]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/peicode.h
aarch64-pe support for LD, GAS and BFD
[thirdparty/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright (C) 1995-2022 Free Software Foundation, Inc.
3 Written by Cygnus Solutions.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* Most of this hacked by Steve Chamberlain,
24 sac@cygnus.com
25
26 PE/PEI rearrangement (and code added): Donn Terry
27 Softway Systems, Inc. */
28
29 /* Hey look, some documentation [and in a place you expect to find it]!
30
31 The main reference for the pei format is "Microsoft Portable Executable
32 and Common Object File Format Specification 4.1". Get it if you need to
33 do some serious hacking on this code.
34
35 Another reference:
36 "Peering Inside the PE: A Tour of the Win32 Portable Executable
37 File Format", MSJ 1994, Volume 9.
38
39 The *sole* difference between the pe format and the pei format is that the
40 latter has an MSDOS 2.0 .exe header on the front that prints the message
41 "This app must be run under Windows." (or some such).
42 (FIXME: Whether that statement is *really* true or not is unknown.
43 Are there more subtle differences between pe and pei formats?
44 For now assume there aren't. If you find one, then for God sakes
45 document it here!)
46
47 The Microsoft docs use the word "image" instead of "executable" because
48 the former can also refer to a DLL (shared library). Confusion can arise
49 because the `i' in `pei' also refers to "image". The `pe' format can
50 also create images (i.e. executables), it's just that to run on a win32
51 system you need to use the pei format.
52
53 FIXME: Please add more docs here so the next poor fool that has to hack
54 on this code has a chance of getting something accomplished without
55 wasting too much time. */
56
57 #include "libpei.h"
58
59 static bool (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
60 #ifndef coff_bfd_print_private_bfd_data
61 NULL;
62 #else
63 coff_bfd_print_private_bfd_data;
64 #undef coff_bfd_print_private_bfd_data
65 #endif
66
67 static bool pe_print_private_bfd_data (bfd *, void *);
68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
69
70 static bool (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
71 #ifndef coff_bfd_copy_private_bfd_data
72 NULL;
73 #else
74 coff_bfd_copy_private_bfd_data;
75 #undef coff_bfd_copy_private_bfd_data
76 #endif
77
78 static bool pe_bfd_copy_private_bfd_data (bfd *, bfd *);
79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
80
81 #define coff_mkobject pe_mkobject
82 #define coff_mkobject_hook pe_mkobject_hook
83
84 #ifdef COFF_IMAGE_WITH_PE
85 /* This structure contains static variables used by the ILF code. */
86 typedef asection * asection_ptr;
87
88 typedef struct
89 {
90 bfd * abfd;
91 bfd_byte * data;
92 struct bfd_in_memory * bim;
93 unsigned short magic;
94
95 arelent * reltab;
96 unsigned int relcount;
97
98 coff_symbol_type * sym_cache;
99 coff_symbol_type * sym_ptr;
100 unsigned int sym_index;
101
102 unsigned int * sym_table;
103 unsigned int * table_ptr;
104
105 combined_entry_type * native_syms;
106 combined_entry_type * native_ptr;
107
108 coff_symbol_type ** sym_ptr_table;
109 coff_symbol_type ** sym_ptr_ptr;
110
111 unsigned int sec_index;
112
113 char * string_table;
114 char * string_ptr;
115 char * end_string_ptr;
116
117 SYMENT * esym_table;
118 SYMENT * esym_ptr;
119
120 struct internal_reloc * int_reltab;
121 }
122 pe_ILF_vars;
123 #endif /* COFF_IMAGE_WITH_PE */
124
125 bfd_cleanup coff_real_object_p
126 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *);
127 \f
128 #ifndef NO_COFF_RELOCS
129 static void
130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
131 {
132 RELOC *reloc_src = (RELOC *) src;
133 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
134
135 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
136 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
137 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
138 #ifdef SWAP_IN_RELOC_OFFSET
139 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
140 #endif
141 }
142
143 static unsigned int
144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
145 {
146 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
147 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
148
149 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
150 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
151 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
152
153 #ifdef SWAP_OUT_RELOC_OFFSET
154 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
155 #endif
156 #ifdef SWAP_OUT_RELOC_EXTRA
157 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
158 #endif
159 return RELSZ;
160 }
161 #endif /* not NO_COFF_RELOCS */
162
163 #ifdef COFF_IMAGE_WITH_PE
164 #undef FILHDR
165 #define FILHDR struct external_PEI_IMAGE_hdr
166 #endif
167
168 static void
169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
170 {
171 FILHDR *filehdr_src = (FILHDR *) src;
172 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
173
174 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
175 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
176 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
177 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
178 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
179 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
180
181 /* Other people's tools sometimes generate headers with an nsyms but
182 a zero symptr. */
183 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
184 {
185 filehdr_dst->f_nsyms = 0;
186 filehdr_dst->f_flags |= F_LSYMS;
187 }
188
189 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
190 }
191
192 #ifdef COFF_IMAGE_WITH_PE
193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
194 #elif defined COFF_WITH_peAArch64
195 # define coff_swap_filehdr_out _bfd_XX_only_swap_filehdr_out
196 #elif defined COFF_WITH_pex64
197 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
198 #elif defined COFF_WITH_pep
199 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
200 #else
201 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
202 #endif
203
204 static void
205 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
206 {
207 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
208 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
209
210 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
211
212 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
213 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
214 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
215 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
216 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
217 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
218 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
219
220 /* MS handles overflow of line numbers by carrying into the reloc
221 field (it appears). Since it's supposed to be zero for PE
222 *IMAGE* format, that's safe. This is still a bit iffy. */
223 #ifdef COFF_IMAGE_WITH_PE
224 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
225 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
226 scnhdr_int->s_nreloc = 0;
227 #else
228 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
229 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
230 #endif
231
232 if (scnhdr_int->s_vaddr != 0)
233 {
234 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
235 /* Do not cut upper 32-bits for 64-bit vma. */
236 #if !defined(COFF_WITH_pex64) && !defined(COFF_WITH_peAArch64) && !defined(COFF_WITH_peLoongArch64)
237 scnhdr_int->s_vaddr &= 0xffffffff;
238 #endif
239 }
240
241 #ifndef COFF_NO_HACK_SCNHDR_SIZE
242 /* If this section holds uninitialized data and is from an object file
243 or from an executable image that has not initialized the field,
244 or if the image is an executable file and the physical size is padded,
245 use the virtual size (stored in s_paddr) instead. */
246 if (scnhdr_int->s_paddr > 0
247 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
248 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0))
249 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr))))
250 /* This code used to set scnhdr_int->s_paddr to 0. However,
251 coff_set_alignment_hook stores s_paddr in virt_size, which
252 only works if it correctly holds the virtual size of the
253 section. */
254 scnhdr_int->s_size = scnhdr_int->s_paddr;
255 #endif
256 }
257
258 static bool
259 pe_mkobject (bfd * abfd)
260 {
261 pe_data_type *pe;
262 size_t amt = sizeof (pe_data_type);
263
264 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
265
266 if (abfd->tdata.pe_obj_data == 0)
267 return false;
268
269 pe = pe_data (abfd);
270
271 pe->coff.pe = 1;
272
273 /* in_reloc_p is architecture dependent. */
274 pe->in_reloc_p = in_reloc_p;
275
276 /* Default DOS message string. */
277 pe->dos_message[0] = 0x0eba1f0e;
278 pe->dos_message[1] = 0xcd09b400;
279 pe->dos_message[2] = 0x4c01b821;
280 pe->dos_message[3] = 0x685421cd;
281 pe->dos_message[4] = 0x70207369;
282 pe->dos_message[5] = 0x72676f72;
283 pe->dos_message[6] = 0x63206d61;
284 pe->dos_message[7] = 0x6f6e6e61;
285 pe->dos_message[8] = 0x65622074;
286 pe->dos_message[9] = 0x6e757220;
287 pe->dos_message[10] = 0x206e6920;
288 pe->dos_message[11] = 0x20534f44;
289 pe->dos_message[12] = 0x65646f6d;
290 pe->dos_message[13] = 0x0a0d0d2e;
291 pe->dos_message[14] = 0x24;
292 pe->dos_message[15] = 0x0;
293
294 memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr);
295 return true;
296 }
297
298 /* Create the COFF backend specific information. */
299
300 static void *
301 pe_mkobject_hook (bfd * abfd,
302 void * filehdr,
303 void * aouthdr ATTRIBUTE_UNUSED)
304 {
305 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
306 pe_data_type *pe;
307
308 if (! pe_mkobject (abfd))
309 return NULL;
310
311 pe = pe_data (abfd);
312 pe->coff.sym_filepos = internal_f->f_symptr;
313 /* These members communicate important constants about the symbol
314 table to GDB's symbol-reading code. These `constants'
315 unfortunately vary among coff implementations... */
316 pe->coff.local_n_btmask = N_BTMASK;
317 pe->coff.local_n_btshft = N_BTSHFT;
318 pe->coff.local_n_tmask = N_TMASK;
319 pe->coff.local_n_tshift = N_TSHIFT;
320 pe->coff.local_symesz = SYMESZ;
321 pe->coff.local_auxesz = AUXESZ;
322 pe->coff.local_linesz = LINESZ;
323
324 pe->coff.timestamp = internal_f->f_timdat;
325
326 obj_raw_syment_count (abfd) =
327 obj_conv_table_size (abfd) =
328 internal_f->f_nsyms;
329
330 pe->real_flags = internal_f->f_flags;
331
332 if ((internal_f->f_flags & F_DLL) != 0)
333 pe->dll = 1;
334
335 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
336 abfd->flags |= HAS_DEBUG;
337
338 #ifdef COFF_IMAGE_WITH_PE
339 if (aouthdr)
340 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
341 #endif
342
343 #ifdef ARM
344 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
345 coff_data (abfd) ->flags = 0;
346 #endif
347
348 memcpy (pe->dos_message, internal_f->pe.dos_message,
349 sizeof (pe->dos_message));
350
351 return (void *) pe;
352 }
353
354 static bool
355 pe_print_private_bfd_data (bfd *abfd, void * vfile)
356 {
357 FILE *file = (FILE *) vfile;
358
359 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
360 return false;
361
362 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
363 return true;
364
365 fputc ('\n', file);
366
367 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
368 }
369
370 /* Copy any private info we understand from the input bfd
371 to the output bfd. */
372
373 static bool
374 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
375 {
376 /* PR binutils/716: Copy the large address aware flag.
377 XXX: Should we be copying other flags or other fields in the pe_data()
378 structure ? */
379 if (pe_data (obfd) != NULL
380 && pe_data (ibfd) != NULL
381 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
382 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
383
384 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
385 return false;
386
387 if (pe_saved_coff_bfd_copy_private_bfd_data)
388 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
389
390 return true;
391 }
392
393 #define coff_bfd_copy_private_section_data \
394 _bfd_XX_bfd_copy_private_section_data
395
396 #define coff_get_symbol_info _bfd_XX_get_symbol_info
397
398 #ifdef COFF_IMAGE_WITH_PE
399 \f
400 /* Code to handle Microsoft's Image Library Format.
401 Also known as LINK6 format.
402 Documentation about this format can be found at:
403
404 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
405
406 /* The following constants specify the sizes of the various data
407 structures that we have to create in order to build a bfd describing
408 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
409 and SIZEOF_IDATA7 below is to allow for the possibility that we might
410 need a padding byte in order to ensure 16 bit alignment for the section's
411 contents.
412
413 The value for SIZEOF_ILF_STRINGS is computed as follows:
414
415 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
416 per symbol for their names (longest section name is .idata$x).
417
418 There will be two symbols for the imported value, one the symbol name
419 and one with _imp__ prefixed. Allowing for the terminating nul's this
420 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
421
422 The strings in the string table must start STRING__SIZE_SIZE bytes into
423 the table in order to for the string lookup code in coffgen/coffcode to
424 work. */
425 #define NUM_ILF_RELOCS 8
426 #define NUM_ILF_SECTIONS 6
427 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
428
429 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
430 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
431 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
432 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
433 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
434 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
435 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
436 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
437 + 21 + strlen (source_dll) \
438 + NUM_ILF_SECTIONS * 9 \
439 + STRING_SIZE_SIZE)
440 #define SIZEOF_IDATA2 (5 * 4)
441
442 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
443 #ifdef COFF_WITH_pex64
444 #define SIZEOF_IDATA4 (2 * 4)
445 #define SIZEOF_IDATA5 (2 * 4)
446 #else
447 #define SIZEOF_IDATA4 (1 * 4)
448 #define SIZEOF_IDATA5 (1 * 4)
449 #endif
450
451 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
452 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
453 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
454
455 #define ILF_DATA_SIZE \
456 + SIZEOF_ILF_SYMS \
457 + SIZEOF_ILF_SYM_TABLE \
458 + SIZEOF_ILF_NATIVE_SYMS \
459 + SIZEOF_ILF_SYM_PTR_TABLE \
460 + SIZEOF_ILF_EXT_SYMS \
461 + SIZEOF_ILF_RELOCS \
462 + SIZEOF_ILF_INT_RELOCS \
463 + SIZEOF_ILF_STRINGS \
464 + SIZEOF_IDATA2 \
465 + SIZEOF_IDATA4 \
466 + SIZEOF_IDATA5 \
467 + SIZEOF_IDATA6 \
468 + SIZEOF_IDATA7 \
469 + SIZEOF_ILF_SECTIONS \
470 + MAX_TEXT_SECTION_SIZE
471
472 /* Create an empty relocation against the given symbol. */
473
474 static void
475 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
476 bfd_vma address,
477 bfd_reloc_code_real_type reloc,
478 struct bfd_symbol ** sym,
479 unsigned int sym_index)
480 {
481 arelent * entry;
482 struct internal_reloc * internal;
483
484 entry = vars->reltab + vars->relcount;
485 internal = vars->int_reltab + vars->relcount;
486
487 entry->address = address;
488 entry->addend = 0;
489 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
490 entry->sym_ptr_ptr = sym;
491
492 internal->r_vaddr = address;
493 internal->r_symndx = sym_index;
494 internal->r_type = entry->howto ? entry->howto->type : 0;
495
496 vars->relcount ++;
497
498 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
499 }
500
501 /* Create an empty relocation against the given section. */
502
503 static void
504 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
505 bfd_vma address,
506 bfd_reloc_code_real_type reloc,
507 asection_ptr sec)
508 {
509 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
510 coff_section_data (vars->abfd, sec)->i);
511 }
512
513 /* Move the queued relocs into the given section. */
514
515 static void
516 pe_ILF_save_relocs (pe_ILF_vars * vars,
517 asection_ptr sec)
518 {
519 /* Make sure that there is somewhere to store the internal relocs. */
520 if (coff_section_data (vars->abfd, sec) == NULL)
521 /* We should probably return an error indication here. */
522 abort ();
523
524 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
525 coff_section_data (vars->abfd, sec)->keep_relocs = true;
526
527 sec->relocation = vars->reltab;
528 sec->reloc_count = vars->relcount;
529 sec->flags |= SEC_RELOC;
530
531 vars->reltab += vars->relcount;
532 vars->int_reltab += vars->relcount;
533 vars->relcount = 0;
534
535 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
536 }
537
538 /* Create a global symbol and add it to the relevant tables. */
539
540 static void
541 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
542 const char * prefix,
543 const char * symbol_name,
544 asection_ptr section,
545 flagword extra_flags)
546 {
547 coff_symbol_type * sym;
548 combined_entry_type * ent;
549 SYMENT * esym;
550 unsigned short sclass;
551
552 if (extra_flags & BSF_LOCAL)
553 sclass = C_STAT;
554 else
555 sclass = C_EXT;
556
557 #ifdef THUMBPEMAGIC
558 if (vars->magic == THUMBPEMAGIC)
559 {
560 if (extra_flags & BSF_FUNCTION)
561 sclass = C_THUMBEXTFUNC;
562 else if (extra_flags & BSF_LOCAL)
563 sclass = C_THUMBSTAT;
564 else
565 sclass = C_THUMBEXT;
566 }
567 #endif
568
569 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
570
571 sym = vars->sym_ptr;
572 ent = vars->native_ptr;
573 esym = vars->esym_ptr;
574
575 /* Copy the symbol's name into the string table. */
576 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
577
578 if (section == NULL)
579 section = bfd_und_section_ptr;
580
581 /* Initialise the external symbol. */
582 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
583 esym->e.e.e_offset);
584 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
585 esym->e_sclass[0] = sclass;
586
587 /* The following initialisations are unnecessary - the memory is
588 zero initialised. They are just kept here as reminders. */
589
590 /* Initialise the internal symbol structure. */
591 ent->u.syment.n_sclass = sclass;
592 ent->u.syment.n_scnum = section->target_index;
593 ent->u.syment._n._n_n._n_offset = (uintptr_t) sym;
594 ent->is_sym = true;
595
596 sym->symbol.the_bfd = vars->abfd;
597 sym->symbol.name = vars->string_ptr;
598 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
599 sym->symbol.section = section;
600 sym->native = ent;
601
602 * vars->table_ptr = vars->sym_index;
603 * vars->sym_ptr_ptr = sym;
604
605 /* Adjust pointers for the next symbol. */
606 vars->sym_index ++;
607 vars->sym_ptr ++;
608 vars->sym_ptr_ptr ++;
609 vars->table_ptr ++;
610 vars->native_ptr ++;
611 vars->esym_ptr ++;
612 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
613
614 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
615 }
616
617 /* Create a section. */
618
619 static asection_ptr
620 pe_ILF_make_a_section (pe_ILF_vars * vars,
621 const char * name,
622 unsigned int size,
623 flagword extra_flags)
624 {
625 asection_ptr sec;
626 flagword flags;
627 intptr_t alignment;
628
629 sec = bfd_make_section_old_way (vars->abfd, name);
630 if (sec == NULL)
631 return NULL;
632
633 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
634
635 bfd_set_section_flags (sec, flags | extra_flags);
636
637 bfd_set_section_alignment (sec, 2);
638
639 /* Check that we will not run out of space. */
640 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
641
642 /* Set the section size and contents. The actual
643 contents are filled in by our parent. */
644 bfd_set_section_size (sec, (bfd_size_type) size);
645 sec->contents = vars->data;
646 sec->target_index = vars->sec_index ++;
647
648 /* Advance data pointer in the vars structure. */
649 vars->data += size;
650
651 /* Skip the padding byte if it was not needed.
652 The logic here is that if the string length is odd,
653 then the entire string length, including the null byte,
654 is even and so the extra, padding byte, is not needed. */
655 if (size & 1)
656 vars->data --;
657
658 /* PR 18758: See note in pe_ILF_buid_a_bfd. We must make sure that we
659 preserve host alignment requirements. The BFD_ASSERTs in this
660 functions will warn us if we run out of room, but we should
661 already have enough padding built in to ILF_DATA_SIZE. */
662 #if GCC_VERSION >= 3000
663 alignment = __alignof__ (struct coff_section_tdata);
664 #else
665 alignment = 8;
666 #endif
667 vars->data
668 = (bfd_byte *) (((intptr_t) vars->data + alignment - 1) & -alignment);
669
670 /* Create a coff_section_tdata structure for our use. */
671 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
672 vars->data += sizeof (struct coff_section_tdata);
673
674 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
675
676 /* Create a symbol to refer to this section. */
677 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
678
679 /* Cache the index to the symbol in the coff_section_data structure. */
680 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
681
682 return sec;
683 }
684
685 /* This structure contains the code that goes into the .text section
686 in order to perform a jump into the DLL lookup table. The entries
687 in the table are index by the magic number used to represent the
688 machine type in the PE file. The contents of the data[] arrays in
689 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
690 The SIZE field says how many bytes in the DATA array are actually
691 used. The OFFSET field says where in the data array the address
692 of the .idata$5 section should be placed. */
693 #define MAX_TEXT_SECTION_SIZE 32
694
695 typedef struct
696 {
697 unsigned short magic;
698 unsigned char data[MAX_TEXT_SECTION_SIZE];
699 unsigned int size;
700 unsigned int offset;
701 }
702 jump_table;
703
704 static const jump_table jtab[] =
705 {
706 #ifdef I386MAGIC
707 { I386MAGIC,
708 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
709 8, 2
710 },
711 #endif
712
713 #ifdef AMD64MAGIC
714 { AMD64MAGIC,
715 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
716 8, 2
717 },
718 #endif
719
720 #ifdef MC68MAGIC
721 { MC68MAGIC,
722 { /* XXX fill me in */ },
723 0, 0
724 },
725 #endif
726
727 #ifdef MIPS_ARCH_MAGIC_WINCE
728 { MIPS_ARCH_MAGIC_WINCE,
729 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
730 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
731 16, 0
732 },
733 #endif
734
735 #ifdef SH_ARCH_MAGIC_WINCE
736 { SH_ARCH_MAGIC_WINCE,
737 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
738 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
739 12, 8
740 },
741 #endif
742
743 #ifdef AARCH64MAGIC
744 /* We don't currently support jumping to DLLs, so if
745 someone does try emit a runtime trap. Through UDF #0. */
746 { AARCH64MAGIC,
747 { 0x00, 0x00, 0x00, 0x00 },
748 4, 0
749 },
750
751 #endif
752
753 #ifdef ARMPEMAGIC
754 { ARMPEMAGIC,
755 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
756 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
757 12, 8
758 },
759 #endif
760
761 #ifdef THUMBPEMAGIC
762 { THUMBPEMAGIC,
763 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
764 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
765 16, 12
766 },
767 #endif
768
769 #ifdef LOONGARCH64MAGIC
770 /* We don't currently support jumping to DLLs, so if
771 someone does try emit a runtime trap. Through BREAK 0. */
772 { LOONGARCH64MAGIC,
773 { 0x00, 0x00, 0x2a, 0x00 },
774 4, 0
775 },
776
777 #endif
778
779 { 0, { 0 }, 0, 0 }
780 };
781
782 #ifndef NUM_ENTRIES
783 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
784 #endif
785
786 /* Build a full BFD from the information supplied in a ILF object. */
787
788 static bool
789 pe_ILF_build_a_bfd (bfd * abfd,
790 unsigned int magic,
791 char * symbol_name,
792 char * source_dll,
793 unsigned int ordinal,
794 unsigned int types)
795 {
796 bfd_byte * ptr;
797 pe_ILF_vars vars;
798 struct internal_filehdr internal_f;
799 unsigned int import_type;
800 unsigned int import_name_type;
801 asection_ptr id4, id5, id6 = NULL, text = NULL;
802 coff_symbol_type ** imp_sym;
803 unsigned int imp_index;
804 intptr_t alignment;
805
806 /* Decode and verify the types field of the ILF structure. */
807 import_type = types & 0x3;
808 import_name_type = (types & 0x1c) >> 2;
809
810 switch (import_type)
811 {
812 case IMPORT_CODE:
813 case IMPORT_DATA:
814 break;
815
816 case IMPORT_CONST:
817 /* XXX code yet to be written. */
818 /* xgettext:c-format */
819 _bfd_error_handler (_("%pB: unhandled import type; %x"),
820 abfd, import_type);
821 return false;
822
823 default:
824 /* xgettext:c-format */
825 _bfd_error_handler (_("%pB: unrecognized import type; %x"),
826 abfd, import_type);
827 return false;
828 }
829
830 switch (import_name_type)
831 {
832 case IMPORT_ORDINAL:
833 case IMPORT_NAME:
834 case IMPORT_NAME_NOPREFIX:
835 case IMPORT_NAME_UNDECORATE:
836 break;
837
838 default:
839 /* xgettext:c-format */
840 _bfd_error_handler (_("%pB: unrecognized import name type; %x"),
841 abfd, import_name_type);
842 return false;
843 }
844
845 /* Initialise local variables.
846
847 Note these are kept in a structure rather than being
848 declared as statics since bfd frowns on global variables.
849
850 We are going to construct the contents of the BFD in memory,
851 so allocate all the space that we will need right now. */
852 vars.bim
853 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim));
854 if (vars.bim == NULL)
855 return false;
856
857 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE);
858 vars.bim->buffer = ptr;
859 vars.bim->size = ILF_DATA_SIZE;
860 if (ptr == NULL)
861 goto error_return;
862
863 /* Initialise the pointers to regions of the memory and the
864 other contents of the pe_ILF_vars structure as well. */
865 vars.sym_cache = (coff_symbol_type *) ptr;
866 vars.sym_ptr = (coff_symbol_type *) ptr;
867 vars.sym_index = 0;
868 ptr += SIZEOF_ILF_SYMS;
869
870 vars.sym_table = (unsigned int *) ptr;
871 vars.table_ptr = (unsigned int *) ptr;
872 ptr += SIZEOF_ILF_SYM_TABLE;
873
874 vars.native_syms = (combined_entry_type *) ptr;
875 vars.native_ptr = (combined_entry_type *) ptr;
876 ptr += SIZEOF_ILF_NATIVE_SYMS;
877
878 vars.sym_ptr_table = (coff_symbol_type **) ptr;
879 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
880 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
881
882 vars.esym_table = (SYMENT *) ptr;
883 vars.esym_ptr = (SYMENT *) ptr;
884 ptr += SIZEOF_ILF_EXT_SYMS;
885
886 vars.reltab = (arelent *) ptr;
887 vars.relcount = 0;
888 ptr += SIZEOF_ILF_RELOCS;
889
890 vars.int_reltab = (struct internal_reloc *) ptr;
891 ptr += SIZEOF_ILF_INT_RELOCS;
892
893 vars.string_table = (char *) ptr;
894 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
895 ptr += SIZEOF_ILF_STRINGS;
896 vars.end_string_ptr = (char *) ptr;
897
898 /* The remaining space in bim->buffer is used
899 by the pe_ILF_make_a_section() function. */
900
901 /* PR 18758: Make sure that the data area is sufficiently aligned for
902 struct coff_section_tdata. __alignof__ is a gcc extension, hence
903 the test of GCC_VERSION. For other compilers we assume 8 byte
904 alignment. */
905 #if GCC_VERSION >= 3000
906 alignment = __alignof__ (struct coff_section_tdata);
907 #else
908 alignment = 8;
909 #endif
910 ptr = (bfd_byte *) (((intptr_t) ptr + alignment - 1) & -alignment);
911
912 vars.data = ptr;
913 vars.abfd = abfd;
914 vars.sec_index = 0;
915 vars.magic = magic;
916
917 /* Create the initial .idata$<n> sections:
918 [.idata$2: Import Directory Table -- not needed]
919 .idata$4: Import Lookup Table
920 .idata$5: Import Address Table
921
922 Note we do not create a .idata$3 section as this is
923 created for us by the linker script. */
924 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
925 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
926 if (id4 == NULL || id5 == NULL)
927 goto error_return;
928
929 /* Fill in the contents of these sections. */
930 if (import_name_type == IMPORT_ORDINAL)
931 {
932 if (ordinal == 0)
933 /* See PR 20907 for a reproducer. */
934 goto error_return;
935
936 #if defined(COFF_WITH_pex64) || defined(COFF_WITH_peAArch64) || defined(COFF_WITH_peLoongArch64)
937 ((unsigned int *) id4->contents)[0] = ordinal;
938 ((unsigned int *) id4->contents)[1] = 0x80000000;
939 ((unsigned int *) id5->contents)[0] = ordinal;
940 ((unsigned int *) id5->contents)[1] = 0x80000000;
941 #else
942 * (unsigned int *) id4->contents = ordinal | 0x80000000;
943 * (unsigned int *) id5->contents = ordinal | 0x80000000;
944 #endif
945 }
946 else
947 {
948 char * symbol;
949 unsigned int len;
950
951 /* Create .idata$6 - the Hint Name Table. */
952 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
953 if (id6 == NULL)
954 goto error_return;
955
956 /* If necessary, trim the import symbol name. */
957 symbol = symbol_name;
958
959 /* As used by MS compiler, '_', '@', and '?' are alternative
960 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
961 '@' used for fastcall (in C), '_' everywhere else. Only one
962 of these is used for a symbol. We strip this leading char for
963 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
964 PE COFF 6.0 spec (section 8.3, Import Name Type). */
965
966 if (import_name_type != IMPORT_NAME)
967 {
968 char c = symbol[0];
969
970 /* Check that we don't remove for targets with empty
971 USER_LABEL_PREFIX the leading underscore. */
972 if ((c == '_' && abfd->xvec->symbol_leading_char != 0)
973 || c == '@' || c == '?')
974 symbol++;
975 }
976
977 len = strlen (symbol);
978 if (import_name_type == IMPORT_NAME_UNDECORATE)
979 {
980 /* Truncate at the first '@'. */
981 char *at = strchr (symbol, '@');
982
983 if (at != NULL)
984 len = at - symbol;
985 }
986
987 id6->contents[0] = ordinal & 0xff;
988 id6->contents[1] = ordinal >> 8;
989
990 memcpy ((char *) id6->contents + 2, symbol, len);
991 id6->contents[len + 2] = '\0';
992 }
993
994 if (import_name_type != IMPORT_ORDINAL)
995 {
996 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
997 pe_ILF_save_relocs (&vars, id4);
998
999 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
1000 pe_ILF_save_relocs (&vars, id5);
1001 }
1002
1003 /* Create an import symbol. */
1004 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
1005 imp_sym = vars.sym_ptr_ptr - 1;
1006 imp_index = vars.sym_index - 1;
1007
1008 /* Create extra sections depending upon the type of import we are dealing with. */
1009 switch (import_type)
1010 {
1011 int i;
1012
1013 case IMPORT_CODE:
1014 /* CODE functions are special, in that they get a trampoline that
1015 jumps to the main import symbol. Create a .text section to hold it.
1016 First we need to look up its contents in the jump table. */
1017 for (i = NUM_ENTRIES (jtab); i--;)
1018 {
1019 if (jtab[i].size == 0)
1020 continue;
1021 if (jtab[i].magic == magic)
1022 break;
1023 }
1024 /* If we did not find a matching entry something is wrong. */
1025 if (i < 0)
1026 abort ();
1027
1028 /* Create the .text section. */
1029 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
1030 if (text == NULL)
1031 goto error_return;
1032
1033 /* Copy in the jump code. */
1034 memcpy (text->contents, jtab[i].data, jtab[i].size);
1035
1036 /* Create a reloc for the data in the text section. */
1037 #ifdef MIPS_ARCH_MAGIC_WINCE
1038 if (magic == MIPS_ARCH_MAGIC_WINCE)
1039 {
1040 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
1041 (struct bfd_symbol **) imp_sym,
1042 imp_index);
1043 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
1044 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
1045 (struct bfd_symbol **) imp_sym,
1046 imp_index);
1047 }
1048 else
1049 #endif
1050 #ifdef AMD64MAGIC
1051 if (magic == AMD64MAGIC)
1052 {
1053 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1054 BFD_RELOC_32_PCREL, (asymbol **) imp_sym,
1055 imp_index);
1056 }
1057 else
1058 #endif
1059 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
1060 BFD_RELOC_32, (asymbol **) imp_sym,
1061 imp_index);
1062
1063 pe_ILF_save_relocs (& vars, text);
1064 break;
1065
1066 case IMPORT_DATA:
1067 break;
1068
1069 default:
1070 /* XXX code not yet written. */
1071 abort ();
1072 }
1073
1074 /* Initialise the bfd. */
1075 memset (& internal_f, 0, sizeof (internal_f));
1076
1077 internal_f.f_magic = magic;
1078 internal_f.f_symptr = 0;
1079 internal_f.f_nsyms = 0;
1080 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
1081
1082 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
1083 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
1084 goto error_return;
1085
1086 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
1087 goto error_return;
1088
1089 coff_data (abfd)->pe = 1;
1090 #ifdef THUMBPEMAGIC
1091 if (vars.magic == THUMBPEMAGIC)
1092 /* Stop some linker warnings about thumb code not supporting interworking. */
1093 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1094 #endif
1095
1096 /* Switch from file contents to memory contents. */
1097 bfd_cache_close (abfd);
1098
1099 abfd->iostream = (void *) vars.bim;
1100 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1101 abfd->iovec = &_bfd_memory_iovec;
1102 abfd->where = 0;
1103 abfd->origin = 0;
1104 obj_sym_filepos (abfd) = 0;
1105
1106 /* Now create a symbol describing the imported value. */
1107 switch (import_type)
1108 {
1109 case IMPORT_CODE:
1110 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1111 BSF_NOT_AT_END | BSF_FUNCTION);
1112
1113 break;
1114
1115 case IMPORT_DATA:
1116 /* Nothing to do here. */
1117 break;
1118
1119 default:
1120 /* XXX code not yet written. */
1121 abort ();
1122 }
1123
1124 /* Create an import symbol for the DLL, without the .dll suffix. */
1125 ptr = (bfd_byte *) strrchr (source_dll, '.');
1126 if (ptr)
1127 * ptr = 0;
1128 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1129 if (ptr)
1130 * ptr = '.';
1131
1132 /* Point the bfd at the symbol table. */
1133 obj_symbols (abfd) = vars.sym_cache;
1134 abfd->symcount = vars.sym_index;
1135
1136 obj_raw_syments (abfd) = vars.native_syms;
1137 obj_raw_syment_count (abfd) = vars.sym_index;
1138
1139 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1140 obj_coff_keep_syms (abfd) = true;
1141
1142 obj_convert (abfd) = vars.sym_table;
1143 obj_conv_table_size (abfd) = vars.sym_index;
1144
1145 obj_coff_strings (abfd) = vars.string_table;
1146 obj_coff_keep_strings (abfd) = true;
1147
1148 abfd->flags |= HAS_SYMS;
1149
1150 return true;
1151
1152 error_return:
1153 free (vars.bim->buffer);
1154 free (vars.bim);
1155 return false;
1156 }
1157
1158 /* We have detected a Image Library Format archive element.
1159 Decode the element and return the appropriate target. */
1160
1161 static bfd_cleanup
1162 pe_ILF_object_p (bfd * abfd)
1163 {
1164 bfd_byte buffer[14];
1165 bfd_byte * ptr;
1166 char * symbol_name;
1167 char * source_dll;
1168 unsigned int machine;
1169 bfd_size_type size;
1170 unsigned int ordinal;
1171 unsigned int types;
1172 unsigned int magic;
1173
1174 /* Upon entry the first six bytes of the ILF header have
1175 already been read. Now read the rest of the header. */
1176 if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14)
1177 return NULL;
1178
1179 ptr = buffer;
1180
1181 machine = H_GET_16 (abfd, ptr);
1182 ptr += 2;
1183
1184 /* Check that the machine type is recognised. */
1185 magic = 0;
1186
1187 switch (machine)
1188 {
1189 case IMAGE_FILE_MACHINE_UNKNOWN:
1190 case IMAGE_FILE_MACHINE_ALPHA:
1191 case IMAGE_FILE_MACHINE_ALPHA64:
1192 case IMAGE_FILE_MACHINE_IA64:
1193 break;
1194
1195 case IMAGE_FILE_MACHINE_I386:
1196 #ifdef I386MAGIC
1197 magic = I386MAGIC;
1198 #endif
1199 break;
1200
1201 case IMAGE_FILE_MACHINE_AMD64:
1202 #ifdef AMD64MAGIC
1203 magic = AMD64MAGIC;
1204 #endif
1205 break;
1206
1207 case IMAGE_FILE_MACHINE_R3000:
1208 case IMAGE_FILE_MACHINE_R4000:
1209 case IMAGE_FILE_MACHINE_R10000:
1210
1211 case IMAGE_FILE_MACHINE_MIPS16:
1212 case IMAGE_FILE_MACHINE_MIPSFPU:
1213 case IMAGE_FILE_MACHINE_MIPSFPU16:
1214 #ifdef MIPS_ARCH_MAGIC_WINCE
1215 magic = MIPS_ARCH_MAGIC_WINCE;
1216 #endif
1217 break;
1218
1219 case IMAGE_FILE_MACHINE_SH3:
1220 case IMAGE_FILE_MACHINE_SH4:
1221 #ifdef SH_ARCH_MAGIC_WINCE
1222 magic = SH_ARCH_MAGIC_WINCE;
1223 #endif
1224 break;
1225
1226 case IMAGE_FILE_MACHINE_ARM:
1227 #ifdef ARMPEMAGIC
1228 magic = ARMPEMAGIC;
1229 #endif
1230 break;
1231
1232 case IMAGE_FILE_MACHINE_ARM64:
1233 #ifdef AARCH64MAGIC
1234 magic = AARCH64MAGIC;
1235 #endif
1236 break;
1237
1238 case IMAGE_FILE_MACHINE_LOONGARCH64:
1239 #ifdef LOONGARCH64MAGIC
1240 magic = LOONGARCH64MAGIC;
1241 #endif
1242 break;
1243
1244 case IMAGE_FILE_MACHINE_THUMB:
1245 #ifdef THUMBPEMAGIC
1246 {
1247 extern const bfd_target TARGET_LITTLE_SYM;
1248
1249 if (abfd->xvec == & TARGET_LITTLE_SYM)
1250 magic = THUMBPEMAGIC;
1251 }
1252 #endif
1253 break;
1254
1255 case IMAGE_FILE_MACHINE_POWERPC:
1256 /* We no longer support PowerPC. */
1257 default:
1258 _bfd_error_handler
1259 /* xgettext:c-format */
1260 (_("%pB: unrecognised machine type (0x%x)"
1261 " in Import Library Format archive"),
1262 abfd, machine);
1263 bfd_set_error (bfd_error_malformed_archive);
1264
1265 return NULL;
1266 break;
1267 }
1268
1269 if (magic == 0)
1270 {
1271 _bfd_error_handler
1272 /* xgettext:c-format */
1273 (_("%pB: recognised but unhandled machine type (0x%x)"
1274 " in Import Library Format archive"),
1275 abfd, machine);
1276 bfd_set_error (bfd_error_wrong_format);
1277
1278 return NULL;
1279 }
1280
1281 /* We do not bother to check the date.
1282 date = H_GET_32 (abfd, ptr); */
1283 ptr += 4;
1284
1285 size = H_GET_32 (abfd, ptr);
1286 ptr += 4;
1287
1288 if (size == 0)
1289 {
1290 _bfd_error_handler
1291 (_("%pB: size field is zero in Import Library Format header"), abfd);
1292 bfd_set_error (bfd_error_malformed_archive);
1293
1294 return NULL;
1295 }
1296
1297 ordinal = H_GET_16 (abfd, ptr);
1298 ptr += 2;
1299
1300 types = H_GET_16 (abfd, ptr);
1301 /* ptr += 2; */
1302
1303 /* Now read in the two strings that follow. */
1304 ptr = (bfd_byte *) _bfd_alloc_and_read (abfd, size, size);
1305 if (ptr == NULL)
1306 return NULL;
1307
1308 symbol_name = (char *) ptr;
1309 /* See PR 20905 for an example of where the strnlen is necessary. */
1310 source_dll = symbol_name + strnlen (symbol_name, size - 1) + 1;
1311
1312 /* Verify that the strings are null terminated. */
1313 if (ptr[size - 1] != 0
1314 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1315 {
1316 _bfd_error_handler
1317 (_("%pB: string not null terminated in ILF object file"), abfd);
1318 bfd_set_error (bfd_error_malformed_archive);
1319 bfd_release (abfd, ptr);
1320 return NULL;
1321 }
1322
1323 /* Now construct the bfd. */
1324 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1325 source_dll, ordinal, types))
1326 {
1327 bfd_release (abfd, ptr);
1328 return NULL;
1329 }
1330
1331 return _bfd_no_cleanup;
1332 }
1333
1334 static void
1335 pe_bfd_read_buildid (bfd *abfd)
1336 {
1337 pe_data_type *pe = pe_data (abfd);
1338 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr;
1339 asection *section;
1340 bfd_byte *data = 0;
1341 bfd_size_type dataoff;
1342 unsigned int i;
1343 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress;
1344 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size;
1345
1346 if (size == 0)
1347 return;
1348
1349 addr += extra->ImageBase;
1350
1351 /* Search for the section containing the DebugDirectory. */
1352 for (section = abfd->sections; section != NULL; section = section->next)
1353 {
1354 if ((addr >= section->vma) && (addr < (section->vma + section->size)))
1355 break;
1356 }
1357
1358 if (section == NULL)
1359 return;
1360
1361 if (!(section->flags & SEC_HAS_CONTENTS))
1362 return;
1363
1364 dataoff = addr - section->vma;
1365
1366 /* PR 20605 and 22373: Make sure that the data is really there.
1367 Note - since we are dealing with unsigned quantities we have
1368 to be careful to check for potential overflows. */
1369 if (dataoff >= section->size
1370 || size > section->size - dataoff)
1371 {
1372 _bfd_error_handler
1373 (_("%pB: error: debug data ends beyond end of debug directory"),
1374 abfd);
1375 return;
1376 }
1377
1378 /* Read the whole section. */
1379 if (!bfd_malloc_and_get_section (abfd, section, &data))
1380 {
1381 free (data);
1382 return;
1383 }
1384
1385 /* Search for a CodeView entry in the DebugDirectory */
1386 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++)
1387 {
1388 struct external_IMAGE_DEBUG_DIRECTORY *ext
1389 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i];
1390 struct internal_IMAGE_DEBUG_DIRECTORY idd;
1391
1392 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd);
1393
1394 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW)
1395 {
1396 char buffer[256 + 1];
1397 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer;
1398
1399 /*
1400 The debug entry doesn't have to have to be in a section, in which
1401 case AddressOfRawData is 0, so always use PointerToRawData.
1402 */
1403 if (_bfd_XXi_slurp_codeview_record (abfd,
1404 (file_ptr) idd.PointerToRawData,
1405 idd.SizeOfData, cvinfo))
1406 {
1407 struct bfd_build_id* build_id = bfd_alloc (abfd,
1408 sizeof (struct bfd_build_id) + cvinfo->SignatureLength);
1409 if (build_id)
1410 {
1411 build_id->size = cvinfo->SignatureLength;
1412 memcpy(build_id->data, cvinfo->Signature,
1413 cvinfo->SignatureLength);
1414 abfd->build_id = build_id;
1415 }
1416 }
1417 break;
1418 }
1419 }
1420
1421 free (data);
1422 }
1423
1424 static bfd_cleanup
1425 pe_bfd_object_p (bfd * abfd)
1426 {
1427 bfd_byte buffer[6];
1428 struct external_DOS_hdr dos_hdr;
1429 struct external_PEI_IMAGE_hdr image_hdr;
1430 struct internal_filehdr internal_f;
1431 struct internal_aouthdr internal_a;
1432 bfd_size_type opt_hdr_size;
1433 file_ptr offset;
1434 bfd_cleanup result;
1435
1436 /* Detect if this a Microsoft Import Library Format element. */
1437 /* First read the beginning of the header. */
1438 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1439 || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6)
1440 {
1441 if (bfd_get_error () != bfd_error_system_call)
1442 bfd_set_error (bfd_error_wrong_format);
1443 return NULL;
1444 }
1445
1446 /* Then check the magic and the version (only 0 is supported). */
1447 if (H_GET_32 (abfd, buffer) == 0xffff0000
1448 && H_GET_16 (abfd, buffer + 4) == 0)
1449 return pe_ILF_object_p (abfd);
1450
1451 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1452 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1453 != sizeof (dos_hdr))
1454 {
1455 if (bfd_get_error () != bfd_error_system_call)
1456 bfd_set_error (bfd_error_wrong_format);
1457 return NULL;
1458 }
1459
1460 /* There are really two magic numbers involved; the magic number
1461 that says this is a NT executable (PEI) and the magic number that
1462 determines the architecture. The former is IMAGE_DOS_SIGNATURE, stored in
1463 the e_magic field. The latter is stored in the f_magic field.
1464 If the NT magic number isn't valid, the architecture magic number
1465 could be mimicked by some other field (specifically, the number
1466 of relocs in section 3). Since this routine can only be called
1467 correctly for a PEI file, check the e_magic number here, and, if
1468 it doesn't match, clobber the f_magic number so that we don't get
1469 a false match. */
1470 if (H_GET_16 (abfd, dos_hdr.e_magic) != IMAGE_DOS_SIGNATURE)
1471 {
1472 bfd_set_error (bfd_error_wrong_format);
1473 return NULL;
1474 }
1475
1476 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1477 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1478 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1479 != sizeof (image_hdr)))
1480 {
1481 if (bfd_get_error () != bfd_error_system_call)
1482 bfd_set_error (bfd_error_wrong_format);
1483 return NULL;
1484 }
1485
1486 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1487 {
1488 bfd_set_error (bfd_error_wrong_format);
1489 return NULL;
1490 }
1491
1492 /* Swap file header, so that we get the location for calling
1493 real_object_p. */
1494 bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f);
1495
1496 if (! bfd_coff_bad_format_hook (abfd, &internal_f)
1497 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd))
1498 {
1499 bfd_set_error (bfd_error_wrong_format);
1500 return NULL;
1501 }
1502
1503 memcpy (internal_f.pe.dos_message, dos_hdr.dos_message,
1504 sizeof (internal_f.pe.dos_message));
1505
1506 /* Read the optional header, which has variable size. */
1507 opt_hdr_size = internal_f.f_opthdr;
1508
1509 if (opt_hdr_size != 0)
1510 {
1511 bfd_size_type amt = opt_hdr_size;
1512 bfd_byte * opthdr;
1513
1514 /* PR 17521 file: 230-131433-0.004. */
1515 if (amt < sizeof (PEAOUTHDR))
1516 amt = sizeof (PEAOUTHDR);
1517
1518 opthdr = _bfd_alloc_and_read (abfd, amt, opt_hdr_size);
1519 if (opthdr == NULL)
1520 return NULL;
1521 if (amt > opt_hdr_size)
1522 memset (opthdr + opt_hdr_size, 0, amt - opt_hdr_size);
1523
1524 bfd_coff_swap_aouthdr_in (abfd, opthdr, &internal_a);
1525
1526 struct internal_extra_pe_aouthdr *a = &internal_a.pe;
1527 if ((a->SectionAlignment & -a->SectionAlignment) != a->SectionAlignment
1528 || a->SectionAlignment >= 0x80000000)
1529 {
1530 const char **warn = _bfd_per_xvec_warn (abfd->xvec);
1531 *warn = _("%pB: adjusting invalid SectionAlignment");
1532 a->SectionAlignment &= -a->SectionAlignment;
1533 if (a->SectionAlignment >= 0x80000000)
1534 a->SectionAlignment = 0x40000000;
1535 }
1536
1537 if ((a->FileAlignment & -a->FileAlignment) != a->FileAlignment
1538 || a->FileAlignment > a->SectionAlignment)
1539 {
1540 const char **warn = _bfd_per_xvec_warn (abfd->xvec);
1541 *warn = _("%pB: adjusting invalid FileAlignment");
1542 a->FileAlignment &= -a->FileAlignment;
1543 if (a->FileAlignment > a->SectionAlignment)
1544 a->FileAlignment = a->SectionAlignment;
1545 }
1546
1547 if (a->NumberOfRvaAndSizes > IMAGE_NUMBEROF_DIRECTORY_ENTRIES)
1548 {
1549 const char **warn = _bfd_per_xvec_warn (abfd->xvec);
1550 *warn = _("%pB: invalid NumberOfRvaAndSizes");
1551 }
1552 }
1553
1554 result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f,
1555 (opt_hdr_size != 0
1556 ? &internal_a
1557 : (struct internal_aouthdr *) NULL));
1558
1559 if (result)
1560 {
1561 /* Now the whole header has been processed, see if there is a build-id */
1562 pe_bfd_read_buildid(abfd);
1563 }
1564
1565 return result;
1566 }
1567
1568 #define coff_object_p pe_bfd_object_p
1569 #endif /* COFF_IMAGE_WITH_PE */