]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2021 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
465 /* True if we already reported the small-data section overflow. */
466 bfd_boolean small_data_overflow_reported;
467
468 /* True if we use the special `__gnu_absolute_zero' symbol. */
469 bfd_boolean use_absolute_zero;
470
471 /* True if we have been configured for a GNU target. */
472 bfd_boolean gnu_target;
473
474 /* Shortcuts to some dynamic sections, or NULL if they are not
475 being used. */
476 asection *srelplt2;
477 asection *sstubs;
478
479 /* The master GOT information. */
480 struct mips_got_info *got_info;
481
482 /* The global symbol in the GOT with the lowest index in the dynamic
483 symbol table. */
484 struct elf_link_hash_entry *global_gotsym;
485
486 /* The size of the PLT header in bytes. */
487 bfd_vma plt_header_size;
488
489 /* The size of a standard PLT entry in bytes. */
490 bfd_vma plt_mips_entry_size;
491
492 /* The size of a compressed PLT entry in bytes. */
493 bfd_vma plt_comp_entry_size;
494
495 /* The offset of the next standard PLT entry to create. */
496 bfd_vma plt_mips_offset;
497
498 /* The offset of the next compressed PLT entry to create. */
499 bfd_vma plt_comp_offset;
500
501 /* The index of the next .got.plt entry to create. */
502 bfd_vma plt_got_index;
503
504 /* The number of functions that need a lazy-binding stub. */
505 bfd_vma lazy_stub_count;
506
507 /* The size of a function stub entry in bytes. */
508 bfd_vma function_stub_size;
509
510 /* The number of reserved entries at the beginning of the GOT. */
511 unsigned int reserved_gotno;
512
513 /* The section used for mips_elf_la25_stub trampolines.
514 See the comment above that structure for details. */
515 asection *strampoline;
516
517 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518 pairs. */
519 htab_t la25_stubs;
520
521 /* A function FN (NAME, IS, OS) that creates a new input section
522 called NAME and links it to output section OS. If IS is nonnull,
523 the new section should go immediately before it, otherwise it
524 should go at the (current) beginning of OS.
525
526 The function returns the new section on success, otherwise it
527 returns null. */
528 asection *(*add_stub_section) (const char *, asection *, asection *);
529
530 /* Is the PLT header compressed? */
531 unsigned int plt_header_is_comp : 1;
532 };
533
534 /* Get the MIPS ELF linker hash table from a link_info structure. */
535
536 #define mips_elf_hash_table(p) \
537 ((is_elf_hash_table ((p)->hash) \
538 && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA) \
539 ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
540
541 /* A structure used to communicate with htab_traverse callbacks. */
542 struct mips_htab_traverse_info
543 {
544 /* The usual link-wide information. */
545 struct bfd_link_info *info;
546 bfd *output_bfd;
547
548 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
549 bfd_boolean error;
550 };
551
552 /* MIPS ELF private object data. */
553
554 struct mips_elf_obj_tdata
555 {
556 /* Generic ELF private object data. */
557 struct elf_obj_tdata root;
558
559 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
560 bfd *abi_fp_bfd;
561
562 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
563 bfd *abi_msa_bfd;
564
565 /* The abiflags for this object. */
566 Elf_Internal_ABIFlags_v0 abiflags;
567 bfd_boolean abiflags_valid;
568
569 /* The GOT requirements of input bfds. */
570 struct mips_got_info *got;
571
572 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
573 included directly in this one, but there's no point to wasting
574 the memory just for the infrequently called find_nearest_line. */
575 struct mips_elf_find_line *find_line_info;
576
577 /* An array of stub sections indexed by symbol number. */
578 asection **local_stubs;
579 asection **local_call_stubs;
580
581 /* The Irix 5 support uses two virtual sections, which represent
582 text/data symbols defined in dynamic objects. */
583 asymbol *elf_data_symbol;
584 asymbol *elf_text_symbol;
585 asection *elf_data_section;
586 asection *elf_text_section;
587 };
588
589 /* Get MIPS ELF private object data from BFD's tdata. */
590
591 #define mips_elf_tdata(bfd) \
592 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593
594 #define TLS_RELOC_P(r_type) \
595 (r_type == R_MIPS_TLS_DTPMOD32 \
596 || r_type == R_MIPS_TLS_DTPMOD64 \
597 || r_type == R_MIPS_TLS_DTPREL32 \
598 || r_type == R_MIPS_TLS_DTPREL64 \
599 || r_type == R_MIPS_TLS_GD \
600 || r_type == R_MIPS_TLS_LDM \
601 || r_type == R_MIPS_TLS_DTPREL_HI16 \
602 || r_type == R_MIPS_TLS_DTPREL_LO16 \
603 || r_type == R_MIPS_TLS_GOTTPREL \
604 || r_type == R_MIPS_TLS_TPREL32 \
605 || r_type == R_MIPS_TLS_TPREL64 \
606 || r_type == R_MIPS_TLS_TPREL_HI16 \
607 || r_type == R_MIPS_TLS_TPREL_LO16 \
608 || r_type == R_MIPS16_TLS_GD \
609 || r_type == R_MIPS16_TLS_LDM \
610 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
611 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
612 || r_type == R_MIPS16_TLS_GOTTPREL \
613 || r_type == R_MIPS16_TLS_TPREL_HI16 \
614 || r_type == R_MIPS16_TLS_TPREL_LO16 \
615 || r_type == R_MICROMIPS_TLS_GD \
616 || r_type == R_MICROMIPS_TLS_LDM \
617 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
618 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
619 || r_type == R_MICROMIPS_TLS_GOTTPREL \
620 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
621 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
622
623 /* Structure used to pass information to mips_elf_output_extsym. */
624
625 struct extsym_info
626 {
627 bfd *abfd;
628 struct bfd_link_info *info;
629 struct ecoff_debug_info *debug;
630 const struct ecoff_debug_swap *swap;
631 bfd_boolean failed;
632 };
633
634 /* The names of the runtime procedure table symbols used on IRIX5. */
635
636 static const char * const mips_elf_dynsym_rtproc_names[] =
637 {
638 "_procedure_table",
639 "_procedure_string_table",
640 "_procedure_table_size",
641 NULL
642 };
643
644 /* These structures are used to generate the .compact_rel section on
645 IRIX5. */
646
647 typedef struct
648 {
649 unsigned long id1; /* Always one? */
650 unsigned long num; /* Number of compact relocation entries. */
651 unsigned long id2; /* Always two? */
652 unsigned long offset; /* The file offset of the first relocation. */
653 unsigned long reserved0; /* Zero? */
654 unsigned long reserved1; /* Zero? */
655 } Elf32_compact_rel;
656
657 typedef struct
658 {
659 bfd_byte id1[4];
660 bfd_byte num[4];
661 bfd_byte id2[4];
662 bfd_byte offset[4];
663 bfd_byte reserved0[4];
664 bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
666
667 typedef struct
668 {
669 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
670 unsigned int rtype : 4; /* Relocation types. See below. */
671 unsigned int dist2to : 8;
672 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
673 unsigned long konst; /* KONST field. See below. */
674 unsigned long vaddr; /* VADDR to be relocated. */
675 } Elf32_crinfo;
676
677 typedef struct
678 {
679 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
680 unsigned int rtype : 4; /* Relocation types. See below. */
681 unsigned int dist2to : 8;
682 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
683 unsigned long konst; /* KONST field. See below. */
684 } Elf32_crinfo2;
685
686 typedef struct
687 {
688 bfd_byte info[4];
689 bfd_byte konst[4];
690 bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
692
693 typedef struct
694 {
695 bfd_byte info[4];
696 bfd_byte konst[4];
697 } Elf32_External_crinfo2;
698
699 /* These are the constants used to swap the bitfields in a crinfo. */
700
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
709
710 /* A compact relocation info has long (3 words) or short (2 words)
711 formats. A short format doesn't have VADDR field and relvaddr
712 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
713 #define CRF_MIPS_LONG 1
714 #define CRF_MIPS_SHORT 0
715
716 /* There are 4 types of compact relocation at least. The value KONST
717 has different meaning for each type:
718
719 (type) (konst)
720 CT_MIPS_REL32 Address in data
721 CT_MIPS_WORD Address in word (XXX)
722 CT_MIPS_GPHI_LO GP - vaddr
723 CT_MIPS_JMPAD Address to jump
724 */
725
726 #define CRT_MIPS_REL32 0xa
727 #define CRT_MIPS_WORD 0xb
728 #define CRT_MIPS_GPHI_LO 0xc
729 #define CRT_MIPS_JMPAD 0xd
730
731 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
735 \f
736 /* The structure of the runtime procedure descriptor created by the
737 loader for use by the static exception system. */
738
739 typedef struct runtime_pdr {
740 bfd_vma adr; /* Memory address of start of procedure. */
741 long regmask; /* Save register mask. */
742 long regoffset; /* Save register offset. */
743 long fregmask; /* Save floating point register mask. */
744 long fregoffset; /* Save floating point register offset. */
745 long frameoffset; /* Frame size. */
746 short framereg; /* Frame pointer register. */
747 short pcreg; /* Offset or reg of return pc. */
748 long irpss; /* Index into the runtime string table. */
749 long reserved;
750 struct exception_info *exception_info;/* Pointer to exception array. */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
754 \f
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757 struct mips_elf_link_hash_entry *, int);
758 static bfd_boolean mips_elf_sort_hash_table_f
759 (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761 (bfd_vma);
762 static bfd_boolean mips_elf_create_dynamic_relocation
763 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765 bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767 (bfd *, struct mips_got_info *, bfd *);
768
769 /* This will be used when we sort the dynamic relocation records. */
770 static bfd *reldyn_sorting_bfd;
771
772 /* True if ABFD is for CPUs with load interlocking that include
773 non-MIPS1 CPUs and R3900. */
774 #define LOAD_INTERLOCKS_P(abfd) \
775 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779 This should be safe for all architectures. We enable this predicate
780 for RM9000 for now. */
781 #define JAL_TO_BAL_P(abfd) \
782 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785 This should be safe for all architectures. We enable this predicate for
786 all CPUs. */
787 #define JALR_TO_BAL_P(abfd) 1
788
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JR_TO_B_P(abfd) 1
793
794 /* True if ABFD is a PIC object. */
795 #define PIC_OBJECT_P(abfd) \
796 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797
798 /* Nonzero if ABFD is using the O32 ABI. */
799 #define ABI_O32_P(abfd) \
800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801
802 /* Nonzero if ABFD is using the N32 ABI. */
803 #define ABI_N32_P(abfd) \
804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805
806 /* Nonzero if ABFD is using the N64 ABI. */
807 #define ABI_64_P(abfd) \
808 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
809
810 /* Nonzero if ABFD is using NewABI conventions. */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812
813 /* Nonzero if ABFD has microMIPS code. */
814 #define MICROMIPS_P(abfd) \
815 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816
817 /* Nonzero if ABFD is MIPS R6. */
818 #define MIPSR6_P(abfd) \
819 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821
822 /* The IRIX compatibility level we are striving for. */
823 #define IRIX_COMPAT(abfd) \
824 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825
826 /* Whether we are trying to be compatible with IRIX at all. */
827 #define SGI_COMPAT(abfd) \
828 (IRIX_COMPAT (abfd) != ict_none)
829
830 /* The name of the options section. */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
833
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841 (strcmp (NAME, ".MIPS.abiflags") == 0)
842
843 /* Whether the section is readonly. */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
846 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847
848 /* The name of the stub section. */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
850
851 /* The size of an external REL relocation. */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853 (get_elf_backend_data (abfd)->s->sizeof_rel)
854
855 /* The size of an external RELA relocation. */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857 (get_elf_backend_data (abfd)->s->sizeof_rela)
858
859 /* The size of an external dynamic table entry. */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861 (get_elf_backend_data (abfd)->s->sizeof_dyn)
862
863 /* The size of a GOT entry. */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865 (get_elf_backend_data (abfd)->s->arch_size / 8)
866
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869 (get_elf_backend_data (abfd)->s->arch_size / 8)
870
871 /* The size of a symbol-table entry. */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873 (get_elf_backend_data (abfd)->s->sizeof_sym)
874
875 /* The default alignment for sections, as a power of two. */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
877 (get_elf_backend_data (abfd)->s->log_file_align)
878
879 /* Get word-sized data. */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882
883 /* Put out word-sized data. */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
885 (ABI_64_P (abfd) \
886 ? bfd_put_64 (abfd, val, ptr) \
887 : bfd_put_32 (abfd, val, ptr))
888
889 /* The opcode for word-sized loads (LW or LD). */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892
893 /* Add a dynamic symbol table-entry. */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
895 _bfd_elf_add_dynamic_entry (info, tag, val)
896
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
898 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
899
900 /* The name of the dynamic relocation section. */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903 ? ".rela.dyn" : ".rel.dyn")
904
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906 from smaller values. Start with zero, widen, *then* decrement. */
907 #define MINUS_ONE (((bfd_vma)0) - 1)
908 #define MINUS_TWO (((bfd_vma)0) - 2)
909
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911 a GNU object. The dynamic linker can then use got[1] to store the
912 module pointer. */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915
916 /* The offset of $gp from the beginning of the .got section. */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918 (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919 ? 0x0 : 0x7ff0)
920
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922 offsets from $gp. */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
924
925 /* Instructions which appear in a stub. */
926 #define STUB_LW(abfd) \
927 ((ABI_64_P (abfd) \
928 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
929 : 0x8f998010)) /* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
932 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL) \
937 ((ABI_64_P (abfd) \
938 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
939 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
940
941 /* Likewise for the microMIPS ASE. */
942 #define STUB_LW_MICROMIPS(abfd) \
943 (ABI_64_P (abfd) \
944 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
945 : 0xff3c8010) /* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL) \
949 (0x41b80000 + (VAL)) /* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL) \
953 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL) \
955 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
957 (ABI_64_P (abfd) \
958 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
959 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
960
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
967
968 /* The name of the dynamic interpreter. This is put in the .interp
969 section. */
970
971 #define ELF_DYNAMIC_INTERPRETER(abfd) \
972 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
973 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
974 : "/usr/lib/libc.so.1")
975
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i) \
980 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i) \
982 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t) \
984 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i) \
988 (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i) \
990 (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t) \
992 (ELF32_R_INFO (s, t))
993 #endif
994 \f
995 /* The mips16 compiler uses a couple of special sections to handle
996 floating point arguments.
997
998 Section names that look like .mips16.fn.FNNAME contain stubs that
999 copy floating point arguments from the fp regs to the gp regs and
1000 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1001 call should be redirected to the stub instead. If no 32 bit
1002 function calls FNNAME, the stub should be discarded. We need to
1003 consider any reference to the function, not just a call, because
1004 if the address of the function is taken we will need the stub,
1005 since the address might be passed to a 32 bit function.
1006
1007 Section names that look like .mips16.call.FNNAME contain stubs
1008 that copy floating point arguments from the gp regs to the fp
1009 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1010 then any 16 bit function that calls FNNAME should be redirected
1011 to the stub instead. If FNNAME is not a 32 bit function, the
1012 stub should be discarded.
1013
1014 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015 which call FNNAME and then copy the return value from the fp regs
1016 to the gp regs. These stubs store the return value in $18 while
1017 calling FNNAME; any function which might call one of these stubs
1018 must arrange to save $18 around the call. (This case is not
1019 needed for 32 bit functions that call 16 bit functions, because
1020 16 bit functions always return floating point values in both
1021 $f0/$f1 and $2/$3.)
1022
1023 Note that in all cases FNNAME might be defined statically.
1024 Therefore, FNNAME is not used literally. Instead, the relocation
1025 information will indicate which symbol the section is for.
1026
1027 We record any stubs that we find in the symbol table. */
1028
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1032
1033 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1034 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1036 \f
1037 /* The format of the first PLT entry in an O32 executable. */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1039 {
1040 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1041 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1042 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1043 0x031cc023, /* subu $24, $24, $28 */
1044 0x03e07825, /* or t7, ra, zero */
1045 0x0018c082, /* srl $24, $24, 2 */
1046 0x0320f809, /* jalr $25 */
1047 0x2718fffe /* subu $24, $24, 2 */
1048 };
1049
1050 /* The format of the first PLT entry in an O32 executable using compact
1051 jumps. */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053 {
1054 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1055 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1056 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1057 0x031cc023, /* subu $24, $24, $28 */
1058 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1059 0x0018c082, /* srl $24, $24, 2 */
1060 0x2718fffe, /* subu $24, $24, 2 */
1061 0xf8190000 /* jalrc $25 */
1062 };
1063
1064 /* The format of the first PLT entry in an N32 executable. Different
1065 because gp ($28) is not available; we use t2 ($14) instead. */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1067 {
1068 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1069 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1070 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1071 0x030ec023, /* subu $24, $24, $14 */
1072 0x03e07825, /* or t7, ra, zero */
1073 0x0018c082, /* srl $24, $24, 2 */
1074 0x0320f809, /* jalr $25 */
1075 0x2718fffe /* subu $24, $24, 2 */
1076 };
1077
1078 /* The format of the first PLT entry in an N32 executable using compact
1079 jumps. Different because gp ($28) is not available; we use t2 ($14)
1080 instead. */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082 {
1083 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1084 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1085 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1086 0x030ec023, /* subu $24, $24, $14 */
1087 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1088 0x0018c082, /* srl $24, $24, 2 */
1089 0x2718fffe, /* subu $24, $24, 2 */
1090 0xf8190000 /* jalrc $25 */
1091 };
1092
1093 /* The format of the first PLT entry in an N64 executable. Different
1094 from N32 because of the increased size of GOT entries. */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1096 {
1097 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1098 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1099 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1100 0x030ec023, /* subu $24, $24, $14 */
1101 0x03e07825, /* or t7, ra, zero */
1102 0x0018c0c2, /* srl $24, $24, 3 */
1103 0x0320f809, /* jalr $25 */
1104 0x2718fffe /* subu $24, $24, 2 */
1105 };
1106
1107 /* The format of the first PLT entry in an N64 executable using compact
1108 jumps. Different from N32 because of the increased size of GOT
1109 entries. */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111 {
1112 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1113 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1114 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1115 0x030ec023, /* subu $24, $24, $14 */
1116 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1117 0x0018c0c2, /* srl $24, $24, 3 */
1118 0x2718fffe, /* subu $24, $24, 2 */
1119 0xf8190000 /* jalrc $25 */
1120 };
1121
1122
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124 We rely on v0 ($2) rather than t8 ($24) to contain the address
1125 of the GOTPLT entry handled, so this stub may only be used when
1126 all the subsequent PLT entries are microMIPS code too.
1127
1128 The trailing NOP is for alignment and correct disassembly only. */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130 {
1131 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1132 0xff23, 0x0000, /* lw $25, 0($3) */
1133 0x0535, /* subu $2, $2, $3 */
1134 0x2525, /* srl $2, $2, 2 */
1135 0x3302, 0xfffe, /* subu $24, $2, 2 */
1136 0x0dff, /* move $15, $31 */
1137 0x45f9, /* jalrs $25 */
1138 0x0f83, /* move $28, $3 */
1139 0x0c00 /* nop */
1140 };
1141
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143 in the insn32 mode. */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145 {
1146 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1147 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1148 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1149 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1150 0x001f, 0x7a90, /* or $15, $31, zero */
1151 0x0318, 0x1040, /* srl $24, $24, 2 */
1152 0x03f9, 0x0f3c, /* jalr $25 */
1153 0x3318, 0xfffe /* subu $24, $24, 2 */
1154 };
1155
1156 /* The format of subsequent standard PLT entries. */
1157 static const bfd_vma mips_exec_plt_entry[] =
1158 {
1159 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1160 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1161 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1162 0x03200008 /* jr $25 */
1163 };
1164
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1166 {
1167 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1168 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1169 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1170 0x03200009 /* jr $25 */
1171 };
1172
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174 {
1175 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1176 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1177 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1178 0xd8190000 /* jic $25, 0 */
1179 };
1180
1181 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1182 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183 directly addressable. */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1185 {
1186 0xb203, /* lw $2, 12($pc) */
1187 0x9a60, /* lw $3, 0($2) */
1188 0x651a, /* move $24, $2 */
1189 0xeb00, /* jr $3 */
1190 0x653b, /* move $25, $3 */
1191 0x6500, /* nop */
1192 0x0000, 0x0000 /* .word (.got.plt entry) */
1193 };
1194
1195 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1196 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1198 {
1199 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1200 0xff22, 0x0000, /* lw $25, 0($2) */
1201 0x4599, /* jr $25 */
1202 0x0f02 /* move $24, $2 */
1203 };
1204
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207 {
1208 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1209 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1210 0x0019, 0x0f3c, /* jr $25 */
1211 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1212 };
1213
1214 /* The format of the first PLT entry in a VxWorks executable. */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216 {
1217 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1218 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1219 0x8f390008, /* lw t9, 8(t9) */
1220 0x00000000, /* nop */
1221 0x03200008, /* jr t9 */
1222 0x00000000 /* nop */
1223 };
1224
1225 /* The format of subsequent PLT entries. */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227 {
1228 0x10000000, /* b .PLT_resolver */
1229 0x24180000, /* li t8, <pltindex> */
1230 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1231 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1232 0x8f390000, /* lw t9, 0(t9) */
1233 0x00000000, /* nop */
1234 0x03200008, /* jr t9 */
1235 0x00000000 /* nop */
1236 };
1237
1238 /* The format of the first PLT entry in a VxWorks shared object. */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240 {
1241 0x8f990008, /* lw t9, 8(gp) */
1242 0x00000000, /* nop */
1243 0x03200008, /* jr t9 */
1244 0x00000000, /* nop */
1245 0x00000000, /* nop */
1246 0x00000000 /* nop */
1247 };
1248
1249 /* The format of subsequent PLT entries. */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251 {
1252 0x10000000, /* b .PLT_resolver */
1253 0x24180000 /* li t8, <pltindex> */
1254 };
1255 \f
1256 /* microMIPS 32-bit opcode helper installer. */
1257
1258 static void
1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260 {
1261 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1263 }
1264
1265 /* microMIPS 32-bit opcode helper retriever. */
1266
1267 static bfd_vma
1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269 {
1270 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271 }
1272 \f
1273 /* Look up an entry in a MIPS ELF linker hash table. */
1274
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1276 ((struct mips_elf_link_hash_entry *) \
1277 elf_link_hash_lookup (&(table)->root, (string), (create), \
1278 (copy), (follow)))
1279
1280 /* Traverse a MIPS ELF linker hash table. */
1281
1282 #define mips_elf_link_hash_traverse(table, func, info) \
1283 (elf_link_hash_traverse \
1284 (&(table)->root, \
1285 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1286 (info)))
1287
1288 /* Find the base offsets for thread-local storage in this object,
1289 for GD/LD and IE/LE respectively. */
1290
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1293
1294 static bfd_vma
1295 dtprel_base (struct bfd_link_info *info)
1296 {
1297 /* If tls_sec is NULL, we should have signalled an error already. */
1298 if (elf_hash_table (info)->tls_sec == NULL)
1299 return 0;
1300 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301 }
1302
1303 static bfd_vma
1304 tprel_base (struct bfd_link_info *info)
1305 {
1306 /* If tls_sec is NULL, we should have signalled an error already. */
1307 if (elf_hash_table (info)->tls_sec == NULL)
1308 return 0;
1309 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310 }
1311
1312 /* Create an entry in a MIPS ELF linker hash table. */
1313
1314 static struct bfd_hash_entry *
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 struct bfd_hash_table *table, const char *string)
1317 {
1318 struct mips_elf_link_hash_entry *ret =
1319 (struct mips_elf_link_hash_entry *) entry;
1320
1321 /* Allocate the structure if it has not already been allocated by a
1322 subclass. */
1323 if (ret == NULL)
1324 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325 if (ret == NULL)
1326 return (struct bfd_hash_entry *) ret;
1327
1328 /* Call the allocation method of the superclass. */
1329 ret = ((struct mips_elf_link_hash_entry *)
1330 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 table, string));
1332 if (ret != NULL)
1333 {
1334 /* Set local fields. */
1335 memset (&ret->esym, 0, sizeof (EXTR));
1336 /* We use -2 as a marker to indicate that the information has
1337 not been set. -1 means there is no associated ifd. */
1338 ret->esym.ifd = -2;
1339 ret->la25_stub = 0;
1340 ret->possibly_dynamic_relocs = 0;
1341 ret->fn_stub = NULL;
1342 ret->call_stub = NULL;
1343 ret->call_fp_stub = NULL;
1344 ret->mipsxhash_loc = 0;
1345 ret->global_got_area = GGA_NONE;
1346 ret->got_only_for_calls = TRUE;
1347 ret->readonly_reloc = FALSE;
1348 ret->has_static_relocs = FALSE;
1349 ret->no_fn_stub = FALSE;
1350 ret->need_fn_stub = FALSE;
1351 ret->has_nonpic_branches = FALSE;
1352 ret->needs_lazy_stub = FALSE;
1353 ret->use_plt_entry = FALSE;
1354 }
1355
1356 return (struct bfd_hash_entry *) ret;
1357 }
1358
1359 /* Allocate MIPS ELF private object data. */
1360
1361 bfd_boolean
1362 _bfd_mips_elf_mkobject (bfd *abfd)
1363 {
1364 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 MIPS_ELF_DATA);
1366 }
1367
1368 bfd_boolean
1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1370 {
1371 if (!sec->used_by_bfd)
1372 {
1373 struct _mips_elf_section_data *sdata;
1374 size_t amt = sizeof (*sdata);
1375
1376 sdata = bfd_zalloc (abfd, amt);
1377 if (sdata == NULL)
1378 return FALSE;
1379 sec->used_by_bfd = sdata;
1380 }
1381
1382 return _bfd_elf_new_section_hook (abfd, sec);
1383 }
1384 \f
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386 ecoff_debug_info structure. */
1387
1388 bfd_boolean
1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 struct ecoff_debug_info *debug)
1391 {
1392 HDRR *symhdr;
1393 const struct ecoff_debug_swap *swap;
1394 char *ext_hdr;
1395
1396 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397 memset (debug, 0, sizeof (*debug));
1398
1399 ext_hdr = bfd_malloc (swap->external_hdr_size);
1400 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401 goto error_return;
1402
1403 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 swap->external_hdr_size))
1405 goto error_return;
1406
1407 symhdr = &debug->symbolic_header;
1408 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409
1410 /* The symbolic header contains absolute file offsets and sizes to
1411 read. */
1412 #define READ(ptr, offset, count, size, type) \
1413 do \
1414 { \
1415 size_t amt; \
1416 debug->ptr = NULL; \
1417 if (symhdr->count == 0) \
1418 break; \
1419 if (_bfd_mul_overflow (size, symhdr->count, &amt)) \
1420 { \
1421 bfd_set_error (bfd_error_file_too_big); \
1422 goto error_return; \
1423 } \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0) \
1425 goto error_return; \
1426 debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt); \
1427 if (debug->ptr == NULL) \
1428 goto error_return; \
1429 } while (0)
1430
1431 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 union aux_ext *);
1438 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1444
1445 debug->fdr = NULL;
1446
1447 return TRUE;
1448
1449 error_return:
1450 free (ext_hdr);
1451 free (debug->line);
1452 free (debug->external_dnr);
1453 free (debug->external_pdr);
1454 free (debug->external_sym);
1455 free (debug->external_opt);
1456 free (debug->external_aux);
1457 free (debug->ss);
1458 free (debug->ssext);
1459 free (debug->external_fdr);
1460 free (debug->external_rfd);
1461 free (debug->external_ext);
1462 return FALSE;
1463 }
1464 \f
1465 /* Swap RPDR (runtime procedure table entry) for output. */
1466
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476
1477 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479
1480 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482
1483 /* Create a runtime procedure table from the .mdebug section. */
1484
1485 static bfd_boolean
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 struct bfd_link_info *info, asection *s,
1488 struct ecoff_debug_info *debug)
1489 {
1490 const struct ecoff_debug_swap *swap;
1491 HDRR *hdr = &debug->symbolic_header;
1492 RPDR *rpdr, *rp;
1493 struct rpdr_ext *erp;
1494 void *rtproc;
1495 struct pdr_ext *epdr;
1496 struct sym_ext *esym;
1497 char *ss, **sv;
1498 char *str;
1499 bfd_size_type size;
1500 bfd_size_type count;
1501 unsigned long sindex;
1502 unsigned long i;
1503 PDR pdr;
1504 SYMR sym;
1505 const char *no_name_func = _("static procedure (no name)");
1506
1507 epdr = NULL;
1508 rpdr = NULL;
1509 esym = NULL;
1510 ss = NULL;
1511 sv = NULL;
1512
1513 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514
1515 sindex = strlen (no_name_func) + 1;
1516 count = hdr->ipdMax;
1517 if (count > 0)
1518 {
1519 size = swap->external_pdr_size;
1520
1521 epdr = bfd_malloc (size * count);
1522 if (epdr == NULL)
1523 goto error_return;
1524
1525 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 goto error_return;
1527
1528 size = sizeof (RPDR);
1529 rp = rpdr = bfd_malloc (size * count);
1530 if (rpdr == NULL)
1531 goto error_return;
1532
1533 size = sizeof (char *);
1534 sv = bfd_malloc (size * count);
1535 if (sv == NULL)
1536 goto error_return;
1537
1538 count = hdr->isymMax;
1539 size = swap->external_sym_size;
1540 esym = bfd_malloc (size * count);
1541 if (esym == NULL)
1542 goto error_return;
1543
1544 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 goto error_return;
1546
1547 count = hdr->issMax;
1548 ss = bfd_malloc (count);
1549 if (ss == NULL)
1550 goto error_return;
1551 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 goto error_return;
1553
1554 count = hdr->ipdMax;
1555 for (i = 0; i < (unsigned long) count; i++, rp++)
1556 {
1557 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 rp->adr = sym.value;
1560 rp->regmask = pdr.regmask;
1561 rp->regoffset = pdr.regoffset;
1562 rp->fregmask = pdr.fregmask;
1563 rp->fregoffset = pdr.fregoffset;
1564 rp->frameoffset = pdr.frameoffset;
1565 rp->framereg = pdr.framereg;
1566 rp->pcreg = pdr.pcreg;
1567 rp->irpss = sindex;
1568 sv[i] = ss + sym.iss;
1569 sindex += strlen (sv[i]) + 1;
1570 }
1571 }
1572
1573 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574 size = BFD_ALIGN (size, 16);
1575 rtproc = bfd_alloc (abfd, size);
1576 if (rtproc == NULL)
1577 {
1578 mips_elf_hash_table (info)->procedure_count = 0;
1579 goto error_return;
1580 }
1581
1582 mips_elf_hash_table (info)->procedure_count = count + 2;
1583
1584 erp = rtproc;
1585 memset (erp, 0, sizeof (struct rpdr_ext));
1586 erp++;
1587 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588 strcpy (str, no_name_func);
1589 str += strlen (no_name_func) + 1;
1590 for (i = 0; i < count; i++)
1591 {
1592 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593 strcpy (str, sv[i]);
1594 str += strlen (sv[i]) + 1;
1595 }
1596 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597
1598 /* Set the size and contents of .rtproc section. */
1599 s->size = size;
1600 s->contents = rtproc;
1601
1602 /* Skip this section later on (I don't think this currently
1603 matters, but someday it might). */
1604 s->map_head.link_order = NULL;
1605
1606 free (epdr);
1607 free (rpdr);
1608 free (esym);
1609 free (ss);
1610 free (sv);
1611 return TRUE;
1612
1613 error_return:
1614 free (epdr);
1615 free (rpdr);
1616 free (esym);
1617 free (ss);
1618 free (sv);
1619 return FALSE;
1620 }
1621 \f
1622 /* We're going to create a stub for H. Create a symbol for the stub's
1623 value and size, to help make the disassembly easier to read. */
1624
1625 static bfd_boolean
1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 struct mips_elf_link_hash_entry *h,
1628 const char *prefix, asection *s, bfd_vma value,
1629 bfd_vma size)
1630 {
1631 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632 struct bfd_link_hash_entry *bh;
1633 struct elf_link_hash_entry *elfh;
1634 char *name;
1635 bfd_boolean res;
1636
1637 if (micromips_p)
1638 value |= 1;
1639
1640 /* Create a new symbol. */
1641 name = concat (prefix, h->root.root.root.string, NULL);
1642 bh = NULL;
1643 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 BSF_LOCAL, s, value, NULL,
1645 TRUE, FALSE, &bh);
1646 free (name);
1647 if (! res)
1648 return FALSE;
1649
1650 /* Make it a local function. */
1651 elfh = (struct elf_link_hash_entry *) bh;
1652 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653 elfh->size = size;
1654 elfh->forced_local = 1;
1655 if (micromips_p)
1656 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657 return TRUE;
1658 }
1659
1660 /* We're about to redefine H. Create a symbol to represent H's
1661 current value and size, to help make the disassembly easier
1662 to read. */
1663
1664 static bfd_boolean
1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 struct mips_elf_link_hash_entry *h,
1667 const char *prefix)
1668 {
1669 struct bfd_link_hash_entry *bh;
1670 struct elf_link_hash_entry *elfh;
1671 char *name;
1672 asection *s;
1673 bfd_vma value;
1674 bfd_boolean res;
1675
1676 /* Read the symbol's value. */
1677 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 || h->root.root.type == bfd_link_hash_defweak);
1679 s = h->root.root.u.def.section;
1680 value = h->root.root.u.def.value;
1681
1682 /* Create a new symbol. */
1683 name = concat (prefix, h->root.root.root.string, NULL);
1684 bh = NULL;
1685 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 BSF_LOCAL, s, value, NULL,
1687 TRUE, FALSE, &bh);
1688 free (name);
1689 if (! res)
1690 return FALSE;
1691
1692 /* Make it local and copy the other attributes from H. */
1693 elfh = (struct elf_link_hash_entry *) bh;
1694 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695 elfh->other = h->root.other;
1696 elfh->size = h->root.size;
1697 elfh->forced_local = 1;
1698 return TRUE;
1699 }
1700
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702 function rather than to a hard-float stub. */
1703
1704 static bfd_boolean
1705 section_allows_mips16_refs_p (asection *section)
1706 {
1707 const char *name;
1708
1709 name = bfd_section_name (section);
1710 return (FN_STUB_P (name)
1711 || CALL_STUB_P (name)
1712 || CALL_FP_STUB_P (name)
1713 || strcmp (name, ".pdr") == 0);
1714 }
1715
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717 stub section of some kind. Return the R_SYMNDX of the target
1718 function, or 0 if we can't decide which function that is. */
1719
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 asection *sec ATTRIBUTE_UNUSED,
1723 const Elf_Internal_Rela *relocs,
1724 const Elf_Internal_Rela *relend)
1725 {
1726 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727 const Elf_Internal_Rela *rel;
1728
1729 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730 one in a compound relocation. */
1731 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733 return ELF_R_SYM (sec->owner, rel->r_info);
1734
1735 /* Otherwise trust the first relocation, whatever its kind. This is
1736 the traditional behavior. */
1737 if (relocs < relend)
1738 return ELF_R_SYM (sec->owner, relocs->r_info);
1739
1740 return 0;
1741 }
1742
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744 discard them. */
1745
1746 static void
1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 struct mips_elf_link_hash_entry *h)
1749 {
1750 /* Dynamic symbols must use the standard call interface, in case other
1751 objects try to call them. */
1752 if (h->fn_stub != NULL
1753 && h->root.dynindx != -1)
1754 {
1755 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756 h->need_fn_stub = TRUE;
1757 }
1758
1759 if (h->fn_stub != NULL
1760 && ! h->need_fn_stub)
1761 {
1762 /* We don't need the fn_stub; the only references to this symbol
1763 are 16 bit calls. Clobber the size to 0 to prevent it from
1764 being included in the link. */
1765 h->fn_stub->size = 0;
1766 h->fn_stub->flags &= ~SEC_RELOC;
1767 h->fn_stub->reloc_count = 0;
1768 h->fn_stub->flags |= SEC_EXCLUDE;
1769 h->fn_stub->output_section = bfd_abs_section_ptr;
1770 }
1771
1772 if (h->call_stub != NULL
1773 && ELF_ST_IS_MIPS16 (h->root.other))
1774 {
1775 /* We don't need the call_stub; this is a 16 bit function, so
1776 calls from other 16 bit functions are OK. Clobber the size
1777 to 0 to prevent it from being included in the link. */
1778 h->call_stub->size = 0;
1779 h->call_stub->flags &= ~SEC_RELOC;
1780 h->call_stub->reloc_count = 0;
1781 h->call_stub->flags |= SEC_EXCLUDE;
1782 h->call_stub->output_section = bfd_abs_section_ptr;
1783 }
1784
1785 if (h->call_fp_stub != NULL
1786 && ELF_ST_IS_MIPS16 (h->root.other))
1787 {
1788 /* We don't need the call_stub; this is a 16 bit function, so
1789 calls from other 16 bit functions are OK. Clobber the size
1790 to 0 to prevent it from being included in the link. */
1791 h->call_fp_stub->size = 0;
1792 h->call_fp_stub->flags &= ~SEC_RELOC;
1793 h->call_fp_stub->reloc_count = 0;
1794 h->call_fp_stub->flags |= SEC_EXCLUDE;
1795 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1796 }
1797 }
1798
1799 /* Hashtable callbacks for mips_elf_la25_stubs. */
1800
1801 static hashval_t
1802 mips_elf_la25_stub_hash (const void *entry_)
1803 {
1804 const struct mips_elf_la25_stub *entry;
1805
1806 entry = (struct mips_elf_la25_stub *) entry_;
1807 return entry->h->root.root.u.def.section->id
1808 + entry->h->root.root.u.def.value;
1809 }
1810
1811 static int
1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813 {
1814 const struct mips_elf_la25_stub *entry1, *entry2;
1815
1816 entry1 = (struct mips_elf_la25_stub *) entry1_;
1817 entry2 = (struct mips_elf_la25_stub *) entry2_;
1818 return ((entry1->h->root.root.u.def.section
1819 == entry2->h->root.root.u.def.section)
1820 && (entry1->h->root.root.u.def.value
1821 == entry2->h->root.root.u.def.value));
1822 }
1823
1824 /* Called by the linker to set up the la25 stub-creation code. FN is
1825 the linker's implementation of add_stub_function. Return true on
1826 success. */
1827
1828 bfd_boolean
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 asection *(*fn) (const char *, asection *,
1831 asection *))
1832 {
1833 struct mips_elf_link_hash_table *htab;
1834
1835 htab = mips_elf_hash_table (info);
1836 if (htab == NULL)
1837 return FALSE;
1838
1839 htab->add_stub_section = fn;
1840 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 mips_elf_la25_stub_eq, NULL);
1842 if (htab->la25_stubs == NULL)
1843 return FALSE;
1844
1845 return TRUE;
1846 }
1847
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849 that it or its fn_stub might need $25 to be valid on entry.
1850 Note that MIPS16 functions set up $gp using PC-relative instructions,
1851 so they themselves never need $25 to be valid. Only non-MIPS16
1852 entry points are of interest here. */
1853
1854 static bfd_boolean
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856 {
1857 return ((h->root.root.type == bfd_link_hash_defined
1858 || h->root.root.type == bfd_link_hash_defweak)
1859 && h->root.def_regular
1860 && !bfd_is_abs_section (h->root.root.u.def.section)
1861 && !bfd_is_und_section (h->root.root.u.def.section)
1862 && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 || (h->fn_stub && h->need_fn_stub))
1864 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866 }
1867
1868 /* Set *SEC to the input section that contains the target of STUB.
1869 Return the offset of the target from the start of that section. */
1870
1871 static bfd_vma
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 asection **sec)
1874 {
1875 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876 {
1877 BFD_ASSERT (stub->h->need_fn_stub);
1878 *sec = stub->h->fn_stub;
1879 return 0;
1880 }
1881 else
1882 {
1883 *sec = stub->h->root.root.u.def.section;
1884 return stub->h->root.root.u.def.value;
1885 }
1886 }
1887
1888 /* STUB describes an la25 stub that we have decided to implement
1889 by inserting an LUI/ADDIU pair before the target function.
1890 Create the section and redirect the function symbol to it. */
1891
1892 static bfd_boolean
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 struct bfd_link_info *info)
1895 {
1896 struct mips_elf_link_hash_table *htab;
1897 char *name;
1898 asection *s, *input_section;
1899 unsigned int align;
1900
1901 htab = mips_elf_hash_table (info);
1902 if (htab == NULL)
1903 return FALSE;
1904
1905 /* Create a unique name for the new section. */
1906 name = bfd_malloc (11 + sizeof (".text.stub."));
1907 if (name == NULL)
1908 return FALSE;
1909 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910
1911 /* Create the section. */
1912 mips_elf_get_la25_target (stub, &input_section);
1913 s = htab->add_stub_section (name, input_section,
1914 input_section->output_section);
1915 if (s == NULL)
1916 return FALSE;
1917
1918 /* Make sure that any padding goes before the stub. */
1919 align = input_section->alignment_power;
1920 if (!bfd_set_section_alignment (s, align))
1921 return FALSE;
1922 if (align > 3)
1923 s->size = (1 << align) - 8;
1924
1925 /* Create a symbol for the stub. */
1926 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927 stub->stub_section = s;
1928 stub->offset = s->size;
1929
1930 /* Allocate room for it. */
1931 s->size += 8;
1932 return TRUE;
1933 }
1934
1935 /* STUB describes an la25 stub that we have decided to implement
1936 with a separate trampoline. Allocate room for it and redirect
1937 the function symbol to it. */
1938
1939 static bfd_boolean
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 struct bfd_link_info *info)
1942 {
1943 struct mips_elf_link_hash_table *htab;
1944 asection *s;
1945
1946 htab = mips_elf_hash_table (info);
1947 if (htab == NULL)
1948 return FALSE;
1949
1950 /* Create a trampoline section, if we haven't already. */
1951 s = htab->strampoline;
1952 if (s == NULL)
1953 {
1954 asection *input_section = stub->h->root.root.u.def.section;
1955 s = htab->add_stub_section (".text", NULL,
1956 input_section->output_section);
1957 if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 return FALSE;
1959 htab->strampoline = s;
1960 }
1961
1962 /* Create a symbol for the stub. */
1963 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964 stub->stub_section = s;
1965 stub->offset = s->size;
1966
1967 /* Allocate room for it. */
1968 s->size += 16;
1969 return TRUE;
1970 }
1971
1972 /* H describes a symbol that needs an la25 stub. Make sure that an
1973 appropriate stub exists and point H at it. */
1974
1975 static bfd_boolean
1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 struct mips_elf_link_hash_entry *h)
1978 {
1979 struct mips_elf_link_hash_table *htab;
1980 struct mips_elf_la25_stub search, *stub;
1981 bfd_boolean use_trampoline_p;
1982 asection *s;
1983 bfd_vma value;
1984 void **slot;
1985
1986 /* Describe the stub we want. */
1987 search.stub_section = NULL;
1988 search.offset = 0;
1989 search.h = h;
1990
1991 /* See if we've already created an equivalent stub. */
1992 htab = mips_elf_hash_table (info);
1993 if (htab == NULL)
1994 return FALSE;
1995
1996 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997 if (slot == NULL)
1998 return FALSE;
1999
2000 stub = (struct mips_elf_la25_stub *) *slot;
2001 if (stub != NULL)
2002 {
2003 /* We can reuse the existing stub. */
2004 h->la25_stub = stub;
2005 return TRUE;
2006 }
2007
2008 /* Create a permanent copy of ENTRY and add it to the hash table. */
2009 stub = bfd_malloc (sizeof (search));
2010 if (stub == NULL)
2011 return FALSE;
2012 *stub = search;
2013 *slot = stub;
2014
2015 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016 of the section and if we would need no more than 2 nops. */
2017 value = mips_elf_get_la25_target (stub, &s);
2018 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019 value &= ~1;
2020 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021
2022 h->la25_stub = stub;
2023 return (use_trampoline_p
2024 ? mips_elf_add_la25_trampoline (stub, info)
2025 : mips_elf_add_la25_intro (stub, info));
2026 }
2027
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029 sections. DATA points to a mips_htab_traverse_info structure. */
2030
2031 static bfd_boolean
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033 {
2034 struct mips_htab_traverse_info *hti;
2035
2036 hti = (struct mips_htab_traverse_info *) data;
2037 if (!bfd_link_relocatable (hti->info))
2038 mips_elf_check_mips16_stubs (hti->info, h);
2039
2040 if (mips_elf_local_pic_function_p (h))
2041 {
2042 /* PR 12845: If H is in a section that has been garbage
2043 collected it will have its output section set to *ABS*. */
2044 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 return TRUE;
2046
2047 /* H is a function that might need $25 to be valid on entry.
2048 If we're creating a non-PIC relocatable object, mark H as
2049 being PIC. If we're creating a non-relocatable object with
2050 non-PIC branches and jumps to H, make sure that H has an la25
2051 stub. */
2052 if (bfd_link_relocatable (hti->info))
2053 {
2054 if (!PIC_OBJECT_P (hti->output_bfd))
2055 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 }
2057 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 {
2059 hti->error = TRUE;
2060 return FALSE;
2061 }
2062 }
2063 return TRUE;
2064 }
2065 \f
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067 Most mips16 instructions are 16 bits, but these instructions
2068 are 32 bits.
2069
2070 The format of these instructions is:
2071
2072 +--------------+--------------------------------+
2073 | JALX | X| Imm 20:16 | Imm 25:21 |
2074 +--------------+--------------------------------+
2075 | Immediate 15:0 |
2076 +-----------------------------------------------+
2077
2078 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2079 Note that the immediate value in the first word is swapped.
2080
2081 When producing a relocatable object file, R_MIPS16_26 is
2082 handled mostly like R_MIPS_26. In particular, the addend is
2083 stored as a straight 26-bit value in a 32-bit instruction.
2084 (gas makes life simpler for itself by never adjusting a
2085 R_MIPS16_26 reloc to be against a section, so the addend is
2086 always zero). However, the 32 bit instruction is stored as 2
2087 16-bit values, rather than a single 32-bit value. In a
2088 big-endian file, the result is the same; in a little-endian
2089 file, the two 16-bit halves of the 32 bit value are swapped.
2090 This is so that a disassembler can recognize the jal
2091 instruction.
2092
2093 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094 instruction stored as two 16-bit values. The addend A is the
2095 contents of the targ26 field. The calculation is the same as
2096 R_MIPS_26. When storing the calculated value, reorder the
2097 immediate value as shown above, and don't forget to store the
2098 value as two 16-bit values.
2099
2100 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101 defined as
2102
2103 big-endian:
2104 +--------+----------------------+
2105 | | |
2106 | | targ26-16 |
2107 |31 26|25 0|
2108 +--------+----------------------+
2109
2110 little-endian:
2111 +----------+------+-------------+
2112 | | | |
2113 | sub1 | | sub2 |
2114 |0 9|10 15|16 31|
2115 +----------+--------------------+
2116 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117 ((sub1 << 16) | sub2)).
2118
2119 When producing a relocatable object file, the calculation is
2120 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121 When producing a fully linked file, the calculation is
2122 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124
2125 The table below lists the other MIPS16 instruction relocations.
2126 Each one is calculated in the same way as the non-MIPS16 relocation
2127 given on the right, but using the extended MIPS16 layout of 16-bit
2128 immediate fields:
2129
2130 R_MIPS16_GPREL R_MIPS_GPREL16
2131 R_MIPS16_GOT16 R_MIPS_GOT16
2132 R_MIPS16_CALL16 R_MIPS_CALL16
2133 R_MIPS16_HI16 R_MIPS_HI16
2134 R_MIPS16_LO16 R_MIPS_LO16
2135
2136 A typical instruction will have a format like this:
2137
2138 +--------------+--------------------------------+
2139 | EXTEND | Imm 10:5 | Imm 15:11 |
2140 +--------------+--------------------------------+
2141 | Major | rx | ry | Imm 4:0 |
2142 +--------------+--------------------------------+
2143
2144 EXTEND is the five bit value 11110. Major is the instruction
2145 opcode.
2146
2147 All we need to do here is shuffle the bits appropriately.
2148 As above, the two 16-bit halves must be swapped on a
2149 little-endian system.
2150
2151 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152 relocatable field is shifted by 1 rather than 2 and the same bit
2153 shuffling is done as with the relocations above. */
2154
2155 static inline bfd_boolean
2156 mips16_reloc_p (int r_type)
2157 {
2158 switch (r_type)
2159 {
2160 case R_MIPS16_26:
2161 case R_MIPS16_GPREL:
2162 case R_MIPS16_GOT16:
2163 case R_MIPS16_CALL16:
2164 case R_MIPS16_HI16:
2165 case R_MIPS16_LO16:
2166 case R_MIPS16_TLS_GD:
2167 case R_MIPS16_TLS_LDM:
2168 case R_MIPS16_TLS_DTPREL_HI16:
2169 case R_MIPS16_TLS_DTPREL_LO16:
2170 case R_MIPS16_TLS_GOTTPREL:
2171 case R_MIPS16_TLS_TPREL_HI16:
2172 case R_MIPS16_TLS_TPREL_LO16:
2173 case R_MIPS16_PC16_S1:
2174 return TRUE;
2175
2176 default:
2177 return FALSE;
2178 }
2179 }
2180
2181 /* Check if a microMIPS reloc. */
2182
2183 static inline bfd_boolean
2184 micromips_reloc_p (unsigned int r_type)
2185 {
2186 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187 }
2188
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2191 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2192
2193 static inline bfd_boolean
2194 micromips_reloc_shuffle_p (unsigned int r_type)
2195 {
2196 return (micromips_reloc_p (r_type)
2197 && r_type != R_MICROMIPS_PC7_S1
2198 && r_type != R_MICROMIPS_PC10_S1);
2199 }
2200
2201 static inline bfd_boolean
2202 got16_reloc_p (int r_type)
2203 {
2204 return (r_type == R_MIPS_GOT16
2205 || r_type == R_MIPS16_GOT16
2206 || r_type == R_MICROMIPS_GOT16);
2207 }
2208
2209 static inline bfd_boolean
2210 call16_reloc_p (int r_type)
2211 {
2212 return (r_type == R_MIPS_CALL16
2213 || r_type == R_MIPS16_CALL16
2214 || r_type == R_MICROMIPS_CALL16);
2215 }
2216
2217 static inline bfd_boolean
2218 got_disp_reloc_p (unsigned int r_type)
2219 {
2220 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221 }
2222
2223 static inline bfd_boolean
2224 got_page_reloc_p (unsigned int r_type)
2225 {
2226 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227 }
2228
2229 static inline bfd_boolean
2230 got_lo16_reloc_p (unsigned int r_type)
2231 {
2232 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233 }
2234
2235 static inline bfd_boolean
2236 call_hi16_reloc_p (unsigned int r_type)
2237 {
2238 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239 }
2240
2241 static inline bfd_boolean
2242 call_lo16_reloc_p (unsigned int r_type)
2243 {
2244 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2245 }
2246
2247 static inline bfd_boolean
2248 hi16_reloc_p (int r_type)
2249 {
2250 return (r_type == R_MIPS_HI16
2251 || r_type == R_MIPS16_HI16
2252 || r_type == R_MICROMIPS_HI16
2253 || r_type == R_MIPS_PCHI16);
2254 }
2255
2256 static inline bfd_boolean
2257 lo16_reloc_p (int r_type)
2258 {
2259 return (r_type == R_MIPS_LO16
2260 || r_type == R_MIPS16_LO16
2261 || r_type == R_MICROMIPS_LO16
2262 || r_type == R_MIPS_PCLO16);
2263 }
2264
2265 static inline bfd_boolean
2266 mips16_call_reloc_p (int r_type)
2267 {
2268 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269 }
2270
2271 static inline bfd_boolean
2272 jal_reloc_p (int r_type)
2273 {
2274 return (r_type == R_MIPS_26
2275 || r_type == R_MIPS16_26
2276 || r_type == R_MICROMIPS_26_S1);
2277 }
2278
2279 static inline bfd_boolean
2280 b_reloc_p (int r_type)
2281 {
2282 return (r_type == R_MIPS_PC26_S2
2283 || r_type == R_MIPS_PC21_S2
2284 || r_type == R_MIPS_PC16
2285 || r_type == R_MIPS_GNU_REL16_S2
2286 || r_type == R_MIPS16_PC16_S1
2287 || r_type == R_MICROMIPS_PC16_S1
2288 || r_type == R_MICROMIPS_PC10_S1
2289 || r_type == R_MICROMIPS_PC7_S1);
2290 }
2291
2292 static inline bfd_boolean
2293 aligned_pcrel_reloc_p (int r_type)
2294 {
2295 return (r_type == R_MIPS_PC18_S3
2296 || r_type == R_MIPS_PC19_S2);
2297 }
2298
2299 static inline bfd_boolean
2300 branch_reloc_p (int r_type)
2301 {
2302 return (r_type == R_MIPS_26
2303 || r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2);
2307 }
2308
2309 static inline bfd_boolean
2310 mips16_branch_reloc_p (int r_type)
2311 {
2312 return (r_type == R_MIPS16_26
2313 || r_type == R_MIPS16_PC16_S1);
2314 }
2315
2316 static inline bfd_boolean
2317 micromips_branch_reloc_p (int r_type)
2318 {
2319 return (r_type == R_MICROMIPS_26_S1
2320 || r_type == R_MICROMIPS_PC16_S1
2321 || r_type == R_MICROMIPS_PC10_S1
2322 || r_type == R_MICROMIPS_PC7_S1);
2323 }
2324
2325 static inline bfd_boolean
2326 tls_gd_reloc_p (unsigned int r_type)
2327 {
2328 return (r_type == R_MIPS_TLS_GD
2329 || r_type == R_MIPS16_TLS_GD
2330 || r_type == R_MICROMIPS_TLS_GD);
2331 }
2332
2333 static inline bfd_boolean
2334 tls_ldm_reloc_p (unsigned int r_type)
2335 {
2336 return (r_type == R_MIPS_TLS_LDM
2337 || r_type == R_MIPS16_TLS_LDM
2338 || r_type == R_MICROMIPS_TLS_LDM);
2339 }
2340
2341 static inline bfd_boolean
2342 tls_gottprel_reloc_p (unsigned int r_type)
2343 {
2344 return (r_type == R_MIPS_TLS_GOTTPREL
2345 || r_type == R_MIPS16_TLS_GOTTPREL
2346 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2347 }
2348
2349 void
2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 bfd_boolean jal_shuffle, bfd_byte *data)
2352 {
2353 bfd_vma first, second, val;
2354
2355 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356 return;
2357
2358 /* Pick up the first and second halfwords of the instruction. */
2359 first = bfd_get_16 (abfd, data);
2360 second = bfd_get_16 (abfd, data + 2);
2361 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362 val = first << 16 | second;
2363 else if (r_type != R_MIPS16_26)
2364 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366 else
2367 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 | ((first & 0x1f) << 21) | second);
2369 bfd_put_32 (abfd, val, data);
2370 }
2371
2372 void
2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 bfd_boolean jal_shuffle, bfd_byte *data)
2375 {
2376 bfd_vma first, second, val;
2377
2378 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379 return;
2380
2381 val = bfd_get_32 (abfd, data);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383 {
2384 second = val & 0xffff;
2385 first = val >> 16;
2386 }
2387 else if (r_type != R_MIPS16_26)
2388 {
2389 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2391 }
2392 else
2393 {
2394 second = val & 0xffff;
2395 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 | ((val >> 21) & 0x1f);
2397 }
2398 bfd_put_16 (abfd, second, data + 2);
2399 bfd_put_16 (abfd, first, data);
2400 }
2401
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 arelent *reloc_entry, asection *input_section,
2405 bfd_boolean relocatable, void *data, bfd_vma gp)
2406 {
2407 bfd_vma relocation;
2408 bfd_signed_vma val;
2409 bfd_reloc_status_type status;
2410
2411 if (bfd_is_com_section (symbol->section))
2412 relocation = 0;
2413 else
2414 relocation = symbol->value;
2415
2416 relocation += symbol->section->output_section->vma;
2417 relocation += symbol->section->output_offset;
2418
2419 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420 return bfd_reloc_outofrange;
2421
2422 /* Set val to the offset into the section or symbol. */
2423 val = reloc_entry->addend;
2424
2425 _bfd_mips_elf_sign_extend (val, 16);
2426
2427 /* Adjust val for the final section location and GP value. If we
2428 are producing relocatable output, we don't want to do this for
2429 an external symbol. */
2430 if (! relocatable
2431 || (symbol->flags & BSF_SECTION_SYM) != 0)
2432 val += relocation - gp;
2433
2434 if (reloc_entry->howto->partial_inplace)
2435 {
2436 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 (bfd_byte *) data
2438 + reloc_entry->address);
2439 if (status != bfd_reloc_ok)
2440 return status;
2441 }
2442 else
2443 reloc_entry->addend = val;
2444
2445 if (relocatable)
2446 reloc_entry->address += input_section->output_offset;
2447
2448 return bfd_reloc_ok;
2449 }
2450
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2453 that contains the relocation field and DATA points to the start of
2454 INPUT_SECTION. */
2455
2456 struct mips_hi16
2457 {
2458 struct mips_hi16 *next;
2459 bfd_byte *data;
2460 asection *input_section;
2461 arelent rel;
2462 };
2463
2464 /* FIXME: This should not be a static variable. */
2465
2466 static struct mips_hi16 *mips_hi16_list;
2467
2468 /* A howto special_function for REL *HI16 relocations. We can only
2469 calculate the correct value once we've seen the partnering
2470 *LO16 relocation, so just save the information for later.
2471
2472 The ABI requires that the *LO16 immediately follow the *HI16.
2473 However, as a GNU extension, we permit an arbitrary number of
2474 *HI16s to be associated with a single *LO16. This significantly
2475 simplies the relocation handling in gcc. */
2476
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 asection *input_section, bfd *output_bfd,
2481 char **error_message ATTRIBUTE_UNUSED)
2482 {
2483 struct mips_hi16 *n;
2484
2485 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486 return bfd_reloc_outofrange;
2487
2488 n = bfd_malloc (sizeof *n);
2489 if (n == NULL)
2490 return bfd_reloc_outofrange;
2491
2492 n->next = mips_hi16_list;
2493 n->data = data;
2494 n->input_section = input_section;
2495 n->rel = *reloc_entry;
2496 mips_hi16_list = n;
2497
2498 if (output_bfd != NULL)
2499 reloc_entry->address += input_section->output_offset;
2500
2501 return bfd_reloc_ok;
2502 }
2503
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2505 like any other 16-bit relocation when applied to global symbols, but is
2506 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2507
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514 || bfd_is_und_section (bfd_asymbol_section (symbol))
2515 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516 /* The relocation is against a global symbol. */
2517 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 input_section, output_bfd,
2519 error_message);
2520
2521 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 input_section, output_bfd, error_message);
2523 }
2524
2525 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2526 is a straightforward 16 bit inplace relocation, but we must deal with
2527 any partnering high-part relocations as well. */
2528
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 bfd_vma vallo;
2535 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2536
2537 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538 return bfd_reloc_outofrange;
2539
2540 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2541 location);
2542 vallo = bfd_get_32 (abfd, location);
2543 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2544 location);
2545
2546 while (mips_hi16_list != NULL)
2547 {
2548 bfd_reloc_status_type ret;
2549 struct mips_hi16 *hi;
2550
2551 hi = mips_hi16_list;
2552
2553 /* R_MIPS*_GOT16 relocations are something of a special case. We
2554 want to install the addend in the same way as for a R_MIPS*_HI16
2555 relocation (with a rightshift of 16). However, since GOT16
2556 relocations can also be used with global symbols, their howto
2557 has a rightshift of 0. */
2558 if (hi->rel.howto->type == R_MIPS_GOT16)
2559 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2560 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2562 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2564
2565 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2566 carry or borrow will induce a change of +1 or -1 in the high part. */
2567 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568
2569 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 hi->input_section, output_bfd,
2571 error_message);
2572 if (ret != bfd_reloc_ok)
2573 return ret;
2574
2575 mips_hi16_list = hi->next;
2576 free (hi);
2577 }
2578
2579 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 input_section, output_bfd,
2581 error_message);
2582 }
2583
2584 /* A generic howto special_function. This calculates and installs the
2585 relocation itself, thus avoiding the oft-discussed problems in
2586 bfd_perform_relocation and bfd_install_relocation. */
2587
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 asection *input_section, bfd *output_bfd,
2592 char **error_message ATTRIBUTE_UNUSED)
2593 {
2594 bfd_signed_vma val;
2595 bfd_reloc_status_type status;
2596 bfd_boolean relocatable;
2597
2598 relocatable = (output_bfd != NULL);
2599
2600 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601 return bfd_reloc_outofrange;
2602
2603 /* Build up the field adjustment in VAL. */
2604 val = 0;
2605 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606 {
2607 /* Either we're calculating the final field value or we have a
2608 relocation against a section symbol. Add in the section's
2609 offset or address. */
2610 val += symbol->section->output_section->vma;
2611 val += symbol->section->output_offset;
2612 }
2613
2614 if (!relocatable)
2615 {
2616 /* We're calculating the final field value. Add in the symbol's value
2617 and, if pc-relative, subtract the address of the field itself. */
2618 val += symbol->value;
2619 if (reloc_entry->howto->pc_relative)
2620 {
2621 val -= input_section->output_section->vma;
2622 val -= input_section->output_offset;
2623 val -= reloc_entry->address;
2624 }
2625 }
2626
2627 /* VAL is now the final adjustment. If we're keeping this relocation
2628 in the output file, and if the relocation uses a separate addend,
2629 we just need to add VAL to that addend. Otherwise we need to add
2630 VAL to the relocation field itself. */
2631 if (relocatable && !reloc_entry->howto->partial_inplace)
2632 reloc_entry->addend += val;
2633 else
2634 {
2635 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636
2637 /* Add in the separate addend, if any. */
2638 val += reloc_entry->addend;
2639
2640 /* Add VAL to the relocation field. */
2641 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2642 location);
2643 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 location);
2645 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2646 location);
2647
2648 if (status != bfd_reloc_ok)
2649 return status;
2650 }
2651
2652 if (relocatable)
2653 reloc_entry->address += input_section->output_offset;
2654
2655 return bfd_reloc_ok;
2656 }
2657 \f
2658 /* Swap an entry in a .gptab section. Note that these routines rely
2659 on the equivalence of the two elements of the union. */
2660
2661 static void
2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 Elf32_gptab *in)
2664 {
2665 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667 }
2668
2669 static void
2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 Elf32_External_gptab *ex)
2672 {
2673 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675 }
2676
2677 static void
2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 Elf32_External_compact_rel *ex)
2680 {
2681 H_PUT_32 (abfd, in->id1, ex->id1);
2682 H_PUT_32 (abfd, in->num, ex->num);
2683 H_PUT_32 (abfd, in->id2, ex->id2);
2684 H_PUT_32 (abfd, in->offset, ex->offset);
2685 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687 }
2688
2689 static void
2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 Elf32_External_crinfo *ex)
2692 {
2693 unsigned long l;
2694
2695 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699 H_PUT_32 (abfd, l, ex->info);
2700 H_PUT_32 (abfd, in->konst, ex->konst);
2701 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702 }
2703 \f
2704 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2705 routines swap this structure in and out. They are used outside of
2706 BFD, so they are globally visible. */
2707
2708 void
2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 Elf32_RegInfo *in)
2711 {
2712 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718 }
2719
2720 void
2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 Elf32_External_RegInfo *ex)
2723 {
2724 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730 }
2731
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733 information in an Elf64_Reginfo structure. These routines swap
2734 them in and out. They are globally visible because they are used
2735 outside of BFD. These routines are here so that gas can call them
2736 without worrying about whether the 64 bit ABI has been included. */
2737
2738 void
2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 Elf64_Internal_RegInfo *in)
2741 {
2742 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749 }
2750
2751 void
2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 Elf64_External_RegInfo *ex)
2754 {
2755 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762 }
2763
2764 /* Swap in an options header. */
2765
2766 void
2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 Elf_Internal_Options *in)
2769 {
2770 in->kind = H_GET_8 (abfd, ex->kind);
2771 in->size = H_GET_8 (abfd, ex->size);
2772 in->section = H_GET_16 (abfd, ex->section);
2773 in->info = H_GET_32 (abfd, ex->info);
2774 }
2775
2776 /* Swap out an options header. */
2777
2778 void
2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 Elf_External_Options *ex)
2781 {
2782 H_PUT_8 (abfd, in->kind, ex->kind);
2783 H_PUT_8 (abfd, in->size, ex->size);
2784 H_PUT_16 (abfd, in->section, ex->section);
2785 H_PUT_32 (abfd, in->info, ex->info);
2786 }
2787
2788 /* Swap in an abiflags structure. */
2789
2790 void
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 const Elf_External_ABIFlags_v0 *ex,
2793 Elf_Internal_ABIFlags_v0 *in)
2794 {
2795 in->version = H_GET_16 (abfd, ex->version);
2796 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803 in->ases = H_GET_32 (abfd, ex->ases);
2804 in->flags1 = H_GET_32 (abfd, ex->flags1);
2805 in->flags2 = H_GET_32 (abfd, ex->flags2);
2806 }
2807
2808 /* Swap out an abiflags structure. */
2809
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 const Elf_Internal_ABIFlags_v0 *in,
2813 Elf_External_ABIFlags_v0 *ex)
2814 {
2815 H_PUT_16 (abfd, in->version, ex->version);
2816 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823 H_PUT_32 (abfd, in->ases, ex->ases);
2824 H_PUT_32 (abfd, in->flags1, ex->flags1);
2825 H_PUT_32 (abfd, in->flags2, ex->flags2);
2826 }
2827 \f
2828 /* This function is called via qsort() to sort the dynamic relocation
2829 entries by increasing r_symndx value. */
2830
2831 static int
2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2833 {
2834 Elf_Internal_Rela int_reloc1;
2835 Elf_Internal_Rela int_reloc2;
2836 int diff;
2837
2838 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2840
2841 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842 if (diff != 0)
2843 return diff;
2844
2845 if (int_reloc1.r_offset < int_reloc2.r_offset)
2846 return -1;
2847 if (int_reloc1.r_offset > int_reloc2.r_offset)
2848 return 1;
2849 return 0;
2850 }
2851
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2853
2854 static int
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 const void *arg2 ATTRIBUTE_UNUSED)
2857 {
2858 #ifdef BFD64
2859 Elf_Internal_Rela int_reloc1[3];
2860 Elf_Internal_Rela int_reloc2[3];
2861
2862 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863 (reldyn_sorting_bfd, arg1, int_reloc1);
2864 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865 (reldyn_sorting_bfd, arg2, int_reloc2);
2866
2867 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868 return -1;
2869 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870 return 1;
2871
2872 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873 return -1;
2874 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875 return 1;
2876 return 0;
2877 #else
2878 abort ();
2879 #endif
2880 }
2881
2882
2883 /* This routine is used to write out ECOFF debugging external symbol
2884 information. It is called via mips_elf_link_hash_traverse. The
2885 ECOFF external symbol information must match the ELF external
2886 symbol information. Unfortunately, at this point we don't know
2887 whether a symbol is required by reloc information, so the two
2888 tables may wind up being different. We must sort out the external
2889 symbol information before we can set the final size of the .mdebug
2890 section, and we must set the size of the .mdebug section before we
2891 can relocate any sections, and we can't know which symbols are
2892 required by relocation until we relocate the sections.
2893 Fortunately, it is relatively unlikely that any symbol will be
2894 stripped but required by a reloc. In particular, it can not happen
2895 when generating a final executable. */
2896
2897 static bfd_boolean
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2899 {
2900 struct extsym_info *einfo = data;
2901 bfd_boolean strip;
2902 asection *sec, *output_section;
2903
2904 if (h->root.indx == -2)
2905 strip = FALSE;
2906 else if ((h->root.def_dynamic
2907 || h->root.ref_dynamic
2908 || h->root.type == bfd_link_hash_new)
2909 && !h->root.def_regular
2910 && !h->root.ref_regular)
2911 strip = TRUE;
2912 else if (einfo->info->strip == strip_all
2913 || (einfo->info->strip == strip_some
2914 && bfd_hash_lookup (einfo->info->keep_hash,
2915 h->root.root.root.string,
2916 FALSE, FALSE) == NULL))
2917 strip = TRUE;
2918 else
2919 strip = FALSE;
2920
2921 if (strip)
2922 return TRUE;
2923
2924 if (h->esym.ifd == -2)
2925 {
2926 h->esym.jmptbl = 0;
2927 h->esym.cobol_main = 0;
2928 h->esym.weakext = 0;
2929 h->esym.reserved = 0;
2930 h->esym.ifd = ifdNil;
2931 h->esym.asym.value = 0;
2932 h->esym.asym.st = stGlobal;
2933
2934 if (h->root.root.type == bfd_link_hash_undefined
2935 || h->root.root.type == bfd_link_hash_undefweak)
2936 {
2937 const char *name;
2938
2939 /* Use undefined class. Also, set class and type for some
2940 special symbols. */
2941 name = h->root.root.root.string;
2942 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 {
2945 h->esym.asym.sc = scData;
2946 h->esym.asym.st = stLabel;
2947 h->esym.asym.value = 0;
2948 }
2949 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 {
2951 h->esym.asym.sc = scAbs;
2952 h->esym.asym.st = stLabel;
2953 h->esym.asym.value =
2954 mips_elf_hash_table (einfo->info)->procedure_count;
2955 }
2956 else
2957 h->esym.asym.sc = scUndefined;
2958 }
2959 else if (h->root.root.type != bfd_link_hash_defined
2960 && h->root.root.type != bfd_link_hash_defweak)
2961 h->esym.asym.sc = scAbs;
2962 else
2963 {
2964 const char *name;
2965
2966 sec = h->root.root.u.def.section;
2967 output_section = sec->output_section;
2968
2969 /* When making a shared library and symbol h is the one from
2970 the another shared library, OUTPUT_SECTION may be null. */
2971 if (output_section == NULL)
2972 h->esym.asym.sc = scUndefined;
2973 else
2974 {
2975 name = bfd_section_name (output_section);
2976
2977 if (strcmp (name, ".text") == 0)
2978 h->esym.asym.sc = scText;
2979 else if (strcmp (name, ".data") == 0)
2980 h->esym.asym.sc = scData;
2981 else if (strcmp (name, ".sdata") == 0)
2982 h->esym.asym.sc = scSData;
2983 else if (strcmp (name, ".rodata") == 0
2984 || strcmp (name, ".rdata") == 0)
2985 h->esym.asym.sc = scRData;
2986 else if (strcmp (name, ".bss") == 0)
2987 h->esym.asym.sc = scBss;
2988 else if (strcmp (name, ".sbss") == 0)
2989 h->esym.asym.sc = scSBss;
2990 else if (strcmp (name, ".init") == 0)
2991 h->esym.asym.sc = scInit;
2992 else if (strcmp (name, ".fini") == 0)
2993 h->esym.asym.sc = scFini;
2994 else
2995 h->esym.asym.sc = scAbs;
2996 }
2997 }
2998
2999 h->esym.asym.reserved = 0;
3000 h->esym.asym.index = indexNil;
3001 }
3002
3003 if (h->root.root.type == bfd_link_hash_common)
3004 h->esym.asym.value = h->root.root.u.c.size;
3005 else if (h->root.root.type == bfd_link_hash_defined
3006 || h->root.root.type == bfd_link_hash_defweak)
3007 {
3008 if (h->esym.asym.sc == scCommon)
3009 h->esym.asym.sc = scBss;
3010 else if (h->esym.asym.sc == scSCommon)
3011 h->esym.asym.sc = scSBss;
3012
3013 sec = h->root.root.u.def.section;
3014 output_section = sec->output_section;
3015 if (output_section != NULL)
3016 h->esym.asym.value = (h->root.root.u.def.value
3017 + sec->output_offset
3018 + output_section->vma);
3019 else
3020 h->esym.asym.value = 0;
3021 }
3022 else
3023 {
3024 struct mips_elf_link_hash_entry *hd = h;
3025
3026 while (hd->root.root.type == bfd_link_hash_indirect)
3027 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3028
3029 if (hd->needs_lazy_stub)
3030 {
3031 BFD_ASSERT (hd->root.plt.plist != NULL);
3032 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 /* Set type and value for a symbol with a function stub. */
3034 h->esym.asym.st = stProc;
3035 sec = hd->root.root.u.def.section;
3036 if (sec == NULL)
3037 h->esym.asym.value = 0;
3038 else
3039 {
3040 output_section = sec->output_section;
3041 if (output_section != NULL)
3042 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 + sec->output_offset
3044 + output_section->vma);
3045 else
3046 h->esym.asym.value = 0;
3047 }
3048 }
3049 }
3050
3051 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 h->root.root.root.string,
3053 &h->esym))
3054 {
3055 einfo->failed = TRUE;
3056 return FALSE;
3057 }
3058
3059 return TRUE;
3060 }
3061
3062 /* A comparison routine used to sort .gptab entries. */
3063
3064 static int
3065 gptab_compare (const void *p1, const void *p2)
3066 {
3067 const Elf32_gptab *a1 = p1;
3068 const Elf32_gptab *a2 = p2;
3069
3070 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071 }
3072 \f
3073 /* Functions to manage the got entry hash table. */
3074
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076 hash number. */
3077
3078 static INLINE hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3080 {
3081 #ifdef BFD64
3082 return addr + (addr >> 32);
3083 #else
3084 return addr;
3085 #endif
3086 }
3087
3088 static hashval_t
3089 mips_elf_got_entry_hash (const void *entry_)
3090 {
3091 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092
3093 return (entry->symndx
3094 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 + (entry->tls_type == GOT_TLS_LDM ? 0
3096 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 : entry->symndx >= 0 ? (entry->abfd->id
3098 + mips_elf_hash_bfd_vma (entry->d.addend))
3099 : entry->d.h->root.root.root.hash));
3100 }
3101
3102 static int
3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3104 {
3105 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107
3108 return (e1->symndx == e2->symndx
3109 && e1->tls_type == e2->tls_type
3110 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3111 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 && e1->d.addend == e2->d.addend)
3114 : e2->abfd && e1->d.h == e2->d.h));
3115 }
3116
3117 static hashval_t
3118 mips_got_page_ref_hash (const void *ref_)
3119 {
3120 const struct mips_got_page_ref *ref;
3121
3122 ref = (const struct mips_got_page_ref *) ref_;
3123 return ((ref->symndx >= 0
3124 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 : ref->u.h->root.root.root.hash)
3126 + mips_elf_hash_bfd_vma (ref->addend));
3127 }
3128
3129 static int
3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131 {
3132 const struct mips_got_page_ref *ref1, *ref2;
3133
3134 ref1 = (const struct mips_got_page_ref *) ref1_;
3135 ref2 = (const struct mips_got_page_ref *) ref2_;
3136 return (ref1->symndx == ref2->symndx
3137 && (ref1->symndx < 0
3138 ? ref1->u.h == ref2->u.h
3139 : ref1->u.abfd == ref2->u.abfd)
3140 && ref1->addend == ref2->addend);
3141 }
3142
3143 static hashval_t
3144 mips_got_page_entry_hash (const void *entry_)
3145 {
3146 const struct mips_got_page_entry *entry;
3147
3148 entry = (const struct mips_got_page_entry *) entry_;
3149 return entry->sec->id;
3150 }
3151
3152 static int
3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154 {
3155 const struct mips_got_page_entry *entry1, *entry2;
3156
3157 entry1 = (const struct mips_got_page_entry *) entry1_;
3158 entry2 = (const struct mips_got_page_entry *) entry2_;
3159 return entry1->sec == entry2->sec;
3160 }
3161 \f
3162 /* Create and return a new mips_got_info structure. */
3163
3164 static struct mips_got_info *
3165 mips_elf_create_got_info (bfd *abfd)
3166 {
3167 struct mips_got_info *g;
3168
3169 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170 if (g == NULL)
3171 return NULL;
3172
3173 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 mips_elf_got_entry_eq, NULL);
3175 if (g->got_entries == NULL)
3176 return NULL;
3177
3178 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 mips_got_page_ref_eq, NULL);
3180 if (g->got_page_refs == NULL)
3181 return NULL;
3182
3183 return g;
3184 }
3185
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187 CREATE_P and if ABFD doesn't already have a GOT. */
3188
3189 static struct mips_got_info *
3190 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3191 {
3192 struct mips_elf_obj_tdata *tdata;
3193
3194 if (!is_mips_elf (abfd))
3195 return NULL;
3196
3197 tdata = mips_elf_tdata (abfd);
3198 if (!tdata->got && create_p)
3199 tdata->got = mips_elf_create_got_info (abfd);
3200 return tdata->got;
3201 }
3202
3203 /* Record that ABFD should use output GOT G. */
3204
3205 static void
3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207 {
3208 struct mips_elf_obj_tdata *tdata;
3209
3210 BFD_ASSERT (is_mips_elf (abfd));
3211 tdata = mips_elf_tdata (abfd);
3212 if (tdata->got)
3213 {
3214 /* The GOT structure itself and the hash table entries are
3215 allocated to a bfd, but the hash tables aren't. */
3216 htab_delete (tdata->got->got_entries);
3217 htab_delete (tdata->got->got_page_refs);
3218 if (tdata->got->got_page_entries)
3219 htab_delete (tdata->got->got_page_entries);
3220 }
3221 tdata->got = g;
3222 }
3223
3224 /* Return the dynamic relocation section. If it doesn't exist, try to
3225 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3226 if creation fails. */
3227
3228 static asection *
3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3230 {
3231 const char *dname;
3232 asection *sreloc;
3233 bfd *dynobj;
3234
3235 dname = MIPS_ELF_REL_DYN_NAME (info);
3236 dynobj = elf_hash_table (info)->dynobj;
3237 sreloc = bfd_get_linker_section (dynobj, dname);
3238 if (sreloc == NULL && create_p)
3239 {
3240 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 (SEC_ALLOC
3242 | SEC_LOAD
3243 | SEC_HAS_CONTENTS
3244 | SEC_IN_MEMORY
3245 | SEC_LINKER_CREATED
3246 | SEC_READONLY));
3247 if (sreloc == NULL
3248 || !bfd_set_section_alignment (sreloc,
3249 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 return NULL;
3251 }
3252 return sreloc;
3253 }
3254
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3256
3257 static int
3258 mips_elf_reloc_tls_type (unsigned int r_type)
3259 {
3260 if (tls_gd_reloc_p (r_type))
3261 return GOT_TLS_GD;
3262
3263 if (tls_ldm_reloc_p (r_type))
3264 return GOT_TLS_LDM;
3265
3266 if (tls_gottprel_reloc_p (r_type))
3267 return GOT_TLS_IE;
3268
3269 return GOT_TLS_NONE;
3270 }
3271
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3273
3274 static int
3275 mips_tls_got_entries (unsigned int type)
3276 {
3277 switch (type)
3278 {
3279 case GOT_TLS_GD:
3280 case GOT_TLS_LDM:
3281 return 2;
3282
3283 case GOT_TLS_IE:
3284 return 1;
3285
3286 case GOT_TLS_NONE:
3287 return 0;
3288 }
3289 abort ();
3290 }
3291
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293 access types from TLS_TYPE, and symbol H (or a local symbol if H
3294 is NULL). */
3295
3296 static int
3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 struct elf_link_hash_entry *h)
3299 {
3300 int indx = 0;
3301 bfd_boolean need_relocs = FALSE;
3302 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3303
3304 if (h != NULL
3305 && h->dynindx != -1
3306 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308 indx = h->dynindx;
3309
3310 if ((bfd_link_dll (info) || indx != 0)
3311 && (h == NULL
3312 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 || h->root.type != bfd_link_hash_undefweak))
3314 need_relocs = TRUE;
3315
3316 if (!need_relocs)
3317 return 0;
3318
3319 switch (tls_type)
3320 {
3321 case GOT_TLS_GD:
3322 return indx != 0 ? 2 : 1;
3323
3324 case GOT_TLS_IE:
3325 return 1;
3326
3327 case GOT_TLS_LDM:
3328 return bfd_link_dll (info) ? 1 : 0;
3329
3330 default:
3331 return 0;
3332 }
3333 }
3334
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336 to G. */
3337
3338 static void
3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 struct mips_got_info *g,
3341 struct mips_got_entry *entry)
3342 {
3343 if (entry->tls_type)
3344 {
3345 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 entry->symndx < 0
3348 ? &entry->d.h->root : NULL);
3349 }
3350 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351 g->local_gotno += 1;
3352 else
3353 g->global_gotno += 1;
3354 }
3355
3356 /* Output a simple dynamic relocation into SRELOC. */
3357
3358 static void
3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 asection *sreloc,
3361 unsigned long reloc_index,
3362 unsigned long indx,
3363 int r_type,
3364 bfd_vma offset)
3365 {
3366 Elf_Internal_Rela rel[3];
3367
3368 memset (rel, 0, sizeof (rel));
3369
3370 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372
3373 if (ABI_64_P (output_bfd))
3374 {
3375 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 (output_bfd, &rel[0],
3377 (sreloc->contents
3378 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3379 }
3380 else
3381 bfd_elf32_swap_reloc_out
3382 (output_bfd, &rel[0],
3383 (sreloc->contents
3384 + reloc_index * sizeof (Elf32_External_Rel)));
3385 }
3386
3387 /* Initialize a set of TLS GOT entries for one symbol. */
3388
3389 static void
3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 struct mips_got_entry *entry,
3392 struct mips_elf_link_hash_entry *h,
3393 bfd_vma value)
3394 {
3395 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3396 struct mips_elf_link_hash_table *htab;
3397 int indx;
3398 asection *sreloc, *sgot;
3399 bfd_vma got_offset, got_offset2;
3400 bfd_boolean need_relocs = FALSE;
3401
3402 htab = mips_elf_hash_table (info);
3403 if (htab == NULL)
3404 return;
3405
3406 sgot = htab->root.sgot;
3407
3408 indx = 0;
3409 if (h != NULL
3410 && h->root.dynindx != -1
3411 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413 indx = h->root.dynindx;
3414
3415 if (entry->tls_initialized)
3416 return;
3417
3418 if ((bfd_link_dll (info) || indx != 0)
3419 && (h == NULL
3420 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 || h->root.type != bfd_link_hash_undefweak))
3422 need_relocs = TRUE;
3423
3424 /* MINUS_ONE means the symbol is not defined in this object. It may not
3425 be defined at all; assume that the value doesn't matter in that
3426 case. Otherwise complain if we would use the value. */
3427 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 || h->root.root.type == bfd_link_hash_undefweak);
3429
3430 /* Emit necessary relocations. */
3431 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3432 got_offset = entry->gotidx;
3433
3434 switch (entry->tls_type)
3435 {
3436 case GOT_TLS_GD:
3437 /* General Dynamic. */
3438 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3439
3440 if (need_relocs)
3441 {
3442 mips_elf_output_dynamic_relocation
3443 (abfd, sreloc, sreloc->reloc_count++, indx,
3444 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 sgot->output_offset + sgot->output_section->vma + got_offset);
3446
3447 if (indx)
3448 mips_elf_output_dynamic_relocation
3449 (abfd, sreloc, sreloc->reloc_count++, indx,
3450 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 else
3453 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 sgot->contents + got_offset2);
3455 }
3456 else
3457 {
3458 MIPS_ELF_PUT_WORD (abfd, 1,
3459 sgot->contents + got_offset);
3460 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 sgot->contents + got_offset2);
3462 }
3463 break;
3464
3465 case GOT_TLS_IE:
3466 /* Initial Exec model. */
3467 if (need_relocs)
3468 {
3469 if (indx == 0)
3470 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 sgot->contents + got_offset);
3472 else
3473 MIPS_ELF_PUT_WORD (abfd, 0,
3474 sgot->contents + got_offset);
3475
3476 mips_elf_output_dynamic_relocation
3477 (abfd, sreloc, sreloc->reloc_count++, indx,
3478 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 sgot->output_offset + sgot->output_section->vma + got_offset);
3480 }
3481 else
3482 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 sgot->contents + got_offset);
3484 break;
3485
3486 case GOT_TLS_LDM:
3487 /* The initial offset is zero, and the LD offsets will include the
3488 bias by DTP_OFFSET. */
3489 MIPS_ELF_PUT_WORD (abfd, 0,
3490 sgot->contents + got_offset
3491 + MIPS_ELF_GOT_SIZE (abfd));
3492
3493 if (!bfd_link_dll (info))
3494 MIPS_ELF_PUT_WORD (abfd, 1,
3495 sgot->contents + got_offset);
3496 else
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 break;
3502
3503 default:
3504 abort ();
3505 }
3506
3507 entry->tls_initialized = TRUE;
3508 }
3509
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511 for global symbol H. .got.plt comes before the GOT, so the offset
3512 will be negative. */
3513
3514 static bfd_vma
3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 struct elf_link_hash_entry *h)
3517 {
3518 bfd_vma got_address, got_value;
3519 struct mips_elf_link_hash_table *htab;
3520
3521 htab = mips_elf_hash_table (info);
3522 BFD_ASSERT (htab != NULL);
3523
3524 BFD_ASSERT (h->plt.plist != NULL);
3525 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3526
3527 /* Calculate the address of the associated .got.plt entry. */
3528 got_address = (htab->root.sgotplt->output_section->vma
3529 + htab->root.sgotplt->output_offset
3530 + (h->plt.plist->gotplt_index
3531 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3532
3533 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3534 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 + htab->root.hgot->root.u.def.section->output_offset
3536 + htab->root.hgot->root.u.def.value);
3537
3538 return got_address - got_value;
3539 }
3540
3541 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3542 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3543 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3544 offset can be found. */
3545
3546 static bfd_vma
3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 bfd_vma value, unsigned long r_symndx,
3549 struct mips_elf_link_hash_entry *h, int r_type)
3550 {
3551 struct mips_elf_link_hash_table *htab;
3552 struct mips_got_entry *entry;
3553
3554 htab = mips_elf_hash_table (info);
3555 BFD_ASSERT (htab != NULL);
3556
3557 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 r_symndx, h, r_type);
3559 if (!entry)
3560 return MINUS_ONE;
3561
3562 if (entry->tls_type)
3563 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564 return entry->gotidx;
3565 }
3566
3567 /* Return the GOT index of global symbol H in the primary GOT. */
3568
3569 static bfd_vma
3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 struct elf_link_hash_entry *h)
3572 {
3573 struct mips_elf_link_hash_table *htab;
3574 long global_got_dynindx;
3575 struct mips_got_info *g;
3576 bfd_vma got_index;
3577
3578 htab = mips_elf_hash_table (info);
3579 BFD_ASSERT (htab != NULL);
3580
3581 global_got_dynindx = 0;
3582 if (htab->global_gotsym != NULL)
3583 global_got_dynindx = htab->global_gotsym->dynindx;
3584
3585 /* Once we determine the global GOT entry with the lowest dynamic
3586 symbol table index, we must put all dynamic symbols with greater
3587 indices into the primary GOT. That makes it easy to calculate the
3588 GOT offset. */
3589 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590 g = mips_elf_bfd_got (obfd, FALSE);
3591 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 * MIPS_ELF_GOT_SIZE (obfd));
3593 BFD_ASSERT (got_index < htab->root.sgot->size);
3594
3595 return got_index;
3596 }
3597
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599 referenced by a relocation of type R_TYPE in IBFD. */
3600
3601 static bfd_vma
3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 struct elf_link_hash_entry *h, int r_type)
3604 {
3605 struct mips_elf_link_hash_table *htab;
3606 struct mips_got_info *g;
3607 struct mips_got_entry lookup, *entry;
3608 bfd_vma gotidx;
3609
3610 htab = mips_elf_hash_table (info);
3611 BFD_ASSERT (htab != NULL);
3612
3613 g = mips_elf_bfd_got (ibfd, FALSE);
3614 BFD_ASSERT (g);
3615
3616 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3618 return mips_elf_primary_global_got_index (obfd, info, h);
3619
3620 lookup.abfd = ibfd;
3621 lookup.symndx = -1;
3622 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623 entry = htab_find (g->got_entries, &lookup);
3624 BFD_ASSERT (entry);
3625
3626 gotidx = entry->gotidx;
3627 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3628
3629 if (lookup.tls_type)
3630 {
3631 bfd_vma value = MINUS_ONE;
3632
3633 if ((h->root.type == bfd_link_hash_defined
3634 || h->root.type == bfd_link_hash_defweak)
3635 && h->root.u.def.section->output_section)
3636 value = (h->root.u.def.value
3637 + h->root.u.def.section->output_offset
3638 + h->root.u.def.section->output_section->vma);
3639
3640 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3641 }
3642 return gotidx;
3643 }
3644
3645 /* Find a GOT page entry that points to within 32KB of VALUE. These
3646 entries are supposed to be placed at small offsets in the GOT, i.e.,
3647 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3648 entry could be created. If OFFSETP is nonnull, use it to return the
3649 offset of the GOT entry from VALUE. */
3650
3651 static bfd_vma
3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 bfd_vma value, bfd_vma *offsetp)
3654 {
3655 bfd_vma page, got_index;
3656 struct mips_got_entry *entry;
3657
3658 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 NULL, R_MIPS_GOT_PAGE);
3661
3662 if (!entry)
3663 return MINUS_ONE;
3664
3665 got_index = entry->gotidx;
3666
3667 if (offsetp)
3668 *offsetp = value - entry->d.address;
3669
3670 return got_index;
3671 }
3672
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674 EXTERNAL is true if the relocation was originally against a global
3675 symbol that binds locally. */
3676
3677 static bfd_vma
3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 bfd_vma value, bfd_boolean external)
3680 {
3681 struct mips_got_entry *entry;
3682
3683 /* GOT16 relocations against local symbols are followed by a LO16
3684 relocation; those against global symbols are not. Thus if the
3685 symbol was originally local, the GOT16 relocation should load the
3686 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3687 if (! external)
3688 value = mips_elf_high (value) << 16;
3689
3690 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3692 same in all cases. */
3693 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 NULL, R_MIPS_GOT16);
3695 if (entry)
3696 return entry->gotidx;
3697 else
3698 return MINUS_ONE;
3699 }
3700
3701 /* Returns the offset for the entry at the INDEXth position
3702 in the GOT. */
3703
3704 static bfd_vma
3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 bfd *input_bfd, bfd_vma got_index)
3707 {
3708 struct mips_elf_link_hash_table *htab;
3709 asection *sgot;
3710 bfd_vma gp;
3711
3712 htab = mips_elf_hash_table (info);
3713 BFD_ASSERT (htab != NULL);
3714
3715 sgot = htab->root.sgot;
3716 gp = _bfd_get_gp_value (output_bfd)
3717 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3718
3719 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3720 }
3721
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3724 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725 instead. */
3726
3727 static struct mips_got_entry *
3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 bfd *ibfd, bfd_vma value,
3730 unsigned long r_symndx,
3731 struct mips_elf_link_hash_entry *h,
3732 int r_type)
3733 {
3734 struct mips_got_entry lookup, *entry;
3735 void **loc;
3736 struct mips_got_info *g;
3737 struct mips_elf_link_hash_table *htab;
3738 bfd_vma gotidx;
3739
3740 htab = mips_elf_hash_table (info);
3741 BFD_ASSERT (htab != NULL);
3742
3743 g = mips_elf_bfd_got (ibfd, FALSE);
3744 if (g == NULL)
3745 {
3746 g = mips_elf_bfd_got (abfd, FALSE);
3747 BFD_ASSERT (g != NULL);
3748 }
3749
3750 /* This function shouldn't be called for symbols that live in the global
3751 area of the GOT. */
3752 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3753
3754 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755 if (lookup.tls_type)
3756 {
3757 lookup.abfd = ibfd;
3758 if (tls_ldm_reloc_p (r_type))
3759 {
3760 lookup.symndx = 0;
3761 lookup.d.addend = 0;
3762 }
3763 else if (h == NULL)
3764 {
3765 lookup.symndx = r_symndx;
3766 lookup.d.addend = 0;
3767 }
3768 else
3769 {
3770 lookup.symndx = -1;
3771 lookup.d.h = h;
3772 }
3773
3774 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775 BFD_ASSERT (entry);
3776
3777 gotidx = entry->gotidx;
3778 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3779
3780 return entry;
3781 }
3782
3783 lookup.abfd = NULL;
3784 lookup.symndx = -1;
3785 lookup.d.address = value;
3786 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787 if (!loc)
3788 return NULL;
3789
3790 entry = (struct mips_got_entry *) *loc;
3791 if (entry)
3792 return entry;
3793
3794 if (g->assigned_low_gotno > g->assigned_high_gotno)
3795 {
3796 /* We didn't allocate enough space in the GOT. */
3797 _bfd_error_handler
3798 (_("not enough GOT space for local GOT entries"));
3799 bfd_set_error (bfd_error_bad_value);
3800 return NULL;
3801 }
3802
3803 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804 if (!entry)
3805 return NULL;
3806
3807 if (got16_reloc_p (r_type)
3808 || call16_reloc_p (r_type)
3809 || got_page_reloc_p (r_type)
3810 || got_disp_reloc_p (r_type))
3811 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812 else
3813 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814
3815 *entry = lookup;
3816 *loc = entry;
3817
3818 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3819
3820 /* These GOT entries need a dynamic relocation on VxWorks. */
3821 if (htab->root.target_os == is_vxworks)
3822 {
3823 Elf_Internal_Rela outrel;
3824 asection *s;
3825 bfd_byte *rloc;
3826 bfd_vma got_address;
3827
3828 s = mips_elf_rel_dyn_section (info, FALSE);
3829 got_address = (htab->root.sgot->output_section->vma
3830 + htab->root.sgot->output_offset
3831 + entry->gotidx);
3832
3833 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834 outrel.r_offset = got_address;
3835 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836 outrel.r_addend = value;
3837 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3838 }
3839
3840 return entry;
3841 }
3842
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844 The number might be exact or a worst-case estimate, depending on how
3845 much information is available to elf_backend_omit_section_dynsym at
3846 the current linking stage. */
3847
3848 static bfd_size_type
3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850 {
3851 bfd_size_type count;
3852
3853 count = 0;
3854 if (bfd_link_pic (info)
3855 || elf_hash_table (info)->is_relocatable_executable)
3856 {
3857 asection *p;
3858 const struct elf_backend_data *bed;
3859
3860 bed = get_elf_backend_data (output_bfd);
3861 for (p = output_bfd->sections; p ; p = p->next)
3862 if ((p->flags & SEC_EXCLUDE) == 0
3863 && (p->flags & SEC_ALLOC) != 0
3864 && elf_hash_table (info)->dynamic_relocs
3865 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 ++count;
3867 }
3868 return count;
3869 }
3870
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872 appear towards the end. */
3873
3874 static bfd_boolean
3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3876 {
3877 struct mips_elf_link_hash_table *htab;
3878 struct mips_elf_hash_sort_data hsd;
3879 struct mips_got_info *g;
3880
3881 htab = mips_elf_hash_table (info);
3882 BFD_ASSERT (htab != NULL);
3883
3884 if (htab->root.dynsymcount == 0)
3885 return TRUE;
3886
3887 g = htab->got_info;
3888 if (g == NULL)
3889 return TRUE;
3890
3891 hsd.low = NULL;
3892 hsd.max_unref_got_dynindx
3893 = hsd.min_got_dynindx
3894 = (htab->root.dynsymcount - g->reloc_only_gotno);
3895 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3897 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899 hsd.output_bfd = abfd;
3900 if (htab->root.dynobj != NULL
3901 && htab->root.dynamic_sections_created
3902 && info->emit_gnu_hash)
3903 {
3904 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905 BFD_ASSERT (s != NULL);
3906 hsd.mipsxhash = s->contents;
3907 BFD_ASSERT (hsd.mipsxhash != NULL);
3908 }
3909 else
3910 hsd.mipsxhash = NULL;
3911 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912
3913 /* There should have been enough room in the symbol table to
3914 accommodate both the GOT and non-GOT symbols. */
3915 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919
3920 /* Now we know which dynamic symbol has the lowest dynamic symbol
3921 table index in the GOT. */
3922 htab->global_gotsym = hsd.low;
3923
3924 return TRUE;
3925 }
3926
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928 index. Otherwise, assign it the lowest available dynamic
3929 index. */
3930
3931 static bfd_boolean
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 {
3934 struct mips_elf_hash_sort_data *hsd = data;
3935
3936 /* Symbols without dynamic symbol table entries aren't interesting
3937 at all. */
3938 if (h->root.dynindx == -1)
3939 return TRUE;
3940
3941 switch (h->global_got_area)
3942 {
3943 case GGA_NONE:
3944 if (h->root.forced_local)
3945 h->root.dynindx = hsd->max_local_dynindx++;
3946 else
3947 h->root.dynindx = hsd->max_non_got_dynindx++;
3948 break;
3949
3950 case GGA_NORMAL:
3951 h->root.dynindx = --hsd->min_got_dynindx;
3952 hsd->low = (struct elf_link_hash_entry *) h;
3953 break;
3954
3955 case GGA_RELOC_ONLY:
3956 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 hsd->low = (struct elf_link_hash_entry *) h;
3958 h->root.dynindx = hsd->max_unref_got_dynindx++;
3959 break;
3960 }
3961
3962 /* Populate the .MIPS.xhash translation table entry with
3963 the symbol dynindx. */
3964 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 hsd->mipsxhash + h->mipsxhash_loc);
3967
3968 return TRUE;
3969 }
3970
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972 (which is owned by the caller and shouldn't be added to the
3973 hash table directly). */
3974
3975 static bfd_boolean
3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 struct mips_got_entry *lookup)
3978 {
3979 struct mips_elf_link_hash_table *htab;
3980 struct mips_got_entry *entry;
3981 struct mips_got_info *g;
3982 void **loc, **bfd_loc;
3983
3984 /* Make sure there's a slot for this entry in the master GOT. */
3985 htab = mips_elf_hash_table (info);
3986 g = htab->got_info;
3987 loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988 if (!loc)
3989 return FALSE;
3990
3991 /* Populate the entry if it isn't already. */
3992 entry = (struct mips_got_entry *) *loc;
3993 if (!entry)
3994 {
3995 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996 if (!entry)
3997 return FALSE;
3998
3999 lookup->tls_initialized = FALSE;
4000 lookup->gotidx = -1;
4001 *entry = *lookup;
4002 *loc = entry;
4003 }
4004
4005 /* Reuse the same GOT entry for the BFD's GOT. */
4006 g = mips_elf_bfd_got (abfd, TRUE);
4007 if (!g)
4008 return FALSE;
4009
4010 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011 if (!bfd_loc)
4012 return FALSE;
4013
4014 if (!*bfd_loc)
4015 *bfd_loc = entry;
4016 return TRUE;
4017 }
4018
4019 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4020 entry for it. FOR_CALL is true if the caller is only interested in
4021 using the GOT entry for calls. */
4022
4023 static bfd_boolean
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 bfd *abfd, struct bfd_link_info *info,
4026 bfd_boolean for_call, int r_type)
4027 {
4028 struct mips_elf_link_hash_table *htab;
4029 struct mips_elf_link_hash_entry *hmips;
4030 struct mips_got_entry entry;
4031 unsigned char tls_type;
4032
4033 htab = mips_elf_hash_table (info);
4034 BFD_ASSERT (htab != NULL);
4035
4036 hmips = (struct mips_elf_link_hash_entry *) h;
4037 if (!for_call)
4038 hmips->got_only_for_calls = FALSE;
4039
4040 /* A global symbol in the GOT must also be in the dynamic symbol
4041 table. */
4042 if (h->dynindx == -1)
4043 {
4044 switch (ELF_ST_VISIBILITY (h->other))
4045 {
4046 case STV_INTERNAL:
4047 case STV_HIDDEN:
4048 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4049 break;
4050 }
4051 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 return FALSE;
4053 }
4054
4055 tls_type = mips_elf_reloc_tls_type (r_type);
4056 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057 hmips->global_got_area = GGA_NORMAL;
4058
4059 entry.abfd = abfd;
4060 entry.symndx = -1;
4061 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062 entry.tls_type = tls_type;
4063 return mips_elf_record_got_entry (info, abfd, &entry);
4064 }
4065
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4068
4069 static bfd_boolean
4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 struct bfd_link_info *info, int r_type)
4072 {
4073 struct mips_elf_link_hash_table *htab;
4074 struct mips_got_info *g;
4075 struct mips_got_entry entry;
4076
4077 htab = mips_elf_hash_table (info);
4078 BFD_ASSERT (htab != NULL);
4079
4080 g = htab->got_info;
4081 BFD_ASSERT (g != NULL);
4082
4083 entry.abfd = abfd;
4084 entry.symndx = symndx;
4085 entry.d.addend = addend;
4086 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087 return mips_elf_record_got_entry (info, abfd, &entry);
4088 }
4089
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091 H is the symbol's hash table entry, or null if SYMNDX is local
4092 to ABFD. */
4093
4094 static bfd_boolean
4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 long symndx, struct elf_link_hash_entry *h,
4097 bfd_signed_vma addend)
4098 {
4099 struct mips_elf_link_hash_table *htab;
4100 struct mips_got_info *g1, *g2;
4101 struct mips_got_page_ref lookup, *entry;
4102 void **loc, **bfd_loc;
4103
4104 htab = mips_elf_hash_table (info);
4105 BFD_ASSERT (htab != NULL);
4106
4107 g1 = htab->got_info;
4108 BFD_ASSERT (g1 != NULL);
4109
4110 if (h)
4111 {
4112 lookup.symndx = -1;
4113 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114 }
4115 else
4116 {
4117 lookup.symndx = symndx;
4118 lookup.u.abfd = abfd;
4119 }
4120 lookup.addend = addend;
4121 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122 if (loc == NULL)
4123 return FALSE;
4124
4125 entry = (struct mips_got_page_ref *) *loc;
4126 if (!entry)
4127 {
4128 entry = bfd_alloc (abfd, sizeof (*entry));
4129 if (!entry)
4130 return FALSE;
4131
4132 *entry = lookup;
4133 *loc = entry;
4134 }
4135
4136 /* Add the same entry to the BFD's GOT. */
4137 g2 = mips_elf_bfd_got (abfd, TRUE);
4138 if (!g2)
4139 return FALSE;
4140
4141 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142 if (!bfd_loc)
4143 return FALSE;
4144
4145 if (!*bfd_loc)
4146 *bfd_loc = entry;
4147
4148 return TRUE;
4149 }
4150
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4152
4153 static void
4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 unsigned int n)
4156 {
4157 asection *s;
4158 struct mips_elf_link_hash_table *htab;
4159
4160 htab = mips_elf_hash_table (info);
4161 BFD_ASSERT (htab != NULL);
4162
4163 s = mips_elf_rel_dyn_section (info, FALSE);
4164 BFD_ASSERT (s != NULL);
4165
4166 if (htab->root.target_os == is_vxworks)
4167 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168 else
4169 {
4170 if (s->size == 0)
4171 {
4172 /* Make room for a null element. */
4173 s->size += MIPS_ELF_REL_SIZE (abfd);
4174 ++s->reloc_count;
4175 }
4176 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177 }
4178 }
4179 \f
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181 mips_elf_traverse_got_arg structure. Count the number of GOT
4182 entries and TLS relocs. Set DATA->value to true if we need
4183 to resolve indirect or warning symbols and then recreate the GOT. */
4184
4185 static int
4186 mips_elf_check_recreate_got (void **entryp, void *data)
4187 {
4188 struct mips_got_entry *entry;
4189 struct mips_elf_traverse_got_arg *arg;
4190
4191 entry = (struct mips_got_entry *) *entryp;
4192 arg = (struct mips_elf_traverse_got_arg *) data;
4193 if (entry->abfd != NULL && entry->symndx == -1)
4194 {
4195 struct mips_elf_link_hash_entry *h;
4196
4197 h = entry->d.h;
4198 if (h->root.root.type == bfd_link_hash_indirect
4199 || h->root.root.type == bfd_link_hash_warning)
4200 {
4201 arg->value = TRUE;
4202 return 0;
4203 }
4204 }
4205 mips_elf_count_got_entry (arg->info, arg->g, entry);
4206 return 1;
4207 }
4208
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4211 converting entries for indirect and warning symbols into entries
4212 for the target symbol. Set DATA->g to null on error. */
4213
4214 static int
4215 mips_elf_recreate_got (void **entryp, void *data)
4216 {
4217 struct mips_got_entry new_entry, *entry;
4218 struct mips_elf_traverse_got_arg *arg;
4219 void **slot;
4220
4221 entry = (struct mips_got_entry *) *entryp;
4222 arg = (struct mips_elf_traverse_got_arg *) data;
4223 if (entry->abfd != NULL
4224 && entry->symndx == -1
4225 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 || entry->d.h->root.root.type == bfd_link_hash_warning))
4227 {
4228 struct mips_elf_link_hash_entry *h;
4229
4230 new_entry = *entry;
4231 entry = &new_entry;
4232 h = entry->d.h;
4233 do
4234 {
4235 BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 }
4238 while (h->root.root.type == bfd_link_hash_indirect
4239 || h->root.root.type == bfd_link_hash_warning);
4240 entry->d.h = h;
4241 }
4242 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243 if (slot == NULL)
4244 {
4245 arg->g = NULL;
4246 return 0;
4247 }
4248 if (*slot == NULL)
4249 {
4250 if (entry == &new_entry)
4251 {
4252 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 if (!entry)
4254 {
4255 arg->g = NULL;
4256 return 0;
4257 }
4258 *entry = new_entry;
4259 }
4260 *slot = entry;
4261 mips_elf_count_got_entry (arg->info, arg->g, entry);
4262 }
4263 return 1;
4264 }
4265
4266 /* Return the maximum number of GOT page entries required for RANGE. */
4267
4268 static bfd_vma
4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270 {
4271 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272 }
4273
4274 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4275
4276 static bfd_boolean
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 asection *sec, bfd_signed_vma addend)
4279 {
4280 struct mips_got_info *g = arg->g;
4281 struct mips_got_page_entry lookup, *entry;
4282 struct mips_got_page_range **range_ptr, *range;
4283 bfd_vma old_pages, new_pages;
4284 void **loc;
4285
4286 /* Find the mips_got_page_entry hash table entry for this section. */
4287 lookup.sec = sec;
4288 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289 if (loc == NULL)
4290 return FALSE;
4291
4292 /* Create a mips_got_page_entry if this is the first time we've
4293 seen the section. */
4294 entry = (struct mips_got_page_entry *) *loc;
4295 if (!entry)
4296 {
4297 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298 if (!entry)
4299 return FALSE;
4300
4301 entry->sec = sec;
4302 *loc = entry;
4303 }
4304
4305 /* Skip over ranges whose maximum extent cannot share a page entry
4306 with ADDEND. */
4307 range_ptr = &entry->ranges;
4308 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309 range_ptr = &(*range_ptr)->next;
4310
4311 /* If we scanned to the end of the list, or found a range whose
4312 minimum extent cannot share a page entry with ADDEND, create
4313 a new singleton range. */
4314 range = *range_ptr;
4315 if (!range || addend < range->min_addend - 0xffff)
4316 {
4317 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318 if (!range)
4319 return FALSE;
4320
4321 range->next = *range_ptr;
4322 range->min_addend = addend;
4323 range->max_addend = addend;
4324
4325 *range_ptr = range;
4326 entry->num_pages++;
4327 g->page_gotno++;
4328 return TRUE;
4329 }
4330
4331 /* Remember how many pages the old range contributed. */
4332 old_pages = mips_elf_pages_for_range (range);
4333
4334 /* Update the ranges. */
4335 if (addend < range->min_addend)
4336 range->min_addend = addend;
4337 else if (addend > range->max_addend)
4338 {
4339 if (range->next && addend >= range->next->min_addend - 0xffff)
4340 {
4341 old_pages += mips_elf_pages_for_range (range->next);
4342 range->max_addend = range->next->max_addend;
4343 range->next = range->next->next;
4344 }
4345 else
4346 range->max_addend = addend;
4347 }
4348
4349 /* Record any change in the total estimate. */
4350 new_pages = mips_elf_pages_for_range (range);
4351 if (old_pages != new_pages)
4352 {
4353 entry->num_pages += new_pages - old_pages;
4354 g->page_gotno += new_pages - old_pages;
4355 }
4356
4357 return TRUE;
4358 }
4359
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4362 whether the page reference described by *REFP needs a GOT page entry,
4363 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4364
4365 static bfd_boolean
4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4367 {
4368 struct mips_got_page_ref *ref;
4369 struct mips_elf_traverse_got_arg *arg;
4370 struct mips_elf_link_hash_table *htab;
4371 asection *sec;
4372 bfd_vma addend;
4373
4374 ref = (struct mips_got_page_ref *) *refp;
4375 arg = (struct mips_elf_traverse_got_arg *) data;
4376 htab = mips_elf_hash_table (arg->info);
4377
4378 if (ref->symndx < 0)
4379 {
4380 struct mips_elf_link_hash_entry *h;
4381
4382 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4383 h = ref->u.h;
4384 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 return 1;
4386
4387 /* Ignore undefined symbols; we'll issue an error later if
4388 appropriate. */
4389 if (!((h->root.root.type == bfd_link_hash_defined
4390 || h->root.root.type == bfd_link_hash_defweak)
4391 && h->root.root.u.def.section))
4392 return 1;
4393
4394 sec = h->root.root.u.def.section;
4395 addend = h->root.root.u.def.value + ref->addend;
4396 }
4397 else
4398 {
4399 Elf_Internal_Sym *isym;
4400
4401 /* Read in the symbol. */
4402 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 ref->symndx);
4404 if (isym == NULL)
4405 {
4406 arg->g = NULL;
4407 return 0;
4408 }
4409
4410 /* Get the associated input section. */
4411 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412 if (sec == NULL)
4413 {
4414 arg->g = NULL;
4415 return 0;
4416 }
4417
4418 /* If this is a mergable section, work out the section and offset
4419 of the merged data. For section symbols, the addend specifies
4420 of the offset _of_ the first byte in the data, otherwise it
4421 specifies the offset _from_ the first byte. */
4422 if (sec->flags & SEC_MERGE)
4423 {
4424 void *secinfo;
4425
4426 secinfo = elf_section_data (sec)->sec_info;
4427 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 isym->st_value + ref->addend);
4430 else
4431 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 isym->st_value) + ref->addend;
4433 }
4434 else
4435 addend = isym->st_value + ref->addend;
4436 }
4437 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438 {
4439 arg->g = NULL;
4440 return 0;
4441 }
4442 return 1;
4443 }
4444
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446 replace them with entries for the target symbol. Convert g->got_page_refs
4447 into got_page_entry structures and estimate the number of page entries
4448 that they require. */
4449
4450 static bfd_boolean
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 struct mips_got_info *g)
4453 {
4454 struct mips_elf_traverse_got_arg tga;
4455 struct mips_got_info oldg;
4456
4457 oldg = *g;
4458
4459 tga.info = info;
4460 tga.g = g;
4461 tga.value = FALSE;
4462 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463 if (tga.value)
4464 {
4465 *g = oldg;
4466 g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 mips_elf_got_entry_hash,
4468 mips_elf_got_entry_eq, NULL);
4469 if (!g->got_entries)
4470 return FALSE;
4471
4472 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473 if (!tga.g)
4474 return FALSE;
4475
4476 htab_delete (oldg.got_entries);
4477 }
4478
4479 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 mips_got_page_entry_eq, NULL);
4481 if (g->got_page_entries == NULL)
4482 return FALSE;
4483
4484 tga.info = info;
4485 tga.g = g;
4486 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487
4488 return TRUE;
4489 }
4490
4491 /* Return true if a GOT entry for H should live in the local rather than
4492 global GOT area. */
4493
4494 static bfd_boolean
4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 struct mips_elf_link_hash_entry *h)
4497 {
4498 /* Symbols that aren't in the dynamic symbol table must live in the
4499 local GOT. This includes symbols that are completely undefined
4500 and which therefore don't bind locally. We'll report undefined
4501 symbols later if appropriate. */
4502 if (h->root.dynindx == -1)
4503 return TRUE;
4504
4505 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506 to the local GOT, as they would be implicitly relocated by the
4507 base address by the dynamic loader. */
4508 if (bfd_is_abs_symbol (&h->root.root))
4509 return FALSE;
4510
4511 /* Symbols that bind locally can (and in the case of forced-local
4512 symbols, must) live in the local GOT. */
4513 if (h->got_only_for_calls
4514 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516 return TRUE;
4517
4518 /* If this is an executable that must provide a definition of the symbol,
4519 either though PLTs or copy relocations, then that address should go in
4520 the local rather than global GOT. */
4521 if (bfd_link_executable (info) && h->has_static_relocs)
4522 return TRUE;
4523
4524 return FALSE;
4525 }
4526
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528 link_info structure. Decide whether the hash entry needs an entry in
4529 the global part of the primary GOT, setting global_got_area accordingly.
4530 Count the number of global symbols that are in the primary GOT only
4531 because they have relocations against them (reloc_only_gotno). */
4532
4533 static int
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4535 {
4536 struct bfd_link_info *info;
4537 struct mips_elf_link_hash_table *htab;
4538 struct mips_got_info *g;
4539
4540 info = (struct bfd_link_info *) data;
4541 htab = mips_elf_hash_table (info);
4542 g = htab->got_info;
4543 if (h->global_got_area != GGA_NONE)
4544 {
4545 /* Make a final decision about whether the symbol belongs in the
4546 local or global GOT. */
4547 if (mips_use_local_got_p (info, h))
4548 /* The symbol belongs in the local GOT. We no longer need this
4549 entry if it was only used for relocations; those relocations
4550 will be against the null or section symbol instead of H. */
4551 h->global_got_area = GGA_NONE;
4552 else if (htab->root.target_os == is_vxworks
4553 && h->got_only_for_calls
4554 && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 /* On VxWorks, calls can refer directly to the .got.plt entry;
4556 they don't need entries in the regular GOT. .got.plt entries
4557 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4558 h->global_got_area = GGA_NONE;
4559 else if (h->global_got_area == GGA_RELOC_ONLY)
4560 {
4561 g->reloc_only_gotno++;
4562 g->global_gotno++;
4563 }
4564 }
4565 return 1;
4566 }
4567 \f
4568 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4569 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4570
4571 static int
4572 mips_elf_add_got_entry (void **entryp, void *data)
4573 {
4574 struct mips_got_entry *entry;
4575 struct mips_elf_traverse_got_arg *arg;
4576 void **slot;
4577
4578 entry = (struct mips_got_entry *) *entryp;
4579 arg = (struct mips_elf_traverse_got_arg *) data;
4580 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581 if (!slot)
4582 {
4583 arg->g = NULL;
4584 return 0;
4585 }
4586 if (!*slot)
4587 {
4588 *slot = entry;
4589 mips_elf_count_got_entry (arg->info, arg->g, entry);
4590 }
4591 return 1;
4592 }
4593
4594 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4595 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4596
4597 static int
4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4599 {
4600 struct mips_got_page_entry *entry;
4601 struct mips_elf_traverse_got_arg *arg;
4602 void **slot;
4603
4604 entry = (struct mips_got_page_entry *) *entryp;
4605 arg = (struct mips_elf_traverse_got_arg *) data;
4606 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607 if (!slot)
4608 {
4609 arg->g = NULL;
4610 return 0;
4611 }
4612 if (!*slot)
4613 {
4614 *slot = entry;
4615 arg->g->page_gotno += entry->num_pages;
4616 }
4617 return 1;
4618 }
4619
4620 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4621 this would lead to overflow, 1 if they were merged successfully,
4622 and 0 if a merge failed due to lack of memory. (These values are chosen
4623 so that nonnegative return values can be returned by a htab_traverse
4624 callback.) */
4625
4626 static int
4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 struct mips_got_info *to,
4629 struct mips_elf_got_per_bfd_arg *arg)
4630 {
4631 struct mips_elf_traverse_got_arg tga;
4632 unsigned int estimate;
4633
4634 /* Work out how many page entries we would need for the combined GOT. */
4635 estimate = arg->max_pages;
4636 if (estimate >= from->page_gotno + to->page_gotno)
4637 estimate = from->page_gotno + to->page_gotno;
4638
4639 /* And conservatively estimate how many local and TLS entries
4640 would be needed. */
4641 estimate += from->local_gotno + to->local_gotno;
4642 estimate += from->tls_gotno + to->tls_gotno;
4643
4644 /* If we're merging with the primary got, any TLS relocations will
4645 come after the full set of global entries. Otherwise estimate those
4646 conservatively as well. */
4647 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648 estimate += arg->global_count;
4649 else
4650 estimate += from->global_gotno + to->global_gotno;
4651
4652 /* Bail out if the combined GOT might be too big. */
4653 if (estimate > arg->max_count)
4654 return -1;
4655
4656 /* Transfer the bfd's got information from FROM to TO. */
4657 tga.info = arg->info;
4658 tga.g = to;
4659 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660 if (!tga.g)
4661 return 0;
4662
4663 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664 if (!tga.g)
4665 return 0;
4666
4667 mips_elf_replace_bfd_got (abfd, to);
4668 return 1;
4669 }
4670
4671 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4672 as possible of the primary got, since it doesn't require explicit
4673 dynamic relocations, but don't use bfds that would reference global
4674 symbols out of the addressable range. Failing the primary got,
4675 attempt to merge with the current got, or finish the current got
4676 and then make make the new got current. */
4677
4678 static bfd_boolean
4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 struct mips_elf_got_per_bfd_arg *arg)
4681 {
4682 unsigned int estimate;
4683 int result;
4684
4685 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686 return FALSE;
4687
4688 /* Work out the number of page, local and TLS entries. */
4689 estimate = arg->max_pages;
4690 if (estimate > g->page_gotno)
4691 estimate = g->page_gotno;
4692 estimate += g->local_gotno + g->tls_gotno;
4693
4694 /* We place TLS GOT entries after both locals and globals. The globals
4695 for the primary GOT may overflow the normal GOT size limit, so be
4696 sure not to merge a GOT which requires TLS with the primary GOT in that
4697 case. This doesn't affect non-primary GOTs. */
4698 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4699
4700 if (estimate <= arg->max_count)
4701 {
4702 /* If we don't have a primary GOT, use it as
4703 a starting point for the primary GOT. */
4704 if (!arg->primary)
4705 {
4706 arg->primary = g;
4707 return TRUE;
4708 }
4709
4710 /* Try merging with the primary GOT. */
4711 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712 if (result >= 0)
4713 return result;
4714 }
4715
4716 /* If we can merge with the last-created got, do it. */
4717 if (arg->current)
4718 {
4719 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720 if (result >= 0)
4721 return result;
4722 }
4723
4724 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4725 fits; if it turns out that it doesn't, we'll get relocation
4726 overflows anyway. */
4727 g->next = arg->current;
4728 arg->current = g;
4729
4730 return TRUE;
4731 }
4732
4733 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4734 to GOTIDX, duplicating the entry if it has already been assigned
4735 an index in a different GOT. */
4736
4737 static bfd_boolean
4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4739 {
4740 struct mips_got_entry *entry;
4741
4742 entry = (struct mips_got_entry *) *entryp;
4743 if (entry->gotidx > 0)
4744 {
4745 struct mips_got_entry *new_entry;
4746
4747 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748 if (!new_entry)
4749 return FALSE;
4750
4751 *new_entry = *entry;
4752 *entryp = new_entry;
4753 entry = new_entry;
4754 }
4755 entry->gotidx = gotidx;
4756 return TRUE;
4757 }
4758
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4760 mips_elf_traverse_got_arg in which DATA->value is the size of one
4761 GOT entry. Set DATA->g to null on failure. */
4762
4763 static int
4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4765 {
4766 struct mips_got_entry *entry;
4767 struct mips_elf_traverse_got_arg *arg;
4768
4769 /* We're only interested in TLS symbols. */
4770 entry = (struct mips_got_entry *) *entryp;
4771 if (entry->tls_type == GOT_TLS_NONE)
4772 return 1;
4773
4774 arg = (struct mips_elf_traverse_got_arg *) data;
4775 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4776 {
4777 arg->g = NULL;
4778 return 0;
4779 }
4780
4781 /* Account for the entries we've just allocated. */
4782 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783 return 1;
4784 }
4785
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787 mips_elf_traverse_got_arg. Set the global_got_area of each global
4788 symbol to DATA->value. */
4789
4790 static int
4791 mips_elf_set_global_got_area (void **entryp, void *data)
4792 {
4793 struct mips_got_entry *entry;
4794 struct mips_elf_traverse_got_arg *arg;
4795
4796 entry = (struct mips_got_entry *) *entryp;
4797 arg = (struct mips_elf_traverse_got_arg *) data;
4798 if (entry->abfd != NULL
4799 && entry->symndx == -1
4800 && entry->d.h->global_got_area != GGA_NONE)
4801 entry->d.h->global_got_area = arg->value;
4802 return 1;
4803 }
4804
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4807 and record the number of relocations they require. DATA->value is
4808 the size of one GOT entry. Set DATA->g to null on failure. */
4809
4810 static int
4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4812 {
4813 struct mips_got_entry *entry;
4814 struct mips_elf_traverse_got_arg *arg;
4815
4816 entry = (struct mips_got_entry *) *entryp;
4817 arg = (struct mips_elf_traverse_got_arg *) data;
4818 if (entry->abfd != NULL
4819 && entry->symndx == -1
4820 && entry->d.h->global_got_area != GGA_NONE)
4821 {
4822 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4823 {
4824 arg->g = NULL;
4825 return 0;
4826 }
4827 arg->g->assigned_low_gotno += 1;
4828
4829 if (bfd_link_pic (arg->info)
4830 || (elf_hash_table (arg->info)->dynamic_sections_created
4831 && entry->d.h->root.def_dynamic
4832 && !entry->d.h->root.def_regular))
4833 arg->g->relocs += 1;
4834 }
4835
4836 return 1;
4837 }
4838
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840 bfd_link_info. Forbid any global symbols from having traditional
4841 lazy-binding stubs. */
4842
4843 static int
4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4845 {
4846 struct bfd_link_info *info;
4847 struct mips_elf_link_hash_table *htab;
4848 struct mips_got_entry *entry;
4849
4850 entry = (struct mips_got_entry *) *entryp;
4851 info = (struct bfd_link_info *) data;
4852 htab = mips_elf_hash_table (info);
4853 BFD_ASSERT (htab != NULL);
4854
4855 if (entry->abfd != NULL
4856 && entry->symndx == -1
4857 && entry->d.h->needs_lazy_stub)
4858 {
4859 entry->d.h->needs_lazy_stub = FALSE;
4860 htab->lazy_stub_count--;
4861 }
4862
4863 return 1;
4864 }
4865
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867 the primary GOT. */
4868 static bfd_vma
4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4870 {
4871 if (!g->next)
4872 return 0;
4873
4874 g = mips_elf_bfd_got (ibfd, FALSE);
4875 if (! g)
4876 return 0;
4877
4878 BFD_ASSERT (g->next);
4879
4880 g = g->next;
4881
4882 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883 * MIPS_ELF_GOT_SIZE (abfd);
4884 }
4885
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887 a sequence of GOTs, each one 16-bit addressable. */
4888
4889 static bfd_boolean
4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 asection *got, bfd_size_type pages)
4892 {
4893 struct mips_elf_link_hash_table *htab;
4894 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895 struct mips_elf_traverse_got_arg tga;
4896 struct mips_got_info *g, *gg;
4897 unsigned int assign, needed_relocs;
4898 bfd *dynobj, *ibfd;
4899
4900 dynobj = elf_hash_table (info)->dynobj;
4901 htab = mips_elf_hash_table (info);
4902 BFD_ASSERT (htab != NULL);
4903
4904 g = htab->got_info;
4905
4906 got_per_bfd_arg.obfd = abfd;
4907 got_per_bfd_arg.info = info;
4908 got_per_bfd_arg.current = NULL;
4909 got_per_bfd_arg.primary = NULL;
4910 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 / MIPS_ELF_GOT_SIZE (abfd))
4912 - htab->reserved_gotno);
4913 got_per_bfd_arg.max_pages = pages;
4914 /* The number of globals that will be included in the primary GOT.
4915 See the calls to mips_elf_set_global_got_area below for more
4916 information. */
4917 got_per_bfd_arg.global_count = g->global_gotno;
4918
4919 /* Try to merge the GOTs of input bfds together, as long as they
4920 don't seem to exceed the maximum GOT size, choosing one of them
4921 to be the primary GOT. */
4922 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4923 {
4924 gg = mips_elf_bfd_got (ibfd, FALSE);
4925 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 return FALSE;
4927 }
4928
4929 /* If we do not find any suitable primary GOT, create an empty one. */
4930 if (got_per_bfd_arg.primary == NULL)
4931 g->next = mips_elf_create_got_info (abfd);
4932 else
4933 g->next = got_per_bfd_arg.primary;
4934 g->next->next = got_per_bfd_arg.current;
4935
4936 /* GG is now the master GOT, and G is the primary GOT. */
4937 gg = g;
4938 g = g->next;
4939
4940 /* Map the output bfd to the primary got. That's what we're going
4941 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942 didn't mark in check_relocs, and we want a quick way to find it.
4943 We can't just use gg->next because we're going to reverse the
4944 list. */
4945 mips_elf_replace_bfd_got (abfd, g);
4946
4947 /* Every symbol that is referenced in a dynamic relocation must be
4948 present in the primary GOT, so arrange for them to appear after
4949 those that are actually referenced. */
4950 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951 g->global_gotno = gg->global_gotno;
4952
4953 tga.info = info;
4954 tga.value = GGA_RELOC_ONLY;
4955 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956 tga.value = GGA_NORMAL;
4957 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4958
4959 /* Now go through the GOTs assigning them offset ranges.
4960 [assigned_low_gotno, local_gotno[ will be set to the range of local
4961 entries in each GOT. We can then compute the end of a GOT by
4962 adding local_gotno to global_gotno. We reverse the list and make
4963 it circular since then we'll be able to quickly compute the
4964 beginning of a GOT, by computing the end of its predecessor. To
4965 avoid special cases for the primary GOT, while still preserving
4966 assertions that are valid for both single- and multi-got links,
4967 we arrange for the main got struct to have the right number of
4968 global entries, but set its local_gotno such that the initial
4969 offset of the primary GOT is zero. Remember that the primary GOT
4970 will become the last item in the circular linked list, so it
4971 points back to the master GOT. */
4972 gg->local_gotno = -g->global_gotno;
4973 gg->global_gotno = g->global_gotno;
4974 gg->tls_gotno = 0;
4975 assign = 0;
4976 gg->next = gg;
4977
4978 do
4979 {
4980 struct mips_got_info *gn;
4981
4982 assign += htab->reserved_gotno;
4983 g->assigned_low_gotno = assign;
4984 g->local_gotno += assign;
4985 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986 g->assigned_high_gotno = g->local_gotno - 1;
4987 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988
4989 /* Take g out of the direct list, and push it onto the reversed
4990 list that gg points to. g->next is guaranteed to be nonnull after
4991 this operation, as required by mips_elf_initialize_tls_index. */
4992 gn = g->next;
4993 g->next = gg->next;
4994 gg->next = g;
4995
4996 /* Set up any TLS entries. We always place the TLS entries after
4997 all non-TLS entries. */
4998 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999 tga.g = g;
5000 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002 if (!tga.g)
5003 return FALSE;
5004 BFD_ASSERT (g->tls_assigned_gotno == assign);
5005
5006 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5007 g = gn;
5008
5009 /* Forbid global symbols in every non-primary GOT from having
5010 lazy-binding stubs. */
5011 if (g)
5012 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5013 }
5014 while (g);
5015
5016 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5017
5018 needed_relocs = 0;
5019 for (g = gg->next; g && g->next != gg; g = g->next)
5020 {
5021 unsigned int save_assign;
5022
5023 /* Assign offsets to global GOT entries and count how many
5024 relocations they need. */
5025 save_assign = g->assigned_low_gotno;
5026 g->assigned_low_gotno = g->local_gotno;
5027 tga.info = info;
5028 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029 tga.g = g;
5030 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031 if (!tga.g)
5032 return FALSE;
5033 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034 g->assigned_low_gotno = save_assign;
5035
5036 if (bfd_link_pic (info))
5037 {
5038 g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 + g->next->global_gotno
5041 + g->next->tls_gotno
5042 + htab->reserved_gotno);
5043 }
5044 needed_relocs += g->relocs;
5045 }
5046 needed_relocs += g->relocs;
5047
5048 if (needed_relocs)
5049 mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 needed_relocs);
5051
5052 return TRUE;
5053 }
5054
5055 \f
5056 /* Returns the first relocation of type r_type found, beginning with
5057 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5058
5059 static const Elf_Internal_Rela *
5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 const Elf_Internal_Rela *relocation,
5062 const Elf_Internal_Rela *relend)
5063 {
5064 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065
5066 while (relocation < relend)
5067 {
5068 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 return relocation;
5071
5072 ++relocation;
5073 }
5074
5075 /* We didn't find it. */
5076 return NULL;
5077 }
5078
5079 /* Return whether an input relocation is against a local symbol. */
5080
5081 static bfd_boolean
5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 const Elf_Internal_Rela *relocation,
5084 asection **local_sections)
5085 {
5086 unsigned long r_symndx;
5087 Elf_Internal_Shdr *symtab_hdr;
5088 size_t extsymoff;
5089
5090 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093
5094 if (r_symndx < extsymoff)
5095 return TRUE;
5096 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097 return TRUE;
5098
5099 return FALSE;
5100 }
5101 \f
5102 /* Sign-extend VALUE, which has the indicated number of BITS. */
5103
5104 bfd_vma
5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5106 {
5107 if (value & ((bfd_vma) 1 << (bits - 1)))
5108 /* VALUE is negative. */
5109 value |= ((bfd_vma) - 1) << bits;
5110
5111 return value;
5112 }
5113
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115 range expressible by a signed number with the indicated number of
5116 BITS. */
5117
5118 static bfd_boolean
5119 mips_elf_overflow_p (bfd_vma value, int bits)
5120 {
5121 bfd_signed_vma svalue = (bfd_signed_vma) value;
5122
5123 if (svalue > (1 << (bits - 1)) - 1)
5124 /* The value is too big. */
5125 return TRUE;
5126 else if (svalue < -(1 << (bits - 1)))
5127 /* The value is too small. */
5128 return TRUE;
5129
5130 /* All is well. */
5131 return FALSE;
5132 }
5133
5134 /* Calculate the %high function. */
5135
5136 static bfd_vma
5137 mips_elf_high (bfd_vma value)
5138 {
5139 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140 }
5141
5142 /* Calculate the %higher function. */
5143
5144 static bfd_vma
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5146 {
5147 #ifdef BFD64
5148 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150 abort ();
5151 return MINUS_ONE;
5152 #endif
5153 }
5154
5155 /* Calculate the %highest function. */
5156
5157 static bfd_vma
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5159 {
5160 #ifdef BFD64
5161 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163 abort ();
5164 return MINUS_ONE;
5165 #endif
5166 }
5167 \f
5168 /* Create the .compact_rel section. */
5169
5170 static bfd_boolean
5171 mips_elf_create_compact_rel_section
5172 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5173 {
5174 flagword flags;
5175 register asection *s;
5176
5177 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5178 {
5179 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 | SEC_READONLY);
5181
5182 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183 if (s == NULL
5184 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 return FALSE;
5186
5187 s->size = sizeof (Elf32_External_compact_rel);
5188 }
5189
5190 return TRUE;
5191 }
5192
5193 /* Create the .got section to hold the global offset table. */
5194
5195 static bfd_boolean
5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5197 {
5198 flagword flags;
5199 register asection *s;
5200 struct elf_link_hash_entry *h;
5201 struct bfd_link_hash_entry *bh;
5202 struct mips_elf_link_hash_table *htab;
5203
5204 htab = mips_elf_hash_table (info);
5205 BFD_ASSERT (htab != NULL);
5206
5207 /* This function may be called more than once. */
5208 if (htab->root.sgot)
5209 return TRUE;
5210
5211 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 | SEC_LINKER_CREATED);
5213
5214 /* We have to use an alignment of 2**4 here because this is hardcoded
5215 in the function stub generation and in the linker script. */
5216 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217 if (s == NULL
5218 || !bfd_set_section_alignment (s, 4))
5219 return FALSE;
5220 htab->root.sgot = s;
5221
5222 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5223 linker script because we don't want to define the symbol if we
5224 are not creating a global offset table. */
5225 bh = NULL;
5226 if (! (_bfd_generic_link_add_one_symbol
5227 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5229 return FALSE;
5230
5231 h = (struct elf_link_hash_entry *) bh;
5232 h->non_elf = 0;
5233 h->def_regular = 1;
5234 h->type = STT_OBJECT;
5235 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236 elf_hash_table (info)->hgot = h;
5237
5238 if (bfd_link_pic (info)
5239 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240 return FALSE;
5241
5242 htab->got_info = mips_elf_create_got_info (abfd);
5243 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245
5246 /* We also need a .got.plt section when generating PLTs. */
5247 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 SEC_ALLOC | SEC_LOAD
5249 | SEC_HAS_CONTENTS
5250 | SEC_IN_MEMORY
5251 | SEC_LINKER_CREATED);
5252 if (s == NULL)
5253 return FALSE;
5254 htab->root.sgotplt = s;
5255
5256 return TRUE;
5257 }
5258 \f
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260 __GOTT_INDEX__ symbols. These symbols are only special for
5261 shared objects; they are not used in executables. */
5262
5263 static bfd_boolean
5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265 {
5266 return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 && bfd_link_pic (info)
5268 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270 }
5271
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273 require an la25 stub. See also mips_elf_local_pic_function_p,
5274 which determines whether the destination function ever requires a
5275 stub. */
5276
5277 static bfd_boolean
5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 bfd_boolean target_is_16_bit_code_p)
5280 {
5281 /* We specifically ignore branches and jumps from EF_PIC objects,
5282 where the onus is on the compiler or programmer to perform any
5283 necessary initialization of $25. Sometimes such initialization
5284 is unnecessary; for example, -mno-shared functions do not use
5285 the incoming value of $25, and may therefore be called directly. */
5286 if (PIC_OBJECT_P (input_bfd))
5287 return FALSE;
5288
5289 switch (r_type)
5290 {
5291 case R_MIPS_26:
5292 case R_MIPS_PC16:
5293 case R_MIPS_PC21_S2:
5294 case R_MIPS_PC26_S2:
5295 case R_MICROMIPS_26_S1:
5296 case R_MICROMIPS_PC7_S1:
5297 case R_MICROMIPS_PC10_S1:
5298 case R_MICROMIPS_PC16_S1:
5299 case R_MICROMIPS_PC23_S2:
5300 return TRUE;
5301
5302 case R_MIPS16_26:
5303 return !target_is_16_bit_code_p;
5304
5305 default:
5306 return FALSE;
5307 }
5308 }
5309 \f
5310 /* Obtain the field relocated by RELOCATION. */
5311
5312 static bfd_vma
5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 const Elf_Internal_Rela *relocation,
5315 bfd *input_bfd, bfd_byte *contents)
5316 {
5317 bfd_vma x = 0;
5318 bfd_byte *location = contents + relocation->r_offset;
5319 unsigned int size = bfd_get_reloc_size (howto);
5320
5321 /* Obtain the bytes. */
5322 if (size != 0)
5323 x = bfd_get (8 * size, input_bfd, location);
5324
5325 return x;
5326 }
5327
5328 /* Store the field relocated by RELOCATION. */
5329
5330 static void
5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 const Elf_Internal_Rela *relocation,
5333 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334 {
5335 bfd_byte *location = contents + relocation->r_offset;
5336 unsigned int size = bfd_get_reloc_size (howto);
5337
5338 /* Put the value into the output. */
5339 if (size != 0)
5340 bfd_put (8 * size, input_bfd, x, location);
5341 }
5342
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344 RELOCATION described by HOWTO, with a move of 0 to the load target
5345 register, returning TRUE if that is successful and FALSE otherwise.
5346 If DOIT is FALSE, then only determine it patching is possible and
5347 return status without actually changing CONTENTS.
5348 */
5349
5350 static bfd_boolean
5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 const Elf_Internal_Rela *relocation,
5353 reloc_howto_type *howto, bfd_boolean doit)
5354 {
5355 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356 bfd_byte *location = contents + relocation->r_offset;
5357 bfd_boolean nullified = TRUE;
5358 bfd_vma x;
5359
5360 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5361
5362 /* Obtain the current value. */
5363 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364
5365 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5367 if (mips16_reloc_p (r_type)
5368 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5369 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5370 x = (0x3cdU << 22) | (x & (7 << 16)) << 3; /* LI */
5371 else if (micromips_reloc_p (r_type)
5372 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5373 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5374 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5375 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5376 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5377 else
5378 nullified = FALSE;
5379
5380 /* Put the value into the output. */
5381 if (doit && nullified)
5382 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383
5384 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5385
5386 return nullified;
5387 }
5388
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390 the INPUT_BFD). The ADDEND is the addend to use for this
5391 RELOCATION; RELOCATION->R_ADDEND is ignored.
5392
5393 The result of the relocation calculation is stored in VALUEP.
5394 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5396
5397 This function returns bfd_reloc_continue if the caller need take no
5398 further action regarding this relocation, bfd_reloc_notsupported if
5399 something goes dramatically wrong, bfd_reloc_overflow if an
5400 overflow occurs, and bfd_reloc_ok to indicate success. */
5401
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 asection *input_section, bfd_byte *contents,
5405 struct bfd_link_info *info,
5406 const Elf_Internal_Rela *relocation,
5407 bfd_vma addend, reloc_howto_type *howto,
5408 Elf_Internal_Sym *local_syms,
5409 asection **local_sections, bfd_vma *valuep,
5410 const char **namep,
5411 bfd_boolean *cross_mode_jump_p,
5412 bfd_boolean save_addend)
5413 {
5414 /* The eventual value we will return. */
5415 bfd_vma value;
5416 /* The address of the symbol against which the relocation is
5417 occurring. */
5418 bfd_vma symbol = 0;
5419 /* The final GP value to be used for the relocatable, executable, or
5420 shared object file being produced. */
5421 bfd_vma gp;
5422 /* The place (section offset or address) of the storage unit being
5423 relocated. */
5424 bfd_vma p;
5425 /* The value of GP used to create the relocatable object. */
5426 bfd_vma gp0;
5427 /* The offset into the global offset table at which the address of
5428 the relocation entry symbol, adjusted by the addend, resides
5429 during execution. */
5430 bfd_vma g = MINUS_ONE;
5431 /* The section in which the symbol referenced by the relocation is
5432 located. */
5433 asection *sec = NULL;
5434 struct mips_elf_link_hash_entry *h = NULL;
5435 /* TRUE if the symbol referred to by this relocation is a local
5436 symbol. */
5437 bfd_boolean local_p, was_local_p;
5438 /* TRUE if the symbol referred to by this relocation is a section
5439 symbol. */
5440 bfd_boolean section_p = FALSE;
5441 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5442 bfd_boolean gp_disp_p = FALSE;
5443 /* TRUE if the symbol referred to by this relocation is
5444 "__gnu_local_gp". */
5445 bfd_boolean gnu_local_gp_p = FALSE;
5446 Elf_Internal_Shdr *symtab_hdr;
5447 size_t extsymoff;
5448 unsigned long r_symndx;
5449 int r_type;
5450 /* TRUE if overflow occurred during the calculation of the
5451 relocation value. */
5452 bfd_boolean overflowed_p;
5453 /* TRUE if this relocation refers to a MIPS16 function. */
5454 bfd_boolean target_is_16_bit_code_p = FALSE;
5455 bfd_boolean target_is_micromips_code_p = FALSE;
5456 struct mips_elf_link_hash_table *htab;
5457 bfd *dynobj;
5458 bfd_boolean resolved_to_zero;
5459
5460 dynobj = elf_hash_table (info)->dynobj;
5461 htab = mips_elf_hash_table (info);
5462 BFD_ASSERT (htab != NULL);
5463
5464 /* Parse the relocation. */
5465 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467 p = (input_section->output_section->vma
5468 + input_section->output_offset
5469 + relocation->r_offset);
5470
5471 /* Assume that there will be no overflow. */
5472 overflowed_p = FALSE;
5473
5474 /* Figure out whether or not the symbol is local, and get the offset
5475 used in the array of hash table entries. */
5476 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 local_sections);
5479 was_local_p = local_p;
5480 if (! elf_bad_symtab (input_bfd))
5481 extsymoff = symtab_hdr->sh_info;
5482 else
5483 {
5484 /* The symbol table does not follow the rule that local symbols
5485 must come before globals. */
5486 extsymoff = 0;
5487 }
5488
5489 /* Figure out the value of the symbol. */
5490 if (local_p)
5491 {
5492 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5493 Elf_Internal_Sym *sym;
5494
5495 sym = local_syms + r_symndx;
5496 sec = local_sections[r_symndx];
5497
5498 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499
5500 symbol = sec->output_section->vma + sec->output_offset;
5501 if (!section_p || (sec->flags & SEC_MERGE))
5502 symbol += sym->st_value;
5503 if ((sec->flags & SEC_MERGE) && section_p)
5504 {
5505 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 addend -= symbol;
5507 addend += sec->output_section->vma + sec->output_offset;
5508 }
5509
5510 /* MIPS16/microMIPS text labels should be treated as odd. */
5511 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 ++symbol;
5513
5514 /* Record the name of this symbol, for our caller. */
5515 *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 symtab_hdr->sh_link,
5517 sym->st_name);
5518 if (*namep == NULL || **namep == '\0')
5519 *namep = bfd_section_name (sec);
5520
5521 /* For relocations against a section symbol and ones against no
5522 symbol (absolute relocations) infer the ISA mode from the addend. */
5523 if (section_p || r_symndx == STN_UNDEF)
5524 {
5525 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 }
5528 /* For relocations against an absolute symbol infer the ISA mode
5529 from the value of the symbol plus addend. */
5530 else if (bfd_is_abs_section (sec))
5531 {
5532 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 }
5535 /* Otherwise just use the regular symbol annotation available. */
5536 else
5537 {
5538 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 }
5541 }
5542 else
5543 {
5544 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5545
5546 /* For global symbols we look up the symbol in the hash-table. */
5547 h = ((struct mips_elf_link_hash_entry *)
5548 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549 /* Find the real hash-table entry for this symbol. */
5550 while (h->root.root.type == bfd_link_hash_indirect
5551 || h->root.root.type == bfd_link_hash_warning)
5552 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553
5554 /* Record the name of this symbol, for our caller. */
5555 *namep = h->root.root.root.string;
5556
5557 /* See if this is the special _gp_disp symbol. Note that such a
5558 symbol must always be a global symbol. */
5559 if (strcmp (*namep, "_gp_disp") == 0
5560 && ! NEWABI_P (input_bfd))
5561 {
5562 /* Relocations against _gp_disp are permitted only with
5563 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5564 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 return bfd_reloc_notsupported;
5566
5567 gp_disp_p = TRUE;
5568 }
5569 /* See if this is the special _gp symbol. Note that such a
5570 symbol must always be a global symbol. */
5571 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 gnu_local_gp_p = TRUE;
5573
5574
5575 /* If this symbol is defined, calculate its address. Note that
5576 _gp_disp is a magic symbol, always implicitly defined by the
5577 linker, so it's inappropriate to check to see whether or not
5578 its defined. */
5579 else if ((h->root.root.type == bfd_link_hash_defined
5580 || h->root.root.type == bfd_link_hash_defweak)
5581 && h->root.root.u.def.section)
5582 {
5583 sec = h->root.root.u.def.section;
5584 if (sec->output_section)
5585 symbol = (h->root.root.u.def.value
5586 + sec->output_section->vma
5587 + sec->output_offset);
5588 else
5589 symbol = h->root.root.u.def.value;
5590 }
5591 else if (h->root.root.type == bfd_link_hash_undefweak)
5592 /* We allow relocations against undefined weak symbols, giving
5593 it the value zero, so that you can undefined weak functions
5594 and check to see if they exist by looking at their
5595 addresses. */
5596 symbol = 0;
5597 else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 symbol = 0;
5600 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5602 {
5603 /* If this is a dynamic link, we should have created a
5604 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 in _bfd_mips_elf_create_dynamic_sections.
5606 Otherwise, we should define the symbol with a value of 0.
5607 FIXME: It should probably get into the symbol table
5608 somehow as well. */
5609 BFD_ASSERT (! bfd_link_pic (info));
5610 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 symbol = 0;
5612 }
5613 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 {
5615 /* This is an optional symbol - an Irix specific extension to the
5616 ELF spec. Ignore it for now.
5617 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 than simply ignoring them, but we do not handle this for now.
5619 For information see the "64-bit ELF Object File Specification"
5620 which is available from here:
5621 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5622 symbol = 0;
5623 }
5624 else
5625 {
5626 bfd_boolean reject_undefined
5627 = (info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 && !info->warn_unresolved_syms)
5629 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT;
5630
5631 info->callbacks->undefined_symbol
5632 (info, h->root.root.root.string, input_bfd,
5633 input_section, relocation->r_offset, reject_undefined);
5634
5635 if (reject_undefined)
5636 return bfd_reloc_undefined;
5637
5638 symbol = 0;
5639 }
5640
5641 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5643 }
5644
5645 /* If this is a reference to a 16-bit function with a stub, we need
5646 to redirect the relocation to the stub unless:
5647
5648 (a) the relocation is for a MIPS16 JAL;
5649
5650 (b) the relocation is for a MIPS16 PIC call, and there are no
5651 non-MIPS16 uses of the GOT slot; or
5652
5653 (c) the section allows direct references to MIPS16 functions. */
5654 if (r_type != R_MIPS16_26
5655 && !bfd_link_relocatable (info)
5656 && ((h != NULL
5657 && h->fn_stub != NULL
5658 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 || (local_p
5660 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662 && !section_allows_mips16_refs_p (input_section))
5663 {
5664 /* This is a 32- or 64-bit call to a 16-bit function. We should
5665 have already noticed that we were going to need the
5666 stub. */
5667 if (local_p)
5668 {
5669 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 value = 0;
5671 }
5672 else
5673 {
5674 BFD_ASSERT (h->need_fn_stub);
5675 if (h->la25_stub)
5676 {
5677 /* If a LA25 header for the stub itself exists, point to the
5678 prepended LUI/ADDIU sequence. */
5679 sec = h->la25_stub->stub_section;
5680 value = h->la25_stub->offset;
5681 }
5682 else
5683 {
5684 sec = h->fn_stub;
5685 value = 0;
5686 }
5687 }
5688
5689 symbol = sec->output_section->vma + sec->output_offset + value;
5690 /* The target is 16-bit, but the stub isn't. */
5691 target_is_16_bit_code_p = FALSE;
5692 }
5693 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694 to a standard MIPS function, we need to redirect the call to the stub.
5695 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696 indirect calls should use an indirect stub instead. */
5697 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 || (local_p
5700 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5703 {
5704 if (local_p)
5705 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706 else
5707 {
5708 /* If both call_stub and call_fp_stub are defined, we can figure
5709 out which one to use by checking which one appears in the input
5710 file. */
5711 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5712 {
5713 asection *o;
5714
5715 sec = NULL;
5716 for (o = input_bfd->sections; o != NULL; o = o->next)
5717 {
5718 if (CALL_FP_STUB_P (bfd_section_name (o)))
5719 {
5720 sec = h->call_fp_stub;
5721 break;
5722 }
5723 }
5724 if (sec == NULL)
5725 sec = h->call_stub;
5726 }
5727 else if (h->call_stub != NULL)
5728 sec = h->call_stub;
5729 else
5730 sec = h->call_fp_stub;
5731 }
5732
5733 BFD_ASSERT (sec->size > 0);
5734 symbol = sec->output_section->vma + sec->output_offset;
5735 }
5736 /* If this is a direct call to a PIC function, redirect to the
5737 non-PIC stub. */
5738 else if (h != NULL && h->la25_stub
5739 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 target_is_16_bit_code_p))
5741 {
5742 symbol = (h->la25_stub->stub_section->output_section->vma
5743 + h->la25_stub->stub_section->output_offset
5744 + h->la25_stub->offset);
5745 if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 symbol |= 1;
5747 }
5748 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749 entry is used if a standard PLT entry has also been made. In this
5750 case the symbol will have been set by mips_elf_set_plt_sym_value
5751 to point to the standard PLT entry, so redirect to the compressed
5752 one. */
5753 else if ((mips16_branch_reloc_p (r_type)
5754 || micromips_branch_reloc_p (r_type))
5755 && !bfd_link_relocatable (info)
5756 && h != NULL
5757 && h->use_plt_entry
5758 && h->root.plt.plist->comp_offset != MINUS_ONE
5759 && h->root.plt.plist->mips_offset != MINUS_ONE)
5760 {
5761 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5762
5763 sec = htab->root.splt;
5764 symbol = (sec->output_section->vma
5765 + sec->output_offset
5766 + htab->plt_header_size
5767 + htab->plt_mips_offset
5768 + h->root.plt.plist->comp_offset
5769 + 1);
5770
5771 target_is_16_bit_code_p = !micromips_p;
5772 target_is_micromips_code_p = micromips_p;
5773 }
5774
5775 /* Make sure MIPS16 and microMIPS are not used together. */
5776 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778 {
5779 _bfd_error_handler
5780 (_("MIPS16 and microMIPS functions cannot call each other"));
5781 return bfd_reloc_notsupported;
5782 }
5783
5784 /* Calls from 16-bit code to 32-bit code and vice versa require the
5785 mode change. However, we can ignore calls to undefined weak symbols,
5786 which should never be executed at runtime. This exception is important
5787 because the assembly writer may have "known" that any definition of the
5788 symbol would be 16-bit code, and that direct jumps were therefore
5789 acceptable. */
5790 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 && ((mips16_branch_reloc_p (r_type)
5793 && !target_is_16_bit_code_p)
5794 || (micromips_branch_reloc_p (r_type)
5795 && !target_is_micromips_code_p)
5796 || ((branch_reloc_p (r_type)
5797 || r_type == R_MIPS_JALR)
5798 && (target_is_16_bit_code_p
5799 || target_is_micromips_code_p))));
5800
5801 resolved_to_zero = (h != NULL
5802 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803
5804 switch (r_type)
5805 {
5806 case R_MIPS16_CALL16:
5807 case R_MIPS16_GOT16:
5808 case R_MIPS_CALL16:
5809 case R_MIPS_GOT16:
5810 case R_MIPS_GOT_PAGE:
5811 case R_MIPS_GOT_DISP:
5812 case R_MIPS_GOT_LO16:
5813 case R_MIPS_CALL_LO16:
5814 case R_MICROMIPS_CALL16:
5815 case R_MICROMIPS_GOT16:
5816 case R_MICROMIPS_GOT_PAGE:
5817 case R_MICROMIPS_GOT_DISP:
5818 case R_MICROMIPS_GOT_LO16:
5819 case R_MICROMIPS_CALL_LO16:
5820 if (resolved_to_zero
5821 && !bfd_link_relocatable (info)
5822 && mips_elf_nullify_got_load (input_bfd, contents,
5823 relocation, howto, TRUE))
5824 return bfd_reloc_continue;
5825
5826 /* Fall through. */
5827 case R_MIPS_GOT_HI16:
5828 case R_MIPS_CALL_HI16:
5829 case R_MICROMIPS_GOT_HI16:
5830 case R_MICROMIPS_CALL_HI16:
5831 if (resolved_to_zero
5832 && htab->use_absolute_zero
5833 && bfd_link_pic (info))
5834 {
5835 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5836 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 FALSE, FALSE, FALSE);
5838 BFD_ASSERT (h != NULL);
5839 }
5840 break;
5841 }
5842
5843 local_p = (h == NULL || mips_use_local_got_p (info, h));
5844
5845 gp0 = _bfd_get_gp_value (input_bfd);
5846 gp = _bfd_get_gp_value (abfd);
5847 if (htab->got_info)
5848 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5849
5850 if (gnu_local_gp_p)
5851 symbol = gp;
5852
5853 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5855 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5856 if (got_page_reloc_p (r_type) && !local_p)
5857 {
5858 r_type = (micromips_reloc_p (r_type)
5859 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860 addend = 0;
5861 }
5862
5863 /* If we haven't already determined the GOT offset, and we're going
5864 to need it, get it now. */
5865 switch (r_type)
5866 {
5867 case R_MIPS16_CALL16:
5868 case R_MIPS16_GOT16:
5869 case R_MIPS_CALL16:
5870 case R_MIPS_GOT16:
5871 case R_MIPS_GOT_DISP:
5872 case R_MIPS_GOT_HI16:
5873 case R_MIPS_CALL_HI16:
5874 case R_MIPS_GOT_LO16:
5875 case R_MIPS_CALL_LO16:
5876 case R_MICROMIPS_CALL16:
5877 case R_MICROMIPS_GOT16:
5878 case R_MICROMIPS_GOT_DISP:
5879 case R_MICROMIPS_GOT_HI16:
5880 case R_MICROMIPS_CALL_HI16:
5881 case R_MICROMIPS_GOT_LO16:
5882 case R_MICROMIPS_CALL_LO16:
5883 case R_MIPS_TLS_GD:
5884 case R_MIPS_TLS_GOTTPREL:
5885 case R_MIPS_TLS_LDM:
5886 case R_MIPS16_TLS_GD:
5887 case R_MIPS16_TLS_GOTTPREL:
5888 case R_MIPS16_TLS_LDM:
5889 case R_MICROMIPS_TLS_GD:
5890 case R_MICROMIPS_TLS_GOTTPREL:
5891 case R_MICROMIPS_TLS_LDM:
5892 /* Find the index into the GOT where this value is located. */
5893 if (tls_ldm_reloc_p (r_type))
5894 {
5895 g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 0, 0, NULL, r_type);
5897 if (g == MINUS_ONE)
5898 return bfd_reloc_outofrange;
5899 }
5900 else if (!local_p)
5901 {
5902 /* On VxWorks, CALL relocations should refer to the .got.plt
5903 entry, which is initialized to point at the PLT stub. */
5904 if (htab->root.target_os == is_vxworks
5905 && (call_hi16_reloc_p (r_type)
5906 || call_lo16_reloc_p (r_type)
5907 || call16_reloc_p (r_type)))
5908 {
5909 BFD_ASSERT (addend == 0);
5910 BFD_ASSERT (h->root.needs_plt);
5911 g = mips_elf_gotplt_index (info, &h->root);
5912 }
5913 else
5914 {
5915 BFD_ASSERT (addend == 0);
5916 g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 &h->root, r_type);
5918 if (!TLS_RELOC_P (r_type)
5919 && !elf_hash_table (info)->dynamic_sections_created)
5920 /* This is a static link. We must initialize the GOT entry. */
5921 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5922 }
5923 }
5924 else if (htab->root.target_os != is_vxworks
5925 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 /* The calculation below does not involve "g". */
5927 break;
5928 else
5929 {
5930 g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 symbol + addend, r_symndx, h, r_type);
5932 if (g == MINUS_ONE)
5933 return bfd_reloc_outofrange;
5934 }
5935
5936 /* Convert GOT indices to actual offsets. */
5937 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938 break;
5939 }
5940
5941 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942 symbols are resolved by the loader. Add them to .rela.dyn. */
5943 if (h != NULL && is_gott_symbol (info, &h->root))
5944 {
5945 Elf_Internal_Rela outrel;
5946 bfd_byte *loc;
5947 asection *s;
5948
5949 s = mips_elf_rel_dyn_section (info, FALSE);
5950 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951
5952 outrel.r_offset = (input_section->output_section->vma
5953 + input_section->output_offset
5954 + relocation->r_offset);
5955 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956 outrel.r_addend = addend;
5957 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5958
5959 /* If we've written this relocation for a readonly section,
5960 we need to set DF_TEXTREL again, so that we do not delete the
5961 DT_TEXTREL tag. */
5962 if (MIPS_ELF_READONLY_SECTION (input_section))
5963 info->flags |= DF_TEXTREL;
5964
5965 *valuep = 0;
5966 return bfd_reloc_ok;
5967 }
5968
5969 /* Figure out what kind of relocation is being performed. */
5970 switch (r_type)
5971 {
5972 case R_MIPS_NONE:
5973 return bfd_reloc_continue;
5974
5975 case R_MIPS_16:
5976 if (howto->partial_inplace)
5977 addend = _bfd_mips_elf_sign_extend (addend, 16);
5978 value = symbol + addend;
5979 overflowed_p = mips_elf_overflow_p (value, 16);
5980 break;
5981
5982 case R_MIPS_32:
5983 case R_MIPS_REL32:
5984 case R_MIPS_64:
5985 if ((bfd_link_pic (info)
5986 || (htab->root.dynamic_sections_created
5987 && h != NULL
5988 && h->root.def_dynamic
5989 && !h->root.def_regular
5990 && !h->has_static_relocs))
5991 && r_symndx != STN_UNDEF
5992 && (h == NULL
5993 || h->root.root.type != bfd_link_hash_undefweak
5994 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 && !resolved_to_zero))
5996 && (input_section->flags & SEC_ALLOC) != 0)
5997 {
5998 /* If we're creating a shared library, then we can't know
5999 where the symbol will end up. So, we create a relocation
6000 record in the output, and leave the job up to the dynamic
6001 linker. We must do the same for executable references to
6002 shared library symbols, unless we've decided to use copy
6003 relocs or PLTs instead. */
6004 value = addend;
6005 if (!mips_elf_create_dynamic_relocation (abfd,
6006 info,
6007 relocation,
6008 h,
6009 sec,
6010 symbol,
6011 &value,
6012 input_section))
6013 return bfd_reloc_undefined;
6014 }
6015 else
6016 {
6017 if (r_type != R_MIPS_REL32)
6018 value = symbol + addend;
6019 else
6020 value = addend;
6021 }
6022 value &= howto->dst_mask;
6023 break;
6024
6025 case R_MIPS_PC32:
6026 value = symbol + addend - p;
6027 value &= howto->dst_mask;
6028 break;
6029
6030 case R_MIPS16_26:
6031 /* The calculation for R_MIPS16_26 is just the same as for an
6032 R_MIPS_26. It's only the storage of the relocated field into
6033 the output file that's different. That's handled in
6034 mips_elf_perform_relocation. So, we just fall through to the
6035 R_MIPS_26 case here. */
6036 case R_MIPS_26:
6037 case R_MICROMIPS_26_S1:
6038 {
6039 unsigned int shift;
6040
6041 /* Shift is 2, unusually, for microMIPS JALX. */
6042 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043
6044 if (howto->partial_inplace && !section_p)
6045 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 else
6047 value = addend;
6048 value += symbol;
6049
6050 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6051 be the correct ISA mode selector except for weak undefined
6052 symbols. */
6053 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 && (*cross_mode_jump_p
6055 ? (value & 3) != (r_type == R_MIPS_26)
6056 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 return bfd_reloc_outofrange;
6058
6059 value >>= shift;
6060 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 value &= howto->dst_mask;
6063 }
6064 break;
6065
6066 case R_MIPS_TLS_DTPREL_HI16:
6067 case R_MIPS16_TLS_DTPREL_HI16:
6068 case R_MICROMIPS_TLS_DTPREL_HI16:
6069 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 & howto->dst_mask);
6071 break;
6072
6073 case R_MIPS_TLS_DTPREL_LO16:
6074 case R_MIPS_TLS_DTPREL32:
6075 case R_MIPS_TLS_DTPREL64:
6076 case R_MIPS16_TLS_DTPREL_LO16:
6077 case R_MICROMIPS_TLS_DTPREL_LO16:
6078 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079 break;
6080
6081 case R_MIPS_TLS_TPREL_HI16:
6082 case R_MIPS16_TLS_TPREL_HI16:
6083 case R_MICROMIPS_TLS_TPREL_HI16:
6084 value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 & howto->dst_mask);
6086 break;
6087
6088 case R_MIPS_TLS_TPREL_LO16:
6089 case R_MIPS_TLS_TPREL32:
6090 case R_MIPS_TLS_TPREL64:
6091 case R_MIPS16_TLS_TPREL_LO16:
6092 case R_MICROMIPS_TLS_TPREL_LO16:
6093 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094 break;
6095
6096 case R_MIPS_HI16:
6097 case R_MIPS16_HI16:
6098 case R_MICROMIPS_HI16:
6099 if (!gp_disp_p)
6100 {
6101 value = mips_elf_high (addend + symbol);
6102 value &= howto->dst_mask;
6103 }
6104 else
6105 {
6106 /* For MIPS16 ABI code we generate this sequence
6107 0: li $v0,%hi(_gp_disp)
6108 4: addiupc $v1,%lo(_gp_disp)
6109 8: sll $v0,16
6110 12: addu $v0,$v1
6111 14: move $gp,$v0
6112 So the offsets of hi and lo relocs are the same, but the
6113 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 ADDIUPC clears the low two bits of the instruction address,
6115 so the base is ($t9 + 4) & ~3. */
6116 if (r_type == R_MIPS16_HI16)
6117 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 /* The microMIPS .cpload sequence uses the same assembly
6119 instructions as the traditional psABI version, but the
6120 incoming $t9 has the low bit set. */
6121 else if (r_type == R_MICROMIPS_HI16)
6122 value = mips_elf_high (addend + gp - p - 1);
6123 else
6124 value = mips_elf_high (addend + gp - p);
6125 }
6126 break;
6127
6128 case R_MIPS_LO16:
6129 case R_MIPS16_LO16:
6130 case R_MICROMIPS_LO16:
6131 case R_MICROMIPS_HI0_LO16:
6132 if (!gp_disp_p)
6133 value = (symbol + addend) & howto->dst_mask;
6134 else
6135 {
6136 /* See the comment for R_MIPS16_HI16 above for the reason
6137 for this conditional. */
6138 if (r_type == R_MIPS16_LO16)
6139 value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 else if (r_type == R_MICROMIPS_LO16
6141 || r_type == R_MICROMIPS_HI0_LO16)
6142 value = addend + gp - p + 3;
6143 else
6144 value = addend + gp - p + 4;
6145 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 for overflow. But, on, say, IRIX5, relocations against
6147 _gp_disp are normally generated from the .cpload
6148 pseudo-op. It generates code that normally looks like
6149 this:
6150
6151 lui $gp,%hi(_gp_disp)
6152 addiu $gp,$gp,%lo(_gp_disp)
6153 addu $gp,$gp,$t9
6154
6155 Here $t9 holds the address of the function being called,
6156 as required by the MIPS ELF ABI. The R_MIPS_LO16
6157 relocation can easily overflow in this situation, but the
6158 R_MIPS_HI16 relocation will handle the overflow.
6159 Therefore, we consider this a bug in the MIPS ABI, and do
6160 not check for overflow here. */
6161 }
6162 break;
6163
6164 case R_MIPS_LITERAL:
6165 case R_MICROMIPS_LITERAL:
6166 /* Because we don't merge literal sections, we can handle this
6167 just like R_MIPS_GPREL16. In the long run, we should merge
6168 shared literals, and then we will need to additional work
6169 here. */
6170
6171 /* Fall through. */
6172
6173 case R_MIPS16_GPREL:
6174 /* The R_MIPS16_GPREL performs the same calculation as
6175 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 order. We don't need to do anything special here; the
6177 differences are handled in mips_elf_perform_relocation. */
6178 case R_MIPS_GPREL16:
6179 case R_MICROMIPS_GPREL7_S2:
6180 case R_MICROMIPS_GPREL16:
6181 /* Only sign-extend the addend if it was extracted from the
6182 instruction. If the addend was separate, leave it alone,
6183 otherwise we may lose significant bits. */
6184 if (howto->partial_inplace)
6185 addend = _bfd_mips_elf_sign_extend (addend, 16);
6186 value = symbol + addend - gp;
6187 /* If the symbol was local, any earlier relocatable links will
6188 have adjusted its addend with the gp offset, so compensate
6189 for that now. Don't do it for symbols forced local in this
6190 link, though, since they won't have had the gp offset applied
6191 to them before. */
6192 if (was_local_p)
6193 value += gp0;
6194 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 overflowed_p = mips_elf_overflow_p (value, 16);
6196 break;
6197
6198 case R_MIPS16_GOT16:
6199 case R_MIPS16_CALL16:
6200 case R_MIPS_GOT16:
6201 case R_MIPS_CALL16:
6202 case R_MICROMIPS_GOT16:
6203 case R_MICROMIPS_CALL16:
6204 /* VxWorks does not have separate local and global semantics for
6205 R_MIPS*_GOT16; every relocation evaluates to "G". */
6206 if (htab->root.target_os != is_vxworks && local_p)
6207 {
6208 value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 symbol + addend, !was_local_p);
6210 if (value == MINUS_ONE)
6211 return bfd_reloc_outofrange;
6212 value
6213 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 overflowed_p = mips_elf_overflow_p (value, 16);
6215 break;
6216 }
6217
6218 /* Fall through. */
6219
6220 case R_MIPS_TLS_GD:
6221 case R_MIPS_TLS_GOTTPREL:
6222 case R_MIPS_TLS_LDM:
6223 case R_MIPS_GOT_DISP:
6224 case R_MIPS16_TLS_GD:
6225 case R_MIPS16_TLS_GOTTPREL:
6226 case R_MIPS16_TLS_LDM:
6227 case R_MICROMIPS_TLS_GD:
6228 case R_MICROMIPS_TLS_GOTTPREL:
6229 case R_MICROMIPS_TLS_LDM:
6230 case R_MICROMIPS_GOT_DISP:
6231 value = g;
6232 overflowed_p = mips_elf_overflow_p (value, 16);
6233 break;
6234
6235 case R_MIPS_GPREL32:
6236 value = (addend + symbol + gp0 - gp);
6237 if (!save_addend)
6238 value &= howto->dst_mask;
6239 break;
6240
6241 case R_MIPS_PC16:
6242 case R_MIPS_GNU_REL16_S2:
6243 if (howto->partial_inplace)
6244 addend = _bfd_mips_elf_sign_extend (addend, 18);
6245
6246 /* No need to exclude weak undefined symbols here as they resolve
6247 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 will never trigger for them. */
6249 if (*cross_mode_jump_p
6250 ? ((symbol + addend) & 3) != 1
6251 : ((symbol + addend) & 3) != 0)
6252 return bfd_reloc_outofrange;
6253
6254 value = symbol + addend - p;
6255 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 overflowed_p = mips_elf_overflow_p (value, 18);
6257 value >>= howto->rightshift;
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS16_PC16_S1:
6262 if (howto->partial_inplace)
6263 addend = _bfd_mips_elf_sign_extend (addend, 17);
6264
6265 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 && (*cross_mode_jump_p
6267 ? ((symbol + addend) & 3) != 0
6268 : ((symbol + addend) & 1) == 0))
6269 return bfd_reloc_outofrange;
6270
6271 value = symbol + addend - p;
6272 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 overflowed_p = mips_elf_overflow_p (value, 17);
6274 value >>= howto->rightshift;
6275 value &= howto->dst_mask;
6276 break;
6277
6278 case R_MIPS_PC21_S2:
6279 if (howto->partial_inplace)
6280 addend = _bfd_mips_elf_sign_extend (addend, 23);
6281
6282 if ((symbol + addend) & 3)
6283 return bfd_reloc_outofrange;
6284
6285 value = symbol + addend - p;
6286 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 overflowed_p = mips_elf_overflow_p (value, 23);
6288 value >>= howto->rightshift;
6289 value &= howto->dst_mask;
6290 break;
6291
6292 case R_MIPS_PC26_S2:
6293 if (howto->partial_inplace)
6294 addend = _bfd_mips_elf_sign_extend (addend, 28);
6295
6296 if ((symbol + addend) & 3)
6297 return bfd_reloc_outofrange;
6298
6299 value = symbol + addend - p;
6300 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 overflowed_p = mips_elf_overflow_p (value, 28);
6302 value >>= howto->rightshift;
6303 value &= howto->dst_mask;
6304 break;
6305
6306 case R_MIPS_PC18_S3:
6307 if (howto->partial_inplace)
6308 addend = _bfd_mips_elf_sign_extend (addend, 21);
6309
6310 if ((symbol + addend) & 7)
6311 return bfd_reloc_outofrange;
6312
6313 value = symbol + addend - ((p | 7) ^ 7);
6314 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 overflowed_p = mips_elf_overflow_p (value, 21);
6316 value >>= howto->rightshift;
6317 value &= howto->dst_mask;
6318 break;
6319
6320 case R_MIPS_PC19_S2:
6321 if (howto->partial_inplace)
6322 addend = _bfd_mips_elf_sign_extend (addend, 21);
6323
6324 if ((symbol + addend) & 3)
6325 return bfd_reloc_outofrange;
6326
6327 value = symbol + addend - p;
6328 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 overflowed_p = mips_elf_overflow_p (value, 21);
6330 value >>= howto->rightshift;
6331 value &= howto->dst_mask;
6332 break;
6333
6334 case R_MIPS_PCHI16:
6335 value = mips_elf_high (symbol + addend - p);
6336 value &= howto->dst_mask;
6337 break;
6338
6339 case R_MIPS_PCLO16:
6340 if (howto->partial_inplace)
6341 addend = _bfd_mips_elf_sign_extend (addend, 16);
6342 value = symbol + addend - p;
6343 value &= howto->dst_mask;
6344 break;
6345
6346 case R_MICROMIPS_PC7_S1:
6347 if (howto->partial_inplace)
6348 addend = _bfd_mips_elf_sign_extend (addend, 8);
6349
6350 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 && (*cross_mode_jump_p
6352 ? ((symbol + addend + 2) & 3) != 0
6353 : ((symbol + addend + 2) & 1) == 0))
6354 return bfd_reloc_outofrange;
6355
6356 value = symbol + addend - p;
6357 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 overflowed_p = mips_elf_overflow_p (value, 8);
6359 value >>= howto->rightshift;
6360 value &= howto->dst_mask;
6361 break;
6362
6363 case R_MICROMIPS_PC10_S1:
6364 if (howto->partial_inplace)
6365 addend = _bfd_mips_elf_sign_extend (addend, 11);
6366
6367 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 && (*cross_mode_jump_p
6369 ? ((symbol + addend + 2) & 3) != 0
6370 : ((symbol + addend + 2) & 1) == 0))
6371 return bfd_reloc_outofrange;
6372
6373 value = symbol + addend - p;
6374 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 overflowed_p = mips_elf_overflow_p (value, 11);
6376 value >>= howto->rightshift;
6377 value &= howto->dst_mask;
6378 break;
6379
6380 case R_MICROMIPS_PC16_S1:
6381 if (howto->partial_inplace)
6382 addend = _bfd_mips_elf_sign_extend (addend, 17);
6383
6384 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 && (*cross_mode_jump_p
6386 ? ((symbol + addend) & 3) != 0
6387 : ((symbol + addend) & 1) == 0))
6388 return bfd_reloc_outofrange;
6389
6390 value = symbol + addend - p;
6391 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 overflowed_p = mips_elf_overflow_p (value, 17);
6393 value >>= howto->rightshift;
6394 value &= howto->dst_mask;
6395 break;
6396
6397 case R_MICROMIPS_PC23_S2:
6398 if (howto->partial_inplace)
6399 addend = _bfd_mips_elf_sign_extend (addend, 25);
6400 value = symbol + addend - ((p | 3) ^ 3);
6401 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 overflowed_p = mips_elf_overflow_p (value, 25);
6403 value >>= howto->rightshift;
6404 value &= howto->dst_mask;
6405 break;
6406
6407 case R_MIPS_GOT_HI16:
6408 case R_MIPS_CALL_HI16:
6409 case R_MICROMIPS_GOT_HI16:
6410 case R_MICROMIPS_CALL_HI16:
6411 /* We're allowed to handle these two relocations identically.
6412 The dynamic linker is allowed to handle the CALL relocations
6413 differently by creating a lazy evaluation stub. */
6414 value = g;
6415 value = mips_elf_high (value);
6416 value &= howto->dst_mask;
6417 break;
6418
6419 case R_MIPS_GOT_LO16:
6420 case R_MIPS_CALL_LO16:
6421 case R_MICROMIPS_GOT_LO16:
6422 case R_MICROMIPS_CALL_LO16:
6423 value = g & howto->dst_mask;
6424 break;
6425
6426 case R_MIPS_GOT_PAGE:
6427 case R_MICROMIPS_GOT_PAGE:
6428 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429 if (value == MINUS_ONE)
6430 return bfd_reloc_outofrange;
6431 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432 overflowed_p = mips_elf_overflow_p (value, 16);
6433 break;
6434
6435 case R_MIPS_GOT_OFST:
6436 case R_MICROMIPS_GOT_OFST:
6437 if (local_p)
6438 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439 else
6440 value = addend;
6441 overflowed_p = mips_elf_overflow_p (value, 16);
6442 break;
6443
6444 case R_MIPS_SUB:
6445 case R_MICROMIPS_SUB:
6446 value = symbol - addend;
6447 value &= howto->dst_mask;
6448 break;
6449
6450 case R_MIPS_HIGHER:
6451 case R_MICROMIPS_HIGHER:
6452 value = mips_elf_higher (addend + symbol);
6453 value &= howto->dst_mask;
6454 break;
6455
6456 case R_MIPS_HIGHEST:
6457 case R_MICROMIPS_HIGHEST:
6458 value = mips_elf_highest (addend + symbol);
6459 value &= howto->dst_mask;
6460 break;
6461
6462 case R_MIPS_SCN_DISP:
6463 case R_MICROMIPS_SCN_DISP:
6464 value = symbol + addend - sec->output_offset;
6465 value &= howto->dst_mask;
6466 break;
6467
6468 case R_MIPS_JALR:
6469 case R_MICROMIPS_JALR:
6470 /* This relocation is only a hint. In some cases, we optimize
6471 it into a bal instruction. But we don't try to optimize
6472 when the symbol does not resolve locally. */
6473 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 return bfd_reloc_continue;
6475 /* We can't optimize cross-mode jumps either. */
6476 if (*cross_mode_jump_p)
6477 return bfd_reloc_continue;
6478 value = symbol + addend;
6479 /* Neither we can non-instruction-aligned targets. */
6480 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 return bfd_reloc_continue;
6482 break;
6483
6484 case R_MIPS_PJUMP:
6485 case R_MIPS_GNU_VTINHERIT:
6486 case R_MIPS_GNU_VTENTRY:
6487 /* We don't do anything with these at present. */
6488 return bfd_reloc_continue;
6489
6490 default:
6491 /* An unrecognized relocation type. */
6492 return bfd_reloc_notsupported;
6493 }
6494
6495 /* Store the VALUE for our caller. */
6496 *valuep = value;
6497 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498 }
6499
6500 /* It has been determined that the result of the RELOCATION is the
6501 VALUE. Use HOWTO to place VALUE into the output file at the
6502 appropriate position. The SECTION is the section to which the
6503 relocation applies.
6504 CROSS_MODE_JUMP_P is true if the relocation field
6505 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6506
6507 Returns FALSE if anything goes wrong. */
6508
6509 static bfd_boolean
6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 reloc_howto_type *howto,
6512 const Elf_Internal_Rela *relocation,
6513 bfd_vma value, bfd *input_bfd,
6514 asection *input_section, bfd_byte *contents,
6515 bfd_boolean cross_mode_jump_p)
6516 {
6517 bfd_vma x;
6518 bfd_byte *location;
6519 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520
6521 /* Figure out where the relocation is occurring. */
6522 location = contents + relocation->r_offset;
6523
6524 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6525
6526 /* Obtain the current value. */
6527 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528
6529 /* Clear the field we are setting. */
6530 x &= ~howto->dst_mask;
6531
6532 /* Set the field. */
6533 x |= (value & howto->dst_mask);
6534
6535 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6536 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537 {
6538 bfd_vma opcode = x >> 26;
6539
6540 if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 : opcode == 0x1d)
6543 {
6544 info->callbacks->einfo
6545 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 input_bfd, input_section, relocation->r_offset);
6547 return TRUE;
6548 }
6549 }
6550 if (cross_mode_jump_p && jal_reloc_p (r_type))
6551 {
6552 bfd_boolean ok;
6553 bfd_vma opcode = x >> 26;
6554 bfd_vma jalx_opcode;
6555
6556 /* Check to see if the opcode is already JAL or JALX. */
6557 if (r_type == R_MIPS16_26)
6558 {
6559 ok = ((opcode == 0x6) || (opcode == 0x7));
6560 jalx_opcode = 0x7;
6561 }
6562 else if (r_type == R_MICROMIPS_26_S1)
6563 {
6564 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 jalx_opcode = 0x3c;
6566 }
6567 else
6568 {
6569 ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 jalx_opcode = 0x1d;
6571 }
6572
6573 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6574 convert J or JALS to JALX. */
6575 if (!ok)
6576 {
6577 info->callbacks->einfo
6578 (_("%X%H: unsupported jump between ISA modes; "
6579 "consider recompiling with interlinking enabled\n"),
6580 input_bfd, input_section, relocation->r_offset);
6581 return TRUE;
6582 }
6583
6584 /* Make this the JALX opcode. */
6585 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6586 }
6587 else if (cross_mode_jump_p && b_reloc_p (r_type))
6588 {
6589 bfd_boolean ok = FALSE;
6590 bfd_vma opcode = x >> 16;
6591 bfd_vma jalx_opcode = 0;
6592 bfd_vma sign_bit = 0;
6593 bfd_vma addr;
6594 bfd_vma dest;
6595
6596 if (r_type == R_MICROMIPS_PC16_S1)
6597 {
6598 ok = opcode == 0x4060;
6599 jalx_opcode = 0x3c;
6600 sign_bit = 0x10000;
6601 value <<= 1;
6602 }
6603 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 {
6605 ok = opcode == 0x411;
6606 jalx_opcode = 0x1d;
6607 sign_bit = 0x20000;
6608 value <<= 2;
6609 }
6610
6611 if (ok && !bfd_link_pic (info))
6612 {
6613 addr = (input_section->output_section->vma
6614 + input_section->output_offset
6615 + relocation->r_offset
6616 + 4);
6617 dest = (addr
6618 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6619
6620 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 {
6622 info->callbacks->einfo
6623 (_("%X%H: cannot convert branch between ISA modes "
6624 "to JALX: relocation out of range\n"),
6625 input_bfd, input_section, relocation->r_offset);
6626 return TRUE;
6627 }
6628
6629 /* Make this the JALX opcode. */
6630 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 }
6632 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6633 {
6634 info->callbacks->einfo
6635 (_("%X%H: unsupported branch between ISA modes\n"),
6636 input_bfd, input_section, relocation->r_offset);
6637 return TRUE;
6638 }
6639 }
6640
6641 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642 range. */
6643 if (!bfd_link_relocatable (info)
6644 && !cross_mode_jump_p
6645 && ((JAL_TO_BAL_P (input_bfd)
6646 && r_type == R_MIPS_26
6647 && (x >> 26) == 0x3) /* jal addr */
6648 || (JALR_TO_BAL_P (input_bfd)
6649 && r_type == R_MIPS_JALR
6650 && x == 0x0320f809) /* jalr t9 */
6651 || (JR_TO_B_P (input_bfd)
6652 && r_type == R_MIPS_JALR
6653 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6654 {
6655 bfd_vma addr;
6656 bfd_vma dest;
6657 bfd_signed_vma off;
6658
6659 addr = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + relocation->r_offset
6662 + 4);
6663 if (r_type == R_MIPS_26)
6664 dest = (value << 2) | ((addr >> 28) << 28);
6665 else
6666 dest = value;
6667 off = dest - addr;
6668 if (off <= 0x1ffff && off >= -0x20000)
6669 {
6670 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6671 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6672 else
6673 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6674 }
6675 }
6676
6677 /* Put the value into the output. */
6678 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6679
6680 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 location);
6682
6683 return TRUE;
6684 }
6685 \f
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6687 is the original relocation, which is now being transformed into a
6688 dynamic relocation. The ADDENDP is adjusted if necessary; the
6689 caller should store the result in place of the original addend. */
6690
6691 static bfd_boolean
6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 struct bfd_link_info *info,
6694 const Elf_Internal_Rela *rel,
6695 struct mips_elf_link_hash_entry *h,
6696 asection *sec, bfd_vma symbol,
6697 bfd_vma *addendp, asection *input_section)
6698 {
6699 Elf_Internal_Rela outrel[3];
6700 asection *sreloc;
6701 bfd *dynobj;
6702 int r_type;
6703 long indx;
6704 bfd_boolean defined_p;
6705 struct mips_elf_link_hash_table *htab;
6706
6707 htab = mips_elf_hash_table (info);
6708 BFD_ASSERT (htab != NULL);
6709
6710 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711 dynobj = elf_hash_table (info)->dynobj;
6712 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6713 BFD_ASSERT (sreloc != NULL);
6714 BFD_ASSERT (sreloc->contents != NULL);
6715 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 < sreloc->size);
6717
6718 outrel[0].r_offset =
6719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720 if (ABI_64_P (output_bfd))
6721 {
6722 outrel[1].r_offset =
6723 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724 outrel[2].r_offset =
6725 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726 }
6727
6728 if (outrel[0].r_offset == MINUS_ONE)
6729 /* The relocation field has been deleted. */
6730 return TRUE;
6731
6732 if (outrel[0].r_offset == MINUS_TWO)
6733 {
6734 /* The relocation field has been converted into a relative value of
6735 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6736 the field to be fully relocated, so add in the symbol's value. */
6737 *addendp += symbol;
6738 return TRUE;
6739 }
6740
6741 /* We must now calculate the dynamic symbol table index to use
6742 in the relocation. */
6743 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6744 {
6745 BFD_ASSERT (htab->root.target_os == is_vxworks
6746 || h->global_got_area != GGA_NONE);
6747 indx = h->root.dynindx;
6748 if (SGI_COMPAT (output_bfd))
6749 defined_p = h->root.def_regular;
6750 else
6751 /* ??? glibc's ld.so just adds the final GOT entry to the
6752 relocation field. It therefore treats relocs against
6753 defined symbols in the same way as relocs against
6754 undefined symbols. */
6755 defined_p = FALSE;
6756 }
6757 else
6758 {
6759 if (sec != NULL && bfd_is_abs_section (sec))
6760 indx = 0;
6761 else if (sec == NULL || sec->owner == NULL)
6762 {
6763 bfd_set_error (bfd_error_bad_value);
6764 return FALSE;
6765 }
6766 else
6767 {
6768 indx = elf_section_data (sec->output_section)->dynindx;
6769 if (indx == 0)
6770 {
6771 asection *osec = htab->root.text_index_section;
6772 indx = elf_section_data (osec)->dynindx;
6773 }
6774 if (indx == 0)
6775 abort ();
6776 }
6777
6778 /* Instead of generating a relocation using the section
6779 symbol, we may as well make it a fully relative
6780 relocation. We want to avoid generating relocations to
6781 local symbols because we used to generate them
6782 incorrectly, without adding the original symbol value,
6783 which is mandated by the ABI for section symbols. In
6784 order to give dynamic loaders and applications time to
6785 phase out the incorrect use, we refrain from emitting
6786 section-relative relocations. It's not like they're
6787 useful, after all. This should be a bit more efficient
6788 as well. */
6789 /* ??? Although this behavior is compatible with glibc's ld.so,
6790 the ABI says that relocations against STN_UNDEF should have
6791 a symbol value of 0. Irix rld honors this, so relocations
6792 against STN_UNDEF have no effect. */
6793 if (!SGI_COMPAT (output_bfd))
6794 indx = 0;
6795 defined_p = TRUE;
6796 }
6797
6798 /* If the relocation was previously an absolute relocation and
6799 this symbol will not be referred to by the relocation, we must
6800 adjust it by the value we give it in the dynamic symbol table.
6801 Otherwise leave the job up to the dynamic linker. */
6802 if (defined_p && r_type != R_MIPS_REL32)
6803 *addendp += symbol;
6804
6805 if (htab->root.target_os == is_vxworks)
6806 /* VxWorks uses non-relative relocations for this. */
6807 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808 else
6809 /* The relocation is always an REL32 relocation because we don't
6810 know where the shared library will wind up at load-time. */
6811 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 R_MIPS_REL32);
6813
6814 /* For strict adherence to the ABI specification, we should
6815 generate a R_MIPS_64 relocation record by itself before the
6816 _REL32/_64 record as well, such that the addend is read in as
6817 a 64-bit value (REL32 is a 32-bit relocation, after all).
6818 However, since none of the existing ELF64 MIPS dynamic
6819 loaders seems to care, we don't waste space with these
6820 artificial relocations. If this turns out to not be true,
6821 mips_elf_allocate_dynamic_relocation() should be tweaked so
6822 as to make room for a pair of dynamic relocations per
6823 invocation if ABI_64_P, and here we should generate an
6824 additional relocation record with R_MIPS_64 by itself for a
6825 NULL symbol before this relocation record. */
6826 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 ABI_64_P (output_bfd)
6828 ? R_MIPS_64
6829 : R_MIPS_NONE);
6830 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831
6832 /* Adjust the output offset of the relocation to reference the
6833 correct location in the output file. */
6834 outrel[0].r_offset += (input_section->output_section->vma
6835 + input_section->output_offset);
6836 outrel[1].r_offset += (input_section->output_section->vma
6837 + input_section->output_offset);
6838 outrel[2].r_offset += (input_section->output_section->vma
6839 + input_section->output_offset);
6840
6841 /* Put the relocation back out. We have to use the special
6842 relocation outputter in the 64-bit case since the 64-bit
6843 relocation format is non-standard. */
6844 if (ABI_64_P (output_bfd))
6845 {
6846 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 (output_bfd, &outrel[0],
6848 (sreloc->contents
6849 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850 }
6851 else if (htab->root.target_os == is_vxworks)
6852 {
6853 /* VxWorks uses RELA rather than REL dynamic relocations. */
6854 outrel[0].r_addend = *addendp;
6855 bfd_elf32_swap_reloca_out
6856 (output_bfd, &outrel[0],
6857 (sreloc->contents
6858 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859 }
6860 else
6861 bfd_elf32_swap_reloc_out
6862 (output_bfd, &outrel[0],
6863 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6864
6865 /* We've now added another relocation. */
6866 ++sreloc->reloc_count;
6867
6868 /* Make sure the output section is writable. The dynamic linker
6869 will be writing to it. */
6870 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871 |= SHF_WRITE;
6872
6873 /* On IRIX5, make an entry of compact relocation info. */
6874 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6875 {
6876 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877 bfd_byte *cr;
6878
6879 if (scpt)
6880 {
6881 Elf32_crinfo cptrel;
6882
6883 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 cptrel.vaddr = (rel->r_offset
6885 + input_section->output_section->vma
6886 + input_section->output_offset);
6887 if (r_type == R_MIPS_REL32)
6888 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 else
6890 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 mips_elf_set_cr_dist2to (cptrel, 0);
6892 cptrel.konst = *addendp;
6893
6894 cr = (scpt->contents
6895 + sizeof (Elf32_External_compact_rel));
6896 mips_elf_set_cr_relvaddr (cptrel, 0);
6897 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 ((Elf32_External_crinfo *) cr
6899 + scpt->reloc_count));
6900 ++scpt->reloc_count;
6901 }
6902 }
6903
6904 /* If we've written this relocation for a readonly section,
6905 we need to set DF_TEXTREL again, so that we do not delete the
6906 DT_TEXTREL tag. */
6907 if (MIPS_ELF_READONLY_SECTION (input_section))
6908 info->flags |= DF_TEXTREL;
6909
6910 return TRUE;
6911 }
6912 \f
6913 /* Return the MACH for a MIPS e_flags value. */
6914
6915 unsigned long
6916 _bfd_elf_mips_mach (flagword flags)
6917 {
6918 switch (flags & EF_MIPS_MACH)
6919 {
6920 case E_MIPS_MACH_3900:
6921 return bfd_mach_mips3900;
6922
6923 case E_MIPS_MACH_4010:
6924 return bfd_mach_mips4010;
6925
6926 case E_MIPS_MACH_4100:
6927 return bfd_mach_mips4100;
6928
6929 case E_MIPS_MACH_4111:
6930 return bfd_mach_mips4111;
6931
6932 case E_MIPS_MACH_4120:
6933 return bfd_mach_mips4120;
6934
6935 case E_MIPS_MACH_4650:
6936 return bfd_mach_mips4650;
6937
6938 case E_MIPS_MACH_5400:
6939 return bfd_mach_mips5400;
6940
6941 case E_MIPS_MACH_5500:
6942 return bfd_mach_mips5500;
6943
6944 case E_MIPS_MACH_5900:
6945 return bfd_mach_mips5900;
6946
6947 case E_MIPS_MACH_9000:
6948 return bfd_mach_mips9000;
6949
6950 case E_MIPS_MACH_SB1:
6951 return bfd_mach_mips_sb1;
6952
6953 case E_MIPS_MACH_LS2E:
6954 return bfd_mach_mips_loongson_2e;
6955
6956 case E_MIPS_MACH_LS2F:
6957 return bfd_mach_mips_loongson_2f;
6958
6959 case E_MIPS_MACH_GS464:
6960 return bfd_mach_mips_gs464;
6961
6962 case E_MIPS_MACH_GS464E:
6963 return bfd_mach_mips_gs464e;
6964
6965 case E_MIPS_MACH_GS264E:
6966 return bfd_mach_mips_gs264e;
6967
6968 case E_MIPS_MACH_OCTEON3:
6969 return bfd_mach_mips_octeon3;
6970
6971 case E_MIPS_MACH_OCTEON2:
6972 return bfd_mach_mips_octeon2;
6973
6974 case E_MIPS_MACH_OCTEON:
6975 return bfd_mach_mips_octeon;
6976
6977 case E_MIPS_MACH_XLR:
6978 return bfd_mach_mips_xlr;
6979
6980 case E_MIPS_MACH_IAMR2:
6981 return bfd_mach_mips_interaptiv_mr2;
6982
6983 default:
6984 switch (flags & EF_MIPS_ARCH)
6985 {
6986 default:
6987 case E_MIPS_ARCH_1:
6988 return bfd_mach_mips3000;
6989
6990 case E_MIPS_ARCH_2:
6991 return bfd_mach_mips6000;
6992
6993 case E_MIPS_ARCH_3:
6994 return bfd_mach_mips4000;
6995
6996 case E_MIPS_ARCH_4:
6997 return bfd_mach_mips8000;
6998
6999 case E_MIPS_ARCH_5:
7000 return bfd_mach_mips5;
7001
7002 case E_MIPS_ARCH_32:
7003 return bfd_mach_mipsisa32;
7004
7005 case E_MIPS_ARCH_64:
7006 return bfd_mach_mipsisa64;
7007
7008 case E_MIPS_ARCH_32R2:
7009 return bfd_mach_mipsisa32r2;
7010
7011 case E_MIPS_ARCH_64R2:
7012 return bfd_mach_mipsisa64r2;
7013
7014 case E_MIPS_ARCH_32R6:
7015 return bfd_mach_mipsisa32r6;
7016
7017 case E_MIPS_ARCH_64R6:
7018 return bfd_mach_mipsisa64r6;
7019 }
7020 }
7021
7022 return 0;
7023 }
7024
7025 /* Return printable name for ABI. */
7026
7027 static INLINE char *
7028 elf_mips_abi_name (bfd *abfd)
7029 {
7030 flagword flags;
7031
7032 flags = elf_elfheader (abfd)->e_flags;
7033 switch (flags & EF_MIPS_ABI)
7034 {
7035 case 0:
7036 if (ABI_N32_P (abfd))
7037 return "N32";
7038 else if (ABI_64_P (abfd))
7039 return "64";
7040 else
7041 return "none";
7042 case E_MIPS_ABI_O32:
7043 return "O32";
7044 case E_MIPS_ABI_O64:
7045 return "O64";
7046 case E_MIPS_ABI_EABI32:
7047 return "EABI32";
7048 case E_MIPS_ABI_EABI64:
7049 return "EABI64";
7050 default:
7051 return "unknown abi";
7052 }
7053 }
7054 \f
7055 /* MIPS ELF uses two common sections. One is the usual one, and the
7056 other is for small objects. All the small objects are kept
7057 together, and then referenced via the gp pointer, which yields
7058 faster assembler code. This is what we use for the small common
7059 section. This approach is copied from ecoff.c. */
7060 static asection mips_elf_scom_section;
7061 static const asymbol mips_elf_scom_symbol =
7062 GLOBAL_SYM_INIT (".scommon", &mips_elf_scom_section);
7063 static asection mips_elf_scom_section =
7064 BFD_FAKE_SECTION (mips_elf_scom_section, &mips_elf_scom_symbol,
7065 ".scommon", 0, SEC_IS_COMMON | SEC_SMALL_DATA);
7066
7067 /* MIPS ELF also uses an acommon section, which represents an
7068 allocated common symbol which may be overridden by a
7069 definition in a shared library. */
7070 static asection mips_elf_acom_section;
7071 static const asymbol mips_elf_acom_symbol =
7072 GLOBAL_SYM_INIT (".acommon", &mips_elf_acom_section);
7073 static asection mips_elf_acom_section =
7074 BFD_FAKE_SECTION (mips_elf_acom_section, &mips_elf_acom_symbol,
7075 ".acommon", 0, SEC_ALLOC);
7076
7077 /* This is used for both the 32-bit and the 64-bit ABI. */
7078
7079 void
7080 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7081 {
7082 elf_symbol_type *elfsym;
7083
7084 /* Handle the special MIPS section numbers that a symbol may use. */
7085 elfsym = (elf_symbol_type *) asym;
7086 switch (elfsym->internal_elf_sym.st_shndx)
7087 {
7088 case SHN_MIPS_ACOMMON:
7089 /* This section is used in a dynamically linked executable file.
7090 It is an allocated common section. The dynamic linker can
7091 either resolve these symbols to something in a shared
7092 library, or it can just leave them here. For our purposes,
7093 we can consider these symbols to be in a new section. */
7094 asym->section = &mips_elf_acom_section;
7095 break;
7096
7097 case SHN_COMMON:
7098 /* Common symbols less than the GP size are automatically
7099 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7100 if (asym->value > elf_gp_size (abfd)
7101 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7102 || IRIX_COMPAT (abfd) == ict_irix6)
7103 break;
7104 /* Fall through. */
7105 case SHN_MIPS_SCOMMON:
7106 asym->section = &mips_elf_scom_section;
7107 asym->value = elfsym->internal_elf_sym.st_size;
7108 break;
7109
7110 case SHN_MIPS_SUNDEFINED:
7111 asym->section = bfd_und_section_ptr;
7112 break;
7113
7114 case SHN_MIPS_TEXT:
7115 {
7116 asection *section = bfd_get_section_by_name (abfd, ".text");
7117
7118 if (section != NULL)
7119 {
7120 asym->section = section;
7121 /* MIPS_TEXT is a bit special, the address is not an offset
7122 to the base of the .text section. So subtract the section
7123 base address to make it an offset. */
7124 asym->value -= section->vma;
7125 }
7126 }
7127 break;
7128
7129 case SHN_MIPS_DATA:
7130 {
7131 asection *section = bfd_get_section_by_name (abfd, ".data");
7132
7133 if (section != NULL)
7134 {
7135 asym->section = section;
7136 /* MIPS_DATA is a bit special, the address is not an offset
7137 to the base of the .data section. So subtract the section
7138 base address to make it an offset. */
7139 asym->value -= section->vma;
7140 }
7141 }
7142 break;
7143 }
7144
7145 /* If this is an odd-valued function symbol, assume it's a MIPS16
7146 or microMIPS one. */
7147 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7148 && (asym->value & 1) != 0)
7149 {
7150 asym->value--;
7151 if (MICROMIPS_P (abfd))
7152 elfsym->internal_elf_sym.st_other
7153 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7154 else
7155 elfsym->internal_elf_sym.st_other
7156 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7157 }
7158 }
7159 \f
7160 /* Implement elf_backend_eh_frame_address_size. This differs from
7161 the default in the way it handles EABI64.
7162
7163 EABI64 was originally specified as an LP64 ABI, and that is what
7164 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7165 historically accepted the combination of -mabi=eabi and -mlong32,
7166 and this ILP32 variation has become semi-official over time.
7167 Both forms use elf32 and have pointer-sized FDE addresses.
7168
7169 If an EABI object was generated by GCC 4.0 or above, it will have
7170 an empty .gcc_compiled_longXX section, where XX is the size of longs
7171 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7172 have no special marking to distinguish them from LP64 objects.
7173
7174 We don't want users of the official LP64 ABI to be punished for the
7175 existence of the ILP32 variant, but at the same time, we don't want
7176 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7177 We therefore take the following approach:
7178
7179 - If ABFD contains a .gcc_compiled_longXX section, use it to
7180 determine the pointer size.
7181
7182 - Otherwise check the type of the first relocation. Assume that
7183 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7184
7185 - Otherwise punt.
7186
7187 The second check is enough to detect LP64 objects generated by pre-4.0
7188 compilers because, in the kind of output generated by those compilers,
7189 the first relocation will be associated with either a CIE personality
7190 routine or an FDE start address. Furthermore, the compilers never
7191 used a special (non-pointer) encoding for this ABI.
7192
7193 Checking the relocation type should also be safe because there is no
7194 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7195 did so. */
7196
7197 unsigned int
7198 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7199 {
7200 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7201 return 8;
7202 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7203 {
7204 bfd_boolean long32_p, long64_p;
7205
7206 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7207 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7208 if (long32_p && long64_p)
7209 return 0;
7210 if (long32_p)
7211 return 4;
7212 if (long64_p)
7213 return 8;
7214
7215 if (sec->reloc_count > 0
7216 && elf_section_data (sec)->relocs != NULL
7217 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7218 == R_MIPS_64))
7219 return 8;
7220
7221 return 0;
7222 }
7223 return 4;
7224 }
7225 \f
7226 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7227 relocations against two unnamed section symbols to resolve to the
7228 same address. For example, if we have code like:
7229
7230 lw $4,%got_disp(.data)($gp)
7231 lw $25,%got_disp(.text)($gp)
7232 jalr $25
7233
7234 then the linker will resolve both relocations to .data and the program
7235 will jump there rather than to .text.
7236
7237 We can work around this problem by giving names to local section symbols.
7238 This is also what the MIPSpro tools do. */
7239
7240 bfd_boolean
7241 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7242 {
7243 return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7244 }
7245 \f
7246 /* Work over a section just before writing it out. This routine is
7247 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7248 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7249 a better way. */
7250
7251 bfd_boolean
7252 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7253 {
7254 if (hdr->sh_type == SHT_MIPS_REGINFO
7255 && hdr->sh_size > 0)
7256 {
7257 bfd_byte buf[4];
7258
7259 BFD_ASSERT (hdr->contents == NULL);
7260
7261 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7262 {
7263 _bfd_error_handler
7264 (_("%pB: incorrect `.reginfo' section size; "
7265 "expected %" PRIu64 ", got %" PRIu64),
7266 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7267 (uint64_t) hdr->sh_size);
7268 bfd_set_error (bfd_error_bad_value);
7269 return FALSE;
7270 }
7271
7272 if (bfd_seek (abfd,
7273 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7274 SEEK_SET) != 0)
7275 return FALSE;
7276 H_PUT_32 (abfd, elf_gp (abfd), buf);
7277 if (bfd_bwrite (buf, 4, abfd) != 4)
7278 return FALSE;
7279 }
7280
7281 if (hdr->sh_type == SHT_MIPS_OPTIONS
7282 && hdr->bfd_section != NULL
7283 && mips_elf_section_data (hdr->bfd_section) != NULL
7284 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7285 {
7286 bfd_byte *contents, *l, *lend;
7287
7288 /* We stored the section contents in the tdata field in the
7289 set_section_contents routine. We save the section contents
7290 so that we don't have to read them again.
7291 At this point we know that elf_gp is set, so we can look
7292 through the section contents to see if there is an
7293 ODK_REGINFO structure. */
7294
7295 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7296 l = contents;
7297 lend = contents + hdr->sh_size;
7298 while (l + sizeof (Elf_External_Options) <= lend)
7299 {
7300 Elf_Internal_Options intopt;
7301
7302 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7303 &intopt);
7304 if (intopt.size < sizeof (Elf_External_Options))
7305 {
7306 _bfd_error_handler
7307 /* xgettext:c-format */
7308 (_("%pB: warning: bad `%s' option size %u smaller than"
7309 " its header"),
7310 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7311 break;
7312 }
7313 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7314 {
7315 bfd_byte buf[8];
7316
7317 if (bfd_seek (abfd,
7318 (hdr->sh_offset
7319 + (l - contents)
7320 + sizeof (Elf_External_Options)
7321 + (sizeof (Elf64_External_RegInfo) - 8)),
7322 SEEK_SET) != 0)
7323 return FALSE;
7324 H_PUT_64 (abfd, elf_gp (abfd), buf);
7325 if (bfd_bwrite (buf, 8, abfd) != 8)
7326 return FALSE;
7327 }
7328 else if (intopt.kind == ODK_REGINFO)
7329 {
7330 bfd_byte buf[4];
7331
7332 if (bfd_seek (abfd,
7333 (hdr->sh_offset
7334 + (l - contents)
7335 + sizeof (Elf_External_Options)
7336 + (sizeof (Elf32_External_RegInfo) - 4)),
7337 SEEK_SET) != 0)
7338 return FALSE;
7339 H_PUT_32 (abfd, elf_gp (abfd), buf);
7340 if (bfd_bwrite (buf, 4, abfd) != 4)
7341 return FALSE;
7342 }
7343 l += intopt.size;
7344 }
7345 }
7346
7347 if (hdr->bfd_section != NULL)
7348 {
7349 const char *name = bfd_section_name (hdr->bfd_section);
7350
7351 /* .sbss is not handled specially here because the GNU/Linux
7352 prelinker can convert .sbss from NOBITS to PROGBITS and
7353 changing it back to NOBITS breaks the binary. The entry in
7354 _bfd_mips_elf_special_sections will ensure the correct flags
7355 are set on .sbss if BFD creates it without reading it from an
7356 input file, and without special handling here the flags set
7357 on it in an input file will be followed. */
7358 if (strcmp (name, ".sdata") == 0
7359 || strcmp (name, ".lit8") == 0
7360 || strcmp (name, ".lit4") == 0)
7361 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7362 else if (strcmp (name, ".srdata") == 0)
7363 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7364 else if (strcmp (name, ".compact_rel") == 0)
7365 hdr->sh_flags = 0;
7366 else if (strcmp (name, ".rtproc") == 0)
7367 {
7368 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7369 {
7370 unsigned int adjust;
7371
7372 adjust = hdr->sh_size % hdr->sh_addralign;
7373 if (adjust != 0)
7374 hdr->sh_size += hdr->sh_addralign - adjust;
7375 }
7376 }
7377 }
7378
7379 return TRUE;
7380 }
7381
7382 /* Handle a MIPS specific section when reading an object file. This
7383 is called when elfcode.h finds a section with an unknown type.
7384 This routine supports both the 32-bit and 64-bit ELF ABI. */
7385
7386 bfd_boolean
7387 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7388 Elf_Internal_Shdr *hdr,
7389 const char *name,
7390 int shindex)
7391 {
7392 flagword flags = 0;
7393
7394 /* There ought to be a place to keep ELF backend specific flags, but
7395 at the moment there isn't one. We just keep track of the
7396 sections by their name, instead. Fortunately, the ABI gives
7397 suggested names for all the MIPS specific sections, so we will
7398 probably get away with this. */
7399 switch (hdr->sh_type)
7400 {
7401 case SHT_MIPS_LIBLIST:
7402 if (strcmp (name, ".liblist") != 0)
7403 return FALSE;
7404 break;
7405 case SHT_MIPS_MSYM:
7406 if (strcmp (name, ".msym") != 0)
7407 return FALSE;
7408 break;
7409 case SHT_MIPS_CONFLICT:
7410 if (strcmp (name, ".conflict") != 0)
7411 return FALSE;
7412 break;
7413 case SHT_MIPS_GPTAB:
7414 if (! CONST_STRNEQ (name, ".gptab."))
7415 return FALSE;
7416 break;
7417 case SHT_MIPS_UCODE:
7418 if (strcmp (name, ".ucode") != 0)
7419 return FALSE;
7420 break;
7421 case SHT_MIPS_DEBUG:
7422 if (strcmp (name, ".mdebug") != 0)
7423 return FALSE;
7424 flags = SEC_DEBUGGING;
7425 break;
7426 case SHT_MIPS_REGINFO:
7427 if (strcmp (name, ".reginfo") != 0
7428 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7429 return FALSE;
7430 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7431 break;
7432 case SHT_MIPS_IFACE:
7433 if (strcmp (name, ".MIPS.interfaces") != 0)
7434 return FALSE;
7435 break;
7436 case SHT_MIPS_CONTENT:
7437 if (! CONST_STRNEQ (name, ".MIPS.content"))
7438 return FALSE;
7439 break;
7440 case SHT_MIPS_OPTIONS:
7441 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7442 return FALSE;
7443 break;
7444 case SHT_MIPS_ABIFLAGS:
7445 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7446 return FALSE;
7447 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7448 break;
7449 case SHT_MIPS_DWARF:
7450 if (! CONST_STRNEQ (name, ".debug_")
7451 && ! CONST_STRNEQ (name, ".zdebug_"))
7452 return FALSE;
7453 break;
7454 case SHT_MIPS_SYMBOL_LIB:
7455 if (strcmp (name, ".MIPS.symlib") != 0)
7456 return FALSE;
7457 break;
7458 case SHT_MIPS_EVENTS:
7459 if (! CONST_STRNEQ (name, ".MIPS.events")
7460 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7461 return FALSE;
7462 break;
7463 case SHT_MIPS_XHASH:
7464 if (strcmp (name, ".MIPS.xhash") != 0)
7465 return FALSE;
7466 default:
7467 break;
7468 }
7469
7470 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7471 return FALSE;
7472
7473 if (hdr->sh_flags & SHF_MIPS_GPREL)
7474 flags |= SEC_SMALL_DATA;
7475
7476 if (flags)
7477 {
7478 if (!bfd_set_section_flags (hdr->bfd_section,
7479 (bfd_section_flags (hdr->bfd_section)
7480 | flags)))
7481 return FALSE;
7482 }
7483
7484 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7485 {
7486 Elf_External_ABIFlags_v0 ext;
7487
7488 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7489 &ext, 0, sizeof ext))
7490 return FALSE;
7491 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7492 &mips_elf_tdata (abfd)->abiflags);
7493 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7494 return FALSE;
7495 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7496 }
7497
7498 /* FIXME: We should record sh_info for a .gptab section. */
7499
7500 /* For a .reginfo section, set the gp value in the tdata information
7501 from the contents of this section. We need the gp value while
7502 processing relocs, so we just get it now. The .reginfo section
7503 is not used in the 64-bit MIPS ELF ABI. */
7504 if (hdr->sh_type == SHT_MIPS_REGINFO)
7505 {
7506 Elf32_External_RegInfo ext;
7507 Elf32_RegInfo s;
7508
7509 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7510 &ext, 0, sizeof ext))
7511 return FALSE;
7512 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7513 elf_gp (abfd) = s.ri_gp_value;
7514 }
7515
7516 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7517 set the gp value based on what we find. We may see both
7518 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7519 they should agree. */
7520 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7521 {
7522 bfd_byte *contents, *l, *lend;
7523
7524 contents = bfd_malloc (hdr->sh_size);
7525 if (contents == NULL)
7526 return FALSE;
7527 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7528 0, hdr->sh_size))
7529 {
7530 free (contents);
7531 return FALSE;
7532 }
7533 l = contents;
7534 lend = contents + hdr->sh_size;
7535 while (l + sizeof (Elf_External_Options) <= lend)
7536 {
7537 Elf_Internal_Options intopt;
7538
7539 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7540 &intopt);
7541 if (intopt.size < sizeof (Elf_External_Options))
7542 {
7543 _bfd_error_handler
7544 /* xgettext:c-format */
7545 (_("%pB: warning: bad `%s' option size %u smaller than"
7546 " its header"),
7547 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7548 break;
7549 }
7550 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7551 {
7552 Elf64_Internal_RegInfo intreg;
7553
7554 bfd_mips_elf64_swap_reginfo_in
7555 (abfd,
7556 ((Elf64_External_RegInfo *)
7557 (l + sizeof (Elf_External_Options))),
7558 &intreg);
7559 elf_gp (abfd) = intreg.ri_gp_value;
7560 }
7561 else if (intopt.kind == ODK_REGINFO)
7562 {
7563 Elf32_RegInfo intreg;
7564
7565 bfd_mips_elf32_swap_reginfo_in
7566 (abfd,
7567 ((Elf32_External_RegInfo *)
7568 (l + sizeof (Elf_External_Options))),
7569 &intreg);
7570 elf_gp (abfd) = intreg.ri_gp_value;
7571 }
7572 l += intopt.size;
7573 }
7574 free (contents);
7575 }
7576
7577 return TRUE;
7578 }
7579
7580 /* Set the correct type for a MIPS ELF section. We do this by the
7581 section name, which is a hack, but ought to work. This routine is
7582 used by both the 32-bit and the 64-bit ABI. */
7583
7584 bfd_boolean
7585 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7586 {
7587 const char *name = bfd_section_name (sec);
7588
7589 if (strcmp (name, ".liblist") == 0)
7590 {
7591 hdr->sh_type = SHT_MIPS_LIBLIST;
7592 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7593 /* The sh_link field is set in final_write_processing. */
7594 }
7595 else if (strcmp (name, ".conflict") == 0)
7596 hdr->sh_type = SHT_MIPS_CONFLICT;
7597 else if (CONST_STRNEQ (name, ".gptab."))
7598 {
7599 hdr->sh_type = SHT_MIPS_GPTAB;
7600 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7601 /* The sh_info field is set in final_write_processing. */
7602 }
7603 else if (strcmp (name, ".ucode") == 0)
7604 hdr->sh_type = SHT_MIPS_UCODE;
7605 else if (strcmp (name, ".mdebug") == 0)
7606 {
7607 hdr->sh_type = SHT_MIPS_DEBUG;
7608 /* In a shared object on IRIX 5.3, the .mdebug section has an
7609 entsize of 0. FIXME: Does this matter? */
7610 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7611 hdr->sh_entsize = 0;
7612 else
7613 hdr->sh_entsize = 1;
7614 }
7615 else if (strcmp (name, ".reginfo") == 0)
7616 {
7617 hdr->sh_type = SHT_MIPS_REGINFO;
7618 /* In a shared object on IRIX 5.3, the .reginfo section has an
7619 entsize of 0x18. FIXME: Does this matter? */
7620 if (SGI_COMPAT (abfd))
7621 {
7622 if ((abfd->flags & DYNAMIC) != 0)
7623 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7624 else
7625 hdr->sh_entsize = 1;
7626 }
7627 else
7628 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7629 }
7630 else if (SGI_COMPAT (abfd)
7631 && (strcmp (name, ".hash") == 0
7632 || strcmp (name, ".dynamic") == 0
7633 || strcmp (name, ".dynstr") == 0))
7634 {
7635 if (SGI_COMPAT (abfd))
7636 hdr->sh_entsize = 0;
7637 #if 0
7638 /* This isn't how the IRIX6 linker behaves. */
7639 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7640 #endif
7641 }
7642 else if (strcmp (name, ".got") == 0
7643 || strcmp (name, ".srdata") == 0
7644 || strcmp (name, ".sdata") == 0
7645 || strcmp (name, ".sbss") == 0
7646 || strcmp (name, ".lit4") == 0
7647 || strcmp (name, ".lit8") == 0)
7648 hdr->sh_flags |= SHF_MIPS_GPREL;
7649 else if (strcmp (name, ".MIPS.interfaces") == 0)
7650 {
7651 hdr->sh_type = SHT_MIPS_IFACE;
7652 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7653 }
7654 else if (CONST_STRNEQ (name, ".MIPS.content"))
7655 {
7656 hdr->sh_type = SHT_MIPS_CONTENT;
7657 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7658 /* The sh_info field is set in final_write_processing. */
7659 }
7660 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7661 {
7662 hdr->sh_type = SHT_MIPS_OPTIONS;
7663 hdr->sh_entsize = 1;
7664 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7665 }
7666 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7667 {
7668 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7669 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7670 }
7671 else if (CONST_STRNEQ (name, ".debug_")
7672 || CONST_STRNEQ (name, ".zdebug_"))
7673 {
7674 hdr->sh_type = SHT_MIPS_DWARF;
7675
7676 /* Irix facilities such as libexc expect a single .debug_frame
7677 per executable, the system ones have NOSTRIP set and the linker
7678 doesn't merge sections with different flags so ... */
7679 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7680 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7681 }
7682 else if (strcmp (name, ".MIPS.symlib") == 0)
7683 {
7684 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7685 /* The sh_link and sh_info fields are set in
7686 final_write_processing. */
7687 }
7688 else if (CONST_STRNEQ (name, ".MIPS.events")
7689 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7690 {
7691 hdr->sh_type = SHT_MIPS_EVENTS;
7692 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7693 /* The sh_link field is set in final_write_processing. */
7694 }
7695 else if (strcmp (name, ".msym") == 0)
7696 {
7697 hdr->sh_type = SHT_MIPS_MSYM;
7698 hdr->sh_flags |= SHF_ALLOC;
7699 hdr->sh_entsize = 8;
7700 }
7701 else if (strcmp (name, ".MIPS.xhash") == 0)
7702 {
7703 hdr->sh_type = SHT_MIPS_XHASH;
7704 hdr->sh_flags |= SHF_ALLOC;
7705 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7706 }
7707
7708 /* The generic elf_fake_sections will set up REL_HDR using the default
7709 kind of relocations. We used to set up a second header for the
7710 non-default kind of relocations here, but only NewABI would use
7711 these, and the IRIX ld doesn't like resulting empty RELA sections.
7712 Thus we create those header only on demand now. */
7713
7714 return TRUE;
7715 }
7716
7717 /* Given a BFD section, try to locate the corresponding ELF section
7718 index. This is used by both the 32-bit and the 64-bit ABI.
7719 Actually, it's not clear to me that the 64-bit ABI supports these,
7720 but for non-PIC objects we will certainly want support for at least
7721 the .scommon section. */
7722
7723 bfd_boolean
7724 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7725 asection *sec, int *retval)
7726 {
7727 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7728 {
7729 *retval = SHN_MIPS_SCOMMON;
7730 return TRUE;
7731 }
7732 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7733 {
7734 *retval = SHN_MIPS_ACOMMON;
7735 return TRUE;
7736 }
7737 return FALSE;
7738 }
7739 \f
7740 /* Hook called by the linker routine which adds symbols from an object
7741 file. We must handle the special MIPS section numbers here. */
7742
7743 bfd_boolean
7744 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7745 Elf_Internal_Sym *sym, const char **namep,
7746 flagword *flagsp ATTRIBUTE_UNUSED,
7747 asection **secp, bfd_vma *valp)
7748 {
7749 if (SGI_COMPAT (abfd)
7750 && (abfd->flags & DYNAMIC) != 0
7751 && strcmp (*namep, "_rld_new_interface") == 0)
7752 {
7753 /* Skip IRIX5 rld entry name. */
7754 *namep = NULL;
7755 return TRUE;
7756 }
7757
7758 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7759 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7760 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7761 a magic symbol resolved by the linker, we ignore this bogus definition
7762 of _gp_disp. New ABI objects do not suffer from this problem so this
7763 is not done for them. */
7764 if (!NEWABI_P(abfd)
7765 && (sym->st_shndx == SHN_ABS)
7766 && (strcmp (*namep, "_gp_disp") == 0))
7767 {
7768 *namep = NULL;
7769 return TRUE;
7770 }
7771
7772 switch (sym->st_shndx)
7773 {
7774 case SHN_COMMON:
7775 /* Common symbols less than the GP size are automatically
7776 treated as SHN_MIPS_SCOMMON symbols. */
7777 if (sym->st_size > elf_gp_size (abfd)
7778 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7779 || IRIX_COMPAT (abfd) == ict_irix6)
7780 break;
7781 /* Fall through. */
7782 case SHN_MIPS_SCOMMON:
7783 *secp = bfd_make_section_old_way (abfd, ".scommon");
7784 (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7785 *valp = sym->st_size;
7786 break;
7787
7788 case SHN_MIPS_TEXT:
7789 /* This section is used in a shared object. */
7790 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7791 {
7792 asymbol *elf_text_symbol;
7793 asection *elf_text_section;
7794 size_t amt = sizeof (asection);
7795
7796 elf_text_section = bfd_zalloc (abfd, amt);
7797 if (elf_text_section == NULL)
7798 return FALSE;
7799
7800 amt = sizeof (asymbol);
7801 elf_text_symbol = bfd_zalloc (abfd, amt);
7802 if (elf_text_symbol == NULL)
7803 return FALSE;
7804
7805 /* Initialize the section. */
7806
7807 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7808 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7809
7810 elf_text_section->symbol = elf_text_symbol;
7811 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7812
7813 elf_text_section->name = ".text";
7814 elf_text_section->flags = SEC_NO_FLAGS;
7815 elf_text_section->output_section = NULL;
7816 elf_text_section->owner = abfd;
7817 elf_text_symbol->name = ".text";
7818 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7819 elf_text_symbol->section = elf_text_section;
7820 }
7821 /* This code used to do *secp = bfd_und_section_ptr if
7822 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7823 so I took it out. */
7824 *secp = mips_elf_tdata (abfd)->elf_text_section;
7825 break;
7826
7827 case SHN_MIPS_ACOMMON:
7828 /* Fall through. XXX Can we treat this as allocated data? */
7829 case SHN_MIPS_DATA:
7830 /* This section is used in a shared object. */
7831 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7832 {
7833 asymbol *elf_data_symbol;
7834 asection *elf_data_section;
7835 size_t amt = sizeof (asection);
7836
7837 elf_data_section = bfd_zalloc (abfd, amt);
7838 if (elf_data_section == NULL)
7839 return FALSE;
7840
7841 amt = sizeof (asymbol);
7842 elf_data_symbol = bfd_zalloc (abfd, amt);
7843 if (elf_data_symbol == NULL)
7844 return FALSE;
7845
7846 /* Initialize the section. */
7847
7848 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7849 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7850
7851 elf_data_section->symbol = elf_data_symbol;
7852 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7853
7854 elf_data_section->name = ".data";
7855 elf_data_section->flags = SEC_NO_FLAGS;
7856 elf_data_section->output_section = NULL;
7857 elf_data_section->owner = abfd;
7858 elf_data_symbol->name = ".data";
7859 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7860 elf_data_symbol->section = elf_data_section;
7861 }
7862 /* This code used to do *secp = bfd_und_section_ptr if
7863 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7864 so I took it out. */
7865 *secp = mips_elf_tdata (abfd)->elf_data_section;
7866 break;
7867
7868 case SHN_MIPS_SUNDEFINED:
7869 *secp = bfd_und_section_ptr;
7870 break;
7871 }
7872
7873 if (SGI_COMPAT (abfd)
7874 && ! bfd_link_pic (info)
7875 && info->output_bfd->xvec == abfd->xvec
7876 && strcmp (*namep, "__rld_obj_head") == 0)
7877 {
7878 struct elf_link_hash_entry *h;
7879 struct bfd_link_hash_entry *bh;
7880
7881 /* Mark __rld_obj_head as dynamic. */
7882 bh = NULL;
7883 if (! (_bfd_generic_link_add_one_symbol
7884 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7885 get_elf_backend_data (abfd)->collect, &bh)))
7886 return FALSE;
7887
7888 h = (struct elf_link_hash_entry *) bh;
7889 h->non_elf = 0;
7890 h->def_regular = 1;
7891 h->type = STT_OBJECT;
7892
7893 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7894 return FALSE;
7895
7896 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7897 mips_elf_hash_table (info)->rld_symbol = h;
7898 }
7899
7900 /* If this is a mips16 text symbol, add 1 to the value to make it
7901 odd. This will cause something like .word SYM to come up with
7902 the right value when it is loaded into the PC. */
7903 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7904 ++*valp;
7905
7906 return TRUE;
7907 }
7908
7909 /* This hook function is called before the linker writes out a global
7910 symbol. We mark symbols as small common if appropriate. This is
7911 also where we undo the increment of the value for a mips16 symbol. */
7912
7913 int
7914 _bfd_mips_elf_link_output_symbol_hook
7915 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7916 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7917 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7918 {
7919 /* If we see a common symbol, which implies a relocatable link, then
7920 if a symbol was small common in an input file, mark it as small
7921 common in the output file. */
7922 if (sym->st_shndx == SHN_COMMON
7923 && strcmp (input_sec->name, ".scommon") == 0)
7924 sym->st_shndx = SHN_MIPS_SCOMMON;
7925
7926 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7927 sym->st_value &= ~1;
7928
7929 return 1;
7930 }
7931 \f
7932 /* Functions for the dynamic linker. */
7933
7934 /* Create dynamic sections when linking against a dynamic object. */
7935
7936 bfd_boolean
7937 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7938 {
7939 struct elf_link_hash_entry *h;
7940 struct bfd_link_hash_entry *bh;
7941 flagword flags;
7942 register asection *s;
7943 const char * const *namep;
7944 struct mips_elf_link_hash_table *htab;
7945
7946 htab = mips_elf_hash_table (info);
7947 BFD_ASSERT (htab != NULL);
7948
7949 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7950 | SEC_LINKER_CREATED | SEC_READONLY);
7951
7952 /* The psABI requires a read-only .dynamic section, but the VxWorks
7953 EABI doesn't. */
7954 if (htab->root.target_os != is_vxworks)
7955 {
7956 s = bfd_get_linker_section (abfd, ".dynamic");
7957 if (s != NULL)
7958 {
7959 if (!bfd_set_section_flags (s, flags))
7960 return FALSE;
7961 }
7962 }
7963
7964 /* We need to create .got section. */
7965 if (!mips_elf_create_got_section (abfd, info))
7966 return FALSE;
7967
7968 if (! mips_elf_rel_dyn_section (info, TRUE))
7969 return FALSE;
7970
7971 /* Create .stub section. */
7972 s = bfd_make_section_anyway_with_flags (abfd,
7973 MIPS_ELF_STUB_SECTION_NAME (abfd),
7974 flags | SEC_CODE);
7975 if (s == NULL
7976 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7977 return FALSE;
7978 htab->sstubs = s;
7979
7980 if (!mips_elf_hash_table (info)->use_rld_obj_head
7981 && bfd_link_executable (info)
7982 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7983 {
7984 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7985 flags &~ (flagword) SEC_READONLY);
7986 if (s == NULL
7987 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7988 return FALSE;
7989 }
7990
7991 /* Create .MIPS.xhash section. */
7992 if (info->emit_gnu_hash)
7993 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
7994 flags | SEC_READONLY);
7995
7996 /* On IRIX5, we adjust add some additional symbols and change the
7997 alignments of several sections. There is no ABI documentation
7998 indicating that this is necessary on IRIX6, nor any evidence that
7999 the linker takes such action. */
8000 if (IRIX_COMPAT (abfd) == ict_irix5)
8001 {
8002 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8003 {
8004 bh = NULL;
8005 if (! (_bfd_generic_link_add_one_symbol
8006 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8007 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8008 return FALSE;
8009
8010 h = (struct elf_link_hash_entry *) bh;
8011 h->mark = 1;
8012 h->non_elf = 0;
8013 h->def_regular = 1;
8014 h->type = STT_SECTION;
8015
8016 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8017 return FALSE;
8018 }
8019
8020 /* We need to create a .compact_rel section. */
8021 if (SGI_COMPAT (abfd))
8022 {
8023 if (!mips_elf_create_compact_rel_section (abfd, info))
8024 return FALSE;
8025 }
8026
8027 /* Change alignments of some sections. */
8028 s = bfd_get_linker_section (abfd, ".hash");
8029 if (s != NULL)
8030 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8031
8032 s = bfd_get_linker_section (abfd, ".dynsym");
8033 if (s != NULL)
8034 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8035
8036 s = bfd_get_linker_section (abfd, ".dynstr");
8037 if (s != NULL)
8038 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8039
8040 /* ??? */
8041 s = bfd_get_section_by_name (abfd, ".reginfo");
8042 if (s != NULL)
8043 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8044
8045 s = bfd_get_linker_section (abfd, ".dynamic");
8046 if (s != NULL)
8047 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8048 }
8049
8050 if (bfd_link_executable (info))
8051 {
8052 const char *name;
8053
8054 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8055 bh = NULL;
8056 if (!(_bfd_generic_link_add_one_symbol
8057 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8058 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8059 return FALSE;
8060
8061 h = (struct elf_link_hash_entry *) bh;
8062 h->non_elf = 0;
8063 h->def_regular = 1;
8064 h->type = STT_SECTION;
8065
8066 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8067 return FALSE;
8068
8069 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8070 {
8071 /* __rld_map is a four byte word located in the .data section
8072 and is filled in by the rtld to contain a pointer to
8073 the _r_debug structure. Its symbol value will be set in
8074 _bfd_mips_elf_finish_dynamic_symbol. */
8075 s = bfd_get_linker_section (abfd, ".rld_map");
8076 BFD_ASSERT (s != NULL);
8077
8078 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8079 bh = NULL;
8080 if (!(_bfd_generic_link_add_one_symbol
8081 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8082 get_elf_backend_data (abfd)->collect, &bh)))
8083 return FALSE;
8084
8085 h = (struct elf_link_hash_entry *) bh;
8086 h->non_elf = 0;
8087 h->def_regular = 1;
8088 h->type = STT_OBJECT;
8089
8090 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8091 return FALSE;
8092 mips_elf_hash_table (info)->rld_symbol = h;
8093 }
8094 }
8095
8096 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8097 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8098 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8099 return FALSE;
8100
8101 /* Do the usual VxWorks handling. */
8102 if (htab->root.target_os == is_vxworks
8103 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8104 return FALSE;
8105
8106 return TRUE;
8107 }
8108 \f
8109 /* Return true if relocation REL against section SEC is a REL rather than
8110 RELA relocation. RELOCS is the first relocation in the section and
8111 ABFD is the bfd that contains SEC. */
8112
8113 static bfd_boolean
8114 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8115 const Elf_Internal_Rela *relocs,
8116 const Elf_Internal_Rela *rel)
8117 {
8118 Elf_Internal_Shdr *rel_hdr;
8119 const struct elf_backend_data *bed;
8120
8121 /* To determine which flavor of relocation this is, we depend on the
8122 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8123 rel_hdr = elf_section_data (sec)->rel.hdr;
8124 if (rel_hdr == NULL)
8125 return FALSE;
8126 bed = get_elf_backend_data (abfd);
8127 return ((size_t) (rel - relocs)
8128 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8129 }
8130
8131 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8132 HOWTO is the relocation's howto and CONTENTS points to the contents
8133 of the section that REL is against. */
8134
8135 static bfd_vma
8136 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8137 reloc_howto_type *howto, bfd_byte *contents)
8138 {
8139 bfd_byte *location;
8140 unsigned int r_type;
8141 bfd_vma addend;
8142 bfd_vma bytes;
8143
8144 r_type = ELF_R_TYPE (abfd, rel->r_info);
8145 location = contents + rel->r_offset;
8146
8147 /* Get the addend, which is stored in the input file. */
8148 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8149 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8150 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8151
8152 addend = bytes & howto->src_mask;
8153
8154 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8155 accordingly. */
8156 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8157 addend <<= 1;
8158
8159 return addend;
8160 }
8161
8162 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8163 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8164 and update *ADDEND with the final addend. Return true on success
8165 or false if the LO16 could not be found. RELEND is the exclusive
8166 upper bound on the relocations for REL's section. */
8167
8168 static bfd_boolean
8169 mips_elf_add_lo16_rel_addend (bfd *abfd,
8170 const Elf_Internal_Rela *rel,
8171 const Elf_Internal_Rela *relend,
8172 bfd_byte *contents, bfd_vma *addend)
8173 {
8174 unsigned int r_type, lo16_type;
8175 const Elf_Internal_Rela *lo16_relocation;
8176 reloc_howto_type *lo16_howto;
8177 bfd_vma l;
8178
8179 r_type = ELF_R_TYPE (abfd, rel->r_info);
8180 if (mips16_reloc_p (r_type))
8181 lo16_type = R_MIPS16_LO16;
8182 else if (micromips_reloc_p (r_type))
8183 lo16_type = R_MICROMIPS_LO16;
8184 else if (r_type == R_MIPS_PCHI16)
8185 lo16_type = R_MIPS_PCLO16;
8186 else
8187 lo16_type = R_MIPS_LO16;
8188
8189 /* The combined value is the sum of the HI16 addend, left-shifted by
8190 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8191 code does a `lui' of the HI16 value, and then an `addiu' of the
8192 LO16 value.)
8193
8194 Scan ahead to find a matching LO16 relocation.
8195
8196 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8197 be immediately following. However, for the IRIX6 ABI, the next
8198 relocation may be a composed relocation consisting of several
8199 relocations for the same address. In that case, the R_MIPS_LO16
8200 relocation may occur as one of these. We permit a similar
8201 extension in general, as that is useful for GCC.
8202
8203 In some cases GCC dead code elimination removes the LO16 but keeps
8204 the corresponding HI16. This is strictly speaking a violation of
8205 the ABI but not immediately harmful. */
8206 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8207 if (lo16_relocation == NULL)
8208 return FALSE;
8209
8210 /* Obtain the addend kept there. */
8211 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8212 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8213
8214 l <<= lo16_howto->rightshift;
8215 l = _bfd_mips_elf_sign_extend (l, 16);
8216
8217 *addend <<= 16;
8218 *addend += l;
8219 return TRUE;
8220 }
8221
8222 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8223 store the contents in *CONTENTS on success. Assume that *CONTENTS
8224 already holds the contents if it is nonull on entry. */
8225
8226 static bfd_boolean
8227 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8228 {
8229 if (*contents)
8230 return TRUE;
8231
8232 /* Get cached copy if it exists. */
8233 if (elf_section_data (sec)->this_hdr.contents != NULL)
8234 {
8235 *contents = elf_section_data (sec)->this_hdr.contents;
8236 return TRUE;
8237 }
8238
8239 return bfd_malloc_and_get_section (abfd, sec, contents);
8240 }
8241
8242 /* Make a new PLT record to keep internal data. */
8243
8244 static struct plt_entry *
8245 mips_elf_make_plt_record (bfd *abfd)
8246 {
8247 struct plt_entry *entry;
8248
8249 entry = bfd_zalloc (abfd, sizeof (*entry));
8250 if (entry == NULL)
8251 return NULL;
8252
8253 entry->stub_offset = MINUS_ONE;
8254 entry->mips_offset = MINUS_ONE;
8255 entry->comp_offset = MINUS_ONE;
8256 entry->gotplt_index = MINUS_ONE;
8257 return entry;
8258 }
8259
8260 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8261 for PIC code, as otherwise there is no load-time relocation involved
8262 and local GOT entries whose value is zero at static link time will
8263 retain their value at load time. */
8264
8265 static bfd_boolean
8266 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8267 struct mips_elf_link_hash_table *htab,
8268 unsigned int r_type)
8269 {
8270 union
8271 {
8272 struct elf_link_hash_entry *eh;
8273 struct bfd_link_hash_entry *bh;
8274 }
8275 hzero;
8276
8277 BFD_ASSERT (!htab->use_absolute_zero);
8278 BFD_ASSERT (bfd_link_pic (info));
8279
8280 hzero.bh = NULL;
8281 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8282 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8283 NULL, FALSE, FALSE, &hzero.bh))
8284 return FALSE;
8285
8286 BFD_ASSERT (hzero.bh != NULL);
8287 hzero.eh->size = 0;
8288 hzero.eh->type = STT_NOTYPE;
8289 hzero.eh->other = STV_PROTECTED;
8290 hzero.eh->def_regular = 1;
8291 hzero.eh->non_elf = 0;
8292
8293 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8294 return FALSE;
8295
8296 htab->use_absolute_zero = TRUE;
8297
8298 return TRUE;
8299 }
8300
8301 /* Look through the relocs for a section during the first phase, and
8302 allocate space in the global offset table and record the need for
8303 standard MIPS and compressed procedure linkage table entries. */
8304
8305 bfd_boolean
8306 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8307 asection *sec, const Elf_Internal_Rela *relocs)
8308 {
8309 const char *name;
8310 bfd *dynobj;
8311 Elf_Internal_Shdr *symtab_hdr;
8312 struct elf_link_hash_entry **sym_hashes;
8313 size_t extsymoff;
8314 const Elf_Internal_Rela *rel;
8315 const Elf_Internal_Rela *rel_end;
8316 asection *sreloc;
8317 const struct elf_backend_data *bed;
8318 struct mips_elf_link_hash_table *htab;
8319 bfd_byte *contents;
8320 bfd_vma addend;
8321 reloc_howto_type *howto;
8322
8323 if (bfd_link_relocatable (info))
8324 return TRUE;
8325
8326 htab = mips_elf_hash_table (info);
8327 BFD_ASSERT (htab != NULL);
8328
8329 dynobj = elf_hash_table (info)->dynobj;
8330 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8331 sym_hashes = elf_sym_hashes (abfd);
8332 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8333
8334 bed = get_elf_backend_data (abfd);
8335 rel_end = relocs + sec->reloc_count;
8336
8337 /* Check for the mips16 stub sections. */
8338
8339 name = bfd_section_name (sec);
8340 if (FN_STUB_P (name))
8341 {
8342 unsigned long r_symndx;
8343
8344 /* Look at the relocation information to figure out which symbol
8345 this is for. */
8346
8347 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8348 if (r_symndx == 0)
8349 {
8350 _bfd_error_handler
8351 /* xgettext:c-format */
8352 (_("%pB: warning: cannot determine the target function for"
8353 " stub section `%s'"),
8354 abfd, name);
8355 bfd_set_error (bfd_error_bad_value);
8356 return FALSE;
8357 }
8358
8359 if (r_symndx < extsymoff
8360 || sym_hashes[r_symndx - extsymoff] == NULL)
8361 {
8362 asection *o;
8363
8364 /* This stub is for a local symbol. This stub will only be
8365 needed if there is some relocation in this BFD, other
8366 than a 16 bit function call, which refers to this symbol. */
8367 for (o = abfd->sections; o != NULL; o = o->next)
8368 {
8369 Elf_Internal_Rela *sec_relocs;
8370 const Elf_Internal_Rela *r, *rend;
8371
8372 /* We can ignore stub sections when looking for relocs. */
8373 if ((o->flags & SEC_RELOC) == 0
8374 || o->reloc_count == 0
8375 || section_allows_mips16_refs_p (o))
8376 continue;
8377
8378 sec_relocs
8379 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8380 info->keep_memory);
8381 if (sec_relocs == NULL)
8382 return FALSE;
8383
8384 rend = sec_relocs + o->reloc_count;
8385 for (r = sec_relocs; r < rend; r++)
8386 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8387 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8388 break;
8389
8390 if (elf_section_data (o)->relocs != sec_relocs)
8391 free (sec_relocs);
8392
8393 if (r < rend)
8394 break;
8395 }
8396
8397 if (o == NULL)
8398 {
8399 /* There is no non-call reloc for this stub, so we do
8400 not need it. Since this function is called before
8401 the linker maps input sections to output sections, we
8402 can easily discard it by setting the SEC_EXCLUDE
8403 flag. */
8404 sec->flags |= SEC_EXCLUDE;
8405 return TRUE;
8406 }
8407
8408 /* Record this stub in an array of local symbol stubs for
8409 this BFD. */
8410 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8411 {
8412 unsigned long symcount;
8413 asection **n;
8414 bfd_size_type amt;
8415
8416 if (elf_bad_symtab (abfd))
8417 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8418 else
8419 symcount = symtab_hdr->sh_info;
8420 amt = symcount * sizeof (asection *);
8421 n = bfd_zalloc (abfd, amt);
8422 if (n == NULL)
8423 return FALSE;
8424 mips_elf_tdata (abfd)->local_stubs = n;
8425 }
8426
8427 sec->flags |= SEC_KEEP;
8428 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8429
8430 /* We don't need to set mips16_stubs_seen in this case.
8431 That flag is used to see whether we need to look through
8432 the global symbol table for stubs. We don't need to set
8433 it here, because we just have a local stub. */
8434 }
8435 else
8436 {
8437 struct mips_elf_link_hash_entry *h;
8438
8439 h = ((struct mips_elf_link_hash_entry *)
8440 sym_hashes[r_symndx - extsymoff]);
8441
8442 while (h->root.root.type == bfd_link_hash_indirect
8443 || h->root.root.type == bfd_link_hash_warning)
8444 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8445
8446 /* H is the symbol this stub is for. */
8447
8448 /* If we already have an appropriate stub for this function, we
8449 don't need another one, so we can discard this one. Since
8450 this function is called before the linker maps input sections
8451 to output sections, we can easily discard it by setting the
8452 SEC_EXCLUDE flag. */
8453 if (h->fn_stub != NULL)
8454 {
8455 sec->flags |= SEC_EXCLUDE;
8456 return TRUE;
8457 }
8458
8459 sec->flags |= SEC_KEEP;
8460 h->fn_stub = sec;
8461 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8462 }
8463 }
8464 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8465 {
8466 unsigned long r_symndx;
8467 struct mips_elf_link_hash_entry *h;
8468 asection **loc;
8469
8470 /* Look at the relocation information to figure out which symbol
8471 this is for. */
8472
8473 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8474 if (r_symndx == 0)
8475 {
8476 _bfd_error_handler
8477 /* xgettext:c-format */
8478 (_("%pB: warning: cannot determine the target function for"
8479 " stub section `%s'"),
8480 abfd, name);
8481 bfd_set_error (bfd_error_bad_value);
8482 return FALSE;
8483 }
8484
8485 if (r_symndx < extsymoff
8486 || sym_hashes[r_symndx - extsymoff] == NULL)
8487 {
8488 asection *o;
8489
8490 /* This stub is for a local symbol. This stub will only be
8491 needed if there is some relocation (R_MIPS16_26) in this BFD
8492 that refers to this symbol. */
8493 for (o = abfd->sections; o != NULL; o = o->next)
8494 {
8495 Elf_Internal_Rela *sec_relocs;
8496 const Elf_Internal_Rela *r, *rend;
8497
8498 /* We can ignore stub sections when looking for relocs. */
8499 if ((o->flags & SEC_RELOC) == 0
8500 || o->reloc_count == 0
8501 || section_allows_mips16_refs_p (o))
8502 continue;
8503
8504 sec_relocs
8505 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8506 info->keep_memory);
8507 if (sec_relocs == NULL)
8508 return FALSE;
8509
8510 rend = sec_relocs + o->reloc_count;
8511 for (r = sec_relocs; r < rend; r++)
8512 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8513 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8514 break;
8515
8516 if (elf_section_data (o)->relocs != sec_relocs)
8517 free (sec_relocs);
8518
8519 if (r < rend)
8520 break;
8521 }
8522
8523 if (o == NULL)
8524 {
8525 /* There is no non-call reloc for this stub, so we do
8526 not need it. Since this function is called before
8527 the linker maps input sections to output sections, we
8528 can easily discard it by setting the SEC_EXCLUDE
8529 flag. */
8530 sec->flags |= SEC_EXCLUDE;
8531 return TRUE;
8532 }
8533
8534 /* Record this stub in an array of local symbol call_stubs for
8535 this BFD. */
8536 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8537 {
8538 unsigned long symcount;
8539 asection **n;
8540 bfd_size_type amt;
8541
8542 if (elf_bad_symtab (abfd))
8543 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8544 else
8545 symcount = symtab_hdr->sh_info;
8546 amt = symcount * sizeof (asection *);
8547 n = bfd_zalloc (abfd, amt);
8548 if (n == NULL)
8549 return FALSE;
8550 mips_elf_tdata (abfd)->local_call_stubs = n;
8551 }
8552
8553 sec->flags |= SEC_KEEP;
8554 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8555
8556 /* We don't need to set mips16_stubs_seen in this case.
8557 That flag is used to see whether we need to look through
8558 the global symbol table for stubs. We don't need to set
8559 it here, because we just have a local stub. */
8560 }
8561 else
8562 {
8563 h = ((struct mips_elf_link_hash_entry *)
8564 sym_hashes[r_symndx - extsymoff]);
8565
8566 /* H is the symbol this stub is for. */
8567
8568 if (CALL_FP_STUB_P (name))
8569 loc = &h->call_fp_stub;
8570 else
8571 loc = &h->call_stub;
8572
8573 /* If we already have an appropriate stub for this function, we
8574 don't need another one, so we can discard this one. Since
8575 this function is called before the linker maps input sections
8576 to output sections, we can easily discard it by setting the
8577 SEC_EXCLUDE flag. */
8578 if (*loc != NULL)
8579 {
8580 sec->flags |= SEC_EXCLUDE;
8581 return TRUE;
8582 }
8583
8584 sec->flags |= SEC_KEEP;
8585 *loc = sec;
8586 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8587 }
8588 }
8589
8590 sreloc = NULL;
8591 contents = NULL;
8592 for (rel = relocs; rel < rel_end; ++rel)
8593 {
8594 unsigned long r_symndx;
8595 unsigned int r_type;
8596 struct elf_link_hash_entry *h;
8597 bfd_boolean can_make_dynamic_p;
8598 bfd_boolean call_reloc_p;
8599 bfd_boolean constrain_symbol_p;
8600
8601 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8602 r_type = ELF_R_TYPE (abfd, rel->r_info);
8603
8604 if (r_symndx < extsymoff)
8605 h = NULL;
8606 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8607 {
8608 _bfd_error_handler
8609 /* xgettext:c-format */
8610 (_("%pB: malformed reloc detected for section %s"),
8611 abfd, name);
8612 bfd_set_error (bfd_error_bad_value);
8613 return FALSE;
8614 }
8615 else
8616 {
8617 h = sym_hashes[r_symndx - extsymoff];
8618 if (h != NULL)
8619 {
8620 while (h->root.type == bfd_link_hash_indirect
8621 || h->root.type == bfd_link_hash_warning)
8622 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8623 }
8624 }
8625
8626 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8627 relocation into a dynamic one. */
8628 can_make_dynamic_p = FALSE;
8629
8630 /* Set CALL_RELOC_P to true if the relocation is for a call,
8631 and if pointer equality therefore doesn't matter. */
8632 call_reloc_p = FALSE;
8633
8634 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8635 into account when deciding how to define the symbol. */
8636 constrain_symbol_p = TRUE;
8637
8638 switch (r_type)
8639 {
8640 case R_MIPS_CALL16:
8641 case R_MIPS_CALL_HI16:
8642 case R_MIPS_CALL_LO16:
8643 case R_MIPS16_CALL16:
8644 case R_MICROMIPS_CALL16:
8645 case R_MICROMIPS_CALL_HI16:
8646 case R_MICROMIPS_CALL_LO16:
8647 call_reloc_p = TRUE;
8648 /* Fall through. */
8649
8650 case R_MIPS_GOT16:
8651 case R_MIPS_GOT_LO16:
8652 case R_MIPS_GOT_PAGE:
8653 case R_MIPS_GOT_DISP:
8654 case R_MIPS16_GOT16:
8655 case R_MICROMIPS_GOT16:
8656 case R_MICROMIPS_GOT_LO16:
8657 case R_MICROMIPS_GOT_PAGE:
8658 case R_MICROMIPS_GOT_DISP:
8659 /* If we have a symbol that will resolve to zero at static link
8660 time and it is used by a GOT relocation applied to code we
8661 cannot relax to an immediate zero load, then we will be using
8662 the special `__gnu_absolute_zero' symbol whose value is zero
8663 at dynamic load time. We ignore HI16-type GOT relocations at
8664 this stage, because their handling will depend entirely on
8665 the corresponding LO16-type GOT relocation. */
8666 if (!call_hi16_reloc_p (r_type)
8667 && h != NULL
8668 && bfd_link_pic (info)
8669 && !htab->use_absolute_zero
8670 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8671 {
8672 bfd_boolean rel_reloc;
8673
8674 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8675 return FALSE;
8676
8677 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8678 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8679
8680 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8681 FALSE))
8682 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8683 return FALSE;
8684 }
8685
8686 /* Fall through. */
8687 case R_MIPS_GOT_HI16:
8688 case R_MIPS_GOT_OFST:
8689 case R_MIPS_TLS_GOTTPREL:
8690 case R_MIPS_TLS_GD:
8691 case R_MIPS_TLS_LDM:
8692 case R_MIPS16_TLS_GOTTPREL:
8693 case R_MIPS16_TLS_GD:
8694 case R_MIPS16_TLS_LDM:
8695 case R_MICROMIPS_GOT_HI16:
8696 case R_MICROMIPS_GOT_OFST:
8697 case R_MICROMIPS_TLS_GOTTPREL:
8698 case R_MICROMIPS_TLS_GD:
8699 case R_MICROMIPS_TLS_LDM:
8700 if (dynobj == NULL)
8701 elf_hash_table (info)->dynobj = dynobj = abfd;
8702 if (!mips_elf_create_got_section (dynobj, info))
8703 return FALSE;
8704 if (htab->root.target_os == is_vxworks
8705 && !bfd_link_pic (info))
8706 {
8707 _bfd_error_handler
8708 /* xgettext:c-format */
8709 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8710 abfd, (uint64_t) rel->r_offset);
8711 bfd_set_error (bfd_error_bad_value);
8712 return FALSE;
8713 }
8714 can_make_dynamic_p = TRUE;
8715 break;
8716
8717 case R_MIPS_NONE:
8718 case R_MIPS_JALR:
8719 case R_MICROMIPS_JALR:
8720 /* These relocations have empty fields and are purely there to
8721 provide link information. The symbol value doesn't matter. */
8722 constrain_symbol_p = FALSE;
8723 break;
8724
8725 case R_MIPS_GPREL16:
8726 case R_MIPS_GPREL32:
8727 case R_MIPS16_GPREL:
8728 case R_MICROMIPS_GPREL16:
8729 /* GP-relative relocations always resolve to a definition in a
8730 regular input file, ignoring the one-definition rule. This is
8731 important for the GP setup sequence in NewABI code, which
8732 always resolves to a local function even if other relocations
8733 against the symbol wouldn't. */
8734 constrain_symbol_p = FALSE;
8735 break;
8736
8737 case R_MIPS_32:
8738 case R_MIPS_REL32:
8739 case R_MIPS_64:
8740 /* In VxWorks executables, references to external symbols
8741 must be handled using copy relocs or PLT entries; it is not
8742 possible to convert this relocation into a dynamic one.
8743
8744 For executables that use PLTs and copy-relocs, we have a
8745 choice between converting the relocation into a dynamic
8746 one or using copy relocations or PLT entries. It is
8747 usually better to do the former, unless the relocation is
8748 against a read-only section. */
8749 if ((bfd_link_pic (info)
8750 || (h != NULL
8751 && htab->root.target_os != is_vxworks
8752 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8753 && !(!info->nocopyreloc
8754 && !PIC_OBJECT_P (abfd)
8755 && MIPS_ELF_READONLY_SECTION (sec))))
8756 && (sec->flags & SEC_ALLOC) != 0)
8757 {
8758 can_make_dynamic_p = TRUE;
8759 if (dynobj == NULL)
8760 elf_hash_table (info)->dynobj = dynobj = abfd;
8761 }
8762 break;
8763
8764 case R_MIPS_26:
8765 case R_MIPS_PC16:
8766 case R_MIPS_PC21_S2:
8767 case R_MIPS_PC26_S2:
8768 case R_MIPS16_26:
8769 case R_MIPS16_PC16_S1:
8770 case R_MICROMIPS_26_S1:
8771 case R_MICROMIPS_PC7_S1:
8772 case R_MICROMIPS_PC10_S1:
8773 case R_MICROMIPS_PC16_S1:
8774 case R_MICROMIPS_PC23_S2:
8775 call_reloc_p = TRUE;
8776 break;
8777 }
8778
8779 if (h)
8780 {
8781 if (constrain_symbol_p)
8782 {
8783 if (!can_make_dynamic_p)
8784 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8785
8786 if (!call_reloc_p)
8787 h->pointer_equality_needed = 1;
8788
8789 /* We must not create a stub for a symbol that has
8790 relocations related to taking the function's address.
8791 This doesn't apply to VxWorks, where CALL relocs refer
8792 to a .got.plt entry instead of a normal .got entry. */
8793 if (htab->root.target_os != is_vxworks
8794 && (!can_make_dynamic_p || !call_reloc_p))
8795 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8796 }
8797
8798 /* Relocations against the special VxWorks __GOTT_BASE__ and
8799 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8800 room for them in .rela.dyn. */
8801 if (is_gott_symbol (info, h))
8802 {
8803 if (sreloc == NULL)
8804 {
8805 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8806 if (sreloc == NULL)
8807 return FALSE;
8808 }
8809 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8810 if (MIPS_ELF_READONLY_SECTION (sec))
8811 /* We tell the dynamic linker that there are
8812 relocations against the text segment. */
8813 info->flags |= DF_TEXTREL;
8814 }
8815 }
8816 else if (call_lo16_reloc_p (r_type)
8817 || got_lo16_reloc_p (r_type)
8818 || got_disp_reloc_p (r_type)
8819 || (got16_reloc_p (r_type)
8820 && htab->root.target_os == is_vxworks))
8821 {
8822 /* We may need a local GOT entry for this relocation. We
8823 don't count R_MIPS_GOT_PAGE because we can estimate the
8824 maximum number of pages needed by looking at the size of
8825 the segment. Similar comments apply to R_MIPS*_GOT16 and
8826 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8827 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8828 R_MIPS_CALL_HI16 because these are always followed by an
8829 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8830 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8831 rel->r_addend, info, r_type))
8832 return FALSE;
8833 }
8834
8835 if (h != NULL
8836 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8837 ELF_ST_IS_MIPS16 (h->other)))
8838 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8839
8840 switch (r_type)
8841 {
8842 case R_MIPS_CALL16:
8843 case R_MIPS16_CALL16:
8844 case R_MICROMIPS_CALL16:
8845 if (h == NULL)
8846 {
8847 _bfd_error_handler
8848 /* xgettext:c-format */
8849 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8850 abfd, (uint64_t) rel->r_offset);
8851 bfd_set_error (bfd_error_bad_value);
8852 return FALSE;
8853 }
8854 /* Fall through. */
8855
8856 case R_MIPS_CALL_HI16:
8857 case R_MIPS_CALL_LO16:
8858 case R_MICROMIPS_CALL_HI16:
8859 case R_MICROMIPS_CALL_LO16:
8860 if (h != NULL)
8861 {
8862 /* Make sure there is room in the regular GOT to hold the
8863 function's address. We may eliminate it in favour of
8864 a .got.plt entry later; see mips_elf_count_got_symbols. */
8865 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8866 r_type))
8867 return FALSE;
8868
8869 /* We need a stub, not a plt entry for the undefined
8870 function. But we record it as if it needs plt. See
8871 _bfd_elf_adjust_dynamic_symbol. */
8872 h->needs_plt = 1;
8873 h->type = STT_FUNC;
8874 }
8875 break;
8876
8877 case R_MIPS_GOT_PAGE:
8878 case R_MICROMIPS_GOT_PAGE:
8879 case R_MIPS16_GOT16:
8880 case R_MIPS_GOT16:
8881 case R_MIPS_GOT_HI16:
8882 case R_MIPS_GOT_LO16:
8883 case R_MICROMIPS_GOT16:
8884 case R_MICROMIPS_GOT_HI16:
8885 case R_MICROMIPS_GOT_LO16:
8886 if (!h || got_page_reloc_p (r_type))
8887 {
8888 /* This relocation needs (or may need, if h != NULL) a
8889 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8890 know for sure until we know whether the symbol is
8891 preemptible. */
8892 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8893 {
8894 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8895 return FALSE;
8896 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8897 addend = mips_elf_read_rel_addend (abfd, rel,
8898 howto, contents);
8899 if (got16_reloc_p (r_type))
8900 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8901 contents, &addend);
8902 else
8903 addend <<= howto->rightshift;
8904 }
8905 else
8906 addend = rel->r_addend;
8907 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8908 h, addend))
8909 return FALSE;
8910
8911 if (h)
8912 {
8913 struct mips_elf_link_hash_entry *hmips =
8914 (struct mips_elf_link_hash_entry *) h;
8915
8916 /* This symbol is definitely not overridable. */
8917 if (hmips->root.def_regular
8918 && ! (bfd_link_pic (info) && ! info->symbolic
8919 && ! hmips->root.forced_local))
8920 h = NULL;
8921 }
8922 }
8923 /* If this is a global, overridable symbol, GOT_PAGE will
8924 decay to GOT_DISP, so we'll need a GOT entry for it. */
8925 /* Fall through. */
8926
8927 case R_MIPS_GOT_DISP:
8928 case R_MICROMIPS_GOT_DISP:
8929 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8930 FALSE, r_type))
8931 return FALSE;
8932 break;
8933
8934 case R_MIPS_TLS_GOTTPREL:
8935 case R_MIPS16_TLS_GOTTPREL:
8936 case R_MICROMIPS_TLS_GOTTPREL:
8937 if (bfd_link_pic (info))
8938 info->flags |= DF_STATIC_TLS;
8939 /* Fall through */
8940
8941 case R_MIPS_TLS_LDM:
8942 case R_MIPS16_TLS_LDM:
8943 case R_MICROMIPS_TLS_LDM:
8944 if (tls_ldm_reloc_p (r_type))
8945 {
8946 r_symndx = STN_UNDEF;
8947 h = NULL;
8948 }
8949 /* Fall through */
8950
8951 case R_MIPS_TLS_GD:
8952 case R_MIPS16_TLS_GD:
8953 case R_MICROMIPS_TLS_GD:
8954 /* This symbol requires a global offset table entry, or two
8955 for TLS GD relocations. */
8956 if (h != NULL)
8957 {
8958 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8959 FALSE, r_type))
8960 return FALSE;
8961 }
8962 else
8963 {
8964 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8965 rel->r_addend,
8966 info, r_type))
8967 return FALSE;
8968 }
8969 break;
8970
8971 case R_MIPS_32:
8972 case R_MIPS_REL32:
8973 case R_MIPS_64:
8974 /* In VxWorks executables, references to external symbols
8975 are handled using copy relocs or PLT stubs, so there's
8976 no need to add a .rela.dyn entry for this relocation. */
8977 if (can_make_dynamic_p)
8978 {
8979 if (sreloc == NULL)
8980 {
8981 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8982 if (sreloc == NULL)
8983 return FALSE;
8984 }
8985 if (bfd_link_pic (info) && h == NULL)
8986 {
8987 /* When creating a shared object, we must copy these
8988 reloc types into the output file as R_MIPS_REL32
8989 relocs. Make room for this reloc in .rel(a).dyn. */
8990 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8991 if (MIPS_ELF_READONLY_SECTION (sec))
8992 /* We tell the dynamic linker that there are
8993 relocations against the text segment. */
8994 info->flags |= DF_TEXTREL;
8995 }
8996 else
8997 {
8998 struct mips_elf_link_hash_entry *hmips;
8999
9000 /* For a shared object, we must copy this relocation
9001 unless the symbol turns out to be undefined and
9002 weak with non-default visibility, in which case
9003 it will be left as zero.
9004
9005 We could elide R_MIPS_REL32 for locally binding symbols
9006 in shared libraries, but do not yet do so.
9007
9008 For an executable, we only need to copy this
9009 reloc if the symbol is defined in a dynamic
9010 object. */
9011 hmips = (struct mips_elf_link_hash_entry *) h;
9012 ++hmips->possibly_dynamic_relocs;
9013 if (MIPS_ELF_READONLY_SECTION (sec))
9014 /* We need it to tell the dynamic linker if there
9015 are relocations against the text segment. */
9016 hmips->readonly_reloc = TRUE;
9017 }
9018 }
9019
9020 if (SGI_COMPAT (abfd))
9021 mips_elf_hash_table (info)->compact_rel_size +=
9022 sizeof (Elf32_External_crinfo);
9023 break;
9024
9025 case R_MIPS_26:
9026 case R_MIPS_GPREL16:
9027 case R_MIPS_LITERAL:
9028 case R_MIPS_GPREL32:
9029 case R_MICROMIPS_26_S1:
9030 case R_MICROMIPS_GPREL16:
9031 case R_MICROMIPS_LITERAL:
9032 case R_MICROMIPS_GPREL7_S2:
9033 if (SGI_COMPAT (abfd))
9034 mips_elf_hash_table (info)->compact_rel_size +=
9035 sizeof (Elf32_External_crinfo);
9036 break;
9037
9038 /* This relocation describes the C++ object vtable hierarchy.
9039 Reconstruct it for later use during GC. */
9040 case R_MIPS_GNU_VTINHERIT:
9041 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9042 return FALSE;
9043 break;
9044
9045 /* This relocation describes which C++ vtable entries are actually
9046 used. Record for later use during GC. */
9047 case R_MIPS_GNU_VTENTRY:
9048 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9049 return FALSE;
9050 break;
9051
9052 default:
9053 break;
9054 }
9055
9056 /* Record the need for a PLT entry. At this point we don't know
9057 yet if we are going to create a PLT in the first place, but
9058 we only record whether the relocation requires a standard MIPS
9059 or a compressed code entry anyway. If we don't make a PLT after
9060 all, then we'll just ignore these arrangements. Likewise if
9061 a PLT entry is not created because the symbol is satisfied
9062 locally. */
9063 if (h != NULL
9064 && (branch_reloc_p (r_type)
9065 || mips16_branch_reloc_p (r_type)
9066 || micromips_branch_reloc_p (r_type))
9067 && !SYMBOL_CALLS_LOCAL (info, h))
9068 {
9069 if (h->plt.plist == NULL)
9070 h->plt.plist = mips_elf_make_plt_record (abfd);
9071 if (h->plt.plist == NULL)
9072 return FALSE;
9073
9074 if (branch_reloc_p (r_type))
9075 h->plt.plist->need_mips = TRUE;
9076 else
9077 h->plt.plist->need_comp = TRUE;
9078 }
9079
9080 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9081 if there is one. We only need to handle global symbols here;
9082 we decide whether to keep or delete stubs for local symbols
9083 when processing the stub's relocations. */
9084 if (h != NULL
9085 && !mips16_call_reloc_p (r_type)
9086 && !section_allows_mips16_refs_p (sec))
9087 {
9088 struct mips_elf_link_hash_entry *mh;
9089
9090 mh = (struct mips_elf_link_hash_entry *) h;
9091 mh->need_fn_stub = TRUE;
9092 }
9093
9094 /* Refuse some position-dependent relocations when creating a
9095 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9096 not PIC, but we can create dynamic relocations and the result
9097 will be fine. Also do not refuse R_MIPS_LO16, which can be
9098 combined with R_MIPS_GOT16. */
9099 if (bfd_link_pic (info))
9100 {
9101 switch (r_type)
9102 {
9103 case R_MIPS_TLS_TPREL_HI16:
9104 case R_MIPS16_TLS_TPREL_HI16:
9105 case R_MICROMIPS_TLS_TPREL_HI16:
9106 case R_MIPS_TLS_TPREL_LO16:
9107 case R_MIPS16_TLS_TPREL_LO16:
9108 case R_MICROMIPS_TLS_TPREL_LO16:
9109 /* These are okay in PIE, but not in a shared library. */
9110 if (bfd_link_executable (info))
9111 break;
9112
9113 /* FALLTHROUGH */
9114
9115 case R_MIPS16_HI16:
9116 case R_MIPS_HI16:
9117 case R_MIPS_HIGHER:
9118 case R_MIPS_HIGHEST:
9119 case R_MICROMIPS_HI16:
9120 case R_MICROMIPS_HIGHER:
9121 case R_MICROMIPS_HIGHEST:
9122 /* Don't refuse a high part relocation if it's against
9123 no symbol (e.g. part of a compound relocation). */
9124 if (r_symndx == STN_UNDEF)
9125 break;
9126
9127 /* Likewise an absolute symbol. */
9128 if (h != NULL && bfd_is_abs_symbol (&h->root))
9129 break;
9130
9131 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9132 and has a special meaning. */
9133 if (!NEWABI_P (abfd) && h != NULL
9134 && strcmp (h->root.root.string, "_gp_disp") == 0)
9135 break;
9136
9137 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9138 if (is_gott_symbol (info, h))
9139 break;
9140
9141 /* FALLTHROUGH */
9142
9143 case R_MIPS16_26:
9144 case R_MIPS_26:
9145 case R_MICROMIPS_26_S1:
9146 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9147 /* An error for unsupported relocations is raised as part
9148 of the above search, so we can skip the following. */
9149 if (howto != NULL)
9150 info->callbacks->einfo
9151 /* xgettext:c-format */
9152 (_("%X%H: relocation %s against `%s' cannot be used"
9153 " when making a shared object; recompile with -fPIC\n"),
9154 abfd, sec, rel->r_offset, howto->name,
9155 (h) ? h->root.root.string : "a local symbol");
9156 break;
9157 default:
9158 break;
9159 }
9160 }
9161 }
9162
9163 return TRUE;
9164 }
9165 \f
9166 /* Allocate space for global sym dynamic relocs. */
9167
9168 static bfd_boolean
9169 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9170 {
9171 struct bfd_link_info *info = inf;
9172 bfd *dynobj;
9173 struct mips_elf_link_hash_entry *hmips;
9174 struct mips_elf_link_hash_table *htab;
9175
9176 htab = mips_elf_hash_table (info);
9177 BFD_ASSERT (htab != NULL);
9178
9179 dynobj = elf_hash_table (info)->dynobj;
9180 hmips = (struct mips_elf_link_hash_entry *) h;
9181
9182 /* VxWorks executables are handled elsewhere; we only need to
9183 allocate relocations in shared objects. */
9184 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9185 return TRUE;
9186
9187 /* Ignore indirect symbols. All relocations against such symbols
9188 will be redirected to the target symbol. */
9189 if (h->root.type == bfd_link_hash_indirect)
9190 return TRUE;
9191
9192 /* If this symbol is defined in a dynamic object, or we are creating
9193 a shared library, we will need to copy any R_MIPS_32 or
9194 R_MIPS_REL32 relocs against it into the output file. */
9195 if (! bfd_link_relocatable (info)
9196 && hmips->possibly_dynamic_relocs != 0
9197 && (h->root.type == bfd_link_hash_defweak
9198 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9199 || bfd_link_pic (info)))
9200 {
9201 bfd_boolean do_copy = TRUE;
9202
9203 if (h->root.type == bfd_link_hash_undefweak)
9204 {
9205 /* Do not copy relocations for undefined weak symbols that
9206 we are not going to export. */
9207 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9208 do_copy = FALSE;
9209
9210 /* Make sure undefined weak symbols are output as a dynamic
9211 symbol in PIEs. */
9212 else if (h->dynindx == -1 && !h->forced_local)
9213 {
9214 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9215 return FALSE;
9216 }
9217 }
9218
9219 if (do_copy)
9220 {
9221 /* Even though we don't directly need a GOT entry for this symbol,
9222 the SVR4 psABI requires it to have a dynamic symbol table
9223 index greater that DT_MIPS_GOTSYM if there are dynamic
9224 relocations against it.
9225
9226 VxWorks does not enforce the same mapping between the GOT
9227 and the symbol table, so the same requirement does not
9228 apply there. */
9229 if (htab->root.target_os != is_vxworks)
9230 {
9231 if (hmips->global_got_area > GGA_RELOC_ONLY)
9232 hmips->global_got_area = GGA_RELOC_ONLY;
9233 hmips->got_only_for_calls = FALSE;
9234 }
9235
9236 mips_elf_allocate_dynamic_relocations
9237 (dynobj, info, hmips->possibly_dynamic_relocs);
9238 if (hmips->readonly_reloc)
9239 /* We tell the dynamic linker that there are relocations
9240 against the text segment. */
9241 info->flags |= DF_TEXTREL;
9242 }
9243 }
9244
9245 return TRUE;
9246 }
9247
9248 /* Adjust a symbol defined by a dynamic object and referenced by a
9249 regular object. The current definition is in some section of the
9250 dynamic object, but we're not including those sections. We have to
9251 change the definition to something the rest of the link can
9252 understand. */
9253
9254 bfd_boolean
9255 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9256 struct elf_link_hash_entry *h)
9257 {
9258 bfd *dynobj;
9259 struct mips_elf_link_hash_entry *hmips;
9260 struct mips_elf_link_hash_table *htab;
9261 asection *s, *srel;
9262
9263 htab = mips_elf_hash_table (info);
9264 BFD_ASSERT (htab != NULL);
9265
9266 dynobj = elf_hash_table (info)->dynobj;
9267 hmips = (struct mips_elf_link_hash_entry *) h;
9268
9269 /* Make sure we know what is going on here. */
9270 if (dynobj == NULL
9271 || (! h->needs_plt
9272 && ! h->is_weakalias
9273 && (! h->def_dynamic
9274 || ! h->ref_regular
9275 || h->def_regular)))
9276 {
9277 if (h->type == STT_GNU_IFUNC)
9278 _bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9279 h->root.root.string);
9280 else
9281 _bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9282 h->root.root.string);
9283 return TRUE;
9284 }
9285
9286 hmips = (struct mips_elf_link_hash_entry *) h;
9287
9288 /* If there are call relocations against an externally-defined symbol,
9289 see whether we can create a MIPS lazy-binding stub for it. We can
9290 only do this if all references to the function are through call
9291 relocations, and in that case, the traditional lazy-binding stubs
9292 are much more efficient than PLT entries.
9293
9294 Traditional stubs are only available on SVR4 psABI-based systems;
9295 VxWorks always uses PLTs instead. */
9296 if (htab->root.target_os != is_vxworks
9297 && h->needs_plt
9298 && !hmips->no_fn_stub)
9299 {
9300 if (! elf_hash_table (info)->dynamic_sections_created)
9301 return TRUE;
9302
9303 /* If this symbol is not defined in a regular file, then set
9304 the symbol to the stub location. This is required to make
9305 function pointers compare as equal between the normal
9306 executable and the shared library. */
9307 if (!h->def_regular
9308 && !bfd_is_abs_section (htab->sstubs->output_section))
9309 {
9310 hmips->needs_lazy_stub = TRUE;
9311 htab->lazy_stub_count++;
9312 return TRUE;
9313 }
9314 }
9315 /* As above, VxWorks requires PLT entries for externally-defined
9316 functions that are only accessed through call relocations.
9317
9318 Both VxWorks and non-VxWorks targets also need PLT entries if there
9319 are static-only relocations against an externally-defined function.
9320 This can technically occur for shared libraries if there are
9321 branches to the symbol, although it is unlikely that this will be
9322 used in practice due to the short ranges involved. It can occur
9323 for any relative or absolute relocation in executables; in that
9324 case, the PLT entry becomes the function's canonical address. */
9325 else if (((h->needs_plt && !hmips->no_fn_stub)
9326 || (h->type == STT_FUNC && hmips->has_static_relocs))
9327 && htab->use_plts_and_copy_relocs
9328 && !SYMBOL_CALLS_LOCAL (info, h)
9329 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9330 && h->root.type == bfd_link_hash_undefweak))
9331 {
9332 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9333 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9334
9335 /* If this is the first symbol to need a PLT entry, then make some
9336 basic setup. Also work out PLT entry sizes. We'll need them
9337 for PLT offset calculations. */
9338 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9339 {
9340 BFD_ASSERT (htab->root.sgotplt->size == 0);
9341 BFD_ASSERT (htab->plt_got_index == 0);
9342
9343 /* If we're using the PLT additions to the psABI, each PLT
9344 entry is 16 bytes and the PLT0 entry is 32 bytes.
9345 Encourage better cache usage by aligning. We do this
9346 lazily to avoid pessimizing traditional objects. */
9347 if (htab->root.target_os != is_vxworks
9348 && !bfd_set_section_alignment (htab->root.splt, 5))
9349 return FALSE;
9350
9351 /* Make sure that .got.plt is word-aligned. We do this lazily
9352 for the same reason as above. */
9353 if (!bfd_set_section_alignment (htab->root.sgotplt,
9354 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9355 return FALSE;
9356
9357 /* On non-VxWorks targets, the first two entries in .got.plt
9358 are reserved. */
9359 if (htab->root.target_os != is_vxworks)
9360 htab->plt_got_index
9361 += (get_elf_backend_data (dynobj)->got_header_size
9362 / MIPS_ELF_GOT_SIZE (dynobj));
9363
9364 /* On VxWorks, also allocate room for the header's
9365 .rela.plt.unloaded entries. */
9366 if (htab->root.target_os == is_vxworks
9367 && !bfd_link_pic (info))
9368 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9369
9370 /* Now work out the sizes of individual PLT entries. */
9371 if (htab->root.target_os == is_vxworks
9372 && bfd_link_pic (info))
9373 htab->plt_mips_entry_size
9374 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9375 else if (htab->root.target_os == is_vxworks)
9376 htab->plt_mips_entry_size
9377 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9378 else if (newabi_p)
9379 htab->plt_mips_entry_size
9380 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9381 else if (!micromips_p)
9382 {
9383 htab->plt_mips_entry_size
9384 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9385 htab->plt_comp_entry_size
9386 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9387 }
9388 else if (htab->insn32)
9389 {
9390 htab->plt_mips_entry_size
9391 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9392 htab->plt_comp_entry_size
9393 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9394 }
9395 else
9396 {
9397 htab->plt_mips_entry_size
9398 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9399 htab->plt_comp_entry_size
9400 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9401 }
9402 }
9403
9404 if (h->plt.plist == NULL)
9405 h->plt.plist = mips_elf_make_plt_record (dynobj);
9406 if (h->plt.plist == NULL)
9407 return FALSE;
9408
9409 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9410 n32 or n64, so always use a standard entry there.
9411
9412 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9413 all MIPS16 calls will go via that stub, and there is no benefit
9414 to having a MIPS16 entry. And in the case of call_stub a
9415 standard entry actually has to be used as the stub ends with a J
9416 instruction. */
9417 if (newabi_p
9418 || htab->root.target_os == is_vxworks
9419 || hmips->call_stub
9420 || hmips->call_fp_stub)
9421 {
9422 h->plt.plist->need_mips = TRUE;
9423 h->plt.plist->need_comp = FALSE;
9424 }
9425
9426 /* Otherwise, if there are no direct calls to the function, we
9427 have a free choice of whether to use standard or compressed
9428 entries. Prefer microMIPS entries if the object is known to
9429 contain microMIPS code, so that it becomes possible to create
9430 pure microMIPS binaries. Prefer standard entries otherwise,
9431 because MIPS16 ones are no smaller and are usually slower. */
9432 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9433 {
9434 if (micromips_p)
9435 h->plt.plist->need_comp = TRUE;
9436 else
9437 h->plt.plist->need_mips = TRUE;
9438 }
9439
9440 if (h->plt.plist->need_mips)
9441 {
9442 h->plt.plist->mips_offset = htab->plt_mips_offset;
9443 htab->plt_mips_offset += htab->plt_mips_entry_size;
9444 }
9445 if (h->plt.plist->need_comp)
9446 {
9447 h->plt.plist->comp_offset = htab->plt_comp_offset;
9448 htab->plt_comp_offset += htab->plt_comp_entry_size;
9449 }
9450
9451 /* Reserve the corresponding .got.plt entry now too. */
9452 h->plt.plist->gotplt_index = htab->plt_got_index++;
9453
9454 /* If the output file has no definition of the symbol, set the
9455 symbol's value to the address of the stub. */
9456 if (!bfd_link_pic (info) && !h->def_regular)
9457 hmips->use_plt_entry = TRUE;
9458
9459 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9460 htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9461 ? MIPS_ELF_RELA_SIZE (dynobj)
9462 : MIPS_ELF_REL_SIZE (dynobj));
9463
9464 /* Make room for the .rela.plt.unloaded relocations. */
9465 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9466 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9467
9468 /* All relocations against this symbol that could have been made
9469 dynamic will now refer to the PLT entry instead. */
9470 hmips->possibly_dynamic_relocs = 0;
9471
9472 return TRUE;
9473 }
9474
9475 /* If this is a weak symbol, and there is a real definition, the
9476 processor independent code will have arranged for us to see the
9477 real definition first, and we can just use the same value. */
9478 if (h->is_weakalias)
9479 {
9480 struct elf_link_hash_entry *def = weakdef (h);
9481 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9482 h->root.u.def.section = def->root.u.def.section;
9483 h->root.u.def.value = def->root.u.def.value;
9484 return TRUE;
9485 }
9486
9487 /* Otherwise, there is nothing further to do for symbols defined
9488 in regular objects. */
9489 if (h->def_regular)
9490 return TRUE;
9491
9492 /* There's also nothing more to do if we'll convert all relocations
9493 against this symbol into dynamic relocations. */
9494 if (!hmips->has_static_relocs)
9495 return TRUE;
9496
9497 /* We're now relying on copy relocations. Complain if we have
9498 some that we can't convert. */
9499 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9500 {
9501 _bfd_error_handler (_("non-dynamic relocations refer to "
9502 "dynamic symbol %s"),
9503 h->root.root.string);
9504 bfd_set_error (bfd_error_bad_value);
9505 return FALSE;
9506 }
9507
9508 /* We must allocate the symbol in our .dynbss section, which will
9509 become part of the .bss section of the executable. There will be
9510 an entry for this symbol in the .dynsym section. The dynamic
9511 object will contain position independent code, so all references
9512 from the dynamic object to this symbol will go through the global
9513 offset table. The dynamic linker will use the .dynsym entry to
9514 determine the address it must put in the global offset table, so
9515 both the dynamic object and the regular object will refer to the
9516 same memory location for the variable. */
9517
9518 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9519 {
9520 s = htab->root.sdynrelro;
9521 srel = htab->root.sreldynrelro;
9522 }
9523 else
9524 {
9525 s = htab->root.sdynbss;
9526 srel = htab->root.srelbss;
9527 }
9528 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9529 {
9530 if (htab->root.target_os == is_vxworks)
9531 srel->size += sizeof (Elf32_External_Rela);
9532 else
9533 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9534 h->needs_copy = 1;
9535 }
9536
9537 /* All relocations against this symbol that could have been made
9538 dynamic will now refer to the local copy instead. */
9539 hmips->possibly_dynamic_relocs = 0;
9540
9541 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9542 }
9543 \f
9544 /* This function is called after all the input files have been read,
9545 and the input sections have been assigned to output sections. We
9546 check for any mips16 stub sections that we can discard. */
9547
9548 bfd_boolean
9549 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9550 struct bfd_link_info *info)
9551 {
9552 asection *sect;
9553 struct mips_elf_link_hash_table *htab;
9554 struct mips_htab_traverse_info hti;
9555
9556 htab = mips_elf_hash_table (info);
9557 BFD_ASSERT (htab != NULL);
9558
9559 /* The .reginfo section has a fixed size. */
9560 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9561 if (sect != NULL)
9562 {
9563 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9564 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9565 }
9566
9567 /* The .MIPS.abiflags section has a fixed size. */
9568 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9569 if (sect != NULL)
9570 {
9571 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9572 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9573 }
9574
9575 hti.info = info;
9576 hti.output_bfd = output_bfd;
9577 hti.error = FALSE;
9578 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9579 mips_elf_check_symbols, &hti);
9580 if (hti.error)
9581 return FALSE;
9582
9583 return TRUE;
9584 }
9585
9586 /* If the link uses a GOT, lay it out and work out its size. */
9587
9588 static bfd_boolean
9589 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9590 {
9591 bfd *dynobj;
9592 asection *s;
9593 struct mips_got_info *g;
9594 bfd_size_type loadable_size = 0;
9595 bfd_size_type page_gotno;
9596 bfd *ibfd;
9597 struct mips_elf_traverse_got_arg tga;
9598 struct mips_elf_link_hash_table *htab;
9599
9600 htab = mips_elf_hash_table (info);
9601 BFD_ASSERT (htab != NULL);
9602
9603 s = htab->root.sgot;
9604 if (s == NULL)
9605 return TRUE;
9606
9607 dynobj = elf_hash_table (info)->dynobj;
9608 g = htab->got_info;
9609
9610 /* Allocate room for the reserved entries. VxWorks always reserves
9611 3 entries; other objects only reserve 2 entries. */
9612 BFD_ASSERT (g->assigned_low_gotno == 0);
9613 if (htab->root.target_os == is_vxworks)
9614 htab->reserved_gotno = 3;
9615 else
9616 htab->reserved_gotno = 2;
9617 g->local_gotno += htab->reserved_gotno;
9618 g->assigned_low_gotno = htab->reserved_gotno;
9619
9620 /* Decide which symbols need to go in the global part of the GOT and
9621 count the number of reloc-only GOT symbols. */
9622 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9623
9624 if (!mips_elf_resolve_final_got_entries (info, g))
9625 return FALSE;
9626
9627 /* Calculate the total loadable size of the output. That
9628 will give us the maximum number of GOT_PAGE entries
9629 required. */
9630 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9631 {
9632 asection *subsection;
9633
9634 for (subsection = ibfd->sections;
9635 subsection;
9636 subsection = subsection->next)
9637 {
9638 if ((subsection->flags & SEC_ALLOC) == 0)
9639 continue;
9640 loadable_size += ((subsection->size + 0xf)
9641 &~ (bfd_size_type) 0xf);
9642 }
9643 }
9644
9645 if (htab->root.target_os == is_vxworks)
9646 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9647 relocations against local symbols evaluate to "G", and the EABI does
9648 not include R_MIPS_GOT_PAGE. */
9649 page_gotno = 0;
9650 else
9651 /* Assume there are two loadable segments consisting of contiguous
9652 sections. Is 5 enough? */
9653 page_gotno = (loadable_size >> 16) + 5;
9654
9655 /* Choose the smaller of the two page estimates; both are intended to be
9656 conservative. */
9657 if (page_gotno > g->page_gotno)
9658 page_gotno = g->page_gotno;
9659
9660 g->local_gotno += page_gotno;
9661 g->assigned_high_gotno = g->local_gotno - 1;
9662
9663 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9664 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9665 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9666
9667 /* VxWorks does not support multiple GOTs. It initializes $gp to
9668 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9669 dynamic loader. */
9670 if (htab->root.target_os != is_vxworks
9671 && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9672 {
9673 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9674 return FALSE;
9675 }
9676 else
9677 {
9678 /* Record that all bfds use G. This also has the effect of freeing
9679 the per-bfd GOTs, which we no longer need. */
9680 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9681 if (mips_elf_bfd_got (ibfd, FALSE))
9682 mips_elf_replace_bfd_got (ibfd, g);
9683 mips_elf_replace_bfd_got (output_bfd, g);
9684
9685 /* Set up TLS entries. */
9686 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9687 tga.info = info;
9688 tga.g = g;
9689 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9690 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9691 if (!tga.g)
9692 return FALSE;
9693 BFD_ASSERT (g->tls_assigned_gotno
9694 == g->global_gotno + g->local_gotno + g->tls_gotno);
9695
9696 /* Each VxWorks GOT entry needs an explicit relocation. */
9697 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9698 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9699
9700 /* Allocate room for the TLS relocations. */
9701 if (g->relocs)
9702 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9703 }
9704
9705 return TRUE;
9706 }
9707
9708 /* Estimate the size of the .MIPS.stubs section. */
9709
9710 static void
9711 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9712 {
9713 struct mips_elf_link_hash_table *htab;
9714 bfd_size_type dynsymcount;
9715
9716 htab = mips_elf_hash_table (info);
9717 BFD_ASSERT (htab != NULL);
9718
9719 if (htab->lazy_stub_count == 0)
9720 return;
9721
9722 /* IRIX rld assumes that a function stub isn't at the end of the .text
9723 section, so add a dummy entry to the end. */
9724 htab->lazy_stub_count++;
9725
9726 /* Get a worst-case estimate of the number of dynamic symbols needed.
9727 At this point, dynsymcount does not account for section symbols
9728 and count_section_dynsyms may overestimate the number that will
9729 be needed. */
9730 dynsymcount = (elf_hash_table (info)->dynsymcount
9731 + count_section_dynsyms (output_bfd, info));
9732
9733 /* Determine the size of one stub entry. There's no disadvantage
9734 from using microMIPS code here, so for the sake of pure-microMIPS
9735 binaries we prefer it whenever there's any microMIPS code in
9736 output produced at all. This has a benefit of stubs being
9737 shorter by 4 bytes each too, unless in the insn32 mode. */
9738 if (!MICROMIPS_P (output_bfd))
9739 htab->function_stub_size = (dynsymcount > 0x10000
9740 ? MIPS_FUNCTION_STUB_BIG_SIZE
9741 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9742 else if (htab->insn32)
9743 htab->function_stub_size = (dynsymcount > 0x10000
9744 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9745 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9746 else
9747 htab->function_stub_size = (dynsymcount > 0x10000
9748 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9749 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9750
9751 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9752 }
9753
9754 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9755 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9756 stub, allocate an entry in the stubs section. */
9757
9758 static bfd_boolean
9759 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9760 {
9761 struct mips_htab_traverse_info *hti = data;
9762 struct mips_elf_link_hash_table *htab;
9763 struct bfd_link_info *info;
9764 bfd *output_bfd;
9765
9766 info = hti->info;
9767 output_bfd = hti->output_bfd;
9768 htab = mips_elf_hash_table (info);
9769 BFD_ASSERT (htab != NULL);
9770
9771 if (h->needs_lazy_stub)
9772 {
9773 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9774 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9775 bfd_vma isa_bit = micromips_p;
9776
9777 BFD_ASSERT (htab->root.dynobj != NULL);
9778 if (h->root.plt.plist == NULL)
9779 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9780 if (h->root.plt.plist == NULL)
9781 {
9782 hti->error = TRUE;
9783 return FALSE;
9784 }
9785 h->root.root.u.def.section = htab->sstubs;
9786 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9787 h->root.plt.plist->stub_offset = htab->sstubs->size;
9788 h->root.other = other;
9789 htab->sstubs->size += htab->function_stub_size;
9790 }
9791 return TRUE;
9792 }
9793
9794 /* Allocate offsets in the stubs section to each symbol that needs one.
9795 Set the final size of the .MIPS.stub section. */
9796
9797 static bfd_boolean
9798 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9799 {
9800 bfd *output_bfd = info->output_bfd;
9801 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9802 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9803 bfd_vma isa_bit = micromips_p;
9804 struct mips_elf_link_hash_table *htab;
9805 struct mips_htab_traverse_info hti;
9806 struct elf_link_hash_entry *h;
9807 bfd *dynobj;
9808
9809 htab = mips_elf_hash_table (info);
9810 BFD_ASSERT (htab != NULL);
9811
9812 if (htab->lazy_stub_count == 0)
9813 return TRUE;
9814
9815 htab->sstubs->size = 0;
9816 hti.info = info;
9817 hti.output_bfd = output_bfd;
9818 hti.error = FALSE;
9819 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9820 if (hti.error)
9821 return FALSE;
9822 htab->sstubs->size += htab->function_stub_size;
9823 BFD_ASSERT (htab->sstubs->size
9824 == htab->lazy_stub_count * htab->function_stub_size);
9825
9826 dynobj = elf_hash_table (info)->dynobj;
9827 BFD_ASSERT (dynobj != NULL);
9828 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9829 if (h == NULL)
9830 return FALSE;
9831 h->root.u.def.value = isa_bit;
9832 h->other = other;
9833 h->type = STT_FUNC;
9834
9835 return TRUE;
9836 }
9837
9838 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9839 bfd_link_info. If H uses the address of a PLT entry as the value
9840 of the symbol, then set the entry in the symbol table now. Prefer
9841 a standard MIPS PLT entry. */
9842
9843 static bfd_boolean
9844 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9845 {
9846 struct bfd_link_info *info = data;
9847 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9848 struct mips_elf_link_hash_table *htab;
9849 unsigned int other;
9850 bfd_vma isa_bit;
9851 bfd_vma val;
9852
9853 htab = mips_elf_hash_table (info);
9854 BFD_ASSERT (htab != NULL);
9855
9856 if (h->use_plt_entry)
9857 {
9858 BFD_ASSERT (h->root.plt.plist != NULL);
9859 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9860 || h->root.plt.plist->comp_offset != MINUS_ONE);
9861
9862 val = htab->plt_header_size;
9863 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9864 {
9865 isa_bit = 0;
9866 val += h->root.plt.plist->mips_offset;
9867 other = 0;
9868 }
9869 else
9870 {
9871 isa_bit = 1;
9872 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9873 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9874 }
9875 val += isa_bit;
9876 /* For VxWorks, point at the PLT load stub rather than the lazy
9877 resolution stub; this stub will become the canonical function
9878 address. */
9879 if (htab->root.target_os == is_vxworks)
9880 val += 8;
9881
9882 h->root.root.u.def.section = htab->root.splt;
9883 h->root.root.u.def.value = val;
9884 h->root.other = other;
9885 }
9886
9887 return TRUE;
9888 }
9889
9890 /* Set the sizes of the dynamic sections. */
9891
9892 bfd_boolean
9893 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9894 struct bfd_link_info *info)
9895 {
9896 bfd *dynobj;
9897 asection *s, *sreldyn;
9898 bfd_boolean reltext;
9899 struct mips_elf_link_hash_table *htab;
9900
9901 htab = mips_elf_hash_table (info);
9902 BFD_ASSERT (htab != NULL);
9903 dynobj = elf_hash_table (info)->dynobj;
9904 BFD_ASSERT (dynobj != NULL);
9905
9906 if (elf_hash_table (info)->dynamic_sections_created)
9907 {
9908 /* Set the contents of the .interp section to the interpreter. */
9909 if (bfd_link_executable (info) && !info->nointerp)
9910 {
9911 s = bfd_get_linker_section (dynobj, ".interp");
9912 BFD_ASSERT (s != NULL);
9913 s->size
9914 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9915 s->contents
9916 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9917 }
9918
9919 /* Figure out the size of the PLT header if we know that we
9920 are using it. For the sake of cache alignment always use
9921 a standard header whenever any standard entries are present
9922 even if microMIPS entries are present as well. This also
9923 lets the microMIPS header rely on the value of $v0 only set
9924 by microMIPS entries, for a small size reduction.
9925
9926 Set symbol table entry values for symbols that use the
9927 address of their PLT entry now that we can calculate it.
9928
9929 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9930 haven't already in _bfd_elf_create_dynamic_sections. */
9931 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9932 {
9933 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9934 && !htab->plt_mips_offset);
9935 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9936 bfd_vma isa_bit = micromips_p;
9937 struct elf_link_hash_entry *h;
9938 bfd_vma size;
9939
9940 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9941 BFD_ASSERT (htab->root.sgotplt->size == 0);
9942 BFD_ASSERT (htab->root.splt->size == 0);
9943
9944 if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9945 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9946 else if (htab->root.target_os == is_vxworks)
9947 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9948 else if (ABI_64_P (output_bfd))
9949 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9950 else if (ABI_N32_P (output_bfd))
9951 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9952 else if (!micromips_p)
9953 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9954 else if (htab->insn32)
9955 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9956 else
9957 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9958
9959 htab->plt_header_is_comp = micromips_p;
9960 htab->plt_header_size = size;
9961 htab->root.splt->size = (size
9962 + htab->plt_mips_offset
9963 + htab->plt_comp_offset);
9964 htab->root.sgotplt->size = (htab->plt_got_index
9965 * MIPS_ELF_GOT_SIZE (dynobj));
9966
9967 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9968
9969 if (htab->root.hplt == NULL)
9970 {
9971 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9972 "_PROCEDURE_LINKAGE_TABLE_");
9973 htab->root.hplt = h;
9974 if (h == NULL)
9975 return FALSE;
9976 }
9977
9978 h = htab->root.hplt;
9979 h->root.u.def.value = isa_bit;
9980 h->other = other;
9981 h->type = STT_FUNC;
9982 }
9983 }
9984
9985 /* Allocate space for global sym dynamic relocs. */
9986 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9987
9988 mips_elf_estimate_stub_size (output_bfd, info);
9989
9990 if (!mips_elf_lay_out_got (output_bfd, info))
9991 return FALSE;
9992
9993 mips_elf_lay_out_lazy_stubs (info);
9994
9995 /* The check_relocs and adjust_dynamic_symbol entry points have
9996 determined the sizes of the various dynamic sections. Allocate
9997 memory for them. */
9998 reltext = FALSE;
9999 for (s = dynobj->sections; s != NULL; s = s->next)
10000 {
10001 const char *name;
10002
10003 /* It's OK to base decisions on the section name, because none
10004 of the dynobj section names depend upon the input files. */
10005 name = bfd_section_name (s);
10006
10007 if ((s->flags & SEC_LINKER_CREATED) == 0)
10008 continue;
10009
10010 if (CONST_STRNEQ (name, ".rel"))
10011 {
10012 if (s->size != 0)
10013 {
10014 const char *outname;
10015 asection *target;
10016
10017 /* If this relocation section applies to a read only
10018 section, then we probably need a DT_TEXTREL entry.
10019 If the relocation section is .rel(a).dyn, we always
10020 assert a DT_TEXTREL entry rather than testing whether
10021 there exists a relocation to a read only section or
10022 not. */
10023 outname = bfd_section_name (s->output_section);
10024 target = bfd_get_section_by_name (output_bfd, outname + 4);
10025 if ((target != NULL
10026 && (target->flags & SEC_READONLY) != 0
10027 && (target->flags & SEC_ALLOC) != 0)
10028 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10029 reltext = TRUE;
10030
10031 /* We use the reloc_count field as a counter if we need
10032 to copy relocs into the output file. */
10033 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10034 s->reloc_count = 0;
10035
10036 /* If combreloc is enabled, elf_link_sort_relocs() will
10037 sort relocations, but in a different way than we do,
10038 and before we're done creating relocations. Also, it
10039 will move them around between input sections'
10040 relocation's contents, so our sorting would be
10041 broken, so don't let it run. */
10042 info->combreloc = 0;
10043 }
10044 }
10045 else if (bfd_link_executable (info)
10046 && ! mips_elf_hash_table (info)->use_rld_obj_head
10047 && CONST_STRNEQ (name, ".rld_map"))
10048 {
10049 /* We add a room for __rld_map. It will be filled in by the
10050 rtld to contain a pointer to the _r_debug structure. */
10051 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10052 }
10053 else if (SGI_COMPAT (output_bfd)
10054 && CONST_STRNEQ (name, ".compact_rel"))
10055 s->size += mips_elf_hash_table (info)->compact_rel_size;
10056 else if (s == htab->root.splt)
10057 {
10058 /* If the last PLT entry has a branch delay slot, allocate
10059 room for an extra nop to fill the delay slot. This is
10060 for CPUs without load interlocking. */
10061 if (! LOAD_INTERLOCKS_P (output_bfd)
10062 && htab->root.target_os != is_vxworks
10063 && s->size > 0)
10064 s->size += 4;
10065 }
10066 else if (! CONST_STRNEQ (name, ".init")
10067 && s != htab->root.sgot
10068 && s != htab->root.sgotplt
10069 && s != htab->sstubs
10070 && s != htab->root.sdynbss
10071 && s != htab->root.sdynrelro)
10072 {
10073 /* It's not one of our sections, so don't allocate space. */
10074 continue;
10075 }
10076
10077 if (s->size == 0)
10078 {
10079 s->flags |= SEC_EXCLUDE;
10080 continue;
10081 }
10082
10083 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10084 continue;
10085
10086 /* Allocate memory for the section contents. */
10087 s->contents = bfd_zalloc (dynobj, s->size);
10088 if (s->contents == NULL)
10089 {
10090 bfd_set_error (bfd_error_no_memory);
10091 return FALSE;
10092 }
10093 }
10094
10095 if (elf_hash_table (info)->dynamic_sections_created)
10096 {
10097 /* Add some entries to the .dynamic section. We fill in the
10098 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10099 must add the entries now so that we get the correct size for
10100 the .dynamic section. */
10101
10102 /* SGI object has the equivalence of DT_DEBUG in the
10103 DT_MIPS_RLD_MAP entry. This must come first because glibc
10104 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10105 may only look at the first one they see. */
10106 if (!bfd_link_pic (info)
10107 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10108 return FALSE;
10109
10110 if (bfd_link_executable (info)
10111 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10112 return FALSE;
10113
10114 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10115 used by the debugger. */
10116 if (bfd_link_executable (info)
10117 && !SGI_COMPAT (output_bfd)
10118 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10119 return FALSE;
10120
10121 if (reltext
10122 && (SGI_COMPAT (output_bfd)
10123 || htab->root.target_os == is_vxworks))
10124 info->flags |= DF_TEXTREL;
10125
10126 if ((info->flags & DF_TEXTREL) != 0)
10127 {
10128 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10129 return FALSE;
10130
10131 /* Clear the DF_TEXTREL flag. It will be set again if we
10132 write out an actual text relocation; we may not, because
10133 at this point we do not know whether e.g. any .eh_frame
10134 absolute relocations have been converted to PC-relative. */
10135 info->flags &= ~DF_TEXTREL;
10136 }
10137
10138 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10139 return FALSE;
10140
10141 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10142 if (htab->root.target_os == is_vxworks)
10143 {
10144 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10145 use any of the DT_MIPS_* tags. */
10146 if (sreldyn && sreldyn->size > 0)
10147 {
10148 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10149 return FALSE;
10150
10151 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10152 return FALSE;
10153
10154 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10155 return FALSE;
10156 }
10157 }
10158 else
10159 {
10160 if (sreldyn && sreldyn->size > 0
10161 && !bfd_is_abs_section (sreldyn->output_section))
10162 {
10163 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10164 return FALSE;
10165
10166 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10167 return FALSE;
10168
10169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10170 return FALSE;
10171 }
10172
10173 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10174 return FALSE;
10175
10176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10177 return FALSE;
10178
10179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10180 return FALSE;
10181
10182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10183 return FALSE;
10184
10185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10186 return FALSE;
10187
10188 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10189 return FALSE;
10190
10191 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10192 return FALSE;
10193
10194 if (info->emit_gnu_hash
10195 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10196 return FALSE;
10197
10198 if (IRIX_COMPAT (dynobj) == ict_irix5
10199 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10200 return FALSE;
10201
10202 if (IRIX_COMPAT (dynobj) == ict_irix6
10203 && (bfd_get_section_by_name
10204 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10205 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10206 return FALSE;
10207 }
10208 if (htab->root.splt->size > 0)
10209 {
10210 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10211 return FALSE;
10212
10213 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10214 return FALSE;
10215
10216 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10217 return FALSE;
10218
10219 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10220 return FALSE;
10221 }
10222 if (htab->root.target_os == is_vxworks
10223 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10224 return FALSE;
10225 }
10226
10227 return TRUE;
10228 }
10229 \f
10230 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10231 Adjust its R_ADDEND field so that it is correct for the output file.
10232 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10233 and sections respectively; both use symbol indexes. */
10234
10235 static void
10236 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10237 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10238 asection **local_sections, Elf_Internal_Rela *rel)
10239 {
10240 unsigned int r_type, r_symndx;
10241 Elf_Internal_Sym *sym;
10242 asection *sec;
10243
10244 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10245 {
10246 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10247 if (gprel16_reloc_p (r_type)
10248 || r_type == R_MIPS_GPREL32
10249 || literal_reloc_p (r_type))
10250 {
10251 rel->r_addend += _bfd_get_gp_value (input_bfd);
10252 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10253 }
10254
10255 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10256 sym = local_syms + r_symndx;
10257
10258 /* Adjust REL's addend to account for section merging. */
10259 if (!bfd_link_relocatable (info))
10260 {
10261 sec = local_sections[r_symndx];
10262 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10263 }
10264
10265 /* This would normally be done by the rela_normal code in elflink.c. */
10266 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10267 rel->r_addend += local_sections[r_symndx]->output_offset;
10268 }
10269 }
10270
10271 /* Handle relocations against symbols from removed linkonce sections,
10272 or sections discarded by a linker script. We use this wrapper around
10273 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10274 on 64-bit ELF targets. In this case for any relocation handled, which
10275 always be the first in a triplet, the remaining two have to be processed
10276 together with the first, even if they are R_MIPS_NONE. It is the symbol
10277 index referred by the first reloc that applies to all the three and the
10278 remaining two never refer to an object symbol. And it is the final
10279 relocation (the last non-null one) that determines the output field of
10280 the whole relocation so retrieve the corresponding howto structure for
10281 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10282
10283 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10284 and therefore requires to be pasted in a loop. It also defines a block
10285 and does not protect any of its arguments, hence the extra brackets. */
10286
10287 static void
10288 mips_reloc_against_discarded_section (bfd *output_bfd,
10289 struct bfd_link_info *info,
10290 bfd *input_bfd, asection *input_section,
10291 Elf_Internal_Rela **rel,
10292 const Elf_Internal_Rela **relend,
10293 bfd_boolean rel_reloc,
10294 reloc_howto_type *howto,
10295 bfd_byte *contents)
10296 {
10297 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10298 int count = bed->s->int_rels_per_ext_rel;
10299 unsigned int r_type;
10300 int i;
10301
10302 for (i = count - 1; i > 0; i--)
10303 {
10304 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10305 if (r_type != R_MIPS_NONE)
10306 {
10307 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10308 break;
10309 }
10310 }
10311 do
10312 {
10313 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10314 (*rel), count, (*relend),
10315 howto, i, contents);
10316 }
10317 while (0);
10318 }
10319
10320 /* Relocate a MIPS ELF section. */
10321
10322 bfd_boolean
10323 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10324 bfd *input_bfd, asection *input_section,
10325 bfd_byte *contents, Elf_Internal_Rela *relocs,
10326 Elf_Internal_Sym *local_syms,
10327 asection **local_sections)
10328 {
10329 Elf_Internal_Rela *rel;
10330 const Elf_Internal_Rela *relend;
10331 bfd_vma addend = 0;
10332 bfd_boolean use_saved_addend_p = FALSE;
10333
10334 relend = relocs + input_section->reloc_count;
10335 for (rel = relocs; rel < relend; ++rel)
10336 {
10337 const char *name;
10338 bfd_vma value = 0;
10339 reloc_howto_type *howto;
10340 bfd_boolean cross_mode_jump_p = FALSE;
10341 /* TRUE if the relocation is a RELA relocation, rather than a
10342 REL relocation. */
10343 bfd_boolean rela_relocation_p = TRUE;
10344 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10345 const char *msg;
10346 unsigned long r_symndx;
10347 asection *sec;
10348 Elf_Internal_Shdr *symtab_hdr;
10349 struct elf_link_hash_entry *h;
10350 bfd_boolean rel_reloc;
10351
10352 rel_reloc = (NEWABI_P (input_bfd)
10353 && mips_elf_rel_relocation_p (input_bfd, input_section,
10354 relocs, rel));
10355 /* Find the relocation howto for this relocation. */
10356 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10357
10358 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10359 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10360 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10361 {
10362 sec = local_sections[r_symndx];
10363 h = NULL;
10364 }
10365 else
10366 {
10367 unsigned long extsymoff;
10368
10369 extsymoff = 0;
10370 if (!elf_bad_symtab (input_bfd))
10371 extsymoff = symtab_hdr->sh_info;
10372 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10373 while (h->root.type == bfd_link_hash_indirect
10374 || h->root.type == bfd_link_hash_warning)
10375 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10376
10377 sec = NULL;
10378 if (h->root.type == bfd_link_hash_defined
10379 || h->root.type == bfd_link_hash_defweak)
10380 sec = h->root.u.def.section;
10381 }
10382
10383 if (sec != NULL && discarded_section (sec))
10384 {
10385 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10386 input_section, &rel, &relend,
10387 rel_reloc, howto, contents);
10388 continue;
10389 }
10390
10391 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10392 {
10393 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10394 64-bit code, but make sure all their addresses are in the
10395 lowermost or uppermost 32-bit section of the 64-bit address
10396 space. Thus, when they use an R_MIPS_64 they mean what is
10397 usually meant by R_MIPS_32, with the exception that the
10398 stored value is sign-extended to 64 bits. */
10399 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10400
10401 /* On big-endian systems, we need to lie about the position
10402 of the reloc. */
10403 if (bfd_big_endian (input_bfd))
10404 rel->r_offset += 4;
10405 }
10406
10407 if (!use_saved_addend_p)
10408 {
10409 /* If these relocations were originally of the REL variety,
10410 we must pull the addend out of the field that will be
10411 relocated. Otherwise, we simply use the contents of the
10412 RELA relocation. */
10413 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10414 relocs, rel))
10415 {
10416 rela_relocation_p = FALSE;
10417 addend = mips_elf_read_rel_addend (input_bfd, rel,
10418 howto, contents);
10419 if (hi16_reloc_p (r_type)
10420 || (got16_reloc_p (r_type)
10421 && mips_elf_local_relocation_p (input_bfd, rel,
10422 local_sections)))
10423 {
10424 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10425 contents, &addend))
10426 {
10427 if (h)
10428 name = h->root.root.string;
10429 else
10430 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10431 local_syms + r_symndx,
10432 sec);
10433 _bfd_error_handler
10434 /* xgettext:c-format */
10435 (_("%pB: can't find matching LO16 reloc against `%s'"
10436 " for %s at %#" PRIx64 " in section `%pA'"),
10437 input_bfd, name,
10438 howto->name, (uint64_t) rel->r_offset, input_section);
10439 }
10440 }
10441 else
10442 addend <<= howto->rightshift;
10443 }
10444 else
10445 addend = rel->r_addend;
10446 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10447 local_syms, local_sections, rel);
10448 }
10449
10450 if (bfd_link_relocatable (info))
10451 {
10452 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10453 && bfd_big_endian (input_bfd))
10454 rel->r_offset -= 4;
10455
10456 if (!rela_relocation_p && rel->r_addend)
10457 {
10458 addend += rel->r_addend;
10459 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10460 addend = mips_elf_high (addend);
10461 else if (r_type == R_MIPS_HIGHER)
10462 addend = mips_elf_higher (addend);
10463 else if (r_type == R_MIPS_HIGHEST)
10464 addend = mips_elf_highest (addend);
10465 else
10466 addend >>= howto->rightshift;
10467
10468 /* We use the source mask, rather than the destination
10469 mask because the place to which we are writing will be
10470 source of the addend in the final link. */
10471 addend &= howto->src_mask;
10472
10473 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10474 /* See the comment above about using R_MIPS_64 in the 32-bit
10475 ABI. Here, we need to update the addend. It would be
10476 possible to get away with just using the R_MIPS_32 reloc
10477 but for endianness. */
10478 {
10479 bfd_vma sign_bits;
10480 bfd_vma low_bits;
10481 bfd_vma high_bits;
10482
10483 if (addend & ((bfd_vma) 1 << 31))
10484 #ifdef BFD64
10485 sign_bits = ((bfd_vma) 1 << 32) - 1;
10486 #else
10487 sign_bits = -1;
10488 #endif
10489 else
10490 sign_bits = 0;
10491
10492 /* If we don't know that we have a 64-bit type,
10493 do two separate stores. */
10494 if (bfd_big_endian (input_bfd))
10495 {
10496 /* Store the sign-bits (which are most significant)
10497 first. */
10498 low_bits = sign_bits;
10499 high_bits = addend;
10500 }
10501 else
10502 {
10503 low_bits = addend;
10504 high_bits = sign_bits;
10505 }
10506 bfd_put_32 (input_bfd, low_bits,
10507 contents + rel->r_offset);
10508 bfd_put_32 (input_bfd, high_bits,
10509 contents + rel->r_offset + 4);
10510 continue;
10511 }
10512
10513 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10514 input_bfd, input_section,
10515 contents, FALSE))
10516 return FALSE;
10517 }
10518
10519 /* Go on to the next relocation. */
10520 continue;
10521 }
10522
10523 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10524 relocations for the same offset. In that case we are
10525 supposed to treat the output of each relocation as the addend
10526 for the next. */
10527 if (rel + 1 < relend
10528 && rel->r_offset == rel[1].r_offset
10529 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10530 use_saved_addend_p = TRUE;
10531 else
10532 use_saved_addend_p = FALSE;
10533
10534 /* Figure out what value we are supposed to relocate. */
10535 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10536 input_section, contents,
10537 info, rel, addend, howto,
10538 local_syms, local_sections,
10539 &value, &name, &cross_mode_jump_p,
10540 use_saved_addend_p))
10541 {
10542 case bfd_reloc_continue:
10543 /* There's nothing to do. */
10544 continue;
10545
10546 case bfd_reloc_undefined:
10547 /* mips_elf_calculate_relocation already called the
10548 undefined_symbol callback. There's no real point in
10549 trying to perform the relocation at this point, so we
10550 just skip ahead to the next relocation. */
10551 continue;
10552
10553 case bfd_reloc_notsupported:
10554 msg = _("internal error: unsupported relocation error");
10555 info->callbacks->warning
10556 (info, msg, name, input_bfd, input_section, rel->r_offset);
10557 return FALSE;
10558
10559 case bfd_reloc_overflow:
10560 if (use_saved_addend_p)
10561 /* Ignore overflow until we reach the last relocation for
10562 a given location. */
10563 ;
10564 else
10565 {
10566 struct mips_elf_link_hash_table *htab;
10567
10568 htab = mips_elf_hash_table (info);
10569 BFD_ASSERT (htab != NULL);
10570 BFD_ASSERT (name != NULL);
10571 if (!htab->small_data_overflow_reported
10572 && (gprel16_reloc_p (howto->type)
10573 || literal_reloc_p (howto->type)))
10574 {
10575 msg = _("small-data section exceeds 64KB;"
10576 " lower small-data size limit (see option -G)");
10577
10578 htab->small_data_overflow_reported = TRUE;
10579 (*info->callbacks->einfo) ("%P: %s\n", msg);
10580 }
10581 (*info->callbacks->reloc_overflow)
10582 (info, NULL, name, howto->name, (bfd_vma) 0,
10583 input_bfd, input_section, rel->r_offset);
10584 }
10585 break;
10586
10587 case bfd_reloc_ok:
10588 break;
10589
10590 case bfd_reloc_outofrange:
10591 msg = NULL;
10592 if (jal_reloc_p (howto->type))
10593 msg = (cross_mode_jump_p
10594 ? _("cannot convert a jump to JALX "
10595 "for a non-word-aligned address")
10596 : (howto->type == R_MIPS16_26
10597 ? _("jump to a non-word-aligned address")
10598 : _("jump to a non-instruction-aligned address")));
10599 else if (b_reloc_p (howto->type))
10600 msg = (cross_mode_jump_p
10601 ? _("cannot convert a branch to JALX "
10602 "for a non-word-aligned address")
10603 : _("branch to a non-instruction-aligned address"));
10604 else if (aligned_pcrel_reloc_p (howto->type))
10605 msg = _("PC-relative load from unaligned address");
10606 if (msg)
10607 {
10608 info->callbacks->einfo
10609 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10610 break;
10611 }
10612 /* Fall through. */
10613
10614 default:
10615 abort ();
10616 break;
10617 }
10618
10619 /* If we've got another relocation for the address, keep going
10620 until we reach the last one. */
10621 if (use_saved_addend_p)
10622 {
10623 addend = value;
10624 continue;
10625 }
10626
10627 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10628 /* See the comment above about using R_MIPS_64 in the 32-bit
10629 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10630 that calculated the right value. Now, however, we
10631 sign-extend the 32-bit result to 64-bits, and store it as a
10632 64-bit value. We are especially generous here in that we
10633 go to extreme lengths to support this usage on systems with
10634 only a 32-bit VMA. */
10635 {
10636 bfd_vma sign_bits;
10637 bfd_vma low_bits;
10638 bfd_vma high_bits;
10639
10640 if (value & ((bfd_vma) 1 << 31))
10641 #ifdef BFD64
10642 sign_bits = ((bfd_vma) 1 << 32) - 1;
10643 #else
10644 sign_bits = -1;
10645 #endif
10646 else
10647 sign_bits = 0;
10648
10649 /* If we don't know that we have a 64-bit type,
10650 do two separate stores. */
10651 if (bfd_big_endian (input_bfd))
10652 {
10653 /* Undo what we did above. */
10654 rel->r_offset -= 4;
10655 /* Store the sign-bits (which are most significant)
10656 first. */
10657 low_bits = sign_bits;
10658 high_bits = value;
10659 }
10660 else
10661 {
10662 low_bits = value;
10663 high_bits = sign_bits;
10664 }
10665 bfd_put_32 (input_bfd, low_bits,
10666 contents + rel->r_offset);
10667 bfd_put_32 (input_bfd, high_bits,
10668 contents + rel->r_offset + 4);
10669 continue;
10670 }
10671
10672 /* Actually perform the relocation. */
10673 if (! mips_elf_perform_relocation (info, howto, rel, value,
10674 input_bfd, input_section,
10675 contents, cross_mode_jump_p))
10676 return FALSE;
10677 }
10678
10679 return TRUE;
10680 }
10681 \f
10682 /* A function that iterates over each entry in la25_stubs and fills
10683 in the code for each one. DATA points to a mips_htab_traverse_info. */
10684
10685 static int
10686 mips_elf_create_la25_stub (void **slot, void *data)
10687 {
10688 struct mips_htab_traverse_info *hti;
10689 struct mips_elf_link_hash_table *htab;
10690 struct mips_elf_la25_stub *stub;
10691 asection *s;
10692 bfd_byte *loc;
10693 bfd_vma offset, target, target_high, target_low;
10694 bfd_vma branch_pc;
10695 bfd_signed_vma pcrel_offset = 0;
10696
10697 stub = (struct mips_elf_la25_stub *) *slot;
10698 hti = (struct mips_htab_traverse_info *) data;
10699 htab = mips_elf_hash_table (hti->info);
10700 BFD_ASSERT (htab != NULL);
10701
10702 /* Create the section contents, if we haven't already. */
10703 s = stub->stub_section;
10704 loc = s->contents;
10705 if (loc == NULL)
10706 {
10707 loc = bfd_malloc (s->size);
10708 if (loc == NULL)
10709 {
10710 hti->error = TRUE;
10711 return FALSE;
10712 }
10713 s->contents = loc;
10714 }
10715
10716 /* Work out where in the section this stub should go. */
10717 offset = stub->offset;
10718
10719 /* We add 8 here to account for the LUI/ADDIU instructions
10720 before the branch instruction. This cannot be moved down to
10721 where pcrel_offset is calculated as 's' is updated in
10722 mips_elf_get_la25_target. */
10723 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10724
10725 /* Work out the target address. */
10726 target = mips_elf_get_la25_target (stub, &s);
10727 target += s->output_section->vma + s->output_offset;
10728
10729 target_high = ((target + 0x8000) >> 16) & 0xffff;
10730 target_low = (target & 0xffff);
10731
10732 /* Calculate the PC of the compact branch instruction (for the case where
10733 compact branches are used for either microMIPSR6 or MIPSR6 with
10734 compact branches. Add 4-bytes to account for BC using the PC of the
10735 next instruction as the base. */
10736 pcrel_offset = target - (branch_pc + 4);
10737
10738 if (stub->stub_section != htab->strampoline)
10739 {
10740 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10741 of the section and write the two instructions at the end. */
10742 memset (loc, 0, offset);
10743 loc += offset;
10744 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10745 {
10746 bfd_put_micromips_32 (hti->output_bfd,
10747 LA25_LUI_MICROMIPS (target_high),
10748 loc);
10749 bfd_put_micromips_32 (hti->output_bfd,
10750 LA25_ADDIU_MICROMIPS (target_low),
10751 loc + 4);
10752 }
10753 else
10754 {
10755 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10756 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10757 }
10758 }
10759 else
10760 {
10761 /* This is trampoline. */
10762 loc += offset;
10763 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10764 {
10765 bfd_put_micromips_32 (hti->output_bfd,
10766 LA25_LUI_MICROMIPS (target_high), loc);
10767 bfd_put_micromips_32 (hti->output_bfd,
10768 LA25_J_MICROMIPS (target), loc + 4);
10769 bfd_put_micromips_32 (hti->output_bfd,
10770 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10771 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10772 }
10773 else
10774 {
10775 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10776 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10777 {
10778 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10779 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10780 }
10781 else
10782 {
10783 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10784 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10785 }
10786 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10787 }
10788 }
10789 return TRUE;
10790 }
10791
10792 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10793 adjust it appropriately now. */
10794
10795 static void
10796 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10797 const char *name, Elf_Internal_Sym *sym)
10798 {
10799 /* The linker script takes care of providing names and values for
10800 these, but we must place them into the right sections. */
10801 static const char* const text_section_symbols[] = {
10802 "_ftext",
10803 "_etext",
10804 "__dso_displacement",
10805 "__elf_header",
10806 "__program_header_table",
10807 NULL
10808 };
10809
10810 static const char* const data_section_symbols[] = {
10811 "_fdata",
10812 "_edata",
10813 "_end",
10814 "_fbss",
10815 NULL
10816 };
10817
10818 const char* const *p;
10819 int i;
10820
10821 for (i = 0; i < 2; ++i)
10822 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10823 *p;
10824 ++p)
10825 if (strcmp (*p, name) == 0)
10826 {
10827 /* All of these symbols are given type STT_SECTION by the
10828 IRIX6 linker. */
10829 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10830 sym->st_other = STO_PROTECTED;
10831
10832 /* The IRIX linker puts these symbols in special sections. */
10833 if (i == 0)
10834 sym->st_shndx = SHN_MIPS_TEXT;
10835 else
10836 sym->st_shndx = SHN_MIPS_DATA;
10837
10838 break;
10839 }
10840 }
10841
10842 /* Finish up dynamic symbol handling. We set the contents of various
10843 dynamic sections here. */
10844
10845 bfd_boolean
10846 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10847 struct bfd_link_info *info,
10848 struct elf_link_hash_entry *h,
10849 Elf_Internal_Sym *sym)
10850 {
10851 bfd *dynobj;
10852 asection *sgot;
10853 struct mips_got_info *g, *gg;
10854 const char *name;
10855 int idx;
10856 struct mips_elf_link_hash_table *htab;
10857 struct mips_elf_link_hash_entry *hmips;
10858
10859 htab = mips_elf_hash_table (info);
10860 BFD_ASSERT (htab != NULL);
10861 dynobj = elf_hash_table (info)->dynobj;
10862 hmips = (struct mips_elf_link_hash_entry *) h;
10863
10864 BFD_ASSERT (htab->root.target_os != is_vxworks);
10865
10866 if (h->plt.plist != NULL
10867 && (h->plt.plist->mips_offset != MINUS_ONE
10868 || h->plt.plist->comp_offset != MINUS_ONE))
10869 {
10870 /* We've decided to create a PLT entry for this symbol. */
10871 bfd_byte *loc;
10872 bfd_vma header_address, got_address;
10873 bfd_vma got_address_high, got_address_low, load;
10874 bfd_vma got_index;
10875 bfd_vma isa_bit;
10876
10877 got_index = h->plt.plist->gotplt_index;
10878
10879 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10880 BFD_ASSERT (h->dynindx != -1);
10881 BFD_ASSERT (htab->root.splt != NULL);
10882 BFD_ASSERT (got_index != MINUS_ONE);
10883 BFD_ASSERT (!h->def_regular);
10884
10885 /* Calculate the address of the PLT header. */
10886 isa_bit = htab->plt_header_is_comp;
10887 header_address = (htab->root.splt->output_section->vma
10888 + htab->root.splt->output_offset + isa_bit);
10889
10890 /* Calculate the address of the .got.plt entry. */
10891 got_address = (htab->root.sgotplt->output_section->vma
10892 + htab->root.sgotplt->output_offset
10893 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10894
10895 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10896 got_address_low = got_address & 0xffff;
10897
10898 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10899 cannot be loaded in two instructions. */
10900 if (ABI_64_P (output_bfd)
10901 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10902 {
10903 _bfd_error_handler
10904 /* xgettext:c-format */
10905 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10906 "supported; consider using `-Ttext-segment=...'"),
10907 output_bfd,
10908 htab->root.sgotplt->output_section,
10909 (int64_t) got_address);
10910 bfd_set_error (bfd_error_no_error);
10911 return FALSE;
10912 }
10913
10914 /* Initially point the .got.plt entry at the PLT header. */
10915 loc = (htab->root.sgotplt->contents
10916 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10917 if (ABI_64_P (output_bfd))
10918 bfd_put_64 (output_bfd, header_address, loc);
10919 else
10920 bfd_put_32 (output_bfd, header_address, loc);
10921
10922 /* Now handle the PLT itself. First the standard entry (the order
10923 does not matter, we just have to pick one). */
10924 if (h->plt.plist->mips_offset != MINUS_ONE)
10925 {
10926 const bfd_vma *plt_entry;
10927 bfd_vma plt_offset;
10928
10929 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10930
10931 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10932
10933 /* Find out where the .plt entry should go. */
10934 loc = htab->root.splt->contents + plt_offset;
10935
10936 /* Pick the load opcode. */
10937 load = MIPS_ELF_LOAD_WORD (output_bfd);
10938
10939 /* Fill in the PLT entry itself. */
10940
10941 if (MIPSR6_P (output_bfd))
10942 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10943 : mipsr6_exec_plt_entry;
10944 else
10945 plt_entry = mips_exec_plt_entry;
10946 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10947 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10948 loc + 4);
10949
10950 if (! LOAD_INTERLOCKS_P (output_bfd)
10951 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10952 {
10953 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10954 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10955 }
10956 else
10957 {
10958 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10959 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10960 loc + 12);
10961 }
10962 }
10963
10964 /* Now the compressed entry. They come after any standard ones. */
10965 if (h->plt.plist->comp_offset != MINUS_ONE)
10966 {
10967 bfd_vma plt_offset;
10968
10969 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10970 + h->plt.plist->comp_offset);
10971
10972 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10973
10974 /* Find out where the .plt entry should go. */
10975 loc = htab->root.splt->contents + plt_offset;
10976
10977 /* Fill in the PLT entry itself. */
10978 if (!MICROMIPS_P (output_bfd))
10979 {
10980 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10981
10982 bfd_put_16 (output_bfd, plt_entry[0], loc);
10983 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10984 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10985 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10986 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10987 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10988 bfd_put_32 (output_bfd, got_address, loc + 12);
10989 }
10990 else if (htab->insn32)
10991 {
10992 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10993
10994 bfd_put_16 (output_bfd, plt_entry[0], loc);
10995 bfd_put_16 (output_bfd, got_address_high, loc + 2);
10996 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10997 bfd_put_16 (output_bfd, got_address_low, loc + 6);
10998 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10999 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11000 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11001 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11002 }
11003 else
11004 {
11005 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11006 bfd_signed_vma gotpc_offset;
11007 bfd_vma loc_address;
11008
11009 BFD_ASSERT (got_address % 4 == 0);
11010
11011 loc_address = (htab->root.splt->output_section->vma
11012 + htab->root.splt->output_offset + plt_offset);
11013 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11014
11015 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11016 if (gotpc_offset + 0x1000000 >= 0x2000000)
11017 {
11018 _bfd_error_handler
11019 /* xgettext:c-format */
11020 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11021 "beyond the range of ADDIUPC"),
11022 output_bfd,
11023 htab->root.sgotplt->output_section,
11024 (int64_t) gotpc_offset,
11025 htab->root.splt->output_section);
11026 bfd_set_error (bfd_error_no_error);
11027 return FALSE;
11028 }
11029 bfd_put_16 (output_bfd,
11030 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11031 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11032 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11033 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11034 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11035 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11036 }
11037 }
11038
11039 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11040 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11041 got_index - 2, h->dynindx,
11042 R_MIPS_JUMP_SLOT, got_address);
11043
11044 /* We distinguish between PLT entries and lazy-binding stubs by
11045 giving the former an st_other value of STO_MIPS_PLT. Set the
11046 flag and leave the value if there are any relocations in the
11047 binary where pointer equality matters. */
11048 sym->st_shndx = SHN_UNDEF;
11049 if (h->pointer_equality_needed)
11050 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11051 else
11052 {
11053 sym->st_value = 0;
11054 sym->st_other = 0;
11055 }
11056 }
11057
11058 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11059 {
11060 /* We've decided to create a lazy-binding stub. */
11061 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11062 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11063 bfd_vma stub_size = htab->function_stub_size;
11064 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11065 bfd_vma isa_bit = micromips_p;
11066 bfd_vma stub_big_size;
11067
11068 if (!micromips_p)
11069 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11070 else if (htab->insn32)
11071 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11072 else
11073 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11074
11075 /* This symbol has a stub. Set it up. */
11076
11077 BFD_ASSERT (h->dynindx != -1);
11078
11079 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11080
11081 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11082 sign extension at runtime in the stub, resulting in a negative
11083 index value. */
11084 if (h->dynindx & ~0x7fffffff)
11085 return FALSE;
11086
11087 /* Fill the stub. */
11088 if (micromips_p)
11089 {
11090 idx = 0;
11091 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11092 stub + idx);
11093 idx += 4;
11094 if (htab->insn32)
11095 {
11096 bfd_put_micromips_32 (output_bfd,
11097 STUB_MOVE32_MICROMIPS, stub + idx);
11098 idx += 4;
11099 }
11100 else
11101 {
11102 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11103 idx += 2;
11104 }
11105 if (stub_size == stub_big_size)
11106 {
11107 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11108
11109 bfd_put_micromips_32 (output_bfd,
11110 STUB_LUI_MICROMIPS (dynindx_hi),
11111 stub + idx);
11112 idx += 4;
11113 }
11114 if (htab->insn32)
11115 {
11116 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11117 stub + idx);
11118 idx += 4;
11119 }
11120 else
11121 {
11122 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11123 idx += 2;
11124 }
11125
11126 /* If a large stub is not required and sign extension is not a
11127 problem, then use legacy code in the stub. */
11128 if (stub_size == stub_big_size)
11129 bfd_put_micromips_32 (output_bfd,
11130 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11131 stub + idx);
11132 else if (h->dynindx & ~0x7fff)
11133 bfd_put_micromips_32 (output_bfd,
11134 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11135 stub + idx);
11136 else
11137 bfd_put_micromips_32 (output_bfd,
11138 STUB_LI16S_MICROMIPS (output_bfd,
11139 h->dynindx),
11140 stub + idx);
11141 }
11142 else
11143 {
11144 idx = 0;
11145 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11146 idx += 4;
11147 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11148 idx += 4;
11149 if (stub_size == stub_big_size)
11150 {
11151 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11152 stub + idx);
11153 idx += 4;
11154 }
11155
11156 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11157 {
11158 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11159 idx += 4;
11160 }
11161
11162 /* If a large stub is not required and sign extension is not a
11163 problem, then use legacy code in the stub. */
11164 if (stub_size == stub_big_size)
11165 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11166 stub + idx);
11167 else if (h->dynindx & ~0x7fff)
11168 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11169 stub + idx);
11170 else
11171 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11172 stub + idx);
11173 idx += 4;
11174
11175 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11176 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11177 }
11178
11179 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11180 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11181 stub, stub_size);
11182
11183 /* Mark the symbol as undefined. stub_offset != -1 occurs
11184 only for the referenced symbol. */
11185 sym->st_shndx = SHN_UNDEF;
11186
11187 /* The run-time linker uses the st_value field of the symbol
11188 to reset the global offset table entry for this external
11189 to its stub address when unlinking a shared object. */
11190 sym->st_value = (htab->sstubs->output_section->vma
11191 + htab->sstubs->output_offset
11192 + h->plt.plist->stub_offset
11193 + isa_bit);
11194 sym->st_other = other;
11195 }
11196
11197 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11198 refer to the stub, since only the stub uses the standard calling
11199 conventions. */
11200 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11201 {
11202 BFD_ASSERT (hmips->need_fn_stub);
11203 sym->st_value = (hmips->fn_stub->output_section->vma
11204 + hmips->fn_stub->output_offset);
11205 sym->st_size = hmips->fn_stub->size;
11206 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11207 }
11208
11209 BFD_ASSERT (h->dynindx != -1
11210 || h->forced_local);
11211
11212 sgot = htab->root.sgot;
11213 g = htab->got_info;
11214 BFD_ASSERT (g != NULL);
11215
11216 /* Run through the global symbol table, creating GOT entries for all
11217 the symbols that need them. */
11218 if (hmips->global_got_area != GGA_NONE)
11219 {
11220 bfd_vma offset;
11221 bfd_vma value;
11222
11223 value = sym->st_value;
11224 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11225 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11226 }
11227
11228 if (hmips->global_got_area != GGA_NONE && g->next)
11229 {
11230 struct mips_got_entry e, *p;
11231 bfd_vma entry;
11232 bfd_vma offset;
11233
11234 gg = g;
11235
11236 e.abfd = output_bfd;
11237 e.symndx = -1;
11238 e.d.h = hmips;
11239 e.tls_type = GOT_TLS_NONE;
11240
11241 for (g = g->next; g->next != gg; g = g->next)
11242 {
11243 if (g->got_entries
11244 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11245 &e)))
11246 {
11247 offset = p->gotidx;
11248 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11249 if (bfd_link_pic (info)
11250 || (elf_hash_table (info)->dynamic_sections_created
11251 && p->d.h != NULL
11252 && p->d.h->root.def_dynamic
11253 && !p->d.h->root.def_regular))
11254 {
11255 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11256 the various compatibility problems, it's easier to mock
11257 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11258 mips_elf_create_dynamic_relocation to calculate the
11259 appropriate addend. */
11260 Elf_Internal_Rela rel[3];
11261
11262 memset (rel, 0, sizeof (rel));
11263 if (ABI_64_P (output_bfd))
11264 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11265 else
11266 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11267 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11268
11269 entry = 0;
11270 if (! (mips_elf_create_dynamic_relocation
11271 (output_bfd, info, rel,
11272 e.d.h, NULL, sym->st_value, &entry, sgot)))
11273 return FALSE;
11274 }
11275 else
11276 entry = sym->st_value;
11277 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11278 }
11279 }
11280 }
11281
11282 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11283 name = h->root.root.string;
11284 if (h == elf_hash_table (info)->hdynamic
11285 || h == elf_hash_table (info)->hgot)
11286 sym->st_shndx = SHN_ABS;
11287 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11288 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11289 {
11290 sym->st_shndx = SHN_ABS;
11291 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11292 sym->st_value = 1;
11293 }
11294 else if (SGI_COMPAT (output_bfd))
11295 {
11296 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11297 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11298 {
11299 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11300 sym->st_other = STO_PROTECTED;
11301 sym->st_value = 0;
11302 sym->st_shndx = SHN_MIPS_DATA;
11303 }
11304 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11305 {
11306 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11307 sym->st_other = STO_PROTECTED;
11308 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11309 sym->st_shndx = SHN_ABS;
11310 }
11311 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11312 {
11313 if (h->type == STT_FUNC)
11314 sym->st_shndx = SHN_MIPS_TEXT;
11315 else if (h->type == STT_OBJECT)
11316 sym->st_shndx = SHN_MIPS_DATA;
11317 }
11318 }
11319
11320 /* Emit a copy reloc, if needed. */
11321 if (h->needs_copy)
11322 {
11323 asection *s;
11324 bfd_vma symval;
11325
11326 BFD_ASSERT (h->dynindx != -1);
11327 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11328
11329 s = mips_elf_rel_dyn_section (info, FALSE);
11330 symval = (h->root.u.def.section->output_section->vma
11331 + h->root.u.def.section->output_offset
11332 + h->root.u.def.value);
11333 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11334 h->dynindx, R_MIPS_COPY, symval);
11335 }
11336
11337 /* Handle the IRIX6-specific symbols. */
11338 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11339 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11340
11341 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11342 to treat compressed symbols like any other. */
11343 if (ELF_ST_IS_MIPS16 (sym->st_other))
11344 {
11345 BFD_ASSERT (sym->st_value & 1);
11346 sym->st_other -= STO_MIPS16;
11347 }
11348 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11349 {
11350 BFD_ASSERT (sym->st_value & 1);
11351 sym->st_other -= STO_MICROMIPS;
11352 }
11353
11354 return TRUE;
11355 }
11356
11357 /* Likewise, for VxWorks. */
11358
11359 bfd_boolean
11360 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11361 struct bfd_link_info *info,
11362 struct elf_link_hash_entry *h,
11363 Elf_Internal_Sym *sym)
11364 {
11365 bfd *dynobj;
11366 asection *sgot;
11367 struct mips_got_info *g;
11368 struct mips_elf_link_hash_table *htab;
11369 struct mips_elf_link_hash_entry *hmips;
11370
11371 htab = mips_elf_hash_table (info);
11372 BFD_ASSERT (htab != NULL);
11373 dynobj = elf_hash_table (info)->dynobj;
11374 hmips = (struct mips_elf_link_hash_entry *) h;
11375
11376 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11377 {
11378 bfd_byte *loc;
11379 bfd_vma plt_address, got_address, got_offset, branch_offset;
11380 Elf_Internal_Rela rel;
11381 static const bfd_vma *plt_entry;
11382 bfd_vma gotplt_index;
11383 bfd_vma plt_offset;
11384
11385 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11386 gotplt_index = h->plt.plist->gotplt_index;
11387
11388 BFD_ASSERT (h->dynindx != -1);
11389 BFD_ASSERT (htab->root.splt != NULL);
11390 BFD_ASSERT (gotplt_index != MINUS_ONE);
11391 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11392
11393 /* Calculate the address of the .plt entry. */
11394 plt_address = (htab->root.splt->output_section->vma
11395 + htab->root.splt->output_offset
11396 + plt_offset);
11397
11398 /* Calculate the address of the .got.plt entry. */
11399 got_address = (htab->root.sgotplt->output_section->vma
11400 + htab->root.sgotplt->output_offset
11401 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11402
11403 /* Calculate the offset of the .got.plt entry from
11404 _GLOBAL_OFFSET_TABLE_. */
11405 got_offset = mips_elf_gotplt_index (info, h);
11406
11407 /* Calculate the offset for the branch at the start of the PLT
11408 entry. The branch jumps to the beginning of .plt. */
11409 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11410
11411 /* Fill in the initial value of the .got.plt entry. */
11412 bfd_put_32 (output_bfd, plt_address,
11413 (htab->root.sgotplt->contents
11414 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11415
11416 /* Find out where the .plt entry should go. */
11417 loc = htab->root.splt->contents + plt_offset;
11418
11419 if (bfd_link_pic (info))
11420 {
11421 plt_entry = mips_vxworks_shared_plt_entry;
11422 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11423 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11424 }
11425 else
11426 {
11427 bfd_vma got_address_high, got_address_low;
11428
11429 plt_entry = mips_vxworks_exec_plt_entry;
11430 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11431 got_address_low = got_address & 0xffff;
11432
11433 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11434 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11435 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11436 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11437 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11438 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11439 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11440 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11441
11442 loc = (htab->srelplt2->contents
11443 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11444
11445 /* Emit a relocation for the .got.plt entry. */
11446 rel.r_offset = got_address;
11447 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11448 rel.r_addend = plt_offset;
11449 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11450
11451 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11452 loc += sizeof (Elf32_External_Rela);
11453 rel.r_offset = plt_address + 8;
11454 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11455 rel.r_addend = got_offset;
11456 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11457
11458 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11459 loc += sizeof (Elf32_External_Rela);
11460 rel.r_offset += 4;
11461 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11462 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11463 }
11464
11465 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11466 loc = (htab->root.srelplt->contents
11467 + gotplt_index * sizeof (Elf32_External_Rela));
11468 rel.r_offset = got_address;
11469 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11470 rel.r_addend = 0;
11471 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11472
11473 if (!h->def_regular)
11474 sym->st_shndx = SHN_UNDEF;
11475 }
11476
11477 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11478
11479 sgot = htab->root.sgot;
11480 g = htab->got_info;
11481 BFD_ASSERT (g != NULL);
11482
11483 /* See if this symbol has an entry in the GOT. */
11484 if (hmips->global_got_area != GGA_NONE)
11485 {
11486 bfd_vma offset;
11487 Elf_Internal_Rela outrel;
11488 bfd_byte *loc;
11489 asection *s;
11490
11491 /* Install the symbol value in the GOT. */
11492 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11493 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11494
11495 /* Add a dynamic relocation for it. */
11496 s = mips_elf_rel_dyn_section (info, FALSE);
11497 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11498 outrel.r_offset = (sgot->output_section->vma
11499 + sgot->output_offset
11500 + offset);
11501 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11502 outrel.r_addend = 0;
11503 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11504 }
11505
11506 /* Emit a copy reloc, if needed. */
11507 if (h->needs_copy)
11508 {
11509 Elf_Internal_Rela rel;
11510 asection *srel;
11511 bfd_byte *loc;
11512
11513 BFD_ASSERT (h->dynindx != -1);
11514
11515 rel.r_offset = (h->root.u.def.section->output_section->vma
11516 + h->root.u.def.section->output_offset
11517 + h->root.u.def.value);
11518 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11519 rel.r_addend = 0;
11520 if (h->root.u.def.section == htab->root.sdynrelro)
11521 srel = htab->root.sreldynrelro;
11522 else
11523 srel = htab->root.srelbss;
11524 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11525 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11526 ++srel->reloc_count;
11527 }
11528
11529 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11530 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11531 sym->st_value &= ~1;
11532
11533 return TRUE;
11534 }
11535
11536 /* Write out a plt0 entry to the beginning of .plt. */
11537
11538 static bfd_boolean
11539 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11540 {
11541 bfd_byte *loc;
11542 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11543 static const bfd_vma *plt_entry;
11544 struct mips_elf_link_hash_table *htab;
11545
11546 htab = mips_elf_hash_table (info);
11547 BFD_ASSERT (htab != NULL);
11548
11549 if (ABI_64_P (output_bfd))
11550 plt_entry = (htab->compact_branches
11551 ? mipsr6_n64_exec_plt0_entry_compact
11552 : mips_n64_exec_plt0_entry);
11553 else if (ABI_N32_P (output_bfd))
11554 plt_entry = (htab->compact_branches
11555 ? mipsr6_n32_exec_plt0_entry_compact
11556 : mips_n32_exec_plt0_entry);
11557 else if (!htab->plt_header_is_comp)
11558 plt_entry = (htab->compact_branches
11559 ? mipsr6_o32_exec_plt0_entry_compact
11560 : mips_o32_exec_plt0_entry);
11561 else if (htab->insn32)
11562 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11563 else
11564 plt_entry = micromips_o32_exec_plt0_entry;
11565
11566 /* Calculate the value of .got.plt. */
11567 gotplt_value = (htab->root.sgotplt->output_section->vma
11568 + htab->root.sgotplt->output_offset);
11569 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11570 gotplt_value_low = gotplt_value & 0xffff;
11571
11572 /* The PLT sequence is not safe for N64 if .got.plt's address can
11573 not be loaded in two instructions. */
11574 if (ABI_64_P (output_bfd)
11575 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11576 {
11577 _bfd_error_handler
11578 /* xgettext:c-format */
11579 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11580 "supported; consider using `-Ttext-segment=...'"),
11581 output_bfd,
11582 htab->root.sgotplt->output_section,
11583 (int64_t) gotplt_value);
11584 bfd_set_error (bfd_error_no_error);
11585 return FALSE;
11586 }
11587
11588 /* Install the PLT header. */
11589 loc = htab->root.splt->contents;
11590 if (plt_entry == micromips_o32_exec_plt0_entry)
11591 {
11592 bfd_vma gotpc_offset;
11593 bfd_vma loc_address;
11594 size_t i;
11595
11596 BFD_ASSERT (gotplt_value % 4 == 0);
11597
11598 loc_address = (htab->root.splt->output_section->vma
11599 + htab->root.splt->output_offset);
11600 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11601
11602 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11603 if (gotpc_offset + 0x1000000 >= 0x2000000)
11604 {
11605 _bfd_error_handler
11606 /* xgettext:c-format */
11607 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11608 "beyond the range of ADDIUPC"),
11609 output_bfd,
11610 htab->root.sgotplt->output_section,
11611 (int64_t) gotpc_offset,
11612 htab->root.splt->output_section);
11613 bfd_set_error (bfd_error_no_error);
11614 return FALSE;
11615 }
11616 bfd_put_16 (output_bfd,
11617 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11618 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11619 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11620 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11621 }
11622 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11623 {
11624 size_t i;
11625
11626 bfd_put_16 (output_bfd, plt_entry[0], loc);
11627 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11628 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11629 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11630 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11631 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11632 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11633 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11634 }
11635 else
11636 {
11637 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11638 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11639 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11640 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11641 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11642 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11643 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11644 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11645 }
11646
11647 return TRUE;
11648 }
11649
11650 /* Install the PLT header for a VxWorks executable and finalize the
11651 contents of .rela.plt.unloaded. */
11652
11653 static void
11654 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11655 {
11656 Elf_Internal_Rela rela;
11657 bfd_byte *loc;
11658 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11659 static const bfd_vma *plt_entry;
11660 struct mips_elf_link_hash_table *htab;
11661
11662 htab = mips_elf_hash_table (info);
11663 BFD_ASSERT (htab != NULL);
11664
11665 plt_entry = mips_vxworks_exec_plt0_entry;
11666
11667 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11668 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11669 + htab->root.hgot->root.u.def.section->output_offset
11670 + htab->root.hgot->root.u.def.value);
11671
11672 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11673 got_value_low = got_value & 0xffff;
11674
11675 /* Calculate the address of the PLT header. */
11676 plt_address = (htab->root.splt->output_section->vma
11677 + htab->root.splt->output_offset);
11678
11679 /* Install the PLT header. */
11680 loc = htab->root.splt->contents;
11681 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11682 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11683 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11684 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11685 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11686 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11687
11688 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11689 loc = htab->srelplt2->contents;
11690 rela.r_offset = plt_address;
11691 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11692 rela.r_addend = 0;
11693 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11694 loc += sizeof (Elf32_External_Rela);
11695
11696 /* Output the relocation for the following addiu of
11697 %lo(_GLOBAL_OFFSET_TABLE_). */
11698 rela.r_offset += 4;
11699 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11700 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11701 loc += sizeof (Elf32_External_Rela);
11702
11703 /* Fix up the remaining relocations. They may have the wrong
11704 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11705 in which symbols were output. */
11706 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11707 {
11708 Elf_Internal_Rela rel;
11709
11710 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11711 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11712 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11713 loc += sizeof (Elf32_External_Rela);
11714
11715 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11716 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11717 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11718 loc += sizeof (Elf32_External_Rela);
11719
11720 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11721 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11722 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11723 loc += sizeof (Elf32_External_Rela);
11724 }
11725 }
11726
11727 /* Install the PLT header for a VxWorks shared library. */
11728
11729 static void
11730 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11731 {
11732 unsigned int i;
11733 struct mips_elf_link_hash_table *htab;
11734
11735 htab = mips_elf_hash_table (info);
11736 BFD_ASSERT (htab != NULL);
11737
11738 /* We just need to copy the entry byte-by-byte. */
11739 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11740 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11741 htab->root.splt->contents + i * 4);
11742 }
11743
11744 /* Finish up the dynamic sections. */
11745
11746 bfd_boolean
11747 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11748 struct bfd_link_info *info)
11749 {
11750 bfd *dynobj;
11751 asection *sdyn;
11752 asection *sgot;
11753 struct mips_got_info *gg, *g;
11754 struct mips_elf_link_hash_table *htab;
11755
11756 htab = mips_elf_hash_table (info);
11757 BFD_ASSERT (htab != NULL);
11758
11759 dynobj = elf_hash_table (info)->dynobj;
11760
11761 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11762
11763 sgot = htab->root.sgot;
11764 gg = htab->got_info;
11765
11766 if (elf_hash_table (info)->dynamic_sections_created)
11767 {
11768 bfd_byte *b;
11769 int dyn_to_skip = 0, dyn_skipped = 0;
11770
11771 BFD_ASSERT (sdyn != NULL);
11772 BFD_ASSERT (gg != NULL);
11773
11774 g = mips_elf_bfd_got (output_bfd, FALSE);
11775 BFD_ASSERT (g != NULL);
11776
11777 for (b = sdyn->contents;
11778 b < sdyn->contents + sdyn->size;
11779 b += MIPS_ELF_DYN_SIZE (dynobj))
11780 {
11781 Elf_Internal_Dyn dyn;
11782 const char *name;
11783 size_t elemsize;
11784 asection *s;
11785 bfd_boolean swap_out_p;
11786
11787 /* Read in the current dynamic entry. */
11788 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11789
11790 /* Assume that we're going to modify it and write it out. */
11791 swap_out_p = TRUE;
11792
11793 switch (dyn.d_tag)
11794 {
11795 case DT_RELENT:
11796 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11797 break;
11798
11799 case DT_RELAENT:
11800 BFD_ASSERT (htab->root.target_os == is_vxworks);
11801 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11802 break;
11803
11804 case DT_STRSZ:
11805 /* Rewrite DT_STRSZ. */
11806 dyn.d_un.d_val =
11807 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11808 break;
11809
11810 case DT_PLTGOT:
11811 s = htab->root.sgot;
11812 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11813 break;
11814
11815 case DT_MIPS_PLTGOT:
11816 s = htab->root.sgotplt;
11817 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11818 break;
11819
11820 case DT_MIPS_RLD_VERSION:
11821 dyn.d_un.d_val = 1; /* XXX */
11822 break;
11823
11824 case DT_MIPS_FLAGS:
11825 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11826 break;
11827
11828 case DT_MIPS_TIME_STAMP:
11829 {
11830 time_t t;
11831 time (&t);
11832 dyn.d_un.d_val = t;
11833 }
11834 break;
11835
11836 case DT_MIPS_ICHECKSUM:
11837 /* XXX FIXME: */
11838 swap_out_p = FALSE;
11839 break;
11840
11841 case DT_MIPS_IVERSION:
11842 /* XXX FIXME: */
11843 swap_out_p = FALSE;
11844 break;
11845
11846 case DT_MIPS_BASE_ADDRESS:
11847 s = output_bfd->sections;
11848 BFD_ASSERT (s != NULL);
11849 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11850 break;
11851
11852 case DT_MIPS_LOCAL_GOTNO:
11853 dyn.d_un.d_val = g->local_gotno;
11854 break;
11855
11856 case DT_MIPS_UNREFEXTNO:
11857 /* The index into the dynamic symbol table which is the
11858 entry of the first external symbol that is not
11859 referenced within the same object. */
11860 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11861 break;
11862
11863 case DT_MIPS_GOTSYM:
11864 if (htab->global_gotsym)
11865 {
11866 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11867 break;
11868 }
11869 /* In case if we don't have global got symbols we default
11870 to setting DT_MIPS_GOTSYM to the same value as
11871 DT_MIPS_SYMTABNO. */
11872 /* Fall through. */
11873
11874 case DT_MIPS_SYMTABNO:
11875 name = ".dynsym";
11876 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11877 s = bfd_get_linker_section (dynobj, name);
11878
11879 if (s != NULL)
11880 dyn.d_un.d_val = s->size / elemsize;
11881 else
11882 dyn.d_un.d_val = 0;
11883 break;
11884
11885 case DT_MIPS_HIPAGENO:
11886 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11887 break;
11888
11889 case DT_MIPS_RLD_MAP:
11890 {
11891 struct elf_link_hash_entry *h;
11892 h = mips_elf_hash_table (info)->rld_symbol;
11893 if (!h)
11894 {
11895 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11896 swap_out_p = FALSE;
11897 break;
11898 }
11899 s = h->root.u.def.section;
11900
11901 /* The MIPS_RLD_MAP tag stores the absolute address of the
11902 debug pointer. */
11903 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11904 + h->root.u.def.value);
11905 }
11906 break;
11907
11908 case DT_MIPS_RLD_MAP_REL:
11909 {
11910 struct elf_link_hash_entry *h;
11911 bfd_vma dt_addr, rld_addr;
11912 h = mips_elf_hash_table (info)->rld_symbol;
11913 if (!h)
11914 {
11915 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11916 swap_out_p = FALSE;
11917 break;
11918 }
11919 s = h->root.u.def.section;
11920
11921 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11922 pointer, relative to the address of the tag. */
11923 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11924 + (b - sdyn->contents));
11925 rld_addr = (s->output_section->vma + s->output_offset
11926 + h->root.u.def.value);
11927 dyn.d_un.d_ptr = rld_addr - dt_addr;
11928 }
11929 break;
11930
11931 case DT_MIPS_OPTIONS:
11932 s = (bfd_get_section_by_name
11933 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11934 dyn.d_un.d_ptr = s->vma;
11935 break;
11936
11937 case DT_PLTREL:
11938 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11939 if (htab->root.target_os == is_vxworks)
11940 dyn.d_un.d_val = DT_RELA;
11941 else
11942 dyn.d_un.d_val = DT_REL;
11943 break;
11944
11945 case DT_PLTRELSZ:
11946 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11947 dyn.d_un.d_val = htab->root.srelplt->size;
11948 break;
11949
11950 case DT_JMPREL:
11951 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11952 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11953 + htab->root.srelplt->output_offset);
11954 break;
11955
11956 case DT_TEXTREL:
11957 /* If we didn't need any text relocations after all, delete
11958 the dynamic tag. */
11959 if (!(info->flags & DF_TEXTREL))
11960 {
11961 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11962 swap_out_p = FALSE;
11963 }
11964 break;
11965
11966 case DT_FLAGS:
11967 /* If we didn't need any text relocations after all, clear
11968 DF_TEXTREL from DT_FLAGS. */
11969 if (!(info->flags & DF_TEXTREL))
11970 dyn.d_un.d_val &= ~DF_TEXTREL;
11971 else
11972 swap_out_p = FALSE;
11973 break;
11974
11975 case DT_MIPS_XHASH:
11976 name = ".MIPS.xhash";
11977 s = bfd_get_linker_section (dynobj, name);
11978 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11979 break;
11980
11981 default:
11982 swap_out_p = FALSE;
11983 if (htab->root.target_os == is_vxworks
11984 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11985 swap_out_p = TRUE;
11986 break;
11987 }
11988
11989 if (swap_out_p || dyn_skipped)
11990 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11991 (dynobj, &dyn, b - dyn_skipped);
11992
11993 if (dyn_to_skip)
11994 {
11995 dyn_skipped += dyn_to_skip;
11996 dyn_to_skip = 0;
11997 }
11998 }
11999
12000 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12001 if (dyn_skipped > 0)
12002 memset (b - dyn_skipped, 0, dyn_skipped);
12003 }
12004
12005 if (sgot != NULL && sgot->size > 0
12006 && !bfd_is_abs_section (sgot->output_section))
12007 {
12008 if (htab->root.target_os == is_vxworks)
12009 {
12010 /* The first entry of the global offset table points to the
12011 ".dynamic" section. The second is initialized by the
12012 loader and contains the shared library identifier.
12013 The third is also initialized by the loader and points
12014 to the lazy resolution stub. */
12015 MIPS_ELF_PUT_WORD (output_bfd,
12016 sdyn->output_offset + sdyn->output_section->vma,
12017 sgot->contents);
12018 MIPS_ELF_PUT_WORD (output_bfd, 0,
12019 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12020 MIPS_ELF_PUT_WORD (output_bfd, 0,
12021 sgot->contents
12022 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12023 }
12024 else
12025 {
12026 /* The first entry of the global offset table will be filled at
12027 runtime. The second entry will be used by some runtime loaders.
12028 This isn't the case of IRIX rld. */
12029 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12030 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12031 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12032 }
12033
12034 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12035 = MIPS_ELF_GOT_SIZE (output_bfd);
12036 }
12037
12038 /* Generate dynamic relocations for the non-primary gots. */
12039 if (gg != NULL && gg->next)
12040 {
12041 Elf_Internal_Rela rel[3];
12042 bfd_vma addend = 0;
12043
12044 memset (rel, 0, sizeof (rel));
12045 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12046
12047 for (g = gg->next; g->next != gg; g = g->next)
12048 {
12049 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12050 + g->next->tls_gotno;
12051
12052 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12053 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12054 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12055 sgot->contents
12056 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12057
12058 if (! bfd_link_pic (info))
12059 continue;
12060
12061 for (; got_index < g->local_gotno; got_index++)
12062 {
12063 if (got_index >= g->assigned_low_gotno
12064 && got_index <= g->assigned_high_gotno)
12065 continue;
12066
12067 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12068 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12069 if (!(mips_elf_create_dynamic_relocation
12070 (output_bfd, info, rel, NULL,
12071 bfd_abs_section_ptr,
12072 0, &addend, sgot)))
12073 return FALSE;
12074 BFD_ASSERT (addend == 0);
12075 }
12076 }
12077 }
12078
12079 /* The generation of dynamic relocations for the non-primary gots
12080 adds more dynamic relocations. We cannot count them until
12081 here. */
12082
12083 if (elf_hash_table (info)->dynamic_sections_created)
12084 {
12085 bfd_byte *b;
12086 bfd_boolean swap_out_p;
12087
12088 BFD_ASSERT (sdyn != NULL);
12089
12090 for (b = sdyn->contents;
12091 b < sdyn->contents + sdyn->size;
12092 b += MIPS_ELF_DYN_SIZE (dynobj))
12093 {
12094 Elf_Internal_Dyn dyn;
12095 asection *s;
12096
12097 /* Read in the current dynamic entry. */
12098 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12099
12100 /* Assume that we're going to modify it and write it out. */
12101 swap_out_p = TRUE;
12102
12103 switch (dyn.d_tag)
12104 {
12105 case DT_RELSZ:
12106 /* Reduce DT_RELSZ to account for any relocations we
12107 decided not to make. This is for the n64 irix rld,
12108 which doesn't seem to apply any relocations if there
12109 are trailing null entries. */
12110 s = mips_elf_rel_dyn_section (info, FALSE);
12111 dyn.d_un.d_val = (s->reloc_count
12112 * (ABI_64_P (output_bfd)
12113 ? sizeof (Elf64_Mips_External_Rel)
12114 : sizeof (Elf32_External_Rel)));
12115 /* Adjust the section size too. Tools like the prelinker
12116 can reasonably expect the values to the same. */
12117 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12118 elf_section_data (s->output_section)->this_hdr.sh_size
12119 = dyn.d_un.d_val;
12120 break;
12121
12122 default:
12123 swap_out_p = FALSE;
12124 break;
12125 }
12126
12127 if (swap_out_p)
12128 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12129 (dynobj, &dyn, b);
12130 }
12131 }
12132
12133 {
12134 asection *s;
12135 Elf32_compact_rel cpt;
12136
12137 if (SGI_COMPAT (output_bfd))
12138 {
12139 /* Write .compact_rel section out. */
12140 s = bfd_get_linker_section (dynobj, ".compact_rel");
12141 if (s != NULL)
12142 {
12143 cpt.id1 = 1;
12144 cpt.num = s->reloc_count;
12145 cpt.id2 = 2;
12146 cpt.offset = (s->output_section->filepos
12147 + sizeof (Elf32_External_compact_rel));
12148 cpt.reserved0 = 0;
12149 cpt.reserved1 = 0;
12150 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12151 ((Elf32_External_compact_rel *)
12152 s->contents));
12153
12154 /* Clean up a dummy stub function entry in .text. */
12155 if (htab->sstubs != NULL
12156 && htab->sstubs->contents != NULL)
12157 {
12158 file_ptr dummy_offset;
12159
12160 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12161 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12162 memset (htab->sstubs->contents + dummy_offset, 0,
12163 htab->function_stub_size);
12164 }
12165 }
12166 }
12167
12168 /* The psABI says that the dynamic relocations must be sorted in
12169 increasing order of r_symndx. The VxWorks EABI doesn't require
12170 this, and because the code below handles REL rather than RELA
12171 relocations, using it for VxWorks would be outright harmful. */
12172 if (htab->root.target_os != is_vxworks)
12173 {
12174 s = mips_elf_rel_dyn_section (info, FALSE);
12175 if (s != NULL
12176 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12177 {
12178 reldyn_sorting_bfd = output_bfd;
12179
12180 if (ABI_64_P (output_bfd))
12181 qsort ((Elf64_External_Rel *) s->contents + 1,
12182 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12183 sort_dynamic_relocs_64);
12184 else
12185 qsort ((Elf32_External_Rel *) s->contents + 1,
12186 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12187 sort_dynamic_relocs);
12188 }
12189 }
12190 }
12191
12192 if (htab->root.splt && htab->root.splt->size > 0)
12193 {
12194 if (htab->root.target_os == is_vxworks)
12195 {
12196 if (bfd_link_pic (info))
12197 mips_vxworks_finish_shared_plt (output_bfd, info);
12198 else
12199 mips_vxworks_finish_exec_plt (output_bfd, info);
12200 }
12201 else
12202 {
12203 BFD_ASSERT (!bfd_link_pic (info));
12204 if (!mips_finish_exec_plt (output_bfd, info))
12205 return FALSE;
12206 }
12207 }
12208 return TRUE;
12209 }
12210
12211
12212 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12213
12214 static void
12215 mips_set_isa_flags (bfd *abfd)
12216 {
12217 flagword val;
12218
12219 switch (bfd_get_mach (abfd))
12220 {
12221 default:
12222 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12223 val = E_MIPS_ARCH_3;
12224 else
12225 val = E_MIPS_ARCH_1;
12226 break;
12227
12228 case bfd_mach_mips3000:
12229 val = E_MIPS_ARCH_1;
12230 break;
12231
12232 case bfd_mach_mips3900:
12233 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12234 break;
12235
12236 case bfd_mach_mips6000:
12237 val = E_MIPS_ARCH_2;
12238 break;
12239
12240 case bfd_mach_mips4010:
12241 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12242 break;
12243
12244 case bfd_mach_mips4000:
12245 case bfd_mach_mips4300:
12246 case bfd_mach_mips4400:
12247 case bfd_mach_mips4600:
12248 val = E_MIPS_ARCH_3;
12249 break;
12250
12251 case bfd_mach_mips4100:
12252 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12253 break;
12254
12255 case bfd_mach_mips4111:
12256 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12257 break;
12258
12259 case bfd_mach_mips4120:
12260 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12261 break;
12262
12263 case bfd_mach_mips4650:
12264 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12265 break;
12266
12267 case bfd_mach_mips5400:
12268 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12269 break;
12270
12271 case bfd_mach_mips5500:
12272 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12273 break;
12274
12275 case bfd_mach_mips5900:
12276 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12277 break;
12278
12279 case bfd_mach_mips9000:
12280 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12281 break;
12282
12283 case bfd_mach_mips5000:
12284 case bfd_mach_mips7000:
12285 case bfd_mach_mips8000:
12286 case bfd_mach_mips10000:
12287 case bfd_mach_mips12000:
12288 case bfd_mach_mips14000:
12289 case bfd_mach_mips16000:
12290 val = E_MIPS_ARCH_4;
12291 break;
12292
12293 case bfd_mach_mips5:
12294 val = E_MIPS_ARCH_5;
12295 break;
12296
12297 case bfd_mach_mips_loongson_2e:
12298 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12299 break;
12300
12301 case bfd_mach_mips_loongson_2f:
12302 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12303 break;
12304
12305 case bfd_mach_mips_sb1:
12306 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12307 break;
12308
12309 case bfd_mach_mips_gs464:
12310 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12311 break;
12312
12313 case bfd_mach_mips_gs464e:
12314 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12315 break;
12316
12317 case bfd_mach_mips_gs264e:
12318 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12319 break;
12320
12321 case bfd_mach_mips_octeon:
12322 case bfd_mach_mips_octeonp:
12323 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12324 break;
12325
12326 case bfd_mach_mips_octeon3:
12327 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12328 break;
12329
12330 case bfd_mach_mips_xlr:
12331 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12332 break;
12333
12334 case bfd_mach_mips_octeon2:
12335 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12336 break;
12337
12338 case bfd_mach_mipsisa32:
12339 val = E_MIPS_ARCH_32;
12340 break;
12341
12342 case bfd_mach_mipsisa64:
12343 val = E_MIPS_ARCH_64;
12344 break;
12345
12346 case bfd_mach_mipsisa32r2:
12347 case bfd_mach_mipsisa32r3:
12348 case bfd_mach_mipsisa32r5:
12349 val = E_MIPS_ARCH_32R2;
12350 break;
12351
12352 case bfd_mach_mips_interaptiv_mr2:
12353 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12354 break;
12355
12356 case bfd_mach_mipsisa64r2:
12357 case bfd_mach_mipsisa64r3:
12358 case bfd_mach_mipsisa64r5:
12359 val = E_MIPS_ARCH_64R2;
12360 break;
12361
12362 case bfd_mach_mipsisa32r6:
12363 val = E_MIPS_ARCH_32R6;
12364 break;
12365
12366 case bfd_mach_mipsisa64r6:
12367 val = E_MIPS_ARCH_64R6;
12368 break;
12369 }
12370 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12371 elf_elfheader (abfd)->e_flags |= val;
12372
12373 }
12374
12375
12376 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12377 Don't do so for code sections. We want to keep ordering of HI16/LO16
12378 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12379 relocs to be sorted. */
12380
12381 bfd_boolean
12382 _bfd_mips_elf_sort_relocs_p (asection *sec)
12383 {
12384 return (sec->flags & SEC_CODE) == 0;
12385 }
12386
12387
12388 /* The final processing done just before writing out a MIPS ELF object
12389 file. This gets the MIPS architecture right based on the machine
12390 number. This is used by both the 32-bit and the 64-bit ABI. */
12391
12392 void
12393 _bfd_mips_final_write_processing (bfd *abfd)
12394 {
12395 unsigned int i;
12396 Elf_Internal_Shdr **hdrpp;
12397 const char *name;
12398 asection *sec;
12399
12400 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12401 is nonzero. This is for compatibility with old objects, which used
12402 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12403 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12404 mips_set_isa_flags (abfd);
12405
12406 /* Set the sh_info field for .gptab sections and other appropriate
12407 info for each special section. */
12408 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12409 i < elf_numsections (abfd);
12410 i++, hdrpp++)
12411 {
12412 switch ((*hdrpp)->sh_type)
12413 {
12414 case SHT_MIPS_MSYM:
12415 case SHT_MIPS_LIBLIST:
12416 sec = bfd_get_section_by_name (abfd, ".dynstr");
12417 if (sec != NULL)
12418 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12419 break;
12420
12421 case SHT_MIPS_GPTAB:
12422 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12423 name = bfd_section_name ((*hdrpp)->bfd_section);
12424 BFD_ASSERT (name != NULL
12425 && CONST_STRNEQ (name, ".gptab."));
12426 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12427 BFD_ASSERT (sec != NULL);
12428 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12429 break;
12430
12431 case SHT_MIPS_CONTENT:
12432 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12433 name = bfd_section_name ((*hdrpp)->bfd_section);
12434 BFD_ASSERT (name != NULL
12435 && CONST_STRNEQ (name, ".MIPS.content"));
12436 sec = bfd_get_section_by_name (abfd,
12437 name + sizeof ".MIPS.content" - 1);
12438 BFD_ASSERT (sec != NULL);
12439 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12440 break;
12441
12442 case SHT_MIPS_SYMBOL_LIB:
12443 sec = bfd_get_section_by_name (abfd, ".dynsym");
12444 if (sec != NULL)
12445 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12446 sec = bfd_get_section_by_name (abfd, ".liblist");
12447 if (sec != NULL)
12448 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12449 break;
12450
12451 case SHT_MIPS_EVENTS:
12452 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12453 name = bfd_section_name ((*hdrpp)->bfd_section);
12454 BFD_ASSERT (name != NULL);
12455 if (CONST_STRNEQ (name, ".MIPS.events"))
12456 sec = bfd_get_section_by_name (abfd,
12457 name + sizeof ".MIPS.events" - 1);
12458 else
12459 {
12460 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12461 sec = bfd_get_section_by_name (abfd,
12462 (name
12463 + sizeof ".MIPS.post_rel" - 1));
12464 }
12465 BFD_ASSERT (sec != NULL);
12466 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12467 break;
12468
12469 case SHT_MIPS_XHASH:
12470 sec = bfd_get_section_by_name (abfd, ".dynsym");
12471 if (sec != NULL)
12472 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12473 }
12474 }
12475 }
12476
12477 bfd_boolean
12478 _bfd_mips_elf_final_write_processing (bfd *abfd)
12479 {
12480 _bfd_mips_final_write_processing (abfd);
12481 return _bfd_elf_final_write_processing (abfd);
12482 }
12483 \f
12484 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12485 segments. */
12486
12487 int
12488 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12489 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12490 {
12491 asection *s;
12492 int ret = 0;
12493
12494 /* See if we need a PT_MIPS_REGINFO segment. */
12495 s = bfd_get_section_by_name (abfd, ".reginfo");
12496 if (s && (s->flags & SEC_LOAD))
12497 ++ret;
12498
12499 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12500 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12501 ++ret;
12502
12503 /* See if we need a PT_MIPS_OPTIONS segment. */
12504 if (IRIX_COMPAT (abfd) == ict_irix6
12505 && bfd_get_section_by_name (abfd,
12506 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12507 ++ret;
12508
12509 /* See if we need a PT_MIPS_RTPROC segment. */
12510 if (IRIX_COMPAT (abfd) == ict_irix5
12511 && bfd_get_section_by_name (abfd, ".dynamic")
12512 && bfd_get_section_by_name (abfd, ".mdebug"))
12513 ++ret;
12514
12515 /* Allocate a PT_NULL header in dynamic objects. See
12516 _bfd_mips_elf_modify_segment_map for details. */
12517 if (!SGI_COMPAT (abfd)
12518 && bfd_get_section_by_name (abfd, ".dynamic"))
12519 ++ret;
12520
12521 return ret;
12522 }
12523
12524 /* Modify the segment map for an IRIX5 executable. */
12525
12526 bfd_boolean
12527 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12528 struct bfd_link_info *info)
12529 {
12530 asection *s;
12531 struct elf_segment_map *m, **pm;
12532 size_t amt;
12533
12534 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12535 segment. */
12536 s = bfd_get_section_by_name (abfd, ".reginfo");
12537 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12538 {
12539 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12540 if (m->p_type == PT_MIPS_REGINFO)
12541 break;
12542 if (m == NULL)
12543 {
12544 amt = sizeof *m;
12545 m = bfd_zalloc (abfd, amt);
12546 if (m == NULL)
12547 return FALSE;
12548
12549 m->p_type = PT_MIPS_REGINFO;
12550 m->count = 1;
12551 m->sections[0] = s;
12552
12553 /* We want to put it after the PHDR and INTERP segments. */
12554 pm = &elf_seg_map (abfd);
12555 while (*pm != NULL
12556 && ((*pm)->p_type == PT_PHDR
12557 || (*pm)->p_type == PT_INTERP))
12558 pm = &(*pm)->next;
12559
12560 m->next = *pm;
12561 *pm = m;
12562 }
12563 }
12564
12565 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12566 segment. */
12567 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12568 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12569 {
12570 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12571 if (m->p_type == PT_MIPS_ABIFLAGS)
12572 break;
12573 if (m == NULL)
12574 {
12575 amt = sizeof *m;
12576 m = bfd_zalloc (abfd, amt);
12577 if (m == NULL)
12578 return FALSE;
12579
12580 m->p_type = PT_MIPS_ABIFLAGS;
12581 m->count = 1;
12582 m->sections[0] = s;
12583
12584 /* We want to put it after the PHDR and INTERP segments. */
12585 pm = &elf_seg_map (abfd);
12586 while (*pm != NULL
12587 && ((*pm)->p_type == PT_PHDR
12588 || (*pm)->p_type == PT_INTERP))
12589 pm = &(*pm)->next;
12590
12591 m->next = *pm;
12592 *pm = m;
12593 }
12594 }
12595
12596 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12597 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12598 PT_MIPS_OPTIONS segment immediately following the program header
12599 table. */
12600 if (NEWABI_P (abfd)
12601 /* On non-IRIX6 new abi, we'll have already created a segment
12602 for this section, so don't create another. I'm not sure this
12603 is not also the case for IRIX 6, but I can't test it right
12604 now. */
12605 && IRIX_COMPAT (abfd) == ict_irix6)
12606 {
12607 for (s = abfd->sections; s; s = s->next)
12608 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12609 break;
12610
12611 if (s)
12612 {
12613 struct elf_segment_map *options_segment;
12614
12615 pm = &elf_seg_map (abfd);
12616 while (*pm != NULL
12617 && ((*pm)->p_type == PT_PHDR
12618 || (*pm)->p_type == PT_INTERP))
12619 pm = &(*pm)->next;
12620
12621 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12622 {
12623 amt = sizeof (struct elf_segment_map);
12624 options_segment = bfd_zalloc (abfd, amt);
12625 options_segment->next = *pm;
12626 options_segment->p_type = PT_MIPS_OPTIONS;
12627 options_segment->p_flags = PF_R;
12628 options_segment->p_flags_valid = TRUE;
12629 options_segment->count = 1;
12630 options_segment->sections[0] = s;
12631 *pm = options_segment;
12632 }
12633 }
12634 }
12635 else
12636 {
12637 if (IRIX_COMPAT (abfd) == ict_irix5)
12638 {
12639 /* If there are .dynamic and .mdebug sections, we make a room
12640 for the RTPROC header. FIXME: Rewrite without section names. */
12641 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12642 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12643 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12644 {
12645 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12646 if (m->p_type == PT_MIPS_RTPROC)
12647 break;
12648 if (m == NULL)
12649 {
12650 amt = sizeof *m;
12651 m = bfd_zalloc (abfd, amt);
12652 if (m == NULL)
12653 return FALSE;
12654
12655 m->p_type = PT_MIPS_RTPROC;
12656
12657 s = bfd_get_section_by_name (abfd, ".rtproc");
12658 if (s == NULL)
12659 {
12660 m->count = 0;
12661 m->p_flags = 0;
12662 m->p_flags_valid = 1;
12663 }
12664 else
12665 {
12666 m->count = 1;
12667 m->sections[0] = s;
12668 }
12669
12670 /* We want to put it after the DYNAMIC segment. */
12671 pm = &elf_seg_map (abfd);
12672 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12673 pm = &(*pm)->next;
12674 if (*pm != NULL)
12675 pm = &(*pm)->next;
12676
12677 m->next = *pm;
12678 *pm = m;
12679 }
12680 }
12681 }
12682 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12683 .dynstr, .dynsym, and .hash sections, and everything in
12684 between. */
12685 for (pm = &elf_seg_map (abfd); *pm != NULL;
12686 pm = &(*pm)->next)
12687 if ((*pm)->p_type == PT_DYNAMIC)
12688 break;
12689 m = *pm;
12690 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12691 glibc's dynamic linker has traditionally derived the number of
12692 tags from the p_filesz field, and sometimes allocates stack
12693 arrays of that size. An overly-big PT_DYNAMIC segment can
12694 be actively harmful in such cases. Making PT_DYNAMIC contain
12695 other sections can also make life hard for the prelinker,
12696 which might move one of the other sections to a different
12697 PT_LOAD segment. */
12698 if (SGI_COMPAT (abfd)
12699 && m != NULL
12700 && m->count == 1
12701 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12702 {
12703 static const char *sec_names[] =
12704 {
12705 ".dynamic", ".dynstr", ".dynsym", ".hash"
12706 };
12707 bfd_vma low, high;
12708 unsigned int i, c;
12709 struct elf_segment_map *n;
12710
12711 low = ~(bfd_vma) 0;
12712 high = 0;
12713 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12714 {
12715 s = bfd_get_section_by_name (abfd, sec_names[i]);
12716 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12717 {
12718 bfd_size_type sz;
12719
12720 if (low > s->vma)
12721 low = s->vma;
12722 sz = s->size;
12723 if (high < s->vma + sz)
12724 high = s->vma + sz;
12725 }
12726 }
12727
12728 c = 0;
12729 for (s = abfd->sections; s != NULL; s = s->next)
12730 if ((s->flags & SEC_LOAD) != 0
12731 && s->vma >= low
12732 && s->vma + s->size <= high)
12733 ++c;
12734
12735 amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12736 n = bfd_zalloc (abfd, amt);
12737 if (n == NULL)
12738 return FALSE;
12739 *n = *m;
12740 n->count = c;
12741
12742 i = 0;
12743 for (s = abfd->sections; s != NULL; s = s->next)
12744 {
12745 if ((s->flags & SEC_LOAD) != 0
12746 && s->vma >= low
12747 && s->vma + s->size <= high)
12748 {
12749 n->sections[i] = s;
12750 ++i;
12751 }
12752 }
12753
12754 *pm = n;
12755 }
12756 }
12757
12758 /* Allocate a spare program header in dynamic objects so that tools
12759 like the prelinker can add an extra PT_LOAD entry.
12760
12761 If the prelinker needs to make room for a new PT_LOAD entry, its
12762 standard procedure is to move the first (read-only) sections into
12763 the new (writable) segment. However, the MIPS ABI requires
12764 .dynamic to be in a read-only segment, and the section will often
12765 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12766
12767 Although the prelinker could in principle move .dynamic to a
12768 writable segment, it seems better to allocate a spare program
12769 header instead, and avoid the need to move any sections.
12770 There is a long tradition of allocating spare dynamic tags,
12771 so allocating a spare program header seems like a natural
12772 extension.
12773
12774 If INFO is NULL, we may be copying an already prelinked binary
12775 with objcopy or strip, so do not add this header. */
12776 if (info != NULL
12777 && !SGI_COMPAT (abfd)
12778 && bfd_get_section_by_name (abfd, ".dynamic"))
12779 {
12780 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12781 if ((*pm)->p_type == PT_NULL)
12782 break;
12783 if (*pm == NULL)
12784 {
12785 m = bfd_zalloc (abfd, sizeof (*m));
12786 if (m == NULL)
12787 return FALSE;
12788
12789 m->p_type = PT_NULL;
12790 *pm = m;
12791 }
12792 }
12793
12794 return TRUE;
12795 }
12796 \f
12797 /* Return the section that should be marked against GC for a given
12798 relocation. */
12799
12800 asection *
12801 _bfd_mips_elf_gc_mark_hook (asection *sec,
12802 struct bfd_link_info *info,
12803 Elf_Internal_Rela *rel,
12804 struct elf_link_hash_entry *h,
12805 Elf_Internal_Sym *sym)
12806 {
12807 /* ??? Do mips16 stub sections need to be handled special? */
12808
12809 if (h != NULL)
12810 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12811 {
12812 case R_MIPS_GNU_VTINHERIT:
12813 case R_MIPS_GNU_VTENTRY:
12814 return NULL;
12815 }
12816
12817 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12818 }
12819
12820 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12821
12822 bfd_boolean
12823 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12824 elf_gc_mark_hook_fn gc_mark_hook)
12825 {
12826 bfd *sub;
12827
12828 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12829
12830 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12831 {
12832 asection *o;
12833
12834 if (! is_mips_elf (sub))
12835 continue;
12836
12837 for (o = sub->sections; o != NULL; o = o->next)
12838 if (!o->gc_mark
12839 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12840 {
12841 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12842 return FALSE;
12843 }
12844 }
12845
12846 return TRUE;
12847 }
12848 \f
12849 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12850 hiding the old indirect symbol. Process additional relocation
12851 information. Also called for weakdefs, in which case we just let
12852 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12853
12854 void
12855 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12856 struct elf_link_hash_entry *dir,
12857 struct elf_link_hash_entry *ind)
12858 {
12859 struct mips_elf_link_hash_entry *dirmips, *indmips;
12860
12861 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12862
12863 dirmips = (struct mips_elf_link_hash_entry *) dir;
12864 indmips = (struct mips_elf_link_hash_entry *) ind;
12865 /* Any absolute non-dynamic relocations against an indirect or weak
12866 definition will be against the target symbol. */
12867 if (indmips->has_static_relocs)
12868 dirmips->has_static_relocs = TRUE;
12869
12870 if (ind->root.type != bfd_link_hash_indirect)
12871 return;
12872
12873 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12874 if (indmips->readonly_reloc)
12875 dirmips->readonly_reloc = TRUE;
12876 if (indmips->no_fn_stub)
12877 dirmips->no_fn_stub = TRUE;
12878 if (indmips->fn_stub)
12879 {
12880 dirmips->fn_stub = indmips->fn_stub;
12881 indmips->fn_stub = NULL;
12882 }
12883 if (indmips->need_fn_stub)
12884 {
12885 dirmips->need_fn_stub = TRUE;
12886 indmips->need_fn_stub = FALSE;
12887 }
12888 if (indmips->call_stub)
12889 {
12890 dirmips->call_stub = indmips->call_stub;
12891 indmips->call_stub = NULL;
12892 }
12893 if (indmips->call_fp_stub)
12894 {
12895 dirmips->call_fp_stub = indmips->call_fp_stub;
12896 indmips->call_fp_stub = NULL;
12897 }
12898 if (indmips->global_got_area < dirmips->global_got_area)
12899 dirmips->global_got_area = indmips->global_got_area;
12900 if (indmips->global_got_area < GGA_NONE)
12901 indmips->global_got_area = GGA_NONE;
12902 if (indmips->has_nonpic_branches)
12903 dirmips->has_nonpic_branches = TRUE;
12904 }
12905
12906 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12907 to hide it. It has to remain global (it will also be protected) so as to
12908 be assigned a global GOT entry, which will then remain unchanged at load
12909 time. */
12910
12911 void
12912 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12913 struct elf_link_hash_entry *entry,
12914 bfd_boolean force_local)
12915 {
12916 struct mips_elf_link_hash_table *htab;
12917
12918 htab = mips_elf_hash_table (info);
12919 BFD_ASSERT (htab != NULL);
12920 if (htab->use_absolute_zero
12921 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12922 return;
12923
12924 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12925 }
12926 \f
12927 #define PDR_SIZE 32
12928
12929 bfd_boolean
12930 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12931 struct bfd_link_info *info)
12932 {
12933 asection *o;
12934 bfd_boolean ret = FALSE;
12935 unsigned char *tdata;
12936 size_t i, skip;
12937
12938 o = bfd_get_section_by_name (abfd, ".pdr");
12939 if (! o)
12940 return FALSE;
12941 if (o->size == 0)
12942 return FALSE;
12943 if (o->size % PDR_SIZE != 0)
12944 return FALSE;
12945 if (o->output_section != NULL
12946 && bfd_is_abs_section (o->output_section))
12947 return FALSE;
12948
12949 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12950 if (! tdata)
12951 return FALSE;
12952
12953 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12954 info->keep_memory);
12955 if (!cookie->rels)
12956 {
12957 free (tdata);
12958 return FALSE;
12959 }
12960
12961 cookie->rel = cookie->rels;
12962 cookie->relend = cookie->rels + o->reloc_count;
12963
12964 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12965 {
12966 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12967 {
12968 tdata[i] = 1;
12969 skip ++;
12970 }
12971 }
12972
12973 if (skip != 0)
12974 {
12975 mips_elf_section_data (o)->u.tdata = tdata;
12976 if (o->rawsize == 0)
12977 o->rawsize = o->size;
12978 o->size -= skip * PDR_SIZE;
12979 ret = TRUE;
12980 }
12981 else
12982 free (tdata);
12983
12984 if (! info->keep_memory)
12985 free (cookie->rels);
12986
12987 return ret;
12988 }
12989
12990 bfd_boolean
12991 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12992 {
12993 if (strcmp (sec->name, ".pdr") == 0)
12994 return TRUE;
12995 return FALSE;
12996 }
12997
12998 bfd_boolean
12999 _bfd_mips_elf_write_section (bfd *output_bfd,
13000 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13001 asection *sec, bfd_byte *contents)
13002 {
13003 bfd_byte *to, *from, *end;
13004 int i;
13005
13006 if (strcmp (sec->name, ".pdr") != 0)
13007 return FALSE;
13008
13009 if (mips_elf_section_data (sec)->u.tdata == NULL)
13010 return FALSE;
13011
13012 to = contents;
13013 end = contents + sec->size;
13014 for (from = contents, i = 0;
13015 from < end;
13016 from += PDR_SIZE, i++)
13017 {
13018 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13019 continue;
13020 if (to != from)
13021 memcpy (to, from, PDR_SIZE);
13022 to += PDR_SIZE;
13023 }
13024 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13025 sec->output_offset, sec->size);
13026 return TRUE;
13027 }
13028 \f
13029 /* microMIPS code retains local labels for linker relaxation. Omit them
13030 from output by default for clarity. */
13031
13032 bfd_boolean
13033 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13034 {
13035 return _bfd_elf_is_local_label_name (abfd, sym->name);
13036 }
13037
13038 /* MIPS ELF uses a special find_nearest_line routine in order the
13039 handle the ECOFF debugging information. */
13040
13041 struct mips_elf_find_line
13042 {
13043 struct ecoff_debug_info d;
13044 struct ecoff_find_line i;
13045 };
13046
13047 bfd_boolean
13048 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13049 asection *section, bfd_vma offset,
13050 const char **filename_ptr,
13051 const char **functionname_ptr,
13052 unsigned int *line_ptr,
13053 unsigned int *discriminator_ptr)
13054 {
13055 asection *msec;
13056
13057 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13058 filename_ptr, functionname_ptr,
13059 line_ptr, discriminator_ptr,
13060 dwarf_debug_sections,
13061 &elf_tdata (abfd)->dwarf2_find_line_info)
13062 == 1)
13063 return TRUE;
13064
13065 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13066 filename_ptr, functionname_ptr,
13067 line_ptr))
13068 {
13069 if (!*functionname_ptr)
13070 _bfd_elf_find_function (abfd, symbols, section, offset,
13071 *filename_ptr ? NULL : filename_ptr,
13072 functionname_ptr);
13073 return TRUE;
13074 }
13075
13076 msec = bfd_get_section_by_name (abfd, ".mdebug");
13077 if (msec != NULL)
13078 {
13079 flagword origflags;
13080 struct mips_elf_find_line *fi;
13081 const struct ecoff_debug_swap * const swap =
13082 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13083
13084 /* If we are called during a link, mips_elf_final_link may have
13085 cleared the SEC_HAS_CONTENTS field. We force it back on here
13086 if appropriate (which it normally will be). */
13087 origflags = msec->flags;
13088 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13089 msec->flags |= SEC_HAS_CONTENTS;
13090
13091 fi = mips_elf_tdata (abfd)->find_line_info;
13092 if (fi == NULL)
13093 {
13094 bfd_size_type external_fdr_size;
13095 char *fraw_src;
13096 char *fraw_end;
13097 struct fdr *fdr_ptr;
13098 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13099
13100 fi = bfd_zalloc (abfd, amt);
13101 if (fi == NULL)
13102 {
13103 msec->flags = origflags;
13104 return FALSE;
13105 }
13106
13107 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13108 {
13109 msec->flags = origflags;
13110 return FALSE;
13111 }
13112
13113 /* Swap in the FDR information. */
13114 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13115 fi->d.fdr = bfd_alloc (abfd, amt);
13116 if (fi->d.fdr == NULL)
13117 {
13118 msec->flags = origflags;
13119 return FALSE;
13120 }
13121 external_fdr_size = swap->external_fdr_size;
13122 fdr_ptr = fi->d.fdr;
13123 fraw_src = (char *) fi->d.external_fdr;
13124 fraw_end = (fraw_src
13125 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13126 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13127 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13128
13129 mips_elf_tdata (abfd)->find_line_info = fi;
13130
13131 /* Note that we don't bother to ever free this information.
13132 find_nearest_line is either called all the time, as in
13133 objdump -l, so the information should be saved, or it is
13134 rarely called, as in ld error messages, so the memory
13135 wasted is unimportant. Still, it would probably be a
13136 good idea for free_cached_info to throw it away. */
13137 }
13138
13139 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13140 &fi->i, filename_ptr, functionname_ptr,
13141 line_ptr))
13142 {
13143 msec->flags = origflags;
13144 return TRUE;
13145 }
13146
13147 msec->flags = origflags;
13148 }
13149
13150 /* Fall back on the generic ELF find_nearest_line routine. */
13151
13152 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13153 filename_ptr, functionname_ptr,
13154 line_ptr, discriminator_ptr);
13155 }
13156
13157 bfd_boolean
13158 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13159 const char **filename_ptr,
13160 const char **functionname_ptr,
13161 unsigned int *line_ptr)
13162 {
13163 bfd_boolean found;
13164 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13165 functionname_ptr, line_ptr,
13166 & elf_tdata (abfd)->dwarf2_find_line_info);
13167 return found;
13168 }
13169
13170 \f
13171 /* When are writing out the .options or .MIPS.options section,
13172 remember the bytes we are writing out, so that we can install the
13173 GP value in the section_processing routine. */
13174
13175 bfd_boolean
13176 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13177 const void *location,
13178 file_ptr offset, bfd_size_type count)
13179 {
13180 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13181 {
13182 bfd_byte *c;
13183
13184 if (elf_section_data (section) == NULL)
13185 {
13186 size_t amt = sizeof (struct bfd_elf_section_data);
13187 section->used_by_bfd = bfd_zalloc (abfd, amt);
13188 if (elf_section_data (section) == NULL)
13189 return FALSE;
13190 }
13191 c = mips_elf_section_data (section)->u.tdata;
13192 if (c == NULL)
13193 {
13194 c = bfd_zalloc (abfd, section->size);
13195 if (c == NULL)
13196 return FALSE;
13197 mips_elf_section_data (section)->u.tdata = c;
13198 }
13199
13200 memcpy (c + offset, location, count);
13201 }
13202
13203 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13204 count);
13205 }
13206
13207 /* This is almost identical to bfd_generic_get_... except that some
13208 MIPS relocations need to be handled specially. Sigh. */
13209
13210 bfd_byte *
13211 _bfd_elf_mips_get_relocated_section_contents
13212 (bfd *abfd,
13213 struct bfd_link_info *link_info,
13214 struct bfd_link_order *link_order,
13215 bfd_byte *data,
13216 bfd_boolean relocatable,
13217 asymbol **symbols)
13218 {
13219 /* Get enough memory to hold the stuff */
13220 bfd *input_bfd = link_order->u.indirect.section->owner;
13221 asection *input_section = link_order->u.indirect.section;
13222 bfd_size_type sz;
13223
13224 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13225 arelent **reloc_vector = NULL;
13226 long reloc_count;
13227
13228 if (reloc_size < 0)
13229 goto error_return;
13230
13231 reloc_vector = bfd_malloc (reloc_size);
13232 if (reloc_vector == NULL && reloc_size != 0)
13233 goto error_return;
13234
13235 /* read in the section */
13236 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13237 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13238 goto error_return;
13239
13240 reloc_count = bfd_canonicalize_reloc (input_bfd,
13241 input_section,
13242 reloc_vector,
13243 symbols);
13244 if (reloc_count < 0)
13245 goto error_return;
13246
13247 if (reloc_count > 0)
13248 {
13249 arelent **parent;
13250 /* for mips */
13251 int gp_found;
13252 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13253
13254 {
13255 struct bfd_hash_entry *h;
13256 struct bfd_link_hash_entry *lh;
13257 /* Skip all this stuff if we aren't mixing formats. */
13258 if (abfd && input_bfd
13259 && abfd->xvec == input_bfd->xvec)
13260 lh = 0;
13261 else
13262 {
13263 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13264 lh = (struct bfd_link_hash_entry *) h;
13265 }
13266 lookup:
13267 if (lh)
13268 {
13269 switch (lh->type)
13270 {
13271 case bfd_link_hash_undefined:
13272 case bfd_link_hash_undefweak:
13273 case bfd_link_hash_common:
13274 gp_found = 0;
13275 break;
13276 case bfd_link_hash_defined:
13277 case bfd_link_hash_defweak:
13278 gp_found = 1;
13279 gp = lh->u.def.value;
13280 break;
13281 case bfd_link_hash_indirect:
13282 case bfd_link_hash_warning:
13283 lh = lh->u.i.link;
13284 /* @@FIXME ignoring warning for now */
13285 goto lookup;
13286 case bfd_link_hash_new:
13287 default:
13288 abort ();
13289 }
13290 }
13291 else
13292 gp_found = 0;
13293 }
13294 /* end mips */
13295 for (parent = reloc_vector; *parent != NULL; parent++)
13296 {
13297 char *error_message = NULL;
13298 bfd_reloc_status_type r;
13299
13300 /* Specific to MIPS: Deal with relocation types that require
13301 knowing the gp of the output bfd. */
13302 asymbol *sym = *(*parent)->sym_ptr_ptr;
13303
13304 /* If we've managed to find the gp and have a special
13305 function for the relocation then go ahead, else default
13306 to the generic handling. */
13307 if (gp_found
13308 && (*parent)->howto->special_function
13309 == _bfd_mips_elf32_gprel16_reloc)
13310 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13311 input_section, relocatable,
13312 data, gp);
13313 else
13314 r = bfd_perform_relocation (input_bfd, *parent, data,
13315 input_section,
13316 relocatable ? abfd : NULL,
13317 &error_message);
13318
13319 if (relocatable)
13320 {
13321 asection *os = input_section->output_section;
13322
13323 /* A partial link, so keep the relocs */
13324 os->orelocation[os->reloc_count] = *parent;
13325 os->reloc_count++;
13326 }
13327
13328 if (r != bfd_reloc_ok)
13329 {
13330 switch (r)
13331 {
13332 case bfd_reloc_undefined:
13333 (*link_info->callbacks->undefined_symbol)
13334 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13335 input_bfd, input_section, (*parent)->address, TRUE);
13336 break;
13337 case bfd_reloc_dangerous:
13338 BFD_ASSERT (error_message != NULL);
13339 (*link_info->callbacks->reloc_dangerous)
13340 (link_info, error_message,
13341 input_bfd, input_section, (*parent)->address);
13342 break;
13343 case bfd_reloc_overflow:
13344 (*link_info->callbacks->reloc_overflow)
13345 (link_info, NULL,
13346 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13347 (*parent)->howto->name, (*parent)->addend,
13348 input_bfd, input_section, (*parent)->address);
13349 break;
13350 case bfd_reloc_outofrange:
13351 default:
13352 abort ();
13353 break;
13354 }
13355
13356 }
13357 }
13358 }
13359 free (reloc_vector);
13360 return data;
13361
13362 error_return:
13363 free (reloc_vector);
13364 return NULL;
13365 }
13366 \f
13367 static bfd_boolean
13368 mips_elf_relax_delete_bytes (bfd *abfd,
13369 asection *sec, bfd_vma addr, int count)
13370 {
13371 Elf_Internal_Shdr *symtab_hdr;
13372 unsigned int sec_shndx;
13373 bfd_byte *contents;
13374 Elf_Internal_Rela *irel, *irelend;
13375 Elf_Internal_Sym *isym;
13376 Elf_Internal_Sym *isymend;
13377 struct elf_link_hash_entry **sym_hashes;
13378 struct elf_link_hash_entry **end_hashes;
13379 struct elf_link_hash_entry **start_hashes;
13380 unsigned int symcount;
13381
13382 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13383 contents = elf_section_data (sec)->this_hdr.contents;
13384
13385 irel = elf_section_data (sec)->relocs;
13386 irelend = irel + sec->reloc_count;
13387
13388 /* Actually delete the bytes. */
13389 memmove (contents + addr, contents + addr + count,
13390 (size_t) (sec->size - addr - count));
13391 sec->size -= count;
13392
13393 /* Adjust all the relocs. */
13394 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13395 {
13396 /* Get the new reloc address. */
13397 if (irel->r_offset > addr)
13398 irel->r_offset -= count;
13399 }
13400
13401 BFD_ASSERT (addr % 2 == 0);
13402 BFD_ASSERT (count % 2 == 0);
13403
13404 /* Adjust the local symbols defined in this section. */
13405 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13406 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13407 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13408 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13409 isym->st_value -= count;
13410
13411 /* Now adjust the global symbols defined in this section. */
13412 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13413 - symtab_hdr->sh_info);
13414 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13415 end_hashes = sym_hashes + symcount;
13416
13417 for (; sym_hashes < end_hashes; sym_hashes++)
13418 {
13419 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13420
13421 if ((sym_hash->root.type == bfd_link_hash_defined
13422 || sym_hash->root.type == bfd_link_hash_defweak)
13423 && sym_hash->root.u.def.section == sec)
13424 {
13425 bfd_vma value = sym_hash->root.u.def.value;
13426
13427 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13428 value &= MINUS_TWO;
13429 if (value > addr)
13430 sym_hash->root.u.def.value -= count;
13431 }
13432 }
13433
13434 return TRUE;
13435 }
13436
13437
13438 /* Opcodes needed for microMIPS relaxation as found in
13439 opcodes/micromips-opc.c. */
13440
13441 struct opcode_descriptor {
13442 unsigned long match;
13443 unsigned long mask;
13444 };
13445
13446 /* The $ra register aka $31. */
13447
13448 #define RA 31
13449
13450 /* 32-bit instruction format register fields. */
13451
13452 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13453 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13454
13455 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13456
13457 #define OP16_VALID_REG(r) \
13458 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13459
13460
13461 /* 32-bit and 16-bit branches. */
13462
13463 static const struct opcode_descriptor b_insns_32[] = {
13464 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13465 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13466 { 0, 0 } /* End marker for find_match(). */
13467 };
13468
13469 static const struct opcode_descriptor bc_insn_32 =
13470 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13471
13472 static const struct opcode_descriptor bz_insn_32 =
13473 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13474
13475 static const struct opcode_descriptor bzal_insn_32 =
13476 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13477
13478 static const struct opcode_descriptor beq_insn_32 =
13479 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13480
13481 static const struct opcode_descriptor b_insn_16 =
13482 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13483
13484 static const struct opcode_descriptor bz_insn_16 =
13485 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13486
13487
13488 /* 32-bit and 16-bit branch EQ and NE zero. */
13489
13490 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13491 eq and second the ne. This convention is used when replacing a
13492 32-bit BEQ/BNE with the 16-bit version. */
13493
13494 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13495
13496 static const struct opcode_descriptor bz_rs_insns_32[] = {
13497 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13498 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13499 { 0, 0 } /* End marker for find_match(). */
13500 };
13501
13502 static const struct opcode_descriptor bz_rt_insns_32[] = {
13503 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13504 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13505 { 0, 0 } /* End marker for find_match(). */
13506 };
13507
13508 static const struct opcode_descriptor bzc_insns_32[] = {
13509 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13510 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13511 { 0, 0 } /* End marker for find_match(). */
13512 };
13513
13514 static const struct opcode_descriptor bz_insns_16[] = {
13515 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13516 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13517 { 0, 0 } /* End marker for find_match(). */
13518 };
13519
13520 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13521
13522 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13523 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13524
13525
13526 /* 32-bit instructions with a delay slot. */
13527
13528 static const struct opcode_descriptor jal_insn_32_bd16 =
13529 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13530
13531 static const struct opcode_descriptor jal_insn_32_bd32 =
13532 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13533
13534 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13535 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13536
13537 static const struct opcode_descriptor j_insn_32 =
13538 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13539
13540 static const struct opcode_descriptor jalr_insn_32 =
13541 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13542
13543 /* This table can be compacted, because no opcode replacement is made. */
13544
13545 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13546 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13547
13548 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13549 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13550
13551 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13552 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13553 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13554 { 0, 0 } /* End marker for find_match(). */
13555 };
13556
13557 /* This table can be compacted, because no opcode replacement is made. */
13558
13559 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13560 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13561
13562 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13563 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13564 { 0, 0 } /* End marker for find_match(). */
13565 };
13566
13567
13568 /* 16-bit instructions with a delay slot. */
13569
13570 static const struct opcode_descriptor jalr_insn_16_bd16 =
13571 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13572
13573 static const struct opcode_descriptor jalr_insn_16_bd32 =
13574 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13575
13576 static const struct opcode_descriptor jr_insn_16 =
13577 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13578
13579 #define JR16_REG(opcode) ((opcode) & 0x1f)
13580
13581 /* This table can be compacted, because no opcode replacement is made. */
13582
13583 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13584 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13585
13586 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13587 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13588 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13589 { 0, 0 } /* End marker for find_match(). */
13590 };
13591
13592
13593 /* LUI instruction. */
13594
13595 static const struct opcode_descriptor lui_insn =
13596 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13597
13598
13599 /* ADDIU instruction. */
13600
13601 static const struct opcode_descriptor addiu_insn =
13602 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13603
13604 static const struct opcode_descriptor addiupc_insn =
13605 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13606
13607 #define ADDIUPC_REG_FIELD(r) \
13608 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13609
13610
13611 /* Relaxable instructions in a JAL delay slot: MOVE. */
13612
13613 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13614 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13615 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13616 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13617
13618 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13619 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13620
13621 static const struct opcode_descriptor move_insns_32[] = {
13622 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13623 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13624 { 0, 0 } /* End marker for find_match(). */
13625 };
13626
13627 static const struct opcode_descriptor move_insn_16 =
13628 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13629
13630
13631 /* NOP instructions. */
13632
13633 static const struct opcode_descriptor nop_insn_32 =
13634 { /* "nop", "", */ 0x00000000, 0xffffffff };
13635
13636 static const struct opcode_descriptor nop_insn_16 =
13637 { /* "nop", "", */ 0x0c00, 0xffff };
13638
13639
13640 /* Instruction match support. */
13641
13642 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13643
13644 static int
13645 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13646 {
13647 unsigned long indx;
13648
13649 for (indx = 0; insn[indx].mask != 0; indx++)
13650 if (MATCH (opcode, insn[indx]))
13651 return indx;
13652
13653 return -1;
13654 }
13655
13656
13657 /* Branch and delay slot decoding support. */
13658
13659 /* If PTR points to what *might* be a 16-bit branch or jump, then
13660 return the minimum length of its delay slot, otherwise return 0.
13661 Non-zero results are not definitive as we might be checking against
13662 the second half of another instruction. */
13663
13664 static int
13665 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13666 {
13667 unsigned long opcode;
13668 int bdsize;
13669
13670 opcode = bfd_get_16 (abfd, ptr);
13671 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13672 /* 16-bit branch/jump with a 32-bit delay slot. */
13673 bdsize = 4;
13674 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13675 || find_match (opcode, ds_insns_16_bd16) >= 0)
13676 /* 16-bit branch/jump with a 16-bit delay slot. */
13677 bdsize = 2;
13678 else
13679 /* No delay slot. */
13680 bdsize = 0;
13681
13682 return bdsize;
13683 }
13684
13685 /* If PTR points to what *might* be a 32-bit branch or jump, then
13686 return the minimum length of its delay slot, otherwise return 0.
13687 Non-zero results are not definitive as we might be checking against
13688 the second half of another instruction. */
13689
13690 static int
13691 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13692 {
13693 unsigned long opcode;
13694 int bdsize;
13695
13696 opcode = bfd_get_micromips_32 (abfd, ptr);
13697 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13698 /* 32-bit branch/jump with a 32-bit delay slot. */
13699 bdsize = 4;
13700 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13701 /* 32-bit branch/jump with a 16-bit delay slot. */
13702 bdsize = 2;
13703 else
13704 /* No delay slot. */
13705 bdsize = 0;
13706
13707 return bdsize;
13708 }
13709
13710 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13711 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13712
13713 static bfd_boolean
13714 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13715 {
13716 unsigned long opcode;
13717
13718 opcode = bfd_get_16 (abfd, ptr);
13719 if (MATCH (opcode, b_insn_16)
13720 /* B16 */
13721 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13722 /* JR16 */
13723 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13724 /* BEQZ16, BNEZ16 */
13725 || (MATCH (opcode, jalr_insn_16_bd32)
13726 /* JALR16 */
13727 && reg != JR16_REG (opcode) && reg != RA))
13728 return TRUE;
13729
13730 return FALSE;
13731 }
13732
13733 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13734 then return TRUE, otherwise FALSE. */
13735
13736 static bfd_boolean
13737 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13738 {
13739 unsigned long opcode;
13740
13741 opcode = bfd_get_micromips_32 (abfd, ptr);
13742 if (MATCH (opcode, j_insn_32)
13743 /* J */
13744 || MATCH (opcode, bc_insn_32)
13745 /* BC1F, BC1T, BC2F, BC2T */
13746 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13747 /* JAL, JALX */
13748 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13749 /* BGEZ, BGTZ, BLEZ, BLTZ */
13750 || (MATCH (opcode, bzal_insn_32)
13751 /* BGEZAL, BLTZAL */
13752 && reg != OP32_SREG (opcode) && reg != RA)
13753 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13754 /* JALR, JALR.HB, BEQ, BNE */
13755 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13756 return TRUE;
13757
13758 return FALSE;
13759 }
13760
13761 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13762 IRELEND) at OFFSET indicate that there must be a compact branch there,
13763 then return TRUE, otherwise FALSE. */
13764
13765 static bfd_boolean
13766 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13767 const Elf_Internal_Rela *internal_relocs,
13768 const Elf_Internal_Rela *irelend)
13769 {
13770 const Elf_Internal_Rela *irel;
13771 unsigned long opcode;
13772
13773 opcode = bfd_get_micromips_32 (abfd, ptr);
13774 if (find_match (opcode, bzc_insns_32) < 0)
13775 return FALSE;
13776
13777 for (irel = internal_relocs; irel < irelend; irel++)
13778 if (irel->r_offset == offset
13779 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13780 return TRUE;
13781
13782 return FALSE;
13783 }
13784
13785 /* Bitsize checking. */
13786 #define IS_BITSIZE(val, N) \
13787 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13788 - (1ULL << ((N) - 1))) == (val))
13789
13790 \f
13791 bfd_boolean
13792 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13793 struct bfd_link_info *link_info,
13794 bfd_boolean *again)
13795 {
13796 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13797 Elf_Internal_Shdr *symtab_hdr;
13798 Elf_Internal_Rela *internal_relocs;
13799 Elf_Internal_Rela *irel, *irelend;
13800 bfd_byte *contents = NULL;
13801 Elf_Internal_Sym *isymbuf = NULL;
13802
13803 /* Assume nothing changes. */
13804 *again = FALSE;
13805
13806 /* We don't have to do anything for a relocatable link, if
13807 this section does not have relocs, or if this is not a
13808 code section. */
13809
13810 if (bfd_link_relocatable (link_info)
13811 || (sec->flags & SEC_RELOC) == 0
13812 || sec->reloc_count == 0
13813 || (sec->flags & SEC_CODE) == 0)
13814 return TRUE;
13815
13816 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13817
13818 /* Get a copy of the native relocations. */
13819 internal_relocs = (_bfd_elf_link_read_relocs
13820 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13821 link_info->keep_memory));
13822 if (internal_relocs == NULL)
13823 goto error_return;
13824
13825 /* Walk through them looking for relaxing opportunities. */
13826 irelend = internal_relocs + sec->reloc_count;
13827 for (irel = internal_relocs; irel < irelend; irel++)
13828 {
13829 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13830 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13831 bfd_boolean target_is_micromips_code_p;
13832 unsigned long opcode;
13833 bfd_vma symval;
13834 bfd_vma pcrval;
13835 bfd_byte *ptr;
13836 int fndopc;
13837
13838 /* The number of bytes to delete for relaxation and from where
13839 to delete these bytes starting at irel->r_offset. */
13840 int delcnt = 0;
13841 int deloff = 0;
13842
13843 /* If this isn't something that can be relaxed, then ignore
13844 this reloc. */
13845 if (r_type != R_MICROMIPS_HI16
13846 && r_type != R_MICROMIPS_PC16_S1
13847 && r_type != R_MICROMIPS_26_S1)
13848 continue;
13849
13850 /* Get the section contents if we haven't done so already. */
13851 if (contents == NULL)
13852 {
13853 /* Get cached copy if it exists. */
13854 if (elf_section_data (sec)->this_hdr.contents != NULL)
13855 contents = elf_section_data (sec)->this_hdr.contents;
13856 /* Go get them off disk. */
13857 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13858 goto error_return;
13859 }
13860 ptr = contents + irel->r_offset;
13861
13862 /* Read this BFD's local symbols if we haven't done so already. */
13863 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13864 {
13865 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13866 if (isymbuf == NULL)
13867 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13868 symtab_hdr->sh_info, 0,
13869 NULL, NULL, NULL);
13870 if (isymbuf == NULL)
13871 goto error_return;
13872 }
13873
13874 /* Get the value of the symbol referred to by the reloc. */
13875 if (r_symndx < symtab_hdr->sh_info)
13876 {
13877 /* A local symbol. */
13878 Elf_Internal_Sym *isym;
13879 asection *sym_sec;
13880
13881 isym = isymbuf + r_symndx;
13882 if (isym->st_shndx == SHN_UNDEF)
13883 sym_sec = bfd_und_section_ptr;
13884 else if (isym->st_shndx == SHN_ABS)
13885 sym_sec = bfd_abs_section_ptr;
13886 else if (isym->st_shndx == SHN_COMMON)
13887 sym_sec = bfd_com_section_ptr;
13888 else
13889 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13890 symval = (isym->st_value
13891 + sym_sec->output_section->vma
13892 + sym_sec->output_offset);
13893 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13894 }
13895 else
13896 {
13897 unsigned long indx;
13898 struct elf_link_hash_entry *h;
13899
13900 /* An external symbol. */
13901 indx = r_symndx - symtab_hdr->sh_info;
13902 h = elf_sym_hashes (abfd)[indx];
13903 BFD_ASSERT (h != NULL);
13904
13905 if (h->root.type != bfd_link_hash_defined
13906 && h->root.type != bfd_link_hash_defweak)
13907 /* This appears to be a reference to an undefined
13908 symbol. Just ignore it -- it will be caught by the
13909 regular reloc processing. */
13910 continue;
13911
13912 symval = (h->root.u.def.value
13913 + h->root.u.def.section->output_section->vma
13914 + h->root.u.def.section->output_offset);
13915 target_is_micromips_code_p = (!h->needs_plt
13916 && ELF_ST_IS_MICROMIPS (h->other));
13917 }
13918
13919
13920 /* For simplicity of coding, we are going to modify the
13921 section contents, the section relocs, and the BFD symbol
13922 table. We must tell the rest of the code not to free up this
13923 information. It would be possible to instead create a table
13924 of changes which have to be made, as is done in coff-mips.c;
13925 that would be more work, but would require less memory when
13926 the linker is run. */
13927
13928 /* Only 32-bit instructions relaxed. */
13929 if (irel->r_offset + 4 > sec->size)
13930 continue;
13931
13932 opcode = bfd_get_micromips_32 (abfd, ptr);
13933
13934 /* This is the pc-relative distance from the instruction the
13935 relocation is applied to, to the symbol referred. */
13936 pcrval = (symval
13937 - (sec->output_section->vma + sec->output_offset)
13938 - irel->r_offset);
13939
13940 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13941 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13942 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13943
13944 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13945
13946 where pcrval has first to be adjusted to apply against the LO16
13947 location (we make the adjustment later on, when we have figured
13948 out the offset). */
13949 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13950 {
13951 bfd_boolean bzc = FALSE;
13952 unsigned long nextopc;
13953 unsigned long reg;
13954 bfd_vma offset;
13955
13956 /* Give up if the previous reloc was a HI16 against this symbol
13957 too. */
13958 if (irel > internal_relocs
13959 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13960 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13961 continue;
13962
13963 /* Or if the next reloc is not a LO16 against this symbol. */
13964 if (irel + 1 >= irelend
13965 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13966 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13967 continue;
13968
13969 /* Or if the second next reloc is a LO16 against this symbol too. */
13970 if (irel + 2 >= irelend
13971 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13972 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13973 continue;
13974
13975 /* See if the LUI instruction *might* be in a branch delay slot.
13976 We check whether what looks like a 16-bit branch or jump is
13977 actually an immediate argument to a compact branch, and let
13978 it through if so. */
13979 if (irel->r_offset >= 2
13980 && check_br16_dslot (abfd, ptr - 2)
13981 && !(irel->r_offset >= 4
13982 && (bzc = check_relocated_bzc (abfd,
13983 ptr - 4, irel->r_offset - 4,
13984 internal_relocs, irelend))))
13985 continue;
13986 if (irel->r_offset >= 4
13987 && !bzc
13988 && check_br32_dslot (abfd, ptr - 4))
13989 continue;
13990
13991 reg = OP32_SREG (opcode);
13992
13993 /* We only relax adjacent instructions or ones separated with
13994 a branch or jump that has a delay slot. The branch or jump
13995 must not fiddle with the register used to hold the address.
13996 Subtract 4 for the LUI itself. */
13997 offset = irel[1].r_offset - irel[0].r_offset;
13998 switch (offset - 4)
13999 {
14000 case 0:
14001 break;
14002 case 2:
14003 if (check_br16 (abfd, ptr + 4, reg))
14004 break;
14005 continue;
14006 case 4:
14007 if (check_br32 (abfd, ptr + 4, reg))
14008 break;
14009 continue;
14010 default:
14011 continue;
14012 }
14013
14014 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14015
14016 /* Give up unless the same register is used with both
14017 relocations. */
14018 if (OP32_SREG (nextopc) != reg)
14019 continue;
14020
14021 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14022 and rounding up to take masking of the two LSBs into account. */
14023 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14024
14025 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14026 if (IS_BITSIZE (symval, 16))
14027 {
14028 /* Fix the relocation's type. */
14029 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14030
14031 /* Instructions using R_MICROMIPS_LO16 have the base or
14032 source register in bits 20:16. This register becomes $0
14033 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14034 nextopc &= ~0x001f0000;
14035 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14036 contents + irel[1].r_offset);
14037 }
14038
14039 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14040 We add 4 to take LUI deletion into account while checking
14041 the PC-relative distance. */
14042 else if (symval % 4 == 0
14043 && IS_BITSIZE (pcrval + 4, 25)
14044 && MATCH (nextopc, addiu_insn)
14045 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14046 && OP16_VALID_REG (OP32_TREG (nextopc)))
14047 {
14048 /* Fix the relocation's type. */
14049 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14050
14051 /* Replace ADDIU with the ADDIUPC version. */
14052 nextopc = (addiupc_insn.match
14053 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14054
14055 bfd_put_micromips_32 (abfd, nextopc,
14056 contents + irel[1].r_offset);
14057 }
14058
14059 /* Can't do anything, give up, sigh... */
14060 else
14061 continue;
14062
14063 /* Fix the relocation's type. */
14064 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14065
14066 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14067 delcnt = 4;
14068 deloff = 0;
14069 }
14070
14071 /* Compact branch relaxation -- due to the multitude of macros
14072 employed by the compiler/assembler, compact branches are not
14073 always generated. Obviously, this can/will be fixed elsewhere,
14074 but there is no drawback in double checking it here. */
14075 else if (r_type == R_MICROMIPS_PC16_S1
14076 && irel->r_offset + 5 < sec->size
14077 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14078 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14079 && ((!insn32
14080 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14081 nop_insn_16) ? 2 : 0))
14082 || (irel->r_offset + 7 < sec->size
14083 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14084 ptr + 4),
14085 nop_insn_32) ? 4 : 0))))
14086 {
14087 unsigned long reg;
14088
14089 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14090
14091 /* Replace BEQZ/BNEZ with the compact version. */
14092 opcode = (bzc_insns_32[fndopc].match
14093 | BZC32_REG_FIELD (reg)
14094 | (opcode & 0xffff)); /* Addend value. */
14095
14096 bfd_put_micromips_32 (abfd, opcode, ptr);
14097
14098 /* Delete the delay slot NOP: two or four bytes from
14099 irel->offset + 4; delcnt has already been set above. */
14100 deloff = 4;
14101 }
14102
14103 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14104 to check the distance from the next instruction, so subtract 2. */
14105 else if (!insn32
14106 && r_type == R_MICROMIPS_PC16_S1
14107 && IS_BITSIZE (pcrval - 2, 11)
14108 && find_match (opcode, b_insns_32) >= 0)
14109 {
14110 /* Fix the relocation's type. */
14111 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14112
14113 /* Replace the 32-bit opcode with a 16-bit opcode. */
14114 bfd_put_16 (abfd,
14115 (b_insn_16.match
14116 | (opcode & 0x3ff)), /* Addend value. */
14117 ptr);
14118
14119 /* Delete 2 bytes from irel->r_offset + 2. */
14120 delcnt = 2;
14121 deloff = 2;
14122 }
14123
14124 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14125 to check the distance from the next instruction, so subtract 2. */
14126 else if (!insn32
14127 && r_type == R_MICROMIPS_PC16_S1
14128 && IS_BITSIZE (pcrval - 2, 8)
14129 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14130 && OP16_VALID_REG (OP32_SREG (opcode)))
14131 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14132 && OP16_VALID_REG (OP32_TREG (opcode)))))
14133 {
14134 unsigned long reg;
14135
14136 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14137
14138 /* Fix the relocation's type. */
14139 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14140
14141 /* Replace the 32-bit opcode with a 16-bit opcode. */
14142 bfd_put_16 (abfd,
14143 (bz_insns_16[fndopc].match
14144 | BZ16_REG_FIELD (reg)
14145 | (opcode & 0x7f)), /* Addend value. */
14146 ptr);
14147
14148 /* Delete 2 bytes from irel->r_offset + 2. */
14149 delcnt = 2;
14150 deloff = 2;
14151 }
14152
14153 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14154 else if (!insn32
14155 && r_type == R_MICROMIPS_26_S1
14156 && target_is_micromips_code_p
14157 && irel->r_offset + 7 < sec->size
14158 && MATCH (opcode, jal_insn_32_bd32))
14159 {
14160 unsigned long n32opc;
14161 bfd_boolean relaxed = FALSE;
14162
14163 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14164
14165 if (MATCH (n32opc, nop_insn_32))
14166 {
14167 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14168 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14169
14170 relaxed = TRUE;
14171 }
14172 else if (find_match (n32opc, move_insns_32) >= 0)
14173 {
14174 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14175 bfd_put_16 (abfd,
14176 (move_insn_16.match
14177 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14178 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14179 ptr + 4);
14180
14181 relaxed = TRUE;
14182 }
14183 /* Other 32-bit instructions relaxable to 16-bit
14184 instructions will be handled here later. */
14185
14186 if (relaxed)
14187 {
14188 /* JAL with 32-bit delay slot that is changed to a JALS
14189 with 16-bit delay slot. */
14190 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14191
14192 /* Delete 2 bytes from irel->r_offset + 6. */
14193 delcnt = 2;
14194 deloff = 6;
14195 }
14196 }
14197
14198 if (delcnt != 0)
14199 {
14200 /* Note that we've changed the relocs, section contents, etc. */
14201 elf_section_data (sec)->relocs = internal_relocs;
14202 elf_section_data (sec)->this_hdr.contents = contents;
14203 symtab_hdr->contents = (unsigned char *) isymbuf;
14204
14205 /* Delete bytes depending on the delcnt and deloff. */
14206 if (!mips_elf_relax_delete_bytes (abfd, sec,
14207 irel->r_offset + deloff, delcnt))
14208 goto error_return;
14209
14210 /* That will change things, so we should relax again.
14211 Note that this is not required, and it may be slow. */
14212 *again = TRUE;
14213 }
14214 }
14215
14216 if (isymbuf != NULL
14217 && symtab_hdr->contents != (unsigned char *) isymbuf)
14218 {
14219 if (! link_info->keep_memory)
14220 free (isymbuf);
14221 else
14222 {
14223 /* Cache the symbols for elf_link_input_bfd. */
14224 symtab_hdr->contents = (unsigned char *) isymbuf;
14225 }
14226 }
14227
14228 if (contents != NULL
14229 && elf_section_data (sec)->this_hdr.contents != contents)
14230 {
14231 if (! link_info->keep_memory)
14232 free (contents);
14233 else
14234 {
14235 /* Cache the section contents for elf_link_input_bfd. */
14236 elf_section_data (sec)->this_hdr.contents = contents;
14237 }
14238 }
14239
14240 if (elf_section_data (sec)->relocs != internal_relocs)
14241 free (internal_relocs);
14242
14243 return TRUE;
14244
14245 error_return:
14246 if (symtab_hdr->contents != (unsigned char *) isymbuf)
14247 free (isymbuf);
14248 if (elf_section_data (sec)->this_hdr.contents != contents)
14249 free (contents);
14250 if (elf_section_data (sec)->relocs != internal_relocs)
14251 free (internal_relocs);
14252
14253 return FALSE;
14254 }
14255 \f
14256 /* Create a MIPS ELF linker hash table. */
14257
14258 struct bfd_link_hash_table *
14259 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14260 {
14261 struct mips_elf_link_hash_table *ret;
14262 size_t amt = sizeof (struct mips_elf_link_hash_table);
14263
14264 ret = bfd_zmalloc (amt);
14265 if (ret == NULL)
14266 return NULL;
14267
14268 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14269 mips_elf_link_hash_newfunc,
14270 sizeof (struct mips_elf_link_hash_entry),
14271 MIPS_ELF_DATA))
14272 {
14273 free (ret);
14274 return NULL;
14275 }
14276 ret->root.init_plt_refcount.plist = NULL;
14277 ret->root.init_plt_offset.plist = NULL;
14278
14279 return &ret->root.root;
14280 }
14281
14282 /* Likewise, but indicate that the target is VxWorks. */
14283
14284 struct bfd_link_hash_table *
14285 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14286 {
14287 struct bfd_link_hash_table *ret;
14288
14289 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14290 if (ret)
14291 {
14292 struct mips_elf_link_hash_table *htab;
14293
14294 htab = (struct mips_elf_link_hash_table *) ret;
14295 htab->use_plts_and_copy_relocs = TRUE;
14296 }
14297 return ret;
14298 }
14299
14300 /* A function that the linker calls if we are allowed to use PLTs
14301 and copy relocs. */
14302
14303 void
14304 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14305 {
14306 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14307 }
14308
14309 /* A function that the linker calls to select between all or only
14310 32-bit microMIPS instructions, and between making or ignoring
14311 branch relocation checks for invalid transitions between ISA modes.
14312 Also record whether we have been configured for a GNU target. */
14313
14314 void
14315 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14316 bfd_boolean ignore_branch_isa,
14317 bfd_boolean gnu_target)
14318 {
14319 mips_elf_hash_table (info)->insn32 = insn32;
14320 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14321 mips_elf_hash_table (info)->gnu_target = gnu_target;
14322 }
14323
14324 /* A function that the linker calls to enable use of compact branches in
14325 linker generated code for MIPSR6. */
14326
14327 void
14328 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14329 {
14330 mips_elf_hash_table (info)->compact_branches = on;
14331 }
14332
14333 \f
14334 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14335
14336 struct mips_mach_extension
14337 {
14338 unsigned long extension, base;
14339 };
14340
14341
14342 /* An array describing how BFD machines relate to one another. The entries
14343 are ordered topologically with MIPS I extensions listed last. */
14344
14345 static const struct mips_mach_extension mips_mach_extensions[] =
14346 {
14347 /* MIPS64r2 extensions. */
14348 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14349 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14350 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14351 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14352 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14353 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14354 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14355
14356 /* MIPS64 extensions. */
14357 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14358 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14359 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14360
14361 /* MIPS V extensions. */
14362 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14363
14364 /* R10000 extensions. */
14365 { bfd_mach_mips12000, bfd_mach_mips10000 },
14366 { bfd_mach_mips14000, bfd_mach_mips10000 },
14367 { bfd_mach_mips16000, bfd_mach_mips10000 },
14368
14369 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14370 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14371 better to allow vr5400 and vr5500 code to be merged anyway, since
14372 many libraries will just use the core ISA. Perhaps we could add
14373 some sort of ASE flag if this ever proves a problem. */
14374 { bfd_mach_mips5500, bfd_mach_mips5400 },
14375 { bfd_mach_mips5400, bfd_mach_mips5000 },
14376
14377 /* MIPS IV extensions. */
14378 { bfd_mach_mips5, bfd_mach_mips8000 },
14379 { bfd_mach_mips10000, bfd_mach_mips8000 },
14380 { bfd_mach_mips5000, bfd_mach_mips8000 },
14381 { bfd_mach_mips7000, bfd_mach_mips8000 },
14382 { bfd_mach_mips9000, bfd_mach_mips8000 },
14383
14384 /* VR4100 extensions. */
14385 { bfd_mach_mips4120, bfd_mach_mips4100 },
14386 { bfd_mach_mips4111, bfd_mach_mips4100 },
14387
14388 /* MIPS III extensions. */
14389 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14390 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14391 { bfd_mach_mips8000, bfd_mach_mips4000 },
14392 { bfd_mach_mips4650, bfd_mach_mips4000 },
14393 { bfd_mach_mips4600, bfd_mach_mips4000 },
14394 { bfd_mach_mips4400, bfd_mach_mips4000 },
14395 { bfd_mach_mips4300, bfd_mach_mips4000 },
14396 { bfd_mach_mips4100, bfd_mach_mips4000 },
14397 { bfd_mach_mips5900, bfd_mach_mips4000 },
14398
14399 /* MIPS32r3 extensions. */
14400 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14401
14402 /* MIPS32r2 extensions. */
14403 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14404
14405 /* MIPS32 extensions. */
14406 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14407
14408 /* MIPS II extensions. */
14409 { bfd_mach_mips4000, bfd_mach_mips6000 },
14410 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14411 { bfd_mach_mips4010, bfd_mach_mips6000 },
14412
14413 /* MIPS I extensions. */
14414 { bfd_mach_mips6000, bfd_mach_mips3000 },
14415 { bfd_mach_mips3900, bfd_mach_mips3000 }
14416 };
14417
14418 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14419
14420 static bfd_boolean
14421 mips_mach_extends_p (unsigned long base, unsigned long extension)
14422 {
14423 size_t i;
14424
14425 if (extension == base)
14426 return TRUE;
14427
14428 if (base == bfd_mach_mipsisa32
14429 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14430 return TRUE;
14431
14432 if (base == bfd_mach_mipsisa32r2
14433 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14434 return TRUE;
14435
14436 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14437 if (extension == mips_mach_extensions[i].extension)
14438 {
14439 extension = mips_mach_extensions[i].base;
14440 if (extension == base)
14441 return TRUE;
14442 }
14443
14444 return FALSE;
14445 }
14446
14447 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14448
14449 static unsigned long
14450 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14451 {
14452 switch (isa_ext)
14453 {
14454 case AFL_EXT_3900: return bfd_mach_mips3900;
14455 case AFL_EXT_4010: return bfd_mach_mips4010;
14456 case AFL_EXT_4100: return bfd_mach_mips4100;
14457 case AFL_EXT_4111: return bfd_mach_mips4111;
14458 case AFL_EXT_4120: return bfd_mach_mips4120;
14459 case AFL_EXT_4650: return bfd_mach_mips4650;
14460 case AFL_EXT_5400: return bfd_mach_mips5400;
14461 case AFL_EXT_5500: return bfd_mach_mips5500;
14462 case AFL_EXT_5900: return bfd_mach_mips5900;
14463 case AFL_EXT_10000: return bfd_mach_mips10000;
14464 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14465 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14466 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14467 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14468 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14469 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14470 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14471 default: return bfd_mach_mips3000;
14472 }
14473 }
14474
14475 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14476
14477 unsigned int
14478 bfd_mips_isa_ext (bfd *abfd)
14479 {
14480 switch (bfd_get_mach (abfd))
14481 {
14482 case bfd_mach_mips3900: return AFL_EXT_3900;
14483 case bfd_mach_mips4010: return AFL_EXT_4010;
14484 case bfd_mach_mips4100: return AFL_EXT_4100;
14485 case bfd_mach_mips4111: return AFL_EXT_4111;
14486 case bfd_mach_mips4120: return AFL_EXT_4120;
14487 case bfd_mach_mips4650: return AFL_EXT_4650;
14488 case bfd_mach_mips5400: return AFL_EXT_5400;
14489 case bfd_mach_mips5500: return AFL_EXT_5500;
14490 case bfd_mach_mips5900: return AFL_EXT_5900;
14491 case bfd_mach_mips10000: return AFL_EXT_10000;
14492 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14493 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14494 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14495 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14496 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14497 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14498 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14499 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14500 case bfd_mach_mips_interaptiv_mr2:
14501 return AFL_EXT_INTERAPTIV_MR2;
14502 default: return 0;
14503 }
14504 }
14505
14506 /* Encode ISA level and revision as a single value. */
14507 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14508
14509 /* Decode a single value into level and revision. */
14510 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14511 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14512
14513 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14514
14515 static void
14516 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14517 {
14518 int new_isa = 0;
14519 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14520 {
14521 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14522 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14523 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14524 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14525 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14526 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14527 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14528 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14529 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14530 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14531 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14532 default:
14533 _bfd_error_handler
14534 /* xgettext:c-format */
14535 (_("%pB: unknown architecture %s"),
14536 abfd, bfd_printable_name (abfd));
14537 }
14538
14539 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14540 {
14541 abiflags->isa_level = ISA_LEVEL (new_isa);
14542 abiflags->isa_rev = ISA_REV (new_isa);
14543 }
14544
14545 /* Update the isa_ext if ABFD describes a further extension. */
14546 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14547 bfd_get_mach (abfd)))
14548 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14549 }
14550
14551 /* Return true if the given ELF header flags describe a 32-bit binary. */
14552
14553 static bfd_boolean
14554 mips_32bit_flags_p (flagword flags)
14555 {
14556 return ((flags & EF_MIPS_32BITMODE) != 0
14557 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14558 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14559 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14560 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14561 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14562 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14563 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14564 }
14565
14566 /* Infer the content of the ABI flags based on the elf header. */
14567
14568 static void
14569 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14570 {
14571 obj_attribute *in_attr;
14572
14573 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14574 update_mips_abiflags_isa (abfd, abiflags);
14575
14576 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14577 abiflags->gpr_size = AFL_REG_32;
14578 else
14579 abiflags->gpr_size = AFL_REG_64;
14580
14581 abiflags->cpr1_size = AFL_REG_NONE;
14582
14583 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14584 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14585
14586 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14587 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14588 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14589 && abiflags->gpr_size == AFL_REG_32))
14590 abiflags->cpr1_size = AFL_REG_32;
14591 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14592 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14593 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14594 abiflags->cpr1_size = AFL_REG_64;
14595
14596 abiflags->cpr2_size = AFL_REG_NONE;
14597
14598 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14599 abiflags->ases |= AFL_ASE_MDMX;
14600 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14601 abiflags->ases |= AFL_ASE_MIPS16;
14602 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14603 abiflags->ases |= AFL_ASE_MICROMIPS;
14604
14605 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14606 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14607 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14608 && abiflags->isa_level >= 32
14609 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14610 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14611 }
14612
14613 /* We need to use a special link routine to handle the .reginfo and
14614 the .mdebug sections. We need to merge all instances of these
14615 sections together, not write them all out sequentially. */
14616
14617 bfd_boolean
14618 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14619 {
14620 asection *o;
14621 struct bfd_link_order *p;
14622 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14623 asection *rtproc_sec, *abiflags_sec;
14624 Elf32_RegInfo reginfo;
14625 struct ecoff_debug_info debug;
14626 struct mips_htab_traverse_info hti;
14627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14628 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14629 HDRR *symhdr = &debug.symbolic_header;
14630 void *mdebug_handle = NULL;
14631 asection *s;
14632 EXTR esym;
14633 unsigned int i;
14634 bfd_size_type amt;
14635 struct mips_elf_link_hash_table *htab;
14636
14637 static const char * const secname[] =
14638 {
14639 ".text", ".init", ".fini", ".data",
14640 ".rodata", ".sdata", ".sbss", ".bss"
14641 };
14642 static const int sc[] =
14643 {
14644 scText, scInit, scFini, scData,
14645 scRData, scSData, scSBss, scBss
14646 };
14647
14648 htab = mips_elf_hash_table (info);
14649 BFD_ASSERT (htab != NULL);
14650
14651 /* Sort the dynamic symbols so that those with GOT entries come after
14652 those without. */
14653 if (!mips_elf_sort_hash_table (abfd, info))
14654 return FALSE;
14655
14656 /* Create any scheduled LA25 stubs. */
14657 hti.info = info;
14658 hti.output_bfd = abfd;
14659 hti.error = FALSE;
14660 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14661 if (hti.error)
14662 return FALSE;
14663
14664 /* Get a value for the GP register. */
14665 if (elf_gp (abfd) == 0)
14666 {
14667 struct bfd_link_hash_entry *h;
14668
14669 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14670 if (h != NULL && h->type == bfd_link_hash_defined)
14671 elf_gp (abfd) = (h->u.def.value
14672 + h->u.def.section->output_section->vma
14673 + h->u.def.section->output_offset);
14674 else if (htab->root.target_os == is_vxworks
14675 && (h = bfd_link_hash_lookup (info->hash,
14676 "_GLOBAL_OFFSET_TABLE_",
14677 FALSE, FALSE, TRUE))
14678 && h->type == bfd_link_hash_defined)
14679 elf_gp (abfd) = (h->u.def.section->output_section->vma
14680 + h->u.def.section->output_offset
14681 + h->u.def.value);
14682 else if (bfd_link_relocatable (info))
14683 {
14684 bfd_vma lo = MINUS_ONE;
14685
14686 /* Find the GP-relative section with the lowest offset. */
14687 for (o = abfd->sections; o != NULL; o = o->next)
14688 if (o->vma < lo
14689 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14690 lo = o->vma;
14691
14692 /* And calculate GP relative to that. */
14693 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14694 }
14695 else
14696 {
14697 /* If the relocate_section function needs to do a reloc
14698 involving the GP value, it should make a reloc_dangerous
14699 callback to warn that GP is not defined. */
14700 }
14701 }
14702
14703 /* Go through the sections and collect the .reginfo and .mdebug
14704 information. */
14705 abiflags_sec = NULL;
14706 reginfo_sec = NULL;
14707 mdebug_sec = NULL;
14708 gptab_data_sec = NULL;
14709 gptab_bss_sec = NULL;
14710 for (o = abfd->sections; o != NULL; o = o->next)
14711 {
14712 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14713 {
14714 /* We have found the .MIPS.abiflags section in the output file.
14715 Look through all the link_orders comprising it and remove them.
14716 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14717 for (p = o->map_head.link_order; p != NULL; p = p->next)
14718 {
14719 asection *input_section;
14720
14721 if (p->type != bfd_indirect_link_order)
14722 {
14723 if (p->type == bfd_data_link_order)
14724 continue;
14725 abort ();
14726 }
14727
14728 input_section = p->u.indirect.section;
14729
14730 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14731 elf_link_input_bfd ignores this section. */
14732 input_section->flags &= ~SEC_HAS_CONTENTS;
14733 }
14734
14735 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14736 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14737
14738 /* Skip this section later on (I don't think this currently
14739 matters, but someday it might). */
14740 o->map_head.link_order = NULL;
14741
14742 abiflags_sec = o;
14743 }
14744
14745 if (strcmp (o->name, ".reginfo") == 0)
14746 {
14747 memset (&reginfo, 0, sizeof reginfo);
14748
14749 /* We have found the .reginfo section in the output file.
14750 Look through all the link_orders comprising it and merge
14751 the information together. */
14752 for (p = o->map_head.link_order; p != NULL; p = p->next)
14753 {
14754 asection *input_section;
14755 bfd *input_bfd;
14756 Elf32_External_RegInfo ext;
14757 Elf32_RegInfo sub;
14758 bfd_size_type sz;
14759
14760 if (p->type != bfd_indirect_link_order)
14761 {
14762 if (p->type == bfd_data_link_order)
14763 continue;
14764 abort ();
14765 }
14766
14767 input_section = p->u.indirect.section;
14768 input_bfd = input_section->owner;
14769
14770 sz = (input_section->size < sizeof (ext)
14771 ? input_section->size : sizeof (ext));
14772 memset (&ext, 0, sizeof (ext));
14773 if (! bfd_get_section_contents (input_bfd, input_section,
14774 &ext, 0, sz))
14775 return FALSE;
14776
14777 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14778
14779 reginfo.ri_gprmask |= sub.ri_gprmask;
14780 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14781 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14782 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14783 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14784
14785 /* ri_gp_value is set by the function
14786 `_bfd_mips_elf_section_processing' when the section is
14787 finally written out. */
14788
14789 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14790 elf_link_input_bfd ignores this section. */
14791 input_section->flags &= ~SEC_HAS_CONTENTS;
14792 }
14793
14794 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14795 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14796
14797 /* Skip this section later on (I don't think this currently
14798 matters, but someday it might). */
14799 o->map_head.link_order = NULL;
14800
14801 reginfo_sec = o;
14802 }
14803
14804 if (strcmp (o->name, ".mdebug") == 0)
14805 {
14806 struct extsym_info einfo;
14807 bfd_vma last;
14808
14809 /* We have found the .mdebug section in the output file.
14810 Look through all the link_orders comprising it and merge
14811 the information together. */
14812 symhdr->magic = swap->sym_magic;
14813 /* FIXME: What should the version stamp be? */
14814 symhdr->vstamp = 0;
14815 symhdr->ilineMax = 0;
14816 symhdr->cbLine = 0;
14817 symhdr->idnMax = 0;
14818 symhdr->ipdMax = 0;
14819 symhdr->isymMax = 0;
14820 symhdr->ioptMax = 0;
14821 symhdr->iauxMax = 0;
14822 symhdr->issMax = 0;
14823 symhdr->issExtMax = 0;
14824 symhdr->ifdMax = 0;
14825 symhdr->crfd = 0;
14826 symhdr->iextMax = 0;
14827
14828 /* We accumulate the debugging information itself in the
14829 debug_info structure. */
14830 debug.line = NULL;
14831 debug.external_dnr = NULL;
14832 debug.external_pdr = NULL;
14833 debug.external_sym = NULL;
14834 debug.external_opt = NULL;
14835 debug.external_aux = NULL;
14836 debug.ss = NULL;
14837 debug.ssext = debug.ssext_end = NULL;
14838 debug.external_fdr = NULL;
14839 debug.external_rfd = NULL;
14840 debug.external_ext = debug.external_ext_end = NULL;
14841
14842 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14843 if (mdebug_handle == NULL)
14844 return FALSE;
14845
14846 esym.jmptbl = 0;
14847 esym.cobol_main = 0;
14848 esym.weakext = 0;
14849 esym.reserved = 0;
14850 esym.ifd = ifdNil;
14851 esym.asym.iss = issNil;
14852 esym.asym.st = stLocal;
14853 esym.asym.reserved = 0;
14854 esym.asym.index = indexNil;
14855 last = 0;
14856 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14857 {
14858 esym.asym.sc = sc[i];
14859 s = bfd_get_section_by_name (abfd, secname[i]);
14860 if (s != NULL)
14861 {
14862 esym.asym.value = s->vma;
14863 last = s->vma + s->size;
14864 }
14865 else
14866 esym.asym.value = last;
14867 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14868 secname[i], &esym))
14869 return FALSE;
14870 }
14871
14872 for (p = o->map_head.link_order; p != NULL; p = p->next)
14873 {
14874 asection *input_section;
14875 bfd *input_bfd;
14876 const struct ecoff_debug_swap *input_swap;
14877 struct ecoff_debug_info input_debug;
14878 char *eraw_src;
14879 char *eraw_end;
14880
14881 if (p->type != bfd_indirect_link_order)
14882 {
14883 if (p->type == bfd_data_link_order)
14884 continue;
14885 abort ();
14886 }
14887
14888 input_section = p->u.indirect.section;
14889 input_bfd = input_section->owner;
14890
14891 if (!is_mips_elf (input_bfd))
14892 {
14893 /* I don't know what a non MIPS ELF bfd would be
14894 doing with a .mdebug section, but I don't really
14895 want to deal with it. */
14896 continue;
14897 }
14898
14899 input_swap = (get_elf_backend_data (input_bfd)
14900 ->elf_backend_ecoff_debug_swap);
14901
14902 BFD_ASSERT (p->size == input_section->size);
14903
14904 /* The ECOFF linking code expects that we have already
14905 read in the debugging information and set up an
14906 ecoff_debug_info structure, so we do that now. */
14907 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14908 &input_debug))
14909 return FALSE;
14910
14911 if (! (bfd_ecoff_debug_accumulate
14912 (mdebug_handle, abfd, &debug, swap, input_bfd,
14913 &input_debug, input_swap, info)))
14914 return FALSE;
14915
14916 /* Loop through the external symbols. For each one with
14917 interesting information, try to find the symbol in
14918 the linker global hash table and save the information
14919 for the output external symbols. */
14920 eraw_src = input_debug.external_ext;
14921 eraw_end = (eraw_src
14922 + (input_debug.symbolic_header.iextMax
14923 * input_swap->external_ext_size));
14924 for (;
14925 eraw_src < eraw_end;
14926 eraw_src += input_swap->external_ext_size)
14927 {
14928 EXTR ext;
14929 const char *name;
14930 struct mips_elf_link_hash_entry *h;
14931
14932 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14933 if (ext.asym.sc == scNil
14934 || ext.asym.sc == scUndefined
14935 || ext.asym.sc == scSUndefined)
14936 continue;
14937
14938 name = input_debug.ssext + ext.asym.iss;
14939 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14940 name, FALSE, FALSE, TRUE);
14941 if (h == NULL || h->esym.ifd != -2)
14942 continue;
14943
14944 if (ext.ifd != -1)
14945 {
14946 BFD_ASSERT (ext.ifd
14947 < input_debug.symbolic_header.ifdMax);
14948 ext.ifd = input_debug.ifdmap[ext.ifd];
14949 }
14950
14951 h->esym = ext;
14952 }
14953
14954 /* Free up the information we just read. */
14955 free (input_debug.line);
14956 free (input_debug.external_dnr);
14957 free (input_debug.external_pdr);
14958 free (input_debug.external_sym);
14959 free (input_debug.external_opt);
14960 free (input_debug.external_aux);
14961 free (input_debug.ss);
14962 free (input_debug.ssext);
14963 free (input_debug.external_fdr);
14964 free (input_debug.external_rfd);
14965 free (input_debug.external_ext);
14966
14967 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14968 elf_link_input_bfd ignores this section. */
14969 input_section->flags &= ~SEC_HAS_CONTENTS;
14970 }
14971
14972 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14973 {
14974 /* Create .rtproc section. */
14975 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14976 if (rtproc_sec == NULL)
14977 {
14978 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14979 | SEC_LINKER_CREATED | SEC_READONLY);
14980
14981 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14982 ".rtproc",
14983 flags);
14984 if (rtproc_sec == NULL
14985 || !bfd_set_section_alignment (rtproc_sec, 4))
14986 return FALSE;
14987 }
14988
14989 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14990 info, rtproc_sec,
14991 &debug))
14992 return FALSE;
14993 }
14994
14995 /* Build the external symbol information. */
14996 einfo.abfd = abfd;
14997 einfo.info = info;
14998 einfo.debug = &debug;
14999 einfo.swap = swap;
15000 einfo.failed = FALSE;
15001 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15002 mips_elf_output_extsym, &einfo);
15003 if (einfo.failed)
15004 return FALSE;
15005
15006 /* Set the size of the .mdebug section. */
15007 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15008
15009 /* Skip this section later on (I don't think this currently
15010 matters, but someday it might). */
15011 o->map_head.link_order = NULL;
15012
15013 mdebug_sec = o;
15014 }
15015
15016 if (CONST_STRNEQ (o->name, ".gptab."))
15017 {
15018 const char *subname;
15019 unsigned int c;
15020 Elf32_gptab *tab;
15021 Elf32_External_gptab *ext_tab;
15022 unsigned int j;
15023
15024 /* The .gptab.sdata and .gptab.sbss sections hold
15025 information describing how the small data area would
15026 change depending upon the -G switch. These sections
15027 not used in executables files. */
15028 if (! bfd_link_relocatable (info))
15029 {
15030 for (p = o->map_head.link_order; p != NULL; p = p->next)
15031 {
15032 asection *input_section;
15033
15034 if (p->type != bfd_indirect_link_order)
15035 {
15036 if (p->type == bfd_data_link_order)
15037 continue;
15038 abort ();
15039 }
15040
15041 input_section = p->u.indirect.section;
15042
15043 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15044 elf_link_input_bfd ignores this section. */
15045 input_section->flags &= ~SEC_HAS_CONTENTS;
15046 }
15047
15048 /* Skip this section later on (I don't think this
15049 currently matters, but someday it might). */
15050 o->map_head.link_order = NULL;
15051
15052 /* Really remove the section. */
15053 bfd_section_list_remove (abfd, o);
15054 --abfd->section_count;
15055
15056 continue;
15057 }
15058
15059 /* There is one gptab for initialized data, and one for
15060 uninitialized data. */
15061 if (strcmp (o->name, ".gptab.sdata") == 0)
15062 gptab_data_sec = o;
15063 else if (strcmp (o->name, ".gptab.sbss") == 0)
15064 gptab_bss_sec = o;
15065 else
15066 {
15067 _bfd_error_handler
15068 /* xgettext:c-format */
15069 (_("%pB: illegal section name `%pA'"), abfd, o);
15070 bfd_set_error (bfd_error_nonrepresentable_section);
15071 return FALSE;
15072 }
15073
15074 /* The linker script always combines .gptab.data and
15075 .gptab.sdata into .gptab.sdata, and likewise for
15076 .gptab.bss and .gptab.sbss. It is possible that there is
15077 no .sdata or .sbss section in the output file, in which
15078 case we must change the name of the output section. */
15079 subname = o->name + sizeof ".gptab" - 1;
15080 if (bfd_get_section_by_name (abfd, subname) == NULL)
15081 {
15082 if (o == gptab_data_sec)
15083 o->name = ".gptab.data";
15084 else
15085 o->name = ".gptab.bss";
15086 subname = o->name + sizeof ".gptab" - 1;
15087 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15088 }
15089
15090 /* Set up the first entry. */
15091 c = 1;
15092 amt = c * sizeof (Elf32_gptab);
15093 tab = bfd_malloc (amt);
15094 if (tab == NULL)
15095 return FALSE;
15096 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15097 tab[0].gt_header.gt_unused = 0;
15098
15099 /* Combine the input sections. */
15100 for (p = o->map_head.link_order; p != NULL; p = p->next)
15101 {
15102 asection *input_section;
15103 bfd *input_bfd;
15104 bfd_size_type size;
15105 unsigned long last;
15106 bfd_size_type gpentry;
15107
15108 if (p->type != bfd_indirect_link_order)
15109 {
15110 if (p->type == bfd_data_link_order)
15111 continue;
15112 abort ();
15113 }
15114
15115 input_section = p->u.indirect.section;
15116 input_bfd = input_section->owner;
15117
15118 /* Combine the gptab entries for this input section one
15119 by one. We know that the input gptab entries are
15120 sorted by ascending -G value. */
15121 size = input_section->size;
15122 last = 0;
15123 for (gpentry = sizeof (Elf32_External_gptab);
15124 gpentry < size;
15125 gpentry += sizeof (Elf32_External_gptab))
15126 {
15127 Elf32_External_gptab ext_gptab;
15128 Elf32_gptab int_gptab;
15129 unsigned long val;
15130 unsigned long add;
15131 bfd_boolean exact;
15132 unsigned int look;
15133
15134 if (! (bfd_get_section_contents
15135 (input_bfd, input_section, &ext_gptab, gpentry,
15136 sizeof (Elf32_External_gptab))))
15137 {
15138 free (tab);
15139 return FALSE;
15140 }
15141
15142 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15143 &int_gptab);
15144 val = int_gptab.gt_entry.gt_g_value;
15145 add = int_gptab.gt_entry.gt_bytes - last;
15146
15147 exact = FALSE;
15148 for (look = 1; look < c; look++)
15149 {
15150 if (tab[look].gt_entry.gt_g_value >= val)
15151 tab[look].gt_entry.gt_bytes += add;
15152
15153 if (tab[look].gt_entry.gt_g_value == val)
15154 exact = TRUE;
15155 }
15156
15157 if (! exact)
15158 {
15159 Elf32_gptab *new_tab;
15160 unsigned int max;
15161
15162 /* We need a new table entry. */
15163 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15164 new_tab = bfd_realloc (tab, amt);
15165 if (new_tab == NULL)
15166 {
15167 free (tab);
15168 return FALSE;
15169 }
15170 tab = new_tab;
15171 tab[c].gt_entry.gt_g_value = val;
15172 tab[c].gt_entry.gt_bytes = add;
15173
15174 /* Merge in the size for the next smallest -G
15175 value, since that will be implied by this new
15176 value. */
15177 max = 0;
15178 for (look = 1; look < c; look++)
15179 {
15180 if (tab[look].gt_entry.gt_g_value < val
15181 && (max == 0
15182 || (tab[look].gt_entry.gt_g_value
15183 > tab[max].gt_entry.gt_g_value)))
15184 max = look;
15185 }
15186 if (max != 0)
15187 tab[c].gt_entry.gt_bytes +=
15188 tab[max].gt_entry.gt_bytes;
15189
15190 ++c;
15191 }
15192
15193 last = int_gptab.gt_entry.gt_bytes;
15194 }
15195
15196 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15197 elf_link_input_bfd ignores this section. */
15198 input_section->flags &= ~SEC_HAS_CONTENTS;
15199 }
15200
15201 /* The table must be sorted by -G value. */
15202 if (c > 2)
15203 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15204
15205 /* Swap out the table. */
15206 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15207 ext_tab = bfd_alloc (abfd, amt);
15208 if (ext_tab == NULL)
15209 {
15210 free (tab);
15211 return FALSE;
15212 }
15213
15214 for (j = 0; j < c; j++)
15215 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15216 free (tab);
15217
15218 o->size = c * sizeof (Elf32_External_gptab);
15219 o->contents = (bfd_byte *) ext_tab;
15220
15221 /* Skip this section later on (I don't think this currently
15222 matters, but someday it might). */
15223 o->map_head.link_order = NULL;
15224 }
15225 }
15226
15227 /* Invoke the regular ELF backend linker to do all the work. */
15228 if (!bfd_elf_final_link (abfd, info))
15229 return FALSE;
15230
15231 /* Now write out the computed sections. */
15232
15233 if (abiflags_sec != NULL)
15234 {
15235 Elf_External_ABIFlags_v0 ext;
15236 Elf_Internal_ABIFlags_v0 *abiflags;
15237
15238 abiflags = &mips_elf_tdata (abfd)->abiflags;
15239
15240 /* Set up the abiflags if no valid input sections were found. */
15241 if (!mips_elf_tdata (abfd)->abiflags_valid)
15242 {
15243 infer_mips_abiflags (abfd, abiflags);
15244 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15245 }
15246 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15247 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15248 return FALSE;
15249 }
15250
15251 if (reginfo_sec != NULL)
15252 {
15253 Elf32_External_RegInfo ext;
15254
15255 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15256 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15257 return FALSE;
15258 }
15259
15260 if (mdebug_sec != NULL)
15261 {
15262 BFD_ASSERT (abfd->output_has_begun);
15263 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15264 swap, info,
15265 mdebug_sec->filepos))
15266 return FALSE;
15267
15268 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15269 }
15270
15271 if (gptab_data_sec != NULL)
15272 {
15273 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15274 gptab_data_sec->contents,
15275 0, gptab_data_sec->size))
15276 return FALSE;
15277 }
15278
15279 if (gptab_bss_sec != NULL)
15280 {
15281 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15282 gptab_bss_sec->contents,
15283 0, gptab_bss_sec->size))
15284 return FALSE;
15285 }
15286
15287 if (SGI_COMPAT (abfd))
15288 {
15289 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15290 if (rtproc_sec != NULL)
15291 {
15292 if (! bfd_set_section_contents (abfd, rtproc_sec,
15293 rtproc_sec->contents,
15294 0, rtproc_sec->size))
15295 return FALSE;
15296 }
15297 }
15298
15299 return TRUE;
15300 }
15301 \f
15302 /* Merge object file header flags from IBFD into OBFD. Raise an error
15303 if there are conflicting settings. */
15304
15305 static bfd_boolean
15306 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15307 {
15308 bfd *obfd = info->output_bfd;
15309 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15310 flagword old_flags;
15311 flagword new_flags;
15312 bfd_boolean ok;
15313
15314 new_flags = elf_elfheader (ibfd)->e_flags;
15315 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15316 old_flags = elf_elfheader (obfd)->e_flags;
15317
15318 /* Check flag compatibility. */
15319
15320 new_flags &= ~EF_MIPS_NOREORDER;
15321 old_flags &= ~EF_MIPS_NOREORDER;
15322
15323 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15324 doesn't seem to matter. */
15325 new_flags &= ~EF_MIPS_XGOT;
15326 old_flags &= ~EF_MIPS_XGOT;
15327
15328 /* MIPSpro generates ucode info in n64 objects. Again, we should
15329 just be able to ignore this. */
15330 new_flags &= ~EF_MIPS_UCODE;
15331 old_flags &= ~EF_MIPS_UCODE;
15332
15333 /* DSOs should only be linked with CPIC code. */
15334 if ((ibfd->flags & DYNAMIC) != 0)
15335 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15336
15337 if (new_flags == old_flags)
15338 return TRUE;
15339
15340 ok = TRUE;
15341
15342 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15343 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15344 {
15345 _bfd_error_handler
15346 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15347 ibfd);
15348 ok = TRUE;
15349 }
15350
15351 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15352 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15353 if (! (new_flags & EF_MIPS_PIC))
15354 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15355
15356 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15357 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15358
15359 /* Compare the ISAs. */
15360 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15361 {
15362 _bfd_error_handler
15363 (_("%pB: linking 32-bit code with 64-bit code"),
15364 ibfd);
15365 ok = FALSE;
15366 }
15367 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15368 {
15369 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15370 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15371 {
15372 /* Copy the architecture info from IBFD to OBFD. Also copy
15373 the 32-bit flag (if set) so that we continue to recognise
15374 OBFD as a 32-bit binary. */
15375 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15376 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15377 elf_elfheader (obfd)->e_flags
15378 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15379
15380 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15381 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15382
15383 /* Copy across the ABI flags if OBFD doesn't use them
15384 and if that was what caused us to treat IBFD as 32-bit. */
15385 if ((old_flags & EF_MIPS_ABI) == 0
15386 && mips_32bit_flags_p (new_flags)
15387 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15388 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15389 }
15390 else
15391 {
15392 /* The ISAs aren't compatible. */
15393 _bfd_error_handler
15394 /* xgettext:c-format */
15395 (_("%pB: linking %s module with previous %s modules"),
15396 ibfd,
15397 bfd_printable_name (ibfd),
15398 bfd_printable_name (obfd));
15399 ok = FALSE;
15400 }
15401 }
15402
15403 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15404 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15405
15406 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15407 does set EI_CLASS differently from any 32-bit ABI. */
15408 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15409 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15410 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15411 {
15412 /* Only error if both are set (to different values). */
15413 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15414 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15415 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15416 {
15417 _bfd_error_handler
15418 /* xgettext:c-format */
15419 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15420 ibfd,
15421 elf_mips_abi_name (ibfd),
15422 elf_mips_abi_name (obfd));
15423 ok = FALSE;
15424 }
15425 new_flags &= ~EF_MIPS_ABI;
15426 old_flags &= ~EF_MIPS_ABI;
15427 }
15428
15429 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15430 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15431 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15432 {
15433 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15434 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15435 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15436 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15437 int micro_mis = old_m16 && new_micro;
15438 int m16_mis = old_micro && new_m16;
15439
15440 if (m16_mis || micro_mis)
15441 {
15442 _bfd_error_handler
15443 /* xgettext:c-format */
15444 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15445 ibfd,
15446 m16_mis ? "MIPS16" : "microMIPS",
15447 m16_mis ? "microMIPS" : "MIPS16");
15448 ok = FALSE;
15449 }
15450
15451 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15452
15453 new_flags &= ~ EF_MIPS_ARCH_ASE;
15454 old_flags &= ~ EF_MIPS_ARCH_ASE;
15455 }
15456
15457 /* Compare NaN encodings. */
15458 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15459 {
15460 /* xgettext:c-format */
15461 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15462 ibfd,
15463 (new_flags & EF_MIPS_NAN2008
15464 ? "-mnan=2008" : "-mnan=legacy"),
15465 (old_flags & EF_MIPS_NAN2008
15466 ? "-mnan=2008" : "-mnan=legacy"));
15467 ok = FALSE;
15468 new_flags &= ~EF_MIPS_NAN2008;
15469 old_flags &= ~EF_MIPS_NAN2008;
15470 }
15471
15472 /* Compare FP64 state. */
15473 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15474 {
15475 /* xgettext:c-format */
15476 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15477 ibfd,
15478 (new_flags & EF_MIPS_FP64
15479 ? "-mfp64" : "-mfp32"),
15480 (old_flags & EF_MIPS_FP64
15481 ? "-mfp64" : "-mfp32"));
15482 ok = FALSE;
15483 new_flags &= ~EF_MIPS_FP64;
15484 old_flags &= ~EF_MIPS_FP64;
15485 }
15486
15487 /* Warn about any other mismatches */
15488 if (new_flags != old_flags)
15489 {
15490 /* xgettext:c-format */
15491 _bfd_error_handler
15492 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15493 "(%#x)"),
15494 ibfd, new_flags, old_flags);
15495 ok = FALSE;
15496 }
15497
15498 return ok;
15499 }
15500
15501 /* Merge object attributes from IBFD into OBFD. Raise an error if
15502 there are conflicting attributes. */
15503 static bfd_boolean
15504 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15505 {
15506 bfd *obfd = info->output_bfd;
15507 obj_attribute *in_attr;
15508 obj_attribute *out_attr;
15509 bfd *abi_fp_bfd;
15510 bfd *abi_msa_bfd;
15511
15512 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15513 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15514 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15515 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15516
15517 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15518 if (!abi_msa_bfd
15519 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15520 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15521
15522 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15523 {
15524 /* This is the first object. Copy the attributes. */
15525 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15526
15527 /* Use the Tag_null value to indicate the attributes have been
15528 initialized. */
15529 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15530
15531 return TRUE;
15532 }
15533
15534 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15535 non-conflicting ones. */
15536 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15537 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15538 {
15539 int out_fp, in_fp;
15540
15541 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15542 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15543 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15544 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15545 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15546 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15547 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15548 || in_fp == Val_GNU_MIPS_ABI_FP_64
15549 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15550 {
15551 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15552 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15553 }
15554 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15555 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15556 || out_fp == Val_GNU_MIPS_ABI_FP_64
15557 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15558 /* Keep the current setting. */;
15559 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15560 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15561 {
15562 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15563 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15564 }
15565 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15566 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15567 /* Keep the current setting. */;
15568 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15569 {
15570 const char *out_string, *in_string;
15571
15572 out_string = _bfd_mips_fp_abi_string (out_fp);
15573 in_string = _bfd_mips_fp_abi_string (in_fp);
15574 /* First warn about cases involving unrecognised ABIs. */
15575 if (!out_string && !in_string)
15576 /* xgettext:c-format */
15577 _bfd_error_handler
15578 (_("warning: %pB uses unknown floating point ABI %d "
15579 "(set by %pB), %pB uses unknown floating point ABI %d"),
15580 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15581 else if (!out_string)
15582 _bfd_error_handler
15583 /* xgettext:c-format */
15584 (_("warning: %pB uses unknown floating point ABI %d "
15585 "(set by %pB), %pB uses %s"),
15586 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15587 else if (!in_string)
15588 _bfd_error_handler
15589 /* xgettext:c-format */
15590 (_("warning: %pB uses %s (set by %pB), "
15591 "%pB uses unknown floating point ABI %d"),
15592 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15593 else
15594 {
15595 /* If one of the bfds is soft-float, the other must be
15596 hard-float. The exact choice of hard-float ABI isn't
15597 really relevant to the error message. */
15598 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15599 out_string = "-mhard-float";
15600 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15601 in_string = "-mhard-float";
15602 _bfd_error_handler
15603 /* xgettext:c-format */
15604 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15605 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15606 }
15607 }
15608 }
15609
15610 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15611 non-conflicting ones. */
15612 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15613 {
15614 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15615 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15616 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15617 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15618 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15619 {
15620 case Val_GNU_MIPS_ABI_MSA_128:
15621 _bfd_error_handler
15622 /* xgettext:c-format */
15623 (_("warning: %pB uses %s (set by %pB), "
15624 "%pB uses unknown MSA ABI %d"),
15625 obfd, "-mmsa", abi_msa_bfd,
15626 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15627 break;
15628
15629 default:
15630 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15631 {
15632 case Val_GNU_MIPS_ABI_MSA_128:
15633 _bfd_error_handler
15634 /* xgettext:c-format */
15635 (_("warning: %pB uses unknown MSA ABI %d "
15636 "(set by %pB), %pB uses %s"),
15637 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15638 abi_msa_bfd, ibfd, "-mmsa");
15639 break;
15640
15641 default:
15642 _bfd_error_handler
15643 /* xgettext:c-format */
15644 (_("warning: %pB uses unknown MSA ABI %d "
15645 "(set by %pB), %pB uses unknown MSA ABI %d"),
15646 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15647 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15648 break;
15649 }
15650 }
15651 }
15652
15653 /* Merge Tag_compatibility attributes and any common GNU ones. */
15654 return _bfd_elf_merge_object_attributes (ibfd, info);
15655 }
15656
15657 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15658 there are conflicting settings. */
15659
15660 static bfd_boolean
15661 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15662 {
15663 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15664 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15665 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15666
15667 /* Update the output abiflags fp_abi using the computed fp_abi. */
15668 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15669
15670 #define max(a, b) ((a) > (b) ? (a) : (b))
15671 /* Merge abiflags. */
15672 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15673 in_tdata->abiflags.isa_level);
15674 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15675 in_tdata->abiflags.isa_rev);
15676 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15677 in_tdata->abiflags.gpr_size);
15678 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15679 in_tdata->abiflags.cpr1_size);
15680 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15681 in_tdata->abiflags.cpr2_size);
15682 #undef max
15683 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15684 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15685
15686 return TRUE;
15687 }
15688
15689 /* Merge backend specific data from an object file to the output
15690 object file when linking. */
15691
15692 bfd_boolean
15693 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15694 {
15695 bfd *obfd = info->output_bfd;
15696 struct mips_elf_obj_tdata *out_tdata;
15697 struct mips_elf_obj_tdata *in_tdata;
15698 bfd_boolean null_input_bfd = TRUE;
15699 asection *sec;
15700 bfd_boolean ok;
15701
15702 /* Check if we have the same endianness. */
15703 if (! _bfd_generic_verify_endian_match (ibfd, info))
15704 {
15705 _bfd_error_handler
15706 (_("%pB: endianness incompatible with that of the selected emulation"),
15707 ibfd);
15708 return FALSE;
15709 }
15710
15711 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15712 return TRUE;
15713
15714 in_tdata = mips_elf_tdata (ibfd);
15715 out_tdata = mips_elf_tdata (obfd);
15716
15717 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15718 {
15719 _bfd_error_handler
15720 (_("%pB: ABI is incompatible with that of the selected emulation"),
15721 ibfd);
15722 return FALSE;
15723 }
15724
15725 /* Check to see if the input BFD actually contains any sections. If not,
15726 then it has no attributes, and its flags may not have been initialized
15727 either, but it cannot actually cause any incompatibility. */
15728 /* FIXME: This excludes any input shared library from consideration. */
15729 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15730 {
15731 /* Ignore synthetic sections and empty .text, .data and .bss sections
15732 which are automatically generated by gas. Also ignore fake
15733 (s)common sections, since merely defining a common symbol does
15734 not affect compatibility. */
15735 if ((sec->flags & SEC_IS_COMMON) == 0
15736 && strcmp (sec->name, ".reginfo")
15737 && strcmp (sec->name, ".mdebug")
15738 && (sec->size != 0
15739 || (strcmp (sec->name, ".text")
15740 && strcmp (sec->name, ".data")
15741 && strcmp (sec->name, ".bss"))))
15742 {
15743 null_input_bfd = FALSE;
15744 break;
15745 }
15746 }
15747 if (null_input_bfd)
15748 return TRUE;
15749
15750 /* Populate abiflags using existing information. */
15751 if (in_tdata->abiflags_valid)
15752 {
15753 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15754 Elf_Internal_ABIFlags_v0 in_abiflags;
15755 Elf_Internal_ABIFlags_v0 abiflags;
15756
15757 /* Set up the FP ABI attribute from the abiflags if it is not already
15758 set. */
15759 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15760 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15761
15762 infer_mips_abiflags (ibfd, &abiflags);
15763 in_abiflags = in_tdata->abiflags;
15764
15765 /* It is not possible to infer the correct ISA revision
15766 for R3 or R5 so drop down to R2 for the checks. */
15767 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15768 in_abiflags.isa_rev = 2;
15769
15770 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15771 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15772 _bfd_error_handler
15773 (_("%pB: warning: inconsistent ISA between e_flags and "
15774 ".MIPS.abiflags"), ibfd);
15775 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15776 && in_abiflags.fp_abi != abiflags.fp_abi)
15777 _bfd_error_handler
15778 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15779 ".MIPS.abiflags"), ibfd);
15780 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15781 _bfd_error_handler
15782 (_("%pB: warning: inconsistent ASEs between e_flags and "
15783 ".MIPS.abiflags"), ibfd);
15784 /* The isa_ext is allowed to be an extension of what can be inferred
15785 from e_flags. */
15786 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15787 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15788 _bfd_error_handler
15789 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15790 ".MIPS.abiflags"), ibfd);
15791 if (in_abiflags.flags2 != 0)
15792 _bfd_error_handler
15793 (_("%pB: warning: unexpected flag in the flags2 field of "
15794 ".MIPS.abiflags (0x%lx)"), ibfd,
15795 in_abiflags.flags2);
15796 }
15797 else
15798 {
15799 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15800 in_tdata->abiflags_valid = TRUE;
15801 }
15802
15803 if (!out_tdata->abiflags_valid)
15804 {
15805 /* Copy input abiflags if output abiflags are not already valid. */
15806 out_tdata->abiflags = in_tdata->abiflags;
15807 out_tdata->abiflags_valid = TRUE;
15808 }
15809
15810 if (! elf_flags_init (obfd))
15811 {
15812 elf_flags_init (obfd) = TRUE;
15813 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15814 elf_elfheader (obfd)->e_ident[EI_CLASS]
15815 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15816
15817 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15818 && (bfd_get_arch_info (obfd)->the_default
15819 || mips_mach_extends_p (bfd_get_mach (obfd),
15820 bfd_get_mach (ibfd))))
15821 {
15822 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15823 bfd_get_mach (ibfd)))
15824 return FALSE;
15825
15826 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15827 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15828 }
15829
15830 ok = TRUE;
15831 }
15832 else
15833 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15834
15835 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15836
15837 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15838
15839 if (!ok)
15840 {
15841 bfd_set_error (bfd_error_bad_value);
15842 return FALSE;
15843 }
15844
15845 return TRUE;
15846 }
15847
15848 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15849
15850 bfd_boolean
15851 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15852 {
15853 BFD_ASSERT (!elf_flags_init (abfd)
15854 || elf_elfheader (abfd)->e_flags == flags);
15855
15856 elf_elfheader (abfd)->e_flags = flags;
15857 elf_flags_init (abfd) = TRUE;
15858 return TRUE;
15859 }
15860
15861 char *
15862 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15863 {
15864 switch (dtag)
15865 {
15866 default: return "";
15867 case DT_MIPS_RLD_VERSION:
15868 return "MIPS_RLD_VERSION";
15869 case DT_MIPS_TIME_STAMP:
15870 return "MIPS_TIME_STAMP";
15871 case DT_MIPS_ICHECKSUM:
15872 return "MIPS_ICHECKSUM";
15873 case DT_MIPS_IVERSION:
15874 return "MIPS_IVERSION";
15875 case DT_MIPS_FLAGS:
15876 return "MIPS_FLAGS";
15877 case DT_MIPS_BASE_ADDRESS:
15878 return "MIPS_BASE_ADDRESS";
15879 case DT_MIPS_MSYM:
15880 return "MIPS_MSYM";
15881 case DT_MIPS_CONFLICT:
15882 return "MIPS_CONFLICT";
15883 case DT_MIPS_LIBLIST:
15884 return "MIPS_LIBLIST";
15885 case DT_MIPS_LOCAL_GOTNO:
15886 return "MIPS_LOCAL_GOTNO";
15887 case DT_MIPS_CONFLICTNO:
15888 return "MIPS_CONFLICTNO";
15889 case DT_MIPS_LIBLISTNO:
15890 return "MIPS_LIBLISTNO";
15891 case DT_MIPS_SYMTABNO:
15892 return "MIPS_SYMTABNO";
15893 case DT_MIPS_UNREFEXTNO:
15894 return "MIPS_UNREFEXTNO";
15895 case DT_MIPS_GOTSYM:
15896 return "MIPS_GOTSYM";
15897 case DT_MIPS_HIPAGENO:
15898 return "MIPS_HIPAGENO";
15899 case DT_MIPS_RLD_MAP:
15900 return "MIPS_RLD_MAP";
15901 case DT_MIPS_RLD_MAP_REL:
15902 return "MIPS_RLD_MAP_REL";
15903 case DT_MIPS_DELTA_CLASS:
15904 return "MIPS_DELTA_CLASS";
15905 case DT_MIPS_DELTA_CLASS_NO:
15906 return "MIPS_DELTA_CLASS_NO";
15907 case DT_MIPS_DELTA_INSTANCE:
15908 return "MIPS_DELTA_INSTANCE";
15909 case DT_MIPS_DELTA_INSTANCE_NO:
15910 return "MIPS_DELTA_INSTANCE_NO";
15911 case DT_MIPS_DELTA_RELOC:
15912 return "MIPS_DELTA_RELOC";
15913 case DT_MIPS_DELTA_RELOC_NO:
15914 return "MIPS_DELTA_RELOC_NO";
15915 case DT_MIPS_DELTA_SYM:
15916 return "MIPS_DELTA_SYM";
15917 case DT_MIPS_DELTA_SYM_NO:
15918 return "MIPS_DELTA_SYM_NO";
15919 case DT_MIPS_DELTA_CLASSSYM:
15920 return "MIPS_DELTA_CLASSSYM";
15921 case DT_MIPS_DELTA_CLASSSYM_NO:
15922 return "MIPS_DELTA_CLASSSYM_NO";
15923 case DT_MIPS_CXX_FLAGS:
15924 return "MIPS_CXX_FLAGS";
15925 case DT_MIPS_PIXIE_INIT:
15926 return "MIPS_PIXIE_INIT";
15927 case DT_MIPS_SYMBOL_LIB:
15928 return "MIPS_SYMBOL_LIB";
15929 case DT_MIPS_LOCALPAGE_GOTIDX:
15930 return "MIPS_LOCALPAGE_GOTIDX";
15931 case DT_MIPS_LOCAL_GOTIDX:
15932 return "MIPS_LOCAL_GOTIDX";
15933 case DT_MIPS_HIDDEN_GOTIDX:
15934 return "MIPS_HIDDEN_GOTIDX";
15935 case DT_MIPS_PROTECTED_GOTIDX:
15936 return "MIPS_PROTECTED_GOT_IDX";
15937 case DT_MIPS_OPTIONS:
15938 return "MIPS_OPTIONS";
15939 case DT_MIPS_INTERFACE:
15940 return "MIPS_INTERFACE";
15941 case DT_MIPS_DYNSTR_ALIGN:
15942 return "DT_MIPS_DYNSTR_ALIGN";
15943 case DT_MIPS_INTERFACE_SIZE:
15944 return "DT_MIPS_INTERFACE_SIZE";
15945 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15946 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15947 case DT_MIPS_PERF_SUFFIX:
15948 return "DT_MIPS_PERF_SUFFIX";
15949 case DT_MIPS_COMPACT_SIZE:
15950 return "DT_MIPS_COMPACT_SIZE";
15951 case DT_MIPS_GP_VALUE:
15952 return "DT_MIPS_GP_VALUE";
15953 case DT_MIPS_AUX_DYNAMIC:
15954 return "DT_MIPS_AUX_DYNAMIC";
15955 case DT_MIPS_PLTGOT:
15956 return "DT_MIPS_PLTGOT";
15957 case DT_MIPS_RWPLT:
15958 return "DT_MIPS_RWPLT";
15959 case DT_MIPS_XHASH:
15960 return "DT_MIPS_XHASH";
15961 }
15962 }
15963
15964 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15965 not known. */
15966
15967 const char *
15968 _bfd_mips_fp_abi_string (int fp)
15969 {
15970 switch (fp)
15971 {
15972 /* These strings aren't translated because they're simply
15973 option lists. */
15974 case Val_GNU_MIPS_ABI_FP_DOUBLE:
15975 return "-mdouble-float";
15976
15977 case Val_GNU_MIPS_ABI_FP_SINGLE:
15978 return "-msingle-float";
15979
15980 case Val_GNU_MIPS_ABI_FP_SOFT:
15981 return "-msoft-float";
15982
15983 case Val_GNU_MIPS_ABI_FP_OLD_64:
15984 return _("-mips32r2 -mfp64 (12 callee-saved)");
15985
15986 case Val_GNU_MIPS_ABI_FP_XX:
15987 return "-mfpxx";
15988
15989 case Val_GNU_MIPS_ABI_FP_64:
15990 return "-mgp32 -mfp64";
15991
15992 case Val_GNU_MIPS_ABI_FP_64A:
15993 return "-mgp32 -mfp64 -mno-odd-spreg";
15994
15995 default:
15996 return 0;
15997 }
15998 }
15999
16000 static void
16001 print_mips_ases (FILE *file, unsigned int mask)
16002 {
16003 if (mask & AFL_ASE_DSP)
16004 fputs ("\n\tDSP ASE", file);
16005 if (mask & AFL_ASE_DSPR2)
16006 fputs ("\n\tDSP R2 ASE", file);
16007 if (mask & AFL_ASE_DSPR3)
16008 fputs ("\n\tDSP R3 ASE", file);
16009 if (mask & AFL_ASE_EVA)
16010 fputs ("\n\tEnhanced VA Scheme", file);
16011 if (mask & AFL_ASE_MCU)
16012 fputs ("\n\tMCU (MicroController) ASE", file);
16013 if (mask & AFL_ASE_MDMX)
16014 fputs ("\n\tMDMX ASE", file);
16015 if (mask & AFL_ASE_MIPS3D)
16016 fputs ("\n\tMIPS-3D ASE", file);
16017 if (mask & AFL_ASE_MT)
16018 fputs ("\n\tMT ASE", file);
16019 if (mask & AFL_ASE_SMARTMIPS)
16020 fputs ("\n\tSmartMIPS ASE", file);
16021 if (mask & AFL_ASE_VIRT)
16022 fputs ("\n\tVZ ASE", file);
16023 if (mask & AFL_ASE_MSA)
16024 fputs ("\n\tMSA ASE", file);
16025 if (mask & AFL_ASE_MIPS16)
16026 fputs ("\n\tMIPS16 ASE", file);
16027 if (mask & AFL_ASE_MICROMIPS)
16028 fputs ("\n\tMICROMIPS ASE", file);
16029 if (mask & AFL_ASE_XPA)
16030 fputs ("\n\tXPA ASE", file);
16031 if (mask & AFL_ASE_MIPS16E2)
16032 fputs ("\n\tMIPS16e2 ASE", file);
16033 if (mask & AFL_ASE_CRC)
16034 fputs ("\n\tCRC ASE", file);
16035 if (mask & AFL_ASE_GINV)
16036 fputs ("\n\tGINV ASE", file);
16037 if (mask & AFL_ASE_LOONGSON_MMI)
16038 fputs ("\n\tLoongson MMI ASE", file);
16039 if (mask & AFL_ASE_LOONGSON_CAM)
16040 fputs ("\n\tLoongson CAM ASE", file);
16041 if (mask & AFL_ASE_LOONGSON_EXT)
16042 fputs ("\n\tLoongson EXT ASE", file);
16043 if (mask & AFL_ASE_LOONGSON_EXT2)
16044 fputs ("\n\tLoongson EXT2 ASE", file);
16045 if (mask == 0)
16046 fprintf (file, "\n\t%s", _("None"));
16047 else if ((mask & ~AFL_ASE_MASK) != 0)
16048 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16049 }
16050
16051 static void
16052 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16053 {
16054 switch (isa_ext)
16055 {
16056 case 0:
16057 fputs (_("None"), file);
16058 break;
16059 case AFL_EXT_XLR:
16060 fputs ("RMI XLR", file);
16061 break;
16062 case AFL_EXT_OCTEON3:
16063 fputs ("Cavium Networks Octeon3", file);
16064 break;
16065 case AFL_EXT_OCTEON2:
16066 fputs ("Cavium Networks Octeon2", file);
16067 break;
16068 case AFL_EXT_OCTEONP:
16069 fputs ("Cavium Networks OcteonP", file);
16070 break;
16071 case AFL_EXT_OCTEON:
16072 fputs ("Cavium Networks Octeon", file);
16073 break;
16074 case AFL_EXT_5900:
16075 fputs ("Toshiba R5900", file);
16076 break;
16077 case AFL_EXT_4650:
16078 fputs ("MIPS R4650", file);
16079 break;
16080 case AFL_EXT_4010:
16081 fputs ("LSI R4010", file);
16082 break;
16083 case AFL_EXT_4100:
16084 fputs ("NEC VR4100", file);
16085 break;
16086 case AFL_EXT_3900:
16087 fputs ("Toshiba R3900", file);
16088 break;
16089 case AFL_EXT_10000:
16090 fputs ("MIPS R10000", file);
16091 break;
16092 case AFL_EXT_SB1:
16093 fputs ("Broadcom SB-1", file);
16094 break;
16095 case AFL_EXT_4111:
16096 fputs ("NEC VR4111/VR4181", file);
16097 break;
16098 case AFL_EXT_4120:
16099 fputs ("NEC VR4120", file);
16100 break;
16101 case AFL_EXT_5400:
16102 fputs ("NEC VR5400", file);
16103 break;
16104 case AFL_EXT_5500:
16105 fputs ("NEC VR5500", file);
16106 break;
16107 case AFL_EXT_LOONGSON_2E:
16108 fputs ("ST Microelectronics Loongson 2E", file);
16109 break;
16110 case AFL_EXT_LOONGSON_2F:
16111 fputs ("ST Microelectronics Loongson 2F", file);
16112 break;
16113 case AFL_EXT_INTERAPTIV_MR2:
16114 fputs ("Imagination interAptiv MR2", file);
16115 break;
16116 default:
16117 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16118 break;
16119 }
16120 }
16121
16122 static void
16123 print_mips_fp_abi_value (FILE *file, int val)
16124 {
16125 switch (val)
16126 {
16127 case Val_GNU_MIPS_ABI_FP_ANY:
16128 fprintf (file, _("Hard or soft float\n"));
16129 break;
16130 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16131 fprintf (file, _("Hard float (double precision)\n"));
16132 break;
16133 case Val_GNU_MIPS_ABI_FP_SINGLE:
16134 fprintf (file, _("Hard float (single precision)\n"));
16135 break;
16136 case Val_GNU_MIPS_ABI_FP_SOFT:
16137 fprintf (file, _("Soft float\n"));
16138 break;
16139 case Val_GNU_MIPS_ABI_FP_OLD_64:
16140 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16141 break;
16142 case Val_GNU_MIPS_ABI_FP_XX:
16143 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16144 break;
16145 case Val_GNU_MIPS_ABI_FP_64:
16146 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16147 break;
16148 case Val_GNU_MIPS_ABI_FP_64A:
16149 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16150 break;
16151 default:
16152 fprintf (file, "??? (%d)\n", val);
16153 break;
16154 }
16155 }
16156
16157 static int
16158 get_mips_reg_size (int reg_size)
16159 {
16160 return (reg_size == AFL_REG_NONE) ? 0
16161 : (reg_size == AFL_REG_32) ? 32
16162 : (reg_size == AFL_REG_64) ? 64
16163 : (reg_size == AFL_REG_128) ? 128
16164 : -1;
16165 }
16166
16167 bfd_boolean
16168 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16169 {
16170 FILE *file = ptr;
16171
16172 BFD_ASSERT (abfd != NULL && ptr != NULL);
16173
16174 /* Print normal ELF private data. */
16175 _bfd_elf_print_private_bfd_data (abfd, ptr);
16176
16177 /* xgettext:c-format */
16178 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16179
16180 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16181 fprintf (file, _(" [abi=O32]"));
16182 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16183 fprintf (file, _(" [abi=O64]"));
16184 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16185 fprintf (file, _(" [abi=EABI32]"));
16186 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16187 fprintf (file, _(" [abi=EABI64]"));
16188 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16189 fprintf (file, _(" [abi unknown]"));
16190 else if (ABI_N32_P (abfd))
16191 fprintf (file, _(" [abi=N32]"));
16192 else if (ABI_64_P (abfd))
16193 fprintf (file, _(" [abi=64]"));
16194 else
16195 fprintf (file, _(" [no abi set]"));
16196
16197 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16198 fprintf (file, " [mips1]");
16199 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16200 fprintf (file, " [mips2]");
16201 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16202 fprintf (file, " [mips3]");
16203 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16204 fprintf (file, " [mips4]");
16205 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16206 fprintf (file, " [mips5]");
16207 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16208 fprintf (file, " [mips32]");
16209 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16210 fprintf (file, " [mips64]");
16211 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16212 fprintf (file, " [mips32r2]");
16213 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16214 fprintf (file, " [mips64r2]");
16215 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16216 fprintf (file, " [mips32r6]");
16217 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16218 fprintf (file, " [mips64r6]");
16219 else
16220 fprintf (file, _(" [unknown ISA]"));
16221
16222 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16223 fprintf (file, " [mdmx]");
16224
16225 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16226 fprintf (file, " [mips16]");
16227
16228 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16229 fprintf (file, " [micromips]");
16230
16231 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16232 fprintf (file, " [nan2008]");
16233
16234 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16235 fprintf (file, " [old fp64]");
16236
16237 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16238 fprintf (file, " [32bitmode]");
16239 else
16240 fprintf (file, _(" [not 32bitmode]"));
16241
16242 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16243 fprintf (file, " [noreorder]");
16244
16245 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16246 fprintf (file, " [PIC]");
16247
16248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16249 fprintf (file, " [CPIC]");
16250
16251 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16252 fprintf (file, " [XGOT]");
16253
16254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16255 fprintf (file, " [UCODE]");
16256
16257 fputc ('\n', file);
16258
16259 if (mips_elf_tdata (abfd)->abiflags_valid)
16260 {
16261 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16262 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16263 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16264 if (abiflags->isa_rev > 1)
16265 fprintf (file, "r%d", abiflags->isa_rev);
16266 fprintf (file, "\nGPR size: %d",
16267 get_mips_reg_size (abiflags->gpr_size));
16268 fprintf (file, "\nCPR1 size: %d",
16269 get_mips_reg_size (abiflags->cpr1_size));
16270 fprintf (file, "\nCPR2 size: %d",
16271 get_mips_reg_size (abiflags->cpr2_size));
16272 fputs ("\nFP ABI: ", file);
16273 print_mips_fp_abi_value (file, abiflags->fp_abi);
16274 fputs ("ISA Extension: ", file);
16275 print_mips_isa_ext (file, abiflags->isa_ext);
16276 fputs ("\nASEs:", file);
16277 print_mips_ases (file, abiflags->ases);
16278 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16279 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16280 fputc ('\n', file);
16281 }
16282
16283 return TRUE;
16284 }
16285
16286 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16287 {
16288 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16289 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16290 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16291 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16292 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16293 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16294 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16295 { NULL, 0, 0, 0, 0 }
16296 };
16297
16298 /* Merge non visibility st_other attributes. Ensure that the
16299 STO_OPTIONAL flag is copied into h->other, even if this is not a
16300 definiton of the symbol. */
16301 void
16302 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16303 unsigned int st_other,
16304 bfd_boolean definition,
16305 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16306 {
16307 if ((st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16308 {
16309 unsigned char other;
16310
16311 other = (definition ? st_other : h->other);
16312 other &= ~ELF_ST_VISIBILITY (-1);
16313 h->other = other | ELF_ST_VISIBILITY (h->other);
16314 }
16315
16316 if (!definition
16317 && ELF_MIPS_IS_OPTIONAL (st_other))
16318 h->other |= STO_OPTIONAL;
16319 }
16320
16321 /* Decide whether an undefined symbol is special and can be ignored.
16322 This is the case for OPTIONAL symbols on IRIX. */
16323 bfd_boolean
16324 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16325 {
16326 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16327 }
16328
16329 bfd_boolean
16330 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16331 {
16332 return (sym->st_shndx == SHN_COMMON
16333 || sym->st_shndx == SHN_MIPS_ACOMMON
16334 || sym->st_shndx == SHN_MIPS_SCOMMON);
16335 }
16336
16337 /* Return address for Ith PLT stub in section PLT, for relocation REL
16338 or (bfd_vma) -1 if it should not be included. */
16339
16340 bfd_vma
16341 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16342 const arelent *rel ATTRIBUTE_UNUSED)
16343 {
16344 return (plt->vma
16345 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16346 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16347 }
16348
16349 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16350 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16351 and .got.plt and also the slots may be of a different size each we walk
16352 the PLT manually fetching instructions and matching them against known
16353 patterns. To make things easier standard MIPS slots, if any, always come
16354 first. As we don't create proper ELF symbols we use the UDATA.I member
16355 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16356 with the ST_OTHER member of the ELF symbol. */
16357
16358 long
16359 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16360 long symcount ATTRIBUTE_UNUSED,
16361 asymbol **syms ATTRIBUTE_UNUSED,
16362 long dynsymcount, asymbol **dynsyms,
16363 asymbol **ret)
16364 {
16365 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16366 static const char microsuffix[] = "@micromipsplt";
16367 static const char m16suffix[] = "@mips16plt";
16368 static const char mipssuffix[] = "@plt";
16369
16370 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16371 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16372 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16373 Elf_Internal_Shdr *hdr;
16374 bfd_byte *plt_data;
16375 bfd_vma plt_offset;
16376 unsigned int other;
16377 bfd_vma entry_size;
16378 bfd_vma plt0_size;
16379 asection *relplt;
16380 bfd_vma opcode;
16381 asection *plt;
16382 asymbol *send;
16383 size_t size;
16384 char *names;
16385 long counti;
16386 arelent *p;
16387 asymbol *s;
16388 char *nend;
16389 long count;
16390 long pi;
16391 long i;
16392 long n;
16393
16394 *ret = NULL;
16395
16396 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16397 return 0;
16398
16399 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16400 if (relplt == NULL)
16401 return 0;
16402
16403 hdr = &elf_section_data (relplt)->this_hdr;
16404 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16405 return 0;
16406
16407 plt = bfd_get_section_by_name (abfd, ".plt");
16408 if (plt == NULL)
16409 return 0;
16410
16411 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16412 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16413 return -1;
16414 p = relplt->relocation;
16415
16416 /* Calculating the exact amount of space required for symbols would
16417 require two passes over the PLT, so just pessimise assuming two
16418 PLT slots per relocation. */
16419 count = relplt->size / hdr->sh_entsize;
16420 counti = count * bed->s->int_rels_per_ext_rel;
16421 size = 2 * count * sizeof (asymbol);
16422 size += count * (sizeof (mipssuffix) +
16423 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16424 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16425 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16426
16427 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16428 size += sizeof (asymbol) + sizeof (pltname);
16429
16430 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16431 return -1;
16432
16433 if (plt->size < 16)
16434 return -1;
16435
16436 s = *ret = bfd_malloc (size);
16437 if (s == NULL)
16438 return -1;
16439 send = s + 2 * count + 1;
16440
16441 names = (char *) send;
16442 nend = (char *) s + size;
16443 n = 0;
16444
16445 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16446 if (opcode == 0x3302fffe)
16447 {
16448 if (!micromips_p)
16449 return -1;
16450 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16451 other = STO_MICROMIPS;
16452 }
16453 else if (opcode == 0x0398c1d0)
16454 {
16455 if (!micromips_p)
16456 return -1;
16457 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16458 other = STO_MICROMIPS;
16459 }
16460 else
16461 {
16462 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16463 other = 0;
16464 }
16465
16466 s->the_bfd = abfd;
16467 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16468 s->section = plt;
16469 s->value = 0;
16470 s->name = names;
16471 s->udata.i = other;
16472 memcpy (names, pltname, sizeof (pltname));
16473 names += sizeof (pltname);
16474 ++s, ++n;
16475
16476 pi = 0;
16477 for (plt_offset = plt0_size;
16478 plt_offset + 8 <= plt->size && s < send;
16479 plt_offset += entry_size)
16480 {
16481 bfd_vma gotplt_addr;
16482 const char *suffix;
16483 bfd_vma gotplt_hi;
16484 bfd_vma gotplt_lo;
16485 size_t suffixlen;
16486
16487 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16488
16489 /* Check if the second word matches the expected MIPS16 instruction. */
16490 if (opcode == 0x651aeb00)
16491 {
16492 if (micromips_p)
16493 return -1;
16494 /* Truncated table??? */
16495 if (plt_offset + 16 > plt->size)
16496 break;
16497 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16498 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16499 suffixlen = sizeof (m16suffix);
16500 suffix = m16suffix;
16501 other = STO_MIPS16;
16502 }
16503 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16504 else if (opcode == 0xff220000)
16505 {
16506 if (!micromips_p)
16507 return -1;
16508 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16509 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16510 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16511 gotplt_lo <<= 2;
16512 gotplt_addr = gotplt_hi + gotplt_lo;
16513 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16514 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16515 suffixlen = sizeof (microsuffix);
16516 suffix = microsuffix;
16517 other = STO_MICROMIPS;
16518 }
16519 /* Likewise the expected microMIPS instruction (insn32 mode). */
16520 else if ((opcode & 0xffff0000) == 0xff2f0000)
16521 {
16522 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16523 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16524 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16525 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16526 gotplt_addr = gotplt_hi + gotplt_lo;
16527 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16528 suffixlen = sizeof (microsuffix);
16529 suffix = microsuffix;
16530 other = STO_MICROMIPS;
16531 }
16532 /* Otherwise assume standard MIPS code. */
16533 else
16534 {
16535 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16536 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16537 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16538 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16539 gotplt_addr = gotplt_hi + gotplt_lo;
16540 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16541 suffixlen = sizeof (mipssuffix);
16542 suffix = mipssuffix;
16543 other = 0;
16544 }
16545 /* Truncated table??? */
16546 if (plt_offset + entry_size > plt->size)
16547 break;
16548
16549 for (i = 0;
16550 i < count && p[pi].address != gotplt_addr;
16551 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16552
16553 if (i < count)
16554 {
16555 size_t namelen;
16556 size_t len;
16557
16558 *s = **p[pi].sym_ptr_ptr;
16559 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16560 we are defining a symbol, ensure one of them is set. */
16561 if ((s->flags & BSF_LOCAL) == 0)
16562 s->flags |= BSF_GLOBAL;
16563 s->flags |= BSF_SYNTHETIC;
16564 s->section = plt;
16565 s->value = plt_offset;
16566 s->name = names;
16567 s->udata.i = other;
16568
16569 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16570 namelen = len + suffixlen;
16571 if (names + namelen > nend)
16572 break;
16573
16574 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16575 names += len;
16576 memcpy (names, suffix, suffixlen);
16577 names += suffixlen;
16578
16579 ++s, ++n;
16580 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16581 }
16582 }
16583
16584 free (plt_data);
16585
16586 return n;
16587 }
16588
16589 /* Return the ABI flags associated with ABFD if available. */
16590
16591 Elf_Internal_ABIFlags_v0 *
16592 bfd_mips_elf_get_abiflags (bfd *abfd)
16593 {
16594 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16595
16596 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16597 }
16598
16599 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16600 field. Taken from `libc-abis.h' generated at GNU libc build time.
16601 Using a MIPS_ prefix as other libc targets use different values. */
16602 enum
16603 {
16604 MIPS_LIBC_ABI_DEFAULT = 0,
16605 MIPS_LIBC_ABI_MIPS_PLT,
16606 MIPS_LIBC_ABI_UNIQUE,
16607 MIPS_LIBC_ABI_MIPS_O32_FP64,
16608 MIPS_LIBC_ABI_ABSOLUTE,
16609 MIPS_LIBC_ABI_XHASH,
16610 MIPS_LIBC_ABI_MAX
16611 };
16612
16613 bfd_boolean
16614 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16615 {
16616 struct mips_elf_link_hash_table *htab = NULL;
16617 Elf_Internal_Ehdr *i_ehdrp;
16618
16619 if (!_bfd_elf_init_file_header (abfd, link_info))
16620 return FALSE;
16621
16622 i_ehdrp = elf_elfheader (abfd);
16623 if (link_info)
16624 {
16625 htab = mips_elf_hash_table (link_info);
16626 BFD_ASSERT (htab != NULL);
16627 }
16628
16629 if (htab != NULL
16630 && htab->use_plts_and_copy_relocs
16631 && htab->root.target_os != is_vxworks)
16632 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16633
16634 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16635 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16636 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16637
16638 /* Mark that we need support for absolute symbols in the dynamic loader. */
16639 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16640 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16641
16642 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16643 if it is the only hash section that will be created. */
16644 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16645 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16646 return TRUE;
16647 }
16648
16649 int
16650 _bfd_mips_elf_compact_eh_encoding
16651 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16652 {
16653 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16654 }
16655
16656 /* Return the opcode for can't unwind. */
16657
16658 int
16659 _bfd_mips_elf_cant_unwind_opcode
16660 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16661 {
16662 return COMPACT_EH_CANT_UNWIND_OPCODE;
16663 }
16664
16665 /* Record a position XLAT_LOC in the xlat translation table, associated with
16666 the hash entry H. The entry in the translation table will later be
16667 populated with the real symbol dynindx. */
16668
16669 void
16670 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16671 bfd_vma xlat_loc)
16672 {
16673 struct mips_elf_link_hash_entry *hmips;
16674
16675 hmips = (struct mips_elf_link_hash_entry *) h;
16676 hmips->mipsxhash_loc = xlat_loc;
16677 }