reloc_count; idx > insert_at; idx--)
10310 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10311 }
10312 (*internal_relocs_p)[insert_at] = this_rela;
10313 sec->reloc_count++;
10314 if (relax_info->allocated_relocs)
10315 relax_info->relocs_count = sec->reloc_count;
10316 }
10317 }
10318 return TRUE;
10319 }
10320
10321
10322 /* This is similar to relax_section except that when a target is moved,
10323 we shift addresses up. We also need to modify the size. This
10324 algorithm does NOT allow for relocations into the middle of the
10325 property sections. */
10326
10327 static bfd_boolean
10328 relax_property_section (bfd *abfd,
10329 asection *sec,
10330 struct bfd_link_info *link_info)
10331 {
10332 Elf_Internal_Rela *internal_relocs;
10333 bfd_byte *contents;
10334 unsigned i;
10335 bfd_boolean ok = TRUE;
10336 bfd_boolean is_full_prop_section;
10337 size_t last_zfill_target_offset = 0;
10338 asection *last_zfill_target_sec = NULL;
10339 bfd_size_type sec_size;
10340 bfd_size_type entry_size;
10341
10342 sec_size = bfd_get_section_limit (abfd, sec);
10343 internal_relocs = retrieve_internal_relocs (abfd, sec,
10344 link_info->keep_memory);
10345 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10346 if (contents == NULL && sec_size != 0)
10347 {
10348 ok = FALSE;
10349 goto error_return;
10350 }
10351
10352 is_full_prop_section = xtensa_is_proptable_section (sec);
10353 if (is_full_prop_section)
10354 entry_size = 12;
10355 else
10356 entry_size = 8;
10357
10358 if (internal_relocs)
10359 {
10360 for (i = 0; i < sec->reloc_count; i++)
10361 {
10362 Elf_Internal_Rela *irel;
10363 xtensa_relax_info *target_relax_info;
10364 unsigned r_type;
10365 asection *target_sec;
10366 literal_value val;
10367 bfd_byte *size_p, *flags_p;
10368
10369 /* Locally change the source address.
10370 Translate the target to the new target address.
10371 If it points to this section and has been removed, MOVE IT.
10372 Also, don't forget to modify the associated SIZE at
10373 (offset + 4). */
10374
10375 irel = &internal_relocs[i];
10376 r_type = ELF32_R_TYPE (irel->r_info);
10377 if (r_type == R_XTENSA_NONE)
10378 continue;
10379
10380 /* Find the literal value. */
10381 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10382 size_p = &contents[irel->r_offset + 4];
10383 flags_p = NULL;
10384 if (is_full_prop_section)
10385 flags_p = &contents[irel->r_offset + 8];
10386 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10387
10388 target_sec = r_reloc_get_section (&val.r_rel);
10389 target_relax_info = get_xtensa_relax_info (target_sec);
10390
10391 if (target_relax_info
10392 && (target_relax_info->is_relaxable_literal_section
10393 || target_relax_info->is_relaxable_asm_section ))
10394 {
10395 /* Translate the relocation's destination. */
10396 bfd_vma old_offset = val.r_rel.target_offset;
10397 bfd_vma new_offset;
10398 long old_size, new_size;
10399 int removed_by_old_offset =
10400 removed_by_actions_map (&target_relax_info->action_list,
10401 old_offset, FALSE);
10402 new_offset = old_offset - removed_by_old_offset;
10403
10404 /* Assert that we are not out of bounds. */
10405 old_size = bfd_get_32 (abfd, size_p);
10406 new_size = old_size;
10407
10408 if (old_size == 0)
10409 {
10410 /* Only the first zero-sized unreachable entry is
10411 allowed to expand. In this case the new offset
10412 should be the offset before the fill and the new
10413 size is the expansion size. For other zero-sized
10414 entries the resulting size should be zero with an
10415 offset before or after the fill address depending
10416 on whether the expanding unreachable entry
10417 preceeds it. */
10418 if (last_zfill_target_sec == 0
10419 || last_zfill_target_sec != target_sec
10420 || last_zfill_target_offset != old_offset)
10421 {
10422 bfd_vma new_end_offset = new_offset;
10423
10424 /* Recompute the new_offset, but this time don't
10425 include any fill inserted by relaxation. */
10426 removed_by_old_offset =
10427 removed_by_actions_map (&target_relax_info->action_list,
10428 old_offset, TRUE);
10429 new_offset = old_offset - removed_by_old_offset;
10430
10431 /* If it is not unreachable and we have not yet
10432 seen an unreachable at this address, place it
10433 before the fill address. */
10434 if (flags_p && (bfd_get_32 (abfd, flags_p)
10435 & XTENSA_PROP_UNREACHABLE) != 0)
10436 {
10437 new_size = new_end_offset - new_offset;
10438
10439 last_zfill_target_sec = target_sec;
10440 last_zfill_target_offset = old_offset;
10441 }
10442 }
10443 }
10444 else
10445 {
10446 int removed_by_old_offset_size =
10447 removed_by_actions_map (&target_relax_info->action_list,
10448 old_offset + old_size, TRUE);
10449 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10450 }
10451
10452 if (new_size != old_size)
10453 {
10454 bfd_put_32 (abfd, new_size, size_p);
10455 pin_contents (sec, contents);
10456 }
10457
10458 if (new_offset != old_offset)
10459 {
10460 bfd_vma diff = new_offset - old_offset;
10461 irel->r_addend += diff;
10462 pin_internal_relocs (sec, internal_relocs);
10463 }
10464 }
10465 }
10466 }
10467
10468 /* Combine adjacent property table entries. This is also done in
10469 finish_dynamic_sections() but at that point it's too late to
10470 reclaim the space in the output section, so we do this twice. */
10471
10472 if (internal_relocs && (!bfd_link_relocatable (link_info)
10473 || xtensa_is_littable_section (sec)))
10474 {
10475 Elf_Internal_Rela *last_irel = NULL;
10476 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10477 int removed_bytes = 0;
10478 bfd_vma offset;
10479 flagword predef_flags;
10480
10481 predef_flags = xtensa_get_property_predef_flags (sec);
10482
10483 /* Walk over memory and relocations at the same time.
10484 This REQUIRES that the internal_relocs be sorted by offset. */
10485 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10486 internal_reloc_compare);
10487
10488 pin_internal_relocs (sec, internal_relocs);
10489 pin_contents (sec, contents);
10490
10491 next_rel = internal_relocs;
10492 rel_end = internal_relocs + sec->reloc_count;
10493
10494 BFD_ASSERT (sec->size % entry_size == 0);
10495
10496 for (offset = 0; offset < sec->size; offset += entry_size)
10497 {
10498 Elf_Internal_Rela *offset_rel, *extra_rel;
10499 bfd_vma bytes_to_remove, size, actual_offset;
10500 bfd_boolean remove_this_rel;
10501 flagword flags;
10502
10503 /* Find the first relocation for the entry at the current offset.
10504 Adjust the offsets of any extra relocations for the previous
10505 entry. */
10506 offset_rel = NULL;
10507 if (next_rel)
10508 {
10509 for (irel = next_rel; irel < rel_end; irel++)
10510 {
10511 if ((irel->r_offset == offset
10512 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10513 || irel->r_offset > offset)
10514 {
10515 offset_rel = irel;
10516 break;
10517 }
10518 irel->r_offset -= removed_bytes;
10519 }
10520 }
10521
10522 /* Find the next relocation (if there are any left). */
10523 extra_rel = NULL;
10524 if (offset_rel)
10525 {
10526 for (irel = offset_rel + 1; irel < rel_end; irel++)
10527 {
10528 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10529 {
10530 extra_rel = irel;
10531 break;
10532 }
10533 }
10534 }
10535
10536 /* Check if there are relocations on the current entry. There
10537 should usually be a relocation on the offset field. If there
10538 are relocations on the size or flags, then we can't optimize
10539 this entry. Also, find the next relocation to examine on the
10540 next iteration. */
10541 if (offset_rel)
10542 {
10543 if (offset_rel->r_offset >= offset + entry_size)
10544 {
10545 next_rel = offset_rel;
10546 /* There are no relocations on the current entry, but we
10547 might still be able to remove it if the size is zero. */
10548 offset_rel = NULL;
10549 }
10550 else if (offset_rel->r_offset > offset
10551 || (extra_rel
10552 && extra_rel->r_offset < offset + entry_size))
10553 {
10554 /* There is a relocation on the size or flags, so we can't
10555 do anything with this entry. Continue with the next. */
10556 next_rel = offset_rel;
10557 continue;
10558 }
10559 else
10560 {
10561 BFD_ASSERT (offset_rel->r_offset == offset);
10562 offset_rel->r_offset -= removed_bytes;
10563 next_rel = offset_rel + 1;
10564 }
10565 }
10566 else
10567 next_rel = NULL;
10568
10569 remove_this_rel = FALSE;
10570 bytes_to_remove = 0;
10571 actual_offset = offset - removed_bytes;
10572 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10573
10574 if (is_full_prop_section)
10575 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10576 else
10577 flags = predef_flags;
10578
10579 if (size == 0
10580 && (flags & XTENSA_PROP_ALIGN) == 0
10581 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10582 {
10583 /* Always remove entries with zero size and no alignment. */
10584 bytes_to_remove = entry_size;
10585 if (offset_rel)
10586 remove_this_rel = TRUE;
10587 }
10588 else if (offset_rel
10589 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10590 {
10591 if (last_irel)
10592 {
10593 flagword old_flags;
10594 bfd_vma old_size =
10595 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10596 bfd_vma old_address =
10597 (last_irel->r_addend
10598 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10599 bfd_vma new_address =
10600 (offset_rel->r_addend
10601 + bfd_get_32 (abfd, &contents[actual_offset]));
10602 if (is_full_prop_section)
10603 old_flags = bfd_get_32
10604 (abfd, &contents[last_irel->r_offset + 8]);
10605 else
10606 old_flags = predef_flags;
10607
10608 if ((ELF32_R_SYM (offset_rel->r_info)
10609 == ELF32_R_SYM (last_irel->r_info))
10610 && old_address + old_size == new_address
10611 && old_flags == flags
10612 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10613 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10614 {
10615 /* Fix the old size. */
10616 bfd_put_32 (abfd, old_size + size,
10617 &contents[last_irel->r_offset + 4]);
10618 bytes_to_remove = entry_size;
10619 remove_this_rel = TRUE;
10620 }
10621 else
10622 last_irel = offset_rel;
10623 }
10624 else
10625 last_irel = offset_rel;
10626 }
10627
10628 if (remove_this_rel)
10629 {
10630 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10631 offset_rel->r_offset = 0;
10632 }
10633
10634 if (bytes_to_remove != 0)
10635 {
10636 removed_bytes += bytes_to_remove;
10637 if (offset + bytes_to_remove < sec->size)
10638 memmove (&contents[actual_offset],
10639 &contents[actual_offset + bytes_to_remove],
10640 sec->size - offset - bytes_to_remove);
10641 }
10642 }
10643
10644 if (removed_bytes)
10645 {
10646 /* Fix up any extra relocations on the last entry. */
10647 for (irel = next_rel; irel < rel_end; irel++)
10648 irel->r_offset -= removed_bytes;
10649
10650 /* Clear the removed bytes. */
10651 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10652
10653 if (sec->rawsize == 0)
10654 sec->rawsize = sec->size;
10655 sec->size -= removed_bytes;
10656
10657 if (xtensa_is_littable_section (sec))
10658 {
10659 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10660 if (sgotloc)
10661 sgotloc->size -= removed_bytes;
10662 }
10663 }
10664 }
10665
10666 error_return:
10667 release_internal_relocs (sec, internal_relocs);
10668 release_contents (sec, contents);
10669 return ok;
10670 }
10671
10672 \f
10673 /* Third relaxation pass. */
10674
10675 /* Change symbol values to account for removed literals. */
10676
10677 bfd_boolean
10678 relax_section_symbols (bfd *abfd, asection *sec)
10679 {
10680 xtensa_relax_info *relax_info;
10681 unsigned int sec_shndx;
10682 Elf_Internal_Shdr *symtab_hdr;
10683 Elf_Internal_Sym *isymbuf;
10684 unsigned i, num_syms, num_locals;
10685
10686 relax_info = get_xtensa_relax_info (sec);
10687 BFD_ASSERT (relax_info);
10688
10689 if (!relax_info->is_relaxable_literal_section
10690 && !relax_info->is_relaxable_asm_section)
10691 return TRUE;
10692
10693 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10694
10695 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10696 isymbuf = retrieve_local_syms (abfd);
10697
10698 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10699 num_locals = symtab_hdr->sh_info;
10700
10701 /* Adjust the local symbols defined in this section. */
10702 for (i = 0; i < num_locals; i++)
10703 {
10704 Elf_Internal_Sym *isym = &isymbuf[i];
10705
10706 if (isym->st_shndx == sec_shndx)
10707 {
10708 bfd_vma orig_addr = isym->st_value;
10709 int removed = removed_by_actions_map (&relax_info->action_list,
10710 orig_addr, FALSE);
10711
10712 isym->st_value -= removed;
10713 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10714 isym->st_size -=
10715 removed_by_actions_map (&relax_info->action_list,
10716 orig_addr + isym->st_size, FALSE) -
10717 removed;
10718 }
10719 }
10720
10721 /* Now adjust the global symbols defined in this section. */
10722 for (i = 0; i < (num_syms - num_locals); i++)
10723 {
10724 struct elf_link_hash_entry *sym_hash;
10725
10726 sym_hash = elf_sym_hashes (abfd)[i];
10727
10728 if (sym_hash->root.type == bfd_link_hash_warning)
10729 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10730
10731 if ((sym_hash->root.type == bfd_link_hash_defined
10732 || sym_hash->root.type == bfd_link_hash_defweak)
10733 && sym_hash->root.u.def.section == sec)
10734 {
10735 bfd_vma orig_addr = sym_hash->root.u.def.value;
10736 int removed = removed_by_actions_map (&relax_info->action_list,
10737 orig_addr, FALSE);
10738
10739 sym_hash->root.u.def.value -= removed;
10740
10741 if (sym_hash->type == STT_FUNC)
10742 sym_hash->size -=
10743 removed_by_actions_map (&relax_info->action_list,
10744 orig_addr + sym_hash->size, FALSE) -
10745 removed;
10746 }
10747 }
10748
10749 return TRUE;
10750 }
10751
10752 \f
10753 /* "Fix" handling functions, called while performing relocations. */
10754
10755 static bfd_boolean
10756 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10757 bfd *input_bfd,
10758 asection *input_section,
10759 bfd_byte *contents)
10760 {
10761 r_reloc r_rel;
10762 asection *sec, *old_sec;
10763 bfd_vma old_offset;
10764 int r_type = ELF32_R_TYPE (rel->r_info);
10765 reloc_bfd_fix *fix;
10766
10767 if (r_type == R_XTENSA_NONE)
10768 return TRUE;
10769
10770 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10771 if (!fix)
10772 return TRUE;
10773
10774 r_reloc_init (&r_rel, input_bfd, rel, contents,
10775 bfd_get_section_limit (input_bfd, input_section));
10776 old_sec = r_reloc_get_section (&r_rel);
10777 old_offset = r_rel.target_offset;
10778
10779 if (!old_sec || !r_reloc_is_defined (&r_rel))
10780 {
10781 if (r_type != R_XTENSA_ASM_EXPAND)
10782 {
10783 (*_bfd_error_handler)
10784 (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10785 input_bfd, input_section, rel->r_offset,
10786 elf_howto_table[r_type].name);
10787 return FALSE;
10788 }
10789 /* Leave it be. Resolution will happen in a later stage. */
10790 }
10791 else
10792 {
10793 sec = fix->target_sec;
10794 rel->r_addend += ((sec->output_offset + fix->target_offset)
10795 - (old_sec->output_offset + old_offset));
10796 }
10797 return TRUE;
10798 }
10799
10800
10801 static void
10802 do_fix_for_final_link (Elf_Internal_Rela *rel,
10803 bfd *input_bfd,
10804 asection *input_section,
10805 bfd_byte *contents,
10806 bfd_vma *relocationp)
10807 {
10808 asection *sec;
10809 int r_type = ELF32_R_TYPE (rel->r_info);
10810 reloc_bfd_fix *fix;
10811 bfd_vma fixup_diff;
10812
10813 if (r_type == R_XTENSA_NONE)
10814 return;
10815
10816 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10817 if (!fix)
10818 return;
10819
10820 sec = fix->target_sec;
10821
10822 fixup_diff = rel->r_addend;
10823 if (elf_howto_table[fix->src_type].partial_inplace)
10824 {
10825 bfd_vma inplace_val;
10826 BFD_ASSERT (fix->src_offset
10827 < bfd_get_section_limit (input_bfd, input_section));
10828 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10829 fixup_diff += inplace_val;
10830 }
10831
10832 *relocationp = (sec->output_section->vma
10833 + sec->output_offset
10834 + fix->target_offset - fixup_diff);
10835 }
10836
10837 \f
10838 /* Miscellaneous utility functions.... */
10839
10840 static asection *
10841 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10842 {
10843 struct elf_xtensa_link_hash_table *htab;
10844 bfd *dynobj;
10845 char plt_name[10];
10846
10847 if (chunk == 0)
10848 {
10849 htab = elf_xtensa_hash_table (info);
10850 if (htab == NULL)
10851 return NULL;
10852
10853 return htab->splt;
10854 }
10855
10856 dynobj = elf_hash_table (info)->dynobj;
10857 sprintf (plt_name, ".plt.%u", chunk);
10858 return bfd_get_linker_section (dynobj, plt_name);
10859 }
10860
10861
10862 static asection *
10863 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10864 {
10865 struct elf_xtensa_link_hash_table *htab;
10866 bfd *dynobj;
10867 char got_name[14];
10868
10869 if (chunk == 0)
10870 {
10871 htab = elf_xtensa_hash_table (info);
10872 if (htab == NULL)
10873 return NULL;
10874 return htab->sgotplt;
10875 }
10876
10877 dynobj = elf_hash_table (info)->dynobj;
10878 sprintf (got_name, ".got.plt.%u", chunk);
10879 return bfd_get_linker_section (dynobj, got_name);
10880 }
10881
10882
10883 /* Get the input section for a given symbol index.
10884 If the symbol is:
10885 . a section symbol, return the section;
10886 . a common symbol, return the common section;
10887 . an undefined symbol, return the undefined section;
10888 . an indirect symbol, follow the links;
10889 . an absolute value, return the absolute section. */
10890
10891 static asection *
10892 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10893 {
10894 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10895 asection *target_sec = NULL;
10896 if (r_symndx < symtab_hdr->sh_info)
10897 {
10898 Elf_Internal_Sym *isymbuf;
10899 unsigned int section_index;
10900
10901 isymbuf = retrieve_local_syms (abfd);
10902 section_index = isymbuf[r_symndx].st_shndx;
10903
10904 if (section_index == SHN_UNDEF)
10905 target_sec = bfd_und_section_ptr;
10906 else if (section_index == SHN_ABS)
10907 target_sec = bfd_abs_section_ptr;
10908 else if (section_index == SHN_COMMON)
10909 target_sec = bfd_com_section_ptr;
10910 else
10911 target_sec = bfd_section_from_elf_index (abfd, section_index);
10912 }
10913 else
10914 {
10915 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10916 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10917
10918 while (h->root.type == bfd_link_hash_indirect
10919 || h->root.type == bfd_link_hash_warning)
10920 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10921
10922 switch (h->root.type)
10923 {
10924 case bfd_link_hash_defined:
10925 case bfd_link_hash_defweak:
10926 target_sec = h->root.u.def.section;
10927 break;
10928 case bfd_link_hash_common:
10929 target_sec = bfd_com_section_ptr;
10930 break;
10931 case bfd_link_hash_undefined:
10932 case bfd_link_hash_undefweak:
10933 target_sec = bfd_und_section_ptr;
10934 break;
10935 default: /* New indirect warning. */
10936 target_sec = bfd_und_section_ptr;
10937 break;
10938 }
10939 }
10940 return target_sec;
10941 }
10942
10943
10944 static struct elf_link_hash_entry *
10945 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10946 {
10947 unsigned long indx;
10948 struct elf_link_hash_entry *h;
10949 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10950
10951 if (r_symndx < symtab_hdr->sh_info)
10952 return NULL;
10953
10954 indx = r_symndx - symtab_hdr->sh_info;
10955 h = elf_sym_hashes (abfd)[indx];
10956 while (h->root.type == bfd_link_hash_indirect
10957 || h->root.type == bfd_link_hash_warning)
10958 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10959 return h;
10960 }
10961
10962
10963 /* Get the section-relative offset for a symbol number. */
10964
10965 static bfd_vma
10966 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10967 {
10968 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10969 bfd_vma offset = 0;
10970
10971 if (r_symndx < symtab_hdr->sh_info)
10972 {
10973 Elf_Internal_Sym *isymbuf;
10974 isymbuf = retrieve_local_syms (abfd);
10975 offset = isymbuf[r_symndx].st_value;
10976 }
10977 else
10978 {
10979 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10980 struct elf_link_hash_entry *h =
10981 elf_sym_hashes (abfd)[indx];
10982
10983 while (h->root.type == bfd_link_hash_indirect
10984 || h->root.type == bfd_link_hash_warning)
10985 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10986 if (h->root.type == bfd_link_hash_defined
10987 || h->root.type == bfd_link_hash_defweak)
10988 offset = h->root.u.def.value;
10989 }
10990 return offset;
10991 }
10992
10993
10994 static bfd_boolean
10995 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10996 {
10997 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10998 struct elf_link_hash_entry *h;
10999
11000 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
11001 if (h && h->root.type == bfd_link_hash_defweak)
11002 return TRUE;
11003 return FALSE;
11004 }
11005
11006
11007 static bfd_boolean
11008 pcrel_reloc_fits (xtensa_opcode opc,
11009 int opnd,
11010 bfd_vma self_address,
11011 bfd_vma dest_address)
11012 {
11013 xtensa_isa isa = xtensa_default_isa;
11014 uint32 valp = dest_address;
11015 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
11016 || xtensa_operand_encode (isa, opc, opnd, &valp))
11017 return FALSE;
11018 return TRUE;
11019 }
11020
11021
11022 static bfd_boolean
11023 xtensa_is_property_section (asection *sec)
11024 {
11025 if (xtensa_is_insntable_section (sec)
11026 || xtensa_is_littable_section (sec)
11027 || xtensa_is_proptable_section (sec))
11028 return TRUE;
11029
11030 return FALSE;
11031 }
11032
11033
11034 static bfd_boolean
11035 xtensa_is_insntable_section (asection *sec)
11036 {
11037 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11038 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11039 return TRUE;
11040
11041 return FALSE;
11042 }
11043
11044
11045 static bfd_boolean
11046 xtensa_is_littable_section (asection *sec)
11047 {
11048 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11049 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11050 return TRUE;
11051
11052 return FALSE;
11053 }
11054
11055
11056 static bfd_boolean
11057 xtensa_is_proptable_section (asection *sec)
11058 {
11059 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11060 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11061 return TRUE;
11062
11063 return FALSE;
11064 }
11065
11066
11067 static int
11068 internal_reloc_compare (const void *ap, const void *bp)
11069 {
11070 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11071 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11072
11073 if (a->r_offset != b->r_offset)
11074 return (a->r_offset - b->r_offset);
11075
11076 /* We don't need to sort on these criteria for correctness,
11077 but enforcing a more strict ordering prevents unstable qsort
11078 from behaving differently with different implementations.
11079 Without the code below we get correct but different results
11080 on Solaris 2.7 and 2.8. We would like to always produce the
11081 same results no matter the host. */
11082
11083 if (a->r_info != b->r_info)
11084 return (a->r_info - b->r_info);
11085
11086 return (a->r_addend - b->r_addend);
11087 }
11088
11089
11090 static int
11091 internal_reloc_matches (const void *ap, const void *bp)
11092 {
11093 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11094 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11095
11096 /* Check if one entry overlaps with the other; this shouldn't happen
11097 except when searching for a match. */
11098 return (a->r_offset - b->r_offset);
11099 }
11100
11101
11102 /* Predicate function used to look up a section in a particular group. */
11103
11104 static bfd_boolean
11105 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11106 {
11107 const char *gname = inf;
11108 const char *group_name = elf_group_name (sec);
11109
11110 return (group_name == gname
11111 || (group_name != NULL
11112 && gname != NULL
11113 && strcmp (group_name, gname) == 0));
11114 }
11115
11116
11117 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11118
11119 static char *
11120 xtensa_property_section_name (asection *sec, const char *base_name)
11121 {
11122 const char *suffix, *group_name;
11123 char *prop_sec_name;
11124
11125 group_name = elf_group_name (sec);
11126 if (group_name)
11127 {
11128 suffix = strrchr (sec->name, '.');
11129 if (suffix == sec->name)
11130 suffix = 0;
11131 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11132 + (suffix ? strlen (suffix) : 0));
11133 strcpy (prop_sec_name, base_name);
11134 if (suffix)
11135 strcat (prop_sec_name, suffix);
11136 }
11137 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11138 {
11139 char *linkonce_kind = 0;
11140
11141 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11142 linkonce_kind = "x.";
11143 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11144 linkonce_kind = "p.";
11145 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11146 linkonce_kind = "prop.";
11147 else
11148 abort ();
11149
11150 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11151 + strlen (linkonce_kind) + 1);
11152 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11153 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11154
11155 suffix = sec->name + linkonce_len;
11156 /* For backward compatibility, replace "t." instead of inserting
11157 the new linkonce_kind (but not for "prop" sections). */
11158 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11159 suffix += 2;
11160 strcat (prop_sec_name + linkonce_len, suffix);
11161 }
11162 else
11163 prop_sec_name = strdup (base_name);
11164
11165 return prop_sec_name;
11166 }
11167
11168
11169 static asection *
11170 xtensa_get_property_section (asection *sec, const char *base_name)
11171 {
11172 char *prop_sec_name;
11173 asection *prop_sec;
11174
11175 prop_sec_name = xtensa_property_section_name (sec, base_name);
11176 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11177 match_section_group,
11178 (void *) elf_group_name (sec));
11179 free (prop_sec_name);
11180 return prop_sec;
11181 }
11182
11183
11184 asection *
11185 xtensa_make_property_section (asection *sec, const char *base_name)
11186 {
11187 char *prop_sec_name;
11188 asection *prop_sec;
11189
11190 /* Check if the section already exists. */
11191 prop_sec_name = xtensa_property_section_name (sec, base_name);
11192 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11193 match_section_group,
11194 (void *) elf_group_name (sec));
11195 /* If not, create it. */
11196 if (! prop_sec)
11197 {
11198 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11199 flags |= (bfd_get_section_flags (sec->owner, sec)
11200 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11201
11202 prop_sec = bfd_make_section_anyway_with_flags
11203 (sec->owner, strdup (prop_sec_name), flags);
11204 if (! prop_sec)
11205 return 0;
11206
11207 elf_group_name (prop_sec) = elf_group_name (sec);
11208 }
11209
11210 free (prop_sec_name);
11211 return prop_sec;
11212 }
11213
11214
11215 flagword
11216 xtensa_get_property_predef_flags (asection *sec)
11217 {
11218 if (xtensa_is_insntable_section (sec))
11219 return (XTENSA_PROP_INSN
11220 | XTENSA_PROP_NO_TRANSFORM
11221 | XTENSA_PROP_INSN_NO_REORDER);
11222
11223 if (xtensa_is_littable_section (sec))
11224 return (XTENSA_PROP_LITERAL
11225 | XTENSA_PROP_NO_TRANSFORM
11226 | XTENSA_PROP_INSN_NO_REORDER);
11227
11228 return 0;
11229 }
11230
11231 \f
11232 /* Other functions called directly by the linker. */
11233
11234 bfd_boolean
11235 xtensa_callback_required_dependence (bfd *abfd,
11236 asection *sec,
11237 struct bfd_link_info *link_info,
11238 deps_callback_t callback,
11239 void *closure)
11240 {
11241 Elf_Internal_Rela *internal_relocs;
11242 bfd_byte *contents;
11243 unsigned i;
11244 bfd_boolean ok = TRUE;
11245 bfd_size_type sec_size;
11246
11247 sec_size = bfd_get_section_limit (abfd, sec);
11248
11249 /* ".plt*" sections have no explicit relocations but they contain L32R
11250 instructions that reference the corresponding ".got.plt*" sections. */
11251 if ((sec->flags & SEC_LINKER_CREATED) != 0
11252 && CONST_STRNEQ (sec->name, ".plt"))
11253 {
11254 asection *sgotplt;
11255
11256 /* Find the corresponding ".got.plt*" section. */
11257 if (sec->name[4] == '\0')
11258 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt");
11259 else
11260 {
11261 char got_name[14];
11262 int chunk = 0;
11263
11264 BFD_ASSERT (sec->name[4] == '.');
11265 chunk = strtol (&sec->name[5], NULL, 10);
11266
11267 sprintf (got_name, ".got.plt.%u", chunk);
11268 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11269 }
11270 BFD_ASSERT (sgotplt);
11271
11272 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11273 section referencing a literal at the very beginning of
11274 ".got.plt". This is very close to the real dependence, anyway. */
11275 (*callback) (sec, sec_size, sgotplt, 0, closure);
11276 }
11277
11278 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11279 when building uclibc, which runs "ld -b binary /dev/null". */
11280 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11281 return ok;
11282
11283 internal_relocs = retrieve_internal_relocs (abfd, sec,
11284 link_info->keep_memory);
11285 if (internal_relocs == NULL
11286 || sec->reloc_count == 0)
11287 return ok;
11288
11289 /* Cache the contents for the duration of this scan. */
11290 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11291 if (contents == NULL && sec_size != 0)
11292 {
11293 ok = FALSE;
11294 goto error_return;
11295 }
11296
11297 if (!xtensa_default_isa)
11298 xtensa_default_isa = xtensa_isa_init (0, 0);
11299
11300 for (i = 0; i < sec->reloc_count; i++)
11301 {
11302 Elf_Internal_Rela *irel = &internal_relocs[i];
11303 if (is_l32r_relocation (abfd, sec, contents, irel))
11304 {
11305 r_reloc l32r_rel;
11306 asection *target_sec;
11307 bfd_vma target_offset;
11308
11309 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11310 target_sec = NULL;
11311 target_offset = 0;
11312 /* L32Rs must be local to the input file. */
11313 if (r_reloc_is_defined (&l32r_rel))
11314 {
11315 target_sec = r_reloc_get_section (&l32r_rel);
11316 target_offset = l32r_rel.target_offset;
11317 }
11318 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11319 closure);
11320 }
11321 }
11322
11323 error_return:
11324 release_internal_relocs (sec, internal_relocs);
11325 release_contents (sec, contents);
11326 return ok;
11327 }
11328
11329 /* The default literal sections should always be marked as "code" (i.e.,
11330 SHF_EXECINSTR). This is particularly important for the Linux kernel
11331 module loader so that the literals are not placed after the text. */
11332 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11333 {
11334 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11335 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11336 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11337 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11338 { NULL, 0, 0, 0, 0 }
11339 };
11340 \f
11341 #define ELF_TARGET_ID XTENSA_ELF_DATA
11342 #ifndef ELF_ARCH
11343 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11344 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11345 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11346 #define TARGET_BIG_NAME "elf32-xtensa-be"
11347 #define ELF_ARCH bfd_arch_xtensa
11348
11349 #define ELF_MACHINE_CODE EM_XTENSA
11350 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11351
11352 #if XCHAL_HAVE_MMU
11353 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11354 #else /* !XCHAL_HAVE_MMU */
11355 #define ELF_MAXPAGESIZE 1
11356 #endif /* !XCHAL_HAVE_MMU */
11357 #endif /* ELF_ARCH */
11358
11359 #define elf_backend_can_gc_sections 1
11360 #define elf_backend_can_refcount 1
11361 #define elf_backend_plt_readonly 1
11362 #define elf_backend_got_header_size 4
11363 #define elf_backend_want_dynbss 0
11364 #define elf_backend_want_got_plt 1
11365
11366 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11367
11368 #define bfd_elf32_mkobject elf_xtensa_mkobject
11369
11370 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11371 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11372 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11373 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11374 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11375 #define bfd_elf32_bfd_reloc_name_lookup \
11376 elf_xtensa_reloc_name_lookup
11377 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11378 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11379
11380 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11381 #define elf_backend_check_relocs elf_xtensa_check_relocs
11382 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11383 #define elf_backend_discard_info elf_xtensa_discard_info
11384 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11385 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11386 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11387 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11388 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11389 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook
11390 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11391 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11392 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11393 #define elf_backend_object_p elf_xtensa_object_p
11394 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11395 #define elf_backend_relocate_section elf_xtensa_relocate_section
11396 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11397 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11398 #define elf_backend_omit_section_dynsym \
11399 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11400 #define elf_backend_special_sections elf_xtensa_special_sections
11401 #define elf_backend_action_discarded elf_xtensa_action_discarded
11402 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11403
11404 #include "elf32-target.h"