]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - bfd/section.c
Update the address and phone number of the FSF organization in the GPL notices
[thirdparty/binutils-gdb.git] / bfd / section.c
1 /* Object file "section" support for the BFD library.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5 Written by Cygnus Support.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 /*
24 SECTION
25 Sections
26
27 The raw data contained within a BFD is maintained through the
28 section abstraction. A single BFD may have any number of
29 sections. It keeps hold of them by pointing to the first;
30 each one points to the next in the list.
31
32 Sections are supported in BFD in <<section.c>>.
33
34 @menu
35 @* Section Input::
36 @* Section Output::
37 @* typedef asection::
38 @* section prototypes::
39 @end menu
40
41 INODE
42 Section Input, Section Output, Sections, Sections
43 SUBSECTION
44 Section input
45
46 When a BFD is opened for reading, the section structures are
47 created and attached to the BFD.
48
49 Each section has a name which describes the section in the
50 outside world---for example, <<a.out>> would contain at least
51 three sections, called <<.text>>, <<.data>> and <<.bss>>.
52
53 Names need not be unique; for example a COFF file may have several
54 sections named <<.data>>.
55
56 Sometimes a BFD will contain more than the ``natural'' number of
57 sections. A back end may attach other sections containing
58 constructor data, or an application may add a section (using
59 <<bfd_make_section>>) to the sections attached to an already open
60 BFD. For example, the linker creates an extra section
61 <<COMMON>> for each input file's BFD to hold information about
62 common storage.
63
64 The raw data is not necessarily read in when
65 the section descriptor is created. Some targets may leave the
66 data in place until a <<bfd_get_section_contents>> call is
67 made. Other back ends may read in all the data at once. For
68 example, an S-record file has to be read once to determine the
69 size of the data. An IEEE-695 file doesn't contain raw data in
70 sections, but data and relocation expressions intermixed, so
71 the data area has to be parsed to get out the data and
72 relocations.
73
74 INODE
75 Section Output, typedef asection, Section Input, Sections
76
77 SUBSECTION
78 Section output
79
80 To write a new object style BFD, the various sections to be
81 written have to be created. They are attached to the BFD in
82 the same way as input sections; data is written to the
83 sections using <<bfd_set_section_contents>>.
84
85 Any program that creates or combines sections (e.g., the assembler
86 and linker) must use the <<asection>> fields <<output_section>> and
87 <<output_offset>> to indicate the file sections to which each
88 section must be written. (If the section is being created from
89 scratch, <<output_section>> should probably point to the section
90 itself and <<output_offset>> should probably be zero.)
91
92 The data to be written comes from input sections attached
93 (via <<output_section>> pointers) to
94 the output sections. The output section structure can be
95 considered a filter for the input section: the output section
96 determines the vma of the output data and the name, but the
97 input section determines the offset into the output section of
98 the data to be written.
99
100 E.g., to create a section "O", starting at 0x100, 0x123 long,
101 containing two subsections, "A" at offset 0x0 (i.e., at vma
102 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>>
103 structures would look like:
104
105 | section name "A"
106 | output_offset 0x00
107 | size 0x20
108 | output_section -----------> section name "O"
109 | | vma 0x100
110 | section name "B" | size 0x123
111 | output_offset 0x20 |
112 | size 0x103 |
113 | output_section --------|
114
115 SUBSECTION
116 Link orders
117
118 The data within a section is stored in a @dfn{link_order}.
119 These are much like the fixups in <<gas>>. The link_order
120 abstraction allows a section to grow and shrink within itself.
121
122 A link_order knows how big it is, and which is the next
123 link_order and where the raw data for it is; it also points to
124 a list of relocations which apply to it.
125
126 The link_order is used by the linker to perform relaxing on
127 final code. The compiler creates code which is as big as
128 necessary to make it work without relaxing, and the user can
129 select whether to relax. Sometimes relaxing takes a lot of
130 time. The linker runs around the relocations to see if any
131 are attached to data which can be shrunk, if so it does it on
132 a link_order by link_order basis.
133
134 */
135
136 #include "bfd.h"
137 #include "sysdep.h"
138 #include "libbfd.h"
139 #include "bfdlink.h"
140
141 /*
142 DOCDD
143 INODE
144 typedef asection, section prototypes, Section Output, Sections
145 SUBSECTION
146 typedef asection
147
148 Here is the section structure:
149
150 CODE_FRAGMENT
151 .
152 .typedef struct bfd_section
153 .{
154 . {* The name of the section; the name isn't a copy, the pointer is
155 . the same as that passed to bfd_make_section. *}
156 . const char *name;
157 .
158 . {* A unique sequence number. *}
159 . int id;
160 .
161 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *}
162 . int index;
163 .
164 . {* The next section in the list belonging to the BFD, or NULL. *}
165 . struct bfd_section *next;
166 .
167 . {* The previous section in the list belonging to the BFD, or NULL. *}
168 . struct bfd_section *prev;
169 .
170 . {* The field flags contains attributes of the section. Some
171 . flags are read in from the object file, and some are
172 . synthesized from other information. *}
173 . flagword flags;
174 .
175 .#define SEC_NO_FLAGS 0x000
176 .
177 . {* Tells the OS to allocate space for this section when loading.
178 . This is clear for a section containing debug information only. *}
179 .#define SEC_ALLOC 0x001
180 .
181 . {* Tells the OS to load the section from the file when loading.
182 . This is clear for a .bss section. *}
183 .#define SEC_LOAD 0x002
184 .
185 . {* The section contains data still to be relocated, so there is
186 . some relocation information too. *}
187 .#define SEC_RELOC 0x004
188 .
189 . {* A signal to the OS that the section contains read only data. *}
190 .#define SEC_READONLY 0x008
191 .
192 . {* The section contains code only. *}
193 .#define SEC_CODE 0x010
194 .
195 . {* The section contains data only. *}
196 .#define SEC_DATA 0x020
197 .
198 . {* The section will reside in ROM. *}
199 .#define SEC_ROM 0x040
200 .
201 . {* The section contains constructor information. This section
202 . type is used by the linker to create lists of constructors and
203 . destructors used by <<g++>>. When a back end sees a symbol
204 . which should be used in a constructor list, it creates a new
205 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches
206 . the symbol to it, and builds a relocation. To build the lists
207 . of constructors, all the linker has to do is catenate all the
208 . sections called <<__CTOR_LIST__>> and relocate the data
209 . contained within - exactly the operations it would peform on
210 . standard data. *}
211 .#define SEC_CONSTRUCTOR 0x080
212 .
213 . {* The section has contents - a data section could be
214 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be
215 . <<SEC_HAS_CONTENTS>> *}
216 .#define SEC_HAS_CONTENTS 0x100
217 .
218 . {* An instruction to the linker to not output the section
219 . even if it has information which would normally be written. *}
220 .#define SEC_NEVER_LOAD 0x200
221 .
222 . {* The section contains thread local data. *}
223 .#define SEC_THREAD_LOCAL 0x400
224 .
225 . {* The section has GOT references. This flag is only for the
226 . linker, and is currently only used by the elf32-hppa back end.
227 . It will be set if global offset table references were detected
228 . in this section, which indicate to the linker that the section
229 . contains PIC code, and must be handled specially when doing a
230 . static link. *}
231 .#define SEC_HAS_GOT_REF 0x800
232 .
233 . {* The section contains common symbols (symbols may be defined
234 . multiple times, the value of a symbol is the amount of
235 . space it requires, and the largest symbol value is the one
236 . used). Most targets have exactly one of these (which we
237 . translate to bfd_com_section_ptr), but ECOFF has two. *}
238 .#define SEC_IS_COMMON 0x1000
239 .
240 . {* The section contains only debugging information. For
241 . example, this is set for ELF .debug and .stab sections.
242 . strip tests this flag to see if a section can be
243 . discarded. *}
244 .#define SEC_DEBUGGING 0x2000
245 .
246 . {* The contents of this section are held in memory pointed to
247 . by the contents field. This is checked by bfd_get_section_contents,
248 . and the data is retrieved from memory if appropriate. *}
249 .#define SEC_IN_MEMORY 0x4000
250 .
251 . {* The contents of this section are to be excluded by the
252 . linker for executable and shared objects unless those
253 . objects are to be further relocated. *}
254 .#define SEC_EXCLUDE 0x8000
255 .
256 . {* The contents of this section are to be sorted based on the sum of
257 . the symbol and addend values specified by the associated relocation
258 . entries. Entries without associated relocation entries will be
259 . appended to the end of the section in an unspecified order. *}
260 .#define SEC_SORT_ENTRIES 0x10000
261 .
262 . {* When linking, duplicate sections of the same name should be
263 . discarded, rather than being combined into a single section as
264 . is usually done. This is similar to how common symbols are
265 . handled. See SEC_LINK_DUPLICATES below. *}
266 .#define SEC_LINK_ONCE 0x20000
267 .
268 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker
269 . should handle duplicate sections. *}
270 .#define SEC_LINK_DUPLICATES 0x40000
271 .
272 . {* This value for SEC_LINK_DUPLICATES means that duplicate
273 . sections with the same name should simply be discarded. *}
274 .#define SEC_LINK_DUPLICATES_DISCARD 0x0
275 .
276 . {* This value for SEC_LINK_DUPLICATES means that the linker
277 . should warn if there are any duplicate sections, although
278 . it should still only link one copy. *}
279 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000
280 .
281 . {* This value for SEC_LINK_DUPLICATES means that the linker
282 . should warn if any duplicate sections are a different size. *}
283 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000
284 .
285 . {* This value for SEC_LINK_DUPLICATES means that the linker
286 . should warn if any duplicate sections contain different
287 . contents. *}
288 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \
289 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE)
290 .
291 . {* This section was created by the linker as part of dynamic
292 . relocation or other arcane processing. It is skipped when
293 . going through the first-pass output, trusting that someone
294 . else up the line will take care of it later. *}
295 .#define SEC_LINKER_CREATED 0x200000
296 .
297 . {* This section should not be subject to garbage collection. *}
298 .#define SEC_KEEP 0x400000
299 .
300 . {* This section contains "short" data, and should be placed
301 . "near" the GP. *}
302 .#define SEC_SMALL_DATA 0x800000
303 .
304 . {* Attempt to merge identical entities in the section.
305 . Entity size is given in the entsize field. *}
306 .#define SEC_MERGE 0x1000000
307 .
308 . {* If given with SEC_MERGE, entities to merge are zero terminated
309 . strings where entsize specifies character size instead of fixed
310 . size entries. *}
311 .#define SEC_STRINGS 0x2000000
312 .
313 . {* This section contains data about section groups. *}
314 .#define SEC_GROUP 0x4000000
315 .
316 . {* The section is a COFF shared library section. This flag is
317 . only for the linker. If this type of section appears in
318 . the input file, the linker must copy it to the output file
319 . without changing the vma or size. FIXME: Although this
320 . was originally intended to be general, it really is COFF
321 . specific (and the flag was renamed to indicate this). It
322 . might be cleaner to have some more general mechanism to
323 . allow the back end to control what the linker does with
324 . sections. *}
325 .#define SEC_COFF_SHARED_LIBRARY 0x10000000
326 .
327 . {* This section contains data which may be shared with other
328 . executables or shared objects. This is for COFF only. *}
329 .#define SEC_COFF_SHARED 0x20000000
330 .
331 . {* When a section with this flag is being linked, then if the size of
332 . the input section is less than a page, it should not cross a page
333 . boundary. If the size of the input section is one page or more,
334 . it should be aligned on a page boundary. This is for TI
335 . TMS320C54X only. *}
336 .#define SEC_TIC54X_BLOCK 0x40000000
337 .
338 . {* Conditionally link this section; do not link if there are no
339 . references found to any symbol in the section. This is for TI
340 . TMS320C54X only. *}
341 .#define SEC_TIC54X_CLINK 0x80000000
342 .
343 . {* End of section flags. *}
344 .
345 . {* Some internal packed boolean fields. *}
346 .
347 . {* See the vma field. *}
348 . unsigned int user_set_vma : 1;
349 .
350 . {* A mark flag used by some of the linker backends. *}
351 . unsigned int linker_mark : 1;
352 .
353 . {* Another mark flag used by some of the linker backends. Set for
354 . output sections that have an input section. *}
355 . unsigned int linker_has_input : 1;
356 .
357 . {* A mark flag used by some linker backends for garbage collection. *}
358 . unsigned int gc_mark : 1;
359 .
360 . {* The following flags are used by the ELF linker. *}
361 .
362 . {* Mark sections which have been allocated to segments. *}
363 . unsigned int segment_mark : 1;
364 .
365 . {* Type of sec_info information. *}
366 . unsigned int sec_info_type:3;
367 .#define ELF_INFO_TYPE_NONE 0
368 .#define ELF_INFO_TYPE_STABS 1
369 .#define ELF_INFO_TYPE_MERGE 2
370 .#define ELF_INFO_TYPE_EH_FRAME 3
371 .#define ELF_INFO_TYPE_JUST_SYMS 4
372 .
373 . {* Nonzero if this section uses RELA relocations, rather than REL. *}
374 . unsigned int use_rela_p:1;
375 .
376 . {* Bits used by various backends. The generic code doesn't touch
377 . these fields. *}
378 .
379 . {* Nonzero if this section has TLS related relocations. *}
380 . unsigned int has_tls_reloc:1;
381 .
382 . {* Nonzero if this section has a gp reloc. *}
383 . unsigned int has_gp_reloc:1;
384 .
385 . {* Nonzero if this section needs the relax finalize pass. *}
386 . unsigned int need_finalize_relax:1;
387 .
388 . {* Whether relocations have been processed. *}
389 . unsigned int reloc_done : 1;
390 .
391 . {* End of internal packed boolean fields. *}
392 .
393 . {* The virtual memory address of the section - where it will be
394 . at run time. The symbols are relocated against this. The
395 . user_set_vma flag is maintained by bfd; if it's not set, the
396 . backend can assign addresses (for example, in <<a.out>>, where
397 . the default address for <<.data>> is dependent on the specific
398 . target and various flags). *}
399 . bfd_vma vma;
400 .
401 . {* The load address of the section - where it would be in a
402 . rom image; really only used for writing section header
403 . information. *}
404 . bfd_vma lma;
405 .
406 . {* The size of the section in octets, as it will be output.
407 . Contains a value even if the section has no contents (e.g., the
408 . size of <<.bss>>). *}
409 . bfd_size_type size;
410 .
411 . {* For input sections, the original size on disk of the section, in
412 . octets. This field is used by the linker relaxation code. It is
413 . currently only set for sections where the linker relaxation scheme
414 . doesn't cache altered section and reloc contents (stabs, eh_frame,
415 . SEC_MERGE, some coff relaxing targets), and thus the original size
416 . needs to be kept to read the section multiple times.
417 . For output sections, rawsize holds the section size calculated on
418 . a previous linker relaxation pass. *}
419 . bfd_size_type rawsize;
420 .
421 . {* If this section is going to be output, then this value is the
422 . offset in *bytes* into the output section of the first byte in the
423 . input section (byte ==> smallest addressable unit on the
424 . target). In most cases, if this was going to start at the
425 . 100th octet (8-bit quantity) in the output section, this value
426 . would be 100. However, if the target byte size is 16 bits
427 . (bfd_octets_per_byte is "2"), this value would be 50. *}
428 . bfd_vma output_offset;
429 .
430 . {* The output section through which to map on output. *}
431 . struct bfd_section *output_section;
432 .
433 . {* The alignment requirement of the section, as an exponent of 2 -
434 . e.g., 3 aligns to 2^3 (or 8). *}
435 . unsigned int alignment_power;
436 .
437 . {* If an input section, a pointer to a vector of relocation
438 . records for the data in this section. *}
439 . struct reloc_cache_entry *relocation;
440 .
441 . {* If an output section, a pointer to a vector of pointers to
442 . relocation records for the data in this section. *}
443 . struct reloc_cache_entry **orelocation;
444 .
445 . {* The number of relocation records in one of the above. *}
446 . unsigned reloc_count;
447 .
448 . {* Information below is back end specific - and not always used
449 . or updated. *}
450 .
451 . {* File position of section data. *}
452 . file_ptr filepos;
453 .
454 . {* File position of relocation info. *}
455 . file_ptr rel_filepos;
456 .
457 . {* File position of line data. *}
458 . file_ptr line_filepos;
459 .
460 . {* Pointer to data for applications. *}
461 . void *userdata;
462 .
463 . {* If the SEC_IN_MEMORY flag is set, this points to the actual
464 . contents. *}
465 . unsigned char *contents;
466 .
467 . {* Attached line number information. *}
468 . alent *lineno;
469 .
470 . {* Number of line number records. *}
471 . unsigned int lineno_count;
472 .
473 . {* Entity size for merging purposes. *}
474 . unsigned int entsize;
475 .
476 . {* Points to the kept section if this section is a link-once section,
477 . and is discarded. *}
478 . struct bfd_section *kept_section;
479 .
480 . {* When a section is being output, this value changes as more
481 . linenumbers are written out. *}
482 . file_ptr moving_line_filepos;
483 .
484 . {* What the section number is in the target world. *}
485 . int target_index;
486 .
487 . void *used_by_bfd;
488 .
489 . {* If this is a constructor section then here is a list of the
490 . relocations created to relocate items within it. *}
491 . struct relent_chain *constructor_chain;
492 .
493 . {* The BFD which owns the section. *}
494 . bfd *owner;
495 .
496 . {* A symbol which points at this section only. *}
497 . struct bfd_symbol *symbol;
498 . struct bfd_symbol **symbol_ptr_ptr;
499 .
500 . {* Early in the link process, map_head and map_tail are used to build
501 . a list of input sections attached to an output section. Later,
502 . output sections use these fields for a list of bfd_link_order
503 . structs. *}
504 . union {
505 . struct bfd_link_order *link_order;
506 . struct bfd_section *s;
507 . } map_head, map_tail;
508 .} asection;
509 .
510 .{* These sections are global, and are managed by BFD. The application
511 . and target back end are not permitted to change the values in
512 . these sections. New code should use the section_ptr macros rather
513 . than referring directly to the const sections. The const sections
514 . may eventually vanish. *}
515 .#define BFD_ABS_SECTION_NAME "*ABS*"
516 .#define BFD_UND_SECTION_NAME "*UND*"
517 .#define BFD_COM_SECTION_NAME "*COM*"
518 .#define BFD_IND_SECTION_NAME "*IND*"
519 .
520 .{* The absolute section. *}
521 .extern asection bfd_abs_section;
522 .#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
523 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
524 .{* Pointer to the undefined section. *}
525 .extern asection bfd_und_section;
526 .#define bfd_und_section_ptr ((asection *) &bfd_und_section)
527 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
528 .{* Pointer to the common section. *}
529 .extern asection bfd_com_section;
530 .#define bfd_com_section_ptr ((asection *) &bfd_com_section)
531 .{* Pointer to the indirect section. *}
532 .extern asection bfd_ind_section;
533 .#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
534 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)
535 .
536 .#define bfd_is_const_section(SEC) \
537 . ( ((SEC) == bfd_abs_section_ptr) \
538 . || ((SEC) == bfd_und_section_ptr) \
539 . || ((SEC) == bfd_com_section_ptr) \
540 . || ((SEC) == bfd_ind_section_ptr))
541 .
542 .extern const struct bfd_symbol * const bfd_abs_symbol;
543 .extern const struct bfd_symbol * const bfd_com_symbol;
544 .extern const struct bfd_symbol * const bfd_und_symbol;
545 .extern const struct bfd_symbol * const bfd_ind_symbol;
546 .
547 .{* Macros to handle insertion and deletion of a bfd's sections. These
548 . only handle the list pointers, ie. do not adjust section_count,
549 . target_index etc. *}
550 .#define bfd_section_list_remove(ABFD, S) \
551 . do \
552 . { \
553 . asection *_s = S; \
554 . asection *_next = _s->next; \
555 . asection *_prev = _s->prev; \
556 . if (_prev) \
557 . _prev->next = _next; \
558 . else \
559 . (ABFD)->sections = _next; \
560 . if (_next) \
561 . _next->prev = _prev; \
562 . else \
563 . (ABFD)->section_last = _prev; \
564 . } \
565 . while (0)
566 .#define bfd_section_list_append(ABFD, S) \
567 . do \
568 . { \
569 . asection *_s = S; \
570 . bfd *_abfd = ABFD; \
571 . _s->next = NULL; \
572 . if (_abfd->section_last) \
573 . { \
574 . _s->prev = _abfd->section_last; \
575 . _abfd->section_last->next = _s; \
576 . } \
577 . else \
578 . { \
579 . _s->prev = NULL; \
580 . _abfd->sections = _s; \
581 . } \
582 . _abfd->section_last = _s; \
583 . } \
584 . while (0)
585 .#define bfd_section_list_prepend(ABFD, S) \
586 . do \
587 . { \
588 . asection *_s = S; \
589 . bfd *_abfd = ABFD; \
590 . _s->prev = NULL; \
591 . if (_abfd->sections) \
592 . { \
593 . _s->next = _abfd->sections; \
594 . _abfd->sections->prev = _s; \
595 . } \
596 . else \
597 . { \
598 . _s->next = NULL; \
599 . _abfd->section_last = _s; \
600 . } \
601 . _abfd->sections = _s; \
602 . } \
603 . while (0)
604 .#define bfd_section_list_insert_after(ABFD, A, S) \
605 . do \
606 . { \
607 . asection *_a = A; \
608 . asection *_s = S; \
609 . asection *_next = _a->next; \
610 . _s->next = _next; \
611 . _s->prev = _a; \
612 . _a->next = _s; \
613 . if (_next) \
614 . _next->prev = _s; \
615 . else \
616 . (ABFD)->section_last = _s; \
617 . } \
618 . while (0)
619 .#define bfd_section_list_insert_before(ABFD, B, S) \
620 . do \
621 . { \
622 . asection *_b = B; \
623 . asection *_s = S; \
624 . asection *_prev = _b->prev; \
625 . _s->prev = _prev; \
626 . _s->next = _b; \
627 . _b->prev = _s; \
628 . if (_prev) \
629 . _prev->next = _s; \
630 . else \
631 . (ABFD)->sections = _s; \
632 . } \
633 . while (0)
634 .#define bfd_section_removed_from_list(ABFD, S) \
635 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S))
636 .
637 */
638
639 /* We use a macro to initialize the static asymbol structures because
640 traditional C does not permit us to initialize a union member while
641 gcc warns if we don't initialize it. */
642 /* the_bfd, name, value, attr, section [, udata] */
643 #ifdef __STDC__
644 #define GLOBAL_SYM_INIT(NAME, SECTION) \
645 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION, { 0 }}
646 #else
647 #define GLOBAL_SYM_INIT(NAME, SECTION) \
648 { 0, NAME, 0, BSF_SECTION_SYM, (asection *) SECTION }
649 #endif
650
651 /* These symbols are global, not specific to any BFD. Therefore, anything
652 that tries to change them is broken, and should be repaired. */
653
654 static const asymbol global_syms[] =
655 {
656 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, &bfd_com_section),
657 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, &bfd_und_section),
658 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, &bfd_abs_section),
659 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, &bfd_ind_section)
660 };
661
662 #define STD_SECTION(SEC, FLAGS, SYM, NAME, IDX) \
663 const asymbol * const SYM = (asymbol *) &global_syms[IDX]; \
664 asection SEC = \
665 /* name, id, index, next, prev, flags, user_set_vma, */ \
666 { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \
667 \
668 /* linker_mark, linker_has_input, gc_mark, segment_mark, */ \
669 0, 0, 1, 0, \
670 \
671 /* sec_info_type, use_rela_p, has_tls_reloc, has_gp_reloc, */ \
672 0, 0, 0, 0, \
673 \
674 /* need_finalize_relax, reloc_done, */ \
675 0, 0, \
676 \
677 /* vma, lma, size, rawsize */ \
678 0, 0, 0, 0, \
679 \
680 /* output_offset, output_section, alignment_power, */ \
681 0, (struct bfd_section *) &SEC, 0, \
682 \
683 /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \
684 NULL, NULL, 0, 0, 0, \
685 \
686 /* line_filepos, userdata, contents, lineno, lineno_count, */ \
687 0, NULL, NULL, NULL, 0, \
688 \
689 /* entsize, kept_section, moving_line_filepos, */ \
690 0, NULL, 0, \
691 \
692 /* target_index, used_by_bfd, constructor_chain, owner, */ \
693 0, NULL, NULL, NULL, \
694 \
695 /* symbol, */ \
696 (struct bfd_symbol *) &global_syms[IDX], \
697 \
698 /* symbol_ptr_ptr, */ \
699 (struct bfd_symbol **) &SYM, \
700 \
701 /* map_head, map_tail */ \
702 { NULL }, { NULL } \
703 }
704
705 STD_SECTION (bfd_com_section, SEC_IS_COMMON, bfd_com_symbol,
706 BFD_COM_SECTION_NAME, 0);
707 STD_SECTION (bfd_und_section, 0, bfd_und_symbol, BFD_UND_SECTION_NAME, 1);
708 STD_SECTION (bfd_abs_section, 0, bfd_abs_symbol, BFD_ABS_SECTION_NAME, 2);
709 STD_SECTION (bfd_ind_section, 0, bfd_ind_symbol, BFD_IND_SECTION_NAME, 3);
710 #undef STD_SECTION
711
712 struct section_hash_entry
713 {
714 struct bfd_hash_entry root;
715 asection section;
716 };
717
718 /* Initialize an entry in the section hash table. */
719
720 struct bfd_hash_entry *
721 bfd_section_hash_newfunc (struct bfd_hash_entry *entry,
722 struct bfd_hash_table *table,
723 const char *string)
724 {
725 /* Allocate the structure if it has not already been allocated by a
726 subclass. */
727 if (entry == NULL)
728 {
729 entry = (struct bfd_hash_entry *)
730 bfd_hash_allocate (table, sizeof (struct section_hash_entry));
731 if (entry == NULL)
732 return entry;
733 }
734
735 /* Call the allocation method of the superclass. */
736 entry = bfd_hash_newfunc (entry, table, string);
737 if (entry != NULL)
738 memset (&((struct section_hash_entry *) entry)->section, 0,
739 sizeof (asection));
740
741 return entry;
742 }
743
744 #define section_hash_lookup(table, string, create, copy) \
745 ((struct section_hash_entry *) \
746 bfd_hash_lookup ((table), (string), (create), (copy)))
747
748 /* Initializes a new section. NEWSECT->NAME is already set. */
749
750 static asection *
751 bfd_section_init (bfd *abfd, asection *newsect)
752 {
753 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */
754
755 newsect->id = section_id;
756 newsect->index = abfd->section_count;
757 newsect->owner = abfd;
758
759 /* Create a symbol whose only job is to point to this section. This
760 is useful for things like relocs which are relative to the base
761 of a section. */
762 newsect->symbol = bfd_make_empty_symbol (abfd);
763 if (newsect->symbol == NULL)
764 return NULL;
765
766 newsect->symbol->name = newsect->name;
767 newsect->symbol->value = 0;
768 newsect->symbol->section = newsect;
769 newsect->symbol->flags = BSF_SECTION_SYM;
770
771 newsect->symbol_ptr_ptr = &newsect->symbol;
772
773 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect)))
774 return NULL;
775
776 section_id++;
777 abfd->section_count++;
778 bfd_section_list_append (abfd, newsect);
779 return newsect;
780 }
781
782 /*
783 DOCDD
784 INODE
785 section prototypes, , typedef asection, Sections
786 SUBSECTION
787 Section prototypes
788
789 These are the functions exported by the section handling part of BFD.
790 */
791
792 /*
793 FUNCTION
794 bfd_section_list_clear
795
796 SYNOPSIS
797 void bfd_section_list_clear (bfd *);
798
799 DESCRIPTION
800 Clears the section list, and also resets the section count and
801 hash table entries.
802 */
803
804 void
805 bfd_section_list_clear (bfd *abfd)
806 {
807 abfd->sections = NULL;
808 abfd->section_last = NULL;
809 abfd->section_count = 0;
810 memset (abfd->section_htab.table, 0,
811 abfd->section_htab.size * sizeof (struct bfd_hash_entry *));
812 }
813
814 /*
815 FUNCTION
816 bfd_get_section_by_name
817
818 SYNOPSIS
819 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
820
821 DESCRIPTION
822 Run through @var{abfd} and return the one of the
823 <<asection>>s whose name matches @var{name}, otherwise <<NULL>>.
824 @xref{Sections}, for more information.
825
826 This should only be used in special cases; the normal way to process
827 all sections of a given name is to use <<bfd_map_over_sections>> and
828 <<strcmp>> on the name (or better yet, base it on the section flags
829 or something else) for each section.
830 */
831
832 asection *
833 bfd_get_section_by_name (bfd *abfd, const char *name)
834 {
835 struct section_hash_entry *sh;
836
837 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
838 if (sh != NULL)
839 return &sh->section;
840
841 return NULL;
842 }
843
844 /*
845 FUNCTION
846 bfd_get_section_by_name_if
847
848 SYNOPSIS
849 asection *bfd_get_section_by_name_if
850 (bfd *abfd,
851 const char *name,
852 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj),
853 void *obj);
854
855 DESCRIPTION
856 Call the provided function @var{func} for each section
857 attached to the BFD @var{abfd} whose name matches @var{name},
858 passing @var{obj} as an argument. The function will be called
859 as if by
860
861 | func (abfd, the_section, obj);
862
863 It returns the first section for which @var{func} returns true,
864 otherwise <<NULL>>.
865
866 */
867
868 asection *
869 bfd_get_section_by_name_if (bfd *abfd, const char *name,
870 bfd_boolean (*operation) (bfd *,
871 asection *,
872 void *),
873 void *user_storage)
874 {
875 struct section_hash_entry *sh;
876 unsigned long hash;
877
878 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE);
879 if (sh == NULL)
880 return NULL;
881
882 hash = sh->root.hash;
883 do
884 {
885 if ((*operation) (abfd, &sh->section, user_storage))
886 return &sh->section;
887 sh = (struct section_hash_entry *) sh->root.next;
888 }
889 while (sh != NULL && sh->root.hash == hash
890 && strcmp (sh->root.string, name) == 0);
891
892 return NULL;
893 }
894
895 /*
896 FUNCTION
897 bfd_get_unique_section_name
898
899 SYNOPSIS
900 char *bfd_get_unique_section_name
901 (bfd *abfd, const char *templat, int *count);
902
903 DESCRIPTION
904 Invent a section name that is unique in @var{abfd} by tacking
905 a dot and a digit suffix onto the original @var{templat}. If
906 @var{count} is non-NULL, then it specifies the first number
907 tried as a suffix to generate a unique name. The value
908 pointed to by @var{count} will be incremented in this case.
909 */
910
911 char *
912 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count)
913 {
914 int num;
915 unsigned int len;
916 char *sname;
917
918 len = strlen (templat);
919 sname = bfd_malloc (len + 8);
920 if (sname == NULL)
921 return NULL;
922 memcpy (sname, templat, len);
923 num = 1;
924 if (count != NULL)
925 num = *count;
926
927 do
928 {
929 /* If we have a million sections, something is badly wrong. */
930 if (num > 999999)
931 abort ();
932 sprintf (sname + len, ".%d", num++);
933 }
934 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE));
935
936 if (count != NULL)
937 *count = num;
938 return sname;
939 }
940
941 /*
942 FUNCTION
943 bfd_make_section_old_way
944
945 SYNOPSIS
946 asection *bfd_make_section_old_way (bfd *abfd, const char *name);
947
948 DESCRIPTION
949 Create a new empty section called @var{name}
950 and attach it to the end of the chain of sections for the
951 BFD @var{abfd}. An attempt to create a section with a name which
952 is already in use returns its pointer without changing the
953 section chain.
954
955 It has the funny name since this is the way it used to be
956 before it was rewritten....
957
958 Possible errors are:
959 o <<bfd_error_invalid_operation>> -
960 If output has already started for this BFD.
961 o <<bfd_error_no_memory>> -
962 If memory allocation fails.
963
964 */
965
966 asection *
967 bfd_make_section_old_way (bfd *abfd, const char *name)
968 {
969 struct section_hash_entry *sh;
970 asection *newsect;
971
972 if (abfd->output_has_begun)
973 {
974 bfd_set_error (bfd_error_invalid_operation);
975 return NULL;
976 }
977
978 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0)
979 return bfd_abs_section_ptr;
980
981 if (strcmp (name, BFD_COM_SECTION_NAME) == 0)
982 return bfd_com_section_ptr;
983
984 if (strcmp (name, BFD_UND_SECTION_NAME) == 0)
985 return bfd_und_section_ptr;
986
987 if (strcmp (name, BFD_IND_SECTION_NAME) == 0)
988 return bfd_ind_section_ptr;
989
990 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
991 if (sh == NULL)
992 return NULL;
993
994 newsect = &sh->section;
995 if (newsect->name != NULL)
996 {
997 /* Section already exists. */
998 return newsect;
999 }
1000
1001 newsect->name = name;
1002 return bfd_section_init (abfd, newsect);
1003 }
1004
1005 /*
1006 FUNCTION
1007 bfd_make_section_anyway
1008
1009 SYNOPSIS
1010 asection *bfd_make_section_anyway (bfd *abfd, const char *name);
1011
1012 DESCRIPTION
1013 Create a new empty section called @var{name} and attach it to the end of
1014 the chain of sections for @var{abfd}. Create a new section even if there
1015 is already a section with that name.
1016
1017 Return <<NULL>> and set <<bfd_error>> on error; possible errors are:
1018 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}.
1019 o <<bfd_error_no_memory>> - If memory allocation fails.
1020 */
1021
1022 sec_ptr
1023 bfd_make_section_anyway (bfd *abfd, const char *name)
1024 {
1025 struct section_hash_entry *sh;
1026 asection *newsect;
1027
1028 if (abfd->output_has_begun)
1029 {
1030 bfd_set_error (bfd_error_invalid_operation);
1031 return NULL;
1032 }
1033
1034 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1035 if (sh == NULL)
1036 return NULL;
1037
1038 newsect = &sh->section;
1039 if (newsect->name != NULL)
1040 {
1041 /* We are making a section of the same name. Put it in the
1042 section hash table. Even though we can't find it directly by a
1043 hash lookup, we'll be able to find the section by traversing
1044 sh->root.next quicker than looking at all the bfd sections. */
1045 struct section_hash_entry *new_sh;
1046 new_sh = (struct section_hash_entry *)
1047 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name);
1048 if (new_sh == NULL)
1049 return NULL;
1050
1051 new_sh->root = sh->root;
1052 sh->root.next = &new_sh->root;
1053 newsect = &new_sh->section;
1054 }
1055
1056 newsect->name = name;
1057 return bfd_section_init (abfd, newsect);
1058 }
1059
1060 /*
1061 FUNCTION
1062 bfd_make_section
1063
1064 SYNOPSIS
1065 asection *bfd_make_section (bfd *, const char *name);
1066
1067 DESCRIPTION
1068 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling
1069 bfd_set_error ()) without changing the section chain if there is already a
1070 section named @var{name}. If there is an error, return <<NULL>> and set
1071 <<bfd_error>>.
1072 */
1073
1074 asection *
1075 bfd_make_section (bfd *abfd, const char *name)
1076 {
1077 struct section_hash_entry *sh;
1078 asection *newsect;
1079
1080 if (abfd->output_has_begun)
1081 {
1082 bfd_set_error (bfd_error_invalid_operation);
1083 return NULL;
1084 }
1085
1086 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0
1087 || strcmp (name, BFD_COM_SECTION_NAME) == 0
1088 || strcmp (name, BFD_UND_SECTION_NAME) == 0
1089 || strcmp (name, BFD_IND_SECTION_NAME) == 0)
1090 return NULL;
1091
1092 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE);
1093 if (sh == NULL)
1094 return NULL;
1095
1096 newsect = &sh->section;
1097 if (newsect->name != NULL)
1098 {
1099 /* Section already exists. */
1100 return NULL;
1101 }
1102
1103 newsect->name = name;
1104 return bfd_section_init (abfd, newsect);
1105 }
1106
1107 /*
1108 FUNCTION
1109 bfd_set_section_flags
1110
1111 SYNOPSIS
1112 bfd_boolean bfd_set_section_flags
1113 (bfd *abfd, asection *sec, flagword flags);
1114
1115 DESCRIPTION
1116 Set the attributes of the section @var{sec} in the BFD
1117 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success,
1118 <<FALSE>> on error. Possible error returns are:
1119
1120 o <<bfd_error_invalid_operation>> -
1121 The section cannot have one or more of the attributes
1122 requested. For example, a .bss section in <<a.out>> may not
1123 have the <<SEC_HAS_CONTENTS>> field set.
1124
1125 */
1126
1127 bfd_boolean
1128 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED,
1129 sec_ptr section,
1130 flagword flags)
1131 {
1132 section->flags = flags;
1133 return TRUE;
1134 }
1135
1136 /*
1137 FUNCTION
1138 bfd_map_over_sections
1139
1140 SYNOPSIS
1141 void bfd_map_over_sections
1142 (bfd *abfd,
1143 void (*func) (bfd *abfd, asection *sect, void *obj),
1144 void *obj);
1145
1146 DESCRIPTION
1147 Call the provided function @var{func} for each section
1148 attached to the BFD @var{abfd}, passing @var{obj} as an
1149 argument. The function will be called as if by
1150
1151 | func (abfd, the_section, obj);
1152
1153 This is the preferred method for iterating over sections; an
1154 alternative would be to use a loop:
1155
1156 | section *p;
1157 | for (p = abfd->sections; p != NULL; p = p->next)
1158 | func (abfd, p, ...)
1159
1160 */
1161
1162 void
1163 bfd_map_over_sections (bfd *abfd,
1164 void (*operation) (bfd *, asection *, void *),
1165 void *user_storage)
1166 {
1167 asection *sect;
1168 unsigned int i = 0;
1169
1170 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next)
1171 (*operation) (abfd, sect, user_storage);
1172
1173 if (i != abfd->section_count) /* Debugging */
1174 abort ();
1175 }
1176
1177 /*
1178 FUNCTION
1179 bfd_sections_find_if
1180
1181 SYNOPSIS
1182 asection *bfd_sections_find_if
1183 (bfd *abfd,
1184 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj),
1185 void *obj);
1186
1187 DESCRIPTION
1188 Call the provided function @var{operation} for each section
1189 attached to the BFD @var{abfd}, passing @var{obj} as an
1190 argument. The function will be called as if by
1191
1192 | operation (abfd, the_section, obj);
1193
1194 It returns the first section for which @var{operation} returns true.
1195
1196 */
1197
1198 asection *
1199 bfd_sections_find_if (bfd *abfd,
1200 bfd_boolean (*operation) (bfd *, asection *, void *),
1201 void *user_storage)
1202 {
1203 asection *sect;
1204
1205 for (sect = abfd->sections; sect != NULL; sect = sect->next)
1206 if ((*operation) (abfd, sect, user_storage))
1207 break;
1208
1209 return sect;
1210 }
1211
1212 /*
1213 FUNCTION
1214 bfd_set_section_size
1215
1216 SYNOPSIS
1217 bfd_boolean bfd_set_section_size
1218 (bfd *abfd, asection *sec, bfd_size_type val);
1219
1220 DESCRIPTION
1221 Set @var{sec} to the size @var{val}. If the operation is
1222 ok, then <<TRUE>> is returned, else <<FALSE>>.
1223
1224 Possible error returns:
1225 o <<bfd_error_invalid_operation>> -
1226 Writing has started to the BFD, so setting the size is invalid.
1227
1228 */
1229
1230 bfd_boolean
1231 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val)
1232 {
1233 /* Once you've started writing to any section you cannot create or change
1234 the size of any others. */
1235
1236 if (abfd->output_has_begun)
1237 {
1238 bfd_set_error (bfd_error_invalid_operation);
1239 return FALSE;
1240 }
1241
1242 ptr->size = val;
1243 return TRUE;
1244 }
1245
1246 /*
1247 FUNCTION
1248 bfd_set_section_contents
1249
1250 SYNOPSIS
1251 bfd_boolean bfd_set_section_contents
1252 (bfd *abfd, asection *section, const void *data,
1253 file_ptr offset, bfd_size_type count);
1254
1255 DESCRIPTION
1256 Sets the contents of the section @var{section} in BFD
1257 @var{abfd} to the data starting in memory at @var{data}. The
1258 data is written to the output section starting at offset
1259 @var{offset} for @var{count} octets.
1260
1261 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error
1262 returns are:
1263 o <<bfd_error_no_contents>> -
1264 The output section does not have the <<SEC_HAS_CONTENTS>>
1265 attribute, so nothing can be written to it.
1266 o and some more too
1267
1268 This routine is front end to the back end function
1269 <<_bfd_set_section_contents>>.
1270
1271 */
1272
1273 bfd_boolean
1274 bfd_set_section_contents (bfd *abfd,
1275 sec_ptr section,
1276 const void *location,
1277 file_ptr offset,
1278 bfd_size_type count)
1279 {
1280 bfd_size_type sz;
1281
1282 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS))
1283 {
1284 bfd_set_error (bfd_error_no_contents);
1285 return FALSE;
1286 }
1287
1288 sz = section->size;
1289 if ((bfd_size_type) offset > sz
1290 || count > sz
1291 || offset + count > sz
1292 || count != (size_t) count)
1293 {
1294 bfd_set_error (bfd_error_bad_value);
1295 return FALSE;
1296 }
1297
1298 switch (abfd->direction)
1299 {
1300 case read_direction:
1301 case no_direction:
1302 bfd_set_error (bfd_error_invalid_operation);
1303 return FALSE;
1304
1305 case write_direction:
1306 break;
1307
1308 case both_direction:
1309 /* File is opened for update. `output_has_begun' some time ago when
1310 the file was created. Do not recompute sections sizes or alignments
1311 in _bfd_set_section_content. */
1312 abfd->output_has_begun = TRUE;
1313 break;
1314 }
1315
1316 /* Record a copy of the data in memory if desired. */
1317 if (section->contents
1318 && location != section->contents + offset)
1319 memcpy (section->contents + offset, location, (size_t) count);
1320
1321 if (BFD_SEND (abfd, _bfd_set_section_contents,
1322 (abfd, section, location, offset, count)))
1323 {
1324 abfd->output_has_begun = TRUE;
1325 return TRUE;
1326 }
1327
1328 return FALSE;
1329 }
1330
1331 /*
1332 FUNCTION
1333 bfd_get_section_contents
1334
1335 SYNOPSIS
1336 bfd_boolean bfd_get_section_contents
1337 (bfd *abfd, asection *section, void *location, file_ptr offset,
1338 bfd_size_type count);
1339
1340 DESCRIPTION
1341 Read data from @var{section} in BFD @var{abfd}
1342 into memory starting at @var{location}. The data is read at an
1343 offset of @var{offset} from the start of the input section,
1344 and is read for @var{count} bytes.
1345
1346 If the contents of a constructor with the <<SEC_CONSTRUCTOR>>
1347 flag set are requested or if the section does not have the
1348 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled
1349 with zeroes. If no errors occur, <<TRUE>> is returned, else
1350 <<FALSE>>.
1351
1352 */
1353 bfd_boolean
1354 bfd_get_section_contents (bfd *abfd,
1355 sec_ptr section,
1356 void *location,
1357 file_ptr offset,
1358 bfd_size_type count)
1359 {
1360 bfd_size_type sz;
1361
1362 if (section->flags & SEC_CONSTRUCTOR)
1363 {
1364 memset (location, 0, (size_t) count);
1365 return TRUE;
1366 }
1367
1368 sz = section->rawsize ? section->rawsize : section->size;
1369 if ((bfd_size_type) offset > sz
1370 || count > sz
1371 || offset + count > sz
1372 || count != (size_t) count)
1373 {
1374 bfd_set_error (bfd_error_bad_value);
1375 return FALSE;
1376 }
1377
1378 if (count == 0)
1379 /* Don't bother. */
1380 return TRUE;
1381
1382 if ((section->flags & SEC_HAS_CONTENTS) == 0)
1383 {
1384 memset (location, 0, (size_t) count);
1385 return TRUE;
1386 }
1387
1388 if ((section->flags & SEC_IN_MEMORY) != 0)
1389 {
1390 memcpy (location, section->contents + offset, (size_t) count);
1391 return TRUE;
1392 }
1393
1394 return BFD_SEND (abfd, _bfd_get_section_contents,
1395 (abfd, section, location, offset, count));
1396 }
1397
1398 /*
1399 FUNCTION
1400 bfd_malloc_and_get_section
1401
1402 SYNOPSIS
1403 bfd_boolean bfd_malloc_and_get_section
1404 (bfd *abfd, asection *section, bfd_byte **buf);
1405
1406 DESCRIPTION
1407 Read all data from @var{section} in BFD @var{abfd}
1408 into a buffer, *@var{buf}, malloc'd by this function.
1409 */
1410
1411 bfd_boolean
1412 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf)
1413 {
1414 bfd_size_type sz = sec->rawsize ? sec->rawsize : sec->size;
1415 bfd_byte *p = NULL;
1416
1417 *buf = p;
1418 if (sz == 0)
1419 return TRUE;
1420
1421 p = bfd_malloc (sec->rawsize > sec->size ? sec->rawsize : sec->size);
1422 if (p == NULL)
1423 return FALSE;
1424 *buf = p;
1425
1426 return bfd_get_section_contents (abfd, sec, p, 0, sz);
1427 }
1428 /*
1429 FUNCTION
1430 bfd_copy_private_section_data
1431
1432 SYNOPSIS
1433 bfd_boolean bfd_copy_private_section_data
1434 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec);
1435
1436 DESCRIPTION
1437 Copy private section information from @var{isec} in the BFD
1438 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}.
1439 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
1440 returns are:
1441
1442 o <<bfd_error_no_memory>> -
1443 Not enough memory exists to create private data for @var{osec}.
1444
1445 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
1446 . BFD_SEND (obfd, _bfd_copy_private_section_data, \
1447 . (ibfd, isection, obfd, osection))
1448 */
1449
1450 /*
1451 FUNCTION
1452 bfd_generic_is_group_section
1453
1454 SYNOPSIS
1455 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec);
1456
1457 DESCRIPTION
1458 Returns TRUE if @var{sec} is a member of a group.
1459 */
1460
1461 bfd_boolean
1462 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED,
1463 const asection *sec ATTRIBUTE_UNUSED)
1464 {
1465 return FALSE;
1466 }
1467
1468 /*
1469 FUNCTION
1470 bfd_generic_discard_group
1471
1472 SYNOPSIS
1473 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group);
1474
1475 DESCRIPTION
1476 Remove all members of @var{group} from the output.
1477 */
1478
1479 bfd_boolean
1480 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
1481 asection *group ATTRIBUTE_UNUSED)
1482 {
1483 return TRUE;
1484 }