]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elf64-mmix.c
Use %A and %B in more error messages
[thirdparty/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* No specific ABI or "processor-specific supplement" defined. */
24
25 /* TODO:
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37
38 #define MINUS_ONE (((bfd_vma) 0) - 1)
39
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
42 /* Put these everywhere in new code. */
43 #define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47 #define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
51 struct _mmix_elf_section_data
52 {
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
84 };
85
86 #define mmix_elf_section_data(sec) \
87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
88
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91 NULL. */
92 struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109 /* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111 struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
126 into the other members. Is FALSE only for BPO relocs in a GC:ed
127 section. */
128 bfd_boolean valid;
129 };
130
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137 struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
168
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172
173 /* Only intended to be called from a debugger. */
174 extern void mmix_dump_bpo_gregs
175 (struct bfd_link_info *, void (*) (const char *, ...));
176
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
186
187
188 /* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190 static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_dont, /* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
202 FALSE, /* partial_inplace */
203 0, /* src_mask */
204 0, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
217 FALSE, /* partial_inplace */
218 0, /* src_mask */
219 0xff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
227 FALSE, /* pc_relative */
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
232 FALSE, /* partial_inplace */
233 0, /* src_mask */
234 0xffff, /* dst_mask */
235 FALSE), /* pcrel_offset */
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
247 FALSE, /* partial_inplace */
248 ~0xffffff, /* src_mask */
249 0xffffff, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 MINUS_ONE, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
287 TRUE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
292 FALSE, /* partial_inplace */
293 0, /* src_mask */
294 0xff, /* dst_mask */
295 TRUE), /* pcrel_offset */
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
322 FALSE, /* partial_inplace */
323 ~0xffffff, /* src_mask */
324 0xffffff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xffffffff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 MINUS_ONE, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
362 FALSE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
367 FALSE, /* partial_inplace */
368 0, /* src_mask */
369 0, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
395 TRUE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
400 FALSE, /* partial_inplace */
401 ~0x0100ffff, /* src_mask */
402 0x0100ffff, /* dst_mask */
403 TRUE), /* pcrel_offset */
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
414 FALSE, /* partial_inplace */
415 ~0x0100ffff, /* src_mask */
416 0x0100ffff, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
428 FALSE, /* partial_inplace */
429 ~0x0100ffff, /* src_mask */
430 0x0100ffff, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
442 FALSE, /* partial_inplace */
443 ~0x0100ffff, /* src_mask */
444 0x0100ffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
455 TRUE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
460 FALSE, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE), /* pcrel_offset */
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
474 FALSE, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
488 FALSE, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
502 FALSE, /* partial_inplace */
503 ~0x0100ffff, /* src_mask */
504 0x0100ffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
516 FALSE, /* partial_inplace */
517 ~0x0100ffff, /* src_mask */
518 0x0100ffff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
531 TRUE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
536 FALSE, /* partial_inplace */
537 ~0x0100ffff, /* src_mask */
538 0x0100ffff, /* dst_mask */
539 TRUE), /* pcrel_offset */
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
550 FALSE, /* partial_inplace */
551 ~0x0100ffff, /* src_mask */
552 0x0100ffff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
559 TRUE, /* pc_relative */
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
564 FALSE, /* partial_inplace */
565 ~0x0100ffff, /* src_mask */
566 0x0100ffff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
573 TRUE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
578 FALSE, /* partial_inplace */
579 ~0x0100ffff, /* src_mask */
580 0x0100ffff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
596 FALSE, /* partial_inplace */
597 ~0x1ffffff, /* src_mask */
598 0x1ffffff, /* dst_mask */
599 TRUE), /* pcrel_offset */
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
610 FALSE, /* partial_inplace */
611 ~0x1ffffff, /* src_mask */
612 0x1ffffff, /* dst_mask */
613 TRUE), /* pcrel_offset */
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
624 FALSE, /* partial_inplace */
625 ~0x1ffffff, /* src_mask */
626 0x1ffffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
638 FALSE, /* partial_inplace */
639 ~0x1ffffff, /* src_mask */
640 0x1ffffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
655 FALSE, /* partial_inplace */
656 ~0x0100ffff, /* src_mask */
657 0x0100ffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
670 FALSE, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
701 FALSE, /* partial_inplace */
702 0, /* src_mask */
703 0xff, /* dst_mask */
704 FALSE), /* pcrel_offset */
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 FALSE, /* partial_inplace */
719 0, /* src_mask */
720 0xffff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
755 };
756
757
758 /* Map BFD reloc types to MMIX ELF reloc types. */
759
760 struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793 };
794
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
798 {
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
810 }
811
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815 {
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
826 }
827
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
835
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843 }
844
845
846 /* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
897 {
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
964 = ((bfd_byte *) datap
965 - (addr - (isec->output_section->vma + isec->output_offset))
966 + size
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
1009 + size
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
1012 - addr,
1013 error_message);
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
1020 + size
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
1037 value + addr - stubaddr,
1038 error_message);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
1193 _bfd_error_handler
1194 /* xgettext:c-format */
1195 (_("%B: Internal inconsistency error for value for\n\
1196 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1197 isec->owner,
1198 (unsigned long) (value >> 32), (unsigned long) value,
1199 (unsigned long) (gregdata->reloc_request[bpo_index].value
1200 >> 32),
1201 (unsigned long) gregdata->reloc_request[bpo_index].value);
1202 bfd_set_error (bfd_error_bad_value);
1203 return bfd_reloc_overflow;
1204 }
1205
1206 /* Then store the register number and offset for that register
1207 into datap and datap + 1 respectively. */
1208 bfd_put_8 (abfd,
1209 gregdata->reloc_request[bpo_index].regindex
1210 + bpo_greg_section->output_section->vma / 8,
1211 datap);
1212 bfd_put_8 (abfd,
1213 gregdata->reloc_request[bpo_index].offset,
1214 ((unsigned char *) datap) + 1);
1215 return bfd_reloc_ok;
1216 }
1217
1218 case R_MMIX_REG_OR_BYTE:
1219 case R_MMIX_REG:
1220 if (value > 255)
1221 return bfd_reloc_overflow;
1222 bfd_put_8 (abfd, value, datap);
1223 return bfd_reloc_ok;
1224
1225 default:
1226 BAD_CASE (howto->type);
1227 }
1228
1229 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1230 sequence. */
1231
1232 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1233 everything that looks strange. */
1234 if (value & 3)
1235 flag = bfd_reloc_overflow;
1236
1237 bfd_put_32 (abfd,
1238 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1239 (bfd_byte *) datap + offs);
1240 bfd_put_32 (abfd,
1241 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1242 (bfd_byte *) datap + offs + 4);
1243 bfd_put_32 (abfd,
1244 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1245 (bfd_byte *) datap + offs + 8);
1246 bfd_put_32 (abfd,
1247 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1248 (bfd_byte *) datap + offs + 12);
1249
1250 return flag;
1251 }
1252
1253 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1254
1255 static void
1256 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1257 arelent *cache_ptr,
1258 Elf_Internal_Rela *dst)
1259 {
1260 unsigned int r_type;
1261
1262 r_type = ELF64_R_TYPE (dst->r_info);
1263 if (r_type >= (unsigned int) R_MMIX_max)
1264 {
1265 /* xgettext:c-format */
1266 _bfd_error_handler (_("%B: invalid MMIX reloc number: %d"), abfd, r_type);
1267 r_type = 0;
1268 }
1269 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1270 }
1271
1272 /* Any MMIX-specific relocation gets here at assembly time or when linking
1273 to other formats (such as mmo); this is the relocation function from
1274 the reloc_table. We don't get here for final pure ELF linking. */
1275
1276 static bfd_reloc_status_type
1277 mmix_elf_reloc (bfd *abfd,
1278 arelent *reloc_entry,
1279 asymbol *symbol,
1280 void * data,
1281 asection *input_section,
1282 bfd *output_bfd,
1283 char **error_message)
1284 {
1285 bfd_vma relocation;
1286 bfd_reloc_status_type r;
1287 asection *reloc_target_output_section;
1288 bfd_reloc_status_type flag = bfd_reloc_ok;
1289 bfd_vma output_base = 0;
1290
1291 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1292 input_section, output_bfd, error_message);
1293
1294 /* If that was all that was needed (i.e. this isn't a final link, only
1295 some segment adjustments), we're done. */
1296 if (r != bfd_reloc_continue)
1297 return r;
1298
1299 if (bfd_is_und_section (symbol->section)
1300 && (symbol->flags & BSF_WEAK) == 0
1301 && output_bfd == (bfd *) NULL)
1302 return bfd_reloc_undefined;
1303
1304 /* Is the address of the relocation really within the section? */
1305 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1306 return bfd_reloc_outofrange;
1307
1308 /* Work out which section the relocation is targeted at and the
1309 initial relocation command value. */
1310
1311 /* Get symbol value. (Common symbols are special.) */
1312 if (bfd_is_com_section (symbol->section))
1313 relocation = 0;
1314 else
1315 relocation = symbol->value;
1316
1317 reloc_target_output_section = bfd_get_output_section (symbol);
1318
1319 /* Here the variable relocation holds the final address of the symbol we
1320 are relocating against, plus any addend. */
1321 if (output_bfd)
1322 output_base = 0;
1323 else
1324 output_base = reloc_target_output_section->vma;
1325
1326 relocation += output_base + symbol->section->output_offset;
1327
1328 if (output_bfd != (bfd *) NULL)
1329 {
1330 /* Add in supplied addend. */
1331 relocation += reloc_entry->addend;
1332
1333 /* This is a partial relocation, and we want to apply the
1334 relocation to the reloc entry rather than the raw data.
1335 Modify the reloc inplace to reflect what we now know. */
1336 reloc_entry->addend = relocation;
1337 reloc_entry->address += input_section->output_offset;
1338 return flag;
1339 }
1340
1341 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1342 data, reloc_entry->address,
1343 reloc_entry->addend, relocation,
1344 bfd_asymbol_name (symbol),
1345 reloc_target_output_section,
1346 error_message);
1347 }
1348 \f
1349 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1350 for guidance if you're thinking of copying this. */
1351
1352 static bfd_boolean
1353 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1354 struct bfd_link_info *info,
1355 bfd *input_bfd,
1356 asection *input_section,
1357 bfd_byte *contents,
1358 Elf_Internal_Rela *relocs,
1359 Elf_Internal_Sym *local_syms,
1360 asection **local_sections)
1361 {
1362 Elf_Internal_Shdr *symtab_hdr;
1363 struct elf_link_hash_entry **sym_hashes;
1364 Elf_Internal_Rela *rel;
1365 Elf_Internal_Rela *relend;
1366 bfd_size_type size;
1367 size_t pjsno = 0;
1368
1369 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1370 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1371 sym_hashes = elf_sym_hashes (input_bfd);
1372 relend = relocs + input_section->reloc_count;
1373
1374 /* Zero the stub area before we start. */
1375 if (input_section->rawsize != 0
1376 && input_section->size > input_section->rawsize)
1377 memset (contents + input_section->rawsize, 0,
1378 input_section->size - input_section->rawsize);
1379
1380 for (rel = relocs; rel < relend; rel ++)
1381 {
1382 reloc_howto_type *howto;
1383 unsigned long r_symndx;
1384 Elf_Internal_Sym *sym;
1385 asection *sec;
1386 struct elf_link_hash_entry *h;
1387 bfd_vma relocation;
1388 bfd_reloc_status_type r;
1389 const char *name = NULL;
1390 int r_type;
1391 bfd_boolean undefined_signalled = FALSE;
1392
1393 r_type = ELF64_R_TYPE (rel->r_info);
1394
1395 if (r_type == R_MMIX_GNU_VTINHERIT
1396 || r_type == R_MMIX_GNU_VTENTRY)
1397 continue;
1398
1399 r_symndx = ELF64_R_SYM (rel->r_info);
1400
1401 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1402 h = NULL;
1403 sym = NULL;
1404 sec = NULL;
1405
1406 if (r_symndx < symtab_hdr->sh_info)
1407 {
1408 sym = local_syms + r_symndx;
1409 sec = local_sections [r_symndx];
1410 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1411
1412 name = bfd_elf_string_from_elf_section (input_bfd,
1413 symtab_hdr->sh_link,
1414 sym->st_name);
1415 if (name == NULL)
1416 name = bfd_section_name (input_bfd, sec);
1417 }
1418 else
1419 {
1420 bfd_boolean unresolved_reloc, ignored;
1421
1422 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1423 r_symndx, symtab_hdr, sym_hashes,
1424 h, sec, relocation,
1425 unresolved_reloc, undefined_signalled,
1426 ignored);
1427 name = h->root.root.string;
1428 }
1429
1430 if (sec != NULL && discarded_section (sec))
1431 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1432 rel, 1, relend, howto, 0, contents);
1433
1434 if (bfd_link_relocatable (info))
1435 {
1436 /* This is a relocatable link. For most relocs we don't have to
1437 change anything, unless the reloc is against a section
1438 symbol, in which case we have to adjust according to where
1439 the section symbol winds up in the output section. */
1440 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1441 rel->r_addend += sec->output_offset;
1442
1443 /* For PUSHJ stub relocs however, we may need to change the
1444 reloc and the section contents, if the reloc doesn't reach
1445 beyond the end of the output section and previous stubs.
1446 Then we change the section contents to be a PUSHJ to the end
1447 of the input section plus stubs (we can do that without using
1448 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1449 at the stub location. */
1450 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1451 {
1452 /* We've already checked whether we need a stub; use that
1453 knowledge. */
1454 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1455 != 0)
1456 {
1457 Elf_Internal_Rela relcpy;
1458
1459 if (mmix_elf_section_data (input_section)
1460 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1461 abort ();
1462
1463 /* There's already a PUSHJ insn there, so just fill in
1464 the offset bits to the stub. */
1465 if (mmix_final_link_relocate (elf_mmix_howto_table
1466 + R_MMIX_ADDR19,
1467 input_section,
1468 contents,
1469 rel->r_offset,
1470 0,
1471 input_section
1472 ->output_section->vma
1473 + input_section->output_offset
1474 + size
1475 + mmix_elf_section_data (input_section)
1476 ->pjs.stub_offset,
1477 NULL, NULL, NULL) != bfd_reloc_ok)
1478 return FALSE;
1479
1480 /* Put a JMP insn at the stub; it goes with the
1481 R_MMIX_JMP reloc. */
1482 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1483 contents
1484 + size
1485 + mmix_elf_section_data (input_section)
1486 ->pjs.stub_offset);
1487
1488 /* Change the reloc to be at the stub, and to a full
1489 R_MMIX_JMP reloc. */
1490 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1491 rel->r_offset
1492 = (size
1493 + mmix_elf_section_data (input_section)
1494 ->pjs.stub_offset);
1495
1496 mmix_elf_section_data (input_section)->pjs.stub_offset
1497 += MAX_PUSHJ_STUB_SIZE;
1498
1499 /* Shift this reloc to the end of the relocs to maintain
1500 the r_offset sorted reloc order. */
1501 relcpy = *rel;
1502 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1503 relend[-1] = relcpy;
1504
1505 /* Back up one reloc, or else we'd skip the next reloc
1506 in turn. */
1507 rel--;
1508 }
1509
1510 pjsno++;
1511 }
1512 continue;
1513 }
1514
1515 r = mmix_final_link_relocate (howto, input_section,
1516 contents, rel->r_offset,
1517 rel->r_addend, relocation, name, sec, NULL);
1518
1519 if (r != bfd_reloc_ok)
1520 {
1521 const char * msg = (const char *) NULL;
1522
1523 switch (r)
1524 {
1525 case bfd_reloc_overflow:
1526 info->callbacks->reloc_overflow
1527 (info, (h ? &h->root : NULL), name, howto->name,
1528 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1529 break;
1530
1531 case bfd_reloc_undefined:
1532 /* We may have sent this message above. */
1533 if (! undefined_signalled)
1534 info->callbacks->undefined_symbol
1535 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1536 undefined_signalled = TRUE;
1537 break;
1538
1539 case bfd_reloc_outofrange:
1540 msg = _("internal error: out of range error");
1541 break;
1542
1543 case bfd_reloc_notsupported:
1544 msg = _("internal error: unsupported relocation error");
1545 break;
1546
1547 case bfd_reloc_dangerous:
1548 msg = _("internal error: dangerous relocation");
1549 break;
1550
1551 default:
1552 msg = _("internal error: unknown error");
1553 break;
1554 }
1555
1556 if (msg)
1557 (*info->callbacks->warning) (info, msg, name, input_bfd,
1558 input_section, rel->r_offset);
1559 }
1560 }
1561
1562 return TRUE;
1563 }
1564 \f
1565 /* Perform a single relocation. By default we use the standard BFD
1566 routines. A few relocs we have to do ourselves. */
1567
1568 static bfd_reloc_status_type
1569 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1570 bfd_byte *contents, bfd_vma r_offset,
1571 bfd_signed_vma r_addend, bfd_vma relocation,
1572 const char *symname, asection *symsec,
1573 char **error_message)
1574 {
1575 bfd_reloc_status_type r = bfd_reloc_ok;
1576 bfd_vma addr
1577 = (input_section->output_section->vma
1578 + input_section->output_offset
1579 + r_offset);
1580 bfd_signed_vma srel
1581 = (bfd_signed_vma) relocation + r_addend;
1582
1583 switch (howto->type)
1584 {
1585 /* All these are PC-relative. */
1586 case R_MMIX_PUSHJ_STUBBABLE:
1587 case R_MMIX_PUSHJ:
1588 case R_MMIX_CBRANCH:
1589 case R_MMIX_ADDR19:
1590 case R_MMIX_GETA:
1591 case R_MMIX_ADDR27:
1592 case R_MMIX_JMP:
1593 contents += r_offset;
1594
1595 srel -= (input_section->output_section->vma
1596 + input_section->output_offset
1597 + r_offset);
1598
1599 r = mmix_elf_perform_relocation (input_section, howto, contents,
1600 addr, srel, error_message);
1601 break;
1602
1603 case R_MMIX_BASE_PLUS_OFFSET:
1604 if (symsec == NULL)
1605 return bfd_reloc_undefined;
1606
1607 /* Check that we're not relocating against a register symbol. */
1608 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1610 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1611 MMIX_REG_SECTION_NAME) == 0)
1612 {
1613 /* Note: This is separated out into two messages in order
1614 to ease the translation into other languages. */
1615 if (symname == NULL || *symname == 0)
1616 _bfd_error_handler
1617 /* xgettext:c-format */
1618 (_("%B: base-plus-offset relocation against register symbol:"
1619 " (unknown) in %A"),
1620 input_section->owner, symsec);
1621 else
1622 _bfd_error_handler
1623 /* xgettext:c-format */
1624 (_("%B: base-plus-offset relocation against register symbol:"
1625 " %s in %A"),
1626 input_section->owner, symname, symsec);
1627 return bfd_reloc_overflow;
1628 }
1629 goto do_mmix_reloc;
1630
1631 case R_MMIX_REG_OR_BYTE:
1632 case R_MMIX_REG:
1633 /* For now, we handle these alike. They must refer to an register
1634 symbol, which is either relative to the register section and in
1635 the range 0..255, or is in the register contents section with vma
1636 regno * 8. */
1637
1638 /* FIXME: A better way to check for reg contents section?
1639 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1640 if (symsec == NULL)
1641 return bfd_reloc_undefined;
1642
1643 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1644 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1645 {
1646 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1647 {
1648 /* The bfd_reloc_outofrange return value, though intuitively
1649 a better value, will not get us an error. */
1650 return bfd_reloc_overflow;
1651 }
1652 srel /= 8;
1653 }
1654 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1655 MMIX_REG_SECTION_NAME) == 0)
1656 {
1657 if (srel < 0 || srel > 255)
1658 /* The bfd_reloc_outofrange return value, though intuitively a
1659 better value, will not get us an error. */
1660 return bfd_reloc_overflow;
1661 }
1662 else
1663 {
1664 /* Note: This is separated out into two messages in order
1665 to ease the translation into other languages. */
1666 if (symname == NULL || *symname == 0)
1667 _bfd_error_handler
1668 /* xgettext:c-format */
1669 (_("%B: register relocation against non-register symbol:"
1670 " (unknown) in %A"),
1671 input_section->owner, symsec);
1672 else
1673 _bfd_error_handler
1674 /* xgettext:c-format */
1675 (_("%B: register relocation against non-register symbol:"
1676 " %s in %A"),
1677 input_section->owner, symname, symsec);
1678
1679 /* The bfd_reloc_outofrange return value, though intuitively a
1680 better value, will not get us an error. */
1681 return bfd_reloc_overflow;
1682 }
1683 do_mmix_reloc:
1684 contents += r_offset;
1685 r = mmix_elf_perform_relocation (input_section, howto, contents,
1686 addr, srel, error_message);
1687 break;
1688
1689 case R_MMIX_LOCAL:
1690 /* This isn't a real relocation, it's just an assertion that the
1691 final relocation value corresponds to a local register. We
1692 ignore the actual relocation; nothing is changed. */
1693 {
1694 asection *regsec
1695 = bfd_get_section_by_name (input_section->output_section->owner,
1696 MMIX_REG_CONTENTS_SECTION_NAME);
1697 bfd_vma first_global;
1698
1699 /* Check that this is an absolute value, or a reference to the
1700 register contents section or the register (symbol) section.
1701 Absolute numbers can get here as undefined section. Undefined
1702 symbols are signalled elsewhere, so there's no conflict in us
1703 accidentally handling it. */
1704 if (!bfd_is_abs_section (symsec)
1705 && !bfd_is_und_section (symsec)
1706 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1708 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1709 MMIX_REG_SECTION_NAME) != 0)
1710 {
1711 _bfd_error_handler
1712 (_("%B: directive LOCAL valid only with a register or absolute value"),
1713 input_section->owner);
1714
1715 return bfd_reloc_overflow;
1716 }
1717
1718 /* If we don't have a register contents section, then $255 is the
1719 first global register. */
1720 if (regsec == NULL)
1721 first_global = 255;
1722 else
1723 {
1724 first_global
1725 = bfd_get_section_vma (input_section->output_section->owner,
1726 regsec) / 8;
1727 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1728 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1729 {
1730 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1731 /* The bfd_reloc_outofrange return value, though
1732 intuitively a better value, will not get us an error. */
1733 return bfd_reloc_overflow;
1734 srel /= 8;
1735 }
1736 }
1737
1738 if ((bfd_vma) srel >= first_global)
1739 {
1740 /* FIXME: Better error message. */
1741 _bfd_error_handler
1742 /* xgettext:c-format */
1743 (_("%B: LOCAL directive: Register $%ld is not a local register."
1744 " First global register is $%ld."),
1745 input_section->owner, (long) srel, (long) first_global);
1746
1747 return bfd_reloc_overflow;
1748 }
1749 }
1750 r = bfd_reloc_ok;
1751 break;
1752
1753 default:
1754 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1755 contents, r_offset,
1756 relocation, r_addend);
1757 }
1758
1759 return r;
1760 }
1761 \f
1762 /* Return the section that should be marked against GC for a given
1763 relocation. */
1764
1765 static asection *
1766 mmix_elf_gc_mark_hook (asection *sec,
1767 struct bfd_link_info *info,
1768 Elf_Internal_Rela *rel,
1769 struct elf_link_hash_entry *h,
1770 Elf_Internal_Sym *sym)
1771 {
1772 if (h != NULL)
1773 switch (ELF64_R_TYPE (rel->r_info))
1774 {
1775 case R_MMIX_GNU_VTINHERIT:
1776 case R_MMIX_GNU_VTENTRY:
1777 return NULL;
1778 }
1779
1780 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1781 }
1782
1783 /* Update relocation info for a GC-excluded section. We could supposedly
1784 perform the allocation after GC, but there's no suitable hook between
1785 GC (or section merge) and the point when all input sections must be
1786 present. Better to waste some memory and (perhaps) a little time. */
1787
1788 static bfd_boolean
1789 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1790 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1791 asection *sec,
1792 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1793 {
1794 struct bpo_reloc_section_info *bpodata
1795 = mmix_elf_section_data (sec)->bpo.reloc;
1796 asection *allocated_gregs_section;
1797
1798 /* If no bpodata here, we have nothing to do. */
1799 if (bpodata == NULL)
1800 return TRUE;
1801
1802 allocated_gregs_section = bpodata->bpo_greg_section;
1803
1804 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1805 -= bpodata->n_bpo_relocs_this_section;
1806
1807 return TRUE;
1808 }
1809 \f
1810 /* Sort register relocs to come before expanding relocs. */
1811
1812 static int
1813 mmix_elf_sort_relocs (const void * p1, const void * p2)
1814 {
1815 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1816 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1817 int r1_is_reg, r2_is_reg;
1818
1819 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1820 insns. */
1821 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1822 return 1;
1823 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1824 return -1;
1825
1826 r1_is_reg
1827 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1828 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1829 r2_is_reg
1830 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1831 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1832 if (r1_is_reg != r2_is_reg)
1833 return r2_is_reg - r1_is_reg;
1834
1835 /* Neither or both are register relocs. Then sort on full offset. */
1836 if (r1->r_offset > r2->r_offset)
1837 return 1;
1838 else if (r1->r_offset < r2->r_offset)
1839 return -1;
1840 return 0;
1841 }
1842
1843 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1844
1845 static bfd_boolean
1846 mmix_elf_check_common_relocs (bfd *abfd,
1847 struct bfd_link_info *info,
1848 asection *sec,
1849 const Elf_Internal_Rela *relocs)
1850 {
1851 bfd *bpo_greg_owner = NULL;
1852 asection *allocated_gregs_section = NULL;
1853 struct bpo_greg_section_info *gregdata = NULL;
1854 struct bpo_reloc_section_info *bpodata = NULL;
1855 const Elf_Internal_Rela *rel;
1856 const Elf_Internal_Rela *rel_end;
1857
1858 /* We currently have to abuse this COFF-specific member, since there's
1859 no target-machine-dedicated member. There's no alternative outside
1860 the bfd_link_info struct; we can't specialize a hash-table since
1861 they're different between ELF and mmo. */
1862 bpo_greg_owner = (bfd *) info->base_file;
1863
1864 rel_end = relocs + sec->reloc_count;
1865 for (rel = relocs; rel < rel_end; rel++)
1866 {
1867 switch (ELF64_R_TYPE (rel->r_info))
1868 {
1869 /* This relocation causes a GREG allocation. We need to count
1870 them, and we need to create a section for them, so we need an
1871 object to fake as the owner of that section. We can't use
1872 the ELF dynobj for this, since the ELF bits assume lots of
1873 DSO-related stuff if that member is non-NULL. */
1874 case R_MMIX_BASE_PLUS_OFFSET:
1875 /* We don't do anything with this reloc for a relocatable link. */
1876 if (bfd_link_relocatable (info))
1877 break;
1878
1879 if (bpo_greg_owner == NULL)
1880 {
1881 bpo_greg_owner = abfd;
1882 info->base_file = bpo_greg_owner;
1883 }
1884
1885 if (allocated_gregs_section == NULL)
1886 allocated_gregs_section
1887 = bfd_get_section_by_name (bpo_greg_owner,
1888 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1889
1890 if (allocated_gregs_section == NULL)
1891 {
1892 allocated_gregs_section
1893 = bfd_make_section_with_flags (bpo_greg_owner,
1894 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1895 (SEC_HAS_CONTENTS
1896 | SEC_IN_MEMORY
1897 | SEC_LINKER_CREATED));
1898 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1899 treated like any other section, and we'd get errors for
1900 address overlap with the text section. Let's set none of
1901 those flags, as that is what currently happens for usual
1902 GREG allocations, and that works. */
1903 if (allocated_gregs_section == NULL
1904 || !bfd_set_section_alignment (bpo_greg_owner,
1905 allocated_gregs_section,
1906 3))
1907 return FALSE;
1908
1909 gregdata = (struct bpo_greg_section_info *)
1910 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1911 if (gregdata == NULL)
1912 return FALSE;
1913 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1914 = gregdata;
1915 }
1916 else if (gregdata == NULL)
1917 gregdata
1918 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1919
1920 /* Get ourselves some auxiliary info for the BPO-relocs. */
1921 if (bpodata == NULL)
1922 {
1923 /* No use doing a separate iteration pass to find the upper
1924 limit - just use the number of relocs. */
1925 bpodata = (struct bpo_reloc_section_info *)
1926 bfd_alloc (bpo_greg_owner,
1927 sizeof (struct bpo_reloc_section_info)
1928 * (sec->reloc_count + 1));
1929 if (bpodata == NULL)
1930 return FALSE;
1931 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1932 bpodata->first_base_plus_offset_reloc
1933 = bpodata->bpo_index
1934 = gregdata->n_max_bpo_relocs;
1935 bpodata->bpo_greg_section
1936 = allocated_gregs_section;
1937 bpodata->n_bpo_relocs_this_section = 0;
1938 }
1939
1940 bpodata->n_bpo_relocs_this_section++;
1941 gregdata->n_max_bpo_relocs++;
1942
1943 /* We don't get another chance to set this before GC; we've not
1944 set up any hook that runs before GC. */
1945 gregdata->n_bpo_relocs
1946 = gregdata->n_max_bpo_relocs;
1947 break;
1948
1949 case R_MMIX_PUSHJ_STUBBABLE:
1950 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1951 break;
1952 }
1953 }
1954
1955 /* Allocate per-reloc stub storage and initialize it to the max stub
1956 size. */
1957 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1958 {
1959 size_t i;
1960
1961 mmix_elf_section_data (sec)->pjs.stub_size
1962 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1963 * sizeof (mmix_elf_section_data (sec)
1964 ->pjs.stub_size[0]));
1965 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1966 return FALSE;
1967
1968 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1969 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1970 }
1971
1972 return TRUE;
1973 }
1974
1975 /* Look through the relocs for a section during the first phase. */
1976
1977 static bfd_boolean
1978 mmix_elf_check_relocs (bfd *abfd,
1979 struct bfd_link_info *info,
1980 asection *sec,
1981 const Elf_Internal_Rela *relocs)
1982 {
1983 Elf_Internal_Shdr *symtab_hdr;
1984 struct elf_link_hash_entry **sym_hashes;
1985 const Elf_Internal_Rela *rel;
1986 const Elf_Internal_Rela *rel_end;
1987
1988 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1989 sym_hashes = elf_sym_hashes (abfd);
1990
1991 /* First we sort the relocs so that any register relocs come before
1992 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1993 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1994 mmix_elf_sort_relocs);
1995
1996 /* Do the common part. */
1997 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1998 return FALSE;
1999
2000 if (bfd_link_relocatable (info))
2001 return TRUE;
2002
2003 rel_end = relocs + sec->reloc_count;
2004 for (rel = relocs; rel < rel_end; rel++)
2005 {
2006 struct elf_link_hash_entry *h;
2007 unsigned long r_symndx;
2008
2009 r_symndx = ELF64_R_SYM (rel->r_info);
2010 if (r_symndx < symtab_hdr->sh_info)
2011 h = NULL;
2012 else
2013 {
2014 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2015 while (h->root.type == bfd_link_hash_indirect
2016 || h->root.type == bfd_link_hash_warning)
2017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2018
2019 /* PR15323, ref flags aren't set for references in the same
2020 object. */
2021 h->root.non_ir_ref = 1;
2022 }
2023
2024 switch (ELF64_R_TYPE (rel->r_info))
2025 {
2026 /* This relocation describes the C++ object vtable hierarchy.
2027 Reconstruct it for later use during GC. */
2028 case R_MMIX_GNU_VTINHERIT:
2029 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2030 return FALSE;
2031 break;
2032
2033 /* This relocation describes which C++ vtable entries are actually
2034 used. Record for later use during GC. */
2035 case R_MMIX_GNU_VTENTRY:
2036 BFD_ASSERT (h != NULL);
2037 if (h != NULL
2038 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2039 return FALSE;
2040 break;
2041 }
2042 }
2043
2044 return TRUE;
2045 }
2046
2047 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2048 Copied from elf_link_add_object_symbols. */
2049
2050 bfd_boolean
2051 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2052 {
2053 asection *o;
2054
2055 for (o = abfd->sections; o != NULL; o = o->next)
2056 {
2057 Elf_Internal_Rela *internal_relocs;
2058 bfd_boolean ok;
2059
2060 if ((o->flags & SEC_RELOC) == 0
2061 || o->reloc_count == 0
2062 || ((info->strip == strip_all || info->strip == strip_debugger)
2063 && (o->flags & SEC_DEBUGGING) != 0)
2064 || bfd_is_abs_section (o->output_section))
2065 continue;
2066
2067 internal_relocs
2068 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2069 (Elf_Internal_Rela *) NULL,
2070 info->keep_memory);
2071 if (internal_relocs == NULL)
2072 return FALSE;
2073
2074 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2075
2076 if (! info->keep_memory)
2077 free (internal_relocs);
2078
2079 if (! ok)
2080 return FALSE;
2081 }
2082
2083 return TRUE;
2084 }
2085 \f
2086 /* Change symbols relative to the reg contents section to instead be to
2087 the register section, and scale them down to correspond to the register
2088 number. */
2089
2090 static int
2091 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2092 const char *name ATTRIBUTE_UNUSED,
2093 Elf_Internal_Sym *sym,
2094 asection *input_sec,
2095 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2096 {
2097 if (input_sec != NULL
2098 && input_sec->name != NULL
2099 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2100 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2101 {
2102 sym->st_value /= 8;
2103 sym->st_shndx = SHN_REGISTER;
2104 }
2105
2106 return 1;
2107 }
2108
2109 /* We fake a register section that holds values that are register numbers.
2110 Having a SHN_REGISTER and register section translates better to other
2111 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2112 This section faking is based on a construct in elf32-mips.c. */
2113 static asection mmix_elf_reg_section;
2114 static asymbol mmix_elf_reg_section_symbol;
2115 static asymbol *mmix_elf_reg_section_symbol_ptr;
2116
2117 /* Handle the special section numbers that a symbol may use. */
2118
2119 void
2120 mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
2121 {
2122 elf_symbol_type *elfsym;
2123
2124 elfsym = (elf_symbol_type *) asym;
2125 switch (elfsym->internal_elf_sym.st_shndx)
2126 {
2127 case SHN_REGISTER:
2128 if (mmix_elf_reg_section.name == NULL)
2129 {
2130 /* Initialize the register section. */
2131 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2132 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2133 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2134 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2135 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2136 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2137 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2138 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2139 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2140 }
2141 asym->section = &mmix_elf_reg_section;
2142 break;
2143
2144 default:
2145 break;
2146 }
2147 }
2148
2149 /* Given a BFD section, try to locate the corresponding ELF section
2150 index. */
2151
2152 static bfd_boolean
2153 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2154 asection * sec,
2155 int * retval)
2156 {
2157 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2158 *retval = SHN_REGISTER;
2159 else
2160 return FALSE;
2161
2162 return TRUE;
2163 }
2164
2165 /* Hook called by the linker routine which adds symbols from an object
2166 file. We must handle the special SHN_REGISTER section number here.
2167
2168 We also check that we only have *one* each of the section-start
2169 symbols, since otherwise having two with the same value would cause
2170 them to be "merged", but with the contents serialized. */
2171
2172 static bfd_boolean
2173 mmix_elf_add_symbol_hook (bfd *abfd,
2174 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2175 Elf_Internal_Sym *sym,
2176 const char **namep ATTRIBUTE_UNUSED,
2177 flagword *flagsp ATTRIBUTE_UNUSED,
2178 asection **secp,
2179 bfd_vma *valp ATTRIBUTE_UNUSED)
2180 {
2181 if (sym->st_shndx == SHN_REGISTER)
2182 {
2183 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2184 (*secp)->flags |= SEC_LINKER_CREATED;
2185 }
2186 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2187 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2188 {
2189 /* See if we have another one. */
2190 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2191 *namep,
2192 FALSE,
2193 FALSE,
2194 FALSE);
2195
2196 if (h != NULL && h->type != bfd_link_hash_undefined)
2197 {
2198 /* How do we get the asymbol (or really: the filename) from h?
2199 h->u.def.section->owner is NULL. */
2200 _bfd_error_handler
2201 /* xgettext:c-format */
2202 (_("%B: Error: multiple definition of `%s'; start of %s "
2203 "is set in a earlier linked file\n"),
2204 abfd, *namep,
2205 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
2206 bfd_set_error (bfd_error_bad_value);
2207 return FALSE;
2208 }
2209 }
2210
2211 return TRUE;
2212 }
2213
2214 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2215
2216 static bfd_boolean
2217 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2218 {
2219 const char *colpos;
2220 int digits;
2221
2222 /* Also include the default local-label definition. */
2223 if (_bfd_elf_is_local_label_name (abfd, name))
2224 return TRUE;
2225
2226 if (*name != 'L')
2227 return FALSE;
2228
2229 /* If there's no ":", or more than one, it's not a local symbol. */
2230 colpos = strchr (name, ':');
2231 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2232 return FALSE;
2233
2234 /* Check that there are remaining characters and that they are digits. */
2235 if (colpos[1] == 0)
2236 return FALSE;
2237
2238 digits = strspn (colpos + 1, "0123456789");
2239 return digits != 0 && colpos[1 + digits] == 0;
2240 }
2241
2242 /* We get rid of the register section here. */
2243
2244 bfd_boolean
2245 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2246 {
2247 /* We never output a register section, though we create one for
2248 temporary measures. Check that nobody entered contents into it. */
2249 asection *reg_section;
2250
2251 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2252
2253 if (reg_section != NULL)
2254 {
2255 /* FIXME: Pass error state gracefully. */
2256 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2257 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2258
2259 /* Really remove the section, if it hasn't already been done. */
2260 if (!bfd_section_removed_from_list (abfd, reg_section))
2261 {
2262 bfd_section_list_remove (abfd, reg_section);
2263 --abfd->section_count;
2264 }
2265 }
2266
2267 if (! bfd_elf_final_link (abfd, info))
2268 return FALSE;
2269
2270 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2271 the regular linker machinery. We do it here, like other targets with
2272 special sections. */
2273 if (info->base_file != NULL)
2274 {
2275 asection *greg_section
2276 = bfd_get_section_by_name ((bfd *) info->base_file,
2277 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2278 if (!bfd_set_section_contents (abfd,
2279 greg_section->output_section,
2280 greg_section->contents,
2281 (file_ptr) greg_section->output_offset,
2282 greg_section->size))
2283 return FALSE;
2284 }
2285 return TRUE;
2286 }
2287
2288 /* We need to include the maximum size of PUSHJ-stubs in the initial
2289 section size. This is expected to shrink during linker relaxation. */
2290
2291 static void
2292 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2293 asection *sec,
2294 void *ptr)
2295 {
2296 struct bfd_link_info *info = ptr;
2297
2298 /* Make sure we only do this for section where we know we want this,
2299 otherwise we might end up resetting the size of COMMONs. */
2300 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2301 return;
2302
2303 sec->rawsize = sec->size;
2304 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2305 * MAX_PUSHJ_STUB_SIZE);
2306
2307 /* For use in relocatable link, we start with a max stubs size. See
2308 mmix_elf_relax_section. */
2309 if (bfd_link_relocatable (info) && sec->output_section)
2310 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2311 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2312 * MAX_PUSHJ_STUB_SIZE);
2313 }
2314
2315 /* Initialize stuff for the linker-generated GREGs to match
2316 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2317
2318 bfd_boolean
2319 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2320 struct bfd_link_info *info)
2321 {
2322 asection *bpo_gregs_section;
2323 bfd *bpo_greg_owner;
2324 struct bpo_greg_section_info *gregdata;
2325 size_t n_gregs;
2326 bfd_vma gregs_size;
2327 size_t i;
2328 size_t *bpo_reloc_indexes;
2329 bfd *ibfd;
2330
2331 /* Set the initial size of sections. */
2332 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2333 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2334
2335 /* The bpo_greg_owner bfd is supposed to have been set by
2336 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2337 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2338 bpo_greg_owner = (bfd *) info->base_file;
2339 if (bpo_greg_owner == NULL)
2340 return TRUE;
2341
2342 bpo_gregs_section
2343 = bfd_get_section_by_name (bpo_greg_owner,
2344 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2345
2346 if (bpo_gregs_section == NULL)
2347 return TRUE;
2348
2349 /* We use the target-data handle in the ELF section data. */
2350 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2351 if (gregdata == NULL)
2352 return FALSE;
2353
2354 n_gregs = gregdata->n_bpo_relocs;
2355 gregdata->n_allocated_bpo_gregs = n_gregs;
2356
2357 /* When this reaches zero during relaxation, all entries have been
2358 filled in and the size of the linker gregs can be calculated. */
2359 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2360
2361 /* Set the zeroth-order estimate for the GREGs size. */
2362 gregs_size = n_gregs * 8;
2363
2364 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2365 return FALSE;
2366
2367 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2368 time. Note that we must use the max number ever noted for the array,
2369 since the index numbers were created before GC. */
2370 gregdata->reloc_request
2371 = bfd_zalloc (bpo_greg_owner,
2372 sizeof (struct bpo_reloc_request)
2373 * gregdata->n_max_bpo_relocs);
2374
2375 gregdata->bpo_reloc_indexes
2376 = bpo_reloc_indexes
2377 = bfd_alloc (bpo_greg_owner,
2378 gregdata->n_max_bpo_relocs
2379 * sizeof (size_t));
2380 if (bpo_reloc_indexes == NULL)
2381 return FALSE;
2382
2383 /* The default order is an identity mapping. */
2384 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2385 {
2386 bpo_reloc_indexes[i] = i;
2387 gregdata->reloc_request[i].bpo_reloc_no = i;
2388 }
2389
2390 return TRUE;
2391 }
2392 \f
2393 /* Fill in contents in the linker allocated gregs. Everything is
2394 calculated at this point; we just move the contents into place here. */
2395
2396 bfd_boolean
2397 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2398 struct bfd_link_info *link_info)
2399 {
2400 asection *bpo_gregs_section;
2401 bfd *bpo_greg_owner;
2402 struct bpo_greg_section_info *gregdata;
2403 size_t n_gregs;
2404 size_t i, j;
2405 size_t lastreg;
2406 bfd_byte *contents;
2407
2408 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2409 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2410 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2411 bpo_greg_owner = (bfd *) link_info->base_file;
2412 if (bpo_greg_owner == NULL)
2413 return TRUE;
2414
2415 bpo_gregs_section
2416 = bfd_get_section_by_name (bpo_greg_owner,
2417 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2418
2419 /* This can't happen without DSO handling. When DSOs are handled
2420 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2421 section. */
2422 if (bpo_gregs_section == NULL)
2423 return TRUE;
2424
2425 /* We use the target-data handle in the ELF section data. */
2426
2427 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2428 if (gregdata == NULL)
2429 return FALSE;
2430
2431 n_gregs = gregdata->n_allocated_bpo_gregs;
2432
2433 bpo_gregs_section->contents
2434 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2435 if (contents == NULL)
2436 return FALSE;
2437
2438 /* Sanity check: If these numbers mismatch, some relocation has not been
2439 accounted for and the rest of gregdata is probably inconsistent.
2440 It's a bug, but it's more helpful to identify it than segfaulting
2441 below. */
2442 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2443 != gregdata->n_bpo_relocs)
2444 {
2445 _bfd_error_handler
2446 /* xgettext:c-format */
2447 (_("Internal inconsistency: remaining %u != max %u.\n\
2448 Please report this bug."),
2449 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2450 gregdata->n_bpo_relocs);
2451 return FALSE;
2452 }
2453
2454 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2455 if (gregdata->reloc_request[i].regindex != lastreg)
2456 {
2457 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2458 contents + j * 8);
2459 lastreg = gregdata->reloc_request[i].regindex;
2460 j++;
2461 }
2462
2463 return TRUE;
2464 }
2465
2466 /* Sort valid relocs to come before non-valid relocs, then on increasing
2467 value. */
2468
2469 static int
2470 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2471 {
2472 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2473 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2474
2475 /* Primary function is validity; non-valid relocs sorted after valid
2476 ones. */
2477 if (r1->valid != r2->valid)
2478 return r2->valid - r1->valid;
2479
2480 /* Then sort on value. Don't simplify and return just the difference of
2481 the values: the upper bits of the 64-bit value would be truncated on
2482 a host with 32-bit ints. */
2483 if (r1->value != r2->value)
2484 return r1->value > r2->value ? 1 : -1;
2485
2486 /* As a last re-sort, use the relocation number, so we get a stable
2487 sort. The *addresses* aren't stable since items are swapped during
2488 sorting. It depends on the qsort implementation if this actually
2489 happens. */
2490 return r1->bpo_reloc_no > r2->bpo_reloc_no
2491 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2492 }
2493
2494 /* For debug use only. Dumps the global register allocations resulting
2495 from base-plus-offset relocs. */
2496
2497 void
2498 mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
2499 void (*pf) (const char *fmt, ...))
2500 {
2501 bfd *bpo_greg_owner;
2502 asection *bpo_gregs_section;
2503 struct bpo_greg_section_info *gregdata;
2504 unsigned int i;
2505
2506 if (link_info == NULL || link_info->base_file == NULL)
2507 return;
2508
2509 bpo_greg_owner = (bfd *) link_info->base_file;
2510
2511 bpo_gregs_section
2512 = bfd_get_section_by_name (bpo_greg_owner,
2513 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2514
2515 if (bpo_gregs_section == NULL)
2516 return;
2517
2518 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2519 if (gregdata == NULL)
2520 return;
2521
2522 if (pf == NULL)
2523 pf = _bfd_error_handler;
2524
2525 /* These format strings are not translated. They are for debug purposes
2526 only and never displayed to an end user. Should they escape, we
2527 surely want them in original. */
2528 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2529 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2530 gregdata->n_max_bpo_relocs,
2531 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2532 gregdata->n_allocated_bpo_gregs);
2533
2534 if (gregdata->reloc_request)
2535 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2536 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2537 i,
2538 (gregdata->bpo_reloc_indexes != NULL
2539 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2540 gregdata->reloc_request[i].bpo_reloc_no,
2541 gregdata->reloc_request[i].valid,
2542
2543 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2544 (unsigned long) gregdata->reloc_request[i].value,
2545 gregdata->reloc_request[i].regindex,
2546 gregdata->reloc_request[i].offset);
2547 }
2548
2549 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2550 when the last such reloc is done, an index-array is sorted according to
2551 the values and iterated over to produce register numbers (indexed by 0
2552 from the first allocated register number) and offsets for use in real
2553 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2554
2555 PUSHJ stub accounting is also done here.
2556
2557 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2558
2559 static bfd_boolean
2560 mmix_elf_relax_section (bfd *abfd,
2561 asection *sec,
2562 struct bfd_link_info *link_info,
2563 bfd_boolean *again)
2564 {
2565 Elf_Internal_Shdr *symtab_hdr;
2566 Elf_Internal_Rela *internal_relocs;
2567 Elf_Internal_Rela *irel, *irelend;
2568 asection *bpo_gregs_section = NULL;
2569 struct bpo_greg_section_info *gregdata;
2570 struct bpo_reloc_section_info *bpodata
2571 = mmix_elf_section_data (sec)->bpo.reloc;
2572 /* The initialization is to quiet compiler warnings. The value is to
2573 spot a missing actual initialization. */
2574 size_t bpono = (size_t) -1;
2575 size_t pjsno = 0;
2576 Elf_Internal_Sym *isymbuf = NULL;
2577 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2578
2579 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2580
2581 /* Assume nothing changes. */
2582 *again = FALSE;
2583
2584 /* We don't have to do anything if this section does not have relocs, or
2585 if this is not a code section. */
2586 if ((sec->flags & SEC_RELOC) == 0
2587 || sec->reloc_count == 0
2588 || (sec->flags & SEC_CODE) == 0
2589 || (sec->flags & SEC_LINKER_CREATED) != 0
2590 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2591 then nothing to do. */
2592 || (bpodata == NULL
2593 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2594 return TRUE;
2595
2596 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2597
2598 if (bpodata != NULL)
2599 {
2600 bpo_gregs_section = bpodata->bpo_greg_section;
2601 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2602 bpono = bpodata->first_base_plus_offset_reloc;
2603 }
2604 else
2605 gregdata = NULL;
2606
2607 /* Get a copy of the native relocations. */
2608 internal_relocs
2609 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2610 (Elf_Internal_Rela *) NULL,
2611 link_info->keep_memory);
2612 if (internal_relocs == NULL)
2613 goto error_return;
2614
2615 /* Walk through them looking for relaxing opportunities. */
2616 irelend = internal_relocs + sec->reloc_count;
2617 for (irel = internal_relocs; irel < irelend; irel++)
2618 {
2619 bfd_vma symval;
2620 struct elf_link_hash_entry *h = NULL;
2621
2622 /* We only process two relocs. */
2623 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2624 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2625 continue;
2626
2627 /* We process relocs in a distinctly different way when this is a
2628 relocatable link (for one, we don't look at symbols), so we avoid
2629 mixing its code with that for the "normal" relaxation. */
2630 if (bfd_link_relocatable (link_info))
2631 {
2632 /* The only transformation in a relocatable link is to generate
2633 a full stub at the location of the stub calculated for the
2634 input section, if the relocated stub location, the end of the
2635 output section plus earlier stubs, cannot be reached. Thus
2636 relocatable linking can only lead to worse code, but it still
2637 works. */
2638 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2639 {
2640 /* If we can reach the end of the output-section and beyond
2641 any current stubs, then we don't need a stub for this
2642 reloc. The relaxed order of output stub allocation may
2643 not exactly match the straightforward order, so we always
2644 assume presence of output stubs, which will allow
2645 relaxation only on relocations indifferent to the
2646 presence of output stub allocations for other relocations
2647 and thus the order of output stub allocation. */
2648 if (bfd_check_overflow (complain_overflow_signed,
2649 19,
2650 0,
2651 bfd_arch_bits_per_address (abfd),
2652 /* Output-stub location. */
2653 sec->output_section->rawsize
2654 + (mmix_elf_section_data (sec
2655 ->output_section)
2656 ->pjs.stubs_size_sum)
2657 /* Location of this PUSHJ reloc. */
2658 - (sec->output_offset + irel->r_offset)
2659 /* Don't count *this* stub twice. */
2660 - (mmix_elf_section_data (sec)
2661 ->pjs.stub_size[pjsno]
2662 + MAX_PUSHJ_STUB_SIZE))
2663 == bfd_reloc_ok)
2664 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2665
2666 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2667 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2668
2669 pjsno++;
2670 }
2671
2672 continue;
2673 }
2674
2675 /* Get the value of the symbol referred to by the reloc. */
2676 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2677 {
2678 /* A local symbol. */
2679 Elf_Internal_Sym *isym;
2680 asection *sym_sec;
2681
2682 /* Read this BFD's local symbols if we haven't already. */
2683 if (isymbuf == NULL)
2684 {
2685 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2686 if (isymbuf == NULL)
2687 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2688 symtab_hdr->sh_info, 0,
2689 NULL, NULL, NULL);
2690 if (isymbuf == 0)
2691 goto error_return;
2692 }
2693
2694 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2695 if (isym->st_shndx == SHN_UNDEF)
2696 sym_sec = bfd_und_section_ptr;
2697 else if (isym->st_shndx == SHN_ABS)
2698 sym_sec = bfd_abs_section_ptr;
2699 else if (isym->st_shndx == SHN_COMMON)
2700 sym_sec = bfd_com_section_ptr;
2701 else
2702 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2703 symval = (isym->st_value
2704 + sym_sec->output_section->vma
2705 + sym_sec->output_offset);
2706 }
2707 else
2708 {
2709 unsigned long indx;
2710
2711 /* An external symbol. */
2712 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2713 h = elf_sym_hashes (abfd)[indx];
2714 BFD_ASSERT (h != NULL);
2715 if (h->root.type != bfd_link_hash_defined
2716 && h->root.type != bfd_link_hash_defweak)
2717 {
2718 /* This appears to be a reference to an undefined symbol. Just
2719 ignore it--it will be caught by the regular reloc processing.
2720 We need to keep BPO reloc accounting consistent, though
2721 else we'll abort instead of emitting an error message. */
2722 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2723 && gregdata != NULL)
2724 {
2725 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2726 bpono++;
2727 }
2728 continue;
2729 }
2730
2731 symval = (h->root.u.def.value
2732 + h->root.u.def.section->output_section->vma
2733 + h->root.u.def.section->output_offset);
2734 }
2735
2736 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2737 {
2738 bfd_vma value = symval + irel->r_addend;
2739 bfd_vma dot
2740 = (sec->output_section->vma
2741 + sec->output_offset
2742 + irel->r_offset);
2743 bfd_vma stubaddr
2744 = (sec->output_section->vma
2745 + sec->output_offset
2746 + size
2747 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2748
2749 if ((value & 3) == 0
2750 && bfd_check_overflow (complain_overflow_signed,
2751 19,
2752 0,
2753 bfd_arch_bits_per_address (abfd),
2754 value - dot
2755 - (value > dot
2756 ? mmix_elf_section_data (sec)
2757 ->pjs.stub_size[pjsno]
2758 : 0))
2759 == bfd_reloc_ok)
2760 /* If the reloc fits, no stub is needed. */
2761 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2762 else
2763 /* Maybe we can get away with just a JMP insn? */
2764 if ((value & 3) == 0
2765 && bfd_check_overflow (complain_overflow_signed,
2766 27,
2767 0,
2768 bfd_arch_bits_per_address (abfd),
2769 value - stubaddr
2770 - (value > dot
2771 ? mmix_elf_section_data (sec)
2772 ->pjs.stub_size[pjsno] - 4
2773 : 0))
2774 == bfd_reloc_ok)
2775 /* Yep, account for a stub consisting of a single JMP insn. */
2776 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2777 else
2778 /* Nope, go for the full insn stub. It doesn't seem useful to
2779 emit the intermediate sizes; those will only be useful for
2780 a >64M program assuming contiguous code. */
2781 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2782 = MAX_PUSHJ_STUB_SIZE;
2783
2784 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2785 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2786 pjsno++;
2787 continue;
2788 }
2789
2790 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2791
2792 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2793 = symval + irel->r_addend;
2794 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2795 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2796 }
2797
2798 /* Check if that was the last BPO-reloc. If so, sort the values and
2799 calculate how many registers we need to cover them. Set the size of
2800 the linker gregs, and if the number of registers changed, indicate
2801 that we need to relax some more because we have more work to do. */
2802 if (gregdata != NULL
2803 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2804 {
2805 size_t i;
2806 bfd_vma prev_base;
2807 size_t regindex;
2808
2809 /* First, reset the remaining relocs for the next round. */
2810 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2811 = gregdata->n_bpo_relocs;
2812
2813 qsort (gregdata->reloc_request,
2814 gregdata->n_max_bpo_relocs,
2815 sizeof (struct bpo_reloc_request),
2816 bpo_reloc_request_sort_fn);
2817
2818 /* Recalculate indexes. When we find a change (however unlikely
2819 after the initial iteration), we know we need to relax again,
2820 since items in the GREG-array are sorted by increasing value and
2821 stored in the relaxation phase. */
2822 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2823 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2824 != i)
2825 {
2826 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2827 = i;
2828 *again = TRUE;
2829 }
2830
2831 /* Allocate register numbers (indexing from 0). Stop at the first
2832 non-valid reloc. */
2833 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2834 i < gregdata->n_bpo_relocs;
2835 i++)
2836 {
2837 if (gregdata->reloc_request[i].value > prev_base + 255)
2838 {
2839 regindex++;
2840 prev_base = gregdata->reloc_request[i].value;
2841 }
2842 gregdata->reloc_request[i].regindex = regindex;
2843 gregdata->reloc_request[i].offset
2844 = gregdata->reloc_request[i].value - prev_base;
2845 }
2846
2847 /* If it's not the same as the last time, we need to relax again,
2848 because the size of the section has changed. I'm not sure we
2849 actually need to do any adjustments since the shrinking happens
2850 at the start of this section, but better safe than sorry. */
2851 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2852 {
2853 gregdata->n_allocated_bpo_gregs = regindex + 1;
2854 *again = TRUE;
2855 }
2856
2857 bpo_gregs_section->size = (regindex + 1) * 8;
2858 }
2859
2860 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2861 {
2862 if (! link_info->keep_memory)
2863 free (isymbuf);
2864 else
2865 {
2866 /* Cache the symbols for elf_link_input_bfd. */
2867 symtab_hdr->contents = (unsigned char *) isymbuf;
2868 }
2869 }
2870
2871 if (internal_relocs != NULL
2872 && elf_section_data (sec)->relocs != internal_relocs)
2873 free (internal_relocs);
2874
2875 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2876 abort ();
2877
2878 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2879 {
2880 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2881 *again = TRUE;
2882 }
2883
2884 return TRUE;
2885
2886 error_return:
2887 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2888 free (isymbuf);
2889 if (internal_relocs != NULL
2890 && elf_section_data (sec)->relocs != internal_relocs)
2891 free (internal_relocs);
2892 return FALSE;
2893 }
2894 \f
2895 #define ELF_ARCH bfd_arch_mmix
2896 #define ELF_MACHINE_CODE EM_MMIX
2897
2898 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2899 However, that's too much for something somewhere in the linker part of
2900 BFD; perhaps the start-address has to be a non-zero multiple of this
2901 number, or larger than this number. The symptom is that the linker
2902 complains: "warning: allocated section `.text' not in segment". We
2903 settle for 64k; the page-size used in examples is 8k.
2904 #define ELF_MAXPAGESIZE 0x10000
2905
2906 Unfortunately, this causes excessive padding in the supposedly small
2907 for-education programs that are the expected usage (where people would
2908 inspect output). We stick to 256 bytes just to have *some* default
2909 alignment. */
2910 #define ELF_MAXPAGESIZE 0x100
2911
2912 #define TARGET_BIG_SYM mmix_elf64_vec
2913 #define TARGET_BIG_NAME "elf64-mmix"
2914
2915 #define elf_info_to_howto_rel NULL
2916 #define elf_info_to_howto mmix_info_to_howto_rela
2917 #define elf_backend_relocate_section mmix_elf_relocate_section
2918 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2919 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2920
2921 #define elf_backend_link_output_symbol_hook \
2922 mmix_elf_link_output_symbol_hook
2923 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2924
2925 #define elf_backend_check_relocs mmix_elf_check_relocs
2926 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2927 #define elf_backend_omit_section_dynsym \
2928 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2929
2930 #define bfd_elf64_bfd_is_local_label_name \
2931 mmix_elf_is_local_label_name
2932
2933 #define elf_backend_may_use_rel_p 0
2934 #define elf_backend_may_use_rela_p 1
2935 #define elf_backend_default_use_rela_p 1
2936
2937 #define elf_backend_can_gc_sections 1
2938 #define elf_backend_section_from_bfd_section \
2939 mmix_elf_section_from_bfd_section
2940
2941 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2942 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2943 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2944
2945 #include "elf64-target.h"