]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-ia64.c
2007-08-22 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / bfd / elfxx-ia64.c
1 /* IA-64 support for 64-bit ELF
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "opcode/ia64.h"
28 #include "elf/ia64.h"
29 #include "objalloc.h"
30 #include "hashtab.h"
31
32 #define ARCH_SIZE NN
33
34 #if ARCH_SIZE == 64
35 #define LOG_SECTION_ALIGN 3
36 #endif
37
38 #if ARCH_SIZE == 32
39 #define LOG_SECTION_ALIGN 2
40 #endif
41
42 /* THE RULES for all the stuff the linker creates --
43
44 GOT Entries created in response to LTOFF or LTOFF_FPTR
45 relocations. Dynamic relocs created for dynamic
46 symbols in an application; REL relocs for locals
47 in a shared library.
48
49 FPTR The canonical function descriptor. Created for local
50 symbols in applications. Descriptors for dynamic symbols
51 and local symbols in shared libraries are created by
52 ld.so. Thus there are no dynamic relocs against these
53 objects. The FPTR relocs for such _are_ passed through
54 to the dynamic relocation tables.
55
56 FULL_PLT Created for a PCREL21B relocation against a dynamic symbol.
57 Requires the creation of a PLTOFF entry. This does not
58 require any dynamic relocations.
59
60 PLTOFF Created by PLTOFF relocations. For local symbols, this
61 is an alternate function descriptor, and in shared libraries
62 requires two REL relocations. Note that this cannot be
63 transformed into an FPTR relocation, since it must be in
64 range of the GP. For dynamic symbols, this is a function
65 descriptor for a MIN_PLT entry, and requires one IPLT reloc.
66
67 MIN_PLT Created by PLTOFF entries against dynamic symbols. This
68 does not require dynamic relocations. */
69
70 #define NELEMS(a) ((int) (sizeof (a) / sizeof ((a)[0])))
71
72 typedef struct bfd_hash_entry *(*new_hash_entry_func)
73 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
74
75 /* In dynamically (linker-) created sections, we generally need to keep track
76 of the place a symbol or expression got allocated to. This is done via hash
77 tables that store entries of the following type. */
78
79 struct elfNN_ia64_dyn_sym_info
80 {
81 /* The addend for which this entry is relevant. */
82 bfd_vma addend;
83
84 bfd_vma got_offset;
85 bfd_vma fptr_offset;
86 bfd_vma pltoff_offset;
87 bfd_vma plt_offset;
88 bfd_vma plt2_offset;
89 bfd_vma tprel_offset;
90 bfd_vma dtpmod_offset;
91 bfd_vma dtprel_offset;
92
93 /* The symbol table entry, if any, that this was derived from. */
94 struct elf_link_hash_entry *h;
95
96 /* Used to count non-got, non-plt relocations for delayed sizing
97 of relocation sections. */
98 struct elfNN_ia64_dyn_reloc_entry
99 {
100 struct elfNN_ia64_dyn_reloc_entry *next;
101 asection *srel;
102 int type;
103 int count;
104
105 /* Is this reloc against readonly section? */
106 bfd_boolean reltext;
107 } *reloc_entries;
108
109 /* TRUE when the section contents have been updated. */
110 unsigned got_done : 1;
111 unsigned fptr_done : 1;
112 unsigned pltoff_done : 1;
113 unsigned tprel_done : 1;
114 unsigned dtpmod_done : 1;
115 unsigned dtprel_done : 1;
116
117 /* TRUE for the different kinds of linker data we want created. */
118 unsigned want_got : 1;
119 unsigned want_gotx : 1;
120 unsigned want_fptr : 1;
121 unsigned want_ltoff_fptr : 1;
122 unsigned want_plt : 1;
123 unsigned want_plt2 : 1;
124 unsigned want_pltoff : 1;
125 unsigned want_tprel : 1;
126 unsigned want_dtpmod : 1;
127 unsigned want_dtprel : 1;
128 };
129
130 struct elfNN_ia64_local_hash_entry
131 {
132 int id;
133 unsigned int r_sym;
134 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
135 unsigned int count;
136 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
137 unsigned int sorted_count;
138 /* The size of elfNN_ia64_dyn_sym_info array. */
139 unsigned int size;
140 /* The array of elfNN_ia64_dyn_sym_info. */
141 struct elfNN_ia64_dyn_sym_info *info;
142
143 /* TRUE if this hash entry's addends was translated for
144 SHF_MERGE optimization. */
145 unsigned sec_merge_done : 1;
146 };
147
148 struct elfNN_ia64_link_hash_entry
149 {
150 struct elf_link_hash_entry root;
151 /* The number of elements in elfNN_ia64_dyn_sym_info array. */
152 unsigned int count;
153 /* The number of sorted elements in elfNN_ia64_dyn_sym_info array. */
154 unsigned int sorted_count;
155 /* The size of elfNN_ia64_dyn_sym_info array. */
156 unsigned int size;
157 /* The array of elfNN_ia64_dyn_sym_info. */
158 struct elfNN_ia64_dyn_sym_info *info;
159 };
160
161 struct elfNN_ia64_link_hash_table
162 {
163 /* The main hash table. */
164 struct elf_link_hash_table root;
165
166 asection *got_sec; /* the linkage table section (or NULL) */
167 asection *rel_got_sec; /* dynamic relocation section for same */
168 asection *fptr_sec; /* function descriptor table (or NULL) */
169 asection *rel_fptr_sec; /* dynamic relocation section for same */
170 asection *plt_sec; /* the primary plt section (or NULL) */
171 asection *pltoff_sec; /* private descriptors for plt (or NULL) */
172 asection *rel_pltoff_sec; /* dynamic relocation section for same */
173
174 bfd_size_type minplt_entries; /* number of minplt entries */
175 unsigned reltext : 1; /* are there relocs against readonly sections? */
176 unsigned self_dtpmod_done : 1;/* has self DTPMOD entry been finished? */
177 bfd_vma self_dtpmod_offset; /* .got offset to self DTPMOD entry */
178
179 htab_t loc_hash_table;
180 void *loc_hash_memory;
181 };
182
183 struct elfNN_ia64_allocate_data
184 {
185 struct bfd_link_info *info;
186 bfd_size_type ofs;
187 bfd_boolean only_got;
188 };
189
190 #define elfNN_ia64_hash_table(p) \
191 ((struct elfNN_ia64_link_hash_table *) ((p)->hash))
192
193 static struct elfNN_ia64_dyn_sym_info * get_dyn_sym_info
194 (struct elfNN_ia64_link_hash_table *ia64_info,
195 struct elf_link_hash_entry *h,
196 bfd *abfd, const Elf_Internal_Rela *rel, bfd_boolean create);
197 static bfd_boolean elfNN_ia64_dynamic_symbol_p
198 (struct elf_link_hash_entry *h, struct bfd_link_info *info, int);
199 static bfd_reloc_status_type elfNN_ia64_install_value
200 (bfd_byte *hit_addr, bfd_vma val, unsigned int r_type);
201 static bfd_boolean elfNN_ia64_choose_gp
202 (bfd *abfd, struct bfd_link_info *info);
203 static void elfNN_ia64_relax_ldxmov
204 (bfd_byte *contents, bfd_vma off);
205 static void elfNN_ia64_dyn_sym_traverse
206 (struct elfNN_ia64_link_hash_table *ia64_info,
207 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
208 PTR info);
209 static bfd_boolean allocate_global_data_got
210 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
211 static bfd_boolean allocate_global_fptr_got
212 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
213 static bfd_boolean allocate_local_got
214 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
215 static bfd_boolean elfNN_ia64_hpux_vec
216 (const bfd_target *vec);
217 static bfd_boolean allocate_dynrel_entries
218 (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data);
219 static asection *get_pltoff
220 (bfd *abfd, struct bfd_link_info *info,
221 struct elfNN_ia64_link_hash_table *ia64_info);
222 \f
223 /* ia64-specific relocation. */
224
225 /* Perform a relocation. Not much to do here as all the hard work is
226 done in elfNN_ia64_final_link_relocate. */
227 static bfd_reloc_status_type
228 elfNN_ia64_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
229 asymbol *sym ATTRIBUTE_UNUSED,
230 PTR data ATTRIBUTE_UNUSED, asection *input_section,
231 bfd *output_bfd, char **error_message)
232 {
233 if (output_bfd)
234 {
235 reloc->address += input_section->output_offset;
236 return bfd_reloc_ok;
237 }
238
239 if (input_section->flags & SEC_DEBUGGING)
240 return bfd_reloc_continue;
241
242 *error_message = "Unsupported call to elfNN_ia64_reloc";
243 return bfd_reloc_notsupported;
244 }
245
246 #define IA64_HOWTO(TYPE, NAME, SIZE, PCREL, IN) \
247 HOWTO (TYPE, 0, SIZE, 0, PCREL, 0, complain_overflow_signed, \
248 elfNN_ia64_reloc, NAME, FALSE, 0, -1, IN)
249
250 /* This table has to be sorted according to increasing number of the
251 TYPE field. */
252 static reloc_howto_type ia64_howto_table[] =
253 {
254 IA64_HOWTO (R_IA64_NONE, "NONE", 0, FALSE, TRUE),
255
256 IA64_HOWTO (R_IA64_IMM14, "IMM14", 0, FALSE, TRUE),
257 IA64_HOWTO (R_IA64_IMM22, "IMM22", 0, FALSE, TRUE),
258 IA64_HOWTO (R_IA64_IMM64, "IMM64", 0, FALSE, TRUE),
259 IA64_HOWTO (R_IA64_DIR32MSB, "DIR32MSB", 2, FALSE, TRUE),
260 IA64_HOWTO (R_IA64_DIR32LSB, "DIR32LSB", 2, FALSE, TRUE),
261 IA64_HOWTO (R_IA64_DIR64MSB, "DIR64MSB", 4, FALSE, TRUE),
262 IA64_HOWTO (R_IA64_DIR64LSB, "DIR64LSB", 4, FALSE, TRUE),
263
264 IA64_HOWTO (R_IA64_GPREL22, "GPREL22", 0, FALSE, TRUE),
265 IA64_HOWTO (R_IA64_GPREL64I, "GPREL64I", 0, FALSE, TRUE),
266 IA64_HOWTO (R_IA64_GPREL32MSB, "GPREL32MSB", 2, FALSE, TRUE),
267 IA64_HOWTO (R_IA64_GPREL32LSB, "GPREL32LSB", 2, FALSE, TRUE),
268 IA64_HOWTO (R_IA64_GPREL64MSB, "GPREL64MSB", 4, FALSE, TRUE),
269 IA64_HOWTO (R_IA64_GPREL64LSB, "GPREL64LSB", 4, FALSE, TRUE),
270
271 IA64_HOWTO (R_IA64_LTOFF22, "LTOFF22", 0, FALSE, TRUE),
272 IA64_HOWTO (R_IA64_LTOFF64I, "LTOFF64I", 0, FALSE, TRUE),
273
274 IA64_HOWTO (R_IA64_PLTOFF22, "PLTOFF22", 0, FALSE, TRUE),
275 IA64_HOWTO (R_IA64_PLTOFF64I, "PLTOFF64I", 0, FALSE, TRUE),
276 IA64_HOWTO (R_IA64_PLTOFF64MSB, "PLTOFF64MSB", 4, FALSE, TRUE),
277 IA64_HOWTO (R_IA64_PLTOFF64LSB, "PLTOFF64LSB", 4, FALSE, TRUE),
278
279 IA64_HOWTO (R_IA64_FPTR64I, "FPTR64I", 0, FALSE, TRUE),
280 IA64_HOWTO (R_IA64_FPTR32MSB, "FPTR32MSB", 2, FALSE, TRUE),
281 IA64_HOWTO (R_IA64_FPTR32LSB, "FPTR32LSB", 2, FALSE, TRUE),
282 IA64_HOWTO (R_IA64_FPTR64MSB, "FPTR64MSB", 4, FALSE, TRUE),
283 IA64_HOWTO (R_IA64_FPTR64LSB, "FPTR64LSB", 4, FALSE, TRUE),
284
285 IA64_HOWTO (R_IA64_PCREL60B, "PCREL60B", 0, TRUE, TRUE),
286 IA64_HOWTO (R_IA64_PCREL21B, "PCREL21B", 0, TRUE, TRUE),
287 IA64_HOWTO (R_IA64_PCREL21M, "PCREL21M", 0, TRUE, TRUE),
288 IA64_HOWTO (R_IA64_PCREL21F, "PCREL21F", 0, TRUE, TRUE),
289 IA64_HOWTO (R_IA64_PCREL32MSB, "PCREL32MSB", 2, TRUE, TRUE),
290 IA64_HOWTO (R_IA64_PCREL32LSB, "PCREL32LSB", 2, TRUE, TRUE),
291 IA64_HOWTO (R_IA64_PCREL64MSB, "PCREL64MSB", 4, TRUE, TRUE),
292 IA64_HOWTO (R_IA64_PCREL64LSB, "PCREL64LSB", 4, TRUE, TRUE),
293
294 IA64_HOWTO (R_IA64_LTOFF_FPTR22, "LTOFF_FPTR22", 0, FALSE, TRUE),
295 IA64_HOWTO (R_IA64_LTOFF_FPTR64I, "LTOFF_FPTR64I", 0, FALSE, TRUE),
296 IA64_HOWTO (R_IA64_LTOFF_FPTR32MSB, "LTOFF_FPTR32MSB", 2, FALSE, TRUE),
297 IA64_HOWTO (R_IA64_LTOFF_FPTR32LSB, "LTOFF_FPTR32LSB", 2, FALSE, TRUE),
298 IA64_HOWTO (R_IA64_LTOFF_FPTR64MSB, "LTOFF_FPTR64MSB", 4, FALSE, TRUE),
299 IA64_HOWTO (R_IA64_LTOFF_FPTR64LSB, "LTOFF_FPTR64LSB", 4, FALSE, TRUE),
300
301 IA64_HOWTO (R_IA64_SEGREL32MSB, "SEGREL32MSB", 2, FALSE, TRUE),
302 IA64_HOWTO (R_IA64_SEGREL32LSB, "SEGREL32LSB", 2, FALSE, TRUE),
303 IA64_HOWTO (R_IA64_SEGREL64MSB, "SEGREL64MSB", 4, FALSE, TRUE),
304 IA64_HOWTO (R_IA64_SEGREL64LSB, "SEGREL64LSB", 4, FALSE, TRUE),
305
306 IA64_HOWTO (R_IA64_SECREL32MSB, "SECREL32MSB", 2, FALSE, TRUE),
307 IA64_HOWTO (R_IA64_SECREL32LSB, "SECREL32LSB", 2, FALSE, TRUE),
308 IA64_HOWTO (R_IA64_SECREL64MSB, "SECREL64MSB", 4, FALSE, TRUE),
309 IA64_HOWTO (R_IA64_SECREL64LSB, "SECREL64LSB", 4, FALSE, TRUE),
310
311 IA64_HOWTO (R_IA64_REL32MSB, "REL32MSB", 2, FALSE, TRUE),
312 IA64_HOWTO (R_IA64_REL32LSB, "REL32LSB", 2, FALSE, TRUE),
313 IA64_HOWTO (R_IA64_REL64MSB, "REL64MSB", 4, FALSE, TRUE),
314 IA64_HOWTO (R_IA64_REL64LSB, "REL64LSB", 4, FALSE, TRUE),
315
316 IA64_HOWTO (R_IA64_LTV32MSB, "LTV32MSB", 2, FALSE, TRUE),
317 IA64_HOWTO (R_IA64_LTV32LSB, "LTV32LSB", 2, FALSE, TRUE),
318 IA64_HOWTO (R_IA64_LTV64MSB, "LTV64MSB", 4, FALSE, TRUE),
319 IA64_HOWTO (R_IA64_LTV64LSB, "LTV64LSB", 4, FALSE, TRUE),
320
321 IA64_HOWTO (R_IA64_PCREL21BI, "PCREL21BI", 0, TRUE, TRUE),
322 IA64_HOWTO (R_IA64_PCREL22, "PCREL22", 0, TRUE, TRUE),
323 IA64_HOWTO (R_IA64_PCREL64I, "PCREL64I", 0, TRUE, TRUE),
324
325 IA64_HOWTO (R_IA64_IPLTMSB, "IPLTMSB", 4, FALSE, TRUE),
326 IA64_HOWTO (R_IA64_IPLTLSB, "IPLTLSB", 4, FALSE, TRUE),
327 IA64_HOWTO (R_IA64_COPY, "COPY", 4, FALSE, TRUE),
328 IA64_HOWTO (R_IA64_LTOFF22X, "LTOFF22X", 0, FALSE, TRUE),
329 IA64_HOWTO (R_IA64_LDXMOV, "LDXMOV", 0, FALSE, TRUE),
330
331 IA64_HOWTO (R_IA64_TPREL14, "TPREL14", 0, FALSE, FALSE),
332 IA64_HOWTO (R_IA64_TPREL22, "TPREL22", 0, FALSE, FALSE),
333 IA64_HOWTO (R_IA64_TPREL64I, "TPREL64I", 0, FALSE, FALSE),
334 IA64_HOWTO (R_IA64_TPREL64MSB, "TPREL64MSB", 4, FALSE, FALSE),
335 IA64_HOWTO (R_IA64_TPREL64LSB, "TPREL64LSB", 4, FALSE, FALSE),
336 IA64_HOWTO (R_IA64_LTOFF_TPREL22, "LTOFF_TPREL22", 0, FALSE, FALSE),
337
338 IA64_HOWTO (R_IA64_DTPMOD64MSB, "DTPMOD64MSB", 4, FALSE, FALSE),
339 IA64_HOWTO (R_IA64_DTPMOD64LSB, "DTPMOD64LSB", 4, FALSE, FALSE),
340 IA64_HOWTO (R_IA64_LTOFF_DTPMOD22, "LTOFF_DTPMOD22", 0, FALSE, FALSE),
341
342 IA64_HOWTO (R_IA64_DTPREL14, "DTPREL14", 0, FALSE, FALSE),
343 IA64_HOWTO (R_IA64_DTPREL22, "DTPREL22", 0, FALSE, FALSE),
344 IA64_HOWTO (R_IA64_DTPREL64I, "DTPREL64I", 0, FALSE, FALSE),
345 IA64_HOWTO (R_IA64_DTPREL32MSB, "DTPREL32MSB", 2, FALSE, FALSE),
346 IA64_HOWTO (R_IA64_DTPREL32LSB, "DTPREL32LSB", 2, FALSE, FALSE),
347 IA64_HOWTO (R_IA64_DTPREL64MSB, "DTPREL64MSB", 4, FALSE, FALSE),
348 IA64_HOWTO (R_IA64_DTPREL64LSB, "DTPREL64LSB", 4, FALSE, FALSE),
349 IA64_HOWTO (R_IA64_LTOFF_DTPREL22, "LTOFF_DTPREL22", 0, FALSE, FALSE),
350 };
351
352 static unsigned char elf_code_to_howto_index[R_IA64_MAX_RELOC_CODE + 1];
353
354 /* Given a BFD reloc type, return the matching HOWTO structure. */
355
356 static reloc_howto_type *
357 lookup_howto (unsigned int rtype)
358 {
359 static int inited = 0;
360 int i;
361
362 if (!inited)
363 {
364 inited = 1;
365
366 memset (elf_code_to_howto_index, 0xff, sizeof (elf_code_to_howto_index));
367 for (i = 0; i < NELEMS (ia64_howto_table); ++i)
368 elf_code_to_howto_index[ia64_howto_table[i].type] = i;
369 }
370
371 if (rtype > R_IA64_MAX_RELOC_CODE)
372 return 0;
373 i = elf_code_to_howto_index[rtype];
374 if (i >= NELEMS (ia64_howto_table))
375 return 0;
376 return ia64_howto_table + i;
377 }
378
379 static reloc_howto_type*
380 elfNN_ia64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
381 bfd_reloc_code_real_type bfd_code)
382 {
383 unsigned int rtype;
384
385 switch (bfd_code)
386 {
387 case BFD_RELOC_NONE: rtype = R_IA64_NONE; break;
388
389 case BFD_RELOC_IA64_IMM14: rtype = R_IA64_IMM14; break;
390 case BFD_RELOC_IA64_IMM22: rtype = R_IA64_IMM22; break;
391 case BFD_RELOC_IA64_IMM64: rtype = R_IA64_IMM64; break;
392
393 case BFD_RELOC_IA64_DIR32MSB: rtype = R_IA64_DIR32MSB; break;
394 case BFD_RELOC_IA64_DIR32LSB: rtype = R_IA64_DIR32LSB; break;
395 case BFD_RELOC_IA64_DIR64MSB: rtype = R_IA64_DIR64MSB; break;
396 case BFD_RELOC_IA64_DIR64LSB: rtype = R_IA64_DIR64LSB; break;
397
398 case BFD_RELOC_IA64_GPREL22: rtype = R_IA64_GPREL22; break;
399 case BFD_RELOC_IA64_GPREL64I: rtype = R_IA64_GPREL64I; break;
400 case BFD_RELOC_IA64_GPREL32MSB: rtype = R_IA64_GPREL32MSB; break;
401 case BFD_RELOC_IA64_GPREL32LSB: rtype = R_IA64_GPREL32LSB; break;
402 case BFD_RELOC_IA64_GPREL64MSB: rtype = R_IA64_GPREL64MSB; break;
403 case BFD_RELOC_IA64_GPREL64LSB: rtype = R_IA64_GPREL64LSB; break;
404
405 case BFD_RELOC_IA64_LTOFF22: rtype = R_IA64_LTOFF22; break;
406 case BFD_RELOC_IA64_LTOFF64I: rtype = R_IA64_LTOFF64I; break;
407
408 case BFD_RELOC_IA64_PLTOFF22: rtype = R_IA64_PLTOFF22; break;
409 case BFD_RELOC_IA64_PLTOFF64I: rtype = R_IA64_PLTOFF64I; break;
410 case BFD_RELOC_IA64_PLTOFF64MSB: rtype = R_IA64_PLTOFF64MSB; break;
411 case BFD_RELOC_IA64_PLTOFF64LSB: rtype = R_IA64_PLTOFF64LSB; break;
412 case BFD_RELOC_IA64_FPTR64I: rtype = R_IA64_FPTR64I; break;
413 case BFD_RELOC_IA64_FPTR32MSB: rtype = R_IA64_FPTR32MSB; break;
414 case BFD_RELOC_IA64_FPTR32LSB: rtype = R_IA64_FPTR32LSB; break;
415 case BFD_RELOC_IA64_FPTR64MSB: rtype = R_IA64_FPTR64MSB; break;
416 case BFD_RELOC_IA64_FPTR64LSB: rtype = R_IA64_FPTR64LSB; break;
417
418 case BFD_RELOC_IA64_PCREL21B: rtype = R_IA64_PCREL21B; break;
419 case BFD_RELOC_IA64_PCREL21BI: rtype = R_IA64_PCREL21BI; break;
420 case BFD_RELOC_IA64_PCREL21M: rtype = R_IA64_PCREL21M; break;
421 case BFD_RELOC_IA64_PCREL21F: rtype = R_IA64_PCREL21F; break;
422 case BFD_RELOC_IA64_PCREL22: rtype = R_IA64_PCREL22; break;
423 case BFD_RELOC_IA64_PCREL60B: rtype = R_IA64_PCREL60B; break;
424 case BFD_RELOC_IA64_PCREL64I: rtype = R_IA64_PCREL64I; break;
425 case BFD_RELOC_IA64_PCREL32MSB: rtype = R_IA64_PCREL32MSB; break;
426 case BFD_RELOC_IA64_PCREL32LSB: rtype = R_IA64_PCREL32LSB; break;
427 case BFD_RELOC_IA64_PCREL64MSB: rtype = R_IA64_PCREL64MSB; break;
428 case BFD_RELOC_IA64_PCREL64LSB: rtype = R_IA64_PCREL64LSB; break;
429
430 case BFD_RELOC_IA64_LTOFF_FPTR22: rtype = R_IA64_LTOFF_FPTR22; break;
431 case BFD_RELOC_IA64_LTOFF_FPTR64I: rtype = R_IA64_LTOFF_FPTR64I; break;
432 case BFD_RELOC_IA64_LTOFF_FPTR32MSB: rtype = R_IA64_LTOFF_FPTR32MSB; break;
433 case BFD_RELOC_IA64_LTOFF_FPTR32LSB: rtype = R_IA64_LTOFF_FPTR32LSB; break;
434 case BFD_RELOC_IA64_LTOFF_FPTR64MSB: rtype = R_IA64_LTOFF_FPTR64MSB; break;
435 case BFD_RELOC_IA64_LTOFF_FPTR64LSB: rtype = R_IA64_LTOFF_FPTR64LSB; break;
436
437 case BFD_RELOC_IA64_SEGREL32MSB: rtype = R_IA64_SEGREL32MSB; break;
438 case BFD_RELOC_IA64_SEGREL32LSB: rtype = R_IA64_SEGREL32LSB; break;
439 case BFD_RELOC_IA64_SEGREL64MSB: rtype = R_IA64_SEGREL64MSB; break;
440 case BFD_RELOC_IA64_SEGREL64LSB: rtype = R_IA64_SEGREL64LSB; break;
441
442 case BFD_RELOC_IA64_SECREL32MSB: rtype = R_IA64_SECREL32MSB; break;
443 case BFD_RELOC_IA64_SECREL32LSB: rtype = R_IA64_SECREL32LSB; break;
444 case BFD_RELOC_IA64_SECREL64MSB: rtype = R_IA64_SECREL64MSB; break;
445 case BFD_RELOC_IA64_SECREL64LSB: rtype = R_IA64_SECREL64LSB; break;
446
447 case BFD_RELOC_IA64_REL32MSB: rtype = R_IA64_REL32MSB; break;
448 case BFD_RELOC_IA64_REL32LSB: rtype = R_IA64_REL32LSB; break;
449 case BFD_RELOC_IA64_REL64MSB: rtype = R_IA64_REL64MSB; break;
450 case BFD_RELOC_IA64_REL64LSB: rtype = R_IA64_REL64LSB; break;
451
452 case BFD_RELOC_IA64_LTV32MSB: rtype = R_IA64_LTV32MSB; break;
453 case BFD_RELOC_IA64_LTV32LSB: rtype = R_IA64_LTV32LSB; break;
454 case BFD_RELOC_IA64_LTV64MSB: rtype = R_IA64_LTV64MSB; break;
455 case BFD_RELOC_IA64_LTV64LSB: rtype = R_IA64_LTV64LSB; break;
456
457 case BFD_RELOC_IA64_IPLTMSB: rtype = R_IA64_IPLTMSB; break;
458 case BFD_RELOC_IA64_IPLTLSB: rtype = R_IA64_IPLTLSB; break;
459 case BFD_RELOC_IA64_COPY: rtype = R_IA64_COPY; break;
460 case BFD_RELOC_IA64_LTOFF22X: rtype = R_IA64_LTOFF22X; break;
461 case BFD_RELOC_IA64_LDXMOV: rtype = R_IA64_LDXMOV; break;
462
463 case BFD_RELOC_IA64_TPREL14: rtype = R_IA64_TPREL14; break;
464 case BFD_RELOC_IA64_TPREL22: rtype = R_IA64_TPREL22; break;
465 case BFD_RELOC_IA64_TPREL64I: rtype = R_IA64_TPREL64I; break;
466 case BFD_RELOC_IA64_TPREL64MSB: rtype = R_IA64_TPREL64MSB; break;
467 case BFD_RELOC_IA64_TPREL64LSB: rtype = R_IA64_TPREL64LSB; break;
468 case BFD_RELOC_IA64_LTOFF_TPREL22: rtype = R_IA64_LTOFF_TPREL22; break;
469
470 case BFD_RELOC_IA64_DTPMOD64MSB: rtype = R_IA64_DTPMOD64MSB; break;
471 case BFD_RELOC_IA64_DTPMOD64LSB: rtype = R_IA64_DTPMOD64LSB; break;
472 case BFD_RELOC_IA64_LTOFF_DTPMOD22: rtype = R_IA64_LTOFF_DTPMOD22; break;
473
474 case BFD_RELOC_IA64_DTPREL14: rtype = R_IA64_DTPREL14; break;
475 case BFD_RELOC_IA64_DTPREL22: rtype = R_IA64_DTPREL22; break;
476 case BFD_RELOC_IA64_DTPREL64I: rtype = R_IA64_DTPREL64I; break;
477 case BFD_RELOC_IA64_DTPREL32MSB: rtype = R_IA64_DTPREL32MSB; break;
478 case BFD_RELOC_IA64_DTPREL32LSB: rtype = R_IA64_DTPREL32LSB; break;
479 case BFD_RELOC_IA64_DTPREL64MSB: rtype = R_IA64_DTPREL64MSB; break;
480 case BFD_RELOC_IA64_DTPREL64LSB: rtype = R_IA64_DTPREL64LSB; break;
481 case BFD_RELOC_IA64_LTOFF_DTPREL22: rtype = R_IA64_LTOFF_DTPREL22; break;
482
483 default: return 0;
484 }
485 return lookup_howto (rtype);
486 }
487
488 static reloc_howto_type *
489 elfNN_ia64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
490 const char *r_name)
491 {
492 unsigned int i;
493
494 for (i = 0;
495 i < sizeof (ia64_howto_table) / sizeof (ia64_howto_table[0]);
496 i++)
497 if (ia64_howto_table[i].name != NULL
498 && strcasecmp (ia64_howto_table[i].name, r_name) == 0)
499 return &ia64_howto_table[i];
500
501 return NULL;
502 }
503
504 /* Given a ELF reloc, return the matching HOWTO structure. */
505
506 static void
507 elfNN_ia64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
508 arelent *bfd_reloc,
509 Elf_Internal_Rela *elf_reloc)
510 {
511 bfd_reloc->howto
512 = lookup_howto ((unsigned int) ELFNN_R_TYPE (elf_reloc->r_info));
513 }
514 \f
515 #define PLT_HEADER_SIZE (3 * 16)
516 #define PLT_MIN_ENTRY_SIZE (1 * 16)
517 #define PLT_FULL_ENTRY_SIZE (2 * 16)
518 #define PLT_RESERVED_WORDS 3
519
520 static const bfd_byte plt_header[PLT_HEADER_SIZE] =
521 {
522 0x0b, 0x10, 0x00, 0x1c, 0x00, 0x21, /* [MMI] mov r2=r14;; */
523 0xe0, 0x00, 0x08, 0x00, 0x48, 0x00, /* addl r14=0,r2 */
524 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
525 0x0b, 0x80, 0x20, 0x1c, 0x18, 0x14, /* [MMI] ld8 r16=[r14],8;; */
526 0x10, 0x41, 0x38, 0x30, 0x28, 0x00, /* ld8 r17=[r14],8 */
527 0x00, 0x00, 0x04, 0x00, /* nop.i 0x0;; */
528 0x11, 0x08, 0x00, 0x1c, 0x18, 0x10, /* [MIB] ld8 r1=[r14] */
529 0x60, 0x88, 0x04, 0x80, 0x03, 0x00, /* mov b6=r17 */
530 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
531 };
532
533 static const bfd_byte plt_min_entry[PLT_MIN_ENTRY_SIZE] =
534 {
535 0x11, 0x78, 0x00, 0x00, 0x00, 0x24, /* [MIB] mov r15=0 */
536 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, /* nop.i 0x0 */
537 0x00, 0x00, 0x00, 0x40 /* br.few 0 <PLT0>;; */
538 };
539
540 static const bfd_byte plt_full_entry[PLT_FULL_ENTRY_SIZE] =
541 {
542 0x0b, 0x78, 0x00, 0x02, 0x00, 0x24, /* [MMI] addl r15=0,r1;; */
543 0x00, 0x41, 0x3c, 0x70, 0x29, 0xc0, /* ld8.acq r16=[r15],8*/
544 0x01, 0x08, 0x00, 0x84, /* mov r14=r1;; */
545 0x11, 0x08, 0x00, 0x1e, 0x18, 0x10, /* [MIB] ld8 r1=[r15] */
546 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
547 0x60, 0x00, 0x80, 0x00 /* br.few b6;; */
548 };
549
550 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
551
552 static const bfd_byte oor_brl[16] =
553 {
554 0x05, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
555 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* brl.sptk.few tgt;; */
556 0x00, 0x00, 0x00, 0xc0
557 };
558
559 static const bfd_byte oor_ip[48] =
560 {
561 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MLX] nop.m 0 */
562 0x00, 0x00, 0x00, 0x00, 0x00, 0xe0, /* movl r15=0 */
563 0x01, 0x00, 0x00, 0x60,
564 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MII] nop.m 0 */
565 0x00, 0x01, 0x00, 0x60, 0x00, 0x00, /* mov r16=ip;; */
566 0xf2, 0x80, 0x00, 0x80, /* add r16=r15,r16;; */
567 0x11, 0x00, 0x00, 0x00, 0x01, 0x00, /* [MIB] nop.m 0 */
568 0x60, 0x80, 0x04, 0x80, 0x03, 0x00, /* mov b6=r16 */
569 0x60, 0x00, 0x80, 0x00 /* br b6;; */
570 };
571
572 static size_t oor_branch_size = sizeof (oor_brl);
573
574 void
575 bfd_elfNN_ia64_after_parse (int itanium)
576 {
577 oor_branch_size = itanium ? sizeof (oor_ip) : sizeof (oor_brl);
578 }
579
580 #define BTYPE_SHIFT 6
581 #define Y_SHIFT 26
582 #define X6_SHIFT 27
583 #define X4_SHIFT 27
584 #define X3_SHIFT 33
585 #define X2_SHIFT 31
586 #define X_SHIFT 33
587 #define OPCODE_SHIFT 37
588
589 #define OPCODE_BITS (0xfLL << OPCODE_SHIFT)
590 #define X6_BITS (0x3fLL << X6_SHIFT)
591 #define X4_BITS (0xfLL << X4_SHIFT)
592 #define X3_BITS (0x7LL << X3_SHIFT)
593 #define X2_BITS (0x3LL << X2_SHIFT)
594 #define X_BITS (0x1LL << X_SHIFT)
595 #define Y_BITS (0x1LL << Y_SHIFT)
596 #define BTYPE_BITS (0x7LL << BTYPE_SHIFT)
597 #define PREDICATE_BITS (0x3fLL)
598
599 #define IS_NOP_B(i) \
600 (((i) & (OPCODE_BITS | X6_BITS)) == (2LL << OPCODE_SHIFT))
601 #define IS_NOP_F(i) \
602 (((i) & (OPCODE_BITS | X_BITS | X6_BITS | Y_BITS)) \
603 == (0x1LL << X6_SHIFT))
604 #define IS_NOP_I(i) \
605 (((i) & (OPCODE_BITS | X3_BITS | X6_BITS | Y_BITS)) \
606 == (0x1LL << X6_SHIFT))
607 #define IS_NOP_M(i) \
608 (((i) & (OPCODE_BITS | X3_BITS | X2_BITS | X4_BITS | Y_BITS)) \
609 == (0x1LL << X4_SHIFT))
610 #define IS_BR_COND(i) \
611 (((i) & (OPCODE_BITS | BTYPE_BITS)) == (0x4LL << OPCODE_SHIFT))
612 #define IS_BR_CALL(i) \
613 (((i) & OPCODE_BITS) == (0x5LL << OPCODE_SHIFT))
614
615 static bfd_boolean
616 elfNN_ia64_relax_br (bfd_byte *contents, bfd_vma off)
617 {
618 unsigned int template, mlx;
619 bfd_vma t0, t1, s0, s1, s2, br_code;
620 long br_slot;
621 bfd_byte *hit_addr;
622
623 hit_addr = (bfd_byte *) (contents + off);
624 br_slot = (long) hit_addr & 0x3;
625 hit_addr -= br_slot;
626 t0 = bfd_getl64 (hit_addr + 0);
627 t1 = bfd_getl64 (hit_addr + 8);
628
629 /* Check if we can turn br into brl. A label is always at the start
630 of the bundle. Even if there are predicates on NOPs, we still
631 perform this optimization. */
632 template = t0 & 0x1e;
633 s0 = (t0 >> 5) & 0x1ffffffffffLL;
634 s1 = ((t0 >> 46) | (t1 << 18)) & 0x1ffffffffffLL;
635 s2 = (t1 >> 23) & 0x1ffffffffffLL;
636 switch (br_slot)
637 {
638 case 0:
639 /* Check if slot 1 and slot 2 are NOPs. Possible template is
640 BBB. We only need to check nop.b. */
641 if (!(IS_NOP_B (s1) && IS_NOP_B (s2)))
642 return FALSE;
643 br_code = s0;
644 break;
645 case 1:
646 /* Check if slot 2 is NOP. Possible templates are MBB and BBB.
647 For BBB, slot 0 also has to be nop.b. */
648 if (!((template == 0x12 /* MBB */
649 && IS_NOP_B (s2))
650 || (template == 0x16 /* BBB */
651 && IS_NOP_B (s0)
652 && IS_NOP_B (s2))))
653 return FALSE;
654 br_code = s1;
655 break;
656 case 2:
657 /* Check if slot 1 is NOP. Possible templates are MIB, MBB, BBB,
658 MMB and MFB. For BBB, slot 0 also has to be nop.b. */
659 if (!((template == 0x10 /* MIB */
660 && IS_NOP_I (s1))
661 || (template == 0x12 /* MBB */
662 && IS_NOP_B (s1))
663 || (template == 0x16 /* BBB */
664 && IS_NOP_B (s0)
665 && IS_NOP_B (s1))
666 || (template == 0x18 /* MMB */
667 && IS_NOP_M (s1))
668 || (template == 0x1c /* MFB */
669 && IS_NOP_F (s1))))
670 return FALSE;
671 br_code = s2;
672 break;
673 default:
674 /* It should never happen. */
675 abort ();
676 }
677
678 /* We can turn br.cond/br.call into brl.cond/brl.call. */
679 if (!(IS_BR_COND (br_code) || IS_BR_CALL (br_code)))
680 return FALSE;
681
682 /* Turn br into brl by setting bit 40. */
683 br_code |= 0x1LL << 40;
684
685 /* Turn the old bundle into a MLX bundle with the same stop-bit
686 variety. */
687 if (t0 & 0x1)
688 mlx = 0x5;
689 else
690 mlx = 0x4;
691
692 if (template == 0x16)
693 {
694 /* For BBB, we need to put nop.m in slot 0. We keep the original
695 predicate only if slot 0 isn't br. */
696 if (br_slot == 0)
697 t0 = 0LL;
698 else
699 t0 &= PREDICATE_BITS << 5;
700 t0 |= 0x1LL << (X4_SHIFT + 5);
701 }
702 else
703 {
704 /* Keep the original instruction in slot 0. */
705 t0 &= 0x1ffffffffffLL << 5;
706 }
707
708 t0 |= mlx;
709
710 /* Put brl in slot 1. */
711 t1 = br_code << 23;
712
713 bfd_putl64 (t0, hit_addr);
714 bfd_putl64 (t1, hit_addr + 8);
715 return TRUE;
716 }
717
718 static void
719 elfNN_ia64_relax_brl (bfd_byte *contents, bfd_vma off)
720 {
721 int template;
722 bfd_byte *hit_addr;
723 bfd_vma t0, t1, i0, i1, i2;
724
725 hit_addr = (bfd_byte *) (contents + off);
726 hit_addr -= (long) hit_addr & 0x3;
727 t0 = bfd_getl64 (hit_addr);
728 t1 = bfd_getl64 (hit_addr + 8);
729
730 /* Keep the instruction in slot 0. */
731 i0 = (t0 >> 5) & 0x1ffffffffffLL;
732 /* Use nop.b for slot 1. */
733 i1 = 0x4000000000LL;
734 /* For slot 2, turn brl into br by masking out bit 40. */
735 i2 = (t1 >> 23) & 0x0ffffffffffLL;
736
737 /* Turn a MLX bundle into a MBB bundle with the same stop-bit
738 variety. */
739 if (t0 & 0x1)
740 template = 0x13;
741 else
742 template = 0x12;
743 t0 = (i1 << 46) | (i0 << 5) | template;
744 t1 = (i2 << 23) | (i1 >> 18);
745
746 bfd_putl64 (t0, hit_addr);
747 bfd_putl64 (t1, hit_addr + 8);
748 }
749
750 /* Rename some of the generic section flags to better document how they
751 are used here. */
752 #define skip_relax_pass_0 need_finalize_relax
753 #define skip_relax_pass_1 has_gp_reloc
754
755 \f
756 /* These functions do relaxation for IA-64 ELF. */
757
758 static bfd_boolean
759 elfNN_ia64_relax_section (bfd *abfd, asection *sec,
760 struct bfd_link_info *link_info,
761 bfd_boolean *again)
762 {
763 struct one_fixup
764 {
765 struct one_fixup *next;
766 asection *tsec;
767 bfd_vma toff;
768 bfd_vma trampoff;
769 };
770
771 Elf_Internal_Shdr *symtab_hdr;
772 Elf_Internal_Rela *internal_relocs;
773 Elf_Internal_Rela *irel, *irelend;
774 bfd_byte *contents;
775 Elf_Internal_Sym *isymbuf = NULL;
776 struct elfNN_ia64_link_hash_table *ia64_info;
777 struct one_fixup *fixups = NULL;
778 bfd_boolean changed_contents = FALSE;
779 bfd_boolean changed_relocs = FALSE;
780 bfd_boolean changed_got = FALSE;
781 bfd_boolean skip_relax_pass_0 = TRUE;
782 bfd_boolean skip_relax_pass_1 = TRUE;
783 bfd_vma gp = 0;
784
785 /* Assume we're not going to change any sizes, and we'll only need
786 one pass. */
787 *again = FALSE;
788
789 /* Don't even try to relax for non-ELF outputs. */
790 if (!is_elf_hash_table (link_info->hash))
791 return FALSE;
792
793 /* Nothing to do if there are no relocations or there is no need for
794 the current pass. */
795 if ((sec->flags & SEC_RELOC) == 0
796 || sec->reloc_count == 0
797 || (link_info->relax_pass == 0 && sec->skip_relax_pass_0)
798 || (link_info->relax_pass == 1 && sec->skip_relax_pass_1))
799 return TRUE;
800
801 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
802
803 /* Load the relocations for this section. */
804 internal_relocs = (_bfd_elf_link_read_relocs
805 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
806 link_info->keep_memory));
807 if (internal_relocs == NULL)
808 return FALSE;
809
810 ia64_info = elfNN_ia64_hash_table (link_info);
811 irelend = internal_relocs + sec->reloc_count;
812
813 /* Get the section contents. */
814 if (elf_section_data (sec)->this_hdr.contents != NULL)
815 contents = elf_section_data (sec)->this_hdr.contents;
816 else
817 {
818 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
819 goto error_return;
820 }
821
822 for (irel = internal_relocs; irel < irelend; irel++)
823 {
824 unsigned long r_type = ELFNN_R_TYPE (irel->r_info);
825 bfd_vma symaddr, reladdr, trampoff, toff, roff;
826 asection *tsec;
827 struct one_fixup *f;
828 bfd_size_type amt;
829 bfd_boolean is_branch;
830 struct elfNN_ia64_dyn_sym_info *dyn_i;
831 char symtype;
832
833 switch (r_type)
834 {
835 case R_IA64_PCREL21B:
836 case R_IA64_PCREL21BI:
837 case R_IA64_PCREL21M:
838 case R_IA64_PCREL21F:
839 /* In pass 1, all br relaxations are done. We can skip it. */
840 if (link_info->relax_pass == 1)
841 continue;
842 skip_relax_pass_0 = FALSE;
843 is_branch = TRUE;
844 break;
845
846 case R_IA64_PCREL60B:
847 /* We can't optimize brl to br in pass 0 since br relaxations
848 will increase the code size. Defer it to pass 1. */
849 if (link_info->relax_pass == 0)
850 {
851 skip_relax_pass_1 = FALSE;
852 continue;
853 }
854 is_branch = TRUE;
855 break;
856
857 case R_IA64_LTOFF22X:
858 case R_IA64_LDXMOV:
859 /* We can't relax ldx/mov in pass 0 since br relaxations will
860 increase the code size. Defer it to pass 1. */
861 if (link_info->relax_pass == 0)
862 {
863 skip_relax_pass_1 = FALSE;
864 continue;
865 }
866 is_branch = FALSE;
867 break;
868
869 default:
870 continue;
871 }
872
873 /* Get the value of the symbol referred to by the reloc. */
874 if (ELFNN_R_SYM (irel->r_info) < symtab_hdr->sh_info)
875 {
876 /* A local symbol. */
877 Elf_Internal_Sym *isym;
878
879 /* Read this BFD's local symbols. */
880 if (isymbuf == NULL)
881 {
882 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
883 if (isymbuf == NULL)
884 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
885 symtab_hdr->sh_info, 0,
886 NULL, NULL, NULL);
887 if (isymbuf == 0)
888 goto error_return;
889 }
890
891 isym = isymbuf + ELFNN_R_SYM (irel->r_info);
892 if (isym->st_shndx == SHN_UNDEF)
893 continue; /* We can't do anything with undefined symbols. */
894 else if (isym->st_shndx == SHN_ABS)
895 tsec = bfd_abs_section_ptr;
896 else if (isym->st_shndx == SHN_COMMON)
897 tsec = bfd_com_section_ptr;
898 else if (isym->st_shndx == SHN_IA_64_ANSI_COMMON)
899 tsec = bfd_com_section_ptr;
900 else
901 tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
902
903 toff = isym->st_value;
904 dyn_i = get_dyn_sym_info (ia64_info, NULL, abfd, irel, FALSE);
905 symtype = ELF_ST_TYPE (isym->st_info);
906 }
907 else
908 {
909 unsigned long indx;
910 struct elf_link_hash_entry *h;
911
912 indx = ELFNN_R_SYM (irel->r_info) - symtab_hdr->sh_info;
913 h = elf_sym_hashes (abfd)[indx];
914 BFD_ASSERT (h != NULL);
915
916 while (h->root.type == bfd_link_hash_indirect
917 || h->root.type == bfd_link_hash_warning)
918 h = (struct elf_link_hash_entry *) h->root.u.i.link;
919
920 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, irel, FALSE);
921
922 /* For branches to dynamic symbols, we're interested instead
923 in a branch to the PLT entry. */
924 if (is_branch && dyn_i && dyn_i->want_plt2)
925 {
926 /* Internal branches shouldn't be sent to the PLT.
927 Leave this for now and we'll give an error later. */
928 if (r_type != R_IA64_PCREL21B)
929 continue;
930
931 tsec = ia64_info->plt_sec;
932 toff = dyn_i->plt2_offset;
933 BFD_ASSERT (irel->r_addend == 0);
934 }
935
936 /* Can't do anything else with dynamic symbols. */
937 else if (elfNN_ia64_dynamic_symbol_p (h, link_info, r_type))
938 continue;
939
940 else
941 {
942 /* We can't do anything with undefined symbols. */
943 if (h->root.type == bfd_link_hash_undefined
944 || h->root.type == bfd_link_hash_undefweak)
945 continue;
946
947 tsec = h->root.u.def.section;
948 toff = h->root.u.def.value;
949 }
950
951 symtype = h->type;
952 }
953
954 if (tsec->sec_info_type == ELF_INFO_TYPE_MERGE)
955 {
956 /* At this stage in linking, no SEC_MERGE symbol has been
957 adjusted, so all references to such symbols need to be
958 passed through _bfd_merged_section_offset. (Later, in
959 relocate_section, all SEC_MERGE symbols *except* for
960 section symbols have been adjusted.)
961
962 gas may reduce relocations against symbols in SEC_MERGE
963 sections to a relocation against the section symbol when
964 the original addend was zero. When the reloc is against
965 a section symbol we should include the addend in the
966 offset passed to _bfd_merged_section_offset, since the
967 location of interest is the original symbol. On the
968 other hand, an access to "sym+addend" where "sym" is not
969 a section symbol should not include the addend; Such an
970 access is presumed to be an offset from "sym"; The
971 location of interest is just "sym". */
972 if (symtype == STT_SECTION)
973 toff += irel->r_addend;
974
975 toff = _bfd_merged_section_offset (abfd, &tsec,
976 elf_section_data (tsec)->sec_info,
977 toff);
978
979 if (symtype != STT_SECTION)
980 toff += irel->r_addend;
981 }
982 else
983 toff += irel->r_addend;
984
985 symaddr = tsec->output_section->vma + tsec->output_offset + toff;
986
987 roff = irel->r_offset;
988
989 if (is_branch)
990 {
991 bfd_signed_vma offset;
992
993 reladdr = (sec->output_section->vma
994 + sec->output_offset
995 + roff) & (bfd_vma) -4;
996
997 /* If the branch is in range, no need to do anything. */
998 if ((bfd_signed_vma) (symaddr - reladdr) >= -0x1000000
999 && (bfd_signed_vma) (symaddr - reladdr) <= 0x0FFFFF0)
1000 {
1001 /* If the 60-bit branch is in 21-bit range, optimize it. */
1002 if (r_type == R_IA64_PCREL60B)
1003 {
1004 elfNN_ia64_relax_brl (contents, roff);
1005
1006 irel->r_info
1007 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1008 R_IA64_PCREL21B);
1009
1010 /* If the original relocation offset points to slot
1011 1, change it to slot 2. */
1012 if ((irel->r_offset & 3) == 1)
1013 irel->r_offset += 1;
1014 }
1015
1016 continue;
1017 }
1018 else if (r_type == R_IA64_PCREL60B)
1019 continue;
1020 else if (elfNN_ia64_relax_br (contents, roff))
1021 {
1022 irel->r_info
1023 = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1024 R_IA64_PCREL60B);
1025
1026 /* Make the relocation offset point to slot 1. */
1027 irel->r_offset = (irel->r_offset & ~((bfd_vma) 0x3)) + 1;
1028 continue;
1029 }
1030
1031 /* We can't put a trampoline in a .init/.fini section. Issue
1032 an error. */
1033 if (strcmp (sec->output_section->name, ".init") == 0
1034 || strcmp (sec->output_section->name, ".fini") == 0)
1035 {
1036 (*_bfd_error_handler)
1037 (_("%B: Can't relax br at 0x%lx in section `%A'. Please use brl or indirect branch."),
1038 sec->owner, sec, (unsigned long) roff);
1039 bfd_set_error (bfd_error_bad_value);
1040 goto error_return;
1041 }
1042
1043 /* If the branch and target are in the same section, you've
1044 got one honking big section and we can't help you unless
1045 you are branching backwards. You'll get an error message
1046 later. */
1047 if (tsec == sec && toff > roff)
1048 continue;
1049
1050 /* Look for an existing fixup to this address. */
1051 for (f = fixups; f ; f = f->next)
1052 if (f->tsec == tsec && f->toff == toff)
1053 break;
1054
1055 if (f == NULL)
1056 {
1057 /* Two alternatives: If it's a branch to a PLT entry, we can
1058 make a copy of the FULL_PLT entry. Otherwise, we'll have
1059 to use a `brl' insn to get where we're going. */
1060
1061 size_t size;
1062
1063 if (tsec == ia64_info->plt_sec)
1064 size = sizeof (plt_full_entry);
1065 else
1066 size = oor_branch_size;
1067
1068 /* Resize the current section to make room for the new branch. */
1069 trampoff = (sec->size + 15) & (bfd_vma) -16;
1070
1071 /* If trampoline is out of range, there is nothing we
1072 can do. */
1073 offset = trampoff - (roff & (bfd_vma) -4);
1074 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1075 continue;
1076
1077 amt = trampoff + size;
1078 contents = (bfd_byte *) bfd_realloc (contents, amt);
1079 if (contents == NULL)
1080 goto error_return;
1081 sec->size = amt;
1082
1083 if (tsec == ia64_info->plt_sec)
1084 {
1085 memcpy (contents + trampoff, plt_full_entry, size);
1086
1087 /* Hijack the old relocation for use as the PLTOFF reloc. */
1088 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1089 R_IA64_PLTOFF22);
1090 irel->r_offset = trampoff;
1091 }
1092 else
1093 {
1094 if (size == sizeof (oor_ip))
1095 {
1096 memcpy (contents + trampoff, oor_ip, size);
1097 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1098 R_IA64_PCREL64I);
1099 irel->r_addend -= 16;
1100 irel->r_offset = trampoff + 2;
1101 }
1102 else
1103 {
1104 memcpy (contents + trampoff, oor_brl, size);
1105 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1106 R_IA64_PCREL60B);
1107 irel->r_offset = trampoff + 2;
1108 }
1109
1110 }
1111
1112 /* Record the fixup so we don't do it again this section. */
1113 f = (struct one_fixup *)
1114 bfd_malloc ((bfd_size_type) sizeof (*f));
1115 f->next = fixups;
1116 f->tsec = tsec;
1117 f->toff = toff;
1118 f->trampoff = trampoff;
1119 fixups = f;
1120 }
1121 else
1122 {
1123 /* If trampoline is out of range, there is nothing we
1124 can do. */
1125 offset = f->trampoff - (roff & (bfd_vma) -4);
1126 if (offset < -0x1000000 || offset > 0x0FFFFF0)
1127 continue;
1128
1129 /* Nop out the reloc, since we're finalizing things here. */
1130 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1131 }
1132
1133 /* Fix up the existing branch to hit the trampoline. */
1134 if (elfNN_ia64_install_value (contents + roff, offset, r_type)
1135 != bfd_reloc_ok)
1136 goto error_return;
1137
1138 changed_contents = TRUE;
1139 changed_relocs = TRUE;
1140 }
1141 else
1142 {
1143 /* Fetch the gp. */
1144 if (gp == 0)
1145 {
1146 bfd *obfd = sec->output_section->owner;
1147 gp = _bfd_get_gp_value (obfd);
1148 if (gp == 0)
1149 {
1150 if (!elfNN_ia64_choose_gp (obfd, link_info))
1151 goto error_return;
1152 gp = _bfd_get_gp_value (obfd);
1153 }
1154 }
1155
1156 /* If the data is out of range, do nothing. */
1157 if ((bfd_signed_vma) (symaddr - gp) >= 0x200000
1158 ||(bfd_signed_vma) (symaddr - gp) < -0x200000)
1159 continue;
1160
1161 if (r_type == R_IA64_LTOFF22X)
1162 {
1163 irel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (irel->r_info),
1164 R_IA64_GPREL22);
1165 changed_relocs = TRUE;
1166 if (dyn_i->want_gotx)
1167 {
1168 dyn_i->want_gotx = 0;
1169 changed_got |= !dyn_i->want_got;
1170 }
1171 }
1172 else
1173 {
1174 elfNN_ia64_relax_ldxmov (contents, roff);
1175 irel->r_info = ELFNN_R_INFO (0, R_IA64_NONE);
1176 changed_contents = TRUE;
1177 changed_relocs = TRUE;
1178 }
1179 }
1180 }
1181
1182 /* ??? If we created fixups, this may push the code segment large
1183 enough that the data segment moves, which will change the GP.
1184 Reset the GP so that we re-calculate next round. We need to
1185 do this at the _beginning_ of the next round; now will not do. */
1186
1187 /* Clean up and go home. */
1188 while (fixups)
1189 {
1190 struct one_fixup *f = fixups;
1191 fixups = fixups->next;
1192 free (f);
1193 }
1194
1195 if (isymbuf != NULL
1196 && symtab_hdr->contents != (unsigned char *) isymbuf)
1197 {
1198 if (! link_info->keep_memory)
1199 free (isymbuf);
1200 else
1201 {
1202 /* Cache the symbols for elf_link_input_bfd. */
1203 symtab_hdr->contents = (unsigned char *) isymbuf;
1204 }
1205 }
1206
1207 if (contents != NULL
1208 && elf_section_data (sec)->this_hdr.contents != contents)
1209 {
1210 if (!changed_contents && !link_info->keep_memory)
1211 free (contents);
1212 else
1213 {
1214 /* Cache the section contents for elf_link_input_bfd. */
1215 elf_section_data (sec)->this_hdr.contents = contents;
1216 }
1217 }
1218
1219 if (elf_section_data (sec)->relocs != internal_relocs)
1220 {
1221 if (!changed_relocs)
1222 free (internal_relocs);
1223 else
1224 elf_section_data (sec)->relocs = internal_relocs;
1225 }
1226
1227 if (changed_got)
1228 {
1229 struct elfNN_ia64_allocate_data data;
1230 data.info = link_info;
1231 data.ofs = 0;
1232 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
1233
1234 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
1235 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
1236 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
1237 ia64_info->got_sec->size = data.ofs;
1238
1239 if (ia64_info->root.dynamic_sections_created
1240 && ia64_info->rel_got_sec != NULL)
1241 {
1242 /* Resize .rela.got. */
1243 ia64_info->rel_got_sec->size = 0;
1244 if (link_info->shared
1245 && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
1246 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
1247 data.only_got = TRUE;
1248 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries,
1249 &data);
1250 }
1251 }
1252
1253 if (link_info->relax_pass == 0)
1254 {
1255 /* Pass 0 is only needed to relax br. */
1256 sec->skip_relax_pass_0 = skip_relax_pass_0;
1257 sec->skip_relax_pass_1 = skip_relax_pass_1;
1258 }
1259
1260 *again = changed_contents || changed_relocs;
1261 return TRUE;
1262
1263 error_return:
1264 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
1265 free (isymbuf);
1266 if (contents != NULL
1267 && elf_section_data (sec)->this_hdr.contents != contents)
1268 free (contents);
1269 if (internal_relocs != NULL
1270 && elf_section_data (sec)->relocs != internal_relocs)
1271 free (internal_relocs);
1272 return FALSE;
1273 }
1274 #undef skip_relax_pass_0
1275 #undef skip_relax_pass_1
1276
1277 static void
1278 elfNN_ia64_relax_ldxmov (bfd_byte *contents, bfd_vma off)
1279 {
1280 int shift, r1, r3;
1281 bfd_vma dword, insn;
1282
1283 switch ((int)off & 0x3)
1284 {
1285 case 0: shift = 5; break;
1286 case 1: shift = 14; off += 3; break;
1287 case 2: shift = 23; off += 6; break;
1288 default:
1289 abort ();
1290 }
1291
1292 dword = bfd_getl64 (contents + off);
1293 insn = (dword >> shift) & 0x1ffffffffffLL;
1294
1295 r1 = (insn >> 6) & 127;
1296 r3 = (insn >> 20) & 127;
1297 if (r1 == r3)
1298 insn = 0x8000000; /* nop */
1299 else
1300 insn = (insn & 0x7f01fff) | 0x10800000000LL; /* (qp) mov r1 = r3 */
1301
1302 dword &= ~(0x1ffffffffffLL << shift);
1303 dword |= (insn << shift);
1304 bfd_putl64 (dword, contents + off);
1305 }
1306 \f
1307 /* Return TRUE if NAME is an unwind table section name. */
1308
1309 static inline bfd_boolean
1310 is_unwind_section_name (bfd *abfd, const char *name)
1311 {
1312 if (elfNN_ia64_hpux_vec (abfd->xvec)
1313 && !strcmp (name, ELF_STRING_ia64_unwind_hdr))
1314 return FALSE;
1315
1316 return ((CONST_STRNEQ (name, ELF_STRING_ia64_unwind)
1317 && ! CONST_STRNEQ (name, ELF_STRING_ia64_unwind_info))
1318 || CONST_STRNEQ (name, ELF_STRING_ia64_unwind_once));
1319 }
1320
1321 /* Handle an IA-64 specific section when reading an object file. This
1322 is called when bfd_section_from_shdr finds a section with an unknown
1323 type. */
1324
1325 static bfd_boolean
1326 elfNN_ia64_section_from_shdr (bfd *abfd,
1327 Elf_Internal_Shdr *hdr,
1328 const char *name,
1329 int shindex)
1330 {
1331 asection *newsect;
1332
1333 /* There ought to be a place to keep ELF backend specific flags, but
1334 at the moment there isn't one. We just keep track of the
1335 sections by their name, instead. Fortunately, the ABI gives
1336 suggested names for all the MIPS specific sections, so we will
1337 probably get away with this. */
1338 switch (hdr->sh_type)
1339 {
1340 case SHT_IA_64_UNWIND:
1341 case SHT_IA_64_HP_OPT_ANOT:
1342 break;
1343
1344 case SHT_IA_64_EXT:
1345 if (strcmp (name, ELF_STRING_ia64_archext) != 0)
1346 return FALSE;
1347 break;
1348
1349 default:
1350 return FALSE;
1351 }
1352
1353 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1354 return FALSE;
1355 newsect = hdr->bfd_section;
1356
1357 return TRUE;
1358 }
1359
1360 /* Convert IA-64 specific section flags to bfd internal section flags. */
1361
1362 /* ??? There is no bfd internal flag equivalent to the SHF_IA_64_NORECOV
1363 flag. */
1364
1365 static bfd_boolean
1366 elfNN_ia64_section_flags (flagword *flags,
1367 const Elf_Internal_Shdr *hdr)
1368 {
1369 if (hdr->sh_flags & SHF_IA_64_SHORT)
1370 *flags |= SEC_SMALL_DATA;
1371
1372 return TRUE;
1373 }
1374
1375 /* Set the correct type for an IA-64 ELF section. We do this by the
1376 section name, which is a hack, but ought to work. */
1377
1378 static bfd_boolean
1379 elfNN_ia64_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr,
1380 asection *sec)
1381 {
1382 register const char *name;
1383
1384 name = bfd_get_section_name (abfd, sec);
1385
1386 if (is_unwind_section_name (abfd, name))
1387 {
1388 /* We don't have the sections numbered at this point, so sh_info
1389 is set later, in elfNN_ia64_final_write_processing. */
1390 hdr->sh_type = SHT_IA_64_UNWIND;
1391 hdr->sh_flags |= SHF_LINK_ORDER;
1392 }
1393 else if (strcmp (name, ELF_STRING_ia64_archext) == 0)
1394 hdr->sh_type = SHT_IA_64_EXT;
1395 else if (strcmp (name, ".HP.opt_annot") == 0)
1396 hdr->sh_type = SHT_IA_64_HP_OPT_ANOT;
1397 else if (strcmp (name, ".reloc") == 0)
1398 /* This is an ugly, but unfortunately necessary hack that is
1399 needed when producing EFI binaries on IA-64. It tells
1400 elf.c:elf_fake_sections() not to consider ".reloc" as a section
1401 containing ELF relocation info. We need this hack in order to
1402 be able to generate ELF binaries that can be translated into
1403 EFI applications (which are essentially COFF objects). Those
1404 files contain a COFF ".reloc" section inside an ELFNN object,
1405 which would normally cause BFD to segfault because it would
1406 attempt to interpret this section as containing relocation
1407 entries for section "oc". With this hack enabled, ".reloc"
1408 will be treated as a normal data section, which will avoid the
1409 segfault. However, you won't be able to create an ELFNN binary
1410 with a section named "oc" that needs relocations, but that's
1411 the kind of ugly side-effects you get when detecting section
1412 types based on their names... In practice, this limitation is
1413 unlikely to bite. */
1414 hdr->sh_type = SHT_PROGBITS;
1415
1416 if (sec->flags & SEC_SMALL_DATA)
1417 hdr->sh_flags |= SHF_IA_64_SHORT;
1418
1419 /* Some HP linkers look for the SHF_IA_64_HP_TLS flag instead of SHF_TLS. */
1420
1421 if (elfNN_ia64_hpux_vec (abfd->xvec) && (sec->flags & SHF_TLS))
1422 hdr->sh_flags |= SHF_IA_64_HP_TLS;
1423
1424 return TRUE;
1425 }
1426
1427 /* The final processing done just before writing out an IA-64 ELF
1428 object file. */
1429
1430 static void
1431 elfNN_ia64_final_write_processing (bfd *abfd,
1432 bfd_boolean linker ATTRIBUTE_UNUSED)
1433 {
1434 Elf_Internal_Shdr *hdr;
1435 asection *s;
1436
1437 for (s = abfd->sections; s; s = s->next)
1438 {
1439 hdr = &elf_section_data (s)->this_hdr;
1440 switch (hdr->sh_type)
1441 {
1442 case SHT_IA_64_UNWIND:
1443 /* The IA-64 processor-specific ABI requires setting sh_link
1444 to the unwind section, whereas HP-UX requires sh_info to
1445 do so. For maximum compatibility, we'll set both for
1446 now... */
1447 hdr->sh_info = hdr->sh_link;
1448 break;
1449 }
1450 }
1451
1452 if (! elf_flags_init (abfd))
1453 {
1454 unsigned long flags = 0;
1455
1456 if (abfd->xvec->byteorder == BFD_ENDIAN_BIG)
1457 flags |= EF_IA_64_BE;
1458 if (bfd_get_mach (abfd) == bfd_mach_ia64_elf64)
1459 flags |= EF_IA_64_ABI64;
1460
1461 elf_elfheader(abfd)->e_flags = flags;
1462 elf_flags_init (abfd) = TRUE;
1463 }
1464 }
1465
1466 /* Hook called by the linker routine which adds symbols from an object
1467 file. We use it to put .comm items in .sbss, and not .bss. */
1468
1469 static bfd_boolean
1470 elfNN_ia64_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
1471 Elf_Internal_Sym *sym,
1472 const char **namep, flagword *flagsp,
1473 asection **secp, bfd_vma *valp)
1474 {
1475 if (sym->st_shndx == SHN_COMMON
1476 && !info->relocatable
1477 && sym->st_size <= elf_gp_size (abfd))
1478 {
1479 /* Common symbols less than or equal to -G nn bytes are
1480 automatically put into .sbss. */
1481
1482 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1483
1484 if (scomm == NULL)
1485 {
1486 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1487 (SEC_ALLOC
1488 | SEC_IS_COMMON
1489 | SEC_LINKER_CREATED));
1490 if (scomm == NULL)
1491 return FALSE;
1492 }
1493
1494 *secp = scomm;
1495 *valp = sym->st_size;
1496 }
1497
1498 return TRUE;
1499 }
1500
1501 /* Return the number of additional phdrs we will need. */
1502
1503 static int
1504 elfNN_ia64_additional_program_headers (bfd *abfd,
1505 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1506 {
1507 asection *s;
1508 int ret = 0;
1509
1510 /* See if we need a PT_IA_64_ARCHEXT segment. */
1511 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1512 if (s && (s->flags & SEC_LOAD))
1513 ++ret;
1514
1515 /* Count how many PT_IA_64_UNWIND segments we need. */
1516 for (s = abfd->sections; s; s = s->next)
1517 if (is_unwind_section_name (abfd, s->name) && (s->flags & SEC_LOAD))
1518 ++ret;
1519
1520 return ret;
1521 }
1522
1523 static bfd_boolean
1524 elfNN_ia64_modify_segment_map (bfd *abfd,
1525 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1526 {
1527 struct elf_segment_map *m, **pm;
1528 Elf_Internal_Shdr *hdr;
1529 asection *s;
1530
1531 /* If we need a PT_IA_64_ARCHEXT segment, it must come before
1532 all PT_LOAD segments. */
1533 s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_archext);
1534 if (s && (s->flags & SEC_LOAD))
1535 {
1536 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1537 if (m->p_type == PT_IA_64_ARCHEXT)
1538 break;
1539 if (m == NULL)
1540 {
1541 m = ((struct elf_segment_map *)
1542 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1543 if (m == NULL)
1544 return FALSE;
1545
1546 m->p_type = PT_IA_64_ARCHEXT;
1547 m->count = 1;
1548 m->sections[0] = s;
1549
1550 /* We want to put it after the PHDR and INTERP segments. */
1551 pm = &elf_tdata (abfd)->segment_map;
1552 while (*pm != NULL
1553 && ((*pm)->p_type == PT_PHDR
1554 || (*pm)->p_type == PT_INTERP))
1555 pm = &(*pm)->next;
1556
1557 m->next = *pm;
1558 *pm = m;
1559 }
1560 }
1561
1562 /* Install PT_IA_64_UNWIND segments, if needed. */
1563 for (s = abfd->sections; s; s = s->next)
1564 {
1565 hdr = &elf_section_data (s)->this_hdr;
1566 if (hdr->sh_type != SHT_IA_64_UNWIND)
1567 continue;
1568
1569 if (s && (s->flags & SEC_LOAD))
1570 {
1571 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
1572 if (m->p_type == PT_IA_64_UNWIND)
1573 {
1574 int i;
1575
1576 /* Look through all sections in the unwind segment
1577 for a match since there may be multiple sections
1578 to a segment. */
1579 for (i = m->count - 1; i >= 0; --i)
1580 if (m->sections[i] == s)
1581 break;
1582
1583 if (i >= 0)
1584 break;
1585 }
1586
1587 if (m == NULL)
1588 {
1589 m = ((struct elf_segment_map *)
1590 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
1591 if (m == NULL)
1592 return FALSE;
1593
1594 m->p_type = PT_IA_64_UNWIND;
1595 m->count = 1;
1596 m->sections[0] = s;
1597 m->next = NULL;
1598
1599 /* We want to put it last. */
1600 pm = &elf_tdata (abfd)->segment_map;
1601 while (*pm != NULL)
1602 pm = &(*pm)->next;
1603 *pm = m;
1604 }
1605 }
1606 }
1607
1608 return TRUE;
1609 }
1610
1611 /* Turn on PF_IA_64_NORECOV if needed. This involves traversing all of
1612 the input sections for each output section in the segment and testing
1613 for SHF_IA_64_NORECOV on each. */
1614
1615 static bfd_boolean
1616 elfNN_ia64_modify_program_headers (bfd *abfd,
1617 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1618 {
1619 struct elf_obj_tdata *tdata = elf_tdata (abfd);
1620 struct elf_segment_map *m;
1621 Elf_Internal_Phdr *p;
1622
1623 for (p = tdata->phdr, m = tdata->segment_map; m != NULL; m = m->next, p++)
1624 if (m->p_type == PT_LOAD)
1625 {
1626 int i;
1627 for (i = m->count - 1; i >= 0; --i)
1628 {
1629 struct bfd_link_order *order = m->sections[i]->map_head.link_order;
1630
1631 while (order != NULL)
1632 {
1633 if (order->type == bfd_indirect_link_order)
1634 {
1635 asection *is = order->u.indirect.section;
1636 bfd_vma flags = elf_section_data(is)->this_hdr.sh_flags;
1637 if (flags & SHF_IA_64_NORECOV)
1638 {
1639 p->p_flags |= PF_IA_64_NORECOV;
1640 goto found;
1641 }
1642 }
1643 order = order->next;
1644 }
1645 }
1646 found:;
1647 }
1648
1649 return TRUE;
1650 }
1651
1652 /* According to the Tahoe assembler spec, all labels starting with a
1653 '.' are local. */
1654
1655 static bfd_boolean
1656 elfNN_ia64_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1657 const char *name)
1658 {
1659 return name[0] == '.';
1660 }
1661
1662 /* Should we do dynamic things to this symbol? */
1663
1664 static bfd_boolean
1665 elfNN_ia64_dynamic_symbol_p (struct elf_link_hash_entry *h,
1666 struct bfd_link_info *info, int r_type)
1667 {
1668 bfd_boolean ignore_protected
1669 = ((r_type & 0xf8) == 0x40 /* FPTR relocs */
1670 || (r_type & 0xf8) == 0x50); /* LTOFF_FPTR relocs */
1671
1672 return _bfd_elf_dynamic_symbol_p (h, info, ignore_protected);
1673 }
1674 \f
1675 static struct bfd_hash_entry*
1676 elfNN_ia64_new_elf_hash_entry (struct bfd_hash_entry *entry,
1677 struct bfd_hash_table *table,
1678 const char *string)
1679 {
1680 struct elfNN_ia64_link_hash_entry *ret;
1681 ret = (struct elfNN_ia64_link_hash_entry *) entry;
1682
1683 /* Allocate the structure if it has not already been allocated by a
1684 subclass. */
1685 if (!ret)
1686 ret = bfd_hash_allocate (table, sizeof (*ret));
1687
1688 if (!ret)
1689 return 0;
1690
1691 /* Call the allocation method of the superclass. */
1692 ret = ((struct elfNN_ia64_link_hash_entry *)
1693 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1694 table, string));
1695
1696 ret->info = NULL;
1697 ret->count = 0;
1698 ret->sorted_count = 0;
1699 ret->size = 0;
1700 return (struct bfd_hash_entry *) ret;
1701 }
1702
1703 static void
1704 elfNN_ia64_hash_copy_indirect (struct bfd_link_info *info,
1705 struct elf_link_hash_entry *xdir,
1706 struct elf_link_hash_entry *xind)
1707 {
1708 struct elfNN_ia64_link_hash_entry *dir, *ind;
1709
1710 dir = (struct elfNN_ia64_link_hash_entry *) xdir;
1711 ind = (struct elfNN_ia64_link_hash_entry *) xind;
1712
1713 /* Copy down any references that we may have already seen to the
1714 symbol which just became indirect. */
1715
1716 dir->root.ref_dynamic |= ind->root.ref_dynamic;
1717 dir->root.ref_regular |= ind->root.ref_regular;
1718 dir->root.ref_regular_nonweak |= ind->root.ref_regular_nonweak;
1719 dir->root.needs_plt |= ind->root.needs_plt;
1720
1721 if (ind->root.root.type != bfd_link_hash_indirect)
1722 return;
1723
1724 /* Copy over the got and plt data. This would have been done
1725 by check_relocs. */
1726
1727 if (ind->info != NULL)
1728 {
1729 struct elfNN_ia64_dyn_sym_info *dyn_i;
1730 unsigned int count;
1731
1732 if (dir->info)
1733 free (dir->info);
1734
1735 dir->info = ind->info;
1736 dir->count = ind->count;
1737 dir->sorted_count = ind->sorted_count;
1738 dir->size = ind->size;
1739
1740 ind->info = NULL;
1741 ind->count = 0;
1742 ind->sorted_count = 0;
1743 ind->size = 0;
1744
1745 /* Fix up the dyn_sym_info pointers to the global symbol. */
1746 for (count = dir->count, dyn_i = dir->info;
1747 count != 0;
1748 count--, dyn_i++)
1749 dyn_i->h = &dir->root;
1750 }
1751
1752 /* Copy over the dynindx. */
1753
1754 if (ind->root.dynindx != -1)
1755 {
1756 if (dir->root.dynindx != -1)
1757 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1758 dir->root.dynstr_index);
1759 dir->root.dynindx = ind->root.dynindx;
1760 dir->root.dynstr_index = ind->root.dynstr_index;
1761 ind->root.dynindx = -1;
1762 ind->root.dynstr_index = 0;
1763 }
1764 }
1765
1766 static void
1767 elfNN_ia64_hash_hide_symbol (struct bfd_link_info *info,
1768 struct elf_link_hash_entry *xh,
1769 bfd_boolean force_local)
1770 {
1771 struct elfNN_ia64_link_hash_entry *h;
1772 struct elfNN_ia64_dyn_sym_info *dyn_i;
1773 unsigned int count;
1774
1775 h = (struct elfNN_ia64_link_hash_entry *)xh;
1776
1777 _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local);
1778
1779 for (count = h->count, dyn_i = h->info;
1780 count != 0;
1781 count--, dyn_i++)
1782 {
1783 dyn_i->want_plt2 = 0;
1784 dyn_i->want_plt = 0;
1785 }
1786 }
1787
1788 /* Compute a hash of a local hash entry. */
1789
1790 static hashval_t
1791 elfNN_ia64_local_htab_hash (const void *ptr)
1792 {
1793 struct elfNN_ia64_local_hash_entry *entry
1794 = (struct elfNN_ia64_local_hash_entry *) ptr;
1795
1796 return (((entry->id & 0xff) << 24) | ((entry->id & 0xff00) << 8))
1797 ^ entry->r_sym ^ (entry->id >> 16);
1798 }
1799
1800 /* Compare local hash entries. */
1801
1802 static int
1803 elfNN_ia64_local_htab_eq (const void *ptr1, const void *ptr2)
1804 {
1805 struct elfNN_ia64_local_hash_entry *entry1
1806 = (struct elfNN_ia64_local_hash_entry *) ptr1;
1807 struct elfNN_ia64_local_hash_entry *entry2
1808 = (struct elfNN_ia64_local_hash_entry *) ptr2;
1809
1810 return entry1->id == entry2->id && entry1->r_sym == entry2->r_sym;
1811 }
1812
1813 /* Create the derived linker hash table. The IA-64 ELF port uses this
1814 derived hash table to keep information specific to the IA-64 ElF
1815 linker (without using static variables). */
1816
1817 static struct bfd_link_hash_table*
1818 elfNN_ia64_hash_table_create (bfd *abfd)
1819 {
1820 struct elfNN_ia64_link_hash_table *ret;
1821
1822 ret = bfd_zmalloc ((bfd_size_type) sizeof (*ret));
1823 if (!ret)
1824 return 0;
1825
1826 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
1827 elfNN_ia64_new_elf_hash_entry,
1828 sizeof (struct elfNN_ia64_link_hash_entry)))
1829 {
1830 free (ret);
1831 return 0;
1832 }
1833
1834 ret->loc_hash_table = htab_try_create (1024, elfNN_ia64_local_htab_hash,
1835 elfNN_ia64_local_htab_eq, NULL);
1836 ret->loc_hash_memory = objalloc_create ();
1837 if (!ret->loc_hash_table || !ret->loc_hash_memory)
1838 {
1839 free (ret);
1840 return 0;
1841 }
1842
1843 return &ret->root.root;
1844 }
1845
1846 /* Free the global elfNN_ia64_dyn_sym_info array. */
1847
1848 static bfd_boolean
1849 elfNN_ia64_global_dyn_info_free (void **xentry,
1850 PTR unused ATTRIBUTE_UNUSED)
1851 {
1852 struct elfNN_ia64_link_hash_entry *entry
1853 = (struct elfNN_ia64_link_hash_entry *) xentry;
1854
1855 if (entry->root.root.type == bfd_link_hash_warning)
1856 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1857
1858 if (entry->info)
1859 {
1860 free (entry->info);
1861 entry->info = NULL;
1862 entry->count = 0;
1863 entry->sorted_count = 0;
1864 entry->size = 0;
1865 }
1866
1867 return TRUE;
1868 }
1869
1870 /* Free the local elfNN_ia64_dyn_sym_info array. */
1871
1872 static bfd_boolean
1873 elfNN_ia64_local_dyn_info_free (void **slot,
1874 PTR unused ATTRIBUTE_UNUSED)
1875 {
1876 struct elfNN_ia64_local_hash_entry *entry
1877 = (struct elfNN_ia64_local_hash_entry *) *slot;
1878
1879 if (entry->info)
1880 {
1881 free (entry->info);
1882 entry->info = NULL;
1883 entry->count = 0;
1884 entry->sorted_count = 0;
1885 entry->size = 0;
1886 }
1887
1888 return TRUE;
1889 }
1890
1891 /* Destroy IA-64 linker hash table. */
1892
1893 static void
1894 elfNN_ia64_hash_table_free (struct bfd_link_hash_table *hash)
1895 {
1896 struct elfNN_ia64_link_hash_table *ia64_info
1897 = (struct elfNN_ia64_link_hash_table *) hash;
1898 if (ia64_info->loc_hash_table)
1899 {
1900 htab_traverse (ia64_info->loc_hash_table,
1901 elfNN_ia64_local_dyn_info_free, NULL);
1902 htab_delete (ia64_info->loc_hash_table);
1903 }
1904 if (ia64_info->loc_hash_memory)
1905 objalloc_free ((struct objalloc *) ia64_info->loc_hash_memory);
1906 elf_link_hash_traverse (&ia64_info->root,
1907 elfNN_ia64_global_dyn_info_free, NULL);
1908 _bfd_generic_link_hash_table_free (hash);
1909 }
1910
1911 /* Traverse both local and global hash tables. */
1912
1913 struct elfNN_ia64_dyn_sym_traverse_data
1914 {
1915 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR);
1916 PTR data;
1917 };
1918
1919 static bfd_boolean
1920 elfNN_ia64_global_dyn_sym_thunk (struct bfd_hash_entry *xentry,
1921 PTR xdata)
1922 {
1923 struct elfNN_ia64_link_hash_entry *entry
1924 = (struct elfNN_ia64_link_hash_entry *) xentry;
1925 struct elfNN_ia64_dyn_sym_traverse_data *data
1926 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1927 struct elfNN_ia64_dyn_sym_info *dyn_i;
1928 unsigned int count;
1929
1930 if (entry->root.root.type == bfd_link_hash_warning)
1931 entry = (struct elfNN_ia64_link_hash_entry *) entry->root.root.u.i.link;
1932
1933 for (count = entry->count, dyn_i = entry->info;
1934 count != 0;
1935 count--, dyn_i++)
1936 if (! (*data->func) (dyn_i, data->data))
1937 return FALSE;
1938 return TRUE;
1939 }
1940
1941 static bfd_boolean
1942 elfNN_ia64_local_dyn_sym_thunk (void **slot, PTR xdata)
1943 {
1944 struct elfNN_ia64_local_hash_entry *entry
1945 = (struct elfNN_ia64_local_hash_entry *) *slot;
1946 struct elfNN_ia64_dyn_sym_traverse_data *data
1947 = (struct elfNN_ia64_dyn_sym_traverse_data *) xdata;
1948 struct elfNN_ia64_dyn_sym_info *dyn_i;
1949 unsigned int count;
1950
1951 for (count = entry->count, dyn_i = entry->info;
1952 count != 0;
1953 count--, dyn_i++)
1954 if (! (*data->func) (dyn_i, data->data))
1955 return FALSE;
1956 return TRUE;
1957 }
1958
1959 static void
1960 elfNN_ia64_dyn_sym_traverse (struct elfNN_ia64_link_hash_table *ia64_info,
1961 bfd_boolean (*func) (struct elfNN_ia64_dyn_sym_info *, PTR),
1962 PTR data)
1963 {
1964 struct elfNN_ia64_dyn_sym_traverse_data xdata;
1965
1966 xdata.func = func;
1967 xdata.data = data;
1968
1969 elf_link_hash_traverse (&ia64_info->root,
1970 elfNN_ia64_global_dyn_sym_thunk, &xdata);
1971 htab_traverse (ia64_info->loc_hash_table,
1972 elfNN_ia64_local_dyn_sym_thunk, &xdata);
1973 }
1974 \f
1975 static bfd_boolean
1976 elfNN_ia64_create_dynamic_sections (bfd *abfd,
1977 struct bfd_link_info *info)
1978 {
1979 struct elfNN_ia64_link_hash_table *ia64_info;
1980 asection *s;
1981
1982 if (! _bfd_elf_create_dynamic_sections (abfd, info))
1983 return FALSE;
1984
1985 ia64_info = elfNN_ia64_hash_table (info);
1986
1987 ia64_info->plt_sec = bfd_get_section_by_name (abfd, ".plt");
1988 ia64_info->got_sec = bfd_get_section_by_name (abfd, ".got");
1989
1990 {
1991 flagword flags = bfd_get_section_flags (abfd, ia64_info->got_sec);
1992 bfd_set_section_flags (abfd, ia64_info->got_sec, SEC_SMALL_DATA | flags);
1993 /* The .got section is always aligned at 8 bytes. */
1994 bfd_set_section_alignment (abfd, ia64_info->got_sec, 3);
1995 }
1996
1997 if (!get_pltoff (abfd, info, ia64_info))
1998 return FALSE;
1999
2000 s = bfd_make_section_with_flags (abfd, ".rela.IA_64.pltoff",
2001 (SEC_ALLOC | SEC_LOAD
2002 | SEC_HAS_CONTENTS
2003 | SEC_IN_MEMORY
2004 | SEC_LINKER_CREATED
2005 | SEC_READONLY));
2006 if (s == NULL
2007 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2008 return FALSE;
2009 ia64_info->rel_pltoff_sec = s;
2010
2011 s = bfd_make_section_with_flags (abfd, ".rela.got",
2012 (SEC_ALLOC | SEC_LOAD
2013 | SEC_HAS_CONTENTS
2014 | SEC_IN_MEMORY
2015 | SEC_LINKER_CREATED
2016 | SEC_READONLY));
2017 if (s == NULL
2018 || !bfd_set_section_alignment (abfd, s, LOG_SECTION_ALIGN))
2019 return FALSE;
2020 ia64_info->rel_got_sec = s;
2021
2022 return TRUE;
2023 }
2024
2025 /* Find and/or create a hash entry for local symbol. */
2026 static struct elfNN_ia64_local_hash_entry *
2027 get_local_sym_hash (struct elfNN_ia64_link_hash_table *ia64_info,
2028 bfd *abfd, const Elf_Internal_Rela *rel,
2029 bfd_boolean create)
2030 {
2031 struct elfNN_ia64_local_hash_entry e, *ret;
2032 asection *sec = abfd->sections;
2033 hashval_t h = (((sec->id & 0xff) << 24) | ((sec->id & 0xff00) << 8))
2034 ^ ELFNN_R_SYM (rel->r_info) ^ (sec->id >> 16);
2035 void **slot;
2036
2037 e.id = sec->id;
2038 e.r_sym = ELFNN_R_SYM (rel->r_info);
2039 slot = htab_find_slot_with_hash (ia64_info->loc_hash_table, &e, h,
2040 create ? INSERT : NO_INSERT);
2041
2042 if (!slot)
2043 return NULL;
2044
2045 if (*slot)
2046 return (struct elfNN_ia64_local_hash_entry *) *slot;
2047
2048 ret = (struct elfNN_ia64_local_hash_entry *)
2049 objalloc_alloc ((struct objalloc *) ia64_info->loc_hash_memory,
2050 sizeof (struct elfNN_ia64_local_hash_entry));
2051 if (ret)
2052 {
2053 memset (ret, 0, sizeof (*ret));
2054 ret->id = sec->id;
2055 ret->r_sym = ELFNN_R_SYM (rel->r_info);
2056 *slot = ret;
2057 }
2058 return ret;
2059 }
2060
2061 /* Used to sort elfNN_ia64_dyn_sym_info array. */
2062
2063 static int
2064 addend_compare (const void *xp, const void *yp)
2065 {
2066 const struct elfNN_ia64_dyn_sym_info *x
2067 = (const struct elfNN_ia64_dyn_sym_info *) xp;
2068 const struct elfNN_ia64_dyn_sym_info *y
2069 = (const struct elfNN_ia64_dyn_sym_info *) yp;
2070
2071 return x->addend < y->addend ? -1 : x->addend > y->addend ? 1 : 0;
2072 }
2073
2074 /* Sort elfNN_ia64_dyn_sym_info array and remove duplicates. */
2075
2076 static unsigned int
2077 sort_dyn_sym_info (struct elfNN_ia64_dyn_sym_info *info,
2078 unsigned int count)
2079 {
2080 bfd_vma curr, prev, got_offset;
2081 unsigned int i, kept, dup, diff, dest, src, len;
2082
2083 qsort (info, count, sizeof (*info), addend_compare);
2084
2085 /* Find the first duplicate. */
2086 prev = info [0].addend;
2087 got_offset = info [0].got_offset;
2088 for (i = 1; i < count; i++)
2089 {
2090 curr = info [i].addend;
2091 if (curr == prev)
2092 {
2093 /* For duplicates, make sure that GOT_OFFSET is valid. */
2094 if (got_offset == (bfd_vma) -1)
2095 got_offset = info [i].got_offset;
2096 break;
2097 }
2098 got_offset = info [i].got_offset;
2099 prev = curr;
2100 }
2101
2102 /* We may move a block of elements to here. */
2103 dest = i++;
2104
2105 /* Remove duplicates. */
2106 if (i < count)
2107 {
2108 while (i < count)
2109 {
2110 /* For duplicates, make sure that the kept one has a valid
2111 got_offset. */
2112 kept = dest - 1;
2113 if (got_offset != (bfd_vma) -1)
2114 info [kept].got_offset = got_offset;
2115
2116 curr = info [i].addend;
2117 got_offset = info [i].got_offset;
2118
2119 /* Move a block of elements whose first one is different from
2120 the previous. */
2121 if (curr == prev)
2122 {
2123 for (src = i + 1; src < count; src++)
2124 {
2125 if (info [src].addend != curr)
2126 break;
2127 /* For duplicates, make sure that GOT_OFFSET is
2128 valid. */
2129 if (got_offset == (bfd_vma) -1)
2130 got_offset = info [src].got_offset;
2131 }
2132
2133 /* Make sure that the kept one has a valid got_offset. */
2134 if (got_offset != (bfd_vma) -1)
2135 info [kept].got_offset = got_offset;
2136 }
2137 else
2138 src = i;
2139
2140 if (src >= count)
2141 break;
2142
2143 /* Find the next duplicate. SRC will be kept. */
2144 prev = info [src].addend;
2145 got_offset = info [src].got_offset;
2146 for (dup = src + 1; dup < count; dup++)
2147 {
2148 curr = info [dup].addend;
2149 if (curr == prev)
2150 {
2151 /* Make sure that got_offset is valid. */
2152 if (got_offset == (bfd_vma) -1)
2153 got_offset = info [dup].got_offset;
2154
2155 /* For duplicates, make sure that the kept one has
2156 a valid got_offset. */
2157 if (got_offset != (bfd_vma) -1)
2158 info [dup - 1].got_offset = got_offset;
2159 break;
2160 }
2161 got_offset = info [dup].got_offset;
2162 prev = curr;
2163 }
2164
2165 /* How much to move. */
2166 len = dup - src;
2167 i = dup + 1;
2168
2169 if (len == 1 && dup < count)
2170 {
2171 /* If we only move 1 element, we combine it with the next
2172 one. There must be at least a duplicate. Find the
2173 next different one. */
2174 for (diff = dup + 1, src++; diff < count; diff++, src++)
2175 {
2176 if (info [diff].addend != curr)
2177 break;
2178 /* Make sure that got_offset is valid. */
2179 if (got_offset == (bfd_vma) -1)
2180 got_offset = info [diff].got_offset;
2181 }
2182
2183 /* Makre sure that the last duplicated one has an valid
2184 offset. */
2185 BFD_ASSERT (curr == prev);
2186 if (got_offset != (bfd_vma) -1)
2187 info [diff - 1].got_offset = got_offset;
2188
2189 if (diff < count)
2190 {
2191 /* Find the next duplicate. Track the current valid
2192 offset. */
2193 prev = info [diff].addend;
2194 got_offset = info [diff].got_offset;
2195 for (dup = diff + 1; dup < count; dup++)
2196 {
2197 curr = info [dup].addend;
2198 if (curr == prev)
2199 {
2200 /* For duplicates, make sure that GOT_OFFSET
2201 is valid. */
2202 if (got_offset == (bfd_vma) -1)
2203 got_offset = info [dup].got_offset;
2204 break;
2205 }
2206 got_offset = info [dup].got_offset;
2207 prev = curr;
2208 diff++;
2209 }
2210
2211 len = diff - src + 1;
2212 i = diff + 1;
2213 }
2214 }
2215
2216 memmove (&info [dest], &info [src], len * sizeof (*info));
2217
2218 dest += len;
2219 }
2220
2221 count = dest;
2222 }
2223 else
2224 {
2225 /* When we get here, either there is no duplicate at all or
2226 the only duplicate is the last element. */
2227 if (dest < count)
2228 {
2229 /* If the last element is a duplicate, make sure that the
2230 kept one has a valid got_offset. We also update count. */
2231 if (got_offset != (bfd_vma) -1)
2232 info [dest - 1].got_offset = got_offset;
2233 count = dest;
2234 }
2235 }
2236
2237 return count;
2238 }
2239
2240 /* Find and/or create a descriptor for dynamic symbol info. This will
2241 vary based on global or local symbol, and the addend to the reloc.
2242
2243 We don't sort when inserting. Also, we sort and eliminate
2244 duplicates if there is an unsorted section. Typically, this will
2245 only happen once, because we do all insertions before lookups. We
2246 then use bsearch to do a lookup. This also allows lookups to be
2247 fast. So we have fast insertion (O(log N) due to duplicate check),
2248 fast lookup (O(log N)) and one sort (O(N log N) expected time).
2249 Previously, all lookups were O(N) because of the use of the linked
2250 list and also all insertions were O(N) because of the check for
2251 duplicates. There are some complications here because the array
2252 size grows occasionally, which may add an O(N) factor, but this
2253 should be rare. Also, we free the excess array allocation, which
2254 requires a copy which is O(N), but this only happens once. */
2255
2256 static struct elfNN_ia64_dyn_sym_info *
2257 get_dyn_sym_info (struct elfNN_ia64_link_hash_table *ia64_info,
2258 struct elf_link_hash_entry *h, bfd *abfd,
2259 const Elf_Internal_Rela *rel, bfd_boolean create)
2260 {
2261 struct elfNN_ia64_dyn_sym_info **info_p, *info, *dyn_i, key;
2262 unsigned int *count_p, *sorted_count_p, *size_p;
2263 unsigned int count, sorted_count, size;
2264 bfd_vma addend = rel ? rel->r_addend : 0;
2265 bfd_size_type amt;
2266
2267 if (h)
2268 {
2269 struct elfNN_ia64_link_hash_entry *global_h;
2270
2271 global_h = (struct elfNN_ia64_link_hash_entry *) h;
2272 info_p = &global_h->info;
2273 count_p = &global_h->count;
2274 sorted_count_p = &global_h->sorted_count;
2275 size_p = &global_h->size;
2276 }
2277 else
2278 {
2279 struct elfNN_ia64_local_hash_entry *loc_h;
2280
2281 loc_h = get_local_sym_hash (ia64_info, abfd, rel, create);
2282 if (!loc_h)
2283 {
2284 BFD_ASSERT (!create);
2285 return NULL;
2286 }
2287
2288 info_p = &loc_h->info;
2289 count_p = &loc_h->count;
2290 sorted_count_p = &loc_h->sorted_count;
2291 size_p = &loc_h->size;
2292 }
2293
2294 count = *count_p;
2295 sorted_count = *sorted_count_p;
2296 size = *size_p;
2297 info = *info_p;
2298 if (create)
2299 {
2300 /* When we create the array, we don't check for duplicates,
2301 except in the previously sorted section if one exists, and
2302 against the last inserted entry. This allows insertions to
2303 be fast. */
2304 if (info)
2305 {
2306 if (sorted_count)
2307 {
2308 /* Try bsearch first on the sorted section. */
2309 key.addend = addend;
2310 dyn_i = bsearch (&key, info, sorted_count,
2311 sizeof (*info), addend_compare);
2312
2313 if (dyn_i)
2314 {
2315 return dyn_i;
2316 }
2317 }
2318
2319 /* Do a quick check for the last inserted entry. */
2320 dyn_i = info + count - 1;
2321 if (dyn_i->addend == addend)
2322 {
2323 return dyn_i;
2324 }
2325 }
2326
2327 if (size == 0)
2328 {
2329 /* It is the very first element. We create the array of size
2330 1. */
2331 size = 1;
2332 amt = size * sizeof (*info);
2333 info = bfd_malloc (amt);
2334 }
2335 else if (size <= count)
2336 {
2337 /* We double the array size every time when we reach the
2338 size limit. */
2339 size += size;
2340 amt = size * sizeof (*info);
2341 info = bfd_realloc (info, amt);
2342 }
2343 else
2344 goto has_space;
2345
2346 if (info == NULL)
2347 return NULL;
2348 *size_p = size;
2349 *info_p = info;
2350
2351 has_space:
2352 /* Append the new one to the array. */
2353 dyn_i = info + count;
2354 memset (dyn_i, 0, sizeof (*dyn_i));
2355 dyn_i->got_offset = (bfd_vma) -1;
2356 dyn_i->addend = addend;
2357
2358 /* We increment count only since the new ones are unsorted and
2359 may have duplicate. */
2360 (*count_p)++;
2361 }
2362 else
2363 {
2364 /* It is a lookup without insertion. Sort array if part of the
2365 array isn't sorted. */
2366 if (count != sorted_count)
2367 {
2368 count = sort_dyn_sym_info (info, count);
2369 *count_p = count;
2370 *sorted_count_p = count;
2371 }
2372
2373 /* Free unused memory. */
2374 if (size != count)
2375 {
2376 amt = count * sizeof (*info);
2377 info = bfd_malloc (amt);
2378 if (info != NULL)
2379 {
2380 memcpy (info, *info_p, amt);
2381 free (*info_p);
2382 *size_p = count;
2383 *info_p = info;
2384 }
2385 }
2386
2387 key.addend = addend;
2388 dyn_i = bsearch (&key, info, count,
2389 sizeof (*info), addend_compare);
2390 }
2391
2392 return dyn_i;
2393 }
2394
2395 static asection *
2396 get_got (bfd *abfd, struct bfd_link_info *info,
2397 struct elfNN_ia64_link_hash_table *ia64_info)
2398 {
2399 asection *got;
2400 bfd *dynobj;
2401
2402 got = ia64_info->got_sec;
2403 if (!got)
2404 {
2405 flagword flags;
2406
2407 dynobj = ia64_info->root.dynobj;
2408 if (!dynobj)
2409 ia64_info->root.dynobj = dynobj = abfd;
2410 if (!_bfd_elf_create_got_section (dynobj, info))
2411 return 0;
2412
2413 got = bfd_get_section_by_name (dynobj, ".got");
2414 BFD_ASSERT (got);
2415 ia64_info->got_sec = got;
2416
2417 /* The .got section is always aligned at 8 bytes. */
2418 if (!bfd_set_section_alignment (abfd, got, 3))
2419 return 0;
2420
2421 flags = bfd_get_section_flags (abfd, got);
2422 bfd_set_section_flags (abfd, got, SEC_SMALL_DATA | flags);
2423 }
2424
2425 return got;
2426 }
2427
2428 /* Create function descriptor section (.opd). This section is called .opd
2429 because it contains "official procedure descriptors". The "official"
2430 refers to the fact that these descriptors are used when taking the address
2431 of a procedure, thus ensuring a unique address for each procedure. */
2432
2433 static asection *
2434 get_fptr (bfd *abfd, struct bfd_link_info *info,
2435 struct elfNN_ia64_link_hash_table *ia64_info)
2436 {
2437 asection *fptr;
2438 bfd *dynobj;
2439
2440 fptr = ia64_info->fptr_sec;
2441 if (!fptr)
2442 {
2443 dynobj = ia64_info->root.dynobj;
2444 if (!dynobj)
2445 ia64_info->root.dynobj = dynobj = abfd;
2446
2447 fptr = bfd_make_section_with_flags (dynobj, ".opd",
2448 (SEC_ALLOC
2449 | SEC_LOAD
2450 | SEC_HAS_CONTENTS
2451 | SEC_IN_MEMORY
2452 | (info->pie ? 0 : SEC_READONLY)
2453 | SEC_LINKER_CREATED));
2454 if (!fptr
2455 || !bfd_set_section_alignment (abfd, fptr, 4))
2456 {
2457 BFD_ASSERT (0);
2458 return NULL;
2459 }
2460
2461 ia64_info->fptr_sec = fptr;
2462
2463 if (info->pie)
2464 {
2465 asection *fptr_rel;
2466 fptr_rel = bfd_make_section_with_flags (dynobj, ".rela.opd",
2467 (SEC_ALLOC | SEC_LOAD
2468 | SEC_HAS_CONTENTS
2469 | SEC_IN_MEMORY
2470 | SEC_LINKER_CREATED
2471 | SEC_READONLY));
2472 if (fptr_rel == NULL
2473 || !bfd_set_section_alignment (abfd, fptr_rel,
2474 LOG_SECTION_ALIGN))
2475 {
2476 BFD_ASSERT (0);
2477 return NULL;
2478 }
2479
2480 ia64_info->rel_fptr_sec = fptr_rel;
2481 }
2482 }
2483
2484 return fptr;
2485 }
2486
2487 static asection *
2488 get_pltoff (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED,
2489 struct elfNN_ia64_link_hash_table *ia64_info)
2490 {
2491 asection *pltoff;
2492 bfd *dynobj;
2493
2494 pltoff = ia64_info->pltoff_sec;
2495 if (!pltoff)
2496 {
2497 dynobj = ia64_info->root.dynobj;
2498 if (!dynobj)
2499 ia64_info->root.dynobj = dynobj = abfd;
2500
2501 pltoff = bfd_make_section_with_flags (dynobj,
2502 ELF_STRING_ia64_pltoff,
2503 (SEC_ALLOC
2504 | SEC_LOAD
2505 | SEC_HAS_CONTENTS
2506 | SEC_IN_MEMORY
2507 | SEC_SMALL_DATA
2508 | SEC_LINKER_CREATED));
2509 if (!pltoff
2510 || !bfd_set_section_alignment (abfd, pltoff, 4))
2511 {
2512 BFD_ASSERT (0);
2513 return NULL;
2514 }
2515
2516 ia64_info->pltoff_sec = pltoff;
2517 }
2518
2519 return pltoff;
2520 }
2521
2522 static asection *
2523 get_reloc_section (bfd *abfd,
2524 struct elfNN_ia64_link_hash_table *ia64_info,
2525 asection *sec, bfd_boolean create)
2526 {
2527 const char *srel_name;
2528 asection *srel;
2529 bfd *dynobj;
2530
2531 srel_name = (bfd_elf_string_from_elf_section
2532 (abfd, elf_elfheader(abfd)->e_shstrndx,
2533 elf_section_data(sec)->rel_hdr.sh_name));
2534 if (srel_name == NULL)
2535 return NULL;
2536
2537 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
2538 && strcmp (bfd_get_section_name (abfd, sec),
2539 srel_name+5) == 0)
2540 || (CONST_STRNEQ (srel_name, ".rel")
2541 && strcmp (bfd_get_section_name (abfd, sec),
2542 srel_name+4) == 0));
2543
2544 dynobj = ia64_info->root.dynobj;
2545 if (!dynobj)
2546 ia64_info->root.dynobj = dynobj = abfd;
2547
2548 srel = bfd_get_section_by_name (dynobj, srel_name);
2549 if (srel == NULL && create)
2550 {
2551 srel = bfd_make_section_with_flags (dynobj, srel_name,
2552 (SEC_ALLOC | SEC_LOAD
2553 | SEC_HAS_CONTENTS
2554 | SEC_IN_MEMORY
2555 | SEC_LINKER_CREATED
2556 | SEC_READONLY));
2557 if (srel == NULL
2558 || !bfd_set_section_alignment (dynobj, srel,
2559 LOG_SECTION_ALIGN))
2560 return NULL;
2561 }
2562
2563 return srel;
2564 }
2565
2566 static bfd_boolean
2567 count_dyn_reloc (bfd *abfd, struct elfNN_ia64_dyn_sym_info *dyn_i,
2568 asection *srel, int type, bfd_boolean reltext)
2569 {
2570 struct elfNN_ia64_dyn_reloc_entry *rent;
2571
2572 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
2573 if (rent->srel == srel && rent->type == type)
2574 break;
2575
2576 if (!rent)
2577 {
2578 rent = ((struct elfNN_ia64_dyn_reloc_entry *)
2579 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent)));
2580 if (!rent)
2581 return FALSE;
2582
2583 rent->next = dyn_i->reloc_entries;
2584 rent->srel = srel;
2585 rent->type = type;
2586 rent->count = 0;
2587 dyn_i->reloc_entries = rent;
2588 }
2589 rent->reltext = reltext;
2590 rent->count++;
2591
2592 return TRUE;
2593 }
2594
2595 static bfd_boolean
2596 elfNN_ia64_check_relocs (bfd *abfd, struct bfd_link_info *info,
2597 asection *sec,
2598 const Elf_Internal_Rela *relocs)
2599 {
2600 struct elfNN_ia64_link_hash_table *ia64_info;
2601 const Elf_Internal_Rela *relend;
2602 Elf_Internal_Shdr *symtab_hdr;
2603 const Elf_Internal_Rela *rel;
2604 asection *got, *fptr, *srel, *pltoff;
2605 enum {
2606 NEED_GOT = 1,
2607 NEED_GOTX = 2,
2608 NEED_FPTR = 4,
2609 NEED_PLTOFF = 8,
2610 NEED_MIN_PLT = 16,
2611 NEED_FULL_PLT = 32,
2612 NEED_DYNREL = 64,
2613 NEED_LTOFF_FPTR = 128,
2614 NEED_TPREL = 256,
2615 NEED_DTPMOD = 512,
2616 NEED_DTPREL = 1024
2617 };
2618 int need_entry;
2619 struct elf_link_hash_entry *h;
2620 unsigned long r_symndx;
2621 bfd_boolean maybe_dynamic;
2622
2623 if (info->relocatable)
2624 return TRUE;
2625
2626 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2627 ia64_info = elfNN_ia64_hash_table (info);
2628
2629 got = fptr = srel = pltoff = NULL;
2630
2631 relend = relocs + sec->reloc_count;
2632
2633 /* We scan relocations first to create dynamic relocation arrays. We
2634 modified get_dyn_sym_info to allow fast insertion and support fast
2635 lookup in the next loop. */
2636 for (rel = relocs; rel < relend; ++rel)
2637 {
2638 r_symndx = ELFNN_R_SYM (rel->r_info);
2639 if (r_symndx >= symtab_hdr->sh_info)
2640 {
2641 long indx = r_symndx - symtab_hdr->sh_info;
2642 h = elf_sym_hashes (abfd)[indx];
2643 while (h->root.type == bfd_link_hash_indirect
2644 || h->root.type == bfd_link_hash_warning)
2645 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2646 }
2647 else
2648 h = NULL;
2649
2650 /* We can only get preliminary data on whether a symbol is
2651 locally or externally defined, as not all of the input files
2652 have yet been processed. Do something with what we know, as
2653 this may help reduce memory usage and processing time later. */
2654 maybe_dynamic = (h && ((!info->executable
2655 && (!SYMBOLIC_BIND (info, h)
2656 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2657 || !h->def_regular
2658 || h->root.type == bfd_link_hash_defweak));
2659
2660 need_entry = 0;
2661 switch (ELFNN_R_TYPE (rel->r_info))
2662 {
2663 case R_IA64_TPREL64MSB:
2664 case R_IA64_TPREL64LSB:
2665 if (info->shared || maybe_dynamic)
2666 need_entry = NEED_DYNREL;
2667 break;
2668
2669 case R_IA64_LTOFF_TPREL22:
2670 need_entry = NEED_TPREL;
2671 if (info->shared)
2672 info->flags |= DF_STATIC_TLS;
2673 break;
2674
2675 case R_IA64_DTPREL32MSB:
2676 case R_IA64_DTPREL32LSB:
2677 case R_IA64_DTPREL64MSB:
2678 case R_IA64_DTPREL64LSB:
2679 if (info->shared || maybe_dynamic)
2680 need_entry = NEED_DYNREL;
2681 break;
2682
2683 case R_IA64_LTOFF_DTPREL22:
2684 need_entry = NEED_DTPREL;
2685 break;
2686
2687 case R_IA64_DTPMOD64MSB:
2688 case R_IA64_DTPMOD64LSB:
2689 if (info->shared || maybe_dynamic)
2690 need_entry = NEED_DYNREL;
2691 break;
2692
2693 case R_IA64_LTOFF_DTPMOD22:
2694 need_entry = NEED_DTPMOD;
2695 break;
2696
2697 case R_IA64_LTOFF_FPTR22:
2698 case R_IA64_LTOFF_FPTR64I:
2699 case R_IA64_LTOFF_FPTR32MSB:
2700 case R_IA64_LTOFF_FPTR32LSB:
2701 case R_IA64_LTOFF_FPTR64MSB:
2702 case R_IA64_LTOFF_FPTR64LSB:
2703 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2704 break;
2705
2706 case R_IA64_FPTR64I:
2707 case R_IA64_FPTR32MSB:
2708 case R_IA64_FPTR32LSB:
2709 case R_IA64_FPTR64MSB:
2710 case R_IA64_FPTR64LSB:
2711 if (info->shared || h)
2712 need_entry = NEED_FPTR | NEED_DYNREL;
2713 else
2714 need_entry = NEED_FPTR;
2715 break;
2716
2717 case R_IA64_LTOFF22:
2718 case R_IA64_LTOFF64I:
2719 need_entry = NEED_GOT;
2720 break;
2721
2722 case R_IA64_LTOFF22X:
2723 need_entry = NEED_GOTX;
2724 break;
2725
2726 case R_IA64_PLTOFF22:
2727 case R_IA64_PLTOFF64I:
2728 case R_IA64_PLTOFF64MSB:
2729 case R_IA64_PLTOFF64LSB:
2730 need_entry = NEED_PLTOFF;
2731 if (h)
2732 {
2733 if (maybe_dynamic)
2734 need_entry |= NEED_MIN_PLT;
2735 }
2736 else
2737 {
2738 (*info->callbacks->warning)
2739 (info, _("@pltoff reloc against local symbol"), 0,
2740 abfd, 0, (bfd_vma) 0);
2741 }
2742 break;
2743
2744 case R_IA64_PCREL21B:
2745 case R_IA64_PCREL60B:
2746 /* Depending on where this symbol is defined, we may or may not
2747 need a full plt entry. Only skip if we know we'll not need
2748 the entry -- static or symbolic, and the symbol definition
2749 has already been seen. */
2750 if (maybe_dynamic && rel->r_addend == 0)
2751 need_entry = NEED_FULL_PLT;
2752 break;
2753
2754 case R_IA64_IMM14:
2755 case R_IA64_IMM22:
2756 case R_IA64_IMM64:
2757 case R_IA64_DIR32MSB:
2758 case R_IA64_DIR32LSB:
2759 case R_IA64_DIR64MSB:
2760 case R_IA64_DIR64LSB:
2761 /* Shared objects will always need at least a REL relocation. */
2762 if (info->shared || maybe_dynamic)
2763 need_entry = NEED_DYNREL;
2764 break;
2765
2766 case R_IA64_IPLTMSB:
2767 case R_IA64_IPLTLSB:
2768 /* Shared objects will always need at least a REL relocation. */
2769 if (info->shared || maybe_dynamic)
2770 need_entry = NEED_DYNREL;
2771 break;
2772
2773 case R_IA64_PCREL22:
2774 case R_IA64_PCREL64I:
2775 case R_IA64_PCREL32MSB:
2776 case R_IA64_PCREL32LSB:
2777 case R_IA64_PCREL64MSB:
2778 case R_IA64_PCREL64LSB:
2779 if (maybe_dynamic)
2780 need_entry = NEED_DYNREL;
2781 break;
2782 }
2783
2784 if (!need_entry)
2785 continue;
2786
2787 if ((need_entry & NEED_FPTR) != 0
2788 && rel->r_addend)
2789 {
2790 (*info->callbacks->warning)
2791 (info, _("non-zero addend in @fptr reloc"), 0,
2792 abfd, 0, (bfd_vma) 0);
2793 }
2794
2795 if (get_dyn_sym_info (ia64_info, h, abfd, rel, TRUE) == NULL)
2796 return FALSE;
2797 }
2798
2799 /* Now, we only do lookup without insertion, which is very fast
2800 with the modified get_dyn_sym_info. */
2801 for (rel = relocs; rel < relend; ++rel)
2802 {
2803 struct elfNN_ia64_dyn_sym_info *dyn_i;
2804 int dynrel_type = R_IA64_NONE;
2805
2806 r_symndx = ELFNN_R_SYM (rel->r_info);
2807 if (r_symndx >= symtab_hdr->sh_info)
2808 {
2809 /* We're dealing with a global symbol -- find its hash entry
2810 and mark it as being referenced. */
2811 long indx = r_symndx - symtab_hdr->sh_info;
2812 h = elf_sym_hashes (abfd)[indx];
2813 while (h->root.type == bfd_link_hash_indirect
2814 || h->root.type == bfd_link_hash_warning)
2815 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2816
2817 h->ref_regular = 1;
2818 }
2819 else
2820 h = NULL;
2821
2822 /* We can only get preliminary data on whether a symbol is
2823 locally or externally defined, as not all of the input files
2824 have yet been processed. Do something with what we know, as
2825 this may help reduce memory usage and processing time later. */
2826 maybe_dynamic = (h && ((!info->executable
2827 && (!SYMBOLIC_BIND (info, h)
2828 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
2829 || !h->def_regular
2830 || h->root.type == bfd_link_hash_defweak));
2831
2832 need_entry = 0;
2833 switch (ELFNN_R_TYPE (rel->r_info))
2834 {
2835 case R_IA64_TPREL64MSB:
2836 case R_IA64_TPREL64LSB:
2837 if (info->shared || maybe_dynamic)
2838 need_entry = NEED_DYNREL;
2839 dynrel_type = R_IA64_TPREL64LSB;
2840 if (info->shared)
2841 info->flags |= DF_STATIC_TLS;
2842 break;
2843
2844 case R_IA64_LTOFF_TPREL22:
2845 need_entry = NEED_TPREL;
2846 if (info->shared)
2847 info->flags |= DF_STATIC_TLS;
2848 break;
2849
2850 case R_IA64_DTPREL32MSB:
2851 case R_IA64_DTPREL32LSB:
2852 case R_IA64_DTPREL64MSB:
2853 case R_IA64_DTPREL64LSB:
2854 if (info->shared || maybe_dynamic)
2855 need_entry = NEED_DYNREL;
2856 dynrel_type = R_IA64_DTPRELNNLSB;
2857 break;
2858
2859 case R_IA64_LTOFF_DTPREL22:
2860 need_entry = NEED_DTPREL;
2861 break;
2862
2863 case R_IA64_DTPMOD64MSB:
2864 case R_IA64_DTPMOD64LSB:
2865 if (info->shared || maybe_dynamic)
2866 need_entry = NEED_DYNREL;
2867 dynrel_type = R_IA64_DTPMOD64LSB;
2868 break;
2869
2870 case R_IA64_LTOFF_DTPMOD22:
2871 need_entry = NEED_DTPMOD;
2872 break;
2873
2874 case R_IA64_LTOFF_FPTR22:
2875 case R_IA64_LTOFF_FPTR64I:
2876 case R_IA64_LTOFF_FPTR32MSB:
2877 case R_IA64_LTOFF_FPTR32LSB:
2878 case R_IA64_LTOFF_FPTR64MSB:
2879 case R_IA64_LTOFF_FPTR64LSB:
2880 need_entry = NEED_FPTR | NEED_GOT | NEED_LTOFF_FPTR;
2881 break;
2882
2883 case R_IA64_FPTR64I:
2884 case R_IA64_FPTR32MSB:
2885 case R_IA64_FPTR32LSB:
2886 case R_IA64_FPTR64MSB:
2887 case R_IA64_FPTR64LSB:
2888 if (info->shared || h)
2889 need_entry = NEED_FPTR | NEED_DYNREL;
2890 else
2891 need_entry = NEED_FPTR;
2892 dynrel_type = R_IA64_FPTRNNLSB;
2893 break;
2894
2895 case R_IA64_LTOFF22:
2896 case R_IA64_LTOFF64I:
2897 need_entry = NEED_GOT;
2898 break;
2899
2900 case R_IA64_LTOFF22X:
2901 need_entry = NEED_GOTX;
2902 break;
2903
2904 case R_IA64_PLTOFF22:
2905 case R_IA64_PLTOFF64I:
2906 case R_IA64_PLTOFF64MSB:
2907 case R_IA64_PLTOFF64LSB:
2908 need_entry = NEED_PLTOFF;
2909 if (h)
2910 {
2911 if (maybe_dynamic)
2912 need_entry |= NEED_MIN_PLT;
2913 }
2914 break;
2915
2916 case R_IA64_PCREL21B:
2917 case R_IA64_PCREL60B:
2918 /* Depending on where this symbol is defined, we may or may not
2919 need a full plt entry. Only skip if we know we'll not need
2920 the entry -- static or symbolic, and the symbol definition
2921 has already been seen. */
2922 if (maybe_dynamic && rel->r_addend == 0)
2923 need_entry = NEED_FULL_PLT;
2924 break;
2925
2926 case R_IA64_IMM14:
2927 case R_IA64_IMM22:
2928 case R_IA64_IMM64:
2929 case R_IA64_DIR32MSB:
2930 case R_IA64_DIR32LSB:
2931 case R_IA64_DIR64MSB:
2932 case R_IA64_DIR64LSB:
2933 /* Shared objects will always need at least a REL relocation. */
2934 if (info->shared || maybe_dynamic)
2935 need_entry = NEED_DYNREL;
2936 dynrel_type = R_IA64_DIRNNLSB;
2937 break;
2938
2939 case R_IA64_IPLTMSB:
2940 case R_IA64_IPLTLSB:
2941 /* Shared objects will always need at least a REL relocation. */
2942 if (info->shared || maybe_dynamic)
2943 need_entry = NEED_DYNREL;
2944 dynrel_type = R_IA64_IPLTLSB;
2945 break;
2946
2947 case R_IA64_PCREL22:
2948 case R_IA64_PCREL64I:
2949 case R_IA64_PCREL32MSB:
2950 case R_IA64_PCREL32LSB:
2951 case R_IA64_PCREL64MSB:
2952 case R_IA64_PCREL64LSB:
2953 if (maybe_dynamic)
2954 need_entry = NEED_DYNREL;
2955 dynrel_type = R_IA64_PCRELNNLSB;
2956 break;
2957 }
2958
2959 if (!need_entry)
2960 continue;
2961
2962 dyn_i = get_dyn_sym_info (ia64_info, h, abfd, rel, FALSE);
2963
2964 /* Record whether or not this is a local symbol. */
2965 dyn_i->h = h;
2966
2967 /* Create what's needed. */
2968 if (need_entry & (NEED_GOT | NEED_GOTX | NEED_TPREL
2969 | NEED_DTPMOD | NEED_DTPREL))
2970 {
2971 if (!got)
2972 {
2973 got = get_got (abfd, info, ia64_info);
2974 if (!got)
2975 return FALSE;
2976 }
2977 if (need_entry & NEED_GOT)
2978 dyn_i->want_got = 1;
2979 if (need_entry & NEED_GOTX)
2980 dyn_i->want_gotx = 1;
2981 if (need_entry & NEED_TPREL)
2982 dyn_i->want_tprel = 1;
2983 if (need_entry & NEED_DTPMOD)
2984 dyn_i->want_dtpmod = 1;
2985 if (need_entry & NEED_DTPREL)
2986 dyn_i->want_dtprel = 1;
2987 }
2988 if (need_entry & NEED_FPTR)
2989 {
2990 if (!fptr)
2991 {
2992 fptr = get_fptr (abfd, info, ia64_info);
2993 if (!fptr)
2994 return FALSE;
2995 }
2996
2997 /* FPTRs for shared libraries are allocated by the dynamic
2998 linker. Make sure this local symbol will appear in the
2999 dynamic symbol table. */
3000 if (!h && info->shared)
3001 {
3002 if (! (bfd_elf_link_record_local_dynamic_symbol
3003 (info, abfd, (long) r_symndx)))
3004 return FALSE;
3005 }
3006
3007 dyn_i->want_fptr = 1;
3008 }
3009 if (need_entry & NEED_LTOFF_FPTR)
3010 dyn_i->want_ltoff_fptr = 1;
3011 if (need_entry & (NEED_MIN_PLT | NEED_FULL_PLT))
3012 {
3013 if (!ia64_info->root.dynobj)
3014 ia64_info->root.dynobj = abfd;
3015 h->needs_plt = 1;
3016 dyn_i->want_plt = 1;
3017 }
3018 if (need_entry & NEED_FULL_PLT)
3019 dyn_i->want_plt2 = 1;
3020 if (need_entry & NEED_PLTOFF)
3021 {
3022 /* This is needed here, in case @pltoff is used in a non-shared
3023 link. */
3024 if (!pltoff)
3025 {
3026 pltoff = get_pltoff (abfd, info, ia64_info);
3027 if (!pltoff)
3028 return FALSE;
3029 }
3030
3031 dyn_i->want_pltoff = 1;
3032 }
3033 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
3034 {
3035 if (!srel)
3036 {
3037 srel = get_reloc_section (abfd, ia64_info, sec, TRUE);
3038 if (!srel)
3039 return FALSE;
3040 }
3041 if (!count_dyn_reloc (abfd, dyn_i, srel, dynrel_type,
3042 (sec->flags & SEC_READONLY) != 0))
3043 return FALSE;
3044 }
3045 }
3046
3047 return TRUE;
3048 }
3049
3050 /* For cleanliness, and potentially faster dynamic loading, allocate
3051 external GOT entries first. */
3052
3053 static bfd_boolean
3054 allocate_global_data_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3055 PTR data)
3056 {
3057 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3058
3059 if ((dyn_i->want_got || dyn_i->want_gotx)
3060 && ! dyn_i->want_fptr
3061 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3062 {
3063 dyn_i->got_offset = x->ofs;
3064 x->ofs += 8;
3065 }
3066 if (dyn_i->want_tprel)
3067 {
3068 dyn_i->tprel_offset = x->ofs;
3069 x->ofs += 8;
3070 }
3071 if (dyn_i->want_dtpmod)
3072 {
3073 if (elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3074 {
3075 dyn_i->dtpmod_offset = x->ofs;
3076 x->ofs += 8;
3077 }
3078 else
3079 {
3080 struct elfNN_ia64_link_hash_table *ia64_info;
3081
3082 ia64_info = elfNN_ia64_hash_table (x->info);
3083 if (ia64_info->self_dtpmod_offset == (bfd_vma) -1)
3084 {
3085 ia64_info->self_dtpmod_offset = x->ofs;
3086 x->ofs += 8;
3087 }
3088 dyn_i->dtpmod_offset = ia64_info->self_dtpmod_offset;
3089 }
3090 }
3091 if (dyn_i->want_dtprel)
3092 {
3093 dyn_i->dtprel_offset = x->ofs;
3094 x->ofs += 8;
3095 }
3096 return TRUE;
3097 }
3098
3099 /* Next, allocate all the GOT entries used by LTOFF_FPTR relocs. */
3100
3101 static bfd_boolean
3102 allocate_global_fptr_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3103 PTR data)
3104 {
3105 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3106
3107 if (dyn_i->want_got
3108 && dyn_i->want_fptr
3109 && elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, R_IA64_FPTRNNLSB))
3110 {
3111 dyn_i->got_offset = x->ofs;
3112 x->ofs += 8;
3113 }
3114 return TRUE;
3115 }
3116
3117 /* Lastly, allocate all the GOT entries for local data. */
3118
3119 static bfd_boolean
3120 allocate_local_got (struct elfNN_ia64_dyn_sym_info *dyn_i,
3121 PTR data)
3122 {
3123 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3124
3125 if ((dyn_i->want_got || dyn_i->want_gotx)
3126 && !elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0))
3127 {
3128 dyn_i->got_offset = x->ofs;
3129 x->ofs += 8;
3130 }
3131 return TRUE;
3132 }
3133
3134 /* Search for the index of a global symbol in it's defining object file. */
3135
3136 static long
3137 global_sym_index (struct elf_link_hash_entry *h)
3138 {
3139 struct elf_link_hash_entry **p;
3140 bfd *obj;
3141
3142 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3143 || h->root.type == bfd_link_hash_defweak);
3144
3145 obj = h->root.u.def.section->owner;
3146 for (p = elf_sym_hashes (obj); *p != h; ++p)
3147 continue;
3148
3149 return p - elf_sym_hashes (obj) + elf_tdata (obj)->symtab_hdr.sh_info;
3150 }
3151
3152 /* Allocate function descriptors. We can do these for every function
3153 in a main executable that is not exported. */
3154
3155 static bfd_boolean
3156 allocate_fptr (struct elfNN_ia64_dyn_sym_info *dyn_i, PTR data)
3157 {
3158 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3159
3160 if (dyn_i->want_fptr)
3161 {
3162 struct elf_link_hash_entry *h = dyn_i->h;
3163
3164 if (h)
3165 while (h->root.type == bfd_link_hash_indirect
3166 || h->root.type == bfd_link_hash_warning)
3167 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3168
3169 if (!x->info->executable
3170 && (!h
3171 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3172 || (h->root.type != bfd_link_hash_undefweak
3173 && h->root.type != bfd_link_hash_undefined)))
3174 {
3175 if (h && h->dynindx == -1)
3176 {
3177 BFD_ASSERT ((h->root.type == bfd_link_hash_defined)
3178 || (h->root.type == bfd_link_hash_defweak));
3179
3180 if (!bfd_elf_link_record_local_dynamic_symbol
3181 (x->info, h->root.u.def.section->owner,
3182 global_sym_index (h)))
3183 return FALSE;
3184 }
3185
3186 dyn_i->want_fptr = 0;
3187 }
3188 else if (h == NULL || h->dynindx == -1)
3189 {
3190 dyn_i->fptr_offset = x->ofs;
3191 x->ofs += 16;
3192 }
3193 else
3194 dyn_i->want_fptr = 0;
3195 }
3196 return TRUE;
3197 }
3198
3199 /* Allocate all the minimal PLT entries. */
3200
3201 static bfd_boolean
3202 allocate_plt_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3203 PTR data)
3204 {
3205 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3206
3207 if (dyn_i->want_plt)
3208 {
3209 struct elf_link_hash_entry *h = dyn_i->h;
3210
3211 if (h)
3212 while (h->root.type == bfd_link_hash_indirect
3213 || h->root.type == bfd_link_hash_warning)
3214 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3215
3216 /* ??? Versioned symbols seem to lose NEEDS_PLT. */
3217 if (elfNN_ia64_dynamic_symbol_p (h, x->info, 0))
3218 {
3219 bfd_size_type offset = x->ofs;
3220 if (offset == 0)
3221 offset = PLT_HEADER_SIZE;
3222 dyn_i->plt_offset = offset;
3223 x->ofs = offset + PLT_MIN_ENTRY_SIZE;
3224
3225 dyn_i->want_pltoff = 1;
3226 }
3227 else
3228 {
3229 dyn_i->want_plt = 0;
3230 dyn_i->want_plt2 = 0;
3231 }
3232 }
3233 return TRUE;
3234 }
3235
3236 /* Allocate all the full PLT entries. */
3237
3238 static bfd_boolean
3239 allocate_plt2_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3240 PTR data)
3241 {
3242 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3243
3244 if (dyn_i->want_plt2)
3245 {
3246 struct elf_link_hash_entry *h = dyn_i->h;
3247 bfd_size_type ofs = x->ofs;
3248
3249 dyn_i->plt2_offset = ofs;
3250 x->ofs = ofs + PLT_FULL_ENTRY_SIZE;
3251
3252 while (h->root.type == bfd_link_hash_indirect
3253 || h->root.type == bfd_link_hash_warning)
3254 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3255 dyn_i->h->plt.offset = ofs;
3256 }
3257 return TRUE;
3258 }
3259
3260 /* Allocate all the PLTOFF entries requested by relocations and
3261 plt entries. We can't share space with allocated FPTR entries,
3262 because the latter are not necessarily addressable by the GP.
3263 ??? Relaxation might be able to determine that they are. */
3264
3265 static bfd_boolean
3266 allocate_pltoff_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3267 PTR data)
3268 {
3269 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3270
3271 if (dyn_i->want_pltoff)
3272 {
3273 dyn_i->pltoff_offset = x->ofs;
3274 x->ofs += 16;
3275 }
3276 return TRUE;
3277 }
3278
3279 /* Allocate dynamic relocations for those symbols that turned out
3280 to be dynamic. */
3281
3282 static bfd_boolean
3283 allocate_dynrel_entries (struct elfNN_ia64_dyn_sym_info *dyn_i,
3284 PTR data)
3285 {
3286 struct elfNN_ia64_allocate_data *x = (struct elfNN_ia64_allocate_data *)data;
3287 struct elfNN_ia64_link_hash_table *ia64_info;
3288 struct elfNN_ia64_dyn_reloc_entry *rent;
3289 bfd_boolean dynamic_symbol, shared, resolved_zero;
3290
3291 ia64_info = elfNN_ia64_hash_table (x->info);
3292
3293 /* Note that this can't be used in relation to FPTR relocs below. */
3294 dynamic_symbol = elfNN_ia64_dynamic_symbol_p (dyn_i->h, x->info, 0);
3295
3296 shared = x->info->shared;
3297 resolved_zero = (dyn_i->h
3298 && ELF_ST_VISIBILITY (dyn_i->h->other)
3299 && dyn_i->h->root.type == bfd_link_hash_undefweak);
3300
3301 /* Take care of the GOT and PLT relocations. */
3302
3303 if ((!resolved_zero
3304 && (dynamic_symbol || shared)
3305 && (dyn_i->want_got || dyn_i->want_gotx))
3306 || (dyn_i->want_ltoff_fptr
3307 && dyn_i->h
3308 && dyn_i->h->dynindx != -1))
3309 {
3310 if (!dyn_i->want_ltoff_fptr
3311 || !x->info->pie
3312 || dyn_i->h == NULL
3313 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3314 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3315 }
3316 if ((dynamic_symbol || shared) && dyn_i->want_tprel)
3317 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3318 if (dynamic_symbol && dyn_i->want_dtpmod)
3319 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3320 if (dynamic_symbol && dyn_i->want_dtprel)
3321 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3322
3323 if (x->only_got)
3324 return TRUE;
3325
3326 if (ia64_info->rel_fptr_sec && dyn_i->want_fptr)
3327 {
3328 if (dyn_i->h == NULL || dyn_i->h->root.type != bfd_link_hash_undefweak)
3329 ia64_info->rel_fptr_sec->size += sizeof (ElfNN_External_Rela);
3330 }
3331
3332 if (!resolved_zero && dyn_i->want_pltoff)
3333 {
3334 bfd_size_type t = 0;
3335
3336 /* Dynamic symbols get one IPLT relocation. Local symbols in
3337 shared libraries get two REL relocations. Local symbols in
3338 main applications get nothing. */
3339 if (dynamic_symbol)
3340 t = sizeof (ElfNN_External_Rela);
3341 else if (shared)
3342 t = 2 * sizeof (ElfNN_External_Rela);
3343
3344 ia64_info->rel_pltoff_sec->size += t;
3345 }
3346
3347 /* Take care of the normal data relocations. */
3348
3349 for (rent = dyn_i->reloc_entries; rent; rent = rent->next)
3350 {
3351 int count = rent->count;
3352
3353 switch (rent->type)
3354 {
3355 case R_IA64_FPTR32LSB:
3356 case R_IA64_FPTR64LSB:
3357 /* Allocate one iff !want_fptr and not PIE, which by this point
3358 will be true only if we're actually allocating one statically
3359 in the main executable. Position independent executables
3360 need a relative reloc. */
3361 if (dyn_i->want_fptr && !x->info->pie)
3362 continue;
3363 break;
3364 case R_IA64_PCREL32LSB:
3365 case R_IA64_PCREL64LSB:
3366 if (!dynamic_symbol)
3367 continue;
3368 break;
3369 case R_IA64_DIR32LSB:
3370 case R_IA64_DIR64LSB:
3371 if (!dynamic_symbol && !shared)
3372 continue;
3373 break;
3374 case R_IA64_IPLTLSB:
3375 if (!dynamic_symbol && !shared)
3376 continue;
3377 /* Use two REL relocations for IPLT relocations
3378 against local symbols. */
3379 if (!dynamic_symbol)
3380 count *= 2;
3381 break;
3382 case R_IA64_DTPREL32LSB:
3383 case R_IA64_TPREL64LSB:
3384 case R_IA64_DTPREL64LSB:
3385 case R_IA64_DTPMOD64LSB:
3386 break;
3387 default:
3388 abort ();
3389 }
3390 if (rent->reltext)
3391 ia64_info->reltext = 1;
3392 rent->srel->size += sizeof (ElfNN_External_Rela) * count;
3393 }
3394
3395 return TRUE;
3396 }
3397
3398 static bfd_boolean
3399 elfNN_ia64_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
3400 struct elf_link_hash_entry *h)
3401 {
3402 /* ??? Undefined symbols with PLT entries should be re-defined
3403 to be the PLT entry. */
3404
3405 /* If this is a weak symbol, and there is a real definition, the
3406 processor independent code will have arranged for us to see the
3407 real definition first, and we can just use the same value. */
3408 if (h->u.weakdef != NULL)
3409 {
3410 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3411 || h->u.weakdef->root.type == bfd_link_hash_defweak);
3412 h->root.u.def.section = h->u.weakdef->root.u.def.section;
3413 h->root.u.def.value = h->u.weakdef->root.u.def.value;
3414 return TRUE;
3415 }
3416
3417 /* If this is a reference to a symbol defined by a dynamic object which
3418 is not a function, we might allocate the symbol in our .dynbss section
3419 and allocate a COPY dynamic relocation.
3420
3421 But IA-64 code is canonically PIC, so as a rule we can avoid this sort
3422 of hackery. */
3423
3424 return TRUE;
3425 }
3426
3427 static bfd_boolean
3428 elfNN_ia64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3429 struct bfd_link_info *info)
3430 {
3431 struct elfNN_ia64_allocate_data data;
3432 struct elfNN_ia64_link_hash_table *ia64_info;
3433 asection *sec;
3434 bfd *dynobj;
3435 bfd_boolean relplt = FALSE;
3436
3437 dynobj = elf_hash_table(info)->dynobj;
3438 ia64_info = elfNN_ia64_hash_table (info);
3439 ia64_info->self_dtpmod_offset = (bfd_vma) -1;
3440 BFD_ASSERT(dynobj != NULL);
3441 data.info = info;
3442
3443 /* Set the contents of the .interp section to the interpreter. */
3444 if (ia64_info->root.dynamic_sections_created
3445 && info->executable)
3446 {
3447 sec = bfd_get_section_by_name (dynobj, ".interp");
3448 BFD_ASSERT (sec != NULL);
3449 sec->contents = (bfd_byte *) ELF_DYNAMIC_INTERPRETER;
3450 sec->size = strlen (ELF_DYNAMIC_INTERPRETER) + 1;
3451 }
3452
3453 /* Allocate the GOT entries. */
3454
3455 if (ia64_info->got_sec)
3456 {
3457 data.ofs = 0;
3458 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_data_got, &data);
3459 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_global_fptr_got, &data);
3460 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_local_got, &data);
3461 ia64_info->got_sec->size = data.ofs;
3462 }
3463
3464 /* Allocate the FPTR entries. */
3465
3466 if (ia64_info->fptr_sec)
3467 {
3468 data.ofs = 0;
3469 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_fptr, &data);
3470 ia64_info->fptr_sec->size = data.ofs;
3471 }
3472
3473 /* Now that we've seen all of the input files, we can decide which
3474 symbols need plt entries. Allocate the minimal PLT entries first.
3475 We do this even though dynamic_sections_created may be FALSE, because
3476 this has the side-effect of clearing want_plt and want_plt2. */
3477
3478 data.ofs = 0;
3479 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt_entries, &data);
3480
3481 ia64_info->minplt_entries = 0;
3482 if (data.ofs)
3483 {
3484 ia64_info->minplt_entries
3485 = (data.ofs - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
3486 }
3487
3488 /* Align the pointer for the plt2 entries. */
3489 data.ofs = (data.ofs + 31) & (bfd_vma) -32;
3490
3491 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_plt2_entries, &data);
3492 if (data.ofs != 0 || ia64_info->root.dynamic_sections_created)
3493 {
3494 /* FIXME: we always reserve the memory for dynamic linker even if
3495 there are no PLT entries since dynamic linker may assume the
3496 reserved memory always exists. */
3497
3498 BFD_ASSERT (ia64_info->root.dynamic_sections_created);
3499
3500 ia64_info->plt_sec->size = data.ofs;
3501
3502 /* If we've got a .plt, we need some extra memory for the dynamic
3503 linker. We stuff these in .got.plt. */
3504 sec = bfd_get_section_by_name (dynobj, ".got.plt");
3505 sec->size = 8 * PLT_RESERVED_WORDS;
3506 }
3507
3508 /* Allocate the PLTOFF entries. */
3509
3510 if (ia64_info->pltoff_sec)
3511 {
3512 data.ofs = 0;
3513 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_pltoff_entries, &data);
3514 ia64_info->pltoff_sec->size = data.ofs;
3515 }
3516
3517 if (ia64_info->root.dynamic_sections_created)
3518 {
3519 /* Allocate space for the dynamic relocations that turned out to be
3520 required. */
3521
3522 if (info->shared && ia64_info->self_dtpmod_offset != (bfd_vma) -1)
3523 ia64_info->rel_got_sec->size += sizeof (ElfNN_External_Rela);
3524 data.only_got = FALSE;
3525 elfNN_ia64_dyn_sym_traverse (ia64_info, allocate_dynrel_entries, &data);
3526 }
3527
3528 /* We have now determined the sizes of the various dynamic sections.
3529 Allocate memory for them. */
3530 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
3531 {
3532 bfd_boolean strip;
3533
3534 if (!(sec->flags & SEC_LINKER_CREATED))
3535 continue;
3536
3537 /* If we don't need this section, strip it from the output file.
3538 There were several sections primarily related to dynamic
3539 linking that must be create before the linker maps input
3540 sections to output sections. The linker does that before
3541 bfd_elf_size_dynamic_sections is called, and it is that
3542 function which decides whether anything needs to go into
3543 these sections. */
3544
3545 strip = (sec->size == 0);
3546
3547 if (sec == ia64_info->got_sec)
3548 strip = FALSE;
3549 else if (sec == ia64_info->rel_got_sec)
3550 {
3551 if (strip)
3552 ia64_info->rel_got_sec = NULL;
3553 else
3554 /* We use the reloc_count field as a counter if we need to
3555 copy relocs into the output file. */
3556 sec->reloc_count = 0;
3557 }
3558 else if (sec == ia64_info->fptr_sec)
3559 {
3560 if (strip)
3561 ia64_info->fptr_sec = NULL;
3562 }
3563 else if (sec == ia64_info->rel_fptr_sec)
3564 {
3565 if (strip)
3566 ia64_info->rel_fptr_sec = NULL;
3567 else
3568 /* We use the reloc_count field as a counter if we need to
3569 copy relocs into the output file. */
3570 sec->reloc_count = 0;
3571 }
3572 else if (sec == ia64_info->plt_sec)
3573 {
3574 if (strip)
3575 ia64_info->plt_sec = NULL;
3576 }
3577 else if (sec == ia64_info->pltoff_sec)
3578 {
3579 if (strip)
3580 ia64_info->pltoff_sec = NULL;
3581 }
3582 else if (sec == ia64_info->rel_pltoff_sec)
3583 {
3584 if (strip)
3585 ia64_info->rel_pltoff_sec = NULL;
3586 else
3587 {
3588 relplt = TRUE;
3589 /* We use the reloc_count field as a counter if we need to
3590 copy relocs into the output file. */
3591 sec->reloc_count = 0;
3592 }
3593 }
3594 else
3595 {
3596 const char *name;
3597
3598 /* It's OK to base decisions on the section name, because none
3599 of the dynobj section names depend upon the input files. */
3600 name = bfd_get_section_name (dynobj, sec);
3601
3602 if (strcmp (name, ".got.plt") == 0)
3603 strip = FALSE;
3604 else if (CONST_STRNEQ (name, ".rel"))
3605 {
3606 if (!strip)
3607 {
3608 /* We use the reloc_count field as a counter if we need to
3609 copy relocs into the output file. */
3610 sec->reloc_count = 0;
3611 }
3612 }
3613 else
3614 continue;
3615 }
3616
3617 if (strip)
3618 sec->flags |= SEC_EXCLUDE;
3619 else
3620 {
3621 /* Allocate memory for the section contents. */
3622 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
3623 if (sec->contents == NULL && sec->size != 0)
3624 return FALSE;
3625 }
3626 }
3627
3628 if (elf_hash_table (info)->dynamic_sections_created)
3629 {
3630 /* Add some entries to the .dynamic section. We fill in the values
3631 later (in finish_dynamic_sections) but we must add the entries now
3632 so that we get the correct size for the .dynamic section. */
3633
3634 if (info->executable)
3635 {
3636 /* The DT_DEBUG entry is filled in by the dynamic linker and used
3637 by the debugger. */
3638 #define add_dynamic_entry(TAG, VAL) \
3639 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3640
3641 if (!add_dynamic_entry (DT_DEBUG, 0))
3642 return FALSE;
3643 }
3644
3645 if (!add_dynamic_entry (DT_IA_64_PLT_RESERVE, 0))
3646 return FALSE;
3647 if (!add_dynamic_entry (DT_PLTGOT, 0))
3648 return FALSE;
3649
3650 if (relplt)
3651 {
3652 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
3653 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3654 || !add_dynamic_entry (DT_JMPREL, 0))
3655 return FALSE;
3656 }
3657
3658 if (!add_dynamic_entry (DT_RELA, 0)
3659 || !add_dynamic_entry (DT_RELASZ, 0)
3660 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela)))
3661 return FALSE;
3662
3663 if (ia64_info->reltext)
3664 {
3665 if (!add_dynamic_entry (DT_TEXTREL, 0))
3666 return FALSE;
3667 info->flags |= DF_TEXTREL;
3668 }
3669 }
3670
3671 /* ??? Perhaps force __gp local. */
3672
3673 return TRUE;
3674 }
3675
3676 static bfd_reloc_status_type
3677 elfNN_ia64_install_value (bfd_byte *hit_addr, bfd_vma v,
3678 unsigned int r_type)
3679 {
3680 const struct ia64_operand *op;
3681 int bigendian = 0, shift = 0;
3682 bfd_vma t0, t1, dword;
3683 ia64_insn insn;
3684 enum ia64_opnd opnd;
3685 const char *err;
3686 size_t size = 8;
3687 #ifdef BFD_HOST_U_64_BIT
3688 BFD_HOST_U_64_BIT val = (BFD_HOST_U_64_BIT) v;
3689 #else
3690 bfd_vma val = v;
3691 #endif
3692
3693 opnd = IA64_OPND_NIL;
3694 switch (r_type)
3695 {
3696 case R_IA64_NONE:
3697 case R_IA64_LDXMOV:
3698 return bfd_reloc_ok;
3699
3700 /* Instruction relocations. */
3701
3702 case R_IA64_IMM14:
3703 case R_IA64_TPREL14:
3704 case R_IA64_DTPREL14:
3705 opnd = IA64_OPND_IMM14;
3706 break;
3707
3708 case R_IA64_PCREL21F: opnd = IA64_OPND_TGT25; break;
3709 case R_IA64_PCREL21M: opnd = IA64_OPND_TGT25b; break;
3710 case R_IA64_PCREL60B: opnd = IA64_OPND_TGT64; break;
3711 case R_IA64_PCREL21B:
3712 case R_IA64_PCREL21BI:
3713 opnd = IA64_OPND_TGT25c;
3714 break;
3715
3716 case R_IA64_IMM22:
3717 case R_IA64_GPREL22:
3718 case R_IA64_LTOFF22:
3719 case R_IA64_LTOFF22X:
3720 case R_IA64_PLTOFF22:
3721 case R_IA64_PCREL22:
3722 case R_IA64_LTOFF_FPTR22:
3723 case R_IA64_TPREL22:
3724 case R_IA64_DTPREL22:
3725 case R_IA64_LTOFF_TPREL22:
3726 case R_IA64_LTOFF_DTPMOD22:
3727 case R_IA64_LTOFF_DTPREL22:
3728 opnd = IA64_OPND_IMM22;
3729 break;
3730
3731 case R_IA64_IMM64:
3732 case R_IA64_GPREL64I:
3733 case R_IA64_LTOFF64I:
3734 case R_IA64_PLTOFF64I:
3735 case R_IA64_PCREL64I:
3736 case R_IA64_FPTR64I:
3737 case R_IA64_LTOFF_FPTR64I:
3738 case R_IA64_TPREL64I:
3739 case R_IA64_DTPREL64I:
3740 opnd = IA64_OPND_IMMU64;
3741 break;
3742
3743 /* Data relocations. */
3744
3745 case R_IA64_DIR32MSB:
3746 case R_IA64_GPREL32MSB:
3747 case R_IA64_FPTR32MSB:
3748 case R_IA64_PCREL32MSB:
3749 case R_IA64_LTOFF_FPTR32MSB:
3750 case R_IA64_SEGREL32MSB:
3751 case R_IA64_SECREL32MSB:
3752 case R_IA64_LTV32MSB:
3753 case R_IA64_DTPREL32MSB:
3754 size = 4; bigendian = 1;
3755 break;
3756
3757 case R_IA64_DIR32LSB:
3758 case R_IA64_GPREL32LSB:
3759 case R_IA64_FPTR32LSB:
3760 case R_IA64_PCREL32LSB:
3761 case R_IA64_LTOFF_FPTR32LSB:
3762 case R_IA64_SEGREL32LSB:
3763 case R_IA64_SECREL32LSB:
3764 case R_IA64_LTV32LSB:
3765 case R_IA64_DTPREL32LSB:
3766 size = 4; bigendian = 0;
3767 break;
3768
3769 case R_IA64_DIR64MSB:
3770 case R_IA64_GPREL64MSB:
3771 case R_IA64_PLTOFF64MSB:
3772 case R_IA64_FPTR64MSB:
3773 case R_IA64_PCREL64MSB:
3774 case R_IA64_LTOFF_FPTR64MSB:
3775 case R_IA64_SEGREL64MSB:
3776 case R_IA64_SECREL64MSB:
3777 case R_IA64_LTV64MSB:
3778 case R_IA64_TPREL64MSB:
3779 case R_IA64_DTPMOD64MSB:
3780 case R_IA64_DTPREL64MSB:
3781 size = 8; bigendian = 1;
3782 break;
3783
3784 case R_IA64_DIR64LSB:
3785 case R_IA64_GPREL64LSB:
3786 case R_IA64_PLTOFF64LSB:
3787 case R_IA64_FPTR64LSB:
3788 case R_IA64_PCREL64LSB:
3789 case R_IA64_LTOFF_FPTR64LSB:
3790 case R_IA64_SEGREL64LSB:
3791 case R_IA64_SECREL64LSB:
3792 case R_IA64_LTV64LSB:
3793 case R_IA64_TPREL64LSB:
3794 case R_IA64_DTPMOD64LSB:
3795 case R_IA64_DTPREL64LSB:
3796 size = 8; bigendian = 0;
3797 break;
3798
3799 /* Unsupported / Dynamic relocations. */
3800 default:
3801 return bfd_reloc_notsupported;
3802 }
3803
3804 switch (opnd)
3805 {
3806 case IA64_OPND_IMMU64:
3807 hit_addr -= (long) hit_addr & 0x3;
3808 t0 = bfd_getl64 (hit_addr);
3809 t1 = bfd_getl64 (hit_addr + 8);
3810
3811 /* tmpl/s: bits 0.. 5 in t0
3812 slot 0: bits 5..45 in t0
3813 slot 1: bits 46..63 in t0, bits 0..22 in t1
3814 slot 2: bits 23..63 in t1 */
3815
3816 /* First, clear the bits that form the 64 bit constant. */
3817 t0 &= ~(0x3ffffLL << 46);
3818 t1 &= ~(0x7fffffLL
3819 | (( (0x07fLL << 13) | (0x1ffLL << 27)
3820 | (0x01fLL << 22) | (0x001LL << 21)
3821 | (0x001LL << 36)) << 23));
3822
3823 t0 |= ((val >> 22) & 0x03ffffLL) << 46; /* 18 lsbs of imm41 */
3824 t1 |= ((val >> 40) & 0x7fffffLL) << 0; /* 23 msbs of imm41 */
3825 t1 |= ( (((val >> 0) & 0x07f) << 13) /* imm7b */
3826 | (((val >> 7) & 0x1ff) << 27) /* imm9d */
3827 | (((val >> 16) & 0x01f) << 22) /* imm5c */
3828 | (((val >> 21) & 0x001) << 21) /* ic */
3829 | (((val >> 63) & 0x001) << 36)) << 23; /* i */
3830
3831 bfd_putl64 (t0, hit_addr);
3832 bfd_putl64 (t1, hit_addr + 8);
3833 break;
3834
3835 case IA64_OPND_TGT64:
3836 hit_addr -= (long) hit_addr & 0x3;
3837 t0 = bfd_getl64 (hit_addr);
3838 t1 = bfd_getl64 (hit_addr + 8);
3839
3840 /* tmpl/s: bits 0.. 5 in t0
3841 slot 0: bits 5..45 in t0
3842 slot 1: bits 46..63 in t0, bits 0..22 in t1
3843 slot 2: bits 23..63 in t1 */
3844
3845 /* First, clear the bits that form the 64 bit constant. */
3846 t0 &= ~(0x3ffffLL << 46);
3847 t1 &= ~(0x7fffffLL
3848 | ((1LL << 36 | 0xfffffLL << 13) << 23));
3849
3850 val >>= 4;
3851 t0 |= ((val >> 20) & 0xffffLL) << 2 << 46; /* 16 lsbs of imm39 */
3852 t1 |= ((val >> 36) & 0x7fffffLL) << 0; /* 23 msbs of imm39 */
3853 t1 |= ((((val >> 0) & 0xfffffLL) << 13) /* imm20b */
3854 | (((val >> 59) & 0x1LL) << 36)) << 23; /* i */
3855
3856 bfd_putl64 (t0, hit_addr);
3857 bfd_putl64 (t1, hit_addr + 8);
3858 break;
3859
3860 default:
3861 switch ((long) hit_addr & 0x3)
3862 {
3863 case 0: shift = 5; break;
3864 case 1: shift = 14; hit_addr += 3; break;
3865 case 2: shift = 23; hit_addr += 6; break;
3866 case 3: return bfd_reloc_notsupported; /* shouldn't happen... */
3867 }
3868 dword = bfd_getl64 (hit_addr);
3869 insn = (dword >> shift) & 0x1ffffffffffLL;
3870
3871 op = elf64_ia64_operands + opnd;
3872 err = (*op->insert) (op, val, &insn);
3873 if (err)
3874 return bfd_reloc_overflow;
3875
3876 dword &= ~(0x1ffffffffffLL << shift);
3877 dword |= (insn << shift);
3878 bfd_putl64 (dword, hit_addr);
3879 break;
3880
3881 case IA64_OPND_NIL:
3882 /* A data relocation. */
3883 if (bigendian)
3884 if (size == 4)
3885 bfd_putb32 (val, hit_addr);
3886 else
3887 bfd_putb64 (val, hit_addr);
3888 else
3889 if (size == 4)
3890 bfd_putl32 (val, hit_addr);
3891 else
3892 bfd_putl64 (val, hit_addr);
3893 break;
3894 }
3895
3896 return bfd_reloc_ok;
3897 }
3898
3899 static void
3900 elfNN_ia64_install_dyn_reloc (bfd *abfd, struct bfd_link_info *info,
3901 asection *sec, asection *srel,
3902 bfd_vma offset, unsigned int type,
3903 long dynindx, bfd_vma addend)
3904 {
3905 Elf_Internal_Rela outrel;
3906 bfd_byte *loc;
3907
3908 BFD_ASSERT (dynindx != -1);
3909 outrel.r_info = ELFNN_R_INFO (dynindx, type);
3910 outrel.r_addend = addend;
3911 outrel.r_offset = _bfd_elf_section_offset (abfd, info, sec, offset);
3912 if (outrel.r_offset >= (bfd_vma) -2)
3913 {
3914 /* Run for the hills. We shouldn't be outputting a relocation
3915 for this. So do what everyone else does and output a no-op. */
3916 outrel.r_info = ELFNN_R_INFO (0, R_IA64_NONE);
3917 outrel.r_addend = 0;
3918 outrel.r_offset = 0;
3919 }
3920 else
3921 outrel.r_offset += sec->output_section->vma + sec->output_offset;
3922
3923 loc = srel->contents;
3924 loc += srel->reloc_count++ * sizeof (ElfNN_External_Rela);
3925 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
3926 BFD_ASSERT (sizeof (ElfNN_External_Rela) * srel->reloc_count <= srel->size);
3927 }
3928
3929 /* Store an entry for target address TARGET_ADDR in the linkage table
3930 and return the gp-relative address of the linkage table entry. */
3931
3932 static bfd_vma
3933 set_got_entry (bfd *abfd, struct bfd_link_info *info,
3934 struct elfNN_ia64_dyn_sym_info *dyn_i,
3935 long dynindx, bfd_vma addend, bfd_vma value,
3936 unsigned int dyn_r_type)
3937 {
3938 struct elfNN_ia64_link_hash_table *ia64_info;
3939 asection *got_sec;
3940 bfd_boolean done;
3941 bfd_vma got_offset;
3942
3943 ia64_info = elfNN_ia64_hash_table (info);
3944 got_sec = ia64_info->got_sec;
3945
3946 switch (dyn_r_type)
3947 {
3948 case R_IA64_TPREL64LSB:
3949 done = dyn_i->tprel_done;
3950 dyn_i->tprel_done = TRUE;
3951 got_offset = dyn_i->tprel_offset;
3952 break;
3953 case R_IA64_DTPMOD64LSB:
3954 if (dyn_i->dtpmod_offset != ia64_info->self_dtpmod_offset)
3955 {
3956 done = dyn_i->dtpmod_done;
3957 dyn_i->dtpmod_done = TRUE;
3958 }
3959 else
3960 {
3961 done = ia64_info->self_dtpmod_done;
3962 ia64_info->self_dtpmod_done = TRUE;
3963 dynindx = 0;
3964 }
3965 got_offset = dyn_i->dtpmod_offset;
3966 break;
3967 case R_IA64_DTPREL32LSB:
3968 case R_IA64_DTPREL64LSB:
3969 done = dyn_i->dtprel_done;
3970 dyn_i->dtprel_done = TRUE;
3971 got_offset = dyn_i->dtprel_offset;
3972 break;
3973 default:
3974 done = dyn_i->got_done;
3975 dyn_i->got_done = TRUE;
3976 got_offset = dyn_i->got_offset;
3977 break;
3978 }
3979
3980 BFD_ASSERT ((got_offset & 7) == 0);
3981
3982 if (! done)
3983 {
3984 /* Store the target address in the linkage table entry. */
3985 bfd_put_64 (abfd, value, got_sec->contents + got_offset);
3986
3987 /* Install a dynamic relocation if needed. */
3988 if (((info->shared
3989 && (!dyn_i->h
3990 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
3991 || dyn_i->h->root.type != bfd_link_hash_undefweak)
3992 && dyn_r_type != R_IA64_DTPREL32LSB
3993 && dyn_r_type != R_IA64_DTPREL64LSB)
3994 || elfNN_ia64_dynamic_symbol_p (dyn_i->h, info, dyn_r_type)
3995 || (dynindx != -1
3996 && (dyn_r_type == R_IA64_FPTR32LSB
3997 || dyn_r_type == R_IA64_FPTR64LSB)))
3998 && (!dyn_i->want_ltoff_fptr
3999 || !info->pie
4000 || !dyn_i->h
4001 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4002 {
4003 if (dynindx == -1
4004 && dyn_r_type != R_IA64_TPREL64LSB
4005 && dyn_r_type != R_IA64_DTPMOD64LSB
4006 && dyn_r_type != R_IA64_DTPREL32LSB
4007 && dyn_r_type != R_IA64_DTPREL64LSB)
4008 {
4009 dyn_r_type = R_IA64_RELNNLSB;
4010 dynindx = 0;
4011 addend = value;
4012 }
4013
4014 if (bfd_big_endian (abfd))
4015 {
4016 switch (dyn_r_type)
4017 {
4018 case R_IA64_REL32LSB:
4019 dyn_r_type = R_IA64_REL32MSB;
4020 break;
4021 case R_IA64_DIR32LSB:
4022 dyn_r_type = R_IA64_DIR32MSB;
4023 break;
4024 case R_IA64_FPTR32LSB:
4025 dyn_r_type = R_IA64_FPTR32MSB;
4026 break;
4027 case R_IA64_DTPREL32LSB:
4028 dyn_r_type = R_IA64_DTPREL32MSB;
4029 break;
4030 case R_IA64_REL64LSB:
4031 dyn_r_type = R_IA64_REL64MSB;
4032 break;
4033 case R_IA64_DIR64LSB:
4034 dyn_r_type = R_IA64_DIR64MSB;
4035 break;
4036 case R_IA64_FPTR64LSB:
4037 dyn_r_type = R_IA64_FPTR64MSB;
4038 break;
4039 case R_IA64_TPREL64LSB:
4040 dyn_r_type = R_IA64_TPREL64MSB;
4041 break;
4042 case R_IA64_DTPMOD64LSB:
4043 dyn_r_type = R_IA64_DTPMOD64MSB;
4044 break;
4045 case R_IA64_DTPREL64LSB:
4046 dyn_r_type = R_IA64_DTPREL64MSB;
4047 break;
4048 default:
4049 BFD_ASSERT (FALSE);
4050 break;
4051 }
4052 }
4053
4054 elfNN_ia64_install_dyn_reloc (abfd, NULL, got_sec,
4055 ia64_info->rel_got_sec,
4056 got_offset, dyn_r_type,
4057 dynindx, addend);
4058 }
4059 }
4060
4061 /* Return the address of the linkage table entry. */
4062 value = (got_sec->output_section->vma
4063 + got_sec->output_offset
4064 + got_offset);
4065
4066 return value;
4067 }
4068
4069 /* Fill in a function descriptor consisting of the function's code
4070 address and its global pointer. Return the descriptor's address. */
4071
4072 static bfd_vma
4073 set_fptr_entry (bfd *abfd, struct bfd_link_info *info,
4074 struct elfNN_ia64_dyn_sym_info *dyn_i,
4075 bfd_vma value)
4076 {
4077 struct elfNN_ia64_link_hash_table *ia64_info;
4078 asection *fptr_sec;
4079
4080 ia64_info = elfNN_ia64_hash_table (info);
4081 fptr_sec = ia64_info->fptr_sec;
4082
4083 if (!dyn_i->fptr_done)
4084 {
4085 dyn_i->fptr_done = 1;
4086
4087 /* Fill in the function descriptor. */
4088 bfd_put_64 (abfd, value, fptr_sec->contents + dyn_i->fptr_offset);
4089 bfd_put_64 (abfd, _bfd_get_gp_value (abfd),
4090 fptr_sec->contents + dyn_i->fptr_offset + 8);
4091 if (ia64_info->rel_fptr_sec)
4092 {
4093 Elf_Internal_Rela outrel;
4094 bfd_byte *loc;
4095
4096 if (bfd_little_endian (abfd))
4097 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTLSB);
4098 else
4099 outrel.r_info = ELFNN_R_INFO (0, R_IA64_IPLTMSB);
4100 outrel.r_addend = value;
4101 outrel.r_offset = (fptr_sec->output_section->vma
4102 + fptr_sec->output_offset
4103 + dyn_i->fptr_offset);
4104 loc = ia64_info->rel_fptr_sec->contents;
4105 loc += ia64_info->rel_fptr_sec->reloc_count++
4106 * sizeof (ElfNN_External_Rela);
4107 bfd_elfNN_swap_reloca_out (abfd, &outrel, loc);
4108 }
4109 }
4110
4111 /* Return the descriptor's address. */
4112 value = (fptr_sec->output_section->vma
4113 + fptr_sec->output_offset
4114 + dyn_i->fptr_offset);
4115
4116 return value;
4117 }
4118
4119 /* Fill in a PLTOFF entry consisting of the function's code address
4120 and its global pointer. Return the descriptor's address. */
4121
4122 static bfd_vma
4123 set_pltoff_entry (bfd *abfd, struct bfd_link_info *info,
4124 struct elfNN_ia64_dyn_sym_info *dyn_i,
4125 bfd_vma value, bfd_boolean is_plt)
4126 {
4127 struct elfNN_ia64_link_hash_table *ia64_info;
4128 asection *pltoff_sec;
4129
4130 ia64_info = elfNN_ia64_hash_table (info);
4131 pltoff_sec = ia64_info->pltoff_sec;
4132
4133 /* Don't do anything if this symbol uses a real PLT entry. In
4134 that case, we'll fill this in during finish_dynamic_symbol. */
4135 if ((! dyn_i->want_plt || is_plt)
4136 && !dyn_i->pltoff_done)
4137 {
4138 bfd_vma gp = _bfd_get_gp_value (abfd);
4139
4140 /* Fill in the function descriptor. */
4141 bfd_put_64 (abfd, value, pltoff_sec->contents + dyn_i->pltoff_offset);
4142 bfd_put_64 (abfd, gp, pltoff_sec->contents + dyn_i->pltoff_offset + 8);
4143
4144 /* Install dynamic relocations if needed. */
4145 if (!is_plt
4146 && info->shared
4147 && (!dyn_i->h
4148 || ELF_ST_VISIBILITY (dyn_i->h->other) == STV_DEFAULT
4149 || dyn_i->h->root.type != bfd_link_hash_undefweak))
4150 {
4151 unsigned int dyn_r_type;
4152
4153 if (bfd_big_endian (abfd))
4154 dyn_r_type = R_IA64_RELNNMSB;
4155 else
4156 dyn_r_type = R_IA64_RELNNLSB;
4157
4158 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4159 ia64_info->rel_pltoff_sec,
4160 dyn_i->pltoff_offset,
4161 dyn_r_type, 0, value);
4162 elfNN_ia64_install_dyn_reloc (abfd, NULL, pltoff_sec,
4163 ia64_info->rel_pltoff_sec,
4164 dyn_i->pltoff_offset + ARCH_SIZE / 8,
4165 dyn_r_type, 0, gp);
4166 }
4167
4168 dyn_i->pltoff_done = 1;
4169 }
4170
4171 /* Return the descriptor's address. */
4172 value = (pltoff_sec->output_section->vma
4173 + pltoff_sec->output_offset
4174 + dyn_i->pltoff_offset);
4175
4176 return value;
4177 }
4178
4179 /* Return the base VMA address which should be subtracted from real addresses
4180 when resolving @tprel() relocation.
4181 Main program TLS (whose template starts at PT_TLS p_vaddr)
4182 is assigned offset round(2 * size of pointer, PT_TLS p_align). */
4183
4184 static bfd_vma
4185 elfNN_ia64_tprel_base (struct bfd_link_info *info)
4186 {
4187 asection *tls_sec = elf_hash_table (info)->tls_sec;
4188
4189 BFD_ASSERT (tls_sec != NULL);
4190 return tls_sec->vma - align_power ((bfd_vma) ARCH_SIZE / 4,
4191 tls_sec->alignment_power);
4192 }
4193
4194 /* Return the base VMA address which should be subtracted from real addresses
4195 when resolving @dtprel() relocation.
4196 This is PT_TLS segment p_vaddr. */
4197
4198 static bfd_vma
4199 elfNN_ia64_dtprel_base (struct bfd_link_info *info)
4200 {
4201 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4202 return elf_hash_table (info)->tls_sec->vma;
4203 }
4204
4205 /* Called through qsort to sort the .IA_64.unwind section during a
4206 non-relocatable link. Set elfNN_ia64_unwind_entry_compare_bfd
4207 to the output bfd so we can do proper endianness frobbing. */
4208
4209 static bfd *elfNN_ia64_unwind_entry_compare_bfd;
4210
4211 static int
4212 elfNN_ia64_unwind_entry_compare (const PTR a, const PTR b)
4213 {
4214 bfd_vma av, bv;
4215
4216 av = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, a);
4217 bv = bfd_get_64 (elfNN_ia64_unwind_entry_compare_bfd, b);
4218
4219 return (av < bv ? -1 : av > bv ? 1 : 0);
4220 }
4221
4222 /* Make sure we've got ourselves a nice fat __gp value. */
4223 static bfd_boolean
4224 elfNN_ia64_choose_gp (bfd *abfd, struct bfd_link_info *info)
4225 {
4226 bfd_vma min_vma = (bfd_vma) -1, max_vma = 0;
4227 bfd_vma min_short_vma = min_vma, max_short_vma = 0;
4228 struct elf_link_hash_entry *gp;
4229 bfd_vma gp_val;
4230 asection *os;
4231 struct elfNN_ia64_link_hash_table *ia64_info;
4232
4233 ia64_info = elfNN_ia64_hash_table (info);
4234
4235 /* Find the min and max vma of all sections marked short. Also collect
4236 min and max vma of any type, for use in selecting a nice gp. */
4237 for (os = abfd->sections; os ; os = os->next)
4238 {
4239 bfd_vma lo, hi;
4240
4241 if ((os->flags & SEC_ALLOC) == 0)
4242 continue;
4243
4244 lo = os->vma;
4245 hi = os->vma + (os->rawsize ? os->rawsize : os->size);
4246 if (hi < lo)
4247 hi = (bfd_vma) -1;
4248
4249 if (min_vma > lo)
4250 min_vma = lo;
4251 if (max_vma < hi)
4252 max_vma = hi;
4253 if (os->flags & SEC_SMALL_DATA)
4254 {
4255 if (min_short_vma > lo)
4256 min_short_vma = lo;
4257 if (max_short_vma < hi)
4258 max_short_vma = hi;
4259 }
4260 }
4261
4262 /* See if the user wants to force a value. */
4263 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4264 FALSE, FALSE);
4265
4266 if (gp
4267 && (gp->root.type == bfd_link_hash_defined
4268 || gp->root.type == bfd_link_hash_defweak))
4269 {
4270 asection *gp_sec = gp->root.u.def.section;
4271 gp_val = (gp->root.u.def.value
4272 + gp_sec->output_section->vma
4273 + gp_sec->output_offset);
4274 }
4275 else
4276 {
4277 /* Pick a sensible value. */
4278
4279 asection *got_sec = ia64_info->got_sec;
4280
4281 /* Start with just the address of the .got. */
4282 if (got_sec)
4283 gp_val = got_sec->output_section->vma;
4284 else if (max_short_vma != 0)
4285 gp_val = min_short_vma;
4286 else if (max_vma - min_vma < 0x200000)
4287 gp_val = min_vma;
4288 else
4289 gp_val = max_vma - 0x200000 + 8;
4290
4291 /* If it is possible to address the entire image, but we
4292 don't with the choice above, adjust. */
4293 if (max_vma - min_vma < 0x400000
4294 && (max_vma - gp_val >= 0x200000
4295 || gp_val - min_vma > 0x200000))
4296 gp_val = min_vma + 0x200000;
4297 else if (max_short_vma != 0)
4298 {
4299 /* If we don't cover all the short data, adjust. */
4300 if (max_short_vma - gp_val >= 0x200000)
4301 gp_val = min_short_vma + 0x200000;
4302
4303 /* If we're addressing stuff past the end, adjust back. */
4304 if (gp_val > max_vma)
4305 gp_val = max_vma - 0x200000 + 8;
4306 }
4307 }
4308
4309 /* Validate whether all SHF_IA_64_SHORT sections are within
4310 range of the chosen GP. */
4311
4312 if (max_short_vma != 0)
4313 {
4314 if (max_short_vma - min_short_vma >= 0x400000)
4315 {
4316 (*_bfd_error_handler)
4317 (_("%s: short data segment overflowed (0x%lx >= 0x400000)"),
4318 bfd_get_filename (abfd),
4319 (unsigned long) (max_short_vma - min_short_vma));
4320 return FALSE;
4321 }
4322 else if ((gp_val > min_short_vma
4323 && gp_val - min_short_vma > 0x200000)
4324 || (gp_val < max_short_vma
4325 && max_short_vma - gp_val >= 0x200000))
4326 {
4327 (*_bfd_error_handler)
4328 (_("%s: __gp does not cover short data segment"),
4329 bfd_get_filename (abfd));
4330 return FALSE;
4331 }
4332 }
4333
4334 _bfd_set_gp_value (abfd, gp_val);
4335
4336 return TRUE;
4337 }
4338
4339 static bfd_boolean
4340 elfNN_ia64_final_link (bfd *abfd, struct bfd_link_info *info)
4341 {
4342 struct elfNN_ia64_link_hash_table *ia64_info;
4343 asection *unwind_output_sec;
4344
4345 ia64_info = elfNN_ia64_hash_table (info);
4346
4347 /* Make sure we've got ourselves a nice fat __gp value. */
4348 if (!info->relocatable)
4349 {
4350 bfd_vma gp_val;
4351 struct elf_link_hash_entry *gp;
4352
4353 /* We assume after gp is set, section size will only decrease. We
4354 need to adjust gp for it. */
4355 _bfd_set_gp_value (abfd, 0);
4356 if (! elfNN_ia64_choose_gp (abfd, info))
4357 return FALSE;
4358 gp_val = _bfd_get_gp_value (abfd);
4359
4360 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
4361 FALSE, FALSE);
4362 if (gp)
4363 {
4364 gp->root.type = bfd_link_hash_defined;
4365 gp->root.u.def.value = gp_val;
4366 gp->root.u.def.section = bfd_abs_section_ptr;
4367 }
4368 }
4369
4370 /* If we're producing a final executable, we need to sort the contents
4371 of the .IA_64.unwind section. Force this section to be relocated
4372 into memory rather than written immediately to the output file. */
4373 unwind_output_sec = NULL;
4374 if (!info->relocatable)
4375 {
4376 asection *s = bfd_get_section_by_name (abfd, ELF_STRING_ia64_unwind);
4377 if (s)
4378 {
4379 unwind_output_sec = s->output_section;
4380 unwind_output_sec->contents
4381 = bfd_malloc (unwind_output_sec->size);
4382 if (unwind_output_sec->contents == NULL)
4383 return FALSE;
4384 }
4385 }
4386
4387 /* Invoke the regular ELF backend linker to do all the work. */
4388 if (!bfd_elf_final_link (abfd, info))
4389 return FALSE;
4390
4391 if (unwind_output_sec)
4392 {
4393 elfNN_ia64_unwind_entry_compare_bfd = abfd;
4394 qsort (unwind_output_sec->contents,
4395 (size_t) (unwind_output_sec->size / 24),
4396 24,
4397 elfNN_ia64_unwind_entry_compare);
4398
4399 if (! bfd_set_section_contents (abfd, unwind_output_sec,
4400 unwind_output_sec->contents, (bfd_vma) 0,
4401 unwind_output_sec->size))
4402 return FALSE;
4403 }
4404
4405 return TRUE;
4406 }
4407
4408 static bfd_boolean
4409 elfNN_ia64_relocate_section (bfd *output_bfd,
4410 struct bfd_link_info *info,
4411 bfd *input_bfd,
4412 asection *input_section,
4413 bfd_byte *contents,
4414 Elf_Internal_Rela *relocs,
4415 Elf_Internal_Sym *local_syms,
4416 asection **local_sections)
4417 {
4418 struct elfNN_ia64_link_hash_table *ia64_info;
4419 Elf_Internal_Shdr *symtab_hdr;
4420 Elf_Internal_Rela *rel;
4421 Elf_Internal_Rela *relend;
4422 asection *srel;
4423 bfd_boolean ret_val = TRUE; /* for non-fatal errors */
4424 bfd_vma gp_val;
4425
4426 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4427 ia64_info = elfNN_ia64_hash_table (info);
4428
4429 /* Infect various flags from the input section to the output section. */
4430 if (info->relocatable)
4431 {
4432 bfd_vma flags;
4433
4434 flags = elf_section_data(input_section)->this_hdr.sh_flags;
4435 flags &= SHF_IA_64_NORECOV;
4436
4437 elf_section_data(input_section->output_section)
4438 ->this_hdr.sh_flags |= flags;
4439 }
4440
4441 gp_val = _bfd_get_gp_value (output_bfd);
4442 srel = get_reloc_section (input_bfd, ia64_info, input_section, FALSE);
4443
4444 rel = relocs;
4445 relend = relocs + input_section->reloc_count;
4446 for (; rel < relend; ++rel)
4447 {
4448 struct elf_link_hash_entry *h;
4449 struct elfNN_ia64_dyn_sym_info *dyn_i;
4450 bfd_reloc_status_type r;
4451 reloc_howto_type *howto;
4452 unsigned long r_symndx;
4453 Elf_Internal_Sym *sym;
4454 unsigned int r_type;
4455 bfd_vma value;
4456 asection *sym_sec;
4457 bfd_byte *hit_addr;
4458 bfd_boolean dynamic_symbol_p;
4459 bfd_boolean undef_weak_ref;
4460
4461 r_type = ELFNN_R_TYPE (rel->r_info);
4462 if (r_type > R_IA64_MAX_RELOC_CODE)
4463 {
4464 (*_bfd_error_handler)
4465 (_("%B: unknown relocation type %d"),
4466 input_bfd, (int) r_type);
4467 bfd_set_error (bfd_error_bad_value);
4468 ret_val = FALSE;
4469 continue;
4470 }
4471
4472 howto = lookup_howto (r_type);
4473 r_symndx = ELFNN_R_SYM (rel->r_info);
4474 h = NULL;
4475 sym = NULL;
4476 sym_sec = NULL;
4477 undef_weak_ref = FALSE;
4478
4479 if (r_symndx < symtab_hdr->sh_info)
4480 {
4481 /* Reloc against local symbol. */
4482 asection *msec;
4483 sym = local_syms + r_symndx;
4484 sym_sec = local_sections[r_symndx];
4485 msec = sym_sec;
4486 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4487 if (!info->relocatable
4488 && (sym_sec->flags & SEC_MERGE) != 0
4489 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4490 && sym_sec->sec_info_type == ELF_INFO_TYPE_MERGE)
4491 {
4492 struct elfNN_ia64_local_hash_entry *loc_h;
4493
4494 loc_h = get_local_sym_hash (ia64_info, input_bfd, rel, FALSE);
4495 if (loc_h && ! loc_h->sec_merge_done)
4496 {
4497 struct elfNN_ia64_dyn_sym_info *dynent;
4498 unsigned int count;
4499
4500 for (count = loc_h->count, dynent = loc_h->info;
4501 count != 0;
4502 count--, dynent++)
4503 {
4504 msec = sym_sec;
4505 dynent->addend =
4506 _bfd_merged_section_offset (output_bfd, &msec,
4507 elf_section_data (msec)->
4508 sec_info,
4509 sym->st_value
4510 + dynent->addend);
4511 dynent->addend -= sym->st_value;
4512 dynent->addend += msec->output_section->vma
4513 + msec->output_offset
4514 - sym_sec->output_section->vma
4515 - sym_sec->output_offset;
4516 }
4517
4518 /* We may have introduced duplicated entries. We need
4519 to remove them properly. */
4520 count = sort_dyn_sym_info (loc_h->info, loc_h->count);
4521 if (count != loc_h->count)
4522 {
4523 loc_h->count = count;
4524 loc_h->sorted_count = count;
4525 }
4526
4527 loc_h->sec_merge_done = 1;
4528 }
4529 }
4530 }
4531 else
4532 {
4533 bfd_boolean unresolved_reloc;
4534 bfd_boolean warned;
4535 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4536
4537 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4538 r_symndx, symtab_hdr, sym_hashes,
4539 h, sym_sec, value,
4540 unresolved_reloc, warned);
4541
4542 if (h->root.type == bfd_link_hash_undefweak)
4543 undef_weak_ref = TRUE;
4544 else if (warned)
4545 continue;
4546 }
4547
4548 /* For relocs against symbols from removed linkonce sections,
4549 or sections discarded by a linker script, we just want the
4550 section contents zeroed. Avoid any special processing. */
4551 if (sym_sec != NULL && elf_discarded_section (sym_sec))
4552 {
4553 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
4554 rel->r_info = 0;
4555 rel->r_addend = 0;
4556 continue;
4557 }
4558
4559 if (info->relocatable)
4560 continue;
4561
4562 hit_addr = contents + rel->r_offset;
4563 value += rel->r_addend;
4564 dynamic_symbol_p = elfNN_ia64_dynamic_symbol_p (h, info, r_type);
4565
4566 switch (r_type)
4567 {
4568 case R_IA64_NONE:
4569 case R_IA64_LDXMOV:
4570 continue;
4571
4572 case R_IA64_IMM14:
4573 case R_IA64_IMM22:
4574 case R_IA64_IMM64:
4575 case R_IA64_DIR32MSB:
4576 case R_IA64_DIR32LSB:
4577 case R_IA64_DIR64MSB:
4578 case R_IA64_DIR64LSB:
4579 /* Install a dynamic relocation for this reloc. */
4580 if ((dynamic_symbol_p || info->shared)
4581 && r_symndx != 0
4582 && (input_section->flags & SEC_ALLOC) != 0)
4583 {
4584 unsigned int dyn_r_type;
4585 long dynindx;
4586 bfd_vma addend;
4587
4588 BFD_ASSERT (srel != NULL);
4589
4590 switch (r_type)
4591 {
4592 case R_IA64_IMM14:
4593 case R_IA64_IMM22:
4594 case R_IA64_IMM64:
4595 /* ??? People shouldn't be doing non-pic code in
4596 shared libraries nor dynamic executables. */
4597 (*_bfd_error_handler)
4598 (_("%B: non-pic code with imm relocation against dynamic symbol `%s'"),
4599 input_bfd,
4600 h ? h->root.root.string
4601 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4602 sym_sec));
4603 ret_val = FALSE;
4604 continue;
4605
4606 default:
4607 break;
4608 }
4609
4610 /* If we don't need dynamic symbol lookup, find a
4611 matching RELATIVE relocation. */
4612 dyn_r_type = r_type;
4613 if (dynamic_symbol_p)
4614 {
4615 dynindx = h->dynindx;
4616 addend = rel->r_addend;
4617 value = 0;
4618 }
4619 else
4620 {
4621 switch (r_type)
4622 {
4623 case R_IA64_DIR32MSB:
4624 dyn_r_type = R_IA64_REL32MSB;
4625 break;
4626 case R_IA64_DIR32LSB:
4627 dyn_r_type = R_IA64_REL32LSB;
4628 break;
4629 case R_IA64_DIR64MSB:
4630 dyn_r_type = R_IA64_REL64MSB;
4631 break;
4632 case R_IA64_DIR64LSB:
4633 dyn_r_type = R_IA64_REL64LSB;
4634 break;
4635
4636 default:
4637 break;
4638 }
4639 dynindx = 0;
4640 addend = value;
4641 }
4642
4643 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4644 srel, rel->r_offset, dyn_r_type,
4645 dynindx, addend);
4646 }
4647 /* Fall through. */
4648
4649 case R_IA64_LTV32MSB:
4650 case R_IA64_LTV32LSB:
4651 case R_IA64_LTV64MSB:
4652 case R_IA64_LTV64LSB:
4653 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4654 break;
4655
4656 case R_IA64_GPREL22:
4657 case R_IA64_GPREL64I:
4658 case R_IA64_GPREL32MSB:
4659 case R_IA64_GPREL32LSB:
4660 case R_IA64_GPREL64MSB:
4661 case R_IA64_GPREL64LSB:
4662 if (dynamic_symbol_p)
4663 {
4664 (*_bfd_error_handler)
4665 (_("%B: @gprel relocation against dynamic symbol %s"),
4666 input_bfd,
4667 h ? h->root.root.string
4668 : bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
4669 sym_sec));
4670 ret_val = FALSE;
4671 continue;
4672 }
4673 value -= gp_val;
4674 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4675 break;
4676
4677 case R_IA64_LTOFF22:
4678 case R_IA64_LTOFF22X:
4679 case R_IA64_LTOFF64I:
4680 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4681 value = set_got_entry (input_bfd, info, dyn_i, (h ? h->dynindx : -1),
4682 rel->r_addend, value, R_IA64_DIRNNLSB);
4683 value -= gp_val;
4684 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4685 break;
4686
4687 case R_IA64_PLTOFF22:
4688 case R_IA64_PLTOFF64I:
4689 case R_IA64_PLTOFF64MSB:
4690 case R_IA64_PLTOFF64LSB:
4691 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4692 value = set_pltoff_entry (output_bfd, info, dyn_i, value, FALSE);
4693 value -= gp_val;
4694 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4695 break;
4696
4697 case R_IA64_FPTR64I:
4698 case R_IA64_FPTR32MSB:
4699 case R_IA64_FPTR32LSB:
4700 case R_IA64_FPTR64MSB:
4701 case R_IA64_FPTR64LSB:
4702 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4703 if (dyn_i->want_fptr)
4704 {
4705 if (!undef_weak_ref)
4706 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4707 }
4708 if (!dyn_i->want_fptr || info->pie)
4709 {
4710 long dynindx;
4711 unsigned int dyn_r_type = r_type;
4712 bfd_vma addend = rel->r_addend;
4713
4714 /* Otherwise, we expect the dynamic linker to create
4715 the entry. */
4716
4717 if (dyn_i->want_fptr)
4718 {
4719 if (r_type == R_IA64_FPTR64I)
4720 {
4721 /* We can't represent this without a dynamic symbol.
4722 Adjust the relocation to be against an output
4723 section symbol, which are always present in the
4724 dynamic symbol table. */
4725 /* ??? People shouldn't be doing non-pic code in
4726 shared libraries. Hork. */
4727 (*_bfd_error_handler)
4728 (_("%B: linking non-pic code in a position independent executable"),
4729 input_bfd);
4730 ret_val = FALSE;
4731 continue;
4732 }
4733 dynindx = 0;
4734 addend = value;
4735 dyn_r_type = r_type + R_IA64_RELNNLSB - R_IA64_FPTRNNLSB;
4736 }
4737 else if (h)
4738 {
4739 if (h->dynindx != -1)
4740 dynindx = h->dynindx;
4741 else
4742 dynindx = (_bfd_elf_link_lookup_local_dynindx
4743 (info, h->root.u.def.section->owner,
4744 global_sym_index (h)));
4745 value = 0;
4746 }
4747 else
4748 {
4749 dynindx = (_bfd_elf_link_lookup_local_dynindx
4750 (info, input_bfd, (long) r_symndx));
4751 value = 0;
4752 }
4753
4754 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4755 srel, rel->r_offset, dyn_r_type,
4756 dynindx, addend);
4757 }
4758
4759 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4760 break;
4761
4762 case R_IA64_LTOFF_FPTR22:
4763 case R_IA64_LTOFF_FPTR64I:
4764 case R_IA64_LTOFF_FPTR32MSB:
4765 case R_IA64_LTOFF_FPTR32LSB:
4766 case R_IA64_LTOFF_FPTR64MSB:
4767 case R_IA64_LTOFF_FPTR64LSB:
4768 {
4769 long dynindx;
4770
4771 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
4772 if (dyn_i->want_fptr)
4773 {
4774 BFD_ASSERT (h == NULL || h->dynindx == -1);
4775 if (!undef_weak_ref)
4776 value = set_fptr_entry (output_bfd, info, dyn_i, value);
4777 dynindx = -1;
4778 }
4779 else
4780 {
4781 /* Otherwise, we expect the dynamic linker to create
4782 the entry. */
4783 if (h)
4784 {
4785 if (h->dynindx != -1)
4786 dynindx = h->dynindx;
4787 else
4788 dynindx = (_bfd_elf_link_lookup_local_dynindx
4789 (info, h->root.u.def.section->owner,
4790 global_sym_index (h)));
4791 }
4792 else
4793 dynindx = (_bfd_elf_link_lookup_local_dynindx
4794 (info, input_bfd, (long) r_symndx));
4795 value = 0;
4796 }
4797
4798 value = set_got_entry (output_bfd, info, dyn_i, dynindx,
4799 rel->r_addend, value, R_IA64_FPTRNNLSB);
4800 value -= gp_val;
4801 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4802 }
4803 break;
4804
4805 case R_IA64_PCREL32MSB:
4806 case R_IA64_PCREL32LSB:
4807 case R_IA64_PCREL64MSB:
4808 case R_IA64_PCREL64LSB:
4809 /* Install a dynamic relocation for this reloc. */
4810 if (dynamic_symbol_p && r_symndx != 0)
4811 {
4812 BFD_ASSERT (srel != NULL);
4813
4814 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4815 srel, rel->r_offset, r_type,
4816 h->dynindx, rel->r_addend);
4817 }
4818 goto finish_pcrel;
4819
4820 case R_IA64_PCREL21B:
4821 case R_IA64_PCREL60B:
4822 /* We should have created a PLT entry for any dynamic symbol. */
4823 dyn_i = NULL;
4824 if (h)
4825 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
4826
4827 if (dyn_i && dyn_i->want_plt2)
4828 {
4829 /* Should have caught this earlier. */
4830 BFD_ASSERT (rel->r_addend == 0);
4831
4832 value = (ia64_info->plt_sec->output_section->vma
4833 + ia64_info->plt_sec->output_offset
4834 + dyn_i->plt2_offset);
4835 }
4836 else
4837 {
4838 /* Since there's no PLT entry, Validate that this is
4839 locally defined. */
4840 BFD_ASSERT (undef_weak_ref || sym_sec->output_section != NULL);
4841
4842 /* If the symbol is undef_weak, we shouldn't be trying
4843 to call it. There's every chance that we'd wind up
4844 with an out-of-range fixup here. Don't bother setting
4845 any value at all. */
4846 if (undef_weak_ref)
4847 continue;
4848 }
4849 goto finish_pcrel;
4850
4851 case R_IA64_PCREL21BI:
4852 case R_IA64_PCREL21F:
4853 case R_IA64_PCREL21M:
4854 case R_IA64_PCREL22:
4855 case R_IA64_PCREL64I:
4856 /* The PCREL21BI reloc is specifically not intended for use with
4857 dynamic relocs. PCREL21F and PCREL21M are used for speculation
4858 fixup code, and thus probably ought not be dynamic. The
4859 PCREL22 and PCREL64I relocs aren't emitted as dynamic relocs. */
4860 if (dynamic_symbol_p)
4861 {
4862 const char *msg;
4863
4864 if (r_type == R_IA64_PCREL21BI)
4865 msg = _("%B: @internal branch to dynamic symbol %s");
4866 else if (r_type == R_IA64_PCREL21F || r_type == R_IA64_PCREL21M)
4867 msg = _("%B: speculation fixup to dynamic symbol %s");
4868 else
4869 msg = _("%B: @pcrel relocation against dynamic symbol %s");
4870 (*_bfd_error_handler) (msg, input_bfd,
4871 h ? h->root.root.string
4872 : bfd_elf_sym_name (input_bfd,
4873 symtab_hdr,
4874 sym,
4875 sym_sec));
4876 ret_val = FALSE;
4877 continue;
4878 }
4879 goto finish_pcrel;
4880
4881 finish_pcrel:
4882 /* Make pc-relative. */
4883 value -= (input_section->output_section->vma
4884 + input_section->output_offset
4885 + rel->r_offset) & ~ (bfd_vma) 0x3;
4886 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4887 break;
4888
4889 case R_IA64_SEGREL32MSB:
4890 case R_IA64_SEGREL32LSB:
4891 case R_IA64_SEGREL64MSB:
4892 case R_IA64_SEGREL64LSB:
4893 {
4894 struct elf_segment_map *m;
4895 Elf_Internal_Phdr *p;
4896
4897 /* Find the segment that contains the output_section. */
4898 for (m = elf_tdata (output_bfd)->segment_map,
4899 p = elf_tdata (output_bfd)->phdr;
4900 m != NULL;
4901 m = m->next, p++)
4902 {
4903 int i;
4904 for (i = m->count - 1; i >= 0; i--)
4905 if (m->sections[i] == input_section->output_section)
4906 break;
4907 if (i >= 0)
4908 break;
4909 }
4910
4911 if (m == NULL)
4912 {
4913 r = bfd_reloc_notsupported;
4914 }
4915 else
4916 {
4917 /* The VMA of the segment is the vaddr of the associated
4918 program header. */
4919 if (value > p->p_vaddr)
4920 value -= p->p_vaddr;
4921 else
4922 value = 0;
4923 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4924 }
4925 break;
4926 }
4927
4928 case R_IA64_SECREL32MSB:
4929 case R_IA64_SECREL32LSB:
4930 case R_IA64_SECREL64MSB:
4931 case R_IA64_SECREL64LSB:
4932 /* Make output-section relative to section where the symbol
4933 is defined. PR 475 */
4934 if (sym_sec)
4935 value -= sym_sec->output_section->vma;
4936 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4937 break;
4938
4939 case R_IA64_IPLTMSB:
4940 case R_IA64_IPLTLSB:
4941 /* Install a dynamic relocation for this reloc. */
4942 if ((dynamic_symbol_p || info->shared)
4943 && (input_section->flags & SEC_ALLOC) != 0)
4944 {
4945 BFD_ASSERT (srel != NULL);
4946
4947 /* If we don't need dynamic symbol lookup, install two
4948 RELATIVE relocations. */
4949 if (!dynamic_symbol_p)
4950 {
4951 unsigned int dyn_r_type;
4952
4953 if (r_type == R_IA64_IPLTMSB)
4954 dyn_r_type = R_IA64_REL64MSB;
4955 else
4956 dyn_r_type = R_IA64_REL64LSB;
4957
4958 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4959 input_section,
4960 srel, rel->r_offset,
4961 dyn_r_type, 0, value);
4962 elfNN_ia64_install_dyn_reloc (output_bfd, info,
4963 input_section,
4964 srel, rel->r_offset + 8,
4965 dyn_r_type, 0, gp_val);
4966 }
4967 else
4968 elfNN_ia64_install_dyn_reloc (output_bfd, info, input_section,
4969 srel, rel->r_offset, r_type,
4970 h->dynindx, rel->r_addend);
4971 }
4972
4973 if (r_type == R_IA64_IPLTMSB)
4974 r_type = R_IA64_DIR64MSB;
4975 else
4976 r_type = R_IA64_DIR64LSB;
4977 elfNN_ia64_install_value (hit_addr, value, r_type);
4978 r = elfNN_ia64_install_value (hit_addr + 8, gp_val, r_type);
4979 break;
4980
4981 case R_IA64_TPREL14:
4982 case R_IA64_TPREL22:
4983 case R_IA64_TPREL64I:
4984 value -= elfNN_ia64_tprel_base (info);
4985 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4986 break;
4987
4988 case R_IA64_DTPREL14:
4989 case R_IA64_DTPREL22:
4990 case R_IA64_DTPREL64I:
4991 case R_IA64_DTPREL32LSB:
4992 case R_IA64_DTPREL32MSB:
4993 case R_IA64_DTPREL64LSB:
4994 case R_IA64_DTPREL64MSB:
4995 value -= elfNN_ia64_dtprel_base (info);
4996 r = elfNN_ia64_install_value (hit_addr, value, r_type);
4997 break;
4998
4999 case R_IA64_LTOFF_TPREL22:
5000 case R_IA64_LTOFF_DTPMOD22:
5001 case R_IA64_LTOFF_DTPREL22:
5002 {
5003 int got_r_type;
5004 long dynindx = h ? h->dynindx : -1;
5005 bfd_vma r_addend = rel->r_addend;
5006
5007 switch (r_type)
5008 {
5009 default:
5010 case R_IA64_LTOFF_TPREL22:
5011 if (!dynamic_symbol_p)
5012 {
5013 if (!info->shared)
5014 value -= elfNN_ia64_tprel_base (info);
5015 else
5016 {
5017 r_addend += value - elfNN_ia64_dtprel_base (info);
5018 dynindx = 0;
5019 }
5020 }
5021 got_r_type = R_IA64_TPREL64LSB;
5022 break;
5023 case R_IA64_LTOFF_DTPMOD22:
5024 if (!dynamic_symbol_p && !info->shared)
5025 value = 1;
5026 got_r_type = R_IA64_DTPMOD64LSB;
5027 break;
5028 case R_IA64_LTOFF_DTPREL22:
5029 if (!dynamic_symbol_p)
5030 value -= elfNN_ia64_dtprel_base (info);
5031 got_r_type = R_IA64_DTPRELNNLSB;
5032 break;
5033 }
5034 dyn_i = get_dyn_sym_info (ia64_info, h, input_bfd, rel, FALSE);
5035 value = set_got_entry (input_bfd, info, dyn_i, dynindx, r_addend,
5036 value, got_r_type);
5037 value -= gp_val;
5038 r = elfNN_ia64_install_value (hit_addr, value, r_type);
5039 }
5040 break;
5041
5042 default:
5043 r = bfd_reloc_notsupported;
5044 break;
5045 }
5046
5047 switch (r)
5048 {
5049 case bfd_reloc_ok:
5050 break;
5051
5052 case bfd_reloc_undefined:
5053 /* This can happen for global table relative relocs if
5054 __gp is undefined. This is a panic situation so we
5055 don't try to continue. */
5056 (*info->callbacks->undefined_symbol)
5057 (info, "__gp", input_bfd, input_section, rel->r_offset, 1);
5058 return FALSE;
5059
5060 case bfd_reloc_notsupported:
5061 {
5062 const char *name;
5063
5064 if (h)
5065 name = h->root.root.string;
5066 else
5067 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5068 sym_sec);
5069 if (!(*info->callbacks->warning) (info, _("unsupported reloc"),
5070 name, input_bfd,
5071 input_section, rel->r_offset))
5072 return FALSE;
5073 ret_val = FALSE;
5074 }
5075 break;
5076
5077 case bfd_reloc_dangerous:
5078 case bfd_reloc_outofrange:
5079 case bfd_reloc_overflow:
5080 default:
5081 {
5082 const char *name;
5083
5084 if (h)
5085 name = h->root.root.string;
5086 else
5087 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym,
5088 sym_sec);
5089
5090 switch (r_type)
5091 {
5092 case R_IA64_PCREL21B:
5093 case R_IA64_PCREL21BI:
5094 case R_IA64_PCREL21M:
5095 case R_IA64_PCREL21F:
5096 if (is_elf_hash_table (info->hash))
5097 {
5098 /* Relaxtion is always performed for ELF output.
5099 Overflow failures for those relocations mean
5100 that the section is too big to relax. */
5101 (*_bfd_error_handler)
5102 (_("%B: Can't relax br (%s) to `%s' at 0x%lx in section `%A' with size 0x%lx (> 0x1000000)."),
5103 input_bfd, input_section, howto->name, name,
5104 rel->r_offset, input_section->size);
5105 break;
5106 }
5107 default:
5108 if (!(*info->callbacks->reloc_overflow) (info,
5109 &h->root,
5110 name,
5111 howto->name,
5112 (bfd_vma) 0,
5113 input_bfd,
5114 input_section,
5115 rel->r_offset))
5116 return FALSE;
5117 break;
5118 }
5119
5120 ret_val = FALSE;
5121 }
5122 break;
5123 }
5124 }
5125
5126 return ret_val;
5127 }
5128
5129 static bfd_boolean
5130 elfNN_ia64_finish_dynamic_symbol (bfd *output_bfd,
5131 struct bfd_link_info *info,
5132 struct elf_link_hash_entry *h,
5133 Elf_Internal_Sym *sym)
5134 {
5135 struct elfNN_ia64_link_hash_table *ia64_info;
5136 struct elfNN_ia64_dyn_sym_info *dyn_i;
5137
5138 ia64_info = elfNN_ia64_hash_table (info);
5139 dyn_i = get_dyn_sym_info (ia64_info, h, NULL, NULL, FALSE);
5140
5141 /* Fill in the PLT data, if required. */
5142 if (dyn_i && dyn_i->want_plt)
5143 {
5144 Elf_Internal_Rela outrel;
5145 bfd_byte *loc;
5146 asection *plt_sec;
5147 bfd_vma plt_addr, pltoff_addr, gp_val, index;
5148
5149 gp_val = _bfd_get_gp_value (output_bfd);
5150
5151 /* Initialize the minimal PLT entry. */
5152
5153 index = (dyn_i->plt_offset - PLT_HEADER_SIZE) / PLT_MIN_ENTRY_SIZE;
5154 plt_sec = ia64_info->plt_sec;
5155 loc = plt_sec->contents + dyn_i->plt_offset;
5156
5157 memcpy (loc, plt_min_entry, PLT_MIN_ENTRY_SIZE);
5158 elfNN_ia64_install_value (loc, index, R_IA64_IMM22);
5159 elfNN_ia64_install_value (loc+2, -dyn_i->plt_offset, R_IA64_PCREL21B);
5160
5161 plt_addr = (plt_sec->output_section->vma
5162 + plt_sec->output_offset
5163 + dyn_i->plt_offset);
5164 pltoff_addr = set_pltoff_entry (output_bfd, info, dyn_i, plt_addr, TRUE);
5165
5166 /* Initialize the FULL PLT entry, if needed. */
5167 if (dyn_i->want_plt2)
5168 {
5169 loc = plt_sec->contents + dyn_i->plt2_offset;
5170
5171 memcpy (loc, plt_full_entry, PLT_FULL_ENTRY_SIZE);
5172 elfNN_ia64_install_value (loc, pltoff_addr - gp_val, R_IA64_IMM22);
5173
5174 /* Mark the symbol as undefined, rather than as defined in the
5175 plt section. Leave the value alone. */
5176 /* ??? We didn't redefine it in adjust_dynamic_symbol in the
5177 first place. But perhaps elflink.c did some for us. */
5178 if (!h->def_regular)
5179 sym->st_shndx = SHN_UNDEF;
5180 }
5181
5182 /* Create the dynamic relocation. */
5183 outrel.r_offset = pltoff_addr;
5184 if (bfd_little_endian (output_bfd))
5185 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTLSB);
5186 else
5187 outrel.r_info = ELFNN_R_INFO (h->dynindx, R_IA64_IPLTMSB);
5188 outrel.r_addend = 0;
5189
5190 /* This is fun. In the .IA_64.pltoff section, we've got entries
5191 that correspond both to real PLT entries, and those that
5192 happened to resolve to local symbols but need to be created
5193 to satisfy @pltoff relocations. The .rela.IA_64.pltoff
5194 relocations for the real PLT should come at the end of the
5195 section, so that they can be indexed by plt entry at runtime.
5196
5197 We emitted all of the relocations for the non-PLT @pltoff
5198 entries during relocate_section. So we can consider the
5199 existing sec->reloc_count to be the base of the array of
5200 PLT relocations. */
5201
5202 loc = ia64_info->rel_pltoff_sec->contents;
5203 loc += ((ia64_info->rel_pltoff_sec->reloc_count + index)
5204 * sizeof (ElfNN_External_Rela));
5205 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc);
5206 }
5207
5208 /* Mark some specially defined symbols as absolute. */
5209 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
5210 || h == ia64_info->root.hgot
5211 || h == ia64_info->root.hplt)
5212 sym->st_shndx = SHN_ABS;
5213
5214 return TRUE;
5215 }
5216
5217 static bfd_boolean
5218 elfNN_ia64_finish_dynamic_sections (bfd *abfd,
5219 struct bfd_link_info *info)
5220 {
5221 struct elfNN_ia64_link_hash_table *ia64_info;
5222 bfd *dynobj;
5223
5224 ia64_info = elfNN_ia64_hash_table (info);
5225 dynobj = ia64_info->root.dynobj;
5226
5227 if (elf_hash_table (info)->dynamic_sections_created)
5228 {
5229 ElfNN_External_Dyn *dyncon, *dynconend;
5230 asection *sdyn, *sgotplt;
5231 bfd_vma gp_val;
5232
5233 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
5234 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
5235 BFD_ASSERT (sdyn != NULL);
5236 dyncon = (ElfNN_External_Dyn *) sdyn->contents;
5237 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size);
5238
5239 gp_val = _bfd_get_gp_value (abfd);
5240
5241 for (; dyncon < dynconend; dyncon++)
5242 {
5243 Elf_Internal_Dyn dyn;
5244
5245 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn);
5246
5247 switch (dyn.d_tag)
5248 {
5249 case DT_PLTGOT:
5250 dyn.d_un.d_ptr = gp_val;
5251 break;
5252
5253 case DT_PLTRELSZ:
5254 dyn.d_un.d_val = (ia64_info->minplt_entries
5255 * sizeof (ElfNN_External_Rela));
5256 break;
5257
5258 case DT_JMPREL:
5259 /* See the comment above in finish_dynamic_symbol. */
5260 dyn.d_un.d_ptr = (ia64_info->rel_pltoff_sec->output_section->vma
5261 + ia64_info->rel_pltoff_sec->output_offset
5262 + (ia64_info->rel_pltoff_sec->reloc_count
5263 * sizeof (ElfNN_External_Rela)));
5264 break;
5265
5266 case DT_IA_64_PLT_RESERVE:
5267 dyn.d_un.d_ptr = (sgotplt->output_section->vma
5268 + sgotplt->output_offset);
5269 break;
5270
5271 case DT_RELASZ:
5272 /* Do not have RELASZ include JMPREL. This makes things
5273 easier on ld.so. This is not what the rest of BFD set up. */
5274 dyn.d_un.d_val -= (ia64_info->minplt_entries
5275 * sizeof (ElfNN_External_Rela));
5276 break;
5277 }
5278
5279 bfd_elfNN_swap_dyn_out (abfd, &dyn, dyncon);
5280 }
5281
5282 /* Initialize the PLT0 entry. */
5283 if (ia64_info->plt_sec)
5284 {
5285 bfd_byte *loc = ia64_info->plt_sec->contents;
5286 bfd_vma pltres;
5287
5288 memcpy (loc, plt_header, PLT_HEADER_SIZE);
5289
5290 pltres = (sgotplt->output_section->vma
5291 + sgotplt->output_offset
5292 - gp_val);
5293
5294 elfNN_ia64_install_value (loc+1, pltres, R_IA64_GPREL22);
5295 }
5296 }
5297
5298 return TRUE;
5299 }
5300 \f
5301 /* ELF file flag handling: */
5302
5303 /* Function to keep IA-64 specific file flags. */
5304 static bfd_boolean
5305 elfNN_ia64_set_private_flags (bfd *abfd, flagword flags)
5306 {
5307 BFD_ASSERT (!elf_flags_init (abfd)
5308 || elf_elfheader (abfd)->e_flags == flags);
5309
5310 elf_elfheader (abfd)->e_flags = flags;
5311 elf_flags_init (abfd) = TRUE;
5312 return TRUE;
5313 }
5314
5315 /* Merge backend specific data from an object file to the output
5316 object file when linking. */
5317 static bfd_boolean
5318 elfNN_ia64_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
5319 {
5320 flagword out_flags;
5321 flagword in_flags;
5322 bfd_boolean ok = TRUE;
5323
5324 /* Don't even pretend to support mixed-format linking. */
5325 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5326 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5327 return FALSE;
5328
5329 in_flags = elf_elfheader (ibfd)->e_flags;
5330 out_flags = elf_elfheader (obfd)->e_flags;
5331
5332 if (! elf_flags_init (obfd))
5333 {
5334 elf_flags_init (obfd) = TRUE;
5335 elf_elfheader (obfd)->e_flags = in_flags;
5336
5337 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
5338 && bfd_get_arch_info (obfd)->the_default)
5339 {
5340 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
5341 bfd_get_mach (ibfd));
5342 }
5343
5344 return TRUE;
5345 }
5346
5347 /* Check flag compatibility. */
5348 if (in_flags == out_flags)
5349 return TRUE;
5350
5351 /* Output has EF_IA_64_REDUCEDFP set only if all inputs have it set. */
5352 if (!(in_flags & EF_IA_64_REDUCEDFP) && (out_flags & EF_IA_64_REDUCEDFP))
5353 elf_elfheader (obfd)->e_flags &= ~EF_IA_64_REDUCEDFP;
5354
5355 if ((in_flags & EF_IA_64_TRAPNIL) != (out_flags & EF_IA_64_TRAPNIL))
5356 {
5357 (*_bfd_error_handler)
5358 (_("%B: linking trap-on-NULL-dereference with non-trapping files"),
5359 ibfd);
5360
5361 bfd_set_error (bfd_error_bad_value);
5362 ok = FALSE;
5363 }
5364 if ((in_flags & EF_IA_64_BE) != (out_flags & EF_IA_64_BE))
5365 {
5366 (*_bfd_error_handler)
5367 (_("%B: linking big-endian files with little-endian files"),
5368 ibfd);
5369
5370 bfd_set_error (bfd_error_bad_value);
5371 ok = FALSE;
5372 }
5373 if ((in_flags & EF_IA_64_ABI64) != (out_flags & EF_IA_64_ABI64))
5374 {
5375 (*_bfd_error_handler)
5376 (_("%B: linking 64-bit files with 32-bit files"),
5377 ibfd);
5378
5379 bfd_set_error (bfd_error_bad_value);
5380 ok = FALSE;
5381 }
5382 if ((in_flags & EF_IA_64_CONS_GP) != (out_flags & EF_IA_64_CONS_GP))
5383 {
5384 (*_bfd_error_handler)
5385 (_("%B: linking constant-gp files with non-constant-gp files"),
5386 ibfd);
5387
5388 bfd_set_error (bfd_error_bad_value);
5389 ok = FALSE;
5390 }
5391 if ((in_flags & EF_IA_64_NOFUNCDESC_CONS_GP)
5392 != (out_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
5393 {
5394 (*_bfd_error_handler)
5395 (_("%B: linking auto-pic files with non-auto-pic files"),
5396 ibfd);
5397
5398 bfd_set_error (bfd_error_bad_value);
5399 ok = FALSE;
5400 }
5401
5402 return ok;
5403 }
5404
5405 static bfd_boolean
5406 elfNN_ia64_print_private_bfd_data (bfd *abfd, PTR ptr)
5407 {
5408 FILE *file = (FILE *) ptr;
5409 flagword flags = elf_elfheader (abfd)->e_flags;
5410
5411 BFD_ASSERT (abfd != NULL && ptr != NULL);
5412
5413 fprintf (file, "private flags = %s%s%s%s%s%s%s%s\n",
5414 (flags & EF_IA_64_TRAPNIL) ? "TRAPNIL, " : "",
5415 (flags & EF_IA_64_EXT) ? "EXT, " : "",
5416 (flags & EF_IA_64_BE) ? "BE, " : "LE, ",
5417 (flags & EF_IA_64_REDUCEDFP) ? "REDUCEDFP, " : "",
5418 (flags & EF_IA_64_CONS_GP) ? "CONS_GP, " : "",
5419 (flags & EF_IA_64_NOFUNCDESC_CONS_GP) ? "NOFUNCDESC_CONS_GP, " : "",
5420 (flags & EF_IA_64_ABSOLUTE) ? "ABSOLUTE, " : "",
5421 (flags & EF_IA_64_ABI64) ? "ABI64" : "ABI32");
5422
5423 _bfd_elf_print_private_bfd_data (abfd, ptr);
5424 return TRUE;
5425 }
5426
5427 static enum elf_reloc_type_class
5428 elfNN_ia64_reloc_type_class (const Elf_Internal_Rela *rela)
5429 {
5430 switch ((int) ELFNN_R_TYPE (rela->r_info))
5431 {
5432 case R_IA64_REL32MSB:
5433 case R_IA64_REL32LSB:
5434 case R_IA64_REL64MSB:
5435 case R_IA64_REL64LSB:
5436 return reloc_class_relative;
5437 case R_IA64_IPLTMSB:
5438 case R_IA64_IPLTLSB:
5439 return reloc_class_plt;
5440 case R_IA64_COPY:
5441 return reloc_class_copy;
5442 default:
5443 return reloc_class_normal;
5444 }
5445 }
5446
5447 static const struct bfd_elf_special_section elfNN_ia64_special_sections[] =
5448 {
5449 { STRING_COMMA_LEN (".sbss"), -1, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5450 { STRING_COMMA_LEN (".sdata"), -1, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_IA_64_SHORT },
5451 { NULL, 0, 0, 0, 0 }
5452 };
5453
5454 static bfd_boolean
5455 elfNN_ia64_object_p (bfd *abfd)
5456 {
5457 asection *sec;
5458 asection *group, *unwi, *unw;
5459 flagword flags;
5460 const char *name;
5461 char *unwi_name, *unw_name;
5462 bfd_size_type amt;
5463
5464 if (abfd->flags & DYNAMIC)
5465 return TRUE;
5466
5467 /* Flags for fake group section. */
5468 flags = (SEC_LINKER_CREATED | SEC_GROUP | SEC_LINK_ONCE
5469 | SEC_EXCLUDE);
5470
5471 /* We add a fake section group for each .gnu.linkonce.t.* section,
5472 which isn't in a section group, and its unwind sections. */
5473 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5474 {
5475 if (elf_sec_group (sec) == NULL
5476 && ((sec->flags & (SEC_LINK_ONCE | SEC_CODE | SEC_GROUP))
5477 == (SEC_LINK_ONCE | SEC_CODE))
5478 && CONST_STRNEQ (sec->name, ".gnu.linkonce.t."))
5479 {
5480 name = sec->name + 16;
5481
5482 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unwi.");
5483 unwi_name = bfd_alloc (abfd, amt);
5484 if (!unwi_name)
5485 return FALSE;
5486
5487 strcpy (stpcpy (unwi_name, ".gnu.linkonce.ia64unwi."), name);
5488 unwi = bfd_get_section_by_name (abfd, unwi_name);
5489
5490 amt = strlen (name) + sizeof (".gnu.linkonce.ia64unw.");
5491 unw_name = bfd_alloc (abfd, amt);
5492 if (!unw_name)
5493 return FALSE;
5494
5495 strcpy (stpcpy (unw_name, ".gnu.linkonce.ia64unw."), name);
5496 unw = bfd_get_section_by_name (abfd, unw_name);
5497
5498 /* We need to create a fake group section for it and its
5499 unwind sections. */
5500 group = bfd_make_section_anyway_with_flags (abfd, name,
5501 flags);
5502 if (group == NULL)
5503 return FALSE;
5504
5505 /* Move the fake group section to the beginning. */
5506 bfd_section_list_remove (abfd, group);
5507 bfd_section_list_prepend (abfd, group);
5508
5509 elf_next_in_group (group) = sec;
5510
5511 elf_group_name (sec) = name;
5512 elf_next_in_group (sec) = sec;
5513 elf_sec_group (sec) = group;
5514
5515 if (unwi)
5516 {
5517 elf_group_name (unwi) = name;
5518 elf_next_in_group (unwi) = sec;
5519 elf_next_in_group (sec) = unwi;
5520 elf_sec_group (unwi) = group;
5521 }
5522
5523 if (unw)
5524 {
5525 elf_group_name (unw) = name;
5526 if (unwi)
5527 {
5528 elf_next_in_group (unw) = elf_next_in_group (unwi);
5529 elf_next_in_group (unwi) = unw;
5530 }
5531 else
5532 {
5533 elf_next_in_group (unw) = sec;
5534 elf_next_in_group (sec) = unw;
5535 }
5536 elf_sec_group (unw) = group;
5537 }
5538
5539 /* Fake SHT_GROUP section header. */
5540 elf_section_data (group)->this_hdr.bfd_section = group;
5541 elf_section_data (group)->this_hdr.sh_type = SHT_GROUP;
5542 }
5543 }
5544 return TRUE;
5545 }
5546
5547 static bfd_boolean
5548 elfNN_ia64_hpux_vec (const bfd_target *vec)
5549 {
5550 extern const bfd_target bfd_elfNN_ia64_hpux_big_vec;
5551 return (vec == & bfd_elfNN_ia64_hpux_big_vec);
5552 }
5553
5554 static void
5555 elfNN_hpux_post_process_headers (bfd *abfd,
5556 struct bfd_link_info *info ATTRIBUTE_UNUSED)
5557 {
5558 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5559
5560 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5561 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
5562 }
5563
5564 static bfd_boolean
5565 elfNN_hpux_backend_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
5566 asection *sec, int *retval)
5567 {
5568 if (bfd_is_com_section (sec))
5569 {
5570 *retval = SHN_IA_64_ANSI_COMMON;
5571 return TRUE;
5572 }
5573 return FALSE;
5574 }
5575
5576 static void
5577 elfNN_hpux_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
5578 asymbol *asym)
5579 {
5580 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
5581
5582 switch (elfsym->internal_elf_sym.st_shndx)
5583 {
5584 case SHN_IA_64_ANSI_COMMON:
5585 asym->section = bfd_com_section_ptr;
5586 asym->value = elfsym->internal_elf_sym.st_size;
5587 asym->flags &= ~BSF_GLOBAL;
5588 break;
5589 }
5590 }
5591
5592 \f
5593 #define TARGET_LITTLE_SYM bfd_elfNN_ia64_little_vec
5594 #define TARGET_LITTLE_NAME "elfNN-ia64-little"
5595 #define TARGET_BIG_SYM bfd_elfNN_ia64_big_vec
5596 #define TARGET_BIG_NAME "elfNN-ia64-big"
5597 #define ELF_ARCH bfd_arch_ia64
5598 #define ELF_MACHINE_CODE EM_IA_64
5599 #define ELF_MACHINE_ALT1 1999 /* EAS2.3 */
5600 #define ELF_MACHINE_ALT2 1998 /* EAS2.2 */
5601 #define ELF_MAXPAGESIZE 0x10000 /* 64KB */
5602 #define ELF_COMMONPAGESIZE 0x4000 /* 16KB */
5603
5604 #define elf_backend_section_from_shdr \
5605 elfNN_ia64_section_from_shdr
5606 #define elf_backend_section_flags \
5607 elfNN_ia64_section_flags
5608 #define elf_backend_fake_sections \
5609 elfNN_ia64_fake_sections
5610 #define elf_backend_final_write_processing \
5611 elfNN_ia64_final_write_processing
5612 #define elf_backend_add_symbol_hook \
5613 elfNN_ia64_add_symbol_hook
5614 #define elf_backend_additional_program_headers \
5615 elfNN_ia64_additional_program_headers
5616 #define elf_backend_modify_segment_map \
5617 elfNN_ia64_modify_segment_map
5618 #define elf_backend_modify_program_headers \
5619 elfNN_ia64_modify_program_headers
5620 #define elf_info_to_howto \
5621 elfNN_ia64_info_to_howto
5622
5623 #define bfd_elfNN_bfd_reloc_type_lookup \
5624 elfNN_ia64_reloc_type_lookup
5625 #define bfd_elfNN_bfd_reloc_name_lookup \
5626 elfNN_ia64_reloc_name_lookup
5627 #define bfd_elfNN_bfd_is_local_label_name \
5628 elfNN_ia64_is_local_label_name
5629 #define bfd_elfNN_bfd_relax_section \
5630 elfNN_ia64_relax_section
5631
5632 #define elf_backend_object_p \
5633 elfNN_ia64_object_p
5634
5635 /* Stuff for the BFD linker: */
5636 #define bfd_elfNN_bfd_link_hash_table_create \
5637 elfNN_ia64_hash_table_create
5638 #define bfd_elfNN_bfd_link_hash_table_free \
5639 elfNN_ia64_hash_table_free
5640 #define elf_backend_create_dynamic_sections \
5641 elfNN_ia64_create_dynamic_sections
5642 #define elf_backend_check_relocs \
5643 elfNN_ia64_check_relocs
5644 #define elf_backend_adjust_dynamic_symbol \
5645 elfNN_ia64_adjust_dynamic_symbol
5646 #define elf_backend_size_dynamic_sections \
5647 elfNN_ia64_size_dynamic_sections
5648 #define elf_backend_omit_section_dynsym \
5649 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5650 #define elf_backend_relocate_section \
5651 elfNN_ia64_relocate_section
5652 #define elf_backend_finish_dynamic_symbol \
5653 elfNN_ia64_finish_dynamic_symbol
5654 #define elf_backend_finish_dynamic_sections \
5655 elfNN_ia64_finish_dynamic_sections
5656 #define bfd_elfNN_bfd_final_link \
5657 elfNN_ia64_final_link
5658
5659 #define bfd_elfNN_bfd_merge_private_bfd_data \
5660 elfNN_ia64_merge_private_bfd_data
5661 #define bfd_elfNN_bfd_set_private_flags \
5662 elfNN_ia64_set_private_flags
5663 #define bfd_elfNN_bfd_print_private_bfd_data \
5664 elfNN_ia64_print_private_bfd_data
5665
5666 #define elf_backend_plt_readonly 1
5667 #define elf_backend_want_plt_sym 0
5668 #define elf_backend_plt_alignment 5
5669 #define elf_backend_got_header_size 0
5670 #define elf_backend_want_got_plt 1
5671 #define elf_backend_may_use_rel_p 1
5672 #define elf_backend_may_use_rela_p 1
5673 #define elf_backend_default_use_rela_p 1
5674 #define elf_backend_want_dynbss 0
5675 #define elf_backend_copy_indirect_symbol elfNN_ia64_hash_copy_indirect
5676 #define elf_backend_hide_symbol elfNN_ia64_hash_hide_symbol
5677 #define elf_backend_fixup_symbol _bfd_elf_link_hash_fixup_symbol
5678 #define elf_backend_reloc_type_class elfNN_ia64_reloc_type_class
5679 #define elf_backend_rela_normal 1
5680 #define elf_backend_special_sections elfNN_ia64_special_sections
5681 #define elf_backend_default_execstack 0
5682
5683 /* FIXME: PR 290: The Intel C compiler generates SHT_IA_64_UNWIND with
5684 SHF_LINK_ORDER. But it doesn't set the sh_link or sh_info fields.
5685 We don't want to flood users with so many error messages. We turn
5686 off the warning for now. It will be turned on later when the Intel
5687 compiler is fixed. */
5688 #define elf_backend_link_order_error_handler NULL
5689
5690 #include "elfNN-target.h"
5691
5692 /* HPUX-specific vectors. */
5693
5694 #undef TARGET_LITTLE_SYM
5695 #undef TARGET_LITTLE_NAME
5696 #undef TARGET_BIG_SYM
5697 #define TARGET_BIG_SYM bfd_elfNN_ia64_hpux_big_vec
5698 #undef TARGET_BIG_NAME
5699 #define TARGET_BIG_NAME "elfNN-ia64-hpux-big"
5700
5701 /* These are HP-UX specific functions. */
5702
5703 #undef elf_backend_post_process_headers
5704 #define elf_backend_post_process_headers elfNN_hpux_post_process_headers
5705
5706 #undef elf_backend_section_from_bfd_section
5707 #define elf_backend_section_from_bfd_section elfNN_hpux_backend_section_from_bfd_section
5708
5709 #undef elf_backend_symbol_processing
5710 #define elf_backend_symbol_processing elfNN_hpux_backend_symbol_processing
5711
5712 #undef elf_backend_want_p_paddr_set_to_zero
5713 #define elf_backend_want_p_paddr_set_to_zero 1
5714
5715 #undef ELF_MAXPAGESIZE
5716 #define ELF_MAXPAGESIZE 0x1000 /* 4K */
5717 #undef ELF_COMMONPAGESIZE
5718 #undef ELF_OSABI
5719 #define ELF_OSABI ELFOSABI_HPUX
5720
5721 #undef elfNN_bed
5722 #define elfNN_bed elfNN_ia64_hpux_bed
5723
5724 #include "elfNN-target.h"
5725
5726 #undef elf_backend_want_p_paddr_set_to_zero