]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/peicode.h
2007-06-18 H.J. Lu <hongjiu.lu@intel.com>
[thirdparty/binutils-gdb.git] / bfd / peicode.h
1 /* Support for the generic parts of PE/PEI, for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006 Free Software Foundation, Inc.
4 Written by Cygnus Solutions.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
21
22 /* Most of this hacked by Steve Chamberlain,
23 sac@cygnus.com
24
25 PE/PEI rearrangement (and code added): Donn Terry
26 Softway Systems, Inc. */
27
28 /* Hey look, some documentation [and in a place you expect to find it]!
29
30 The main reference for the pei format is "Microsoft Portable Executable
31 and Common Object File Format Specification 4.1". Get it if you need to
32 do some serious hacking on this code.
33
34 Another reference:
35 "Peering Inside the PE: A Tour of the Win32 Portable Executable
36 File Format", MSJ 1994, Volume 9.
37
38 The *sole* difference between the pe format and the pei format is that the
39 latter has an MSDOS 2.0 .exe header on the front that prints the message
40 "This app must be run under Windows." (or some such).
41 (FIXME: Whether that statement is *really* true or not is unknown.
42 Are there more subtle differences between pe and pei formats?
43 For now assume there aren't. If you find one, then for God sakes
44 document it here!)
45
46 The Microsoft docs use the word "image" instead of "executable" because
47 the former can also refer to a DLL (shared library). Confusion can arise
48 because the `i' in `pei' also refers to "image". The `pe' format can
49 also create images (i.e. executables), it's just that to run on a win32
50 system you need to use the pei format.
51
52 FIXME: Please add more docs here so the next poor fool that has to hack
53 on this code has a chance of getting something accomplished without
54 wasting too much time. */
55
56 #include "libpei.h"
57
58 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) =
59 #ifndef coff_bfd_print_private_bfd_data
60 NULL;
61 #else
62 coff_bfd_print_private_bfd_data;
63 #undef coff_bfd_print_private_bfd_data
64 #endif
65
66 static bfd_boolean pe_print_private_bfd_data (bfd *, void *);
67 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data
68
69 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) =
70 #ifndef coff_bfd_copy_private_bfd_data
71 NULL;
72 #else
73 coff_bfd_copy_private_bfd_data;
74 #undef coff_bfd_copy_private_bfd_data
75 #endif
76
77 static bfd_boolean pe_bfd_copy_private_bfd_data (bfd *, bfd *);
78 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data
79
80 #define coff_mkobject pe_mkobject
81 #define coff_mkobject_hook pe_mkobject_hook
82
83 #ifdef COFF_IMAGE_WITH_PE
84 /* This structure contains static variables used by the ILF code. */
85 typedef asection * asection_ptr;
86
87 typedef struct
88 {
89 bfd * abfd;
90 bfd_byte * data;
91 struct bfd_in_memory * bim;
92 unsigned short magic;
93
94 arelent * reltab;
95 unsigned int relcount;
96
97 coff_symbol_type * sym_cache;
98 coff_symbol_type * sym_ptr;
99 unsigned int sym_index;
100
101 unsigned int * sym_table;
102 unsigned int * table_ptr;
103
104 combined_entry_type * native_syms;
105 combined_entry_type * native_ptr;
106
107 coff_symbol_type ** sym_ptr_table;
108 coff_symbol_type ** sym_ptr_ptr;
109
110 unsigned int sec_index;
111
112 char * string_table;
113 char * string_ptr;
114 char * end_string_ptr;
115
116 SYMENT * esym_table;
117 SYMENT * esym_ptr;
118
119 struct internal_reloc * int_reltab;
120 }
121 pe_ILF_vars;
122 #endif /* COFF_IMAGE_WITH_PE */
123 \f
124 #ifndef NO_COFF_RELOCS
125 static void
126 coff_swap_reloc_in (bfd * abfd, void * src, void * dst)
127 {
128 RELOC *reloc_src = (RELOC *) src;
129 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst;
130
131 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr);
132 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx);
133 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type);
134 #ifdef SWAP_IN_RELOC_OFFSET
135 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset);
136 #endif
137 }
138
139 static unsigned int
140 coff_swap_reloc_out (bfd * abfd, void * src, void * dst)
141 {
142 struct internal_reloc *reloc_src = (struct internal_reloc *) src;
143 struct external_reloc *reloc_dst = (struct external_reloc *) dst;
144
145 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr);
146 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx);
147 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type);
148
149 #ifdef SWAP_OUT_RELOC_OFFSET
150 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset);
151 #endif
152 #ifdef SWAP_OUT_RELOC_EXTRA
153 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst);
154 #endif
155 return RELSZ;
156 }
157 #endif /* not NO_COFF_RELOCS */
158
159 static void
160 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst)
161 {
162 FILHDR *filehdr_src = (FILHDR *) src;
163 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst;
164
165 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic);
166 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns);
167 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat);
168 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms);
169 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags);
170 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr);
171
172 /* Other people's tools sometimes generate headers with an nsyms but
173 a zero symptr. */
174 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0)
175 {
176 filehdr_dst->f_nsyms = 0;
177 filehdr_dst->f_flags |= F_LSYMS;
178 }
179
180 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr);
181 }
182
183 #ifdef COFF_IMAGE_WITH_PE
184 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out
185 #elif defined COFF_WITH_pex64
186 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out
187 #elif defined COFF_WITH_pep
188 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out
189 #else
190 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out
191 #endif
192
193 static void
194 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in)
195 {
196 SCNHDR *scnhdr_ext = (SCNHDR *) ext;
197 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in;
198
199 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name));
200
201 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr);
202 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr);
203 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size);
204 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr);
205 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr);
206 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr);
207 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags);
208
209 /* MS handles overflow of line numbers by carrying into the reloc
210 field (it appears). Since it's supposed to be zero for PE
211 *IMAGE* format, that's safe. This is still a bit iffy. */
212 #ifdef COFF_IMAGE_WITH_PE
213 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno)
214 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16));
215 scnhdr_int->s_nreloc = 0;
216 #else
217 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc);
218 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno);
219 #endif
220
221 if (scnhdr_int->s_vaddr != 0)
222 {
223 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase;
224 /* Do not cut upper 32-bits for 64-bit vma. */
225 #ifndef COFF_WITH_pex64
226 scnhdr_int->s_vaddr &= 0xffffffff;
227 #endif
228 }
229
230 #ifndef COFF_NO_HACK_SCNHDR_SIZE
231 /* If this section holds uninitialized data and is from an object file
232 or from an executable image that has not initialized the field,
233 or if the image is an executable file and the physical size is padded,
234 use the virtual size (stored in s_paddr) instead. */
235 if (scnhdr_int->s_paddr > 0
236 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0
237 && (! bfd_pe_executable_p (abfd) || scnhdr_int->s_size == 0))
238 || (bfd_pe_executable_p (abfd) && scnhdr_int->s_size > scnhdr_int->s_paddr)))
239 /* This code used to set scnhdr_int->s_paddr to 0. However,
240 coff_set_alignment_hook stores s_paddr in virt_size, which
241 only works if it correctly holds the virtual size of the
242 section. */
243 scnhdr_int->s_size = scnhdr_int->s_paddr;
244 #endif
245 }
246
247 static bfd_boolean
248 pe_mkobject (bfd * abfd)
249 {
250 pe_data_type *pe;
251 bfd_size_type amt = sizeof (pe_data_type);
252
253 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt);
254
255 if (abfd->tdata.pe_obj_data == 0)
256 return FALSE;
257
258 pe = pe_data (abfd);
259
260 pe->coff.pe = 1;
261
262 /* in_reloc_p is architecture dependent. */
263 pe->in_reloc_p = in_reloc_p;
264
265 #ifdef PEI_FORCE_MINIMUM_ALIGNMENT
266 pe->force_minimum_alignment = 1;
267 #endif
268 #ifdef PEI_TARGET_SUBSYSTEM
269 pe->target_subsystem = PEI_TARGET_SUBSYSTEM;
270 #endif
271
272 return TRUE;
273 }
274
275 /* Create the COFF backend specific information. */
276
277 static void *
278 pe_mkobject_hook (bfd * abfd,
279 void * filehdr,
280 void * aouthdr ATTRIBUTE_UNUSED)
281 {
282 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
283 pe_data_type *pe;
284
285 if (! pe_mkobject (abfd))
286 return NULL;
287
288 pe = pe_data (abfd);
289 pe->coff.sym_filepos = internal_f->f_symptr;
290 /* These members communicate important constants about the symbol
291 table to GDB's symbol-reading code. These `constants'
292 unfortunately vary among coff implementations... */
293 pe->coff.local_n_btmask = N_BTMASK;
294 pe->coff.local_n_btshft = N_BTSHFT;
295 pe->coff.local_n_tmask = N_TMASK;
296 pe->coff.local_n_tshift = N_TSHIFT;
297 pe->coff.local_symesz = SYMESZ;
298 pe->coff.local_auxesz = AUXESZ;
299 pe->coff.local_linesz = LINESZ;
300
301 pe->coff.timestamp = internal_f->f_timdat;
302
303 obj_raw_syment_count (abfd) =
304 obj_conv_table_size (abfd) =
305 internal_f->f_nsyms;
306
307 pe->real_flags = internal_f->f_flags;
308
309 if ((internal_f->f_flags & F_DLL) != 0)
310 pe->dll = 1;
311
312 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0)
313 abfd->flags |= HAS_DEBUG;
314
315 #ifdef COFF_IMAGE_WITH_PE
316 if (aouthdr)
317 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe;
318 #endif
319
320 #ifdef ARM
321 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags))
322 coff_data (abfd) ->flags = 0;
323 #endif
324
325 return (void *) pe;
326 }
327
328 static bfd_boolean
329 pe_print_private_bfd_data (bfd *abfd, void * vfile)
330 {
331 FILE *file = (FILE *) vfile;
332
333 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile))
334 return FALSE;
335
336 if (pe_saved_coff_bfd_print_private_bfd_data == NULL)
337 return TRUE;
338
339 fputc ('\n', file);
340
341 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile);
342 }
343
344 /* Copy any private info we understand from the input bfd
345 to the output bfd. */
346
347 static bfd_boolean
348 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
349 {
350 /* PR binutils/716: Copy the large address aware flag.
351 XXX: Should we be copying other flags or other fields in the pe_data()
352 structure ? */
353 if (pe_data (obfd) != NULL
354 && pe_data (ibfd) != NULL
355 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE)
356 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
357
358 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd))
359 return FALSE;
360
361 if (pe_saved_coff_bfd_copy_private_bfd_data)
362 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd);
363
364 return TRUE;
365 }
366
367 #define coff_bfd_copy_private_section_data \
368 _bfd_XX_bfd_copy_private_section_data
369
370 #define coff_get_symbol_info _bfd_XX_get_symbol_info
371
372 #ifdef COFF_IMAGE_WITH_PE
373 \f
374 /* Code to handle Microsoft's Image Library Format.
375 Also known as LINK6 format.
376 Documentation about this format can be found at:
377
378 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */
379
380 /* The following constants specify the sizes of the various data
381 structures that we have to create in order to build a bfd describing
382 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6
383 and SIZEOF_IDATA7 below is to allow for the possibility that we might
384 need a padding byte in order to ensure 16 bit alignment for the section's
385 contents.
386
387 The value for SIZEOF_ILF_STRINGS is computed as follows:
388
389 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters
390 per symbol for their names (longest section name is .idata$x).
391
392 There will be two symbols for the imported value, one the symbol name
393 and one with _imp__ prefixed. Allowing for the terminating nul's this
394 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll).
395
396 The strings in the string table must start STRING__SIZE_SIZE bytes into
397 the table in order to for the string lookup code in coffgen/coffcode to
398 work. */
399 #define NUM_ILF_RELOCS 8
400 #define NUM_ILF_SECTIONS 6
401 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS)
402
403 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache))
404 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table))
405 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms))
406 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table))
407 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table))
408 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab))
409 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab))
410 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \
411 + 21 + strlen (source_dll) \
412 + NUM_ILF_SECTIONS * 9 \
413 + STRING_SIZE_SIZE)
414 #define SIZEOF_IDATA2 (5 * 4)
415
416 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */
417 #ifdef COFF_WITH_pex64
418 #define SIZEOF_IDATA4 (2 * 4)
419 #define SIZEOF_IDATA5 (2 * 4)
420 #else
421 #define SIZEOF_IDATA4 (1 * 4)
422 #define SIZEOF_IDATA5 (1 * 4)
423 #endif
424
425 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1)
426 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1)
427 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata))
428
429 #define ILF_DATA_SIZE \
430 sizeof (* vars.bim) \
431 + SIZEOF_ILF_SYMS \
432 + SIZEOF_ILF_SYM_TABLE \
433 + SIZEOF_ILF_NATIVE_SYMS \
434 + SIZEOF_ILF_SYM_PTR_TABLE \
435 + SIZEOF_ILF_EXT_SYMS \
436 + SIZEOF_ILF_RELOCS \
437 + SIZEOF_ILF_INT_RELOCS \
438 + SIZEOF_ILF_STRINGS \
439 + SIZEOF_IDATA2 \
440 + SIZEOF_IDATA4 \
441 + SIZEOF_IDATA5 \
442 + SIZEOF_IDATA6 \
443 + SIZEOF_IDATA7 \
444 + SIZEOF_ILF_SECTIONS \
445 + MAX_TEXT_SECTION_SIZE
446
447 /* Create an empty relocation against the given symbol. */
448
449 static void
450 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars,
451 bfd_vma address,
452 bfd_reloc_code_real_type reloc,
453 struct bfd_symbol ** sym,
454 unsigned int sym_index)
455 {
456 arelent * entry;
457 struct internal_reloc * internal;
458
459 entry = vars->reltab + vars->relcount;
460 internal = vars->int_reltab + vars->relcount;
461
462 entry->address = address;
463 entry->addend = 0;
464 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc);
465 entry->sym_ptr_ptr = sym;
466
467 internal->r_vaddr = address;
468 internal->r_symndx = sym_index;
469 internal->r_type = entry->howto->type;
470
471 vars->relcount ++;
472
473 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS);
474 }
475
476 /* Create an empty relocation against the given section. */
477
478 static void
479 pe_ILF_make_a_reloc (pe_ILF_vars * vars,
480 bfd_vma address,
481 bfd_reloc_code_real_type reloc,
482 asection_ptr sec)
483 {
484 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr,
485 coff_section_data (vars->abfd, sec)->i);
486 }
487
488 /* Move the queued relocs into the given section. */
489
490 static void
491 pe_ILF_save_relocs (pe_ILF_vars * vars,
492 asection_ptr sec)
493 {
494 /* Make sure that there is somewhere to store the internal relocs. */
495 if (coff_section_data (vars->abfd, sec) == NULL)
496 /* We should probably return an error indication here. */
497 abort ();
498
499 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab;
500 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE;
501
502 sec->relocation = vars->reltab;
503 sec->reloc_count = vars->relcount;
504 sec->flags |= SEC_RELOC;
505
506 vars->reltab += vars->relcount;
507 vars->int_reltab += vars->relcount;
508 vars->relcount = 0;
509
510 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table);
511 }
512
513 /* Create a global symbol and add it to the relevant tables. */
514
515 static void
516 pe_ILF_make_a_symbol (pe_ILF_vars * vars,
517 const char * prefix,
518 const char * symbol_name,
519 asection_ptr section,
520 flagword extra_flags)
521 {
522 coff_symbol_type * sym;
523 combined_entry_type * ent;
524 SYMENT * esym;
525 unsigned short sclass;
526
527 if (extra_flags & BSF_LOCAL)
528 sclass = C_STAT;
529 else
530 sclass = C_EXT;
531
532 #ifdef THUMBPEMAGIC
533 if (vars->magic == THUMBPEMAGIC)
534 {
535 if (extra_flags & BSF_FUNCTION)
536 sclass = C_THUMBEXTFUNC;
537 else if (extra_flags & BSF_LOCAL)
538 sclass = C_THUMBSTAT;
539 else
540 sclass = C_THUMBEXT;
541 }
542 #endif
543
544 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS);
545
546 sym = vars->sym_ptr;
547 ent = vars->native_ptr;
548 esym = vars->esym_ptr;
549
550 /* Copy the symbol's name into the string table. */
551 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name);
552
553 if (section == NULL)
554 section = (asection_ptr) & bfd_und_section;
555
556 /* Initialise the external symbol. */
557 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table,
558 esym->e.e.e_offset);
559 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum);
560 esym->e_sclass[0] = sclass;
561
562 /* The following initialisations are unnecessary - the memory is
563 zero initialised. They are just kept here as reminders. */
564
565 /* Initialise the internal symbol structure. */
566 ent->u.syment.n_sclass = sclass;
567 ent->u.syment.n_scnum = section->target_index;
568 ent->u.syment._n._n_n._n_offset = (long) sym;
569
570 sym->symbol.the_bfd = vars->abfd;
571 sym->symbol.name = vars->string_ptr;
572 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags;
573 sym->symbol.section = section;
574 sym->native = ent;
575
576 * vars->table_ptr = vars->sym_index;
577 * vars->sym_ptr_ptr = sym;
578
579 /* Adjust pointers for the next symbol. */
580 vars->sym_index ++;
581 vars->sym_ptr ++;
582 vars->sym_ptr_ptr ++;
583 vars->table_ptr ++;
584 vars->native_ptr ++;
585 vars->esym_ptr ++;
586 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1;
587
588 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr);
589 }
590
591 /* Create a section. */
592
593 static asection_ptr
594 pe_ILF_make_a_section (pe_ILF_vars * vars,
595 const char * name,
596 unsigned int size,
597 flagword extra_flags)
598 {
599 asection_ptr sec;
600 flagword flags;
601
602 sec = bfd_make_section_old_way (vars->abfd, name);
603 if (sec == NULL)
604 return NULL;
605
606 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY;
607
608 bfd_set_section_flags (vars->abfd, sec, flags | extra_flags);
609
610 bfd_set_section_alignment (vars->abfd, sec, 2);
611
612 /* Check that we will not run out of space. */
613 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size);
614
615 /* Set the section size and contents. The actual
616 contents are filled in by our parent. */
617 bfd_set_section_size (vars->abfd, sec, (bfd_size_type) size);
618 sec->contents = vars->data;
619 sec->target_index = vars->sec_index ++;
620
621 /* Advance data pointer in the vars structure. */
622 vars->data += size;
623
624 /* Skip the padding byte if it was not needed.
625 The logic here is that if the string length is odd,
626 then the entire string length, including the null byte,
627 is even and so the extra, padding byte, is not needed. */
628 if (size & 1)
629 vars->data --;
630
631 /* Create a coff_section_tdata structure for our use. */
632 sec->used_by_bfd = (struct coff_section_tdata *) vars->data;
633 vars->data += sizeof (struct coff_section_tdata);
634
635 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size);
636
637 /* Create a symbol to refer to this section. */
638 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL);
639
640 /* Cache the index to the symbol in the coff_section_data structure. */
641 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1;
642
643 return sec;
644 }
645
646 /* This structure contains the code that goes into the .text section
647 in order to perform a jump into the DLL lookup table. The entries
648 in the table are index by the magic number used to represent the
649 machine type in the PE file. The contents of the data[] arrays in
650 these entries are stolen from the jtab[] arrays in ld/pe-dll.c.
651 The SIZE field says how many bytes in the DATA array are actually
652 used. The OFFSET field says where in the data array the address
653 of the .idata$5 section should be placed. */
654 #define MAX_TEXT_SECTION_SIZE 32
655
656 typedef struct
657 {
658 unsigned short magic;
659 unsigned char data[MAX_TEXT_SECTION_SIZE];
660 unsigned int size;
661 unsigned int offset;
662 }
663 jump_table;
664
665 static jump_table jtab[] =
666 {
667 #ifdef I386MAGIC
668 { I386MAGIC,
669 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
670 8, 2
671 },
672 #endif
673
674 #ifdef AMD64MAGIC
675 { AMD64MAGIC,
676 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 },
677 8, 2
678 },
679 #endif
680
681 #ifdef MC68MAGIC
682 { MC68MAGIC,
683 { /* XXX fill me in */ },
684 0, 0
685 },
686 #endif
687
688 #ifdef MIPS_ARCH_MAGIC_WINCE
689 { MIPS_ARCH_MAGIC_WINCE,
690 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d,
691 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 },
692 16, 0
693 },
694 #endif
695
696 #ifdef SH_ARCH_MAGIC_WINCE
697 { SH_ARCH_MAGIC_WINCE,
698 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40,
699 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 },
700 12, 8
701 },
702 #endif
703
704 #ifdef ARMPEMAGIC
705 { ARMPEMAGIC,
706 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0,
707 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00},
708 12, 8
709 },
710 #endif
711
712 #ifdef THUMBPEMAGIC
713 { THUMBPEMAGIC,
714 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46,
715 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 },
716 16, 12
717 },
718 #endif
719 { 0, { 0 }, 0, 0 }
720 };
721
722 #ifndef NUM_ENTRIES
723 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0])
724 #endif
725
726 /* Build a full BFD from the information supplied in a ILF object. */
727
728 static bfd_boolean
729 pe_ILF_build_a_bfd (bfd * abfd,
730 unsigned int magic,
731 char * symbol_name,
732 char * source_dll,
733 unsigned int ordinal,
734 unsigned int types)
735 {
736 bfd_byte * ptr;
737 pe_ILF_vars vars;
738 struct internal_filehdr internal_f;
739 unsigned int import_type;
740 unsigned int import_name_type;
741 asection_ptr id4, id5, id6 = NULL, text = NULL;
742 coff_symbol_type ** imp_sym;
743 unsigned int imp_index;
744
745 /* Decode and verify the types field of the ILF structure. */
746 import_type = types & 0x3;
747 import_name_type = (types & 0x1c) >> 2;
748
749 switch (import_type)
750 {
751 case IMPORT_CODE:
752 case IMPORT_DATA:
753 break;
754
755 case IMPORT_CONST:
756 /* XXX code yet to be written. */
757 _bfd_error_handler (_("%B: Unhandled import type; %x"),
758 abfd, import_type);
759 return FALSE;
760
761 default:
762 _bfd_error_handler (_("%B: Unrecognised import type; %x"),
763 abfd, import_type);
764 return FALSE;
765 }
766
767 switch (import_name_type)
768 {
769 case IMPORT_ORDINAL:
770 case IMPORT_NAME:
771 case IMPORT_NAME_NOPREFIX:
772 case IMPORT_NAME_UNDECORATE:
773 break;
774
775 default:
776 _bfd_error_handler (_("%B: Unrecognised import name type; %x"),
777 abfd, import_name_type);
778 return FALSE;
779 }
780
781 /* Initialise local variables.
782
783 Note these are kept in a structure rather than being
784 declared as statics since bfd frowns on global variables.
785
786 We are going to construct the contents of the BFD in memory,
787 so allocate all the space that we will need right now. */
788 ptr = bfd_zalloc (abfd, (bfd_size_type) ILF_DATA_SIZE);
789 if (ptr == NULL)
790 return FALSE;
791
792 /* Create a bfd_in_memory structure. */
793 vars.bim = (struct bfd_in_memory *) ptr;
794 vars.bim->buffer = ptr;
795 vars.bim->size = ILF_DATA_SIZE;
796 ptr += sizeof (* vars.bim);
797
798 /* Initialise the pointers to regions of the memory and the
799 other contents of the pe_ILF_vars structure as well. */
800 vars.sym_cache = (coff_symbol_type *) ptr;
801 vars.sym_ptr = (coff_symbol_type *) ptr;
802 vars.sym_index = 0;
803 ptr += SIZEOF_ILF_SYMS;
804
805 vars.sym_table = (unsigned int *) ptr;
806 vars.table_ptr = (unsigned int *) ptr;
807 ptr += SIZEOF_ILF_SYM_TABLE;
808
809 vars.native_syms = (combined_entry_type *) ptr;
810 vars.native_ptr = (combined_entry_type *) ptr;
811 ptr += SIZEOF_ILF_NATIVE_SYMS;
812
813 vars.sym_ptr_table = (coff_symbol_type **) ptr;
814 vars.sym_ptr_ptr = (coff_symbol_type **) ptr;
815 ptr += SIZEOF_ILF_SYM_PTR_TABLE;
816
817 vars.esym_table = (SYMENT *) ptr;
818 vars.esym_ptr = (SYMENT *) ptr;
819 ptr += SIZEOF_ILF_EXT_SYMS;
820
821 vars.reltab = (arelent *) ptr;
822 vars.relcount = 0;
823 ptr += SIZEOF_ILF_RELOCS;
824
825 vars.int_reltab = (struct internal_reloc *) ptr;
826 ptr += SIZEOF_ILF_INT_RELOCS;
827
828 vars.string_table = (char *) ptr;
829 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE;
830 ptr += SIZEOF_ILF_STRINGS;
831 vars.end_string_ptr = (char *) ptr;
832
833 /* The remaining space in bim->buffer is used
834 by the pe_ILF_make_a_section() function. */
835 vars.data = ptr;
836 vars.abfd = abfd;
837 vars.sec_index = 0;
838 vars.magic = magic;
839
840 /* Create the initial .idata$<n> sections:
841 [.idata$2: Import Directory Table -- not needed]
842 .idata$4: Import Lookup Table
843 .idata$5: Import Address Table
844
845 Note we do not create a .idata$3 section as this is
846 created for us by the linker script. */
847 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0);
848 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0);
849 if (id4 == NULL || id5 == NULL)
850 return FALSE;
851
852 /* Fill in the contents of these sections. */
853 if (import_name_type == IMPORT_ORDINAL)
854 {
855 if (ordinal == 0)
856 /* XXX - treat as IMPORT_NAME ??? */
857 abort ();
858
859 #ifdef COFF_WITH_pex64
860 ((unsigned int *) id4->contents)[0] = ordinal;
861 ((unsigned int *) id4->contents)[1] = 0x80000000;
862 ((unsigned int *) id5->contents)[0] = ordinal;
863 ((unsigned int *) id5->contents)[1] = 0x80000000;
864 #else
865 * (unsigned int *) id4->contents = ordinal | 0x80000000;
866 * (unsigned int *) id5->contents = ordinal | 0x80000000;
867 #endif
868 }
869 else
870 {
871 char * symbol;
872 unsigned int len;
873
874 /* Create .idata$6 - the Hint Name Table. */
875 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0);
876 if (id6 == NULL)
877 return FALSE;
878
879 /* If necessary, trim the import symbol name. */
880 symbol = symbol_name;
881
882 /* As used by MS compiler, '_', '@', and '?' are alternative
883 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names,
884 '@' used for fastcall (in C), '_' everywhere else. Only one
885 of these is used for a symbol. We strip this leading char for
886 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the
887 PE COFF 6.0 spec (section 8.3, Import Name Type). */
888
889 if (import_name_type != IMPORT_NAME)
890 {
891 char c = symbol[0];
892 if (c == '_' || c == '@' || c == '?')
893 symbol++;
894 }
895
896 len = strlen (symbol);
897 if (import_name_type == IMPORT_NAME_UNDECORATE)
898 {
899 /* Truncate at the first '@'. */
900 char *at = strchr (symbol, '@');
901
902 if (at != NULL)
903 len = at - symbol;
904 }
905
906 id6->contents[0] = ordinal & 0xff;
907 id6->contents[1] = ordinal >> 8;
908
909 memcpy ((char *) id6->contents + 2, symbol, len);
910 id6->contents[len + 2] = '\0';
911 }
912
913 if (import_name_type != IMPORT_ORDINAL)
914 {
915 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
916 pe_ILF_save_relocs (&vars, id4);
917
918 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6);
919 pe_ILF_save_relocs (&vars, id5);
920 }
921
922 /* Create extra sections depending upon the type of import we are dealing with. */
923 switch (import_type)
924 {
925 int i;
926
927 case IMPORT_CODE:
928 /* Create a .text section.
929 First we need to look up its contents in the jump table. */
930 for (i = NUM_ENTRIES (jtab); i--;)
931 {
932 if (jtab[i].size == 0)
933 continue;
934 if (jtab[i].magic == magic)
935 break;
936 }
937 /* If we did not find a matching entry something is wrong. */
938 if (i < 0)
939 abort ();
940
941 /* Create the .text section. */
942 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE);
943 if (text == NULL)
944 return FALSE;
945
946 /* Copy in the jump code. */
947 memcpy (text->contents, jtab[i].data, jtab[i].size);
948
949 /* Create an import symbol. */
950 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0);
951 imp_sym = vars.sym_ptr_ptr - 1;
952 imp_index = vars.sym_index - 1;
953
954 /* Create a reloc for the data in the text section. */
955 #ifdef MIPS_ARCH_MAGIC_WINCE
956 if (magic == MIPS_ARCH_MAGIC_WINCE)
957 {
958 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S,
959 (struct bfd_symbol **) imp_sym,
960 imp_index);
961 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text);
962 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16,
963 (struct bfd_symbol **) imp_sym,
964 imp_index);
965 }
966 else
967 #endif
968 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset,
969 BFD_RELOC_32, (asymbol **) imp_sym,
970 imp_index);
971
972 pe_ILF_save_relocs (& vars, text);
973 break;
974
975 case IMPORT_DATA:
976 break;
977
978 default:
979 /* XXX code not yet written. */
980 abort ();
981 }
982
983 /* Initialise the bfd. */
984 memset (& internal_f, 0, sizeof (internal_f));
985
986 internal_f.f_magic = magic;
987 internal_f.f_symptr = 0;
988 internal_f.f_nsyms = 0;
989 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */
990
991 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0)
992 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f))
993 return FALSE;
994
995 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL)
996 return FALSE;
997
998 coff_data (abfd)->pe = 1;
999 #ifdef THUMBPEMAGIC
1000 if (vars.magic == THUMBPEMAGIC)
1001 /* Stop some linker warnings about thumb code not supporting interworking. */
1002 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET;
1003 #endif
1004
1005 /* Switch from file contents to memory contents. */
1006 bfd_cache_close (abfd);
1007
1008 abfd->iostream = (void *) vars.bim;
1009 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */;
1010 abfd->where = 0;
1011 obj_sym_filepos (abfd) = 0;
1012
1013 /* Now create a symbol describing the imported value. */
1014 switch (import_type)
1015 {
1016 case IMPORT_CODE:
1017 pe_ILF_make_a_symbol (& vars, "", symbol_name, text,
1018 BSF_NOT_AT_END | BSF_FUNCTION);
1019
1020 /* Create an import symbol for the DLL, without the
1021 .dll suffix. */
1022 ptr = (bfd_byte *) strrchr (source_dll, '.');
1023 if (ptr)
1024 * ptr = 0;
1025 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0);
1026 if (ptr)
1027 * ptr = '.';
1028 break;
1029
1030 case IMPORT_DATA:
1031 /* Nothing to do here. */
1032 break;
1033
1034 default:
1035 /* XXX code not yet written. */
1036 abort ();
1037 }
1038
1039 /* Point the bfd at the symbol table. */
1040 obj_symbols (abfd) = vars.sym_cache;
1041 bfd_get_symcount (abfd) = vars.sym_index;
1042
1043 obj_raw_syments (abfd) = vars.native_syms;
1044 obj_raw_syment_count (abfd) = vars.sym_index;
1045
1046 obj_coff_external_syms (abfd) = (void *) vars.esym_table;
1047 obj_coff_keep_syms (abfd) = TRUE;
1048
1049 obj_convert (abfd) = vars.sym_table;
1050 obj_conv_table_size (abfd) = vars.sym_index;
1051
1052 obj_coff_strings (abfd) = vars.string_table;
1053 obj_coff_keep_strings (abfd) = TRUE;
1054
1055 abfd->flags |= HAS_SYMS;
1056
1057 return TRUE;
1058 }
1059
1060 /* We have detected a Image Library Format archive element.
1061 Decode the element and return the appropriate target. */
1062
1063 static const bfd_target *
1064 pe_ILF_object_p (bfd * abfd)
1065 {
1066 bfd_byte buffer[16];
1067 bfd_byte * ptr;
1068 char * symbol_name;
1069 char * source_dll;
1070 unsigned int machine;
1071 bfd_size_type size;
1072 unsigned int ordinal;
1073 unsigned int types;
1074 unsigned int magic;
1075
1076 /* Upon entry the first four buyes of the ILF header have
1077 already been read. Now read the rest of the header. */
1078 if (bfd_bread (buffer, (bfd_size_type) 16, abfd) != 16)
1079 return NULL;
1080
1081 ptr = buffer;
1082
1083 /* We do not bother to check the version number.
1084 version = H_GET_16 (abfd, ptr); */
1085 ptr += 2;
1086
1087 machine = H_GET_16 (abfd, ptr);
1088 ptr += 2;
1089
1090 /* Check that the machine type is recognised. */
1091 magic = 0;
1092
1093 switch (machine)
1094 {
1095 case IMAGE_FILE_MACHINE_UNKNOWN:
1096 case IMAGE_FILE_MACHINE_ALPHA:
1097 case IMAGE_FILE_MACHINE_ALPHA64:
1098 case IMAGE_FILE_MACHINE_IA64:
1099 break;
1100
1101 case IMAGE_FILE_MACHINE_I386:
1102 #ifdef I386MAGIC
1103 magic = I386MAGIC;
1104 #endif
1105 break;
1106
1107 case IMAGE_FILE_MACHINE_AMD64:
1108 #ifdef AMD64MAGIC
1109 magic = AMD64MAGIC;
1110 #endif
1111 break;
1112
1113 case IMAGE_FILE_MACHINE_M68K:
1114 #ifdef MC68AGIC
1115 magic = MC68MAGIC;
1116 #endif
1117 break;
1118
1119 case IMAGE_FILE_MACHINE_R3000:
1120 case IMAGE_FILE_MACHINE_R4000:
1121 case IMAGE_FILE_MACHINE_R10000:
1122
1123 case IMAGE_FILE_MACHINE_MIPS16:
1124 case IMAGE_FILE_MACHINE_MIPSFPU:
1125 case IMAGE_FILE_MACHINE_MIPSFPU16:
1126 #ifdef MIPS_ARCH_MAGIC_WINCE
1127 magic = MIPS_ARCH_MAGIC_WINCE;
1128 #endif
1129 break;
1130
1131 case IMAGE_FILE_MACHINE_SH3:
1132 case IMAGE_FILE_MACHINE_SH4:
1133 #ifdef SH_ARCH_MAGIC_WINCE
1134 magic = SH_ARCH_MAGIC_WINCE;
1135 #endif
1136 break;
1137
1138 case IMAGE_FILE_MACHINE_ARM:
1139 #ifdef ARMPEMAGIC
1140 magic = ARMPEMAGIC;
1141 #endif
1142 break;
1143
1144 case IMAGE_FILE_MACHINE_THUMB:
1145 #ifdef THUMBPEMAGIC
1146 {
1147 extern const bfd_target TARGET_LITTLE_SYM;
1148
1149 if (abfd->xvec == & TARGET_LITTLE_SYM)
1150 magic = THUMBPEMAGIC;
1151 }
1152 #endif
1153 break;
1154
1155 case IMAGE_FILE_MACHINE_POWERPC:
1156 /* We no longer support PowerPC. */
1157 default:
1158 _bfd_error_handler
1159 (_("%B: Unrecognised machine type (0x%x)"
1160 " in Import Library Format archive"),
1161 abfd, machine);
1162 bfd_set_error (bfd_error_malformed_archive);
1163
1164 return NULL;
1165 break;
1166 }
1167
1168 if (magic == 0)
1169 {
1170 _bfd_error_handler
1171 (_("%B: Recognised but unhandled machine type (0x%x)"
1172 " in Import Library Format archive"),
1173 abfd, machine);
1174 bfd_set_error (bfd_error_wrong_format);
1175
1176 return NULL;
1177 }
1178
1179 /* We do not bother to check the date.
1180 date = H_GET_32 (abfd, ptr); */
1181 ptr += 4;
1182
1183 size = H_GET_32 (abfd, ptr);
1184 ptr += 4;
1185
1186 if (size == 0)
1187 {
1188 _bfd_error_handler
1189 (_("%B: size field is zero in Import Library Format header"), abfd);
1190 bfd_set_error (bfd_error_malformed_archive);
1191
1192 return NULL;
1193 }
1194
1195 ordinal = H_GET_16 (abfd, ptr);
1196 ptr += 2;
1197
1198 types = H_GET_16 (abfd, ptr);
1199 /* ptr += 2; */
1200
1201 /* Now read in the two strings that follow. */
1202 ptr = bfd_alloc (abfd, size);
1203 if (ptr == NULL)
1204 return NULL;
1205
1206 if (bfd_bread (ptr, size, abfd) != size)
1207 {
1208 bfd_release (abfd, ptr);
1209 return NULL;
1210 }
1211
1212 symbol_name = (char *) ptr;
1213 source_dll = symbol_name + strlen (symbol_name) + 1;
1214
1215 /* Verify that the strings are null terminated. */
1216 if (ptr[size - 1] != 0
1217 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size)
1218 {
1219 _bfd_error_handler
1220 (_("%B: string not null terminated in ILF object file."), abfd);
1221 bfd_set_error (bfd_error_malformed_archive);
1222 bfd_release (abfd, ptr);
1223 return NULL;
1224 }
1225
1226 /* Now construct the bfd. */
1227 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name,
1228 source_dll, ordinal, types))
1229 {
1230 bfd_release (abfd, ptr);
1231 return NULL;
1232 }
1233
1234 return abfd->xvec;
1235 }
1236
1237 enum arch_type
1238 {
1239 arch_type_unknown,
1240 arch_type_i386,
1241 arch_type_x86_64
1242 };
1243
1244 static enum arch_type
1245 pe_arch (const char *arch)
1246 {
1247 if (strcmp (arch, "i386") == 0 || strcmp (arch, "ia32") == 0)
1248 return arch_type_i386;
1249
1250 if (strcmp (arch, "x86_64") == 0 || strcmp (arch, "x86-64") == 0)
1251 return arch_type_x86_64;
1252
1253 return arch_type_unknown;
1254 }
1255
1256 static const bfd_target *
1257 pe_bfd_object_p (bfd * abfd)
1258 {
1259 bfd_byte buffer[4];
1260 struct external_PEI_DOS_hdr dos_hdr;
1261 struct external_PEI_IMAGE_hdr image_hdr;
1262 file_ptr offset;
1263 const bfd_target *target;
1264
1265 /* Detect if this a Microsoft Import Library Format element. */
1266 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1267 || bfd_bread (buffer, (bfd_size_type) 4, abfd) != 4)
1268 {
1269 if (bfd_get_error () != bfd_error_system_call)
1270 bfd_set_error (bfd_error_wrong_format);
1271 return NULL;
1272 }
1273
1274 if (H_GET_32 (abfd, buffer) == 0xffff0000)
1275 return pe_ILF_object_p (abfd);
1276
1277 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0
1278 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd)
1279 != sizeof (dos_hdr))
1280 {
1281 if (bfd_get_error () != bfd_error_system_call)
1282 bfd_set_error (bfd_error_wrong_format);
1283 return NULL;
1284 }
1285
1286 /* There are really two magic numbers involved; the magic number
1287 that says this is a NT executable (PEI) and the magic number that
1288 determines the architecture. The former is DOSMAGIC, stored in
1289 the e_magic field. The latter is stored in the f_magic field.
1290 If the NT magic number isn't valid, the architecture magic number
1291 could be mimicked by some other field (specifically, the number
1292 of relocs in section 3). Since this routine can only be called
1293 correctly for a PEI file, check the e_magic number here, and, if
1294 it doesn't match, clobber the f_magic number so that we don't get
1295 a false match. */
1296 if (H_GET_16 (abfd, dos_hdr.e_magic) != DOSMAGIC)
1297 {
1298 bfd_set_error (bfd_error_wrong_format);
1299 return NULL;
1300 }
1301
1302 offset = H_GET_32 (abfd, dos_hdr.e_lfanew);
1303 if (bfd_seek (abfd, offset, SEEK_SET) != 0
1304 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd)
1305 != sizeof (image_hdr)))
1306 {
1307 if (bfd_get_error () != bfd_error_system_call)
1308 bfd_set_error (bfd_error_wrong_format);
1309 return NULL;
1310 }
1311
1312 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550)
1313 {
1314 bfd_set_error (bfd_error_wrong_format);
1315 return NULL;
1316 }
1317
1318 /* Here is the hack. coff_object_p wants to read filhsz bytes to
1319 pick up the COFF header for PE, see "struct external_PEI_filehdr"
1320 in include/coff/pe.h. We adjust so that that will work. */
1321 if (bfd_seek (abfd, (file_ptr) (offset - sizeof (dos_hdr)), SEEK_SET) != 0)
1322 {
1323 if (bfd_get_error () != bfd_error_system_call)
1324 bfd_set_error (bfd_error_wrong_format);
1325 return NULL;
1326 }
1327
1328 target = coff_object_p (abfd);
1329 if (target)
1330 {
1331 pe_data_type *pe = pe_data (abfd);
1332 struct internal_extra_pe_aouthdr *i = &pe->pe_opthdr;
1333 bfd_boolean efi = i->Subsystem == IMAGE_SUBSYSTEM_EFI_APPLICATION;
1334 enum arch_type arch;
1335 const bfd_target * const *target_ptr;
1336
1337 /* Get the machine. */
1338 if (bfd_target_efi_p (abfd->xvec))
1339 arch = pe_arch (bfd_target_efi_arch (abfd->xvec));
1340 else
1341 arch = pe_arch (bfd_target_pei_arch (abfd->xvec));
1342
1343 for (target_ptr = bfd_target_vector; *target_ptr != NULL;
1344 target_ptr++)
1345 {
1346 if (*target_ptr == target
1347 || (*target_ptr)->flavour != bfd_target_coff_flavour)
1348 continue;
1349
1350 if (bfd_target_efi_p (*target_ptr))
1351 {
1352 /* Skip incompatible arch. */
1353 if (pe_arch (bfd_target_efi_arch (*target_ptr)) != arch)
1354 continue;
1355
1356 if (efi)
1357 {
1358 /* TARGET_PTR is an EFI backend. Don't match
1359 TARGET with a EFI file. */
1360 bfd_set_error (bfd_error_wrong_format);
1361 return NULL;
1362 }
1363 }
1364 else if (bfd_target_pei_p (*target_ptr))
1365 {
1366 /* Skip incompatible arch. */
1367 if (pe_arch (bfd_target_pei_arch (*target_ptr)) != arch)
1368 continue;
1369
1370 if (!efi)
1371 {
1372 /* TARGET_PTR is a PE backend. Don't match
1373 TARGET with a PE file. */
1374 bfd_set_error (bfd_error_wrong_format);
1375 return NULL;
1376 }
1377 }
1378 }
1379 }
1380
1381 return target;
1382 }
1383
1384 #define coff_object_p pe_bfd_object_p
1385 #endif /* COFF_IMAGE_WITH_PE */