]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
MIPS: Add Imagination interAptiv MR2 MIPS32r3 processor support
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40
41 /* Get the ECOFF swapping routines. */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46
47 #include "hashtab.h"
48
49 /* Types of TLS GOT entry. */
50 enum mips_got_tls_type {
51 GOT_TLS_NONE,
52 GOT_TLS_GD,
53 GOT_TLS_LDM,
54 GOT_TLS_IE
55 };
56
57 /* This structure is used to hold information about one GOT entry.
58 There are four types of entry:
59
60 (1) an absolute address
61 requires: abfd == NULL
62 fields: d.address
63
64 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 fields: abfd, symndx, d.addend, tls_type
67
68 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 requires: abfd != NULL, symndx == -1
70 fields: d.h, tls_type
71
72 (4) a TLS LDM slot
73 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 fields: none; there's only one of these per GOT. */
75 struct mips_got_entry
76 {
77 /* One input bfd that needs the GOT entry. */
78 bfd *abfd;
79 /* The index of the symbol, as stored in the relocation r_info, if
80 we have a local symbol; -1 otherwise. */
81 long symndx;
82 union
83 {
84 /* If abfd == NULL, an address that must be stored in the got. */
85 bfd_vma address;
86 /* If abfd != NULL && symndx != -1, the addend of the relocation
87 that should be added to the symbol value. */
88 bfd_vma addend;
89 /* If abfd != NULL && symndx == -1, the hash table entry
90 corresponding to a symbol in the GOT. The symbol's entry
91 is in the local area if h->global_got_area is GGA_NONE,
92 otherwise it is in the global area. */
93 struct mips_elf_link_hash_entry *h;
94 } d;
95
96 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
97 symbol entry with r_symndx == 0. */
98 unsigned char tls_type;
99
100 /* True if we have filled in the GOT contents for a TLS entry,
101 and created the associated relocations. */
102 unsigned char tls_initialized;
103
104 /* The offset from the beginning of the .got section to the entry
105 corresponding to this symbol+addend. If it's a global symbol
106 whose offset is yet to be decided, it's going to be -1. */
107 long gotidx;
108 };
109
110 /* This structure represents a GOT page reference from an input bfd.
111 Each instance represents a symbol + ADDEND, where the representation
112 of the symbol depends on whether it is local to the input bfd.
113 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115
116 Page references with SYMNDX >= 0 always become page references
117 in the output. Page references with SYMNDX < 0 only become page
118 references if the symbol binds locally; in other cases, the page
119 reference decays to a global GOT reference. */
120 struct mips_got_page_ref
121 {
122 long symndx;
123 union
124 {
125 struct mips_elf_link_hash_entry *h;
126 bfd *abfd;
127 } u;
128 bfd_vma addend;
129 };
130
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132 The structures form a non-overlapping list that is sorted by increasing
133 MIN_ADDEND. */
134 struct mips_got_page_range
135 {
136 struct mips_got_page_range *next;
137 bfd_signed_vma min_addend;
138 bfd_signed_vma max_addend;
139 };
140
141 /* This structure describes the range of addends that are applied to page
142 relocations against a given section. */
143 struct mips_got_page_entry
144 {
145 /* The section that these entries are based on. */
146 asection *sec;
147 /* The ranges for this page entry. */
148 struct mips_got_page_range *ranges;
149 /* The maximum number of page entries needed for RANGES. */
150 bfd_vma num_pages;
151 };
152
153 /* This structure is used to hold .got information when linking. */
154
155 struct mips_got_info
156 {
157 /* The number of global .got entries. */
158 unsigned int global_gotno;
159 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
160 unsigned int reloc_only_gotno;
161 /* The number of .got slots used for TLS. */
162 unsigned int tls_gotno;
163 /* The first unused TLS .got entry. Used only during
164 mips_elf_initialize_tls_index. */
165 unsigned int tls_assigned_gotno;
166 /* The number of local .got entries, eventually including page entries. */
167 unsigned int local_gotno;
168 /* The maximum number of page entries needed. */
169 unsigned int page_gotno;
170 /* The number of relocations needed for the GOT entries. */
171 unsigned int relocs;
172 /* The first unused local .got entry. */
173 unsigned int assigned_low_gotno;
174 /* The last unused local .got entry. */
175 unsigned int assigned_high_gotno;
176 /* A hash table holding members of the got. */
177 struct htab *got_entries;
178 /* A hash table holding mips_got_page_ref structures. */
179 struct htab *got_page_refs;
180 /* A hash table of mips_got_page_entry structures. */
181 struct htab *got_page_entries;
182 /* In multi-got links, a pointer to the next got (err, rather, most
183 of the time, it points to the previous got). */
184 struct mips_got_info *next;
185 };
186
187 /* Structure passed when merging bfds' gots. */
188
189 struct mips_elf_got_per_bfd_arg
190 {
191 /* The output bfd. */
192 bfd *obfd;
193 /* The link information. */
194 struct bfd_link_info *info;
195 /* A pointer to the primary got, i.e., the one that's going to get
196 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197 DT_MIPS_GOTSYM. */
198 struct mips_got_info *primary;
199 /* A non-primary got we're trying to merge with other input bfd's
200 gots. */
201 struct mips_got_info *current;
202 /* The maximum number of got entries that can be addressed with a
203 16-bit offset. */
204 unsigned int max_count;
205 /* The maximum number of page entries needed by each got. */
206 unsigned int max_pages;
207 /* The total number of global entries which will live in the
208 primary got and be automatically relocated. This includes
209 those not referenced by the primary GOT but included in
210 the "master" GOT. */
211 unsigned int global_count;
212 };
213
214 /* A structure used to pass information to htab_traverse callbacks
215 when laying out the GOT. */
216
217 struct mips_elf_traverse_got_arg
218 {
219 struct bfd_link_info *info;
220 struct mips_got_info *g;
221 int value;
222 };
223
224 struct _mips_elf_section_data
225 {
226 struct bfd_elf_section_data elf;
227 union
228 {
229 bfd_byte *tdata;
230 } u;
231 };
232
233 #define mips_elf_section_data(sec) \
234 ((struct _mips_elf_section_data *) elf_section_data (sec))
235
236 #define is_mips_elf(bfd) \
237 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
238 && elf_tdata (bfd) != NULL \
239 && elf_object_id (bfd) == MIPS_ELF_DATA)
240
241 /* The ABI says that every symbol used by dynamic relocations must have
242 a global GOT entry. Among other things, this provides the dynamic
243 linker with a free, directly-indexed cache. The GOT can therefore
244 contain symbols that are not referenced by GOT relocations themselves
245 (in other words, it may have symbols that are not referenced by things
246 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247
248 GOT relocations are less likely to overflow if we put the associated
249 GOT entries towards the beginning. We therefore divide the global
250 GOT entries into two areas: "normal" and "reloc-only". Entries in
251 the first area can be used for both dynamic relocations and GP-relative
252 accesses, while those in the "reloc-only" area are for dynamic
253 relocations only.
254
255 These GGA_* ("Global GOT Area") values are organised so that lower
256 values are more general than higher values. Also, non-GGA_NONE
257 values are ordered by the position of the area in the GOT. */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261
262 /* Information about a non-PIC interface to a PIC function. There are
263 two ways of creating these interfaces. The first is to add:
264
265 lui $25,%hi(func)
266 addiu $25,$25,%lo(func)
267
268 immediately before a PIC function "func". The second is to add:
269
270 lui $25,%hi(func)
271 j func
272 addiu $25,$25,%lo(func)
273
274 to a separate trampoline section.
275
276 Stubs of the first kind go in a new section immediately before the
277 target function. Stubs of the second kind go in a single section
278 pointed to by the hash table's "strampoline" field. */
279 struct mips_elf_la25_stub {
280 /* The generated section that contains this stub. */
281 asection *stub_section;
282
283 /* The offset of the stub from the start of STUB_SECTION. */
284 bfd_vma offset;
285
286 /* One symbol for the original function. Its location is available
287 in H->root.root.u.def. */
288 struct mips_elf_link_hash_entry *h;
289 };
290
291 /* Macros for populating a mips_elf_la25_stub. */
292
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL) \
297 (0x41b90000 | (VAL)) /* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL) \
299 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL) \
301 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
302
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304 the dynamic symbols. */
305
306 struct mips_elf_hash_sort_data
307 {
308 /* The symbol in the global GOT with the lowest dynamic symbol table
309 index. */
310 struct elf_link_hash_entry *low;
311 /* The least dynamic symbol table index corresponding to a non-TLS
312 symbol with a GOT entry. */
313 bfd_size_type min_got_dynindx;
314 /* The greatest dynamic symbol table index corresponding to a symbol
315 with a GOT entry that is not referenced (e.g., a dynamic symbol
316 with dynamic relocations pointing to it from non-primary GOTs). */
317 bfd_size_type max_unref_got_dynindx;
318 /* The greatest dynamic symbol table index corresponding to a local
319 symbol. */
320 bfd_size_type max_local_dynindx;
321 /* The greatest dynamic symbol table index corresponding to an external
322 symbol without a GOT entry. */
323 bfd_size_type max_non_got_dynindx;
324 };
325
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327 and one for compressed code, either a MIPS16 or microMIPS one. We
328 keep a separate record of traditional lazy-binding stubs, for easier
329 processing. */
330
331 struct plt_entry
332 {
333 /* Traditional SVR4 stub offset, or -1 if none. */
334 bfd_vma stub_offset;
335
336 /* Standard PLT entry offset, or -1 if none. */
337 bfd_vma mips_offset;
338
339 /* Compressed PLT entry offset, or -1 if none. */
340 bfd_vma comp_offset;
341
342 /* The corresponding .got.plt index, or -1 if none. */
343 bfd_vma gotplt_index;
344
345 /* Whether we need a standard PLT entry. */
346 unsigned int need_mips : 1;
347
348 /* Whether we need a compressed PLT entry. */
349 unsigned int need_comp : 1;
350 };
351
352 /* The MIPS ELF linker needs additional information for each symbol in
353 the global hash table. */
354
355 struct mips_elf_link_hash_entry
356 {
357 struct elf_link_hash_entry root;
358
359 /* External symbol information. */
360 EXTR esym;
361
362 /* The la25 stub we have created for ths symbol, if any. */
363 struct mips_elf_la25_stub *la25_stub;
364
365 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366 this symbol. */
367 unsigned int possibly_dynamic_relocs;
368
369 /* If there is a stub that 32 bit functions should use to call this
370 16 bit function, this points to the section containing the stub. */
371 asection *fn_stub;
372
373 /* If there is a stub that 16 bit functions should use to call this
374 32 bit function, this points to the section containing the stub. */
375 asection *call_stub;
376
377 /* This is like the call_stub field, but it is used if the function
378 being called returns a floating point value. */
379 asection *call_fp_stub;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416
417 /* Does this symbol resolve to a PLT entry? */
418 unsigned int use_plt_entry : 1;
419 };
420
421 /* MIPS ELF linker hash table. */
422
423 struct mips_elf_link_hash_table
424 {
425 struct elf_link_hash_table root;
426
427 /* The number of .rtproc entries. */
428 bfd_size_type procedure_count;
429
430 /* The size of the .compact_rel section (if SGI_COMPAT). */
431 bfd_size_type compact_rel_size;
432
433 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
435 bfd_boolean use_rld_obj_head;
436
437 /* The __rld_map or __rld_obj_head symbol. */
438 struct elf_link_hash_entry *rld_symbol;
439
440 /* This is set if we see any mips16 stub sections. */
441 bfd_boolean mips16_stubs_seen;
442
443 /* True if we can generate copy relocs and PLTs. */
444 bfd_boolean use_plts_and_copy_relocs;
445
446 /* True if we can only use 32-bit microMIPS instructions. */
447 bfd_boolean insn32;
448
449 /* True if we suppress checks for invalid branches between ISA modes. */
450 bfd_boolean ignore_branch_isa;
451
452 /* True if we're generating code for VxWorks. */
453 bfd_boolean is_vxworks;
454
455 /* True if we already reported the small-data section overflow. */
456 bfd_boolean small_data_overflow_reported;
457
458 /* Shortcuts to some dynamic sections, or NULL if they are not
459 being used. */
460 asection *srelplt2;
461 asection *sstubs;
462
463 /* The master GOT information. */
464 struct mips_got_info *got_info;
465
466 /* The global symbol in the GOT with the lowest index in the dynamic
467 symbol table. */
468 struct elf_link_hash_entry *global_gotsym;
469
470 /* The size of the PLT header in bytes. */
471 bfd_vma plt_header_size;
472
473 /* The size of a standard PLT entry in bytes. */
474 bfd_vma plt_mips_entry_size;
475
476 /* The size of a compressed PLT entry in bytes. */
477 bfd_vma plt_comp_entry_size;
478
479 /* The offset of the next standard PLT entry to create. */
480 bfd_vma plt_mips_offset;
481
482 /* The offset of the next compressed PLT entry to create. */
483 bfd_vma plt_comp_offset;
484
485 /* The index of the next .got.plt entry to create. */
486 bfd_vma plt_got_index;
487
488 /* The number of functions that need a lazy-binding stub. */
489 bfd_vma lazy_stub_count;
490
491 /* The size of a function stub entry in bytes. */
492 bfd_vma function_stub_size;
493
494 /* The number of reserved entries at the beginning of the GOT. */
495 unsigned int reserved_gotno;
496
497 /* The section used for mips_elf_la25_stub trampolines.
498 See the comment above that structure for details. */
499 asection *strampoline;
500
501 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502 pairs. */
503 htab_t la25_stubs;
504
505 /* A function FN (NAME, IS, OS) that creates a new input section
506 called NAME and links it to output section OS. If IS is nonnull,
507 the new section should go immediately before it, otherwise it
508 should go at the (current) beginning of OS.
509
510 The function returns the new section on success, otherwise it
511 returns null. */
512 asection *(*add_stub_section) (const char *, asection *, asection *);
513
514 /* Small local sym cache. */
515 struct sym_cache sym_cache;
516
517 /* Is the PLT header compressed? */
518 unsigned int plt_header_is_comp : 1;
519 };
520
521 /* Get the MIPS ELF linker hash table from a link_info structure. */
522
523 #define mips_elf_hash_table(p) \
524 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526
527 /* A structure used to communicate with htab_traverse callbacks. */
528 struct mips_htab_traverse_info
529 {
530 /* The usual link-wide information. */
531 struct bfd_link_info *info;
532 bfd *output_bfd;
533
534 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
535 bfd_boolean error;
536 };
537
538 /* MIPS ELF private object data. */
539
540 struct mips_elf_obj_tdata
541 {
542 /* Generic ELF private object data. */
543 struct elf_obj_tdata root;
544
545 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
546 bfd *abi_fp_bfd;
547
548 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
549 bfd *abi_msa_bfd;
550
551 /* The abiflags for this object. */
552 Elf_Internal_ABIFlags_v0 abiflags;
553 bfd_boolean abiflags_valid;
554
555 /* The GOT requirements of input bfds. */
556 struct mips_got_info *got;
557
558 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
559 included directly in this one, but there's no point to wasting
560 the memory just for the infrequently called find_nearest_line. */
561 struct mips_elf_find_line *find_line_info;
562
563 /* An array of stub sections indexed by symbol number. */
564 asection **local_stubs;
565 asection **local_call_stubs;
566
567 /* The Irix 5 support uses two virtual sections, which represent
568 text/data symbols defined in dynamic objects. */
569 asymbol *elf_data_symbol;
570 asymbol *elf_text_symbol;
571 asection *elf_data_section;
572 asection *elf_text_section;
573 };
574
575 /* Get MIPS ELF private object data from BFD's tdata. */
576
577 #define mips_elf_tdata(bfd) \
578 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579
580 #define TLS_RELOC_P(r_type) \
581 (r_type == R_MIPS_TLS_DTPMOD32 \
582 || r_type == R_MIPS_TLS_DTPMOD64 \
583 || r_type == R_MIPS_TLS_DTPREL32 \
584 || r_type == R_MIPS_TLS_DTPREL64 \
585 || r_type == R_MIPS_TLS_GD \
586 || r_type == R_MIPS_TLS_LDM \
587 || r_type == R_MIPS_TLS_DTPREL_HI16 \
588 || r_type == R_MIPS_TLS_DTPREL_LO16 \
589 || r_type == R_MIPS_TLS_GOTTPREL \
590 || r_type == R_MIPS_TLS_TPREL32 \
591 || r_type == R_MIPS_TLS_TPREL64 \
592 || r_type == R_MIPS_TLS_TPREL_HI16 \
593 || r_type == R_MIPS_TLS_TPREL_LO16 \
594 || r_type == R_MIPS16_TLS_GD \
595 || r_type == R_MIPS16_TLS_LDM \
596 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
597 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
598 || r_type == R_MIPS16_TLS_GOTTPREL \
599 || r_type == R_MIPS16_TLS_TPREL_HI16 \
600 || r_type == R_MIPS16_TLS_TPREL_LO16 \
601 || r_type == R_MICROMIPS_TLS_GD \
602 || r_type == R_MICROMIPS_TLS_LDM \
603 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
604 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
605 || r_type == R_MICROMIPS_TLS_GOTTPREL \
606 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
607 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608
609 /* Structure used to pass information to mips_elf_output_extsym. */
610
611 struct extsym_info
612 {
613 bfd *abfd;
614 struct bfd_link_info *info;
615 struct ecoff_debug_info *debug;
616 const struct ecoff_debug_swap *swap;
617 bfd_boolean failed;
618 };
619
620 /* The names of the runtime procedure table symbols used on IRIX5. */
621
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624 "_procedure_table",
625 "_procedure_string_table",
626 "_procedure_table_size",
627 NULL
628 };
629
630 /* These structures are used to generate the .compact_rel section on
631 IRIX5. */
632
633 typedef struct
634 {
635 unsigned long id1; /* Always one? */
636 unsigned long num; /* Number of compact relocation entries. */
637 unsigned long id2; /* Always two? */
638 unsigned long offset; /* The file offset of the first relocation. */
639 unsigned long reserved0; /* Zero? */
640 unsigned long reserved1; /* Zero? */
641 } Elf32_compact_rel;
642
643 typedef struct
644 {
645 bfd_byte id1[4];
646 bfd_byte num[4];
647 bfd_byte id2[4];
648 bfd_byte offset[4];
649 bfd_byte reserved0[4];
650 bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652
653 typedef struct
654 {
655 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
656 unsigned int rtype : 4; /* Relocation types. See below. */
657 unsigned int dist2to : 8;
658 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
659 unsigned long konst; /* KONST field. See below. */
660 unsigned long vaddr; /* VADDR to be relocated. */
661 } Elf32_crinfo;
662
663 typedef struct
664 {
665 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
666 unsigned int rtype : 4; /* Relocation types. See below. */
667 unsigned int dist2to : 8;
668 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
669 unsigned long konst; /* KONST field. See below. */
670 } Elf32_crinfo2;
671
672 typedef struct
673 {
674 bfd_byte info[4];
675 bfd_byte konst[4];
676 bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678
679 typedef struct
680 {
681 bfd_byte info[4];
682 bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684
685 /* These are the constants used to swap the bitfields in a crinfo. */
686
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695
696 /* A compact relocation info has long (3 words) or short (2 words)
697 formats. A short format doesn't have VADDR field and relvaddr
698 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
699 #define CRF_MIPS_LONG 1
700 #define CRF_MIPS_SHORT 0
701
702 /* There are 4 types of compact relocation at least. The value KONST
703 has different meaning for each type:
704
705 (type) (konst)
706 CT_MIPS_REL32 Address in data
707 CT_MIPS_WORD Address in word (XXX)
708 CT_MIPS_GPHI_LO GP - vaddr
709 CT_MIPS_JMPAD Address to jump
710 */
711
712 #define CRT_MIPS_REL32 0xa
713 #define CRT_MIPS_WORD 0xb
714 #define CRT_MIPS_GPHI_LO 0xc
715 #define CRT_MIPS_JMPAD 0xd
716
717 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
721 \f
722 /* The structure of the runtime procedure descriptor created by the
723 loader for use by the static exception system. */
724
725 typedef struct runtime_pdr {
726 bfd_vma adr; /* Memory address of start of procedure. */
727 long regmask; /* Save register mask. */
728 long regoffset; /* Save register offset. */
729 long fregmask; /* Save floating point register mask. */
730 long fregoffset; /* Save floating point register offset. */
731 long frameoffset; /* Frame size. */
732 short framereg; /* Frame pointer register. */
733 short pcreg; /* Offset or reg of return pc. */
734 long irpss; /* Index into the runtime string table. */
735 long reserved;
736 struct exception_info *exception_info;/* Pointer to exception array. */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 \f
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743 struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745 (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747 (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751 bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753 (bfd *, struct mips_got_info *, bfd *);
754
755 /* This will be used when we sort the dynamic relocation records. */
756 static bfd *reldyn_sorting_bfd;
757
758 /* True if ABFD is for CPUs with load interlocking that include
759 non-MIPS1 CPUs and R3900. */
760 #define LOAD_INTERLOCKS_P(abfd) \
761 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765 This should be safe for all architectures. We enable this predicate
766 for RM9000 for now. */
767 #define JAL_TO_BAL_P(abfd) \
768 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771 This should be safe for all architectures. We enable this predicate for
772 all CPUs. */
773 #define JALR_TO_BAL_P(abfd) 1
774
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776 This should be safe for all architectures. We enable this predicate for
777 all CPUs. */
778 #define JR_TO_B_P(abfd) 1
779
780 /* True if ABFD is a PIC object. */
781 #define PIC_OBJECT_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783
784 /* Nonzero if ABFD is using the O32 ABI. */
785 #define ABI_O32_P(abfd) \
786 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787
788 /* Nonzero if ABFD is using the N32 ABI. */
789 #define ABI_N32_P(abfd) \
790 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791
792 /* Nonzero if ABFD is using the N64 ABI. */
793 #define ABI_64_P(abfd) \
794 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795
796 /* Nonzero if ABFD is using NewABI conventions. */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798
799 /* Nonzero if ABFD has microMIPS code. */
800 #define MICROMIPS_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802
803 /* Nonzero if ABFD is MIPS R6. */
804 #define MIPSR6_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807
808 /* The IRIX compatibility level we are striving for. */
809 #define IRIX_COMPAT(abfd) \
810 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811
812 /* Whether we are trying to be compatible with IRIX at all. */
813 #define SGI_COMPAT(abfd) \
814 (IRIX_COMPAT (abfd) != ict_none)
815
816 /* The name of the options section. */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827 (strcmp (NAME, ".MIPS.abiflags") == 0)
828
829 /* Whether the section is readonly. */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
832 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833
834 /* The name of the stub section. */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836
837 /* The size of an external REL relocation. */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839 (get_elf_backend_data (abfd)->s->sizeof_rel)
840
841 /* The size of an external RELA relocation. */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843 (get_elf_backend_data (abfd)->s->sizeof_rela)
844
845 /* The size of an external dynamic table entry. */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847 (get_elf_backend_data (abfd)->s->sizeof_dyn)
848
849 /* The size of a GOT entry. */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851 (get_elf_backend_data (abfd)->s->arch_size / 8)
852
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855 (get_elf_backend_data (abfd)->s->arch_size / 8)
856
857 /* The size of a symbol-table entry. */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859 (get_elf_backend_data (abfd)->s->sizeof_sym)
860
861 /* The default alignment for sections, as a power of two. */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
863 (get_elf_backend_data (abfd)->s->log_file_align)
864
865 /* Get word-sized data. */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868
869 /* Put out word-sized data. */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
871 (ABI_64_P (abfd) \
872 ? bfd_put_64 (abfd, val, ptr) \
873 : bfd_put_32 (abfd, val, ptr))
874
875 /* The opcode for word-sized loads (LW or LD). */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878
879 /* Add a dynamic symbol table-entry. */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
881 _bfd_elf_add_dynamic_entry (info, tag, val)
882
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
884 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885
886 /* The name of the dynamic relocation section. */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891 from smaller values. Start with zero, widen, *then* decrement. */
892 #define MINUS_ONE (((bfd_vma)0) - 1)
893 #define MINUS_TWO (((bfd_vma)0) - 2)
894
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896 a GNU object. The dynamic linker can then use got[1] to store the
897 module pointer. */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900
901 /* The offset of $gp from the beginning of the .got section. */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906 offsets from $gp. */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908
909 /* Instructions which appear in a stub. */
910 #define STUB_LW(abfd) \
911 ((ABI_64_P (abfd) \
912 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
913 : 0x8f998010)) /* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
916 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL) \
920 ((ABI_64_P (abfd) \
921 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
922 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
923
924 /* Likewise for the microMIPS ASE. */
925 #define STUB_LW_MICROMIPS(abfd) \
926 (ABI_64_P (abfd) \
927 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
928 : 0xff3c8010) /* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL) \
932 (0x41b80000 + (VAL)) /* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL) \
936 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL) \
938 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
940 (ABI_64_P (abfd) \
941 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
942 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
943
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950
951 /* The name of the dynamic interpreter. This is put in the .interp
952 section. */
953
954 #define ELF_DYNAMIC_INTERPRETER(abfd) \
955 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
956 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
957 : "/usr/lib/libc.so.1")
958
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i) \
963 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i) \
965 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t) \
967 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i) \
971 (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i) \
973 (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t) \
975 (ELF32_R_INFO (s, t))
976 #endif
977 \f
978 /* The mips16 compiler uses a couple of special sections to handle
979 floating point arguments.
980
981 Section names that look like .mips16.fn.FNNAME contain stubs that
982 copy floating point arguments from the fp regs to the gp regs and
983 then jump to FNNAME. If any 32 bit function calls FNNAME, the
984 call should be redirected to the stub instead. If no 32 bit
985 function calls FNNAME, the stub should be discarded. We need to
986 consider any reference to the function, not just a call, because
987 if the address of the function is taken we will need the stub,
988 since the address might be passed to a 32 bit function.
989
990 Section names that look like .mips16.call.FNNAME contain stubs
991 that copy floating point arguments from the gp regs to the fp
992 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
993 then any 16 bit function that calls FNNAME should be redirected
994 to the stub instead. If FNNAME is not a 32 bit function, the
995 stub should be discarded.
996
997 .mips16.call.fp.FNNAME sections are similar, but contain stubs
998 which call FNNAME and then copy the return value from the fp regs
999 to the gp regs. These stubs store the return value in $18 while
1000 calling FNNAME; any function which might call one of these stubs
1001 must arrange to save $18 around the call. (This case is not
1002 needed for 32 bit functions that call 16 bit functions, because
1003 16 bit functions always return floating point values in both
1004 $f0/$f1 and $2/$3.)
1005
1006 Note that in all cases FNNAME might be defined statically.
1007 Therefore, FNNAME is not used literally. Instead, the relocation
1008 information will indicate which symbol the section is for.
1009
1010 We record any stubs that we find in the symbol table. */
1011
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 \f
1020 /* The format of the first PLT entry in an O32 executable. */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1024 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1025 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1026 0x031cc023, /* subu $24, $24, $28 */
1027 0x03e07825, /* or t7, ra, zero */
1028 0x0018c082, /* srl $24, $24, 2 */
1029 0x0320f809, /* jalr $25 */
1030 0x2718fffe /* subu $24, $24, 2 */
1031 };
1032
1033 /* The format of the first PLT entry in an N32 executable. Different
1034 because gp ($28) is not available; we use t2 ($14) instead. */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1038 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1039 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1040 0x030ec023, /* subu $24, $24, $14 */
1041 0x03e07825, /* or t7, ra, zero */
1042 0x0018c082, /* srl $24, $24, 2 */
1043 0x0320f809, /* jalr $25 */
1044 0x2718fffe /* subu $24, $24, 2 */
1045 };
1046
1047 /* The format of the first PLT entry in an N64 executable. Different
1048 from N32 because of the increased size of GOT entries. */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1052 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1053 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1054 0x030ec023, /* subu $24, $24, $14 */
1055 0x03e07825, /* or t7, ra, zero */
1056 0x0018c0c2, /* srl $24, $24, 3 */
1057 0x0320f809, /* jalr $25 */
1058 0x2718fffe /* subu $24, $24, 2 */
1059 };
1060
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062 We rely on v0 ($2) rather than t8 ($24) to contain the address
1063 of the GOTPLT entry handled, so this stub may only be used when
1064 all the subsequent PLT entries are microMIPS code too.
1065
1066 The trailing NOP is for alignment and correct disassembly only. */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1070 0xff23, 0x0000, /* lw $25, 0($3) */
1071 0x0535, /* subu $2, $2, $3 */
1072 0x2525, /* srl $2, $2, 2 */
1073 0x3302, 0xfffe, /* subu $24, $2, 2 */
1074 0x0dff, /* move $15, $31 */
1075 0x45f9, /* jalrs $25 */
1076 0x0f83, /* move $28, $3 */
1077 0x0c00 /* nop */
1078 };
1079
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081 in the insn32 mode. */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1085 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1086 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1087 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1088 0x001f, 0x7a90, /* or $15, $31, zero */
1089 0x0318, 0x1040, /* srl $24, $24, 2 */
1090 0x03f9, 0x0f3c, /* jalr $25 */
1091 0x3318, 0xfffe /* subu $24, $24, 2 */
1092 };
1093
1094 /* The format of subsequent standard PLT entries. */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1098 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1099 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1100 0x03200008 /* jr $25 */
1101 };
1102
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104 be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105 LOAD_INTERLOCKS_P will be true for MIPS R6. */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1109 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1110 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1111 0x03200009 /* jr $25 */
1112 };
1113
1114 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1115 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116 directly addressable. */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119 0xb203, /* lw $2, 12($pc) */
1120 0x9a60, /* lw $3, 0($2) */
1121 0x651a, /* move $24, $2 */
1122 0xeb00, /* jr $3 */
1123 0x653b, /* move $25, $3 */
1124 0x6500, /* nop */
1125 0x0000, 0x0000 /* .word (.got.plt entry) */
1126 };
1127
1128 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1129 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1133 0xff22, 0x0000, /* lw $25, 0($2) */
1134 0x4599, /* jr $25 */
1135 0x0f02 /* move $24, $2 */
1136 };
1137
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1142 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1143 0x0019, 0x0f3c, /* jr $25 */
1144 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1145 };
1146
1147 /* The format of the first PLT entry in a VxWorks executable. */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1151 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1152 0x8f390008, /* lw t9, 8(t9) */
1153 0x00000000, /* nop */
1154 0x03200008, /* jr t9 */
1155 0x00000000 /* nop */
1156 };
1157
1158 /* The format of subsequent PLT entries. */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161 0x10000000, /* b .PLT_resolver */
1162 0x24180000, /* li t8, <pltindex> */
1163 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1164 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1165 0x8f390000, /* lw t9, 0(t9) */
1166 0x00000000, /* nop */
1167 0x03200008, /* jr t9 */
1168 0x00000000 /* nop */
1169 };
1170
1171 /* The format of the first PLT entry in a VxWorks shared object. */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174 0x8f990008, /* lw t9, 8(gp) */
1175 0x00000000, /* nop */
1176 0x03200008, /* jr t9 */
1177 0x00000000, /* nop */
1178 0x00000000, /* nop */
1179 0x00000000 /* nop */
1180 };
1181
1182 /* The format of subsequent PLT entries. */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185 0x10000000, /* b .PLT_resolver */
1186 0x24180000 /* li t8, <pltindex> */
1187 };
1188 \f
1189 /* microMIPS 32-bit opcode helper installer. */
1190
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1196 }
1197
1198 /* microMIPS 32-bit opcode helper retriever. */
1199
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 \f
1206 /* Look up an entry in a MIPS ELF linker hash table. */
1207
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1209 ((struct mips_elf_link_hash_entry *) \
1210 elf_link_hash_lookup (&(table)->root, (string), (create), \
1211 (copy), (follow)))
1212
1213 /* Traverse a MIPS ELF linker hash table. */
1214
1215 #define mips_elf_link_hash_traverse(table, func, info) \
1216 (elf_link_hash_traverse \
1217 (&(table)->root, \
1218 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1219 (info)))
1220
1221 /* Find the base offsets for thread-local storage in this object,
1222 for GD/LD and IE/LE respectively. */
1223
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230 /* If tls_sec is NULL, we should have signalled an error already. */
1231 if (elf_hash_table (info)->tls_sec == NULL)
1232 return 0;
1233 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239 /* If tls_sec is NULL, we should have signalled an error already. */
1240 if (elf_hash_table (info)->tls_sec == NULL)
1241 return 0;
1242 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244
1245 /* Create an entry in a MIPS ELF linker hash table. */
1246
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 struct bfd_hash_table *table, const char *string)
1250 {
1251 struct mips_elf_link_hash_entry *ret =
1252 (struct mips_elf_link_hash_entry *) entry;
1253
1254 /* Allocate the structure if it has not already been allocated by a
1255 subclass. */
1256 if (ret == NULL)
1257 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258 if (ret == NULL)
1259 return (struct bfd_hash_entry *) ret;
1260
1261 /* Call the allocation method of the superclass. */
1262 ret = ((struct mips_elf_link_hash_entry *)
1263 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 table, string));
1265 if (ret != NULL)
1266 {
1267 /* Set local fields. */
1268 memset (&ret->esym, 0, sizeof (EXTR));
1269 /* We use -2 as a marker to indicate that the information has
1270 not been set. -1 means there is no associated ifd. */
1271 ret->esym.ifd = -2;
1272 ret->la25_stub = 0;
1273 ret->possibly_dynamic_relocs = 0;
1274 ret->fn_stub = NULL;
1275 ret->call_stub = NULL;
1276 ret->call_fp_stub = NULL;
1277 ret->global_got_area = GGA_NONE;
1278 ret->got_only_for_calls = TRUE;
1279 ret->readonly_reloc = FALSE;
1280 ret->has_static_relocs = FALSE;
1281 ret->no_fn_stub = FALSE;
1282 ret->need_fn_stub = FALSE;
1283 ret->has_nonpic_branches = FALSE;
1284 ret->needs_lazy_stub = FALSE;
1285 ret->use_plt_entry = FALSE;
1286 }
1287
1288 return (struct bfd_hash_entry *) ret;
1289 }
1290
1291 /* Allocate MIPS ELF private object data. */
1292
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 MIPS_ELF_DATA);
1298 }
1299
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303 if (!sec->used_by_bfd)
1304 {
1305 struct _mips_elf_section_data *sdata;
1306 bfd_size_type amt = sizeof (*sdata);
1307
1308 sdata = bfd_zalloc (abfd, amt);
1309 if (sdata == NULL)
1310 return FALSE;
1311 sec->used_by_bfd = sdata;
1312 }
1313
1314 return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 \f
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318 ecoff_debug_info structure. */
1319
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 struct ecoff_debug_info *debug)
1323 {
1324 HDRR *symhdr;
1325 const struct ecoff_debug_swap *swap;
1326 char *ext_hdr;
1327
1328 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329 memset (debug, 0, sizeof (*debug));
1330
1331 ext_hdr = bfd_malloc (swap->external_hdr_size);
1332 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333 goto error_return;
1334
1335 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 swap->external_hdr_size))
1337 goto error_return;
1338
1339 symhdr = &debug->symbolic_header;
1340 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341
1342 /* The symbolic header contains absolute file offsets and sizes to
1343 read. */
1344 #define READ(ptr, offset, count, size, type) \
1345 if (symhdr->count == 0) \
1346 debug->ptr = NULL; \
1347 else \
1348 { \
1349 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1350 debug->ptr = bfd_malloc (amt); \
1351 if (debug->ptr == NULL) \
1352 goto error_return; \
1353 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1354 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1355 goto error_return; \
1356 }
1357
1358 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 union aux_ext *);
1365 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371
1372 debug->fdr = NULL;
1373
1374 return TRUE;
1375
1376 error_return:
1377 if (ext_hdr != NULL)
1378 free (ext_hdr);
1379 if (debug->line != NULL)
1380 free (debug->line);
1381 if (debug->external_dnr != NULL)
1382 free (debug->external_dnr);
1383 if (debug->external_pdr != NULL)
1384 free (debug->external_pdr);
1385 if (debug->external_sym != NULL)
1386 free (debug->external_sym);
1387 if (debug->external_opt != NULL)
1388 free (debug->external_opt);
1389 if (debug->external_aux != NULL)
1390 free (debug->external_aux);
1391 if (debug->ss != NULL)
1392 free (debug->ss);
1393 if (debug->ssext != NULL)
1394 free (debug->ssext);
1395 if (debug->external_fdr != NULL)
1396 free (debug->external_fdr);
1397 if (debug->external_rfd != NULL)
1398 free (debug->external_rfd);
1399 if (debug->external_ext != NULL)
1400 free (debug->external_ext);
1401 return FALSE;
1402 }
1403 \f
1404 /* Swap RPDR (runtime procedure table entry) for output. */
1405
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415
1416 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418
1419 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421
1422 /* Create a runtime procedure table from the .mdebug section. */
1423
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 struct bfd_link_info *info, asection *s,
1427 struct ecoff_debug_info *debug)
1428 {
1429 const struct ecoff_debug_swap *swap;
1430 HDRR *hdr = &debug->symbolic_header;
1431 RPDR *rpdr, *rp;
1432 struct rpdr_ext *erp;
1433 void *rtproc;
1434 struct pdr_ext *epdr;
1435 struct sym_ext *esym;
1436 char *ss, **sv;
1437 char *str;
1438 bfd_size_type size;
1439 bfd_size_type count;
1440 unsigned long sindex;
1441 unsigned long i;
1442 PDR pdr;
1443 SYMR sym;
1444 const char *no_name_func = _("static procedure (no name)");
1445
1446 epdr = NULL;
1447 rpdr = NULL;
1448 esym = NULL;
1449 ss = NULL;
1450 sv = NULL;
1451
1452 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453
1454 sindex = strlen (no_name_func) + 1;
1455 count = hdr->ipdMax;
1456 if (count > 0)
1457 {
1458 size = swap->external_pdr_size;
1459
1460 epdr = bfd_malloc (size * count);
1461 if (epdr == NULL)
1462 goto error_return;
1463
1464 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 goto error_return;
1466
1467 size = sizeof (RPDR);
1468 rp = rpdr = bfd_malloc (size * count);
1469 if (rpdr == NULL)
1470 goto error_return;
1471
1472 size = sizeof (char *);
1473 sv = bfd_malloc (size * count);
1474 if (sv == NULL)
1475 goto error_return;
1476
1477 count = hdr->isymMax;
1478 size = swap->external_sym_size;
1479 esym = bfd_malloc (size * count);
1480 if (esym == NULL)
1481 goto error_return;
1482
1483 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 goto error_return;
1485
1486 count = hdr->issMax;
1487 ss = bfd_malloc (count);
1488 if (ss == NULL)
1489 goto error_return;
1490 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 goto error_return;
1492
1493 count = hdr->ipdMax;
1494 for (i = 0; i < (unsigned long) count; i++, rp++)
1495 {
1496 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 rp->adr = sym.value;
1499 rp->regmask = pdr.regmask;
1500 rp->regoffset = pdr.regoffset;
1501 rp->fregmask = pdr.fregmask;
1502 rp->fregoffset = pdr.fregoffset;
1503 rp->frameoffset = pdr.frameoffset;
1504 rp->framereg = pdr.framereg;
1505 rp->pcreg = pdr.pcreg;
1506 rp->irpss = sindex;
1507 sv[i] = ss + sym.iss;
1508 sindex += strlen (sv[i]) + 1;
1509 }
1510 }
1511
1512 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513 size = BFD_ALIGN (size, 16);
1514 rtproc = bfd_alloc (abfd, size);
1515 if (rtproc == NULL)
1516 {
1517 mips_elf_hash_table (info)->procedure_count = 0;
1518 goto error_return;
1519 }
1520
1521 mips_elf_hash_table (info)->procedure_count = count + 2;
1522
1523 erp = rtproc;
1524 memset (erp, 0, sizeof (struct rpdr_ext));
1525 erp++;
1526 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527 strcpy (str, no_name_func);
1528 str += strlen (no_name_func) + 1;
1529 for (i = 0; i < count; i++)
1530 {
1531 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532 strcpy (str, sv[i]);
1533 str += strlen (sv[i]) + 1;
1534 }
1535 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536
1537 /* Set the size and contents of .rtproc section. */
1538 s->size = size;
1539 s->contents = rtproc;
1540
1541 /* Skip this section later on (I don't think this currently
1542 matters, but someday it might). */
1543 s->map_head.link_order = NULL;
1544
1545 if (epdr != NULL)
1546 free (epdr);
1547 if (rpdr != NULL)
1548 free (rpdr);
1549 if (esym != NULL)
1550 free (esym);
1551 if (ss != NULL)
1552 free (ss);
1553 if (sv != NULL)
1554 free (sv);
1555
1556 return TRUE;
1557
1558 error_return:
1559 if (epdr != NULL)
1560 free (epdr);
1561 if (rpdr != NULL)
1562 free (rpdr);
1563 if (esym != NULL)
1564 free (esym);
1565 if (ss != NULL)
1566 free (ss);
1567 if (sv != NULL)
1568 free (sv);
1569 return FALSE;
1570 }
1571 \f
1572 /* We're going to create a stub for H. Create a symbol for the stub's
1573 value and size, to help make the disassembly easier to read. */
1574
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 struct mips_elf_link_hash_entry *h,
1578 const char *prefix, asection *s, bfd_vma value,
1579 bfd_vma size)
1580 {
1581 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582 struct bfd_link_hash_entry *bh;
1583 struct elf_link_hash_entry *elfh;
1584 char *name;
1585 bfd_boolean res;
1586
1587 if (micromips_p)
1588 value |= 1;
1589
1590 /* Create a new symbol. */
1591 name = concat (prefix, h->root.root.root.string, NULL);
1592 bh = NULL;
1593 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 BSF_LOCAL, s, value, NULL,
1595 TRUE, FALSE, &bh);
1596 free (name);
1597 if (! res)
1598 return FALSE;
1599
1600 /* Make it a local function. */
1601 elfh = (struct elf_link_hash_entry *) bh;
1602 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603 elfh->size = size;
1604 elfh->forced_local = 1;
1605 if (micromips_p)
1606 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607 return TRUE;
1608 }
1609
1610 /* We're about to redefine H. Create a symbol to represent H's
1611 current value and size, to help make the disassembly easier
1612 to read. */
1613
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 struct mips_elf_link_hash_entry *h,
1617 const char *prefix)
1618 {
1619 struct bfd_link_hash_entry *bh;
1620 struct elf_link_hash_entry *elfh;
1621 char *name;
1622 asection *s;
1623 bfd_vma value;
1624 bfd_boolean res;
1625
1626 /* Read the symbol's value. */
1627 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 || h->root.root.type == bfd_link_hash_defweak);
1629 s = h->root.root.u.def.section;
1630 value = h->root.root.u.def.value;
1631
1632 /* Create a new symbol. */
1633 name = concat (prefix, h->root.root.root.string, NULL);
1634 bh = NULL;
1635 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 BSF_LOCAL, s, value, NULL,
1637 TRUE, FALSE, &bh);
1638 free (name);
1639 if (! res)
1640 return FALSE;
1641
1642 /* Make it local and copy the other attributes from H. */
1643 elfh = (struct elf_link_hash_entry *) bh;
1644 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645 elfh->other = h->root.other;
1646 elfh->size = h->root.size;
1647 elfh->forced_local = 1;
1648 return TRUE;
1649 }
1650
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652 function rather than to a hard-float stub. */
1653
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657 const char *name;
1658
1659 name = bfd_get_section_name (section->owner, section);
1660 return (FN_STUB_P (name)
1661 || CALL_STUB_P (name)
1662 || CALL_FP_STUB_P (name)
1663 || strcmp (name, ".pdr") == 0);
1664 }
1665
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667 stub section of some kind. Return the R_SYMNDX of the target
1668 function, or 0 if we can't decide which function that is. */
1669
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 asection *sec ATTRIBUTE_UNUSED,
1673 const Elf_Internal_Rela *relocs,
1674 const Elf_Internal_Rela *relend)
1675 {
1676 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677 const Elf_Internal_Rela *rel;
1678
1679 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680 one in a compound relocation. */
1681 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683 return ELF_R_SYM (sec->owner, rel->r_info);
1684
1685 /* Otherwise trust the first relocation, whatever its kind. This is
1686 the traditional behavior. */
1687 if (relocs < relend)
1688 return ELF_R_SYM (sec->owner, relocs->r_info);
1689
1690 return 0;
1691 }
1692
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694 discard them. */
1695
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 struct mips_elf_link_hash_entry *h)
1699 {
1700 /* Dynamic symbols must use the standard call interface, in case other
1701 objects try to call them. */
1702 if (h->fn_stub != NULL
1703 && h->root.dynindx != -1)
1704 {
1705 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706 h->need_fn_stub = TRUE;
1707 }
1708
1709 if (h->fn_stub != NULL
1710 && ! h->need_fn_stub)
1711 {
1712 /* We don't need the fn_stub; the only references to this symbol
1713 are 16 bit calls. Clobber the size to 0 to prevent it from
1714 being included in the link. */
1715 h->fn_stub->size = 0;
1716 h->fn_stub->flags &= ~SEC_RELOC;
1717 h->fn_stub->reloc_count = 0;
1718 h->fn_stub->flags |= SEC_EXCLUDE;
1719 h->fn_stub->output_section = bfd_abs_section_ptr;
1720 }
1721
1722 if (h->call_stub != NULL
1723 && ELF_ST_IS_MIPS16 (h->root.other))
1724 {
1725 /* We don't need the call_stub; this is a 16 bit function, so
1726 calls from other 16 bit functions are OK. Clobber the size
1727 to 0 to prevent it from being included in the link. */
1728 h->call_stub->size = 0;
1729 h->call_stub->flags &= ~SEC_RELOC;
1730 h->call_stub->reloc_count = 0;
1731 h->call_stub->flags |= SEC_EXCLUDE;
1732 h->call_stub->output_section = bfd_abs_section_ptr;
1733 }
1734
1735 if (h->call_fp_stub != NULL
1736 && ELF_ST_IS_MIPS16 (h->root.other))
1737 {
1738 /* We don't need the call_stub; this is a 16 bit function, so
1739 calls from other 16 bit functions are OK. Clobber the size
1740 to 0 to prevent it from being included in the link. */
1741 h->call_fp_stub->size = 0;
1742 h->call_fp_stub->flags &= ~SEC_RELOC;
1743 h->call_fp_stub->reloc_count = 0;
1744 h->call_fp_stub->flags |= SEC_EXCLUDE;
1745 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746 }
1747 }
1748
1749 /* Hashtable callbacks for mips_elf_la25_stubs. */
1750
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754 const struct mips_elf_la25_stub *entry;
1755
1756 entry = (struct mips_elf_la25_stub *) entry_;
1757 return entry->h->root.root.u.def.section->id
1758 + entry->h->root.root.u.def.value;
1759 }
1760
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764 const struct mips_elf_la25_stub *entry1, *entry2;
1765
1766 entry1 = (struct mips_elf_la25_stub *) entry1_;
1767 entry2 = (struct mips_elf_la25_stub *) entry2_;
1768 return ((entry1->h->root.root.u.def.section
1769 == entry2->h->root.root.u.def.section)
1770 && (entry1->h->root.root.u.def.value
1771 == entry2->h->root.root.u.def.value));
1772 }
1773
1774 /* Called by the linker to set up the la25 stub-creation code. FN is
1775 the linker's implementation of add_stub_function. Return true on
1776 success. */
1777
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 asection *(*fn) (const char *, asection *,
1781 asection *))
1782 {
1783 struct mips_elf_link_hash_table *htab;
1784
1785 htab = mips_elf_hash_table (info);
1786 if (htab == NULL)
1787 return FALSE;
1788
1789 htab->add_stub_section = fn;
1790 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 mips_elf_la25_stub_eq, NULL);
1792 if (htab->la25_stubs == NULL)
1793 return FALSE;
1794
1795 return TRUE;
1796 }
1797
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799 that it or its fn_stub might need $25 to be valid on entry.
1800 Note that MIPS16 functions set up $gp using PC-relative instructions,
1801 so they themselves never need $25 to be valid. Only non-MIPS16
1802 entry points are of interest here. */
1803
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807 return ((h->root.root.type == bfd_link_hash_defined
1808 || h->root.root.type == bfd_link_hash_defweak)
1809 && h->root.def_regular
1810 && !bfd_is_abs_section (h->root.root.u.def.section)
1811 && !bfd_is_und_section (h->root.root.u.def.section)
1812 && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 || (h->fn_stub && h->need_fn_stub))
1814 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817
1818 /* Set *SEC to the input section that contains the target of STUB.
1819 Return the offset of the target from the start of that section. */
1820
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 asection **sec)
1824 {
1825 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826 {
1827 BFD_ASSERT (stub->h->need_fn_stub);
1828 *sec = stub->h->fn_stub;
1829 return 0;
1830 }
1831 else
1832 {
1833 *sec = stub->h->root.root.u.def.section;
1834 return stub->h->root.root.u.def.value;
1835 }
1836 }
1837
1838 /* STUB describes an la25 stub that we have decided to implement
1839 by inserting an LUI/ADDIU pair before the target function.
1840 Create the section and redirect the function symbol to it. */
1841
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 struct bfd_link_info *info)
1845 {
1846 struct mips_elf_link_hash_table *htab;
1847 char *name;
1848 asection *s, *input_section;
1849 unsigned int align;
1850
1851 htab = mips_elf_hash_table (info);
1852 if (htab == NULL)
1853 return FALSE;
1854
1855 /* Create a unique name for the new section. */
1856 name = bfd_malloc (11 + sizeof (".text.stub."));
1857 if (name == NULL)
1858 return FALSE;
1859 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860
1861 /* Create the section. */
1862 mips_elf_get_la25_target (stub, &input_section);
1863 s = htab->add_stub_section (name, input_section,
1864 input_section->output_section);
1865 if (s == NULL)
1866 return FALSE;
1867
1868 /* Make sure that any padding goes before the stub. */
1869 align = input_section->alignment_power;
1870 if (!bfd_set_section_alignment (s->owner, s, align))
1871 return FALSE;
1872 if (align > 3)
1873 s->size = (1 << align) - 8;
1874
1875 /* Create a symbol for the stub. */
1876 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877 stub->stub_section = s;
1878 stub->offset = s->size;
1879
1880 /* Allocate room for it. */
1881 s->size += 8;
1882 return TRUE;
1883 }
1884
1885 /* STUB describes an la25 stub that we have decided to implement
1886 with a separate trampoline. Allocate room for it and redirect
1887 the function symbol to it. */
1888
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 struct bfd_link_info *info)
1892 {
1893 struct mips_elf_link_hash_table *htab;
1894 asection *s;
1895
1896 htab = mips_elf_hash_table (info);
1897 if (htab == NULL)
1898 return FALSE;
1899
1900 /* Create a trampoline section, if we haven't already. */
1901 s = htab->strampoline;
1902 if (s == NULL)
1903 {
1904 asection *input_section = stub->h->root.root.u.def.section;
1905 s = htab->add_stub_section (".text", NULL,
1906 input_section->output_section);
1907 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 return FALSE;
1909 htab->strampoline = s;
1910 }
1911
1912 /* Create a symbol for the stub. */
1913 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914 stub->stub_section = s;
1915 stub->offset = s->size;
1916
1917 /* Allocate room for it. */
1918 s->size += 16;
1919 return TRUE;
1920 }
1921
1922 /* H describes a symbol that needs an la25 stub. Make sure that an
1923 appropriate stub exists and point H at it. */
1924
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 struct mips_elf_link_hash_entry *h)
1928 {
1929 struct mips_elf_link_hash_table *htab;
1930 struct mips_elf_la25_stub search, *stub;
1931 bfd_boolean use_trampoline_p;
1932 asection *s;
1933 bfd_vma value;
1934 void **slot;
1935
1936 /* Describe the stub we want. */
1937 search.stub_section = NULL;
1938 search.offset = 0;
1939 search.h = h;
1940
1941 /* See if we've already created an equivalent stub. */
1942 htab = mips_elf_hash_table (info);
1943 if (htab == NULL)
1944 return FALSE;
1945
1946 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947 if (slot == NULL)
1948 return FALSE;
1949
1950 stub = (struct mips_elf_la25_stub *) *slot;
1951 if (stub != NULL)
1952 {
1953 /* We can reuse the existing stub. */
1954 h->la25_stub = stub;
1955 return TRUE;
1956 }
1957
1958 /* Create a permanent copy of ENTRY and add it to the hash table. */
1959 stub = bfd_malloc (sizeof (search));
1960 if (stub == NULL)
1961 return FALSE;
1962 *stub = search;
1963 *slot = stub;
1964
1965 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966 of the section and if we would need no more than 2 nops. */
1967 value = mips_elf_get_la25_target (stub, &s);
1968 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969 value &= ~1;
1970 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971
1972 h->la25_stub = stub;
1973 return (use_trampoline_p
1974 ? mips_elf_add_la25_trampoline (stub, info)
1975 : mips_elf_add_la25_intro (stub, info));
1976 }
1977
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979 sections. DATA points to a mips_htab_traverse_info structure. */
1980
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984 struct mips_htab_traverse_info *hti;
1985
1986 hti = (struct mips_htab_traverse_info *) data;
1987 if (!bfd_link_relocatable (hti->info))
1988 mips_elf_check_mips16_stubs (hti->info, h);
1989
1990 if (mips_elf_local_pic_function_p (h))
1991 {
1992 /* PR 12845: If H is in a section that has been garbage
1993 collected it will have its output section set to *ABS*. */
1994 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 return TRUE;
1996
1997 /* H is a function that might need $25 to be valid on entry.
1998 If we're creating a non-PIC relocatable object, mark H as
1999 being PIC. If we're creating a non-relocatable object with
2000 non-PIC branches and jumps to H, make sure that H has an la25
2001 stub. */
2002 if (bfd_link_relocatable (hti->info))
2003 {
2004 if (!PIC_OBJECT_P (hti->output_bfd))
2005 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 }
2007 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 {
2009 hti->error = TRUE;
2010 return FALSE;
2011 }
2012 }
2013 return TRUE;
2014 }
2015 \f
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017 Most mips16 instructions are 16 bits, but these instructions
2018 are 32 bits.
2019
2020 The format of these instructions is:
2021
2022 +--------------+--------------------------------+
2023 | JALX | X| Imm 20:16 | Imm 25:21 |
2024 +--------------+--------------------------------+
2025 | Immediate 15:0 |
2026 +-----------------------------------------------+
2027
2028 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2029 Note that the immediate value in the first word is swapped.
2030
2031 When producing a relocatable object file, R_MIPS16_26 is
2032 handled mostly like R_MIPS_26. In particular, the addend is
2033 stored as a straight 26-bit value in a 32-bit instruction.
2034 (gas makes life simpler for itself by never adjusting a
2035 R_MIPS16_26 reloc to be against a section, so the addend is
2036 always zero). However, the 32 bit instruction is stored as 2
2037 16-bit values, rather than a single 32-bit value. In a
2038 big-endian file, the result is the same; in a little-endian
2039 file, the two 16-bit halves of the 32 bit value are swapped.
2040 This is so that a disassembler can recognize the jal
2041 instruction.
2042
2043 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044 instruction stored as two 16-bit values. The addend A is the
2045 contents of the targ26 field. The calculation is the same as
2046 R_MIPS_26. When storing the calculated value, reorder the
2047 immediate value as shown above, and don't forget to store the
2048 value as two 16-bit values.
2049
2050 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051 defined as
2052
2053 big-endian:
2054 +--------+----------------------+
2055 | | |
2056 | | targ26-16 |
2057 |31 26|25 0|
2058 +--------+----------------------+
2059
2060 little-endian:
2061 +----------+------+-------------+
2062 | | | |
2063 | sub1 | | sub2 |
2064 |0 9|10 15|16 31|
2065 +----------+--------------------+
2066 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067 ((sub1 << 16) | sub2)).
2068
2069 When producing a relocatable object file, the calculation is
2070 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071 When producing a fully linked file, the calculation is
2072 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074
2075 The table below lists the other MIPS16 instruction relocations.
2076 Each one is calculated in the same way as the non-MIPS16 relocation
2077 given on the right, but using the extended MIPS16 layout of 16-bit
2078 immediate fields:
2079
2080 R_MIPS16_GPREL R_MIPS_GPREL16
2081 R_MIPS16_GOT16 R_MIPS_GOT16
2082 R_MIPS16_CALL16 R_MIPS_CALL16
2083 R_MIPS16_HI16 R_MIPS_HI16
2084 R_MIPS16_LO16 R_MIPS_LO16
2085
2086 A typical instruction will have a format like this:
2087
2088 +--------------+--------------------------------+
2089 | EXTEND | Imm 10:5 | Imm 15:11 |
2090 +--------------+--------------------------------+
2091 | Major | rx | ry | Imm 4:0 |
2092 +--------------+--------------------------------+
2093
2094 EXTEND is the five bit value 11110. Major is the instruction
2095 opcode.
2096
2097 All we need to do here is shuffle the bits appropriately.
2098 As above, the two 16-bit halves must be swapped on a
2099 little-endian system.
2100
2101 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102 relocatable field is shifted by 1 rather than 2 and the same bit
2103 shuffling is done as with the relocations above. */
2104
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108 switch (r_type)
2109 {
2110 case R_MIPS16_26:
2111 case R_MIPS16_GPREL:
2112 case R_MIPS16_GOT16:
2113 case R_MIPS16_CALL16:
2114 case R_MIPS16_HI16:
2115 case R_MIPS16_LO16:
2116 case R_MIPS16_TLS_GD:
2117 case R_MIPS16_TLS_LDM:
2118 case R_MIPS16_TLS_DTPREL_HI16:
2119 case R_MIPS16_TLS_DTPREL_LO16:
2120 case R_MIPS16_TLS_GOTTPREL:
2121 case R_MIPS16_TLS_TPREL_HI16:
2122 case R_MIPS16_TLS_TPREL_LO16:
2123 case R_MIPS16_PC16_S1:
2124 return TRUE;
2125
2126 default:
2127 return FALSE;
2128 }
2129 }
2130
2131 /* Check if a microMIPS reloc. */
2132
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2141 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2142
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146 return (micromips_reloc_p (r_type)
2147 && r_type != R_MICROMIPS_PC7_S1
2148 && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154 return (r_type == R_MIPS_GOT16
2155 || r_type == R_MIPS16_GOT16
2156 || r_type == R_MICROMIPS_GOT16);
2157 }
2158
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162 return (r_type == R_MIPS_CALL16
2163 || r_type == R_MIPS16_CALL16
2164 || r_type == R_MICROMIPS_CALL16);
2165 }
2166
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200 return (r_type == R_MIPS_HI16
2201 || r_type == R_MIPS16_HI16
2202 || r_type == R_MICROMIPS_HI16
2203 || r_type == R_MIPS_PCHI16);
2204 }
2205
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209 return (r_type == R_MIPS_LO16
2210 || r_type == R_MIPS16_LO16
2211 || r_type == R_MICROMIPS_LO16
2212 || r_type == R_MIPS_PCLO16);
2213 }
2214
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224 return (r_type == R_MIPS_26
2225 || r_type == R_MIPS16_26
2226 || r_type == R_MICROMIPS_26_S1);
2227 }
2228
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232 return (r_type == R_MIPS_PC26_S2
2233 || r_type == R_MIPS_PC21_S2
2234 || r_type == R_MIPS_PC16
2235 || r_type == R_MIPS_GNU_REL16_S2
2236 || r_type == R_MIPS16_PC16_S1
2237 || r_type == R_MICROMIPS_PC16_S1
2238 || r_type == R_MICROMIPS_PC10_S1
2239 || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245 return (r_type == R_MIPS_PC18_S3
2246 || r_type == R_MIPS_PC19_S2);
2247 }
2248
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252 return (r_type == R_MIPS_26
2253 || r_type == R_MIPS_PC26_S2
2254 || r_type == R_MIPS_PC21_S2
2255 || r_type == R_MIPS_PC16
2256 || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262 return (r_type == R_MIPS16_26
2263 || r_type == R_MIPS16_PC16_S1);
2264 }
2265
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269 return (r_type == R_MICROMIPS_26_S1
2270 || r_type == R_MICROMIPS_PC16_S1
2271 || r_type == R_MICROMIPS_PC10_S1
2272 || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278 return (r_type == R_MIPS_TLS_GD
2279 || r_type == R_MIPS16_TLS_GD
2280 || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286 return (r_type == R_MIPS_TLS_LDM
2287 || r_type == R_MIPS16_TLS_LDM
2288 || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294 return (r_type == R_MIPS_TLS_GOTTPREL
2295 || r_type == R_MIPS16_TLS_GOTTPREL
2296 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303 bfd_vma first, second, val;
2304
2305 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306 return;
2307
2308 /* Pick up the first and second halfwords of the instruction. */
2309 first = bfd_get_16 (abfd, data);
2310 second = bfd_get_16 (abfd, data + 2);
2311 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312 val = first << 16 | second;
2313 else if (r_type != R_MIPS16_26)
2314 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316 else
2317 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 | ((first & 0x1f) << 21) | second);
2319 bfd_put_32 (abfd, val, data);
2320 }
2321
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326 bfd_vma first, second, val;
2327
2328 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329 return;
2330
2331 val = bfd_get_32 (abfd, data);
2332 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333 {
2334 second = val & 0xffff;
2335 first = val >> 16;
2336 }
2337 else if (r_type != R_MIPS16_26)
2338 {
2339 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341 }
2342 else
2343 {
2344 second = val & 0xffff;
2345 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 | ((val >> 21) & 0x1f);
2347 }
2348 bfd_put_16 (abfd, second, data + 2);
2349 bfd_put_16 (abfd, first, data);
2350 }
2351
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 arelent *reloc_entry, asection *input_section,
2355 bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357 bfd_vma relocation;
2358 bfd_signed_vma val;
2359 bfd_reloc_status_type status;
2360
2361 if (bfd_is_com_section (symbol->section))
2362 relocation = 0;
2363 else
2364 relocation = symbol->value;
2365
2366 relocation += symbol->section->output_section->vma;
2367 relocation += symbol->section->output_offset;
2368
2369 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370 return bfd_reloc_outofrange;
2371
2372 /* Set val to the offset into the section or symbol. */
2373 val = reloc_entry->addend;
2374
2375 _bfd_mips_elf_sign_extend (val, 16);
2376
2377 /* Adjust val for the final section location and GP value. If we
2378 are producing relocatable output, we don't want to do this for
2379 an external symbol. */
2380 if (! relocatable
2381 || (symbol->flags & BSF_SECTION_SYM) != 0)
2382 val += relocation - gp;
2383
2384 if (reloc_entry->howto->partial_inplace)
2385 {
2386 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 (bfd_byte *) data
2388 + reloc_entry->address);
2389 if (status != bfd_reloc_ok)
2390 return status;
2391 }
2392 else
2393 reloc_entry->addend = val;
2394
2395 if (relocatable)
2396 reloc_entry->address += input_section->output_offset;
2397
2398 return bfd_reloc_ok;
2399 }
2400
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2403 that contains the relocation field and DATA points to the start of
2404 INPUT_SECTION. */
2405
2406 struct mips_hi16
2407 {
2408 struct mips_hi16 *next;
2409 bfd_byte *data;
2410 asection *input_section;
2411 arelent rel;
2412 };
2413
2414 /* FIXME: This should not be a static variable. */
2415
2416 static struct mips_hi16 *mips_hi16_list;
2417
2418 /* A howto special_function for REL *HI16 relocations. We can only
2419 calculate the correct value once we've seen the partnering
2420 *LO16 relocation, so just save the information for later.
2421
2422 The ABI requires that the *LO16 immediately follow the *HI16.
2423 However, as a GNU extension, we permit an arbitrary number of
2424 *HI16s to be associated with a single *LO16. This significantly
2425 simplies the relocation handling in gcc. */
2426
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 asection *input_section, bfd *output_bfd,
2431 char **error_message ATTRIBUTE_UNUSED)
2432 {
2433 struct mips_hi16 *n;
2434
2435 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436 return bfd_reloc_outofrange;
2437
2438 n = bfd_malloc (sizeof *n);
2439 if (n == NULL)
2440 return bfd_reloc_outofrange;
2441
2442 n->next = mips_hi16_list;
2443 n->data = data;
2444 n->input_section = input_section;
2445 n->rel = *reloc_entry;
2446 mips_hi16_list = n;
2447
2448 if (output_bfd != NULL)
2449 reloc_entry->address += input_section->output_offset;
2450
2451 return bfd_reloc_ok;
2452 }
2453
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2455 like any other 16-bit relocation when applied to global symbols, but is
2456 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2457
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 void *data, asection *input_section,
2461 bfd *output_bfd, char **error_message)
2462 {
2463 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464 || bfd_is_und_section (bfd_get_section (symbol))
2465 || bfd_is_com_section (bfd_get_section (symbol)))
2466 /* The relocation is against a global symbol. */
2467 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 input_section, output_bfd,
2469 error_message);
2470
2471 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 input_section, output_bfd, error_message);
2473 }
2474
2475 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2476 is a straightforward 16 bit inplace relocation, but we must deal with
2477 any partnering high-part relocations as well. */
2478
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 void *data, asection *input_section,
2482 bfd *output_bfd, char **error_message)
2483 {
2484 bfd_vma vallo;
2485 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486
2487 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488 return bfd_reloc_outofrange;
2489
2490 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 location);
2492 vallo = bfd_get_32 (abfd, location);
2493 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 location);
2495
2496 while (mips_hi16_list != NULL)
2497 {
2498 bfd_reloc_status_type ret;
2499 struct mips_hi16 *hi;
2500
2501 hi = mips_hi16_list;
2502
2503 /* R_MIPS*_GOT16 relocations are something of a special case. We
2504 want to install the addend in the same way as for a R_MIPS*_HI16
2505 relocation (with a rightshift of 16). However, since GOT16
2506 relocations can also be used with global symbols, their howto
2507 has a rightshift of 0. */
2508 if (hi->rel.howto->type == R_MIPS_GOT16)
2509 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514
2515 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2516 carry or borrow will induce a change of +1 or -1 in the high part. */
2517 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518
2519 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 hi->input_section, output_bfd,
2521 error_message);
2522 if (ret != bfd_reloc_ok)
2523 return ret;
2524
2525 mips_hi16_list = hi->next;
2526 free (hi);
2527 }
2528
2529 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 input_section, output_bfd,
2531 error_message);
2532 }
2533
2534 /* A generic howto special_function. This calculates and installs the
2535 relocation itself, thus avoiding the oft-discussed problems in
2536 bfd_perform_relocation and bfd_install_relocation. */
2537
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 asection *input_section, bfd *output_bfd,
2542 char **error_message ATTRIBUTE_UNUSED)
2543 {
2544 bfd_signed_vma val;
2545 bfd_reloc_status_type status;
2546 bfd_boolean relocatable;
2547
2548 relocatable = (output_bfd != NULL);
2549
2550 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551 return bfd_reloc_outofrange;
2552
2553 /* Build up the field adjustment in VAL. */
2554 val = 0;
2555 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556 {
2557 /* Either we're calculating the final field value or we have a
2558 relocation against a section symbol. Add in the section's
2559 offset or address. */
2560 val += symbol->section->output_section->vma;
2561 val += symbol->section->output_offset;
2562 }
2563
2564 if (!relocatable)
2565 {
2566 /* We're calculating the final field value. Add in the symbol's value
2567 and, if pc-relative, subtract the address of the field itself. */
2568 val += symbol->value;
2569 if (reloc_entry->howto->pc_relative)
2570 {
2571 val -= input_section->output_section->vma;
2572 val -= input_section->output_offset;
2573 val -= reloc_entry->address;
2574 }
2575 }
2576
2577 /* VAL is now the final adjustment. If we're keeping this relocation
2578 in the output file, and if the relocation uses a separate addend,
2579 we just need to add VAL to that addend. Otherwise we need to add
2580 VAL to the relocation field itself. */
2581 if (relocatable && !reloc_entry->howto->partial_inplace)
2582 reloc_entry->addend += val;
2583 else
2584 {
2585 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586
2587 /* Add in the separate addend, if any. */
2588 val += reloc_entry->addend;
2589
2590 /* Add VAL to the relocation field. */
2591 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 location);
2593 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 location);
2595 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 location);
2597
2598 if (status != bfd_reloc_ok)
2599 return status;
2600 }
2601
2602 if (relocatable)
2603 reloc_entry->address += input_section->output_offset;
2604
2605 return bfd_reloc_ok;
2606 }
2607 \f
2608 /* Swap an entry in a .gptab section. Note that these routines rely
2609 on the equivalence of the two elements of the union. */
2610
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 Elf32_gptab *in)
2614 {
2615 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 Elf32_External_gptab *ex)
2622 {
2623 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 Elf32_External_compact_rel *ex)
2630 {
2631 H_PUT_32 (abfd, in->id1, ex->id1);
2632 H_PUT_32 (abfd, in->num, ex->num);
2633 H_PUT_32 (abfd, in->id2, ex->id2);
2634 H_PUT_32 (abfd, in->offset, ex->offset);
2635 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 Elf32_External_crinfo *ex)
2642 {
2643 unsigned long l;
2644
2645 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649 H_PUT_32 (abfd, l, ex->info);
2650 H_PUT_32 (abfd, in->konst, ex->konst);
2651 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 \f
2654 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2655 routines swap this structure in and out. They are used outside of
2656 BFD, so they are globally visible. */
2657
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 Elf32_RegInfo *in)
2661 {
2662 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 Elf32_External_RegInfo *ex)
2673 {
2674 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683 information in an Elf64_Reginfo structure. These routines swap
2684 them in and out. They are globally visible because they are used
2685 outside of BFD. These routines are here so that gas can call them
2686 without worrying about whether the 64 bit ABI has been included. */
2687
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 Elf64_Internal_RegInfo *in)
2691 {
2692 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 Elf64_External_RegInfo *ex)
2704 {
2705 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713
2714 /* Swap in an options header. */
2715
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 Elf_Internal_Options *in)
2719 {
2720 in->kind = H_GET_8 (abfd, ex->kind);
2721 in->size = H_GET_8 (abfd, ex->size);
2722 in->section = H_GET_16 (abfd, ex->section);
2723 in->info = H_GET_32 (abfd, ex->info);
2724 }
2725
2726 /* Swap out an options header. */
2727
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 Elf_External_Options *ex)
2731 {
2732 H_PUT_8 (abfd, in->kind, ex->kind);
2733 H_PUT_8 (abfd, in->size, ex->size);
2734 H_PUT_16 (abfd, in->section, ex->section);
2735 H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737
2738 /* Swap in an abiflags structure. */
2739
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 const Elf_External_ABIFlags_v0 *ex,
2743 Elf_Internal_ABIFlags_v0 *in)
2744 {
2745 in->version = H_GET_16 (abfd, ex->version);
2746 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753 in->ases = H_GET_32 (abfd, ex->ases);
2754 in->flags1 = H_GET_32 (abfd, ex->flags1);
2755 in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757
2758 /* Swap out an abiflags structure. */
2759
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 const Elf_Internal_ABIFlags_v0 *in,
2763 Elf_External_ABIFlags_v0 *ex)
2764 {
2765 H_PUT_16 (abfd, in->version, ex->version);
2766 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773 H_PUT_32 (abfd, in->ases, ex->ases);
2774 H_PUT_32 (abfd, in->flags1, ex->flags1);
2775 H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 \f
2778 /* This function is called via qsort() to sort the dynamic relocation
2779 entries by increasing r_symndx value. */
2780
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784 Elf_Internal_Rela int_reloc1;
2785 Elf_Internal_Rela int_reloc2;
2786 int diff;
2787
2788 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790
2791 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792 if (diff != 0)
2793 return diff;
2794
2795 if (int_reloc1.r_offset < int_reloc2.r_offset)
2796 return -1;
2797 if (int_reloc1.r_offset > int_reloc2.r_offset)
2798 return 1;
2799 return 0;
2800 }
2801
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2803
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809 Elf_Internal_Rela int_reloc1[3];
2810 Elf_Internal_Rela int_reloc2[3];
2811
2812 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813 (reldyn_sorting_bfd, arg1, int_reloc1);
2814 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815 (reldyn_sorting_bfd, arg2, int_reloc2);
2816
2817 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818 return -1;
2819 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820 return 1;
2821
2822 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823 return -1;
2824 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825 return 1;
2826 return 0;
2827 #else
2828 abort ();
2829 #endif
2830 }
2831
2832
2833 /* This routine is used to write out ECOFF debugging external symbol
2834 information. It is called via mips_elf_link_hash_traverse. The
2835 ECOFF external symbol information must match the ELF external
2836 symbol information. Unfortunately, at this point we don't know
2837 whether a symbol is required by reloc information, so the two
2838 tables may wind up being different. We must sort out the external
2839 symbol information before we can set the final size of the .mdebug
2840 section, and we must set the size of the .mdebug section before we
2841 can relocate any sections, and we can't know which symbols are
2842 required by relocation until we relocate the sections.
2843 Fortunately, it is relatively unlikely that any symbol will be
2844 stripped but required by a reloc. In particular, it can not happen
2845 when generating a final executable. */
2846
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850 struct extsym_info *einfo = data;
2851 bfd_boolean strip;
2852 asection *sec, *output_section;
2853
2854 if (h->root.indx == -2)
2855 strip = FALSE;
2856 else if ((h->root.def_dynamic
2857 || h->root.ref_dynamic
2858 || h->root.type == bfd_link_hash_new)
2859 && !h->root.def_regular
2860 && !h->root.ref_regular)
2861 strip = TRUE;
2862 else if (einfo->info->strip == strip_all
2863 || (einfo->info->strip == strip_some
2864 && bfd_hash_lookup (einfo->info->keep_hash,
2865 h->root.root.root.string,
2866 FALSE, FALSE) == NULL))
2867 strip = TRUE;
2868 else
2869 strip = FALSE;
2870
2871 if (strip)
2872 return TRUE;
2873
2874 if (h->esym.ifd == -2)
2875 {
2876 h->esym.jmptbl = 0;
2877 h->esym.cobol_main = 0;
2878 h->esym.weakext = 0;
2879 h->esym.reserved = 0;
2880 h->esym.ifd = ifdNil;
2881 h->esym.asym.value = 0;
2882 h->esym.asym.st = stGlobal;
2883
2884 if (h->root.root.type == bfd_link_hash_undefined
2885 || h->root.root.type == bfd_link_hash_undefweak)
2886 {
2887 const char *name;
2888
2889 /* Use undefined class. Also, set class and type for some
2890 special symbols. */
2891 name = h->root.root.root.string;
2892 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 {
2895 h->esym.asym.sc = scData;
2896 h->esym.asym.st = stLabel;
2897 h->esym.asym.value = 0;
2898 }
2899 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 {
2901 h->esym.asym.sc = scAbs;
2902 h->esym.asym.st = stLabel;
2903 h->esym.asym.value =
2904 mips_elf_hash_table (einfo->info)->procedure_count;
2905 }
2906 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 {
2908 h->esym.asym.sc = scAbs;
2909 h->esym.asym.st = stLabel;
2910 h->esym.asym.value = elf_gp (einfo->abfd);
2911 }
2912 else
2913 h->esym.asym.sc = scUndefined;
2914 }
2915 else if (h->root.root.type != bfd_link_hash_defined
2916 && h->root.root.type != bfd_link_hash_defweak)
2917 h->esym.asym.sc = scAbs;
2918 else
2919 {
2920 const char *name;
2921
2922 sec = h->root.root.u.def.section;
2923 output_section = sec->output_section;
2924
2925 /* When making a shared library and symbol h is the one from
2926 the another shared library, OUTPUT_SECTION may be null. */
2927 if (output_section == NULL)
2928 h->esym.asym.sc = scUndefined;
2929 else
2930 {
2931 name = bfd_section_name (output_section->owner, output_section);
2932
2933 if (strcmp (name, ".text") == 0)
2934 h->esym.asym.sc = scText;
2935 else if (strcmp (name, ".data") == 0)
2936 h->esym.asym.sc = scData;
2937 else if (strcmp (name, ".sdata") == 0)
2938 h->esym.asym.sc = scSData;
2939 else if (strcmp (name, ".rodata") == 0
2940 || strcmp (name, ".rdata") == 0)
2941 h->esym.asym.sc = scRData;
2942 else if (strcmp (name, ".bss") == 0)
2943 h->esym.asym.sc = scBss;
2944 else if (strcmp (name, ".sbss") == 0)
2945 h->esym.asym.sc = scSBss;
2946 else if (strcmp (name, ".init") == 0)
2947 h->esym.asym.sc = scInit;
2948 else if (strcmp (name, ".fini") == 0)
2949 h->esym.asym.sc = scFini;
2950 else
2951 h->esym.asym.sc = scAbs;
2952 }
2953 }
2954
2955 h->esym.asym.reserved = 0;
2956 h->esym.asym.index = indexNil;
2957 }
2958
2959 if (h->root.root.type == bfd_link_hash_common)
2960 h->esym.asym.value = h->root.root.u.c.size;
2961 else if (h->root.root.type == bfd_link_hash_defined
2962 || h->root.root.type == bfd_link_hash_defweak)
2963 {
2964 if (h->esym.asym.sc == scCommon)
2965 h->esym.asym.sc = scBss;
2966 else if (h->esym.asym.sc == scSCommon)
2967 h->esym.asym.sc = scSBss;
2968
2969 sec = h->root.root.u.def.section;
2970 output_section = sec->output_section;
2971 if (output_section != NULL)
2972 h->esym.asym.value = (h->root.root.u.def.value
2973 + sec->output_offset
2974 + output_section->vma);
2975 else
2976 h->esym.asym.value = 0;
2977 }
2978 else
2979 {
2980 struct mips_elf_link_hash_entry *hd = h;
2981
2982 while (hd->root.root.type == bfd_link_hash_indirect)
2983 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984
2985 if (hd->needs_lazy_stub)
2986 {
2987 BFD_ASSERT (hd->root.plt.plist != NULL);
2988 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 /* Set type and value for a symbol with a function stub. */
2990 h->esym.asym.st = stProc;
2991 sec = hd->root.root.u.def.section;
2992 if (sec == NULL)
2993 h->esym.asym.value = 0;
2994 else
2995 {
2996 output_section = sec->output_section;
2997 if (output_section != NULL)
2998 h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 + sec->output_offset
3000 + output_section->vma);
3001 else
3002 h->esym.asym.value = 0;
3003 }
3004 }
3005 }
3006
3007 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 h->root.root.root.string,
3009 &h->esym))
3010 {
3011 einfo->failed = TRUE;
3012 return FALSE;
3013 }
3014
3015 return TRUE;
3016 }
3017
3018 /* A comparison routine used to sort .gptab entries. */
3019
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023 const Elf32_gptab *a1 = p1;
3024 const Elf32_gptab *a2 = p2;
3025
3026 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 \f
3029 /* Functions to manage the got entry hash table. */
3030
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032 hash number. */
3033
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038 return addr + (addr >> 32);
3039 #else
3040 return addr;
3041 #endif
3042 }
3043
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048
3049 return (entry->symndx
3050 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 + (entry->tls_type == GOT_TLS_LDM ? 0
3052 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 : entry->symndx >= 0 ? (entry->abfd->id
3054 + mips_elf_hash_bfd_vma (entry->d.addend))
3055 : entry->d.h->root.root.root.hash));
3056 }
3057
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063
3064 return (e1->symndx == e2->symndx
3065 && e1->tls_type == e2->tls_type
3066 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 && e1->d.addend == e2->d.addend)
3070 : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076 const struct mips_got_page_ref *ref;
3077
3078 ref = (const struct mips_got_page_ref *) ref_;
3079 return ((ref->symndx >= 0
3080 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 : ref->u.h->root.root.root.hash)
3082 + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088 const struct mips_got_page_ref *ref1, *ref2;
3089
3090 ref1 = (const struct mips_got_page_ref *) ref1_;
3091 ref2 = (const struct mips_got_page_ref *) ref2_;
3092 return (ref1->symndx == ref2->symndx
3093 && (ref1->symndx < 0
3094 ? ref1->u.h == ref2->u.h
3095 : ref1->u.abfd == ref2->u.abfd)
3096 && ref1->addend == ref2->addend);
3097 }
3098
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102 const struct mips_got_page_entry *entry;
3103
3104 entry = (const struct mips_got_page_entry *) entry_;
3105 return entry->sec->id;
3106 }
3107
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111 const struct mips_got_page_entry *entry1, *entry2;
3112
3113 entry1 = (const struct mips_got_page_entry *) entry1_;
3114 entry2 = (const struct mips_got_page_entry *) entry2_;
3115 return entry1->sec == entry2->sec;
3116 }
3117 \f
3118 /* Create and return a new mips_got_info structure. */
3119
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123 struct mips_got_info *g;
3124
3125 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126 if (g == NULL)
3127 return NULL;
3128
3129 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 mips_elf_got_entry_eq, NULL);
3131 if (g->got_entries == NULL)
3132 return NULL;
3133
3134 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 mips_got_page_ref_eq, NULL);
3136 if (g->got_page_refs == NULL)
3137 return NULL;
3138
3139 return g;
3140 }
3141
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143 CREATE_P and if ABFD doesn't already have a GOT. */
3144
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148 struct mips_elf_obj_tdata *tdata;
3149
3150 if (!is_mips_elf (abfd))
3151 return NULL;
3152
3153 tdata = mips_elf_tdata (abfd);
3154 if (!tdata->got && create_p)
3155 tdata->got = mips_elf_create_got_info (abfd);
3156 return tdata->got;
3157 }
3158
3159 /* Record that ABFD should use output GOT G. */
3160
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164 struct mips_elf_obj_tdata *tdata;
3165
3166 BFD_ASSERT (is_mips_elf (abfd));
3167 tdata = mips_elf_tdata (abfd);
3168 if (tdata->got)
3169 {
3170 /* The GOT structure itself and the hash table entries are
3171 allocated to a bfd, but the hash tables aren't. */
3172 htab_delete (tdata->got->got_entries);
3173 htab_delete (tdata->got->got_page_refs);
3174 if (tdata->got->got_page_entries)
3175 htab_delete (tdata->got->got_page_entries);
3176 }
3177 tdata->got = g;
3178 }
3179
3180 /* Return the dynamic relocation section. If it doesn't exist, try to
3181 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3182 if creation fails. */
3183
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187 const char *dname;
3188 asection *sreloc;
3189 bfd *dynobj;
3190
3191 dname = MIPS_ELF_REL_DYN_NAME (info);
3192 dynobj = elf_hash_table (info)->dynobj;
3193 sreloc = bfd_get_linker_section (dynobj, dname);
3194 if (sreloc == NULL && create_p)
3195 {
3196 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 (SEC_ALLOC
3198 | SEC_LOAD
3199 | SEC_HAS_CONTENTS
3200 | SEC_IN_MEMORY
3201 | SEC_LINKER_CREATED
3202 | SEC_READONLY));
3203 if (sreloc == NULL
3204 || ! bfd_set_section_alignment (dynobj, sreloc,
3205 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 return NULL;
3207 }
3208 return sreloc;
3209 }
3210
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3212
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216 if (tls_gd_reloc_p (r_type))
3217 return GOT_TLS_GD;
3218
3219 if (tls_ldm_reloc_p (r_type))
3220 return GOT_TLS_LDM;
3221
3222 if (tls_gottprel_reloc_p (r_type))
3223 return GOT_TLS_IE;
3224
3225 return GOT_TLS_NONE;
3226 }
3227
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3229
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233 switch (type)
3234 {
3235 case GOT_TLS_GD:
3236 case GOT_TLS_LDM:
3237 return 2;
3238
3239 case GOT_TLS_IE:
3240 return 1;
3241
3242 case GOT_TLS_NONE:
3243 return 0;
3244 }
3245 abort ();
3246 }
3247
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249 access types from TLS_TYPE, and symbol H (or a local symbol if H
3250 is NULL). */
3251
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 struct elf_link_hash_entry *h)
3255 {
3256 int indx = 0;
3257 bfd_boolean need_relocs = FALSE;
3258 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259
3260 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261 && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262 indx = h->dynindx;
3263
3264 if ((bfd_link_pic (info) || indx != 0)
3265 && (h == NULL
3266 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 || h->root.type != bfd_link_hash_undefweak))
3268 need_relocs = TRUE;
3269
3270 if (!need_relocs)
3271 return 0;
3272
3273 switch (tls_type)
3274 {
3275 case GOT_TLS_GD:
3276 return indx != 0 ? 2 : 1;
3277
3278 case GOT_TLS_IE:
3279 return 1;
3280
3281 case GOT_TLS_LDM:
3282 return bfd_link_pic (info) ? 1 : 0;
3283
3284 default:
3285 return 0;
3286 }
3287 }
3288
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290 to G. */
3291
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 struct mips_got_info *g,
3295 struct mips_got_entry *entry)
3296 {
3297 if (entry->tls_type)
3298 {
3299 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 entry->symndx < 0
3302 ? &entry->d.h->root : NULL);
3303 }
3304 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305 g->local_gotno += 1;
3306 else
3307 g->global_gotno += 1;
3308 }
3309
3310 /* Output a simple dynamic relocation into SRELOC. */
3311
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 asection *sreloc,
3315 unsigned long reloc_index,
3316 unsigned long indx,
3317 int r_type,
3318 bfd_vma offset)
3319 {
3320 Elf_Internal_Rela rel[3];
3321
3322 memset (rel, 0, sizeof (rel));
3323
3324 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326
3327 if (ABI_64_P (output_bfd))
3328 {
3329 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 (output_bfd, &rel[0],
3331 (sreloc->contents
3332 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333 }
3334 else
3335 bfd_elf32_swap_reloc_out
3336 (output_bfd, &rel[0],
3337 (sreloc->contents
3338 + reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340
3341 /* Initialize a set of TLS GOT entries for one symbol. */
3342
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 struct mips_got_entry *entry,
3346 struct mips_elf_link_hash_entry *h,
3347 bfd_vma value)
3348 {
3349 struct mips_elf_link_hash_table *htab;
3350 int indx;
3351 asection *sreloc, *sgot;
3352 bfd_vma got_offset, got_offset2;
3353 bfd_boolean need_relocs = FALSE;
3354
3355 htab = mips_elf_hash_table (info);
3356 if (htab == NULL)
3357 return;
3358
3359 sgot = htab->root.sgot;
3360
3361 indx = 0;
3362 if (h != NULL)
3363 {
3364 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365
3366 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 &h->root)
3368 && (!bfd_link_pic (info)
3369 || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 indx = h->root.dynindx;
3371 }
3372
3373 if (entry->tls_initialized)
3374 return;
3375
3376 if ((bfd_link_pic (info) || indx != 0)
3377 && (h == NULL
3378 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 || h->root.type != bfd_link_hash_undefweak))
3380 need_relocs = TRUE;
3381
3382 /* MINUS_ONE means the symbol is not defined in this object. It may not
3383 be defined at all; assume that the value doesn't matter in that
3384 case. Otherwise complain if we would use the value. */
3385 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 || h->root.root.type == bfd_link_hash_undefweak);
3387
3388 /* Emit necessary relocations. */
3389 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390 got_offset = entry->gotidx;
3391
3392 switch (entry->tls_type)
3393 {
3394 case GOT_TLS_GD:
3395 /* General Dynamic. */
3396 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397
3398 if (need_relocs)
3399 {
3400 mips_elf_output_dynamic_relocation
3401 (abfd, sreloc, sreloc->reloc_count++, indx,
3402 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 sgot->output_offset + sgot->output_section->vma + got_offset);
3404
3405 if (indx)
3406 mips_elf_output_dynamic_relocation
3407 (abfd, sreloc, sreloc->reloc_count++, indx,
3408 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 else
3411 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 sgot->contents + got_offset2);
3413 }
3414 else
3415 {
3416 MIPS_ELF_PUT_WORD (abfd, 1,
3417 sgot->contents + got_offset);
3418 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 sgot->contents + got_offset2);
3420 }
3421 break;
3422
3423 case GOT_TLS_IE:
3424 /* Initial Exec model. */
3425 if (need_relocs)
3426 {
3427 if (indx == 0)
3428 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 sgot->contents + got_offset);
3430 else
3431 MIPS_ELF_PUT_WORD (abfd, 0,
3432 sgot->contents + got_offset);
3433
3434 mips_elf_output_dynamic_relocation
3435 (abfd, sreloc, sreloc->reloc_count++, indx,
3436 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 sgot->output_offset + sgot->output_section->vma + got_offset);
3438 }
3439 else
3440 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 sgot->contents + got_offset);
3442 break;
3443
3444 case GOT_TLS_LDM:
3445 /* The initial offset is zero, and the LD offsets will include the
3446 bias by DTP_OFFSET. */
3447 MIPS_ELF_PUT_WORD (abfd, 0,
3448 sgot->contents + got_offset
3449 + MIPS_ELF_GOT_SIZE (abfd));
3450
3451 if (!bfd_link_pic (info))
3452 MIPS_ELF_PUT_WORD (abfd, 1,
3453 sgot->contents + got_offset);
3454 else
3455 mips_elf_output_dynamic_relocation
3456 (abfd, sreloc, sreloc->reloc_count++, indx,
3457 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 sgot->output_offset + sgot->output_section->vma + got_offset);
3459 break;
3460
3461 default:
3462 abort ();
3463 }
3464
3465 entry->tls_initialized = TRUE;
3466 }
3467
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469 for global symbol H. .got.plt comes before the GOT, so the offset
3470 will be negative. */
3471
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 struct elf_link_hash_entry *h)
3475 {
3476 bfd_vma got_address, got_value;
3477 struct mips_elf_link_hash_table *htab;
3478
3479 htab = mips_elf_hash_table (info);
3480 BFD_ASSERT (htab != NULL);
3481
3482 BFD_ASSERT (h->plt.plist != NULL);
3483 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484
3485 /* Calculate the address of the associated .got.plt entry. */
3486 got_address = (htab->root.sgotplt->output_section->vma
3487 + htab->root.sgotplt->output_offset
3488 + (h->plt.plist->gotplt_index
3489 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490
3491 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3492 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 + htab->root.hgot->root.u.def.section->output_offset
3494 + htab->root.hgot->root.u.def.value);
3495
3496 return got_address - got_value;
3497 }
3498
3499 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3500 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3501 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3502 offset can be found. */
3503
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 bfd_vma value, unsigned long r_symndx,
3507 struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509 struct mips_elf_link_hash_table *htab;
3510 struct mips_got_entry *entry;
3511
3512 htab = mips_elf_hash_table (info);
3513 BFD_ASSERT (htab != NULL);
3514
3515 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 r_symndx, h, r_type);
3517 if (!entry)
3518 return MINUS_ONE;
3519
3520 if (entry->tls_type)
3521 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522 return entry->gotidx;
3523 }
3524
3525 /* Return the GOT index of global symbol H in the primary GOT. */
3526
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 struct elf_link_hash_entry *h)
3530 {
3531 struct mips_elf_link_hash_table *htab;
3532 long global_got_dynindx;
3533 struct mips_got_info *g;
3534 bfd_vma got_index;
3535
3536 htab = mips_elf_hash_table (info);
3537 BFD_ASSERT (htab != NULL);
3538
3539 global_got_dynindx = 0;
3540 if (htab->global_gotsym != NULL)
3541 global_got_dynindx = htab->global_gotsym->dynindx;
3542
3543 /* Once we determine the global GOT entry with the lowest dynamic
3544 symbol table index, we must put all dynamic symbols with greater
3545 indices into the primary GOT. That makes it easy to calculate the
3546 GOT offset. */
3547 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548 g = mips_elf_bfd_got (obfd, FALSE);
3549 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 * MIPS_ELF_GOT_SIZE (obfd));
3551 BFD_ASSERT (got_index < htab->root.sgot->size);
3552
3553 return got_index;
3554 }
3555
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557 referenced by a relocation of type R_TYPE in IBFD. */
3558
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 struct elf_link_hash_entry *h, int r_type)
3562 {
3563 struct mips_elf_link_hash_table *htab;
3564 struct mips_got_info *g;
3565 struct mips_got_entry lookup, *entry;
3566 bfd_vma gotidx;
3567
3568 htab = mips_elf_hash_table (info);
3569 BFD_ASSERT (htab != NULL);
3570
3571 g = mips_elf_bfd_got (ibfd, FALSE);
3572 BFD_ASSERT (g);
3573
3574 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576 return mips_elf_primary_global_got_index (obfd, info, h);
3577
3578 lookup.abfd = ibfd;
3579 lookup.symndx = -1;
3580 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581 entry = htab_find (g->got_entries, &lookup);
3582 BFD_ASSERT (entry);
3583
3584 gotidx = entry->gotidx;
3585 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586
3587 if (lookup.tls_type)
3588 {
3589 bfd_vma value = MINUS_ONE;
3590
3591 if ((h->root.type == bfd_link_hash_defined
3592 || h->root.type == bfd_link_hash_defweak)
3593 && h->root.u.def.section->output_section)
3594 value = (h->root.u.def.value
3595 + h->root.u.def.section->output_offset
3596 + h->root.u.def.section->output_section->vma);
3597
3598 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599 }
3600 return gotidx;
3601 }
3602
3603 /* Find a GOT page entry that points to within 32KB of VALUE. These
3604 entries are supposed to be placed at small offsets in the GOT, i.e.,
3605 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3606 entry could be created. If OFFSETP is nonnull, use it to return the
3607 offset of the GOT entry from VALUE. */
3608
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 bfd_vma value, bfd_vma *offsetp)
3612 {
3613 bfd_vma page, got_index;
3614 struct mips_got_entry *entry;
3615
3616 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 NULL, R_MIPS_GOT_PAGE);
3619
3620 if (!entry)
3621 return MINUS_ONE;
3622
3623 got_index = entry->gotidx;
3624
3625 if (offsetp)
3626 *offsetp = value - entry->d.address;
3627
3628 return got_index;
3629 }
3630
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632 EXTERNAL is true if the relocation was originally against a global
3633 symbol that binds locally. */
3634
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 bfd_vma value, bfd_boolean external)
3638 {
3639 struct mips_got_entry *entry;
3640
3641 /* GOT16 relocations against local symbols are followed by a LO16
3642 relocation; those against global symbols are not. Thus if the
3643 symbol was originally local, the GOT16 relocation should load the
3644 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3645 if (! external)
3646 value = mips_elf_high (value) << 16;
3647
3648 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3650 same in all cases. */
3651 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 NULL, R_MIPS_GOT16);
3653 if (entry)
3654 return entry->gotidx;
3655 else
3656 return MINUS_ONE;
3657 }
3658
3659 /* Returns the offset for the entry at the INDEXth position
3660 in the GOT. */
3661
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 bfd *input_bfd, bfd_vma got_index)
3665 {
3666 struct mips_elf_link_hash_table *htab;
3667 asection *sgot;
3668 bfd_vma gp;
3669
3670 htab = mips_elf_hash_table (info);
3671 BFD_ASSERT (htab != NULL);
3672
3673 sgot = htab->root.sgot;
3674 gp = _bfd_get_gp_value (output_bfd)
3675 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676
3677 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3682 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683 instead. */
3684
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 bfd *ibfd, bfd_vma value,
3688 unsigned long r_symndx,
3689 struct mips_elf_link_hash_entry *h,
3690 int r_type)
3691 {
3692 struct mips_got_entry lookup, *entry;
3693 void **loc;
3694 struct mips_got_info *g;
3695 struct mips_elf_link_hash_table *htab;
3696 bfd_vma gotidx;
3697
3698 htab = mips_elf_hash_table (info);
3699 BFD_ASSERT (htab != NULL);
3700
3701 g = mips_elf_bfd_got (ibfd, FALSE);
3702 if (g == NULL)
3703 {
3704 g = mips_elf_bfd_got (abfd, FALSE);
3705 BFD_ASSERT (g != NULL);
3706 }
3707
3708 /* This function shouldn't be called for symbols that live in the global
3709 area of the GOT. */
3710 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711
3712 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713 if (lookup.tls_type)
3714 {
3715 lookup.abfd = ibfd;
3716 if (tls_ldm_reloc_p (r_type))
3717 {
3718 lookup.symndx = 0;
3719 lookup.d.addend = 0;
3720 }
3721 else if (h == NULL)
3722 {
3723 lookup.symndx = r_symndx;
3724 lookup.d.addend = 0;
3725 }
3726 else
3727 {
3728 lookup.symndx = -1;
3729 lookup.d.h = h;
3730 }
3731
3732 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733 BFD_ASSERT (entry);
3734
3735 gotidx = entry->gotidx;
3736 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737
3738 return entry;
3739 }
3740
3741 lookup.abfd = NULL;
3742 lookup.symndx = -1;
3743 lookup.d.address = value;
3744 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745 if (!loc)
3746 return NULL;
3747
3748 entry = (struct mips_got_entry *) *loc;
3749 if (entry)
3750 return entry;
3751
3752 if (g->assigned_low_gotno > g->assigned_high_gotno)
3753 {
3754 /* We didn't allocate enough space in the GOT. */
3755 _bfd_error_handler
3756 (_("not enough GOT space for local GOT entries"));
3757 bfd_set_error (bfd_error_bad_value);
3758 return NULL;
3759 }
3760
3761 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762 if (!entry)
3763 return NULL;
3764
3765 if (got16_reloc_p (r_type)
3766 || call16_reloc_p (r_type)
3767 || got_page_reloc_p (r_type)
3768 || got_disp_reloc_p (r_type))
3769 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770 else
3771 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772
3773 *entry = lookup;
3774 *loc = entry;
3775
3776 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777
3778 /* These GOT entries need a dynamic relocation on VxWorks. */
3779 if (htab->is_vxworks)
3780 {
3781 Elf_Internal_Rela outrel;
3782 asection *s;
3783 bfd_byte *rloc;
3784 bfd_vma got_address;
3785
3786 s = mips_elf_rel_dyn_section (info, FALSE);
3787 got_address = (htab->root.sgot->output_section->vma
3788 + htab->root.sgot->output_offset
3789 + entry->gotidx);
3790
3791 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792 outrel.r_offset = got_address;
3793 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794 outrel.r_addend = value;
3795 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796 }
3797
3798 return entry;
3799 }
3800
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802 The number might be exact or a worst-case estimate, depending on how
3803 much information is available to elf_backend_omit_section_dynsym at
3804 the current linking stage. */
3805
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809 bfd_size_type count;
3810
3811 count = 0;
3812 if (bfd_link_pic (info)
3813 || elf_hash_table (info)->is_relocatable_executable)
3814 {
3815 asection *p;
3816 const struct elf_backend_data *bed;
3817
3818 bed = get_elf_backend_data (output_bfd);
3819 for (p = output_bfd->sections; p ; p = p->next)
3820 if ((p->flags & SEC_EXCLUDE) == 0
3821 && (p->flags & SEC_ALLOC) != 0
3822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 ++count;
3824 }
3825 return count;
3826 }
3827
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829 appear towards the end. */
3830
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834 struct mips_elf_link_hash_table *htab;
3835 struct mips_elf_hash_sort_data hsd;
3836 struct mips_got_info *g;
3837
3838 htab = mips_elf_hash_table (info);
3839 BFD_ASSERT (htab != NULL);
3840
3841 if (htab->root.dynsymcount == 0)
3842 return TRUE;
3843
3844 g = htab->got_info;
3845 if (g == NULL)
3846 return TRUE;
3847
3848 hsd.low = NULL;
3849 hsd.max_unref_got_dynindx
3850 = hsd.min_got_dynindx
3851 = (htab->root.dynsymcount - g->reloc_only_gotno);
3852 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3854 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857
3858 /* There should have been enough room in the symbol table to
3859 accommodate both the GOT and non-GOT symbols. */
3860 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864
3865 /* Now we know which dynamic symbol has the lowest dynamic symbol
3866 table index in the GOT. */
3867 htab->global_gotsym = hsd.low;
3868
3869 return TRUE;
3870 }
3871
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873 index. Otherwise, assign it the lowest available dynamic
3874 index. */
3875
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879 struct mips_elf_hash_sort_data *hsd = data;
3880
3881 /* Symbols without dynamic symbol table entries aren't interesting
3882 at all. */
3883 if (h->root.dynindx == -1)
3884 return TRUE;
3885
3886 switch (h->global_got_area)
3887 {
3888 case GGA_NONE:
3889 if (h->root.forced_local)
3890 h->root.dynindx = hsd->max_local_dynindx++;
3891 else
3892 h->root.dynindx = hsd->max_non_got_dynindx++;
3893 break;
3894
3895 case GGA_NORMAL:
3896 h->root.dynindx = --hsd->min_got_dynindx;
3897 hsd->low = (struct elf_link_hash_entry *) h;
3898 break;
3899
3900 case GGA_RELOC_ONLY:
3901 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 hsd->low = (struct elf_link_hash_entry *) h;
3903 h->root.dynindx = hsd->max_unref_got_dynindx++;
3904 break;
3905 }
3906
3907 return TRUE;
3908 }
3909
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911 (which is owned by the caller and shouldn't be added to the
3912 hash table directly). */
3913
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 struct mips_got_entry *lookup)
3917 {
3918 struct mips_elf_link_hash_table *htab;
3919 struct mips_got_entry *entry;
3920 struct mips_got_info *g;
3921 void **loc, **bfd_loc;
3922
3923 /* Make sure there's a slot for this entry in the master GOT. */
3924 htab = mips_elf_hash_table (info);
3925 g = htab->got_info;
3926 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927 if (!loc)
3928 return FALSE;
3929
3930 /* Populate the entry if it isn't already. */
3931 entry = (struct mips_got_entry *) *loc;
3932 if (!entry)
3933 {
3934 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935 if (!entry)
3936 return FALSE;
3937
3938 lookup->tls_initialized = FALSE;
3939 lookup->gotidx = -1;
3940 *entry = *lookup;
3941 *loc = entry;
3942 }
3943
3944 /* Reuse the same GOT entry for the BFD's GOT. */
3945 g = mips_elf_bfd_got (abfd, TRUE);
3946 if (!g)
3947 return FALSE;
3948
3949 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950 if (!bfd_loc)
3951 return FALSE;
3952
3953 if (!*bfd_loc)
3954 *bfd_loc = entry;
3955 return TRUE;
3956 }
3957
3958 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
3959 entry for it. FOR_CALL is true if the caller is only interested in
3960 using the GOT entry for calls. */
3961
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 bfd *abfd, struct bfd_link_info *info,
3965 bfd_boolean for_call, int r_type)
3966 {
3967 struct mips_elf_link_hash_table *htab;
3968 struct mips_elf_link_hash_entry *hmips;
3969 struct mips_got_entry entry;
3970 unsigned char tls_type;
3971
3972 htab = mips_elf_hash_table (info);
3973 BFD_ASSERT (htab != NULL);
3974
3975 hmips = (struct mips_elf_link_hash_entry *) h;
3976 if (!for_call)
3977 hmips->got_only_for_calls = FALSE;
3978
3979 /* A global symbol in the GOT must also be in the dynamic symbol
3980 table. */
3981 if (h->dynindx == -1)
3982 {
3983 switch (ELF_ST_VISIBILITY (h->other))
3984 {
3985 case STV_INTERNAL:
3986 case STV_HIDDEN:
3987 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 break;
3989 }
3990 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 return FALSE;
3992 }
3993
3994 tls_type = mips_elf_reloc_tls_type (r_type);
3995 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996 hmips->global_got_area = GGA_NORMAL;
3997
3998 entry.abfd = abfd;
3999 entry.symndx = -1;
4000 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001 entry.tls_type = tls_type;
4002 return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4007
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 struct bfd_link_info *info, int r_type)
4011 {
4012 struct mips_elf_link_hash_table *htab;
4013 struct mips_got_info *g;
4014 struct mips_got_entry entry;
4015
4016 htab = mips_elf_hash_table (info);
4017 BFD_ASSERT (htab != NULL);
4018
4019 g = htab->got_info;
4020 BFD_ASSERT (g != NULL);
4021
4022 entry.abfd = abfd;
4023 entry.symndx = symndx;
4024 entry.d.addend = addend;
4025 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026 return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030 H is the symbol's hash table entry, or null if SYMNDX is local
4031 to ABFD. */
4032
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 long symndx, struct elf_link_hash_entry *h,
4036 bfd_signed_vma addend)
4037 {
4038 struct mips_elf_link_hash_table *htab;
4039 struct mips_got_info *g1, *g2;
4040 struct mips_got_page_ref lookup, *entry;
4041 void **loc, **bfd_loc;
4042
4043 htab = mips_elf_hash_table (info);
4044 BFD_ASSERT (htab != NULL);
4045
4046 g1 = htab->got_info;
4047 BFD_ASSERT (g1 != NULL);
4048
4049 if (h)
4050 {
4051 lookup.symndx = -1;
4052 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053 }
4054 else
4055 {
4056 lookup.symndx = symndx;
4057 lookup.u.abfd = abfd;
4058 }
4059 lookup.addend = addend;
4060 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061 if (loc == NULL)
4062 return FALSE;
4063
4064 entry = (struct mips_got_page_ref *) *loc;
4065 if (!entry)
4066 {
4067 entry = bfd_alloc (abfd, sizeof (*entry));
4068 if (!entry)
4069 return FALSE;
4070
4071 *entry = lookup;
4072 *loc = entry;
4073 }
4074
4075 /* Add the same entry to the BFD's GOT. */
4076 g2 = mips_elf_bfd_got (abfd, TRUE);
4077 if (!g2)
4078 return FALSE;
4079
4080 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081 if (!bfd_loc)
4082 return FALSE;
4083
4084 if (!*bfd_loc)
4085 *bfd_loc = entry;
4086
4087 return TRUE;
4088 }
4089
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4091
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 unsigned int n)
4095 {
4096 asection *s;
4097 struct mips_elf_link_hash_table *htab;
4098
4099 htab = mips_elf_hash_table (info);
4100 BFD_ASSERT (htab != NULL);
4101
4102 s = mips_elf_rel_dyn_section (info, FALSE);
4103 BFD_ASSERT (s != NULL);
4104
4105 if (htab->is_vxworks)
4106 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107 else
4108 {
4109 if (s->size == 0)
4110 {
4111 /* Make room for a null element. */
4112 s->size += MIPS_ELF_REL_SIZE (abfd);
4113 ++s->reloc_count;
4114 }
4115 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116 }
4117 }
4118 \f
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120 mips_elf_traverse_got_arg structure. Count the number of GOT
4121 entries and TLS relocs. Set DATA->value to true if we need
4122 to resolve indirect or warning symbols and then recreate the GOT. */
4123
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127 struct mips_got_entry *entry;
4128 struct mips_elf_traverse_got_arg *arg;
4129
4130 entry = (struct mips_got_entry *) *entryp;
4131 arg = (struct mips_elf_traverse_got_arg *) data;
4132 if (entry->abfd != NULL && entry->symndx == -1)
4133 {
4134 struct mips_elf_link_hash_entry *h;
4135
4136 h = entry->d.h;
4137 if (h->root.root.type == bfd_link_hash_indirect
4138 || h->root.root.type == bfd_link_hash_warning)
4139 {
4140 arg->value = TRUE;
4141 return 0;
4142 }
4143 }
4144 mips_elf_count_got_entry (arg->info, arg->g, entry);
4145 return 1;
4146 }
4147
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4150 converting entries for indirect and warning symbols into entries
4151 for the target symbol. Set DATA->g to null on error. */
4152
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156 struct mips_got_entry new_entry, *entry;
4157 struct mips_elf_traverse_got_arg *arg;
4158 void **slot;
4159
4160 entry = (struct mips_got_entry *) *entryp;
4161 arg = (struct mips_elf_traverse_got_arg *) data;
4162 if (entry->abfd != NULL
4163 && entry->symndx == -1
4164 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 || entry->d.h->root.root.type == bfd_link_hash_warning))
4166 {
4167 struct mips_elf_link_hash_entry *h;
4168
4169 new_entry = *entry;
4170 entry = &new_entry;
4171 h = entry->d.h;
4172 do
4173 {
4174 BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 }
4177 while (h->root.root.type == bfd_link_hash_indirect
4178 || h->root.root.type == bfd_link_hash_warning);
4179 entry->d.h = h;
4180 }
4181 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182 if (slot == NULL)
4183 {
4184 arg->g = NULL;
4185 return 0;
4186 }
4187 if (*slot == NULL)
4188 {
4189 if (entry == &new_entry)
4190 {
4191 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 if (!entry)
4193 {
4194 arg->g = NULL;
4195 return 0;
4196 }
4197 *entry = new_entry;
4198 }
4199 *slot = entry;
4200 mips_elf_count_got_entry (arg->info, arg->g, entry);
4201 }
4202 return 1;
4203 }
4204
4205 /* Return the maximum number of GOT page entries required for RANGE. */
4206
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212
4213 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4214
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 asection *sec, bfd_signed_vma addend)
4218 {
4219 struct mips_got_info *g = arg->g;
4220 struct mips_got_page_entry lookup, *entry;
4221 struct mips_got_page_range **range_ptr, *range;
4222 bfd_vma old_pages, new_pages;
4223 void **loc;
4224
4225 /* Find the mips_got_page_entry hash table entry for this section. */
4226 lookup.sec = sec;
4227 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228 if (loc == NULL)
4229 return FALSE;
4230
4231 /* Create a mips_got_page_entry if this is the first time we've
4232 seen the section. */
4233 entry = (struct mips_got_page_entry *) *loc;
4234 if (!entry)
4235 {
4236 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237 if (!entry)
4238 return FALSE;
4239
4240 entry->sec = sec;
4241 *loc = entry;
4242 }
4243
4244 /* Skip over ranges whose maximum extent cannot share a page entry
4245 with ADDEND. */
4246 range_ptr = &entry->ranges;
4247 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248 range_ptr = &(*range_ptr)->next;
4249
4250 /* If we scanned to the end of the list, or found a range whose
4251 minimum extent cannot share a page entry with ADDEND, create
4252 a new singleton range. */
4253 range = *range_ptr;
4254 if (!range || addend < range->min_addend - 0xffff)
4255 {
4256 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257 if (!range)
4258 return FALSE;
4259
4260 range->next = *range_ptr;
4261 range->min_addend = addend;
4262 range->max_addend = addend;
4263
4264 *range_ptr = range;
4265 entry->num_pages++;
4266 g->page_gotno++;
4267 return TRUE;
4268 }
4269
4270 /* Remember how many pages the old range contributed. */
4271 old_pages = mips_elf_pages_for_range (range);
4272
4273 /* Update the ranges. */
4274 if (addend < range->min_addend)
4275 range->min_addend = addend;
4276 else if (addend > range->max_addend)
4277 {
4278 if (range->next && addend >= range->next->min_addend - 0xffff)
4279 {
4280 old_pages += mips_elf_pages_for_range (range->next);
4281 range->max_addend = range->next->max_addend;
4282 range->next = range->next->next;
4283 }
4284 else
4285 range->max_addend = addend;
4286 }
4287
4288 /* Record any change in the total estimate. */
4289 new_pages = mips_elf_pages_for_range (range);
4290 if (old_pages != new_pages)
4291 {
4292 entry->num_pages += new_pages - old_pages;
4293 g->page_gotno += new_pages - old_pages;
4294 }
4295
4296 return TRUE;
4297 }
4298
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4301 whether the page reference described by *REFP needs a GOT page entry,
4302 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4303
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307 struct mips_got_page_ref *ref;
4308 struct mips_elf_traverse_got_arg *arg;
4309 struct mips_elf_link_hash_table *htab;
4310 asection *sec;
4311 bfd_vma addend;
4312
4313 ref = (struct mips_got_page_ref *) *refp;
4314 arg = (struct mips_elf_traverse_got_arg *) data;
4315 htab = mips_elf_hash_table (arg->info);
4316
4317 if (ref->symndx < 0)
4318 {
4319 struct mips_elf_link_hash_entry *h;
4320
4321 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4322 h = ref->u.h;
4323 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 return 1;
4325
4326 /* Ignore undefined symbols; we'll issue an error later if
4327 appropriate. */
4328 if (!((h->root.root.type == bfd_link_hash_defined
4329 || h->root.root.type == bfd_link_hash_defweak)
4330 && h->root.root.u.def.section))
4331 return 1;
4332
4333 sec = h->root.root.u.def.section;
4334 addend = h->root.root.u.def.value + ref->addend;
4335 }
4336 else
4337 {
4338 Elf_Internal_Sym *isym;
4339
4340 /* Read in the symbol. */
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 ref->symndx);
4343 if (isym == NULL)
4344 {
4345 arg->g = NULL;
4346 return 0;
4347 }
4348
4349 /* Get the associated input section. */
4350 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351 if (sec == NULL)
4352 {
4353 arg->g = NULL;
4354 return 0;
4355 }
4356
4357 /* If this is a mergable section, work out the section and offset
4358 of the merged data. For section symbols, the addend specifies
4359 of the offset _of_ the first byte in the data, otherwise it
4360 specifies the offset _from_ the first byte. */
4361 if (sec->flags & SEC_MERGE)
4362 {
4363 void *secinfo;
4364
4365 secinfo = elf_section_data (sec)->sec_info;
4366 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 isym->st_value + ref->addend);
4369 else
4370 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 isym->st_value) + ref->addend;
4372 }
4373 else
4374 addend = isym->st_value + ref->addend;
4375 }
4376 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377 {
4378 arg->g = NULL;
4379 return 0;
4380 }
4381 return 1;
4382 }
4383
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385 replace them with entries for the target symbol. Convert g->got_page_refs
4386 into got_page_entry structures and estimate the number of page entries
4387 that they require. */
4388
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 struct mips_got_info *g)
4392 {
4393 struct mips_elf_traverse_got_arg tga;
4394 struct mips_got_info oldg;
4395
4396 oldg = *g;
4397
4398 tga.info = info;
4399 tga.g = g;
4400 tga.value = FALSE;
4401 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402 if (tga.value)
4403 {
4404 *g = oldg;
4405 g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 mips_elf_got_entry_hash,
4407 mips_elf_got_entry_eq, NULL);
4408 if (!g->got_entries)
4409 return FALSE;
4410
4411 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412 if (!tga.g)
4413 return FALSE;
4414
4415 htab_delete (oldg.got_entries);
4416 }
4417
4418 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 mips_got_page_entry_eq, NULL);
4420 if (g->got_page_entries == NULL)
4421 return FALSE;
4422
4423 tga.info = info;
4424 tga.g = g;
4425 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426
4427 return TRUE;
4428 }
4429
4430 /* Return true if a GOT entry for H should live in the local rather than
4431 global GOT area. */
4432
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 struct mips_elf_link_hash_entry *h)
4436 {
4437 /* Symbols that aren't in the dynamic symbol table must live in the
4438 local GOT. This includes symbols that are completely undefined
4439 and which therefore don't bind locally. We'll report undefined
4440 symbols later if appropriate. */
4441 if (h->root.dynindx == -1)
4442 return TRUE;
4443
4444 /* Symbols that bind locally can (and in the case of forced-local
4445 symbols, must) live in the local GOT. */
4446 if (h->got_only_for_calls
4447 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449 return TRUE;
4450
4451 /* If this is an executable that must provide a definition of the symbol,
4452 either though PLTs or copy relocations, then that address should go in
4453 the local rather than global GOT. */
4454 if (bfd_link_executable (info) && h->has_static_relocs)
4455 return TRUE;
4456
4457 return FALSE;
4458 }
4459
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461 link_info structure. Decide whether the hash entry needs an entry in
4462 the global part of the primary GOT, setting global_got_area accordingly.
4463 Count the number of global symbols that are in the primary GOT only
4464 because they have relocations against them (reloc_only_gotno). */
4465
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469 struct bfd_link_info *info;
4470 struct mips_elf_link_hash_table *htab;
4471 struct mips_got_info *g;
4472
4473 info = (struct bfd_link_info *) data;
4474 htab = mips_elf_hash_table (info);
4475 g = htab->got_info;
4476 if (h->global_got_area != GGA_NONE)
4477 {
4478 /* Make a final decision about whether the symbol belongs in the
4479 local or global GOT. */
4480 if (mips_use_local_got_p (info, h))
4481 /* The symbol belongs in the local GOT. We no longer need this
4482 entry if it was only used for relocations; those relocations
4483 will be against the null or section symbol instead of H. */
4484 h->global_got_area = GGA_NONE;
4485 else if (htab->is_vxworks
4486 && h->got_only_for_calls
4487 && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 /* On VxWorks, calls can refer directly to the .got.plt entry;
4489 they don't need entries in the regular GOT. .got.plt entries
4490 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4491 h->global_got_area = GGA_NONE;
4492 else if (h->global_got_area == GGA_RELOC_ONLY)
4493 {
4494 g->reloc_only_gotno++;
4495 g->global_gotno++;
4496 }
4497 }
4498 return 1;
4499 }
4500 \f
4501 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4502 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4503
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507 struct mips_got_entry *entry;
4508 struct mips_elf_traverse_got_arg *arg;
4509 void **slot;
4510
4511 entry = (struct mips_got_entry *) *entryp;
4512 arg = (struct mips_elf_traverse_got_arg *) data;
4513 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514 if (!slot)
4515 {
4516 arg->g = NULL;
4517 return 0;
4518 }
4519 if (!*slot)
4520 {
4521 *slot = entry;
4522 mips_elf_count_got_entry (arg->info, arg->g, entry);
4523 }
4524 return 1;
4525 }
4526
4527 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4528 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4529
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533 struct mips_got_page_entry *entry;
4534 struct mips_elf_traverse_got_arg *arg;
4535 void **slot;
4536
4537 entry = (struct mips_got_page_entry *) *entryp;
4538 arg = (struct mips_elf_traverse_got_arg *) data;
4539 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540 if (!slot)
4541 {
4542 arg->g = NULL;
4543 return 0;
4544 }
4545 if (!*slot)
4546 {
4547 *slot = entry;
4548 arg->g->page_gotno += entry->num_pages;
4549 }
4550 return 1;
4551 }
4552
4553 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4554 this would lead to overflow, 1 if they were merged successfully,
4555 and 0 if a merge failed due to lack of memory. (These values are chosen
4556 so that nonnegative return values can be returned by a htab_traverse
4557 callback.) */
4558
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 struct mips_got_info *to,
4562 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564 struct mips_elf_traverse_got_arg tga;
4565 unsigned int estimate;
4566
4567 /* Work out how many page entries we would need for the combined GOT. */
4568 estimate = arg->max_pages;
4569 if (estimate >= from->page_gotno + to->page_gotno)
4570 estimate = from->page_gotno + to->page_gotno;
4571
4572 /* And conservatively estimate how many local and TLS entries
4573 would be needed. */
4574 estimate += from->local_gotno + to->local_gotno;
4575 estimate += from->tls_gotno + to->tls_gotno;
4576
4577 /* If we're merging with the primary got, any TLS relocations will
4578 come after the full set of global entries. Otherwise estimate those
4579 conservatively as well. */
4580 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581 estimate += arg->global_count;
4582 else
4583 estimate += from->global_gotno + to->global_gotno;
4584
4585 /* Bail out if the combined GOT might be too big. */
4586 if (estimate > arg->max_count)
4587 return -1;
4588
4589 /* Transfer the bfd's got information from FROM to TO. */
4590 tga.info = arg->info;
4591 tga.g = to;
4592 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593 if (!tga.g)
4594 return 0;
4595
4596 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597 if (!tga.g)
4598 return 0;
4599
4600 mips_elf_replace_bfd_got (abfd, to);
4601 return 1;
4602 }
4603
4604 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4605 as possible of the primary got, since it doesn't require explicit
4606 dynamic relocations, but don't use bfds that would reference global
4607 symbols out of the addressable range. Failing the primary got,
4608 attempt to merge with the current got, or finish the current got
4609 and then make make the new got current. */
4610
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615 unsigned int estimate;
4616 int result;
4617
4618 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619 return FALSE;
4620
4621 /* Work out the number of page, local and TLS entries. */
4622 estimate = arg->max_pages;
4623 if (estimate > g->page_gotno)
4624 estimate = g->page_gotno;
4625 estimate += g->local_gotno + g->tls_gotno;
4626
4627 /* We place TLS GOT entries after both locals and globals. The globals
4628 for the primary GOT may overflow the normal GOT size limit, so be
4629 sure not to merge a GOT which requires TLS with the primary GOT in that
4630 case. This doesn't affect non-primary GOTs. */
4631 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632
4633 if (estimate <= arg->max_count)
4634 {
4635 /* If we don't have a primary GOT, use it as
4636 a starting point for the primary GOT. */
4637 if (!arg->primary)
4638 {
4639 arg->primary = g;
4640 return TRUE;
4641 }
4642
4643 /* Try merging with the primary GOT. */
4644 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645 if (result >= 0)
4646 return result;
4647 }
4648
4649 /* If we can merge with the last-created got, do it. */
4650 if (arg->current)
4651 {
4652 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653 if (result >= 0)
4654 return result;
4655 }
4656
4657 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4658 fits; if it turns out that it doesn't, we'll get relocation
4659 overflows anyway. */
4660 g->next = arg->current;
4661 arg->current = g;
4662
4663 return TRUE;
4664 }
4665
4666 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4667 to GOTIDX, duplicating the entry if it has already been assigned
4668 an index in a different GOT. */
4669
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673 struct mips_got_entry *entry;
4674
4675 entry = (struct mips_got_entry *) *entryp;
4676 if (entry->gotidx > 0)
4677 {
4678 struct mips_got_entry *new_entry;
4679
4680 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681 if (!new_entry)
4682 return FALSE;
4683
4684 *new_entry = *entry;
4685 *entryp = new_entry;
4686 entry = new_entry;
4687 }
4688 entry->gotidx = gotidx;
4689 return TRUE;
4690 }
4691
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4693 mips_elf_traverse_got_arg in which DATA->value is the size of one
4694 GOT entry. Set DATA->g to null on failure. */
4695
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699 struct mips_got_entry *entry;
4700 struct mips_elf_traverse_got_arg *arg;
4701
4702 /* We're only interested in TLS symbols. */
4703 entry = (struct mips_got_entry *) *entryp;
4704 if (entry->tls_type == GOT_TLS_NONE)
4705 return 1;
4706
4707 arg = (struct mips_elf_traverse_got_arg *) data;
4708 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709 {
4710 arg->g = NULL;
4711 return 0;
4712 }
4713
4714 /* Account for the entries we've just allocated. */
4715 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716 return 1;
4717 }
4718
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720 mips_elf_traverse_got_arg. Set the global_got_area of each global
4721 symbol to DATA->value. */
4722
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726 struct mips_got_entry *entry;
4727 struct mips_elf_traverse_got_arg *arg;
4728
4729 entry = (struct mips_got_entry *) *entryp;
4730 arg = (struct mips_elf_traverse_got_arg *) data;
4731 if (entry->abfd != NULL
4732 && entry->symndx == -1
4733 && entry->d.h->global_got_area != GGA_NONE)
4734 entry->d.h->global_got_area = arg->value;
4735 return 1;
4736 }
4737
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4740 and record the number of relocations they require. DATA->value is
4741 the size of one GOT entry. Set DATA->g to null on failure. */
4742
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746 struct mips_got_entry *entry;
4747 struct mips_elf_traverse_got_arg *arg;
4748
4749 entry = (struct mips_got_entry *) *entryp;
4750 arg = (struct mips_elf_traverse_got_arg *) data;
4751 if (entry->abfd != NULL
4752 && entry->symndx == -1
4753 && entry->d.h->global_got_area != GGA_NONE)
4754 {
4755 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 {
4757 arg->g = NULL;
4758 return 0;
4759 }
4760 arg->g->assigned_low_gotno += 1;
4761
4762 if (bfd_link_pic (arg->info)
4763 || (elf_hash_table (arg->info)->dynamic_sections_created
4764 && entry->d.h->root.def_dynamic
4765 && !entry->d.h->root.def_regular))
4766 arg->g->relocs += 1;
4767 }
4768
4769 return 1;
4770 }
4771
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773 bfd_link_info. Forbid any global symbols from having traditional
4774 lazy-binding stubs. */
4775
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779 struct bfd_link_info *info;
4780 struct mips_elf_link_hash_table *htab;
4781 struct mips_got_entry *entry;
4782
4783 entry = (struct mips_got_entry *) *entryp;
4784 info = (struct bfd_link_info *) data;
4785 htab = mips_elf_hash_table (info);
4786 BFD_ASSERT (htab != NULL);
4787
4788 if (entry->abfd != NULL
4789 && entry->symndx == -1
4790 && entry->d.h->needs_lazy_stub)
4791 {
4792 entry->d.h->needs_lazy_stub = FALSE;
4793 htab->lazy_stub_count--;
4794 }
4795
4796 return 1;
4797 }
4798
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800 the primary GOT. */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804 if (!g->next)
4805 return 0;
4806
4807 g = mips_elf_bfd_got (ibfd, FALSE);
4808 if (! g)
4809 return 0;
4810
4811 BFD_ASSERT (g->next);
4812
4813 g = g->next;
4814
4815 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816 * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820 a sequence of GOTs, each one 16-bit addressable. */
4821
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 asection *got, bfd_size_type pages)
4825 {
4826 struct mips_elf_link_hash_table *htab;
4827 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828 struct mips_elf_traverse_got_arg tga;
4829 struct mips_got_info *g, *gg;
4830 unsigned int assign, needed_relocs;
4831 bfd *dynobj, *ibfd;
4832
4833 dynobj = elf_hash_table (info)->dynobj;
4834 htab = mips_elf_hash_table (info);
4835 BFD_ASSERT (htab != NULL);
4836
4837 g = htab->got_info;
4838
4839 got_per_bfd_arg.obfd = abfd;
4840 got_per_bfd_arg.info = info;
4841 got_per_bfd_arg.current = NULL;
4842 got_per_bfd_arg.primary = NULL;
4843 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 / MIPS_ELF_GOT_SIZE (abfd))
4845 - htab->reserved_gotno);
4846 got_per_bfd_arg.max_pages = pages;
4847 /* The number of globals that will be included in the primary GOT.
4848 See the calls to mips_elf_set_global_got_area below for more
4849 information. */
4850 got_per_bfd_arg.global_count = g->global_gotno;
4851
4852 /* Try to merge the GOTs of input bfds together, as long as they
4853 don't seem to exceed the maximum GOT size, choosing one of them
4854 to be the primary GOT. */
4855 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856 {
4857 gg = mips_elf_bfd_got (ibfd, FALSE);
4858 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 return FALSE;
4860 }
4861
4862 /* If we do not find any suitable primary GOT, create an empty one. */
4863 if (got_per_bfd_arg.primary == NULL)
4864 g->next = mips_elf_create_got_info (abfd);
4865 else
4866 g->next = got_per_bfd_arg.primary;
4867 g->next->next = got_per_bfd_arg.current;
4868
4869 /* GG is now the master GOT, and G is the primary GOT. */
4870 gg = g;
4871 g = g->next;
4872
4873 /* Map the output bfd to the primary got. That's what we're going
4874 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875 didn't mark in check_relocs, and we want a quick way to find it.
4876 We can't just use gg->next because we're going to reverse the
4877 list. */
4878 mips_elf_replace_bfd_got (abfd, g);
4879
4880 /* Every symbol that is referenced in a dynamic relocation must be
4881 present in the primary GOT, so arrange for them to appear after
4882 those that are actually referenced. */
4883 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884 g->global_gotno = gg->global_gotno;
4885
4886 tga.info = info;
4887 tga.value = GGA_RELOC_ONLY;
4888 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889 tga.value = GGA_NORMAL;
4890 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891
4892 /* Now go through the GOTs assigning them offset ranges.
4893 [assigned_low_gotno, local_gotno[ will be set to the range of local
4894 entries in each GOT. We can then compute the end of a GOT by
4895 adding local_gotno to global_gotno. We reverse the list and make
4896 it circular since then we'll be able to quickly compute the
4897 beginning of a GOT, by computing the end of its predecessor. To
4898 avoid special cases for the primary GOT, while still preserving
4899 assertions that are valid for both single- and multi-got links,
4900 we arrange for the main got struct to have the right number of
4901 global entries, but set its local_gotno such that the initial
4902 offset of the primary GOT is zero. Remember that the primary GOT
4903 will become the last item in the circular linked list, so it
4904 points back to the master GOT. */
4905 gg->local_gotno = -g->global_gotno;
4906 gg->global_gotno = g->global_gotno;
4907 gg->tls_gotno = 0;
4908 assign = 0;
4909 gg->next = gg;
4910
4911 do
4912 {
4913 struct mips_got_info *gn;
4914
4915 assign += htab->reserved_gotno;
4916 g->assigned_low_gotno = assign;
4917 g->local_gotno += assign;
4918 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919 g->assigned_high_gotno = g->local_gotno - 1;
4920 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921
4922 /* Take g out of the direct list, and push it onto the reversed
4923 list that gg points to. g->next is guaranteed to be nonnull after
4924 this operation, as required by mips_elf_initialize_tls_index. */
4925 gn = g->next;
4926 g->next = gg->next;
4927 gg->next = g;
4928
4929 /* Set up any TLS entries. We always place the TLS entries after
4930 all non-TLS entries. */
4931 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932 tga.g = g;
4933 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935 if (!tga.g)
4936 return FALSE;
4937 BFD_ASSERT (g->tls_assigned_gotno == assign);
4938
4939 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4940 g = gn;
4941
4942 /* Forbid global symbols in every non-primary GOT from having
4943 lazy-binding stubs. */
4944 if (g)
4945 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946 }
4947 while (g);
4948
4949 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950
4951 needed_relocs = 0;
4952 for (g = gg->next; g && g->next != gg; g = g->next)
4953 {
4954 unsigned int save_assign;
4955
4956 /* Assign offsets to global GOT entries and count how many
4957 relocations they need. */
4958 save_assign = g->assigned_low_gotno;
4959 g->assigned_low_gotno = g->local_gotno;
4960 tga.info = info;
4961 tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962 tga.g = g;
4963 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964 if (!tga.g)
4965 return FALSE;
4966 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967 g->assigned_low_gotno = save_assign;
4968
4969 if (bfd_link_pic (info))
4970 {
4971 g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 + g->next->global_gotno
4974 + g->next->tls_gotno
4975 + htab->reserved_gotno);
4976 }
4977 needed_relocs += g->relocs;
4978 }
4979 needed_relocs += g->relocs;
4980
4981 if (needed_relocs)
4982 mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 needed_relocs);
4984
4985 return TRUE;
4986 }
4987
4988 \f
4989 /* Returns the first relocation of type r_type found, beginning with
4990 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4991
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 const Elf_Internal_Rela *relocation,
4995 const Elf_Internal_Rela *relend)
4996 {
4997 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998
4999 while (relocation < relend)
5000 {
5001 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 return relocation;
5004
5005 ++relocation;
5006 }
5007
5008 /* We didn't find it. */
5009 return NULL;
5010 }
5011
5012 /* Return whether an input relocation is against a local symbol. */
5013
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 const Elf_Internal_Rela *relocation,
5017 asection **local_sections)
5018 {
5019 unsigned long r_symndx;
5020 Elf_Internal_Shdr *symtab_hdr;
5021 size_t extsymoff;
5022
5023 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026
5027 if (r_symndx < extsymoff)
5028 return TRUE;
5029 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030 return TRUE;
5031
5032 return FALSE;
5033 }
5034 \f
5035 /* Sign-extend VALUE, which has the indicated number of BITS. */
5036
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040 if (value & ((bfd_vma) 1 << (bits - 1)))
5041 /* VALUE is negative. */
5042 value |= ((bfd_vma) - 1) << bits;
5043
5044 return value;
5045 }
5046
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048 range expressible by a signed number with the indicated number of
5049 BITS. */
5050
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054 bfd_signed_vma svalue = (bfd_signed_vma) value;
5055
5056 if (svalue > (1 << (bits - 1)) - 1)
5057 /* The value is too big. */
5058 return TRUE;
5059 else if (svalue < -(1 << (bits - 1)))
5060 /* The value is too small. */
5061 return TRUE;
5062
5063 /* All is well. */
5064 return FALSE;
5065 }
5066
5067 /* Calculate the %high function. */
5068
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074
5075 /* Calculate the %higher function. */
5076
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083 abort ();
5084 return MINUS_ONE;
5085 #endif
5086 }
5087
5088 /* Calculate the %highest function. */
5089
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096 abort ();
5097 return MINUS_ONE;
5098 #endif
5099 }
5100 \f
5101 /* Create the .compact_rel section. */
5102
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107 flagword flags;
5108 register asection *s;
5109
5110 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111 {
5112 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 | SEC_READONLY);
5114
5115 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116 if (s == NULL
5117 || ! bfd_set_section_alignment (abfd, s,
5118 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 return FALSE;
5120
5121 s->size = sizeof (Elf32_External_compact_rel);
5122 }
5123
5124 return TRUE;
5125 }
5126
5127 /* Create the .got section to hold the global offset table. */
5128
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132 flagword flags;
5133 register asection *s;
5134 struct elf_link_hash_entry *h;
5135 struct bfd_link_hash_entry *bh;
5136 struct mips_elf_link_hash_table *htab;
5137
5138 htab = mips_elf_hash_table (info);
5139 BFD_ASSERT (htab != NULL);
5140
5141 /* This function may be called more than once. */
5142 if (htab->root.sgot)
5143 return TRUE;
5144
5145 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 | SEC_LINKER_CREATED);
5147
5148 /* We have to use an alignment of 2**4 here because this is hardcoded
5149 in the function stub generation and in the linker script. */
5150 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151 if (s == NULL
5152 || ! bfd_set_section_alignment (abfd, s, 4))
5153 return FALSE;
5154 htab->root.sgot = s;
5155
5156 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5157 linker script because we don't want to define the symbol if we
5158 are not creating a global offset table. */
5159 bh = NULL;
5160 if (! (_bfd_generic_link_add_one_symbol
5161 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163 return FALSE;
5164
5165 h = (struct elf_link_hash_entry *) bh;
5166 h->non_elf = 0;
5167 h->def_regular = 1;
5168 h->type = STT_OBJECT;
5169 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170 elf_hash_table (info)->hgot = h;
5171
5172 if (bfd_link_pic (info)
5173 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174 return FALSE;
5175
5176 htab->got_info = mips_elf_create_got_info (abfd);
5177 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179
5180 /* We also need a .got.plt section when generating PLTs. */
5181 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 SEC_ALLOC | SEC_LOAD
5183 | SEC_HAS_CONTENTS
5184 | SEC_IN_MEMORY
5185 | SEC_LINKER_CREATED);
5186 if (s == NULL)
5187 return FALSE;
5188 htab->root.sgotplt = s;
5189
5190 return TRUE;
5191 }
5192 \f
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194 __GOTT_INDEX__ symbols. These symbols are only special for
5195 shared objects; they are not used in executables. */
5196
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200 return (mips_elf_hash_table (info)->is_vxworks
5201 && bfd_link_pic (info)
5202 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207 require an la25 stub. See also mips_elf_local_pic_function_p,
5208 which determines whether the destination function ever requires a
5209 stub. */
5210
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 bfd_boolean target_is_16_bit_code_p)
5214 {
5215 /* We specifically ignore branches and jumps from EF_PIC objects,
5216 where the onus is on the compiler or programmer to perform any
5217 necessary initialization of $25. Sometimes such initialization
5218 is unnecessary; for example, -mno-shared functions do not use
5219 the incoming value of $25, and may therefore be called directly. */
5220 if (PIC_OBJECT_P (input_bfd))
5221 return FALSE;
5222
5223 switch (r_type)
5224 {
5225 case R_MIPS_26:
5226 case R_MIPS_PC16:
5227 case R_MIPS_PC21_S2:
5228 case R_MIPS_PC26_S2:
5229 case R_MICROMIPS_26_S1:
5230 case R_MICROMIPS_PC7_S1:
5231 case R_MICROMIPS_PC10_S1:
5232 case R_MICROMIPS_PC16_S1:
5233 case R_MICROMIPS_PC23_S2:
5234 return TRUE;
5235
5236 case R_MIPS16_26:
5237 return !target_is_16_bit_code_p;
5238
5239 default:
5240 return FALSE;
5241 }
5242 }
5243 \f
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245 the INPUT_BFD). The ADDEND is the addend to use for this
5246 RELOCATION; RELOCATION->R_ADDEND is ignored.
5247
5248 The result of the relocation calculation is stored in VALUEP.
5249 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251
5252 This function returns bfd_reloc_continue if the caller need take no
5253 further action regarding this relocation, bfd_reloc_notsupported if
5254 something goes dramatically wrong, bfd_reloc_overflow if an
5255 overflow occurs, and bfd_reloc_ok to indicate success. */
5256
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 asection *input_section,
5260 struct bfd_link_info *info,
5261 const Elf_Internal_Rela *relocation,
5262 bfd_vma addend, reloc_howto_type *howto,
5263 Elf_Internal_Sym *local_syms,
5264 asection **local_sections, bfd_vma *valuep,
5265 const char **namep,
5266 bfd_boolean *cross_mode_jump_p,
5267 bfd_boolean save_addend)
5268 {
5269 /* The eventual value we will return. */
5270 bfd_vma value;
5271 /* The address of the symbol against which the relocation is
5272 occurring. */
5273 bfd_vma symbol = 0;
5274 /* The final GP value to be used for the relocatable, executable, or
5275 shared object file being produced. */
5276 bfd_vma gp;
5277 /* The place (section offset or address) of the storage unit being
5278 relocated. */
5279 bfd_vma p;
5280 /* The value of GP used to create the relocatable object. */
5281 bfd_vma gp0;
5282 /* The offset into the global offset table at which the address of
5283 the relocation entry symbol, adjusted by the addend, resides
5284 during execution. */
5285 bfd_vma g = MINUS_ONE;
5286 /* The section in which the symbol referenced by the relocation is
5287 located. */
5288 asection *sec = NULL;
5289 struct mips_elf_link_hash_entry *h = NULL;
5290 /* TRUE if the symbol referred to by this relocation is a local
5291 symbol. */
5292 bfd_boolean local_p, was_local_p;
5293 /* TRUE if the symbol referred to by this relocation is a section
5294 symbol. */
5295 bfd_boolean section_p = FALSE;
5296 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5297 bfd_boolean gp_disp_p = FALSE;
5298 /* TRUE if the symbol referred to by this relocation is
5299 "__gnu_local_gp". */
5300 bfd_boolean gnu_local_gp_p = FALSE;
5301 Elf_Internal_Shdr *symtab_hdr;
5302 size_t extsymoff;
5303 unsigned long r_symndx;
5304 int r_type;
5305 /* TRUE if overflow occurred during the calculation of the
5306 relocation value. */
5307 bfd_boolean overflowed_p;
5308 /* TRUE if this relocation refers to a MIPS16 function. */
5309 bfd_boolean target_is_16_bit_code_p = FALSE;
5310 bfd_boolean target_is_micromips_code_p = FALSE;
5311 struct mips_elf_link_hash_table *htab;
5312 bfd *dynobj;
5313
5314 dynobj = elf_hash_table (info)->dynobj;
5315 htab = mips_elf_hash_table (info);
5316 BFD_ASSERT (htab != NULL);
5317
5318 /* Parse the relocation. */
5319 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5320 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5321 p = (input_section->output_section->vma
5322 + input_section->output_offset
5323 + relocation->r_offset);
5324
5325 /* Assume that there will be no overflow. */
5326 overflowed_p = FALSE;
5327
5328 /* Figure out whether or not the symbol is local, and get the offset
5329 used in the array of hash table entries. */
5330 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5331 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5332 local_sections);
5333 was_local_p = local_p;
5334 if (! elf_bad_symtab (input_bfd))
5335 extsymoff = symtab_hdr->sh_info;
5336 else
5337 {
5338 /* The symbol table does not follow the rule that local symbols
5339 must come before globals. */
5340 extsymoff = 0;
5341 }
5342
5343 /* Figure out the value of the symbol. */
5344 if (local_p)
5345 {
5346 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5347 Elf_Internal_Sym *sym;
5348
5349 sym = local_syms + r_symndx;
5350 sec = local_sections[r_symndx];
5351
5352 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5353
5354 symbol = sec->output_section->vma + sec->output_offset;
5355 if (!section_p || (sec->flags & SEC_MERGE))
5356 symbol += sym->st_value;
5357 if ((sec->flags & SEC_MERGE) && section_p)
5358 {
5359 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5360 addend -= symbol;
5361 addend += sec->output_section->vma + sec->output_offset;
5362 }
5363
5364 /* MIPS16/microMIPS text labels should be treated as odd. */
5365 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5366 ++symbol;
5367
5368 /* Record the name of this symbol, for our caller. */
5369 *namep = bfd_elf_string_from_elf_section (input_bfd,
5370 symtab_hdr->sh_link,
5371 sym->st_name);
5372 if (*namep == NULL || **namep == '\0')
5373 *namep = bfd_section_name (input_bfd, sec);
5374
5375 /* For relocations against a section symbol and ones against no
5376 symbol (absolute relocations) infer the ISA mode from the addend. */
5377 if (section_p || r_symndx == STN_UNDEF)
5378 {
5379 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5380 target_is_micromips_code_p = (addend & 1) && micromips_p;
5381 }
5382 /* For relocations against an absolute symbol infer the ISA mode
5383 from the value of the symbol plus addend. */
5384 else if (bfd_is_abs_section (sec))
5385 {
5386 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5387 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5388 }
5389 /* Otherwise just use the regular symbol annotation available. */
5390 else
5391 {
5392 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5393 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5394 }
5395 }
5396 else
5397 {
5398 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5399
5400 /* For global symbols we look up the symbol in the hash-table. */
5401 h = ((struct mips_elf_link_hash_entry *)
5402 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5403 /* Find the real hash-table entry for this symbol. */
5404 while (h->root.root.type == bfd_link_hash_indirect
5405 || h->root.root.type == bfd_link_hash_warning)
5406 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5407
5408 /* Record the name of this symbol, for our caller. */
5409 *namep = h->root.root.root.string;
5410
5411 /* See if this is the special _gp_disp symbol. Note that such a
5412 symbol must always be a global symbol. */
5413 if (strcmp (*namep, "_gp_disp") == 0
5414 && ! NEWABI_P (input_bfd))
5415 {
5416 /* Relocations against _gp_disp are permitted only with
5417 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5418 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5419 return bfd_reloc_notsupported;
5420
5421 gp_disp_p = TRUE;
5422 }
5423 /* See if this is the special _gp symbol. Note that such a
5424 symbol must always be a global symbol. */
5425 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5426 gnu_local_gp_p = TRUE;
5427
5428
5429 /* If this symbol is defined, calculate its address. Note that
5430 _gp_disp is a magic symbol, always implicitly defined by the
5431 linker, so it's inappropriate to check to see whether or not
5432 its defined. */
5433 else if ((h->root.root.type == bfd_link_hash_defined
5434 || h->root.root.type == bfd_link_hash_defweak)
5435 && h->root.root.u.def.section)
5436 {
5437 sec = h->root.root.u.def.section;
5438 if (sec->output_section)
5439 symbol = (h->root.root.u.def.value
5440 + sec->output_section->vma
5441 + sec->output_offset);
5442 else
5443 symbol = h->root.root.u.def.value;
5444 }
5445 else if (h->root.root.type == bfd_link_hash_undefweak)
5446 /* We allow relocations against undefined weak symbols, giving
5447 it the value zero, so that you can undefined weak functions
5448 and check to see if they exist by looking at their
5449 addresses. */
5450 symbol = 0;
5451 else if (info->unresolved_syms_in_objects == RM_IGNORE
5452 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5453 symbol = 0;
5454 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5455 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5456 {
5457 /* If this is a dynamic link, we should have created a
5458 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5459 in in _bfd_mips_elf_create_dynamic_sections.
5460 Otherwise, we should define the symbol with a value of 0.
5461 FIXME: It should probably get into the symbol table
5462 somehow as well. */
5463 BFD_ASSERT (! bfd_link_pic (info));
5464 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5465 symbol = 0;
5466 }
5467 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5468 {
5469 /* This is an optional symbol - an Irix specific extension to the
5470 ELF spec. Ignore it for now.
5471 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5472 than simply ignoring them, but we do not handle this for now.
5473 For information see the "64-bit ELF Object File Specification"
5474 which is available from here:
5475 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5476 symbol = 0;
5477 }
5478 else
5479 {
5480 (*info->callbacks->undefined_symbol)
5481 (info, h->root.root.root.string, input_bfd,
5482 input_section, relocation->r_offset,
5483 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5484 || ELF_ST_VISIBILITY (h->root.other));
5485 return bfd_reloc_undefined;
5486 }
5487
5488 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5489 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5490 }
5491
5492 /* If this is a reference to a 16-bit function with a stub, we need
5493 to redirect the relocation to the stub unless:
5494
5495 (a) the relocation is for a MIPS16 JAL;
5496
5497 (b) the relocation is for a MIPS16 PIC call, and there are no
5498 non-MIPS16 uses of the GOT slot; or
5499
5500 (c) the section allows direct references to MIPS16 functions. */
5501 if (r_type != R_MIPS16_26
5502 && !bfd_link_relocatable (info)
5503 && ((h != NULL
5504 && h->fn_stub != NULL
5505 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5506 || (local_p
5507 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5509 && !section_allows_mips16_refs_p (input_section))
5510 {
5511 /* This is a 32- or 64-bit call to a 16-bit function. We should
5512 have already noticed that we were going to need the
5513 stub. */
5514 if (local_p)
5515 {
5516 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5517 value = 0;
5518 }
5519 else
5520 {
5521 BFD_ASSERT (h->need_fn_stub);
5522 if (h->la25_stub)
5523 {
5524 /* If a LA25 header for the stub itself exists, point to the
5525 prepended LUI/ADDIU sequence. */
5526 sec = h->la25_stub->stub_section;
5527 value = h->la25_stub->offset;
5528 }
5529 else
5530 {
5531 sec = h->fn_stub;
5532 value = 0;
5533 }
5534 }
5535
5536 symbol = sec->output_section->vma + sec->output_offset + value;
5537 /* The target is 16-bit, but the stub isn't. */
5538 target_is_16_bit_code_p = FALSE;
5539 }
5540 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541 to a standard MIPS function, we need to redirect the call to the stub.
5542 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543 indirect calls should use an indirect stub instead. */
5544 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5545 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5546 || (local_p
5547 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5549 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5550 {
5551 if (local_p)
5552 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5553 else
5554 {
5555 /* If both call_stub and call_fp_stub are defined, we can figure
5556 out which one to use by checking which one appears in the input
5557 file. */
5558 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5559 {
5560 asection *o;
5561
5562 sec = NULL;
5563 for (o = input_bfd->sections; o != NULL; o = o->next)
5564 {
5565 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 {
5567 sec = h->call_fp_stub;
5568 break;
5569 }
5570 }
5571 if (sec == NULL)
5572 sec = h->call_stub;
5573 }
5574 else if (h->call_stub != NULL)
5575 sec = h->call_stub;
5576 else
5577 sec = h->call_fp_stub;
5578 }
5579
5580 BFD_ASSERT (sec->size > 0);
5581 symbol = sec->output_section->vma + sec->output_offset;
5582 }
5583 /* If this is a direct call to a PIC function, redirect to the
5584 non-PIC stub. */
5585 else if (h != NULL && h->la25_stub
5586 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 target_is_16_bit_code_p))
5588 {
5589 symbol = (h->la25_stub->stub_section->output_section->vma
5590 + h->la25_stub->stub_section->output_offset
5591 + h->la25_stub->offset);
5592 if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 symbol |= 1;
5594 }
5595 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596 entry is used if a standard PLT entry has also been made. In this
5597 case the symbol will have been set by mips_elf_set_plt_sym_value
5598 to point to the standard PLT entry, so redirect to the compressed
5599 one. */
5600 else if ((mips16_branch_reloc_p (r_type)
5601 || micromips_branch_reloc_p (r_type))
5602 && !bfd_link_relocatable (info)
5603 && h != NULL
5604 && h->use_plt_entry
5605 && h->root.plt.plist->comp_offset != MINUS_ONE
5606 && h->root.plt.plist->mips_offset != MINUS_ONE)
5607 {
5608 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609
5610 sec = htab->root.splt;
5611 symbol = (sec->output_section->vma
5612 + sec->output_offset
5613 + htab->plt_header_size
5614 + htab->plt_mips_offset
5615 + h->root.plt.plist->comp_offset
5616 + 1);
5617
5618 target_is_16_bit_code_p = !micromips_p;
5619 target_is_micromips_code_p = micromips_p;
5620 }
5621
5622 /* Make sure MIPS16 and microMIPS are not used together. */
5623 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5624 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625 {
5626 _bfd_error_handler
5627 (_("MIPS16 and microMIPS functions cannot call each other"));
5628 return bfd_reloc_notsupported;
5629 }
5630
5631 /* Calls from 16-bit code to 32-bit code and vice versa require the
5632 mode change. However, we can ignore calls to undefined weak symbols,
5633 which should never be executed at runtime. This exception is important
5634 because the assembly writer may have "known" that any definition of the
5635 symbol would be 16-bit code, and that direct jumps were therefore
5636 acceptable. */
5637 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5638 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5639 && ((mips16_branch_reloc_p (r_type)
5640 && !target_is_16_bit_code_p)
5641 || (micromips_branch_reloc_p (r_type)
5642 && !target_is_micromips_code_p)
5643 || ((branch_reloc_p (r_type)
5644 || r_type == R_MIPS_JALR)
5645 && (target_is_16_bit_code_p
5646 || target_is_micromips_code_p))));
5647
5648 local_p = (h == NULL || mips_use_local_got_p (info, h));
5649
5650 gp0 = _bfd_get_gp_value (input_bfd);
5651 gp = _bfd_get_gp_value (abfd);
5652 if (htab->got_info)
5653 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5654
5655 if (gnu_local_gp_p)
5656 symbol = gp;
5657
5658 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5660 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5661 if (got_page_reloc_p (r_type) && !local_p)
5662 {
5663 r_type = (micromips_reloc_p (r_type)
5664 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5665 addend = 0;
5666 }
5667
5668 /* If we haven't already determined the GOT offset, and we're going
5669 to need it, get it now. */
5670 switch (r_type)
5671 {
5672 case R_MIPS16_CALL16:
5673 case R_MIPS16_GOT16:
5674 case R_MIPS_CALL16:
5675 case R_MIPS_GOT16:
5676 case R_MIPS_GOT_DISP:
5677 case R_MIPS_GOT_HI16:
5678 case R_MIPS_CALL_HI16:
5679 case R_MIPS_GOT_LO16:
5680 case R_MIPS_CALL_LO16:
5681 case R_MICROMIPS_CALL16:
5682 case R_MICROMIPS_GOT16:
5683 case R_MICROMIPS_GOT_DISP:
5684 case R_MICROMIPS_GOT_HI16:
5685 case R_MICROMIPS_CALL_HI16:
5686 case R_MICROMIPS_GOT_LO16:
5687 case R_MICROMIPS_CALL_LO16:
5688 case R_MIPS_TLS_GD:
5689 case R_MIPS_TLS_GOTTPREL:
5690 case R_MIPS_TLS_LDM:
5691 case R_MIPS16_TLS_GD:
5692 case R_MIPS16_TLS_GOTTPREL:
5693 case R_MIPS16_TLS_LDM:
5694 case R_MICROMIPS_TLS_GD:
5695 case R_MICROMIPS_TLS_GOTTPREL:
5696 case R_MICROMIPS_TLS_LDM:
5697 /* Find the index into the GOT where this value is located. */
5698 if (tls_ldm_reloc_p (r_type))
5699 {
5700 g = mips_elf_local_got_index (abfd, input_bfd, info,
5701 0, 0, NULL, r_type);
5702 if (g == MINUS_ONE)
5703 return bfd_reloc_outofrange;
5704 }
5705 else if (!local_p)
5706 {
5707 /* On VxWorks, CALL relocations should refer to the .got.plt
5708 entry, which is initialized to point at the PLT stub. */
5709 if (htab->is_vxworks
5710 && (call_hi16_reloc_p (r_type)
5711 || call_lo16_reloc_p (r_type)
5712 || call16_reloc_p (r_type)))
5713 {
5714 BFD_ASSERT (addend == 0);
5715 BFD_ASSERT (h->root.needs_plt);
5716 g = mips_elf_gotplt_index (info, &h->root);
5717 }
5718 else
5719 {
5720 BFD_ASSERT (addend == 0);
5721 g = mips_elf_global_got_index (abfd, info, input_bfd,
5722 &h->root, r_type);
5723 if (!TLS_RELOC_P (r_type)
5724 && !elf_hash_table (info)->dynamic_sections_created)
5725 /* This is a static link. We must initialize the GOT entry. */
5726 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5727 }
5728 }
5729 else if (!htab->is_vxworks
5730 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5731 /* The calculation below does not involve "g". */
5732 break;
5733 else
5734 {
5735 g = mips_elf_local_got_index (abfd, input_bfd, info,
5736 symbol + addend, r_symndx, h, r_type);
5737 if (g == MINUS_ONE)
5738 return bfd_reloc_outofrange;
5739 }
5740
5741 /* Convert GOT indices to actual offsets. */
5742 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5743 break;
5744 }
5745
5746 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5747 symbols are resolved by the loader. Add them to .rela.dyn. */
5748 if (h != NULL && is_gott_symbol (info, &h->root))
5749 {
5750 Elf_Internal_Rela outrel;
5751 bfd_byte *loc;
5752 asection *s;
5753
5754 s = mips_elf_rel_dyn_section (info, FALSE);
5755 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5756
5757 outrel.r_offset = (input_section->output_section->vma
5758 + input_section->output_offset
5759 + relocation->r_offset);
5760 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5761 outrel.r_addend = addend;
5762 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5763
5764 /* If we've written this relocation for a readonly section,
5765 we need to set DF_TEXTREL again, so that we do not delete the
5766 DT_TEXTREL tag. */
5767 if (MIPS_ELF_READONLY_SECTION (input_section))
5768 info->flags |= DF_TEXTREL;
5769
5770 *valuep = 0;
5771 return bfd_reloc_ok;
5772 }
5773
5774 /* Figure out what kind of relocation is being performed. */
5775 switch (r_type)
5776 {
5777 case R_MIPS_NONE:
5778 return bfd_reloc_continue;
5779
5780 case R_MIPS_16:
5781 if (howto->partial_inplace)
5782 addend = _bfd_mips_elf_sign_extend (addend, 16);
5783 value = symbol + addend;
5784 overflowed_p = mips_elf_overflow_p (value, 16);
5785 break;
5786
5787 case R_MIPS_32:
5788 case R_MIPS_REL32:
5789 case R_MIPS_64:
5790 if ((bfd_link_pic (info)
5791 || (htab->root.dynamic_sections_created
5792 && h != NULL
5793 && h->root.def_dynamic
5794 && !h->root.def_regular
5795 && !h->has_static_relocs))
5796 && r_symndx != STN_UNDEF
5797 && (h == NULL
5798 || h->root.root.type != bfd_link_hash_undefweak
5799 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5800 && (input_section->flags & SEC_ALLOC) != 0)
5801 {
5802 /* If we're creating a shared library, then we can't know
5803 where the symbol will end up. So, we create a relocation
5804 record in the output, and leave the job up to the dynamic
5805 linker. We must do the same for executable references to
5806 shared library symbols, unless we've decided to use copy
5807 relocs or PLTs instead. */
5808 value = addend;
5809 if (!mips_elf_create_dynamic_relocation (abfd,
5810 info,
5811 relocation,
5812 h,
5813 sec,
5814 symbol,
5815 &value,
5816 input_section))
5817 return bfd_reloc_undefined;
5818 }
5819 else
5820 {
5821 if (r_type != R_MIPS_REL32)
5822 value = symbol + addend;
5823 else
5824 value = addend;
5825 }
5826 value &= howto->dst_mask;
5827 break;
5828
5829 case R_MIPS_PC32:
5830 value = symbol + addend - p;
5831 value &= howto->dst_mask;
5832 break;
5833
5834 case R_MIPS16_26:
5835 /* The calculation for R_MIPS16_26 is just the same as for an
5836 R_MIPS_26. It's only the storage of the relocated field into
5837 the output file that's different. That's handled in
5838 mips_elf_perform_relocation. So, we just fall through to the
5839 R_MIPS_26 case here. */
5840 case R_MIPS_26:
5841 case R_MICROMIPS_26_S1:
5842 {
5843 unsigned int shift;
5844
5845 /* Shift is 2, unusually, for microMIPS JALX. */
5846 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5847
5848 if (howto->partial_inplace && !section_p)
5849 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5850 else
5851 value = addend;
5852 value += symbol;
5853
5854 /* Make sure the target of a jump is suitably aligned. Bit 0 must
5855 be the correct ISA mode selector except for weak undefined
5856 symbols. */
5857 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5858 && (*cross_mode_jump_p
5859 ? (value & 3) != (r_type == R_MIPS_26)
5860 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5861 return bfd_reloc_outofrange;
5862
5863 value >>= shift;
5864 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5866 value &= howto->dst_mask;
5867 }
5868 break;
5869
5870 case R_MIPS_TLS_DTPREL_HI16:
5871 case R_MIPS16_TLS_DTPREL_HI16:
5872 case R_MICROMIPS_TLS_DTPREL_HI16:
5873 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5874 & howto->dst_mask);
5875 break;
5876
5877 case R_MIPS_TLS_DTPREL_LO16:
5878 case R_MIPS_TLS_DTPREL32:
5879 case R_MIPS_TLS_DTPREL64:
5880 case R_MIPS16_TLS_DTPREL_LO16:
5881 case R_MICROMIPS_TLS_DTPREL_LO16:
5882 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5883 break;
5884
5885 case R_MIPS_TLS_TPREL_HI16:
5886 case R_MIPS16_TLS_TPREL_HI16:
5887 case R_MICROMIPS_TLS_TPREL_HI16:
5888 value = (mips_elf_high (addend + symbol - tprel_base (info))
5889 & howto->dst_mask);
5890 break;
5891
5892 case R_MIPS_TLS_TPREL_LO16:
5893 case R_MIPS_TLS_TPREL32:
5894 case R_MIPS_TLS_TPREL64:
5895 case R_MIPS16_TLS_TPREL_LO16:
5896 case R_MICROMIPS_TLS_TPREL_LO16:
5897 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5898 break;
5899
5900 case R_MIPS_HI16:
5901 case R_MIPS16_HI16:
5902 case R_MICROMIPS_HI16:
5903 if (!gp_disp_p)
5904 {
5905 value = mips_elf_high (addend + symbol);
5906 value &= howto->dst_mask;
5907 }
5908 else
5909 {
5910 /* For MIPS16 ABI code we generate this sequence
5911 0: li $v0,%hi(_gp_disp)
5912 4: addiupc $v1,%lo(_gp_disp)
5913 8: sll $v0,16
5914 12: addu $v0,$v1
5915 14: move $gp,$v0
5916 So the offsets of hi and lo relocs are the same, but the
5917 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5918 ADDIUPC clears the low two bits of the instruction address,
5919 so the base is ($t9 + 4) & ~3. */
5920 if (r_type == R_MIPS16_HI16)
5921 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5922 /* The microMIPS .cpload sequence uses the same assembly
5923 instructions as the traditional psABI version, but the
5924 incoming $t9 has the low bit set. */
5925 else if (r_type == R_MICROMIPS_HI16)
5926 value = mips_elf_high (addend + gp - p - 1);
5927 else
5928 value = mips_elf_high (addend + gp - p);
5929 }
5930 break;
5931
5932 case R_MIPS_LO16:
5933 case R_MIPS16_LO16:
5934 case R_MICROMIPS_LO16:
5935 case R_MICROMIPS_HI0_LO16:
5936 if (!gp_disp_p)
5937 value = (symbol + addend) & howto->dst_mask;
5938 else
5939 {
5940 /* See the comment for R_MIPS16_HI16 above for the reason
5941 for this conditional. */
5942 if (r_type == R_MIPS16_LO16)
5943 value = addend + gp - (p & ~(bfd_vma) 0x3);
5944 else if (r_type == R_MICROMIPS_LO16
5945 || r_type == R_MICROMIPS_HI0_LO16)
5946 value = addend + gp - p + 3;
5947 else
5948 value = addend + gp - p + 4;
5949 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5950 for overflow. But, on, say, IRIX5, relocations against
5951 _gp_disp are normally generated from the .cpload
5952 pseudo-op. It generates code that normally looks like
5953 this:
5954
5955 lui $gp,%hi(_gp_disp)
5956 addiu $gp,$gp,%lo(_gp_disp)
5957 addu $gp,$gp,$t9
5958
5959 Here $t9 holds the address of the function being called,
5960 as required by the MIPS ELF ABI. The R_MIPS_LO16
5961 relocation can easily overflow in this situation, but the
5962 R_MIPS_HI16 relocation will handle the overflow.
5963 Therefore, we consider this a bug in the MIPS ABI, and do
5964 not check for overflow here. */
5965 }
5966 break;
5967
5968 case R_MIPS_LITERAL:
5969 case R_MICROMIPS_LITERAL:
5970 /* Because we don't merge literal sections, we can handle this
5971 just like R_MIPS_GPREL16. In the long run, we should merge
5972 shared literals, and then we will need to additional work
5973 here. */
5974
5975 /* Fall through. */
5976
5977 case R_MIPS16_GPREL:
5978 /* The R_MIPS16_GPREL performs the same calculation as
5979 R_MIPS_GPREL16, but stores the relocated bits in a different
5980 order. We don't need to do anything special here; the
5981 differences are handled in mips_elf_perform_relocation. */
5982 case R_MIPS_GPREL16:
5983 case R_MICROMIPS_GPREL7_S2:
5984 case R_MICROMIPS_GPREL16:
5985 /* Only sign-extend the addend if it was extracted from the
5986 instruction. If the addend was separate, leave it alone,
5987 otherwise we may lose significant bits. */
5988 if (howto->partial_inplace)
5989 addend = _bfd_mips_elf_sign_extend (addend, 16);
5990 value = symbol + addend - gp;
5991 /* If the symbol was local, any earlier relocatable links will
5992 have adjusted its addend with the gp offset, so compensate
5993 for that now. Don't do it for symbols forced local in this
5994 link, though, since they won't have had the gp offset applied
5995 to them before. */
5996 if (was_local_p)
5997 value += gp0;
5998 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 overflowed_p = mips_elf_overflow_p (value, 16);
6000 break;
6001
6002 case R_MIPS16_GOT16:
6003 case R_MIPS16_CALL16:
6004 case R_MIPS_GOT16:
6005 case R_MIPS_CALL16:
6006 case R_MICROMIPS_GOT16:
6007 case R_MICROMIPS_CALL16:
6008 /* VxWorks does not have separate local and global semantics for
6009 R_MIPS*_GOT16; every relocation evaluates to "G". */
6010 if (!htab->is_vxworks && local_p)
6011 {
6012 value = mips_elf_got16_entry (abfd, input_bfd, info,
6013 symbol + addend, !was_local_p);
6014 if (value == MINUS_ONE)
6015 return bfd_reloc_outofrange;
6016 value
6017 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6018 overflowed_p = mips_elf_overflow_p (value, 16);
6019 break;
6020 }
6021
6022 /* Fall through. */
6023
6024 case R_MIPS_TLS_GD:
6025 case R_MIPS_TLS_GOTTPREL:
6026 case R_MIPS_TLS_LDM:
6027 case R_MIPS_GOT_DISP:
6028 case R_MIPS16_TLS_GD:
6029 case R_MIPS16_TLS_GOTTPREL:
6030 case R_MIPS16_TLS_LDM:
6031 case R_MICROMIPS_TLS_GD:
6032 case R_MICROMIPS_TLS_GOTTPREL:
6033 case R_MICROMIPS_TLS_LDM:
6034 case R_MICROMIPS_GOT_DISP:
6035 value = g;
6036 overflowed_p = mips_elf_overflow_p (value, 16);
6037 break;
6038
6039 case R_MIPS_GPREL32:
6040 value = (addend + symbol + gp0 - gp);
6041 if (!save_addend)
6042 value &= howto->dst_mask;
6043 break;
6044
6045 case R_MIPS_PC16:
6046 case R_MIPS_GNU_REL16_S2:
6047 if (howto->partial_inplace)
6048 addend = _bfd_mips_elf_sign_extend (addend, 18);
6049
6050 /* No need to exclude weak undefined symbols here as they resolve
6051 to 0 and never set `*cross_mode_jump_p', so this alignment check
6052 will never trigger for them. */
6053 if (*cross_mode_jump_p
6054 ? ((symbol + addend) & 3) != 1
6055 : ((symbol + addend) & 3) != 0)
6056 return bfd_reloc_outofrange;
6057
6058 value = symbol + addend - p;
6059 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 overflowed_p = mips_elf_overflow_p (value, 18);
6061 value >>= howto->rightshift;
6062 value &= howto->dst_mask;
6063 break;
6064
6065 case R_MIPS16_PC16_S1:
6066 if (howto->partial_inplace)
6067 addend = _bfd_mips_elf_sign_extend (addend, 17);
6068
6069 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6070 && (*cross_mode_jump_p
6071 ? ((symbol + addend) & 3) != 0
6072 : ((symbol + addend) & 1) == 0))
6073 return bfd_reloc_outofrange;
6074
6075 value = symbol + addend - p;
6076 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 overflowed_p = mips_elf_overflow_p (value, 17);
6078 value >>= howto->rightshift;
6079 value &= howto->dst_mask;
6080 break;
6081
6082 case R_MIPS_PC21_S2:
6083 if (howto->partial_inplace)
6084 addend = _bfd_mips_elf_sign_extend (addend, 23);
6085
6086 if ((symbol + addend) & 3)
6087 return bfd_reloc_outofrange;
6088
6089 value = symbol + addend - p;
6090 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6091 overflowed_p = mips_elf_overflow_p (value, 23);
6092 value >>= howto->rightshift;
6093 value &= howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_PC26_S2:
6097 if (howto->partial_inplace)
6098 addend = _bfd_mips_elf_sign_extend (addend, 28);
6099
6100 if ((symbol + addend) & 3)
6101 return bfd_reloc_outofrange;
6102
6103 value = symbol + addend - p;
6104 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6105 overflowed_p = mips_elf_overflow_p (value, 28);
6106 value >>= howto->rightshift;
6107 value &= howto->dst_mask;
6108 break;
6109
6110 case R_MIPS_PC18_S3:
6111 if (howto->partial_inplace)
6112 addend = _bfd_mips_elf_sign_extend (addend, 21);
6113
6114 if ((symbol + addend) & 7)
6115 return bfd_reloc_outofrange;
6116
6117 value = symbol + addend - ((p | 7) ^ 7);
6118 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6119 overflowed_p = mips_elf_overflow_p (value, 21);
6120 value >>= howto->rightshift;
6121 value &= howto->dst_mask;
6122 break;
6123
6124 case R_MIPS_PC19_S2:
6125 if (howto->partial_inplace)
6126 addend = _bfd_mips_elf_sign_extend (addend, 21);
6127
6128 if ((symbol + addend) & 3)
6129 return bfd_reloc_outofrange;
6130
6131 value = symbol + addend - p;
6132 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 overflowed_p = mips_elf_overflow_p (value, 21);
6134 value >>= howto->rightshift;
6135 value &= howto->dst_mask;
6136 break;
6137
6138 case R_MIPS_PCHI16:
6139 value = mips_elf_high (symbol + addend - p);
6140 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6141 overflowed_p = mips_elf_overflow_p (value, 16);
6142 value &= howto->dst_mask;
6143 break;
6144
6145 case R_MIPS_PCLO16:
6146 if (howto->partial_inplace)
6147 addend = _bfd_mips_elf_sign_extend (addend, 16);
6148 value = symbol + addend - p;
6149 value &= howto->dst_mask;
6150 break;
6151
6152 case R_MICROMIPS_PC7_S1:
6153 if (howto->partial_inplace)
6154 addend = _bfd_mips_elf_sign_extend (addend, 8);
6155
6156 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 && (*cross_mode_jump_p
6158 ? ((symbol + addend + 2) & 3) != 0
6159 : ((symbol + addend + 2) & 1) == 0))
6160 return bfd_reloc_outofrange;
6161
6162 value = symbol + addend - p;
6163 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 overflowed_p = mips_elf_overflow_p (value, 8);
6165 value >>= howto->rightshift;
6166 value &= howto->dst_mask;
6167 break;
6168
6169 case R_MICROMIPS_PC10_S1:
6170 if (howto->partial_inplace)
6171 addend = _bfd_mips_elf_sign_extend (addend, 11);
6172
6173 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 && (*cross_mode_jump_p
6175 ? ((symbol + addend + 2) & 3) != 0
6176 : ((symbol + addend + 2) & 1) == 0))
6177 return bfd_reloc_outofrange;
6178
6179 value = symbol + addend - p;
6180 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 overflowed_p = mips_elf_overflow_p (value, 11);
6182 value >>= howto->rightshift;
6183 value &= howto->dst_mask;
6184 break;
6185
6186 case R_MICROMIPS_PC16_S1:
6187 if (howto->partial_inplace)
6188 addend = _bfd_mips_elf_sign_extend (addend, 17);
6189
6190 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 && (*cross_mode_jump_p
6192 ? ((symbol + addend) & 3) != 0
6193 : ((symbol + addend) & 1) == 0))
6194 return bfd_reloc_outofrange;
6195
6196 value = symbol + addend - p;
6197 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 overflowed_p = mips_elf_overflow_p (value, 17);
6199 value >>= howto->rightshift;
6200 value &= howto->dst_mask;
6201 break;
6202
6203 case R_MICROMIPS_PC23_S2:
6204 if (howto->partial_inplace)
6205 addend = _bfd_mips_elf_sign_extend (addend, 25);
6206 value = symbol + addend - ((p | 3) ^ 3);
6207 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6208 overflowed_p = mips_elf_overflow_p (value, 25);
6209 value >>= howto->rightshift;
6210 value &= howto->dst_mask;
6211 break;
6212
6213 case R_MIPS_GOT_HI16:
6214 case R_MIPS_CALL_HI16:
6215 case R_MICROMIPS_GOT_HI16:
6216 case R_MICROMIPS_CALL_HI16:
6217 /* We're allowed to handle these two relocations identically.
6218 The dynamic linker is allowed to handle the CALL relocations
6219 differently by creating a lazy evaluation stub. */
6220 value = g;
6221 value = mips_elf_high (value);
6222 value &= howto->dst_mask;
6223 break;
6224
6225 case R_MIPS_GOT_LO16:
6226 case R_MIPS_CALL_LO16:
6227 case R_MICROMIPS_GOT_LO16:
6228 case R_MICROMIPS_CALL_LO16:
6229 value = g & howto->dst_mask;
6230 break;
6231
6232 case R_MIPS_GOT_PAGE:
6233 case R_MICROMIPS_GOT_PAGE:
6234 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6235 if (value == MINUS_ONE)
6236 return bfd_reloc_outofrange;
6237 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6238 overflowed_p = mips_elf_overflow_p (value, 16);
6239 break;
6240
6241 case R_MIPS_GOT_OFST:
6242 case R_MICROMIPS_GOT_OFST:
6243 if (local_p)
6244 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6245 else
6246 value = addend;
6247 overflowed_p = mips_elf_overflow_p (value, 16);
6248 break;
6249
6250 case R_MIPS_SUB:
6251 case R_MICROMIPS_SUB:
6252 value = symbol - addend;
6253 value &= howto->dst_mask;
6254 break;
6255
6256 case R_MIPS_HIGHER:
6257 case R_MICROMIPS_HIGHER:
6258 value = mips_elf_higher (addend + symbol);
6259 value &= howto->dst_mask;
6260 break;
6261
6262 case R_MIPS_HIGHEST:
6263 case R_MICROMIPS_HIGHEST:
6264 value = mips_elf_highest (addend + symbol);
6265 value &= howto->dst_mask;
6266 break;
6267
6268 case R_MIPS_SCN_DISP:
6269 case R_MICROMIPS_SCN_DISP:
6270 value = symbol + addend - sec->output_offset;
6271 value &= howto->dst_mask;
6272 break;
6273
6274 case R_MIPS_JALR:
6275 case R_MICROMIPS_JALR:
6276 /* This relocation is only a hint. In some cases, we optimize
6277 it into a bal instruction. But we don't try to optimize
6278 when the symbol does not resolve locally. */
6279 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6280 return bfd_reloc_continue;
6281 /* We can't optimize cross-mode jumps either. */
6282 if (*cross_mode_jump_p)
6283 return bfd_reloc_continue;
6284 value = symbol + addend;
6285 /* Neither we can non-instruction-aligned targets. */
6286 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6287 return bfd_reloc_continue;
6288 break;
6289
6290 case R_MIPS_PJUMP:
6291 case R_MIPS_GNU_VTINHERIT:
6292 case R_MIPS_GNU_VTENTRY:
6293 /* We don't do anything with these at present. */
6294 return bfd_reloc_continue;
6295
6296 default:
6297 /* An unrecognized relocation type. */
6298 return bfd_reloc_notsupported;
6299 }
6300
6301 /* Store the VALUE for our caller. */
6302 *valuep = value;
6303 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6304 }
6305
6306 /* Obtain the field relocated by RELOCATION. */
6307
6308 static bfd_vma
6309 mips_elf_obtain_contents (reloc_howto_type *howto,
6310 const Elf_Internal_Rela *relocation,
6311 bfd *input_bfd, bfd_byte *contents)
6312 {
6313 bfd_vma x = 0;
6314 bfd_byte *location = contents + relocation->r_offset;
6315 unsigned int size = bfd_get_reloc_size (howto);
6316
6317 /* Obtain the bytes. */
6318 if (size != 0)
6319 x = bfd_get (8 * size, input_bfd, location);
6320
6321 return x;
6322 }
6323
6324 /* It has been determined that the result of the RELOCATION is the
6325 VALUE. Use HOWTO to place VALUE into the output file at the
6326 appropriate position. The SECTION is the section to which the
6327 relocation applies.
6328 CROSS_MODE_JUMP_P is true if the relocation field
6329 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6330
6331 Returns FALSE if anything goes wrong. */
6332
6333 static bfd_boolean
6334 mips_elf_perform_relocation (struct bfd_link_info *info,
6335 reloc_howto_type *howto,
6336 const Elf_Internal_Rela *relocation,
6337 bfd_vma value, bfd *input_bfd,
6338 asection *input_section, bfd_byte *contents,
6339 bfd_boolean cross_mode_jump_p)
6340 {
6341 bfd_vma x;
6342 bfd_byte *location;
6343 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6344 unsigned int size;
6345
6346 /* Figure out where the relocation is occurring. */
6347 location = contents + relocation->r_offset;
6348
6349 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6350
6351 /* Obtain the current value. */
6352 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6353
6354 /* Clear the field we are setting. */
6355 x &= ~howto->dst_mask;
6356
6357 /* Set the field. */
6358 x |= (value & howto->dst_mask);
6359
6360 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6361 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6362 {
6363 bfd_vma opcode = x >> 26;
6364
6365 if (r_type == R_MIPS16_26 ? opcode == 0x7
6366 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6367 : opcode == 0x1d)
6368 {
6369 info->callbacks->einfo
6370 (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6371 input_bfd, input_section, relocation->r_offset);
6372 return TRUE;
6373 }
6374 }
6375 if (cross_mode_jump_p && jal_reloc_p (r_type))
6376 {
6377 bfd_boolean ok;
6378 bfd_vma opcode = x >> 26;
6379 bfd_vma jalx_opcode;
6380
6381 /* Check to see if the opcode is already JAL or JALX. */
6382 if (r_type == R_MIPS16_26)
6383 {
6384 ok = ((opcode == 0x6) || (opcode == 0x7));
6385 jalx_opcode = 0x7;
6386 }
6387 else if (r_type == R_MICROMIPS_26_S1)
6388 {
6389 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6390 jalx_opcode = 0x3c;
6391 }
6392 else
6393 {
6394 ok = ((opcode == 0x3) || (opcode == 0x1d));
6395 jalx_opcode = 0x1d;
6396 }
6397
6398 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6399 convert J or JALS to JALX. */
6400 if (!ok)
6401 {
6402 info->callbacks->einfo
6403 (_("%X%H: Unsupported jump between ISA modes; "
6404 "consider recompiling with interlinking enabled\n"),
6405 input_bfd, input_section, relocation->r_offset);
6406 return TRUE;
6407 }
6408
6409 /* Make this the JALX opcode. */
6410 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6411 }
6412 else if (cross_mode_jump_p && b_reloc_p (r_type))
6413 {
6414 bfd_boolean ok = FALSE;
6415 bfd_vma opcode = x >> 16;
6416 bfd_vma jalx_opcode = 0;
6417 bfd_vma addr;
6418 bfd_vma dest;
6419
6420 if (r_type == R_MICROMIPS_PC16_S1)
6421 {
6422 ok = opcode == 0x4060;
6423 jalx_opcode = 0x3c;
6424 value <<= 1;
6425 }
6426 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6427 {
6428 ok = opcode == 0x411;
6429 jalx_opcode = 0x1d;
6430 value <<= 2;
6431 }
6432
6433 if (ok && !bfd_link_pic (info))
6434 {
6435 addr = (input_section->output_section->vma
6436 + input_section->output_offset
6437 + relocation->r_offset
6438 + 4);
6439 dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6440
6441 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6442 {
6443 info->callbacks->einfo
6444 (_("%X%H: Cannot convert branch between ISA modes "
6445 "to JALX: relocation out of range\n"),
6446 input_bfd, input_section, relocation->r_offset);
6447 return TRUE;
6448 }
6449
6450 /* Make this the JALX opcode. */
6451 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6452 }
6453 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6454 {
6455 info->callbacks->einfo
6456 (_("%X%H: Unsupported branch between ISA modes\n"),
6457 input_bfd, input_section, relocation->r_offset);
6458 return TRUE;
6459 }
6460 }
6461
6462 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6463 range. */
6464 if (!bfd_link_relocatable (info)
6465 && !cross_mode_jump_p
6466 && ((JAL_TO_BAL_P (input_bfd)
6467 && r_type == R_MIPS_26
6468 && (x >> 26) == 0x3) /* jal addr */
6469 || (JALR_TO_BAL_P (input_bfd)
6470 && r_type == R_MIPS_JALR
6471 && x == 0x0320f809) /* jalr t9 */
6472 || (JR_TO_B_P (input_bfd)
6473 && r_type == R_MIPS_JALR
6474 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6475 {
6476 bfd_vma addr;
6477 bfd_vma dest;
6478 bfd_signed_vma off;
6479
6480 addr = (input_section->output_section->vma
6481 + input_section->output_offset
6482 + relocation->r_offset
6483 + 4);
6484 if (r_type == R_MIPS_26)
6485 dest = (value << 2) | ((addr >> 28) << 28);
6486 else
6487 dest = value;
6488 off = dest - addr;
6489 if (off <= 0x1ffff && off >= -0x20000)
6490 {
6491 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6492 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6493 else
6494 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6495 }
6496 }
6497
6498 /* Put the value into the output. */
6499 size = bfd_get_reloc_size (howto);
6500 if (size != 0)
6501 bfd_put (8 * size, input_bfd, x, location);
6502
6503 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6504 location);
6505
6506 return TRUE;
6507 }
6508 \f
6509 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6510 is the original relocation, which is now being transformed into a
6511 dynamic relocation. The ADDENDP is adjusted if necessary; the
6512 caller should store the result in place of the original addend. */
6513
6514 static bfd_boolean
6515 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6516 struct bfd_link_info *info,
6517 const Elf_Internal_Rela *rel,
6518 struct mips_elf_link_hash_entry *h,
6519 asection *sec, bfd_vma symbol,
6520 bfd_vma *addendp, asection *input_section)
6521 {
6522 Elf_Internal_Rela outrel[3];
6523 asection *sreloc;
6524 bfd *dynobj;
6525 int r_type;
6526 long indx;
6527 bfd_boolean defined_p;
6528 struct mips_elf_link_hash_table *htab;
6529
6530 htab = mips_elf_hash_table (info);
6531 BFD_ASSERT (htab != NULL);
6532
6533 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6534 dynobj = elf_hash_table (info)->dynobj;
6535 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6536 BFD_ASSERT (sreloc != NULL);
6537 BFD_ASSERT (sreloc->contents != NULL);
6538 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6539 < sreloc->size);
6540
6541 outrel[0].r_offset =
6542 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6543 if (ABI_64_P (output_bfd))
6544 {
6545 outrel[1].r_offset =
6546 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6547 outrel[2].r_offset =
6548 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6549 }
6550
6551 if (outrel[0].r_offset == MINUS_ONE)
6552 /* The relocation field has been deleted. */
6553 return TRUE;
6554
6555 if (outrel[0].r_offset == MINUS_TWO)
6556 {
6557 /* The relocation field has been converted into a relative value of
6558 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6559 the field to be fully relocated, so add in the symbol's value. */
6560 *addendp += symbol;
6561 return TRUE;
6562 }
6563
6564 /* We must now calculate the dynamic symbol table index to use
6565 in the relocation. */
6566 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6567 {
6568 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6569 indx = h->root.dynindx;
6570 if (SGI_COMPAT (output_bfd))
6571 defined_p = h->root.def_regular;
6572 else
6573 /* ??? glibc's ld.so just adds the final GOT entry to the
6574 relocation field. It therefore treats relocs against
6575 defined symbols in the same way as relocs against
6576 undefined symbols. */
6577 defined_p = FALSE;
6578 }
6579 else
6580 {
6581 if (sec != NULL && bfd_is_abs_section (sec))
6582 indx = 0;
6583 else if (sec == NULL || sec->owner == NULL)
6584 {
6585 bfd_set_error (bfd_error_bad_value);
6586 return FALSE;
6587 }
6588 else
6589 {
6590 indx = elf_section_data (sec->output_section)->dynindx;
6591 if (indx == 0)
6592 {
6593 asection *osec = htab->root.text_index_section;
6594 indx = elf_section_data (osec)->dynindx;
6595 }
6596 if (indx == 0)
6597 abort ();
6598 }
6599
6600 /* Instead of generating a relocation using the section
6601 symbol, we may as well make it a fully relative
6602 relocation. We want to avoid generating relocations to
6603 local symbols because we used to generate them
6604 incorrectly, without adding the original symbol value,
6605 which is mandated by the ABI for section symbols. In
6606 order to give dynamic loaders and applications time to
6607 phase out the incorrect use, we refrain from emitting
6608 section-relative relocations. It's not like they're
6609 useful, after all. This should be a bit more efficient
6610 as well. */
6611 /* ??? Although this behavior is compatible with glibc's ld.so,
6612 the ABI says that relocations against STN_UNDEF should have
6613 a symbol value of 0. Irix rld honors this, so relocations
6614 against STN_UNDEF have no effect. */
6615 if (!SGI_COMPAT (output_bfd))
6616 indx = 0;
6617 defined_p = TRUE;
6618 }
6619
6620 /* If the relocation was previously an absolute relocation and
6621 this symbol will not be referred to by the relocation, we must
6622 adjust it by the value we give it in the dynamic symbol table.
6623 Otherwise leave the job up to the dynamic linker. */
6624 if (defined_p && r_type != R_MIPS_REL32)
6625 *addendp += symbol;
6626
6627 if (htab->is_vxworks)
6628 /* VxWorks uses non-relative relocations for this. */
6629 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6630 else
6631 /* The relocation is always an REL32 relocation because we don't
6632 know where the shared library will wind up at load-time. */
6633 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6634 R_MIPS_REL32);
6635
6636 /* For strict adherence to the ABI specification, we should
6637 generate a R_MIPS_64 relocation record by itself before the
6638 _REL32/_64 record as well, such that the addend is read in as
6639 a 64-bit value (REL32 is a 32-bit relocation, after all).
6640 However, since none of the existing ELF64 MIPS dynamic
6641 loaders seems to care, we don't waste space with these
6642 artificial relocations. If this turns out to not be true,
6643 mips_elf_allocate_dynamic_relocation() should be tweaked so
6644 as to make room for a pair of dynamic relocations per
6645 invocation if ABI_64_P, and here we should generate an
6646 additional relocation record with R_MIPS_64 by itself for a
6647 NULL symbol before this relocation record. */
6648 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6649 ABI_64_P (output_bfd)
6650 ? R_MIPS_64
6651 : R_MIPS_NONE);
6652 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6653
6654 /* Adjust the output offset of the relocation to reference the
6655 correct location in the output file. */
6656 outrel[0].r_offset += (input_section->output_section->vma
6657 + input_section->output_offset);
6658 outrel[1].r_offset += (input_section->output_section->vma
6659 + input_section->output_offset);
6660 outrel[2].r_offset += (input_section->output_section->vma
6661 + input_section->output_offset);
6662
6663 /* Put the relocation back out. We have to use the special
6664 relocation outputter in the 64-bit case since the 64-bit
6665 relocation format is non-standard. */
6666 if (ABI_64_P (output_bfd))
6667 {
6668 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6669 (output_bfd, &outrel[0],
6670 (sreloc->contents
6671 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6672 }
6673 else if (htab->is_vxworks)
6674 {
6675 /* VxWorks uses RELA rather than REL dynamic relocations. */
6676 outrel[0].r_addend = *addendp;
6677 bfd_elf32_swap_reloca_out
6678 (output_bfd, &outrel[0],
6679 (sreloc->contents
6680 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6681 }
6682 else
6683 bfd_elf32_swap_reloc_out
6684 (output_bfd, &outrel[0],
6685 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6686
6687 /* We've now added another relocation. */
6688 ++sreloc->reloc_count;
6689
6690 /* Make sure the output section is writable. The dynamic linker
6691 will be writing to it. */
6692 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6693 |= SHF_WRITE;
6694
6695 /* On IRIX5, make an entry of compact relocation info. */
6696 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6697 {
6698 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6699 bfd_byte *cr;
6700
6701 if (scpt)
6702 {
6703 Elf32_crinfo cptrel;
6704
6705 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6706 cptrel.vaddr = (rel->r_offset
6707 + input_section->output_section->vma
6708 + input_section->output_offset);
6709 if (r_type == R_MIPS_REL32)
6710 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6711 else
6712 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6713 mips_elf_set_cr_dist2to (cptrel, 0);
6714 cptrel.konst = *addendp;
6715
6716 cr = (scpt->contents
6717 + sizeof (Elf32_External_compact_rel));
6718 mips_elf_set_cr_relvaddr (cptrel, 0);
6719 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6720 ((Elf32_External_crinfo *) cr
6721 + scpt->reloc_count));
6722 ++scpt->reloc_count;
6723 }
6724 }
6725
6726 /* If we've written this relocation for a readonly section,
6727 we need to set DF_TEXTREL again, so that we do not delete the
6728 DT_TEXTREL tag. */
6729 if (MIPS_ELF_READONLY_SECTION (input_section))
6730 info->flags |= DF_TEXTREL;
6731
6732 return TRUE;
6733 }
6734 \f
6735 /* Return the MACH for a MIPS e_flags value. */
6736
6737 unsigned long
6738 _bfd_elf_mips_mach (flagword flags)
6739 {
6740 switch (flags & EF_MIPS_MACH)
6741 {
6742 case E_MIPS_MACH_3900:
6743 return bfd_mach_mips3900;
6744
6745 case E_MIPS_MACH_4010:
6746 return bfd_mach_mips4010;
6747
6748 case E_MIPS_MACH_4100:
6749 return bfd_mach_mips4100;
6750
6751 case E_MIPS_MACH_4111:
6752 return bfd_mach_mips4111;
6753
6754 case E_MIPS_MACH_4120:
6755 return bfd_mach_mips4120;
6756
6757 case E_MIPS_MACH_4650:
6758 return bfd_mach_mips4650;
6759
6760 case E_MIPS_MACH_5400:
6761 return bfd_mach_mips5400;
6762
6763 case E_MIPS_MACH_5500:
6764 return bfd_mach_mips5500;
6765
6766 case E_MIPS_MACH_5900:
6767 return bfd_mach_mips5900;
6768
6769 case E_MIPS_MACH_9000:
6770 return bfd_mach_mips9000;
6771
6772 case E_MIPS_MACH_SB1:
6773 return bfd_mach_mips_sb1;
6774
6775 case E_MIPS_MACH_LS2E:
6776 return bfd_mach_mips_loongson_2e;
6777
6778 case E_MIPS_MACH_LS2F:
6779 return bfd_mach_mips_loongson_2f;
6780
6781 case E_MIPS_MACH_LS3A:
6782 return bfd_mach_mips_loongson_3a;
6783
6784 case E_MIPS_MACH_OCTEON3:
6785 return bfd_mach_mips_octeon3;
6786
6787 case E_MIPS_MACH_OCTEON2:
6788 return bfd_mach_mips_octeon2;
6789
6790 case E_MIPS_MACH_OCTEON:
6791 return bfd_mach_mips_octeon;
6792
6793 case E_MIPS_MACH_XLR:
6794 return bfd_mach_mips_xlr;
6795
6796 case E_MIPS_MACH_IAMR2:
6797 return bfd_mach_mips_interaptiv_mr2;
6798
6799 default:
6800 switch (flags & EF_MIPS_ARCH)
6801 {
6802 default:
6803 case E_MIPS_ARCH_1:
6804 return bfd_mach_mips3000;
6805
6806 case E_MIPS_ARCH_2:
6807 return bfd_mach_mips6000;
6808
6809 case E_MIPS_ARCH_3:
6810 return bfd_mach_mips4000;
6811
6812 case E_MIPS_ARCH_4:
6813 return bfd_mach_mips8000;
6814
6815 case E_MIPS_ARCH_5:
6816 return bfd_mach_mips5;
6817
6818 case E_MIPS_ARCH_32:
6819 return bfd_mach_mipsisa32;
6820
6821 case E_MIPS_ARCH_64:
6822 return bfd_mach_mipsisa64;
6823
6824 case E_MIPS_ARCH_32R2:
6825 return bfd_mach_mipsisa32r2;
6826
6827 case E_MIPS_ARCH_64R2:
6828 return bfd_mach_mipsisa64r2;
6829
6830 case E_MIPS_ARCH_32R6:
6831 return bfd_mach_mipsisa32r6;
6832
6833 case E_MIPS_ARCH_64R6:
6834 return bfd_mach_mipsisa64r6;
6835 }
6836 }
6837
6838 return 0;
6839 }
6840
6841 /* Return printable name for ABI. */
6842
6843 static INLINE char *
6844 elf_mips_abi_name (bfd *abfd)
6845 {
6846 flagword flags;
6847
6848 flags = elf_elfheader (abfd)->e_flags;
6849 switch (flags & EF_MIPS_ABI)
6850 {
6851 case 0:
6852 if (ABI_N32_P (abfd))
6853 return "N32";
6854 else if (ABI_64_P (abfd))
6855 return "64";
6856 else
6857 return "none";
6858 case E_MIPS_ABI_O32:
6859 return "O32";
6860 case E_MIPS_ABI_O64:
6861 return "O64";
6862 case E_MIPS_ABI_EABI32:
6863 return "EABI32";
6864 case E_MIPS_ABI_EABI64:
6865 return "EABI64";
6866 default:
6867 return "unknown abi";
6868 }
6869 }
6870 \f
6871 /* MIPS ELF uses two common sections. One is the usual one, and the
6872 other is for small objects. All the small objects are kept
6873 together, and then referenced via the gp pointer, which yields
6874 faster assembler code. This is what we use for the small common
6875 section. This approach is copied from ecoff.c. */
6876 static asection mips_elf_scom_section;
6877 static asymbol mips_elf_scom_symbol;
6878 static asymbol *mips_elf_scom_symbol_ptr;
6879
6880 /* MIPS ELF also uses an acommon section, which represents an
6881 allocated common symbol which may be overridden by a
6882 definition in a shared library. */
6883 static asection mips_elf_acom_section;
6884 static asymbol mips_elf_acom_symbol;
6885 static asymbol *mips_elf_acom_symbol_ptr;
6886
6887 /* This is used for both the 32-bit and the 64-bit ABI. */
6888
6889 void
6890 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6891 {
6892 elf_symbol_type *elfsym;
6893
6894 /* Handle the special MIPS section numbers that a symbol may use. */
6895 elfsym = (elf_symbol_type *) asym;
6896 switch (elfsym->internal_elf_sym.st_shndx)
6897 {
6898 case SHN_MIPS_ACOMMON:
6899 /* This section is used in a dynamically linked executable file.
6900 It is an allocated common section. The dynamic linker can
6901 either resolve these symbols to something in a shared
6902 library, or it can just leave them here. For our purposes,
6903 we can consider these symbols to be in a new section. */
6904 if (mips_elf_acom_section.name == NULL)
6905 {
6906 /* Initialize the acommon section. */
6907 mips_elf_acom_section.name = ".acommon";
6908 mips_elf_acom_section.flags = SEC_ALLOC;
6909 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6910 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6911 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6912 mips_elf_acom_symbol.name = ".acommon";
6913 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6914 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6915 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6916 }
6917 asym->section = &mips_elf_acom_section;
6918 break;
6919
6920 case SHN_COMMON:
6921 /* Common symbols less than the GP size are automatically
6922 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6923 if (asym->value > elf_gp_size (abfd)
6924 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6925 || IRIX_COMPAT (abfd) == ict_irix6)
6926 break;
6927 /* Fall through. */
6928 case SHN_MIPS_SCOMMON:
6929 if (mips_elf_scom_section.name == NULL)
6930 {
6931 /* Initialize the small common section. */
6932 mips_elf_scom_section.name = ".scommon";
6933 mips_elf_scom_section.flags = SEC_IS_COMMON;
6934 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6935 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6936 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6937 mips_elf_scom_symbol.name = ".scommon";
6938 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6939 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6940 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6941 }
6942 asym->section = &mips_elf_scom_section;
6943 asym->value = elfsym->internal_elf_sym.st_size;
6944 break;
6945
6946 case SHN_MIPS_SUNDEFINED:
6947 asym->section = bfd_und_section_ptr;
6948 break;
6949
6950 case SHN_MIPS_TEXT:
6951 {
6952 asection *section = bfd_get_section_by_name (abfd, ".text");
6953
6954 if (section != NULL)
6955 {
6956 asym->section = section;
6957 /* MIPS_TEXT is a bit special, the address is not an offset
6958 to the base of the .text section. So substract the section
6959 base address to make it an offset. */
6960 asym->value -= section->vma;
6961 }
6962 }
6963 break;
6964
6965 case SHN_MIPS_DATA:
6966 {
6967 asection *section = bfd_get_section_by_name (abfd, ".data");
6968
6969 if (section != NULL)
6970 {
6971 asym->section = section;
6972 /* MIPS_DATA is a bit special, the address is not an offset
6973 to the base of the .data section. So substract the section
6974 base address to make it an offset. */
6975 asym->value -= section->vma;
6976 }
6977 }
6978 break;
6979 }
6980
6981 /* If this is an odd-valued function symbol, assume it's a MIPS16
6982 or microMIPS one. */
6983 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6984 && (asym->value & 1) != 0)
6985 {
6986 asym->value--;
6987 if (MICROMIPS_P (abfd))
6988 elfsym->internal_elf_sym.st_other
6989 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6990 else
6991 elfsym->internal_elf_sym.st_other
6992 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6993 }
6994 }
6995 \f
6996 /* Implement elf_backend_eh_frame_address_size. This differs from
6997 the default in the way it handles EABI64.
6998
6999 EABI64 was originally specified as an LP64 ABI, and that is what
7000 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7001 historically accepted the combination of -mabi=eabi and -mlong32,
7002 and this ILP32 variation has become semi-official over time.
7003 Both forms use elf32 and have pointer-sized FDE addresses.
7004
7005 If an EABI object was generated by GCC 4.0 or above, it will have
7006 an empty .gcc_compiled_longXX section, where XX is the size of longs
7007 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7008 have no special marking to distinguish them from LP64 objects.
7009
7010 We don't want users of the official LP64 ABI to be punished for the
7011 existence of the ILP32 variant, but at the same time, we don't want
7012 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7013 We therefore take the following approach:
7014
7015 - If ABFD contains a .gcc_compiled_longXX section, use it to
7016 determine the pointer size.
7017
7018 - Otherwise check the type of the first relocation. Assume that
7019 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7020
7021 - Otherwise punt.
7022
7023 The second check is enough to detect LP64 objects generated by pre-4.0
7024 compilers because, in the kind of output generated by those compilers,
7025 the first relocation will be associated with either a CIE personality
7026 routine or an FDE start address. Furthermore, the compilers never
7027 used a special (non-pointer) encoding for this ABI.
7028
7029 Checking the relocation type should also be safe because there is no
7030 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7031 did so. */
7032
7033 unsigned int
7034 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7035 {
7036 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7037 return 8;
7038 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7039 {
7040 bfd_boolean long32_p, long64_p;
7041
7042 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7043 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7044 if (long32_p && long64_p)
7045 return 0;
7046 if (long32_p)
7047 return 4;
7048 if (long64_p)
7049 return 8;
7050
7051 if (sec->reloc_count > 0
7052 && elf_section_data (sec)->relocs != NULL
7053 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7054 == R_MIPS_64))
7055 return 8;
7056
7057 return 0;
7058 }
7059 return 4;
7060 }
7061 \f
7062 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7063 relocations against two unnamed section symbols to resolve to the
7064 same address. For example, if we have code like:
7065
7066 lw $4,%got_disp(.data)($gp)
7067 lw $25,%got_disp(.text)($gp)
7068 jalr $25
7069
7070 then the linker will resolve both relocations to .data and the program
7071 will jump there rather than to .text.
7072
7073 We can work around this problem by giving names to local section symbols.
7074 This is also what the MIPSpro tools do. */
7075
7076 bfd_boolean
7077 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7078 {
7079 return SGI_COMPAT (abfd);
7080 }
7081 \f
7082 /* Work over a section just before writing it out. This routine is
7083 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7084 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7085 a better way. */
7086
7087 bfd_boolean
7088 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7089 {
7090 if (hdr->sh_type == SHT_MIPS_REGINFO
7091 && hdr->sh_size > 0)
7092 {
7093 bfd_byte buf[4];
7094
7095 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7096 BFD_ASSERT (hdr->contents == NULL);
7097
7098 if (bfd_seek (abfd,
7099 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7100 SEEK_SET) != 0)
7101 return FALSE;
7102 H_PUT_32 (abfd, elf_gp (abfd), buf);
7103 if (bfd_bwrite (buf, 4, abfd) != 4)
7104 return FALSE;
7105 }
7106
7107 if (hdr->sh_type == SHT_MIPS_OPTIONS
7108 && hdr->bfd_section != NULL
7109 && mips_elf_section_data (hdr->bfd_section) != NULL
7110 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7111 {
7112 bfd_byte *contents, *l, *lend;
7113
7114 /* We stored the section contents in the tdata field in the
7115 set_section_contents routine. We save the section contents
7116 so that we don't have to read them again.
7117 At this point we know that elf_gp is set, so we can look
7118 through the section contents to see if there is an
7119 ODK_REGINFO structure. */
7120
7121 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7122 l = contents;
7123 lend = contents + hdr->sh_size;
7124 while (l + sizeof (Elf_External_Options) <= lend)
7125 {
7126 Elf_Internal_Options intopt;
7127
7128 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7129 &intopt);
7130 if (intopt.size < sizeof (Elf_External_Options))
7131 {
7132 _bfd_error_handler
7133 /* xgettext:c-format */
7134 (_("%B: Warning: bad `%s' option size %u smaller than"
7135 " its header"),
7136 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7137 break;
7138 }
7139 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7140 {
7141 bfd_byte buf[8];
7142
7143 if (bfd_seek (abfd,
7144 (hdr->sh_offset
7145 + (l - contents)
7146 + sizeof (Elf_External_Options)
7147 + (sizeof (Elf64_External_RegInfo) - 8)),
7148 SEEK_SET) != 0)
7149 return FALSE;
7150 H_PUT_64 (abfd, elf_gp (abfd), buf);
7151 if (bfd_bwrite (buf, 8, abfd) != 8)
7152 return FALSE;
7153 }
7154 else if (intopt.kind == ODK_REGINFO)
7155 {
7156 bfd_byte buf[4];
7157
7158 if (bfd_seek (abfd,
7159 (hdr->sh_offset
7160 + (l - contents)
7161 + sizeof (Elf_External_Options)
7162 + (sizeof (Elf32_External_RegInfo) - 4)),
7163 SEEK_SET) != 0)
7164 return FALSE;
7165 H_PUT_32 (abfd, elf_gp (abfd), buf);
7166 if (bfd_bwrite (buf, 4, abfd) != 4)
7167 return FALSE;
7168 }
7169 l += intopt.size;
7170 }
7171 }
7172
7173 if (hdr->bfd_section != NULL)
7174 {
7175 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7176
7177 /* .sbss is not handled specially here because the GNU/Linux
7178 prelinker can convert .sbss from NOBITS to PROGBITS and
7179 changing it back to NOBITS breaks the binary. The entry in
7180 _bfd_mips_elf_special_sections will ensure the correct flags
7181 are set on .sbss if BFD creates it without reading it from an
7182 input file, and without special handling here the flags set
7183 on it in an input file will be followed. */
7184 if (strcmp (name, ".sdata") == 0
7185 || strcmp (name, ".lit8") == 0
7186 || strcmp (name, ".lit4") == 0)
7187 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7188 else if (strcmp (name, ".srdata") == 0)
7189 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7190 else if (strcmp (name, ".compact_rel") == 0)
7191 hdr->sh_flags = 0;
7192 else if (strcmp (name, ".rtproc") == 0)
7193 {
7194 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7195 {
7196 unsigned int adjust;
7197
7198 adjust = hdr->sh_size % hdr->sh_addralign;
7199 if (adjust != 0)
7200 hdr->sh_size += hdr->sh_addralign - adjust;
7201 }
7202 }
7203 }
7204
7205 return TRUE;
7206 }
7207
7208 /* Handle a MIPS specific section when reading an object file. This
7209 is called when elfcode.h finds a section with an unknown type.
7210 This routine supports both the 32-bit and 64-bit ELF ABI.
7211
7212 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7213 how to. */
7214
7215 bfd_boolean
7216 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7217 Elf_Internal_Shdr *hdr,
7218 const char *name,
7219 int shindex)
7220 {
7221 flagword flags = 0;
7222
7223 /* There ought to be a place to keep ELF backend specific flags, but
7224 at the moment there isn't one. We just keep track of the
7225 sections by their name, instead. Fortunately, the ABI gives
7226 suggested names for all the MIPS specific sections, so we will
7227 probably get away with this. */
7228 switch (hdr->sh_type)
7229 {
7230 case SHT_MIPS_LIBLIST:
7231 if (strcmp (name, ".liblist") != 0)
7232 return FALSE;
7233 break;
7234 case SHT_MIPS_MSYM:
7235 if (strcmp (name, ".msym") != 0)
7236 return FALSE;
7237 break;
7238 case SHT_MIPS_CONFLICT:
7239 if (strcmp (name, ".conflict") != 0)
7240 return FALSE;
7241 break;
7242 case SHT_MIPS_GPTAB:
7243 if (! CONST_STRNEQ (name, ".gptab."))
7244 return FALSE;
7245 break;
7246 case SHT_MIPS_UCODE:
7247 if (strcmp (name, ".ucode") != 0)
7248 return FALSE;
7249 break;
7250 case SHT_MIPS_DEBUG:
7251 if (strcmp (name, ".mdebug") != 0)
7252 return FALSE;
7253 flags = SEC_DEBUGGING;
7254 break;
7255 case SHT_MIPS_REGINFO:
7256 if (strcmp (name, ".reginfo") != 0
7257 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7258 return FALSE;
7259 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7260 break;
7261 case SHT_MIPS_IFACE:
7262 if (strcmp (name, ".MIPS.interfaces") != 0)
7263 return FALSE;
7264 break;
7265 case SHT_MIPS_CONTENT:
7266 if (! CONST_STRNEQ (name, ".MIPS.content"))
7267 return FALSE;
7268 break;
7269 case SHT_MIPS_OPTIONS:
7270 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7271 return FALSE;
7272 break;
7273 case SHT_MIPS_ABIFLAGS:
7274 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7275 return FALSE;
7276 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7277 break;
7278 case SHT_MIPS_DWARF:
7279 if (! CONST_STRNEQ (name, ".debug_")
7280 && ! CONST_STRNEQ (name, ".zdebug_"))
7281 return FALSE;
7282 break;
7283 case SHT_MIPS_SYMBOL_LIB:
7284 if (strcmp (name, ".MIPS.symlib") != 0)
7285 return FALSE;
7286 break;
7287 case SHT_MIPS_EVENTS:
7288 if (! CONST_STRNEQ (name, ".MIPS.events")
7289 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7290 return FALSE;
7291 break;
7292 default:
7293 break;
7294 }
7295
7296 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7297 return FALSE;
7298
7299 if (flags)
7300 {
7301 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7302 (bfd_get_section_flags (abfd,
7303 hdr->bfd_section)
7304 | flags)))
7305 return FALSE;
7306 }
7307
7308 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7309 {
7310 Elf_External_ABIFlags_v0 ext;
7311
7312 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7313 &ext, 0, sizeof ext))
7314 return FALSE;
7315 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7316 &mips_elf_tdata (abfd)->abiflags);
7317 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7318 return FALSE;
7319 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7320 }
7321
7322 /* FIXME: We should record sh_info for a .gptab section. */
7323
7324 /* For a .reginfo section, set the gp value in the tdata information
7325 from the contents of this section. We need the gp value while
7326 processing relocs, so we just get it now. The .reginfo section
7327 is not used in the 64-bit MIPS ELF ABI. */
7328 if (hdr->sh_type == SHT_MIPS_REGINFO)
7329 {
7330 Elf32_External_RegInfo ext;
7331 Elf32_RegInfo s;
7332
7333 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7334 &ext, 0, sizeof ext))
7335 return FALSE;
7336 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7337 elf_gp (abfd) = s.ri_gp_value;
7338 }
7339
7340 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7341 set the gp value based on what we find. We may see both
7342 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7343 they should agree. */
7344 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7345 {
7346 bfd_byte *contents, *l, *lend;
7347
7348 contents = bfd_malloc (hdr->sh_size);
7349 if (contents == NULL)
7350 return FALSE;
7351 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7352 0, hdr->sh_size))
7353 {
7354 free (contents);
7355 return FALSE;
7356 }
7357 l = contents;
7358 lend = contents + hdr->sh_size;
7359 while (l + sizeof (Elf_External_Options) <= lend)
7360 {
7361 Elf_Internal_Options intopt;
7362
7363 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7364 &intopt);
7365 if (intopt.size < sizeof (Elf_External_Options))
7366 {
7367 _bfd_error_handler
7368 /* xgettext:c-format */
7369 (_("%B: Warning: bad `%s' option size %u smaller than"
7370 " its header"),
7371 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7372 break;
7373 }
7374 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7375 {
7376 Elf64_Internal_RegInfo intreg;
7377
7378 bfd_mips_elf64_swap_reginfo_in
7379 (abfd,
7380 ((Elf64_External_RegInfo *)
7381 (l + sizeof (Elf_External_Options))),
7382 &intreg);
7383 elf_gp (abfd) = intreg.ri_gp_value;
7384 }
7385 else if (intopt.kind == ODK_REGINFO)
7386 {
7387 Elf32_RegInfo intreg;
7388
7389 bfd_mips_elf32_swap_reginfo_in
7390 (abfd,
7391 ((Elf32_External_RegInfo *)
7392 (l + sizeof (Elf_External_Options))),
7393 &intreg);
7394 elf_gp (abfd) = intreg.ri_gp_value;
7395 }
7396 l += intopt.size;
7397 }
7398 free (contents);
7399 }
7400
7401 return TRUE;
7402 }
7403
7404 /* Set the correct type for a MIPS ELF section. We do this by the
7405 section name, which is a hack, but ought to work. This routine is
7406 used by both the 32-bit and the 64-bit ABI. */
7407
7408 bfd_boolean
7409 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7410 {
7411 const char *name = bfd_get_section_name (abfd, sec);
7412
7413 if (strcmp (name, ".liblist") == 0)
7414 {
7415 hdr->sh_type = SHT_MIPS_LIBLIST;
7416 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7417 /* The sh_link field is set in final_write_processing. */
7418 }
7419 else if (strcmp (name, ".conflict") == 0)
7420 hdr->sh_type = SHT_MIPS_CONFLICT;
7421 else if (CONST_STRNEQ (name, ".gptab."))
7422 {
7423 hdr->sh_type = SHT_MIPS_GPTAB;
7424 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7425 /* The sh_info field is set in final_write_processing. */
7426 }
7427 else if (strcmp (name, ".ucode") == 0)
7428 hdr->sh_type = SHT_MIPS_UCODE;
7429 else if (strcmp (name, ".mdebug") == 0)
7430 {
7431 hdr->sh_type = SHT_MIPS_DEBUG;
7432 /* In a shared object on IRIX 5.3, the .mdebug section has an
7433 entsize of 0. FIXME: Does this matter? */
7434 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7435 hdr->sh_entsize = 0;
7436 else
7437 hdr->sh_entsize = 1;
7438 }
7439 else if (strcmp (name, ".reginfo") == 0)
7440 {
7441 hdr->sh_type = SHT_MIPS_REGINFO;
7442 /* In a shared object on IRIX 5.3, the .reginfo section has an
7443 entsize of 0x18. FIXME: Does this matter? */
7444 if (SGI_COMPAT (abfd))
7445 {
7446 if ((abfd->flags & DYNAMIC) != 0)
7447 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7448 else
7449 hdr->sh_entsize = 1;
7450 }
7451 else
7452 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7453 }
7454 else if (SGI_COMPAT (abfd)
7455 && (strcmp (name, ".hash") == 0
7456 || strcmp (name, ".dynamic") == 0
7457 || strcmp (name, ".dynstr") == 0))
7458 {
7459 if (SGI_COMPAT (abfd))
7460 hdr->sh_entsize = 0;
7461 #if 0
7462 /* This isn't how the IRIX6 linker behaves. */
7463 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7464 #endif
7465 }
7466 else if (strcmp (name, ".got") == 0
7467 || strcmp (name, ".srdata") == 0
7468 || strcmp (name, ".sdata") == 0
7469 || strcmp (name, ".sbss") == 0
7470 || strcmp (name, ".lit4") == 0
7471 || strcmp (name, ".lit8") == 0)
7472 hdr->sh_flags |= SHF_MIPS_GPREL;
7473 else if (strcmp (name, ".MIPS.interfaces") == 0)
7474 {
7475 hdr->sh_type = SHT_MIPS_IFACE;
7476 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7477 }
7478 else if (CONST_STRNEQ (name, ".MIPS.content"))
7479 {
7480 hdr->sh_type = SHT_MIPS_CONTENT;
7481 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7482 /* The sh_info field is set in final_write_processing. */
7483 }
7484 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7485 {
7486 hdr->sh_type = SHT_MIPS_OPTIONS;
7487 hdr->sh_entsize = 1;
7488 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7489 }
7490 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7491 {
7492 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7493 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7494 }
7495 else if (CONST_STRNEQ (name, ".debug_")
7496 || CONST_STRNEQ (name, ".zdebug_"))
7497 {
7498 hdr->sh_type = SHT_MIPS_DWARF;
7499
7500 /* Irix facilities such as libexc expect a single .debug_frame
7501 per executable, the system ones have NOSTRIP set and the linker
7502 doesn't merge sections with different flags so ... */
7503 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7504 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7505 }
7506 else if (strcmp (name, ".MIPS.symlib") == 0)
7507 {
7508 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7509 /* The sh_link and sh_info fields are set in
7510 final_write_processing. */
7511 }
7512 else if (CONST_STRNEQ (name, ".MIPS.events")
7513 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7514 {
7515 hdr->sh_type = SHT_MIPS_EVENTS;
7516 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7517 /* The sh_link field is set in final_write_processing. */
7518 }
7519 else if (strcmp (name, ".msym") == 0)
7520 {
7521 hdr->sh_type = SHT_MIPS_MSYM;
7522 hdr->sh_flags |= SHF_ALLOC;
7523 hdr->sh_entsize = 8;
7524 }
7525
7526 /* The generic elf_fake_sections will set up REL_HDR using the default
7527 kind of relocations. We used to set up a second header for the
7528 non-default kind of relocations here, but only NewABI would use
7529 these, and the IRIX ld doesn't like resulting empty RELA sections.
7530 Thus we create those header only on demand now. */
7531
7532 return TRUE;
7533 }
7534
7535 /* Given a BFD section, try to locate the corresponding ELF section
7536 index. This is used by both the 32-bit and the 64-bit ABI.
7537 Actually, it's not clear to me that the 64-bit ABI supports these,
7538 but for non-PIC objects we will certainly want support for at least
7539 the .scommon section. */
7540
7541 bfd_boolean
7542 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7543 asection *sec, int *retval)
7544 {
7545 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7546 {
7547 *retval = SHN_MIPS_SCOMMON;
7548 return TRUE;
7549 }
7550 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7551 {
7552 *retval = SHN_MIPS_ACOMMON;
7553 return TRUE;
7554 }
7555 return FALSE;
7556 }
7557 \f
7558 /* Hook called by the linker routine which adds symbols from an object
7559 file. We must handle the special MIPS section numbers here. */
7560
7561 bfd_boolean
7562 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7563 Elf_Internal_Sym *sym, const char **namep,
7564 flagword *flagsp ATTRIBUTE_UNUSED,
7565 asection **secp, bfd_vma *valp)
7566 {
7567 if (SGI_COMPAT (abfd)
7568 && (abfd->flags & DYNAMIC) != 0
7569 && strcmp (*namep, "_rld_new_interface") == 0)
7570 {
7571 /* Skip IRIX5 rld entry name. */
7572 *namep = NULL;
7573 return TRUE;
7574 }
7575
7576 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7577 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7578 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7579 a magic symbol resolved by the linker, we ignore this bogus definition
7580 of _gp_disp. New ABI objects do not suffer from this problem so this
7581 is not done for them. */
7582 if (!NEWABI_P(abfd)
7583 && (sym->st_shndx == SHN_ABS)
7584 && (strcmp (*namep, "_gp_disp") == 0))
7585 {
7586 *namep = NULL;
7587 return TRUE;
7588 }
7589
7590 switch (sym->st_shndx)
7591 {
7592 case SHN_COMMON:
7593 /* Common symbols less than the GP size are automatically
7594 treated as SHN_MIPS_SCOMMON symbols. */
7595 if (sym->st_size > elf_gp_size (abfd)
7596 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7597 || IRIX_COMPAT (abfd) == ict_irix6)
7598 break;
7599 /* Fall through. */
7600 case SHN_MIPS_SCOMMON:
7601 *secp = bfd_make_section_old_way (abfd, ".scommon");
7602 (*secp)->flags |= SEC_IS_COMMON;
7603 *valp = sym->st_size;
7604 break;
7605
7606 case SHN_MIPS_TEXT:
7607 /* This section is used in a shared object. */
7608 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7609 {
7610 asymbol *elf_text_symbol;
7611 asection *elf_text_section;
7612 bfd_size_type amt = sizeof (asection);
7613
7614 elf_text_section = bfd_zalloc (abfd, amt);
7615 if (elf_text_section == NULL)
7616 return FALSE;
7617
7618 amt = sizeof (asymbol);
7619 elf_text_symbol = bfd_zalloc (abfd, amt);
7620 if (elf_text_symbol == NULL)
7621 return FALSE;
7622
7623 /* Initialize the section. */
7624
7625 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7626 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7627
7628 elf_text_section->symbol = elf_text_symbol;
7629 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7630
7631 elf_text_section->name = ".text";
7632 elf_text_section->flags = SEC_NO_FLAGS;
7633 elf_text_section->output_section = NULL;
7634 elf_text_section->owner = abfd;
7635 elf_text_symbol->name = ".text";
7636 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7637 elf_text_symbol->section = elf_text_section;
7638 }
7639 /* This code used to do *secp = bfd_und_section_ptr if
7640 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7641 so I took it out. */
7642 *secp = mips_elf_tdata (abfd)->elf_text_section;
7643 break;
7644
7645 case SHN_MIPS_ACOMMON:
7646 /* Fall through. XXX Can we treat this as allocated data? */
7647 case SHN_MIPS_DATA:
7648 /* This section is used in a shared object. */
7649 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7650 {
7651 asymbol *elf_data_symbol;
7652 asection *elf_data_section;
7653 bfd_size_type amt = sizeof (asection);
7654
7655 elf_data_section = bfd_zalloc (abfd, amt);
7656 if (elf_data_section == NULL)
7657 return FALSE;
7658
7659 amt = sizeof (asymbol);
7660 elf_data_symbol = bfd_zalloc (abfd, amt);
7661 if (elf_data_symbol == NULL)
7662 return FALSE;
7663
7664 /* Initialize the section. */
7665
7666 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7667 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7668
7669 elf_data_section->symbol = elf_data_symbol;
7670 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7671
7672 elf_data_section->name = ".data";
7673 elf_data_section->flags = SEC_NO_FLAGS;
7674 elf_data_section->output_section = NULL;
7675 elf_data_section->owner = abfd;
7676 elf_data_symbol->name = ".data";
7677 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7678 elf_data_symbol->section = elf_data_section;
7679 }
7680 /* This code used to do *secp = bfd_und_section_ptr if
7681 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7682 so I took it out. */
7683 *secp = mips_elf_tdata (abfd)->elf_data_section;
7684 break;
7685
7686 case SHN_MIPS_SUNDEFINED:
7687 *secp = bfd_und_section_ptr;
7688 break;
7689 }
7690
7691 if (SGI_COMPAT (abfd)
7692 && ! bfd_link_pic (info)
7693 && info->output_bfd->xvec == abfd->xvec
7694 && strcmp (*namep, "__rld_obj_head") == 0)
7695 {
7696 struct elf_link_hash_entry *h;
7697 struct bfd_link_hash_entry *bh;
7698
7699 /* Mark __rld_obj_head as dynamic. */
7700 bh = NULL;
7701 if (! (_bfd_generic_link_add_one_symbol
7702 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7703 get_elf_backend_data (abfd)->collect, &bh)))
7704 return FALSE;
7705
7706 h = (struct elf_link_hash_entry *) bh;
7707 h->non_elf = 0;
7708 h->def_regular = 1;
7709 h->type = STT_OBJECT;
7710
7711 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7712 return FALSE;
7713
7714 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7715 mips_elf_hash_table (info)->rld_symbol = h;
7716 }
7717
7718 /* If this is a mips16 text symbol, add 1 to the value to make it
7719 odd. This will cause something like .word SYM to come up with
7720 the right value when it is loaded into the PC. */
7721 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7722 ++*valp;
7723
7724 return TRUE;
7725 }
7726
7727 /* This hook function is called before the linker writes out a global
7728 symbol. We mark symbols as small common if appropriate. This is
7729 also where we undo the increment of the value for a mips16 symbol. */
7730
7731 int
7732 _bfd_mips_elf_link_output_symbol_hook
7733 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7734 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7735 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7736 {
7737 /* If we see a common symbol, which implies a relocatable link, then
7738 if a symbol was small common in an input file, mark it as small
7739 common in the output file. */
7740 if (sym->st_shndx == SHN_COMMON
7741 && strcmp (input_sec->name, ".scommon") == 0)
7742 sym->st_shndx = SHN_MIPS_SCOMMON;
7743
7744 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7745 sym->st_value &= ~1;
7746
7747 return 1;
7748 }
7749 \f
7750 /* Functions for the dynamic linker. */
7751
7752 /* Create dynamic sections when linking against a dynamic object. */
7753
7754 bfd_boolean
7755 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7756 {
7757 struct elf_link_hash_entry *h;
7758 struct bfd_link_hash_entry *bh;
7759 flagword flags;
7760 register asection *s;
7761 const char * const *namep;
7762 struct mips_elf_link_hash_table *htab;
7763
7764 htab = mips_elf_hash_table (info);
7765 BFD_ASSERT (htab != NULL);
7766
7767 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7768 | SEC_LINKER_CREATED | SEC_READONLY);
7769
7770 /* The psABI requires a read-only .dynamic section, but the VxWorks
7771 EABI doesn't. */
7772 if (!htab->is_vxworks)
7773 {
7774 s = bfd_get_linker_section (abfd, ".dynamic");
7775 if (s != NULL)
7776 {
7777 if (! bfd_set_section_flags (abfd, s, flags))
7778 return FALSE;
7779 }
7780 }
7781
7782 /* We need to create .got section. */
7783 if (!mips_elf_create_got_section (abfd, info))
7784 return FALSE;
7785
7786 if (! mips_elf_rel_dyn_section (info, TRUE))
7787 return FALSE;
7788
7789 /* Create .stub section. */
7790 s = bfd_make_section_anyway_with_flags (abfd,
7791 MIPS_ELF_STUB_SECTION_NAME (abfd),
7792 flags | SEC_CODE);
7793 if (s == NULL
7794 || ! bfd_set_section_alignment (abfd, s,
7795 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7796 return FALSE;
7797 htab->sstubs = s;
7798
7799 if (!mips_elf_hash_table (info)->use_rld_obj_head
7800 && bfd_link_executable (info)
7801 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7802 {
7803 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7804 flags &~ (flagword) SEC_READONLY);
7805 if (s == NULL
7806 || ! bfd_set_section_alignment (abfd, s,
7807 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7808 return FALSE;
7809 }
7810
7811 /* On IRIX5, we adjust add some additional symbols and change the
7812 alignments of several sections. There is no ABI documentation
7813 indicating that this is necessary on IRIX6, nor any evidence that
7814 the linker takes such action. */
7815 if (IRIX_COMPAT (abfd) == ict_irix5)
7816 {
7817 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7818 {
7819 bh = NULL;
7820 if (! (_bfd_generic_link_add_one_symbol
7821 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7822 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7823 return FALSE;
7824
7825 h = (struct elf_link_hash_entry *) bh;
7826 h->non_elf = 0;
7827 h->def_regular = 1;
7828 h->type = STT_SECTION;
7829
7830 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7831 return FALSE;
7832 }
7833
7834 /* We need to create a .compact_rel section. */
7835 if (SGI_COMPAT (abfd))
7836 {
7837 if (!mips_elf_create_compact_rel_section (abfd, info))
7838 return FALSE;
7839 }
7840
7841 /* Change alignments of some sections. */
7842 s = bfd_get_linker_section (abfd, ".hash");
7843 if (s != NULL)
7844 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7845
7846 s = bfd_get_linker_section (abfd, ".dynsym");
7847 if (s != NULL)
7848 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7849
7850 s = bfd_get_linker_section (abfd, ".dynstr");
7851 if (s != NULL)
7852 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7853
7854 /* ??? */
7855 s = bfd_get_section_by_name (abfd, ".reginfo");
7856 if (s != NULL)
7857 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7858
7859 s = bfd_get_linker_section (abfd, ".dynamic");
7860 if (s != NULL)
7861 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7862 }
7863
7864 if (bfd_link_executable (info))
7865 {
7866 const char *name;
7867
7868 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7869 bh = NULL;
7870 if (!(_bfd_generic_link_add_one_symbol
7871 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7872 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7873 return FALSE;
7874
7875 h = (struct elf_link_hash_entry *) bh;
7876 h->non_elf = 0;
7877 h->def_regular = 1;
7878 h->type = STT_SECTION;
7879
7880 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7881 return FALSE;
7882
7883 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7884 {
7885 /* __rld_map is a four byte word located in the .data section
7886 and is filled in by the rtld to contain a pointer to
7887 the _r_debug structure. Its symbol value will be set in
7888 _bfd_mips_elf_finish_dynamic_symbol. */
7889 s = bfd_get_linker_section (abfd, ".rld_map");
7890 BFD_ASSERT (s != NULL);
7891
7892 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7893 bh = NULL;
7894 if (!(_bfd_generic_link_add_one_symbol
7895 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7896 get_elf_backend_data (abfd)->collect, &bh)))
7897 return FALSE;
7898
7899 h = (struct elf_link_hash_entry *) bh;
7900 h->non_elf = 0;
7901 h->def_regular = 1;
7902 h->type = STT_OBJECT;
7903
7904 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7905 return FALSE;
7906 mips_elf_hash_table (info)->rld_symbol = h;
7907 }
7908 }
7909
7910 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7911 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
7912 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7913 return FALSE;
7914
7915 /* Do the usual VxWorks handling. */
7916 if (htab->is_vxworks
7917 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7918 return FALSE;
7919
7920 return TRUE;
7921 }
7922 \f
7923 /* Return true if relocation REL against section SEC is a REL rather than
7924 RELA relocation. RELOCS is the first relocation in the section and
7925 ABFD is the bfd that contains SEC. */
7926
7927 static bfd_boolean
7928 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7929 const Elf_Internal_Rela *relocs,
7930 const Elf_Internal_Rela *rel)
7931 {
7932 Elf_Internal_Shdr *rel_hdr;
7933 const struct elf_backend_data *bed;
7934
7935 /* To determine which flavor of relocation this is, we depend on the
7936 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7937 rel_hdr = elf_section_data (sec)->rel.hdr;
7938 if (rel_hdr == NULL)
7939 return FALSE;
7940 bed = get_elf_backend_data (abfd);
7941 return ((size_t) (rel - relocs)
7942 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7943 }
7944
7945 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7946 HOWTO is the relocation's howto and CONTENTS points to the contents
7947 of the section that REL is against. */
7948
7949 static bfd_vma
7950 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7951 reloc_howto_type *howto, bfd_byte *contents)
7952 {
7953 bfd_byte *location;
7954 unsigned int r_type;
7955 bfd_vma addend;
7956 bfd_vma bytes;
7957
7958 r_type = ELF_R_TYPE (abfd, rel->r_info);
7959 location = contents + rel->r_offset;
7960
7961 /* Get the addend, which is stored in the input file. */
7962 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7963 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7964 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7965
7966 addend = bytes & howto->src_mask;
7967
7968 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
7969 accordingly. */
7970 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7971 addend <<= 1;
7972
7973 return addend;
7974 }
7975
7976 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7977 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7978 and update *ADDEND with the final addend. Return true on success
7979 or false if the LO16 could not be found. RELEND is the exclusive
7980 upper bound on the relocations for REL's section. */
7981
7982 static bfd_boolean
7983 mips_elf_add_lo16_rel_addend (bfd *abfd,
7984 const Elf_Internal_Rela *rel,
7985 const Elf_Internal_Rela *relend,
7986 bfd_byte *contents, bfd_vma *addend)
7987 {
7988 unsigned int r_type, lo16_type;
7989 const Elf_Internal_Rela *lo16_relocation;
7990 reloc_howto_type *lo16_howto;
7991 bfd_vma l;
7992
7993 r_type = ELF_R_TYPE (abfd, rel->r_info);
7994 if (mips16_reloc_p (r_type))
7995 lo16_type = R_MIPS16_LO16;
7996 else if (micromips_reloc_p (r_type))
7997 lo16_type = R_MICROMIPS_LO16;
7998 else if (r_type == R_MIPS_PCHI16)
7999 lo16_type = R_MIPS_PCLO16;
8000 else
8001 lo16_type = R_MIPS_LO16;
8002
8003 /* The combined value is the sum of the HI16 addend, left-shifted by
8004 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8005 code does a `lui' of the HI16 value, and then an `addiu' of the
8006 LO16 value.)
8007
8008 Scan ahead to find a matching LO16 relocation.
8009
8010 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8011 be immediately following. However, for the IRIX6 ABI, the next
8012 relocation may be a composed relocation consisting of several
8013 relocations for the same address. In that case, the R_MIPS_LO16
8014 relocation may occur as one of these. We permit a similar
8015 extension in general, as that is useful for GCC.
8016
8017 In some cases GCC dead code elimination removes the LO16 but keeps
8018 the corresponding HI16. This is strictly speaking a violation of
8019 the ABI but not immediately harmful. */
8020 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8021 if (lo16_relocation == NULL)
8022 return FALSE;
8023
8024 /* Obtain the addend kept there. */
8025 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8026 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8027
8028 l <<= lo16_howto->rightshift;
8029 l = _bfd_mips_elf_sign_extend (l, 16);
8030
8031 *addend <<= 16;
8032 *addend += l;
8033 return TRUE;
8034 }
8035
8036 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8037 store the contents in *CONTENTS on success. Assume that *CONTENTS
8038 already holds the contents if it is nonull on entry. */
8039
8040 static bfd_boolean
8041 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8042 {
8043 if (*contents)
8044 return TRUE;
8045
8046 /* Get cached copy if it exists. */
8047 if (elf_section_data (sec)->this_hdr.contents != NULL)
8048 {
8049 *contents = elf_section_data (sec)->this_hdr.contents;
8050 return TRUE;
8051 }
8052
8053 return bfd_malloc_and_get_section (abfd, sec, contents);
8054 }
8055
8056 /* Make a new PLT record to keep internal data. */
8057
8058 static struct plt_entry *
8059 mips_elf_make_plt_record (bfd *abfd)
8060 {
8061 struct plt_entry *entry;
8062
8063 entry = bfd_zalloc (abfd, sizeof (*entry));
8064 if (entry == NULL)
8065 return NULL;
8066
8067 entry->stub_offset = MINUS_ONE;
8068 entry->mips_offset = MINUS_ONE;
8069 entry->comp_offset = MINUS_ONE;
8070 entry->gotplt_index = MINUS_ONE;
8071 return entry;
8072 }
8073
8074 /* Look through the relocs for a section during the first phase, and
8075 allocate space in the global offset table and record the need for
8076 standard MIPS and compressed procedure linkage table entries. */
8077
8078 bfd_boolean
8079 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8080 asection *sec, const Elf_Internal_Rela *relocs)
8081 {
8082 const char *name;
8083 bfd *dynobj;
8084 Elf_Internal_Shdr *symtab_hdr;
8085 struct elf_link_hash_entry **sym_hashes;
8086 size_t extsymoff;
8087 const Elf_Internal_Rela *rel;
8088 const Elf_Internal_Rela *rel_end;
8089 asection *sreloc;
8090 const struct elf_backend_data *bed;
8091 struct mips_elf_link_hash_table *htab;
8092 bfd_byte *contents;
8093 bfd_vma addend;
8094 reloc_howto_type *howto;
8095
8096 if (bfd_link_relocatable (info))
8097 return TRUE;
8098
8099 htab = mips_elf_hash_table (info);
8100 BFD_ASSERT (htab != NULL);
8101
8102 dynobj = elf_hash_table (info)->dynobj;
8103 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8104 sym_hashes = elf_sym_hashes (abfd);
8105 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8106
8107 bed = get_elf_backend_data (abfd);
8108 rel_end = relocs + sec->reloc_count;
8109
8110 /* Check for the mips16 stub sections. */
8111
8112 name = bfd_get_section_name (abfd, sec);
8113 if (FN_STUB_P (name))
8114 {
8115 unsigned long r_symndx;
8116
8117 /* Look at the relocation information to figure out which symbol
8118 this is for. */
8119
8120 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8121 if (r_symndx == 0)
8122 {
8123 _bfd_error_handler
8124 /* xgettext:c-format */
8125 (_("%B: Warning: cannot determine the target function for"
8126 " stub section `%s'"),
8127 abfd, name);
8128 bfd_set_error (bfd_error_bad_value);
8129 return FALSE;
8130 }
8131
8132 if (r_symndx < extsymoff
8133 || sym_hashes[r_symndx - extsymoff] == NULL)
8134 {
8135 asection *o;
8136
8137 /* This stub is for a local symbol. This stub will only be
8138 needed if there is some relocation in this BFD, other
8139 than a 16 bit function call, which refers to this symbol. */
8140 for (o = abfd->sections; o != NULL; o = o->next)
8141 {
8142 Elf_Internal_Rela *sec_relocs;
8143 const Elf_Internal_Rela *r, *rend;
8144
8145 /* We can ignore stub sections when looking for relocs. */
8146 if ((o->flags & SEC_RELOC) == 0
8147 || o->reloc_count == 0
8148 || section_allows_mips16_refs_p (o))
8149 continue;
8150
8151 sec_relocs
8152 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8153 info->keep_memory);
8154 if (sec_relocs == NULL)
8155 return FALSE;
8156
8157 rend = sec_relocs + o->reloc_count;
8158 for (r = sec_relocs; r < rend; r++)
8159 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8160 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8161 break;
8162
8163 if (elf_section_data (o)->relocs != sec_relocs)
8164 free (sec_relocs);
8165
8166 if (r < rend)
8167 break;
8168 }
8169
8170 if (o == NULL)
8171 {
8172 /* There is no non-call reloc for this stub, so we do
8173 not need it. Since this function is called before
8174 the linker maps input sections to output sections, we
8175 can easily discard it by setting the SEC_EXCLUDE
8176 flag. */
8177 sec->flags |= SEC_EXCLUDE;
8178 return TRUE;
8179 }
8180
8181 /* Record this stub in an array of local symbol stubs for
8182 this BFD. */
8183 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8184 {
8185 unsigned long symcount;
8186 asection **n;
8187 bfd_size_type amt;
8188
8189 if (elf_bad_symtab (abfd))
8190 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8191 else
8192 symcount = symtab_hdr->sh_info;
8193 amt = symcount * sizeof (asection *);
8194 n = bfd_zalloc (abfd, amt);
8195 if (n == NULL)
8196 return FALSE;
8197 mips_elf_tdata (abfd)->local_stubs = n;
8198 }
8199
8200 sec->flags |= SEC_KEEP;
8201 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8202
8203 /* We don't need to set mips16_stubs_seen in this case.
8204 That flag is used to see whether we need to look through
8205 the global symbol table for stubs. We don't need to set
8206 it here, because we just have a local stub. */
8207 }
8208 else
8209 {
8210 struct mips_elf_link_hash_entry *h;
8211
8212 h = ((struct mips_elf_link_hash_entry *)
8213 sym_hashes[r_symndx - extsymoff]);
8214
8215 while (h->root.root.type == bfd_link_hash_indirect
8216 || h->root.root.type == bfd_link_hash_warning)
8217 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8218
8219 /* H is the symbol this stub is for. */
8220
8221 /* If we already have an appropriate stub for this function, we
8222 don't need another one, so we can discard this one. Since
8223 this function is called before the linker maps input sections
8224 to output sections, we can easily discard it by setting the
8225 SEC_EXCLUDE flag. */
8226 if (h->fn_stub != NULL)
8227 {
8228 sec->flags |= SEC_EXCLUDE;
8229 return TRUE;
8230 }
8231
8232 sec->flags |= SEC_KEEP;
8233 h->fn_stub = sec;
8234 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8235 }
8236 }
8237 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8238 {
8239 unsigned long r_symndx;
8240 struct mips_elf_link_hash_entry *h;
8241 asection **loc;
8242
8243 /* Look at the relocation information to figure out which symbol
8244 this is for. */
8245
8246 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8247 if (r_symndx == 0)
8248 {
8249 _bfd_error_handler
8250 /* xgettext:c-format */
8251 (_("%B: Warning: cannot determine the target function for"
8252 " stub section `%s'"),
8253 abfd, name);
8254 bfd_set_error (bfd_error_bad_value);
8255 return FALSE;
8256 }
8257
8258 if (r_symndx < extsymoff
8259 || sym_hashes[r_symndx - extsymoff] == NULL)
8260 {
8261 asection *o;
8262
8263 /* This stub is for a local symbol. This stub will only be
8264 needed if there is some relocation (R_MIPS16_26) in this BFD
8265 that refers to this symbol. */
8266 for (o = abfd->sections; o != NULL; o = o->next)
8267 {
8268 Elf_Internal_Rela *sec_relocs;
8269 const Elf_Internal_Rela *r, *rend;
8270
8271 /* We can ignore stub sections when looking for relocs. */
8272 if ((o->flags & SEC_RELOC) == 0
8273 || o->reloc_count == 0
8274 || section_allows_mips16_refs_p (o))
8275 continue;
8276
8277 sec_relocs
8278 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8279 info->keep_memory);
8280 if (sec_relocs == NULL)
8281 return FALSE;
8282
8283 rend = sec_relocs + o->reloc_count;
8284 for (r = sec_relocs; r < rend; r++)
8285 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8286 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8287 break;
8288
8289 if (elf_section_data (o)->relocs != sec_relocs)
8290 free (sec_relocs);
8291
8292 if (r < rend)
8293 break;
8294 }
8295
8296 if (o == NULL)
8297 {
8298 /* There is no non-call reloc for this stub, so we do
8299 not need it. Since this function is called before
8300 the linker maps input sections to output sections, we
8301 can easily discard it by setting the SEC_EXCLUDE
8302 flag. */
8303 sec->flags |= SEC_EXCLUDE;
8304 return TRUE;
8305 }
8306
8307 /* Record this stub in an array of local symbol call_stubs for
8308 this BFD. */
8309 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8310 {
8311 unsigned long symcount;
8312 asection **n;
8313 bfd_size_type amt;
8314
8315 if (elf_bad_symtab (abfd))
8316 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8317 else
8318 symcount = symtab_hdr->sh_info;
8319 amt = symcount * sizeof (asection *);
8320 n = bfd_zalloc (abfd, amt);
8321 if (n == NULL)
8322 return FALSE;
8323 mips_elf_tdata (abfd)->local_call_stubs = n;
8324 }
8325
8326 sec->flags |= SEC_KEEP;
8327 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8328
8329 /* We don't need to set mips16_stubs_seen in this case.
8330 That flag is used to see whether we need to look through
8331 the global symbol table for stubs. We don't need to set
8332 it here, because we just have a local stub. */
8333 }
8334 else
8335 {
8336 h = ((struct mips_elf_link_hash_entry *)
8337 sym_hashes[r_symndx - extsymoff]);
8338
8339 /* H is the symbol this stub is for. */
8340
8341 if (CALL_FP_STUB_P (name))
8342 loc = &h->call_fp_stub;
8343 else
8344 loc = &h->call_stub;
8345
8346 /* If we already have an appropriate stub for this function, we
8347 don't need another one, so we can discard this one. Since
8348 this function is called before the linker maps input sections
8349 to output sections, we can easily discard it by setting the
8350 SEC_EXCLUDE flag. */
8351 if (*loc != NULL)
8352 {
8353 sec->flags |= SEC_EXCLUDE;
8354 return TRUE;
8355 }
8356
8357 sec->flags |= SEC_KEEP;
8358 *loc = sec;
8359 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8360 }
8361 }
8362
8363 sreloc = NULL;
8364 contents = NULL;
8365 for (rel = relocs; rel < rel_end; ++rel)
8366 {
8367 unsigned long r_symndx;
8368 unsigned int r_type;
8369 struct elf_link_hash_entry *h;
8370 bfd_boolean can_make_dynamic_p;
8371 bfd_boolean call_reloc_p;
8372 bfd_boolean constrain_symbol_p;
8373
8374 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8375 r_type = ELF_R_TYPE (abfd, rel->r_info);
8376
8377 if (r_symndx < extsymoff)
8378 h = NULL;
8379 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8380 {
8381 _bfd_error_handler
8382 /* xgettext:c-format */
8383 (_("%B: Malformed reloc detected for section %s"),
8384 abfd, name);
8385 bfd_set_error (bfd_error_bad_value);
8386 return FALSE;
8387 }
8388 else
8389 {
8390 h = sym_hashes[r_symndx - extsymoff];
8391 if (h != NULL)
8392 {
8393 while (h->root.type == bfd_link_hash_indirect
8394 || h->root.type == bfd_link_hash_warning)
8395 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8396
8397 /* PR15323, ref flags aren't set for references in the
8398 same object. */
8399 h->root.non_ir_ref_regular = 1;
8400 }
8401 }
8402
8403 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8404 relocation into a dynamic one. */
8405 can_make_dynamic_p = FALSE;
8406
8407 /* Set CALL_RELOC_P to true if the relocation is for a call,
8408 and if pointer equality therefore doesn't matter. */
8409 call_reloc_p = FALSE;
8410
8411 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8412 into account when deciding how to define the symbol.
8413 Relocations in nonallocatable sections such as .pdr and
8414 .debug* should have no effect. */
8415 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8416
8417 switch (r_type)
8418 {
8419 case R_MIPS_CALL16:
8420 case R_MIPS_CALL_HI16:
8421 case R_MIPS_CALL_LO16:
8422 case R_MIPS16_CALL16:
8423 case R_MICROMIPS_CALL16:
8424 case R_MICROMIPS_CALL_HI16:
8425 case R_MICROMIPS_CALL_LO16:
8426 call_reloc_p = TRUE;
8427 /* Fall through. */
8428
8429 case R_MIPS_GOT16:
8430 case R_MIPS_GOT_HI16:
8431 case R_MIPS_GOT_LO16:
8432 case R_MIPS_GOT_PAGE:
8433 case R_MIPS_GOT_OFST:
8434 case R_MIPS_GOT_DISP:
8435 case R_MIPS_TLS_GOTTPREL:
8436 case R_MIPS_TLS_GD:
8437 case R_MIPS_TLS_LDM:
8438 case R_MIPS16_GOT16:
8439 case R_MIPS16_TLS_GOTTPREL:
8440 case R_MIPS16_TLS_GD:
8441 case R_MIPS16_TLS_LDM:
8442 case R_MICROMIPS_GOT16:
8443 case R_MICROMIPS_GOT_HI16:
8444 case R_MICROMIPS_GOT_LO16:
8445 case R_MICROMIPS_GOT_PAGE:
8446 case R_MICROMIPS_GOT_OFST:
8447 case R_MICROMIPS_GOT_DISP:
8448 case R_MICROMIPS_TLS_GOTTPREL:
8449 case R_MICROMIPS_TLS_GD:
8450 case R_MICROMIPS_TLS_LDM:
8451 if (dynobj == NULL)
8452 elf_hash_table (info)->dynobj = dynobj = abfd;
8453 if (!mips_elf_create_got_section (dynobj, info))
8454 return FALSE;
8455 if (htab->is_vxworks && !bfd_link_pic (info))
8456 {
8457 _bfd_error_handler
8458 /* xgettext:c-format */
8459 (_("%B: GOT reloc at 0x%lx not expected in executables"),
8460 abfd, (unsigned long) rel->r_offset);
8461 bfd_set_error (bfd_error_bad_value);
8462 return FALSE;
8463 }
8464 can_make_dynamic_p = TRUE;
8465 break;
8466
8467 case R_MIPS_NONE:
8468 case R_MIPS_JALR:
8469 case R_MICROMIPS_JALR:
8470 /* These relocations have empty fields and are purely there to
8471 provide link information. The symbol value doesn't matter. */
8472 constrain_symbol_p = FALSE;
8473 break;
8474
8475 case R_MIPS_GPREL16:
8476 case R_MIPS_GPREL32:
8477 case R_MIPS16_GPREL:
8478 case R_MICROMIPS_GPREL16:
8479 /* GP-relative relocations always resolve to a definition in a
8480 regular input file, ignoring the one-definition rule. This is
8481 important for the GP setup sequence in NewABI code, which
8482 always resolves to a local function even if other relocations
8483 against the symbol wouldn't. */
8484 constrain_symbol_p = FALSE;
8485 break;
8486
8487 case R_MIPS_32:
8488 case R_MIPS_REL32:
8489 case R_MIPS_64:
8490 /* In VxWorks executables, references to external symbols
8491 must be handled using copy relocs or PLT entries; it is not
8492 possible to convert this relocation into a dynamic one.
8493
8494 For executables that use PLTs and copy-relocs, we have a
8495 choice between converting the relocation into a dynamic
8496 one or using copy relocations or PLT entries. It is
8497 usually better to do the former, unless the relocation is
8498 against a read-only section. */
8499 if ((bfd_link_pic (info)
8500 || (h != NULL
8501 && !htab->is_vxworks
8502 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8503 && !(!info->nocopyreloc
8504 && !PIC_OBJECT_P (abfd)
8505 && MIPS_ELF_READONLY_SECTION (sec))))
8506 && (sec->flags & SEC_ALLOC) != 0)
8507 {
8508 can_make_dynamic_p = TRUE;
8509 if (dynobj == NULL)
8510 elf_hash_table (info)->dynobj = dynobj = abfd;
8511 }
8512 break;
8513
8514 case R_MIPS_26:
8515 case R_MIPS_PC16:
8516 case R_MIPS_PC21_S2:
8517 case R_MIPS_PC26_S2:
8518 case R_MIPS16_26:
8519 case R_MIPS16_PC16_S1:
8520 case R_MICROMIPS_26_S1:
8521 case R_MICROMIPS_PC7_S1:
8522 case R_MICROMIPS_PC10_S1:
8523 case R_MICROMIPS_PC16_S1:
8524 case R_MICROMIPS_PC23_S2:
8525 call_reloc_p = TRUE;
8526 break;
8527 }
8528
8529 if (h)
8530 {
8531 if (constrain_symbol_p)
8532 {
8533 if (!can_make_dynamic_p)
8534 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8535
8536 if (!call_reloc_p)
8537 h->pointer_equality_needed = 1;
8538
8539 /* We must not create a stub for a symbol that has
8540 relocations related to taking the function's address.
8541 This doesn't apply to VxWorks, where CALL relocs refer
8542 to a .got.plt entry instead of a normal .got entry. */
8543 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8544 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8545 }
8546
8547 /* Relocations against the special VxWorks __GOTT_BASE__ and
8548 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8549 room for them in .rela.dyn. */
8550 if (is_gott_symbol (info, h))
8551 {
8552 if (sreloc == NULL)
8553 {
8554 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8555 if (sreloc == NULL)
8556 return FALSE;
8557 }
8558 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8559 if (MIPS_ELF_READONLY_SECTION (sec))
8560 /* We tell the dynamic linker that there are
8561 relocations against the text segment. */
8562 info->flags |= DF_TEXTREL;
8563 }
8564 }
8565 else if (call_lo16_reloc_p (r_type)
8566 || got_lo16_reloc_p (r_type)
8567 || got_disp_reloc_p (r_type)
8568 || (got16_reloc_p (r_type) && htab->is_vxworks))
8569 {
8570 /* We may need a local GOT entry for this relocation. We
8571 don't count R_MIPS_GOT_PAGE because we can estimate the
8572 maximum number of pages needed by looking at the size of
8573 the segment. Similar comments apply to R_MIPS*_GOT16 and
8574 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8575 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8576 R_MIPS_CALL_HI16 because these are always followed by an
8577 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8578 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8579 rel->r_addend, info, r_type))
8580 return FALSE;
8581 }
8582
8583 if (h != NULL
8584 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8585 ELF_ST_IS_MIPS16 (h->other)))
8586 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8587
8588 switch (r_type)
8589 {
8590 case R_MIPS_CALL16:
8591 case R_MIPS16_CALL16:
8592 case R_MICROMIPS_CALL16:
8593 if (h == NULL)
8594 {
8595 _bfd_error_handler
8596 /* xgettext:c-format */
8597 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8598 abfd, (unsigned long) rel->r_offset);
8599 bfd_set_error (bfd_error_bad_value);
8600 return FALSE;
8601 }
8602 /* Fall through. */
8603
8604 case R_MIPS_CALL_HI16:
8605 case R_MIPS_CALL_LO16:
8606 case R_MICROMIPS_CALL_HI16:
8607 case R_MICROMIPS_CALL_LO16:
8608 if (h != NULL)
8609 {
8610 /* Make sure there is room in the regular GOT to hold the
8611 function's address. We may eliminate it in favour of
8612 a .got.plt entry later; see mips_elf_count_got_symbols. */
8613 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8614 r_type))
8615 return FALSE;
8616
8617 /* We need a stub, not a plt entry for the undefined
8618 function. But we record it as if it needs plt. See
8619 _bfd_elf_adjust_dynamic_symbol. */
8620 h->needs_plt = 1;
8621 h->type = STT_FUNC;
8622 }
8623 break;
8624
8625 case R_MIPS_GOT_PAGE:
8626 case R_MICROMIPS_GOT_PAGE:
8627 case R_MIPS16_GOT16:
8628 case R_MIPS_GOT16:
8629 case R_MIPS_GOT_HI16:
8630 case R_MIPS_GOT_LO16:
8631 case R_MICROMIPS_GOT16:
8632 case R_MICROMIPS_GOT_HI16:
8633 case R_MICROMIPS_GOT_LO16:
8634 if (!h || got_page_reloc_p (r_type))
8635 {
8636 /* This relocation needs (or may need, if h != NULL) a
8637 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8638 know for sure until we know whether the symbol is
8639 preemptible. */
8640 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8641 {
8642 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8643 return FALSE;
8644 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8645 addend = mips_elf_read_rel_addend (abfd, rel,
8646 howto, contents);
8647 if (got16_reloc_p (r_type))
8648 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8649 contents, &addend);
8650 else
8651 addend <<= howto->rightshift;
8652 }
8653 else
8654 addend = rel->r_addend;
8655 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8656 h, addend))
8657 return FALSE;
8658
8659 if (h)
8660 {
8661 struct mips_elf_link_hash_entry *hmips =
8662 (struct mips_elf_link_hash_entry *) h;
8663
8664 /* This symbol is definitely not overridable. */
8665 if (hmips->root.def_regular
8666 && ! (bfd_link_pic (info) && ! info->symbolic
8667 && ! hmips->root.forced_local))
8668 h = NULL;
8669 }
8670 }
8671 /* If this is a global, overridable symbol, GOT_PAGE will
8672 decay to GOT_DISP, so we'll need a GOT entry for it. */
8673 /* Fall through. */
8674
8675 case R_MIPS_GOT_DISP:
8676 case R_MICROMIPS_GOT_DISP:
8677 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8678 FALSE, r_type))
8679 return FALSE;
8680 break;
8681
8682 case R_MIPS_TLS_GOTTPREL:
8683 case R_MIPS16_TLS_GOTTPREL:
8684 case R_MICROMIPS_TLS_GOTTPREL:
8685 if (bfd_link_pic (info))
8686 info->flags |= DF_STATIC_TLS;
8687 /* Fall through */
8688
8689 case R_MIPS_TLS_LDM:
8690 case R_MIPS16_TLS_LDM:
8691 case R_MICROMIPS_TLS_LDM:
8692 if (tls_ldm_reloc_p (r_type))
8693 {
8694 r_symndx = STN_UNDEF;
8695 h = NULL;
8696 }
8697 /* Fall through */
8698
8699 case R_MIPS_TLS_GD:
8700 case R_MIPS16_TLS_GD:
8701 case R_MICROMIPS_TLS_GD:
8702 /* This symbol requires a global offset table entry, or two
8703 for TLS GD relocations. */
8704 if (h != NULL)
8705 {
8706 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8707 FALSE, r_type))
8708 return FALSE;
8709 }
8710 else
8711 {
8712 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8713 rel->r_addend,
8714 info, r_type))
8715 return FALSE;
8716 }
8717 break;
8718
8719 case R_MIPS_32:
8720 case R_MIPS_REL32:
8721 case R_MIPS_64:
8722 /* In VxWorks executables, references to external symbols
8723 are handled using copy relocs or PLT stubs, so there's
8724 no need to add a .rela.dyn entry for this relocation. */
8725 if (can_make_dynamic_p)
8726 {
8727 if (sreloc == NULL)
8728 {
8729 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8730 if (sreloc == NULL)
8731 return FALSE;
8732 }
8733 if (bfd_link_pic (info) && h == NULL)
8734 {
8735 /* When creating a shared object, we must copy these
8736 reloc types into the output file as R_MIPS_REL32
8737 relocs. Make room for this reloc in .rel(a).dyn. */
8738 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8739 if (MIPS_ELF_READONLY_SECTION (sec))
8740 /* We tell the dynamic linker that there are
8741 relocations against the text segment. */
8742 info->flags |= DF_TEXTREL;
8743 }
8744 else
8745 {
8746 struct mips_elf_link_hash_entry *hmips;
8747
8748 /* For a shared object, we must copy this relocation
8749 unless the symbol turns out to be undefined and
8750 weak with non-default visibility, in which case
8751 it will be left as zero.
8752
8753 We could elide R_MIPS_REL32 for locally binding symbols
8754 in shared libraries, but do not yet do so.
8755
8756 For an executable, we only need to copy this
8757 reloc if the symbol is defined in a dynamic
8758 object. */
8759 hmips = (struct mips_elf_link_hash_entry *) h;
8760 ++hmips->possibly_dynamic_relocs;
8761 if (MIPS_ELF_READONLY_SECTION (sec))
8762 /* We need it to tell the dynamic linker if there
8763 are relocations against the text segment. */
8764 hmips->readonly_reloc = TRUE;
8765 }
8766 }
8767
8768 if (SGI_COMPAT (abfd))
8769 mips_elf_hash_table (info)->compact_rel_size +=
8770 sizeof (Elf32_External_crinfo);
8771 break;
8772
8773 case R_MIPS_26:
8774 case R_MIPS_GPREL16:
8775 case R_MIPS_LITERAL:
8776 case R_MIPS_GPREL32:
8777 case R_MICROMIPS_26_S1:
8778 case R_MICROMIPS_GPREL16:
8779 case R_MICROMIPS_LITERAL:
8780 case R_MICROMIPS_GPREL7_S2:
8781 if (SGI_COMPAT (abfd))
8782 mips_elf_hash_table (info)->compact_rel_size +=
8783 sizeof (Elf32_External_crinfo);
8784 break;
8785
8786 /* This relocation describes the C++ object vtable hierarchy.
8787 Reconstruct it for later use during GC. */
8788 case R_MIPS_GNU_VTINHERIT:
8789 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8790 return FALSE;
8791 break;
8792
8793 /* This relocation describes which C++ vtable entries are actually
8794 used. Record for later use during GC. */
8795 case R_MIPS_GNU_VTENTRY:
8796 BFD_ASSERT (h != NULL);
8797 if (h != NULL
8798 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8799 return FALSE;
8800 break;
8801
8802 default:
8803 break;
8804 }
8805
8806 /* Record the need for a PLT entry. At this point we don't know
8807 yet if we are going to create a PLT in the first place, but
8808 we only record whether the relocation requires a standard MIPS
8809 or a compressed code entry anyway. If we don't make a PLT after
8810 all, then we'll just ignore these arrangements. Likewise if
8811 a PLT entry is not created because the symbol is satisfied
8812 locally. */
8813 if (h != NULL
8814 && (branch_reloc_p (r_type)
8815 || mips16_branch_reloc_p (r_type)
8816 || micromips_branch_reloc_p (r_type))
8817 && !SYMBOL_CALLS_LOCAL (info, h))
8818 {
8819 if (h->plt.plist == NULL)
8820 h->plt.plist = mips_elf_make_plt_record (abfd);
8821 if (h->plt.plist == NULL)
8822 return FALSE;
8823
8824 if (branch_reloc_p (r_type))
8825 h->plt.plist->need_mips = TRUE;
8826 else
8827 h->plt.plist->need_comp = TRUE;
8828 }
8829
8830 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8831 if there is one. We only need to handle global symbols here;
8832 we decide whether to keep or delete stubs for local symbols
8833 when processing the stub's relocations. */
8834 if (h != NULL
8835 && !mips16_call_reloc_p (r_type)
8836 && !section_allows_mips16_refs_p (sec))
8837 {
8838 struct mips_elf_link_hash_entry *mh;
8839
8840 mh = (struct mips_elf_link_hash_entry *) h;
8841 mh->need_fn_stub = TRUE;
8842 }
8843
8844 /* Refuse some position-dependent relocations when creating a
8845 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8846 not PIC, but we can create dynamic relocations and the result
8847 will be fine. Also do not refuse R_MIPS_LO16, which can be
8848 combined with R_MIPS_GOT16. */
8849 if (bfd_link_pic (info))
8850 {
8851 switch (r_type)
8852 {
8853 case R_MIPS16_HI16:
8854 case R_MIPS_HI16:
8855 case R_MIPS_HIGHER:
8856 case R_MIPS_HIGHEST:
8857 case R_MICROMIPS_HI16:
8858 case R_MICROMIPS_HIGHER:
8859 case R_MICROMIPS_HIGHEST:
8860 /* Don't refuse a high part relocation if it's against
8861 no symbol (e.g. part of a compound relocation). */
8862 if (r_symndx == STN_UNDEF)
8863 break;
8864
8865 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8866 and has a special meaning. */
8867 if (!NEWABI_P (abfd) && h != NULL
8868 && strcmp (h->root.root.string, "_gp_disp") == 0)
8869 break;
8870
8871 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8872 if (is_gott_symbol (info, h))
8873 break;
8874
8875 /* FALLTHROUGH */
8876
8877 case R_MIPS16_26:
8878 case R_MIPS_26:
8879 case R_MICROMIPS_26_S1:
8880 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8881 _bfd_error_handler
8882 /* xgettext:c-format */
8883 (_("%B: relocation %s against `%s' can not be used"
8884 " when making a shared object; recompile with -fPIC"),
8885 abfd, howto->name,
8886 (h) ? h->root.root.string : "a local symbol");
8887 bfd_set_error (bfd_error_bad_value);
8888 return FALSE;
8889 default:
8890 break;
8891 }
8892 }
8893 }
8894
8895 return TRUE;
8896 }
8897 \f
8898 /* Allocate space for global sym dynamic relocs. */
8899
8900 static bfd_boolean
8901 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8902 {
8903 struct bfd_link_info *info = inf;
8904 bfd *dynobj;
8905 struct mips_elf_link_hash_entry *hmips;
8906 struct mips_elf_link_hash_table *htab;
8907
8908 htab = mips_elf_hash_table (info);
8909 BFD_ASSERT (htab != NULL);
8910
8911 dynobj = elf_hash_table (info)->dynobj;
8912 hmips = (struct mips_elf_link_hash_entry *) h;
8913
8914 /* VxWorks executables are handled elsewhere; we only need to
8915 allocate relocations in shared objects. */
8916 if (htab->is_vxworks && !bfd_link_pic (info))
8917 return TRUE;
8918
8919 /* Ignore indirect symbols. All relocations against such symbols
8920 will be redirected to the target symbol. */
8921 if (h->root.type == bfd_link_hash_indirect)
8922 return TRUE;
8923
8924 /* If this symbol is defined in a dynamic object, or we are creating
8925 a shared library, we will need to copy any R_MIPS_32 or
8926 R_MIPS_REL32 relocs against it into the output file. */
8927 if (! bfd_link_relocatable (info)
8928 && hmips->possibly_dynamic_relocs != 0
8929 && (h->root.type == bfd_link_hash_defweak
8930 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8931 || bfd_link_pic (info)))
8932 {
8933 bfd_boolean do_copy = TRUE;
8934
8935 if (h->root.type == bfd_link_hash_undefweak)
8936 {
8937 /* Do not copy relocations for undefined weak symbols with
8938 non-default visibility. */
8939 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8940 do_copy = FALSE;
8941
8942 /* Make sure undefined weak symbols are output as a dynamic
8943 symbol in PIEs. */
8944 else if (h->dynindx == -1 && !h->forced_local)
8945 {
8946 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8947 return FALSE;
8948 }
8949 }
8950
8951 if (do_copy)
8952 {
8953 /* Even though we don't directly need a GOT entry for this symbol,
8954 the SVR4 psABI requires it to have a dynamic symbol table
8955 index greater that DT_MIPS_GOTSYM if there are dynamic
8956 relocations against it.
8957
8958 VxWorks does not enforce the same mapping between the GOT
8959 and the symbol table, so the same requirement does not
8960 apply there. */
8961 if (!htab->is_vxworks)
8962 {
8963 if (hmips->global_got_area > GGA_RELOC_ONLY)
8964 hmips->global_got_area = GGA_RELOC_ONLY;
8965 hmips->got_only_for_calls = FALSE;
8966 }
8967
8968 mips_elf_allocate_dynamic_relocations
8969 (dynobj, info, hmips->possibly_dynamic_relocs);
8970 if (hmips->readonly_reloc)
8971 /* We tell the dynamic linker that there are relocations
8972 against the text segment. */
8973 info->flags |= DF_TEXTREL;
8974 }
8975 }
8976
8977 return TRUE;
8978 }
8979
8980 /* Adjust a symbol defined by a dynamic object and referenced by a
8981 regular object. The current definition is in some section of the
8982 dynamic object, but we're not including those sections. We have to
8983 change the definition to something the rest of the link can
8984 understand. */
8985
8986 bfd_boolean
8987 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8988 struct elf_link_hash_entry *h)
8989 {
8990 bfd *dynobj;
8991 struct mips_elf_link_hash_entry *hmips;
8992 struct mips_elf_link_hash_table *htab;
8993 asection *s, *srel;
8994
8995 htab = mips_elf_hash_table (info);
8996 BFD_ASSERT (htab != NULL);
8997
8998 dynobj = elf_hash_table (info)->dynobj;
8999 hmips = (struct mips_elf_link_hash_entry *) h;
9000
9001 /* Make sure we know what is going on here. */
9002 BFD_ASSERT (dynobj != NULL
9003 && (h->needs_plt
9004 || h->u.weakdef != NULL
9005 || (h->def_dynamic
9006 && h->ref_regular
9007 && !h->def_regular)));
9008
9009 hmips = (struct mips_elf_link_hash_entry *) h;
9010
9011 /* If there are call relocations against an externally-defined symbol,
9012 see whether we can create a MIPS lazy-binding stub for it. We can
9013 only do this if all references to the function are through call
9014 relocations, and in that case, the traditional lazy-binding stubs
9015 are much more efficient than PLT entries.
9016
9017 Traditional stubs are only available on SVR4 psABI-based systems;
9018 VxWorks always uses PLTs instead. */
9019 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9020 {
9021 if (! elf_hash_table (info)->dynamic_sections_created)
9022 return TRUE;
9023
9024 /* If this symbol is not defined in a regular file, then set
9025 the symbol to the stub location. This is required to make
9026 function pointers compare as equal between the normal
9027 executable and the shared library. */
9028 if (!h->def_regular)
9029 {
9030 hmips->needs_lazy_stub = TRUE;
9031 htab->lazy_stub_count++;
9032 return TRUE;
9033 }
9034 }
9035 /* As above, VxWorks requires PLT entries for externally-defined
9036 functions that are only accessed through call relocations.
9037
9038 Both VxWorks and non-VxWorks targets also need PLT entries if there
9039 are static-only relocations against an externally-defined function.
9040 This can technically occur for shared libraries if there are
9041 branches to the symbol, although it is unlikely that this will be
9042 used in practice due to the short ranges involved. It can occur
9043 for any relative or absolute relocation in executables; in that
9044 case, the PLT entry becomes the function's canonical address. */
9045 else if (((h->needs_plt && !hmips->no_fn_stub)
9046 || (h->type == STT_FUNC && hmips->has_static_relocs))
9047 && htab->use_plts_and_copy_relocs
9048 && !SYMBOL_CALLS_LOCAL (info, h)
9049 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9050 && h->root.type == bfd_link_hash_undefweak))
9051 {
9052 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9053 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9054
9055 /* If this is the first symbol to need a PLT entry, then make some
9056 basic setup. Also work out PLT entry sizes. We'll need them
9057 for PLT offset calculations. */
9058 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9059 {
9060 BFD_ASSERT (htab->root.sgotplt->size == 0);
9061 BFD_ASSERT (htab->plt_got_index == 0);
9062
9063 /* If we're using the PLT additions to the psABI, each PLT
9064 entry is 16 bytes and the PLT0 entry is 32 bytes.
9065 Encourage better cache usage by aligning. We do this
9066 lazily to avoid pessimizing traditional objects. */
9067 if (!htab->is_vxworks
9068 && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9069 return FALSE;
9070
9071 /* Make sure that .got.plt is word-aligned. We do this lazily
9072 for the same reason as above. */
9073 if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9074 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9075 return FALSE;
9076
9077 /* On non-VxWorks targets, the first two entries in .got.plt
9078 are reserved. */
9079 if (!htab->is_vxworks)
9080 htab->plt_got_index
9081 += (get_elf_backend_data (dynobj)->got_header_size
9082 / MIPS_ELF_GOT_SIZE (dynobj));
9083
9084 /* On VxWorks, also allocate room for the header's
9085 .rela.plt.unloaded entries. */
9086 if (htab->is_vxworks && !bfd_link_pic (info))
9087 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9088
9089 /* Now work out the sizes of individual PLT entries. */
9090 if (htab->is_vxworks && bfd_link_pic (info))
9091 htab->plt_mips_entry_size
9092 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9093 else if (htab->is_vxworks)
9094 htab->plt_mips_entry_size
9095 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9096 else if (newabi_p)
9097 htab->plt_mips_entry_size
9098 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9099 else if (!micromips_p)
9100 {
9101 htab->plt_mips_entry_size
9102 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9103 htab->plt_comp_entry_size
9104 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9105 }
9106 else if (htab->insn32)
9107 {
9108 htab->plt_mips_entry_size
9109 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9110 htab->plt_comp_entry_size
9111 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9112 }
9113 else
9114 {
9115 htab->plt_mips_entry_size
9116 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9117 htab->plt_comp_entry_size
9118 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9119 }
9120 }
9121
9122 if (h->plt.plist == NULL)
9123 h->plt.plist = mips_elf_make_plt_record (dynobj);
9124 if (h->plt.plist == NULL)
9125 return FALSE;
9126
9127 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9128 n32 or n64, so always use a standard entry there.
9129
9130 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9131 all MIPS16 calls will go via that stub, and there is no benefit
9132 to having a MIPS16 entry. And in the case of call_stub a
9133 standard entry actually has to be used as the stub ends with a J
9134 instruction. */
9135 if (newabi_p
9136 || htab->is_vxworks
9137 || hmips->call_stub
9138 || hmips->call_fp_stub)
9139 {
9140 h->plt.plist->need_mips = TRUE;
9141 h->plt.plist->need_comp = FALSE;
9142 }
9143
9144 /* Otherwise, if there are no direct calls to the function, we
9145 have a free choice of whether to use standard or compressed
9146 entries. Prefer microMIPS entries if the object is known to
9147 contain microMIPS code, so that it becomes possible to create
9148 pure microMIPS binaries. Prefer standard entries otherwise,
9149 because MIPS16 ones are no smaller and are usually slower. */
9150 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9151 {
9152 if (micromips_p)
9153 h->plt.plist->need_comp = TRUE;
9154 else
9155 h->plt.plist->need_mips = TRUE;
9156 }
9157
9158 if (h->plt.plist->need_mips)
9159 {
9160 h->plt.plist->mips_offset = htab->plt_mips_offset;
9161 htab->plt_mips_offset += htab->plt_mips_entry_size;
9162 }
9163 if (h->plt.plist->need_comp)
9164 {
9165 h->plt.plist->comp_offset = htab->plt_comp_offset;
9166 htab->plt_comp_offset += htab->plt_comp_entry_size;
9167 }
9168
9169 /* Reserve the corresponding .got.plt entry now too. */
9170 h->plt.plist->gotplt_index = htab->plt_got_index++;
9171
9172 /* If the output file has no definition of the symbol, set the
9173 symbol's value to the address of the stub. */
9174 if (!bfd_link_pic (info) && !h->def_regular)
9175 hmips->use_plt_entry = TRUE;
9176
9177 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9178 htab->root.srelplt->size += (htab->is_vxworks
9179 ? MIPS_ELF_RELA_SIZE (dynobj)
9180 : MIPS_ELF_REL_SIZE (dynobj));
9181
9182 /* Make room for the .rela.plt.unloaded relocations. */
9183 if (htab->is_vxworks && !bfd_link_pic (info))
9184 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9185
9186 /* All relocations against this symbol that could have been made
9187 dynamic will now refer to the PLT entry instead. */
9188 hmips->possibly_dynamic_relocs = 0;
9189
9190 return TRUE;
9191 }
9192
9193 /* If this is a weak symbol, and there is a real definition, the
9194 processor independent code will have arranged for us to see the
9195 real definition first, and we can just use the same value. */
9196 if (h->u.weakdef != NULL)
9197 {
9198 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9199 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9200 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9201 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9202 return TRUE;
9203 }
9204
9205 /* Otherwise, there is nothing further to do for symbols defined
9206 in regular objects. */
9207 if (h->def_regular)
9208 return TRUE;
9209
9210 /* There's also nothing more to do if we'll convert all relocations
9211 against this symbol into dynamic relocations. */
9212 if (!hmips->has_static_relocs)
9213 return TRUE;
9214
9215 /* We're now relying on copy relocations. Complain if we have
9216 some that we can't convert. */
9217 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9218 {
9219 _bfd_error_handler (_("non-dynamic relocations refer to "
9220 "dynamic symbol %s"),
9221 h->root.root.string);
9222 bfd_set_error (bfd_error_bad_value);
9223 return FALSE;
9224 }
9225
9226 /* We must allocate the symbol in our .dynbss section, which will
9227 become part of the .bss section of the executable. There will be
9228 an entry for this symbol in the .dynsym section. The dynamic
9229 object will contain position independent code, so all references
9230 from the dynamic object to this symbol will go through the global
9231 offset table. The dynamic linker will use the .dynsym entry to
9232 determine the address it must put in the global offset table, so
9233 both the dynamic object and the regular object will refer to the
9234 same memory location for the variable. */
9235
9236 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9237 {
9238 s = htab->root.sdynrelro;
9239 srel = htab->root.sreldynrelro;
9240 }
9241 else
9242 {
9243 s = htab->root.sdynbss;
9244 srel = htab->root.srelbss;
9245 }
9246 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9247 {
9248 if (htab->is_vxworks)
9249 srel->size += sizeof (Elf32_External_Rela);
9250 else
9251 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9252 h->needs_copy = 1;
9253 }
9254
9255 /* All relocations against this symbol that could have been made
9256 dynamic will now refer to the local copy instead. */
9257 hmips->possibly_dynamic_relocs = 0;
9258
9259 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9260 }
9261 \f
9262 /* This function is called after all the input files have been read,
9263 and the input sections have been assigned to output sections. We
9264 check for any mips16 stub sections that we can discard. */
9265
9266 bfd_boolean
9267 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9268 struct bfd_link_info *info)
9269 {
9270 asection *sect;
9271 struct mips_elf_link_hash_table *htab;
9272 struct mips_htab_traverse_info hti;
9273
9274 htab = mips_elf_hash_table (info);
9275 BFD_ASSERT (htab != NULL);
9276
9277 /* The .reginfo section has a fixed size. */
9278 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9279 if (sect != NULL)
9280 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9281
9282 /* The .MIPS.abiflags section has a fixed size. */
9283 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9284 if (sect != NULL)
9285 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9286
9287 hti.info = info;
9288 hti.output_bfd = output_bfd;
9289 hti.error = FALSE;
9290 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9291 mips_elf_check_symbols, &hti);
9292 if (hti.error)
9293 return FALSE;
9294
9295 return TRUE;
9296 }
9297
9298 /* If the link uses a GOT, lay it out and work out its size. */
9299
9300 static bfd_boolean
9301 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9302 {
9303 bfd *dynobj;
9304 asection *s;
9305 struct mips_got_info *g;
9306 bfd_size_type loadable_size = 0;
9307 bfd_size_type page_gotno;
9308 bfd *ibfd;
9309 struct mips_elf_traverse_got_arg tga;
9310 struct mips_elf_link_hash_table *htab;
9311
9312 htab = mips_elf_hash_table (info);
9313 BFD_ASSERT (htab != NULL);
9314
9315 s = htab->root.sgot;
9316 if (s == NULL)
9317 return TRUE;
9318
9319 dynobj = elf_hash_table (info)->dynobj;
9320 g = htab->got_info;
9321
9322 /* Allocate room for the reserved entries. VxWorks always reserves
9323 3 entries; other objects only reserve 2 entries. */
9324 BFD_ASSERT (g->assigned_low_gotno == 0);
9325 if (htab->is_vxworks)
9326 htab->reserved_gotno = 3;
9327 else
9328 htab->reserved_gotno = 2;
9329 g->local_gotno += htab->reserved_gotno;
9330 g->assigned_low_gotno = htab->reserved_gotno;
9331
9332 /* Decide which symbols need to go in the global part of the GOT and
9333 count the number of reloc-only GOT symbols. */
9334 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9335
9336 if (!mips_elf_resolve_final_got_entries (info, g))
9337 return FALSE;
9338
9339 /* Calculate the total loadable size of the output. That
9340 will give us the maximum number of GOT_PAGE entries
9341 required. */
9342 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9343 {
9344 asection *subsection;
9345
9346 for (subsection = ibfd->sections;
9347 subsection;
9348 subsection = subsection->next)
9349 {
9350 if ((subsection->flags & SEC_ALLOC) == 0)
9351 continue;
9352 loadable_size += ((subsection->size + 0xf)
9353 &~ (bfd_size_type) 0xf);
9354 }
9355 }
9356
9357 if (htab->is_vxworks)
9358 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9359 relocations against local symbols evaluate to "G", and the EABI does
9360 not include R_MIPS_GOT_PAGE. */
9361 page_gotno = 0;
9362 else
9363 /* Assume there are two loadable segments consisting of contiguous
9364 sections. Is 5 enough? */
9365 page_gotno = (loadable_size >> 16) + 5;
9366
9367 /* Choose the smaller of the two page estimates; both are intended to be
9368 conservative. */
9369 if (page_gotno > g->page_gotno)
9370 page_gotno = g->page_gotno;
9371
9372 g->local_gotno += page_gotno;
9373 g->assigned_high_gotno = g->local_gotno - 1;
9374
9375 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9376 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9377 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9378
9379 /* VxWorks does not support multiple GOTs. It initializes $gp to
9380 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9381 dynamic loader. */
9382 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9383 {
9384 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9385 return FALSE;
9386 }
9387 else
9388 {
9389 /* Record that all bfds use G. This also has the effect of freeing
9390 the per-bfd GOTs, which we no longer need. */
9391 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9392 if (mips_elf_bfd_got (ibfd, FALSE))
9393 mips_elf_replace_bfd_got (ibfd, g);
9394 mips_elf_replace_bfd_got (output_bfd, g);
9395
9396 /* Set up TLS entries. */
9397 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9398 tga.info = info;
9399 tga.g = g;
9400 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9401 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9402 if (!tga.g)
9403 return FALSE;
9404 BFD_ASSERT (g->tls_assigned_gotno
9405 == g->global_gotno + g->local_gotno + g->tls_gotno);
9406
9407 /* Each VxWorks GOT entry needs an explicit relocation. */
9408 if (htab->is_vxworks && bfd_link_pic (info))
9409 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9410
9411 /* Allocate room for the TLS relocations. */
9412 if (g->relocs)
9413 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9414 }
9415
9416 return TRUE;
9417 }
9418
9419 /* Estimate the size of the .MIPS.stubs section. */
9420
9421 static void
9422 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9423 {
9424 struct mips_elf_link_hash_table *htab;
9425 bfd_size_type dynsymcount;
9426
9427 htab = mips_elf_hash_table (info);
9428 BFD_ASSERT (htab != NULL);
9429
9430 if (htab->lazy_stub_count == 0)
9431 return;
9432
9433 /* IRIX rld assumes that a function stub isn't at the end of the .text
9434 section, so add a dummy entry to the end. */
9435 htab->lazy_stub_count++;
9436
9437 /* Get a worst-case estimate of the number of dynamic symbols needed.
9438 At this point, dynsymcount does not account for section symbols
9439 and count_section_dynsyms may overestimate the number that will
9440 be needed. */
9441 dynsymcount = (elf_hash_table (info)->dynsymcount
9442 + count_section_dynsyms (output_bfd, info));
9443
9444 /* Determine the size of one stub entry. There's no disadvantage
9445 from using microMIPS code here, so for the sake of pure-microMIPS
9446 binaries we prefer it whenever there's any microMIPS code in
9447 output produced at all. This has a benefit of stubs being
9448 shorter by 4 bytes each too, unless in the insn32 mode. */
9449 if (!MICROMIPS_P (output_bfd))
9450 htab->function_stub_size = (dynsymcount > 0x10000
9451 ? MIPS_FUNCTION_STUB_BIG_SIZE
9452 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9453 else if (htab->insn32)
9454 htab->function_stub_size = (dynsymcount > 0x10000
9455 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9456 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9457 else
9458 htab->function_stub_size = (dynsymcount > 0x10000
9459 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9460 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9461
9462 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9463 }
9464
9465 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9466 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9467 stub, allocate an entry in the stubs section. */
9468
9469 static bfd_boolean
9470 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9471 {
9472 struct mips_htab_traverse_info *hti = data;
9473 struct mips_elf_link_hash_table *htab;
9474 struct bfd_link_info *info;
9475 bfd *output_bfd;
9476
9477 info = hti->info;
9478 output_bfd = hti->output_bfd;
9479 htab = mips_elf_hash_table (info);
9480 BFD_ASSERT (htab != NULL);
9481
9482 if (h->needs_lazy_stub)
9483 {
9484 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9485 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9486 bfd_vma isa_bit = micromips_p;
9487
9488 BFD_ASSERT (htab->root.dynobj != NULL);
9489 if (h->root.plt.plist == NULL)
9490 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9491 if (h->root.plt.plist == NULL)
9492 {
9493 hti->error = TRUE;
9494 return FALSE;
9495 }
9496 h->root.root.u.def.section = htab->sstubs;
9497 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9498 h->root.plt.plist->stub_offset = htab->sstubs->size;
9499 h->root.other = other;
9500 htab->sstubs->size += htab->function_stub_size;
9501 }
9502 return TRUE;
9503 }
9504
9505 /* Allocate offsets in the stubs section to each symbol that needs one.
9506 Set the final size of the .MIPS.stub section. */
9507
9508 static bfd_boolean
9509 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9510 {
9511 bfd *output_bfd = info->output_bfd;
9512 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9513 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9514 bfd_vma isa_bit = micromips_p;
9515 struct mips_elf_link_hash_table *htab;
9516 struct mips_htab_traverse_info hti;
9517 struct elf_link_hash_entry *h;
9518 bfd *dynobj;
9519
9520 htab = mips_elf_hash_table (info);
9521 BFD_ASSERT (htab != NULL);
9522
9523 if (htab->lazy_stub_count == 0)
9524 return TRUE;
9525
9526 htab->sstubs->size = 0;
9527 hti.info = info;
9528 hti.output_bfd = output_bfd;
9529 hti.error = FALSE;
9530 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9531 if (hti.error)
9532 return FALSE;
9533 htab->sstubs->size += htab->function_stub_size;
9534 BFD_ASSERT (htab->sstubs->size
9535 == htab->lazy_stub_count * htab->function_stub_size);
9536
9537 dynobj = elf_hash_table (info)->dynobj;
9538 BFD_ASSERT (dynobj != NULL);
9539 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9540 if (h == NULL)
9541 return FALSE;
9542 h->root.u.def.value = isa_bit;
9543 h->other = other;
9544 h->type = STT_FUNC;
9545
9546 return TRUE;
9547 }
9548
9549 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9550 bfd_link_info. If H uses the address of a PLT entry as the value
9551 of the symbol, then set the entry in the symbol table now. Prefer
9552 a standard MIPS PLT entry. */
9553
9554 static bfd_boolean
9555 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9556 {
9557 struct bfd_link_info *info = data;
9558 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9559 struct mips_elf_link_hash_table *htab;
9560 unsigned int other;
9561 bfd_vma isa_bit;
9562 bfd_vma val;
9563
9564 htab = mips_elf_hash_table (info);
9565 BFD_ASSERT (htab != NULL);
9566
9567 if (h->use_plt_entry)
9568 {
9569 BFD_ASSERT (h->root.plt.plist != NULL);
9570 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9571 || h->root.plt.plist->comp_offset != MINUS_ONE);
9572
9573 val = htab->plt_header_size;
9574 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9575 {
9576 isa_bit = 0;
9577 val += h->root.plt.plist->mips_offset;
9578 other = 0;
9579 }
9580 else
9581 {
9582 isa_bit = 1;
9583 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9584 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9585 }
9586 val += isa_bit;
9587 /* For VxWorks, point at the PLT load stub rather than the lazy
9588 resolution stub; this stub will become the canonical function
9589 address. */
9590 if (htab->is_vxworks)
9591 val += 8;
9592
9593 h->root.root.u.def.section = htab->root.splt;
9594 h->root.root.u.def.value = val;
9595 h->root.other = other;
9596 }
9597
9598 return TRUE;
9599 }
9600
9601 /* Set the sizes of the dynamic sections. */
9602
9603 bfd_boolean
9604 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9605 struct bfd_link_info *info)
9606 {
9607 bfd *dynobj;
9608 asection *s, *sreldyn;
9609 bfd_boolean reltext;
9610 struct mips_elf_link_hash_table *htab;
9611
9612 htab = mips_elf_hash_table (info);
9613 BFD_ASSERT (htab != NULL);
9614 dynobj = elf_hash_table (info)->dynobj;
9615 BFD_ASSERT (dynobj != NULL);
9616
9617 if (elf_hash_table (info)->dynamic_sections_created)
9618 {
9619 /* Set the contents of the .interp section to the interpreter. */
9620 if (bfd_link_executable (info) && !info->nointerp)
9621 {
9622 s = bfd_get_linker_section (dynobj, ".interp");
9623 BFD_ASSERT (s != NULL);
9624 s->size
9625 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9626 s->contents
9627 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9628 }
9629
9630 /* Figure out the size of the PLT header if we know that we
9631 are using it. For the sake of cache alignment always use
9632 a standard header whenever any standard entries are present
9633 even if microMIPS entries are present as well. This also
9634 lets the microMIPS header rely on the value of $v0 only set
9635 by microMIPS entries, for a small size reduction.
9636
9637 Set symbol table entry values for symbols that use the
9638 address of their PLT entry now that we can calculate it.
9639
9640 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9641 haven't already in _bfd_elf_create_dynamic_sections. */
9642 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9643 {
9644 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9645 && !htab->plt_mips_offset);
9646 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9647 bfd_vma isa_bit = micromips_p;
9648 struct elf_link_hash_entry *h;
9649 bfd_vma size;
9650
9651 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9652 BFD_ASSERT (htab->root.sgotplt->size == 0);
9653 BFD_ASSERT (htab->root.splt->size == 0);
9654
9655 if (htab->is_vxworks && bfd_link_pic (info))
9656 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9657 else if (htab->is_vxworks)
9658 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9659 else if (ABI_64_P (output_bfd))
9660 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9661 else if (ABI_N32_P (output_bfd))
9662 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9663 else if (!micromips_p)
9664 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9665 else if (htab->insn32)
9666 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9667 else
9668 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9669
9670 htab->plt_header_is_comp = micromips_p;
9671 htab->plt_header_size = size;
9672 htab->root.splt->size = (size
9673 + htab->plt_mips_offset
9674 + htab->plt_comp_offset);
9675 htab->root.sgotplt->size = (htab->plt_got_index
9676 * MIPS_ELF_GOT_SIZE (dynobj));
9677
9678 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9679
9680 if (htab->root.hplt == NULL)
9681 {
9682 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9683 "_PROCEDURE_LINKAGE_TABLE_");
9684 htab->root.hplt = h;
9685 if (h == NULL)
9686 return FALSE;
9687 }
9688
9689 h = htab->root.hplt;
9690 h->root.u.def.value = isa_bit;
9691 h->other = other;
9692 h->type = STT_FUNC;
9693 }
9694 }
9695
9696 /* Allocate space for global sym dynamic relocs. */
9697 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9698
9699 mips_elf_estimate_stub_size (output_bfd, info);
9700
9701 if (!mips_elf_lay_out_got (output_bfd, info))
9702 return FALSE;
9703
9704 mips_elf_lay_out_lazy_stubs (info);
9705
9706 /* The check_relocs and adjust_dynamic_symbol entry points have
9707 determined the sizes of the various dynamic sections. Allocate
9708 memory for them. */
9709 reltext = FALSE;
9710 for (s = dynobj->sections; s != NULL; s = s->next)
9711 {
9712 const char *name;
9713
9714 /* It's OK to base decisions on the section name, because none
9715 of the dynobj section names depend upon the input files. */
9716 name = bfd_get_section_name (dynobj, s);
9717
9718 if ((s->flags & SEC_LINKER_CREATED) == 0)
9719 continue;
9720
9721 if (CONST_STRNEQ (name, ".rel"))
9722 {
9723 if (s->size != 0)
9724 {
9725 const char *outname;
9726 asection *target;
9727
9728 /* If this relocation section applies to a read only
9729 section, then we probably need a DT_TEXTREL entry.
9730 If the relocation section is .rel(a).dyn, we always
9731 assert a DT_TEXTREL entry rather than testing whether
9732 there exists a relocation to a read only section or
9733 not. */
9734 outname = bfd_get_section_name (output_bfd,
9735 s->output_section);
9736 target = bfd_get_section_by_name (output_bfd, outname + 4);
9737 if ((target != NULL
9738 && (target->flags & SEC_READONLY) != 0
9739 && (target->flags & SEC_ALLOC) != 0)
9740 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9741 reltext = TRUE;
9742
9743 /* We use the reloc_count field as a counter if we need
9744 to copy relocs into the output file. */
9745 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9746 s->reloc_count = 0;
9747
9748 /* If combreloc is enabled, elf_link_sort_relocs() will
9749 sort relocations, but in a different way than we do,
9750 and before we're done creating relocations. Also, it
9751 will move them around between input sections'
9752 relocation's contents, so our sorting would be
9753 broken, so don't let it run. */
9754 info->combreloc = 0;
9755 }
9756 }
9757 else if (bfd_link_executable (info)
9758 && ! mips_elf_hash_table (info)->use_rld_obj_head
9759 && CONST_STRNEQ (name, ".rld_map"))
9760 {
9761 /* We add a room for __rld_map. It will be filled in by the
9762 rtld to contain a pointer to the _r_debug structure. */
9763 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9764 }
9765 else if (SGI_COMPAT (output_bfd)
9766 && CONST_STRNEQ (name, ".compact_rel"))
9767 s->size += mips_elf_hash_table (info)->compact_rel_size;
9768 else if (s == htab->root.splt)
9769 {
9770 /* If the last PLT entry has a branch delay slot, allocate
9771 room for an extra nop to fill the delay slot. This is
9772 for CPUs without load interlocking. */
9773 if (! LOAD_INTERLOCKS_P (output_bfd)
9774 && ! htab->is_vxworks && s->size > 0)
9775 s->size += 4;
9776 }
9777 else if (! CONST_STRNEQ (name, ".init")
9778 && s != htab->root.sgot
9779 && s != htab->root.sgotplt
9780 && s != htab->sstubs
9781 && s != htab->root.sdynbss
9782 && s != htab->root.sdynrelro)
9783 {
9784 /* It's not one of our sections, so don't allocate space. */
9785 continue;
9786 }
9787
9788 if (s->size == 0)
9789 {
9790 s->flags |= SEC_EXCLUDE;
9791 continue;
9792 }
9793
9794 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9795 continue;
9796
9797 /* Allocate memory for the section contents. */
9798 s->contents = bfd_zalloc (dynobj, s->size);
9799 if (s->contents == NULL)
9800 {
9801 bfd_set_error (bfd_error_no_memory);
9802 return FALSE;
9803 }
9804 }
9805
9806 if (elf_hash_table (info)->dynamic_sections_created)
9807 {
9808 /* Add some entries to the .dynamic section. We fill in the
9809 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9810 must add the entries now so that we get the correct size for
9811 the .dynamic section. */
9812
9813 /* SGI object has the equivalence of DT_DEBUG in the
9814 DT_MIPS_RLD_MAP entry. This must come first because glibc
9815 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9816 may only look at the first one they see. */
9817 if (!bfd_link_pic (info)
9818 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9819 return FALSE;
9820
9821 if (bfd_link_executable (info)
9822 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9823 return FALSE;
9824
9825 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9826 used by the debugger. */
9827 if (bfd_link_executable (info)
9828 && !SGI_COMPAT (output_bfd)
9829 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9830 return FALSE;
9831
9832 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9833 info->flags |= DF_TEXTREL;
9834
9835 if ((info->flags & DF_TEXTREL) != 0)
9836 {
9837 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9838 return FALSE;
9839
9840 /* Clear the DF_TEXTREL flag. It will be set again if we
9841 write out an actual text relocation; we may not, because
9842 at this point we do not know whether e.g. any .eh_frame
9843 absolute relocations have been converted to PC-relative. */
9844 info->flags &= ~DF_TEXTREL;
9845 }
9846
9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9848 return FALSE;
9849
9850 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9851 if (htab->is_vxworks)
9852 {
9853 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9854 use any of the DT_MIPS_* tags. */
9855 if (sreldyn && sreldyn->size > 0)
9856 {
9857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9858 return FALSE;
9859
9860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9861 return FALSE;
9862
9863 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9864 return FALSE;
9865 }
9866 }
9867 else
9868 {
9869 if (sreldyn && sreldyn->size > 0)
9870 {
9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9872 return FALSE;
9873
9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9875 return FALSE;
9876
9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9878 return FALSE;
9879 }
9880
9881 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9882 return FALSE;
9883
9884 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9885 return FALSE;
9886
9887 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9888 return FALSE;
9889
9890 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9891 return FALSE;
9892
9893 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9894 return FALSE;
9895
9896 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9897 return FALSE;
9898
9899 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9900 return FALSE;
9901
9902 if (IRIX_COMPAT (dynobj) == ict_irix5
9903 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9904 return FALSE;
9905
9906 if (IRIX_COMPAT (dynobj) == ict_irix6
9907 && (bfd_get_section_by_name
9908 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9909 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9910 return FALSE;
9911 }
9912 if (htab->root.splt->size > 0)
9913 {
9914 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9915 return FALSE;
9916
9917 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9918 return FALSE;
9919
9920 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9921 return FALSE;
9922
9923 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9924 return FALSE;
9925 }
9926 if (htab->is_vxworks
9927 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9928 return FALSE;
9929 }
9930
9931 return TRUE;
9932 }
9933 \f
9934 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9935 Adjust its R_ADDEND field so that it is correct for the output file.
9936 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9937 and sections respectively; both use symbol indexes. */
9938
9939 static void
9940 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9941 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9942 asection **local_sections, Elf_Internal_Rela *rel)
9943 {
9944 unsigned int r_type, r_symndx;
9945 Elf_Internal_Sym *sym;
9946 asection *sec;
9947
9948 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9949 {
9950 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9951 if (gprel16_reloc_p (r_type)
9952 || r_type == R_MIPS_GPREL32
9953 || literal_reloc_p (r_type))
9954 {
9955 rel->r_addend += _bfd_get_gp_value (input_bfd);
9956 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9957 }
9958
9959 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9960 sym = local_syms + r_symndx;
9961
9962 /* Adjust REL's addend to account for section merging. */
9963 if (!bfd_link_relocatable (info))
9964 {
9965 sec = local_sections[r_symndx];
9966 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9967 }
9968
9969 /* This would normally be done by the rela_normal code in elflink.c. */
9970 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9971 rel->r_addend += local_sections[r_symndx]->output_offset;
9972 }
9973 }
9974
9975 /* Handle relocations against symbols from removed linkonce sections,
9976 or sections discarded by a linker script. We use this wrapper around
9977 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9978 on 64-bit ELF targets. In this case for any relocation handled, which
9979 always be the first in a triplet, the remaining two have to be processed
9980 together with the first, even if they are R_MIPS_NONE. It is the symbol
9981 index referred by the first reloc that applies to all the three and the
9982 remaining two never refer to an object symbol. And it is the final
9983 relocation (the last non-null one) that determines the output field of
9984 the whole relocation so retrieve the corresponding howto structure for
9985 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9986
9987 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9988 and therefore requires to be pasted in a loop. It also defines a block
9989 and does not protect any of its arguments, hence the extra brackets. */
9990
9991 static void
9992 mips_reloc_against_discarded_section (bfd *output_bfd,
9993 struct bfd_link_info *info,
9994 bfd *input_bfd, asection *input_section,
9995 Elf_Internal_Rela **rel,
9996 const Elf_Internal_Rela **relend,
9997 bfd_boolean rel_reloc,
9998 reloc_howto_type *howto,
9999 bfd_byte *contents)
10000 {
10001 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10002 int count = bed->s->int_rels_per_ext_rel;
10003 unsigned int r_type;
10004 int i;
10005
10006 for (i = count - 1; i > 0; i--)
10007 {
10008 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10009 if (r_type != R_MIPS_NONE)
10010 {
10011 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10012 break;
10013 }
10014 }
10015 do
10016 {
10017 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10018 (*rel), count, (*relend),
10019 howto, i, contents);
10020 }
10021 while (0);
10022 }
10023
10024 /* Relocate a MIPS ELF section. */
10025
10026 bfd_boolean
10027 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10028 bfd *input_bfd, asection *input_section,
10029 bfd_byte *contents, Elf_Internal_Rela *relocs,
10030 Elf_Internal_Sym *local_syms,
10031 asection **local_sections)
10032 {
10033 Elf_Internal_Rela *rel;
10034 const Elf_Internal_Rela *relend;
10035 bfd_vma addend = 0;
10036 bfd_boolean use_saved_addend_p = FALSE;
10037
10038 relend = relocs + input_section->reloc_count;
10039 for (rel = relocs; rel < relend; ++rel)
10040 {
10041 const char *name;
10042 bfd_vma value = 0;
10043 reloc_howto_type *howto;
10044 bfd_boolean cross_mode_jump_p = FALSE;
10045 /* TRUE if the relocation is a RELA relocation, rather than a
10046 REL relocation. */
10047 bfd_boolean rela_relocation_p = TRUE;
10048 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10049 const char *msg;
10050 unsigned long r_symndx;
10051 asection *sec;
10052 Elf_Internal_Shdr *symtab_hdr;
10053 struct elf_link_hash_entry *h;
10054 bfd_boolean rel_reloc;
10055
10056 rel_reloc = (NEWABI_P (input_bfd)
10057 && mips_elf_rel_relocation_p (input_bfd, input_section,
10058 relocs, rel));
10059 /* Find the relocation howto for this relocation. */
10060 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10061
10062 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10063 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10064 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10065 {
10066 sec = local_sections[r_symndx];
10067 h = NULL;
10068 }
10069 else
10070 {
10071 unsigned long extsymoff;
10072
10073 extsymoff = 0;
10074 if (!elf_bad_symtab (input_bfd))
10075 extsymoff = symtab_hdr->sh_info;
10076 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10077 while (h->root.type == bfd_link_hash_indirect
10078 || h->root.type == bfd_link_hash_warning)
10079 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10080
10081 sec = NULL;
10082 if (h->root.type == bfd_link_hash_defined
10083 || h->root.type == bfd_link_hash_defweak)
10084 sec = h->root.u.def.section;
10085 }
10086
10087 if (sec != NULL && discarded_section (sec))
10088 {
10089 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10090 input_section, &rel, &relend,
10091 rel_reloc, howto, contents);
10092 continue;
10093 }
10094
10095 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10096 {
10097 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10098 64-bit code, but make sure all their addresses are in the
10099 lowermost or uppermost 32-bit section of the 64-bit address
10100 space. Thus, when they use an R_MIPS_64 they mean what is
10101 usually meant by R_MIPS_32, with the exception that the
10102 stored value is sign-extended to 64 bits. */
10103 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10104
10105 /* On big-endian systems, we need to lie about the position
10106 of the reloc. */
10107 if (bfd_big_endian (input_bfd))
10108 rel->r_offset += 4;
10109 }
10110
10111 if (!use_saved_addend_p)
10112 {
10113 /* If these relocations were originally of the REL variety,
10114 we must pull the addend out of the field that will be
10115 relocated. Otherwise, we simply use the contents of the
10116 RELA relocation. */
10117 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10118 relocs, rel))
10119 {
10120 rela_relocation_p = FALSE;
10121 addend = mips_elf_read_rel_addend (input_bfd, rel,
10122 howto, contents);
10123 if (hi16_reloc_p (r_type)
10124 || (got16_reloc_p (r_type)
10125 && mips_elf_local_relocation_p (input_bfd, rel,
10126 local_sections)))
10127 {
10128 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10129 contents, &addend))
10130 {
10131 if (h)
10132 name = h->root.root.string;
10133 else
10134 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10135 local_syms + r_symndx,
10136 sec);
10137 _bfd_error_handler
10138 /* xgettext:c-format */
10139 (_("%B: Can't find matching LO16 reloc against `%s'"
10140 " for %s at 0x%lx in section `%A'"),
10141 input_bfd, name,
10142 howto->name, rel->r_offset, input_section);
10143 }
10144 }
10145 else
10146 addend <<= howto->rightshift;
10147 }
10148 else
10149 addend = rel->r_addend;
10150 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10151 local_syms, local_sections, rel);
10152 }
10153
10154 if (bfd_link_relocatable (info))
10155 {
10156 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10157 && bfd_big_endian (input_bfd))
10158 rel->r_offset -= 4;
10159
10160 if (!rela_relocation_p && rel->r_addend)
10161 {
10162 addend += rel->r_addend;
10163 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10164 addend = mips_elf_high (addend);
10165 else if (r_type == R_MIPS_HIGHER)
10166 addend = mips_elf_higher (addend);
10167 else if (r_type == R_MIPS_HIGHEST)
10168 addend = mips_elf_highest (addend);
10169 else
10170 addend >>= howto->rightshift;
10171
10172 /* We use the source mask, rather than the destination
10173 mask because the place to which we are writing will be
10174 source of the addend in the final link. */
10175 addend &= howto->src_mask;
10176
10177 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10178 /* See the comment above about using R_MIPS_64 in the 32-bit
10179 ABI. Here, we need to update the addend. It would be
10180 possible to get away with just using the R_MIPS_32 reloc
10181 but for endianness. */
10182 {
10183 bfd_vma sign_bits;
10184 bfd_vma low_bits;
10185 bfd_vma high_bits;
10186
10187 if (addend & ((bfd_vma) 1 << 31))
10188 #ifdef BFD64
10189 sign_bits = ((bfd_vma) 1 << 32) - 1;
10190 #else
10191 sign_bits = -1;
10192 #endif
10193 else
10194 sign_bits = 0;
10195
10196 /* If we don't know that we have a 64-bit type,
10197 do two separate stores. */
10198 if (bfd_big_endian (input_bfd))
10199 {
10200 /* Store the sign-bits (which are most significant)
10201 first. */
10202 low_bits = sign_bits;
10203 high_bits = addend;
10204 }
10205 else
10206 {
10207 low_bits = addend;
10208 high_bits = sign_bits;
10209 }
10210 bfd_put_32 (input_bfd, low_bits,
10211 contents + rel->r_offset);
10212 bfd_put_32 (input_bfd, high_bits,
10213 contents + rel->r_offset + 4);
10214 continue;
10215 }
10216
10217 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10218 input_bfd, input_section,
10219 contents, FALSE))
10220 return FALSE;
10221 }
10222
10223 /* Go on to the next relocation. */
10224 continue;
10225 }
10226
10227 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10228 relocations for the same offset. In that case we are
10229 supposed to treat the output of each relocation as the addend
10230 for the next. */
10231 if (rel + 1 < relend
10232 && rel->r_offset == rel[1].r_offset
10233 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10234 use_saved_addend_p = TRUE;
10235 else
10236 use_saved_addend_p = FALSE;
10237
10238 /* Figure out what value we are supposed to relocate. */
10239 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10240 input_section, info, rel,
10241 addend, howto, local_syms,
10242 local_sections, &value,
10243 &name, &cross_mode_jump_p,
10244 use_saved_addend_p))
10245 {
10246 case bfd_reloc_continue:
10247 /* There's nothing to do. */
10248 continue;
10249
10250 case bfd_reloc_undefined:
10251 /* mips_elf_calculate_relocation already called the
10252 undefined_symbol callback. There's no real point in
10253 trying to perform the relocation at this point, so we
10254 just skip ahead to the next relocation. */
10255 continue;
10256
10257 case bfd_reloc_notsupported:
10258 msg = _("internal error: unsupported relocation error");
10259 info->callbacks->warning
10260 (info, msg, name, input_bfd, input_section, rel->r_offset);
10261 return FALSE;
10262
10263 case bfd_reloc_overflow:
10264 if (use_saved_addend_p)
10265 /* Ignore overflow until we reach the last relocation for
10266 a given location. */
10267 ;
10268 else
10269 {
10270 struct mips_elf_link_hash_table *htab;
10271
10272 htab = mips_elf_hash_table (info);
10273 BFD_ASSERT (htab != NULL);
10274 BFD_ASSERT (name != NULL);
10275 if (!htab->small_data_overflow_reported
10276 && (gprel16_reloc_p (howto->type)
10277 || literal_reloc_p (howto->type)))
10278 {
10279 msg = _("small-data section exceeds 64KB;"
10280 " lower small-data size limit (see option -G)");
10281
10282 htab->small_data_overflow_reported = TRUE;
10283 (*info->callbacks->einfo) ("%P: %s\n", msg);
10284 }
10285 (*info->callbacks->reloc_overflow)
10286 (info, NULL, name, howto->name, (bfd_vma) 0,
10287 input_bfd, input_section, rel->r_offset);
10288 }
10289 break;
10290
10291 case bfd_reloc_ok:
10292 break;
10293
10294 case bfd_reloc_outofrange:
10295 msg = NULL;
10296 if (jal_reloc_p (howto->type))
10297 msg = (cross_mode_jump_p
10298 ? _("Cannot convert a jump to JALX "
10299 "for a non-word-aligned address")
10300 : (howto->type == R_MIPS16_26
10301 ? _("Jump to a non-word-aligned address")
10302 : _("Jump to a non-instruction-aligned address")));
10303 else if (b_reloc_p (howto->type))
10304 msg = (cross_mode_jump_p
10305 ? _("Cannot convert a branch to JALX "
10306 "for a non-word-aligned address")
10307 : _("Branch to a non-instruction-aligned address"));
10308 else if (aligned_pcrel_reloc_p (howto->type))
10309 msg = _("PC-relative load from unaligned address");
10310 if (msg)
10311 {
10312 info->callbacks->einfo
10313 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10314 break;
10315 }
10316 /* Fall through. */
10317
10318 default:
10319 abort ();
10320 break;
10321 }
10322
10323 /* If we've got another relocation for the address, keep going
10324 until we reach the last one. */
10325 if (use_saved_addend_p)
10326 {
10327 addend = value;
10328 continue;
10329 }
10330
10331 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10332 /* See the comment above about using R_MIPS_64 in the 32-bit
10333 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10334 that calculated the right value. Now, however, we
10335 sign-extend the 32-bit result to 64-bits, and store it as a
10336 64-bit value. We are especially generous here in that we
10337 go to extreme lengths to support this usage on systems with
10338 only a 32-bit VMA. */
10339 {
10340 bfd_vma sign_bits;
10341 bfd_vma low_bits;
10342 bfd_vma high_bits;
10343
10344 if (value & ((bfd_vma) 1 << 31))
10345 #ifdef BFD64
10346 sign_bits = ((bfd_vma) 1 << 32) - 1;
10347 #else
10348 sign_bits = -1;
10349 #endif
10350 else
10351 sign_bits = 0;
10352
10353 /* If we don't know that we have a 64-bit type,
10354 do two separate stores. */
10355 if (bfd_big_endian (input_bfd))
10356 {
10357 /* Undo what we did above. */
10358 rel->r_offset -= 4;
10359 /* Store the sign-bits (which are most significant)
10360 first. */
10361 low_bits = sign_bits;
10362 high_bits = value;
10363 }
10364 else
10365 {
10366 low_bits = value;
10367 high_bits = sign_bits;
10368 }
10369 bfd_put_32 (input_bfd, low_bits,
10370 contents + rel->r_offset);
10371 bfd_put_32 (input_bfd, high_bits,
10372 contents + rel->r_offset + 4);
10373 continue;
10374 }
10375
10376 /* Actually perform the relocation. */
10377 if (! mips_elf_perform_relocation (info, howto, rel, value,
10378 input_bfd, input_section,
10379 contents, cross_mode_jump_p))
10380 return FALSE;
10381 }
10382
10383 return TRUE;
10384 }
10385 \f
10386 /* A function that iterates over each entry in la25_stubs and fills
10387 in the code for each one. DATA points to a mips_htab_traverse_info. */
10388
10389 static int
10390 mips_elf_create_la25_stub (void **slot, void *data)
10391 {
10392 struct mips_htab_traverse_info *hti;
10393 struct mips_elf_link_hash_table *htab;
10394 struct mips_elf_la25_stub *stub;
10395 asection *s;
10396 bfd_byte *loc;
10397 bfd_vma offset, target, target_high, target_low;
10398
10399 stub = (struct mips_elf_la25_stub *) *slot;
10400 hti = (struct mips_htab_traverse_info *) data;
10401 htab = mips_elf_hash_table (hti->info);
10402 BFD_ASSERT (htab != NULL);
10403
10404 /* Create the section contents, if we haven't already. */
10405 s = stub->stub_section;
10406 loc = s->contents;
10407 if (loc == NULL)
10408 {
10409 loc = bfd_malloc (s->size);
10410 if (loc == NULL)
10411 {
10412 hti->error = TRUE;
10413 return FALSE;
10414 }
10415 s->contents = loc;
10416 }
10417
10418 /* Work out where in the section this stub should go. */
10419 offset = stub->offset;
10420
10421 /* Work out the target address. */
10422 target = mips_elf_get_la25_target (stub, &s);
10423 target += s->output_section->vma + s->output_offset;
10424
10425 target_high = ((target + 0x8000) >> 16) & 0xffff;
10426 target_low = (target & 0xffff);
10427
10428 if (stub->stub_section != htab->strampoline)
10429 {
10430 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10431 of the section and write the two instructions at the end. */
10432 memset (loc, 0, offset);
10433 loc += offset;
10434 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10435 {
10436 bfd_put_micromips_32 (hti->output_bfd,
10437 LA25_LUI_MICROMIPS (target_high),
10438 loc);
10439 bfd_put_micromips_32 (hti->output_bfd,
10440 LA25_ADDIU_MICROMIPS (target_low),
10441 loc + 4);
10442 }
10443 else
10444 {
10445 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10446 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10447 }
10448 }
10449 else
10450 {
10451 /* This is trampoline. */
10452 loc += offset;
10453 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10454 {
10455 bfd_put_micromips_32 (hti->output_bfd,
10456 LA25_LUI_MICROMIPS (target_high), loc);
10457 bfd_put_micromips_32 (hti->output_bfd,
10458 LA25_J_MICROMIPS (target), loc + 4);
10459 bfd_put_micromips_32 (hti->output_bfd,
10460 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10461 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10462 }
10463 else
10464 {
10465 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10466 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10467 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10468 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10469 }
10470 }
10471 return TRUE;
10472 }
10473
10474 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10475 adjust it appropriately now. */
10476
10477 static void
10478 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10479 const char *name, Elf_Internal_Sym *sym)
10480 {
10481 /* The linker script takes care of providing names and values for
10482 these, but we must place them into the right sections. */
10483 static const char* const text_section_symbols[] = {
10484 "_ftext",
10485 "_etext",
10486 "__dso_displacement",
10487 "__elf_header",
10488 "__program_header_table",
10489 NULL
10490 };
10491
10492 static const char* const data_section_symbols[] = {
10493 "_fdata",
10494 "_edata",
10495 "_end",
10496 "_fbss",
10497 NULL
10498 };
10499
10500 const char* const *p;
10501 int i;
10502
10503 for (i = 0; i < 2; ++i)
10504 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10505 *p;
10506 ++p)
10507 if (strcmp (*p, name) == 0)
10508 {
10509 /* All of these symbols are given type STT_SECTION by the
10510 IRIX6 linker. */
10511 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10512 sym->st_other = STO_PROTECTED;
10513
10514 /* The IRIX linker puts these symbols in special sections. */
10515 if (i == 0)
10516 sym->st_shndx = SHN_MIPS_TEXT;
10517 else
10518 sym->st_shndx = SHN_MIPS_DATA;
10519
10520 break;
10521 }
10522 }
10523
10524 /* Finish up dynamic symbol handling. We set the contents of various
10525 dynamic sections here. */
10526
10527 bfd_boolean
10528 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10529 struct bfd_link_info *info,
10530 struct elf_link_hash_entry *h,
10531 Elf_Internal_Sym *sym)
10532 {
10533 bfd *dynobj;
10534 asection *sgot;
10535 struct mips_got_info *g, *gg;
10536 const char *name;
10537 int idx;
10538 struct mips_elf_link_hash_table *htab;
10539 struct mips_elf_link_hash_entry *hmips;
10540
10541 htab = mips_elf_hash_table (info);
10542 BFD_ASSERT (htab != NULL);
10543 dynobj = elf_hash_table (info)->dynobj;
10544 hmips = (struct mips_elf_link_hash_entry *) h;
10545
10546 BFD_ASSERT (!htab->is_vxworks);
10547
10548 if (h->plt.plist != NULL
10549 && (h->plt.plist->mips_offset != MINUS_ONE
10550 || h->plt.plist->comp_offset != MINUS_ONE))
10551 {
10552 /* We've decided to create a PLT entry for this symbol. */
10553 bfd_byte *loc;
10554 bfd_vma header_address, got_address;
10555 bfd_vma got_address_high, got_address_low, load;
10556 bfd_vma got_index;
10557 bfd_vma isa_bit;
10558
10559 got_index = h->plt.plist->gotplt_index;
10560
10561 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10562 BFD_ASSERT (h->dynindx != -1);
10563 BFD_ASSERT (htab->root.splt != NULL);
10564 BFD_ASSERT (got_index != MINUS_ONE);
10565 BFD_ASSERT (!h->def_regular);
10566
10567 /* Calculate the address of the PLT header. */
10568 isa_bit = htab->plt_header_is_comp;
10569 header_address = (htab->root.splt->output_section->vma
10570 + htab->root.splt->output_offset + isa_bit);
10571
10572 /* Calculate the address of the .got.plt entry. */
10573 got_address = (htab->root.sgotplt->output_section->vma
10574 + htab->root.sgotplt->output_offset
10575 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10576
10577 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10578 got_address_low = got_address & 0xffff;
10579
10580 /* Initially point the .got.plt entry at the PLT header. */
10581 loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10582 if (ABI_64_P (output_bfd))
10583 bfd_put_64 (output_bfd, header_address, loc);
10584 else
10585 bfd_put_32 (output_bfd, header_address, loc);
10586
10587 /* Now handle the PLT itself. First the standard entry (the order
10588 does not matter, we just have to pick one). */
10589 if (h->plt.plist->mips_offset != MINUS_ONE)
10590 {
10591 const bfd_vma *plt_entry;
10592 bfd_vma plt_offset;
10593
10594 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10595
10596 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10597
10598 /* Find out where the .plt entry should go. */
10599 loc = htab->root.splt->contents + plt_offset;
10600
10601 /* Pick the load opcode. */
10602 load = MIPS_ELF_LOAD_WORD (output_bfd);
10603
10604 /* Fill in the PLT entry itself. */
10605
10606 if (MIPSR6_P (output_bfd))
10607 plt_entry = mipsr6_exec_plt_entry;
10608 else
10609 plt_entry = mips_exec_plt_entry;
10610 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10611 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10612 loc + 4);
10613
10614 if (! LOAD_INTERLOCKS_P (output_bfd))
10615 {
10616 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10617 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10618 }
10619 else
10620 {
10621 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10622 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10623 loc + 12);
10624 }
10625 }
10626
10627 /* Now the compressed entry. They come after any standard ones. */
10628 if (h->plt.plist->comp_offset != MINUS_ONE)
10629 {
10630 bfd_vma plt_offset;
10631
10632 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10633 + h->plt.plist->comp_offset);
10634
10635 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10636
10637 /* Find out where the .plt entry should go. */
10638 loc = htab->root.splt->contents + plt_offset;
10639
10640 /* Fill in the PLT entry itself. */
10641 if (!MICROMIPS_P (output_bfd))
10642 {
10643 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10644
10645 bfd_put_16 (output_bfd, plt_entry[0], loc);
10646 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10647 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10648 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10649 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10650 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10651 bfd_put_32 (output_bfd, got_address, loc + 12);
10652 }
10653 else if (htab->insn32)
10654 {
10655 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10656
10657 bfd_put_16 (output_bfd, plt_entry[0], loc);
10658 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10659 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10660 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10661 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10662 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10663 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10664 bfd_put_16 (output_bfd, got_address_low, loc + 14);
10665 }
10666 else
10667 {
10668 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10669 bfd_signed_vma gotpc_offset;
10670 bfd_vma loc_address;
10671
10672 BFD_ASSERT (got_address % 4 == 0);
10673
10674 loc_address = (htab->root.splt->output_section->vma
10675 + htab->root.splt->output_offset + plt_offset);
10676 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10677
10678 /* ADDIUPC has a span of +/-16MB, check we're in range. */
10679 if (gotpc_offset + 0x1000000 >= 0x2000000)
10680 {
10681 _bfd_error_handler
10682 /* xgettext:c-format */
10683 (_("%B: `%A' offset of %ld from `%A' "
10684 "beyond the range of ADDIUPC"),
10685 output_bfd,
10686 htab->root.sgotplt->output_section,
10687 (long) gotpc_offset,
10688 htab->root.splt->output_section);
10689 bfd_set_error (bfd_error_no_error);
10690 return FALSE;
10691 }
10692 bfd_put_16 (output_bfd,
10693 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10694 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10695 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10696 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10697 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10698 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10699 }
10700 }
10701
10702 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10703 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10704 got_index - 2, h->dynindx,
10705 R_MIPS_JUMP_SLOT, got_address);
10706
10707 /* We distinguish between PLT entries and lazy-binding stubs by
10708 giving the former an st_other value of STO_MIPS_PLT. Set the
10709 flag and leave the value if there are any relocations in the
10710 binary where pointer equality matters. */
10711 sym->st_shndx = SHN_UNDEF;
10712 if (h->pointer_equality_needed)
10713 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10714 else
10715 {
10716 sym->st_value = 0;
10717 sym->st_other = 0;
10718 }
10719 }
10720
10721 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10722 {
10723 /* We've decided to create a lazy-binding stub. */
10724 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10725 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10726 bfd_vma stub_size = htab->function_stub_size;
10727 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10728 bfd_vma isa_bit = micromips_p;
10729 bfd_vma stub_big_size;
10730
10731 if (!micromips_p)
10732 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10733 else if (htab->insn32)
10734 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10735 else
10736 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10737
10738 /* This symbol has a stub. Set it up. */
10739
10740 BFD_ASSERT (h->dynindx != -1);
10741
10742 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10743
10744 /* Values up to 2^31 - 1 are allowed. Larger values would cause
10745 sign extension at runtime in the stub, resulting in a negative
10746 index value. */
10747 if (h->dynindx & ~0x7fffffff)
10748 return FALSE;
10749
10750 /* Fill the stub. */
10751 if (micromips_p)
10752 {
10753 idx = 0;
10754 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10755 stub + idx);
10756 idx += 4;
10757 if (htab->insn32)
10758 {
10759 bfd_put_micromips_32 (output_bfd,
10760 STUB_MOVE32_MICROMIPS, stub + idx);
10761 idx += 4;
10762 }
10763 else
10764 {
10765 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10766 idx += 2;
10767 }
10768 if (stub_size == stub_big_size)
10769 {
10770 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10771
10772 bfd_put_micromips_32 (output_bfd,
10773 STUB_LUI_MICROMIPS (dynindx_hi),
10774 stub + idx);
10775 idx += 4;
10776 }
10777 if (htab->insn32)
10778 {
10779 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10780 stub + idx);
10781 idx += 4;
10782 }
10783 else
10784 {
10785 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10786 idx += 2;
10787 }
10788
10789 /* If a large stub is not required and sign extension is not a
10790 problem, then use legacy code in the stub. */
10791 if (stub_size == stub_big_size)
10792 bfd_put_micromips_32 (output_bfd,
10793 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10794 stub + idx);
10795 else if (h->dynindx & ~0x7fff)
10796 bfd_put_micromips_32 (output_bfd,
10797 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10798 stub + idx);
10799 else
10800 bfd_put_micromips_32 (output_bfd,
10801 STUB_LI16S_MICROMIPS (output_bfd,
10802 h->dynindx),
10803 stub + idx);
10804 }
10805 else
10806 {
10807 idx = 0;
10808 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10809 idx += 4;
10810 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10811 idx += 4;
10812 if (stub_size == stub_big_size)
10813 {
10814 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10815 stub + idx);
10816 idx += 4;
10817 }
10818 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10819 idx += 4;
10820
10821 /* If a large stub is not required and sign extension is not a
10822 problem, then use legacy code in the stub. */
10823 if (stub_size == stub_big_size)
10824 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10825 stub + idx);
10826 else if (h->dynindx & ~0x7fff)
10827 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10828 stub + idx);
10829 else
10830 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10831 stub + idx);
10832 }
10833
10834 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10835 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10836 stub, stub_size);
10837
10838 /* Mark the symbol as undefined. stub_offset != -1 occurs
10839 only for the referenced symbol. */
10840 sym->st_shndx = SHN_UNDEF;
10841
10842 /* The run-time linker uses the st_value field of the symbol
10843 to reset the global offset table entry for this external
10844 to its stub address when unlinking a shared object. */
10845 sym->st_value = (htab->sstubs->output_section->vma
10846 + htab->sstubs->output_offset
10847 + h->plt.plist->stub_offset
10848 + isa_bit);
10849 sym->st_other = other;
10850 }
10851
10852 /* If we have a MIPS16 function with a stub, the dynamic symbol must
10853 refer to the stub, since only the stub uses the standard calling
10854 conventions. */
10855 if (h->dynindx != -1 && hmips->fn_stub != NULL)
10856 {
10857 BFD_ASSERT (hmips->need_fn_stub);
10858 sym->st_value = (hmips->fn_stub->output_section->vma
10859 + hmips->fn_stub->output_offset);
10860 sym->st_size = hmips->fn_stub->size;
10861 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10862 }
10863
10864 BFD_ASSERT (h->dynindx != -1
10865 || h->forced_local);
10866
10867 sgot = htab->root.sgot;
10868 g = htab->got_info;
10869 BFD_ASSERT (g != NULL);
10870
10871 /* Run through the global symbol table, creating GOT entries for all
10872 the symbols that need them. */
10873 if (hmips->global_got_area != GGA_NONE)
10874 {
10875 bfd_vma offset;
10876 bfd_vma value;
10877
10878 value = sym->st_value;
10879 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10880 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10881 }
10882
10883 if (hmips->global_got_area != GGA_NONE && g->next)
10884 {
10885 struct mips_got_entry e, *p;
10886 bfd_vma entry;
10887 bfd_vma offset;
10888
10889 gg = g;
10890
10891 e.abfd = output_bfd;
10892 e.symndx = -1;
10893 e.d.h = hmips;
10894 e.tls_type = GOT_TLS_NONE;
10895
10896 for (g = g->next; g->next != gg; g = g->next)
10897 {
10898 if (g->got_entries
10899 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10900 &e)))
10901 {
10902 offset = p->gotidx;
10903 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10904 if (bfd_link_pic (info)
10905 || (elf_hash_table (info)->dynamic_sections_created
10906 && p->d.h != NULL
10907 && p->d.h->root.def_dynamic
10908 && !p->d.h->root.def_regular))
10909 {
10910 /* Create an R_MIPS_REL32 relocation for this entry. Due to
10911 the various compatibility problems, it's easier to mock
10912 up an R_MIPS_32 or R_MIPS_64 relocation and leave
10913 mips_elf_create_dynamic_relocation to calculate the
10914 appropriate addend. */
10915 Elf_Internal_Rela rel[3];
10916
10917 memset (rel, 0, sizeof (rel));
10918 if (ABI_64_P (output_bfd))
10919 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10920 else
10921 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10922 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10923
10924 entry = 0;
10925 if (! (mips_elf_create_dynamic_relocation
10926 (output_bfd, info, rel,
10927 e.d.h, NULL, sym->st_value, &entry, sgot)))
10928 return FALSE;
10929 }
10930 else
10931 entry = sym->st_value;
10932 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10933 }
10934 }
10935 }
10936
10937 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
10938 name = h->root.root.string;
10939 if (h == elf_hash_table (info)->hdynamic
10940 || h == elf_hash_table (info)->hgot)
10941 sym->st_shndx = SHN_ABS;
10942 else if (strcmp (name, "_DYNAMIC_LINK") == 0
10943 || strcmp (name, "_DYNAMIC_LINKING") == 0)
10944 {
10945 sym->st_shndx = SHN_ABS;
10946 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10947 sym->st_value = 1;
10948 }
10949 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10950 {
10951 sym->st_shndx = SHN_ABS;
10952 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10953 sym->st_value = elf_gp (output_bfd);
10954 }
10955 else if (SGI_COMPAT (output_bfd))
10956 {
10957 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10958 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10959 {
10960 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10961 sym->st_other = STO_PROTECTED;
10962 sym->st_value = 0;
10963 sym->st_shndx = SHN_MIPS_DATA;
10964 }
10965 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10966 {
10967 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10968 sym->st_other = STO_PROTECTED;
10969 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10970 sym->st_shndx = SHN_ABS;
10971 }
10972 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10973 {
10974 if (h->type == STT_FUNC)
10975 sym->st_shndx = SHN_MIPS_TEXT;
10976 else if (h->type == STT_OBJECT)
10977 sym->st_shndx = SHN_MIPS_DATA;
10978 }
10979 }
10980
10981 /* Emit a copy reloc, if needed. */
10982 if (h->needs_copy)
10983 {
10984 asection *s;
10985 bfd_vma symval;
10986
10987 BFD_ASSERT (h->dynindx != -1);
10988 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10989
10990 s = mips_elf_rel_dyn_section (info, FALSE);
10991 symval = (h->root.u.def.section->output_section->vma
10992 + h->root.u.def.section->output_offset
10993 + h->root.u.def.value);
10994 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10995 h->dynindx, R_MIPS_COPY, symval);
10996 }
10997
10998 /* Handle the IRIX6-specific symbols. */
10999 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11000 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11001
11002 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11003 to treat compressed symbols like any other. */
11004 if (ELF_ST_IS_MIPS16 (sym->st_other))
11005 {
11006 BFD_ASSERT (sym->st_value & 1);
11007 sym->st_other -= STO_MIPS16;
11008 }
11009 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11010 {
11011 BFD_ASSERT (sym->st_value & 1);
11012 sym->st_other -= STO_MICROMIPS;
11013 }
11014
11015 return TRUE;
11016 }
11017
11018 /* Likewise, for VxWorks. */
11019
11020 bfd_boolean
11021 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11022 struct bfd_link_info *info,
11023 struct elf_link_hash_entry *h,
11024 Elf_Internal_Sym *sym)
11025 {
11026 bfd *dynobj;
11027 asection *sgot;
11028 struct mips_got_info *g;
11029 struct mips_elf_link_hash_table *htab;
11030 struct mips_elf_link_hash_entry *hmips;
11031
11032 htab = mips_elf_hash_table (info);
11033 BFD_ASSERT (htab != NULL);
11034 dynobj = elf_hash_table (info)->dynobj;
11035 hmips = (struct mips_elf_link_hash_entry *) h;
11036
11037 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11038 {
11039 bfd_byte *loc;
11040 bfd_vma plt_address, got_address, got_offset, branch_offset;
11041 Elf_Internal_Rela rel;
11042 static const bfd_vma *plt_entry;
11043 bfd_vma gotplt_index;
11044 bfd_vma plt_offset;
11045
11046 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11047 gotplt_index = h->plt.plist->gotplt_index;
11048
11049 BFD_ASSERT (h->dynindx != -1);
11050 BFD_ASSERT (htab->root.splt != NULL);
11051 BFD_ASSERT (gotplt_index != MINUS_ONE);
11052 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11053
11054 /* Calculate the address of the .plt entry. */
11055 plt_address = (htab->root.splt->output_section->vma
11056 + htab->root.splt->output_offset
11057 + plt_offset);
11058
11059 /* Calculate the address of the .got.plt entry. */
11060 got_address = (htab->root.sgotplt->output_section->vma
11061 + htab->root.sgotplt->output_offset
11062 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11063
11064 /* Calculate the offset of the .got.plt entry from
11065 _GLOBAL_OFFSET_TABLE_. */
11066 got_offset = mips_elf_gotplt_index (info, h);
11067
11068 /* Calculate the offset for the branch at the start of the PLT
11069 entry. The branch jumps to the beginning of .plt. */
11070 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11071
11072 /* Fill in the initial value of the .got.plt entry. */
11073 bfd_put_32 (output_bfd, plt_address,
11074 (htab->root.sgotplt->contents
11075 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11076
11077 /* Find out where the .plt entry should go. */
11078 loc = htab->root.splt->contents + plt_offset;
11079
11080 if (bfd_link_pic (info))
11081 {
11082 plt_entry = mips_vxworks_shared_plt_entry;
11083 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11084 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11085 }
11086 else
11087 {
11088 bfd_vma got_address_high, got_address_low;
11089
11090 plt_entry = mips_vxworks_exec_plt_entry;
11091 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11092 got_address_low = got_address & 0xffff;
11093
11094 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11095 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11096 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11097 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11098 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11099 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11100 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11101 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11102
11103 loc = (htab->srelplt2->contents
11104 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11105
11106 /* Emit a relocation for the .got.plt entry. */
11107 rel.r_offset = got_address;
11108 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11109 rel.r_addend = plt_offset;
11110 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11111
11112 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11113 loc += sizeof (Elf32_External_Rela);
11114 rel.r_offset = plt_address + 8;
11115 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11116 rel.r_addend = got_offset;
11117 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11118
11119 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11120 loc += sizeof (Elf32_External_Rela);
11121 rel.r_offset += 4;
11122 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11123 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11124 }
11125
11126 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11127 loc = (htab->root.srelplt->contents
11128 + gotplt_index * sizeof (Elf32_External_Rela));
11129 rel.r_offset = got_address;
11130 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11131 rel.r_addend = 0;
11132 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11133
11134 if (!h->def_regular)
11135 sym->st_shndx = SHN_UNDEF;
11136 }
11137
11138 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11139
11140 sgot = htab->root.sgot;
11141 g = htab->got_info;
11142 BFD_ASSERT (g != NULL);
11143
11144 /* See if this symbol has an entry in the GOT. */
11145 if (hmips->global_got_area != GGA_NONE)
11146 {
11147 bfd_vma offset;
11148 Elf_Internal_Rela outrel;
11149 bfd_byte *loc;
11150 asection *s;
11151
11152 /* Install the symbol value in the GOT. */
11153 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11154 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11155
11156 /* Add a dynamic relocation for it. */
11157 s = mips_elf_rel_dyn_section (info, FALSE);
11158 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11159 outrel.r_offset = (sgot->output_section->vma
11160 + sgot->output_offset
11161 + offset);
11162 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11163 outrel.r_addend = 0;
11164 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11165 }
11166
11167 /* Emit a copy reloc, if needed. */
11168 if (h->needs_copy)
11169 {
11170 Elf_Internal_Rela rel;
11171 asection *srel;
11172 bfd_byte *loc;
11173
11174 BFD_ASSERT (h->dynindx != -1);
11175
11176 rel.r_offset = (h->root.u.def.section->output_section->vma
11177 + h->root.u.def.section->output_offset
11178 + h->root.u.def.value);
11179 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11180 rel.r_addend = 0;
11181 if (h->root.u.def.section == htab->root.sdynrelro)
11182 srel = htab->root.sreldynrelro;
11183 else
11184 srel = htab->root.srelbss;
11185 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11186 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11187 ++srel->reloc_count;
11188 }
11189
11190 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11191 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11192 sym->st_value &= ~1;
11193
11194 return TRUE;
11195 }
11196
11197 /* Write out a plt0 entry to the beginning of .plt. */
11198
11199 static bfd_boolean
11200 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11201 {
11202 bfd_byte *loc;
11203 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11204 static const bfd_vma *plt_entry;
11205 struct mips_elf_link_hash_table *htab;
11206
11207 htab = mips_elf_hash_table (info);
11208 BFD_ASSERT (htab != NULL);
11209
11210 if (ABI_64_P (output_bfd))
11211 plt_entry = mips_n64_exec_plt0_entry;
11212 else if (ABI_N32_P (output_bfd))
11213 plt_entry = mips_n32_exec_plt0_entry;
11214 else if (!htab->plt_header_is_comp)
11215 plt_entry = mips_o32_exec_plt0_entry;
11216 else if (htab->insn32)
11217 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11218 else
11219 plt_entry = micromips_o32_exec_plt0_entry;
11220
11221 /* Calculate the value of .got.plt. */
11222 gotplt_value = (htab->root.sgotplt->output_section->vma
11223 + htab->root.sgotplt->output_offset);
11224 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11225 gotplt_value_low = gotplt_value & 0xffff;
11226
11227 /* The PLT sequence is not safe for N64 if .got.plt's address can
11228 not be loaded in two instructions. */
11229 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11230 || ~(gotplt_value | 0x7fffffff) == 0);
11231
11232 /* Install the PLT header. */
11233 loc = htab->root.splt->contents;
11234 if (plt_entry == micromips_o32_exec_plt0_entry)
11235 {
11236 bfd_vma gotpc_offset;
11237 bfd_vma loc_address;
11238 size_t i;
11239
11240 BFD_ASSERT (gotplt_value % 4 == 0);
11241
11242 loc_address = (htab->root.splt->output_section->vma
11243 + htab->root.splt->output_offset);
11244 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11245
11246 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11247 if (gotpc_offset + 0x1000000 >= 0x2000000)
11248 {
11249 _bfd_error_handler
11250 /* xgettext:c-format */
11251 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11252 output_bfd,
11253 htab->root.sgotplt->output_section,
11254 (long) gotpc_offset,
11255 htab->root.splt->output_section);
11256 bfd_set_error (bfd_error_no_error);
11257 return FALSE;
11258 }
11259 bfd_put_16 (output_bfd,
11260 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11261 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11262 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11263 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11264 }
11265 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11266 {
11267 size_t i;
11268
11269 bfd_put_16 (output_bfd, plt_entry[0], loc);
11270 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11271 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11272 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11273 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11274 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11275 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11276 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11277 }
11278 else
11279 {
11280 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11281 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11282 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11283 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11284 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11285 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11286 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11287 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11288 }
11289
11290 return TRUE;
11291 }
11292
11293 /* Install the PLT header for a VxWorks executable and finalize the
11294 contents of .rela.plt.unloaded. */
11295
11296 static void
11297 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11298 {
11299 Elf_Internal_Rela rela;
11300 bfd_byte *loc;
11301 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11302 static const bfd_vma *plt_entry;
11303 struct mips_elf_link_hash_table *htab;
11304
11305 htab = mips_elf_hash_table (info);
11306 BFD_ASSERT (htab != NULL);
11307
11308 plt_entry = mips_vxworks_exec_plt0_entry;
11309
11310 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11311 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11312 + htab->root.hgot->root.u.def.section->output_offset
11313 + htab->root.hgot->root.u.def.value);
11314
11315 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11316 got_value_low = got_value & 0xffff;
11317
11318 /* Calculate the address of the PLT header. */
11319 plt_address = (htab->root.splt->output_section->vma
11320 + htab->root.splt->output_offset);
11321
11322 /* Install the PLT header. */
11323 loc = htab->root.splt->contents;
11324 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11325 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11326 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11327 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11328 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11329 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11330
11331 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11332 loc = htab->srelplt2->contents;
11333 rela.r_offset = plt_address;
11334 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11335 rela.r_addend = 0;
11336 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11337 loc += sizeof (Elf32_External_Rela);
11338
11339 /* Output the relocation for the following addiu of
11340 %lo(_GLOBAL_OFFSET_TABLE_). */
11341 rela.r_offset += 4;
11342 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11343 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11344 loc += sizeof (Elf32_External_Rela);
11345
11346 /* Fix up the remaining relocations. They may have the wrong
11347 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11348 in which symbols were output. */
11349 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11350 {
11351 Elf_Internal_Rela rel;
11352
11353 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11354 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11355 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11356 loc += sizeof (Elf32_External_Rela);
11357
11358 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11359 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11360 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11361 loc += sizeof (Elf32_External_Rela);
11362
11363 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11364 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11365 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11366 loc += sizeof (Elf32_External_Rela);
11367 }
11368 }
11369
11370 /* Install the PLT header for a VxWorks shared library. */
11371
11372 static void
11373 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11374 {
11375 unsigned int i;
11376 struct mips_elf_link_hash_table *htab;
11377
11378 htab = mips_elf_hash_table (info);
11379 BFD_ASSERT (htab != NULL);
11380
11381 /* We just need to copy the entry byte-by-byte. */
11382 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11383 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11384 htab->root.splt->contents + i * 4);
11385 }
11386
11387 /* Finish up the dynamic sections. */
11388
11389 bfd_boolean
11390 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11391 struct bfd_link_info *info)
11392 {
11393 bfd *dynobj;
11394 asection *sdyn;
11395 asection *sgot;
11396 struct mips_got_info *gg, *g;
11397 struct mips_elf_link_hash_table *htab;
11398
11399 htab = mips_elf_hash_table (info);
11400 BFD_ASSERT (htab != NULL);
11401
11402 dynobj = elf_hash_table (info)->dynobj;
11403
11404 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11405
11406 sgot = htab->root.sgot;
11407 gg = htab->got_info;
11408
11409 if (elf_hash_table (info)->dynamic_sections_created)
11410 {
11411 bfd_byte *b;
11412 int dyn_to_skip = 0, dyn_skipped = 0;
11413
11414 BFD_ASSERT (sdyn != NULL);
11415 BFD_ASSERT (gg != NULL);
11416
11417 g = mips_elf_bfd_got (output_bfd, FALSE);
11418 BFD_ASSERT (g != NULL);
11419
11420 for (b = sdyn->contents;
11421 b < sdyn->contents + sdyn->size;
11422 b += MIPS_ELF_DYN_SIZE (dynobj))
11423 {
11424 Elf_Internal_Dyn dyn;
11425 const char *name;
11426 size_t elemsize;
11427 asection *s;
11428 bfd_boolean swap_out_p;
11429
11430 /* Read in the current dynamic entry. */
11431 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11432
11433 /* Assume that we're going to modify it and write it out. */
11434 swap_out_p = TRUE;
11435
11436 switch (dyn.d_tag)
11437 {
11438 case DT_RELENT:
11439 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11440 break;
11441
11442 case DT_RELAENT:
11443 BFD_ASSERT (htab->is_vxworks);
11444 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11445 break;
11446
11447 case DT_STRSZ:
11448 /* Rewrite DT_STRSZ. */
11449 dyn.d_un.d_val =
11450 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11451 break;
11452
11453 case DT_PLTGOT:
11454 s = htab->root.sgot;
11455 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11456 break;
11457
11458 case DT_MIPS_PLTGOT:
11459 s = htab->root.sgotplt;
11460 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11461 break;
11462
11463 case DT_MIPS_RLD_VERSION:
11464 dyn.d_un.d_val = 1; /* XXX */
11465 break;
11466
11467 case DT_MIPS_FLAGS:
11468 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11469 break;
11470
11471 case DT_MIPS_TIME_STAMP:
11472 {
11473 time_t t;
11474 time (&t);
11475 dyn.d_un.d_val = t;
11476 }
11477 break;
11478
11479 case DT_MIPS_ICHECKSUM:
11480 /* XXX FIXME: */
11481 swap_out_p = FALSE;
11482 break;
11483
11484 case DT_MIPS_IVERSION:
11485 /* XXX FIXME: */
11486 swap_out_p = FALSE;
11487 break;
11488
11489 case DT_MIPS_BASE_ADDRESS:
11490 s = output_bfd->sections;
11491 BFD_ASSERT (s != NULL);
11492 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11493 break;
11494
11495 case DT_MIPS_LOCAL_GOTNO:
11496 dyn.d_un.d_val = g->local_gotno;
11497 break;
11498
11499 case DT_MIPS_UNREFEXTNO:
11500 /* The index into the dynamic symbol table which is the
11501 entry of the first external symbol that is not
11502 referenced within the same object. */
11503 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11504 break;
11505
11506 case DT_MIPS_GOTSYM:
11507 if (htab->global_gotsym)
11508 {
11509 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11510 break;
11511 }
11512 /* In case if we don't have global got symbols we default
11513 to setting DT_MIPS_GOTSYM to the same value as
11514 DT_MIPS_SYMTABNO. */
11515 /* Fall through. */
11516
11517 case DT_MIPS_SYMTABNO:
11518 name = ".dynsym";
11519 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11520 s = bfd_get_linker_section (dynobj, name);
11521
11522 if (s != NULL)
11523 dyn.d_un.d_val = s->size / elemsize;
11524 else
11525 dyn.d_un.d_val = 0;
11526 break;
11527
11528 case DT_MIPS_HIPAGENO:
11529 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11530 break;
11531
11532 case DT_MIPS_RLD_MAP:
11533 {
11534 struct elf_link_hash_entry *h;
11535 h = mips_elf_hash_table (info)->rld_symbol;
11536 if (!h)
11537 {
11538 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11539 swap_out_p = FALSE;
11540 break;
11541 }
11542 s = h->root.u.def.section;
11543
11544 /* The MIPS_RLD_MAP tag stores the absolute address of the
11545 debug pointer. */
11546 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11547 + h->root.u.def.value);
11548 }
11549 break;
11550
11551 case DT_MIPS_RLD_MAP_REL:
11552 {
11553 struct elf_link_hash_entry *h;
11554 bfd_vma dt_addr, rld_addr;
11555 h = mips_elf_hash_table (info)->rld_symbol;
11556 if (!h)
11557 {
11558 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11559 swap_out_p = FALSE;
11560 break;
11561 }
11562 s = h->root.u.def.section;
11563
11564 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11565 pointer, relative to the address of the tag. */
11566 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11567 + (b - sdyn->contents));
11568 rld_addr = (s->output_section->vma + s->output_offset
11569 + h->root.u.def.value);
11570 dyn.d_un.d_ptr = rld_addr - dt_addr;
11571 }
11572 break;
11573
11574 case DT_MIPS_OPTIONS:
11575 s = (bfd_get_section_by_name
11576 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11577 dyn.d_un.d_ptr = s->vma;
11578 break;
11579
11580 case DT_PLTREL:
11581 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11582 if (htab->is_vxworks)
11583 dyn.d_un.d_val = DT_RELA;
11584 else
11585 dyn.d_un.d_val = DT_REL;
11586 break;
11587
11588 case DT_PLTRELSZ:
11589 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11590 dyn.d_un.d_val = htab->root.srelplt->size;
11591 break;
11592
11593 case DT_JMPREL:
11594 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11595 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11596 + htab->root.srelplt->output_offset);
11597 break;
11598
11599 case DT_TEXTREL:
11600 /* If we didn't need any text relocations after all, delete
11601 the dynamic tag. */
11602 if (!(info->flags & DF_TEXTREL))
11603 {
11604 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11605 swap_out_p = FALSE;
11606 }
11607 break;
11608
11609 case DT_FLAGS:
11610 /* If we didn't need any text relocations after all, clear
11611 DF_TEXTREL from DT_FLAGS. */
11612 if (!(info->flags & DF_TEXTREL))
11613 dyn.d_un.d_val &= ~DF_TEXTREL;
11614 else
11615 swap_out_p = FALSE;
11616 break;
11617
11618 default:
11619 swap_out_p = FALSE;
11620 if (htab->is_vxworks
11621 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11622 swap_out_p = TRUE;
11623 break;
11624 }
11625
11626 if (swap_out_p || dyn_skipped)
11627 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11628 (dynobj, &dyn, b - dyn_skipped);
11629
11630 if (dyn_to_skip)
11631 {
11632 dyn_skipped += dyn_to_skip;
11633 dyn_to_skip = 0;
11634 }
11635 }
11636
11637 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
11638 if (dyn_skipped > 0)
11639 memset (b - dyn_skipped, 0, dyn_skipped);
11640 }
11641
11642 if (sgot != NULL && sgot->size > 0
11643 && !bfd_is_abs_section (sgot->output_section))
11644 {
11645 if (htab->is_vxworks)
11646 {
11647 /* The first entry of the global offset table points to the
11648 ".dynamic" section. The second is initialized by the
11649 loader and contains the shared library identifier.
11650 The third is also initialized by the loader and points
11651 to the lazy resolution stub. */
11652 MIPS_ELF_PUT_WORD (output_bfd,
11653 sdyn->output_offset + sdyn->output_section->vma,
11654 sgot->contents);
11655 MIPS_ELF_PUT_WORD (output_bfd, 0,
11656 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11657 MIPS_ELF_PUT_WORD (output_bfd, 0,
11658 sgot->contents
11659 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11660 }
11661 else
11662 {
11663 /* The first entry of the global offset table will be filled at
11664 runtime. The second entry will be used by some runtime loaders.
11665 This isn't the case of IRIX rld. */
11666 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11667 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11668 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11669 }
11670
11671 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11672 = MIPS_ELF_GOT_SIZE (output_bfd);
11673 }
11674
11675 /* Generate dynamic relocations for the non-primary gots. */
11676 if (gg != NULL && gg->next)
11677 {
11678 Elf_Internal_Rela rel[3];
11679 bfd_vma addend = 0;
11680
11681 memset (rel, 0, sizeof (rel));
11682 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11683
11684 for (g = gg->next; g->next != gg; g = g->next)
11685 {
11686 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11687 + g->next->tls_gotno;
11688
11689 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11690 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11691 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11692 sgot->contents
11693 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11694
11695 if (! bfd_link_pic (info))
11696 continue;
11697
11698 for (; got_index < g->local_gotno; got_index++)
11699 {
11700 if (got_index >= g->assigned_low_gotno
11701 && got_index <= g->assigned_high_gotno)
11702 continue;
11703
11704 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11705 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11706 if (!(mips_elf_create_dynamic_relocation
11707 (output_bfd, info, rel, NULL,
11708 bfd_abs_section_ptr,
11709 0, &addend, sgot)))
11710 return FALSE;
11711 BFD_ASSERT (addend == 0);
11712 }
11713 }
11714 }
11715
11716 /* The generation of dynamic relocations for the non-primary gots
11717 adds more dynamic relocations. We cannot count them until
11718 here. */
11719
11720 if (elf_hash_table (info)->dynamic_sections_created)
11721 {
11722 bfd_byte *b;
11723 bfd_boolean swap_out_p;
11724
11725 BFD_ASSERT (sdyn != NULL);
11726
11727 for (b = sdyn->contents;
11728 b < sdyn->contents + sdyn->size;
11729 b += MIPS_ELF_DYN_SIZE (dynobj))
11730 {
11731 Elf_Internal_Dyn dyn;
11732 asection *s;
11733
11734 /* Read in the current dynamic entry. */
11735 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11736
11737 /* Assume that we're going to modify it and write it out. */
11738 swap_out_p = TRUE;
11739
11740 switch (dyn.d_tag)
11741 {
11742 case DT_RELSZ:
11743 /* Reduce DT_RELSZ to account for any relocations we
11744 decided not to make. This is for the n64 irix rld,
11745 which doesn't seem to apply any relocations if there
11746 are trailing null entries. */
11747 s = mips_elf_rel_dyn_section (info, FALSE);
11748 dyn.d_un.d_val = (s->reloc_count
11749 * (ABI_64_P (output_bfd)
11750 ? sizeof (Elf64_Mips_External_Rel)
11751 : sizeof (Elf32_External_Rel)));
11752 /* Adjust the section size too. Tools like the prelinker
11753 can reasonably expect the values to the same. */
11754 elf_section_data (s->output_section)->this_hdr.sh_size
11755 = dyn.d_un.d_val;
11756 break;
11757
11758 default:
11759 swap_out_p = FALSE;
11760 break;
11761 }
11762
11763 if (swap_out_p)
11764 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11765 (dynobj, &dyn, b);
11766 }
11767 }
11768
11769 {
11770 asection *s;
11771 Elf32_compact_rel cpt;
11772
11773 if (SGI_COMPAT (output_bfd))
11774 {
11775 /* Write .compact_rel section out. */
11776 s = bfd_get_linker_section (dynobj, ".compact_rel");
11777 if (s != NULL)
11778 {
11779 cpt.id1 = 1;
11780 cpt.num = s->reloc_count;
11781 cpt.id2 = 2;
11782 cpt.offset = (s->output_section->filepos
11783 + sizeof (Elf32_External_compact_rel));
11784 cpt.reserved0 = 0;
11785 cpt.reserved1 = 0;
11786 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11787 ((Elf32_External_compact_rel *)
11788 s->contents));
11789
11790 /* Clean up a dummy stub function entry in .text. */
11791 if (htab->sstubs != NULL)
11792 {
11793 file_ptr dummy_offset;
11794
11795 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11796 dummy_offset = htab->sstubs->size - htab->function_stub_size;
11797 memset (htab->sstubs->contents + dummy_offset, 0,
11798 htab->function_stub_size);
11799 }
11800 }
11801 }
11802
11803 /* The psABI says that the dynamic relocations must be sorted in
11804 increasing order of r_symndx. The VxWorks EABI doesn't require
11805 this, and because the code below handles REL rather than RELA
11806 relocations, using it for VxWorks would be outright harmful. */
11807 if (!htab->is_vxworks)
11808 {
11809 s = mips_elf_rel_dyn_section (info, FALSE);
11810 if (s != NULL
11811 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11812 {
11813 reldyn_sorting_bfd = output_bfd;
11814
11815 if (ABI_64_P (output_bfd))
11816 qsort ((Elf64_External_Rel *) s->contents + 1,
11817 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11818 sort_dynamic_relocs_64);
11819 else
11820 qsort ((Elf32_External_Rel *) s->contents + 1,
11821 s->reloc_count - 1, sizeof (Elf32_External_Rel),
11822 sort_dynamic_relocs);
11823 }
11824 }
11825 }
11826
11827 if (htab->root.splt && htab->root.splt->size > 0)
11828 {
11829 if (htab->is_vxworks)
11830 {
11831 if (bfd_link_pic (info))
11832 mips_vxworks_finish_shared_plt (output_bfd, info);
11833 else
11834 mips_vxworks_finish_exec_plt (output_bfd, info);
11835 }
11836 else
11837 {
11838 BFD_ASSERT (!bfd_link_pic (info));
11839 if (!mips_finish_exec_plt (output_bfd, info))
11840 return FALSE;
11841 }
11842 }
11843 return TRUE;
11844 }
11845
11846
11847 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
11848
11849 static void
11850 mips_set_isa_flags (bfd *abfd)
11851 {
11852 flagword val;
11853
11854 switch (bfd_get_mach (abfd))
11855 {
11856 default:
11857 case bfd_mach_mips3000:
11858 val = E_MIPS_ARCH_1;
11859 break;
11860
11861 case bfd_mach_mips3900:
11862 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11863 break;
11864
11865 case bfd_mach_mips6000:
11866 val = E_MIPS_ARCH_2;
11867 break;
11868
11869 case bfd_mach_mips4010:
11870 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
11871 break;
11872
11873 case bfd_mach_mips4000:
11874 case bfd_mach_mips4300:
11875 case bfd_mach_mips4400:
11876 case bfd_mach_mips4600:
11877 val = E_MIPS_ARCH_3;
11878 break;
11879
11880 case bfd_mach_mips4100:
11881 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11882 break;
11883
11884 case bfd_mach_mips4111:
11885 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11886 break;
11887
11888 case bfd_mach_mips4120:
11889 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11890 break;
11891
11892 case bfd_mach_mips4650:
11893 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11894 break;
11895
11896 case bfd_mach_mips5400:
11897 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11898 break;
11899
11900 case bfd_mach_mips5500:
11901 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11902 break;
11903
11904 case bfd_mach_mips5900:
11905 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11906 break;
11907
11908 case bfd_mach_mips9000:
11909 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11910 break;
11911
11912 case bfd_mach_mips5000:
11913 case bfd_mach_mips7000:
11914 case bfd_mach_mips8000:
11915 case bfd_mach_mips10000:
11916 case bfd_mach_mips12000:
11917 case bfd_mach_mips14000:
11918 case bfd_mach_mips16000:
11919 val = E_MIPS_ARCH_4;
11920 break;
11921
11922 case bfd_mach_mips5:
11923 val = E_MIPS_ARCH_5;
11924 break;
11925
11926 case bfd_mach_mips_loongson_2e:
11927 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11928 break;
11929
11930 case bfd_mach_mips_loongson_2f:
11931 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11932 break;
11933
11934 case bfd_mach_mips_sb1:
11935 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11936 break;
11937
11938 case bfd_mach_mips_loongson_3a:
11939 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11940 break;
11941
11942 case bfd_mach_mips_octeon:
11943 case bfd_mach_mips_octeonp:
11944 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11945 break;
11946
11947 case bfd_mach_mips_octeon3:
11948 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11949 break;
11950
11951 case bfd_mach_mips_xlr:
11952 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11953 break;
11954
11955 case bfd_mach_mips_octeon2:
11956 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11957 break;
11958
11959 case bfd_mach_mipsisa32:
11960 val = E_MIPS_ARCH_32;
11961 break;
11962
11963 case bfd_mach_mipsisa64:
11964 val = E_MIPS_ARCH_64;
11965 break;
11966
11967 case bfd_mach_mipsisa32r2:
11968 case bfd_mach_mipsisa32r3:
11969 case bfd_mach_mipsisa32r5:
11970 val = E_MIPS_ARCH_32R2;
11971 break;
11972
11973 case bfd_mach_mips_interaptiv_mr2:
11974 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
11975 break;
11976
11977 case bfd_mach_mipsisa64r2:
11978 case bfd_mach_mipsisa64r3:
11979 case bfd_mach_mipsisa64r5:
11980 val = E_MIPS_ARCH_64R2;
11981 break;
11982
11983 case bfd_mach_mipsisa32r6:
11984 val = E_MIPS_ARCH_32R6;
11985 break;
11986
11987 case bfd_mach_mipsisa64r6:
11988 val = E_MIPS_ARCH_64R6;
11989 break;
11990 }
11991 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11992 elf_elfheader (abfd)->e_flags |= val;
11993
11994 }
11995
11996
11997 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11998 Don't do so for code sections. We want to keep ordering of HI16/LO16
11999 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12000 relocs to be sorted. */
12001
12002 bfd_boolean
12003 _bfd_mips_elf_sort_relocs_p (asection *sec)
12004 {
12005 return (sec->flags & SEC_CODE) == 0;
12006 }
12007
12008
12009 /* The final processing done just before writing out a MIPS ELF object
12010 file. This gets the MIPS architecture right based on the machine
12011 number. This is used by both the 32-bit and the 64-bit ABI. */
12012
12013 void
12014 _bfd_mips_elf_final_write_processing (bfd *abfd,
12015 bfd_boolean linker ATTRIBUTE_UNUSED)
12016 {
12017 unsigned int i;
12018 Elf_Internal_Shdr **hdrpp;
12019 const char *name;
12020 asection *sec;
12021
12022 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12023 is nonzero. This is for compatibility with old objects, which used
12024 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12025 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12026 mips_set_isa_flags (abfd);
12027
12028 /* Set the sh_info field for .gptab sections and other appropriate
12029 info for each special section. */
12030 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12031 i < elf_numsections (abfd);
12032 i++, hdrpp++)
12033 {
12034 switch ((*hdrpp)->sh_type)
12035 {
12036 case SHT_MIPS_MSYM:
12037 case SHT_MIPS_LIBLIST:
12038 sec = bfd_get_section_by_name (abfd, ".dynstr");
12039 if (sec != NULL)
12040 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12041 break;
12042
12043 case SHT_MIPS_GPTAB:
12044 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12045 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12046 BFD_ASSERT (name != NULL
12047 && CONST_STRNEQ (name, ".gptab."));
12048 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12049 BFD_ASSERT (sec != NULL);
12050 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12051 break;
12052
12053 case SHT_MIPS_CONTENT:
12054 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12055 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12056 BFD_ASSERT (name != NULL
12057 && CONST_STRNEQ (name, ".MIPS.content"));
12058 sec = bfd_get_section_by_name (abfd,
12059 name + sizeof ".MIPS.content" - 1);
12060 BFD_ASSERT (sec != NULL);
12061 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12062 break;
12063
12064 case SHT_MIPS_SYMBOL_LIB:
12065 sec = bfd_get_section_by_name (abfd, ".dynsym");
12066 if (sec != NULL)
12067 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12068 sec = bfd_get_section_by_name (abfd, ".liblist");
12069 if (sec != NULL)
12070 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12071 break;
12072
12073 case SHT_MIPS_EVENTS:
12074 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12075 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12076 BFD_ASSERT (name != NULL);
12077 if (CONST_STRNEQ (name, ".MIPS.events"))
12078 sec = bfd_get_section_by_name (abfd,
12079 name + sizeof ".MIPS.events" - 1);
12080 else
12081 {
12082 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12083 sec = bfd_get_section_by_name (abfd,
12084 (name
12085 + sizeof ".MIPS.post_rel" - 1));
12086 }
12087 BFD_ASSERT (sec != NULL);
12088 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12089 break;
12090
12091 }
12092 }
12093 }
12094 \f
12095 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12096 segments. */
12097
12098 int
12099 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12100 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12101 {
12102 asection *s;
12103 int ret = 0;
12104
12105 /* See if we need a PT_MIPS_REGINFO segment. */
12106 s = bfd_get_section_by_name (abfd, ".reginfo");
12107 if (s && (s->flags & SEC_LOAD))
12108 ++ret;
12109
12110 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12111 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12112 ++ret;
12113
12114 /* See if we need a PT_MIPS_OPTIONS segment. */
12115 if (IRIX_COMPAT (abfd) == ict_irix6
12116 && bfd_get_section_by_name (abfd,
12117 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12118 ++ret;
12119
12120 /* See if we need a PT_MIPS_RTPROC segment. */
12121 if (IRIX_COMPAT (abfd) == ict_irix5
12122 && bfd_get_section_by_name (abfd, ".dynamic")
12123 && bfd_get_section_by_name (abfd, ".mdebug"))
12124 ++ret;
12125
12126 /* Allocate a PT_NULL header in dynamic objects. See
12127 _bfd_mips_elf_modify_segment_map for details. */
12128 if (!SGI_COMPAT (abfd)
12129 && bfd_get_section_by_name (abfd, ".dynamic"))
12130 ++ret;
12131
12132 return ret;
12133 }
12134
12135 /* Modify the segment map for an IRIX5 executable. */
12136
12137 bfd_boolean
12138 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12139 struct bfd_link_info *info)
12140 {
12141 asection *s;
12142 struct elf_segment_map *m, **pm;
12143 bfd_size_type amt;
12144
12145 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12146 segment. */
12147 s = bfd_get_section_by_name (abfd, ".reginfo");
12148 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12149 {
12150 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12151 if (m->p_type == PT_MIPS_REGINFO)
12152 break;
12153 if (m == NULL)
12154 {
12155 amt = sizeof *m;
12156 m = bfd_zalloc (abfd, amt);
12157 if (m == NULL)
12158 return FALSE;
12159
12160 m->p_type = PT_MIPS_REGINFO;
12161 m->count = 1;
12162 m->sections[0] = s;
12163
12164 /* We want to put it after the PHDR and INTERP segments. */
12165 pm = &elf_seg_map (abfd);
12166 while (*pm != NULL
12167 && ((*pm)->p_type == PT_PHDR
12168 || (*pm)->p_type == PT_INTERP))
12169 pm = &(*pm)->next;
12170
12171 m->next = *pm;
12172 *pm = m;
12173 }
12174 }
12175
12176 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12177 segment. */
12178 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12179 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12180 {
12181 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12182 if (m->p_type == PT_MIPS_ABIFLAGS)
12183 break;
12184 if (m == NULL)
12185 {
12186 amt = sizeof *m;
12187 m = bfd_zalloc (abfd, amt);
12188 if (m == NULL)
12189 return FALSE;
12190
12191 m->p_type = PT_MIPS_ABIFLAGS;
12192 m->count = 1;
12193 m->sections[0] = s;
12194
12195 /* We want to put it after the PHDR and INTERP segments. */
12196 pm = &elf_seg_map (abfd);
12197 while (*pm != NULL
12198 && ((*pm)->p_type == PT_PHDR
12199 || (*pm)->p_type == PT_INTERP))
12200 pm = &(*pm)->next;
12201
12202 m->next = *pm;
12203 *pm = m;
12204 }
12205 }
12206
12207 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12208 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12209 PT_MIPS_OPTIONS segment immediately following the program header
12210 table. */
12211 if (NEWABI_P (abfd)
12212 /* On non-IRIX6 new abi, we'll have already created a segment
12213 for this section, so don't create another. I'm not sure this
12214 is not also the case for IRIX 6, but I can't test it right
12215 now. */
12216 && IRIX_COMPAT (abfd) == ict_irix6)
12217 {
12218 for (s = abfd->sections; s; s = s->next)
12219 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12220 break;
12221
12222 if (s)
12223 {
12224 struct elf_segment_map *options_segment;
12225
12226 pm = &elf_seg_map (abfd);
12227 while (*pm != NULL
12228 && ((*pm)->p_type == PT_PHDR
12229 || (*pm)->p_type == PT_INTERP))
12230 pm = &(*pm)->next;
12231
12232 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12233 {
12234 amt = sizeof (struct elf_segment_map);
12235 options_segment = bfd_zalloc (abfd, amt);
12236 options_segment->next = *pm;
12237 options_segment->p_type = PT_MIPS_OPTIONS;
12238 options_segment->p_flags = PF_R;
12239 options_segment->p_flags_valid = TRUE;
12240 options_segment->count = 1;
12241 options_segment->sections[0] = s;
12242 *pm = options_segment;
12243 }
12244 }
12245 }
12246 else
12247 {
12248 if (IRIX_COMPAT (abfd) == ict_irix5)
12249 {
12250 /* If there are .dynamic and .mdebug sections, we make a room
12251 for the RTPROC header. FIXME: Rewrite without section names. */
12252 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12253 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12254 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12255 {
12256 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12257 if (m->p_type == PT_MIPS_RTPROC)
12258 break;
12259 if (m == NULL)
12260 {
12261 amt = sizeof *m;
12262 m = bfd_zalloc (abfd, amt);
12263 if (m == NULL)
12264 return FALSE;
12265
12266 m->p_type = PT_MIPS_RTPROC;
12267
12268 s = bfd_get_section_by_name (abfd, ".rtproc");
12269 if (s == NULL)
12270 {
12271 m->count = 0;
12272 m->p_flags = 0;
12273 m->p_flags_valid = 1;
12274 }
12275 else
12276 {
12277 m->count = 1;
12278 m->sections[0] = s;
12279 }
12280
12281 /* We want to put it after the DYNAMIC segment. */
12282 pm = &elf_seg_map (abfd);
12283 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12284 pm = &(*pm)->next;
12285 if (*pm != NULL)
12286 pm = &(*pm)->next;
12287
12288 m->next = *pm;
12289 *pm = m;
12290 }
12291 }
12292 }
12293 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12294 .dynstr, .dynsym, and .hash sections, and everything in
12295 between. */
12296 for (pm = &elf_seg_map (abfd); *pm != NULL;
12297 pm = &(*pm)->next)
12298 if ((*pm)->p_type == PT_DYNAMIC)
12299 break;
12300 m = *pm;
12301 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12302 glibc's dynamic linker has traditionally derived the number of
12303 tags from the p_filesz field, and sometimes allocates stack
12304 arrays of that size. An overly-big PT_DYNAMIC segment can
12305 be actively harmful in such cases. Making PT_DYNAMIC contain
12306 other sections can also make life hard for the prelinker,
12307 which might move one of the other sections to a different
12308 PT_LOAD segment. */
12309 if (SGI_COMPAT (abfd)
12310 && m != NULL
12311 && m->count == 1
12312 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12313 {
12314 static const char *sec_names[] =
12315 {
12316 ".dynamic", ".dynstr", ".dynsym", ".hash"
12317 };
12318 bfd_vma low, high;
12319 unsigned int i, c;
12320 struct elf_segment_map *n;
12321
12322 low = ~(bfd_vma) 0;
12323 high = 0;
12324 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12325 {
12326 s = bfd_get_section_by_name (abfd, sec_names[i]);
12327 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12328 {
12329 bfd_size_type sz;
12330
12331 if (low > s->vma)
12332 low = s->vma;
12333 sz = s->size;
12334 if (high < s->vma + sz)
12335 high = s->vma + sz;
12336 }
12337 }
12338
12339 c = 0;
12340 for (s = abfd->sections; s != NULL; s = s->next)
12341 if ((s->flags & SEC_LOAD) != 0
12342 && s->vma >= low
12343 && s->vma + s->size <= high)
12344 ++c;
12345
12346 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12347 n = bfd_zalloc (abfd, amt);
12348 if (n == NULL)
12349 return FALSE;
12350 *n = *m;
12351 n->count = c;
12352
12353 i = 0;
12354 for (s = abfd->sections; s != NULL; s = s->next)
12355 {
12356 if ((s->flags & SEC_LOAD) != 0
12357 && s->vma >= low
12358 && s->vma + s->size <= high)
12359 {
12360 n->sections[i] = s;
12361 ++i;
12362 }
12363 }
12364
12365 *pm = n;
12366 }
12367 }
12368
12369 /* Allocate a spare program header in dynamic objects so that tools
12370 like the prelinker can add an extra PT_LOAD entry.
12371
12372 If the prelinker needs to make room for a new PT_LOAD entry, its
12373 standard procedure is to move the first (read-only) sections into
12374 the new (writable) segment. However, the MIPS ABI requires
12375 .dynamic to be in a read-only segment, and the section will often
12376 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12377
12378 Although the prelinker could in principle move .dynamic to a
12379 writable segment, it seems better to allocate a spare program
12380 header instead, and avoid the need to move any sections.
12381 There is a long tradition of allocating spare dynamic tags,
12382 so allocating a spare program header seems like a natural
12383 extension.
12384
12385 If INFO is NULL, we may be copying an already prelinked binary
12386 with objcopy or strip, so do not add this header. */
12387 if (info != NULL
12388 && !SGI_COMPAT (abfd)
12389 && bfd_get_section_by_name (abfd, ".dynamic"))
12390 {
12391 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12392 if ((*pm)->p_type == PT_NULL)
12393 break;
12394 if (*pm == NULL)
12395 {
12396 m = bfd_zalloc (abfd, sizeof (*m));
12397 if (m == NULL)
12398 return FALSE;
12399
12400 m->p_type = PT_NULL;
12401 *pm = m;
12402 }
12403 }
12404
12405 return TRUE;
12406 }
12407 \f
12408 /* Return the section that should be marked against GC for a given
12409 relocation. */
12410
12411 asection *
12412 _bfd_mips_elf_gc_mark_hook (asection *sec,
12413 struct bfd_link_info *info,
12414 Elf_Internal_Rela *rel,
12415 struct elf_link_hash_entry *h,
12416 Elf_Internal_Sym *sym)
12417 {
12418 /* ??? Do mips16 stub sections need to be handled special? */
12419
12420 if (h != NULL)
12421 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12422 {
12423 case R_MIPS_GNU_VTINHERIT:
12424 case R_MIPS_GNU_VTENTRY:
12425 return NULL;
12426 }
12427
12428 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12429 }
12430
12431 /* Update the got entry reference counts for the section being removed. */
12432
12433 bfd_boolean
12434 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12435 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12436 asection *sec ATTRIBUTE_UNUSED,
12437 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12438 {
12439 #if 0
12440 Elf_Internal_Shdr *symtab_hdr;
12441 struct elf_link_hash_entry **sym_hashes;
12442 bfd_signed_vma *local_got_refcounts;
12443 const Elf_Internal_Rela *rel, *relend;
12444 unsigned long r_symndx;
12445 struct elf_link_hash_entry *h;
12446
12447 if (bfd_link_relocatable (info))
12448 return TRUE;
12449
12450 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12451 sym_hashes = elf_sym_hashes (abfd);
12452 local_got_refcounts = elf_local_got_refcounts (abfd);
12453
12454 relend = relocs + sec->reloc_count;
12455 for (rel = relocs; rel < relend; rel++)
12456 switch (ELF_R_TYPE (abfd, rel->r_info))
12457 {
12458 case R_MIPS16_GOT16:
12459 case R_MIPS16_CALL16:
12460 case R_MIPS_GOT16:
12461 case R_MIPS_CALL16:
12462 case R_MIPS_CALL_HI16:
12463 case R_MIPS_CALL_LO16:
12464 case R_MIPS_GOT_HI16:
12465 case R_MIPS_GOT_LO16:
12466 case R_MIPS_GOT_DISP:
12467 case R_MIPS_GOT_PAGE:
12468 case R_MIPS_GOT_OFST:
12469 case R_MICROMIPS_GOT16:
12470 case R_MICROMIPS_CALL16:
12471 case R_MICROMIPS_CALL_HI16:
12472 case R_MICROMIPS_CALL_LO16:
12473 case R_MICROMIPS_GOT_HI16:
12474 case R_MICROMIPS_GOT_LO16:
12475 case R_MICROMIPS_GOT_DISP:
12476 case R_MICROMIPS_GOT_PAGE:
12477 case R_MICROMIPS_GOT_OFST:
12478 /* ??? It would seem that the existing MIPS code does no sort
12479 of reference counting or whatnot on its GOT and PLT entries,
12480 so it is not possible to garbage collect them at this time. */
12481 break;
12482
12483 default:
12484 break;
12485 }
12486 #endif
12487
12488 return TRUE;
12489 }
12490
12491 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12492
12493 bfd_boolean
12494 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12495 elf_gc_mark_hook_fn gc_mark_hook)
12496 {
12497 bfd *sub;
12498
12499 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12500
12501 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12502 {
12503 asection *o;
12504
12505 if (! is_mips_elf (sub))
12506 continue;
12507
12508 for (o = sub->sections; o != NULL; o = o->next)
12509 if (!o->gc_mark
12510 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12511 (bfd_get_section_name (sub, o)))
12512 {
12513 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12514 return FALSE;
12515 }
12516 }
12517
12518 return TRUE;
12519 }
12520 \f
12521 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12522 hiding the old indirect symbol. Process additional relocation
12523 information. Also called for weakdefs, in which case we just let
12524 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12525
12526 void
12527 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12528 struct elf_link_hash_entry *dir,
12529 struct elf_link_hash_entry *ind)
12530 {
12531 struct mips_elf_link_hash_entry *dirmips, *indmips;
12532
12533 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12534
12535 dirmips = (struct mips_elf_link_hash_entry *) dir;
12536 indmips = (struct mips_elf_link_hash_entry *) ind;
12537 /* Any absolute non-dynamic relocations against an indirect or weak
12538 definition will be against the target symbol. */
12539 if (indmips->has_static_relocs)
12540 dirmips->has_static_relocs = TRUE;
12541
12542 if (ind->root.type != bfd_link_hash_indirect)
12543 return;
12544
12545 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12546 if (indmips->readonly_reloc)
12547 dirmips->readonly_reloc = TRUE;
12548 if (indmips->no_fn_stub)
12549 dirmips->no_fn_stub = TRUE;
12550 if (indmips->fn_stub)
12551 {
12552 dirmips->fn_stub = indmips->fn_stub;
12553 indmips->fn_stub = NULL;
12554 }
12555 if (indmips->need_fn_stub)
12556 {
12557 dirmips->need_fn_stub = TRUE;
12558 indmips->need_fn_stub = FALSE;
12559 }
12560 if (indmips->call_stub)
12561 {
12562 dirmips->call_stub = indmips->call_stub;
12563 indmips->call_stub = NULL;
12564 }
12565 if (indmips->call_fp_stub)
12566 {
12567 dirmips->call_fp_stub = indmips->call_fp_stub;
12568 indmips->call_fp_stub = NULL;
12569 }
12570 if (indmips->global_got_area < dirmips->global_got_area)
12571 dirmips->global_got_area = indmips->global_got_area;
12572 if (indmips->global_got_area < GGA_NONE)
12573 indmips->global_got_area = GGA_NONE;
12574 if (indmips->has_nonpic_branches)
12575 dirmips->has_nonpic_branches = TRUE;
12576 }
12577 \f
12578 #define PDR_SIZE 32
12579
12580 bfd_boolean
12581 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12582 struct bfd_link_info *info)
12583 {
12584 asection *o;
12585 bfd_boolean ret = FALSE;
12586 unsigned char *tdata;
12587 size_t i, skip;
12588
12589 o = bfd_get_section_by_name (abfd, ".pdr");
12590 if (! o)
12591 return FALSE;
12592 if (o->size == 0)
12593 return FALSE;
12594 if (o->size % PDR_SIZE != 0)
12595 return FALSE;
12596 if (o->output_section != NULL
12597 && bfd_is_abs_section (o->output_section))
12598 return FALSE;
12599
12600 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12601 if (! tdata)
12602 return FALSE;
12603
12604 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12605 info->keep_memory);
12606 if (!cookie->rels)
12607 {
12608 free (tdata);
12609 return FALSE;
12610 }
12611
12612 cookie->rel = cookie->rels;
12613 cookie->relend = cookie->rels + o->reloc_count;
12614
12615 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12616 {
12617 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12618 {
12619 tdata[i] = 1;
12620 skip ++;
12621 }
12622 }
12623
12624 if (skip != 0)
12625 {
12626 mips_elf_section_data (o)->u.tdata = tdata;
12627 if (o->rawsize == 0)
12628 o->rawsize = o->size;
12629 o->size -= skip * PDR_SIZE;
12630 ret = TRUE;
12631 }
12632 else
12633 free (tdata);
12634
12635 if (! info->keep_memory)
12636 free (cookie->rels);
12637
12638 return ret;
12639 }
12640
12641 bfd_boolean
12642 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12643 {
12644 if (strcmp (sec->name, ".pdr") == 0)
12645 return TRUE;
12646 return FALSE;
12647 }
12648
12649 bfd_boolean
12650 _bfd_mips_elf_write_section (bfd *output_bfd,
12651 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12652 asection *sec, bfd_byte *contents)
12653 {
12654 bfd_byte *to, *from, *end;
12655 int i;
12656
12657 if (strcmp (sec->name, ".pdr") != 0)
12658 return FALSE;
12659
12660 if (mips_elf_section_data (sec)->u.tdata == NULL)
12661 return FALSE;
12662
12663 to = contents;
12664 end = contents + sec->size;
12665 for (from = contents, i = 0;
12666 from < end;
12667 from += PDR_SIZE, i++)
12668 {
12669 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12670 continue;
12671 if (to != from)
12672 memcpy (to, from, PDR_SIZE);
12673 to += PDR_SIZE;
12674 }
12675 bfd_set_section_contents (output_bfd, sec->output_section, contents,
12676 sec->output_offset, sec->size);
12677 return TRUE;
12678 }
12679 \f
12680 /* microMIPS code retains local labels for linker relaxation. Omit them
12681 from output by default for clarity. */
12682
12683 bfd_boolean
12684 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12685 {
12686 return _bfd_elf_is_local_label_name (abfd, sym->name);
12687 }
12688
12689 /* MIPS ELF uses a special find_nearest_line routine in order the
12690 handle the ECOFF debugging information. */
12691
12692 struct mips_elf_find_line
12693 {
12694 struct ecoff_debug_info d;
12695 struct ecoff_find_line i;
12696 };
12697
12698 bfd_boolean
12699 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12700 asection *section, bfd_vma offset,
12701 const char **filename_ptr,
12702 const char **functionname_ptr,
12703 unsigned int *line_ptr,
12704 unsigned int *discriminator_ptr)
12705 {
12706 asection *msec;
12707
12708 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12709 filename_ptr, functionname_ptr,
12710 line_ptr, discriminator_ptr,
12711 dwarf_debug_sections,
12712 ABI_64_P (abfd) ? 8 : 0,
12713 &elf_tdata (abfd)->dwarf2_find_line_info))
12714 return TRUE;
12715
12716 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12717 filename_ptr, functionname_ptr,
12718 line_ptr))
12719 return TRUE;
12720
12721 msec = bfd_get_section_by_name (abfd, ".mdebug");
12722 if (msec != NULL)
12723 {
12724 flagword origflags;
12725 struct mips_elf_find_line *fi;
12726 const struct ecoff_debug_swap * const swap =
12727 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12728
12729 /* If we are called during a link, mips_elf_final_link may have
12730 cleared the SEC_HAS_CONTENTS field. We force it back on here
12731 if appropriate (which it normally will be). */
12732 origflags = msec->flags;
12733 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12734 msec->flags |= SEC_HAS_CONTENTS;
12735
12736 fi = mips_elf_tdata (abfd)->find_line_info;
12737 if (fi == NULL)
12738 {
12739 bfd_size_type external_fdr_size;
12740 char *fraw_src;
12741 char *fraw_end;
12742 struct fdr *fdr_ptr;
12743 bfd_size_type amt = sizeof (struct mips_elf_find_line);
12744
12745 fi = bfd_zalloc (abfd, amt);
12746 if (fi == NULL)
12747 {
12748 msec->flags = origflags;
12749 return FALSE;
12750 }
12751
12752 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12753 {
12754 msec->flags = origflags;
12755 return FALSE;
12756 }
12757
12758 /* Swap in the FDR information. */
12759 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12760 fi->d.fdr = bfd_alloc (abfd, amt);
12761 if (fi->d.fdr == NULL)
12762 {
12763 msec->flags = origflags;
12764 return FALSE;
12765 }
12766 external_fdr_size = swap->external_fdr_size;
12767 fdr_ptr = fi->d.fdr;
12768 fraw_src = (char *) fi->d.external_fdr;
12769 fraw_end = (fraw_src
12770 + fi->d.symbolic_header.ifdMax * external_fdr_size);
12771 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12772 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12773
12774 mips_elf_tdata (abfd)->find_line_info = fi;
12775
12776 /* Note that we don't bother to ever free this information.
12777 find_nearest_line is either called all the time, as in
12778 objdump -l, so the information should be saved, or it is
12779 rarely called, as in ld error messages, so the memory
12780 wasted is unimportant. Still, it would probably be a
12781 good idea for free_cached_info to throw it away. */
12782 }
12783
12784 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12785 &fi->i, filename_ptr, functionname_ptr,
12786 line_ptr))
12787 {
12788 msec->flags = origflags;
12789 return TRUE;
12790 }
12791
12792 msec->flags = origflags;
12793 }
12794
12795 /* Fall back on the generic ELF find_nearest_line routine. */
12796
12797 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12798 filename_ptr, functionname_ptr,
12799 line_ptr, discriminator_ptr);
12800 }
12801
12802 bfd_boolean
12803 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12804 const char **filename_ptr,
12805 const char **functionname_ptr,
12806 unsigned int *line_ptr)
12807 {
12808 bfd_boolean found;
12809 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12810 functionname_ptr, line_ptr,
12811 & elf_tdata (abfd)->dwarf2_find_line_info);
12812 return found;
12813 }
12814
12815 \f
12816 /* When are writing out the .options or .MIPS.options section,
12817 remember the bytes we are writing out, so that we can install the
12818 GP value in the section_processing routine. */
12819
12820 bfd_boolean
12821 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12822 const void *location,
12823 file_ptr offset, bfd_size_type count)
12824 {
12825 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12826 {
12827 bfd_byte *c;
12828
12829 if (elf_section_data (section) == NULL)
12830 {
12831 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12832 section->used_by_bfd = bfd_zalloc (abfd, amt);
12833 if (elf_section_data (section) == NULL)
12834 return FALSE;
12835 }
12836 c = mips_elf_section_data (section)->u.tdata;
12837 if (c == NULL)
12838 {
12839 c = bfd_zalloc (abfd, section->size);
12840 if (c == NULL)
12841 return FALSE;
12842 mips_elf_section_data (section)->u.tdata = c;
12843 }
12844
12845 memcpy (c + offset, location, count);
12846 }
12847
12848 return _bfd_elf_set_section_contents (abfd, section, location, offset,
12849 count);
12850 }
12851
12852 /* This is almost identical to bfd_generic_get_... except that some
12853 MIPS relocations need to be handled specially. Sigh. */
12854
12855 bfd_byte *
12856 _bfd_elf_mips_get_relocated_section_contents
12857 (bfd *abfd,
12858 struct bfd_link_info *link_info,
12859 struct bfd_link_order *link_order,
12860 bfd_byte *data,
12861 bfd_boolean relocatable,
12862 asymbol **symbols)
12863 {
12864 /* Get enough memory to hold the stuff */
12865 bfd *input_bfd = link_order->u.indirect.section->owner;
12866 asection *input_section = link_order->u.indirect.section;
12867 bfd_size_type sz;
12868
12869 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12870 arelent **reloc_vector = NULL;
12871 long reloc_count;
12872
12873 if (reloc_size < 0)
12874 goto error_return;
12875
12876 reloc_vector = bfd_malloc (reloc_size);
12877 if (reloc_vector == NULL && reloc_size != 0)
12878 goto error_return;
12879
12880 /* read in the section */
12881 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12882 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12883 goto error_return;
12884
12885 reloc_count = bfd_canonicalize_reloc (input_bfd,
12886 input_section,
12887 reloc_vector,
12888 symbols);
12889 if (reloc_count < 0)
12890 goto error_return;
12891
12892 if (reloc_count > 0)
12893 {
12894 arelent **parent;
12895 /* for mips */
12896 int gp_found;
12897 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
12898
12899 {
12900 struct bfd_hash_entry *h;
12901 struct bfd_link_hash_entry *lh;
12902 /* Skip all this stuff if we aren't mixing formats. */
12903 if (abfd && input_bfd
12904 && abfd->xvec == input_bfd->xvec)
12905 lh = 0;
12906 else
12907 {
12908 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12909 lh = (struct bfd_link_hash_entry *) h;
12910 }
12911 lookup:
12912 if (lh)
12913 {
12914 switch (lh->type)
12915 {
12916 case bfd_link_hash_undefined:
12917 case bfd_link_hash_undefweak:
12918 case bfd_link_hash_common:
12919 gp_found = 0;
12920 break;
12921 case bfd_link_hash_defined:
12922 case bfd_link_hash_defweak:
12923 gp_found = 1;
12924 gp = lh->u.def.value;
12925 break;
12926 case bfd_link_hash_indirect:
12927 case bfd_link_hash_warning:
12928 lh = lh->u.i.link;
12929 /* @@FIXME ignoring warning for now */
12930 goto lookup;
12931 case bfd_link_hash_new:
12932 default:
12933 abort ();
12934 }
12935 }
12936 else
12937 gp_found = 0;
12938 }
12939 /* end mips */
12940 for (parent = reloc_vector; *parent != NULL; parent++)
12941 {
12942 char *error_message = NULL;
12943 bfd_reloc_status_type r;
12944
12945 /* Specific to MIPS: Deal with relocation types that require
12946 knowing the gp of the output bfd. */
12947 asymbol *sym = *(*parent)->sym_ptr_ptr;
12948
12949 /* If we've managed to find the gp and have a special
12950 function for the relocation then go ahead, else default
12951 to the generic handling. */
12952 if (gp_found
12953 && (*parent)->howto->special_function
12954 == _bfd_mips_elf32_gprel16_reloc)
12955 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12956 input_section, relocatable,
12957 data, gp);
12958 else
12959 r = bfd_perform_relocation (input_bfd, *parent, data,
12960 input_section,
12961 relocatable ? abfd : NULL,
12962 &error_message);
12963
12964 if (relocatable)
12965 {
12966 asection *os = input_section->output_section;
12967
12968 /* A partial link, so keep the relocs */
12969 os->orelocation[os->reloc_count] = *parent;
12970 os->reloc_count++;
12971 }
12972
12973 if (r != bfd_reloc_ok)
12974 {
12975 switch (r)
12976 {
12977 case bfd_reloc_undefined:
12978 (*link_info->callbacks->undefined_symbol)
12979 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12980 input_bfd, input_section, (*parent)->address, TRUE);
12981 break;
12982 case bfd_reloc_dangerous:
12983 BFD_ASSERT (error_message != NULL);
12984 (*link_info->callbacks->reloc_dangerous)
12985 (link_info, error_message,
12986 input_bfd, input_section, (*parent)->address);
12987 break;
12988 case bfd_reloc_overflow:
12989 (*link_info->callbacks->reloc_overflow)
12990 (link_info, NULL,
12991 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12992 (*parent)->howto->name, (*parent)->addend,
12993 input_bfd, input_section, (*parent)->address);
12994 break;
12995 case bfd_reloc_outofrange:
12996 default:
12997 abort ();
12998 break;
12999 }
13000
13001 }
13002 }
13003 }
13004 if (reloc_vector != NULL)
13005 free (reloc_vector);
13006 return data;
13007
13008 error_return:
13009 if (reloc_vector != NULL)
13010 free (reloc_vector);
13011 return NULL;
13012 }
13013 \f
13014 static bfd_boolean
13015 mips_elf_relax_delete_bytes (bfd *abfd,
13016 asection *sec, bfd_vma addr, int count)
13017 {
13018 Elf_Internal_Shdr *symtab_hdr;
13019 unsigned int sec_shndx;
13020 bfd_byte *contents;
13021 Elf_Internal_Rela *irel, *irelend;
13022 Elf_Internal_Sym *isym;
13023 Elf_Internal_Sym *isymend;
13024 struct elf_link_hash_entry **sym_hashes;
13025 struct elf_link_hash_entry **end_hashes;
13026 struct elf_link_hash_entry **start_hashes;
13027 unsigned int symcount;
13028
13029 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13030 contents = elf_section_data (sec)->this_hdr.contents;
13031
13032 irel = elf_section_data (sec)->relocs;
13033 irelend = irel + sec->reloc_count;
13034
13035 /* Actually delete the bytes. */
13036 memmove (contents + addr, contents + addr + count,
13037 (size_t) (sec->size - addr - count));
13038 sec->size -= count;
13039
13040 /* Adjust all the relocs. */
13041 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13042 {
13043 /* Get the new reloc address. */
13044 if (irel->r_offset > addr)
13045 irel->r_offset -= count;
13046 }
13047
13048 BFD_ASSERT (addr % 2 == 0);
13049 BFD_ASSERT (count % 2 == 0);
13050
13051 /* Adjust the local symbols defined in this section. */
13052 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13053 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13054 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13055 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13056 isym->st_value -= count;
13057
13058 /* Now adjust the global symbols defined in this section. */
13059 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13060 - symtab_hdr->sh_info);
13061 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13062 end_hashes = sym_hashes + symcount;
13063
13064 for (; sym_hashes < end_hashes; sym_hashes++)
13065 {
13066 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13067
13068 if ((sym_hash->root.type == bfd_link_hash_defined
13069 || sym_hash->root.type == bfd_link_hash_defweak)
13070 && sym_hash->root.u.def.section == sec)
13071 {
13072 bfd_vma value = sym_hash->root.u.def.value;
13073
13074 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13075 value &= MINUS_TWO;
13076 if (value > addr)
13077 sym_hash->root.u.def.value -= count;
13078 }
13079 }
13080
13081 return TRUE;
13082 }
13083
13084
13085 /* Opcodes needed for microMIPS relaxation as found in
13086 opcodes/micromips-opc.c. */
13087
13088 struct opcode_descriptor {
13089 unsigned long match;
13090 unsigned long mask;
13091 };
13092
13093 /* The $ra register aka $31. */
13094
13095 #define RA 31
13096
13097 /* 32-bit instruction format register fields. */
13098
13099 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13100 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13101
13102 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13103
13104 #define OP16_VALID_REG(r) \
13105 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13106
13107
13108 /* 32-bit and 16-bit branches. */
13109
13110 static const struct opcode_descriptor b_insns_32[] = {
13111 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13112 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13113 { 0, 0 } /* End marker for find_match(). */
13114 };
13115
13116 static const struct opcode_descriptor bc_insn_32 =
13117 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13118
13119 static const struct opcode_descriptor bz_insn_32 =
13120 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13121
13122 static const struct opcode_descriptor bzal_insn_32 =
13123 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13124
13125 static const struct opcode_descriptor beq_insn_32 =
13126 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13127
13128 static const struct opcode_descriptor b_insn_16 =
13129 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13130
13131 static const struct opcode_descriptor bz_insn_16 =
13132 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13133
13134
13135 /* 32-bit and 16-bit branch EQ and NE zero. */
13136
13137 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13138 eq and second the ne. This convention is used when replacing a
13139 32-bit BEQ/BNE with the 16-bit version. */
13140
13141 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13142
13143 static const struct opcode_descriptor bz_rs_insns_32[] = {
13144 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13145 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13146 { 0, 0 } /* End marker for find_match(). */
13147 };
13148
13149 static const struct opcode_descriptor bz_rt_insns_32[] = {
13150 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13151 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13152 { 0, 0 } /* End marker for find_match(). */
13153 };
13154
13155 static const struct opcode_descriptor bzc_insns_32[] = {
13156 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13157 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13158 { 0, 0 } /* End marker for find_match(). */
13159 };
13160
13161 static const struct opcode_descriptor bz_insns_16[] = {
13162 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13163 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13164 { 0, 0 } /* End marker for find_match(). */
13165 };
13166
13167 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13168
13169 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13170 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13171
13172
13173 /* 32-bit instructions with a delay slot. */
13174
13175 static const struct opcode_descriptor jal_insn_32_bd16 =
13176 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13177
13178 static const struct opcode_descriptor jal_insn_32_bd32 =
13179 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13180
13181 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13182 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13183
13184 static const struct opcode_descriptor j_insn_32 =
13185 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13186
13187 static const struct opcode_descriptor jalr_insn_32 =
13188 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13189
13190 /* This table can be compacted, because no opcode replacement is made. */
13191
13192 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13193 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13194
13195 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13196 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13197
13198 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13199 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13200 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13201 { 0, 0 } /* End marker for find_match(). */
13202 };
13203
13204 /* This table can be compacted, because no opcode replacement is made. */
13205
13206 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13207 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13208
13209 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13210 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13211 { 0, 0 } /* End marker for find_match(). */
13212 };
13213
13214
13215 /* 16-bit instructions with a delay slot. */
13216
13217 static const struct opcode_descriptor jalr_insn_16_bd16 =
13218 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13219
13220 static const struct opcode_descriptor jalr_insn_16_bd32 =
13221 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13222
13223 static const struct opcode_descriptor jr_insn_16 =
13224 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13225
13226 #define JR16_REG(opcode) ((opcode) & 0x1f)
13227
13228 /* This table can be compacted, because no opcode replacement is made. */
13229
13230 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13231 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13232
13233 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13234 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13235 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13236 { 0, 0 } /* End marker for find_match(). */
13237 };
13238
13239
13240 /* LUI instruction. */
13241
13242 static const struct opcode_descriptor lui_insn =
13243 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13244
13245
13246 /* ADDIU instruction. */
13247
13248 static const struct opcode_descriptor addiu_insn =
13249 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13250
13251 static const struct opcode_descriptor addiupc_insn =
13252 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13253
13254 #define ADDIUPC_REG_FIELD(r) \
13255 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13256
13257
13258 /* Relaxable instructions in a JAL delay slot: MOVE. */
13259
13260 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13261 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13262 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13263 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13264
13265 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13266 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13267
13268 static const struct opcode_descriptor move_insns_32[] = {
13269 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13270 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13271 { 0, 0 } /* End marker for find_match(). */
13272 };
13273
13274 static const struct opcode_descriptor move_insn_16 =
13275 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13276
13277
13278 /* NOP instructions. */
13279
13280 static const struct opcode_descriptor nop_insn_32 =
13281 { /* "nop", "", */ 0x00000000, 0xffffffff };
13282
13283 static const struct opcode_descriptor nop_insn_16 =
13284 { /* "nop", "", */ 0x0c00, 0xffff };
13285
13286
13287 /* Instruction match support. */
13288
13289 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13290
13291 static int
13292 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13293 {
13294 unsigned long indx;
13295
13296 for (indx = 0; insn[indx].mask != 0; indx++)
13297 if (MATCH (opcode, insn[indx]))
13298 return indx;
13299
13300 return -1;
13301 }
13302
13303
13304 /* Branch and delay slot decoding support. */
13305
13306 /* If PTR points to what *might* be a 16-bit branch or jump, then
13307 return the minimum length of its delay slot, otherwise return 0.
13308 Non-zero results are not definitive as we might be checking against
13309 the second half of another instruction. */
13310
13311 static int
13312 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13313 {
13314 unsigned long opcode;
13315 int bdsize;
13316
13317 opcode = bfd_get_16 (abfd, ptr);
13318 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13319 /* 16-bit branch/jump with a 32-bit delay slot. */
13320 bdsize = 4;
13321 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13322 || find_match (opcode, ds_insns_16_bd16) >= 0)
13323 /* 16-bit branch/jump with a 16-bit delay slot. */
13324 bdsize = 2;
13325 else
13326 /* No delay slot. */
13327 bdsize = 0;
13328
13329 return bdsize;
13330 }
13331
13332 /* If PTR points to what *might* be a 32-bit branch or jump, then
13333 return the minimum length of its delay slot, otherwise return 0.
13334 Non-zero results are not definitive as we might be checking against
13335 the second half of another instruction. */
13336
13337 static int
13338 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13339 {
13340 unsigned long opcode;
13341 int bdsize;
13342
13343 opcode = bfd_get_micromips_32 (abfd, ptr);
13344 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13345 /* 32-bit branch/jump with a 32-bit delay slot. */
13346 bdsize = 4;
13347 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13348 /* 32-bit branch/jump with a 16-bit delay slot. */
13349 bdsize = 2;
13350 else
13351 /* No delay slot. */
13352 bdsize = 0;
13353
13354 return bdsize;
13355 }
13356
13357 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13358 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13359
13360 static bfd_boolean
13361 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13362 {
13363 unsigned long opcode;
13364
13365 opcode = bfd_get_16 (abfd, ptr);
13366 if (MATCH (opcode, b_insn_16)
13367 /* B16 */
13368 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13369 /* JR16 */
13370 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13371 /* BEQZ16, BNEZ16 */
13372 || (MATCH (opcode, jalr_insn_16_bd32)
13373 /* JALR16 */
13374 && reg != JR16_REG (opcode) && reg != RA))
13375 return TRUE;
13376
13377 return FALSE;
13378 }
13379
13380 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13381 then return TRUE, otherwise FALSE. */
13382
13383 static bfd_boolean
13384 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13385 {
13386 unsigned long opcode;
13387
13388 opcode = bfd_get_micromips_32 (abfd, ptr);
13389 if (MATCH (opcode, j_insn_32)
13390 /* J */
13391 || MATCH (opcode, bc_insn_32)
13392 /* BC1F, BC1T, BC2F, BC2T */
13393 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13394 /* JAL, JALX */
13395 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13396 /* BGEZ, BGTZ, BLEZ, BLTZ */
13397 || (MATCH (opcode, bzal_insn_32)
13398 /* BGEZAL, BLTZAL */
13399 && reg != OP32_SREG (opcode) && reg != RA)
13400 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13401 /* JALR, JALR.HB, BEQ, BNE */
13402 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13403 return TRUE;
13404
13405 return FALSE;
13406 }
13407
13408 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13409 IRELEND) at OFFSET indicate that there must be a compact branch there,
13410 then return TRUE, otherwise FALSE. */
13411
13412 static bfd_boolean
13413 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13414 const Elf_Internal_Rela *internal_relocs,
13415 const Elf_Internal_Rela *irelend)
13416 {
13417 const Elf_Internal_Rela *irel;
13418 unsigned long opcode;
13419
13420 opcode = bfd_get_micromips_32 (abfd, ptr);
13421 if (find_match (opcode, bzc_insns_32) < 0)
13422 return FALSE;
13423
13424 for (irel = internal_relocs; irel < irelend; irel++)
13425 if (irel->r_offset == offset
13426 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13427 return TRUE;
13428
13429 return FALSE;
13430 }
13431
13432 /* Bitsize checking. */
13433 #define IS_BITSIZE(val, N) \
13434 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13435 - (1ULL << ((N) - 1))) == (val))
13436
13437 \f
13438 bfd_boolean
13439 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13440 struct bfd_link_info *link_info,
13441 bfd_boolean *again)
13442 {
13443 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13444 Elf_Internal_Shdr *symtab_hdr;
13445 Elf_Internal_Rela *internal_relocs;
13446 Elf_Internal_Rela *irel, *irelend;
13447 bfd_byte *contents = NULL;
13448 Elf_Internal_Sym *isymbuf = NULL;
13449
13450 /* Assume nothing changes. */
13451 *again = FALSE;
13452
13453 /* We don't have to do anything for a relocatable link, if
13454 this section does not have relocs, or if this is not a
13455 code section. */
13456
13457 if (bfd_link_relocatable (link_info)
13458 || (sec->flags & SEC_RELOC) == 0
13459 || sec->reloc_count == 0
13460 || (sec->flags & SEC_CODE) == 0)
13461 return TRUE;
13462
13463 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13464
13465 /* Get a copy of the native relocations. */
13466 internal_relocs = (_bfd_elf_link_read_relocs
13467 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13468 link_info->keep_memory));
13469 if (internal_relocs == NULL)
13470 goto error_return;
13471
13472 /* Walk through them looking for relaxing opportunities. */
13473 irelend = internal_relocs + sec->reloc_count;
13474 for (irel = internal_relocs; irel < irelend; irel++)
13475 {
13476 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13477 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13478 bfd_boolean target_is_micromips_code_p;
13479 unsigned long opcode;
13480 bfd_vma symval;
13481 bfd_vma pcrval;
13482 bfd_byte *ptr;
13483 int fndopc;
13484
13485 /* The number of bytes to delete for relaxation and from where
13486 to delete these bytes starting at irel->r_offset. */
13487 int delcnt = 0;
13488 int deloff = 0;
13489
13490 /* If this isn't something that can be relaxed, then ignore
13491 this reloc. */
13492 if (r_type != R_MICROMIPS_HI16
13493 && r_type != R_MICROMIPS_PC16_S1
13494 && r_type != R_MICROMIPS_26_S1)
13495 continue;
13496
13497 /* Get the section contents if we haven't done so already. */
13498 if (contents == NULL)
13499 {
13500 /* Get cached copy if it exists. */
13501 if (elf_section_data (sec)->this_hdr.contents != NULL)
13502 contents = elf_section_data (sec)->this_hdr.contents;
13503 /* Go get them off disk. */
13504 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13505 goto error_return;
13506 }
13507 ptr = contents + irel->r_offset;
13508
13509 /* Read this BFD's local symbols if we haven't done so already. */
13510 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13511 {
13512 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13513 if (isymbuf == NULL)
13514 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13515 symtab_hdr->sh_info, 0,
13516 NULL, NULL, NULL);
13517 if (isymbuf == NULL)
13518 goto error_return;
13519 }
13520
13521 /* Get the value of the symbol referred to by the reloc. */
13522 if (r_symndx < symtab_hdr->sh_info)
13523 {
13524 /* A local symbol. */
13525 Elf_Internal_Sym *isym;
13526 asection *sym_sec;
13527
13528 isym = isymbuf + r_symndx;
13529 if (isym->st_shndx == SHN_UNDEF)
13530 sym_sec = bfd_und_section_ptr;
13531 else if (isym->st_shndx == SHN_ABS)
13532 sym_sec = bfd_abs_section_ptr;
13533 else if (isym->st_shndx == SHN_COMMON)
13534 sym_sec = bfd_com_section_ptr;
13535 else
13536 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13537 symval = (isym->st_value
13538 + sym_sec->output_section->vma
13539 + sym_sec->output_offset);
13540 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13541 }
13542 else
13543 {
13544 unsigned long indx;
13545 struct elf_link_hash_entry *h;
13546
13547 /* An external symbol. */
13548 indx = r_symndx - symtab_hdr->sh_info;
13549 h = elf_sym_hashes (abfd)[indx];
13550 BFD_ASSERT (h != NULL);
13551
13552 if (h->root.type != bfd_link_hash_defined
13553 && h->root.type != bfd_link_hash_defweak)
13554 /* This appears to be a reference to an undefined
13555 symbol. Just ignore it -- it will be caught by the
13556 regular reloc processing. */
13557 continue;
13558
13559 symval = (h->root.u.def.value
13560 + h->root.u.def.section->output_section->vma
13561 + h->root.u.def.section->output_offset);
13562 target_is_micromips_code_p = (!h->needs_plt
13563 && ELF_ST_IS_MICROMIPS (h->other));
13564 }
13565
13566
13567 /* For simplicity of coding, we are going to modify the
13568 section contents, the section relocs, and the BFD symbol
13569 table. We must tell the rest of the code not to free up this
13570 information. It would be possible to instead create a table
13571 of changes which have to be made, as is done in coff-mips.c;
13572 that would be more work, but would require less memory when
13573 the linker is run. */
13574
13575 /* Only 32-bit instructions relaxed. */
13576 if (irel->r_offset + 4 > sec->size)
13577 continue;
13578
13579 opcode = bfd_get_micromips_32 (abfd, ptr);
13580
13581 /* This is the pc-relative distance from the instruction the
13582 relocation is applied to, to the symbol referred. */
13583 pcrval = (symval
13584 - (sec->output_section->vma + sec->output_offset)
13585 - irel->r_offset);
13586
13587 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13588 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13589 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13590
13591 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13592
13593 where pcrval has first to be adjusted to apply against the LO16
13594 location (we make the adjustment later on, when we have figured
13595 out the offset). */
13596 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13597 {
13598 bfd_boolean bzc = FALSE;
13599 unsigned long nextopc;
13600 unsigned long reg;
13601 bfd_vma offset;
13602
13603 /* Give up if the previous reloc was a HI16 against this symbol
13604 too. */
13605 if (irel > internal_relocs
13606 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13607 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13608 continue;
13609
13610 /* Or if the next reloc is not a LO16 against this symbol. */
13611 if (irel + 1 >= irelend
13612 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13613 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13614 continue;
13615
13616 /* Or if the second next reloc is a LO16 against this symbol too. */
13617 if (irel + 2 >= irelend
13618 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13619 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13620 continue;
13621
13622 /* See if the LUI instruction *might* be in a branch delay slot.
13623 We check whether what looks like a 16-bit branch or jump is
13624 actually an immediate argument to a compact branch, and let
13625 it through if so. */
13626 if (irel->r_offset >= 2
13627 && check_br16_dslot (abfd, ptr - 2)
13628 && !(irel->r_offset >= 4
13629 && (bzc = check_relocated_bzc (abfd,
13630 ptr - 4, irel->r_offset - 4,
13631 internal_relocs, irelend))))
13632 continue;
13633 if (irel->r_offset >= 4
13634 && !bzc
13635 && check_br32_dslot (abfd, ptr - 4))
13636 continue;
13637
13638 reg = OP32_SREG (opcode);
13639
13640 /* We only relax adjacent instructions or ones separated with
13641 a branch or jump that has a delay slot. The branch or jump
13642 must not fiddle with the register used to hold the address.
13643 Subtract 4 for the LUI itself. */
13644 offset = irel[1].r_offset - irel[0].r_offset;
13645 switch (offset - 4)
13646 {
13647 case 0:
13648 break;
13649 case 2:
13650 if (check_br16 (abfd, ptr + 4, reg))
13651 break;
13652 continue;
13653 case 4:
13654 if (check_br32 (abfd, ptr + 4, reg))
13655 break;
13656 continue;
13657 default:
13658 continue;
13659 }
13660
13661 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13662
13663 /* Give up unless the same register is used with both
13664 relocations. */
13665 if (OP32_SREG (nextopc) != reg)
13666 continue;
13667
13668 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13669 and rounding up to take masking of the two LSBs into account. */
13670 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13671
13672 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
13673 if (IS_BITSIZE (symval, 16))
13674 {
13675 /* Fix the relocation's type. */
13676 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13677
13678 /* Instructions using R_MICROMIPS_LO16 have the base or
13679 source register in bits 20:16. This register becomes $0
13680 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
13681 nextopc &= ~0x001f0000;
13682 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13683 contents + irel[1].r_offset);
13684 }
13685
13686 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13687 We add 4 to take LUI deletion into account while checking
13688 the PC-relative distance. */
13689 else if (symval % 4 == 0
13690 && IS_BITSIZE (pcrval + 4, 25)
13691 && MATCH (nextopc, addiu_insn)
13692 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13693 && OP16_VALID_REG (OP32_TREG (nextopc)))
13694 {
13695 /* Fix the relocation's type. */
13696 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13697
13698 /* Replace ADDIU with the ADDIUPC version. */
13699 nextopc = (addiupc_insn.match
13700 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13701
13702 bfd_put_micromips_32 (abfd, nextopc,
13703 contents + irel[1].r_offset);
13704 }
13705
13706 /* Can't do anything, give up, sigh... */
13707 else
13708 continue;
13709
13710 /* Fix the relocation's type. */
13711 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13712
13713 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
13714 delcnt = 4;
13715 deloff = 0;
13716 }
13717
13718 /* Compact branch relaxation -- due to the multitude of macros
13719 employed by the compiler/assembler, compact branches are not
13720 always generated. Obviously, this can/will be fixed elsewhere,
13721 but there is no drawback in double checking it here. */
13722 else if (r_type == R_MICROMIPS_PC16_S1
13723 && irel->r_offset + 5 < sec->size
13724 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13725 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13726 && ((!insn32
13727 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13728 nop_insn_16) ? 2 : 0))
13729 || (irel->r_offset + 7 < sec->size
13730 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13731 ptr + 4),
13732 nop_insn_32) ? 4 : 0))))
13733 {
13734 unsigned long reg;
13735
13736 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13737
13738 /* Replace BEQZ/BNEZ with the compact version. */
13739 opcode = (bzc_insns_32[fndopc].match
13740 | BZC32_REG_FIELD (reg)
13741 | (opcode & 0xffff)); /* Addend value. */
13742
13743 bfd_put_micromips_32 (abfd, opcode, ptr);
13744
13745 /* Delete the delay slot NOP: two or four bytes from
13746 irel->offset + 4; delcnt has already been set above. */
13747 deloff = 4;
13748 }
13749
13750 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
13751 to check the distance from the next instruction, so subtract 2. */
13752 else if (!insn32
13753 && r_type == R_MICROMIPS_PC16_S1
13754 && IS_BITSIZE (pcrval - 2, 11)
13755 && find_match (opcode, b_insns_32) >= 0)
13756 {
13757 /* Fix the relocation's type. */
13758 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13759
13760 /* Replace the 32-bit opcode with a 16-bit opcode. */
13761 bfd_put_16 (abfd,
13762 (b_insn_16.match
13763 | (opcode & 0x3ff)), /* Addend value. */
13764 ptr);
13765
13766 /* Delete 2 bytes from irel->r_offset + 2. */
13767 delcnt = 2;
13768 deloff = 2;
13769 }
13770
13771 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
13772 to check the distance from the next instruction, so subtract 2. */
13773 else if (!insn32
13774 && r_type == R_MICROMIPS_PC16_S1
13775 && IS_BITSIZE (pcrval - 2, 8)
13776 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13777 && OP16_VALID_REG (OP32_SREG (opcode)))
13778 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13779 && OP16_VALID_REG (OP32_TREG (opcode)))))
13780 {
13781 unsigned long reg;
13782
13783 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13784
13785 /* Fix the relocation's type. */
13786 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13787
13788 /* Replace the 32-bit opcode with a 16-bit opcode. */
13789 bfd_put_16 (abfd,
13790 (bz_insns_16[fndopc].match
13791 | BZ16_REG_FIELD (reg)
13792 | (opcode & 0x7f)), /* Addend value. */
13793 ptr);
13794
13795 /* Delete 2 bytes from irel->r_offset + 2. */
13796 delcnt = 2;
13797 deloff = 2;
13798 }
13799
13800 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
13801 else if (!insn32
13802 && r_type == R_MICROMIPS_26_S1
13803 && target_is_micromips_code_p
13804 && irel->r_offset + 7 < sec->size
13805 && MATCH (opcode, jal_insn_32_bd32))
13806 {
13807 unsigned long n32opc;
13808 bfd_boolean relaxed = FALSE;
13809
13810 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13811
13812 if (MATCH (n32opc, nop_insn_32))
13813 {
13814 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
13815 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13816
13817 relaxed = TRUE;
13818 }
13819 else if (find_match (n32opc, move_insns_32) >= 0)
13820 {
13821 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
13822 bfd_put_16 (abfd,
13823 (move_insn_16.match
13824 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13825 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13826 ptr + 4);
13827
13828 relaxed = TRUE;
13829 }
13830 /* Other 32-bit instructions relaxable to 16-bit
13831 instructions will be handled here later. */
13832
13833 if (relaxed)
13834 {
13835 /* JAL with 32-bit delay slot that is changed to a JALS
13836 with 16-bit delay slot. */
13837 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13838
13839 /* Delete 2 bytes from irel->r_offset + 6. */
13840 delcnt = 2;
13841 deloff = 6;
13842 }
13843 }
13844
13845 if (delcnt != 0)
13846 {
13847 /* Note that we've changed the relocs, section contents, etc. */
13848 elf_section_data (sec)->relocs = internal_relocs;
13849 elf_section_data (sec)->this_hdr.contents = contents;
13850 symtab_hdr->contents = (unsigned char *) isymbuf;
13851
13852 /* Delete bytes depending on the delcnt and deloff. */
13853 if (!mips_elf_relax_delete_bytes (abfd, sec,
13854 irel->r_offset + deloff, delcnt))
13855 goto error_return;
13856
13857 /* That will change things, so we should relax again.
13858 Note that this is not required, and it may be slow. */
13859 *again = TRUE;
13860 }
13861 }
13862
13863 if (isymbuf != NULL
13864 && symtab_hdr->contents != (unsigned char *) isymbuf)
13865 {
13866 if (! link_info->keep_memory)
13867 free (isymbuf);
13868 else
13869 {
13870 /* Cache the symbols for elf_link_input_bfd. */
13871 symtab_hdr->contents = (unsigned char *) isymbuf;
13872 }
13873 }
13874
13875 if (contents != NULL
13876 && elf_section_data (sec)->this_hdr.contents != contents)
13877 {
13878 if (! link_info->keep_memory)
13879 free (contents);
13880 else
13881 {
13882 /* Cache the section contents for elf_link_input_bfd. */
13883 elf_section_data (sec)->this_hdr.contents = contents;
13884 }
13885 }
13886
13887 if (internal_relocs != NULL
13888 && elf_section_data (sec)->relocs != internal_relocs)
13889 free (internal_relocs);
13890
13891 return TRUE;
13892
13893 error_return:
13894 if (isymbuf != NULL
13895 && symtab_hdr->contents != (unsigned char *) isymbuf)
13896 free (isymbuf);
13897 if (contents != NULL
13898 && elf_section_data (sec)->this_hdr.contents != contents)
13899 free (contents);
13900 if (internal_relocs != NULL
13901 && elf_section_data (sec)->relocs != internal_relocs)
13902 free (internal_relocs);
13903
13904 return FALSE;
13905 }
13906 \f
13907 /* Create a MIPS ELF linker hash table. */
13908
13909 struct bfd_link_hash_table *
13910 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13911 {
13912 struct mips_elf_link_hash_table *ret;
13913 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13914
13915 ret = bfd_zmalloc (amt);
13916 if (ret == NULL)
13917 return NULL;
13918
13919 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13920 mips_elf_link_hash_newfunc,
13921 sizeof (struct mips_elf_link_hash_entry),
13922 MIPS_ELF_DATA))
13923 {
13924 free (ret);
13925 return NULL;
13926 }
13927 ret->root.init_plt_refcount.plist = NULL;
13928 ret->root.init_plt_offset.plist = NULL;
13929
13930 return &ret->root.root;
13931 }
13932
13933 /* Likewise, but indicate that the target is VxWorks. */
13934
13935 struct bfd_link_hash_table *
13936 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13937 {
13938 struct bfd_link_hash_table *ret;
13939
13940 ret = _bfd_mips_elf_link_hash_table_create (abfd);
13941 if (ret)
13942 {
13943 struct mips_elf_link_hash_table *htab;
13944
13945 htab = (struct mips_elf_link_hash_table *) ret;
13946 htab->use_plts_and_copy_relocs = TRUE;
13947 htab->is_vxworks = TRUE;
13948 }
13949 return ret;
13950 }
13951
13952 /* A function that the linker calls if we are allowed to use PLTs
13953 and copy relocs. */
13954
13955 void
13956 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13957 {
13958 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13959 }
13960
13961 /* A function that the linker calls to select between all or only
13962 32-bit microMIPS instructions, and between making or ignoring
13963 branch relocation checks for invalid transitions between ISA modes. */
13964
13965 void
13966 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13967 bfd_boolean ignore_branch_isa)
13968 {
13969 mips_elf_hash_table (info)->insn32 = insn32;
13970 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13971 }
13972 \f
13973 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13974
13975 struct mips_mach_extension
13976 {
13977 unsigned long extension, base;
13978 };
13979
13980
13981 /* An array describing how BFD machines relate to one another. The entries
13982 are ordered topologically with MIPS I extensions listed last. */
13983
13984 static const struct mips_mach_extension mips_mach_extensions[] =
13985 {
13986 /* MIPS64r2 extensions. */
13987 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13988 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13989 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13990 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13991 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13992
13993 /* MIPS64 extensions. */
13994 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13995 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13996 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13997
13998 /* MIPS V extensions. */
13999 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14000
14001 /* R10000 extensions. */
14002 { bfd_mach_mips12000, bfd_mach_mips10000 },
14003 { bfd_mach_mips14000, bfd_mach_mips10000 },
14004 { bfd_mach_mips16000, bfd_mach_mips10000 },
14005
14006 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14007 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14008 better to allow vr5400 and vr5500 code to be merged anyway, since
14009 many libraries will just use the core ISA. Perhaps we could add
14010 some sort of ASE flag if this ever proves a problem. */
14011 { bfd_mach_mips5500, bfd_mach_mips5400 },
14012 { bfd_mach_mips5400, bfd_mach_mips5000 },
14013
14014 /* MIPS IV extensions. */
14015 { bfd_mach_mips5, bfd_mach_mips8000 },
14016 { bfd_mach_mips10000, bfd_mach_mips8000 },
14017 { bfd_mach_mips5000, bfd_mach_mips8000 },
14018 { bfd_mach_mips7000, bfd_mach_mips8000 },
14019 { bfd_mach_mips9000, bfd_mach_mips8000 },
14020
14021 /* VR4100 extensions. */
14022 { bfd_mach_mips4120, bfd_mach_mips4100 },
14023 { bfd_mach_mips4111, bfd_mach_mips4100 },
14024
14025 /* MIPS III extensions. */
14026 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14027 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14028 { bfd_mach_mips8000, bfd_mach_mips4000 },
14029 { bfd_mach_mips4650, bfd_mach_mips4000 },
14030 { bfd_mach_mips4600, bfd_mach_mips4000 },
14031 { bfd_mach_mips4400, bfd_mach_mips4000 },
14032 { bfd_mach_mips4300, bfd_mach_mips4000 },
14033 { bfd_mach_mips4100, bfd_mach_mips4000 },
14034 { bfd_mach_mips5900, bfd_mach_mips4000 },
14035
14036 /* MIPS32r3 extensions. */
14037 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14038
14039 /* MIPS32r2 extensions. */
14040 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14041
14042 /* MIPS32 extensions. */
14043 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14044
14045 /* MIPS II extensions. */
14046 { bfd_mach_mips4000, bfd_mach_mips6000 },
14047 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14048 { bfd_mach_mips4010, bfd_mach_mips6000 },
14049
14050 /* MIPS I extensions. */
14051 { bfd_mach_mips6000, bfd_mach_mips3000 },
14052 { bfd_mach_mips3900, bfd_mach_mips3000 }
14053 };
14054
14055 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14056
14057 static bfd_boolean
14058 mips_mach_extends_p (unsigned long base, unsigned long extension)
14059 {
14060 size_t i;
14061
14062 if (extension == base)
14063 return TRUE;
14064
14065 if (base == bfd_mach_mipsisa32
14066 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14067 return TRUE;
14068
14069 if (base == bfd_mach_mipsisa32r2
14070 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14071 return TRUE;
14072
14073 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14074 if (extension == mips_mach_extensions[i].extension)
14075 {
14076 extension = mips_mach_extensions[i].base;
14077 if (extension == base)
14078 return TRUE;
14079 }
14080
14081 return FALSE;
14082 }
14083
14084 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14085
14086 static unsigned long
14087 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14088 {
14089 switch (isa_ext)
14090 {
14091 case AFL_EXT_3900: return bfd_mach_mips3900;
14092 case AFL_EXT_4010: return bfd_mach_mips4010;
14093 case AFL_EXT_4100: return bfd_mach_mips4100;
14094 case AFL_EXT_4111: return bfd_mach_mips4111;
14095 case AFL_EXT_4120: return bfd_mach_mips4120;
14096 case AFL_EXT_4650: return bfd_mach_mips4650;
14097 case AFL_EXT_5400: return bfd_mach_mips5400;
14098 case AFL_EXT_5500: return bfd_mach_mips5500;
14099 case AFL_EXT_5900: return bfd_mach_mips5900;
14100 case AFL_EXT_10000: return bfd_mach_mips10000;
14101 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14102 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14103 case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14104 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14105 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14106 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14107 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14108 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14109 default: return bfd_mach_mips3000;
14110 }
14111 }
14112
14113 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14114
14115 unsigned int
14116 bfd_mips_isa_ext (bfd *abfd)
14117 {
14118 switch (bfd_get_mach (abfd))
14119 {
14120 case bfd_mach_mips3900: return AFL_EXT_3900;
14121 case bfd_mach_mips4010: return AFL_EXT_4010;
14122 case bfd_mach_mips4100: return AFL_EXT_4100;
14123 case bfd_mach_mips4111: return AFL_EXT_4111;
14124 case bfd_mach_mips4120: return AFL_EXT_4120;
14125 case bfd_mach_mips4650: return AFL_EXT_4650;
14126 case bfd_mach_mips5400: return AFL_EXT_5400;
14127 case bfd_mach_mips5500: return AFL_EXT_5500;
14128 case bfd_mach_mips5900: return AFL_EXT_5900;
14129 case bfd_mach_mips10000: return AFL_EXT_10000;
14130 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14131 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14132 case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14133 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14134 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14135 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14136 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14137 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14138 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14139 case bfd_mach_mips_interaptiv_mr2:
14140 return AFL_EXT_INTERAPTIV_MR2;
14141 default: return 0;
14142 }
14143 }
14144
14145 /* Encode ISA level and revision as a single value. */
14146 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14147
14148 /* Decode a single value into level and revision. */
14149 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14150 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14151
14152 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14153
14154 static void
14155 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14156 {
14157 int new_isa = 0;
14158 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14159 {
14160 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14161 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14162 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14163 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14164 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14165 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14166 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14167 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14168 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14169 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14170 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14171 default:
14172 _bfd_error_handler
14173 /* xgettext:c-format */
14174 (_("%B: Unknown architecture %s"),
14175 abfd, bfd_printable_name (abfd));
14176 }
14177
14178 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14179 {
14180 abiflags->isa_level = ISA_LEVEL (new_isa);
14181 abiflags->isa_rev = ISA_REV (new_isa);
14182 }
14183
14184 /* Update the isa_ext if ABFD describes a further extension. */
14185 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14186 bfd_get_mach (abfd)))
14187 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14188 }
14189
14190 /* Return true if the given ELF header flags describe a 32-bit binary. */
14191
14192 static bfd_boolean
14193 mips_32bit_flags_p (flagword flags)
14194 {
14195 return ((flags & EF_MIPS_32BITMODE) != 0
14196 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14197 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14198 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14199 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14200 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14201 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14202 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14203 }
14204
14205 /* Infer the content of the ABI flags based on the elf header. */
14206
14207 static void
14208 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14209 {
14210 obj_attribute *in_attr;
14211
14212 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14213 update_mips_abiflags_isa (abfd, abiflags);
14214
14215 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14216 abiflags->gpr_size = AFL_REG_32;
14217 else
14218 abiflags->gpr_size = AFL_REG_64;
14219
14220 abiflags->cpr1_size = AFL_REG_NONE;
14221
14222 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14223 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14224
14225 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14226 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14227 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14228 && abiflags->gpr_size == AFL_REG_32))
14229 abiflags->cpr1_size = AFL_REG_32;
14230 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14231 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14232 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14233 abiflags->cpr1_size = AFL_REG_64;
14234
14235 abiflags->cpr2_size = AFL_REG_NONE;
14236
14237 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14238 abiflags->ases |= AFL_ASE_MDMX;
14239 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14240 abiflags->ases |= AFL_ASE_MIPS16;
14241 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14242 abiflags->ases |= AFL_ASE_MICROMIPS;
14243
14244 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14245 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14246 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14247 && abiflags->isa_level >= 32
14248 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14249 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14250 }
14251
14252 /* We need to use a special link routine to handle the .reginfo and
14253 the .mdebug sections. We need to merge all instances of these
14254 sections together, not write them all out sequentially. */
14255
14256 bfd_boolean
14257 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14258 {
14259 asection *o;
14260 struct bfd_link_order *p;
14261 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14262 asection *rtproc_sec, *abiflags_sec;
14263 Elf32_RegInfo reginfo;
14264 struct ecoff_debug_info debug;
14265 struct mips_htab_traverse_info hti;
14266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14267 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14268 HDRR *symhdr = &debug.symbolic_header;
14269 void *mdebug_handle = NULL;
14270 asection *s;
14271 EXTR esym;
14272 unsigned int i;
14273 bfd_size_type amt;
14274 struct mips_elf_link_hash_table *htab;
14275
14276 static const char * const secname[] =
14277 {
14278 ".text", ".init", ".fini", ".data",
14279 ".rodata", ".sdata", ".sbss", ".bss"
14280 };
14281 static const int sc[] =
14282 {
14283 scText, scInit, scFini, scData,
14284 scRData, scSData, scSBss, scBss
14285 };
14286
14287 htab = mips_elf_hash_table (info);
14288 BFD_ASSERT (htab != NULL);
14289
14290 /* Sort the dynamic symbols so that those with GOT entries come after
14291 those without. */
14292 if (!mips_elf_sort_hash_table (abfd, info))
14293 return FALSE;
14294
14295 /* Create any scheduled LA25 stubs. */
14296 hti.info = info;
14297 hti.output_bfd = abfd;
14298 hti.error = FALSE;
14299 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14300 if (hti.error)
14301 return FALSE;
14302
14303 /* Get a value for the GP register. */
14304 if (elf_gp (abfd) == 0)
14305 {
14306 struct bfd_link_hash_entry *h;
14307
14308 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14309 if (h != NULL && h->type == bfd_link_hash_defined)
14310 elf_gp (abfd) = (h->u.def.value
14311 + h->u.def.section->output_section->vma
14312 + h->u.def.section->output_offset);
14313 else if (htab->is_vxworks
14314 && (h = bfd_link_hash_lookup (info->hash,
14315 "_GLOBAL_OFFSET_TABLE_",
14316 FALSE, FALSE, TRUE))
14317 && h->type == bfd_link_hash_defined)
14318 elf_gp (abfd) = (h->u.def.section->output_section->vma
14319 + h->u.def.section->output_offset
14320 + h->u.def.value);
14321 else if (bfd_link_relocatable (info))
14322 {
14323 bfd_vma lo = MINUS_ONE;
14324
14325 /* Find the GP-relative section with the lowest offset. */
14326 for (o = abfd->sections; o != NULL; o = o->next)
14327 if (o->vma < lo
14328 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14329 lo = o->vma;
14330
14331 /* And calculate GP relative to that. */
14332 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14333 }
14334 else
14335 {
14336 /* If the relocate_section function needs to do a reloc
14337 involving the GP value, it should make a reloc_dangerous
14338 callback to warn that GP is not defined. */
14339 }
14340 }
14341
14342 /* Go through the sections and collect the .reginfo and .mdebug
14343 information. */
14344 abiflags_sec = NULL;
14345 reginfo_sec = NULL;
14346 mdebug_sec = NULL;
14347 gptab_data_sec = NULL;
14348 gptab_bss_sec = NULL;
14349 for (o = abfd->sections; o != NULL; o = o->next)
14350 {
14351 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14352 {
14353 /* We have found the .MIPS.abiflags section in the output file.
14354 Look through all the link_orders comprising it and remove them.
14355 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14356 for (p = o->map_head.link_order; p != NULL; p = p->next)
14357 {
14358 asection *input_section;
14359
14360 if (p->type != bfd_indirect_link_order)
14361 {
14362 if (p->type == bfd_data_link_order)
14363 continue;
14364 abort ();
14365 }
14366
14367 input_section = p->u.indirect.section;
14368
14369 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14370 elf_link_input_bfd ignores this section. */
14371 input_section->flags &= ~SEC_HAS_CONTENTS;
14372 }
14373
14374 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14375 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14376
14377 /* Skip this section later on (I don't think this currently
14378 matters, but someday it might). */
14379 o->map_head.link_order = NULL;
14380
14381 abiflags_sec = o;
14382 }
14383
14384 if (strcmp (o->name, ".reginfo") == 0)
14385 {
14386 memset (&reginfo, 0, sizeof reginfo);
14387
14388 /* We have found the .reginfo section in the output file.
14389 Look through all the link_orders comprising it and merge
14390 the information together. */
14391 for (p = o->map_head.link_order; p != NULL; p = p->next)
14392 {
14393 asection *input_section;
14394 bfd *input_bfd;
14395 Elf32_External_RegInfo ext;
14396 Elf32_RegInfo sub;
14397
14398 if (p->type != bfd_indirect_link_order)
14399 {
14400 if (p->type == bfd_data_link_order)
14401 continue;
14402 abort ();
14403 }
14404
14405 input_section = p->u.indirect.section;
14406 input_bfd = input_section->owner;
14407
14408 if (! bfd_get_section_contents (input_bfd, input_section,
14409 &ext, 0, sizeof ext))
14410 return FALSE;
14411
14412 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14413
14414 reginfo.ri_gprmask |= sub.ri_gprmask;
14415 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14416 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14417 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14418 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14419
14420 /* ri_gp_value is set by the function
14421 mips_elf32_section_processing when the section is
14422 finally written out. */
14423
14424 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14425 elf_link_input_bfd ignores this section. */
14426 input_section->flags &= ~SEC_HAS_CONTENTS;
14427 }
14428
14429 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14430 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14431
14432 /* Skip this section later on (I don't think this currently
14433 matters, but someday it might). */
14434 o->map_head.link_order = NULL;
14435
14436 reginfo_sec = o;
14437 }
14438
14439 if (strcmp (o->name, ".mdebug") == 0)
14440 {
14441 struct extsym_info einfo;
14442 bfd_vma last;
14443
14444 /* We have found the .mdebug section in the output file.
14445 Look through all the link_orders comprising it and merge
14446 the information together. */
14447 symhdr->magic = swap->sym_magic;
14448 /* FIXME: What should the version stamp be? */
14449 symhdr->vstamp = 0;
14450 symhdr->ilineMax = 0;
14451 symhdr->cbLine = 0;
14452 symhdr->idnMax = 0;
14453 symhdr->ipdMax = 0;
14454 symhdr->isymMax = 0;
14455 symhdr->ioptMax = 0;
14456 symhdr->iauxMax = 0;
14457 symhdr->issMax = 0;
14458 symhdr->issExtMax = 0;
14459 symhdr->ifdMax = 0;
14460 symhdr->crfd = 0;
14461 symhdr->iextMax = 0;
14462
14463 /* We accumulate the debugging information itself in the
14464 debug_info structure. */
14465 debug.line = NULL;
14466 debug.external_dnr = NULL;
14467 debug.external_pdr = NULL;
14468 debug.external_sym = NULL;
14469 debug.external_opt = NULL;
14470 debug.external_aux = NULL;
14471 debug.ss = NULL;
14472 debug.ssext = debug.ssext_end = NULL;
14473 debug.external_fdr = NULL;
14474 debug.external_rfd = NULL;
14475 debug.external_ext = debug.external_ext_end = NULL;
14476
14477 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14478 if (mdebug_handle == NULL)
14479 return FALSE;
14480
14481 esym.jmptbl = 0;
14482 esym.cobol_main = 0;
14483 esym.weakext = 0;
14484 esym.reserved = 0;
14485 esym.ifd = ifdNil;
14486 esym.asym.iss = issNil;
14487 esym.asym.st = stLocal;
14488 esym.asym.reserved = 0;
14489 esym.asym.index = indexNil;
14490 last = 0;
14491 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14492 {
14493 esym.asym.sc = sc[i];
14494 s = bfd_get_section_by_name (abfd, secname[i]);
14495 if (s != NULL)
14496 {
14497 esym.asym.value = s->vma;
14498 last = s->vma + s->size;
14499 }
14500 else
14501 esym.asym.value = last;
14502 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14503 secname[i], &esym))
14504 return FALSE;
14505 }
14506
14507 for (p = o->map_head.link_order; p != NULL; p = p->next)
14508 {
14509 asection *input_section;
14510 bfd *input_bfd;
14511 const struct ecoff_debug_swap *input_swap;
14512 struct ecoff_debug_info input_debug;
14513 char *eraw_src;
14514 char *eraw_end;
14515
14516 if (p->type != bfd_indirect_link_order)
14517 {
14518 if (p->type == bfd_data_link_order)
14519 continue;
14520 abort ();
14521 }
14522
14523 input_section = p->u.indirect.section;
14524 input_bfd = input_section->owner;
14525
14526 if (!is_mips_elf (input_bfd))
14527 {
14528 /* I don't know what a non MIPS ELF bfd would be
14529 doing with a .mdebug section, but I don't really
14530 want to deal with it. */
14531 continue;
14532 }
14533
14534 input_swap = (get_elf_backend_data (input_bfd)
14535 ->elf_backend_ecoff_debug_swap);
14536
14537 BFD_ASSERT (p->size == input_section->size);
14538
14539 /* The ECOFF linking code expects that we have already
14540 read in the debugging information and set up an
14541 ecoff_debug_info structure, so we do that now. */
14542 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14543 &input_debug))
14544 return FALSE;
14545
14546 if (! (bfd_ecoff_debug_accumulate
14547 (mdebug_handle, abfd, &debug, swap, input_bfd,
14548 &input_debug, input_swap, info)))
14549 return FALSE;
14550
14551 /* Loop through the external symbols. For each one with
14552 interesting information, try to find the symbol in
14553 the linker global hash table and save the information
14554 for the output external symbols. */
14555 eraw_src = input_debug.external_ext;
14556 eraw_end = (eraw_src
14557 + (input_debug.symbolic_header.iextMax
14558 * input_swap->external_ext_size));
14559 for (;
14560 eraw_src < eraw_end;
14561 eraw_src += input_swap->external_ext_size)
14562 {
14563 EXTR ext;
14564 const char *name;
14565 struct mips_elf_link_hash_entry *h;
14566
14567 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14568 if (ext.asym.sc == scNil
14569 || ext.asym.sc == scUndefined
14570 || ext.asym.sc == scSUndefined)
14571 continue;
14572
14573 name = input_debug.ssext + ext.asym.iss;
14574 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14575 name, FALSE, FALSE, TRUE);
14576 if (h == NULL || h->esym.ifd != -2)
14577 continue;
14578
14579 if (ext.ifd != -1)
14580 {
14581 BFD_ASSERT (ext.ifd
14582 < input_debug.symbolic_header.ifdMax);
14583 ext.ifd = input_debug.ifdmap[ext.ifd];
14584 }
14585
14586 h->esym = ext;
14587 }
14588
14589 /* Free up the information we just read. */
14590 free (input_debug.line);
14591 free (input_debug.external_dnr);
14592 free (input_debug.external_pdr);
14593 free (input_debug.external_sym);
14594 free (input_debug.external_opt);
14595 free (input_debug.external_aux);
14596 free (input_debug.ss);
14597 free (input_debug.ssext);
14598 free (input_debug.external_fdr);
14599 free (input_debug.external_rfd);
14600 free (input_debug.external_ext);
14601
14602 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14603 elf_link_input_bfd ignores this section. */
14604 input_section->flags &= ~SEC_HAS_CONTENTS;
14605 }
14606
14607 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14608 {
14609 /* Create .rtproc section. */
14610 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14611 if (rtproc_sec == NULL)
14612 {
14613 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14614 | SEC_LINKER_CREATED | SEC_READONLY);
14615
14616 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14617 ".rtproc",
14618 flags);
14619 if (rtproc_sec == NULL
14620 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14621 return FALSE;
14622 }
14623
14624 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14625 info, rtproc_sec,
14626 &debug))
14627 return FALSE;
14628 }
14629
14630 /* Build the external symbol information. */
14631 einfo.abfd = abfd;
14632 einfo.info = info;
14633 einfo.debug = &debug;
14634 einfo.swap = swap;
14635 einfo.failed = FALSE;
14636 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14637 mips_elf_output_extsym, &einfo);
14638 if (einfo.failed)
14639 return FALSE;
14640
14641 /* Set the size of the .mdebug section. */
14642 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14643
14644 /* Skip this section later on (I don't think this currently
14645 matters, but someday it might). */
14646 o->map_head.link_order = NULL;
14647
14648 mdebug_sec = o;
14649 }
14650
14651 if (CONST_STRNEQ (o->name, ".gptab."))
14652 {
14653 const char *subname;
14654 unsigned int c;
14655 Elf32_gptab *tab;
14656 Elf32_External_gptab *ext_tab;
14657 unsigned int j;
14658
14659 /* The .gptab.sdata and .gptab.sbss sections hold
14660 information describing how the small data area would
14661 change depending upon the -G switch. These sections
14662 not used in executables files. */
14663 if (! bfd_link_relocatable (info))
14664 {
14665 for (p = o->map_head.link_order; p != NULL; p = p->next)
14666 {
14667 asection *input_section;
14668
14669 if (p->type != bfd_indirect_link_order)
14670 {
14671 if (p->type == bfd_data_link_order)
14672 continue;
14673 abort ();
14674 }
14675
14676 input_section = p->u.indirect.section;
14677
14678 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14679 elf_link_input_bfd ignores this section. */
14680 input_section->flags &= ~SEC_HAS_CONTENTS;
14681 }
14682
14683 /* Skip this section later on (I don't think this
14684 currently matters, but someday it might). */
14685 o->map_head.link_order = NULL;
14686
14687 /* Really remove the section. */
14688 bfd_section_list_remove (abfd, o);
14689 --abfd->section_count;
14690
14691 continue;
14692 }
14693
14694 /* There is one gptab for initialized data, and one for
14695 uninitialized data. */
14696 if (strcmp (o->name, ".gptab.sdata") == 0)
14697 gptab_data_sec = o;
14698 else if (strcmp (o->name, ".gptab.sbss") == 0)
14699 gptab_bss_sec = o;
14700 else
14701 {
14702 _bfd_error_handler
14703 /* xgettext:c-format */
14704 (_("%B: illegal section name `%A'"), abfd, o);
14705 bfd_set_error (bfd_error_nonrepresentable_section);
14706 return FALSE;
14707 }
14708
14709 /* The linker script always combines .gptab.data and
14710 .gptab.sdata into .gptab.sdata, and likewise for
14711 .gptab.bss and .gptab.sbss. It is possible that there is
14712 no .sdata or .sbss section in the output file, in which
14713 case we must change the name of the output section. */
14714 subname = o->name + sizeof ".gptab" - 1;
14715 if (bfd_get_section_by_name (abfd, subname) == NULL)
14716 {
14717 if (o == gptab_data_sec)
14718 o->name = ".gptab.data";
14719 else
14720 o->name = ".gptab.bss";
14721 subname = o->name + sizeof ".gptab" - 1;
14722 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14723 }
14724
14725 /* Set up the first entry. */
14726 c = 1;
14727 amt = c * sizeof (Elf32_gptab);
14728 tab = bfd_malloc (amt);
14729 if (tab == NULL)
14730 return FALSE;
14731 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14732 tab[0].gt_header.gt_unused = 0;
14733
14734 /* Combine the input sections. */
14735 for (p = o->map_head.link_order; p != NULL; p = p->next)
14736 {
14737 asection *input_section;
14738 bfd *input_bfd;
14739 bfd_size_type size;
14740 unsigned long last;
14741 bfd_size_type gpentry;
14742
14743 if (p->type != bfd_indirect_link_order)
14744 {
14745 if (p->type == bfd_data_link_order)
14746 continue;
14747 abort ();
14748 }
14749
14750 input_section = p->u.indirect.section;
14751 input_bfd = input_section->owner;
14752
14753 /* Combine the gptab entries for this input section one
14754 by one. We know that the input gptab entries are
14755 sorted by ascending -G value. */
14756 size = input_section->size;
14757 last = 0;
14758 for (gpentry = sizeof (Elf32_External_gptab);
14759 gpentry < size;
14760 gpentry += sizeof (Elf32_External_gptab))
14761 {
14762 Elf32_External_gptab ext_gptab;
14763 Elf32_gptab int_gptab;
14764 unsigned long val;
14765 unsigned long add;
14766 bfd_boolean exact;
14767 unsigned int look;
14768
14769 if (! (bfd_get_section_contents
14770 (input_bfd, input_section, &ext_gptab, gpentry,
14771 sizeof (Elf32_External_gptab))))
14772 {
14773 free (tab);
14774 return FALSE;
14775 }
14776
14777 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14778 &int_gptab);
14779 val = int_gptab.gt_entry.gt_g_value;
14780 add = int_gptab.gt_entry.gt_bytes - last;
14781
14782 exact = FALSE;
14783 for (look = 1; look < c; look++)
14784 {
14785 if (tab[look].gt_entry.gt_g_value >= val)
14786 tab[look].gt_entry.gt_bytes += add;
14787
14788 if (tab[look].gt_entry.gt_g_value == val)
14789 exact = TRUE;
14790 }
14791
14792 if (! exact)
14793 {
14794 Elf32_gptab *new_tab;
14795 unsigned int max;
14796
14797 /* We need a new table entry. */
14798 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14799 new_tab = bfd_realloc (tab, amt);
14800 if (new_tab == NULL)
14801 {
14802 free (tab);
14803 return FALSE;
14804 }
14805 tab = new_tab;
14806 tab[c].gt_entry.gt_g_value = val;
14807 tab[c].gt_entry.gt_bytes = add;
14808
14809 /* Merge in the size for the next smallest -G
14810 value, since that will be implied by this new
14811 value. */
14812 max = 0;
14813 for (look = 1; look < c; look++)
14814 {
14815 if (tab[look].gt_entry.gt_g_value < val
14816 && (max == 0
14817 || (tab[look].gt_entry.gt_g_value
14818 > tab[max].gt_entry.gt_g_value)))
14819 max = look;
14820 }
14821 if (max != 0)
14822 tab[c].gt_entry.gt_bytes +=
14823 tab[max].gt_entry.gt_bytes;
14824
14825 ++c;
14826 }
14827
14828 last = int_gptab.gt_entry.gt_bytes;
14829 }
14830
14831 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14832 elf_link_input_bfd ignores this section. */
14833 input_section->flags &= ~SEC_HAS_CONTENTS;
14834 }
14835
14836 /* The table must be sorted by -G value. */
14837 if (c > 2)
14838 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14839
14840 /* Swap out the table. */
14841 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14842 ext_tab = bfd_alloc (abfd, amt);
14843 if (ext_tab == NULL)
14844 {
14845 free (tab);
14846 return FALSE;
14847 }
14848
14849 for (j = 0; j < c; j++)
14850 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14851 free (tab);
14852
14853 o->size = c * sizeof (Elf32_External_gptab);
14854 o->contents = (bfd_byte *) ext_tab;
14855
14856 /* Skip this section later on (I don't think this currently
14857 matters, but someday it might). */
14858 o->map_head.link_order = NULL;
14859 }
14860 }
14861
14862 /* Invoke the regular ELF backend linker to do all the work. */
14863 if (!bfd_elf_final_link (abfd, info))
14864 return FALSE;
14865
14866 /* Now write out the computed sections. */
14867
14868 if (abiflags_sec != NULL)
14869 {
14870 Elf_External_ABIFlags_v0 ext;
14871 Elf_Internal_ABIFlags_v0 *abiflags;
14872
14873 abiflags = &mips_elf_tdata (abfd)->abiflags;
14874
14875 /* Set up the abiflags if no valid input sections were found. */
14876 if (!mips_elf_tdata (abfd)->abiflags_valid)
14877 {
14878 infer_mips_abiflags (abfd, abiflags);
14879 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14880 }
14881 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14882 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14883 return FALSE;
14884 }
14885
14886 if (reginfo_sec != NULL)
14887 {
14888 Elf32_External_RegInfo ext;
14889
14890 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14891 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14892 return FALSE;
14893 }
14894
14895 if (mdebug_sec != NULL)
14896 {
14897 BFD_ASSERT (abfd->output_has_begun);
14898 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14899 swap, info,
14900 mdebug_sec->filepos))
14901 return FALSE;
14902
14903 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14904 }
14905
14906 if (gptab_data_sec != NULL)
14907 {
14908 if (! bfd_set_section_contents (abfd, gptab_data_sec,
14909 gptab_data_sec->contents,
14910 0, gptab_data_sec->size))
14911 return FALSE;
14912 }
14913
14914 if (gptab_bss_sec != NULL)
14915 {
14916 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14917 gptab_bss_sec->contents,
14918 0, gptab_bss_sec->size))
14919 return FALSE;
14920 }
14921
14922 if (SGI_COMPAT (abfd))
14923 {
14924 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14925 if (rtproc_sec != NULL)
14926 {
14927 if (! bfd_set_section_contents (abfd, rtproc_sec,
14928 rtproc_sec->contents,
14929 0, rtproc_sec->size))
14930 return FALSE;
14931 }
14932 }
14933
14934 return TRUE;
14935 }
14936 \f
14937 /* Merge object file header flags from IBFD into OBFD. Raise an error
14938 if there are conflicting settings. */
14939
14940 static bfd_boolean
14941 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14942 {
14943 bfd *obfd = info->output_bfd;
14944 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14945 flagword old_flags;
14946 flagword new_flags;
14947 bfd_boolean ok;
14948
14949 new_flags = elf_elfheader (ibfd)->e_flags;
14950 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14951 old_flags = elf_elfheader (obfd)->e_flags;
14952
14953 /* Check flag compatibility. */
14954
14955 new_flags &= ~EF_MIPS_NOREORDER;
14956 old_flags &= ~EF_MIPS_NOREORDER;
14957
14958 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
14959 doesn't seem to matter. */
14960 new_flags &= ~EF_MIPS_XGOT;
14961 old_flags &= ~EF_MIPS_XGOT;
14962
14963 /* MIPSpro generates ucode info in n64 objects. Again, we should
14964 just be able to ignore this. */
14965 new_flags &= ~EF_MIPS_UCODE;
14966 old_flags &= ~EF_MIPS_UCODE;
14967
14968 /* DSOs should only be linked with CPIC code. */
14969 if ((ibfd->flags & DYNAMIC) != 0)
14970 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14971
14972 if (new_flags == old_flags)
14973 return TRUE;
14974
14975 ok = TRUE;
14976
14977 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14978 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14979 {
14980 _bfd_error_handler
14981 (_("%B: warning: linking abicalls files with non-abicalls files"),
14982 ibfd);
14983 ok = TRUE;
14984 }
14985
14986 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14987 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14988 if (! (new_flags & EF_MIPS_PIC))
14989 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14990
14991 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14992 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14993
14994 /* Compare the ISAs. */
14995 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14996 {
14997 _bfd_error_handler
14998 (_("%B: linking 32-bit code with 64-bit code"),
14999 ibfd);
15000 ok = FALSE;
15001 }
15002 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15003 {
15004 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15005 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15006 {
15007 /* Copy the architecture info from IBFD to OBFD. Also copy
15008 the 32-bit flag (if set) so that we continue to recognise
15009 OBFD as a 32-bit binary. */
15010 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15011 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15012 elf_elfheader (obfd)->e_flags
15013 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15014
15015 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15016 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15017
15018 /* Copy across the ABI flags if OBFD doesn't use them
15019 and if that was what caused us to treat IBFD as 32-bit. */
15020 if ((old_flags & EF_MIPS_ABI) == 0
15021 && mips_32bit_flags_p (new_flags)
15022 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15023 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15024 }
15025 else
15026 {
15027 /* The ISAs aren't compatible. */
15028 _bfd_error_handler
15029 /* xgettext:c-format */
15030 (_("%B: linking %s module with previous %s modules"),
15031 ibfd,
15032 bfd_printable_name (ibfd),
15033 bfd_printable_name (obfd));
15034 ok = FALSE;
15035 }
15036 }
15037
15038 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15039 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15040
15041 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15042 does set EI_CLASS differently from any 32-bit ABI. */
15043 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15044 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15045 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15046 {
15047 /* Only error if both are set (to different values). */
15048 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15049 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15050 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15051 {
15052 _bfd_error_handler
15053 /* xgettext:c-format */
15054 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15055 ibfd,
15056 elf_mips_abi_name (ibfd),
15057 elf_mips_abi_name (obfd));
15058 ok = FALSE;
15059 }
15060 new_flags &= ~EF_MIPS_ABI;
15061 old_flags &= ~EF_MIPS_ABI;
15062 }
15063
15064 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15065 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15066 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15067 {
15068 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15069 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15070 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15071 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15072 int micro_mis = old_m16 && new_micro;
15073 int m16_mis = old_micro && new_m16;
15074
15075 if (m16_mis || micro_mis)
15076 {
15077 _bfd_error_handler
15078 /* xgettext:c-format */
15079 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15080 ibfd,
15081 m16_mis ? "MIPS16" : "microMIPS",
15082 m16_mis ? "microMIPS" : "MIPS16");
15083 ok = FALSE;
15084 }
15085
15086 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15087
15088 new_flags &= ~ EF_MIPS_ARCH_ASE;
15089 old_flags &= ~ EF_MIPS_ARCH_ASE;
15090 }
15091
15092 /* Compare NaN encodings. */
15093 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15094 {
15095 /* xgettext:c-format */
15096 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15097 ibfd,
15098 (new_flags & EF_MIPS_NAN2008
15099 ? "-mnan=2008" : "-mnan=legacy"),
15100 (old_flags & EF_MIPS_NAN2008
15101 ? "-mnan=2008" : "-mnan=legacy"));
15102 ok = FALSE;
15103 new_flags &= ~EF_MIPS_NAN2008;
15104 old_flags &= ~EF_MIPS_NAN2008;
15105 }
15106
15107 /* Compare FP64 state. */
15108 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15109 {
15110 /* xgettext:c-format */
15111 _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15112 ibfd,
15113 (new_flags & EF_MIPS_FP64
15114 ? "-mfp64" : "-mfp32"),
15115 (old_flags & EF_MIPS_FP64
15116 ? "-mfp64" : "-mfp32"));
15117 ok = FALSE;
15118 new_flags &= ~EF_MIPS_FP64;
15119 old_flags &= ~EF_MIPS_FP64;
15120 }
15121
15122 /* Warn about any other mismatches */
15123 if (new_flags != old_flags)
15124 {
15125 /* xgettext:c-format */
15126 _bfd_error_handler
15127 (_("%B: uses different e_flags (0x%lx) fields than previous modules "
15128 "(0x%lx)"),
15129 ibfd, (unsigned long) new_flags,
15130 (unsigned long) old_flags);
15131 ok = FALSE;
15132 }
15133
15134 return ok;
15135 }
15136
15137 /* Merge object attributes from IBFD into OBFD. Raise an error if
15138 there are conflicting attributes. */
15139 static bfd_boolean
15140 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15141 {
15142 bfd *obfd = info->output_bfd;
15143 obj_attribute *in_attr;
15144 obj_attribute *out_attr;
15145 bfd *abi_fp_bfd;
15146 bfd *abi_msa_bfd;
15147
15148 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15149 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15150 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15151 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15152
15153 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15154 if (!abi_msa_bfd
15155 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15156 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15157
15158 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15159 {
15160 /* This is the first object. Copy the attributes. */
15161 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15162
15163 /* Use the Tag_null value to indicate the attributes have been
15164 initialized. */
15165 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15166
15167 return TRUE;
15168 }
15169
15170 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15171 non-conflicting ones. */
15172 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15173 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15174 {
15175 int out_fp, in_fp;
15176
15177 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15178 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15179 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15180 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15181 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15182 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15183 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15184 || in_fp == Val_GNU_MIPS_ABI_FP_64
15185 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15186 {
15187 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15188 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15189 }
15190 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15191 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15192 || out_fp == Val_GNU_MIPS_ABI_FP_64
15193 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15194 /* Keep the current setting. */;
15195 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15196 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15197 {
15198 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15199 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15200 }
15201 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15202 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15203 /* Keep the current setting. */;
15204 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15205 {
15206 const char *out_string, *in_string;
15207
15208 out_string = _bfd_mips_fp_abi_string (out_fp);
15209 in_string = _bfd_mips_fp_abi_string (in_fp);
15210 /* First warn about cases involving unrecognised ABIs. */
15211 if (!out_string && !in_string)
15212 /* xgettext:c-format */
15213 _bfd_error_handler
15214 (_("Warning: %B uses unknown floating point ABI %d "
15215 "(set by %B), %B uses unknown floating point ABI %d"),
15216 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15217 else if (!out_string)
15218 _bfd_error_handler
15219 /* xgettext:c-format */
15220 (_("Warning: %B uses unknown floating point ABI %d "
15221 "(set by %B), %B uses %s"),
15222 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15223 else if (!in_string)
15224 _bfd_error_handler
15225 /* xgettext:c-format */
15226 (_("Warning: %B uses %s (set by %B), "
15227 "%B uses unknown floating point ABI %d"),
15228 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15229 else
15230 {
15231 /* If one of the bfds is soft-float, the other must be
15232 hard-float. The exact choice of hard-float ABI isn't
15233 really relevant to the error message. */
15234 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15235 out_string = "-mhard-float";
15236 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15237 in_string = "-mhard-float";
15238 _bfd_error_handler
15239 /* xgettext:c-format */
15240 (_("Warning: %B uses %s (set by %B), %B uses %s"),
15241 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15242 }
15243 }
15244 }
15245
15246 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15247 non-conflicting ones. */
15248 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15249 {
15250 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15251 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15252 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15253 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15254 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15255 {
15256 case Val_GNU_MIPS_ABI_MSA_128:
15257 _bfd_error_handler
15258 /* xgettext:c-format */
15259 (_("Warning: %B uses %s (set by %B), "
15260 "%B uses unknown MSA ABI %d"),
15261 obfd, "-mmsa", abi_msa_bfd,
15262 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15263 break;
15264
15265 default:
15266 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15267 {
15268 case Val_GNU_MIPS_ABI_MSA_128:
15269 _bfd_error_handler
15270 /* xgettext:c-format */
15271 (_("Warning: %B uses unknown MSA ABI %d "
15272 "(set by %B), %B uses %s"),
15273 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15274 abi_msa_bfd, ibfd, "-mmsa");
15275 break;
15276
15277 default:
15278 _bfd_error_handler
15279 /* xgettext:c-format */
15280 (_("Warning: %B uses unknown MSA ABI %d "
15281 "(set by %B), %B uses unknown MSA ABI %d"),
15282 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15283 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15284 break;
15285 }
15286 }
15287 }
15288
15289 /* Merge Tag_compatibility attributes and any common GNU ones. */
15290 return _bfd_elf_merge_object_attributes (ibfd, info);
15291 }
15292
15293 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15294 there are conflicting settings. */
15295
15296 static bfd_boolean
15297 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15298 {
15299 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15300 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15301 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15302
15303 /* Update the output abiflags fp_abi using the computed fp_abi. */
15304 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15305
15306 #define max(a, b) ((a) > (b) ? (a) : (b))
15307 /* Merge abiflags. */
15308 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15309 in_tdata->abiflags.isa_level);
15310 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15311 in_tdata->abiflags.isa_rev);
15312 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15313 in_tdata->abiflags.gpr_size);
15314 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15315 in_tdata->abiflags.cpr1_size);
15316 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15317 in_tdata->abiflags.cpr2_size);
15318 #undef max
15319 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15320 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15321
15322 return TRUE;
15323 }
15324
15325 /* Merge backend specific data from an object file to the output
15326 object file when linking. */
15327
15328 bfd_boolean
15329 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15330 {
15331 bfd *obfd = info->output_bfd;
15332 struct mips_elf_obj_tdata *out_tdata;
15333 struct mips_elf_obj_tdata *in_tdata;
15334 bfd_boolean null_input_bfd = TRUE;
15335 asection *sec;
15336 bfd_boolean ok;
15337
15338 /* Check if we have the same endianness. */
15339 if (! _bfd_generic_verify_endian_match (ibfd, info))
15340 {
15341 _bfd_error_handler
15342 (_("%B: endianness incompatible with that of the selected emulation"),
15343 ibfd);
15344 return FALSE;
15345 }
15346
15347 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15348 return TRUE;
15349
15350 in_tdata = mips_elf_tdata (ibfd);
15351 out_tdata = mips_elf_tdata (obfd);
15352
15353 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15354 {
15355 _bfd_error_handler
15356 (_("%B: ABI is incompatible with that of the selected emulation"),
15357 ibfd);
15358 return FALSE;
15359 }
15360
15361 /* Check to see if the input BFD actually contains any sections. If not,
15362 then it has no attributes, and its flags may not have been initialized
15363 either, but it cannot actually cause any incompatibility. */
15364 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15365 {
15366 /* Ignore synthetic sections and empty .text, .data and .bss sections
15367 which are automatically generated by gas. Also ignore fake
15368 (s)common sections, since merely defining a common symbol does
15369 not affect compatibility. */
15370 if ((sec->flags & SEC_IS_COMMON) == 0
15371 && strcmp (sec->name, ".reginfo")
15372 && strcmp (sec->name, ".mdebug")
15373 && (sec->size != 0
15374 || (strcmp (sec->name, ".text")
15375 && strcmp (sec->name, ".data")
15376 && strcmp (sec->name, ".bss"))))
15377 {
15378 null_input_bfd = FALSE;
15379 break;
15380 }
15381 }
15382 if (null_input_bfd)
15383 return TRUE;
15384
15385 /* Populate abiflags using existing information. */
15386 if (in_tdata->abiflags_valid)
15387 {
15388 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15389 Elf_Internal_ABIFlags_v0 in_abiflags;
15390 Elf_Internal_ABIFlags_v0 abiflags;
15391
15392 /* Set up the FP ABI attribute from the abiflags if it is not already
15393 set. */
15394 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15395 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15396
15397 infer_mips_abiflags (ibfd, &abiflags);
15398 in_abiflags = in_tdata->abiflags;
15399
15400 /* It is not possible to infer the correct ISA revision
15401 for R3 or R5 so drop down to R2 for the checks. */
15402 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15403 in_abiflags.isa_rev = 2;
15404
15405 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15406 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15407 _bfd_error_handler
15408 (_("%B: warning: Inconsistent ISA between e_flags and "
15409 ".MIPS.abiflags"), ibfd);
15410 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15411 && in_abiflags.fp_abi != abiflags.fp_abi)
15412 _bfd_error_handler
15413 (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15414 ".MIPS.abiflags"), ibfd);
15415 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15416 _bfd_error_handler
15417 (_("%B: warning: Inconsistent ASEs between e_flags and "
15418 ".MIPS.abiflags"), ibfd);
15419 /* The isa_ext is allowed to be an extension of what can be inferred
15420 from e_flags. */
15421 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15422 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15423 _bfd_error_handler
15424 (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15425 ".MIPS.abiflags"), ibfd);
15426 if (in_abiflags.flags2 != 0)
15427 _bfd_error_handler
15428 (_("%B: warning: Unexpected flag in the flags2 field of "
15429 ".MIPS.abiflags (0x%lx)"), ibfd,
15430 (unsigned long) in_abiflags.flags2);
15431 }
15432 else
15433 {
15434 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15435 in_tdata->abiflags_valid = TRUE;
15436 }
15437
15438 if (!out_tdata->abiflags_valid)
15439 {
15440 /* Copy input abiflags if output abiflags are not already valid. */
15441 out_tdata->abiflags = in_tdata->abiflags;
15442 out_tdata->abiflags_valid = TRUE;
15443 }
15444
15445 if (! elf_flags_init (obfd))
15446 {
15447 elf_flags_init (obfd) = TRUE;
15448 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15449 elf_elfheader (obfd)->e_ident[EI_CLASS]
15450 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15451
15452 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15453 && (bfd_get_arch_info (obfd)->the_default
15454 || mips_mach_extends_p (bfd_get_mach (obfd),
15455 bfd_get_mach (ibfd))))
15456 {
15457 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15458 bfd_get_mach (ibfd)))
15459 return FALSE;
15460
15461 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15462 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15463 }
15464
15465 ok = TRUE;
15466 }
15467 else
15468 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15469
15470 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15471
15472 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15473
15474 if (!ok)
15475 {
15476 bfd_set_error (bfd_error_bad_value);
15477 return FALSE;
15478 }
15479
15480 return TRUE;
15481 }
15482
15483 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15484
15485 bfd_boolean
15486 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15487 {
15488 BFD_ASSERT (!elf_flags_init (abfd)
15489 || elf_elfheader (abfd)->e_flags == flags);
15490
15491 elf_elfheader (abfd)->e_flags = flags;
15492 elf_flags_init (abfd) = TRUE;
15493 return TRUE;
15494 }
15495
15496 char *
15497 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15498 {
15499 switch (dtag)
15500 {
15501 default: return "";
15502 case DT_MIPS_RLD_VERSION:
15503 return "MIPS_RLD_VERSION";
15504 case DT_MIPS_TIME_STAMP:
15505 return "MIPS_TIME_STAMP";
15506 case DT_MIPS_ICHECKSUM:
15507 return "MIPS_ICHECKSUM";
15508 case DT_MIPS_IVERSION:
15509 return "MIPS_IVERSION";
15510 case DT_MIPS_FLAGS:
15511 return "MIPS_FLAGS";
15512 case DT_MIPS_BASE_ADDRESS:
15513 return "MIPS_BASE_ADDRESS";
15514 case DT_MIPS_MSYM:
15515 return "MIPS_MSYM";
15516 case DT_MIPS_CONFLICT:
15517 return "MIPS_CONFLICT";
15518 case DT_MIPS_LIBLIST:
15519 return "MIPS_LIBLIST";
15520 case DT_MIPS_LOCAL_GOTNO:
15521 return "MIPS_LOCAL_GOTNO";
15522 case DT_MIPS_CONFLICTNO:
15523 return "MIPS_CONFLICTNO";
15524 case DT_MIPS_LIBLISTNO:
15525 return "MIPS_LIBLISTNO";
15526 case DT_MIPS_SYMTABNO:
15527 return "MIPS_SYMTABNO";
15528 case DT_MIPS_UNREFEXTNO:
15529 return "MIPS_UNREFEXTNO";
15530 case DT_MIPS_GOTSYM:
15531 return "MIPS_GOTSYM";
15532 case DT_MIPS_HIPAGENO:
15533 return "MIPS_HIPAGENO";
15534 case DT_MIPS_RLD_MAP:
15535 return "MIPS_RLD_MAP";
15536 case DT_MIPS_RLD_MAP_REL:
15537 return "MIPS_RLD_MAP_REL";
15538 case DT_MIPS_DELTA_CLASS:
15539 return "MIPS_DELTA_CLASS";
15540 case DT_MIPS_DELTA_CLASS_NO:
15541 return "MIPS_DELTA_CLASS_NO";
15542 case DT_MIPS_DELTA_INSTANCE:
15543 return "MIPS_DELTA_INSTANCE";
15544 case DT_MIPS_DELTA_INSTANCE_NO:
15545 return "MIPS_DELTA_INSTANCE_NO";
15546 case DT_MIPS_DELTA_RELOC:
15547 return "MIPS_DELTA_RELOC";
15548 case DT_MIPS_DELTA_RELOC_NO:
15549 return "MIPS_DELTA_RELOC_NO";
15550 case DT_MIPS_DELTA_SYM:
15551 return "MIPS_DELTA_SYM";
15552 case DT_MIPS_DELTA_SYM_NO:
15553 return "MIPS_DELTA_SYM_NO";
15554 case DT_MIPS_DELTA_CLASSSYM:
15555 return "MIPS_DELTA_CLASSSYM";
15556 case DT_MIPS_DELTA_CLASSSYM_NO:
15557 return "MIPS_DELTA_CLASSSYM_NO";
15558 case DT_MIPS_CXX_FLAGS:
15559 return "MIPS_CXX_FLAGS";
15560 case DT_MIPS_PIXIE_INIT:
15561 return "MIPS_PIXIE_INIT";
15562 case DT_MIPS_SYMBOL_LIB:
15563 return "MIPS_SYMBOL_LIB";
15564 case DT_MIPS_LOCALPAGE_GOTIDX:
15565 return "MIPS_LOCALPAGE_GOTIDX";
15566 case DT_MIPS_LOCAL_GOTIDX:
15567 return "MIPS_LOCAL_GOTIDX";
15568 case DT_MIPS_HIDDEN_GOTIDX:
15569 return "MIPS_HIDDEN_GOTIDX";
15570 case DT_MIPS_PROTECTED_GOTIDX:
15571 return "MIPS_PROTECTED_GOT_IDX";
15572 case DT_MIPS_OPTIONS:
15573 return "MIPS_OPTIONS";
15574 case DT_MIPS_INTERFACE:
15575 return "MIPS_INTERFACE";
15576 case DT_MIPS_DYNSTR_ALIGN:
15577 return "DT_MIPS_DYNSTR_ALIGN";
15578 case DT_MIPS_INTERFACE_SIZE:
15579 return "DT_MIPS_INTERFACE_SIZE";
15580 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15581 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15582 case DT_MIPS_PERF_SUFFIX:
15583 return "DT_MIPS_PERF_SUFFIX";
15584 case DT_MIPS_COMPACT_SIZE:
15585 return "DT_MIPS_COMPACT_SIZE";
15586 case DT_MIPS_GP_VALUE:
15587 return "DT_MIPS_GP_VALUE";
15588 case DT_MIPS_AUX_DYNAMIC:
15589 return "DT_MIPS_AUX_DYNAMIC";
15590 case DT_MIPS_PLTGOT:
15591 return "DT_MIPS_PLTGOT";
15592 case DT_MIPS_RWPLT:
15593 return "DT_MIPS_RWPLT";
15594 }
15595 }
15596
15597 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15598 not known. */
15599
15600 const char *
15601 _bfd_mips_fp_abi_string (int fp)
15602 {
15603 switch (fp)
15604 {
15605 /* These strings aren't translated because they're simply
15606 option lists. */
15607 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15608 return "-mdouble-float";
15609
15610 case Val_GNU_MIPS_ABI_FP_SINGLE:
15611 return "-msingle-float";
15612
15613 case Val_GNU_MIPS_ABI_FP_SOFT:
15614 return "-msoft-float";
15615
15616 case Val_GNU_MIPS_ABI_FP_OLD_64:
15617 return _("-mips32r2 -mfp64 (12 callee-saved)");
15618
15619 case Val_GNU_MIPS_ABI_FP_XX:
15620 return "-mfpxx";
15621
15622 case Val_GNU_MIPS_ABI_FP_64:
15623 return "-mgp32 -mfp64";
15624
15625 case Val_GNU_MIPS_ABI_FP_64A:
15626 return "-mgp32 -mfp64 -mno-odd-spreg";
15627
15628 default:
15629 return 0;
15630 }
15631 }
15632
15633 static void
15634 print_mips_ases (FILE *file, unsigned int mask)
15635 {
15636 if (mask & AFL_ASE_DSP)
15637 fputs ("\n\tDSP ASE", file);
15638 if (mask & AFL_ASE_DSPR2)
15639 fputs ("\n\tDSP R2 ASE", file);
15640 if (mask & AFL_ASE_DSPR3)
15641 fputs ("\n\tDSP R3 ASE", file);
15642 if (mask & AFL_ASE_EVA)
15643 fputs ("\n\tEnhanced VA Scheme", file);
15644 if (mask & AFL_ASE_MCU)
15645 fputs ("\n\tMCU (MicroController) ASE", file);
15646 if (mask & AFL_ASE_MDMX)
15647 fputs ("\n\tMDMX ASE", file);
15648 if (mask & AFL_ASE_MIPS3D)
15649 fputs ("\n\tMIPS-3D ASE", file);
15650 if (mask & AFL_ASE_MT)
15651 fputs ("\n\tMT ASE", file);
15652 if (mask & AFL_ASE_SMARTMIPS)
15653 fputs ("\n\tSmartMIPS ASE", file);
15654 if (mask & AFL_ASE_VIRT)
15655 fputs ("\n\tVZ ASE", file);
15656 if (mask & AFL_ASE_MSA)
15657 fputs ("\n\tMSA ASE", file);
15658 if (mask & AFL_ASE_MIPS16)
15659 fputs ("\n\tMIPS16 ASE", file);
15660 if (mask & AFL_ASE_MICROMIPS)
15661 fputs ("\n\tMICROMIPS ASE", file);
15662 if (mask & AFL_ASE_XPA)
15663 fputs ("\n\tXPA ASE", file);
15664 if (mask & AFL_ASE_MIPS16E2)
15665 fputs ("\n\tMIPS16e2 ASE", file);
15666 if (mask == 0)
15667 fprintf (file, "\n\t%s", _("None"));
15668 else if ((mask & ~AFL_ASE_MASK) != 0)
15669 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15670 }
15671
15672 static void
15673 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15674 {
15675 switch (isa_ext)
15676 {
15677 case 0:
15678 fputs (_("None"), file);
15679 break;
15680 case AFL_EXT_XLR:
15681 fputs ("RMI XLR", file);
15682 break;
15683 case AFL_EXT_OCTEON3:
15684 fputs ("Cavium Networks Octeon3", file);
15685 break;
15686 case AFL_EXT_OCTEON2:
15687 fputs ("Cavium Networks Octeon2", file);
15688 break;
15689 case AFL_EXT_OCTEONP:
15690 fputs ("Cavium Networks OcteonP", file);
15691 break;
15692 case AFL_EXT_LOONGSON_3A:
15693 fputs ("Loongson 3A", file);
15694 break;
15695 case AFL_EXT_OCTEON:
15696 fputs ("Cavium Networks Octeon", file);
15697 break;
15698 case AFL_EXT_5900:
15699 fputs ("Toshiba R5900", file);
15700 break;
15701 case AFL_EXT_4650:
15702 fputs ("MIPS R4650", file);
15703 break;
15704 case AFL_EXT_4010:
15705 fputs ("LSI R4010", file);
15706 break;
15707 case AFL_EXT_4100:
15708 fputs ("NEC VR4100", file);
15709 break;
15710 case AFL_EXT_3900:
15711 fputs ("Toshiba R3900", file);
15712 break;
15713 case AFL_EXT_10000:
15714 fputs ("MIPS R10000", file);
15715 break;
15716 case AFL_EXT_SB1:
15717 fputs ("Broadcom SB-1", file);
15718 break;
15719 case AFL_EXT_4111:
15720 fputs ("NEC VR4111/VR4181", file);
15721 break;
15722 case AFL_EXT_4120:
15723 fputs ("NEC VR4120", file);
15724 break;
15725 case AFL_EXT_5400:
15726 fputs ("NEC VR5400", file);
15727 break;
15728 case AFL_EXT_5500:
15729 fputs ("NEC VR5500", file);
15730 break;
15731 case AFL_EXT_LOONGSON_2E:
15732 fputs ("ST Microelectronics Loongson 2E", file);
15733 break;
15734 case AFL_EXT_LOONGSON_2F:
15735 fputs ("ST Microelectronics Loongson 2F", file);
15736 break;
15737 case AFL_EXT_INTERAPTIV_MR2:
15738 fputs ("Imagination interAptiv MR2", file);
15739 break;
15740 default:
15741 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15742 break;
15743 }
15744 }
15745
15746 static void
15747 print_mips_fp_abi_value (FILE *file, int val)
15748 {
15749 switch (val)
15750 {
15751 case Val_GNU_MIPS_ABI_FP_ANY:
15752 fprintf (file, _("Hard or soft float\n"));
15753 break;
15754 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15755 fprintf (file, _("Hard float (double precision)\n"));
15756 break;
15757 case Val_GNU_MIPS_ABI_FP_SINGLE:
15758 fprintf (file, _("Hard float (single precision)\n"));
15759 break;
15760 case Val_GNU_MIPS_ABI_FP_SOFT:
15761 fprintf (file, _("Soft float\n"));
15762 break;
15763 case Val_GNU_MIPS_ABI_FP_OLD_64:
15764 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15765 break;
15766 case Val_GNU_MIPS_ABI_FP_XX:
15767 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15768 break;
15769 case Val_GNU_MIPS_ABI_FP_64:
15770 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15771 break;
15772 case Val_GNU_MIPS_ABI_FP_64A:
15773 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15774 break;
15775 default:
15776 fprintf (file, "??? (%d)\n", val);
15777 break;
15778 }
15779 }
15780
15781 static int
15782 get_mips_reg_size (int reg_size)
15783 {
15784 return (reg_size == AFL_REG_NONE) ? 0
15785 : (reg_size == AFL_REG_32) ? 32
15786 : (reg_size == AFL_REG_64) ? 64
15787 : (reg_size == AFL_REG_128) ? 128
15788 : -1;
15789 }
15790
15791 bfd_boolean
15792 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15793 {
15794 FILE *file = ptr;
15795
15796 BFD_ASSERT (abfd != NULL && ptr != NULL);
15797
15798 /* Print normal ELF private data. */
15799 _bfd_elf_print_private_bfd_data (abfd, ptr);
15800
15801 /* xgettext:c-format */
15802 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15803
15804 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15805 fprintf (file, _(" [abi=O32]"));
15806 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15807 fprintf (file, _(" [abi=O64]"));
15808 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15809 fprintf (file, _(" [abi=EABI32]"));
15810 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15811 fprintf (file, _(" [abi=EABI64]"));
15812 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15813 fprintf (file, _(" [abi unknown]"));
15814 else if (ABI_N32_P (abfd))
15815 fprintf (file, _(" [abi=N32]"));
15816 else if (ABI_64_P (abfd))
15817 fprintf (file, _(" [abi=64]"));
15818 else
15819 fprintf (file, _(" [no abi set]"));
15820
15821 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15822 fprintf (file, " [mips1]");
15823 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15824 fprintf (file, " [mips2]");
15825 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15826 fprintf (file, " [mips3]");
15827 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15828 fprintf (file, " [mips4]");
15829 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15830 fprintf (file, " [mips5]");
15831 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15832 fprintf (file, " [mips32]");
15833 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15834 fprintf (file, " [mips64]");
15835 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15836 fprintf (file, " [mips32r2]");
15837 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15838 fprintf (file, " [mips64r2]");
15839 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15840 fprintf (file, " [mips32r6]");
15841 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15842 fprintf (file, " [mips64r6]");
15843 else
15844 fprintf (file, _(" [unknown ISA]"));
15845
15846 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15847 fprintf (file, " [mdmx]");
15848
15849 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15850 fprintf (file, " [mips16]");
15851
15852 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15853 fprintf (file, " [micromips]");
15854
15855 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15856 fprintf (file, " [nan2008]");
15857
15858 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15859 fprintf (file, " [old fp64]");
15860
15861 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15862 fprintf (file, " [32bitmode]");
15863 else
15864 fprintf (file, _(" [not 32bitmode]"));
15865
15866 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15867 fprintf (file, " [noreorder]");
15868
15869 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15870 fprintf (file, " [PIC]");
15871
15872 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15873 fprintf (file, " [CPIC]");
15874
15875 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15876 fprintf (file, " [XGOT]");
15877
15878 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15879 fprintf (file, " [UCODE]");
15880
15881 fputc ('\n', file);
15882
15883 if (mips_elf_tdata (abfd)->abiflags_valid)
15884 {
15885 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15886 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15887 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15888 if (abiflags->isa_rev > 1)
15889 fprintf (file, "r%d", abiflags->isa_rev);
15890 fprintf (file, "\nGPR size: %d",
15891 get_mips_reg_size (abiflags->gpr_size));
15892 fprintf (file, "\nCPR1 size: %d",
15893 get_mips_reg_size (abiflags->cpr1_size));
15894 fprintf (file, "\nCPR2 size: %d",
15895 get_mips_reg_size (abiflags->cpr2_size));
15896 fputs ("\nFP ABI: ", file);
15897 print_mips_fp_abi_value (file, abiflags->fp_abi);
15898 fputs ("ISA Extension: ", file);
15899 print_mips_isa_ext (file, abiflags->isa_ext);
15900 fputs ("\nASEs:", file);
15901 print_mips_ases (file, abiflags->ases);
15902 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15903 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15904 fputc ('\n', file);
15905 }
15906
15907 return TRUE;
15908 }
15909
15910 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15911 {
15912 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15913 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15914 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15915 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15916 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15917 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
15918 { NULL, 0, 0, 0, 0 }
15919 };
15920
15921 /* Merge non visibility st_other attributes. Ensure that the
15922 STO_OPTIONAL flag is copied into h->other, even if this is not a
15923 definiton of the symbol. */
15924 void
15925 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15926 const Elf_Internal_Sym *isym,
15927 bfd_boolean definition,
15928 bfd_boolean dynamic ATTRIBUTE_UNUSED)
15929 {
15930 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15931 {
15932 unsigned char other;
15933
15934 other = (definition ? isym->st_other : h->other);
15935 other &= ~ELF_ST_VISIBILITY (-1);
15936 h->other = other | ELF_ST_VISIBILITY (h->other);
15937 }
15938
15939 if (!definition
15940 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15941 h->other |= STO_OPTIONAL;
15942 }
15943
15944 /* Decide whether an undefined symbol is special and can be ignored.
15945 This is the case for OPTIONAL symbols on IRIX. */
15946 bfd_boolean
15947 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15948 {
15949 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15950 }
15951
15952 bfd_boolean
15953 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15954 {
15955 return (sym->st_shndx == SHN_COMMON
15956 || sym->st_shndx == SHN_MIPS_ACOMMON
15957 || sym->st_shndx == SHN_MIPS_SCOMMON);
15958 }
15959
15960 /* Return address for Ith PLT stub in section PLT, for relocation REL
15961 or (bfd_vma) -1 if it should not be included. */
15962
15963 bfd_vma
15964 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15965 const arelent *rel ATTRIBUTE_UNUSED)
15966 {
15967 return (plt->vma
15968 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15969 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15970 }
15971
15972 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
15973 and microMIPS PLT slots we may have a many-to-one mapping between .plt
15974 and .got.plt and also the slots may be of a different size each we walk
15975 the PLT manually fetching instructions and matching them against known
15976 patterns. To make things easier standard MIPS slots, if any, always come
15977 first. As we don't create proper ELF symbols we use the UDATA.I member
15978 of ASYMBOL to carry ISA annotation. The encoding used is the same as
15979 with the ST_OTHER member of the ELF symbol. */
15980
15981 long
15982 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15983 long symcount ATTRIBUTE_UNUSED,
15984 asymbol **syms ATTRIBUTE_UNUSED,
15985 long dynsymcount, asymbol **dynsyms,
15986 asymbol **ret)
15987 {
15988 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15989 static const char microsuffix[] = "@micromipsplt";
15990 static const char m16suffix[] = "@mips16plt";
15991 static const char mipssuffix[] = "@plt";
15992
15993 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15994 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15995 bfd_boolean micromips_p = MICROMIPS_P (abfd);
15996 Elf_Internal_Shdr *hdr;
15997 bfd_byte *plt_data;
15998 bfd_vma plt_offset;
15999 unsigned int other;
16000 bfd_vma entry_size;
16001 bfd_vma plt0_size;
16002 asection *relplt;
16003 bfd_vma opcode;
16004 asection *plt;
16005 asymbol *send;
16006 size_t size;
16007 char *names;
16008 long counti;
16009 arelent *p;
16010 asymbol *s;
16011 char *nend;
16012 long count;
16013 long pi;
16014 long i;
16015 long n;
16016
16017 *ret = NULL;
16018
16019 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16020 return 0;
16021
16022 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16023 if (relplt == NULL)
16024 return 0;
16025
16026 hdr = &elf_section_data (relplt)->this_hdr;
16027 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16028 return 0;
16029
16030 plt = bfd_get_section_by_name (abfd, ".plt");
16031 if (plt == NULL)
16032 return 0;
16033
16034 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16035 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16036 return -1;
16037 p = relplt->relocation;
16038
16039 /* Calculating the exact amount of space required for symbols would
16040 require two passes over the PLT, so just pessimise assuming two
16041 PLT slots per relocation. */
16042 count = relplt->size / hdr->sh_entsize;
16043 counti = count * bed->s->int_rels_per_ext_rel;
16044 size = 2 * count * sizeof (asymbol);
16045 size += count * (sizeof (mipssuffix) +
16046 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16047 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16048 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16049
16050 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16051 size += sizeof (asymbol) + sizeof (pltname);
16052
16053 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16054 return -1;
16055
16056 if (plt->size < 16)
16057 return -1;
16058
16059 s = *ret = bfd_malloc (size);
16060 if (s == NULL)
16061 return -1;
16062 send = s + 2 * count + 1;
16063
16064 names = (char *) send;
16065 nend = (char *) s + size;
16066 n = 0;
16067
16068 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16069 if (opcode == 0x3302fffe)
16070 {
16071 if (!micromips_p)
16072 return -1;
16073 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16074 other = STO_MICROMIPS;
16075 }
16076 else if (opcode == 0x0398c1d0)
16077 {
16078 if (!micromips_p)
16079 return -1;
16080 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16081 other = STO_MICROMIPS;
16082 }
16083 else
16084 {
16085 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16086 other = 0;
16087 }
16088
16089 s->the_bfd = abfd;
16090 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16091 s->section = plt;
16092 s->value = 0;
16093 s->name = names;
16094 s->udata.i = other;
16095 memcpy (names, pltname, sizeof (pltname));
16096 names += sizeof (pltname);
16097 ++s, ++n;
16098
16099 pi = 0;
16100 for (plt_offset = plt0_size;
16101 plt_offset + 8 <= plt->size && s < send;
16102 plt_offset += entry_size)
16103 {
16104 bfd_vma gotplt_addr;
16105 const char *suffix;
16106 bfd_vma gotplt_hi;
16107 bfd_vma gotplt_lo;
16108 size_t suffixlen;
16109
16110 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16111
16112 /* Check if the second word matches the expected MIPS16 instruction. */
16113 if (opcode == 0x651aeb00)
16114 {
16115 if (micromips_p)
16116 return -1;
16117 /* Truncated table??? */
16118 if (plt_offset + 16 > plt->size)
16119 break;
16120 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16121 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16122 suffixlen = sizeof (m16suffix);
16123 suffix = m16suffix;
16124 other = STO_MIPS16;
16125 }
16126 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16127 else if (opcode == 0xff220000)
16128 {
16129 if (!micromips_p)
16130 return -1;
16131 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16132 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16133 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16134 gotplt_lo <<= 2;
16135 gotplt_addr = gotplt_hi + gotplt_lo;
16136 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16137 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16138 suffixlen = sizeof (microsuffix);
16139 suffix = microsuffix;
16140 other = STO_MICROMIPS;
16141 }
16142 /* Likewise the expected microMIPS instruction (insn32 mode). */
16143 else if ((opcode & 0xffff0000) == 0xff2f0000)
16144 {
16145 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16146 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16147 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16148 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16149 gotplt_addr = gotplt_hi + gotplt_lo;
16150 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16151 suffixlen = sizeof (microsuffix);
16152 suffix = microsuffix;
16153 other = STO_MICROMIPS;
16154 }
16155 /* Otherwise assume standard MIPS code. */
16156 else
16157 {
16158 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16159 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16160 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16161 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16162 gotplt_addr = gotplt_hi + gotplt_lo;
16163 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16164 suffixlen = sizeof (mipssuffix);
16165 suffix = mipssuffix;
16166 other = 0;
16167 }
16168 /* Truncated table??? */
16169 if (plt_offset + entry_size > plt->size)
16170 break;
16171
16172 for (i = 0;
16173 i < count && p[pi].address != gotplt_addr;
16174 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16175
16176 if (i < count)
16177 {
16178 size_t namelen;
16179 size_t len;
16180
16181 *s = **p[pi].sym_ptr_ptr;
16182 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16183 we are defining a symbol, ensure one of them is set. */
16184 if ((s->flags & BSF_LOCAL) == 0)
16185 s->flags |= BSF_GLOBAL;
16186 s->flags |= BSF_SYNTHETIC;
16187 s->section = plt;
16188 s->value = plt_offset;
16189 s->name = names;
16190 s->udata.i = other;
16191
16192 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16193 namelen = len + suffixlen;
16194 if (names + namelen > nend)
16195 break;
16196
16197 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16198 names += len;
16199 memcpy (names, suffix, suffixlen);
16200 names += suffixlen;
16201
16202 ++s, ++n;
16203 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16204 }
16205 }
16206
16207 free (plt_data);
16208
16209 return n;
16210 }
16211
16212 /* Return the ABI flags associated with ABFD if available. */
16213
16214 Elf_Internal_ABIFlags_v0 *
16215 bfd_mips_elf_get_abiflags (bfd *abfd)
16216 {
16217 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16218
16219 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16220 }
16221
16222 void
16223 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16224 {
16225 struct mips_elf_link_hash_table *htab;
16226 Elf_Internal_Ehdr *i_ehdrp;
16227
16228 i_ehdrp = elf_elfheader (abfd);
16229 if (link_info)
16230 {
16231 htab = mips_elf_hash_table (link_info);
16232 BFD_ASSERT (htab != NULL);
16233
16234 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16235 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16236 }
16237
16238 _bfd_elf_post_process_headers (abfd, link_info);
16239
16240 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16241 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16242 i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16243 }
16244
16245 int
16246 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16247 {
16248 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16249 }
16250
16251 /* Return the opcode for can't unwind. */
16252
16253 int
16254 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16255 {
16256 return COMPACT_EH_CANT_UNWIND_OPCODE;
16257 }