]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/linker.c
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / bfd / linker.c
1 /* linker.c -- BFD linker routines
2 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc.
3 Written by Steve Chamberlain and Ian Lance Taylor, Cygnus Support
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "bfdlink.h"
25 #include "genlink.h"
26
27 /*
28 SECTION
29 Linker Functions
30
31 @cindex Linker
32 The linker uses three special entry points in the BFD target
33 vector. It is not necessary to write special routines for
34 these entry points when creating a new BFD back end, since
35 generic versions are provided. However, writing them can
36 speed up linking and make it use significantly less runtime
37 memory.
38
39 The first routine creates a hash table used by the other
40 routines. The second routine adds the symbols from an object
41 file to the hash table. The third routine takes all the
42 object files and links them together to create the output
43 file. These routines are designed so that the linker proper
44 does not need to know anything about the symbols in the object
45 files that it is linking. The linker merely arranges the
46 sections as directed by the linker script and lets BFD handle
47 the details of symbols and relocs.
48
49 The second routine and third routines are passed a pointer to
50 a <<struct bfd_link_info>> structure (defined in
51 <<bfdlink.h>>) which holds information relevant to the link,
52 including the linker hash table (which was created by the
53 first routine) and a set of callback functions to the linker
54 proper.
55
56 The generic linker routines are in <<linker.c>>, and use the
57 header file <<genlink.h>>. As of this writing, the only back
58 ends which have implemented versions of these routines are
59 a.out (in <<aoutx.h>>) and ECOFF (in <<ecoff.c>>). The a.out
60 routines are used as examples throughout this section.
61
62 @menu
63 @* Creating a Linker Hash Table::
64 @* Adding Symbols to the Hash Table::
65 @* Performing the Final Link::
66 @end menu
67
68 INODE
69 Creating a Linker Hash Table, Adding Symbols to the Hash Table, Linker Functions, Linker Functions
70 SUBSECTION
71 Creating a linker hash table
72
73 @cindex _bfd_link_hash_table_create in target vector
74 @cindex target vector (_bfd_link_hash_table_create)
75 The linker routines must create a hash table, which must be
76 derived from <<struct bfd_link_hash_table>> described in
77 <<bfdlink.c>>. @xref{Hash Tables} for information on how to
78 create a derived hash table. This entry point is called using
79 the target vector of the linker output file.
80
81 The <<_bfd_link_hash_table_create>> entry point must allocate
82 and initialize an instance of the desired hash table. If the
83 back end does not require any additional information to be
84 stored with the entries in the hash table, the entry point may
85 simply create a <<struct bfd_link_hash_table>>. Most likely,
86 however, some additional information will be needed.
87
88 For example, with each entry in the hash table the a.out
89 linker keeps the index the symbol has in the final output file
90 (this index number is used so that when doing a relocateable
91 link the symbol index used in the output file can be quickly
92 filled in when copying over a reloc). The a.out linker code
93 defines the required structures and functions for a hash table
94 derived from <<struct bfd_link_hash_table>>. The a.out linker
95 hash table is created by the function
96 <<NAME(aout,link_hash_table_create)>>; it simply allocates
97 space for the hash table, initializes it, and returns a
98 pointer to it.
99
100 When writing the linker routines for a new back end, you will
101 generally not know exactly which fields will be required until
102 you have finished. You should simply create a new hash table
103 which defines no additional fields, and then simply add fields
104 as they become necessary.
105
106 INODE
107 Adding Symbols to the Hash Table, Performing the Final Link, Creating a Linker Hash Table, Linker Functions
108 SUBSECTION
109 Adding symbols to the hash table
110
111 @cindex _bfd_link_add_symbols in target vector
112 @cindex target vector (_bfd_link_add_symbols)
113 The linker proper will call the <<_bfd_link_add_symbols>>
114 entry point for each object file or archive which is to be
115 linked (typically these are the files named on the command
116 line, but some may also come from the linker script). The
117 entry point is responsible for examining the file. For an
118 object file, BFD must add any relevant symbol information to
119 the hash table. For an archive, BFD must determine which
120 elements of the archive should be used and adding them to the
121 link.
122
123 The a.out version of this entry point is
124 <<NAME(aout,link_add_symbols)>>.
125
126 @menu
127 @* Differing file formats::
128 @* Adding symbols from an object file::
129 @* Adding symbols from an archive::
130 @end menu
131
132 INODE
133 Differing file formats, Adding symbols from an object file, Adding Symbols to the Hash Table, Adding Symbols to the Hash Table
134 SUBSUBSECTION
135 Differing file formats
136
137 Normally all the files involved in a link will be of the same
138 format, but it is also possible to link together different
139 format object files, and the back end must support that. The
140 <<_bfd_link_add_symbols>> entry point is called via the target
141 vector of the file to be added. This has an important
142 consequence: the function may not assume that the hash table
143 is the type created by the corresponding
144 <<_bfd_link_hash_table_create>> vector. All the
145 <<_bfd_link_add_symbols>> function can assume about the hash
146 table is that it is derived from <<struct
147 bfd_link_hash_table>>.
148
149 Sometimes the <<_bfd_link_add_symbols>> function must store
150 some information in the hash table entry to be used by the
151 <<_bfd_final_link>> function. In such a case the <<creator>>
152 field of the hash table must be checked to make sure that the
153 hash table was created by an object file of the same format.
154
155 The <<_bfd_final_link>> routine must be prepared to handle a
156 hash entry without any extra information added by the
157 <<_bfd_link_add_symbols>> function. A hash entry without
158 extra information will also occur when the linker script
159 directs the linker to create a symbol. Note that, regardless
160 of how a hash table entry is added, all the fields will be
161 initialized to some sort of null value by the hash table entry
162 initialization function.
163
164 See <<ecoff_link_add_externals>> for an example of how to
165 check the <<creator>> field before saving information (in this
166 case, the ECOFF external symbol debugging information) in a
167 hash table entry.
168
169 INODE
170 Adding symbols from an object file, Adding symbols from an archive, Differing file formats, Adding Symbols to the Hash Table
171 SUBSUBSECTION
172 Adding symbols from an object file
173
174 When the <<_bfd_link_add_symbols>> routine is passed an object
175 file, it must add all externally visible symbols in that
176 object file to the hash table. The actual work of adding the
177 symbol to the hash table is normally handled by the function
178 <<_bfd_generic_link_add_one_symbol>>. The
179 <<_bfd_link_add_symbols>> routine is responsible for reading
180 all the symbols from the object file and passing the correct
181 information to <<_bfd_generic_link_add_one_symbol>>.
182
183 The <<_bfd_link_add_symbols>> routine should not use
184 <<bfd_canonicalize_symtab>> to read the symbols. The point of
185 providing this routine is to avoid the overhead of converting
186 the symbols into generic <<asymbol>> structures.
187
188 @findex _bfd_generic_link_add_one_symbol
189 <<_bfd_generic_link_add_one_symbol>> handles the details of
190 combining common symbols, warning about multiple definitions,
191 and so forth. It takes arguments which describe the symbol to
192 add, notably symbol flags, a section, and an offset. The
193 symbol flags include such things as <<BSF_WEAK>> or
194 <<BSF_INDIRECT>>. The section is a section in the object
195 file, or something like <<bfd_und_section_ptr>> for an undefined
196 symbol or <<bfd_com_section_ptr>> for a common symbol.
197
198 If the <<_bfd_final_link>> routine is also going to need to
199 read the symbol information, the <<_bfd_link_add_symbols>>
200 routine should save it somewhere attached to the object file
201 BFD. However, the information should only be saved if the
202 <<keep_memory>> field of the <<info>> argument is true, so
203 that the <<-no-keep-memory>> linker switch is effective.
204
205 The a.out function which adds symbols from an object file is
206 <<aout_link_add_object_symbols>>, and most of the interesting
207 work is in <<aout_link_add_symbols>>. The latter saves
208 pointers to the hash tables entries created by
209 <<_bfd_generic_link_add_one_symbol>> indexed by symbol number,
210 so that the <<_bfd_final_link>> routine does not have to call
211 the hash table lookup routine to locate the entry.
212
213 INODE
214 Adding symbols from an archive, , Adding symbols from an object file, Adding Symbols to the Hash Table
215 SUBSUBSECTION
216 Adding symbols from an archive
217
218 When the <<_bfd_link_add_symbols>> routine is passed an
219 archive, it must look through the symbols defined by the
220 archive and decide which elements of the archive should be
221 included in the link. For each such element it must call the
222 <<add_archive_element>> linker callback, and it must add the
223 symbols from the object file to the linker hash table.
224
225 @findex _bfd_generic_link_add_archive_symbols
226 In most cases the work of looking through the symbols in the
227 archive should be done by the
228 <<_bfd_generic_link_add_archive_symbols>> function. This
229 function builds a hash table from the archive symbol table and
230 looks through the list of undefined symbols to see which
231 elements should be included.
232 <<_bfd_generic_link_add_archive_symbols>> is passed a function
233 to call to make the final decision about adding an archive
234 element to the link and to do the actual work of adding the
235 symbols to the linker hash table.
236
237 The function passed to
238 <<_bfd_generic_link_add_archive_symbols>> must read the
239 symbols of the archive element and decide whether the archive
240 element should be included in the link. If the element is to
241 be included, the <<add_archive_element>> linker callback
242 routine must be called with the element as an argument, and
243 the elements symbols must be added to the linker hash table
244 just as though the element had itself been passed to the
245 <<_bfd_link_add_symbols>> function.
246
247 When the a.out <<_bfd_link_add_symbols>> function receives an
248 archive, it calls <<_bfd_generic_link_add_archive_symbols>>
249 passing <<aout_link_check_archive_element>> as the function
250 argument. <<aout_link_check_archive_element>> calls
251 <<aout_link_check_ar_symbols>>. If the latter decides to add
252 the element (an element is only added if it provides a real,
253 non-common, definition for a previously undefined or common
254 symbol) it calls the <<add_archive_element>> callback and then
255 <<aout_link_check_archive_element>> calls
256 <<aout_link_add_symbols>> to actually add the symbols to the
257 linker hash table.
258
259 The ECOFF back end is unusual in that it does not normally
260 call <<_bfd_generic_link_add_archive_symbols>>, because ECOFF
261 archives already contain a hash table of symbols. The ECOFF
262 back end searches the archive itself to avoid the overhead of
263 creating a new hash table.
264
265 INODE
266 Performing the Final Link, , Adding Symbols to the Hash Table, Linker Functions
267 SUBSECTION
268 Performing the final link
269
270 @cindex _bfd_link_final_link in target vector
271 @cindex target vector (_bfd_final_link)
272 When all the input files have been processed, the linker calls
273 the <<_bfd_final_link>> entry point of the output BFD. This
274 routine is responsible for producing the final output file,
275 which has several aspects. It must relocate the contents of
276 the input sections and copy the data into the output sections.
277 It must build an output symbol table including any local
278 symbols from the input files and the global symbols from the
279 hash table. When producing relocateable output, it must
280 modify the input relocs and write them into the output file.
281 There may also be object format dependent work to be done.
282
283 The linker will also call the <<write_object_contents>> entry
284 point when the BFD is closed. The two entry points must work
285 together in order to produce the correct output file.
286
287 The details of how this works are inevitably dependent upon
288 the specific object file format. The a.out
289 <<_bfd_final_link>> routine is <<NAME(aout,final_link)>>.
290
291 @menu
292 @* Information provided by the linker::
293 @* Relocating the section contents::
294 @* Writing the symbol table::
295 @end menu
296
297 INODE
298 Information provided by the linker, Relocating the section contents, Performing the Final Link, Performing the Final Link
299 SUBSUBSECTION
300 Information provided by the linker
301
302 Before the linker calls the <<_bfd_final_link>> entry point,
303 it sets up some data structures for the function to use.
304
305 The <<input_bfds>> field of the <<bfd_link_info>> structure
306 will point to a list of all the input files included in the
307 link. These files are linked through the <<link_next>> field
308 of the <<bfd>> structure.
309
310 Each section in the output file will have a list of
311 <<link_order>> structures attached to the <<link_order_head>>
312 field (the <<link_order>> structure is defined in
313 <<bfdlink.h>>). These structures describe how to create the
314 contents of the output section in terms of the contents of
315 various input sections, fill constants, and, eventually, other
316 types of information. They also describe relocs that must be
317 created by the BFD backend, but do not correspond to any input
318 file; this is used to support -Ur, which builds constructors
319 while generating a relocateable object file.
320
321 INODE
322 Relocating the section contents, Writing the symbol table, Information provided by the linker, Performing the Final Link
323 SUBSUBSECTION
324 Relocating the section contents
325
326 The <<_bfd_final_link>> function should look through the
327 <<link_order>> structures attached to each section of the
328 output file. Each <<link_order>> structure should either be
329 handled specially, or it should be passed to the function
330 <<_bfd_default_link_order>> which will do the right thing
331 (<<_bfd_default_link_order>> is defined in <<linker.c>>).
332
333 For efficiency, a <<link_order>> of type
334 <<bfd_indirect_link_order>> whose associated section belongs
335 to a BFD of the same format as the output BFD must be handled
336 specially. This type of <<link_order>> describes part of an
337 output section in terms of a section belonging to one of the
338 input files. The <<_bfd_final_link>> function should read the
339 contents of the section and any associated relocs, apply the
340 relocs to the section contents, and write out the modified
341 section contents. If performing a relocateable link, the
342 relocs themselves must also be modified and written out.
343
344 @findex _bfd_relocate_contents
345 @findex _bfd_final_link_relocate
346 The functions <<_bfd_relocate_contents>> and
347 <<_bfd_final_link_relocate>> provide some general support for
348 performing the actual relocations, notably overflow checking.
349 Their arguments include information about the symbol the
350 relocation is against and a <<reloc_howto_type>> argument
351 which describes the relocation to perform. These functions
352 are defined in <<reloc.c>>.
353
354 The a.out function which handles reading, relocating, and
355 writing section contents is <<aout_link_input_section>>. The
356 actual relocation is done in <<aout_link_input_section_std>>
357 and <<aout_link_input_section_ext>>.
358
359 INODE
360 Writing the symbol table, , Relocating the section contents, Performing the Final Link
361 SUBSUBSECTION
362 Writing the symbol table
363
364 The <<_bfd_final_link>> function must gather all the symbols
365 in the input files and write them out. It must also write out
366 all the symbols in the global hash table. This must be
367 controlled by the <<strip>> and <<discard>> fields of the
368 <<bfd_link_info>> structure.
369
370 The local symbols of the input files will not have been
371 entered into the linker hash table. The <<_bfd_final_link>>
372 routine must consider each input file and include the symbols
373 in the output file. It may be convenient to do this when
374 looking through the <<link_order>> structures, or it may be
375 done by stepping through the <<input_bfds>> list.
376
377 The <<_bfd_final_link>> routine must also traverse the global
378 hash table to gather all the externally visible symbols. It
379 is possible that most of the externally visible symbols may be
380 written out when considering the symbols of each input file,
381 but it is still necessary to traverse the hash table since the
382 linker script may have defined some symbols that are not in
383 any of the input files.
384
385 The <<strip>> field of the <<bfd_link_info>> structure
386 controls which symbols are written out. The possible values
387 are listed in <<bfdlink.h>>. If the value is <<strip_some>>,
388 then the <<keep_hash>> field of the <<bfd_link_info>>
389 structure is a hash table of symbols to keep; each symbol
390 should be looked up in this hash table, and only symbols which
391 are present should be included in the output file.
392
393 If the <<strip>> field of the <<bfd_link_info>> structure
394 permits local symbols to be written out, the <<discard>> field
395 is used to further controls which local symbols are included
396 in the output file. If the value is <<discard_l>>, then all
397 local symbols which begin with a certain prefix are discarded;
398 this prefix is described by the <<lprefix>> and
399 <<lprefix_len>> fields of the <<bfd_link_info>> structure.
400
401 The a.out backend handles symbols by calling
402 <<aout_link_write_symbols>> on each input BFD and then
403 traversing the global hash table with the function
404 <<aout_link_write_other_symbol>>. It builds a string table
405 while writing out the symbols, which is written to the output
406 file at the end of <<NAME(aout,final_link)>>.
407 */
408
409 static boolean generic_link_read_symbols
410 PARAMS ((bfd *));
411 static boolean generic_link_add_symbols
412 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
413 static boolean generic_link_add_object_symbols
414 PARAMS ((bfd *, struct bfd_link_info *, boolean collect));
415 static boolean generic_link_check_archive_element_no_collect
416 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
417 static boolean generic_link_check_archive_element_collect
418 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
419 static boolean generic_link_check_archive_element
420 PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded, boolean collect));
421 static boolean generic_link_add_symbol_list
422 PARAMS ((bfd *, struct bfd_link_info *, bfd_size_type count, asymbol **,
423 boolean collect));
424 static bfd *hash_entry_bfd PARAMS ((struct bfd_link_hash_entry *));
425 static void set_symbol_from_hash
426 PARAMS ((asymbol *, struct bfd_link_hash_entry *));
427 static boolean generic_add_output_symbol
428 PARAMS ((bfd *, size_t *psymalloc, asymbol *));
429 static boolean default_fill_link_order
430 PARAMS ((bfd *, struct bfd_link_info *, asection *,
431 struct bfd_link_order *));
432 static boolean default_indirect_link_order
433 PARAMS ((bfd *, struct bfd_link_info *, asection *,
434 struct bfd_link_order *, boolean));
435
436 /* The link hash table structure is defined in bfdlink.h. It provides
437 a base hash table which the backend specific hash tables are built
438 upon. */
439
440 /* Routine to create an entry in the link hash table. */
441
442 struct bfd_hash_entry *
443 _bfd_link_hash_newfunc (entry, table, string)
444 struct bfd_hash_entry *entry;
445 struct bfd_hash_table *table;
446 const char *string;
447 {
448 struct bfd_link_hash_entry *ret = (struct bfd_link_hash_entry *) entry;
449
450 /* Allocate the structure if it has not already been allocated by a
451 subclass. */
452 if (ret == (struct bfd_link_hash_entry *) NULL)
453 ret = ((struct bfd_link_hash_entry *)
454 bfd_hash_allocate (table, sizeof (struct bfd_link_hash_entry)));
455 if (ret == (struct bfd_link_hash_entry *) NULL)
456 return NULL;
457
458 /* Call the allocation method of the superclass. */
459 ret = ((struct bfd_link_hash_entry *)
460 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
461
462 if (ret)
463 {
464 /* Initialize the local fields. */
465 ret->type = bfd_link_hash_new;
466 ret->next = NULL;
467 }
468
469 return (struct bfd_hash_entry *) ret;
470 }
471
472 /* Initialize a link hash table. The BFD argument is the one
473 responsible for creating this table. */
474
475 boolean
476 _bfd_link_hash_table_init (table, abfd, newfunc)
477 struct bfd_link_hash_table *table;
478 bfd *abfd;
479 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
480 struct bfd_hash_table *,
481 const char *));
482 {
483 table->creator = abfd->xvec;
484 table->undefs = NULL;
485 table->undefs_tail = NULL;
486 return bfd_hash_table_init (&table->table, newfunc);
487 }
488
489 /* Look up a symbol in a link hash table. If follow is true, we
490 follow bfd_link_hash_indirect and bfd_link_hash_warning links to
491 the real symbol. */
492
493 struct bfd_link_hash_entry *
494 bfd_link_hash_lookup (table, string, create, copy, follow)
495 struct bfd_link_hash_table *table;
496 const char *string;
497 boolean create;
498 boolean copy;
499 boolean follow;
500 {
501 struct bfd_link_hash_entry *ret;
502
503 ret = ((struct bfd_link_hash_entry *)
504 bfd_hash_lookup (&table->table, string, create, copy));
505
506 if (follow && ret != (struct bfd_link_hash_entry *) NULL)
507 {
508 while (ret->type == bfd_link_hash_indirect
509 || ret->type == bfd_link_hash_warning)
510 ret = ret->u.i.link;
511 }
512
513 return ret;
514 }
515
516 /* Look up a symbol in the main linker hash table if the symbol might
517 be wrapped. This should only be used for references to an
518 undefined symbol, not for definitions of a symbol. */
519
520 struct bfd_link_hash_entry *
521 bfd_wrapped_link_hash_lookup (abfd, info, string, create, copy, follow)
522 bfd *abfd;
523 struct bfd_link_info *info;
524 const char *string;
525 boolean create;
526 boolean copy;
527 boolean follow;
528 {
529 if (info->wrap_hash != NULL)
530 {
531 const char *l;
532
533 l = string;
534 if (*l == bfd_get_symbol_leading_char (abfd))
535 ++l;
536
537 #undef WRAP
538 #define WRAP "__wrap_"
539
540 if (bfd_hash_lookup (info->wrap_hash, l, false, false) != NULL)
541 {
542 char *n;
543 struct bfd_link_hash_entry *h;
544
545 /* This symbol is being wrapped. We want to replace all
546 references to SYM with references to __wrap_SYM. */
547
548 n = (char *) bfd_malloc (strlen (l) + sizeof WRAP + 1);
549 if (n == NULL)
550 return NULL;
551
552 /* Note that symbol_leading_char may be '\0'. */
553 n[0] = bfd_get_symbol_leading_char (abfd);
554 n[1] = '\0';
555 strcat (n, WRAP);
556 strcat (n, l);
557 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
558 free (n);
559 return h;
560 }
561
562 #undef WRAP
563
564 #undef REAL
565 #define REAL "__real_"
566
567 if (*l == '_'
568 && strncmp (l, REAL, sizeof REAL - 1) == 0
569 && bfd_hash_lookup (info->wrap_hash, l + sizeof REAL - 1,
570 false, false) != NULL)
571 {
572 char *n;
573 struct bfd_link_hash_entry *h;
574
575 /* This is a reference to __real_SYM, where SYM is being
576 wrapped. We want to replace all references to __real_SYM
577 with references to SYM. */
578
579 n = (char *) bfd_malloc (strlen (l + sizeof REAL - 1) + 2);
580 if (n == NULL)
581 return NULL;
582
583 /* Note that symbol_leading_char may be '\0'. */
584 n[0] = bfd_get_symbol_leading_char (abfd);
585 n[1] = '\0';
586 strcat (n, l + sizeof REAL - 1);
587 h = bfd_link_hash_lookup (info->hash, n, create, true, follow);
588 free (n);
589 return h;
590 }
591
592 #undef REAL
593 }
594
595 return bfd_link_hash_lookup (info->hash, string, create, copy, follow);
596 }
597
598 /* Traverse a generic link hash table. The only reason this is not a
599 macro is to do better type checking. This code presumes that an
600 argument passed as a struct bfd_hash_entry * may be caught as a
601 struct bfd_link_hash_entry * with no explicit cast required on the
602 call. */
603
604 void
605 bfd_link_hash_traverse (table, func, info)
606 struct bfd_link_hash_table *table;
607 boolean (*func) PARAMS ((struct bfd_link_hash_entry *, PTR));
608 PTR info;
609 {
610 bfd_hash_traverse (&table->table,
611 ((boolean (*) PARAMS ((struct bfd_hash_entry *, PTR)))
612 func),
613 info);
614 }
615
616 /* Add a symbol to the linker hash table undefs list. */
617
618 INLINE void
619 bfd_link_add_undef (table, h)
620 struct bfd_link_hash_table *table;
621 struct bfd_link_hash_entry *h;
622 {
623 BFD_ASSERT (h->next == NULL);
624 if (table->undefs_tail != (struct bfd_link_hash_entry *) NULL)
625 table->undefs_tail->next = h;
626 if (table->undefs == (struct bfd_link_hash_entry *) NULL)
627 table->undefs = h;
628 table->undefs_tail = h;
629 }
630 \f
631 /* Routine to create an entry in an generic link hash table. */
632
633 struct bfd_hash_entry *
634 _bfd_generic_link_hash_newfunc (entry, table, string)
635 struct bfd_hash_entry *entry;
636 struct bfd_hash_table *table;
637 const char *string;
638 {
639 struct generic_link_hash_entry *ret =
640 (struct generic_link_hash_entry *) entry;
641
642 /* Allocate the structure if it has not already been allocated by a
643 subclass. */
644 if (ret == (struct generic_link_hash_entry *) NULL)
645 ret = ((struct generic_link_hash_entry *)
646 bfd_hash_allocate (table, sizeof (struct generic_link_hash_entry)));
647 if (ret == (struct generic_link_hash_entry *) NULL)
648 return NULL;
649
650 /* Call the allocation method of the superclass. */
651 ret = ((struct generic_link_hash_entry *)
652 _bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
653 table, string));
654
655 if (ret)
656 {
657 /* Set local fields. */
658 ret->written = false;
659 ret->sym = NULL;
660 }
661
662 return (struct bfd_hash_entry *) ret;
663 }
664
665 /* Create an generic link hash table. */
666
667 struct bfd_link_hash_table *
668 _bfd_generic_link_hash_table_create (abfd)
669 bfd *abfd;
670 {
671 struct generic_link_hash_table *ret;
672
673 ret = ((struct generic_link_hash_table *)
674 bfd_alloc (abfd, sizeof (struct generic_link_hash_table)));
675 if (ret == NULL)
676 return (struct bfd_link_hash_table *) NULL;
677 if (! _bfd_link_hash_table_init (&ret->root, abfd,
678 _bfd_generic_link_hash_newfunc))
679 {
680 free (ret);
681 return (struct bfd_link_hash_table *) NULL;
682 }
683 return &ret->root;
684 }
685
686 /* Grab the symbols for an object file when doing a generic link. We
687 store the symbols in the outsymbols field. We need to keep them
688 around for the entire link to ensure that we only read them once.
689 If we read them multiple times, we might wind up with relocs and
690 the hash table pointing to different instances of the symbol
691 structure. */
692
693 static boolean
694 generic_link_read_symbols (abfd)
695 bfd *abfd;
696 {
697 if (abfd->outsymbols == (asymbol **) NULL)
698 {
699 long symsize;
700 long symcount;
701
702 symsize = bfd_get_symtab_upper_bound (abfd);
703 if (symsize < 0)
704 return false;
705 abfd->outsymbols = (asymbol **) bfd_alloc (abfd, symsize);
706 if (abfd->outsymbols == NULL && symsize != 0)
707 return false;
708 symcount = bfd_canonicalize_symtab (abfd, abfd->outsymbols);
709 if (symcount < 0)
710 return false;
711 abfd->symcount = symcount;
712 }
713
714 return true;
715 }
716 \f
717 /* Generic function to add symbols to from an object file to the
718 global hash table. This version does not automatically collect
719 constructors by name. */
720
721 boolean
722 _bfd_generic_link_add_symbols (abfd, info)
723 bfd *abfd;
724 struct bfd_link_info *info;
725 {
726 return generic_link_add_symbols (abfd, info, false);
727 }
728
729 /* Generic function to add symbols from an object file to the global
730 hash table. This version automatically collects constructors by
731 name, as the collect2 program does. It should be used for any
732 target which does not provide some other mechanism for setting up
733 constructors and destructors; these are approximately those targets
734 for which gcc uses collect2 and do not support stabs. */
735
736 boolean
737 _bfd_generic_link_add_symbols_collect (abfd, info)
738 bfd *abfd;
739 struct bfd_link_info *info;
740 {
741 return generic_link_add_symbols (abfd, info, true);
742 }
743
744 /* Add symbols from an object file to the global hash table. */
745
746 static boolean
747 generic_link_add_symbols (abfd, info, collect)
748 bfd *abfd;
749 struct bfd_link_info *info;
750 boolean collect;
751 {
752 boolean ret;
753
754 switch (bfd_get_format (abfd))
755 {
756 case bfd_object:
757 ret = generic_link_add_object_symbols (abfd, info, collect);
758 break;
759 case bfd_archive:
760 ret = (_bfd_generic_link_add_archive_symbols
761 (abfd, info,
762 (collect
763 ? generic_link_check_archive_element_collect
764 : generic_link_check_archive_element_no_collect)));
765 break;
766 default:
767 bfd_set_error (bfd_error_wrong_format);
768 ret = false;
769 }
770
771 return ret;
772 }
773
774 /* Add symbols from an object file to the global hash table. */
775
776 static boolean
777 generic_link_add_object_symbols (abfd, info, collect)
778 bfd *abfd;
779 struct bfd_link_info *info;
780 boolean collect;
781 {
782 if (! generic_link_read_symbols (abfd))
783 return false;
784 return generic_link_add_symbol_list (abfd, info,
785 _bfd_generic_link_get_symcount (abfd),
786 _bfd_generic_link_get_symbols (abfd),
787 collect);
788 }
789 \f
790 /* We build a hash table of all symbols defined in an archive. */
791
792 /* An archive symbol may be defined by multiple archive elements.
793 This linked list is used to hold the elements. */
794
795 struct archive_list
796 {
797 struct archive_list *next;
798 int indx;
799 };
800
801 /* An entry in an archive hash table. */
802
803 struct archive_hash_entry
804 {
805 struct bfd_hash_entry root;
806 /* Where the symbol is defined. */
807 struct archive_list *defs;
808 };
809
810 /* An archive hash table itself. */
811
812 struct archive_hash_table
813 {
814 struct bfd_hash_table table;
815 };
816
817 static struct bfd_hash_entry *archive_hash_newfunc
818 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
819 static boolean archive_hash_table_init
820 PARAMS ((struct archive_hash_table *,
821 struct bfd_hash_entry *(*) (struct bfd_hash_entry *,
822 struct bfd_hash_table *,
823 const char *)));
824
825 /* Create a new entry for an archive hash table. */
826
827 static struct bfd_hash_entry *
828 archive_hash_newfunc (entry, table, string)
829 struct bfd_hash_entry *entry;
830 struct bfd_hash_table *table;
831 const char *string;
832 {
833 struct archive_hash_entry *ret = (struct archive_hash_entry *) entry;
834
835 /* Allocate the structure if it has not already been allocated by a
836 subclass. */
837 if (ret == (struct archive_hash_entry *) NULL)
838 ret = ((struct archive_hash_entry *)
839 bfd_hash_allocate (table, sizeof (struct archive_hash_entry)));
840 if (ret == (struct archive_hash_entry *) NULL)
841 return NULL;
842
843 /* Call the allocation method of the superclass. */
844 ret = ((struct archive_hash_entry *)
845 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
846
847 if (ret)
848 {
849 /* Initialize the local fields. */
850 ret->defs = (struct archive_list *) NULL;
851 }
852
853 return (struct bfd_hash_entry *) ret;
854 }
855
856 /* Initialize an archive hash table. */
857
858 static boolean
859 archive_hash_table_init (table, newfunc)
860 struct archive_hash_table *table;
861 struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
862 struct bfd_hash_table *,
863 const char *));
864 {
865 return bfd_hash_table_init (&table->table, newfunc);
866 }
867
868 /* Look up an entry in an archive hash table. */
869
870 #define archive_hash_lookup(t, string, create, copy) \
871 ((struct archive_hash_entry *) \
872 bfd_hash_lookup (&(t)->table, (string), (create), (copy)))
873
874 /* Allocate space in an archive hash table. */
875
876 #define archive_hash_allocate(t, size) bfd_hash_allocate (&(t)->table, (size))
877
878 /* Free an archive hash table. */
879
880 #define archive_hash_table_free(t) bfd_hash_table_free (&(t)->table)
881
882 /* Generic function to add symbols from an archive file to the global
883 hash file. This function presumes that the archive symbol table
884 has already been read in (this is normally done by the
885 bfd_check_format entry point). It looks through the undefined and
886 common symbols and searches the archive symbol table for them. If
887 it finds an entry, it includes the associated object file in the
888 link.
889
890 The old linker looked through the archive symbol table for
891 undefined symbols. We do it the other way around, looking through
892 undefined symbols for symbols defined in the archive. The
893 advantage of the newer scheme is that we only have to look through
894 the list of undefined symbols once, whereas the old method had to
895 re-search the symbol table each time a new object file was added.
896
897 The CHECKFN argument is used to see if an object file should be
898 included. CHECKFN should set *PNEEDED to true if the object file
899 should be included, and must also call the bfd_link_info
900 add_archive_element callback function and handle adding the symbols
901 to the global hash table. CHECKFN should only return false if some
902 sort of error occurs.
903
904 For some formats, such as a.out, it is possible to look through an
905 object file but not actually include it in the link. The
906 archive_pass field in a BFD is used to avoid checking the symbols
907 of an object files too many times. When an object is included in
908 the link, archive_pass is set to -1. If an object is scanned but
909 not included, archive_pass is set to the pass number. The pass
910 number is incremented each time a new object file is included. The
911 pass number is used because when a new object file is included it
912 may create new undefined symbols which cause a previously examined
913 object file to be included. */
914
915 boolean
916 _bfd_generic_link_add_archive_symbols (abfd, info, checkfn)
917 bfd *abfd;
918 struct bfd_link_info *info;
919 boolean (*checkfn) PARAMS ((bfd *, struct bfd_link_info *,
920 boolean *pneeded));
921 {
922 carsym *arsyms;
923 carsym *arsym_end;
924 register carsym *arsym;
925 int pass;
926 struct archive_hash_table arsym_hash;
927 int indx;
928 struct bfd_link_hash_entry **pundef;
929
930 if (! bfd_has_map (abfd))
931 {
932 /* An empty archive is a special case. */
933 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
934 return true;
935 bfd_set_error (bfd_error_no_armap);
936 return false;
937 }
938
939 arsyms = bfd_ardata (abfd)->symdefs;
940 arsym_end = arsyms + bfd_ardata (abfd)->symdef_count;
941
942 /* In order to quickly determine whether an symbol is defined in
943 this archive, we build a hash table of the symbols. */
944 if (! archive_hash_table_init (&arsym_hash, archive_hash_newfunc))
945 return false;
946 for (arsym = arsyms, indx = 0; arsym < arsym_end; arsym++, indx++)
947 {
948 struct archive_hash_entry *arh;
949 struct archive_list *l, **pp;
950
951 arh = archive_hash_lookup (&arsym_hash, arsym->name, true, false);
952 if (arh == (struct archive_hash_entry *) NULL)
953 goto error_return;
954 l = ((struct archive_list *)
955 archive_hash_allocate (&arsym_hash, sizeof (struct archive_list)));
956 if (l == NULL)
957 goto error_return;
958 l->indx = indx;
959 for (pp = &arh->defs;
960 *pp != (struct archive_list *) NULL;
961 pp = &(*pp)->next)
962 ;
963 *pp = l;
964 l->next = NULL;
965 }
966
967 /* The archive_pass field in the archive itself is used to
968 initialize PASS, sine we may search the same archive multiple
969 times. */
970 pass = abfd->archive_pass + 1;
971
972 /* New undefined symbols are added to the end of the list, so we
973 only need to look through it once. */
974 pundef = &info->hash->undefs;
975 while (*pundef != (struct bfd_link_hash_entry *) NULL)
976 {
977 struct bfd_link_hash_entry *h;
978 struct archive_hash_entry *arh;
979 struct archive_list *l;
980
981 h = *pundef;
982
983 /* When a symbol is defined, it is not necessarily removed from
984 the list. */
985 if (h->type != bfd_link_hash_undefined
986 && h->type != bfd_link_hash_common)
987 {
988 /* Remove this entry from the list, for general cleanliness
989 and because we are going to look through the list again
990 if we search any more libraries. We can't remove the
991 entry if it is the tail, because that would lose any
992 entries we add to the list later on (it would also cause
993 us to lose track of whether the symbol has been
994 referenced). */
995 if (*pundef != info->hash->undefs_tail)
996 *pundef = (*pundef)->next;
997 else
998 pundef = &(*pundef)->next;
999 continue;
1000 }
1001
1002 /* Look for this symbol in the archive symbol map. */
1003 arh = archive_hash_lookup (&arsym_hash, h->root.string, false, false);
1004 if (arh == (struct archive_hash_entry *) NULL)
1005 {
1006 pundef = &(*pundef)->next;
1007 continue;
1008 }
1009
1010 /* Look at all the objects which define this symbol. */
1011 for (l = arh->defs; l != (struct archive_list *) NULL; l = l->next)
1012 {
1013 bfd *element;
1014 boolean needed;
1015
1016 /* If the symbol has gotten defined along the way, quit. */
1017 if (h->type != bfd_link_hash_undefined
1018 && h->type != bfd_link_hash_common)
1019 break;
1020
1021 element = bfd_get_elt_at_index (abfd, l->indx);
1022 if (element == (bfd *) NULL)
1023 goto error_return;
1024
1025 /* If we've already included this element, or if we've
1026 already checked it on this pass, continue. */
1027 if (element->archive_pass == -1
1028 || element->archive_pass == pass)
1029 continue;
1030
1031 /* If we can't figure this element out, just ignore it. */
1032 if (! bfd_check_format (element, bfd_object))
1033 {
1034 element->archive_pass = -1;
1035 continue;
1036 }
1037
1038 /* CHECKFN will see if this element should be included, and
1039 go ahead and include it if appropriate. */
1040 if (! (*checkfn) (element, info, &needed))
1041 goto error_return;
1042
1043 if (! needed)
1044 element->archive_pass = pass;
1045 else
1046 {
1047 element->archive_pass = -1;
1048
1049 /* Increment the pass count to show that we may need to
1050 recheck object files which were already checked. */
1051 ++pass;
1052 }
1053 }
1054
1055 pundef = &(*pundef)->next;
1056 }
1057
1058 archive_hash_table_free (&arsym_hash);
1059
1060 /* Save PASS in case we are called again. */
1061 abfd->archive_pass = pass;
1062
1063 return true;
1064
1065 error_return:
1066 archive_hash_table_free (&arsym_hash);
1067 return false;
1068 }
1069 \f
1070 /* See if we should include an archive element. This version is used
1071 when we do not want to automatically collect constructors based on
1072 the symbol name, presumably because we have some other mechanism
1073 for finding them. */
1074
1075 static boolean
1076 generic_link_check_archive_element_no_collect (abfd, info, pneeded)
1077 bfd *abfd;
1078 struct bfd_link_info *info;
1079 boolean *pneeded;
1080 {
1081 return generic_link_check_archive_element (abfd, info, pneeded, false);
1082 }
1083
1084 /* See if we should include an archive element. This version is used
1085 when we want to automatically collect constructors based on the
1086 symbol name, as collect2 does. */
1087
1088 static boolean
1089 generic_link_check_archive_element_collect (abfd, info, pneeded)
1090 bfd *abfd;
1091 struct bfd_link_info *info;
1092 boolean *pneeded;
1093 {
1094 return generic_link_check_archive_element (abfd, info, pneeded, true);
1095 }
1096
1097 /* See if we should include an archive element. Optionally collect
1098 constructors. */
1099
1100 static boolean
1101 generic_link_check_archive_element (abfd, info, pneeded, collect)
1102 bfd *abfd;
1103 struct bfd_link_info *info;
1104 boolean *pneeded;
1105 boolean collect;
1106 {
1107 asymbol **pp, **ppend;
1108
1109 *pneeded = false;
1110
1111 if (! generic_link_read_symbols (abfd))
1112 return false;
1113
1114 pp = _bfd_generic_link_get_symbols (abfd);
1115 ppend = pp + _bfd_generic_link_get_symcount (abfd);
1116 for (; pp < ppend; pp++)
1117 {
1118 asymbol *p;
1119 struct bfd_link_hash_entry *h;
1120
1121 p = *pp;
1122
1123 /* We are only interested in globally visible symbols. */
1124 if (! bfd_is_com_section (p->section)
1125 && (p->flags & (BSF_GLOBAL | BSF_INDIRECT | BSF_WEAK)) == 0)
1126 continue;
1127
1128 /* We are only interested if we know something about this
1129 symbol, and it is undefined or common. An undefined weak
1130 symbol (type bfd_link_hash_undefweak) is not considered to be
1131 a reference when pulling files out of an archive. See the
1132 SVR4 ABI, p. 4-27. */
1133 h = bfd_link_hash_lookup (info->hash, bfd_asymbol_name (p), false,
1134 false, true);
1135 if (h == (struct bfd_link_hash_entry *) NULL
1136 || (h->type != bfd_link_hash_undefined
1137 && h->type != bfd_link_hash_common))
1138 continue;
1139
1140 /* P is a symbol we are looking for. */
1141
1142 if (! bfd_is_com_section (p->section))
1143 {
1144 bfd_size_type symcount;
1145 asymbol **symbols;
1146
1147 /* This object file defines this symbol, so pull it in. */
1148 if (! (*info->callbacks->add_archive_element) (info, abfd,
1149 bfd_asymbol_name (p)))
1150 return false;
1151 symcount = _bfd_generic_link_get_symcount (abfd);
1152 symbols = _bfd_generic_link_get_symbols (abfd);
1153 if (! generic_link_add_symbol_list (abfd, info, symcount,
1154 symbols, collect))
1155 return false;
1156 *pneeded = true;
1157 return true;
1158 }
1159
1160 /* P is a common symbol. */
1161
1162 if (h->type == bfd_link_hash_undefined)
1163 {
1164 bfd *symbfd;
1165 bfd_vma size;
1166 unsigned int power;
1167
1168 symbfd = h->u.undef.abfd;
1169 if (symbfd == (bfd *) NULL)
1170 {
1171 /* This symbol was created as undefined from outside
1172 BFD. We assume that we should link in the object
1173 file. This is for the -u option in the linker. */
1174 if (! (*info->callbacks->add_archive_element)
1175 (info, abfd, bfd_asymbol_name (p)))
1176 return false;
1177 *pneeded = true;
1178 return true;
1179 }
1180
1181 /* Turn the symbol into a common symbol but do not link in
1182 the object file. This is how a.out works. Object
1183 formats that require different semantics must implement
1184 this function differently. This symbol is already on the
1185 undefs list. We add the section to a common section
1186 attached to symbfd to ensure that it is in a BFD which
1187 will be linked in. */
1188 h->type = bfd_link_hash_common;
1189 h->u.c.p =
1190 ((struct bfd_link_hash_common_entry *)
1191 bfd_hash_allocate (&info->hash->table,
1192 sizeof (struct bfd_link_hash_common_entry)));
1193 if (h->u.c.p == NULL)
1194 return false;
1195
1196 size = bfd_asymbol_value (p);
1197 h->u.c.size = size;
1198
1199 power = bfd_log2 (size);
1200 if (power > 4)
1201 power = 4;
1202 h->u.c.p->alignment_power = power;
1203
1204 if (p->section == bfd_com_section_ptr)
1205 h->u.c.p->section = bfd_make_section_old_way (symbfd, "COMMON");
1206 else
1207 h->u.c.p->section = bfd_make_section_old_way (symbfd,
1208 p->section->name);
1209 h->u.c.p->section->flags = SEC_ALLOC;
1210 }
1211 else
1212 {
1213 /* Adjust the size of the common symbol if necessary. This
1214 is how a.out works. Object formats that require
1215 different semantics must implement this function
1216 differently. */
1217 if (bfd_asymbol_value (p) > h->u.c.size)
1218 h->u.c.size = bfd_asymbol_value (p);
1219 }
1220 }
1221
1222 /* This archive element is not needed. */
1223 return true;
1224 }
1225
1226 /* Add the symbols from an object file to the global hash table. ABFD
1227 is the object file. INFO is the linker information. SYMBOL_COUNT
1228 is the number of symbols. SYMBOLS is the list of symbols. COLLECT
1229 is true if constructors should be automatically collected by name
1230 as is done by collect2. */
1231
1232 static boolean
1233 generic_link_add_symbol_list (abfd, info, symbol_count, symbols, collect)
1234 bfd *abfd;
1235 struct bfd_link_info *info;
1236 bfd_size_type symbol_count;
1237 asymbol **symbols;
1238 boolean collect;
1239 {
1240 asymbol **pp, **ppend;
1241
1242 pp = symbols;
1243 ppend = symbols + symbol_count;
1244 for (; pp < ppend; pp++)
1245 {
1246 asymbol *p;
1247
1248 p = *pp;
1249
1250 if ((p->flags & (BSF_INDIRECT
1251 | BSF_WARNING
1252 | BSF_GLOBAL
1253 | BSF_CONSTRUCTOR
1254 | BSF_WEAK)) != 0
1255 || bfd_is_und_section (bfd_get_section (p))
1256 || bfd_is_com_section (bfd_get_section (p))
1257 || bfd_is_ind_section (bfd_get_section (p)))
1258 {
1259 const char *name;
1260 const char *string;
1261 struct generic_link_hash_entry *h;
1262
1263 name = bfd_asymbol_name (p);
1264 if (((p->flags & BSF_INDIRECT) != 0
1265 || bfd_is_ind_section (p->section))
1266 && pp + 1 < ppend)
1267 {
1268 pp++;
1269 string = bfd_asymbol_name (*pp);
1270 }
1271 else if ((p->flags & BSF_WARNING) != 0
1272 && pp + 1 < ppend)
1273 {
1274 /* The name of P is actually the warning string, and the
1275 next symbol is the one to warn about. */
1276 string = name;
1277 pp++;
1278 name = bfd_asymbol_name (*pp);
1279 }
1280 else
1281 string = NULL;
1282
1283 h = NULL;
1284 if (! (_bfd_generic_link_add_one_symbol
1285 (info, abfd, name, p->flags, bfd_get_section (p),
1286 p->value, string, false, collect,
1287 (struct bfd_link_hash_entry **) &h)))
1288 return false;
1289
1290 /* If this is a constructor symbol, and the linker didn't do
1291 anything with it, then we want to just pass the symbol
1292 through to the output file. This will happen when
1293 linking with -r. */
1294 if ((p->flags & BSF_CONSTRUCTOR) != 0
1295 && (h == NULL || h->root.type == bfd_link_hash_new))
1296 {
1297 p->udata.p = NULL;
1298 continue;
1299 }
1300
1301 /* Save the BFD symbol so that we don't lose any backend
1302 specific information that may be attached to it. We only
1303 want this one if it gives more information than the
1304 existing one; we don't want to replace a defined symbol
1305 with an undefined one. This routine may be called with a
1306 hash table other than the generic hash table, so we only
1307 do this if we are certain that the hash table is a
1308 generic one. */
1309 if (info->hash->creator == abfd->xvec)
1310 {
1311 if (h->sym == (asymbol *) NULL
1312 || (! bfd_is_und_section (bfd_get_section (p))
1313 && (! bfd_is_com_section (bfd_get_section (p))
1314 || bfd_is_und_section (bfd_get_section (h->sym)))))
1315 {
1316 h->sym = p;
1317 /* BSF_OLD_COMMON is a hack to support COFF reloc
1318 reading, and it should go away when the COFF
1319 linker is switched to the new version. */
1320 if (bfd_is_com_section (bfd_get_section (p)))
1321 p->flags |= BSF_OLD_COMMON;
1322 }
1323
1324 /* Store a back pointer from the symbol to the hash
1325 table entry for the benefit of relaxation code until
1326 it gets rewritten to not use asymbol structures.
1327 Setting this is also used to check whether these
1328 symbols were set up by the generic linker. */
1329 p->udata.p = (PTR) h;
1330 }
1331 }
1332 }
1333
1334 return true;
1335 }
1336 \f
1337 /* We use a state table to deal with adding symbols from an object
1338 file. The first index into the state table describes the symbol
1339 from the object file. The second index into the state table is the
1340 type of the symbol in the hash table. */
1341
1342 /* The symbol from the object file is turned into one of these row
1343 values. */
1344
1345 enum link_row
1346 {
1347 UNDEF_ROW, /* Undefined. */
1348 UNDEFW_ROW, /* Weak undefined. */
1349 DEF_ROW, /* Defined. */
1350 DEFW_ROW, /* Weak defined. */
1351 COMMON_ROW, /* Common. */
1352 INDR_ROW, /* Indirect. */
1353 WARN_ROW, /* Warning. */
1354 SET_ROW /* Member of set. */
1355 };
1356
1357 /* apparently needed for Hitachi 3050R(HI-UX/WE2)? */
1358 #undef FAIL
1359
1360 /* The actions to take in the state table. */
1361
1362 enum link_action
1363 {
1364 FAIL, /* Abort. */
1365 UND, /* Mark symbol undefined. */
1366 WEAK, /* Mark symbol weak undefined. */
1367 DEF, /* Mark symbol defined. */
1368 DEFW, /* Mark symbol weak defined. */
1369 COM, /* Mark symbol common. */
1370 REF, /* Mark defined symbol referenced. */
1371 CREF, /* Possibly warn about common reference to defined symbol. */
1372 CDEF, /* Define existing common symbol. */
1373 NOACT, /* No action. */
1374 BIG, /* Mark symbol common using largest size. */
1375 MDEF, /* Multiple definition error. */
1376 MIND, /* Multiple indirect symbols. */
1377 IND, /* Make indirect symbol. */
1378 CIND, /* Make indirect symbol from existing common symbol. */
1379 SET, /* Add value to set. */
1380 MWARN, /* Make warning symbol. */
1381 WARN, /* Issue warning. */
1382 CWARN, /* Warn if referenced, else MWARN. */
1383 CYCLE, /* Repeat with symbol pointed to. */
1384 REFC, /* Mark indirect symbol referenced and then CYCLE. */
1385 WARNC /* Issue warning and then CYCLE. */
1386 };
1387
1388 /* The state table itself. The first index is a link_row and the
1389 second index is a bfd_link_hash_type. */
1390
1391 static const enum link_action link_action[8][8] =
1392 {
1393 /* current\prev new undef undefw def defw com indr warn */
1394 /* UNDEF_ROW */ {UND, NOACT, UND, REF, REF, NOACT, REFC, WARNC },
1395 /* UNDEFW_ROW */ {WEAK, NOACT, NOACT, REF, REF, NOACT, REFC, WARNC },
1396 /* DEF_ROW */ {DEF, DEF, DEF, MDEF, DEF, CDEF, MDEF, CYCLE },
1397 /* DEFW_ROW */ {DEFW, DEFW, DEFW, NOACT, NOACT, NOACT, NOACT, CYCLE },
1398 /* COMMON_ROW */ {COM, COM, COM, CREF, CREF, BIG, CREF, WARNC },
1399 /* INDR_ROW */ {IND, IND, IND, MDEF, IND, CIND, MIND, CYCLE },
1400 /* WARN_ROW */ {MWARN, WARN, WARN, CWARN, CWARN, WARN, CWARN, MWARN },
1401 /* SET_ROW */ {SET, SET, SET, SET, SET, SET, CYCLE, CYCLE }
1402 };
1403
1404 /* Most of the entries in the LINK_ACTION table are straightforward,
1405 but a few are somewhat subtle.
1406
1407 A reference to an indirect symbol (UNDEF_ROW/indr or
1408 UNDEFW_ROW/indr) is counted as a reference both to the indirect
1409 symbol and to the symbol the indirect symbol points to.
1410
1411 A reference to a warning symbol (UNDEF_ROW/warn or UNDEFW_ROW/warn)
1412 causes the warning to be issued.
1413
1414 A common definition of an indirect symbol (COMMON_ROW/indr) is
1415 treated as a multiple definition error. Likewise for an indirect
1416 definition of a common symbol (INDR_ROW/com).
1417
1418 An indirect definition of a warning (INDR_ROW/warn) does not cause
1419 the warning to be issued.
1420
1421 If a warning is created for an indirect symbol (WARN_ROW/indr) no
1422 warning is created for the symbol the indirect symbol points to.
1423
1424 Adding an entry to a set does not count as a reference to a set,
1425 and no warning is issued (SET_ROW/warn). */
1426
1427 /* Return the BFD in which a hash entry has been defined, if known. */
1428
1429 static bfd *
1430 hash_entry_bfd (h)
1431 struct bfd_link_hash_entry *h;
1432 {
1433 while (h->type == bfd_link_hash_warning)
1434 h = h->u.i.link;
1435 switch (h->type)
1436 {
1437 default:
1438 return NULL;
1439 case bfd_link_hash_undefined:
1440 case bfd_link_hash_undefweak:
1441 return h->u.undef.abfd;
1442 case bfd_link_hash_defined:
1443 case bfd_link_hash_defweak:
1444 return h->u.def.section->owner;
1445 case bfd_link_hash_common:
1446 return h->u.c.p->section->owner;
1447 }
1448 /*NOTREACHED*/
1449 }
1450
1451 /* Add a symbol to the global hash table.
1452 ABFD is the BFD the symbol comes from.
1453 NAME is the name of the symbol.
1454 FLAGS is the BSF_* bits associated with the symbol.
1455 SECTION is the section in which the symbol is defined; this may be
1456 bfd_und_section_ptr or bfd_com_section_ptr.
1457 VALUE is the value of the symbol, relative to the section.
1458 STRING is used for either an indirect symbol, in which case it is
1459 the name of the symbol to indirect to, or a warning symbol, in
1460 which case it is the warning string.
1461 COPY is true if NAME or STRING must be copied into locally
1462 allocated memory if they need to be saved.
1463 COLLECT is true if we should automatically collect gcc constructor
1464 or destructor names as collect2 does.
1465 HASHP, if not NULL, is a place to store the created hash table
1466 entry; if *HASHP is not NULL, the caller has already looked up
1467 the hash table entry, and stored it in *HASHP. */
1468
1469 boolean
1470 _bfd_generic_link_add_one_symbol (info, abfd, name, flags, section, value,
1471 string, copy, collect, hashp)
1472 struct bfd_link_info *info;
1473 bfd *abfd;
1474 const char *name;
1475 flagword flags;
1476 asection *section;
1477 bfd_vma value;
1478 const char *string;
1479 boolean copy;
1480 boolean collect;
1481 struct bfd_link_hash_entry **hashp;
1482 {
1483 enum link_row row;
1484 struct bfd_link_hash_entry *h;
1485 boolean cycle;
1486
1487 if (bfd_is_ind_section (section)
1488 || (flags & BSF_INDIRECT) != 0)
1489 row = INDR_ROW;
1490 else if ((flags & BSF_WARNING) != 0)
1491 row = WARN_ROW;
1492 else if ((flags & BSF_CONSTRUCTOR) != 0)
1493 row = SET_ROW;
1494 else if (bfd_is_und_section (section))
1495 {
1496 if ((flags & BSF_WEAK) != 0)
1497 row = UNDEFW_ROW;
1498 else
1499 row = UNDEF_ROW;
1500 }
1501 else if ((flags & BSF_WEAK) != 0)
1502 row = DEFW_ROW;
1503 else if (bfd_is_com_section (section))
1504 row = COMMON_ROW;
1505 else
1506 row = DEF_ROW;
1507
1508 if (hashp != NULL && *hashp != NULL)
1509 h = *hashp;
1510 else
1511 {
1512 if (row == UNDEF_ROW || row == UNDEFW_ROW)
1513 h = bfd_wrapped_link_hash_lookup (abfd, info, name, true, copy, false);
1514 else
1515 h = bfd_link_hash_lookup (info->hash, name, true, copy, false);
1516 if (h == NULL)
1517 {
1518 if (hashp != NULL)
1519 *hashp = NULL;
1520 return false;
1521 }
1522 }
1523
1524 if (info->notice_all
1525 || (info->notice_hash != (struct bfd_hash_table *) NULL
1526 && (bfd_hash_lookup (info->notice_hash, name, false, false)
1527 != (struct bfd_hash_entry *) NULL)))
1528 {
1529 if (! (*info->callbacks->notice) (info, h->root.string, abfd, section,
1530 value))
1531 return false;
1532 }
1533
1534 if (hashp != (struct bfd_link_hash_entry **) NULL)
1535 *hashp = h;
1536
1537 do
1538 {
1539 enum link_action action;
1540
1541 cycle = false;
1542 action = link_action[(int) row][(int) h->type];
1543 switch (action)
1544 {
1545 case FAIL:
1546 abort ();
1547
1548 case NOACT:
1549 /* Do nothing. */
1550 break;
1551
1552 case UND:
1553 /* Make a new undefined symbol. */
1554 h->type = bfd_link_hash_undefined;
1555 h->u.undef.abfd = abfd;
1556 bfd_link_add_undef (info->hash, h);
1557 break;
1558
1559 case WEAK:
1560 /* Make a new weak undefined symbol. */
1561 h->type = bfd_link_hash_undefweak;
1562 h->u.undef.abfd = abfd;
1563 break;
1564
1565 case CDEF:
1566 /* We have found a definition for a symbol which was
1567 previously common. */
1568 BFD_ASSERT (h->type == bfd_link_hash_common);
1569 if (! ((*info->callbacks->multiple_common)
1570 (info, h->root.string,
1571 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1572 abfd, bfd_link_hash_defined, (bfd_vma) 0)))
1573 return false;
1574 /* Fall through. */
1575 case DEF:
1576 case DEFW:
1577 {
1578 enum bfd_link_hash_type oldtype;
1579
1580 /* Define a symbol. */
1581 oldtype = h->type;
1582 if (action == DEFW)
1583 h->type = bfd_link_hash_defweak;
1584 else
1585 h->type = bfd_link_hash_defined;
1586 h->u.def.section = section;
1587 h->u.def.value = value;
1588
1589 /* If we have been asked to, we act like collect2 and
1590 identify all functions that might be global
1591 constructors and destructors and pass them up in a
1592 callback. We only do this for certain object file
1593 types, since many object file types can handle this
1594 automatically. */
1595 if (collect && name[0] == '_')
1596 {
1597 const char *s;
1598
1599 /* A constructor or destructor name starts like this:
1600 _+GLOBAL_[_.$][ID][_.$] where the first [_.$] and
1601 the second are the same character (we accept any
1602 character there, in case a new object file format
1603 comes along with even worse naming restrictions). */
1604
1605 #define CONS_PREFIX "GLOBAL_"
1606 #define CONS_PREFIX_LEN (sizeof CONS_PREFIX - 1)
1607
1608 s = name + 1;
1609 while (*s == '_')
1610 ++s;
1611 if (s[0] == 'G'
1612 && strncmp (s, CONS_PREFIX, CONS_PREFIX_LEN - 1) == 0)
1613 {
1614 char c;
1615
1616 c = s[CONS_PREFIX_LEN + 1];
1617 if ((c == 'I' || c == 'D')
1618 && s[CONS_PREFIX_LEN] == s[CONS_PREFIX_LEN + 2])
1619 {
1620 /* If this is a definition of a symbol which
1621 was previously weakly defined, we are in
1622 trouble. We have already added a
1623 constructor entry for the weak defined
1624 symbol, and now we are trying to add one
1625 for the new symbol. Fortunately, this case
1626 should never arise in practice. */
1627 if (oldtype == bfd_link_hash_defweak)
1628 abort ();
1629
1630 if (! ((*info->callbacks->constructor)
1631 (info,
1632 c == 'I' ? true : false,
1633 h->root.string, abfd, section, value)))
1634 return false;
1635 }
1636 }
1637 }
1638 }
1639
1640 break;
1641
1642 case COM:
1643 /* We have found a common definition for a symbol. */
1644 if (h->type == bfd_link_hash_new)
1645 bfd_link_add_undef (info->hash, h);
1646 h->type = bfd_link_hash_common;
1647 h->u.c.p =
1648 ((struct bfd_link_hash_common_entry *)
1649 bfd_hash_allocate (&info->hash->table,
1650 sizeof (struct bfd_link_hash_common_entry)));
1651 if (h->u.c.p == NULL)
1652 return false;
1653
1654 h->u.c.size = value;
1655
1656 /* Select a default alignment based on the size. This may
1657 be overridden by the caller. */
1658 {
1659 unsigned int power;
1660
1661 power = bfd_log2 (value);
1662 if (power > 4)
1663 power = 4;
1664 h->u.c.p->alignment_power = power;
1665 }
1666
1667 /* The section of a common symbol is only used if the common
1668 symbol is actually allocated. It basically provides a
1669 hook for the linker script to decide which output section
1670 the common symbols should be put in. In most cases, the
1671 section of a common symbol will be bfd_com_section_ptr,
1672 the code here will choose a common symbol section named
1673 "COMMON", and the linker script will contain *(COMMON) in
1674 the appropriate place. A few targets use separate common
1675 sections for small symbols, and they require special
1676 handling. */
1677 if (section == bfd_com_section_ptr)
1678 {
1679 h->u.c.p->section = bfd_make_section_old_way (abfd, "COMMON");
1680 h->u.c.p->section->flags = SEC_ALLOC;
1681 }
1682 else if (section->owner != abfd)
1683 {
1684 h->u.c.p->section = bfd_make_section_old_way (abfd,
1685 section->name);
1686 h->u.c.p->section->flags = SEC_ALLOC;
1687 }
1688 else
1689 h->u.c.p->section = section;
1690 break;
1691
1692 case REF:
1693 /* A reference to a defined symbol. */
1694 if (h->next == NULL && info->hash->undefs_tail != h)
1695 h->next = h;
1696 break;
1697
1698 case BIG:
1699 /* We have found a common definition for a symbol which
1700 already had a common definition. Use the maximum of the
1701 two sizes. */
1702 BFD_ASSERT (h->type == bfd_link_hash_common);
1703 if (! ((*info->callbacks->multiple_common)
1704 (info, h->root.string,
1705 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1706 abfd, bfd_link_hash_common, value)))
1707 return false;
1708 if (value > h->u.c.size)
1709 {
1710 unsigned int power;
1711
1712 h->u.c.size = value;
1713
1714 /* Select a default alignment based on the size. This may
1715 be overridden by the caller. */
1716 power = bfd_log2 (value);
1717 if (power > 4)
1718 power = 4;
1719 h->u.c.p->alignment_power = power;
1720 }
1721 break;
1722
1723 case CREF:
1724 {
1725 bfd *obfd;
1726
1727 /* We have found a common definition for a symbol which
1728 was already defined. FIXME: It would nice if we could
1729 report the BFD which defined an indirect symbol, but we
1730 don't have anywhere to store the information. */
1731 if (h->type == bfd_link_hash_defined
1732 || h->type == bfd_link_hash_defweak)
1733 obfd = h->u.def.section->owner;
1734 else
1735 obfd = NULL;
1736 if (! ((*info->callbacks->multiple_common)
1737 (info, h->root.string, obfd, h->type, (bfd_vma) 0,
1738 abfd, bfd_link_hash_common, value)))
1739 return false;
1740 }
1741 break;
1742
1743 case MIND:
1744 /* Multiple indirect symbols. This is OK if they both point
1745 to the same symbol. */
1746 if (strcmp (h->u.i.link->root.string, string) == 0)
1747 break;
1748 /* Fall through. */
1749 case MDEF:
1750 /* Handle a multiple definition. */
1751 {
1752 asection *msec;
1753 bfd_vma mval;
1754
1755 switch (h->type)
1756 {
1757 case bfd_link_hash_defined:
1758 msec = h->u.def.section;
1759 mval = h->u.def.value;
1760 break;
1761 case bfd_link_hash_indirect:
1762 msec = bfd_ind_section_ptr;
1763 mval = 0;
1764 break;
1765 default:
1766 abort ();
1767 }
1768
1769 /* Ignore a redefinition of an absolute symbol to the same
1770 value; it's harmless. */
1771 if (h->type == bfd_link_hash_defined
1772 && bfd_is_abs_section (msec)
1773 && bfd_is_abs_section (section)
1774 && value == mval)
1775 break;
1776
1777 if (! ((*info->callbacks->multiple_definition)
1778 (info, h->root.string, msec->owner, msec, mval, abfd,
1779 section, value)))
1780 return false;
1781 }
1782 break;
1783
1784 case CIND:
1785 /* Create an indirect symbol from an existing common symbol. */
1786 BFD_ASSERT (h->type == bfd_link_hash_common);
1787 if (! ((*info->callbacks->multiple_common)
1788 (info, h->root.string,
1789 h->u.c.p->section->owner, bfd_link_hash_common, h->u.c.size,
1790 abfd, bfd_link_hash_indirect, (bfd_vma) 0)))
1791 return false;
1792 /* Fall through. */
1793 case IND:
1794 /* Create an indirect symbol. */
1795 {
1796 struct bfd_link_hash_entry *inh;
1797
1798 /* STRING is the name of the symbol we want to indirect
1799 to. */
1800 inh = bfd_wrapped_link_hash_lookup (abfd, info, string, true,
1801 copy, false);
1802 if (inh == (struct bfd_link_hash_entry *) NULL)
1803 return false;
1804 if (inh->type == bfd_link_hash_new)
1805 {
1806 inh->type = bfd_link_hash_undefined;
1807 inh->u.undef.abfd = abfd;
1808 bfd_link_add_undef (info->hash, inh);
1809 }
1810
1811 /* If the indirect symbol has been referenced, we need to
1812 push the reference down to the symbol we are
1813 referencing. */
1814 if (h->type != bfd_link_hash_new)
1815 {
1816 row = UNDEF_ROW;
1817 cycle = true;
1818 }
1819
1820 h->type = bfd_link_hash_indirect;
1821 h->u.i.link = inh;
1822 }
1823 break;
1824
1825 case SET:
1826 /* Add an entry to a set. */
1827 if (! (*info->callbacks->add_to_set) (info, h, BFD_RELOC_CTOR,
1828 abfd, section, value))
1829 return false;
1830 break;
1831
1832 case WARNC:
1833 /* Issue a warning and cycle. */
1834 if (h->u.i.warning != NULL)
1835 {
1836 if (! (*info->callbacks->warning) (info, h->u.i.warning,
1837 h->root.string, abfd,
1838 (asection *) NULL,
1839 (bfd_vma) 0))
1840 return false;
1841 /* Only issue a warning once. */
1842 h->u.i.warning = NULL;
1843 }
1844 /* Fall through. */
1845 case CYCLE:
1846 /* Try again with the referenced symbol. */
1847 h = h->u.i.link;
1848 cycle = true;
1849 break;
1850
1851 case REFC:
1852 /* A reference to an indirect symbol. */
1853 if (h->next == NULL && info->hash->undefs_tail != h)
1854 h->next = h;
1855 h = h->u.i.link;
1856 cycle = true;
1857 break;
1858
1859 case WARN:
1860 /* Issue a warning. */
1861 if (! (*info->callbacks->warning) (info, string, h->root.string,
1862 hash_entry_bfd (h),
1863 (asection *) NULL, (bfd_vma) 0))
1864 return false;
1865 break;
1866
1867 case CWARN:
1868 /* Warn if this symbol has been referenced already,
1869 otherwise add a warning. A symbol has been referenced if
1870 the next field is not NULL, or it is the tail of the
1871 undefined symbol list. The REF case above helps to
1872 ensure this. */
1873 if (h->next != NULL || info->hash->undefs_tail == h)
1874 {
1875 if (! (*info->callbacks->warning) (info, string, h->root.string,
1876 hash_entry_bfd (h),
1877 (asection *) NULL,
1878 (bfd_vma) 0))
1879 return false;
1880 break;
1881 }
1882 /* Fall through. */
1883 case MWARN:
1884 /* Make a warning symbol. */
1885 {
1886 struct bfd_link_hash_entry *sub;
1887
1888 /* STRING is the warning to give. */
1889 sub = ((struct bfd_link_hash_entry *)
1890 ((*info->hash->table.newfunc)
1891 ((struct bfd_hash_entry *) NULL, &info->hash->table,
1892 h->root.string)));
1893 if (sub == NULL)
1894 return false;
1895 *sub = *h;
1896 sub->type = bfd_link_hash_warning;
1897 sub->u.i.link = h;
1898 if (! copy)
1899 sub->u.i.warning = string;
1900 else
1901 {
1902 char *w;
1903
1904 w = bfd_hash_allocate (&info->hash->table,
1905 strlen (string) + 1);
1906 if (w == NULL)
1907 return false;
1908 strcpy (w, string);
1909 sub->u.i.warning = w;
1910 }
1911
1912 bfd_hash_replace (&info->hash->table,
1913 (struct bfd_hash_entry *) h,
1914 (struct bfd_hash_entry *) sub);
1915 if (hashp != NULL)
1916 *hashp = sub;
1917 }
1918 break;
1919 }
1920 }
1921 while (cycle);
1922
1923 return true;
1924 }
1925 \f
1926 /* Generic final link routine. */
1927
1928 boolean
1929 _bfd_generic_final_link (abfd, info)
1930 bfd *abfd;
1931 struct bfd_link_info *info;
1932 {
1933 bfd *sub;
1934 asection *o;
1935 struct bfd_link_order *p;
1936 size_t outsymalloc;
1937 struct generic_write_global_symbol_info wginfo;
1938
1939 abfd->outsymbols = (asymbol **) NULL;
1940 abfd->symcount = 0;
1941 outsymalloc = 0;
1942
1943 /* Mark all sections which will be included in the output file. */
1944 for (o = abfd->sections; o != NULL; o = o->next)
1945 for (p = o->link_order_head; p != NULL; p = p->next)
1946 if (p->type == bfd_indirect_link_order)
1947 p->u.indirect.section->linker_mark = true;
1948
1949 /* Build the output symbol table. */
1950 for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
1951 if (! _bfd_generic_link_output_symbols (abfd, sub, info, &outsymalloc))
1952 return false;
1953
1954 /* Accumulate the global symbols. */
1955 wginfo.info = info;
1956 wginfo.output_bfd = abfd;
1957 wginfo.psymalloc = &outsymalloc;
1958 _bfd_generic_link_hash_traverse (_bfd_generic_hash_table (info),
1959 _bfd_generic_link_write_global_symbol,
1960 (PTR) &wginfo);
1961
1962 if (info->relocateable)
1963 {
1964 /* Allocate space for the output relocs for each section. */
1965 for (o = abfd->sections;
1966 o != (asection *) NULL;
1967 o = o->next)
1968 {
1969 o->reloc_count = 0;
1970 for (p = o->link_order_head;
1971 p != (struct bfd_link_order *) NULL;
1972 p = p->next)
1973 {
1974 if (p->type == bfd_section_reloc_link_order
1975 || p->type == bfd_symbol_reloc_link_order)
1976 ++o->reloc_count;
1977 else if (p->type == bfd_indirect_link_order)
1978 {
1979 asection *input_section;
1980 bfd *input_bfd;
1981 long relsize;
1982 arelent **relocs;
1983 asymbol **symbols;
1984 long reloc_count;
1985
1986 input_section = p->u.indirect.section;
1987 input_bfd = input_section->owner;
1988 relsize = bfd_get_reloc_upper_bound (input_bfd,
1989 input_section);
1990 if (relsize < 0)
1991 return false;
1992 relocs = (arelent **) bfd_malloc ((size_t) relsize);
1993 if (!relocs && relsize != 0)
1994 return false;
1995 symbols = _bfd_generic_link_get_symbols (input_bfd);
1996 reloc_count = bfd_canonicalize_reloc (input_bfd,
1997 input_section,
1998 relocs,
1999 symbols);
2000 if (reloc_count < 0)
2001 return false;
2002 BFD_ASSERT ((unsigned long) reloc_count
2003 == input_section->reloc_count);
2004 o->reloc_count += reloc_count;
2005 free (relocs);
2006 }
2007 }
2008 if (o->reloc_count > 0)
2009 {
2010 o->orelocation = ((arelent **)
2011 bfd_alloc (abfd,
2012 (o->reloc_count
2013 * sizeof (arelent *))));
2014 if (!o->orelocation)
2015 return false;
2016 o->flags |= SEC_RELOC;
2017 /* Reset the count so that it can be used as an index
2018 when putting in the output relocs. */
2019 o->reloc_count = 0;
2020 }
2021 }
2022 }
2023
2024 /* Handle all the link order information for the sections. */
2025 for (o = abfd->sections;
2026 o != (asection *) NULL;
2027 o = o->next)
2028 {
2029 for (p = o->link_order_head;
2030 p != (struct bfd_link_order *) NULL;
2031 p = p->next)
2032 {
2033 switch (p->type)
2034 {
2035 case bfd_section_reloc_link_order:
2036 case bfd_symbol_reloc_link_order:
2037 if (! _bfd_generic_reloc_link_order (abfd, info, o, p))
2038 return false;
2039 break;
2040 case bfd_indirect_link_order:
2041 if (! default_indirect_link_order (abfd, info, o, p, true))
2042 return false;
2043 break;
2044 default:
2045 if (! _bfd_default_link_order (abfd, info, o, p))
2046 return false;
2047 break;
2048 }
2049 }
2050 }
2051
2052 return true;
2053 }
2054
2055 /* Add an output symbol to the output BFD. */
2056
2057 static boolean
2058 generic_add_output_symbol (output_bfd, psymalloc, sym)
2059 bfd *output_bfd;
2060 size_t *psymalloc;
2061 asymbol *sym;
2062 {
2063 if (output_bfd->symcount >= *psymalloc)
2064 {
2065 asymbol **newsyms;
2066
2067 if (*psymalloc == 0)
2068 *psymalloc = 124;
2069 else
2070 *psymalloc *= 2;
2071 newsyms = (asymbol **) bfd_realloc (output_bfd->outsymbols,
2072 *psymalloc * sizeof (asymbol *));
2073 if (newsyms == (asymbol **) NULL)
2074 return false;
2075 output_bfd->outsymbols = newsyms;
2076 }
2077
2078 output_bfd->outsymbols[output_bfd->symcount] = sym;
2079 ++output_bfd->symcount;
2080
2081 return true;
2082 }
2083
2084 /* Handle the symbols for an input BFD. */
2085
2086 boolean
2087 _bfd_generic_link_output_symbols (output_bfd, input_bfd, info, psymalloc)
2088 bfd *output_bfd;
2089 bfd *input_bfd;
2090 struct bfd_link_info *info;
2091 size_t *psymalloc;
2092 {
2093 asymbol **sym_ptr;
2094 asymbol **sym_end;
2095
2096 if (! generic_link_read_symbols (input_bfd))
2097 return false;
2098
2099 /* Create a filename symbol if we are supposed to. */
2100 if (info->create_object_symbols_section != (asection *) NULL)
2101 {
2102 asection *sec;
2103
2104 for (sec = input_bfd->sections;
2105 sec != (asection *) NULL;
2106 sec = sec->next)
2107 {
2108 if (sec->output_section == info->create_object_symbols_section)
2109 {
2110 asymbol *newsym;
2111
2112 newsym = bfd_make_empty_symbol (input_bfd);
2113 if (!newsym)
2114 return false;
2115 newsym->name = input_bfd->filename;
2116 newsym->value = 0;
2117 newsym->flags = BSF_LOCAL | BSF_FILE;
2118 newsym->section = sec;
2119
2120 if (! generic_add_output_symbol (output_bfd, psymalloc,
2121 newsym))
2122 return false;
2123
2124 break;
2125 }
2126 }
2127 }
2128
2129 /* Adjust the values of the globally visible symbols, and write out
2130 local symbols. */
2131 sym_ptr = _bfd_generic_link_get_symbols (input_bfd);
2132 sym_end = sym_ptr + _bfd_generic_link_get_symcount (input_bfd);
2133 for (; sym_ptr < sym_end; sym_ptr++)
2134 {
2135 asymbol *sym;
2136 struct generic_link_hash_entry *h;
2137 boolean output;
2138
2139 h = (struct generic_link_hash_entry *) NULL;
2140 sym = *sym_ptr;
2141 if ((sym->flags & (BSF_INDIRECT
2142 | BSF_WARNING
2143 | BSF_GLOBAL
2144 | BSF_CONSTRUCTOR
2145 | BSF_WEAK)) != 0
2146 || bfd_is_und_section (bfd_get_section (sym))
2147 || bfd_is_com_section (bfd_get_section (sym))
2148 || bfd_is_ind_section (bfd_get_section (sym)))
2149 {
2150 if (sym->udata.p != NULL)
2151 h = (struct generic_link_hash_entry *) sym->udata.p;
2152 else if ((sym->flags & BSF_CONSTRUCTOR) != 0)
2153 {
2154 /* This case normally means that the main linker code
2155 deliberately ignored this constructor symbol. We
2156 should just pass it through. This will screw up if
2157 the constructor symbol is from a different,
2158 non-generic, object file format, but the case will
2159 only arise when linking with -r, which will probably
2160 fail anyhow, since there will be no way to represent
2161 the relocs in the output format being used. */
2162 h = NULL;
2163 }
2164 else if (bfd_is_und_section (bfd_get_section (sym)))
2165 h = ((struct generic_link_hash_entry *)
2166 bfd_wrapped_link_hash_lookup (output_bfd, info,
2167 bfd_asymbol_name (sym),
2168 false, false, true));
2169 else
2170 h = _bfd_generic_link_hash_lookup (_bfd_generic_hash_table (info),
2171 bfd_asymbol_name (sym),
2172 false, false, true);
2173
2174 if (h != (struct generic_link_hash_entry *) NULL)
2175 {
2176 /* Force all references to this symbol to point to
2177 the same area in memory. It is possible that
2178 this routine will be called with a hash table
2179 other than a generic hash table, so we double
2180 check that. */
2181 if (info->hash->creator == input_bfd->xvec)
2182 {
2183 if (h->sym != (asymbol *) NULL)
2184 *sym_ptr = sym = h->sym;
2185 }
2186
2187 switch (h->root.type)
2188 {
2189 default:
2190 case bfd_link_hash_new:
2191 abort ();
2192 case bfd_link_hash_undefined:
2193 break;
2194 case bfd_link_hash_undefweak:
2195 sym->flags |= BSF_WEAK;
2196 break;
2197 case bfd_link_hash_indirect:
2198 h = (struct generic_link_hash_entry *) h->root.u.i.link;
2199 /* fall through */
2200 case bfd_link_hash_defined:
2201 sym->flags |= BSF_GLOBAL;
2202 sym->flags &=~ BSF_CONSTRUCTOR;
2203 sym->value = h->root.u.def.value;
2204 sym->section = h->root.u.def.section;
2205 break;
2206 case bfd_link_hash_defweak:
2207 sym->flags |= BSF_WEAK;
2208 sym->flags &=~ BSF_CONSTRUCTOR;
2209 sym->value = h->root.u.def.value;
2210 sym->section = h->root.u.def.section;
2211 break;
2212 case bfd_link_hash_common:
2213 sym->value = h->root.u.c.size;
2214 sym->flags |= BSF_GLOBAL;
2215 if (! bfd_is_com_section (sym->section))
2216 {
2217 BFD_ASSERT (bfd_is_und_section (sym->section));
2218 sym->section = bfd_com_section_ptr;
2219 }
2220 /* We do not set the section of the symbol to
2221 h->root.u.c.p->section. That value was saved so
2222 that we would know where to allocate the symbol
2223 if it was defined. In this case the type is
2224 still bfd_link_hash_common, so we did not define
2225 it, so we do not want to use that section. */
2226 break;
2227 }
2228 }
2229 }
2230
2231 /* This switch is straight from the old code in
2232 write_file_locals in ldsym.c. */
2233 if (info->strip == strip_all
2234 || (info->strip == strip_some
2235 && (bfd_hash_lookup (info->keep_hash, bfd_asymbol_name (sym),
2236 false, false)
2237 == (struct bfd_hash_entry *) NULL)))
2238 output = false;
2239 else if ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0)
2240 {
2241 /* If this symbol is marked as occurring now, rather
2242 than at the end, output it now. This is used for
2243 COFF C_EXT FCN symbols. FIXME: There must be a
2244 better way. */
2245 if (bfd_asymbol_bfd (sym) == input_bfd
2246 && (sym->flags & BSF_NOT_AT_END) != 0)
2247 output = true;
2248 else
2249 output = false;
2250 }
2251 else if (bfd_is_ind_section (sym->section))
2252 output = false;
2253 else if ((sym->flags & BSF_DEBUGGING) != 0)
2254 {
2255 if (info->strip == strip_none)
2256 output = true;
2257 else
2258 output = false;
2259 }
2260 else if (bfd_is_und_section (sym->section)
2261 || bfd_is_com_section (sym->section))
2262 output = false;
2263 else if ((sym->flags & BSF_LOCAL) != 0)
2264 {
2265 if ((sym->flags & BSF_WARNING) != 0)
2266 output = false;
2267 else
2268 {
2269 switch (info->discard)
2270 {
2271 default:
2272 case discard_all:
2273 output = false;
2274 break;
2275 case discard_l:
2276 if (bfd_asymbol_name (sym)[0] == info->lprefix[0]
2277 && (info->lprefix_len == 1
2278 || strncmp (bfd_asymbol_name (sym), info->lprefix,
2279 info->lprefix_len) == 0))
2280 output = false;
2281 else
2282 output = true;
2283 break;
2284 case discard_none:
2285 output = true;
2286 break;
2287 }
2288 }
2289 }
2290 else if ((sym->flags & BSF_CONSTRUCTOR))
2291 {
2292 if (info->strip != strip_all)
2293 output = true;
2294 else
2295 output = false;
2296 }
2297 else
2298 abort ();
2299
2300 /* If this symbol is in a section which is not being included
2301 in the output file, then we don't want to output the symbol. */
2302 if (sym->section->linker_mark == false)
2303 output = false;
2304
2305 if (output)
2306 {
2307 if (! generic_add_output_symbol (output_bfd, psymalloc, sym))
2308 return false;
2309 if (h != (struct generic_link_hash_entry *) NULL)
2310 h->written = true;
2311 }
2312 }
2313
2314 return true;
2315 }
2316
2317 /* Set the section and value of a generic BFD symbol based on a linker
2318 hash table entry. */
2319
2320 static void
2321 set_symbol_from_hash (sym, h)
2322 asymbol *sym;
2323 struct bfd_link_hash_entry *h;
2324 {
2325 switch (h->type)
2326 {
2327 default:
2328 abort ();
2329 break;
2330 case bfd_link_hash_new:
2331 /* This can happen when a constructor symbol is seen but we are
2332 not building constructors. */
2333 if (sym->section != NULL)
2334 {
2335 BFD_ASSERT ((sym->flags & BSF_CONSTRUCTOR) != 0);
2336 }
2337 else
2338 {
2339 sym->flags |= BSF_CONSTRUCTOR;
2340 sym->section = bfd_abs_section_ptr;
2341 sym->value = 0;
2342 }
2343 break;
2344 case bfd_link_hash_undefined:
2345 sym->section = bfd_und_section_ptr;
2346 sym->value = 0;
2347 break;
2348 case bfd_link_hash_undefweak:
2349 sym->section = bfd_und_section_ptr;
2350 sym->value = 0;
2351 sym->flags |= BSF_WEAK;
2352 break;
2353 case bfd_link_hash_defined:
2354 sym->section = h->u.def.section;
2355 sym->value = h->u.def.value;
2356 break;
2357 case bfd_link_hash_defweak:
2358 sym->flags |= BSF_WEAK;
2359 sym->section = h->u.def.section;
2360 sym->value = h->u.def.value;
2361 break;
2362 case bfd_link_hash_common:
2363 sym->value = h->u.c.size;
2364 if (sym->section == NULL)
2365 sym->section = bfd_com_section_ptr;
2366 else if (! bfd_is_com_section (sym->section))
2367 {
2368 BFD_ASSERT (bfd_is_und_section (sym->section));
2369 sym->section = bfd_com_section_ptr;
2370 }
2371 /* Do not set the section; see _bfd_generic_link_output_symbols. */
2372 break;
2373 case bfd_link_hash_indirect:
2374 case bfd_link_hash_warning:
2375 /* FIXME: What should we do here? */
2376 break;
2377 }
2378 }
2379
2380 /* Write out a global symbol, if it hasn't already been written out.
2381 This is called for each symbol in the hash table. */
2382
2383 boolean
2384 _bfd_generic_link_write_global_symbol (h, data)
2385 struct generic_link_hash_entry *h;
2386 PTR data;
2387 {
2388 struct generic_write_global_symbol_info *wginfo =
2389 (struct generic_write_global_symbol_info *) data;
2390 asymbol *sym;
2391
2392 if (h->written)
2393 return true;
2394
2395 h->written = true;
2396
2397 if (wginfo->info->strip == strip_all
2398 || (wginfo->info->strip == strip_some
2399 && bfd_hash_lookup (wginfo->info->keep_hash, h->root.root.string,
2400 false, false) == NULL))
2401 return true;
2402
2403 if (h->sym != (asymbol *) NULL)
2404 sym = h->sym;
2405 else
2406 {
2407 sym = bfd_make_empty_symbol (wginfo->output_bfd);
2408 if (!sym)
2409 return false;
2410 sym->name = h->root.root.string;
2411 sym->flags = 0;
2412 }
2413
2414 set_symbol_from_hash (sym, &h->root);
2415
2416 sym->flags |= BSF_GLOBAL;
2417
2418 if (! generic_add_output_symbol (wginfo->output_bfd, wginfo->psymalloc,
2419 sym))
2420 {
2421 /* FIXME: No way to return failure. */
2422 abort ();
2423 }
2424
2425 return true;
2426 }
2427
2428 /* Create a relocation. */
2429
2430 boolean
2431 _bfd_generic_reloc_link_order (abfd, info, sec, link_order)
2432 bfd *abfd;
2433 struct bfd_link_info *info;
2434 asection *sec;
2435 struct bfd_link_order *link_order;
2436 {
2437 arelent *r;
2438
2439 if (! info->relocateable)
2440 abort ();
2441 if (sec->orelocation == (arelent **) NULL)
2442 abort ();
2443
2444 r = (arelent *) bfd_alloc (abfd, sizeof (arelent));
2445 if (r == (arelent *) NULL)
2446 return false;
2447
2448 r->address = link_order->offset;
2449 r->howto = bfd_reloc_type_lookup (abfd, link_order->u.reloc.p->reloc);
2450 if (r->howto == 0)
2451 {
2452 bfd_set_error (bfd_error_bad_value);
2453 return false;
2454 }
2455
2456 /* Get the symbol to use for the relocation. */
2457 if (link_order->type == bfd_section_reloc_link_order)
2458 r->sym_ptr_ptr = link_order->u.reloc.p->u.section->symbol_ptr_ptr;
2459 else
2460 {
2461 struct generic_link_hash_entry *h;
2462
2463 h = ((struct generic_link_hash_entry *)
2464 bfd_wrapped_link_hash_lookup (abfd, info,
2465 link_order->u.reloc.p->u.name,
2466 false, false, true));
2467 if (h == (struct generic_link_hash_entry *) NULL
2468 || ! h->written)
2469 {
2470 if (! ((*info->callbacks->unattached_reloc)
2471 (info, link_order->u.reloc.p->u.name,
2472 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2473 return false;
2474 bfd_set_error (bfd_error_bad_value);
2475 return false;
2476 }
2477 r->sym_ptr_ptr = &h->sym;
2478 }
2479
2480 /* If this is an inplace reloc, write the addend to the object file.
2481 Otherwise, store it in the reloc addend. */
2482 if (! r->howto->partial_inplace)
2483 r->addend = link_order->u.reloc.p->addend;
2484 else
2485 {
2486 bfd_size_type size;
2487 bfd_reloc_status_type rstat;
2488 bfd_byte *buf;
2489 boolean ok;
2490
2491 size = bfd_get_reloc_size (r->howto);
2492 buf = (bfd_byte *) bfd_zmalloc (size);
2493 if (buf == (bfd_byte *) NULL)
2494 return false;
2495 rstat = _bfd_relocate_contents (r->howto, abfd,
2496 link_order->u.reloc.p->addend, buf);
2497 switch (rstat)
2498 {
2499 case bfd_reloc_ok:
2500 break;
2501 default:
2502 case bfd_reloc_outofrange:
2503 abort ();
2504 case bfd_reloc_overflow:
2505 if (! ((*info->callbacks->reloc_overflow)
2506 (info,
2507 (link_order->type == bfd_section_reloc_link_order
2508 ? bfd_section_name (abfd, link_order->u.reloc.p->u.section)
2509 : link_order->u.reloc.p->u.name),
2510 r->howto->name, link_order->u.reloc.p->addend,
2511 (bfd *) NULL, (asection *) NULL, (bfd_vma) 0)))
2512 {
2513 free (buf);
2514 return false;
2515 }
2516 break;
2517 }
2518 ok = bfd_set_section_contents (abfd, sec, (PTR) buf,
2519 (file_ptr) link_order->offset, size);
2520 free (buf);
2521 if (! ok)
2522 return false;
2523
2524 r->addend = 0;
2525 }
2526
2527 sec->orelocation[sec->reloc_count] = r;
2528 ++sec->reloc_count;
2529
2530 return true;
2531 }
2532 \f
2533 /* Allocate a new link_order for a section. */
2534
2535 struct bfd_link_order *
2536 bfd_new_link_order (abfd, section)
2537 bfd *abfd;
2538 asection *section;
2539 {
2540 struct bfd_link_order *new;
2541
2542 new = ((struct bfd_link_order *)
2543 bfd_alloc_by_size_t (abfd, sizeof (struct bfd_link_order)));
2544 if (!new)
2545 return NULL;
2546
2547 new->type = bfd_undefined_link_order;
2548 new->offset = 0;
2549 new->size = 0;
2550 new->next = (struct bfd_link_order *) NULL;
2551
2552 if (section->link_order_tail != (struct bfd_link_order *) NULL)
2553 section->link_order_tail->next = new;
2554 else
2555 section->link_order_head = new;
2556 section->link_order_tail = new;
2557
2558 return new;
2559 }
2560
2561 /* Default link order processing routine. Note that we can not handle
2562 the reloc_link_order types here, since they depend upon the details
2563 of how the particular backends generates relocs. */
2564
2565 boolean
2566 _bfd_default_link_order (abfd, info, sec, link_order)
2567 bfd *abfd;
2568 struct bfd_link_info *info;
2569 asection *sec;
2570 struct bfd_link_order *link_order;
2571 {
2572 switch (link_order->type)
2573 {
2574 case bfd_undefined_link_order:
2575 case bfd_section_reloc_link_order:
2576 case bfd_symbol_reloc_link_order:
2577 default:
2578 abort ();
2579 case bfd_indirect_link_order:
2580 return default_indirect_link_order (abfd, info, sec, link_order,
2581 false);
2582 case bfd_fill_link_order:
2583 return default_fill_link_order (abfd, info, sec, link_order);
2584 case bfd_data_link_order:
2585 return bfd_set_section_contents (abfd, sec,
2586 (PTR) link_order->u.data.contents,
2587 (file_ptr) link_order->offset,
2588 link_order->size);
2589 }
2590 }
2591
2592 /* Default routine to handle a bfd_fill_link_order. */
2593
2594 /*ARGSUSED*/
2595 static boolean
2596 default_fill_link_order (abfd, info, sec, link_order)
2597 bfd *abfd;
2598 struct bfd_link_info *info;
2599 asection *sec;
2600 struct bfd_link_order *link_order;
2601 {
2602 size_t size;
2603 char *space;
2604 size_t i;
2605 int fill;
2606 boolean result;
2607
2608 BFD_ASSERT ((sec->flags & SEC_HAS_CONTENTS) != 0);
2609
2610 size = (size_t) link_order->size;
2611 space = (char *) bfd_malloc (size);
2612 if (space == NULL && size != 0)
2613 return false;
2614
2615 fill = link_order->u.fill.value;
2616 for (i = 0; i < size; i += 2)
2617 space[i] = fill >> 8;
2618 for (i = 1; i < size; i += 2)
2619 space[i] = fill;
2620 result = bfd_set_section_contents (abfd, sec, space,
2621 (file_ptr) link_order->offset,
2622 link_order->size);
2623 free (space);
2624 return result;
2625 }
2626
2627 /* Default routine to handle a bfd_indirect_link_order. */
2628
2629 static boolean
2630 default_indirect_link_order (output_bfd, info, output_section, link_order,
2631 generic_linker)
2632 bfd *output_bfd;
2633 struct bfd_link_info *info;
2634 asection *output_section;
2635 struct bfd_link_order *link_order;
2636 boolean generic_linker;
2637 {
2638 asection *input_section;
2639 bfd *input_bfd;
2640 bfd_byte *contents = NULL;
2641 bfd_byte *new_contents;
2642
2643 BFD_ASSERT ((output_section->flags & SEC_HAS_CONTENTS) != 0);
2644
2645 if (link_order->size == 0)
2646 return true;
2647
2648 input_section = link_order->u.indirect.section;
2649 input_bfd = input_section->owner;
2650
2651 BFD_ASSERT (input_section->output_section == output_section);
2652 BFD_ASSERT (input_section->output_offset == link_order->offset);
2653 BFD_ASSERT (input_section->_cooked_size == link_order->size);
2654
2655 if (info->relocateable
2656 && input_section->reloc_count > 0
2657 && output_section->orelocation == (arelent **) NULL)
2658 {
2659 /* Space has not been allocated for the output relocations.
2660 This can happen when we are called by a specific backend
2661 because somebody is attempting to link together different
2662 types of object files. Handling this case correctly is
2663 difficult, and sometimes impossible. */
2664 (*_bfd_error_handler)
2665 ("Attempt to do relocateable link with %s input and %s output",
2666 bfd_get_target (input_bfd), bfd_get_target (output_bfd));
2667 bfd_set_error (bfd_error_wrong_format);
2668 return false;
2669 }
2670
2671 if (! generic_linker)
2672 {
2673 asymbol **sympp;
2674 asymbol **symppend;
2675
2676 /* Get the canonical symbols. The generic linker will always
2677 have retrieved them by this point, but we are being called by
2678 a specific linker, presumably because we are linking
2679 different types of object files together. */
2680 if (! generic_link_read_symbols (input_bfd))
2681 return false;
2682
2683 /* Since we have been called by a specific linker, rather than
2684 the generic linker, the values of the symbols will not be
2685 right. They will be the values as seen in the input file,
2686 not the values of the final link. We need to fix them up
2687 before we can relocate the section. */
2688 sympp = _bfd_generic_link_get_symbols (input_bfd);
2689 symppend = sympp + _bfd_generic_link_get_symcount (input_bfd);
2690 for (; sympp < symppend; sympp++)
2691 {
2692 asymbol *sym;
2693 struct bfd_link_hash_entry *h;
2694
2695 sym = *sympp;
2696
2697 if ((sym->flags & (BSF_INDIRECT
2698 | BSF_WARNING
2699 | BSF_GLOBAL
2700 | BSF_CONSTRUCTOR
2701 | BSF_WEAK)) != 0
2702 || bfd_is_und_section (bfd_get_section (sym))
2703 || bfd_is_com_section (bfd_get_section (sym))
2704 || bfd_is_ind_section (bfd_get_section (sym)))
2705 {
2706 /* sym->udata may have been set by
2707 generic_link_add_symbol_list. */
2708 if (sym->udata.p != NULL)
2709 h = (struct bfd_link_hash_entry *) sym->udata.p;
2710 else if (bfd_is_und_section (bfd_get_section (sym)))
2711 h = bfd_wrapped_link_hash_lookup (output_bfd, info,
2712 bfd_asymbol_name (sym),
2713 false, false, true);
2714 else
2715 h = bfd_link_hash_lookup (info->hash,
2716 bfd_asymbol_name (sym),
2717 false, false, true);
2718 if (h != NULL)
2719 set_symbol_from_hash (sym, h);
2720 }
2721 }
2722 }
2723
2724 /* Get and relocate the section contents. */
2725 contents = ((bfd_byte *)
2726 bfd_malloc (bfd_section_size (input_bfd, input_section)));
2727 if (contents == NULL && bfd_section_size (input_bfd, input_section) != 0)
2728 goto error_return;
2729 new_contents = (bfd_get_relocated_section_contents
2730 (output_bfd, info, link_order, contents, info->relocateable,
2731 _bfd_generic_link_get_symbols (input_bfd)));
2732 if (!new_contents)
2733 goto error_return;
2734
2735 /* Output the section contents. */
2736 if (! bfd_set_section_contents (output_bfd, output_section,
2737 (PTR) new_contents,
2738 link_order->offset, link_order->size))
2739 goto error_return;
2740
2741 if (contents != NULL)
2742 free (contents);
2743 return true;
2744
2745 error_return:
2746 if (contents != NULL)
2747 free (contents);
2748 return false;
2749 }
2750
2751 /* A little routine to count the number of relocs in a link_order
2752 list. */
2753
2754 unsigned int
2755 _bfd_count_link_order_relocs (link_order)
2756 struct bfd_link_order *link_order;
2757 {
2758 register unsigned int c;
2759 register struct bfd_link_order *l;
2760
2761 c = 0;
2762 for (l = link_order; l != (struct bfd_link_order *) NULL; l = l->next)
2763 {
2764 if (l->type == bfd_section_reloc_link_order
2765 || l->type == bfd_symbol_reloc_link_order)
2766 ++c;
2767 }
2768
2769 return c;
2770 }
2771
2772 /*
2773 FUNCTION
2774 bfd_link_split_section
2775
2776 SYNOPSIS
2777 boolean bfd_link_split_section(bfd *abfd, asection *sec);
2778
2779 DESCRIPTION
2780 Return nonzero if @var{sec} should be split during a
2781 reloceatable or final link.
2782
2783 .#define bfd_link_split_section(abfd, sec) \
2784 . BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))
2785 .
2786
2787 */
2788
2789
2790
2791 boolean
2792 _bfd_generic_link_split_section (abfd, sec)
2793 bfd *abfd;
2794 asection *sec;
2795 {
2796 return false;
2797 }