]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
readelf: fix out of range subtraction, seg fault from a NULL pointer and memory exhau...
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #include <zlib.h>
47 #ifdef HAVE_WCHAR_H
48 #include <wchar.h>
49 #endif
50
51 #if __GNUC__ >= 2
52 /* Define BFD64 here, even if our default architecture is 32 bit ELF
53 as this will allow us to read in and parse 64bit and 32bit ELF files.
54 Only do this if we believe that the compiler can support a 64 bit
55 data type. For now we only rely on GCC being able to do this. */
56 #define BFD64
57 #endif
58
59 #include "bfd.h"
60 #include "bucomm.h"
61 #include "elfcomm.h"
62 #include "dwarf.h"
63
64 #include "elf/common.h"
65 #include "elf/external.h"
66 #include "elf/internal.h"
67
68
69 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
70 we can obtain the H8 reloc numbers. We need these for the
71 get_reloc_size() function. We include h8.h again after defining
72 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
73
74 #include "elf/h8.h"
75 #undef _ELF_H8_H
76
77 /* Undo the effects of #including reloc-macros.h. */
78
79 #undef START_RELOC_NUMBERS
80 #undef RELOC_NUMBER
81 #undef FAKE_RELOC
82 #undef EMPTY_RELOC
83 #undef END_RELOC_NUMBERS
84 #undef _RELOC_MACROS_H
85
86 /* The following headers use the elf/reloc-macros.h file to
87 automatically generate relocation recognition functions
88 such as elf_mips_reloc_type() */
89
90 #define RELOC_MACROS_GEN_FUNC
91
92 #include "elf/aarch64.h"
93 #include "elf/alpha.h"
94 #include "elf/arc.h"
95 #include "elf/arm.h"
96 #include "elf/avr.h"
97 #include "elf/bfin.h"
98 #include "elf/cr16.h"
99 #include "elf/cris.h"
100 #include "elf/crx.h"
101 #include "elf/d10v.h"
102 #include "elf/d30v.h"
103 #include "elf/dlx.h"
104 #include "elf/epiphany.h"
105 #include "elf/fr30.h"
106 #include "elf/frv.h"
107 #include "elf/ft32.h"
108 #include "elf/h8.h"
109 #include "elf/hppa.h"
110 #include "elf/i386.h"
111 #include "elf/i370.h"
112 #include "elf/i860.h"
113 #include "elf/i960.h"
114 #include "elf/ia64.h"
115 #include "elf/ip2k.h"
116 #include "elf/lm32.h"
117 #include "elf/iq2000.h"
118 #include "elf/m32c.h"
119 #include "elf/m32r.h"
120 #include "elf/m68k.h"
121 #include "elf/m68hc11.h"
122 #include "elf/mcore.h"
123 #include "elf/mep.h"
124 #include "elf/metag.h"
125 #include "elf/microblaze.h"
126 #include "elf/mips.h"
127 #include "elf/riscv.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nds32.h"
135 #include "elf/nios2.h"
136 #include "elf/or1k.h"
137 #include "elf/pj.h"
138 #include "elf/ppc.h"
139 #include "elf/ppc64.h"
140 #include "elf/pru.h"
141 #include "elf/rl78.h"
142 #include "elf/rx.h"
143 #include "elf/s390.h"
144 #include "elf/score.h"
145 #include "elf/sh.h"
146 #include "elf/sparc.h"
147 #include "elf/spu.h"
148 #include "elf/tic6x.h"
149 #include "elf/tilegx.h"
150 #include "elf/tilepro.h"
151 #include "elf/v850.h"
152 #include "elf/vax.h"
153 #include "elf/visium.h"
154 #include "elf/wasm32.h"
155 #include "elf/x86-64.h"
156 #include "elf/xc16x.h"
157 #include "elf/xgate.h"
158 #include "elf/xstormy16.h"
159 #include "elf/xtensa.h"
160
161 #include "getopt.h"
162 #include "libiberty.h"
163 #include "safe-ctype.h"
164 #include "filenames.h"
165
166 #ifndef offsetof
167 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
168 #endif
169
170 typedef struct elf_section_list
171 {
172 Elf_Internal_Shdr * hdr;
173 struct elf_section_list * next;
174 } elf_section_list;
175
176 char * program_name = "readelf";
177 static unsigned long archive_file_offset;
178 static unsigned long archive_file_size;
179 static bfd_size_type current_file_size;
180 static unsigned long dynamic_addr;
181 static bfd_size_type dynamic_size;
182 static size_t dynamic_nent;
183 static char * dynamic_strings;
184 static unsigned long dynamic_strings_length;
185 static char * string_table;
186 static unsigned long string_table_length;
187 static unsigned long num_dynamic_syms;
188 static Elf_Internal_Sym * dynamic_symbols;
189 static Elf_Internal_Syminfo * dynamic_syminfo;
190 static unsigned long dynamic_syminfo_offset;
191 static unsigned int dynamic_syminfo_nent;
192 static char program_interpreter[PATH_MAX];
193 static bfd_vma dynamic_info[DT_ENCODING];
194 static bfd_vma dynamic_info_DT_GNU_HASH;
195 static bfd_vma version_info[16];
196 static Elf_Internal_Ehdr elf_header;
197 static Elf_Internal_Shdr * section_headers;
198 static Elf_Internal_Phdr * program_headers;
199 static Elf_Internal_Dyn * dynamic_section;
200 static elf_section_list * symtab_shndx_list;
201 static bfd_boolean show_name = FALSE;
202 static bfd_boolean do_dynamic = FALSE;
203 static bfd_boolean do_syms = FALSE;
204 static bfd_boolean do_dyn_syms = FALSE;
205 static bfd_boolean do_reloc = FALSE;
206 static bfd_boolean do_sections = FALSE;
207 static bfd_boolean do_section_groups = FALSE;
208 static bfd_boolean do_section_details = FALSE;
209 static bfd_boolean do_segments = FALSE;
210 static bfd_boolean do_unwind = FALSE;
211 static bfd_boolean do_using_dynamic = FALSE;
212 static bfd_boolean do_header = FALSE;
213 static bfd_boolean do_dump = FALSE;
214 static bfd_boolean do_version = FALSE;
215 static bfd_boolean do_histogram = FALSE;
216 static bfd_boolean do_debugging = FALSE;
217 static bfd_boolean do_arch = FALSE;
218 static bfd_boolean do_notes = FALSE;
219 static bfd_boolean do_archive_index = FALSE;
220 static bfd_boolean is_32bit_elf = FALSE;
221 static bfd_boolean decompress_dumps = FALSE;
222
223 struct group_list
224 {
225 struct group_list * next;
226 unsigned int section_index;
227 };
228
229 struct group
230 {
231 struct group_list * root;
232 unsigned int group_index;
233 };
234
235 static size_t group_count;
236 static struct group * section_groups;
237 static struct group ** section_headers_groups;
238
239
240 /* Flag bits indicating particular types of dump. */
241 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
242 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
243 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
244 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
245 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
246
247 typedef unsigned char dump_type;
248
249 /* A linked list of the section names for which dumps were requested. */
250 struct dump_list_entry
251 {
252 char * name;
253 dump_type type;
254 struct dump_list_entry * next;
255 };
256 static struct dump_list_entry * dump_sects_byname;
257
258 /* A dynamic array of flags indicating for which sections a dump
259 has been requested via command line switches. */
260 static dump_type * cmdline_dump_sects = NULL;
261 static unsigned int num_cmdline_dump_sects = 0;
262
263 /* A dynamic array of flags indicating for which sections a dump of
264 some kind has been requested. It is reset on a per-object file
265 basis and then initialised from the cmdline_dump_sects array,
266 the results of interpreting the -w switch, and the
267 dump_sects_byname list. */
268 static dump_type * dump_sects = NULL;
269 static unsigned int num_dump_sects = 0;
270
271
272 /* How to print a vma value. */
273 typedef enum print_mode
274 {
275 HEX,
276 DEC,
277 DEC_5,
278 UNSIGNED,
279 PREFIX_HEX,
280 FULL_HEX,
281 LONG_HEX
282 }
283 print_mode;
284
285 /* Versioned symbol info. */
286 enum versioned_symbol_info
287 {
288 symbol_undefined,
289 symbol_hidden,
290 symbol_public
291 };
292
293 static const char * get_symbol_version_string
294 (FILE *, bfd_boolean, const char *, unsigned long, unsigned,
295 Elf_Internal_Sym *, enum versioned_symbol_info *, unsigned short *);
296
297 #define UNKNOWN -1
298
299 #define SECTION_NAME(X) \
300 ((X) == NULL ? _("<none>") \
301 : string_table == NULL ? _("<no-name>") \
302 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
303 : string_table + (X)->sh_name))
304
305 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
306
307 #define GET_ELF_SYMBOLS(file, section, sym_count) \
308 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
309 : get_64bit_elf_symbols (file, section, sym_count))
310
311 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
312 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
313 already been called and verified that the string exists. */
314 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
315
316 #define REMOVE_ARCH_BITS(ADDR) \
317 do \
318 { \
319 if (elf_header.e_machine == EM_ARM) \
320 (ADDR) &= ~1; \
321 } \
322 while (0)
323 \f
324 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET +
325 the offset of the current archive member, if we are examining an archive.
326 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
327 using malloc and fill that. In either case return the pointer to the start of
328 the retrieved data or NULL if something went wrong. If something does go wrong
329 and REASON is not NULL then emit an error message using REASON as part of the
330 context. */
331
332 static void *
333 get_data (void * var, FILE * file, unsigned long offset, bfd_size_type size,
334 bfd_size_type nmemb, const char * reason)
335 {
336 void * mvar;
337 bfd_size_type amt = size * nmemb;
338
339 if (size == 0 || nmemb == 0)
340 return NULL;
341
342 /* If the size_t type is smaller than the bfd_size_type, eg because
343 you are building a 32-bit tool on a 64-bit host, then make sure
344 that when the sizes are cast to (size_t) no information is lost. */
345 if (sizeof (size_t) < sizeof (bfd_size_type)
346 && ( (bfd_size_type) ((size_t) size) != size
347 || (bfd_size_type) ((size_t) nmemb) != nmemb))
348 {
349 if (reason)
350 error (_("Size truncation prevents reading 0x%" BFD_VMA_FMT "x"
351 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
352 nmemb, size, reason);
353 return NULL;
354 }
355
356 /* Check for size overflow. */
357 if (amt < nmemb)
358 {
359 if (reason)
360 error (_("Size overflow prevents reading 0x%" BFD_VMA_FMT "x"
361 " elements of size 0x%" BFD_VMA_FMT "x for %s\n"),
362 nmemb, size, reason);
363 return NULL;
364 }
365
366 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
367 attempting to allocate memory when the read is bound to fail. */
368 if (amt > current_file_size
369 || offset + archive_file_offset + amt > current_file_size)
370 {
371 if (reason)
372 error (_("Reading 0x%" BFD_VMA_FMT "x"
373 " bytes extends past end of file for %s\n"),
374 amt, reason);
375 return NULL;
376 }
377
378 if (fseek (file, archive_file_offset + offset, SEEK_SET))
379 {
380 if (reason)
381 error (_("Unable to seek to 0x%lx for %s\n"),
382 archive_file_offset + offset, reason);
383 return NULL;
384 }
385
386 mvar = var;
387 if (mvar == NULL)
388 {
389 /* Check for overflow. */
390 if (nmemb < (~(bfd_size_type) 0 - 1) / size)
391 /* + 1 so that we can '\0' terminate invalid string table sections. */
392 mvar = malloc ((size_t) amt + 1);
393
394 if (mvar == NULL)
395 {
396 if (reason)
397 error (_("Out of memory allocating 0x%" BFD_VMA_FMT "x"
398 " bytes for %s\n"),
399 amt, reason);
400 return NULL;
401 }
402
403 ((char *) mvar)[amt] = '\0';
404 }
405
406 if (fread (mvar, (size_t) size, (size_t) nmemb, file) != nmemb)
407 {
408 if (reason)
409 error (_("Unable to read in 0x%" BFD_VMA_FMT "x bytes of %s\n"),
410 amt, reason);
411 if (mvar != var)
412 free (mvar);
413 return NULL;
414 }
415
416 return mvar;
417 }
418
419 /* Print a VMA value in the MODE specified.
420 Returns the number of characters displayed. */
421
422 static unsigned int
423 print_vma (bfd_vma vma, print_mode mode)
424 {
425 unsigned int nc = 0;
426
427 switch (mode)
428 {
429 case FULL_HEX:
430 nc = printf ("0x");
431 /* Fall through. */
432 case LONG_HEX:
433 #ifdef BFD64
434 if (is_32bit_elf)
435 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
436 #endif
437 printf_vma (vma);
438 return nc + 16;
439
440 case DEC_5:
441 if (vma <= 99999)
442 return printf ("%5" BFD_VMA_FMT "d", vma);
443 /* Fall through. */
444 case PREFIX_HEX:
445 nc = printf ("0x");
446 /* Fall through. */
447 case HEX:
448 return nc + printf ("%" BFD_VMA_FMT "x", vma);
449
450 case DEC:
451 return printf ("%" BFD_VMA_FMT "d", vma);
452
453 case UNSIGNED:
454 return printf ("%" BFD_VMA_FMT "u", vma);
455
456 default:
457 /* FIXME: Report unrecognised mode ? */
458 return 0;
459 }
460 }
461
462 /* Display a symbol on stdout. Handles the display of control characters and
463 multibye characters (assuming the host environment supports them).
464
465 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
466
467 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
468 padding as necessary.
469
470 Returns the number of emitted characters. */
471
472 static unsigned int
473 print_symbol (signed int width, const char *symbol)
474 {
475 bfd_boolean extra_padding = FALSE;
476 signed int num_printed = 0;
477 #ifdef HAVE_MBSTATE_T
478 mbstate_t state;
479 #endif
480 unsigned int width_remaining;
481
482 if (width < 0)
483 {
484 /* Keep the width positive. This also helps. */
485 width = - width;
486 extra_padding = TRUE;
487 }
488 assert (width != 0);
489
490 if (do_wide)
491 /* Set the remaining width to a very large value.
492 This simplifies the code below. */
493 width_remaining = INT_MAX;
494 else
495 width_remaining = width;
496
497 #ifdef HAVE_MBSTATE_T
498 /* Initialise the multibyte conversion state. */
499 memset (& state, 0, sizeof (state));
500 #endif
501
502 while (width_remaining)
503 {
504 size_t n;
505 const char c = *symbol++;
506
507 if (c == 0)
508 break;
509
510 /* Do not print control characters directly as they can affect terminal
511 settings. Such characters usually appear in the names generated
512 by the assembler for local labels. */
513 if (ISCNTRL (c))
514 {
515 if (width_remaining < 2)
516 break;
517
518 printf ("^%c", c + 0x40);
519 width_remaining -= 2;
520 num_printed += 2;
521 }
522 else if (ISPRINT (c))
523 {
524 putchar (c);
525 width_remaining --;
526 num_printed ++;
527 }
528 else
529 {
530 #ifdef HAVE_MBSTATE_T
531 wchar_t w;
532 #endif
533 /* Let printf do the hard work of displaying multibyte characters. */
534 printf ("%.1s", symbol - 1);
535 width_remaining --;
536 num_printed ++;
537
538 #ifdef HAVE_MBSTATE_T
539 /* Try to find out how many bytes made up the character that was
540 just printed. Advance the symbol pointer past the bytes that
541 were displayed. */
542 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
543 #else
544 n = 1;
545 #endif
546 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
547 symbol += (n - 1);
548 }
549 }
550
551 if (extra_padding && num_printed < width)
552 {
553 /* Fill in the remaining spaces. */
554 printf ("%-*s", width - num_printed, " ");
555 num_printed = width;
556 }
557
558 return num_printed;
559 }
560
561 /* Returns a pointer to a static buffer containing a printable version of
562 the given section's name. Like print_symbol, except that it does not try
563 to print multibyte characters, it just interprets them as hex values. */
564
565 static const char *
566 printable_section_name (const Elf_Internal_Shdr * sec)
567 {
568 #define MAX_PRINT_SEC_NAME_LEN 128
569 static char sec_name_buf [MAX_PRINT_SEC_NAME_LEN + 1];
570 const char * name = SECTION_NAME (sec);
571 char * buf = sec_name_buf;
572 char c;
573 unsigned int remaining = MAX_PRINT_SEC_NAME_LEN;
574
575 while ((c = * name ++) != 0)
576 {
577 if (ISCNTRL (c))
578 {
579 if (remaining < 2)
580 break;
581
582 * buf ++ = '^';
583 * buf ++ = c + 0x40;
584 remaining -= 2;
585 }
586 else if (ISPRINT (c))
587 {
588 * buf ++ = c;
589 remaining -= 1;
590 }
591 else
592 {
593 static char hex[17] = "0123456789ABCDEF";
594
595 if (remaining < 4)
596 break;
597 * buf ++ = '<';
598 * buf ++ = hex[(c & 0xf0) >> 4];
599 * buf ++ = hex[c & 0x0f];
600 * buf ++ = '>';
601 remaining -= 4;
602 }
603
604 if (remaining == 0)
605 break;
606 }
607
608 * buf = 0;
609 return sec_name_buf;
610 }
611
612 static const char *
613 printable_section_name_from_index (unsigned long ndx)
614 {
615 if (ndx >= elf_header.e_shnum)
616 return _("<corrupt>");
617
618 return printable_section_name (section_headers + ndx);
619 }
620
621 /* Return a pointer to section NAME, or NULL if no such section exists. */
622
623 static Elf_Internal_Shdr *
624 find_section (const char * name)
625 {
626 unsigned int i;
627
628 for (i = 0; i < elf_header.e_shnum; i++)
629 if (streq (SECTION_NAME (section_headers + i), name))
630 return section_headers + i;
631
632 return NULL;
633 }
634
635 /* Return a pointer to a section containing ADDR, or NULL if no such
636 section exists. */
637
638 static Elf_Internal_Shdr *
639 find_section_by_address (bfd_vma addr)
640 {
641 unsigned int i;
642
643 for (i = 0; i < elf_header.e_shnum; i++)
644 {
645 Elf_Internal_Shdr *sec = section_headers + i;
646 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
647 return sec;
648 }
649
650 return NULL;
651 }
652
653 static Elf_Internal_Shdr *
654 find_section_by_type (unsigned int type)
655 {
656 unsigned int i;
657
658 for (i = 0; i < elf_header.e_shnum; i++)
659 {
660 Elf_Internal_Shdr *sec = section_headers + i;
661 if (sec->sh_type == type)
662 return sec;
663 }
664
665 return NULL;
666 }
667
668 /* Return a pointer to section NAME, or NULL if no such section exists,
669 restricted to the list of sections given in SET. */
670
671 static Elf_Internal_Shdr *
672 find_section_in_set (const char * name, unsigned int * set)
673 {
674 unsigned int i;
675
676 if (set != NULL)
677 {
678 while ((i = *set++) > 0)
679 {
680 /* See PR 21156 for a reproducer. */
681 if (i >= elf_header.e_shnum)
682 continue; /* FIXME: Should we issue an error message ? */
683
684 if (streq (SECTION_NAME (section_headers + i), name))
685 return section_headers + i;
686 }
687 }
688
689 return find_section (name);
690 }
691
692 /* Read an unsigned LEB128 encoded value from DATA.
693 Set *LENGTH_RETURN to the number of bytes read. */
694
695 static inline unsigned long
696 read_uleb128 (unsigned char * data,
697 unsigned int * length_return,
698 const unsigned char * const end)
699 {
700 return read_leb128 (data, length_return, FALSE, end);
701 }
702
703 /* Return TRUE if the current file is for IA-64 machine and OpenVMS ABI.
704 This OS has so many departures from the ELF standard that we test it at
705 many places. */
706
707 static inline bfd_boolean
708 is_ia64_vms (void)
709 {
710 return elf_header.e_machine == EM_IA_64
711 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
712 }
713
714 /* Guess the relocation size commonly used by the specific machines. */
715
716 static bfd_boolean
717 guess_is_rela (unsigned int e_machine)
718 {
719 switch (e_machine)
720 {
721 /* Targets that use REL relocations. */
722 case EM_386:
723 case EM_IAMCU:
724 case EM_960:
725 case EM_ARM:
726 case EM_D10V:
727 case EM_CYGNUS_D10V:
728 case EM_DLX:
729 case EM_MIPS:
730 case EM_MIPS_RS3_LE:
731 case EM_CYGNUS_M32R:
732 case EM_SCORE:
733 case EM_XGATE:
734 return FALSE;
735
736 /* Targets that use RELA relocations. */
737 case EM_68K:
738 case EM_860:
739 case EM_AARCH64:
740 case EM_ADAPTEVA_EPIPHANY:
741 case EM_ALPHA:
742 case EM_ALTERA_NIOS2:
743 case EM_ARC:
744 case EM_ARC_COMPACT:
745 case EM_ARC_COMPACT2:
746 case EM_AVR:
747 case EM_AVR_OLD:
748 case EM_BLACKFIN:
749 case EM_CR16:
750 case EM_CRIS:
751 case EM_CRX:
752 case EM_D30V:
753 case EM_CYGNUS_D30V:
754 case EM_FR30:
755 case EM_FT32:
756 case EM_CYGNUS_FR30:
757 case EM_CYGNUS_FRV:
758 case EM_H8S:
759 case EM_H8_300:
760 case EM_H8_300H:
761 case EM_IA_64:
762 case EM_IP2K:
763 case EM_IP2K_OLD:
764 case EM_IQ2000:
765 case EM_LATTICEMICO32:
766 case EM_M32C_OLD:
767 case EM_M32C:
768 case EM_M32R:
769 case EM_MCORE:
770 case EM_CYGNUS_MEP:
771 case EM_METAG:
772 case EM_MMIX:
773 case EM_MN10200:
774 case EM_CYGNUS_MN10200:
775 case EM_MN10300:
776 case EM_CYGNUS_MN10300:
777 case EM_MOXIE:
778 case EM_MSP430:
779 case EM_MSP430_OLD:
780 case EM_MT:
781 case EM_NDS32:
782 case EM_NIOS32:
783 case EM_OR1K:
784 case EM_PPC64:
785 case EM_PPC:
786 case EM_TI_PRU:
787 case EM_RISCV:
788 case EM_RL78:
789 case EM_RX:
790 case EM_S390:
791 case EM_S390_OLD:
792 case EM_SH:
793 case EM_SPARC:
794 case EM_SPARC32PLUS:
795 case EM_SPARCV9:
796 case EM_SPU:
797 case EM_TI_C6000:
798 case EM_TILEGX:
799 case EM_TILEPRO:
800 case EM_V800:
801 case EM_V850:
802 case EM_CYGNUS_V850:
803 case EM_VAX:
804 case EM_VISIUM:
805 case EM_X86_64:
806 case EM_L1OM:
807 case EM_K1OM:
808 case EM_XSTORMY16:
809 case EM_XTENSA:
810 case EM_XTENSA_OLD:
811 case EM_MICROBLAZE:
812 case EM_MICROBLAZE_OLD:
813 case EM_WEBASSEMBLY:
814 return TRUE;
815
816 case EM_68HC05:
817 case EM_68HC08:
818 case EM_68HC11:
819 case EM_68HC16:
820 case EM_FX66:
821 case EM_ME16:
822 case EM_MMA:
823 case EM_NCPU:
824 case EM_NDR1:
825 case EM_PCP:
826 case EM_ST100:
827 case EM_ST19:
828 case EM_ST7:
829 case EM_ST9PLUS:
830 case EM_STARCORE:
831 case EM_SVX:
832 case EM_TINYJ:
833 default:
834 warn (_("Don't know about relocations on this machine architecture\n"));
835 return FALSE;
836 }
837 }
838
839 /* Load RELA type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
840 Returns TRUE upon success, FALSE otherwise. If successful then a
841 pointer to a malloc'ed buffer containing the relocs is placed in *RELASP,
842 and the number of relocs loaded is placed in *NRELASP. It is the caller's
843 responsibility to free the allocated buffer. */
844
845 static bfd_boolean
846 slurp_rela_relocs (FILE * file,
847 unsigned long rel_offset,
848 unsigned long rel_size,
849 Elf_Internal_Rela ** relasp,
850 unsigned long * nrelasp)
851 {
852 Elf_Internal_Rela * relas;
853 size_t nrelas;
854 unsigned int i;
855
856 if (is_32bit_elf)
857 {
858 Elf32_External_Rela * erelas;
859
860 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
861 rel_size, _("32-bit relocation data"));
862 if (!erelas)
863 return FALSE;
864
865 nrelas = rel_size / sizeof (Elf32_External_Rela);
866
867 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
868 sizeof (Elf_Internal_Rela));
869
870 if (relas == NULL)
871 {
872 free (erelas);
873 error (_("out of memory parsing relocs\n"));
874 return FALSE;
875 }
876
877 for (i = 0; i < nrelas; i++)
878 {
879 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
880 relas[i].r_info = BYTE_GET (erelas[i].r_info);
881 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
882 }
883
884 free (erelas);
885 }
886 else
887 {
888 Elf64_External_Rela * erelas;
889
890 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
891 rel_size, _("64-bit relocation data"));
892 if (!erelas)
893 return FALSE;
894
895 nrelas = rel_size / sizeof (Elf64_External_Rela);
896
897 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
898 sizeof (Elf_Internal_Rela));
899
900 if (relas == NULL)
901 {
902 free (erelas);
903 error (_("out of memory parsing relocs\n"));
904 return FALSE;
905 }
906
907 for (i = 0; i < nrelas; i++)
908 {
909 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
910 relas[i].r_info = BYTE_GET (erelas[i].r_info);
911 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
912
913 /* The #ifdef BFD64 below is to prevent a compile time
914 warning. We know that if we do not have a 64 bit data
915 type that we will never execute this code anyway. */
916 #ifdef BFD64
917 if (elf_header.e_machine == EM_MIPS
918 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
919 {
920 /* In little-endian objects, r_info isn't really a
921 64-bit little-endian value: it has a 32-bit
922 little-endian symbol index followed by four
923 individual byte fields. Reorder INFO
924 accordingly. */
925 bfd_vma inf = relas[i].r_info;
926 inf = (((inf & 0xffffffff) << 32)
927 | ((inf >> 56) & 0xff)
928 | ((inf >> 40) & 0xff00)
929 | ((inf >> 24) & 0xff0000)
930 | ((inf >> 8) & 0xff000000));
931 relas[i].r_info = inf;
932 }
933 #endif /* BFD64 */
934 }
935
936 free (erelas);
937 }
938
939 *relasp = relas;
940 *nrelasp = nrelas;
941 return TRUE;
942 }
943
944 /* Load REL type relocations from FILE at REL_OFFSET extending for REL_SIZE bytes.
945 Returns TRUE upon success, FALSE otherwise. If successful then a
946 pointer to a malloc'ed buffer containing the relocs is placed in *RELSP,
947 and the number of relocs loaded is placed in *NRELSP. It is the caller's
948 responsibility to free the allocated buffer. */
949
950 static bfd_boolean
951 slurp_rel_relocs (FILE * file,
952 unsigned long rel_offset,
953 unsigned long rel_size,
954 Elf_Internal_Rela ** relsp,
955 unsigned long * nrelsp)
956 {
957 Elf_Internal_Rela * rels;
958 size_t nrels;
959 unsigned int i;
960
961 if (is_32bit_elf)
962 {
963 Elf32_External_Rel * erels;
964
965 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
966 rel_size, _("32-bit relocation data"));
967 if (!erels)
968 return FALSE;
969
970 nrels = rel_size / sizeof (Elf32_External_Rel);
971
972 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
973
974 if (rels == NULL)
975 {
976 free (erels);
977 error (_("out of memory parsing relocs\n"));
978 return FALSE;
979 }
980
981 for (i = 0; i < nrels; i++)
982 {
983 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
984 rels[i].r_info = BYTE_GET (erels[i].r_info);
985 rels[i].r_addend = 0;
986 }
987
988 free (erels);
989 }
990 else
991 {
992 Elf64_External_Rel * erels;
993
994 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
995 rel_size, _("64-bit relocation data"));
996 if (!erels)
997 return FALSE;
998
999 nrels = rel_size / sizeof (Elf64_External_Rel);
1000
1001 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
1002
1003 if (rels == NULL)
1004 {
1005 free (erels);
1006 error (_("out of memory parsing relocs\n"));
1007 return FALSE;
1008 }
1009
1010 for (i = 0; i < nrels; i++)
1011 {
1012 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
1013 rels[i].r_info = BYTE_GET (erels[i].r_info);
1014 rels[i].r_addend = 0;
1015
1016 /* The #ifdef BFD64 below is to prevent a compile time
1017 warning. We know that if we do not have a 64 bit data
1018 type that we will never execute this code anyway. */
1019 #ifdef BFD64
1020 if (elf_header.e_machine == EM_MIPS
1021 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
1022 {
1023 /* In little-endian objects, r_info isn't really a
1024 64-bit little-endian value: it has a 32-bit
1025 little-endian symbol index followed by four
1026 individual byte fields. Reorder INFO
1027 accordingly. */
1028 bfd_vma inf = rels[i].r_info;
1029 inf = (((inf & 0xffffffff) << 32)
1030 | ((inf >> 56) & 0xff)
1031 | ((inf >> 40) & 0xff00)
1032 | ((inf >> 24) & 0xff0000)
1033 | ((inf >> 8) & 0xff000000));
1034 rels[i].r_info = inf;
1035 }
1036 #endif /* BFD64 */
1037 }
1038
1039 free (erels);
1040 }
1041
1042 *relsp = rels;
1043 *nrelsp = nrels;
1044 return TRUE;
1045 }
1046
1047 /* Returns the reloc type extracted from the reloc info field. */
1048
1049 static unsigned int
1050 get_reloc_type (bfd_vma reloc_info)
1051 {
1052 if (is_32bit_elf)
1053 return ELF32_R_TYPE (reloc_info);
1054
1055 switch (elf_header.e_machine)
1056 {
1057 case EM_MIPS:
1058 /* Note: We assume that reloc_info has already been adjusted for us. */
1059 return ELF64_MIPS_R_TYPE (reloc_info);
1060
1061 case EM_SPARCV9:
1062 return ELF64_R_TYPE_ID (reloc_info);
1063
1064 default:
1065 return ELF64_R_TYPE (reloc_info);
1066 }
1067 }
1068
1069 /* Return the symbol index extracted from the reloc info field. */
1070
1071 static bfd_vma
1072 get_reloc_symindex (bfd_vma reloc_info)
1073 {
1074 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
1075 }
1076
1077 static inline bfd_boolean
1078 uses_msp430x_relocs (void)
1079 {
1080 return
1081 elf_header.e_machine == EM_MSP430 /* Paranoia. */
1082 /* GCC uses osabi == ELFOSBI_STANDALONE. */
1083 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
1084 /* TI compiler uses ELFOSABI_NONE. */
1085 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
1086 }
1087
1088 /* Display the contents of the relocation data found at the specified
1089 offset. */
1090
1091 static bfd_boolean
1092 dump_relocations (FILE * file,
1093 unsigned long rel_offset,
1094 unsigned long rel_size,
1095 Elf_Internal_Sym * symtab,
1096 unsigned long nsyms,
1097 char * strtab,
1098 unsigned long strtablen,
1099 int is_rela,
1100 bfd_boolean is_dynsym)
1101 {
1102 unsigned long i;
1103 Elf_Internal_Rela * rels;
1104 bfd_boolean res = TRUE;
1105
1106 if (is_rela == UNKNOWN)
1107 is_rela = guess_is_rela (elf_header.e_machine);
1108
1109 if (is_rela)
1110 {
1111 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1112 return FALSE;
1113 }
1114 else
1115 {
1116 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
1117 return FALSE;
1118 }
1119
1120 if (is_32bit_elf)
1121 {
1122 if (is_rela)
1123 {
1124 if (do_wide)
1125 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
1126 else
1127 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
1128 }
1129 else
1130 {
1131 if (do_wide)
1132 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
1133 else
1134 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
1135 }
1136 }
1137 else
1138 {
1139 if (is_rela)
1140 {
1141 if (do_wide)
1142 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
1143 else
1144 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
1145 }
1146 else
1147 {
1148 if (do_wide)
1149 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
1150 else
1151 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
1152 }
1153 }
1154
1155 for (i = 0; i < rel_size; i++)
1156 {
1157 const char * rtype;
1158 bfd_vma offset;
1159 bfd_vma inf;
1160 bfd_vma symtab_index;
1161 bfd_vma type;
1162
1163 offset = rels[i].r_offset;
1164 inf = rels[i].r_info;
1165
1166 type = get_reloc_type (inf);
1167 symtab_index = get_reloc_symindex (inf);
1168
1169 if (is_32bit_elf)
1170 {
1171 printf ("%8.8lx %8.8lx ",
1172 (unsigned long) offset & 0xffffffff,
1173 (unsigned long) inf & 0xffffffff);
1174 }
1175 else
1176 {
1177 #if BFD_HOST_64BIT_LONG
1178 printf (do_wide
1179 ? "%16.16lx %16.16lx "
1180 : "%12.12lx %12.12lx ",
1181 offset, inf);
1182 #elif BFD_HOST_64BIT_LONG_LONG
1183 #ifndef __MSVCRT__
1184 printf (do_wide
1185 ? "%16.16llx %16.16llx "
1186 : "%12.12llx %12.12llx ",
1187 offset, inf);
1188 #else
1189 printf (do_wide
1190 ? "%16.16I64x %16.16I64x "
1191 : "%12.12I64x %12.12I64x ",
1192 offset, inf);
1193 #endif
1194 #else
1195 printf (do_wide
1196 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1197 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1198 _bfd_int64_high (offset),
1199 _bfd_int64_low (offset),
1200 _bfd_int64_high (inf),
1201 _bfd_int64_low (inf));
1202 #endif
1203 }
1204
1205 switch (elf_header.e_machine)
1206 {
1207 default:
1208 rtype = NULL;
1209 break;
1210
1211 case EM_AARCH64:
1212 rtype = elf_aarch64_reloc_type (type);
1213 break;
1214
1215 case EM_M32R:
1216 case EM_CYGNUS_M32R:
1217 rtype = elf_m32r_reloc_type (type);
1218 break;
1219
1220 case EM_386:
1221 case EM_IAMCU:
1222 rtype = elf_i386_reloc_type (type);
1223 break;
1224
1225 case EM_68HC11:
1226 case EM_68HC12:
1227 rtype = elf_m68hc11_reloc_type (type);
1228 break;
1229
1230 case EM_68K:
1231 rtype = elf_m68k_reloc_type (type);
1232 break;
1233
1234 case EM_960:
1235 rtype = elf_i960_reloc_type (type);
1236 break;
1237
1238 case EM_AVR:
1239 case EM_AVR_OLD:
1240 rtype = elf_avr_reloc_type (type);
1241 break;
1242
1243 case EM_OLD_SPARCV9:
1244 case EM_SPARC32PLUS:
1245 case EM_SPARCV9:
1246 case EM_SPARC:
1247 rtype = elf_sparc_reloc_type (type);
1248 break;
1249
1250 case EM_SPU:
1251 rtype = elf_spu_reloc_type (type);
1252 break;
1253
1254 case EM_V800:
1255 rtype = v800_reloc_type (type);
1256 break;
1257 case EM_V850:
1258 case EM_CYGNUS_V850:
1259 rtype = v850_reloc_type (type);
1260 break;
1261
1262 case EM_D10V:
1263 case EM_CYGNUS_D10V:
1264 rtype = elf_d10v_reloc_type (type);
1265 break;
1266
1267 case EM_D30V:
1268 case EM_CYGNUS_D30V:
1269 rtype = elf_d30v_reloc_type (type);
1270 break;
1271
1272 case EM_DLX:
1273 rtype = elf_dlx_reloc_type (type);
1274 break;
1275
1276 case EM_SH:
1277 rtype = elf_sh_reloc_type (type);
1278 break;
1279
1280 case EM_MN10300:
1281 case EM_CYGNUS_MN10300:
1282 rtype = elf_mn10300_reloc_type (type);
1283 break;
1284
1285 case EM_MN10200:
1286 case EM_CYGNUS_MN10200:
1287 rtype = elf_mn10200_reloc_type (type);
1288 break;
1289
1290 case EM_FR30:
1291 case EM_CYGNUS_FR30:
1292 rtype = elf_fr30_reloc_type (type);
1293 break;
1294
1295 case EM_CYGNUS_FRV:
1296 rtype = elf_frv_reloc_type (type);
1297 break;
1298
1299 case EM_FT32:
1300 rtype = elf_ft32_reloc_type (type);
1301 break;
1302
1303 case EM_MCORE:
1304 rtype = elf_mcore_reloc_type (type);
1305 break;
1306
1307 case EM_MMIX:
1308 rtype = elf_mmix_reloc_type (type);
1309 break;
1310
1311 case EM_MOXIE:
1312 rtype = elf_moxie_reloc_type (type);
1313 break;
1314
1315 case EM_MSP430:
1316 if (uses_msp430x_relocs ())
1317 {
1318 rtype = elf_msp430x_reloc_type (type);
1319 break;
1320 }
1321 /* Fall through. */
1322 case EM_MSP430_OLD:
1323 rtype = elf_msp430_reloc_type (type);
1324 break;
1325
1326 case EM_NDS32:
1327 rtype = elf_nds32_reloc_type (type);
1328 break;
1329
1330 case EM_PPC:
1331 rtype = elf_ppc_reloc_type (type);
1332 break;
1333
1334 case EM_PPC64:
1335 rtype = elf_ppc64_reloc_type (type);
1336 break;
1337
1338 case EM_MIPS:
1339 case EM_MIPS_RS3_LE:
1340 rtype = elf_mips_reloc_type (type);
1341 break;
1342
1343 case EM_RISCV:
1344 rtype = elf_riscv_reloc_type (type);
1345 break;
1346
1347 case EM_ALPHA:
1348 rtype = elf_alpha_reloc_type (type);
1349 break;
1350
1351 case EM_ARM:
1352 rtype = elf_arm_reloc_type (type);
1353 break;
1354
1355 case EM_ARC:
1356 case EM_ARC_COMPACT:
1357 case EM_ARC_COMPACT2:
1358 rtype = elf_arc_reloc_type (type);
1359 break;
1360
1361 case EM_PARISC:
1362 rtype = elf_hppa_reloc_type (type);
1363 break;
1364
1365 case EM_H8_300:
1366 case EM_H8_300H:
1367 case EM_H8S:
1368 rtype = elf_h8_reloc_type (type);
1369 break;
1370
1371 case EM_OR1K:
1372 rtype = elf_or1k_reloc_type (type);
1373 break;
1374
1375 case EM_PJ:
1376 case EM_PJ_OLD:
1377 rtype = elf_pj_reloc_type (type);
1378 break;
1379 case EM_IA_64:
1380 rtype = elf_ia64_reloc_type (type);
1381 break;
1382
1383 case EM_CRIS:
1384 rtype = elf_cris_reloc_type (type);
1385 break;
1386
1387 case EM_860:
1388 rtype = elf_i860_reloc_type (type);
1389 break;
1390
1391 case EM_X86_64:
1392 case EM_L1OM:
1393 case EM_K1OM:
1394 rtype = elf_x86_64_reloc_type (type);
1395 break;
1396
1397 case EM_S370:
1398 rtype = i370_reloc_type (type);
1399 break;
1400
1401 case EM_S390_OLD:
1402 case EM_S390:
1403 rtype = elf_s390_reloc_type (type);
1404 break;
1405
1406 case EM_SCORE:
1407 rtype = elf_score_reloc_type (type);
1408 break;
1409
1410 case EM_XSTORMY16:
1411 rtype = elf_xstormy16_reloc_type (type);
1412 break;
1413
1414 case EM_CRX:
1415 rtype = elf_crx_reloc_type (type);
1416 break;
1417
1418 case EM_VAX:
1419 rtype = elf_vax_reloc_type (type);
1420 break;
1421
1422 case EM_VISIUM:
1423 rtype = elf_visium_reloc_type (type);
1424 break;
1425
1426 case EM_ADAPTEVA_EPIPHANY:
1427 rtype = elf_epiphany_reloc_type (type);
1428 break;
1429
1430 case EM_IP2K:
1431 case EM_IP2K_OLD:
1432 rtype = elf_ip2k_reloc_type (type);
1433 break;
1434
1435 case EM_IQ2000:
1436 rtype = elf_iq2000_reloc_type (type);
1437 break;
1438
1439 case EM_XTENSA_OLD:
1440 case EM_XTENSA:
1441 rtype = elf_xtensa_reloc_type (type);
1442 break;
1443
1444 case EM_LATTICEMICO32:
1445 rtype = elf_lm32_reloc_type (type);
1446 break;
1447
1448 case EM_M32C_OLD:
1449 case EM_M32C:
1450 rtype = elf_m32c_reloc_type (type);
1451 break;
1452
1453 case EM_MT:
1454 rtype = elf_mt_reloc_type (type);
1455 break;
1456
1457 case EM_BLACKFIN:
1458 rtype = elf_bfin_reloc_type (type);
1459 break;
1460
1461 case EM_CYGNUS_MEP:
1462 rtype = elf_mep_reloc_type (type);
1463 break;
1464
1465 case EM_CR16:
1466 rtype = elf_cr16_reloc_type (type);
1467 break;
1468
1469 case EM_MICROBLAZE:
1470 case EM_MICROBLAZE_OLD:
1471 rtype = elf_microblaze_reloc_type (type);
1472 break;
1473
1474 case EM_RL78:
1475 rtype = elf_rl78_reloc_type (type);
1476 break;
1477
1478 case EM_RX:
1479 rtype = elf_rx_reloc_type (type);
1480 break;
1481
1482 case EM_METAG:
1483 rtype = elf_metag_reloc_type (type);
1484 break;
1485
1486 case EM_XC16X:
1487 case EM_C166:
1488 rtype = elf_xc16x_reloc_type (type);
1489 break;
1490
1491 case EM_TI_C6000:
1492 rtype = elf_tic6x_reloc_type (type);
1493 break;
1494
1495 case EM_TILEGX:
1496 rtype = elf_tilegx_reloc_type (type);
1497 break;
1498
1499 case EM_TILEPRO:
1500 rtype = elf_tilepro_reloc_type (type);
1501 break;
1502
1503 case EM_WEBASSEMBLY:
1504 rtype = elf_wasm32_reloc_type (type);
1505 break;
1506
1507 case EM_XGATE:
1508 rtype = elf_xgate_reloc_type (type);
1509 break;
1510
1511 case EM_ALTERA_NIOS2:
1512 rtype = elf_nios2_reloc_type (type);
1513 break;
1514
1515 case EM_TI_PRU:
1516 rtype = elf_pru_reloc_type (type);
1517 break;
1518 }
1519
1520 if (rtype == NULL)
1521 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1522 else
1523 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1524
1525 if (elf_header.e_machine == EM_ALPHA
1526 && rtype != NULL
1527 && streq (rtype, "R_ALPHA_LITUSE")
1528 && is_rela)
1529 {
1530 switch (rels[i].r_addend)
1531 {
1532 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1533 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1534 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1535 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1536 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1537 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1538 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1539 default: rtype = NULL;
1540 }
1541
1542 if (rtype)
1543 printf (" (%s)", rtype);
1544 else
1545 {
1546 putchar (' ');
1547 printf (_("<unknown addend: %lx>"),
1548 (unsigned long) rels[i].r_addend);
1549 res = FALSE;
1550 }
1551 }
1552 else if (symtab_index)
1553 {
1554 if (symtab == NULL || symtab_index >= nsyms)
1555 {
1556 error (_(" bad symbol index: %08lx in reloc"), (unsigned long) symtab_index);
1557 res = FALSE;
1558 }
1559 else
1560 {
1561 Elf_Internal_Sym * psym;
1562 const char * version_string;
1563 enum versioned_symbol_info sym_info;
1564 unsigned short vna_other;
1565
1566 psym = symtab + symtab_index;
1567
1568 version_string
1569 = get_symbol_version_string (file, is_dynsym,
1570 strtab, strtablen,
1571 symtab_index,
1572 psym,
1573 &sym_info,
1574 &vna_other);
1575
1576 printf (" ");
1577
1578 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1579 {
1580 const char * name;
1581 unsigned int len;
1582 unsigned int width = is_32bit_elf ? 8 : 14;
1583
1584 /* Relocations against GNU_IFUNC symbols do not use the value
1585 of the symbol as the address to relocate against. Instead
1586 they invoke the function named by the symbol and use its
1587 result as the address for relocation.
1588
1589 To indicate this to the user, do not display the value of
1590 the symbol in the "Symbols's Value" field. Instead show
1591 its name followed by () as a hint that the symbol is
1592 invoked. */
1593
1594 if (strtab == NULL
1595 || psym->st_name == 0
1596 || psym->st_name >= strtablen)
1597 name = "??";
1598 else
1599 name = strtab + psym->st_name;
1600
1601 len = print_symbol (width, name);
1602 if (version_string)
1603 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1604 version_string);
1605 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1606 }
1607 else
1608 {
1609 print_vma (psym->st_value, LONG_HEX);
1610
1611 printf (is_32bit_elf ? " " : " ");
1612 }
1613
1614 if (psym->st_name == 0)
1615 {
1616 const char * sec_name = "<null>";
1617 char name_buf[40];
1618
1619 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1620 {
1621 if (psym->st_shndx < elf_header.e_shnum)
1622 sec_name = SECTION_NAME (section_headers + psym->st_shndx);
1623 else if (psym->st_shndx == SHN_ABS)
1624 sec_name = "ABS";
1625 else if (psym->st_shndx == SHN_COMMON)
1626 sec_name = "COMMON";
1627 else if ((elf_header.e_machine == EM_MIPS
1628 && psym->st_shndx == SHN_MIPS_SCOMMON)
1629 || (elf_header.e_machine == EM_TI_C6000
1630 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1631 sec_name = "SCOMMON";
1632 else if (elf_header.e_machine == EM_MIPS
1633 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1634 sec_name = "SUNDEF";
1635 else if ((elf_header.e_machine == EM_X86_64
1636 || elf_header.e_machine == EM_L1OM
1637 || elf_header.e_machine == EM_K1OM)
1638 && psym->st_shndx == SHN_X86_64_LCOMMON)
1639 sec_name = "LARGE_COMMON";
1640 else if (elf_header.e_machine == EM_IA_64
1641 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1642 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1643 sec_name = "ANSI_COM";
1644 else if (is_ia64_vms ()
1645 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1646 sec_name = "VMS_SYMVEC";
1647 else
1648 {
1649 sprintf (name_buf, "<section 0x%x>",
1650 (unsigned int) psym->st_shndx);
1651 sec_name = name_buf;
1652 }
1653 }
1654 print_symbol (22, sec_name);
1655 }
1656 else if (strtab == NULL)
1657 printf (_("<string table index: %3ld>"), psym->st_name);
1658 else if (psym->st_name >= strtablen)
1659 {
1660 error (_("<corrupt string table index: %3ld>"), psym->st_name);
1661 res = FALSE;
1662 }
1663 else
1664 {
1665 print_symbol (22, strtab + psym->st_name);
1666 if (version_string)
1667 printf (sym_info == symbol_public ? "@@%s" : "@%s",
1668 version_string);
1669 }
1670
1671 if (is_rela)
1672 {
1673 bfd_vma off = rels[i].r_addend;
1674
1675 if ((bfd_signed_vma) off < 0)
1676 printf (" - %" BFD_VMA_FMT "x", - off);
1677 else
1678 printf (" + %" BFD_VMA_FMT "x", off);
1679 }
1680 }
1681 }
1682 else if (is_rela)
1683 {
1684 bfd_vma off = rels[i].r_addend;
1685
1686 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1687 if ((bfd_signed_vma) off < 0)
1688 printf ("-%" BFD_VMA_FMT "x", - off);
1689 else
1690 printf ("%" BFD_VMA_FMT "x", off);
1691 }
1692
1693 if (elf_header.e_machine == EM_SPARCV9
1694 && rtype != NULL
1695 && streq (rtype, "R_SPARC_OLO10"))
1696 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1697
1698 putchar ('\n');
1699
1700 #ifdef BFD64
1701 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1702 {
1703 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1704 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1705 const char * rtype2 = elf_mips_reloc_type (type2);
1706 const char * rtype3 = elf_mips_reloc_type (type3);
1707
1708 printf (" Type2: ");
1709
1710 if (rtype2 == NULL)
1711 printf (_("unrecognized: %-7lx"),
1712 (unsigned long) type2 & 0xffffffff);
1713 else
1714 printf ("%-17.17s", rtype2);
1715
1716 printf ("\n Type3: ");
1717
1718 if (rtype3 == NULL)
1719 printf (_("unrecognized: %-7lx"),
1720 (unsigned long) type3 & 0xffffffff);
1721 else
1722 printf ("%-17.17s", rtype3);
1723
1724 putchar ('\n');
1725 }
1726 #endif /* BFD64 */
1727 }
1728
1729 free (rels);
1730
1731 return res;
1732 }
1733
1734 static const char *
1735 get_mips_dynamic_type (unsigned long type)
1736 {
1737 switch (type)
1738 {
1739 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1740 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1741 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1742 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1743 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1744 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1745 case DT_MIPS_MSYM: return "MIPS_MSYM";
1746 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1747 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1748 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1749 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1750 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1751 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1752 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1753 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1754 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1755 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1756 case DT_MIPS_RLD_MAP_REL: return "MIPS_RLD_MAP_REL";
1757 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1758 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1759 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1760 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1761 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1762 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1763 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1764 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1765 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1766 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1767 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1768 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1769 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1770 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1771 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1772 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1773 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1774 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1775 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1776 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1777 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1778 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1779 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1780 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1781 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1782 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1783 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1784 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1785 default:
1786 return NULL;
1787 }
1788 }
1789
1790 static const char *
1791 get_sparc64_dynamic_type (unsigned long type)
1792 {
1793 switch (type)
1794 {
1795 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1796 default:
1797 return NULL;
1798 }
1799 }
1800
1801 static const char *
1802 get_ppc_dynamic_type (unsigned long type)
1803 {
1804 switch (type)
1805 {
1806 case DT_PPC_GOT: return "PPC_GOT";
1807 case DT_PPC_OPT: return "PPC_OPT";
1808 default:
1809 return NULL;
1810 }
1811 }
1812
1813 static const char *
1814 get_ppc64_dynamic_type (unsigned long type)
1815 {
1816 switch (type)
1817 {
1818 case DT_PPC64_GLINK: return "PPC64_GLINK";
1819 case DT_PPC64_OPD: return "PPC64_OPD";
1820 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1821 case DT_PPC64_OPT: return "PPC64_OPT";
1822 default:
1823 return NULL;
1824 }
1825 }
1826
1827 static const char *
1828 get_parisc_dynamic_type (unsigned long type)
1829 {
1830 switch (type)
1831 {
1832 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1833 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1834 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1835 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1836 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1837 case DT_HP_PREINIT: return "HP_PREINIT";
1838 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1839 case DT_HP_NEEDED: return "HP_NEEDED";
1840 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1841 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1842 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1843 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1844 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1845 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1846 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1847 case DT_HP_FILTERED: return "HP_FILTERED";
1848 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1849 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1850 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1851 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1852 case DT_PLT: return "PLT";
1853 case DT_PLT_SIZE: return "PLT_SIZE";
1854 case DT_DLT: return "DLT";
1855 case DT_DLT_SIZE: return "DLT_SIZE";
1856 default:
1857 return NULL;
1858 }
1859 }
1860
1861 static const char *
1862 get_ia64_dynamic_type (unsigned long type)
1863 {
1864 switch (type)
1865 {
1866 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1867 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1868 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1869 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1870 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1871 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1872 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1873 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1874 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1875 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1876 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1877 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1878 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1879 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1880 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1881 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1882 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1883 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1884 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1885 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1886 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1887 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1888 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1889 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1890 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1891 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1892 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1893 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1894 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1895 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1896 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1897 default:
1898 return NULL;
1899 }
1900 }
1901
1902 static const char *
1903 get_solaris_section_type (unsigned long type)
1904 {
1905 switch (type)
1906 {
1907 case 0x6fffffee: return "SUNW_ancillary";
1908 case 0x6fffffef: return "SUNW_capchain";
1909 case 0x6ffffff0: return "SUNW_capinfo";
1910 case 0x6ffffff1: return "SUNW_symsort";
1911 case 0x6ffffff2: return "SUNW_tlssort";
1912 case 0x6ffffff3: return "SUNW_LDYNSYM";
1913 case 0x6ffffff4: return "SUNW_dof";
1914 case 0x6ffffff5: return "SUNW_cap";
1915 case 0x6ffffff6: return "SUNW_SIGNATURE";
1916 case 0x6ffffff7: return "SUNW_ANNOTATE";
1917 case 0x6ffffff8: return "SUNW_DEBUGSTR";
1918 case 0x6ffffff9: return "SUNW_DEBUG";
1919 case 0x6ffffffa: return "SUNW_move";
1920 case 0x6ffffffb: return "SUNW_COMDAT";
1921 case 0x6ffffffc: return "SUNW_syminfo";
1922 case 0x6ffffffd: return "SUNW_verdef";
1923 case 0x6ffffffe: return "SUNW_verneed";
1924 case 0x6fffffff: return "SUNW_versym";
1925 case 0x70000000: return "SPARC_GOTDATA";
1926 default: return NULL;
1927 }
1928 }
1929
1930 static const char *
1931 get_alpha_dynamic_type (unsigned long type)
1932 {
1933 switch (type)
1934 {
1935 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1936 default: return NULL;
1937 }
1938 }
1939
1940 static const char *
1941 get_score_dynamic_type (unsigned long type)
1942 {
1943 switch (type)
1944 {
1945 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1946 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1947 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1948 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1949 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1950 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1951 default: return NULL;
1952 }
1953 }
1954
1955 static const char *
1956 get_tic6x_dynamic_type (unsigned long type)
1957 {
1958 switch (type)
1959 {
1960 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1961 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1962 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1963 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1964 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1965 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1966 default: return NULL;
1967 }
1968 }
1969
1970 static const char *
1971 get_nios2_dynamic_type (unsigned long type)
1972 {
1973 switch (type)
1974 {
1975 case DT_NIOS2_GP: return "NIOS2_GP";
1976 default: return NULL;
1977 }
1978 }
1979
1980 static const char *
1981 get_solaris_dynamic_type (unsigned long type)
1982 {
1983 switch (type)
1984 {
1985 case 0x6000000d: return "SUNW_AUXILIARY";
1986 case 0x6000000e: return "SUNW_RTLDINF";
1987 case 0x6000000f: return "SUNW_FILTER";
1988 case 0x60000010: return "SUNW_CAP";
1989 case 0x60000011: return "SUNW_SYMTAB";
1990 case 0x60000012: return "SUNW_SYMSZ";
1991 case 0x60000013: return "SUNW_SORTENT";
1992 case 0x60000014: return "SUNW_SYMSORT";
1993 case 0x60000015: return "SUNW_SYMSORTSZ";
1994 case 0x60000016: return "SUNW_TLSSORT";
1995 case 0x60000017: return "SUNW_TLSSORTSZ";
1996 case 0x60000018: return "SUNW_CAPINFO";
1997 case 0x60000019: return "SUNW_STRPAD";
1998 case 0x6000001a: return "SUNW_CAPCHAIN";
1999 case 0x6000001b: return "SUNW_LDMACH";
2000 case 0x6000001d: return "SUNW_CAPCHAINENT";
2001 case 0x6000001f: return "SUNW_CAPCHAINSZ";
2002 case 0x60000021: return "SUNW_PARENT";
2003 case 0x60000023: return "SUNW_ASLR";
2004 case 0x60000025: return "SUNW_RELAX";
2005 case 0x60000029: return "SUNW_NXHEAP";
2006 case 0x6000002b: return "SUNW_NXSTACK";
2007
2008 case 0x70000001: return "SPARC_REGISTER";
2009 case 0x7ffffffd: return "AUXILIARY";
2010 case 0x7ffffffe: return "USED";
2011 case 0x7fffffff: return "FILTER";
2012
2013 default: return NULL;
2014 }
2015 }
2016
2017 static const char *
2018 get_dynamic_type (unsigned long type)
2019 {
2020 static char buff[64];
2021
2022 switch (type)
2023 {
2024 case DT_NULL: return "NULL";
2025 case DT_NEEDED: return "NEEDED";
2026 case DT_PLTRELSZ: return "PLTRELSZ";
2027 case DT_PLTGOT: return "PLTGOT";
2028 case DT_HASH: return "HASH";
2029 case DT_STRTAB: return "STRTAB";
2030 case DT_SYMTAB: return "SYMTAB";
2031 case DT_RELA: return "RELA";
2032 case DT_RELASZ: return "RELASZ";
2033 case DT_RELAENT: return "RELAENT";
2034 case DT_STRSZ: return "STRSZ";
2035 case DT_SYMENT: return "SYMENT";
2036 case DT_INIT: return "INIT";
2037 case DT_FINI: return "FINI";
2038 case DT_SONAME: return "SONAME";
2039 case DT_RPATH: return "RPATH";
2040 case DT_SYMBOLIC: return "SYMBOLIC";
2041 case DT_REL: return "REL";
2042 case DT_RELSZ: return "RELSZ";
2043 case DT_RELENT: return "RELENT";
2044 case DT_PLTREL: return "PLTREL";
2045 case DT_DEBUG: return "DEBUG";
2046 case DT_TEXTREL: return "TEXTREL";
2047 case DT_JMPREL: return "JMPREL";
2048 case DT_BIND_NOW: return "BIND_NOW";
2049 case DT_INIT_ARRAY: return "INIT_ARRAY";
2050 case DT_FINI_ARRAY: return "FINI_ARRAY";
2051 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
2052 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
2053 case DT_RUNPATH: return "RUNPATH";
2054 case DT_FLAGS: return "FLAGS";
2055
2056 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
2057 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
2058 case DT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
2059
2060 case DT_CHECKSUM: return "CHECKSUM";
2061 case DT_PLTPADSZ: return "PLTPADSZ";
2062 case DT_MOVEENT: return "MOVEENT";
2063 case DT_MOVESZ: return "MOVESZ";
2064 case DT_FEATURE: return "FEATURE";
2065 case DT_POSFLAG_1: return "POSFLAG_1";
2066 case DT_SYMINSZ: return "SYMINSZ";
2067 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
2068
2069 case DT_ADDRRNGLO: return "ADDRRNGLO";
2070 case DT_CONFIG: return "CONFIG";
2071 case DT_DEPAUDIT: return "DEPAUDIT";
2072 case DT_AUDIT: return "AUDIT";
2073 case DT_PLTPAD: return "PLTPAD";
2074 case DT_MOVETAB: return "MOVETAB";
2075 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
2076
2077 case DT_VERSYM: return "VERSYM";
2078
2079 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
2080 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
2081 case DT_RELACOUNT: return "RELACOUNT";
2082 case DT_RELCOUNT: return "RELCOUNT";
2083 case DT_FLAGS_1: return "FLAGS_1";
2084 case DT_VERDEF: return "VERDEF";
2085 case DT_VERDEFNUM: return "VERDEFNUM";
2086 case DT_VERNEED: return "VERNEED";
2087 case DT_VERNEEDNUM: return "VERNEEDNUM";
2088
2089 case DT_AUXILIARY: return "AUXILIARY";
2090 case DT_USED: return "USED";
2091 case DT_FILTER: return "FILTER";
2092
2093 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
2094 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
2095 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
2096 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
2097 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
2098 case DT_GNU_HASH: return "GNU_HASH";
2099
2100 default:
2101 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
2102 {
2103 const char * result;
2104
2105 switch (elf_header.e_machine)
2106 {
2107 case EM_MIPS:
2108 case EM_MIPS_RS3_LE:
2109 result = get_mips_dynamic_type (type);
2110 break;
2111 case EM_SPARCV9:
2112 result = get_sparc64_dynamic_type (type);
2113 break;
2114 case EM_PPC:
2115 result = get_ppc_dynamic_type (type);
2116 break;
2117 case EM_PPC64:
2118 result = get_ppc64_dynamic_type (type);
2119 break;
2120 case EM_IA_64:
2121 result = get_ia64_dynamic_type (type);
2122 break;
2123 case EM_ALPHA:
2124 result = get_alpha_dynamic_type (type);
2125 break;
2126 case EM_SCORE:
2127 result = get_score_dynamic_type (type);
2128 break;
2129 case EM_TI_C6000:
2130 result = get_tic6x_dynamic_type (type);
2131 break;
2132 case EM_ALTERA_NIOS2:
2133 result = get_nios2_dynamic_type (type);
2134 break;
2135 default:
2136 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2137 result = get_solaris_dynamic_type (type);
2138 else
2139 result = NULL;
2140 break;
2141 }
2142
2143 if (result != NULL)
2144 return result;
2145
2146 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
2147 }
2148 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
2149 || (elf_header.e_machine == EM_PARISC
2150 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
2151 {
2152 const char * result;
2153
2154 switch (elf_header.e_machine)
2155 {
2156 case EM_PARISC:
2157 result = get_parisc_dynamic_type (type);
2158 break;
2159 case EM_IA_64:
2160 result = get_ia64_dynamic_type (type);
2161 break;
2162 default:
2163 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
2164 result = get_solaris_dynamic_type (type);
2165 else
2166 result = NULL;
2167 break;
2168 }
2169
2170 if (result != NULL)
2171 return result;
2172
2173 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
2174 type);
2175 }
2176 else
2177 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
2178
2179 return buff;
2180 }
2181 }
2182
2183 static char *
2184 get_file_type (unsigned e_type)
2185 {
2186 static char buff[32];
2187
2188 switch (e_type)
2189 {
2190 case ET_NONE: return _("NONE (None)");
2191 case ET_REL: return _("REL (Relocatable file)");
2192 case ET_EXEC: return _("EXEC (Executable file)");
2193 case ET_DYN: return _("DYN (Shared object file)");
2194 case ET_CORE: return _("CORE (Core file)");
2195
2196 default:
2197 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
2198 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
2199 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
2200 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
2201 else
2202 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
2203 return buff;
2204 }
2205 }
2206
2207 static char *
2208 get_machine_name (unsigned e_machine)
2209 {
2210 static char buff[64]; /* XXX */
2211
2212 switch (e_machine)
2213 {
2214 /* Please keep this switch table sorted by increasing EM_ value. */
2215 /* 0 */
2216 case EM_NONE: return _("None");
2217 case EM_M32: return "WE32100";
2218 case EM_SPARC: return "Sparc";
2219 case EM_386: return "Intel 80386";
2220 case EM_68K: return "MC68000";
2221 case EM_88K: return "MC88000";
2222 case EM_IAMCU: return "Intel MCU";
2223 case EM_860: return "Intel 80860";
2224 case EM_MIPS: return "MIPS R3000";
2225 case EM_S370: return "IBM System/370";
2226 /* 10 */
2227 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
2228 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
2229 case EM_PARISC: return "HPPA";
2230 case EM_VPP550: return "Fujitsu VPP500";
2231 case EM_SPARC32PLUS: return "Sparc v8+" ;
2232 case EM_960: return "Intel 90860";
2233 case EM_PPC: return "PowerPC";
2234 /* 20 */
2235 case EM_PPC64: return "PowerPC64";
2236 case EM_S390_OLD:
2237 case EM_S390: return "IBM S/390";
2238 case EM_SPU: return "SPU";
2239 /* 30 */
2240 case EM_V800: return "Renesas V850 (using RH850 ABI)";
2241 case EM_FR20: return "Fujitsu FR20";
2242 case EM_RH32: return "TRW RH32";
2243 case EM_MCORE: return "MCORE";
2244 /* 40 */
2245 case EM_ARM: return "ARM";
2246 case EM_OLD_ALPHA: return "Digital Alpha (old)";
2247 case EM_SH: return "Renesas / SuperH SH";
2248 case EM_SPARCV9: return "Sparc v9";
2249 case EM_TRICORE: return "Siemens Tricore";
2250 case EM_ARC: return "ARC";
2251 case EM_H8_300: return "Renesas H8/300";
2252 case EM_H8_300H: return "Renesas H8/300H";
2253 case EM_H8S: return "Renesas H8S";
2254 case EM_H8_500: return "Renesas H8/500";
2255 /* 50 */
2256 case EM_IA_64: return "Intel IA-64";
2257 case EM_MIPS_X: return "Stanford MIPS-X";
2258 case EM_COLDFIRE: return "Motorola Coldfire";
2259 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
2260 case EM_MMA: return "Fujitsu Multimedia Accelerator";
2261 case EM_PCP: return "Siemens PCP";
2262 case EM_NCPU: return "Sony nCPU embedded RISC processor";
2263 case EM_NDR1: return "Denso NDR1 microprocesspr";
2264 case EM_STARCORE: return "Motorola Star*Core processor";
2265 case EM_ME16: return "Toyota ME16 processor";
2266 /* 60 */
2267 case EM_ST100: return "STMicroelectronics ST100 processor";
2268 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
2269 case EM_X86_64: return "Advanced Micro Devices X86-64";
2270 case EM_PDSP: return "Sony DSP processor";
2271 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
2272 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
2273 case EM_FX66: return "Siemens FX66 microcontroller";
2274 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
2275 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
2276 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
2277 /* 70 */
2278 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
2279 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
2280 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
2281 case EM_SVX: return "Silicon Graphics SVx";
2282 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
2283 case EM_VAX: return "Digital VAX";
2284 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
2285 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
2286 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2287 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2288 /* 80 */
2289 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2290 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2291 case EM_PRISM: return "Vitesse Prism";
2292 case EM_AVR_OLD:
2293 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
2294 case EM_CYGNUS_FR30:
2295 case EM_FR30: return "Fujitsu FR30";
2296 case EM_CYGNUS_D10V:
2297 case EM_D10V: return "d10v";
2298 case EM_CYGNUS_D30V:
2299 case EM_D30V: return "d30v";
2300 case EM_CYGNUS_V850:
2301 case EM_V850: return "Renesas V850";
2302 case EM_CYGNUS_M32R:
2303 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
2304 case EM_CYGNUS_MN10300:
2305 case EM_MN10300: return "mn10300";
2306 /* 90 */
2307 case EM_CYGNUS_MN10200:
2308 case EM_MN10200: return "mn10200";
2309 case EM_PJ: return "picoJava";
2310 case EM_OR1K: return "OpenRISC 1000";
2311 case EM_ARC_COMPACT: return "ARCompact";
2312 case EM_XTENSA_OLD:
2313 case EM_XTENSA: return "Tensilica Xtensa Processor";
2314 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2315 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2316 case EM_NS32K: return "National Semiconductor 32000 series";
2317 case EM_TPC: return "Tenor Network TPC processor";
2318 case EM_SNP1K: return "Trebia SNP 1000 processor";
2319 /* 100 */
2320 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2321 case EM_IP2K_OLD:
2322 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2323 case EM_MAX: return "MAX Processor";
2324 case EM_CR: return "National Semiconductor CompactRISC";
2325 case EM_F2MC16: return "Fujitsu F2MC16";
2326 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2327 case EM_BLACKFIN: return "Analog Devices Blackfin";
2328 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2329 case EM_SEP: return "Sharp embedded microprocessor";
2330 case EM_ARCA: return "Arca RISC microprocessor";
2331 /* 110 */
2332 case EM_UNICORE: return "Unicore";
2333 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2334 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2335 case EM_ALTERA_NIOS2: return "Altera Nios II";
2336 case EM_CRX: return "National Semiconductor CRX microprocessor";
2337 case EM_XGATE: return "Motorola XGATE embedded processor";
2338 case EM_C166:
2339 case EM_XC16X: return "Infineon Technologies xc16x";
2340 case EM_M16C: return "Renesas M16C series microprocessors";
2341 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2342 case EM_CE: return "Freescale Communication Engine RISC core";
2343 /* 120 */
2344 case EM_M32C: return "Renesas M32c";
2345 /* 130 */
2346 case EM_TSK3000: return "Altium TSK3000 core";
2347 case EM_RS08: return "Freescale RS08 embedded processor";
2348 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2349 case EM_SCORE: return "SUNPLUS S+Core";
2350 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2351 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2352 case EM_LATTICEMICO32: return "Lattice Mico32";
2353 case EM_SE_C17: return "Seiko Epson C17 family";
2354 /* 140 */
2355 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2356 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2357 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2358 case EM_TI_PRU: return "TI PRU I/O processor";
2359 /* 160 */
2360 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2361 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2362 case EM_R32C: return "Renesas R32C series microprocessors";
2363 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2364 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2365 case EM_8051: return "Intel 8051 and variants";
2366 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2367 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2368 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2369 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2370 /* 170 */
2371 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2372 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2373 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2374 case EM_RX: return "Renesas RX";
2375 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2376 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2377 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2378 case EM_CR16:
2379 case EM_MICROBLAZE:
2380 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2381 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2382 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2383 /* 180 */
2384 case EM_L1OM: return "Intel L1OM";
2385 case EM_K1OM: return "Intel K1OM";
2386 case EM_INTEL182: return "Intel (reserved)";
2387 case EM_AARCH64: return "AArch64";
2388 case EM_ARM184: return "ARM (reserved)";
2389 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor";
2390 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2391 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2392 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2393 /* 190 */
2394 case EM_CUDA: return "NVIDIA CUDA architecture";
2395 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2396 case EM_CLOUDSHIELD: return "CloudShield architecture family";
2397 case EM_COREA_1ST: return "KIPO-KAIST Core-A 1st generation processor family";
2398 case EM_COREA_2ND: return "KIPO-KAIST Core-A 2nd generation processor family";
2399 case EM_ARC_COMPACT2: return "ARCv2";
2400 case EM_OPEN8: return "Open8 8-bit RISC soft processor core";
2401 case EM_RL78: return "Renesas RL78";
2402 case EM_VIDEOCORE5: return "Broadcom VideoCore V processor";
2403 case EM_78K0R: return "Renesas 78K0R";
2404 /* 200 */
2405 case EM_56800EX: return "Freescale 56800EX Digital Signal Controller (DSC)";
2406 case EM_BA1: return "Beyond BA1 CPU architecture";
2407 case EM_BA2: return "Beyond BA2 CPU architecture";
2408 case EM_XCORE: return "XMOS xCORE processor family";
2409 case EM_MCHP_PIC: return "Microchip 8-bit PIC(r) family";
2410 /* 210 */
2411 case EM_KM32: return "KM211 KM32 32-bit processor";
2412 case EM_KMX32: return "KM211 KMX32 32-bit processor";
2413 case EM_KMX16: return "KM211 KMX16 16-bit processor";
2414 case EM_KMX8: return "KM211 KMX8 8-bit processor";
2415 case EM_KVARC: return "KM211 KVARC processor";
2416 case EM_CDP: return "Paneve CDP architecture family";
2417 case EM_COGE: return "Cognitive Smart Memory Processor";
2418 case EM_COOL: return "Bluechip Systems CoolEngine";
2419 case EM_NORC: return "Nanoradio Optimized RISC";
2420 case EM_CSR_KALIMBA: return "CSR Kalimba architecture family";
2421 /* 220 */
2422 case EM_Z80: return "Zilog Z80";
2423 case EM_VISIUM: return "CDS VISIUMcore processor";
2424 case EM_FT32: return "FTDI Chip FT32";
2425 case EM_MOXIE: return "Moxie";
2426 case EM_AMDGPU: return "AMD GPU";
2427 case EM_RISCV: return "RISC-V";
2428 case EM_LANAI: return "Lanai 32-bit processor";
2429 case EM_BPF: return "Linux BPF";
2430
2431 /* Large numbers... */
2432 case EM_MT: return "Morpho Techologies MT processor";
2433 case EM_ALPHA: return "Alpha";
2434 case EM_WEBASSEMBLY: return "Web Assembly";
2435 case EM_DLX: return "OpenDLX";
2436 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2437 case EM_IQ2000: return "Vitesse IQ2000";
2438 case EM_M32C_OLD:
2439 case EM_NIOS32: return "Altera Nios";
2440 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2441 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2442 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
2443
2444 default:
2445 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2446 return buff;
2447 }
2448 }
2449
2450 static void
2451 decode_ARC_machine_flags (unsigned e_flags, unsigned e_machine, char buf[])
2452 {
2453 /* ARC has two machine types EM_ARC_COMPACT and EM_ARC_COMPACT2. Some
2454 other compilers don't a specific architecture type in the e_flags, and
2455 instead use EM_ARC_COMPACT for old ARC600, ARC601, and ARC700
2456 architectures, and switch to EM_ARC_COMPACT2 for newer ARCEM and ARCHS
2457 architectures.
2458
2459 Th GNU tools follows this use of EM_ARC_COMPACT and EM_ARC_COMPACT2,
2460 but also sets a specific architecture type in the e_flags field.
2461
2462 However, when decoding the flags we don't worry if we see an
2463 unexpected pairing, for example EM_ARC_COMPACT machine type, with
2464 ARCEM architecture type. */
2465
2466 switch (e_flags & EF_ARC_MACH_MSK)
2467 {
2468 /* We only expect these to occur for EM_ARC_COMPACT2. */
2469 case EF_ARC_CPU_ARCV2EM:
2470 strcat (buf, ", ARC EM");
2471 break;
2472 case EF_ARC_CPU_ARCV2HS:
2473 strcat (buf, ", ARC HS");
2474 break;
2475
2476 /* We only expect these to occur for EM_ARC_COMPACT. */
2477 case E_ARC_MACH_ARC600:
2478 strcat (buf, ", ARC600");
2479 break;
2480 case E_ARC_MACH_ARC601:
2481 strcat (buf, ", ARC601");
2482 break;
2483 case E_ARC_MACH_ARC700:
2484 strcat (buf, ", ARC700");
2485 break;
2486
2487 /* The only times we should end up here are (a) A corrupt ELF, (b) A
2488 new ELF with new architecture being read by an old version of
2489 readelf, or (c) An ELF built with non-GNU compiler that does not
2490 set the architecture in the e_flags. */
2491 default:
2492 if (e_machine == EM_ARC_COMPACT)
2493 strcat (buf, ", Unknown ARCompact");
2494 else
2495 strcat (buf, ", Unknown ARC");
2496 break;
2497 }
2498
2499 switch (e_flags & EF_ARC_OSABI_MSK)
2500 {
2501 case E_ARC_OSABI_ORIG:
2502 strcat (buf, ", (ABI:legacy)");
2503 break;
2504 case E_ARC_OSABI_V2:
2505 strcat (buf, ", (ABI:v2)");
2506 break;
2507 /* Only upstream 3.9+ kernels will support ARCv2 ISA. */
2508 case E_ARC_OSABI_V3:
2509 strcat (buf, ", v3 no-legacy-syscalls ABI");
2510 break;
2511 default:
2512 strcat (buf, ", unrecognised ARC OSABI flag");
2513 break;
2514 }
2515 }
2516
2517 static void
2518 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2519 {
2520 unsigned eabi;
2521 bfd_boolean unknown = FALSE;
2522
2523 eabi = EF_ARM_EABI_VERSION (e_flags);
2524 e_flags &= ~ EF_ARM_EABIMASK;
2525
2526 /* Handle "generic" ARM flags. */
2527 if (e_flags & EF_ARM_RELEXEC)
2528 {
2529 strcat (buf, ", relocatable executable");
2530 e_flags &= ~ EF_ARM_RELEXEC;
2531 }
2532
2533 /* Now handle EABI specific flags. */
2534 switch (eabi)
2535 {
2536 default:
2537 strcat (buf, ", <unrecognized EABI>");
2538 if (e_flags)
2539 unknown = TRUE;
2540 break;
2541
2542 case EF_ARM_EABI_VER1:
2543 strcat (buf, ", Version1 EABI");
2544 while (e_flags)
2545 {
2546 unsigned flag;
2547
2548 /* Process flags one bit at a time. */
2549 flag = e_flags & - e_flags;
2550 e_flags &= ~ flag;
2551
2552 switch (flag)
2553 {
2554 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2555 strcat (buf, ", sorted symbol tables");
2556 break;
2557
2558 default:
2559 unknown = TRUE;
2560 break;
2561 }
2562 }
2563 break;
2564
2565 case EF_ARM_EABI_VER2:
2566 strcat (buf, ", Version2 EABI");
2567 while (e_flags)
2568 {
2569 unsigned flag;
2570
2571 /* Process flags one bit at a time. */
2572 flag = e_flags & - e_flags;
2573 e_flags &= ~ flag;
2574
2575 switch (flag)
2576 {
2577 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2578 strcat (buf, ", sorted symbol tables");
2579 break;
2580
2581 case EF_ARM_DYNSYMSUSESEGIDX:
2582 strcat (buf, ", dynamic symbols use segment index");
2583 break;
2584
2585 case EF_ARM_MAPSYMSFIRST:
2586 strcat (buf, ", mapping symbols precede others");
2587 break;
2588
2589 default:
2590 unknown = TRUE;
2591 break;
2592 }
2593 }
2594 break;
2595
2596 case EF_ARM_EABI_VER3:
2597 strcat (buf, ", Version3 EABI");
2598 break;
2599
2600 case EF_ARM_EABI_VER4:
2601 strcat (buf, ", Version4 EABI");
2602 while (e_flags)
2603 {
2604 unsigned flag;
2605
2606 /* Process flags one bit at a time. */
2607 flag = e_flags & - e_flags;
2608 e_flags &= ~ flag;
2609
2610 switch (flag)
2611 {
2612 case EF_ARM_BE8:
2613 strcat (buf, ", BE8");
2614 break;
2615
2616 case EF_ARM_LE8:
2617 strcat (buf, ", LE8");
2618 break;
2619
2620 default:
2621 unknown = TRUE;
2622 break;
2623 }
2624 }
2625 break;
2626
2627 case EF_ARM_EABI_VER5:
2628 strcat (buf, ", Version5 EABI");
2629 while (e_flags)
2630 {
2631 unsigned flag;
2632
2633 /* Process flags one bit at a time. */
2634 flag = e_flags & - e_flags;
2635 e_flags &= ~ flag;
2636
2637 switch (flag)
2638 {
2639 case EF_ARM_BE8:
2640 strcat (buf, ", BE8");
2641 break;
2642
2643 case EF_ARM_LE8:
2644 strcat (buf, ", LE8");
2645 break;
2646
2647 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2648 strcat (buf, ", soft-float ABI");
2649 break;
2650
2651 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2652 strcat (buf, ", hard-float ABI");
2653 break;
2654
2655 default:
2656 unknown = TRUE;
2657 break;
2658 }
2659 }
2660 break;
2661
2662 case EF_ARM_EABI_UNKNOWN:
2663 strcat (buf, ", GNU EABI");
2664 while (e_flags)
2665 {
2666 unsigned flag;
2667
2668 /* Process flags one bit at a time. */
2669 flag = e_flags & - e_flags;
2670 e_flags &= ~ flag;
2671
2672 switch (flag)
2673 {
2674 case EF_ARM_INTERWORK:
2675 strcat (buf, ", interworking enabled");
2676 break;
2677
2678 case EF_ARM_APCS_26:
2679 strcat (buf, ", uses APCS/26");
2680 break;
2681
2682 case EF_ARM_APCS_FLOAT:
2683 strcat (buf, ", uses APCS/float");
2684 break;
2685
2686 case EF_ARM_PIC:
2687 strcat (buf, ", position independent");
2688 break;
2689
2690 case EF_ARM_ALIGN8:
2691 strcat (buf, ", 8 bit structure alignment");
2692 break;
2693
2694 case EF_ARM_NEW_ABI:
2695 strcat (buf, ", uses new ABI");
2696 break;
2697
2698 case EF_ARM_OLD_ABI:
2699 strcat (buf, ", uses old ABI");
2700 break;
2701
2702 case EF_ARM_SOFT_FLOAT:
2703 strcat (buf, ", software FP");
2704 break;
2705
2706 case EF_ARM_VFP_FLOAT:
2707 strcat (buf, ", VFP");
2708 break;
2709
2710 case EF_ARM_MAVERICK_FLOAT:
2711 strcat (buf, ", Maverick FP");
2712 break;
2713
2714 default:
2715 unknown = TRUE;
2716 break;
2717 }
2718 }
2719 }
2720
2721 if (unknown)
2722 strcat (buf,_(", <unknown>"));
2723 }
2724
2725 static void
2726 decode_AVR_machine_flags (unsigned e_flags, char buf[], size_t size)
2727 {
2728 --size; /* Leave space for null terminator. */
2729
2730 switch (e_flags & EF_AVR_MACH)
2731 {
2732 case E_AVR_MACH_AVR1:
2733 strncat (buf, ", avr:1", size);
2734 break;
2735 case E_AVR_MACH_AVR2:
2736 strncat (buf, ", avr:2", size);
2737 break;
2738 case E_AVR_MACH_AVR25:
2739 strncat (buf, ", avr:25", size);
2740 break;
2741 case E_AVR_MACH_AVR3:
2742 strncat (buf, ", avr:3", size);
2743 break;
2744 case E_AVR_MACH_AVR31:
2745 strncat (buf, ", avr:31", size);
2746 break;
2747 case E_AVR_MACH_AVR35:
2748 strncat (buf, ", avr:35", size);
2749 break;
2750 case E_AVR_MACH_AVR4:
2751 strncat (buf, ", avr:4", size);
2752 break;
2753 case E_AVR_MACH_AVR5:
2754 strncat (buf, ", avr:5", size);
2755 break;
2756 case E_AVR_MACH_AVR51:
2757 strncat (buf, ", avr:51", size);
2758 break;
2759 case E_AVR_MACH_AVR6:
2760 strncat (buf, ", avr:6", size);
2761 break;
2762 case E_AVR_MACH_AVRTINY:
2763 strncat (buf, ", avr:100", size);
2764 break;
2765 case E_AVR_MACH_XMEGA1:
2766 strncat (buf, ", avr:101", size);
2767 break;
2768 case E_AVR_MACH_XMEGA2:
2769 strncat (buf, ", avr:102", size);
2770 break;
2771 case E_AVR_MACH_XMEGA3:
2772 strncat (buf, ", avr:103", size);
2773 break;
2774 case E_AVR_MACH_XMEGA4:
2775 strncat (buf, ", avr:104", size);
2776 break;
2777 case E_AVR_MACH_XMEGA5:
2778 strncat (buf, ", avr:105", size);
2779 break;
2780 case E_AVR_MACH_XMEGA6:
2781 strncat (buf, ", avr:106", size);
2782 break;
2783 case E_AVR_MACH_XMEGA7:
2784 strncat (buf, ", avr:107", size);
2785 break;
2786 default:
2787 strncat (buf, ", avr:<unknown>", size);
2788 break;
2789 }
2790
2791 size -= strlen (buf);
2792 if (e_flags & EF_AVR_LINKRELAX_PREPARED)
2793 strncat (buf, ", link-relax", size);
2794 }
2795
2796 static void
2797 decode_NDS32_machine_flags (unsigned e_flags, char buf[], size_t size)
2798 {
2799 unsigned abi;
2800 unsigned arch;
2801 unsigned config;
2802 unsigned version;
2803 bfd_boolean has_fpu = FALSE;
2804 unsigned int r = 0;
2805
2806 static const char *ABI_STRINGS[] =
2807 {
2808 "ABI v0", /* use r5 as return register; only used in N1213HC */
2809 "ABI v1", /* use r0 as return register */
2810 "ABI v2", /* use r0 as return register and don't reserve 24 bytes for arguments */
2811 "ABI v2fp", /* for FPU */
2812 "AABI",
2813 "ABI2 FP+"
2814 };
2815 static const char *VER_STRINGS[] =
2816 {
2817 "Andes ELF V1.3 or older",
2818 "Andes ELF V1.3.1",
2819 "Andes ELF V1.4"
2820 };
2821 static const char *ARCH_STRINGS[] =
2822 {
2823 "",
2824 "Andes Star v1.0",
2825 "Andes Star v2.0",
2826 "Andes Star v3.0",
2827 "Andes Star v3.0m"
2828 };
2829
2830 abi = EF_NDS_ABI & e_flags;
2831 arch = EF_NDS_ARCH & e_flags;
2832 config = EF_NDS_INST & e_flags;
2833 version = EF_NDS32_ELF_VERSION & e_flags;
2834
2835 memset (buf, 0, size);
2836
2837 switch (abi)
2838 {
2839 case E_NDS_ABI_V0:
2840 case E_NDS_ABI_V1:
2841 case E_NDS_ABI_V2:
2842 case E_NDS_ABI_V2FP:
2843 case E_NDS_ABI_AABI:
2844 case E_NDS_ABI_V2FP_PLUS:
2845 /* In case there are holes in the array. */
2846 r += snprintf (buf + r, size - r, ", %s", ABI_STRINGS[abi >> EF_NDS_ABI_SHIFT]);
2847 break;
2848
2849 default:
2850 r += snprintf (buf + r, size - r, ", <unrecognized ABI>");
2851 break;
2852 }
2853
2854 switch (version)
2855 {
2856 case E_NDS32_ELF_VER_1_2:
2857 case E_NDS32_ELF_VER_1_3:
2858 case E_NDS32_ELF_VER_1_4:
2859 r += snprintf (buf + r, size - r, ", %s", VER_STRINGS[version >> EF_NDS32_ELF_VERSION_SHIFT]);
2860 break;
2861
2862 default:
2863 r += snprintf (buf + r, size - r, ", <unrecognized ELF version number>");
2864 break;
2865 }
2866
2867 if (E_NDS_ABI_V0 == abi)
2868 {
2869 /* OLD ABI; only used in N1213HC, has performance extension 1. */
2870 r += snprintf (buf + r, size - r, ", Andes Star v1.0, N1213HC, MAC, PERF1");
2871 if (arch == E_NDS_ARCH_STAR_V1_0)
2872 r += snprintf (buf + r, size -r, ", 16b"); /* has 16-bit instructions */
2873 return;
2874 }
2875
2876 switch (arch)
2877 {
2878 case E_NDS_ARCH_STAR_V1_0:
2879 case E_NDS_ARCH_STAR_V2_0:
2880 case E_NDS_ARCH_STAR_V3_0:
2881 case E_NDS_ARCH_STAR_V3_M:
2882 r += snprintf (buf + r, size - r, ", %s", ARCH_STRINGS[arch >> EF_NDS_ARCH_SHIFT]);
2883 break;
2884
2885 default:
2886 r += snprintf (buf + r, size - r, ", <unrecognized architecture>");
2887 /* ARCH version determines how the e_flags are interpreted.
2888 If it is unknown, we cannot proceed. */
2889 return;
2890 }
2891
2892 /* Newer ABI; Now handle architecture specific flags. */
2893 if (arch == E_NDS_ARCH_STAR_V1_0)
2894 {
2895 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2896 r += snprintf (buf + r, size -r, ", MFUSR_PC");
2897
2898 if (!(config & E_NDS32_HAS_NO_MAC_INST))
2899 r += snprintf (buf + r, size -r, ", MAC");
2900
2901 if (config & E_NDS32_HAS_DIV_INST)
2902 r += snprintf (buf + r, size -r, ", DIV");
2903
2904 if (config & E_NDS32_HAS_16BIT_INST)
2905 r += snprintf (buf + r, size -r, ", 16b");
2906 }
2907 else
2908 {
2909 if (config & E_NDS32_HAS_MFUSR_PC_INST)
2910 {
2911 if (version <= E_NDS32_ELF_VER_1_3)
2912 r += snprintf (buf + r, size -r, ", [B8]");
2913 else
2914 r += snprintf (buf + r, size -r, ", EX9");
2915 }
2916
2917 if (config & E_NDS32_HAS_MAC_DX_INST)
2918 r += snprintf (buf + r, size -r, ", MAC_DX");
2919
2920 if (config & E_NDS32_HAS_DIV_DX_INST)
2921 r += snprintf (buf + r, size -r, ", DIV_DX");
2922
2923 if (config & E_NDS32_HAS_16BIT_INST)
2924 {
2925 if (version <= E_NDS32_ELF_VER_1_3)
2926 r += snprintf (buf + r, size -r, ", 16b");
2927 else
2928 r += snprintf (buf + r, size -r, ", IFC");
2929 }
2930 }
2931
2932 if (config & E_NDS32_HAS_EXT_INST)
2933 r += snprintf (buf + r, size -r, ", PERF1");
2934
2935 if (config & E_NDS32_HAS_EXT2_INST)
2936 r += snprintf (buf + r, size -r, ", PERF2");
2937
2938 if (config & E_NDS32_HAS_FPU_INST)
2939 {
2940 has_fpu = TRUE;
2941 r += snprintf (buf + r, size -r, ", FPU_SP");
2942 }
2943
2944 if (config & E_NDS32_HAS_FPU_DP_INST)
2945 {
2946 has_fpu = TRUE;
2947 r += snprintf (buf + r, size -r, ", FPU_DP");
2948 }
2949
2950 if (config & E_NDS32_HAS_FPU_MAC_INST)
2951 {
2952 has_fpu = TRUE;
2953 r += snprintf (buf + r, size -r, ", FPU_MAC");
2954 }
2955
2956 if (has_fpu)
2957 {
2958 switch ((config & E_NDS32_FPU_REG_CONF) >> E_NDS32_FPU_REG_CONF_SHIFT)
2959 {
2960 case E_NDS32_FPU_REG_8SP_4DP:
2961 r += snprintf (buf + r, size -r, ", FPU_REG:8/4");
2962 break;
2963 case E_NDS32_FPU_REG_16SP_8DP:
2964 r += snprintf (buf + r, size -r, ", FPU_REG:16/8");
2965 break;
2966 case E_NDS32_FPU_REG_32SP_16DP:
2967 r += snprintf (buf + r, size -r, ", FPU_REG:32/16");
2968 break;
2969 case E_NDS32_FPU_REG_32SP_32DP:
2970 r += snprintf (buf + r, size -r, ", FPU_REG:32/32");
2971 break;
2972 }
2973 }
2974
2975 if (config & E_NDS32_HAS_AUDIO_INST)
2976 r += snprintf (buf + r, size -r, ", AUDIO");
2977
2978 if (config & E_NDS32_HAS_STRING_INST)
2979 r += snprintf (buf + r, size -r, ", STR");
2980
2981 if (config & E_NDS32_HAS_REDUCED_REGS)
2982 r += snprintf (buf + r, size -r, ", 16REG");
2983
2984 if (config & E_NDS32_HAS_VIDEO_INST)
2985 {
2986 if (version <= E_NDS32_ELF_VER_1_3)
2987 r += snprintf (buf + r, size -r, ", VIDEO");
2988 else
2989 r += snprintf (buf + r, size -r, ", SATURATION");
2990 }
2991
2992 if (config & E_NDS32_HAS_ENCRIPT_INST)
2993 r += snprintf (buf + r, size -r, ", ENCRP");
2994
2995 if (config & E_NDS32_HAS_L2C_INST)
2996 r += snprintf (buf + r, size -r, ", L2C");
2997 }
2998
2999 static char *
3000 get_machine_flags (unsigned e_flags, unsigned e_machine)
3001 {
3002 static char buf[1024];
3003
3004 buf[0] = '\0';
3005
3006 if (e_flags)
3007 {
3008 switch (e_machine)
3009 {
3010 default:
3011 break;
3012
3013 case EM_ARC_COMPACT2:
3014 case EM_ARC_COMPACT:
3015 decode_ARC_machine_flags (e_flags, e_machine, buf);
3016 break;
3017
3018 case EM_ARM:
3019 decode_ARM_machine_flags (e_flags, buf);
3020 break;
3021
3022 case EM_AVR:
3023 decode_AVR_machine_flags (e_flags, buf, sizeof buf);
3024 break;
3025
3026 case EM_BLACKFIN:
3027 if (e_flags & EF_BFIN_PIC)
3028 strcat (buf, ", PIC");
3029
3030 if (e_flags & EF_BFIN_FDPIC)
3031 strcat (buf, ", FDPIC");
3032
3033 if (e_flags & EF_BFIN_CODE_IN_L1)
3034 strcat (buf, ", code in L1");
3035
3036 if (e_flags & EF_BFIN_DATA_IN_L1)
3037 strcat (buf, ", data in L1");
3038
3039 break;
3040
3041 case EM_CYGNUS_FRV:
3042 switch (e_flags & EF_FRV_CPU_MASK)
3043 {
3044 case EF_FRV_CPU_GENERIC:
3045 break;
3046
3047 default:
3048 strcat (buf, ", fr???");
3049 break;
3050
3051 case EF_FRV_CPU_FR300:
3052 strcat (buf, ", fr300");
3053 break;
3054
3055 case EF_FRV_CPU_FR400:
3056 strcat (buf, ", fr400");
3057 break;
3058 case EF_FRV_CPU_FR405:
3059 strcat (buf, ", fr405");
3060 break;
3061
3062 case EF_FRV_CPU_FR450:
3063 strcat (buf, ", fr450");
3064 break;
3065
3066 case EF_FRV_CPU_FR500:
3067 strcat (buf, ", fr500");
3068 break;
3069 case EF_FRV_CPU_FR550:
3070 strcat (buf, ", fr550");
3071 break;
3072
3073 case EF_FRV_CPU_SIMPLE:
3074 strcat (buf, ", simple");
3075 break;
3076 case EF_FRV_CPU_TOMCAT:
3077 strcat (buf, ", tomcat");
3078 break;
3079 }
3080 break;
3081
3082 case EM_68K:
3083 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
3084 strcat (buf, ", m68000");
3085 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
3086 strcat (buf, ", cpu32");
3087 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
3088 strcat (buf, ", fido_a");
3089 else
3090 {
3091 char const * isa = _("unknown");
3092 char const * mac = _("unknown mac");
3093 char const * additional = NULL;
3094
3095 switch (e_flags & EF_M68K_CF_ISA_MASK)
3096 {
3097 case EF_M68K_CF_ISA_A_NODIV:
3098 isa = "A";
3099 additional = ", nodiv";
3100 break;
3101 case EF_M68K_CF_ISA_A:
3102 isa = "A";
3103 break;
3104 case EF_M68K_CF_ISA_A_PLUS:
3105 isa = "A+";
3106 break;
3107 case EF_M68K_CF_ISA_B_NOUSP:
3108 isa = "B";
3109 additional = ", nousp";
3110 break;
3111 case EF_M68K_CF_ISA_B:
3112 isa = "B";
3113 break;
3114 case EF_M68K_CF_ISA_C:
3115 isa = "C";
3116 break;
3117 case EF_M68K_CF_ISA_C_NODIV:
3118 isa = "C";
3119 additional = ", nodiv";
3120 break;
3121 }
3122 strcat (buf, ", cf, isa ");
3123 strcat (buf, isa);
3124 if (additional)
3125 strcat (buf, additional);
3126 if (e_flags & EF_M68K_CF_FLOAT)
3127 strcat (buf, ", float");
3128 switch (e_flags & EF_M68K_CF_MAC_MASK)
3129 {
3130 case 0:
3131 mac = NULL;
3132 break;
3133 case EF_M68K_CF_MAC:
3134 mac = "mac";
3135 break;
3136 case EF_M68K_CF_EMAC:
3137 mac = "emac";
3138 break;
3139 case EF_M68K_CF_EMAC_B:
3140 mac = "emac_b";
3141 break;
3142 }
3143 if (mac)
3144 {
3145 strcat (buf, ", ");
3146 strcat (buf, mac);
3147 }
3148 }
3149 break;
3150
3151 case EM_CYGNUS_MEP:
3152 switch (e_flags & EF_MEP_CPU_MASK)
3153 {
3154 case EF_MEP_CPU_MEP: strcat (buf, ", generic MeP"); break;
3155 case EF_MEP_CPU_C2: strcat (buf, ", MeP C2"); break;
3156 case EF_MEP_CPU_C3: strcat (buf, ", MeP C3"); break;
3157 case EF_MEP_CPU_C4: strcat (buf, ", MeP C4"); break;
3158 case EF_MEP_CPU_C5: strcat (buf, ", MeP C5"); break;
3159 case EF_MEP_CPU_H1: strcat (buf, ", MeP H1"); break;
3160 default: strcat (buf, _(", <unknown MeP cpu type>")); break;
3161 }
3162
3163 switch (e_flags & EF_MEP_COP_MASK)
3164 {
3165 case EF_MEP_COP_NONE: break;
3166 case EF_MEP_COP_AVC: strcat (buf, ", AVC coprocessor"); break;
3167 case EF_MEP_COP_AVC2: strcat (buf, ", AVC2 coprocessor"); break;
3168 case EF_MEP_COP_FMAX: strcat (buf, ", FMAX coprocessor"); break;
3169 case EF_MEP_COP_IVC2: strcat (buf, ", IVC2 coprocessor"); break;
3170 default: strcat (buf, _("<unknown MeP copro type>")); break;
3171 }
3172
3173 if (e_flags & EF_MEP_LIBRARY)
3174 strcat (buf, ", Built for Library");
3175
3176 if (e_flags & EF_MEP_INDEX_MASK)
3177 sprintf (buf + strlen (buf), ", Configuration Index: %#x",
3178 e_flags & EF_MEP_INDEX_MASK);
3179
3180 if (e_flags & ~ EF_MEP_ALL_FLAGS)
3181 sprintf (buf + strlen (buf), _(", unknown flags bits: %#x"),
3182 e_flags & ~ EF_MEP_ALL_FLAGS);
3183 break;
3184
3185 case EM_PPC:
3186 if (e_flags & EF_PPC_EMB)
3187 strcat (buf, ", emb");
3188
3189 if (e_flags & EF_PPC_RELOCATABLE)
3190 strcat (buf, _(", relocatable"));
3191
3192 if (e_flags & EF_PPC_RELOCATABLE_LIB)
3193 strcat (buf, _(", relocatable-lib"));
3194 break;
3195
3196 case EM_PPC64:
3197 if (e_flags & EF_PPC64_ABI)
3198 {
3199 char abi[] = ", abiv0";
3200
3201 abi[6] += e_flags & EF_PPC64_ABI;
3202 strcat (buf, abi);
3203 }
3204 break;
3205
3206 case EM_V800:
3207 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
3208 strcat (buf, ", RH850 ABI");
3209
3210 if (e_flags & EF_V800_850E3)
3211 strcat (buf, ", V3 architecture");
3212
3213 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
3214 strcat (buf, ", FPU not used");
3215
3216 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
3217 strcat (buf, ", regmode: COMMON");
3218
3219 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
3220 strcat (buf, ", r4 not used");
3221
3222 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
3223 strcat (buf, ", r30 not used");
3224
3225 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
3226 strcat (buf, ", r5 not used");
3227
3228 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
3229 strcat (buf, ", r2 not used");
3230
3231 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
3232 {
3233 switch (e_flags & - e_flags)
3234 {
3235 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
3236 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
3237 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
3238 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
3239 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
3240 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
3241 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
3242 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
3243 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
3244 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
3245 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
3246 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
3247 default: break;
3248 }
3249 }
3250 break;
3251
3252 case EM_V850:
3253 case EM_CYGNUS_V850:
3254 switch (e_flags & EF_V850_ARCH)
3255 {
3256 case E_V850E3V5_ARCH:
3257 strcat (buf, ", v850e3v5");
3258 break;
3259 case E_V850E2V3_ARCH:
3260 strcat (buf, ", v850e2v3");
3261 break;
3262 case E_V850E2_ARCH:
3263 strcat (buf, ", v850e2");
3264 break;
3265 case E_V850E1_ARCH:
3266 strcat (buf, ", v850e1");
3267 break;
3268 case E_V850E_ARCH:
3269 strcat (buf, ", v850e");
3270 break;
3271 case E_V850_ARCH:
3272 strcat (buf, ", v850");
3273 break;
3274 default:
3275 strcat (buf, _(", unknown v850 architecture variant"));
3276 break;
3277 }
3278 break;
3279
3280 case EM_M32R:
3281 case EM_CYGNUS_M32R:
3282 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
3283 strcat (buf, ", m32r");
3284 break;
3285
3286 case EM_MIPS:
3287 case EM_MIPS_RS3_LE:
3288 if (e_flags & EF_MIPS_NOREORDER)
3289 strcat (buf, ", noreorder");
3290
3291 if (e_flags & EF_MIPS_PIC)
3292 strcat (buf, ", pic");
3293
3294 if (e_flags & EF_MIPS_CPIC)
3295 strcat (buf, ", cpic");
3296
3297 if (e_flags & EF_MIPS_UCODE)
3298 strcat (buf, ", ugen_reserved");
3299
3300 if (e_flags & EF_MIPS_ABI2)
3301 strcat (buf, ", abi2");
3302
3303 if (e_flags & EF_MIPS_OPTIONS_FIRST)
3304 strcat (buf, ", odk first");
3305
3306 if (e_flags & EF_MIPS_32BITMODE)
3307 strcat (buf, ", 32bitmode");
3308
3309 if (e_flags & EF_MIPS_NAN2008)
3310 strcat (buf, ", nan2008");
3311
3312 if (e_flags & EF_MIPS_FP64)
3313 strcat (buf, ", fp64");
3314
3315 switch ((e_flags & EF_MIPS_MACH))
3316 {
3317 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
3318 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
3319 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
3320 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
3321 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
3322 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
3323 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
3324 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
3325 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
3326 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
3327 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
3328 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
3329 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
3330 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
3331 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
3332 case E_MIPS_MACH_OCTEON3: strcat (buf, ", octeon3"); break;
3333 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
3334 case 0:
3335 /* We simply ignore the field in this case to avoid confusion:
3336 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
3337 extension. */
3338 break;
3339 default: strcat (buf, _(", unknown CPU")); break;
3340 }
3341
3342 switch ((e_flags & EF_MIPS_ABI))
3343 {
3344 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
3345 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
3346 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
3347 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
3348 case 0:
3349 /* We simply ignore the field in this case to avoid confusion:
3350 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
3351 This means it is likely to be an o32 file, but not for
3352 sure. */
3353 break;
3354 default: strcat (buf, _(", unknown ABI")); break;
3355 }
3356
3357 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
3358 strcat (buf, ", mdmx");
3359
3360 if (e_flags & EF_MIPS_ARCH_ASE_M16)
3361 strcat (buf, ", mips16");
3362
3363 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
3364 strcat (buf, ", micromips");
3365
3366 switch ((e_flags & EF_MIPS_ARCH))
3367 {
3368 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
3369 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
3370 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
3371 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
3372 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
3373 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
3374 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
3375 case E_MIPS_ARCH_32R6: strcat (buf, ", mips32r6"); break;
3376 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
3377 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
3378 case E_MIPS_ARCH_64R6: strcat (buf, ", mips64r6"); break;
3379 default: strcat (buf, _(", unknown ISA")); break;
3380 }
3381 break;
3382
3383 case EM_NDS32:
3384 decode_NDS32_machine_flags (e_flags, buf, sizeof buf);
3385 break;
3386
3387 case EM_RISCV:
3388 if (e_flags & EF_RISCV_RVC)
3389 strcat (buf, ", RVC");
3390
3391 switch (e_flags & EF_RISCV_FLOAT_ABI)
3392 {
3393 case EF_RISCV_FLOAT_ABI_SOFT:
3394 strcat (buf, ", soft-float ABI");
3395 break;
3396
3397 case EF_RISCV_FLOAT_ABI_SINGLE:
3398 strcat (buf, ", single-float ABI");
3399 break;
3400
3401 case EF_RISCV_FLOAT_ABI_DOUBLE:
3402 strcat (buf, ", double-float ABI");
3403 break;
3404
3405 case EF_RISCV_FLOAT_ABI_QUAD:
3406 strcat (buf, ", quad-float ABI");
3407 break;
3408 }
3409 break;
3410
3411 case EM_SH:
3412 switch ((e_flags & EF_SH_MACH_MASK))
3413 {
3414 case EF_SH1: strcat (buf, ", sh1"); break;
3415 case EF_SH2: strcat (buf, ", sh2"); break;
3416 case EF_SH3: strcat (buf, ", sh3"); break;
3417 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
3418 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
3419 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
3420 case EF_SH3E: strcat (buf, ", sh3e"); break;
3421 case EF_SH4: strcat (buf, ", sh4"); break;
3422 case EF_SH5: strcat (buf, ", sh5"); break;
3423 case EF_SH2E: strcat (buf, ", sh2e"); break;
3424 case EF_SH4A: strcat (buf, ", sh4a"); break;
3425 case EF_SH2A: strcat (buf, ", sh2a"); break;
3426 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
3427 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
3428 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
3429 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
3430 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
3431 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
3432 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
3433 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
3434 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
3435 default: strcat (buf, _(", unknown ISA")); break;
3436 }
3437
3438 if (e_flags & EF_SH_PIC)
3439 strcat (buf, ", pic");
3440
3441 if (e_flags & EF_SH_FDPIC)
3442 strcat (buf, ", fdpic");
3443 break;
3444
3445 case EM_OR1K:
3446 if (e_flags & EF_OR1K_NODELAY)
3447 strcat (buf, ", no delay");
3448 break;
3449
3450 case EM_SPARCV9:
3451 if (e_flags & EF_SPARC_32PLUS)
3452 strcat (buf, ", v8+");
3453
3454 if (e_flags & EF_SPARC_SUN_US1)
3455 strcat (buf, ", ultrasparcI");
3456
3457 if (e_flags & EF_SPARC_SUN_US3)
3458 strcat (buf, ", ultrasparcIII");
3459
3460 if (e_flags & EF_SPARC_HAL_R1)
3461 strcat (buf, ", halr1");
3462
3463 if (e_flags & EF_SPARC_LEDATA)
3464 strcat (buf, ", ledata");
3465
3466 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
3467 strcat (buf, ", tso");
3468
3469 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
3470 strcat (buf, ", pso");
3471
3472 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
3473 strcat (buf, ", rmo");
3474 break;
3475
3476 case EM_PARISC:
3477 switch (e_flags & EF_PARISC_ARCH)
3478 {
3479 case EFA_PARISC_1_0:
3480 strcpy (buf, ", PA-RISC 1.0");
3481 break;
3482 case EFA_PARISC_1_1:
3483 strcpy (buf, ", PA-RISC 1.1");
3484 break;
3485 case EFA_PARISC_2_0:
3486 strcpy (buf, ", PA-RISC 2.0");
3487 break;
3488 default:
3489 break;
3490 }
3491 if (e_flags & EF_PARISC_TRAPNIL)
3492 strcat (buf, ", trapnil");
3493 if (e_flags & EF_PARISC_EXT)
3494 strcat (buf, ", ext");
3495 if (e_flags & EF_PARISC_LSB)
3496 strcat (buf, ", lsb");
3497 if (e_flags & EF_PARISC_WIDE)
3498 strcat (buf, ", wide");
3499 if (e_flags & EF_PARISC_NO_KABP)
3500 strcat (buf, ", no kabp");
3501 if (e_flags & EF_PARISC_LAZYSWAP)
3502 strcat (buf, ", lazyswap");
3503 break;
3504
3505 case EM_PJ:
3506 case EM_PJ_OLD:
3507 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
3508 strcat (buf, ", new calling convention");
3509
3510 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
3511 strcat (buf, ", gnu calling convention");
3512 break;
3513
3514 case EM_IA_64:
3515 if ((e_flags & EF_IA_64_ABI64))
3516 strcat (buf, ", 64-bit");
3517 else
3518 strcat (buf, ", 32-bit");
3519 if ((e_flags & EF_IA_64_REDUCEDFP))
3520 strcat (buf, ", reduced fp model");
3521 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
3522 strcat (buf, ", no function descriptors, constant gp");
3523 else if ((e_flags & EF_IA_64_CONS_GP))
3524 strcat (buf, ", constant gp");
3525 if ((e_flags & EF_IA_64_ABSOLUTE))
3526 strcat (buf, ", absolute");
3527 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
3528 {
3529 if ((e_flags & EF_IA_64_VMS_LINKAGES))
3530 strcat (buf, ", vms_linkages");
3531 switch ((e_flags & EF_IA_64_VMS_COMCOD))
3532 {
3533 case EF_IA_64_VMS_COMCOD_SUCCESS:
3534 break;
3535 case EF_IA_64_VMS_COMCOD_WARNING:
3536 strcat (buf, ", warning");
3537 break;
3538 case EF_IA_64_VMS_COMCOD_ERROR:
3539 strcat (buf, ", error");
3540 break;
3541 case EF_IA_64_VMS_COMCOD_ABORT:
3542 strcat (buf, ", abort");
3543 break;
3544 default:
3545 warn (_("Unrecognised IA64 VMS Command Code: %x\n"),
3546 e_flags & EF_IA_64_VMS_COMCOD);
3547 strcat (buf, ", <unknown>");
3548 }
3549 }
3550 break;
3551
3552 case EM_VAX:
3553 if ((e_flags & EF_VAX_NONPIC))
3554 strcat (buf, ", non-PIC");
3555 if ((e_flags & EF_VAX_DFLOAT))
3556 strcat (buf, ", D-Float");
3557 if ((e_flags & EF_VAX_GFLOAT))
3558 strcat (buf, ", G-Float");
3559 break;
3560
3561 case EM_VISIUM:
3562 if (e_flags & EF_VISIUM_ARCH_MCM)
3563 strcat (buf, ", mcm");
3564 else if (e_flags & EF_VISIUM_ARCH_MCM24)
3565 strcat (buf, ", mcm24");
3566 if (e_flags & EF_VISIUM_ARCH_GR6)
3567 strcat (buf, ", gr6");
3568 break;
3569
3570 case EM_RL78:
3571 switch (e_flags & E_FLAG_RL78_CPU_MASK)
3572 {
3573 case E_FLAG_RL78_ANY_CPU: break;
3574 case E_FLAG_RL78_G10: strcat (buf, ", G10"); break;
3575 case E_FLAG_RL78_G13: strcat (buf, ", G13"); break;
3576 case E_FLAG_RL78_G14: strcat (buf, ", G14"); break;
3577 }
3578 if (e_flags & E_FLAG_RL78_64BIT_DOUBLES)
3579 strcat (buf, ", 64-bit doubles");
3580 break;
3581
3582 case EM_RX:
3583 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
3584 strcat (buf, ", 64-bit doubles");
3585 if (e_flags & E_FLAG_RX_DSP)
3586 strcat (buf, ", dsp");
3587 if (e_flags & E_FLAG_RX_PID)
3588 strcat (buf, ", pid");
3589 if (e_flags & E_FLAG_RX_ABI)
3590 strcat (buf, ", RX ABI");
3591 if (e_flags & E_FLAG_RX_SINSNS_SET)
3592 strcat (buf, e_flags & E_FLAG_RX_SINSNS_YES
3593 ? ", uses String instructions" : ", bans String instructions");
3594 if (e_flags & E_FLAG_RX_V2)
3595 strcat (buf, ", V2");
3596 break;
3597
3598 case EM_S390:
3599 if (e_flags & EF_S390_HIGH_GPRS)
3600 strcat (buf, ", highgprs");
3601 break;
3602
3603 case EM_TI_C6000:
3604 if ((e_flags & EF_C6000_REL))
3605 strcat (buf, ", relocatable module");
3606 break;
3607
3608 case EM_MSP430:
3609 strcat (buf, _(": architecture variant: "));
3610 switch (e_flags & EF_MSP430_MACH)
3611 {
3612 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
3613 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
3614 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
3615 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
3616 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
3617 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
3618 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
3619 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
3620 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
3621 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
3622 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
3623 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
3624 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
3625 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
3626 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
3627 default:
3628 strcat (buf, _(": unknown")); break;
3629 }
3630
3631 if (e_flags & ~ EF_MSP430_MACH)
3632 strcat (buf, _(": unknown extra flag bits also present"));
3633 }
3634 }
3635
3636 return buf;
3637 }
3638
3639 static const char *
3640 get_osabi_name (unsigned int osabi)
3641 {
3642 static char buff[32];
3643
3644 switch (osabi)
3645 {
3646 case ELFOSABI_NONE: return "UNIX - System V";
3647 case ELFOSABI_HPUX: return "UNIX - HP-UX";
3648 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
3649 case ELFOSABI_GNU: return "UNIX - GNU";
3650 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
3651 case ELFOSABI_AIX: return "UNIX - AIX";
3652 case ELFOSABI_IRIX: return "UNIX - IRIX";
3653 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
3654 case ELFOSABI_TRU64: return "UNIX - TRU64";
3655 case ELFOSABI_MODESTO: return "Novell - Modesto";
3656 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
3657 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
3658 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
3659 case ELFOSABI_AROS: return "AROS";
3660 case ELFOSABI_FENIXOS: return "FenixOS";
3661 case ELFOSABI_CLOUDABI: return "Nuxi CloudABI";
3662 case ELFOSABI_OPENVOS: return "Stratus Technologies OpenVOS";
3663 default:
3664 if (osabi >= 64)
3665 switch (elf_header.e_machine)
3666 {
3667 case EM_ARM:
3668 switch (osabi)
3669 {
3670 case ELFOSABI_ARM: return "ARM";
3671 default:
3672 break;
3673 }
3674 break;
3675
3676 case EM_MSP430:
3677 case EM_MSP430_OLD:
3678 case EM_VISIUM:
3679 switch (osabi)
3680 {
3681 case ELFOSABI_STANDALONE: return _("Standalone App");
3682 default:
3683 break;
3684 }
3685 break;
3686
3687 case EM_TI_C6000:
3688 switch (osabi)
3689 {
3690 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
3691 case ELFOSABI_C6000_LINUX: return "Linux C6000";
3692 default:
3693 break;
3694 }
3695 break;
3696
3697 default:
3698 break;
3699 }
3700 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
3701 return buff;
3702 }
3703 }
3704
3705 static const char *
3706 get_aarch64_segment_type (unsigned long type)
3707 {
3708 switch (type)
3709 {
3710 case PT_AARCH64_ARCHEXT: return "AARCH64_ARCHEXT";
3711 default: return NULL;
3712 }
3713 }
3714
3715 static const char *
3716 get_arm_segment_type (unsigned long type)
3717 {
3718 switch (type)
3719 {
3720 case PT_ARM_EXIDX: return "EXIDX";
3721 default: return NULL;
3722 }
3723 }
3724
3725 static const char *
3726 get_mips_segment_type (unsigned long type)
3727 {
3728 switch (type)
3729 {
3730 case PT_MIPS_REGINFO: return "REGINFO";
3731 case PT_MIPS_RTPROC: return "RTPROC";
3732 case PT_MIPS_OPTIONS: return "OPTIONS";
3733 case PT_MIPS_ABIFLAGS: return "ABIFLAGS";
3734 default: return NULL;
3735 }
3736 }
3737
3738 static const char *
3739 get_parisc_segment_type (unsigned long type)
3740 {
3741 switch (type)
3742 {
3743 case PT_HP_TLS: return "HP_TLS";
3744 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
3745 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
3746 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
3747 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
3748 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
3749 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
3750 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
3751 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
3752 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
3753 case PT_HP_PARALLEL: return "HP_PARALLEL";
3754 case PT_HP_FASTBIND: return "HP_FASTBIND";
3755 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
3756 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
3757 case PT_HP_STACK: return "HP_STACK";
3758 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
3759 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
3760 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
3761 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
3762 default: return NULL;
3763 }
3764 }
3765
3766 static const char *
3767 get_ia64_segment_type (unsigned long type)
3768 {
3769 switch (type)
3770 {
3771 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
3772 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
3773 case PT_HP_TLS: return "HP_TLS";
3774 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
3775 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
3776 case PT_IA_64_HP_STACK: return "HP_STACK";
3777 default: return NULL;
3778 }
3779 }
3780
3781 static const char *
3782 get_tic6x_segment_type (unsigned long type)
3783 {
3784 switch (type)
3785 {
3786 case PT_C6000_PHATTR: return "C6000_PHATTR";
3787 default: return NULL;
3788 }
3789 }
3790
3791 static const char *
3792 get_solaris_segment_type (unsigned long type)
3793 {
3794 switch (type)
3795 {
3796 case 0x6464e550: return "PT_SUNW_UNWIND";
3797 case 0x6474e550: return "PT_SUNW_EH_FRAME";
3798 case 0x6ffffff7: return "PT_LOSUNW";
3799 case 0x6ffffffa: return "PT_SUNWBSS";
3800 case 0x6ffffffb: return "PT_SUNWSTACK";
3801 case 0x6ffffffc: return "PT_SUNWDTRACE";
3802 case 0x6ffffffd: return "PT_SUNWCAP";
3803 case 0x6fffffff: return "PT_HISUNW";
3804 default: return NULL;
3805 }
3806 }
3807
3808 static const char *
3809 get_segment_type (unsigned long p_type)
3810 {
3811 static char buff[32];
3812
3813 switch (p_type)
3814 {
3815 case PT_NULL: return "NULL";
3816 case PT_LOAD: return "LOAD";
3817 case PT_DYNAMIC: return "DYNAMIC";
3818 case PT_INTERP: return "INTERP";
3819 case PT_NOTE: return "NOTE";
3820 case PT_SHLIB: return "SHLIB";
3821 case PT_PHDR: return "PHDR";
3822 case PT_TLS: return "TLS";
3823 case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
3824 case PT_GNU_STACK: return "GNU_STACK";
3825 case PT_GNU_RELRO: return "GNU_RELRO";
3826
3827 default:
3828 if (p_type >= PT_GNU_MBIND_LO && p_type <= PT_GNU_MBIND_HI)
3829 {
3830 sprintf (buff, "GNU_MBIND+%#lx",
3831 p_type - PT_GNU_MBIND_LO);
3832 }
3833 else if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3834 {
3835 const char * result;
3836
3837 switch (elf_header.e_machine)
3838 {
3839 case EM_AARCH64:
3840 result = get_aarch64_segment_type (p_type);
3841 break;
3842 case EM_ARM:
3843 result = get_arm_segment_type (p_type);
3844 break;
3845 case EM_MIPS:
3846 case EM_MIPS_RS3_LE:
3847 result = get_mips_segment_type (p_type);
3848 break;
3849 case EM_PARISC:
3850 result = get_parisc_segment_type (p_type);
3851 break;
3852 case EM_IA_64:
3853 result = get_ia64_segment_type (p_type);
3854 break;
3855 case EM_TI_C6000:
3856 result = get_tic6x_segment_type (p_type);
3857 break;
3858 default:
3859 result = NULL;
3860 break;
3861 }
3862
3863 if (result != NULL)
3864 return result;
3865
3866 sprintf (buff, "LOPROC+%#lx", p_type - PT_LOPROC);
3867 }
3868 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3869 {
3870 const char * result;
3871
3872 switch (elf_header.e_machine)
3873 {
3874 case EM_PARISC:
3875 result = get_parisc_segment_type (p_type);
3876 break;
3877 case EM_IA_64:
3878 result = get_ia64_segment_type (p_type);
3879 break;
3880 default:
3881 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
3882 result = get_solaris_segment_type (p_type);
3883 else
3884 result = NULL;
3885 break;
3886 }
3887
3888 if (result != NULL)
3889 return result;
3890
3891 sprintf (buff, "LOOS+%#lx", p_type - PT_LOOS);
3892 }
3893 else
3894 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3895
3896 return buff;
3897 }
3898 }
3899
3900 static const char *
3901 get_mips_section_type_name (unsigned int sh_type)
3902 {
3903 switch (sh_type)
3904 {
3905 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3906 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3907 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3908 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3909 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3910 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3911 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3912 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3913 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3914 case SHT_MIPS_RELD: return "MIPS_RELD";
3915 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3916 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3917 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3918 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3919 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3920 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3921 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3922 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3923 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3924 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3925 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3926 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3927 case SHT_MIPS_LINE: return "MIPS_LINE";
3928 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3929 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3930 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3931 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3932 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3933 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3934 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3935 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3936 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3937 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3938 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3939 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3940 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3941 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3942 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3943 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3944 case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
3945 default:
3946 break;
3947 }
3948 return NULL;
3949 }
3950
3951 static const char *
3952 get_parisc_section_type_name (unsigned int sh_type)
3953 {
3954 switch (sh_type)
3955 {
3956 case SHT_PARISC_EXT: return "PARISC_EXT";
3957 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3958 case SHT_PARISC_DOC: return "PARISC_DOC";
3959 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3960 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3961 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3962 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3963 default: return NULL;
3964 }
3965 }
3966
3967 static const char *
3968 get_ia64_section_type_name (unsigned int sh_type)
3969 {
3970 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3971 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3972 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3973
3974 switch (sh_type)
3975 {
3976 case SHT_IA_64_EXT: return "IA_64_EXT";
3977 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3978 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3979 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3980 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3981 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3982 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3983 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3984 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3985 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3986 default:
3987 break;
3988 }
3989 return NULL;
3990 }
3991
3992 static const char *
3993 get_x86_64_section_type_name (unsigned int sh_type)
3994 {
3995 switch (sh_type)
3996 {
3997 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3998 default: return NULL;
3999 }
4000 }
4001
4002 static const char *
4003 get_aarch64_section_type_name (unsigned int sh_type)
4004 {
4005 switch (sh_type)
4006 {
4007 case SHT_AARCH64_ATTRIBUTES: return "AARCH64_ATTRIBUTES";
4008 default: return NULL;
4009 }
4010 }
4011
4012 static const char *
4013 get_arm_section_type_name (unsigned int sh_type)
4014 {
4015 switch (sh_type)
4016 {
4017 case SHT_ARM_EXIDX: return "ARM_EXIDX";
4018 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
4019 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
4020 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
4021 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
4022 default: return NULL;
4023 }
4024 }
4025
4026 static const char *
4027 get_tic6x_section_type_name (unsigned int sh_type)
4028 {
4029 switch (sh_type)
4030 {
4031 case SHT_C6000_UNWIND: return "C6000_UNWIND";
4032 case SHT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
4033 case SHT_C6000_ATTRIBUTES: return "C6000_ATTRIBUTES";
4034 case SHT_TI_ICODE: return "TI_ICODE";
4035 case SHT_TI_XREF: return "TI_XREF";
4036 case SHT_TI_HANDLER: return "TI_HANDLER";
4037 case SHT_TI_INITINFO: return "TI_INITINFO";
4038 case SHT_TI_PHATTRS: return "TI_PHATTRS";
4039 default: return NULL;
4040 }
4041 }
4042
4043 static const char *
4044 get_msp430x_section_type_name (unsigned int sh_type)
4045 {
4046 switch (sh_type)
4047 {
4048 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
4049 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
4050 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
4051 default: return NULL;
4052 }
4053 }
4054
4055 static const char *
4056 get_v850_section_type_name (unsigned int sh_type)
4057 {
4058 switch (sh_type)
4059 {
4060 case SHT_V850_SCOMMON: return "V850 Small Common";
4061 case SHT_V850_TCOMMON: return "V850 Tiny Common";
4062 case SHT_V850_ZCOMMON: return "V850 Zero Common";
4063 case SHT_RENESAS_IOP: return "RENESAS IOP";
4064 case SHT_RENESAS_INFO: return "RENESAS INFO";
4065 default: return NULL;
4066 }
4067 }
4068
4069 static const char *
4070 get_section_type_name (unsigned int sh_type)
4071 {
4072 static char buff[32];
4073 const char * result;
4074
4075 switch (sh_type)
4076 {
4077 case SHT_NULL: return "NULL";
4078 case SHT_PROGBITS: return "PROGBITS";
4079 case SHT_SYMTAB: return "SYMTAB";
4080 case SHT_STRTAB: return "STRTAB";
4081 case SHT_RELA: return "RELA";
4082 case SHT_HASH: return "HASH";
4083 case SHT_DYNAMIC: return "DYNAMIC";
4084 case SHT_NOTE: return "NOTE";
4085 case SHT_NOBITS: return "NOBITS";
4086 case SHT_REL: return "REL";
4087 case SHT_SHLIB: return "SHLIB";
4088 case SHT_DYNSYM: return "DYNSYM";
4089 case SHT_INIT_ARRAY: return "INIT_ARRAY";
4090 case SHT_FINI_ARRAY: return "FINI_ARRAY";
4091 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
4092 case SHT_GNU_HASH: return "GNU_HASH";
4093 case SHT_GROUP: return "GROUP";
4094 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
4095 case SHT_GNU_verdef: return "VERDEF";
4096 case SHT_GNU_verneed: return "VERNEED";
4097 case SHT_GNU_versym: return "VERSYM";
4098 case 0x6ffffff0: return "VERSYM";
4099 case 0x6ffffffc: return "VERDEF";
4100 case 0x7ffffffd: return "AUXILIARY";
4101 case 0x7fffffff: return "FILTER";
4102 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
4103
4104 default:
4105 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
4106 {
4107 switch (elf_header.e_machine)
4108 {
4109 case EM_MIPS:
4110 case EM_MIPS_RS3_LE:
4111 result = get_mips_section_type_name (sh_type);
4112 break;
4113 case EM_PARISC:
4114 result = get_parisc_section_type_name (sh_type);
4115 break;
4116 case EM_IA_64:
4117 result = get_ia64_section_type_name (sh_type);
4118 break;
4119 case EM_X86_64:
4120 case EM_L1OM:
4121 case EM_K1OM:
4122 result = get_x86_64_section_type_name (sh_type);
4123 break;
4124 case EM_AARCH64:
4125 result = get_aarch64_section_type_name (sh_type);
4126 break;
4127 case EM_ARM:
4128 result = get_arm_section_type_name (sh_type);
4129 break;
4130 case EM_TI_C6000:
4131 result = get_tic6x_section_type_name (sh_type);
4132 break;
4133 case EM_MSP430:
4134 result = get_msp430x_section_type_name (sh_type);
4135 break;
4136 case EM_V800:
4137 case EM_V850:
4138 case EM_CYGNUS_V850:
4139 result = get_v850_section_type_name (sh_type);
4140 break;
4141 default:
4142 result = NULL;
4143 break;
4144 }
4145
4146 if (result != NULL)
4147 return result;
4148
4149 sprintf (buff, "LOPROC+%#x", sh_type - SHT_LOPROC);
4150 }
4151 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
4152 {
4153 switch (elf_header.e_machine)
4154 {
4155 case EM_IA_64:
4156 result = get_ia64_section_type_name (sh_type);
4157 break;
4158 default:
4159 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
4160 result = get_solaris_section_type (sh_type);
4161 else
4162 {
4163 switch (sh_type)
4164 {
4165 case SHT_GNU_INCREMENTAL_INPUTS: result = "GNU_INCREMENTAL_INPUTS"; break;
4166 case SHT_GNU_ATTRIBUTES: result = "GNU_ATTRIBUTES"; break;
4167 case SHT_GNU_HASH: result = "GNU_HASH"; break;
4168 case SHT_GNU_LIBLIST: result = "GNU_LIBLIST"; break;
4169 default:
4170 result = NULL;
4171 break;
4172 }
4173 }
4174 break;
4175 }
4176
4177 if (result != NULL)
4178 return result;
4179
4180 sprintf (buff, "LOOS+%#x", sh_type - SHT_LOOS);
4181 }
4182 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
4183 {
4184 switch (elf_header.e_machine)
4185 {
4186 case EM_V800:
4187 case EM_V850:
4188 case EM_CYGNUS_V850:
4189 result = get_v850_section_type_name (sh_type);
4190 break;
4191 default:
4192 result = NULL;
4193 break;
4194 }
4195
4196 if (result != NULL)
4197 return result;
4198
4199 sprintf (buff, "LOUSER+%#x", sh_type - SHT_LOUSER);
4200 }
4201 else
4202 /* This message is probably going to be displayed in a 15
4203 character wide field, so put the hex value first. */
4204 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
4205
4206 return buff;
4207 }
4208 }
4209
4210 #define OPTION_DEBUG_DUMP 512
4211 #define OPTION_DYN_SYMS 513
4212 #define OPTION_DWARF_DEPTH 514
4213 #define OPTION_DWARF_START 515
4214 #define OPTION_DWARF_CHECK 516
4215
4216 static struct option options[] =
4217 {
4218 {"all", no_argument, 0, 'a'},
4219 {"file-header", no_argument, 0, 'h'},
4220 {"program-headers", no_argument, 0, 'l'},
4221 {"headers", no_argument, 0, 'e'},
4222 {"histogram", no_argument, 0, 'I'},
4223 {"segments", no_argument, 0, 'l'},
4224 {"sections", no_argument, 0, 'S'},
4225 {"section-headers", no_argument, 0, 'S'},
4226 {"section-groups", no_argument, 0, 'g'},
4227 {"section-details", no_argument, 0, 't'},
4228 {"full-section-name",no_argument, 0, 'N'},
4229 {"symbols", no_argument, 0, 's'},
4230 {"syms", no_argument, 0, 's'},
4231 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
4232 {"relocs", no_argument, 0, 'r'},
4233 {"notes", no_argument, 0, 'n'},
4234 {"dynamic", no_argument, 0, 'd'},
4235 {"arch-specific", no_argument, 0, 'A'},
4236 {"version-info", no_argument, 0, 'V'},
4237 {"use-dynamic", no_argument, 0, 'D'},
4238 {"unwind", no_argument, 0, 'u'},
4239 {"archive-index", no_argument, 0, 'c'},
4240 {"hex-dump", required_argument, 0, 'x'},
4241 {"relocated-dump", required_argument, 0, 'R'},
4242 {"string-dump", required_argument, 0, 'p'},
4243 {"decompress", no_argument, 0, 'z'},
4244 #ifdef SUPPORT_DISASSEMBLY
4245 {"instruction-dump", required_argument, 0, 'i'},
4246 #endif
4247 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
4248
4249 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
4250 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
4251 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
4252
4253 {"version", no_argument, 0, 'v'},
4254 {"wide", no_argument, 0, 'W'},
4255 {"help", no_argument, 0, 'H'},
4256 {0, no_argument, 0, 0}
4257 };
4258
4259 static void
4260 usage (FILE * stream)
4261 {
4262 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
4263 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
4264 fprintf (stream, _(" Options are:\n\
4265 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
4266 -h --file-header Display the ELF file header\n\
4267 -l --program-headers Display the program headers\n\
4268 --segments An alias for --program-headers\n\
4269 -S --section-headers Display the sections' header\n\
4270 --sections An alias for --section-headers\n\
4271 -g --section-groups Display the section groups\n\
4272 -t --section-details Display the section details\n\
4273 -e --headers Equivalent to: -h -l -S\n\
4274 -s --syms Display the symbol table\n\
4275 --symbols An alias for --syms\n\
4276 --dyn-syms Display the dynamic symbol table\n\
4277 -n --notes Display the core notes (if present)\n\
4278 -r --relocs Display the relocations (if present)\n\
4279 -u --unwind Display the unwind info (if present)\n\
4280 -d --dynamic Display the dynamic section (if present)\n\
4281 -V --version-info Display the version sections (if present)\n\
4282 -A --arch-specific Display architecture specific information (if any)\n\
4283 -c --archive-index Display the symbol/file index in an archive\n\
4284 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
4285 -x --hex-dump=<number|name>\n\
4286 Dump the contents of section <number|name> as bytes\n\
4287 -p --string-dump=<number|name>\n\
4288 Dump the contents of section <number|name> as strings\n\
4289 -R --relocated-dump=<number|name>\n\
4290 Dump the contents of section <number|name> as relocated bytes\n\
4291 -z --decompress Decompress section before dumping it\n\
4292 -w[lLiaprmfFsoRt] or\n\
4293 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
4294 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
4295 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
4296 =addr,=cu_index]\n\
4297 Display the contents of DWARF2 debug sections\n"));
4298 fprintf (stream, _("\
4299 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
4300 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
4301 or deeper\n"));
4302 #ifdef SUPPORT_DISASSEMBLY
4303 fprintf (stream, _("\
4304 -i --instruction-dump=<number|name>\n\
4305 Disassemble the contents of section <number|name>\n"));
4306 #endif
4307 fprintf (stream, _("\
4308 -I --histogram Display histogram of bucket list lengths\n\
4309 -W --wide Allow output width to exceed 80 characters\n\
4310 @<file> Read options from <file>\n\
4311 -H --help Display this information\n\
4312 -v --version Display the version number of readelf\n"));
4313
4314 if (REPORT_BUGS_TO[0] && stream == stdout)
4315 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
4316
4317 exit (stream == stdout ? 0 : 1);
4318 }
4319
4320 /* Record the fact that the user wants the contents of section number
4321 SECTION to be displayed using the method(s) encoded as flags bits
4322 in TYPE. Note, TYPE can be zero if we are creating the array for
4323 the first time. */
4324
4325 static void
4326 request_dump_bynumber (unsigned int section, dump_type type)
4327 {
4328 if (section >= num_dump_sects)
4329 {
4330 dump_type * new_dump_sects;
4331
4332 new_dump_sects = (dump_type *) calloc (section + 1,
4333 sizeof (* dump_sects));
4334
4335 if (new_dump_sects == NULL)
4336 error (_("Out of memory allocating dump request table.\n"));
4337 else
4338 {
4339 if (dump_sects)
4340 {
4341 /* Copy current flag settings. */
4342 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
4343
4344 free (dump_sects);
4345 }
4346
4347 dump_sects = new_dump_sects;
4348 num_dump_sects = section + 1;
4349 }
4350 }
4351
4352 if (dump_sects)
4353 dump_sects[section] |= type;
4354
4355 return;
4356 }
4357
4358 /* Request a dump by section name. */
4359
4360 static void
4361 request_dump_byname (const char * section, dump_type type)
4362 {
4363 struct dump_list_entry * new_request;
4364
4365 new_request = (struct dump_list_entry *)
4366 malloc (sizeof (struct dump_list_entry));
4367 if (!new_request)
4368 error (_("Out of memory allocating dump request table.\n"));
4369
4370 new_request->name = strdup (section);
4371 if (!new_request->name)
4372 error (_("Out of memory allocating dump request table.\n"));
4373
4374 new_request->type = type;
4375
4376 new_request->next = dump_sects_byname;
4377 dump_sects_byname = new_request;
4378 }
4379
4380 static inline void
4381 request_dump (dump_type type)
4382 {
4383 int section;
4384 char * cp;
4385
4386 do_dump++;
4387 section = strtoul (optarg, & cp, 0);
4388
4389 if (! *cp && section >= 0)
4390 request_dump_bynumber (section, type);
4391 else
4392 request_dump_byname (optarg, type);
4393 }
4394
4395
4396 static void
4397 parse_args (int argc, char ** argv)
4398 {
4399 int c;
4400
4401 if (argc < 2)
4402 usage (stderr);
4403
4404 while ((c = getopt_long
4405 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:z", options, NULL)) != EOF)
4406 {
4407 switch (c)
4408 {
4409 case 0:
4410 /* Long options. */
4411 break;
4412 case 'H':
4413 usage (stdout);
4414 break;
4415
4416 case 'a':
4417 do_syms = TRUE;
4418 do_reloc = TRUE;
4419 do_unwind = TRUE;
4420 do_dynamic = TRUE;
4421 do_header = TRUE;
4422 do_sections = TRUE;
4423 do_section_groups = TRUE;
4424 do_segments = TRUE;
4425 do_version = TRUE;
4426 do_histogram = TRUE;
4427 do_arch = TRUE;
4428 do_notes = TRUE;
4429 break;
4430 case 'g':
4431 do_section_groups = TRUE;
4432 break;
4433 case 't':
4434 case 'N':
4435 do_sections = TRUE;
4436 do_section_details = TRUE;
4437 break;
4438 case 'e':
4439 do_header = TRUE;
4440 do_sections = TRUE;
4441 do_segments = TRUE;
4442 break;
4443 case 'A':
4444 do_arch = TRUE;
4445 break;
4446 case 'D':
4447 do_using_dynamic = TRUE;
4448 break;
4449 case 'r':
4450 do_reloc = TRUE;
4451 break;
4452 case 'u':
4453 do_unwind = TRUE;
4454 break;
4455 case 'h':
4456 do_header = TRUE;
4457 break;
4458 case 'l':
4459 do_segments = TRUE;
4460 break;
4461 case 's':
4462 do_syms = TRUE;
4463 break;
4464 case 'S':
4465 do_sections = TRUE;
4466 break;
4467 case 'd':
4468 do_dynamic = TRUE;
4469 break;
4470 case 'I':
4471 do_histogram = TRUE;
4472 break;
4473 case 'n':
4474 do_notes = TRUE;
4475 break;
4476 case 'c':
4477 do_archive_index = TRUE;
4478 break;
4479 case 'x':
4480 request_dump (HEX_DUMP);
4481 break;
4482 case 'p':
4483 request_dump (STRING_DUMP);
4484 break;
4485 case 'R':
4486 request_dump (RELOC_DUMP);
4487 break;
4488 case 'z':
4489 decompress_dumps = TRUE;
4490 break;
4491 case 'w':
4492 do_dump = TRUE;
4493 if (optarg == 0)
4494 {
4495 do_debugging = TRUE;
4496 dwarf_select_sections_all ();
4497 }
4498 else
4499 {
4500 do_debugging = FALSE;
4501 dwarf_select_sections_by_letters (optarg);
4502 }
4503 break;
4504 case OPTION_DEBUG_DUMP:
4505 do_dump = TRUE;
4506 if (optarg == 0)
4507 do_debugging = TRUE;
4508 else
4509 {
4510 do_debugging = FALSE;
4511 dwarf_select_sections_by_names (optarg);
4512 }
4513 break;
4514 case OPTION_DWARF_DEPTH:
4515 {
4516 char *cp;
4517
4518 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
4519 }
4520 break;
4521 case OPTION_DWARF_START:
4522 {
4523 char *cp;
4524
4525 dwarf_start_die = strtoul (optarg, & cp, 0);
4526 }
4527 break;
4528 case OPTION_DWARF_CHECK:
4529 dwarf_check = TRUE;
4530 break;
4531 case OPTION_DYN_SYMS:
4532 do_dyn_syms = TRUE;
4533 break;
4534 #ifdef SUPPORT_DISASSEMBLY
4535 case 'i':
4536 request_dump (DISASS_DUMP);
4537 break;
4538 #endif
4539 case 'v':
4540 print_version (program_name);
4541 break;
4542 case 'V':
4543 do_version = TRUE;
4544 break;
4545 case 'W':
4546 do_wide = TRUE;
4547 break;
4548 default:
4549 /* xgettext:c-format */
4550 error (_("Invalid option '-%c'\n"), c);
4551 /* Fall through. */
4552 case '?':
4553 usage (stderr);
4554 }
4555 }
4556
4557 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
4558 && !do_segments && !do_header && !do_dump && !do_version
4559 && !do_histogram && !do_debugging && !do_arch && !do_notes
4560 && !do_section_groups && !do_archive_index
4561 && !do_dyn_syms)
4562 usage (stderr);
4563 }
4564
4565 static const char *
4566 get_elf_class (unsigned int elf_class)
4567 {
4568 static char buff[32];
4569
4570 switch (elf_class)
4571 {
4572 case ELFCLASSNONE: return _("none");
4573 case ELFCLASS32: return "ELF32";
4574 case ELFCLASS64: return "ELF64";
4575 default:
4576 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
4577 return buff;
4578 }
4579 }
4580
4581 static const char *
4582 get_data_encoding (unsigned int encoding)
4583 {
4584 static char buff[32];
4585
4586 switch (encoding)
4587 {
4588 case ELFDATANONE: return _("none");
4589 case ELFDATA2LSB: return _("2's complement, little endian");
4590 case ELFDATA2MSB: return _("2's complement, big endian");
4591 default:
4592 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
4593 return buff;
4594 }
4595 }
4596
4597 /* Decode the data held in 'elf_header'. */
4598
4599 static bfd_boolean
4600 process_file_header (void)
4601 {
4602 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
4603 || elf_header.e_ident[EI_MAG1] != ELFMAG1
4604 || elf_header.e_ident[EI_MAG2] != ELFMAG2
4605 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
4606 {
4607 error
4608 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
4609 return FALSE;
4610 }
4611
4612 init_dwarf_regnames (elf_header.e_machine);
4613
4614 if (do_header)
4615 {
4616 unsigned i;
4617
4618 printf (_("ELF Header:\n"));
4619 printf (_(" Magic: "));
4620 for (i = 0; i < EI_NIDENT; i++)
4621 printf ("%2.2x ", elf_header.e_ident[i]);
4622 printf ("\n");
4623 printf (_(" Class: %s\n"),
4624 get_elf_class (elf_header.e_ident[EI_CLASS]));
4625 printf (_(" Data: %s\n"),
4626 get_data_encoding (elf_header.e_ident[EI_DATA]));
4627 printf (_(" Version: %d %s\n"),
4628 elf_header.e_ident[EI_VERSION],
4629 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
4630 ? "(current)"
4631 : (elf_header.e_ident[EI_VERSION] != EV_NONE
4632 ? _("<unknown: %lx>")
4633 : "")));
4634 printf (_(" OS/ABI: %s\n"),
4635 get_osabi_name (elf_header.e_ident[EI_OSABI]));
4636 printf (_(" ABI Version: %d\n"),
4637 elf_header.e_ident[EI_ABIVERSION]);
4638 printf (_(" Type: %s\n"),
4639 get_file_type (elf_header.e_type));
4640 printf (_(" Machine: %s\n"),
4641 get_machine_name (elf_header.e_machine));
4642 printf (_(" Version: 0x%lx\n"),
4643 (unsigned long) elf_header.e_version);
4644
4645 printf (_(" Entry point address: "));
4646 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4647 printf (_("\n Start of program headers: "));
4648 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4649 printf (_(" (bytes into file)\n Start of section headers: "));
4650 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
4651 printf (_(" (bytes into file)\n"));
4652
4653 printf (_(" Flags: 0x%lx%s\n"),
4654 (unsigned long) elf_header.e_flags,
4655 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
4656 printf (_(" Size of this header: %ld (bytes)\n"),
4657 (long) elf_header.e_ehsize);
4658 printf (_(" Size of program headers: %ld (bytes)\n"),
4659 (long) elf_header.e_phentsize);
4660 printf (_(" Number of program headers: %ld"),
4661 (long) elf_header.e_phnum);
4662 if (section_headers != NULL
4663 && elf_header.e_phnum == PN_XNUM
4664 && section_headers[0].sh_info != 0)
4665 printf (" (%ld)", (long) section_headers[0].sh_info);
4666 putc ('\n', stdout);
4667 printf (_(" Size of section headers: %ld (bytes)\n"),
4668 (long) elf_header.e_shentsize);
4669 printf (_(" Number of section headers: %ld"),
4670 (long) elf_header.e_shnum);
4671 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
4672 printf (" (%ld)", (long) section_headers[0].sh_size);
4673 putc ('\n', stdout);
4674 printf (_(" Section header string table index: %ld"),
4675 (long) elf_header.e_shstrndx);
4676 if (section_headers != NULL
4677 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4678 printf (" (%u)", section_headers[0].sh_link);
4679 else if (elf_header.e_shstrndx != SHN_UNDEF
4680 && elf_header.e_shstrndx >= elf_header.e_shnum)
4681 printf (_(" <corrupt: out of range>"));
4682 putc ('\n', stdout);
4683 }
4684
4685 if (section_headers != NULL)
4686 {
4687 if (elf_header.e_phnum == PN_XNUM
4688 && section_headers[0].sh_info != 0)
4689 elf_header.e_phnum = section_headers[0].sh_info;
4690 if (elf_header.e_shnum == SHN_UNDEF)
4691 elf_header.e_shnum = section_headers[0].sh_size;
4692 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
4693 elf_header.e_shstrndx = section_headers[0].sh_link;
4694 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
4695 elf_header.e_shstrndx = SHN_UNDEF;
4696 free (section_headers);
4697 section_headers = NULL;
4698 }
4699
4700 return TRUE;
4701 }
4702
4703 static bfd_boolean
4704 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4705 {
4706 Elf32_External_Phdr * phdrs;
4707 Elf32_External_Phdr * external;
4708 Elf_Internal_Phdr * internal;
4709 unsigned int i;
4710 unsigned int size = elf_header.e_phentsize;
4711 unsigned int num = elf_header.e_phnum;
4712
4713 /* PR binutils/17531: Cope with unexpected section header sizes. */
4714 if (size == 0 || num == 0)
4715 return FALSE;
4716 if (size < sizeof * phdrs)
4717 {
4718 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4719 return FALSE;
4720 }
4721 if (size > sizeof * phdrs)
4722 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4723
4724 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4725 size, num, _("program headers"));
4726 if (phdrs == NULL)
4727 return FALSE;
4728
4729 for (i = 0, internal = pheaders, external = phdrs;
4730 i < elf_header.e_phnum;
4731 i++, internal++, external++)
4732 {
4733 internal->p_type = BYTE_GET (external->p_type);
4734 internal->p_offset = BYTE_GET (external->p_offset);
4735 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4736 internal->p_paddr = BYTE_GET (external->p_paddr);
4737 internal->p_filesz = BYTE_GET (external->p_filesz);
4738 internal->p_memsz = BYTE_GET (external->p_memsz);
4739 internal->p_flags = BYTE_GET (external->p_flags);
4740 internal->p_align = BYTE_GET (external->p_align);
4741 }
4742
4743 free (phdrs);
4744 return TRUE;
4745 }
4746
4747 static bfd_boolean
4748 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
4749 {
4750 Elf64_External_Phdr * phdrs;
4751 Elf64_External_Phdr * external;
4752 Elf_Internal_Phdr * internal;
4753 unsigned int i;
4754 unsigned int size = elf_header.e_phentsize;
4755 unsigned int num = elf_header.e_phnum;
4756
4757 /* PR binutils/17531: Cope with unexpected section header sizes. */
4758 if (size == 0 || num == 0)
4759 return FALSE;
4760 if (size < sizeof * phdrs)
4761 {
4762 error (_("The e_phentsize field in the ELF header is less than the size of an ELF program header\n"));
4763 return FALSE;
4764 }
4765 if (size > sizeof * phdrs)
4766 warn (_("The e_phentsize field in the ELF header is larger than the size of an ELF program header\n"));
4767
4768 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
4769 size, num, _("program headers"));
4770 if (!phdrs)
4771 return FALSE;
4772
4773 for (i = 0, internal = pheaders, external = phdrs;
4774 i < elf_header.e_phnum;
4775 i++, internal++, external++)
4776 {
4777 internal->p_type = BYTE_GET (external->p_type);
4778 internal->p_flags = BYTE_GET (external->p_flags);
4779 internal->p_offset = BYTE_GET (external->p_offset);
4780 internal->p_vaddr = BYTE_GET (external->p_vaddr);
4781 internal->p_paddr = BYTE_GET (external->p_paddr);
4782 internal->p_filesz = BYTE_GET (external->p_filesz);
4783 internal->p_memsz = BYTE_GET (external->p_memsz);
4784 internal->p_align = BYTE_GET (external->p_align);
4785 }
4786
4787 free (phdrs);
4788 return TRUE;
4789 }
4790
4791 /* Returns TRUE if the program headers were read into `program_headers'. */
4792
4793 static bfd_boolean
4794 get_program_headers (FILE * file)
4795 {
4796 Elf_Internal_Phdr * phdrs;
4797
4798 /* Check cache of prior read. */
4799 if (program_headers != NULL)
4800 return TRUE;
4801
4802 /* Be kind to memory checkers by looking for
4803 e_phnum values which we know must be invalid. */
4804 if (elf_header.e_phnum
4805 * (is_32bit_elf ? sizeof (Elf32_External_Phdr) : sizeof (Elf64_External_Phdr))
4806 >= current_file_size)
4807 {
4808 error (_("Too many program headers - %#x - the file is not that big\n"),
4809 elf_header.e_phnum);
4810 return FALSE;
4811 }
4812
4813 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
4814 sizeof (Elf_Internal_Phdr));
4815 if (phdrs == NULL)
4816 {
4817 error (_("Out of memory reading %u program headers\n"),
4818 elf_header.e_phnum);
4819 return FALSE;
4820 }
4821
4822 if (is_32bit_elf
4823 ? get_32bit_program_headers (file, phdrs)
4824 : get_64bit_program_headers (file, phdrs))
4825 {
4826 program_headers = phdrs;
4827 return TRUE;
4828 }
4829
4830 free (phdrs);
4831 return FALSE;
4832 }
4833
4834 /* Returns TRUE if the program headers were loaded. */
4835
4836 static bfd_boolean
4837 process_program_headers (FILE * file)
4838 {
4839 Elf_Internal_Phdr * segment;
4840 unsigned int i;
4841 Elf_Internal_Phdr * previous_load = NULL;
4842
4843 if (elf_header.e_phnum == 0)
4844 {
4845 /* PR binutils/12467. */
4846 if (elf_header.e_phoff != 0)
4847 {
4848 warn (_("possibly corrupt ELF header - it has a non-zero program"
4849 " header offset, but no program headers\n"));
4850 return FALSE;
4851 }
4852 else if (do_segments)
4853 printf (_("\nThere are no program headers in this file.\n"));
4854 return TRUE;
4855 }
4856
4857 if (do_segments && !do_header)
4858 {
4859 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
4860 printf (_("Entry point "));
4861 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
4862 printf (_("\nThere are %d program headers, starting at offset "),
4863 elf_header.e_phnum);
4864 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
4865 printf ("\n");
4866 }
4867
4868 if (! get_program_headers (file))
4869 return TRUE;
4870
4871 if (do_segments)
4872 {
4873 if (elf_header.e_phnum > 1)
4874 printf (_("\nProgram Headers:\n"));
4875 else
4876 printf (_("\nProgram Headers:\n"));
4877
4878 if (is_32bit_elf)
4879 printf
4880 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4881 else if (do_wide)
4882 printf
4883 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4884 else
4885 {
4886 printf
4887 (_(" Type Offset VirtAddr PhysAddr\n"));
4888 printf
4889 (_(" FileSiz MemSiz Flags Align\n"));
4890 }
4891 }
4892
4893 dynamic_addr = 0;
4894 dynamic_size = 0;
4895
4896 for (i = 0, segment = program_headers;
4897 i < elf_header.e_phnum;
4898 i++, segment++)
4899 {
4900 if (do_segments)
4901 {
4902 printf (" %-14.14s ", get_segment_type (segment->p_type));
4903
4904 if (is_32bit_elf)
4905 {
4906 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4907 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4908 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4909 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4910 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4911 printf ("%c%c%c ",
4912 (segment->p_flags & PF_R ? 'R' : ' '),
4913 (segment->p_flags & PF_W ? 'W' : ' '),
4914 (segment->p_flags & PF_X ? 'E' : ' '));
4915 printf ("%#lx", (unsigned long) segment->p_align);
4916 }
4917 else if (do_wide)
4918 {
4919 if ((unsigned long) segment->p_offset == segment->p_offset)
4920 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4921 else
4922 {
4923 print_vma (segment->p_offset, FULL_HEX);
4924 putchar (' ');
4925 }
4926
4927 print_vma (segment->p_vaddr, FULL_HEX);
4928 putchar (' ');
4929 print_vma (segment->p_paddr, FULL_HEX);
4930 putchar (' ');
4931
4932 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4933 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4934 else
4935 {
4936 print_vma (segment->p_filesz, FULL_HEX);
4937 putchar (' ');
4938 }
4939
4940 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4941 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4942 else
4943 {
4944 print_vma (segment->p_memsz, FULL_HEX);
4945 }
4946
4947 printf (" %c%c%c ",
4948 (segment->p_flags & PF_R ? 'R' : ' '),
4949 (segment->p_flags & PF_W ? 'W' : ' '),
4950 (segment->p_flags & PF_X ? 'E' : ' '));
4951
4952 if ((unsigned long) segment->p_align == segment->p_align)
4953 printf ("%#lx", (unsigned long) segment->p_align);
4954 else
4955 {
4956 print_vma (segment->p_align, PREFIX_HEX);
4957 }
4958 }
4959 else
4960 {
4961 print_vma (segment->p_offset, FULL_HEX);
4962 putchar (' ');
4963 print_vma (segment->p_vaddr, FULL_HEX);
4964 putchar (' ');
4965 print_vma (segment->p_paddr, FULL_HEX);
4966 printf ("\n ");
4967 print_vma (segment->p_filesz, FULL_HEX);
4968 putchar (' ');
4969 print_vma (segment->p_memsz, FULL_HEX);
4970 printf (" %c%c%c ",
4971 (segment->p_flags & PF_R ? 'R' : ' '),
4972 (segment->p_flags & PF_W ? 'W' : ' '),
4973 (segment->p_flags & PF_X ? 'E' : ' '));
4974 print_vma (segment->p_align, PREFIX_HEX);
4975 }
4976
4977 putc ('\n', stdout);
4978 }
4979
4980 switch (segment->p_type)
4981 {
4982 case PT_LOAD:
4983 #if 0 /* Do not warn about out of order PT_LOAD segments. Although officially
4984 required by the ELF standard, several programs, including the Linux
4985 kernel, make use of non-ordered segments. */
4986 if (previous_load
4987 && previous_load->p_vaddr > segment->p_vaddr)
4988 error (_("LOAD segments must be sorted in order of increasing VirtAddr\n"));
4989 #endif
4990 if (segment->p_memsz < segment->p_filesz)
4991 error (_("the segment's file size is larger than its memory size\n"));
4992 previous_load = segment;
4993 break;
4994
4995 case PT_PHDR:
4996 /* PR 20815 - Verify that the program header is loaded into memory. */
4997 if (i > 0 && previous_load != NULL)
4998 error (_("the PHDR segment must occur before any LOAD segment\n"));
4999 if (elf_header.e_machine != EM_PARISC)
5000 {
5001 unsigned int j;
5002
5003 for (j = 1; j < elf_header.e_phnum; j++)
5004 if (program_headers[j].p_vaddr <= segment->p_vaddr
5005 && (program_headers[j].p_vaddr + program_headers[j].p_memsz)
5006 >= (segment->p_vaddr + segment->p_filesz))
5007 break;
5008 if (j == elf_header.e_phnum)
5009 error (_("the PHDR segment is not covered by a LOAD segment\n"));
5010 }
5011 break;
5012
5013 case PT_DYNAMIC:
5014 if (dynamic_addr)
5015 error (_("more than one dynamic segment\n"));
5016
5017 /* By default, assume that the .dynamic section is the first
5018 section in the DYNAMIC segment. */
5019 dynamic_addr = segment->p_offset;
5020 dynamic_size = segment->p_filesz;
5021
5022 /* Try to locate the .dynamic section. If there is
5023 a section header table, we can easily locate it. */
5024 if (section_headers != NULL)
5025 {
5026 Elf_Internal_Shdr * sec;
5027
5028 sec = find_section (".dynamic");
5029 if (sec == NULL || sec->sh_size == 0)
5030 {
5031 /* A corresponding .dynamic section is expected, but on
5032 IA-64/OpenVMS it is OK for it to be missing. */
5033 if (!is_ia64_vms ())
5034 error (_("no .dynamic section in the dynamic segment\n"));
5035 break;
5036 }
5037
5038 if (sec->sh_type == SHT_NOBITS)
5039 {
5040 dynamic_size = 0;
5041 break;
5042 }
5043
5044 dynamic_addr = sec->sh_offset;
5045 dynamic_size = sec->sh_size;
5046
5047 if (dynamic_addr < segment->p_offset
5048 || dynamic_addr > segment->p_offset + segment->p_filesz)
5049 warn (_("the .dynamic section is not contained"
5050 " within the dynamic segment\n"));
5051 else if (dynamic_addr > segment->p_offset)
5052 warn (_("the .dynamic section is not the first section"
5053 " in the dynamic segment.\n"));
5054 }
5055
5056 /* PR binutils/17512: Avoid corrupt dynamic section info in the
5057 segment. Check this after matching against the section headers
5058 so we don't warn on debuginfo file (which have NOBITS .dynamic
5059 sections). */
5060 if (dynamic_addr + dynamic_size >= current_file_size)
5061 {
5062 error (_("the dynamic segment offset + size exceeds the size of the file\n"));
5063 dynamic_addr = dynamic_size = 0;
5064 }
5065 break;
5066
5067 case PT_INTERP:
5068 if (fseek (file, archive_file_offset + (long) segment->p_offset,
5069 SEEK_SET))
5070 error (_("Unable to find program interpreter name\n"));
5071 else
5072 {
5073 char fmt [32];
5074 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX - 1);
5075
5076 if (ret >= (int) sizeof (fmt) || ret < 0)
5077 error (_("Internal error: failed to create format string to display program interpreter\n"));
5078
5079 program_interpreter[0] = 0;
5080 if (fscanf (file, fmt, program_interpreter) <= 0)
5081 error (_("Unable to read program interpreter name\n"));
5082
5083 if (do_segments)
5084 printf (_(" [Requesting program interpreter: %s]\n"),
5085 program_interpreter);
5086 }
5087 break;
5088 }
5089 }
5090
5091 if (do_segments && section_headers != NULL && string_table != NULL)
5092 {
5093 printf (_("\n Section to Segment mapping:\n"));
5094 printf (_(" Segment Sections...\n"));
5095
5096 for (i = 0; i < elf_header.e_phnum; i++)
5097 {
5098 unsigned int j;
5099 Elf_Internal_Shdr * section;
5100
5101 segment = program_headers + i;
5102 section = section_headers + 1;
5103
5104 printf (" %2.2d ", i);
5105
5106 for (j = 1; j < elf_header.e_shnum; j++, section++)
5107 {
5108 if (!ELF_TBSS_SPECIAL (section, segment)
5109 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
5110 printf ("%s ", printable_section_name (section));
5111 }
5112
5113 putc ('\n',stdout);
5114 }
5115 }
5116
5117 return TRUE;
5118 }
5119
5120
5121 /* Find the file offset corresponding to VMA by using the program headers. */
5122
5123 static long
5124 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
5125 {
5126 Elf_Internal_Phdr * seg;
5127
5128 if (! get_program_headers (file))
5129 {
5130 warn (_("Cannot interpret virtual addresses without program headers.\n"));
5131 return (long) vma;
5132 }
5133
5134 for (seg = program_headers;
5135 seg < program_headers + elf_header.e_phnum;
5136 ++seg)
5137 {
5138 if (seg->p_type != PT_LOAD)
5139 continue;
5140
5141 if (vma >= (seg->p_vaddr & -seg->p_align)
5142 && vma + size <= seg->p_vaddr + seg->p_filesz)
5143 return vma - seg->p_vaddr + seg->p_offset;
5144 }
5145
5146 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
5147 (unsigned long) vma);
5148 return (long) vma;
5149 }
5150
5151
5152 /* Allocate memory and load the sections headers into the global pointer
5153 SECTION_HEADERS. If PROBE is true, this is just a probe and we do not
5154 generate any error messages if the load fails. */
5155
5156 static bfd_boolean
5157 get_32bit_section_headers (FILE * file, bfd_boolean probe)
5158 {
5159 Elf32_External_Shdr * shdrs;
5160 Elf_Internal_Shdr * internal;
5161 unsigned int i;
5162 unsigned int size = elf_header.e_shentsize;
5163 unsigned int num = probe ? 1 : elf_header.e_shnum;
5164
5165 /* PR binutils/17531: Cope with unexpected section header sizes. */
5166 if (size == 0 || num == 0)
5167 return FALSE;
5168 if (size < sizeof * shdrs)
5169 {
5170 if (! probe)
5171 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5172 return FALSE;
5173 }
5174 if (!probe && size > sizeof * shdrs)
5175 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5176
5177 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5178 size, num,
5179 probe ? NULL : _("section headers"));
5180 if (shdrs == NULL)
5181 return FALSE;
5182
5183 if (section_headers != NULL)
5184 free (section_headers);
5185 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5186 sizeof (Elf_Internal_Shdr));
5187 if (section_headers == NULL)
5188 {
5189 if (!probe)
5190 error (_("Out of memory reading %u section headers\n"), num);
5191 return FALSE;
5192 }
5193
5194 for (i = 0, internal = section_headers;
5195 i < num;
5196 i++, internal++)
5197 {
5198 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5199 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5200 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5201 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5202 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5203 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5204 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5205 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5206 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5207 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5208 if (!probe && internal->sh_link > num)
5209 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5210 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5211 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5212 }
5213
5214 free (shdrs);
5215 return TRUE;
5216 }
5217
5218 static bfd_boolean
5219 get_64bit_section_headers (FILE * file, bfd_boolean probe)
5220 {
5221 Elf64_External_Shdr * shdrs;
5222 Elf_Internal_Shdr * internal;
5223 unsigned int i;
5224 unsigned int size = elf_header.e_shentsize;
5225 unsigned int num = probe ? 1 : elf_header.e_shnum;
5226
5227 /* PR binutils/17531: Cope with unexpected section header sizes. */
5228 if (size == 0 || num == 0)
5229 return FALSE;
5230 if (size < sizeof * shdrs)
5231 {
5232 if (! probe)
5233 error (_("The e_shentsize field in the ELF header is less than the size of an ELF section header\n"));
5234 return FALSE;
5235 }
5236 if (! probe && size > sizeof * shdrs)
5237 warn (_("The e_shentsize field in the ELF header is larger than the size of an ELF section header\n"));
5238
5239 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
5240 size, num,
5241 probe ? NULL : _("section headers"));
5242 if (shdrs == NULL)
5243 return FALSE;
5244
5245 if (section_headers != NULL)
5246 free (section_headers);
5247 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
5248 sizeof (Elf_Internal_Shdr));
5249 if (section_headers == NULL)
5250 {
5251 if (! probe)
5252 error (_("Out of memory reading %u section headers\n"), num);
5253 return FALSE;
5254 }
5255
5256 for (i = 0, internal = section_headers;
5257 i < num;
5258 i++, internal++)
5259 {
5260 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
5261 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
5262 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
5263 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
5264 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
5265 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
5266 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
5267 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
5268 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
5269 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
5270 if (!probe && internal->sh_link > num)
5271 warn (_("Section %u has an out of range sh_link value of %u\n"), i, internal->sh_link);
5272 if (!probe && internal->sh_flags & SHF_INFO_LINK && internal->sh_info > num)
5273 warn (_("Section %u has an out of range sh_info value of %u\n"), i, internal->sh_info);
5274 }
5275
5276 free (shdrs);
5277 return TRUE;
5278 }
5279
5280 static Elf_Internal_Sym *
5281 get_32bit_elf_symbols (FILE * file,
5282 Elf_Internal_Shdr * section,
5283 unsigned long * num_syms_return)
5284 {
5285 unsigned long number = 0;
5286 Elf32_External_Sym * esyms = NULL;
5287 Elf_External_Sym_Shndx * shndx = NULL;
5288 Elf_Internal_Sym * isyms = NULL;
5289 Elf_Internal_Sym * psym;
5290 unsigned int j;
5291
5292 if (section->sh_size == 0)
5293 {
5294 if (num_syms_return != NULL)
5295 * num_syms_return = 0;
5296 return NULL;
5297 }
5298
5299 /* Run some sanity checks first. */
5300 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5301 {
5302 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5303 printable_section_name (section), (unsigned long) section->sh_entsize);
5304 goto exit_point;
5305 }
5306
5307 if (section->sh_size > current_file_size)
5308 {
5309 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5310 printable_section_name (section), (unsigned long) section->sh_size);
5311 goto exit_point;
5312 }
5313
5314 number = section->sh_size / section->sh_entsize;
5315
5316 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
5317 {
5318 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5319 (unsigned long) section->sh_size,
5320 printable_section_name (section),
5321 (unsigned long) section->sh_entsize);
5322 goto exit_point;
5323 }
5324
5325 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5326 section->sh_size, _("symbols"));
5327 if (esyms == NULL)
5328 goto exit_point;
5329
5330 {
5331 elf_section_list * entry;
5332
5333 shndx = NULL;
5334 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5335 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5336 {
5337 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5338 entry->hdr->sh_offset,
5339 1, entry->hdr->sh_size,
5340 _("symbol table section indicies"));
5341 if (shndx == NULL)
5342 goto exit_point;
5343 /* PR17531: file: heap-buffer-overflow */
5344 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5345 {
5346 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5347 printable_section_name (entry->hdr),
5348 (unsigned long) entry->hdr->sh_size,
5349 (unsigned long) section->sh_size);
5350 goto exit_point;
5351 }
5352 }
5353 }
5354
5355 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5356
5357 if (isyms == NULL)
5358 {
5359 error (_("Out of memory reading %lu symbols\n"),
5360 (unsigned long) number);
5361 goto exit_point;
5362 }
5363
5364 for (j = 0, psym = isyms; j < number; j++, psym++)
5365 {
5366 psym->st_name = BYTE_GET (esyms[j].st_name);
5367 psym->st_value = BYTE_GET (esyms[j].st_value);
5368 psym->st_size = BYTE_GET (esyms[j].st_size);
5369 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5370 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5371 psym->st_shndx
5372 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5373 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5374 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5375 psym->st_info = BYTE_GET (esyms[j].st_info);
5376 psym->st_other = BYTE_GET (esyms[j].st_other);
5377 }
5378
5379 exit_point:
5380 if (shndx != NULL)
5381 free (shndx);
5382 if (esyms != NULL)
5383 free (esyms);
5384
5385 if (num_syms_return != NULL)
5386 * num_syms_return = isyms == NULL ? 0 : number;
5387
5388 return isyms;
5389 }
5390
5391 static Elf_Internal_Sym *
5392 get_64bit_elf_symbols (FILE * file,
5393 Elf_Internal_Shdr * section,
5394 unsigned long * num_syms_return)
5395 {
5396 unsigned long number = 0;
5397 Elf64_External_Sym * esyms = NULL;
5398 Elf_External_Sym_Shndx * shndx = NULL;
5399 Elf_Internal_Sym * isyms = NULL;
5400 Elf_Internal_Sym * psym;
5401 unsigned int j;
5402
5403 if (section->sh_size == 0)
5404 {
5405 if (num_syms_return != NULL)
5406 * num_syms_return = 0;
5407 return NULL;
5408 }
5409
5410 /* Run some sanity checks first. */
5411 if (section->sh_entsize == 0 || section->sh_entsize > section->sh_size)
5412 {
5413 error (_("Section %s has an invalid sh_entsize of 0x%lx\n"),
5414 printable_section_name (section),
5415 (unsigned long) section->sh_entsize);
5416 goto exit_point;
5417 }
5418
5419 if (section->sh_size > current_file_size)
5420 {
5421 error (_("Section %s has an invalid sh_size of 0x%lx\n"),
5422 printable_section_name (section),
5423 (unsigned long) section->sh_size);
5424 goto exit_point;
5425 }
5426
5427 number = section->sh_size / section->sh_entsize;
5428
5429 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
5430 {
5431 error (_("Size (0x%lx) of section %s is not a multiple of its sh_entsize (0x%lx)\n"),
5432 (unsigned long) section->sh_size,
5433 printable_section_name (section),
5434 (unsigned long) section->sh_entsize);
5435 goto exit_point;
5436 }
5437
5438 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
5439 section->sh_size, _("symbols"));
5440 if (!esyms)
5441 goto exit_point;
5442
5443 {
5444 elf_section_list * entry;
5445
5446 shndx = NULL;
5447 for (entry = symtab_shndx_list; entry != NULL; entry = entry->next)
5448 if (entry->hdr->sh_link == (unsigned long) (section - section_headers))
5449 {
5450 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
5451 entry->hdr->sh_offset,
5452 1, entry->hdr->sh_size,
5453 _("symbol table section indicies"));
5454 if (shndx == NULL)
5455 goto exit_point;
5456 /* PR17531: file: heap-buffer-overflow */
5457 else if (entry->hdr->sh_size / sizeof (Elf_External_Sym_Shndx) < number)
5458 {
5459 error (_("Index section %s has an sh_size of 0x%lx - expected 0x%lx\n"),
5460 printable_section_name (entry->hdr),
5461 (unsigned long) entry->hdr->sh_size,
5462 (unsigned long) section->sh_size);
5463 goto exit_point;
5464 }
5465 }
5466 }
5467
5468 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
5469
5470 if (isyms == NULL)
5471 {
5472 error (_("Out of memory reading %lu symbols\n"),
5473 (unsigned long) number);
5474 goto exit_point;
5475 }
5476
5477 for (j = 0, psym = isyms; j < number; j++, psym++)
5478 {
5479 psym->st_name = BYTE_GET (esyms[j].st_name);
5480 psym->st_info = BYTE_GET (esyms[j].st_info);
5481 psym->st_other = BYTE_GET (esyms[j].st_other);
5482 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
5483
5484 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
5485 psym->st_shndx
5486 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
5487 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
5488 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
5489
5490 psym->st_value = BYTE_GET (esyms[j].st_value);
5491 psym->st_size = BYTE_GET (esyms[j].st_size);
5492 }
5493
5494 exit_point:
5495 if (shndx != NULL)
5496 free (shndx);
5497 if (esyms != NULL)
5498 free (esyms);
5499
5500 if (num_syms_return != NULL)
5501 * num_syms_return = isyms == NULL ? 0 : number;
5502
5503 return isyms;
5504 }
5505
5506 static const char *
5507 get_elf_section_flags (bfd_vma sh_flags)
5508 {
5509 static char buff[1024];
5510 char * p = buff;
5511 unsigned int field_size = is_32bit_elf ? 8 : 16;
5512 signed int sindex;
5513 unsigned int size = sizeof (buff) - (field_size + 4 + 1);
5514 bfd_vma os_flags = 0;
5515 bfd_vma proc_flags = 0;
5516 bfd_vma unknown_flags = 0;
5517 static const struct
5518 {
5519 const char * str;
5520 unsigned int len;
5521 }
5522 flags [] =
5523 {
5524 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
5525 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
5526 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
5527 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
5528 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
5529 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
5530 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
5531 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
5532 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
5533 /* 9 */ { STRING_COMMA_LEN ("TLS") },
5534 /* IA-64 specific. */
5535 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
5536 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
5537 /* IA-64 OpenVMS specific. */
5538 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
5539 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
5540 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
5541 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
5542 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
5543 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
5544 /* Generic. */
5545 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
5546 /* SPARC specific. */
5547 /* 19 */ { STRING_COMMA_LEN ("ORDERED") },
5548 /* 20 */ { STRING_COMMA_LEN ("COMPRESSED") },
5549 /* ARM specific. */
5550 /* 21 */ { STRING_COMMA_LEN ("ENTRYSECT") },
5551 /* 22 */ { STRING_COMMA_LEN ("ARM_PURECODE") },
5552 /* 23 */ { STRING_COMMA_LEN ("COMDEF") },
5553 /* GNU specific. */
5554 /* 24 */ { STRING_COMMA_LEN ("GNU_MBIND") },
5555 };
5556
5557 if (do_section_details)
5558 {
5559 sprintf (buff, "[%*.*lx]: ",
5560 field_size, field_size, (unsigned long) sh_flags);
5561 p += field_size + 4;
5562 }
5563
5564 while (sh_flags)
5565 {
5566 bfd_vma flag;
5567
5568 flag = sh_flags & - sh_flags;
5569 sh_flags &= ~ flag;
5570
5571 if (do_section_details)
5572 {
5573 switch (flag)
5574 {
5575 case SHF_WRITE: sindex = 0; break;
5576 case SHF_ALLOC: sindex = 1; break;
5577 case SHF_EXECINSTR: sindex = 2; break;
5578 case SHF_MERGE: sindex = 3; break;
5579 case SHF_STRINGS: sindex = 4; break;
5580 case SHF_INFO_LINK: sindex = 5; break;
5581 case SHF_LINK_ORDER: sindex = 6; break;
5582 case SHF_OS_NONCONFORMING: sindex = 7; break;
5583 case SHF_GROUP: sindex = 8; break;
5584 case SHF_TLS: sindex = 9; break;
5585 case SHF_EXCLUDE: sindex = 18; break;
5586 case SHF_COMPRESSED: sindex = 20; break;
5587 case SHF_GNU_MBIND: sindex = 24; break;
5588
5589 default:
5590 sindex = -1;
5591 switch (elf_header.e_machine)
5592 {
5593 case EM_IA_64:
5594 if (flag == SHF_IA_64_SHORT)
5595 sindex = 10;
5596 else if (flag == SHF_IA_64_NORECOV)
5597 sindex = 11;
5598 #ifdef BFD64
5599 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
5600 switch (flag)
5601 {
5602 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
5603 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
5604 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
5605 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
5606 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
5607 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
5608 default: break;
5609 }
5610 #endif
5611 break;
5612
5613 case EM_386:
5614 case EM_IAMCU:
5615 case EM_X86_64:
5616 case EM_L1OM:
5617 case EM_K1OM:
5618 case EM_OLD_SPARCV9:
5619 case EM_SPARC32PLUS:
5620 case EM_SPARCV9:
5621 case EM_SPARC:
5622 if (flag == SHF_ORDERED)
5623 sindex = 19;
5624 break;
5625
5626 case EM_ARM:
5627 switch (flag)
5628 {
5629 case SHF_ENTRYSECT: sindex = 21; break;
5630 case SHF_ARM_PURECODE: sindex = 22; break;
5631 case SHF_COMDEF: sindex = 23; break;
5632 default: break;
5633 }
5634 break;
5635
5636 default:
5637 break;
5638 }
5639 }
5640
5641 if (sindex != -1)
5642 {
5643 if (p != buff + field_size + 4)
5644 {
5645 if (size < (10 + 2))
5646 {
5647 warn (_("Internal error: not enough buffer room for section flag info"));
5648 return _("<unknown>");
5649 }
5650 size -= 2;
5651 *p++ = ',';
5652 *p++ = ' ';
5653 }
5654
5655 size -= flags [sindex].len;
5656 p = stpcpy (p, flags [sindex].str);
5657 }
5658 else if (flag & SHF_MASKOS)
5659 os_flags |= flag;
5660 else if (flag & SHF_MASKPROC)
5661 proc_flags |= flag;
5662 else
5663 unknown_flags |= flag;
5664 }
5665 else
5666 {
5667 switch (flag)
5668 {
5669 case SHF_WRITE: *p = 'W'; break;
5670 case SHF_ALLOC: *p = 'A'; break;
5671 case SHF_EXECINSTR: *p = 'X'; break;
5672 case SHF_MERGE: *p = 'M'; break;
5673 case SHF_STRINGS: *p = 'S'; break;
5674 case SHF_INFO_LINK: *p = 'I'; break;
5675 case SHF_LINK_ORDER: *p = 'L'; break;
5676 case SHF_OS_NONCONFORMING: *p = 'O'; break;
5677 case SHF_GROUP: *p = 'G'; break;
5678 case SHF_TLS: *p = 'T'; break;
5679 case SHF_EXCLUDE: *p = 'E'; break;
5680 case SHF_COMPRESSED: *p = 'C'; break;
5681 case SHF_GNU_MBIND: *p = 'D'; break;
5682
5683 default:
5684 if ((elf_header.e_machine == EM_X86_64
5685 || elf_header.e_machine == EM_L1OM
5686 || elf_header.e_machine == EM_K1OM)
5687 && flag == SHF_X86_64_LARGE)
5688 *p = 'l';
5689 else if (elf_header.e_machine == EM_ARM
5690 && flag == SHF_ARM_PURECODE)
5691 *p = 'y';
5692 else if (flag & SHF_MASKOS)
5693 {
5694 *p = 'o';
5695 sh_flags &= ~ SHF_MASKOS;
5696 }
5697 else if (flag & SHF_MASKPROC)
5698 {
5699 *p = 'p';
5700 sh_flags &= ~ SHF_MASKPROC;
5701 }
5702 else
5703 *p = 'x';
5704 break;
5705 }
5706 p++;
5707 }
5708 }
5709
5710 if (do_section_details)
5711 {
5712 if (os_flags)
5713 {
5714 size -= 5 + field_size;
5715 if (p != buff + field_size + 4)
5716 {
5717 if (size < (2 + 1))
5718 {
5719 warn (_("Internal error: not enough buffer room for section flag info"));
5720 return _("<unknown>");
5721 }
5722 size -= 2;
5723 *p++ = ',';
5724 *p++ = ' ';
5725 }
5726 sprintf (p, "OS (%*.*lx)", field_size, field_size,
5727 (unsigned long) os_flags);
5728 p += 5 + field_size;
5729 }
5730 if (proc_flags)
5731 {
5732 size -= 7 + field_size;
5733 if (p != buff + field_size + 4)
5734 {
5735 if (size < (2 + 1))
5736 {
5737 warn (_("Internal error: not enough buffer room for section flag info"));
5738 return _("<unknown>");
5739 }
5740 size -= 2;
5741 *p++ = ',';
5742 *p++ = ' ';
5743 }
5744 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
5745 (unsigned long) proc_flags);
5746 p += 7 + field_size;
5747 }
5748 if (unknown_flags)
5749 {
5750 size -= 10 + field_size;
5751 if (p != buff + field_size + 4)
5752 {
5753 if (size < (2 + 1))
5754 {
5755 warn (_("Internal error: not enough buffer room for section flag info"));
5756 return _("<unknown>");
5757 }
5758 size -= 2;
5759 *p++ = ',';
5760 *p++ = ' ';
5761 }
5762 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
5763 (unsigned long) unknown_flags);
5764 p += 10 + field_size;
5765 }
5766 }
5767
5768 *p = '\0';
5769 return buff;
5770 }
5771
5772 static unsigned int
5773 get_compression_header (Elf_Internal_Chdr *chdr, unsigned char *buf, bfd_size_type size)
5774 {
5775 if (is_32bit_elf)
5776 {
5777 Elf32_External_Chdr *echdr = (Elf32_External_Chdr *) buf;
5778
5779 if (size < sizeof (* echdr))
5780 {
5781 error (_("Compressed section is too small even for a compression header\n"));
5782 return 0;
5783 }
5784
5785 chdr->ch_type = BYTE_GET (echdr->ch_type);
5786 chdr->ch_size = BYTE_GET (echdr->ch_size);
5787 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5788 return sizeof (*echdr);
5789 }
5790 else
5791 {
5792 Elf64_External_Chdr *echdr = (Elf64_External_Chdr *) buf;
5793
5794 if (size < sizeof (* echdr))
5795 {
5796 error (_("Compressed section is too small even for a compression header\n"));
5797 return 0;
5798 }
5799
5800 chdr->ch_type = BYTE_GET (echdr->ch_type);
5801 chdr->ch_size = BYTE_GET (echdr->ch_size);
5802 chdr->ch_addralign = BYTE_GET (echdr->ch_addralign);
5803 return sizeof (*echdr);
5804 }
5805 }
5806
5807 static bfd_boolean
5808 process_section_headers (FILE * file)
5809 {
5810 Elf_Internal_Shdr * section;
5811 unsigned int i;
5812
5813 section_headers = NULL;
5814
5815 if (elf_header.e_shnum == 0)
5816 {
5817 /* PR binutils/12467. */
5818 if (elf_header.e_shoff != 0)
5819 {
5820 warn (_("possibly corrupt ELF file header - it has a non-zero"
5821 " section header offset, but no section headers\n"));
5822 return FALSE;
5823 }
5824 else if (do_sections)
5825 printf (_("\nThere are no sections in this file.\n"));
5826
5827 return TRUE;
5828 }
5829
5830 if (do_sections && !do_header)
5831 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
5832 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
5833
5834 if (is_32bit_elf)
5835 {
5836 if (! get_32bit_section_headers (file, FALSE))
5837 return FALSE;
5838 }
5839 else
5840 {
5841 if (! get_64bit_section_headers (file, FALSE))
5842 return FALSE;
5843 }
5844
5845 /* Read in the string table, so that we have names to display. */
5846 if (elf_header.e_shstrndx != SHN_UNDEF
5847 && elf_header.e_shstrndx < elf_header.e_shnum)
5848 {
5849 section = section_headers + elf_header.e_shstrndx;
5850
5851 if (section->sh_size != 0)
5852 {
5853 string_table = (char *) get_data (NULL, file, section->sh_offset,
5854 1, section->sh_size,
5855 _("string table"));
5856
5857 string_table_length = string_table != NULL ? section->sh_size : 0;
5858 }
5859 }
5860
5861 /* Scan the sections for the dynamic symbol table
5862 and dynamic string table and debug sections. */
5863 dynamic_symbols = NULL;
5864 dynamic_strings = NULL;
5865 dynamic_syminfo = NULL;
5866 symtab_shndx_list = NULL;
5867
5868 eh_addr_size = is_32bit_elf ? 4 : 8;
5869 switch (elf_header.e_machine)
5870 {
5871 case EM_MIPS:
5872 case EM_MIPS_RS3_LE:
5873 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
5874 FDE addresses. However, the ABI also has a semi-official ILP32
5875 variant for which the normal FDE address size rules apply.
5876
5877 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
5878 section, where XX is the size of longs in bits. Unfortunately,
5879 earlier compilers provided no way of distinguishing ILP32 objects
5880 from LP64 objects, so if there's any doubt, we should assume that
5881 the official LP64 form is being used. */
5882 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
5883 && find_section (".gcc_compiled_long32") == NULL)
5884 eh_addr_size = 8;
5885 break;
5886
5887 case EM_H8_300:
5888 case EM_H8_300H:
5889 switch (elf_header.e_flags & EF_H8_MACH)
5890 {
5891 case E_H8_MACH_H8300:
5892 case E_H8_MACH_H8300HN:
5893 case E_H8_MACH_H8300SN:
5894 case E_H8_MACH_H8300SXN:
5895 eh_addr_size = 2;
5896 break;
5897 case E_H8_MACH_H8300H:
5898 case E_H8_MACH_H8300S:
5899 case E_H8_MACH_H8300SX:
5900 eh_addr_size = 4;
5901 break;
5902 }
5903 break;
5904
5905 case EM_M32C_OLD:
5906 case EM_M32C:
5907 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
5908 {
5909 case EF_M32C_CPU_M16C:
5910 eh_addr_size = 2;
5911 break;
5912 }
5913 break;
5914 }
5915
5916 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
5917 do \
5918 { \
5919 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
5920 if (section->sh_entsize != expected_entsize) \
5921 { \
5922 char buf[40]; \
5923 sprintf_vma (buf, section->sh_entsize); \
5924 /* Note: coded this way so that there is a single string for \
5925 translation. */ \
5926 error (_("Section %d has invalid sh_entsize of %s\n"), i, buf); \
5927 error (_("(Using the expected size of %u for the rest of this dump)\n"), \
5928 (unsigned) expected_entsize); \
5929 section->sh_entsize = expected_entsize; \
5930 } \
5931 } \
5932 while (0)
5933
5934 #define CHECK_ENTSIZE(section, i, type) \
5935 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
5936 sizeof (Elf64_External_##type))
5937
5938 for (i = 0, section = section_headers;
5939 i < elf_header.e_shnum;
5940 i++, section++)
5941 {
5942 char * name = SECTION_NAME (section);
5943
5944 if (section->sh_type == SHT_DYNSYM)
5945 {
5946 if (dynamic_symbols != NULL)
5947 {
5948 error (_("File contains multiple dynamic symbol tables\n"));
5949 continue;
5950 }
5951
5952 CHECK_ENTSIZE (section, i, Sym);
5953 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
5954 }
5955 else if (section->sh_type == SHT_STRTAB
5956 && streq (name, ".dynstr"))
5957 {
5958 if (dynamic_strings != NULL)
5959 {
5960 error (_("File contains multiple dynamic string tables\n"));
5961 continue;
5962 }
5963
5964 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
5965 1, section->sh_size,
5966 _("dynamic strings"));
5967 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
5968 }
5969 else if (section->sh_type == SHT_SYMTAB_SHNDX)
5970 {
5971 elf_section_list * entry = xmalloc (sizeof * entry);
5972 entry->hdr = section;
5973 entry->next = symtab_shndx_list;
5974 symtab_shndx_list = entry;
5975 }
5976 else if (section->sh_type == SHT_SYMTAB)
5977 CHECK_ENTSIZE (section, i, Sym);
5978 else if (section->sh_type == SHT_GROUP)
5979 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
5980 else if (section->sh_type == SHT_REL)
5981 CHECK_ENTSIZE (section, i, Rel);
5982 else if (section->sh_type == SHT_RELA)
5983 CHECK_ENTSIZE (section, i, Rela);
5984 else if ((do_debugging || do_debug_info || do_debug_abbrevs
5985 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
5986 || do_debug_aranges || do_debug_frames || do_debug_macinfo
5987 || do_debug_str || do_debug_loc || do_debug_ranges
5988 || do_debug_addr || do_debug_cu_index)
5989 && (const_strneq (name, ".debug_")
5990 || const_strneq (name, ".zdebug_")))
5991 {
5992 if (name[1] == 'z')
5993 name += sizeof (".zdebug_") - 1;
5994 else
5995 name += sizeof (".debug_") - 1;
5996
5997 if (do_debugging
5998 || (do_debug_info && const_strneq (name, "info"))
5999 || (do_debug_info && const_strneq (name, "types"))
6000 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
6001 || (do_debug_lines && strcmp (name, "line") == 0)
6002 || (do_debug_lines && const_strneq (name, "line."))
6003 || (do_debug_pubnames && const_strneq (name, "pubnames"))
6004 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
6005 || (do_debug_pubnames && const_strneq (name, "gnu_pubnames"))
6006 || (do_debug_pubtypes && const_strneq (name, "gnu_pubtypes"))
6007 || (do_debug_aranges && const_strneq (name, "aranges"))
6008 || (do_debug_ranges && const_strneq (name, "ranges"))
6009 || (do_debug_ranges && const_strneq (name, "rnglists"))
6010 || (do_debug_frames && const_strneq (name, "frame"))
6011 || (do_debug_macinfo && const_strneq (name, "macinfo"))
6012 || (do_debug_macinfo && const_strneq (name, "macro"))
6013 || (do_debug_str && const_strneq (name, "str"))
6014 || (do_debug_loc && const_strneq (name, "loc"))
6015 || (do_debug_loc && const_strneq (name, "loclists"))
6016 || (do_debug_addr && const_strneq (name, "addr"))
6017 || (do_debug_cu_index && const_strneq (name, "cu_index"))
6018 || (do_debug_cu_index && const_strneq (name, "tu_index"))
6019 )
6020 request_dump_bynumber (i, DEBUG_DUMP);
6021 }
6022 /* Linkonce section to be combined with .debug_info at link time. */
6023 else if ((do_debugging || do_debug_info)
6024 && const_strneq (name, ".gnu.linkonce.wi."))
6025 request_dump_bynumber (i, DEBUG_DUMP);
6026 else if (do_debug_frames && streq (name, ".eh_frame"))
6027 request_dump_bynumber (i, DEBUG_DUMP);
6028 else if (do_gdb_index && streq (name, ".gdb_index"))
6029 request_dump_bynumber (i, DEBUG_DUMP);
6030 /* Trace sections for Itanium VMS. */
6031 else if ((do_debugging || do_trace_info || do_trace_abbrevs
6032 || do_trace_aranges)
6033 && const_strneq (name, ".trace_"))
6034 {
6035 name += sizeof (".trace_") - 1;
6036
6037 if (do_debugging
6038 || (do_trace_info && streq (name, "info"))
6039 || (do_trace_abbrevs && streq (name, "abbrev"))
6040 || (do_trace_aranges && streq (name, "aranges"))
6041 )
6042 request_dump_bynumber (i, DEBUG_DUMP);
6043 }
6044 }
6045
6046 if (! do_sections)
6047 return TRUE;
6048
6049 if (elf_header.e_shnum > 1)
6050 printf (_("\nSection Headers:\n"));
6051 else
6052 printf (_("\nSection Header:\n"));
6053
6054 if (is_32bit_elf)
6055 {
6056 if (do_section_details)
6057 {
6058 printf (_(" [Nr] Name\n"));
6059 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
6060 }
6061 else
6062 printf
6063 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
6064 }
6065 else if (do_wide)
6066 {
6067 if (do_section_details)
6068 {
6069 printf (_(" [Nr] Name\n"));
6070 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
6071 }
6072 else
6073 printf
6074 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
6075 }
6076 else
6077 {
6078 if (do_section_details)
6079 {
6080 printf (_(" [Nr] Name\n"));
6081 printf (_(" Type Address Offset Link\n"));
6082 printf (_(" Size EntSize Info Align\n"));
6083 }
6084 else
6085 {
6086 printf (_(" [Nr] Name Type Address Offset\n"));
6087 printf (_(" Size EntSize Flags Link Info Align\n"));
6088 }
6089 }
6090
6091 if (do_section_details)
6092 printf (_(" Flags\n"));
6093
6094 for (i = 0, section = section_headers;
6095 i < elf_header.e_shnum;
6096 i++, section++)
6097 {
6098 /* Run some sanity checks on the section header. */
6099
6100 /* Check the sh_link field. */
6101 switch (section->sh_type)
6102 {
6103 case SHT_SYMTAB_SHNDX:
6104 case SHT_GROUP:
6105 case SHT_HASH:
6106 case SHT_GNU_HASH:
6107 case SHT_GNU_versym:
6108 case SHT_REL:
6109 case SHT_RELA:
6110 if (section->sh_link < 1
6111 || section->sh_link >= elf_header.e_shnum
6112 || (section_headers[section->sh_link].sh_type != SHT_SYMTAB
6113 && section_headers[section->sh_link].sh_type != SHT_DYNSYM))
6114 warn (_("[%2u]: Link field (%u) should index a symtab section.\n"),
6115 i, section->sh_link);
6116 break;
6117
6118 case SHT_DYNAMIC:
6119 case SHT_SYMTAB:
6120 case SHT_DYNSYM:
6121 case SHT_GNU_verneed:
6122 case SHT_GNU_verdef:
6123 case SHT_GNU_LIBLIST:
6124 if (section->sh_link < 1
6125 || section->sh_link >= elf_header.e_shnum
6126 || section_headers[section->sh_link].sh_type != SHT_STRTAB)
6127 warn (_("[%2u]: Link field (%u) should index a string section.\n"),
6128 i, section->sh_link);
6129 break;
6130
6131 case SHT_INIT_ARRAY:
6132 case SHT_FINI_ARRAY:
6133 case SHT_PREINIT_ARRAY:
6134 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6135 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6136 i, section->sh_link);
6137 break;
6138
6139 default:
6140 /* FIXME: Add support for target specific section types. */
6141 #if 0 /* Currently we do not check other section types as there are too
6142 many special cases. Stab sections for example have a type
6143 of SHT_PROGBITS but an sh_link field that links to the .stabstr
6144 section. */
6145 if (section->sh_type < SHT_LOOS && section->sh_link != 0)
6146 warn (_("[%2u]: Unexpected value (%u) in link field.\n"),
6147 i, section->sh_link);
6148 #endif
6149 break;
6150 }
6151
6152 /* Check the sh_info field. */
6153 switch (section->sh_type)
6154 {
6155 case SHT_REL:
6156 case SHT_RELA:
6157 if (section->sh_info < 1
6158 || section->sh_info >= elf_header.e_shnum
6159 || (section_headers[section->sh_info].sh_type != SHT_PROGBITS
6160 && section_headers[section->sh_info].sh_type != SHT_NOBITS
6161 && section_headers[section->sh_info].sh_type != SHT_NOTE
6162 && section_headers[section->sh_info].sh_type != SHT_INIT_ARRAY
6163 /* FIXME: Are other section types valid ? */
6164 && section_headers[section->sh_info].sh_type < SHT_LOOS))
6165 {
6166 if (section->sh_info == 0
6167 && (streq (SECTION_NAME (section), ".rel.dyn")
6168 || streq (SECTION_NAME (section), ".rela.dyn")))
6169 /* The .rel.dyn and .rela.dyn sections have an sh_info field
6170 of zero. The relocations in these sections may apply
6171 to many different sections. */
6172 ;
6173 else
6174 warn (_("[%2u]: Info field (%u) should index a relocatable section.\n"),
6175 i, section->sh_info);
6176 }
6177 break;
6178
6179 case SHT_DYNAMIC:
6180 case SHT_HASH:
6181 case SHT_SYMTAB_SHNDX:
6182 case SHT_INIT_ARRAY:
6183 case SHT_FINI_ARRAY:
6184 case SHT_PREINIT_ARRAY:
6185 if (section->sh_info != 0)
6186 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6187 i, section->sh_info);
6188 break;
6189
6190 case SHT_GROUP:
6191 case SHT_SYMTAB:
6192 case SHT_DYNSYM:
6193 /* A symbol index - we assume that it is valid. */
6194 break;
6195
6196 default:
6197 /* FIXME: Add support for target specific section types. */
6198 if (section->sh_type == SHT_NOBITS)
6199 /* NOBITS section headers with non-zero sh_info fields can be
6200 created when a binary is stripped of everything but its debug
6201 information. The stripped sections have their headers
6202 preserved but their types set to SHT_NOBITS. So do not check
6203 this type of section. */
6204 ;
6205 else if (section->sh_flags & SHF_INFO_LINK)
6206 {
6207 if (section->sh_info < 1 || section->sh_info >= elf_header.e_shnum)
6208 warn (_("[%2u]: Expected link to another section in info field"), i);
6209 }
6210 else if (section->sh_type < SHT_LOOS
6211 && (section->sh_flags & SHF_GNU_MBIND) == 0
6212 && section->sh_info != 0)
6213 warn (_("[%2u]: Unexpected value (%u) in info field.\n"),
6214 i, section->sh_info);
6215 break;
6216 }
6217
6218 printf (" [%2u] ", i);
6219 if (do_section_details)
6220 printf ("%s\n ", printable_section_name (section));
6221 else
6222 print_symbol (-17, SECTION_NAME (section));
6223
6224 printf (do_wide ? " %-15s " : " %-15.15s ",
6225 get_section_type_name (section->sh_type));
6226
6227 if (is_32bit_elf)
6228 {
6229 const char * link_too_big = NULL;
6230
6231 print_vma (section->sh_addr, LONG_HEX);
6232
6233 printf ( " %6.6lx %6.6lx %2.2lx",
6234 (unsigned long) section->sh_offset,
6235 (unsigned long) section->sh_size,
6236 (unsigned long) section->sh_entsize);
6237
6238 if (do_section_details)
6239 fputs (" ", stdout);
6240 else
6241 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6242
6243 if (section->sh_link >= elf_header.e_shnum)
6244 {
6245 link_too_big = "";
6246 /* The sh_link value is out of range. Normally this indicates
6247 an error but it can have special values in Solaris binaries. */
6248 switch (elf_header.e_machine)
6249 {
6250 case EM_386:
6251 case EM_IAMCU:
6252 case EM_X86_64:
6253 case EM_L1OM:
6254 case EM_K1OM:
6255 case EM_OLD_SPARCV9:
6256 case EM_SPARC32PLUS:
6257 case EM_SPARCV9:
6258 case EM_SPARC:
6259 if (section->sh_link == (SHN_BEFORE & 0xffff))
6260 link_too_big = "BEFORE";
6261 else if (section->sh_link == (SHN_AFTER & 0xffff))
6262 link_too_big = "AFTER";
6263 break;
6264 default:
6265 break;
6266 }
6267 }
6268
6269 if (do_section_details)
6270 {
6271 if (link_too_big != NULL && * link_too_big)
6272 printf ("<%s> ", link_too_big);
6273 else
6274 printf ("%2u ", section->sh_link);
6275 printf ("%3u %2lu\n", section->sh_info,
6276 (unsigned long) section->sh_addralign);
6277 }
6278 else
6279 printf ("%2u %3u %2lu\n",
6280 section->sh_link,
6281 section->sh_info,
6282 (unsigned long) section->sh_addralign);
6283
6284 if (link_too_big && ! * link_too_big)
6285 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
6286 i, section->sh_link);
6287 }
6288 else if (do_wide)
6289 {
6290 print_vma (section->sh_addr, LONG_HEX);
6291
6292 if ((long) section->sh_offset == section->sh_offset)
6293 printf (" %6.6lx", (unsigned long) section->sh_offset);
6294 else
6295 {
6296 putchar (' ');
6297 print_vma (section->sh_offset, LONG_HEX);
6298 }
6299
6300 if ((unsigned long) section->sh_size == section->sh_size)
6301 printf (" %6.6lx", (unsigned long) section->sh_size);
6302 else
6303 {
6304 putchar (' ');
6305 print_vma (section->sh_size, LONG_HEX);
6306 }
6307
6308 if ((unsigned long) section->sh_entsize == section->sh_entsize)
6309 printf (" %2.2lx", (unsigned long) section->sh_entsize);
6310 else
6311 {
6312 putchar (' ');
6313 print_vma (section->sh_entsize, LONG_HEX);
6314 }
6315
6316 if (do_section_details)
6317 fputs (" ", stdout);
6318 else
6319 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6320
6321 printf ("%2u %3u ", section->sh_link, section->sh_info);
6322
6323 if ((unsigned long) section->sh_addralign == section->sh_addralign)
6324 printf ("%2lu\n", (unsigned long) section->sh_addralign);
6325 else
6326 {
6327 print_vma (section->sh_addralign, DEC);
6328 putchar ('\n');
6329 }
6330 }
6331 else if (do_section_details)
6332 {
6333 printf (" %-15.15s ",
6334 get_section_type_name (section->sh_type));
6335 print_vma (section->sh_addr, LONG_HEX);
6336 if ((long) section->sh_offset == section->sh_offset)
6337 printf (" %16.16lx", (unsigned long) section->sh_offset);
6338 else
6339 {
6340 printf (" ");
6341 print_vma (section->sh_offset, LONG_HEX);
6342 }
6343 printf (" %u\n ", section->sh_link);
6344 print_vma (section->sh_size, LONG_HEX);
6345 putchar (' ');
6346 print_vma (section->sh_entsize, LONG_HEX);
6347
6348 printf (" %-16u %lu\n",
6349 section->sh_info,
6350 (unsigned long) section->sh_addralign);
6351 }
6352 else
6353 {
6354 putchar (' ');
6355 print_vma (section->sh_addr, LONG_HEX);
6356 if ((long) section->sh_offset == section->sh_offset)
6357 printf (" %8.8lx", (unsigned long) section->sh_offset);
6358 else
6359 {
6360 printf (" ");
6361 print_vma (section->sh_offset, LONG_HEX);
6362 }
6363 printf ("\n ");
6364 print_vma (section->sh_size, LONG_HEX);
6365 printf (" ");
6366 print_vma (section->sh_entsize, LONG_HEX);
6367
6368 printf (" %3s ", get_elf_section_flags (section->sh_flags));
6369
6370 printf (" %2u %3u %lu\n",
6371 section->sh_link,
6372 section->sh_info,
6373 (unsigned long) section->sh_addralign);
6374 }
6375
6376 if (do_section_details)
6377 {
6378 printf (" %s\n", get_elf_section_flags (section->sh_flags));
6379 if ((section->sh_flags & SHF_COMPRESSED) != 0)
6380 {
6381 /* Minimum section size is 12 bytes for 32-bit compression
6382 header + 12 bytes for compressed data header. */
6383 unsigned char buf[24];
6384
6385 assert (sizeof (buf) >= sizeof (Elf64_External_Chdr));
6386 if (get_data (&buf, (FILE *) file, section->sh_offset, 1,
6387 sizeof (buf), _("compression header")))
6388 {
6389 Elf_Internal_Chdr chdr;
6390
6391 (void) get_compression_header (&chdr, buf, sizeof (buf));
6392
6393 if (chdr.ch_type == ELFCOMPRESS_ZLIB)
6394 printf (" ZLIB, ");
6395 else
6396 printf (_(" [<unknown>: 0x%x], "),
6397 chdr.ch_type);
6398 print_vma (chdr.ch_size, LONG_HEX);
6399 printf (", %lu\n", (unsigned long) chdr.ch_addralign);
6400 }
6401 }
6402 }
6403 }
6404
6405 if (!do_section_details)
6406 {
6407 /* The ordering of the letters shown here matches the ordering of the
6408 corresponding SHF_xxx values, and hence the order in which these
6409 letters will be displayed to the user. */
6410 printf (_("Key to Flags:\n\
6411 W (write), A (alloc), X (execute), M (merge), S (strings), I (info),\n\
6412 L (link order), O (extra OS processing required), G (group), T (TLS),\n\
6413 C (compressed), x (unknown), o (OS specific), E (exclude),\n "));
6414 if (elf_header.e_machine == EM_X86_64
6415 || elf_header.e_machine == EM_L1OM
6416 || elf_header.e_machine == EM_K1OM)
6417 printf (_("l (large), "));
6418 else if (elf_header.e_machine == EM_ARM)
6419 printf (_("y (purecode), "));
6420 printf ("p (processor specific)\n");
6421 }
6422
6423 return TRUE;
6424 }
6425
6426 static const char *
6427 get_group_flags (unsigned int flags)
6428 {
6429 static char buff[128];
6430
6431 if (flags == 0)
6432 return "";
6433 else if (flags == GRP_COMDAT)
6434 return "COMDAT ";
6435
6436 snprintf (buff, 14, _("[0x%x: "), flags);
6437
6438 flags &= ~ GRP_COMDAT;
6439 if (flags & GRP_MASKOS)
6440 {
6441 strcat (buff, "<OS specific>");
6442 flags &= ~ GRP_MASKOS;
6443 }
6444
6445 if (flags & GRP_MASKPROC)
6446 {
6447 strcat (buff, "<PROC specific>");
6448 flags &= ~ GRP_MASKPROC;
6449 }
6450
6451 if (flags)
6452 strcat (buff, "<unknown>");
6453
6454 strcat (buff, "]");
6455 return buff;
6456 }
6457
6458 static bfd_boolean
6459 process_section_groups (FILE * file)
6460 {
6461 Elf_Internal_Shdr * section;
6462 unsigned int i;
6463 struct group * group;
6464 Elf_Internal_Shdr * symtab_sec;
6465 Elf_Internal_Shdr * strtab_sec;
6466 Elf_Internal_Sym * symtab;
6467 unsigned long num_syms;
6468 char * strtab;
6469 size_t strtab_size;
6470
6471 /* Don't process section groups unless needed. */
6472 if (!do_unwind && !do_section_groups)
6473 return TRUE;
6474
6475 if (elf_header.e_shnum == 0)
6476 {
6477 if (do_section_groups)
6478 printf (_("\nThere are no sections to group in this file.\n"));
6479
6480 return TRUE;
6481 }
6482
6483 if (section_headers == NULL)
6484 {
6485 error (_("Section headers are not available!\n"));
6486 /* PR 13622: This can happen with a corrupt ELF header. */
6487 return FALSE;
6488 }
6489
6490 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
6491 sizeof (struct group *));
6492
6493 if (section_headers_groups == NULL)
6494 {
6495 error (_("Out of memory reading %u section group headers\n"),
6496 elf_header.e_shnum);
6497 return FALSE;
6498 }
6499
6500 /* Scan the sections for the group section. */
6501 group_count = 0;
6502 for (i = 0, section = section_headers;
6503 i < elf_header.e_shnum;
6504 i++, section++)
6505 if (section->sh_type == SHT_GROUP)
6506 group_count++;
6507
6508 if (group_count == 0)
6509 {
6510 if (do_section_groups)
6511 printf (_("\nThere are no section groups in this file.\n"));
6512
6513 return TRUE;
6514 }
6515
6516 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
6517
6518 if (section_groups == NULL)
6519 {
6520 error (_("Out of memory reading %lu groups\n"),
6521 (unsigned long) group_count);
6522 return FALSE;
6523 }
6524
6525 symtab_sec = NULL;
6526 strtab_sec = NULL;
6527 symtab = NULL;
6528 num_syms = 0;
6529 strtab = NULL;
6530 strtab_size = 0;
6531 for (i = 0, section = section_headers, group = section_groups;
6532 i < elf_header.e_shnum;
6533 i++, section++)
6534 {
6535 if (section->sh_type == SHT_GROUP)
6536 {
6537 const char * name = printable_section_name (section);
6538 const char * group_name;
6539 unsigned char * start;
6540 unsigned char * indices;
6541 unsigned int entry, j, size;
6542 Elf_Internal_Shdr * sec;
6543 Elf_Internal_Sym * sym;
6544
6545 /* Get the symbol table. */
6546 if (section->sh_link >= elf_header.e_shnum
6547 || ((sec = section_headers + section->sh_link)->sh_type
6548 != SHT_SYMTAB))
6549 {
6550 error (_("Bad sh_link in group section `%s'\n"), name);
6551 continue;
6552 }
6553
6554 if (symtab_sec != sec)
6555 {
6556 symtab_sec = sec;
6557 if (symtab)
6558 free (symtab);
6559 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
6560 }
6561
6562 if (symtab == NULL)
6563 {
6564 error (_("Corrupt header in group section `%s'\n"), name);
6565 continue;
6566 }
6567
6568 if (section->sh_info >= num_syms)
6569 {
6570 error (_("Bad sh_info in group section `%s'\n"), name);
6571 continue;
6572 }
6573
6574 sym = symtab + section->sh_info;
6575
6576 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6577 {
6578 if (sym->st_shndx == 0
6579 || sym->st_shndx >= elf_header.e_shnum)
6580 {
6581 error (_("Bad sh_info in group section `%s'\n"), name);
6582 continue;
6583 }
6584
6585 group_name = SECTION_NAME (section_headers + sym->st_shndx);
6586 strtab_sec = NULL;
6587 if (strtab)
6588 free (strtab);
6589 strtab = NULL;
6590 strtab_size = 0;
6591 }
6592 else
6593 {
6594 /* Get the string table. */
6595 if (symtab_sec->sh_link >= elf_header.e_shnum)
6596 {
6597 strtab_sec = NULL;
6598 if (strtab)
6599 free (strtab);
6600 strtab = NULL;
6601 strtab_size = 0;
6602 }
6603 else if (strtab_sec
6604 != (sec = section_headers + symtab_sec->sh_link))
6605 {
6606 strtab_sec = sec;
6607 if (strtab)
6608 free (strtab);
6609
6610 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
6611 1, strtab_sec->sh_size,
6612 _("string table"));
6613 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
6614 }
6615 group_name = sym->st_name < strtab_size
6616 ? strtab + sym->st_name : _("<corrupt>");
6617 }
6618
6619 /* PR 17531: file: loop. */
6620 if (section->sh_entsize > section->sh_size)
6621 {
6622 error (_("Section %s has sh_entsize (0x%lx) which is larger than its size (0x%lx)\n"),
6623 printable_section_name (section),
6624 (unsigned long) section->sh_entsize,
6625 (unsigned long) section->sh_size);
6626 break;
6627 }
6628
6629 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
6630 1, section->sh_size,
6631 _("section data"));
6632 if (start == NULL)
6633 continue;
6634
6635 indices = start;
6636 size = (section->sh_size / section->sh_entsize) - 1;
6637 entry = byte_get (indices, 4);
6638 indices += 4;
6639
6640 if (do_section_groups)
6641 {
6642 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
6643 get_group_flags (entry), i, name, group_name, size);
6644
6645 printf (_(" [Index] Name\n"));
6646 }
6647
6648 group->group_index = i;
6649
6650 for (j = 0; j < size; j++)
6651 {
6652 struct group_list * g;
6653
6654 entry = byte_get (indices, 4);
6655 indices += 4;
6656
6657 if (entry >= elf_header.e_shnum)
6658 {
6659 static unsigned num_group_errors = 0;
6660
6661 if (num_group_errors ++ < 10)
6662 {
6663 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
6664 entry, i, elf_header.e_shnum - 1);
6665 if (num_group_errors == 10)
6666 warn (_("Futher error messages about overlarge group section indicies suppressed\n"));
6667 }
6668 continue;
6669 }
6670
6671 if (section_headers_groups [entry] != NULL)
6672 {
6673 if (entry)
6674 {
6675 static unsigned num_errs = 0;
6676
6677 if (num_errs ++ < 10)
6678 {
6679 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
6680 entry, i,
6681 section_headers_groups [entry]->group_index);
6682 if (num_errs == 10)
6683 warn (_("Further error messages about already contained group sections suppressed\n"));
6684 }
6685 continue;
6686 }
6687 else
6688 {
6689 /* Intel C/C++ compiler may put section 0 in a
6690 section group. We just warn it the first time
6691 and ignore it afterwards. */
6692 static bfd_boolean warned = FALSE;
6693 if (!warned)
6694 {
6695 error (_("section 0 in group section [%5u]\n"),
6696 section_headers_groups [entry]->group_index);
6697 warned = TRUE;
6698 }
6699 }
6700 }
6701
6702 section_headers_groups [entry] = group;
6703
6704 if (do_section_groups)
6705 {
6706 sec = section_headers + entry;
6707 printf (" [%5u] %s\n", entry, printable_section_name (sec));
6708 }
6709
6710 g = (struct group_list *) xmalloc (sizeof (struct group_list));
6711 g->section_index = entry;
6712 g->next = group->root;
6713 group->root = g;
6714 }
6715
6716 if (start)
6717 free (start);
6718
6719 group++;
6720 }
6721 }
6722
6723 if (symtab)
6724 free (symtab);
6725 if (strtab)
6726 free (strtab);
6727 return TRUE;
6728 }
6729
6730 /* Data used to display dynamic fixups. */
6731
6732 struct ia64_vms_dynfixup
6733 {
6734 bfd_vma needed_ident; /* Library ident number. */
6735 bfd_vma needed; /* Index in the dstrtab of the library name. */
6736 bfd_vma fixup_needed; /* Index of the library. */
6737 bfd_vma fixup_rela_cnt; /* Number of fixups. */
6738 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
6739 };
6740
6741 /* Data used to display dynamic relocations. */
6742
6743 struct ia64_vms_dynimgrela
6744 {
6745 bfd_vma img_rela_cnt; /* Number of relocations. */
6746 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
6747 };
6748
6749 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
6750 library). */
6751
6752 static bfd_boolean
6753 dump_ia64_vms_dynamic_fixups (FILE * file,
6754 struct ia64_vms_dynfixup * fixup,
6755 const char * strtab,
6756 unsigned int strtab_sz)
6757 {
6758 Elf64_External_VMS_IMAGE_FIXUP * imfs;
6759 long i;
6760 const char * lib_name;
6761
6762 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
6763 1, fixup->fixup_rela_cnt * sizeof (*imfs),
6764 _("dynamic section image fixups"));
6765 if (!imfs)
6766 return FALSE;
6767
6768 if (fixup->needed < strtab_sz)
6769 lib_name = strtab + fixup->needed;
6770 else
6771 {
6772 warn (_("corrupt library name index of 0x%lx found in dynamic entry"),
6773 (unsigned long) fixup->needed);
6774 lib_name = "???";
6775 }
6776 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
6777 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
6778 printf
6779 (_("Seg Offset Type SymVec DataType\n"));
6780
6781 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
6782 {
6783 unsigned int type;
6784 const char *rtype;
6785
6786 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
6787 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
6788 type = BYTE_GET (imfs [i].type);
6789 rtype = elf_ia64_reloc_type (type);
6790 if (rtype == NULL)
6791 printf (" 0x%08x ", type);
6792 else
6793 printf (" %-32s ", rtype);
6794 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
6795 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
6796 }
6797
6798 free (imfs);
6799 return TRUE;
6800 }
6801
6802 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
6803
6804 static bfd_boolean
6805 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
6806 {
6807 Elf64_External_VMS_IMAGE_RELA *imrs;
6808 long i;
6809
6810 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
6811 1, imgrela->img_rela_cnt * sizeof (*imrs),
6812 _("dynamic section image relocations"));
6813 if (!imrs)
6814 return FALSE;
6815
6816 printf (_("\nImage relocs\n"));
6817 printf
6818 (_("Seg Offset Type Addend Seg Sym Off\n"));
6819
6820 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
6821 {
6822 unsigned int type;
6823 const char *rtype;
6824
6825 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
6826 printf ("%08" BFD_VMA_FMT "x ",
6827 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
6828 type = BYTE_GET (imrs [i].type);
6829 rtype = elf_ia64_reloc_type (type);
6830 if (rtype == NULL)
6831 printf ("0x%08x ", type);
6832 else
6833 printf ("%-31s ", rtype);
6834 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
6835 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
6836 printf ("%08" BFD_VMA_FMT "x\n",
6837 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
6838 }
6839
6840 free (imrs);
6841 return TRUE;
6842 }
6843
6844 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
6845
6846 static bfd_boolean
6847 process_ia64_vms_dynamic_relocs (FILE *file)
6848 {
6849 struct ia64_vms_dynfixup fixup;
6850 struct ia64_vms_dynimgrela imgrela;
6851 Elf_Internal_Dyn *entry;
6852 bfd_vma strtab_off = 0;
6853 bfd_vma strtab_sz = 0;
6854 char *strtab = NULL;
6855 bfd_boolean res = TRUE;
6856
6857 memset (&fixup, 0, sizeof (fixup));
6858 memset (&imgrela, 0, sizeof (imgrela));
6859
6860 /* Note: the order of the entries is specified by the OpenVMS specs. */
6861 for (entry = dynamic_section;
6862 entry < dynamic_section + dynamic_nent;
6863 entry++)
6864 {
6865 switch (entry->d_tag)
6866 {
6867 case DT_IA_64_VMS_STRTAB_OFFSET:
6868 strtab_off = entry->d_un.d_val;
6869 break;
6870 case DT_STRSZ:
6871 strtab_sz = entry->d_un.d_val;
6872 if (strtab == NULL)
6873 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
6874 1, strtab_sz, _("dynamic string section"));
6875 break;
6876
6877 case DT_IA_64_VMS_NEEDED_IDENT:
6878 fixup.needed_ident = entry->d_un.d_val;
6879 break;
6880 case DT_NEEDED:
6881 fixup.needed = entry->d_un.d_val;
6882 break;
6883 case DT_IA_64_VMS_FIXUP_NEEDED:
6884 fixup.fixup_needed = entry->d_un.d_val;
6885 break;
6886 case DT_IA_64_VMS_FIXUP_RELA_CNT:
6887 fixup.fixup_rela_cnt = entry->d_un.d_val;
6888 break;
6889 case DT_IA_64_VMS_FIXUP_RELA_OFF:
6890 fixup.fixup_rela_off = entry->d_un.d_val;
6891 if (! dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz))
6892 res = FALSE;
6893 break;
6894 case DT_IA_64_VMS_IMG_RELA_CNT:
6895 imgrela.img_rela_cnt = entry->d_un.d_val;
6896 break;
6897 case DT_IA_64_VMS_IMG_RELA_OFF:
6898 imgrela.img_rela_off = entry->d_un.d_val;
6899 if (! dump_ia64_vms_dynamic_relocs (file, &imgrela))
6900 res = FALSE;
6901 break;
6902
6903 default:
6904 break;
6905 }
6906 }
6907
6908 if (strtab != NULL)
6909 free (strtab);
6910
6911 return res;
6912 }
6913
6914 static struct
6915 {
6916 const char * name;
6917 int reloc;
6918 int size;
6919 int rela;
6920 }
6921 dynamic_relocations [] =
6922 {
6923 { "REL", DT_REL, DT_RELSZ, FALSE },
6924 { "RELA", DT_RELA, DT_RELASZ, TRUE },
6925 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
6926 };
6927
6928 /* Process the reloc section. */
6929
6930 static bfd_boolean
6931 process_relocs (FILE * file)
6932 {
6933 unsigned long rel_size;
6934 unsigned long rel_offset;
6935
6936 if (!do_reloc)
6937 return TRUE;
6938
6939 if (do_using_dynamic)
6940 {
6941 int is_rela;
6942 const char * name;
6943 bfd_boolean has_dynamic_reloc;
6944 unsigned int i;
6945
6946 has_dynamic_reloc = FALSE;
6947
6948 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
6949 {
6950 is_rela = dynamic_relocations [i].rela;
6951 name = dynamic_relocations [i].name;
6952 rel_size = dynamic_info [dynamic_relocations [i].size];
6953 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
6954
6955 if (rel_size)
6956 has_dynamic_reloc = TRUE;
6957
6958 if (is_rela == UNKNOWN)
6959 {
6960 if (dynamic_relocations [i].reloc == DT_JMPREL)
6961 switch (dynamic_info[DT_PLTREL])
6962 {
6963 case DT_REL:
6964 is_rela = FALSE;
6965 break;
6966 case DT_RELA:
6967 is_rela = TRUE;
6968 break;
6969 }
6970 }
6971
6972 if (rel_size)
6973 {
6974 printf
6975 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
6976 name, rel_offset, rel_size);
6977
6978 dump_relocations (file,
6979 offset_from_vma (file, rel_offset, rel_size),
6980 rel_size,
6981 dynamic_symbols, num_dynamic_syms,
6982 dynamic_strings, dynamic_strings_length,
6983 is_rela, TRUE /* is_dynamic */);
6984 }
6985 }
6986
6987 if (is_ia64_vms ())
6988 if (process_ia64_vms_dynamic_relocs (file))
6989 has_dynamic_reloc = TRUE;
6990
6991 if (! has_dynamic_reloc)
6992 printf (_("\nThere are no dynamic relocations in this file.\n"));
6993 }
6994 else
6995 {
6996 Elf_Internal_Shdr * section;
6997 unsigned long i;
6998 bfd_boolean found = FALSE;
6999
7000 for (i = 0, section = section_headers;
7001 i < elf_header.e_shnum;
7002 i++, section++)
7003 {
7004 if ( section->sh_type != SHT_RELA
7005 && section->sh_type != SHT_REL)
7006 continue;
7007
7008 rel_offset = section->sh_offset;
7009 rel_size = section->sh_size;
7010
7011 if (rel_size)
7012 {
7013 Elf_Internal_Shdr * strsec;
7014 int is_rela;
7015
7016 printf (_("\nRelocation section "));
7017
7018 if (string_table == NULL)
7019 printf ("%d", section->sh_name);
7020 else
7021 printf ("'%s'", printable_section_name (section));
7022
7023 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7024 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
7025
7026 is_rela = section->sh_type == SHT_RELA;
7027
7028 if (section->sh_link != 0
7029 && section->sh_link < elf_header.e_shnum)
7030 {
7031 Elf_Internal_Shdr * symsec;
7032 Elf_Internal_Sym * symtab;
7033 unsigned long nsyms;
7034 unsigned long strtablen = 0;
7035 char * strtab = NULL;
7036
7037 symsec = section_headers + section->sh_link;
7038 if (symsec->sh_type != SHT_SYMTAB
7039 && symsec->sh_type != SHT_DYNSYM)
7040 continue;
7041
7042 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
7043
7044 if (symtab == NULL)
7045 continue;
7046
7047 if (symsec->sh_link != 0
7048 && symsec->sh_link < elf_header.e_shnum)
7049 {
7050 strsec = section_headers + symsec->sh_link;
7051
7052 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7053 1, strsec->sh_size,
7054 _("string table"));
7055 strtablen = strtab == NULL ? 0 : strsec->sh_size;
7056 }
7057
7058 dump_relocations (file, rel_offset, rel_size,
7059 symtab, nsyms, strtab, strtablen,
7060 is_rela,
7061 symsec->sh_type == SHT_DYNSYM);
7062 if (strtab)
7063 free (strtab);
7064 free (symtab);
7065 }
7066 else
7067 dump_relocations (file, rel_offset, rel_size,
7068 NULL, 0, NULL, 0, is_rela,
7069 FALSE /* is_dynamic */);
7070
7071 found = TRUE;
7072 }
7073 }
7074
7075 if (! found)
7076 printf (_("\nThere are no relocations in this file.\n"));
7077 }
7078
7079 return TRUE;
7080 }
7081
7082 /* An absolute address consists of a section and an offset. If the
7083 section is NULL, the offset itself is the address, otherwise, the
7084 address equals to LOAD_ADDRESS(section) + offset. */
7085
7086 struct absaddr
7087 {
7088 unsigned short section;
7089 bfd_vma offset;
7090 };
7091
7092 #define ABSADDR(a) \
7093 ((a).section \
7094 ? section_headers [(a).section].sh_addr + (a).offset \
7095 : (a).offset)
7096
7097 /* Find the nearest symbol at or below ADDR. Returns the symbol
7098 name, if found, and the offset from the symbol to ADDR. */
7099
7100 static void
7101 find_symbol_for_address (Elf_Internal_Sym * symtab,
7102 unsigned long nsyms,
7103 const char * strtab,
7104 unsigned long strtab_size,
7105 struct absaddr addr,
7106 const char ** symname,
7107 bfd_vma * offset)
7108 {
7109 bfd_vma dist = 0x100000;
7110 Elf_Internal_Sym * sym;
7111 Elf_Internal_Sym * beg;
7112 Elf_Internal_Sym * end;
7113 Elf_Internal_Sym * best = NULL;
7114
7115 REMOVE_ARCH_BITS (addr.offset);
7116 beg = symtab;
7117 end = symtab + nsyms;
7118
7119 while (beg < end)
7120 {
7121 bfd_vma value;
7122
7123 sym = beg + (end - beg) / 2;
7124
7125 value = sym->st_value;
7126 REMOVE_ARCH_BITS (value);
7127
7128 if (sym->st_name != 0
7129 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
7130 && addr.offset >= value
7131 && addr.offset - value < dist)
7132 {
7133 best = sym;
7134 dist = addr.offset - value;
7135 if (!dist)
7136 break;
7137 }
7138
7139 if (addr.offset < value)
7140 end = sym;
7141 else
7142 beg = sym + 1;
7143 }
7144
7145 if (best)
7146 {
7147 *symname = (best->st_name >= strtab_size
7148 ? _("<corrupt>") : strtab + best->st_name);
7149 *offset = dist;
7150 return;
7151 }
7152
7153 *symname = NULL;
7154 *offset = addr.offset;
7155 }
7156
7157 static /* signed */ int
7158 symcmp (const void *p, const void *q)
7159 {
7160 Elf_Internal_Sym *sp = (Elf_Internal_Sym *) p;
7161 Elf_Internal_Sym *sq = (Elf_Internal_Sym *) q;
7162
7163 return sp->st_value > sq->st_value ? 1 : (sp->st_value < sq->st_value ? -1 : 0);
7164 }
7165
7166 /* Process the unwind section. */
7167
7168 #include "unwind-ia64.h"
7169
7170 struct ia64_unw_table_entry
7171 {
7172 struct absaddr start;
7173 struct absaddr end;
7174 struct absaddr info;
7175 };
7176
7177 struct ia64_unw_aux_info
7178 {
7179 struct ia64_unw_table_entry * table; /* Unwind table. */
7180 unsigned long table_len; /* Length of unwind table. */
7181 unsigned char * info; /* Unwind info. */
7182 unsigned long info_size; /* Size of unwind info. */
7183 bfd_vma info_addr; /* Starting address of unwind info. */
7184 bfd_vma seg_base; /* Starting address of segment. */
7185 Elf_Internal_Sym * symtab; /* The symbol table. */
7186 unsigned long nsyms; /* Number of symbols. */
7187 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7188 unsigned long nfuns; /* Number of entries in funtab. */
7189 char * strtab; /* The string table. */
7190 unsigned long strtab_size; /* Size of string table. */
7191 };
7192
7193 static bfd_boolean
7194 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
7195 {
7196 struct ia64_unw_table_entry * tp;
7197 unsigned long j, nfuns;
7198 int in_body;
7199 bfd_boolean res = TRUE;
7200
7201 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7202 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7203 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7204 aux->funtab[nfuns++] = aux->symtab[j];
7205 aux->nfuns = nfuns;
7206 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7207
7208 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7209 {
7210 bfd_vma stamp;
7211 bfd_vma offset;
7212 const unsigned char * dp;
7213 const unsigned char * head;
7214 const unsigned char * end;
7215 const char * procname;
7216
7217 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7218 aux->strtab_size, tp->start, &procname, &offset);
7219
7220 fputs ("\n<", stdout);
7221
7222 if (procname)
7223 {
7224 fputs (procname, stdout);
7225
7226 if (offset)
7227 printf ("+%lx", (unsigned long) offset);
7228 }
7229
7230 fputs (">: [", stdout);
7231 print_vma (tp->start.offset, PREFIX_HEX);
7232 fputc ('-', stdout);
7233 print_vma (tp->end.offset, PREFIX_HEX);
7234 printf ("], info at +0x%lx\n",
7235 (unsigned long) (tp->info.offset - aux->seg_base));
7236
7237 /* PR 17531: file: 86232b32. */
7238 if (aux->info == NULL)
7239 continue;
7240
7241 /* PR 17531: file: 0997b4d1. */
7242 if ((ABSADDR (tp->info) - aux->info_addr) >= aux->info_size)
7243 {
7244 warn (_("Invalid offset %lx in table entry %ld\n"),
7245 (long) tp->info.offset, (long) (tp - aux->table));
7246 res = FALSE;
7247 continue;
7248 }
7249
7250 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
7251 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
7252
7253 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
7254 (unsigned) UNW_VER (stamp),
7255 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
7256 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
7257 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
7258 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
7259
7260 if (UNW_VER (stamp) != 1)
7261 {
7262 printf (_("\tUnknown version.\n"));
7263 continue;
7264 }
7265
7266 in_body = 0;
7267 end = head + 8 + eh_addr_size * UNW_LENGTH (stamp);
7268 /* PR 17531: file: 16ceda89. */
7269 if (end > aux->info + aux->info_size)
7270 end = aux->info + aux->info_size;
7271 for (dp = head + 8; dp < end;)
7272 dp = unw_decode (dp, in_body, & in_body, end);
7273 }
7274
7275 free (aux->funtab);
7276
7277 return res;
7278 }
7279
7280 static bfd_boolean
7281 slurp_ia64_unwind_table (FILE * file,
7282 struct ia64_unw_aux_info * aux,
7283 Elf_Internal_Shdr * sec)
7284 {
7285 unsigned long size, nrelas, i;
7286 Elf_Internal_Phdr * seg;
7287 struct ia64_unw_table_entry * tep;
7288 Elf_Internal_Shdr * relsec;
7289 Elf_Internal_Rela * rela;
7290 Elf_Internal_Rela * rp;
7291 unsigned char * table;
7292 unsigned char * tp;
7293 Elf_Internal_Sym * sym;
7294 const char * relname;
7295
7296 aux->table_len = 0;
7297
7298 /* First, find the starting address of the segment that includes
7299 this section: */
7300
7301 if (elf_header.e_phnum)
7302 {
7303 if (! get_program_headers (file))
7304 return FALSE;
7305
7306 for (seg = program_headers;
7307 seg < program_headers + elf_header.e_phnum;
7308 ++seg)
7309 {
7310 if (seg->p_type != PT_LOAD)
7311 continue;
7312
7313 if (sec->sh_addr >= seg->p_vaddr
7314 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7315 {
7316 aux->seg_base = seg->p_vaddr;
7317 break;
7318 }
7319 }
7320 }
7321
7322 /* Second, build the unwind table from the contents of the unwind section: */
7323 size = sec->sh_size;
7324 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7325 _("unwind table"));
7326 if (!table)
7327 return FALSE;
7328
7329 aux->table_len = size / (3 * eh_addr_size);
7330 aux->table = (struct ia64_unw_table_entry *)
7331 xcmalloc (aux->table_len, sizeof (aux->table[0]));
7332 tep = aux->table;
7333
7334 for (tp = table; tp <= table + size - (3 * eh_addr_size); ++tep)
7335 {
7336 tep->start.section = SHN_UNDEF;
7337 tep->end.section = SHN_UNDEF;
7338 tep->info.section = SHN_UNDEF;
7339 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7340 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7341 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
7342 tep->start.offset += aux->seg_base;
7343 tep->end.offset += aux->seg_base;
7344 tep->info.offset += aux->seg_base;
7345 }
7346 free (table);
7347
7348 /* Third, apply any relocations to the unwind table: */
7349 for (relsec = section_headers;
7350 relsec < section_headers + elf_header.e_shnum;
7351 ++relsec)
7352 {
7353 if (relsec->sh_type != SHT_RELA
7354 || relsec->sh_info >= elf_header.e_shnum
7355 || section_headers + relsec->sh_info != sec)
7356 continue;
7357
7358 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7359 & rela, & nrelas))
7360 {
7361 free (aux->table);
7362 aux->table = NULL;
7363 aux->table_len = 0;
7364 return FALSE;
7365 }
7366
7367 for (rp = rela; rp < rela + nrelas; ++rp)
7368 {
7369 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
7370 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7371
7372 /* PR 17531: file: 9fa67536. */
7373 if (relname == NULL)
7374 {
7375 warn (_("Skipping unknown relocation type: %u\n"), get_reloc_type (rp->r_info));
7376 continue;
7377 }
7378
7379 if (! const_strneq (relname, "R_IA64_SEGREL"))
7380 {
7381 warn (_("Skipping unexpected relocation type: %s\n"), relname);
7382 continue;
7383 }
7384
7385 i = rp->r_offset / (3 * eh_addr_size);
7386
7387 /* PR 17531: file: 5bc8d9bf. */
7388 if (i >= aux->table_len)
7389 {
7390 warn (_("Skipping reloc with overlarge offset: %lx\n"), i);
7391 continue;
7392 }
7393
7394 switch (rp->r_offset / eh_addr_size % 3)
7395 {
7396 case 0:
7397 aux->table[i].start.section = sym->st_shndx;
7398 aux->table[i].start.offset = rp->r_addend + sym->st_value;
7399 break;
7400 case 1:
7401 aux->table[i].end.section = sym->st_shndx;
7402 aux->table[i].end.offset = rp->r_addend + sym->st_value;
7403 break;
7404 case 2:
7405 aux->table[i].info.section = sym->st_shndx;
7406 aux->table[i].info.offset = rp->r_addend + sym->st_value;
7407 break;
7408 default:
7409 break;
7410 }
7411 }
7412
7413 free (rela);
7414 }
7415
7416 return TRUE;
7417 }
7418
7419 static bfd_boolean
7420 ia64_process_unwind (FILE * file)
7421 {
7422 Elf_Internal_Shdr * sec;
7423 Elf_Internal_Shdr * unwsec = NULL;
7424 Elf_Internal_Shdr * strsec;
7425 unsigned long i, unwcount = 0, unwstart = 0;
7426 struct ia64_unw_aux_info aux;
7427 bfd_boolean res = TRUE;
7428
7429 memset (& aux, 0, sizeof (aux));
7430
7431 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7432 {
7433 if (sec->sh_type == SHT_SYMTAB
7434 && sec->sh_link < elf_header.e_shnum)
7435 {
7436 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7437
7438 strsec = section_headers + sec->sh_link;
7439 if (aux.strtab != NULL)
7440 {
7441 error (_("Multiple auxillary string tables encountered\n"));
7442 free (aux.strtab);
7443 res = FALSE;
7444 }
7445 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7446 1, strsec->sh_size,
7447 _("string table"));
7448 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7449 }
7450 else if (sec->sh_type == SHT_IA_64_UNWIND)
7451 unwcount++;
7452 }
7453
7454 if (!unwcount)
7455 printf (_("\nThere are no unwind sections in this file.\n"));
7456
7457 while (unwcount-- > 0)
7458 {
7459 char * suffix;
7460 size_t len, len2;
7461
7462 for (i = unwstart, sec = section_headers + unwstart, unwsec = NULL;
7463 i < elf_header.e_shnum; ++i, ++sec)
7464 if (sec->sh_type == SHT_IA_64_UNWIND)
7465 {
7466 unwsec = sec;
7467 break;
7468 }
7469 /* We have already counted the number of SHT_IA64_UNWIND
7470 sections so the loop above should never fail. */
7471 assert (unwsec != NULL);
7472
7473 unwstart = i + 1;
7474 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
7475
7476 if ((unwsec->sh_flags & SHF_GROUP) != 0)
7477 {
7478 /* We need to find which section group it is in. */
7479 struct group_list * g;
7480
7481 if (section_headers_groups == NULL
7482 || section_headers_groups [i] == NULL)
7483 i = elf_header.e_shnum;
7484 else
7485 {
7486 g = section_headers_groups [i]->root;
7487
7488 for (; g != NULL; g = g->next)
7489 {
7490 sec = section_headers + g->section_index;
7491
7492 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
7493 break;
7494 }
7495
7496 if (g == NULL)
7497 i = elf_header.e_shnum;
7498 }
7499 }
7500 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
7501 {
7502 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
7503 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
7504 suffix = SECTION_NAME (unwsec) + len;
7505 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7506 ++i, ++sec)
7507 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
7508 && streq (SECTION_NAME (sec) + len2, suffix))
7509 break;
7510 }
7511 else
7512 {
7513 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
7514 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
7515 len = sizeof (ELF_STRING_ia64_unwind) - 1;
7516 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
7517 suffix = "";
7518 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
7519 suffix = SECTION_NAME (unwsec) + len;
7520 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
7521 ++i, ++sec)
7522 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
7523 && streq (SECTION_NAME (sec) + len2, suffix))
7524 break;
7525 }
7526
7527 if (i == elf_header.e_shnum)
7528 {
7529 printf (_("\nCould not find unwind info section for "));
7530
7531 if (string_table == NULL)
7532 printf ("%d", unwsec->sh_name);
7533 else
7534 printf ("'%s'", printable_section_name (unwsec));
7535 }
7536 else
7537 {
7538 aux.info_addr = sec->sh_addr;
7539 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
7540 sec->sh_size,
7541 _("unwind info"));
7542 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
7543
7544 printf (_("\nUnwind section "));
7545
7546 if (string_table == NULL)
7547 printf ("%d", unwsec->sh_name);
7548 else
7549 printf ("'%s'", printable_section_name (unwsec));
7550
7551 printf (_(" at offset 0x%lx contains %lu entries:\n"),
7552 (unsigned long) unwsec->sh_offset,
7553 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
7554
7555 if (slurp_ia64_unwind_table (file, & aux, unwsec)
7556 && aux.table_len > 0)
7557 dump_ia64_unwind (& aux);
7558
7559 if (aux.table)
7560 free ((char *) aux.table);
7561 if (aux.info)
7562 free ((char *) aux.info);
7563 aux.table = NULL;
7564 aux.info = NULL;
7565 }
7566 }
7567
7568 if (aux.symtab)
7569 free (aux.symtab);
7570 if (aux.strtab)
7571 free ((char *) aux.strtab);
7572
7573 return res;
7574 }
7575
7576 struct hppa_unw_table_entry
7577 {
7578 struct absaddr start;
7579 struct absaddr end;
7580 unsigned int Cannot_unwind:1; /* 0 */
7581 unsigned int Millicode:1; /* 1 */
7582 unsigned int Millicode_save_sr0:1; /* 2 */
7583 unsigned int Region_description:2; /* 3..4 */
7584 unsigned int reserved1:1; /* 5 */
7585 unsigned int Entry_SR:1; /* 6 */
7586 unsigned int Entry_FR:4; /* Number saved 7..10 */
7587 unsigned int Entry_GR:5; /* Number saved 11..15 */
7588 unsigned int Args_stored:1; /* 16 */
7589 unsigned int Variable_Frame:1; /* 17 */
7590 unsigned int Separate_Package_Body:1; /* 18 */
7591 unsigned int Frame_Extension_Millicode:1; /* 19 */
7592 unsigned int Stack_Overflow_Check:1; /* 20 */
7593 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
7594 unsigned int Ada_Region:1; /* 22 */
7595 unsigned int cxx_info:1; /* 23 */
7596 unsigned int cxx_try_catch:1; /* 24 */
7597 unsigned int sched_entry_seq:1; /* 25 */
7598 unsigned int reserved2:1; /* 26 */
7599 unsigned int Save_SP:1; /* 27 */
7600 unsigned int Save_RP:1; /* 28 */
7601 unsigned int Save_MRP_in_frame:1; /* 29 */
7602 unsigned int extn_ptr_defined:1; /* 30 */
7603 unsigned int Cleanup_defined:1; /* 31 */
7604
7605 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
7606 unsigned int HP_UX_interrupt_marker:1; /* 1 */
7607 unsigned int Large_frame:1; /* 2 */
7608 unsigned int Pseudo_SP_Set:1; /* 3 */
7609 unsigned int reserved4:1; /* 4 */
7610 unsigned int Total_frame_size:27; /* 5..31 */
7611 };
7612
7613 struct hppa_unw_aux_info
7614 {
7615 struct hppa_unw_table_entry * table; /* Unwind table. */
7616 unsigned long table_len; /* Length of unwind table. */
7617 bfd_vma seg_base; /* Starting address of segment. */
7618 Elf_Internal_Sym * symtab; /* The symbol table. */
7619 unsigned long nsyms; /* Number of symbols. */
7620 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7621 unsigned long nfuns; /* Number of entries in funtab. */
7622 char * strtab; /* The string table. */
7623 unsigned long strtab_size; /* Size of string table. */
7624 };
7625
7626 static bfd_boolean
7627 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
7628 {
7629 struct hppa_unw_table_entry * tp;
7630 unsigned long j, nfuns;
7631 bfd_boolean res = TRUE;
7632
7633 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
7634 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
7635 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
7636 aux->funtab[nfuns++] = aux->symtab[j];
7637 aux->nfuns = nfuns;
7638 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
7639
7640 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
7641 {
7642 bfd_vma offset;
7643 const char * procname;
7644
7645 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7646 aux->strtab_size, tp->start, &procname,
7647 &offset);
7648
7649 fputs ("\n<", stdout);
7650
7651 if (procname)
7652 {
7653 fputs (procname, stdout);
7654
7655 if (offset)
7656 printf ("+%lx", (unsigned long) offset);
7657 }
7658
7659 fputs (">: [", stdout);
7660 print_vma (tp->start.offset, PREFIX_HEX);
7661 fputc ('-', stdout);
7662 print_vma (tp->end.offset, PREFIX_HEX);
7663 printf ("]\n\t");
7664
7665 #define PF(_m) if (tp->_m) printf (#_m " ");
7666 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
7667 PF(Cannot_unwind);
7668 PF(Millicode);
7669 PF(Millicode_save_sr0);
7670 /* PV(Region_description); */
7671 PF(Entry_SR);
7672 PV(Entry_FR);
7673 PV(Entry_GR);
7674 PF(Args_stored);
7675 PF(Variable_Frame);
7676 PF(Separate_Package_Body);
7677 PF(Frame_Extension_Millicode);
7678 PF(Stack_Overflow_Check);
7679 PF(Two_Instruction_SP_Increment);
7680 PF(Ada_Region);
7681 PF(cxx_info);
7682 PF(cxx_try_catch);
7683 PF(sched_entry_seq);
7684 PF(Save_SP);
7685 PF(Save_RP);
7686 PF(Save_MRP_in_frame);
7687 PF(extn_ptr_defined);
7688 PF(Cleanup_defined);
7689 PF(MPE_XL_interrupt_marker);
7690 PF(HP_UX_interrupt_marker);
7691 PF(Large_frame);
7692 PF(Pseudo_SP_Set);
7693 PV(Total_frame_size);
7694 #undef PF
7695 #undef PV
7696 }
7697
7698 printf ("\n");
7699
7700 free (aux->funtab);
7701
7702 return res;
7703 }
7704
7705 static bfd_boolean
7706 slurp_hppa_unwind_table (FILE * file,
7707 struct hppa_unw_aux_info * aux,
7708 Elf_Internal_Shdr * sec)
7709 {
7710 unsigned long size, unw_ent_size, nentries, nrelas, i;
7711 Elf_Internal_Phdr * seg;
7712 struct hppa_unw_table_entry * tep;
7713 Elf_Internal_Shdr * relsec;
7714 Elf_Internal_Rela * rela;
7715 Elf_Internal_Rela * rp;
7716 unsigned char * table;
7717 unsigned char * tp;
7718 Elf_Internal_Sym * sym;
7719 const char * relname;
7720
7721 /* First, find the starting address of the segment that includes
7722 this section. */
7723 if (elf_header.e_phnum)
7724 {
7725 if (! get_program_headers (file))
7726 return FALSE;
7727
7728 for (seg = program_headers;
7729 seg < program_headers + elf_header.e_phnum;
7730 ++seg)
7731 {
7732 if (seg->p_type != PT_LOAD)
7733 continue;
7734
7735 if (sec->sh_addr >= seg->p_vaddr
7736 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
7737 {
7738 aux->seg_base = seg->p_vaddr;
7739 break;
7740 }
7741 }
7742 }
7743
7744 /* Second, build the unwind table from the contents of the unwind
7745 section. */
7746 size = sec->sh_size;
7747 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
7748 _("unwind table"));
7749 if (!table)
7750 return FALSE;
7751
7752 unw_ent_size = 16;
7753 nentries = size / unw_ent_size;
7754 size = unw_ent_size * nentries;
7755
7756 tep = aux->table = (struct hppa_unw_table_entry *)
7757 xcmalloc (nentries, sizeof (aux->table[0]));
7758
7759 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
7760 {
7761 unsigned int tmp1, tmp2;
7762
7763 tep->start.section = SHN_UNDEF;
7764 tep->end.section = SHN_UNDEF;
7765
7766 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
7767 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
7768 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
7769 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
7770
7771 tep->start.offset += aux->seg_base;
7772 tep->end.offset += aux->seg_base;
7773
7774 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
7775 tep->Millicode = (tmp1 >> 30) & 0x1;
7776 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
7777 tep->Region_description = (tmp1 >> 27) & 0x3;
7778 tep->reserved1 = (tmp1 >> 26) & 0x1;
7779 tep->Entry_SR = (tmp1 >> 25) & 0x1;
7780 tep->Entry_FR = (tmp1 >> 21) & 0xf;
7781 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
7782 tep->Args_stored = (tmp1 >> 15) & 0x1;
7783 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
7784 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
7785 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
7786 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
7787 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
7788 tep->Ada_Region = (tmp1 >> 9) & 0x1;
7789 tep->cxx_info = (tmp1 >> 8) & 0x1;
7790 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
7791 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
7792 tep->reserved2 = (tmp1 >> 5) & 0x1;
7793 tep->Save_SP = (tmp1 >> 4) & 0x1;
7794 tep->Save_RP = (tmp1 >> 3) & 0x1;
7795 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
7796 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
7797 tep->Cleanup_defined = tmp1 & 0x1;
7798
7799 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
7800 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
7801 tep->Large_frame = (tmp2 >> 29) & 0x1;
7802 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
7803 tep->reserved4 = (tmp2 >> 27) & 0x1;
7804 tep->Total_frame_size = tmp2 & 0x7ffffff;
7805 }
7806 free (table);
7807
7808 /* Third, apply any relocations to the unwind table. */
7809 for (relsec = section_headers;
7810 relsec < section_headers + elf_header.e_shnum;
7811 ++relsec)
7812 {
7813 if (relsec->sh_type != SHT_RELA
7814 || relsec->sh_info >= elf_header.e_shnum
7815 || section_headers + relsec->sh_info != sec)
7816 continue;
7817
7818 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
7819 & rela, & nrelas))
7820 return FALSE;
7821
7822 for (rp = rela; rp < rela + nrelas; ++rp)
7823 {
7824 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
7825 sym = aux->symtab + get_reloc_symindex (rp->r_info);
7826
7827 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
7828 if (! const_strneq (relname, "R_PARISC_SEGREL"))
7829 {
7830 warn (_("Skipping unexpected relocation type %s\n"), relname);
7831 continue;
7832 }
7833
7834 i = rp->r_offset / unw_ent_size;
7835
7836 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
7837 {
7838 case 0:
7839 aux->table[i].start.section = sym->st_shndx;
7840 aux->table[i].start.offset = sym->st_value + rp->r_addend;
7841 break;
7842 case 1:
7843 aux->table[i].end.section = sym->st_shndx;
7844 aux->table[i].end.offset = sym->st_value + rp->r_addend;
7845 break;
7846 default:
7847 break;
7848 }
7849 }
7850
7851 free (rela);
7852 }
7853
7854 aux->table_len = nentries;
7855
7856 return TRUE;
7857 }
7858
7859 static bfd_boolean
7860 hppa_process_unwind (FILE * file)
7861 {
7862 struct hppa_unw_aux_info aux;
7863 Elf_Internal_Shdr * unwsec = NULL;
7864 Elf_Internal_Shdr * strsec;
7865 Elf_Internal_Shdr * sec;
7866 unsigned long i;
7867 bfd_boolean res = TRUE;
7868
7869 if (string_table == NULL)
7870 return FALSE;
7871
7872 memset (& aux, 0, sizeof (aux));
7873
7874 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7875 {
7876 if (sec->sh_type == SHT_SYMTAB
7877 && sec->sh_link < elf_header.e_shnum)
7878 {
7879 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7880
7881 strsec = section_headers + sec->sh_link;
7882 if (aux.strtab != NULL)
7883 {
7884 error (_("Multiple auxillary string tables encountered\n"));
7885 free (aux.strtab);
7886 res = FALSE;
7887 }
7888 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
7889 1, strsec->sh_size,
7890 _("string table"));
7891 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7892 }
7893 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7894 unwsec = sec;
7895 }
7896
7897 if (!unwsec)
7898 printf (_("\nThere are no unwind sections in this file.\n"));
7899
7900 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7901 {
7902 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
7903 {
7904 printf (_("\nUnwind section '%s' at offset 0x%lx contains %lu entries:\n"),
7905 printable_section_name (sec),
7906 (unsigned long) sec->sh_offset,
7907 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
7908
7909 if (! slurp_hppa_unwind_table (file, &aux, sec))
7910 res = FALSE;
7911
7912 if (aux.table_len > 0)
7913 {
7914 if (! dump_hppa_unwind (&aux))
7915 res = FALSE;
7916 }
7917
7918 if (aux.table)
7919 free ((char *) aux.table);
7920 aux.table = NULL;
7921 }
7922 }
7923
7924 if (aux.symtab)
7925 free (aux.symtab);
7926 if (aux.strtab)
7927 free ((char *) aux.strtab);
7928
7929 return res;
7930 }
7931
7932 struct arm_section
7933 {
7934 unsigned char * data; /* The unwind data. */
7935 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
7936 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
7937 unsigned long nrelas; /* The number of relocations. */
7938 unsigned int rel_type; /* REL or RELA ? */
7939 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
7940 };
7941
7942 struct arm_unw_aux_info
7943 {
7944 FILE * file; /* The file containing the unwind sections. */
7945 Elf_Internal_Sym * symtab; /* The file's symbol table. */
7946 unsigned long nsyms; /* Number of symbols. */
7947 Elf_Internal_Sym * funtab; /* Sorted table of STT_FUNC symbols. */
7948 unsigned long nfuns; /* Number of these symbols. */
7949 char * strtab; /* The file's string table. */
7950 unsigned long strtab_size; /* Size of string table. */
7951 };
7952
7953 static const char *
7954 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
7955 bfd_vma fn, struct absaddr addr)
7956 {
7957 const char *procname;
7958 bfd_vma sym_offset;
7959
7960 if (addr.section == SHN_UNDEF)
7961 addr.offset = fn;
7962
7963 find_symbol_for_address (aux->funtab, aux->nfuns, aux->strtab,
7964 aux->strtab_size, addr, &procname,
7965 &sym_offset);
7966
7967 print_vma (fn, PREFIX_HEX);
7968
7969 if (procname)
7970 {
7971 fputs (" <", stdout);
7972 fputs (procname, stdout);
7973
7974 if (sym_offset)
7975 printf ("+0x%lx", (unsigned long) sym_offset);
7976 fputc ('>', stdout);
7977 }
7978
7979 return procname;
7980 }
7981
7982 static void
7983 arm_free_section (struct arm_section *arm_sec)
7984 {
7985 if (arm_sec->data != NULL)
7986 free (arm_sec->data);
7987
7988 if (arm_sec->rela != NULL)
7989 free (arm_sec->rela);
7990 }
7991
7992 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
7993 cached section and install SEC instead.
7994 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
7995 and return its valued in * WORDP, relocating if necessary.
7996 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
7997 relocation's offset in ADDR.
7998 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
7999 into the string table of the symbol associated with the reloc. If no
8000 reloc was applied store -1 there.
8001 5) Return TRUE upon success, FALSE otherwise. */
8002
8003 static bfd_boolean
8004 get_unwind_section_word (struct arm_unw_aux_info * aux,
8005 struct arm_section * arm_sec,
8006 Elf_Internal_Shdr * sec,
8007 bfd_vma word_offset,
8008 unsigned int * wordp,
8009 struct absaddr * addr,
8010 bfd_vma * sym_name)
8011 {
8012 Elf_Internal_Rela *rp;
8013 Elf_Internal_Sym *sym;
8014 const char * relname;
8015 unsigned int word;
8016 bfd_boolean wrapped;
8017
8018 if (sec == NULL || arm_sec == NULL)
8019 return FALSE;
8020
8021 addr->section = SHN_UNDEF;
8022 addr->offset = 0;
8023
8024 if (sym_name != NULL)
8025 *sym_name = (bfd_vma) -1;
8026
8027 /* If necessary, update the section cache. */
8028 if (sec != arm_sec->sec)
8029 {
8030 Elf_Internal_Shdr *relsec;
8031
8032 arm_free_section (arm_sec);
8033
8034 arm_sec->sec = sec;
8035 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
8036 sec->sh_size, _("unwind data"));
8037 arm_sec->rela = NULL;
8038 arm_sec->nrelas = 0;
8039
8040 for (relsec = section_headers;
8041 relsec < section_headers + elf_header.e_shnum;
8042 ++relsec)
8043 {
8044 if (relsec->sh_info >= elf_header.e_shnum
8045 || section_headers + relsec->sh_info != sec
8046 /* PR 15745: Check the section type as well. */
8047 || (relsec->sh_type != SHT_REL
8048 && relsec->sh_type != SHT_RELA))
8049 continue;
8050
8051 arm_sec->rel_type = relsec->sh_type;
8052 if (relsec->sh_type == SHT_REL)
8053 {
8054 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
8055 relsec->sh_size,
8056 & arm_sec->rela, & arm_sec->nrelas))
8057 return FALSE;
8058 }
8059 else /* relsec->sh_type == SHT_RELA */
8060 {
8061 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
8062 relsec->sh_size,
8063 & arm_sec->rela, & arm_sec->nrelas))
8064 return FALSE;
8065 }
8066 break;
8067 }
8068
8069 arm_sec->next_rela = arm_sec->rela;
8070 }
8071
8072 /* If there is no unwind data we can do nothing. */
8073 if (arm_sec->data == NULL)
8074 return FALSE;
8075
8076 /* If the offset is invalid then fail. */
8077 if (/* PR 21343 *//* PR 18879 */
8078 sec->sh_size < 4
8079 || word_offset > (sec->sh_size - 4)
8080 || ((bfd_signed_vma) word_offset) < 0)
8081 return FALSE;
8082
8083 /* Get the word at the required offset. */
8084 word = byte_get (arm_sec->data + word_offset, 4);
8085
8086 /* PR 17531: file: id:000001,src:001266+003044,op:splice,rep:128. */
8087 if (arm_sec->rela == NULL)
8088 {
8089 * wordp = word;
8090 return TRUE;
8091 }
8092
8093 /* Look through the relocs to find the one that applies to the provided offset. */
8094 wrapped = FALSE;
8095 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
8096 {
8097 bfd_vma prelval, offset;
8098
8099 if (rp->r_offset > word_offset && !wrapped)
8100 {
8101 rp = arm_sec->rela;
8102 wrapped = TRUE;
8103 }
8104 if (rp->r_offset > word_offset)
8105 break;
8106
8107 if (rp->r_offset & 3)
8108 {
8109 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
8110 (unsigned long) rp->r_offset);
8111 continue;
8112 }
8113
8114 if (rp->r_offset < word_offset)
8115 continue;
8116
8117 /* PR 17531: file: 027-161405-0.004 */
8118 if (aux->symtab == NULL)
8119 continue;
8120
8121 if (arm_sec->rel_type == SHT_REL)
8122 {
8123 offset = word & 0x7fffffff;
8124 if (offset & 0x40000000)
8125 offset |= ~ (bfd_vma) 0x7fffffff;
8126 }
8127 else if (arm_sec->rel_type == SHT_RELA)
8128 offset = rp->r_addend;
8129 else
8130 {
8131 error (_("Unknown section relocation type %d encountered\n"),
8132 arm_sec->rel_type);
8133 break;
8134 }
8135
8136 /* PR 17531 file: 027-1241568-0.004. */
8137 if (ELF32_R_SYM (rp->r_info) >= aux->nsyms)
8138 {
8139 error (_("Bad symbol index in unwind relocation (%lu > %lu)\n"),
8140 (unsigned long) ELF32_R_SYM (rp->r_info), aux->nsyms);
8141 break;
8142 }
8143
8144 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
8145 offset += sym->st_value;
8146 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
8147
8148 /* Check that we are processing the expected reloc type. */
8149 if (elf_header.e_machine == EM_ARM)
8150 {
8151 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
8152 if (relname == NULL)
8153 {
8154 warn (_("Skipping unknown ARM relocation type: %d\n"),
8155 (int) ELF32_R_TYPE (rp->r_info));
8156 continue;
8157 }
8158
8159 if (streq (relname, "R_ARM_NONE"))
8160 continue;
8161
8162 if (! streq (relname, "R_ARM_PREL31"))
8163 {
8164 warn (_("Skipping unexpected ARM relocation type %s\n"), relname);
8165 continue;
8166 }
8167 }
8168 else if (elf_header.e_machine == EM_TI_C6000)
8169 {
8170 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
8171 if (relname == NULL)
8172 {
8173 warn (_("Skipping unknown C6000 relocation type: %d\n"),
8174 (int) ELF32_R_TYPE (rp->r_info));
8175 continue;
8176 }
8177
8178 if (streq (relname, "R_C6000_NONE"))
8179 continue;
8180
8181 if (! streq (relname, "R_C6000_PREL31"))
8182 {
8183 warn (_("Skipping unexpected C6000 relocation type %s\n"), relname);
8184 continue;
8185 }
8186
8187 prelval >>= 1;
8188 }
8189 else
8190 {
8191 /* This function currently only supports ARM and TI unwinders. */
8192 warn (_("Only TI and ARM unwinders are currently supported\n"));
8193 break;
8194 }
8195
8196 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
8197 addr->section = sym->st_shndx;
8198 addr->offset = offset;
8199
8200 if (sym_name)
8201 * sym_name = sym->st_name;
8202 break;
8203 }
8204
8205 *wordp = word;
8206 arm_sec->next_rela = rp;
8207
8208 return TRUE;
8209 }
8210
8211 static const char *tic6x_unwind_regnames[16] =
8212 {
8213 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
8214 "A14", "A13", "A12", "A11", "A10",
8215 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
8216 };
8217
8218 static void
8219 decode_tic6x_unwind_regmask (unsigned int mask)
8220 {
8221 int i;
8222
8223 for (i = 12; mask; mask >>= 1, i--)
8224 {
8225 if (mask & 1)
8226 {
8227 fputs (tic6x_unwind_regnames[i], stdout);
8228 if (mask > 1)
8229 fputs (", ", stdout);
8230 }
8231 }
8232 }
8233
8234 #define ADVANCE \
8235 if (remaining == 0 && more_words) \
8236 { \
8237 data_offset += 4; \
8238 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
8239 data_offset, & word, & addr, NULL)) \
8240 return FALSE; \
8241 remaining = 4; \
8242 more_words--; \
8243 } \
8244
8245 #define GET_OP(OP) \
8246 ADVANCE; \
8247 if (remaining) \
8248 { \
8249 remaining--; \
8250 (OP) = word >> 24; \
8251 word <<= 8; \
8252 } \
8253 else \
8254 { \
8255 printf (_("[Truncated opcode]\n")); \
8256 return FALSE; \
8257 } \
8258 printf ("0x%02x ", OP)
8259
8260 static bfd_boolean
8261 decode_arm_unwind_bytecode (struct arm_unw_aux_info * aux,
8262 unsigned int word,
8263 unsigned int remaining,
8264 unsigned int more_words,
8265 bfd_vma data_offset,
8266 Elf_Internal_Shdr * data_sec,
8267 struct arm_section * data_arm_sec)
8268 {
8269 struct absaddr addr;
8270 bfd_boolean res = TRUE;
8271
8272 /* Decode the unwinding instructions. */
8273 while (1)
8274 {
8275 unsigned int op, op2;
8276
8277 ADVANCE;
8278 if (remaining == 0)
8279 break;
8280 remaining--;
8281 op = word >> 24;
8282 word <<= 8;
8283
8284 printf (" 0x%02x ", op);
8285
8286 if ((op & 0xc0) == 0x00)
8287 {
8288 int offset = ((op & 0x3f) << 2) + 4;
8289
8290 printf (" vsp = vsp + %d", offset);
8291 }
8292 else if ((op & 0xc0) == 0x40)
8293 {
8294 int offset = ((op & 0x3f) << 2) + 4;
8295
8296 printf (" vsp = vsp - %d", offset);
8297 }
8298 else if ((op & 0xf0) == 0x80)
8299 {
8300 GET_OP (op2);
8301 if (op == 0x80 && op2 == 0)
8302 printf (_("Refuse to unwind"));
8303 else
8304 {
8305 unsigned int mask = ((op & 0x0f) << 8) | op2;
8306 bfd_boolean first = TRUE;
8307 int i;
8308
8309 printf ("pop {");
8310 for (i = 0; i < 12; i++)
8311 if (mask & (1 << i))
8312 {
8313 if (first)
8314 first = FALSE;
8315 else
8316 printf (", ");
8317 printf ("r%d", 4 + i);
8318 }
8319 printf ("}");
8320 }
8321 }
8322 else if ((op & 0xf0) == 0x90)
8323 {
8324 if (op == 0x9d || op == 0x9f)
8325 printf (_(" [Reserved]"));
8326 else
8327 printf (" vsp = r%d", op & 0x0f);
8328 }
8329 else if ((op & 0xf0) == 0xa0)
8330 {
8331 int end = 4 + (op & 0x07);
8332 bfd_boolean first = TRUE;
8333 int i;
8334
8335 printf (" pop {");
8336 for (i = 4; i <= end; i++)
8337 {
8338 if (first)
8339 first = FALSE;
8340 else
8341 printf (", ");
8342 printf ("r%d", i);
8343 }
8344 if (op & 0x08)
8345 {
8346 if (!first)
8347 printf (", ");
8348 printf ("r14");
8349 }
8350 printf ("}");
8351 }
8352 else if (op == 0xb0)
8353 printf (_(" finish"));
8354 else if (op == 0xb1)
8355 {
8356 GET_OP (op2);
8357 if (op2 == 0 || (op2 & 0xf0) != 0)
8358 printf (_("[Spare]"));
8359 else
8360 {
8361 unsigned int mask = op2 & 0x0f;
8362 bfd_boolean first = TRUE;
8363 int i;
8364
8365 printf ("pop {");
8366 for (i = 0; i < 12; i++)
8367 if (mask & (1 << i))
8368 {
8369 if (first)
8370 first = FALSE;
8371 else
8372 printf (", ");
8373 printf ("r%d", i);
8374 }
8375 printf ("}");
8376 }
8377 }
8378 else if (op == 0xb2)
8379 {
8380 unsigned char buf[9];
8381 unsigned int i, len;
8382 unsigned long offset;
8383
8384 for (i = 0; i < sizeof (buf); i++)
8385 {
8386 GET_OP (buf[i]);
8387 if ((buf[i] & 0x80) == 0)
8388 break;
8389 }
8390 if (i == sizeof (buf))
8391 {
8392 error (_("corrupt change to vsp"));
8393 res = FALSE;
8394 }
8395 else
8396 {
8397 offset = read_uleb128 (buf, &len, buf + i + 1);
8398 assert (len == i + 1);
8399 offset = offset * 4 + 0x204;
8400 printf ("vsp = vsp + %ld", offset);
8401 }
8402 }
8403 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
8404 {
8405 unsigned int first, last;
8406
8407 GET_OP (op2);
8408 first = op2 >> 4;
8409 last = op2 & 0x0f;
8410 if (op == 0xc8)
8411 first = first + 16;
8412 printf ("pop {D%d", first);
8413 if (last)
8414 printf ("-D%d", first + last);
8415 printf ("}");
8416 }
8417 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
8418 {
8419 unsigned int count = op & 0x07;
8420
8421 printf ("pop {D8");
8422 if (count)
8423 printf ("-D%d", 8 + count);
8424 printf ("}");
8425 }
8426 else if (op >= 0xc0 && op <= 0xc5)
8427 {
8428 unsigned int count = op & 0x07;
8429
8430 printf (" pop {wR10");
8431 if (count)
8432 printf ("-wR%d", 10 + count);
8433 printf ("}");
8434 }
8435 else if (op == 0xc6)
8436 {
8437 unsigned int first, last;
8438
8439 GET_OP (op2);
8440 first = op2 >> 4;
8441 last = op2 & 0x0f;
8442 printf ("pop {wR%d", first);
8443 if (last)
8444 printf ("-wR%d", first + last);
8445 printf ("}");
8446 }
8447 else if (op == 0xc7)
8448 {
8449 GET_OP (op2);
8450 if (op2 == 0 || (op2 & 0xf0) != 0)
8451 printf (_("[Spare]"));
8452 else
8453 {
8454 unsigned int mask = op2 & 0x0f;
8455 bfd_boolean first = TRUE;
8456 int i;
8457
8458 printf ("pop {");
8459 for (i = 0; i < 4; i++)
8460 if (mask & (1 << i))
8461 {
8462 if (first)
8463 first = FALSE;
8464 else
8465 printf (", ");
8466 printf ("wCGR%d", i);
8467 }
8468 printf ("}");
8469 }
8470 }
8471 else
8472 {
8473 printf (_(" [unsupported opcode]"));
8474 res = FALSE;
8475 }
8476
8477 printf ("\n");
8478 }
8479
8480 return res;
8481 }
8482
8483 static bfd_boolean
8484 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info * aux,
8485 unsigned int word,
8486 unsigned int remaining,
8487 unsigned int more_words,
8488 bfd_vma data_offset,
8489 Elf_Internal_Shdr * data_sec,
8490 struct arm_section * data_arm_sec)
8491 {
8492 struct absaddr addr;
8493
8494 /* Decode the unwinding instructions. */
8495 while (1)
8496 {
8497 unsigned int op, op2;
8498
8499 ADVANCE;
8500 if (remaining == 0)
8501 break;
8502 remaining--;
8503 op = word >> 24;
8504 word <<= 8;
8505
8506 printf (" 0x%02x ", op);
8507
8508 if ((op & 0xc0) == 0x00)
8509 {
8510 int offset = ((op & 0x3f) << 3) + 8;
8511 printf (" sp = sp + %d", offset);
8512 }
8513 else if ((op & 0xc0) == 0x80)
8514 {
8515 GET_OP (op2);
8516 if (op == 0x80 && op2 == 0)
8517 printf (_("Refuse to unwind"));
8518 else
8519 {
8520 unsigned int mask = ((op & 0x1f) << 8) | op2;
8521 if (op & 0x20)
8522 printf ("pop compact {");
8523 else
8524 printf ("pop {");
8525
8526 decode_tic6x_unwind_regmask (mask);
8527 printf("}");
8528 }
8529 }
8530 else if ((op & 0xf0) == 0xc0)
8531 {
8532 unsigned int reg;
8533 unsigned int nregs;
8534 unsigned int i;
8535 const char *name;
8536 struct
8537 {
8538 unsigned int offset;
8539 unsigned int reg;
8540 } regpos[16];
8541
8542 /* Scan entire instruction first so that GET_OP output is not
8543 interleaved with disassembly. */
8544 nregs = 0;
8545 for (i = 0; nregs < (op & 0xf); i++)
8546 {
8547 GET_OP (op2);
8548 reg = op2 >> 4;
8549 if (reg != 0xf)
8550 {
8551 regpos[nregs].offset = i * 2;
8552 regpos[nregs].reg = reg;
8553 nregs++;
8554 }
8555
8556 reg = op2 & 0xf;
8557 if (reg != 0xf)
8558 {
8559 regpos[nregs].offset = i * 2 + 1;
8560 regpos[nregs].reg = reg;
8561 nregs++;
8562 }
8563 }
8564
8565 printf (_("pop frame {"));
8566 reg = nregs - 1;
8567 for (i = i * 2; i > 0; i--)
8568 {
8569 if (regpos[reg].offset == i - 1)
8570 {
8571 name = tic6x_unwind_regnames[regpos[reg].reg];
8572 if (reg > 0)
8573 reg--;
8574 }
8575 else
8576 name = _("[pad]");
8577
8578 fputs (name, stdout);
8579 if (i > 1)
8580 printf (", ");
8581 }
8582
8583 printf ("}");
8584 }
8585 else if (op == 0xd0)
8586 printf (" MOV FP, SP");
8587 else if (op == 0xd1)
8588 printf (" __c6xabi_pop_rts");
8589 else if (op == 0xd2)
8590 {
8591 unsigned char buf[9];
8592 unsigned int i, len;
8593 unsigned long offset;
8594
8595 for (i = 0; i < sizeof (buf); i++)
8596 {
8597 GET_OP (buf[i]);
8598 if ((buf[i] & 0x80) == 0)
8599 break;
8600 }
8601 /* PR 17531: file: id:000001,src:001906+004739,op:splice,rep:2. */
8602 if (i == sizeof (buf))
8603 {
8604 warn (_("Corrupt stack pointer adjustment detected\n"));
8605 return FALSE;
8606 }
8607
8608 offset = read_uleb128 (buf, &len, buf + i + 1);
8609 assert (len == i + 1);
8610 offset = offset * 8 + 0x408;
8611 printf (_("sp = sp + %ld"), offset);
8612 }
8613 else if ((op & 0xf0) == 0xe0)
8614 {
8615 if ((op & 0x0f) == 7)
8616 printf (" RETURN");
8617 else
8618 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
8619 }
8620 else
8621 {
8622 printf (_(" [unsupported opcode]"));
8623 }
8624 putchar ('\n');
8625 }
8626
8627 return TRUE;
8628 }
8629
8630 static bfd_vma
8631 arm_expand_prel31 (bfd_vma word, bfd_vma where)
8632 {
8633 bfd_vma offset;
8634
8635 offset = word & 0x7fffffff;
8636 if (offset & 0x40000000)
8637 offset |= ~ (bfd_vma) 0x7fffffff;
8638
8639 if (elf_header.e_machine == EM_TI_C6000)
8640 offset <<= 1;
8641
8642 return offset + where;
8643 }
8644
8645 static bfd_boolean
8646 decode_arm_unwind (struct arm_unw_aux_info * aux,
8647 unsigned int word,
8648 unsigned int remaining,
8649 bfd_vma data_offset,
8650 Elf_Internal_Shdr * data_sec,
8651 struct arm_section * data_arm_sec)
8652 {
8653 int per_index;
8654 unsigned int more_words = 0;
8655 struct absaddr addr;
8656 bfd_vma sym_name = (bfd_vma) -1;
8657 bfd_boolean res = FALSE;
8658
8659 if (remaining == 0)
8660 {
8661 /* Fetch the first word.
8662 Note - when decoding an object file the address extracted
8663 here will always be 0. So we also pass in the sym_name
8664 parameter so that we can find the symbol associated with
8665 the personality routine. */
8666 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
8667 & word, & addr, & sym_name))
8668 return FALSE;
8669
8670 remaining = 4;
8671 }
8672
8673 if ((word & 0x80000000) == 0)
8674 {
8675 /* Expand prel31 for personality routine. */
8676 bfd_vma fn;
8677 const char *procname;
8678
8679 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
8680 printf (_(" Personality routine: "));
8681 if (fn == 0
8682 && addr.section == SHN_UNDEF && addr.offset == 0
8683 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
8684 {
8685 procname = aux->strtab + sym_name;
8686 print_vma (fn, PREFIX_HEX);
8687 if (procname)
8688 {
8689 fputs (" <", stdout);
8690 fputs (procname, stdout);
8691 fputc ('>', stdout);
8692 }
8693 }
8694 else
8695 procname = arm_print_vma_and_name (aux, fn, addr);
8696 fputc ('\n', stdout);
8697
8698 /* The GCC personality routines use the standard compact
8699 encoding, starting with one byte giving the number of
8700 words. */
8701 if (procname != NULL
8702 && (const_strneq (procname, "__gcc_personality_v0")
8703 || const_strneq (procname, "__gxx_personality_v0")
8704 || const_strneq (procname, "__gcj_personality_v0")
8705 || const_strneq (procname, "__gnu_objc_personality_v0")))
8706 {
8707 remaining = 0;
8708 more_words = 1;
8709 ADVANCE;
8710 if (!remaining)
8711 {
8712 printf (_(" [Truncated data]\n"));
8713 return FALSE;
8714 }
8715 more_words = word >> 24;
8716 word <<= 8;
8717 remaining--;
8718 per_index = -1;
8719 }
8720 else
8721 return TRUE;
8722 }
8723 else
8724 {
8725 /* ARM EHABI Section 6.3:
8726
8727 An exception-handling table entry for the compact model looks like:
8728
8729 31 30-28 27-24 23-0
8730 -- ----- ----- ----
8731 1 0 index Data for personalityRoutine[index] */
8732
8733 if (elf_header.e_machine == EM_ARM
8734 && (word & 0x70000000))
8735 {
8736 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
8737 res = FALSE;
8738 }
8739
8740 per_index = (word >> 24) & 0x7f;
8741 printf (_(" Compact model index: %d\n"), per_index);
8742 if (per_index == 0)
8743 {
8744 more_words = 0;
8745 word <<= 8;
8746 remaining--;
8747 }
8748 else if (per_index < 3)
8749 {
8750 more_words = (word >> 16) & 0xff;
8751 word <<= 16;
8752 remaining -= 2;
8753 }
8754 }
8755
8756 switch (elf_header.e_machine)
8757 {
8758 case EM_ARM:
8759 if (per_index < 3)
8760 {
8761 if (! decode_arm_unwind_bytecode (aux, word, remaining, more_words,
8762 data_offset, data_sec, data_arm_sec))
8763 res = FALSE;
8764 }
8765 else
8766 {
8767 warn (_("Unknown ARM compact model index encountered\n"));
8768 printf (_(" [reserved]\n"));
8769 res = FALSE;
8770 }
8771 break;
8772
8773 case EM_TI_C6000:
8774 if (per_index < 3)
8775 {
8776 if (! decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
8777 data_offset, data_sec, data_arm_sec))
8778 res = FALSE;
8779 }
8780 else if (per_index < 5)
8781 {
8782 if (((word >> 17) & 0x7f) == 0x7f)
8783 printf (_(" Restore stack from frame pointer\n"));
8784 else
8785 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
8786 printf (_(" Registers restored: "));
8787 if (per_index == 4)
8788 printf (" (compact) ");
8789 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
8790 putchar ('\n');
8791 printf (_(" Return register: %s\n"),
8792 tic6x_unwind_regnames[word & 0xf]);
8793 }
8794 else
8795 printf (_(" [reserved (%d)]\n"), per_index);
8796 break;
8797
8798 default:
8799 error (_("Unsupported architecture type %d encountered when decoding unwind table\n"),
8800 elf_header.e_machine);
8801 res = FALSE;
8802 }
8803
8804 /* Decode the descriptors. Not implemented. */
8805
8806 return res;
8807 }
8808
8809 static bfd_boolean
8810 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
8811 {
8812 struct arm_section exidx_arm_sec, extab_arm_sec;
8813 unsigned int i, exidx_len;
8814 unsigned long j, nfuns;
8815 bfd_boolean res = TRUE;
8816
8817 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
8818 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
8819 exidx_len = exidx_sec->sh_size / 8;
8820
8821 aux->funtab = xmalloc (aux->nsyms * sizeof (Elf_Internal_Sym));
8822 for (nfuns = 0, j = 0; j < aux->nsyms; j++)
8823 if (aux->symtab[j].st_value && ELF_ST_TYPE (aux->symtab[j].st_info) == STT_FUNC)
8824 aux->funtab[nfuns++] = aux->symtab[j];
8825 aux->nfuns = nfuns;
8826 qsort (aux->funtab, aux->nfuns, sizeof (Elf_Internal_Sym), symcmp);
8827
8828 for (i = 0; i < exidx_len; i++)
8829 {
8830 unsigned int exidx_fn, exidx_entry;
8831 struct absaddr fn_addr, entry_addr;
8832 bfd_vma fn;
8833
8834 fputc ('\n', stdout);
8835
8836 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8837 8 * i, & exidx_fn, & fn_addr, NULL)
8838 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
8839 8 * i + 4, & exidx_entry, & entry_addr, NULL))
8840 {
8841 free (aux->funtab);
8842 arm_free_section (& exidx_arm_sec);
8843 arm_free_section (& extab_arm_sec);
8844 return FALSE;
8845 }
8846
8847 /* ARM EHABI, Section 5:
8848 An index table entry consists of 2 words.
8849 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
8850 if (exidx_fn & 0x80000000)
8851 {
8852 warn (_("corrupt index table entry: %x\n"), exidx_fn);
8853 res = FALSE;
8854 }
8855
8856 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
8857
8858 arm_print_vma_and_name (aux, fn, fn_addr);
8859 fputs (": ", stdout);
8860
8861 if (exidx_entry == 1)
8862 {
8863 print_vma (exidx_entry, PREFIX_HEX);
8864 fputs (" [cantunwind]\n", stdout);
8865 }
8866 else if (exidx_entry & 0x80000000)
8867 {
8868 print_vma (exidx_entry, PREFIX_HEX);
8869 fputc ('\n', stdout);
8870 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
8871 }
8872 else
8873 {
8874 bfd_vma table, table_offset = 0;
8875 Elf_Internal_Shdr *table_sec;
8876
8877 fputs ("@", stdout);
8878 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
8879 print_vma (table, PREFIX_HEX);
8880 printf ("\n");
8881
8882 /* Locate the matching .ARM.extab. */
8883 if (entry_addr.section != SHN_UNDEF
8884 && entry_addr.section < elf_header.e_shnum)
8885 {
8886 table_sec = section_headers + entry_addr.section;
8887 table_offset = entry_addr.offset;
8888 /* PR 18879 */
8889 if (table_offset > table_sec->sh_size
8890 || ((bfd_signed_vma) table_offset) < 0)
8891 {
8892 warn (_("Unwind entry contains corrupt offset (0x%lx) into section %s\n"),
8893 (unsigned long) table_offset,
8894 printable_section_name (table_sec));
8895 res = FALSE;
8896 continue;
8897 }
8898 }
8899 else
8900 {
8901 table_sec = find_section_by_address (table);
8902 if (table_sec != NULL)
8903 table_offset = table - table_sec->sh_addr;
8904 }
8905
8906 if (table_sec == NULL)
8907 {
8908 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
8909 (unsigned long) table);
8910 res = FALSE;
8911 continue;
8912 }
8913
8914 if (! decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
8915 &extab_arm_sec))
8916 res = FALSE;
8917 }
8918 }
8919
8920 printf ("\n");
8921
8922 free (aux->funtab);
8923 arm_free_section (&exidx_arm_sec);
8924 arm_free_section (&extab_arm_sec);
8925
8926 return res;
8927 }
8928
8929 /* Used for both ARM and C6X unwinding tables. */
8930
8931 static bfd_boolean
8932 arm_process_unwind (FILE *file)
8933 {
8934 struct arm_unw_aux_info aux;
8935 Elf_Internal_Shdr *unwsec = NULL;
8936 Elf_Internal_Shdr *strsec;
8937 Elf_Internal_Shdr *sec;
8938 unsigned long i;
8939 unsigned int sec_type;
8940 bfd_boolean res = TRUE;
8941
8942 switch (elf_header.e_machine)
8943 {
8944 case EM_ARM:
8945 sec_type = SHT_ARM_EXIDX;
8946 break;
8947
8948 case EM_TI_C6000:
8949 sec_type = SHT_C6000_UNWIND;
8950 break;
8951
8952 default:
8953 error (_("Unsupported architecture type %d encountered when processing unwind table\n"),
8954 elf_header.e_machine);
8955 return FALSE;
8956 }
8957
8958 if (string_table == NULL)
8959 return FALSE;
8960
8961 memset (& aux, 0, sizeof (aux));
8962 aux.file = file;
8963
8964 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8965 {
8966 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
8967 {
8968 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
8969
8970 strsec = section_headers + sec->sh_link;
8971
8972 /* PR binutils/17531 file: 011-12666-0.004. */
8973 if (aux.strtab != NULL)
8974 {
8975 error (_("Multiple string tables found in file.\n"));
8976 free (aux.strtab);
8977 res = FALSE;
8978 }
8979 aux.strtab = get_data (NULL, file, strsec->sh_offset,
8980 1, strsec->sh_size, _("string table"));
8981 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
8982 }
8983 else if (sec->sh_type == sec_type)
8984 unwsec = sec;
8985 }
8986
8987 if (unwsec == NULL)
8988 printf (_("\nThere are no unwind sections in this file.\n"));
8989 else
8990 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
8991 {
8992 if (sec->sh_type == sec_type)
8993 {
8994 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
8995 printable_section_name (sec),
8996 (unsigned long) sec->sh_offset,
8997 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
8998
8999 if (! dump_arm_unwind (&aux, sec))
9000 res = FALSE;
9001 }
9002 }
9003
9004 if (aux.symtab)
9005 free (aux.symtab);
9006 if (aux.strtab)
9007 free ((char *) aux.strtab);
9008
9009 return res;
9010 }
9011
9012 static bfd_boolean
9013 process_unwind (FILE * file)
9014 {
9015 struct unwind_handler
9016 {
9017 unsigned int machtype;
9018 bfd_boolean (* handler)(FILE *);
9019 } handlers[] =
9020 {
9021 { EM_ARM, arm_process_unwind },
9022 { EM_IA_64, ia64_process_unwind },
9023 { EM_PARISC, hppa_process_unwind },
9024 { EM_TI_C6000, arm_process_unwind },
9025 { 0, NULL }
9026 };
9027 int i;
9028
9029 if (!do_unwind)
9030 return TRUE;
9031
9032 for (i = 0; handlers[i].handler != NULL; i++)
9033 if (elf_header.e_machine == handlers[i].machtype)
9034 return handlers[i].handler (file);
9035
9036 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
9037 get_machine_name (elf_header.e_machine));
9038 return TRUE;
9039 }
9040
9041 static void
9042 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
9043 {
9044 switch (entry->d_tag)
9045 {
9046 case DT_MIPS_FLAGS:
9047 if (entry->d_un.d_val == 0)
9048 printf (_("NONE"));
9049 else
9050 {
9051 static const char * opts[] =
9052 {
9053 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
9054 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
9055 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
9056 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
9057 "RLD_ORDER_SAFE"
9058 };
9059 unsigned int cnt;
9060 bfd_boolean first = TRUE;
9061
9062 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
9063 if (entry->d_un.d_val & (1 << cnt))
9064 {
9065 printf ("%s%s", first ? "" : " ", opts[cnt]);
9066 first = FALSE;
9067 }
9068 }
9069 break;
9070
9071 case DT_MIPS_IVERSION:
9072 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9073 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
9074 else
9075 {
9076 char buf[40];
9077 sprintf_vma (buf, entry->d_un.d_ptr);
9078 /* Note: coded this way so that there is a single string for translation. */
9079 printf (_("<corrupt: %s>"), buf);
9080 }
9081 break;
9082
9083 case DT_MIPS_TIME_STAMP:
9084 {
9085 char timebuf[128];
9086 struct tm * tmp;
9087 time_t atime = entry->d_un.d_val;
9088
9089 tmp = gmtime (&atime);
9090 /* PR 17531: file: 6accc532. */
9091 if (tmp == NULL)
9092 snprintf (timebuf, sizeof (timebuf), _("<corrupt>"));
9093 else
9094 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
9095 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
9096 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
9097 printf (_("Time Stamp: %s"), timebuf);
9098 }
9099 break;
9100
9101 case DT_MIPS_RLD_VERSION:
9102 case DT_MIPS_LOCAL_GOTNO:
9103 case DT_MIPS_CONFLICTNO:
9104 case DT_MIPS_LIBLISTNO:
9105 case DT_MIPS_SYMTABNO:
9106 case DT_MIPS_UNREFEXTNO:
9107 case DT_MIPS_HIPAGENO:
9108 case DT_MIPS_DELTA_CLASS_NO:
9109 case DT_MIPS_DELTA_INSTANCE_NO:
9110 case DT_MIPS_DELTA_RELOC_NO:
9111 case DT_MIPS_DELTA_SYM_NO:
9112 case DT_MIPS_DELTA_CLASSSYM_NO:
9113 case DT_MIPS_COMPACT_SIZE:
9114 print_vma (entry->d_un.d_val, DEC);
9115 break;
9116
9117 default:
9118 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9119 }
9120 putchar ('\n');
9121 }
9122
9123 static void
9124 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
9125 {
9126 switch (entry->d_tag)
9127 {
9128 case DT_HP_DLD_FLAGS:
9129 {
9130 static struct
9131 {
9132 long int bit;
9133 const char * str;
9134 }
9135 flags[] =
9136 {
9137 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
9138 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
9139 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
9140 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
9141 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
9142 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
9143 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
9144 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
9145 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
9146 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
9147 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
9148 { DT_HP_GST, "HP_GST" },
9149 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
9150 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
9151 { DT_HP_NODELETE, "HP_NODELETE" },
9152 { DT_HP_GROUP, "HP_GROUP" },
9153 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
9154 };
9155 bfd_boolean first = TRUE;
9156 size_t cnt;
9157 bfd_vma val = entry->d_un.d_val;
9158
9159 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
9160 if (val & flags[cnt].bit)
9161 {
9162 if (! first)
9163 putchar (' ');
9164 fputs (flags[cnt].str, stdout);
9165 first = FALSE;
9166 val ^= flags[cnt].bit;
9167 }
9168
9169 if (val != 0 || first)
9170 {
9171 if (! first)
9172 putchar (' ');
9173 print_vma (val, HEX);
9174 }
9175 }
9176 break;
9177
9178 default:
9179 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9180 break;
9181 }
9182 putchar ('\n');
9183 }
9184
9185 #ifdef BFD64
9186
9187 /* VMS vs Unix time offset and factor. */
9188
9189 #define VMS_EPOCH_OFFSET 35067168000000000LL
9190 #define VMS_GRANULARITY_FACTOR 10000000
9191
9192 /* Display a VMS time in a human readable format. */
9193
9194 static void
9195 print_vms_time (bfd_int64_t vmstime)
9196 {
9197 struct tm *tm;
9198 time_t unxtime;
9199
9200 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
9201 tm = gmtime (&unxtime);
9202 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
9203 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
9204 tm->tm_hour, tm->tm_min, tm->tm_sec);
9205 }
9206 #endif /* BFD64 */
9207
9208 static void
9209 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
9210 {
9211 switch (entry->d_tag)
9212 {
9213 case DT_IA_64_PLT_RESERVE:
9214 /* First 3 slots reserved. */
9215 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9216 printf (" -- ");
9217 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
9218 break;
9219
9220 case DT_IA_64_VMS_LINKTIME:
9221 #ifdef BFD64
9222 print_vms_time (entry->d_un.d_val);
9223 #endif
9224 break;
9225
9226 case DT_IA_64_VMS_LNKFLAGS:
9227 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9228 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
9229 printf (" CALL_DEBUG");
9230 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
9231 printf (" NOP0BUFS");
9232 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
9233 printf (" P0IMAGE");
9234 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
9235 printf (" MKTHREADS");
9236 if (entry->d_un.d_val & VMS_LF_UPCALLS)
9237 printf (" UPCALLS");
9238 if (entry->d_un.d_val & VMS_LF_IMGSTA)
9239 printf (" IMGSTA");
9240 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
9241 printf (" INITIALIZE");
9242 if (entry->d_un.d_val & VMS_LF_MAIN)
9243 printf (" MAIN");
9244 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
9245 printf (" EXE_INIT");
9246 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
9247 printf (" TBK_IN_IMG");
9248 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
9249 printf (" DBG_IN_IMG");
9250 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
9251 printf (" TBK_IN_DSF");
9252 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
9253 printf (" DBG_IN_DSF");
9254 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
9255 printf (" SIGNATURES");
9256 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
9257 printf (" REL_SEG_OFF");
9258 break;
9259
9260 default:
9261 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
9262 break;
9263 }
9264 putchar ('\n');
9265 }
9266
9267 static bfd_boolean
9268 get_32bit_dynamic_section (FILE * file)
9269 {
9270 Elf32_External_Dyn * edyn;
9271 Elf32_External_Dyn * ext;
9272 Elf_Internal_Dyn * entry;
9273
9274 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9275 dynamic_size, _("dynamic section"));
9276 if (!edyn)
9277 return FALSE;
9278
9279 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9280 might not have the luxury of section headers. Look for the DT_NULL
9281 terminator to determine the number of entries. */
9282 for (ext = edyn, dynamic_nent = 0;
9283 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9284 ext++)
9285 {
9286 dynamic_nent++;
9287 if (BYTE_GET (ext->d_tag) == DT_NULL)
9288 break;
9289 }
9290
9291 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9292 sizeof (* entry));
9293 if (dynamic_section == NULL)
9294 {
9295 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9296 (unsigned long) dynamic_nent);
9297 free (edyn);
9298 return FALSE;
9299 }
9300
9301 for (ext = edyn, entry = dynamic_section;
9302 entry < dynamic_section + dynamic_nent;
9303 ext++, entry++)
9304 {
9305 entry->d_tag = BYTE_GET (ext->d_tag);
9306 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9307 }
9308
9309 free (edyn);
9310
9311 return TRUE;
9312 }
9313
9314 static bfd_boolean
9315 get_64bit_dynamic_section (FILE * file)
9316 {
9317 Elf64_External_Dyn * edyn;
9318 Elf64_External_Dyn * ext;
9319 Elf_Internal_Dyn * entry;
9320
9321 /* Read in the data. */
9322 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
9323 dynamic_size, _("dynamic section"));
9324 if (!edyn)
9325 return FALSE;
9326
9327 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
9328 might not have the luxury of section headers. Look for the DT_NULL
9329 terminator to determine the number of entries. */
9330 for (ext = edyn, dynamic_nent = 0;
9331 /* PR 17533 file: 033-67080-0.004 - do not read past end of buffer. */
9332 (char *) (ext + 1) <= (char *) edyn + dynamic_size;
9333 ext++)
9334 {
9335 dynamic_nent++;
9336 if (BYTE_GET (ext->d_tag) == DT_NULL)
9337 break;
9338 }
9339
9340 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
9341 sizeof (* entry));
9342 if (dynamic_section == NULL)
9343 {
9344 error (_("Out of memory allocating space for %lu dynamic entries\n"),
9345 (unsigned long) dynamic_nent);
9346 free (edyn);
9347 return FALSE;
9348 }
9349
9350 /* Convert from external to internal formats. */
9351 for (ext = edyn, entry = dynamic_section;
9352 entry < dynamic_section + dynamic_nent;
9353 ext++, entry++)
9354 {
9355 entry->d_tag = BYTE_GET (ext->d_tag);
9356 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
9357 }
9358
9359 free (edyn);
9360
9361 return TRUE;
9362 }
9363
9364 static void
9365 print_dynamic_flags (bfd_vma flags)
9366 {
9367 bfd_boolean first = TRUE;
9368
9369 while (flags)
9370 {
9371 bfd_vma flag;
9372
9373 flag = flags & - flags;
9374 flags &= ~ flag;
9375
9376 if (first)
9377 first = FALSE;
9378 else
9379 putc (' ', stdout);
9380
9381 switch (flag)
9382 {
9383 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
9384 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
9385 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
9386 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
9387 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
9388 default: fputs (_("unknown"), stdout); break;
9389 }
9390 }
9391 puts ("");
9392 }
9393
9394 /* Parse and display the contents of the dynamic section. */
9395
9396 static bfd_boolean
9397 process_dynamic_section (FILE * file)
9398 {
9399 Elf_Internal_Dyn * entry;
9400
9401 if (dynamic_size == 0)
9402 {
9403 if (do_dynamic)
9404 printf (_("\nThere is no dynamic section in this file.\n"));
9405
9406 return TRUE;
9407 }
9408
9409 if (is_32bit_elf)
9410 {
9411 if (! get_32bit_dynamic_section (file))
9412 return FALSE;
9413 }
9414 else
9415 {
9416 if (! get_64bit_dynamic_section (file))
9417 return FALSE;
9418 }
9419
9420 /* Find the appropriate symbol table. */
9421 if (dynamic_symbols == NULL)
9422 {
9423 for (entry = dynamic_section;
9424 entry < dynamic_section + dynamic_nent;
9425 ++entry)
9426 {
9427 Elf_Internal_Shdr section;
9428
9429 if (entry->d_tag != DT_SYMTAB)
9430 continue;
9431
9432 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
9433
9434 /* Since we do not know how big the symbol table is,
9435 we default to reading in the entire file (!) and
9436 processing that. This is overkill, I know, but it
9437 should work. */
9438 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
9439 if ((bfd_size_type) section.sh_offset > current_file_size)
9440 {
9441 /* See PR 21379 for a reproducer. */
9442 error (_("Invalid DT_SYMTAB entry: %lx"), (long) section.sh_offset);
9443 return FALSE;
9444 }
9445
9446 if (archive_file_offset != 0)
9447 section.sh_size = archive_file_size - section.sh_offset;
9448 else
9449 {
9450 if (fseek (file, 0, SEEK_END))
9451 error (_("Unable to seek to end of file!\n"));
9452
9453 section.sh_size = ftell (file) - section.sh_offset;
9454 }
9455
9456 if (is_32bit_elf)
9457 section.sh_entsize = sizeof (Elf32_External_Sym);
9458 else
9459 section.sh_entsize = sizeof (Elf64_External_Sym);
9460 section.sh_name = string_table_length;
9461
9462 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
9463 if (num_dynamic_syms < 1)
9464 {
9465 error (_("Unable to determine the number of symbols to load\n"));
9466 continue;
9467 }
9468 }
9469 }
9470
9471 /* Similarly find a string table. */
9472 if (dynamic_strings == NULL)
9473 {
9474 for (entry = dynamic_section;
9475 entry < dynamic_section + dynamic_nent;
9476 ++entry)
9477 {
9478 unsigned long offset;
9479 long str_tab_len;
9480
9481 if (entry->d_tag != DT_STRTAB)
9482 continue;
9483
9484 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
9485
9486 /* Since we do not know how big the string table is,
9487 we default to reading in the entire file (!) and
9488 processing that. This is overkill, I know, but it
9489 should work. */
9490
9491 offset = offset_from_vma (file, entry->d_un.d_val, 0);
9492
9493 if (archive_file_offset != 0)
9494 str_tab_len = archive_file_size - offset;
9495 else
9496 {
9497 if (fseek (file, 0, SEEK_END))
9498 error (_("Unable to seek to end of file\n"));
9499 str_tab_len = ftell (file) - offset;
9500 }
9501
9502 if (str_tab_len < 1)
9503 {
9504 error
9505 (_("Unable to determine the length of the dynamic string table\n"));
9506 continue;
9507 }
9508
9509 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
9510 str_tab_len,
9511 _("dynamic string table"));
9512 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
9513 break;
9514 }
9515 }
9516
9517 /* And find the syminfo section if available. */
9518 if (dynamic_syminfo == NULL)
9519 {
9520 unsigned long syminsz = 0;
9521
9522 for (entry = dynamic_section;
9523 entry < dynamic_section + dynamic_nent;
9524 ++entry)
9525 {
9526 if (entry->d_tag == DT_SYMINENT)
9527 {
9528 /* Note: these braces are necessary to avoid a syntax
9529 error from the SunOS4 C compiler. */
9530 /* PR binutils/17531: A corrupt file can trigger this test.
9531 So do not use an assert, instead generate an error message. */
9532 if (sizeof (Elf_External_Syminfo) != entry->d_un.d_val)
9533 error (_("Bad value (%d) for SYMINENT entry\n"),
9534 (int) entry->d_un.d_val);
9535 }
9536 else if (entry->d_tag == DT_SYMINSZ)
9537 syminsz = entry->d_un.d_val;
9538 else if (entry->d_tag == DT_SYMINFO)
9539 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
9540 syminsz);
9541 }
9542
9543 if (dynamic_syminfo_offset != 0 && syminsz != 0)
9544 {
9545 Elf_External_Syminfo * extsyminfo;
9546 Elf_External_Syminfo * extsym;
9547 Elf_Internal_Syminfo * syminfo;
9548
9549 /* There is a syminfo section. Read the data. */
9550 extsyminfo = (Elf_External_Syminfo *)
9551 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
9552 _("symbol information"));
9553 if (!extsyminfo)
9554 return FALSE;
9555
9556 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
9557 if (dynamic_syminfo == NULL)
9558 {
9559 error (_("Out of memory allocating %lu byte for dynamic symbol info\n"),
9560 (unsigned long) syminsz);
9561 return FALSE;
9562 }
9563
9564 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
9565 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
9566 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
9567 ++syminfo, ++extsym)
9568 {
9569 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
9570 syminfo->si_flags = BYTE_GET (extsym->si_flags);
9571 }
9572
9573 free (extsyminfo);
9574 }
9575 }
9576
9577 if (do_dynamic && dynamic_addr)
9578 printf (_("\nDynamic section at offset 0x%lx contains %lu entries:\n"),
9579 dynamic_addr, (unsigned long) dynamic_nent);
9580 if (do_dynamic)
9581 printf (_(" Tag Type Name/Value\n"));
9582
9583 for (entry = dynamic_section;
9584 entry < dynamic_section + dynamic_nent;
9585 entry++)
9586 {
9587 if (do_dynamic)
9588 {
9589 const char * dtype;
9590
9591 putchar (' ');
9592 print_vma (entry->d_tag, FULL_HEX);
9593 dtype = get_dynamic_type (entry->d_tag);
9594 printf (" (%s)%*s", dtype,
9595 ((is_32bit_elf ? 27 : 19) - (int) strlen (dtype)), " ");
9596 }
9597
9598 switch (entry->d_tag)
9599 {
9600 case DT_FLAGS:
9601 if (do_dynamic)
9602 print_dynamic_flags (entry->d_un.d_val);
9603 break;
9604
9605 case DT_AUXILIARY:
9606 case DT_FILTER:
9607 case DT_CONFIG:
9608 case DT_DEPAUDIT:
9609 case DT_AUDIT:
9610 if (do_dynamic)
9611 {
9612 switch (entry->d_tag)
9613 {
9614 case DT_AUXILIARY:
9615 printf (_("Auxiliary library"));
9616 break;
9617
9618 case DT_FILTER:
9619 printf (_("Filter library"));
9620 break;
9621
9622 case DT_CONFIG:
9623 printf (_("Configuration file"));
9624 break;
9625
9626 case DT_DEPAUDIT:
9627 printf (_("Dependency audit library"));
9628 break;
9629
9630 case DT_AUDIT:
9631 printf (_("Audit library"));
9632 break;
9633 }
9634
9635 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9636 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
9637 else
9638 {
9639 printf (": ");
9640 print_vma (entry->d_un.d_val, PREFIX_HEX);
9641 putchar ('\n');
9642 }
9643 }
9644 break;
9645
9646 case DT_FEATURE:
9647 if (do_dynamic)
9648 {
9649 printf (_("Flags:"));
9650
9651 if (entry->d_un.d_val == 0)
9652 printf (_(" None\n"));
9653 else
9654 {
9655 unsigned long int val = entry->d_un.d_val;
9656
9657 if (val & DTF_1_PARINIT)
9658 {
9659 printf (" PARINIT");
9660 val ^= DTF_1_PARINIT;
9661 }
9662 if (val & DTF_1_CONFEXP)
9663 {
9664 printf (" CONFEXP");
9665 val ^= DTF_1_CONFEXP;
9666 }
9667 if (val != 0)
9668 printf (" %lx", val);
9669 puts ("");
9670 }
9671 }
9672 break;
9673
9674 case DT_POSFLAG_1:
9675 if (do_dynamic)
9676 {
9677 printf (_("Flags:"));
9678
9679 if (entry->d_un.d_val == 0)
9680 printf (_(" None\n"));
9681 else
9682 {
9683 unsigned long int val = entry->d_un.d_val;
9684
9685 if (val & DF_P1_LAZYLOAD)
9686 {
9687 printf (" LAZYLOAD");
9688 val ^= DF_P1_LAZYLOAD;
9689 }
9690 if (val & DF_P1_GROUPPERM)
9691 {
9692 printf (" GROUPPERM");
9693 val ^= DF_P1_GROUPPERM;
9694 }
9695 if (val != 0)
9696 printf (" %lx", val);
9697 puts ("");
9698 }
9699 }
9700 break;
9701
9702 case DT_FLAGS_1:
9703 if (do_dynamic)
9704 {
9705 printf (_("Flags:"));
9706 if (entry->d_un.d_val == 0)
9707 printf (_(" None\n"));
9708 else
9709 {
9710 unsigned long int val = entry->d_un.d_val;
9711
9712 if (val & DF_1_NOW)
9713 {
9714 printf (" NOW");
9715 val ^= DF_1_NOW;
9716 }
9717 if (val & DF_1_GLOBAL)
9718 {
9719 printf (" GLOBAL");
9720 val ^= DF_1_GLOBAL;
9721 }
9722 if (val & DF_1_GROUP)
9723 {
9724 printf (" GROUP");
9725 val ^= DF_1_GROUP;
9726 }
9727 if (val & DF_1_NODELETE)
9728 {
9729 printf (" NODELETE");
9730 val ^= DF_1_NODELETE;
9731 }
9732 if (val & DF_1_LOADFLTR)
9733 {
9734 printf (" LOADFLTR");
9735 val ^= DF_1_LOADFLTR;
9736 }
9737 if (val & DF_1_INITFIRST)
9738 {
9739 printf (" INITFIRST");
9740 val ^= DF_1_INITFIRST;
9741 }
9742 if (val & DF_1_NOOPEN)
9743 {
9744 printf (" NOOPEN");
9745 val ^= DF_1_NOOPEN;
9746 }
9747 if (val & DF_1_ORIGIN)
9748 {
9749 printf (" ORIGIN");
9750 val ^= DF_1_ORIGIN;
9751 }
9752 if (val & DF_1_DIRECT)
9753 {
9754 printf (" DIRECT");
9755 val ^= DF_1_DIRECT;
9756 }
9757 if (val & DF_1_TRANS)
9758 {
9759 printf (" TRANS");
9760 val ^= DF_1_TRANS;
9761 }
9762 if (val & DF_1_INTERPOSE)
9763 {
9764 printf (" INTERPOSE");
9765 val ^= DF_1_INTERPOSE;
9766 }
9767 if (val & DF_1_NODEFLIB)
9768 {
9769 printf (" NODEFLIB");
9770 val ^= DF_1_NODEFLIB;
9771 }
9772 if (val & DF_1_NODUMP)
9773 {
9774 printf (" NODUMP");
9775 val ^= DF_1_NODUMP;
9776 }
9777 if (val & DF_1_CONFALT)
9778 {
9779 printf (" CONFALT");
9780 val ^= DF_1_CONFALT;
9781 }
9782 if (val & DF_1_ENDFILTEE)
9783 {
9784 printf (" ENDFILTEE");
9785 val ^= DF_1_ENDFILTEE;
9786 }
9787 if (val & DF_1_DISPRELDNE)
9788 {
9789 printf (" DISPRELDNE");
9790 val ^= DF_1_DISPRELDNE;
9791 }
9792 if (val & DF_1_DISPRELPND)
9793 {
9794 printf (" DISPRELPND");
9795 val ^= DF_1_DISPRELPND;
9796 }
9797 if (val & DF_1_NODIRECT)
9798 {
9799 printf (" NODIRECT");
9800 val ^= DF_1_NODIRECT;
9801 }
9802 if (val & DF_1_IGNMULDEF)
9803 {
9804 printf (" IGNMULDEF");
9805 val ^= DF_1_IGNMULDEF;
9806 }
9807 if (val & DF_1_NOKSYMS)
9808 {
9809 printf (" NOKSYMS");
9810 val ^= DF_1_NOKSYMS;
9811 }
9812 if (val & DF_1_NOHDR)
9813 {
9814 printf (" NOHDR");
9815 val ^= DF_1_NOHDR;
9816 }
9817 if (val & DF_1_EDITED)
9818 {
9819 printf (" EDITED");
9820 val ^= DF_1_EDITED;
9821 }
9822 if (val & DF_1_NORELOC)
9823 {
9824 printf (" NORELOC");
9825 val ^= DF_1_NORELOC;
9826 }
9827 if (val & DF_1_SYMINTPOSE)
9828 {
9829 printf (" SYMINTPOSE");
9830 val ^= DF_1_SYMINTPOSE;
9831 }
9832 if (val & DF_1_GLOBAUDIT)
9833 {
9834 printf (" GLOBAUDIT");
9835 val ^= DF_1_GLOBAUDIT;
9836 }
9837 if (val & DF_1_SINGLETON)
9838 {
9839 printf (" SINGLETON");
9840 val ^= DF_1_SINGLETON;
9841 }
9842 if (val & DF_1_STUB)
9843 {
9844 printf (" STUB");
9845 val ^= DF_1_STUB;
9846 }
9847 if (val & DF_1_PIE)
9848 {
9849 printf (" PIE");
9850 val ^= DF_1_PIE;
9851 }
9852 if (val != 0)
9853 printf (" %lx", val);
9854 puts ("");
9855 }
9856 }
9857 break;
9858
9859 case DT_PLTREL:
9860 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9861 if (do_dynamic)
9862 puts (get_dynamic_type (entry->d_un.d_val));
9863 break;
9864
9865 case DT_NULL :
9866 case DT_NEEDED :
9867 case DT_PLTGOT :
9868 case DT_HASH :
9869 case DT_STRTAB :
9870 case DT_SYMTAB :
9871 case DT_RELA :
9872 case DT_INIT :
9873 case DT_FINI :
9874 case DT_SONAME :
9875 case DT_RPATH :
9876 case DT_SYMBOLIC:
9877 case DT_REL :
9878 case DT_DEBUG :
9879 case DT_TEXTREL :
9880 case DT_JMPREL :
9881 case DT_RUNPATH :
9882 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9883
9884 if (do_dynamic)
9885 {
9886 char * name;
9887
9888 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
9889 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9890 else
9891 name = NULL;
9892
9893 if (name)
9894 {
9895 switch (entry->d_tag)
9896 {
9897 case DT_NEEDED:
9898 printf (_("Shared library: [%s]"), name);
9899
9900 if (streq (name, program_interpreter))
9901 printf (_(" program interpreter"));
9902 break;
9903
9904 case DT_SONAME:
9905 printf (_("Library soname: [%s]"), name);
9906 break;
9907
9908 case DT_RPATH:
9909 printf (_("Library rpath: [%s]"), name);
9910 break;
9911
9912 case DT_RUNPATH:
9913 printf (_("Library runpath: [%s]"), name);
9914 break;
9915
9916 default:
9917 print_vma (entry->d_un.d_val, PREFIX_HEX);
9918 break;
9919 }
9920 }
9921 else
9922 print_vma (entry->d_un.d_val, PREFIX_HEX);
9923
9924 putchar ('\n');
9925 }
9926 break;
9927
9928 case DT_PLTRELSZ:
9929 case DT_RELASZ :
9930 case DT_STRSZ :
9931 case DT_RELSZ :
9932 case DT_RELAENT :
9933 case DT_SYMENT :
9934 case DT_RELENT :
9935 dynamic_info[entry->d_tag] = entry->d_un.d_val;
9936 /* Fall through. */
9937 case DT_PLTPADSZ:
9938 case DT_MOVEENT :
9939 case DT_MOVESZ :
9940 case DT_INIT_ARRAYSZ:
9941 case DT_FINI_ARRAYSZ:
9942 case DT_GNU_CONFLICTSZ:
9943 case DT_GNU_LIBLISTSZ:
9944 if (do_dynamic)
9945 {
9946 print_vma (entry->d_un.d_val, UNSIGNED);
9947 printf (_(" (bytes)\n"));
9948 }
9949 break;
9950
9951 case DT_VERDEFNUM:
9952 case DT_VERNEEDNUM:
9953 case DT_RELACOUNT:
9954 case DT_RELCOUNT:
9955 if (do_dynamic)
9956 {
9957 print_vma (entry->d_un.d_val, UNSIGNED);
9958 putchar ('\n');
9959 }
9960 break;
9961
9962 case DT_SYMINSZ:
9963 case DT_SYMINENT:
9964 case DT_SYMINFO:
9965 case DT_USED:
9966 case DT_INIT_ARRAY:
9967 case DT_FINI_ARRAY:
9968 if (do_dynamic)
9969 {
9970 if (entry->d_tag == DT_USED
9971 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
9972 {
9973 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
9974
9975 if (*name)
9976 {
9977 printf (_("Not needed object: [%s]\n"), name);
9978 break;
9979 }
9980 }
9981
9982 print_vma (entry->d_un.d_val, PREFIX_HEX);
9983 putchar ('\n');
9984 }
9985 break;
9986
9987 case DT_BIND_NOW:
9988 /* The value of this entry is ignored. */
9989 if (do_dynamic)
9990 putchar ('\n');
9991 break;
9992
9993 case DT_GNU_PRELINKED:
9994 if (do_dynamic)
9995 {
9996 struct tm * tmp;
9997 time_t atime = entry->d_un.d_val;
9998
9999 tmp = gmtime (&atime);
10000 /* PR 17533 file: 041-1244816-0.004. */
10001 if (tmp == NULL)
10002 printf (_("<corrupt time val: %lx"),
10003 (unsigned long) atime);
10004 else
10005 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
10006 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
10007 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
10008
10009 }
10010 break;
10011
10012 case DT_GNU_HASH:
10013 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
10014 if (do_dynamic)
10015 {
10016 print_vma (entry->d_un.d_val, PREFIX_HEX);
10017 putchar ('\n');
10018 }
10019 break;
10020
10021 default:
10022 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
10023 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
10024 entry->d_un.d_val;
10025
10026 if (do_dynamic)
10027 {
10028 switch (elf_header.e_machine)
10029 {
10030 case EM_MIPS:
10031 case EM_MIPS_RS3_LE:
10032 dynamic_section_mips_val (entry);
10033 break;
10034 case EM_PARISC:
10035 dynamic_section_parisc_val (entry);
10036 break;
10037 case EM_IA_64:
10038 dynamic_section_ia64_val (entry);
10039 break;
10040 default:
10041 print_vma (entry->d_un.d_val, PREFIX_HEX);
10042 putchar ('\n');
10043 }
10044 }
10045 break;
10046 }
10047 }
10048
10049 return TRUE;
10050 }
10051
10052 static char *
10053 get_ver_flags (unsigned int flags)
10054 {
10055 static char buff[32];
10056
10057 buff[0] = 0;
10058
10059 if (flags == 0)
10060 return _("none");
10061
10062 if (flags & VER_FLG_BASE)
10063 strcat (buff, "BASE");
10064
10065 if (flags & VER_FLG_WEAK)
10066 {
10067 if (flags & VER_FLG_BASE)
10068 strcat (buff, " | ");
10069
10070 strcat (buff, "WEAK");
10071 }
10072
10073 if (flags & VER_FLG_INFO)
10074 {
10075 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
10076 strcat (buff, " | ");
10077
10078 strcat (buff, "INFO");
10079 }
10080
10081 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10082 {
10083 if (flags & (VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
10084 strcat (buff, " | ");
10085
10086 strcat (buff, _("<unknown>"));
10087 }
10088
10089 return buff;
10090 }
10091
10092 /* Display the contents of the version sections. */
10093
10094 static bfd_boolean
10095 process_version_sections (FILE * file)
10096 {
10097 Elf_Internal_Shdr * section;
10098 unsigned i;
10099 bfd_boolean found = FALSE;
10100
10101 if (! do_version)
10102 return TRUE;
10103
10104 for (i = 0, section = section_headers;
10105 i < elf_header.e_shnum;
10106 i++, section++)
10107 {
10108 switch (section->sh_type)
10109 {
10110 case SHT_GNU_verdef:
10111 {
10112 Elf_External_Verdef * edefs;
10113 unsigned int idx;
10114 unsigned int cnt;
10115 unsigned int end;
10116 char * endbuf;
10117
10118 found = TRUE;
10119
10120 printf (_("\nVersion definition section '%s' contains %u entries:\n"),
10121 printable_section_name (section),
10122 section->sh_info);
10123
10124 printf (_(" Addr: 0x"));
10125 printf_vma (section->sh_addr);
10126 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10127 (unsigned long) section->sh_offset, section->sh_link,
10128 printable_section_name_from_index (section->sh_link));
10129
10130 edefs = (Elf_External_Verdef *)
10131 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
10132 _("version definition section"));
10133 if (!edefs)
10134 break;
10135 endbuf = (char *) edefs + section->sh_size;
10136
10137 /* PR 17531: file: id:000001,src:000172+005151,op:splice,rep:2. */
10138 end = (section->sh_info < section->sh_size
10139 ? section->sh_info : section->sh_size);
10140 for (idx = cnt = 0; cnt < end; ++cnt)
10141 {
10142 char * vstart;
10143 Elf_External_Verdef * edef;
10144 Elf_Internal_Verdef ent;
10145 Elf_External_Verdaux * eaux;
10146 Elf_Internal_Verdaux aux;
10147 unsigned int isum;
10148 int j;
10149
10150 /* Check for very large indices. */
10151 if (idx > (size_t) (endbuf - (char *) edefs))
10152 break;
10153
10154 vstart = ((char *) edefs) + idx;
10155 if (vstart + sizeof (*edef) > endbuf)
10156 break;
10157
10158 edef = (Elf_External_Verdef *) vstart;
10159
10160 ent.vd_version = BYTE_GET (edef->vd_version);
10161 ent.vd_flags = BYTE_GET (edef->vd_flags);
10162 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
10163 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
10164 ent.vd_hash = BYTE_GET (edef->vd_hash);
10165 ent.vd_aux = BYTE_GET (edef->vd_aux);
10166 ent.vd_next = BYTE_GET (edef->vd_next);
10167
10168 printf (_(" %#06x: Rev: %d Flags: %s"),
10169 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
10170
10171 printf (_(" Index: %d Cnt: %d "),
10172 ent.vd_ndx, ent.vd_cnt);
10173
10174 /* Check for overflow. */
10175 if (ent.vd_aux + sizeof (* eaux) > (size_t) (endbuf - vstart))
10176 break;
10177
10178 vstart += ent.vd_aux;
10179
10180 eaux = (Elf_External_Verdaux *) vstart;
10181
10182 aux.vda_name = BYTE_GET (eaux->vda_name);
10183 aux.vda_next = BYTE_GET (eaux->vda_next);
10184
10185 if (VALID_DYNAMIC_NAME (aux.vda_name))
10186 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
10187 else
10188 printf (_("Name index: %ld\n"), aux.vda_name);
10189
10190 isum = idx + ent.vd_aux;
10191
10192 for (j = 1; j < ent.vd_cnt; j++)
10193 {
10194 /* Check for overflow. */
10195 if (aux.vda_next > (size_t) (endbuf - vstart))
10196 break;
10197
10198 isum += aux.vda_next;
10199 vstart += aux.vda_next;
10200
10201 eaux = (Elf_External_Verdaux *) vstart;
10202 if (vstart + sizeof (*eaux) > endbuf)
10203 break;
10204
10205 aux.vda_name = BYTE_GET (eaux->vda_name);
10206 aux.vda_next = BYTE_GET (eaux->vda_next);
10207
10208 if (VALID_DYNAMIC_NAME (aux.vda_name))
10209 printf (_(" %#06x: Parent %d: %s\n"),
10210 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
10211 else
10212 printf (_(" %#06x: Parent %d, name index: %ld\n"),
10213 isum, j, aux.vda_name);
10214 }
10215
10216 if (j < ent.vd_cnt)
10217 printf (_(" Version def aux past end of section\n"));
10218
10219 /* PR 17531:
10220 file: id:000001,src:000172+005151,op:splice,rep:2. */
10221 if (idx + ent.vd_next < idx)
10222 break;
10223
10224 idx += ent.vd_next;
10225 }
10226
10227 if (cnt < section->sh_info)
10228 printf (_(" Version definition past end of section\n"));
10229
10230 free (edefs);
10231 }
10232 break;
10233
10234 case SHT_GNU_verneed:
10235 {
10236 Elf_External_Verneed * eneed;
10237 unsigned int idx;
10238 unsigned int cnt;
10239 char * endbuf;
10240
10241 found = TRUE;
10242
10243 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
10244 printable_section_name (section), section->sh_info);
10245
10246 printf (_(" Addr: 0x"));
10247 printf_vma (section->sh_addr);
10248 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10249 (unsigned long) section->sh_offset, section->sh_link,
10250 printable_section_name_from_index (section->sh_link));
10251
10252 eneed = (Elf_External_Verneed *) get_data (NULL, file,
10253 section->sh_offset, 1,
10254 section->sh_size,
10255 _("Version Needs section"));
10256 if (!eneed)
10257 break;
10258 endbuf = (char *) eneed + section->sh_size;
10259
10260 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
10261 {
10262 Elf_External_Verneed * entry;
10263 Elf_Internal_Verneed ent;
10264 unsigned int isum;
10265 int j;
10266 char * vstart;
10267
10268 if (idx > (size_t) (endbuf - (char *) eneed))
10269 break;
10270
10271 vstart = ((char *) eneed) + idx;
10272 if (vstart + sizeof (*entry) > endbuf)
10273 break;
10274
10275 entry = (Elf_External_Verneed *) vstart;
10276
10277 ent.vn_version = BYTE_GET (entry->vn_version);
10278 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
10279 ent.vn_file = BYTE_GET (entry->vn_file);
10280 ent.vn_aux = BYTE_GET (entry->vn_aux);
10281 ent.vn_next = BYTE_GET (entry->vn_next);
10282
10283 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
10284
10285 if (VALID_DYNAMIC_NAME (ent.vn_file))
10286 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
10287 else
10288 printf (_(" File: %lx"), ent.vn_file);
10289
10290 printf (_(" Cnt: %d\n"), ent.vn_cnt);
10291
10292 /* Check for overflow. */
10293 if (ent.vn_aux > (size_t) (endbuf - vstart))
10294 break;
10295 vstart += ent.vn_aux;
10296
10297 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
10298 {
10299 Elf_External_Vernaux * eaux;
10300 Elf_Internal_Vernaux aux;
10301
10302 if (vstart + sizeof (*eaux) > endbuf)
10303 break;
10304 eaux = (Elf_External_Vernaux *) vstart;
10305
10306 aux.vna_hash = BYTE_GET (eaux->vna_hash);
10307 aux.vna_flags = BYTE_GET (eaux->vna_flags);
10308 aux.vna_other = BYTE_GET (eaux->vna_other);
10309 aux.vna_name = BYTE_GET (eaux->vna_name);
10310 aux.vna_next = BYTE_GET (eaux->vna_next);
10311
10312 if (VALID_DYNAMIC_NAME (aux.vna_name))
10313 printf (_(" %#06x: Name: %s"),
10314 isum, GET_DYNAMIC_NAME (aux.vna_name));
10315 else
10316 printf (_(" %#06x: Name index: %lx"),
10317 isum, aux.vna_name);
10318
10319 printf (_(" Flags: %s Version: %d\n"),
10320 get_ver_flags (aux.vna_flags), aux.vna_other);
10321
10322 /* Check for overflow. */
10323 if (aux.vna_next > (size_t) (endbuf - vstart)
10324 || (aux.vna_next == 0 && j < ent.vn_cnt - 1))
10325 {
10326 warn (_("Invalid vna_next field of %lx\n"),
10327 aux.vna_next);
10328 j = ent.vn_cnt;
10329 break;
10330 }
10331 isum += aux.vna_next;
10332 vstart += aux.vna_next;
10333 }
10334
10335 if (j < ent.vn_cnt)
10336 warn (_("Missing Version Needs auxillary information\n"));
10337
10338 if (ent.vn_next == 0 && cnt < section->sh_info - 1)
10339 {
10340 warn (_("Corrupt Version Needs structure - offset to next structure is zero with entries still left to be processed\n"));
10341 cnt = section->sh_info;
10342 break;
10343 }
10344 idx += ent.vn_next;
10345 }
10346
10347 if (cnt < section->sh_info)
10348 warn (_("Missing Version Needs information\n"));
10349
10350 free (eneed);
10351 }
10352 break;
10353
10354 case SHT_GNU_versym:
10355 {
10356 Elf_Internal_Shdr * link_section;
10357 size_t total;
10358 unsigned int cnt;
10359 unsigned char * edata;
10360 unsigned short * data;
10361 char * strtab;
10362 Elf_Internal_Sym * symbols;
10363 Elf_Internal_Shdr * string_sec;
10364 unsigned long num_syms;
10365 long off;
10366
10367 if (section->sh_link >= elf_header.e_shnum)
10368 break;
10369
10370 link_section = section_headers + section->sh_link;
10371 total = section->sh_size / sizeof (Elf_External_Versym);
10372
10373 if (link_section->sh_link >= elf_header.e_shnum)
10374 break;
10375
10376 found = TRUE;
10377
10378 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
10379 if (symbols == NULL)
10380 break;
10381
10382 string_sec = section_headers + link_section->sh_link;
10383
10384 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
10385 string_sec->sh_size,
10386 _("version string table"));
10387 if (!strtab)
10388 {
10389 free (symbols);
10390 break;
10391 }
10392
10393 printf (_("\nVersion symbols section '%s' contains %lu entries:\n"),
10394 printable_section_name (section), (unsigned long) total);
10395
10396 printf (_(" Addr: "));
10397 printf_vma (section->sh_addr);
10398 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
10399 (unsigned long) section->sh_offset, section->sh_link,
10400 printable_section_name (link_section));
10401
10402 off = offset_from_vma (file,
10403 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
10404 total * sizeof (short));
10405 edata = (unsigned char *) get_data (NULL, file, off, total,
10406 sizeof (short),
10407 _("version symbol data"));
10408 if (!edata)
10409 {
10410 free (strtab);
10411 free (symbols);
10412 break;
10413 }
10414
10415 data = (short unsigned int *) cmalloc (total, sizeof (short));
10416
10417 for (cnt = total; cnt --;)
10418 data[cnt] = byte_get (edata + cnt * sizeof (short),
10419 sizeof (short));
10420
10421 free (edata);
10422
10423 for (cnt = 0; cnt < total; cnt += 4)
10424 {
10425 int j, nn;
10426 char *name;
10427 char *invalid = _("*invalid*");
10428
10429 printf (" %03x:", cnt);
10430
10431 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
10432 switch (data[cnt + j])
10433 {
10434 case 0:
10435 fputs (_(" 0 (*local*) "), stdout);
10436 break;
10437
10438 case 1:
10439 fputs (_(" 1 (*global*) "), stdout);
10440 break;
10441
10442 default:
10443 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
10444 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
10445
10446 /* If this index value is greater than the size of the symbols
10447 array, break to avoid an out-of-bounds read. */
10448 if ((unsigned long)(cnt + j) >= num_syms)
10449 {
10450 warn (_("invalid index into symbol array\n"));
10451 break;
10452 }
10453
10454 name = NULL;
10455 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
10456 {
10457 Elf_Internal_Verneed ivn;
10458 unsigned long offset;
10459
10460 offset = offset_from_vma
10461 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
10462 sizeof (Elf_External_Verneed));
10463
10464 do
10465 {
10466 Elf_Internal_Vernaux ivna;
10467 Elf_External_Verneed evn;
10468 Elf_External_Vernaux evna;
10469 unsigned long a_off;
10470
10471 if (get_data (&evn, file, offset, sizeof (evn), 1,
10472 _("version need")) == NULL)
10473 break;
10474
10475 ivn.vn_aux = BYTE_GET (evn.vn_aux);
10476 ivn.vn_next = BYTE_GET (evn.vn_next);
10477
10478 a_off = offset + ivn.vn_aux;
10479
10480 do
10481 {
10482 if (get_data (&evna, file, a_off, sizeof (evna),
10483 1, _("version need aux (2)")) == NULL)
10484 {
10485 ivna.vna_next = 0;
10486 ivna.vna_other = 0;
10487 }
10488 else
10489 {
10490 ivna.vna_next = BYTE_GET (evna.vna_next);
10491 ivna.vna_other = BYTE_GET (evna.vna_other);
10492 }
10493
10494 a_off += ivna.vna_next;
10495 }
10496 while (ivna.vna_other != data[cnt + j]
10497 && ivna.vna_next != 0);
10498
10499 if (ivna.vna_other == data[cnt + j])
10500 {
10501 ivna.vna_name = BYTE_GET (evna.vna_name);
10502
10503 if (ivna.vna_name >= string_sec->sh_size)
10504 name = invalid;
10505 else
10506 name = strtab + ivna.vna_name;
10507 break;
10508 }
10509
10510 offset += ivn.vn_next;
10511 }
10512 while (ivn.vn_next);
10513 }
10514
10515 if (data[cnt + j] != 0x8001
10516 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
10517 {
10518 Elf_Internal_Verdef ivd;
10519 Elf_External_Verdef evd;
10520 unsigned long offset;
10521
10522 offset = offset_from_vma
10523 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
10524 sizeof evd);
10525
10526 do
10527 {
10528 if (get_data (&evd, file, offset, sizeof (evd), 1,
10529 _("version def")) == NULL)
10530 {
10531 ivd.vd_next = 0;
10532 /* PR 17531: file: 046-1082287-0.004. */
10533 ivd.vd_ndx = (data[cnt + j] & VERSYM_VERSION) + 1;
10534 break;
10535 }
10536 else
10537 {
10538 ivd.vd_next = BYTE_GET (evd.vd_next);
10539 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
10540 }
10541
10542 offset += ivd.vd_next;
10543 }
10544 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
10545 && ivd.vd_next != 0);
10546
10547 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
10548 {
10549 Elf_External_Verdaux evda;
10550 Elf_Internal_Verdaux ivda;
10551
10552 ivd.vd_aux = BYTE_GET (evd.vd_aux);
10553
10554 if (get_data (&evda, file,
10555 offset - ivd.vd_next + ivd.vd_aux,
10556 sizeof (evda), 1,
10557 _("version def aux")) == NULL)
10558 break;
10559
10560 ivda.vda_name = BYTE_GET (evda.vda_name);
10561
10562 if (ivda.vda_name >= string_sec->sh_size)
10563 name = invalid;
10564 else if (name != NULL && name != invalid)
10565 name = _("*both*");
10566 else
10567 name = strtab + ivda.vda_name;
10568 }
10569 }
10570 if (name != NULL)
10571 nn += printf ("(%s%-*s",
10572 name,
10573 12 - (int) strlen (name),
10574 ")");
10575
10576 if (nn < 18)
10577 printf ("%*c", 18 - nn, ' ');
10578 }
10579
10580 putchar ('\n');
10581 }
10582
10583 free (data);
10584 free (strtab);
10585 free (symbols);
10586 }
10587 break;
10588
10589 default:
10590 break;
10591 }
10592 }
10593
10594 if (! found)
10595 printf (_("\nNo version information found in this file.\n"));
10596
10597 return TRUE;
10598 }
10599
10600 static const char *
10601 get_symbol_binding (unsigned int binding)
10602 {
10603 static char buff[32];
10604
10605 switch (binding)
10606 {
10607 case STB_LOCAL: return "LOCAL";
10608 case STB_GLOBAL: return "GLOBAL";
10609 case STB_WEAK: return "WEAK";
10610 default:
10611 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
10612 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
10613 binding);
10614 else if (binding >= STB_LOOS && binding <= STB_HIOS)
10615 {
10616 if (binding == STB_GNU_UNIQUE
10617 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10618 /* GNU is still using the default value 0. */
10619 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10620 return "UNIQUE";
10621 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
10622 }
10623 else
10624 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
10625 return buff;
10626 }
10627 }
10628
10629 static const char *
10630 get_symbol_type (unsigned int type)
10631 {
10632 static char buff[32];
10633
10634 switch (type)
10635 {
10636 case STT_NOTYPE: return "NOTYPE";
10637 case STT_OBJECT: return "OBJECT";
10638 case STT_FUNC: return "FUNC";
10639 case STT_SECTION: return "SECTION";
10640 case STT_FILE: return "FILE";
10641 case STT_COMMON: return "COMMON";
10642 case STT_TLS: return "TLS";
10643 case STT_RELC: return "RELC";
10644 case STT_SRELC: return "SRELC";
10645 default:
10646 if (type >= STT_LOPROC && type <= STT_HIPROC)
10647 {
10648 if (elf_header.e_machine == EM_ARM && type == STT_ARM_TFUNC)
10649 return "THUMB_FUNC";
10650
10651 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
10652 return "REGISTER";
10653
10654 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
10655 return "PARISC_MILLI";
10656
10657 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
10658 }
10659 else if (type >= STT_LOOS && type <= STT_HIOS)
10660 {
10661 if (elf_header.e_machine == EM_PARISC)
10662 {
10663 if (type == STT_HP_OPAQUE)
10664 return "HP_OPAQUE";
10665 if (type == STT_HP_STUB)
10666 return "HP_STUB";
10667 }
10668
10669 if (type == STT_GNU_IFUNC
10670 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
10671 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
10672 /* GNU is still using the default value 0. */
10673 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
10674 return "IFUNC";
10675
10676 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
10677 }
10678 else
10679 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
10680 return buff;
10681 }
10682 }
10683
10684 static const char *
10685 get_symbol_visibility (unsigned int visibility)
10686 {
10687 switch (visibility)
10688 {
10689 case STV_DEFAULT: return "DEFAULT";
10690 case STV_INTERNAL: return "INTERNAL";
10691 case STV_HIDDEN: return "HIDDEN";
10692 case STV_PROTECTED: return "PROTECTED";
10693 default:
10694 error (_("Unrecognized visibility value: %u"), visibility);
10695 return _("<unknown>");
10696 }
10697 }
10698
10699 static const char *
10700 get_solaris_symbol_visibility (unsigned int visibility)
10701 {
10702 switch (visibility)
10703 {
10704 case 4: return "EXPORTED";
10705 case 5: return "SINGLETON";
10706 case 6: return "ELIMINATE";
10707 default: return get_symbol_visibility (visibility);
10708 }
10709 }
10710
10711 static const char *
10712 get_mips_symbol_other (unsigned int other)
10713 {
10714 switch (other)
10715 {
10716 case STO_OPTIONAL: return "OPTIONAL";
10717 case STO_MIPS_PLT: return "MIPS PLT";
10718 case STO_MIPS_PIC: return "MIPS PIC";
10719 case STO_MICROMIPS: return "MICROMIPS";
10720 case STO_MICROMIPS | STO_MIPS_PIC: return "MICROMIPS, MIPS PIC";
10721 case STO_MIPS16: return "MIPS16";
10722 default: return NULL;
10723 }
10724 }
10725
10726 static const char *
10727 get_ia64_symbol_other (unsigned int other)
10728 {
10729 if (is_ia64_vms ())
10730 {
10731 static char res[32];
10732
10733 res[0] = 0;
10734
10735 /* Function types is for images and .STB files only. */
10736 switch (elf_header.e_type)
10737 {
10738 case ET_DYN:
10739 case ET_EXEC:
10740 switch (VMS_ST_FUNC_TYPE (other))
10741 {
10742 case VMS_SFT_CODE_ADDR:
10743 strcat (res, " CA");
10744 break;
10745 case VMS_SFT_SYMV_IDX:
10746 strcat (res, " VEC");
10747 break;
10748 case VMS_SFT_FD:
10749 strcat (res, " FD");
10750 break;
10751 case VMS_SFT_RESERVE:
10752 strcat (res, " RSV");
10753 break;
10754 default:
10755 warn (_("Unrecognized IA64 VMS ST Function type: %d\n"),
10756 VMS_ST_FUNC_TYPE (other));
10757 strcat (res, " <unknown>");
10758 break;
10759 }
10760 break;
10761 default:
10762 break;
10763 }
10764 switch (VMS_ST_LINKAGE (other))
10765 {
10766 case VMS_STL_IGNORE:
10767 strcat (res, " IGN");
10768 break;
10769 case VMS_STL_RESERVE:
10770 strcat (res, " RSV");
10771 break;
10772 case VMS_STL_STD:
10773 strcat (res, " STD");
10774 break;
10775 case VMS_STL_LNK:
10776 strcat (res, " LNK");
10777 break;
10778 default:
10779 warn (_("Unrecognized IA64 VMS ST Linkage: %d\n"),
10780 VMS_ST_LINKAGE (other));
10781 strcat (res, " <unknown>");
10782 break;
10783 }
10784
10785 if (res[0] != 0)
10786 return res + 1;
10787 else
10788 return res;
10789 }
10790 return NULL;
10791 }
10792
10793 static const char *
10794 get_ppc64_symbol_other (unsigned int other)
10795 {
10796 if (PPC64_LOCAL_ENTRY_OFFSET (other) != 0)
10797 {
10798 static char buf[32];
10799 snprintf (buf, sizeof buf, _("<localentry>: %d"),
10800 PPC64_LOCAL_ENTRY_OFFSET (other));
10801 return buf;
10802 }
10803 return NULL;
10804 }
10805
10806 static const char *
10807 get_symbol_other (unsigned int other)
10808 {
10809 const char * result = NULL;
10810 static char buff [32];
10811
10812 if (other == 0)
10813 return "";
10814
10815 switch (elf_header.e_machine)
10816 {
10817 case EM_MIPS:
10818 result = get_mips_symbol_other (other);
10819 break;
10820 case EM_IA_64:
10821 result = get_ia64_symbol_other (other);
10822 break;
10823 case EM_PPC64:
10824 result = get_ppc64_symbol_other (other);
10825 break;
10826 default:
10827 result = NULL;
10828 break;
10829 }
10830
10831 if (result)
10832 return result;
10833
10834 snprintf (buff, sizeof buff, _("<other>: %x"), other);
10835 return buff;
10836 }
10837
10838 static const char *
10839 get_symbol_index_type (unsigned int type)
10840 {
10841 static char buff[32];
10842
10843 switch (type)
10844 {
10845 case SHN_UNDEF: return "UND";
10846 case SHN_ABS: return "ABS";
10847 case SHN_COMMON: return "COM";
10848 default:
10849 if (type == SHN_IA_64_ANSI_COMMON
10850 && elf_header.e_machine == EM_IA_64
10851 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
10852 return "ANSI_COM";
10853 else if ((elf_header.e_machine == EM_X86_64
10854 || elf_header.e_machine == EM_L1OM
10855 || elf_header.e_machine == EM_K1OM)
10856 && type == SHN_X86_64_LCOMMON)
10857 return "LARGE_COM";
10858 else if ((type == SHN_MIPS_SCOMMON
10859 && elf_header.e_machine == EM_MIPS)
10860 || (type == SHN_TIC6X_SCOMMON
10861 && elf_header.e_machine == EM_TI_C6000))
10862 return "SCOM";
10863 else if (type == SHN_MIPS_SUNDEFINED
10864 && elf_header.e_machine == EM_MIPS)
10865 return "SUND";
10866 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
10867 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
10868 else if (type >= SHN_LOOS && type <= SHN_HIOS)
10869 sprintf (buff, "OS [0x%04x]", type & 0xffff);
10870 else if (type >= SHN_LORESERVE)
10871 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
10872 else if (type >= elf_header.e_shnum)
10873 sprintf (buff, _("bad section index[%3d]"), type);
10874 else
10875 sprintf (buff, "%3d", type);
10876 break;
10877 }
10878
10879 return buff;
10880 }
10881
10882 static bfd_vma *
10883 get_dynamic_data (FILE * file, bfd_size_type number, unsigned int ent_size)
10884 {
10885 unsigned char * e_data;
10886 bfd_vma * i_data;
10887
10888 /* If the size_t type is smaller than the bfd_size_type, eg because
10889 you are building a 32-bit tool on a 64-bit host, then make sure
10890 that when (number) is cast to (size_t) no information is lost. */
10891 if (sizeof (size_t) < sizeof (bfd_size_type)
10892 && (bfd_size_type) ((size_t) number) != number)
10893 {
10894 error (_("Size truncation prevents reading %" BFD_VMA_FMT "u"
10895 " elements of size %u\n"),
10896 number, ent_size);
10897 return NULL;
10898 }
10899
10900 /* Be kind to memory chekers (eg valgrind, address sanitizer) by not
10901 attempting to allocate memory when the read is bound to fail. */
10902 if (ent_size * number > current_file_size)
10903 {
10904 error (_("Invalid number of dynamic entries: %" BFD_VMA_FMT "u\n"),
10905 number);
10906 return NULL;
10907 }
10908
10909 e_data = (unsigned char *) cmalloc ((size_t) number, ent_size);
10910 if (e_data == NULL)
10911 {
10912 error (_("Out of memory reading %" BFD_VMA_FMT "u dynamic entries\n"),
10913 number);
10914 return NULL;
10915 }
10916
10917 if (fread (e_data, ent_size, (size_t) number, file) != number)
10918 {
10919 error (_("Unable to read in %" BFD_VMA_FMT "u bytes of dynamic data\n"),
10920 number * ent_size);
10921 free (e_data);
10922 return NULL;
10923 }
10924
10925 i_data = (bfd_vma *) cmalloc ((size_t) number, sizeof (*i_data));
10926 if (i_data == NULL)
10927 {
10928 error (_("Out of memory allocating space for %" BFD_VMA_FMT "u"
10929 " dynamic entries\n"),
10930 number);
10931 free (e_data);
10932 return NULL;
10933 }
10934
10935 while (number--)
10936 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
10937
10938 free (e_data);
10939
10940 return i_data;
10941 }
10942
10943 static void
10944 print_dynamic_symbol (bfd_vma si, unsigned long hn)
10945 {
10946 Elf_Internal_Sym * psym;
10947 int n;
10948
10949 n = print_vma (si, DEC_5);
10950 if (n < 5)
10951 fputs (&" "[n], stdout);
10952 printf (" %3lu: ", hn);
10953
10954 if (dynamic_symbols == NULL || si >= num_dynamic_syms)
10955 {
10956 printf (_("<No info available for dynamic symbol number %lu>\n"),
10957 (unsigned long) si);
10958 return;
10959 }
10960
10961 psym = dynamic_symbols + si;
10962 print_vma (psym->st_value, LONG_HEX);
10963 putchar (' ');
10964 print_vma (psym->st_size, DEC_5);
10965
10966 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
10967 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
10968
10969 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
10970 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
10971 else
10972 {
10973 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
10974
10975 printf (" %-7s", get_symbol_visibility (vis));
10976 /* Check to see if any other bits in the st_other field are set.
10977 Note - displaying this information disrupts the layout of the
10978 table being generated, but for the moment this case is very
10979 rare. */
10980 if (psym->st_other ^ vis)
10981 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
10982 }
10983
10984 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
10985 if (VALID_DYNAMIC_NAME (psym->st_name))
10986 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
10987 else
10988 printf (_(" <corrupt: %14ld>"), psym->st_name);
10989 putchar ('\n');
10990 }
10991
10992 static const char *
10993 get_symbol_version_string (FILE * file,
10994 bfd_boolean is_dynsym,
10995 const char * strtab,
10996 unsigned long int strtab_size,
10997 unsigned int si,
10998 Elf_Internal_Sym * psym,
10999 enum versioned_symbol_info * sym_info,
11000 unsigned short * vna_other)
11001 {
11002 unsigned char data[2];
11003 unsigned short vers_data;
11004 unsigned long offset;
11005
11006 if (!is_dynsym
11007 || version_info[DT_VERSIONTAGIDX (DT_VERSYM)] == 0)
11008 return NULL;
11009
11010 offset = offset_from_vma (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
11011 sizeof data + si * sizeof (vers_data));
11012
11013 if (get_data (&data, file, offset + si * sizeof (vers_data),
11014 sizeof (data), 1, _("version data")) == NULL)
11015 return NULL;
11016
11017 vers_data = byte_get (data, 2);
11018
11019 if ((vers_data & VERSYM_HIDDEN) == 0 && vers_data <= 1)
11020 return NULL;
11021
11022 /* Usually we'd only see verdef for defined symbols, and verneed for
11023 undefined symbols. However, symbols defined by the linker in
11024 .dynbss for variables copied from a shared library in order to
11025 avoid text relocations are defined yet have verneed. We could
11026 use a heuristic to detect the special case, for example, check
11027 for verneed first on symbols defined in SHT_NOBITS sections, but
11028 it is simpler and more reliable to just look for both verdef and
11029 verneed. .dynbss might not be mapped to a SHT_NOBITS section. */
11030
11031 if (psym->st_shndx != SHN_UNDEF
11032 && vers_data != 0x8001
11033 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
11034 {
11035 Elf_Internal_Verdef ivd;
11036 Elf_Internal_Verdaux ivda;
11037 Elf_External_Verdaux evda;
11038 unsigned long off;
11039
11040 off = offset_from_vma (file,
11041 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
11042 sizeof (Elf_External_Verdef));
11043
11044 do
11045 {
11046 Elf_External_Verdef evd;
11047
11048 if (get_data (&evd, file, off, sizeof (evd), 1,
11049 _("version def")) == NULL)
11050 {
11051 ivd.vd_ndx = 0;
11052 ivd.vd_aux = 0;
11053 ivd.vd_next = 0;
11054 }
11055 else
11056 {
11057 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
11058 ivd.vd_aux = BYTE_GET (evd.vd_aux);
11059 ivd.vd_next = BYTE_GET (evd.vd_next);
11060 }
11061
11062 off += ivd.vd_next;
11063 }
11064 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION) && ivd.vd_next != 0);
11065
11066 if (ivd.vd_ndx == (vers_data & VERSYM_VERSION))
11067 {
11068 off -= ivd.vd_next;
11069 off += ivd.vd_aux;
11070
11071 if (get_data (&evda, file, off, sizeof (evda), 1,
11072 _("version def aux")) != NULL)
11073 {
11074 ivda.vda_name = BYTE_GET (evda.vda_name);
11075
11076 if (psym->st_name != ivda.vda_name)
11077 {
11078 *sym_info = ((vers_data & VERSYM_HIDDEN) != 0
11079 ? symbol_hidden : symbol_public);
11080 return (ivda.vda_name < strtab_size
11081 ? strtab + ivda.vda_name : _("<corrupt>"));
11082 }
11083 }
11084 }
11085 }
11086
11087 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
11088 {
11089 Elf_External_Verneed evn;
11090 Elf_Internal_Verneed ivn;
11091 Elf_Internal_Vernaux ivna;
11092
11093 offset = offset_from_vma (file,
11094 version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
11095 sizeof evn);
11096 do
11097 {
11098 unsigned long vna_off;
11099
11100 if (get_data (&evn, file, offset, sizeof (evn), 1,
11101 _("version need")) == NULL)
11102 {
11103 ivna.vna_next = 0;
11104 ivna.vna_other = 0;
11105 ivna.vna_name = 0;
11106 break;
11107 }
11108
11109 ivn.vn_aux = BYTE_GET (evn.vn_aux);
11110 ivn.vn_next = BYTE_GET (evn.vn_next);
11111
11112 vna_off = offset + ivn.vn_aux;
11113
11114 do
11115 {
11116 Elf_External_Vernaux evna;
11117
11118 if (get_data (&evna, file, vna_off, sizeof (evna), 1,
11119 _("version need aux (3)")) == NULL)
11120 {
11121 ivna.vna_next = 0;
11122 ivna.vna_other = 0;
11123 ivna.vna_name = 0;
11124 }
11125 else
11126 {
11127 ivna.vna_other = BYTE_GET (evna.vna_other);
11128 ivna.vna_next = BYTE_GET (evna.vna_next);
11129 ivna.vna_name = BYTE_GET (evna.vna_name);
11130 }
11131
11132 vna_off += ivna.vna_next;
11133 }
11134 while (ivna.vna_other != vers_data && ivna.vna_next != 0);
11135
11136 if (ivna.vna_other == vers_data)
11137 break;
11138
11139 offset += ivn.vn_next;
11140 }
11141 while (ivn.vn_next != 0);
11142
11143 if (ivna.vna_other == vers_data)
11144 {
11145 *sym_info = symbol_undefined;
11146 *vna_other = ivna.vna_other;
11147 return (ivna.vna_name < strtab_size
11148 ? strtab + ivna.vna_name : _("<corrupt>"));
11149 }
11150 }
11151 return NULL;
11152 }
11153
11154 /* Dump the symbol table. */
11155 static bfd_boolean
11156 process_symbol_table (FILE * file)
11157 {
11158 Elf_Internal_Shdr * section;
11159 bfd_size_type nbuckets = 0;
11160 bfd_size_type nchains = 0;
11161 bfd_vma * buckets = NULL;
11162 bfd_vma * chains = NULL;
11163 bfd_vma ngnubuckets = 0;
11164 bfd_vma * gnubuckets = NULL;
11165 bfd_vma * gnuchains = NULL;
11166 bfd_vma gnusymidx = 0;
11167 bfd_size_type ngnuchains = 0;
11168
11169 if (!do_syms && !do_dyn_syms && !do_histogram)
11170 return TRUE;
11171
11172 if (dynamic_info[DT_HASH]
11173 && (do_histogram
11174 || (do_using_dynamic
11175 && !do_dyn_syms
11176 && dynamic_strings != NULL)))
11177 {
11178 unsigned char nb[8];
11179 unsigned char nc[8];
11180 unsigned int hash_ent_size = 4;
11181
11182 if ((elf_header.e_machine == EM_ALPHA
11183 || elf_header.e_machine == EM_S390
11184 || elf_header.e_machine == EM_S390_OLD)
11185 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
11186 hash_ent_size = 8;
11187
11188 if (fseek (file,
11189 (archive_file_offset
11190 + offset_from_vma (file, dynamic_info[DT_HASH],
11191 sizeof nb + sizeof nc)),
11192 SEEK_SET))
11193 {
11194 error (_("Unable to seek to start of dynamic information\n"));
11195 goto no_hash;
11196 }
11197
11198 if (fread (nb, hash_ent_size, 1, file) != 1)
11199 {
11200 error (_("Failed to read in number of buckets\n"));
11201 goto no_hash;
11202 }
11203
11204 if (fread (nc, hash_ent_size, 1, file) != 1)
11205 {
11206 error (_("Failed to read in number of chains\n"));
11207 goto no_hash;
11208 }
11209
11210 nbuckets = byte_get (nb, hash_ent_size);
11211 nchains = byte_get (nc, hash_ent_size);
11212
11213 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
11214 chains = get_dynamic_data (file, nchains, hash_ent_size);
11215
11216 no_hash:
11217 if (buckets == NULL || chains == NULL)
11218 {
11219 if (do_using_dynamic)
11220 return FALSE;
11221 free (buckets);
11222 free (chains);
11223 buckets = NULL;
11224 chains = NULL;
11225 nbuckets = 0;
11226 nchains = 0;
11227 }
11228 }
11229
11230 if (dynamic_info_DT_GNU_HASH
11231 && (do_histogram
11232 || (do_using_dynamic
11233 && !do_dyn_syms
11234 && dynamic_strings != NULL)))
11235 {
11236 unsigned char nb[16];
11237 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
11238 bfd_vma buckets_vma;
11239
11240 if (fseek (file,
11241 (archive_file_offset
11242 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
11243 sizeof nb)),
11244 SEEK_SET))
11245 {
11246 error (_("Unable to seek to start of dynamic information\n"));
11247 goto no_gnu_hash;
11248 }
11249
11250 if (fread (nb, 16, 1, file) != 1)
11251 {
11252 error (_("Failed to read in number of buckets\n"));
11253 goto no_gnu_hash;
11254 }
11255
11256 ngnubuckets = byte_get (nb, 4);
11257 gnusymidx = byte_get (nb + 4, 4);
11258 bitmaskwords = byte_get (nb + 8, 4);
11259 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
11260 if (is_32bit_elf)
11261 buckets_vma += bitmaskwords * 4;
11262 else
11263 buckets_vma += bitmaskwords * 8;
11264
11265 if (fseek (file,
11266 (archive_file_offset
11267 + offset_from_vma (file, buckets_vma, 4)),
11268 SEEK_SET))
11269 {
11270 error (_("Unable to seek to start of dynamic information\n"));
11271 goto no_gnu_hash;
11272 }
11273
11274 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
11275
11276 if (gnubuckets == NULL)
11277 goto no_gnu_hash;
11278
11279 for (i = 0; i < ngnubuckets; i++)
11280 if (gnubuckets[i] != 0)
11281 {
11282 if (gnubuckets[i] < gnusymidx)
11283 return FALSE;
11284
11285 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
11286 maxchain = gnubuckets[i];
11287 }
11288
11289 if (maxchain == 0xffffffff)
11290 goto no_gnu_hash;
11291
11292 maxchain -= gnusymidx;
11293
11294 if (fseek (file,
11295 (archive_file_offset
11296 + offset_from_vma (file, buckets_vma
11297 + 4 * (ngnubuckets + maxchain), 4)),
11298 SEEK_SET))
11299 {
11300 error (_("Unable to seek to start of dynamic information\n"));
11301 goto no_gnu_hash;
11302 }
11303
11304 do
11305 {
11306 if (fread (nb, 4, 1, file) != 1)
11307 {
11308 error (_("Failed to determine last chain length\n"));
11309 goto no_gnu_hash;
11310 }
11311
11312 if (maxchain + 1 == 0)
11313 goto no_gnu_hash;
11314
11315 ++maxchain;
11316 }
11317 while ((byte_get (nb, 4) & 1) == 0);
11318
11319 if (fseek (file,
11320 (archive_file_offset
11321 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
11322 SEEK_SET))
11323 {
11324 error (_("Unable to seek to start of dynamic information\n"));
11325 goto no_gnu_hash;
11326 }
11327
11328 gnuchains = get_dynamic_data (file, maxchain, 4);
11329 ngnuchains = maxchain;
11330
11331 no_gnu_hash:
11332 if (gnuchains == NULL)
11333 {
11334 free (gnubuckets);
11335 gnubuckets = NULL;
11336 ngnubuckets = 0;
11337 if (do_using_dynamic)
11338 return FALSE;
11339 }
11340 }
11341
11342 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
11343 && do_syms
11344 && do_using_dynamic
11345 && dynamic_strings != NULL
11346 && dynamic_symbols != NULL)
11347 {
11348 unsigned long hn;
11349
11350 if (dynamic_info[DT_HASH])
11351 {
11352 bfd_vma si;
11353
11354 printf (_("\nSymbol table for image:\n"));
11355 if (is_32bit_elf)
11356 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11357 else
11358 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11359
11360 for (hn = 0; hn < nbuckets; hn++)
11361 {
11362 if (! buckets[hn])
11363 continue;
11364
11365 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
11366 print_dynamic_symbol (si, hn);
11367 }
11368 }
11369
11370 if (dynamic_info_DT_GNU_HASH)
11371 {
11372 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
11373 if (is_32bit_elf)
11374 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11375 else
11376 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
11377
11378 for (hn = 0; hn < ngnubuckets; ++hn)
11379 if (gnubuckets[hn] != 0)
11380 {
11381 bfd_vma si = gnubuckets[hn];
11382 bfd_vma off = si - gnusymidx;
11383
11384 do
11385 {
11386 print_dynamic_symbol (si, hn);
11387 si++;
11388 }
11389 while (off < ngnuchains && (gnuchains[off++] & 1) == 0);
11390 }
11391 }
11392 }
11393 else if ((do_dyn_syms || (do_syms && !do_using_dynamic))
11394 && section_headers != NULL)
11395 {
11396 unsigned int i;
11397
11398 for (i = 0, section = section_headers;
11399 i < elf_header.e_shnum;
11400 i++, section++)
11401 {
11402 unsigned int si;
11403 char * strtab = NULL;
11404 unsigned long int strtab_size = 0;
11405 Elf_Internal_Sym * symtab;
11406 Elf_Internal_Sym * psym;
11407 unsigned long num_syms;
11408
11409 if ((section->sh_type != SHT_SYMTAB
11410 && section->sh_type != SHT_DYNSYM)
11411 || (!do_syms
11412 && section->sh_type == SHT_SYMTAB))
11413 continue;
11414
11415 if (section->sh_entsize == 0)
11416 {
11417 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
11418 printable_section_name (section));
11419 continue;
11420 }
11421
11422 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
11423 printable_section_name (section),
11424 (unsigned long) (section->sh_size / section->sh_entsize));
11425
11426 if (is_32bit_elf)
11427 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11428 else
11429 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
11430
11431 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
11432 if (symtab == NULL)
11433 continue;
11434
11435 if (section->sh_link == elf_header.e_shstrndx)
11436 {
11437 strtab = string_table;
11438 strtab_size = string_table_length;
11439 }
11440 else if (section->sh_link < elf_header.e_shnum)
11441 {
11442 Elf_Internal_Shdr * string_sec;
11443
11444 string_sec = section_headers + section->sh_link;
11445
11446 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
11447 1, string_sec->sh_size,
11448 _("string table"));
11449 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
11450 }
11451
11452 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
11453 {
11454 const char *version_string;
11455 enum versioned_symbol_info sym_info;
11456 unsigned short vna_other;
11457
11458 printf ("%6d: ", si);
11459 print_vma (psym->st_value, LONG_HEX);
11460 putchar (' ');
11461 print_vma (psym->st_size, DEC_5);
11462 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
11463 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
11464 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_SOLARIS)
11465 printf (" %-7s", get_solaris_symbol_visibility (psym->st_other));
11466 else
11467 {
11468 unsigned int vis = ELF_ST_VISIBILITY (psym->st_other);
11469
11470 printf (" %-7s", get_symbol_visibility (vis));
11471 /* Check to see if any other bits in the st_other field are set.
11472 Note - displaying this information disrupts the layout of the
11473 table being generated, but for the moment this case is very rare. */
11474 if (psym->st_other ^ vis)
11475 printf (" [%s] ", get_symbol_other (psym->st_other ^ vis));
11476 }
11477 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
11478 print_symbol (25, psym->st_name < strtab_size
11479 ? strtab + psym->st_name : _("<corrupt>"));
11480
11481 version_string
11482 = get_symbol_version_string (file,
11483 section->sh_type == SHT_DYNSYM,
11484 strtab, strtab_size, si,
11485 psym, &sym_info, &vna_other);
11486 if (version_string)
11487 {
11488 if (sym_info == symbol_undefined)
11489 printf ("@%s (%d)", version_string, vna_other);
11490 else
11491 printf (sym_info == symbol_hidden ? "@%s" : "@@%s",
11492 version_string);
11493 }
11494
11495 putchar ('\n');
11496
11497 if (ELF_ST_BIND (psym->st_info) == STB_LOCAL
11498 && si >= section->sh_info
11499 /* Irix 5 and 6 MIPS binaries are known to ignore this requirement. */
11500 && elf_header.e_machine != EM_MIPS
11501 /* Solaris binaries have been found to violate this requirement as
11502 well. Not sure if this is a bug or an ABI requirement. */
11503 && elf_header.e_ident[EI_OSABI] != ELFOSABI_SOLARIS)
11504 warn (_("local symbol %u found at index >= %s's sh_info value of %u\n"),
11505 si, printable_section_name (section), section->sh_info);
11506 }
11507
11508 free (symtab);
11509 if (strtab != string_table)
11510 free (strtab);
11511 }
11512 }
11513 else if (do_syms)
11514 printf
11515 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
11516
11517 if (do_histogram && buckets != NULL)
11518 {
11519 unsigned long * lengths;
11520 unsigned long * counts;
11521 unsigned long hn;
11522 bfd_vma si;
11523 unsigned long maxlength = 0;
11524 unsigned long nzero_counts = 0;
11525 unsigned long nsyms = 0;
11526 unsigned long chained;
11527
11528 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
11529 (unsigned long) nbuckets);
11530
11531 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
11532 if (lengths == NULL)
11533 {
11534 error (_("Out of memory allocating space for histogram buckets\n"));
11535 return FALSE;
11536 }
11537
11538 printf (_(" Length Number %% of total Coverage\n"));
11539 for (hn = 0; hn < nbuckets; ++hn)
11540 {
11541 for (si = buckets[hn], chained = 0;
11542 si > 0 && si < nchains && si < nbuckets && chained <= nchains;
11543 si = chains[si], ++chained)
11544 {
11545 ++nsyms;
11546 if (maxlength < ++lengths[hn])
11547 ++maxlength;
11548 }
11549
11550 /* PR binutils/17531: A corrupt binary could contain broken
11551 histogram data. Do not go into an infinite loop trying
11552 to process it. */
11553 if (chained > nchains)
11554 {
11555 error (_("histogram chain is corrupt\n"));
11556 break;
11557 }
11558 }
11559
11560 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11561 if (counts == NULL)
11562 {
11563 free (lengths);
11564 error (_("Out of memory allocating space for histogram counts\n"));
11565 return FALSE;
11566 }
11567
11568 for (hn = 0; hn < nbuckets; ++hn)
11569 ++counts[lengths[hn]];
11570
11571 if (nbuckets > 0)
11572 {
11573 unsigned long i;
11574 printf (" 0 %-10lu (%5.1f%%)\n",
11575 counts[0], (counts[0] * 100.0) / nbuckets);
11576 for (i = 1; i <= maxlength; ++i)
11577 {
11578 nzero_counts += counts[i] * i;
11579 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11580 i, counts[i], (counts[i] * 100.0) / nbuckets,
11581 (nzero_counts * 100.0) / nsyms);
11582 }
11583 }
11584
11585 free (counts);
11586 free (lengths);
11587 }
11588
11589 if (buckets != NULL)
11590 {
11591 free (buckets);
11592 free (chains);
11593 }
11594
11595 if (do_histogram && gnubuckets != NULL)
11596 {
11597 unsigned long * lengths;
11598 unsigned long * counts;
11599 unsigned long hn;
11600 unsigned long maxlength = 0;
11601 unsigned long nzero_counts = 0;
11602 unsigned long nsyms = 0;
11603
11604 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
11605 (unsigned long) ngnubuckets);
11606
11607 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
11608 if (lengths == NULL)
11609 {
11610 error (_("Out of memory allocating space for gnu histogram buckets\n"));
11611 return FALSE;
11612 }
11613
11614 printf (_(" Length Number %% of total Coverage\n"));
11615
11616 for (hn = 0; hn < ngnubuckets; ++hn)
11617 if (gnubuckets[hn] != 0)
11618 {
11619 bfd_vma off, length = 1;
11620
11621 for (off = gnubuckets[hn] - gnusymidx;
11622 /* PR 17531 file: 010-77222-0.004. */
11623 off < ngnuchains && (gnuchains[off] & 1) == 0;
11624 ++off)
11625 ++length;
11626 lengths[hn] = length;
11627 if (length > maxlength)
11628 maxlength = length;
11629 nsyms += length;
11630 }
11631
11632 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
11633 if (counts == NULL)
11634 {
11635 free (lengths);
11636 error (_("Out of memory allocating space for gnu histogram counts\n"));
11637 return FALSE;
11638 }
11639
11640 for (hn = 0; hn < ngnubuckets; ++hn)
11641 ++counts[lengths[hn]];
11642
11643 if (ngnubuckets > 0)
11644 {
11645 unsigned long j;
11646 printf (" 0 %-10lu (%5.1f%%)\n",
11647 counts[0], (counts[0] * 100.0) / ngnubuckets);
11648 for (j = 1; j <= maxlength; ++j)
11649 {
11650 nzero_counts += counts[j] * j;
11651 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
11652 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
11653 (nzero_counts * 100.0) / nsyms);
11654 }
11655 }
11656
11657 free (counts);
11658 free (lengths);
11659 free (gnubuckets);
11660 free (gnuchains);
11661 }
11662
11663 return TRUE;
11664 }
11665
11666 static bfd_boolean
11667 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
11668 {
11669 unsigned int i;
11670
11671 if (dynamic_syminfo == NULL
11672 || !do_dynamic)
11673 /* No syminfo, this is ok. */
11674 return TRUE;
11675
11676 /* There better should be a dynamic symbol section. */
11677 if (dynamic_symbols == NULL || dynamic_strings == NULL)
11678 return FALSE;
11679
11680 if (dynamic_addr)
11681 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
11682 dynamic_syminfo_offset, dynamic_syminfo_nent);
11683
11684 printf (_(" Num: Name BoundTo Flags\n"));
11685 for (i = 0; i < dynamic_syminfo_nent; ++i)
11686 {
11687 unsigned short int flags = dynamic_syminfo[i].si_flags;
11688
11689 printf ("%4d: ", i);
11690 if (i >= num_dynamic_syms)
11691 printf (_("<corrupt index>"));
11692 else if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
11693 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
11694 else
11695 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
11696 putchar (' ');
11697
11698 switch (dynamic_syminfo[i].si_boundto)
11699 {
11700 case SYMINFO_BT_SELF:
11701 fputs ("SELF ", stdout);
11702 break;
11703 case SYMINFO_BT_PARENT:
11704 fputs ("PARENT ", stdout);
11705 break;
11706 default:
11707 if (dynamic_syminfo[i].si_boundto > 0
11708 && dynamic_syminfo[i].si_boundto < dynamic_nent
11709 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
11710 {
11711 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
11712 putchar (' ' );
11713 }
11714 else
11715 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
11716 break;
11717 }
11718
11719 if (flags & SYMINFO_FLG_DIRECT)
11720 printf (" DIRECT");
11721 if (flags & SYMINFO_FLG_PASSTHRU)
11722 printf (" PASSTHRU");
11723 if (flags & SYMINFO_FLG_COPY)
11724 printf (" COPY");
11725 if (flags & SYMINFO_FLG_LAZYLOAD)
11726 printf (" LAZYLOAD");
11727
11728 puts ("");
11729 }
11730
11731 return TRUE;
11732 }
11733
11734 #define IN_RANGE(START,END,ADDR,OFF) \
11735 (((ADDR) >= (START)) && ((ADDR) + (OFF) < (END)))
11736
11737 /* Check to see if the given reloc needs to be handled in a target specific
11738 manner. If so then process the reloc and return TRUE otherwise return
11739 FALSE.
11740
11741 If called with reloc == NULL, then this is a signal that reloc processing
11742 for the current section has finished, and any saved state should be
11743 discarded. */
11744
11745 static bfd_boolean
11746 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
11747 unsigned char * start,
11748 unsigned char * end,
11749 Elf_Internal_Sym * symtab,
11750 unsigned long num_syms)
11751 {
11752 unsigned int reloc_type = 0;
11753 unsigned long sym_index = 0;
11754
11755 if (reloc)
11756 {
11757 reloc_type = get_reloc_type (reloc->r_info);
11758 sym_index = get_reloc_symindex (reloc->r_info);
11759 }
11760
11761 switch (elf_header.e_machine)
11762 {
11763 case EM_MSP430:
11764 case EM_MSP430_OLD:
11765 {
11766 static Elf_Internal_Sym * saved_sym = NULL;
11767
11768 if (reloc == NULL)
11769 {
11770 saved_sym = NULL;
11771 return TRUE;
11772 }
11773
11774 switch (reloc_type)
11775 {
11776 case 10: /* R_MSP430_SYM_DIFF */
11777 if (uses_msp430x_relocs ())
11778 break;
11779 /* Fall through. */
11780 case 21: /* R_MSP430X_SYM_DIFF */
11781 /* PR 21139. */
11782 if (sym_index >= num_syms)
11783 error (_("MSP430 SYM_DIFF reloc contains invalid symbol index %lu\n"),
11784 sym_index);
11785 else
11786 saved_sym = symtab + sym_index;
11787 return TRUE;
11788
11789 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
11790 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
11791 goto handle_sym_diff;
11792
11793 case 5: /* R_MSP430_16_BYTE */
11794 case 9: /* R_MSP430_8 */
11795 if (uses_msp430x_relocs ())
11796 break;
11797 goto handle_sym_diff;
11798
11799 case 2: /* R_MSP430_ABS16 */
11800 case 15: /* R_MSP430X_ABS16 */
11801 if (! uses_msp430x_relocs ())
11802 break;
11803 goto handle_sym_diff;
11804
11805 handle_sym_diff:
11806 if (saved_sym != NULL)
11807 {
11808 int reloc_size = reloc_type == 1 ? 4 : 2;
11809 bfd_vma value;
11810
11811 if (sym_index >= num_syms)
11812 error (_("MSP430 reloc contains invalid symbol index %lu\n"),
11813 sym_index);
11814 else
11815 {
11816 value = reloc->r_addend + (symtab[sym_index].st_value
11817 - saved_sym->st_value);
11818
11819 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11820 byte_put (start + reloc->r_offset, value, reloc_size);
11821 else
11822 /* PR 21137 */
11823 error (_("MSP430 sym diff reloc contains invalid offset: 0x%lx\n"),
11824 (long) reloc->r_offset);
11825 }
11826
11827 saved_sym = NULL;
11828 return TRUE;
11829 }
11830 break;
11831
11832 default:
11833 if (saved_sym != NULL)
11834 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc\n"));
11835 break;
11836 }
11837 break;
11838 }
11839
11840 case EM_MN10300:
11841 case EM_CYGNUS_MN10300:
11842 {
11843 static Elf_Internal_Sym * saved_sym = NULL;
11844
11845 if (reloc == NULL)
11846 {
11847 saved_sym = NULL;
11848 return TRUE;
11849 }
11850
11851 switch (reloc_type)
11852 {
11853 case 34: /* R_MN10300_ALIGN */
11854 return TRUE;
11855 case 33: /* R_MN10300_SYM_DIFF */
11856 if (sym_index >= num_syms)
11857 error (_("MN10300_SYM_DIFF reloc contains invalid symbol index %lu\n"),
11858 sym_index);
11859 else
11860 saved_sym = symtab + sym_index;
11861 return TRUE;
11862
11863 case 1: /* R_MN10300_32 */
11864 case 2: /* R_MN10300_16 */
11865 if (saved_sym != NULL)
11866 {
11867 int reloc_size = reloc_type == 1 ? 4 : 2;
11868 bfd_vma value;
11869
11870 if (sym_index >= num_syms)
11871 error (_("MN10300 reloc contains invalid symbol index %lu\n"),
11872 sym_index);
11873 else
11874 {
11875 value = reloc->r_addend + (symtab[sym_index].st_value
11876 - saved_sym->st_value);
11877
11878 if (IN_RANGE (start, end, start + reloc->r_offset, reloc_size))
11879 byte_put (start + reloc->r_offset, value, reloc_size);
11880 else
11881 error (_("MN10300 sym diff reloc contains invalid offset: 0x%lx\n"),
11882 (long) reloc->r_offset);
11883 }
11884
11885 saved_sym = NULL;
11886 return TRUE;
11887 }
11888 break;
11889 default:
11890 if (saved_sym != NULL)
11891 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc\n"));
11892 break;
11893 }
11894 break;
11895 }
11896
11897 case EM_RL78:
11898 {
11899 static bfd_vma saved_sym1 = 0;
11900 static bfd_vma saved_sym2 = 0;
11901 static bfd_vma value;
11902
11903 if (reloc == NULL)
11904 {
11905 saved_sym1 = saved_sym2 = 0;
11906 return TRUE;
11907 }
11908
11909 switch (reloc_type)
11910 {
11911 case 0x80: /* R_RL78_SYM. */
11912 saved_sym1 = saved_sym2;
11913 if (sym_index >= num_syms)
11914 error (_("RL78_SYM reloc contains invalid symbol index %lu\n"),
11915 sym_index);
11916 else
11917 {
11918 saved_sym2 = symtab[sym_index].st_value;
11919 saved_sym2 += reloc->r_addend;
11920 }
11921 return TRUE;
11922
11923 case 0x83: /* R_RL78_OPsub. */
11924 value = saved_sym1 - saved_sym2;
11925 saved_sym2 = saved_sym1 = 0;
11926 return TRUE;
11927 break;
11928
11929 case 0x41: /* R_RL78_ABS32. */
11930 if (IN_RANGE (start, end, start + reloc->r_offset, 4))
11931 byte_put (start + reloc->r_offset, value, 4);
11932 else
11933 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11934 (long) reloc->r_offset);
11935 value = 0;
11936 return TRUE;
11937
11938 case 0x43: /* R_RL78_ABS16. */
11939 if (IN_RANGE (start, end, start + reloc->r_offset, 2))
11940 byte_put (start + reloc->r_offset, value, 2);
11941 else
11942 error (_("RL78 sym diff reloc contains invalid offset: 0x%lx\n"),
11943 (long) reloc->r_offset);
11944 value = 0;
11945 return TRUE;
11946
11947 default:
11948 break;
11949 }
11950 break;
11951 }
11952 }
11953
11954 return FALSE;
11955 }
11956
11957 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
11958 DWARF debug sections. This is a target specific test. Note - we do not
11959 go through the whole including-target-headers-multiple-times route, (as
11960 we have already done with <elf/h8.h>) because this would become very
11961 messy and even then this function would have to contain target specific
11962 information (the names of the relocs instead of their numeric values).
11963 FIXME: This is not the correct way to solve this problem. The proper way
11964 is to have target specific reloc sizing and typing functions created by
11965 the reloc-macros.h header, in the same way that it already creates the
11966 reloc naming functions. */
11967
11968 static bfd_boolean
11969 is_32bit_abs_reloc (unsigned int reloc_type)
11970 {
11971 /* Please keep this table alpha-sorted for ease of visual lookup. */
11972 switch (elf_header.e_machine)
11973 {
11974 case EM_386:
11975 case EM_IAMCU:
11976 return reloc_type == 1; /* R_386_32. */
11977 case EM_68K:
11978 return reloc_type == 1; /* R_68K_32. */
11979 case EM_860:
11980 return reloc_type == 1; /* R_860_32. */
11981 case EM_960:
11982 return reloc_type == 2; /* R_960_32. */
11983 case EM_AARCH64:
11984 return (reloc_type == 258
11985 || reloc_type == 1); /* R_AARCH64_ABS32 || R_AARCH64_P32_ABS32 */
11986 case EM_ADAPTEVA_EPIPHANY:
11987 return reloc_type == 3;
11988 case EM_ALPHA:
11989 return reloc_type == 1; /* R_ALPHA_REFLONG. */
11990 case EM_ARC:
11991 return reloc_type == 1; /* R_ARC_32. */
11992 case EM_ARC_COMPACT:
11993 case EM_ARC_COMPACT2:
11994 return reloc_type == 4; /* R_ARC_32. */
11995 case EM_ARM:
11996 return reloc_type == 2; /* R_ARM_ABS32 */
11997 case EM_AVR_OLD:
11998 case EM_AVR:
11999 return reloc_type == 1;
12000 case EM_BLACKFIN:
12001 return reloc_type == 0x12; /* R_byte4_data. */
12002 case EM_CRIS:
12003 return reloc_type == 3; /* R_CRIS_32. */
12004 case EM_CR16:
12005 return reloc_type == 3; /* R_CR16_NUM32. */
12006 case EM_CRX:
12007 return reloc_type == 15; /* R_CRX_NUM32. */
12008 case EM_CYGNUS_FRV:
12009 return reloc_type == 1;
12010 case EM_CYGNUS_D10V:
12011 case EM_D10V:
12012 return reloc_type == 6; /* R_D10V_32. */
12013 case EM_CYGNUS_D30V:
12014 case EM_D30V:
12015 return reloc_type == 12; /* R_D30V_32_NORMAL. */
12016 case EM_DLX:
12017 return reloc_type == 3; /* R_DLX_RELOC_32. */
12018 case EM_CYGNUS_FR30:
12019 case EM_FR30:
12020 return reloc_type == 3; /* R_FR30_32. */
12021 case EM_FT32:
12022 return reloc_type == 1; /* R_FT32_32. */
12023 case EM_H8S:
12024 case EM_H8_300:
12025 case EM_H8_300H:
12026 return reloc_type == 1; /* R_H8_DIR32. */
12027 case EM_IA_64:
12028 return reloc_type == 0x65 /* R_IA64_SECREL32LSB. */
12029 || reloc_type == 0x25; /* R_IA64_DIR32LSB. */
12030 case EM_IP2K_OLD:
12031 case EM_IP2K:
12032 return reloc_type == 2; /* R_IP2K_32. */
12033 case EM_IQ2000:
12034 return reloc_type == 2; /* R_IQ2000_32. */
12035 case EM_LATTICEMICO32:
12036 return reloc_type == 3; /* R_LM32_32. */
12037 case EM_M32C_OLD:
12038 case EM_M32C:
12039 return reloc_type == 3; /* R_M32C_32. */
12040 case EM_M32R:
12041 return reloc_type == 34; /* R_M32R_32_RELA. */
12042 case EM_68HC11:
12043 case EM_68HC12:
12044 return reloc_type == 6; /* R_M68HC11_32. */
12045 case EM_MCORE:
12046 return reloc_type == 1; /* R_MCORE_ADDR32. */
12047 case EM_CYGNUS_MEP:
12048 return reloc_type == 4; /* R_MEP_32. */
12049 case EM_METAG:
12050 return reloc_type == 2; /* R_METAG_ADDR32. */
12051 case EM_MICROBLAZE:
12052 return reloc_type == 1; /* R_MICROBLAZE_32. */
12053 case EM_MIPS:
12054 return reloc_type == 2; /* R_MIPS_32. */
12055 case EM_MMIX:
12056 return reloc_type == 4; /* R_MMIX_32. */
12057 case EM_CYGNUS_MN10200:
12058 case EM_MN10200:
12059 return reloc_type == 1; /* R_MN10200_32. */
12060 case EM_CYGNUS_MN10300:
12061 case EM_MN10300:
12062 return reloc_type == 1; /* R_MN10300_32. */
12063 case EM_MOXIE:
12064 return reloc_type == 1; /* R_MOXIE_32. */
12065 case EM_MSP430_OLD:
12066 case EM_MSP430:
12067 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
12068 case EM_MT:
12069 return reloc_type == 2; /* R_MT_32. */
12070 case EM_NDS32:
12071 return reloc_type == 20; /* R_NDS32_RELA. */
12072 case EM_ALTERA_NIOS2:
12073 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
12074 case EM_NIOS32:
12075 return reloc_type == 1; /* R_NIOS_32. */
12076 case EM_OR1K:
12077 return reloc_type == 1; /* R_OR1K_32. */
12078 case EM_PARISC:
12079 return (reloc_type == 1 /* R_PARISC_DIR32. */
12080 || reloc_type == 41); /* R_PARISC_SECREL32. */
12081 case EM_PJ:
12082 case EM_PJ_OLD:
12083 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
12084 case EM_PPC64:
12085 return reloc_type == 1; /* R_PPC64_ADDR32. */
12086 case EM_PPC:
12087 return reloc_type == 1; /* R_PPC_ADDR32. */
12088 case EM_TI_PRU:
12089 return reloc_type == 11; /* R_PRU_BFD_RELOC_32. */
12090 case EM_RISCV:
12091 return reloc_type == 1; /* R_RISCV_32. */
12092 case EM_RL78:
12093 return reloc_type == 1; /* R_RL78_DIR32. */
12094 case EM_RX:
12095 return reloc_type == 1; /* R_RX_DIR32. */
12096 case EM_S370:
12097 return reloc_type == 1; /* R_I370_ADDR31. */
12098 case EM_S390_OLD:
12099 case EM_S390:
12100 return reloc_type == 4; /* R_S390_32. */
12101 case EM_SCORE:
12102 return reloc_type == 8; /* R_SCORE_ABS32. */
12103 case EM_SH:
12104 return reloc_type == 1; /* R_SH_DIR32. */
12105 case EM_SPARC32PLUS:
12106 case EM_SPARCV9:
12107 case EM_SPARC:
12108 return reloc_type == 3 /* R_SPARC_32. */
12109 || reloc_type == 23; /* R_SPARC_UA32. */
12110 case EM_SPU:
12111 return reloc_type == 6; /* R_SPU_ADDR32 */
12112 case EM_TI_C6000:
12113 return reloc_type == 1; /* R_C6000_ABS32. */
12114 case EM_TILEGX:
12115 return reloc_type == 2; /* R_TILEGX_32. */
12116 case EM_TILEPRO:
12117 return reloc_type == 1; /* R_TILEPRO_32. */
12118 case EM_CYGNUS_V850:
12119 case EM_V850:
12120 return reloc_type == 6; /* R_V850_ABS32. */
12121 case EM_V800:
12122 return reloc_type == 0x33; /* R_V810_WORD. */
12123 case EM_VAX:
12124 return reloc_type == 1; /* R_VAX_32. */
12125 case EM_VISIUM:
12126 return reloc_type == 3; /* R_VISIUM_32. */
12127 case EM_WEBASSEMBLY:
12128 return reloc_type == 1; /* R_WASM32_32. */
12129 case EM_X86_64:
12130 case EM_L1OM:
12131 case EM_K1OM:
12132 return reloc_type == 10; /* R_X86_64_32. */
12133 case EM_XC16X:
12134 case EM_C166:
12135 return reloc_type == 3; /* R_XC16C_ABS_32. */
12136 case EM_XGATE:
12137 return reloc_type == 4; /* R_XGATE_32. */
12138 case EM_XSTORMY16:
12139 return reloc_type == 1; /* R_XSTROMY16_32. */
12140 case EM_XTENSA_OLD:
12141 case EM_XTENSA:
12142 return reloc_type == 1; /* R_XTENSA_32. */
12143 default:
12144 {
12145 static unsigned int prev_warn = 0;
12146
12147 /* Avoid repeating the same warning multiple times. */
12148 if (prev_warn != elf_header.e_machine)
12149 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
12150 elf_header.e_machine);
12151 prev_warn = elf_header.e_machine;
12152 return FALSE;
12153 }
12154 }
12155 }
12156
12157 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12158 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
12159
12160 static bfd_boolean
12161 is_32bit_pcrel_reloc (unsigned int reloc_type)
12162 {
12163 switch (elf_header.e_machine)
12164 /* Please keep this table alpha-sorted for ease of visual lookup. */
12165 {
12166 case EM_386:
12167 case EM_IAMCU:
12168 return reloc_type == 2; /* R_386_PC32. */
12169 case EM_68K:
12170 return reloc_type == 4; /* R_68K_PC32. */
12171 case EM_AARCH64:
12172 return reloc_type == 261; /* R_AARCH64_PREL32 */
12173 case EM_ADAPTEVA_EPIPHANY:
12174 return reloc_type == 6;
12175 case EM_ALPHA:
12176 return reloc_type == 10; /* R_ALPHA_SREL32. */
12177 case EM_ARC_COMPACT:
12178 case EM_ARC_COMPACT2:
12179 return reloc_type == 49; /* R_ARC_32_PCREL. */
12180 case EM_ARM:
12181 return reloc_type == 3; /* R_ARM_REL32 */
12182 case EM_AVR_OLD:
12183 case EM_AVR:
12184 return reloc_type == 36; /* R_AVR_32_PCREL. */
12185 case EM_MICROBLAZE:
12186 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
12187 case EM_OR1K:
12188 return reloc_type == 9; /* R_OR1K_32_PCREL. */
12189 case EM_PARISC:
12190 return reloc_type == 9; /* R_PARISC_PCREL32. */
12191 case EM_PPC:
12192 return reloc_type == 26; /* R_PPC_REL32. */
12193 case EM_PPC64:
12194 return reloc_type == 26; /* R_PPC64_REL32. */
12195 case EM_S390_OLD:
12196 case EM_S390:
12197 return reloc_type == 5; /* R_390_PC32. */
12198 case EM_SH:
12199 return reloc_type == 2; /* R_SH_REL32. */
12200 case EM_SPARC32PLUS:
12201 case EM_SPARCV9:
12202 case EM_SPARC:
12203 return reloc_type == 6; /* R_SPARC_DISP32. */
12204 case EM_SPU:
12205 return reloc_type == 13; /* R_SPU_REL32. */
12206 case EM_TILEGX:
12207 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
12208 case EM_TILEPRO:
12209 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
12210 case EM_VISIUM:
12211 return reloc_type == 6; /* R_VISIUM_32_PCREL */
12212 case EM_X86_64:
12213 case EM_L1OM:
12214 case EM_K1OM:
12215 return reloc_type == 2; /* R_X86_64_PC32. */
12216 case EM_XTENSA_OLD:
12217 case EM_XTENSA:
12218 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
12219 default:
12220 /* Do not abort or issue an error message here. Not all targets use
12221 pc-relative 32-bit relocs in their DWARF debug information and we
12222 have already tested for target coverage in is_32bit_abs_reloc. A
12223 more helpful warning message will be generated by apply_relocations
12224 anyway, so just return. */
12225 return FALSE;
12226 }
12227 }
12228
12229 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12230 a 64-bit absolute RELA relocation used in DWARF debug sections. */
12231
12232 static bfd_boolean
12233 is_64bit_abs_reloc (unsigned int reloc_type)
12234 {
12235 switch (elf_header.e_machine)
12236 {
12237 case EM_AARCH64:
12238 return reloc_type == 257; /* R_AARCH64_ABS64. */
12239 case EM_ALPHA:
12240 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
12241 case EM_IA_64:
12242 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
12243 case EM_PARISC:
12244 return reloc_type == 80; /* R_PARISC_DIR64. */
12245 case EM_PPC64:
12246 return reloc_type == 38; /* R_PPC64_ADDR64. */
12247 case EM_RISCV:
12248 return reloc_type == 2; /* R_RISCV_64. */
12249 case EM_SPARC32PLUS:
12250 case EM_SPARCV9:
12251 case EM_SPARC:
12252 return reloc_type == 54; /* R_SPARC_UA64. */
12253 case EM_X86_64:
12254 case EM_L1OM:
12255 case EM_K1OM:
12256 return reloc_type == 1; /* R_X86_64_64. */
12257 case EM_S390_OLD:
12258 case EM_S390:
12259 return reloc_type == 22; /* R_S390_64. */
12260 case EM_TILEGX:
12261 return reloc_type == 1; /* R_TILEGX_64. */
12262 case EM_MIPS:
12263 return reloc_type == 18; /* R_MIPS_64. */
12264 default:
12265 return FALSE;
12266 }
12267 }
12268
12269 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
12270 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
12271
12272 static bfd_boolean
12273 is_64bit_pcrel_reloc (unsigned int reloc_type)
12274 {
12275 switch (elf_header.e_machine)
12276 {
12277 case EM_AARCH64:
12278 return reloc_type == 260; /* R_AARCH64_PREL64. */
12279 case EM_ALPHA:
12280 return reloc_type == 11; /* R_ALPHA_SREL64. */
12281 case EM_IA_64:
12282 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
12283 case EM_PARISC:
12284 return reloc_type == 72; /* R_PARISC_PCREL64. */
12285 case EM_PPC64:
12286 return reloc_type == 44; /* R_PPC64_REL64. */
12287 case EM_SPARC32PLUS:
12288 case EM_SPARCV9:
12289 case EM_SPARC:
12290 return reloc_type == 46; /* R_SPARC_DISP64. */
12291 case EM_X86_64:
12292 case EM_L1OM:
12293 case EM_K1OM:
12294 return reloc_type == 24; /* R_X86_64_PC64. */
12295 case EM_S390_OLD:
12296 case EM_S390:
12297 return reloc_type == 23; /* R_S390_PC64. */
12298 case EM_TILEGX:
12299 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
12300 default:
12301 return FALSE;
12302 }
12303 }
12304
12305 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12306 a 24-bit absolute RELA relocation used in DWARF debug sections. */
12307
12308 static bfd_boolean
12309 is_24bit_abs_reloc (unsigned int reloc_type)
12310 {
12311 switch (elf_header.e_machine)
12312 {
12313 case EM_CYGNUS_MN10200:
12314 case EM_MN10200:
12315 return reloc_type == 4; /* R_MN10200_24. */
12316 case EM_FT32:
12317 return reloc_type == 5; /* R_FT32_20. */
12318 default:
12319 return FALSE;
12320 }
12321 }
12322
12323 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
12324 a 16-bit absolute RELA relocation used in DWARF debug sections. */
12325
12326 static bfd_boolean
12327 is_16bit_abs_reloc (unsigned int reloc_type)
12328 {
12329 /* Please keep this table alpha-sorted for ease of visual lookup. */
12330 switch (elf_header.e_machine)
12331 {
12332 case EM_ARC:
12333 case EM_ARC_COMPACT:
12334 case EM_ARC_COMPACT2:
12335 return reloc_type == 2; /* R_ARC_16. */
12336 case EM_ADAPTEVA_EPIPHANY:
12337 return reloc_type == 5;
12338 case EM_AVR_OLD:
12339 case EM_AVR:
12340 return reloc_type == 4; /* R_AVR_16. */
12341 case EM_CYGNUS_D10V:
12342 case EM_D10V:
12343 return reloc_type == 3; /* R_D10V_16. */
12344 case EM_H8S:
12345 case EM_H8_300:
12346 case EM_H8_300H:
12347 return reloc_type == R_H8_DIR16;
12348 case EM_IP2K_OLD:
12349 case EM_IP2K:
12350 return reloc_type == 1; /* R_IP2K_16. */
12351 case EM_M32C_OLD:
12352 case EM_M32C:
12353 return reloc_type == 1; /* R_M32C_16 */
12354 case EM_CYGNUS_MN10200:
12355 case EM_MN10200:
12356 return reloc_type == 2; /* R_MN10200_16. */
12357 case EM_CYGNUS_MN10300:
12358 case EM_MN10300:
12359 return reloc_type == 2; /* R_MN10300_16. */
12360 case EM_MSP430:
12361 if (uses_msp430x_relocs ())
12362 return reloc_type == 2; /* R_MSP430_ABS16. */
12363 /* Fall through. */
12364 case EM_MSP430_OLD:
12365 return reloc_type == 5; /* R_MSP430_16_BYTE. */
12366 case EM_NDS32:
12367 return reloc_type == 19; /* R_NDS32_RELA. */
12368 case EM_ALTERA_NIOS2:
12369 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
12370 case EM_NIOS32:
12371 return reloc_type == 9; /* R_NIOS_16. */
12372 case EM_OR1K:
12373 return reloc_type == 2; /* R_OR1K_16. */
12374 case EM_TI_PRU:
12375 return reloc_type == 8; /* R_PRU_BFD_RELOC_16. */
12376 case EM_TI_C6000:
12377 return reloc_type == 2; /* R_C6000_ABS16. */
12378 case EM_VISIUM:
12379 return reloc_type == 2; /* R_VISIUM_16. */
12380 case EM_XC16X:
12381 case EM_C166:
12382 return reloc_type == 2; /* R_XC16C_ABS_16. */
12383 case EM_XGATE:
12384 return reloc_type == 3; /* R_XGATE_16. */
12385 default:
12386 return FALSE;
12387 }
12388 }
12389
12390 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
12391 relocation entries (possibly formerly used for SHT_GROUP sections). */
12392
12393 static bfd_boolean
12394 is_none_reloc (unsigned int reloc_type)
12395 {
12396 switch (elf_header.e_machine)
12397 {
12398 case EM_386: /* R_386_NONE. */
12399 case EM_68K: /* R_68K_NONE. */
12400 case EM_ADAPTEVA_EPIPHANY:
12401 case EM_ALPHA: /* R_ALPHA_NONE. */
12402 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
12403 case EM_ARC: /* R_ARC_NONE. */
12404 case EM_ARC_COMPACT2: /* R_ARC_NONE. */
12405 case EM_ARC_COMPACT: /* R_ARC_NONE. */
12406 case EM_ARM: /* R_ARM_NONE. */
12407 case EM_C166: /* R_XC16X_NONE. */
12408 case EM_CRIS: /* R_CRIS_NONE. */
12409 case EM_FT32: /* R_FT32_NONE. */
12410 case EM_IA_64: /* R_IA64_NONE. */
12411 case EM_K1OM: /* R_X86_64_NONE. */
12412 case EM_L1OM: /* R_X86_64_NONE. */
12413 case EM_M32R: /* R_M32R_NONE. */
12414 case EM_MIPS: /* R_MIPS_NONE. */
12415 case EM_MN10300: /* R_MN10300_NONE. */
12416 case EM_MOXIE: /* R_MOXIE_NONE. */
12417 case EM_NIOS32: /* R_NIOS_NONE. */
12418 case EM_OR1K: /* R_OR1K_NONE. */
12419 case EM_PARISC: /* R_PARISC_NONE. */
12420 case EM_PPC64: /* R_PPC64_NONE. */
12421 case EM_PPC: /* R_PPC_NONE. */
12422 case EM_RISCV: /* R_RISCV_NONE. */
12423 case EM_S390: /* R_390_NONE. */
12424 case EM_S390_OLD:
12425 case EM_SH: /* R_SH_NONE. */
12426 case EM_SPARC32PLUS:
12427 case EM_SPARC: /* R_SPARC_NONE. */
12428 case EM_SPARCV9:
12429 case EM_TILEGX: /* R_TILEGX_NONE. */
12430 case EM_TILEPRO: /* R_TILEPRO_NONE. */
12431 case EM_TI_C6000:/* R_C6000_NONE. */
12432 case EM_X86_64: /* R_X86_64_NONE. */
12433 case EM_XC16X:
12434 case EM_WEBASSEMBLY: /* R_WASM32_NONE. */
12435 return reloc_type == 0;
12436
12437 case EM_AARCH64:
12438 return reloc_type == 0 || reloc_type == 256;
12439 case EM_AVR_OLD:
12440 case EM_AVR:
12441 return (reloc_type == 0 /* R_AVR_NONE. */
12442 || reloc_type == 30 /* R_AVR_DIFF8. */
12443 || reloc_type == 31 /* R_AVR_DIFF16. */
12444 || reloc_type == 32 /* R_AVR_DIFF32. */);
12445 case EM_METAG:
12446 return reloc_type == 3; /* R_METAG_NONE. */
12447 case EM_NDS32:
12448 return (reloc_type == 0 /* R_XTENSA_NONE. */
12449 || reloc_type == 204 /* R_NDS32_DIFF8. */
12450 || reloc_type == 205 /* R_NDS32_DIFF16. */
12451 || reloc_type == 206 /* R_NDS32_DIFF32. */
12452 || reloc_type == 207 /* R_NDS32_ULEB128. */);
12453 case EM_TI_PRU:
12454 return (reloc_type == 0 /* R_PRU_NONE. */
12455 || reloc_type == 65 /* R_PRU_DIFF8. */
12456 || reloc_type == 66 /* R_PRU_DIFF16. */
12457 || reloc_type == 67 /* R_PRU_DIFF32. */);
12458 case EM_XTENSA_OLD:
12459 case EM_XTENSA:
12460 return (reloc_type == 0 /* R_XTENSA_NONE. */
12461 || reloc_type == 17 /* R_XTENSA_DIFF8. */
12462 || reloc_type == 18 /* R_XTENSA_DIFF16. */
12463 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
12464 }
12465 return FALSE;
12466 }
12467
12468 /* Returns TRUE if there is a relocation against
12469 section NAME at OFFSET bytes. */
12470
12471 bfd_boolean
12472 reloc_at (struct dwarf_section * dsec, dwarf_vma offset)
12473 {
12474 Elf_Internal_Rela * relocs;
12475 Elf_Internal_Rela * rp;
12476
12477 if (dsec == NULL || dsec->reloc_info == NULL)
12478 return FALSE;
12479
12480 relocs = (Elf_Internal_Rela *) dsec->reloc_info;
12481
12482 for (rp = relocs; rp < relocs + dsec->num_relocs; ++rp)
12483 if (rp->r_offset == offset)
12484 return TRUE;
12485
12486 return FALSE;
12487 }
12488
12489 /* Apply relocations to a section.
12490 Returns TRUE upon success, FALSE otherwise.
12491 If RELOCS_RETURN is non-NULL then it is set to point to the loaded relocs.
12492 It is then the caller's responsibility to free them. NUM_RELOCS_RETURN
12493 will be set to the number of relocs loaded.
12494
12495 Note: So far support has been added only for those relocations
12496 which can be found in debug sections. FIXME: Add support for
12497 more relocations ? */
12498
12499 static bfd_boolean
12500 apply_relocations (void * file,
12501 const Elf_Internal_Shdr * section,
12502 unsigned char * start,
12503 bfd_size_type size,
12504 void ** relocs_return,
12505 unsigned long * num_relocs_return)
12506 {
12507 Elf_Internal_Shdr * relsec;
12508 unsigned char * end = start + size;
12509 bfd_boolean res = TRUE;
12510
12511 if (relocs_return != NULL)
12512 {
12513 * (Elf_Internal_Rela **) relocs_return = NULL;
12514 * num_relocs_return = 0;
12515 }
12516
12517 if (elf_header.e_type != ET_REL)
12518 /* No relocs to apply. */
12519 return TRUE;
12520
12521 /* Find the reloc section associated with the section. */
12522 for (relsec = section_headers;
12523 relsec < section_headers + elf_header.e_shnum;
12524 ++relsec)
12525 {
12526 bfd_boolean is_rela;
12527 unsigned long num_relocs;
12528 Elf_Internal_Rela * relocs;
12529 Elf_Internal_Rela * rp;
12530 Elf_Internal_Shdr * symsec;
12531 Elf_Internal_Sym * symtab;
12532 unsigned long num_syms;
12533 Elf_Internal_Sym * sym;
12534
12535 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12536 || relsec->sh_info >= elf_header.e_shnum
12537 || section_headers + relsec->sh_info != section
12538 || relsec->sh_size == 0
12539 || relsec->sh_link >= elf_header.e_shnum)
12540 continue;
12541
12542 is_rela = relsec->sh_type == SHT_RELA;
12543
12544 if (is_rela)
12545 {
12546 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
12547 relsec->sh_size, & relocs, & num_relocs))
12548 return FALSE;
12549 }
12550 else
12551 {
12552 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
12553 relsec->sh_size, & relocs, & num_relocs))
12554 return FALSE;
12555 }
12556
12557 /* SH uses RELA but uses in place value instead of the addend field. */
12558 if (elf_header.e_machine == EM_SH)
12559 is_rela = FALSE;
12560
12561 symsec = section_headers + relsec->sh_link;
12562 if (symsec->sh_type != SHT_SYMTAB
12563 && symsec->sh_type != SHT_DYNSYM)
12564 return FALSE;
12565 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
12566
12567 for (rp = relocs; rp < relocs + num_relocs; ++rp)
12568 {
12569 bfd_vma addend;
12570 unsigned int reloc_type;
12571 unsigned int reloc_size;
12572 unsigned char * rloc;
12573 unsigned long sym_index;
12574
12575 reloc_type = get_reloc_type (rp->r_info);
12576
12577 if (target_specific_reloc_handling (rp, start, end, symtab, num_syms))
12578 continue;
12579 else if (is_none_reloc (reloc_type))
12580 continue;
12581 else if (is_32bit_abs_reloc (reloc_type)
12582 || is_32bit_pcrel_reloc (reloc_type))
12583 reloc_size = 4;
12584 else if (is_64bit_abs_reloc (reloc_type)
12585 || is_64bit_pcrel_reloc (reloc_type))
12586 reloc_size = 8;
12587 else if (is_24bit_abs_reloc (reloc_type))
12588 reloc_size = 3;
12589 else if (is_16bit_abs_reloc (reloc_type))
12590 reloc_size = 2;
12591 else
12592 {
12593 static unsigned int prev_reloc = 0;
12594 if (reloc_type != prev_reloc)
12595 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
12596 reloc_type, printable_section_name (section));
12597 prev_reloc = reloc_type;
12598 res = FALSE;
12599 continue;
12600 }
12601
12602 rloc = start + rp->r_offset;
12603 if ((rloc + reloc_size) > end || (rloc < start))
12604 {
12605 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
12606 (unsigned long) rp->r_offset,
12607 printable_section_name (section));
12608 res = FALSE;
12609 continue;
12610 }
12611
12612 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
12613 if (sym_index >= num_syms)
12614 {
12615 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
12616 sym_index, printable_section_name (section));
12617 res = FALSE;
12618 continue;
12619 }
12620 sym = symtab + sym_index;
12621
12622 /* If the reloc has a symbol associated with it,
12623 make sure that it is of an appropriate type.
12624
12625 Relocations against symbols without type can happen.
12626 Gcc -feliminate-dwarf2-dups may generate symbols
12627 without type for debug info.
12628
12629 Icc generates relocations against function symbols
12630 instead of local labels.
12631
12632 Relocations against object symbols can happen, eg when
12633 referencing a global array. For an example of this see
12634 the _clz.o binary in libgcc.a. */
12635 if (sym != symtab
12636 && ELF_ST_TYPE (sym->st_info) != STT_COMMON
12637 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
12638 {
12639 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
12640 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
12641 (long int)(rp - relocs),
12642 printable_section_name (relsec));
12643 res = FALSE;
12644 continue;
12645 }
12646
12647 addend = 0;
12648 if (is_rela)
12649 addend += rp->r_addend;
12650 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
12651 partial_inplace. */
12652 if (!is_rela
12653 || (elf_header.e_machine == EM_XTENSA
12654 && reloc_type == 1)
12655 || ((elf_header.e_machine == EM_PJ
12656 || elf_header.e_machine == EM_PJ_OLD)
12657 && reloc_type == 1)
12658 || ((elf_header.e_machine == EM_D30V
12659 || elf_header.e_machine == EM_CYGNUS_D30V)
12660 && reloc_type == 12))
12661 addend += byte_get (rloc, reloc_size);
12662
12663 if (is_32bit_pcrel_reloc (reloc_type)
12664 || is_64bit_pcrel_reloc (reloc_type))
12665 {
12666 /* On HPPA, all pc-relative relocations are biased by 8. */
12667 if (elf_header.e_machine == EM_PARISC)
12668 addend -= 8;
12669 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
12670 reloc_size);
12671 }
12672 else
12673 byte_put (rloc, addend + sym->st_value, reloc_size);
12674 }
12675
12676 free (symtab);
12677 /* Let the target specific reloc processing code know that
12678 we have finished with these relocs. */
12679 target_specific_reloc_handling (NULL, NULL, NULL, NULL, 0);
12680
12681 if (relocs_return)
12682 {
12683 * (Elf_Internal_Rela **) relocs_return = relocs;
12684 * num_relocs_return = num_relocs;
12685 }
12686 else
12687 free (relocs);
12688
12689 break;
12690 }
12691
12692 return res;
12693 }
12694
12695 #ifdef SUPPORT_DISASSEMBLY
12696 static bfd_boolean
12697 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
12698 {
12699 printf (_("\nAssembly dump of section %s\n"), printable_section_name (section));
12700
12701 /* FIXME: XXX -- to be done --- XXX */
12702
12703 return TRUE;
12704 }
12705 #endif
12706
12707 /* Reads in the contents of SECTION from FILE, returning a pointer
12708 to a malloc'ed buffer or NULL if something went wrong. */
12709
12710 static char *
12711 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
12712 {
12713 bfd_size_type num_bytes;
12714
12715 num_bytes = section->sh_size;
12716
12717 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
12718 {
12719 printf (_("\nSection '%s' has no data to dump.\n"),
12720 printable_section_name (section));
12721 return NULL;
12722 }
12723
12724 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
12725 _("section contents"));
12726 }
12727
12728 /* Uncompresses a section that was compressed using zlib, in place. */
12729
12730 static bfd_boolean
12731 uncompress_section_contents (unsigned char **buffer,
12732 dwarf_size_type uncompressed_size,
12733 dwarf_size_type *size)
12734 {
12735 dwarf_size_type compressed_size = *size;
12736 unsigned char * compressed_buffer = *buffer;
12737 unsigned char * uncompressed_buffer;
12738 z_stream strm;
12739 int rc;
12740
12741 /* It is possible the section consists of several compressed
12742 buffers concatenated together, so we uncompress in a loop. */
12743 /* PR 18313: The state field in the z_stream structure is supposed
12744 to be invisible to the user (ie us), but some compilers will
12745 still complain about it being used without initialisation. So
12746 we first zero the entire z_stream structure and then set the fields
12747 that we need. */
12748 memset (& strm, 0, sizeof strm);
12749 strm.avail_in = compressed_size;
12750 strm.next_in = (Bytef *) compressed_buffer;
12751 strm.avail_out = uncompressed_size;
12752 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
12753
12754 rc = inflateInit (& strm);
12755 while (strm.avail_in > 0)
12756 {
12757 if (rc != Z_OK)
12758 goto fail;
12759 strm.next_out = ((Bytef *) uncompressed_buffer
12760 + (uncompressed_size - strm.avail_out));
12761 rc = inflate (&strm, Z_FINISH);
12762 if (rc != Z_STREAM_END)
12763 goto fail;
12764 rc = inflateReset (& strm);
12765 }
12766 rc = inflateEnd (& strm);
12767 if (rc != Z_OK
12768 || strm.avail_out != 0)
12769 goto fail;
12770
12771 *buffer = uncompressed_buffer;
12772 *size = uncompressed_size;
12773 return TRUE;
12774
12775 fail:
12776 free (uncompressed_buffer);
12777 /* Indicate decompression failure. */
12778 *buffer = NULL;
12779 return FALSE;
12780 }
12781
12782 static bfd_boolean
12783 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
12784 {
12785 Elf_Internal_Shdr * relsec;
12786 bfd_size_type num_bytes;
12787 unsigned char * data;
12788 unsigned char * end;
12789 unsigned char * real_start;
12790 unsigned char * start;
12791 bfd_boolean some_strings_shown;
12792
12793 real_start = start = (unsigned char *) get_section_contents (section,
12794 file);
12795 if (start == NULL)
12796 return FALSE;
12797 num_bytes = section->sh_size;
12798
12799 printf (_("\nString dump of section '%s':\n"), printable_section_name (section));
12800
12801 if (decompress_dumps)
12802 {
12803 dwarf_size_type new_size = num_bytes;
12804 dwarf_size_type uncompressed_size = 0;
12805
12806 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12807 {
12808 Elf_Internal_Chdr chdr;
12809 unsigned int compression_header_size
12810 = get_compression_header (& chdr, (unsigned char *) start,
12811 num_bytes);
12812
12813 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12814 {
12815 warn (_("section '%s' has unsupported compress type: %d\n"),
12816 printable_section_name (section), chdr.ch_type);
12817 return FALSE;
12818 }
12819 else if (chdr.ch_addralign != section->sh_addralign)
12820 {
12821 warn (_("compressed section '%s' is corrupted\n"),
12822 printable_section_name (section));
12823 return FALSE;
12824 }
12825 uncompressed_size = chdr.ch_size;
12826 start += compression_header_size;
12827 new_size -= compression_header_size;
12828 }
12829 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12830 {
12831 /* Read the zlib header. In this case, it should be "ZLIB"
12832 followed by the uncompressed section size, 8 bytes in
12833 big-endian order. */
12834 uncompressed_size = start[4]; uncompressed_size <<= 8;
12835 uncompressed_size += start[5]; uncompressed_size <<= 8;
12836 uncompressed_size += start[6]; uncompressed_size <<= 8;
12837 uncompressed_size += start[7]; uncompressed_size <<= 8;
12838 uncompressed_size += start[8]; uncompressed_size <<= 8;
12839 uncompressed_size += start[9]; uncompressed_size <<= 8;
12840 uncompressed_size += start[10]; uncompressed_size <<= 8;
12841 uncompressed_size += start[11];
12842 start += 12;
12843 new_size -= 12;
12844 }
12845
12846 if (uncompressed_size)
12847 {
12848 if (uncompress_section_contents (& start,
12849 uncompressed_size, & new_size))
12850 num_bytes = new_size;
12851 else
12852 {
12853 error (_("Unable to decompress section %s\n"),
12854 printable_section_name (section));
12855 return FALSE;
12856 }
12857 }
12858 else
12859 start = real_start;
12860 }
12861
12862 /* If the section being dumped has relocations against it the user might
12863 be expecting these relocations to have been applied. Check for this
12864 case and issue a warning message in order to avoid confusion.
12865 FIXME: Maybe we ought to have an option that dumps a section with
12866 relocs applied ? */
12867 for (relsec = section_headers;
12868 relsec < section_headers + elf_header.e_shnum;
12869 ++relsec)
12870 {
12871 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
12872 || relsec->sh_info >= elf_header.e_shnum
12873 || section_headers + relsec->sh_info != section
12874 || relsec->sh_size == 0
12875 || relsec->sh_link >= elf_header.e_shnum)
12876 continue;
12877
12878 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
12879 break;
12880 }
12881
12882 data = start;
12883 end = start + num_bytes;
12884 some_strings_shown = FALSE;
12885
12886 while (data < end)
12887 {
12888 while (!ISPRINT (* data))
12889 if (++ data >= end)
12890 break;
12891
12892 if (data < end)
12893 {
12894 size_t maxlen = end - data;
12895
12896 #ifndef __MSVCRT__
12897 /* PR 11128: Use two separate invocations in order to work
12898 around bugs in the Solaris 8 implementation of printf. */
12899 printf (" [%6tx] ", data - start);
12900 #else
12901 printf (" [%6Ix] ", (size_t) (data - start));
12902 #endif
12903 if (maxlen > 0)
12904 {
12905 print_symbol ((int) maxlen, (const char *) data);
12906 putchar ('\n');
12907 data += strnlen ((const char *) data, maxlen);
12908 }
12909 else
12910 {
12911 printf (_("<corrupt>\n"));
12912 data = end;
12913 }
12914 some_strings_shown = TRUE;
12915 }
12916 }
12917
12918 if (! some_strings_shown)
12919 printf (_(" No strings found in this section."));
12920
12921 free (real_start);
12922
12923 putchar ('\n');
12924 return TRUE;
12925 }
12926
12927 static bfd_boolean
12928 dump_section_as_bytes (Elf_Internal_Shdr * section,
12929 FILE * file,
12930 bfd_boolean relocate)
12931 {
12932 Elf_Internal_Shdr * relsec;
12933 bfd_size_type bytes;
12934 bfd_size_type section_size;
12935 bfd_vma addr;
12936 unsigned char * data;
12937 unsigned char * real_start;
12938 unsigned char * start;
12939
12940 real_start = start = (unsigned char *) get_section_contents (section, file);
12941 if (start == NULL)
12942 return FALSE;
12943
12944 section_size = section->sh_size;
12945
12946 printf (_("\nHex dump of section '%s':\n"), printable_section_name (section));
12947
12948 if (decompress_dumps)
12949 {
12950 dwarf_size_type new_size = section_size;
12951 dwarf_size_type uncompressed_size = 0;
12952
12953 if ((section->sh_flags & SHF_COMPRESSED) != 0)
12954 {
12955 Elf_Internal_Chdr chdr;
12956 unsigned int compression_header_size
12957 = get_compression_header (& chdr, start, section_size);
12958
12959 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
12960 {
12961 warn (_("section '%s' has unsupported compress type: %d\n"),
12962 printable_section_name (section), chdr.ch_type);
12963 return FALSE;
12964 }
12965 else if (chdr.ch_addralign != section->sh_addralign)
12966 {
12967 warn (_("compressed section '%s' is corrupted\n"),
12968 printable_section_name (section));
12969 return FALSE;
12970 }
12971 uncompressed_size = chdr.ch_size;
12972 start += compression_header_size;
12973 new_size -= compression_header_size;
12974 }
12975 else if (new_size > 12 && streq ((char *) start, "ZLIB"))
12976 {
12977 /* Read the zlib header. In this case, it should be "ZLIB"
12978 followed by the uncompressed section size, 8 bytes in
12979 big-endian order. */
12980 uncompressed_size = start[4]; uncompressed_size <<= 8;
12981 uncompressed_size += start[5]; uncompressed_size <<= 8;
12982 uncompressed_size += start[6]; uncompressed_size <<= 8;
12983 uncompressed_size += start[7]; uncompressed_size <<= 8;
12984 uncompressed_size += start[8]; uncompressed_size <<= 8;
12985 uncompressed_size += start[9]; uncompressed_size <<= 8;
12986 uncompressed_size += start[10]; uncompressed_size <<= 8;
12987 uncompressed_size += start[11];
12988 start += 12;
12989 new_size -= 12;
12990 }
12991
12992 if (uncompressed_size)
12993 {
12994 if (uncompress_section_contents (& start, uncompressed_size,
12995 & new_size))
12996 {
12997 section_size = new_size;
12998 }
12999 else
13000 {
13001 error (_("Unable to decompress section %s\n"),
13002 printable_section_name (section));
13003 /* FIXME: Print the section anyway ? */
13004 return FALSE;
13005 }
13006 }
13007 else
13008 start = real_start;
13009 }
13010
13011 if (relocate)
13012 {
13013 if (! apply_relocations (file, section, start, section_size, NULL, NULL))
13014 return FALSE;
13015 }
13016 else
13017 {
13018 /* If the section being dumped has relocations against it the user might
13019 be expecting these relocations to have been applied. Check for this
13020 case and issue a warning message in order to avoid confusion.
13021 FIXME: Maybe we ought to have an option that dumps a section with
13022 relocs applied ? */
13023 for (relsec = section_headers;
13024 relsec < section_headers + elf_header.e_shnum;
13025 ++relsec)
13026 {
13027 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
13028 || relsec->sh_info >= elf_header.e_shnum
13029 || section_headers + relsec->sh_info != section
13030 || relsec->sh_size == 0
13031 || relsec->sh_link >= elf_header.e_shnum)
13032 continue;
13033
13034 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
13035 break;
13036 }
13037 }
13038
13039 addr = section->sh_addr;
13040 bytes = section_size;
13041 data = start;
13042
13043 while (bytes)
13044 {
13045 int j;
13046 int k;
13047 int lbytes;
13048
13049 lbytes = (bytes > 16 ? 16 : bytes);
13050
13051 printf (" 0x%8.8lx ", (unsigned long) addr);
13052
13053 for (j = 0; j < 16; j++)
13054 {
13055 if (j < lbytes)
13056 printf ("%2.2x", data[j]);
13057 else
13058 printf (" ");
13059
13060 if ((j & 3) == 3)
13061 printf (" ");
13062 }
13063
13064 for (j = 0; j < lbytes; j++)
13065 {
13066 k = data[j];
13067 if (k >= ' ' && k < 0x7f)
13068 printf ("%c", k);
13069 else
13070 printf (".");
13071 }
13072
13073 putchar ('\n');
13074
13075 data += lbytes;
13076 addr += lbytes;
13077 bytes -= lbytes;
13078 }
13079
13080 free (real_start);
13081
13082 putchar ('\n');
13083 return TRUE;
13084 }
13085
13086 static bfd_boolean
13087 load_specific_debug_section (enum dwarf_section_display_enum debug,
13088 const Elf_Internal_Shdr * sec, void * file)
13089 {
13090 struct dwarf_section * section = &debug_displays [debug].section;
13091 char buf [64];
13092
13093 /* If it is already loaded, do nothing. */
13094 if (section->start != NULL)
13095 return TRUE;
13096
13097 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
13098 section->address = sec->sh_addr;
13099 section->user_data = NULL;
13100 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
13101 sec->sh_offset, 1,
13102 sec->sh_size, buf);
13103 if (section->start == NULL)
13104 section->size = 0;
13105 else
13106 {
13107 unsigned char *start = section->start;
13108 dwarf_size_type size = sec->sh_size;
13109 dwarf_size_type uncompressed_size = 0;
13110
13111 if ((sec->sh_flags & SHF_COMPRESSED) != 0)
13112 {
13113 Elf_Internal_Chdr chdr;
13114 unsigned int compression_header_size;
13115
13116 if (size < (is_32bit_elf
13117 ? sizeof (Elf32_External_Chdr)
13118 : sizeof (Elf64_External_Chdr)))
13119 {
13120 warn (_("compressed section %s is too small to contain a compression header"),
13121 section->name);
13122 return FALSE;
13123 }
13124
13125 compression_header_size = get_compression_header (&chdr, start, size);
13126
13127 if (chdr.ch_type != ELFCOMPRESS_ZLIB)
13128 {
13129 warn (_("section '%s' has unsupported compress type: %d\n"),
13130 section->name, chdr.ch_type);
13131 return FALSE;
13132 }
13133 else if (chdr.ch_addralign != sec->sh_addralign)
13134 {
13135 warn (_("compressed section '%s' is corrupted\n"),
13136 section->name);
13137 return FALSE;
13138 }
13139 uncompressed_size = chdr.ch_size;
13140 start += compression_header_size;
13141 size -= compression_header_size;
13142 }
13143 else if (size > 12 && streq ((char *) start, "ZLIB"))
13144 {
13145 /* Read the zlib header. In this case, it should be "ZLIB"
13146 followed by the uncompressed section size, 8 bytes in
13147 big-endian order. */
13148 uncompressed_size = start[4]; uncompressed_size <<= 8;
13149 uncompressed_size += start[5]; uncompressed_size <<= 8;
13150 uncompressed_size += start[6]; uncompressed_size <<= 8;
13151 uncompressed_size += start[7]; uncompressed_size <<= 8;
13152 uncompressed_size += start[8]; uncompressed_size <<= 8;
13153 uncompressed_size += start[9]; uncompressed_size <<= 8;
13154 uncompressed_size += start[10]; uncompressed_size <<= 8;
13155 uncompressed_size += start[11];
13156 start += 12;
13157 size -= 12;
13158 }
13159
13160 if (uncompressed_size)
13161 {
13162 if (uncompress_section_contents (&start, uncompressed_size,
13163 &size))
13164 {
13165 /* Free the compressed buffer, update the section buffer
13166 and the section size if uncompress is successful. */
13167 free (section->start);
13168 section->start = start;
13169 }
13170 else
13171 {
13172 error (_("Unable to decompress section %s\n"),
13173 printable_section_name (sec));
13174 return FALSE;
13175 }
13176 }
13177
13178 section->size = size;
13179 }
13180
13181 if (section->start == NULL)
13182 return FALSE;
13183
13184 if (debug_displays [debug].relocate)
13185 {
13186 if (! apply_relocations ((FILE *) file, sec, section->start, section->size,
13187 & section->reloc_info, & section->num_relocs))
13188 return FALSE;
13189 }
13190 else
13191 {
13192 section->reloc_info = NULL;
13193 section->num_relocs = 0;
13194 }
13195
13196 return TRUE;
13197 }
13198
13199 /* If this is not NULL, load_debug_section will only look for sections
13200 within the list of sections given here. */
13201 static unsigned int * section_subset = NULL;
13202
13203 bfd_boolean
13204 load_debug_section (enum dwarf_section_display_enum debug, void * file)
13205 {
13206 struct dwarf_section * section = &debug_displays [debug].section;
13207 Elf_Internal_Shdr * sec;
13208
13209 /* Locate the debug section. */
13210 sec = find_section_in_set (section->uncompressed_name, section_subset);
13211 if (sec != NULL)
13212 section->name = section->uncompressed_name;
13213 else
13214 {
13215 sec = find_section_in_set (section->compressed_name, section_subset);
13216 if (sec != NULL)
13217 section->name = section->compressed_name;
13218 }
13219 if (sec == NULL)
13220 return FALSE;
13221
13222 /* If we're loading from a subset of sections, and we've loaded
13223 a section matching this name before, it's likely that it's a
13224 different one. */
13225 if (section_subset != NULL)
13226 free_debug_section (debug);
13227
13228 return load_specific_debug_section (debug, sec, (FILE *) file);
13229 }
13230
13231 void
13232 free_debug_section (enum dwarf_section_display_enum debug)
13233 {
13234 struct dwarf_section * section = &debug_displays [debug].section;
13235
13236 if (section->start == NULL)
13237 return;
13238
13239 free ((char *) section->start);
13240 section->start = NULL;
13241 section->address = 0;
13242 section->size = 0;
13243 }
13244
13245 static bfd_boolean
13246 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
13247 {
13248 char * name = SECTION_NAME (section);
13249 const char * print_name = printable_section_name (section);
13250 bfd_size_type length;
13251 bfd_boolean result = TRUE;
13252 int i;
13253
13254 length = section->sh_size;
13255 if (length == 0)
13256 {
13257 printf (_("\nSection '%s' has no debugging data.\n"), print_name);
13258 return TRUE;
13259 }
13260 if (section->sh_type == SHT_NOBITS)
13261 {
13262 /* There is no point in dumping the contents of a debugging section
13263 which has the NOBITS type - the bits in the file will be random.
13264 This can happen when a file containing a .eh_frame section is
13265 stripped with the --only-keep-debug command line option. */
13266 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"),
13267 print_name);
13268 return FALSE;
13269 }
13270
13271 if (const_strneq (name, ".gnu.linkonce.wi."))
13272 name = ".debug_info";
13273
13274 /* See if we know how to display the contents of this section. */
13275 for (i = 0; i < max; i++)
13276 if (streq (debug_displays[i].section.uncompressed_name, name)
13277 || (i == line && const_strneq (name, ".debug_line."))
13278 || streq (debug_displays[i].section.compressed_name, name))
13279 {
13280 struct dwarf_section * sec = &debug_displays [i].section;
13281 int secondary = (section != find_section (name));
13282
13283 if (secondary)
13284 free_debug_section ((enum dwarf_section_display_enum) i);
13285
13286 if (i == line && const_strneq (name, ".debug_line."))
13287 sec->name = name;
13288 else if (streq (sec->uncompressed_name, name))
13289 sec->name = sec->uncompressed_name;
13290 else
13291 sec->name = sec->compressed_name;
13292 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
13293 section, file))
13294 {
13295 /* If this debug section is part of a CU/TU set in a .dwp file,
13296 restrict load_debug_section to the sections in that set. */
13297 section_subset = find_cu_tu_set (file, shndx);
13298
13299 result &= debug_displays[i].display (sec, file);
13300
13301 section_subset = NULL;
13302
13303 if (secondary || (i != info && i != abbrev))
13304 free_debug_section ((enum dwarf_section_display_enum) i);
13305 }
13306
13307 break;
13308 }
13309
13310 if (i == max)
13311 {
13312 printf (_("Unrecognized debug section: %s\n"), print_name);
13313 result = FALSE;
13314 }
13315
13316 return result;
13317 }
13318
13319 /* Set DUMP_SECTS for all sections where dumps were requested
13320 based on section name. */
13321
13322 static void
13323 initialise_dumps_byname (void)
13324 {
13325 struct dump_list_entry * cur;
13326
13327 for (cur = dump_sects_byname; cur; cur = cur->next)
13328 {
13329 unsigned int i;
13330 bfd_boolean any = FALSE;
13331
13332 for (i = 0; i < elf_header.e_shnum; i++)
13333 if (streq (SECTION_NAME (section_headers + i), cur->name))
13334 {
13335 request_dump_bynumber (i, cur->type);
13336 any = TRUE;
13337 }
13338
13339 if (!any)
13340 warn (_("Section '%s' was not dumped because it does not exist!\n"),
13341 cur->name);
13342 }
13343 }
13344
13345 static bfd_boolean
13346 process_section_contents (FILE * file)
13347 {
13348 Elf_Internal_Shdr * section;
13349 unsigned int i;
13350 bfd_boolean res = TRUE;
13351
13352 if (! do_dump)
13353 return TRUE;
13354
13355 initialise_dumps_byname ();
13356
13357 for (i = 0, section = section_headers;
13358 i < elf_header.e_shnum && i < num_dump_sects;
13359 i++, section++)
13360 {
13361 #ifdef SUPPORT_DISASSEMBLY
13362 if (dump_sects[i] & DISASS_DUMP)
13363 disassemble_section (section, file);
13364 #endif
13365 if (dump_sects[i] & HEX_DUMP)
13366 {
13367 if (! dump_section_as_bytes (section, file, FALSE))
13368 res = FALSE;
13369 }
13370
13371 if (dump_sects[i] & RELOC_DUMP)
13372 {
13373 if (! dump_section_as_bytes (section, file, TRUE))
13374 res = FALSE;
13375 }
13376
13377 if (dump_sects[i] & STRING_DUMP)
13378 {
13379 if (! dump_section_as_strings (section, file))
13380 res = FALSE;
13381 }
13382
13383 if (dump_sects[i] & DEBUG_DUMP)
13384 {
13385 if (! display_debug_section (i, section, file))
13386 res = FALSE;
13387 }
13388 }
13389
13390 /* Check to see if the user requested a
13391 dump of a section that does not exist. */
13392 while (i < num_dump_sects)
13393 {
13394 if (dump_sects[i])
13395 {
13396 warn (_("Section %d was not dumped because it does not exist!\n"), i);
13397 res = FALSE;
13398 }
13399 i++;
13400 }
13401
13402 return res;
13403 }
13404
13405 static void
13406 process_mips_fpe_exception (int mask)
13407 {
13408 if (mask)
13409 {
13410 bfd_boolean first = TRUE;
13411
13412 if (mask & OEX_FPU_INEX)
13413 fputs ("INEX", stdout), first = FALSE;
13414 if (mask & OEX_FPU_UFLO)
13415 printf ("%sUFLO", first ? "" : "|"), first = FALSE;
13416 if (mask & OEX_FPU_OFLO)
13417 printf ("%sOFLO", first ? "" : "|"), first = FALSE;
13418 if (mask & OEX_FPU_DIV0)
13419 printf ("%sDIV0", first ? "" : "|"), first = FALSE;
13420 if (mask & OEX_FPU_INVAL)
13421 printf ("%sINVAL", first ? "" : "|");
13422 }
13423 else
13424 fputs ("0", stdout);
13425 }
13426
13427 /* Display's the value of TAG at location P. If TAG is
13428 greater than 0 it is assumed to be an unknown tag, and
13429 a message is printed to this effect. Otherwise it is
13430 assumed that a message has already been printed.
13431
13432 If the bottom bit of TAG is set it assumed to have a
13433 string value, otherwise it is assumed to have an integer
13434 value.
13435
13436 Returns an updated P pointing to the first unread byte
13437 beyond the end of TAG's value.
13438
13439 Reads at or beyond END will not be made. */
13440
13441 static unsigned char *
13442 display_tag_value (signed int tag,
13443 unsigned char * p,
13444 const unsigned char * const end)
13445 {
13446 unsigned long val;
13447
13448 if (tag > 0)
13449 printf (" Tag_unknown_%d: ", tag);
13450
13451 if (p >= end)
13452 {
13453 warn (_("<corrupt tag>\n"));
13454 }
13455 else if (tag & 1)
13456 {
13457 /* PR 17531 file: 027-19978-0.004. */
13458 size_t maxlen = (end - p) - 1;
13459
13460 putchar ('"');
13461 if (maxlen > 0)
13462 {
13463 print_symbol ((int) maxlen, (const char *) p);
13464 p += strnlen ((char *) p, maxlen) + 1;
13465 }
13466 else
13467 {
13468 printf (_("<corrupt string tag>"));
13469 p = (unsigned char *) end;
13470 }
13471 printf ("\"\n");
13472 }
13473 else
13474 {
13475 unsigned int len;
13476
13477 val = read_uleb128 (p, &len, end);
13478 p += len;
13479 printf ("%ld (0x%lx)\n", val, val);
13480 }
13481
13482 assert (p <= end);
13483 return p;
13484 }
13485
13486 /* ARM EABI attributes section. */
13487 typedef struct
13488 {
13489 unsigned int tag;
13490 const char * name;
13491 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
13492 unsigned int type;
13493 const char ** table;
13494 } arm_attr_public_tag;
13495
13496 static const char * arm_attr_tag_CPU_arch[] =
13497 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
13498 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8", "", "v8-M.baseline",
13499 "v8-M.mainline"};
13500 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
13501 static const char * arm_attr_tag_THUMB_ISA_use[] =
13502 {"No", "Thumb-1", "Thumb-2", "Yes"};
13503 static const char * arm_attr_tag_FP_arch[] =
13504 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
13505 "FP for ARMv8", "FPv5/FP-D16 for ARMv8"};
13506 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
13507 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
13508 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8",
13509 "NEON for ARMv8.1"};
13510 static const char * arm_attr_tag_PCS_config[] =
13511 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
13512 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
13513 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
13514 {"V6", "SB", "TLS", "Unused"};
13515 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
13516 {"Absolute", "PC-relative", "SB-relative", "None"};
13517 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
13518 {"Absolute", "PC-relative", "None"};
13519 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
13520 {"None", "direct", "GOT-indirect"};
13521 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
13522 {"None", "??? 1", "2", "??? 3", "4"};
13523 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
13524 static const char * arm_attr_tag_ABI_FP_denormal[] =
13525 {"Unused", "Needed", "Sign only"};
13526 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
13527 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
13528 static const char * arm_attr_tag_ABI_FP_number_model[] =
13529 {"Unused", "Finite", "RTABI", "IEEE 754"};
13530 static const char * arm_attr_tag_ABI_enum_size[] =
13531 {"Unused", "small", "int", "forced to int"};
13532 static const char * arm_attr_tag_ABI_HardFP_use[] =
13533 {"As Tag_FP_arch", "SP only", "Reserved", "Deprecated"};
13534 static const char * arm_attr_tag_ABI_VFP_args[] =
13535 {"AAPCS", "VFP registers", "custom", "compatible"};
13536 static const char * arm_attr_tag_ABI_WMMX_args[] =
13537 {"AAPCS", "WMMX registers", "custom"};
13538 static const char * arm_attr_tag_ABI_optimization_goals[] =
13539 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13540 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
13541 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
13542 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
13543 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
13544 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
13545 static const char * arm_attr_tag_FP_HP_extension[] =
13546 {"Not Allowed", "Allowed"};
13547 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
13548 {"None", "IEEE 754", "Alternative Format"};
13549 static const char * arm_attr_tag_DSP_extension[] =
13550 {"Follow architecture", "Allowed"};
13551 static const char * arm_attr_tag_MPextension_use[] =
13552 {"Not Allowed", "Allowed"};
13553 static const char * arm_attr_tag_DIV_use[] =
13554 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
13555 "Allowed in v7-A with integer division extension"};
13556 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
13557 static const char * arm_attr_tag_Virtualization_use[] =
13558 {"Not Allowed", "TrustZone", "Virtualization Extensions",
13559 "TrustZone and Virtualization Extensions"};
13560 static const char * arm_attr_tag_MPextension_use_legacy[] =
13561 {"Not Allowed", "Allowed"};
13562
13563 #define LOOKUP(id, name) \
13564 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
13565 static arm_attr_public_tag arm_attr_public_tags[] =
13566 {
13567 {4, "CPU_raw_name", 1, NULL},
13568 {5, "CPU_name", 1, NULL},
13569 LOOKUP(6, CPU_arch),
13570 {7, "CPU_arch_profile", 0, NULL},
13571 LOOKUP(8, ARM_ISA_use),
13572 LOOKUP(9, THUMB_ISA_use),
13573 LOOKUP(10, FP_arch),
13574 LOOKUP(11, WMMX_arch),
13575 LOOKUP(12, Advanced_SIMD_arch),
13576 LOOKUP(13, PCS_config),
13577 LOOKUP(14, ABI_PCS_R9_use),
13578 LOOKUP(15, ABI_PCS_RW_data),
13579 LOOKUP(16, ABI_PCS_RO_data),
13580 LOOKUP(17, ABI_PCS_GOT_use),
13581 LOOKUP(18, ABI_PCS_wchar_t),
13582 LOOKUP(19, ABI_FP_rounding),
13583 LOOKUP(20, ABI_FP_denormal),
13584 LOOKUP(21, ABI_FP_exceptions),
13585 LOOKUP(22, ABI_FP_user_exceptions),
13586 LOOKUP(23, ABI_FP_number_model),
13587 {24, "ABI_align_needed", 0, NULL},
13588 {25, "ABI_align_preserved", 0, NULL},
13589 LOOKUP(26, ABI_enum_size),
13590 LOOKUP(27, ABI_HardFP_use),
13591 LOOKUP(28, ABI_VFP_args),
13592 LOOKUP(29, ABI_WMMX_args),
13593 LOOKUP(30, ABI_optimization_goals),
13594 LOOKUP(31, ABI_FP_optimization_goals),
13595 {32, "compatibility", 0, NULL},
13596 LOOKUP(34, CPU_unaligned_access),
13597 LOOKUP(36, FP_HP_extension),
13598 LOOKUP(38, ABI_FP_16bit_format),
13599 LOOKUP(42, MPextension_use),
13600 LOOKUP(44, DIV_use),
13601 LOOKUP(46, DSP_extension),
13602 {64, "nodefaults", 0, NULL},
13603 {65, "also_compatible_with", 0, NULL},
13604 LOOKUP(66, T2EE_use),
13605 {67, "conformance", 1, NULL},
13606 LOOKUP(68, Virtualization_use),
13607 LOOKUP(70, MPextension_use_legacy)
13608 };
13609 #undef LOOKUP
13610
13611 static unsigned char *
13612 display_arm_attribute (unsigned char * p,
13613 const unsigned char * const end)
13614 {
13615 unsigned int tag;
13616 unsigned int len;
13617 unsigned int val;
13618 arm_attr_public_tag * attr;
13619 unsigned i;
13620 unsigned int type;
13621
13622 tag = read_uleb128 (p, &len, end);
13623 p += len;
13624 attr = NULL;
13625 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
13626 {
13627 if (arm_attr_public_tags[i].tag == tag)
13628 {
13629 attr = &arm_attr_public_tags[i];
13630 break;
13631 }
13632 }
13633
13634 if (attr)
13635 {
13636 printf (" Tag_%s: ", attr->name);
13637 switch (attr->type)
13638 {
13639 case 0:
13640 switch (tag)
13641 {
13642 case 7: /* Tag_CPU_arch_profile. */
13643 val = read_uleb128 (p, &len, end);
13644 p += len;
13645 switch (val)
13646 {
13647 case 0: printf (_("None\n")); break;
13648 case 'A': printf (_("Application\n")); break;
13649 case 'R': printf (_("Realtime\n")); break;
13650 case 'M': printf (_("Microcontroller\n")); break;
13651 case 'S': printf (_("Application or Realtime\n")); break;
13652 default: printf ("??? (%d)\n", val); break;
13653 }
13654 break;
13655
13656 case 24: /* Tag_align_needed. */
13657 val = read_uleb128 (p, &len, end);
13658 p += len;
13659 switch (val)
13660 {
13661 case 0: printf (_("None\n")); break;
13662 case 1: printf (_("8-byte\n")); break;
13663 case 2: printf (_("4-byte\n")); break;
13664 case 3: printf ("??? 3\n"); break;
13665 default:
13666 if (val <= 12)
13667 printf (_("8-byte and up to %d-byte extended\n"),
13668 1 << val);
13669 else
13670 printf ("??? (%d)\n", val);
13671 break;
13672 }
13673 break;
13674
13675 case 25: /* Tag_align_preserved. */
13676 val = read_uleb128 (p, &len, end);
13677 p += len;
13678 switch (val)
13679 {
13680 case 0: printf (_("None\n")); break;
13681 case 1: printf (_("8-byte, except leaf SP\n")); break;
13682 case 2: printf (_("8-byte\n")); break;
13683 case 3: printf ("??? 3\n"); break;
13684 default:
13685 if (val <= 12)
13686 printf (_("8-byte and up to %d-byte extended\n"),
13687 1 << val);
13688 else
13689 printf ("??? (%d)\n", val);
13690 break;
13691 }
13692 break;
13693
13694 case 32: /* Tag_compatibility. */
13695 {
13696 val = read_uleb128 (p, &len, end);
13697 p += len;
13698 printf (_("flag = %d, vendor = "), val);
13699 if (p < end - 1)
13700 {
13701 size_t maxlen = (end - p) - 1;
13702
13703 print_symbol ((int) maxlen, (const char *) p);
13704 p += strnlen ((char *) p, maxlen) + 1;
13705 }
13706 else
13707 {
13708 printf (_("<corrupt>"));
13709 p = (unsigned char *) end;
13710 }
13711 putchar ('\n');
13712 }
13713 break;
13714
13715 case 64: /* Tag_nodefaults. */
13716 /* PR 17531: file: 001-505008-0.01. */
13717 if (p < end)
13718 p++;
13719 printf (_("True\n"));
13720 break;
13721
13722 case 65: /* Tag_also_compatible_with. */
13723 val = read_uleb128 (p, &len, end);
13724 p += len;
13725 if (val == 6 /* Tag_CPU_arch. */)
13726 {
13727 val = read_uleb128 (p, &len, end);
13728 p += len;
13729 if ((unsigned int) val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
13730 printf ("??? (%d)\n", val);
13731 else
13732 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
13733 }
13734 else
13735 printf ("???\n");
13736 while (p < end && *(p++) != '\0' /* NUL terminator. */)
13737 ;
13738 break;
13739
13740 default:
13741 printf (_("<unknown: %d>\n"), tag);
13742 break;
13743 }
13744 return p;
13745
13746 case 1:
13747 return display_tag_value (-1, p, end);
13748 case 2:
13749 return display_tag_value (0, p, end);
13750
13751 default:
13752 assert (attr->type & 0x80);
13753 val = read_uleb128 (p, &len, end);
13754 p += len;
13755 type = attr->type & 0x7f;
13756 if (val >= type)
13757 printf ("??? (%d)\n", val);
13758 else
13759 printf ("%s\n", attr->table[val]);
13760 return p;
13761 }
13762 }
13763
13764 return display_tag_value (tag, p, end);
13765 }
13766
13767 static unsigned char *
13768 display_gnu_attribute (unsigned char * p,
13769 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const),
13770 const unsigned char * const end)
13771 {
13772 int tag;
13773 unsigned int len;
13774 unsigned int val;
13775
13776 tag = read_uleb128 (p, &len, end);
13777 p += len;
13778
13779 /* Tag_compatibility is the only generic GNU attribute defined at
13780 present. */
13781 if (tag == 32)
13782 {
13783 val = read_uleb128 (p, &len, end);
13784 p += len;
13785
13786 printf (_("flag = %d, vendor = "), val);
13787 if (p == end)
13788 {
13789 printf (_("<corrupt>\n"));
13790 warn (_("corrupt vendor attribute\n"));
13791 }
13792 else
13793 {
13794 if (p < end - 1)
13795 {
13796 size_t maxlen = (end - p) - 1;
13797
13798 print_symbol ((int) maxlen, (const char *) p);
13799 p += strnlen ((char *) p, maxlen) + 1;
13800 }
13801 else
13802 {
13803 printf (_("<corrupt>"));
13804 p = (unsigned char *) end;
13805 }
13806 putchar ('\n');
13807 }
13808 return p;
13809 }
13810
13811 if ((tag & 2) == 0 && display_proc_gnu_attribute)
13812 return display_proc_gnu_attribute (p, tag, end);
13813
13814 return display_tag_value (tag, p, end);
13815 }
13816
13817 static unsigned char *
13818 display_power_gnu_attribute (unsigned char * p,
13819 unsigned int tag,
13820 const unsigned char * const end)
13821 {
13822 unsigned int len;
13823 unsigned int val;
13824
13825 if (tag == Tag_GNU_Power_ABI_FP)
13826 {
13827 val = read_uleb128 (p, &len, end);
13828 p += len;
13829 printf (" Tag_GNU_Power_ABI_FP: ");
13830 if (len == 0)
13831 {
13832 printf (_("<corrupt>\n"));
13833 return p;
13834 }
13835
13836 if (val > 15)
13837 printf ("(%#x), ", val);
13838
13839 switch (val & 3)
13840 {
13841 case 0:
13842 printf (_("unspecified hard/soft float, "));
13843 break;
13844 case 1:
13845 printf (_("hard float, "));
13846 break;
13847 case 2:
13848 printf (_("soft float, "));
13849 break;
13850 case 3:
13851 printf (_("single-precision hard float, "));
13852 break;
13853 }
13854
13855 switch (val & 0xC)
13856 {
13857 case 0:
13858 printf (_("unspecified long double\n"));
13859 break;
13860 case 4:
13861 printf (_("128-bit IBM long double\n"));
13862 break;
13863 case 8:
13864 printf (_("64-bit long double\n"));
13865 break;
13866 case 12:
13867 printf (_("128-bit IEEE long double\n"));
13868 break;
13869 }
13870 return p;
13871 }
13872
13873 if (tag == Tag_GNU_Power_ABI_Vector)
13874 {
13875 val = read_uleb128 (p, &len, end);
13876 p += len;
13877 printf (" Tag_GNU_Power_ABI_Vector: ");
13878 if (len == 0)
13879 {
13880 printf (_("<corrupt>\n"));
13881 return p;
13882 }
13883
13884 if (val > 3)
13885 printf ("(%#x), ", val);
13886
13887 switch (val & 3)
13888 {
13889 case 0:
13890 printf (_("unspecified\n"));
13891 break;
13892 case 1:
13893 printf (_("generic\n"));
13894 break;
13895 case 2:
13896 printf ("AltiVec\n");
13897 break;
13898 case 3:
13899 printf ("SPE\n");
13900 break;
13901 }
13902 return p;
13903 }
13904
13905 if (tag == Tag_GNU_Power_ABI_Struct_Return)
13906 {
13907 val = read_uleb128 (p, &len, end);
13908 p += len;
13909 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
13910 if (len == 0)
13911 {
13912 printf (_("<corrupt>\n"));
13913 return p;
13914 }
13915
13916 if (val > 2)
13917 printf ("(%#x), ", val);
13918
13919 switch (val & 3)
13920 {
13921 case 0:
13922 printf (_("unspecified\n"));
13923 break;
13924 case 1:
13925 printf ("r3/r4\n");
13926 break;
13927 case 2:
13928 printf (_("memory\n"));
13929 break;
13930 case 3:
13931 printf ("???\n");
13932 break;
13933 }
13934 return p;
13935 }
13936
13937 return display_tag_value (tag & 1, p, end);
13938 }
13939
13940 static unsigned char *
13941 display_s390_gnu_attribute (unsigned char * p,
13942 unsigned int tag,
13943 const unsigned char * const end)
13944 {
13945 unsigned int len;
13946 int val;
13947
13948 if (tag == Tag_GNU_S390_ABI_Vector)
13949 {
13950 val = read_uleb128 (p, &len, end);
13951 p += len;
13952 printf (" Tag_GNU_S390_ABI_Vector: ");
13953
13954 switch (val)
13955 {
13956 case 0:
13957 printf (_("any\n"));
13958 break;
13959 case 1:
13960 printf (_("software\n"));
13961 break;
13962 case 2:
13963 printf (_("hardware\n"));
13964 break;
13965 default:
13966 printf ("??? (%d)\n", val);
13967 break;
13968 }
13969 return p;
13970 }
13971
13972 return display_tag_value (tag & 1, p, end);
13973 }
13974
13975 static void
13976 display_sparc_hwcaps (unsigned int mask)
13977 {
13978 if (mask)
13979 {
13980 bfd_boolean first = TRUE;
13981
13982 if (mask & ELF_SPARC_HWCAP_MUL32)
13983 fputs ("mul32", stdout), first = FALSE;
13984 if (mask & ELF_SPARC_HWCAP_DIV32)
13985 printf ("%sdiv32", first ? "" : "|"), first = FALSE;
13986 if (mask & ELF_SPARC_HWCAP_FSMULD)
13987 printf ("%sfsmuld", first ? "" : "|"), first = FALSE;
13988 if (mask & ELF_SPARC_HWCAP_V8PLUS)
13989 printf ("%sv8plus", first ? "" : "|"), first = FALSE;
13990 if (mask & ELF_SPARC_HWCAP_POPC)
13991 printf ("%spopc", first ? "" : "|"), first = FALSE;
13992 if (mask & ELF_SPARC_HWCAP_VIS)
13993 printf ("%svis", first ? "" : "|"), first = FALSE;
13994 if (mask & ELF_SPARC_HWCAP_VIS2)
13995 printf ("%svis2", first ? "" : "|"), first = FALSE;
13996 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
13997 printf ("%sASIBlkInit", first ? "" : "|"), first = FALSE;
13998 if (mask & ELF_SPARC_HWCAP_FMAF)
13999 printf ("%sfmaf", first ? "" : "|"), first = FALSE;
14000 if (mask & ELF_SPARC_HWCAP_VIS3)
14001 printf ("%svis3", first ? "" : "|"), first = FALSE;
14002 if (mask & ELF_SPARC_HWCAP_HPC)
14003 printf ("%shpc", first ? "" : "|"), first = FALSE;
14004 if (mask & ELF_SPARC_HWCAP_RANDOM)
14005 printf ("%srandom", first ? "" : "|"), first = FALSE;
14006 if (mask & ELF_SPARC_HWCAP_TRANS)
14007 printf ("%strans", first ? "" : "|"), first = FALSE;
14008 if (mask & ELF_SPARC_HWCAP_FJFMAU)
14009 printf ("%sfjfmau", first ? "" : "|"), first = FALSE;
14010 if (mask & ELF_SPARC_HWCAP_IMA)
14011 printf ("%sima", first ? "" : "|"), first = FALSE;
14012 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
14013 printf ("%scspare", first ? "" : "|"), first = FALSE;
14014 }
14015 else
14016 fputc ('0', stdout);
14017 fputc ('\n', stdout);
14018 }
14019
14020 static void
14021 display_sparc_hwcaps2 (unsigned int mask)
14022 {
14023 if (mask)
14024 {
14025 bfd_boolean first = TRUE;
14026
14027 if (mask & ELF_SPARC_HWCAP2_FJATHPLUS)
14028 fputs ("fjathplus", stdout), first = FALSE;
14029 if (mask & ELF_SPARC_HWCAP2_VIS3B)
14030 printf ("%svis3b", first ? "" : "|"), first = FALSE;
14031 if (mask & ELF_SPARC_HWCAP2_ADP)
14032 printf ("%sadp", first ? "" : "|"), first = FALSE;
14033 if (mask & ELF_SPARC_HWCAP2_SPARC5)
14034 printf ("%ssparc5", first ? "" : "|"), first = FALSE;
14035 if (mask & ELF_SPARC_HWCAP2_MWAIT)
14036 printf ("%smwait", first ? "" : "|"), first = FALSE;
14037 if (mask & ELF_SPARC_HWCAP2_XMPMUL)
14038 printf ("%sxmpmul", first ? "" : "|"), first = FALSE;
14039 if (mask & ELF_SPARC_HWCAP2_XMONT)
14040 printf ("%sxmont2", first ? "" : "|"), first = FALSE;
14041 if (mask & ELF_SPARC_HWCAP2_NSEC)
14042 printf ("%snsec", first ? "" : "|"), first = FALSE;
14043 if (mask & ELF_SPARC_HWCAP2_FJATHHPC)
14044 printf ("%sfjathhpc", first ? "" : "|"), first = FALSE;
14045 if (mask & ELF_SPARC_HWCAP2_FJDES)
14046 printf ("%sfjdes", first ? "" : "|"), first = FALSE;
14047 if (mask & ELF_SPARC_HWCAP2_FJAES)
14048 printf ("%sfjaes", first ? "" : "|"), first = FALSE;
14049 }
14050 else
14051 fputc ('0', stdout);
14052 fputc ('\n', stdout);
14053 }
14054
14055 static unsigned char *
14056 display_sparc_gnu_attribute (unsigned char * p,
14057 unsigned int tag,
14058 const unsigned char * const end)
14059 {
14060 unsigned int len;
14061 int val;
14062
14063 if (tag == Tag_GNU_Sparc_HWCAPS)
14064 {
14065 val = read_uleb128 (p, &len, end);
14066 p += len;
14067 printf (" Tag_GNU_Sparc_HWCAPS: ");
14068 display_sparc_hwcaps (val);
14069 return p;
14070 }
14071 if (tag == Tag_GNU_Sparc_HWCAPS2)
14072 {
14073 val = read_uleb128 (p, &len, end);
14074 p += len;
14075 printf (" Tag_GNU_Sparc_HWCAPS2: ");
14076 display_sparc_hwcaps2 (val);
14077 return p;
14078 }
14079
14080 return display_tag_value (tag, p, end);
14081 }
14082
14083 static void
14084 print_mips_fp_abi_value (unsigned int val)
14085 {
14086 switch (val)
14087 {
14088 case Val_GNU_MIPS_ABI_FP_ANY:
14089 printf (_("Hard or soft float\n"));
14090 break;
14091 case Val_GNU_MIPS_ABI_FP_DOUBLE:
14092 printf (_("Hard float (double precision)\n"));
14093 break;
14094 case Val_GNU_MIPS_ABI_FP_SINGLE:
14095 printf (_("Hard float (single precision)\n"));
14096 break;
14097 case Val_GNU_MIPS_ABI_FP_SOFT:
14098 printf (_("Soft float\n"));
14099 break;
14100 case Val_GNU_MIPS_ABI_FP_OLD_64:
14101 printf (_("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
14102 break;
14103 case Val_GNU_MIPS_ABI_FP_XX:
14104 printf (_("Hard float (32-bit CPU, Any FPU)\n"));
14105 break;
14106 case Val_GNU_MIPS_ABI_FP_64:
14107 printf (_("Hard float (32-bit CPU, 64-bit FPU)\n"));
14108 break;
14109 case Val_GNU_MIPS_ABI_FP_64A:
14110 printf (_("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
14111 break;
14112 case Val_GNU_MIPS_ABI_FP_NAN2008:
14113 printf (_("NaN 2008 compatibility\n"));
14114 break;
14115 default:
14116 printf ("??? (%d)\n", val);
14117 break;
14118 }
14119 }
14120
14121 static unsigned char *
14122 display_mips_gnu_attribute (unsigned char * p,
14123 unsigned int tag,
14124 const unsigned char * const end)
14125 {
14126 if (tag == Tag_GNU_MIPS_ABI_FP)
14127 {
14128 unsigned int len;
14129 unsigned int val;
14130
14131 val = read_uleb128 (p, &len, end);
14132 p += len;
14133 printf (" Tag_GNU_MIPS_ABI_FP: ");
14134
14135 print_mips_fp_abi_value (val);
14136
14137 return p;
14138 }
14139
14140 if (tag == Tag_GNU_MIPS_ABI_MSA)
14141 {
14142 unsigned int len;
14143 unsigned int val;
14144
14145 val = read_uleb128 (p, &len, end);
14146 p += len;
14147 printf (" Tag_GNU_MIPS_ABI_MSA: ");
14148
14149 switch (val)
14150 {
14151 case Val_GNU_MIPS_ABI_MSA_ANY:
14152 printf (_("Any MSA or not\n"));
14153 break;
14154 case Val_GNU_MIPS_ABI_MSA_128:
14155 printf (_("128-bit MSA\n"));
14156 break;
14157 default:
14158 printf ("??? (%d)\n", val);
14159 break;
14160 }
14161 return p;
14162 }
14163
14164 return display_tag_value (tag & 1, p, end);
14165 }
14166
14167 static unsigned char *
14168 display_tic6x_attribute (unsigned char * p,
14169 const unsigned char * const end)
14170 {
14171 unsigned int tag;
14172 unsigned int len;
14173 int val;
14174
14175 tag = read_uleb128 (p, &len, end);
14176 p += len;
14177
14178 switch (tag)
14179 {
14180 case Tag_ISA:
14181 val = read_uleb128 (p, &len, end);
14182 p += len;
14183 printf (" Tag_ISA: ");
14184
14185 switch (val)
14186 {
14187 case C6XABI_Tag_ISA_none:
14188 printf (_("None\n"));
14189 break;
14190 case C6XABI_Tag_ISA_C62X:
14191 printf ("C62x\n");
14192 break;
14193 case C6XABI_Tag_ISA_C67X:
14194 printf ("C67x\n");
14195 break;
14196 case C6XABI_Tag_ISA_C67XP:
14197 printf ("C67x+\n");
14198 break;
14199 case C6XABI_Tag_ISA_C64X:
14200 printf ("C64x\n");
14201 break;
14202 case C6XABI_Tag_ISA_C64XP:
14203 printf ("C64x+\n");
14204 break;
14205 case C6XABI_Tag_ISA_C674X:
14206 printf ("C674x\n");
14207 break;
14208 default:
14209 printf ("??? (%d)\n", val);
14210 break;
14211 }
14212 return p;
14213
14214 case Tag_ABI_wchar_t:
14215 val = read_uleb128 (p, &len, end);
14216 p += len;
14217 printf (" Tag_ABI_wchar_t: ");
14218 switch (val)
14219 {
14220 case 0:
14221 printf (_("Not used\n"));
14222 break;
14223 case 1:
14224 printf (_("2 bytes\n"));
14225 break;
14226 case 2:
14227 printf (_("4 bytes\n"));
14228 break;
14229 default:
14230 printf ("??? (%d)\n", val);
14231 break;
14232 }
14233 return p;
14234
14235 case Tag_ABI_stack_align_needed:
14236 val = read_uleb128 (p, &len, end);
14237 p += len;
14238 printf (" Tag_ABI_stack_align_needed: ");
14239 switch (val)
14240 {
14241 case 0:
14242 printf (_("8-byte\n"));
14243 break;
14244 case 1:
14245 printf (_("16-byte\n"));
14246 break;
14247 default:
14248 printf ("??? (%d)\n", val);
14249 break;
14250 }
14251 return p;
14252
14253 case Tag_ABI_stack_align_preserved:
14254 val = read_uleb128 (p, &len, end);
14255 p += len;
14256 printf (" Tag_ABI_stack_align_preserved: ");
14257 switch (val)
14258 {
14259 case 0:
14260 printf (_("8-byte\n"));
14261 break;
14262 case 1:
14263 printf (_("16-byte\n"));
14264 break;
14265 default:
14266 printf ("??? (%d)\n", val);
14267 break;
14268 }
14269 return p;
14270
14271 case Tag_ABI_DSBT:
14272 val = read_uleb128 (p, &len, end);
14273 p += len;
14274 printf (" Tag_ABI_DSBT: ");
14275 switch (val)
14276 {
14277 case 0:
14278 printf (_("DSBT addressing not used\n"));
14279 break;
14280 case 1:
14281 printf (_("DSBT addressing used\n"));
14282 break;
14283 default:
14284 printf ("??? (%d)\n", val);
14285 break;
14286 }
14287 return p;
14288
14289 case Tag_ABI_PID:
14290 val = read_uleb128 (p, &len, end);
14291 p += len;
14292 printf (" Tag_ABI_PID: ");
14293 switch (val)
14294 {
14295 case 0:
14296 printf (_("Data addressing position-dependent\n"));
14297 break;
14298 case 1:
14299 printf (_("Data addressing position-independent, GOT near DP\n"));
14300 break;
14301 case 2:
14302 printf (_("Data addressing position-independent, GOT far from DP\n"));
14303 break;
14304 default:
14305 printf ("??? (%d)\n", val);
14306 break;
14307 }
14308 return p;
14309
14310 case Tag_ABI_PIC:
14311 val = read_uleb128 (p, &len, end);
14312 p += len;
14313 printf (" Tag_ABI_PIC: ");
14314 switch (val)
14315 {
14316 case 0:
14317 printf (_("Code addressing position-dependent\n"));
14318 break;
14319 case 1:
14320 printf (_("Code addressing position-independent\n"));
14321 break;
14322 default:
14323 printf ("??? (%d)\n", val);
14324 break;
14325 }
14326 return p;
14327
14328 case Tag_ABI_array_object_alignment:
14329 val = read_uleb128 (p, &len, end);
14330 p += len;
14331 printf (" Tag_ABI_array_object_alignment: ");
14332 switch (val)
14333 {
14334 case 0:
14335 printf (_("8-byte\n"));
14336 break;
14337 case 1:
14338 printf (_("4-byte\n"));
14339 break;
14340 case 2:
14341 printf (_("16-byte\n"));
14342 break;
14343 default:
14344 printf ("??? (%d)\n", val);
14345 break;
14346 }
14347 return p;
14348
14349 case Tag_ABI_array_object_align_expected:
14350 val = read_uleb128 (p, &len, end);
14351 p += len;
14352 printf (" Tag_ABI_array_object_align_expected: ");
14353 switch (val)
14354 {
14355 case 0:
14356 printf (_("8-byte\n"));
14357 break;
14358 case 1:
14359 printf (_("4-byte\n"));
14360 break;
14361 case 2:
14362 printf (_("16-byte\n"));
14363 break;
14364 default:
14365 printf ("??? (%d)\n", val);
14366 break;
14367 }
14368 return p;
14369
14370 case Tag_ABI_compatibility:
14371 {
14372 val = read_uleb128 (p, &len, end);
14373 p += len;
14374 printf (" Tag_ABI_compatibility: ");
14375 printf (_("flag = %d, vendor = "), val);
14376 if (p < end - 1)
14377 {
14378 size_t maxlen = (end - p) - 1;
14379
14380 print_symbol ((int) maxlen, (const char *) p);
14381 p += strnlen ((char *) p, maxlen) + 1;
14382 }
14383 else
14384 {
14385 printf (_("<corrupt>"));
14386 p = (unsigned char *) end;
14387 }
14388 putchar ('\n');
14389 return p;
14390 }
14391
14392 case Tag_ABI_conformance:
14393 {
14394 printf (" Tag_ABI_conformance: \"");
14395 if (p < end - 1)
14396 {
14397 size_t maxlen = (end - p) - 1;
14398
14399 print_symbol ((int) maxlen, (const char *) p);
14400 p += strnlen ((char *) p, maxlen) + 1;
14401 }
14402 else
14403 {
14404 printf (_("<corrupt>"));
14405 p = (unsigned char *) end;
14406 }
14407 printf ("\"\n");
14408 return p;
14409 }
14410 }
14411
14412 return display_tag_value (tag, p, end);
14413 }
14414
14415 static void
14416 display_raw_attribute (unsigned char * p, unsigned char const * const end)
14417 {
14418 unsigned long addr = 0;
14419 size_t bytes = end - p;
14420
14421 assert (end > p);
14422 while (bytes)
14423 {
14424 int j;
14425 int k;
14426 int lbytes = (bytes > 16 ? 16 : bytes);
14427
14428 printf (" 0x%8.8lx ", addr);
14429
14430 for (j = 0; j < 16; j++)
14431 {
14432 if (j < lbytes)
14433 printf ("%2.2x", p[j]);
14434 else
14435 printf (" ");
14436
14437 if ((j & 3) == 3)
14438 printf (" ");
14439 }
14440
14441 for (j = 0; j < lbytes; j++)
14442 {
14443 k = p[j];
14444 if (k >= ' ' && k < 0x7f)
14445 printf ("%c", k);
14446 else
14447 printf (".");
14448 }
14449
14450 putchar ('\n');
14451
14452 p += lbytes;
14453 bytes -= lbytes;
14454 addr += lbytes;
14455 }
14456
14457 putchar ('\n');
14458 }
14459
14460 static unsigned char *
14461 display_msp430x_attribute (unsigned char * p,
14462 const unsigned char * const end)
14463 {
14464 unsigned int len;
14465 unsigned int val;
14466 unsigned int tag;
14467
14468 tag = read_uleb128 (p, & len, end);
14469 p += len;
14470
14471 switch (tag)
14472 {
14473 case OFBA_MSPABI_Tag_ISA:
14474 val = read_uleb128 (p, &len, end);
14475 p += len;
14476 printf (" Tag_ISA: ");
14477 switch (val)
14478 {
14479 case 0: printf (_("None\n")); break;
14480 case 1: printf (_("MSP430\n")); break;
14481 case 2: printf (_("MSP430X\n")); break;
14482 default: printf ("??? (%d)\n", val); break;
14483 }
14484 break;
14485
14486 case OFBA_MSPABI_Tag_Code_Model:
14487 val = read_uleb128 (p, &len, end);
14488 p += len;
14489 printf (" Tag_Code_Model: ");
14490 switch (val)
14491 {
14492 case 0: printf (_("None\n")); break;
14493 case 1: printf (_("Small\n")); break;
14494 case 2: printf (_("Large\n")); break;
14495 default: printf ("??? (%d)\n", val); break;
14496 }
14497 break;
14498
14499 case OFBA_MSPABI_Tag_Data_Model:
14500 val = read_uleb128 (p, &len, end);
14501 p += len;
14502 printf (" Tag_Data_Model: ");
14503 switch (val)
14504 {
14505 case 0: printf (_("None\n")); break;
14506 case 1: printf (_("Small\n")); break;
14507 case 2: printf (_("Large\n")); break;
14508 case 3: printf (_("Restricted Large\n")); break;
14509 default: printf ("??? (%d)\n", val); break;
14510 }
14511 break;
14512
14513 default:
14514 printf (_(" <unknown tag %d>: "), tag);
14515
14516 if (tag & 1)
14517 {
14518 putchar ('"');
14519 if (p < end - 1)
14520 {
14521 size_t maxlen = (end - p) - 1;
14522
14523 print_symbol ((int) maxlen, (const char *) p);
14524 p += strnlen ((char *) p, maxlen) + 1;
14525 }
14526 else
14527 {
14528 printf (_("<corrupt>"));
14529 p = (unsigned char *) end;
14530 }
14531 printf ("\"\n");
14532 }
14533 else
14534 {
14535 val = read_uleb128 (p, &len, end);
14536 p += len;
14537 printf ("%d (0x%x)\n", val, val);
14538 }
14539 break;
14540 }
14541
14542 assert (p <= end);
14543 return p;
14544 }
14545
14546 static bfd_boolean
14547 process_attributes (FILE * file,
14548 const char * public_name,
14549 unsigned int proc_type,
14550 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
14551 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, unsigned int, const unsigned char * const))
14552 {
14553 Elf_Internal_Shdr * sect;
14554 unsigned i;
14555 bfd_boolean res = TRUE;
14556
14557 /* Find the section header so that we get the size. */
14558 for (i = 0, sect = section_headers;
14559 i < elf_header.e_shnum;
14560 i++, sect++)
14561 {
14562 unsigned char * contents;
14563 unsigned char * p;
14564
14565 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
14566 continue;
14567
14568 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
14569 sect->sh_size, _("attributes"));
14570 if (contents == NULL)
14571 {
14572 res = FALSE;
14573 continue;
14574 }
14575
14576 p = contents;
14577 /* The first character is the version of the attributes.
14578 Currently only version 1, (aka 'A') is recognised here. */
14579 if (*p != 'A')
14580 {
14581 printf (_("Unknown attributes version '%c'(%d) - expecting 'A'\n"), *p, *p);
14582 res = FALSE;
14583 }
14584 else
14585 {
14586 bfd_vma section_len;
14587
14588 section_len = sect->sh_size - 1;
14589 p++;
14590
14591 while (section_len > 0)
14592 {
14593 bfd_vma attr_len;
14594 unsigned int namelen;
14595 bfd_boolean public_section;
14596 bfd_boolean gnu_section;
14597
14598 if (section_len <= 4)
14599 {
14600 error (_("Tag section ends prematurely\n"));
14601 res = FALSE;
14602 break;
14603 }
14604 attr_len = byte_get (p, 4);
14605 p += 4;
14606
14607 if (attr_len > section_len)
14608 {
14609 error (_("Bad attribute length (%u > %u)\n"),
14610 (unsigned) attr_len, (unsigned) section_len);
14611 attr_len = section_len;
14612 res = FALSE;
14613 }
14614 /* PR 17531: file: 001-101425-0.004 */
14615 else if (attr_len < 5)
14616 {
14617 error (_("Attribute length of %u is too small\n"), (unsigned) attr_len);
14618 res = FALSE;
14619 break;
14620 }
14621
14622 section_len -= attr_len;
14623 attr_len -= 4;
14624
14625 namelen = strnlen ((char *) p, attr_len) + 1;
14626 if (namelen == 0 || namelen >= attr_len)
14627 {
14628 error (_("Corrupt attribute section name\n"));
14629 res = FALSE;
14630 break;
14631 }
14632
14633 printf (_("Attribute Section: "));
14634 print_symbol (INT_MAX, (const char *) p);
14635 putchar ('\n');
14636
14637 if (public_name && streq ((char *) p, public_name))
14638 public_section = TRUE;
14639 else
14640 public_section = FALSE;
14641
14642 if (streq ((char *) p, "gnu"))
14643 gnu_section = TRUE;
14644 else
14645 gnu_section = FALSE;
14646
14647 p += namelen;
14648 attr_len -= namelen;
14649
14650 while (attr_len > 0 && p < contents + sect->sh_size)
14651 {
14652 int tag;
14653 int val;
14654 bfd_vma size;
14655 unsigned char * end;
14656
14657 /* PR binutils/17531: Safe handling of corrupt files. */
14658 if (attr_len < 6)
14659 {
14660 error (_("Unused bytes at end of section\n"));
14661 res = FALSE;
14662 section_len = 0;
14663 break;
14664 }
14665
14666 tag = *(p++);
14667 size = byte_get (p, 4);
14668 if (size > attr_len)
14669 {
14670 error (_("Bad subsection length (%u > %u)\n"),
14671 (unsigned) size, (unsigned) attr_len);
14672 res = FALSE;
14673 size = attr_len;
14674 }
14675 /* PR binutils/17531: Safe handling of corrupt files. */
14676 if (size < 6)
14677 {
14678 error (_("Bad subsection length (%u < 6)\n"),
14679 (unsigned) size);
14680 res = FALSE;
14681 section_len = 0;
14682 break;
14683 }
14684
14685 attr_len -= size;
14686 end = p + size - 1;
14687 assert (end <= contents + sect->sh_size);
14688 p += 4;
14689
14690 switch (tag)
14691 {
14692 case 1:
14693 printf (_("File Attributes\n"));
14694 break;
14695 case 2:
14696 printf (_("Section Attributes:"));
14697 goto do_numlist;
14698 case 3:
14699 printf (_("Symbol Attributes:"));
14700 /* Fall through. */
14701 do_numlist:
14702 for (;;)
14703 {
14704 unsigned int j;
14705
14706 val = read_uleb128 (p, &j, end);
14707 p += j;
14708 if (val == 0)
14709 break;
14710 printf (" %d", val);
14711 }
14712 printf ("\n");
14713 break;
14714 default:
14715 printf (_("Unknown tag: %d\n"), tag);
14716 public_section = FALSE;
14717 break;
14718 }
14719
14720 if (public_section && display_pub_attribute != NULL)
14721 {
14722 while (p < end)
14723 p = display_pub_attribute (p, end);
14724 assert (p == end);
14725 }
14726 else if (gnu_section && display_proc_gnu_attribute != NULL)
14727 {
14728 while (p < end)
14729 p = display_gnu_attribute (p,
14730 display_proc_gnu_attribute,
14731 end);
14732 assert (p == end);
14733 }
14734 else if (p < end)
14735 {
14736 printf (_(" Unknown attribute:\n"));
14737 display_raw_attribute (p, end);
14738 p = end;
14739 }
14740 else
14741 attr_len = 0;
14742 }
14743 }
14744 }
14745
14746 free (contents);
14747 }
14748
14749 return res;
14750 }
14751
14752 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
14753 Print the Address, Access and Initial fields of an entry at VMA ADDR
14754 and return the VMA of the next entry, or -1 if there was a problem.
14755 Does not read from DATA_END or beyond. */
14756
14757 static bfd_vma
14758 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr,
14759 unsigned char * data_end)
14760 {
14761 printf (" ");
14762 print_vma (addr, LONG_HEX);
14763 printf (" ");
14764 if (addr < pltgot + 0xfff0)
14765 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
14766 else
14767 printf ("%10s", "");
14768 printf (" ");
14769 if (data == NULL)
14770 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14771 else
14772 {
14773 bfd_vma entry;
14774 unsigned char * from = data + addr - pltgot;
14775
14776 if (from + (is_32bit_elf ? 4 : 8) > data_end)
14777 {
14778 warn (_("MIPS GOT entry extends beyond the end of available data\n"));
14779 printf ("%*s", is_32bit_elf ? 8 : 16, _("<corrupt>"));
14780 return (bfd_vma) -1;
14781 }
14782 else
14783 {
14784 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14785 print_vma (entry, LONG_HEX);
14786 }
14787 }
14788 return addr + (is_32bit_elf ? 4 : 8);
14789 }
14790
14791 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
14792 PLTGOT. Print the Address and Initial fields of an entry at VMA
14793 ADDR and return the VMA of the next entry. */
14794
14795 static bfd_vma
14796 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
14797 {
14798 printf (" ");
14799 print_vma (addr, LONG_HEX);
14800 printf (" ");
14801 if (data == NULL)
14802 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
14803 else
14804 {
14805 bfd_vma entry;
14806
14807 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
14808 print_vma (entry, LONG_HEX);
14809 }
14810 return addr + (is_32bit_elf ? 4 : 8);
14811 }
14812
14813 static void
14814 print_mips_ases (unsigned int mask)
14815 {
14816 if (mask & AFL_ASE_DSP)
14817 fputs ("\n\tDSP ASE", stdout);
14818 if (mask & AFL_ASE_DSPR2)
14819 fputs ("\n\tDSP R2 ASE", stdout);
14820 if (mask & AFL_ASE_DSPR3)
14821 fputs ("\n\tDSP R3 ASE", stdout);
14822 if (mask & AFL_ASE_EVA)
14823 fputs ("\n\tEnhanced VA Scheme", stdout);
14824 if (mask & AFL_ASE_MCU)
14825 fputs ("\n\tMCU (MicroController) ASE", stdout);
14826 if (mask & AFL_ASE_MDMX)
14827 fputs ("\n\tMDMX ASE", stdout);
14828 if (mask & AFL_ASE_MIPS3D)
14829 fputs ("\n\tMIPS-3D ASE", stdout);
14830 if (mask & AFL_ASE_MT)
14831 fputs ("\n\tMT ASE", stdout);
14832 if (mask & AFL_ASE_SMARTMIPS)
14833 fputs ("\n\tSmartMIPS ASE", stdout);
14834 if (mask & AFL_ASE_VIRT)
14835 fputs ("\n\tVZ ASE", stdout);
14836 if (mask & AFL_ASE_MSA)
14837 fputs ("\n\tMSA ASE", stdout);
14838 if (mask & AFL_ASE_MIPS16)
14839 fputs ("\n\tMIPS16 ASE", stdout);
14840 if (mask & AFL_ASE_MICROMIPS)
14841 fputs ("\n\tMICROMIPS ASE", stdout);
14842 if (mask & AFL_ASE_XPA)
14843 fputs ("\n\tXPA ASE", stdout);
14844 if (mask == 0)
14845 fprintf (stdout, "\n\t%s", _("None"));
14846 else if ((mask & ~AFL_ASE_MASK) != 0)
14847 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
14848 }
14849
14850 static void
14851 print_mips_isa_ext (unsigned int isa_ext)
14852 {
14853 switch (isa_ext)
14854 {
14855 case 0:
14856 fputs (_("None"), stdout);
14857 break;
14858 case AFL_EXT_XLR:
14859 fputs ("RMI XLR", stdout);
14860 break;
14861 case AFL_EXT_OCTEON3:
14862 fputs ("Cavium Networks Octeon3", stdout);
14863 break;
14864 case AFL_EXT_OCTEON2:
14865 fputs ("Cavium Networks Octeon2", stdout);
14866 break;
14867 case AFL_EXT_OCTEONP:
14868 fputs ("Cavium Networks OcteonP", stdout);
14869 break;
14870 case AFL_EXT_LOONGSON_3A:
14871 fputs ("Loongson 3A", stdout);
14872 break;
14873 case AFL_EXT_OCTEON:
14874 fputs ("Cavium Networks Octeon", stdout);
14875 break;
14876 case AFL_EXT_5900:
14877 fputs ("Toshiba R5900", stdout);
14878 break;
14879 case AFL_EXT_4650:
14880 fputs ("MIPS R4650", stdout);
14881 break;
14882 case AFL_EXT_4010:
14883 fputs ("LSI R4010", stdout);
14884 break;
14885 case AFL_EXT_4100:
14886 fputs ("NEC VR4100", stdout);
14887 break;
14888 case AFL_EXT_3900:
14889 fputs ("Toshiba R3900", stdout);
14890 break;
14891 case AFL_EXT_10000:
14892 fputs ("MIPS R10000", stdout);
14893 break;
14894 case AFL_EXT_SB1:
14895 fputs ("Broadcom SB-1", stdout);
14896 break;
14897 case AFL_EXT_4111:
14898 fputs ("NEC VR4111/VR4181", stdout);
14899 break;
14900 case AFL_EXT_4120:
14901 fputs ("NEC VR4120", stdout);
14902 break;
14903 case AFL_EXT_5400:
14904 fputs ("NEC VR5400", stdout);
14905 break;
14906 case AFL_EXT_5500:
14907 fputs ("NEC VR5500", stdout);
14908 break;
14909 case AFL_EXT_LOONGSON_2E:
14910 fputs ("ST Microelectronics Loongson 2E", stdout);
14911 break;
14912 case AFL_EXT_LOONGSON_2F:
14913 fputs ("ST Microelectronics Loongson 2F", stdout);
14914 break;
14915 default:
14916 fprintf (stdout, "%s (%d)", _("Unknown"), isa_ext);
14917 }
14918 }
14919
14920 static signed int
14921 get_mips_reg_size (int reg_size)
14922 {
14923 return (reg_size == AFL_REG_NONE) ? 0
14924 : (reg_size == AFL_REG_32) ? 32
14925 : (reg_size == AFL_REG_64) ? 64
14926 : (reg_size == AFL_REG_128) ? 128
14927 : -1;
14928 }
14929
14930 static bfd_boolean
14931 process_mips_specific (FILE * file)
14932 {
14933 Elf_Internal_Dyn * entry;
14934 Elf_Internal_Shdr *sect = NULL;
14935 size_t liblist_offset = 0;
14936 size_t liblistno = 0;
14937 size_t conflictsno = 0;
14938 size_t options_offset = 0;
14939 size_t conflicts_offset = 0;
14940 size_t pltrelsz = 0;
14941 size_t pltrel = 0;
14942 bfd_vma pltgot = 0;
14943 bfd_vma mips_pltgot = 0;
14944 bfd_vma jmprel = 0;
14945 bfd_vma local_gotno = 0;
14946 bfd_vma gotsym = 0;
14947 bfd_vma symtabno = 0;
14948 bfd_boolean res = TRUE;
14949
14950 if (! process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
14951 display_mips_gnu_attribute))
14952 res = FALSE;
14953
14954 sect = find_section (".MIPS.abiflags");
14955
14956 if (sect != NULL)
14957 {
14958 Elf_External_ABIFlags_v0 *abiflags_ext;
14959 Elf_Internal_ABIFlags_v0 abiflags_in;
14960
14961 if (sizeof (Elf_External_ABIFlags_v0) != sect->sh_size)
14962 {
14963 error (_("Corrupt MIPS ABI Flags section.\n"));
14964 res = FALSE;
14965 }
14966 else
14967 {
14968 abiflags_ext = get_data (NULL, file, sect->sh_offset, 1,
14969 sect->sh_size, _("MIPS ABI Flags section"));
14970 if (abiflags_ext)
14971 {
14972 abiflags_in.version = BYTE_GET (abiflags_ext->version);
14973 abiflags_in.isa_level = BYTE_GET (abiflags_ext->isa_level);
14974 abiflags_in.isa_rev = BYTE_GET (abiflags_ext->isa_rev);
14975 abiflags_in.gpr_size = BYTE_GET (abiflags_ext->gpr_size);
14976 abiflags_in.cpr1_size = BYTE_GET (abiflags_ext->cpr1_size);
14977 abiflags_in.cpr2_size = BYTE_GET (abiflags_ext->cpr2_size);
14978 abiflags_in.fp_abi = BYTE_GET (abiflags_ext->fp_abi);
14979 abiflags_in.isa_ext = BYTE_GET (abiflags_ext->isa_ext);
14980 abiflags_in.ases = BYTE_GET (abiflags_ext->ases);
14981 abiflags_in.flags1 = BYTE_GET (abiflags_ext->flags1);
14982 abiflags_in.flags2 = BYTE_GET (abiflags_ext->flags2);
14983
14984 printf ("\nMIPS ABI Flags Version: %d\n", abiflags_in.version);
14985 printf ("\nISA: MIPS%d", abiflags_in.isa_level);
14986 if (abiflags_in.isa_rev > 1)
14987 printf ("r%d", abiflags_in.isa_rev);
14988 printf ("\nGPR size: %d",
14989 get_mips_reg_size (abiflags_in.gpr_size));
14990 printf ("\nCPR1 size: %d",
14991 get_mips_reg_size (abiflags_in.cpr1_size));
14992 printf ("\nCPR2 size: %d",
14993 get_mips_reg_size (abiflags_in.cpr2_size));
14994 fputs ("\nFP ABI: ", stdout);
14995 print_mips_fp_abi_value (abiflags_in.fp_abi);
14996 fputs ("ISA Extension: ", stdout);
14997 print_mips_isa_ext (abiflags_in.isa_ext);
14998 fputs ("\nASEs:", stdout);
14999 print_mips_ases (abiflags_in.ases);
15000 printf ("\nFLAGS 1: %8.8lx", abiflags_in.flags1);
15001 printf ("\nFLAGS 2: %8.8lx", abiflags_in.flags2);
15002 fputc ('\n', stdout);
15003 free (abiflags_ext);
15004 }
15005 }
15006 }
15007
15008 /* We have a lot of special sections. Thanks SGI! */
15009 if (dynamic_section == NULL)
15010 /* No information available. */
15011 return res;
15012
15013 for (entry = dynamic_section;
15014 /* PR 17531 file: 012-50589-0.004. */
15015 entry < dynamic_section + dynamic_nent && entry->d_tag != DT_NULL;
15016 ++entry)
15017 switch (entry->d_tag)
15018 {
15019 case DT_MIPS_LIBLIST:
15020 liblist_offset
15021 = offset_from_vma (file, entry->d_un.d_val,
15022 liblistno * sizeof (Elf32_External_Lib));
15023 break;
15024 case DT_MIPS_LIBLISTNO:
15025 liblistno = entry->d_un.d_val;
15026 break;
15027 case DT_MIPS_OPTIONS:
15028 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
15029 break;
15030 case DT_MIPS_CONFLICT:
15031 conflicts_offset
15032 = offset_from_vma (file, entry->d_un.d_val,
15033 conflictsno * sizeof (Elf32_External_Conflict));
15034 break;
15035 case DT_MIPS_CONFLICTNO:
15036 conflictsno = entry->d_un.d_val;
15037 break;
15038 case DT_PLTGOT:
15039 pltgot = entry->d_un.d_ptr;
15040 break;
15041 case DT_MIPS_LOCAL_GOTNO:
15042 local_gotno = entry->d_un.d_val;
15043 break;
15044 case DT_MIPS_GOTSYM:
15045 gotsym = entry->d_un.d_val;
15046 break;
15047 case DT_MIPS_SYMTABNO:
15048 symtabno = entry->d_un.d_val;
15049 break;
15050 case DT_MIPS_PLTGOT:
15051 mips_pltgot = entry->d_un.d_ptr;
15052 break;
15053 case DT_PLTREL:
15054 pltrel = entry->d_un.d_val;
15055 break;
15056 case DT_PLTRELSZ:
15057 pltrelsz = entry->d_un.d_val;
15058 break;
15059 case DT_JMPREL:
15060 jmprel = entry->d_un.d_ptr;
15061 break;
15062 default:
15063 break;
15064 }
15065
15066 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
15067 {
15068 Elf32_External_Lib * elib;
15069 size_t cnt;
15070
15071 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
15072 liblistno,
15073 sizeof (Elf32_External_Lib),
15074 _("liblist section data"));
15075 if (elib)
15076 {
15077 printf (_("\nSection '.liblist' contains %lu entries:\n"),
15078 (unsigned long) liblistno);
15079 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
15080 stdout);
15081
15082 for (cnt = 0; cnt < liblistno; ++cnt)
15083 {
15084 Elf32_Lib liblist;
15085 time_t atime;
15086 char timebuf[128];
15087 struct tm * tmp;
15088
15089 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15090 atime = BYTE_GET (elib[cnt].l_time_stamp);
15091 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15092 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15093 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15094
15095 tmp = gmtime (&atime);
15096 snprintf (timebuf, sizeof (timebuf),
15097 "%04u-%02u-%02uT%02u:%02u:%02u",
15098 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15099 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15100
15101 printf ("%3lu: ", (unsigned long) cnt);
15102 if (VALID_DYNAMIC_NAME (liblist.l_name))
15103 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
15104 else
15105 printf (_("<corrupt: %9ld>"), liblist.l_name);
15106 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
15107 liblist.l_version);
15108
15109 if (liblist.l_flags == 0)
15110 puts (_(" NONE"));
15111 else
15112 {
15113 static const struct
15114 {
15115 const char * name;
15116 int bit;
15117 }
15118 l_flags_vals[] =
15119 {
15120 { " EXACT_MATCH", LL_EXACT_MATCH },
15121 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
15122 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
15123 { " EXPORTS", LL_EXPORTS },
15124 { " DELAY_LOAD", LL_DELAY_LOAD },
15125 { " DELTA", LL_DELTA }
15126 };
15127 int flags = liblist.l_flags;
15128 size_t fcnt;
15129
15130 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
15131 if ((flags & l_flags_vals[fcnt].bit) != 0)
15132 {
15133 fputs (l_flags_vals[fcnt].name, stdout);
15134 flags ^= l_flags_vals[fcnt].bit;
15135 }
15136 if (flags != 0)
15137 printf (" %#x", (unsigned int) flags);
15138
15139 puts ("");
15140 }
15141 }
15142
15143 free (elib);
15144 }
15145 else
15146 res = FALSE;
15147 }
15148
15149 if (options_offset != 0)
15150 {
15151 Elf_External_Options * eopt;
15152 Elf_Internal_Options * iopt;
15153 Elf_Internal_Options * option;
15154 size_t offset;
15155 int cnt;
15156 sect = section_headers;
15157
15158 /* Find the section header so that we get the size. */
15159 sect = find_section_by_type (SHT_MIPS_OPTIONS);
15160 /* PR 17533 file: 012-277276-0.004. */
15161 if (sect == NULL)
15162 {
15163 error (_("No MIPS_OPTIONS header found\n"));
15164 return FALSE;
15165 }
15166
15167 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
15168 sect->sh_size, _("options"));
15169 if (eopt)
15170 {
15171 iopt = (Elf_Internal_Options *)
15172 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
15173 if (iopt == NULL)
15174 {
15175 error (_("Out of memory allocating space for MIPS options\n"));
15176 return FALSE;
15177 }
15178
15179 offset = cnt = 0;
15180 option = iopt;
15181
15182 while (offset <= sect->sh_size - sizeof (* eopt))
15183 {
15184 Elf_External_Options * eoption;
15185
15186 eoption = (Elf_External_Options *) ((char *) eopt + offset);
15187
15188 option->kind = BYTE_GET (eoption->kind);
15189 option->size = BYTE_GET (eoption->size);
15190 option->section = BYTE_GET (eoption->section);
15191 option->info = BYTE_GET (eoption->info);
15192
15193 /* PR 17531: file: ffa0fa3b. */
15194 if (option->size < sizeof (* eopt)
15195 || offset + option->size > sect->sh_size)
15196 {
15197 error (_("Invalid size (%u) for MIPS option\n"), option->size);
15198 return FALSE;
15199 }
15200 offset += option->size;
15201
15202 ++option;
15203 ++cnt;
15204 }
15205
15206 printf (_("\nSection '%s' contains %d entries:\n"),
15207 printable_section_name (sect), cnt);
15208
15209 option = iopt;
15210 offset = 0;
15211
15212 while (cnt-- > 0)
15213 {
15214 size_t len;
15215
15216 switch (option->kind)
15217 {
15218 case ODK_NULL:
15219 /* This shouldn't happen. */
15220 printf (" NULL %d %lx", option->section, option->info);
15221 break;
15222 case ODK_REGINFO:
15223 printf (" REGINFO ");
15224 if (elf_header.e_machine == EM_MIPS)
15225 {
15226 /* 32bit form. */
15227 Elf32_External_RegInfo * ereg;
15228 Elf32_RegInfo reginfo;
15229
15230 ereg = (Elf32_External_RegInfo *) (option + 1);
15231 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15232 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15233 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15234 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15235 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15236 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15237
15238 printf ("GPR %08lx GP 0x%lx\n",
15239 reginfo.ri_gprmask,
15240 (unsigned long) reginfo.ri_gp_value);
15241 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15242 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15243 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15244 }
15245 else
15246 {
15247 /* 64 bit form. */
15248 Elf64_External_RegInfo * ereg;
15249 Elf64_Internal_RegInfo reginfo;
15250
15251 ereg = (Elf64_External_RegInfo *) (option + 1);
15252 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
15253 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
15254 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
15255 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
15256 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
15257 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
15258
15259 printf ("GPR %08lx GP 0x",
15260 reginfo.ri_gprmask);
15261 printf_vma (reginfo.ri_gp_value);
15262 printf ("\n");
15263
15264 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
15265 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
15266 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
15267 }
15268 ++option;
15269 continue;
15270 case ODK_EXCEPTIONS:
15271 fputs (" EXCEPTIONS fpe_min(", stdout);
15272 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
15273 fputs (") fpe_max(", stdout);
15274 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
15275 fputs (")", stdout);
15276
15277 if (option->info & OEX_PAGE0)
15278 fputs (" PAGE0", stdout);
15279 if (option->info & OEX_SMM)
15280 fputs (" SMM", stdout);
15281 if (option->info & OEX_FPDBUG)
15282 fputs (" FPDBUG", stdout);
15283 if (option->info & OEX_DISMISS)
15284 fputs (" DISMISS", stdout);
15285 break;
15286 case ODK_PAD:
15287 fputs (" PAD ", stdout);
15288 if (option->info & OPAD_PREFIX)
15289 fputs (" PREFIX", stdout);
15290 if (option->info & OPAD_POSTFIX)
15291 fputs (" POSTFIX", stdout);
15292 if (option->info & OPAD_SYMBOL)
15293 fputs (" SYMBOL", stdout);
15294 break;
15295 case ODK_HWPATCH:
15296 fputs (" HWPATCH ", stdout);
15297 if (option->info & OHW_R4KEOP)
15298 fputs (" R4KEOP", stdout);
15299 if (option->info & OHW_R8KPFETCH)
15300 fputs (" R8KPFETCH", stdout);
15301 if (option->info & OHW_R5KEOP)
15302 fputs (" R5KEOP", stdout);
15303 if (option->info & OHW_R5KCVTL)
15304 fputs (" R5KCVTL", stdout);
15305 break;
15306 case ODK_FILL:
15307 fputs (" FILL ", stdout);
15308 /* XXX Print content of info word? */
15309 break;
15310 case ODK_TAGS:
15311 fputs (" TAGS ", stdout);
15312 /* XXX Print content of info word? */
15313 break;
15314 case ODK_HWAND:
15315 fputs (" HWAND ", stdout);
15316 if (option->info & OHWA0_R4KEOP_CHECKED)
15317 fputs (" R4KEOP_CHECKED", stdout);
15318 if (option->info & OHWA0_R4KEOP_CLEAN)
15319 fputs (" R4KEOP_CLEAN", stdout);
15320 break;
15321 case ODK_HWOR:
15322 fputs (" HWOR ", stdout);
15323 if (option->info & OHWA0_R4KEOP_CHECKED)
15324 fputs (" R4KEOP_CHECKED", stdout);
15325 if (option->info & OHWA0_R4KEOP_CLEAN)
15326 fputs (" R4KEOP_CLEAN", stdout);
15327 break;
15328 case ODK_GP_GROUP:
15329 printf (" GP_GROUP %#06lx self-contained %#06lx",
15330 option->info & OGP_GROUP,
15331 (option->info & OGP_SELF) >> 16);
15332 break;
15333 case ODK_IDENT:
15334 printf (" IDENT %#06lx self-contained %#06lx",
15335 option->info & OGP_GROUP,
15336 (option->info & OGP_SELF) >> 16);
15337 break;
15338 default:
15339 /* This shouldn't happen. */
15340 printf (" %3d ??? %d %lx",
15341 option->kind, option->section, option->info);
15342 break;
15343 }
15344
15345 len = sizeof (* eopt);
15346 while (len < option->size)
15347 {
15348 unsigned char datum = * ((unsigned char *) eopt + offset + len);
15349
15350 if (ISPRINT (datum))
15351 printf ("%c", datum);
15352 else
15353 printf ("\\%03o", datum);
15354 len ++;
15355 }
15356 fputs ("\n", stdout);
15357
15358 offset += option->size;
15359 ++option;
15360 }
15361
15362 free (eopt);
15363 }
15364 else
15365 res = FALSE;
15366 }
15367
15368 if (conflicts_offset != 0 && conflictsno != 0)
15369 {
15370 Elf32_Conflict * iconf;
15371 size_t cnt;
15372
15373 if (dynamic_symbols == NULL)
15374 {
15375 error (_("conflict list found without a dynamic symbol table\n"));
15376 return FALSE;
15377 }
15378
15379 /* PR 21345 - print a slightly more helpful error message
15380 if we are sure that the cmalloc will fail. */
15381 if (conflictsno * sizeof (* iconf) > current_file_size)
15382 {
15383 error (_("Overlarge number of conflicts detected: %lx\n"),
15384 (long) conflictsno);
15385 return FALSE;
15386 }
15387
15388 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
15389 if (iconf == NULL)
15390 {
15391 error (_("Out of memory allocating space for dynamic conflicts\n"));
15392 return FALSE;
15393 }
15394
15395 if (is_32bit_elf)
15396 {
15397 Elf32_External_Conflict * econf32;
15398
15399 econf32 = (Elf32_External_Conflict *)
15400 get_data (NULL, file, conflicts_offset, conflictsno,
15401 sizeof (* econf32), _("conflict"));
15402 if (!econf32)
15403 return FALSE;
15404
15405 for (cnt = 0; cnt < conflictsno; ++cnt)
15406 iconf[cnt] = BYTE_GET (econf32[cnt]);
15407
15408 free (econf32);
15409 }
15410 else
15411 {
15412 Elf64_External_Conflict * econf64;
15413
15414 econf64 = (Elf64_External_Conflict *)
15415 get_data (NULL, file, conflicts_offset, conflictsno,
15416 sizeof (* econf64), _("conflict"));
15417 if (!econf64)
15418 return FALSE;
15419
15420 for (cnt = 0; cnt < conflictsno; ++cnt)
15421 iconf[cnt] = BYTE_GET (econf64[cnt]);
15422
15423 free (econf64);
15424 }
15425
15426 printf (_("\nSection '.conflict' contains %lu entries:\n"),
15427 (unsigned long) conflictsno);
15428 puts (_(" Num: Index Value Name"));
15429
15430 for (cnt = 0; cnt < conflictsno; ++cnt)
15431 {
15432 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
15433
15434 if (iconf[cnt] >= num_dynamic_syms)
15435 printf (_("<corrupt symbol index>"));
15436 else
15437 {
15438 Elf_Internal_Sym * psym;
15439
15440 psym = & dynamic_symbols[iconf[cnt]];
15441 print_vma (psym->st_value, FULL_HEX);
15442 putchar (' ');
15443 if (VALID_DYNAMIC_NAME (psym->st_name))
15444 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
15445 else
15446 printf (_("<corrupt: %14ld>"), psym->st_name);
15447 }
15448 putchar ('\n');
15449 }
15450
15451 free (iconf);
15452 }
15453
15454 if (pltgot != 0 && local_gotno != 0)
15455 {
15456 bfd_vma ent, local_end, global_end;
15457 size_t i, offset;
15458 unsigned char * data;
15459 unsigned char * data_end;
15460 int addr_size;
15461
15462 ent = pltgot;
15463 addr_size = (is_32bit_elf ? 4 : 8);
15464 local_end = pltgot + local_gotno * addr_size;
15465
15466 /* PR binutils/17533 file: 012-111227-0.004 */
15467 if (symtabno < gotsym)
15468 {
15469 error (_("The GOT symbol offset (%lu) is greater than the symbol table size (%lu)\n"),
15470 (unsigned long) gotsym, (unsigned long) symtabno);
15471 return FALSE;
15472 }
15473
15474 global_end = local_end + (symtabno - gotsym) * addr_size;
15475 /* PR 17531: file: 54c91a34. */
15476 if (global_end < local_end)
15477 {
15478 error (_("Too many GOT symbols: %lu\n"), (unsigned long) symtabno);
15479 return FALSE;
15480 }
15481
15482 offset = offset_from_vma (file, pltgot, global_end - pltgot);
15483 data = (unsigned char *) get_data (NULL, file, offset,
15484 global_end - pltgot, 1,
15485 _("Global Offset Table data"));
15486 if (data == NULL)
15487 return FALSE;
15488 data_end = data + (global_end - pltgot);
15489
15490 printf (_("\nPrimary GOT:\n"));
15491 printf (_(" Canonical gp value: "));
15492 print_vma (pltgot + 0x7ff0, LONG_HEX);
15493 printf ("\n\n");
15494
15495 printf (_(" Reserved entries:\n"));
15496 printf (_(" %*s %10s %*s Purpose\n"),
15497 addr_size * 2, _("Address"), _("Access"),
15498 addr_size * 2, _("Initial"));
15499 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15500 printf (_(" Lazy resolver\n"));
15501 if (ent == (bfd_vma) -1)
15502 goto got_print_fail;
15503
15504 if (data)
15505 {
15506 /* PR 21344 */
15507 if (data + ent - pltgot > data_end - addr_size)
15508 {
15509 error (_("Invalid got entry - %#lx - overflows GOT table\n"),
15510 (long) ent);
15511 goto got_print_fail;
15512 }
15513
15514 if (byte_get (data + ent - pltgot, addr_size)
15515 >> (addr_size * 8 - 1) != 0)
15516 {
15517 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15518 printf (_(" Module pointer (GNU extension)\n"));
15519 if (ent == (bfd_vma) -1)
15520 goto got_print_fail;
15521 }
15522 }
15523 printf ("\n");
15524
15525 if (ent < local_end)
15526 {
15527 printf (_(" Local entries:\n"));
15528 printf (" %*s %10s %*s\n",
15529 addr_size * 2, _("Address"), _("Access"),
15530 addr_size * 2, _("Initial"));
15531 while (ent < local_end)
15532 {
15533 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15534 printf ("\n");
15535 if (ent == (bfd_vma) -1)
15536 goto got_print_fail;
15537 }
15538 printf ("\n");
15539 }
15540
15541 if (gotsym < symtabno)
15542 {
15543 int sym_width;
15544
15545 printf (_(" Global entries:\n"));
15546 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
15547 addr_size * 2, _("Address"),
15548 _("Access"),
15549 addr_size * 2, _("Initial"),
15550 addr_size * 2, _("Sym.Val."),
15551 _("Type"),
15552 /* Note for translators: "Ndx" = abbreviated form of "Index". */
15553 _("Ndx"), _("Name"));
15554
15555 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
15556
15557 for (i = gotsym; i < symtabno; i++)
15558 {
15559 ent = print_mips_got_entry (data, pltgot, ent, data_end);
15560 printf (" ");
15561
15562 if (dynamic_symbols == NULL)
15563 printf (_("<no dynamic symbols>"));
15564 else if (i < num_dynamic_syms)
15565 {
15566 Elf_Internal_Sym * psym = dynamic_symbols + i;
15567
15568 print_vma (psym->st_value, LONG_HEX);
15569 printf (" %-7s %3s ",
15570 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15571 get_symbol_index_type (psym->st_shndx));
15572
15573 if (VALID_DYNAMIC_NAME (psym->st_name))
15574 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15575 else
15576 printf (_("<corrupt: %14ld>"), psym->st_name);
15577 }
15578 else
15579 printf (_("<symbol index %lu exceeds number of dynamic symbols>"),
15580 (unsigned long) i);
15581
15582 printf ("\n");
15583 if (ent == (bfd_vma) -1)
15584 break;
15585 }
15586 printf ("\n");
15587 }
15588
15589 got_print_fail:
15590 if (data)
15591 free (data);
15592 }
15593
15594 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
15595 {
15596 bfd_vma ent, end;
15597 size_t offset, rel_offset;
15598 unsigned long count, i;
15599 unsigned char * data;
15600 int addr_size, sym_width;
15601 Elf_Internal_Rela * rels;
15602
15603 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
15604 if (pltrel == DT_RELA)
15605 {
15606 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
15607 return FALSE;
15608 }
15609 else
15610 {
15611 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
15612 return FALSE;
15613 }
15614
15615 ent = mips_pltgot;
15616 addr_size = (is_32bit_elf ? 4 : 8);
15617 end = mips_pltgot + (2 + count) * addr_size;
15618
15619 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
15620 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
15621 1, _("Procedure Linkage Table data"));
15622 if (data == NULL)
15623 return FALSE;
15624
15625 printf ("\nPLT GOT:\n\n");
15626 printf (_(" Reserved entries:\n"));
15627 printf (_(" %*s %*s Purpose\n"),
15628 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
15629 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15630 printf (_(" PLT lazy resolver\n"));
15631 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15632 printf (_(" Module pointer\n"));
15633 printf ("\n");
15634
15635 printf (_(" Entries:\n"));
15636 printf (" %*s %*s %*s %-7s %3s %s\n",
15637 addr_size * 2, _("Address"),
15638 addr_size * 2, _("Initial"),
15639 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
15640 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
15641 for (i = 0; i < count; i++)
15642 {
15643 unsigned long idx = get_reloc_symindex (rels[i].r_info);
15644
15645 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
15646 printf (" ");
15647
15648 if (idx >= num_dynamic_syms)
15649 printf (_("<corrupt symbol index: %lu>"), idx);
15650 else
15651 {
15652 Elf_Internal_Sym * psym = dynamic_symbols + idx;
15653
15654 print_vma (psym->st_value, LONG_HEX);
15655 printf (" %-7s %3s ",
15656 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
15657 get_symbol_index_type (psym->st_shndx));
15658 if (VALID_DYNAMIC_NAME (psym->st_name))
15659 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
15660 else
15661 printf (_("<corrupt: %14ld>"), psym->st_name);
15662 }
15663 printf ("\n");
15664 }
15665 printf ("\n");
15666
15667 if (data)
15668 free (data);
15669 free (rels);
15670 }
15671
15672 return res;
15673 }
15674
15675 static bfd_boolean
15676 process_nds32_specific (FILE * file)
15677 {
15678 Elf_Internal_Shdr *sect = NULL;
15679
15680 sect = find_section (".nds32_e_flags");
15681 if (sect != NULL)
15682 {
15683 unsigned int *flag;
15684
15685 printf ("\nNDS32 elf flags section:\n");
15686 flag = get_data (NULL, file, sect->sh_offset, 1,
15687 sect->sh_size, _("NDS32 elf flags section"));
15688
15689 if (! flag)
15690 return FALSE;
15691
15692 switch ((*flag) & 0x3)
15693 {
15694 case 0:
15695 printf ("(VEC_SIZE):\tNo entry.\n");
15696 break;
15697 case 1:
15698 printf ("(VEC_SIZE):\t4 bytes\n");
15699 break;
15700 case 2:
15701 printf ("(VEC_SIZE):\t16 bytes\n");
15702 break;
15703 case 3:
15704 printf ("(VEC_SIZE):\treserved\n");
15705 break;
15706 }
15707 }
15708
15709 return TRUE;
15710 }
15711
15712 static bfd_boolean
15713 process_gnu_liblist (FILE * file)
15714 {
15715 Elf_Internal_Shdr * section;
15716 Elf_Internal_Shdr * string_sec;
15717 Elf32_External_Lib * elib;
15718 char * strtab;
15719 size_t strtab_size;
15720 size_t cnt;
15721 unsigned i;
15722 bfd_boolean res = TRUE;
15723
15724 if (! do_arch)
15725 return TRUE;
15726
15727 for (i = 0, section = section_headers;
15728 i < elf_header.e_shnum;
15729 i++, section++)
15730 {
15731 switch (section->sh_type)
15732 {
15733 case SHT_GNU_LIBLIST:
15734 if (section->sh_link >= elf_header.e_shnum)
15735 break;
15736
15737 elib = (Elf32_External_Lib *)
15738 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
15739 _("liblist section data"));
15740
15741 if (elib == NULL)
15742 {
15743 res = FALSE;
15744 break;
15745 }
15746
15747 string_sec = section_headers + section->sh_link;
15748 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
15749 string_sec->sh_size,
15750 _("liblist string table"));
15751 if (strtab == NULL
15752 || section->sh_entsize != sizeof (Elf32_External_Lib))
15753 {
15754 free (elib);
15755 free (strtab);
15756 res = FALSE;
15757 break;
15758 }
15759 strtab_size = string_sec->sh_size;
15760
15761 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
15762 printable_section_name (section),
15763 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
15764
15765 puts (_(" Library Time Stamp Checksum Version Flags"));
15766
15767 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
15768 ++cnt)
15769 {
15770 Elf32_Lib liblist;
15771 time_t atime;
15772 char timebuf[128];
15773 struct tm * tmp;
15774
15775 liblist.l_name = BYTE_GET (elib[cnt].l_name);
15776 atime = BYTE_GET (elib[cnt].l_time_stamp);
15777 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
15778 liblist.l_version = BYTE_GET (elib[cnt].l_version);
15779 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
15780
15781 tmp = gmtime (&atime);
15782 snprintf (timebuf, sizeof (timebuf),
15783 "%04u-%02u-%02uT%02u:%02u:%02u",
15784 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
15785 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
15786
15787 printf ("%3lu: ", (unsigned long) cnt);
15788 if (do_wide)
15789 printf ("%-20s", liblist.l_name < strtab_size
15790 ? strtab + liblist.l_name : _("<corrupt>"));
15791 else
15792 printf ("%-20.20s", liblist.l_name < strtab_size
15793 ? strtab + liblist.l_name : _("<corrupt>"));
15794 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
15795 liblist.l_version, liblist.l_flags);
15796 }
15797
15798 free (elib);
15799 free (strtab);
15800 }
15801 }
15802
15803 return res;
15804 }
15805
15806 static const char *
15807 get_note_type (unsigned e_type)
15808 {
15809 static char buff[64];
15810
15811 if (elf_header.e_type == ET_CORE)
15812 switch (e_type)
15813 {
15814 case NT_AUXV:
15815 return _("NT_AUXV (auxiliary vector)");
15816 case NT_PRSTATUS:
15817 return _("NT_PRSTATUS (prstatus structure)");
15818 case NT_FPREGSET:
15819 return _("NT_FPREGSET (floating point registers)");
15820 case NT_PRPSINFO:
15821 return _("NT_PRPSINFO (prpsinfo structure)");
15822 case NT_TASKSTRUCT:
15823 return _("NT_TASKSTRUCT (task structure)");
15824 case NT_PRXFPREG:
15825 return _("NT_PRXFPREG (user_xfpregs structure)");
15826 case NT_PPC_VMX:
15827 return _("NT_PPC_VMX (ppc Altivec registers)");
15828 case NT_PPC_VSX:
15829 return _("NT_PPC_VSX (ppc VSX registers)");
15830 case NT_386_TLS:
15831 return _("NT_386_TLS (x86 TLS information)");
15832 case NT_386_IOPERM:
15833 return _("NT_386_IOPERM (x86 I/O permissions)");
15834 case NT_X86_XSTATE:
15835 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
15836 case NT_S390_HIGH_GPRS:
15837 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
15838 case NT_S390_TIMER:
15839 return _("NT_S390_TIMER (s390 timer register)");
15840 case NT_S390_TODCMP:
15841 return _("NT_S390_TODCMP (s390 TOD comparator register)");
15842 case NT_S390_TODPREG:
15843 return _("NT_S390_TODPREG (s390 TOD programmable register)");
15844 case NT_S390_CTRS:
15845 return _("NT_S390_CTRS (s390 control registers)");
15846 case NT_S390_PREFIX:
15847 return _("NT_S390_PREFIX (s390 prefix register)");
15848 case NT_S390_LAST_BREAK:
15849 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
15850 case NT_S390_SYSTEM_CALL:
15851 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
15852 case NT_S390_TDB:
15853 return _("NT_S390_TDB (s390 transaction diagnostic block)");
15854 case NT_S390_VXRS_LOW:
15855 return _("NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)");
15856 case NT_S390_VXRS_HIGH:
15857 return _("NT_S390_VXRS_HIGH (s390 vector registers 16-31)");
15858 case NT_ARM_VFP:
15859 return _("NT_ARM_VFP (arm VFP registers)");
15860 case NT_ARM_TLS:
15861 return _("NT_ARM_TLS (AArch TLS registers)");
15862 case NT_ARM_HW_BREAK:
15863 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
15864 case NT_ARM_HW_WATCH:
15865 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
15866 case NT_PSTATUS:
15867 return _("NT_PSTATUS (pstatus structure)");
15868 case NT_FPREGS:
15869 return _("NT_FPREGS (floating point registers)");
15870 case NT_PSINFO:
15871 return _("NT_PSINFO (psinfo structure)");
15872 case NT_LWPSTATUS:
15873 return _("NT_LWPSTATUS (lwpstatus_t structure)");
15874 case NT_LWPSINFO:
15875 return _("NT_LWPSINFO (lwpsinfo_t structure)");
15876 case NT_WIN32PSTATUS:
15877 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
15878 case NT_SIGINFO:
15879 return _("NT_SIGINFO (siginfo_t data)");
15880 case NT_FILE:
15881 return _("NT_FILE (mapped files)");
15882 default:
15883 break;
15884 }
15885 else
15886 switch (e_type)
15887 {
15888 case NT_VERSION:
15889 return _("NT_VERSION (version)");
15890 case NT_ARCH:
15891 return _("NT_ARCH (architecture)");
15892 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
15893 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
15894 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
15895 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
15896 default:
15897 break;
15898 }
15899
15900 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
15901 return buff;
15902 }
15903
15904 static bfd_boolean
15905 print_core_note (Elf_Internal_Note *pnote)
15906 {
15907 unsigned int addr_size = is_32bit_elf ? 4 : 8;
15908 bfd_vma count, page_size;
15909 unsigned char *descdata, *filenames, *descend;
15910
15911 if (pnote->type != NT_FILE)
15912 return TRUE;
15913
15914 #ifndef BFD64
15915 if (!is_32bit_elf)
15916 {
15917 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
15918 /* Still "successful". */
15919 return TRUE;
15920 }
15921 #endif
15922
15923 if (pnote->descsz < 2 * addr_size)
15924 {
15925 error (_(" Malformed note - too short for header\n"));
15926 return FALSE;
15927 }
15928
15929 descdata = (unsigned char *) pnote->descdata;
15930 descend = descdata + pnote->descsz;
15931
15932 if (descdata[pnote->descsz - 1] != '\0')
15933 {
15934 error (_(" Malformed note - does not end with \\0\n"));
15935 return FALSE;
15936 }
15937
15938 count = byte_get (descdata, addr_size);
15939 descdata += addr_size;
15940
15941 page_size = byte_get (descdata, addr_size);
15942 descdata += addr_size;
15943
15944 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
15945 {
15946 error (_(" Malformed note - too short for supplied file count\n"));
15947 return FALSE;
15948 }
15949
15950 printf (_(" Page size: "));
15951 print_vma (page_size, DEC);
15952 printf ("\n");
15953
15954 printf (_(" %*s%*s%*s\n"),
15955 (int) (2 + 2 * addr_size), _("Start"),
15956 (int) (4 + 2 * addr_size), _("End"),
15957 (int) (4 + 2 * addr_size), _("Page Offset"));
15958 filenames = descdata + count * 3 * addr_size;
15959 while (count-- > 0)
15960 {
15961 bfd_vma start, end, file_ofs;
15962
15963 if (filenames == descend)
15964 {
15965 error (_(" Malformed note - filenames end too early\n"));
15966 return FALSE;
15967 }
15968
15969 start = byte_get (descdata, addr_size);
15970 descdata += addr_size;
15971 end = byte_get (descdata, addr_size);
15972 descdata += addr_size;
15973 file_ofs = byte_get (descdata, addr_size);
15974 descdata += addr_size;
15975
15976 printf (" ");
15977 print_vma (start, FULL_HEX);
15978 printf (" ");
15979 print_vma (end, FULL_HEX);
15980 printf (" ");
15981 print_vma (file_ofs, FULL_HEX);
15982 printf ("\n %s\n", filenames);
15983
15984 filenames += 1 + strlen ((char *) filenames);
15985 }
15986
15987 return TRUE;
15988 }
15989
15990 static const char *
15991 get_gnu_elf_note_type (unsigned e_type)
15992 {
15993 /* NB/ Keep this switch statement in sync with print_gnu_note (). */
15994 switch (e_type)
15995 {
15996 case NT_GNU_ABI_TAG:
15997 return _("NT_GNU_ABI_TAG (ABI version tag)");
15998 case NT_GNU_HWCAP:
15999 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
16000 case NT_GNU_BUILD_ID:
16001 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
16002 case NT_GNU_GOLD_VERSION:
16003 return _("NT_GNU_GOLD_VERSION (gold version)");
16004 case NT_GNU_PROPERTY_TYPE_0:
16005 return _("NT_GNU_PROPERTY_TYPE_0");
16006 case NT_GNU_BUILD_ATTRIBUTE_OPEN:
16007 return _("NT_GNU_BUILD_ATTRIBUTE_OPEN");
16008 case NT_GNU_BUILD_ATTRIBUTE_FUNC:
16009 return _("NT_GNU_BUILD_ATTRIBUTE_FUNC");
16010 default:
16011 {
16012 static char buff[64];
16013
16014 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16015 return buff;
16016 }
16017 }
16018 }
16019
16020 static void
16021 decode_x86_isa (unsigned int bitmask)
16022 {
16023 while (bitmask)
16024 {
16025 unsigned int bit = bitmask & (- bitmask);
16026
16027 bitmask &= ~ bit;
16028 switch (bit)
16029 {
16030 case GNU_PROPERTY_X86_ISA_1_486: printf ("i486"); break;
16031 case GNU_PROPERTY_X86_ISA_1_586: printf ("586"); break;
16032 case GNU_PROPERTY_X86_ISA_1_686: printf ("686"); break;
16033 case GNU_PROPERTY_X86_ISA_1_SSE: printf ("SSE"); break;
16034 case GNU_PROPERTY_X86_ISA_1_SSE2: printf ("SSE2"); break;
16035 case GNU_PROPERTY_X86_ISA_1_SSE3: printf ("SSE3"); break;
16036 case GNU_PROPERTY_X86_ISA_1_SSSE3: printf ("SSSE3"); break;
16037 case GNU_PROPERTY_X86_ISA_1_SSE4_1: printf ("SSE4_1"); break;
16038 case GNU_PROPERTY_X86_ISA_1_SSE4_2: printf ("SSE4_2"); break;
16039 case GNU_PROPERTY_X86_ISA_1_AVX: printf ("AVX"); break;
16040 case GNU_PROPERTY_X86_ISA_1_AVX2: printf ("AVX2"); break;
16041 case GNU_PROPERTY_X86_ISA_1_AVX512F: printf ("AVX512F"); break;
16042 case GNU_PROPERTY_X86_ISA_1_AVX512CD: printf ("AVX512CD"); break;
16043 case GNU_PROPERTY_X86_ISA_1_AVX512ER: printf ("AVX512ER"); break;
16044 case GNU_PROPERTY_X86_ISA_1_AVX512PF: printf ("AVX512PF"); break;
16045 case GNU_PROPERTY_X86_ISA_1_AVX512VL: printf ("AVX512VL"); break;
16046 case GNU_PROPERTY_X86_ISA_1_AVX512DQ: printf ("AVX512DQ"); break;
16047 case GNU_PROPERTY_X86_ISA_1_AVX512BW: printf ("AVX512BW"); break;
16048 default: printf (_("<unknown: %x>"), bit); break;
16049 }
16050 if (bitmask)
16051 printf (", ");
16052 }
16053 }
16054
16055 static void
16056 print_gnu_property_note (Elf_Internal_Note * pnote)
16057 {
16058 unsigned char * ptr = (unsigned char *) pnote->descdata;
16059 unsigned char * ptr_end = ptr + pnote->descsz;
16060 unsigned int size = is_32bit_elf ? 4 : 8;
16061
16062 printf (_(" Properties: "));
16063
16064 if (pnote->descsz < 8 || (pnote->descsz % size) != 0)
16065 {
16066 printf (_("<corrupt GNU_PROPERTY_TYPE, size = %#lx>\n"), pnote->descsz);
16067 return;
16068 }
16069
16070 while (1)
16071 {
16072 unsigned int j;
16073 unsigned int type = byte_get (ptr, 4);
16074 unsigned int datasz = byte_get (ptr + 4, 4);
16075
16076 ptr += 8;
16077
16078 if ((ptr + datasz) > ptr_end)
16079 {
16080 printf (_("<corrupt type (%#x) datasz: %#x>\n"),
16081 type, datasz);
16082 break;
16083 }
16084
16085 if (type >= GNU_PROPERTY_LOPROC && type <= GNU_PROPERTY_HIPROC)
16086 {
16087 if (elf_header.e_machine == EM_X86_64
16088 || elf_header.e_machine == EM_IAMCU
16089 || elf_header.e_machine == EM_386)
16090 {
16091 switch (type)
16092 {
16093 case GNU_PROPERTY_X86_ISA_1_USED:
16094 printf ("x86 ISA used: ");
16095 if (datasz != 4)
16096 printf (_("<corrupt length: %#x> "), datasz);
16097 else
16098 decode_x86_isa (byte_get (ptr, 4));
16099 goto next;
16100
16101 case GNU_PROPERTY_X86_ISA_1_NEEDED:
16102 printf ("x86 ISA needed: ");
16103 if (datasz != 4)
16104 printf (_("<corrupt length: %#x> "), datasz);
16105 else
16106 decode_x86_isa (byte_get (ptr, 4));
16107 goto next;
16108
16109 default:
16110 break;
16111 }
16112 }
16113 }
16114 else
16115 {
16116 switch (type)
16117 {
16118 case GNU_PROPERTY_STACK_SIZE:
16119 printf (_("stack size: "));
16120 if (datasz != size)
16121 printf (_("<corrupt length: %#x> "), datasz);
16122 else
16123 printf ("%#lx", (unsigned long) byte_get (ptr, size));
16124 goto next;
16125
16126 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
16127 printf ("no copy on protected ");
16128 if (datasz)
16129 printf (_("<corrupt length: %#x> "), datasz);
16130 goto next;
16131
16132 default:
16133 break;
16134 }
16135 }
16136
16137 if (type < GNU_PROPERTY_LOPROC)
16138 printf (_("<unknown type %#x data: "), type);
16139 else if (type < GNU_PROPERTY_LOUSER)
16140 printf (_("<procesor-specific type %#x data: "), type);
16141 else
16142 printf (_("<application-specific type %#x data: "), type);
16143 for (j = 0; j < datasz; ++j)
16144 printf ("%02x ", ptr[j] & 0xff);
16145 printf (">");
16146
16147 next:
16148 ptr += ((datasz + (size - 1)) & ~ (size - 1));
16149 if (ptr == ptr_end)
16150 break;
16151 else
16152 {
16153 if (do_wide)
16154 printf (", ");
16155 else
16156 printf ("\n\t");
16157 }
16158
16159 if (ptr > (ptr_end - 8))
16160 {
16161 printf (_("<corrupt descsz: %#lx>\n"), pnote->descsz);
16162 break;
16163 }
16164 }
16165
16166 printf ("\n");
16167 }
16168
16169 static bfd_boolean
16170 print_gnu_note (Elf_Internal_Note *pnote)
16171 {
16172 /* NB/ Keep this switch statement in sync with get_gnu_elf_note_type (). */
16173 switch (pnote->type)
16174 {
16175 case NT_GNU_BUILD_ID:
16176 {
16177 unsigned long i;
16178
16179 printf (_(" Build ID: "));
16180 for (i = 0; i < pnote->descsz; ++i)
16181 printf ("%02x", pnote->descdata[i] & 0xff);
16182 printf ("\n");
16183 }
16184 break;
16185
16186 case NT_GNU_ABI_TAG:
16187 {
16188 unsigned long os, major, minor, subminor;
16189 const char *osname;
16190
16191 /* PR 17531: file: 030-599401-0.004. */
16192 if (pnote->descsz < 16)
16193 {
16194 printf (_(" <corrupt GNU_ABI_TAG>\n"));
16195 break;
16196 }
16197
16198 os = byte_get ((unsigned char *) pnote->descdata, 4);
16199 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16200 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
16201 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
16202
16203 switch (os)
16204 {
16205 case GNU_ABI_TAG_LINUX:
16206 osname = "Linux";
16207 break;
16208 case GNU_ABI_TAG_HURD:
16209 osname = "Hurd";
16210 break;
16211 case GNU_ABI_TAG_SOLARIS:
16212 osname = "Solaris";
16213 break;
16214 case GNU_ABI_TAG_FREEBSD:
16215 osname = "FreeBSD";
16216 break;
16217 case GNU_ABI_TAG_NETBSD:
16218 osname = "NetBSD";
16219 break;
16220 case GNU_ABI_TAG_SYLLABLE:
16221 osname = "Syllable";
16222 break;
16223 case GNU_ABI_TAG_NACL:
16224 osname = "NaCl";
16225 break;
16226 default:
16227 osname = "Unknown";
16228 break;
16229 }
16230
16231 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
16232 major, minor, subminor);
16233 }
16234 break;
16235
16236 case NT_GNU_GOLD_VERSION:
16237 {
16238 unsigned long i;
16239
16240 printf (_(" Version: "));
16241 for (i = 0; i < pnote->descsz && pnote->descdata[i] != '\0'; ++i)
16242 printf ("%c", pnote->descdata[i]);
16243 printf ("\n");
16244 }
16245 break;
16246
16247 case NT_GNU_HWCAP:
16248 {
16249 unsigned long num_entries, mask;
16250
16251 /* Hardware capabilities information. Word 0 is the number of entries.
16252 Word 1 is a bitmask of enabled entries. The rest of the descriptor
16253 is a series of entries, where each entry is a single byte followed
16254 by a nul terminated string. The byte gives the bit number to test
16255 if enabled in the bitmask. */
16256 printf (_(" Hardware Capabilities: "));
16257 if (pnote->descsz < 8)
16258 {
16259 error (_("<corrupt GNU_HWCAP>\n"));
16260 return FALSE;
16261 }
16262 num_entries = byte_get ((unsigned char *) pnote->descdata, 4);
16263 mask = byte_get ((unsigned char *) pnote->descdata + 4, 4);
16264 printf (_("num entries: %ld, enabled mask: %lx\n"), num_entries, mask);
16265 /* FIXME: Add code to display the entries... */
16266 }
16267 break;
16268
16269 case NT_GNU_PROPERTY_TYPE_0:
16270 print_gnu_property_note (pnote);
16271 break;
16272
16273 default:
16274 /* Handle unrecognised types. An error message should have already been
16275 created by get_gnu_elf_note_type(), so all that we need to do is to
16276 display the data. */
16277 {
16278 unsigned long i;
16279
16280 printf (_(" Description data: "));
16281 for (i = 0; i < pnote->descsz; ++i)
16282 printf ("%02x ", pnote->descdata[i] & 0xff);
16283 printf ("\n");
16284 }
16285 break;
16286 }
16287
16288 return TRUE;
16289 }
16290
16291 static const char *
16292 get_v850_elf_note_type (enum v850_notes n_type)
16293 {
16294 static char buff[64];
16295
16296 switch (n_type)
16297 {
16298 case V850_NOTE_ALIGNMENT: return _("Alignment of 8-byte objects");
16299 case V850_NOTE_DATA_SIZE: return _("Sizeof double and long double");
16300 case V850_NOTE_FPU_INFO: return _("Type of FPU support needed");
16301 case V850_NOTE_SIMD_INFO: return _("Use of SIMD instructions");
16302 case V850_NOTE_CACHE_INFO: return _("Use of cache");
16303 case V850_NOTE_MMU_INFO: return _("Use of MMU");
16304 default:
16305 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), n_type);
16306 return buff;
16307 }
16308 }
16309
16310 static bfd_boolean
16311 print_v850_note (Elf_Internal_Note * pnote)
16312 {
16313 unsigned int val;
16314
16315 if (pnote->descsz != 4)
16316 return FALSE;
16317
16318 val = byte_get ((unsigned char *) pnote->descdata, pnote->descsz);
16319
16320 if (val == 0)
16321 {
16322 printf (_("not set\n"));
16323 return TRUE;
16324 }
16325
16326 switch (pnote->type)
16327 {
16328 case V850_NOTE_ALIGNMENT:
16329 switch (val)
16330 {
16331 case EF_RH850_DATA_ALIGN4: printf (_("4-byte\n")); return TRUE;
16332 case EF_RH850_DATA_ALIGN8: printf (_("8-byte\n")); return TRUE;
16333 }
16334 break;
16335
16336 case V850_NOTE_DATA_SIZE:
16337 switch (val)
16338 {
16339 case EF_RH850_DOUBLE32: printf (_("4-bytes\n")); return TRUE;
16340 case EF_RH850_DOUBLE64: printf (_("8-bytes\n")); return TRUE;
16341 }
16342 break;
16343
16344 case V850_NOTE_FPU_INFO:
16345 switch (val)
16346 {
16347 case EF_RH850_FPU20: printf (_("FPU-2.0\n")); return TRUE;
16348 case EF_RH850_FPU30: printf (_("FPU-3.0\n")); return TRUE;
16349 }
16350 break;
16351
16352 case V850_NOTE_MMU_INFO:
16353 case V850_NOTE_CACHE_INFO:
16354 case V850_NOTE_SIMD_INFO:
16355 if (val == EF_RH850_SIMD)
16356 {
16357 printf (_("yes\n"));
16358 return TRUE;
16359 }
16360 break;
16361
16362 default:
16363 /* An 'unknown note type' message will already have been displayed. */
16364 break;
16365 }
16366
16367 printf (_("unknown value: %x\n"), val);
16368 return FALSE;
16369 }
16370
16371 static bfd_boolean
16372 process_netbsd_elf_note (Elf_Internal_Note * pnote)
16373 {
16374 unsigned int version;
16375
16376 switch (pnote->type)
16377 {
16378 case NT_NETBSD_IDENT:
16379 version = byte_get ((unsigned char *) pnote->descdata, sizeof (version));
16380 if ((version / 10000) % 100)
16381 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u%s%c)\n", pnote->descsz,
16382 version, version / 100000000, (version / 1000000) % 100,
16383 (version / 10000) % 100 > 26 ? "Z" : "",
16384 'A' + (version / 10000) % 26);
16385 else
16386 printf (" NetBSD\t\t0x%08lx\tIDENT %u (%u.%u.%u)\n", pnote->descsz,
16387 version, version / 100000000, (version / 1000000) % 100,
16388 (version / 100) % 100);
16389 return TRUE;
16390
16391 case NT_NETBSD_MARCH:
16392 printf (" NetBSD\t0x%08lx\tMARCH <%s>\n", pnote->descsz,
16393 pnote->descdata);
16394 return TRUE;
16395
16396 default:
16397 printf (" NetBSD\t0x%08lx\tUnknown note type: (0x%08lx)\n", pnote->descsz,
16398 pnote->type);
16399 return FALSE;
16400 }
16401 }
16402
16403 static const char *
16404 get_freebsd_elfcore_note_type (unsigned e_type)
16405 {
16406 switch (e_type)
16407 {
16408 case NT_FREEBSD_THRMISC:
16409 return _("NT_THRMISC (thrmisc structure)");
16410 case NT_FREEBSD_PROCSTAT_PROC:
16411 return _("NT_PROCSTAT_PROC (proc data)");
16412 case NT_FREEBSD_PROCSTAT_FILES:
16413 return _("NT_PROCSTAT_FILES (files data)");
16414 case NT_FREEBSD_PROCSTAT_VMMAP:
16415 return _("NT_PROCSTAT_VMMAP (vmmap data)");
16416 case NT_FREEBSD_PROCSTAT_GROUPS:
16417 return _("NT_PROCSTAT_GROUPS (groups data)");
16418 case NT_FREEBSD_PROCSTAT_UMASK:
16419 return _("NT_PROCSTAT_UMASK (umask data)");
16420 case NT_FREEBSD_PROCSTAT_RLIMIT:
16421 return _("NT_PROCSTAT_RLIMIT (rlimit data)");
16422 case NT_FREEBSD_PROCSTAT_OSREL:
16423 return _("NT_PROCSTAT_OSREL (osreldate data)");
16424 case NT_FREEBSD_PROCSTAT_PSSTRINGS:
16425 return _("NT_PROCSTAT_PSSTRINGS (ps_strings data)");
16426 case NT_FREEBSD_PROCSTAT_AUXV:
16427 return _("NT_PROCSTAT_AUXV (auxv data)");
16428 }
16429 return get_note_type (e_type);
16430 }
16431
16432 static const char *
16433 get_netbsd_elfcore_note_type (unsigned e_type)
16434 {
16435 static char buff[64];
16436
16437 if (e_type == NT_NETBSDCORE_PROCINFO)
16438 {
16439 /* NetBSD core "procinfo" structure. */
16440 return _("NetBSD procinfo structure");
16441 }
16442
16443 /* As of Jan 2002 there are no other machine-independent notes
16444 defined for NetBSD core files. If the note type is less
16445 than the start of the machine-dependent note types, we don't
16446 understand it. */
16447
16448 if (e_type < NT_NETBSDCORE_FIRSTMACH)
16449 {
16450 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16451 return buff;
16452 }
16453
16454 switch (elf_header.e_machine)
16455 {
16456 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
16457 and PT_GETFPREGS == mach+2. */
16458
16459 case EM_OLD_ALPHA:
16460 case EM_ALPHA:
16461 case EM_SPARC:
16462 case EM_SPARC32PLUS:
16463 case EM_SPARCV9:
16464 switch (e_type)
16465 {
16466 case NT_NETBSDCORE_FIRSTMACH + 0:
16467 return _("PT_GETREGS (reg structure)");
16468 case NT_NETBSDCORE_FIRSTMACH + 2:
16469 return _("PT_GETFPREGS (fpreg structure)");
16470 default:
16471 break;
16472 }
16473 break;
16474
16475 /* On all other arch's, PT_GETREGS == mach+1 and
16476 PT_GETFPREGS == mach+3. */
16477 default:
16478 switch (e_type)
16479 {
16480 case NT_NETBSDCORE_FIRSTMACH + 1:
16481 return _("PT_GETREGS (reg structure)");
16482 case NT_NETBSDCORE_FIRSTMACH + 3:
16483 return _("PT_GETFPREGS (fpreg structure)");
16484 default:
16485 break;
16486 }
16487 }
16488
16489 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
16490 e_type - NT_NETBSDCORE_FIRSTMACH);
16491 return buff;
16492 }
16493
16494 static const char *
16495 get_stapsdt_note_type (unsigned e_type)
16496 {
16497 static char buff[64];
16498
16499 switch (e_type)
16500 {
16501 case NT_STAPSDT:
16502 return _("NT_STAPSDT (SystemTap probe descriptors)");
16503
16504 default:
16505 break;
16506 }
16507
16508 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16509 return buff;
16510 }
16511
16512 static bfd_boolean
16513 print_stapsdt_note (Elf_Internal_Note *pnote)
16514 {
16515 int addr_size = is_32bit_elf ? 4 : 8;
16516 char *data = pnote->descdata;
16517 char *data_end = pnote->descdata + pnote->descsz;
16518 bfd_vma pc, base_addr, semaphore;
16519 char *provider, *probe, *arg_fmt;
16520
16521 pc = byte_get ((unsigned char *) data, addr_size);
16522 data += addr_size;
16523 base_addr = byte_get ((unsigned char *) data, addr_size);
16524 data += addr_size;
16525 semaphore = byte_get ((unsigned char *) data, addr_size);
16526 data += addr_size;
16527
16528 provider = data;
16529 data += strlen (data) + 1;
16530 probe = data;
16531 data += strlen (data) + 1;
16532 arg_fmt = data;
16533 data += strlen (data) + 1;
16534
16535 printf (_(" Provider: %s\n"), provider);
16536 printf (_(" Name: %s\n"), probe);
16537 printf (_(" Location: "));
16538 print_vma (pc, FULL_HEX);
16539 printf (_(", Base: "));
16540 print_vma (base_addr, FULL_HEX);
16541 printf (_(", Semaphore: "));
16542 print_vma (semaphore, FULL_HEX);
16543 printf ("\n");
16544 printf (_(" Arguments: %s\n"), arg_fmt);
16545
16546 return data == data_end;
16547 }
16548
16549 static const char *
16550 get_ia64_vms_note_type (unsigned e_type)
16551 {
16552 static char buff[64];
16553
16554 switch (e_type)
16555 {
16556 case NT_VMS_MHD:
16557 return _("NT_VMS_MHD (module header)");
16558 case NT_VMS_LNM:
16559 return _("NT_VMS_LNM (language name)");
16560 case NT_VMS_SRC:
16561 return _("NT_VMS_SRC (source files)");
16562 case NT_VMS_TITLE:
16563 return "NT_VMS_TITLE";
16564 case NT_VMS_EIDC:
16565 return _("NT_VMS_EIDC (consistency check)");
16566 case NT_VMS_FPMODE:
16567 return _("NT_VMS_FPMODE (FP mode)");
16568 case NT_VMS_LINKTIME:
16569 return "NT_VMS_LINKTIME";
16570 case NT_VMS_IMGNAM:
16571 return _("NT_VMS_IMGNAM (image name)");
16572 case NT_VMS_IMGID:
16573 return _("NT_VMS_IMGID (image id)");
16574 case NT_VMS_LINKID:
16575 return _("NT_VMS_LINKID (link id)");
16576 case NT_VMS_IMGBID:
16577 return _("NT_VMS_IMGBID (build id)");
16578 case NT_VMS_GSTNAM:
16579 return _("NT_VMS_GSTNAM (sym table name)");
16580 case NT_VMS_ORIG_DYN:
16581 return "NT_VMS_ORIG_DYN";
16582 case NT_VMS_PATCHTIME:
16583 return "NT_VMS_PATCHTIME";
16584 default:
16585 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
16586 return buff;
16587 }
16588 }
16589
16590 static bfd_boolean
16591 print_ia64_vms_note (Elf_Internal_Note * pnote)
16592 {
16593 switch (pnote->type)
16594 {
16595 case NT_VMS_MHD:
16596 if (pnote->descsz > 36)
16597 {
16598 size_t l = strlen (pnote->descdata + 34);
16599 printf (_(" Creation date : %.17s\n"), pnote->descdata);
16600 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
16601 printf (_(" Module name : %s\n"), pnote->descdata + 34);
16602 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
16603 }
16604 else
16605 printf (_(" Invalid size\n"));
16606 break;
16607 case NT_VMS_LNM:
16608 printf (_(" Language: %s\n"), pnote->descdata);
16609 break;
16610 #ifdef BFD64
16611 case NT_VMS_FPMODE:
16612 printf (_(" Floating Point mode: "));
16613 printf ("0x%016" BFD_VMA_FMT "x\n",
16614 (bfd_vma) byte_get ((unsigned char *)pnote->descdata, 8));
16615 break;
16616 case NT_VMS_LINKTIME:
16617 printf (_(" Link time: "));
16618 print_vms_time
16619 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16620 printf ("\n");
16621 break;
16622 case NT_VMS_PATCHTIME:
16623 printf (_(" Patch time: "));
16624 print_vms_time
16625 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
16626 printf ("\n");
16627 break;
16628 case NT_VMS_ORIG_DYN:
16629 printf (_(" Major id: %u, minor id: %u\n"),
16630 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
16631 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
16632 printf (_(" Last modified : "));
16633 print_vms_time
16634 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
16635 printf (_("\n Link flags : "));
16636 printf ("0x%016" BFD_VMA_FMT "x\n",
16637 (bfd_vma) byte_get ((unsigned char *)pnote->descdata + 16, 8));
16638 printf (_(" Header flags: 0x%08x\n"),
16639 (unsigned) byte_get ((unsigned char *)pnote->descdata + 24, 4));
16640 printf (_(" Image id : %s\n"), pnote->descdata + 32);
16641 break;
16642 #endif
16643 case NT_VMS_IMGNAM:
16644 printf (_(" Image name: %s\n"), pnote->descdata);
16645 break;
16646 case NT_VMS_GSTNAM:
16647 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
16648 break;
16649 case NT_VMS_IMGID:
16650 printf (_(" Image id: %s\n"), pnote->descdata);
16651 break;
16652 case NT_VMS_LINKID:
16653 printf (_(" Linker id: %s\n"), pnote->descdata);
16654 break;
16655 default:
16656 return FALSE;
16657 }
16658 return TRUE;
16659 }
16660
16661 /* Print the name of the symbol associated with a build attribute
16662 that is attached to address OFFSET. */
16663
16664 static bfd_boolean
16665 print_symbol_for_build_attribute (FILE * file,
16666 unsigned long offset,
16667 bfd_boolean is_open_attr)
16668 {
16669 static FILE * saved_file = NULL;
16670 static char * strtab;
16671 static unsigned long strtablen;
16672 static Elf_Internal_Sym * symtab;
16673 static unsigned long nsyms;
16674 Elf_Internal_Sym * saved_sym = NULL;
16675 Elf_Internal_Sym * sym;
16676
16677 if (section_headers != NULL
16678 && (saved_file == NULL || file != saved_file))
16679 {
16680 Elf_Internal_Shdr * symsec;
16681
16682 /* Load the symbol and string sections. */
16683 for (symsec = section_headers;
16684 symsec < section_headers + elf_header.e_shnum;
16685 symsec ++)
16686 {
16687 if (symsec->sh_type == SHT_SYMTAB)
16688 {
16689 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
16690
16691 if (symsec->sh_link < elf_header.e_shnum)
16692 {
16693 Elf_Internal_Shdr * strtab_sec = section_headers + symsec->sh_link;
16694
16695 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
16696 1, strtab_sec->sh_size,
16697 _("string table"));
16698 strtablen = strtab != NULL ? strtab_sec->sh_size : 0;
16699 }
16700 }
16701 }
16702 saved_file = file;
16703 }
16704
16705 if (symtab == NULL || strtab == NULL)
16706 {
16707 printf ("\n");
16708 return FALSE;
16709 }
16710
16711 /* Find a symbol whose value matches offset. */
16712 for (sym = symtab; sym < symtab + nsyms; sym ++)
16713 if (sym->st_value == offset)
16714 {
16715 if (sym->st_name >= strtablen)
16716 /* Huh ? This should not happen. */
16717 continue;
16718
16719 if (strtab[sym->st_name] == 0)
16720 continue;
16721
16722 if (is_open_attr)
16723 {
16724 /* For OPEN attributes we prefer GLOBAL over LOCAL symbols
16725 and FILE or OBJECT symbols over NOTYPE symbols. We skip
16726 FUNC symbols entirely. */
16727 switch (ELF_ST_TYPE (sym->st_info))
16728 {
16729 case STT_FILE:
16730 saved_sym = sym;
16731 /* We can stop searching now. */
16732 sym = symtab + nsyms;
16733 continue;
16734
16735 case STT_OBJECT:
16736 saved_sym = sym;
16737 continue;
16738
16739 case STT_FUNC:
16740 /* Ignore function symbols. */
16741 continue;
16742
16743 default:
16744 break;
16745 }
16746
16747 switch (ELF_ST_BIND (sym->st_info))
16748 {
16749 case STB_GLOBAL:
16750 if (saved_sym == NULL
16751 || ELF_ST_TYPE (saved_sym->st_info) != STT_OBJECT)
16752 saved_sym = sym;
16753 break;
16754
16755 case STB_LOCAL:
16756 if (saved_sym == NULL)
16757 saved_sym = sym;
16758 break;
16759
16760 default:
16761 break;
16762 }
16763 }
16764 else
16765 {
16766 if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
16767 continue;
16768
16769 saved_sym = sym;
16770 break;
16771 }
16772 }
16773
16774 printf (" (%s: %s)\n",
16775 is_open_attr ? _("file") : _("func"),
16776 saved_sym ? strtab + saved_sym->st_name : _("<no symbol found>)"));
16777 return TRUE;
16778 }
16779
16780 static bfd_boolean
16781 print_gnu_build_attribute_description (Elf_Internal_Note * pnote,
16782 FILE * file)
16783 {
16784 static unsigned long global_offset = 0;
16785 unsigned long offset;
16786 unsigned int desc_size = is_32bit_elf ? 4 : 8;
16787 bfd_boolean is_open_attr = pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN;
16788
16789 if (pnote->descsz == 0)
16790 {
16791 if (is_open_attr)
16792 {
16793 printf (_(" Applies from offset %#lx\n"), global_offset);
16794 return TRUE;
16795 }
16796 else
16797 {
16798 printf (_(" Applies to func at %#lx"), global_offset);
16799 return print_symbol_for_build_attribute (file, global_offset, is_open_attr);
16800 }
16801 }
16802
16803 if (pnote->descsz != desc_size)
16804 {
16805 error (_(" <invalid description size: %lx>\n"), pnote->descsz);
16806 printf (_(" <invalid descsz>"));
16807 return FALSE;
16808 }
16809
16810 offset = byte_get ((unsigned char *) pnote->descdata, desc_size);
16811
16812 if (is_open_attr)
16813 {
16814 printf (_(" Applies from offset %#lx"), offset);
16815 global_offset = offset;
16816 }
16817 else
16818 {
16819 printf (_(" Applies to func at %#lx"), offset);
16820 }
16821
16822 return print_symbol_for_build_attribute (file, offset, is_open_attr);
16823 }
16824
16825 static bfd_boolean
16826 print_gnu_build_attribute_name (Elf_Internal_Note * pnote)
16827 {
16828 static const char string_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_STRING, 0 };
16829 static const char number_expected [2] = { GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC, 0 };
16830 static const char bool_expected [3] = { GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE, GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE, 0 };
16831 char name_type;
16832 char name_attribute;
16833 const char * expected_types;
16834 const char * name = pnote->namedata;
16835 const char * text;
16836 int left;
16837
16838 if (name == NULL || pnote->namesz < 2)
16839 {
16840 error (_("corrupt name field in GNU build attribute note: size = %ld\n"), pnote->namesz);
16841 print_symbol (-20, _(" <corrupt name>"));
16842 return FALSE;
16843 }
16844
16845 switch ((name_type = * name))
16846 {
16847 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16848 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
16849 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
16850 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
16851 printf ("%c", * name);
16852 break;
16853 default:
16854 error (_("unrecognised attribute type in name field: %d\n"), name_type);
16855 print_symbol (-20, _("<unknown name type>"));
16856 return FALSE;
16857 }
16858
16859 left = 19;
16860 ++ name;
16861 text = NULL;
16862
16863 switch ((name_attribute = * name))
16864 {
16865 case GNU_BUILD_ATTRIBUTE_VERSION:
16866 text = _("<version>");
16867 expected_types = string_expected;
16868 ++ name;
16869 break;
16870 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16871 text = _("<stack prot>");
16872 expected_types = "!+*";
16873 ++ name;
16874 break;
16875 case GNU_BUILD_ATTRIBUTE_RELRO:
16876 text = _("<relro>");
16877 expected_types = bool_expected;
16878 ++ name;
16879 break;
16880 case GNU_BUILD_ATTRIBUTE_STACK_SIZE:
16881 text = _("<stack size>");
16882 expected_types = number_expected;
16883 ++ name;
16884 break;
16885 case GNU_BUILD_ATTRIBUTE_TOOL:
16886 text = _("<tool>");
16887 expected_types = string_expected;
16888 ++ name;
16889 break;
16890 case GNU_BUILD_ATTRIBUTE_ABI:
16891 text = _("<ABI>");
16892 expected_types = "$*";
16893 ++ name;
16894 break;
16895 case GNU_BUILD_ATTRIBUTE_PIC:
16896 text = _("<PIC>");
16897 expected_types = number_expected;
16898 ++ name;
16899 break;
16900 case GNU_BUILD_ATTRIBUTE_SHORT_ENUM:
16901 text = _("<short enum>");
16902 expected_types = bool_expected;
16903 ++ name;
16904 break;
16905
16906 default:
16907 if (ISPRINT (* name))
16908 {
16909 int len = strnlen (name, pnote->namesz - (name - pnote->namedata)) + 1;
16910
16911 if (len > left && ! do_wide)
16912 len = left;
16913 printf ("%.*s:", len, name);
16914 left -= len;
16915 name += len;
16916 }
16917 else
16918 {
16919 error (_("unexpected character in name field\n"));
16920 print_symbol (- left, _("<unknown attribute>"));
16921 return 0;
16922 }
16923 expected_types = "*$!+";
16924 break;
16925 }
16926
16927 if (text)
16928 {
16929 printf ("%s", text);
16930 left -= strlen (text);
16931 }
16932
16933 if (strchr (expected_types, name_type) == NULL)
16934 warn (_("attribute does not have an expected type (%c)\n"), name_type);
16935
16936 if ((unsigned long)(name - pnote->namedata) > pnote->namesz)
16937 {
16938 error (_("corrupt name field: namesz: %lu but parsing gets to %ld\n"),
16939 (unsigned long) pnote->namesz,
16940 (long) (name - pnote->namedata));
16941 return FALSE;
16942 }
16943
16944 if (left < 1 && ! do_wide)
16945 return TRUE;
16946
16947 switch (name_type)
16948 {
16949 case GNU_BUILD_ATTRIBUTE_TYPE_NUMERIC:
16950 {
16951 unsigned int bytes = pnote->namesz - (name - pnote->namedata);
16952 unsigned long val = 0;
16953 unsigned int shift = 0;
16954 char * decoded = NULL;
16955
16956 while (bytes --)
16957 {
16958 unsigned long byte = (* name ++) & 0xff;
16959
16960 val |= byte << shift;
16961 shift += 8;
16962 }
16963
16964 switch (name_attribute)
16965 {
16966 case GNU_BUILD_ATTRIBUTE_PIC:
16967 switch (val)
16968 {
16969 case 0: decoded = "static"; break;
16970 case 1: decoded = "pic"; break;
16971 case 2: decoded = "PIC"; break;
16972 case 3: decoded = "pie"; break;
16973 case 4: decoded = "PIE"; break;
16974 default: break;
16975 }
16976 break;
16977 case GNU_BUILD_ATTRIBUTE_STACK_PROT:
16978 switch (val)
16979 {
16980 /* Based upon the SPCT_FLAG_xxx enum values in gcc/cfgexpand.c. */
16981 case 0: decoded = "off"; break;
16982 case 1: decoded = "on"; break;
16983 case 2: decoded = "all"; break;
16984 case 3: decoded = "strong"; break;
16985 case 4: decoded = "explicit"; break;
16986 default: break;
16987 }
16988 break;
16989 default:
16990 break;
16991 }
16992
16993 if (decoded != NULL)
16994 print_symbol (-left, decoded);
16995 else
16996 {
16997 if (do_wide)
16998 left -= printf ("0x%lx", val);
16999 else
17000 left -= printf ("0x%-.*lx", left, val);
17001 }
17002 }
17003 break;
17004 case GNU_BUILD_ATTRIBUTE_TYPE_STRING:
17005 left -= print_symbol (- left, name);
17006 break;
17007 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_TRUE:
17008 left -= print_symbol (- left, "true");
17009 break;
17010 case GNU_BUILD_ATTRIBUTE_TYPE_BOOL_FALSE:
17011 left -= print_symbol (- left, "false");
17012 break;
17013 }
17014
17015 if (do_wide && left > 0)
17016 printf ("%-*s", left, " ");
17017
17018 return TRUE;
17019 }
17020
17021 /* Note that by the ELF standard, the name field is already null byte
17022 terminated, and namesz includes the terminating null byte.
17023 I.E. the value of namesz for the name "FSF" is 4.
17024
17025 If the value of namesz is zero, there is no name present. */
17026
17027 static bfd_boolean
17028 process_note (Elf_Internal_Note * pnote,
17029 FILE * file)
17030 {
17031 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
17032 const char * nt;
17033
17034 if (pnote->namesz == 0)
17035 /* If there is no note name, then use the default set of
17036 note type strings. */
17037 nt = get_note_type (pnote->type);
17038
17039 else if (const_strneq (pnote->namedata, "GNU"))
17040 /* GNU-specific object file notes. */
17041 nt = get_gnu_elf_note_type (pnote->type);
17042
17043 else if (const_strneq (pnote->namedata, "FreeBSD"))
17044 /* FreeBSD-specific core file notes. */
17045 nt = get_freebsd_elfcore_note_type (pnote->type);
17046
17047 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
17048 /* NetBSD-specific core file notes. */
17049 nt = get_netbsd_elfcore_note_type (pnote->type);
17050
17051 else if (const_strneq (pnote->namedata, "NetBSD"))
17052 /* NetBSD-specific core file notes. */
17053 return process_netbsd_elf_note (pnote);
17054
17055 else if (strneq (pnote->namedata, "SPU/", 4))
17056 {
17057 /* SPU-specific core file notes. */
17058 nt = pnote->namedata + 4;
17059 name = "SPU";
17060 }
17061
17062 else if (const_strneq (pnote->namedata, "IPF/VMS"))
17063 /* VMS/ia64-specific file notes. */
17064 nt = get_ia64_vms_note_type (pnote->type);
17065
17066 else if (const_strneq (pnote->namedata, "stapsdt"))
17067 nt = get_stapsdt_note_type (pnote->type);
17068
17069 else
17070 /* Don't recognize this note name; just use the default set of
17071 note type strings. */
17072 nt = get_note_type (pnote->type);
17073
17074 printf (" ");
17075
17076 if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17077 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17078 print_gnu_build_attribute_name (pnote);
17079 else
17080 print_symbol (-20, name);
17081
17082 if (do_wide)
17083 printf (" 0x%08lx\t%s\t", pnote->descsz, nt);
17084 else
17085 printf (" 0x%08lx\t%s\n", pnote->descsz, nt);
17086
17087 if (const_strneq (pnote->namedata, "IPF/VMS"))
17088 return print_ia64_vms_note (pnote);
17089 else if (const_strneq (pnote->namedata, "GNU"))
17090 return print_gnu_note (pnote);
17091 else if (const_strneq (pnote->namedata, "stapsdt"))
17092 return print_stapsdt_note (pnote);
17093 else if (const_strneq (pnote->namedata, "CORE"))
17094 return print_core_note (pnote);
17095 else if (pnote->type == NT_GNU_BUILD_ATTRIBUTE_OPEN
17096 || pnote->type == NT_GNU_BUILD_ATTRIBUTE_FUNC)
17097 return print_gnu_build_attribute_description (pnote, file);
17098
17099 if (pnote->descsz)
17100 {
17101 unsigned long i;
17102
17103 printf (_(" description data: "));
17104 for (i = 0; i < pnote->descsz; i++)
17105 printf ("%02x ", pnote->descdata[i]);
17106 }
17107
17108 if (do_wide)
17109 printf ("\n");
17110
17111 return TRUE;
17112 }
17113
17114 static bfd_boolean
17115 process_notes_at (FILE * file,
17116 Elf_Internal_Shdr * section,
17117 bfd_vma offset,
17118 bfd_vma length)
17119 {
17120 Elf_External_Note * pnotes;
17121 Elf_External_Note * external;
17122 char * end;
17123 bfd_boolean res = TRUE;
17124
17125 if (length <= 0)
17126 return FALSE;
17127
17128 if (section)
17129 {
17130 pnotes = (Elf_External_Note *) get_section_contents (section, file);
17131 if (pnotes)
17132 {
17133 if (! apply_relocations (file, section, (unsigned char *) pnotes, length, NULL, NULL))
17134 return FALSE;
17135 }
17136 }
17137 else
17138 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17139 _("notes"));
17140 if (pnotes == NULL)
17141 return FALSE;
17142
17143 external = pnotes;
17144
17145 if (section)
17146 printf (_("\nDisplaying notes found in: %s\n"), printable_section_name (section));
17147 else
17148 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
17149 (unsigned long) offset, (unsigned long) length);
17150
17151 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
17152
17153 end = (char *) pnotes + length;
17154 while ((char *) external < end)
17155 {
17156 Elf_Internal_Note inote;
17157 size_t min_notesz;
17158 char *next;
17159 char * temp = NULL;
17160 size_t data_remaining = end - (char *) external;
17161
17162 if (!is_ia64_vms ())
17163 {
17164 /* PR binutils/15191
17165 Make sure that there is enough data to read. */
17166 min_notesz = offsetof (Elf_External_Note, name);
17167 if (data_remaining < min_notesz)
17168 {
17169 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17170 (int) data_remaining);
17171 break;
17172 }
17173 inote.type = BYTE_GET (external->type);
17174 inote.namesz = BYTE_GET (external->namesz);
17175 inote.namedata = external->name;
17176 inote.descsz = BYTE_GET (external->descsz);
17177 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17178 /* PR 17531: file: 3443835e. */
17179 if (inote.descdata < (char *) pnotes || inote.descdata > end)
17180 {
17181 warn (_("Corrupt note: name size is too big: (got: %lx, expected no more than: %lx)\n"),
17182 inote.namesz, (long)(end - inote.namedata));
17183 inote.descdata = inote.namedata;
17184 inote.namesz = 0;
17185 }
17186
17187 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17188 next = inote.descdata + align_power (inote.descsz, 2);
17189 }
17190 else
17191 {
17192 Elf64_External_VMS_Note *vms_external;
17193
17194 /* PR binutils/15191
17195 Make sure that there is enough data to read. */
17196 min_notesz = offsetof (Elf64_External_VMS_Note, name);
17197 if (data_remaining < min_notesz)
17198 {
17199 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
17200 (int) data_remaining);
17201 break;
17202 }
17203
17204 vms_external = (Elf64_External_VMS_Note *) external;
17205 inote.type = BYTE_GET (vms_external->type);
17206 inote.namesz = BYTE_GET (vms_external->namesz);
17207 inote.namedata = vms_external->name;
17208 inote.descsz = BYTE_GET (vms_external->descsz);
17209 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
17210 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17211 next = inote.descdata + align_power (inote.descsz, 3);
17212 }
17213
17214 if (inote.descdata < (char *) external + min_notesz
17215 || next < (char *) external + min_notesz
17216 /* PR binutils/17531: file: id:000000,sig:11,src:006986,op:havoc,rep:4. */
17217 || inote.namedata + inote.namesz < inote.namedata
17218 || inote.descdata + inote.descsz < inote.descdata
17219 || data_remaining < (size_t)(next - (char *) external))
17220 {
17221 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
17222 (unsigned long) ((char *) external - (char *) pnotes));
17223 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
17224 inote.type, inote.namesz, inote.descsz);
17225 break;
17226 }
17227
17228 external = (Elf_External_Note *) next;
17229
17230 /* Verify that name is null terminated. It appears that at least
17231 one version of Linux (RedHat 6.0) generates corefiles that don't
17232 comply with the ELF spec by failing to include the null byte in
17233 namesz. */
17234 if (inote.namedata[inote.namesz - 1] != '\0')
17235 {
17236 temp = (char *) malloc (inote.namesz + 1);
17237 if (temp == NULL)
17238 {
17239 error (_("Out of memory allocating space for inote name\n"));
17240 res = FALSE;
17241 break;
17242 }
17243
17244 memcpy (temp, inote.namedata, inote.namesz);
17245 temp[inote.namesz] = 0;
17246
17247 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
17248 inote.namedata = temp;
17249 }
17250
17251 if (! process_note (& inote, file))
17252 res = FALSE;
17253
17254 if (temp != NULL)
17255 {
17256 free (temp);
17257 temp = NULL;
17258 }
17259 }
17260
17261 free (pnotes);
17262
17263 return res;
17264 }
17265
17266 static bfd_boolean
17267 process_corefile_note_segments (FILE * file)
17268 {
17269 Elf_Internal_Phdr * segment;
17270 unsigned int i;
17271 bfd_boolean res = TRUE;
17272
17273 if (! get_program_headers (file))
17274 return TRUE;
17275
17276 for (i = 0, segment = program_headers;
17277 i < elf_header.e_phnum;
17278 i++, segment++)
17279 {
17280 if (segment->p_type == PT_NOTE)
17281 if (! process_notes_at (file, NULL,
17282 (bfd_vma) segment->p_offset,
17283 (bfd_vma) segment->p_filesz))
17284 res = FALSE;
17285 }
17286
17287 return res;
17288 }
17289
17290 static bfd_boolean
17291 process_v850_notes (FILE * file, bfd_vma offset, bfd_vma length)
17292 {
17293 Elf_External_Note * pnotes;
17294 Elf_External_Note * external;
17295 char * end;
17296 bfd_boolean res = TRUE;
17297
17298 if (length <= 0)
17299 return FALSE;
17300
17301 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
17302 _("v850 notes"));
17303 if (pnotes == NULL)
17304 return FALSE;
17305
17306 external = pnotes;
17307 end = (char*) pnotes + length;
17308
17309 printf (_("\nDisplaying contents of Renesas V850 notes section at offset 0x%lx with length 0x%lx:\n"),
17310 (unsigned long) offset, (unsigned long) length);
17311
17312 while ((char *) external + sizeof (Elf_External_Note) < end)
17313 {
17314 Elf_External_Note * next;
17315 Elf_Internal_Note inote;
17316
17317 inote.type = BYTE_GET (external->type);
17318 inote.namesz = BYTE_GET (external->namesz);
17319 inote.namedata = external->name;
17320 inote.descsz = BYTE_GET (external->descsz);
17321 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
17322 inote.descpos = offset + (inote.descdata - (char *) pnotes);
17323
17324 if (inote.descdata < (char *) pnotes || inote.descdata >= end)
17325 {
17326 warn (_("Corrupt note: name size is too big: %lx\n"), inote.namesz);
17327 inote.descdata = inote.namedata;
17328 inote.namesz = 0;
17329 }
17330
17331 next = (Elf_External_Note *) (inote.descdata + align_power (inote.descsz, 2));
17332
17333 if ( ((char *) next > end)
17334 || ((char *) next < (char *) pnotes))
17335 {
17336 warn (_("corrupt descsz found in note at offset 0x%lx\n"),
17337 (unsigned long) ((char *) external - (char *) pnotes));
17338 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17339 inote.type, inote.namesz, inote.descsz);
17340 break;
17341 }
17342
17343 external = next;
17344
17345 /* Prevent out-of-bounds indexing. */
17346 if ( inote.namedata + inote.namesz > end
17347 || inote.namedata + inote.namesz < inote.namedata)
17348 {
17349 warn (_("corrupt namesz found in note at offset 0x%lx\n"),
17350 (unsigned long) ((char *) external - (char *) pnotes));
17351 warn (_(" type: 0x%lx, namesize: 0x%lx, descsize: 0x%lx\n"),
17352 inote.type, inote.namesz, inote.descsz);
17353 break;
17354 }
17355
17356 printf (" %s: ", get_v850_elf_note_type (inote.type));
17357
17358 if (! print_v850_note (& inote))
17359 {
17360 res = FALSE;
17361 printf ("<corrupt sizes: namesz: %lx, descsz: %lx>\n",
17362 inote.namesz, inote.descsz);
17363 }
17364 }
17365
17366 free (pnotes);
17367
17368 return res;
17369 }
17370
17371 static bfd_boolean
17372 process_note_sections (FILE * file)
17373 {
17374 Elf_Internal_Shdr * section;
17375 unsigned long i;
17376 unsigned int n = 0;
17377 bfd_boolean res = TRUE;
17378
17379 for (i = 0, section = section_headers;
17380 i < elf_header.e_shnum && section != NULL;
17381 i++, section++)
17382 {
17383 if (section->sh_type == SHT_NOTE)
17384 {
17385 if (! process_notes_at (file, section,
17386 (bfd_vma) section->sh_offset,
17387 (bfd_vma) section->sh_size))
17388 res = FALSE;
17389 n++;
17390 }
17391
17392 if (( elf_header.e_machine == EM_V800
17393 || elf_header.e_machine == EM_V850
17394 || elf_header.e_machine == EM_CYGNUS_V850)
17395 && section->sh_type == SHT_RENESAS_INFO)
17396 {
17397 if (! process_v850_notes (file,
17398 (bfd_vma) section->sh_offset,
17399 (bfd_vma) section->sh_size))
17400 res = FALSE;
17401 n++;
17402 }
17403 }
17404
17405 if (n == 0)
17406 /* Try processing NOTE segments instead. */
17407 return process_corefile_note_segments (file);
17408
17409 return res;
17410 }
17411
17412 static bfd_boolean
17413 process_notes (FILE * file)
17414 {
17415 /* If we have not been asked to display the notes then do nothing. */
17416 if (! do_notes)
17417 return TRUE;
17418
17419 if (elf_header.e_type != ET_CORE)
17420 return process_note_sections (file);
17421
17422 /* No program headers means no NOTE segment. */
17423 if (elf_header.e_phnum > 0)
17424 return process_corefile_note_segments (file);
17425
17426 printf (_("No note segments present in the core file.\n"));
17427 return TRUE;
17428 }
17429
17430 static unsigned char *
17431 display_public_gnu_attributes (unsigned char * start,
17432 const unsigned char * const end)
17433 {
17434 printf (_(" Unknown GNU attribute: %s\n"), start);
17435
17436 start += strnlen ((char *) start, end - start);
17437 display_raw_attribute (start, end);
17438
17439 return (unsigned char *) end;
17440 }
17441
17442 static unsigned char *
17443 display_generic_attribute (unsigned char * start,
17444 unsigned int tag,
17445 const unsigned char * const end)
17446 {
17447 if (tag == 0)
17448 return (unsigned char *) end;
17449
17450 return display_tag_value (tag, start, end);
17451 }
17452
17453 static bfd_boolean
17454 process_arch_specific (FILE * file)
17455 {
17456 if (! do_arch)
17457 return TRUE;
17458
17459 switch (elf_header.e_machine)
17460 {
17461 case EM_ARM:
17462 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
17463 display_arm_attribute,
17464 display_generic_attribute);
17465
17466 case EM_MIPS:
17467 case EM_MIPS_RS3_LE:
17468 return process_mips_specific (file);
17469
17470 case EM_MSP430:
17471 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
17472 display_msp430x_attribute,
17473 display_generic_attribute);
17474
17475 case EM_NDS32:
17476 return process_nds32_specific (file);
17477
17478 case EM_PPC:
17479 case EM_PPC64:
17480 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17481 display_power_gnu_attribute);
17482
17483 case EM_S390:
17484 case EM_S390_OLD:
17485 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17486 display_s390_gnu_attribute);
17487
17488 case EM_SPARC:
17489 case EM_SPARC32PLUS:
17490 case EM_SPARCV9:
17491 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
17492 display_sparc_gnu_attribute);
17493
17494 case EM_TI_C6000:
17495 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
17496 display_tic6x_attribute,
17497 display_generic_attribute);
17498
17499 default:
17500 return process_attributes (file, "gnu", SHT_GNU_ATTRIBUTES,
17501 display_public_gnu_attributes,
17502 display_generic_attribute);
17503 }
17504 }
17505
17506 static bfd_boolean
17507 get_file_header (FILE * file)
17508 {
17509 /* Read in the identity array. */
17510 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
17511 return FALSE;
17512
17513 /* Determine how to read the rest of the header. */
17514 switch (elf_header.e_ident[EI_DATA])
17515 {
17516 default:
17517 case ELFDATANONE:
17518 case ELFDATA2LSB:
17519 byte_get = byte_get_little_endian;
17520 byte_put = byte_put_little_endian;
17521 break;
17522 case ELFDATA2MSB:
17523 byte_get = byte_get_big_endian;
17524 byte_put = byte_put_big_endian;
17525 break;
17526 }
17527
17528 /* For now we only support 32 bit and 64 bit ELF files. */
17529 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
17530
17531 /* Read in the rest of the header. */
17532 if (is_32bit_elf)
17533 {
17534 Elf32_External_Ehdr ehdr32;
17535
17536 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
17537 return FALSE;
17538
17539 elf_header.e_type = BYTE_GET (ehdr32.e_type);
17540 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
17541 elf_header.e_version = BYTE_GET (ehdr32.e_version);
17542 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
17543 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
17544 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
17545 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
17546 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
17547 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
17548 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
17549 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
17550 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
17551 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
17552 }
17553 else
17554 {
17555 Elf64_External_Ehdr ehdr64;
17556
17557 /* If we have been compiled with sizeof (bfd_vma) == 4, then
17558 we will not be able to cope with the 64bit data found in
17559 64 ELF files. Detect this now and abort before we start
17560 overwriting things. */
17561 if (sizeof (bfd_vma) < 8)
17562 {
17563 error (_("This instance of readelf has been built without support for a\n\
17564 64 bit data type and so it cannot read 64 bit ELF files.\n"));
17565 return FALSE;
17566 }
17567
17568 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
17569 return FALSE;
17570
17571 elf_header.e_type = BYTE_GET (ehdr64.e_type);
17572 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
17573 elf_header.e_version = BYTE_GET (ehdr64.e_version);
17574 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
17575 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
17576 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
17577 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
17578 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
17579 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
17580 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
17581 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
17582 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
17583 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
17584 }
17585
17586 if (elf_header.e_shoff)
17587 {
17588 /* There may be some extensions in the first section header. Don't
17589 bomb if we can't read it. */
17590 if (is_32bit_elf)
17591 get_32bit_section_headers (file, TRUE);
17592 else
17593 get_64bit_section_headers (file, TRUE);
17594 }
17595
17596 return TRUE;
17597 }
17598
17599 /* Process one ELF object file according to the command line options.
17600 This file may actually be stored in an archive. The file is
17601 positioned at the start of the ELF object. Returns TRUE if no
17602 problems were encountered, FALSE otherwise. */
17603
17604 static bfd_boolean
17605 process_object (char * file_name, FILE * file)
17606 {
17607 unsigned int i;
17608 bfd_boolean res = TRUE;
17609
17610 if (! get_file_header (file))
17611 {
17612 error (_("%s: Failed to read file header\n"), file_name);
17613 return FALSE;
17614 }
17615
17616 /* Initialise per file variables. */
17617 for (i = ARRAY_SIZE (version_info); i--;)
17618 version_info[i] = 0;
17619
17620 for (i = ARRAY_SIZE (dynamic_info); i--;)
17621 dynamic_info[i] = 0;
17622 dynamic_info_DT_GNU_HASH = 0;
17623
17624 /* Process the file. */
17625 if (show_name)
17626 printf (_("\nFile: %s\n"), file_name);
17627
17628 /* Initialise the dump_sects array from the cmdline_dump_sects array.
17629 Note we do this even if cmdline_dump_sects is empty because we
17630 must make sure that the dump_sets array is zeroed out before each
17631 object file is processed. */
17632 if (num_dump_sects > num_cmdline_dump_sects)
17633 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
17634
17635 if (num_cmdline_dump_sects > 0)
17636 {
17637 if (num_dump_sects == 0)
17638 /* A sneaky way of allocating the dump_sects array. */
17639 request_dump_bynumber (num_cmdline_dump_sects, 0);
17640
17641 assert (num_dump_sects >= num_cmdline_dump_sects);
17642 memcpy (dump_sects, cmdline_dump_sects,
17643 num_cmdline_dump_sects * sizeof (* dump_sects));
17644 }
17645
17646 if (! process_file_header ())
17647 return FALSE;
17648
17649 if (! process_section_headers (file))
17650 {
17651 /* Without loaded section headers we cannot process lots of things. */
17652 do_unwind = do_version = do_dump = do_arch = FALSE;
17653
17654 if (! do_using_dynamic)
17655 do_syms = do_dyn_syms = do_reloc = FALSE;
17656 }
17657
17658 if (! process_section_groups (file))
17659 /* Without loaded section groups we cannot process unwind. */
17660 do_unwind = FALSE;
17661
17662 if (process_program_headers (file))
17663 process_dynamic_section (file);
17664 else
17665 res = FALSE;
17666
17667 if (! process_relocs (file))
17668 res = FALSE;
17669
17670 if (! process_unwind (file))
17671 res = FALSE;
17672
17673 if (! process_symbol_table (file))
17674 res = FALSE;
17675
17676 if (! process_syminfo (file))
17677 res = FALSE;
17678
17679 if (! process_version_sections (file))
17680 res = FALSE;
17681
17682 if (! process_section_contents (file))
17683 res = FALSE;
17684
17685 if (! process_notes (file))
17686 res = FALSE;
17687
17688 if (! process_gnu_liblist (file))
17689 res = FALSE;
17690
17691 if (! process_arch_specific (file))
17692 res = FALSE;
17693
17694 if (program_headers)
17695 {
17696 free (program_headers);
17697 program_headers = NULL;
17698 }
17699
17700 if (section_headers)
17701 {
17702 free (section_headers);
17703 section_headers = NULL;
17704 }
17705
17706 if (string_table)
17707 {
17708 free (string_table);
17709 string_table = NULL;
17710 string_table_length = 0;
17711 }
17712
17713 if (dynamic_strings)
17714 {
17715 free (dynamic_strings);
17716 dynamic_strings = NULL;
17717 dynamic_strings_length = 0;
17718 }
17719
17720 if (dynamic_symbols)
17721 {
17722 free (dynamic_symbols);
17723 dynamic_symbols = NULL;
17724 num_dynamic_syms = 0;
17725 }
17726
17727 if (dynamic_syminfo)
17728 {
17729 free (dynamic_syminfo);
17730 dynamic_syminfo = NULL;
17731 }
17732
17733 if (dynamic_section)
17734 {
17735 free (dynamic_section);
17736 dynamic_section = NULL;
17737 }
17738
17739 if (section_headers_groups)
17740 {
17741 free (section_headers_groups);
17742 section_headers_groups = NULL;
17743 }
17744
17745 if (section_groups)
17746 {
17747 struct group_list * g;
17748 struct group_list * next;
17749
17750 for (i = 0; i < group_count; i++)
17751 {
17752 for (g = section_groups [i].root; g != NULL; g = next)
17753 {
17754 next = g->next;
17755 free (g);
17756 }
17757 }
17758
17759 free (section_groups);
17760 section_groups = NULL;
17761 }
17762
17763 free_debug_memory ();
17764
17765 return res;
17766 }
17767
17768 /* Process an ELF archive.
17769 On entry the file is positioned just after the ARMAG string.
17770 Returns TRUE upon success, FALSE otherwise. */
17771
17772 static bfd_boolean
17773 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
17774 {
17775 struct archive_info arch;
17776 struct archive_info nested_arch;
17777 size_t got;
17778 bfd_boolean ret = TRUE;
17779
17780 show_name = TRUE;
17781
17782 /* The ARCH structure is used to hold information about this archive. */
17783 arch.file_name = NULL;
17784 arch.file = NULL;
17785 arch.index_array = NULL;
17786 arch.sym_table = NULL;
17787 arch.longnames = NULL;
17788
17789 /* The NESTED_ARCH structure is used as a single-item cache of information
17790 about a nested archive (when members of a thin archive reside within
17791 another regular archive file). */
17792 nested_arch.file_name = NULL;
17793 nested_arch.file = NULL;
17794 nested_arch.index_array = NULL;
17795 nested_arch.sym_table = NULL;
17796 nested_arch.longnames = NULL;
17797
17798 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
17799 {
17800 ret = FALSE;
17801 goto out;
17802 }
17803
17804 if (do_archive_index)
17805 {
17806 if (arch.sym_table == NULL)
17807 error (_("%s: unable to dump the index as none was found\n"), file_name);
17808 else
17809 {
17810 unsigned long i, l;
17811 unsigned long current_pos;
17812
17813 printf (_("Index of archive %s: (%lu entries, 0x%lx bytes in the symbol table)\n"),
17814 file_name, (unsigned long) arch.index_num, arch.sym_size);
17815 current_pos = ftell (file);
17816
17817 for (i = l = 0; i < arch.index_num; i++)
17818 {
17819 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
17820 {
17821 char * member_name;
17822
17823 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
17824
17825 if (member_name != NULL)
17826 {
17827 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
17828
17829 if (qualified_name != NULL)
17830 {
17831 printf (_("Contents of binary %s at offset "), qualified_name);
17832 (void) print_vma (arch.index_array[i], PREFIX_HEX);
17833 putchar ('\n');
17834 free (qualified_name);
17835 }
17836 }
17837 }
17838
17839 if (l >= arch.sym_size)
17840 {
17841 error (_("%s: end of the symbol table reached before the end of the index\n"),
17842 file_name);
17843 ret = FALSE;
17844 break;
17845 }
17846 /* PR 17531: file: 0b6630b2. */
17847 printf ("\t%.*s\n", (int) (arch.sym_size - l), arch.sym_table + l);
17848 l += strnlen (arch.sym_table + l, arch.sym_size - l) + 1;
17849 }
17850
17851 if (arch.uses_64bit_indicies)
17852 l = (l + 7) & ~ 7;
17853 else
17854 l += l & 1;
17855
17856 if (l < arch.sym_size)
17857 {
17858 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
17859 file_name, arch.sym_size - l);
17860 ret = FALSE;
17861 }
17862
17863 if (fseek (file, current_pos, SEEK_SET) != 0)
17864 {
17865 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
17866 ret = FALSE;
17867 goto out;
17868 }
17869 }
17870
17871 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
17872 && !do_segments && !do_header && !do_dump && !do_version
17873 && !do_histogram && !do_debugging && !do_arch && !do_notes
17874 && !do_section_groups && !do_dyn_syms)
17875 {
17876 ret = TRUE; /* Archive index only. */
17877 goto out;
17878 }
17879 }
17880
17881 while (1)
17882 {
17883 char * name;
17884 size_t namelen;
17885 char * qualified_name;
17886
17887 /* Read the next archive header. */
17888 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
17889 {
17890 error (_("%s: failed to seek to next archive header\n"), file_name);
17891 return FALSE;
17892 }
17893 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
17894 if (got != sizeof arch.arhdr)
17895 {
17896 if (got == 0)
17897 break;
17898 error (_("%s: failed to read archive header\n"), file_name);
17899 ret = FALSE;
17900 break;
17901 }
17902 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
17903 {
17904 error (_("%s: did not find a valid archive header\n"), arch.file_name);
17905 ret = FALSE;
17906 break;
17907 }
17908
17909 arch.next_arhdr_offset += sizeof arch.arhdr;
17910
17911 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
17912 if (archive_file_size & 01)
17913 ++archive_file_size;
17914
17915 name = get_archive_member_name (&arch, &nested_arch);
17916 if (name == NULL)
17917 {
17918 error (_("%s: bad archive file name\n"), file_name);
17919 ret = FALSE;
17920 break;
17921 }
17922 namelen = strlen (name);
17923
17924 qualified_name = make_qualified_name (&arch, &nested_arch, name);
17925 if (qualified_name == NULL)
17926 {
17927 error (_("%s: bad archive file name\n"), file_name);
17928 ret = FALSE;
17929 break;
17930 }
17931
17932 if (is_thin_archive && arch.nested_member_origin == 0)
17933 {
17934 /* This is a proxy for an external member of a thin archive. */
17935 FILE * member_file;
17936 char * member_file_name = adjust_relative_path (file_name, name, namelen);
17937
17938 if (member_file_name == NULL)
17939 {
17940 ret = FALSE;
17941 break;
17942 }
17943
17944 member_file = fopen (member_file_name, "rb");
17945 if (member_file == NULL)
17946 {
17947 error (_("Input file '%s' is not readable.\n"), member_file_name);
17948 free (member_file_name);
17949 ret = FALSE;
17950 break;
17951 }
17952
17953 archive_file_offset = arch.nested_member_origin;
17954
17955 if (! process_object (qualified_name, member_file))
17956 ret = FALSE;
17957
17958 fclose (member_file);
17959 free (member_file_name);
17960 }
17961 else if (is_thin_archive)
17962 {
17963 /* PR 15140: Allow for corrupt thin archives. */
17964 if (nested_arch.file == NULL)
17965 {
17966 error (_("%s: contains corrupt thin archive: %s\n"),
17967 file_name, name);
17968 ret = FALSE;
17969 break;
17970 }
17971
17972 /* This is a proxy for a member of a nested archive. */
17973 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
17974
17975 /* The nested archive file will have been opened and setup by
17976 get_archive_member_name. */
17977 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
17978 {
17979 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
17980 ret = FALSE;
17981 break;
17982 }
17983
17984 if (! process_object (qualified_name, nested_arch.file))
17985 ret = FALSE;
17986 }
17987 else
17988 {
17989 archive_file_offset = arch.next_arhdr_offset;
17990 arch.next_arhdr_offset += archive_file_size;
17991
17992 if (! process_object (qualified_name, file))
17993 ret = FALSE;
17994 }
17995
17996 if (dump_sects != NULL)
17997 {
17998 free (dump_sects);
17999 dump_sects = NULL;
18000 num_dump_sects = 0;
18001 }
18002
18003 free (qualified_name);
18004 }
18005
18006 out:
18007 if (nested_arch.file != NULL)
18008 fclose (nested_arch.file);
18009 release_archive (&nested_arch);
18010 release_archive (&arch);
18011
18012 return ret;
18013 }
18014
18015 static bfd_boolean
18016 process_file (char * file_name)
18017 {
18018 FILE * file;
18019 struct stat statbuf;
18020 char armag[SARMAG];
18021 bfd_boolean ret = TRUE;
18022
18023 if (stat (file_name, &statbuf) < 0)
18024 {
18025 if (errno == ENOENT)
18026 error (_("'%s': No such file\n"), file_name);
18027 else
18028 error (_("Could not locate '%s'. System error message: %s\n"),
18029 file_name, strerror (errno));
18030 return FALSE;
18031 }
18032
18033 if (! S_ISREG (statbuf.st_mode))
18034 {
18035 error (_("'%s' is not an ordinary file\n"), file_name);
18036 return FALSE;
18037 }
18038
18039 file = fopen (file_name, "rb");
18040 if (file == NULL)
18041 {
18042 error (_("Input file '%s' is not readable.\n"), file_name);
18043 return FALSE;
18044 }
18045
18046 if (fread (armag, SARMAG, 1, file) != 1)
18047 {
18048 error (_("%s: Failed to read file's magic number\n"), file_name);
18049 fclose (file);
18050 return FALSE;
18051 }
18052
18053 current_file_size = (bfd_size_type) statbuf.st_size;
18054
18055 if (memcmp (armag, ARMAG, SARMAG) == 0)
18056 {
18057 if (! process_archive (file_name, file, FALSE))
18058 ret = FALSE;
18059 }
18060 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
18061 {
18062 if ( ! process_archive (file_name, file, TRUE))
18063 ret = FALSE;
18064 }
18065 else
18066 {
18067 if (do_archive_index)
18068 error (_("File %s is not an archive so its index cannot be displayed.\n"),
18069 file_name);
18070
18071 rewind (file);
18072 archive_file_size = archive_file_offset = 0;
18073
18074 if (! process_object (file_name, file))
18075 ret = FALSE;
18076 }
18077
18078 fclose (file);
18079 current_file_size = 0;
18080
18081 return ret;
18082 }
18083
18084 #ifdef SUPPORT_DISASSEMBLY
18085 /* Needed by the i386 disassembler. For extra credit, someone could
18086 fix this so that we insert symbolic addresses here, esp for GOT/PLT
18087 symbols. */
18088
18089 void
18090 print_address (unsigned int addr, FILE * outfile)
18091 {
18092 fprintf (outfile,"0x%8.8x", addr);
18093 }
18094
18095 /* Needed by the i386 disassembler. */
18096 void
18097 db_task_printsym (unsigned int addr)
18098 {
18099 print_address (addr, stderr);
18100 }
18101 #endif
18102
18103 int
18104 main (int argc, char ** argv)
18105 {
18106 int err;
18107
18108 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
18109 setlocale (LC_MESSAGES, "");
18110 #endif
18111 #if defined (HAVE_SETLOCALE)
18112 setlocale (LC_CTYPE, "");
18113 #endif
18114 bindtextdomain (PACKAGE, LOCALEDIR);
18115 textdomain (PACKAGE);
18116
18117 expandargv (&argc, &argv);
18118
18119 parse_args (argc, argv);
18120
18121 if (num_dump_sects > 0)
18122 {
18123 /* Make a copy of the dump_sects array. */
18124 cmdline_dump_sects = (dump_type *)
18125 malloc (num_dump_sects * sizeof (* dump_sects));
18126 if (cmdline_dump_sects == NULL)
18127 error (_("Out of memory allocating dump request table.\n"));
18128 else
18129 {
18130 memcpy (cmdline_dump_sects, dump_sects,
18131 num_dump_sects * sizeof (* dump_sects));
18132 num_cmdline_dump_sects = num_dump_sects;
18133 }
18134 }
18135
18136 if (optind < (argc - 1))
18137 show_name = TRUE;
18138 else if (optind >= argc)
18139 {
18140 warn (_("Nothing to do.\n"));
18141 usage (stderr);
18142 }
18143
18144 err = FALSE;
18145 while (optind < argc)
18146 if (! process_file (argv[optind++]))
18147 err = TRUE;
18148
18149 if (dump_sects != NULL)
18150 free (dump_sects);
18151 if (cmdline_dump_sects != NULL)
18152 free (cmdline_dump_sects);
18153
18154 return err ? EXIT_FAILURE : EXIT_SUCCESS;
18155 }