]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-hppa.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2021 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30
31 #define ARCH_SIZE 64
32
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52 struct elf64_hppa_link_hash_entry
53 {
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111 };
112
113 struct elf64_hppa_link_hash_table
114 {
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *opd_sec;
121 asection *opd_rel_sec;
122 asection *other_rel_sec;
123
124 /* Offset of __gp within .plt section. When the PLT gets large we want
125 to slide __gp into the PLT section so that we can continue to use
126 single DP relative instructions to load values out of the PLT. */
127 bfd_vma gp_offset;
128
129 /* Note this is not strictly correct. We should create a stub section for
130 each input section with calls. The stub section should be placed before
131 the section with the call. */
132 asection *stub_sec;
133
134 bfd_vma text_segment_base;
135 bfd_vma data_segment_base;
136
137 /* We build tables to map from an input section back to its
138 symbol index. This is the BFD for which we currently have
139 a map. */
140 bfd *section_syms_bfd;
141
142 /* Array of symbol numbers for each input section attached to the
143 current BFD. */
144 int *section_syms;
145 };
146
147 #define hppa_link_hash_table(p) \
148 ((is_elf_hash_table ((p)->hash) \
149 && elf_hash_table_id (elf_hash_table (p)) == HPPA64_ELF_DATA) \
150 ? (struct elf64_hppa_link_hash_table *) (p)->hash : NULL)
151
152 #define hppa_elf_hash_entry(ent) \
153 ((struct elf64_hppa_link_hash_entry *)(ent))
154
155 #define eh_name(eh) \
156 (eh ? eh->root.root.string : "<undef>")
157
158 typedef struct bfd_hash_entry *(*new_hash_entry_func)
159 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
160
161 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
162 (bfd *abfd);
163
164 /* This must follow the definitions of the various derived linker
165 hash tables and shared functions. */
166 #include "elf-hppa.h"
167
168 static bfd_boolean elf64_hppa_object_p
169 (bfd *);
170
171 static bfd_boolean elf64_hppa_create_dynamic_sections
172 (bfd *, struct bfd_link_info *);
173
174 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
175 (struct bfd_link_info *, struct elf_link_hash_entry *);
176
177 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
178 (struct elf_link_hash_entry *, void *);
179
180 static bfd_boolean elf64_hppa_size_dynamic_sections
181 (bfd *, struct bfd_link_info *);
182
183 static int elf64_hppa_link_output_symbol_hook
184 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
185 asection *, struct elf_link_hash_entry *);
186
187 static bfd_boolean elf64_hppa_finish_dynamic_symbol
188 (bfd *, struct bfd_link_info *,
189 struct elf_link_hash_entry *, Elf_Internal_Sym *);
190
191 static bfd_boolean elf64_hppa_finish_dynamic_sections
192 (bfd *, struct bfd_link_info *);
193
194 static bfd_boolean elf64_hppa_check_relocs
195 (bfd *, struct bfd_link_info *,
196 asection *, const Elf_Internal_Rela *);
197
198 static bfd_boolean elf64_hppa_dynamic_symbol_p
199 (struct elf_link_hash_entry *, struct bfd_link_info *);
200
201 static bfd_boolean elf64_hppa_mark_exported_functions
202 (struct elf_link_hash_entry *, void *);
203
204 static bfd_boolean elf64_hppa_finalize_opd
205 (struct elf_link_hash_entry *, void *);
206
207 static bfd_boolean elf64_hppa_finalize_dlt
208 (struct elf_link_hash_entry *, void *);
209
210 static bfd_boolean allocate_global_data_dlt
211 (struct elf_link_hash_entry *, void *);
212
213 static bfd_boolean allocate_global_data_plt
214 (struct elf_link_hash_entry *, void *);
215
216 static bfd_boolean allocate_global_data_stub
217 (struct elf_link_hash_entry *, void *);
218
219 static bfd_boolean allocate_global_data_opd
220 (struct elf_link_hash_entry *, void *);
221
222 static bfd_boolean get_reloc_section
223 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
224
225 static bfd_boolean count_dyn_reloc
226 (bfd *, struct elf64_hppa_link_hash_entry *,
227 int, asection *, int, bfd_vma, bfd_vma);
228
229 static bfd_boolean allocate_dynrel_entries
230 (struct elf_link_hash_entry *, void *);
231
232 static bfd_boolean elf64_hppa_finalize_dynreloc
233 (struct elf_link_hash_entry *, void *);
234
235 static bfd_boolean get_opd
236 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
237
238 static bfd_boolean get_plt
239 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
240
241 static bfd_boolean get_dlt
242 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
243
244 static bfd_boolean get_stub
245 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
246
247 static int elf64_hppa_elf_get_symbol_type
248 (Elf_Internal_Sym *, int);
249
250 /* Initialize an entry in the link hash table. */
251
252 static struct bfd_hash_entry *
253 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
254 struct bfd_hash_table *table,
255 const char *string)
256 {
257 /* Allocate the structure if it has not already been allocated by a
258 subclass. */
259 if (entry == NULL)
260 {
261 entry = bfd_hash_allocate (table,
262 sizeof (struct elf64_hppa_link_hash_entry));
263 if (entry == NULL)
264 return entry;
265 }
266
267 /* Call the allocation method of the superclass. */
268 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
269 if (entry != NULL)
270 {
271 struct elf64_hppa_link_hash_entry *hh;
272
273 /* Initialize our local data. All zeros. */
274 hh = hppa_elf_hash_entry (entry);
275 memset (&hh->dlt_offset, 0,
276 (sizeof (struct elf64_hppa_link_hash_entry)
277 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
278 }
279
280 return entry;
281 }
282
283 /* Create the derived linker hash table. The PA64 ELF port uses this
284 derived hash table to keep information specific to the PA ElF
285 linker (without using static variables). */
286
287 static struct bfd_link_hash_table*
288 elf64_hppa_hash_table_create (bfd *abfd)
289 {
290 struct elf64_hppa_link_hash_table *htab;
291 size_t amt = sizeof (*htab);
292
293 htab = bfd_zmalloc (amt);
294 if (htab == NULL)
295 return NULL;
296
297 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
298 hppa64_link_hash_newfunc,
299 sizeof (struct elf64_hppa_link_hash_entry),
300 HPPA64_ELF_DATA))
301 {
302 free (htab);
303 return NULL;
304 }
305
306 htab->root.dt_pltgot_required = TRUE;
307 htab->text_segment_base = (bfd_vma) -1;
308 htab->data_segment_base = (bfd_vma) -1;
309
310 return &htab->root.root;
311 }
312 \f
313 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
314
315 Additionally we set the default architecture and machine. */
316 static bfd_boolean
317 elf64_hppa_object_p (bfd *abfd)
318 {
319 Elf_Internal_Ehdr * i_ehdrp;
320 unsigned int flags;
321
322 i_ehdrp = elf_elfheader (abfd);
323 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
324 {
325 /* GCC on hppa-linux produces binaries with OSABI=GNU,
326 but the kernel produces corefiles with OSABI=SysV. */
327 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
328 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
329 return FALSE;
330 }
331 else
332 {
333 /* HPUX produces binaries with OSABI=HPUX,
334 but the kernel produces corefiles with OSABI=SysV. */
335 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
336 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
337 return FALSE;
338 }
339
340 flags = i_ehdrp->e_flags;
341 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
342 {
343 case EFA_PARISC_1_0:
344 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
345 case EFA_PARISC_1_1:
346 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
347 case EFA_PARISC_2_0:
348 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
350 else
351 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
352 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
353 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
354 }
355 /* Don't be fussy. */
356 return TRUE;
357 }
358
359 /* Given section type (hdr->sh_type), return a boolean indicating
360 whether or not the section is an elf64-hppa specific section. */
361 static bfd_boolean
362 elf64_hppa_section_from_shdr (bfd *abfd,
363 Elf_Internal_Shdr *hdr,
364 const char *name,
365 int shindex)
366 {
367 switch (hdr->sh_type)
368 {
369 case SHT_PARISC_EXT:
370 if (strcmp (name, ".PARISC.archext") != 0)
371 return FALSE;
372 break;
373 case SHT_PARISC_UNWIND:
374 if (strcmp (name, ".PARISC.unwind") != 0)
375 return FALSE;
376 break;
377 case SHT_PARISC_DOC:
378 case SHT_PARISC_ANNOT:
379 default:
380 return FALSE;
381 }
382
383 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
384 return FALSE;
385
386 return ((hdr->sh_flags & SHF_PARISC_SHORT) == 0
387 || bfd_set_section_flags (hdr->bfd_section,
388 hdr->bfd_section->flags | SEC_SMALL_DATA));
389 }
390
391 /* SEC is a section containing relocs for an input BFD when linking; return
392 a suitable section for holding relocs in the output BFD for a link. */
393
394 static bfd_boolean
395 get_reloc_section (bfd *abfd,
396 struct elf64_hppa_link_hash_table *hppa_info,
397 asection *sec)
398 {
399 const char *srel_name;
400 asection *srel;
401 bfd *dynobj;
402
403 srel_name = (bfd_elf_string_from_elf_section
404 (abfd, elf_elfheader(abfd)->e_shstrndx,
405 _bfd_elf_single_rel_hdr(sec)->sh_name));
406 if (srel_name == NULL)
407 return FALSE;
408
409 dynobj = hppa_info->root.dynobj;
410 if (!dynobj)
411 hppa_info->root.dynobj = dynobj = abfd;
412
413 srel = bfd_get_linker_section (dynobj, srel_name);
414 if (srel == NULL)
415 {
416 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
417 (SEC_ALLOC
418 | SEC_LOAD
419 | SEC_HAS_CONTENTS
420 | SEC_IN_MEMORY
421 | SEC_LINKER_CREATED
422 | SEC_READONLY));
423 if (srel == NULL
424 || !bfd_set_section_alignment (srel, 3))
425 return FALSE;
426 }
427
428 hppa_info->other_rel_sec = srel;
429 return TRUE;
430 }
431
432 /* Add a new entry to the list of dynamic relocations against DYN_H.
433
434 We use this to keep a record of all the FPTR relocations against a
435 particular symbol so that we can create FPTR relocations in the
436 output file. */
437
438 static bfd_boolean
439 count_dyn_reloc (bfd *abfd,
440 struct elf64_hppa_link_hash_entry *hh,
441 int type,
442 asection *sec,
443 int sec_symndx,
444 bfd_vma offset,
445 bfd_vma addend)
446 {
447 struct elf64_hppa_dyn_reloc_entry *rent;
448
449 rent = (struct elf64_hppa_dyn_reloc_entry *)
450 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
451 if (!rent)
452 return FALSE;
453
454 rent->next = hh->reloc_entries;
455 rent->type = type;
456 rent->sec = sec;
457 rent->sec_symndx = sec_symndx;
458 rent->offset = offset;
459 rent->addend = addend;
460 hh->reloc_entries = rent;
461
462 return TRUE;
463 }
464
465 /* Return a pointer to the local DLT, PLT and OPD reference counts
466 for ABFD. Returns NULL if the storage allocation fails. */
467
468 static bfd_signed_vma *
469 hppa64_elf_local_refcounts (bfd *abfd)
470 {
471 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
472 bfd_signed_vma *local_refcounts;
473
474 local_refcounts = elf_local_got_refcounts (abfd);
475 if (local_refcounts == NULL)
476 {
477 bfd_size_type size;
478
479 /* Allocate space for local DLT, PLT and OPD reference
480 counts. Done this way to save polluting elf_obj_tdata
481 with another target specific pointer. */
482 size = symtab_hdr->sh_info;
483 size *= 3 * sizeof (bfd_signed_vma);
484 local_refcounts = bfd_zalloc (abfd, size);
485 elf_local_got_refcounts (abfd) = local_refcounts;
486 }
487 return local_refcounts;
488 }
489
490 /* Scan the RELOCS and record the type of dynamic entries that each
491 referenced symbol needs. */
492
493 static bfd_boolean
494 elf64_hppa_check_relocs (bfd *abfd,
495 struct bfd_link_info *info,
496 asection *sec,
497 const Elf_Internal_Rela *relocs)
498 {
499 struct elf64_hppa_link_hash_table *hppa_info;
500 const Elf_Internal_Rela *relend;
501 Elf_Internal_Shdr *symtab_hdr;
502 const Elf_Internal_Rela *rel;
503 unsigned int sec_symndx;
504
505 if (bfd_link_relocatable (info))
506 return TRUE;
507
508 /* If this is the first dynamic object found in the link, create
509 the special sections required for dynamic linking. */
510 if (! elf_hash_table (info)->dynamic_sections_created)
511 {
512 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
513 return FALSE;
514 }
515
516 hppa_info = hppa_link_hash_table (info);
517 if (hppa_info == NULL)
518 return FALSE;
519 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
520
521 /* If necessary, build a new table holding section symbols indices
522 for this BFD. */
523
524 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
525 {
526 unsigned long i;
527 unsigned int highest_shndx;
528 Elf_Internal_Sym *local_syms = NULL;
529 Elf_Internal_Sym *isym, *isymend;
530 bfd_size_type amt;
531
532 /* We're done with the old cache of section index to section symbol
533 index information. Free it.
534
535 ?!? Note we leak the last section_syms array. Presumably we
536 could free it in one of the later routines in this file. */
537 free (hppa_info->section_syms);
538
539 /* Read this BFD's local symbols. */
540 if (symtab_hdr->sh_info != 0)
541 {
542 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
543 if (local_syms == NULL)
544 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
545 symtab_hdr->sh_info, 0,
546 NULL, NULL, NULL);
547 if (local_syms == NULL)
548 return FALSE;
549 }
550
551 /* Record the highest section index referenced by the local symbols. */
552 highest_shndx = 0;
553 isymend = local_syms + symtab_hdr->sh_info;
554 for (isym = local_syms; isym < isymend; isym++)
555 {
556 if (isym->st_shndx > highest_shndx
557 && isym->st_shndx < SHN_LORESERVE)
558 highest_shndx = isym->st_shndx;
559 }
560
561 /* Allocate an array to hold the section index to section symbol index
562 mapping. Bump by one since we start counting at zero. */
563 highest_shndx++;
564 amt = highest_shndx;
565 amt *= sizeof (int);
566 hppa_info->section_syms = (int *) bfd_malloc (amt);
567
568 /* Now walk the local symbols again. If we find a section symbol,
569 record the index of the symbol into the section_syms array. */
570 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
571 {
572 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
573 hppa_info->section_syms[isym->st_shndx] = i;
574 }
575
576 /* We are finished with the local symbols. */
577 if (local_syms != NULL
578 && symtab_hdr->contents != (unsigned char *) local_syms)
579 {
580 if (! info->keep_memory)
581 free (local_syms);
582 else
583 {
584 /* Cache the symbols for elf_link_input_bfd. */
585 symtab_hdr->contents = (unsigned char *) local_syms;
586 }
587 }
588
589 /* Record which BFD we built the section_syms mapping for. */
590 hppa_info->section_syms_bfd = abfd;
591 }
592
593 /* Record the symbol index for this input section. We may need it for
594 relocations when building shared libraries. When not building shared
595 libraries this value is never really used, but assign it to zero to
596 prevent out of bounds memory accesses in other routines. */
597 if (bfd_link_pic (info))
598 {
599 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
600
601 /* If we did not find a section symbol for this section, then
602 something went terribly wrong above. */
603 if (sec_symndx == SHN_BAD)
604 return FALSE;
605
606 if (sec_symndx < SHN_LORESERVE)
607 sec_symndx = hppa_info->section_syms[sec_symndx];
608 else
609 sec_symndx = 0;
610 }
611 else
612 sec_symndx = 0;
613
614 relend = relocs + sec->reloc_count;
615 for (rel = relocs; rel < relend; ++rel)
616 {
617 enum
618 {
619 NEED_DLT = 1,
620 NEED_PLT = 2,
621 NEED_STUB = 4,
622 NEED_OPD = 8,
623 NEED_DYNREL = 16,
624 };
625
626 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
627 struct elf64_hppa_link_hash_entry *hh;
628 int need_entry;
629 bfd_boolean maybe_dynamic;
630 int dynrel_type = R_PARISC_NONE;
631 static reloc_howto_type *howto;
632
633 if (r_symndx >= symtab_hdr->sh_info)
634 {
635 /* We're dealing with a global symbol -- find its hash entry
636 and mark it as being referenced. */
637 long indx = r_symndx - symtab_hdr->sh_info;
638 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
639 while (hh->eh.root.type == bfd_link_hash_indirect
640 || hh->eh.root.type == bfd_link_hash_warning)
641 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
642
643 /* PR15323, ref flags aren't set for references in the same
644 object. */
645 hh->eh.ref_regular = 1;
646 }
647 else
648 hh = NULL;
649
650 /* We can only get preliminary data on whether a symbol is
651 locally or externally defined, as not all of the input files
652 have yet been processed. Do something with what we know, as
653 this may help reduce memory usage and processing time later. */
654 maybe_dynamic = FALSE;
655 if (hh && ((bfd_link_pic (info)
656 && (!info->symbolic
657 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
658 || !hh->eh.def_regular
659 || hh->eh.root.type == bfd_link_hash_defweak))
660 maybe_dynamic = TRUE;
661
662 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
663 need_entry = 0;
664 switch (howto->type)
665 {
666 /* These are simple indirect references to symbols through the
667 DLT. We need to create a DLT entry for any symbols which
668 appears in a DLTIND relocation. */
669 case R_PARISC_DLTIND21L:
670 case R_PARISC_DLTIND14R:
671 case R_PARISC_DLTIND14F:
672 case R_PARISC_DLTIND14WR:
673 case R_PARISC_DLTIND14DR:
674 need_entry = NEED_DLT;
675 break;
676
677 /* ?!? These need a DLT entry. But I have no idea what to do with
678 the "link time TP value. */
679 case R_PARISC_LTOFF_TP21L:
680 case R_PARISC_LTOFF_TP14R:
681 case R_PARISC_LTOFF_TP14F:
682 case R_PARISC_LTOFF_TP64:
683 case R_PARISC_LTOFF_TP14WR:
684 case R_PARISC_LTOFF_TP14DR:
685 case R_PARISC_LTOFF_TP16F:
686 case R_PARISC_LTOFF_TP16WF:
687 case R_PARISC_LTOFF_TP16DF:
688 need_entry = NEED_DLT;
689 break;
690
691 /* These are function calls. Depending on their precise target we
692 may need to make a stub for them. The stub uses the PLT, so we
693 need to create PLT entries for these symbols too. */
694 case R_PARISC_PCREL12F:
695 case R_PARISC_PCREL17F:
696 case R_PARISC_PCREL22F:
697 case R_PARISC_PCREL32:
698 case R_PARISC_PCREL64:
699 case R_PARISC_PCREL21L:
700 case R_PARISC_PCREL17R:
701 case R_PARISC_PCREL17C:
702 case R_PARISC_PCREL14R:
703 case R_PARISC_PCREL14F:
704 case R_PARISC_PCREL22C:
705 case R_PARISC_PCREL14WR:
706 case R_PARISC_PCREL14DR:
707 case R_PARISC_PCREL16F:
708 case R_PARISC_PCREL16WF:
709 case R_PARISC_PCREL16DF:
710 /* Function calls might need to go through the .plt, and
711 might need a long branch stub. */
712 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
713 need_entry = (NEED_PLT | NEED_STUB);
714 else
715 need_entry = 0;
716 break;
717
718 case R_PARISC_PLTOFF21L:
719 case R_PARISC_PLTOFF14R:
720 case R_PARISC_PLTOFF14F:
721 case R_PARISC_PLTOFF14WR:
722 case R_PARISC_PLTOFF14DR:
723 case R_PARISC_PLTOFF16F:
724 case R_PARISC_PLTOFF16WF:
725 case R_PARISC_PLTOFF16DF:
726 need_entry = (NEED_PLT);
727 break;
728
729 case R_PARISC_DIR64:
730 if (bfd_link_pic (info) || maybe_dynamic)
731 need_entry = (NEED_DYNREL);
732 dynrel_type = R_PARISC_DIR64;
733 break;
734
735 /* This is an indirect reference through the DLT to get the address
736 of a OPD descriptor. Thus we need to make a DLT entry that points
737 to an OPD entry. */
738 case R_PARISC_LTOFF_FPTR21L:
739 case R_PARISC_LTOFF_FPTR14R:
740 case R_PARISC_LTOFF_FPTR14WR:
741 case R_PARISC_LTOFF_FPTR14DR:
742 case R_PARISC_LTOFF_FPTR32:
743 case R_PARISC_LTOFF_FPTR64:
744 case R_PARISC_LTOFF_FPTR16F:
745 case R_PARISC_LTOFF_FPTR16WF:
746 case R_PARISC_LTOFF_FPTR16DF:
747 if (bfd_link_pic (info) || maybe_dynamic)
748 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
749 else
750 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
751 dynrel_type = R_PARISC_FPTR64;
752 break;
753
754 /* This is a simple OPD entry. */
755 case R_PARISC_FPTR64:
756 if (bfd_link_pic (info) || maybe_dynamic)
757 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
758 else
759 need_entry = (NEED_OPD | NEED_PLT);
760 dynrel_type = R_PARISC_FPTR64;
761 break;
762
763 /* Add more cases as needed. */
764 }
765
766 if (!need_entry)
767 continue;
768
769 if (hh)
770 {
771 /* Stash away enough information to be able to find this symbol
772 regardless of whether or not it is local or global. */
773 hh->owner = abfd;
774 hh->sym_indx = r_symndx;
775 }
776
777 /* Create what's needed. */
778 if (need_entry & NEED_DLT)
779 {
780 /* Allocate space for a DLT entry, as well as a dynamic
781 relocation for this entry. */
782 if (! hppa_info->dlt_sec
783 && ! get_dlt (abfd, info, hppa_info))
784 goto err_out;
785
786 if (hh != NULL)
787 {
788 hh->want_dlt = 1;
789 hh->eh.got.refcount += 1;
790 }
791 else
792 {
793 bfd_signed_vma *local_dlt_refcounts;
794
795 /* This is a DLT entry for a local symbol. */
796 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
797 if (local_dlt_refcounts == NULL)
798 return FALSE;
799 local_dlt_refcounts[r_symndx] += 1;
800 }
801 }
802
803 if (need_entry & NEED_PLT)
804 {
805 if (! hppa_info->root.splt
806 && ! get_plt (abfd, info, hppa_info))
807 goto err_out;
808
809 if (hh != NULL)
810 {
811 hh->want_plt = 1;
812 hh->eh.needs_plt = 1;
813 hh->eh.plt.refcount += 1;
814 }
815 else
816 {
817 bfd_signed_vma *local_dlt_refcounts;
818 bfd_signed_vma *local_plt_refcounts;
819
820 /* This is a PLT entry for a local symbol. */
821 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
822 if (local_dlt_refcounts == NULL)
823 return FALSE;
824 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
825 local_plt_refcounts[r_symndx] += 1;
826 }
827 }
828
829 if (need_entry & NEED_STUB)
830 {
831 if (! hppa_info->stub_sec
832 && ! get_stub (abfd, info, hppa_info))
833 goto err_out;
834 if (hh)
835 hh->want_stub = 1;
836 }
837
838 if (need_entry & NEED_OPD)
839 {
840 if (! hppa_info->opd_sec
841 && ! get_opd (abfd, info, hppa_info))
842 goto err_out;
843
844 /* FPTRs are not allocated by the dynamic linker for PA64,
845 though it is possible that will change in the future. */
846
847 if (hh != NULL)
848 hh->want_opd = 1;
849 else
850 {
851 bfd_signed_vma *local_dlt_refcounts;
852 bfd_signed_vma *local_opd_refcounts;
853
854 /* This is a OPD for a local symbol. */
855 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
856 if (local_dlt_refcounts == NULL)
857 return FALSE;
858 local_opd_refcounts = (local_dlt_refcounts
859 + 2 * symtab_hdr->sh_info);
860 local_opd_refcounts[r_symndx] += 1;
861 }
862 }
863
864 /* Add a new dynamic relocation to the chain of dynamic
865 relocations for this symbol. */
866 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
867 {
868 if (! hppa_info->other_rel_sec
869 && ! get_reloc_section (abfd, hppa_info, sec))
870 goto err_out;
871
872 /* Count dynamic relocations against global symbols. */
873 if (hh != NULL
874 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
875 sec_symndx, rel->r_offset, rel->r_addend))
876 goto err_out;
877
878 /* If we are building a shared library and we just recorded
879 a dynamic R_PARISC_FPTR64 relocation, then make sure the
880 section symbol for this section ends up in the dynamic
881 symbol table. */
882 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
883 && ! (bfd_elf_link_record_local_dynamic_symbol
884 (info, abfd, sec_symndx)))
885 return FALSE;
886 }
887 }
888
889 return TRUE;
890
891 err_out:
892 return FALSE;
893 }
894
895 struct elf64_hppa_allocate_data
896 {
897 struct bfd_link_info *info;
898 bfd_size_type ofs;
899 };
900
901 /* Should we do dynamic things to this symbol? */
902
903 static bfd_boolean
904 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
905 struct bfd_link_info *info)
906 {
907 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
908 and relocations that retrieve a function descriptor? Assume the
909 worst for now. */
910 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
911 {
912 /* ??? Why is this here and not elsewhere is_local_label_name. */
913 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
914 return FALSE;
915
916 return TRUE;
917 }
918 else
919 return FALSE;
920 }
921
922 /* Mark all functions exported by this file so that we can later allocate
923 entries in .opd for them. */
924
925 static bfd_boolean
926 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
927 {
928 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
929 struct bfd_link_info *info = (struct bfd_link_info *)data;
930 struct elf64_hppa_link_hash_table *hppa_info;
931
932 hppa_info = hppa_link_hash_table (info);
933 if (hppa_info == NULL)
934 return FALSE;
935
936 if (eh
937 && (eh->root.type == bfd_link_hash_defined
938 || eh->root.type == bfd_link_hash_defweak)
939 && eh->root.u.def.section->output_section != NULL
940 && eh->type == STT_FUNC)
941 {
942 if (! hppa_info->opd_sec
943 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
944 return FALSE;
945
946 hh->want_opd = 1;
947
948 /* Put a flag here for output_symbol_hook. */
949 hh->st_shndx = -1;
950 eh->needs_plt = 1;
951 }
952
953 return TRUE;
954 }
955
956 /* Allocate space for a DLT entry. */
957
958 static bfd_boolean
959 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
960 {
961 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
962 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
963
964 if (hh->want_dlt)
965 {
966 if (bfd_link_pic (x->info))
967 {
968 /* Possibly add the symbol to the local dynamic symbol
969 table since we might need to create a dynamic relocation
970 against it. */
971 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
972 {
973 bfd *owner = eh->root.u.def.section->owner;
974
975 if (! (bfd_elf_link_record_local_dynamic_symbol
976 (x->info, owner, hh->sym_indx)))
977 return FALSE;
978 }
979 }
980
981 hh->dlt_offset = x->ofs;
982 x->ofs += DLT_ENTRY_SIZE;
983 }
984 return TRUE;
985 }
986
987 /* Allocate space for a DLT.PLT entry. */
988
989 static bfd_boolean
990 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
991 {
992 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
993 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
994
995 if (hh->want_plt
996 && elf64_hppa_dynamic_symbol_p (eh, x->info)
997 && !((eh->root.type == bfd_link_hash_defined
998 || eh->root.type == bfd_link_hash_defweak)
999 && eh->root.u.def.section->output_section != NULL))
1000 {
1001 hh->plt_offset = x->ofs;
1002 x->ofs += PLT_ENTRY_SIZE;
1003 if (hh->plt_offset < 0x2000)
1004 {
1005 struct elf64_hppa_link_hash_table *hppa_info;
1006
1007 hppa_info = hppa_link_hash_table (x->info);
1008 if (hppa_info == NULL)
1009 return FALSE;
1010
1011 hppa_info->gp_offset = hh->plt_offset;
1012 }
1013 }
1014 else
1015 hh->want_plt = 0;
1016
1017 return TRUE;
1018 }
1019
1020 /* Allocate space for a STUB entry. */
1021
1022 static bfd_boolean
1023 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1024 {
1025 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1026 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1027
1028 if (hh->want_stub
1029 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1030 && !((eh->root.type == bfd_link_hash_defined
1031 || eh->root.type == bfd_link_hash_defweak)
1032 && eh->root.u.def.section->output_section != NULL))
1033 {
1034 hh->stub_offset = x->ofs;
1035 x->ofs += sizeof (plt_stub);
1036 }
1037 else
1038 hh->want_stub = 0;
1039 return TRUE;
1040 }
1041
1042 /* Allocate space for a FPTR entry. */
1043
1044 static bfd_boolean
1045 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1046 {
1047 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1048 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1049
1050 if (hh && hh->want_opd)
1051 {
1052 /* We never need an opd entry for a symbol which is not
1053 defined by this output file. */
1054 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1055 || hh->eh.root.type == bfd_link_hash_undefweak
1056 || hh->eh.root.u.def.section->output_section == NULL))
1057 hh->want_opd = 0;
1058
1059 /* If we are creating a shared library, took the address of a local
1060 function or might export this function from this object file, then
1061 we have to create an opd descriptor. */
1062 else if (bfd_link_pic (x->info)
1063 || hh == NULL
1064 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1065 || (hh->eh.root.type == bfd_link_hash_defined
1066 || hh->eh.root.type == bfd_link_hash_defweak))
1067 {
1068 /* If we are creating a shared library, then we will have to
1069 create a runtime relocation for the symbol to properly
1070 initialize the .opd entry. Make sure the symbol gets
1071 added to the dynamic symbol table. */
1072 if (bfd_link_pic (x->info)
1073 && (hh == NULL || (hh->eh.dynindx == -1)))
1074 {
1075 bfd *owner;
1076 /* PR 6511: Default to using the dynamic symbol table. */
1077 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1078
1079 if (!bfd_elf_link_record_local_dynamic_symbol
1080 (x->info, owner, hh->sym_indx))
1081 return FALSE;
1082 }
1083
1084 /* This may not be necessary or desirable anymore now that
1085 we have some support for dealing with section symbols
1086 in dynamic relocs. But name munging does make the result
1087 much easier to debug. ie, the EPLT reloc will reference
1088 a symbol like .foobar, instead of .text + offset. */
1089 if (bfd_link_pic (x->info) && eh)
1090 {
1091 char *new_name;
1092 struct elf_link_hash_entry *nh;
1093
1094 new_name = concat (".", eh->root.root.string, NULL);
1095
1096 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1097 new_name, TRUE, TRUE, TRUE);
1098
1099 free (new_name);
1100 nh->root.type = eh->root.type;
1101 nh->root.u.def.value = eh->root.u.def.value;
1102 nh->root.u.def.section = eh->root.u.def.section;
1103
1104 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1105 return FALSE;
1106 }
1107 hh->opd_offset = x->ofs;
1108 x->ofs += OPD_ENTRY_SIZE;
1109 }
1110
1111 /* Otherwise we do not need an opd entry. */
1112 else
1113 hh->want_opd = 0;
1114 }
1115 return TRUE;
1116 }
1117
1118 /* HP requires the EI_OSABI field to be filled in. The assignment to
1119 EI_ABIVERSION may not be strictly necessary. */
1120
1121 static bfd_boolean
1122 elf64_hppa_init_file_header (bfd *abfd, struct bfd_link_info *info)
1123 {
1124 Elf_Internal_Ehdr *i_ehdrp;
1125
1126 if (!_bfd_elf_init_file_header (abfd, info))
1127 return FALSE;
1128
1129 i_ehdrp = elf_elfheader (abfd);
1130 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1131 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1132 return TRUE;
1133 }
1134
1135 /* Create function descriptor section (.opd). This section is called .opd
1136 because it contains "official procedure descriptors". The "official"
1137 refers to the fact that these descriptors are used when taking the address
1138 of a procedure, thus ensuring a unique address for each procedure. */
1139
1140 static bfd_boolean
1141 get_opd (bfd *abfd,
1142 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1143 struct elf64_hppa_link_hash_table *hppa_info)
1144 {
1145 asection *opd;
1146 bfd *dynobj;
1147
1148 opd = hppa_info->opd_sec;
1149 if (!opd)
1150 {
1151 dynobj = hppa_info->root.dynobj;
1152 if (!dynobj)
1153 hppa_info->root.dynobj = dynobj = abfd;
1154
1155 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1156 (SEC_ALLOC
1157 | SEC_LOAD
1158 | SEC_HAS_CONTENTS
1159 | SEC_IN_MEMORY
1160 | SEC_LINKER_CREATED));
1161 if (!opd
1162 || !bfd_set_section_alignment (opd, 3))
1163 {
1164 BFD_ASSERT (0);
1165 return FALSE;
1166 }
1167
1168 hppa_info->opd_sec = opd;
1169 }
1170
1171 return TRUE;
1172 }
1173
1174 /* Create the PLT section. */
1175
1176 static bfd_boolean
1177 get_plt (bfd *abfd,
1178 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1179 struct elf64_hppa_link_hash_table *hppa_info)
1180 {
1181 asection *plt;
1182 bfd *dynobj;
1183
1184 plt = hppa_info->root.splt;
1185 if (!plt)
1186 {
1187 dynobj = hppa_info->root.dynobj;
1188 if (!dynobj)
1189 hppa_info->root.dynobj = dynobj = abfd;
1190
1191 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1192 (SEC_ALLOC
1193 | SEC_LOAD
1194 | SEC_HAS_CONTENTS
1195 | SEC_IN_MEMORY
1196 | SEC_LINKER_CREATED));
1197 if (!plt
1198 || !bfd_set_section_alignment (plt, 3))
1199 {
1200 BFD_ASSERT (0);
1201 return FALSE;
1202 }
1203
1204 hppa_info->root.splt = plt;
1205 }
1206
1207 return TRUE;
1208 }
1209
1210 /* Create the DLT section. */
1211
1212 static bfd_boolean
1213 get_dlt (bfd *abfd,
1214 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1215 struct elf64_hppa_link_hash_table *hppa_info)
1216 {
1217 asection *dlt;
1218 bfd *dynobj;
1219
1220 dlt = hppa_info->dlt_sec;
1221 if (!dlt)
1222 {
1223 dynobj = hppa_info->root.dynobj;
1224 if (!dynobj)
1225 hppa_info->root.dynobj = dynobj = abfd;
1226
1227 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1228 (SEC_ALLOC
1229 | SEC_LOAD
1230 | SEC_HAS_CONTENTS
1231 | SEC_IN_MEMORY
1232 | SEC_LINKER_CREATED));
1233 if (!dlt
1234 || !bfd_set_section_alignment (dlt, 3))
1235 {
1236 BFD_ASSERT (0);
1237 return FALSE;
1238 }
1239
1240 hppa_info->dlt_sec = dlt;
1241 }
1242
1243 return TRUE;
1244 }
1245
1246 /* Create the stubs section. */
1247
1248 static bfd_boolean
1249 get_stub (bfd *abfd,
1250 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1251 struct elf64_hppa_link_hash_table *hppa_info)
1252 {
1253 asection *stub;
1254 bfd *dynobj;
1255
1256 stub = hppa_info->stub_sec;
1257 if (!stub)
1258 {
1259 dynobj = hppa_info->root.dynobj;
1260 if (!dynobj)
1261 hppa_info->root.dynobj = dynobj = abfd;
1262
1263 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1264 (SEC_ALLOC | SEC_LOAD
1265 | SEC_HAS_CONTENTS
1266 | SEC_IN_MEMORY
1267 | SEC_READONLY
1268 | SEC_LINKER_CREATED));
1269 if (!stub
1270 || !bfd_set_section_alignment (stub, 3))
1271 {
1272 BFD_ASSERT (0);
1273 return FALSE;
1274 }
1275
1276 hppa_info->stub_sec = stub;
1277 }
1278
1279 return TRUE;
1280 }
1281
1282 /* Create sections necessary for dynamic linking. This is only a rough
1283 cut and will likely change as we learn more about the somewhat
1284 unusual dynamic linking scheme HP uses.
1285
1286 .stub:
1287 Contains code to implement cross-space calls. The first time one
1288 of the stubs is used it will call into the dynamic linker, later
1289 calls will go straight to the target.
1290
1291 The only stub we support right now looks like
1292
1293 ldd OFFSET(%dp),%r1
1294 bve %r0(%r1)
1295 ldd OFFSET+8(%dp),%dp
1296
1297 Other stubs may be needed in the future. We may want the remove
1298 the break/nop instruction. It is only used right now to keep the
1299 offset of a .plt entry and a .stub entry in sync.
1300
1301 .dlt:
1302 This is what most people call the .got. HP used a different name.
1303 Losers.
1304
1305 .rela.dlt:
1306 Relocations for the DLT.
1307
1308 .plt:
1309 Function pointers as address,gp pairs.
1310
1311 .rela.plt:
1312 Should contain dynamic IPLT (and EPLT?) relocations.
1313
1314 .opd:
1315 FPTRS
1316
1317 .rela.opd:
1318 EPLT relocations for symbols exported from shared libraries. */
1319
1320 static bfd_boolean
1321 elf64_hppa_create_dynamic_sections (bfd *abfd,
1322 struct bfd_link_info *info)
1323 {
1324 asection *s;
1325 struct elf64_hppa_link_hash_table *hppa_info;
1326
1327 hppa_info = hppa_link_hash_table (info);
1328 if (hppa_info == NULL)
1329 return FALSE;
1330
1331 if (! get_stub (abfd, info, hppa_info))
1332 return FALSE;
1333
1334 if (! get_dlt (abfd, info, hppa_info))
1335 return FALSE;
1336
1337 if (! get_plt (abfd, info, hppa_info))
1338 return FALSE;
1339
1340 if (! get_opd (abfd, info, hppa_info))
1341 return FALSE;
1342
1343 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1344 (SEC_ALLOC | SEC_LOAD
1345 | SEC_HAS_CONTENTS
1346 | SEC_IN_MEMORY
1347 | SEC_READONLY
1348 | SEC_LINKER_CREATED));
1349 if (s == NULL
1350 || !bfd_set_section_alignment (s, 3))
1351 return FALSE;
1352 hppa_info->dlt_rel_sec = s;
1353
1354 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1355 (SEC_ALLOC | SEC_LOAD
1356 | SEC_HAS_CONTENTS
1357 | SEC_IN_MEMORY
1358 | SEC_READONLY
1359 | SEC_LINKER_CREATED));
1360 if (s == NULL
1361 || !bfd_set_section_alignment (s, 3))
1362 return FALSE;
1363 hppa_info->root.srelplt = s;
1364
1365 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1366 (SEC_ALLOC | SEC_LOAD
1367 | SEC_HAS_CONTENTS
1368 | SEC_IN_MEMORY
1369 | SEC_READONLY
1370 | SEC_LINKER_CREATED));
1371 if (s == NULL
1372 || !bfd_set_section_alignment (s, 3))
1373 return FALSE;
1374 hppa_info->other_rel_sec = s;
1375
1376 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1377 (SEC_ALLOC | SEC_LOAD
1378 | SEC_HAS_CONTENTS
1379 | SEC_IN_MEMORY
1380 | SEC_READONLY
1381 | SEC_LINKER_CREATED));
1382 if (s == NULL
1383 || !bfd_set_section_alignment (s, 3))
1384 return FALSE;
1385 hppa_info->opd_rel_sec = s;
1386
1387 return TRUE;
1388 }
1389
1390 /* Allocate dynamic relocations for those symbols that turned out
1391 to be dynamic. */
1392
1393 static bfd_boolean
1394 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1395 {
1396 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1397 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1398 struct elf64_hppa_link_hash_table *hppa_info;
1399 struct elf64_hppa_dyn_reloc_entry *rent;
1400 bfd_boolean dynamic_symbol, shared;
1401
1402 hppa_info = hppa_link_hash_table (x->info);
1403 if (hppa_info == NULL)
1404 return FALSE;
1405
1406 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1407 shared = bfd_link_pic (x->info);
1408
1409 /* We may need to allocate relocations for a non-dynamic symbol
1410 when creating a shared library. */
1411 if (!dynamic_symbol && !shared)
1412 return TRUE;
1413
1414 /* Take care of the normal data relocations. */
1415
1416 for (rent = hh->reloc_entries; rent; rent = rent->next)
1417 {
1418 /* Allocate one iff we are building a shared library, the relocation
1419 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1420 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1421 continue;
1422
1423 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1424
1425 /* Make sure this symbol gets into the dynamic symbol table if it is
1426 not already recorded. ?!? This should not be in the loop since
1427 the symbol need only be added once. */
1428 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1429 if (!bfd_elf_link_record_local_dynamic_symbol
1430 (x->info, rent->sec->owner, hh->sym_indx))
1431 return FALSE;
1432 }
1433
1434 /* Take care of the GOT and PLT relocations. */
1435
1436 if ((dynamic_symbol || shared) && hh->want_dlt)
1437 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1438
1439 /* If we are building a shared library, then every symbol that has an
1440 opd entry will need an EPLT relocation to relocate the symbol's address
1441 and __gp value based on the runtime load address. */
1442 if (shared && hh->want_opd)
1443 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1444
1445 if (hh->want_plt && dynamic_symbol)
1446 {
1447 bfd_size_type t = 0;
1448
1449 /* Dynamic symbols get one IPLT relocation. Local symbols in
1450 shared libraries get two REL relocations. Local symbols in
1451 main applications get nothing. */
1452 if (dynamic_symbol)
1453 t = sizeof (Elf64_External_Rela);
1454 else if (shared)
1455 t = 2 * sizeof (Elf64_External_Rela);
1456
1457 hppa_info->root.srelplt->size += t;
1458 }
1459
1460 return TRUE;
1461 }
1462
1463 /* Adjust a symbol defined by a dynamic object and referenced by a
1464 regular object. */
1465
1466 static bfd_boolean
1467 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1468 struct elf_link_hash_entry *eh)
1469 {
1470 /* ??? Undefined symbols with PLT entries should be re-defined
1471 to be the PLT entry. */
1472
1473 /* If this is a weak symbol, and there is a real definition, the
1474 processor independent code will have arranged for us to see the
1475 real definition first, and we can just use the same value. */
1476 if (eh->is_weakalias)
1477 {
1478 struct elf_link_hash_entry *def = weakdef (eh);
1479 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1480 eh->root.u.def.section = def->root.u.def.section;
1481 eh->root.u.def.value = def->root.u.def.value;
1482 return TRUE;
1483 }
1484
1485 /* If this is a reference to a symbol defined by a dynamic object which
1486 is not a function, we might allocate the symbol in our .dynbss section
1487 and allocate a COPY dynamic relocation.
1488
1489 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1490 of hackery. */
1491
1492 return TRUE;
1493 }
1494
1495 /* This function is called via elf_link_hash_traverse to mark millicode
1496 symbols with a dynindx of -1 and to remove the string table reference
1497 from the dynamic symbol table. If the symbol is not a millicode symbol,
1498 elf64_hppa_mark_exported_functions is called. */
1499
1500 static bfd_boolean
1501 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1502 void *data)
1503 {
1504 struct bfd_link_info *info = (struct bfd_link_info *) data;
1505
1506 if (eh->type == STT_PARISC_MILLI)
1507 {
1508 if (eh->dynindx != -1)
1509 {
1510 eh->dynindx = -1;
1511 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1512 eh->dynstr_index);
1513 }
1514 return TRUE;
1515 }
1516
1517 return elf64_hppa_mark_exported_functions (eh, data);
1518 }
1519
1520 /* Set the final sizes of the dynamic sections and allocate memory for
1521 the contents of our special sections. */
1522
1523 static bfd_boolean
1524 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1525 {
1526 struct elf64_hppa_link_hash_table *hppa_info;
1527 struct elf64_hppa_allocate_data data;
1528 bfd *dynobj;
1529 bfd *ibfd;
1530 asection *sec;
1531 bfd_boolean relocs;
1532
1533 hppa_info = hppa_link_hash_table (info);
1534 if (hppa_info == NULL)
1535 return FALSE;
1536
1537 dynobj = hppa_info->root.dynobj;
1538 BFD_ASSERT (dynobj != NULL);
1539
1540 /* Mark each function this program exports so that we will allocate
1541 space in the .opd section for each function's FPTR. If we are
1542 creating dynamic sections, change the dynamic index of millicode
1543 symbols to -1 and remove them from the string table for .dynstr.
1544
1545 We have to traverse the main linker hash table since we have to
1546 find functions which may not have been mentioned in any relocs. */
1547 elf_link_hash_traverse (&hppa_info->root,
1548 (hppa_info->root.dynamic_sections_created
1549 ? elf64_hppa_mark_milli_and_exported_functions
1550 : elf64_hppa_mark_exported_functions),
1551 info);
1552
1553 if (hppa_info->root.dynamic_sections_created)
1554 {
1555 /* Set the contents of the .interp section to the interpreter. */
1556 if (bfd_link_executable (info) && !info->nointerp)
1557 {
1558 sec = bfd_get_linker_section (dynobj, ".interp");
1559 BFD_ASSERT (sec != NULL);
1560 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1561 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1562 }
1563 }
1564 else
1565 {
1566 /* We may have created entries in the .rela.got section.
1567 However, if we are not creating the dynamic sections, we will
1568 not actually use these entries. Reset the size of .rela.dlt,
1569 which will cause it to get stripped from the output file
1570 below. */
1571 sec = hppa_info->dlt_rel_sec;
1572 if (sec != NULL)
1573 sec->size = 0;
1574 }
1575
1576 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1577 dynamic relocs. */
1578 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1579 {
1580 bfd_signed_vma *local_dlt;
1581 bfd_signed_vma *end_local_dlt;
1582 bfd_signed_vma *local_plt;
1583 bfd_signed_vma *end_local_plt;
1584 bfd_signed_vma *local_opd;
1585 bfd_signed_vma *end_local_opd;
1586 bfd_size_type locsymcount;
1587 Elf_Internal_Shdr *symtab_hdr;
1588 asection *srel;
1589
1590 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1591 continue;
1592
1593 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1594 {
1595 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1596
1597 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1598 elf_section_data (sec)->local_dynrel);
1599 hdh_p != NULL;
1600 hdh_p = hdh_p->next)
1601 {
1602 if (!bfd_is_abs_section (hdh_p->sec)
1603 && bfd_is_abs_section (hdh_p->sec->output_section))
1604 {
1605 /* Input section has been discarded, either because
1606 it is a copy of a linkonce section or due to
1607 linker script /DISCARD/, so we'll be discarding
1608 the relocs too. */
1609 }
1610 else if (hdh_p->count != 0)
1611 {
1612 srel = elf_section_data (hdh_p->sec)->sreloc;
1613 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1614 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1615 info->flags |= DF_TEXTREL;
1616 }
1617 }
1618 }
1619
1620 local_dlt = elf_local_got_refcounts (ibfd);
1621 if (!local_dlt)
1622 continue;
1623
1624 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1625 locsymcount = symtab_hdr->sh_info;
1626 end_local_dlt = local_dlt + locsymcount;
1627 sec = hppa_info->dlt_sec;
1628 srel = hppa_info->dlt_rel_sec;
1629 for (; local_dlt < end_local_dlt; ++local_dlt)
1630 {
1631 if (*local_dlt > 0)
1632 {
1633 *local_dlt = sec->size;
1634 sec->size += DLT_ENTRY_SIZE;
1635 if (bfd_link_pic (info))
1636 {
1637 srel->size += sizeof (Elf64_External_Rela);
1638 }
1639 }
1640 else
1641 *local_dlt = (bfd_vma) -1;
1642 }
1643
1644 local_plt = end_local_dlt;
1645 end_local_plt = local_plt + locsymcount;
1646 if (! hppa_info->root.dynamic_sections_created)
1647 {
1648 /* Won't be used, but be safe. */
1649 for (; local_plt < end_local_plt; ++local_plt)
1650 *local_plt = (bfd_vma) -1;
1651 }
1652 else
1653 {
1654 sec = hppa_info->root.splt;
1655 srel = hppa_info->root.srelplt;
1656 for (; local_plt < end_local_plt; ++local_plt)
1657 {
1658 if (*local_plt > 0)
1659 {
1660 *local_plt = sec->size;
1661 sec->size += PLT_ENTRY_SIZE;
1662 if (bfd_link_pic (info))
1663 srel->size += sizeof (Elf64_External_Rela);
1664 }
1665 else
1666 *local_plt = (bfd_vma) -1;
1667 }
1668 }
1669
1670 local_opd = end_local_plt;
1671 end_local_opd = local_opd + locsymcount;
1672 if (! hppa_info->root.dynamic_sections_created)
1673 {
1674 /* Won't be used, but be safe. */
1675 for (; local_opd < end_local_opd; ++local_opd)
1676 *local_opd = (bfd_vma) -1;
1677 }
1678 else
1679 {
1680 sec = hppa_info->opd_sec;
1681 srel = hppa_info->opd_rel_sec;
1682 for (; local_opd < end_local_opd; ++local_opd)
1683 {
1684 if (*local_opd > 0)
1685 {
1686 *local_opd = sec->size;
1687 sec->size += OPD_ENTRY_SIZE;
1688 if (bfd_link_pic (info))
1689 srel->size += sizeof (Elf64_External_Rela);
1690 }
1691 else
1692 *local_opd = (bfd_vma) -1;
1693 }
1694 }
1695 }
1696
1697 /* Allocate the GOT entries. */
1698
1699 data.info = info;
1700 if (hppa_info->dlt_sec)
1701 {
1702 data.ofs = hppa_info->dlt_sec->size;
1703 elf_link_hash_traverse (&hppa_info->root,
1704 allocate_global_data_dlt, &data);
1705 hppa_info->dlt_sec->size = data.ofs;
1706 }
1707
1708 if (hppa_info->root.splt)
1709 {
1710 data.ofs = hppa_info->root.splt->size;
1711 elf_link_hash_traverse (&hppa_info->root,
1712 allocate_global_data_plt, &data);
1713 hppa_info->root.splt->size = data.ofs;
1714 }
1715
1716 if (hppa_info->stub_sec)
1717 {
1718 data.ofs = 0x0;
1719 elf_link_hash_traverse (&hppa_info->root,
1720 allocate_global_data_stub, &data);
1721 hppa_info->stub_sec->size = data.ofs;
1722 }
1723
1724 /* Allocate space for entries in the .opd section. */
1725 if (hppa_info->opd_sec)
1726 {
1727 data.ofs = hppa_info->opd_sec->size;
1728 elf_link_hash_traverse (&hppa_info->root,
1729 allocate_global_data_opd, &data);
1730 hppa_info->opd_sec->size = data.ofs;
1731 }
1732
1733 /* Now allocate space for dynamic relocations, if necessary. */
1734 if (hppa_info->root.dynamic_sections_created)
1735 elf_link_hash_traverse (&hppa_info->root,
1736 allocate_dynrel_entries, &data);
1737
1738 /* The sizes of all the sections are set. Allocate memory for them. */
1739 relocs = FALSE;
1740 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1741 {
1742 const char *name;
1743
1744 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1745 continue;
1746
1747 /* It's OK to base decisions on the section name, because none
1748 of the dynobj section names depend upon the input files. */
1749 name = bfd_section_name (sec);
1750
1751 if (strcmp (name, ".plt") == 0)
1752 {
1753 /* Remember whether there is a PLT. */
1754 ;
1755 }
1756 else if (strcmp (name, ".opd") == 0
1757 || CONST_STRNEQ (name, ".dlt")
1758 || strcmp (name, ".stub") == 0
1759 || strcmp (name, ".got") == 0)
1760 {
1761 /* Strip this section if we don't need it; see the comment below. */
1762 }
1763 else if (CONST_STRNEQ (name, ".rela"))
1764 {
1765 if (sec->size != 0)
1766 {
1767 /* Remember whether there are any reloc sections other
1768 than .rela.plt. */
1769 if (strcmp (name, ".rela.plt") != 0)
1770 relocs = TRUE;
1771
1772 /* We use the reloc_count field as a counter if we need
1773 to copy relocs into the output file. */
1774 sec->reloc_count = 0;
1775 }
1776 }
1777 else
1778 {
1779 /* It's not one of our sections, so don't allocate space. */
1780 continue;
1781 }
1782
1783 if (sec->size == 0)
1784 {
1785 /* If we don't need this section, strip it from the
1786 output file. This is mostly to handle .rela.bss and
1787 .rela.plt. We must create both sections in
1788 create_dynamic_sections, because they must be created
1789 before the linker maps input sections to output
1790 sections. The linker does that before
1791 adjust_dynamic_symbol is called, and it is that
1792 function which decides whether anything needs to go
1793 into these sections. */
1794 sec->flags |= SEC_EXCLUDE;
1795 continue;
1796 }
1797
1798 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1799 continue;
1800
1801 /* Allocate memory for the section contents if it has not
1802 been allocated already. We use bfd_zalloc here in case
1803 unused entries are not reclaimed before the section's
1804 contents are written out. This should not happen, but this
1805 way if it does, we get a R_PARISC_NONE reloc instead of
1806 garbage. */
1807 if (sec->contents == NULL)
1808 {
1809 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1810 if (sec->contents == NULL)
1811 return FALSE;
1812 }
1813 }
1814
1815 if (hppa_info->root.dynamic_sections_created)
1816 {
1817 /* Always create a DT_PLTGOT. It actually has nothing to do with
1818 the PLT, it is how we communicate the __gp value of a load
1819 module to the dynamic linker. */
1820 #define add_dynamic_entry(TAG, VAL) \
1821 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1822
1823 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0))
1824 return FALSE;
1825
1826 /* Add some entries to the .dynamic section. We fill in the
1827 values later, in elf64_hppa_finish_dynamic_sections, but we
1828 must add the entries now so that we get the correct size for
1829 the .dynamic section. The DT_DEBUG entry is filled in by the
1830 dynamic linker and used by the debugger. */
1831 if (! bfd_link_pic (info))
1832 {
1833 if (!add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1834 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1835 return FALSE;
1836 }
1837
1838 /* Force DT_FLAGS to always be set.
1839 Required by HPUX 11.00 patch PHSS_26559. */
1840 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1841 return FALSE;
1842 }
1843 #undef add_dynamic_entry
1844
1845 return _bfd_elf_add_dynamic_tags (output_bfd, info, relocs);
1846 }
1847
1848 /* Called after we have output the symbol into the dynamic symbol
1849 table, but before we output the symbol into the normal symbol
1850 table.
1851
1852 For some symbols we had to change their address when outputting
1853 the dynamic symbol table. We undo that change here so that
1854 the symbols have their expected value in the normal symbol
1855 table. Ick. */
1856
1857 static int
1858 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1859 const char *name,
1860 Elf_Internal_Sym *sym,
1861 asection *input_sec ATTRIBUTE_UNUSED,
1862 struct elf_link_hash_entry *eh)
1863 {
1864 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1865
1866 /* We may be called with the file symbol or section symbols.
1867 They never need munging, so it is safe to ignore them. */
1868 if (!name || !eh)
1869 return 1;
1870
1871 /* Function symbols for which we created .opd entries *may* have been
1872 munged by finish_dynamic_symbol and have to be un-munged here.
1873
1874 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1875 into non-dynamic ones, so we initialize st_shndx to -1 in
1876 mark_exported_functions and check to see if it was overwritten
1877 here instead of just checking eh->dynindx. */
1878 if (hh->want_opd && hh->st_shndx != -1)
1879 {
1880 /* Restore the saved value and section index. */
1881 sym->st_value = hh->st_value;
1882 sym->st_shndx = hh->st_shndx;
1883 }
1884
1885 return 1;
1886 }
1887
1888 /* Finish up dynamic symbol handling. We set the contents of various
1889 dynamic sections here. */
1890
1891 static bfd_boolean
1892 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1893 struct bfd_link_info *info,
1894 struct elf_link_hash_entry *eh,
1895 Elf_Internal_Sym *sym)
1896 {
1897 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1898 asection *stub, *splt, *sopd, *spltrel;
1899 struct elf64_hppa_link_hash_table *hppa_info;
1900
1901 hppa_info = hppa_link_hash_table (info);
1902 if (hppa_info == NULL)
1903 return FALSE;
1904
1905 stub = hppa_info->stub_sec;
1906 splt = hppa_info->root.splt;
1907 sopd = hppa_info->opd_sec;
1908 spltrel = hppa_info->root.srelplt;
1909
1910 /* Incredible. It is actually necessary to NOT use the symbol's real
1911 value when building the dynamic symbol table for a shared library.
1912 At least for symbols that refer to functions.
1913
1914 We will store a new value and section index into the symbol long
1915 enough to output it into the dynamic symbol table, then we restore
1916 the original values (in elf64_hppa_link_output_symbol_hook). */
1917 if (hh->want_opd)
1918 {
1919 BFD_ASSERT (sopd != NULL);
1920
1921 /* Save away the original value and section index so that we
1922 can restore them later. */
1923 hh->st_value = sym->st_value;
1924 hh->st_shndx = sym->st_shndx;
1925
1926 /* For the dynamic symbol table entry, we want the value to be
1927 address of this symbol's entry within the .opd section. */
1928 sym->st_value = (hh->opd_offset
1929 + sopd->output_offset
1930 + sopd->output_section->vma);
1931 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1932 sopd->output_section);
1933 }
1934
1935 /* Initialize a .plt entry if requested. */
1936 if (hh->want_plt
1937 && elf64_hppa_dynamic_symbol_p (eh, info))
1938 {
1939 bfd_vma value;
1940 Elf_Internal_Rela rel;
1941 bfd_byte *loc;
1942
1943 BFD_ASSERT (splt != NULL && spltrel != NULL);
1944
1945 /* We do not actually care about the value in the PLT entry
1946 if we are creating a shared library and the symbol is
1947 still undefined, we create a dynamic relocation to fill
1948 in the correct value. */
1949 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1950 value = 0;
1951 else
1952 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
1953
1954 /* Fill in the entry in the procedure linkage table.
1955
1956 The format of a plt entry is
1957 <funcaddr> <__gp>.
1958
1959 plt_offset is the offset within the PLT section at which to
1960 install the PLT entry.
1961
1962 We are modifying the in-memory PLT contents here, so we do not add
1963 in the output_offset of the PLT section. */
1964
1965 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
1966 value = _bfd_get_gp_value (info->output_bfd);
1967 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
1968
1969 /* Create a dynamic IPLT relocation for this entry.
1970
1971 We are creating a relocation in the output file's PLT section,
1972 which is included within the DLT secton. So we do need to include
1973 the PLT's output_offset in the computation of the relocation's
1974 address. */
1975 rel.r_offset = (hh->plt_offset + splt->output_offset
1976 + splt->output_section->vma);
1977 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
1978 rel.r_addend = 0;
1979
1980 loc = spltrel->contents;
1981 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
1982 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
1983 }
1984
1985 /* Initialize an external call stub entry if requested. */
1986 if (hh->want_stub
1987 && elf64_hppa_dynamic_symbol_p (eh, info))
1988 {
1989 bfd_vma value;
1990 int insn;
1991 unsigned int max_offset;
1992
1993 BFD_ASSERT (stub != NULL);
1994
1995 /* Install the generic stub template.
1996
1997 We are modifying the contents of the stub section, so we do not
1998 need to include the stub section's output_offset here. */
1999 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2000
2001 /* Fix up the first ldd instruction.
2002
2003 We are modifying the contents of the STUB section in memory,
2004 so we do not need to include its output offset in this computation.
2005
2006 Note the plt_offset value is the value of the PLT entry relative to
2007 the start of the PLT section. These instructions will reference
2008 data relative to the value of __gp, which may not necessarily have
2009 the same address as the start of the PLT section.
2010
2011 gp_offset contains the offset of __gp within the PLT section. */
2012 value = hh->plt_offset - hppa_info->gp_offset;
2013
2014 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2015 if (output_bfd->arch_info->mach >= 25)
2016 {
2017 /* Wide mode allows 16 bit offsets. */
2018 max_offset = 32768;
2019 insn &= ~ 0xfff1;
2020 insn |= re_assemble_16 ((int) value);
2021 }
2022 else
2023 {
2024 max_offset = 8192;
2025 insn &= ~ 0x3ff1;
2026 insn |= re_assemble_14 ((int) value);
2027 }
2028
2029 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2030 {
2031 _bfd_error_handler
2032 /* xgettext:c-format */
2033 (_("stub entry for %s cannot load .plt, dp offset = %" PRId64),
2034 hh->eh.root.root.string, (int64_t) value);
2035 return FALSE;
2036 }
2037
2038 bfd_put_32 (stub->owner, (bfd_vma) insn,
2039 stub->contents + hh->stub_offset);
2040
2041 /* Fix up the second ldd instruction. */
2042 value += 8;
2043 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2044 if (output_bfd->arch_info->mach >= 25)
2045 {
2046 insn &= ~ 0xfff1;
2047 insn |= re_assemble_16 ((int) value);
2048 }
2049 else
2050 {
2051 insn &= ~ 0x3ff1;
2052 insn |= re_assemble_14 ((int) value);
2053 }
2054 bfd_put_32 (stub->owner, (bfd_vma) insn,
2055 stub->contents + hh->stub_offset + 8);
2056 }
2057
2058 return TRUE;
2059 }
2060
2061 /* The .opd section contains FPTRs for each function this file
2062 exports. Initialize the FPTR entries. */
2063
2064 static bfd_boolean
2065 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2066 {
2067 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2068 struct bfd_link_info *info = (struct bfd_link_info *)data;
2069 struct elf64_hppa_link_hash_table *hppa_info;
2070 asection *sopd;
2071 asection *sopdrel;
2072
2073 hppa_info = hppa_link_hash_table (info);
2074 if (hppa_info == NULL)
2075 return FALSE;
2076
2077 sopd = hppa_info->opd_sec;
2078 sopdrel = hppa_info->opd_rel_sec;
2079
2080 if (hh->want_opd)
2081 {
2082 bfd_vma value;
2083
2084 /* The first two words of an .opd entry are zero.
2085
2086 We are modifying the contents of the OPD section in memory, so we
2087 do not need to include its output offset in this computation. */
2088 memset (sopd->contents + hh->opd_offset, 0, 16);
2089
2090 value = (eh->root.u.def.value
2091 + eh->root.u.def.section->output_section->vma
2092 + eh->root.u.def.section->output_offset);
2093
2094 /* The next word is the address of the function. */
2095 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2096
2097 /* The last word is our local __gp value. */
2098 value = _bfd_get_gp_value (info->output_bfd);
2099 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2100 }
2101
2102 /* If we are generating a shared library, we must generate EPLT relocations
2103 for each entry in the .opd, even for static functions (they may have
2104 had their address taken). */
2105 if (bfd_link_pic (info) && hh->want_opd)
2106 {
2107 Elf_Internal_Rela rel;
2108 bfd_byte *loc;
2109 int dynindx;
2110
2111 /* We may need to do a relocation against a local symbol, in
2112 which case we have to look up it's dynamic symbol index off
2113 the local symbol hash table. */
2114 if (eh->dynindx != -1)
2115 dynindx = eh->dynindx;
2116 else
2117 dynindx
2118 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2119 hh->sym_indx);
2120
2121 /* The offset of this relocation is the absolute address of the
2122 .opd entry for this symbol. */
2123 rel.r_offset = (hh->opd_offset + sopd->output_offset
2124 + sopd->output_section->vma);
2125
2126 /* If H is non-null, then we have an external symbol.
2127
2128 It is imperative that we use a different dynamic symbol for the
2129 EPLT relocation if the symbol has global scope.
2130
2131 In the dynamic symbol table, the function symbol will have a value
2132 which is address of the function's .opd entry.
2133
2134 Thus, we can not use that dynamic symbol for the EPLT relocation
2135 (if we did, the data in the .opd would reference itself rather
2136 than the actual address of the function). Instead we have to use
2137 a new dynamic symbol which has the same value as the original global
2138 function symbol.
2139
2140 We prefix the original symbol with a "." and use the new symbol in
2141 the EPLT relocation. This new symbol has already been recorded in
2142 the symbol table, we just have to look it up and use it.
2143
2144 We do not have such problems with static functions because we do
2145 not make their addresses in the dynamic symbol table point to
2146 the .opd entry. Ultimately this should be safe since a static
2147 function can not be directly referenced outside of its shared
2148 library.
2149
2150 We do have to play similar games for FPTR relocations in shared
2151 libraries, including those for static symbols. See the FPTR
2152 handling in elf64_hppa_finalize_dynreloc. */
2153 if (eh)
2154 {
2155 char *new_name;
2156 struct elf_link_hash_entry *nh;
2157
2158 new_name = concat (".", eh->root.root.string, NULL);
2159
2160 nh = elf_link_hash_lookup (elf_hash_table (info),
2161 new_name, TRUE, TRUE, FALSE);
2162
2163 /* All we really want from the new symbol is its dynamic
2164 symbol index. */
2165 if (nh)
2166 dynindx = nh->dynindx;
2167 free (new_name);
2168 }
2169
2170 rel.r_addend = 0;
2171 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2172
2173 loc = sopdrel->contents;
2174 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2175 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2176 }
2177 return TRUE;
2178 }
2179
2180 /* The .dlt section contains addresses for items referenced through the
2181 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2182 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2183
2184 static bfd_boolean
2185 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2186 {
2187 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2188 struct bfd_link_info *info = (struct bfd_link_info *)data;
2189 struct elf64_hppa_link_hash_table *hppa_info;
2190 asection *sdlt, *sdltrel;
2191
2192 hppa_info = hppa_link_hash_table (info);
2193 if (hppa_info == NULL)
2194 return FALSE;
2195
2196 sdlt = hppa_info->dlt_sec;
2197 sdltrel = hppa_info->dlt_rel_sec;
2198
2199 /* H/DYN_H may refer to a local variable and we know it's
2200 address, so there is no need to create a relocation. Just install
2201 the proper value into the DLT, note this shortcut can not be
2202 skipped when building a shared library. */
2203 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2204 {
2205 bfd_vma value;
2206
2207 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2208 to point to the FPTR entry in the .opd section.
2209
2210 We include the OPD's output offset in this computation as
2211 we are referring to an absolute address in the resulting
2212 object file. */
2213 if (hh->want_opd)
2214 {
2215 value = (hh->opd_offset
2216 + hppa_info->opd_sec->output_offset
2217 + hppa_info->opd_sec->output_section->vma);
2218 }
2219 else if ((eh->root.type == bfd_link_hash_defined
2220 || eh->root.type == bfd_link_hash_defweak)
2221 && eh->root.u.def.section)
2222 {
2223 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2224 if (eh->root.u.def.section->output_section)
2225 value += eh->root.u.def.section->output_section->vma;
2226 else
2227 value += eh->root.u.def.section->vma;
2228 }
2229 else
2230 /* We have an undefined function reference. */
2231 value = 0;
2232
2233 /* We do not need to include the output offset of the DLT section
2234 here because we are modifying the in-memory contents. */
2235 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2236 }
2237
2238 /* Create a relocation for the DLT entry associated with this symbol.
2239 When building a shared library the symbol does not have to be dynamic. */
2240 if (hh->want_dlt
2241 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2242 {
2243 Elf_Internal_Rela rel;
2244 bfd_byte *loc;
2245 int dynindx;
2246
2247 /* We may need to do a relocation against a local symbol, in
2248 which case we have to look up it's dynamic symbol index off
2249 the local symbol hash table. */
2250 if (eh && eh->dynindx != -1)
2251 dynindx = eh->dynindx;
2252 else
2253 dynindx
2254 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2255 hh->sym_indx);
2256
2257 /* Create a dynamic relocation for this entry. Do include the output
2258 offset of the DLT entry since we need an absolute address in the
2259 resulting object file. */
2260 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2261 + sdlt->output_section->vma);
2262 if (eh && eh->type == STT_FUNC)
2263 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2264 else
2265 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2266 rel.r_addend = 0;
2267
2268 loc = sdltrel->contents;
2269 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2270 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2271 }
2272 return TRUE;
2273 }
2274
2275 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2276 for dynamic functions used to initialize static data. */
2277
2278 static bfd_boolean
2279 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2280 void *data)
2281 {
2282 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2283 struct bfd_link_info *info = (struct bfd_link_info *)data;
2284 struct elf64_hppa_link_hash_table *hppa_info;
2285 int dynamic_symbol;
2286
2287 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2288
2289 if (!dynamic_symbol && !bfd_link_pic (info))
2290 return TRUE;
2291
2292 if (hh->reloc_entries)
2293 {
2294 struct elf64_hppa_dyn_reloc_entry *rent;
2295 int dynindx;
2296
2297 hppa_info = hppa_link_hash_table (info);
2298 if (hppa_info == NULL)
2299 return FALSE;
2300
2301 /* We may need to do a relocation against a local symbol, in
2302 which case we have to look up it's dynamic symbol index off
2303 the local symbol hash table. */
2304 if (eh->dynindx != -1)
2305 dynindx = eh->dynindx;
2306 else
2307 dynindx
2308 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2309 hh->sym_indx);
2310
2311 for (rent = hh->reloc_entries; rent; rent = rent->next)
2312 {
2313 Elf_Internal_Rela rel;
2314 bfd_byte *loc;
2315
2316 /* Allocate one iff we are building a shared library, the relocation
2317 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2318 if (!bfd_link_pic (info)
2319 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2320 continue;
2321
2322 /* Create a dynamic relocation for this entry.
2323
2324 We need the output offset for the reloc's section because
2325 we are creating an absolute address in the resulting object
2326 file. */
2327 rel.r_offset = (rent->offset + rent->sec->output_offset
2328 + rent->sec->output_section->vma);
2329
2330 /* An FPTR64 relocation implies that we took the address of
2331 a function and that the function has an entry in the .opd
2332 section. We want the FPTR64 relocation to reference the
2333 entry in .opd.
2334
2335 We could munge the symbol value in the dynamic symbol table
2336 (in fact we already do for functions with global scope) to point
2337 to the .opd entry. Then we could use that dynamic symbol in
2338 this relocation.
2339
2340 Or we could do something sensible, not munge the symbol's
2341 address and instead just use a different symbol to reference
2342 the .opd entry. At least that seems sensible until you
2343 realize there's no local dynamic symbols we can use for that
2344 purpose. Thus the hair in the check_relocs routine.
2345
2346 We use a section symbol recorded by check_relocs as the
2347 base symbol for the relocation. The addend is the difference
2348 between the section symbol and the address of the .opd entry. */
2349 if (bfd_link_pic (info)
2350 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2351 {
2352 bfd_vma value, value2;
2353
2354 /* First compute the address of the opd entry for this symbol. */
2355 value = (hh->opd_offset
2356 + hppa_info->opd_sec->output_section->vma
2357 + hppa_info->opd_sec->output_offset);
2358
2359 /* Compute the value of the start of the section with
2360 the relocation. */
2361 value2 = (rent->sec->output_section->vma
2362 + rent->sec->output_offset);
2363
2364 /* Compute the difference between the start of the section
2365 with the relocation and the opd entry. */
2366 value -= value2;
2367
2368 /* The result becomes the addend of the relocation. */
2369 rel.r_addend = value;
2370
2371 /* The section symbol becomes the symbol for the dynamic
2372 relocation. */
2373 dynindx
2374 = _bfd_elf_link_lookup_local_dynindx (info,
2375 rent->sec->owner,
2376 rent->sec_symndx);
2377 }
2378 else
2379 rel.r_addend = rent->addend;
2380
2381 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2382
2383 loc = hppa_info->other_rel_sec->contents;
2384 loc += (hppa_info->other_rel_sec->reloc_count++
2385 * sizeof (Elf64_External_Rela));
2386 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2387 }
2388 }
2389
2390 return TRUE;
2391 }
2392
2393 /* Used to decide how to sort relocs in an optimal manner for the
2394 dynamic linker, before writing them out. */
2395
2396 static enum elf_reloc_type_class
2397 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2398 const asection *rel_sec ATTRIBUTE_UNUSED,
2399 const Elf_Internal_Rela *rela)
2400 {
2401 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2402 return reloc_class_relative;
2403
2404 switch ((int) ELF64_R_TYPE (rela->r_info))
2405 {
2406 case R_PARISC_IPLT:
2407 return reloc_class_plt;
2408 case R_PARISC_COPY:
2409 return reloc_class_copy;
2410 default:
2411 return reloc_class_normal;
2412 }
2413 }
2414
2415 /* Finish up the dynamic sections. */
2416
2417 static bfd_boolean
2418 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2419 struct bfd_link_info *info)
2420 {
2421 bfd *dynobj;
2422 asection *sdyn;
2423 struct elf64_hppa_link_hash_table *hppa_info;
2424
2425 hppa_info = hppa_link_hash_table (info);
2426 if (hppa_info == NULL)
2427 return FALSE;
2428
2429 /* Finalize the contents of the .opd section. */
2430 elf_link_hash_traverse (elf_hash_table (info),
2431 elf64_hppa_finalize_opd,
2432 info);
2433
2434 elf_link_hash_traverse (elf_hash_table (info),
2435 elf64_hppa_finalize_dynreloc,
2436 info);
2437
2438 /* Finalize the contents of the .dlt section. */
2439 dynobj = elf_hash_table (info)->dynobj;
2440 /* Finalize the contents of the .dlt section. */
2441 elf_link_hash_traverse (elf_hash_table (info),
2442 elf64_hppa_finalize_dlt,
2443 info);
2444
2445 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2446
2447 if (elf_hash_table (info)->dynamic_sections_created)
2448 {
2449 Elf64_External_Dyn *dyncon, *dynconend;
2450
2451 BFD_ASSERT (sdyn != NULL);
2452
2453 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2454 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2455 for (; dyncon < dynconend; dyncon++)
2456 {
2457 Elf_Internal_Dyn dyn;
2458 asection *s;
2459
2460 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2461
2462 switch (dyn.d_tag)
2463 {
2464 default:
2465 break;
2466
2467 case DT_HP_LOAD_MAP:
2468 /* Compute the absolute address of 16byte scratchpad area
2469 for the dynamic linker.
2470
2471 By convention the linker script will allocate the scratchpad
2472 area at the start of the .data section. So all we have to
2473 to is find the start of the .data section. */
2474 s = bfd_get_section_by_name (output_bfd, ".data");
2475 if (!s)
2476 return FALSE;
2477 dyn.d_un.d_ptr = s->vma;
2478 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2479 break;
2480
2481 case DT_PLTGOT:
2482 /* HP's use PLTGOT to set the GOT register. */
2483 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2484 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2485 break;
2486
2487 case DT_JMPREL:
2488 s = hppa_info->root.srelplt;
2489 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2490 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2491 break;
2492
2493 case DT_PLTRELSZ:
2494 s = hppa_info->root.srelplt;
2495 dyn.d_un.d_val = s->size;
2496 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2497 break;
2498
2499 case DT_RELA:
2500 s = hppa_info->other_rel_sec;
2501 if (! s || ! s->size)
2502 s = hppa_info->dlt_rel_sec;
2503 if (! s || ! s->size)
2504 s = hppa_info->opd_rel_sec;
2505 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2506 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2507 break;
2508
2509 case DT_RELASZ:
2510 s = hppa_info->other_rel_sec;
2511 dyn.d_un.d_val = s->size;
2512 s = hppa_info->dlt_rel_sec;
2513 dyn.d_un.d_val += s->size;
2514 s = hppa_info->opd_rel_sec;
2515 dyn.d_un.d_val += s->size;
2516 /* There is some question about whether or not the size of
2517 the PLT relocs should be included here. HP's tools do
2518 it, so we'll emulate them. */
2519 s = hppa_info->root.srelplt;
2520 dyn.d_un.d_val += s->size;
2521 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2522 break;
2523
2524 }
2525 }
2526 }
2527
2528 return TRUE;
2529 }
2530
2531 /* Support for core dump NOTE sections. */
2532
2533 static bfd_boolean
2534 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2535 {
2536 int offset;
2537 size_t size;
2538
2539 switch (note->descsz)
2540 {
2541 default:
2542 return FALSE;
2543
2544 case 760: /* Linux/hppa */
2545 /* pr_cursig */
2546 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2547
2548 /* pr_pid */
2549 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2550
2551 /* pr_reg */
2552 offset = 112;
2553 size = 640;
2554
2555 break;
2556 }
2557
2558 /* Make a ".reg/999" section. */
2559 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2560 size, note->descpos + offset);
2561 }
2562
2563 static bfd_boolean
2564 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2565 {
2566 char * command;
2567 int n;
2568
2569 switch (note->descsz)
2570 {
2571 default:
2572 return FALSE;
2573
2574 case 136: /* Linux/hppa elf_prpsinfo. */
2575 elf_tdata (abfd)->core->program
2576 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2577 elf_tdata (abfd)->core->command
2578 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2579 }
2580
2581 /* Note that for some reason, a spurious space is tacked
2582 onto the end of the args in some (at least one anyway)
2583 implementations, so strip it off if it exists. */
2584 command = elf_tdata (abfd)->core->command;
2585 n = strlen (command);
2586
2587 if (0 < n && command[n - 1] == ' ')
2588 command[n - 1] = '\0';
2589
2590 return TRUE;
2591 }
2592
2593 /* Return the number of additional phdrs we will need.
2594
2595 The generic ELF code only creates PT_PHDRs for executables. The HP
2596 dynamic linker requires PT_PHDRs for dynamic libraries too.
2597
2598 This routine indicates that the backend needs one additional program
2599 header for that case.
2600
2601 Note we do not have access to the link info structure here, so we have
2602 to guess whether or not we are building a shared library based on the
2603 existence of a .interp section. */
2604
2605 static int
2606 elf64_hppa_additional_program_headers (bfd *abfd,
2607 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2608 {
2609 asection *s;
2610
2611 /* If we are creating a shared library, then we have to create a
2612 PT_PHDR segment. HP's dynamic linker chokes without it. */
2613 s = bfd_get_section_by_name (abfd, ".interp");
2614 if (! s)
2615 return 1;
2616 return 0;
2617 }
2618
2619 static bfd_boolean
2620 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2621 const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2622 unsigned int count ATTRIBUTE_UNUSED)
2623 {
2624 return TRUE;
2625 }
2626
2627 /* Allocate and initialize any program headers required by this
2628 specific backend.
2629
2630 The generic ELF code only creates PT_PHDRs for executables. The HP
2631 dynamic linker requires PT_PHDRs for dynamic libraries too.
2632
2633 This allocates the PT_PHDR and initializes it in a manner suitable
2634 for the HP linker.
2635
2636 Note we do not have access to the link info structure here, so we have
2637 to guess whether or not we are building a shared library based on the
2638 existence of a .interp section. */
2639
2640 static bfd_boolean
2641 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2642 {
2643 struct elf_segment_map *m;
2644
2645 m = elf_seg_map (abfd);
2646 if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2647 {
2648 m = ((struct elf_segment_map *)
2649 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2650 if (m == NULL)
2651 return FALSE;
2652
2653 m->p_type = PT_PHDR;
2654 m->p_flags = PF_R | PF_X;
2655 m->p_flags_valid = 1;
2656 m->p_paddr_valid = 1;
2657 m->includes_phdrs = 1;
2658
2659 m->next = elf_seg_map (abfd);
2660 elf_seg_map (abfd) = m;
2661 }
2662
2663 for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2664 if (m->p_type == PT_LOAD)
2665 {
2666 unsigned int i;
2667
2668 for (i = 0; i < m->count; i++)
2669 {
2670 /* The code "hint" is not really a hint. It is a requirement
2671 for certain versions of the HP dynamic linker. Worse yet,
2672 it must be set even if the shared library does not have
2673 any code in its "text" segment (thus the check for .hash
2674 to catch this situation). */
2675 if (m->sections[i]->flags & SEC_CODE
2676 || (strcmp (m->sections[i]->name, ".hash") == 0))
2677 m->p_flags |= (PF_X | PF_HP_CODE);
2678 }
2679 }
2680
2681 return TRUE;
2682 }
2683
2684 /* Called when writing out an object file to decide the type of a
2685 symbol. */
2686 static int
2687 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2688 int type)
2689 {
2690 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2691 return STT_PARISC_MILLI;
2692 else
2693 return type;
2694 }
2695
2696 /* Support HP specific sections for core files. */
2697
2698 static bfd_boolean
2699 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2700 const char *typename)
2701 {
2702 if (hdr->p_type == PT_HP_CORE_KERNEL)
2703 {
2704 asection *sect;
2705
2706 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2707 return FALSE;
2708
2709 sect = bfd_make_section_anyway (abfd, ".kernel");
2710 if (sect == NULL)
2711 return FALSE;
2712 sect->size = hdr->p_filesz;
2713 sect->filepos = hdr->p_offset;
2714 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2715 return TRUE;
2716 }
2717
2718 if (hdr->p_type == PT_HP_CORE_PROC)
2719 {
2720 int sig;
2721
2722 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2723 return FALSE;
2724 if (bfd_bread (&sig, 4, abfd) != 4)
2725 return FALSE;
2726
2727 elf_tdata (abfd)->core->signal = sig;
2728
2729 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2730 return FALSE;
2731
2732 /* GDB uses the ".reg" section to read register contents. */
2733 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2734 hdr->p_offset);
2735 }
2736
2737 if (hdr->p_type == PT_HP_CORE_LOADABLE
2738 || hdr->p_type == PT_HP_CORE_STACK
2739 || hdr->p_type == PT_HP_CORE_MMF)
2740 hdr->p_type = PT_LOAD;
2741
2742 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2743 }
2744
2745 /* Hook called by the linker routine which adds symbols from an object
2746 file. HP's libraries define symbols with HP specific section
2747 indices, which we have to handle. */
2748
2749 static bfd_boolean
2750 elf_hppa_add_symbol_hook (bfd *abfd,
2751 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2752 Elf_Internal_Sym *sym,
2753 const char **namep ATTRIBUTE_UNUSED,
2754 flagword *flagsp ATTRIBUTE_UNUSED,
2755 asection **secp,
2756 bfd_vma *valp)
2757 {
2758 unsigned int sec_index = sym->st_shndx;
2759
2760 switch (sec_index)
2761 {
2762 case SHN_PARISC_ANSI_COMMON:
2763 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2764 (*secp)->flags |= SEC_IS_COMMON;
2765 *valp = sym->st_size;
2766 break;
2767
2768 case SHN_PARISC_HUGE_COMMON:
2769 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2770 (*secp)->flags |= SEC_IS_COMMON;
2771 *valp = sym->st_size;
2772 break;
2773 }
2774
2775 return TRUE;
2776 }
2777
2778 static bfd_boolean
2779 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2780 void *data)
2781 {
2782 struct bfd_link_info *info = data;
2783
2784 /* If we are not creating a shared library, and this symbol is
2785 referenced by a shared library but is not defined anywhere, then
2786 the generic code will warn that it is undefined.
2787
2788 This behavior is undesirable on HPs since the standard shared
2789 libraries contain references to undefined symbols.
2790
2791 So we twiddle the flags associated with such symbols so that they
2792 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2793
2794 Ultimately we should have better controls over the generic ELF BFD
2795 linker code. */
2796 if (! bfd_link_relocatable (info)
2797 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2798 && h->root.type == bfd_link_hash_undefined
2799 && h->ref_dynamic
2800 && !h->ref_regular)
2801 {
2802 h->ref_dynamic = 0;
2803 h->pointer_equality_needed = 1;
2804 }
2805
2806 return TRUE;
2807 }
2808
2809 static bfd_boolean
2810 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2811 void *data)
2812 {
2813 struct bfd_link_info *info = data;
2814
2815 /* If we are not creating a shared library, and this symbol is
2816 referenced by a shared library but is not defined anywhere, then
2817 the generic code will warn that it is undefined.
2818
2819 This behavior is undesirable on HPs since the standard shared
2820 libraries contain references to undefined symbols.
2821
2822 So we twiddle the flags associated with such symbols so that they
2823 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2824
2825 Ultimately we should have better controls over the generic ELF BFD
2826 linker code. */
2827 if (! bfd_link_relocatable (info)
2828 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2829 && h->root.type == bfd_link_hash_undefined
2830 && !h->ref_dynamic
2831 && !h->ref_regular
2832 && h->pointer_equality_needed)
2833 {
2834 h->ref_dynamic = 1;
2835 h->pointer_equality_needed = 0;
2836 }
2837
2838 return TRUE;
2839 }
2840
2841 static bfd_boolean
2842 elf_hppa_is_dynamic_loader_symbol (const char *name)
2843 {
2844 return (! strcmp (name, "__CPU_REVISION")
2845 || ! strcmp (name, "__CPU_KEYBITS_1")
2846 || ! strcmp (name, "__SYSTEM_ID_D")
2847 || ! strcmp (name, "__FPU_MODEL")
2848 || ! strcmp (name, "__FPU_REVISION")
2849 || ! strcmp (name, "__ARGC")
2850 || ! strcmp (name, "__ARGV")
2851 || ! strcmp (name, "__ENVP")
2852 || ! strcmp (name, "__TLS_SIZE_D")
2853 || ! strcmp (name, "__LOAD_INFO")
2854 || ! strcmp (name, "__systab"));
2855 }
2856
2857 /* Record the lowest address for the data and text segments. */
2858 static void
2859 elf_hppa_record_segment_addrs (bfd *abfd,
2860 asection *section,
2861 void *data)
2862 {
2863 struct elf64_hppa_link_hash_table *hppa_info = data;
2864
2865 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2866 {
2867 bfd_vma value;
2868 Elf_Internal_Phdr *p;
2869
2870 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2871 BFD_ASSERT (p != NULL);
2872 value = p->p_vaddr;
2873
2874 if (section->flags & SEC_READONLY)
2875 {
2876 if (value < hppa_info->text_segment_base)
2877 hppa_info->text_segment_base = value;
2878 }
2879 else
2880 {
2881 if (value < hppa_info->data_segment_base)
2882 hppa_info->data_segment_base = value;
2883 }
2884 }
2885 }
2886
2887 /* Called after we have seen all the input files/sections, but before
2888 final symbol resolution and section placement has been determined.
2889
2890 We use this hook to (possibly) provide a value for __gp, then we
2891 fall back to the generic ELF final link routine. */
2892
2893 static bfd_boolean
2894 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2895 {
2896 struct stat buf;
2897 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2898
2899 if (hppa_info == NULL)
2900 return FALSE;
2901
2902 if (! bfd_link_relocatable (info))
2903 {
2904 struct elf_link_hash_entry *gp;
2905 bfd_vma gp_val;
2906
2907 /* The linker script defines a value for __gp iff it was referenced
2908 by one of the objects being linked. First try to find the symbol
2909 in the hash table. If that fails, just compute the value __gp
2910 should have had. */
2911 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2912 FALSE, FALSE);
2913
2914 if (gp)
2915 {
2916
2917 /* Adjust the value of __gp as we may want to slide it into the
2918 .plt section so that the stubs can access PLT entries without
2919 using an addil sequence. */
2920 gp->root.u.def.value += hppa_info->gp_offset;
2921
2922 gp_val = (gp->root.u.def.section->output_section->vma
2923 + gp->root.u.def.section->output_offset
2924 + gp->root.u.def.value);
2925 }
2926 else
2927 {
2928 asection *sec;
2929
2930 /* First look for a .plt section. If found, then __gp is the
2931 address of the .plt + gp_offset.
2932
2933 If no .plt is found, then look for .dlt, .opd and .data (in
2934 that order) and set __gp to the base address of whichever
2935 section is found first. */
2936
2937 sec = hppa_info->root.splt;
2938 if (sec && ! (sec->flags & SEC_EXCLUDE))
2939 gp_val = (sec->output_offset
2940 + sec->output_section->vma
2941 + hppa_info->gp_offset);
2942 else
2943 {
2944 sec = hppa_info->dlt_sec;
2945 if (!sec || (sec->flags & SEC_EXCLUDE))
2946 sec = hppa_info->opd_sec;
2947 if (!sec || (sec->flags & SEC_EXCLUDE))
2948 sec = bfd_get_section_by_name (abfd, ".data");
2949 if (!sec || (sec->flags & SEC_EXCLUDE))
2950 gp_val = 0;
2951 else
2952 gp_val = sec->output_offset + sec->output_section->vma;
2953 }
2954 }
2955
2956 /* Install whatever value we found/computed for __gp. */
2957 _bfd_set_gp_value (abfd, gp_val);
2958 }
2959
2960 /* We need to know the base of the text and data segments so that we
2961 can perform SEGREL relocations. We will record the base addresses
2962 when we encounter the first SEGREL relocation. */
2963 hppa_info->text_segment_base = (bfd_vma)-1;
2964 hppa_info->data_segment_base = (bfd_vma)-1;
2965
2966 /* HP's shared libraries have references to symbols that are not
2967 defined anywhere. The generic ELF BFD linker code will complain
2968 about such symbols.
2969
2970 So we detect the losing case and arrange for the flags on the symbol
2971 to indicate that it was never referenced. This keeps the generic
2972 ELF BFD link code happy and appears to not create any secondary
2973 problems. Ultimately we need a way to control the behavior of the
2974 generic ELF BFD link code better. */
2975 elf_link_hash_traverse (elf_hash_table (info),
2976 elf_hppa_unmark_useless_dynamic_symbols,
2977 info);
2978
2979 /* Invoke the regular ELF backend linker to do all the work. */
2980 if (!bfd_elf_final_link (abfd, info))
2981 return FALSE;
2982
2983 elf_link_hash_traverse (elf_hash_table (info),
2984 elf_hppa_remark_useless_dynamic_symbols,
2985 info);
2986
2987 /* If we're producing a final executable, sort the contents of the
2988 unwind section. */
2989 if (bfd_link_relocatable (info))
2990 return TRUE;
2991
2992 /* Do not attempt to sort non-regular files. This is here
2993 especially for configure scripts and kernel builds which run
2994 tests with "ld [...] -o /dev/null". */
2995 if (stat (bfd_get_filename (abfd), &buf) != 0
2996 || !S_ISREG(buf.st_mode))
2997 return TRUE;
2998
2999 return elf_hppa_sort_unwind (abfd);
3000 }
3001
3002 /* Relocate the given INSN. VALUE should be the actual value we want
3003 to insert into the instruction, ie by this point we should not be
3004 concerned with computing an offset relative to the DLT, PC, etc.
3005 Instead this routine is meant to handle the bit manipulations needed
3006 to insert the relocation into the given instruction. */
3007
3008 static int
3009 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3010 {
3011 switch (r_type)
3012 {
3013 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3014 the "B" instruction. */
3015 case R_PARISC_PCREL22F:
3016 case R_PARISC_PCREL22C:
3017 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3018
3019 /* This is any 12 bit branch. */
3020 case R_PARISC_PCREL12F:
3021 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3022
3023 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3024 to the "B" instruction as well as BE. */
3025 case R_PARISC_PCREL17F:
3026 case R_PARISC_DIR17F:
3027 case R_PARISC_DIR17R:
3028 case R_PARISC_PCREL17C:
3029 case R_PARISC_PCREL17R:
3030 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3031
3032 /* ADDIL or LDIL instructions. */
3033 case R_PARISC_DLTREL21L:
3034 case R_PARISC_DLTIND21L:
3035 case R_PARISC_LTOFF_FPTR21L:
3036 case R_PARISC_PCREL21L:
3037 case R_PARISC_LTOFF_TP21L:
3038 case R_PARISC_DPREL21L:
3039 case R_PARISC_PLTOFF21L:
3040 case R_PARISC_DIR21L:
3041 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3042
3043 /* LDO and integer loads/stores with 14 bit displacements. */
3044 case R_PARISC_DLTREL14R:
3045 case R_PARISC_DLTREL14F:
3046 case R_PARISC_DLTIND14R:
3047 case R_PARISC_DLTIND14F:
3048 case R_PARISC_LTOFF_FPTR14R:
3049 case R_PARISC_PCREL14R:
3050 case R_PARISC_PCREL14F:
3051 case R_PARISC_LTOFF_TP14R:
3052 case R_PARISC_LTOFF_TP14F:
3053 case R_PARISC_DPREL14R:
3054 case R_PARISC_DPREL14F:
3055 case R_PARISC_PLTOFF14R:
3056 case R_PARISC_PLTOFF14F:
3057 case R_PARISC_DIR14R:
3058 case R_PARISC_DIR14F:
3059 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3060
3061 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3062 case R_PARISC_LTOFF_FPTR16F:
3063 case R_PARISC_PCREL16F:
3064 case R_PARISC_LTOFF_TP16F:
3065 case R_PARISC_GPREL16F:
3066 case R_PARISC_PLTOFF16F:
3067 case R_PARISC_DIR16F:
3068 case R_PARISC_LTOFF16F:
3069 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3070
3071 /* Doubleword loads and stores with a 14 bit displacement. */
3072 case R_PARISC_DLTREL14DR:
3073 case R_PARISC_DLTIND14DR:
3074 case R_PARISC_LTOFF_FPTR14DR:
3075 case R_PARISC_LTOFF_FPTR16DF:
3076 case R_PARISC_PCREL14DR:
3077 case R_PARISC_PCREL16DF:
3078 case R_PARISC_LTOFF_TP14DR:
3079 case R_PARISC_LTOFF_TP16DF:
3080 case R_PARISC_DPREL14DR:
3081 case R_PARISC_GPREL16DF:
3082 case R_PARISC_PLTOFF14DR:
3083 case R_PARISC_PLTOFF16DF:
3084 case R_PARISC_DIR14DR:
3085 case R_PARISC_DIR16DF:
3086 case R_PARISC_LTOFF16DF:
3087 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3088 | ((sym_value & 0x1ff8) << 1));
3089
3090 /* Floating point single word load/store instructions. */
3091 case R_PARISC_DLTREL14WR:
3092 case R_PARISC_DLTIND14WR:
3093 case R_PARISC_LTOFF_FPTR14WR:
3094 case R_PARISC_LTOFF_FPTR16WF:
3095 case R_PARISC_PCREL14WR:
3096 case R_PARISC_PCREL16WF:
3097 case R_PARISC_LTOFF_TP14WR:
3098 case R_PARISC_LTOFF_TP16WF:
3099 case R_PARISC_DPREL14WR:
3100 case R_PARISC_GPREL16WF:
3101 case R_PARISC_PLTOFF14WR:
3102 case R_PARISC_PLTOFF16WF:
3103 case R_PARISC_DIR16WF:
3104 case R_PARISC_DIR14WR:
3105 case R_PARISC_LTOFF16WF:
3106 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3107 | ((sym_value & 0x1ffc) << 1));
3108
3109 default:
3110 return insn;
3111 }
3112 }
3113
3114 /* Compute the value for a relocation (REL) during a final link stage,
3115 then insert the value into the proper location in CONTENTS.
3116
3117 VALUE is a tentative value for the relocation and may be overridden
3118 and modified here based on the specific relocation to be performed.
3119
3120 For example we do conversions for PC-relative branches in this routine
3121 or redirection of calls to external routines to stubs.
3122
3123 The work of actually applying the relocation is left to a helper
3124 routine in an attempt to reduce the complexity and size of this
3125 function. */
3126
3127 static bfd_reloc_status_type
3128 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3129 bfd *input_bfd,
3130 bfd *output_bfd,
3131 asection *input_section,
3132 bfd_byte *contents,
3133 bfd_vma value,
3134 struct bfd_link_info *info,
3135 asection *sym_sec,
3136 struct elf_link_hash_entry *eh)
3137 {
3138 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3139 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3140 bfd_vma *local_offsets;
3141 Elf_Internal_Shdr *symtab_hdr;
3142 int insn;
3143 bfd_vma max_branch_offset = 0;
3144 bfd_vma offset = rel->r_offset;
3145 bfd_signed_vma addend = rel->r_addend;
3146 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3147 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3148 unsigned int r_type = howto->type;
3149 bfd_byte *hit_data = contents + offset;
3150
3151 if (hppa_info == NULL)
3152 return bfd_reloc_notsupported;
3153
3154 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3155 local_offsets = elf_local_got_offsets (input_bfd);
3156 insn = bfd_get_32 (input_bfd, hit_data);
3157
3158 switch (r_type)
3159 {
3160 case R_PARISC_NONE:
3161 break;
3162
3163 /* Basic function call support.
3164
3165 Note for a call to a function defined in another dynamic library
3166 we want to redirect the call to a stub. */
3167
3168 /* PC relative relocs without an implicit offset. */
3169 case R_PARISC_PCREL21L:
3170 case R_PARISC_PCREL14R:
3171 case R_PARISC_PCREL14F:
3172 case R_PARISC_PCREL14WR:
3173 case R_PARISC_PCREL14DR:
3174 case R_PARISC_PCREL16F:
3175 case R_PARISC_PCREL16WF:
3176 case R_PARISC_PCREL16DF:
3177 {
3178 /* If this is a call to a function defined in another dynamic
3179 library, then redirect the call to the local stub for this
3180 function. */
3181 if (sym_sec == NULL || sym_sec->output_section == NULL)
3182 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3183 + hppa_info->stub_sec->output_section->vma);
3184
3185 /* Turn VALUE into a proper PC relative address. */
3186 value -= (offset + input_section->output_offset
3187 + input_section->output_section->vma);
3188
3189 /* Adjust for any field selectors. */
3190 if (r_type == R_PARISC_PCREL21L)
3191 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3192 else if (r_type == R_PARISC_PCREL14F
3193 || r_type == R_PARISC_PCREL16F
3194 || r_type == R_PARISC_PCREL16WF
3195 || r_type == R_PARISC_PCREL16DF)
3196 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3197 else
3198 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3199
3200 /* Apply the relocation to the given instruction. */
3201 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3202 break;
3203 }
3204
3205 case R_PARISC_PCREL12F:
3206 case R_PARISC_PCREL22F:
3207 case R_PARISC_PCREL17F:
3208 case R_PARISC_PCREL22C:
3209 case R_PARISC_PCREL17C:
3210 case R_PARISC_PCREL17R:
3211 {
3212 /* If this is a call to a function defined in another dynamic
3213 library, then redirect the call to the local stub for this
3214 function. */
3215 if (sym_sec == NULL || sym_sec->output_section == NULL)
3216 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3217 + hppa_info->stub_sec->output_section->vma);
3218
3219 /* Turn VALUE into a proper PC relative address. */
3220 value -= (offset + input_section->output_offset
3221 + input_section->output_section->vma);
3222 addend -= 8;
3223
3224 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3225 max_branch_offset = (1 << (22-1)) << 2;
3226 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3227 max_branch_offset = (1 << (17-1)) << 2;
3228 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3229 max_branch_offset = (1 << (12-1)) << 2;
3230
3231 /* Make sure we can reach the branch target. */
3232 if (max_branch_offset != 0
3233 && value + addend + max_branch_offset >= 2*max_branch_offset)
3234 {
3235 _bfd_error_handler
3236 /* xgettext:c-format */
3237 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s"),
3238 input_bfd,
3239 input_section,
3240 (uint64_t) offset,
3241 eh ? eh->root.root.string : "unknown");
3242 bfd_set_error (bfd_error_bad_value);
3243 return bfd_reloc_overflow;
3244 }
3245
3246 /* Adjust for any field selectors. */
3247 if (r_type == R_PARISC_PCREL17R)
3248 value = hppa_field_adjust (value, addend, e_rsel);
3249 else
3250 value = hppa_field_adjust (value, addend, e_fsel);
3251
3252 /* All branches are implicitly shifted by 2 places. */
3253 value >>= 2;
3254
3255 /* Apply the relocation to the given instruction. */
3256 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3257 break;
3258 }
3259
3260 /* Indirect references to data through the DLT. */
3261 case R_PARISC_DLTIND14R:
3262 case R_PARISC_DLTIND14F:
3263 case R_PARISC_DLTIND14DR:
3264 case R_PARISC_DLTIND14WR:
3265 case R_PARISC_DLTIND21L:
3266 case R_PARISC_LTOFF_FPTR14R:
3267 case R_PARISC_LTOFF_FPTR14DR:
3268 case R_PARISC_LTOFF_FPTR14WR:
3269 case R_PARISC_LTOFF_FPTR21L:
3270 case R_PARISC_LTOFF_FPTR16F:
3271 case R_PARISC_LTOFF_FPTR16WF:
3272 case R_PARISC_LTOFF_FPTR16DF:
3273 case R_PARISC_LTOFF_TP21L:
3274 case R_PARISC_LTOFF_TP14R:
3275 case R_PARISC_LTOFF_TP14F:
3276 case R_PARISC_LTOFF_TP14WR:
3277 case R_PARISC_LTOFF_TP14DR:
3278 case R_PARISC_LTOFF_TP16F:
3279 case R_PARISC_LTOFF_TP16WF:
3280 case R_PARISC_LTOFF_TP16DF:
3281 case R_PARISC_LTOFF16F:
3282 case R_PARISC_LTOFF16WF:
3283 case R_PARISC_LTOFF16DF:
3284 {
3285 bfd_vma off;
3286
3287 /* If this relocation was against a local symbol, then we still
3288 have not set up the DLT entry (it's not convenient to do so
3289 in the "finalize_dlt" routine because it is difficult to get
3290 to the local symbol's value).
3291
3292 So, if this is a local symbol (h == NULL), then we need to
3293 fill in its DLT entry.
3294
3295 Similarly we may still need to set up an entry in .opd for
3296 a local function which had its address taken. */
3297 if (hh == NULL)
3298 {
3299 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3300
3301 if (local_offsets == NULL)
3302 abort ();
3303
3304 /* Now do .opd creation if needed. */
3305 if (r_type == R_PARISC_LTOFF_FPTR14R
3306 || r_type == R_PARISC_LTOFF_FPTR14DR
3307 || r_type == R_PARISC_LTOFF_FPTR14WR
3308 || r_type == R_PARISC_LTOFF_FPTR21L
3309 || r_type == R_PARISC_LTOFF_FPTR16F
3310 || r_type == R_PARISC_LTOFF_FPTR16WF
3311 || r_type == R_PARISC_LTOFF_FPTR16DF)
3312 {
3313 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3314 off = local_opd_offsets[r_symndx];
3315
3316 /* The last bit records whether we've already initialised
3317 this local .opd entry. */
3318 if ((off & 1) != 0)
3319 {
3320 BFD_ASSERT (off != (bfd_vma) -1);
3321 off &= ~1;
3322 }
3323 else
3324 {
3325 local_opd_offsets[r_symndx] |= 1;
3326
3327 /* The first two words of an .opd entry are zero. */
3328 memset (hppa_info->opd_sec->contents + off, 0, 16);
3329
3330 /* The next word is the address of the function. */
3331 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3332 (hppa_info->opd_sec->contents + off + 16));
3333
3334 /* The last word is our local __gp value. */
3335 value = _bfd_get_gp_value (info->output_bfd);
3336 bfd_put_64 (hppa_info->opd_sec->owner, value,
3337 (hppa_info->opd_sec->contents + off + 24));
3338 }
3339
3340 /* The DLT value is the address of the .opd entry. */
3341 value = (off
3342 + hppa_info->opd_sec->output_offset
3343 + hppa_info->opd_sec->output_section->vma);
3344 addend = 0;
3345 }
3346
3347 local_dlt_offsets = local_offsets;
3348 off = local_dlt_offsets[r_symndx];
3349
3350 if ((off & 1) != 0)
3351 {
3352 BFD_ASSERT (off != (bfd_vma) -1);
3353 off &= ~1;
3354 }
3355 else
3356 {
3357 local_dlt_offsets[r_symndx] |= 1;
3358 bfd_put_64 (hppa_info->dlt_sec->owner,
3359 value + addend,
3360 hppa_info->dlt_sec->contents + off);
3361 }
3362 }
3363 else
3364 off = hh->dlt_offset;
3365
3366 /* We want the value of the DLT offset for this symbol, not
3367 the symbol's actual address. Note that __gp may not point
3368 to the start of the DLT, so we have to compute the absolute
3369 address, then subtract out the value of __gp. */
3370 value = (off
3371 + hppa_info->dlt_sec->output_offset
3372 + hppa_info->dlt_sec->output_section->vma);
3373 value -= _bfd_get_gp_value (output_bfd);
3374
3375 /* All DLTIND relocations are basically the same at this point,
3376 except that we need different field selectors for the 21bit
3377 version vs the 14bit versions. */
3378 if (r_type == R_PARISC_DLTIND21L
3379 || r_type == R_PARISC_LTOFF_FPTR21L
3380 || r_type == R_PARISC_LTOFF_TP21L)
3381 value = hppa_field_adjust (value, 0, e_lsel);
3382 else if (r_type == R_PARISC_DLTIND14F
3383 || r_type == R_PARISC_LTOFF_FPTR16F
3384 || r_type == R_PARISC_LTOFF_FPTR16WF
3385 || r_type == R_PARISC_LTOFF_FPTR16DF
3386 || r_type == R_PARISC_LTOFF16F
3387 || r_type == R_PARISC_LTOFF16DF
3388 || r_type == R_PARISC_LTOFF16WF
3389 || r_type == R_PARISC_LTOFF_TP16F
3390 || r_type == R_PARISC_LTOFF_TP16WF
3391 || r_type == R_PARISC_LTOFF_TP16DF)
3392 value = hppa_field_adjust (value, 0, e_fsel);
3393 else
3394 value = hppa_field_adjust (value, 0, e_rsel);
3395
3396 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3397 break;
3398 }
3399
3400 case R_PARISC_DLTREL14R:
3401 case R_PARISC_DLTREL14F:
3402 case R_PARISC_DLTREL14DR:
3403 case R_PARISC_DLTREL14WR:
3404 case R_PARISC_DLTREL21L:
3405 case R_PARISC_DPREL21L:
3406 case R_PARISC_DPREL14WR:
3407 case R_PARISC_DPREL14DR:
3408 case R_PARISC_DPREL14R:
3409 case R_PARISC_DPREL14F:
3410 case R_PARISC_GPREL16F:
3411 case R_PARISC_GPREL16WF:
3412 case R_PARISC_GPREL16DF:
3413 {
3414 /* Subtract out the global pointer value to make value a DLT
3415 relative address. */
3416 value -= _bfd_get_gp_value (output_bfd);
3417
3418 /* All DLTREL relocations are basically the same at this point,
3419 except that we need different field selectors for the 21bit
3420 version vs the 14bit versions. */
3421 if (r_type == R_PARISC_DLTREL21L
3422 || r_type == R_PARISC_DPREL21L)
3423 value = hppa_field_adjust (value, addend, e_lrsel);
3424 else if (r_type == R_PARISC_DLTREL14F
3425 || r_type == R_PARISC_DPREL14F
3426 || r_type == R_PARISC_GPREL16F
3427 || r_type == R_PARISC_GPREL16WF
3428 || r_type == R_PARISC_GPREL16DF)
3429 value = hppa_field_adjust (value, addend, e_fsel);
3430 else
3431 value = hppa_field_adjust (value, addend, e_rrsel);
3432
3433 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3434 break;
3435 }
3436
3437 case R_PARISC_DIR21L:
3438 case R_PARISC_DIR17R:
3439 case R_PARISC_DIR17F:
3440 case R_PARISC_DIR14R:
3441 case R_PARISC_DIR14F:
3442 case R_PARISC_DIR14WR:
3443 case R_PARISC_DIR14DR:
3444 case R_PARISC_DIR16F:
3445 case R_PARISC_DIR16WF:
3446 case R_PARISC_DIR16DF:
3447 {
3448 /* All DIR relocations are basically the same at this point,
3449 except that branch offsets need to be divided by four, and
3450 we need different field selectors. Note that we don't
3451 redirect absolute calls to local stubs. */
3452
3453 if (r_type == R_PARISC_DIR21L)
3454 value = hppa_field_adjust (value, addend, e_lrsel);
3455 else if (r_type == R_PARISC_DIR17F
3456 || r_type == R_PARISC_DIR16F
3457 || r_type == R_PARISC_DIR16WF
3458 || r_type == R_PARISC_DIR16DF
3459 || r_type == R_PARISC_DIR14F)
3460 value = hppa_field_adjust (value, addend, e_fsel);
3461 else
3462 value = hppa_field_adjust (value, addend, e_rrsel);
3463
3464 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3465 /* All branches are implicitly shifted by 2 places. */
3466 value >>= 2;
3467
3468 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3469 break;
3470 }
3471
3472 case R_PARISC_PLTOFF21L:
3473 case R_PARISC_PLTOFF14R:
3474 case R_PARISC_PLTOFF14F:
3475 case R_PARISC_PLTOFF14WR:
3476 case R_PARISC_PLTOFF14DR:
3477 case R_PARISC_PLTOFF16F:
3478 case R_PARISC_PLTOFF16WF:
3479 case R_PARISC_PLTOFF16DF:
3480 {
3481 /* We want the value of the PLT offset for this symbol, not
3482 the symbol's actual address. Note that __gp may not point
3483 to the start of the DLT, so we have to compute the absolute
3484 address, then subtract out the value of __gp. */
3485 value = (hh->plt_offset
3486 + hppa_info->root.splt->output_offset
3487 + hppa_info->root.splt->output_section->vma);
3488 value -= _bfd_get_gp_value (output_bfd);
3489
3490 /* All PLTOFF relocations are basically the same at this point,
3491 except that we need different field selectors for the 21bit
3492 version vs the 14bit versions. */
3493 if (r_type == R_PARISC_PLTOFF21L)
3494 value = hppa_field_adjust (value, addend, e_lrsel);
3495 else if (r_type == R_PARISC_PLTOFF14F
3496 || r_type == R_PARISC_PLTOFF16F
3497 || r_type == R_PARISC_PLTOFF16WF
3498 || r_type == R_PARISC_PLTOFF16DF)
3499 value = hppa_field_adjust (value, addend, e_fsel);
3500 else
3501 value = hppa_field_adjust (value, addend, e_rrsel);
3502
3503 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3504 break;
3505 }
3506
3507 case R_PARISC_LTOFF_FPTR32:
3508 {
3509 /* FIXME: There used to be code here to create the FPTR itself if
3510 the relocation was against a local symbol. But the code could
3511 never have worked. If the assert below is ever triggered then
3512 the code will need to be reinstated and fixed so that it does
3513 what is needed. */
3514 BFD_ASSERT (hh != NULL);
3515
3516 /* We want the value of the DLT offset for this symbol, not
3517 the symbol's actual address. Note that __gp may not point
3518 to the start of the DLT, so we have to compute the absolute
3519 address, then subtract out the value of __gp. */
3520 value = (hh->dlt_offset
3521 + hppa_info->dlt_sec->output_offset
3522 + hppa_info->dlt_sec->output_section->vma);
3523 value -= _bfd_get_gp_value (output_bfd);
3524 bfd_put_32 (input_bfd, value, hit_data);
3525 return bfd_reloc_ok;
3526 }
3527
3528 case R_PARISC_LTOFF_FPTR64:
3529 case R_PARISC_LTOFF_TP64:
3530 {
3531 /* We may still need to create the FPTR itself if it was for
3532 a local symbol. */
3533 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3534 {
3535 /* The first two words of an .opd entry are zero. */
3536 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3537
3538 /* The next word is the address of the function. */
3539 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3540 (hppa_info->opd_sec->contents
3541 + hh->opd_offset + 16));
3542
3543 /* The last word is our local __gp value. */
3544 value = _bfd_get_gp_value (info->output_bfd);
3545 bfd_put_64 (hppa_info->opd_sec->owner, value,
3546 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3547
3548 /* The DLT value is the address of the .opd entry. */
3549 value = (hh->opd_offset
3550 + hppa_info->opd_sec->output_offset
3551 + hppa_info->opd_sec->output_section->vma);
3552
3553 bfd_put_64 (hppa_info->dlt_sec->owner,
3554 value,
3555 hppa_info->dlt_sec->contents + hh->dlt_offset);
3556 }
3557
3558 /* We want the value of the DLT offset for this symbol, not
3559 the symbol's actual address. Note that __gp may not point
3560 to the start of the DLT, so we have to compute the absolute
3561 address, then subtract out the value of __gp. */
3562 value = (hh->dlt_offset
3563 + hppa_info->dlt_sec->output_offset
3564 + hppa_info->dlt_sec->output_section->vma);
3565 value -= _bfd_get_gp_value (output_bfd);
3566 bfd_put_64 (input_bfd, value, hit_data);
3567 return bfd_reloc_ok;
3568 }
3569
3570 case R_PARISC_DIR32:
3571 bfd_put_32 (input_bfd, value + addend, hit_data);
3572 return bfd_reloc_ok;
3573
3574 case R_PARISC_DIR64:
3575 bfd_put_64 (input_bfd, value + addend, hit_data);
3576 return bfd_reloc_ok;
3577
3578 case R_PARISC_GPREL64:
3579 /* Subtract out the global pointer value to make value a DLT
3580 relative address. */
3581 value -= _bfd_get_gp_value (output_bfd);
3582
3583 bfd_put_64 (input_bfd, value + addend, hit_data);
3584 return bfd_reloc_ok;
3585
3586 case R_PARISC_LTOFF64:
3587 /* We want the value of the DLT offset for this symbol, not
3588 the symbol's actual address. Note that __gp may not point
3589 to the start of the DLT, so we have to compute the absolute
3590 address, then subtract out the value of __gp. */
3591 value = (hh->dlt_offset
3592 + hppa_info->dlt_sec->output_offset
3593 + hppa_info->dlt_sec->output_section->vma);
3594 value -= _bfd_get_gp_value (output_bfd);
3595
3596 bfd_put_64 (input_bfd, value + addend, hit_data);
3597 return bfd_reloc_ok;
3598
3599 case R_PARISC_PCREL32:
3600 {
3601 /* If this is a call to a function defined in another dynamic
3602 library, then redirect the call to the local stub for this
3603 function. */
3604 if (sym_sec == NULL || sym_sec->output_section == NULL)
3605 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3606 + hppa_info->stub_sec->output_section->vma);
3607
3608 /* Turn VALUE into a proper PC relative address. */
3609 value -= (offset + input_section->output_offset
3610 + input_section->output_section->vma);
3611
3612 value += addend;
3613 value -= 8;
3614 bfd_put_32 (input_bfd, value, hit_data);
3615 return bfd_reloc_ok;
3616 }
3617
3618 case R_PARISC_PCREL64:
3619 {
3620 /* If this is a call to a function defined in another dynamic
3621 library, then redirect the call to the local stub for this
3622 function. */
3623 if (sym_sec == NULL || sym_sec->output_section == NULL)
3624 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3625 + hppa_info->stub_sec->output_section->vma);
3626
3627 /* Turn VALUE into a proper PC relative address. */
3628 value -= (offset + input_section->output_offset
3629 + input_section->output_section->vma);
3630
3631 value += addend;
3632 value -= 8;
3633 bfd_put_64 (input_bfd, value, hit_data);
3634 return bfd_reloc_ok;
3635 }
3636
3637 case R_PARISC_FPTR64:
3638 {
3639 bfd_vma off;
3640
3641 /* We may still need to create the FPTR itself if it was for
3642 a local symbol. */
3643 if (hh == NULL)
3644 {
3645 bfd_vma *local_opd_offsets;
3646
3647 if (local_offsets == NULL)
3648 abort ();
3649
3650 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3651 off = local_opd_offsets[r_symndx];
3652
3653 /* The last bit records whether we've already initialised
3654 this local .opd entry. */
3655 if ((off & 1) != 0)
3656 {
3657 BFD_ASSERT (off != (bfd_vma) -1);
3658 off &= ~1;
3659 }
3660 else
3661 {
3662 /* The first two words of an .opd entry are zero. */
3663 memset (hppa_info->opd_sec->contents + off, 0, 16);
3664
3665 /* The next word is the address of the function. */
3666 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3667 (hppa_info->opd_sec->contents + off + 16));
3668
3669 /* The last word is our local __gp value. */
3670 value = _bfd_get_gp_value (info->output_bfd);
3671 bfd_put_64 (hppa_info->opd_sec->owner, value,
3672 hppa_info->opd_sec->contents + off + 24);
3673 }
3674 }
3675 else
3676 off = hh->opd_offset;
3677
3678 if (hh == NULL || hh->want_opd)
3679 /* We want the value of the OPD offset for this symbol. */
3680 value = (off
3681 + hppa_info->opd_sec->output_offset
3682 + hppa_info->opd_sec->output_section->vma);
3683 else
3684 /* We want the address of the symbol. */
3685 value += addend;
3686
3687 bfd_put_64 (input_bfd, value, hit_data);
3688 return bfd_reloc_ok;
3689 }
3690
3691 case R_PARISC_SECREL32:
3692 if (sym_sec && sym_sec->output_section)
3693 value -= sym_sec->output_section->vma;
3694 bfd_put_32 (input_bfd, value + addend, hit_data);
3695 return bfd_reloc_ok;
3696
3697 case R_PARISC_SEGREL32:
3698 case R_PARISC_SEGREL64:
3699 {
3700 /* If this is the first SEGREL relocation, then initialize
3701 the segment base values. */
3702 if (hppa_info->text_segment_base == (bfd_vma) -1)
3703 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3704 hppa_info);
3705
3706 /* VALUE holds the absolute address. We want to include the
3707 addend, then turn it into a segment relative address.
3708
3709 The segment is derived from SYM_SEC. We assume that there are
3710 only two segments of note in the resulting executable/shlib.
3711 A readonly segment (.text) and a readwrite segment (.data). */
3712 value += addend;
3713
3714 if (sym_sec->flags & SEC_CODE)
3715 value -= hppa_info->text_segment_base;
3716 else
3717 value -= hppa_info->data_segment_base;
3718
3719 if (r_type == R_PARISC_SEGREL32)
3720 bfd_put_32 (input_bfd, value, hit_data);
3721 else
3722 bfd_put_64 (input_bfd, value, hit_data);
3723 return bfd_reloc_ok;
3724 }
3725
3726 /* Something we don't know how to handle. */
3727 default:
3728 return bfd_reloc_notsupported;
3729 }
3730
3731 /* Update the instruction word. */
3732 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3733 return bfd_reloc_ok;
3734 }
3735
3736 /* Relocate an HPPA ELF section. */
3737
3738 static bfd_boolean
3739 elf64_hppa_relocate_section (bfd *output_bfd,
3740 struct bfd_link_info *info,
3741 bfd *input_bfd,
3742 asection *input_section,
3743 bfd_byte *contents,
3744 Elf_Internal_Rela *relocs,
3745 Elf_Internal_Sym *local_syms,
3746 asection **local_sections)
3747 {
3748 Elf_Internal_Shdr *symtab_hdr;
3749 Elf_Internal_Rela *rel;
3750 Elf_Internal_Rela *relend;
3751 struct elf64_hppa_link_hash_table *hppa_info;
3752
3753 hppa_info = hppa_link_hash_table (info);
3754 if (hppa_info == NULL)
3755 return FALSE;
3756
3757 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3758
3759 rel = relocs;
3760 relend = relocs + input_section->reloc_count;
3761 for (; rel < relend; rel++)
3762 {
3763 int r_type;
3764 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3765 unsigned long r_symndx;
3766 struct elf_link_hash_entry *eh;
3767 Elf_Internal_Sym *sym;
3768 asection *sym_sec;
3769 bfd_vma relocation;
3770 bfd_reloc_status_type r;
3771
3772 r_type = ELF_R_TYPE (rel->r_info);
3773 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3774 {
3775 bfd_set_error (bfd_error_bad_value);
3776 return FALSE;
3777 }
3778 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3779 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3780 continue;
3781
3782 /* This is a final link. */
3783 r_symndx = ELF_R_SYM (rel->r_info);
3784 eh = NULL;
3785 sym = NULL;
3786 sym_sec = NULL;
3787 if (r_symndx < symtab_hdr->sh_info)
3788 {
3789 /* This is a local symbol, hh defaults to NULL. */
3790 sym = local_syms + r_symndx;
3791 sym_sec = local_sections[r_symndx];
3792 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3793 }
3794 else
3795 {
3796 /* This is not a local symbol. */
3797 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3798
3799 /* It seems this can happen with erroneous or unsupported
3800 input (mixing a.out and elf in an archive, for example.) */
3801 if (sym_hashes == NULL)
3802 return FALSE;
3803
3804 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3805
3806 if (info->wrap_hash != NULL
3807 && (input_section->flags & SEC_DEBUGGING) != 0)
3808 eh = ((struct elf_link_hash_entry *)
3809 unwrap_hash_lookup (info, input_bfd, &eh->root));
3810
3811 while (eh->root.type == bfd_link_hash_indirect
3812 || eh->root.type == bfd_link_hash_warning)
3813 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3814
3815 relocation = 0;
3816 if (eh->root.type == bfd_link_hash_defined
3817 || eh->root.type == bfd_link_hash_defweak)
3818 {
3819 sym_sec = eh->root.u.def.section;
3820 if (sym_sec != NULL
3821 && sym_sec->output_section != NULL)
3822 relocation = (eh->root.u.def.value
3823 + sym_sec->output_section->vma
3824 + sym_sec->output_offset);
3825 }
3826 else if (eh->root.type == bfd_link_hash_undefweak)
3827 ;
3828 else if (info->unresolved_syms_in_objects == RM_IGNORE
3829 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3830 ;
3831 else if (!bfd_link_relocatable (info)
3832 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3833 continue;
3834 else if (!bfd_link_relocatable (info))
3835 {
3836 bfd_boolean err;
3837
3838 err = (info->unresolved_syms_in_objects == RM_DIAGNOSE
3839 && !info->warn_unresolved_syms)
3840 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT;
3841
3842 info->callbacks->undefined_symbol
3843 (info, eh->root.root.string, input_bfd,
3844 input_section, rel->r_offset, err);
3845 }
3846
3847 if (!bfd_link_relocatable (info)
3848 && relocation == 0
3849 && eh->root.type != bfd_link_hash_defined
3850 && eh->root.type != bfd_link_hash_defweak
3851 && eh->root.type != bfd_link_hash_undefweak)
3852 {
3853 if (info->unresolved_syms_in_objects == RM_IGNORE
3854 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3855 && eh->type == STT_PARISC_MILLI)
3856 info->callbacks->undefined_symbol
3857 (info, eh_name (eh), input_bfd,
3858 input_section, rel->r_offset, FALSE);
3859 }
3860 }
3861
3862 if (sym_sec != NULL && discarded_section (sym_sec))
3863 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3864 rel, 1, relend, howto, 0, contents);
3865
3866 if (bfd_link_relocatable (info))
3867 continue;
3868
3869 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3870 input_section, contents,
3871 relocation, info, sym_sec,
3872 eh);
3873
3874 if (r != bfd_reloc_ok)
3875 {
3876 switch (r)
3877 {
3878 default:
3879 abort ();
3880 case bfd_reloc_overflow:
3881 {
3882 const char *sym_name;
3883
3884 if (eh != NULL)
3885 sym_name = NULL;
3886 else
3887 {
3888 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3889 symtab_hdr->sh_link,
3890 sym->st_name);
3891 if (sym_name == NULL)
3892 return FALSE;
3893 if (*sym_name == '\0')
3894 sym_name = bfd_section_name (sym_sec);
3895 }
3896
3897 (*info->callbacks->reloc_overflow)
3898 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3899 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3900 }
3901 break;
3902 }
3903 }
3904 }
3905 return TRUE;
3906 }
3907
3908 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3909 {
3910 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3911 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3912 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3913 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3914 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3915 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3916 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3917 { NULL, 0, 0, 0, 0 }
3918 };
3919
3920 /* The hash bucket size is the standard one, namely 4. */
3921
3922 const struct elf_size_info hppa64_elf_size_info =
3923 {
3924 sizeof (Elf64_External_Ehdr),
3925 sizeof (Elf64_External_Phdr),
3926 sizeof (Elf64_External_Shdr),
3927 sizeof (Elf64_External_Rel),
3928 sizeof (Elf64_External_Rela),
3929 sizeof (Elf64_External_Sym),
3930 sizeof (Elf64_External_Dyn),
3931 sizeof (Elf_External_Note),
3932 4,
3933 1,
3934 64, 3,
3935 ELFCLASS64, EV_CURRENT,
3936 bfd_elf64_write_out_phdrs,
3937 bfd_elf64_write_shdrs_and_ehdr,
3938 bfd_elf64_checksum_contents,
3939 bfd_elf64_write_relocs,
3940 bfd_elf64_swap_symbol_in,
3941 bfd_elf64_swap_symbol_out,
3942 bfd_elf64_slurp_reloc_table,
3943 bfd_elf64_slurp_symbol_table,
3944 bfd_elf64_swap_dyn_in,
3945 bfd_elf64_swap_dyn_out,
3946 bfd_elf64_swap_reloc_in,
3947 bfd_elf64_swap_reloc_out,
3948 bfd_elf64_swap_reloca_in,
3949 bfd_elf64_swap_reloca_out
3950 };
3951
3952 #define TARGET_BIG_SYM hppa_elf64_vec
3953 #define TARGET_BIG_NAME "elf64-hppa"
3954 #define ELF_ARCH bfd_arch_hppa
3955 #define ELF_TARGET_ID HPPA64_ELF_DATA
3956 #define ELF_MACHINE_CODE EM_PARISC
3957 /* This is not strictly correct. The maximum page size for PA2.0 is
3958 64M. But everything still uses 4k. */
3959 #define ELF_MAXPAGESIZE 0x1000
3960 #define ELF_OSABI ELFOSABI_HPUX
3961
3962 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
3963 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
3964 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
3965 #define elf_info_to_howto elf_hppa_info_to_howto
3966 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
3967
3968 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
3969 #define elf_backend_object_p elf64_hppa_object_p
3970 #define elf_backend_final_write_processing \
3971 elf_hppa_final_write_processing
3972 #define elf_backend_fake_sections elf_hppa_fake_sections
3973 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
3974
3975 #define elf_backend_relocate_section elf_hppa_relocate_section
3976
3977 #define bfd_elf64_bfd_final_link elf_hppa_final_link
3978
3979 #define elf_backend_create_dynamic_sections \
3980 elf64_hppa_create_dynamic_sections
3981 #define elf_backend_init_file_header elf64_hppa_init_file_header
3982
3983 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
3984
3985 #define elf_backend_adjust_dynamic_symbol \
3986 elf64_hppa_adjust_dynamic_symbol
3987
3988 #define elf_backend_size_dynamic_sections \
3989 elf64_hppa_size_dynamic_sections
3990
3991 #define elf_backend_finish_dynamic_symbol \
3992 elf64_hppa_finish_dynamic_symbol
3993 #define elf_backend_finish_dynamic_sections \
3994 elf64_hppa_finish_dynamic_sections
3995 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
3996 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
3997
3998 /* Stuff for the BFD linker: */
3999 #define bfd_elf64_bfd_link_hash_table_create \
4000 elf64_hppa_hash_table_create
4001
4002 #define elf_backend_check_relocs \
4003 elf64_hppa_check_relocs
4004
4005 #define elf_backend_size_info \
4006 hppa64_elf_size_info
4007
4008 #define elf_backend_additional_program_headers \
4009 elf64_hppa_additional_program_headers
4010
4011 #define elf_backend_modify_segment_map \
4012 elf64_hppa_modify_segment_map
4013
4014 #define elf_backend_allow_non_load_phdr \
4015 elf64_hppa_allow_non_load_phdr
4016
4017 #define elf_backend_link_output_symbol_hook \
4018 elf64_hppa_link_output_symbol_hook
4019
4020 #define elf_backend_want_got_plt 0
4021 #define elf_backend_plt_readonly 0
4022 #define elf_backend_want_plt_sym 0
4023 #define elf_backend_got_header_size 0
4024 #define elf_backend_type_change_ok TRUE
4025 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4026 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4027 #define elf_backend_rela_normal 1
4028 #define elf_backend_special_sections elf64_hppa_special_sections
4029 #define elf_backend_action_discarded elf_hppa_action_discarded
4030 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4031
4032 #define elf64_bed elf64_hppa_hpux_bed
4033
4034 #include "elf64-target.h"
4035
4036 #undef TARGET_BIG_SYM
4037 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4038 #undef TARGET_BIG_NAME
4039 #define TARGET_BIG_NAME "elf64-hppa-linux"
4040 #undef ELF_OSABI
4041 #define ELF_OSABI ELFOSABI_GNU
4042 #undef elf64_bed
4043 #define elf64_bed elf64_hppa_linux_bed
4044 #undef elf_backend_special_sections
4045 #define elf_backend_special_sections (elf64_hppa_special_sections + 1)
4046
4047 #include "elf64-target.h"