]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/elfxx-mips.c
bfd/
[thirdparty/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 Most of the information added by Ian Lance Taylor, Cygnus Support,
7 <ian@cygnus.com>.
8 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
9 <mark@codesourcery.com>
10 Traditional MIPS targets support added by Koundinya.K, Dansk Data
11 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
12
13 This file is part of BFD, the Binary File Descriptor library.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
28 MA 02110-1301, USA. */
29
30
31 /* This file handles functionality common to the different MIPS ABI's. */
32
33 #include "sysdep.h"
34 #include "bfd.h"
35 #include "libbfd.h"
36 #include "libiberty.h"
37 #include "elf-bfd.h"
38 #include "elfxx-mips.h"
39 #include "elf/mips.h"
40 #include "elf-vxworks.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* This structure is used to hold information about one GOT entry.
51 There are three types of entry:
52
53 (1) absolute addresses
54 (abfd == NULL)
55 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
56 (abfd != NULL, symndx >= 0)
57 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
58 (abfd != NULL, symndx == -1)
59
60 Type (3) entries are treated differently for different types of GOT.
61 In the "master" GOT -- i.e. the one that describes every GOT
62 reference needed in the link -- the mips_got_entry is keyed on both
63 the symbol and the input bfd that references it. If it turns out
64 that we need multiple GOTs, we can then use this information to
65 create separate GOTs for each input bfd.
66
67 However, we want each of these separate GOTs to have at most one
68 entry for a given symbol, so their type (3) entries are keyed only
69 on the symbol. The input bfd given by the "abfd" field is somewhat
70 arbitrary in this case.
71
72 This means that when there are multiple GOTs, each GOT has a unique
73 mips_got_entry for every symbol within it. We can therefore use the
74 mips_got_entry fields (tls_type and gotidx) to track the symbol's
75 GOT index.
76
77 However, if it turns out that we need only a single GOT, we continue
78 to use the master GOT to describe it. There may therefore be several
79 mips_got_entries for the same symbol, each with a different input bfd.
80 We want to make sure that each symbol gets a unique GOT entry, so when
81 there's a single GOT, we use the symbol's hash entry, not the
82 mips_got_entry fields, to track a symbol's GOT index. */
83 struct mips_got_entry
84 {
85 /* The input bfd in which the symbol is defined. */
86 bfd *abfd;
87 /* The index of the symbol, as stored in the relocation r_info, if
88 we have a local symbol; -1 otherwise. */
89 long symndx;
90 union
91 {
92 /* If abfd == NULL, an address that must be stored in the got. */
93 bfd_vma address;
94 /* If abfd != NULL && symndx != -1, the addend of the relocation
95 that should be added to the symbol value. */
96 bfd_vma addend;
97 /* If abfd != NULL && symndx == -1, the hash table entry
98 corresponding to symbol in the GOT. The symbol's entry
99 is in the local area if h->global_got_area is GGA_NONE,
100 otherwise it is in the global area. */
101 struct mips_elf_link_hash_entry *h;
102 } d;
103
104 /* The TLS types included in this GOT entry (specifically, GD and
105 IE). The GD and IE flags can be added as we encounter new
106 relocations. LDM can also be set; it will always be alone, not
107 combined with any GD or IE flags. An LDM GOT entry will be
108 a local symbol entry with r_symndx == 0. */
109 unsigned char tls_type;
110
111 /* The offset from the beginning of the .got section to the entry
112 corresponding to this symbol+addend. If it's a global symbol
113 whose offset is yet to be decided, it's going to be -1. */
114 long gotidx;
115 };
116
117 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
118 The structures form a non-overlapping list that is sorted by increasing
119 MIN_ADDEND. */
120 struct mips_got_page_range
121 {
122 struct mips_got_page_range *next;
123 bfd_signed_vma min_addend;
124 bfd_signed_vma max_addend;
125 };
126
127 /* This structure describes the range of addends that are applied to page
128 relocations against a given symbol. */
129 struct mips_got_page_entry
130 {
131 /* The input bfd in which the symbol is defined. */
132 bfd *abfd;
133 /* The index of the symbol, as stored in the relocation r_info. */
134 long symndx;
135 /* The ranges for this page entry. */
136 struct mips_got_page_range *ranges;
137 /* The maximum number of page entries needed for RANGES. */
138 bfd_vma num_pages;
139 };
140
141 /* This structure is used to hold .got information when linking. */
142
143 struct mips_got_info
144 {
145 /* The global symbol in the GOT with the lowest index in the dynamic
146 symbol table. */
147 struct elf_link_hash_entry *global_gotsym;
148 /* The number of global .got entries. */
149 unsigned int global_gotno;
150 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
151 unsigned int reloc_only_gotno;
152 /* The number of .got slots used for TLS. */
153 unsigned int tls_gotno;
154 /* The first unused TLS .got entry. Used only during
155 mips_elf_initialize_tls_index. */
156 unsigned int tls_assigned_gotno;
157 /* The number of local .got entries, eventually including page entries. */
158 unsigned int local_gotno;
159 /* The maximum number of page entries needed. */
160 unsigned int page_gotno;
161 /* The number of local .got entries we have used. */
162 unsigned int assigned_gotno;
163 /* A hash table holding members of the got. */
164 struct htab *got_entries;
165 /* A hash table of mips_got_page_entry structures. */
166 struct htab *got_page_entries;
167 /* A hash table mapping input bfds to other mips_got_info. NULL
168 unless multi-got was necessary. */
169 struct htab *bfd2got;
170 /* In multi-got links, a pointer to the next got (err, rather, most
171 of the time, it points to the previous got). */
172 struct mips_got_info *next;
173 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
174 for none, or MINUS_TWO for not yet assigned. This is needed
175 because a single-GOT link may have multiple hash table entries
176 for the LDM. It does not get initialized in multi-GOT mode. */
177 bfd_vma tls_ldm_offset;
178 };
179
180 /* Map an input bfd to a got in a multi-got link. */
181
182 struct mips_elf_bfd2got_hash
183 {
184 bfd *bfd;
185 struct mips_got_info *g;
186 };
187
188 /* Structure passed when traversing the bfd2got hash table, used to
189 create and merge bfd's gots. */
190
191 struct mips_elf_got_per_bfd_arg
192 {
193 /* A hashtable that maps bfds to gots. */
194 htab_t bfd2got;
195 /* The output bfd. */
196 bfd *obfd;
197 /* The link information. */
198 struct bfd_link_info *info;
199 /* A pointer to the primary got, i.e., the one that's going to get
200 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
201 DT_MIPS_GOTSYM. */
202 struct mips_got_info *primary;
203 /* A non-primary got we're trying to merge with other input bfd's
204 gots. */
205 struct mips_got_info *current;
206 /* The maximum number of got entries that can be addressed with a
207 16-bit offset. */
208 unsigned int max_count;
209 /* The maximum number of page entries needed by each got. */
210 unsigned int max_pages;
211 /* The total number of global entries which will live in the
212 primary got and be automatically relocated. This includes
213 those not referenced by the primary GOT but included in
214 the "master" GOT. */
215 unsigned int global_count;
216 };
217
218 /* Another structure used to pass arguments for got entries traversal. */
219
220 struct mips_elf_set_global_got_offset_arg
221 {
222 struct mips_got_info *g;
223 int value;
224 unsigned int needed_relocs;
225 struct bfd_link_info *info;
226 };
227
228 /* A structure used to count TLS relocations or GOT entries, for GOT
229 entry or ELF symbol table traversal. */
230
231 struct mips_elf_count_tls_arg
232 {
233 struct bfd_link_info *info;
234 unsigned int needed;
235 };
236
237 struct _mips_elf_section_data
238 {
239 struct bfd_elf_section_data elf;
240 union
241 {
242 bfd_byte *tdata;
243 } u;
244 };
245
246 #define mips_elf_section_data(sec) \
247 ((struct _mips_elf_section_data *) elf_section_data (sec))
248
249 #define is_mips_elf(bfd) \
250 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
251 && elf_tdata (bfd) != NULL \
252 && elf_object_id (bfd) == MIPS_ELF_DATA)
253
254 /* The ABI says that every symbol used by dynamic relocations must have
255 a global GOT entry. Among other things, this provides the dynamic
256 linker with a free, directly-indexed cache. The GOT can therefore
257 contain symbols that are not referenced by GOT relocations themselves
258 (in other words, it may have symbols that are not referenced by things
259 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
260
261 GOT relocations are less likely to overflow if we put the associated
262 GOT entries towards the beginning. We therefore divide the global
263 GOT entries into two areas: "normal" and "reloc-only". Entries in
264 the first area can be used for both dynamic relocations and GP-relative
265 accesses, while those in the "reloc-only" area are for dynamic
266 relocations only.
267
268 These GGA_* ("Global GOT Area") values are organised so that lower
269 values are more general than higher values. Also, non-GGA_NONE
270 values are ordered by the position of the area in the GOT. */
271 #define GGA_NORMAL 0
272 #define GGA_RELOC_ONLY 1
273 #define GGA_NONE 2
274
275 /* Information about a non-PIC interface to a PIC function. There are
276 two ways of creating these interfaces. The first is to add:
277
278 lui $25,%hi(func)
279 addiu $25,$25,%lo(func)
280
281 immediately before a PIC function "func". The second is to add:
282
283 lui $25,%hi(func)
284 j func
285 addiu $25,$25,%lo(func)
286
287 to a separate trampoline section.
288
289 Stubs of the first kind go in a new section immediately before the
290 target function. Stubs of the second kind go in a single section
291 pointed to by the hash table's "strampoline" field. */
292 struct mips_elf_la25_stub {
293 /* The generated section that contains this stub. */
294 asection *stub_section;
295
296 /* The offset of the stub from the start of STUB_SECTION. */
297 bfd_vma offset;
298
299 /* One symbol for the original function. Its location is available
300 in H->root.root.u.def. */
301 struct mips_elf_link_hash_entry *h;
302 };
303
304 /* Macros for populating a mips_elf_la25_stub. */
305
306 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
307 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
308 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
309 #define LA25_LUI_MICROMIPS_1(VAL) (0x41b9) /* lui t9,VAL */
310 #define LA25_LUI_MICROMIPS_2(VAL) (VAL)
311 #define LA25_J_MICROMIPS_1(VAL) (0xd400 | (((VAL) >> 17) & 0x3ff)) /* j VAL */
312 #define LA25_J_MICROMIPS_2(VAL) ((VAL) >> 1)
313 #define LA25_ADDIU_MICROMIPS_1(VAL) (0x3339) /* addiu t9,t9,VAL */
314 #define LA25_ADDIU_MICROMIPS_2(VAL) (VAL)
315
316 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
317 the dynamic symbols. */
318
319 struct mips_elf_hash_sort_data
320 {
321 /* The symbol in the global GOT with the lowest dynamic symbol table
322 index. */
323 struct elf_link_hash_entry *low;
324 /* The least dynamic symbol table index corresponding to a non-TLS
325 symbol with a GOT entry. */
326 long min_got_dynindx;
327 /* The greatest dynamic symbol table index corresponding to a symbol
328 with a GOT entry that is not referenced (e.g., a dynamic symbol
329 with dynamic relocations pointing to it from non-primary GOTs). */
330 long max_unref_got_dynindx;
331 /* The greatest dynamic symbol table index not corresponding to a
332 symbol without a GOT entry. */
333 long max_non_got_dynindx;
334 };
335
336 /* The MIPS ELF linker needs additional information for each symbol in
337 the global hash table. */
338
339 struct mips_elf_link_hash_entry
340 {
341 struct elf_link_hash_entry root;
342
343 /* External symbol information. */
344 EXTR esym;
345
346 /* The la25 stub we have created for ths symbol, if any. */
347 struct mips_elf_la25_stub *la25_stub;
348
349 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
350 this symbol. */
351 unsigned int possibly_dynamic_relocs;
352
353 /* If there is a stub that 32 bit functions should use to call this
354 16 bit function, this points to the section containing the stub. */
355 asection *fn_stub;
356
357 /* If there is a stub that 16 bit functions should use to call this
358 32 bit function, this points to the section containing the stub. */
359 asection *call_stub;
360
361 /* This is like the call_stub field, but it is used if the function
362 being called returns a floating point value. */
363 asection *call_fp_stub;
364
365 #define GOT_NORMAL 0
366 #define GOT_TLS_GD 1
367 #define GOT_TLS_LDM 2
368 #define GOT_TLS_IE 4
369 #define GOT_TLS_OFFSET_DONE 0x40
370 #define GOT_TLS_DONE 0x80
371 unsigned char tls_type;
372
373 /* This is only used in single-GOT mode; in multi-GOT mode there
374 is one mips_got_entry per GOT entry, so the offset is stored
375 there. In single-GOT mode there may be many mips_got_entry
376 structures all referring to the same GOT slot. It might be
377 possible to use root.got.offset instead, but that field is
378 overloaded already. */
379 bfd_vma tls_got_offset;
380
381 /* The highest GGA_* value that satisfies all references to this symbol. */
382 unsigned int global_got_area : 2;
383
384 /* True if all GOT relocations against this symbol are for calls. This is
385 a looser condition than no_fn_stub below, because there may be other
386 non-call non-GOT relocations against the symbol. */
387 unsigned int got_only_for_calls : 1;
388
389 /* True if one of the relocations described by possibly_dynamic_relocs
390 is against a readonly section. */
391 unsigned int readonly_reloc : 1;
392
393 /* True if there is a relocation against this symbol that must be
394 resolved by the static linker (in other words, if the relocation
395 cannot possibly be made dynamic). */
396 unsigned int has_static_relocs : 1;
397
398 /* True if we must not create a .MIPS.stubs entry for this symbol.
399 This is set, for example, if there are relocations related to
400 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
402 unsigned int no_fn_stub : 1;
403
404 /* Whether we need the fn_stub; this is true if this symbol appears
405 in any relocs other than a 16 bit call. */
406 unsigned int need_fn_stub : 1;
407
408 /* True if this symbol is referenced by branch relocations from
409 any non-PIC input file. This is used to determine whether an
410 la25 stub is required. */
411 unsigned int has_nonpic_branches : 1;
412
413 /* Does this symbol need a traditional MIPS lazy-binding stub
414 (as opposed to a PLT entry)? */
415 unsigned int needs_lazy_stub : 1;
416 };
417
418 /* MIPS ELF linker hash table. */
419
420 struct mips_elf_link_hash_table
421 {
422 struct elf_link_hash_table root;
423 #if 0
424 /* We no longer use this. */
425 /* String section indices for the dynamic section symbols. */
426 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
427 #endif
428
429 /* The number of .rtproc entries. */
430 bfd_size_type procedure_count;
431
432 /* The size of the .compact_rel section (if SGI_COMPAT). */
433 bfd_size_type compact_rel_size;
434
435 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
436 entry is set to the address of __rld_obj_head as in IRIX5. */
437 bfd_boolean use_rld_obj_head;
438
439 /* This is the value of the __rld_map or __rld_obj_head symbol. */
440 bfd_vma rld_value;
441
442 /* This is set if we see any mips16 stub sections. */
443 bfd_boolean mips16_stubs_seen;
444
445 /* True if we can generate copy relocs and PLTs. */
446 bfd_boolean use_plts_and_copy_relocs;
447
448 /* True if we're generating code for VxWorks. */
449 bfd_boolean is_vxworks;
450
451 /* True if we already reported the small-data section overflow. */
452 bfd_boolean small_data_overflow_reported;
453
454 /* Shortcuts to some dynamic sections, or NULL if they are not
455 being used. */
456 asection *srelbss;
457 asection *sdynbss;
458 asection *srelplt;
459 asection *srelplt2;
460 asection *sgotplt;
461 asection *splt;
462 asection *sstubs;
463 asection *sgot;
464
465 /* The master GOT information. */
466 struct mips_got_info *got_info;
467
468 /* The size of the PLT header in bytes. */
469 bfd_vma plt_header_size;
470
471 /* The size of a PLT entry in bytes. */
472 bfd_vma plt_entry_size;
473
474 /* The number of functions that need a lazy-binding stub. */
475 bfd_vma lazy_stub_count;
476
477 /* The size of a function stub entry in bytes. */
478 bfd_vma function_stub_size;
479
480 /* The number of reserved entries at the beginning of the GOT. */
481 unsigned int reserved_gotno;
482
483 /* The section used for mips_elf_la25_stub trampolines.
484 See the comment above that structure for details. */
485 asection *strampoline;
486
487 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
488 pairs. */
489 htab_t la25_stubs;
490
491 /* A function FN (NAME, IS, OS) that creates a new input section
492 called NAME and links it to output section OS. If IS is nonnull,
493 the new section should go immediately before it, otherwise it
494 should go at the (current) beginning of OS.
495
496 The function returns the new section on success, otherwise it
497 returns null. */
498 asection *(*add_stub_section) (const char *, asection *, asection *);
499 };
500
501 /* Get the MIPS ELF linker hash table from a link_info structure. */
502
503 #define mips_elf_hash_table(p) \
504 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
505 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
506
507 /* A structure used to communicate with htab_traverse callbacks. */
508 struct mips_htab_traverse_info
509 {
510 /* The usual link-wide information. */
511 struct bfd_link_info *info;
512 bfd *output_bfd;
513
514 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
515 bfd_boolean error;
516 };
517
518 #define TLS_RELOC_P(r_type) \
519 (r_type == R_MIPS_TLS_DTPMOD32 \
520 || r_type == R_MIPS_TLS_DTPMOD64 \
521 || r_type == R_MIPS_TLS_DTPREL32 \
522 || r_type == R_MIPS_TLS_DTPREL64 \
523 || r_type == R_MIPS_TLS_GD \
524 || r_type == R_MIPS_TLS_LDM \
525 || r_type == R_MIPS_TLS_DTPREL_HI16 \
526 || r_type == R_MIPS_TLS_DTPREL_LO16 \
527 || r_type == R_MIPS_TLS_GOTTPREL \
528 || r_type == R_MIPS_TLS_TPREL32 \
529 || r_type == R_MIPS_TLS_TPREL64 \
530 || r_type == R_MIPS_TLS_TPREL_HI16 \
531 || r_type == R_MIPS_TLS_TPREL_LO16 \
532 || r_type == R_MICROMIPS_TLS_GD \
533 || r_type == R_MICROMIPS_TLS_LDM \
534 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
535 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
536 || r_type == R_MICROMIPS_TLS_GOTTPREL \
537 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
538 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
539
540 /* Structure used to pass information to mips_elf_output_extsym. */
541
542 struct extsym_info
543 {
544 bfd *abfd;
545 struct bfd_link_info *info;
546 struct ecoff_debug_info *debug;
547 const struct ecoff_debug_swap *swap;
548 bfd_boolean failed;
549 };
550
551 /* The names of the runtime procedure table symbols used on IRIX5. */
552
553 static const char * const mips_elf_dynsym_rtproc_names[] =
554 {
555 "_procedure_table",
556 "_procedure_string_table",
557 "_procedure_table_size",
558 NULL
559 };
560
561 /* These structures are used to generate the .compact_rel section on
562 IRIX5. */
563
564 typedef struct
565 {
566 unsigned long id1; /* Always one? */
567 unsigned long num; /* Number of compact relocation entries. */
568 unsigned long id2; /* Always two? */
569 unsigned long offset; /* The file offset of the first relocation. */
570 unsigned long reserved0; /* Zero? */
571 unsigned long reserved1; /* Zero? */
572 } Elf32_compact_rel;
573
574 typedef struct
575 {
576 bfd_byte id1[4];
577 bfd_byte num[4];
578 bfd_byte id2[4];
579 bfd_byte offset[4];
580 bfd_byte reserved0[4];
581 bfd_byte reserved1[4];
582 } Elf32_External_compact_rel;
583
584 typedef struct
585 {
586 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
587 unsigned int rtype : 4; /* Relocation types. See below. */
588 unsigned int dist2to : 8;
589 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
590 unsigned long konst; /* KONST field. See below. */
591 unsigned long vaddr; /* VADDR to be relocated. */
592 } Elf32_crinfo;
593
594 typedef struct
595 {
596 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
597 unsigned int rtype : 4; /* Relocation types. See below. */
598 unsigned int dist2to : 8;
599 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
600 unsigned long konst; /* KONST field. See below. */
601 } Elf32_crinfo2;
602
603 typedef struct
604 {
605 bfd_byte info[4];
606 bfd_byte konst[4];
607 bfd_byte vaddr[4];
608 } Elf32_External_crinfo;
609
610 typedef struct
611 {
612 bfd_byte info[4];
613 bfd_byte konst[4];
614 } Elf32_External_crinfo2;
615
616 /* These are the constants used to swap the bitfields in a crinfo. */
617
618 #define CRINFO_CTYPE (0x1)
619 #define CRINFO_CTYPE_SH (31)
620 #define CRINFO_RTYPE (0xf)
621 #define CRINFO_RTYPE_SH (27)
622 #define CRINFO_DIST2TO (0xff)
623 #define CRINFO_DIST2TO_SH (19)
624 #define CRINFO_RELVADDR (0x7ffff)
625 #define CRINFO_RELVADDR_SH (0)
626
627 /* A compact relocation info has long (3 words) or short (2 words)
628 formats. A short format doesn't have VADDR field and relvaddr
629 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
630 #define CRF_MIPS_LONG 1
631 #define CRF_MIPS_SHORT 0
632
633 /* There are 4 types of compact relocation at least. The value KONST
634 has different meaning for each type:
635
636 (type) (konst)
637 CT_MIPS_REL32 Address in data
638 CT_MIPS_WORD Address in word (XXX)
639 CT_MIPS_GPHI_LO GP - vaddr
640 CT_MIPS_JMPAD Address to jump
641 */
642
643 #define CRT_MIPS_REL32 0xa
644 #define CRT_MIPS_WORD 0xb
645 #define CRT_MIPS_GPHI_LO 0xc
646 #define CRT_MIPS_JMPAD 0xd
647
648 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
649 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
650 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
651 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
652 \f
653 /* The structure of the runtime procedure descriptor created by the
654 loader for use by the static exception system. */
655
656 typedef struct runtime_pdr {
657 bfd_vma adr; /* Memory address of start of procedure. */
658 long regmask; /* Save register mask. */
659 long regoffset; /* Save register offset. */
660 long fregmask; /* Save floating point register mask. */
661 long fregoffset; /* Save floating point register offset. */
662 long frameoffset; /* Frame size. */
663 short framereg; /* Frame pointer register. */
664 short pcreg; /* Offset or reg of return pc. */
665 long irpss; /* Index into the runtime string table. */
666 long reserved;
667 struct exception_info *exception_info;/* Pointer to exception array. */
668 } RPDR, *pRPDR;
669 #define cbRPDR sizeof (RPDR)
670 #define rpdNil ((pRPDR) 0)
671 \f
672 static struct mips_got_entry *mips_elf_create_local_got_entry
673 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
674 struct mips_elf_link_hash_entry *, int);
675 static bfd_boolean mips_elf_sort_hash_table_f
676 (struct mips_elf_link_hash_entry *, void *);
677 static bfd_vma mips_elf_high
678 (bfd_vma);
679 static bfd_boolean mips_elf_create_dynamic_relocation
680 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
681 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
682 bfd_vma *, asection *);
683 static hashval_t mips_elf_got_entry_hash
684 (const void *);
685 static bfd_vma mips_elf_adjust_gp
686 (bfd *, struct mips_got_info *, bfd *);
687 static struct mips_got_info *mips_elf_got_for_ibfd
688 (struct mips_got_info *, bfd *);
689
690 /* This will be used when we sort the dynamic relocation records. */
691 static bfd *reldyn_sorting_bfd;
692
693 /* True if ABFD is for CPUs with load interlocking that include
694 non-MIPS1 CPUs and R3900. */
695 #define LOAD_INTERLOCKS_P(abfd) \
696 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
697 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
698
699 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
700 This should be safe for all architectures. We enable this predicate
701 for RM9000 for now. */
702 #define JAL_TO_BAL_P(abfd) \
703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
704
705 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
706 This should be safe for all architectures. We enable this predicate for
707 all CPUs. */
708 #define JALR_TO_BAL_P(abfd) 1
709
710 /* True if ABFD is for CPUs that are faster if JR is converted to B.
711 This should be safe for all architectures. We enable this predicate for
712 all CPUs. */
713 #define JR_TO_B_P(abfd) 1
714
715 /* True if ABFD is a PIC object. */
716 #define PIC_OBJECT_P(abfd) \
717 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
718
719 /* Nonzero if ABFD is using the N32 ABI. */
720 #define ABI_N32_P(abfd) \
721 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
722
723 /* Nonzero if ABFD is using the N64 ABI. */
724 #define ABI_64_P(abfd) \
725 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
726
727 /* Nonzero if ABFD is using NewABI conventions. */
728 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
729
730 /* The IRIX compatibility level we are striving for. */
731 #define IRIX_COMPAT(abfd) \
732 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
733
734 /* Whether we are trying to be compatible with IRIX at all. */
735 #define SGI_COMPAT(abfd) \
736 (IRIX_COMPAT (abfd) != ict_none)
737
738 /* The name of the options section. */
739 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
740 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
741
742 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
743 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
744 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
745 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
746
747 /* Whether the section is readonly. */
748 #define MIPS_ELF_READONLY_SECTION(sec) \
749 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
750 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
751
752 /* The name of the stub section. */
753 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
754
755 /* The size of an external REL relocation. */
756 #define MIPS_ELF_REL_SIZE(abfd) \
757 (get_elf_backend_data (abfd)->s->sizeof_rel)
758
759 /* The size of an external RELA relocation. */
760 #define MIPS_ELF_RELA_SIZE(abfd) \
761 (get_elf_backend_data (abfd)->s->sizeof_rela)
762
763 /* The size of an external dynamic table entry. */
764 #define MIPS_ELF_DYN_SIZE(abfd) \
765 (get_elf_backend_data (abfd)->s->sizeof_dyn)
766
767 /* The size of a GOT entry. */
768 #define MIPS_ELF_GOT_SIZE(abfd) \
769 (get_elf_backend_data (abfd)->s->arch_size / 8)
770
771 /* The size of a symbol-table entry. */
772 #define MIPS_ELF_SYM_SIZE(abfd) \
773 (get_elf_backend_data (abfd)->s->sizeof_sym)
774
775 /* The default alignment for sections, as a power of two. */
776 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
777 (get_elf_backend_data (abfd)->s->log_file_align)
778
779 /* Get word-sized data. */
780 #define MIPS_ELF_GET_WORD(abfd, ptr) \
781 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
782
783 /* Put out word-sized data. */
784 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
785 (ABI_64_P (abfd) \
786 ? bfd_put_64 (abfd, val, ptr) \
787 : bfd_put_32 (abfd, val, ptr))
788
789 /* The opcode for word-sized loads (LW or LD). */
790 #define MIPS_ELF_LOAD_WORD(abfd) \
791 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
792
793 /* Add a dynamic symbol table-entry. */
794 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
795 _bfd_elf_add_dynamic_entry (info, tag, val)
796
797 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
798 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
799
800 /* The name of the dynamic relocation section. */
801 #define MIPS_ELF_REL_DYN_NAME(INFO) \
802 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
803
804 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
805 from smaller values. Start with zero, widen, *then* decrement. */
806 #define MINUS_ONE (((bfd_vma)0) - 1)
807 #define MINUS_TWO (((bfd_vma)0) - 2)
808
809 /* The value to write into got[1] for SVR4 targets, to identify it is
810 a GNU object. The dynamic linker can then use got[1] to store the
811 module pointer. */
812 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
813 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
814
815 /* The offset of $gp from the beginning of the .got section. */
816 #define ELF_MIPS_GP_OFFSET(INFO) \
817 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
818
819 /* The maximum size of the GOT for it to be addressable using 16-bit
820 offsets from $gp. */
821 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
822
823 /* Instructions which appear in a stub. */
824 #define STUB_LW(abfd) \
825 ((ABI_64_P (abfd) \
826 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
827 : 0x8f998010)) /* lw t9,0x8010(gp) */
828 #define STUB_MOVE(abfd) \
829 ((ABI_64_P (abfd) \
830 ? 0x03e0782d /* daddu t7,ra */ \
831 : 0x03e07821)) /* addu t7,ra */
832 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
833 #define STUB_JALR 0x0320f809 /* jalr t9,ra */
834 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
835 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
836 #define STUB_LI16S(abfd, VAL) \
837 ((ABI_64_P (abfd) \
838 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
839 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
840
841 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
842 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
843
844 /* The name of the dynamic interpreter. This is put in the .interp
845 section. */
846
847 #define ELF_DYNAMIC_INTERPRETER(abfd) \
848 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
849 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
850 : "/usr/lib/libc.so.1")
851
852 #ifdef BFD64
853 #define MNAME(bfd,pre,pos) \
854 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
855 #define ELF_R_SYM(bfd, i) \
856 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
857 #define ELF_R_TYPE(bfd, i) \
858 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
859 #define ELF_R_INFO(bfd, s, t) \
860 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
861 #else
862 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
863 #define ELF_R_SYM(bfd, i) \
864 (ELF32_R_SYM (i))
865 #define ELF_R_TYPE(bfd, i) \
866 (ELF32_R_TYPE (i))
867 #define ELF_R_INFO(bfd, s, t) \
868 (ELF32_R_INFO (s, t))
869 #endif
870 \f
871 /* The mips16 compiler uses a couple of special sections to handle
872 floating point arguments.
873
874 Section names that look like .mips16.fn.FNNAME contain stubs that
875 copy floating point arguments from the fp regs to the gp regs and
876 then jump to FNNAME. If any 32 bit function calls FNNAME, the
877 call should be redirected to the stub instead. If no 32 bit
878 function calls FNNAME, the stub should be discarded. We need to
879 consider any reference to the function, not just a call, because
880 if the address of the function is taken we will need the stub,
881 since the address might be passed to a 32 bit function.
882
883 Section names that look like .mips16.call.FNNAME contain stubs
884 that copy floating point arguments from the gp regs to the fp
885 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
886 then any 16 bit function that calls FNNAME should be redirected
887 to the stub instead. If FNNAME is not a 32 bit function, the
888 stub should be discarded.
889
890 .mips16.call.fp.FNNAME sections are similar, but contain stubs
891 which call FNNAME and then copy the return value from the fp regs
892 to the gp regs. These stubs store the return value in $18 while
893 calling FNNAME; any function which might call one of these stubs
894 must arrange to save $18 around the call. (This case is not
895 needed for 32 bit functions that call 16 bit functions, because
896 16 bit functions always return floating point values in both
897 $f0/$f1 and $2/$3.)
898
899 Note that in all cases FNNAME might be defined statically.
900 Therefore, FNNAME is not used literally. Instead, the relocation
901 information will indicate which symbol the section is for.
902
903 We record any stubs that we find in the symbol table. */
904
905 #define FN_STUB ".mips16.fn."
906 #define CALL_STUB ".mips16.call."
907 #define CALL_FP_STUB ".mips16.call.fp."
908
909 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
910 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
911 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
912 \f
913 /* The format of the first PLT entry in an O32 executable. */
914 static const bfd_vma mips_o32_exec_plt0_entry[] =
915 {
916 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
917 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
918 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
919 0x031cc023, /* subu $24, $24, $28 */
920 0x03e07821, /* move $15, $31 */
921 0x0018c082, /* srl $24, $24, 2 */
922 0x0320f809, /* jalr $25 */
923 0x2718fffe /* subu $24, $24, 2 */
924 };
925
926 /* The format of the first PLT entry in an N32 executable. Different
927 because gp ($28) is not available; we use t2 ($14) instead. */
928 static const bfd_vma mips_n32_exec_plt0_entry[] =
929 {
930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
931 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
933 0x030ec023, /* subu $24, $24, $14 */
934 0x03e07821, /* move $15, $31 */
935 0x0018c082, /* srl $24, $24, 2 */
936 0x0320f809, /* jalr $25 */
937 0x2718fffe /* subu $24, $24, 2 */
938 };
939
940 /* The format of the first PLT entry in an N64 executable. Different
941 from N32 because of the increased size of GOT entries. */
942 static const bfd_vma mips_n64_exec_plt0_entry[] =
943 {
944 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
945 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
946 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
947 0x030ec023, /* subu $24, $24, $14 */
948 0x03e07821, /* move $15, $31 */
949 0x0018c0c2, /* srl $24, $24, 3 */
950 0x0320f809, /* jalr $25 */
951 0x2718fffe /* subu $24, $24, 2 */
952 };
953
954 /* The format of subsequent PLT entries. */
955 static const bfd_vma mips_exec_plt_entry[] =
956 {
957 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
958 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
959 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
960 0x03200008 /* jr $25 */
961 };
962
963 /* The format of the first PLT entry in a VxWorks executable. */
964 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
965 {
966 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
967 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
968 0x8f390008, /* lw t9, 8(t9) */
969 0x00000000, /* nop */
970 0x03200008, /* jr t9 */
971 0x00000000 /* nop */
972 };
973
974 /* The format of subsequent PLT entries. */
975 static const bfd_vma mips_vxworks_exec_plt_entry[] =
976 {
977 0x10000000, /* b .PLT_resolver */
978 0x24180000, /* li t8, <pltindex> */
979 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
980 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
981 0x8f390000, /* lw t9, 0(t9) */
982 0x00000000, /* nop */
983 0x03200008, /* jr t9 */
984 0x00000000 /* nop */
985 };
986
987 /* The format of the first PLT entry in a VxWorks shared object. */
988 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
989 {
990 0x8f990008, /* lw t9, 8(gp) */
991 0x00000000, /* nop */
992 0x03200008, /* jr t9 */
993 0x00000000, /* nop */
994 0x00000000, /* nop */
995 0x00000000 /* nop */
996 };
997
998 /* The format of subsequent PLT entries. */
999 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1000 {
1001 0x10000000, /* b .PLT_resolver */
1002 0x24180000 /* li t8, <pltindex> */
1003 };
1004 \f
1005 /* Look up an entry in a MIPS ELF linker hash table. */
1006
1007 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1008 ((struct mips_elf_link_hash_entry *) \
1009 elf_link_hash_lookup (&(table)->root, (string), (create), \
1010 (copy), (follow)))
1011
1012 /* Traverse a MIPS ELF linker hash table. */
1013
1014 #define mips_elf_link_hash_traverse(table, func, info) \
1015 (elf_link_hash_traverse \
1016 (&(table)->root, \
1017 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1018 (info)))
1019
1020 /* Find the base offsets for thread-local storage in this object,
1021 for GD/LD and IE/LE respectively. */
1022
1023 #define TP_OFFSET 0x7000
1024 #define DTP_OFFSET 0x8000
1025
1026 static bfd_vma
1027 dtprel_base (struct bfd_link_info *info)
1028 {
1029 /* If tls_sec is NULL, we should have signalled an error already. */
1030 if (elf_hash_table (info)->tls_sec == NULL)
1031 return 0;
1032 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1033 }
1034
1035 static bfd_vma
1036 tprel_base (struct bfd_link_info *info)
1037 {
1038 /* If tls_sec is NULL, we should have signalled an error already. */
1039 if (elf_hash_table (info)->tls_sec == NULL)
1040 return 0;
1041 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1042 }
1043
1044 /* Create an entry in a MIPS ELF linker hash table. */
1045
1046 static struct bfd_hash_entry *
1047 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1048 struct bfd_hash_table *table, const char *string)
1049 {
1050 struct mips_elf_link_hash_entry *ret =
1051 (struct mips_elf_link_hash_entry *) entry;
1052
1053 /* Allocate the structure if it has not already been allocated by a
1054 subclass. */
1055 if (ret == NULL)
1056 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1057 if (ret == NULL)
1058 return (struct bfd_hash_entry *) ret;
1059
1060 /* Call the allocation method of the superclass. */
1061 ret = ((struct mips_elf_link_hash_entry *)
1062 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1063 table, string));
1064 if (ret != NULL)
1065 {
1066 /* Set local fields. */
1067 memset (&ret->esym, 0, sizeof (EXTR));
1068 /* We use -2 as a marker to indicate that the information has
1069 not been set. -1 means there is no associated ifd. */
1070 ret->esym.ifd = -2;
1071 ret->la25_stub = 0;
1072 ret->possibly_dynamic_relocs = 0;
1073 ret->fn_stub = NULL;
1074 ret->call_stub = NULL;
1075 ret->call_fp_stub = NULL;
1076 ret->tls_type = GOT_NORMAL;
1077 ret->global_got_area = GGA_NONE;
1078 ret->got_only_for_calls = TRUE;
1079 ret->readonly_reloc = FALSE;
1080 ret->has_static_relocs = FALSE;
1081 ret->no_fn_stub = FALSE;
1082 ret->need_fn_stub = FALSE;
1083 ret->has_nonpic_branches = FALSE;
1084 ret->needs_lazy_stub = FALSE;
1085 }
1086
1087 return (struct bfd_hash_entry *) ret;
1088 }
1089
1090 bfd_boolean
1091 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1092 {
1093 if (!sec->used_by_bfd)
1094 {
1095 struct _mips_elf_section_data *sdata;
1096 bfd_size_type amt = sizeof (*sdata);
1097
1098 sdata = bfd_zalloc (abfd, amt);
1099 if (sdata == NULL)
1100 return FALSE;
1101 sec->used_by_bfd = sdata;
1102 }
1103
1104 return _bfd_elf_new_section_hook (abfd, sec);
1105 }
1106 \f
1107 /* Read ECOFF debugging information from a .mdebug section into a
1108 ecoff_debug_info structure. */
1109
1110 bfd_boolean
1111 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1112 struct ecoff_debug_info *debug)
1113 {
1114 HDRR *symhdr;
1115 const struct ecoff_debug_swap *swap;
1116 char *ext_hdr;
1117
1118 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1119 memset (debug, 0, sizeof (*debug));
1120
1121 ext_hdr = bfd_malloc (swap->external_hdr_size);
1122 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1123 goto error_return;
1124
1125 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1126 swap->external_hdr_size))
1127 goto error_return;
1128
1129 symhdr = &debug->symbolic_header;
1130 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1131
1132 /* The symbolic header contains absolute file offsets and sizes to
1133 read. */
1134 #define READ(ptr, offset, count, size, type) \
1135 if (symhdr->count == 0) \
1136 debug->ptr = NULL; \
1137 else \
1138 { \
1139 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1140 debug->ptr = bfd_malloc (amt); \
1141 if (debug->ptr == NULL) \
1142 goto error_return; \
1143 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1144 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1145 goto error_return; \
1146 }
1147
1148 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1149 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1150 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1151 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1152 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1153 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1154 union aux_ext *);
1155 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1156 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1157 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1158 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1159 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1160 #undef READ
1161
1162 debug->fdr = NULL;
1163
1164 return TRUE;
1165
1166 error_return:
1167 if (ext_hdr != NULL)
1168 free (ext_hdr);
1169 if (debug->line != NULL)
1170 free (debug->line);
1171 if (debug->external_dnr != NULL)
1172 free (debug->external_dnr);
1173 if (debug->external_pdr != NULL)
1174 free (debug->external_pdr);
1175 if (debug->external_sym != NULL)
1176 free (debug->external_sym);
1177 if (debug->external_opt != NULL)
1178 free (debug->external_opt);
1179 if (debug->external_aux != NULL)
1180 free (debug->external_aux);
1181 if (debug->ss != NULL)
1182 free (debug->ss);
1183 if (debug->ssext != NULL)
1184 free (debug->ssext);
1185 if (debug->external_fdr != NULL)
1186 free (debug->external_fdr);
1187 if (debug->external_rfd != NULL)
1188 free (debug->external_rfd);
1189 if (debug->external_ext != NULL)
1190 free (debug->external_ext);
1191 return FALSE;
1192 }
1193 \f
1194 /* Swap RPDR (runtime procedure table entry) for output. */
1195
1196 static void
1197 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1198 {
1199 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1200 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1201 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1202 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1203 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1204 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1205
1206 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1207 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1208
1209 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1210 }
1211
1212 /* Create a runtime procedure table from the .mdebug section. */
1213
1214 static bfd_boolean
1215 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1216 struct bfd_link_info *info, asection *s,
1217 struct ecoff_debug_info *debug)
1218 {
1219 const struct ecoff_debug_swap *swap;
1220 HDRR *hdr = &debug->symbolic_header;
1221 RPDR *rpdr, *rp;
1222 struct rpdr_ext *erp;
1223 void *rtproc;
1224 struct pdr_ext *epdr;
1225 struct sym_ext *esym;
1226 char *ss, **sv;
1227 char *str;
1228 bfd_size_type size;
1229 bfd_size_type count;
1230 unsigned long sindex;
1231 unsigned long i;
1232 PDR pdr;
1233 SYMR sym;
1234 const char *no_name_func = _("static procedure (no name)");
1235
1236 epdr = NULL;
1237 rpdr = NULL;
1238 esym = NULL;
1239 ss = NULL;
1240 sv = NULL;
1241
1242 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1243
1244 sindex = strlen (no_name_func) + 1;
1245 count = hdr->ipdMax;
1246 if (count > 0)
1247 {
1248 size = swap->external_pdr_size;
1249
1250 epdr = bfd_malloc (size * count);
1251 if (epdr == NULL)
1252 goto error_return;
1253
1254 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1255 goto error_return;
1256
1257 size = sizeof (RPDR);
1258 rp = rpdr = bfd_malloc (size * count);
1259 if (rpdr == NULL)
1260 goto error_return;
1261
1262 size = sizeof (char *);
1263 sv = bfd_malloc (size * count);
1264 if (sv == NULL)
1265 goto error_return;
1266
1267 count = hdr->isymMax;
1268 size = swap->external_sym_size;
1269 esym = bfd_malloc (size * count);
1270 if (esym == NULL)
1271 goto error_return;
1272
1273 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1274 goto error_return;
1275
1276 count = hdr->issMax;
1277 ss = bfd_malloc (count);
1278 if (ss == NULL)
1279 goto error_return;
1280 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1281 goto error_return;
1282
1283 count = hdr->ipdMax;
1284 for (i = 0; i < (unsigned long) count; i++, rp++)
1285 {
1286 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1287 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1288 rp->adr = sym.value;
1289 rp->regmask = pdr.regmask;
1290 rp->regoffset = pdr.regoffset;
1291 rp->fregmask = pdr.fregmask;
1292 rp->fregoffset = pdr.fregoffset;
1293 rp->frameoffset = pdr.frameoffset;
1294 rp->framereg = pdr.framereg;
1295 rp->pcreg = pdr.pcreg;
1296 rp->irpss = sindex;
1297 sv[i] = ss + sym.iss;
1298 sindex += strlen (sv[i]) + 1;
1299 }
1300 }
1301
1302 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1303 size = BFD_ALIGN (size, 16);
1304 rtproc = bfd_alloc (abfd, size);
1305 if (rtproc == NULL)
1306 {
1307 mips_elf_hash_table (info)->procedure_count = 0;
1308 goto error_return;
1309 }
1310
1311 mips_elf_hash_table (info)->procedure_count = count + 2;
1312
1313 erp = rtproc;
1314 memset (erp, 0, sizeof (struct rpdr_ext));
1315 erp++;
1316 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1317 strcpy (str, no_name_func);
1318 str += strlen (no_name_func) + 1;
1319 for (i = 0; i < count; i++)
1320 {
1321 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1322 strcpy (str, sv[i]);
1323 str += strlen (sv[i]) + 1;
1324 }
1325 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1326
1327 /* Set the size and contents of .rtproc section. */
1328 s->size = size;
1329 s->contents = rtproc;
1330
1331 /* Skip this section later on (I don't think this currently
1332 matters, but someday it might). */
1333 s->map_head.link_order = NULL;
1334
1335 if (epdr != NULL)
1336 free (epdr);
1337 if (rpdr != NULL)
1338 free (rpdr);
1339 if (esym != NULL)
1340 free (esym);
1341 if (ss != NULL)
1342 free (ss);
1343 if (sv != NULL)
1344 free (sv);
1345
1346 return TRUE;
1347
1348 error_return:
1349 if (epdr != NULL)
1350 free (epdr);
1351 if (rpdr != NULL)
1352 free (rpdr);
1353 if (esym != NULL)
1354 free (esym);
1355 if (ss != NULL)
1356 free (ss);
1357 if (sv != NULL)
1358 free (sv);
1359 return FALSE;
1360 }
1361 \f
1362 /* We're going to create a stub for H. Create a symbol for the stub's
1363 value and size, to help make the disassembly easier to read. */
1364
1365 static bfd_boolean
1366 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1367 struct mips_elf_link_hash_entry *h,
1368 const char *prefix, asection *s, bfd_vma value,
1369 bfd_vma size)
1370 {
1371 struct bfd_link_hash_entry *bh;
1372 struct elf_link_hash_entry *elfh;
1373 const char *name;
1374
1375 if (ELF_ST_IS_MICROMIPS (h->root.other))
1376 value |= 1;
1377
1378 /* Create a new symbol. */
1379 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1380 bh = NULL;
1381 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1382 BSF_LOCAL, s, value, NULL,
1383 TRUE, FALSE, &bh))
1384 return FALSE;
1385
1386 /* Make it a local function. */
1387 elfh = (struct elf_link_hash_entry *) bh;
1388 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1389 elfh->size = size;
1390 elfh->forced_local = 1;
1391 return TRUE;
1392 }
1393
1394 /* We're about to redefine H. Create a symbol to represent H's
1395 current value and size, to help make the disassembly easier
1396 to read. */
1397
1398 static bfd_boolean
1399 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1400 struct mips_elf_link_hash_entry *h,
1401 const char *prefix)
1402 {
1403 struct bfd_link_hash_entry *bh;
1404 struct elf_link_hash_entry *elfh;
1405 const char *name;
1406 asection *s;
1407 bfd_vma value;
1408
1409 /* Read the symbol's value. */
1410 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1411 || h->root.root.type == bfd_link_hash_defweak);
1412 s = h->root.root.u.def.section;
1413 value = h->root.root.u.def.value;
1414
1415 /* Create a new symbol. */
1416 name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1417 bh = NULL;
1418 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1419 BSF_LOCAL, s, value, NULL,
1420 TRUE, FALSE, &bh))
1421 return FALSE;
1422
1423 /* Make it local and copy the other attributes from H. */
1424 elfh = (struct elf_link_hash_entry *) bh;
1425 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1426 elfh->other = h->root.other;
1427 elfh->size = h->root.size;
1428 elfh->forced_local = 1;
1429 return TRUE;
1430 }
1431
1432 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1433 function rather than to a hard-float stub. */
1434
1435 static bfd_boolean
1436 section_allows_mips16_refs_p (asection *section)
1437 {
1438 const char *name;
1439
1440 name = bfd_get_section_name (section->owner, section);
1441 return (FN_STUB_P (name)
1442 || CALL_STUB_P (name)
1443 || CALL_FP_STUB_P (name)
1444 || strcmp (name, ".pdr") == 0);
1445 }
1446
1447 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1448 stub section of some kind. Return the R_SYMNDX of the target
1449 function, or 0 if we can't decide which function that is. */
1450
1451 static unsigned long
1452 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1453 const Elf_Internal_Rela *relocs,
1454 const Elf_Internal_Rela *relend)
1455 {
1456 const Elf_Internal_Rela *rel;
1457
1458 /* Trust the first R_MIPS_NONE relocation, if any. */
1459 for (rel = relocs; rel < relend; rel++)
1460 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1461 return ELF_R_SYM (sec->owner, rel->r_info);
1462
1463 /* Otherwise trust the first relocation, whatever its kind. This is
1464 the traditional behavior. */
1465 if (relocs < relend)
1466 return ELF_R_SYM (sec->owner, relocs->r_info);
1467
1468 return 0;
1469 }
1470
1471 /* Check the mips16 stubs for a particular symbol, and see if we can
1472 discard them. */
1473
1474 static void
1475 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1476 struct mips_elf_link_hash_entry *h)
1477 {
1478 /* Dynamic symbols must use the standard call interface, in case other
1479 objects try to call them. */
1480 if (h->fn_stub != NULL
1481 && h->root.dynindx != -1)
1482 {
1483 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1484 h->need_fn_stub = TRUE;
1485 }
1486
1487 if (h->fn_stub != NULL
1488 && ! h->need_fn_stub)
1489 {
1490 /* We don't need the fn_stub; the only references to this symbol
1491 are 16 bit calls. Clobber the size to 0 to prevent it from
1492 being included in the link. */
1493 h->fn_stub->size = 0;
1494 h->fn_stub->flags &= ~SEC_RELOC;
1495 h->fn_stub->reloc_count = 0;
1496 h->fn_stub->flags |= SEC_EXCLUDE;
1497 }
1498
1499 if (h->call_stub != NULL
1500 && ELF_ST_IS_MIPS16 (h->root.other))
1501 {
1502 /* We don't need the call_stub; this is a 16 bit function, so
1503 calls from other 16 bit functions are OK. Clobber the size
1504 to 0 to prevent it from being included in the link. */
1505 h->call_stub->size = 0;
1506 h->call_stub->flags &= ~SEC_RELOC;
1507 h->call_stub->reloc_count = 0;
1508 h->call_stub->flags |= SEC_EXCLUDE;
1509 }
1510
1511 if (h->call_fp_stub != NULL
1512 && ELF_ST_IS_MIPS16 (h->root.other))
1513 {
1514 /* We don't need the call_stub; this is a 16 bit function, so
1515 calls from other 16 bit functions are OK. Clobber the size
1516 to 0 to prevent it from being included in the link. */
1517 h->call_fp_stub->size = 0;
1518 h->call_fp_stub->flags &= ~SEC_RELOC;
1519 h->call_fp_stub->reloc_count = 0;
1520 h->call_fp_stub->flags |= SEC_EXCLUDE;
1521 }
1522 }
1523
1524 /* Hashtable callbacks for mips_elf_la25_stubs. */
1525
1526 static hashval_t
1527 mips_elf_la25_stub_hash (const void *entry_)
1528 {
1529 const struct mips_elf_la25_stub *entry;
1530
1531 entry = (struct mips_elf_la25_stub *) entry_;
1532 return entry->h->root.root.u.def.section->id
1533 + entry->h->root.root.u.def.value;
1534 }
1535
1536 static int
1537 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1538 {
1539 const struct mips_elf_la25_stub *entry1, *entry2;
1540
1541 entry1 = (struct mips_elf_la25_stub *) entry1_;
1542 entry2 = (struct mips_elf_la25_stub *) entry2_;
1543 return ((entry1->h->root.root.u.def.section
1544 == entry2->h->root.root.u.def.section)
1545 && (entry1->h->root.root.u.def.value
1546 == entry2->h->root.root.u.def.value));
1547 }
1548
1549 /* Called by the linker to set up the la25 stub-creation code. FN is
1550 the linker's implementation of add_stub_function. Return true on
1551 success. */
1552
1553 bfd_boolean
1554 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1555 asection *(*fn) (const char *, asection *,
1556 asection *))
1557 {
1558 struct mips_elf_link_hash_table *htab;
1559
1560 htab = mips_elf_hash_table (info);
1561 if (htab == NULL)
1562 return FALSE;
1563
1564 htab->add_stub_section = fn;
1565 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1566 mips_elf_la25_stub_eq, NULL);
1567 if (htab->la25_stubs == NULL)
1568 return FALSE;
1569
1570 return TRUE;
1571 }
1572
1573 /* Return true if H is a locally-defined PIC function, in the sense
1574 that it might need $25 to be valid on entry. Note that MIPS16
1575 functions never need $25 to be valid on entry; they set up $gp
1576 using PC-relative instructions instead. */
1577
1578 static bfd_boolean
1579 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1580 {
1581 return ((h->root.root.type == bfd_link_hash_defined
1582 || h->root.root.type == bfd_link_hash_defweak)
1583 && h->root.def_regular
1584 && !bfd_is_abs_section (h->root.root.u.def.section)
1585 && !ELF_ST_IS_MIPS16 (h->root.other)
1586 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1587 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1588 }
1589
1590 /* STUB describes an la25 stub that we have decided to implement
1591 by inserting an LUI/ADDIU pair before the target function.
1592 Create the section and redirect the function symbol to it. */
1593
1594 static bfd_boolean
1595 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1596 struct bfd_link_info *info)
1597 {
1598 struct mips_elf_link_hash_table *htab;
1599 char *name;
1600 asection *s, *input_section;
1601 unsigned int align;
1602
1603 htab = mips_elf_hash_table (info);
1604 if (htab == NULL)
1605 return FALSE;
1606
1607 /* Create a unique name for the new section. */
1608 name = bfd_malloc (11 + sizeof (".text.stub."));
1609 if (name == NULL)
1610 return FALSE;
1611 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1612
1613 /* Create the section. */
1614 input_section = stub->h->root.root.u.def.section;
1615 s = htab->add_stub_section (name, input_section,
1616 input_section->output_section);
1617 if (s == NULL)
1618 return FALSE;
1619
1620 /* Make sure that any padding goes before the stub. */
1621 align = input_section->alignment_power;
1622 if (!bfd_set_section_alignment (s->owner, s, align))
1623 return FALSE;
1624 if (align > 3)
1625 s->size = (1 << align) - 8;
1626
1627 /* Create a symbol for the stub. */
1628 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1629 stub->stub_section = s;
1630 stub->offset = s->size;
1631
1632 /* Allocate room for it. */
1633 s->size += 8;
1634 return TRUE;
1635 }
1636
1637 /* STUB describes an la25 stub that we have decided to implement
1638 with a separate trampoline. Allocate room for it and redirect
1639 the function symbol to it. */
1640
1641 static bfd_boolean
1642 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1643 struct bfd_link_info *info)
1644 {
1645 struct mips_elf_link_hash_table *htab;
1646 asection *s;
1647
1648 htab = mips_elf_hash_table (info);
1649 if (htab == NULL)
1650 return FALSE;
1651
1652 /* Create a trampoline section, if we haven't already. */
1653 s = htab->strampoline;
1654 if (s == NULL)
1655 {
1656 asection *input_section = stub->h->root.root.u.def.section;
1657 s = htab->add_stub_section (".text", NULL,
1658 input_section->output_section);
1659 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1660 return FALSE;
1661 htab->strampoline = s;
1662 }
1663
1664 /* Create a symbol for the stub. */
1665 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1666 stub->stub_section = s;
1667 stub->offset = s->size;
1668
1669 /* Allocate room for it. */
1670 s->size += 16;
1671 return TRUE;
1672 }
1673
1674 /* H describes a symbol that needs an la25 stub. Make sure that an
1675 appropriate stub exists and point H at it. */
1676
1677 static bfd_boolean
1678 mips_elf_add_la25_stub (struct bfd_link_info *info,
1679 struct mips_elf_link_hash_entry *h)
1680 {
1681 struct mips_elf_link_hash_table *htab;
1682 struct mips_elf_la25_stub search, *stub;
1683 bfd_boolean use_trampoline_p;
1684 asection *s;
1685 bfd_vma value;
1686 void **slot;
1687
1688 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1689 of the section and if we would need no more than 2 nops. */
1690 s = h->root.root.u.def.section;
1691 value = h->root.root.u.def.value;
1692 use_trampoline_p = (value != 0 || s->alignment_power > 4);
1693
1694 /* Describe the stub we want. */
1695 search.stub_section = NULL;
1696 search.offset = 0;
1697 search.h = h;
1698
1699 /* See if we've already created an equivalent stub. */
1700 htab = mips_elf_hash_table (info);
1701 if (htab == NULL)
1702 return FALSE;
1703
1704 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1705 if (slot == NULL)
1706 return FALSE;
1707
1708 stub = (struct mips_elf_la25_stub *) *slot;
1709 if (stub != NULL)
1710 {
1711 /* We can reuse the existing stub. */
1712 h->la25_stub = stub;
1713 return TRUE;
1714 }
1715
1716 /* Create a permanent copy of ENTRY and add it to the hash table. */
1717 stub = bfd_malloc (sizeof (search));
1718 if (stub == NULL)
1719 return FALSE;
1720 *stub = search;
1721 *slot = stub;
1722
1723 h->la25_stub = stub;
1724 return (use_trampoline_p
1725 ? mips_elf_add_la25_trampoline (stub, info)
1726 : mips_elf_add_la25_intro (stub, info));
1727 }
1728
1729 /* A mips_elf_link_hash_traverse callback that is called before sizing
1730 sections. DATA points to a mips_htab_traverse_info structure. */
1731
1732 static bfd_boolean
1733 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1734 {
1735 struct mips_htab_traverse_info *hti;
1736
1737 hti = (struct mips_htab_traverse_info *) data;
1738 if (!hti->info->relocatable)
1739 mips_elf_check_mips16_stubs (hti->info, h);
1740
1741 if (mips_elf_local_pic_function_p (h))
1742 {
1743 /* PR 12845: If H is in a section that has been garbage
1744 collected it will have its output section set to *ABS*. */
1745 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1746 return TRUE;
1747
1748 /* H is a function that might need $25 to be valid on entry.
1749 If we're creating a non-PIC relocatable object, mark H as
1750 being PIC. If we're creating a non-relocatable object with
1751 non-PIC branches and jumps to H, make sure that H has an la25
1752 stub. */
1753 if (hti->info->relocatable)
1754 {
1755 if (!PIC_OBJECT_P (hti->output_bfd))
1756 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1757 }
1758 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1759 {
1760 hti->error = TRUE;
1761 return FALSE;
1762 }
1763 }
1764 return TRUE;
1765 }
1766 \f
1767 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1768 Most mips16 instructions are 16 bits, but these instructions
1769 are 32 bits.
1770
1771 The format of these instructions is:
1772
1773 +--------------+--------------------------------+
1774 | JALX | X| Imm 20:16 | Imm 25:21 |
1775 +--------------+--------------------------------+
1776 | Immediate 15:0 |
1777 +-----------------------------------------------+
1778
1779 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
1780 Note that the immediate value in the first word is swapped.
1781
1782 When producing a relocatable object file, R_MIPS16_26 is
1783 handled mostly like R_MIPS_26. In particular, the addend is
1784 stored as a straight 26-bit value in a 32-bit instruction.
1785 (gas makes life simpler for itself by never adjusting a
1786 R_MIPS16_26 reloc to be against a section, so the addend is
1787 always zero). However, the 32 bit instruction is stored as 2
1788 16-bit values, rather than a single 32-bit value. In a
1789 big-endian file, the result is the same; in a little-endian
1790 file, the two 16-bit halves of the 32 bit value are swapped.
1791 This is so that a disassembler can recognize the jal
1792 instruction.
1793
1794 When doing a final link, R_MIPS16_26 is treated as a 32 bit
1795 instruction stored as two 16-bit values. The addend A is the
1796 contents of the targ26 field. The calculation is the same as
1797 R_MIPS_26. When storing the calculated value, reorder the
1798 immediate value as shown above, and don't forget to store the
1799 value as two 16-bit values.
1800
1801 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1802 defined as
1803
1804 big-endian:
1805 +--------+----------------------+
1806 | | |
1807 | | targ26-16 |
1808 |31 26|25 0|
1809 +--------+----------------------+
1810
1811 little-endian:
1812 +----------+------+-------------+
1813 | | | |
1814 | sub1 | | sub2 |
1815 |0 9|10 15|16 31|
1816 +----------+--------------------+
1817 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1818 ((sub1 << 16) | sub2)).
1819
1820 When producing a relocatable object file, the calculation is
1821 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1822 When producing a fully linked file, the calculation is
1823 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1824 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1825
1826 The table below lists the other MIPS16 instruction relocations.
1827 Each one is calculated in the same way as the non-MIPS16 relocation
1828 given on the right, but using the extended MIPS16 layout of 16-bit
1829 immediate fields:
1830
1831 R_MIPS16_GPREL R_MIPS_GPREL16
1832 R_MIPS16_GOT16 R_MIPS_GOT16
1833 R_MIPS16_CALL16 R_MIPS_CALL16
1834 R_MIPS16_HI16 R_MIPS_HI16
1835 R_MIPS16_LO16 R_MIPS_LO16
1836
1837 A typical instruction will have a format like this:
1838
1839 +--------------+--------------------------------+
1840 | EXTEND | Imm 10:5 | Imm 15:11 |
1841 +--------------+--------------------------------+
1842 | Major | rx | ry | Imm 4:0 |
1843 +--------------+--------------------------------+
1844
1845 EXTEND is the five bit value 11110. Major is the instruction
1846 opcode.
1847
1848 All we need to do here is shuffle the bits appropriately.
1849 As above, the two 16-bit halves must be swapped on a
1850 little-endian system. */
1851
1852 static inline bfd_boolean
1853 mips16_reloc_p (int r_type)
1854 {
1855 switch (r_type)
1856 {
1857 case R_MIPS16_26:
1858 case R_MIPS16_GPREL:
1859 case R_MIPS16_GOT16:
1860 case R_MIPS16_CALL16:
1861 case R_MIPS16_HI16:
1862 case R_MIPS16_LO16:
1863 return TRUE;
1864
1865 default:
1866 return FALSE;
1867 }
1868 }
1869
1870 /* Check if a microMIPS reloc. */
1871
1872 static inline bfd_boolean
1873 micromips_reloc_p (unsigned int r_type)
1874 {
1875 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
1876 }
1877
1878 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
1879 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
1880 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
1881
1882 static inline bfd_boolean
1883 micromips_reloc_shuffle_p (unsigned int r_type)
1884 {
1885 return (micromips_reloc_p (r_type)
1886 && r_type != R_MICROMIPS_PC7_S1
1887 && r_type != R_MICROMIPS_PC10_S1);
1888 }
1889
1890 static inline bfd_boolean
1891 got16_reloc_p (int r_type)
1892 {
1893 return (r_type == R_MIPS_GOT16
1894 || r_type == R_MIPS16_GOT16
1895 || r_type == R_MICROMIPS_GOT16);
1896 }
1897
1898 static inline bfd_boolean
1899 call16_reloc_p (int r_type)
1900 {
1901 return (r_type == R_MIPS_CALL16
1902 || r_type == R_MIPS16_CALL16
1903 || r_type == R_MICROMIPS_CALL16);
1904 }
1905
1906 static inline bfd_boolean
1907 got_disp_reloc_p (unsigned int r_type)
1908 {
1909 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
1910 }
1911
1912 static inline bfd_boolean
1913 got_page_reloc_p (unsigned int r_type)
1914 {
1915 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
1916 }
1917
1918 static inline bfd_boolean
1919 got_ofst_reloc_p (unsigned int r_type)
1920 {
1921 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
1922 }
1923
1924 static inline bfd_boolean
1925 got_hi16_reloc_p (unsigned int r_type)
1926 {
1927 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
1928 }
1929
1930 static inline bfd_boolean
1931 got_lo16_reloc_p (unsigned int r_type)
1932 {
1933 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
1934 }
1935
1936 static inline bfd_boolean
1937 call_hi16_reloc_p (unsigned int r_type)
1938 {
1939 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
1940 }
1941
1942 static inline bfd_boolean
1943 call_lo16_reloc_p (unsigned int r_type)
1944 {
1945 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
1946 }
1947
1948 static inline bfd_boolean
1949 hi16_reloc_p (int r_type)
1950 {
1951 return (r_type == R_MIPS_HI16
1952 || r_type == R_MIPS16_HI16
1953 || r_type == R_MICROMIPS_HI16);
1954 }
1955
1956 static inline bfd_boolean
1957 lo16_reloc_p (int r_type)
1958 {
1959 return (r_type == R_MIPS_LO16
1960 || r_type == R_MIPS16_LO16
1961 || r_type == R_MICROMIPS_LO16);
1962 }
1963
1964 static inline bfd_boolean
1965 mips16_call_reloc_p (int r_type)
1966 {
1967 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1968 }
1969
1970 static inline bfd_boolean
1971 jal_reloc_p (int r_type)
1972 {
1973 return (r_type == R_MIPS_26
1974 || r_type == R_MIPS16_26
1975 || r_type == R_MICROMIPS_26_S1);
1976 }
1977
1978 static inline bfd_boolean
1979 micromips_branch_reloc_p (int r_type)
1980 {
1981 return (r_type == R_MICROMIPS_26_S1
1982 || r_type == R_MICROMIPS_PC16_S1
1983 || r_type == R_MICROMIPS_PC10_S1
1984 || r_type == R_MICROMIPS_PC7_S1);
1985 }
1986
1987 static inline bfd_boolean
1988 tls_gd_reloc_p (unsigned int r_type)
1989 {
1990 return r_type == R_MIPS_TLS_GD || r_type == R_MICROMIPS_TLS_GD;
1991 }
1992
1993 static inline bfd_boolean
1994 tls_ldm_reloc_p (unsigned int r_type)
1995 {
1996 return r_type == R_MIPS_TLS_LDM || r_type == R_MICROMIPS_TLS_LDM;
1997 }
1998
1999 static inline bfd_boolean
2000 tls_gottprel_reloc_p (unsigned int r_type)
2001 {
2002 return r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MICROMIPS_TLS_GOTTPREL;
2003 }
2004
2005 void
2006 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2007 bfd_boolean jal_shuffle, bfd_byte *data)
2008 {
2009 bfd_vma first, second, val;
2010
2011 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2012 return;
2013
2014 /* Pick up the first and second halfwords of the instruction. */
2015 first = bfd_get_16 (abfd, data);
2016 second = bfd_get_16 (abfd, data + 2);
2017 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2018 val = first << 16 | second;
2019 else if (r_type != R_MIPS16_26)
2020 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2021 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2022 else
2023 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2024 | ((first & 0x1f) << 21) | second);
2025 bfd_put_32 (abfd, val, data);
2026 }
2027
2028 void
2029 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2030 bfd_boolean jal_shuffle, bfd_byte *data)
2031 {
2032 bfd_vma first, second, val;
2033
2034 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2035 return;
2036
2037 val = bfd_get_32 (abfd, data);
2038 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2039 {
2040 second = val & 0xffff;
2041 first = val >> 16;
2042 }
2043 else if (r_type != R_MIPS16_26)
2044 {
2045 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2046 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2047 }
2048 else
2049 {
2050 second = val & 0xffff;
2051 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2052 | ((val >> 21) & 0x1f);
2053 }
2054 bfd_put_16 (abfd, second, data + 2);
2055 bfd_put_16 (abfd, first, data);
2056 }
2057
2058 bfd_reloc_status_type
2059 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2060 arelent *reloc_entry, asection *input_section,
2061 bfd_boolean relocatable, void *data, bfd_vma gp)
2062 {
2063 bfd_vma relocation;
2064 bfd_signed_vma val;
2065 bfd_reloc_status_type status;
2066
2067 if (bfd_is_com_section (symbol->section))
2068 relocation = 0;
2069 else
2070 relocation = symbol->value;
2071
2072 relocation += symbol->section->output_section->vma;
2073 relocation += symbol->section->output_offset;
2074
2075 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2076 return bfd_reloc_outofrange;
2077
2078 /* Set val to the offset into the section or symbol. */
2079 val = reloc_entry->addend;
2080
2081 _bfd_mips_elf_sign_extend (val, 16);
2082
2083 /* Adjust val for the final section location and GP value. If we
2084 are producing relocatable output, we don't want to do this for
2085 an external symbol. */
2086 if (! relocatable
2087 || (symbol->flags & BSF_SECTION_SYM) != 0)
2088 val += relocation - gp;
2089
2090 if (reloc_entry->howto->partial_inplace)
2091 {
2092 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2093 (bfd_byte *) data
2094 + reloc_entry->address);
2095 if (status != bfd_reloc_ok)
2096 return status;
2097 }
2098 else
2099 reloc_entry->addend = val;
2100
2101 if (relocatable)
2102 reloc_entry->address += input_section->output_offset;
2103
2104 return bfd_reloc_ok;
2105 }
2106
2107 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2108 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2109 that contains the relocation field and DATA points to the start of
2110 INPUT_SECTION. */
2111
2112 struct mips_hi16
2113 {
2114 struct mips_hi16 *next;
2115 bfd_byte *data;
2116 asection *input_section;
2117 arelent rel;
2118 };
2119
2120 /* FIXME: This should not be a static variable. */
2121
2122 static struct mips_hi16 *mips_hi16_list;
2123
2124 /* A howto special_function for REL *HI16 relocations. We can only
2125 calculate the correct value once we've seen the partnering
2126 *LO16 relocation, so just save the information for later.
2127
2128 The ABI requires that the *LO16 immediately follow the *HI16.
2129 However, as a GNU extension, we permit an arbitrary number of
2130 *HI16s to be associated with a single *LO16. This significantly
2131 simplies the relocation handling in gcc. */
2132
2133 bfd_reloc_status_type
2134 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2135 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2136 asection *input_section, bfd *output_bfd,
2137 char **error_message ATTRIBUTE_UNUSED)
2138 {
2139 struct mips_hi16 *n;
2140
2141 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2142 return bfd_reloc_outofrange;
2143
2144 n = bfd_malloc (sizeof *n);
2145 if (n == NULL)
2146 return bfd_reloc_outofrange;
2147
2148 n->next = mips_hi16_list;
2149 n->data = data;
2150 n->input_section = input_section;
2151 n->rel = *reloc_entry;
2152 mips_hi16_list = n;
2153
2154 if (output_bfd != NULL)
2155 reloc_entry->address += input_section->output_offset;
2156
2157 return bfd_reloc_ok;
2158 }
2159
2160 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2161 like any other 16-bit relocation when applied to global symbols, but is
2162 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2163
2164 bfd_reloc_status_type
2165 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2166 void *data, asection *input_section,
2167 bfd *output_bfd, char **error_message)
2168 {
2169 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2170 || bfd_is_und_section (bfd_get_section (symbol))
2171 || bfd_is_com_section (bfd_get_section (symbol)))
2172 /* The relocation is against a global symbol. */
2173 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2174 input_section, output_bfd,
2175 error_message);
2176
2177 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2178 input_section, output_bfd, error_message);
2179 }
2180
2181 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2182 is a straightforward 16 bit inplace relocation, but we must deal with
2183 any partnering high-part relocations as well. */
2184
2185 bfd_reloc_status_type
2186 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2187 void *data, asection *input_section,
2188 bfd *output_bfd, char **error_message)
2189 {
2190 bfd_vma vallo;
2191 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2192
2193 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2194 return bfd_reloc_outofrange;
2195
2196 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2197 location);
2198 vallo = bfd_get_32 (abfd, location);
2199 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2200 location);
2201
2202 while (mips_hi16_list != NULL)
2203 {
2204 bfd_reloc_status_type ret;
2205 struct mips_hi16 *hi;
2206
2207 hi = mips_hi16_list;
2208
2209 /* R_MIPS*_GOT16 relocations are something of a special case. We
2210 want to install the addend in the same way as for a R_MIPS*_HI16
2211 relocation (with a rightshift of 16). However, since GOT16
2212 relocations can also be used with global symbols, their howto
2213 has a rightshift of 0. */
2214 if (hi->rel.howto->type == R_MIPS_GOT16)
2215 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2216 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2217 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2218 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2219 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2220
2221 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2222 carry or borrow will induce a change of +1 or -1 in the high part. */
2223 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2224
2225 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2226 hi->input_section, output_bfd,
2227 error_message);
2228 if (ret != bfd_reloc_ok)
2229 return ret;
2230
2231 mips_hi16_list = hi->next;
2232 free (hi);
2233 }
2234
2235 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2236 input_section, output_bfd,
2237 error_message);
2238 }
2239
2240 /* A generic howto special_function. This calculates and installs the
2241 relocation itself, thus avoiding the oft-discussed problems in
2242 bfd_perform_relocation and bfd_install_relocation. */
2243
2244 bfd_reloc_status_type
2245 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2246 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2247 asection *input_section, bfd *output_bfd,
2248 char **error_message ATTRIBUTE_UNUSED)
2249 {
2250 bfd_signed_vma val;
2251 bfd_reloc_status_type status;
2252 bfd_boolean relocatable;
2253
2254 relocatable = (output_bfd != NULL);
2255
2256 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2257 return bfd_reloc_outofrange;
2258
2259 /* Build up the field adjustment in VAL. */
2260 val = 0;
2261 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2262 {
2263 /* Either we're calculating the final field value or we have a
2264 relocation against a section symbol. Add in the section's
2265 offset or address. */
2266 val += symbol->section->output_section->vma;
2267 val += symbol->section->output_offset;
2268 }
2269
2270 if (!relocatable)
2271 {
2272 /* We're calculating the final field value. Add in the symbol's value
2273 and, if pc-relative, subtract the address of the field itself. */
2274 val += symbol->value;
2275 if (reloc_entry->howto->pc_relative)
2276 {
2277 val -= input_section->output_section->vma;
2278 val -= input_section->output_offset;
2279 val -= reloc_entry->address;
2280 }
2281 }
2282
2283 /* VAL is now the final adjustment. If we're keeping this relocation
2284 in the output file, and if the relocation uses a separate addend,
2285 we just need to add VAL to that addend. Otherwise we need to add
2286 VAL to the relocation field itself. */
2287 if (relocatable && !reloc_entry->howto->partial_inplace)
2288 reloc_entry->addend += val;
2289 else
2290 {
2291 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2292
2293 /* Add in the separate addend, if any. */
2294 val += reloc_entry->addend;
2295
2296 /* Add VAL to the relocation field. */
2297 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2298 location);
2299 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2300 location);
2301 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2302 location);
2303
2304 if (status != bfd_reloc_ok)
2305 return status;
2306 }
2307
2308 if (relocatable)
2309 reloc_entry->address += input_section->output_offset;
2310
2311 return bfd_reloc_ok;
2312 }
2313 \f
2314 /* Swap an entry in a .gptab section. Note that these routines rely
2315 on the equivalence of the two elements of the union. */
2316
2317 static void
2318 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2319 Elf32_gptab *in)
2320 {
2321 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2322 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2323 }
2324
2325 static void
2326 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2327 Elf32_External_gptab *ex)
2328 {
2329 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2330 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2331 }
2332
2333 static void
2334 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2335 Elf32_External_compact_rel *ex)
2336 {
2337 H_PUT_32 (abfd, in->id1, ex->id1);
2338 H_PUT_32 (abfd, in->num, ex->num);
2339 H_PUT_32 (abfd, in->id2, ex->id2);
2340 H_PUT_32 (abfd, in->offset, ex->offset);
2341 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2342 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2343 }
2344
2345 static void
2346 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2347 Elf32_External_crinfo *ex)
2348 {
2349 unsigned long l;
2350
2351 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2352 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2353 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2354 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2355 H_PUT_32 (abfd, l, ex->info);
2356 H_PUT_32 (abfd, in->konst, ex->konst);
2357 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2358 }
2359 \f
2360 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2361 routines swap this structure in and out. They are used outside of
2362 BFD, so they are globally visible. */
2363
2364 void
2365 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2366 Elf32_RegInfo *in)
2367 {
2368 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2369 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2370 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2371 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2372 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2373 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2374 }
2375
2376 void
2377 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2378 Elf32_External_RegInfo *ex)
2379 {
2380 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2381 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2382 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2383 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2384 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2385 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2386 }
2387
2388 /* In the 64 bit ABI, the .MIPS.options section holds register
2389 information in an Elf64_Reginfo structure. These routines swap
2390 them in and out. They are globally visible because they are used
2391 outside of BFD. These routines are here so that gas can call them
2392 without worrying about whether the 64 bit ABI has been included. */
2393
2394 void
2395 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2396 Elf64_Internal_RegInfo *in)
2397 {
2398 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2399 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2400 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2401 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2402 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2403 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2404 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2405 }
2406
2407 void
2408 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2409 Elf64_External_RegInfo *ex)
2410 {
2411 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2412 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2413 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2414 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2415 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2416 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2417 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2418 }
2419
2420 /* Swap in an options header. */
2421
2422 void
2423 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2424 Elf_Internal_Options *in)
2425 {
2426 in->kind = H_GET_8 (abfd, ex->kind);
2427 in->size = H_GET_8 (abfd, ex->size);
2428 in->section = H_GET_16 (abfd, ex->section);
2429 in->info = H_GET_32 (abfd, ex->info);
2430 }
2431
2432 /* Swap out an options header. */
2433
2434 void
2435 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2436 Elf_External_Options *ex)
2437 {
2438 H_PUT_8 (abfd, in->kind, ex->kind);
2439 H_PUT_8 (abfd, in->size, ex->size);
2440 H_PUT_16 (abfd, in->section, ex->section);
2441 H_PUT_32 (abfd, in->info, ex->info);
2442 }
2443 \f
2444 /* This function is called via qsort() to sort the dynamic relocation
2445 entries by increasing r_symndx value. */
2446
2447 static int
2448 sort_dynamic_relocs (const void *arg1, const void *arg2)
2449 {
2450 Elf_Internal_Rela int_reloc1;
2451 Elf_Internal_Rela int_reloc2;
2452 int diff;
2453
2454 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2455 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2456
2457 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2458 if (diff != 0)
2459 return diff;
2460
2461 if (int_reloc1.r_offset < int_reloc2.r_offset)
2462 return -1;
2463 if (int_reloc1.r_offset > int_reloc2.r_offset)
2464 return 1;
2465 return 0;
2466 }
2467
2468 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2469
2470 static int
2471 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2472 const void *arg2 ATTRIBUTE_UNUSED)
2473 {
2474 #ifdef BFD64
2475 Elf_Internal_Rela int_reloc1[3];
2476 Elf_Internal_Rela int_reloc2[3];
2477
2478 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2479 (reldyn_sorting_bfd, arg1, int_reloc1);
2480 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2481 (reldyn_sorting_bfd, arg2, int_reloc2);
2482
2483 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2484 return -1;
2485 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2486 return 1;
2487
2488 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2489 return -1;
2490 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2491 return 1;
2492 return 0;
2493 #else
2494 abort ();
2495 #endif
2496 }
2497
2498
2499 /* This routine is used to write out ECOFF debugging external symbol
2500 information. It is called via mips_elf_link_hash_traverse. The
2501 ECOFF external symbol information must match the ELF external
2502 symbol information. Unfortunately, at this point we don't know
2503 whether a symbol is required by reloc information, so the two
2504 tables may wind up being different. We must sort out the external
2505 symbol information before we can set the final size of the .mdebug
2506 section, and we must set the size of the .mdebug section before we
2507 can relocate any sections, and we can't know which symbols are
2508 required by relocation until we relocate the sections.
2509 Fortunately, it is relatively unlikely that any symbol will be
2510 stripped but required by a reloc. In particular, it can not happen
2511 when generating a final executable. */
2512
2513 static bfd_boolean
2514 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2515 {
2516 struct extsym_info *einfo = data;
2517 bfd_boolean strip;
2518 asection *sec, *output_section;
2519
2520 if (h->root.indx == -2)
2521 strip = FALSE;
2522 else if ((h->root.def_dynamic
2523 || h->root.ref_dynamic
2524 || h->root.type == bfd_link_hash_new)
2525 && !h->root.def_regular
2526 && !h->root.ref_regular)
2527 strip = TRUE;
2528 else if (einfo->info->strip == strip_all
2529 || (einfo->info->strip == strip_some
2530 && bfd_hash_lookup (einfo->info->keep_hash,
2531 h->root.root.root.string,
2532 FALSE, FALSE) == NULL))
2533 strip = TRUE;
2534 else
2535 strip = FALSE;
2536
2537 if (strip)
2538 return TRUE;
2539
2540 if (h->esym.ifd == -2)
2541 {
2542 h->esym.jmptbl = 0;
2543 h->esym.cobol_main = 0;
2544 h->esym.weakext = 0;
2545 h->esym.reserved = 0;
2546 h->esym.ifd = ifdNil;
2547 h->esym.asym.value = 0;
2548 h->esym.asym.st = stGlobal;
2549
2550 if (h->root.root.type == bfd_link_hash_undefined
2551 || h->root.root.type == bfd_link_hash_undefweak)
2552 {
2553 const char *name;
2554
2555 /* Use undefined class. Also, set class and type for some
2556 special symbols. */
2557 name = h->root.root.root.string;
2558 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2559 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2560 {
2561 h->esym.asym.sc = scData;
2562 h->esym.asym.st = stLabel;
2563 h->esym.asym.value = 0;
2564 }
2565 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2566 {
2567 h->esym.asym.sc = scAbs;
2568 h->esym.asym.st = stLabel;
2569 h->esym.asym.value =
2570 mips_elf_hash_table (einfo->info)->procedure_count;
2571 }
2572 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2573 {
2574 h->esym.asym.sc = scAbs;
2575 h->esym.asym.st = stLabel;
2576 h->esym.asym.value = elf_gp (einfo->abfd);
2577 }
2578 else
2579 h->esym.asym.sc = scUndefined;
2580 }
2581 else if (h->root.root.type != bfd_link_hash_defined
2582 && h->root.root.type != bfd_link_hash_defweak)
2583 h->esym.asym.sc = scAbs;
2584 else
2585 {
2586 const char *name;
2587
2588 sec = h->root.root.u.def.section;
2589 output_section = sec->output_section;
2590
2591 /* When making a shared library and symbol h is the one from
2592 the another shared library, OUTPUT_SECTION may be null. */
2593 if (output_section == NULL)
2594 h->esym.asym.sc = scUndefined;
2595 else
2596 {
2597 name = bfd_section_name (output_section->owner, output_section);
2598
2599 if (strcmp (name, ".text") == 0)
2600 h->esym.asym.sc = scText;
2601 else if (strcmp (name, ".data") == 0)
2602 h->esym.asym.sc = scData;
2603 else if (strcmp (name, ".sdata") == 0)
2604 h->esym.asym.sc = scSData;
2605 else if (strcmp (name, ".rodata") == 0
2606 || strcmp (name, ".rdata") == 0)
2607 h->esym.asym.sc = scRData;
2608 else if (strcmp (name, ".bss") == 0)
2609 h->esym.asym.sc = scBss;
2610 else if (strcmp (name, ".sbss") == 0)
2611 h->esym.asym.sc = scSBss;
2612 else if (strcmp (name, ".init") == 0)
2613 h->esym.asym.sc = scInit;
2614 else if (strcmp (name, ".fini") == 0)
2615 h->esym.asym.sc = scFini;
2616 else
2617 h->esym.asym.sc = scAbs;
2618 }
2619 }
2620
2621 h->esym.asym.reserved = 0;
2622 h->esym.asym.index = indexNil;
2623 }
2624
2625 if (h->root.root.type == bfd_link_hash_common)
2626 h->esym.asym.value = h->root.root.u.c.size;
2627 else if (h->root.root.type == bfd_link_hash_defined
2628 || h->root.root.type == bfd_link_hash_defweak)
2629 {
2630 if (h->esym.asym.sc == scCommon)
2631 h->esym.asym.sc = scBss;
2632 else if (h->esym.asym.sc == scSCommon)
2633 h->esym.asym.sc = scSBss;
2634
2635 sec = h->root.root.u.def.section;
2636 output_section = sec->output_section;
2637 if (output_section != NULL)
2638 h->esym.asym.value = (h->root.root.u.def.value
2639 + sec->output_offset
2640 + output_section->vma);
2641 else
2642 h->esym.asym.value = 0;
2643 }
2644 else
2645 {
2646 struct mips_elf_link_hash_entry *hd = h;
2647
2648 while (hd->root.root.type == bfd_link_hash_indirect)
2649 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2650
2651 if (hd->needs_lazy_stub)
2652 {
2653 /* Set type and value for a symbol with a function stub. */
2654 h->esym.asym.st = stProc;
2655 sec = hd->root.root.u.def.section;
2656 if (sec == NULL)
2657 h->esym.asym.value = 0;
2658 else
2659 {
2660 output_section = sec->output_section;
2661 if (output_section != NULL)
2662 h->esym.asym.value = (hd->root.plt.offset
2663 + sec->output_offset
2664 + output_section->vma);
2665 else
2666 h->esym.asym.value = 0;
2667 }
2668 }
2669 }
2670
2671 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2672 h->root.root.root.string,
2673 &h->esym))
2674 {
2675 einfo->failed = TRUE;
2676 return FALSE;
2677 }
2678
2679 return TRUE;
2680 }
2681
2682 /* A comparison routine used to sort .gptab entries. */
2683
2684 static int
2685 gptab_compare (const void *p1, const void *p2)
2686 {
2687 const Elf32_gptab *a1 = p1;
2688 const Elf32_gptab *a2 = p2;
2689
2690 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2691 }
2692 \f
2693 /* Functions to manage the got entry hash table. */
2694
2695 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2696 hash number. */
2697
2698 static INLINE hashval_t
2699 mips_elf_hash_bfd_vma (bfd_vma addr)
2700 {
2701 #ifdef BFD64
2702 return addr + (addr >> 32);
2703 #else
2704 return addr;
2705 #endif
2706 }
2707
2708 /* got_entries only match if they're identical, except for gotidx, so
2709 use all fields to compute the hash, and compare the appropriate
2710 union members. */
2711
2712 static hashval_t
2713 mips_elf_got_entry_hash (const void *entry_)
2714 {
2715 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2716
2717 return entry->symndx
2718 + ((entry->tls_type & GOT_TLS_LDM) << 17)
2719 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2720 : entry->abfd->id
2721 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2722 : entry->d.h->root.root.root.hash));
2723 }
2724
2725 static int
2726 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2727 {
2728 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2729 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2730
2731 /* An LDM entry can only match another LDM entry. */
2732 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2733 return 0;
2734
2735 return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2736 && (! e1->abfd ? e1->d.address == e2->d.address
2737 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2738 : e1->d.h == e2->d.h);
2739 }
2740
2741 /* multi_got_entries are still a match in the case of global objects,
2742 even if the input bfd in which they're referenced differs, so the
2743 hash computation and compare functions are adjusted
2744 accordingly. */
2745
2746 static hashval_t
2747 mips_elf_multi_got_entry_hash (const void *entry_)
2748 {
2749 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2750
2751 return entry->symndx
2752 + (! entry->abfd
2753 ? mips_elf_hash_bfd_vma (entry->d.address)
2754 : entry->symndx >= 0
2755 ? ((entry->tls_type & GOT_TLS_LDM)
2756 ? (GOT_TLS_LDM << 17)
2757 : (entry->abfd->id
2758 + mips_elf_hash_bfd_vma (entry->d.addend)))
2759 : entry->d.h->root.root.root.hash);
2760 }
2761
2762 static int
2763 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2764 {
2765 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2766 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2767
2768 /* Any two LDM entries match. */
2769 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2770 return 1;
2771
2772 /* Nothing else matches an LDM entry. */
2773 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2774 return 0;
2775
2776 return e1->symndx == e2->symndx
2777 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2778 : e1->abfd == NULL || e2->abfd == NULL
2779 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2780 : e1->d.h == e2->d.h);
2781 }
2782
2783 static hashval_t
2784 mips_got_page_entry_hash (const void *entry_)
2785 {
2786 const struct mips_got_page_entry *entry;
2787
2788 entry = (const struct mips_got_page_entry *) entry_;
2789 return entry->abfd->id + entry->symndx;
2790 }
2791
2792 static int
2793 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2794 {
2795 const struct mips_got_page_entry *entry1, *entry2;
2796
2797 entry1 = (const struct mips_got_page_entry *) entry1_;
2798 entry2 = (const struct mips_got_page_entry *) entry2_;
2799 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2800 }
2801 \f
2802 /* Return the dynamic relocation section. If it doesn't exist, try to
2803 create a new it if CREATE_P, otherwise return NULL. Also return NULL
2804 if creation fails. */
2805
2806 static asection *
2807 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2808 {
2809 const char *dname;
2810 asection *sreloc;
2811 bfd *dynobj;
2812
2813 dname = MIPS_ELF_REL_DYN_NAME (info);
2814 dynobj = elf_hash_table (info)->dynobj;
2815 sreloc = bfd_get_section_by_name (dynobj, dname);
2816 if (sreloc == NULL && create_p)
2817 {
2818 sreloc = bfd_make_section_with_flags (dynobj, dname,
2819 (SEC_ALLOC
2820 | SEC_LOAD
2821 | SEC_HAS_CONTENTS
2822 | SEC_IN_MEMORY
2823 | SEC_LINKER_CREATED
2824 | SEC_READONLY));
2825 if (sreloc == NULL
2826 || ! bfd_set_section_alignment (dynobj, sreloc,
2827 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2828 return NULL;
2829 }
2830 return sreloc;
2831 }
2832
2833 /* Count the number of relocations needed for a TLS GOT entry, with
2834 access types from TLS_TYPE, and symbol H (or a local symbol if H
2835 is NULL). */
2836
2837 static int
2838 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2839 struct elf_link_hash_entry *h)
2840 {
2841 int indx = 0;
2842 int ret = 0;
2843 bfd_boolean need_relocs = FALSE;
2844 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2845
2846 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2847 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2848 indx = h->dynindx;
2849
2850 if ((info->shared || indx != 0)
2851 && (h == NULL
2852 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2853 || h->root.type != bfd_link_hash_undefweak))
2854 need_relocs = TRUE;
2855
2856 if (!need_relocs)
2857 return FALSE;
2858
2859 if (tls_type & GOT_TLS_GD)
2860 {
2861 ret++;
2862 if (indx != 0)
2863 ret++;
2864 }
2865
2866 if (tls_type & GOT_TLS_IE)
2867 ret++;
2868
2869 if ((tls_type & GOT_TLS_LDM) && info->shared)
2870 ret++;
2871
2872 return ret;
2873 }
2874
2875 /* Count the number of TLS relocations required for the GOT entry in
2876 ARG1, if it describes a local symbol. */
2877
2878 static int
2879 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2880 {
2881 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2882 struct mips_elf_count_tls_arg *arg = arg2;
2883
2884 if (entry->abfd != NULL && entry->symndx != -1)
2885 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2886
2887 return 1;
2888 }
2889
2890 /* Count the number of TLS GOT entries required for the global (or
2891 forced-local) symbol in ARG1. */
2892
2893 static int
2894 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2895 {
2896 struct mips_elf_link_hash_entry *hm
2897 = (struct mips_elf_link_hash_entry *) arg1;
2898 struct mips_elf_count_tls_arg *arg = arg2;
2899
2900 if (hm->tls_type & GOT_TLS_GD)
2901 arg->needed += 2;
2902 if (hm->tls_type & GOT_TLS_IE)
2903 arg->needed += 1;
2904
2905 return 1;
2906 }
2907
2908 /* Count the number of TLS relocations required for the global (or
2909 forced-local) symbol in ARG1. */
2910
2911 static int
2912 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2913 {
2914 struct mips_elf_link_hash_entry *hm
2915 = (struct mips_elf_link_hash_entry *) arg1;
2916 struct mips_elf_count_tls_arg *arg = arg2;
2917
2918 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2919
2920 return 1;
2921 }
2922
2923 /* Output a simple dynamic relocation into SRELOC. */
2924
2925 static void
2926 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2927 asection *sreloc,
2928 unsigned long reloc_index,
2929 unsigned long indx,
2930 int r_type,
2931 bfd_vma offset)
2932 {
2933 Elf_Internal_Rela rel[3];
2934
2935 memset (rel, 0, sizeof (rel));
2936
2937 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2938 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2939
2940 if (ABI_64_P (output_bfd))
2941 {
2942 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2943 (output_bfd, &rel[0],
2944 (sreloc->contents
2945 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2946 }
2947 else
2948 bfd_elf32_swap_reloc_out
2949 (output_bfd, &rel[0],
2950 (sreloc->contents
2951 + reloc_index * sizeof (Elf32_External_Rel)));
2952 }
2953
2954 /* Initialize a set of TLS GOT entries for one symbol. */
2955
2956 static void
2957 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2958 unsigned char *tls_type_p,
2959 struct bfd_link_info *info,
2960 struct mips_elf_link_hash_entry *h,
2961 bfd_vma value)
2962 {
2963 struct mips_elf_link_hash_table *htab;
2964 int indx;
2965 asection *sreloc, *sgot;
2966 bfd_vma offset, offset2;
2967 bfd_boolean need_relocs = FALSE;
2968
2969 htab = mips_elf_hash_table (info);
2970 if (htab == NULL)
2971 return;
2972
2973 sgot = htab->sgot;
2974
2975 indx = 0;
2976 if (h != NULL)
2977 {
2978 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2979
2980 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2981 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2982 indx = h->root.dynindx;
2983 }
2984
2985 if (*tls_type_p & GOT_TLS_DONE)
2986 return;
2987
2988 if ((info->shared || indx != 0)
2989 && (h == NULL
2990 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2991 || h->root.type != bfd_link_hash_undefweak))
2992 need_relocs = TRUE;
2993
2994 /* MINUS_ONE means the symbol is not defined in this object. It may not
2995 be defined at all; assume that the value doesn't matter in that
2996 case. Otherwise complain if we would use the value. */
2997 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2998 || h->root.root.type == bfd_link_hash_undefweak);
2999
3000 /* Emit necessary relocations. */
3001 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3002
3003 /* General Dynamic. */
3004 if (*tls_type_p & GOT_TLS_GD)
3005 {
3006 offset = got_offset;
3007 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
3008
3009 if (need_relocs)
3010 {
3011 mips_elf_output_dynamic_relocation
3012 (abfd, sreloc, sreloc->reloc_count++, indx,
3013 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3014 sgot->output_offset + sgot->output_section->vma + offset);
3015
3016 if (indx)
3017 mips_elf_output_dynamic_relocation
3018 (abfd, sreloc, sreloc->reloc_count++, indx,
3019 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3020 sgot->output_offset + sgot->output_section->vma + offset2);
3021 else
3022 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3023 sgot->contents + offset2);
3024 }
3025 else
3026 {
3027 MIPS_ELF_PUT_WORD (abfd, 1,
3028 sgot->contents + offset);
3029 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3030 sgot->contents + offset2);
3031 }
3032
3033 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
3034 }
3035
3036 /* Initial Exec model. */
3037 if (*tls_type_p & GOT_TLS_IE)
3038 {
3039 offset = got_offset;
3040
3041 if (need_relocs)
3042 {
3043 if (indx == 0)
3044 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3045 sgot->contents + offset);
3046 else
3047 MIPS_ELF_PUT_WORD (abfd, 0,
3048 sgot->contents + offset);
3049
3050 mips_elf_output_dynamic_relocation
3051 (abfd, sreloc, sreloc->reloc_count++, indx,
3052 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3053 sgot->output_offset + sgot->output_section->vma + offset);
3054 }
3055 else
3056 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3057 sgot->contents + offset);
3058 }
3059
3060 if (*tls_type_p & GOT_TLS_LDM)
3061 {
3062 /* The initial offset is zero, and the LD offsets will include the
3063 bias by DTP_OFFSET. */
3064 MIPS_ELF_PUT_WORD (abfd, 0,
3065 sgot->contents + got_offset
3066 + MIPS_ELF_GOT_SIZE (abfd));
3067
3068 if (!info->shared)
3069 MIPS_ELF_PUT_WORD (abfd, 1,
3070 sgot->contents + got_offset);
3071 else
3072 mips_elf_output_dynamic_relocation
3073 (abfd, sreloc, sreloc->reloc_count++, indx,
3074 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3075 sgot->output_offset + sgot->output_section->vma + got_offset);
3076 }
3077
3078 *tls_type_p |= GOT_TLS_DONE;
3079 }
3080
3081 /* Return the GOT index to use for a relocation of type R_TYPE against
3082 a symbol accessed using TLS_TYPE models. The GOT entries for this
3083 symbol in this GOT start at GOT_INDEX. This function initializes the
3084 GOT entries and corresponding relocations. */
3085
3086 static bfd_vma
3087 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
3088 int r_type, struct bfd_link_info *info,
3089 struct mips_elf_link_hash_entry *h, bfd_vma symbol)
3090 {
3091 BFD_ASSERT (tls_gottprel_reloc_p (r_type)
3092 || tls_gd_reloc_p (r_type)
3093 || tls_ldm_reloc_p (r_type));
3094
3095 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
3096
3097 if (tls_gottprel_reloc_p (r_type))
3098 {
3099 BFD_ASSERT (*tls_type & GOT_TLS_IE);
3100 if (*tls_type & GOT_TLS_GD)
3101 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
3102 else
3103 return got_index;
3104 }
3105
3106 if (tls_gd_reloc_p (r_type))
3107 {
3108 BFD_ASSERT (*tls_type & GOT_TLS_GD);
3109 return got_index;
3110 }
3111
3112 if (tls_ldm_reloc_p (r_type))
3113 {
3114 BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3115 return got_index;
3116 }
3117
3118 return got_index;
3119 }
3120
3121 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3122 for global symbol H. .got.plt comes before the GOT, so the offset
3123 will be negative. */
3124
3125 static bfd_vma
3126 mips_elf_gotplt_index (struct bfd_link_info *info,
3127 struct elf_link_hash_entry *h)
3128 {
3129 bfd_vma plt_index, got_address, got_value;
3130 struct mips_elf_link_hash_table *htab;
3131
3132 htab = mips_elf_hash_table (info);
3133 BFD_ASSERT (htab != NULL);
3134
3135 BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3136
3137 /* This function only works for VxWorks, because a non-VxWorks .got.plt
3138 section starts with reserved entries. */
3139 BFD_ASSERT (htab->is_vxworks);
3140
3141 /* Calculate the index of the symbol's PLT entry. */
3142 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3143
3144 /* Calculate the address of the associated .got.plt entry. */
3145 got_address = (htab->sgotplt->output_section->vma
3146 + htab->sgotplt->output_offset
3147 + plt_index * 4);
3148
3149 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3150 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3151 + htab->root.hgot->root.u.def.section->output_offset
3152 + htab->root.hgot->root.u.def.value);
3153
3154 return got_address - got_value;
3155 }
3156
3157 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3158 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3159 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3160 offset can be found. */
3161
3162 static bfd_vma
3163 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3164 bfd_vma value, unsigned long r_symndx,
3165 struct mips_elf_link_hash_entry *h, int r_type)
3166 {
3167 struct mips_elf_link_hash_table *htab;
3168 struct mips_got_entry *entry;
3169
3170 htab = mips_elf_hash_table (info);
3171 BFD_ASSERT (htab != NULL);
3172
3173 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3174 r_symndx, h, r_type);
3175 if (!entry)
3176 return MINUS_ONE;
3177
3178 if (TLS_RELOC_P (r_type))
3179 {
3180 if (entry->symndx == -1 && htab->got_info->next == NULL)
3181 /* A type (3) entry in the single-GOT case. We use the symbol's
3182 hash table entry to track the index. */
3183 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3184 r_type, info, h, value);
3185 else
3186 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3187 r_type, info, h, value);
3188 }
3189 else
3190 return entry->gotidx;
3191 }
3192
3193 /* Returns the GOT index for the global symbol indicated by H. */
3194
3195 static bfd_vma
3196 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3197 int r_type, struct bfd_link_info *info)
3198 {
3199 struct mips_elf_link_hash_table *htab;
3200 bfd_vma got_index;
3201 struct mips_got_info *g, *gg;
3202 long global_got_dynindx = 0;
3203
3204 htab = mips_elf_hash_table (info);
3205 BFD_ASSERT (htab != NULL);
3206
3207 gg = g = htab->got_info;
3208 if (g->bfd2got && ibfd)
3209 {
3210 struct mips_got_entry e, *p;
3211
3212 BFD_ASSERT (h->dynindx >= 0);
3213
3214 g = mips_elf_got_for_ibfd (g, ibfd);
3215 if (g->next != gg || TLS_RELOC_P (r_type))
3216 {
3217 e.abfd = ibfd;
3218 e.symndx = -1;
3219 e.d.h = (struct mips_elf_link_hash_entry *)h;
3220 e.tls_type = 0;
3221
3222 p = htab_find (g->got_entries, &e);
3223
3224 BFD_ASSERT (p->gotidx > 0);
3225
3226 if (TLS_RELOC_P (r_type))
3227 {
3228 bfd_vma value = MINUS_ONE;
3229 if ((h->root.type == bfd_link_hash_defined
3230 || h->root.type == bfd_link_hash_defweak)
3231 && h->root.u.def.section->output_section)
3232 value = (h->root.u.def.value
3233 + h->root.u.def.section->output_offset
3234 + h->root.u.def.section->output_section->vma);
3235
3236 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3237 info, e.d.h, value);
3238 }
3239 else
3240 return p->gotidx;
3241 }
3242 }
3243
3244 if (gg->global_gotsym != NULL)
3245 global_got_dynindx = gg->global_gotsym->dynindx;
3246
3247 if (TLS_RELOC_P (r_type))
3248 {
3249 struct mips_elf_link_hash_entry *hm
3250 = (struct mips_elf_link_hash_entry *) h;
3251 bfd_vma value = MINUS_ONE;
3252
3253 if ((h->root.type == bfd_link_hash_defined
3254 || h->root.type == bfd_link_hash_defweak)
3255 && h->root.u.def.section->output_section)
3256 value = (h->root.u.def.value
3257 + h->root.u.def.section->output_offset
3258 + h->root.u.def.section->output_section->vma);
3259
3260 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3261 r_type, info, hm, value);
3262 }
3263 else
3264 {
3265 /* Once we determine the global GOT entry with the lowest dynamic
3266 symbol table index, we must put all dynamic symbols with greater
3267 indices into the GOT. That makes it easy to calculate the GOT
3268 offset. */
3269 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3270 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3271 * MIPS_ELF_GOT_SIZE (abfd));
3272 }
3273 BFD_ASSERT (got_index < htab->sgot->size);
3274
3275 return got_index;
3276 }
3277
3278 /* Find a GOT page entry that points to within 32KB of VALUE. These
3279 entries are supposed to be placed at small offsets in the GOT, i.e.,
3280 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3281 entry could be created. If OFFSETP is nonnull, use it to return the
3282 offset of the GOT entry from VALUE. */
3283
3284 static bfd_vma
3285 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3286 bfd_vma value, bfd_vma *offsetp)
3287 {
3288 bfd_vma page, got_index;
3289 struct mips_got_entry *entry;
3290
3291 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3292 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3293 NULL, R_MIPS_GOT_PAGE);
3294
3295 if (!entry)
3296 return MINUS_ONE;
3297
3298 got_index = entry->gotidx;
3299
3300 if (offsetp)
3301 *offsetp = value - entry->d.address;
3302
3303 return got_index;
3304 }
3305
3306 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3307 EXTERNAL is true if the relocation was originally against a global
3308 symbol that binds locally. */
3309
3310 static bfd_vma
3311 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3312 bfd_vma value, bfd_boolean external)
3313 {
3314 struct mips_got_entry *entry;
3315
3316 /* GOT16 relocations against local symbols are followed by a LO16
3317 relocation; those against global symbols are not. Thus if the
3318 symbol was originally local, the GOT16 relocation should load the
3319 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3320 if (! external)
3321 value = mips_elf_high (value) << 16;
3322
3323 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3324 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3325 same in all cases. */
3326 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3327 NULL, R_MIPS_GOT16);
3328 if (entry)
3329 return entry->gotidx;
3330 else
3331 return MINUS_ONE;
3332 }
3333
3334 /* Returns the offset for the entry at the INDEXth position
3335 in the GOT. */
3336
3337 static bfd_vma
3338 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3339 bfd *input_bfd, bfd_vma got_index)
3340 {
3341 struct mips_elf_link_hash_table *htab;
3342 asection *sgot;
3343 bfd_vma gp;
3344
3345 htab = mips_elf_hash_table (info);
3346 BFD_ASSERT (htab != NULL);
3347
3348 sgot = htab->sgot;
3349 gp = _bfd_get_gp_value (output_bfd)
3350 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3351
3352 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3353 }
3354
3355 /* Create and return a local GOT entry for VALUE, which was calculated
3356 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3357 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3358 instead. */
3359
3360 static struct mips_got_entry *
3361 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3362 bfd *ibfd, bfd_vma value,
3363 unsigned long r_symndx,
3364 struct mips_elf_link_hash_entry *h,
3365 int r_type)
3366 {
3367 struct mips_got_entry entry, **loc;
3368 struct mips_got_info *g;
3369 struct mips_elf_link_hash_table *htab;
3370
3371 htab = mips_elf_hash_table (info);
3372 BFD_ASSERT (htab != NULL);
3373
3374 entry.abfd = NULL;
3375 entry.symndx = -1;
3376 entry.d.address = value;
3377 entry.tls_type = 0;
3378
3379 g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3380 if (g == NULL)
3381 {
3382 g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3383 BFD_ASSERT (g != NULL);
3384 }
3385
3386 /* This function shouldn't be called for symbols that live in the global
3387 area of the GOT. */
3388 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3389 if (TLS_RELOC_P (r_type))
3390 {
3391 struct mips_got_entry *p;
3392
3393 entry.abfd = ibfd;
3394 if (tls_ldm_reloc_p (r_type))
3395 {
3396 entry.tls_type = GOT_TLS_LDM;
3397 entry.symndx = 0;
3398 entry.d.addend = 0;
3399 }
3400 else if (h == NULL)
3401 {
3402 entry.symndx = r_symndx;
3403 entry.d.addend = 0;
3404 }
3405 else
3406 entry.d.h = h;
3407
3408 p = (struct mips_got_entry *)
3409 htab_find (g->got_entries, &entry);
3410
3411 BFD_ASSERT (p);
3412 return p;
3413 }
3414
3415 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3416 INSERT);
3417 if (*loc)
3418 return *loc;
3419
3420 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3421 entry.tls_type = 0;
3422
3423 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3424
3425 if (! *loc)
3426 return NULL;
3427
3428 memcpy (*loc, &entry, sizeof entry);
3429
3430 if (g->assigned_gotno > g->local_gotno)
3431 {
3432 (*loc)->gotidx = -1;
3433 /* We didn't allocate enough space in the GOT. */
3434 (*_bfd_error_handler)
3435 (_("not enough GOT space for local GOT entries"));
3436 bfd_set_error (bfd_error_bad_value);
3437 return NULL;
3438 }
3439
3440 MIPS_ELF_PUT_WORD (abfd, value,
3441 (htab->sgot->contents + entry.gotidx));
3442
3443 /* These GOT entries need a dynamic relocation on VxWorks. */
3444 if (htab->is_vxworks)
3445 {
3446 Elf_Internal_Rela outrel;
3447 asection *s;
3448 bfd_byte *rloc;
3449 bfd_vma got_address;
3450
3451 s = mips_elf_rel_dyn_section (info, FALSE);
3452 got_address = (htab->sgot->output_section->vma
3453 + htab->sgot->output_offset
3454 + entry.gotidx);
3455
3456 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3457 outrel.r_offset = got_address;
3458 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3459 outrel.r_addend = value;
3460 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3461 }
3462
3463 return *loc;
3464 }
3465
3466 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3467 The number might be exact or a worst-case estimate, depending on how
3468 much information is available to elf_backend_omit_section_dynsym at
3469 the current linking stage. */
3470
3471 static bfd_size_type
3472 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3473 {
3474 bfd_size_type count;
3475
3476 count = 0;
3477 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3478 {
3479 asection *p;
3480 const struct elf_backend_data *bed;
3481
3482 bed = get_elf_backend_data (output_bfd);
3483 for (p = output_bfd->sections; p ; p = p->next)
3484 if ((p->flags & SEC_EXCLUDE) == 0
3485 && (p->flags & SEC_ALLOC) != 0
3486 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3487 ++count;
3488 }
3489 return count;
3490 }
3491
3492 /* Sort the dynamic symbol table so that symbols that need GOT entries
3493 appear towards the end. */
3494
3495 static bfd_boolean
3496 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3497 {
3498 struct mips_elf_link_hash_table *htab;
3499 struct mips_elf_hash_sort_data hsd;
3500 struct mips_got_info *g;
3501
3502 if (elf_hash_table (info)->dynsymcount == 0)
3503 return TRUE;
3504
3505 htab = mips_elf_hash_table (info);
3506 BFD_ASSERT (htab != NULL);
3507
3508 g = htab->got_info;
3509 if (g == NULL)
3510 return TRUE;
3511
3512 hsd.low = NULL;
3513 hsd.max_unref_got_dynindx
3514 = hsd.min_got_dynindx
3515 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3516 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3517 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3518 elf_hash_table (info)),
3519 mips_elf_sort_hash_table_f,
3520 &hsd);
3521
3522 /* There should have been enough room in the symbol table to
3523 accommodate both the GOT and non-GOT symbols. */
3524 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3525 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3526 == elf_hash_table (info)->dynsymcount);
3527 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3528 == g->global_gotno);
3529
3530 /* Now we know which dynamic symbol has the lowest dynamic symbol
3531 table index in the GOT. */
3532 g->global_gotsym = hsd.low;
3533
3534 return TRUE;
3535 }
3536
3537 /* If H needs a GOT entry, assign it the highest available dynamic
3538 index. Otherwise, assign it the lowest available dynamic
3539 index. */
3540
3541 static bfd_boolean
3542 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3543 {
3544 struct mips_elf_hash_sort_data *hsd = data;
3545
3546 /* Symbols without dynamic symbol table entries aren't interesting
3547 at all. */
3548 if (h->root.dynindx == -1)
3549 return TRUE;
3550
3551 switch (h->global_got_area)
3552 {
3553 case GGA_NONE:
3554 h->root.dynindx = hsd->max_non_got_dynindx++;
3555 break;
3556
3557 case GGA_NORMAL:
3558 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3559
3560 h->root.dynindx = --hsd->min_got_dynindx;
3561 hsd->low = (struct elf_link_hash_entry *) h;
3562 break;
3563
3564 case GGA_RELOC_ONLY:
3565 BFD_ASSERT (h->tls_type == GOT_NORMAL);
3566
3567 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3568 hsd->low = (struct elf_link_hash_entry *) h;
3569 h->root.dynindx = hsd->max_unref_got_dynindx++;
3570 break;
3571 }
3572
3573 return TRUE;
3574 }
3575
3576 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3577 symbol table index lower than any we've seen to date, record it for
3578 posterity. FOR_CALL is true if the caller is only interested in
3579 using the GOT entry for calls. */
3580
3581 static bfd_boolean
3582 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3583 bfd *abfd, struct bfd_link_info *info,
3584 bfd_boolean for_call,
3585 unsigned char tls_flag)
3586 {
3587 struct mips_elf_link_hash_table *htab;
3588 struct mips_elf_link_hash_entry *hmips;
3589 struct mips_got_entry entry, **loc;
3590 struct mips_got_info *g;
3591
3592 htab = mips_elf_hash_table (info);
3593 BFD_ASSERT (htab != NULL);
3594
3595 hmips = (struct mips_elf_link_hash_entry *) h;
3596 if (!for_call)
3597 hmips->got_only_for_calls = FALSE;
3598
3599 /* A global symbol in the GOT must also be in the dynamic symbol
3600 table. */
3601 if (h->dynindx == -1)
3602 {
3603 switch (ELF_ST_VISIBILITY (h->other))
3604 {
3605 case STV_INTERNAL:
3606 case STV_HIDDEN:
3607 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3608 break;
3609 }
3610 if (!bfd_elf_link_record_dynamic_symbol (info, h))
3611 return FALSE;
3612 }
3613
3614 /* Make sure we have a GOT to put this entry into. */
3615 g = htab->got_info;
3616 BFD_ASSERT (g != NULL);
3617
3618 entry.abfd = abfd;
3619 entry.symndx = -1;
3620 entry.d.h = (struct mips_elf_link_hash_entry *) h;
3621 entry.tls_type = 0;
3622
3623 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3624 INSERT);
3625
3626 /* If we've already marked this entry as needing GOT space, we don't
3627 need to do it again. */
3628 if (*loc)
3629 {
3630 (*loc)->tls_type |= tls_flag;
3631 return TRUE;
3632 }
3633
3634 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3635
3636 if (! *loc)
3637 return FALSE;
3638
3639 entry.gotidx = -1;
3640 entry.tls_type = tls_flag;
3641
3642 memcpy (*loc, &entry, sizeof entry);
3643
3644 if (tls_flag == 0)
3645 hmips->global_got_area = GGA_NORMAL;
3646
3647 return TRUE;
3648 }
3649
3650 /* Reserve space in G for a GOT entry containing the value of symbol
3651 SYMNDX in input bfd ABDF, plus ADDEND. */
3652
3653 static bfd_boolean
3654 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3655 struct bfd_link_info *info,
3656 unsigned char tls_flag)
3657 {
3658 struct mips_elf_link_hash_table *htab;
3659 struct mips_got_info *g;
3660 struct mips_got_entry entry, **loc;
3661
3662 htab = mips_elf_hash_table (info);
3663 BFD_ASSERT (htab != NULL);
3664
3665 g = htab->got_info;
3666 BFD_ASSERT (g != NULL);
3667
3668 entry.abfd = abfd;
3669 entry.symndx = symndx;
3670 entry.d.addend = addend;
3671 entry.tls_type = tls_flag;
3672 loc = (struct mips_got_entry **)
3673 htab_find_slot (g->got_entries, &entry, INSERT);
3674
3675 if (*loc)
3676 {
3677 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3678 {
3679 g->tls_gotno += 2;
3680 (*loc)->tls_type |= tls_flag;
3681 }
3682 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3683 {
3684 g->tls_gotno += 1;
3685 (*loc)->tls_type |= tls_flag;
3686 }
3687 return TRUE;
3688 }
3689
3690 if (tls_flag != 0)
3691 {
3692 entry.gotidx = -1;
3693 entry.tls_type = tls_flag;
3694 if (tls_flag == GOT_TLS_IE)
3695 g->tls_gotno += 1;
3696 else if (tls_flag == GOT_TLS_GD)
3697 g->tls_gotno += 2;
3698 else if (g->tls_ldm_offset == MINUS_ONE)
3699 {
3700 g->tls_ldm_offset = MINUS_TWO;
3701 g->tls_gotno += 2;
3702 }
3703 }
3704 else
3705 {
3706 entry.gotidx = g->local_gotno++;
3707 entry.tls_type = 0;
3708 }
3709
3710 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3711
3712 if (! *loc)
3713 return FALSE;
3714
3715 memcpy (*loc, &entry, sizeof entry);
3716
3717 return TRUE;
3718 }
3719
3720 /* Return the maximum number of GOT page entries required for RANGE. */
3721
3722 static bfd_vma
3723 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3724 {
3725 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3726 }
3727
3728 /* Record that ABFD has a page relocation against symbol SYMNDX and
3729 that ADDEND is the addend for that relocation.
3730
3731 This function creates an upper bound on the number of GOT slots
3732 required; no attempt is made to combine references to non-overridable
3733 global symbols across multiple input files. */
3734
3735 static bfd_boolean
3736 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3737 long symndx, bfd_signed_vma addend)
3738 {
3739 struct mips_elf_link_hash_table *htab;
3740 struct mips_got_info *g;
3741 struct mips_got_page_entry lookup, *entry;
3742 struct mips_got_page_range **range_ptr, *range;
3743 bfd_vma old_pages, new_pages;
3744 void **loc;
3745
3746 htab = mips_elf_hash_table (info);
3747 BFD_ASSERT (htab != NULL);
3748
3749 g = htab->got_info;
3750 BFD_ASSERT (g != NULL);
3751
3752 /* Find the mips_got_page_entry hash table entry for this symbol. */
3753 lookup.abfd = abfd;
3754 lookup.symndx = symndx;
3755 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3756 if (loc == NULL)
3757 return FALSE;
3758
3759 /* Create a mips_got_page_entry if this is the first time we've
3760 seen the symbol. */
3761 entry = (struct mips_got_page_entry *) *loc;
3762 if (!entry)
3763 {
3764 entry = bfd_alloc (abfd, sizeof (*entry));
3765 if (!entry)
3766 return FALSE;
3767
3768 entry->abfd = abfd;
3769 entry->symndx = symndx;
3770 entry->ranges = NULL;
3771 entry->num_pages = 0;
3772 *loc = entry;
3773 }
3774
3775 /* Skip over ranges whose maximum extent cannot share a page entry
3776 with ADDEND. */
3777 range_ptr = &entry->ranges;
3778 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3779 range_ptr = &(*range_ptr)->next;
3780
3781 /* If we scanned to the end of the list, or found a range whose
3782 minimum extent cannot share a page entry with ADDEND, create
3783 a new singleton range. */
3784 range = *range_ptr;
3785 if (!range || addend < range->min_addend - 0xffff)
3786 {
3787 range = bfd_alloc (abfd, sizeof (*range));
3788 if (!range)
3789 return FALSE;
3790
3791 range->next = *range_ptr;
3792 range->min_addend = addend;
3793 range->max_addend = addend;
3794
3795 *range_ptr = range;
3796 entry->num_pages++;
3797 g->page_gotno++;
3798 return TRUE;
3799 }
3800
3801 /* Remember how many pages the old range contributed. */
3802 old_pages = mips_elf_pages_for_range (range);
3803
3804 /* Update the ranges. */
3805 if (addend < range->min_addend)
3806 range->min_addend = addend;
3807 else if (addend > range->max_addend)
3808 {
3809 if (range->next && addend >= range->next->min_addend - 0xffff)
3810 {
3811 old_pages += mips_elf_pages_for_range (range->next);
3812 range->max_addend = range->next->max_addend;
3813 range->next = range->next->next;
3814 }
3815 else
3816 range->max_addend = addend;
3817 }
3818
3819 /* Record any change in the total estimate. */
3820 new_pages = mips_elf_pages_for_range (range);
3821 if (old_pages != new_pages)
3822 {
3823 entry->num_pages += new_pages - old_pages;
3824 g->page_gotno += new_pages - old_pages;
3825 }
3826
3827 return TRUE;
3828 }
3829
3830 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
3831
3832 static void
3833 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3834 unsigned int n)
3835 {
3836 asection *s;
3837 struct mips_elf_link_hash_table *htab;
3838
3839 htab = mips_elf_hash_table (info);
3840 BFD_ASSERT (htab != NULL);
3841
3842 s = mips_elf_rel_dyn_section (info, FALSE);
3843 BFD_ASSERT (s != NULL);
3844
3845 if (htab->is_vxworks)
3846 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3847 else
3848 {
3849 if (s->size == 0)
3850 {
3851 /* Make room for a null element. */
3852 s->size += MIPS_ELF_REL_SIZE (abfd);
3853 ++s->reloc_count;
3854 }
3855 s->size += n * MIPS_ELF_REL_SIZE (abfd);
3856 }
3857 }
3858 \f
3859 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true
3860 if the GOT entry is for an indirect or warning symbol. */
3861
3862 static int
3863 mips_elf_check_recreate_got (void **entryp, void *data)
3864 {
3865 struct mips_got_entry *entry;
3866 bfd_boolean *must_recreate;
3867
3868 entry = (struct mips_got_entry *) *entryp;
3869 must_recreate = (bfd_boolean *) data;
3870 if (entry->abfd != NULL && entry->symndx == -1)
3871 {
3872 struct mips_elf_link_hash_entry *h;
3873
3874 h = entry->d.h;
3875 if (h->root.root.type == bfd_link_hash_indirect
3876 || h->root.root.type == bfd_link_hash_warning)
3877 {
3878 *must_recreate = TRUE;
3879 return 0;
3880 }
3881 }
3882 return 1;
3883 }
3884
3885 /* A htab_traverse callback for GOT entries. Add all entries to
3886 hash table *DATA, converting entries for indirect and warning
3887 symbols into entries for the target symbol. Set *DATA to null
3888 on error. */
3889
3890 static int
3891 mips_elf_recreate_got (void **entryp, void *data)
3892 {
3893 htab_t *new_got;
3894 struct mips_got_entry *entry;
3895 void **slot;
3896
3897 new_got = (htab_t *) data;
3898 entry = (struct mips_got_entry *) *entryp;
3899 if (entry->abfd != NULL && entry->symndx == -1)
3900 {
3901 struct mips_elf_link_hash_entry *h;
3902
3903 h = entry->d.h;
3904 while (h->root.root.type == bfd_link_hash_indirect
3905 || h->root.root.type == bfd_link_hash_warning)
3906 {
3907 BFD_ASSERT (h->global_got_area == GGA_NONE);
3908 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3909 }
3910 entry->d.h = h;
3911 }
3912 slot = htab_find_slot (*new_got, entry, INSERT);
3913 if (slot == NULL)
3914 {
3915 *new_got = NULL;
3916 return 0;
3917 }
3918 if (*slot == NULL)
3919 *slot = entry;
3920 else
3921 free (entry);
3922 return 1;
3923 }
3924
3925 /* If any entries in G->got_entries are for indirect or warning symbols,
3926 replace them with entries for the target symbol. */
3927
3928 static bfd_boolean
3929 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3930 {
3931 bfd_boolean must_recreate;
3932 htab_t new_got;
3933
3934 must_recreate = FALSE;
3935 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3936 if (must_recreate)
3937 {
3938 new_got = htab_create (htab_size (g->got_entries),
3939 mips_elf_got_entry_hash,
3940 mips_elf_got_entry_eq, NULL);
3941 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3942 if (new_got == NULL)
3943 return FALSE;
3944
3945 /* Each entry in g->got_entries has either been copied to new_got
3946 or freed. Now delete the hash table itself. */
3947 htab_delete (g->got_entries);
3948 g->got_entries = new_got;
3949 }
3950 return TRUE;
3951 }
3952
3953 /* A mips_elf_link_hash_traverse callback for which DATA points
3954 to the link_info structure. Count the number of type (3) entries
3955 in the master GOT. */
3956
3957 static int
3958 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3959 {
3960 struct bfd_link_info *info;
3961 struct mips_elf_link_hash_table *htab;
3962 struct mips_got_info *g;
3963
3964 info = (struct bfd_link_info *) data;
3965 htab = mips_elf_hash_table (info);
3966 g = htab->got_info;
3967 if (h->global_got_area != GGA_NONE)
3968 {
3969 /* Make a final decision about whether the symbol belongs in the
3970 local or global GOT. Symbols that bind locally can (and in the
3971 case of forced-local symbols, must) live in the local GOT.
3972 Those that are aren't in the dynamic symbol table must also
3973 live in the local GOT.
3974
3975 Note that the former condition does not always imply the
3976 latter: symbols do not bind locally if they are completely
3977 undefined. We'll report undefined symbols later if appropriate. */
3978 if (h->root.dynindx == -1
3979 || (h->got_only_for_calls
3980 ? SYMBOL_CALLS_LOCAL (info, &h->root)
3981 : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3982 {
3983 /* The symbol belongs in the local GOT. We no longer need this
3984 entry if it was only used for relocations; those relocations
3985 will be against the null or section symbol instead of H. */
3986 if (h->global_got_area != GGA_RELOC_ONLY)
3987 g->local_gotno++;
3988 h->global_got_area = GGA_NONE;
3989 }
3990 else if (htab->is_vxworks
3991 && h->got_only_for_calls
3992 && h->root.plt.offset != MINUS_ONE)
3993 /* On VxWorks, calls can refer directly to the .got.plt entry;
3994 they don't need entries in the regular GOT. .got.plt entries
3995 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
3996 h->global_got_area = GGA_NONE;
3997 else
3998 {
3999 g->global_gotno++;
4000 if (h->global_got_area == GGA_RELOC_ONLY)
4001 g->reloc_only_gotno++;
4002 }
4003 }
4004 return 1;
4005 }
4006 \f
4007 /* Compute the hash value of the bfd in a bfd2got hash entry. */
4008
4009 static hashval_t
4010 mips_elf_bfd2got_entry_hash (const void *entry_)
4011 {
4012 const struct mips_elf_bfd2got_hash *entry
4013 = (struct mips_elf_bfd2got_hash *)entry_;
4014
4015 return entry->bfd->id;
4016 }
4017
4018 /* Check whether two hash entries have the same bfd. */
4019
4020 static int
4021 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
4022 {
4023 const struct mips_elf_bfd2got_hash *e1
4024 = (const struct mips_elf_bfd2got_hash *)entry1;
4025 const struct mips_elf_bfd2got_hash *e2
4026 = (const struct mips_elf_bfd2got_hash *)entry2;
4027
4028 return e1->bfd == e2->bfd;
4029 }
4030
4031 /* In a multi-got link, determine the GOT to be used for IBFD. G must
4032 be the master GOT data. */
4033
4034 static struct mips_got_info *
4035 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
4036 {
4037 struct mips_elf_bfd2got_hash e, *p;
4038
4039 if (! g->bfd2got)
4040 return g;
4041
4042 e.bfd = ibfd;
4043 p = htab_find (g->bfd2got, &e);
4044 return p ? p->g : NULL;
4045 }
4046
4047 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
4048 Return NULL if an error occured. */
4049
4050 static struct mips_got_info *
4051 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
4052 bfd *input_bfd)
4053 {
4054 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
4055 struct mips_got_info *g;
4056 void **bfdgotp;
4057
4058 bfdgot_entry.bfd = input_bfd;
4059 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
4060 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
4061
4062 if (bfdgot == NULL)
4063 {
4064 bfdgot = ((struct mips_elf_bfd2got_hash *)
4065 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
4066 if (bfdgot == NULL)
4067 return NULL;
4068
4069 *bfdgotp = bfdgot;
4070
4071 g = ((struct mips_got_info *)
4072 bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
4073 if (g == NULL)
4074 return NULL;
4075
4076 bfdgot->bfd = input_bfd;
4077 bfdgot->g = g;
4078
4079 g->global_gotsym = NULL;
4080 g->global_gotno = 0;
4081 g->reloc_only_gotno = 0;
4082 g->local_gotno = 0;
4083 g->page_gotno = 0;
4084 g->assigned_gotno = -1;
4085 g->tls_gotno = 0;
4086 g->tls_assigned_gotno = 0;
4087 g->tls_ldm_offset = MINUS_ONE;
4088 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4089 mips_elf_multi_got_entry_eq, NULL);
4090 if (g->got_entries == NULL)
4091 return NULL;
4092
4093 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4094 mips_got_page_entry_eq, NULL);
4095 if (g->got_page_entries == NULL)
4096 return NULL;
4097
4098 g->bfd2got = NULL;
4099 g->next = NULL;
4100 }
4101
4102 return bfdgot->g;
4103 }
4104
4105 /* A htab_traverse callback for the entries in the master got.
4106 Create one separate got for each bfd that has entries in the global
4107 got, such that we can tell how many local and global entries each
4108 bfd requires. */
4109
4110 static int
4111 mips_elf_make_got_per_bfd (void **entryp, void *p)
4112 {
4113 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4114 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4115 struct mips_got_info *g;
4116
4117 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4118 if (g == NULL)
4119 {
4120 arg->obfd = NULL;
4121 return 0;
4122 }
4123
4124 /* Insert the GOT entry in the bfd's got entry hash table. */
4125 entryp = htab_find_slot (g->got_entries, entry, INSERT);
4126 if (*entryp != NULL)
4127 return 1;
4128
4129 *entryp = entry;
4130
4131 if (entry->tls_type)
4132 {
4133 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4134 g->tls_gotno += 2;
4135 if (entry->tls_type & GOT_TLS_IE)
4136 g->tls_gotno += 1;
4137 }
4138 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4139 ++g->local_gotno;
4140 else
4141 ++g->global_gotno;
4142
4143 return 1;
4144 }
4145
4146 /* A htab_traverse callback for the page entries in the master got.
4147 Associate each page entry with the bfd's got. */
4148
4149 static int
4150 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4151 {
4152 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4153 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4154 struct mips_got_info *g;
4155
4156 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4157 if (g == NULL)
4158 {
4159 arg->obfd = NULL;
4160 return 0;
4161 }
4162
4163 /* Insert the GOT entry in the bfd's got entry hash table. */
4164 entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4165 if (*entryp != NULL)
4166 return 1;
4167
4168 *entryp = entry;
4169 g->page_gotno += entry->num_pages;
4170 return 1;
4171 }
4172
4173 /* Consider merging the got described by BFD2GOT with TO, using the
4174 information given by ARG. Return -1 if this would lead to overflow,
4175 1 if they were merged successfully, and 0 if a merge failed due to
4176 lack of memory. (These values are chosen so that nonnegative return
4177 values can be returned by a htab_traverse callback.) */
4178
4179 static int
4180 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4181 struct mips_got_info *to,
4182 struct mips_elf_got_per_bfd_arg *arg)
4183 {
4184 struct mips_got_info *from = bfd2got->g;
4185 unsigned int estimate;
4186
4187 /* Work out how many page entries we would need for the combined GOT. */
4188 estimate = arg->max_pages;
4189 if (estimate >= from->page_gotno + to->page_gotno)
4190 estimate = from->page_gotno + to->page_gotno;
4191
4192 /* And conservatively estimate how many local and TLS entries
4193 would be needed. */
4194 estimate += from->local_gotno + to->local_gotno;
4195 estimate += from->tls_gotno + to->tls_gotno;
4196
4197 /* If we're merging with the primary got, we will always have
4198 the full set of global entries. Otherwise estimate those
4199 conservatively as well. */
4200 if (to == arg->primary)
4201 estimate += arg->global_count;
4202 else
4203 estimate += from->global_gotno + to->global_gotno;
4204
4205 /* Bail out if the combined GOT might be too big. */
4206 if (estimate > arg->max_count)
4207 return -1;
4208
4209 /* Commit to the merge. Record that TO is now the bfd for this got. */
4210 bfd2got->g = to;
4211
4212 /* Transfer the bfd's got information from FROM to TO. */
4213 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4214 if (arg->obfd == NULL)
4215 return 0;
4216
4217 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4218 if (arg->obfd == NULL)
4219 return 0;
4220
4221 /* We don't have to worry about releasing memory of the actual
4222 got entries, since they're all in the master got_entries hash
4223 table anyway. */
4224 htab_delete (from->got_entries);
4225 htab_delete (from->got_page_entries);
4226 return 1;
4227 }
4228
4229 /* Attempt to merge gots of different input bfds. Try to use as much
4230 as possible of the primary got, since it doesn't require explicit
4231 dynamic relocations, but don't use bfds that would reference global
4232 symbols out of the addressable range. Failing the primary got,
4233 attempt to merge with the current got, or finish the current got
4234 and then make make the new got current. */
4235
4236 static int
4237 mips_elf_merge_gots (void **bfd2got_, void *p)
4238 {
4239 struct mips_elf_bfd2got_hash *bfd2got
4240 = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4241 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4242 struct mips_got_info *g;
4243 unsigned int estimate;
4244 int result;
4245
4246 g = bfd2got->g;
4247
4248 /* Work out the number of page, local and TLS entries. */
4249 estimate = arg->max_pages;
4250 if (estimate > g->page_gotno)
4251 estimate = g->page_gotno;
4252 estimate += g->local_gotno + g->tls_gotno;
4253
4254 /* We place TLS GOT entries after both locals and globals. The globals
4255 for the primary GOT may overflow the normal GOT size limit, so be
4256 sure not to merge a GOT which requires TLS with the primary GOT in that
4257 case. This doesn't affect non-primary GOTs. */
4258 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4259
4260 if (estimate <= arg->max_count)
4261 {
4262 /* If we don't have a primary GOT, use it as
4263 a starting point for the primary GOT. */
4264 if (!arg->primary)
4265 {
4266 arg->primary = bfd2got->g;
4267 return 1;
4268 }
4269
4270 /* Try merging with the primary GOT. */
4271 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4272 if (result >= 0)
4273 return result;
4274 }
4275
4276 /* If we can merge with the last-created got, do it. */
4277 if (arg->current)
4278 {
4279 result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4280 if (result >= 0)
4281 return result;
4282 }
4283
4284 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4285 fits; if it turns out that it doesn't, we'll get relocation
4286 overflows anyway. */
4287 g->next = arg->current;
4288 arg->current = g;
4289
4290 return 1;
4291 }
4292
4293 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field
4294 is null iff there is just a single GOT. */
4295
4296 static int
4297 mips_elf_initialize_tls_index (void **entryp, void *p)
4298 {
4299 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4300 struct mips_got_info *g = p;
4301 bfd_vma next_index;
4302 unsigned char tls_type;
4303
4304 /* We're only interested in TLS symbols. */
4305 if (entry->tls_type == 0)
4306 return 1;
4307
4308 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4309
4310 if (entry->symndx == -1 && g->next == NULL)
4311 {
4312 /* A type (3) got entry in the single-GOT case. We use the symbol's
4313 hash table entry to track its index. */
4314 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4315 return 1;
4316 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4317 entry->d.h->tls_got_offset = next_index;
4318 tls_type = entry->d.h->tls_type;
4319 }
4320 else
4321 {
4322 if (entry->tls_type & GOT_TLS_LDM)
4323 {
4324 /* There are separate mips_got_entry objects for each input bfd
4325 that requires an LDM entry. Make sure that all LDM entries in
4326 a GOT resolve to the same index. */
4327 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4328 {
4329 entry->gotidx = g->tls_ldm_offset;
4330 return 1;
4331 }
4332 g->tls_ldm_offset = next_index;
4333 }
4334 entry->gotidx = next_index;
4335 tls_type = entry->tls_type;
4336 }
4337
4338 /* Account for the entries we've just allocated. */
4339 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4340 g->tls_assigned_gotno += 2;
4341 if (tls_type & GOT_TLS_IE)
4342 g->tls_assigned_gotno += 1;
4343
4344 return 1;
4345 }
4346
4347 /* If passed a NULL mips_got_info in the argument, set the marker used
4348 to tell whether a global symbol needs a got entry (in the primary
4349 got) to the given VALUE.
4350
4351 If passed a pointer G to a mips_got_info in the argument (it must
4352 not be the primary GOT), compute the offset from the beginning of
4353 the (primary) GOT section to the entry in G corresponding to the
4354 global symbol. G's assigned_gotno must contain the index of the
4355 first available global GOT entry in G. VALUE must contain the size
4356 of a GOT entry in bytes. For each global GOT entry that requires a
4357 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4358 marked as not eligible for lazy resolution through a function
4359 stub. */
4360 static int
4361 mips_elf_set_global_got_offset (void **entryp, void *p)
4362 {
4363 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4364 struct mips_elf_set_global_got_offset_arg *arg
4365 = (struct mips_elf_set_global_got_offset_arg *)p;
4366 struct mips_got_info *g = arg->g;
4367
4368 if (g && entry->tls_type != GOT_NORMAL)
4369 arg->needed_relocs +=
4370 mips_tls_got_relocs (arg->info, entry->tls_type,
4371 entry->symndx == -1 ? &entry->d.h->root : NULL);
4372
4373 if (entry->abfd != NULL
4374 && entry->symndx == -1
4375 && entry->d.h->global_got_area != GGA_NONE)
4376 {
4377 if (g)
4378 {
4379 BFD_ASSERT (g->global_gotsym == NULL);
4380
4381 entry->gotidx = arg->value * (long) g->assigned_gotno++;
4382 if (arg->info->shared
4383 || (elf_hash_table (arg->info)->dynamic_sections_created
4384 && entry->d.h->root.def_dynamic
4385 && !entry->d.h->root.def_regular))
4386 ++arg->needed_relocs;
4387 }
4388 else
4389 entry->d.h->global_got_area = arg->value;
4390 }
4391
4392 return 1;
4393 }
4394
4395 /* A htab_traverse callback for GOT entries for which DATA is the
4396 bfd_link_info. Forbid any global symbols from having traditional
4397 lazy-binding stubs. */
4398
4399 static int
4400 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4401 {
4402 struct bfd_link_info *info;
4403 struct mips_elf_link_hash_table *htab;
4404 struct mips_got_entry *entry;
4405
4406 entry = (struct mips_got_entry *) *entryp;
4407 info = (struct bfd_link_info *) data;
4408 htab = mips_elf_hash_table (info);
4409 BFD_ASSERT (htab != NULL);
4410
4411 if (entry->abfd != NULL
4412 && entry->symndx == -1
4413 && entry->d.h->needs_lazy_stub)
4414 {
4415 entry->d.h->needs_lazy_stub = FALSE;
4416 htab->lazy_stub_count--;
4417 }
4418
4419 return 1;
4420 }
4421
4422 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4423 the primary GOT. */
4424 static bfd_vma
4425 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4426 {
4427 if (g->bfd2got == NULL)
4428 return 0;
4429
4430 g = mips_elf_got_for_ibfd (g, ibfd);
4431 if (! g)
4432 return 0;
4433
4434 BFD_ASSERT (g->next);
4435
4436 g = g->next;
4437
4438 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4439 * MIPS_ELF_GOT_SIZE (abfd);
4440 }
4441
4442 /* Turn a single GOT that is too big for 16-bit addressing into
4443 a sequence of GOTs, each one 16-bit addressable. */
4444
4445 static bfd_boolean
4446 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4447 asection *got, bfd_size_type pages)
4448 {
4449 struct mips_elf_link_hash_table *htab;
4450 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4451 struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4452 struct mips_got_info *g, *gg;
4453 unsigned int assign, needed_relocs;
4454 bfd *dynobj;
4455
4456 dynobj = elf_hash_table (info)->dynobj;
4457 htab = mips_elf_hash_table (info);
4458 BFD_ASSERT (htab != NULL);
4459
4460 g = htab->got_info;
4461 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4462 mips_elf_bfd2got_entry_eq, NULL);
4463 if (g->bfd2got == NULL)
4464 return FALSE;
4465
4466 got_per_bfd_arg.bfd2got = g->bfd2got;
4467 got_per_bfd_arg.obfd = abfd;
4468 got_per_bfd_arg.info = info;
4469
4470 /* Count how many GOT entries each input bfd requires, creating a
4471 map from bfd to got info while at that. */
4472 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4473 if (got_per_bfd_arg.obfd == NULL)
4474 return FALSE;
4475
4476 /* Also count how many page entries each input bfd requires. */
4477 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4478 &got_per_bfd_arg);
4479 if (got_per_bfd_arg.obfd == NULL)
4480 return FALSE;
4481
4482 got_per_bfd_arg.current = NULL;
4483 got_per_bfd_arg.primary = NULL;
4484 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4485 / MIPS_ELF_GOT_SIZE (abfd))
4486 - htab->reserved_gotno);
4487 got_per_bfd_arg.max_pages = pages;
4488 /* The number of globals that will be included in the primary GOT.
4489 See the calls to mips_elf_set_global_got_offset below for more
4490 information. */
4491 got_per_bfd_arg.global_count = g->global_gotno;
4492
4493 /* Try to merge the GOTs of input bfds together, as long as they
4494 don't seem to exceed the maximum GOT size, choosing one of them
4495 to be the primary GOT. */
4496 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4497 if (got_per_bfd_arg.obfd == NULL)
4498 return FALSE;
4499
4500 /* If we do not find any suitable primary GOT, create an empty one. */
4501 if (got_per_bfd_arg.primary == NULL)
4502 {
4503 g->next = (struct mips_got_info *)
4504 bfd_alloc (abfd, sizeof (struct mips_got_info));
4505 if (g->next == NULL)
4506 return FALSE;
4507
4508 g->next->global_gotsym = NULL;
4509 g->next->global_gotno = 0;
4510 g->next->reloc_only_gotno = 0;
4511 g->next->local_gotno = 0;
4512 g->next->page_gotno = 0;
4513 g->next->tls_gotno = 0;
4514 g->next->assigned_gotno = 0;
4515 g->next->tls_assigned_gotno = 0;
4516 g->next->tls_ldm_offset = MINUS_ONE;
4517 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4518 mips_elf_multi_got_entry_eq,
4519 NULL);
4520 if (g->next->got_entries == NULL)
4521 return FALSE;
4522 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4523 mips_got_page_entry_eq,
4524 NULL);
4525 if (g->next->got_page_entries == NULL)
4526 return FALSE;
4527 g->next->bfd2got = NULL;
4528 }
4529 else
4530 g->next = got_per_bfd_arg.primary;
4531 g->next->next = got_per_bfd_arg.current;
4532
4533 /* GG is now the master GOT, and G is the primary GOT. */
4534 gg = g;
4535 g = g->next;
4536
4537 /* Map the output bfd to the primary got. That's what we're going
4538 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4539 didn't mark in check_relocs, and we want a quick way to find it.
4540 We can't just use gg->next because we're going to reverse the
4541 list. */
4542 {
4543 struct mips_elf_bfd2got_hash *bfdgot;
4544 void **bfdgotp;
4545
4546 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4547 (abfd, sizeof (struct mips_elf_bfd2got_hash));
4548
4549 if (bfdgot == NULL)
4550 return FALSE;
4551
4552 bfdgot->bfd = abfd;
4553 bfdgot->g = g;
4554 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4555
4556 BFD_ASSERT (*bfdgotp == NULL);
4557 *bfdgotp = bfdgot;
4558 }
4559
4560 /* Every symbol that is referenced in a dynamic relocation must be
4561 present in the primary GOT, so arrange for them to appear after
4562 those that are actually referenced. */
4563 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4564 g->global_gotno = gg->global_gotno;
4565
4566 set_got_offset_arg.g = NULL;
4567 set_got_offset_arg.value = GGA_RELOC_ONLY;
4568 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4569 &set_got_offset_arg);
4570 set_got_offset_arg.value = GGA_NORMAL;
4571 htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4572 &set_got_offset_arg);
4573
4574 /* Now go through the GOTs assigning them offset ranges.
4575 [assigned_gotno, local_gotno[ will be set to the range of local
4576 entries in each GOT. We can then compute the end of a GOT by
4577 adding local_gotno to global_gotno. We reverse the list and make
4578 it circular since then we'll be able to quickly compute the
4579 beginning of a GOT, by computing the end of its predecessor. To
4580 avoid special cases for the primary GOT, while still preserving
4581 assertions that are valid for both single- and multi-got links,
4582 we arrange for the main got struct to have the right number of
4583 global entries, but set its local_gotno such that the initial
4584 offset of the primary GOT is zero. Remember that the primary GOT
4585 will become the last item in the circular linked list, so it
4586 points back to the master GOT. */
4587 gg->local_gotno = -g->global_gotno;
4588 gg->global_gotno = g->global_gotno;
4589 gg->tls_gotno = 0;
4590 assign = 0;
4591 gg->next = gg;
4592
4593 do
4594 {
4595 struct mips_got_info *gn;
4596
4597 assign += htab->reserved_gotno;
4598 g->assigned_gotno = assign;
4599 g->local_gotno += assign;
4600 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4601 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4602
4603 /* Take g out of the direct list, and push it onto the reversed
4604 list that gg points to. g->next is guaranteed to be nonnull after
4605 this operation, as required by mips_elf_initialize_tls_index. */
4606 gn = g->next;
4607 g->next = gg->next;
4608 gg->next = g;
4609
4610 /* Set up any TLS entries. We always place the TLS entries after
4611 all non-TLS entries. */
4612 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4613 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4614
4615 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
4616 g = gn;
4617
4618 /* Forbid global symbols in every non-primary GOT from having
4619 lazy-binding stubs. */
4620 if (g)
4621 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4622 }
4623 while (g);
4624
4625 got->size = (gg->next->local_gotno
4626 + gg->next->global_gotno
4627 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4628
4629 needed_relocs = 0;
4630 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4631 set_got_offset_arg.info = info;
4632 for (g = gg->next; g && g->next != gg; g = g->next)
4633 {
4634 unsigned int save_assign;
4635
4636 /* Assign offsets to global GOT entries. */
4637 save_assign = g->assigned_gotno;
4638 g->assigned_gotno = g->local_gotno;
4639 set_got_offset_arg.g = g;
4640 set_got_offset_arg.needed_relocs = 0;
4641 htab_traverse (g->got_entries,
4642 mips_elf_set_global_got_offset,
4643 &set_got_offset_arg);
4644 needed_relocs += set_got_offset_arg.needed_relocs;
4645 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4646
4647 g->assigned_gotno = save_assign;
4648 if (info->shared)
4649 {
4650 needed_relocs += g->local_gotno - g->assigned_gotno;
4651 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4652 + g->next->global_gotno
4653 + g->next->tls_gotno
4654 + htab->reserved_gotno);
4655 }
4656 }
4657
4658 if (needed_relocs)
4659 mips_elf_allocate_dynamic_relocations (dynobj, info,
4660 needed_relocs);
4661
4662 return TRUE;
4663 }
4664
4665 \f
4666 /* Returns the first relocation of type r_type found, beginning with
4667 RELOCATION. RELEND is one-past-the-end of the relocation table. */
4668
4669 static const Elf_Internal_Rela *
4670 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4671 const Elf_Internal_Rela *relocation,
4672 const Elf_Internal_Rela *relend)
4673 {
4674 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4675
4676 while (relocation < relend)
4677 {
4678 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4679 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4680 return relocation;
4681
4682 ++relocation;
4683 }
4684
4685 /* We didn't find it. */
4686 return NULL;
4687 }
4688
4689 /* Return whether an input relocation is against a local symbol. */
4690
4691 static bfd_boolean
4692 mips_elf_local_relocation_p (bfd *input_bfd,
4693 const Elf_Internal_Rela *relocation,
4694 asection **local_sections)
4695 {
4696 unsigned long r_symndx;
4697 Elf_Internal_Shdr *symtab_hdr;
4698 size_t extsymoff;
4699
4700 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4702 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4703
4704 if (r_symndx < extsymoff)
4705 return TRUE;
4706 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4707 return TRUE;
4708
4709 return FALSE;
4710 }
4711 \f
4712 /* Sign-extend VALUE, which has the indicated number of BITS. */
4713
4714 bfd_vma
4715 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4716 {
4717 if (value & ((bfd_vma) 1 << (bits - 1)))
4718 /* VALUE is negative. */
4719 value |= ((bfd_vma) - 1) << bits;
4720
4721 return value;
4722 }
4723
4724 /* Return non-zero if the indicated VALUE has overflowed the maximum
4725 range expressible by a signed number with the indicated number of
4726 BITS. */
4727
4728 static bfd_boolean
4729 mips_elf_overflow_p (bfd_vma value, int bits)
4730 {
4731 bfd_signed_vma svalue = (bfd_signed_vma) value;
4732
4733 if (svalue > (1 << (bits - 1)) - 1)
4734 /* The value is too big. */
4735 return TRUE;
4736 else if (svalue < -(1 << (bits - 1)))
4737 /* The value is too small. */
4738 return TRUE;
4739
4740 /* All is well. */
4741 return FALSE;
4742 }
4743
4744 /* Calculate the %high function. */
4745
4746 static bfd_vma
4747 mips_elf_high (bfd_vma value)
4748 {
4749 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4750 }
4751
4752 /* Calculate the %higher function. */
4753
4754 static bfd_vma
4755 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4756 {
4757 #ifdef BFD64
4758 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4759 #else
4760 abort ();
4761 return MINUS_ONE;
4762 #endif
4763 }
4764
4765 /* Calculate the %highest function. */
4766
4767 static bfd_vma
4768 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4769 {
4770 #ifdef BFD64
4771 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4772 #else
4773 abort ();
4774 return MINUS_ONE;
4775 #endif
4776 }
4777 \f
4778 /* Create the .compact_rel section. */
4779
4780 static bfd_boolean
4781 mips_elf_create_compact_rel_section
4782 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4783 {
4784 flagword flags;
4785 register asection *s;
4786
4787 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4788 {
4789 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4790 | SEC_READONLY);
4791
4792 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4793 if (s == NULL
4794 || ! bfd_set_section_alignment (abfd, s,
4795 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4796 return FALSE;
4797
4798 s->size = sizeof (Elf32_External_compact_rel);
4799 }
4800
4801 return TRUE;
4802 }
4803
4804 /* Create the .got section to hold the global offset table. */
4805
4806 static bfd_boolean
4807 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4808 {
4809 flagword flags;
4810 register asection *s;
4811 struct elf_link_hash_entry *h;
4812 struct bfd_link_hash_entry *bh;
4813 struct mips_got_info *g;
4814 bfd_size_type amt;
4815 struct mips_elf_link_hash_table *htab;
4816
4817 htab = mips_elf_hash_table (info);
4818 BFD_ASSERT (htab != NULL);
4819
4820 /* This function may be called more than once. */
4821 if (htab->sgot)
4822 return TRUE;
4823
4824 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4825 | SEC_LINKER_CREATED);
4826
4827 /* We have to use an alignment of 2**4 here because this is hardcoded
4828 in the function stub generation and in the linker script. */
4829 s = bfd_make_section_with_flags (abfd, ".got", flags);
4830 if (s == NULL
4831 || ! bfd_set_section_alignment (abfd, s, 4))
4832 return FALSE;
4833 htab->sgot = s;
4834
4835 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
4836 linker script because we don't want to define the symbol if we
4837 are not creating a global offset table. */
4838 bh = NULL;
4839 if (! (_bfd_generic_link_add_one_symbol
4840 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4841 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4842 return FALSE;
4843
4844 h = (struct elf_link_hash_entry *) bh;
4845 h->non_elf = 0;
4846 h->def_regular = 1;
4847 h->type = STT_OBJECT;
4848 elf_hash_table (info)->hgot = h;
4849
4850 if (info->shared
4851 && ! bfd_elf_link_record_dynamic_symbol (info, h))
4852 return FALSE;
4853
4854 amt = sizeof (struct mips_got_info);
4855 g = bfd_alloc (abfd, amt);
4856 if (g == NULL)
4857 return FALSE;
4858 g->global_gotsym = NULL;
4859 g->global_gotno = 0;
4860 g->reloc_only_gotno = 0;
4861 g->tls_gotno = 0;
4862 g->local_gotno = 0;
4863 g->page_gotno = 0;
4864 g->assigned_gotno = 0;
4865 g->bfd2got = NULL;
4866 g->next = NULL;
4867 g->tls_ldm_offset = MINUS_ONE;
4868 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4869 mips_elf_got_entry_eq, NULL);
4870 if (g->got_entries == NULL)
4871 return FALSE;
4872 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4873 mips_got_page_entry_eq, NULL);
4874 if (g->got_page_entries == NULL)
4875 return FALSE;
4876 htab->got_info = g;
4877 mips_elf_section_data (s)->elf.this_hdr.sh_flags
4878 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4879
4880 /* We also need a .got.plt section when generating PLTs. */
4881 s = bfd_make_section_with_flags (abfd, ".got.plt",
4882 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4883 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4884 if (s == NULL)
4885 return FALSE;
4886 htab->sgotplt = s;
4887
4888 return TRUE;
4889 }
4890 \f
4891 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4892 __GOTT_INDEX__ symbols. These symbols are only special for
4893 shared objects; they are not used in executables. */
4894
4895 static bfd_boolean
4896 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4897 {
4898 return (mips_elf_hash_table (info)->is_vxworks
4899 && info->shared
4900 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4901 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4902 }
4903
4904 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4905 require an la25 stub. See also mips_elf_local_pic_function_p,
4906 which determines whether the destination function ever requires a
4907 stub. */
4908
4909 static bfd_boolean
4910 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4911 {
4912 /* We specifically ignore branches and jumps from EF_PIC objects,
4913 where the onus is on the compiler or programmer to perform any
4914 necessary initialization of $25. Sometimes such initialization
4915 is unnecessary; for example, -mno-shared functions do not use
4916 the incoming value of $25, and may therefore be called directly. */
4917 if (PIC_OBJECT_P (input_bfd))
4918 return FALSE;
4919
4920 switch (r_type)
4921 {
4922 case R_MIPS_26:
4923 case R_MIPS_PC16:
4924 case R_MIPS16_26:
4925 case R_MICROMIPS_26_S1:
4926 case R_MICROMIPS_PC7_S1:
4927 case R_MICROMIPS_PC10_S1:
4928 case R_MICROMIPS_PC16_S1:
4929 case R_MICROMIPS_PC23_S2:
4930 return TRUE;
4931
4932 default:
4933 return FALSE;
4934 }
4935 }
4936 \f
4937 /* Calculate the value produced by the RELOCATION (which comes from
4938 the INPUT_BFD). The ADDEND is the addend to use for this
4939 RELOCATION; RELOCATION->R_ADDEND is ignored.
4940
4941 The result of the relocation calculation is stored in VALUEP.
4942 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4943 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
4944
4945 This function returns bfd_reloc_continue if the caller need take no
4946 further action regarding this relocation, bfd_reloc_notsupported if
4947 something goes dramatically wrong, bfd_reloc_overflow if an
4948 overflow occurs, and bfd_reloc_ok to indicate success. */
4949
4950 static bfd_reloc_status_type
4951 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4952 asection *input_section,
4953 struct bfd_link_info *info,
4954 const Elf_Internal_Rela *relocation,
4955 bfd_vma addend, reloc_howto_type *howto,
4956 Elf_Internal_Sym *local_syms,
4957 asection **local_sections, bfd_vma *valuep,
4958 const char **namep,
4959 bfd_boolean *cross_mode_jump_p,
4960 bfd_boolean save_addend)
4961 {
4962 /* The eventual value we will return. */
4963 bfd_vma value;
4964 /* The address of the symbol against which the relocation is
4965 occurring. */
4966 bfd_vma symbol = 0;
4967 /* The final GP value to be used for the relocatable, executable, or
4968 shared object file being produced. */
4969 bfd_vma gp;
4970 /* The place (section offset or address) of the storage unit being
4971 relocated. */
4972 bfd_vma p;
4973 /* The value of GP used to create the relocatable object. */
4974 bfd_vma gp0;
4975 /* The offset into the global offset table at which the address of
4976 the relocation entry symbol, adjusted by the addend, resides
4977 during execution. */
4978 bfd_vma g = MINUS_ONE;
4979 /* The section in which the symbol referenced by the relocation is
4980 located. */
4981 asection *sec = NULL;
4982 struct mips_elf_link_hash_entry *h = NULL;
4983 /* TRUE if the symbol referred to by this relocation is a local
4984 symbol. */
4985 bfd_boolean local_p, was_local_p;
4986 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
4987 bfd_boolean gp_disp_p = FALSE;
4988 /* TRUE if the symbol referred to by this relocation is
4989 "__gnu_local_gp". */
4990 bfd_boolean gnu_local_gp_p = FALSE;
4991 Elf_Internal_Shdr *symtab_hdr;
4992 size_t extsymoff;
4993 unsigned long r_symndx;
4994 int r_type;
4995 /* TRUE if overflow occurred during the calculation of the
4996 relocation value. */
4997 bfd_boolean overflowed_p;
4998 /* TRUE if this relocation refers to a MIPS16 function. */
4999 bfd_boolean target_is_16_bit_code_p = FALSE;
5000 bfd_boolean target_is_micromips_code_p = FALSE;
5001 struct mips_elf_link_hash_table *htab;
5002 bfd *dynobj;
5003
5004 dynobj = elf_hash_table (info)->dynobj;
5005 htab = mips_elf_hash_table (info);
5006 BFD_ASSERT (htab != NULL);
5007
5008 /* Parse the relocation. */
5009 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5010 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5011 p = (input_section->output_section->vma
5012 + input_section->output_offset
5013 + relocation->r_offset);
5014
5015 /* Assume that there will be no overflow. */
5016 overflowed_p = FALSE;
5017
5018 /* Figure out whether or not the symbol is local, and get the offset
5019 used in the array of hash table entries. */
5020 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5021 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5022 local_sections);
5023 was_local_p = local_p;
5024 if (! elf_bad_symtab (input_bfd))
5025 extsymoff = symtab_hdr->sh_info;
5026 else
5027 {
5028 /* The symbol table does not follow the rule that local symbols
5029 must come before globals. */
5030 extsymoff = 0;
5031 }
5032
5033 /* Figure out the value of the symbol. */
5034 if (local_p)
5035 {
5036 Elf_Internal_Sym *sym;
5037
5038 sym = local_syms + r_symndx;
5039 sec = local_sections[r_symndx];
5040
5041 symbol = sec->output_section->vma + sec->output_offset;
5042 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5043 || (sec->flags & SEC_MERGE))
5044 symbol += sym->st_value;
5045 if ((sec->flags & SEC_MERGE)
5046 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5047 {
5048 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5049 addend -= symbol;
5050 addend += sec->output_section->vma + sec->output_offset;
5051 }
5052
5053 /* MIPS16/microMIPS text labels should be treated as odd. */
5054 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5055 ++symbol;
5056
5057 /* Record the name of this symbol, for our caller. */
5058 *namep = bfd_elf_string_from_elf_section (input_bfd,
5059 symtab_hdr->sh_link,
5060 sym->st_name);
5061 if (*namep == '\0')
5062 *namep = bfd_section_name (input_bfd, sec);
5063
5064 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5065 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5066 }
5067 else
5068 {
5069 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5070
5071 /* For global symbols we look up the symbol in the hash-table. */
5072 h = ((struct mips_elf_link_hash_entry *)
5073 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5074 /* Find the real hash-table entry for this symbol. */
5075 while (h->root.root.type == bfd_link_hash_indirect
5076 || h->root.root.type == bfd_link_hash_warning)
5077 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5078
5079 /* Record the name of this symbol, for our caller. */
5080 *namep = h->root.root.root.string;
5081
5082 /* See if this is the special _gp_disp symbol. Note that such a
5083 symbol must always be a global symbol. */
5084 if (strcmp (*namep, "_gp_disp") == 0
5085 && ! NEWABI_P (input_bfd))
5086 {
5087 /* Relocations against _gp_disp are permitted only with
5088 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5089 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5090 return bfd_reloc_notsupported;
5091
5092 gp_disp_p = TRUE;
5093 }
5094 /* See if this is the special _gp symbol. Note that such a
5095 symbol must always be a global symbol. */
5096 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5097 gnu_local_gp_p = TRUE;
5098
5099
5100 /* If this symbol is defined, calculate its address. Note that
5101 _gp_disp is a magic symbol, always implicitly defined by the
5102 linker, so it's inappropriate to check to see whether or not
5103 its defined. */
5104 else if ((h->root.root.type == bfd_link_hash_defined
5105 || h->root.root.type == bfd_link_hash_defweak)
5106 && h->root.root.u.def.section)
5107 {
5108 sec = h->root.root.u.def.section;
5109 if (sec->output_section)
5110 symbol = (h->root.root.u.def.value
5111 + sec->output_section->vma
5112 + sec->output_offset);
5113 else
5114 symbol = h->root.root.u.def.value;
5115 }
5116 else if (h->root.root.type == bfd_link_hash_undefweak)
5117 /* We allow relocations against undefined weak symbols, giving
5118 it the value zero, so that you can undefined weak functions
5119 and check to see if they exist by looking at their
5120 addresses. */
5121 symbol = 0;
5122 else if (info->unresolved_syms_in_objects == RM_IGNORE
5123 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5124 symbol = 0;
5125 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5126 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5127 {
5128 /* If this is a dynamic link, we should have created a
5129 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5130 in in _bfd_mips_elf_create_dynamic_sections.
5131 Otherwise, we should define the symbol with a value of 0.
5132 FIXME: It should probably get into the symbol table
5133 somehow as well. */
5134 BFD_ASSERT (! info->shared);
5135 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5136 symbol = 0;
5137 }
5138 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5139 {
5140 /* This is an optional symbol - an Irix specific extension to the
5141 ELF spec. Ignore it for now.
5142 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5143 than simply ignoring them, but we do not handle this for now.
5144 For information see the "64-bit ELF Object File Specification"
5145 which is available from here:
5146 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5147 symbol = 0;
5148 }
5149 else if ((*info->callbacks->undefined_symbol)
5150 (info, h->root.root.root.string, input_bfd,
5151 input_section, relocation->r_offset,
5152 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5153 || ELF_ST_VISIBILITY (h->root.other)))
5154 {
5155 return bfd_reloc_undefined;
5156 }
5157 else
5158 {
5159 return bfd_reloc_notsupported;
5160 }
5161
5162 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5163 /* If the output section is the PLT section,
5164 then the target is not microMIPS. */
5165 target_is_micromips_code_p = (htab->splt != sec
5166 && ELF_ST_IS_MICROMIPS (h->root.other));
5167 }
5168
5169 /* If this is a reference to a 16-bit function with a stub, we need
5170 to redirect the relocation to the stub unless:
5171
5172 (a) the relocation is for a MIPS16 JAL;
5173
5174 (b) the relocation is for a MIPS16 PIC call, and there are no
5175 non-MIPS16 uses of the GOT slot; or
5176
5177 (c) the section allows direct references to MIPS16 functions. */
5178 if (r_type != R_MIPS16_26
5179 && !info->relocatable
5180 && ((h != NULL
5181 && h->fn_stub != NULL
5182 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5183 || (local_p
5184 && elf_tdata (input_bfd)->local_stubs != NULL
5185 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5186 && !section_allows_mips16_refs_p (input_section))
5187 {
5188 /* This is a 32- or 64-bit call to a 16-bit function. We should
5189 have already noticed that we were going to need the
5190 stub. */
5191 if (local_p)
5192 sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5193 else
5194 {
5195 BFD_ASSERT (h->need_fn_stub);
5196 sec = h->fn_stub;
5197 }
5198
5199 symbol = sec->output_section->vma + sec->output_offset;
5200 /* The target is 16-bit, but the stub isn't. */
5201 target_is_16_bit_code_p = FALSE;
5202 }
5203 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5204 need to redirect the call to the stub. Note that we specifically
5205 exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5206 use an indirect stub instead. */
5207 else if (r_type == R_MIPS16_26 && !info->relocatable
5208 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5209 || (local_p
5210 && elf_tdata (input_bfd)->local_call_stubs != NULL
5211 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5212 && !target_is_16_bit_code_p)
5213 {
5214 if (local_p)
5215 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5216 else
5217 {
5218 /* If both call_stub and call_fp_stub are defined, we can figure
5219 out which one to use by checking which one appears in the input
5220 file. */
5221 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5222 {
5223 asection *o;
5224
5225 sec = NULL;
5226 for (o = input_bfd->sections; o != NULL; o = o->next)
5227 {
5228 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5229 {
5230 sec = h->call_fp_stub;
5231 break;
5232 }
5233 }
5234 if (sec == NULL)
5235 sec = h->call_stub;
5236 }
5237 else if (h->call_stub != NULL)
5238 sec = h->call_stub;
5239 else
5240 sec = h->call_fp_stub;
5241 }
5242
5243 BFD_ASSERT (sec->size > 0);
5244 symbol = sec->output_section->vma + sec->output_offset;
5245 }
5246 /* If this is a direct call to a PIC function, redirect to the
5247 non-PIC stub. */
5248 else if (h != NULL && h->la25_stub
5249 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5250 symbol = (h->la25_stub->stub_section->output_section->vma
5251 + h->la25_stub->stub_section->output_offset
5252 + h->la25_stub->offset);
5253
5254 /* Make sure MIPS16 and microMIPS are not used together. */
5255 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5256 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5257 {
5258 (*_bfd_error_handler)
5259 (_("MIPS16 and microMIPS functions cannot call each other"));
5260 return bfd_reloc_notsupported;
5261 }
5262
5263 /* Calls from 16-bit code to 32-bit code and vice versa require the
5264 mode change. However, we can ignore calls to undefined weak symbols,
5265 which should never be executed at runtime. This exception is important
5266 because the assembly writer may have "known" that any definition of the
5267 symbol would be 16-bit code, and that direct jumps were therefore
5268 acceptable. */
5269 *cross_mode_jump_p = (!info->relocatable
5270 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5271 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5272 || (r_type == R_MICROMIPS_26_S1
5273 && !target_is_micromips_code_p)
5274 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5275 && (target_is_16_bit_code_p
5276 || target_is_micromips_code_p))));
5277
5278 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5279
5280 gp0 = _bfd_get_gp_value (input_bfd);
5281 gp = _bfd_get_gp_value (abfd);
5282 if (htab->got_info)
5283 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5284
5285 if (gnu_local_gp_p)
5286 symbol = gp;
5287
5288 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5289 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5290 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5291 if (got_page_reloc_p (r_type) && !local_p)
5292 {
5293 r_type = (micromips_reloc_p (r_type)
5294 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5295 addend = 0;
5296 }
5297
5298 /* If we haven't already determined the GOT offset, and we're going
5299 to need it, get it now. */
5300 switch (r_type)
5301 {
5302 case R_MIPS16_CALL16:
5303 case R_MIPS16_GOT16:
5304 case R_MIPS_CALL16:
5305 case R_MIPS_GOT16:
5306 case R_MIPS_GOT_DISP:
5307 case R_MIPS_GOT_HI16:
5308 case R_MIPS_CALL_HI16:
5309 case R_MIPS_GOT_LO16:
5310 case R_MIPS_CALL_LO16:
5311 case R_MICROMIPS_CALL16:
5312 case R_MICROMIPS_GOT16:
5313 case R_MICROMIPS_GOT_DISP:
5314 case R_MICROMIPS_GOT_HI16:
5315 case R_MICROMIPS_CALL_HI16:
5316 case R_MICROMIPS_GOT_LO16:
5317 case R_MICROMIPS_CALL_LO16:
5318 case R_MIPS_TLS_GD:
5319 case R_MIPS_TLS_GOTTPREL:
5320 case R_MIPS_TLS_LDM:
5321 case R_MICROMIPS_TLS_GD:
5322 case R_MICROMIPS_TLS_GOTTPREL:
5323 case R_MICROMIPS_TLS_LDM:
5324 /* Find the index into the GOT where this value is located. */
5325 if (tls_ldm_reloc_p (r_type))
5326 {
5327 g = mips_elf_local_got_index (abfd, input_bfd, info,
5328 0, 0, NULL, r_type);
5329 if (g == MINUS_ONE)
5330 return bfd_reloc_outofrange;
5331 }
5332 else if (!local_p)
5333 {
5334 /* On VxWorks, CALL relocations should refer to the .got.plt
5335 entry, which is initialized to point at the PLT stub. */
5336 if (htab->is_vxworks
5337 && (call_hi16_reloc_p (r_type)
5338 || call_lo16_reloc_p (r_type)
5339 || call16_reloc_p (r_type)))
5340 {
5341 BFD_ASSERT (addend == 0);
5342 BFD_ASSERT (h->root.needs_plt);
5343 g = mips_elf_gotplt_index (info, &h->root);
5344 }
5345 else
5346 {
5347 BFD_ASSERT (addend == 0);
5348 g = mips_elf_global_got_index (dynobj, input_bfd,
5349 &h->root, r_type, info);
5350 if (h->tls_type == GOT_NORMAL
5351 && !elf_hash_table (info)->dynamic_sections_created)
5352 /* This is a static link. We must initialize the GOT entry. */
5353 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5354 }
5355 }
5356 else if (!htab->is_vxworks
5357 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5358 /* The calculation below does not involve "g". */
5359 break;
5360 else
5361 {
5362 g = mips_elf_local_got_index (abfd, input_bfd, info,
5363 symbol + addend, r_symndx, h, r_type);
5364 if (g == MINUS_ONE)
5365 return bfd_reloc_outofrange;
5366 }
5367
5368 /* Convert GOT indices to actual offsets. */
5369 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5370 break;
5371 }
5372
5373 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5374 symbols are resolved by the loader. Add them to .rela.dyn. */
5375 if (h != NULL && is_gott_symbol (info, &h->root))
5376 {
5377 Elf_Internal_Rela outrel;
5378 bfd_byte *loc;
5379 asection *s;
5380
5381 s = mips_elf_rel_dyn_section (info, FALSE);
5382 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5383
5384 outrel.r_offset = (input_section->output_section->vma
5385 + input_section->output_offset
5386 + relocation->r_offset);
5387 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5388 outrel.r_addend = addend;
5389 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5390
5391 /* If we've written this relocation for a readonly section,
5392 we need to set DF_TEXTREL again, so that we do not delete the
5393 DT_TEXTREL tag. */
5394 if (MIPS_ELF_READONLY_SECTION (input_section))
5395 info->flags |= DF_TEXTREL;
5396
5397 *valuep = 0;
5398 return bfd_reloc_ok;
5399 }
5400
5401 /* Figure out what kind of relocation is being performed. */
5402 switch (r_type)
5403 {
5404 case R_MIPS_NONE:
5405 return bfd_reloc_continue;
5406
5407 case R_MIPS_16:
5408 value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5409 overflowed_p = mips_elf_overflow_p (value, 16);
5410 break;
5411
5412 case R_MIPS_32:
5413 case R_MIPS_REL32:
5414 case R_MIPS_64:
5415 if ((info->shared
5416 || (htab->root.dynamic_sections_created
5417 && h != NULL
5418 && h->root.def_dynamic
5419 && !h->root.def_regular
5420 && !h->has_static_relocs))
5421 && r_symndx != STN_UNDEF
5422 && (h == NULL
5423 || h->root.root.type != bfd_link_hash_undefweak
5424 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5425 && (input_section->flags & SEC_ALLOC) != 0)
5426 {
5427 /* If we're creating a shared library, then we can't know
5428 where the symbol will end up. So, we create a relocation
5429 record in the output, and leave the job up to the dynamic
5430 linker. We must do the same for executable references to
5431 shared library symbols, unless we've decided to use copy
5432 relocs or PLTs instead. */
5433 value = addend;
5434 if (!mips_elf_create_dynamic_relocation (abfd,
5435 info,
5436 relocation,
5437 h,
5438 sec,
5439 symbol,
5440 &value,
5441 input_section))
5442 return bfd_reloc_undefined;
5443 }
5444 else
5445 {
5446 if (r_type != R_MIPS_REL32)
5447 value = symbol + addend;
5448 else
5449 value = addend;
5450 }
5451 value &= howto->dst_mask;
5452 break;
5453
5454 case R_MIPS_PC32:
5455 value = symbol + addend - p;
5456 value &= howto->dst_mask;
5457 break;
5458
5459 case R_MIPS16_26:
5460 /* The calculation for R_MIPS16_26 is just the same as for an
5461 R_MIPS_26. It's only the storage of the relocated field into
5462 the output file that's different. That's handled in
5463 mips_elf_perform_relocation. So, we just fall through to the
5464 R_MIPS_26 case here. */
5465 case R_MIPS_26:
5466 case R_MICROMIPS_26_S1:
5467 {
5468 unsigned int shift;
5469
5470 /* Make sure the target of JALX is word-aligned. Bit 0 must be
5471 the correct ISA mode selector and bit 1 must be 0. */
5472 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5473 return bfd_reloc_outofrange;
5474
5475 /* Shift is 2, unusually, for microMIPS JALX. */
5476 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5477
5478 if (was_local_p)
5479 value = addend | ((p + 4) & (0xfc000000 << shift));
5480 else
5481 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5482 value = (value + symbol) >> shift;
5483 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5484 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5485 value &= howto->dst_mask;
5486 }
5487 break;
5488
5489 case R_MIPS_TLS_DTPREL_HI16:
5490 case R_MICROMIPS_TLS_DTPREL_HI16:
5491 value = (mips_elf_high (addend + symbol - dtprel_base (info))
5492 & howto->dst_mask);
5493 break;
5494
5495 case R_MIPS_TLS_DTPREL_LO16:
5496 case R_MIPS_TLS_DTPREL32:
5497 case R_MIPS_TLS_DTPREL64:
5498 case R_MICROMIPS_TLS_DTPREL_LO16:
5499 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5500 break;
5501
5502 case R_MIPS_TLS_TPREL_HI16:
5503 case R_MICROMIPS_TLS_TPREL_HI16:
5504 value = (mips_elf_high (addend + symbol - tprel_base (info))
5505 & howto->dst_mask);
5506 break;
5507
5508 case R_MIPS_TLS_TPREL_LO16:
5509 case R_MICROMIPS_TLS_TPREL_LO16:
5510 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5511 break;
5512
5513 case R_MIPS_HI16:
5514 case R_MIPS16_HI16:
5515 case R_MICROMIPS_HI16:
5516 if (!gp_disp_p)
5517 {
5518 value = mips_elf_high (addend + symbol);
5519 value &= howto->dst_mask;
5520 }
5521 else
5522 {
5523 /* For MIPS16 ABI code we generate this sequence
5524 0: li $v0,%hi(_gp_disp)
5525 4: addiupc $v1,%lo(_gp_disp)
5526 8: sll $v0,16
5527 12: addu $v0,$v1
5528 14: move $gp,$v0
5529 So the offsets of hi and lo relocs are the same, but the
5530 $pc is four higher than $t9 would be, so reduce
5531 both reloc addends by 4. */
5532 if (r_type == R_MIPS16_HI16)
5533 value = mips_elf_high (addend + gp - p - 4);
5534 /* The microMIPS .cpload sequence uses the same assembly
5535 instructions as the traditional psABI version, but the
5536 incoming $t9 has the low bit set. */
5537 else if (r_type == R_MICROMIPS_HI16)
5538 value = mips_elf_high (addend + gp - p - 1);
5539 else
5540 value = mips_elf_high (addend + gp - p);
5541 overflowed_p = mips_elf_overflow_p (value, 16);
5542 }
5543 break;
5544
5545 case R_MIPS_LO16:
5546 case R_MIPS16_LO16:
5547 case R_MICROMIPS_LO16:
5548 case R_MICROMIPS_HI0_LO16:
5549 if (!gp_disp_p)
5550 value = (symbol + addend) & howto->dst_mask;
5551 else
5552 {
5553 /* See the comment for R_MIPS16_HI16 above for the reason
5554 for this conditional. */
5555 if (r_type == R_MIPS16_LO16)
5556 value = addend + gp - p;
5557 else if (r_type == R_MICROMIPS_LO16
5558 || r_type == R_MICROMIPS_HI0_LO16)
5559 value = addend + gp - p + 3;
5560 else
5561 value = addend + gp - p + 4;
5562 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5563 for overflow. But, on, say, IRIX5, relocations against
5564 _gp_disp are normally generated from the .cpload
5565 pseudo-op. It generates code that normally looks like
5566 this:
5567
5568 lui $gp,%hi(_gp_disp)
5569 addiu $gp,$gp,%lo(_gp_disp)
5570 addu $gp,$gp,$t9
5571
5572 Here $t9 holds the address of the function being called,
5573 as required by the MIPS ELF ABI. The R_MIPS_LO16
5574 relocation can easily overflow in this situation, but the
5575 R_MIPS_HI16 relocation will handle the overflow.
5576 Therefore, we consider this a bug in the MIPS ABI, and do
5577 not check for overflow here. */
5578 }
5579 break;
5580
5581 case R_MIPS_LITERAL:
5582 case R_MICROMIPS_LITERAL:
5583 /* Because we don't merge literal sections, we can handle this
5584 just like R_MIPS_GPREL16. In the long run, we should merge
5585 shared literals, and then we will need to additional work
5586 here. */
5587
5588 /* Fall through. */
5589
5590 case R_MIPS16_GPREL:
5591 /* The R_MIPS16_GPREL performs the same calculation as
5592 R_MIPS_GPREL16, but stores the relocated bits in a different
5593 order. We don't need to do anything special here; the
5594 differences are handled in mips_elf_perform_relocation. */
5595 case R_MIPS_GPREL16:
5596 case R_MICROMIPS_GPREL7_S2:
5597 case R_MICROMIPS_GPREL16:
5598 /* Only sign-extend the addend if it was extracted from the
5599 instruction. If the addend was separate, leave it alone,
5600 otherwise we may lose significant bits. */
5601 if (howto->partial_inplace)
5602 addend = _bfd_mips_elf_sign_extend (addend, 16);
5603 value = symbol + addend - gp;
5604 /* If the symbol was local, any earlier relocatable links will
5605 have adjusted its addend with the gp offset, so compensate
5606 for that now. Don't do it for symbols forced local in this
5607 link, though, since they won't have had the gp offset applied
5608 to them before. */
5609 if (was_local_p)
5610 value += gp0;
5611 overflowed_p = mips_elf_overflow_p (value, 16);
5612 break;
5613
5614 case R_MIPS16_GOT16:
5615 case R_MIPS16_CALL16:
5616 case R_MIPS_GOT16:
5617 case R_MIPS_CALL16:
5618 case R_MICROMIPS_GOT16:
5619 case R_MICROMIPS_CALL16:
5620 /* VxWorks does not have separate local and global semantics for
5621 R_MIPS*_GOT16; every relocation evaluates to "G". */
5622 if (!htab->is_vxworks && local_p)
5623 {
5624 value = mips_elf_got16_entry (abfd, input_bfd, info,
5625 symbol + addend, !was_local_p);
5626 if (value == MINUS_ONE)
5627 return bfd_reloc_outofrange;
5628 value
5629 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5630 overflowed_p = mips_elf_overflow_p (value, 16);
5631 break;
5632 }
5633
5634 /* Fall through. */
5635
5636 case R_MIPS_TLS_GD:
5637 case R_MIPS_TLS_GOTTPREL:
5638 case R_MIPS_TLS_LDM:
5639 case R_MIPS_GOT_DISP:
5640 case R_MICROMIPS_TLS_GD:
5641 case R_MICROMIPS_TLS_GOTTPREL:
5642 case R_MICROMIPS_TLS_LDM:
5643 case R_MICROMIPS_GOT_DISP:
5644 value = g;
5645 overflowed_p = mips_elf_overflow_p (value, 16);
5646 break;
5647
5648 case R_MIPS_GPREL32:
5649 value = (addend + symbol + gp0 - gp);
5650 if (!save_addend)
5651 value &= howto->dst_mask;
5652 break;
5653
5654 case R_MIPS_PC16:
5655 case R_MIPS_GNU_REL16_S2:
5656 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5657 overflowed_p = mips_elf_overflow_p (value, 18);
5658 value >>= howto->rightshift;
5659 value &= howto->dst_mask;
5660 break;
5661
5662 case R_MICROMIPS_PC7_S1:
5663 value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5664 overflowed_p = mips_elf_overflow_p (value, 8);
5665 value >>= howto->rightshift;
5666 value &= howto->dst_mask;
5667 break;
5668
5669 case R_MICROMIPS_PC10_S1:
5670 value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5671 overflowed_p = mips_elf_overflow_p (value, 11);
5672 value >>= howto->rightshift;
5673 value &= howto->dst_mask;
5674 break;
5675
5676 case R_MICROMIPS_PC16_S1:
5677 value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5678 overflowed_p = mips_elf_overflow_p (value, 17);
5679 value >>= howto->rightshift;
5680 value &= howto->dst_mask;
5681 break;
5682
5683 case R_MICROMIPS_PC23_S2:
5684 value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5685 overflowed_p = mips_elf_overflow_p (value, 25);
5686 value >>= howto->rightshift;
5687 value &= howto->dst_mask;
5688 break;
5689
5690 case R_MIPS_GOT_HI16:
5691 case R_MIPS_CALL_HI16:
5692 case R_MICROMIPS_GOT_HI16:
5693 case R_MICROMIPS_CALL_HI16:
5694 /* We're allowed to handle these two relocations identically.
5695 The dynamic linker is allowed to handle the CALL relocations
5696 differently by creating a lazy evaluation stub. */
5697 value = g;
5698 value = mips_elf_high (value);
5699 value &= howto->dst_mask;
5700 break;
5701
5702 case R_MIPS_GOT_LO16:
5703 case R_MIPS_CALL_LO16:
5704 case R_MICROMIPS_GOT_LO16:
5705 case R_MICROMIPS_CALL_LO16:
5706 value = g & howto->dst_mask;
5707 break;
5708
5709 case R_MIPS_GOT_PAGE:
5710 case R_MICROMIPS_GOT_PAGE:
5711 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5712 if (value == MINUS_ONE)
5713 return bfd_reloc_outofrange;
5714 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5715 overflowed_p = mips_elf_overflow_p (value, 16);
5716 break;
5717
5718 case R_MIPS_GOT_OFST:
5719 case R_MICROMIPS_GOT_OFST:
5720 if (local_p)
5721 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5722 else
5723 value = addend;
5724 overflowed_p = mips_elf_overflow_p (value, 16);
5725 break;
5726
5727 case R_MIPS_SUB:
5728 case R_MICROMIPS_SUB:
5729 value = symbol - addend;
5730 value &= howto->dst_mask;
5731 break;
5732
5733 case R_MIPS_HIGHER:
5734 case R_MICROMIPS_HIGHER:
5735 value = mips_elf_higher (addend + symbol);
5736 value &= howto->dst_mask;
5737 break;
5738
5739 case R_MIPS_HIGHEST:
5740 case R_MICROMIPS_HIGHEST:
5741 value = mips_elf_highest (addend + symbol);
5742 value &= howto->dst_mask;
5743 break;
5744
5745 case R_MIPS_SCN_DISP:
5746 case R_MICROMIPS_SCN_DISP:
5747 value = symbol + addend - sec->output_offset;
5748 value &= howto->dst_mask;
5749 break;
5750
5751 case R_MIPS_JALR:
5752 case R_MICROMIPS_JALR:
5753 /* This relocation is only a hint. In some cases, we optimize
5754 it into a bal instruction. But we don't try to optimize
5755 when the symbol does not resolve locally. */
5756 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5757 return bfd_reloc_continue;
5758 value = symbol + addend;
5759 break;
5760
5761 case R_MIPS_PJUMP:
5762 case R_MIPS_GNU_VTINHERIT:
5763 case R_MIPS_GNU_VTENTRY:
5764 /* We don't do anything with these at present. */
5765 return bfd_reloc_continue;
5766
5767 default:
5768 /* An unrecognized relocation type. */
5769 return bfd_reloc_notsupported;
5770 }
5771
5772 /* Store the VALUE for our caller. */
5773 *valuep = value;
5774 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5775 }
5776
5777 /* Obtain the field relocated by RELOCATION. */
5778
5779 static bfd_vma
5780 mips_elf_obtain_contents (reloc_howto_type *howto,
5781 const Elf_Internal_Rela *relocation,
5782 bfd *input_bfd, bfd_byte *contents)
5783 {
5784 bfd_vma x;
5785 bfd_byte *location = contents + relocation->r_offset;
5786
5787 /* Obtain the bytes. */
5788 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5789
5790 return x;
5791 }
5792
5793 /* It has been determined that the result of the RELOCATION is the
5794 VALUE. Use HOWTO to place VALUE into the output file at the
5795 appropriate position. The SECTION is the section to which the
5796 relocation applies.
5797 CROSS_MODE_JUMP_P is true if the relocation field
5798 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5799
5800 Returns FALSE if anything goes wrong. */
5801
5802 static bfd_boolean
5803 mips_elf_perform_relocation (struct bfd_link_info *info,
5804 reloc_howto_type *howto,
5805 const Elf_Internal_Rela *relocation,
5806 bfd_vma value, bfd *input_bfd,
5807 asection *input_section, bfd_byte *contents,
5808 bfd_boolean cross_mode_jump_p)
5809 {
5810 bfd_vma x;
5811 bfd_byte *location;
5812 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5813
5814 /* Figure out where the relocation is occurring. */
5815 location = contents + relocation->r_offset;
5816
5817 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5818
5819 /* Obtain the current value. */
5820 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5821
5822 /* Clear the field we are setting. */
5823 x &= ~howto->dst_mask;
5824
5825 /* Set the field. */
5826 x |= (value & howto->dst_mask);
5827
5828 /* If required, turn JAL into JALX. */
5829 if (cross_mode_jump_p && jal_reloc_p (r_type))
5830 {
5831 bfd_boolean ok;
5832 bfd_vma opcode = x >> 26;
5833 bfd_vma jalx_opcode;
5834
5835 /* Check to see if the opcode is already JAL or JALX. */
5836 if (r_type == R_MIPS16_26)
5837 {
5838 ok = ((opcode == 0x6) || (opcode == 0x7));
5839 jalx_opcode = 0x7;
5840 }
5841 else if (r_type == R_MICROMIPS_26_S1)
5842 {
5843 ok = ((opcode == 0x3d) || (opcode == 0x3c));
5844 jalx_opcode = 0x3c;
5845 }
5846 else
5847 {
5848 ok = ((opcode == 0x3) || (opcode == 0x1d));
5849 jalx_opcode = 0x1d;
5850 }
5851
5852 /* If the opcode is not JAL or JALX, there's a problem. */
5853 if (!ok)
5854 {
5855 (*_bfd_error_handler)
5856 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5857 input_bfd,
5858 input_section,
5859 (unsigned long) relocation->r_offset);
5860 bfd_set_error (bfd_error_bad_value);
5861 return FALSE;
5862 }
5863
5864 /* Make this the JALX opcode. */
5865 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5866 }
5867
5868 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5869 range. */
5870 if (!info->relocatable
5871 && !cross_mode_jump_p
5872 && ((JAL_TO_BAL_P (input_bfd)
5873 && r_type == R_MIPS_26
5874 && (x >> 26) == 0x3) /* jal addr */
5875 || (JALR_TO_BAL_P (input_bfd)
5876 && r_type == R_MIPS_JALR
5877 && x == 0x0320f809) /* jalr t9 */
5878 || (JR_TO_B_P (input_bfd)
5879 && r_type == R_MIPS_JALR
5880 && x == 0x03200008))) /* jr t9 */
5881 {
5882 bfd_vma addr;
5883 bfd_vma dest;
5884 bfd_signed_vma off;
5885
5886 addr = (input_section->output_section->vma
5887 + input_section->output_offset
5888 + relocation->r_offset
5889 + 4);
5890 if (r_type == R_MIPS_26)
5891 dest = (value << 2) | ((addr >> 28) << 28);
5892 else
5893 dest = value;
5894 off = dest - addr;
5895 if (off <= 0x1ffff && off >= -0x20000)
5896 {
5897 if (x == 0x03200008) /* jr t9 */
5898 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
5899 else
5900 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
5901 }
5902 }
5903
5904 /* Put the value into the output. */
5905 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5906
5907 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
5908 location);
5909
5910 return TRUE;
5911 }
5912 \f
5913 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
5914 is the original relocation, which is now being transformed into a
5915 dynamic relocation. The ADDENDP is adjusted if necessary; the
5916 caller should store the result in place of the original addend. */
5917
5918 static bfd_boolean
5919 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5920 struct bfd_link_info *info,
5921 const Elf_Internal_Rela *rel,
5922 struct mips_elf_link_hash_entry *h,
5923 asection *sec, bfd_vma symbol,
5924 bfd_vma *addendp, asection *input_section)
5925 {
5926 Elf_Internal_Rela outrel[3];
5927 asection *sreloc;
5928 bfd *dynobj;
5929 int r_type;
5930 long indx;
5931 bfd_boolean defined_p;
5932 struct mips_elf_link_hash_table *htab;
5933
5934 htab = mips_elf_hash_table (info);
5935 BFD_ASSERT (htab != NULL);
5936
5937 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5938 dynobj = elf_hash_table (info)->dynobj;
5939 sreloc = mips_elf_rel_dyn_section (info, FALSE);
5940 BFD_ASSERT (sreloc != NULL);
5941 BFD_ASSERT (sreloc->contents != NULL);
5942 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5943 < sreloc->size);
5944
5945 outrel[0].r_offset =
5946 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5947 if (ABI_64_P (output_bfd))
5948 {
5949 outrel[1].r_offset =
5950 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5951 outrel[2].r_offset =
5952 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5953 }
5954
5955 if (outrel[0].r_offset == MINUS_ONE)
5956 /* The relocation field has been deleted. */
5957 return TRUE;
5958
5959 if (outrel[0].r_offset == MINUS_TWO)
5960 {
5961 /* The relocation field has been converted into a relative value of
5962 some sort. Functions like _bfd_elf_write_section_eh_frame expect
5963 the field to be fully relocated, so add in the symbol's value. */
5964 *addendp += symbol;
5965 return TRUE;
5966 }
5967
5968 /* We must now calculate the dynamic symbol table index to use
5969 in the relocation. */
5970 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5971 {
5972 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5973 indx = h->root.dynindx;
5974 if (SGI_COMPAT (output_bfd))
5975 defined_p = h->root.def_regular;
5976 else
5977 /* ??? glibc's ld.so just adds the final GOT entry to the
5978 relocation field. It therefore treats relocs against
5979 defined symbols in the same way as relocs against
5980 undefined symbols. */
5981 defined_p = FALSE;
5982 }
5983 else
5984 {
5985 if (sec != NULL && bfd_is_abs_section (sec))
5986 indx = 0;
5987 else if (sec == NULL || sec->owner == NULL)
5988 {
5989 bfd_set_error (bfd_error_bad_value);
5990 return FALSE;
5991 }
5992 else
5993 {
5994 indx = elf_section_data (sec->output_section)->dynindx;
5995 if (indx == 0)
5996 {
5997 asection *osec = htab->root.text_index_section;
5998 indx = elf_section_data (osec)->dynindx;
5999 }
6000 if (indx == 0)
6001 abort ();
6002 }
6003
6004 /* Instead of generating a relocation using the section
6005 symbol, we may as well make it a fully relative
6006 relocation. We want to avoid generating relocations to
6007 local symbols because we used to generate them
6008 incorrectly, without adding the original symbol value,
6009 which is mandated by the ABI for section symbols. In
6010 order to give dynamic loaders and applications time to
6011 phase out the incorrect use, we refrain from emitting
6012 section-relative relocations. It's not like they're
6013 useful, after all. This should be a bit more efficient
6014 as well. */
6015 /* ??? Although this behavior is compatible with glibc's ld.so,
6016 the ABI says that relocations against STN_UNDEF should have
6017 a symbol value of 0. Irix rld honors this, so relocations
6018 against STN_UNDEF have no effect. */
6019 if (!SGI_COMPAT (output_bfd))
6020 indx = 0;
6021 defined_p = TRUE;
6022 }
6023
6024 /* If the relocation was previously an absolute relocation and
6025 this symbol will not be referred to by the relocation, we must
6026 adjust it by the value we give it in the dynamic symbol table.
6027 Otherwise leave the job up to the dynamic linker. */
6028 if (defined_p && r_type != R_MIPS_REL32)
6029 *addendp += symbol;
6030
6031 if (htab->is_vxworks)
6032 /* VxWorks uses non-relative relocations for this. */
6033 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6034 else
6035 /* The relocation is always an REL32 relocation because we don't
6036 know where the shared library will wind up at load-time. */
6037 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6038 R_MIPS_REL32);
6039
6040 /* For strict adherence to the ABI specification, we should
6041 generate a R_MIPS_64 relocation record by itself before the
6042 _REL32/_64 record as well, such that the addend is read in as
6043 a 64-bit value (REL32 is a 32-bit relocation, after all).
6044 However, since none of the existing ELF64 MIPS dynamic
6045 loaders seems to care, we don't waste space with these
6046 artificial relocations. If this turns out to not be true,
6047 mips_elf_allocate_dynamic_relocation() should be tweaked so
6048 as to make room for a pair of dynamic relocations per
6049 invocation if ABI_64_P, and here we should generate an
6050 additional relocation record with R_MIPS_64 by itself for a
6051 NULL symbol before this relocation record. */
6052 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6053 ABI_64_P (output_bfd)
6054 ? R_MIPS_64
6055 : R_MIPS_NONE);
6056 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6057
6058 /* Adjust the output offset of the relocation to reference the
6059 correct location in the output file. */
6060 outrel[0].r_offset += (input_section->output_section->vma
6061 + input_section->output_offset);
6062 outrel[1].r_offset += (input_section->output_section->vma
6063 + input_section->output_offset);
6064 outrel[2].r_offset += (input_section->output_section->vma
6065 + input_section->output_offset);
6066
6067 /* Put the relocation back out. We have to use the special
6068 relocation outputter in the 64-bit case since the 64-bit
6069 relocation format is non-standard. */
6070 if (ABI_64_P (output_bfd))
6071 {
6072 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6073 (output_bfd, &outrel[0],
6074 (sreloc->contents
6075 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6076 }
6077 else if (htab->is_vxworks)
6078 {
6079 /* VxWorks uses RELA rather than REL dynamic relocations. */
6080 outrel[0].r_addend = *addendp;
6081 bfd_elf32_swap_reloca_out
6082 (output_bfd, &outrel[0],
6083 (sreloc->contents
6084 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6085 }
6086 else
6087 bfd_elf32_swap_reloc_out
6088 (output_bfd, &outrel[0],
6089 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6090
6091 /* We've now added another relocation. */
6092 ++sreloc->reloc_count;
6093
6094 /* Make sure the output section is writable. The dynamic linker
6095 will be writing to it. */
6096 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6097 |= SHF_WRITE;
6098
6099 /* On IRIX5, make an entry of compact relocation info. */
6100 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6101 {
6102 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
6103 bfd_byte *cr;
6104
6105 if (scpt)
6106 {
6107 Elf32_crinfo cptrel;
6108
6109 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6110 cptrel.vaddr = (rel->r_offset
6111 + input_section->output_section->vma
6112 + input_section->output_offset);
6113 if (r_type == R_MIPS_REL32)
6114 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6115 else
6116 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6117 mips_elf_set_cr_dist2to (cptrel, 0);
6118 cptrel.konst = *addendp;
6119
6120 cr = (scpt->contents
6121 + sizeof (Elf32_External_compact_rel));
6122 mips_elf_set_cr_relvaddr (cptrel, 0);
6123 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6124 ((Elf32_External_crinfo *) cr
6125 + scpt->reloc_count));
6126 ++scpt->reloc_count;
6127 }
6128 }
6129
6130 /* If we've written this relocation for a readonly section,
6131 we need to set DF_TEXTREL again, so that we do not delete the
6132 DT_TEXTREL tag. */
6133 if (MIPS_ELF_READONLY_SECTION (input_section))
6134 info->flags |= DF_TEXTREL;
6135
6136 return TRUE;
6137 }
6138 \f
6139 /* Return the MACH for a MIPS e_flags value. */
6140
6141 unsigned long
6142 _bfd_elf_mips_mach (flagword flags)
6143 {
6144 switch (flags & EF_MIPS_MACH)
6145 {
6146 case E_MIPS_MACH_3900:
6147 return bfd_mach_mips3900;
6148
6149 case E_MIPS_MACH_4010:
6150 return bfd_mach_mips4010;
6151
6152 case E_MIPS_MACH_4100:
6153 return bfd_mach_mips4100;
6154
6155 case E_MIPS_MACH_4111:
6156 return bfd_mach_mips4111;
6157
6158 case E_MIPS_MACH_4120:
6159 return bfd_mach_mips4120;
6160
6161 case E_MIPS_MACH_4650:
6162 return bfd_mach_mips4650;
6163
6164 case E_MIPS_MACH_5400:
6165 return bfd_mach_mips5400;
6166
6167 case E_MIPS_MACH_5500:
6168 return bfd_mach_mips5500;
6169
6170 case E_MIPS_MACH_9000:
6171 return bfd_mach_mips9000;
6172
6173 case E_MIPS_MACH_SB1:
6174 return bfd_mach_mips_sb1;
6175
6176 case E_MIPS_MACH_LS2E:
6177 return bfd_mach_mips_loongson_2e;
6178
6179 case E_MIPS_MACH_LS2F:
6180 return bfd_mach_mips_loongson_2f;
6181
6182 case E_MIPS_MACH_LS3A:
6183 return bfd_mach_mips_loongson_3a;
6184
6185 case E_MIPS_MACH_OCTEON:
6186 return bfd_mach_mips_octeon;
6187
6188 case E_MIPS_MACH_XLR:
6189 return bfd_mach_mips_xlr;
6190
6191 default:
6192 switch (flags & EF_MIPS_ARCH)
6193 {
6194 default:
6195 case E_MIPS_ARCH_1:
6196 return bfd_mach_mips3000;
6197
6198 case E_MIPS_ARCH_2:
6199 return bfd_mach_mips6000;
6200
6201 case E_MIPS_ARCH_3:
6202 return bfd_mach_mips4000;
6203
6204 case E_MIPS_ARCH_4:
6205 return bfd_mach_mips8000;
6206
6207 case E_MIPS_ARCH_5:
6208 return bfd_mach_mips5;
6209
6210 case E_MIPS_ARCH_32:
6211 return bfd_mach_mipsisa32;
6212
6213 case E_MIPS_ARCH_64:
6214 return bfd_mach_mipsisa64;
6215
6216 case E_MIPS_ARCH_32R2:
6217 return bfd_mach_mipsisa32r2;
6218
6219 case E_MIPS_ARCH_64R2:
6220 return bfd_mach_mipsisa64r2;
6221 }
6222 }
6223
6224 return 0;
6225 }
6226
6227 /* Return printable name for ABI. */
6228
6229 static INLINE char *
6230 elf_mips_abi_name (bfd *abfd)
6231 {
6232 flagword flags;
6233
6234 flags = elf_elfheader (abfd)->e_flags;
6235 switch (flags & EF_MIPS_ABI)
6236 {
6237 case 0:
6238 if (ABI_N32_P (abfd))
6239 return "N32";
6240 else if (ABI_64_P (abfd))
6241 return "64";
6242 else
6243 return "none";
6244 case E_MIPS_ABI_O32:
6245 return "O32";
6246 case E_MIPS_ABI_O64:
6247 return "O64";
6248 case E_MIPS_ABI_EABI32:
6249 return "EABI32";
6250 case E_MIPS_ABI_EABI64:
6251 return "EABI64";
6252 default:
6253 return "unknown abi";
6254 }
6255 }
6256 \f
6257 /* MIPS ELF uses two common sections. One is the usual one, and the
6258 other is for small objects. All the small objects are kept
6259 together, and then referenced via the gp pointer, which yields
6260 faster assembler code. This is what we use for the small common
6261 section. This approach is copied from ecoff.c. */
6262 static asection mips_elf_scom_section;
6263 static asymbol mips_elf_scom_symbol;
6264 static asymbol *mips_elf_scom_symbol_ptr;
6265
6266 /* MIPS ELF also uses an acommon section, which represents an
6267 allocated common symbol which may be overridden by a
6268 definition in a shared library. */
6269 static asection mips_elf_acom_section;
6270 static asymbol mips_elf_acom_symbol;
6271 static asymbol *mips_elf_acom_symbol_ptr;
6272
6273 /* This is used for both the 32-bit and the 64-bit ABI. */
6274
6275 void
6276 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6277 {
6278 elf_symbol_type *elfsym;
6279
6280 /* Handle the special MIPS section numbers that a symbol may use. */
6281 elfsym = (elf_symbol_type *) asym;
6282 switch (elfsym->internal_elf_sym.st_shndx)
6283 {
6284 case SHN_MIPS_ACOMMON:
6285 /* This section is used in a dynamically linked executable file.
6286 It is an allocated common section. The dynamic linker can
6287 either resolve these symbols to something in a shared
6288 library, or it can just leave them here. For our purposes,
6289 we can consider these symbols to be in a new section. */
6290 if (mips_elf_acom_section.name == NULL)
6291 {
6292 /* Initialize the acommon section. */
6293 mips_elf_acom_section.name = ".acommon";
6294 mips_elf_acom_section.flags = SEC_ALLOC;
6295 mips_elf_acom_section.output_section = &mips_elf_acom_section;
6296 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6297 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6298 mips_elf_acom_symbol.name = ".acommon";
6299 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6300 mips_elf_acom_symbol.section = &mips_elf_acom_section;
6301 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6302 }
6303 asym->section = &mips_elf_acom_section;
6304 break;
6305
6306 case SHN_COMMON:
6307 /* Common symbols less than the GP size are automatically
6308 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
6309 if (asym->value > elf_gp_size (abfd)
6310 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6311 || IRIX_COMPAT (abfd) == ict_irix6)
6312 break;
6313 /* Fall through. */
6314 case SHN_MIPS_SCOMMON:
6315 if (mips_elf_scom_section.name == NULL)
6316 {
6317 /* Initialize the small common section. */
6318 mips_elf_scom_section.name = ".scommon";
6319 mips_elf_scom_section.flags = SEC_IS_COMMON;
6320 mips_elf_scom_section.output_section = &mips_elf_scom_section;
6321 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6322 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6323 mips_elf_scom_symbol.name = ".scommon";
6324 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6325 mips_elf_scom_symbol.section = &mips_elf_scom_section;
6326 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6327 }
6328 asym->section = &mips_elf_scom_section;
6329 asym->value = elfsym->internal_elf_sym.st_size;
6330 break;
6331
6332 case SHN_MIPS_SUNDEFINED:
6333 asym->section = bfd_und_section_ptr;
6334 break;
6335
6336 case SHN_MIPS_TEXT:
6337 {
6338 asection *section = bfd_get_section_by_name (abfd, ".text");
6339
6340 BFD_ASSERT (SGI_COMPAT (abfd));
6341 if (section != NULL)
6342 {
6343 asym->section = section;
6344 /* MIPS_TEXT is a bit special, the address is not an offset
6345 to the base of the .text section. So substract the section
6346 base address to make it an offset. */
6347 asym->value -= section->vma;
6348 }
6349 }
6350 break;
6351
6352 case SHN_MIPS_DATA:
6353 {
6354 asection *section = bfd_get_section_by_name (abfd, ".data");
6355
6356 BFD_ASSERT (SGI_COMPAT (abfd));
6357 if (section != NULL)
6358 {
6359 asym->section = section;
6360 /* MIPS_DATA is a bit special, the address is not an offset
6361 to the base of the .data section. So substract the section
6362 base address to make it an offset. */
6363 asym->value -= section->vma;
6364 }
6365 }
6366 break;
6367 }
6368
6369 /* If this is an odd-valued function symbol, assume it's a MIPS16
6370 or microMIPS one. */
6371 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6372 && (asym->value & 1) != 0)
6373 {
6374 asym->value--;
6375 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
6376 elfsym->internal_elf_sym.st_other
6377 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6378 else
6379 elfsym->internal_elf_sym.st_other
6380 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6381 }
6382 }
6383 \f
6384 /* Implement elf_backend_eh_frame_address_size. This differs from
6385 the default in the way it handles EABI64.
6386
6387 EABI64 was originally specified as an LP64 ABI, and that is what
6388 -mabi=eabi normally gives on a 64-bit target. However, gcc has
6389 historically accepted the combination of -mabi=eabi and -mlong32,
6390 and this ILP32 variation has become semi-official over time.
6391 Both forms use elf32 and have pointer-sized FDE addresses.
6392
6393 If an EABI object was generated by GCC 4.0 or above, it will have
6394 an empty .gcc_compiled_longXX section, where XX is the size of longs
6395 in bits. Unfortunately, ILP32 objects generated by earlier compilers
6396 have no special marking to distinguish them from LP64 objects.
6397
6398 We don't want users of the official LP64 ABI to be punished for the
6399 existence of the ILP32 variant, but at the same time, we don't want
6400 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6401 We therefore take the following approach:
6402
6403 - If ABFD contains a .gcc_compiled_longXX section, use it to
6404 determine the pointer size.
6405
6406 - Otherwise check the type of the first relocation. Assume that
6407 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6408
6409 - Otherwise punt.
6410
6411 The second check is enough to detect LP64 objects generated by pre-4.0
6412 compilers because, in the kind of output generated by those compilers,
6413 the first relocation will be associated with either a CIE personality
6414 routine or an FDE start address. Furthermore, the compilers never
6415 used a special (non-pointer) encoding for this ABI.
6416
6417 Checking the relocation type should also be safe because there is no
6418 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
6419 did so. */
6420
6421 unsigned int
6422 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6423 {
6424 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6425 return 8;
6426 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6427 {
6428 bfd_boolean long32_p, long64_p;
6429
6430 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6431 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6432 if (long32_p && long64_p)
6433 return 0;
6434 if (long32_p)
6435 return 4;
6436 if (long64_p)
6437 return 8;
6438
6439 if (sec->reloc_count > 0
6440 && elf_section_data (sec)->relocs != NULL
6441 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6442 == R_MIPS_64))
6443 return 8;
6444
6445 return 0;
6446 }
6447 return 4;
6448 }
6449 \f
6450 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6451 relocations against two unnamed section symbols to resolve to the
6452 same address. For example, if we have code like:
6453
6454 lw $4,%got_disp(.data)($gp)
6455 lw $25,%got_disp(.text)($gp)
6456 jalr $25
6457
6458 then the linker will resolve both relocations to .data and the program
6459 will jump there rather than to .text.
6460
6461 We can work around this problem by giving names to local section symbols.
6462 This is also what the MIPSpro tools do. */
6463
6464 bfd_boolean
6465 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6466 {
6467 return SGI_COMPAT (abfd);
6468 }
6469 \f
6470 /* Work over a section just before writing it out. This routine is
6471 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
6472 sections that need the SHF_MIPS_GPREL flag by name; there has to be
6473 a better way. */
6474
6475 bfd_boolean
6476 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6477 {
6478 if (hdr->sh_type == SHT_MIPS_REGINFO
6479 && hdr->sh_size > 0)
6480 {
6481 bfd_byte buf[4];
6482
6483 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6484 BFD_ASSERT (hdr->contents == NULL);
6485
6486 if (bfd_seek (abfd,
6487 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6488 SEEK_SET) != 0)
6489 return FALSE;
6490 H_PUT_32 (abfd, elf_gp (abfd), buf);
6491 if (bfd_bwrite (buf, 4, abfd) != 4)
6492 return FALSE;
6493 }
6494
6495 if (hdr->sh_type == SHT_MIPS_OPTIONS
6496 && hdr->bfd_section != NULL
6497 && mips_elf_section_data (hdr->bfd_section) != NULL
6498 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6499 {
6500 bfd_byte *contents, *l, *lend;
6501
6502 /* We stored the section contents in the tdata field in the
6503 set_section_contents routine. We save the section contents
6504 so that we don't have to read them again.
6505 At this point we know that elf_gp is set, so we can look
6506 through the section contents to see if there is an
6507 ODK_REGINFO structure. */
6508
6509 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6510 l = contents;
6511 lend = contents + hdr->sh_size;
6512 while (l + sizeof (Elf_External_Options) <= lend)
6513 {
6514 Elf_Internal_Options intopt;
6515
6516 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6517 &intopt);
6518 if (intopt.size < sizeof (Elf_External_Options))
6519 {
6520 (*_bfd_error_handler)
6521 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6522 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6523 break;
6524 }
6525 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6526 {
6527 bfd_byte buf[8];
6528
6529 if (bfd_seek (abfd,
6530 (hdr->sh_offset
6531 + (l - contents)
6532 + sizeof (Elf_External_Options)
6533 + (sizeof (Elf64_External_RegInfo) - 8)),
6534 SEEK_SET) != 0)
6535 return FALSE;
6536 H_PUT_64 (abfd, elf_gp (abfd), buf);
6537 if (bfd_bwrite (buf, 8, abfd) != 8)
6538 return FALSE;
6539 }
6540 else if (intopt.kind == ODK_REGINFO)
6541 {
6542 bfd_byte buf[4];
6543
6544 if (bfd_seek (abfd,
6545 (hdr->sh_offset
6546 + (l - contents)
6547 + sizeof (Elf_External_Options)
6548 + (sizeof (Elf32_External_RegInfo) - 4)),
6549 SEEK_SET) != 0)
6550 return FALSE;
6551 H_PUT_32 (abfd, elf_gp (abfd), buf);
6552 if (bfd_bwrite (buf, 4, abfd) != 4)
6553 return FALSE;
6554 }
6555 l += intopt.size;
6556 }
6557 }
6558
6559 if (hdr->bfd_section != NULL)
6560 {
6561 const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6562
6563 /* .sbss is not handled specially here because the GNU/Linux
6564 prelinker can convert .sbss from NOBITS to PROGBITS and
6565 changing it back to NOBITS breaks the binary. The entry in
6566 _bfd_mips_elf_special_sections will ensure the correct flags
6567 are set on .sbss if BFD creates it without reading it from an
6568 input file, and without special handling here the flags set
6569 on it in an input file will be followed. */
6570 if (strcmp (name, ".sdata") == 0
6571 || strcmp (name, ".lit8") == 0
6572 || strcmp (name, ".lit4") == 0)
6573 {
6574 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6575 hdr->sh_type = SHT_PROGBITS;
6576 }
6577 else if (strcmp (name, ".srdata") == 0)
6578 {
6579 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6580 hdr->sh_type = SHT_PROGBITS;
6581 }
6582 else if (strcmp (name, ".compact_rel") == 0)
6583 {
6584 hdr->sh_flags = 0;
6585 hdr->sh_type = SHT_PROGBITS;
6586 }
6587 else if (strcmp (name, ".rtproc") == 0)
6588 {
6589 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6590 {
6591 unsigned int adjust;
6592
6593 adjust = hdr->sh_size % hdr->sh_addralign;
6594 if (adjust != 0)
6595 hdr->sh_size += hdr->sh_addralign - adjust;
6596 }
6597 }
6598 }
6599
6600 return TRUE;
6601 }
6602
6603 /* Handle a MIPS specific section when reading an object file. This
6604 is called when elfcode.h finds a section with an unknown type.
6605 This routine supports both the 32-bit and 64-bit ELF ABI.
6606
6607 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6608 how to. */
6609
6610 bfd_boolean
6611 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6612 Elf_Internal_Shdr *hdr,
6613 const char *name,
6614 int shindex)
6615 {
6616 flagword flags = 0;
6617
6618 /* There ought to be a place to keep ELF backend specific flags, but
6619 at the moment there isn't one. We just keep track of the
6620 sections by their name, instead. Fortunately, the ABI gives
6621 suggested names for all the MIPS specific sections, so we will
6622 probably get away with this. */
6623 switch (hdr->sh_type)
6624 {
6625 case SHT_MIPS_LIBLIST:
6626 if (strcmp (name, ".liblist") != 0)
6627 return FALSE;
6628 break;
6629 case SHT_MIPS_MSYM:
6630 if (strcmp (name, ".msym") != 0)
6631 return FALSE;
6632 break;
6633 case SHT_MIPS_CONFLICT:
6634 if (strcmp (name, ".conflict") != 0)
6635 return FALSE;
6636 break;
6637 case SHT_MIPS_GPTAB:
6638 if (! CONST_STRNEQ (name, ".gptab."))
6639 return FALSE;
6640 break;
6641 case SHT_MIPS_UCODE:
6642 if (strcmp (name, ".ucode") != 0)
6643 return FALSE;
6644 break;
6645 case SHT_MIPS_DEBUG:
6646 if (strcmp (name, ".mdebug") != 0)
6647 return FALSE;
6648 flags = SEC_DEBUGGING;
6649 break;
6650 case SHT_MIPS_REGINFO:
6651 if (strcmp (name, ".reginfo") != 0
6652 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6653 return FALSE;
6654 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6655 break;
6656 case SHT_MIPS_IFACE:
6657 if (strcmp (name, ".MIPS.interfaces") != 0)
6658 return FALSE;
6659 break;
6660 case SHT_MIPS_CONTENT:
6661 if (! CONST_STRNEQ (name, ".MIPS.content"))
6662 return FALSE;
6663 break;
6664 case SHT_MIPS_OPTIONS:
6665 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6666 return FALSE;
6667 break;
6668 case SHT_MIPS_DWARF:
6669 if (! CONST_STRNEQ (name, ".debug_")
6670 && ! CONST_STRNEQ (name, ".zdebug_"))
6671 return FALSE;
6672 break;
6673 case SHT_MIPS_SYMBOL_LIB:
6674 if (strcmp (name, ".MIPS.symlib") != 0)
6675 return FALSE;
6676 break;
6677 case SHT_MIPS_EVENTS:
6678 if (! CONST_STRNEQ (name, ".MIPS.events")
6679 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6680 return FALSE;
6681 break;
6682 default:
6683 break;
6684 }
6685
6686 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6687 return FALSE;
6688
6689 if (flags)
6690 {
6691 if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6692 (bfd_get_section_flags (abfd,
6693 hdr->bfd_section)
6694 | flags)))
6695 return FALSE;
6696 }
6697
6698 /* FIXME: We should record sh_info for a .gptab section. */
6699
6700 /* For a .reginfo section, set the gp value in the tdata information
6701 from the contents of this section. We need the gp value while
6702 processing relocs, so we just get it now. The .reginfo section
6703 is not used in the 64-bit MIPS ELF ABI. */
6704 if (hdr->sh_type == SHT_MIPS_REGINFO)
6705 {
6706 Elf32_External_RegInfo ext;
6707 Elf32_RegInfo s;
6708
6709 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6710 &ext, 0, sizeof ext))
6711 return FALSE;
6712 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6713 elf_gp (abfd) = s.ri_gp_value;
6714 }
6715
6716 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6717 set the gp value based on what we find. We may see both
6718 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6719 they should agree. */
6720 if (hdr->sh_type == SHT_MIPS_OPTIONS)
6721 {
6722 bfd_byte *contents, *l, *lend;
6723
6724 contents = bfd_malloc (hdr->sh_size);
6725 if (contents == NULL)
6726 return FALSE;
6727 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6728 0, hdr->sh_size))
6729 {
6730 free (contents);
6731 return FALSE;
6732 }
6733 l = contents;
6734 lend = contents + hdr->sh_size;
6735 while (l + sizeof (Elf_External_Options) <= lend)
6736 {
6737 Elf_Internal_Options intopt;
6738
6739 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6740 &intopt);
6741 if (intopt.size < sizeof (Elf_External_Options))
6742 {
6743 (*_bfd_error_handler)
6744 (_("%B: Warning: bad `%s' option size %u smaller than its header"),
6745 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6746 break;
6747 }
6748 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6749 {
6750 Elf64_Internal_RegInfo intreg;
6751
6752 bfd_mips_elf64_swap_reginfo_in
6753 (abfd,
6754 ((Elf64_External_RegInfo *)
6755 (l + sizeof (Elf_External_Options))),
6756 &intreg);
6757 elf_gp (abfd) = intreg.ri_gp_value;
6758 }
6759 else if (intopt.kind == ODK_REGINFO)
6760 {
6761 Elf32_RegInfo intreg;
6762
6763 bfd_mips_elf32_swap_reginfo_in
6764 (abfd,
6765 ((Elf32_External_RegInfo *)
6766 (l + sizeof (Elf_External_Options))),
6767 &intreg);
6768 elf_gp (abfd) = intreg.ri_gp_value;
6769 }
6770 l += intopt.size;
6771 }
6772 free (contents);
6773 }
6774
6775 return TRUE;
6776 }
6777
6778 /* Set the correct type for a MIPS ELF section. We do this by the
6779 section name, which is a hack, but ought to work. This routine is
6780 used by both the 32-bit and the 64-bit ABI. */
6781
6782 bfd_boolean
6783 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6784 {
6785 const char *name = bfd_get_section_name (abfd, sec);
6786
6787 if (strcmp (name, ".liblist") == 0)
6788 {
6789 hdr->sh_type = SHT_MIPS_LIBLIST;
6790 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6791 /* The sh_link field is set in final_write_processing. */
6792 }
6793 else if (strcmp (name, ".conflict") == 0)
6794 hdr->sh_type = SHT_MIPS_CONFLICT;
6795 else if (CONST_STRNEQ (name, ".gptab."))
6796 {
6797 hdr->sh_type = SHT_MIPS_GPTAB;
6798 hdr->sh_entsize = sizeof (Elf32_External_gptab);
6799 /* The sh_info field is set in final_write_processing. */
6800 }
6801 else if (strcmp (name, ".ucode") == 0)
6802 hdr->sh_type = SHT_MIPS_UCODE;
6803 else if (strcmp (name, ".mdebug") == 0)
6804 {
6805 hdr->sh_type = SHT_MIPS_DEBUG;
6806 /* In a shared object on IRIX 5.3, the .mdebug section has an
6807 entsize of 0. FIXME: Does this matter? */
6808 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6809 hdr->sh_entsize = 0;
6810 else
6811 hdr->sh_entsize = 1;
6812 }
6813 else if (strcmp (name, ".reginfo") == 0)
6814 {
6815 hdr->sh_type = SHT_MIPS_REGINFO;
6816 /* In a shared object on IRIX 5.3, the .reginfo section has an
6817 entsize of 0x18. FIXME: Does this matter? */
6818 if (SGI_COMPAT (abfd))
6819 {
6820 if ((abfd->flags & DYNAMIC) != 0)
6821 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6822 else
6823 hdr->sh_entsize = 1;
6824 }
6825 else
6826 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6827 }
6828 else if (SGI_COMPAT (abfd)
6829 && (strcmp (name, ".hash") == 0
6830 || strcmp (name, ".dynamic") == 0
6831 || strcmp (name, ".dynstr") == 0))
6832 {
6833 if (SGI_COMPAT (abfd))
6834 hdr->sh_entsize = 0;
6835 #if 0
6836 /* This isn't how the IRIX6 linker behaves. */
6837 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6838 #endif
6839 }
6840 else if (strcmp (name, ".got") == 0
6841 || strcmp (name, ".srdata") == 0
6842 || strcmp (name, ".sdata") == 0
6843 || strcmp (name, ".sbss") == 0
6844 || strcmp (name, ".lit4") == 0
6845 || strcmp (name, ".lit8") == 0)
6846 hdr->sh_flags |= SHF_MIPS_GPREL;
6847 else if (strcmp (name, ".MIPS.interfaces") == 0)
6848 {
6849 hdr->sh_type = SHT_MIPS_IFACE;
6850 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6851 }
6852 else if (CONST_STRNEQ (name, ".MIPS.content"))
6853 {
6854 hdr->sh_type = SHT_MIPS_CONTENT;
6855 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6856 /* The sh_info field is set in final_write_processing. */
6857 }
6858 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6859 {
6860 hdr->sh_type = SHT_MIPS_OPTIONS;
6861 hdr->sh_entsize = 1;
6862 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6863 }
6864 else if (CONST_STRNEQ (name, ".debug_")
6865 || CONST_STRNEQ (name, ".zdebug_"))
6866 {
6867 hdr->sh_type = SHT_MIPS_DWARF;
6868
6869 /* Irix facilities such as libexc expect a single .debug_frame
6870 per executable, the system ones have NOSTRIP set and the linker
6871 doesn't merge sections with different flags so ... */
6872 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6873 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6874 }
6875 else if (strcmp (name, ".MIPS.symlib") == 0)
6876 {
6877 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6878 /* The sh_link and sh_info fields are set in
6879 final_write_processing. */
6880 }
6881 else if (CONST_STRNEQ (name, ".MIPS.events")
6882 || CONST_STRNEQ (name, ".MIPS.post_rel"))
6883 {
6884 hdr->sh_type = SHT_MIPS_EVENTS;
6885 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6886 /* The sh_link field is set in final_write_processing. */
6887 }
6888 else if (strcmp (name, ".msym") == 0)
6889 {
6890 hdr->sh_type = SHT_MIPS_MSYM;
6891 hdr->sh_flags |= SHF_ALLOC;
6892 hdr->sh_entsize = 8;
6893 }
6894
6895 /* The generic elf_fake_sections will set up REL_HDR using the default
6896 kind of relocations. We used to set up a second header for the
6897 non-default kind of relocations here, but only NewABI would use
6898 these, and the IRIX ld doesn't like resulting empty RELA sections.
6899 Thus we create those header only on demand now. */
6900
6901 return TRUE;
6902 }
6903
6904 /* Given a BFD section, try to locate the corresponding ELF section
6905 index. This is used by both the 32-bit and the 64-bit ABI.
6906 Actually, it's not clear to me that the 64-bit ABI supports these,
6907 but for non-PIC objects we will certainly want support for at least
6908 the .scommon section. */
6909
6910 bfd_boolean
6911 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6912 asection *sec, int *retval)
6913 {
6914 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6915 {
6916 *retval = SHN_MIPS_SCOMMON;
6917 return TRUE;
6918 }
6919 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6920 {
6921 *retval = SHN_MIPS_ACOMMON;
6922 return TRUE;
6923 }
6924 return FALSE;
6925 }
6926 \f
6927 /* Hook called by the linker routine which adds symbols from an object
6928 file. We must handle the special MIPS section numbers here. */
6929
6930 bfd_boolean
6931 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6932 Elf_Internal_Sym *sym, const char **namep,
6933 flagword *flagsp ATTRIBUTE_UNUSED,
6934 asection **secp, bfd_vma *valp)
6935 {
6936 if (SGI_COMPAT (abfd)
6937 && (abfd->flags & DYNAMIC) != 0
6938 && strcmp (*namep, "_rld_new_interface") == 0)
6939 {
6940 /* Skip IRIX5 rld entry name. */
6941 *namep = NULL;
6942 return TRUE;
6943 }
6944
6945 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6946 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
6947 by setting a DT_NEEDED for the shared object. Since _gp_disp is
6948 a magic symbol resolved by the linker, we ignore this bogus definition
6949 of _gp_disp. New ABI objects do not suffer from this problem so this
6950 is not done for them. */
6951 if (!NEWABI_P(abfd)
6952 && (sym->st_shndx == SHN_ABS)
6953 && (strcmp (*namep, "_gp_disp") == 0))
6954 {
6955 *namep = NULL;
6956 return TRUE;
6957 }
6958
6959 switch (sym->st_shndx)
6960 {
6961 case SHN_COMMON:
6962 /* Common symbols less than the GP size are automatically
6963 treated as SHN_MIPS_SCOMMON symbols. */
6964 if (sym->st_size > elf_gp_size (abfd)
6965 || ELF_ST_TYPE (sym->st_info) == STT_TLS
6966 || IRIX_COMPAT (abfd) == ict_irix6)
6967 break;
6968 /* Fall through. */
6969 case SHN_MIPS_SCOMMON:
6970 *secp = bfd_make_section_old_way (abfd, ".scommon");
6971 (*secp)->flags |= SEC_IS_COMMON;
6972 *valp = sym->st_size;
6973 break;
6974
6975 case SHN_MIPS_TEXT:
6976 /* This section is used in a shared object. */
6977 if (elf_tdata (abfd)->elf_text_section == NULL)
6978 {
6979 asymbol *elf_text_symbol;
6980 asection *elf_text_section;
6981 bfd_size_type amt = sizeof (asection);
6982
6983 elf_text_section = bfd_zalloc (abfd, amt);
6984 if (elf_text_section == NULL)
6985 return FALSE;
6986
6987 amt = sizeof (asymbol);
6988 elf_text_symbol = bfd_zalloc (abfd, amt);
6989 if (elf_text_symbol == NULL)
6990 return FALSE;
6991
6992 /* Initialize the section. */
6993
6994 elf_tdata (abfd)->elf_text_section = elf_text_section;
6995 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6996
6997 elf_text_section->symbol = elf_text_symbol;
6998 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6999
7000 elf_text_section->name = ".text";
7001 elf_text_section->flags = SEC_NO_FLAGS;
7002 elf_text_section->output_section = NULL;
7003 elf_text_section->owner = abfd;
7004 elf_text_symbol->name = ".text";
7005 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7006 elf_text_symbol->section = elf_text_section;
7007 }
7008 /* This code used to do *secp = bfd_und_section_ptr if
7009 info->shared. I don't know why, and that doesn't make sense,
7010 so I took it out. */
7011 *secp = elf_tdata (abfd)->elf_text_section;
7012 break;
7013
7014 case SHN_MIPS_ACOMMON:
7015 /* Fall through. XXX Can we treat this as allocated data? */
7016 case SHN_MIPS_DATA:
7017 /* This section is used in a shared object. */
7018 if (elf_tdata (abfd)->elf_data_section == NULL)
7019 {
7020 asymbol *elf_data_symbol;
7021 asection *elf_data_section;
7022 bfd_size_type amt = sizeof (asection);
7023
7024 elf_data_section = bfd_zalloc (abfd, amt);
7025 if (elf_data_section == NULL)
7026 return FALSE;
7027
7028 amt = sizeof (asymbol);
7029 elf_data_symbol = bfd_zalloc (abfd, amt);
7030 if (elf_data_symbol == NULL)
7031 return FALSE;
7032
7033 /* Initialize the section. */
7034
7035 elf_tdata (abfd)->elf_data_section = elf_data_section;
7036 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7037
7038 elf_data_section->symbol = elf_data_symbol;
7039 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
7040
7041 elf_data_section->name = ".data";
7042 elf_data_section->flags = SEC_NO_FLAGS;
7043 elf_data_section->output_section = NULL;
7044 elf_data_section->owner = abfd;
7045 elf_data_symbol->name = ".data";
7046 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7047 elf_data_symbol->section = elf_data_section;
7048 }
7049 /* This code used to do *secp = bfd_und_section_ptr if
7050 info->shared. I don't know why, and that doesn't make sense,
7051 so I took it out. */
7052 *secp = elf_tdata (abfd)->elf_data_section;
7053 break;
7054
7055 case SHN_MIPS_SUNDEFINED:
7056 *secp = bfd_und_section_ptr;
7057 break;
7058 }
7059
7060 if (SGI_COMPAT (abfd)
7061 && ! info->shared
7062 && info->output_bfd->xvec == abfd->xvec
7063 && strcmp (*namep, "__rld_obj_head") == 0)
7064 {
7065 struct elf_link_hash_entry *h;
7066 struct bfd_link_hash_entry *bh;
7067
7068 /* Mark __rld_obj_head as dynamic. */
7069 bh = NULL;
7070 if (! (_bfd_generic_link_add_one_symbol
7071 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7072 get_elf_backend_data (abfd)->collect, &bh)))
7073 return FALSE;
7074
7075 h = (struct elf_link_hash_entry *) bh;
7076 h->non_elf = 0;
7077 h->def_regular = 1;
7078 h->type = STT_OBJECT;
7079
7080 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7081 return FALSE;
7082
7083 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7084 }
7085
7086 /* If this is a mips16 text symbol, add 1 to the value to make it
7087 odd. This will cause something like .word SYM to come up with
7088 the right value when it is loaded into the PC. */
7089 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7090 ++*valp;
7091
7092 return TRUE;
7093 }
7094
7095 /* This hook function is called before the linker writes out a global
7096 symbol. We mark symbols as small common if appropriate. This is
7097 also where we undo the increment of the value for a mips16 symbol. */
7098
7099 int
7100 _bfd_mips_elf_link_output_symbol_hook
7101 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7102 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7103 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7104 {
7105 /* If we see a common symbol, which implies a relocatable link, then
7106 if a symbol was small common in an input file, mark it as small
7107 common in the output file. */
7108 if (sym->st_shndx == SHN_COMMON
7109 && strcmp (input_sec->name, ".scommon") == 0)
7110 sym->st_shndx = SHN_MIPS_SCOMMON;
7111
7112 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7113 sym->st_value &= ~1;
7114
7115 return 1;
7116 }
7117 \f
7118 /* Functions for the dynamic linker. */
7119
7120 /* Create dynamic sections when linking against a dynamic object. */
7121
7122 bfd_boolean
7123 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7124 {
7125 struct elf_link_hash_entry *h;
7126 struct bfd_link_hash_entry *bh;
7127 flagword flags;
7128 register asection *s;
7129 const char * const *namep;
7130 struct mips_elf_link_hash_table *htab;
7131
7132 htab = mips_elf_hash_table (info);
7133 BFD_ASSERT (htab != NULL);
7134
7135 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7136 | SEC_LINKER_CREATED | SEC_READONLY);
7137
7138 /* The psABI requires a read-only .dynamic section, but the VxWorks
7139 EABI doesn't. */
7140 if (!htab->is_vxworks)
7141 {
7142 s = bfd_get_section_by_name (abfd, ".dynamic");
7143 if (s != NULL)
7144 {
7145 if (! bfd_set_section_flags (abfd, s, flags))
7146 return FALSE;
7147 }
7148 }
7149
7150 /* We need to create .got section. */
7151 if (!mips_elf_create_got_section (abfd, info))
7152 return FALSE;
7153
7154 if (! mips_elf_rel_dyn_section (info, TRUE))
7155 return FALSE;
7156
7157 /* Create .stub section. */
7158 s = bfd_make_section_with_flags (abfd,
7159 MIPS_ELF_STUB_SECTION_NAME (abfd),
7160 flags | SEC_CODE);
7161 if (s == NULL
7162 || ! bfd_set_section_alignment (abfd, s,
7163 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7164 return FALSE;
7165 htab->sstubs = s;
7166
7167 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
7168 && !info->shared
7169 && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
7170 {
7171 s = bfd_make_section_with_flags (abfd, ".rld_map",
7172 flags &~ (flagword) SEC_READONLY);
7173 if (s == NULL
7174 || ! bfd_set_section_alignment (abfd, s,
7175 MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7176 return FALSE;
7177 }
7178
7179 /* On IRIX5, we adjust add some additional symbols and change the
7180 alignments of several sections. There is no ABI documentation
7181 indicating that this is necessary on IRIX6, nor any evidence that
7182 the linker takes such action. */
7183 if (IRIX_COMPAT (abfd) == ict_irix5)
7184 {
7185 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7186 {
7187 bh = NULL;
7188 if (! (_bfd_generic_link_add_one_symbol
7189 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7190 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7191 return FALSE;
7192
7193 h = (struct elf_link_hash_entry *) bh;
7194 h->non_elf = 0;
7195 h->def_regular = 1;
7196 h->type = STT_SECTION;
7197
7198 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7199 return FALSE;
7200 }
7201
7202 /* We need to create a .compact_rel section. */
7203 if (SGI_COMPAT (abfd))
7204 {
7205 if (!mips_elf_create_compact_rel_section (abfd, info))
7206 return FALSE;
7207 }
7208
7209 /* Change alignments of some sections. */
7210 s = bfd_get_section_by_name (abfd, ".hash");
7211 if (s != NULL)
7212 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7213 s = bfd_get_section_by_name (abfd, ".dynsym");
7214 if (s != NULL)
7215 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7216 s = bfd_get_section_by_name (abfd, ".dynstr");
7217 if (s != NULL)
7218 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7219 s = bfd_get_section_by_name (abfd, ".reginfo");
7220 if (s != NULL)
7221 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7222 s = bfd_get_section_by_name (abfd, ".dynamic");
7223 if (s != NULL)
7224 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7225 }
7226
7227 if (!info->shared)
7228 {
7229 const char *name;
7230
7231 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7232 bh = NULL;
7233 if (!(_bfd_generic_link_add_one_symbol
7234 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7235 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7236 return FALSE;
7237
7238 h = (struct elf_link_hash_entry *) bh;
7239 h->non_elf = 0;
7240 h->def_regular = 1;
7241 h->type = STT_SECTION;
7242
7243 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7244 return FALSE;
7245
7246 if (! mips_elf_hash_table (info)->use_rld_obj_head)
7247 {
7248 /* __rld_map is a four byte word located in the .data section
7249 and is filled in by the rtld to contain a pointer to
7250 the _r_debug structure. Its symbol value will be set in
7251 _bfd_mips_elf_finish_dynamic_symbol. */
7252 s = bfd_get_section_by_name (abfd, ".rld_map");
7253 BFD_ASSERT (s != NULL);
7254
7255 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7256 bh = NULL;
7257 if (!(_bfd_generic_link_add_one_symbol
7258 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7259 get_elf_backend_data (abfd)->collect, &bh)))
7260 return FALSE;
7261
7262 h = (struct elf_link_hash_entry *) bh;
7263 h->non_elf = 0;
7264 h->def_regular = 1;
7265 h->type = STT_OBJECT;
7266
7267 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7268 return FALSE;
7269 }
7270 }
7271
7272 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7273 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */
7274 if (!_bfd_elf_create_dynamic_sections (abfd, info))
7275 return FALSE;
7276
7277 /* Cache the sections created above. */
7278 htab->splt = bfd_get_section_by_name (abfd, ".plt");
7279 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7280 if (htab->is_vxworks)
7281 {
7282 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7283 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7284 }
7285 else
7286 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7287 if (!htab->sdynbss
7288 || (htab->is_vxworks && !htab->srelbss && !info->shared)
7289 || !htab->srelplt
7290 || !htab->splt)
7291 abort ();
7292
7293 if (htab->is_vxworks)
7294 {
7295 /* Do the usual VxWorks handling. */
7296 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7297 return FALSE;
7298
7299 /* Work out the PLT sizes. */
7300 if (info->shared)
7301 {
7302 htab->plt_header_size
7303 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7304 htab->plt_entry_size
7305 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7306 }
7307 else
7308 {
7309 htab->plt_header_size
7310 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7311 htab->plt_entry_size
7312 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7313 }
7314 }
7315 else if (!info->shared)
7316 {
7317 /* All variants of the plt0 entry are the same size. */
7318 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7319 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7320 }
7321
7322 return TRUE;
7323 }
7324 \f
7325 /* Return true if relocation REL against section SEC is a REL rather than
7326 RELA relocation. RELOCS is the first relocation in the section and
7327 ABFD is the bfd that contains SEC. */
7328
7329 static bfd_boolean
7330 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7331 const Elf_Internal_Rela *relocs,
7332 const Elf_Internal_Rela *rel)
7333 {
7334 Elf_Internal_Shdr *rel_hdr;
7335 const struct elf_backend_data *bed;
7336
7337 /* To determine which flavor of relocation this is, we depend on the
7338 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
7339 rel_hdr = elf_section_data (sec)->rel.hdr;
7340 if (rel_hdr == NULL)
7341 return FALSE;
7342 bed = get_elf_backend_data (abfd);
7343 return ((size_t) (rel - relocs)
7344 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7345 }
7346
7347 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7348 HOWTO is the relocation's howto and CONTENTS points to the contents
7349 of the section that REL is against. */
7350
7351 static bfd_vma
7352 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7353 reloc_howto_type *howto, bfd_byte *contents)
7354 {
7355 bfd_byte *location;
7356 unsigned int r_type;
7357 bfd_vma addend;
7358
7359 r_type = ELF_R_TYPE (abfd, rel->r_info);
7360 location = contents + rel->r_offset;
7361
7362 /* Get the addend, which is stored in the input file. */
7363 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7364 addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7365 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7366
7367 return addend & howto->src_mask;
7368 }
7369
7370 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7371 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
7372 and update *ADDEND with the final addend. Return true on success
7373 or false if the LO16 could not be found. RELEND is the exclusive
7374 upper bound on the relocations for REL's section. */
7375
7376 static bfd_boolean
7377 mips_elf_add_lo16_rel_addend (bfd *abfd,
7378 const Elf_Internal_Rela *rel,
7379 const Elf_Internal_Rela *relend,
7380 bfd_byte *contents, bfd_vma *addend)
7381 {
7382 unsigned int r_type, lo16_type;
7383 const Elf_Internal_Rela *lo16_relocation;
7384 reloc_howto_type *lo16_howto;
7385 bfd_vma l;
7386
7387 r_type = ELF_R_TYPE (abfd, rel->r_info);
7388 if (mips16_reloc_p (r_type))
7389 lo16_type = R_MIPS16_LO16;
7390 else if (micromips_reloc_p (r_type))
7391 lo16_type = R_MICROMIPS_LO16;
7392 else
7393 lo16_type = R_MIPS_LO16;
7394
7395 /* The combined value is the sum of the HI16 addend, left-shifted by
7396 sixteen bits, and the LO16 addend, sign extended. (Usually, the
7397 code does a `lui' of the HI16 value, and then an `addiu' of the
7398 LO16 value.)
7399
7400 Scan ahead to find a matching LO16 relocation.
7401
7402 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7403 be immediately following. However, for the IRIX6 ABI, the next
7404 relocation may be a composed relocation consisting of several
7405 relocations for the same address. In that case, the R_MIPS_LO16
7406 relocation may occur as one of these. We permit a similar
7407 extension in general, as that is useful for GCC.
7408
7409 In some cases GCC dead code elimination removes the LO16 but keeps
7410 the corresponding HI16. This is strictly speaking a violation of
7411 the ABI but not immediately harmful. */
7412 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7413 if (lo16_relocation == NULL)
7414 return FALSE;
7415
7416 /* Obtain the addend kept there. */
7417 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7418 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7419
7420 l <<= lo16_howto->rightshift;
7421 l = _bfd_mips_elf_sign_extend (l, 16);
7422
7423 *addend <<= 16;
7424 *addend += l;
7425 return TRUE;
7426 }
7427
7428 /* Try to read the contents of section SEC in bfd ABFD. Return true and
7429 store the contents in *CONTENTS on success. Assume that *CONTENTS
7430 already holds the contents if it is nonull on entry. */
7431
7432 static bfd_boolean
7433 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7434 {
7435 if (*contents)
7436 return TRUE;
7437
7438 /* Get cached copy if it exists. */
7439 if (elf_section_data (sec)->this_hdr.contents != NULL)
7440 {
7441 *contents = elf_section_data (sec)->this_hdr.contents;
7442 return TRUE;
7443 }
7444
7445 return bfd_malloc_and_get_section (abfd, sec, contents);
7446 }
7447
7448 /* Look through the relocs for a section during the first phase, and
7449 allocate space in the global offset table. */
7450
7451 bfd_boolean
7452 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7453 asection *sec, const Elf_Internal_Rela *relocs)
7454 {
7455 const char *name;
7456 bfd *dynobj;
7457 Elf_Internal_Shdr *symtab_hdr;
7458 struct elf_link_hash_entry **sym_hashes;
7459 size_t extsymoff;
7460 const Elf_Internal_Rela *rel;
7461 const Elf_Internal_Rela *rel_end;
7462 asection *sreloc;
7463 const struct elf_backend_data *bed;
7464 struct mips_elf_link_hash_table *htab;
7465 bfd_byte *contents;
7466 bfd_vma addend;
7467 reloc_howto_type *howto;
7468
7469 if (info->relocatable)
7470 return TRUE;
7471
7472 htab = mips_elf_hash_table (info);
7473 BFD_ASSERT (htab != NULL);
7474
7475 dynobj = elf_hash_table (info)->dynobj;
7476 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7477 sym_hashes = elf_sym_hashes (abfd);
7478 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7479
7480 bed = get_elf_backend_data (abfd);
7481 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7482
7483 /* Check for the mips16 stub sections. */
7484
7485 name = bfd_get_section_name (abfd, sec);
7486 if (FN_STUB_P (name))
7487 {
7488 unsigned long r_symndx;
7489
7490 /* Look at the relocation information to figure out which symbol
7491 this is for. */
7492
7493 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7494 if (r_symndx == 0)
7495 {
7496 (*_bfd_error_handler)
7497 (_("%B: Warning: cannot determine the target function for"
7498 " stub section `%s'"),
7499 abfd, name);
7500 bfd_set_error (bfd_error_bad_value);
7501 return FALSE;
7502 }
7503
7504 if (r_symndx < extsymoff
7505 || sym_hashes[r_symndx - extsymoff] == NULL)
7506 {
7507 asection *o;
7508
7509 /* This stub is for a local symbol. This stub will only be
7510 needed if there is some relocation in this BFD, other
7511 than a 16 bit function call, which refers to this symbol. */
7512 for (o = abfd->sections; o != NULL; o = o->next)
7513 {
7514 Elf_Internal_Rela *sec_relocs;
7515 const Elf_Internal_Rela *r, *rend;
7516
7517 /* We can ignore stub sections when looking for relocs. */
7518 if ((o->flags & SEC_RELOC) == 0
7519 || o->reloc_count == 0
7520 || section_allows_mips16_refs_p (o))
7521 continue;
7522
7523 sec_relocs
7524 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7525 info->keep_memory);
7526 if (sec_relocs == NULL)
7527 return FALSE;
7528
7529 rend = sec_relocs + o->reloc_count;
7530 for (r = sec_relocs; r < rend; r++)
7531 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7532 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7533 break;
7534
7535 if (elf_section_data (o)->relocs != sec_relocs)
7536 free (sec_relocs);
7537
7538 if (r < rend)
7539 break;
7540 }
7541
7542 if (o == NULL)
7543 {
7544 /* There is no non-call reloc for this stub, so we do
7545 not need it. Since this function is called before
7546 the linker maps input sections to output sections, we
7547 can easily discard it by setting the SEC_EXCLUDE
7548 flag. */
7549 sec->flags |= SEC_EXCLUDE;
7550 return TRUE;
7551 }
7552
7553 /* Record this stub in an array of local symbol stubs for
7554 this BFD. */
7555 if (elf_tdata (abfd)->local_stubs == NULL)
7556 {
7557 unsigned long symcount;
7558 asection **n;
7559 bfd_size_type amt;
7560
7561 if (elf_bad_symtab (abfd))
7562 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7563 else
7564 symcount = symtab_hdr->sh_info;
7565 amt = symcount * sizeof (asection *);
7566 n = bfd_zalloc (abfd, amt);
7567 if (n == NULL)
7568 return FALSE;
7569 elf_tdata (abfd)->local_stubs = n;
7570 }
7571
7572 sec->flags |= SEC_KEEP;
7573 elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7574
7575 /* We don't need to set mips16_stubs_seen in this case.
7576 That flag is used to see whether we need to look through
7577 the global symbol table for stubs. We don't need to set
7578 it here, because we just have a local stub. */
7579 }
7580 else
7581 {
7582 struct mips_elf_link_hash_entry *h;
7583
7584 h = ((struct mips_elf_link_hash_entry *)
7585 sym_hashes[r_symndx - extsymoff]);
7586
7587 while (h->root.root.type == bfd_link_hash_indirect
7588 || h->root.root.type == bfd_link_hash_warning)
7589 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7590
7591 /* H is the symbol this stub is for. */
7592
7593 /* If we already have an appropriate stub for this function, we
7594 don't need another one, so we can discard this one. Since
7595 this function is called before the linker maps input sections
7596 to output sections, we can easily discard it by setting the
7597 SEC_EXCLUDE flag. */
7598 if (h->fn_stub != NULL)
7599 {
7600 sec->flags |= SEC_EXCLUDE;
7601 return TRUE;
7602 }
7603
7604 sec->flags |= SEC_KEEP;
7605 h->fn_stub = sec;
7606 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7607 }
7608 }
7609 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7610 {
7611 unsigned long r_symndx;
7612 struct mips_elf_link_hash_entry *h;
7613 asection **loc;
7614
7615 /* Look at the relocation information to figure out which symbol
7616 this is for. */
7617
7618 r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7619 if (r_symndx == 0)
7620 {
7621 (*_bfd_error_handler)
7622 (_("%B: Warning: cannot determine the target function for"
7623 " stub section `%s'"),
7624 abfd, name);
7625 bfd_set_error (bfd_error_bad_value);
7626 return FALSE;
7627 }
7628
7629 if (r_symndx < extsymoff
7630 || sym_hashes[r_symndx - extsymoff] == NULL)
7631 {
7632 asection *o;
7633
7634 /* This stub is for a local symbol. This stub will only be
7635 needed if there is some relocation (R_MIPS16_26) in this BFD
7636 that refers to this symbol. */
7637 for (o = abfd->sections; o != NULL; o = o->next)
7638 {
7639 Elf_Internal_Rela *sec_relocs;
7640 const Elf_Internal_Rela *r, *rend;
7641
7642 /* We can ignore stub sections when looking for relocs. */
7643 if ((o->flags & SEC_RELOC) == 0
7644 || o->reloc_count == 0
7645 || section_allows_mips16_refs_p (o))
7646 continue;
7647
7648 sec_relocs
7649 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7650 info->keep_memory);
7651 if (sec_relocs == NULL)
7652 return FALSE;
7653
7654 rend = sec_relocs + o->reloc_count;
7655 for (r = sec_relocs; r < rend; r++)
7656 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7657 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7658 break;
7659
7660 if (elf_section_data (o)->relocs != sec_relocs)
7661 free (sec_relocs);
7662
7663 if (r < rend)
7664 break;
7665 }
7666
7667 if (o == NULL)
7668 {
7669 /* There is no non-call reloc for this stub, so we do
7670 not need it. Since this function is called before
7671 the linker maps input sections to output sections, we
7672 can easily discard it by setting the SEC_EXCLUDE
7673 flag. */
7674 sec->flags |= SEC_EXCLUDE;
7675 return TRUE;
7676 }
7677
7678 /* Record this stub in an array of local symbol call_stubs for
7679 this BFD. */
7680 if (elf_tdata (abfd)->local_call_stubs == NULL)
7681 {
7682 unsigned long symcount;
7683 asection **n;
7684 bfd_size_type amt;
7685
7686 if (elf_bad_symtab (abfd))
7687 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7688 else
7689 symcount = symtab_hdr->sh_info;
7690 amt = symcount * sizeof (asection *);
7691 n = bfd_zalloc (abfd, amt);
7692 if (n == NULL)
7693 return FALSE;
7694 elf_tdata (abfd)->local_call_stubs = n;
7695 }
7696
7697 sec->flags |= SEC_KEEP;
7698 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7699
7700 /* We don't need to set mips16_stubs_seen in this case.
7701 That flag is used to see whether we need to look through
7702 the global symbol table for stubs. We don't need to set
7703 it here, because we just have a local stub. */
7704 }
7705 else
7706 {
7707 h = ((struct mips_elf_link_hash_entry *)
7708 sym_hashes[r_symndx - extsymoff]);
7709
7710 /* H is the symbol this stub is for. */
7711
7712 if (CALL_FP_STUB_P (name))
7713 loc = &h->call_fp_stub;
7714 else
7715 loc = &h->call_stub;
7716
7717 /* If we already have an appropriate stub for this function, we
7718 don't need another one, so we can discard this one. Since
7719 this function is called before the linker maps input sections
7720 to output sections, we can easily discard it by setting the
7721 SEC_EXCLUDE flag. */
7722 if (*loc != NULL)
7723 {
7724 sec->flags |= SEC_EXCLUDE;
7725 return TRUE;
7726 }
7727
7728 sec->flags |= SEC_KEEP;
7729 *loc = sec;
7730 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7731 }
7732 }
7733
7734 sreloc = NULL;
7735 contents = NULL;
7736 for (rel = relocs; rel < rel_end; ++rel)
7737 {
7738 unsigned long r_symndx;
7739 unsigned int r_type;
7740 struct elf_link_hash_entry *h;
7741 bfd_boolean can_make_dynamic_p;
7742
7743 r_symndx = ELF_R_SYM (abfd, rel->r_info);
7744 r_type = ELF_R_TYPE (abfd, rel->r_info);
7745
7746 if (r_symndx < extsymoff)
7747 h = NULL;
7748 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7749 {
7750 (*_bfd_error_handler)
7751 (_("%B: Malformed reloc detected for section %s"),
7752 abfd, name);
7753 bfd_set_error (bfd_error_bad_value);
7754 return FALSE;
7755 }
7756 else
7757 {
7758 h = sym_hashes[r_symndx - extsymoff];
7759 while (h != NULL
7760 && (h->root.type == bfd_link_hash_indirect
7761 || h->root.type == bfd_link_hash_warning))
7762 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7763 }
7764
7765 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7766 relocation into a dynamic one. */
7767 can_make_dynamic_p = FALSE;
7768 switch (r_type)
7769 {
7770 case R_MIPS16_GOT16:
7771 case R_MIPS16_CALL16:
7772 case R_MIPS_GOT16:
7773 case R_MIPS_CALL16:
7774 case R_MIPS_CALL_HI16:
7775 case R_MIPS_CALL_LO16:
7776 case R_MIPS_GOT_HI16:
7777 case R_MIPS_GOT_LO16:
7778 case R_MIPS_GOT_PAGE:
7779 case R_MIPS_GOT_OFST:
7780 case R_MIPS_GOT_DISP:
7781 case R_MIPS_TLS_GOTTPREL:
7782 case R_MIPS_TLS_GD:
7783 case R_MIPS_TLS_LDM:
7784 case R_MICROMIPS_GOT16:
7785 case R_MICROMIPS_CALL16:
7786 case R_MICROMIPS_CALL_HI16:
7787 case R_MICROMIPS_CALL_LO16:
7788 case R_MICROMIPS_GOT_HI16:
7789 case R_MICROMIPS_GOT_LO16:
7790 case R_MICROMIPS_GOT_PAGE:
7791 case R_MICROMIPS_GOT_OFST:
7792 case R_MICROMIPS_GOT_DISP:
7793 case R_MICROMIPS_TLS_GOTTPREL:
7794 case R_MICROMIPS_TLS_GD:
7795 case R_MICROMIPS_TLS_LDM:
7796 if (dynobj == NULL)
7797 elf_hash_table (info)->dynobj = dynobj = abfd;
7798 if (!mips_elf_create_got_section (dynobj, info))
7799 return FALSE;
7800 if (htab->is_vxworks && !info->shared)
7801 {
7802 (*_bfd_error_handler)
7803 (_("%B: GOT reloc at 0x%lx not expected in executables"),
7804 abfd, (unsigned long) rel->r_offset);
7805 bfd_set_error (bfd_error_bad_value);
7806 return FALSE;
7807 }
7808 break;
7809
7810 /* This is just a hint; it can safely be ignored. Don't set
7811 has_static_relocs for the corresponding symbol. */
7812 case R_MIPS_JALR:
7813 case R_MICROMIPS_JALR:
7814 break;
7815
7816 case R_MIPS_32:
7817 case R_MIPS_REL32:
7818 case R_MIPS_64:
7819 /* In VxWorks executables, references to external symbols
7820 must be handled using copy relocs or PLT entries; it is not
7821 possible to convert this relocation into a dynamic one.
7822
7823 For executables that use PLTs and copy-relocs, we have a
7824 choice between converting the relocation into a dynamic
7825 one or using copy relocations or PLT entries. It is
7826 usually better to do the former, unless the relocation is
7827 against a read-only section. */
7828 if ((info->shared
7829 || (h != NULL
7830 && !htab->is_vxworks
7831 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7832 && !(!info->nocopyreloc
7833 && !PIC_OBJECT_P (abfd)
7834 && MIPS_ELF_READONLY_SECTION (sec))))
7835 && (sec->flags & SEC_ALLOC) != 0)
7836 {
7837 can_make_dynamic_p = TRUE;
7838 if (dynobj == NULL)
7839 elf_hash_table (info)->dynobj = dynobj = abfd;
7840 break;
7841 }
7842 /* For sections that are not SEC_ALLOC a copy reloc would be
7843 output if possible (implying questionable semantics for
7844 read-only data objects) or otherwise the final link would
7845 fail as ld.so will not process them and could not therefore
7846 handle any outstanding dynamic relocations.
7847
7848 For such sections that are also SEC_DEBUGGING, we can avoid
7849 these problems by simply ignoring any relocs as these
7850 sections have a predefined use and we know it is safe to do
7851 so.
7852
7853 This is needed in cases such as a global symbol definition
7854 in a shared library causing a common symbol from an object
7855 file to be converted to an undefined reference. If that
7856 happens, then all the relocations against this symbol from
7857 SEC_DEBUGGING sections in the object file will resolve to
7858 nil. */
7859 if ((sec->flags & SEC_DEBUGGING) != 0)
7860 break;
7861 /* Fall through. */
7862
7863 default:
7864 /* Most static relocations require pointer equality, except
7865 for branches. */
7866 if (h)
7867 h->pointer_equality_needed = TRUE;
7868 /* Fall through. */
7869
7870 case R_MIPS_26:
7871 case R_MIPS_PC16:
7872 case R_MIPS16_26:
7873 case R_MICROMIPS_26_S1:
7874 case R_MICROMIPS_PC7_S1:
7875 case R_MICROMIPS_PC10_S1:
7876 case R_MICROMIPS_PC16_S1:
7877 case R_MICROMIPS_PC23_S2:
7878 if (h)
7879 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7880 break;
7881 }
7882
7883 if (h)
7884 {
7885 /* Relocations against the special VxWorks __GOTT_BASE__ and
7886 __GOTT_INDEX__ symbols must be left to the loader. Allocate
7887 room for them in .rela.dyn. */
7888 if (is_gott_symbol (info, h))
7889 {
7890 if (sreloc == NULL)
7891 {
7892 sreloc = mips_elf_rel_dyn_section (info, TRUE);
7893 if (sreloc == NULL)
7894 return FALSE;
7895 }
7896 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7897 if (MIPS_ELF_READONLY_SECTION (sec))
7898 /* We tell the dynamic linker that there are
7899 relocations against the text segment. */
7900 info->flags |= DF_TEXTREL;
7901 }
7902 }
7903 else if (call_lo16_reloc_p (r_type)
7904 || got_lo16_reloc_p (r_type)
7905 || got_disp_reloc_p (r_type)
7906 || (got16_reloc_p (r_type) && htab->is_vxworks))
7907 {
7908 /* We may need a local GOT entry for this relocation. We
7909 don't count R_MIPS_GOT_PAGE because we can estimate the
7910 maximum number of pages needed by looking at the size of
7911 the segment. Similar comments apply to R_MIPS*_GOT16 and
7912 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7913 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
7914 R_MIPS_CALL_HI16 because these are always followed by an
7915 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
7916 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7917 rel->r_addend, info, 0))
7918 return FALSE;
7919 }
7920
7921 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7922 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7923
7924 switch (r_type)
7925 {
7926 case R_MIPS_CALL16:
7927 case R_MIPS16_CALL16:
7928 case R_MICROMIPS_CALL16:
7929 if (h == NULL)
7930 {
7931 (*_bfd_error_handler)
7932 (_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7933 abfd, (unsigned long) rel->r_offset);
7934 bfd_set_error (bfd_error_bad_value);
7935 return FALSE;
7936 }
7937 /* Fall through. */
7938
7939 case R_MIPS_CALL_HI16:
7940 case R_MIPS_CALL_LO16:
7941 case R_MICROMIPS_CALL_HI16:
7942 case R_MICROMIPS_CALL_LO16:
7943 if (h != NULL)
7944 {
7945 /* Make sure there is room in the regular GOT to hold the
7946 function's address. We may eliminate it in favour of
7947 a .got.plt entry later; see mips_elf_count_got_symbols. */
7948 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7949 return FALSE;
7950
7951 /* We need a stub, not a plt entry for the undefined
7952 function. But we record it as if it needs plt. See
7953 _bfd_elf_adjust_dynamic_symbol. */
7954 h->needs_plt = 1;
7955 h->type = STT_FUNC;
7956 }
7957 break;
7958
7959 case R_MIPS_GOT_PAGE:
7960 case R_MICROMIPS_GOT_PAGE:
7961 /* If this is a global, overridable symbol, GOT_PAGE will
7962 decay to GOT_DISP, so we'll need a GOT entry for it. */
7963 if (h)
7964 {
7965 struct mips_elf_link_hash_entry *hmips =
7966 (struct mips_elf_link_hash_entry *) h;
7967
7968 /* This symbol is definitely not overridable. */
7969 if (hmips->root.def_regular
7970 && ! (info->shared && ! info->symbolic
7971 && ! hmips->root.forced_local))
7972 h = NULL;
7973 }
7974 /* Fall through. */
7975
7976 case R_MIPS16_GOT16:
7977 case R_MIPS_GOT16:
7978 case R_MIPS_GOT_HI16:
7979 case R_MIPS_GOT_LO16:
7980 case R_MICROMIPS_GOT16:
7981 case R_MICROMIPS_GOT_HI16:
7982 case R_MICROMIPS_GOT_LO16:
7983 if (!h || got_page_reloc_p (r_type))
7984 {
7985 /* This relocation needs (or may need, if h != NULL) a
7986 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
7987 know for sure until we know whether the symbol is
7988 preemptible. */
7989 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7990 {
7991 if (!mips_elf_get_section_contents (abfd, sec, &contents))
7992 return FALSE;
7993 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7994 addend = mips_elf_read_rel_addend (abfd, rel,
7995 howto, contents);
7996 if (got16_reloc_p (r_type))
7997 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7998 contents, &addend);
7999 else
8000 addend <<= howto->rightshift;
8001 }
8002 else
8003 addend = rel->r_addend;
8004 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
8005 addend))
8006 return FALSE;
8007 }
8008 /* Fall through. */
8009
8010 case R_MIPS_GOT_DISP:
8011 case R_MICROMIPS_GOT_DISP:
8012 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8013 FALSE, 0))
8014 return FALSE;
8015 break;
8016
8017 case R_MIPS_TLS_GOTTPREL:
8018 case R_MICROMIPS_TLS_GOTTPREL:
8019 if (info->shared)
8020 info->flags |= DF_STATIC_TLS;
8021 /* Fall through */
8022
8023 case R_MIPS_TLS_LDM:
8024 case R_MICROMIPS_TLS_LDM:
8025 if (tls_ldm_reloc_p (r_type))
8026 {
8027 r_symndx = STN_UNDEF;
8028 h = NULL;
8029 }
8030 /* Fall through */
8031
8032 case R_MIPS_TLS_GD:
8033 case R_MICROMIPS_TLS_GD:
8034 /* This symbol requires a global offset table entry, or two
8035 for TLS GD relocations. */
8036 {
8037 unsigned char flag;
8038
8039 flag = (tls_gd_reloc_p (r_type)
8040 ? GOT_TLS_GD
8041 : tls_ldm_reloc_p (r_type) ? GOT_TLS_LDM : GOT_TLS_IE);
8042 if (h != NULL)
8043 {
8044 struct mips_elf_link_hash_entry *hmips =
8045 (struct mips_elf_link_hash_entry *) h;
8046 hmips->tls_type |= flag;
8047
8048 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8049 FALSE, flag))
8050 return FALSE;
8051 }
8052 else
8053 {
8054 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
8055
8056 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8057 rel->r_addend,
8058 info, flag))
8059 return FALSE;
8060 }
8061 }
8062 break;
8063
8064 case R_MIPS_32:
8065 case R_MIPS_REL32:
8066 case R_MIPS_64:
8067 /* In VxWorks executables, references to external symbols
8068 are handled using copy relocs or PLT stubs, so there's
8069 no need to add a .rela.dyn entry for this relocation. */
8070 if (can_make_dynamic_p)
8071 {
8072 if (sreloc == NULL)
8073 {
8074 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8075 if (sreloc == NULL)
8076 return FALSE;
8077 }
8078 if (info->shared && h == NULL)
8079 {
8080 /* When creating a shared object, we must copy these
8081 reloc types into the output file as R_MIPS_REL32
8082 relocs. Make room for this reloc in .rel(a).dyn. */
8083 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8084 if (MIPS_ELF_READONLY_SECTION (sec))
8085 /* We tell the dynamic linker that there are
8086 relocations against the text segment. */
8087 info->flags |= DF_TEXTREL;
8088 }
8089 else
8090 {
8091 struct mips_elf_link_hash_entry *hmips;
8092
8093 /* For a shared object, we must copy this relocation
8094 unless the symbol turns out to be undefined and
8095 weak with non-default visibility, in which case
8096 it will be left as zero.
8097
8098 We could elide R_MIPS_REL32 for locally binding symbols
8099 in shared libraries, but do not yet do so.
8100
8101 For an executable, we only need to copy this
8102 reloc if the symbol is defined in a dynamic
8103 object. */
8104 hmips = (struct mips_elf_link_hash_entry *) h;
8105 ++hmips->possibly_dynamic_relocs;
8106 if (MIPS_ELF_READONLY_SECTION (sec))
8107 /* We need it to tell the dynamic linker if there
8108 are relocations against the text segment. */
8109 hmips->readonly_reloc = TRUE;
8110 }
8111 }
8112
8113 if (SGI_COMPAT (abfd))
8114 mips_elf_hash_table (info)->compact_rel_size +=
8115 sizeof (Elf32_External_crinfo);
8116 break;
8117
8118 case R_MIPS_26:
8119 case R_MIPS_GPREL16:
8120 case R_MIPS_LITERAL:
8121 case R_MIPS_GPREL32:
8122 case R_MICROMIPS_26_S1:
8123 case R_MICROMIPS_GPREL16:
8124 case R_MICROMIPS_LITERAL:
8125 case R_MICROMIPS_GPREL7_S2:
8126 if (SGI_COMPAT (abfd))
8127 mips_elf_hash_table (info)->compact_rel_size +=
8128 sizeof (Elf32_External_crinfo);
8129 break;
8130
8131 /* This relocation describes the C++ object vtable hierarchy.
8132 Reconstruct it for later use during GC. */
8133 case R_MIPS_GNU_VTINHERIT:
8134 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8135 return FALSE;
8136 break;
8137
8138 /* This relocation describes which C++ vtable entries are actually
8139 used. Record for later use during GC. */
8140 case R_MIPS_GNU_VTENTRY:
8141 BFD_ASSERT (h != NULL);
8142 if (h != NULL
8143 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8144 return FALSE;
8145 break;
8146
8147 default:
8148 break;
8149 }
8150
8151 /* We must not create a stub for a symbol that has relocations
8152 related to taking the function's address. This doesn't apply to
8153 VxWorks, where CALL relocs refer to a .got.plt entry instead of
8154 a normal .got entry. */
8155 if (!htab->is_vxworks && h != NULL)
8156 switch (r_type)
8157 {
8158 default:
8159 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8160 break;
8161 case R_MIPS16_CALL16:
8162 case R_MIPS_CALL16:
8163 case R_MIPS_CALL_HI16:
8164 case R_MIPS_CALL_LO16:
8165 case R_MIPS_JALR:
8166 case R_MICROMIPS_CALL16:
8167 case R_MICROMIPS_CALL_HI16:
8168 case R_MICROMIPS_CALL_LO16:
8169 case R_MICROMIPS_JALR:
8170 break;
8171 }
8172
8173 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8174 if there is one. We only need to handle global symbols here;
8175 we decide whether to keep or delete stubs for local symbols
8176 when processing the stub's relocations. */
8177 if (h != NULL
8178 && !mips16_call_reloc_p (r_type)
8179 && !section_allows_mips16_refs_p (sec))
8180 {
8181 struct mips_elf_link_hash_entry *mh;
8182
8183 mh = (struct mips_elf_link_hash_entry *) h;
8184 mh->need_fn_stub = TRUE;
8185 }
8186
8187 /* Refuse some position-dependent relocations when creating a
8188 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8189 not PIC, but we can create dynamic relocations and the result
8190 will be fine. Also do not refuse R_MIPS_LO16, which can be
8191 combined with R_MIPS_GOT16. */
8192 if (info->shared)
8193 {
8194 switch (r_type)
8195 {
8196 case R_MIPS16_HI16:
8197 case R_MIPS_HI16:
8198 case R_MIPS_HIGHER:
8199 case R_MIPS_HIGHEST:
8200 case R_MICROMIPS_HI16:
8201 case R_MICROMIPS_HIGHER:
8202 case R_MICROMIPS_HIGHEST:
8203 /* Don't refuse a high part relocation if it's against
8204 no symbol (e.g. part of a compound relocation). */
8205 if (r_symndx == STN_UNDEF)
8206 break;
8207
8208 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8209 and has a special meaning. */
8210 if (!NEWABI_P (abfd) && h != NULL
8211 && strcmp (h->root.root.string, "_gp_disp") == 0)
8212 break;
8213
8214 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
8215 if (is_gott_symbol (info, h))
8216 break;
8217
8218 /* FALLTHROUGH */
8219
8220 case R_MIPS16_26:
8221 case R_MIPS_26:
8222 case R_MICROMIPS_26_S1:
8223 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8224 (*_bfd_error_handler)
8225 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8226 abfd, howto->name,
8227 (h) ? h->root.root.string : "a local symbol");
8228 bfd_set_error (bfd_error_bad_value);
8229 return FALSE;
8230 default:
8231 break;
8232 }
8233 }
8234 }
8235
8236 return TRUE;
8237 }
8238 \f
8239 bfd_boolean
8240 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8241 struct bfd_link_info *link_info,
8242 bfd_boolean *again)
8243 {
8244 Elf_Internal_Rela *internal_relocs;
8245 Elf_Internal_Rela *irel, *irelend;
8246 Elf_Internal_Shdr *symtab_hdr;
8247 bfd_byte *contents = NULL;
8248 size_t extsymoff;
8249 bfd_boolean changed_contents = FALSE;
8250 bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8251 Elf_Internal_Sym *isymbuf = NULL;
8252
8253 /* We are not currently changing any sizes, so only one pass. */
8254 *again = FALSE;
8255
8256 if (link_info->relocatable)
8257 return TRUE;
8258
8259 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8260 link_info->keep_memory);
8261 if (internal_relocs == NULL)
8262 return TRUE;
8263
8264 irelend = internal_relocs + sec->reloc_count
8265 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8266 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8267 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8268
8269 for (irel = internal_relocs; irel < irelend; irel++)
8270 {
8271 bfd_vma symval;
8272 bfd_signed_vma sym_offset;
8273 unsigned int r_type;
8274 unsigned long r_symndx;
8275 asection *sym_sec;
8276 unsigned long instruction;
8277
8278 /* Turn jalr into bgezal, and jr into beq, if they're marked
8279 with a JALR relocation, that indicate where they jump to.
8280 This saves some pipeline bubbles. */
8281 r_type = ELF_R_TYPE (abfd, irel->r_info);
8282 if (r_type != R_MIPS_JALR)
8283 continue;
8284
8285 r_symndx = ELF_R_SYM (abfd, irel->r_info);
8286 /* Compute the address of the jump target. */
8287 if (r_symndx >= extsymoff)
8288 {
8289 struct mips_elf_link_hash_entry *h
8290 = ((struct mips_elf_link_hash_entry *)
8291 elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8292
8293 while (h->root.root.type == bfd_link_hash_indirect
8294 || h->root.root.type == bfd_link_hash_warning)
8295 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8296
8297 /* If a symbol is undefined, or if it may be overridden,
8298 skip it. */
8299 if (! ((h->root.root.type == bfd_link_hash_defined
8300 || h->root.root.type == bfd_link_hash_defweak)
8301 && h->root.root.u.def.section)
8302 || (link_info->shared && ! link_info->symbolic
8303 && !h->root.forced_local))
8304 continue;
8305
8306 sym_sec = h->root.root.u.def.section;
8307 if (sym_sec->output_section)
8308 symval = (h->root.root.u.def.value
8309 + sym_sec->output_section->vma
8310 + sym_sec->output_offset);
8311 else
8312 symval = h->root.root.u.def.value;
8313 }
8314 else
8315 {
8316 Elf_Internal_Sym *isym;
8317
8318 /* Read this BFD's symbols if we haven't done so already. */
8319 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8320 {
8321 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8322 if (isymbuf == NULL)
8323 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8324 symtab_hdr->sh_info, 0,
8325 NULL, NULL, NULL);
8326 if (isymbuf == NULL)
8327 goto relax_return;
8328 }
8329
8330 isym = isymbuf + r_symndx;
8331 if (isym->st_shndx == SHN_UNDEF)
8332 continue;
8333 else if (isym->st_shndx == SHN_ABS)
8334 sym_sec = bfd_abs_section_ptr;
8335 else if (isym->st_shndx == SHN_COMMON)
8336 sym_sec = bfd_com_section_ptr;
8337 else
8338 sym_sec
8339 = bfd_section_from_elf_index (abfd, isym->st_shndx);
8340 symval = isym->st_value
8341 + sym_sec->output_section->vma
8342 + sym_sec->output_offset;
8343 }
8344
8345 /* Compute branch offset, from delay slot of the jump to the
8346 branch target. */
8347 sym_offset = (symval + irel->r_addend)
8348 - (sec_start + irel->r_offset + 4);
8349
8350 /* Branch offset must be properly aligned. */
8351 if ((sym_offset & 3) != 0)
8352 continue;
8353
8354 sym_offset >>= 2;
8355
8356 /* Check that it's in range. */
8357 if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8358 continue;
8359
8360 /* Get the section contents if we haven't done so already. */
8361 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8362 goto relax_return;
8363
8364 instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8365
8366 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */
8367 if ((instruction & 0xfc1fffff) == 0x0000f809)
8368 instruction = 0x04110000;
8369 /* If it was jr <reg>, turn it into b <target>. */
8370 else if ((instruction & 0xfc1fffff) == 0x00000008)
8371 instruction = 0x10000000;
8372 else
8373 continue;
8374
8375 instruction |= (sym_offset & 0xffff);
8376 bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8377 changed_contents = TRUE;
8378 }
8379
8380 if (contents != NULL
8381 && elf_section_data (sec)->this_hdr.contents != contents)
8382 {
8383 if (!changed_contents && !link_info->keep_memory)
8384 free (contents);
8385 else
8386 {
8387 /* Cache the section contents for elf_link_input_bfd. */
8388 elf_section_data (sec)->this_hdr.contents = contents;
8389 }
8390 }
8391 return TRUE;
8392
8393 relax_return:
8394 if (contents != NULL
8395 && elf_section_data (sec)->this_hdr.contents != contents)
8396 free (contents);
8397 return FALSE;
8398 }
8399 \f
8400 /* Allocate space for global sym dynamic relocs. */
8401
8402 static bfd_boolean
8403 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8404 {
8405 struct bfd_link_info *info = inf;
8406 bfd *dynobj;
8407 struct mips_elf_link_hash_entry *hmips;
8408 struct mips_elf_link_hash_table *htab;
8409
8410 htab = mips_elf_hash_table (info);
8411 BFD_ASSERT (htab != NULL);
8412
8413 dynobj = elf_hash_table (info)->dynobj;
8414 hmips = (struct mips_elf_link_hash_entry *) h;
8415
8416 /* VxWorks executables are handled elsewhere; we only need to
8417 allocate relocations in shared objects. */
8418 if (htab->is_vxworks && !info->shared)
8419 return TRUE;
8420
8421 /* Ignore indirect symbols. All relocations against such symbols
8422 will be redirected to the target symbol. */
8423 if (h->root.type == bfd_link_hash_indirect)
8424 return TRUE;
8425
8426 /* If this symbol is defined in a dynamic object, or we are creating
8427 a shared library, we will need to copy any R_MIPS_32 or
8428 R_MIPS_REL32 relocs against it into the output file. */
8429 if (! info->relocatable
8430 && hmips->possibly_dynamic_relocs != 0
8431 && (h->root.type == bfd_link_hash_defweak
8432 || !h->def_regular
8433 || info->shared))
8434 {
8435 bfd_boolean do_copy = TRUE;
8436
8437 if (h->root.type == bfd_link_hash_undefweak)
8438 {
8439 /* Do not copy relocations for undefined weak symbols with
8440 non-default visibility. */
8441 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8442 do_copy = FALSE;
8443
8444 /* Make sure undefined weak symbols are output as a dynamic
8445 symbol in PIEs. */
8446 else if (h->dynindx == -1 && !h->forced_local)
8447 {
8448 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8449 return FALSE;
8450 }
8451 }
8452
8453 if (do_copy)
8454 {
8455 /* Even though we don't directly need a GOT entry for this symbol,
8456 the SVR4 psABI requires it to have a dynamic symbol table
8457 index greater that DT_MIPS_GOTSYM if there are dynamic
8458 relocations against it.
8459
8460 VxWorks does not enforce the same mapping between the GOT
8461 and the symbol table, so the same requirement does not
8462 apply there. */
8463 if (!htab->is_vxworks)
8464 {
8465 if (hmips->global_got_area > GGA_RELOC_ONLY)
8466 hmips->global_got_area = GGA_RELOC_ONLY;
8467 hmips->got_only_for_calls = FALSE;
8468 }
8469
8470 mips_elf_allocate_dynamic_relocations
8471 (dynobj, info, hmips->possibly_dynamic_relocs);
8472 if (hmips->readonly_reloc)
8473 /* We tell the dynamic linker that there are relocations
8474 against the text segment. */
8475 info->flags |= DF_TEXTREL;
8476 }
8477 }
8478
8479 return TRUE;
8480 }
8481
8482 /* Adjust a symbol defined by a dynamic object and referenced by a
8483 regular object. The current definition is in some section of the
8484 dynamic object, but we're not including those sections. We have to
8485 change the definition to something the rest of the link can
8486 understand. */
8487
8488 bfd_boolean
8489 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8490 struct elf_link_hash_entry *h)
8491 {
8492 bfd *dynobj;
8493 struct mips_elf_link_hash_entry *hmips;
8494 struct mips_elf_link_hash_table *htab;
8495
8496 htab = mips_elf_hash_table (info);
8497 BFD_ASSERT (htab != NULL);
8498
8499 dynobj = elf_hash_table (info)->dynobj;
8500 hmips = (struct mips_elf_link_hash_entry *) h;
8501
8502 /* Make sure we know what is going on here. */
8503 BFD_ASSERT (dynobj != NULL
8504 && (h->needs_plt
8505 || h->u.weakdef != NULL
8506 || (h->def_dynamic
8507 && h->ref_regular
8508 && !h->def_regular)));
8509
8510 hmips = (struct mips_elf_link_hash_entry *) h;
8511
8512 /* If there are call relocations against an externally-defined symbol,
8513 see whether we can create a MIPS lazy-binding stub for it. We can
8514 only do this if all references to the function are through call
8515 relocations, and in that case, the traditional lazy-binding stubs
8516 are much more efficient than PLT entries.
8517
8518 Traditional stubs are only available on SVR4 psABI-based systems;
8519 VxWorks always uses PLTs instead. */
8520 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8521 {
8522 if (! elf_hash_table (info)->dynamic_sections_created)
8523 return TRUE;
8524
8525 /* If this symbol is not defined in a regular file, then set
8526 the symbol to the stub location. This is required to make
8527 function pointers compare as equal between the normal
8528 executable and the shared library. */
8529 if (!h->def_regular)
8530 {
8531 hmips->needs_lazy_stub = TRUE;
8532 htab->lazy_stub_count++;
8533 return TRUE;
8534 }
8535 }
8536 /* As above, VxWorks requires PLT entries for externally-defined
8537 functions that are only accessed through call relocations.
8538
8539 Both VxWorks and non-VxWorks targets also need PLT entries if there
8540 are static-only relocations against an externally-defined function.
8541 This can technically occur for shared libraries if there are
8542 branches to the symbol, although it is unlikely that this will be
8543 used in practice due to the short ranges involved. It can occur
8544 for any relative or absolute relocation in executables; in that
8545 case, the PLT entry becomes the function's canonical address. */
8546 else if (((h->needs_plt && !hmips->no_fn_stub)
8547 || (h->type == STT_FUNC && hmips->has_static_relocs))
8548 && htab->use_plts_and_copy_relocs
8549 && !SYMBOL_CALLS_LOCAL (info, h)
8550 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8551 && h->root.type == bfd_link_hash_undefweak))
8552 {
8553 /* If this is the first symbol to need a PLT entry, allocate room
8554 for the header. */
8555 if (htab->splt->size == 0)
8556 {
8557 BFD_ASSERT (htab->sgotplt->size == 0);
8558
8559 /* If we're using the PLT additions to the psABI, each PLT
8560 entry is 16 bytes and the PLT0 entry is 32 bytes.
8561 Encourage better cache usage by aligning. We do this
8562 lazily to avoid pessimizing traditional objects. */
8563 if (!htab->is_vxworks
8564 && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8565 return FALSE;
8566
8567 /* Make sure that .got.plt is word-aligned. We do this lazily
8568 for the same reason as above. */
8569 if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8570 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8571 return FALSE;
8572
8573 htab->splt->size += htab->plt_header_size;
8574
8575 /* On non-VxWorks targets, the first two entries in .got.plt
8576 are reserved. */
8577 if (!htab->is_vxworks)
8578 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8579
8580 /* On VxWorks, also allocate room for the header's
8581 .rela.plt.unloaded entries. */
8582 if (htab->is_vxworks && !info->shared)
8583 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8584 }
8585
8586 /* Assign the next .plt entry to this symbol. */
8587 h->plt.offset = htab->splt->size;
8588 htab->splt->size += htab->plt_entry_size;
8589
8590 /* If the output file has no definition of the symbol, set the
8591 symbol's value to the address of the stub. */
8592 if (!info->shared && !h->def_regular)
8593 {
8594 h->root.u.def.section = htab->splt;
8595 h->root.u.def.value = h->plt.offset;
8596 /* For VxWorks, point at the PLT load stub rather than the
8597 lazy resolution stub; this stub will become the canonical
8598 function address. */
8599 if (htab->is_vxworks)
8600 h->root.u.def.value += 8;
8601 }
8602
8603 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8604 relocation. */
8605 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8606 htab->srelplt->size += (htab->is_vxworks
8607 ? MIPS_ELF_RELA_SIZE (dynobj)
8608 : MIPS_ELF_REL_SIZE (dynobj));
8609
8610 /* Make room for the .rela.plt.unloaded relocations. */
8611 if (htab->is_vxworks && !info->shared)
8612 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8613
8614 /* All relocations against this symbol that could have been made
8615 dynamic will now refer to the PLT entry instead. */
8616 hmips->possibly_dynamic_relocs = 0;
8617
8618 return TRUE;
8619 }
8620
8621 /* If this is a weak symbol, and there is a real definition, the
8622 processor independent code will have arranged for us to see the
8623 real definition first, and we can just use the same value. */
8624 if (h->u.weakdef != NULL)
8625 {
8626 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8627 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8628 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8629 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8630 return TRUE;
8631 }
8632
8633 /* Otherwise, there is nothing further to do for symbols defined
8634 in regular objects. */
8635 if (h->def_regular)
8636 return TRUE;
8637
8638 /* There's also nothing more to do if we'll convert all relocations
8639 against this symbol into dynamic relocations. */
8640 if (!hmips->has_static_relocs)
8641 return TRUE;
8642
8643 /* We're now relying on copy relocations. Complain if we have
8644 some that we can't convert. */
8645 if (!htab->use_plts_and_copy_relocs || info->shared)
8646 {
8647 (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8648 "dynamic symbol %s"),
8649 h->root.root.string);
8650 bfd_set_error (bfd_error_bad_value);
8651 return FALSE;
8652 }
8653
8654 /* We must allocate the symbol in our .dynbss section, which will
8655 become part of the .bss section of the executable. There will be
8656 an entry for this symbol in the .dynsym section. The dynamic
8657 object will contain position independent code, so all references
8658 from the dynamic object to this symbol will go through the global
8659 offset table. The dynamic linker will use the .dynsym entry to
8660 determine the address it must put in the global offset table, so
8661 both the dynamic object and the regular object will refer to the
8662 same memory location for the variable. */
8663
8664 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8665 {
8666 if (htab->is_vxworks)
8667 htab->srelbss->size += sizeof (Elf32_External_Rela);
8668 else
8669 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8670 h->needs_copy = 1;
8671 }
8672
8673 /* All relocations against this symbol that could have been made
8674 dynamic will now refer to the local copy instead. */
8675 hmips->possibly_dynamic_relocs = 0;
8676
8677 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8678 }
8679 \f
8680 /* This function is called after all the input files have been read,
8681 and the input sections have been assigned to output sections. We
8682 check for any mips16 stub sections that we can discard. */
8683
8684 bfd_boolean
8685 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8686 struct bfd_link_info *info)
8687 {
8688 asection *ri;
8689 struct mips_elf_link_hash_table *htab;
8690 struct mips_htab_traverse_info hti;
8691
8692 htab = mips_elf_hash_table (info);
8693 BFD_ASSERT (htab != NULL);
8694
8695 /* The .reginfo section has a fixed size. */
8696 ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8697 if (ri != NULL)
8698 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8699
8700 hti.info = info;
8701 hti.output_bfd = output_bfd;
8702 hti.error = FALSE;
8703 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8704 mips_elf_check_symbols, &hti);
8705 if (hti.error)
8706 return FALSE;
8707
8708 return TRUE;
8709 }
8710
8711 /* If the link uses a GOT, lay it out and work out its size. */
8712
8713 static bfd_boolean
8714 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8715 {
8716 bfd *dynobj;
8717 asection *s;
8718 struct mips_got_info *g;
8719 bfd_size_type loadable_size = 0;
8720 bfd_size_type page_gotno;
8721 bfd *sub;
8722 struct mips_elf_count_tls_arg count_tls_arg;
8723 struct mips_elf_link_hash_table *htab;
8724
8725 htab = mips_elf_hash_table (info);
8726 BFD_ASSERT (htab != NULL);
8727
8728 s = htab->sgot;
8729 if (s == NULL)
8730 return TRUE;
8731
8732 dynobj = elf_hash_table (info)->dynobj;
8733 g = htab->got_info;
8734
8735 /* Allocate room for the reserved entries. VxWorks always reserves
8736 3 entries; other objects only reserve 2 entries. */
8737 BFD_ASSERT (g->assigned_gotno == 0);
8738 if (htab->is_vxworks)
8739 htab->reserved_gotno = 3;
8740 else
8741 htab->reserved_gotno = 2;
8742 g->local_gotno += htab->reserved_gotno;
8743 g->assigned_gotno = htab->reserved_gotno;
8744
8745 /* Replace entries for indirect and warning symbols with entries for
8746 the target symbol. */
8747 if (!mips_elf_resolve_final_got_entries (g))
8748 return FALSE;
8749
8750 /* Count the number of GOT symbols. */
8751 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8752
8753 /* Calculate the total loadable size of the output. That
8754 will give us the maximum number of GOT_PAGE entries
8755 required. */
8756 for (sub = info->input_bfds; sub; sub = sub->link_next)
8757 {
8758 asection *subsection;
8759
8760 for (subsection = sub->sections;
8761 subsection;
8762 subsection = subsection->next)
8763 {
8764 if ((subsection->flags & SEC_ALLOC) == 0)
8765 continue;
8766 loadable_size += ((subsection->size + 0xf)
8767 &~ (bfd_size_type) 0xf);
8768 }
8769 }
8770
8771 if (htab->is_vxworks)
8772 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8773 relocations against local symbols evaluate to "G", and the EABI does
8774 not include R_MIPS_GOT_PAGE. */
8775 page_gotno = 0;
8776 else
8777 /* Assume there are two loadable segments consisting of contiguous
8778 sections. Is 5 enough? */
8779 page_gotno = (loadable_size >> 16) + 5;
8780
8781 /* Choose the smaller of the two estimates; both are intended to be
8782 conservative. */
8783 if (page_gotno > g->page_gotno)
8784 page_gotno = g->page_gotno;
8785
8786 g->local_gotno += page_gotno;
8787 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8788 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8789
8790 /* We need to calculate tls_gotno for global symbols at this point
8791 instead of building it up earlier, to avoid doublecounting
8792 entries for one global symbol from multiple input files. */
8793 count_tls_arg.info = info;
8794 count_tls_arg.needed = 0;
8795 elf_link_hash_traverse (elf_hash_table (info),
8796 mips_elf_count_global_tls_entries,
8797 &count_tls_arg);
8798 g->tls_gotno += count_tls_arg.needed;
8799 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8800
8801 /* VxWorks does not support multiple GOTs. It initializes $gp to
8802 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8803 dynamic loader. */
8804 if (htab->is_vxworks)
8805 {
8806 /* VxWorks executables do not need a GOT. */
8807 if (info->shared)
8808 {
8809 /* Each VxWorks GOT entry needs an explicit relocation. */
8810 unsigned int count;
8811
8812 count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8813 if (count)
8814 mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8815 }
8816 }
8817 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8818 {
8819 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8820 return FALSE;
8821 }
8822 else
8823 {
8824 struct mips_elf_count_tls_arg arg;
8825
8826 /* Set up TLS entries. */
8827 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8828 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8829
8830 /* Allocate room for the TLS relocations. */
8831 arg.info = info;
8832 arg.needed = 0;
8833 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8834 elf_link_hash_traverse (elf_hash_table (info),
8835 mips_elf_count_global_tls_relocs,
8836 &arg);
8837 if (arg.needed)
8838 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8839 }
8840
8841 return TRUE;
8842 }
8843
8844 /* Estimate the size of the .MIPS.stubs section. */
8845
8846 static void
8847 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8848 {
8849 struct mips_elf_link_hash_table *htab;
8850 bfd_size_type dynsymcount;
8851
8852 htab = mips_elf_hash_table (info);
8853 BFD_ASSERT (htab != NULL);
8854
8855 if (htab->lazy_stub_count == 0)
8856 return;
8857
8858 /* IRIX rld assumes that a function stub isn't at the end of the .text
8859 section, so add a dummy entry to the end. */
8860 htab->lazy_stub_count++;
8861
8862 /* Get a worst-case estimate of the number of dynamic symbols needed.
8863 At this point, dynsymcount does not account for section symbols
8864 and count_section_dynsyms may overestimate the number that will
8865 be needed. */
8866 dynsymcount = (elf_hash_table (info)->dynsymcount
8867 + count_section_dynsyms (output_bfd, info));
8868
8869 /* Determine the size of one stub entry. */
8870 htab->function_stub_size = (dynsymcount > 0x10000
8871 ? MIPS_FUNCTION_STUB_BIG_SIZE
8872 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8873
8874 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8875 }
8876
8877 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8878 MIPS hash table. If H needs a traditional MIPS lazy-binding stub,
8879 allocate an entry in the stubs section. */
8880
8881 static bfd_boolean
8882 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8883 {
8884 struct mips_elf_link_hash_table *htab;
8885
8886 htab = (struct mips_elf_link_hash_table *) data;
8887 if (h->needs_lazy_stub)
8888 {
8889 h->root.root.u.def.section = htab->sstubs;
8890 h->root.root.u.def.value = htab->sstubs->size;
8891 h->root.plt.offset = htab->sstubs->size;
8892 htab->sstubs->size += htab->function_stub_size;
8893 }
8894 return TRUE;
8895 }
8896
8897 /* Allocate offsets in the stubs section to each symbol that needs one.
8898 Set the final size of the .MIPS.stub section. */
8899
8900 static void
8901 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8902 {
8903 struct mips_elf_link_hash_table *htab;
8904
8905 htab = mips_elf_hash_table (info);
8906 BFD_ASSERT (htab != NULL);
8907
8908 if (htab->lazy_stub_count == 0)
8909 return;
8910
8911 htab->sstubs->size = 0;
8912 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8913 htab->sstubs->size += htab->function_stub_size;
8914 BFD_ASSERT (htab->sstubs->size
8915 == htab->lazy_stub_count * htab->function_stub_size);
8916 }
8917
8918 /* Set the sizes of the dynamic sections. */
8919
8920 bfd_boolean
8921 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8922 struct bfd_link_info *info)
8923 {
8924 bfd *dynobj;
8925 asection *s, *sreldyn;
8926 bfd_boolean reltext;
8927 struct mips_elf_link_hash_table *htab;
8928
8929 htab = mips_elf_hash_table (info);
8930 BFD_ASSERT (htab != NULL);
8931 dynobj = elf_hash_table (info)->dynobj;
8932 BFD_ASSERT (dynobj != NULL);
8933
8934 if (elf_hash_table (info)->dynamic_sections_created)
8935 {
8936 /* Set the contents of the .interp section to the interpreter. */
8937 if (info->executable)
8938 {
8939 s = bfd_get_section_by_name (dynobj, ".interp");
8940 BFD_ASSERT (s != NULL);
8941 s->size
8942 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8943 s->contents
8944 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8945 }
8946
8947 /* Create a symbol for the PLT, if we know that we are using it. */
8948 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8949 {
8950 struct elf_link_hash_entry *h;
8951
8952 BFD_ASSERT (htab->use_plts_and_copy_relocs);
8953
8954 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8955 "_PROCEDURE_LINKAGE_TABLE_");
8956 htab->root.hplt = h;
8957 if (h == NULL)
8958 return FALSE;
8959 h->type = STT_FUNC;
8960 }
8961 }
8962
8963 /* Allocate space for global sym dynamic relocs. */
8964 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8965
8966 mips_elf_estimate_stub_size (output_bfd, info);
8967
8968 if (!mips_elf_lay_out_got (output_bfd, info))
8969 return FALSE;
8970
8971 mips_elf_lay_out_lazy_stubs (info);
8972
8973 /* The check_relocs and adjust_dynamic_symbol entry points have
8974 determined the sizes of the various dynamic sections. Allocate
8975 memory for them. */
8976 reltext = FALSE;
8977 for (s = dynobj->sections; s != NULL; s = s->next)
8978 {
8979 const char *name;
8980
8981 /* It's OK to base decisions on the section name, because none
8982 of the dynobj section names depend upon the input files. */
8983 name = bfd_get_section_name (dynobj, s);
8984
8985 if ((s->flags & SEC_LINKER_CREATED) == 0)
8986 continue;
8987
8988 if (CONST_STRNEQ (name, ".rel"))
8989 {
8990 if (s->size != 0)
8991 {
8992 const char *outname;
8993 asection *target;
8994
8995 /* If this relocation section applies to a read only
8996 section, then we probably need a DT_TEXTREL entry.
8997 If the relocation section is .rel(a).dyn, we always
8998 assert a DT_TEXTREL entry rather than testing whether
8999 there exists a relocation to a read only section or
9000 not. */
9001 outname = bfd_get_section_name (output_bfd,
9002 s->output_section);
9003 target = bfd_get_section_by_name (output_bfd, outname + 4);
9004 if ((target != NULL
9005 && (target->flags & SEC_READONLY) != 0
9006 && (target->flags & SEC_ALLOC) != 0)
9007 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9008 reltext = TRUE;
9009
9010 /* We use the reloc_count field as a counter if we need
9011 to copy relocs into the output file. */
9012 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9013 s->reloc_count = 0;
9014
9015 /* If combreloc is enabled, elf_link_sort_relocs() will
9016 sort relocations, but in a different way than we do,
9017 and before we're done creating relocations. Also, it
9018 will move them around between input sections'
9019 relocation's contents, so our sorting would be
9020 broken, so don't let it run. */
9021 info->combreloc = 0;
9022 }
9023 }
9024 else if (! info->shared
9025 && ! mips_elf_hash_table (info)->use_rld_obj_head
9026 && CONST_STRNEQ (name, ".rld_map"))
9027 {
9028 /* We add a room for __rld_map. It will be filled in by the
9029 rtld to contain a pointer to the _r_debug structure. */
9030 s->size += 4;
9031 }
9032 else if (SGI_COMPAT (output_bfd)
9033 && CONST_STRNEQ (name, ".compact_rel"))
9034 s->size += mips_elf_hash_table (info)->compact_rel_size;
9035 else if (s == htab->splt)
9036 {
9037 /* If the last PLT entry has a branch delay slot, allocate
9038 room for an extra nop to fill the delay slot. This is
9039 for CPUs without load interlocking. */
9040 if (! LOAD_INTERLOCKS_P (output_bfd)
9041 && ! htab->is_vxworks && s->size > 0)
9042 s->size += 4;
9043 }
9044 else if (! CONST_STRNEQ (name, ".init")
9045 && s != htab->sgot
9046 && s != htab->sgotplt
9047 && s != htab->sstubs
9048 && s != htab->sdynbss)
9049 {
9050 /* It's not one of our sections, so don't allocate space. */
9051 continue;
9052 }
9053
9054 if (s->size == 0)
9055 {
9056 s->flags |= SEC_EXCLUDE;
9057 continue;
9058 }
9059
9060 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9061 continue;
9062
9063 /* Allocate memory for the section contents. */
9064 s->contents = bfd_zalloc (dynobj, s->size);
9065 if (s->contents == NULL)
9066 {
9067 bfd_set_error (bfd_error_no_memory);
9068 return FALSE;
9069 }
9070 }
9071
9072 if (elf_hash_table (info)->dynamic_sections_created)
9073 {
9074 /* Add some entries to the .dynamic section. We fill in the
9075 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9076 must add the entries now so that we get the correct size for
9077 the .dynamic section. */
9078
9079 /* SGI object has the equivalence of DT_DEBUG in the
9080 DT_MIPS_RLD_MAP entry. This must come first because glibc
9081 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
9082 looks at the first one it sees. */
9083 if (!info->shared
9084 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9085 return FALSE;
9086
9087 /* The DT_DEBUG entry may be filled in by the dynamic linker and
9088 used by the debugger. */
9089 if (info->executable
9090 && !SGI_COMPAT (output_bfd)
9091 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9092 return FALSE;
9093
9094 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9095 info->flags |= DF_TEXTREL;
9096
9097 if ((info->flags & DF_TEXTREL) != 0)
9098 {
9099 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9100 return FALSE;
9101
9102 /* Clear the DF_TEXTREL flag. It will be set again if we
9103 write out an actual text relocation; we may not, because
9104 at this point we do not know whether e.g. any .eh_frame
9105 absolute relocations have been converted to PC-relative. */
9106 info->flags &= ~DF_TEXTREL;
9107 }
9108
9109 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9110 return FALSE;
9111
9112 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9113 if (htab->is_vxworks)
9114 {
9115 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
9116 use any of the DT_MIPS_* tags. */
9117 if (sreldyn && sreldyn->size > 0)
9118 {
9119 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9120 return FALSE;
9121
9122 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9123 return FALSE;
9124
9125 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9126 return FALSE;
9127 }
9128 }
9129 else
9130 {
9131 if (sreldyn && sreldyn->size > 0)
9132 {
9133 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9134 return FALSE;
9135
9136 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9137 return FALSE;
9138
9139 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9140 return FALSE;
9141 }
9142
9143 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9144 return FALSE;
9145
9146 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9147 return FALSE;
9148
9149 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9150 return FALSE;
9151
9152 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9153 return FALSE;
9154
9155 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9156 return FALSE;
9157
9158 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9159 return FALSE;
9160
9161 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9162 return FALSE;
9163
9164 if (IRIX_COMPAT (dynobj) == ict_irix5
9165 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9166 return FALSE;
9167
9168 if (IRIX_COMPAT (dynobj) == ict_irix6
9169 && (bfd_get_section_by_name
9170 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9171 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9172 return FALSE;
9173 }
9174 if (htab->splt->size > 0)
9175 {
9176 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9177 return FALSE;
9178
9179 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9180 return FALSE;
9181
9182 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9183 return FALSE;
9184
9185 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9186 return FALSE;
9187 }
9188 if (htab->is_vxworks
9189 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9190 return FALSE;
9191 }
9192
9193 return TRUE;
9194 }
9195 \f
9196 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9197 Adjust its R_ADDEND field so that it is correct for the output file.
9198 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9199 and sections respectively; both use symbol indexes. */
9200
9201 static void
9202 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9203 bfd *input_bfd, Elf_Internal_Sym *local_syms,
9204 asection **local_sections, Elf_Internal_Rela *rel)
9205 {
9206 unsigned int r_type, r_symndx;
9207 Elf_Internal_Sym *sym;
9208 asection *sec;
9209
9210 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9211 {
9212 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9213 if (gprel16_reloc_p (r_type)
9214 || r_type == R_MIPS_GPREL32
9215 || literal_reloc_p (r_type))
9216 {
9217 rel->r_addend += _bfd_get_gp_value (input_bfd);
9218 rel->r_addend -= _bfd_get_gp_value (output_bfd);
9219 }
9220
9221 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9222 sym = local_syms + r_symndx;
9223
9224 /* Adjust REL's addend to account for section merging. */
9225 if (!info->relocatable)
9226 {
9227 sec = local_sections[r_symndx];
9228 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9229 }
9230
9231 /* This would normally be done by the rela_normal code in elflink.c. */
9232 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9233 rel->r_addend += local_sections[r_symndx]->output_offset;
9234 }
9235 }
9236
9237 /* Relocate a MIPS ELF section. */
9238
9239 bfd_boolean
9240 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9241 bfd *input_bfd, asection *input_section,
9242 bfd_byte *contents, Elf_Internal_Rela *relocs,
9243 Elf_Internal_Sym *local_syms,
9244 asection **local_sections)
9245 {
9246 Elf_Internal_Rela *rel;
9247 const Elf_Internal_Rela *relend;
9248 bfd_vma addend = 0;
9249 bfd_boolean use_saved_addend_p = FALSE;
9250 const struct elf_backend_data *bed;
9251
9252 bed = get_elf_backend_data (output_bfd);
9253 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9254 for (rel = relocs; rel < relend; ++rel)
9255 {
9256 const char *name;
9257 bfd_vma value = 0;
9258 reloc_howto_type *howto;
9259 bfd_boolean cross_mode_jump_p;
9260 /* TRUE if the relocation is a RELA relocation, rather than a
9261 REL relocation. */
9262 bfd_boolean rela_relocation_p = TRUE;
9263 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9264 const char *msg;
9265 unsigned long r_symndx;
9266 asection *sec;
9267 Elf_Internal_Shdr *symtab_hdr;
9268 struct elf_link_hash_entry *h;
9269 bfd_boolean rel_reloc;
9270
9271 rel_reloc = (NEWABI_P (input_bfd)
9272 && mips_elf_rel_relocation_p (input_bfd, input_section,
9273 relocs, rel));
9274 /* Find the relocation howto for this relocation. */
9275 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9276
9277 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9278 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9279 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9280 {
9281 sec = local_sections[r_symndx];
9282 h = NULL;
9283 }
9284 else
9285 {
9286 unsigned long extsymoff;
9287
9288 extsymoff = 0;
9289 if (!elf_bad_symtab (input_bfd))
9290 extsymoff = symtab_hdr->sh_info;
9291 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9292 while (h->root.type == bfd_link_hash_indirect
9293 || h->root.type == bfd_link_hash_warning)
9294 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9295
9296 sec = NULL;
9297 if (h->root.type == bfd_link_hash_defined
9298 || h->root.type == bfd_link_hash_defweak)
9299 sec = h->root.u.def.section;
9300 }
9301
9302 if (sec != NULL && elf_discarded_section (sec))
9303 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9304 rel, relend, howto, contents);
9305
9306 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9307 {
9308 /* Some 32-bit code uses R_MIPS_64. In particular, people use
9309 64-bit code, but make sure all their addresses are in the
9310 lowermost or uppermost 32-bit section of the 64-bit address
9311 space. Thus, when they use an R_MIPS_64 they mean what is
9312 usually meant by R_MIPS_32, with the exception that the
9313 stored value is sign-extended to 64 bits. */
9314 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9315
9316 /* On big-endian systems, we need to lie about the position
9317 of the reloc. */
9318 if (bfd_big_endian (input_bfd))
9319 rel->r_offset += 4;
9320 }
9321
9322 if (!use_saved_addend_p)
9323 {
9324 /* If these relocations were originally of the REL variety,
9325 we must pull the addend out of the field that will be
9326 relocated. Otherwise, we simply use the contents of the
9327 RELA relocation. */
9328 if (mips_elf_rel_relocation_p (input_bfd, input_section,
9329 relocs, rel))
9330 {
9331 rela_relocation_p = FALSE;
9332 addend = mips_elf_read_rel_addend (input_bfd, rel,
9333 howto, contents);
9334 if (hi16_reloc_p (r_type)
9335 || (got16_reloc_p (r_type)
9336 && mips_elf_local_relocation_p (input_bfd, rel,
9337 local_sections)))
9338 {
9339 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9340 contents, &addend))
9341 {
9342 if (h)
9343 name = h->root.root.string;
9344 else
9345 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9346 local_syms + r_symndx,
9347 sec);
9348 (*_bfd_error_handler)
9349 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9350 input_bfd, input_section, name, howto->name,
9351 rel->r_offset);
9352 }
9353 }
9354 else
9355 addend <<= howto->rightshift;
9356 }
9357 else
9358 addend = rel->r_addend;
9359 mips_elf_adjust_addend (output_bfd, info, input_bfd,
9360 local_syms, local_sections, rel);
9361 }
9362
9363 if (info->relocatable)
9364 {
9365 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9366 && bfd_big_endian (input_bfd))
9367 rel->r_offset -= 4;
9368
9369 if (!rela_relocation_p && rel->r_addend)
9370 {
9371 addend += rel->r_addend;
9372 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9373 addend = mips_elf_high (addend);
9374 else if (r_type == R_MIPS_HIGHER)
9375 addend = mips_elf_higher (addend);
9376 else if (r_type == R_MIPS_HIGHEST)
9377 addend = mips_elf_highest (addend);
9378 else
9379 addend >>= howto->rightshift;
9380
9381 /* We use the source mask, rather than the destination
9382 mask because the place to which we are writing will be
9383 source of the addend in the final link. */
9384 addend &= howto->src_mask;
9385
9386 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9387 /* See the comment above about using R_MIPS_64 in the 32-bit
9388 ABI. Here, we need to update the addend. It would be
9389 possible to get away with just using the R_MIPS_32 reloc
9390 but for endianness. */
9391 {
9392 bfd_vma sign_bits;
9393 bfd_vma low_bits;
9394 bfd_vma high_bits;
9395
9396 if (addend & ((bfd_vma) 1 << 31))
9397 #ifdef BFD64
9398 sign_bits = ((bfd_vma) 1 << 32) - 1;
9399 #else
9400 sign_bits = -1;
9401 #endif
9402 else
9403 sign_bits = 0;
9404
9405 /* If we don't know that we have a 64-bit type,
9406 do two separate stores. */
9407 if (bfd_big_endian (input_bfd))
9408 {
9409 /* Store the sign-bits (which are most significant)
9410 first. */
9411 low_bits = sign_bits;
9412 high_bits = addend;
9413 }
9414 else
9415 {
9416 low_bits = addend;
9417 high_bits = sign_bits;
9418 }
9419 bfd_put_32 (input_bfd, low_bits,
9420 contents + rel->r_offset);
9421 bfd_put_32 (input_bfd, high_bits,
9422 contents + rel->r_offset + 4);
9423 continue;
9424 }
9425
9426 if (! mips_elf_perform_relocation (info, howto, rel, addend,
9427 input_bfd, input_section,
9428 contents, FALSE))
9429 return FALSE;
9430 }
9431
9432 /* Go on to the next relocation. */
9433 continue;
9434 }
9435
9436 /* In the N32 and 64-bit ABIs there may be multiple consecutive
9437 relocations for the same offset. In that case we are
9438 supposed to treat the output of each relocation as the addend
9439 for the next. */
9440 if (rel + 1 < relend
9441 && rel->r_offset == rel[1].r_offset
9442 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9443 use_saved_addend_p = TRUE;
9444 else
9445 use_saved_addend_p = FALSE;
9446
9447 /* Figure out what value we are supposed to relocate. */
9448 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9449 input_section, info, rel,
9450 addend, howto, local_syms,
9451 local_sections, &value,
9452 &name, &cross_mode_jump_p,
9453 use_saved_addend_p))
9454 {
9455 case bfd_reloc_continue:
9456 /* There's nothing to do. */
9457 continue;
9458
9459 case bfd_reloc_undefined:
9460 /* mips_elf_calculate_relocation already called the
9461 undefined_symbol callback. There's no real point in
9462 trying to perform the relocation at this point, so we
9463 just skip ahead to the next relocation. */
9464 continue;
9465
9466 case bfd_reloc_notsupported:
9467 msg = _("internal error: unsupported relocation error");
9468 info->callbacks->warning
9469 (info, msg, name, input_bfd, input_section, rel->r_offset);
9470 return FALSE;
9471
9472 case bfd_reloc_overflow:
9473 if (use_saved_addend_p)
9474 /* Ignore overflow until we reach the last relocation for
9475 a given location. */
9476 ;
9477 else
9478 {
9479 struct mips_elf_link_hash_table *htab;
9480
9481 htab = mips_elf_hash_table (info);
9482 BFD_ASSERT (htab != NULL);
9483 BFD_ASSERT (name != NULL);
9484 if (!htab->small_data_overflow_reported
9485 && (gprel16_reloc_p (howto->type)
9486 || literal_reloc_p (howto->type)))
9487 {
9488 msg = _("small-data section exceeds 64KB;"
9489 " lower small-data size limit (see option -G)");
9490
9491 htab->small_data_overflow_reported = TRUE;
9492 (*info->callbacks->einfo) ("%P: %s\n", msg);
9493 }
9494 if (! ((*info->callbacks->reloc_overflow)
9495 (info, NULL, name, howto->name, (bfd_vma) 0,
9496 input_bfd, input_section, rel->r_offset)))
9497 return FALSE;
9498 }
9499 break;
9500
9501 case bfd_reloc_ok:
9502 break;
9503
9504 case bfd_reloc_outofrange:
9505 if (jal_reloc_p (howto->type))
9506 {
9507 msg = _("JALX to a non-word-aligned address");
9508 info->callbacks->warning
9509 (info, msg, name, input_bfd, input_section, rel->r_offset);
9510 return FALSE;
9511 }
9512 /* Fall through. */
9513
9514 default:
9515 abort ();
9516 break;
9517 }
9518
9519 /* If we've got another relocation for the address, keep going
9520 until we reach the last one. */
9521 if (use_saved_addend_p)
9522 {
9523 addend = value;
9524 continue;
9525 }
9526
9527 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9528 /* See the comment above about using R_MIPS_64 in the 32-bit
9529 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
9530 that calculated the right value. Now, however, we
9531 sign-extend the 32-bit result to 64-bits, and store it as a
9532 64-bit value. We are especially generous here in that we
9533 go to extreme lengths to support this usage on systems with
9534 only a 32-bit VMA. */
9535 {
9536 bfd_vma sign_bits;
9537 bfd_vma low_bits;
9538 bfd_vma high_bits;
9539
9540 if (value & ((bfd_vma) 1 << 31))
9541 #ifdef BFD64
9542 sign_bits = ((bfd_vma) 1 << 32) - 1;
9543 #else
9544 sign_bits = -1;
9545 #endif
9546 else
9547 sign_bits = 0;
9548
9549 /* If we don't know that we have a 64-bit type,
9550 do two separate stores. */
9551 if (bfd_big_endian (input_bfd))
9552 {
9553 /* Undo what we did above. */
9554 rel->r_offset -= 4;
9555 /* Store the sign-bits (which are most significant)
9556 first. */
9557 low_bits = sign_bits;
9558 high_bits = value;
9559 }
9560 else
9561 {
9562 low_bits = value;
9563 high_bits = sign_bits;
9564 }
9565 bfd_put_32 (input_bfd, low_bits,
9566 contents + rel->r_offset);
9567 bfd_put_32 (input_bfd, high_bits,
9568 contents + rel->r_offset + 4);
9569 continue;
9570 }
9571
9572 /* Actually perform the relocation. */
9573 if (! mips_elf_perform_relocation (info, howto, rel, value,
9574 input_bfd, input_section,
9575 contents, cross_mode_jump_p))
9576 return FALSE;
9577 }
9578
9579 return TRUE;
9580 }
9581 \f
9582 /* A function that iterates over each entry in la25_stubs and fills
9583 in the code for each one. DATA points to a mips_htab_traverse_info. */
9584
9585 static int
9586 mips_elf_create_la25_stub (void **slot, void *data)
9587 {
9588 struct mips_htab_traverse_info *hti;
9589 struct mips_elf_link_hash_table *htab;
9590 struct mips_elf_la25_stub *stub;
9591 asection *s;
9592 bfd_byte *loc;
9593 bfd_vma offset, target, target_high, target_low;
9594
9595 stub = (struct mips_elf_la25_stub *) *slot;
9596 hti = (struct mips_htab_traverse_info *) data;
9597 htab = mips_elf_hash_table (hti->info);
9598 BFD_ASSERT (htab != NULL);
9599
9600 /* Create the section contents, if we haven't already. */
9601 s = stub->stub_section;
9602 loc = s->contents;
9603 if (loc == NULL)
9604 {
9605 loc = bfd_malloc (s->size);
9606 if (loc == NULL)
9607 {
9608 hti->error = TRUE;
9609 return FALSE;
9610 }
9611 s->contents = loc;
9612 }
9613
9614 /* Work out where in the section this stub should go. */
9615 offset = stub->offset;
9616
9617 /* Work out the target address. */
9618 target = (stub->h->root.root.u.def.section->output_section->vma
9619 + stub->h->root.root.u.def.section->output_offset
9620 + stub->h->root.root.u.def.value);
9621 target_high = ((target + 0x8000) >> 16) & 0xffff;
9622 target_low = (target & 0xffff);
9623
9624 if (stub->stub_section != htab->strampoline)
9625 {
9626 /* This is a simple LUI/ADDIU stub. Zero out the beginning
9627 of the section and write the two instructions at the end. */
9628 memset (loc, 0, offset);
9629 loc += offset;
9630 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9631 {
9632 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9633 loc);
9634 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9635 loc + 2);
9636 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9637 loc + 4);
9638 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9639 loc + 6);
9640 }
9641 else
9642 {
9643 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9644 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9645 }
9646 }
9647 else
9648 {
9649 /* This is trampoline. */
9650 loc += offset;
9651 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
9652 {
9653 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_1 (target_high),
9654 loc);
9655 bfd_put_16 (hti->output_bfd, LA25_LUI_MICROMIPS_2 (target_high),
9656 loc + 2);
9657 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_1 (target), loc + 4);
9658 bfd_put_16 (hti->output_bfd, LA25_J_MICROMIPS_2 (target), loc + 6);
9659 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_1 (target_low),
9660 loc + 8);
9661 bfd_put_16 (hti->output_bfd, LA25_ADDIU_MICROMIPS_2 (target_low),
9662 loc + 10);
9663 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9664 }
9665 else
9666 {
9667 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9668 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9669 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9670 bfd_put_32 (hti->output_bfd, 0, loc + 12);
9671 }
9672 }
9673 return TRUE;
9674 }
9675
9676 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9677 adjust it appropriately now. */
9678
9679 static void
9680 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9681 const char *name, Elf_Internal_Sym *sym)
9682 {
9683 /* The linker script takes care of providing names and values for
9684 these, but we must place them into the right sections. */
9685 static const char* const text_section_symbols[] = {
9686 "_ftext",
9687 "_etext",
9688 "__dso_displacement",
9689 "__elf_header",
9690 "__program_header_table",
9691 NULL
9692 };
9693
9694 static const char* const data_section_symbols[] = {
9695 "_fdata",
9696 "_edata",
9697 "_end",
9698 "_fbss",
9699 NULL
9700 };
9701
9702 const char* const *p;
9703 int i;
9704
9705 for (i = 0; i < 2; ++i)
9706 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9707 *p;
9708 ++p)
9709 if (strcmp (*p, name) == 0)
9710 {
9711 /* All of these symbols are given type STT_SECTION by the
9712 IRIX6 linker. */
9713 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9714 sym->st_other = STO_PROTECTED;
9715
9716 /* The IRIX linker puts these symbols in special sections. */
9717 if (i == 0)
9718 sym->st_shndx = SHN_MIPS_TEXT;
9719 else
9720 sym->st_shndx = SHN_MIPS_DATA;
9721
9722 break;
9723 }
9724 }
9725
9726 /* Finish up dynamic symbol handling. We set the contents of various
9727 dynamic sections here. */
9728
9729 bfd_boolean
9730 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9731 struct bfd_link_info *info,
9732 struct elf_link_hash_entry *h,
9733 Elf_Internal_Sym *sym)
9734 {
9735 bfd *dynobj;
9736 asection *sgot;
9737 struct mips_got_info *g, *gg;
9738 const char *name;
9739 int idx;
9740 struct mips_elf_link_hash_table *htab;
9741 struct mips_elf_link_hash_entry *hmips;
9742
9743 htab = mips_elf_hash_table (info);
9744 BFD_ASSERT (htab != NULL);
9745 dynobj = elf_hash_table (info)->dynobj;
9746 hmips = (struct mips_elf_link_hash_entry *) h;
9747
9748 BFD_ASSERT (!htab->is_vxworks);
9749
9750 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9751 {
9752 /* We've decided to create a PLT entry for this symbol. */
9753 bfd_byte *loc;
9754 bfd_vma header_address, plt_index, got_address;
9755 bfd_vma got_address_high, got_address_low, load;
9756 const bfd_vma *plt_entry;
9757
9758 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9759 BFD_ASSERT (h->dynindx != -1);
9760 BFD_ASSERT (htab->splt != NULL);
9761 BFD_ASSERT (h->plt.offset <= htab->splt->size);
9762 BFD_ASSERT (!h->def_regular);
9763
9764 /* Calculate the address of the PLT header. */
9765 header_address = (htab->splt->output_section->vma
9766 + htab->splt->output_offset);
9767
9768 /* Calculate the index of the entry. */
9769 plt_index = ((h->plt.offset - htab->plt_header_size)
9770 / htab->plt_entry_size);
9771
9772 /* Calculate the address of the .got.plt entry. */
9773 got_address = (htab->sgotplt->output_section->vma
9774 + htab->sgotplt->output_offset
9775 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9776 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9777 got_address_low = got_address & 0xffff;
9778
9779 /* Initially point the .got.plt entry at the PLT header. */
9780 loc = (htab->sgotplt->contents
9781 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9782 if (ABI_64_P (output_bfd))
9783 bfd_put_64 (output_bfd, header_address, loc);
9784 else
9785 bfd_put_32 (output_bfd, header_address, loc);
9786
9787 /* Find out where the .plt entry should go. */
9788 loc = htab->splt->contents + h->plt.offset;
9789
9790 /* Pick the load opcode. */
9791 load = MIPS_ELF_LOAD_WORD (output_bfd);
9792
9793 /* Fill in the PLT entry itself. */
9794 plt_entry = mips_exec_plt_entry;
9795 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9796 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9797
9798 if (! LOAD_INTERLOCKS_P (output_bfd))
9799 {
9800 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9801 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9802 }
9803 else
9804 {
9805 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9806 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9807 }
9808
9809 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
9810 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9811 plt_index, h->dynindx,
9812 R_MIPS_JUMP_SLOT, got_address);
9813
9814 /* We distinguish between PLT entries and lazy-binding stubs by
9815 giving the former an st_other value of STO_MIPS_PLT. Set the
9816 flag and leave the value if there are any relocations in the
9817 binary where pointer equality matters. */
9818 sym->st_shndx = SHN_UNDEF;
9819 if (h->pointer_equality_needed)
9820 sym->st_other = STO_MIPS_PLT;
9821 else
9822 sym->st_value = 0;
9823 }
9824 else if (h->plt.offset != MINUS_ONE)
9825 {
9826 /* We've decided to create a lazy-binding stub. */
9827 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9828
9829 /* This symbol has a stub. Set it up. */
9830
9831 BFD_ASSERT (h->dynindx != -1);
9832
9833 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9834 || (h->dynindx <= 0xffff));
9835
9836 /* Values up to 2^31 - 1 are allowed. Larger values would cause
9837 sign extension at runtime in the stub, resulting in a negative
9838 index value. */
9839 if (h->dynindx & ~0x7fffffff)
9840 return FALSE;
9841
9842 /* Fill the stub. */
9843 idx = 0;
9844 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9845 idx += 4;
9846 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9847 idx += 4;
9848 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9849 {
9850 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9851 stub + idx);
9852 idx += 4;
9853 }
9854 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9855 idx += 4;
9856
9857 /* If a large stub is not required and sign extension is not a
9858 problem, then use legacy code in the stub. */
9859 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9860 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9861 else if (h->dynindx & ~0x7fff)
9862 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9863 else
9864 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9865 stub + idx);
9866
9867 BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9868 memcpy (htab->sstubs->contents + h->plt.offset,
9869 stub, htab->function_stub_size);
9870
9871 /* Mark the symbol as undefined. plt.offset != -1 occurs
9872 only for the referenced symbol. */
9873 sym->st_shndx = SHN_UNDEF;
9874
9875 /* The run-time linker uses the st_value field of the symbol
9876 to reset the global offset table entry for this external
9877 to its stub address when unlinking a shared object. */
9878 sym->st_value = (htab->sstubs->output_section->vma
9879 + htab->sstubs->output_offset
9880 + h->plt.offset);
9881 }
9882
9883 /* If we have a MIPS16 function with a stub, the dynamic symbol must
9884 refer to the stub, since only the stub uses the standard calling
9885 conventions. */
9886 if (h->dynindx != -1 && hmips->fn_stub != NULL)
9887 {
9888 BFD_ASSERT (hmips->need_fn_stub);
9889 sym->st_value = (hmips->fn_stub->output_section->vma
9890 + hmips->fn_stub->output_offset);
9891 sym->st_size = hmips->fn_stub->size;
9892 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9893 }
9894
9895 BFD_ASSERT (h->dynindx != -1
9896 || h->forced_local);
9897
9898 sgot = htab->sgot;
9899 g = htab->got_info;
9900 BFD_ASSERT (g != NULL);
9901
9902 /* Run through the global symbol table, creating GOT entries for all
9903 the symbols that need them. */
9904 if (hmips->global_got_area != GGA_NONE)
9905 {
9906 bfd_vma offset;
9907 bfd_vma value;
9908
9909 value = sym->st_value;
9910 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9911 R_MIPS_GOT16, info);
9912 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9913 }
9914
9915 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9916 {
9917 struct mips_got_entry e, *p;
9918 bfd_vma entry;
9919 bfd_vma offset;
9920
9921 gg = g;
9922
9923 e.abfd = output_bfd;
9924 e.symndx = -1;
9925 e.d.h = hmips;
9926 e.tls_type = 0;
9927
9928 for (g = g->next; g->next != gg; g = g->next)
9929 {
9930 if (g->got_entries
9931 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9932 &e)))
9933 {
9934 offset = p->gotidx;
9935 if (info->shared
9936 || (elf_hash_table (info)->dynamic_sections_created
9937 && p->d.h != NULL
9938 && p->d.h->root.def_dynamic
9939 && !p->d.h->root.def_regular))
9940 {
9941 /* Create an R_MIPS_REL32 relocation for this entry. Due to
9942 the various compatibility problems, it's easier to mock
9943 up an R_MIPS_32 or R_MIPS_64 relocation and leave
9944 mips_elf_create_dynamic_relocation to calculate the
9945 appropriate addend. */
9946 Elf_Internal_Rela rel[3];
9947
9948 memset (rel, 0, sizeof (rel));
9949 if (ABI_64_P (output_bfd))
9950 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9951 else
9952 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9953 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9954
9955 entry = 0;
9956 if (! (mips_elf_create_dynamic_relocation
9957 (output_bfd, info, rel,
9958 e.d.h, NULL, sym->st_value, &entry, sgot)))
9959 return FALSE;
9960 }
9961 else
9962 entry = sym->st_value;
9963 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9964 }
9965 }
9966 }
9967
9968 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
9969 name = h->root.root.string;
9970 if (strcmp (name, "_DYNAMIC") == 0
9971 || h == elf_hash_table (info)->hgot)
9972 sym->st_shndx = SHN_ABS;
9973 else if (strcmp (name, "_DYNAMIC_LINK") == 0
9974 || strcmp (name, "_DYNAMIC_LINKING") == 0)
9975 {
9976 sym->st_shndx = SHN_ABS;
9977 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9978 sym->st_value = 1;
9979 }
9980 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9981 {
9982 sym->st_shndx = SHN_ABS;
9983 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9984 sym->st_value = elf_gp (output_bfd);
9985 }
9986 else if (SGI_COMPAT (output_bfd))
9987 {
9988 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9989 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9990 {
9991 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9992 sym->st_other = STO_PROTECTED;
9993 sym->st_value = 0;
9994 sym->st_shndx = SHN_MIPS_DATA;
9995 }
9996 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9997 {
9998 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9999 sym->st_other = STO_PROTECTED;
10000 sym->st_value = mips_elf_hash_table (info)->procedure_count;
10001 sym->st_shndx = SHN_ABS;
10002 }
10003 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10004 {
10005 if (h->type == STT_FUNC)
10006 sym->st_shndx = SHN_MIPS_TEXT;
10007 else if (h->type == STT_OBJECT)
10008 sym->st_shndx = SHN_MIPS_DATA;
10009 }
10010 }
10011
10012 /* Emit a copy reloc, if needed. */
10013 if (h->needs_copy)
10014 {
10015 asection *s;
10016 bfd_vma symval;
10017
10018 BFD_ASSERT (h->dynindx != -1);
10019 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10020
10021 s = mips_elf_rel_dyn_section (info, FALSE);
10022 symval = (h->root.u.def.section->output_section->vma
10023 + h->root.u.def.section->output_offset
10024 + h->root.u.def.value);
10025 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10026 h->dynindx, R_MIPS_COPY, symval);
10027 }
10028
10029 /* Handle the IRIX6-specific symbols. */
10030 if (IRIX_COMPAT (output_bfd) == ict_irix6)
10031 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10032
10033 if (! info->shared)
10034 {
10035 if (! mips_elf_hash_table (info)->use_rld_obj_head
10036 && (strcmp (name, "__rld_map") == 0
10037 || strcmp (name, "__RLD_MAP") == 0))
10038 {
10039 asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
10040 BFD_ASSERT (s != NULL);
10041 sym->st_value = s->output_section->vma + s->output_offset;
10042 bfd_put_32 (output_bfd, 0, s->contents);
10043 if (mips_elf_hash_table (info)->rld_value == 0)
10044 mips_elf_hash_table (info)->rld_value = sym->st_value;
10045 }
10046 else if (mips_elf_hash_table (info)->use_rld_obj_head
10047 && strcmp (name, "__rld_obj_head") == 0)
10048 {
10049 /* IRIX6 does not use a .rld_map section. */
10050 if (IRIX_COMPAT (output_bfd) == ict_irix5
10051 || IRIX_COMPAT (output_bfd) == ict_none)
10052 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
10053 != NULL);
10054 mips_elf_hash_table (info)->rld_value = sym->st_value;
10055 }
10056 }
10057
10058 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to
10059 treat MIPS16 symbols like any other. */
10060 if (ELF_ST_IS_MIPS16 (sym->st_other))
10061 {
10062 BFD_ASSERT (sym->st_value & 1);
10063 sym->st_other -= STO_MIPS16;
10064 }
10065
10066 return TRUE;
10067 }
10068
10069 /* Likewise, for VxWorks. */
10070
10071 bfd_boolean
10072 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10073 struct bfd_link_info *info,
10074 struct elf_link_hash_entry *h,
10075 Elf_Internal_Sym *sym)
10076 {
10077 bfd *dynobj;
10078 asection *sgot;
10079 struct mips_got_info *g;
10080 struct mips_elf_link_hash_table *htab;
10081 struct mips_elf_link_hash_entry *hmips;
10082
10083 htab = mips_elf_hash_table (info);
10084 BFD_ASSERT (htab != NULL);
10085 dynobj = elf_hash_table (info)->dynobj;
10086 hmips = (struct mips_elf_link_hash_entry *) h;
10087
10088 if (h->plt.offset != (bfd_vma) -1)
10089 {
10090 bfd_byte *loc;
10091 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
10092 Elf_Internal_Rela rel;
10093 static const bfd_vma *plt_entry;
10094
10095 BFD_ASSERT (h->dynindx != -1);
10096 BFD_ASSERT (htab->splt != NULL);
10097 BFD_ASSERT (h->plt.offset <= htab->splt->size);
10098
10099 /* Calculate the address of the .plt entry. */
10100 plt_address = (htab->splt->output_section->vma
10101 + htab->splt->output_offset
10102 + h->plt.offset);
10103
10104 /* Calculate the index of the entry. */
10105 plt_index = ((h->plt.offset - htab->plt_header_size)
10106 / htab->plt_entry_size);
10107
10108 /* Calculate the address of the .got.plt entry. */
10109 got_address = (htab->sgotplt->output_section->vma
10110 + htab->sgotplt->output_offset
10111 + plt_index * 4);
10112
10113 /* Calculate the offset of the .got.plt entry from
10114 _GLOBAL_OFFSET_TABLE_. */
10115 got_offset = mips_elf_gotplt_index (info, h);
10116
10117 /* Calculate the offset for the branch at the start of the PLT
10118 entry. The branch jumps to the beginning of .plt. */
10119 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
10120
10121 /* Fill in the initial value of the .got.plt entry. */
10122 bfd_put_32 (output_bfd, plt_address,
10123 htab->sgotplt->contents + plt_index * 4);
10124
10125 /* Find out where the .plt entry should go. */
10126 loc = htab->splt->contents + h->plt.offset;
10127
10128 if (info->shared)
10129 {
10130 plt_entry = mips_vxworks_shared_plt_entry;
10131 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10132 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10133 }
10134 else
10135 {
10136 bfd_vma got_address_high, got_address_low;
10137
10138 plt_entry = mips_vxworks_exec_plt_entry;
10139 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10140 got_address_low = got_address & 0xffff;
10141
10142 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10143 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
10144 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10145 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10146 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10147 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10148 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10149 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10150
10151 loc = (htab->srelplt2->contents
10152 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10153
10154 /* Emit a relocation for the .got.plt entry. */
10155 rel.r_offset = got_address;
10156 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10157 rel.r_addend = h->plt.offset;
10158 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10159
10160 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
10161 loc += sizeof (Elf32_External_Rela);
10162 rel.r_offset = plt_address + 8;
10163 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10164 rel.r_addend = got_offset;
10165 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10166
10167 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
10168 loc += sizeof (Elf32_External_Rela);
10169 rel.r_offset += 4;
10170 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10171 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10172 }
10173
10174 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
10175 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
10176 rel.r_offset = got_address;
10177 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10178 rel.r_addend = 0;
10179 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10180
10181 if (!h->def_regular)
10182 sym->st_shndx = SHN_UNDEF;
10183 }
10184
10185 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10186
10187 sgot = htab->sgot;
10188 g = htab->got_info;
10189 BFD_ASSERT (g != NULL);
10190
10191 /* See if this symbol has an entry in the GOT. */
10192 if (hmips->global_got_area != GGA_NONE)
10193 {
10194 bfd_vma offset;
10195 Elf_Internal_Rela outrel;
10196 bfd_byte *loc;
10197 asection *s;
10198
10199 /* Install the symbol value in the GOT. */
10200 offset = mips_elf_global_got_index (dynobj, output_bfd, h,
10201 R_MIPS_GOT16, info);
10202 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10203
10204 /* Add a dynamic relocation for it. */
10205 s = mips_elf_rel_dyn_section (info, FALSE);
10206 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10207 outrel.r_offset = (sgot->output_section->vma
10208 + sgot->output_offset
10209 + offset);
10210 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10211 outrel.r_addend = 0;
10212 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10213 }
10214
10215 /* Emit a copy reloc, if needed. */
10216 if (h->needs_copy)
10217 {
10218 Elf_Internal_Rela rel;
10219
10220 BFD_ASSERT (h->dynindx != -1);
10221
10222 rel.r_offset = (h->root.u.def.section->output_section->vma
10223 + h->root.u.def.section->output_offset
10224 + h->root.u.def.value);
10225 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10226 rel.r_addend = 0;
10227 bfd_elf32_swap_reloca_out (output_bfd, &rel,
10228 htab->srelbss->contents
10229 + (htab->srelbss->reloc_count
10230 * sizeof (Elf32_External_Rela)));
10231 ++htab->srelbss->reloc_count;
10232 }
10233
10234 /* If this is a mips16/microMIPS symbol, force the value to be even. */
10235 if (ELF_ST_IS_COMPRESSED (sym->st_other))
10236 sym->st_value &= ~1;
10237
10238 return TRUE;
10239 }
10240
10241 /* Write out a plt0 entry to the beginning of .plt. */
10242
10243 static void
10244 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10245 {
10246 bfd_byte *loc;
10247 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10248 static const bfd_vma *plt_entry;
10249 struct mips_elf_link_hash_table *htab;
10250
10251 htab = mips_elf_hash_table (info);
10252 BFD_ASSERT (htab != NULL);
10253
10254 if (ABI_64_P (output_bfd))
10255 plt_entry = mips_n64_exec_plt0_entry;
10256 else if (ABI_N32_P (output_bfd))
10257 plt_entry = mips_n32_exec_plt0_entry;
10258 else
10259 plt_entry = mips_o32_exec_plt0_entry;
10260
10261 /* Calculate the value of .got.plt. */
10262 gotplt_value = (htab->sgotplt->output_section->vma
10263 + htab->sgotplt->output_offset);
10264 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10265 gotplt_value_low = gotplt_value & 0xffff;
10266
10267 /* The PLT sequence is not safe for N64 if .got.plt's address can
10268 not be loaded in two instructions. */
10269 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10270 || ~(gotplt_value | 0x7fffffff) == 0);
10271
10272 /* Install the PLT header. */
10273 loc = htab->splt->contents;
10274 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10275 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10276 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10277 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10278 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10279 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10280 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10281 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10282 }
10283
10284 /* Install the PLT header for a VxWorks executable and finalize the
10285 contents of .rela.plt.unloaded. */
10286
10287 static void
10288 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10289 {
10290 Elf_Internal_Rela rela;
10291 bfd_byte *loc;
10292 bfd_vma got_value, got_value_high, got_value_low, plt_address;
10293 static const bfd_vma *plt_entry;
10294 struct mips_elf_link_hash_table *htab;
10295
10296 htab = mips_elf_hash_table (info);
10297 BFD_ASSERT (htab != NULL);
10298
10299 plt_entry = mips_vxworks_exec_plt0_entry;
10300
10301 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
10302 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
10303 + htab->root.hgot->root.u.def.section->output_offset
10304 + htab->root.hgot->root.u.def.value);
10305
10306 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
10307 got_value_low = got_value & 0xffff;
10308
10309 /* Calculate the address of the PLT header. */
10310 plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
10311
10312 /* Install the PLT header. */
10313 loc = htab->splt->contents;
10314 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
10315 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
10316 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
10317 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10318 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10319 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10320
10321 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
10322 loc = htab->srelplt2->contents;
10323 rela.r_offset = plt_address;
10324 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10325 rela.r_addend = 0;
10326 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10327 loc += sizeof (Elf32_External_Rela);
10328
10329 /* Output the relocation for the following addiu of
10330 %lo(_GLOBAL_OFFSET_TABLE_). */
10331 rela.r_offset += 4;
10332 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10333 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10334 loc += sizeof (Elf32_External_Rela);
10335
10336 /* Fix up the remaining relocations. They may have the wrong
10337 symbol index for _G_O_T_ or _P_L_T_ depending on the order
10338 in which symbols were output. */
10339 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10340 {
10341 Elf_Internal_Rela rel;
10342
10343 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10344 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10345 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10346 loc += sizeof (Elf32_External_Rela);
10347
10348 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10349 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10350 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10351 loc += sizeof (Elf32_External_Rela);
10352
10353 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10354 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10355 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10356 loc += sizeof (Elf32_External_Rela);
10357 }
10358 }
10359
10360 /* Install the PLT header for a VxWorks shared library. */
10361
10362 static void
10363 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10364 {
10365 unsigned int i;
10366 struct mips_elf_link_hash_table *htab;
10367
10368 htab = mips_elf_hash_table (info);
10369 BFD_ASSERT (htab != NULL);
10370
10371 /* We just need to copy the entry byte-by-byte. */
10372 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10373 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10374 htab->splt->contents + i * 4);
10375 }
10376
10377 /* Finish up the dynamic sections. */
10378
10379 bfd_boolean
10380 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10381 struct bfd_link_info *info)
10382 {
10383 bfd *dynobj;
10384 asection *sdyn;
10385 asection *sgot;
10386 struct mips_got_info *gg, *g;
10387 struct mips_elf_link_hash_table *htab;
10388
10389 htab = mips_elf_hash_table (info);
10390 BFD_ASSERT (htab != NULL);
10391
10392 dynobj = elf_hash_table (info)->dynobj;
10393
10394 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10395
10396 sgot = htab->sgot;
10397 gg = htab->got_info;
10398
10399 if (elf_hash_table (info)->dynamic_sections_created)
10400 {
10401 bfd_byte *b;
10402 int dyn_to_skip = 0, dyn_skipped = 0;
10403
10404 BFD_ASSERT (sdyn != NULL);
10405 BFD_ASSERT (gg != NULL);
10406
10407 g = mips_elf_got_for_ibfd (gg, output_bfd);
10408 BFD_ASSERT (g != NULL);
10409
10410 for (b = sdyn->contents;
10411 b < sdyn->contents + sdyn->size;
10412 b += MIPS_ELF_DYN_SIZE (dynobj))
10413 {
10414 Elf_Internal_Dyn dyn;
10415 const char *name;
10416 size_t elemsize;
10417 asection *s;
10418 bfd_boolean swap_out_p;
10419
10420 /* Read in the current dynamic entry. */
10421 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10422
10423 /* Assume that we're going to modify it and write it out. */
10424 swap_out_p = TRUE;
10425
10426 switch (dyn.d_tag)
10427 {
10428 case DT_RELENT:
10429 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10430 break;
10431
10432 case DT_RELAENT:
10433 BFD_ASSERT (htab->is_vxworks);
10434 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10435 break;
10436
10437 case DT_STRSZ:
10438 /* Rewrite DT_STRSZ. */
10439 dyn.d_un.d_val =
10440 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10441 break;
10442
10443 case DT_PLTGOT:
10444 s = htab->sgot;
10445 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10446 break;
10447
10448 case DT_MIPS_PLTGOT:
10449 s = htab->sgotplt;
10450 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10451 break;
10452
10453 case DT_MIPS_RLD_VERSION:
10454 dyn.d_un.d_val = 1; /* XXX */
10455 break;
10456
10457 case DT_MIPS_FLAGS:
10458 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10459 break;
10460
10461 case DT_MIPS_TIME_STAMP:
10462 {
10463 time_t t;
10464 time (&t);
10465 dyn.d_un.d_val = t;
10466 }
10467 break;
10468
10469 case DT_MIPS_ICHECKSUM:
10470 /* XXX FIXME: */
10471 swap_out_p = FALSE;
10472 break;
10473
10474 case DT_MIPS_IVERSION:
10475 /* XXX FIXME: */
10476 swap_out_p = FALSE;
10477 break;
10478
10479 case DT_MIPS_BASE_ADDRESS:
10480 s = output_bfd->sections;
10481 BFD_ASSERT (s != NULL);
10482 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10483 break;
10484
10485 case DT_MIPS_LOCAL_GOTNO:
10486 dyn.d_un.d_val = g->local_gotno;
10487 break;
10488
10489 case DT_MIPS_UNREFEXTNO:
10490 /* The index into the dynamic symbol table which is the
10491 entry of the first external symbol that is not
10492 referenced within the same object. */
10493 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10494 break;
10495
10496 case DT_MIPS_GOTSYM:
10497 if (gg->global_gotsym)
10498 {
10499 dyn.d_un.d_val = gg->global_gotsym->dynindx;
10500 break;
10501 }
10502 /* In case if we don't have global got symbols we default
10503 to setting DT_MIPS_GOTSYM to the same value as
10504 DT_MIPS_SYMTABNO, so we just fall through. */
10505
10506 case DT_MIPS_SYMTABNO:
10507 name = ".dynsym";
10508 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10509 s = bfd_get_section_by_name (output_bfd, name);
10510 BFD_ASSERT (s != NULL);
10511
10512 dyn.d_un.d_val = s->size / elemsize;
10513 break;
10514
10515 case DT_MIPS_HIPAGENO:
10516 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10517 break;
10518
10519 case DT_MIPS_RLD_MAP:
10520 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10521 break;
10522
10523 case DT_MIPS_OPTIONS:
10524 s = (bfd_get_section_by_name
10525 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10526 dyn.d_un.d_ptr = s->vma;
10527 break;
10528
10529 case DT_RELASZ:
10530 BFD_ASSERT (htab->is_vxworks);
10531 /* The count does not include the JUMP_SLOT relocations. */
10532 if (htab->srelplt)
10533 dyn.d_un.d_val -= htab->srelplt->size;
10534 break;
10535
10536 case DT_PLTREL:
10537 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10538 if (htab->is_vxworks)
10539 dyn.d_un.d_val = DT_RELA;
10540 else
10541 dyn.d_un.d_val = DT_REL;
10542 break;
10543
10544 case DT_PLTRELSZ:
10545 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10546 dyn.d_un.d_val = htab->srelplt->size;
10547 break;
10548
10549 case DT_JMPREL:
10550 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10551 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10552 + htab->srelplt->output_offset);
10553 break;
10554
10555 case DT_TEXTREL:
10556 /* If we didn't need any text relocations after all, delete
10557 the dynamic tag. */
10558 if (!(info->flags & DF_TEXTREL))
10559 {
10560 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10561 swap_out_p = FALSE;
10562 }
10563 break;
10564
10565 case DT_FLAGS:
10566 /* If we didn't need any text relocations after all, clear
10567 DF_TEXTREL from DT_FLAGS. */
10568 if (!(info->flags & DF_TEXTREL))
10569 dyn.d_un.d_val &= ~DF_TEXTREL;
10570 else
10571 swap_out_p = FALSE;
10572 break;
10573
10574 default:
10575 swap_out_p = FALSE;
10576 if (htab->is_vxworks
10577 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10578 swap_out_p = TRUE;
10579 break;
10580 }
10581
10582 if (swap_out_p || dyn_skipped)
10583 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10584 (dynobj, &dyn, b - dyn_skipped);
10585
10586 if (dyn_to_skip)
10587 {
10588 dyn_skipped += dyn_to_skip;
10589 dyn_to_skip = 0;
10590 }
10591 }
10592
10593 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
10594 if (dyn_skipped > 0)
10595 memset (b - dyn_skipped, 0, dyn_skipped);
10596 }
10597
10598 if (sgot != NULL && sgot->size > 0
10599 && !bfd_is_abs_section (sgot->output_section))
10600 {
10601 if (htab->is_vxworks)
10602 {
10603 /* The first entry of the global offset table points to the
10604 ".dynamic" section. The second is initialized by the
10605 loader and contains the shared library identifier.
10606 The third is also initialized by the loader and points
10607 to the lazy resolution stub. */
10608 MIPS_ELF_PUT_WORD (output_bfd,
10609 sdyn->output_offset + sdyn->output_section->vma,
10610 sgot->contents);
10611 MIPS_ELF_PUT_WORD (output_bfd, 0,
10612 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10613 MIPS_ELF_PUT_WORD (output_bfd, 0,
10614 sgot->contents
10615 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10616 }
10617 else
10618 {
10619 /* The first entry of the global offset table will be filled at
10620 runtime. The second entry will be used by some runtime loaders.
10621 This isn't the case of IRIX rld. */
10622 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10623 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10624 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10625 }
10626
10627 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10628 = MIPS_ELF_GOT_SIZE (output_bfd);
10629 }
10630
10631 /* Generate dynamic relocations for the non-primary gots. */
10632 if (gg != NULL && gg->next)
10633 {
10634 Elf_Internal_Rela rel[3];
10635 bfd_vma addend = 0;
10636
10637 memset (rel, 0, sizeof (rel));
10638 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10639
10640 for (g = gg->next; g->next != gg; g = g->next)
10641 {
10642 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10643 + g->next->tls_gotno;
10644
10645 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10646 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10647 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10648 sgot->contents
10649 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10650
10651 if (! info->shared)
10652 continue;
10653
10654 while (got_index < g->assigned_gotno)
10655 {
10656 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10657 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10658 if (!(mips_elf_create_dynamic_relocation
10659 (output_bfd, info, rel, NULL,
10660 bfd_abs_section_ptr,
10661 0, &addend, sgot)))
10662 return FALSE;
10663 BFD_ASSERT (addend == 0);
10664 }
10665 }
10666 }
10667
10668 /* The generation of dynamic relocations for the non-primary gots
10669 adds more dynamic relocations. We cannot count them until
10670 here. */
10671
10672 if (elf_hash_table (info)->dynamic_sections_created)
10673 {
10674 bfd_byte *b;
10675 bfd_boolean swap_out_p;
10676
10677 BFD_ASSERT (sdyn != NULL);
10678
10679 for (b = sdyn->contents;
10680 b < sdyn->contents + sdyn->size;
10681 b += MIPS_ELF_DYN_SIZE (dynobj))
10682 {
10683 Elf_Internal_Dyn dyn;
10684 asection *s;
10685
10686 /* Read in the current dynamic entry. */
10687 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10688
10689 /* Assume that we're going to modify it and write it out. */
10690 swap_out_p = TRUE;
10691
10692 switch (dyn.d_tag)
10693 {
10694 case DT_RELSZ:
10695 /* Reduce DT_RELSZ to account for any relocations we
10696 decided not to make. This is for the n64 irix rld,
10697 which doesn't seem to apply any relocations if there
10698 are trailing null entries. */
10699 s = mips_elf_rel_dyn_section (info, FALSE);
10700 dyn.d_un.d_val = (s->reloc_count
10701 * (ABI_64_P (output_bfd)
10702 ? sizeof (Elf64_Mips_External_Rel)
10703 : sizeof (Elf32_External_Rel)));
10704 /* Adjust the section size too. Tools like the prelinker
10705 can reasonably expect the values to the same. */
10706 elf_section_data (s->output_section)->this_hdr.sh_size
10707 = dyn.d_un.d_val;
10708 break;
10709
10710 default:
10711 swap_out_p = FALSE;
10712 break;
10713 }
10714
10715 if (swap_out_p)
10716 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10717 (dynobj, &dyn, b);
10718 }
10719 }
10720
10721 {
10722 asection *s;
10723 Elf32_compact_rel cpt;
10724
10725 if (SGI_COMPAT (output_bfd))
10726 {
10727 /* Write .compact_rel section out. */
10728 s = bfd_get_section_by_name (dynobj, ".compact_rel");
10729 if (s != NULL)
10730 {
10731 cpt.id1 = 1;
10732 cpt.num = s->reloc_count;
10733 cpt.id2 = 2;
10734 cpt.offset = (s->output_section->filepos
10735 + sizeof (Elf32_External_compact_rel));
10736 cpt.reserved0 = 0;
10737 cpt.reserved1 = 0;
10738 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10739 ((Elf32_External_compact_rel *)
10740 s->contents));
10741
10742 /* Clean up a dummy stub function entry in .text. */
10743 if (htab->sstubs != NULL)
10744 {
10745 file_ptr dummy_offset;
10746
10747 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10748 dummy_offset = htab->sstubs->size - htab->function_stub_size;
10749 memset (htab->sstubs->contents + dummy_offset, 0,
10750 htab->function_stub_size);
10751 }
10752 }
10753 }
10754
10755 /* The psABI says that the dynamic relocations must be sorted in
10756 increasing order of r_symndx. The VxWorks EABI doesn't require
10757 this, and because the code below handles REL rather than RELA
10758 relocations, using it for VxWorks would be outright harmful. */
10759 if (!htab->is_vxworks)
10760 {
10761 s = mips_elf_rel_dyn_section (info, FALSE);
10762 if (s != NULL
10763 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10764 {
10765 reldyn_sorting_bfd = output_bfd;
10766
10767 if (ABI_64_P (output_bfd))
10768 qsort ((Elf64_External_Rel *) s->contents + 1,
10769 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10770 sort_dynamic_relocs_64);
10771 else
10772 qsort ((Elf32_External_Rel *) s->contents + 1,
10773 s->reloc_count - 1, sizeof (Elf32_External_Rel),
10774 sort_dynamic_relocs);
10775 }
10776 }
10777 }
10778
10779 if (htab->splt && htab->splt->size > 0)
10780 {
10781 if (htab->is_vxworks)
10782 {
10783 if (info->shared)
10784 mips_vxworks_finish_shared_plt (output_bfd, info);
10785 else
10786 mips_vxworks_finish_exec_plt (output_bfd, info);
10787 }
10788 else
10789 {
10790 BFD_ASSERT (!info->shared);
10791 mips_finish_exec_plt (output_bfd, info);
10792 }
10793 }
10794 return TRUE;
10795 }
10796
10797
10798 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
10799
10800 static void
10801 mips_set_isa_flags (bfd *abfd)
10802 {
10803 flagword val;
10804
10805 switch (bfd_get_mach (abfd))
10806 {
10807 default:
10808 case bfd_mach_mips3000:
10809 val = E_MIPS_ARCH_1;
10810 break;
10811
10812 case bfd_mach_mips3900:
10813 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10814 break;
10815
10816 case bfd_mach_mips6000:
10817 val = E_MIPS_ARCH_2;
10818 break;
10819
10820 case bfd_mach_mips4000:
10821 case bfd_mach_mips4300:
10822 case bfd_mach_mips4400:
10823 case bfd_mach_mips4600:
10824 val = E_MIPS_ARCH_3;
10825 break;
10826
10827 case bfd_mach_mips4010:
10828 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10829 break;
10830
10831 case bfd_mach_mips4100:
10832 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10833 break;
10834
10835 case bfd_mach_mips4111:
10836 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10837 break;
10838
10839 case bfd_mach_mips4120:
10840 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10841 break;
10842
10843 case bfd_mach_mips4650:
10844 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10845 break;
10846
10847 case bfd_mach_mips5400:
10848 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10849 break;
10850
10851 case bfd_mach_mips5500:
10852 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10853 break;
10854
10855 case bfd_mach_mips9000:
10856 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10857 break;
10858
10859 case bfd_mach_mips5000:
10860 case bfd_mach_mips7000:
10861 case bfd_mach_mips8000:
10862 case bfd_mach_mips10000:
10863 case bfd_mach_mips12000:
10864 case bfd_mach_mips14000:
10865 case bfd_mach_mips16000:
10866 val = E_MIPS_ARCH_4;
10867 break;
10868
10869 case bfd_mach_mips5:
10870 val = E_MIPS_ARCH_5;
10871 break;
10872
10873 case bfd_mach_mips_loongson_2e:
10874 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10875 break;
10876
10877 case bfd_mach_mips_loongson_2f:
10878 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10879 break;
10880
10881 case bfd_mach_mips_sb1:
10882 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10883 break;
10884
10885 case bfd_mach_mips_loongson_3a:
10886 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10887 break;
10888
10889 case bfd_mach_mips_octeon:
10890 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10891 break;
10892
10893 case bfd_mach_mips_xlr:
10894 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10895 break;
10896
10897 case bfd_mach_mipsisa32:
10898 val = E_MIPS_ARCH_32;
10899 break;
10900
10901 case bfd_mach_mipsisa64:
10902 val = E_MIPS_ARCH_64;
10903 break;
10904
10905 case bfd_mach_mipsisa32r2:
10906 val = E_MIPS_ARCH_32R2;
10907 break;
10908
10909 case bfd_mach_mipsisa64r2:
10910 val = E_MIPS_ARCH_64R2;
10911 break;
10912 }
10913 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10914 elf_elfheader (abfd)->e_flags |= val;
10915
10916 }
10917
10918
10919 /* The final processing done just before writing out a MIPS ELF object
10920 file. This gets the MIPS architecture right based on the machine
10921 number. This is used by both the 32-bit and the 64-bit ABI. */
10922
10923 void
10924 _bfd_mips_elf_final_write_processing (bfd *abfd,
10925 bfd_boolean linker ATTRIBUTE_UNUSED)
10926 {
10927 unsigned int i;
10928 Elf_Internal_Shdr **hdrpp;
10929 const char *name;
10930 asection *sec;
10931
10932 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10933 is nonzero. This is for compatibility with old objects, which used
10934 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
10935 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10936 mips_set_isa_flags (abfd);
10937
10938 /* Set the sh_info field for .gptab sections and other appropriate
10939 info for each special section. */
10940 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10941 i < elf_numsections (abfd);
10942 i++, hdrpp++)
10943 {
10944 switch ((*hdrpp)->sh_type)
10945 {
10946 case SHT_MIPS_MSYM:
10947 case SHT_MIPS_LIBLIST:
10948 sec = bfd_get_section_by_name (abfd, ".dynstr");
10949 if (sec != NULL)
10950 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10951 break;
10952
10953 case SHT_MIPS_GPTAB:
10954 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10955 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10956 BFD_ASSERT (name != NULL
10957 && CONST_STRNEQ (name, ".gptab."));
10958 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10959 BFD_ASSERT (sec != NULL);
10960 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10961 break;
10962
10963 case SHT_MIPS_CONTENT:
10964 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10965 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10966 BFD_ASSERT (name != NULL
10967 && CONST_STRNEQ (name, ".MIPS.content"));
10968 sec = bfd_get_section_by_name (abfd,
10969 name + sizeof ".MIPS.content" - 1);
10970 BFD_ASSERT (sec != NULL);
10971 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10972 break;
10973
10974 case SHT_MIPS_SYMBOL_LIB:
10975 sec = bfd_get_section_by_name (abfd, ".dynsym");
10976 if (sec != NULL)
10977 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10978 sec = bfd_get_section_by_name (abfd, ".liblist");
10979 if (sec != NULL)
10980 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10981 break;
10982
10983 case SHT_MIPS_EVENTS:
10984 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10985 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10986 BFD_ASSERT (name != NULL);
10987 if (CONST_STRNEQ (name, ".MIPS.events"))
10988 sec = bfd_get_section_by_name (abfd,
10989 name + sizeof ".MIPS.events" - 1);
10990 else
10991 {
10992 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10993 sec = bfd_get_section_by_name (abfd,
10994 (name
10995 + sizeof ".MIPS.post_rel" - 1));
10996 }
10997 BFD_ASSERT (sec != NULL);
10998 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10999 break;
11000
11001 }
11002 }
11003 }
11004 \f
11005 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11006 segments. */
11007
11008 int
11009 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11010 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11011 {
11012 asection *s;
11013 int ret = 0;
11014
11015 /* See if we need a PT_MIPS_REGINFO segment. */
11016 s = bfd_get_section_by_name (abfd, ".reginfo");
11017 if (s && (s->flags & SEC_LOAD))
11018 ++ret;
11019
11020 /* See if we need a PT_MIPS_OPTIONS segment. */
11021 if (IRIX_COMPAT (abfd) == ict_irix6
11022 && bfd_get_section_by_name (abfd,
11023 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11024 ++ret;
11025
11026 /* See if we need a PT_MIPS_RTPROC segment. */
11027 if (IRIX_COMPAT (abfd) == ict_irix5
11028 && bfd_get_section_by_name (abfd, ".dynamic")
11029 && bfd_get_section_by_name (abfd, ".mdebug"))
11030 ++ret;
11031
11032 /* Allocate a PT_NULL header in dynamic objects. See
11033 _bfd_mips_elf_modify_segment_map for details. */
11034 if (!SGI_COMPAT (abfd)
11035 && bfd_get_section_by_name (abfd, ".dynamic"))
11036 ++ret;
11037
11038 return ret;
11039 }
11040
11041 /* Modify the segment map for an IRIX5 executable. */
11042
11043 bfd_boolean
11044 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11045 struct bfd_link_info *info)
11046 {
11047 asection *s;
11048 struct elf_segment_map *m, **pm;
11049 bfd_size_type amt;
11050
11051 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11052 segment. */
11053 s = bfd_get_section_by_name (abfd, ".reginfo");
11054 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11055 {
11056 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11057 if (m->p_type == PT_MIPS_REGINFO)
11058 break;
11059 if (m == NULL)
11060 {
11061 amt = sizeof *m;
11062 m = bfd_zalloc (abfd, amt);
11063 if (m == NULL)
11064 return FALSE;
11065
11066 m->p_type = PT_MIPS_REGINFO;
11067 m->count = 1;
11068 m->sections[0] = s;
11069
11070 /* We want to put it after the PHDR and INTERP segments. */
11071 pm = &elf_tdata (abfd)->segment_map;
11072 while (*pm != NULL
11073 && ((*pm)->p_type == PT_PHDR
11074 || (*pm)->p_type == PT_INTERP))
11075 pm = &(*pm)->next;
11076
11077 m->next = *pm;
11078 *pm = m;
11079 }
11080 }
11081
11082 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11083 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
11084 PT_MIPS_OPTIONS segment immediately following the program header
11085 table. */
11086 if (NEWABI_P (abfd)
11087 /* On non-IRIX6 new abi, we'll have already created a segment
11088 for this section, so don't create another. I'm not sure this
11089 is not also the case for IRIX 6, but I can't test it right
11090 now. */
11091 && IRIX_COMPAT (abfd) == ict_irix6)
11092 {
11093 for (s = abfd->sections; s; s = s->next)
11094 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11095 break;
11096
11097 if (s)
11098 {
11099 struct elf_segment_map *options_segment;
11100
11101 pm = &elf_tdata (abfd)->segment_map;
11102 while (*pm != NULL
11103 && ((*pm)->p_type == PT_PHDR
11104 || (*pm)->p_type == PT_INTERP))
11105 pm = &(*pm)->next;
11106
11107 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11108 {
11109 amt = sizeof (struct elf_segment_map);
11110 options_segment = bfd_zalloc (abfd, amt);
11111 options_segment->next = *pm;
11112 options_segment->p_type = PT_MIPS_OPTIONS;
11113 options_segment->p_flags = PF_R;
11114 options_segment->p_flags_valid = TRUE;
11115 options_segment->count = 1;
11116 options_segment->sections[0] = s;
11117 *pm = options_segment;
11118 }
11119 }
11120 }
11121 else
11122 {
11123 if (IRIX_COMPAT (abfd) == ict_irix5)
11124 {
11125 /* If there are .dynamic and .mdebug sections, we make a room
11126 for the RTPROC header. FIXME: Rewrite without section names. */
11127 if (bfd_get_section_by_name (abfd, ".interp") == NULL
11128 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11129 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11130 {
11131 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
11132 if (m->p_type == PT_MIPS_RTPROC)
11133 break;
11134 if (m == NULL)
11135 {
11136 amt = sizeof *m;
11137 m = bfd_zalloc (abfd, amt);
11138 if (m == NULL)
11139 return FALSE;
11140
11141 m->p_type = PT_MIPS_RTPROC;
11142
11143 s = bfd_get_section_by_name (abfd, ".rtproc");
11144 if (s == NULL)
11145 {
11146 m->count = 0;
11147 m->p_flags = 0;
11148 m->p_flags_valid = 1;
11149 }
11150 else
11151 {
11152 m->count = 1;
11153 m->sections[0] = s;
11154 }
11155
11156 /* We want to put it after the DYNAMIC segment. */
11157 pm = &elf_tdata (abfd)->segment_map;
11158 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11159 pm = &(*pm)->next;
11160 if (*pm != NULL)
11161 pm = &(*pm)->next;
11162
11163 m->next = *pm;
11164 *pm = m;
11165 }
11166 }
11167 }
11168 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11169 .dynstr, .dynsym, and .hash sections, and everything in
11170 between. */
11171 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
11172 pm = &(*pm)->next)
11173 if ((*pm)->p_type == PT_DYNAMIC)
11174 break;
11175 m = *pm;
11176 if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11177 {
11178 /* For a normal mips executable the permissions for the PT_DYNAMIC
11179 segment are read, write and execute. We do that here since
11180 the code in elf.c sets only the read permission. This matters
11181 sometimes for the dynamic linker. */
11182 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11183 {
11184 m->p_flags = PF_R | PF_W | PF_X;
11185 m->p_flags_valid = 1;
11186 }
11187 }
11188 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11189 glibc's dynamic linker has traditionally derived the number of
11190 tags from the p_filesz field, and sometimes allocates stack
11191 arrays of that size. An overly-big PT_DYNAMIC segment can
11192 be actively harmful in such cases. Making PT_DYNAMIC contain
11193 other sections can also make life hard for the prelinker,
11194 which might move one of the other sections to a different
11195 PT_LOAD segment. */
11196 if (SGI_COMPAT (abfd)
11197 && m != NULL
11198 && m->count == 1
11199 && strcmp (m->sections[0]->name, ".dynamic") == 0)
11200 {
11201 static const char *sec_names[] =
11202 {
11203 ".dynamic", ".dynstr", ".dynsym", ".hash"
11204 };
11205 bfd_vma low, high;
11206 unsigned int i, c;
11207 struct elf_segment_map *n;
11208
11209 low = ~(bfd_vma) 0;
11210 high = 0;
11211 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11212 {
11213 s = bfd_get_section_by_name (abfd, sec_names[i]);
11214 if (s != NULL && (s->flags & SEC_LOAD) != 0)
11215 {
11216 bfd_size_type sz;
11217
11218 if (low > s->vma)
11219 low = s->vma;
11220 sz = s->size;
11221 if (high < s->vma + sz)
11222 high = s->vma + sz;
11223 }
11224 }
11225
11226 c = 0;
11227 for (s = abfd->sections; s != NULL; s = s->next)
11228 if ((s->flags & SEC_LOAD) != 0
11229 && s->vma >= low
11230 && s->vma + s->size <= high)
11231 ++c;
11232
11233 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11234 n = bfd_zalloc (abfd, amt);
11235 if (n == NULL)
11236 return FALSE;
11237 *n = *m;
11238 n->count = c;
11239
11240 i = 0;
11241 for (s = abfd->sections; s != NULL; s = s->next)
11242 {
11243 if ((s->flags & SEC_LOAD) != 0
11244 && s->vma >= low
11245 && s->vma + s->size <= high)
11246 {
11247 n->sections[i] = s;
11248 ++i;
11249 }
11250 }
11251
11252 *pm = n;
11253 }
11254 }
11255
11256 /* Allocate a spare program header in dynamic objects so that tools
11257 like the prelinker can add an extra PT_LOAD entry.
11258
11259 If the prelinker needs to make room for a new PT_LOAD entry, its
11260 standard procedure is to move the first (read-only) sections into
11261 the new (writable) segment. However, the MIPS ABI requires
11262 .dynamic to be in a read-only segment, and the section will often
11263 start within sizeof (ElfNN_Phdr) bytes of the last program header.
11264
11265 Although the prelinker could in principle move .dynamic to a
11266 writable segment, it seems better to allocate a spare program
11267 header instead, and avoid the need to move any sections.
11268 There is a long tradition of allocating spare dynamic tags,
11269 so allocating a spare program header seems like a natural
11270 extension.
11271
11272 If INFO is NULL, we may be copying an already prelinked binary
11273 with objcopy or strip, so do not add this header. */
11274 if (info != NULL
11275 && !SGI_COMPAT (abfd)
11276 && bfd_get_section_by_name (abfd, ".dynamic"))
11277 {
11278 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
11279 if ((*pm)->p_type == PT_NULL)
11280 break;
11281 if (*pm == NULL)
11282 {
11283 m = bfd_zalloc (abfd, sizeof (*m));
11284 if (m == NULL)
11285 return FALSE;
11286
11287 m->p_type = PT_NULL;
11288 *pm = m;
11289 }
11290 }
11291
11292 return TRUE;
11293 }
11294 \f
11295 /* Return the section that should be marked against GC for a given
11296 relocation. */
11297
11298 asection *
11299 _bfd_mips_elf_gc_mark_hook (asection *sec,
11300 struct bfd_link_info *info,
11301 Elf_Internal_Rela *rel,
11302 struct elf_link_hash_entry *h,
11303 Elf_Internal_Sym *sym)
11304 {
11305 /* ??? Do mips16 stub sections need to be handled special? */
11306
11307 if (h != NULL)
11308 switch (ELF_R_TYPE (sec->owner, rel->r_info))
11309 {
11310 case R_MIPS_GNU_VTINHERIT:
11311 case R_MIPS_GNU_VTENTRY:
11312 return NULL;
11313 }
11314
11315 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11316 }
11317
11318 /* Update the got entry reference counts for the section being removed. */
11319
11320 bfd_boolean
11321 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11322 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11323 asection *sec ATTRIBUTE_UNUSED,
11324 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11325 {
11326 #if 0
11327 Elf_Internal_Shdr *symtab_hdr;
11328 struct elf_link_hash_entry **sym_hashes;
11329 bfd_signed_vma *local_got_refcounts;
11330 const Elf_Internal_Rela *rel, *relend;
11331 unsigned long r_symndx;
11332 struct elf_link_hash_entry *h;
11333
11334 if (info->relocatable)
11335 return TRUE;
11336
11337 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11338 sym_hashes = elf_sym_hashes (abfd);
11339 local_got_refcounts = elf_local_got_refcounts (abfd);
11340
11341 relend = relocs + sec->reloc_count;
11342 for (rel = relocs; rel < relend; rel++)
11343 switch (ELF_R_TYPE (abfd, rel->r_info))
11344 {
11345 case R_MIPS16_GOT16:
11346 case R_MIPS16_CALL16:
11347 case R_MIPS_GOT16:
11348 case R_MIPS_CALL16:
11349 case R_MIPS_CALL_HI16:
11350 case R_MIPS_CALL_LO16:
11351 case R_MIPS_GOT_HI16:
11352 case R_MIPS_GOT_LO16:
11353 case R_MIPS_GOT_DISP:
11354 case R_MIPS_GOT_PAGE:
11355 case R_MIPS_GOT_OFST:
11356 case R_MICROMIPS_GOT16:
11357 case R_MICROMIPS_CALL16:
11358 case R_MICROMIPS_CALL_HI16:
11359 case R_MICROMIPS_CALL_LO16:
11360 case R_MICROMIPS_GOT_HI16:
11361 case R_MICROMIPS_GOT_LO16:
11362 case R_MICROMIPS_GOT_DISP:
11363 case R_MICROMIPS_GOT_PAGE:
11364 case R_MICROMIPS_GOT_OFST:
11365 /* ??? It would seem that the existing MIPS code does no sort
11366 of reference counting or whatnot on its GOT and PLT entries,
11367 so it is not possible to garbage collect them at this time. */
11368 break;
11369
11370 default:
11371 break;
11372 }
11373 #endif
11374
11375 return TRUE;
11376 }
11377 \f
11378 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11379 hiding the old indirect symbol. Process additional relocation
11380 information. Also called for weakdefs, in which case we just let
11381 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
11382
11383 void
11384 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11385 struct elf_link_hash_entry *dir,
11386 struct elf_link_hash_entry *ind)
11387 {
11388 struct mips_elf_link_hash_entry *dirmips, *indmips;
11389
11390 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11391
11392 dirmips = (struct mips_elf_link_hash_entry *) dir;
11393 indmips = (struct mips_elf_link_hash_entry *) ind;
11394 /* Any absolute non-dynamic relocations against an indirect or weak
11395 definition will be against the target symbol. */
11396 if (indmips->has_static_relocs)
11397 dirmips->has_static_relocs = TRUE;
11398
11399 if (ind->root.type != bfd_link_hash_indirect)
11400 return;
11401
11402 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11403 if (indmips->readonly_reloc)
11404 dirmips->readonly_reloc = TRUE;
11405 if (indmips->no_fn_stub)
11406 dirmips->no_fn_stub = TRUE;
11407 if (indmips->fn_stub)
11408 {
11409 dirmips->fn_stub = indmips->fn_stub;
11410 indmips->fn_stub = NULL;
11411 }
11412 if (indmips->need_fn_stub)
11413 {
11414 dirmips->need_fn_stub = TRUE;
11415 indmips->need_fn_stub = FALSE;
11416 }
11417 if (indmips->call_stub)
11418 {
11419 dirmips->call_stub = indmips->call_stub;
11420 indmips->call_stub = NULL;
11421 }
11422 if (indmips->call_fp_stub)
11423 {
11424 dirmips->call_fp_stub = indmips->call_fp_stub;
11425 indmips->call_fp_stub = NULL;
11426 }
11427 if (indmips->global_got_area < dirmips->global_got_area)
11428 dirmips->global_got_area = indmips->global_got_area;
11429 if (indmips->global_got_area < GGA_NONE)
11430 indmips->global_got_area = GGA_NONE;
11431 if (indmips->has_nonpic_branches)
11432 dirmips->has_nonpic_branches = TRUE;
11433
11434 if (dirmips->tls_type == 0)
11435 dirmips->tls_type = indmips->tls_type;
11436 }
11437 \f
11438 #define PDR_SIZE 32
11439
11440 bfd_boolean
11441 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11442 struct bfd_link_info *info)
11443 {
11444 asection *o;
11445 bfd_boolean ret = FALSE;
11446 unsigned char *tdata;
11447 size_t i, skip;
11448
11449 o = bfd_get_section_by_name (abfd, ".pdr");
11450 if (! o)
11451 return FALSE;
11452 if (o->size == 0)
11453 return FALSE;
11454 if (o->size % PDR_SIZE != 0)
11455 return FALSE;
11456 if (o->output_section != NULL
11457 && bfd_is_abs_section (o->output_section))
11458 return FALSE;
11459
11460 tdata = bfd_zmalloc (o->size / PDR_SIZE);
11461 if (! tdata)
11462 return FALSE;
11463
11464 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11465 info->keep_memory);
11466 if (!cookie->rels)
11467 {
11468 free (tdata);
11469 return FALSE;
11470 }
11471
11472 cookie->rel = cookie->rels;
11473 cookie->relend = cookie->rels + o->reloc_count;
11474
11475 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11476 {
11477 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11478 {
11479 tdata[i] = 1;
11480 skip ++;
11481 }
11482 }
11483
11484 if (skip != 0)
11485 {
11486 mips_elf_section_data (o)->u.tdata = tdata;
11487 o->size -= skip * PDR_SIZE;
11488 ret = TRUE;
11489 }
11490 else
11491 free (tdata);
11492
11493 if (! info->keep_memory)
11494 free (cookie->rels);
11495
11496 return ret;
11497 }
11498
11499 bfd_boolean
11500 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11501 {
11502 if (strcmp (sec->name, ".pdr") == 0)
11503 return TRUE;
11504 return FALSE;
11505 }
11506
11507 bfd_boolean
11508 _bfd_mips_elf_write_section (bfd *output_bfd,
11509 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11510 asection *sec, bfd_byte *contents)
11511 {
11512 bfd_byte *to, *from, *end;
11513 int i;
11514
11515 if (strcmp (sec->name, ".pdr") != 0)
11516 return FALSE;
11517
11518 if (mips_elf_section_data (sec)->u.tdata == NULL)
11519 return FALSE;
11520
11521 to = contents;
11522 end = contents + sec->size;
11523 for (from = contents, i = 0;
11524 from < end;
11525 from += PDR_SIZE, i++)
11526 {
11527 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11528 continue;
11529 if (to != from)
11530 memcpy (to, from, PDR_SIZE);
11531 to += PDR_SIZE;
11532 }
11533 bfd_set_section_contents (output_bfd, sec->output_section, contents,
11534 sec->output_offset, sec->size);
11535 return TRUE;
11536 }
11537 \f
11538 /* microMIPS code retains local labels for linker relaxation. Omit them
11539 from output by default for clarity. */
11540
11541 bfd_boolean
11542 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
11543 {
11544 return _bfd_elf_is_local_label_name (abfd, sym->name);
11545 }
11546
11547 /* MIPS ELF uses a special find_nearest_line routine in order the
11548 handle the ECOFF debugging information. */
11549
11550 struct mips_elf_find_line
11551 {
11552 struct ecoff_debug_info d;
11553 struct ecoff_find_line i;
11554 };
11555
11556 bfd_boolean
11557 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11558 asymbol **symbols, bfd_vma offset,
11559 const char **filename_ptr,
11560 const char **functionname_ptr,
11561 unsigned int *line_ptr)
11562 {
11563 asection *msec;
11564
11565 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11566 filename_ptr, functionname_ptr,
11567 line_ptr))
11568 return TRUE;
11569
11570 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11571 filename_ptr, functionname_ptr,
11572 line_ptr, ABI_64_P (abfd) ? 8 : 0,
11573 &elf_tdata (abfd)->dwarf2_find_line_info))
11574 return TRUE;
11575
11576 msec = bfd_get_section_by_name (abfd, ".mdebug");
11577 if (msec != NULL)
11578 {
11579 flagword origflags;
11580 struct mips_elf_find_line *fi;
11581 const struct ecoff_debug_swap * const swap =
11582 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11583
11584 /* If we are called during a link, mips_elf_final_link may have
11585 cleared the SEC_HAS_CONTENTS field. We force it back on here
11586 if appropriate (which it normally will be). */
11587 origflags = msec->flags;
11588 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11589 msec->flags |= SEC_HAS_CONTENTS;
11590
11591 fi = elf_tdata (abfd)->find_line_info;
11592 if (fi == NULL)
11593 {
11594 bfd_size_type external_fdr_size;
11595 char *fraw_src;
11596 char *fraw_end;
11597 struct fdr *fdr_ptr;
11598 bfd_size_type amt = sizeof (struct mips_elf_find_line);
11599
11600 fi = bfd_zalloc (abfd, amt);
11601 if (fi == NULL)
11602 {
11603 msec->flags = origflags;
11604 return FALSE;
11605 }
11606
11607 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11608 {
11609 msec->flags = origflags;
11610 return FALSE;
11611 }
11612
11613 /* Swap in the FDR information. */
11614 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11615 fi->d.fdr = bfd_alloc (abfd, amt);
11616 if (fi->d.fdr == NULL)
11617 {
11618 msec->flags = origflags;
11619 return FALSE;
11620 }
11621 external_fdr_size = swap->external_fdr_size;
11622 fdr_ptr = fi->d.fdr;
11623 fraw_src = (char *) fi->d.external_fdr;
11624 fraw_end = (fraw_src
11625 + fi->d.symbolic_header.ifdMax * external_fdr_size);
11626 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11627 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11628
11629 elf_tdata (abfd)->find_line_info = fi;
11630
11631 /* Note that we don't bother to ever free this information.
11632 find_nearest_line is either called all the time, as in
11633 objdump -l, so the information should be saved, or it is
11634 rarely called, as in ld error messages, so the memory
11635 wasted is unimportant. Still, it would probably be a
11636 good idea for free_cached_info to throw it away. */
11637 }
11638
11639 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11640 &fi->i, filename_ptr, functionname_ptr,
11641 line_ptr))
11642 {
11643 msec->flags = origflags;
11644 return TRUE;
11645 }
11646
11647 msec->flags = origflags;
11648 }
11649
11650 /* Fall back on the generic ELF find_nearest_line routine. */
11651
11652 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11653 filename_ptr, functionname_ptr,
11654 line_ptr);
11655 }
11656
11657 bfd_boolean
11658 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11659 const char **filename_ptr,
11660 const char **functionname_ptr,
11661 unsigned int *line_ptr)
11662 {
11663 bfd_boolean found;
11664 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11665 functionname_ptr, line_ptr,
11666 & elf_tdata (abfd)->dwarf2_find_line_info);
11667 return found;
11668 }
11669
11670 \f
11671 /* When are writing out the .options or .MIPS.options section,
11672 remember the bytes we are writing out, so that we can install the
11673 GP value in the section_processing routine. */
11674
11675 bfd_boolean
11676 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11677 const void *location,
11678 file_ptr offset, bfd_size_type count)
11679 {
11680 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11681 {
11682 bfd_byte *c;
11683
11684 if (elf_section_data (section) == NULL)
11685 {
11686 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11687 section->used_by_bfd = bfd_zalloc (abfd, amt);
11688 if (elf_section_data (section) == NULL)
11689 return FALSE;
11690 }
11691 c = mips_elf_section_data (section)->u.tdata;
11692 if (c == NULL)
11693 {
11694 c = bfd_zalloc (abfd, section->size);
11695 if (c == NULL)
11696 return FALSE;
11697 mips_elf_section_data (section)->u.tdata = c;
11698 }
11699
11700 memcpy (c + offset, location, count);
11701 }
11702
11703 return _bfd_elf_set_section_contents (abfd, section, location, offset,
11704 count);
11705 }
11706
11707 /* This is almost identical to bfd_generic_get_... except that some
11708 MIPS relocations need to be handled specially. Sigh. */
11709
11710 bfd_byte *
11711 _bfd_elf_mips_get_relocated_section_contents
11712 (bfd *abfd,
11713 struct bfd_link_info *link_info,
11714 struct bfd_link_order *link_order,
11715 bfd_byte *data,
11716 bfd_boolean relocatable,
11717 asymbol **symbols)
11718 {
11719 /* Get enough memory to hold the stuff */
11720 bfd *input_bfd = link_order->u.indirect.section->owner;
11721 asection *input_section = link_order->u.indirect.section;
11722 bfd_size_type sz;
11723
11724 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11725 arelent **reloc_vector = NULL;
11726 long reloc_count;
11727
11728 if (reloc_size < 0)
11729 goto error_return;
11730
11731 reloc_vector = bfd_malloc (reloc_size);
11732 if (reloc_vector == NULL && reloc_size != 0)
11733 goto error_return;
11734
11735 /* read in the section */
11736 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11737 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11738 goto error_return;
11739
11740 reloc_count = bfd_canonicalize_reloc (input_bfd,
11741 input_section,
11742 reloc_vector,
11743 symbols);
11744 if (reloc_count < 0)
11745 goto error_return;
11746
11747 if (reloc_count > 0)
11748 {
11749 arelent **parent;
11750 /* for mips */
11751 int gp_found;
11752 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
11753
11754 {
11755 struct bfd_hash_entry *h;
11756 struct bfd_link_hash_entry *lh;
11757 /* Skip all this stuff if we aren't mixing formats. */
11758 if (abfd && input_bfd
11759 && abfd->xvec == input_bfd->xvec)
11760 lh = 0;
11761 else
11762 {
11763 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11764 lh = (struct bfd_link_hash_entry *) h;
11765 }
11766 lookup:
11767 if (lh)
11768 {
11769 switch (lh->type)
11770 {
11771 case bfd_link_hash_undefined:
11772 case bfd_link_hash_undefweak:
11773 case bfd_link_hash_common:
11774 gp_found = 0;
11775 break;
11776 case bfd_link_hash_defined:
11777 case bfd_link_hash_defweak:
11778 gp_found = 1;
11779 gp = lh->u.def.value;
11780 break;
11781 case bfd_link_hash_indirect:
11782 case bfd_link_hash_warning:
11783 lh = lh->u.i.link;
11784 /* @@FIXME ignoring warning for now */
11785 goto lookup;
11786 case bfd_link_hash_new:
11787 default:
11788 abort ();
11789 }
11790 }
11791 else
11792 gp_found = 0;
11793 }
11794 /* end mips */
11795 for (parent = reloc_vector; *parent != NULL; parent++)
11796 {
11797 char *error_message = NULL;
11798 bfd_reloc_status_type r;
11799
11800 /* Specific to MIPS: Deal with relocation types that require
11801 knowing the gp of the output bfd. */
11802 asymbol *sym = *(*parent)->sym_ptr_ptr;
11803
11804 /* If we've managed to find the gp and have a special
11805 function for the relocation then go ahead, else default
11806 to the generic handling. */
11807 if (gp_found
11808 && (*parent)->howto->special_function
11809 == _bfd_mips_elf32_gprel16_reloc)
11810 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11811 input_section, relocatable,
11812 data, gp);
11813 else
11814 r = bfd_perform_relocation (input_bfd, *parent, data,
11815 input_section,
11816 relocatable ? abfd : NULL,
11817 &error_message);
11818
11819 if (relocatable)
11820 {
11821 asection *os = input_section->output_section;
11822
11823 /* A partial link, so keep the relocs */
11824 os->orelocation[os->reloc_count] = *parent;
11825 os->reloc_count++;
11826 }
11827
11828 if (r != bfd_reloc_ok)
11829 {
11830 switch (r)
11831 {
11832 case bfd_reloc_undefined:
11833 if (!((*link_info->callbacks->undefined_symbol)
11834 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11835 input_bfd, input_section, (*parent)->address, TRUE)))
11836 goto error_return;
11837 break;
11838 case bfd_reloc_dangerous:
11839 BFD_ASSERT (error_message != NULL);
11840 if (!((*link_info->callbacks->reloc_dangerous)
11841 (link_info, error_message, input_bfd, input_section,
11842 (*parent)->address)))
11843 goto error_return;
11844 break;
11845 case bfd_reloc_overflow:
11846 if (!((*link_info->callbacks->reloc_overflow)
11847 (link_info, NULL,
11848 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11849 (*parent)->howto->name, (*parent)->addend,
11850 input_bfd, input_section, (*parent)->address)))
11851 goto error_return;
11852 break;
11853 case bfd_reloc_outofrange:
11854 default:
11855 abort ();
11856 break;
11857 }
11858
11859 }
11860 }
11861 }
11862 if (reloc_vector != NULL)
11863 free (reloc_vector);
11864 return data;
11865
11866 error_return:
11867 if (reloc_vector != NULL)
11868 free (reloc_vector);
11869 return NULL;
11870 }
11871 \f
11872 static bfd_boolean
11873 mips_elf_relax_delete_bytes (bfd *abfd,
11874 asection *sec, bfd_vma addr, int count)
11875 {
11876 Elf_Internal_Shdr *symtab_hdr;
11877 unsigned int sec_shndx;
11878 bfd_byte *contents;
11879 Elf_Internal_Rela *irel, *irelend;
11880 Elf_Internal_Sym *isym;
11881 Elf_Internal_Sym *isymend;
11882 struct elf_link_hash_entry **sym_hashes;
11883 struct elf_link_hash_entry **end_hashes;
11884 struct elf_link_hash_entry **start_hashes;
11885 unsigned int symcount;
11886
11887 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
11888 contents = elf_section_data (sec)->this_hdr.contents;
11889
11890 irel = elf_section_data (sec)->relocs;
11891 irelend = irel + sec->reloc_count;
11892
11893 /* Actually delete the bytes. */
11894 memmove (contents + addr, contents + addr + count,
11895 (size_t) (sec->size - addr - count));
11896 sec->size -= count;
11897
11898 /* Adjust all the relocs. */
11899 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
11900 {
11901 /* Get the new reloc address. */
11902 if (irel->r_offset > addr)
11903 irel->r_offset -= count;
11904 }
11905
11906 BFD_ASSERT (addr % 2 == 0);
11907 BFD_ASSERT (count % 2 == 0);
11908
11909 /* Adjust the local symbols defined in this section. */
11910 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11911 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
11912 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
11913 if (isym->st_shndx == sec_shndx
11914 && isym->st_value > addr)
11915 isym->st_value -= count;
11916
11917 /* Now adjust the global symbols defined in this section. */
11918 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
11919 - symtab_hdr->sh_info);
11920 sym_hashes = start_hashes = elf_sym_hashes (abfd);
11921 end_hashes = sym_hashes + symcount;
11922
11923 for (; sym_hashes < end_hashes; sym_hashes++)
11924 {
11925 struct elf_link_hash_entry *sym_hash = *sym_hashes;
11926
11927 if ((sym_hash->root.type == bfd_link_hash_defined
11928 || sym_hash->root.type == bfd_link_hash_defweak)
11929 && sym_hash->root.u.def.section == sec)
11930 {
11931 bfd_vma value;
11932
11933 value = sym_hash->root.u.def.value;
11934 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
11935 value &= MINUS_TWO;
11936 if (value > addr)
11937 sym_hash->root.u.def.value -= count;
11938 }
11939 }
11940
11941 return TRUE;
11942 }
11943
11944
11945 /* Opcodes needed for microMIPS relaxation as found in
11946 opcodes/micromips-opc.c. */
11947
11948 struct opcode_descriptor {
11949 unsigned long match;
11950 unsigned long mask;
11951 };
11952
11953 /* The $ra register aka $31. */
11954
11955 #define RA 31
11956
11957 /* 32-bit instruction format register fields. */
11958
11959 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
11960 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
11961
11962 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
11963
11964 #define OP16_VALID_REG(r) \
11965 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
11966
11967
11968 /* 32-bit and 16-bit branches. */
11969
11970 static const struct opcode_descriptor b_insns_32[] = {
11971 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
11972 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
11973 { 0, 0 } /* End marker for find_match(). */
11974 };
11975
11976 static const struct opcode_descriptor bc_insn_32 =
11977 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
11978
11979 static const struct opcode_descriptor bz_insn_32 =
11980 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
11981
11982 static const struct opcode_descriptor bzal_insn_32 =
11983 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
11984
11985 static const struct opcode_descriptor beq_insn_32 =
11986 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
11987
11988 static const struct opcode_descriptor b_insn_16 =
11989 { /* "b", "mD", */ 0xcc00, 0xfc00 };
11990
11991 static const struct opcode_descriptor bz_insn_16 =
11992 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xac00 };
11993
11994
11995 /* 32-bit and 16-bit branch EQ and NE zero. */
11996
11997 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
11998 eq and second the ne. This convention is used when replacing a
11999 32-bit BEQ/BNE with the 16-bit version. */
12000
12001 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12002
12003 static const struct opcode_descriptor bz_rs_insns_32[] = {
12004 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
12005 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
12006 { 0, 0 } /* End marker for find_match(). */
12007 };
12008
12009 static const struct opcode_descriptor bz_rt_insns_32[] = {
12010 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
12011 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
12012 { 0, 0 } /* End marker for find_match(). */
12013 };
12014
12015 static const struct opcode_descriptor bzc_insns_32[] = {
12016 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
12017 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
12018 { 0, 0 } /* End marker for find_match(). */
12019 };
12020
12021 static const struct opcode_descriptor bz_insns_16[] = {
12022 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
12023 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
12024 { 0, 0 } /* End marker for find_match(). */
12025 };
12026
12027 /* Switch between a 5-bit register index and its 3-bit shorthand. */
12028
12029 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12030 #define BZ16_REG_FIELD(r) \
12031 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12032
12033
12034 /* 32-bit instructions with a delay slot. */
12035
12036 static const struct opcode_descriptor jal_insn_32_bd16 =
12037 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
12038
12039 static const struct opcode_descriptor jal_insn_32_bd32 =
12040 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
12041
12042 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12043 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
12044
12045 static const struct opcode_descriptor j_insn_32 =
12046 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
12047
12048 static const struct opcode_descriptor jalr_insn_32 =
12049 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
12050
12051 /* This table can be compacted, because no opcode replacement is made. */
12052
12053 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12054 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
12055
12056 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
12057 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
12058
12059 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
12060 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
12061 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
12062 { 0, 0 } /* End marker for find_match(). */
12063 };
12064
12065 /* This table can be compacted, because no opcode replacement is made. */
12066
12067 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12068 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
12069
12070 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
12071 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
12072 { 0, 0 } /* End marker for find_match(). */
12073 };
12074
12075
12076 /* 16-bit instructions with a delay slot. */
12077
12078 static const struct opcode_descriptor jalr_insn_16_bd16 =
12079 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
12080
12081 static const struct opcode_descriptor jalr_insn_16_bd32 =
12082 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
12083
12084 static const struct opcode_descriptor jr_insn_16 =
12085 { /* "jr", "mj", */ 0x4580, 0xffe0 };
12086
12087 #define JR16_REG(opcode) ((opcode) & 0x1f)
12088
12089 /* This table can be compacted, because no opcode replacement is made. */
12090
12091 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12092 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
12093
12094 { /* "b", "mD", */ 0xcc00, 0xfc00 },
12095 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
12096 { /* "jr", "mj", */ 0x4580, 0xffe0 },
12097 { 0, 0 } /* End marker for find_match(). */
12098 };
12099
12100
12101 /* LUI instruction. */
12102
12103 static const struct opcode_descriptor lui_insn =
12104 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
12105
12106
12107 /* ADDIU instruction. */
12108
12109 static const struct opcode_descriptor addiu_insn =
12110 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
12111
12112 static const struct opcode_descriptor addiupc_insn =
12113 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
12114
12115 #define ADDIUPC_REG_FIELD(r) \
12116 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12117
12118
12119 /* Relaxable instructions in a JAL delay slot: MOVE. */
12120
12121 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
12122 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
12123 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12124 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12125
12126 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12127 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
12128
12129 static const struct opcode_descriptor move_insns_32[] = {
12130 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12131 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
12132 { 0, 0 } /* End marker for find_match(). */
12133 };
12134
12135 static const struct opcode_descriptor move_insn_16 =
12136 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
12137
12138
12139 /* NOP instructions. */
12140
12141 static const struct opcode_descriptor nop_insn_32 =
12142 { /* "nop", "", */ 0x00000000, 0xffffffff };
12143
12144 static const struct opcode_descriptor nop_insn_16 =
12145 { /* "nop", "", */ 0x0c00, 0xffff };
12146
12147
12148 /* Instruction match support. */
12149
12150 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12151
12152 static int
12153 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12154 {
12155 unsigned long indx;
12156
12157 for (indx = 0; insn[indx].mask != 0; indx++)
12158 if (MATCH (opcode, insn[indx]))
12159 return indx;
12160
12161 return -1;
12162 }
12163
12164
12165 /* Branch and delay slot decoding support. */
12166
12167 /* If PTR points to what *might* be a 16-bit branch or jump, then
12168 return the minimum length of its delay slot, otherwise return 0.
12169 Non-zero results are not definitive as we might be checking against
12170 the second half of another instruction. */
12171
12172 static int
12173 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12174 {
12175 unsigned long opcode;
12176 int bdsize;
12177
12178 opcode = bfd_get_16 (abfd, ptr);
12179 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12180 /* 16-bit branch/jump with a 32-bit delay slot. */
12181 bdsize = 4;
12182 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12183 || find_match (opcode, ds_insns_16_bd16) >= 0)
12184 /* 16-bit branch/jump with a 16-bit delay slot. */
12185 bdsize = 2;
12186 else
12187 /* No delay slot. */
12188 bdsize = 0;
12189
12190 return bdsize;
12191 }
12192
12193 /* If PTR points to what *might* be a 32-bit branch or jump, then
12194 return the minimum length of its delay slot, otherwise return 0.
12195 Non-zero results are not definitive as we might be checking against
12196 the second half of another instruction. */
12197
12198 static int
12199 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12200 {
12201 unsigned long opcode;
12202 int bdsize;
12203
12204 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12205 if (find_match (opcode, ds_insns_32_bd32) >= 0)
12206 /* 32-bit branch/jump with a 32-bit delay slot. */
12207 bdsize = 4;
12208 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12209 /* 32-bit branch/jump with a 16-bit delay slot. */
12210 bdsize = 2;
12211 else
12212 /* No delay slot. */
12213 bdsize = 0;
12214
12215 return bdsize;
12216 }
12217
12218 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12219 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
12220
12221 static bfd_boolean
12222 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12223 {
12224 unsigned long opcode;
12225
12226 opcode = bfd_get_16 (abfd, ptr);
12227 if (MATCH (opcode, b_insn_16)
12228 /* B16 */
12229 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12230 /* JR16 */
12231 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12232 /* BEQZ16, BNEZ16 */
12233 || (MATCH (opcode, jalr_insn_16_bd32)
12234 /* JALR16 */
12235 && reg != JR16_REG (opcode) && reg != RA))
12236 return TRUE;
12237
12238 return FALSE;
12239 }
12240
12241 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12242 then return TRUE, otherwise FALSE. */
12243
12244 static int
12245 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12246 {
12247 unsigned long opcode;
12248
12249 opcode = (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
12250 if (MATCH (opcode, j_insn_32)
12251 /* J */
12252 || MATCH (opcode, bc_insn_32)
12253 /* BC1F, BC1T, BC2F, BC2T */
12254 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12255 /* JAL, JALX */
12256 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12257 /* BGEZ, BGTZ, BLEZ, BLTZ */
12258 || (MATCH (opcode, bzal_insn_32)
12259 /* BGEZAL, BLTZAL */
12260 && reg != OP32_SREG (opcode) && reg != RA)
12261 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
12262 /* JALR, JALR.HB, BEQ, BNE */
12263 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
12264 return TRUE;
12265
12266 return FALSE;
12267 }
12268
12269 /* Bitsize checking. */
12270 #define IS_BITSIZE(val, N) \
12271 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
12272 - (1ULL << ((N) - 1))) == (val))
12273
12274 /* See if relocations [INTERNAL_RELOCS, IRELEND) confirm that there
12275 is a 4-byte branch at offset OFFSET. */
12276
12277 static bfd_boolean
12278 check_4byte_branch (Elf_Internal_Rela *internal_relocs,
12279 Elf_Internal_Rela *irelend, bfd_vma offset)
12280 {
12281 Elf_Internal_Rela *irel;
12282 unsigned long r_type;
12283
12284 for (irel = internal_relocs; irel < irelend; irel++)
12285 if (irel->r_offset == offset)
12286 {
12287 r_type = ELF32_R_TYPE (irel->r_info);
12288 if (r_type == R_MICROMIPS_26_S1
12289 || r_type == R_MICROMIPS_PC16_S1
12290 || r_type == R_MICROMIPS_JALR)
12291 return TRUE;
12292 }
12293 return FALSE;
12294 }
12295 \f
12296 bfd_boolean
12297 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
12298 struct bfd_link_info *link_info,
12299 bfd_boolean *again)
12300 {
12301 Elf_Internal_Shdr *symtab_hdr;
12302 Elf_Internal_Rela *internal_relocs;
12303 Elf_Internal_Rela *irel, *irelend;
12304 bfd_byte *contents = NULL;
12305 Elf_Internal_Sym *isymbuf = NULL;
12306
12307 /* Assume nothing changes. */
12308 *again = FALSE;
12309
12310 /* We don't have to do anything for a relocatable link, if
12311 this section does not have relocs, or if this is not a
12312 code section. */
12313
12314 if (link_info->relocatable
12315 || (sec->flags & SEC_RELOC) == 0
12316 || sec->reloc_count == 0
12317 || (sec->flags & SEC_CODE) == 0)
12318 return TRUE;
12319
12320 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12321
12322 /* Get a copy of the native relocations. */
12323 internal_relocs = (_bfd_elf_link_read_relocs
12324 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
12325 link_info->keep_memory));
12326 if (internal_relocs == NULL)
12327 goto error_return;
12328
12329 /* Walk through them looking for relaxing opportunities. */
12330 irelend = internal_relocs + sec->reloc_count;
12331 for (irel = internal_relocs; irel < irelend; irel++)
12332 {
12333 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
12334 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
12335 bfd_boolean target_is_micromips_code_p;
12336 unsigned long opcode;
12337 bfd_vma symval;
12338 bfd_vma pcrval;
12339 int fndopc;
12340
12341 /* The number of bytes to delete for relaxation and from where
12342 to delete these bytes starting at irel->r_offset. */
12343 int delcnt = 0;
12344 int deloff = 0;
12345
12346 /* If this isn't something that can be relaxed, then ignore
12347 this reloc. */
12348 if (r_type != R_MICROMIPS_HI16
12349 && r_type != R_MICROMIPS_PC16_S1
12350 && r_type != R_MICROMIPS_26_S1
12351 && r_type != R_MICROMIPS_GPREL16)
12352 continue;
12353
12354 /* Get the section contents if we haven't done so already. */
12355 if (contents == NULL)
12356 {
12357 /* Get cached copy if it exists. */
12358 if (elf_section_data (sec)->this_hdr.contents != NULL)
12359 contents = elf_section_data (sec)->this_hdr.contents;
12360 /* Go get them off disk. */
12361 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
12362 goto error_return;
12363 }
12364
12365 /* Read this BFD's local symbols if we haven't done so already. */
12366 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
12367 {
12368 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
12369 if (isymbuf == NULL)
12370 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12371 symtab_hdr->sh_info, 0,
12372 NULL, NULL, NULL);
12373 if (isymbuf == NULL)
12374 goto error_return;
12375 }
12376
12377 /* Get the value of the symbol referred to by the reloc. */
12378 if (r_symndx < symtab_hdr->sh_info)
12379 {
12380 /* A local symbol. */
12381 Elf_Internal_Sym *isym;
12382 asection *sym_sec;
12383
12384 isym = isymbuf + r_symndx;
12385 if (isym->st_shndx == SHN_UNDEF)
12386 sym_sec = bfd_und_section_ptr;
12387 else if (isym->st_shndx == SHN_ABS)
12388 sym_sec = bfd_abs_section_ptr;
12389 else if (isym->st_shndx == SHN_COMMON)
12390 sym_sec = bfd_com_section_ptr;
12391 else
12392 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
12393 symval = (isym->st_value
12394 + sym_sec->output_section->vma
12395 + sym_sec->output_offset);
12396 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
12397 }
12398 else
12399 {
12400 unsigned long indx;
12401 struct elf_link_hash_entry *h;
12402
12403 /* An external symbol. */
12404 indx = r_symndx - symtab_hdr->sh_info;
12405 h = elf_sym_hashes (abfd)[indx];
12406 BFD_ASSERT (h != NULL);
12407
12408 if (h->root.type != bfd_link_hash_defined
12409 && h->root.type != bfd_link_hash_defweak)
12410 /* This appears to be a reference to an undefined
12411 symbol. Just ignore it -- it will be caught by the
12412 regular reloc processing. */
12413 continue;
12414
12415 symval = (h->root.u.def.value
12416 + h->root.u.def.section->output_section->vma
12417 + h->root.u.def.section->output_offset);
12418 target_is_micromips_code_p = (!h->needs_plt
12419 && ELF_ST_IS_MICROMIPS (h->other));
12420 }
12421
12422
12423 /* For simplicity of coding, we are going to modify the
12424 section contents, the section relocs, and the BFD symbol
12425 table. We must tell the rest of the code not to free up this
12426 information. It would be possible to instead create a table
12427 of changes which have to be made, as is done in coff-mips.c;
12428 that would be more work, but would require less memory when
12429 the linker is run. */
12430
12431 /* Only 32-bit instructions relaxed. */
12432 if (irel->r_offset + 4 > sec->size)
12433 continue;
12434
12435 opcode = bfd_get_16 (abfd, contents + irel->r_offset ) << 16;
12436 opcode |= bfd_get_16 (abfd, contents + irel->r_offset + 2);
12437
12438 /* This is the pc-relative distance from the instruction the
12439 relocation is applied to, to the symbol referred. */
12440 pcrval = (symval
12441 - (sec->output_section->vma + sec->output_offset)
12442 - irel->r_offset);
12443
12444 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
12445 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
12446 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
12447
12448 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
12449
12450 where pcrval has first to be adjusted to apply against the LO16
12451 location (we make the adjustment later on, when we have figured
12452 out the offset). */
12453 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
12454 {
12455 unsigned long nextopc;
12456 unsigned long reg;
12457 bfd_vma offset;
12458
12459 /* Give up if the previous reloc was a HI16 against this symbol
12460 too. */
12461 if (irel > internal_relocs
12462 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
12463 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
12464 continue;
12465
12466 /* Or if the next reloc is not a LO16 against this symbol. */
12467 if (irel + 1 >= irelend
12468 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
12469 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
12470 continue;
12471
12472 /* Or if the second next reloc is a LO16 against this symbol too. */
12473 if (irel + 2 >= irelend
12474 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
12475 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
12476 continue;
12477
12478 /* See if the LUI instruction *might* be in a branch delay slot. */
12479 if (irel->r_offset >= 2
12480 && check_br16_dslot (abfd, contents + irel->r_offset - 2) > 0
12481 && !(irel->r_offset >= 4
12482 /* If the instruction is actually a 4-byte branch,
12483 the value of check_br16_dslot doesn't matter.
12484 We should use check_br32_dslot to check whether
12485 the branch has a delay slot. */
12486 && check_4byte_branch (internal_relocs, irelend,
12487 irel->r_offset - 4)))
12488 continue;
12489 if (irel->r_offset >= 4
12490 && check_br32_dslot (abfd, contents + irel->r_offset - 4) > 0)
12491 continue;
12492
12493 reg = OP32_SREG (opcode);
12494
12495 /* We only relax adjacent instructions or ones separated with
12496 a branch or jump that has a delay slot. The branch or jump
12497 must not fiddle with the register used to hold the address.
12498 Subtract 4 for the LUI itself. */
12499 offset = irel[1].r_offset - irel[0].r_offset;
12500 switch (offset - 4)
12501 {
12502 case 0:
12503 break;
12504 case 2:
12505 if (check_br16 (abfd, contents + irel->r_offset + 4, reg))
12506 break;
12507 continue;
12508 case 4:
12509 if (check_br32 (abfd, contents + irel->r_offset + 4, reg))
12510 break;
12511 continue;
12512 default:
12513 continue;
12514 }
12515
12516 nextopc = bfd_get_16 (abfd, contents + irel[1].r_offset ) << 16;
12517 nextopc |= bfd_get_16 (abfd, contents + irel[1].r_offset + 2);
12518
12519 /* Give up unless the same register is used with both
12520 relocations. */
12521 if (OP32_SREG (nextopc) != reg)
12522 continue;
12523
12524 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
12525 and rounding up to take masking of the two LSBs into account. */
12526 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
12527
12528 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
12529 if (IS_BITSIZE (symval, 16))
12530 {
12531 /* Fix the relocation's type. */
12532 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
12533
12534 /* Instructions using R_MICROMIPS_LO16 have the base or
12535 source register in bits 20:16. This register becomes $0
12536 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
12537 nextopc &= ~0x001f0000;
12538 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12539 contents + irel[1].r_offset);
12540 }
12541
12542 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
12543 We add 4 to take LUI deletion into account while checking
12544 the PC-relative distance. */
12545 else if (symval % 4 == 0
12546 && IS_BITSIZE (pcrval + 4, 25)
12547 && MATCH (nextopc, addiu_insn)
12548 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
12549 && OP16_VALID_REG (OP32_TREG (nextopc)))
12550 {
12551 /* Fix the relocation's type. */
12552 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
12553
12554 /* Replace ADDIU with the ADDIUPC version. */
12555 nextopc = (addiupc_insn.match
12556 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
12557
12558 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
12559 contents + irel[1].r_offset);
12560 bfd_put_16 (abfd, nextopc & 0xffff,
12561 contents + irel[1].r_offset + 2);
12562 }
12563
12564 /* Can't do anything, give up, sigh... */
12565 else
12566 continue;
12567
12568 /* Fix the relocation's type. */
12569 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
12570
12571 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
12572 delcnt = 4;
12573 deloff = 0;
12574 }
12575
12576 /* Compact branch relaxation -- due to the multitude of macros
12577 employed by the compiler/assembler, compact branches are not
12578 always generated. Obviously, this can/will be fixed elsewhere,
12579 but there is no drawback in double checking it here. */
12580 else if (r_type == R_MICROMIPS_PC16_S1
12581 && irel->r_offset + 5 < sec->size
12582 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12583 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
12584 && MATCH (bfd_get_16 (abfd, contents + irel->r_offset + 4),
12585 nop_insn_16))
12586 {
12587 unsigned long reg;
12588
12589 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12590
12591 /* Replace BEQZ/BNEZ with the compact version. */
12592 opcode = (bzc_insns_32[fndopc].match
12593 | BZC32_REG_FIELD (reg)
12594 | (opcode & 0xffff)); /* Addend value. */
12595
12596 bfd_put_16 (abfd, (opcode >> 16) & 0xffff,
12597 contents + irel->r_offset);
12598 bfd_put_16 (abfd, opcode & 0xffff,
12599 contents + irel->r_offset + 2);
12600
12601 /* Delete the 16-bit delay slot NOP: two bytes from
12602 irel->offset + 4. */
12603 delcnt = 2;
12604 deloff = 4;
12605 }
12606
12607 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
12608 to check the distance from the next instruction, so subtract 2. */
12609 else if (r_type == R_MICROMIPS_PC16_S1
12610 && IS_BITSIZE (pcrval - 2, 11)
12611 && find_match (opcode, b_insns_32) >= 0)
12612 {
12613 /* Fix the relocation's type. */
12614 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
12615
12616 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12617 bfd_put_16 (abfd,
12618 (b_insn_16.match
12619 | (opcode & 0x3ff)), /* Addend value. */
12620 contents + irel->r_offset);
12621
12622 /* Delete 2 bytes from irel->r_offset + 2. */
12623 delcnt = 2;
12624 deloff = 2;
12625 }
12626
12627 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
12628 to check the distance from the next instruction, so subtract 2. */
12629 else if (r_type == R_MICROMIPS_PC16_S1
12630 && IS_BITSIZE (pcrval - 2, 8)
12631 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
12632 && OP16_VALID_REG (OP32_SREG (opcode)))
12633 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
12634 && OP16_VALID_REG (OP32_TREG (opcode)))))
12635 {
12636 unsigned long reg;
12637
12638 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
12639
12640 /* Fix the relocation's type. */
12641 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
12642
12643 /* Replace the the 32-bit opcode with a 16-bit opcode. */
12644 bfd_put_16 (abfd,
12645 (bz_insns_16[fndopc].match
12646 | BZ16_REG_FIELD (reg)
12647 | (opcode & 0x7f)), /* Addend value. */
12648 contents + irel->r_offset);
12649
12650 /* Delete 2 bytes from irel->r_offset + 2. */
12651 delcnt = 2;
12652 deloff = 2;
12653 }
12654
12655 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
12656 else if (r_type == R_MICROMIPS_26_S1
12657 && target_is_micromips_code_p
12658 && irel->r_offset + 7 < sec->size
12659 && MATCH (opcode, jal_insn_32_bd32))
12660 {
12661 unsigned long n32opc;
12662 bfd_boolean relaxed = FALSE;
12663
12664 n32opc = bfd_get_16 (abfd, contents + irel->r_offset + 4) << 16;
12665 n32opc |= bfd_get_16 (abfd, contents + irel->r_offset + 6);
12666
12667 if (MATCH (n32opc, nop_insn_32))
12668 {
12669 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
12670 bfd_put_16 (abfd, nop_insn_16.match,
12671 contents + irel->r_offset + 4);
12672
12673 relaxed = TRUE;
12674 }
12675 else if (find_match (n32opc, move_insns_32) >= 0)
12676 {
12677 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
12678 bfd_put_16 (abfd,
12679 (move_insn_16.match
12680 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
12681 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
12682 contents + irel->r_offset + 4);
12683
12684 relaxed = TRUE;
12685 }
12686 /* Other 32-bit instructions relaxable to 16-bit
12687 instructions will be handled here later. */
12688
12689 if (relaxed)
12690 {
12691 /* JAL with 32-bit delay slot that is changed to a JALS
12692 with 16-bit delay slot. */
12693 bfd_put_16 (abfd, (jal_insn_32_bd16.match >> 16) & 0xffff,
12694 contents + irel->r_offset);
12695 bfd_put_16 (abfd, jal_insn_32_bd16.match & 0xffff,
12696 contents + irel->r_offset + 2);
12697
12698 /* Delete 2 bytes from irel->r_offset + 6. */
12699 delcnt = 2;
12700 deloff = 6;
12701 }
12702 }
12703
12704 if (delcnt != 0)
12705 {
12706 /* Note that we've changed the relocs, section contents, etc. */
12707 elf_section_data (sec)->relocs = internal_relocs;
12708 elf_section_data (sec)->this_hdr.contents = contents;
12709 symtab_hdr->contents = (unsigned char *) isymbuf;
12710
12711 /* Delete bytes depending on the delcnt and deloff. */
12712 if (!mips_elf_relax_delete_bytes (abfd, sec,
12713 irel->r_offset + deloff, delcnt))
12714 goto error_return;
12715
12716 /* That will change things, so we should relax again.
12717 Note that this is not required, and it may be slow. */
12718 *again = TRUE;
12719 }
12720 }
12721
12722 if (isymbuf != NULL
12723 && symtab_hdr->contents != (unsigned char *) isymbuf)
12724 {
12725 if (! link_info->keep_memory)
12726 free (isymbuf);
12727 else
12728 {
12729 /* Cache the symbols for elf_link_input_bfd. */
12730 symtab_hdr->contents = (unsigned char *) isymbuf;
12731 }
12732 }
12733
12734 if (contents != NULL
12735 && elf_section_data (sec)->this_hdr.contents != contents)
12736 {
12737 if (! link_info->keep_memory)
12738 free (contents);
12739 else
12740 {
12741 /* Cache the section contents for elf_link_input_bfd. */
12742 elf_section_data (sec)->this_hdr.contents = contents;
12743 }
12744 }
12745
12746 if (internal_relocs != NULL
12747 && elf_section_data (sec)->relocs != internal_relocs)
12748 free (internal_relocs);
12749
12750 return TRUE;
12751
12752 error_return:
12753 if (isymbuf != NULL
12754 && symtab_hdr->contents != (unsigned char *) isymbuf)
12755 free (isymbuf);
12756 if (contents != NULL
12757 && elf_section_data (sec)->this_hdr.contents != contents)
12758 free (contents);
12759 if (internal_relocs != NULL
12760 && elf_section_data (sec)->relocs != internal_relocs)
12761 free (internal_relocs);
12762
12763 return FALSE;
12764 }
12765 \f
12766 /* Create a MIPS ELF linker hash table. */
12767
12768 struct bfd_link_hash_table *
12769 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
12770 {
12771 struct mips_elf_link_hash_table *ret;
12772 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
12773
12774 ret = bfd_malloc (amt);
12775 if (ret == NULL)
12776 return NULL;
12777
12778 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
12779 mips_elf_link_hash_newfunc,
12780 sizeof (struct mips_elf_link_hash_entry),
12781 MIPS_ELF_DATA))
12782 {
12783 free (ret);
12784 return NULL;
12785 }
12786
12787 #if 0
12788 /* We no longer use this. */
12789 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
12790 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
12791 #endif
12792 ret->procedure_count = 0;
12793 ret->compact_rel_size = 0;
12794 ret->use_rld_obj_head = FALSE;
12795 ret->rld_value = 0;
12796 ret->mips16_stubs_seen = FALSE;
12797 ret->use_plts_and_copy_relocs = FALSE;
12798 ret->is_vxworks = FALSE;
12799 ret->small_data_overflow_reported = FALSE;
12800 ret->srelbss = NULL;
12801 ret->sdynbss = NULL;
12802 ret->srelplt = NULL;
12803 ret->srelplt2 = NULL;
12804 ret->sgotplt = NULL;
12805 ret->splt = NULL;
12806 ret->sstubs = NULL;
12807 ret->sgot = NULL;
12808 ret->got_info = NULL;
12809 ret->plt_header_size = 0;
12810 ret->plt_entry_size = 0;
12811 ret->lazy_stub_count = 0;
12812 ret->function_stub_size = 0;
12813 ret->strampoline = NULL;
12814 ret->la25_stubs = NULL;
12815 ret->add_stub_section = NULL;
12816
12817 return &ret->root.root;
12818 }
12819
12820 /* Likewise, but indicate that the target is VxWorks. */
12821
12822 struct bfd_link_hash_table *
12823 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
12824 {
12825 struct bfd_link_hash_table *ret;
12826
12827 ret = _bfd_mips_elf_link_hash_table_create (abfd);
12828 if (ret)
12829 {
12830 struct mips_elf_link_hash_table *htab;
12831
12832 htab = (struct mips_elf_link_hash_table *) ret;
12833 htab->use_plts_and_copy_relocs = TRUE;
12834 htab->is_vxworks = TRUE;
12835 }
12836 return ret;
12837 }
12838
12839 /* A function that the linker calls if we are allowed to use PLTs
12840 and copy relocs. */
12841
12842 void
12843 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
12844 {
12845 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
12846 }
12847 \f
12848 /* We need to use a special link routine to handle the .reginfo and
12849 the .mdebug sections. We need to merge all instances of these
12850 sections together, not write them all out sequentially. */
12851
12852 bfd_boolean
12853 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
12854 {
12855 asection *o;
12856 struct bfd_link_order *p;
12857 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
12858 asection *rtproc_sec;
12859 Elf32_RegInfo reginfo;
12860 struct ecoff_debug_info debug;
12861 struct mips_htab_traverse_info hti;
12862 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12863 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
12864 HDRR *symhdr = &debug.symbolic_header;
12865 void *mdebug_handle = NULL;
12866 asection *s;
12867 EXTR esym;
12868 unsigned int i;
12869 bfd_size_type amt;
12870 struct mips_elf_link_hash_table *htab;
12871
12872 static const char * const secname[] =
12873 {
12874 ".text", ".init", ".fini", ".data",
12875 ".rodata", ".sdata", ".sbss", ".bss"
12876 };
12877 static const int sc[] =
12878 {
12879 scText, scInit, scFini, scData,
12880 scRData, scSData, scSBss, scBss
12881 };
12882
12883 /* Sort the dynamic symbols so that those with GOT entries come after
12884 those without. */
12885 htab = mips_elf_hash_table (info);
12886 BFD_ASSERT (htab != NULL);
12887
12888 if (!mips_elf_sort_hash_table (abfd, info))
12889 return FALSE;
12890
12891 /* Create any scheduled LA25 stubs. */
12892 hti.info = info;
12893 hti.output_bfd = abfd;
12894 hti.error = FALSE;
12895 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
12896 if (hti.error)
12897 return FALSE;
12898
12899 /* Get a value for the GP register. */
12900 if (elf_gp (abfd) == 0)
12901 {
12902 struct bfd_link_hash_entry *h;
12903
12904 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
12905 if (h != NULL && h->type == bfd_link_hash_defined)
12906 elf_gp (abfd) = (h->u.def.value
12907 + h->u.def.section->output_section->vma
12908 + h->u.def.section->output_offset);
12909 else if (htab->is_vxworks
12910 && (h = bfd_link_hash_lookup (info->hash,
12911 "_GLOBAL_OFFSET_TABLE_",
12912 FALSE, FALSE, TRUE))
12913 && h->type == bfd_link_hash_defined)
12914 elf_gp (abfd) = (h->u.def.section->output_section->vma
12915 + h->u.def.section->output_offset
12916 + h->u.def.value);
12917 else if (info->relocatable)
12918 {
12919 bfd_vma lo = MINUS_ONE;
12920
12921 /* Find the GP-relative section with the lowest offset. */
12922 for (o = abfd->sections; o != NULL; o = o->next)
12923 if (o->vma < lo
12924 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
12925 lo = o->vma;
12926
12927 /* And calculate GP relative to that. */
12928 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
12929 }
12930 else
12931 {
12932 /* If the relocate_section function needs to do a reloc
12933 involving the GP value, it should make a reloc_dangerous
12934 callback to warn that GP is not defined. */
12935 }
12936 }
12937
12938 /* Go through the sections and collect the .reginfo and .mdebug
12939 information. */
12940 reginfo_sec = NULL;
12941 mdebug_sec = NULL;
12942 gptab_data_sec = NULL;
12943 gptab_bss_sec = NULL;
12944 for (o = abfd->sections; o != NULL; o = o->next)
12945 {
12946 if (strcmp (o->name, ".reginfo") == 0)
12947 {
12948 memset (&reginfo, 0, sizeof reginfo);
12949
12950 /* We have found the .reginfo section in the output file.
12951 Look through all the link_orders comprising it and merge
12952 the information together. */
12953 for (p = o->map_head.link_order; p != NULL; p = p->next)
12954 {
12955 asection *input_section;
12956 bfd *input_bfd;
12957 Elf32_External_RegInfo ext;
12958 Elf32_RegInfo sub;
12959
12960 if (p->type != bfd_indirect_link_order)
12961 {
12962 if (p->type == bfd_data_link_order)
12963 continue;
12964 abort ();
12965 }
12966
12967 input_section = p->u.indirect.section;
12968 input_bfd = input_section->owner;
12969
12970 if (! bfd_get_section_contents (input_bfd, input_section,
12971 &ext, 0, sizeof ext))
12972 return FALSE;
12973
12974 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
12975
12976 reginfo.ri_gprmask |= sub.ri_gprmask;
12977 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
12978 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
12979 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
12980 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
12981
12982 /* ri_gp_value is set by the function
12983 mips_elf32_section_processing when the section is
12984 finally written out. */
12985
12986 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12987 elf_link_input_bfd ignores this section. */
12988 input_section->flags &= ~SEC_HAS_CONTENTS;
12989 }
12990
12991 /* Size has been set in _bfd_mips_elf_always_size_sections. */
12992 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
12993
12994 /* Skip this section later on (I don't think this currently
12995 matters, but someday it might). */
12996 o->map_head.link_order = NULL;
12997
12998 reginfo_sec = o;
12999 }
13000
13001 if (strcmp (o->name, ".mdebug") == 0)
13002 {
13003 struct extsym_info einfo;
13004 bfd_vma last;
13005
13006 /* We have found the .mdebug section in the output file.
13007 Look through all the link_orders comprising it and merge
13008 the information together. */
13009 symhdr->magic = swap->sym_magic;
13010 /* FIXME: What should the version stamp be? */
13011 symhdr->vstamp = 0;
13012 symhdr->ilineMax = 0;
13013 symhdr->cbLine = 0;
13014 symhdr->idnMax = 0;
13015 symhdr->ipdMax = 0;
13016 symhdr->isymMax = 0;
13017 symhdr->ioptMax = 0;
13018 symhdr->iauxMax = 0;
13019 symhdr->issMax = 0;
13020 symhdr->issExtMax = 0;
13021 symhdr->ifdMax = 0;
13022 symhdr->crfd = 0;
13023 symhdr->iextMax = 0;
13024
13025 /* We accumulate the debugging information itself in the
13026 debug_info structure. */
13027 debug.line = NULL;
13028 debug.external_dnr = NULL;
13029 debug.external_pdr = NULL;
13030 debug.external_sym = NULL;
13031 debug.external_opt = NULL;
13032 debug.external_aux = NULL;
13033 debug.ss = NULL;
13034 debug.ssext = debug.ssext_end = NULL;
13035 debug.external_fdr = NULL;
13036 debug.external_rfd = NULL;
13037 debug.external_ext = debug.external_ext_end = NULL;
13038
13039 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13040 if (mdebug_handle == NULL)
13041 return FALSE;
13042
13043 esym.jmptbl = 0;
13044 esym.cobol_main = 0;
13045 esym.weakext = 0;
13046 esym.reserved = 0;
13047 esym.ifd = ifdNil;
13048 esym.asym.iss = issNil;
13049 esym.asym.st = stLocal;
13050 esym.asym.reserved = 0;
13051 esym.asym.index = indexNil;
13052 last = 0;
13053 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13054 {
13055 esym.asym.sc = sc[i];
13056 s = bfd_get_section_by_name (abfd, secname[i]);
13057 if (s != NULL)
13058 {
13059 esym.asym.value = s->vma;
13060 last = s->vma + s->size;
13061 }
13062 else
13063 esym.asym.value = last;
13064 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13065 secname[i], &esym))
13066 return FALSE;
13067 }
13068
13069 for (p = o->map_head.link_order; p != NULL; p = p->next)
13070 {
13071 asection *input_section;
13072 bfd *input_bfd;
13073 const struct ecoff_debug_swap *input_swap;
13074 struct ecoff_debug_info input_debug;
13075 char *eraw_src;
13076 char *eraw_end;
13077
13078 if (p->type != bfd_indirect_link_order)
13079 {
13080 if (p->type == bfd_data_link_order)
13081 continue;
13082 abort ();
13083 }
13084
13085 input_section = p->u.indirect.section;
13086 input_bfd = input_section->owner;
13087
13088 if (!is_mips_elf (input_bfd))
13089 {
13090 /* I don't know what a non MIPS ELF bfd would be
13091 doing with a .mdebug section, but I don't really
13092 want to deal with it. */
13093 continue;
13094 }
13095
13096 input_swap = (get_elf_backend_data (input_bfd)
13097 ->elf_backend_ecoff_debug_swap);
13098
13099 BFD_ASSERT (p->size == input_section->size);
13100
13101 /* The ECOFF linking code expects that we have already
13102 read in the debugging information and set up an
13103 ecoff_debug_info structure, so we do that now. */
13104 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13105 &input_debug))
13106 return FALSE;
13107
13108 if (! (bfd_ecoff_debug_accumulate
13109 (mdebug_handle, abfd, &debug, swap, input_bfd,
13110 &input_debug, input_swap, info)))
13111 return FALSE;
13112
13113 /* Loop through the external symbols. For each one with
13114 interesting information, try to find the symbol in
13115 the linker global hash table and save the information
13116 for the output external symbols. */
13117 eraw_src = input_debug.external_ext;
13118 eraw_end = (eraw_src
13119 + (input_debug.symbolic_header.iextMax
13120 * input_swap->external_ext_size));
13121 for (;
13122 eraw_src < eraw_end;
13123 eraw_src += input_swap->external_ext_size)
13124 {
13125 EXTR ext;
13126 const char *name;
13127 struct mips_elf_link_hash_entry *h;
13128
13129 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13130 if (ext.asym.sc == scNil
13131 || ext.asym.sc == scUndefined
13132 || ext.asym.sc == scSUndefined)
13133 continue;
13134
13135 name = input_debug.ssext + ext.asym.iss;
13136 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13137 name, FALSE, FALSE, TRUE);
13138 if (h == NULL || h->esym.ifd != -2)
13139 continue;
13140
13141 if (ext.ifd != -1)
13142 {
13143 BFD_ASSERT (ext.ifd
13144 < input_debug.symbolic_header.ifdMax);
13145 ext.ifd = input_debug.ifdmap[ext.ifd];
13146 }
13147
13148 h->esym = ext;
13149 }
13150
13151 /* Free up the information we just read. */
13152 free (input_debug.line);
13153 free (input_debug.external_dnr);
13154 free (input_debug.external_pdr);
13155 free (input_debug.external_sym);
13156 free (input_debug.external_opt);
13157 free (input_debug.external_aux);
13158 free (input_debug.ss);
13159 free (input_debug.ssext);
13160 free (input_debug.external_fdr);
13161 free (input_debug.external_rfd);
13162 free (input_debug.external_ext);
13163
13164 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13165 elf_link_input_bfd ignores this section. */
13166 input_section->flags &= ~SEC_HAS_CONTENTS;
13167 }
13168
13169 if (SGI_COMPAT (abfd) && info->shared)
13170 {
13171 /* Create .rtproc section. */
13172 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13173 if (rtproc_sec == NULL)
13174 {
13175 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13176 | SEC_LINKER_CREATED | SEC_READONLY);
13177
13178 rtproc_sec = bfd_make_section_with_flags (abfd,
13179 ".rtproc",
13180 flags);
13181 if (rtproc_sec == NULL
13182 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13183 return FALSE;
13184 }
13185
13186 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13187 info, rtproc_sec,
13188 &debug))
13189 return FALSE;
13190 }
13191
13192 /* Build the external symbol information. */
13193 einfo.abfd = abfd;
13194 einfo.info = info;
13195 einfo.debug = &debug;
13196 einfo.swap = swap;
13197 einfo.failed = FALSE;
13198 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13199 mips_elf_output_extsym, &einfo);
13200 if (einfo.failed)
13201 return FALSE;
13202
13203 /* Set the size of the .mdebug section. */
13204 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13205
13206 /* Skip this section later on (I don't think this currently
13207 matters, but someday it might). */
13208 o->map_head.link_order = NULL;
13209
13210 mdebug_sec = o;
13211 }
13212
13213 if (CONST_STRNEQ (o->name, ".gptab."))
13214 {
13215 const char *subname;
13216 unsigned int c;
13217 Elf32_gptab *tab;
13218 Elf32_External_gptab *ext_tab;
13219 unsigned int j;
13220
13221 /* The .gptab.sdata and .gptab.sbss sections hold
13222 information describing how the small data area would
13223 change depending upon the -G switch. These sections
13224 not used in executables files. */
13225 if (! info->relocatable)
13226 {
13227 for (p = o->map_head.link_order; p != NULL; p = p->next)
13228 {
13229 asection *input_section;
13230
13231 if (p->type != bfd_indirect_link_order)
13232 {
13233 if (p->type == bfd_data_link_order)
13234 continue;
13235 abort ();
13236 }
13237
13238 input_section = p->u.indirect.section;
13239
13240 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13241 elf_link_input_bfd ignores this section. */
13242 input_section->flags &= ~SEC_HAS_CONTENTS;
13243 }
13244
13245 /* Skip this section later on (I don't think this
13246 currently matters, but someday it might). */
13247 o->map_head.link_order = NULL;
13248
13249 /* Really remove the section. */
13250 bfd_section_list_remove (abfd, o);
13251 --abfd->section_count;
13252
13253 continue;
13254 }
13255
13256 /* There is one gptab for initialized data, and one for
13257 uninitialized data. */
13258 if (strcmp (o->name, ".gptab.sdata") == 0)
13259 gptab_data_sec = o;
13260 else if (strcmp (o->name, ".gptab.sbss") == 0)
13261 gptab_bss_sec = o;
13262 else
13263 {
13264 (*_bfd_error_handler)
13265 (_("%s: illegal section name `%s'"),
13266 bfd_get_filename (abfd), o->name);
13267 bfd_set_error (bfd_error_nonrepresentable_section);
13268 return FALSE;
13269 }
13270
13271 /* The linker script always combines .gptab.data and
13272 .gptab.sdata into .gptab.sdata, and likewise for
13273 .gptab.bss and .gptab.sbss. It is possible that there is
13274 no .sdata or .sbss section in the output file, in which
13275 case we must change the name of the output section. */
13276 subname = o->name + sizeof ".gptab" - 1;
13277 if (bfd_get_section_by_name (abfd, subname) == NULL)
13278 {
13279 if (o == gptab_data_sec)
13280 o->name = ".gptab.data";
13281 else
13282 o->name = ".gptab.bss";
13283 subname = o->name + sizeof ".gptab" - 1;
13284 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
13285 }
13286
13287 /* Set up the first entry. */
13288 c = 1;
13289 amt = c * sizeof (Elf32_gptab);
13290 tab = bfd_malloc (amt);
13291 if (tab == NULL)
13292 return FALSE;
13293 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
13294 tab[0].gt_header.gt_unused = 0;
13295
13296 /* Combine the input sections. */
13297 for (p = o->map_head.link_order; p != NULL; p = p->next)
13298 {
13299 asection *input_section;
13300 bfd *input_bfd;
13301 bfd_size_type size;
13302 unsigned long last;
13303 bfd_size_type gpentry;
13304
13305 if (p->type != bfd_indirect_link_order)
13306 {
13307 if (p->type == bfd_data_link_order)
13308 continue;
13309 abort ();
13310 }
13311
13312 input_section = p->u.indirect.section;
13313 input_bfd = input_section->owner;
13314
13315 /* Combine the gptab entries for this input section one
13316 by one. We know that the input gptab entries are
13317 sorted by ascending -G value. */
13318 size = input_section->size;
13319 last = 0;
13320 for (gpentry = sizeof (Elf32_External_gptab);
13321 gpentry < size;
13322 gpentry += sizeof (Elf32_External_gptab))
13323 {
13324 Elf32_External_gptab ext_gptab;
13325 Elf32_gptab int_gptab;
13326 unsigned long val;
13327 unsigned long add;
13328 bfd_boolean exact;
13329 unsigned int look;
13330
13331 if (! (bfd_get_section_contents
13332 (input_bfd, input_section, &ext_gptab, gpentry,
13333 sizeof (Elf32_External_gptab))))
13334 {
13335 free (tab);
13336 return FALSE;
13337 }
13338
13339 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
13340 &int_gptab);
13341 val = int_gptab.gt_entry.gt_g_value;
13342 add = int_gptab.gt_entry.gt_bytes - last;
13343
13344 exact = FALSE;
13345 for (look = 1; look < c; look++)
13346 {
13347 if (tab[look].gt_entry.gt_g_value >= val)
13348 tab[look].gt_entry.gt_bytes += add;
13349
13350 if (tab[look].gt_entry.gt_g_value == val)
13351 exact = TRUE;
13352 }
13353
13354 if (! exact)
13355 {
13356 Elf32_gptab *new_tab;
13357 unsigned int max;
13358
13359 /* We need a new table entry. */
13360 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
13361 new_tab = bfd_realloc (tab, amt);
13362 if (new_tab == NULL)
13363 {
13364 free (tab);
13365 return FALSE;
13366 }
13367 tab = new_tab;
13368 tab[c].gt_entry.gt_g_value = val;
13369 tab[c].gt_entry.gt_bytes = add;
13370
13371 /* Merge in the size for the next smallest -G
13372 value, since that will be implied by this new
13373 value. */
13374 max = 0;
13375 for (look = 1; look < c; look++)
13376 {
13377 if (tab[look].gt_entry.gt_g_value < val
13378 && (max == 0
13379 || (tab[look].gt_entry.gt_g_value
13380 > tab[max].gt_entry.gt_g_value)))
13381 max = look;
13382 }
13383 if (max != 0)
13384 tab[c].gt_entry.gt_bytes +=
13385 tab[max].gt_entry.gt_bytes;
13386
13387 ++c;
13388 }
13389
13390 last = int_gptab.gt_entry.gt_bytes;
13391 }
13392
13393 /* Hack: reset the SEC_HAS_CONTENTS flag so that
13394 elf_link_input_bfd ignores this section. */
13395 input_section->flags &= ~SEC_HAS_CONTENTS;
13396 }
13397
13398 /* The table must be sorted by -G value. */
13399 if (c > 2)
13400 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
13401
13402 /* Swap out the table. */
13403 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
13404 ext_tab = bfd_alloc (abfd, amt);
13405 if (ext_tab == NULL)
13406 {
13407 free (tab);
13408 return FALSE;
13409 }
13410
13411 for (j = 0; j < c; j++)
13412 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
13413 free (tab);
13414
13415 o->size = c * sizeof (Elf32_External_gptab);
13416 o->contents = (bfd_byte *) ext_tab;
13417
13418 /* Skip this section later on (I don't think this currently
13419 matters, but someday it might). */
13420 o->map_head.link_order = NULL;
13421 }
13422 }
13423
13424 /* Invoke the regular ELF backend linker to do all the work. */
13425 if (!bfd_elf_final_link (abfd, info))
13426 return FALSE;
13427
13428 /* Now write out the computed sections. */
13429
13430 if (reginfo_sec != NULL)
13431 {
13432 Elf32_External_RegInfo ext;
13433
13434 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
13435 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
13436 return FALSE;
13437 }
13438
13439 if (mdebug_sec != NULL)
13440 {
13441 BFD_ASSERT (abfd->output_has_begun);
13442 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
13443 swap, info,
13444 mdebug_sec->filepos))
13445 return FALSE;
13446
13447 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
13448 }
13449
13450 if (gptab_data_sec != NULL)
13451 {
13452 if (! bfd_set_section_contents (abfd, gptab_data_sec,
13453 gptab_data_sec->contents,
13454 0, gptab_data_sec->size))
13455 return FALSE;
13456 }
13457
13458 if (gptab_bss_sec != NULL)
13459 {
13460 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
13461 gptab_bss_sec->contents,
13462 0, gptab_bss_sec->size))
13463 return FALSE;
13464 }
13465
13466 if (SGI_COMPAT (abfd))
13467 {
13468 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
13469 if (rtproc_sec != NULL)
13470 {
13471 if (! bfd_set_section_contents (abfd, rtproc_sec,
13472 rtproc_sec->contents,
13473 0, rtproc_sec->size))
13474 return FALSE;
13475 }
13476 }
13477
13478 return TRUE;
13479 }
13480 \f
13481 /* Structure for saying that BFD machine EXTENSION extends BASE. */
13482
13483 struct mips_mach_extension {
13484 unsigned long extension, base;
13485 };
13486
13487
13488 /* An array describing how BFD machines relate to one another. The entries
13489 are ordered topologically with MIPS I extensions listed last. */
13490
13491 static const struct mips_mach_extension mips_mach_extensions[] = {
13492 /* MIPS64r2 extensions. */
13493 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13494
13495 /* MIPS64 extensions. */
13496 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13497 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13498 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13499 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
13500
13501 /* MIPS V extensions. */
13502 { bfd_mach_mipsisa64, bfd_mach_mips5 },
13503
13504 /* R10000 extensions. */
13505 { bfd_mach_mips12000, bfd_mach_mips10000 },
13506 { bfd_mach_mips14000, bfd_mach_mips10000 },
13507 { bfd_mach_mips16000, bfd_mach_mips10000 },
13508
13509 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
13510 vr5400 ISA, but doesn't include the multimedia stuff. It seems
13511 better to allow vr5400 and vr5500 code to be merged anyway, since
13512 many libraries will just use the core ISA. Perhaps we could add
13513 some sort of ASE flag if this ever proves a problem. */
13514 { bfd_mach_mips5500, bfd_mach_mips5400 },
13515 { bfd_mach_mips5400, bfd_mach_mips5000 },
13516
13517 /* MIPS IV extensions. */
13518 { bfd_mach_mips5, bfd_mach_mips8000 },
13519 { bfd_mach_mips10000, bfd_mach_mips8000 },
13520 { bfd_mach_mips5000, bfd_mach_mips8000 },
13521 { bfd_mach_mips7000, bfd_mach_mips8000 },
13522 { bfd_mach_mips9000, bfd_mach_mips8000 },
13523
13524 /* VR4100 extensions. */
13525 { bfd_mach_mips4120, bfd_mach_mips4100 },
13526 { bfd_mach_mips4111, bfd_mach_mips4100 },
13527
13528 /* MIPS III extensions. */
13529 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
13530 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
13531 { bfd_mach_mips8000, bfd_mach_mips4000 },
13532 { bfd_mach_mips4650, bfd_mach_mips4000 },
13533 { bfd_mach_mips4600, bfd_mach_mips4000 },
13534 { bfd_mach_mips4400, bfd_mach_mips4000 },
13535 { bfd_mach_mips4300, bfd_mach_mips4000 },
13536 { bfd_mach_mips4100, bfd_mach_mips4000 },
13537 { bfd_mach_mips4010, bfd_mach_mips4000 },
13538
13539 /* MIPS32 extensions. */
13540 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
13541
13542 /* MIPS II extensions. */
13543 { bfd_mach_mips4000, bfd_mach_mips6000 },
13544 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
13545
13546 /* MIPS I extensions. */
13547 { bfd_mach_mips6000, bfd_mach_mips3000 },
13548 { bfd_mach_mips3900, bfd_mach_mips3000 }
13549 };
13550
13551
13552 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
13553
13554 static bfd_boolean
13555 mips_mach_extends_p (unsigned long base, unsigned long extension)
13556 {
13557 size_t i;
13558
13559 if (extension == base)
13560 return TRUE;
13561
13562 if (base == bfd_mach_mipsisa32
13563 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
13564 return TRUE;
13565
13566 if (base == bfd_mach_mipsisa32r2
13567 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
13568 return TRUE;
13569
13570 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
13571 if (extension == mips_mach_extensions[i].extension)
13572 {
13573 extension = mips_mach_extensions[i].base;
13574 if (extension == base)
13575 return TRUE;
13576 }
13577
13578 return FALSE;
13579 }
13580
13581
13582 /* Return true if the given ELF header flags describe a 32-bit binary. */
13583
13584 static bfd_boolean
13585 mips_32bit_flags_p (flagword flags)
13586 {
13587 return ((flags & EF_MIPS_32BITMODE) != 0
13588 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
13589 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
13590 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
13591 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
13592 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
13593 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
13594 }
13595
13596
13597 /* Merge object attributes from IBFD into OBFD. Raise an error if
13598 there are conflicting attributes. */
13599 static bfd_boolean
13600 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
13601 {
13602 obj_attribute *in_attr;
13603 obj_attribute *out_attr;
13604
13605 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13606 {
13607 /* This is the first object. Copy the attributes. */
13608 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13609
13610 /* Use the Tag_null value to indicate the attributes have been
13611 initialized. */
13612 elf_known_obj_attributes_proc (obfd)[0].i = 1;
13613
13614 return TRUE;
13615 }
13616
13617 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
13618 non-conflicting ones. */
13619 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
13620 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
13621 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
13622 {
13623 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
13624 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13625 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
13626 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
13627 ;
13628 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13629 _bfd_error_handler
13630 (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
13631 in_attr[Tag_GNU_MIPS_ABI_FP].i);
13632 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
13633 _bfd_error_handler
13634 (_("Warning: %B uses unknown floating point ABI %d"), obfd,
13635 out_attr[Tag_GNU_MIPS_ABI_FP].i);
13636 else
13637 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
13638 {
13639 case 1:
13640 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13641 {
13642 case 2:
13643 _bfd_error_handler
13644 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13645 obfd, ibfd);
13646 break;
13647
13648 case 3:
13649 _bfd_error_handler
13650 (_("Warning: %B uses hard float, %B uses soft float"),
13651 obfd, ibfd);
13652 break;
13653
13654 case 4:
13655 _bfd_error_handler
13656 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13657 obfd, ibfd);
13658 break;
13659
13660 default:
13661 abort ();
13662 }
13663 break;
13664
13665 case 2:
13666 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13667 {
13668 case 1:
13669 _bfd_error_handler
13670 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
13671 ibfd, obfd);
13672 break;
13673
13674 case 3:
13675 _bfd_error_handler
13676 (_("Warning: %B uses hard float, %B uses soft float"),
13677 obfd, ibfd);
13678 break;
13679
13680 case 4:
13681 _bfd_error_handler
13682 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13683 obfd, ibfd);
13684 break;
13685
13686 default:
13687 abort ();
13688 }
13689 break;
13690
13691 case 3:
13692 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13693 {
13694 case 1:
13695 case 2:
13696 case 4:
13697 _bfd_error_handler
13698 (_("Warning: %B uses hard float, %B uses soft float"),
13699 ibfd, obfd);
13700 break;
13701
13702 default:
13703 abort ();
13704 }
13705 break;
13706
13707 case 4:
13708 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
13709 {
13710 case 1:
13711 _bfd_error_handler
13712 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
13713 ibfd, obfd);
13714 break;
13715
13716 case 2:
13717 _bfd_error_handler
13718 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
13719 ibfd, obfd);
13720 break;
13721
13722 case 3:
13723 _bfd_error_handler
13724 (_("Warning: %B uses hard float, %B uses soft float"),
13725 obfd, ibfd);
13726 break;
13727
13728 default:
13729 abort ();
13730 }
13731 break;
13732
13733 default:
13734 abort ();
13735 }
13736 }
13737
13738 /* Merge Tag_compatibility attributes and any common GNU ones. */
13739 _bfd_elf_merge_object_attributes (ibfd, obfd);
13740
13741 return TRUE;
13742 }
13743
13744 /* Merge backend specific data from an object file to the output
13745 object file when linking. */
13746
13747 bfd_boolean
13748 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
13749 {
13750 flagword old_flags;
13751 flagword new_flags;
13752 bfd_boolean ok;
13753 bfd_boolean null_input_bfd = TRUE;
13754 asection *sec;
13755
13756 /* Check if we have the same endianness. */
13757 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13758 {
13759 (*_bfd_error_handler)
13760 (_("%B: endianness incompatible with that of the selected emulation"),
13761 ibfd);
13762 return FALSE;
13763 }
13764
13765 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
13766 return TRUE;
13767
13768 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
13769 {
13770 (*_bfd_error_handler)
13771 (_("%B: ABI is incompatible with that of the selected emulation"),
13772 ibfd);
13773 return FALSE;
13774 }
13775
13776 if (!mips_elf_merge_obj_attributes (ibfd, obfd))
13777 return FALSE;
13778
13779 new_flags = elf_elfheader (ibfd)->e_flags;
13780 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
13781 old_flags = elf_elfheader (obfd)->e_flags;
13782
13783 if (! elf_flags_init (obfd))
13784 {
13785 elf_flags_init (obfd) = TRUE;
13786 elf_elfheader (obfd)->e_flags = new_flags;
13787 elf_elfheader (obfd)->e_ident[EI_CLASS]
13788 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
13789
13790 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13791 && (bfd_get_arch_info (obfd)->the_default
13792 || mips_mach_extends_p (bfd_get_mach (obfd),
13793 bfd_get_mach (ibfd))))
13794 {
13795 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
13796 bfd_get_mach (ibfd)))
13797 return FALSE;
13798 }
13799
13800 return TRUE;
13801 }
13802
13803 /* Check flag compatibility. */
13804
13805 new_flags &= ~EF_MIPS_NOREORDER;
13806 old_flags &= ~EF_MIPS_NOREORDER;
13807
13808 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
13809 doesn't seem to matter. */
13810 new_flags &= ~EF_MIPS_XGOT;
13811 old_flags &= ~EF_MIPS_XGOT;
13812
13813 /* MIPSpro generates ucode info in n64 objects. Again, we should
13814 just be able to ignore this. */
13815 new_flags &= ~EF_MIPS_UCODE;
13816 old_flags &= ~EF_MIPS_UCODE;
13817
13818 /* DSOs should only be linked with CPIC code. */
13819 if ((ibfd->flags & DYNAMIC) != 0)
13820 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
13821
13822 if (new_flags == old_flags)
13823 return TRUE;
13824
13825 /* Check to see if the input BFD actually contains any sections.
13826 If not, its flags may not have been initialised either, but it cannot
13827 actually cause any incompatibility. */
13828 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13829 {
13830 /* Ignore synthetic sections and empty .text, .data and .bss sections
13831 which are automatically generated by gas. Also ignore fake
13832 (s)common sections, since merely defining a common symbol does
13833 not affect compatibility. */
13834 if ((sec->flags & SEC_IS_COMMON) == 0
13835 && strcmp (sec->name, ".reginfo")
13836 && strcmp (sec->name, ".mdebug")
13837 && (sec->size != 0
13838 || (strcmp (sec->name, ".text")
13839 && strcmp (sec->name, ".data")
13840 && strcmp (sec->name, ".bss"))))
13841 {
13842 null_input_bfd = FALSE;
13843 break;
13844 }
13845 }
13846 if (null_input_bfd)
13847 return TRUE;
13848
13849 ok = TRUE;
13850
13851 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
13852 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
13853 {
13854 (*_bfd_error_handler)
13855 (_("%B: warning: linking abicalls files with non-abicalls files"),
13856 ibfd);
13857 ok = TRUE;
13858 }
13859
13860 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
13861 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
13862 if (! (new_flags & EF_MIPS_PIC))
13863 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
13864
13865 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13866 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
13867
13868 /* Compare the ISAs. */
13869 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
13870 {
13871 (*_bfd_error_handler)
13872 (_("%B: linking 32-bit code with 64-bit code"),
13873 ibfd);
13874 ok = FALSE;
13875 }
13876 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
13877 {
13878 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
13879 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
13880 {
13881 /* Copy the architecture info from IBFD to OBFD. Also copy
13882 the 32-bit flag (if set) so that we continue to recognise
13883 OBFD as a 32-bit binary. */
13884 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
13885 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
13886 elf_elfheader (obfd)->e_flags
13887 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13888
13889 /* Copy across the ABI flags if OBFD doesn't use them
13890 and if that was what caused us to treat IBFD as 32-bit. */
13891 if ((old_flags & EF_MIPS_ABI) == 0
13892 && mips_32bit_flags_p (new_flags)
13893 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
13894 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
13895 }
13896 else
13897 {
13898 /* The ISAs aren't compatible. */
13899 (*_bfd_error_handler)
13900 (_("%B: linking %s module with previous %s modules"),
13901 ibfd,
13902 bfd_printable_name (ibfd),
13903 bfd_printable_name (obfd));
13904 ok = FALSE;
13905 }
13906 }
13907
13908 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13909 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
13910
13911 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
13912 does set EI_CLASS differently from any 32-bit ABI. */
13913 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
13914 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13915 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13916 {
13917 /* Only error if both are set (to different values). */
13918 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
13919 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
13920 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
13921 {
13922 (*_bfd_error_handler)
13923 (_("%B: ABI mismatch: linking %s module with previous %s modules"),
13924 ibfd,
13925 elf_mips_abi_name (ibfd),
13926 elf_mips_abi_name (obfd));
13927 ok = FALSE;
13928 }
13929 new_flags &= ~EF_MIPS_ABI;
13930 old_flags &= ~EF_MIPS_ABI;
13931 }
13932
13933 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
13934 and allow arbitrary mixing of the remaining ASEs (retain the union). */
13935 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
13936 {
13937 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13938 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
13939 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
13940 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
13941 int micro_mis = old_m16 && new_micro;
13942 int m16_mis = old_micro && new_m16;
13943
13944 if (m16_mis || micro_mis)
13945 {
13946 (*_bfd_error_handler)
13947 (_("%B: ASE mismatch: linking %s module with previous %s modules"),
13948 ibfd,
13949 m16_mis ? "MIPS16" : "microMIPS",
13950 m16_mis ? "microMIPS" : "MIPS16");
13951 ok = FALSE;
13952 }
13953
13954 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
13955
13956 new_flags &= ~ EF_MIPS_ARCH_ASE;
13957 old_flags &= ~ EF_MIPS_ARCH_ASE;
13958 }
13959
13960 /* Warn about any other mismatches */
13961 if (new_flags != old_flags)
13962 {
13963 (*_bfd_error_handler)
13964 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
13965 ibfd, (unsigned long) new_flags,
13966 (unsigned long) old_flags);
13967 ok = FALSE;
13968 }
13969
13970 if (! ok)
13971 {
13972 bfd_set_error (bfd_error_bad_value);
13973 return FALSE;
13974 }
13975
13976 return TRUE;
13977 }
13978
13979 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
13980
13981 bfd_boolean
13982 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
13983 {
13984 BFD_ASSERT (!elf_flags_init (abfd)
13985 || elf_elfheader (abfd)->e_flags == flags);
13986
13987 elf_elfheader (abfd)->e_flags = flags;
13988 elf_flags_init (abfd) = TRUE;
13989 return TRUE;
13990 }
13991
13992 char *
13993 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
13994 {
13995 switch (dtag)
13996 {
13997 default: return "";
13998 case DT_MIPS_RLD_VERSION:
13999 return "MIPS_RLD_VERSION";
14000 case DT_MIPS_TIME_STAMP:
14001 return "MIPS_TIME_STAMP";
14002 case DT_MIPS_ICHECKSUM:
14003 return "MIPS_ICHECKSUM";
14004 case DT_MIPS_IVERSION:
14005 return "MIPS_IVERSION";
14006 case DT_MIPS_FLAGS:
14007 return "MIPS_FLAGS";
14008 case DT_MIPS_BASE_ADDRESS:
14009 return "MIPS_BASE_ADDRESS";
14010 case DT_MIPS_MSYM:
14011 return "MIPS_MSYM";
14012 case DT_MIPS_CONFLICT:
14013 return "MIPS_CONFLICT";
14014 case DT_MIPS_LIBLIST:
14015 return "MIPS_LIBLIST";
14016 case DT_MIPS_LOCAL_GOTNO:
14017 return "MIPS_LOCAL_GOTNO";
14018 case DT_MIPS_CONFLICTNO:
14019 return "MIPS_CONFLICTNO";
14020 case DT_MIPS_LIBLISTNO:
14021 return "MIPS_LIBLISTNO";
14022 case DT_MIPS_SYMTABNO:
14023 return "MIPS_SYMTABNO";
14024 case DT_MIPS_UNREFEXTNO:
14025 return "MIPS_UNREFEXTNO";
14026 case DT_MIPS_GOTSYM:
14027 return "MIPS_GOTSYM";
14028 case DT_MIPS_HIPAGENO:
14029 return "MIPS_HIPAGENO";
14030 case DT_MIPS_RLD_MAP:
14031 return "MIPS_RLD_MAP";
14032 case DT_MIPS_DELTA_CLASS:
14033 return "MIPS_DELTA_CLASS";
14034 case DT_MIPS_DELTA_CLASS_NO:
14035 return "MIPS_DELTA_CLASS_NO";
14036 case DT_MIPS_DELTA_INSTANCE:
14037 return "MIPS_DELTA_INSTANCE";
14038 case DT_MIPS_DELTA_INSTANCE_NO:
14039 return "MIPS_DELTA_INSTANCE_NO";
14040 case DT_MIPS_DELTA_RELOC:
14041 return "MIPS_DELTA_RELOC";
14042 case DT_MIPS_DELTA_RELOC_NO:
14043 return "MIPS_DELTA_RELOC_NO";
14044 case DT_MIPS_DELTA_SYM:
14045 return "MIPS_DELTA_SYM";
14046 case DT_MIPS_DELTA_SYM_NO:
14047 return "MIPS_DELTA_SYM_NO";
14048 case DT_MIPS_DELTA_CLASSSYM:
14049 return "MIPS_DELTA_CLASSSYM";
14050 case DT_MIPS_DELTA_CLASSSYM_NO:
14051 return "MIPS_DELTA_CLASSSYM_NO";
14052 case DT_MIPS_CXX_FLAGS:
14053 return "MIPS_CXX_FLAGS";
14054 case DT_MIPS_PIXIE_INIT:
14055 return "MIPS_PIXIE_INIT";
14056 case DT_MIPS_SYMBOL_LIB:
14057 return "MIPS_SYMBOL_LIB";
14058 case DT_MIPS_LOCALPAGE_GOTIDX:
14059 return "MIPS_LOCALPAGE_GOTIDX";
14060 case DT_MIPS_LOCAL_GOTIDX:
14061 return "MIPS_LOCAL_GOTIDX";
14062 case DT_MIPS_HIDDEN_GOTIDX:
14063 return "MIPS_HIDDEN_GOTIDX";
14064 case DT_MIPS_PROTECTED_GOTIDX:
14065 return "MIPS_PROTECTED_GOT_IDX";
14066 case DT_MIPS_OPTIONS:
14067 return "MIPS_OPTIONS";
14068 case DT_MIPS_INTERFACE:
14069 return "MIPS_INTERFACE";
14070 case DT_MIPS_DYNSTR_ALIGN:
14071 return "DT_MIPS_DYNSTR_ALIGN";
14072 case DT_MIPS_INTERFACE_SIZE:
14073 return "DT_MIPS_INTERFACE_SIZE";
14074 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14075 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14076 case DT_MIPS_PERF_SUFFIX:
14077 return "DT_MIPS_PERF_SUFFIX";
14078 case DT_MIPS_COMPACT_SIZE:
14079 return "DT_MIPS_COMPACT_SIZE";
14080 case DT_MIPS_GP_VALUE:
14081 return "DT_MIPS_GP_VALUE";
14082 case DT_MIPS_AUX_DYNAMIC:
14083 return "DT_MIPS_AUX_DYNAMIC";
14084 case DT_MIPS_PLTGOT:
14085 return "DT_MIPS_PLTGOT";
14086 case DT_MIPS_RWPLT:
14087 return "DT_MIPS_RWPLT";
14088 }
14089 }
14090
14091 bfd_boolean
14092 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14093 {
14094 FILE *file = ptr;
14095
14096 BFD_ASSERT (abfd != NULL && ptr != NULL);
14097
14098 /* Print normal ELF private data. */
14099 _bfd_elf_print_private_bfd_data (abfd, ptr);
14100
14101 /* xgettext:c-format */
14102 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14103
14104 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14105 fprintf (file, _(" [abi=O32]"));
14106 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14107 fprintf (file, _(" [abi=O64]"));
14108 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14109 fprintf (file, _(" [abi=EABI32]"));
14110 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14111 fprintf (file, _(" [abi=EABI64]"));
14112 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14113 fprintf (file, _(" [abi unknown]"));
14114 else if (ABI_N32_P (abfd))
14115 fprintf (file, _(" [abi=N32]"));
14116 else if (ABI_64_P (abfd))
14117 fprintf (file, _(" [abi=64]"));
14118 else
14119 fprintf (file, _(" [no abi set]"));
14120
14121 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14122 fprintf (file, " [mips1]");
14123 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14124 fprintf (file, " [mips2]");
14125 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14126 fprintf (file, " [mips3]");
14127 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14128 fprintf (file, " [mips4]");
14129 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14130 fprintf (file, " [mips5]");
14131 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14132 fprintf (file, " [mips32]");
14133 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14134 fprintf (file, " [mips64]");
14135 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14136 fprintf (file, " [mips32r2]");
14137 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14138 fprintf (file, " [mips64r2]");
14139 else
14140 fprintf (file, _(" [unknown ISA]"));
14141
14142 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14143 fprintf (file, " [mdmx]");
14144
14145 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14146 fprintf (file, " [mips16]");
14147
14148 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14149 fprintf (file, " [micromips]");
14150
14151 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
14152 fprintf (file, " [32bitmode]");
14153 else
14154 fprintf (file, _(" [not 32bitmode]"));
14155
14156 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
14157 fprintf (file, " [noreorder]");
14158
14159 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
14160 fprintf (file, " [PIC]");
14161
14162 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
14163 fprintf (file, " [CPIC]");
14164
14165 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
14166 fprintf (file, " [XGOT]");
14167
14168 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
14169 fprintf (file, " [UCODE]");
14170
14171 fputc ('\n', file);
14172
14173 return TRUE;
14174 }
14175
14176 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
14177 {
14178 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14179 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14180 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
14181 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14182 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
14183 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
14184 { NULL, 0, 0, 0, 0 }
14185 };
14186
14187 /* Merge non visibility st_other attributes. Ensure that the
14188 STO_OPTIONAL flag is copied into h->other, even if this is not a
14189 definiton of the symbol. */
14190 void
14191 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
14192 const Elf_Internal_Sym *isym,
14193 bfd_boolean definition,
14194 bfd_boolean dynamic ATTRIBUTE_UNUSED)
14195 {
14196 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
14197 {
14198 unsigned char other;
14199
14200 other = (definition ? isym->st_other : h->other);
14201 other &= ~ELF_ST_VISIBILITY (-1);
14202 h->other = other | ELF_ST_VISIBILITY (h->other);
14203 }
14204
14205 if (!definition
14206 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
14207 h->other |= STO_OPTIONAL;
14208 }
14209
14210 /* Decide whether an undefined symbol is special and can be ignored.
14211 This is the case for OPTIONAL symbols on IRIX. */
14212 bfd_boolean
14213 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
14214 {
14215 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
14216 }
14217
14218 bfd_boolean
14219 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
14220 {
14221 return (sym->st_shndx == SHN_COMMON
14222 || sym->st_shndx == SHN_MIPS_ACOMMON
14223 || sym->st_shndx == SHN_MIPS_SCOMMON);
14224 }
14225
14226 /* Return address for Ith PLT stub in section PLT, for relocation REL
14227 or (bfd_vma) -1 if it should not be included. */
14228
14229 bfd_vma
14230 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
14231 const arelent *rel ATTRIBUTE_UNUSED)
14232 {
14233 return (plt->vma
14234 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
14235 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
14236 }
14237
14238 void
14239 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
14240 {
14241 struct mips_elf_link_hash_table *htab;
14242 Elf_Internal_Ehdr *i_ehdrp;
14243
14244 i_ehdrp = elf_elfheader (abfd);
14245 if (link_info)
14246 {
14247 htab = mips_elf_hash_table (link_info);
14248 BFD_ASSERT (htab != NULL);
14249
14250 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
14251 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
14252 }
14253 }