]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-hppa.c
BFD whitespace fixes
[thirdparty/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30
31 #define ARCH_SIZE 64
32
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52 struct elf64_hppa_link_hash_entry
53 {
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111 };
112
113 struct elf64_hppa_link_hash_table
114 {
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *plt_sec;
121 asection *plt_rel_sec;
122 asection *opd_sec;
123 asection *opd_rel_sec;
124 asection *other_rel_sec;
125
126 /* Offset of __gp within .plt section. When the PLT gets large we want
127 to slide __gp into the PLT section so that we can continue to use
128 single DP relative instructions to load values out of the PLT. */
129 bfd_vma gp_offset;
130
131 /* Note this is not strictly correct. We should create a stub section for
132 each input section with calls. The stub section should be placed before
133 the section with the call. */
134 asection *stub_sec;
135
136 bfd_vma text_segment_base;
137 bfd_vma data_segment_base;
138
139 /* We build tables to map from an input section back to its
140 symbol index. This is the BFD for which we currently have
141 a map. */
142 bfd *section_syms_bfd;
143
144 /* Array of symbol numbers for each input section attached to the
145 current BFD. */
146 int *section_syms;
147 };
148
149 #define hppa_link_hash_table(p) \
150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152
153 #define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
155
156 #define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
158
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163 (bfd *abfd);
164
165 /* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167 #include "elf-hppa.h"
168
169 static bfd_boolean elf64_hppa_object_p
170 (bfd *);
171
172 static void elf64_hppa_post_process_headers
173 (bfd *, struct bfd_link_info *);
174
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176 (bfd *, struct bfd_link_info *);
177
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179 (struct bfd_link_info *, struct elf_link_hash_entry *);
180
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182 (struct elf_link_hash_entry *, void *);
183
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185 (bfd *, struct bfd_link_info *);
186
187 static int elf64_hppa_link_output_symbol_hook
188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189 asection *, struct elf_link_hash_entry *);
190
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192 (bfd *, struct bfd_link_info *,
193 struct elf_link_hash_entry *, Elf_Internal_Sym *);
194
195 static bfd_boolean elf64_hppa_finish_dynamic_sections
196 (bfd *, struct bfd_link_info *);
197
198 static bfd_boolean elf64_hppa_check_relocs
199 (bfd *, struct bfd_link_info *,
200 asection *, const Elf_Internal_Rela *);
201
202 static bfd_boolean elf64_hppa_dynamic_symbol_p
203 (struct elf_link_hash_entry *, struct bfd_link_info *);
204
205 static bfd_boolean elf64_hppa_mark_exported_functions
206 (struct elf_link_hash_entry *, void *);
207
208 static bfd_boolean elf64_hppa_finalize_opd
209 (struct elf_link_hash_entry *, void *);
210
211 static bfd_boolean elf64_hppa_finalize_dlt
212 (struct elf_link_hash_entry *, void *);
213
214 static bfd_boolean allocate_global_data_dlt
215 (struct elf_link_hash_entry *, void *);
216
217 static bfd_boolean allocate_global_data_plt
218 (struct elf_link_hash_entry *, void *);
219
220 static bfd_boolean allocate_global_data_stub
221 (struct elf_link_hash_entry *, void *);
222
223 static bfd_boolean allocate_global_data_opd
224 (struct elf_link_hash_entry *, void *);
225
226 static bfd_boolean get_reloc_section
227 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228
229 static bfd_boolean count_dyn_reloc
230 (bfd *, struct elf64_hppa_link_hash_entry *,
231 int, asection *, int, bfd_vma, bfd_vma);
232
233 static bfd_boolean allocate_dynrel_entries
234 (struct elf_link_hash_entry *, void *);
235
236 static bfd_boolean elf64_hppa_finalize_dynreloc
237 (struct elf_link_hash_entry *, void *);
238
239 static bfd_boolean get_opd
240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241
242 static bfd_boolean get_plt
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245 static bfd_boolean get_dlt
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248 static bfd_boolean get_stub
249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250
251 static int elf64_hppa_elf_get_symbol_type
252 (Elf_Internal_Sym *, int);
253
254 /* Initialize an entry in the link hash table. */
255
256 static struct bfd_hash_entry *
257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 struct bfd_hash_table *table,
259 const char *string)
260 {
261 /* Allocate the structure if it has not already been allocated by a
262 subclass. */
263 if (entry == NULL)
264 {
265 entry = bfd_hash_allocate (table,
266 sizeof (struct elf64_hppa_link_hash_entry));
267 if (entry == NULL)
268 return entry;
269 }
270
271 /* Call the allocation method of the superclass. */
272 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273 if (entry != NULL)
274 {
275 struct elf64_hppa_link_hash_entry *hh;
276
277 /* Initialize our local data. All zeros. */
278 hh = hppa_elf_hash_entry (entry);
279 memset (&hh->dlt_offset, 0,
280 (sizeof (struct elf64_hppa_link_hash_entry)
281 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282 }
283
284 return entry;
285 }
286
287 /* Create the derived linker hash table. The PA64 ELF port uses this
288 derived hash table to keep information specific to the PA ElF
289 linker (without using static variables). */
290
291 static struct bfd_link_hash_table*
292 elf64_hppa_hash_table_create (bfd *abfd)
293 {
294 struct elf64_hppa_link_hash_table *htab;
295 bfd_size_type amt = sizeof (*htab);
296
297 htab = bfd_zmalloc (amt);
298 if (htab == NULL)
299 return NULL;
300
301 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 hppa64_link_hash_newfunc,
303 sizeof (struct elf64_hppa_link_hash_entry),
304 HPPA64_ELF_DATA))
305 {
306 free (htab);
307 return NULL;
308 }
309
310 htab->text_segment_base = (bfd_vma) -1;
311 htab->data_segment_base = (bfd_vma) -1;
312
313 return &htab->root.root;
314 }
315 \f
316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
317
318 Additionally we set the default architecture and machine. */
319 static bfd_boolean
320 elf64_hppa_object_p (bfd *abfd)
321 {
322 Elf_Internal_Ehdr * i_ehdrp;
323 unsigned int flags;
324
325 i_ehdrp = elf_elfheader (abfd);
326 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
327 {
328 /* GCC on hppa-linux produces binaries with OSABI=GNU,
329 but the kernel produces corefiles with OSABI=SysV. */
330 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
332 return FALSE;
333 }
334 else
335 {
336 /* HPUX produces binaries with OSABI=HPUX,
337 but the kernel produces corefiles with OSABI=SysV. */
338 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
340 return FALSE;
341 }
342
343 flags = i_ehdrp->e_flags;
344 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
345 {
346 case EFA_PARISC_1_0:
347 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
348 case EFA_PARISC_1_1:
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
350 case EFA_PARISC_2_0:
351 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
353 else
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357 }
358 /* Don't be fussy. */
359 return TRUE;
360 }
361
362 /* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
364 static bfd_boolean
365 elf64_hppa_section_from_shdr (bfd *abfd,
366 Elf_Internal_Shdr *hdr,
367 const char *name,
368 int shindex)
369 {
370 switch (hdr->sh_type)
371 {
372 case SHT_PARISC_EXT:
373 if (strcmp (name, ".PARISC.archext") != 0)
374 return FALSE;
375 break;
376 case SHT_PARISC_UNWIND:
377 if (strcmp (name, ".PARISC.unwind") != 0)
378 return FALSE;
379 break;
380 case SHT_PARISC_DOC:
381 case SHT_PARISC_ANNOT:
382 default:
383 return FALSE;
384 }
385
386 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
387 return FALSE;
388
389 return TRUE;
390 }
391
392 /* SEC is a section containing relocs for an input BFD when linking; return
393 a suitable section for holding relocs in the output BFD for a link. */
394
395 static bfd_boolean
396 get_reloc_section (bfd *abfd,
397 struct elf64_hppa_link_hash_table *hppa_info,
398 asection *sec)
399 {
400 const char *srel_name;
401 asection *srel;
402 bfd *dynobj;
403
404 srel_name = (bfd_elf_string_from_elf_section
405 (abfd, elf_elfheader(abfd)->e_shstrndx,
406 _bfd_elf_single_rel_hdr(sec)->sh_name));
407 if (srel_name == NULL)
408 return FALSE;
409
410 dynobj = hppa_info->root.dynobj;
411 if (!dynobj)
412 hppa_info->root.dynobj = dynobj = abfd;
413
414 srel = bfd_get_linker_section (dynobj, srel_name);
415 if (srel == NULL)
416 {
417 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
418 (SEC_ALLOC
419 | SEC_LOAD
420 | SEC_HAS_CONTENTS
421 | SEC_IN_MEMORY
422 | SEC_LINKER_CREATED
423 | SEC_READONLY));
424 if (srel == NULL
425 || !bfd_set_section_alignment (dynobj, srel, 3))
426 return FALSE;
427 }
428
429 hppa_info->other_rel_sec = srel;
430 return TRUE;
431 }
432
433 /* Add a new entry to the list of dynamic relocations against DYN_H.
434
435 We use this to keep a record of all the FPTR relocations against a
436 particular symbol so that we can create FPTR relocations in the
437 output file. */
438
439 static bfd_boolean
440 count_dyn_reloc (bfd *abfd,
441 struct elf64_hppa_link_hash_entry *hh,
442 int type,
443 asection *sec,
444 int sec_symndx,
445 bfd_vma offset,
446 bfd_vma addend)
447 {
448 struct elf64_hppa_dyn_reloc_entry *rent;
449
450 rent = (struct elf64_hppa_dyn_reloc_entry *)
451 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
452 if (!rent)
453 return FALSE;
454
455 rent->next = hh->reloc_entries;
456 rent->type = type;
457 rent->sec = sec;
458 rent->sec_symndx = sec_symndx;
459 rent->offset = offset;
460 rent->addend = addend;
461 hh->reloc_entries = rent;
462
463 return TRUE;
464 }
465
466 /* Return a pointer to the local DLT, PLT and OPD reference counts
467 for ABFD. Returns NULL if the storage allocation fails. */
468
469 static bfd_signed_vma *
470 hppa64_elf_local_refcounts (bfd *abfd)
471 {
472 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473 bfd_signed_vma *local_refcounts;
474
475 local_refcounts = elf_local_got_refcounts (abfd);
476 if (local_refcounts == NULL)
477 {
478 bfd_size_type size;
479
480 /* Allocate space for local DLT, PLT and OPD reference
481 counts. Done this way to save polluting elf_obj_tdata
482 with another target specific pointer. */
483 size = symtab_hdr->sh_info;
484 size *= 3 * sizeof (bfd_signed_vma);
485 local_refcounts = bfd_zalloc (abfd, size);
486 elf_local_got_refcounts (abfd) = local_refcounts;
487 }
488 return local_refcounts;
489 }
490
491 /* Scan the RELOCS and record the type of dynamic entries that each
492 referenced symbol needs. */
493
494 static bfd_boolean
495 elf64_hppa_check_relocs (bfd *abfd,
496 struct bfd_link_info *info,
497 asection *sec,
498 const Elf_Internal_Rela *relocs)
499 {
500 struct elf64_hppa_link_hash_table *hppa_info;
501 const Elf_Internal_Rela *relend;
502 Elf_Internal_Shdr *symtab_hdr;
503 const Elf_Internal_Rela *rel;
504 unsigned int sec_symndx;
505
506 if (bfd_link_relocatable (info))
507 return TRUE;
508
509 /* If this is the first dynamic object found in the link, create
510 the special sections required for dynamic linking. */
511 if (! elf_hash_table (info)->dynamic_sections_created)
512 {
513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
514 return FALSE;
515 }
516
517 hppa_info = hppa_link_hash_table (info);
518 if (hppa_info == NULL)
519 return FALSE;
520 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
521
522 /* If necessary, build a new table holding section symbols indices
523 for this BFD. */
524
525 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
526 {
527 unsigned long i;
528 unsigned int highest_shndx;
529 Elf_Internal_Sym *local_syms = NULL;
530 Elf_Internal_Sym *isym, *isymend;
531 bfd_size_type amt;
532
533 /* We're done with the old cache of section index to section symbol
534 index information. Free it.
535
536 ?!? Note we leak the last section_syms array. Presumably we
537 could free it in one of the later routines in this file. */
538 if (hppa_info->section_syms)
539 free (hppa_info->section_syms);
540
541 /* Read this BFD's local symbols. */
542 if (symtab_hdr->sh_info != 0)
543 {
544 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545 if (local_syms == NULL)
546 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547 symtab_hdr->sh_info, 0,
548 NULL, NULL, NULL);
549 if (local_syms == NULL)
550 return FALSE;
551 }
552
553 /* Record the highest section index referenced by the local symbols. */
554 highest_shndx = 0;
555 isymend = local_syms + symtab_hdr->sh_info;
556 for (isym = local_syms; isym < isymend; isym++)
557 {
558 if (isym->st_shndx > highest_shndx
559 && isym->st_shndx < SHN_LORESERVE)
560 highest_shndx = isym->st_shndx;
561 }
562
563 /* Allocate an array to hold the section index to section symbol index
564 mapping. Bump by one since we start counting at zero. */
565 highest_shndx++;
566 amt = highest_shndx;
567 amt *= sizeof (int);
568 hppa_info->section_syms = (int *) bfd_malloc (amt);
569
570 /* Now walk the local symbols again. If we find a section symbol,
571 record the index of the symbol into the section_syms array. */
572 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
573 {
574 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575 hppa_info->section_syms[isym->st_shndx] = i;
576 }
577
578 /* We are finished with the local symbols. */
579 if (local_syms != NULL
580 && symtab_hdr->contents != (unsigned char *) local_syms)
581 {
582 if (! info->keep_memory)
583 free (local_syms);
584 else
585 {
586 /* Cache the symbols for elf_link_input_bfd. */
587 symtab_hdr->contents = (unsigned char *) local_syms;
588 }
589 }
590
591 /* Record which BFD we built the section_syms mapping for. */
592 hppa_info->section_syms_bfd = abfd;
593 }
594
595 /* Record the symbol index for this input section. We may need it for
596 relocations when building shared libraries. When not building shared
597 libraries this value is never really used, but assign it to zero to
598 prevent out of bounds memory accesses in other routines. */
599 if (bfd_link_pic (info))
600 {
601 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
602
603 /* If we did not find a section symbol for this section, then
604 something went terribly wrong above. */
605 if (sec_symndx == SHN_BAD)
606 return FALSE;
607
608 if (sec_symndx < SHN_LORESERVE)
609 sec_symndx = hppa_info->section_syms[sec_symndx];
610 else
611 sec_symndx = 0;
612 }
613 else
614 sec_symndx = 0;
615
616 relend = relocs + sec->reloc_count;
617 for (rel = relocs; rel < relend; ++rel)
618 {
619 enum
620 {
621 NEED_DLT = 1,
622 NEED_PLT = 2,
623 NEED_STUB = 4,
624 NEED_OPD = 8,
625 NEED_DYNREL = 16,
626 };
627
628 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629 struct elf64_hppa_link_hash_entry *hh;
630 int need_entry;
631 bfd_boolean maybe_dynamic;
632 int dynrel_type = R_PARISC_NONE;
633 static reloc_howto_type *howto;
634
635 if (r_symndx >= symtab_hdr->sh_info)
636 {
637 /* We're dealing with a global symbol -- find its hash entry
638 and mark it as being referenced. */
639 long indx = r_symndx - symtab_hdr->sh_info;
640 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641 while (hh->eh.root.type == bfd_link_hash_indirect
642 || hh->eh.root.type == bfd_link_hash_warning)
643 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
644
645 /* PR15323, ref flags aren't set for references in the same
646 object. */
647 hh->eh.ref_regular = 1;
648 }
649 else
650 hh = NULL;
651
652 /* We can only get preliminary data on whether a symbol is
653 locally or externally defined, as not all of the input files
654 have yet been processed. Do something with what we know, as
655 this may help reduce memory usage and processing time later. */
656 maybe_dynamic = FALSE;
657 if (hh && ((bfd_link_pic (info)
658 && (!info->symbolic
659 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
660 || !hh->eh.def_regular
661 || hh->eh.root.type == bfd_link_hash_defweak))
662 maybe_dynamic = TRUE;
663
664 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
665 need_entry = 0;
666 switch (howto->type)
667 {
668 /* These are simple indirect references to symbols through the
669 DLT. We need to create a DLT entry for any symbols which
670 appears in a DLTIND relocation. */
671 case R_PARISC_DLTIND21L:
672 case R_PARISC_DLTIND14R:
673 case R_PARISC_DLTIND14F:
674 case R_PARISC_DLTIND14WR:
675 case R_PARISC_DLTIND14DR:
676 need_entry = NEED_DLT;
677 break;
678
679 /* ?!? These need a DLT entry. But I have no idea what to do with
680 the "link time TP value. */
681 case R_PARISC_LTOFF_TP21L:
682 case R_PARISC_LTOFF_TP14R:
683 case R_PARISC_LTOFF_TP14F:
684 case R_PARISC_LTOFF_TP64:
685 case R_PARISC_LTOFF_TP14WR:
686 case R_PARISC_LTOFF_TP14DR:
687 case R_PARISC_LTOFF_TP16F:
688 case R_PARISC_LTOFF_TP16WF:
689 case R_PARISC_LTOFF_TP16DF:
690 need_entry = NEED_DLT;
691 break;
692
693 /* These are function calls. Depending on their precise target we
694 may need to make a stub for them. The stub uses the PLT, so we
695 need to create PLT entries for these symbols too. */
696 case R_PARISC_PCREL12F:
697 case R_PARISC_PCREL17F:
698 case R_PARISC_PCREL22F:
699 case R_PARISC_PCREL32:
700 case R_PARISC_PCREL64:
701 case R_PARISC_PCREL21L:
702 case R_PARISC_PCREL17R:
703 case R_PARISC_PCREL17C:
704 case R_PARISC_PCREL14R:
705 case R_PARISC_PCREL14F:
706 case R_PARISC_PCREL22C:
707 case R_PARISC_PCREL14WR:
708 case R_PARISC_PCREL14DR:
709 case R_PARISC_PCREL16F:
710 case R_PARISC_PCREL16WF:
711 case R_PARISC_PCREL16DF:
712 /* Function calls might need to go through the .plt, and
713 might need a long branch stub. */
714 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
715 need_entry = (NEED_PLT | NEED_STUB);
716 else
717 need_entry = 0;
718 break;
719
720 case R_PARISC_PLTOFF21L:
721 case R_PARISC_PLTOFF14R:
722 case R_PARISC_PLTOFF14F:
723 case R_PARISC_PLTOFF14WR:
724 case R_PARISC_PLTOFF14DR:
725 case R_PARISC_PLTOFF16F:
726 case R_PARISC_PLTOFF16WF:
727 case R_PARISC_PLTOFF16DF:
728 need_entry = (NEED_PLT);
729 break;
730
731 case R_PARISC_DIR64:
732 if (bfd_link_pic (info) || maybe_dynamic)
733 need_entry = (NEED_DYNREL);
734 dynrel_type = R_PARISC_DIR64;
735 break;
736
737 /* This is an indirect reference through the DLT to get the address
738 of a OPD descriptor. Thus we need to make a DLT entry that points
739 to an OPD entry. */
740 case R_PARISC_LTOFF_FPTR21L:
741 case R_PARISC_LTOFF_FPTR14R:
742 case R_PARISC_LTOFF_FPTR14WR:
743 case R_PARISC_LTOFF_FPTR14DR:
744 case R_PARISC_LTOFF_FPTR32:
745 case R_PARISC_LTOFF_FPTR64:
746 case R_PARISC_LTOFF_FPTR16F:
747 case R_PARISC_LTOFF_FPTR16WF:
748 case R_PARISC_LTOFF_FPTR16DF:
749 if (bfd_link_pic (info) || maybe_dynamic)
750 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
751 else
752 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
753 dynrel_type = R_PARISC_FPTR64;
754 break;
755
756 /* This is a simple OPD entry. */
757 case R_PARISC_FPTR64:
758 if (bfd_link_pic (info) || maybe_dynamic)
759 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
760 else
761 need_entry = (NEED_OPD | NEED_PLT);
762 dynrel_type = R_PARISC_FPTR64;
763 break;
764
765 /* Add more cases as needed. */
766 }
767
768 if (!need_entry)
769 continue;
770
771 if (hh)
772 {
773 /* Stash away enough information to be able to find this symbol
774 regardless of whether or not it is local or global. */
775 hh->owner = abfd;
776 hh->sym_indx = r_symndx;
777 }
778
779 /* Create what's needed. */
780 if (need_entry & NEED_DLT)
781 {
782 /* Allocate space for a DLT entry, as well as a dynamic
783 relocation for this entry. */
784 if (! hppa_info->dlt_sec
785 && ! get_dlt (abfd, info, hppa_info))
786 goto err_out;
787
788 if (hh != NULL)
789 {
790 hh->want_dlt = 1;
791 hh->eh.got.refcount += 1;
792 }
793 else
794 {
795 bfd_signed_vma *local_dlt_refcounts;
796
797 /* This is a DLT entry for a local symbol. */
798 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
799 if (local_dlt_refcounts == NULL)
800 return FALSE;
801 local_dlt_refcounts[r_symndx] += 1;
802 }
803 }
804
805 if (need_entry & NEED_PLT)
806 {
807 if (! hppa_info->plt_sec
808 && ! get_plt (abfd, info, hppa_info))
809 goto err_out;
810
811 if (hh != NULL)
812 {
813 hh->want_plt = 1;
814 hh->eh.needs_plt = 1;
815 hh->eh.plt.refcount += 1;
816 }
817 else
818 {
819 bfd_signed_vma *local_dlt_refcounts;
820 bfd_signed_vma *local_plt_refcounts;
821
822 /* This is a PLT entry for a local symbol. */
823 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
824 if (local_dlt_refcounts == NULL)
825 return FALSE;
826 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
827 local_plt_refcounts[r_symndx] += 1;
828 }
829 }
830
831 if (need_entry & NEED_STUB)
832 {
833 if (! hppa_info->stub_sec
834 && ! get_stub (abfd, info, hppa_info))
835 goto err_out;
836 if (hh)
837 hh->want_stub = 1;
838 }
839
840 if (need_entry & NEED_OPD)
841 {
842 if (! hppa_info->opd_sec
843 && ! get_opd (abfd, info, hppa_info))
844 goto err_out;
845
846 /* FPTRs are not allocated by the dynamic linker for PA64,
847 though it is possible that will change in the future. */
848
849 if (hh != NULL)
850 hh->want_opd = 1;
851 else
852 {
853 bfd_signed_vma *local_dlt_refcounts;
854 bfd_signed_vma *local_opd_refcounts;
855
856 /* This is a OPD for a local symbol. */
857 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
858 if (local_dlt_refcounts == NULL)
859 return FALSE;
860 local_opd_refcounts = (local_dlt_refcounts
861 + 2 * symtab_hdr->sh_info);
862 local_opd_refcounts[r_symndx] += 1;
863 }
864 }
865
866 /* Add a new dynamic relocation to the chain of dynamic
867 relocations for this symbol. */
868 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
869 {
870 if (! hppa_info->other_rel_sec
871 && ! get_reloc_section (abfd, hppa_info, sec))
872 goto err_out;
873
874 /* Count dynamic relocations against global symbols. */
875 if (hh != NULL
876 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
877 sec_symndx, rel->r_offset, rel->r_addend))
878 goto err_out;
879
880 /* If we are building a shared library and we just recorded
881 a dynamic R_PARISC_FPTR64 relocation, then make sure the
882 section symbol for this section ends up in the dynamic
883 symbol table. */
884 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
885 && ! (bfd_elf_link_record_local_dynamic_symbol
886 (info, abfd, sec_symndx)))
887 return FALSE;
888 }
889 }
890
891 return TRUE;
892
893 err_out:
894 return FALSE;
895 }
896
897 struct elf64_hppa_allocate_data
898 {
899 struct bfd_link_info *info;
900 bfd_size_type ofs;
901 };
902
903 /* Should we do dynamic things to this symbol? */
904
905 static bfd_boolean
906 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
907 struct bfd_link_info *info)
908 {
909 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
910 and relocations that retrieve a function descriptor? Assume the
911 worst for now. */
912 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
913 {
914 /* ??? Why is this here and not elsewhere is_local_label_name. */
915 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
916 return FALSE;
917
918 return TRUE;
919 }
920 else
921 return FALSE;
922 }
923
924 /* Mark all functions exported by this file so that we can later allocate
925 entries in .opd for them. */
926
927 static bfd_boolean
928 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
929 {
930 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
931 struct bfd_link_info *info = (struct bfd_link_info *)data;
932 struct elf64_hppa_link_hash_table *hppa_info;
933
934 hppa_info = hppa_link_hash_table (info);
935 if (hppa_info == NULL)
936 return FALSE;
937
938 if (eh
939 && (eh->root.type == bfd_link_hash_defined
940 || eh->root.type == bfd_link_hash_defweak)
941 && eh->root.u.def.section->output_section != NULL
942 && eh->type == STT_FUNC)
943 {
944 if (! hppa_info->opd_sec
945 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
946 return FALSE;
947
948 hh->want_opd = 1;
949
950 /* Put a flag here for output_symbol_hook. */
951 hh->st_shndx = -1;
952 eh->needs_plt = 1;
953 }
954
955 return TRUE;
956 }
957
958 /* Allocate space for a DLT entry. */
959
960 static bfd_boolean
961 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
962 {
963 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
964 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
965
966 if (hh->want_dlt)
967 {
968 if (bfd_link_pic (x->info))
969 {
970 /* Possibly add the symbol to the local dynamic symbol
971 table since we might need to create a dynamic relocation
972 against it. */
973 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
974 {
975 bfd *owner = eh->root.u.def.section->owner;
976
977 if (! (bfd_elf_link_record_local_dynamic_symbol
978 (x->info, owner, hh->sym_indx)))
979 return FALSE;
980 }
981 }
982
983 hh->dlt_offset = x->ofs;
984 x->ofs += DLT_ENTRY_SIZE;
985 }
986 return TRUE;
987 }
988
989 /* Allocate space for a DLT.PLT entry. */
990
991 static bfd_boolean
992 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
993 {
994 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
995 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
996
997 if (hh->want_plt
998 && elf64_hppa_dynamic_symbol_p (eh, x->info)
999 && !((eh->root.type == bfd_link_hash_defined
1000 || eh->root.type == bfd_link_hash_defweak)
1001 && eh->root.u.def.section->output_section != NULL))
1002 {
1003 hh->plt_offset = x->ofs;
1004 x->ofs += PLT_ENTRY_SIZE;
1005 if (hh->plt_offset < 0x2000)
1006 {
1007 struct elf64_hppa_link_hash_table *hppa_info;
1008
1009 hppa_info = hppa_link_hash_table (x->info);
1010 if (hppa_info == NULL)
1011 return FALSE;
1012
1013 hppa_info->gp_offset = hh->plt_offset;
1014 }
1015 }
1016 else
1017 hh->want_plt = 0;
1018
1019 return TRUE;
1020 }
1021
1022 /* Allocate space for a STUB entry. */
1023
1024 static bfd_boolean
1025 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1026 {
1027 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1028 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1029
1030 if (hh->want_stub
1031 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1032 && !((eh->root.type == bfd_link_hash_defined
1033 || eh->root.type == bfd_link_hash_defweak)
1034 && eh->root.u.def.section->output_section != NULL))
1035 {
1036 hh->stub_offset = x->ofs;
1037 x->ofs += sizeof (plt_stub);
1038 }
1039 else
1040 hh->want_stub = 0;
1041 return TRUE;
1042 }
1043
1044 /* Allocate space for a FPTR entry. */
1045
1046 static bfd_boolean
1047 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1048 {
1049 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1050 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1051
1052 if (hh && hh->want_opd)
1053 {
1054 /* We never need an opd entry for a symbol which is not
1055 defined by this output file. */
1056 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1057 || hh->eh.root.type == bfd_link_hash_undefweak
1058 || hh->eh.root.u.def.section->output_section == NULL))
1059 hh->want_opd = 0;
1060
1061 /* If we are creating a shared library, took the address of a local
1062 function or might export this function from this object file, then
1063 we have to create an opd descriptor. */
1064 else if (bfd_link_pic (x->info)
1065 || hh == NULL
1066 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1067 || (hh->eh.root.type == bfd_link_hash_defined
1068 || hh->eh.root.type == bfd_link_hash_defweak))
1069 {
1070 /* If we are creating a shared library, then we will have to
1071 create a runtime relocation for the symbol to properly
1072 initialize the .opd entry. Make sure the symbol gets
1073 added to the dynamic symbol table. */
1074 if (bfd_link_pic (x->info)
1075 && (hh == NULL || (hh->eh.dynindx == -1)))
1076 {
1077 bfd *owner;
1078 /* PR 6511: Default to using the dynamic symbol table. */
1079 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1080
1081 if (!bfd_elf_link_record_local_dynamic_symbol
1082 (x->info, owner, hh->sym_indx))
1083 return FALSE;
1084 }
1085
1086 /* This may not be necessary or desirable anymore now that
1087 we have some support for dealing with section symbols
1088 in dynamic relocs. But name munging does make the result
1089 much easier to debug. ie, the EPLT reloc will reference
1090 a symbol like .foobar, instead of .text + offset. */
1091 if (bfd_link_pic (x->info) && eh)
1092 {
1093 char *new_name;
1094 struct elf_link_hash_entry *nh;
1095
1096 new_name = concat (".", eh->root.root.string, NULL);
1097
1098 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1099 new_name, TRUE, TRUE, TRUE);
1100
1101 free (new_name);
1102 nh->root.type = eh->root.type;
1103 nh->root.u.def.value = eh->root.u.def.value;
1104 nh->root.u.def.section = eh->root.u.def.section;
1105
1106 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1107 return FALSE;
1108 }
1109 hh->opd_offset = x->ofs;
1110 x->ofs += OPD_ENTRY_SIZE;
1111 }
1112
1113 /* Otherwise we do not need an opd entry. */
1114 else
1115 hh->want_opd = 0;
1116 }
1117 return TRUE;
1118 }
1119
1120 /* HP requires the EI_OSABI field to be filled in. The assignment to
1121 EI_ABIVERSION may not be strictly necessary. */
1122
1123 static void
1124 elf64_hppa_post_process_headers (bfd *abfd,
1125 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1126 {
1127 Elf_Internal_Ehdr * i_ehdrp;
1128
1129 i_ehdrp = elf_elfheader (abfd);
1130
1131 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1132 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1133 }
1134
1135 /* Create function descriptor section (.opd). This section is called .opd
1136 because it contains "official procedure descriptors". The "official"
1137 refers to the fact that these descriptors are used when taking the address
1138 of a procedure, thus ensuring a unique address for each procedure. */
1139
1140 static bfd_boolean
1141 get_opd (bfd *abfd,
1142 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1143 struct elf64_hppa_link_hash_table *hppa_info)
1144 {
1145 asection *opd;
1146 bfd *dynobj;
1147
1148 opd = hppa_info->opd_sec;
1149 if (!opd)
1150 {
1151 dynobj = hppa_info->root.dynobj;
1152 if (!dynobj)
1153 hppa_info->root.dynobj = dynobj = abfd;
1154
1155 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1156 (SEC_ALLOC
1157 | SEC_LOAD
1158 | SEC_HAS_CONTENTS
1159 | SEC_IN_MEMORY
1160 | SEC_LINKER_CREATED));
1161 if (!opd
1162 || !bfd_set_section_alignment (abfd, opd, 3))
1163 {
1164 BFD_ASSERT (0);
1165 return FALSE;
1166 }
1167
1168 hppa_info->opd_sec = opd;
1169 }
1170
1171 return TRUE;
1172 }
1173
1174 /* Create the PLT section. */
1175
1176 static bfd_boolean
1177 get_plt (bfd *abfd,
1178 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1179 struct elf64_hppa_link_hash_table *hppa_info)
1180 {
1181 asection *plt;
1182 bfd *dynobj;
1183
1184 plt = hppa_info->plt_sec;
1185 if (!plt)
1186 {
1187 dynobj = hppa_info->root.dynobj;
1188 if (!dynobj)
1189 hppa_info->root.dynobj = dynobj = abfd;
1190
1191 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1192 (SEC_ALLOC
1193 | SEC_LOAD
1194 | SEC_HAS_CONTENTS
1195 | SEC_IN_MEMORY
1196 | SEC_LINKER_CREATED));
1197 if (!plt
1198 || !bfd_set_section_alignment (abfd, plt, 3))
1199 {
1200 BFD_ASSERT (0);
1201 return FALSE;
1202 }
1203
1204 hppa_info->plt_sec = plt;
1205 }
1206
1207 return TRUE;
1208 }
1209
1210 /* Create the DLT section. */
1211
1212 static bfd_boolean
1213 get_dlt (bfd *abfd,
1214 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1215 struct elf64_hppa_link_hash_table *hppa_info)
1216 {
1217 asection *dlt;
1218 bfd *dynobj;
1219
1220 dlt = hppa_info->dlt_sec;
1221 if (!dlt)
1222 {
1223 dynobj = hppa_info->root.dynobj;
1224 if (!dynobj)
1225 hppa_info->root.dynobj = dynobj = abfd;
1226
1227 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1228 (SEC_ALLOC
1229 | SEC_LOAD
1230 | SEC_HAS_CONTENTS
1231 | SEC_IN_MEMORY
1232 | SEC_LINKER_CREATED));
1233 if (!dlt
1234 || !bfd_set_section_alignment (abfd, dlt, 3))
1235 {
1236 BFD_ASSERT (0);
1237 return FALSE;
1238 }
1239
1240 hppa_info->dlt_sec = dlt;
1241 }
1242
1243 return TRUE;
1244 }
1245
1246 /* Create the stubs section. */
1247
1248 static bfd_boolean
1249 get_stub (bfd *abfd,
1250 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1251 struct elf64_hppa_link_hash_table *hppa_info)
1252 {
1253 asection *stub;
1254 bfd *dynobj;
1255
1256 stub = hppa_info->stub_sec;
1257 if (!stub)
1258 {
1259 dynobj = hppa_info->root.dynobj;
1260 if (!dynobj)
1261 hppa_info->root.dynobj = dynobj = abfd;
1262
1263 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1264 (SEC_ALLOC | SEC_LOAD
1265 | SEC_HAS_CONTENTS
1266 | SEC_IN_MEMORY
1267 | SEC_READONLY
1268 | SEC_LINKER_CREATED));
1269 if (!stub
1270 || !bfd_set_section_alignment (abfd, stub, 3))
1271 {
1272 BFD_ASSERT (0);
1273 return FALSE;
1274 }
1275
1276 hppa_info->stub_sec = stub;
1277 }
1278
1279 return TRUE;
1280 }
1281
1282 /* Create sections necessary for dynamic linking. This is only a rough
1283 cut and will likely change as we learn more about the somewhat
1284 unusual dynamic linking scheme HP uses.
1285
1286 .stub:
1287 Contains code to implement cross-space calls. The first time one
1288 of the stubs is used it will call into the dynamic linker, later
1289 calls will go straight to the target.
1290
1291 The only stub we support right now looks like
1292
1293 ldd OFFSET(%dp),%r1
1294 bve %r0(%r1)
1295 ldd OFFSET+8(%dp),%dp
1296
1297 Other stubs may be needed in the future. We may want the remove
1298 the break/nop instruction. It is only used right now to keep the
1299 offset of a .plt entry and a .stub entry in sync.
1300
1301 .dlt:
1302 This is what most people call the .got. HP used a different name.
1303 Losers.
1304
1305 .rela.dlt:
1306 Relocations for the DLT.
1307
1308 .plt:
1309 Function pointers as address,gp pairs.
1310
1311 .rela.plt:
1312 Should contain dynamic IPLT (and EPLT?) relocations.
1313
1314 .opd:
1315 FPTRS
1316
1317 .rela.opd:
1318 EPLT relocations for symbols exported from shared libraries. */
1319
1320 static bfd_boolean
1321 elf64_hppa_create_dynamic_sections (bfd *abfd,
1322 struct bfd_link_info *info)
1323 {
1324 asection *s;
1325 struct elf64_hppa_link_hash_table *hppa_info;
1326
1327 hppa_info = hppa_link_hash_table (info);
1328 if (hppa_info == NULL)
1329 return FALSE;
1330
1331 if (! get_stub (abfd, info, hppa_info))
1332 return FALSE;
1333
1334 if (! get_dlt (abfd, info, hppa_info))
1335 return FALSE;
1336
1337 if (! get_plt (abfd, info, hppa_info))
1338 return FALSE;
1339
1340 if (! get_opd (abfd, info, hppa_info))
1341 return FALSE;
1342
1343 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1344 (SEC_ALLOC | SEC_LOAD
1345 | SEC_HAS_CONTENTS
1346 | SEC_IN_MEMORY
1347 | SEC_READONLY
1348 | SEC_LINKER_CREATED));
1349 if (s == NULL
1350 || !bfd_set_section_alignment (abfd, s, 3))
1351 return FALSE;
1352 hppa_info->dlt_rel_sec = s;
1353
1354 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1355 (SEC_ALLOC | SEC_LOAD
1356 | SEC_HAS_CONTENTS
1357 | SEC_IN_MEMORY
1358 | SEC_READONLY
1359 | SEC_LINKER_CREATED));
1360 if (s == NULL
1361 || !bfd_set_section_alignment (abfd, s, 3))
1362 return FALSE;
1363 hppa_info->plt_rel_sec = s;
1364
1365 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1366 (SEC_ALLOC | SEC_LOAD
1367 | SEC_HAS_CONTENTS
1368 | SEC_IN_MEMORY
1369 | SEC_READONLY
1370 | SEC_LINKER_CREATED));
1371 if (s == NULL
1372 || !bfd_set_section_alignment (abfd, s, 3))
1373 return FALSE;
1374 hppa_info->other_rel_sec = s;
1375
1376 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1377 (SEC_ALLOC | SEC_LOAD
1378 | SEC_HAS_CONTENTS
1379 | SEC_IN_MEMORY
1380 | SEC_READONLY
1381 | SEC_LINKER_CREATED));
1382 if (s == NULL
1383 || !bfd_set_section_alignment (abfd, s, 3))
1384 return FALSE;
1385 hppa_info->opd_rel_sec = s;
1386
1387 return TRUE;
1388 }
1389
1390 /* Allocate dynamic relocations for those symbols that turned out
1391 to be dynamic. */
1392
1393 static bfd_boolean
1394 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1395 {
1396 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1397 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1398 struct elf64_hppa_link_hash_table *hppa_info;
1399 struct elf64_hppa_dyn_reloc_entry *rent;
1400 bfd_boolean dynamic_symbol, shared;
1401
1402 hppa_info = hppa_link_hash_table (x->info);
1403 if (hppa_info == NULL)
1404 return FALSE;
1405
1406 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1407 shared = bfd_link_pic (x->info);
1408
1409 /* We may need to allocate relocations for a non-dynamic symbol
1410 when creating a shared library. */
1411 if (!dynamic_symbol && !shared)
1412 return TRUE;
1413
1414 /* Take care of the normal data relocations. */
1415
1416 for (rent = hh->reloc_entries; rent; rent = rent->next)
1417 {
1418 /* Allocate one iff we are building a shared library, the relocation
1419 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1420 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1421 continue;
1422
1423 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1424
1425 /* Make sure this symbol gets into the dynamic symbol table if it is
1426 not already recorded. ?!? This should not be in the loop since
1427 the symbol need only be added once. */
1428 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1429 if (!bfd_elf_link_record_local_dynamic_symbol
1430 (x->info, rent->sec->owner, hh->sym_indx))
1431 return FALSE;
1432 }
1433
1434 /* Take care of the GOT and PLT relocations. */
1435
1436 if ((dynamic_symbol || shared) && hh->want_dlt)
1437 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1438
1439 /* If we are building a shared library, then every symbol that has an
1440 opd entry will need an EPLT relocation to relocate the symbol's address
1441 and __gp value based on the runtime load address. */
1442 if (shared && hh->want_opd)
1443 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1444
1445 if (hh->want_plt && dynamic_symbol)
1446 {
1447 bfd_size_type t = 0;
1448
1449 /* Dynamic symbols get one IPLT relocation. Local symbols in
1450 shared libraries get two REL relocations. Local symbols in
1451 main applications get nothing. */
1452 if (dynamic_symbol)
1453 t = sizeof (Elf64_External_Rela);
1454 else if (shared)
1455 t = 2 * sizeof (Elf64_External_Rela);
1456
1457 hppa_info->plt_rel_sec->size += t;
1458 }
1459
1460 return TRUE;
1461 }
1462
1463 /* Adjust a symbol defined by a dynamic object and referenced by a
1464 regular object. */
1465
1466 static bfd_boolean
1467 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1468 struct elf_link_hash_entry *eh)
1469 {
1470 /* ??? Undefined symbols with PLT entries should be re-defined
1471 to be the PLT entry. */
1472
1473 /* If this is a weak symbol, and there is a real definition, the
1474 processor independent code will have arranged for us to see the
1475 real definition first, and we can just use the same value. */
1476 if (eh->is_weakalias)
1477 {
1478 struct elf_link_hash_entry *def = weakdef (eh);
1479 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1480 eh->root.u.def.section = def->root.u.def.section;
1481 eh->root.u.def.value = def->root.u.def.value;
1482 return TRUE;
1483 }
1484
1485 /* If this is a reference to a symbol defined by a dynamic object which
1486 is not a function, we might allocate the symbol in our .dynbss section
1487 and allocate a COPY dynamic relocation.
1488
1489 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1490 of hackery. */
1491
1492 return TRUE;
1493 }
1494
1495 /* This function is called via elf_link_hash_traverse to mark millicode
1496 symbols with a dynindx of -1 and to remove the string table reference
1497 from the dynamic symbol table. If the symbol is not a millicode symbol,
1498 elf64_hppa_mark_exported_functions is called. */
1499
1500 static bfd_boolean
1501 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1502 void *data)
1503 {
1504 struct bfd_link_info *info = (struct bfd_link_info *) data;
1505
1506 if (eh->type == STT_PARISC_MILLI)
1507 {
1508 if (eh->dynindx != -1)
1509 {
1510 eh->dynindx = -1;
1511 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1512 eh->dynstr_index);
1513 }
1514 return TRUE;
1515 }
1516
1517 return elf64_hppa_mark_exported_functions (eh, data);
1518 }
1519
1520 /* Set the final sizes of the dynamic sections and allocate memory for
1521 the contents of our special sections. */
1522
1523 static bfd_boolean
1524 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1525 {
1526 struct elf64_hppa_link_hash_table *hppa_info;
1527 struct elf64_hppa_allocate_data data;
1528 bfd *dynobj;
1529 bfd *ibfd;
1530 asection *sec;
1531 bfd_boolean plt;
1532 bfd_boolean relocs;
1533 bfd_boolean reltext;
1534
1535 hppa_info = hppa_link_hash_table (info);
1536 if (hppa_info == NULL)
1537 return FALSE;
1538
1539 dynobj = hppa_info->root.dynobj;
1540 BFD_ASSERT (dynobj != NULL);
1541
1542 /* Mark each function this program exports so that we will allocate
1543 space in the .opd section for each function's FPTR. If we are
1544 creating dynamic sections, change the dynamic index of millicode
1545 symbols to -1 and remove them from the string table for .dynstr.
1546
1547 We have to traverse the main linker hash table since we have to
1548 find functions which may not have been mentioned in any relocs. */
1549 elf_link_hash_traverse (&hppa_info->root,
1550 (hppa_info->root.dynamic_sections_created
1551 ? elf64_hppa_mark_milli_and_exported_functions
1552 : elf64_hppa_mark_exported_functions),
1553 info);
1554
1555 if (hppa_info->root.dynamic_sections_created)
1556 {
1557 /* Set the contents of the .interp section to the interpreter. */
1558 if (bfd_link_executable (info) && !info->nointerp)
1559 {
1560 sec = bfd_get_linker_section (dynobj, ".interp");
1561 BFD_ASSERT (sec != NULL);
1562 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1563 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1564 }
1565 }
1566 else
1567 {
1568 /* We may have created entries in the .rela.got section.
1569 However, if we are not creating the dynamic sections, we will
1570 not actually use these entries. Reset the size of .rela.dlt,
1571 which will cause it to get stripped from the output file
1572 below. */
1573 sec = hppa_info->dlt_rel_sec;
1574 if (sec != NULL)
1575 sec->size = 0;
1576 }
1577
1578 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1579 dynamic relocs. */
1580 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1581 {
1582 bfd_signed_vma *local_dlt;
1583 bfd_signed_vma *end_local_dlt;
1584 bfd_signed_vma *local_plt;
1585 bfd_signed_vma *end_local_plt;
1586 bfd_signed_vma *local_opd;
1587 bfd_signed_vma *end_local_opd;
1588 bfd_size_type locsymcount;
1589 Elf_Internal_Shdr *symtab_hdr;
1590 asection *srel;
1591
1592 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1593 continue;
1594
1595 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1596 {
1597 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1598
1599 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1600 elf_section_data (sec)->local_dynrel);
1601 hdh_p != NULL;
1602 hdh_p = hdh_p->next)
1603 {
1604 if (!bfd_is_abs_section (hdh_p->sec)
1605 && bfd_is_abs_section (hdh_p->sec->output_section))
1606 {
1607 /* Input section has been discarded, either because
1608 it is a copy of a linkonce section or due to
1609 linker script /DISCARD/, so we'll be discarding
1610 the relocs too. */
1611 }
1612 else if (hdh_p->count != 0)
1613 {
1614 srel = elf_section_data (hdh_p->sec)->sreloc;
1615 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1616 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1617 info->flags |= DF_TEXTREL;
1618 }
1619 }
1620 }
1621
1622 local_dlt = elf_local_got_refcounts (ibfd);
1623 if (!local_dlt)
1624 continue;
1625
1626 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1627 locsymcount = symtab_hdr->sh_info;
1628 end_local_dlt = local_dlt + locsymcount;
1629 sec = hppa_info->dlt_sec;
1630 srel = hppa_info->dlt_rel_sec;
1631 for (; local_dlt < end_local_dlt; ++local_dlt)
1632 {
1633 if (*local_dlt > 0)
1634 {
1635 *local_dlt = sec->size;
1636 sec->size += DLT_ENTRY_SIZE;
1637 if (bfd_link_pic (info))
1638 {
1639 srel->size += sizeof (Elf64_External_Rela);
1640 }
1641 }
1642 else
1643 *local_dlt = (bfd_vma) -1;
1644 }
1645
1646 local_plt = end_local_dlt;
1647 end_local_plt = local_plt + locsymcount;
1648 if (! hppa_info->root.dynamic_sections_created)
1649 {
1650 /* Won't be used, but be safe. */
1651 for (; local_plt < end_local_plt; ++local_plt)
1652 *local_plt = (bfd_vma) -1;
1653 }
1654 else
1655 {
1656 sec = hppa_info->plt_sec;
1657 srel = hppa_info->plt_rel_sec;
1658 for (; local_plt < end_local_plt; ++local_plt)
1659 {
1660 if (*local_plt > 0)
1661 {
1662 *local_plt = sec->size;
1663 sec->size += PLT_ENTRY_SIZE;
1664 if (bfd_link_pic (info))
1665 srel->size += sizeof (Elf64_External_Rela);
1666 }
1667 else
1668 *local_plt = (bfd_vma) -1;
1669 }
1670 }
1671
1672 local_opd = end_local_plt;
1673 end_local_opd = local_opd + locsymcount;
1674 if (! hppa_info->root.dynamic_sections_created)
1675 {
1676 /* Won't be used, but be safe. */
1677 for (; local_opd < end_local_opd; ++local_opd)
1678 *local_opd = (bfd_vma) -1;
1679 }
1680 else
1681 {
1682 sec = hppa_info->opd_sec;
1683 srel = hppa_info->opd_rel_sec;
1684 for (; local_opd < end_local_opd; ++local_opd)
1685 {
1686 if (*local_opd > 0)
1687 {
1688 *local_opd = sec->size;
1689 sec->size += OPD_ENTRY_SIZE;
1690 if (bfd_link_pic (info))
1691 srel->size += sizeof (Elf64_External_Rela);
1692 }
1693 else
1694 *local_opd = (bfd_vma) -1;
1695 }
1696 }
1697 }
1698
1699 /* Allocate the GOT entries. */
1700
1701 data.info = info;
1702 if (hppa_info->dlt_sec)
1703 {
1704 data.ofs = hppa_info->dlt_sec->size;
1705 elf_link_hash_traverse (&hppa_info->root,
1706 allocate_global_data_dlt, &data);
1707 hppa_info->dlt_sec->size = data.ofs;
1708 }
1709
1710 if (hppa_info->plt_sec)
1711 {
1712 data.ofs = hppa_info->plt_sec->size;
1713 elf_link_hash_traverse (&hppa_info->root,
1714 allocate_global_data_plt, &data);
1715 hppa_info->plt_sec->size = data.ofs;
1716 }
1717
1718 if (hppa_info->stub_sec)
1719 {
1720 data.ofs = 0x0;
1721 elf_link_hash_traverse (&hppa_info->root,
1722 allocate_global_data_stub, &data);
1723 hppa_info->stub_sec->size = data.ofs;
1724 }
1725
1726 /* Allocate space for entries in the .opd section. */
1727 if (hppa_info->opd_sec)
1728 {
1729 data.ofs = hppa_info->opd_sec->size;
1730 elf_link_hash_traverse (&hppa_info->root,
1731 allocate_global_data_opd, &data);
1732 hppa_info->opd_sec->size = data.ofs;
1733 }
1734
1735 /* Now allocate space for dynamic relocations, if necessary. */
1736 if (hppa_info->root.dynamic_sections_created)
1737 elf_link_hash_traverse (&hppa_info->root,
1738 allocate_dynrel_entries, &data);
1739
1740 /* The sizes of all the sections are set. Allocate memory for them. */
1741 plt = FALSE;
1742 relocs = FALSE;
1743 reltext = FALSE;
1744 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1745 {
1746 const char *name;
1747
1748 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1749 continue;
1750
1751 /* It's OK to base decisions on the section name, because none
1752 of the dynobj section names depend upon the input files. */
1753 name = bfd_get_section_name (dynobj, sec);
1754
1755 if (strcmp (name, ".plt") == 0)
1756 {
1757 /* Remember whether there is a PLT. */
1758 plt = sec->size != 0;
1759 }
1760 else if (strcmp (name, ".opd") == 0
1761 || CONST_STRNEQ (name, ".dlt")
1762 || strcmp (name, ".stub") == 0
1763 || strcmp (name, ".got") == 0)
1764 {
1765 /* Strip this section if we don't need it; see the comment below. */
1766 }
1767 else if (CONST_STRNEQ (name, ".rela"))
1768 {
1769 if (sec->size != 0)
1770 {
1771 asection *target;
1772
1773 /* Remember whether there are any reloc sections other
1774 than .rela.plt. */
1775 if (strcmp (name, ".rela.plt") != 0)
1776 {
1777 const char *outname;
1778
1779 relocs = TRUE;
1780
1781 /* If this relocation section applies to a read only
1782 section, then we probably need a DT_TEXTREL
1783 entry. The entries in the .rela.plt section
1784 really apply to the .got section, which we
1785 created ourselves and so know is not readonly. */
1786 outname = bfd_get_section_name (output_bfd,
1787 sec->output_section);
1788 target = bfd_get_section_by_name (output_bfd, outname + 4);
1789 if (target != NULL
1790 && (target->flags & SEC_READONLY) != 0
1791 && (target->flags & SEC_ALLOC) != 0)
1792 reltext = TRUE;
1793 }
1794
1795 /* We use the reloc_count field as a counter if we need
1796 to copy relocs into the output file. */
1797 sec->reloc_count = 0;
1798 }
1799 }
1800 else
1801 {
1802 /* It's not one of our sections, so don't allocate space. */
1803 continue;
1804 }
1805
1806 if (sec->size == 0)
1807 {
1808 /* If we don't need this section, strip it from the
1809 output file. This is mostly to handle .rela.bss and
1810 .rela.plt. We must create both sections in
1811 create_dynamic_sections, because they must be created
1812 before the linker maps input sections to output
1813 sections. The linker does that before
1814 adjust_dynamic_symbol is called, and it is that
1815 function which decides whether anything needs to go
1816 into these sections. */
1817 sec->flags |= SEC_EXCLUDE;
1818 continue;
1819 }
1820
1821 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1822 continue;
1823
1824 /* Allocate memory for the section contents if it has not
1825 been allocated already. We use bfd_zalloc here in case
1826 unused entries are not reclaimed before the section's
1827 contents are written out. This should not happen, but this
1828 way if it does, we get a R_PARISC_NONE reloc instead of
1829 garbage. */
1830 if (sec->contents == NULL)
1831 {
1832 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1833 if (sec->contents == NULL)
1834 return FALSE;
1835 }
1836 }
1837
1838 if (hppa_info->root.dynamic_sections_created)
1839 {
1840 /* Always create a DT_PLTGOT. It actually has nothing to do with
1841 the PLT, it is how we communicate the __gp value of a load
1842 module to the dynamic linker. */
1843 #define add_dynamic_entry(TAG, VAL) \
1844 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1845
1846 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1847 || !add_dynamic_entry (DT_PLTGOT, 0))
1848 return FALSE;
1849
1850 /* Add some entries to the .dynamic section. We fill in the
1851 values later, in elf64_hppa_finish_dynamic_sections, but we
1852 must add the entries now so that we get the correct size for
1853 the .dynamic section. The DT_DEBUG entry is filled in by the
1854 dynamic linker and used by the debugger. */
1855 if (! bfd_link_pic (info))
1856 {
1857 if (!add_dynamic_entry (DT_DEBUG, 0)
1858 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1859 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1860 return FALSE;
1861 }
1862
1863 /* Force DT_FLAGS to always be set.
1864 Required by HPUX 11.00 patch PHSS_26559. */
1865 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1866 return FALSE;
1867
1868 if (plt)
1869 {
1870 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1871 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1872 || !add_dynamic_entry (DT_JMPREL, 0))
1873 return FALSE;
1874 }
1875
1876 if (relocs)
1877 {
1878 if (!add_dynamic_entry (DT_RELA, 0)
1879 || !add_dynamic_entry (DT_RELASZ, 0)
1880 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1881 return FALSE;
1882 }
1883
1884 if (reltext)
1885 {
1886 if (!add_dynamic_entry (DT_TEXTREL, 0))
1887 return FALSE;
1888 info->flags |= DF_TEXTREL;
1889 }
1890 }
1891 #undef add_dynamic_entry
1892
1893 return TRUE;
1894 }
1895
1896 /* Called after we have output the symbol into the dynamic symbol
1897 table, but before we output the symbol into the normal symbol
1898 table.
1899
1900 For some symbols we had to change their address when outputting
1901 the dynamic symbol table. We undo that change here so that
1902 the symbols have their expected value in the normal symbol
1903 table. Ick. */
1904
1905 static int
1906 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1907 const char *name,
1908 Elf_Internal_Sym *sym,
1909 asection *input_sec ATTRIBUTE_UNUSED,
1910 struct elf_link_hash_entry *eh)
1911 {
1912 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1913
1914 /* We may be called with the file symbol or section symbols.
1915 They never need munging, so it is safe to ignore them. */
1916 if (!name || !eh)
1917 return 1;
1918
1919 /* Function symbols for which we created .opd entries *may* have been
1920 munged by finish_dynamic_symbol and have to be un-munged here.
1921
1922 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1923 into non-dynamic ones, so we initialize st_shndx to -1 in
1924 mark_exported_functions and check to see if it was overwritten
1925 here instead of just checking eh->dynindx. */
1926 if (hh->want_opd && hh->st_shndx != -1)
1927 {
1928 /* Restore the saved value and section index. */
1929 sym->st_value = hh->st_value;
1930 sym->st_shndx = hh->st_shndx;
1931 }
1932
1933 return 1;
1934 }
1935
1936 /* Finish up dynamic symbol handling. We set the contents of various
1937 dynamic sections here. */
1938
1939 static bfd_boolean
1940 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1941 struct bfd_link_info *info,
1942 struct elf_link_hash_entry *eh,
1943 Elf_Internal_Sym *sym)
1944 {
1945 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1946 asection *stub, *splt, *sopd, *spltrel;
1947 struct elf64_hppa_link_hash_table *hppa_info;
1948
1949 hppa_info = hppa_link_hash_table (info);
1950 if (hppa_info == NULL)
1951 return FALSE;
1952
1953 stub = hppa_info->stub_sec;
1954 splt = hppa_info->plt_sec;
1955 sopd = hppa_info->opd_sec;
1956 spltrel = hppa_info->plt_rel_sec;
1957
1958 /* Incredible. It is actually necessary to NOT use the symbol's real
1959 value when building the dynamic symbol table for a shared library.
1960 At least for symbols that refer to functions.
1961
1962 We will store a new value and section index into the symbol long
1963 enough to output it into the dynamic symbol table, then we restore
1964 the original values (in elf64_hppa_link_output_symbol_hook). */
1965 if (hh->want_opd)
1966 {
1967 BFD_ASSERT (sopd != NULL);
1968
1969 /* Save away the original value and section index so that we
1970 can restore them later. */
1971 hh->st_value = sym->st_value;
1972 hh->st_shndx = sym->st_shndx;
1973
1974 /* For the dynamic symbol table entry, we want the value to be
1975 address of this symbol's entry within the .opd section. */
1976 sym->st_value = (hh->opd_offset
1977 + sopd->output_offset
1978 + sopd->output_section->vma);
1979 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1980 sopd->output_section);
1981 }
1982
1983 /* Initialize a .plt entry if requested. */
1984 if (hh->want_plt
1985 && elf64_hppa_dynamic_symbol_p (eh, info))
1986 {
1987 bfd_vma value;
1988 Elf_Internal_Rela rel;
1989 bfd_byte *loc;
1990
1991 BFD_ASSERT (splt != NULL && spltrel != NULL);
1992
1993 /* We do not actually care about the value in the PLT entry
1994 if we are creating a shared library and the symbol is
1995 still undefined, we create a dynamic relocation to fill
1996 in the correct value. */
1997 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1998 value = 0;
1999 else
2000 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2001
2002 /* Fill in the entry in the procedure linkage table.
2003
2004 The format of a plt entry is
2005 <funcaddr> <__gp>.
2006
2007 plt_offset is the offset within the PLT section at which to
2008 install the PLT entry.
2009
2010 We are modifying the in-memory PLT contents here, so we do not add
2011 in the output_offset of the PLT section. */
2012
2013 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2014 value = _bfd_get_gp_value (splt->output_section->owner);
2015 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2016
2017 /* Create a dynamic IPLT relocation for this entry.
2018
2019 We are creating a relocation in the output file's PLT section,
2020 which is included within the DLT secton. So we do need to include
2021 the PLT's output_offset in the computation of the relocation's
2022 address. */
2023 rel.r_offset = (hh->plt_offset + splt->output_offset
2024 + splt->output_section->vma);
2025 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2026 rel.r_addend = 0;
2027
2028 loc = spltrel->contents;
2029 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2030 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2031 }
2032
2033 /* Initialize an external call stub entry if requested. */
2034 if (hh->want_stub
2035 && elf64_hppa_dynamic_symbol_p (eh, info))
2036 {
2037 bfd_vma value;
2038 int insn;
2039 unsigned int max_offset;
2040
2041 BFD_ASSERT (stub != NULL);
2042
2043 /* Install the generic stub template.
2044
2045 We are modifying the contents of the stub section, so we do not
2046 need to include the stub section's output_offset here. */
2047 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2048
2049 /* Fix up the first ldd instruction.
2050
2051 We are modifying the contents of the STUB section in memory,
2052 so we do not need to include its output offset in this computation.
2053
2054 Note the plt_offset value is the value of the PLT entry relative to
2055 the start of the PLT section. These instructions will reference
2056 data relative to the value of __gp, which may not necessarily have
2057 the same address as the start of the PLT section.
2058
2059 gp_offset contains the offset of __gp within the PLT section. */
2060 value = hh->plt_offset - hppa_info->gp_offset;
2061
2062 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2063 if (output_bfd->arch_info->mach >= 25)
2064 {
2065 /* Wide mode allows 16 bit offsets. */
2066 max_offset = 32768;
2067 insn &= ~ 0xfff1;
2068 insn |= re_assemble_16 ((int) value);
2069 }
2070 else
2071 {
2072 max_offset = 8192;
2073 insn &= ~ 0x3ff1;
2074 insn |= re_assemble_14 ((int) value);
2075 }
2076
2077 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2078 {
2079 _bfd_error_handler
2080 /* xgettext:c-format */
2081 (_("stub entry for %s cannot load .plt, dp offset = %Ld"),
2082 hh->eh.root.root.string, value);
2083 return FALSE;
2084 }
2085
2086 bfd_put_32 (stub->owner, (bfd_vma) insn,
2087 stub->contents + hh->stub_offset);
2088
2089 /* Fix up the second ldd instruction. */
2090 value += 8;
2091 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2092 if (output_bfd->arch_info->mach >= 25)
2093 {
2094 insn &= ~ 0xfff1;
2095 insn |= re_assemble_16 ((int) value);
2096 }
2097 else
2098 {
2099 insn &= ~ 0x3ff1;
2100 insn |= re_assemble_14 ((int) value);
2101 }
2102 bfd_put_32 (stub->owner, (bfd_vma) insn,
2103 stub->contents + hh->stub_offset + 8);
2104 }
2105
2106 return TRUE;
2107 }
2108
2109 /* The .opd section contains FPTRs for each function this file
2110 exports. Initialize the FPTR entries. */
2111
2112 static bfd_boolean
2113 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2114 {
2115 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2116 struct bfd_link_info *info = (struct bfd_link_info *)data;
2117 struct elf64_hppa_link_hash_table *hppa_info;
2118 asection *sopd;
2119 asection *sopdrel;
2120
2121 hppa_info = hppa_link_hash_table (info);
2122 if (hppa_info == NULL)
2123 return FALSE;
2124
2125 sopd = hppa_info->opd_sec;
2126 sopdrel = hppa_info->opd_rel_sec;
2127
2128 if (hh->want_opd)
2129 {
2130 bfd_vma value;
2131
2132 /* The first two words of an .opd entry are zero.
2133
2134 We are modifying the contents of the OPD section in memory, so we
2135 do not need to include its output offset in this computation. */
2136 memset (sopd->contents + hh->opd_offset, 0, 16);
2137
2138 value = (eh->root.u.def.value
2139 + eh->root.u.def.section->output_section->vma
2140 + eh->root.u.def.section->output_offset);
2141
2142 /* The next word is the address of the function. */
2143 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2144
2145 /* The last word is our local __gp value. */
2146 value = _bfd_get_gp_value (sopd->output_section->owner);
2147 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2148 }
2149
2150 /* If we are generating a shared library, we must generate EPLT relocations
2151 for each entry in the .opd, even for static functions (they may have
2152 had their address taken). */
2153 if (bfd_link_pic (info) && hh->want_opd)
2154 {
2155 Elf_Internal_Rela rel;
2156 bfd_byte *loc;
2157 int dynindx;
2158
2159 /* We may need to do a relocation against a local symbol, in
2160 which case we have to look up it's dynamic symbol index off
2161 the local symbol hash table. */
2162 if (eh->dynindx != -1)
2163 dynindx = eh->dynindx;
2164 else
2165 dynindx
2166 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2167 hh->sym_indx);
2168
2169 /* The offset of this relocation is the absolute address of the
2170 .opd entry for this symbol. */
2171 rel.r_offset = (hh->opd_offset + sopd->output_offset
2172 + sopd->output_section->vma);
2173
2174 /* If H is non-null, then we have an external symbol.
2175
2176 It is imperative that we use a different dynamic symbol for the
2177 EPLT relocation if the symbol has global scope.
2178
2179 In the dynamic symbol table, the function symbol will have a value
2180 which is address of the function's .opd entry.
2181
2182 Thus, we can not use that dynamic symbol for the EPLT relocation
2183 (if we did, the data in the .opd would reference itself rather
2184 than the actual address of the function). Instead we have to use
2185 a new dynamic symbol which has the same value as the original global
2186 function symbol.
2187
2188 We prefix the original symbol with a "." and use the new symbol in
2189 the EPLT relocation. This new symbol has already been recorded in
2190 the symbol table, we just have to look it up and use it.
2191
2192 We do not have such problems with static functions because we do
2193 not make their addresses in the dynamic symbol table point to
2194 the .opd entry. Ultimately this should be safe since a static
2195 function can not be directly referenced outside of its shared
2196 library.
2197
2198 We do have to play similar games for FPTR relocations in shared
2199 libraries, including those for static symbols. See the FPTR
2200 handling in elf64_hppa_finalize_dynreloc. */
2201 if (eh)
2202 {
2203 char *new_name;
2204 struct elf_link_hash_entry *nh;
2205
2206 new_name = concat (".", eh->root.root.string, NULL);
2207
2208 nh = elf_link_hash_lookup (elf_hash_table (info),
2209 new_name, TRUE, TRUE, FALSE);
2210
2211 /* All we really want from the new symbol is its dynamic
2212 symbol index. */
2213 if (nh)
2214 dynindx = nh->dynindx;
2215 free (new_name);
2216 }
2217
2218 rel.r_addend = 0;
2219 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2220
2221 loc = sopdrel->contents;
2222 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2223 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2224 }
2225 return TRUE;
2226 }
2227
2228 /* The .dlt section contains addresses for items referenced through the
2229 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2230 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2231
2232 static bfd_boolean
2233 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2234 {
2235 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2236 struct bfd_link_info *info = (struct bfd_link_info *)data;
2237 struct elf64_hppa_link_hash_table *hppa_info;
2238 asection *sdlt, *sdltrel;
2239
2240 hppa_info = hppa_link_hash_table (info);
2241 if (hppa_info == NULL)
2242 return FALSE;
2243
2244 sdlt = hppa_info->dlt_sec;
2245 sdltrel = hppa_info->dlt_rel_sec;
2246
2247 /* H/DYN_H may refer to a local variable and we know it's
2248 address, so there is no need to create a relocation. Just install
2249 the proper value into the DLT, note this shortcut can not be
2250 skipped when building a shared library. */
2251 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2252 {
2253 bfd_vma value;
2254
2255 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2256 to point to the FPTR entry in the .opd section.
2257
2258 We include the OPD's output offset in this computation as
2259 we are referring to an absolute address in the resulting
2260 object file. */
2261 if (hh->want_opd)
2262 {
2263 value = (hh->opd_offset
2264 + hppa_info->opd_sec->output_offset
2265 + hppa_info->opd_sec->output_section->vma);
2266 }
2267 else if ((eh->root.type == bfd_link_hash_defined
2268 || eh->root.type == bfd_link_hash_defweak)
2269 && eh->root.u.def.section)
2270 {
2271 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2272 if (eh->root.u.def.section->output_section)
2273 value += eh->root.u.def.section->output_section->vma;
2274 else
2275 value += eh->root.u.def.section->vma;
2276 }
2277 else
2278 /* We have an undefined function reference. */
2279 value = 0;
2280
2281 /* We do not need to include the output offset of the DLT section
2282 here because we are modifying the in-memory contents. */
2283 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2284 }
2285
2286 /* Create a relocation for the DLT entry associated with this symbol.
2287 When building a shared library the symbol does not have to be dynamic. */
2288 if (hh->want_dlt
2289 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2290 {
2291 Elf_Internal_Rela rel;
2292 bfd_byte *loc;
2293 int dynindx;
2294
2295 /* We may need to do a relocation against a local symbol, in
2296 which case we have to look up it's dynamic symbol index off
2297 the local symbol hash table. */
2298 if (eh && eh->dynindx != -1)
2299 dynindx = eh->dynindx;
2300 else
2301 dynindx
2302 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2303 hh->sym_indx);
2304
2305 /* Create a dynamic relocation for this entry. Do include the output
2306 offset of the DLT entry since we need an absolute address in the
2307 resulting object file. */
2308 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2309 + sdlt->output_section->vma);
2310 if (eh && eh->type == STT_FUNC)
2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2312 else
2313 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2314 rel.r_addend = 0;
2315
2316 loc = sdltrel->contents;
2317 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2318 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2319 }
2320 return TRUE;
2321 }
2322
2323 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2324 for dynamic functions used to initialize static data. */
2325
2326 static bfd_boolean
2327 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2328 void *data)
2329 {
2330 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2331 struct bfd_link_info *info = (struct bfd_link_info *)data;
2332 struct elf64_hppa_link_hash_table *hppa_info;
2333 int dynamic_symbol;
2334
2335 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2336
2337 if (!dynamic_symbol && !bfd_link_pic (info))
2338 return TRUE;
2339
2340 if (hh->reloc_entries)
2341 {
2342 struct elf64_hppa_dyn_reloc_entry *rent;
2343 int dynindx;
2344
2345 hppa_info = hppa_link_hash_table (info);
2346 if (hppa_info == NULL)
2347 return FALSE;
2348
2349 /* We may need to do a relocation against a local symbol, in
2350 which case we have to look up it's dynamic symbol index off
2351 the local symbol hash table. */
2352 if (eh->dynindx != -1)
2353 dynindx = eh->dynindx;
2354 else
2355 dynindx
2356 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2357 hh->sym_indx);
2358
2359 for (rent = hh->reloc_entries; rent; rent = rent->next)
2360 {
2361 Elf_Internal_Rela rel;
2362 bfd_byte *loc;
2363
2364 /* Allocate one iff we are building a shared library, the relocation
2365 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2366 if (!bfd_link_pic (info)
2367 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2368 continue;
2369
2370 /* Create a dynamic relocation for this entry.
2371
2372 We need the output offset for the reloc's section because
2373 we are creating an absolute address in the resulting object
2374 file. */
2375 rel.r_offset = (rent->offset + rent->sec->output_offset
2376 + rent->sec->output_section->vma);
2377
2378 /* An FPTR64 relocation implies that we took the address of
2379 a function and that the function has an entry in the .opd
2380 section. We want the FPTR64 relocation to reference the
2381 entry in .opd.
2382
2383 We could munge the symbol value in the dynamic symbol table
2384 (in fact we already do for functions with global scope) to point
2385 to the .opd entry. Then we could use that dynamic symbol in
2386 this relocation.
2387
2388 Or we could do something sensible, not munge the symbol's
2389 address and instead just use a different symbol to reference
2390 the .opd entry. At least that seems sensible until you
2391 realize there's no local dynamic symbols we can use for that
2392 purpose. Thus the hair in the check_relocs routine.
2393
2394 We use a section symbol recorded by check_relocs as the
2395 base symbol for the relocation. The addend is the difference
2396 between the section symbol and the address of the .opd entry. */
2397 if (bfd_link_pic (info)
2398 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2399 {
2400 bfd_vma value, value2;
2401
2402 /* First compute the address of the opd entry for this symbol. */
2403 value = (hh->opd_offset
2404 + hppa_info->opd_sec->output_section->vma
2405 + hppa_info->opd_sec->output_offset);
2406
2407 /* Compute the value of the start of the section with
2408 the relocation. */
2409 value2 = (rent->sec->output_section->vma
2410 + rent->sec->output_offset);
2411
2412 /* Compute the difference between the start of the section
2413 with the relocation and the opd entry. */
2414 value -= value2;
2415
2416 /* The result becomes the addend of the relocation. */
2417 rel.r_addend = value;
2418
2419 /* The section symbol becomes the symbol for the dynamic
2420 relocation. */
2421 dynindx
2422 = _bfd_elf_link_lookup_local_dynindx (info,
2423 rent->sec->owner,
2424 rent->sec_symndx);
2425 }
2426 else
2427 rel.r_addend = rent->addend;
2428
2429 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2430
2431 loc = hppa_info->other_rel_sec->contents;
2432 loc += (hppa_info->other_rel_sec->reloc_count++
2433 * sizeof (Elf64_External_Rela));
2434 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2435 &rel, loc);
2436 }
2437 }
2438
2439 return TRUE;
2440 }
2441
2442 /* Used to decide how to sort relocs in an optimal manner for the
2443 dynamic linker, before writing them out. */
2444
2445 static enum elf_reloc_type_class
2446 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2447 const asection *rel_sec ATTRIBUTE_UNUSED,
2448 const Elf_Internal_Rela *rela)
2449 {
2450 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2451 return reloc_class_relative;
2452
2453 switch ((int) ELF64_R_TYPE (rela->r_info))
2454 {
2455 case R_PARISC_IPLT:
2456 return reloc_class_plt;
2457 case R_PARISC_COPY:
2458 return reloc_class_copy;
2459 default:
2460 return reloc_class_normal;
2461 }
2462 }
2463
2464 /* Finish up the dynamic sections. */
2465
2466 static bfd_boolean
2467 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2468 struct bfd_link_info *info)
2469 {
2470 bfd *dynobj;
2471 asection *sdyn;
2472 struct elf64_hppa_link_hash_table *hppa_info;
2473
2474 hppa_info = hppa_link_hash_table (info);
2475 if (hppa_info == NULL)
2476 return FALSE;
2477
2478 /* Finalize the contents of the .opd section. */
2479 elf_link_hash_traverse (elf_hash_table (info),
2480 elf64_hppa_finalize_opd,
2481 info);
2482
2483 elf_link_hash_traverse (elf_hash_table (info),
2484 elf64_hppa_finalize_dynreloc,
2485 info);
2486
2487 /* Finalize the contents of the .dlt section. */
2488 dynobj = elf_hash_table (info)->dynobj;
2489 /* Finalize the contents of the .dlt section. */
2490 elf_link_hash_traverse (elf_hash_table (info),
2491 elf64_hppa_finalize_dlt,
2492 info);
2493
2494 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2495
2496 if (elf_hash_table (info)->dynamic_sections_created)
2497 {
2498 Elf64_External_Dyn *dyncon, *dynconend;
2499
2500 BFD_ASSERT (sdyn != NULL);
2501
2502 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2503 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2504 for (; dyncon < dynconend; dyncon++)
2505 {
2506 Elf_Internal_Dyn dyn;
2507 asection *s;
2508
2509 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2510
2511 switch (dyn.d_tag)
2512 {
2513 default:
2514 break;
2515
2516 case DT_HP_LOAD_MAP:
2517 /* Compute the absolute address of 16byte scratchpad area
2518 for the dynamic linker.
2519
2520 By convention the linker script will allocate the scratchpad
2521 area at the start of the .data section. So all we have to
2522 to is find the start of the .data section. */
2523 s = bfd_get_section_by_name (output_bfd, ".data");
2524 if (!s)
2525 return FALSE;
2526 dyn.d_un.d_ptr = s->vma;
2527 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2528 break;
2529
2530 case DT_PLTGOT:
2531 /* HP's use PLTGOT to set the GOT register. */
2532 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2533 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2534 break;
2535
2536 case DT_JMPREL:
2537 s = hppa_info->plt_rel_sec;
2538 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2539 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2540 break;
2541
2542 case DT_PLTRELSZ:
2543 s = hppa_info->plt_rel_sec;
2544 dyn.d_un.d_val = s->size;
2545 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2546 break;
2547
2548 case DT_RELA:
2549 s = hppa_info->other_rel_sec;
2550 if (! s || ! s->size)
2551 s = hppa_info->dlt_rel_sec;
2552 if (! s || ! s->size)
2553 s = hppa_info->opd_rel_sec;
2554 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2555 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2556 break;
2557
2558 case DT_RELASZ:
2559 s = hppa_info->other_rel_sec;
2560 dyn.d_un.d_val = s->size;
2561 s = hppa_info->dlt_rel_sec;
2562 dyn.d_un.d_val += s->size;
2563 s = hppa_info->opd_rel_sec;
2564 dyn.d_un.d_val += s->size;
2565 /* There is some question about whether or not the size of
2566 the PLT relocs should be included here. HP's tools do
2567 it, so we'll emulate them. */
2568 s = hppa_info->plt_rel_sec;
2569 dyn.d_un.d_val += s->size;
2570 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2571 break;
2572
2573 }
2574 }
2575 }
2576
2577 return TRUE;
2578 }
2579
2580 /* Support for core dump NOTE sections. */
2581
2582 static bfd_boolean
2583 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2584 {
2585 int offset;
2586 size_t size;
2587
2588 switch (note->descsz)
2589 {
2590 default:
2591 return FALSE;
2592
2593 case 760: /* Linux/hppa */
2594 /* pr_cursig */
2595 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2596
2597 /* pr_pid */
2598 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2599
2600 /* pr_reg */
2601 offset = 112;
2602 size = 640;
2603
2604 break;
2605 }
2606
2607 /* Make a ".reg/999" section. */
2608 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2609 size, note->descpos + offset);
2610 }
2611
2612 static bfd_boolean
2613 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2614 {
2615 char * command;
2616 int n;
2617
2618 switch (note->descsz)
2619 {
2620 default:
2621 return FALSE;
2622
2623 case 136: /* Linux/hppa elf_prpsinfo. */
2624 elf_tdata (abfd)->core->program
2625 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2626 elf_tdata (abfd)->core->command
2627 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2628 }
2629
2630 /* Note that for some reason, a spurious space is tacked
2631 onto the end of the args in some (at least one anyway)
2632 implementations, so strip it off if it exists. */
2633 command = elf_tdata (abfd)->core->command;
2634 n = strlen (command);
2635
2636 if (0 < n && command[n - 1] == ' ')
2637 command[n - 1] = '\0';
2638
2639 return TRUE;
2640 }
2641
2642 /* Return the number of additional phdrs we will need.
2643
2644 The generic ELF code only creates PT_PHDRs for executables. The HP
2645 dynamic linker requires PT_PHDRs for dynamic libraries too.
2646
2647 This routine indicates that the backend needs one additional program
2648 header for that case.
2649
2650 Note we do not have access to the link info structure here, so we have
2651 to guess whether or not we are building a shared library based on the
2652 existence of a .interp section. */
2653
2654 static int
2655 elf64_hppa_additional_program_headers (bfd *abfd,
2656 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2657 {
2658 asection *s;
2659
2660 /* If we are creating a shared library, then we have to create a
2661 PT_PHDR segment. HP's dynamic linker chokes without it. */
2662 s = bfd_get_section_by_name (abfd, ".interp");
2663 if (! s)
2664 return 1;
2665 return 0;
2666 }
2667
2668 static bfd_boolean
2669 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2670 const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2671 unsigned int count ATTRIBUTE_UNUSED)
2672 {
2673 return TRUE;
2674 }
2675
2676 /* Allocate and initialize any program headers required by this
2677 specific backend.
2678
2679 The generic ELF code only creates PT_PHDRs for executables. The HP
2680 dynamic linker requires PT_PHDRs for dynamic libraries too.
2681
2682 This allocates the PT_PHDR and initializes it in a manner suitable
2683 for the HP linker.
2684
2685 Note we do not have access to the link info structure here, so we have
2686 to guess whether or not we are building a shared library based on the
2687 existence of a .interp section. */
2688
2689 static bfd_boolean
2690 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2691 {
2692 struct elf_segment_map *m;
2693
2694 m = elf_seg_map (abfd);
2695 if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2696 {
2697 m = ((struct elf_segment_map *)
2698 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2699 if (m == NULL)
2700 return FALSE;
2701
2702 m->p_type = PT_PHDR;
2703 m->p_flags = PF_R | PF_X;
2704 m->p_flags_valid = 1;
2705 m->p_paddr_valid = 1;
2706 m->includes_phdrs = 1;
2707
2708 m->next = elf_seg_map (abfd);
2709 elf_seg_map (abfd) = m;
2710 }
2711
2712 for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2713 if (m->p_type == PT_LOAD)
2714 {
2715 unsigned int i;
2716
2717 for (i = 0; i < m->count; i++)
2718 {
2719 /* The code "hint" is not really a hint. It is a requirement
2720 for certain versions of the HP dynamic linker. Worse yet,
2721 it must be set even if the shared library does not have
2722 any code in its "text" segment (thus the check for .hash
2723 to catch this situation). */
2724 if (m->sections[i]->flags & SEC_CODE
2725 || (strcmp (m->sections[i]->name, ".hash") == 0))
2726 m->p_flags |= (PF_X | PF_HP_CODE);
2727 }
2728 }
2729
2730 return TRUE;
2731 }
2732
2733 /* Called when writing out an object file to decide the type of a
2734 symbol. */
2735 static int
2736 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2737 int type)
2738 {
2739 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2740 return STT_PARISC_MILLI;
2741 else
2742 return type;
2743 }
2744
2745 /* Support HP specific sections for core files. */
2746
2747 static bfd_boolean
2748 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2749 const char *typename)
2750 {
2751 if (hdr->p_type == PT_HP_CORE_KERNEL)
2752 {
2753 asection *sect;
2754
2755 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2756 return FALSE;
2757
2758 sect = bfd_make_section_anyway (abfd, ".kernel");
2759 if (sect == NULL)
2760 return FALSE;
2761 sect->size = hdr->p_filesz;
2762 sect->filepos = hdr->p_offset;
2763 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2764 return TRUE;
2765 }
2766
2767 if (hdr->p_type == PT_HP_CORE_PROC)
2768 {
2769 int sig;
2770
2771 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2772 return FALSE;
2773 if (bfd_bread (&sig, 4, abfd) != 4)
2774 return FALSE;
2775
2776 elf_tdata (abfd)->core->signal = sig;
2777
2778 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2779 return FALSE;
2780
2781 /* GDB uses the ".reg" section to read register contents. */
2782 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2783 hdr->p_offset);
2784 }
2785
2786 if (hdr->p_type == PT_HP_CORE_LOADABLE
2787 || hdr->p_type == PT_HP_CORE_STACK
2788 || hdr->p_type == PT_HP_CORE_MMF)
2789 hdr->p_type = PT_LOAD;
2790
2791 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2792 }
2793
2794 /* Hook called by the linker routine which adds symbols from an object
2795 file. HP's libraries define symbols with HP specific section
2796 indices, which we have to handle. */
2797
2798 static bfd_boolean
2799 elf_hppa_add_symbol_hook (bfd *abfd,
2800 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2801 Elf_Internal_Sym *sym,
2802 const char **namep ATTRIBUTE_UNUSED,
2803 flagword *flagsp ATTRIBUTE_UNUSED,
2804 asection **secp,
2805 bfd_vma *valp)
2806 {
2807 unsigned int sec_index = sym->st_shndx;
2808
2809 switch (sec_index)
2810 {
2811 case SHN_PARISC_ANSI_COMMON:
2812 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2813 (*secp)->flags |= SEC_IS_COMMON;
2814 *valp = sym->st_size;
2815 break;
2816
2817 case SHN_PARISC_HUGE_COMMON:
2818 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2819 (*secp)->flags |= SEC_IS_COMMON;
2820 *valp = sym->st_size;
2821 break;
2822 }
2823
2824 return TRUE;
2825 }
2826
2827 static bfd_boolean
2828 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2829 void *data)
2830 {
2831 struct bfd_link_info *info = data;
2832
2833 /* If we are not creating a shared library, and this symbol is
2834 referenced by a shared library but is not defined anywhere, then
2835 the generic code will warn that it is undefined.
2836
2837 This behavior is undesirable on HPs since the standard shared
2838 libraries contain references to undefined symbols.
2839
2840 So we twiddle the flags associated with such symbols so that they
2841 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2842
2843 Ultimately we should have better controls over the generic ELF BFD
2844 linker code. */
2845 if (! bfd_link_relocatable (info)
2846 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2847 && h->root.type == bfd_link_hash_undefined
2848 && h->ref_dynamic
2849 && !h->ref_regular)
2850 {
2851 h->ref_dynamic = 0;
2852 h->pointer_equality_needed = 1;
2853 }
2854
2855 return TRUE;
2856 }
2857
2858 static bfd_boolean
2859 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2860 void *data)
2861 {
2862 struct bfd_link_info *info = data;
2863
2864 /* If we are not creating a shared library, and this symbol is
2865 referenced by a shared library but is not defined anywhere, then
2866 the generic code will warn that it is undefined.
2867
2868 This behavior is undesirable on HPs since the standard shared
2869 libraries contain references to undefined symbols.
2870
2871 So we twiddle the flags associated with such symbols so that they
2872 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2873
2874 Ultimately we should have better controls over the generic ELF BFD
2875 linker code. */
2876 if (! bfd_link_relocatable (info)
2877 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2878 && h->root.type == bfd_link_hash_undefined
2879 && !h->ref_dynamic
2880 && !h->ref_regular
2881 && h->pointer_equality_needed)
2882 {
2883 h->ref_dynamic = 1;
2884 h->pointer_equality_needed = 0;
2885 }
2886
2887 return TRUE;
2888 }
2889
2890 static bfd_boolean
2891 elf_hppa_is_dynamic_loader_symbol (const char *name)
2892 {
2893 return (! strcmp (name, "__CPU_REVISION")
2894 || ! strcmp (name, "__CPU_KEYBITS_1")
2895 || ! strcmp (name, "__SYSTEM_ID_D")
2896 || ! strcmp (name, "__FPU_MODEL")
2897 || ! strcmp (name, "__FPU_REVISION")
2898 || ! strcmp (name, "__ARGC")
2899 || ! strcmp (name, "__ARGV")
2900 || ! strcmp (name, "__ENVP")
2901 || ! strcmp (name, "__TLS_SIZE_D")
2902 || ! strcmp (name, "__LOAD_INFO")
2903 || ! strcmp (name, "__systab"));
2904 }
2905
2906 /* Record the lowest address for the data and text segments. */
2907 static void
2908 elf_hppa_record_segment_addrs (bfd *abfd,
2909 asection *section,
2910 void *data)
2911 {
2912 struct elf64_hppa_link_hash_table *hppa_info = data;
2913
2914 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2915 {
2916 bfd_vma value;
2917 Elf_Internal_Phdr *p;
2918
2919 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2920 BFD_ASSERT (p != NULL);
2921 value = p->p_vaddr;
2922
2923 if (section->flags & SEC_READONLY)
2924 {
2925 if (value < hppa_info->text_segment_base)
2926 hppa_info->text_segment_base = value;
2927 }
2928 else
2929 {
2930 if (value < hppa_info->data_segment_base)
2931 hppa_info->data_segment_base = value;
2932 }
2933 }
2934 }
2935
2936 /* Called after we have seen all the input files/sections, but before
2937 final symbol resolution and section placement has been determined.
2938
2939 We use this hook to (possibly) provide a value for __gp, then we
2940 fall back to the generic ELF final link routine. */
2941
2942 static bfd_boolean
2943 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2944 {
2945 struct stat buf;
2946 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2947
2948 if (hppa_info == NULL)
2949 return FALSE;
2950
2951 if (! bfd_link_relocatable (info))
2952 {
2953 struct elf_link_hash_entry *gp;
2954 bfd_vma gp_val;
2955
2956 /* The linker script defines a value for __gp iff it was referenced
2957 by one of the objects being linked. First try to find the symbol
2958 in the hash table. If that fails, just compute the value __gp
2959 should have had. */
2960 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2961 FALSE, FALSE);
2962
2963 if (gp)
2964 {
2965
2966 /* Adjust the value of __gp as we may want to slide it into the
2967 .plt section so that the stubs can access PLT entries without
2968 using an addil sequence. */
2969 gp->root.u.def.value += hppa_info->gp_offset;
2970
2971 gp_val = (gp->root.u.def.section->output_section->vma
2972 + gp->root.u.def.section->output_offset
2973 + gp->root.u.def.value);
2974 }
2975 else
2976 {
2977 asection *sec;
2978
2979 /* First look for a .plt section. If found, then __gp is the
2980 address of the .plt + gp_offset.
2981
2982 If no .plt is found, then look for .dlt, .opd and .data (in
2983 that order) and set __gp to the base address of whichever
2984 section is found first. */
2985
2986 sec = hppa_info->plt_sec;
2987 if (sec && ! (sec->flags & SEC_EXCLUDE))
2988 gp_val = (sec->output_offset
2989 + sec->output_section->vma
2990 + hppa_info->gp_offset);
2991 else
2992 {
2993 sec = hppa_info->dlt_sec;
2994 if (!sec || (sec->flags & SEC_EXCLUDE))
2995 sec = hppa_info->opd_sec;
2996 if (!sec || (sec->flags & SEC_EXCLUDE))
2997 sec = bfd_get_section_by_name (abfd, ".data");
2998 if (!sec || (sec->flags & SEC_EXCLUDE))
2999 gp_val = 0;
3000 else
3001 gp_val = sec->output_offset + sec->output_section->vma;
3002 }
3003 }
3004
3005 /* Install whatever value we found/computed for __gp. */
3006 _bfd_set_gp_value (abfd, gp_val);
3007 }
3008
3009 /* We need to know the base of the text and data segments so that we
3010 can perform SEGREL relocations. We will record the base addresses
3011 when we encounter the first SEGREL relocation. */
3012 hppa_info->text_segment_base = (bfd_vma)-1;
3013 hppa_info->data_segment_base = (bfd_vma)-1;
3014
3015 /* HP's shared libraries have references to symbols that are not
3016 defined anywhere. The generic ELF BFD linker code will complain
3017 about such symbols.
3018
3019 So we detect the losing case and arrange for the flags on the symbol
3020 to indicate that it was never referenced. This keeps the generic
3021 ELF BFD link code happy and appears to not create any secondary
3022 problems. Ultimately we need a way to control the behavior of the
3023 generic ELF BFD link code better. */
3024 elf_link_hash_traverse (elf_hash_table (info),
3025 elf_hppa_unmark_useless_dynamic_symbols,
3026 info);
3027
3028 /* Invoke the regular ELF backend linker to do all the work. */
3029 if (!bfd_elf_final_link (abfd, info))
3030 return FALSE;
3031
3032 elf_link_hash_traverse (elf_hash_table (info),
3033 elf_hppa_remark_useless_dynamic_symbols,
3034 info);
3035
3036 /* If we're producing a final executable, sort the contents of the
3037 unwind section. */
3038 if (bfd_link_relocatable (info))
3039 return TRUE;
3040
3041 /* Do not attempt to sort non-regular files. This is here
3042 especially for configure scripts and kernel builds which run
3043 tests with "ld [...] -o /dev/null". */
3044 if (stat (abfd->filename, &buf) != 0
3045 || !S_ISREG(buf.st_mode))
3046 return TRUE;
3047
3048 return elf_hppa_sort_unwind (abfd);
3049 }
3050
3051 /* Relocate the given INSN. VALUE should be the actual value we want
3052 to insert into the instruction, ie by this point we should not be
3053 concerned with computing an offset relative to the DLT, PC, etc.
3054 Instead this routine is meant to handle the bit manipulations needed
3055 to insert the relocation into the given instruction. */
3056
3057 static int
3058 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3059 {
3060 switch (r_type)
3061 {
3062 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3063 the "B" instruction. */
3064 case R_PARISC_PCREL22F:
3065 case R_PARISC_PCREL22C:
3066 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3067
3068 /* This is any 12 bit branch. */
3069 case R_PARISC_PCREL12F:
3070 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3071
3072 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3073 to the "B" instruction as well as BE. */
3074 case R_PARISC_PCREL17F:
3075 case R_PARISC_DIR17F:
3076 case R_PARISC_DIR17R:
3077 case R_PARISC_PCREL17C:
3078 case R_PARISC_PCREL17R:
3079 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3080
3081 /* ADDIL or LDIL instructions. */
3082 case R_PARISC_DLTREL21L:
3083 case R_PARISC_DLTIND21L:
3084 case R_PARISC_LTOFF_FPTR21L:
3085 case R_PARISC_PCREL21L:
3086 case R_PARISC_LTOFF_TP21L:
3087 case R_PARISC_DPREL21L:
3088 case R_PARISC_PLTOFF21L:
3089 case R_PARISC_DIR21L:
3090 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3091
3092 /* LDO and integer loads/stores with 14 bit displacements. */
3093 case R_PARISC_DLTREL14R:
3094 case R_PARISC_DLTREL14F:
3095 case R_PARISC_DLTIND14R:
3096 case R_PARISC_DLTIND14F:
3097 case R_PARISC_LTOFF_FPTR14R:
3098 case R_PARISC_PCREL14R:
3099 case R_PARISC_PCREL14F:
3100 case R_PARISC_LTOFF_TP14R:
3101 case R_PARISC_LTOFF_TP14F:
3102 case R_PARISC_DPREL14R:
3103 case R_PARISC_DPREL14F:
3104 case R_PARISC_PLTOFF14R:
3105 case R_PARISC_PLTOFF14F:
3106 case R_PARISC_DIR14R:
3107 case R_PARISC_DIR14F:
3108 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3109
3110 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3111 case R_PARISC_LTOFF_FPTR16F:
3112 case R_PARISC_PCREL16F:
3113 case R_PARISC_LTOFF_TP16F:
3114 case R_PARISC_GPREL16F:
3115 case R_PARISC_PLTOFF16F:
3116 case R_PARISC_DIR16F:
3117 case R_PARISC_LTOFF16F:
3118 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3119
3120 /* Doubleword loads and stores with a 14 bit displacement. */
3121 case R_PARISC_DLTREL14DR:
3122 case R_PARISC_DLTIND14DR:
3123 case R_PARISC_LTOFF_FPTR14DR:
3124 case R_PARISC_LTOFF_FPTR16DF:
3125 case R_PARISC_PCREL14DR:
3126 case R_PARISC_PCREL16DF:
3127 case R_PARISC_LTOFF_TP14DR:
3128 case R_PARISC_LTOFF_TP16DF:
3129 case R_PARISC_DPREL14DR:
3130 case R_PARISC_GPREL16DF:
3131 case R_PARISC_PLTOFF14DR:
3132 case R_PARISC_PLTOFF16DF:
3133 case R_PARISC_DIR14DR:
3134 case R_PARISC_DIR16DF:
3135 case R_PARISC_LTOFF16DF:
3136 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3137 | ((sym_value & 0x1ff8) << 1));
3138
3139 /* Floating point single word load/store instructions. */
3140 case R_PARISC_DLTREL14WR:
3141 case R_PARISC_DLTIND14WR:
3142 case R_PARISC_LTOFF_FPTR14WR:
3143 case R_PARISC_LTOFF_FPTR16WF:
3144 case R_PARISC_PCREL14WR:
3145 case R_PARISC_PCREL16WF:
3146 case R_PARISC_LTOFF_TP14WR:
3147 case R_PARISC_LTOFF_TP16WF:
3148 case R_PARISC_DPREL14WR:
3149 case R_PARISC_GPREL16WF:
3150 case R_PARISC_PLTOFF14WR:
3151 case R_PARISC_PLTOFF16WF:
3152 case R_PARISC_DIR16WF:
3153 case R_PARISC_DIR14WR:
3154 case R_PARISC_LTOFF16WF:
3155 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3156 | ((sym_value & 0x1ffc) << 1));
3157
3158 default:
3159 return insn;
3160 }
3161 }
3162
3163 /* Compute the value for a relocation (REL) during a final link stage,
3164 then insert the value into the proper location in CONTENTS.
3165
3166 VALUE is a tentative value for the relocation and may be overridden
3167 and modified here based on the specific relocation to be performed.
3168
3169 For example we do conversions for PC-relative branches in this routine
3170 or redirection of calls to external routines to stubs.
3171
3172 The work of actually applying the relocation is left to a helper
3173 routine in an attempt to reduce the complexity and size of this
3174 function. */
3175
3176 static bfd_reloc_status_type
3177 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3178 bfd *input_bfd,
3179 bfd *output_bfd,
3180 asection *input_section,
3181 bfd_byte *contents,
3182 bfd_vma value,
3183 struct bfd_link_info *info,
3184 asection *sym_sec,
3185 struct elf_link_hash_entry *eh)
3186 {
3187 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3188 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3189 bfd_vma *local_offsets;
3190 Elf_Internal_Shdr *symtab_hdr;
3191 int insn;
3192 bfd_vma max_branch_offset = 0;
3193 bfd_vma offset = rel->r_offset;
3194 bfd_signed_vma addend = rel->r_addend;
3195 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3196 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3197 unsigned int r_type = howto->type;
3198 bfd_byte *hit_data = contents + offset;
3199
3200 if (hppa_info == NULL)
3201 return bfd_reloc_notsupported;
3202
3203 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3204 local_offsets = elf_local_got_offsets (input_bfd);
3205 insn = bfd_get_32 (input_bfd, hit_data);
3206
3207 switch (r_type)
3208 {
3209 case R_PARISC_NONE:
3210 break;
3211
3212 /* Basic function call support.
3213
3214 Note for a call to a function defined in another dynamic library
3215 we want to redirect the call to a stub. */
3216
3217 /* PC relative relocs without an implicit offset. */
3218 case R_PARISC_PCREL21L:
3219 case R_PARISC_PCREL14R:
3220 case R_PARISC_PCREL14F:
3221 case R_PARISC_PCREL14WR:
3222 case R_PARISC_PCREL14DR:
3223 case R_PARISC_PCREL16F:
3224 case R_PARISC_PCREL16WF:
3225 case R_PARISC_PCREL16DF:
3226 {
3227 /* If this is a call to a function defined in another dynamic
3228 library, then redirect the call to the local stub for this
3229 function. */
3230 if (sym_sec == NULL || sym_sec->output_section == NULL)
3231 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3232 + hppa_info->stub_sec->output_section->vma);
3233
3234 /* Turn VALUE into a proper PC relative address. */
3235 value -= (offset + input_section->output_offset
3236 + input_section->output_section->vma);
3237
3238 /* Adjust for any field selectors. */
3239 if (r_type == R_PARISC_PCREL21L)
3240 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3241 else if (r_type == R_PARISC_PCREL14F
3242 || r_type == R_PARISC_PCREL16F
3243 || r_type == R_PARISC_PCREL16WF
3244 || r_type == R_PARISC_PCREL16DF)
3245 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3246 else
3247 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3248
3249 /* Apply the relocation to the given instruction. */
3250 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3251 break;
3252 }
3253
3254 case R_PARISC_PCREL12F:
3255 case R_PARISC_PCREL22F:
3256 case R_PARISC_PCREL17F:
3257 case R_PARISC_PCREL22C:
3258 case R_PARISC_PCREL17C:
3259 case R_PARISC_PCREL17R:
3260 {
3261 /* If this is a call to a function defined in another dynamic
3262 library, then redirect the call to the local stub for this
3263 function. */
3264 if (sym_sec == NULL || sym_sec->output_section == NULL)
3265 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3266 + hppa_info->stub_sec->output_section->vma);
3267
3268 /* Turn VALUE into a proper PC relative address. */
3269 value -= (offset + input_section->output_offset
3270 + input_section->output_section->vma);
3271 addend -= 8;
3272
3273 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3274 max_branch_offset = (1 << (22-1)) << 2;
3275 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3276 max_branch_offset = (1 << (17-1)) << 2;
3277 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3278 max_branch_offset = (1 << (12-1)) << 2;
3279
3280 /* Make sure we can reach the branch target. */
3281 if (max_branch_offset != 0
3282 && value + addend + max_branch_offset >= 2*max_branch_offset)
3283 {
3284 _bfd_error_handler
3285 /* xgettext:c-format */
3286 (_("%B(%A+%#Lx): cannot reach %s"),
3287 input_bfd,
3288 input_section,
3289 offset,
3290 eh ? eh->root.root.string : "unknown");
3291 bfd_set_error (bfd_error_bad_value);
3292 return bfd_reloc_overflow;
3293 }
3294
3295 /* Adjust for any field selectors. */
3296 if (r_type == R_PARISC_PCREL17R)
3297 value = hppa_field_adjust (value, addend, e_rsel);
3298 else
3299 value = hppa_field_adjust (value, addend, e_fsel);
3300
3301 /* All branches are implicitly shifted by 2 places. */
3302 value >>= 2;
3303
3304 /* Apply the relocation to the given instruction. */
3305 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3306 break;
3307 }
3308
3309 /* Indirect references to data through the DLT. */
3310 case R_PARISC_DLTIND14R:
3311 case R_PARISC_DLTIND14F:
3312 case R_PARISC_DLTIND14DR:
3313 case R_PARISC_DLTIND14WR:
3314 case R_PARISC_DLTIND21L:
3315 case R_PARISC_LTOFF_FPTR14R:
3316 case R_PARISC_LTOFF_FPTR14DR:
3317 case R_PARISC_LTOFF_FPTR14WR:
3318 case R_PARISC_LTOFF_FPTR21L:
3319 case R_PARISC_LTOFF_FPTR16F:
3320 case R_PARISC_LTOFF_FPTR16WF:
3321 case R_PARISC_LTOFF_FPTR16DF:
3322 case R_PARISC_LTOFF_TP21L:
3323 case R_PARISC_LTOFF_TP14R:
3324 case R_PARISC_LTOFF_TP14F:
3325 case R_PARISC_LTOFF_TP14WR:
3326 case R_PARISC_LTOFF_TP14DR:
3327 case R_PARISC_LTOFF_TP16F:
3328 case R_PARISC_LTOFF_TP16WF:
3329 case R_PARISC_LTOFF_TP16DF:
3330 case R_PARISC_LTOFF16F:
3331 case R_PARISC_LTOFF16WF:
3332 case R_PARISC_LTOFF16DF:
3333 {
3334 bfd_vma off;
3335
3336 /* If this relocation was against a local symbol, then we still
3337 have not set up the DLT entry (it's not convenient to do so
3338 in the "finalize_dlt" routine because it is difficult to get
3339 to the local symbol's value).
3340
3341 So, if this is a local symbol (h == NULL), then we need to
3342 fill in its DLT entry.
3343
3344 Similarly we may still need to set up an entry in .opd for
3345 a local function which had its address taken. */
3346 if (hh == NULL)
3347 {
3348 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3349
3350 if (local_offsets == NULL)
3351 abort ();
3352
3353 /* Now do .opd creation if needed. */
3354 if (r_type == R_PARISC_LTOFF_FPTR14R
3355 || r_type == R_PARISC_LTOFF_FPTR14DR
3356 || r_type == R_PARISC_LTOFF_FPTR14WR
3357 || r_type == R_PARISC_LTOFF_FPTR21L
3358 || r_type == R_PARISC_LTOFF_FPTR16F
3359 || r_type == R_PARISC_LTOFF_FPTR16WF
3360 || r_type == R_PARISC_LTOFF_FPTR16DF)
3361 {
3362 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3363 off = local_opd_offsets[r_symndx];
3364
3365 /* The last bit records whether we've already initialised
3366 this local .opd entry. */
3367 if ((off & 1) != 0)
3368 {
3369 BFD_ASSERT (off != (bfd_vma) -1);
3370 off &= ~1;
3371 }
3372 else
3373 {
3374 local_opd_offsets[r_symndx] |= 1;
3375
3376 /* The first two words of an .opd entry are zero. */
3377 memset (hppa_info->opd_sec->contents + off, 0, 16);
3378
3379 /* The next word is the address of the function. */
3380 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3381 (hppa_info->opd_sec->contents + off + 16));
3382
3383 /* The last word is our local __gp value. */
3384 value = _bfd_get_gp_value
3385 (hppa_info->opd_sec->output_section->owner);
3386 bfd_put_64 (hppa_info->opd_sec->owner, value,
3387 (hppa_info->opd_sec->contents + off + 24));
3388 }
3389
3390 /* The DLT value is the address of the .opd entry. */
3391 value = (off
3392 + hppa_info->opd_sec->output_offset
3393 + hppa_info->opd_sec->output_section->vma);
3394 addend = 0;
3395 }
3396
3397 local_dlt_offsets = local_offsets;
3398 off = local_dlt_offsets[r_symndx];
3399
3400 if ((off & 1) != 0)
3401 {
3402 BFD_ASSERT (off != (bfd_vma) -1);
3403 off &= ~1;
3404 }
3405 else
3406 {
3407 local_dlt_offsets[r_symndx] |= 1;
3408 bfd_put_64 (hppa_info->dlt_sec->owner,
3409 value + addend,
3410 hppa_info->dlt_sec->contents + off);
3411 }
3412 }
3413 else
3414 off = hh->dlt_offset;
3415
3416 /* We want the value of the DLT offset for this symbol, not
3417 the symbol's actual address. Note that __gp may not point
3418 to the start of the DLT, so we have to compute the absolute
3419 address, then subtract out the value of __gp. */
3420 value = (off
3421 + hppa_info->dlt_sec->output_offset
3422 + hppa_info->dlt_sec->output_section->vma);
3423 value -= _bfd_get_gp_value (output_bfd);
3424
3425 /* All DLTIND relocations are basically the same at this point,
3426 except that we need different field selectors for the 21bit
3427 version vs the 14bit versions. */
3428 if (r_type == R_PARISC_DLTIND21L
3429 || r_type == R_PARISC_LTOFF_FPTR21L
3430 || r_type == R_PARISC_LTOFF_TP21L)
3431 value = hppa_field_adjust (value, 0, e_lsel);
3432 else if (r_type == R_PARISC_DLTIND14F
3433 || r_type == R_PARISC_LTOFF_FPTR16F
3434 || r_type == R_PARISC_LTOFF_FPTR16WF
3435 || r_type == R_PARISC_LTOFF_FPTR16DF
3436 || r_type == R_PARISC_LTOFF16F
3437 || r_type == R_PARISC_LTOFF16DF
3438 || r_type == R_PARISC_LTOFF16WF
3439 || r_type == R_PARISC_LTOFF_TP16F
3440 || r_type == R_PARISC_LTOFF_TP16WF
3441 || r_type == R_PARISC_LTOFF_TP16DF)
3442 value = hppa_field_adjust (value, 0, e_fsel);
3443 else
3444 value = hppa_field_adjust (value, 0, e_rsel);
3445
3446 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3447 break;
3448 }
3449
3450 case R_PARISC_DLTREL14R:
3451 case R_PARISC_DLTREL14F:
3452 case R_PARISC_DLTREL14DR:
3453 case R_PARISC_DLTREL14WR:
3454 case R_PARISC_DLTREL21L:
3455 case R_PARISC_DPREL21L:
3456 case R_PARISC_DPREL14WR:
3457 case R_PARISC_DPREL14DR:
3458 case R_PARISC_DPREL14R:
3459 case R_PARISC_DPREL14F:
3460 case R_PARISC_GPREL16F:
3461 case R_PARISC_GPREL16WF:
3462 case R_PARISC_GPREL16DF:
3463 {
3464 /* Subtract out the global pointer value to make value a DLT
3465 relative address. */
3466 value -= _bfd_get_gp_value (output_bfd);
3467
3468 /* All DLTREL relocations are basically the same at this point,
3469 except that we need different field selectors for the 21bit
3470 version vs the 14bit versions. */
3471 if (r_type == R_PARISC_DLTREL21L
3472 || r_type == R_PARISC_DPREL21L)
3473 value = hppa_field_adjust (value, addend, e_lrsel);
3474 else if (r_type == R_PARISC_DLTREL14F
3475 || r_type == R_PARISC_DPREL14F
3476 || r_type == R_PARISC_GPREL16F
3477 || r_type == R_PARISC_GPREL16WF
3478 || r_type == R_PARISC_GPREL16DF)
3479 value = hppa_field_adjust (value, addend, e_fsel);
3480 else
3481 value = hppa_field_adjust (value, addend, e_rrsel);
3482
3483 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3484 break;
3485 }
3486
3487 case R_PARISC_DIR21L:
3488 case R_PARISC_DIR17R:
3489 case R_PARISC_DIR17F:
3490 case R_PARISC_DIR14R:
3491 case R_PARISC_DIR14F:
3492 case R_PARISC_DIR14WR:
3493 case R_PARISC_DIR14DR:
3494 case R_PARISC_DIR16F:
3495 case R_PARISC_DIR16WF:
3496 case R_PARISC_DIR16DF:
3497 {
3498 /* All DIR relocations are basically the same at this point,
3499 except that branch offsets need to be divided by four, and
3500 we need different field selectors. Note that we don't
3501 redirect absolute calls to local stubs. */
3502
3503 if (r_type == R_PARISC_DIR21L)
3504 value = hppa_field_adjust (value, addend, e_lrsel);
3505 else if (r_type == R_PARISC_DIR17F
3506 || r_type == R_PARISC_DIR16F
3507 || r_type == R_PARISC_DIR16WF
3508 || r_type == R_PARISC_DIR16DF
3509 || r_type == R_PARISC_DIR14F)
3510 value = hppa_field_adjust (value, addend, e_fsel);
3511 else
3512 value = hppa_field_adjust (value, addend, e_rrsel);
3513
3514 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3515 /* All branches are implicitly shifted by 2 places. */
3516 value >>= 2;
3517
3518 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3519 break;
3520 }
3521
3522 case R_PARISC_PLTOFF21L:
3523 case R_PARISC_PLTOFF14R:
3524 case R_PARISC_PLTOFF14F:
3525 case R_PARISC_PLTOFF14WR:
3526 case R_PARISC_PLTOFF14DR:
3527 case R_PARISC_PLTOFF16F:
3528 case R_PARISC_PLTOFF16WF:
3529 case R_PARISC_PLTOFF16DF:
3530 {
3531 /* We want the value of the PLT offset for this symbol, not
3532 the symbol's actual address. Note that __gp may not point
3533 to the start of the DLT, so we have to compute the absolute
3534 address, then subtract out the value of __gp. */
3535 value = (hh->plt_offset
3536 + hppa_info->plt_sec->output_offset
3537 + hppa_info->plt_sec->output_section->vma);
3538 value -= _bfd_get_gp_value (output_bfd);
3539
3540 /* All PLTOFF relocations are basically the same at this point,
3541 except that we need different field selectors for the 21bit
3542 version vs the 14bit versions. */
3543 if (r_type == R_PARISC_PLTOFF21L)
3544 value = hppa_field_adjust (value, addend, e_lrsel);
3545 else if (r_type == R_PARISC_PLTOFF14F
3546 || r_type == R_PARISC_PLTOFF16F
3547 || r_type == R_PARISC_PLTOFF16WF
3548 || r_type == R_PARISC_PLTOFF16DF)
3549 value = hppa_field_adjust (value, addend, e_fsel);
3550 else
3551 value = hppa_field_adjust (value, addend, e_rrsel);
3552
3553 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3554 break;
3555 }
3556
3557 case R_PARISC_LTOFF_FPTR32:
3558 {
3559 /* We may still need to create the FPTR itself if it was for
3560 a local symbol. */
3561 if (hh == NULL)
3562 {
3563 /* The first two words of an .opd entry are zero. */
3564 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3565
3566 /* The next word is the address of the function. */
3567 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3568 (hppa_info->opd_sec->contents
3569 + hh->opd_offset + 16));
3570
3571 /* The last word is our local __gp value. */
3572 value = _bfd_get_gp_value
3573 (hppa_info->opd_sec->output_section->owner);
3574 bfd_put_64 (hppa_info->opd_sec->owner, value,
3575 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3576
3577 /* The DLT value is the address of the .opd entry. */
3578 value = (hh->opd_offset
3579 + hppa_info->opd_sec->output_offset
3580 + hppa_info->opd_sec->output_section->vma);
3581
3582 bfd_put_64 (hppa_info->dlt_sec->owner,
3583 value,
3584 hppa_info->dlt_sec->contents + hh->dlt_offset);
3585 }
3586
3587 /* We want the value of the DLT offset for this symbol, not
3588 the symbol's actual address. Note that __gp may not point
3589 to the start of the DLT, so we have to compute the absolute
3590 address, then subtract out the value of __gp. */
3591 value = (hh->dlt_offset
3592 + hppa_info->dlt_sec->output_offset
3593 + hppa_info->dlt_sec->output_section->vma);
3594 value -= _bfd_get_gp_value (output_bfd);
3595 bfd_put_32 (input_bfd, value, hit_data);
3596 return bfd_reloc_ok;
3597 }
3598
3599 case R_PARISC_LTOFF_FPTR64:
3600 case R_PARISC_LTOFF_TP64:
3601 {
3602 /* We may still need to create the FPTR itself if it was for
3603 a local symbol. */
3604 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3605 {
3606 /* The first two words of an .opd entry are zero. */
3607 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3608
3609 /* The next word is the address of the function. */
3610 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3611 (hppa_info->opd_sec->contents
3612 + hh->opd_offset + 16));
3613
3614 /* The last word is our local __gp value. */
3615 value = _bfd_get_gp_value
3616 (hppa_info->opd_sec->output_section->owner);
3617 bfd_put_64 (hppa_info->opd_sec->owner, value,
3618 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3619
3620 /* The DLT value is the address of the .opd entry. */
3621 value = (hh->opd_offset
3622 + hppa_info->opd_sec->output_offset
3623 + hppa_info->opd_sec->output_section->vma);
3624
3625 bfd_put_64 (hppa_info->dlt_sec->owner,
3626 value,
3627 hppa_info->dlt_sec->contents + hh->dlt_offset);
3628 }
3629
3630 /* We want the value of the DLT offset for this symbol, not
3631 the symbol's actual address. Note that __gp may not point
3632 to the start of the DLT, so we have to compute the absolute
3633 address, then subtract out the value of __gp. */
3634 value = (hh->dlt_offset
3635 + hppa_info->dlt_sec->output_offset
3636 + hppa_info->dlt_sec->output_section->vma);
3637 value -= _bfd_get_gp_value (output_bfd);
3638 bfd_put_64 (input_bfd, value, hit_data);
3639 return bfd_reloc_ok;
3640 }
3641
3642 case R_PARISC_DIR32:
3643 bfd_put_32 (input_bfd, value + addend, hit_data);
3644 return bfd_reloc_ok;
3645
3646 case R_PARISC_DIR64:
3647 bfd_put_64 (input_bfd, value + addend, hit_data);
3648 return bfd_reloc_ok;
3649
3650 case R_PARISC_GPREL64:
3651 /* Subtract out the global pointer value to make value a DLT
3652 relative address. */
3653 value -= _bfd_get_gp_value (output_bfd);
3654
3655 bfd_put_64 (input_bfd, value + addend, hit_data);
3656 return bfd_reloc_ok;
3657
3658 case R_PARISC_LTOFF64:
3659 /* We want the value of the DLT offset for this symbol, not
3660 the symbol's actual address. Note that __gp may not point
3661 to the start of the DLT, so we have to compute the absolute
3662 address, then subtract out the value of __gp. */
3663 value = (hh->dlt_offset
3664 + hppa_info->dlt_sec->output_offset
3665 + hppa_info->dlt_sec->output_section->vma);
3666 value -= _bfd_get_gp_value (output_bfd);
3667
3668 bfd_put_64 (input_bfd, value + addend, hit_data);
3669 return bfd_reloc_ok;
3670
3671 case R_PARISC_PCREL32:
3672 {
3673 /* If this is a call to a function defined in another dynamic
3674 library, then redirect the call to the local stub for this
3675 function. */
3676 if (sym_sec == NULL || sym_sec->output_section == NULL)
3677 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3678 + hppa_info->stub_sec->output_section->vma);
3679
3680 /* Turn VALUE into a proper PC relative address. */
3681 value -= (offset + input_section->output_offset
3682 + input_section->output_section->vma);
3683
3684 value += addend;
3685 value -= 8;
3686 bfd_put_32 (input_bfd, value, hit_data);
3687 return bfd_reloc_ok;
3688 }
3689
3690 case R_PARISC_PCREL64:
3691 {
3692 /* If this is a call to a function defined in another dynamic
3693 library, then redirect the call to the local stub for this
3694 function. */
3695 if (sym_sec == NULL || sym_sec->output_section == NULL)
3696 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3697 + hppa_info->stub_sec->output_section->vma);
3698
3699 /* Turn VALUE into a proper PC relative address. */
3700 value -= (offset + input_section->output_offset
3701 + input_section->output_section->vma);
3702
3703 value += addend;
3704 value -= 8;
3705 bfd_put_64 (input_bfd, value, hit_data);
3706 return bfd_reloc_ok;
3707 }
3708
3709 case R_PARISC_FPTR64:
3710 {
3711 bfd_vma off;
3712
3713 /* We may still need to create the FPTR itself if it was for
3714 a local symbol. */
3715 if (hh == NULL)
3716 {
3717 bfd_vma *local_opd_offsets;
3718
3719 if (local_offsets == NULL)
3720 abort ();
3721
3722 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3723 off = local_opd_offsets[r_symndx];
3724
3725 /* The last bit records whether we've already initialised
3726 this local .opd entry. */
3727 if ((off & 1) != 0)
3728 {
3729 BFD_ASSERT (off != (bfd_vma) -1);
3730 off &= ~1;
3731 }
3732 else
3733 {
3734 /* The first two words of an .opd entry are zero. */
3735 memset (hppa_info->opd_sec->contents + off, 0, 16);
3736
3737 /* The next word is the address of the function. */
3738 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3739 (hppa_info->opd_sec->contents + off + 16));
3740
3741 /* The last word is our local __gp value. */
3742 value = _bfd_get_gp_value
3743 (hppa_info->opd_sec->output_section->owner);
3744 bfd_put_64 (hppa_info->opd_sec->owner, value,
3745 hppa_info->opd_sec->contents + off + 24);
3746 }
3747 }
3748 else
3749 off = hh->opd_offset;
3750
3751 if (hh == NULL || hh->want_opd)
3752 /* We want the value of the OPD offset for this symbol. */
3753 value = (off
3754 + hppa_info->opd_sec->output_offset
3755 + hppa_info->opd_sec->output_section->vma);
3756 else
3757 /* We want the address of the symbol. */
3758 value += addend;
3759
3760 bfd_put_64 (input_bfd, value, hit_data);
3761 return bfd_reloc_ok;
3762 }
3763
3764 case R_PARISC_SECREL32:
3765 if (sym_sec)
3766 value -= sym_sec->output_section->vma;
3767 bfd_put_32 (input_bfd, value + addend, hit_data);
3768 return bfd_reloc_ok;
3769
3770 case R_PARISC_SEGREL32:
3771 case R_PARISC_SEGREL64:
3772 {
3773 /* If this is the first SEGREL relocation, then initialize
3774 the segment base values. */
3775 if (hppa_info->text_segment_base == (bfd_vma) -1)
3776 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3777 hppa_info);
3778
3779 /* VALUE holds the absolute address. We want to include the
3780 addend, then turn it into a segment relative address.
3781
3782 The segment is derived from SYM_SEC. We assume that there are
3783 only two segments of note in the resulting executable/shlib.
3784 A readonly segment (.text) and a readwrite segment (.data). */
3785 value += addend;
3786
3787 if (sym_sec->flags & SEC_CODE)
3788 value -= hppa_info->text_segment_base;
3789 else
3790 value -= hppa_info->data_segment_base;
3791
3792 if (r_type == R_PARISC_SEGREL32)
3793 bfd_put_32 (input_bfd, value, hit_data);
3794 else
3795 bfd_put_64 (input_bfd, value, hit_data);
3796 return bfd_reloc_ok;
3797 }
3798
3799 /* Something we don't know how to handle. */
3800 default:
3801 return bfd_reloc_notsupported;
3802 }
3803
3804 /* Update the instruction word. */
3805 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3806 return bfd_reloc_ok;
3807 }
3808
3809 /* Relocate an HPPA ELF section. */
3810
3811 static bfd_boolean
3812 elf64_hppa_relocate_section (bfd *output_bfd,
3813 struct bfd_link_info *info,
3814 bfd *input_bfd,
3815 asection *input_section,
3816 bfd_byte *contents,
3817 Elf_Internal_Rela *relocs,
3818 Elf_Internal_Sym *local_syms,
3819 asection **local_sections)
3820 {
3821 Elf_Internal_Shdr *symtab_hdr;
3822 Elf_Internal_Rela *rel;
3823 Elf_Internal_Rela *relend;
3824 struct elf64_hppa_link_hash_table *hppa_info;
3825
3826 hppa_info = hppa_link_hash_table (info);
3827 if (hppa_info == NULL)
3828 return FALSE;
3829
3830 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3831
3832 rel = relocs;
3833 relend = relocs + input_section->reloc_count;
3834 for (; rel < relend; rel++)
3835 {
3836 int r_type;
3837 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3838 unsigned long r_symndx;
3839 struct elf_link_hash_entry *eh;
3840 Elf_Internal_Sym *sym;
3841 asection *sym_sec;
3842 bfd_vma relocation;
3843 bfd_reloc_status_type r;
3844
3845 r_type = ELF_R_TYPE (rel->r_info);
3846 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3847 {
3848 bfd_set_error (bfd_error_bad_value);
3849 return FALSE;
3850 }
3851 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3852 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3853 continue;
3854
3855 /* This is a final link. */
3856 r_symndx = ELF_R_SYM (rel->r_info);
3857 eh = NULL;
3858 sym = NULL;
3859 sym_sec = NULL;
3860 if (r_symndx < symtab_hdr->sh_info)
3861 {
3862 /* This is a local symbol, hh defaults to NULL. */
3863 sym = local_syms + r_symndx;
3864 sym_sec = local_sections[r_symndx];
3865 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3866 }
3867 else
3868 {
3869 /* This is not a local symbol. */
3870 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3871
3872 /* It seems this can happen with erroneous or unsupported
3873 input (mixing a.out and elf in an archive, for example.) */
3874 if (sym_hashes == NULL)
3875 return FALSE;
3876
3877 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3878
3879 if (info->wrap_hash != NULL
3880 && (input_section->flags & SEC_DEBUGGING) != 0)
3881 eh = ((struct elf_link_hash_entry *)
3882 unwrap_hash_lookup (info, input_bfd, &eh->root));
3883
3884 while (eh->root.type == bfd_link_hash_indirect
3885 || eh->root.type == bfd_link_hash_warning)
3886 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3887
3888 relocation = 0;
3889 if (eh->root.type == bfd_link_hash_defined
3890 || eh->root.type == bfd_link_hash_defweak)
3891 {
3892 sym_sec = eh->root.u.def.section;
3893 if (sym_sec != NULL
3894 && sym_sec->output_section != NULL)
3895 relocation = (eh->root.u.def.value
3896 + sym_sec->output_section->vma
3897 + sym_sec->output_offset);
3898 }
3899 else if (eh->root.type == bfd_link_hash_undefweak)
3900 ;
3901 else if (info->unresolved_syms_in_objects == RM_IGNORE
3902 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3903 ;
3904 else if (!bfd_link_relocatable (info)
3905 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3906 continue;
3907 else if (!bfd_link_relocatable (info))
3908 {
3909 bfd_boolean err;
3910 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3911 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3912 (*info->callbacks->undefined_symbol) (info,
3913 eh->root.root.string,
3914 input_bfd,
3915 input_section,
3916 rel->r_offset, err);
3917 }
3918
3919 if (!bfd_link_relocatable (info)
3920 && relocation == 0
3921 && eh->root.type != bfd_link_hash_defined
3922 && eh->root.type != bfd_link_hash_defweak
3923 && eh->root.type != bfd_link_hash_undefweak)
3924 {
3925 if (info->unresolved_syms_in_objects == RM_IGNORE
3926 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3927 && eh->type == STT_PARISC_MILLI)
3928 (*info->callbacks->undefined_symbol)
3929 (info, eh_name (eh), input_bfd,
3930 input_section, rel->r_offset, FALSE);
3931 }
3932 }
3933
3934 if (sym_sec != NULL && discarded_section (sym_sec))
3935 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3936 rel, 1, relend, howto, 0, contents);
3937
3938 if (bfd_link_relocatable (info))
3939 continue;
3940
3941 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3942 input_section, contents,
3943 relocation, info, sym_sec,
3944 eh);
3945
3946 if (r != bfd_reloc_ok)
3947 {
3948 switch (r)
3949 {
3950 default:
3951 abort ();
3952 case bfd_reloc_overflow:
3953 {
3954 const char *sym_name;
3955
3956 if (eh != NULL)
3957 sym_name = NULL;
3958 else
3959 {
3960 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3961 symtab_hdr->sh_link,
3962 sym->st_name);
3963 if (sym_name == NULL)
3964 return FALSE;
3965 if (*sym_name == '\0')
3966 sym_name = bfd_section_name (input_bfd, sym_sec);
3967 }
3968
3969 (*info->callbacks->reloc_overflow)
3970 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3971 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3972 }
3973 break;
3974 }
3975 }
3976 }
3977 return TRUE;
3978 }
3979
3980 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3981 {
3982 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3983 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3984 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3985 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3987 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3988 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3989 { NULL, 0, 0, 0, 0 }
3990 };
3991
3992 /* The hash bucket size is the standard one, namely 4. */
3993
3994 const struct elf_size_info hppa64_elf_size_info =
3995 {
3996 sizeof (Elf64_External_Ehdr),
3997 sizeof (Elf64_External_Phdr),
3998 sizeof (Elf64_External_Shdr),
3999 sizeof (Elf64_External_Rel),
4000 sizeof (Elf64_External_Rela),
4001 sizeof (Elf64_External_Sym),
4002 sizeof (Elf64_External_Dyn),
4003 sizeof (Elf_External_Note),
4004 4,
4005 1,
4006 64, 3,
4007 ELFCLASS64, EV_CURRENT,
4008 bfd_elf64_write_out_phdrs,
4009 bfd_elf64_write_shdrs_and_ehdr,
4010 bfd_elf64_checksum_contents,
4011 bfd_elf64_write_relocs,
4012 bfd_elf64_swap_symbol_in,
4013 bfd_elf64_swap_symbol_out,
4014 bfd_elf64_slurp_reloc_table,
4015 bfd_elf64_slurp_symbol_table,
4016 bfd_elf64_swap_dyn_in,
4017 bfd_elf64_swap_dyn_out,
4018 bfd_elf64_swap_reloc_in,
4019 bfd_elf64_swap_reloc_out,
4020 bfd_elf64_swap_reloca_in,
4021 bfd_elf64_swap_reloca_out
4022 };
4023
4024 #define TARGET_BIG_SYM hppa_elf64_vec
4025 #define TARGET_BIG_NAME "elf64-hppa"
4026 #define ELF_ARCH bfd_arch_hppa
4027 #define ELF_TARGET_ID HPPA64_ELF_DATA
4028 #define ELF_MACHINE_CODE EM_PARISC
4029 /* This is not strictly correct. The maximum page size for PA2.0 is
4030 64M. But everything still uses 4k. */
4031 #define ELF_MAXPAGESIZE 0x1000
4032 #define ELF_OSABI ELFOSABI_HPUX
4033
4034 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4035 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4036 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4037 #define elf_info_to_howto elf_hppa_info_to_howto
4038 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4039
4040 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4041 #define elf_backend_object_p elf64_hppa_object_p
4042 #define elf_backend_final_write_processing \
4043 elf_hppa_final_write_processing
4044 #define elf_backend_fake_sections elf_hppa_fake_sections
4045 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4046
4047 #define elf_backend_relocate_section elf_hppa_relocate_section
4048
4049 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4050
4051 #define elf_backend_create_dynamic_sections \
4052 elf64_hppa_create_dynamic_sections
4053 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4054
4055 #define elf_backend_omit_section_dynsym \
4056 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4057 #define elf_backend_adjust_dynamic_symbol \
4058 elf64_hppa_adjust_dynamic_symbol
4059
4060 #define elf_backend_size_dynamic_sections \
4061 elf64_hppa_size_dynamic_sections
4062
4063 #define elf_backend_finish_dynamic_symbol \
4064 elf64_hppa_finish_dynamic_symbol
4065 #define elf_backend_finish_dynamic_sections \
4066 elf64_hppa_finish_dynamic_sections
4067 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4068 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4069
4070 /* Stuff for the BFD linker: */
4071 #define bfd_elf64_bfd_link_hash_table_create \
4072 elf64_hppa_hash_table_create
4073
4074 #define elf_backend_check_relocs \
4075 elf64_hppa_check_relocs
4076
4077 #define elf_backend_size_info \
4078 hppa64_elf_size_info
4079
4080 #define elf_backend_additional_program_headers \
4081 elf64_hppa_additional_program_headers
4082
4083 #define elf_backend_modify_segment_map \
4084 elf64_hppa_modify_segment_map
4085
4086 #define elf_backend_allow_non_load_phdr \
4087 elf64_hppa_allow_non_load_phdr
4088
4089 #define elf_backend_link_output_symbol_hook \
4090 elf64_hppa_link_output_symbol_hook
4091
4092 #define elf_backend_want_got_plt 0
4093 #define elf_backend_plt_readonly 0
4094 #define elf_backend_want_plt_sym 0
4095 #define elf_backend_got_header_size 0
4096 #define elf_backend_type_change_ok TRUE
4097 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4098 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4099 #define elf_backend_rela_normal 1
4100 #define elf_backend_special_sections elf64_hppa_special_sections
4101 #define elf_backend_action_discarded elf_hppa_action_discarded
4102 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4103
4104 #define elf64_bed elf64_hppa_hpux_bed
4105
4106 #include "elf64-target.h"
4107
4108 #undef TARGET_BIG_SYM
4109 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4110 #undef TARGET_BIG_NAME
4111 #define TARGET_BIG_NAME "elf64-hppa-linux"
4112 #undef ELF_OSABI
4113 #define ELF_OSABI ELFOSABI_GNU
4114 #undef elf64_bed
4115 #define elf64_bed elf64_hppa_linux_bed
4116
4117 #include "elf64-target.h"