]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - binutils/readelf.c
include/elf/
[thirdparty/binutils-gdb.git] / binutils / readelf.c
1 /* readelf.c -- display contents of an ELF format file
2 Copyright 1998-2013 Free Software Foundation, Inc.
3
4 Originally developed by Eric Youngdale <eric@andante.jic.com>
5 Modifications by Nick Clifton <nickc@redhat.com>
6
7 This file is part of GNU Binutils.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23 \f
24 /* The difference between readelf and objdump:
25
26 Both programs are capable of displaying the contents of ELF format files,
27 so why does the binutils project have two file dumpers ?
28
29 The reason is that objdump sees an ELF file through a BFD filter of the
30 world; if BFD has a bug where, say, it disagrees about a machine constant
31 in e_flags, then the odds are good that it will remain internally
32 consistent. The linker sees it the BFD way, objdump sees it the BFD way,
33 GAS sees it the BFD way. There was need for a tool to go find out what
34 the file actually says.
35
36 This is why the readelf program does not link against the BFD library - it
37 exists as an independent program to help verify the correct working of BFD.
38
39 There is also the case that readelf can provide more information about an
40 ELF file than is provided by objdump. In particular it can display DWARF
41 debugging information which (at the moment) objdump cannot. */
42 \f
43 #include "sysdep.h"
44 #include <assert.h>
45 #include <time.h>
46 #ifdef HAVE_ZLIB_H
47 #include <zlib.h>
48 #endif
49 #ifdef HAVE_WCHAR_H
50 #include <wchar.h>
51 #endif
52
53 #if __GNUC__ >= 2
54 /* Define BFD64 here, even if our default architecture is 32 bit ELF
55 as this will allow us to read in and parse 64bit and 32bit ELF files.
56 Only do this if we believe that the compiler can support a 64 bit
57 data type. For now we only rely on GCC being able to do this. */
58 #define BFD64
59 #endif
60
61 #include "bfd.h"
62 #include "bucomm.h"
63 #include "elfcomm.h"
64 #include "dwarf.h"
65
66 #include "elf/common.h"
67 #include "elf/external.h"
68 #include "elf/internal.h"
69
70
71 /* Included here, before RELOC_MACROS_GEN_FUNC is defined, so that
72 we can obtain the H8 reloc numbers. We need these for the
73 get_reloc_size() function. We include h8.h again after defining
74 RELOC_MACROS_GEN_FUNC so that we get the naming function as well. */
75
76 #include "elf/h8.h"
77 #undef _ELF_H8_H
78
79 /* Undo the effects of #including reloc-macros.h. */
80
81 #undef START_RELOC_NUMBERS
82 #undef RELOC_NUMBER
83 #undef FAKE_RELOC
84 #undef EMPTY_RELOC
85 #undef END_RELOC_NUMBERS
86 #undef _RELOC_MACROS_H
87
88 /* The following headers use the elf/reloc-macros.h file to
89 automatically generate relocation recognition functions
90 such as elf_mips_reloc_type() */
91
92 #define RELOC_MACROS_GEN_FUNC
93
94 #include "elf/aarch64.h"
95 #include "elf/alpha.h"
96 #include "elf/arc.h"
97 #include "elf/arm.h"
98 #include "elf/avr.h"
99 #include "elf/bfin.h"
100 #include "elf/cr16.h"
101 #include "elf/cris.h"
102 #include "elf/crx.h"
103 #include "elf/d10v.h"
104 #include "elf/d30v.h"
105 #include "elf/dlx.h"
106 #include "elf/epiphany.h"
107 #include "elf/fr30.h"
108 #include "elf/frv.h"
109 #include "elf/h8.h"
110 #include "elf/hppa.h"
111 #include "elf/i386.h"
112 #include "elf/i370.h"
113 #include "elf/i860.h"
114 #include "elf/i960.h"
115 #include "elf/ia64.h"
116 #include "elf/ip2k.h"
117 #include "elf/lm32.h"
118 #include "elf/iq2000.h"
119 #include "elf/m32c.h"
120 #include "elf/m32r.h"
121 #include "elf/m68k.h"
122 #include "elf/m68hc11.h"
123 #include "elf/mcore.h"
124 #include "elf/mep.h"
125 #include "elf/metag.h"
126 #include "elf/microblaze.h"
127 #include "elf/mips.h"
128 #include "elf/mmix.h"
129 #include "elf/mn10200.h"
130 #include "elf/mn10300.h"
131 #include "elf/moxie.h"
132 #include "elf/mt.h"
133 #include "elf/msp430.h"
134 #include "elf/nios2.h"
135 #include "elf/or32.h"
136 #include "elf/pj.h"
137 #include "elf/ppc.h"
138 #include "elf/ppc64.h"
139 #include "elf/rl78.h"
140 #include "elf/rx.h"
141 #include "elf/s390.h"
142 #include "elf/score.h"
143 #include "elf/sh.h"
144 #include "elf/sparc.h"
145 #include "elf/spu.h"
146 #include "elf/tic6x.h"
147 #include "elf/tilegx.h"
148 #include "elf/tilepro.h"
149 #include "elf/v850.h"
150 #include "elf/vax.h"
151 #include "elf/x86-64.h"
152 #include "elf/xc16x.h"
153 #include "elf/xgate.h"
154 #include "elf/xstormy16.h"
155 #include "elf/xtensa.h"
156
157 #include "getopt.h"
158 #include "libiberty.h"
159 #include "safe-ctype.h"
160 #include "filenames.h"
161
162 #ifndef offsetof
163 #define offsetof(TYPE, MEMBER) ((size_t) &(((TYPE *) 0)->MEMBER))
164 #endif
165
166 char * program_name = "readelf";
167 static long archive_file_offset;
168 static unsigned long archive_file_size;
169 static unsigned long dynamic_addr;
170 static bfd_size_type dynamic_size;
171 static unsigned int dynamic_nent;
172 static char * dynamic_strings;
173 static unsigned long dynamic_strings_length;
174 static char * string_table;
175 static unsigned long string_table_length;
176 static unsigned long num_dynamic_syms;
177 static Elf_Internal_Sym * dynamic_symbols;
178 static Elf_Internal_Syminfo * dynamic_syminfo;
179 static unsigned long dynamic_syminfo_offset;
180 static unsigned int dynamic_syminfo_nent;
181 static char program_interpreter[PATH_MAX];
182 static bfd_vma dynamic_info[DT_ENCODING];
183 static bfd_vma dynamic_info_DT_GNU_HASH;
184 static bfd_vma version_info[16];
185 static Elf_Internal_Ehdr elf_header;
186 static Elf_Internal_Shdr * section_headers;
187 static Elf_Internal_Phdr * program_headers;
188 static Elf_Internal_Dyn * dynamic_section;
189 static Elf_Internal_Shdr * symtab_shndx_hdr;
190 static int show_name;
191 static int do_dynamic;
192 static int do_syms;
193 static int do_dyn_syms;
194 static int do_reloc;
195 static int do_sections;
196 static int do_section_groups;
197 static int do_section_details;
198 static int do_segments;
199 static int do_unwind;
200 static int do_using_dynamic;
201 static int do_header;
202 static int do_dump;
203 static int do_version;
204 static int do_histogram;
205 static int do_debugging;
206 static int do_arch;
207 static int do_notes;
208 static int do_archive_index;
209 static int is_32bit_elf;
210
211 struct group_list
212 {
213 struct group_list * next;
214 unsigned int section_index;
215 };
216
217 struct group
218 {
219 struct group_list * root;
220 unsigned int group_index;
221 };
222
223 static size_t group_count;
224 static struct group * section_groups;
225 static struct group ** section_headers_groups;
226
227
228 /* Flag bits indicating particular types of dump. */
229 #define HEX_DUMP (1 << 0) /* The -x command line switch. */
230 #define DISASS_DUMP (1 << 1) /* The -i command line switch. */
231 #define DEBUG_DUMP (1 << 2) /* The -w command line switch. */
232 #define STRING_DUMP (1 << 3) /* The -p command line switch. */
233 #define RELOC_DUMP (1 << 4) /* The -R command line switch. */
234
235 typedef unsigned char dump_type;
236
237 /* A linked list of the section names for which dumps were requested. */
238 struct dump_list_entry
239 {
240 char * name;
241 dump_type type;
242 struct dump_list_entry * next;
243 };
244 static struct dump_list_entry * dump_sects_byname;
245
246 /* A dynamic array of flags indicating for which sections a dump
247 has been requested via command line switches. */
248 static dump_type * cmdline_dump_sects = NULL;
249 static unsigned int num_cmdline_dump_sects = 0;
250
251 /* A dynamic array of flags indicating for which sections a dump of
252 some kind has been requested. It is reset on a per-object file
253 basis and then initialised from the cmdline_dump_sects array,
254 the results of interpreting the -w switch, and the
255 dump_sects_byname list. */
256 static dump_type * dump_sects = NULL;
257 static unsigned int num_dump_sects = 0;
258
259
260 /* How to print a vma value. */
261 typedef enum print_mode
262 {
263 HEX,
264 DEC,
265 DEC_5,
266 UNSIGNED,
267 PREFIX_HEX,
268 FULL_HEX,
269 LONG_HEX
270 }
271 print_mode;
272
273 #define UNKNOWN -1
274
275 #define SECTION_NAME(X) \
276 ((X) == NULL ? _("<none>") \
277 : string_table == NULL ? _("<no-name>") \
278 : ((X)->sh_name >= string_table_length ? _("<corrupt>") \
279 : string_table + (X)->sh_name))
280
281 #define DT_VERSIONTAGIDX(tag) (DT_VERNEEDNUM - (tag)) /* Reverse order! */
282
283 #define GET_ELF_SYMBOLS(file, section, sym_count) \
284 (is_32bit_elf ? get_32bit_elf_symbols (file, section, sym_count) \
285 : get_64bit_elf_symbols (file, section, sym_count))
286
287 #define VALID_DYNAMIC_NAME(offset) ((dynamic_strings != NULL) && (offset < dynamic_strings_length))
288 /* GET_DYNAMIC_NAME asssumes that VALID_DYNAMIC_NAME has
289 already been called and verified that the string exists. */
290 #define GET_DYNAMIC_NAME(offset) (dynamic_strings + offset)
291
292 #define REMOVE_ARCH_BITS(ADDR) \
293 do \
294 { \
295 if (elf_header.e_machine == EM_ARM) \
296 (ADDR) &= ~1; \
297 } \
298 while (0)
299 \f
300 /* Retrieve NMEMB structures, each SIZE bytes long from FILE starting at OFFSET.
301 Put the retrieved data into VAR, if it is not NULL. Otherwise allocate a buffer
302 using malloc and fill that. In either case return the pointer to the start of
303 the retrieved data or NULL if something went wrong. If something does go wrong
304 emit an error message using REASON as part of the context. */
305
306 static void *
307 get_data (void * var, FILE * file, long offset, size_t size, size_t nmemb,
308 const char * reason)
309 {
310 void * mvar;
311
312 if (size == 0 || nmemb == 0)
313 return NULL;
314
315 if (fseek (file, archive_file_offset + offset, SEEK_SET))
316 {
317 error (_("Unable to seek to 0x%lx for %s\n"),
318 (unsigned long) archive_file_offset + offset, reason);
319 return NULL;
320 }
321
322 mvar = var;
323 if (mvar == NULL)
324 {
325 /* Check for overflow. */
326 if (nmemb < (~(size_t) 0 - 1) / size)
327 /* + 1 so that we can '\0' terminate invalid string table sections. */
328 mvar = malloc (size * nmemb + 1);
329
330 if (mvar == NULL)
331 {
332 error (_("Out of memory allocating 0x%lx bytes for %s\n"),
333 (unsigned long)(size * nmemb), reason);
334 return NULL;
335 }
336
337 ((char *) mvar)[size * nmemb] = '\0';
338 }
339
340 if (fread (mvar, size, nmemb, file) != nmemb)
341 {
342 error (_("Unable to read in 0x%lx bytes of %s\n"),
343 (unsigned long)(size * nmemb), reason);
344 if (mvar != var)
345 free (mvar);
346 return NULL;
347 }
348
349 return mvar;
350 }
351
352 /* Print a VMA value. */
353
354 static int
355 print_vma (bfd_vma vma, print_mode mode)
356 {
357 int nc = 0;
358
359 switch (mode)
360 {
361 case FULL_HEX:
362 nc = printf ("0x");
363 /* Drop through. */
364
365 case LONG_HEX:
366 #ifdef BFD64
367 if (is_32bit_elf)
368 return nc + printf ("%8.8" BFD_VMA_FMT "x", vma);
369 #endif
370 printf_vma (vma);
371 return nc + 16;
372
373 case DEC_5:
374 if (vma <= 99999)
375 return printf ("%5" BFD_VMA_FMT "d", vma);
376 /* Drop through. */
377
378 case PREFIX_HEX:
379 nc = printf ("0x");
380 /* Drop through. */
381
382 case HEX:
383 return nc + printf ("%" BFD_VMA_FMT "x", vma);
384
385 case DEC:
386 return printf ("%" BFD_VMA_FMT "d", vma);
387
388 case UNSIGNED:
389 return printf ("%" BFD_VMA_FMT "u", vma);
390 }
391 return 0;
392 }
393
394 /* Display a symbol on stdout. Handles the display of control characters and
395 multibye characters (assuming the host environment supports them).
396
397 Display at most abs(WIDTH) characters, truncating as necessary, unless do_wide is true.
398
399 If WIDTH is negative then ensure that the output is at least (- WIDTH) characters,
400 padding as necessary.
401
402 Returns the number of emitted characters. */
403
404 static unsigned int
405 print_symbol (int width, const char *symbol)
406 {
407 bfd_boolean extra_padding = FALSE;
408 int num_printed = 0;
409 #ifdef HAVE_MBSTATE_T
410 mbstate_t state;
411 #endif
412 int width_remaining;
413
414 if (width < 0)
415 {
416 /* Keep the width positive. This also helps. */
417 width = - width;
418 extra_padding = TRUE;
419 }
420
421 if (do_wide)
422 /* Set the remaining width to a very large value.
423 This simplifies the code below. */
424 width_remaining = INT_MAX;
425 else
426 width_remaining = width;
427
428 #ifdef HAVE_MBSTATE_T
429 /* Initialise the multibyte conversion state. */
430 memset (& state, 0, sizeof (state));
431 #endif
432
433 while (width_remaining)
434 {
435 size_t n;
436 const char c = *symbol++;
437
438 if (c == 0)
439 break;
440
441 /* Do not print control characters directly as they can affect terminal
442 settings. Such characters usually appear in the names generated
443 by the assembler for local labels. */
444 if (ISCNTRL (c))
445 {
446 if (width_remaining < 2)
447 break;
448
449 printf ("^%c", c + 0x40);
450 width_remaining -= 2;
451 num_printed += 2;
452 }
453 else if (ISPRINT (c))
454 {
455 putchar (c);
456 width_remaining --;
457 num_printed ++;
458 }
459 else
460 {
461 #ifdef HAVE_MBSTATE_T
462 wchar_t w;
463 #endif
464 /* Let printf do the hard work of displaying multibyte characters. */
465 printf ("%.1s", symbol - 1);
466 width_remaining --;
467 num_printed ++;
468
469 #ifdef HAVE_MBSTATE_T
470 /* Try to find out how many bytes made up the character that was
471 just printed. Advance the symbol pointer past the bytes that
472 were displayed. */
473 n = mbrtowc (& w, symbol - 1, MB_CUR_MAX, & state);
474 #else
475 n = 1;
476 #endif
477 if (n != (size_t) -1 && n != (size_t) -2 && n > 0)
478 symbol += (n - 1);
479 }
480 }
481
482 if (extra_padding && num_printed < width)
483 {
484 /* Fill in the remaining spaces. */
485 printf ("%-*s", width - num_printed, " ");
486 num_printed = width;
487 }
488
489 return num_printed;
490 }
491
492 /* Return a pointer to section NAME, or NULL if no such section exists. */
493
494 static Elf_Internal_Shdr *
495 find_section (const char * name)
496 {
497 unsigned int i;
498
499 for (i = 0; i < elf_header.e_shnum; i++)
500 if (streq (SECTION_NAME (section_headers + i), name))
501 return section_headers + i;
502
503 return NULL;
504 }
505
506 /* Return a pointer to a section containing ADDR, or NULL if no such
507 section exists. */
508
509 static Elf_Internal_Shdr *
510 find_section_by_address (bfd_vma addr)
511 {
512 unsigned int i;
513
514 for (i = 0; i < elf_header.e_shnum; i++)
515 {
516 Elf_Internal_Shdr *sec = section_headers + i;
517 if (addr >= sec->sh_addr && addr < sec->sh_addr + sec->sh_size)
518 return sec;
519 }
520
521 return NULL;
522 }
523
524 /* Return a pointer to section NAME, or NULL if no such section exists,
525 restricted to the list of sections given in SET. */
526
527 static Elf_Internal_Shdr *
528 find_section_in_set (const char * name, unsigned int * set)
529 {
530 unsigned int i;
531
532 if (set != NULL)
533 {
534 while ((i = *set++) > 0)
535 if (streq (SECTION_NAME (section_headers + i), name))
536 return section_headers + i;
537 }
538
539 return find_section (name);
540 }
541
542 /* Read an unsigned LEB128 encoded value from p. Set *PLEN to the number of
543 bytes read. */
544
545 static inline unsigned long
546 read_uleb128 (unsigned char *data,
547 unsigned int *length_return,
548 const unsigned char * const end)
549 {
550 return read_leb128 (data, length_return, FALSE, end);
551 }
552
553 /* Return true if the current file is for IA-64 machine and OpenVMS ABI.
554 This OS has so many departures from the ELF standard that we test it at
555 many places. */
556
557 static inline int
558 is_ia64_vms (void)
559 {
560 return elf_header.e_machine == EM_IA_64
561 && elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS;
562 }
563
564 /* Guess the relocation size commonly used by the specific machines. */
565
566 static int
567 guess_is_rela (unsigned int e_machine)
568 {
569 switch (e_machine)
570 {
571 /* Targets that use REL relocations. */
572 case EM_386:
573 case EM_486:
574 case EM_960:
575 case EM_ARM:
576 case EM_D10V:
577 case EM_CYGNUS_D10V:
578 case EM_DLX:
579 case EM_MIPS:
580 case EM_MIPS_RS3_LE:
581 case EM_CYGNUS_M32R:
582 case EM_OPENRISC:
583 case EM_OR32:
584 case EM_SCORE:
585 case EM_XGATE:
586 return FALSE;
587
588 /* Targets that use RELA relocations. */
589 case EM_68K:
590 case EM_860:
591 case EM_AARCH64:
592 case EM_ADAPTEVA_EPIPHANY:
593 case EM_ALPHA:
594 case EM_ALTERA_NIOS2:
595 case EM_AVR:
596 case EM_AVR_OLD:
597 case EM_BLACKFIN:
598 case EM_CR16:
599 case EM_CRIS:
600 case EM_CRX:
601 case EM_D30V:
602 case EM_CYGNUS_D30V:
603 case EM_FR30:
604 case EM_CYGNUS_FR30:
605 case EM_CYGNUS_FRV:
606 case EM_H8S:
607 case EM_H8_300:
608 case EM_H8_300H:
609 case EM_IA_64:
610 case EM_IP2K:
611 case EM_IP2K_OLD:
612 case EM_IQ2000:
613 case EM_LATTICEMICO32:
614 case EM_M32C_OLD:
615 case EM_M32C:
616 case EM_M32R:
617 case EM_MCORE:
618 case EM_CYGNUS_MEP:
619 case EM_METAG:
620 case EM_MMIX:
621 case EM_MN10200:
622 case EM_CYGNUS_MN10200:
623 case EM_MN10300:
624 case EM_CYGNUS_MN10300:
625 case EM_MOXIE:
626 case EM_MSP430:
627 case EM_MSP430_OLD:
628 case EM_MT:
629 case EM_NIOS32:
630 case EM_PPC64:
631 case EM_PPC:
632 case EM_RL78:
633 case EM_RX:
634 case EM_S390:
635 case EM_S390_OLD:
636 case EM_SH:
637 case EM_SPARC:
638 case EM_SPARC32PLUS:
639 case EM_SPARCV9:
640 case EM_SPU:
641 case EM_TI_C6000:
642 case EM_TILEGX:
643 case EM_TILEPRO:
644 case EM_V800:
645 case EM_V850:
646 case EM_CYGNUS_V850:
647 case EM_VAX:
648 case EM_X86_64:
649 case EM_L1OM:
650 case EM_K1OM:
651 case EM_XSTORMY16:
652 case EM_XTENSA:
653 case EM_XTENSA_OLD:
654 case EM_MICROBLAZE:
655 case EM_MICROBLAZE_OLD:
656 return TRUE;
657
658 case EM_68HC05:
659 case EM_68HC08:
660 case EM_68HC11:
661 case EM_68HC16:
662 case EM_FX66:
663 case EM_ME16:
664 case EM_MMA:
665 case EM_NCPU:
666 case EM_NDR1:
667 case EM_PCP:
668 case EM_ST100:
669 case EM_ST19:
670 case EM_ST7:
671 case EM_ST9PLUS:
672 case EM_STARCORE:
673 case EM_SVX:
674 case EM_TINYJ:
675 default:
676 warn (_("Don't know about relocations on this machine architecture\n"));
677 return FALSE;
678 }
679 }
680
681 static int
682 slurp_rela_relocs (FILE * file,
683 unsigned long rel_offset,
684 unsigned long rel_size,
685 Elf_Internal_Rela ** relasp,
686 unsigned long * nrelasp)
687 {
688 Elf_Internal_Rela * relas;
689 unsigned long nrelas;
690 unsigned int i;
691
692 if (is_32bit_elf)
693 {
694 Elf32_External_Rela * erelas;
695
696 erelas = (Elf32_External_Rela *) get_data (NULL, file, rel_offset, 1,
697 rel_size, _("32-bit relocation data"));
698 if (!erelas)
699 return 0;
700
701 nrelas = rel_size / sizeof (Elf32_External_Rela);
702
703 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
704 sizeof (Elf_Internal_Rela));
705
706 if (relas == NULL)
707 {
708 free (erelas);
709 error (_("out of memory parsing relocs\n"));
710 return 0;
711 }
712
713 for (i = 0; i < nrelas; i++)
714 {
715 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
716 relas[i].r_info = BYTE_GET (erelas[i].r_info);
717 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
718 }
719
720 free (erelas);
721 }
722 else
723 {
724 Elf64_External_Rela * erelas;
725
726 erelas = (Elf64_External_Rela *) get_data (NULL, file, rel_offset, 1,
727 rel_size, _("64-bit relocation data"));
728 if (!erelas)
729 return 0;
730
731 nrelas = rel_size / sizeof (Elf64_External_Rela);
732
733 relas = (Elf_Internal_Rela *) cmalloc (nrelas,
734 sizeof (Elf_Internal_Rela));
735
736 if (relas == NULL)
737 {
738 free (erelas);
739 error (_("out of memory parsing relocs\n"));
740 return 0;
741 }
742
743 for (i = 0; i < nrelas; i++)
744 {
745 relas[i].r_offset = BYTE_GET (erelas[i].r_offset);
746 relas[i].r_info = BYTE_GET (erelas[i].r_info);
747 relas[i].r_addend = BYTE_GET_SIGNED (erelas[i].r_addend);
748
749 /* The #ifdef BFD64 below is to prevent a compile time
750 warning. We know that if we do not have a 64 bit data
751 type that we will never execute this code anyway. */
752 #ifdef BFD64
753 if (elf_header.e_machine == EM_MIPS
754 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
755 {
756 /* In little-endian objects, r_info isn't really a
757 64-bit little-endian value: it has a 32-bit
758 little-endian symbol index followed by four
759 individual byte fields. Reorder INFO
760 accordingly. */
761 bfd_vma inf = relas[i].r_info;
762 inf = (((inf & 0xffffffff) << 32)
763 | ((inf >> 56) & 0xff)
764 | ((inf >> 40) & 0xff00)
765 | ((inf >> 24) & 0xff0000)
766 | ((inf >> 8) & 0xff000000));
767 relas[i].r_info = inf;
768 }
769 #endif /* BFD64 */
770 }
771
772 free (erelas);
773 }
774 *relasp = relas;
775 *nrelasp = nrelas;
776 return 1;
777 }
778
779 static int
780 slurp_rel_relocs (FILE * file,
781 unsigned long rel_offset,
782 unsigned long rel_size,
783 Elf_Internal_Rela ** relsp,
784 unsigned long * nrelsp)
785 {
786 Elf_Internal_Rela * rels;
787 unsigned long nrels;
788 unsigned int i;
789
790 if (is_32bit_elf)
791 {
792 Elf32_External_Rel * erels;
793
794 erels = (Elf32_External_Rel *) get_data (NULL, file, rel_offset, 1,
795 rel_size, _("32-bit relocation data"));
796 if (!erels)
797 return 0;
798
799 nrels = rel_size / sizeof (Elf32_External_Rel);
800
801 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
802
803 if (rels == NULL)
804 {
805 free (erels);
806 error (_("out of memory parsing relocs\n"));
807 return 0;
808 }
809
810 for (i = 0; i < nrels; i++)
811 {
812 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
813 rels[i].r_info = BYTE_GET (erels[i].r_info);
814 rels[i].r_addend = 0;
815 }
816
817 free (erels);
818 }
819 else
820 {
821 Elf64_External_Rel * erels;
822
823 erels = (Elf64_External_Rel *) get_data (NULL, file, rel_offset, 1,
824 rel_size, _("64-bit relocation data"));
825 if (!erels)
826 return 0;
827
828 nrels = rel_size / sizeof (Elf64_External_Rel);
829
830 rels = (Elf_Internal_Rela *) cmalloc (nrels, sizeof (Elf_Internal_Rela));
831
832 if (rels == NULL)
833 {
834 free (erels);
835 error (_("out of memory parsing relocs\n"));
836 return 0;
837 }
838
839 for (i = 0; i < nrels; i++)
840 {
841 rels[i].r_offset = BYTE_GET (erels[i].r_offset);
842 rels[i].r_info = BYTE_GET (erels[i].r_info);
843 rels[i].r_addend = 0;
844
845 /* The #ifdef BFD64 below is to prevent a compile time
846 warning. We know that if we do not have a 64 bit data
847 type that we will never execute this code anyway. */
848 #ifdef BFD64
849 if (elf_header.e_machine == EM_MIPS
850 && elf_header.e_ident[EI_DATA] != ELFDATA2MSB)
851 {
852 /* In little-endian objects, r_info isn't really a
853 64-bit little-endian value: it has a 32-bit
854 little-endian symbol index followed by four
855 individual byte fields. Reorder INFO
856 accordingly. */
857 bfd_vma inf = rels[i].r_info;
858 inf = (((inf & 0xffffffff) << 32)
859 | ((inf >> 56) & 0xff)
860 | ((inf >> 40) & 0xff00)
861 | ((inf >> 24) & 0xff0000)
862 | ((inf >> 8) & 0xff000000));
863 rels[i].r_info = inf;
864 }
865 #endif /* BFD64 */
866 }
867
868 free (erels);
869 }
870 *relsp = rels;
871 *nrelsp = nrels;
872 return 1;
873 }
874
875 /* Returns the reloc type extracted from the reloc info field. */
876
877 static unsigned int
878 get_reloc_type (bfd_vma reloc_info)
879 {
880 if (is_32bit_elf)
881 return ELF32_R_TYPE (reloc_info);
882
883 switch (elf_header.e_machine)
884 {
885 case EM_MIPS:
886 /* Note: We assume that reloc_info has already been adjusted for us. */
887 return ELF64_MIPS_R_TYPE (reloc_info);
888
889 case EM_SPARCV9:
890 return ELF64_R_TYPE_ID (reloc_info);
891
892 default:
893 return ELF64_R_TYPE (reloc_info);
894 }
895 }
896
897 /* Return the symbol index extracted from the reloc info field. */
898
899 static bfd_vma
900 get_reloc_symindex (bfd_vma reloc_info)
901 {
902 return is_32bit_elf ? ELF32_R_SYM (reloc_info) : ELF64_R_SYM (reloc_info);
903 }
904
905 static inline bfd_boolean
906 uses_msp430x_relocs (void)
907 {
908 return
909 elf_header.e_machine == EM_MSP430 /* Paranoia. */
910 /* GCC uses osabi == ELFOSBI_STANDALONE. */
911 && (((elf_header.e_flags & EF_MSP430_MACH) == E_MSP430_MACH_MSP430X)
912 /* TI compiler uses ELFOSABI_NONE. */
913 || (elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE));
914 }
915
916 /* Display the contents of the relocation data found at the specified
917 offset. */
918
919 static void
920 dump_relocations (FILE * file,
921 unsigned long rel_offset,
922 unsigned long rel_size,
923 Elf_Internal_Sym * symtab,
924 unsigned long nsyms,
925 char * strtab,
926 unsigned long strtablen,
927 int is_rela)
928 {
929 unsigned int i;
930 Elf_Internal_Rela * rels;
931
932 if (is_rela == UNKNOWN)
933 is_rela = guess_is_rela (elf_header.e_machine);
934
935 if (is_rela)
936 {
937 if (!slurp_rela_relocs (file, rel_offset, rel_size, &rels, &rel_size))
938 return;
939 }
940 else
941 {
942 if (!slurp_rel_relocs (file, rel_offset, rel_size, &rels, &rel_size))
943 return;
944 }
945
946 if (is_32bit_elf)
947 {
948 if (is_rela)
949 {
950 if (do_wide)
951 printf (_(" Offset Info Type Sym. Value Symbol's Name + Addend\n"));
952 else
953 printf (_(" Offset Info Type Sym.Value Sym. Name + Addend\n"));
954 }
955 else
956 {
957 if (do_wide)
958 printf (_(" Offset Info Type Sym. Value Symbol's Name\n"));
959 else
960 printf (_(" Offset Info Type Sym.Value Sym. Name\n"));
961 }
962 }
963 else
964 {
965 if (is_rela)
966 {
967 if (do_wide)
968 printf (_(" Offset Info Type Symbol's Value Symbol's Name + Addend\n"));
969 else
970 printf (_(" Offset Info Type Sym. Value Sym. Name + Addend\n"));
971 }
972 else
973 {
974 if (do_wide)
975 printf (_(" Offset Info Type Symbol's Value Symbol's Name\n"));
976 else
977 printf (_(" Offset Info Type Sym. Value Sym. Name\n"));
978 }
979 }
980
981 for (i = 0; i < rel_size; i++)
982 {
983 const char * rtype;
984 bfd_vma offset;
985 bfd_vma inf;
986 bfd_vma symtab_index;
987 bfd_vma type;
988
989 offset = rels[i].r_offset;
990 inf = rels[i].r_info;
991
992 type = get_reloc_type (inf);
993 symtab_index = get_reloc_symindex (inf);
994
995 if (is_32bit_elf)
996 {
997 printf ("%8.8lx %8.8lx ",
998 (unsigned long) offset & 0xffffffff,
999 (unsigned long) inf & 0xffffffff);
1000 }
1001 else
1002 {
1003 #if BFD_HOST_64BIT_LONG
1004 printf (do_wide
1005 ? "%16.16lx %16.16lx "
1006 : "%12.12lx %12.12lx ",
1007 offset, inf);
1008 #elif BFD_HOST_64BIT_LONG_LONG
1009 #ifndef __MSVCRT__
1010 printf (do_wide
1011 ? "%16.16llx %16.16llx "
1012 : "%12.12llx %12.12llx ",
1013 offset, inf);
1014 #else
1015 printf (do_wide
1016 ? "%16.16I64x %16.16I64x "
1017 : "%12.12I64x %12.12I64x ",
1018 offset, inf);
1019 #endif
1020 #else
1021 printf (do_wide
1022 ? "%8.8lx%8.8lx %8.8lx%8.8lx "
1023 : "%4.4lx%8.8lx %4.4lx%8.8lx ",
1024 _bfd_int64_high (offset),
1025 _bfd_int64_low (offset),
1026 _bfd_int64_high (inf),
1027 _bfd_int64_low (inf));
1028 #endif
1029 }
1030
1031 switch (elf_header.e_machine)
1032 {
1033 default:
1034 rtype = NULL;
1035 break;
1036
1037 case EM_AARCH64:
1038 rtype = elf_aarch64_reloc_type (type);
1039 break;
1040
1041 case EM_M32R:
1042 case EM_CYGNUS_M32R:
1043 rtype = elf_m32r_reloc_type (type);
1044 break;
1045
1046 case EM_386:
1047 case EM_486:
1048 rtype = elf_i386_reloc_type (type);
1049 break;
1050
1051 case EM_68HC11:
1052 case EM_68HC12:
1053 rtype = elf_m68hc11_reloc_type (type);
1054 break;
1055
1056 case EM_68K:
1057 rtype = elf_m68k_reloc_type (type);
1058 break;
1059
1060 case EM_960:
1061 rtype = elf_i960_reloc_type (type);
1062 break;
1063
1064 case EM_AVR:
1065 case EM_AVR_OLD:
1066 rtype = elf_avr_reloc_type (type);
1067 break;
1068
1069 case EM_OLD_SPARCV9:
1070 case EM_SPARC32PLUS:
1071 case EM_SPARCV9:
1072 case EM_SPARC:
1073 rtype = elf_sparc_reloc_type (type);
1074 break;
1075
1076 case EM_SPU:
1077 rtype = elf_spu_reloc_type (type);
1078 break;
1079
1080 case EM_V800:
1081 rtype = v800_reloc_type (type);
1082 break;
1083 case EM_V850:
1084 case EM_CYGNUS_V850:
1085 rtype = v850_reloc_type (type);
1086 break;
1087
1088 case EM_D10V:
1089 case EM_CYGNUS_D10V:
1090 rtype = elf_d10v_reloc_type (type);
1091 break;
1092
1093 case EM_D30V:
1094 case EM_CYGNUS_D30V:
1095 rtype = elf_d30v_reloc_type (type);
1096 break;
1097
1098 case EM_DLX:
1099 rtype = elf_dlx_reloc_type (type);
1100 break;
1101
1102 case EM_SH:
1103 rtype = elf_sh_reloc_type (type);
1104 break;
1105
1106 case EM_MN10300:
1107 case EM_CYGNUS_MN10300:
1108 rtype = elf_mn10300_reloc_type (type);
1109 break;
1110
1111 case EM_MN10200:
1112 case EM_CYGNUS_MN10200:
1113 rtype = elf_mn10200_reloc_type (type);
1114 break;
1115
1116 case EM_FR30:
1117 case EM_CYGNUS_FR30:
1118 rtype = elf_fr30_reloc_type (type);
1119 break;
1120
1121 case EM_CYGNUS_FRV:
1122 rtype = elf_frv_reloc_type (type);
1123 break;
1124
1125 case EM_MCORE:
1126 rtype = elf_mcore_reloc_type (type);
1127 break;
1128
1129 case EM_MMIX:
1130 rtype = elf_mmix_reloc_type (type);
1131 break;
1132
1133 case EM_MOXIE:
1134 rtype = elf_moxie_reloc_type (type);
1135 break;
1136
1137 case EM_MSP430:
1138 if (uses_msp430x_relocs ())
1139 {
1140 rtype = elf_msp430x_reloc_type (type);
1141 break;
1142 }
1143 case EM_MSP430_OLD:
1144 rtype = elf_msp430_reloc_type (type);
1145 break;
1146
1147 case EM_PPC:
1148 rtype = elf_ppc_reloc_type (type);
1149 break;
1150
1151 case EM_PPC64:
1152 rtype = elf_ppc64_reloc_type (type);
1153 break;
1154
1155 case EM_MIPS:
1156 case EM_MIPS_RS3_LE:
1157 rtype = elf_mips_reloc_type (type);
1158 break;
1159
1160 case EM_ALPHA:
1161 rtype = elf_alpha_reloc_type (type);
1162 break;
1163
1164 case EM_ARM:
1165 rtype = elf_arm_reloc_type (type);
1166 break;
1167
1168 case EM_ARC:
1169 rtype = elf_arc_reloc_type (type);
1170 break;
1171
1172 case EM_PARISC:
1173 rtype = elf_hppa_reloc_type (type);
1174 break;
1175
1176 case EM_H8_300:
1177 case EM_H8_300H:
1178 case EM_H8S:
1179 rtype = elf_h8_reloc_type (type);
1180 break;
1181
1182 case EM_OPENRISC:
1183 case EM_OR32:
1184 rtype = elf_or32_reloc_type (type);
1185 break;
1186
1187 case EM_PJ:
1188 case EM_PJ_OLD:
1189 rtype = elf_pj_reloc_type (type);
1190 break;
1191 case EM_IA_64:
1192 rtype = elf_ia64_reloc_type (type);
1193 break;
1194
1195 case EM_CRIS:
1196 rtype = elf_cris_reloc_type (type);
1197 break;
1198
1199 case EM_860:
1200 rtype = elf_i860_reloc_type (type);
1201 break;
1202
1203 case EM_X86_64:
1204 case EM_L1OM:
1205 case EM_K1OM:
1206 rtype = elf_x86_64_reloc_type (type);
1207 break;
1208
1209 case EM_S370:
1210 rtype = i370_reloc_type (type);
1211 break;
1212
1213 case EM_S390_OLD:
1214 case EM_S390:
1215 rtype = elf_s390_reloc_type (type);
1216 break;
1217
1218 case EM_SCORE:
1219 rtype = elf_score_reloc_type (type);
1220 break;
1221
1222 case EM_XSTORMY16:
1223 rtype = elf_xstormy16_reloc_type (type);
1224 break;
1225
1226 case EM_CRX:
1227 rtype = elf_crx_reloc_type (type);
1228 break;
1229
1230 case EM_VAX:
1231 rtype = elf_vax_reloc_type (type);
1232 break;
1233
1234 case EM_ADAPTEVA_EPIPHANY:
1235 rtype = elf_epiphany_reloc_type (type);
1236 break;
1237
1238 case EM_IP2K:
1239 case EM_IP2K_OLD:
1240 rtype = elf_ip2k_reloc_type (type);
1241 break;
1242
1243 case EM_IQ2000:
1244 rtype = elf_iq2000_reloc_type (type);
1245 break;
1246
1247 case EM_XTENSA_OLD:
1248 case EM_XTENSA:
1249 rtype = elf_xtensa_reloc_type (type);
1250 break;
1251
1252 case EM_LATTICEMICO32:
1253 rtype = elf_lm32_reloc_type (type);
1254 break;
1255
1256 case EM_M32C_OLD:
1257 case EM_M32C:
1258 rtype = elf_m32c_reloc_type (type);
1259 break;
1260
1261 case EM_MT:
1262 rtype = elf_mt_reloc_type (type);
1263 break;
1264
1265 case EM_BLACKFIN:
1266 rtype = elf_bfin_reloc_type (type);
1267 break;
1268
1269 case EM_CYGNUS_MEP:
1270 rtype = elf_mep_reloc_type (type);
1271 break;
1272
1273 case EM_CR16:
1274 rtype = elf_cr16_reloc_type (type);
1275 break;
1276
1277 case EM_MICROBLAZE:
1278 case EM_MICROBLAZE_OLD:
1279 rtype = elf_microblaze_reloc_type (type);
1280 break;
1281
1282 case EM_RL78:
1283 rtype = elf_rl78_reloc_type (type);
1284 break;
1285
1286 case EM_RX:
1287 rtype = elf_rx_reloc_type (type);
1288 break;
1289
1290 case EM_METAG:
1291 rtype = elf_metag_reloc_type (type);
1292 break;
1293
1294 case EM_XC16X:
1295 case EM_C166:
1296 rtype = elf_xc16x_reloc_type (type);
1297 break;
1298
1299 case EM_TI_C6000:
1300 rtype = elf_tic6x_reloc_type (type);
1301 break;
1302
1303 case EM_TILEGX:
1304 rtype = elf_tilegx_reloc_type (type);
1305 break;
1306
1307 case EM_TILEPRO:
1308 rtype = elf_tilepro_reloc_type (type);
1309 break;
1310
1311 case EM_XGATE:
1312 rtype = elf_xgate_reloc_type (type);
1313 break;
1314
1315 case EM_ALTERA_NIOS2:
1316 rtype = elf_nios2_reloc_type (type);
1317 break;
1318 }
1319
1320 if (rtype == NULL)
1321 printf (_("unrecognized: %-7lx"), (unsigned long) type & 0xffffffff);
1322 else
1323 printf (do_wide ? "%-22.22s" : "%-17.17s", rtype);
1324
1325 if (elf_header.e_machine == EM_ALPHA
1326 && rtype != NULL
1327 && streq (rtype, "R_ALPHA_LITUSE")
1328 && is_rela)
1329 {
1330 switch (rels[i].r_addend)
1331 {
1332 case LITUSE_ALPHA_ADDR: rtype = "ADDR"; break;
1333 case LITUSE_ALPHA_BASE: rtype = "BASE"; break;
1334 case LITUSE_ALPHA_BYTOFF: rtype = "BYTOFF"; break;
1335 case LITUSE_ALPHA_JSR: rtype = "JSR"; break;
1336 case LITUSE_ALPHA_TLSGD: rtype = "TLSGD"; break;
1337 case LITUSE_ALPHA_TLSLDM: rtype = "TLSLDM"; break;
1338 case LITUSE_ALPHA_JSRDIRECT: rtype = "JSRDIRECT"; break;
1339 default: rtype = NULL;
1340 }
1341 if (rtype)
1342 printf (" (%s)", rtype);
1343 else
1344 {
1345 putchar (' ');
1346 printf (_("<unknown addend: %lx>"),
1347 (unsigned long) rels[i].r_addend);
1348 }
1349 }
1350 else if (symtab_index)
1351 {
1352 if (symtab == NULL || symtab_index >= nsyms)
1353 printf (_(" bad symbol index: %08lx"), (unsigned long) symtab_index);
1354 else
1355 {
1356 Elf_Internal_Sym * psym;
1357
1358 psym = symtab + symtab_index;
1359
1360 printf (" ");
1361
1362 if (ELF_ST_TYPE (psym->st_info) == STT_GNU_IFUNC)
1363 {
1364 const char * name;
1365 unsigned int len;
1366 unsigned int width = is_32bit_elf ? 8 : 14;
1367
1368 /* Relocations against GNU_IFUNC symbols do not use the value
1369 of the symbol as the address to relocate against. Instead
1370 they invoke the function named by the symbol and use its
1371 result as the address for relocation.
1372
1373 To indicate this to the user, do not display the value of
1374 the symbol in the "Symbols's Value" field. Instead show
1375 its name followed by () as a hint that the symbol is
1376 invoked. */
1377
1378 if (strtab == NULL
1379 || psym->st_name == 0
1380 || psym->st_name >= strtablen)
1381 name = "??";
1382 else
1383 name = strtab + psym->st_name;
1384
1385 len = print_symbol (width, name);
1386 printf ("()%-*s", len <= width ? (width + 1) - len : 1, " ");
1387 }
1388 else
1389 {
1390 print_vma (psym->st_value, LONG_HEX);
1391
1392 printf (is_32bit_elf ? " " : " ");
1393 }
1394
1395 if (psym->st_name == 0)
1396 {
1397 const char * sec_name = "<null>";
1398 char name_buf[40];
1399
1400 if (ELF_ST_TYPE (psym->st_info) == STT_SECTION)
1401 {
1402 if (psym->st_shndx < elf_header.e_shnum)
1403 sec_name
1404 = SECTION_NAME (section_headers + psym->st_shndx);
1405 else if (psym->st_shndx == SHN_ABS)
1406 sec_name = "ABS";
1407 else if (psym->st_shndx == SHN_COMMON)
1408 sec_name = "COMMON";
1409 else if ((elf_header.e_machine == EM_MIPS
1410 && psym->st_shndx == SHN_MIPS_SCOMMON)
1411 || (elf_header.e_machine == EM_TI_C6000
1412 && psym->st_shndx == SHN_TIC6X_SCOMMON))
1413 sec_name = "SCOMMON";
1414 else if (elf_header.e_machine == EM_MIPS
1415 && psym->st_shndx == SHN_MIPS_SUNDEFINED)
1416 sec_name = "SUNDEF";
1417 else if ((elf_header.e_machine == EM_X86_64
1418 || elf_header.e_machine == EM_L1OM
1419 || elf_header.e_machine == EM_K1OM)
1420 && psym->st_shndx == SHN_X86_64_LCOMMON)
1421 sec_name = "LARGE_COMMON";
1422 else if (elf_header.e_machine == EM_IA_64
1423 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX
1424 && psym->st_shndx == SHN_IA_64_ANSI_COMMON)
1425 sec_name = "ANSI_COM";
1426 else if (is_ia64_vms ()
1427 && psym->st_shndx == SHN_IA_64_VMS_SYMVEC)
1428 sec_name = "VMS_SYMVEC";
1429 else
1430 {
1431 sprintf (name_buf, "<section 0x%x>",
1432 (unsigned int) psym->st_shndx);
1433 sec_name = name_buf;
1434 }
1435 }
1436 print_symbol (22, sec_name);
1437 }
1438 else if (strtab == NULL)
1439 printf (_("<string table index: %3ld>"), psym->st_name);
1440 else if (psym->st_name >= strtablen)
1441 printf (_("<corrupt string table index: %3ld>"), psym->st_name);
1442 else
1443 print_symbol (22, strtab + psym->st_name);
1444
1445 if (is_rela)
1446 {
1447 bfd_signed_vma off = rels[i].r_addend;
1448
1449 if (off < 0)
1450 printf (" - %" BFD_VMA_FMT "x", - off);
1451 else
1452 printf (" + %" BFD_VMA_FMT "x", off);
1453 }
1454 }
1455 }
1456 else if (is_rela)
1457 {
1458 bfd_signed_vma off = rels[i].r_addend;
1459
1460 printf ("%*c", is_32bit_elf ? 12 : 20, ' ');
1461 if (off < 0)
1462 printf ("-%" BFD_VMA_FMT "x", - off);
1463 else
1464 printf ("%" BFD_VMA_FMT "x", off);
1465 }
1466
1467 if (elf_header.e_machine == EM_SPARCV9
1468 && rtype != NULL
1469 && streq (rtype, "R_SPARC_OLO10"))
1470 printf (" + %lx", (unsigned long) ELF64_R_TYPE_DATA (inf));
1471
1472 putchar ('\n');
1473
1474 #ifdef BFD64
1475 if (! is_32bit_elf && elf_header.e_machine == EM_MIPS)
1476 {
1477 bfd_vma type2 = ELF64_MIPS_R_TYPE2 (inf);
1478 bfd_vma type3 = ELF64_MIPS_R_TYPE3 (inf);
1479 const char * rtype2 = elf_mips_reloc_type (type2);
1480 const char * rtype3 = elf_mips_reloc_type (type3);
1481
1482 printf (" Type2: ");
1483
1484 if (rtype2 == NULL)
1485 printf (_("unrecognized: %-7lx"),
1486 (unsigned long) type2 & 0xffffffff);
1487 else
1488 printf ("%-17.17s", rtype2);
1489
1490 printf ("\n Type3: ");
1491
1492 if (rtype3 == NULL)
1493 printf (_("unrecognized: %-7lx"),
1494 (unsigned long) type3 & 0xffffffff);
1495 else
1496 printf ("%-17.17s", rtype3);
1497
1498 putchar ('\n');
1499 }
1500 #endif /* BFD64 */
1501 }
1502
1503 free (rels);
1504 }
1505
1506 static const char *
1507 get_mips_dynamic_type (unsigned long type)
1508 {
1509 switch (type)
1510 {
1511 case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION";
1512 case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP";
1513 case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM";
1514 case DT_MIPS_IVERSION: return "MIPS_IVERSION";
1515 case DT_MIPS_FLAGS: return "MIPS_FLAGS";
1516 case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS";
1517 case DT_MIPS_MSYM: return "MIPS_MSYM";
1518 case DT_MIPS_CONFLICT: return "MIPS_CONFLICT";
1519 case DT_MIPS_LIBLIST: return "MIPS_LIBLIST";
1520 case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO";
1521 case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO";
1522 case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO";
1523 case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO";
1524 case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO";
1525 case DT_MIPS_GOTSYM: return "MIPS_GOTSYM";
1526 case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO";
1527 case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP";
1528 case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS";
1529 case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO";
1530 case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE";
1531 case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO";
1532 case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC";
1533 case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO";
1534 case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM";
1535 case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO";
1536 case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM";
1537 case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO";
1538 case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS";
1539 case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT";
1540 case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
1541 case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX";
1542 case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX";
1543 case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX";
1544 case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX";
1545 case DT_MIPS_OPTIONS: return "MIPS_OPTIONS";
1546 case DT_MIPS_INTERFACE: return "MIPS_INTERFACE";
1547 case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN";
1548 case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE";
1549 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR";
1550 case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX";
1551 case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE";
1552 case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE";
1553 case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC";
1554 case DT_MIPS_PLTGOT: return "MIPS_PLTGOT";
1555 case DT_MIPS_RWPLT: return "MIPS_RWPLT";
1556 default:
1557 return NULL;
1558 }
1559 }
1560
1561 static const char *
1562 get_sparc64_dynamic_type (unsigned long type)
1563 {
1564 switch (type)
1565 {
1566 case DT_SPARC_REGISTER: return "SPARC_REGISTER";
1567 default:
1568 return NULL;
1569 }
1570 }
1571
1572 static const char *
1573 get_ppc_dynamic_type (unsigned long type)
1574 {
1575 switch (type)
1576 {
1577 case DT_PPC_GOT: return "PPC_GOT";
1578 case DT_PPC_TLSOPT: return "PPC_TLSOPT";
1579 default:
1580 return NULL;
1581 }
1582 }
1583
1584 static const char *
1585 get_ppc64_dynamic_type (unsigned long type)
1586 {
1587 switch (type)
1588 {
1589 case DT_PPC64_GLINK: return "PPC64_GLINK";
1590 case DT_PPC64_OPD: return "PPC64_OPD";
1591 case DT_PPC64_OPDSZ: return "PPC64_OPDSZ";
1592 case DT_PPC64_TLSOPT: return "PPC64_TLSOPT";
1593 default:
1594 return NULL;
1595 }
1596 }
1597
1598 static const char *
1599 get_parisc_dynamic_type (unsigned long type)
1600 {
1601 switch (type)
1602 {
1603 case DT_HP_LOAD_MAP: return "HP_LOAD_MAP";
1604 case DT_HP_DLD_FLAGS: return "HP_DLD_FLAGS";
1605 case DT_HP_DLD_HOOK: return "HP_DLD_HOOK";
1606 case DT_HP_UX10_INIT: return "HP_UX10_INIT";
1607 case DT_HP_UX10_INITSZ: return "HP_UX10_INITSZ";
1608 case DT_HP_PREINIT: return "HP_PREINIT";
1609 case DT_HP_PREINITSZ: return "HP_PREINITSZ";
1610 case DT_HP_NEEDED: return "HP_NEEDED";
1611 case DT_HP_TIME_STAMP: return "HP_TIME_STAMP";
1612 case DT_HP_CHECKSUM: return "HP_CHECKSUM";
1613 case DT_HP_GST_SIZE: return "HP_GST_SIZE";
1614 case DT_HP_GST_VERSION: return "HP_GST_VERSION";
1615 case DT_HP_GST_HASHVAL: return "HP_GST_HASHVAL";
1616 case DT_HP_EPLTREL: return "HP_GST_EPLTREL";
1617 case DT_HP_EPLTRELSZ: return "HP_GST_EPLTRELSZ";
1618 case DT_HP_FILTERED: return "HP_FILTERED";
1619 case DT_HP_FILTER_TLS: return "HP_FILTER_TLS";
1620 case DT_HP_COMPAT_FILTERED: return "HP_COMPAT_FILTERED";
1621 case DT_HP_LAZYLOAD: return "HP_LAZYLOAD";
1622 case DT_HP_BIND_NOW_COUNT: return "HP_BIND_NOW_COUNT";
1623 case DT_PLT: return "PLT";
1624 case DT_PLT_SIZE: return "PLT_SIZE";
1625 case DT_DLT: return "DLT";
1626 case DT_DLT_SIZE: return "DLT_SIZE";
1627 default:
1628 return NULL;
1629 }
1630 }
1631
1632 static const char *
1633 get_ia64_dynamic_type (unsigned long type)
1634 {
1635 switch (type)
1636 {
1637 case DT_IA_64_PLT_RESERVE: return "IA_64_PLT_RESERVE";
1638 case DT_IA_64_VMS_SUBTYPE: return "VMS_SUBTYPE";
1639 case DT_IA_64_VMS_IMGIOCNT: return "VMS_IMGIOCNT";
1640 case DT_IA_64_VMS_LNKFLAGS: return "VMS_LNKFLAGS";
1641 case DT_IA_64_VMS_VIR_MEM_BLK_SIZ: return "VMS_VIR_MEM_BLK_SIZ";
1642 case DT_IA_64_VMS_IDENT: return "VMS_IDENT";
1643 case DT_IA_64_VMS_NEEDED_IDENT: return "VMS_NEEDED_IDENT";
1644 case DT_IA_64_VMS_IMG_RELA_CNT: return "VMS_IMG_RELA_CNT";
1645 case DT_IA_64_VMS_SEG_RELA_CNT: return "VMS_SEG_RELA_CNT";
1646 case DT_IA_64_VMS_FIXUP_RELA_CNT: return "VMS_FIXUP_RELA_CNT";
1647 case DT_IA_64_VMS_FIXUP_NEEDED: return "VMS_FIXUP_NEEDED";
1648 case DT_IA_64_VMS_SYMVEC_CNT: return "VMS_SYMVEC_CNT";
1649 case DT_IA_64_VMS_XLATED: return "VMS_XLATED";
1650 case DT_IA_64_VMS_STACKSIZE: return "VMS_STACKSIZE";
1651 case DT_IA_64_VMS_UNWINDSZ: return "VMS_UNWINDSZ";
1652 case DT_IA_64_VMS_UNWIND_CODSEG: return "VMS_UNWIND_CODSEG";
1653 case DT_IA_64_VMS_UNWIND_INFOSEG: return "VMS_UNWIND_INFOSEG";
1654 case DT_IA_64_VMS_LINKTIME: return "VMS_LINKTIME";
1655 case DT_IA_64_VMS_SEG_NO: return "VMS_SEG_NO";
1656 case DT_IA_64_VMS_SYMVEC_OFFSET: return "VMS_SYMVEC_OFFSET";
1657 case DT_IA_64_VMS_SYMVEC_SEG: return "VMS_SYMVEC_SEG";
1658 case DT_IA_64_VMS_UNWIND_OFFSET: return "VMS_UNWIND_OFFSET";
1659 case DT_IA_64_VMS_UNWIND_SEG: return "VMS_UNWIND_SEG";
1660 case DT_IA_64_VMS_STRTAB_OFFSET: return "VMS_STRTAB_OFFSET";
1661 case DT_IA_64_VMS_SYSVER_OFFSET: return "VMS_SYSVER_OFFSET";
1662 case DT_IA_64_VMS_IMG_RELA_OFF: return "VMS_IMG_RELA_OFF";
1663 case DT_IA_64_VMS_SEG_RELA_OFF: return "VMS_SEG_RELA_OFF";
1664 case DT_IA_64_VMS_FIXUP_RELA_OFF: return "VMS_FIXUP_RELA_OFF";
1665 case DT_IA_64_VMS_PLTGOT_OFFSET: return "VMS_PLTGOT_OFFSET";
1666 case DT_IA_64_VMS_PLTGOT_SEG: return "VMS_PLTGOT_SEG";
1667 case DT_IA_64_VMS_FPMODE: return "VMS_FPMODE";
1668 default:
1669 return NULL;
1670 }
1671 }
1672
1673 static const char *
1674 get_alpha_dynamic_type (unsigned long type)
1675 {
1676 switch (type)
1677 {
1678 case DT_ALPHA_PLTRO: return "ALPHA_PLTRO";
1679 default:
1680 return NULL;
1681 }
1682 }
1683
1684 static const char *
1685 get_score_dynamic_type (unsigned long type)
1686 {
1687 switch (type)
1688 {
1689 case DT_SCORE_BASE_ADDRESS: return "SCORE_BASE_ADDRESS";
1690 case DT_SCORE_LOCAL_GOTNO: return "SCORE_LOCAL_GOTNO";
1691 case DT_SCORE_SYMTABNO: return "SCORE_SYMTABNO";
1692 case DT_SCORE_GOTSYM: return "SCORE_GOTSYM";
1693 case DT_SCORE_UNREFEXTNO: return "SCORE_UNREFEXTNO";
1694 case DT_SCORE_HIPAGENO: return "SCORE_HIPAGENO";
1695 default:
1696 return NULL;
1697 }
1698 }
1699
1700 static const char *
1701 get_tic6x_dynamic_type (unsigned long type)
1702 {
1703 switch (type)
1704 {
1705 case DT_C6000_GSYM_OFFSET: return "C6000_GSYM_OFFSET";
1706 case DT_C6000_GSTR_OFFSET: return "C6000_GSTR_OFFSET";
1707 case DT_C6000_DSBT_BASE: return "C6000_DSBT_BASE";
1708 case DT_C6000_DSBT_SIZE: return "C6000_DSBT_SIZE";
1709 case DT_C6000_PREEMPTMAP: return "C6000_PREEMPTMAP";
1710 case DT_C6000_DSBT_INDEX: return "C6000_DSBT_INDEX";
1711 default:
1712 return NULL;
1713 }
1714 }
1715
1716 static const char *
1717 get_nios2_dynamic_type (unsigned long type)
1718 {
1719 switch (type)
1720 {
1721 case DT_NIOS2_GP: return "NIOS2_GP";
1722 default:
1723 return NULL;
1724 }
1725 }
1726
1727 static const char *
1728 get_dynamic_type (unsigned long type)
1729 {
1730 static char buff[64];
1731
1732 switch (type)
1733 {
1734 case DT_NULL: return "NULL";
1735 case DT_NEEDED: return "NEEDED";
1736 case DT_PLTRELSZ: return "PLTRELSZ";
1737 case DT_PLTGOT: return "PLTGOT";
1738 case DT_HASH: return "HASH";
1739 case DT_STRTAB: return "STRTAB";
1740 case DT_SYMTAB: return "SYMTAB";
1741 case DT_RELA: return "RELA";
1742 case DT_RELASZ: return "RELASZ";
1743 case DT_RELAENT: return "RELAENT";
1744 case DT_STRSZ: return "STRSZ";
1745 case DT_SYMENT: return "SYMENT";
1746 case DT_INIT: return "INIT";
1747 case DT_FINI: return "FINI";
1748 case DT_SONAME: return "SONAME";
1749 case DT_RPATH: return "RPATH";
1750 case DT_SYMBOLIC: return "SYMBOLIC";
1751 case DT_REL: return "REL";
1752 case DT_RELSZ: return "RELSZ";
1753 case DT_RELENT: return "RELENT";
1754 case DT_PLTREL: return "PLTREL";
1755 case DT_DEBUG: return "DEBUG";
1756 case DT_TEXTREL: return "TEXTREL";
1757 case DT_JMPREL: return "JMPREL";
1758 case DT_BIND_NOW: return "BIND_NOW";
1759 case DT_INIT_ARRAY: return "INIT_ARRAY";
1760 case DT_FINI_ARRAY: return "FINI_ARRAY";
1761 case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
1762 case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
1763 case DT_RUNPATH: return "RUNPATH";
1764 case DT_FLAGS: return "FLAGS";
1765
1766 case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
1767 case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
1768
1769 case DT_CHECKSUM: return "CHECKSUM";
1770 case DT_PLTPADSZ: return "PLTPADSZ";
1771 case DT_MOVEENT: return "MOVEENT";
1772 case DT_MOVESZ: return "MOVESZ";
1773 case DT_FEATURE: return "FEATURE";
1774 case DT_POSFLAG_1: return "POSFLAG_1";
1775 case DT_SYMINSZ: return "SYMINSZ";
1776 case DT_SYMINENT: return "SYMINENT"; /* aka VALRNGHI */
1777
1778 case DT_ADDRRNGLO: return "ADDRRNGLO";
1779 case DT_CONFIG: return "CONFIG";
1780 case DT_DEPAUDIT: return "DEPAUDIT";
1781 case DT_AUDIT: return "AUDIT";
1782 case DT_PLTPAD: return "PLTPAD";
1783 case DT_MOVETAB: return "MOVETAB";
1784 case DT_SYMINFO: return "SYMINFO"; /* aka ADDRRNGHI */
1785
1786 case DT_VERSYM: return "VERSYM";
1787
1788 case DT_TLSDESC_GOT: return "TLSDESC_GOT";
1789 case DT_TLSDESC_PLT: return "TLSDESC_PLT";
1790 case DT_RELACOUNT: return "RELACOUNT";
1791 case DT_RELCOUNT: return "RELCOUNT";
1792 case DT_FLAGS_1: return "FLAGS_1";
1793 case DT_VERDEF: return "VERDEF";
1794 case DT_VERDEFNUM: return "VERDEFNUM";
1795 case DT_VERNEED: return "VERNEED";
1796 case DT_VERNEEDNUM: return "VERNEEDNUM";
1797
1798 case DT_AUXILIARY: return "AUXILIARY";
1799 case DT_USED: return "USED";
1800 case DT_FILTER: return "FILTER";
1801
1802 case DT_GNU_PRELINKED: return "GNU_PRELINKED";
1803 case DT_GNU_CONFLICT: return "GNU_CONFLICT";
1804 case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
1805 case DT_GNU_LIBLIST: return "GNU_LIBLIST";
1806 case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
1807 case DT_GNU_HASH: return "GNU_HASH";
1808
1809 default:
1810 if ((type >= DT_LOPROC) && (type <= DT_HIPROC))
1811 {
1812 const char * result;
1813
1814 switch (elf_header.e_machine)
1815 {
1816 case EM_MIPS:
1817 case EM_MIPS_RS3_LE:
1818 result = get_mips_dynamic_type (type);
1819 break;
1820 case EM_SPARCV9:
1821 result = get_sparc64_dynamic_type (type);
1822 break;
1823 case EM_PPC:
1824 result = get_ppc_dynamic_type (type);
1825 break;
1826 case EM_PPC64:
1827 result = get_ppc64_dynamic_type (type);
1828 break;
1829 case EM_IA_64:
1830 result = get_ia64_dynamic_type (type);
1831 break;
1832 case EM_ALPHA:
1833 result = get_alpha_dynamic_type (type);
1834 break;
1835 case EM_SCORE:
1836 result = get_score_dynamic_type (type);
1837 break;
1838 case EM_TI_C6000:
1839 result = get_tic6x_dynamic_type (type);
1840 break;
1841 case EM_ALTERA_NIOS2:
1842 result = get_nios2_dynamic_type (type);
1843 break;
1844 default:
1845 result = NULL;
1846 break;
1847 }
1848
1849 if (result != NULL)
1850 return result;
1851
1852 snprintf (buff, sizeof (buff), _("Processor Specific: %lx"), type);
1853 }
1854 else if (((type >= DT_LOOS) && (type <= DT_HIOS))
1855 || (elf_header.e_machine == EM_PARISC
1856 && (type >= OLD_DT_LOOS) && (type <= OLD_DT_HIOS)))
1857 {
1858 const char * result;
1859
1860 switch (elf_header.e_machine)
1861 {
1862 case EM_PARISC:
1863 result = get_parisc_dynamic_type (type);
1864 break;
1865 case EM_IA_64:
1866 result = get_ia64_dynamic_type (type);
1867 break;
1868 default:
1869 result = NULL;
1870 break;
1871 }
1872
1873 if (result != NULL)
1874 return result;
1875
1876 snprintf (buff, sizeof (buff), _("Operating System specific: %lx"),
1877 type);
1878 }
1879 else
1880 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), type);
1881
1882 return buff;
1883 }
1884 }
1885
1886 static char *
1887 get_file_type (unsigned e_type)
1888 {
1889 static char buff[32];
1890
1891 switch (e_type)
1892 {
1893 case ET_NONE: return _("NONE (None)");
1894 case ET_REL: return _("REL (Relocatable file)");
1895 case ET_EXEC: return _("EXEC (Executable file)");
1896 case ET_DYN: return _("DYN (Shared object file)");
1897 case ET_CORE: return _("CORE (Core file)");
1898
1899 default:
1900 if ((e_type >= ET_LOPROC) && (e_type <= ET_HIPROC))
1901 snprintf (buff, sizeof (buff), _("Processor Specific: (%x)"), e_type);
1902 else if ((e_type >= ET_LOOS) && (e_type <= ET_HIOS))
1903 snprintf (buff, sizeof (buff), _("OS Specific: (%x)"), e_type);
1904 else
1905 snprintf (buff, sizeof (buff), _("<unknown>: %x"), e_type);
1906 return buff;
1907 }
1908 }
1909
1910 static char *
1911 get_machine_name (unsigned e_machine)
1912 {
1913 static char buff[64]; /* XXX */
1914
1915 switch (e_machine)
1916 {
1917 case EM_NONE: return _("None");
1918 case EM_AARCH64: return "AArch64";
1919 case EM_M32: return "WE32100";
1920 case EM_SPARC: return "Sparc";
1921 case EM_SPU: return "SPU";
1922 case EM_386: return "Intel 80386";
1923 case EM_68K: return "MC68000";
1924 case EM_88K: return "MC88000";
1925 case EM_486: return "Intel 80486";
1926 case EM_860: return "Intel 80860";
1927 case EM_MIPS: return "MIPS R3000";
1928 case EM_S370: return "IBM System/370";
1929 case EM_MIPS_RS3_LE: return "MIPS R4000 big-endian";
1930 case EM_OLD_SPARCV9: return "Sparc v9 (old)";
1931 case EM_PARISC: return "HPPA";
1932 case EM_PPC_OLD: return "Power PC (old)";
1933 case EM_SPARC32PLUS: return "Sparc v8+" ;
1934 case EM_960: return "Intel 90860";
1935 case EM_PPC: return "PowerPC";
1936 case EM_PPC64: return "PowerPC64";
1937 case EM_FR20: return "Fujitsu FR20";
1938 case EM_RH32: return "TRW RH32";
1939 case EM_MCORE: return "MCORE";
1940 case EM_ARM: return "ARM";
1941 case EM_OLD_ALPHA: return "Digital Alpha (old)";
1942 case EM_SH: return "Renesas / SuperH SH";
1943 case EM_SPARCV9: return "Sparc v9";
1944 case EM_TRICORE: return "Siemens Tricore";
1945 case EM_ARC: return "ARC";
1946 case EM_H8_300: return "Renesas H8/300";
1947 case EM_H8_300H: return "Renesas H8/300H";
1948 case EM_H8S: return "Renesas H8S";
1949 case EM_H8_500: return "Renesas H8/500";
1950 case EM_IA_64: return "Intel IA-64";
1951 case EM_MIPS_X: return "Stanford MIPS-X";
1952 case EM_COLDFIRE: return "Motorola Coldfire";
1953 case EM_ALPHA: return "Alpha";
1954 case EM_CYGNUS_D10V:
1955 case EM_D10V: return "d10v";
1956 case EM_CYGNUS_D30V:
1957 case EM_D30V: return "d30v";
1958 case EM_CYGNUS_M32R:
1959 case EM_M32R: return "Renesas M32R (formerly Mitsubishi M32r)";
1960 case EM_CYGNUS_V850:
1961 case EM_V800: return "Renesas V850 (using RH850 ABI)";
1962 case EM_V850: return "Renesas V850";
1963 case EM_CYGNUS_MN10300:
1964 case EM_MN10300: return "mn10300";
1965 case EM_CYGNUS_MN10200:
1966 case EM_MN10200: return "mn10200";
1967 case EM_MOXIE: return "Moxie";
1968 case EM_CYGNUS_FR30:
1969 case EM_FR30: return "Fujitsu FR30";
1970 case EM_CYGNUS_FRV: return "Fujitsu FR-V";
1971 case EM_PJ_OLD:
1972 case EM_PJ: return "picoJava";
1973 case EM_MMA: return "Fujitsu Multimedia Accelerator";
1974 case EM_PCP: return "Siemens PCP";
1975 case EM_NCPU: return "Sony nCPU embedded RISC processor";
1976 case EM_NDR1: return "Denso NDR1 microprocesspr";
1977 case EM_STARCORE: return "Motorola Star*Core processor";
1978 case EM_ME16: return "Toyota ME16 processor";
1979 case EM_ST100: return "STMicroelectronics ST100 processor";
1980 case EM_TINYJ: return "Advanced Logic Corp. TinyJ embedded processor";
1981 case EM_PDSP: return "Sony DSP processor";
1982 case EM_PDP10: return "Digital Equipment Corp. PDP-10";
1983 case EM_PDP11: return "Digital Equipment Corp. PDP-11";
1984 case EM_FX66: return "Siemens FX66 microcontroller";
1985 case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 bit microcontroller";
1986 case EM_ST7: return "STMicroelectronics ST7 8-bit microcontroller";
1987 case EM_68HC16: return "Motorola MC68HC16 Microcontroller";
1988 case EM_68HC12: return "Motorola MC68HC12 Microcontroller";
1989 case EM_68HC11: return "Motorola MC68HC11 Microcontroller";
1990 case EM_68HC08: return "Motorola MC68HC08 Microcontroller";
1991 case EM_68HC05: return "Motorola MC68HC05 Microcontroller";
1992 case EM_SVX: return "Silicon Graphics SVx";
1993 case EM_ST19: return "STMicroelectronics ST19 8-bit microcontroller";
1994 case EM_VAX: return "Digital VAX";
1995 case EM_AVR_OLD:
1996 case EM_AVR: return "Atmel AVR 8-bit microcontroller";
1997 case EM_CRIS: return "Axis Communications 32-bit embedded processor";
1998 case EM_JAVELIN: return "Infineon Technologies 32-bit embedded cpu";
1999 case EM_FIREPATH: return "Element 14 64-bit DSP processor";
2000 case EM_ZSP: return "LSI Logic's 16-bit DSP processor";
2001 case EM_MMIX: return "Donald Knuth's educational 64-bit processor";
2002 case EM_HUANY: return "Harvard Universitys's machine-independent object format";
2003 case EM_PRISM: return "Vitesse Prism";
2004 case EM_X86_64: return "Advanced Micro Devices X86-64";
2005 case EM_L1OM: return "Intel L1OM";
2006 case EM_K1OM: return "Intel K1OM";
2007 case EM_S390_OLD:
2008 case EM_S390: return "IBM S/390";
2009 case EM_SCORE: return "SUNPLUS S+Core";
2010 case EM_XSTORMY16: return "Sanyo XStormy16 CPU core";
2011 case EM_OPENRISC:
2012 case EM_OR32: return "OpenRISC";
2013 case EM_ARC_A5: return "ARC International ARCompact processor";
2014 case EM_CRX: return "National Semiconductor CRX microprocessor";
2015 case EM_ADAPTEVA_EPIPHANY: return "Adapteva EPIPHANY";
2016 case EM_DLX: return "OpenDLX";
2017 case EM_IP2K_OLD:
2018 case EM_IP2K: return "Ubicom IP2xxx 8-bit microcontrollers";
2019 case EM_IQ2000: return "Vitesse IQ2000";
2020 case EM_XTENSA_OLD:
2021 case EM_XTENSA: return "Tensilica Xtensa Processor";
2022 case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
2023 case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
2024 case EM_NS32K: return "National Semiconductor 32000 series";
2025 case EM_TPC: return "Tenor Network TPC processor";
2026 case EM_ST200: return "STMicroelectronics ST200 microcontroller";
2027 case EM_MAX: return "MAX Processor";
2028 case EM_CR: return "National Semiconductor CompactRISC";
2029 case EM_F2MC16: return "Fujitsu F2MC16";
2030 case EM_MSP430: return "Texas Instruments msp430 microcontroller";
2031 case EM_LATTICEMICO32: return "Lattice Mico32";
2032 case EM_M32C_OLD:
2033 case EM_M32C: return "Renesas M32c";
2034 case EM_MT: return "Morpho Techologies MT processor";
2035 case EM_BLACKFIN: return "Analog Devices Blackfin";
2036 case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
2037 case EM_SEP: return "Sharp embedded microprocessor";
2038 case EM_ARCA: return "Arca RISC microprocessor";
2039 case EM_UNICORE: return "Unicore";
2040 case EM_EXCESS: return "eXcess 16/32/64-bit configurable embedded CPU";
2041 case EM_DXP: return "Icera Semiconductor Inc. Deep Execution Processor";
2042 case EM_NIOS32: return "Altera Nios";
2043 case EM_ALTERA_NIOS2: return "Altera Nios II";
2044 case EM_C166:
2045 case EM_XC16X: return "Infineon Technologies xc16x";
2046 case EM_M16C: return "Renesas M16C series microprocessors";
2047 case EM_DSPIC30F: return "Microchip Technology dsPIC30F Digital Signal Controller";
2048 case EM_CE: return "Freescale Communication Engine RISC core";
2049 case EM_TSK3000: return "Altium TSK3000 core";
2050 case EM_RS08: return "Freescale RS08 embedded processor";
2051 case EM_ECOG2: return "Cyan Technology eCOG2 microprocessor";
2052 case EM_DSP24: return "New Japan Radio (NJR) 24-bit DSP Processor";
2053 case EM_VIDEOCORE3: return "Broadcom VideoCore III processor";
2054 case EM_SE_C17: return "Seiko Epson C17 family";
2055 case EM_TI_C6000: return "Texas Instruments TMS320C6000 DSP family";
2056 case EM_TI_C2000: return "Texas Instruments TMS320C2000 DSP family";
2057 case EM_TI_C5500: return "Texas Instruments TMS320C55x DSP family";
2058 case EM_MMDSP_PLUS: return "STMicroelectronics 64bit VLIW Data Signal Processor";
2059 case EM_CYPRESS_M8C: return "Cypress M8C microprocessor";
2060 case EM_R32C: return "Renesas R32C series microprocessors";
2061 case EM_TRIMEDIA: return "NXP Semiconductors TriMedia architecture family";
2062 case EM_QDSP6: return "QUALCOMM DSP6 Processor";
2063 case EM_8051: return "Intel 8051 and variants";
2064 case EM_STXP7X: return "STMicroelectronics STxP7x family";
2065 case EM_NDS32: return "Andes Technology compact code size embedded RISC processor family";
2066 case EM_ECOG1X: return "Cyan Technology eCOG1X family";
2067 case EM_MAXQ30: return "Dallas Semiconductor MAXQ30 Core microcontrollers";
2068 case EM_XIMO16: return "New Japan Radio (NJR) 16-bit DSP Processor";
2069 case EM_MANIK: return "M2000 Reconfigurable RISC Microprocessor";
2070 case EM_CRAYNV2: return "Cray Inc. NV2 vector architecture";
2071 case EM_CYGNUS_MEP: return "Toshiba MeP Media Engine";
2072 case EM_CR16:
2073 case EM_MICROBLAZE:
2074 case EM_MICROBLAZE_OLD: return "Xilinx MicroBlaze";
2075 case EM_RL78: return "Renesas RL78";
2076 case EM_RX: return "Renesas RX";
2077 case EM_METAG: return "Imagination Technologies Meta processor architecture";
2078 case EM_MCST_ELBRUS: return "MCST Elbrus general purpose hardware architecture";
2079 case EM_ECOG16: return "Cyan Technology eCOG16 family";
2080 case EM_ETPU: return "Freescale Extended Time Processing Unit";
2081 case EM_SLE9X: return "Infineon Technologies SLE9X core";
2082 case EM_AVR32: return "Atmel Corporation 32-bit microprocessor family";
2083 case EM_STM8: return "STMicroeletronics STM8 8-bit microcontroller";
2084 case EM_TILE64: return "Tilera TILE64 multicore architecture family";
2085 case EM_TILEPRO: return "Tilera TILEPro multicore architecture family";
2086 case EM_TILEGX: return "Tilera TILE-Gx multicore architecture family";
2087 case EM_CUDA: return "NVIDIA CUDA architecture";
2088 case EM_XGATE: return "Motorola XGATE embedded processor";
2089 default:
2090 snprintf (buff, sizeof (buff), _("<unknown>: 0x%x"), e_machine);
2091 return buff;
2092 }
2093 }
2094
2095 static void
2096 decode_ARM_machine_flags (unsigned e_flags, char buf[])
2097 {
2098 unsigned eabi;
2099 int unknown = 0;
2100
2101 eabi = EF_ARM_EABI_VERSION (e_flags);
2102 e_flags &= ~ EF_ARM_EABIMASK;
2103
2104 /* Handle "generic" ARM flags. */
2105 if (e_flags & EF_ARM_RELEXEC)
2106 {
2107 strcat (buf, ", relocatable executable");
2108 e_flags &= ~ EF_ARM_RELEXEC;
2109 }
2110
2111 if (e_flags & EF_ARM_HASENTRY)
2112 {
2113 strcat (buf, ", has entry point");
2114 e_flags &= ~ EF_ARM_HASENTRY;
2115 }
2116
2117 /* Now handle EABI specific flags. */
2118 switch (eabi)
2119 {
2120 default:
2121 strcat (buf, ", <unrecognized EABI>");
2122 if (e_flags)
2123 unknown = 1;
2124 break;
2125
2126 case EF_ARM_EABI_VER1:
2127 strcat (buf, ", Version1 EABI");
2128 while (e_flags)
2129 {
2130 unsigned flag;
2131
2132 /* Process flags one bit at a time. */
2133 flag = e_flags & - e_flags;
2134 e_flags &= ~ flag;
2135
2136 switch (flag)
2137 {
2138 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2139 strcat (buf, ", sorted symbol tables");
2140 break;
2141
2142 default:
2143 unknown = 1;
2144 break;
2145 }
2146 }
2147 break;
2148
2149 case EF_ARM_EABI_VER2:
2150 strcat (buf, ", Version2 EABI");
2151 while (e_flags)
2152 {
2153 unsigned flag;
2154
2155 /* Process flags one bit at a time. */
2156 flag = e_flags & - e_flags;
2157 e_flags &= ~ flag;
2158
2159 switch (flag)
2160 {
2161 case EF_ARM_SYMSARESORTED: /* Conflicts with EF_ARM_INTERWORK. */
2162 strcat (buf, ", sorted symbol tables");
2163 break;
2164
2165 case EF_ARM_DYNSYMSUSESEGIDX:
2166 strcat (buf, ", dynamic symbols use segment index");
2167 break;
2168
2169 case EF_ARM_MAPSYMSFIRST:
2170 strcat (buf, ", mapping symbols precede others");
2171 break;
2172
2173 default:
2174 unknown = 1;
2175 break;
2176 }
2177 }
2178 break;
2179
2180 case EF_ARM_EABI_VER3:
2181 strcat (buf, ", Version3 EABI");
2182 break;
2183
2184 case EF_ARM_EABI_VER4:
2185 strcat (buf, ", Version4 EABI");
2186 while (e_flags)
2187 {
2188 unsigned flag;
2189
2190 /* Process flags one bit at a time. */
2191 flag = e_flags & - e_flags;
2192 e_flags &= ~ flag;
2193
2194 switch (flag)
2195 {
2196 case EF_ARM_BE8:
2197 strcat (buf, ", BE8");
2198 break;
2199
2200 case EF_ARM_LE8:
2201 strcat (buf, ", LE8");
2202 break;
2203
2204 default:
2205 unknown = 1;
2206 break;
2207 }
2208 break;
2209 }
2210 break;
2211
2212 case EF_ARM_EABI_VER5:
2213 strcat (buf, ", Version5 EABI");
2214 while (e_flags)
2215 {
2216 unsigned flag;
2217
2218 /* Process flags one bit at a time. */
2219 flag = e_flags & - e_flags;
2220 e_flags &= ~ flag;
2221
2222 switch (flag)
2223 {
2224 case EF_ARM_BE8:
2225 strcat (buf, ", BE8");
2226 break;
2227
2228 case EF_ARM_LE8:
2229 strcat (buf, ", LE8");
2230 break;
2231
2232 case EF_ARM_ABI_FLOAT_SOFT: /* Conflicts with EF_ARM_SOFT_FLOAT. */
2233 strcat (buf, ", soft-float ABI");
2234 break;
2235
2236 case EF_ARM_ABI_FLOAT_HARD: /* Conflicts with EF_ARM_VFP_FLOAT. */
2237 strcat (buf, ", hard-float ABI");
2238 break;
2239
2240 default:
2241 unknown = 1;
2242 break;
2243 }
2244 }
2245 break;
2246
2247 case EF_ARM_EABI_UNKNOWN:
2248 strcat (buf, ", GNU EABI");
2249 while (e_flags)
2250 {
2251 unsigned flag;
2252
2253 /* Process flags one bit at a time. */
2254 flag = e_flags & - e_flags;
2255 e_flags &= ~ flag;
2256
2257 switch (flag)
2258 {
2259 case EF_ARM_INTERWORK:
2260 strcat (buf, ", interworking enabled");
2261 break;
2262
2263 case EF_ARM_APCS_26:
2264 strcat (buf, ", uses APCS/26");
2265 break;
2266
2267 case EF_ARM_APCS_FLOAT:
2268 strcat (buf, ", uses APCS/float");
2269 break;
2270
2271 case EF_ARM_PIC:
2272 strcat (buf, ", position independent");
2273 break;
2274
2275 case EF_ARM_ALIGN8:
2276 strcat (buf, ", 8 bit structure alignment");
2277 break;
2278
2279 case EF_ARM_NEW_ABI:
2280 strcat (buf, ", uses new ABI");
2281 break;
2282
2283 case EF_ARM_OLD_ABI:
2284 strcat (buf, ", uses old ABI");
2285 break;
2286
2287 case EF_ARM_SOFT_FLOAT:
2288 strcat (buf, ", software FP");
2289 break;
2290
2291 case EF_ARM_VFP_FLOAT:
2292 strcat (buf, ", VFP");
2293 break;
2294
2295 case EF_ARM_MAVERICK_FLOAT:
2296 strcat (buf, ", Maverick FP");
2297 break;
2298
2299 default:
2300 unknown = 1;
2301 break;
2302 }
2303 }
2304 }
2305
2306 if (unknown)
2307 strcat (buf,_(", <unknown>"));
2308 }
2309
2310 static char *
2311 get_machine_flags (unsigned e_flags, unsigned e_machine)
2312 {
2313 static char buf[1024];
2314
2315 buf[0] = '\0';
2316
2317 if (e_flags)
2318 {
2319 switch (e_machine)
2320 {
2321 default:
2322 break;
2323
2324 case EM_ARM:
2325 decode_ARM_machine_flags (e_flags, buf);
2326 break;
2327
2328 case EM_BLACKFIN:
2329 if (e_flags & EF_BFIN_PIC)
2330 strcat (buf, ", PIC");
2331
2332 if (e_flags & EF_BFIN_FDPIC)
2333 strcat (buf, ", FDPIC");
2334
2335 if (e_flags & EF_BFIN_CODE_IN_L1)
2336 strcat (buf, ", code in L1");
2337
2338 if (e_flags & EF_BFIN_DATA_IN_L1)
2339 strcat (buf, ", data in L1");
2340
2341 break;
2342
2343 case EM_CYGNUS_FRV:
2344 switch (e_flags & EF_FRV_CPU_MASK)
2345 {
2346 case EF_FRV_CPU_GENERIC:
2347 break;
2348
2349 default:
2350 strcat (buf, ", fr???");
2351 break;
2352
2353 case EF_FRV_CPU_FR300:
2354 strcat (buf, ", fr300");
2355 break;
2356
2357 case EF_FRV_CPU_FR400:
2358 strcat (buf, ", fr400");
2359 break;
2360 case EF_FRV_CPU_FR405:
2361 strcat (buf, ", fr405");
2362 break;
2363
2364 case EF_FRV_CPU_FR450:
2365 strcat (buf, ", fr450");
2366 break;
2367
2368 case EF_FRV_CPU_FR500:
2369 strcat (buf, ", fr500");
2370 break;
2371 case EF_FRV_CPU_FR550:
2372 strcat (buf, ", fr550");
2373 break;
2374
2375 case EF_FRV_CPU_SIMPLE:
2376 strcat (buf, ", simple");
2377 break;
2378 case EF_FRV_CPU_TOMCAT:
2379 strcat (buf, ", tomcat");
2380 break;
2381 }
2382 break;
2383
2384 case EM_68K:
2385 if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
2386 strcat (buf, ", m68000");
2387 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
2388 strcat (buf, ", cpu32");
2389 else if ((e_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
2390 strcat (buf, ", fido_a");
2391 else
2392 {
2393 char const * isa = _("unknown");
2394 char const * mac = _("unknown mac");
2395 char const * additional = NULL;
2396
2397 switch (e_flags & EF_M68K_CF_ISA_MASK)
2398 {
2399 case EF_M68K_CF_ISA_A_NODIV:
2400 isa = "A";
2401 additional = ", nodiv";
2402 break;
2403 case EF_M68K_CF_ISA_A:
2404 isa = "A";
2405 break;
2406 case EF_M68K_CF_ISA_A_PLUS:
2407 isa = "A+";
2408 break;
2409 case EF_M68K_CF_ISA_B_NOUSP:
2410 isa = "B";
2411 additional = ", nousp";
2412 break;
2413 case EF_M68K_CF_ISA_B:
2414 isa = "B";
2415 break;
2416 case EF_M68K_CF_ISA_C:
2417 isa = "C";
2418 break;
2419 case EF_M68K_CF_ISA_C_NODIV:
2420 isa = "C";
2421 additional = ", nodiv";
2422 break;
2423 }
2424 strcat (buf, ", cf, isa ");
2425 strcat (buf, isa);
2426 if (additional)
2427 strcat (buf, additional);
2428 if (e_flags & EF_M68K_CF_FLOAT)
2429 strcat (buf, ", float");
2430 switch (e_flags & EF_M68K_CF_MAC_MASK)
2431 {
2432 case 0:
2433 mac = NULL;
2434 break;
2435 case EF_M68K_CF_MAC:
2436 mac = "mac";
2437 break;
2438 case EF_M68K_CF_EMAC:
2439 mac = "emac";
2440 break;
2441 case EF_M68K_CF_EMAC_B:
2442 mac = "emac_b";
2443 break;
2444 }
2445 if (mac)
2446 {
2447 strcat (buf, ", ");
2448 strcat (buf, mac);
2449 }
2450 }
2451 break;
2452
2453 case EM_PPC:
2454 if (e_flags & EF_PPC_EMB)
2455 strcat (buf, ", emb");
2456
2457 if (e_flags & EF_PPC_RELOCATABLE)
2458 strcat (buf, _(", relocatable"));
2459
2460 if (e_flags & EF_PPC_RELOCATABLE_LIB)
2461 strcat (buf, _(", relocatable-lib"));
2462 break;
2463
2464 case EM_V800:
2465 if ((e_flags & EF_RH850_ABI) == EF_RH850_ABI)
2466 strcat (buf, ", RH850 ABI");
2467
2468 if (e_flags & EF_V800_850E3)
2469 strcat (buf, ", V3 architecture");
2470
2471 if ((e_flags & (EF_RH850_FPU_DOUBLE | EF_RH850_FPU_SINGLE)) == 0)
2472 strcat (buf, ", FPU not used");
2473
2474 if ((e_flags & (EF_RH850_REGMODE22 | EF_RH850_REGMODE32)) == 0)
2475 strcat (buf, ", regmode: COMMON");
2476
2477 if ((e_flags & (EF_RH850_GP_FIX | EF_RH850_GP_NOFIX)) == 0)
2478 strcat (buf, ", r4 not used");
2479
2480 if ((e_flags & (EF_RH850_EP_FIX | EF_RH850_EP_NOFIX)) == 0)
2481 strcat (buf, ", r30 not used");
2482
2483 if ((e_flags & (EF_RH850_TP_FIX | EF_RH850_TP_NOFIX)) == 0)
2484 strcat (buf, ", r5 not used");
2485
2486 if ((e_flags & (EF_RH850_REG2_RESERVE | EF_RH850_REG2_NORESERVE)) == 0)
2487 strcat (buf, ", r2 not used");
2488
2489 for (e_flags &= 0xFFFF; e_flags; e_flags &= ~ (e_flags & - e_flags))
2490 {
2491 switch (e_flags & - e_flags)
2492 {
2493 case EF_RH850_FPU_DOUBLE: strcat (buf, ", double precision FPU"); break;
2494 case EF_RH850_FPU_SINGLE: strcat (buf, ", single precision FPU"); break;
2495 case EF_RH850_SIMD: strcat (buf, ", SIMD"); break;
2496 case EF_RH850_CACHE: strcat (buf, ", CACHE"); break;
2497 case EF_RH850_MMU: strcat (buf, ", MMU"); break;
2498 case EF_RH850_REGMODE22: strcat (buf, ", regmode:22"); break;
2499 case EF_RH850_REGMODE32: strcat (buf, ", regmode:23"); break;
2500 case EF_RH850_DATA_ALIGN8: strcat (buf, ", 8-byte alignment"); break;
2501 case EF_RH850_GP_FIX: strcat (buf, ", r4 fixed"); break;
2502 case EF_RH850_GP_NOFIX: strcat (buf, ", r4 free"); break;
2503 case EF_RH850_EP_FIX: strcat (buf, ", r30 fixed"); break;
2504 case EF_RH850_EP_NOFIX: strcat (buf, ", r30 free"); break;
2505 case EF_RH850_TP_FIX: strcat (buf, ", r5 fixed"); break;
2506 case EF_RH850_TP_NOFIX: strcat (buf, ", r5 free"); break;
2507 case EF_RH850_REG2_RESERVE: strcat (buf, ", r2 fixed"); break;
2508 case EF_RH850_REG2_NORESERVE: strcat (buf, ", r2 free"); break;
2509 default: break;
2510 }
2511 }
2512 break;
2513
2514 case EM_V850:
2515 case EM_CYGNUS_V850:
2516 switch (e_flags & EF_V850_ARCH)
2517 {
2518 case E_V850E3V5_ARCH:
2519 strcat (buf, ", v850e3v5");
2520 break;
2521 case E_V850E2V3_ARCH:
2522 strcat (buf, ", v850e2v3");
2523 break;
2524 case E_V850E2_ARCH:
2525 strcat (buf, ", v850e2");
2526 break;
2527 case E_V850E1_ARCH:
2528 strcat (buf, ", v850e1");
2529 break;
2530 case E_V850E_ARCH:
2531 strcat (buf, ", v850e");
2532 break;
2533 case E_V850_ARCH:
2534 strcat (buf, ", v850");
2535 break;
2536 default:
2537 strcat (buf, _(", unknown v850 architecture variant"));
2538 break;
2539 }
2540 break;
2541
2542 case EM_M32R:
2543 case EM_CYGNUS_M32R:
2544 if ((e_flags & EF_M32R_ARCH) == E_M32R_ARCH)
2545 strcat (buf, ", m32r");
2546 break;
2547
2548 case EM_MIPS:
2549 case EM_MIPS_RS3_LE:
2550 if (e_flags & EF_MIPS_NOREORDER)
2551 strcat (buf, ", noreorder");
2552
2553 if (e_flags & EF_MIPS_PIC)
2554 strcat (buf, ", pic");
2555
2556 if (e_flags & EF_MIPS_CPIC)
2557 strcat (buf, ", cpic");
2558
2559 if (e_flags & EF_MIPS_UCODE)
2560 strcat (buf, ", ugen_reserved");
2561
2562 if (e_flags & EF_MIPS_ABI2)
2563 strcat (buf, ", abi2");
2564
2565 if (e_flags & EF_MIPS_OPTIONS_FIRST)
2566 strcat (buf, ", odk first");
2567
2568 if (e_flags & EF_MIPS_32BITMODE)
2569 strcat (buf, ", 32bitmode");
2570
2571 if (e_flags & EF_MIPS_NAN2008)
2572 strcat (buf, ", nan2008");
2573
2574 switch ((e_flags & EF_MIPS_MACH))
2575 {
2576 case E_MIPS_MACH_3900: strcat (buf, ", 3900"); break;
2577 case E_MIPS_MACH_4010: strcat (buf, ", 4010"); break;
2578 case E_MIPS_MACH_4100: strcat (buf, ", 4100"); break;
2579 case E_MIPS_MACH_4111: strcat (buf, ", 4111"); break;
2580 case E_MIPS_MACH_4120: strcat (buf, ", 4120"); break;
2581 case E_MIPS_MACH_4650: strcat (buf, ", 4650"); break;
2582 case E_MIPS_MACH_5400: strcat (buf, ", 5400"); break;
2583 case E_MIPS_MACH_5500: strcat (buf, ", 5500"); break;
2584 case E_MIPS_MACH_SB1: strcat (buf, ", sb1"); break;
2585 case E_MIPS_MACH_9000: strcat (buf, ", 9000"); break;
2586 case E_MIPS_MACH_LS2E: strcat (buf, ", loongson-2e"); break;
2587 case E_MIPS_MACH_LS2F: strcat (buf, ", loongson-2f"); break;
2588 case E_MIPS_MACH_LS3A: strcat (buf, ", loongson-3a"); break;
2589 case E_MIPS_MACH_OCTEON: strcat (buf, ", octeon"); break;
2590 case E_MIPS_MACH_OCTEON2: strcat (buf, ", octeon2"); break;
2591 case E_MIPS_MACH_XLR: strcat (buf, ", xlr"); break;
2592 case 0:
2593 /* We simply ignore the field in this case to avoid confusion:
2594 MIPS ELF does not specify EF_MIPS_MACH, it is a GNU
2595 extension. */
2596 break;
2597 default: strcat (buf, _(", unknown CPU")); break;
2598 }
2599
2600 switch ((e_flags & EF_MIPS_ABI))
2601 {
2602 case E_MIPS_ABI_O32: strcat (buf, ", o32"); break;
2603 case E_MIPS_ABI_O64: strcat (buf, ", o64"); break;
2604 case E_MIPS_ABI_EABI32: strcat (buf, ", eabi32"); break;
2605 case E_MIPS_ABI_EABI64: strcat (buf, ", eabi64"); break;
2606 case 0:
2607 /* We simply ignore the field in this case to avoid confusion:
2608 MIPS ELF does not specify EF_MIPS_ABI, it is a GNU extension.
2609 This means it is likely to be an o32 file, but not for
2610 sure. */
2611 break;
2612 default: strcat (buf, _(", unknown ABI")); break;
2613 }
2614
2615 if (e_flags & EF_MIPS_ARCH_ASE_MDMX)
2616 strcat (buf, ", mdmx");
2617
2618 if (e_flags & EF_MIPS_ARCH_ASE_M16)
2619 strcat (buf, ", mips16");
2620
2621 if (e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
2622 strcat (buf, ", micromips");
2623
2624 switch ((e_flags & EF_MIPS_ARCH))
2625 {
2626 case E_MIPS_ARCH_1: strcat (buf, ", mips1"); break;
2627 case E_MIPS_ARCH_2: strcat (buf, ", mips2"); break;
2628 case E_MIPS_ARCH_3: strcat (buf, ", mips3"); break;
2629 case E_MIPS_ARCH_4: strcat (buf, ", mips4"); break;
2630 case E_MIPS_ARCH_5: strcat (buf, ", mips5"); break;
2631 case E_MIPS_ARCH_32: strcat (buf, ", mips32"); break;
2632 case E_MIPS_ARCH_32R2: strcat (buf, ", mips32r2"); break;
2633 case E_MIPS_ARCH_64: strcat (buf, ", mips64"); break;
2634 case E_MIPS_ARCH_64R2: strcat (buf, ", mips64r2"); break;
2635 default: strcat (buf, _(", unknown ISA")); break;
2636 }
2637 break;
2638
2639 case EM_SH:
2640 switch ((e_flags & EF_SH_MACH_MASK))
2641 {
2642 case EF_SH1: strcat (buf, ", sh1"); break;
2643 case EF_SH2: strcat (buf, ", sh2"); break;
2644 case EF_SH3: strcat (buf, ", sh3"); break;
2645 case EF_SH_DSP: strcat (buf, ", sh-dsp"); break;
2646 case EF_SH3_DSP: strcat (buf, ", sh3-dsp"); break;
2647 case EF_SH4AL_DSP: strcat (buf, ", sh4al-dsp"); break;
2648 case EF_SH3E: strcat (buf, ", sh3e"); break;
2649 case EF_SH4: strcat (buf, ", sh4"); break;
2650 case EF_SH5: strcat (buf, ", sh5"); break;
2651 case EF_SH2E: strcat (buf, ", sh2e"); break;
2652 case EF_SH4A: strcat (buf, ", sh4a"); break;
2653 case EF_SH2A: strcat (buf, ", sh2a"); break;
2654 case EF_SH4_NOFPU: strcat (buf, ", sh4-nofpu"); break;
2655 case EF_SH4A_NOFPU: strcat (buf, ", sh4a-nofpu"); break;
2656 case EF_SH2A_NOFPU: strcat (buf, ", sh2a-nofpu"); break;
2657 case EF_SH3_NOMMU: strcat (buf, ", sh3-nommu"); break;
2658 case EF_SH4_NOMMU_NOFPU: strcat (buf, ", sh4-nommu-nofpu"); break;
2659 case EF_SH2A_SH4_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh4-nommu-nofpu"); break;
2660 case EF_SH2A_SH3_NOFPU: strcat (buf, ", sh2a-nofpu-or-sh3-nommu"); break;
2661 case EF_SH2A_SH4: strcat (buf, ", sh2a-or-sh4"); break;
2662 case EF_SH2A_SH3E: strcat (buf, ", sh2a-or-sh3e"); break;
2663 default: strcat (buf, _(", unknown ISA")); break;
2664 }
2665
2666 if (e_flags & EF_SH_PIC)
2667 strcat (buf, ", pic");
2668
2669 if (e_flags & EF_SH_FDPIC)
2670 strcat (buf, ", fdpic");
2671 break;
2672
2673 case EM_SPARCV9:
2674 if (e_flags & EF_SPARC_32PLUS)
2675 strcat (buf, ", v8+");
2676
2677 if (e_flags & EF_SPARC_SUN_US1)
2678 strcat (buf, ", ultrasparcI");
2679
2680 if (e_flags & EF_SPARC_SUN_US3)
2681 strcat (buf, ", ultrasparcIII");
2682
2683 if (e_flags & EF_SPARC_HAL_R1)
2684 strcat (buf, ", halr1");
2685
2686 if (e_flags & EF_SPARC_LEDATA)
2687 strcat (buf, ", ledata");
2688
2689 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_TSO)
2690 strcat (buf, ", tso");
2691
2692 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_PSO)
2693 strcat (buf, ", pso");
2694
2695 if ((e_flags & EF_SPARCV9_MM) == EF_SPARCV9_RMO)
2696 strcat (buf, ", rmo");
2697 break;
2698
2699 case EM_PARISC:
2700 switch (e_flags & EF_PARISC_ARCH)
2701 {
2702 case EFA_PARISC_1_0:
2703 strcpy (buf, ", PA-RISC 1.0");
2704 break;
2705 case EFA_PARISC_1_1:
2706 strcpy (buf, ", PA-RISC 1.1");
2707 break;
2708 case EFA_PARISC_2_0:
2709 strcpy (buf, ", PA-RISC 2.0");
2710 break;
2711 default:
2712 break;
2713 }
2714 if (e_flags & EF_PARISC_TRAPNIL)
2715 strcat (buf, ", trapnil");
2716 if (e_flags & EF_PARISC_EXT)
2717 strcat (buf, ", ext");
2718 if (e_flags & EF_PARISC_LSB)
2719 strcat (buf, ", lsb");
2720 if (e_flags & EF_PARISC_WIDE)
2721 strcat (buf, ", wide");
2722 if (e_flags & EF_PARISC_NO_KABP)
2723 strcat (buf, ", no kabp");
2724 if (e_flags & EF_PARISC_LAZYSWAP)
2725 strcat (buf, ", lazyswap");
2726 break;
2727
2728 case EM_PJ:
2729 case EM_PJ_OLD:
2730 if ((e_flags & EF_PICOJAVA_NEWCALLS) == EF_PICOJAVA_NEWCALLS)
2731 strcat (buf, ", new calling convention");
2732
2733 if ((e_flags & EF_PICOJAVA_GNUCALLS) == EF_PICOJAVA_GNUCALLS)
2734 strcat (buf, ", gnu calling convention");
2735 break;
2736
2737 case EM_IA_64:
2738 if ((e_flags & EF_IA_64_ABI64))
2739 strcat (buf, ", 64-bit");
2740 else
2741 strcat (buf, ", 32-bit");
2742 if ((e_flags & EF_IA_64_REDUCEDFP))
2743 strcat (buf, ", reduced fp model");
2744 if ((e_flags & EF_IA_64_NOFUNCDESC_CONS_GP))
2745 strcat (buf, ", no function descriptors, constant gp");
2746 else if ((e_flags & EF_IA_64_CONS_GP))
2747 strcat (buf, ", constant gp");
2748 if ((e_flags & EF_IA_64_ABSOLUTE))
2749 strcat (buf, ", absolute");
2750 if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
2751 {
2752 if ((e_flags & EF_IA_64_VMS_LINKAGES))
2753 strcat (buf, ", vms_linkages");
2754 switch ((e_flags & EF_IA_64_VMS_COMCOD))
2755 {
2756 case EF_IA_64_VMS_COMCOD_SUCCESS:
2757 break;
2758 case EF_IA_64_VMS_COMCOD_WARNING:
2759 strcat (buf, ", warning");
2760 break;
2761 case EF_IA_64_VMS_COMCOD_ERROR:
2762 strcat (buf, ", error");
2763 break;
2764 case EF_IA_64_VMS_COMCOD_ABORT:
2765 strcat (buf, ", abort");
2766 break;
2767 default:
2768 abort ();
2769 }
2770 }
2771 break;
2772
2773 case EM_VAX:
2774 if ((e_flags & EF_VAX_NONPIC))
2775 strcat (buf, ", non-PIC");
2776 if ((e_flags & EF_VAX_DFLOAT))
2777 strcat (buf, ", D-Float");
2778 if ((e_flags & EF_VAX_GFLOAT))
2779 strcat (buf, ", G-Float");
2780 break;
2781
2782 case EM_RX:
2783 if (e_flags & E_FLAG_RX_64BIT_DOUBLES)
2784 strcat (buf, ", 64-bit doubles");
2785 if (e_flags & E_FLAG_RX_DSP)
2786 strcat (buf, ", dsp");
2787 if (e_flags & E_FLAG_RX_PID)
2788 strcat (buf, ", pid");
2789 if (e_flags & E_FLAG_RX_ABI)
2790 strcat (buf, ", RX ABI");
2791 break;
2792
2793 case EM_S390:
2794 if (e_flags & EF_S390_HIGH_GPRS)
2795 strcat (buf, ", highgprs");
2796 break;
2797
2798 case EM_TI_C6000:
2799 if ((e_flags & EF_C6000_REL))
2800 strcat (buf, ", relocatable module");
2801 break;
2802
2803 case EM_MSP430:
2804 strcat (buf, _(": architecture variant: "));
2805 switch (e_flags & EF_MSP430_MACH)
2806 {
2807 case E_MSP430_MACH_MSP430x11: strcat (buf, "MSP430x11"); break;
2808 case E_MSP430_MACH_MSP430x11x1 : strcat (buf, "MSP430x11x1 "); break;
2809 case E_MSP430_MACH_MSP430x12: strcat (buf, "MSP430x12"); break;
2810 case E_MSP430_MACH_MSP430x13: strcat (buf, "MSP430x13"); break;
2811 case E_MSP430_MACH_MSP430x14: strcat (buf, "MSP430x14"); break;
2812 case E_MSP430_MACH_MSP430x15: strcat (buf, "MSP430x15"); break;
2813 case E_MSP430_MACH_MSP430x16: strcat (buf, "MSP430x16"); break;
2814 case E_MSP430_MACH_MSP430x31: strcat (buf, "MSP430x31"); break;
2815 case E_MSP430_MACH_MSP430x32: strcat (buf, "MSP430x32"); break;
2816 case E_MSP430_MACH_MSP430x33: strcat (buf, "MSP430x33"); break;
2817 case E_MSP430_MACH_MSP430x41: strcat (buf, "MSP430x41"); break;
2818 case E_MSP430_MACH_MSP430x42: strcat (buf, "MSP430x42"); break;
2819 case E_MSP430_MACH_MSP430x43: strcat (buf, "MSP430x43"); break;
2820 case E_MSP430_MACH_MSP430x44: strcat (buf, "MSP430x44"); break;
2821 case E_MSP430_MACH_MSP430X : strcat (buf, "MSP430X"); break;
2822 default:
2823 strcat (buf, _(": unknown")); break;
2824 }
2825
2826 if (e_flags & ~ EF_MSP430_MACH)
2827 strcat (buf, _(": unknown extra flag bits also present"));
2828 }
2829 }
2830
2831 return buf;
2832 }
2833
2834 static const char *
2835 get_osabi_name (unsigned int osabi)
2836 {
2837 static char buff[32];
2838
2839 switch (osabi)
2840 {
2841 case ELFOSABI_NONE: return "UNIX - System V";
2842 case ELFOSABI_HPUX: return "UNIX - HP-UX";
2843 case ELFOSABI_NETBSD: return "UNIX - NetBSD";
2844 case ELFOSABI_GNU: return "UNIX - GNU";
2845 case ELFOSABI_SOLARIS: return "UNIX - Solaris";
2846 case ELFOSABI_AIX: return "UNIX - AIX";
2847 case ELFOSABI_IRIX: return "UNIX - IRIX";
2848 case ELFOSABI_FREEBSD: return "UNIX - FreeBSD";
2849 case ELFOSABI_TRU64: return "UNIX - TRU64";
2850 case ELFOSABI_MODESTO: return "Novell - Modesto";
2851 case ELFOSABI_OPENBSD: return "UNIX - OpenBSD";
2852 case ELFOSABI_OPENVMS: return "VMS - OpenVMS";
2853 case ELFOSABI_NSK: return "HP - Non-Stop Kernel";
2854 case ELFOSABI_AROS: return "AROS";
2855 case ELFOSABI_FENIXOS: return "FenixOS";
2856 default:
2857 if (osabi >= 64)
2858 switch (elf_header.e_machine)
2859 {
2860 case EM_ARM:
2861 switch (osabi)
2862 {
2863 case ELFOSABI_ARM: return "ARM";
2864 default:
2865 break;
2866 }
2867 break;
2868
2869 case EM_MSP430:
2870 case EM_MSP430_OLD:
2871 switch (osabi)
2872 {
2873 case ELFOSABI_STANDALONE: return _("Standalone App");
2874 default:
2875 break;
2876 }
2877 break;
2878
2879 case EM_TI_C6000:
2880 switch (osabi)
2881 {
2882 case ELFOSABI_C6000_ELFABI: return _("Bare-metal C6000");
2883 case ELFOSABI_C6000_LINUX: return "Linux C6000";
2884 default:
2885 break;
2886 }
2887 break;
2888
2889 default:
2890 break;
2891 }
2892 snprintf (buff, sizeof (buff), _("<unknown: %x>"), osabi);
2893 return buff;
2894 }
2895 }
2896
2897 static const char *
2898 get_aarch64_segment_type (unsigned long type)
2899 {
2900 switch (type)
2901 {
2902 case PT_AARCH64_ARCHEXT:
2903 return "AARCH64_ARCHEXT";
2904 default:
2905 break;
2906 }
2907
2908 return NULL;
2909 }
2910
2911 static const char *
2912 get_arm_segment_type (unsigned long type)
2913 {
2914 switch (type)
2915 {
2916 case PT_ARM_EXIDX:
2917 return "EXIDX";
2918 default:
2919 break;
2920 }
2921
2922 return NULL;
2923 }
2924
2925 static const char *
2926 get_mips_segment_type (unsigned long type)
2927 {
2928 switch (type)
2929 {
2930 case PT_MIPS_REGINFO:
2931 return "REGINFO";
2932 case PT_MIPS_RTPROC:
2933 return "RTPROC";
2934 case PT_MIPS_OPTIONS:
2935 return "OPTIONS";
2936 default:
2937 break;
2938 }
2939
2940 return NULL;
2941 }
2942
2943 static const char *
2944 get_parisc_segment_type (unsigned long type)
2945 {
2946 switch (type)
2947 {
2948 case PT_HP_TLS: return "HP_TLS";
2949 case PT_HP_CORE_NONE: return "HP_CORE_NONE";
2950 case PT_HP_CORE_VERSION: return "HP_CORE_VERSION";
2951 case PT_HP_CORE_KERNEL: return "HP_CORE_KERNEL";
2952 case PT_HP_CORE_COMM: return "HP_CORE_COMM";
2953 case PT_HP_CORE_PROC: return "HP_CORE_PROC";
2954 case PT_HP_CORE_LOADABLE: return "HP_CORE_LOADABLE";
2955 case PT_HP_CORE_STACK: return "HP_CORE_STACK";
2956 case PT_HP_CORE_SHM: return "HP_CORE_SHM";
2957 case PT_HP_CORE_MMF: return "HP_CORE_MMF";
2958 case PT_HP_PARALLEL: return "HP_PARALLEL";
2959 case PT_HP_FASTBIND: return "HP_FASTBIND";
2960 case PT_HP_OPT_ANNOT: return "HP_OPT_ANNOT";
2961 case PT_HP_HSL_ANNOT: return "HP_HSL_ANNOT";
2962 case PT_HP_STACK: return "HP_STACK";
2963 case PT_HP_CORE_UTSNAME: return "HP_CORE_UTSNAME";
2964 case PT_PARISC_ARCHEXT: return "PARISC_ARCHEXT";
2965 case PT_PARISC_UNWIND: return "PARISC_UNWIND";
2966 case PT_PARISC_WEAKORDER: return "PARISC_WEAKORDER";
2967 default:
2968 break;
2969 }
2970
2971 return NULL;
2972 }
2973
2974 static const char *
2975 get_ia64_segment_type (unsigned long type)
2976 {
2977 switch (type)
2978 {
2979 case PT_IA_64_ARCHEXT: return "IA_64_ARCHEXT";
2980 case PT_IA_64_UNWIND: return "IA_64_UNWIND";
2981 case PT_HP_TLS: return "HP_TLS";
2982 case PT_IA_64_HP_OPT_ANOT: return "HP_OPT_ANNOT";
2983 case PT_IA_64_HP_HSL_ANOT: return "HP_HSL_ANNOT";
2984 case PT_IA_64_HP_STACK: return "HP_STACK";
2985 default:
2986 break;
2987 }
2988
2989 return NULL;
2990 }
2991
2992 static const char *
2993 get_tic6x_segment_type (unsigned long type)
2994 {
2995 switch (type)
2996 {
2997 case PT_C6000_PHATTR: return "C6000_PHATTR";
2998 default:
2999 break;
3000 }
3001
3002 return NULL;
3003 }
3004
3005 static const char *
3006 get_segment_type (unsigned long p_type)
3007 {
3008 static char buff[32];
3009
3010 switch (p_type)
3011 {
3012 case PT_NULL: return "NULL";
3013 case PT_LOAD: return "LOAD";
3014 case PT_DYNAMIC: return "DYNAMIC";
3015 case PT_INTERP: return "INTERP";
3016 case PT_NOTE: return "NOTE";
3017 case PT_SHLIB: return "SHLIB";
3018 case PT_PHDR: return "PHDR";
3019 case PT_TLS: return "TLS";
3020
3021 case PT_GNU_EH_FRAME:
3022 return "GNU_EH_FRAME";
3023 case PT_GNU_STACK: return "GNU_STACK";
3024 case PT_GNU_RELRO: return "GNU_RELRO";
3025
3026 default:
3027 if ((p_type >= PT_LOPROC) && (p_type <= PT_HIPROC))
3028 {
3029 const char * result;
3030
3031 switch (elf_header.e_machine)
3032 {
3033 case EM_AARCH64:
3034 result = get_aarch64_segment_type (p_type);
3035 break;
3036 case EM_ARM:
3037 result = get_arm_segment_type (p_type);
3038 break;
3039 case EM_MIPS:
3040 case EM_MIPS_RS3_LE:
3041 result = get_mips_segment_type (p_type);
3042 break;
3043 case EM_PARISC:
3044 result = get_parisc_segment_type (p_type);
3045 break;
3046 case EM_IA_64:
3047 result = get_ia64_segment_type (p_type);
3048 break;
3049 case EM_TI_C6000:
3050 result = get_tic6x_segment_type (p_type);
3051 break;
3052 default:
3053 result = NULL;
3054 break;
3055 }
3056
3057 if (result != NULL)
3058 return result;
3059
3060 sprintf (buff, "LOPROC+%lx", p_type - PT_LOPROC);
3061 }
3062 else if ((p_type >= PT_LOOS) && (p_type <= PT_HIOS))
3063 {
3064 const char * result;
3065
3066 switch (elf_header.e_machine)
3067 {
3068 case EM_PARISC:
3069 result = get_parisc_segment_type (p_type);
3070 break;
3071 case EM_IA_64:
3072 result = get_ia64_segment_type (p_type);
3073 break;
3074 default:
3075 result = NULL;
3076 break;
3077 }
3078
3079 if (result != NULL)
3080 return result;
3081
3082 sprintf (buff, "LOOS+%lx", p_type - PT_LOOS);
3083 }
3084 else
3085 snprintf (buff, sizeof (buff), _("<unknown>: %lx"), p_type);
3086
3087 return buff;
3088 }
3089 }
3090
3091 static const char *
3092 get_mips_section_type_name (unsigned int sh_type)
3093 {
3094 switch (sh_type)
3095 {
3096 case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
3097 case SHT_MIPS_MSYM: return "MIPS_MSYM";
3098 case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
3099 case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
3100 case SHT_MIPS_UCODE: return "MIPS_UCODE";
3101 case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
3102 case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
3103 case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
3104 case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
3105 case SHT_MIPS_RELD: return "MIPS_RELD";
3106 case SHT_MIPS_IFACE: return "MIPS_IFACE";
3107 case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
3108 case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
3109 case SHT_MIPS_SHDR: return "MIPS_SHDR";
3110 case SHT_MIPS_FDESC: return "MIPS_FDESC";
3111 case SHT_MIPS_EXTSYM: return "MIPS_EXTSYM";
3112 case SHT_MIPS_DENSE: return "MIPS_DENSE";
3113 case SHT_MIPS_PDESC: return "MIPS_PDESC";
3114 case SHT_MIPS_LOCSYM: return "MIPS_LOCSYM";
3115 case SHT_MIPS_AUXSYM: return "MIPS_AUXSYM";
3116 case SHT_MIPS_OPTSYM: return "MIPS_OPTSYM";
3117 case SHT_MIPS_LOCSTR: return "MIPS_LOCSTR";
3118 case SHT_MIPS_LINE: return "MIPS_LINE";
3119 case SHT_MIPS_RFDESC: return "MIPS_RFDESC";
3120 case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
3121 case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
3122 case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
3123 case SHT_MIPS_DWARF: return "MIPS_DWARF";
3124 case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
3125 case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
3126 case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
3127 case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
3128 case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
3129 case SHT_MIPS_XLATE: return "MIPS_XLATE";
3130 case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
3131 case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
3132 case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
3133 case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
3134 case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
3135 default:
3136 break;
3137 }
3138 return NULL;
3139 }
3140
3141 static const char *
3142 get_parisc_section_type_name (unsigned int sh_type)
3143 {
3144 switch (sh_type)
3145 {
3146 case SHT_PARISC_EXT: return "PARISC_EXT";
3147 case SHT_PARISC_UNWIND: return "PARISC_UNWIND";
3148 case SHT_PARISC_DOC: return "PARISC_DOC";
3149 case SHT_PARISC_ANNOT: return "PARISC_ANNOT";
3150 case SHT_PARISC_SYMEXTN: return "PARISC_SYMEXTN";
3151 case SHT_PARISC_STUBS: return "PARISC_STUBS";
3152 case SHT_PARISC_DLKM: return "PARISC_DLKM";
3153 default:
3154 break;
3155 }
3156 return NULL;
3157 }
3158
3159 static const char *
3160 get_ia64_section_type_name (unsigned int sh_type)
3161 {
3162 /* If the top 8 bits are 0x78 the next 8 are the os/abi ID. */
3163 if ((sh_type & 0xFF000000) == SHT_IA_64_LOPSREG)
3164 return get_osabi_name ((sh_type & 0x00FF0000) >> 16);
3165
3166 switch (sh_type)
3167 {
3168 case SHT_IA_64_EXT: return "IA_64_EXT";
3169 case SHT_IA_64_UNWIND: return "IA_64_UNWIND";
3170 case SHT_IA_64_PRIORITY_INIT: return "IA_64_PRIORITY_INIT";
3171 case SHT_IA_64_VMS_TRACE: return "VMS_TRACE";
3172 case SHT_IA_64_VMS_TIE_SIGNATURES: return "VMS_TIE_SIGNATURES";
3173 case SHT_IA_64_VMS_DEBUG: return "VMS_DEBUG";
3174 case SHT_IA_64_VMS_DEBUG_STR: return "VMS_DEBUG_STR";
3175 case SHT_IA_64_VMS_LINKAGES: return "VMS_LINKAGES";
3176 case SHT_IA_64_VMS_SYMBOL_VECTOR: return "VMS_SYMBOL_VECTOR";
3177 case SHT_IA_64_VMS_FIXUP: return "VMS_FIXUP";
3178 default:
3179 break;
3180 }
3181 return NULL;
3182 }
3183
3184 static const char *
3185 get_x86_64_section_type_name (unsigned int sh_type)
3186 {
3187 switch (sh_type)
3188 {
3189 case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
3190 default:
3191 break;
3192 }
3193 return NULL;
3194 }
3195
3196 static const char *
3197 get_aarch64_section_type_name (unsigned int sh_type)
3198 {
3199 switch (sh_type)
3200 {
3201 case SHT_AARCH64_ATTRIBUTES:
3202 return "AARCH64_ATTRIBUTES";
3203 default:
3204 break;
3205 }
3206 return NULL;
3207 }
3208
3209 static const char *
3210 get_arm_section_type_name (unsigned int sh_type)
3211 {
3212 switch (sh_type)
3213 {
3214 case SHT_ARM_EXIDX: return "ARM_EXIDX";
3215 case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
3216 case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
3217 case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
3218 case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
3219 default:
3220 break;
3221 }
3222 return NULL;
3223 }
3224
3225 static const char *
3226 get_tic6x_section_type_name (unsigned int sh_type)
3227 {
3228 switch (sh_type)
3229 {
3230 case SHT_C6000_UNWIND:
3231 return "C6000_UNWIND";
3232 case SHT_C6000_PREEMPTMAP:
3233 return "C6000_PREEMPTMAP";
3234 case SHT_C6000_ATTRIBUTES:
3235 return "C6000_ATTRIBUTES";
3236 case SHT_TI_ICODE:
3237 return "TI_ICODE";
3238 case SHT_TI_XREF:
3239 return "TI_XREF";
3240 case SHT_TI_HANDLER:
3241 return "TI_HANDLER";
3242 case SHT_TI_INITINFO:
3243 return "TI_INITINFO";
3244 case SHT_TI_PHATTRS:
3245 return "TI_PHATTRS";
3246 default:
3247 break;
3248 }
3249 return NULL;
3250 }
3251
3252 static const char *
3253 get_msp430x_section_type_name (unsigned int sh_type)
3254 {
3255 switch (sh_type)
3256 {
3257 case SHT_MSP430_SEC_FLAGS: return "MSP430_SEC_FLAGS";
3258 case SHT_MSP430_SYM_ALIASES: return "MSP430_SYM_ALIASES";
3259 case SHT_MSP430_ATTRIBUTES: return "MSP430_ATTRIBUTES";
3260 default: return NULL;
3261 }
3262 }
3263
3264 static const char *
3265 get_section_type_name (unsigned int sh_type)
3266 {
3267 static char buff[32];
3268
3269 switch (sh_type)
3270 {
3271 case SHT_NULL: return "NULL";
3272 case SHT_PROGBITS: return "PROGBITS";
3273 case SHT_SYMTAB: return "SYMTAB";
3274 case SHT_STRTAB: return "STRTAB";
3275 case SHT_RELA: return "RELA";
3276 case SHT_HASH: return "HASH";
3277 case SHT_DYNAMIC: return "DYNAMIC";
3278 case SHT_NOTE: return "NOTE";
3279 case SHT_NOBITS: return "NOBITS";
3280 case SHT_REL: return "REL";
3281 case SHT_SHLIB: return "SHLIB";
3282 case SHT_DYNSYM: return "DYNSYM";
3283 case SHT_INIT_ARRAY: return "INIT_ARRAY";
3284 case SHT_FINI_ARRAY: return "FINI_ARRAY";
3285 case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
3286 case SHT_GNU_HASH: return "GNU_HASH";
3287 case SHT_GROUP: return "GROUP";
3288 case SHT_SYMTAB_SHNDX: return "SYMTAB SECTION INDICIES";
3289 case SHT_GNU_verdef: return "VERDEF";
3290 case SHT_GNU_verneed: return "VERNEED";
3291 case SHT_GNU_versym: return "VERSYM";
3292 case 0x6ffffff0: return "VERSYM";
3293 case 0x6ffffffc: return "VERDEF";
3294 case 0x7ffffffd: return "AUXILIARY";
3295 case 0x7fffffff: return "FILTER";
3296 case SHT_GNU_LIBLIST: return "GNU_LIBLIST";
3297
3298 default:
3299 if ((sh_type >= SHT_LOPROC) && (sh_type <= SHT_HIPROC))
3300 {
3301 const char * result;
3302
3303 switch (elf_header.e_machine)
3304 {
3305 case EM_MIPS:
3306 case EM_MIPS_RS3_LE:
3307 result = get_mips_section_type_name (sh_type);
3308 break;
3309 case EM_PARISC:
3310 result = get_parisc_section_type_name (sh_type);
3311 break;
3312 case EM_IA_64:
3313 result = get_ia64_section_type_name (sh_type);
3314 break;
3315 case EM_X86_64:
3316 case EM_L1OM:
3317 case EM_K1OM:
3318 result = get_x86_64_section_type_name (sh_type);
3319 break;
3320 case EM_AARCH64:
3321 result = get_aarch64_section_type_name (sh_type);
3322 break;
3323 case EM_ARM:
3324 result = get_arm_section_type_name (sh_type);
3325 break;
3326 case EM_TI_C6000:
3327 result = get_tic6x_section_type_name (sh_type);
3328 break;
3329 case EM_MSP430:
3330 result = get_msp430x_section_type_name (sh_type);
3331 break;
3332 default:
3333 result = NULL;
3334 break;
3335 }
3336
3337 if (result != NULL)
3338 return result;
3339
3340 sprintf (buff, "LOPROC+%x", sh_type - SHT_LOPROC);
3341 }
3342 else if ((sh_type >= SHT_LOOS) && (sh_type <= SHT_HIOS))
3343 {
3344 const char * result;
3345
3346 switch (elf_header.e_machine)
3347 {
3348 case EM_IA_64:
3349 result = get_ia64_section_type_name (sh_type);
3350 break;
3351 default:
3352 result = NULL;
3353 break;
3354 }
3355
3356 if (result != NULL)
3357 return result;
3358
3359 sprintf (buff, "LOOS+%x", sh_type - SHT_LOOS);
3360 }
3361 else if ((sh_type >= SHT_LOUSER) && (sh_type <= SHT_HIUSER))
3362 sprintf (buff, "LOUSER+%x", sh_type - SHT_LOUSER);
3363 else
3364 /* This message is probably going to be displayed in a 15
3365 character wide field, so put the hex value first. */
3366 snprintf (buff, sizeof (buff), _("%08x: <unknown>"), sh_type);
3367
3368 return buff;
3369 }
3370 }
3371
3372 #define OPTION_DEBUG_DUMP 512
3373 #define OPTION_DYN_SYMS 513
3374 #define OPTION_DWARF_DEPTH 514
3375 #define OPTION_DWARF_START 515
3376 #define OPTION_DWARF_CHECK 516
3377
3378 static struct option options[] =
3379 {
3380 {"all", no_argument, 0, 'a'},
3381 {"file-header", no_argument, 0, 'h'},
3382 {"program-headers", no_argument, 0, 'l'},
3383 {"headers", no_argument, 0, 'e'},
3384 {"histogram", no_argument, 0, 'I'},
3385 {"segments", no_argument, 0, 'l'},
3386 {"sections", no_argument, 0, 'S'},
3387 {"section-headers", no_argument, 0, 'S'},
3388 {"section-groups", no_argument, 0, 'g'},
3389 {"section-details", no_argument, 0, 't'},
3390 {"full-section-name",no_argument, 0, 'N'},
3391 {"symbols", no_argument, 0, 's'},
3392 {"syms", no_argument, 0, 's'},
3393 {"dyn-syms", no_argument, 0, OPTION_DYN_SYMS},
3394 {"relocs", no_argument, 0, 'r'},
3395 {"notes", no_argument, 0, 'n'},
3396 {"dynamic", no_argument, 0, 'd'},
3397 {"arch-specific", no_argument, 0, 'A'},
3398 {"version-info", no_argument, 0, 'V'},
3399 {"use-dynamic", no_argument, 0, 'D'},
3400 {"unwind", no_argument, 0, 'u'},
3401 {"archive-index", no_argument, 0, 'c'},
3402 {"hex-dump", required_argument, 0, 'x'},
3403 {"relocated-dump", required_argument, 0, 'R'},
3404 {"string-dump", required_argument, 0, 'p'},
3405 #ifdef SUPPORT_DISASSEMBLY
3406 {"instruction-dump", required_argument, 0, 'i'},
3407 #endif
3408 {"debug-dump", optional_argument, 0, OPTION_DEBUG_DUMP},
3409
3410 {"dwarf-depth", required_argument, 0, OPTION_DWARF_DEPTH},
3411 {"dwarf-start", required_argument, 0, OPTION_DWARF_START},
3412 {"dwarf-check", no_argument, 0, OPTION_DWARF_CHECK},
3413
3414 {"version", no_argument, 0, 'v'},
3415 {"wide", no_argument, 0, 'W'},
3416 {"help", no_argument, 0, 'H'},
3417 {0, no_argument, 0, 0}
3418 };
3419
3420 static void
3421 usage (FILE * stream)
3422 {
3423 fprintf (stream, _("Usage: readelf <option(s)> elf-file(s)\n"));
3424 fprintf (stream, _(" Display information about the contents of ELF format files\n"));
3425 fprintf (stream, _(" Options are:\n\
3426 -a --all Equivalent to: -h -l -S -s -r -d -V -A -I\n\
3427 -h --file-header Display the ELF file header\n\
3428 -l --program-headers Display the program headers\n\
3429 --segments An alias for --program-headers\n\
3430 -S --section-headers Display the sections' header\n\
3431 --sections An alias for --section-headers\n\
3432 -g --section-groups Display the section groups\n\
3433 -t --section-details Display the section details\n\
3434 -e --headers Equivalent to: -h -l -S\n\
3435 -s --syms Display the symbol table\n\
3436 --symbols An alias for --syms\n\
3437 --dyn-syms Display the dynamic symbol table\n\
3438 -n --notes Display the core notes (if present)\n\
3439 -r --relocs Display the relocations (if present)\n\
3440 -u --unwind Display the unwind info (if present)\n\
3441 -d --dynamic Display the dynamic section (if present)\n\
3442 -V --version-info Display the version sections (if present)\n\
3443 -A --arch-specific Display architecture specific information (if any)\n\
3444 -c --archive-index Display the symbol/file index in an archive\n\
3445 -D --use-dynamic Use the dynamic section info when displaying symbols\n\
3446 -x --hex-dump=<number|name>\n\
3447 Dump the contents of section <number|name> as bytes\n\
3448 -p --string-dump=<number|name>\n\
3449 Dump the contents of section <number|name> as strings\n\
3450 -R --relocated-dump=<number|name>\n\
3451 Dump the contents of section <number|name> as relocated bytes\n\
3452 -w[lLiaprmfFsoRt] or\n\
3453 --debug-dump[=rawline,=decodedline,=info,=abbrev,=pubnames,=aranges,=macro,=frames,\n\
3454 =frames-interp,=str,=loc,=Ranges,=pubtypes,\n\
3455 =gdb_index,=trace_info,=trace_abbrev,=trace_aranges,\n\
3456 =addr,=cu_index]\n\
3457 Display the contents of DWARF2 debug sections\n"));
3458 fprintf (stream, _("\
3459 --dwarf-depth=N Do not display DIEs at depth N or greater\n\
3460 --dwarf-start=N Display DIEs starting with N, at the same depth\n\
3461 or deeper\n"));
3462 #ifdef SUPPORT_DISASSEMBLY
3463 fprintf (stream, _("\
3464 -i --instruction-dump=<number|name>\n\
3465 Disassemble the contents of section <number|name>\n"));
3466 #endif
3467 fprintf (stream, _("\
3468 -I --histogram Display histogram of bucket list lengths\n\
3469 -W --wide Allow output width to exceed 80 characters\n\
3470 @<file> Read options from <file>\n\
3471 -H --help Display this information\n\
3472 -v --version Display the version number of readelf\n"));
3473
3474 if (REPORT_BUGS_TO[0] && stream == stdout)
3475 fprintf (stdout, _("Report bugs to %s\n"), REPORT_BUGS_TO);
3476
3477 exit (stream == stdout ? 0 : 1);
3478 }
3479
3480 /* Record the fact that the user wants the contents of section number
3481 SECTION to be displayed using the method(s) encoded as flags bits
3482 in TYPE. Note, TYPE can be zero if we are creating the array for
3483 the first time. */
3484
3485 static void
3486 request_dump_bynumber (unsigned int section, dump_type type)
3487 {
3488 if (section >= num_dump_sects)
3489 {
3490 dump_type * new_dump_sects;
3491
3492 new_dump_sects = (dump_type *) calloc (section + 1,
3493 sizeof (* dump_sects));
3494
3495 if (new_dump_sects == NULL)
3496 error (_("Out of memory allocating dump request table.\n"));
3497 else
3498 {
3499 /* Copy current flag settings. */
3500 memcpy (new_dump_sects, dump_sects, num_dump_sects * sizeof (* dump_sects));
3501
3502 free (dump_sects);
3503
3504 dump_sects = new_dump_sects;
3505 num_dump_sects = section + 1;
3506 }
3507 }
3508
3509 if (dump_sects)
3510 dump_sects[section] |= type;
3511
3512 return;
3513 }
3514
3515 /* Request a dump by section name. */
3516
3517 static void
3518 request_dump_byname (const char * section, dump_type type)
3519 {
3520 struct dump_list_entry * new_request;
3521
3522 new_request = (struct dump_list_entry *)
3523 malloc (sizeof (struct dump_list_entry));
3524 if (!new_request)
3525 error (_("Out of memory allocating dump request table.\n"));
3526
3527 new_request->name = strdup (section);
3528 if (!new_request->name)
3529 error (_("Out of memory allocating dump request table.\n"));
3530
3531 new_request->type = type;
3532
3533 new_request->next = dump_sects_byname;
3534 dump_sects_byname = new_request;
3535 }
3536
3537 static inline void
3538 request_dump (dump_type type)
3539 {
3540 int section;
3541 char * cp;
3542
3543 do_dump++;
3544 section = strtoul (optarg, & cp, 0);
3545
3546 if (! *cp && section >= 0)
3547 request_dump_bynumber (section, type);
3548 else
3549 request_dump_byname (optarg, type);
3550 }
3551
3552
3553 static void
3554 parse_args (int argc, char ** argv)
3555 {
3556 int c;
3557
3558 if (argc < 2)
3559 usage (stderr);
3560
3561 while ((c = getopt_long
3562 (argc, argv, "ADHINR:SVWacdeghi:lnp:rstuvw::x:", options, NULL)) != EOF)
3563 {
3564 switch (c)
3565 {
3566 case 0:
3567 /* Long options. */
3568 break;
3569 case 'H':
3570 usage (stdout);
3571 break;
3572
3573 case 'a':
3574 do_syms++;
3575 do_reloc++;
3576 do_unwind++;
3577 do_dynamic++;
3578 do_header++;
3579 do_sections++;
3580 do_section_groups++;
3581 do_segments++;
3582 do_version++;
3583 do_histogram++;
3584 do_arch++;
3585 do_notes++;
3586 break;
3587 case 'g':
3588 do_section_groups++;
3589 break;
3590 case 't':
3591 case 'N':
3592 do_sections++;
3593 do_section_details++;
3594 break;
3595 case 'e':
3596 do_header++;
3597 do_sections++;
3598 do_segments++;
3599 break;
3600 case 'A':
3601 do_arch++;
3602 break;
3603 case 'D':
3604 do_using_dynamic++;
3605 break;
3606 case 'r':
3607 do_reloc++;
3608 break;
3609 case 'u':
3610 do_unwind++;
3611 break;
3612 case 'h':
3613 do_header++;
3614 break;
3615 case 'l':
3616 do_segments++;
3617 break;
3618 case 's':
3619 do_syms++;
3620 break;
3621 case 'S':
3622 do_sections++;
3623 break;
3624 case 'd':
3625 do_dynamic++;
3626 break;
3627 case 'I':
3628 do_histogram++;
3629 break;
3630 case 'n':
3631 do_notes++;
3632 break;
3633 case 'c':
3634 do_archive_index++;
3635 break;
3636 case 'x':
3637 request_dump (HEX_DUMP);
3638 break;
3639 case 'p':
3640 request_dump (STRING_DUMP);
3641 break;
3642 case 'R':
3643 request_dump (RELOC_DUMP);
3644 break;
3645 case 'w':
3646 do_dump++;
3647 if (optarg == 0)
3648 {
3649 do_debugging = 1;
3650 dwarf_select_sections_all ();
3651 }
3652 else
3653 {
3654 do_debugging = 0;
3655 dwarf_select_sections_by_letters (optarg);
3656 }
3657 break;
3658 case OPTION_DEBUG_DUMP:
3659 do_dump++;
3660 if (optarg == 0)
3661 do_debugging = 1;
3662 else
3663 {
3664 do_debugging = 0;
3665 dwarf_select_sections_by_names (optarg);
3666 }
3667 break;
3668 case OPTION_DWARF_DEPTH:
3669 {
3670 char *cp;
3671
3672 dwarf_cutoff_level = strtoul (optarg, & cp, 0);
3673 }
3674 break;
3675 case OPTION_DWARF_START:
3676 {
3677 char *cp;
3678
3679 dwarf_start_die = strtoul (optarg, & cp, 0);
3680 }
3681 break;
3682 case OPTION_DWARF_CHECK:
3683 dwarf_check = 1;
3684 break;
3685 case OPTION_DYN_SYMS:
3686 do_dyn_syms++;
3687 break;
3688 #ifdef SUPPORT_DISASSEMBLY
3689 case 'i':
3690 request_dump (DISASS_DUMP);
3691 break;
3692 #endif
3693 case 'v':
3694 print_version (program_name);
3695 break;
3696 case 'V':
3697 do_version++;
3698 break;
3699 case 'W':
3700 do_wide++;
3701 break;
3702 default:
3703 /* xgettext:c-format */
3704 error (_("Invalid option '-%c'\n"), c);
3705 /* Drop through. */
3706 case '?':
3707 usage (stderr);
3708 }
3709 }
3710
3711 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
3712 && !do_segments && !do_header && !do_dump && !do_version
3713 && !do_histogram && !do_debugging && !do_arch && !do_notes
3714 && !do_section_groups && !do_archive_index
3715 && !do_dyn_syms)
3716 usage (stderr);
3717 else if (argc < 3)
3718 {
3719 warn (_("Nothing to do.\n"));
3720 usage (stderr);
3721 }
3722 }
3723
3724 static const char *
3725 get_elf_class (unsigned int elf_class)
3726 {
3727 static char buff[32];
3728
3729 switch (elf_class)
3730 {
3731 case ELFCLASSNONE: return _("none");
3732 case ELFCLASS32: return "ELF32";
3733 case ELFCLASS64: return "ELF64";
3734 default:
3735 snprintf (buff, sizeof (buff), _("<unknown: %x>"), elf_class);
3736 return buff;
3737 }
3738 }
3739
3740 static const char *
3741 get_data_encoding (unsigned int encoding)
3742 {
3743 static char buff[32];
3744
3745 switch (encoding)
3746 {
3747 case ELFDATANONE: return _("none");
3748 case ELFDATA2LSB: return _("2's complement, little endian");
3749 case ELFDATA2MSB: return _("2's complement, big endian");
3750 default:
3751 snprintf (buff, sizeof (buff), _("<unknown: %x>"), encoding);
3752 return buff;
3753 }
3754 }
3755
3756 /* Decode the data held in 'elf_header'. */
3757
3758 static int
3759 process_file_header (void)
3760 {
3761 if ( elf_header.e_ident[EI_MAG0] != ELFMAG0
3762 || elf_header.e_ident[EI_MAG1] != ELFMAG1
3763 || elf_header.e_ident[EI_MAG2] != ELFMAG2
3764 || elf_header.e_ident[EI_MAG3] != ELFMAG3)
3765 {
3766 error
3767 (_("Not an ELF file - it has the wrong magic bytes at the start\n"));
3768 return 0;
3769 }
3770
3771 init_dwarf_regnames (elf_header.e_machine);
3772
3773 if (do_header)
3774 {
3775 int i;
3776
3777 printf (_("ELF Header:\n"));
3778 printf (_(" Magic: "));
3779 for (i = 0; i < EI_NIDENT; i++)
3780 printf ("%2.2x ", elf_header.e_ident[i]);
3781 printf ("\n");
3782 printf (_(" Class: %s\n"),
3783 get_elf_class (elf_header.e_ident[EI_CLASS]));
3784 printf (_(" Data: %s\n"),
3785 get_data_encoding (elf_header.e_ident[EI_DATA]));
3786 printf (_(" Version: %d %s\n"),
3787 elf_header.e_ident[EI_VERSION],
3788 (elf_header.e_ident[EI_VERSION] == EV_CURRENT
3789 ? "(current)"
3790 : (elf_header.e_ident[EI_VERSION] != EV_NONE
3791 ? _("<unknown: %lx>")
3792 : "")));
3793 printf (_(" OS/ABI: %s\n"),
3794 get_osabi_name (elf_header.e_ident[EI_OSABI]));
3795 printf (_(" ABI Version: %d\n"),
3796 elf_header.e_ident[EI_ABIVERSION]);
3797 printf (_(" Type: %s\n"),
3798 get_file_type (elf_header.e_type));
3799 printf (_(" Machine: %s\n"),
3800 get_machine_name (elf_header.e_machine));
3801 printf (_(" Version: 0x%lx\n"),
3802 (unsigned long) elf_header.e_version);
3803
3804 printf (_(" Entry point address: "));
3805 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3806 printf (_("\n Start of program headers: "));
3807 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3808 printf (_(" (bytes into file)\n Start of section headers: "));
3809 print_vma ((bfd_vma) elf_header.e_shoff, DEC);
3810 printf (_(" (bytes into file)\n"));
3811
3812 printf (_(" Flags: 0x%lx%s\n"),
3813 (unsigned long) elf_header.e_flags,
3814 get_machine_flags (elf_header.e_flags, elf_header.e_machine));
3815 printf (_(" Size of this header: %ld (bytes)\n"),
3816 (long) elf_header.e_ehsize);
3817 printf (_(" Size of program headers: %ld (bytes)\n"),
3818 (long) elf_header.e_phentsize);
3819 printf (_(" Number of program headers: %ld"),
3820 (long) elf_header.e_phnum);
3821 if (section_headers != NULL
3822 && elf_header.e_phnum == PN_XNUM
3823 && section_headers[0].sh_info != 0)
3824 printf (" (%ld)", (long) section_headers[0].sh_info);
3825 putc ('\n', stdout);
3826 printf (_(" Size of section headers: %ld (bytes)\n"),
3827 (long) elf_header.e_shentsize);
3828 printf (_(" Number of section headers: %ld"),
3829 (long) elf_header.e_shnum);
3830 if (section_headers != NULL && elf_header.e_shnum == SHN_UNDEF)
3831 printf (" (%ld)", (long) section_headers[0].sh_size);
3832 putc ('\n', stdout);
3833 printf (_(" Section header string table index: %ld"),
3834 (long) elf_header.e_shstrndx);
3835 if (section_headers != NULL
3836 && elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3837 printf (" (%u)", section_headers[0].sh_link);
3838 else if (elf_header.e_shstrndx != SHN_UNDEF
3839 && elf_header.e_shstrndx >= elf_header.e_shnum)
3840 printf (_(" <corrupt: out of range>"));
3841 putc ('\n', stdout);
3842 }
3843
3844 if (section_headers != NULL)
3845 {
3846 if (elf_header.e_phnum == PN_XNUM
3847 && section_headers[0].sh_info != 0)
3848 elf_header.e_phnum = section_headers[0].sh_info;
3849 if (elf_header.e_shnum == SHN_UNDEF)
3850 elf_header.e_shnum = section_headers[0].sh_size;
3851 if (elf_header.e_shstrndx == (SHN_XINDEX & 0xffff))
3852 elf_header.e_shstrndx = section_headers[0].sh_link;
3853 else if (elf_header.e_shstrndx >= elf_header.e_shnum)
3854 elf_header.e_shstrndx = SHN_UNDEF;
3855 free (section_headers);
3856 section_headers = NULL;
3857 }
3858
3859 return 1;
3860 }
3861
3862
3863 static int
3864 get_32bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3865 {
3866 Elf32_External_Phdr * phdrs;
3867 Elf32_External_Phdr * external;
3868 Elf_Internal_Phdr * internal;
3869 unsigned int i;
3870
3871 phdrs = (Elf32_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3872 elf_header.e_phentsize,
3873 elf_header.e_phnum,
3874 _("program headers"));
3875 if (!phdrs)
3876 return 0;
3877
3878 for (i = 0, internal = pheaders, external = phdrs;
3879 i < elf_header.e_phnum;
3880 i++, internal++, external++)
3881 {
3882 internal->p_type = BYTE_GET (external->p_type);
3883 internal->p_offset = BYTE_GET (external->p_offset);
3884 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3885 internal->p_paddr = BYTE_GET (external->p_paddr);
3886 internal->p_filesz = BYTE_GET (external->p_filesz);
3887 internal->p_memsz = BYTE_GET (external->p_memsz);
3888 internal->p_flags = BYTE_GET (external->p_flags);
3889 internal->p_align = BYTE_GET (external->p_align);
3890 }
3891
3892 free (phdrs);
3893
3894 return 1;
3895 }
3896
3897 static int
3898 get_64bit_program_headers (FILE * file, Elf_Internal_Phdr * pheaders)
3899 {
3900 Elf64_External_Phdr * phdrs;
3901 Elf64_External_Phdr * external;
3902 Elf_Internal_Phdr * internal;
3903 unsigned int i;
3904
3905 phdrs = (Elf64_External_Phdr *) get_data (NULL, file, elf_header.e_phoff,
3906 elf_header.e_phentsize,
3907 elf_header.e_phnum,
3908 _("program headers"));
3909 if (!phdrs)
3910 return 0;
3911
3912 for (i = 0, internal = pheaders, external = phdrs;
3913 i < elf_header.e_phnum;
3914 i++, internal++, external++)
3915 {
3916 internal->p_type = BYTE_GET (external->p_type);
3917 internal->p_flags = BYTE_GET (external->p_flags);
3918 internal->p_offset = BYTE_GET (external->p_offset);
3919 internal->p_vaddr = BYTE_GET (external->p_vaddr);
3920 internal->p_paddr = BYTE_GET (external->p_paddr);
3921 internal->p_filesz = BYTE_GET (external->p_filesz);
3922 internal->p_memsz = BYTE_GET (external->p_memsz);
3923 internal->p_align = BYTE_GET (external->p_align);
3924 }
3925
3926 free (phdrs);
3927
3928 return 1;
3929 }
3930
3931 /* Returns 1 if the program headers were read into `program_headers'. */
3932
3933 static int
3934 get_program_headers (FILE * file)
3935 {
3936 Elf_Internal_Phdr * phdrs;
3937
3938 /* Check cache of prior read. */
3939 if (program_headers != NULL)
3940 return 1;
3941
3942 phdrs = (Elf_Internal_Phdr *) cmalloc (elf_header.e_phnum,
3943 sizeof (Elf_Internal_Phdr));
3944
3945 if (phdrs == NULL)
3946 {
3947 error (_("Out of memory\n"));
3948 return 0;
3949 }
3950
3951 if (is_32bit_elf
3952 ? get_32bit_program_headers (file, phdrs)
3953 : get_64bit_program_headers (file, phdrs))
3954 {
3955 program_headers = phdrs;
3956 return 1;
3957 }
3958
3959 free (phdrs);
3960 return 0;
3961 }
3962
3963 /* Returns 1 if the program headers were loaded. */
3964
3965 static int
3966 process_program_headers (FILE * file)
3967 {
3968 Elf_Internal_Phdr * segment;
3969 unsigned int i;
3970
3971 if (elf_header.e_phnum == 0)
3972 {
3973 /* PR binutils/12467. */
3974 if (elf_header.e_phoff != 0)
3975 warn (_("possibly corrupt ELF header - it has a non-zero program"
3976 " header offset, but no program headers"));
3977 else if (do_segments)
3978 printf (_("\nThere are no program headers in this file.\n"));
3979 return 0;
3980 }
3981
3982 if (do_segments && !do_header)
3983 {
3984 printf (_("\nElf file type is %s\n"), get_file_type (elf_header.e_type));
3985 printf (_("Entry point "));
3986 print_vma ((bfd_vma) elf_header.e_entry, PREFIX_HEX);
3987 printf (_("\nThere are %d program headers, starting at offset "),
3988 elf_header.e_phnum);
3989 print_vma ((bfd_vma) elf_header.e_phoff, DEC);
3990 printf ("\n");
3991 }
3992
3993 if (! get_program_headers (file))
3994 return 0;
3995
3996 if (do_segments)
3997 {
3998 if (elf_header.e_phnum > 1)
3999 printf (_("\nProgram Headers:\n"));
4000 else
4001 printf (_("\nProgram Headers:\n"));
4002
4003 if (is_32bit_elf)
4004 printf
4005 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4006 else if (do_wide)
4007 printf
4008 (_(" Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align\n"));
4009 else
4010 {
4011 printf
4012 (_(" Type Offset VirtAddr PhysAddr\n"));
4013 printf
4014 (_(" FileSiz MemSiz Flags Align\n"));
4015 }
4016 }
4017
4018 dynamic_addr = 0;
4019 dynamic_size = 0;
4020
4021 for (i = 0, segment = program_headers;
4022 i < elf_header.e_phnum;
4023 i++, segment++)
4024 {
4025 if (do_segments)
4026 {
4027 printf (" %-14.14s ", get_segment_type (segment->p_type));
4028
4029 if (is_32bit_elf)
4030 {
4031 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4032 printf ("0x%8.8lx ", (unsigned long) segment->p_vaddr);
4033 printf ("0x%8.8lx ", (unsigned long) segment->p_paddr);
4034 printf ("0x%5.5lx ", (unsigned long) segment->p_filesz);
4035 printf ("0x%5.5lx ", (unsigned long) segment->p_memsz);
4036 printf ("%c%c%c ",
4037 (segment->p_flags & PF_R ? 'R' : ' '),
4038 (segment->p_flags & PF_W ? 'W' : ' '),
4039 (segment->p_flags & PF_X ? 'E' : ' '));
4040 printf ("%#lx", (unsigned long) segment->p_align);
4041 }
4042 else if (do_wide)
4043 {
4044 if ((unsigned long) segment->p_offset == segment->p_offset)
4045 printf ("0x%6.6lx ", (unsigned long) segment->p_offset);
4046 else
4047 {
4048 print_vma (segment->p_offset, FULL_HEX);
4049 putchar (' ');
4050 }
4051
4052 print_vma (segment->p_vaddr, FULL_HEX);
4053 putchar (' ');
4054 print_vma (segment->p_paddr, FULL_HEX);
4055 putchar (' ');
4056
4057 if ((unsigned long) segment->p_filesz == segment->p_filesz)
4058 printf ("0x%6.6lx ", (unsigned long) segment->p_filesz);
4059 else
4060 {
4061 print_vma (segment->p_filesz, FULL_HEX);
4062 putchar (' ');
4063 }
4064
4065 if ((unsigned long) segment->p_memsz == segment->p_memsz)
4066 printf ("0x%6.6lx", (unsigned long) segment->p_memsz);
4067 else
4068 {
4069 print_vma (segment->p_memsz, FULL_HEX);
4070 }
4071
4072 printf (" %c%c%c ",
4073 (segment->p_flags & PF_R ? 'R' : ' '),
4074 (segment->p_flags & PF_W ? 'W' : ' '),
4075 (segment->p_flags & PF_X ? 'E' : ' '));
4076
4077 if ((unsigned long) segment->p_align == segment->p_align)
4078 printf ("%#lx", (unsigned long) segment->p_align);
4079 else
4080 {
4081 print_vma (segment->p_align, PREFIX_HEX);
4082 }
4083 }
4084 else
4085 {
4086 print_vma (segment->p_offset, FULL_HEX);
4087 putchar (' ');
4088 print_vma (segment->p_vaddr, FULL_HEX);
4089 putchar (' ');
4090 print_vma (segment->p_paddr, FULL_HEX);
4091 printf ("\n ");
4092 print_vma (segment->p_filesz, FULL_HEX);
4093 putchar (' ');
4094 print_vma (segment->p_memsz, FULL_HEX);
4095 printf (" %c%c%c ",
4096 (segment->p_flags & PF_R ? 'R' : ' '),
4097 (segment->p_flags & PF_W ? 'W' : ' '),
4098 (segment->p_flags & PF_X ? 'E' : ' '));
4099 print_vma (segment->p_align, HEX);
4100 }
4101 }
4102
4103 switch (segment->p_type)
4104 {
4105 case PT_DYNAMIC:
4106 if (dynamic_addr)
4107 error (_("more than one dynamic segment\n"));
4108
4109 /* By default, assume that the .dynamic section is the first
4110 section in the DYNAMIC segment. */
4111 dynamic_addr = segment->p_offset;
4112 dynamic_size = segment->p_filesz;
4113
4114 /* Try to locate the .dynamic section. If there is
4115 a section header table, we can easily locate it. */
4116 if (section_headers != NULL)
4117 {
4118 Elf_Internal_Shdr * sec;
4119
4120 sec = find_section (".dynamic");
4121 if (sec == NULL || sec->sh_size == 0)
4122 {
4123 /* A corresponding .dynamic section is expected, but on
4124 IA-64/OpenVMS it is OK for it to be missing. */
4125 if (!is_ia64_vms ())
4126 error (_("no .dynamic section in the dynamic segment\n"));
4127 break;
4128 }
4129
4130 if (sec->sh_type == SHT_NOBITS)
4131 {
4132 dynamic_size = 0;
4133 break;
4134 }
4135
4136 dynamic_addr = sec->sh_offset;
4137 dynamic_size = sec->sh_size;
4138
4139 if (dynamic_addr < segment->p_offset
4140 || dynamic_addr > segment->p_offset + segment->p_filesz)
4141 warn (_("the .dynamic section is not contained"
4142 " within the dynamic segment\n"));
4143 else if (dynamic_addr > segment->p_offset)
4144 warn (_("the .dynamic section is not the first section"
4145 " in the dynamic segment.\n"));
4146 }
4147 break;
4148
4149 case PT_INTERP:
4150 if (fseek (file, archive_file_offset + (long) segment->p_offset,
4151 SEEK_SET))
4152 error (_("Unable to find program interpreter name\n"));
4153 else
4154 {
4155 char fmt [32];
4156 int ret = snprintf (fmt, sizeof (fmt), "%%%ds", PATH_MAX);
4157
4158 if (ret >= (int) sizeof (fmt) || ret < 0)
4159 error (_("Internal error: failed to create format string to display program interpreter\n"));
4160
4161 program_interpreter[0] = 0;
4162 if (fscanf (file, fmt, program_interpreter) <= 0)
4163 error (_("Unable to read program interpreter name\n"));
4164
4165 if (do_segments)
4166 printf (_("\n [Requesting program interpreter: %s]"),
4167 program_interpreter);
4168 }
4169 break;
4170 }
4171
4172 if (do_segments)
4173 putc ('\n', stdout);
4174 }
4175
4176 if (do_segments && section_headers != NULL && string_table != NULL)
4177 {
4178 printf (_("\n Section to Segment mapping:\n"));
4179 printf (_(" Segment Sections...\n"));
4180
4181 for (i = 0; i < elf_header.e_phnum; i++)
4182 {
4183 unsigned int j;
4184 Elf_Internal_Shdr * section;
4185
4186 segment = program_headers + i;
4187 section = section_headers + 1;
4188
4189 printf (" %2.2d ", i);
4190
4191 for (j = 1; j < elf_header.e_shnum; j++, section++)
4192 {
4193 if (!ELF_TBSS_SPECIAL (section, segment)
4194 && ELF_SECTION_IN_SEGMENT_STRICT (section, segment))
4195 printf ("%s ", SECTION_NAME (section));
4196 }
4197
4198 putc ('\n',stdout);
4199 }
4200 }
4201
4202 return 1;
4203 }
4204
4205
4206 /* Find the file offset corresponding to VMA by using the program headers. */
4207
4208 static long
4209 offset_from_vma (FILE * file, bfd_vma vma, bfd_size_type size)
4210 {
4211 Elf_Internal_Phdr * seg;
4212
4213 if (! get_program_headers (file))
4214 {
4215 warn (_("Cannot interpret virtual addresses without program headers.\n"));
4216 return (long) vma;
4217 }
4218
4219 for (seg = program_headers;
4220 seg < program_headers + elf_header.e_phnum;
4221 ++seg)
4222 {
4223 if (seg->p_type != PT_LOAD)
4224 continue;
4225
4226 if (vma >= (seg->p_vaddr & -seg->p_align)
4227 && vma + size <= seg->p_vaddr + seg->p_filesz)
4228 return vma - seg->p_vaddr + seg->p_offset;
4229 }
4230
4231 warn (_("Virtual address 0x%lx not located in any PT_LOAD segment.\n"),
4232 (unsigned long) vma);
4233 return (long) vma;
4234 }
4235
4236
4237 static int
4238 get_32bit_section_headers (FILE * file, unsigned int num)
4239 {
4240 Elf32_External_Shdr * shdrs;
4241 Elf_Internal_Shdr * internal;
4242 unsigned int i;
4243
4244 shdrs = (Elf32_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4245 elf_header.e_shentsize, num,
4246 _("section headers"));
4247 if (!shdrs)
4248 return 0;
4249
4250 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4251 sizeof (Elf_Internal_Shdr));
4252
4253 if (section_headers == NULL)
4254 {
4255 error (_("Out of memory\n"));
4256 return 0;
4257 }
4258
4259 for (i = 0, internal = section_headers;
4260 i < num;
4261 i++, internal++)
4262 {
4263 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4264 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4265 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4266 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4267 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4268 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4269 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4270 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4271 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4272 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4273 }
4274
4275 free (shdrs);
4276
4277 return 1;
4278 }
4279
4280 static int
4281 get_64bit_section_headers (FILE * file, unsigned int num)
4282 {
4283 Elf64_External_Shdr * shdrs;
4284 Elf_Internal_Shdr * internal;
4285 unsigned int i;
4286
4287 shdrs = (Elf64_External_Shdr *) get_data (NULL, file, elf_header.e_shoff,
4288 elf_header.e_shentsize, num,
4289 _("section headers"));
4290 if (!shdrs)
4291 return 0;
4292
4293 section_headers = (Elf_Internal_Shdr *) cmalloc (num,
4294 sizeof (Elf_Internal_Shdr));
4295
4296 if (section_headers == NULL)
4297 {
4298 error (_("Out of memory\n"));
4299 return 0;
4300 }
4301
4302 for (i = 0, internal = section_headers;
4303 i < num;
4304 i++, internal++)
4305 {
4306 internal->sh_name = BYTE_GET (shdrs[i].sh_name);
4307 internal->sh_type = BYTE_GET (shdrs[i].sh_type);
4308 internal->sh_flags = BYTE_GET (shdrs[i].sh_flags);
4309 internal->sh_addr = BYTE_GET (shdrs[i].sh_addr);
4310 internal->sh_size = BYTE_GET (shdrs[i].sh_size);
4311 internal->sh_entsize = BYTE_GET (shdrs[i].sh_entsize);
4312 internal->sh_link = BYTE_GET (shdrs[i].sh_link);
4313 internal->sh_info = BYTE_GET (shdrs[i].sh_info);
4314 internal->sh_offset = BYTE_GET (shdrs[i].sh_offset);
4315 internal->sh_addralign = BYTE_GET (shdrs[i].sh_addralign);
4316 }
4317
4318 free (shdrs);
4319
4320 return 1;
4321 }
4322
4323 static Elf_Internal_Sym *
4324 get_32bit_elf_symbols (FILE * file,
4325 Elf_Internal_Shdr * section,
4326 unsigned long * num_syms_return)
4327 {
4328 unsigned long number = 0;
4329 Elf32_External_Sym * esyms = NULL;
4330 Elf_External_Sym_Shndx * shndx = NULL;
4331 Elf_Internal_Sym * isyms = NULL;
4332 Elf_Internal_Sym * psym;
4333 unsigned int j;
4334
4335 /* Run some sanity checks first. */
4336 if (section->sh_entsize == 0)
4337 {
4338 error (_("sh_entsize is zero\n"));
4339 goto exit_point;
4340 }
4341
4342 number = section->sh_size / section->sh_entsize;
4343
4344 if (number * sizeof (Elf32_External_Sym) > section->sh_size + 1)
4345 {
4346 error (_("Invalid sh_entsize\n"));
4347 goto exit_point;
4348 }
4349
4350 esyms = (Elf32_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4351 section->sh_size, _("symbols"));
4352 if (esyms == NULL)
4353 goto exit_point;
4354
4355 shndx = NULL;
4356 if (symtab_shndx_hdr != NULL
4357 && (symtab_shndx_hdr->sh_link
4358 == (unsigned long) (section - section_headers)))
4359 {
4360 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4361 symtab_shndx_hdr->sh_offset,
4362 1, symtab_shndx_hdr->sh_size,
4363 _("symbol table section indicies"));
4364 if (shndx == NULL)
4365 goto exit_point;
4366 }
4367
4368 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4369
4370 if (isyms == NULL)
4371 {
4372 error (_("Out of memory\n"));
4373 goto exit_point;
4374 }
4375
4376 for (j = 0, psym = isyms; j < number; j++, psym++)
4377 {
4378 psym->st_name = BYTE_GET (esyms[j].st_name);
4379 psym->st_value = BYTE_GET (esyms[j].st_value);
4380 psym->st_size = BYTE_GET (esyms[j].st_size);
4381 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4382 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4383 psym->st_shndx
4384 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4385 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4386 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4387 psym->st_info = BYTE_GET (esyms[j].st_info);
4388 psym->st_other = BYTE_GET (esyms[j].st_other);
4389 }
4390
4391 exit_point:
4392 if (shndx != NULL)
4393 free (shndx);
4394 if (esyms != NULL)
4395 free (esyms);
4396
4397 if (num_syms_return != NULL)
4398 * num_syms_return = isyms == NULL ? 0 : number;
4399
4400 return isyms;
4401 }
4402
4403 static Elf_Internal_Sym *
4404 get_64bit_elf_symbols (FILE * file,
4405 Elf_Internal_Shdr * section,
4406 unsigned long * num_syms_return)
4407 {
4408 unsigned long number = 0;
4409 Elf64_External_Sym * esyms = NULL;
4410 Elf_External_Sym_Shndx * shndx = NULL;
4411 Elf_Internal_Sym * isyms = NULL;
4412 Elf_Internal_Sym * psym;
4413 unsigned int j;
4414
4415 /* Run some sanity checks first. */
4416 if (section->sh_entsize == 0)
4417 {
4418 error (_("sh_entsize is zero\n"));
4419 goto exit_point;
4420 }
4421
4422 number = section->sh_size / section->sh_entsize;
4423
4424 if (number * sizeof (Elf64_External_Sym) > section->sh_size + 1)
4425 {
4426 error (_("Invalid sh_entsize\n"));
4427 goto exit_point;
4428 }
4429
4430 esyms = (Elf64_External_Sym *) get_data (NULL, file, section->sh_offset, 1,
4431 section->sh_size, _("symbols"));
4432 if (!esyms)
4433 goto exit_point;
4434
4435 if (symtab_shndx_hdr != NULL
4436 && (symtab_shndx_hdr->sh_link
4437 == (unsigned long) (section - section_headers)))
4438 {
4439 shndx = (Elf_External_Sym_Shndx *) get_data (NULL, file,
4440 symtab_shndx_hdr->sh_offset,
4441 1, symtab_shndx_hdr->sh_size,
4442 _("symbol table section indicies"));
4443 if (shndx == NULL)
4444 goto exit_point;
4445 }
4446
4447 isyms = (Elf_Internal_Sym *) cmalloc (number, sizeof (Elf_Internal_Sym));
4448
4449 if (isyms == NULL)
4450 {
4451 error (_("Out of memory\n"));
4452 goto exit_point;
4453 }
4454
4455 for (j = 0, psym = isyms; j < number; j++, psym++)
4456 {
4457 psym->st_name = BYTE_GET (esyms[j].st_name);
4458 psym->st_info = BYTE_GET (esyms[j].st_info);
4459 psym->st_other = BYTE_GET (esyms[j].st_other);
4460 psym->st_shndx = BYTE_GET (esyms[j].st_shndx);
4461
4462 if (psym->st_shndx == (SHN_XINDEX & 0xffff) && shndx != NULL)
4463 psym->st_shndx
4464 = byte_get ((unsigned char *) &shndx[j], sizeof (shndx[j]));
4465 else if (psym->st_shndx >= (SHN_LORESERVE & 0xffff))
4466 psym->st_shndx += SHN_LORESERVE - (SHN_LORESERVE & 0xffff);
4467
4468 psym->st_value = BYTE_GET (esyms[j].st_value);
4469 psym->st_size = BYTE_GET (esyms[j].st_size);
4470 }
4471
4472 exit_point:
4473 if (shndx != NULL)
4474 free (shndx);
4475 if (esyms != NULL)
4476 free (esyms);
4477
4478 if (num_syms_return != NULL)
4479 * num_syms_return = isyms == NULL ? 0 : number;
4480
4481 return isyms;
4482 }
4483
4484 static const char *
4485 get_elf_section_flags (bfd_vma sh_flags)
4486 {
4487 static char buff[1024];
4488 char * p = buff;
4489 int field_size = is_32bit_elf ? 8 : 16;
4490 int sindex;
4491 int size = sizeof (buff) - (field_size + 4 + 1);
4492 bfd_vma os_flags = 0;
4493 bfd_vma proc_flags = 0;
4494 bfd_vma unknown_flags = 0;
4495 static const struct
4496 {
4497 const char * str;
4498 int len;
4499 }
4500 flags [] =
4501 {
4502 /* 0 */ { STRING_COMMA_LEN ("WRITE") },
4503 /* 1 */ { STRING_COMMA_LEN ("ALLOC") },
4504 /* 2 */ { STRING_COMMA_LEN ("EXEC") },
4505 /* 3 */ { STRING_COMMA_LEN ("MERGE") },
4506 /* 4 */ { STRING_COMMA_LEN ("STRINGS") },
4507 /* 5 */ { STRING_COMMA_LEN ("INFO LINK") },
4508 /* 6 */ { STRING_COMMA_LEN ("LINK ORDER") },
4509 /* 7 */ { STRING_COMMA_LEN ("OS NONCONF") },
4510 /* 8 */ { STRING_COMMA_LEN ("GROUP") },
4511 /* 9 */ { STRING_COMMA_LEN ("TLS") },
4512 /* IA-64 specific. */
4513 /* 10 */ { STRING_COMMA_LEN ("SHORT") },
4514 /* 11 */ { STRING_COMMA_LEN ("NORECOV") },
4515 /* IA-64 OpenVMS specific. */
4516 /* 12 */ { STRING_COMMA_LEN ("VMS_GLOBAL") },
4517 /* 13 */ { STRING_COMMA_LEN ("VMS_OVERLAID") },
4518 /* 14 */ { STRING_COMMA_LEN ("VMS_SHARED") },
4519 /* 15 */ { STRING_COMMA_LEN ("VMS_VECTOR") },
4520 /* 16 */ { STRING_COMMA_LEN ("VMS_ALLOC_64BIT") },
4521 /* 17 */ { STRING_COMMA_LEN ("VMS_PROTECTED") },
4522 /* Generic. */
4523 /* 18 */ { STRING_COMMA_LEN ("EXCLUDE") },
4524 /* SPARC specific. */
4525 /* 19 */ { STRING_COMMA_LEN ("ORDERED") }
4526 };
4527
4528 if (do_section_details)
4529 {
4530 sprintf (buff, "[%*.*lx]: ",
4531 field_size, field_size, (unsigned long) sh_flags);
4532 p += field_size + 4;
4533 }
4534
4535 while (sh_flags)
4536 {
4537 bfd_vma flag;
4538
4539 flag = sh_flags & - sh_flags;
4540 sh_flags &= ~ flag;
4541
4542 if (do_section_details)
4543 {
4544 switch (flag)
4545 {
4546 case SHF_WRITE: sindex = 0; break;
4547 case SHF_ALLOC: sindex = 1; break;
4548 case SHF_EXECINSTR: sindex = 2; break;
4549 case SHF_MERGE: sindex = 3; break;
4550 case SHF_STRINGS: sindex = 4; break;
4551 case SHF_INFO_LINK: sindex = 5; break;
4552 case SHF_LINK_ORDER: sindex = 6; break;
4553 case SHF_OS_NONCONFORMING: sindex = 7; break;
4554 case SHF_GROUP: sindex = 8; break;
4555 case SHF_TLS: sindex = 9; break;
4556 case SHF_EXCLUDE: sindex = 18; break;
4557
4558 default:
4559 sindex = -1;
4560 switch (elf_header.e_machine)
4561 {
4562 case EM_IA_64:
4563 if (flag == SHF_IA_64_SHORT)
4564 sindex = 10;
4565 else if (flag == SHF_IA_64_NORECOV)
4566 sindex = 11;
4567 #ifdef BFD64
4568 else if (elf_header.e_ident[EI_OSABI] == ELFOSABI_OPENVMS)
4569 switch (flag)
4570 {
4571 case SHF_IA_64_VMS_GLOBAL: sindex = 12; break;
4572 case SHF_IA_64_VMS_OVERLAID: sindex = 13; break;
4573 case SHF_IA_64_VMS_SHARED: sindex = 14; break;
4574 case SHF_IA_64_VMS_VECTOR: sindex = 15; break;
4575 case SHF_IA_64_VMS_ALLOC_64BIT: sindex = 16; break;
4576 case SHF_IA_64_VMS_PROTECTED: sindex = 17; break;
4577 default: break;
4578 }
4579 #endif
4580 break;
4581
4582 case EM_386:
4583 case EM_486:
4584 case EM_X86_64:
4585 case EM_L1OM:
4586 case EM_K1OM:
4587 case EM_OLD_SPARCV9:
4588 case EM_SPARC32PLUS:
4589 case EM_SPARCV9:
4590 case EM_SPARC:
4591 if (flag == SHF_ORDERED)
4592 sindex = 19;
4593 break;
4594 default:
4595 break;
4596 }
4597 }
4598
4599 if (sindex != -1)
4600 {
4601 if (p != buff + field_size + 4)
4602 {
4603 if (size < (10 + 2))
4604 abort ();
4605 size -= 2;
4606 *p++ = ',';
4607 *p++ = ' ';
4608 }
4609
4610 size -= flags [sindex].len;
4611 p = stpcpy (p, flags [sindex].str);
4612 }
4613 else if (flag & SHF_MASKOS)
4614 os_flags |= flag;
4615 else if (flag & SHF_MASKPROC)
4616 proc_flags |= flag;
4617 else
4618 unknown_flags |= flag;
4619 }
4620 else
4621 {
4622 switch (flag)
4623 {
4624 case SHF_WRITE: *p = 'W'; break;
4625 case SHF_ALLOC: *p = 'A'; break;
4626 case SHF_EXECINSTR: *p = 'X'; break;
4627 case SHF_MERGE: *p = 'M'; break;
4628 case SHF_STRINGS: *p = 'S'; break;
4629 case SHF_INFO_LINK: *p = 'I'; break;
4630 case SHF_LINK_ORDER: *p = 'L'; break;
4631 case SHF_OS_NONCONFORMING: *p = 'O'; break;
4632 case SHF_GROUP: *p = 'G'; break;
4633 case SHF_TLS: *p = 'T'; break;
4634 case SHF_EXCLUDE: *p = 'E'; break;
4635
4636 default:
4637 if ((elf_header.e_machine == EM_X86_64
4638 || elf_header.e_machine == EM_L1OM
4639 || elf_header.e_machine == EM_K1OM)
4640 && flag == SHF_X86_64_LARGE)
4641 *p = 'l';
4642 else if (flag & SHF_MASKOS)
4643 {
4644 *p = 'o';
4645 sh_flags &= ~ SHF_MASKOS;
4646 }
4647 else if (flag & SHF_MASKPROC)
4648 {
4649 *p = 'p';
4650 sh_flags &= ~ SHF_MASKPROC;
4651 }
4652 else
4653 *p = 'x';
4654 break;
4655 }
4656 p++;
4657 }
4658 }
4659
4660 if (do_section_details)
4661 {
4662 if (os_flags)
4663 {
4664 size -= 5 + field_size;
4665 if (p != buff + field_size + 4)
4666 {
4667 if (size < (2 + 1))
4668 abort ();
4669 size -= 2;
4670 *p++ = ',';
4671 *p++ = ' ';
4672 }
4673 sprintf (p, "OS (%*.*lx)", field_size, field_size,
4674 (unsigned long) os_flags);
4675 p += 5 + field_size;
4676 }
4677 if (proc_flags)
4678 {
4679 size -= 7 + field_size;
4680 if (p != buff + field_size + 4)
4681 {
4682 if (size < (2 + 1))
4683 abort ();
4684 size -= 2;
4685 *p++ = ',';
4686 *p++ = ' ';
4687 }
4688 sprintf (p, "PROC (%*.*lx)", field_size, field_size,
4689 (unsigned long) proc_flags);
4690 p += 7 + field_size;
4691 }
4692 if (unknown_flags)
4693 {
4694 size -= 10 + field_size;
4695 if (p != buff + field_size + 4)
4696 {
4697 if (size < (2 + 1))
4698 abort ();
4699 size -= 2;
4700 *p++ = ',';
4701 *p++ = ' ';
4702 }
4703 sprintf (p, _("UNKNOWN (%*.*lx)"), field_size, field_size,
4704 (unsigned long) unknown_flags);
4705 p += 10 + field_size;
4706 }
4707 }
4708
4709 *p = '\0';
4710 return buff;
4711 }
4712
4713 static int
4714 process_section_headers (FILE * file)
4715 {
4716 Elf_Internal_Shdr * section;
4717 unsigned int i;
4718
4719 section_headers = NULL;
4720
4721 if (elf_header.e_shnum == 0)
4722 {
4723 /* PR binutils/12467. */
4724 if (elf_header.e_shoff != 0)
4725 warn (_("possibly corrupt ELF file header - it has a non-zero"
4726 " section header offset, but no section headers\n"));
4727 else if (do_sections)
4728 printf (_("\nThere are no sections in this file.\n"));
4729
4730 return 1;
4731 }
4732
4733 if (do_sections && !do_header)
4734 printf (_("There are %d section headers, starting at offset 0x%lx:\n"),
4735 elf_header.e_shnum, (unsigned long) elf_header.e_shoff);
4736
4737 if (is_32bit_elf)
4738 {
4739 if (! get_32bit_section_headers (file, elf_header.e_shnum))
4740 return 0;
4741 }
4742 else if (! get_64bit_section_headers (file, elf_header.e_shnum))
4743 return 0;
4744
4745 /* Read in the string table, so that we have names to display. */
4746 if (elf_header.e_shstrndx != SHN_UNDEF
4747 && elf_header.e_shstrndx < elf_header.e_shnum)
4748 {
4749 section = section_headers + elf_header.e_shstrndx;
4750
4751 if (section->sh_size != 0)
4752 {
4753 string_table = (char *) get_data (NULL, file, section->sh_offset,
4754 1, section->sh_size,
4755 _("string table"));
4756
4757 string_table_length = string_table != NULL ? section->sh_size : 0;
4758 }
4759 }
4760
4761 /* Scan the sections for the dynamic symbol table
4762 and dynamic string table and debug sections. */
4763 dynamic_symbols = NULL;
4764 dynamic_strings = NULL;
4765 dynamic_syminfo = NULL;
4766 symtab_shndx_hdr = NULL;
4767
4768 eh_addr_size = is_32bit_elf ? 4 : 8;
4769 switch (elf_header.e_machine)
4770 {
4771 case EM_MIPS:
4772 case EM_MIPS_RS3_LE:
4773 /* The 64-bit MIPS EABI uses a combination of 32-bit ELF and 64-bit
4774 FDE addresses. However, the ABI also has a semi-official ILP32
4775 variant for which the normal FDE address size rules apply.
4776
4777 GCC 4.0 marks EABI64 objects with a dummy .gcc_compiled_longXX
4778 section, where XX is the size of longs in bits. Unfortunately,
4779 earlier compilers provided no way of distinguishing ILP32 objects
4780 from LP64 objects, so if there's any doubt, we should assume that
4781 the official LP64 form is being used. */
4782 if ((elf_header.e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64
4783 && find_section (".gcc_compiled_long32") == NULL)
4784 eh_addr_size = 8;
4785 break;
4786
4787 case EM_H8_300:
4788 case EM_H8_300H:
4789 switch (elf_header.e_flags & EF_H8_MACH)
4790 {
4791 case E_H8_MACH_H8300:
4792 case E_H8_MACH_H8300HN:
4793 case E_H8_MACH_H8300SN:
4794 case E_H8_MACH_H8300SXN:
4795 eh_addr_size = 2;
4796 break;
4797 case E_H8_MACH_H8300H:
4798 case E_H8_MACH_H8300S:
4799 case E_H8_MACH_H8300SX:
4800 eh_addr_size = 4;
4801 break;
4802 }
4803 break;
4804
4805 case EM_M32C_OLD:
4806 case EM_M32C:
4807 switch (elf_header.e_flags & EF_M32C_CPU_MASK)
4808 {
4809 case EF_M32C_CPU_M16C:
4810 eh_addr_size = 2;
4811 break;
4812 }
4813 break;
4814 }
4815
4816 #define CHECK_ENTSIZE_VALUES(section, i, size32, size64) \
4817 do \
4818 { \
4819 bfd_size_type expected_entsize = is_32bit_elf ? size32 : size64; \
4820 if (section->sh_entsize != expected_entsize) \
4821 { \
4822 error (_("Section %d has invalid sh_entsize of %" BFD_VMA_FMT "x\n"), \
4823 i, section->sh_entsize); \
4824 error (_("(Using the expected size of %d for the rest of this dump)\n"), \
4825 (int) expected_entsize); \
4826 section->sh_entsize = expected_entsize; \
4827 } \
4828 } \
4829 while (0)
4830
4831 #define CHECK_ENTSIZE(section, i, type) \
4832 CHECK_ENTSIZE_VALUES (section, i, sizeof (Elf32_External_##type), \
4833 sizeof (Elf64_External_##type))
4834
4835 for (i = 0, section = section_headers;
4836 i < elf_header.e_shnum;
4837 i++, section++)
4838 {
4839 char * name = SECTION_NAME (section);
4840
4841 if (section->sh_type == SHT_DYNSYM)
4842 {
4843 if (dynamic_symbols != NULL)
4844 {
4845 error (_("File contains multiple dynamic symbol tables\n"));
4846 continue;
4847 }
4848
4849 CHECK_ENTSIZE (section, i, Sym);
4850 dynamic_symbols = GET_ELF_SYMBOLS (file, section, & num_dynamic_syms);
4851 }
4852 else if (section->sh_type == SHT_STRTAB
4853 && streq (name, ".dynstr"))
4854 {
4855 if (dynamic_strings != NULL)
4856 {
4857 error (_("File contains multiple dynamic string tables\n"));
4858 continue;
4859 }
4860
4861 dynamic_strings = (char *) get_data (NULL, file, section->sh_offset,
4862 1, section->sh_size,
4863 _("dynamic strings"));
4864 dynamic_strings_length = dynamic_strings == NULL ? 0 : section->sh_size;
4865 }
4866 else if (section->sh_type == SHT_SYMTAB_SHNDX)
4867 {
4868 if (symtab_shndx_hdr != NULL)
4869 {
4870 error (_("File contains multiple symtab shndx tables\n"));
4871 continue;
4872 }
4873 symtab_shndx_hdr = section;
4874 }
4875 else if (section->sh_type == SHT_SYMTAB)
4876 CHECK_ENTSIZE (section, i, Sym);
4877 else if (section->sh_type == SHT_GROUP)
4878 CHECK_ENTSIZE_VALUES (section, i, GRP_ENTRY_SIZE, GRP_ENTRY_SIZE);
4879 else if (section->sh_type == SHT_REL)
4880 CHECK_ENTSIZE (section, i, Rel);
4881 else if (section->sh_type == SHT_RELA)
4882 CHECK_ENTSIZE (section, i, Rela);
4883 else if ((do_debugging || do_debug_info || do_debug_abbrevs
4884 || do_debug_lines || do_debug_pubnames || do_debug_pubtypes
4885 || do_debug_aranges || do_debug_frames || do_debug_macinfo
4886 || do_debug_str || do_debug_loc || do_debug_ranges
4887 || do_debug_addr || do_debug_cu_index)
4888 && (const_strneq (name, ".debug_")
4889 || const_strneq (name, ".zdebug_")))
4890 {
4891 if (name[1] == 'z')
4892 name += sizeof (".zdebug_") - 1;
4893 else
4894 name += sizeof (".debug_") - 1;
4895
4896 if (do_debugging
4897 || (do_debug_info && const_strneq (name, "info"))
4898 || (do_debug_info && const_strneq (name, "types"))
4899 || (do_debug_abbrevs && const_strneq (name, "abbrev"))
4900 || (do_debug_lines && strcmp (name, "line") == 0)
4901 || (do_debug_lines && const_strneq (name, "line."))
4902 || (do_debug_pubnames && const_strneq (name, "pubnames"))
4903 || (do_debug_pubtypes && const_strneq (name, "pubtypes"))
4904 || (do_debug_aranges && const_strneq (name, "aranges"))
4905 || (do_debug_ranges && const_strneq (name, "ranges"))
4906 || (do_debug_frames && const_strneq (name, "frame"))
4907 || (do_debug_macinfo && const_strneq (name, "macinfo"))
4908 || (do_debug_macinfo && const_strneq (name, "macro"))
4909 || (do_debug_str && const_strneq (name, "str"))
4910 || (do_debug_loc && const_strneq (name, "loc"))
4911 || (do_debug_addr && const_strneq (name, "addr"))
4912 || (do_debug_cu_index && const_strneq (name, "cu_index"))
4913 || (do_debug_cu_index && const_strneq (name, "tu_index"))
4914 )
4915 request_dump_bynumber (i, DEBUG_DUMP);
4916 }
4917 /* Linkonce section to be combined with .debug_info at link time. */
4918 else if ((do_debugging || do_debug_info)
4919 && const_strneq (name, ".gnu.linkonce.wi."))
4920 request_dump_bynumber (i, DEBUG_DUMP);
4921 else if (do_debug_frames && streq (name, ".eh_frame"))
4922 request_dump_bynumber (i, DEBUG_DUMP);
4923 else if (do_gdb_index && streq (name, ".gdb_index"))
4924 request_dump_bynumber (i, DEBUG_DUMP);
4925 /* Trace sections for Itanium VMS. */
4926 else if ((do_debugging || do_trace_info || do_trace_abbrevs
4927 || do_trace_aranges)
4928 && const_strneq (name, ".trace_"))
4929 {
4930 name += sizeof (".trace_") - 1;
4931
4932 if (do_debugging
4933 || (do_trace_info && streq (name, "info"))
4934 || (do_trace_abbrevs && streq (name, "abbrev"))
4935 || (do_trace_aranges && streq (name, "aranges"))
4936 )
4937 request_dump_bynumber (i, DEBUG_DUMP);
4938 }
4939
4940 }
4941
4942 if (! do_sections)
4943 return 1;
4944
4945 if (elf_header.e_shnum > 1)
4946 printf (_("\nSection Headers:\n"));
4947 else
4948 printf (_("\nSection Header:\n"));
4949
4950 if (is_32bit_elf)
4951 {
4952 if (do_section_details)
4953 {
4954 printf (_(" [Nr] Name\n"));
4955 printf (_(" Type Addr Off Size ES Lk Inf Al\n"));
4956 }
4957 else
4958 printf
4959 (_(" [Nr] Name Type Addr Off Size ES Flg Lk Inf Al\n"));
4960 }
4961 else if (do_wide)
4962 {
4963 if (do_section_details)
4964 {
4965 printf (_(" [Nr] Name\n"));
4966 printf (_(" Type Address Off Size ES Lk Inf Al\n"));
4967 }
4968 else
4969 printf
4970 (_(" [Nr] Name Type Address Off Size ES Flg Lk Inf Al\n"));
4971 }
4972 else
4973 {
4974 if (do_section_details)
4975 {
4976 printf (_(" [Nr] Name\n"));
4977 printf (_(" Type Address Offset Link\n"));
4978 printf (_(" Size EntSize Info Align\n"));
4979 }
4980 else
4981 {
4982 printf (_(" [Nr] Name Type Address Offset\n"));
4983 printf (_(" Size EntSize Flags Link Info Align\n"));
4984 }
4985 }
4986
4987 if (do_section_details)
4988 printf (_(" Flags\n"));
4989
4990 for (i = 0, section = section_headers;
4991 i < elf_header.e_shnum;
4992 i++, section++)
4993 {
4994 printf (" [%2u] ", i);
4995 if (do_section_details)
4996 {
4997 print_symbol (INT_MAX, SECTION_NAME (section));
4998 printf ("\n ");
4999 }
5000 else
5001 {
5002 print_symbol (-17, SECTION_NAME (section));
5003 }
5004
5005 printf (do_wide ? " %-15s " : " %-15.15s ",
5006 get_section_type_name (section->sh_type));
5007
5008 if (is_32bit_elf)
5009 {
5010 const char * link_too_big = NULL;
5011
5012 print_vma (section->sh_addr, LONG_HEX);
5013
5014 printf ( " %6.6lx %6.6lx %2.2lx",
5015 (unsigned long) section->sh_offset,
5016 (unsigned long) section->sh_size,
5017 (unsigned long) section->sh_entsize);
5018
5019 if (do_section_details)
5020 fputs (" ", stdout);
5021 else
5022 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5023
5024 if (section->sh_link >= elf_header.e_shnum)
5025 {
5026 link_too_big = "";
5027 /* The sh_link value is out of range. Normally this indicates
5028 an error but it can have special values in Solaris binaries. */
5029 switch (elf_header.e_machine)
5030 {
5031 case EM_386:
5032 case EM_486:
5033 case EM_X86_64:
5034 case EM_L1OM:
5035 case EM_K1OM:
5036 case EM_OLD_SPARCV9:
5037 case EM_SPARC32PLUS:
5038 case EM_SPARCV9:
5039 case EM_SPARC:
5040 if (section->sh_link == (SHN_BEFORE & 0xffff))
5041 link_too_big = "BEFORE";
5042 else if (section->sh_link == (SHN_AFTER & 0xffff))
5043 link_too_big = "AFTER";
5044 break;
5045 default:
5046 break;
5047 }
5048 }
5049
5050 if (do_section_details)
5051 {
5052 if (link_too_big != NULL && * link_too_big)
5053 printf ("<%s> ", link_too_big);
5054 else
5055 printf ("%2u ", section->sh_link);
5056 printf ("%3u %2lu\n", section->sh_info,
5057 (unsigned long) section->sh_addralign);
5058 }
5059 else
5060 printf ("%2u %3u %2lu\n",
5061 section->sh_link,
5062 section->sh_info,
5063 (unsigned long) section->sh_addralign);
5064
5065 if (link_too_big && ! * link_too_big)
5066 warn (_("section %u: sh_link value of %u is larger than the number of sections\n"),
5067 i, section->sh_link);
5068 }
5069 else if (do_wide)
5070 {
5071 print_vma (section->sh_addr, LONG_HEX);
5072
5073 if ((long) section->sh_offset == section->sh_offset)
5074 printf (" %6.6lx", (unsigned long) section->sh_offset);
5075 else
5076 {
5077 putchar (' ');
5078 print_vma (section->sh_offset, LONG_HEX);
5079 }
5080
5081 if ((unsigned long) section->sh_size == section->sh_size)
5082 printf (" %6.6lx", (unsigned long) section->sh_size);
5083 else
5084 {
5085 putchar (' ');
5086 print_vma (section->sh_size, LONG_HEX);
5087 }
5088
5089 if ((unsigned long) section->sh_entsize == section->sh_entsize)
5090 printf (" %2.2lx", (unsigned long) section->sh_entsize);
5091 else
5092 {
5093 putchar (' ');
5094 print_vma (section->sh_entsize, LONG_HEX);
5095 }
5096
5097 if (do_section_details)
5098 fputs (" ", stdout);
5099 else
5100 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5101
5102 printf ("%2u %3u ", section->sh_link, section->sh_info);
5103
5104 if ((unsigned long) section->sh_addralign == section->sh_addralign)
5105 printf ("%2lu\n", (unsigned long) section->sh_addralign);
5106 else
5107 {
5108 print_vma (section->sh_addralign, DEC);
5109 putchar ('\n');
5110 }
5111 }
5112 else if (do_section_details)
5113 {
5114 printf (" %-15.15s ",
5115 get_section_type_name (section->sh_type));
5116 print_vma (section->sh_addr, LONG_HEX);
5117 if ((long) section->sh_offset == section->sh_offset)
5118 printf (" %16.16lx", (unsigned long) section->sh_offset);
5119 else
5120 {
5121 printf (" ");
5122 print_vma (section->sh_offset, LONG_HEX);
5123 }
5124 printf (" %u\n ", section->sh_link);
5125 print_vma (section->sh_size, LONG_HEX);
5126 putchar (' ');
5127 print_vma (section->sh_entsize, LONG_HEX);
5128
5129 printf (" %-16u %lu\n",
5130 section->sh_info,
5131 (unsigned long) section->sh_addralign);
5132 }
5133 else
5134 {
5135 putchar (' ');
5136 print_vma (section->sh_addr, LONG_HEX);
5137 if ((long) section->sh_offset == section->sh_offset)
5138 printf (" %8.8lx", (unsigned long) section->sh_offset);
5139 else
5140 {
5141 printf (" ");
5142 print_vma (section->sh_offset, LONG_HEX);
5143 }
5144 printf ("\n ");
5145 print_vma (section->sh_size, LONG_HEX);
5146 printf (" ");
5147 print_vma (section->sh_entsize, LONG_HEX);
5148
5149 printf (" %3s ", get_elf_section_flags (section->sh_flags));
5150
5151 printf (" %2u %3u %lu\n",
5152 section->sh_link,
5153 section->sh_info,
5154 (unsigned long) section->sh_addralign);
5155 }
5156
5157 if (do_section_details)
5158 printf (" %s\n", get_elf_section_flags (section->sh_flags));
5159 }
5160
5161 if (!do_section_details)
5162 {
5163 if (elf_header.e_machine == EM_X86_64
5164 || elf_header.e_machine == EM_L1OM
5165 || elf_header.e_machine == EM_K1OM)
5166 printf (_("Key to Flags:\n\
5167 W (write), A (alloc), X (execute), M (merge), S (strings), l (large)\n\
5168 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5169 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5170 else
5171 printf (_("Key to Flags:\n\
5172 W (write), A (alloc), X (execute), M (merge), S (strings)\n\
5173 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)\n\
5174 O (extra OS processing required) o (OS specific), p (processor specific)\n"));
5175 }
5176
5177 return 1;
5178 }
5179
5180 static const char *
5181 get_group_flags (unsigned int flags)
5182 {
5183 static char buff[32];
5184 switch (flags)
5185 {
5186 case 0:
5187 return "";
5188
5189 case GRP_COMDAT:
5190 return "COMDAT ";
5191
5192 default:
5193 snprintf (buff, sizeof (buff), _("[<unknown>: 0x%x] "), flags);
5194 break;
5195 }
5196 return buff;
5197 }
5198
5199 static int
5200 process_section_groups (FILE * file)
5201 {
5202 Elf_Internal_Shdr * section;
5203 unsigned int i;
5204 struct group * group;
5205 Elf_Internal_Shdr * symtab_sec;
5206 Elf_Internal_Shdr * strtab_sec;
5207 Elf_Internal_Sym * symtab;
5208 unsigned long num_syms;
5209 char * strtab;
5210 size_t strtab_size;
5211
5212 /* Don't process section groups unless needed. */
5213 if (!do_unwind && !do_section_groups)
5214 return 1;
5215
5216 if (elf_header.e_shnum == 0)
5217 {
5218 if (do_section_groups)
5219 printf (_("\nThere are no sections to group in this file.\n"));
5220
5221 return 1;
5222 }
5223
5224 if (section_headers == NULL)
5225 {
5226 error (_("Section headers are not available!\n"));
5227 /* PR 13622: This can happen with a corrupt ELF header. */
5228 return 0;
5229 }
5230
5231 section_headers_groups = (struct group **) calloc (elf_header.e_shnum,
5232 sizeof (struct group *));
5233
5234 if (section_headers_groups == NULL)
5235 {
5236 error (_("Out of memory\n"));
5237 return 0;
5238 }
5239
5240 /* Scan the sections for the group section. */
5241 group_count = 0;
5242 for (i = 0, section = section_headers;
5243 i < elf_header.e_shnum;
5244 i++, section++)
5245 if (section->sh_type == SHT_GROUP)
5246 group_count++;
5247
5248 if (group_count == 0)
5249 {
5250 if (do_section_groups)
5251 printf (_("\nThere are no section groups in this file.\n"));
5252
5253 return 1;
5254 }
5255
5256 section_groups = (struct group *) calloc (group_count, sizeof (struct group));
5257
5258 if (section_groups == NULL)
5259 {
5260 error (_("Out of memory\n"));
5261 return 0;
5262 }
5263
5264 symtab_sec = NULL;
5265 strtab_sec = NULL;
5266 symtab = NULL;
5267 num_syms = 0;
5268 strtab = NULL;
5269 strtab_size = 0;
5270 for (i = 0, section = section_headers, group = section_groups;
5271 i < elf_header.e_shnum;
5272 i++, section++)
5273 {
5274 if (section->sh_type == SHT_GROUP)
5275 {
5276 char * name = SECTION_NAME (section);
5277 char * group_name;
5278 unsigned char * start;
5279 unsigned char * indices;
5280 unsigned int entry, j, size;
5281 Elf_Internal_Shdr * sec;
5282 Elf_Internal_Sym * sym;
5283
5284 /* Get the symbol table. */
5285 if (section->sh_link >= elf_header.e_shnum
5286 || ((sec = section_headers + section->sh_link)->sh_type
5287 != SHT_SYMTAB))
5288 {
5289 error (_("Bad sh_link in group section `%s'\n"), name);
5290 continue;
5291 }
5292
5293 if (symtab_sec != sec)
5294 {
5295 symtab_sec = sec;
5296 if (symtab)
5297 free (symtab);
5298 symtab = GET_ELF_SYMBOLS (file, symtab_sec, & num_syms);
5299 }
5300
5301 if (symtab == NULL)
5302 {
5303 error (_("Corrupt header in group section `%s'\n"), name);
5304 continue;
5305 }
5306
5307 if (section->sh_info >= num_syms)
5308 {
5309 error (_("Bad sh_info in group section `%s'\n"), name);
5310 continue;
5311 }
5312
5313 sym = symtab + section->sh_info;
5314
5315 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5316 {
5317 if (sym->st_shndx == 0
5318 || sym->st_shndx >= elf_header.e_shnum)
5319 {
5320 error (_("Bad sh_info in group section `%s'\n"), name);
5321 continue;
5322 }
5323
5324 group_name = SECTION_NAME (section_headers + sym->st_shndx);
5325 strtab_sec = NULL;
5326 if (strtab)
5327 free (strtab);
5328 strtab = NULL;
5329 strtab_size = 0;
5330 }
5331 else
5332 {
5333 /* Get the string table. */
5334 if (symtab_sec->sh_link >= elf_header.e_shnum)
5335 {
5336 strtab_sec = NULL;
5337 if (strtab)
5338 free (strtab);
5339 strtab = NULL;
5340 strtab_size = 0;
5341 }
5342 else if (strtab_sec
5343 != (sec = section_headers + symtab_sec->sh_link))
5344 {
5345 strtab_sec = sec;
5346 if (strtab)
5347 free (strtab);
5348 strtab = (char *) get_data (NULL, file, strtab_sec->sh_offset,
5349 1, strtab_sec->sh_size,
5350 _("string table"));
5351 strtab_size = strtab != NULL ? strtab_sec->sh_size : 0;
5352 }
5353 group_name = sym->st_name < strtab_size
5354 ? strtab + sym->st_name : _("<corrupt>");
5355 }
5356
5357 start = (unsigned char *) get_data (NULL, file, section->sh_offset,
5358 1, section->sh_size,
5359 _("section data"));
5360 if (start == NULL)
5361 continue;
5362
5363 indices = start;
5364 size = (section->sh_size / section->sh_entsize) - 1;
5365 entry = byte_get (indices, 4);
5366 indices += 4;
5367
5368 if (do_section_groups)
5369 {
5370 printf (_("\n%sgroup section [%5u] `%s' [%s] contains %u sections:\n"),
5371 get_group_flags (entry), i, name, group_name, size);
5372
5373 printf (_(" [Index] Name\n"));
5374 }
5375
5376 group->group_index = i;
5377
5378 for (j = 0; j < size; j++)
5379 {
5380 struct group_list * g;
5381
5382 entry = byte_get (indices, 4);
5383 indices += 4;
5384
5385 if (entry >= elf_header.e_shnum)
5386 {
5387 error (_("section [%5u] in group section [%5u] > maximum section [%5u]\n"),
5388 entry, i, elf_header.e_shnum - 1);
5389 continue;
5390 }
5391
5392 if (section_headers_groups [entry] != NULL)
5393 {
5394 if (entry)
5395 {
5396 error (_("section [%5u] in group section [%5u] already in group section [%5u]\n"),
5397 entry, i,
5398 section_headers_groups [entry]->group_index);
5399 continue;
5400 }
5401 else
5402 {
5403 /* Intel C/C++ compiler may put section 0 in a
5404 section group. We just warn it the first time
5405 and ignore it afterwards. */
5406 static int warned = 0;
5407 if (!warned)
5408 {
5409 error (_("section 0 in group section [%5u]\n"),
5410 section_headers_groups [entry]->group_index);
5411 warned++;
5412 }
5413 }
5414 }
5415
5416 section_headers_groups [entry] = group;
5417
5418 if (do_section_groups)
5419 {
5420 sec = section_headers + entry;
5421 printf (" [%5u] %s\n", entry, SECTION_NAME (sec));
5422 }
5423
5424 g = (struct group_list *) xmalloc (sizeof (struct group_list));
5425 g->section_index = entry;
5426 g->next = group->root;
5427 group->root = g;
5428 }
5429
5430 if (start)
5431 free (start);
5432
5433 group++;
5434 }
5435 }
5436
5437 if (symtab)
5438 free (symtab);
5439 if (strtab)
5440 free (strtab);
5441 return 1;
5442 }
5443
5444 /* Data used to display dynamic fixups. */
5445
5446 struct ia64_vms_dynfixup
5447 {
5448 bfd_vma needed_ident; /* Library ident number. */
5449 bfd_vma needed; /* Index in the dstrtab of the library name. */
5450 bfd_vma fixup_needed; /* Index of the library. */
5451 bfd_vma fixup_rela_cnt; /* Number of fixups. */
5452 bfd_vma fixup_rela_off; /* Fixups offset in the dynamic segment. */
5453 };
5454
5455 /* Data used to display dynamic relocations. */
5456
5457 struct ia64_vms_dynimgrela
5458 {
5459 bfd_vma img_rela_cnt; /* Number of relocations. */
5460 bfd_vma img_rela_off; /* Reloc offset in the dynamic segment. */
5461 };
5462
5463 /* Display IA-64 OpenVMS dynamic fixups (used to dynamically link a shared
5464 library). */
5465
5466 static void
5467 dump_ia64_vms_dynamic_fixups (FILE *file, struct ia64_vms_dynfixup *fixup,
5468 const char *strtab, unsigned int strtab_sz)
5469 {
5470 Elf64_External_VMS_IMAGE_FIXUP *imfs;
5471 long i;
5472 const char *lib_name;
5473
5474 imfs = get_data (NULL, file, dynamic_addr + fixup->fixup_rela_off,
5475 1, fixup->fixup_rela_cnt * sizeof (*imfs),
5476 _("dynamic section image fixups"));
5477 if (!imfs)
5478 return;
5479
5480 if (fixup->needed < strtab_sz)
5481 lib_name = strtab + fixup->needed;
5482 else
5483 {
5484 warn ("corrupt library name index of 0x%lx found in dynamic entry",
5485 (unsigned long) fixup->needed);
5486 lib_name = "???";
5487 }
5488 printf (_("\nImage fixups for needed library #%d: %s - ident: %lx\n"),
5489 (int) fixup->fixup_needed, lib_name, (long) fixup->needed_ident);
5490 printf
5491 (_("Seg Offset Type SymVec DataType\n"));
5492
5493 for (i = 0; i < (long) fixup->fixup_rela_cnt; i++)
5494 {
5495 unsigned int type;
5496 const char *rtype;
5497
5498 printf ("%3u ", (unsigned) BYTE_GET (imfs [i].fixup_seg));
5499 printf_vma ((bfd_vma) BYTE_GET (imfs [i].fixup_offset));
5500 type = BYTE_GET (imfs [i].type);
5501 rtype = elf_ia64_reloc_type (type);
5502 if (rtype == NULL)
5503 printf (" 0x%08x ", type);
5504 else
5505 printf (" %-32s ", rtype);
5506 printf ("%6u ", (unsigned) BYTE_GET (imfs [i].symvec_index));
5507 printf ("0x%08x\n", (unsigned) BYTE_GET (imfs [i].data_type));
5508 }
5509
5510 free (imfs);
5511 }
5512
5513 /* Display IA-64 OpenVMS dynamic relocations (used to relocate an image). */
5514
5515 static void
5516 dump_ia64_vms_dynamic_relocs (FILE *file, struct ia64_vms_dynimgrela *imgrela)
5517 {
5518 Elf64_External_VMS_IMAGE_RELA *imrs;
5519 long i;
5520
5521 imrs = get_data (NULL, file, dynamic_addr + imgrela->img_rela_off,
5522 1, imgrela->img_rela_cnt * sizeof (*imrs),
5523 _("dynamic section image relocations"));
5524 if (!imrs)
5525 return;
5526
5527 printf (_("\nImage relocs\n"));
5528 printf
5529 (_("Seg Offset Type Addend Seg Sym Off\n"));
5530
5531 for (i = 0; i < (long) imgrela->img_rela_cnt; i++)
5532 {
5533 unsigned int type;
5534 const char *rtype;
5535
5536 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].rela_seg));
5537 printf ("%08" BFD_VMA_FMT "x ",
5538 (bfd_vma) BYTE_GET (imrs [i].rela_offset));
5539 type = BYTE_GET (imrs [i].type);
5540 rtype = elf_ia64_reloc_type (type);
5541 if (rtype == NULL)
5542 printf ("0x%08x ", type);
5543 else
5544 printf ("%-31s ", rtype);
5545 print_vma (BYTE_GET (imrs [i].addend), FULL_HEX);
5546 printf ("%3u ", (unsigned) BYTE_GET (imrs [i].sym_seg));
5547 printf ("%08" BFD_VMA_FMT "x\n",
5548 (bfd_vma) BYTE_GET (imrs [i].sym_offset));
5549 }
5550
5551 free (imrs);
5552 }
5553
5554 /* Display IA-64 OpenVMS dynamic relocations and fixups. */
5555
5556 static int
5557 process_ia64_vms_dynamic_relocs (FILE *file)
5558 {
5559 struct ia64_vms_dynfixup fixup;
5560 struct ia64_vms_dynimgrela imgrela;
5561 Elf_Internal_Dyn *entry;
5562 int res = 0;
5563 bfd_vma strtab_off = 0;
5564 bfd_vma strtab_sz = 0;
5565 char *strtab = NULL;
5566
5567 memset (&fixup, 0, sizeof (fixup));
5568 memset (&imgrela, 0, sizeof (imgrela));
5569
5570 /* Note: the order of the entries is specified by the OpenVMS specs. */
5571 for (entry = dynamic_section;
5572 entry < dynamic_section + dynamic_nent;
5573 entry++)
5574 {
5575 switch (entry->d_tag)
5576 {
5577 case DT_IA_64_VMS_STRTAB_OFFSET:
5578 strtab_off = entry->d_un.d_val;
5579 break;
5580 case DT_STRSZ:
5581 strtab_sz = entry->d_un.d_val;
5582 if (strtab == NULL)
5583 strtab = get_data (NULL, file, dynamic_addr + strtab_off,
5584 1, strtab_sz, _("dynamic string section"));
5585 break;
5586
5587 case DT_IA_64_VMS_NEEDED_IDENT:
5588 fixup.needed_ident = entry->d_un.d_val;
5589 break;
5590 case DT_NEEDED:
5591 fixup.needed = entry->d_un.d_val;
5592 break;
5593 case DT_IA_64_VMS_FIXUP_NEEDED:
5594 fixup.fixup_needed = entry->d_un.d_val;
5595 break;
5596 case DT_IA_64_VMS_FIXUP_RELA_CNT:
5597 fixup.fixup_rela_cnt = entry->d_un.d_val;
5598 break;
5599 case DT_IA_64_VMS_FIXUP_RELA_OFF:
5600 fixup.fixup_rela_off = entry->d_un.d_val;
5601 res++;
5602 dump_ia64_vms_dynamic_fixups (file, &fixup, strtab, strtab_sz);
5603 break;
5604
5605 case DT_IA_64_VMS_IMG_RELA_CNT:
5606 imgrela.img_rela_cnt = entry->d_un.d_val;
5607 break;
5608 case DT_IA_64_VMS_IMG_RELA_OFF:
5609 imgrela.img_rela_off = entry->d_un.d_val;
5610 res++;
5611 dump_ia64_vms_dynamic_relocs (file, &imgrela);
5612 break;
5613
5614 default:
5615 break;
5616 }
5617 }
5618
5619 if (strtab != NULL)
5620 free (strtab);
5621
5622 return res;
5623 }
5624
5625 static struct
5626 {
5627 const char * name;
5628 int reloc;
5629 int size;
5630 int rela;
5631 } dynamic_relocations [] =
5632 {
5633 { "REL", DT_REL, DT_RELSZ, FALSE },
5634 { "RELA", DT_RELA, DT_RELASZ, TRUE },
5635 { "PLT", DT_JMPREL, DT_PLTRELSZ, UNKNOWN }
5636 };
5637
5638 /* Process the reloc section. */
5639
5640 static int
5641 process_relocs (FILE * file)
5642 {
5643 unsigned long rel_size;
5644 unsigned long rel_offset;
5645
5646
5647 if (!do_reloc)
5648 return 1;
5649
5650 if (do_using_dynamic)
5651 {
5652 int is_rela;
5653 const char * name;
5654 int has_dynamic_reloc;
5655 unsigned int i;
5656
5657 has_dynamic_reloc = 0;
5658
5659 for (i = 0; i < ARRAY_SIZE (dynamic_relocations); i++)
5660 {
5661 is_rela = dynamic_relocations [i].rela;
5662 name = dynamic_relocations [i].name;
5663 rel_size = dynamic_info [dynamic_relocations [i].size];
5664 rel_offset = dynamic_info [dynamic_relocations [i].reloc];
5665
5666 has_dynamic_reloc |= rel_size;
5667
5668 if (is_rela == UNKNOWN)
5669 {
5670 if (dynamic_relocations [i].reloc == DT_JMPREL)
5671 switch (dynamic_info[DT_PLTREL])
5672 {
5673 case DT_REL:
5674 is_rela = FALSE;
5675 break;
5676 case DT_RELA:
5677 is_rela = TRUE;
5678 break;
5679 }
5680 }
5681
5682 if (rel_size)
5683 {
5684 printf
5685 (_("\n'%s' relocation section at offset 0x%lx contains %ld bytes:\n"),
5686 name, rel_offset, rel_size);
5687
5688 dump_relocations (file,
5689 offset_from_vma (file, rel_offset, rel_size),
5690 rel_size,
5691 dynamic_symbols, num_dynamic_syms,
5692 dynamic_strings, dynamic_strings_length, is_rela);
5693 }
5694 }
5695
5696 if (is_ia64_vms ())
5697 has_dynamic_reloc |= process_ia64_vms_dynamic_relocs (file);
5698
5699 if (! has_dynamic_reloc)
5700 printf (_("\nThere are no dynamic relocations in this file.\n"));
5701 }
5702 else
5703 {
5704 Elf_Internal_Shdr * section;
5705 unsigned long i;
5706 int found = 0;
5707
5708 for (i = 0, section = section_headers;
5709 i < elf_header.e_shnum;
5710 i++, section++)
5711 {
5712 if ( section->sh_type != SHT_RELA
5713 && section->sh_type != SHT_REL)
5714 continue;
5715
5716 rel_offset = section->sh_offset;
5717 rel_size = section->sh_size;
5718
5719 if (rel_size)
5720 {
5721 Elf_Internal_Shdr * strsec;
5722 int is_rela;
5723
5724 printf (_("\nRelocation section "));
5725
5726 if (string_table == NULL)
5727 printf ("%d", section->sh_name);
5728 else
5729 printf ("'%s'", SECTION_NAME (section));
5730
5731 printf (_(" at offset 0x%lx contains %lu entries:\n"),
5732 rel_offset, (unsigned long) (rel_size / section->sh_entsize));
5733
5734 is_rela = section->sh_type == SHT_RELA;
5735
5736 if (section->sh_link != 0
5737 && section->sh_link < elf_header.e_shnum)
5738 {
5739 Elf_Internal_Shdr * symsec;
5740 Elf_Internal_Sym * symtab;
5741 unsigned long nsyms;
5742 unsigned long strtablen = 0;
5743 char * strtab = NULL;
5744
5745 symsec = section_headers + section->sh_link;
5746 if (symsec->sh_type != SHT_SYMTAB
5747 && symsec->sh_type != SHT_DYNSYM)
5748 continue;
5749
5750 symtab = GET_ELF_SYMBOLS (file, symsec, & nsyms);
5751
5752 if (symtab == NULL)
5753 continue;
5754
5755 if (symsec->sh_link != 0
5756 && symsec->sh_link < elf_header.e_shnum)
5757 {
5758 strsec = section_headers + symsec->sh_link;
5759
5760 strtab = (char *) get_data (NULL, file, strsec->sh_offset,
5761 1, strsec->sh_size,
5762 _("string table"));
5763 strtablen = strtab == NULL ? 0 : strsec->sh_size;
5764 }
5765
5766 dump_relocations (file, rel_offset, rel_size,
5767 symtab, nsyms, strtab, strtablen, is_rela);
5768 if (strtab)
5769 free (strtab);
5770 free (symtab);
5771 }
5772 else
5773 dump_relocations (file, rel_offset, rel_size,
5774 NULL, 0, NULL, 0, is_rela);
5775
5776 found = 1;
5777 }
5778 }
5779
5780 if (! found)
5781 printf (_("\nThere are no relocations in this file.\n"));
5782 }
5783
5784 return 1;
5785 }
5786
5787 /* Process the unwind section. */
5788
5789 #include "unwind-ia64.h"
5790
5791 /* An absolute address consists of a section and an offset. If the
5792 section is NULL, the offset itself is the address, otherwise, the
5793 address equals to LOAD_ADDRESS(section) + offset. */
5794
5795 struct absaddr
5796 {
5797 unsigned short section;
5798 bfd_vma offset;
5799 };
5800
5801 #define ABSADDR(a) \
5802 ((a).section \
5803 ? section_headers [(a).section].sh_addr + (a).offset \
5804 : (a).offset)
5805
5806 struct ia64_unw_table_entry
5807 {
5808 struct absaddr start;
5809 struct absaddr end;
5810 struct absaddr info;
5811 };
5812
5813 struct ia64_unw_aux_info
5814 {
5815
5816 struct ia64_unw_table_entry *table; /* Unwind table. */
5817 unsigned long table_len; /* Length of unwind table. */
5818 unsigned char * info; /* Unwind info. */
5819 unsigned long info_size; /* Size of unwind info. */
5820 bfd_vma info_addr; /* starting address of unwind info. */
5821 bfd_vma seg_base; /* Starting address of segment. */
5822 Elf_Internal_Sym * symtab; /* The symbol table. */
5823 unsigned long nsyms; /* Number of symbols. */
5824 char * strtab; /* The string table. */
5825 unsigned long strtab_size; /* Size of string table. */
5826 };
5827
5828 static void
5829 find_symbol_for_address (Elf_Internal_Sym * symtab,
5830 unsigned long nsyms,
5831 const char * strtab,
5832 unsigned long strtab_size,
5833 struct absaddr addr,
5834 const char ** symname,
5835 bfd_vma * offset)
5836 {
5837 bfd_vma dist = 0x100000;
5838 Elf_Internal_Sym * sym;
5839 Elf_Internal_Sym * best = NULL;
5840 unsigned long i;
5841
5842 REMOVE_ARCH_BITS (addr.offset);
5843
5844 for (i = 0, sym = symtab; i < nsyms; ++i, ++sym)
5845 {
5846 bfd_vma value = sym->st_value;
5847
5848 REMOVE_ARCH_BITS (value);
5849
5850 if (ELF_ST_TYPE (sym->st_info) == STT_FUNC
5851 && sym->st_name != 0
5852 && (addr.section == SHN_UNDEF || addr.section == sym->st_shndx)
5853 && addr.offset >= value
5854 && addr.offset - value < dist)
5855 {
5856 best = sym;
5857 dist = addr.offset - value;
5858 if (!dist)
5859 break;
5860 }
5861 }
5862
5863 if (best)
5864 {
5865 *symname = (best->st_name >= strtab_size
5866 ? _("<corrupt>") : strtab + best->st_name);
5867 *offset = dist;
5868 return;
5869 }
5870
5871 *symname = NULL;
5872 *offset = addr.offset;
5873 }
5874
5875 static void
5876 dump_ia64_unwind (struct ia64_unw_aux_info * aux)
5877 {
5878 struct ia64_unw_table_entry * tp;
5879 int in_body;
5880
5881 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
5882 {
5883 bfd_vma stamp;
5884 bfd_vma offset;
5885 const unsigned char * dp;
5886 const unsigned char * head;
5887 const char * procname;
5888
5889 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
5890 aux->strtab_size, tp->start, &procname, &offset);
5891
5892 fputs ("\n<", stdout);
5893
5894 if (procname)
5895 {
5896 fputs (procname, stdout);
5897
5898 if (offset)
5899 printf ("+%lx", (unsigned long) offset);
5900 }
5901
5902 fputs (">: [", stdout);
5903 print_vma (tp->start.offset, PREFIX_HEX);
5904 fputc ('-', stdout);
5905 print_vma (tp->end.offset, PREFIX_HEX);
5906 printf ("], info at +0x%lx\n",
5907 (unsigned long) (tp->info.offset - aux->seg_base));
5908
5909 head = aux->info + (ABSADDR (tp->info) - aux->info_addr);
5910 stamp = byte_get ((unsigned char *) head, sizeof (stamp));
5911
5912 printf (" v%u, flags=0x%lx (%s%s), len=%lu bytes\n",
5913 (unsigned) UNW_VER (stamp),
5914 (unsigned long) ((stamp & UNW_FLAG_MASK) >> 32),
5915 UNW_FLAG_EHANDLER (stamp) ? " ehandler" : "",
5916 UNW_FLAG_UHANDLER (stamp) ? " uhandler" : "",
5917 (unsigned long) (eh_addr_size * UNW_LENGTH (stamp)));
5918
5919 if (UNW_VER (stamp) != 1)
5920 {
5921 printf (_("\tUnknown version.\n"));
5922 continue;
5923 }
5924
5925 in_body = 0;
5926 for (dp = head + 8; dp < head + 8 + eh_addr_size * UNW_LENGTH (stamp);)
5927 dp = unw_decode (dp, in_body, & in_body);
5928 }
5929 }
5930
5931 static int
5932 slurp_ia64_unwind_table (FILE * file,
5933 struct ia64_unw_aux_info * aux,
5934 Elf_Internal_Shdr * sec)
5935 {
5936 unsigned long size, nrelas, i;
5937 Elf_Internal_Phdr * seg;
5938 struct ia64_unw_table_entry * tep;
5939 Elf_Internal_Shdr * relsec;
5940 Elf_Internal_Rela * rela;
5941 Elf_Internal_Rela * rp;
5942 unsigned char * table;
5943 unsigned char * tp;
5944 Elf_Internal_Sym * sym;
5945 const char * relname;
5946
5947 /* First, find the starting address of the segment that includes
5948 this section: */
5949
5950 if (elf_header.e_phnum)
5951 {
5952 if (! get_program_headers (file))
5953 return 0;
5954
5955 for (seg = program_headers;
5956 seg < program_headers + elf_header.e_phnum;
5957 ++seg)
5958 {
5959 if (seg->p_type != PT_LOAD)
5960 continue;
5961
5962 if (sec->sh_addr >= seg->p_vaddr
5963 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
5964 {
5965 aux->seg_base = seg->p_vaddr;
5966 break;
5967 }
5968 }
5969 }
5970
5971 /* Second, build the unwind table from the contents of the unwind section: */
5972 size = sec->sh_size;
5973 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
5974 _("unwind table"));
5975 if (!table)
5976 return 0;
5977
5978 aux->table = (struct ia64_unw_table_entry *)
5979 xcmalloc (size / (3 * eh_addr_size), sizeof (aux->table[0]));
5980 tep = aux->table;
5981 for (tp = table; tp < table + size; ++tep)
5982 {
5983 tep->start.section = SHN_UNDEF;
5984 tep->end.section = SHN_UNDEF;
5985 tep->info.section = SHN_UNDEF;
5986 tep->start.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5987 tep->end.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5988 tep->info.offset = byte_get (tp, eh_addr_size); tp += eh_addr_size;
5989 tep->start.offset += aux->seg_base;
5990 tep->end.offset += aux->seg_base;
5991 tep->info.offset += aux->seg_base;
5992 }
5993 free (table);
5994
5995 /* Third, apply any relocations to the unwind table: */
5996 for (relsec = section_headers;
5997 relsec < section_headers + elf_header.e_shnum;
5998 ++relsec)
5999 {
6000 if (relsec->sh_type != SHT_RELA
6001 || relsec->sh_info >= elf_header.e_shnum
6002 || section_headers + relsec->sh_info != sec)
6003 continue;
6004
6005 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6006 & rela, & nrelas))
6007 return 0;
6008
6009 for (rp = rela; rp < rela + nrelas; ++rp)
6010 {
6011 relname = elf_ia64_reloc_type (get_reloc_type (rp->r_info));
6012 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6013
6014 if (! const_strneq (relname, "R_IA64_SEGREL"))
6015 {
6016 warn (_("Skipping unexpected relocation type %s\n"), relname);
6017 continue;
6018 }
6019
6020 i = rp->r_offset / (3 * eh_addr_size);
6021
6022 switch (rp->r_offset/eh_addr_size % 3)
6023 {
6024 case 0:
6025 aux->table[i].start.section = sym->st_shndx;
6026 aux->table[i].start.offset = rp->r_addend + sym->st_value;
6027 break;
6028 case 1:
6029 aux->table[i].end.section = sym->st_shndx;
6030 aux->table[i].end.offset = rp->r_addend + sym->st_value;
6031 break;
6032 case 2:
6033 aux->table[i].info.section = sym->st_shndx;
6034 aux->table[i].info.offset = rp->r_addend + sym->st_value;
6035 break;
6036 default:
6037 break;
6038 }
6039 }
6040
6041 free (rela);
6042 }
6043
6044 aux->table_len = size / (3 * eh_addr_size);
6045 return 1;
6046 }
6047
6048 static void
6049 ia64_process_unwind (FILE * file)
6050 {
6051 Elf_Internal_Shdr * sec;
6052 Elf_Internal_Shdr * unwsec = NULL;
6053 Elf_Internal_Shdr * strsec;
6054 unsigned long i, unwcount = 0, unwstart = 0;
6055 struct ia64_unw_aux_info aux;
6056
6057 memset (& aux, 0, sizeof (aux));
6058
6059 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6060 {
6061 if (sec->sh_type == SHT_SYMTAB
6062 && sec->sh_link < elf_header.e_shnum)
6063 {
6064 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6065
6066 strsec = section_headers + sec->sh_link;
6067 assert (aux.strtab == NULL);
6068 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6069 1, strsec->sh_size,
6070 _("string table"));
6071 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6072 }
6073 else if (sec->sh_type == SHT_IA_64_UNWIND)
6074 unwcount++;
6075 }
6076
6077 if (!unwcount)
6078 printf (_("\nThere are no unwind sections in this file.\n"));
6079
6080 while (unwcount-- > 0)
6081 {
6082 char * suffix;
6083 size_t len, len2;
6084
6085 for (i = unwstart, sec = section_headers + unwstart;
6086 i < elf_header.e_shnum; ++i, ++sec)
6087 if (sec->sh_type == SHT_IA_64_UNWIND)
6088 {
6089 unwsec = sec;
6090 break;
6091 }
6092
6093 unwstart = i + 1;
6094 len = sizeof (ELF_STRING_ia64_unwind_once) - 1;
6095
6096 if ((unwsec->sh_flags & SHF_GROUP) != 0)
6097 {
6098 /* We need to find which section group it is in. */
6099 struct group_list * g = section_headers_groups [i]->root;
6100
6101 for (; g != NULL; g = g->next)
6102 {
6103 sec = section_headers + g->section_index;
6104
6105 if (streq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info))
6106 break;
6107 }
6108
6109 if (g == NULL)
6110 i = elf_header.e_shnum;
6111 }
6112 else if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind_once, len))
6113 {
6114 /* .gnu.linkonce.ia64unw.FOO -> .gnu.linkonce.ia64unwi.FOO. */
6115 len2 = sizeof (ELF_STRING_ia64_unwind_info_once) - 1;
6116 suffix = SECTION_NAME (unwsec) + len;
6117 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6118 ++i, ++sec)
6119 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info_once, len2)
6120 && streq (SECTION_NAME (sec) + len2, suffix))
6121 break;
6122 }
6123 else
6124 {
6125 /* .IA_64.unwindFOO -> .IA_64.unwind_infoFOO
6126 .IA_64.unwind or BAR -> .IA_64.unwind_info. */
6127 len = sizeof (ELF_STRING_ia64_unwind) - 1;
6128 len2 = sizeof (ELF_STRING_ia64_unwind_info) - 1;
6129 suffix = "";
6130 if (strneq (SECTION_NAME (unwsec), ELF_STRING_ia64_unwind, len))
6131 suffix = SECTION_NAME (unwsec) + len;
6132 for (i = 0, sec = section_headers; i < elf_header.e_shnum;
6133 ++i, ++sec)
6134 if (strneq (SECTION_NAME (sec), ELF_STRING_ia64_unwind_info, len2)
6135 && streq (SECTION_NAME (sec) + len2, suffix))
6136 break;
6137 }
6138
6139 if (i == elf_header.e_shnum)
6140 {
6141 printf (_("\nCould not find unwind info section for "));
6142
6143 if (string_table == NULL)
6144 printf ("%d", unwsec->sh_name);
6145 else
6146 printf (_("'%s'"), SECTION_NAME (unwsec));
6147 }
6148 else
6149 {
6150 aux.info_addr = sec->sh_addr;
6151 aux.info = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1,
6152 sec->sh_size,
6153 _("unwind info"));
6154 aux.info_size = aux.info == NULL ? 0 : sec->sh_size;
6155
6156 printf (_("\nUnwind section "));
6157
6158 if (string_table == NULL)
6159 printf ("%d", unwsec->sh_name);
6160 else
6161 printf (_("'%s'"), SECTION_NAME (unwsec));
6162
6163 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6164 (unsigned long) unwsec->sh_offset,
6165 (unsigned long) (unwsec->sh_size / (3 * eh_addr_size)));
6166
6167 (void) slurp_ia64_unwind_table (file, & aux, unwsec);
6168
6169 if (aux.table_len > 0)
6170 dump_ia64_unwind (& aux);
6171
6172 if (aux.table)
6173 free ((char *) aux.table);
6174 if (aux.info)
6175 free ((char *) aux.info);
6176 aux.table = NULL;
6177 aux.info = NULL;
6178 }
6179 }
6180
6181 if (aux.symtab)
6182 free (aux.symtab);
6183 if (aux.strtab)
6184 free ((char *) aux.strtab);
6185 }
6186
6187 struct hppa_unw_table_entry
6188 {
6189 struct absaddr start;
6190 struct absaddr end;
6191 unsigned int Cannot_unwind:1; /* 0 */
6192 unsigned int Millicode:1; /* 1 */
6193 unsigned int Millicode_save_sr0:1; /* 2 */
6194 unsigned int Region_description:2; /* 3..4 */
6195 unsigned int reserved1:1; /* 5 */
6196 unsigned int Entry_SR:1; /* 6 */
6197 unsigned int Entry_FR:4; /* number saved */ /* 7..10 */
6198 unsigned int Entry_GR:5; /* number saved */ /* 11..15 */
6199 unsigned int Args_stored:1; /* 16 */
6200 unsigned int Variable_Frame:1; /* 17 */
6201 unsigned int Separate_Package_Body:1; /* 18 */
6202 unsigned int Frame_Extension_Millicode:1; /* 19 */
6203 unsigned int Stack_Overflow_Check:1; /* 20 */
6204 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
6205 unsigned int Ada_Region:1; /* 22 */
6206 unsigned int cxx_info:1; /* 23 */
6207 unsigned int cxx_try_catch:1; /* 24 */
6208 unsigned int sched_entry_seq:1; /* 25 */
6209 unsigned int reserved2:1; /* 26 */
6210 unsigned int Save_SP:1; /* 27 */
6211 unsigned int Save_RP:1; /* 28 */
6212 unsigned int Save_MRP_in_frame:1; /* 29 */
6213 unsigned int extn_ptr_defined:1; /* 30 */
6214 unsigned int Cleanup_defined:1; /* 31 */
6215
6216 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
6217 unsigned int HP_UX_interrupt_marker:1; /* 1 */
6218 unsigned int Large_frame:1; /* 2 */
6219 unsigned int Pseudo_SP_Set:1; /* 3 */
6220 unsigned int reserved4:1; /* 4 */
6221 unsigned int Total_frame_size:27; /* 5..31 */
6222 };
6223
6224 struct hppa_unw_aux_info
6225 {
6226 struct hppa_unw_table_entry *table; /* Unwind table. */
6227 unsigned long table_len; /* Length of unwind table. */
6228 bfd_vma seg_base; /* Starting address of segment. */
6229 Elf_Internal_Sym * symtab; /* The symbol table. */
6230 unsigned long nsyms; /* Number of symbols. */
6231 char * strtab; /* The string table. */
6232 unsigned long strtab_size; /* Size of string table. */
6233 };
6234
6235 static void
6236 dump_hppa_unwind (struct hppa_unw_aux_info * aux)
6237 {
6238 struct hppa_unw_table_entry * tp;
6239
6240 for (tp = aux->table; tp < aux->table + aux->table_len; ++tp)
6241 {
6242 bfd_vma offset;
6243 const char * procname;
6244
6245 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6246 aux->strtab_size, tp->start, &procname,
6247 &offset);
6248
6249 fputs ("\n<", stdout);
6250
6251 if (procname)
6252 {
6253 fputs (procname, stdout);
6254
6255 if (offset)
6256 printf ("+%lx", (unsigned long) offset);
6257 }
6258
6259 fputs (">: [", stdout);
6260 print_vma (tp->start.offset, PREFIX_HEX);
6261 fputc ('-', stdout);
6262 print_vma (tp->end.offset, PREFIX_HEX);
6263 printf ("]\n\t");
6264
6265 #define PF(_m) if (tp->_m) printf (#_m " ");
6266 #define PV(_m) if (tp->_m) printf (#_m "=%d ", tp->_m);
6267 PF(Cannot_unwind);
6268 PF(Millicode);
6269 PF(Millicode_save_sr0);
6270 /* PV(Region_description); */
6271 PF(Entry_SR);
6272 PV(Entry_FR);
6273 PV(Entry_GR);
6274 PF(Args_stored);
6275 PF(Variable_Frame);
6276 PF(Separate_Package_Body);
6277 PF(Frame_Extension_Millicode);
6278 PF(Stack_Overflow_Check);
6279 PF(Two_Instruction_SP_Increment);
6280 PF(Ada_Region);
6281 PF(cxx_info);
6282 PF(cxx_try_catch);
6283 PF(sched_entry_seq);
6284 PF(Save_SP);
6285 PF(Save_RP);
6286 PF(Save_MRP_in_frame);
6287 PF(extn_ptr_defined);
6288 PF(Cleanup_defined);
6289 PF(MPE_XL_interrupt_marker);
6290 PF(HP_UX_interrupt_marker);
6291 PF(Large_frame);
6292 PF(Pseudo_SP_Set);
6293 PV(Total_frame_size);
6294 #undef PF
6295 #undef PV
6296 }
6297
6298 printf ("\n");
6299 }
6300
6301 static int
6302 slurp_hppa_unwind_table (FILE * file,
6303 struct hppa_unw_aux_info * aux,
6304 Elf_Internal_Shdr * sec)
6305 {
6306 unsigned long size, unw_ent_size, nentries, nrelas, i;
6307 Elf_Internal_Phdr * seg;
6308 struct hppa_unw_table_entry * tep;
6309 Elf_Internal_Shdr * relsec;
6310 Elf_Internal_Rela * rela;
6311 Elf_Internal_Rela * rp;
6312 unsigned char * table;
6313 unsigned char * tp;
6314 Elf_Internal_Sym * sym;
6315 const char * relname;
6316
6317 /* First, find the starting address of the segment that includes
6318 this section. */
6319
6320 if (elf_header.e_phnum)
6321 {
6322 if (! get_program_headers (file))
6323 return 0;
6324
6325 for (seg = program_headers;
6326 seg < program_headers + elf_header.e_phnum;
6327 ++seg)
6328 {
6329 if (seg->p_type != PT_LOAD)
6330 continue;
6331
6332 if (sec->sh_addr >= seg->p_vaddr
6333 && (sec->sh_addr + sec->sh_size <= seg->p_vaddr + seg->p_memsz))
6334 {
6335 aux->seg_base = seg->p_vaddr;
6336 break;
6337 }
6338 }
6339 }
6340
6341 /* Second, build the unwind table from the contents of the unwind
6342 section. */
6343 size = sec->sh_size;
6344 table = (unsigned char *) get_data (NULL, file, sec->sh_offset, 1, size,
6345 _("unwind table"));
6346 if (!table)
6347 return 0;
6348
6349 unw_ent_size = 16;
6350 nentries = size / unw_ent_size;
6351 size = unw_ent_size * nentries;
6352
6353 tep = aux->table = (struct hppa_unw_table_entry *)
6354 xcmalloc (nentries, sizeof (aux->table[0]));
6355
6356 for (tp = table; tp < table + size; tp += unw_ent_size, ++tep)
6357 {
6358 unsigned int tmp1, tmp2;
6359
6360 tep->start.section = SHN_UNDEF;
6361 tep->end.section = SHN_UNDEF;
6362
6363 tep->start.offset = byte_get ((unsigned char *) tp + 0, 4);
6364 tep->end.offset = byte_get ((unsigned char *) tp + 4, 4);
6365 tmp1 = byte_get ((unsigned char *) tp + 8, 4);
6366 tmp2 = byte_get ((unsigned char *) tp + 12, 4);
6367
6368 tep->start.offset += aux->seg_base;
6369 tep->end.offset += aux->seg_base;
6370
6371 tep->Cannot_unwind = (tmp1 >> 31) & 0x1;
6372 tep->Millicode = (tmp1 >> 30) & 0x1;
6373 tep->Millicode_save_sr0 = (tmp1 >> 29) & 0x1;
6374 tep->Region_description = (tmp1 >> 27) & 0x3;
6375 tep->reserved1 = (tmp1 >> 26) & 0x1;
6376 tep->Entry_SR = (tmp1 >> 25) & 0x1;
6377 tep->Entry_FR = (tmp1 >> 21) & 0xf;
6378 tep->Entry_GR = (tmp1 >> 16) & 0x1f;
6379 tep->Args_stored = (tmp1 >> 15) & 0x1;
6380 tep->Variable_Frame = (tmp1 >> 14) & 0x1;
6381 tep->Separate_Package_Body = (tmp1 >> 13) & 0x1;
6382 tep->Frame_Extension_Millicode = (tmp1 >> 12) & 0x1;
6383 tep->Stack_Overflow_Check = (tmp1 >> 11) & 0x1;
6384 tep->Two_Instruction_SP_Increment = (tmp1 >> 10) & 0x1;
6385 tep->Ada_Region = (tmp1 >> 9) & 0x1;
6386 tep->cxx_info = (tmp1 >> 8) & 0x1;
6387 tep->cxx_try_catch = (tmp1 >> 7) & 0x1;
6388 tep->sched_entry_seq = (tmp1 >> 6) & 0x1;
6389 tep->reserved2 = (tmp1 >> 5) & 0x1;
6390 tep->Save_SP = (tmp1 >> 4) & 0x1;
6391 tep->Save_RP = (tmp1 >> 3) & 0x1;
6392 tep->Save_MRP_in_frame = (tmp1 >> 2) & 0x1;
6393 tep->extn_ptr_defined = (tmp1 >> 1) & 0x1;
6394 tep->Cleanup_defined = tmp1 & 0x1;
6395
6396 tep->MPE_XL_interrupt_marker = (tmp2 >> 31) & 0x1;
6397 tep->HP_UX_interrupt_marker = (tmp2 >> 30) & 0x1;
6398 tep->Large_frame = (tmp2 >> 29) & 0x1;
6399 tep->Pseudo_SP_Set = (tmp2 >> 28) & 0x1;
6400 tep->reserved4 = (tmp2 >> 27) & 0x1;
6401 tep->Total_frame_size = tmp2 & 0x7ffffff;
6402 }
6403 free (table);
6404
6405 /* Third, apply any relocations to the unwind table. */
6406 for (relsec = section_headers;
6407 relsec < section_headers + elf_header.e_shnum;
6408 ++relsec)
6409 {
6410 if (relsec->sh_type != SHT_RELA
6411 || relsec->sh_info >= elf_header.e_shnum
6412 || section_headers + relsec->sh_info != sec)
6413 continue;
6414
6415 if (!slurp_rela_relocs (file, relsec->sh_offset, relsec->sh_size,
6416 & rela, & nrelas))
6417 return 0;
6418
6419 for (rp = rela; rp < rela + nrelas; ++rp)
6420 {
6421 relname = elf_hppa_reloc_type (get_reloc_type (rp->r_info));
6422 sym = aux->symtab + get_reloc_symindex (rp->r_info);
6423
6424 /* R_PARISC_SEGREL32 or R_PARISC_SEGREL64. */
6425 if (! const_strneq (relname, "R_PARISC_SEGREL"))
6426 {
6427 warn (_("Skipping unexpected relocation type %s\n"), relname);
6428 continue;
6429 }
6430
6431 i = rp->r_offset / unw_ent_size;
6432
6433 switch ((rp->r_offset % unw_ent_size) / eh_addr_size)
6434 {
6435 case 0:
6436 aux->table[i].start.section = sym->st_shndx;
6437 aux->table[i].start.offset = sym->st_value + rp->r_addend;
6438 break;
6439 case 1:
6440 aux->table[i].end.section = sym->st_shndx;
6441 aux->table[i].end.offset = sym->st_value + rp->r_addend;
6442 break;
6443 default:
6444 break;
6445 }
6446 }
6447
6448 free (rela);
6449 }
6450
6451 aux->table_len = nentries;
6452
6453 return 1;
6454 }
6455
6456 static void
6457 hppa_process_unwind (FILE * file)
6458 {
6459 struct hppa_unw_aux_info aux;
6460 Elf_Internal_Shdr * unwsec = NULL;
6461 Elf_Internal_Shdr * strsec;
6462 Elf_Internal_Shdr * sec;
6463 unsigned long i;
6464
6465 if (string_table == NULL)
6466 return;
6467
6468 memset (& aux, 0, sizeof (aux));
6469
6470 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6471 {
6472 if (sec->sh_type == SHT_SYMTAB
6473 && sec->sh_link < elf_header.e_shnum)
6474 {
6475 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
6476
6477 strsec = section_headers + sec->sh_link;
6478 assert (aux.strtab == NULL);
6479 aux.strtab = (char *) get_data (NULL, file, strsec->sh_offset,
6480 1, strsec->sh_size,
6481 _("string table"));
6482 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
6483 }
6484 else if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6485 unwsec = sec;
6486 }
6487
6488 if (!unwsec)
6489 printf (_("\nThere are no unwind sections in this file.\n"));
6490
6491 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
6492 {
6493 if (streq (SECTION_NAME (sec), ".PARISC.unwind"))
6494 {
6495 printf (_("\nUnwind section "));
6496 printf (_("'%s'"), SECTION_NAME (sec));
6497
6498 printf (_(" at offset 0x%lx contains %lu entries:\n"),
6499 (unsigned long) sec->sh_offset,
6500 (unsigned long) (sec->sh_size / (2 * eh_addr_size + 8)));
6501
6502 slurp_hppa_unwind_table (file, &aux, sec);
6503 if (aux.table_len > 0)
6504 dump_hppa_unwind (&aux);
6505
6506 if (aux.table)
6507 free ((char *) aux.table);
6508 aux.table = NULL;
6509 }
6510 }
6511
6512 if (aux.symtab)
6513 free (aux.symtab);
6514 if (aux.strtab)
6515 free ((char *) aux.strtab);
6516 }
6517
6518 struct arm_section
6519 {
6520 unsigned char * data; /* The unwind data. */
6521 Elf_Internal_Shdr * sec; /* The cached unwind section header. */
6522 Elf_Internal_Rela * rela; /* The cached relocations for this section. */
6523 unsigned long nrelas; /* The number of relocations. */
6524 unsigned int rel_type; /* REL or RELA ? */
6525 Elf_Internal_Rela * next_rela; /* Cyclic pointer to the next reloc to process. */
6526 };
6527
6528 struct arm_unw_aux_info
6529 {
6530 FILE * file; /* The file containing the unwind sections. */
6531 Elf_Internal_Sym * symtab; /* The file's symbol table. */
6532 unsigned long nsyms; /* Number of symbols. */
6533 char * strtab; /* The file's string table. */
6534 unsigned long strtab_size; /* Size of string table. */
6535 };
6536
6537 static const char *
6538 arm_print_vma_and_name (struct arm_unw_aux_info *aux,
6539 bfd_vma fn, struct absaddr addr)
6540 {
6541 const char *procname;
6542 bfd_vma sym_offset;
6543
6544 if (addr.section == SHN_UNDEF)
6545 addr.offset = fn;
6546
6547 find_symbol_for_address (aux->symtab, aux->nsyms, aux->strtab,
6548 aux->strtab_size, addr, &procname,
6549 &sym_offset);
6550
6551 print_vma (fn, PREFIX_HEX);
6552
6553 if (procname)
6554 {
6555 fputs (" <", stdout);
6556 fputs (procname, stdout);
6557
6558 if (sym_offset)
6559 printf ("+0x%lx", (unsigned long) sym_offset);
6560 fputc ('>', stdout);
6561 }
6562
6563 return procname;
6564 }
6565
6566 static void
6567 arm_free_section (struct arm_section *arm_sec)
6568 {
6569 if (arm_sec->data != NULL)
6570 free (arm_sec->data);
6571
6572 if (arm_sec->rela != NULL)
6573 free (arm_sec->rela);
6574 }
6575
6576 /* 1) If SEC does not match the one cached in ARM_SEC, then free the current
6577 cached section and install SEC instead.
6578 2) Locate the 32-bit word at WORD_OFFSET in unwind section SEC
6579 and return its valued in * WORDP, relocating if necessary.
6580 3) Update the NEXT_RELA field in ARM_SEC and store the section index and
6581 relocation's offset in ADDR.
6582 4) If SYM_NAME is non-NULL and a relocation was applied, record the offset
6583 into the string table of the symbol associated with the reloc. If no
6584 reloc was applied store -1 there.
6585 5) Return TRUE upon success, FALSE otherwise. */
6586
6587 static bfd_boolean
6588 get_unwind_section_word (struct arm_unw_aux_info * aux,
6589 struct arm_section * arm_sec,
6590 Elf_Internal_Shdr * sec,
6591 bfd_vma word_offset,
6592 unsigned int * wordp,
6593 struct absaddr * addr,
6594 bfd_vma * sym_name)
6595 {
6596 Elf_Internal_Rela *rp;
6597 Elf_Internal_Sym *sym;
6598 const char * relname;
6599 unsigned int word;
6600 bfd_boolean wrapped;
6601
6602 addr->section = SHN_UNDEF;
6603 addr->offset = 0;
6604
6605 if (sym_name != NULL)
6606 *sym_name = (bfd_vma) -1;
6607
6608 /* If necessary, update the section cache. */
6609 if (sec != arm_sec->sec)
6610 {
6611 Elf_Internal_Shdr *relsec;
6612
6613 arm_free_section (arm_sec);
6614
6615 arm_sec->sec = sec;
6616 arm_sec->data = get_data (NULL, aux->file, sec->sh_offset, 1,
6617 sec->sh_size, _("unwind data"));
6618 arm_sec->rela = NULL;
6619 arm_sec->nrelas = 0;
6620
6621 for (relsec = section_headers;
6622 relsec < section_headers + elf_header.e_shnum;
6623 ++relsec)
6624 {
6625 if (relsec->sh_info >= elf_header.e_shnum
6626 || section_headers + relsec->sh_info != sec)
6627 continue;
6628
6629 arm_sec->rel_type = relsec->sh_type;
6630 if (relsec->sh_type == SHT_REL)
6631 {
6632 if (!slurp_rel_relocs (aux->file, relsec->sh_offset,
6633 relsec->sh_size,
6634 & arm_sec->rela, & arm_sec->nrelas))
6635 return FALSE;
6636 break;
6637 }
6638 else if (relsec->sh_type == SHT_RELA)
6639 {
6640 if (!slurp_rela_relocs (aux->file, relsec->sh_offset,
6641 relsec->sh_size,
6642 & arm_sec->rela, & arm_sec->nrelas))
6643 return FALSE;
6644 break;
6645 }
6646 else
6647 warn (_("unexpected relocation type (%d) for section %d"),
6648 relsec->sh_type, relsec->sh_info);
6649 }
6650
6651 arm_sec->next_rela = arm_sec->rela;
6652 }
6653
6654 /* If there is no unwind data we can do nothing. */
6655 if (arm_sec->data == NULL)
6656 return FALSE;
6657
6658 /* Get the word at the required offset. */
6659 word = byte_get (arm_sec->data + word_offset, 4);
6660
6661 /* Look through the relocs to find the one that applies to the provided offset. */
6662 wrapped = FALSE;
6663 for (rp = arm_sec->next_rela; rp != arm_sec->rela + arm_sec->nrelas; rp++)
6664 {
6665 bfd_vma prelval, offset;
6666
6667 if (rp->r_offset > word_offset && !wrapped)
6668 {
6669 rp = arm_sec->rela;
6670 wrapped = TRUE;
6671 }
6672 if (rp->r_offset > word_offset)
6673 break;
6674
6675 if (rp->r_offset & 3)
6676 {
6677 warn (_("Skipping unexpected relocation at offset 0x%lx\n"),
6678 (unsigned long) rp->r_offset);
6679 continue;
6680 }
6681
6682 if (rp->r_offset < word_offset)
6683 continue;
6684
6685 sym = aux->symtab + ELF32_R_SYM (rp->r_info);
6686
6687 if (arm_sec->rel_type == SHT_REL)
6688 {
6689 offset = word & 0x7fffffff;
6690 if (offset & 0x40000000)
6691 offset |= ~ (bfd_vma) 0x7fffffff;
6692 }
6693 else if (arm_sec->rel_type == SHT_RELA)
6694 offset = rp->r_addend;
6695 else
6696 abort ();
6697
6698 offset += sym->st_value;
6699 prelval = offset - (arm_sec->sec->sh_addr + rp->r_offset);
6700
6701 /* Check that we are processing the expected reloc type. */
6702 if (elf_header.e_machine == EM_ARM)
6703 {
6704 relname = elf_arm_reloc_type (ELF32_R_TYPE (rp->r_info));
6705
6706 if (streq (relname, "R_ARM_NONE"))
6707 continue;
6708
6709 if (! streq (relname, "R_ARM_PREL31"))
6710 {
6711 warn (_("Skipping unexpected relocation type %s\n"), relname);
6712 continue;
6713 }
6714 }
6715 else if (elf_header.e_machine == EM_TI_C6000)
6716 {
6717 relname = elf_tic6x_reloc_type (ELF32_R_TYPE (rp->r_info));
6718
6719 if (streq (relname, "R_C6000_NONE"))
6720 continue;
6721
6722 if (! streq (relname, "R_C6000_PREL31"))
6723 {
6724 warn (_("Skipping unexpected relocation type %s\n"), relname);
6725 continue;
6726 }
6727
6728 prelval >>= 1;
6729 }
6730 else
6731 /* This function currently only supports ARM and TI unwinders. */
6732 abort ();
6733
6734 word = (word & ~ (bfd_vma) 0x7fffffff) | (prelval & 0x7fffffff);
6735 addr->section = sym->st_shndx;
6736 addr->offset = offset;
6737 if (sym_name)
6738 * sym_name = sym->st_name;
6739 break;
6740 }
6741
6742 *wordp = word;
6743 arm_sec->next_rela = rp;
6744
6745 return TRUE;
6746 }
6747
6748 static const char *tic6x_unwind_regnames[16] =
6749 {
6750 "A15", "B15", "B14", "B13", "B12", "B11", "B10", "B3",
6751 "A14", "A13", "A12", "A11", "A10",
6752 "[invalid reg 13]", "[invalid reg 14]", "[invalid reg 15]"
6753 };
6754
6755 static void
6756 decode_tic6x_unwind_regmask (unsigned int mask)
6757 {
6758 int i;
6759
6760 for (i = 12; mask; mask >>= 1, i--)
6761 {
6762 if (mask & 1)
6763 {
6764 fputs (tic6x_unwind_regnames[i], stdout);
6765 if (mask > 1)
6766 fputs (", ", stdout);
6767 }
6768 }
6769 }
6770
6771 #define ADVANCE \
6772 if (remaining == 0 && more_words) \
6773 { \
6774 data_offset += 4; \
6775 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, \
6776 data_offset, & word, & addr, NULL)) \
6777 return; \
6778 remaining = 4; \
6779 more_words--; \
6780 } \
6781
6782 #define GET_OP(OP) \
6783 ADVANCE; \
6784 if (remaining) \
6785 { \
6786 remaining--; \
6787 (OP) = word >> 24; \
6788 word <<= 8; \
6789 } \
6790 else \
6791 { \
6792 printf (_("[Truncated opcode]\n")); \
6793 return; \
6794 } \
6795 printf ("0x%02x ", OP)
6796
6797 static void
6798 decode_arm_unwind_bytecode (struct arm_unw_aux_info *aux,
6799 unsigned int word, unsigned int remaining,
6800 unsigned int more_words,
6801 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
6802 struct arm_section *data_arm_sec)
6803 {
6804 struct absaddr addr;
6805
6806 /* Decode the unwinding instructions. */
6807 while (1)
6808 {
6809 unsigned int op, op2;
6810
6811 ADVANCE;
6812 if (remaining == 0)
6813 break;
6814 remaining--;
6815 op = word >> 24;
6816 word <<= 8;
6817
6818 printf (" 0x%02x ", op);
6819
6820 if ((op & 0xc0) == 0x00)
6821 {
6822 int offset = ((op & 0x3f) << 2) + 4;
6823
6824 printf (" vsp = vsp + %d", offset);
6825 }
6826 else if ((op & 0xc0) == 0x40)
6827 {
6828 int offset = ((op & 0x3f) << 2) + 4;
6829
6830 printf (" vsp = vsp - %d", offset);
6831 }
6832 else if ((op & 0xf0) == 0x80)
6833 {
6834 GET_OP (op2);
6835 if (op == 0x80 && op2 == 0)
6836 printf (_("Refuse to unwind"));
6837 else
6838 {
6839 unsigned int mask = ((op & 0x0f) << 8) | op2;
6840 int first = 1;
6841 int i;
6842
6843 printf ("pop {");
6844 for (i = 0; i < 12; i++)
6845 if (mask & (1 << i))
6846 {
6847 if (first)
6848 first = 0;
6849 else
6850 printf (", ");
6851 printf ("r%d", 4 + i);
6852 }
6853 printf ("}");
6854 }
6855 }
6856 else if ((op & 0xf0) == 0x90)
6857 {
6858 if (op == 0x9d || op == 0x9f)
6859 printf (_(" [Reserved]"));
6860 else
6861 printf (" vsp = r%d", op & 0x0f);
6862 }
6863 else if ((op & 0xf0) == 0xa0)
6864 {
6865 int end = 4 + (op & 0x07);
6866 int first = 1;
6867 int i;
6868
6869 printf (" pop {");
6870 for (i = 4; i <= end; i++)
6871 {
6872 if (first)
6873 first = 0;
6874 else
6875 printf (", ");
6876 printf ("r%d", i);
6877 }
6878 if (op & 0x08)
6879 {
6880 if (!first)
6881 printf (", ");
6882 printf ("r14");
6883 }
6884 printf ("}");
6885 }
6886 else if (op == 0xb0)
6887 printf (_(" finish"));
6888 else if (op == 0xb1)
6889 {
6890 GET_OP (op2);
6891 if (op2 == 0 || (op2 & 0xf0) != 0)
6892 printf (_("[Spare]"));
6893 else
6894 {
6895 unsigned int mask = op2 & 0x0f;
6896 int first = 1;
6897 int i;
6898
6899 printf ("pop {");
6900 for (i = 0; i < 12; i++)
6901 if (mask & (1 << i))
6902 {
6903 if (first)
6904 first = 0;
6905 else
6906 printf (", ");
6907 printf ("r%d", i);
6908 }
6909 printf ("}");
6910 }
6911 }
6912 else if (op == 0xb2)
6913 {
6914 unsigned char buf[9];
6915 unsigned int i, len;
6916 unsigned long offset;
6917
6918 for (i = 0; i < sizeof (buf); i++)
6919 {
6920 GET_OP (buf[i]);
6921 if ((buf[i] & 0x80) == 0)
6922 break;
6923 }
6924 assert (i < sizeof (buf));
6925 offset = read_uleb128 (buf, &len, buf + i + 1);
6926 assert (len == i + 1);
6927 offset = offset * 4 + 0x204;
6928 printf ("vsp = vsp + %ld", offset);
6929 }
6930 else if (op == 0xb3 || op == 0xc8 || op == 0xc9)
6931 {
6932 unsigned int first, last;
6933
6934 GET_OP (op2);
6935 first = op2 >> 4;
6936 last = op2 & 0x0f;
6937 if (op == 0xc8)
6938 first = first + 16;
6939 printf ("pop {D%d", first);
6940 if (last)
6941 printf ("-D%d", first + last);
6942 printf ("}");
6943 }
6944 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0)
6945 {
6946 unsigned int count = op & 0x07;
6947
6948 printf ("pop {D8");
6949 if (count)
6950 printf ("-D%d", 8 + count);
6951 printf ("}");
6952 }
6953 else if (op >= 0xc0 && op <= 0xc5)
6954 {
6955 unsigned int count = op & 0x07;
6956
6957 printf (" pop {wR10");
6958 if (count)
6959 printf ("-wR%d", 10 + count);
6960 printf ("}");
6961 }
6962 else if (op == 0xc6)
6963 {
6964 unsigned int first, last;
6965
6966 GET_OP (op2);
6967 first = op2 >> 4;
6968 last = op2 & 0x0f;
6969 printf ("pop {wR%d", first);
6970 if (last)
6971 printf ("-wR%d", first + last);
6972 printf ("}");
6973 }
6974 else if (op == 0xc7)
6975 {
6976 GET_OP (op2);
6977 if (op2 == 0 || (op2 & 0xf0) != 0)
6978 printf (_("[Spare]"));
6979 else
6980 {
6981 unsigned int mask = op2 & 0x0f;
6982 int first = 1;
6983 int i;
6984
6985 printf ("pop {");
6986 for (i = 0; i < 4; i++)
6987 if (mask & (1 << i))
6988 {
6989 if (first)
6990 first = 0;
6991 else
6992 printf (", ");
6993 printf ("wCGR%d", i);
6994 }
6995 printf ("}");
6996 }
6997 }
6998 else
6999 printf (_(" [unsupported opcode]"));
7000 printf ("\n");
7001 }
7002 }
7003
7004 static void
7005 decode_tic6x_unwind_bytecode (struct arm_unw_aux_info *aux,
7006 unsigned int word, unsigned int remaining,
7007 unsigned int more_words,
7008 bfd_vma data_offset, Elf_Internal_Shdr *data_sec,
7009 struct arm_section *data_arm_sec)
7010 {
7011 struct absaddr addr;
7012
7013 /* Decode the unwinding instructions. */
7014 while (1)
7015 {
7016 unsigned int op, op2;
7017
7018 ADVANCE;
7019 if (remaining == 0)
7020 break;
7021 remaining--;
7022 op = word >> 24;
7023 word <<= 8;
7024
7025 printf (" 0x%02x ", op);
7026
7027 if ((op & 0xc0) == 0x00)
7028 {
7029 int offset = ((op & 0x3f) << 3) + 8;
7030 printf (" sp = sp + %d", offset);
7031 }
7032 else if ((op & 0xc0) == 0x80)
7033 {
7034 GET_OP (op2);
7035 if (op == 0x80 && op2 == 0)
7036 printf (_("Refuse to unwind"));
7037 else
7038 {
7039 unsigned int mask = ((op & 0x1f) << 8) | op2;
7040 if (op & 0x20)
7041 printf ("pop compact {");
7042 else
7043 printf ("pop {");
7044
7045 decode_tic6x_unwind_regmask (mask);
7046 printf("}");
7047 }
7048 }
7049 else if ((op & 0xf0) == 0xc0)
7050 {
7051 unsigned int reg;
7052 unsigned int nregs;
7053 unsigned int i;
7054 const char *name;
7055 struct
7056 {
7057 unsigned int offset;
7058 unsigned int reg;
7059 } regpos[16];
7060
7061 /* Scan entire instruction first so that GET_OP output is not
7062 interleaved with disassembly. */
7063 nregs = 0;
7064 for (i = 0; nregs < (op & 0xf); i++)
7065 {
7066 GET_OP (op2);
7067 reg = op2 >> 4;
7068 if (reg != 0xf)
7069 {
7070 regpos[nregs].offset = i * 2;
7071 regpos[nregs].reg = reg;
7072 nregs++;
7073 }
7074
7075 reg = op2 & 0xf;
7076 if (reg != 0xf)
7077 {
7078 regpos[nregs].offset = i * 2 + 1;
7079 regpos[nregs].reg = reg;
7080 nregs++;
7081 }
7082 }
7083
7084 printf (_("pop frame {"));
7085 reg = nregs - 1;
7086 for (i = i * 2; i > 0; i--)
7087 {
7088 if (regpos[reg].offset == i - 1)
7089 {
7090 name = tic6x_unwind_regnames[regpos[reg].reg];
7091 if (reg > 0)
7092 reg--;
7093 }
7094 else
7095 name = _("[pad]");
7096
7097 fputs (name, stdout);
7098 if (i > 1)
7099 printf (", ");
7100 }
7101
7102 printf ("}");
7103 }
7104 else if (op == 0xd0)
7105 printf (" MOV FP, SP");
7106 else if (op == 0xd1)
7107 printf (" __c6xabi_pop_rts");
7108 else if (op == 0xd2)
7109 {
7110 unsigned char buf[9];
7111 unsigned int i, len;
7112 unsigned long offset;
7113
7114 for (i = 0; i < sizeof (buf); i++)
7115 {
7116 GET_OP (buf[i]);
7117 if ((buf[i] & 0x80) == 0)
7118 break;
7119 }
7120 assert (i < sizeof (buf));
7121 offset = read_uleb128 (buf, &len, buf + i + 1);
7122 assert (len == i + 1);
7123 offset = offset * 8 + 0x408;
7124 printf (_("sp = sp + %ld"), offset);
7125 }
7126 else if ((op & 0xf0) == 0xe0)
7127 {
7128 if ((op & 0x0f) == 7)
7129 printf (" RETURN");
7130 else
7131 printf (" MV %s, B3", tic6x_unwind_regnames[op & 0x0f]);
7132 }
7133 else
7134 {
7135 printf (_(" [unsupported opcode]"));
7136 }
7137 putchar ('\n');
7138 }
7139 }
7140
7141 static bfd_vma
7142 arm_expand_prel31 (bfd_vma word, bfd_vma where)
7143 {
7144 bfd_vma offset;
7145
7146 offset = word & 0x7fffffff;
7147 if (offset & 0x40000000)
7148 offset |= ~ (bfd_vma) 0x7fffffff;
7149
7150 if (elf_header.e_machine == EM_TI_C6000)
7151 offset <<= 1;
7152
7153 return offset + where;
7154 }
7155
7156 static void
7157 decode_arm_unwind (struct arm_unw_aux_info * aux,
7158 unsigned int word,
7159 unsigned int remaining,
7160 bfd_vma data_offset,
7161 Elf_Internal_Shdr * data_sec,
7162 struct arm_section * data_arm_sec)
7163 {
7164 int per_index;
7165 unsigned int more_words = 0;
7166 struct absaddr addr;
7167 bfd_vma sym_name = (bfd_vma) -1;
7168
7169 if (remaining == 0)
7170 {
7171 /* Fetch the first word.
7172 Note - when decoding an object file the address extracted
7173 here will always be 0. So we also pass in the sym_name
7174 parameter so that we can find the symbol associated with
7175 the personality routine. */
7176 if (! get_unwind_section_word (aux, data_arm_sec, data_sec, data_offset,
7177 & word, & addr, & sym_name))
7178 return;
7179
7180 remaining = 4;
7181 }
7182
7183 if ((word & 0x80000000) == 0)
7184 {
7185 /* Expand prel31 for personality routine. */
7186 bfd_vma fn;
7187 const char *procname;
7188
7189 fn = arm_expand_prel31 (word, data_sec->sh_addr + data_offset);
7190 printf (_(" Personality routine: "));
7191 if (fn == 0
7192 && addr.section == SHN_UNDEF && addr.offset == 0
7193 && sym_name != (bfd_vma) -1 && sym_name < aux->strtab_size)
7194 {
7195 procname = aux->strtab + sym_name;
7196 print_vma (fn, PREFIX_HEX);
7197 if (procname)
7198 {
7199 fputs (" <", stdout);
7200 fputs (procname, stdout);
7201 fputc ('>', stdout);
7202 }
7203 }
7204 else
7205 procname = arm_print_vma_and_name (aux, fn, addr);
7206 fputc ('\n', stdout);
7207
7208 /* The GCC personality routines use the standard compact
7209 encoding, starting with one byte giving the number of
7210 words. */
7211 if (procname != NULL
7212 && (const_strneq (procname, "__gcc_personality_v0")
7213 || const_strneq (procname, "__gxx_personality_v0")
7214 || const_strneq (procname, "__gcj_personality_v0")
7215 || const_strneq (procname, "__gnu_objc_personality_v0")))
7216 {
7217 remaining = 0;
7218 more_words = 1;
7219 ADVANCE;
7220 if (!remaining)
7221 {
7222 printf (_(" [Truncated data]\n"));
7223 return;
7224 }
7225 more_words = word >> 24;
7226 word <<= 8;
7227 remaining--;
7228 per_index = -1;
7229 }
7230 else
7231 return;
7232 }
7233 else
7234 {
7235 /* ARM EHABI Section 6.3:
7236
7237 An exception-handling table entry for the compact model looks like:
7238
7239 31 30-28 27-24 23-0
7240 -- ----- ----- ----
7241 1 0 index Data for personalityRoutine[index] */
7242
7243 if (elf_header.e_machine == EM_ARM
7244 && (word & 0x70000000))
7245 warn (_("Corrupt ARM compact model table entry: %x \n"), word);
7246
7247 per_index = (word >> 24) & 0x7f;
7248 printf (_(" Compact model index: %d\n"), per_index);
7249 if (per_index == 0)
7250 {
7251 more_words = 0;
7252 word <<= 8;
7253 remaining--;
7254 }
7255 else if (per_index < 3)
7256 {
7257 more_words = (word >> 16) & 0xff;
7258 word <<= 16;
7259 remaining -= 2;
7260 }
7261 }
7262
7263 switch (elf_header.e_machine)
7264 {
7265 case EM_ARM:
7266 if (per_index < 3)
7267 {
7268 decode_arm_unwind_bytecode (aux, word, remaining, more_words,
7269 data_offset, data_sec, data_arm_sec);
7270 }
7271 else
7272 {
7273 warn (_("Unknown ARM compact model index encountered\n"));
7274 printf (_(" [reserved]\n"));
7275 }
7276 break;
7277
7278 case EM_TI_C6000:
7279 if (per_index < 3)
7280 {
7281 decode_tic6x_unwind_bytecode (aux, word, remaining, more_words,
7282 data_offset, data_sec, data_arm_sec);
7283 }
7284 else if (per_index < 5)
7285 {
7286 if (((word >> 17) & 0x7f) == 0x7f)
7287 printf (_(" Restore stack from frame pointer\n"));
7288 else
7289 printf (_(" Stack increment %d\n"), (word >> 14) & 0x1fc);
7290 printf (_(" Registers restored: "));
7291 if (per_index == 4)
7292 printf (" (compact) ");
7293 decode_tic6x_unwind_regmask ((word >> 4) & 0x1fff);
7294 putchar ('\n');
7295 printf (_(" Return register: %s\n"),
7296 tic6x_unwind_regnames[word & 0xf]);
7297 }
7298 else
7299 printf (_(" [reserved (%d)]\n"), per_index);
7300 break;
7301
7302 default:
7303 error (_("Unsupported architecture type %d encountered when decoding unwind table"),
7304 elf_header.e_machine);
7305 }
7306
7307 /* Decode the descriptors. Not implemented. */
7308 }
7309
7310 static void
7311 dump_arm_unwind (struct arm_unw_aux_info *aux, Elf_Internal_Shdr *exidx_sec)
7312 {
7313 struct arm_section exidx_arm_sec, extab_arm_sec;
7314 unsigned int i, exidx_len;
7315
7316 memset (&exidx_arm_sec, 0, sizeof (exidx_arm_sec));
7317 memset (&extab_arm_sec, 0, sizeof (extab_arm_sec));
7318 exidx_len = exidx_sec->sh_size / 8;
7319
7320 for (i = 0; i < exidx_len; i++)
7321 {
7322 unsigned int exidx_fn, exidx_entry;
7323 struct absaddr fn_addr, entry_addr;
7324 bfd_vma fn;
7325
7326 fputc ('\n', stdout);
7327
7328 if (! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7329 8 * i, & exidx_fn, & fn_addr, NULL)
7330 || ! get_unwind_section_word (aux, & exidx_arm_sec, exidx_sec,
7331 8 * i + 4, & exidx_entry, & entry_addr, NULL))
7332 {
7333 arm_free_section (& exidx_arm_sec);
7334 arm_free_section (& extab_arm_sec);
7335 return;
7336 }
7337
7338 /* ARM EHABI, Section 5:
7339 An index table entry consists of 2 words.
7340 The first word contains a prel31 offset to the start of a function, with bit 31 clear. */
7341 if (exidx_fn & 0x80000000)
7342 warn (_("corrupt index table entry: %x\n"), exidx_fn);
7343
7344 fn = arm_expand_prel31 (exidx_fn, exidx_sec->sh_addr + 8 * i);
7345
7346 arm_print_vma_and_name (aux, fn, fn_addr);
7347 fputs (": ", stdout);
7348
7349 if (exidx_entry == 1)
7350 {
7351 print_vma (exidx_entry, PREFIX_HEX);
7352 fputs (" [cantunwind]\n", stdout);
7353 }
7354 else if (exidx_entry & 0x80000000)
7355 {
7356 print_vma (exidx_entry, PREFIX_HEX);
7357 fputc ('\n', stdout);
7358 decode_arm_unwind (aux, exidx_entry, 4, 0, NULL, NULL);
7359 }
7360 else
7361 {
7362 bfd_vma table, table_offset = 0;
7363 Elf_Internal_Shdr *table_sec;
7364
7365 fputs ("@", stdout);
7366 table = arm_expand_prel31 (exidx_entry, exidx_sec->sh_addr + 8 * i + 4);
7367 print_vma (table, PREFIX_HEX);
7368 printf ("\n");
7369
7370 /* Locate the matching .ARM.extab. */
7371 if (entry_addr.section != SHN_UNDEF
7372 && entry_addr.section < elf_header.e_shnum)
7373 {
7374 table_sec = section_headers + entry_addr.section;
7375 table_offset = entry_addr.offset;
7376 }
7377 else
7378 {
7379 table_sec = find_section_by_address (table);
7380 if (table_sec != NULL)
7381 table_offset = table - table_sec->sh_addr;
7382 }
7383 if (table_sec == NULL)
7384 {
7385 warn (_("Could not locate .ARM.extab section containing 0x%lx.\n"),
7386 (unsigned long) table);
7387 continue;
7388 }
7389 decode_arm_unwind (aux, 0, 0, table_offset, table_sec,
7390 &extab_arm_sec);
7391 }
7392 }
7393
7394 printf ("\n");
7395
7396 arm_free_section (&exidx_arm_sec);
7397 arm_free_section (&extab_arm_sec);
7398 }
7399
7400 /* Used for both ARM and C6X unwinding tables. */
7401
7402 static void
7403 arm_process_unwind (FILE *file)
7404 {
7405 struct arm_unw_aux_info aux;
7406 Elf_Internal_Shdr *unwsec = NULL;
7407 Elf_Internal_Shdr *strsec;
7408 Elf_Internal_Shdr *sec;
7409 unsigned long i;
7410 unsigned int sec_type;
7411
7412 switch (elf_header.e_machine)
7413 {
7414 case EM_ARM:
7415 sec_type = SHT_ARM_EXIDX;
7416 break;
7417
7418 case EM_TI_C6000:
7419 sec_type = SHT_C6000_UNWIND;
7420 break;
7421
7422 default:
7423 error (_("Unsupported architecture type %d encountered when processing unwind table"),
7424 elf_header.e_machine);
7425 return;
7426 }
7427
7428 if (string_table == NULL)
7429 return;
7430
7431 memset (& aux, 0, sizeof (aux));
7432 aux.file = file;
7433
7434 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7435 {
7436 if (sec->sh_type == SHT_SYMTAB && sec->sh_link < elf_header.e_shnum)
7437 {
7438 aux.symtab = GET_ELF_SYMBOLS (file, sec, & aux.nsyms);
7439
7440 strsec = section_headers + sec->sh_link;
7441 assert (aux.strtab == NULL);
7442 aux.strtab = get_data (NULL, file, strsec->sh_offset,
7443 1, strsec->sh_size, _("string table"));
7444 aux.strtab_size = aux.strtab != NULL ? strsec->sh_size : 0;
7445 }
7446 else if (sec->sh_type == sec_type)
7447 unwsec = sec;
7448 }
7449
7450 if (unwsec == NULL)
7451 printf (_("\nThere are no unwind sections in this file.\n"));
7452 else
7453 for (i = 0, sec = section_headers; i < elf_header.e_shnum; ++i, ++sec)
7454 {
7455 if (sec->sh_type == sec_type)
7456 {
7457 printf (_("\nUnwind table index '%s' at offset 0x%lx contains %lu entries:\n"),
7458 SECTION_NAME (sec),
7459 (unsigned long) sec->sh_offset,
7460 (unsigned long) (sec->sh_size / (2 * eh_addr_size)));
7461
7462 dump_arm_unwind (&aux, sec);
7463 }
7464 }
7465
7466 if (aux.symtab)
7467 free (aux.symtab);
7468 if (aux.strtab)
7469 free ((char *) aux.strtab);
7470 }
7471
7472 static void
7473 process_unwind (FILE * file)
7474 {
7475 struct unwind_handler
7476 {
7477 int machtype;
7478 void (* handler)(FILE *);
7479 } handlers[] =
7480 {
7481 { EM_ARM, arm_process_unwind },
7482 { EM_IA_64, ia64_process_unwind },
7483 { EM_PARISC, hppa_process_unwind },
7484 { EM_TI_C6000, arm_process_unwind },
7485 { 0, 0 }
7486 };
7487 int i;
7488
7489 if (!do_unwind)
7490 return;
7491
7492 for (i = 0; handlers[i].handler != NULL; i++)
7493 if (elf_header.e_machine == handlers[i].machtype)
7494 return handlers[i].handler (file);
7495
7496 printf (_("\nThe decoding of unwind sections for machine type %s is not currently supported.\n"),
7497 get_machine_name (elf_header.e_machine));
7498 }
7499
7500 static void
7501 dynamic_section_mips_val (Elf_Internal_Dyn * entry)
7502 {
7503 switch (entry->d_tag)
7504 {
7505 case DT_MIPS_FLAGS:
7506 if (entry->d_un.d_val == 0)
7507 printf (_("NONE"));
7508 else
7509 {
7510 static const char * opts[] =
7511 {
7512 "QUICKSTART", "NOTPOT", "NO_LIBRARY_REPLACEMENT",
7513 "NO_MOVE", "SGI_ONLY", "GUARANTEE_INIT", "DELTA_C_PLUS_PLUS",
7514 "GUARANTEE_START_INIT", "PIXIE", "DEFAULT_DELAY_LOAD",
7515 "REQUICKSTART", "REQUICKSTARTED", "CORD", "NO_UNRES_UNDEF",
7516 "RLD_ORDER_SAFE"
7517 };
7518 unsigned int cnt;
7519 int first = 1;
7520
7521 for (cnt = 0; cnt < ARRAY_SIZE (opts); ++cnt)
7522 if (entry->d_un.d_val & (1 << cnt))
7523 {
7524 printf ("%s%s", first ? "" : " ", opts[cnt]);
7525 first = 0;
7526 }
7527 }
7528 break;
7529
7530 case DT_MIPS_IVERSION:
7531 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
7532 printf (_("Interface Version: %s"), GET_DYNAMIC_NAME (entry->d_un.d_val));
7533 else
7534 printf (_("<corrupt: %" BFD_VMA_FMT "d>"), entry->d_un.d_ptr);
7535 break;
7536
7537 case DT_MIPS_TIME_STAMP:
7538 {
7539 char timebuf[20];
7540 struct tm * tmp;
7541
7542 time_t atime = entry->d_un.d_val;
7543 tmp = gmtime (&atime);
7544 snprintf (timebuf, sizeof (timebuf), "%04u-%02u-%02uT%02u:%02u:%02u",
7545 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
7546 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
7547 printf (_("Time Stamp: %s"), timebuf);
7548 }
7549 break;
7550
7551 case DT_MIPS_RLD_VERSION:
7552 case DT_MIPS_LOCAL_GOTNO:
7553 case DT_MIPS_CONFLICTNO:
7554 case DT_MIPS_LIBLISTNO:
7555 case DT_MIPS_SYMTABNO:
7556 case DT_MIPS_UNREFEXTNO:
7557 case DT_MIPS_HIPAGENO:
7558 case DT_MIPS_DELTA_CLASS_NO:
7559 case DT_MIPS_DELTA_INSTANCE_NO:
7560 case DT_MIPS_DELTA_RELOC_NO:
7561 case DT_MIPS_DELTA_SYM_NO:
7562 case DT_MIPS_DELTA_CLASSSYM_NO:
7563 case DT_MIPS_COMPACT_SIZE:
7564 print_vma (entry->d_un.d_ptr, DEC);
7565 break;
7566
7567 default:
7568 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7569 }
7570 putchar ('\n');
7571 }
7572
7573 static void
7574 dynamic_section_parisc_val (Elf_Internal_Dyn * entry)
7575 {
7576 switch (entry->d_tag)
7577 {
7578 case DT_HP_DLD_FLAGS:
7579 {
7580 static struct
7581 {
7582 long int bit;
7583 const char * str;
7584 }
7585 flags[] =
7586 {
7587 { DT_HP_DEBUG_PRIVATE, "HP_DEBUG_PRIVATE" },
7588 { DT_HP_DEBUG_CALLBACK, "HP_DEBUG_CALLBACK" },
7589 { DT_HP_DEBUG_CALLBACK_BOR, "HP_DEBUG_CALLBACK_BOR" },
7590 { DT_HP_NO_ENVVAR, "HP_NO_ENVVAR" },
7591 { DT_HP_BIND_NOW, "HP_BIND_NOW" },
7592 { DT_HP_BIND_NONFATAL, "HP_BIND_NONFATAL" },
7593 { DT_HP_BIND_VERBOSE, "HP_BIND_VERBOSE" },
7594 { DT_HP_BIND_RESTRICTED, "HP_BIND_RESTRICTED" },
7595 { DT_HP_BIND_SYMBOLIC, "HP_BIND_SYMBOLIC" },
7596 { DT_HP_RPATH_FIRST, "HP_RPATH_FIRST" },
7597 { DT_HP_BIND_DEPTH_FIRST, "HP_BIND_DEPTH_FIRST" },
7598 { DT_HP_GST, "HP_GST" },
7599 { DT_HP_SHLIB_FIXED, "HP_SHLIB_FIXED" },
7600 { DT_HP_MERGE_SHLIB_SEG, "HP_MERGE_SHLIB_SEG" },
7601 { DT_HP_NODELETE, "HP_NODELETE" },
7602 { DT_HP_GROUP, "HP_GROUP" },
7603 { DT_HP_PROTECT_LINKAGE_TABLE, "HP_PROTECT_LINKAGE_TABLE" }
7604 };
7605 int first = 1;
7606 size_t cnt;
7607 bfd_vma val = entry->d_un.d_val;
7608
7609 for (cnt = 0; cnt < ARRAY_SIZE (flags); ++cnt)
7610 if (val & flags[cnt].bit)
7611 {
7612 if (! first)
7613 putchar (' ');
7614 fputs (flags[cnt].str, stdout);
7615 first = 0;
7616 val ^= flags[cnt].bit;
7617 }
7618
7619 if (val != 0 || first)
7620 {
7621 if (! first)
7622 putchar (' ');
7623 print_vma (val, HEX);
7624 }
7625 }
7626 break;
7627
7628 default:
7629 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7630 break;
7631 }
7632 putchar ('\n');
7633 }
7634
7635 #ifdef BFD64
7636
7637 /* VMS vs Unix time offset and factor. */
7638
7639 #define VMS_EPOCH_OFFSET 35067168000000000LL
7640 #define VMS_GRANULARITY_FACTOR 10000000
7641
7642 /* Display a VMS time in a human readable format. */
7643
7644 static void
7645 print_vms_time (bfd_int64_t vmstime)
7646 {
7647 struct tm *tm;
7648 time_t unxtime;
7649
7650 unxtime = (vmstime - VMS_EPOCH_OFFSET) / VMS_GRANULARITY_FACTOR;
7651 tm = gmtime (&unxtime);
7652 printf ("%04u-%02u-%02uT%02u:%02u:%02u",
7653 tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
7654 tm->tm_hour, tm->tm_min, tm->tm_sec);
7655 }
7656 #endif /* BFD64 */
7657
7658 static void
7659 dynamic_section_ia64_val (Elf_Internal_Dyn * entry)
7660 {
7661 switch (entry->d_tag)
7662 {
7663 case DT_IA_64_PLT_RESERVE:
7664 /* First 3 slots reserved. */
7665 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7666 printf (" -- ");
7667 print_vma (entry->d_un.d_ptr + (3 * 8), PREFIX_HEX);
7668 break;
7669
7670 case DT_IA_64_VMS_LINKTIME:
7671 #ifdef BFD64
7672 print_vms_time (entry->d_un.d_val);
7673 #endif
7674 break;
7675
7676 case DT_IA_64_VMS_LNKFLAGS:
7677 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7678 if (entry->d_un.d_val & VMS_LF_CALL_DEBUG)
7679 printf (" CALL_DEBUG");
7680 if (entry->d_un.d_val & VMS_LF_NOP0BUFS)
7681 printf (" NOP0BUFS");
7682 if (entry->d_un.d_val & VMS_LF_P0IMAGE)
7683 printf (" P0IMAGE");
7684 if (entry->d_un.d_val & VMS_LF_MKTHREADS)
7685 printf (" MKTHREADS");
7686 if (entry->d_un.d_val & VMS_LF_UPCALLS)
7687 printf (" UPCALLS");
7688 if (entry->d_un.d_val & VMS_LF_IMGSTA)
7689 printf (" IMGSTA");
7690 if (entry->d_un.d_val & VMS_LF_INITIALIZE)
7691 printf (" INITIALIZE");
7692 if (entry->d_un.d_val & VMS_LF_MAIN)
7693 printf (" MAIN");
7694 if (entry->d_un.d_val & VMS_LF_EXE_INIT)
7695 printf (" EXE_INIT");
7696 if (entry->d_un.d_val & VMS_LF_TBK_IN_IMG)
7697 printf (" TBK_IN_IMG");
7698 if (entry->d_un.d_val & VMS_LF_DBG_IN_IMG)
7699 printf (" DBG_IN_IMG");
7700 if (entry->d_un.d_val & VMS_LF_TBK_IN_DSF)
7701 printf (" TBK_IN_DSF");
7702 if (entry->d_un.d_val & VMS_LF_DBG_IN_DSF)
7703 printf (" DBG_IN_DSF");
7704 if (entry->d_un.d_val & VMS_LF_SIGNATURES)
7705 printf (" SIGNATURES");
7706 if (entry->d_un.d_val & VMS_LF_REL_SEG_OFF)
7707 printf (" REL_SEG_OFF");
7708 break;
7709
7710 default:
7711 print_vma (entry->d_un.d_ptr, PREFIX_HEX);
7712 break;
7713 }
7714 putchar ('\n');
7715 }
7716
7717 static int
7718 get_32bit_dynamic_section (FILE * file)
7719 {
7720 Elf32_External_Dyn * edyn;
7721 Elf32_External_Dyn * ext;
7722 Elf_Internal_Dyn * entry;
7723
7724 edyn = (Elf32_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7725 dynamic_size, _("dynamic section"));
7726 if (!edyn)
7727 return 0;
7728
7729 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7730 might not have the luxury of section headers. Look for the DT_NULL
7731 terminator to determine the number of entries. */
7732 for (ext = edyn, dynamic_nent = 0;
7733 (char *) ext < (char *) edyn + dynamic_size;
7734 ext++)
7735 {
7736 dynamic_nent++;
7737 if (BYTE_GET (ext->d_tag) == DT_NULL)
7738 break;
7739 }
7740
7741 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7742 sizeof (* entry));
7743 if (dynamic_section == NULL)
7744 {
7745 error (_("Out of memory\n"));
7746 free (edyn);
7747 return 0;
7748 }
7749
7750 for (ext = edyn, entry = dynamic_section;
7751 entry < dynamic_section + dynamic_nent;
7752 ext++, entry++)
7753 {
7754 entry->d_tag = BYTE_GET (ext->d_tag);
7755 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7756 }
7757
7758 free (edyn);
7759
7760 return 1;
7761 }
7762
7763 static int
7764 get_64bit_dynamic_section (FILE * file)
7765 {
7766 Elf64_External_Dyn * edyn;
7767 Elf64_External_Dyn * ext;
7768 Elf_Internal_Dyn * entry;
7769
7770 edyn = (Elf64_External_Dyn *) get_data (NULL, file, dynamic_addr, 1,
7771 dynamic_size, _("dynamic section"));
7772 if (!edyn)
7773 return 0;
7774
7775 /* SGI's ELF has more than one section in the DYNAMIC segment, and we
7776 might not have the luxury of section headers. Look for the DT_NULL
7777 terminator to determine the number of entries. */
7778 for (ext = edyn, dynamic_nent = 0;
7779 (char *) ext < (char *) edyn + dynamic_size;
7780 ext++)
7781 {
7782 dynamic_nent++;
7783 if (BYTE_GET (ext->d_tag) == DT_NULL)
7784 break;
7785 }
7786
7787 dynamic_section = (Elf_Internal_Dyn *) cmalloc (dynamic_nent,
7788 sizeof (* entry));
7789 if (dynamic_section == NULL)
7790 {
7791 error (_("Out of memory\n"));
7792 free (edyn);
7793 return 0;
7794 }
7795
7796 for (ext = edyn, entry = dynamic_section;
7797 entry < dynamic_section + dynamic_nent;
7798 ext++, entry++)
7799 {
7800 entry->d_tag = BYTE_GET (ext->d_tag);
7801 entry->d_un.d_val = BYTE_GET (ext->d_un.d_val);
7802 }
7803
7804 free (edyn);
7805
7806 return 1;
7807 }
7808
7809 static void
7810 print_dynamic_flags (bfd_vma flags)
7811 {
7812 int first = 1;
7813
7814 while (flags)
7815 {
7816 bfd_vma flag;
7817
7818 flag = flags & - flags;
7819 flags &= ~ flag;
7820
7821 if (first)
7822 first = 0;
7823 else
7824 putc (' ', stdout);
7825
7826 switch (flag)
7827 {
7828 case DF_ORIGIN: fputs ("ORIGIN", stdout); break;
7829 case DF_SYMBOLIC: fputs ("SYMBOLIC", stdout); break;
7830 case DF_TEXTREL: fputs ("TEXTREL", stdout); break;
7831 case DF_BIND_NOW: fputs ("BIND_NOW", stdout); break;
7832 case DF_STATIC_TLS: fputs ("STATIC_TLS", stdout); break;
7833 default: fputs (_("unknown"), stdout); break;
7834 }
7835 }
7836 puts ("");
7837 }
7838
7839 /* Parse and display the contents of the dynamic section. */
7840
7841 static int
7842 process_dynamic_section (FILE * file)
7843 {
7844 Elf_Internal_Dyn * entry;
7845
7846 if (dynamic_size == 0)
7847 {
7848 if (do_dynamic)
7849 printf (_("\nThere is no dynamic section in this file.\n"));
7850
7851 return 1;
7852 }
7853
7854 if (is_32bit_elf)
7855 {
7856 if (! get_32bit_dynamic_section (file))
7857 return 0;
7858 }
7859 else if (! get_64bit_dynamic_section (file))
7860 return 0;
7861
7862 /* Find the appropriate symbol table. */
7863 if (dynamic_symbols == NULL)
7864 {
7865 for (entry = dynamic_section;
7866 entry < dynamic_section + dynamic_nent;
7867 ++entry)
7868 {
7869 Elf_Internal_Shdr section;
7870
7871 if (entry->d_tag != DT_SYMTAB)
7872 continue;
7873
7874 dynamic_info[DT_SYMTAB] = entry->d_un.d_val;
7875
7876 /* Since we do not know how big the symbol table is,
7877 we default to reading in the entire file (!) and
7878 processing that. This is overkill, I know, but it
7879 should work. */
7880 section.sh_offset = offset_from_vma (file, entry->d_un.d_val, 0);
7881
7882 if (archive_file_offset != 0)
7883 section.sh_size = archive_file_size - section.sh_offset;
7884 else
7885 {
7886 if (fseek (file, 0, SEEK_END))
7887 error (_("Unable to seek to end of file!\n"));
7888
7889 section.sh_size = ftell (file) - section.sh_offset;
7890 }
7891
7892 if (is_32bit_elf)
7893 section.sh_entsize = sizeof (Elf32_External_Sym);
7894 else
7895 section.sh_entsize = sizeof (Elf64_External_Sym);
7896
7897 dynamic_symbols = GET_ELF_SYMBOLS (file, &section, & num_dynamic_syms);
7898 if (num_dynamic_syms < 1)
7899 {
7900 error (_("Unable to determine the number of symbols to load\n"));
7901 continue;
7902 }
7903 }
7904 }
7905
7906 /* Similarly find a string table. */
7907 if (dynamic_strings == NULL)
7908 {
7909 for (entry = dynamic_section;
7910 entry < dynamic_section + dynamic_nent;
7911 ++entry)
7912 {
7913 unsigned long offset;
7914 long str_tab_len;
7915
7916 if (entry->d_tag != DT_STRTAB)
7917 continue;
7918
7919 dynamic_info[DT_STRTAB] = entry->d_un.d_val;
7920
7921 /* Since we do not know how big the string table is,
7922 we default to reading in the entire file (!) and
7923 processing that. This is overkill, I know, but it
7924 should work. */
7925
7926 offset = offset_from_vma (file, entry->d_un.d_val, 0);
7927
7928 if (archive_file_offset != 0)
7929 str_tab_len = archive_file_size - offset;
7930 else
7931 {
7932 if (fseek (file, 0, SEEK_END))
7933 error (_("Unable to seek to end of file\n"));
7934 str_tab_len = ftell (file) - offset;
7935 }
7936
7937 if (str_tab_len < 1)
7938 {
7939 error
7940 (_("Unable to determine the length of the dynamic string table\n"));
7941 continue;
7942 }
7943
7944 dynamic_strings = (char *) get_data (NULL, file, offset, 1,
7945 str_tab_len,
7946 _("dynamic string table"));
7947 dynamic_strings_length = dynamic_strings == NULL ? 0 : str_tab_len;
7948 break;
7949 }
7950 }
7951
7952 /* And find the syminfo section if available. */
7953 if (dynamic_syminfo == NULL)
7954 {
7955 unsigned long syminsz = 0;
7956
7957 for (entry = dynamic_section;
7958 entry < dynamic_section + dynamic_nent;
7959 ++entry)
7960 {
7961 if (entry->d_tag == DT_SYMINENT)
7962 {
7963 /* Note: these braces are necessary to avoid a syntax
7964 error from the SunOS4 C compiler. */
7965 assert (sizeof (Elf_External_Syminfo) == entry->d_un.d_val);
7966 }
7967 else if (entry->d_tag == DT_SYMINSZ)
7968 syminsz = entry->d_un.d_val;
7969 else if (entry->d_tag == DT_SYMINFO)
7970 dynamic_syminfo_offset = offset_from_vma (file, entry->d_un.d_val,
7971 syminsz);
7972 }
7973
7974 if (dynamic_syminfo_offset != 0 && syminsz != 0)
7975 {
7976 Elf_External_Syminfo * extsyminfo;
7977 Elf_External_Syminfo * extsym;
7978 Elf_Internal_Syminfo * syminfo;
7979
7980 /* There is a syminfo section. Read the data. */
7981 extsyminfo = (Elf_External_Syminfo *)
7982 get_data (NULL, file, dynamic_syminfo_offset, 1, syminsz,
7983 _("symbol information"));
7984 if (!extsyminfo)
7985 return 0;
7986
7987 dynamic_syminfo = (Elf_Internal_Syminfo *) malloc (syminsz);
7988 if (dynamic_syminfo == NULL)
7989 {
7990 error (_("Out of memory\n"));
7991 return 0;
7992 }
7993
7994 dynamic_syminfo_nent = syminsz / sizeof (Elf_External_Syminfo);
7995 for (syminfo = dynamic_syminfo, extsym = extsyminfo;
7996 syminfo < dynamic_syminfo + dynamic_syminfo_nent;
7997 ++syminfo, ++extsym)
7998 {
7999 syminfo->si_boundto = BYTE_GET (extsym->si_boundto);
8000 syminfo->si_flags = BYTE_GET (extsym->si_flags);
8001 }
8002
8003 free (extsyminfo);
8004 }
8005 }
8006
8007 if (do_dynamic && dynamic_addr)
8008 printf (_("\nDynamic section at offset 0x%lx contains %u entries:\n"),
8009 dynamic_addr, dynamic_nent);
8010 if (do_dynamic)
8011 printf (_(" Tag Type Name/Value\n"));
8012
8013 for (entry = dynamic_section;
8014 entry < dynamic_section + dynamic_nent;
8015 entry++)
8016 {
8017 if (do_dynamic)
8018 {
8019 const char * dtype;
8020
8021 putchar (' ');
8022 print_vma (entry->d_tag, FULL_HEX);
8023 dtype = get_dynamic_type (entry->d_tag);
8024 printf (" (%s)%*s", dtype,
8025 ((is_32bit_elf ? 27 : 19)
8026 - (int) strlen (dtype)),
8027 " ");
8028 }
8029
8030 switch (entry->d_tag)
8031 {
8032 case DT_FLAGS:
8033 if (do_dynamic)
8034 print_dynamic_flags (entry->d_un.d_val);
8035 break;
8036
8037 case DT_AUXILIARY:
8038 case DT_FILTER:
8039 case DT_CONFIG:
8040 case DT_DEPAUDIT:
8041 case DT_AUDIT:
8042 if (do_dynamic)
8043 {
8044 switch (entry->d_tag)
8045 {
8046 case DT_AUXILIARY:
8047 printf (_("Auxiliary library"));
8048 break;
8049
8050 case DT_FILTER:
8051 printf (_("Filter library"));
8052 break;
8053
8054 case DT_CONFIG:
8055 printf (_("Configuration file"));
8056 break;
8057
8058 case DT_DEPAUDIT:
8059 printf (_("Dependency audit library"));
8060 break;
8061
8062 case DT_AUDIT:
8063 printf (_("Audit library"));
8064 break;
8065 }
8066
8067 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8068 printf (": [%s]\n", GET_DYNAMIC_NAME (entry->d_un.d_val));
8069 else
8070 {
8071 printf (": ");
8072 print_vma (entry->d_un.d_val, PREFIX_HEX);
8073 putchar ('\n');
8074 }
8075 }
8076 break;
8077
8078 case DT_FEATURE:
8079 if (do_dynamic)
8080 {
8081 printf (_("Flags:"));
8082
8083 if (entry->d_un.d_val == 0)
8084 printf (_(" None\n"));
8085 else
8086 {
8087 unsigned long int val = entry->d_un.d_val;
8088
8089 if (val & DTF_1_PARINIT)
8090 {
8091 printf (" PARINIT");
8092 val ^= DTF_1_PARINIT;
8093 }
8094 if (val & DTF_1_CONFEXP)
8095 {
8096 printf (" CONFEXP");
8097 val ^= DTF_1_CONFEXP;
8098 }
8099 if (val != 0)
8100 printf (" %lx", val);
8101 puts ("");
8102 }
8103 }
8104 break;
8105
8106 case DT_POSFLAG_1:
8107 if (do_dynamic)
8108 {
8109 printf (_("Flags:"));
8110
8111 if (entry->d_un.d_val == 0)
8112 printf (_(" None\n"));
8113 else
8114 {
8115 unsigned long int val = entry->d_un.d_val;
8116
8117 if (val & DF_P1_LAZYLOAD)
8118 {
8119 printf (" LAZYLOAD");
8120 val ^= DF_P1_LAZYLOAD;
8121 }
8122 if (val & DF_P1_GROUPPERM)
8123 {
8124 printf (" GROUPPERM");
8125 val ^= DF_P1_GROUPPERM;
8126 }
8127 if (val != 0)
8128 printf (" %lx", val);
8129 puts ("");
8130 }
8131 }
8132 break;
8133
8134 case DT_FLAGS_1:
8135 if (do_dynamic)
8136 {
8137 printf (_("Flags:"));
8138 if (entry->d_un.d_val == 0)
8139 printf (_(" None\n"));
8140 else
8141 {
8142 unsigned long int val = entry->d_un.d_val;
8143
8144 if (val & DF_1_NOW)
8145 {
8146 printf (" NOW");
8147 val ^= DF_1_NOW;
8148 }
8149 if (val & DF_1_GLOBAL)
8150 {
8151 printf (" GLOBAL");
8152 val ^= DF_1_GLOBAL;
8153 }
8154 if (val & DF_1_GROUP)
8155 {
8156 printf (" GROUP");
8157 val ^= DF_1_GROUP;
8158 }
8159 if (val & DF_1_NODELETE)
8160 {
8161 printf (" NODELETE");
8162 val ^= DF_1_NODELETE;
8163 }
8164 if (val & DF_1_LOADFLTR)
8165 {
8166 printf (" LOADFLTR");
8167 val ^= DF_1_LOADFLTR;
8168 }
8169 if (val & DF_1_INITFIRST)
8170 {
8171 printf (" INITFIRST");
8172 val ^= DF_1_INITFIRST;
8173 }
8174 if (val & DF_1_NOOPEN)
8175 {
8176 printf (" NOOPEN");
8177 val ^= DF_1_NOOPEN;
8178 }
8179 if (val & DF_1_ORIGIN)
8180 {
8181 printf (" ORIGIN");
8182 val ^= DF_1_ORIGIN;
8183 }
8184 if (val & DF_1_DIRECT)
8185 {
8186 printf (" DIRECT");
8187 val ^= DF_1_DIRECT;
8188 }
8189 if (val & DF_1_TRANS)
8190 {
8191 printf (" TRANS");
8192 val ^= DF_1_TRANS;
8193 }
8194 if (val & DF_1_INTERPOSE)
8195 {
8196 printf (" INTERPOSE");
8197 val ^= DF_1_INTERPOSE;
8198 }
8199 if (val & DF_1_NODEFLIB)
8200 {
8201 printf (" NODEFLIB");
8202 val ^= DF_1_NODEFLIB;
8203 }
8204 if (val & DF_1_NODUMP)
8205 {
8206 printf (" NODUMP");
8207 val ^= DF_1_NODUMP;
8208 }
8209 if (val & DF_1_CONFALT)
8210 {
8211 printf (" CONFALT");
8212 val ^= DF_1_CONFALT;
8213 }
8214 if (val & DF_1_ENDFILTEE)
8215 {
8216 printf (" ENDFILTEE");
8217 val ^= DF_1_ENDFILTEE;
8218 }
8219 if (val & DF_1_DISPRELDNE)
8220 {
8221 printf (" DISPRELDNE");
8222 val ^= DF_1_DISPRELDNE;
8223 }
8224 if (val & DF_1_DISPRELPND)
8225 {
8226 printf (" DISPRELPND");
8227 val ^= DF_1_DISPRELPND;
8228 }
8229 if (val & DF_1_NODIRECT)
8230 {
8231 printf (" NODIRECT");
8232 val ^= DF_1_NODIRECT;
8233 }
8234 if (val & DF_1_IGNMULDEF)
8235 {
8236 printf (" IGNMULDEF");
8237 val ^= DF_1_IGNMULDEF;
8238 }
8239 if (val & DF_1_NOKSYMS)
8240 {
8241 printf (" NOKSYMS");
8242 val ^= DF_1_NOKSYMS;
8243 }
8244 if (val & DF_1_NOHDR)
8245 {
8246 printf (" NOHDR");
8247 val ^= DF_1_NOHDR;
8248 }
8249 if (val & DF_1_EDITED)
8250 {
8251 printf (" EDITED");
8252 val ^= DF_1_EDITED;
8253 }
8254 if (val & DF_1_NORELOC)
8255 {
8256 printf (" NORELOC");
8257 val ^= DF_1_NORELOC;
8258 }
8259 if (val & DF_1_SYMINTPOSE)
8260 {
8261 printf (" SYMINTPOSE");
8262 val ^= DF_1_SYMINTPOSE;
8263 }
8264 if (val & DF_1_GLOBAUDIT)
8265 {
8266 printf (" GLOBAUDIT");
8267 val ^= DF_1_GLOBAUDIT;
8268 }
8269 if (val & DF_1_SINGLETON)
8270 {
8271 printf (" SINGLETON");
8272 val ^= DF_1_SINGLETON;
8273 }
8274 if (val != 0)
8275 printf (" %lx", val);
8276 puts ("");
8277 }
8278 }
8279 break;
8280
8281 case DT_PLTREL:
8282 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8283 if (do_dynamic)
8284 puts (get_dynamic_type (entry->d_un.d_val));
8285 break;
8286
8287 case DT_NULL :
8288 case DT_NEEDED :
8289 case DT_PLTGOT :
8290 case DT_HASH :
8291 case DT_STRTAB :
8292 case DT_SYMTAB :
8293 case DT_RELA :
8294 case DT_INIT :
8295 case DT_FINI :
8296 case DT_SONAME :
8297 case DT_RPATH :
8298 case DT_SYMBOLIC:
8299 case DT_REL :
8300 case DT_DEBUG :
8301 case DT_TEXTREL :
8302 case DT_JMPREL :
8303 case DT_RUNPATH :
8304 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8305
8306 if (do_dynamic)
8307 {
8308 char * name;
8309
8310 if (VALID_DYNAMIC_NAME (entry->d_un.d_val))
8311 name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8312 else
8313 name = NULL;
8314
8315 if (name)
8316 {
8317 switch (entry->d_tag)
8318 {
8319 case DT_NEEDED:
8320 printf (_("Shared library: [%s]"), name);
8321
8322 if (streq (name, program_interpreter))
8323 printf (_(" program interpreter"));
8324 break;
8325
8326 case DT_SONAME:
8327 printf (_("Library soname: [%s]"), name);
8328 break;
8329
8330 case DT_RPATH:
8331 printf (_("Library rpath: [%s]"), name);
8332 break;
8333
8334 case DT_RUNPATH:
8335 printf (_("Library runpath: [%s]"), name);
8336 break;
8337
8338 default:
8339 print_vma (entry->d_un.d_val, PREFIX_HEX);
8340 break;
8341 }
8342 }
8343 else
8344 print_vma (entry->d_un.d_val, PREFIX_HEX);
8345
8346 putchar ('\n');
8347 }
8348 break;
8349
8350 case DT_PLTRELSZ:
8351 case DT_RELASZ :
8352 case DT_STRSZ :
8353 case DT_RELSZ :
8354 case DT_RELAENT :
8355 case DT_SYMENT :
8356 case DT_RELENT :
8357 dynamic_info[entry->d_tag] = entry->d_un.d_val;
8358 case DT_PLTPADSZ:
8359 case DT_MOVEENT :
8360 case DT_MOVESZ :
8361 case DT_INIT_ARRAYSZ:
8362 case DT_FINI_ARRAYSZ:
8363 case DT_GNU_CONFLICTSZ:
8364 case DT_GNU_LIBLISTSZ:
8365 if (do_dynamic)
8366 {
8367 print_vma (entry->d_un.d_val, UNSIGNED);
8368 printf (_(" (bytes)\n"));
8369 }
8370 break;
8371
8372 case DT_VERDEFNUM:
8373 case DT_VERNEEDNUM:
8374 case DT_RELACOUNT:
8375 case DT_RELCOUNT:
8376 if (do_dynamic)
8377 {
8378 print_vma (entry->d_un.d_val, UNSIGNED);
8379 putchar ('\n');
8380 }
8381 break;
8382
8383 case DT_SYMINSZ:
8384 case DT_SYMINENT:
8385 case DT_SYMINFO:
8386 case DT_USED:
8387 case DT_INIT_ARRAY:
8388 case DT_FINI_ARRAY:
8389 if (do_dynamic)
8390 {
8391 if (entry->d_tag == DT_USED
8392 && VALID_DYNAMIC_NAME (entry->d_un.d_val))
8393 {
8394 char * name = GET_DYNAMIC_NAME (entry->d_un.d_val);
8395
8396 if (*name)
8397 {
8398 printf (_("Not needed object: [%s]\n"), name);
8399 break;
8400 }
8401 }
8402
8403 print_vma (entry->d_un.d_val, PREFIX_HEX);
8404 putchar ('\n');
8405 }
8406 break;
8407
8408 case DT_BIND_NOW:
8409 /* The value of this entry is ignored. */
8410 if (do_dynamic)
8411 putchar ('\n');
8412 break;
8413
8414 case DT_GNU_PRELINKED:
8415 if (do_dynamic)
8416 {
8417 struct tm * tmp;
8418 time_t atime = entry->d_un.d_val;
8419
8420 tmp = gmtime (&atime);
8421 printf ("%04u-%02u-%02uT%02u:%02u:%02u\n",
8422 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
8423 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
8424
8425 }
8426 break;
8427
8428 case DT_GNU_HASH:
8429 dynamic_info_DT_GNU_HASH = entry->d_un.d_val;
8430 if (do_dynamic)
8431 {
8432 print_vma (entry->d_un.d_val, PREFIX_HEX);
8433 putchar ('\n');
8434 }
8435 break;
8436
8437 default:
8438 if ((entry->d_tag >= DT_VERSYM) && (entry->d_tag <= DT_VERNEEDNUM))
8439 version_info[DT_VERSIONTAGIDX (entry->d_tag)] =
8440 entry->d_un.d_val;
8441
8442 if (do_dynamic)
8443 {
8444 switch (elf_header.e_machine)
8445 {
8446 case EM_MIPS:
8447 case EM_MIPS_RS3_LE:
8448 dynamic_section_mips_val (entry);
8449 break;
8450 case EM_PARISC:
8451 dynamic_section_parisc_val (entry);
8452 break;
8453 case EM_IA_64:
8454 dynamic_section_ia64_val (entry);
8455 break;
8456 default:
8457 print_vma (entry->d_un.d_val, PREFIX_HEX);
8458 putchar ('\n');
8459 }
8460 }
8461 break;
8462 }
8463 }
8464
8465 return 1;
8466 }
8467
8468 static char *
8469 get_ver_flags (unsigned int flags)
8470 {
8471 static char buff[32];
8472
8473 buff[0] = 0;
8474
8475 if (flags == 0)
8476 return _("none");
8477
8478 if (flags & VER_FLG_BASE)
8479 strcat (buff, "BASE ");
8480
8481 if (flags & VER_FLG_WEAK)
8482 {
8483 if (flags & VER_FLG_BASE)
8484 strcat (buff, "| ");
8485
8486 strcat (buff, "WEAK ");
8487 }
8488
8489 if (flags & VER_FLG_INFO)
8490 {
8491 if (flags & (VER_FLG_BASE|VER_FLG_WEAK))
8492 strcat (buff, "| ");
8493
8494 strcat (buff, "INFO ");
8495 }
8496
8497 if (flags & ~(VER_FLG_BASE | VER_FLG_WEAK | VER_FLG_INFO))
8498 strcat (buff, _("| <unknown>"));
8499
8500 return buff;
8501 }
8502
8503 /* Display the contents of the version sections. */
8504
8505 static int
8506 process_version_sections (FILE * file)
8507 {
8508 Elf_Internal_Shdr * section;
8509 unsigned i;
8510 int found = 0;
8511
8512 if (! do_version)
8513 return 1;
8514
8515 for (i = 0, section = section_headers;
8516 i < elf_header.e_shnum;
8517 i++, section++)
8518 {
8519 switch (section->sh_type)
8520 {
8521 case SHT_GNU_verdef:
8522 {
8523 Elf_External_Verdef * edefs;
8524 unsigned int idx;
8525 unsigned int cnt;
8526 char * endbuf;
8527
8528 found = 1;
8529
8530 printf
8531 (_("\nVersion definition section '%s' contains %u entries:\n"),
8532 SECTION_NAME (section), section->sh_info);
8533
8534 printf (_(" Addr: 0x"));
8535 printf_vma (section->sh_addr);
8536 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8537 (unsigned long) section->sh_offset, section->sh_link,
8538 section->sh_link < elf_header.e_shnum
8539 ? SECTION_NAME (section_headers + section->sh_link)
8540 : _("<corrupt>"));
8541
8542 edefs = (Elf_External_Verdef *)
8543 get_data (NULL, file, section->sh_offset, 1,section->sh_size,
8544 _("version definition section"));
8545 if (!edefs)
8546 break;
8547 endbuf = (char *) edefs + section->sh_size;
8548
8549 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8550 {
8551 char * vstart;
8552 Elf_External_Verdef * edef;
8553 Elf_Internal_Verdef ent;
8554 Elf_External_Verdaux * eaux;
8555 Elf_Internal_Verdaux aux;
8556 int j;
8557 int isum;
8558
8559 /* Check for very large indicies. */
8560 if (idx > (size_t) (endbuf - (char *) edefs))
8561 break;
8562
8563 vstart = ((char *) edefs) + idx;
8564 if (vstart + sizeof (*edef) > endbuf)
8565 break;
8566
8567 edef = (Elf_External_Verdef *) vstart;
8568
8569 ent.vd_version = BYTE_GET (edef->vd_version);
8570 ent.vd_flags = BYTE_GET (edef->vd_flags);
8571 ent.vd_ndx = BYTE_GET (edef->vd_ndx);
8572 ent.vd_cnt = BYTE_GET (edef->vd_cnt);
8573 ent.vd_hash = BYTE_GET (edef->vd_hash);
8574 ent.vd_aux = BYTE_GET (edef->vd_aux);
8575 ent.vd_next = BYTE_GET (edef->vd_next);
8576
8577 printf (_(" %#06x: Rev: %d Flags: %s"),
8578 idx, ent.vd_version, get_ver_flags (ent.vd_flags));
8579
8580 printf (_(" Index: %d Cnt: %d "),
8581 ent.vd_ndx, ent.vd_cnt);
8582
8583 /* Check for overflow. */
8584 if (ent.vd_aux > (size_t) (endbuf - vstart))
8585 break;
8586
8587 vstart += ent.vd_aux;
8588
8589 eaux = (Elf_External_Verdaux *) vstart;
8590
8591 aux.vda_name = BYTE_GET (eaux->vda_name);
8592 aux.vda_next = BYTE_GET (eaux->vda_next);
8593
8594 if (VALID_DYNAMIC_NAME (aux.vda_name))
8595 printf (_("Name: %s\n"), GET_DYNAMIC_NAME (aux.vda_name));
8596 else
8597 printf (_("Name index: %ld\n"), aux.vda_name);
8598
8599 isum = idx + ent.vd_aux;
8600
8601 for (j = 1; j < ent.vd_cnt; j++)
8602 {
8603 /* Check for overflow. */
8604 if (aux.vda_next > (size_t) (endbuf - vstart))
8605 break;
8606
8607 isum += aux.vda_next;
8608 vstart += aux.vda_next;
8609
8610 eaux = (Elf_External_Verdaux *) vstart;
8611 if (vstart + sizeof (*eaux) > endbuf)
8612 break;
8613
8614 aux.vda_name = BYTE_GET (eaux->vda_name);
8615 aux.vda_next = BYTE_GET (eaux->vda_next);
8616
8617 if (VALID_DYNAMIC_NAME (aux.vda_name))
8618 printf (_(" %#06x: Parent %d: %s\n"),
8619 isum, j, GET_DYNAMIC_NAME (aux.vda_name));
8620 else
8621 printf (_(" %#06x: Parent %d, name index: %ld\n"),
8622 isum, j, aux.vda_name);
8623 }
8624
8625 if (j < ent.vd_cnt)
8626 printf (_(" Version def aux past end of section\n"));
8627
8628 idx += ent.vd_next;
8629 }
8630
8631 if (cnt < section->sh_info)
8632 printf (_(" Version definition past end of section\n"));
8633
8634 free (edefs);
8635 }
8636 break;
8637
8638 case SHT_GNU_verneed:
8639 {
8640 Elf_External_Verneed * eneed;
8641 unsigned int idx;
8642 unsigned int cnt;
8643 char * endbuf;
8644
8645 found = 1;
8646
8647 printf (_("\nVersion needs section '%s' contains %u entries:\n"),
8648 SECTION_NAME (section), section->sh_info);
8649
8650 printf (_(" Addr: 0x"));
8651 printf_vma (section->sh_addr);
8652 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8653 (unsigned long) section->sh_offset, section->sh_link,
8654 section->sh_link < elf_header.e_shnum
8655 ? SECTION_NAME (section_headers + section->sh_link)
8656 : _("<corrupt>"));
8657
8658 eneed = (Elf_External_Verneed *) get_data (NULL, file,
8659 section->sh_offset, 1,
8660 section->sh_size,
8661 _("Version Needs section"));
8662 if (!eneed)
8663 break;
8664 endbuf = (char *) eneed + section->sh_size;
8665
8666 for (idx = cnt = 0; cnt < section->sh_info; ++cnt)
8667 {
8668 Elf_External_Verneed * entry;
8669 Elf_Internal_Verneed ent;
8670 int j;
8671 int isum;
8672 char * vstart;
8673
8674 if (idx > (size_t) (endbuf - (char *) eneed))
8675 break;
8676
8677 vstart = ((char *) eneed) + idx;
8678 if (vstart + sizeof (*entry) > endbuf)
8679 break;
8680
8681 entry = (Elf_External_Verneed *) vstart;
8682
8683 ent.vn_version = BYTE_GET (entry->vn_version);
8684 ent.vn_cnt = BYTE_GET (entry->vn_cnt);
8685 ent.vn_file = BYTE_GET (entry->vn_file);
8686 ent.vn_aux = BYTE_GET (entry->vn_aux);
8687 ent.vn_next = BYTE_GET (entry->vn_next);
8688
8689 printf (_(" %#06x: Version: %d"), idx, ent.vn_version);
8690
8691 if (VALID_DYNAMIC_NAME (ent.vn_file))
8692 printf (_(" File: %s"), GET_DYNAMIC_NAME (ent.vn_file));
8693 else
8694 printf (_(" File: %lx"), ent.vn_file);
8695
8696 printf (_(" Cnt: %d\n"), ent.vn_cnt);
8697
8698 /* Check for overflow. */
8699 if (ent.vn_aux > (size_t) (endbuf - vstart))
8700 break;
8701
8702 vstart += ent.vn_aux;
8703
8704 for (j = 0, isum = idx + ent.vn_aux; j < ent.vn_cnt; ++j)
8705 {
8706 Elf_External_Vernaux * eaux;
8707 Elf_Internal_Vernaux aux;
8708
8709 if (vstart + sizeof (*eaux) > endbuf)
8710 break;
8711 eaux = (Elf_External_Vernaux *) vstart;
8712
8713 aux.vna_hash = BYTE_GET (eaux->vna_hash);
8714 aux.vna_flags = BYTE_GET (eaux->vna_flags);
8715 aux.vna_other = BYTE_GET (eaux->vna_other);
8716 aux.vna_name = BYTE_GET (eaux->vna_name);
8717 aux.vna_next = BYTE_GET (eaux->vna_next);
8718
8719 if (VALID_DYNAMIC_NAME (aux.vna_name))
8720 printf (_(" %#06x: Name: %s"),
8721 isum, GET_DYNAMIC_NAME (aux.vna_name));
8722 else
8723 printf (_(" %#06x: Name index: %lx"),
8724 isum, aux.vna_name);
8725
8726 printf (_(" Flags: %s Version: %d\n"),
8727 get_ver_flags (aux.vna_flags), aux.vna_other);
8728
8729 /* Check for overflow. */
8730 if (aux.vna_next > (size_t) (endbuf - vstart))
8731 break;
8732
8733 isum += aux.vna_next;
8734 vstart += aux.vna_next;
8735 }
8736
8737 if (j < ent.vn_cnt)
8738 warn (_("Missing Version Needs auxillary information\n"));
8739
8740 idx += ent.vn_next;
8741 }
8742
8743 if (cnt < section->sh_info)
8744 warn (_("Missing Version Needs information\n"));
8745
8746 free (eneed);
8747 }
8748 break;
8749
8750 case SHT_GNU_versym:
8751 {
8752 Elf_Internal_Shdr * link_section;
8753 int total;
8754 int cnt;
8755 unsigned char * edata;
8756 unsigned short * data;
8757 char * strtab;
8758 Elf_Internal_Sym * symbols;
8759 Elf_Internal_Shdr * string_sec;
8760 unsigned long num_syms;
8761 long off;
8762
8763 if (section->sh_link >= elf_header.e_shnum)
8764 break;
8765
8766 link_section = section_headers + section->sh_link;
8767 total = section->sh_size / sizeof (Elf_External_Versym);
8768
8769 if (link_section->sh_link >= elf_header.e_shnum)
8770 break;
8771
8772 found = 1;
8773
8774 symbols = GET_ELF_SYMBOLS (file, link_section, & num_syms);
8775 if (symbols == NULL)
8776 break;
8777
8778 string_sec = section_headers + link_section->sh_link;
8779
8780 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
8781 string_sec->sh_size,
8782 _("version string table"));
8783 if (!strtab)
8784 {
8785 free (symbols);
8786 break;
8787 }
8788
8789 printf (_("\nVersion symbols section '%s' contains %d entries:\n"),
8790 SECTION_NAME (section), total);
8791
8792 printf (_(" Addr: "));
8793 printf_vma (section->sh_addr);
8794 printf (_(" Offset: %#08lx Link: %u (%s)\n"),
8795 (unsigned long) section->sh_offset, section->sh_link,
8796 SECTION_NAME (link_section));
8797
8798 off = offset_from_vma (file,
8799 version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
8800 total * sizeof (short));
8801 edata = (unsigned char *) get_data (NULL, file, off, total,
8802 sizeof (short),
8803 _("version symbol data"));
8804 if (!edata)
8805 {
8806 free (strtab);
8807 free (symbols);
8808 break;
8809 }
8810
8811 data = (short unsigned int *) cmalloc (total, sizeof (short));
8812
8813 for (cnt = total; cnt --;)
8814 data[cnt] = byte_get (edata + cnt * sizeof (short),
8815 sizeof (short));
8816
8817 free (edata);
8818
8819 for (cnt = 0; cnt < total; cnt += 4)
8820 {
8821 int j, nn;
8822 int check_def, check_need;
8823 char * name;
8824
8825 printf (" %03x:", cnt);
8826
8827 for (j = 0; (j < 4) && (cnt + j) < total; ++j)
8828 switch (data[cnt + j])
8829 {
8830 case 0:
8831 fputs (_(" 0 (*local*) "), stdout);
8832 break;
8833
8834 case 1:
8835 fputs (_(" 1 (*global*) "), stdout);
8836 break;
8837
8838 default:
8839 nn = printf ("%4x%c", data[cnt + j] & VERSYM_VERSION,
8840 data[cnt + j] & VERSYM_HIDDEN ? 'h' : ' ');
8841
8842 /* If this index value is greater than the size of the symbols
8843 array, break to avoid an out-of-bounds read. */
8844 if ((unsigned long)(cnt + j) >= num_syms)
8845 {
8846 warn (_("invalid index into symbol array\n"));
8847 break;
8848 }
8849
8850 check_def = 1;
8851 check_need = 1;
8852 if (symbols[cnt + j].st_shndx >= elf_header.e_shnum
8853 || section_headers[symbols[cnt + j].st_shndx].sh_type
8854 != SHT_NOBITS)
8855 {
8856 if (symbols[cnt + j].st_shndx == SHN_UNDEF)
8857 check_def = 0;
8858 else
8859 check_need = 0;
8860 }
8861
8862 if (check_need
8863 && version_info[DT_VERSIONTAGIDX (DT_VERNEED)])
8864 {
8865 Elf_Internal_Verneed ivn;
8866 unsigned long offset;
8867
8868 offset = offset_from_vma
8869 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
8870 sizeof (Elf_External_Verneed));
8871
8872 do
8873 {
8874 Elf_Internal_Vernaux ivna;
8875 Elf_External_Verneed evn;
8876 Elf_External_Vernaux evna;
8877 unsigned long a_off;
8878
8879 if (get_data (&evn, file, offset, sizeof (evn), 1,
8880 _("version need")) == NULL)
8881 break;
8882
8883 ivn.vn_aux = BYTE_GET (evn.vn_aux);
8884 ivn.vn_next = BYTE_GET (evn.vn_next);
8885
8886 a_off = offset + ivn.vn_aux;
8887
8888 do
8889 {
8890 if (get_data (&evna, file, a_off, sizeof (evna),
8891 1, _("version need aux (2)")) == NULL)
8892 {
8893 ivna.vna_next = 0;
8894 ivna.vna_other = 0;
8895 }
8896 else
8897 {
8898 ivna.vna_next = BYTE_GET (evna.vna_next);
8899 ivna.vna_other = BYTE_GET (evna.vna_other);
8900 }
8901
8902 a_off += ivna.vna_next;
8903 }
8904 while (ivna.vna_other != data[cnt + j]
8905 && ivna.vna_next != 0);
8906
8907 if (ivna.vna_other == data[cnt + j])
8908 {
8909 ivna.vna_name = BYTE_GET (evna.vna_name);
8910
8911 if (ivna.vna_name >= string_sec->sh_size)
8912 name = _("*invalid*");
8913 else
8914 name = strtab + ivna.vna_name;
8915 nn += printf ("(%s%-*s",
8916 name,
8917 12 - (int) strlen (name),
8918 ")");
8919 check_def = 0;
8920 break;
8921 }
8922
8923 offset += ivn.vn_next;
8924 }
8925 while (ivn.vn_next);
8926 }
8927
8928 if (check_def && data[cnt + j] != 0x8001
8929 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
8930 {
8931 Elf_Internal_Verdef ivd;
8932 Elf_External_Verdef evd;
8933 unsigned long offset;
8934
8935 offset = offset_from_vma
8936 (file, version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
8937 sizeof evd);
8938
8939 do
8940 {
8941 if (get_data (&evd, file, offset, sizeof (evd), 1,
8942 _("version def")) == NULL)
8943 {
8944 ivd.vd_next = 0;
8945 ivd.vd_ndx = 0;
8946 }
8947 else
8948 {
8949 ivd.vd_next = BYTE_GET (evd.vd_next);
8950 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
8951 }
8952
8953 offset += ivd.vd_next;
8954 }
8955 while (ivd.vd_ndx != (data[cnt + j] & VERSYM_VERSION)
8956 && ivd.vd_next != 0);
8957
8958 if (ivd.vd_ndx == (data[cnt + j] & VERSYM_VERSION))
8959 {
8960 Elf_External_Verdaux evda;
8961 Elf_Internal_Verdaux ivda;
8962
8963 ivd.vd_aux = BYTE_GET (evd.vd_aux);
8964
8965 if (get_data (&evda, file,
8966 offset - ivd.vd_next + ivd.vd_aux,
8967 sizeof (evda), 1,
8968 _("version def aux")) == NULL)
8969 break;
8970
8971 ivda.vda_name = BYTE_GET (evda.vda_name);
8972
8973 if (ivda.vda_name >= string_sec->sh_size)
8974 name = _("*invalid*");
8975 else
8976 name = strtab + ivda.vda_name;
8977 nn += printf ("(%s%-*s",
8978 name,
8979 12 - (int) strlen (name),
8980 ")");
8981 }
8982 }
8983
8984 if (nn < 18)
8985 printf ("%*c", 18 - nn, ' ');
8986 }
8987
8988 putchar ('\n');
8989 }
8990
8991 free (data);
8992 free (strtab);
8993 free (symbols);
8994 }
8995 break;
8996
8997 default:
8998 break;
8999 }
9000 }
9001
9002 if (! found)
9003 printf (_("\nNo version information found in this file.\n"));
9004
9005 return 1;
9006 }
9007
9008 static const char *
9009 get_symbol_binding (unsigned int binding)
9010 {
9011 static char buff[32];
9012
9013 switch (binding)
9014 {
9015 case STB_LOCAL: return "LOCAL";
9016 case STB_GLOBAL: return "GLOBAL";
9017 case STB_WEAK: return "WEAK";
9018 default:
9019 if (binding >= STB_LOPROC && binding <= STB_HIPROC)
9020 snprintf (buff, sizeof (buff), _("<processor specific>: %d"),
9021 binding);
9022 else if (binding >= STB_LOOS && binding <= STB_HIOS)
9023 {
9024 if (binding == STB_GNU_UNIQUE
9025 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9026 /* GNU is still using the default value 0. */
9027 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9028 return "UNIQUE";
9029 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), binding);
9030 }
9031 else
9032 snprintf (buff, sizeof (buff), _("<unknown>: %d"), binding);
9033 return buff;
9034 }
9035 }
9036
9037 static const char *
9038 get_symbol_type (unsigned int type)
9039 {
9040 static char buff[32];
9041
9042 switch (type)
9043 {
9044 case STT_NOTYPE: return "NOTYPE";
9045 case STT_OBJECT: return "OBJECT";
9046 case STT_FUNC: return "FUNC";
9047 case STT_SECTION: return "SECTION";
9048 case STT_FILE: return "FILE";
9049 case STT_COMMON: return "COMMON";
9050 case STT_TLS: return "TLS";
9051 case STT_RELC: return "RELC";
9052 case STT_SRELC: return "SRELC";
9053 default:
9054 if (type >= STT_LOPROC && type <= STT_HIPROC)
9055 {
9056 if (elf_header.e_machine == EM_ARM)
9057 {
9058 if (type == STT_ARM_TFUNC)
9059 return "THUMB_FUNC";
9060 if (type == STT_ARM_16BIT)
9061 return "THUMB_LABEL";
9062 }
9063
9064 if (elf_header.e_machine == EM_SPARCV9 && type == STT_REGISTER)
9065 return "REGISTER";
9066
9067 if (elf_header.e_machine == EM_PARISC && type == STT_PARISC_MILLI)
9068 return "PARISC_MILLI";
9069
9070 snprintf (buff, sizeof (buff), _("<processor specific>: %d"), type);
9071 }
9072 else if (type >= STT_LOOS && type <= STT_HIOS)
9073 {
9074 if (elf_header.e_machine == EM_PARISC)
9075 {
9076 if (type == STT_HP_OPAQUE)
9077 return "HP_OPAQUE";
9078 if (type == STT_HP_STUB)
9079 return "HP_STUB";
9080 }
9081
9082 if (type == STT_GNU_IFUNC
9083 && (elf_header.e_ident[EI_OSABI] == ELFOSABI_GNU
9084 || elf_header.e_ident[EI_OSABI] == ELFOSABI_FREEBSD
9085 /* GNU is still using the default value 0. */
9086 || elf_header.e_ident[EI_OSABI] == ELFOSABI_NONE))
9087 return "IFUNC";
9088
9089 snprintf (buff, sizeof (buff), _("<OS specific>: %d"), type);
9090 }
9091 else
9092 snprintf (buff, sizeof (buff), _("<unknown>: %d"), type);
9093 return buff;
9094 }
9095 }
9096
9097 static const char *
9098 get_symbol_visibility (unsigned int visibility)
9099 {
9100 switch (visibility)
9101 {
9102 case STV_DEFAULT: return "DEFAULT";
9103 case STV_INTERNAL: return "INTERNAL";
9104 case STV_HIDDEN: return "HIDDEN";
9105 case STV_PROTECTED: return "PROTECTED";
9106 default: abort ();
9107 }
9108 }
9109
9110 static const char *
9111 get_mips_symbol_other (unsigned int other)
9112 {
9113 switch (other)
9114 {
9115 case STO_OPTIONAL:
9116 return "OPTIONAL";
9117 case STO_MIPS_PLT:
9118 return "MIPS PLT";
9119 case STO_MIPS_PIC:
9120 return "MIPS PIC";
9121 case STO_MICROMIPS:
9122 return "MICROMIPS";
9123 case STO_MICROMIPS | STO_MIPS_PIC:
9124 return "MICROMIPS, MIPS PIC";
9125 case STO_MIPS16:
9126 return "MIPS16";
9127 default:
9128 return NULL;
9129 }
9130 }
9131
9132 static const char *
9133 get_ia64_symbol_other (unsigned int other)
9134 {
9135 if (is_ia64_vms ())
9136 {
9137 static char res[32];
9138
9139 res[0] = 0;
9140
9141 /* Function types is for images and .STB files only. */
9142 switch (elf_header.e_type)
9143 {
9144 case ET_DYN:
9145 case ET_EXEC:
9146 switch (VMS_ST_FUNC_TYPE (other))
9147 {
9148 case VMS_SFT_CODE_ADDR:
9149 strcat (res, " CA");
9150 break;
9151 case VMS_SFT_SYMV_IDX:
9152 strcat (res, " VEC");
9153 break;
9154 case VMS_SFT_FD:
9155 strcat (res, " FD");
9156 break;
9157 case VMS_SFT_RESERVE:
9158 strcat (res, " RSV");
9159 break;
9160 default:
9161 abort ();
9162 }
9163 break;
9164 default:
9165 break;
9166 }
9167 switch (VMS_ST_LINKAGE (other))
9168 {
9169 case VMS_STL_IGNORE:
9170 strcat (res, " IGN");
9171 break;
9172 case VMS_STL_RESERVE:
9173 strcat (res, " RSV");
9174 break;
9175 case VMS_STL_STD:
9176 strcat (res, " STD");
9177 break;
9178 case VMS_STL_LNK:
9179 strcat (res, " LNK");
9180 break;
9181 default:
9182 abort ();
9183 }
9184
9185 if (res[0] != 0)
9186 return res + 1;
9187 else
9188 return res;
9189 }
9190 return NULL;
9191 }
9192
9193 static const char *
9194 get_symbol_other (unsigned int other)
9195 {
9196 const char * result = NULL;
9197 static char buff [32];
9198
9199 if (other == 0)
9200 return "";
9201
9202 switch (elf_header.e_machine)
9203 {
9204 case EM_MIPS:
9205 result = get_mips_symbol_other (other);
9206 break;
9207 case EM_IA_64:
9208 result = get_ia64_symbol_other (other);
9209 break;
9210 default:
9211 break;
9212 }
9213
9214 if (result)
9215 return result;
9216
9217 snprintf (buff, sizeof buff, _("<other>: %x"), other);
9218 return buff;
9219 }
9220
9221 static const char *
9222 get_symbol_index_type (unsigned int type)
9223 {
9224 static char buff[32];
9225
9226 switch (type)
9227 {
9228 case SHN_UNDEF: return "UND";
9229 case SHN_ABS: return "ABS";
9230 case SHN_COMMON: return "COM";
9231 default:
9232 if (type == SHN_IA_64_ANSI_COMMON
9233 && elf_header.e_machine == EM_IA_64
9234 && elf_header.e_ident[EI_OSABI] == ELFOSABI_HPUX)
9235 return "ANSI_COM";
9236 else if ((elf_header.e_machine == EM_X86_64
9237 || elf_header.e_machine == EM_L1OM
9238 || elf_header.e_machine == EM_K1OM)
9239 && type == SHN_X86_64_LCOMMON)
9240 return "LARGE_COM";
9241 else if ((type == SHN_MIPS_SCOMMON
9242 && elf_header.e_machine == EM_MIPS)
9243 || (type == SHN_TIC6X_SCOMMON
9244 && elf_header.e_machine == EM_TI_C6000))
9245 return "SCOM";
9246 else if (type == SHN_MIPS_SUNDEFINED
9247 && elf_header.e_machine == EM_MIPS)
9248 return "SUND";
9249 else if (type >= SHN_LOPROC && type <= SHN_HIPROC)
9250 sprintf (buff, "PRC[0x%04x]", type & 0xffff);
9251 else if (type >= SHN_LOOS && type <= SHN_HIOS)
9252 sprintf (buff, "OS [0x%04x]", type & 0xffff);
9253 else if (type >= SHN_LORESERVE)
9254 sprintf (buff, "RSV[0x%04x]", type & 0xffff);
9255 else if (type >= elf_header.e_shnum)
9256 sprintf (buff, "bad section index[%3d]", type);
9257 else
9258 sprintf (buff, "%3d", type);
9259 break;
9260 }
9261
9262 return buff;
9263 }
9264
9265 static bfd_vma *
9266 get_dynamic_data (FILE * file, unsigned int number, unsigned int ent_size)
9267 {
9268 unsigned char * e_data;
9269 bfd_vma * i_data;
9270
9271 e_data = (unsigned char *) cmalloc (number, ent_size);
9272
9273 if (e_data == NULL)
9274 {
9275 error (_("Out of memory\n"));
9276 return NULL;
9277 }
9278
9279 if (fread (e_data, ent_size, number, file) != number)
9280 {
9281 error (_("Unable to read in dynamic data\n"));
9282 return NULL;
9283 }
9284
9285 i_data = (bfd_vma *) cmalloc (number, sizeof (*i_data));
9286
9287 if (i_data == NULL)
9288 {
9289 error (_("Out of memory\n"));
9290 free (e_data);
9291 return NULL;
9292 }
9293
9294 while (number--)
9295 i_data[number] = byte_get (e_data + number * ent_size, ent_size);
9296
9297 free (e_data);
9298
9299 return i_data;
9300 }
9301
9302 static void
9303 print_dynamic_symbol (bfd_vma si, unsigned long hn)
9304 {
9305 Elf_Internal_Sym * psym;
9306 int n;
9307
9308 psym = dynamic_symbols + si;
9309
9310 n = print_vma (si, DEC_5);
9311 if (n < 5)
9312 fputs (" " + n, stdout);
9313 printf (" %3lu: ", hn);
9314 print_vma (psym->st_value, LONG_HEX);
9315 putchar (' ');
9316 print_vma (psym->st_size, DEC_5);
9317
9318 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9319 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9320 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9321 /* Check to see if any other bits in the st_other field are set.
9322 Note - displaying this information disrupts the layout of the
9323 table being generated, but for the moment this case is very
9324 rare. */
9325 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9326 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9327 printf (" %3.3s ", get_symbol_index_type (psym->st_shndx));
9328 if (VALID_DYNAMIC_NAME (psym->st_name))
9329 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
9330 else
9331 printf (_(" <corrupt: %14ld>"), psym->st_name);
9332 putchar ('\n');
9333 }
9334
9335 /* Dump the symbol table. */
9336 static int
9337 process_symbol_table (FILE * file)
9338 {
9339 Elf_Internal_Shdr * section;
9340 bfd_vma nbuckets = 0;
9341 bfd_vma nchains = 0;
9342 bfd_vma * buckets = NULL;
9343 bfd_vma * chains = NULL;
9344 bfd_vma ngnubuckets = 0;
9345 bfd_vma * gnubuckets = NULL;
9346 bfd_vma * gnuchains = NULL;
9347 bfd_vma gnusymidx = 0;
9348
9349 if (!do_syms && !do_dyn_syms && !do_histogram)
9350 return 1;
9351
9352 if (dynamic_info[DT_HASH]
9353 && (do_histogram
9354 || (do_using_dynamic
9355 && !do_dyn_syms
9356 && dynamic_strings != NULL)))
9357 {
9358 unsigned char nb[8];
9359 unsigned char nc[8];
9360 int hash_ent_size = 4;
9361
9362 if ((elf_header.e_machine == EM_ALPHA
9363 || elf_header.e_machine == EM_S390
9364 || elf_header.e_machine == EM_S390_OLD)
9365 && elf_header.e_ident[EI_CLASS] == ELFCLASS64)
9366 hash_ent_size = 8;
9367
9368 if (fseek (file,
9369 (archive_file_offset
9370 + offset_from_vma (file, dynamic_info[DT_HASH],
9371 sizeof nb + sizeof nc)),
9372 SEEK_SET))
9373 {
9374 error (_("Unable to seek to start of dynamic information\n"));
9375 goto no_hash;
9376 }
9377
9378 if (fread (nb, hash_ent_size, 1, file) != 1)
9379 {
9380 error (_("Failed to read in number of buckets\n"));
9381 goto no_hash;
9382 }
9383
9384 if (fread (nc, hash_ent_size, 1, file) != 1)
9385 {
9386 error (_("Failed to read in number of chains\n"));
9387 goto no_hash;
9388 }
9389
9390 nbuckets = byte_get (nb, hash_ent_size);
9391 nchains = byte_get (nc, hash_ent_size);
9392
9393 buckets = get_dynamic_data (file, nbuckets, hash_ent_size);
9394 chains = get_dynamic_data (file, nchains, hash_ent_size);
9395
9396 no_hash:
9397 if (buckets == NULL || chains == NULL)
9398 {
9399 if (do_using_dynamic)
9400 return 0;
9401 free (buckets);
9402 free (chains);
9403 buckets = NULL;
9404 chains = NULL;
9405 nbuckets = 0;
9406 nchains = 0;
9407 }
9408 }
9409
9410 if (dynamic_info_DT_GNU_HASH
9411 && (do_histogram
9412 || (do_using_dynamic
9413 && !do_dyn_syms
9414 && dynamic_strings != NULL)))
9415 {
9416 unsigned char nb[16];
9417 bfd_vma i, maxchain = 0xffffffff, bitmaskwords;
9418 bfd_vma buckets_vma;
9419
9420 if (fseek (file,
9421 (archive_file_offset
9422 + offset_from_vma (file, dynamic_info_DT_GNU_HASH,
9423 sizeof nb)),
9424 SEEK_SET))
9425 {
9426 error (_("Unable to seek to start of dynamic information\n"));
9427 goto no_gnu_hash;
9428 }
9429
9430 if (fread (nb, 16, 1, file) != 1)
9431 {
9432 error (_("Failed to read in number of buckets\n"));
9433 goto no_gnu_hash;
9434 }
9435
9436 ngnubuckets = byte_get (nb, 4);
9437 gnusymidx = byte_get (nb + 4, 4);
9438 bitmaskwords = byte_get (nb + 8, 4);
9439 buckets_vma = dynamic_info_DT_GNU_HASH + 16;
9440 if (is_32bit_elf)
9441 buckets_vma += bitmaskwords * 4;
9442 else
9443 buckets_vma += bitmaskwords * 8;
9444
9445 if (fseek (file,
9446 (archive_file_offset
9447 + offset_from_vma (file, buckets_vma, 4)),
9448 SEEK_SET))
9449 {
9450 error (_("Unable to seek to start of dynamic information\n"));
9451 goto no_gnu_hash;
9452 }
9453
9454 gnubuckets = get_dynamic_data (file, ngnubuckets, 4);
9455
9456 if (gnubuckets == NULL)
9457 goto no_gnu_hash;
9458
9459 for (i = 0; i < ngnubuckets; i++)
9460 if (gnubuckets[i] != 0)
9461 {
9462 if (gnubuckets[i] < gnusymidx)
9463 return 0;
9464
9465 if (maxchain == 0xffffffff || gnubuckets[i] > maxchain)
9466 maxchain = gnubuckets[i];
9467 }
9468
9469 if (maxchain == 0xffffffff)
9470 goto no_gnu_hash;
9471
9472 maxchain -= gnusymidx;
9473
9474 if (fseek (file,
9475 (archive_file_offset
9476 + offset_from_vma (file, buckets_vma
9477 + 4 * (ngnubuckets + maxchain), 4)),
9478 SEEK_SET))
9479 {
9480 error (_("Unable to seek to start of dynamic information\n"));
9481 goto no_gnu_hash;
9482 }
9483
9484 do
9485 {
9486 if (fread (nb, 4, 1, file) != 1)
9487 {
9488 error (_("Failed to determine last chain length\n"));
9489 goto no_gnu_hash;
9490 }
9491
9492 if (maxchain + 1 == 0)
9493 goto no_gnu_hash;
9494
9495 ++maxchain;
9496 }
9497 while ((byte_get (nb, 4) & 1) == 0);
9498
9499 if (fseek (file,
9500 (archive_file_offset
9501 + offset_from_vma (file, buckets_vma + 4 * ngnubuckets, 4)),
9502 SEEK_SET))
9503 {
9504 error (_("Unable to seek to start of dynamic information\n"));
9505 goto no_gnu_hash;
9506 }
9507
9508 gnuchains = get_dynamic_data (file, maxchain, 4);
9509
9510 no_gnu_hash:
9511 if (gnuchains == NULL)
9512 {
9513 free (gnubuckets);
9514 gnubuckets = NULL;
9515 ngnubuckets = 0;
9516 if (do_using_dynamic)
9517 return 0;
9518 }
9519 }
9520
9521 if ((dynamic_info[DT_HASH] || dynamic_info_DT_GNU_HASH)
9522 && do_syms
9523 && do_using_dynamic
9524 && dynamic_strings != NULL)
9525 {
9526 unsigned long hn;
9527
9528 if (dynamic_info[DT_HASH])
9529 {
9530 bfd_vma si;
9531
9532 printf (_("\nSymbol table for image:\n"));
9533 if (is_32bit_elf)
9534 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9535 else
9536 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9537
9538 for (hn = 0; hn < nbuckets; hn++)
9539 {
9540 if (! buckets[hn])
9541 continue;
9542
9543 for (si = buckets[hn]; si < nchains && si > 0; si = chains[si])
9544 print_dynamic_symbol (si, hn);
9545 }
9546 }
9547
9548 if (dynamic_info_DT_GNU_HASH)
9549 {
9550 printf (_("\nSymbol table of `.gnu.hash' for image:\n"));
9551 if (is_32bit_elf)
9552 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9553 else
9554 printf (_(" Num Buc: Value Size Type Bind Vis Ndx Name\n"));
9555
9556 for (hn = 0; hn < ngnubuckets; ++hn)
9557 if (gnubuckets[hn] != 0)
9558 {
9559 bfd_vma si = gnubuckets[hn];
9560 bfd_vma off = si - gnusymidx;
9561
9562 do
9563 {
9564 print_dynamic_symbol (si, hn);
9565 si++;
9566 }
9567 while ((gnuchains[off++] & 1) == 0);
9568 }
9569 }
9570 }
9571 else if (do_dyn_syms || (do_syms && !do_using_dynamic))
9572 {
9573 unsigned int i;
9574
9575 for (i = 0, section = section_headers;
9576 i < elf_header.e_shnum;
9577 i++, section++)
9578 {
9579 unsigned int si;
9580 char * strtab = NULL;
9581 unsigned long int strtab_size = 0;
9582 Elf_Internal_Sym * symtab;
9583 Elf_Internal_Sym * psym;
9584 unsigned long num_syms;
9585
9586 if ((section->sh_type != SHT_SYMTAB
9587 && section->sh_type != SHT_DYNSYM)
9588 || (!do_syms
9589 && section->sh_type == SHT_SYMTAB))
9590 continue;
9591
9592 if (section->sh_entsize == 0)
9593 {
9594 printf (_("\nSymbol table '%s' has a sh_entsize of zero!\n"),
9595 SECTION_NAME (section));
9596 continue;
9597 }
9598
9599 printf (_("\nSymbol table '%s' contains %lu entries:\n"),
9600 SECTION_NAME (section),
9601 (unsigned long) (section->sh_size / section->sh_entsize));
9602
9603 if (is_32bit_elf)
9604 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9605 else
9606 printf (_(" Num: Value Size Type Bind Vis Ndx Name\n"));
9607
9608 symtab = GET_ELF_SYMBOLS (file, section, & num_syms);
9609 if (symtab == NULL)
9610 continue;
9611
9612 if (section->sh_link == elf_header.e_shstrndx)
9613 {
9614 strtab = string_table;
9615 strtab_size = string_table_length;
9616 }
9617 else if (section->sh_link < elf_header.e_shnum)
9618 {
9619 Elf_Internal_Shdr * string_sec;
9620
9621 string_sec = section_headers + section->sh_link;
9622
9623 strtab = (char *) get_data (NULL, file, string_sec->sh_offset,
9624 1, string_sec->sh_size,
9625 _("string table"));
9626 strtab_size = strtab != NULL ? string_sec->sh_size : 0;
9627 }
9628
9629 for (si = 0, psym = symtab; si < num_syms; si++, psym++)
9630 {
9631 printf ("%6d: ", si);
9632 print_vma (psym->st_value, LONG_HEX);
9633 putchar (' ');
9634 print_vma (psym->st_size, DEC_5);
9635 printf (" %-7s", get_symbol_type (ELF_ST_TYPE (psym->st_info)));
9636 printf (" %-6s", get_symbol_binding (ELF_ST_BIND (psym->st_info)));
9637 printf (" %-7s", get_symbol_visibility (ELF_ST_VISIBILITY (psym->st_other)));
9638 /* Check to see if any other bits in the st_other field are set.
9639 Note - displaying this information disrupts the layout of the
9640 table being generated, but for the moment this case is very rare. */
9641 if (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other))
9642 printf (" [%s] ", get_symbol_other (psym->st_other ^ ELF_ST_VISIBILITY (psym->st_other)));
9643 printf (" %4s ", get_symbol_index_type (psym->st_shndx));
9644 print_symbol (25, psym->st_name < strtab_size
9645 ? strtab + psym->st_name : _("<corrupt>"));
9646
9647 if (section->sh_type == SHT_DYNSYM
9648 && version_info[DT_VERSIONTAGIDX (DT_VERSYM)] != 0)
9649 {
9650 unsigned char data[2];
9651 unsigned short vers_data;
9652 unsigned long offset;
9653 int is_nobits;
9654 int check_def;
9655
9656 offset = offset_from_vma
9657 (file, version_info[DT_VERSIONTAGIDX (DT_VERSYM)],
9658 sizeof data + si * sizeof (vers_data));
9659
9660 if (get_data (&data, file, offset + si * sizeof (vers_data),
9661 sizeof (data), 1, _("version data")) == NULL)
9662 break;
9663
9664 vers_data = byte_get (data, 2);
9665
9666 is_nobits = (psym->st_shndx < elf_header.e_shnum
9667 && section_headers[psym->st_shndx].sh_type
9668 == SHT_NOBITS);
9669
9670 check_def = (psym->st_shndx != SHN_UNDEF);
9671
9672 if ((vers_data & VERSYM_HIDDEN) || vers_data > 1)
9673 {
9674 if (version_info[DT_VERSIONTAGIDX (DT_VERNEED)]
9675 && (is_nobits || ! check_def))
9676 {
9677 Elf_External_Verneed evn;
9678 Elf_Internal_Verneed ivn;
9679 Elf_Internal_Vernaux ivna;
9680
9681 /* We must test both. */
9682 offset = offset_from_vma
9683 (file, version_info[DT_VERSIONTAGIDX (DT_VERNEED)],
9684 sizeof evn);
9685
9686 do
9687 {
9688 unsigned long vna_off;
9689
9690 if (get_data (&evn, file, offset, sizeof (evn), 1,
9691 _("version need")) == NULL)
9692 {
9693 ivna.vna_next = 0;
9694 ivna.vna_other = 0;
9695 ivna.vna_name = 0;
9696 break;
9697 }
9698
9699 ivn.vn_aux = BYTE_GET (evn.vn_aux);
9700 ivn.vn_next = BYTE_GET (evn.vn_next);
9701
9702 vna_off = offset + ivn.vn_aux;
9703
9704 do
9705 {
9706 Elf_External_Vernaux evna;
9707
9708 if (get_data (&evna, file, vna_off,
9709 sizeof (evna), 1,
9710 _("version need aux (3)")) == NULL)
9711 {
9712 ivna.vna_next = 0;
9713 ivna.vna_other = 0;
9714 ivna.vna_name = 0;
9715 }
9716 else
9717 {
9718 ivna.vna_other = BYTE_GET (evna.vna_other);
9719 ivna.vna_next = BYTE_GET (evna.vna_next);
9720 ivna.vna_name = BYTE_GET (evna.vna_name);
9721 }
9722
9723 vna_off += ivna.vna_next;
9724 }
9725 while (ivna.vna_other != vers_data
9726 && ivna.vna_next != 0);
9727
9728 if (ivna.vna_other == vers_data)
9729 break;
9730
9731 offset += ivn.vn_next;
9732 }
9733 while (ivn.vn_next != 0);
9734
9735 if (ivna.vna_other == vers_data)
9736 {
9737 printf ("@%s (%d)",
9738 ivna.vna_name < strtab_size
9739 ? strtab + ivna.vna_name : _("<corrupt>"),
9740 ivna.vna_other);
9741 check_def = 0;
9742 }
9743 else if (! is_nobits)
9744 error (_("bad dynamic symbol\n"));
9745 else
9746 check_def = 1;
9747 }
9748
9749 if (check_def)
9750 {
9751 if (vers_data != 0x8001
9752 && version_info[DT_VERSIONTAGIDX (DT_VERDEF)])
9753 {
9754 Elf_Internal_Verdef ivd;
9755 Elf_Internal_Verdaux ivda;
9756 Elf_External_Verdaux evda;
9757 unsigned long off;
9758
9759 off = offset_from_vma
9760 (file,
9761 version_info[DT_VERSIONTAGIDX (DT_VERDEF)],
9762 sizeof (Elf_External_Verdef));
9763
9764 do
9765 {
9766 Elf_External_Verdef evd;
9767
9768 if (get_data (&evd, file, off, sizeof (evd),
9769 1, _("version def")) == NULL)
9770 {
9771 ivd.vd_ndx = 0;
9772 ivd.vd_aux = 0;
9773 ivd.vd_next = 0;
9774 }
9775 else
9776 {
9777 ivd.vd_ndx = BYTE_GET (evd.vd_ndx);
9778 ivd.vd_aux = BYTE_GET (evd.vd_aux);
9779 ivd.vd_next = BYTE_GET (evd.vd_next);
9780 }
9781
9782 off += ivd.vd_next;
9783 }
9784 while (ivd.vd_ndx != (vers_data & VERSYM_VERSION)
9785 && ivd.vd_next != 0);
9786
9787 off -= ivd.vd_next;
9788 off += ivd.vd_aux;
9789
9790 if (get_data (&evda, file, off, sizeof (evda),
9791 1, _("version def aux")) == NULL)
9792 break;
9793
9794 ivda.vda_name = BYTE_GET (evda.vda_name);
9795
9796 if (psym->st_name != ivda.vda_name)
9797 printf ((vers_data & VERSYM_HIDDEN)
9798 ? "@%s" : "@@%s",
9799 ivda.vda_name < strtab_size
9800 ? strtab + ivda.vda_name : _("<corrupt>"));
9801 }
9802 }
9803 }
9804 }
9805
9806 putchar ('\n');
9807 }
9808
9809 free (symtab);
9810 if (strtab != string_table)
9811 free (strtab);
9812 }
9813 }
9814 else if (do_syms)
9815 printf
9816 (_("\nDynamic symbol information is not available for displaying symbols.\n"));
9817
9818 if (do_histogram && buckets != NULL)
9819 {
9820 unsigned long * lengths;
9821 unsigned long * counts;
9822 unsigned long hn;
9823 bfd_vma si;
9824 unsigned long maxlength = 0;
9825 unsigned long nzero_counts = 0;
9826 unsigned long nsyms = 0;
9827
9828 printf (_("\nHistogram for bucket list length (total of %lu buckets):\n"),
9829 (unsigned long) nbuckets);
9830 printf (_(" Length Number %% of total Coverage\n"));
9831
9832 lengths = (unsigned long *) calloc (nbuckets, sizeof (*lengths));
9833 if (lengths == NULL)
9834 {
9835 error (_("Out of memory\n"));
9836 return 0;
9837 }
9838 for (hn = 0; hn < nbuckets; ++hn)
9839 {
9840 for (si = buckets[hn]; si > 0 && si < nchains; si = chains[si])
9841 {
9842 ++nsyms;
9843 if (maxlength < ++lengths[hn])
9844 ++maxlength;
9845 }
9846 }
9847
9848 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9849 if (counts == NULL)
9850 {
9851 error (_("Out of memory\n"));
9852 return 0;
9853 }
9854
9855 for (hn = 0; hn < nbuckets; ++hn)
9856 ++counts[lengths[hn]];
9857
9858 if (nbuckets > 0)
9859 {
9860 unsigned long i;
9861 printf (" 0 %-10lu (%5.1f%%)\n",
9862 counts[0], (counts[0] * 100.0) / nbuckets);
9863 for (i = 1; i <= maxlength; ++i)
9864 {
9865 nzero_counts += counts[i] * i;
9866 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9867 i, counts[i], (counts[i] * 100.0) / nbuckets,
9868 (nzero_counts * 100.0) / nsyms);
9869 }
9870 }
9871
9872 free (counts);
9873 free (lengths);
9874 }
9875
9876 if (buckets != NULL)
9877 {
9878 free (buckets);
9879 free (chains);
9880 }
9881
9882 if (do_histogram && gnubuckets != NULL)
9883 {
9884 unsigned long * lengths;
9885 unsigned long * counts;
9886 unsigned long hn;
9887 unsigned long maxlength = 0;
9888 unsigned long nzero_counts = 0;
9889 unsigned long nsyms = 0;
9890
9891 lengths = (unsigned long *) calloc (ngnubuckets, sizeof (*lengths));
9892 if (lengths == NULL)
9893 {
9894 error (_("Out of memory\n"));
9895 return 0;
9896 }
9897
9898 printf (_("\nHistogram for `.gnu.hash' bucket list length (total of %lu buckets):\n"),
9899 (unsigned long) ngnubuckets);
9900 printf (_(" Length Number %% of total Coverage\n"));
9901
9902 for (hn = 0; hn < ngnubuckets; ++hn)
9903 if (gnubuckets[hn] != 0)
9904 {
9905 bfd_vma off, length = 1;
9906
9907 for (off = gnubuckets[hn] - gnusymidx;
9908 (gnuchains[off] & 1) == 0; ++off)
9909 ++length;
9910 lengths[hn] = length;
9911 if (length > maxlength)
9912 maxlength = length;
9913 nsyms += length;
9914 }
9915
9916 counts = (unsigned long *) calloc (maxlength + 1, sizeof (*counts));
9917 if (counts == NULL)
9918 {
9919 error (_("Out of memory\n"));
9920 return 0;
9921 }
9922
9923 for (hn = 0; hn < ngnubuckets; ++hn)
9924 ++counts[lengths[hn]];
9925
9926 if (ngnubuckets > 0)
9927 {
9928 unsigned long j;
9929 printf (" 0 %-10lu (%5.1f%%)\n",
9930 counts[0], (counts[0] * 100.0) / ngnubuckets);
9931 for (j = 1; j <= maxlength; ++j)
9932 {
9933 nzero_counts += counts[j] * j;
9934 printf ("%7lu %-10lu (%5.1f%%) %5.1f%%\n",
9935 j, counts[j], (counts[j] * 100.0) / ngnubuckets,
9936 (nzero_counts * 100.0) / nsyms);
9937 }
9938 }
9939
9940 free (counts);
9941 free (lengths);
9942 free (gnubuckets);
9943 free (gnuchains);
9944 }
9945
9946 return 1;
9947 }
9948
9949 static int
9950 process_syminfo (FILE * file ATTRIBUTE_UNUSED)
9951 {
9952 unsigned int i;
9953
9954 if (dynamic_syminfo == NULL
9955 || !do_dynamic)
9956 /* No syminfo, this is ok. */
9957 return 1;
9958
9959 /* There better should be a dynamic symbol section. */
9960 if (dynamic_symbols == NULL || dynamic_strings == NULL)
9961 return 0;
9962
9963 if (dynamic_addr)
9964 printf (_("\nDynamic info segment at offset 0x%lx contains %d entries:\n"),
9965 dynamic_syminfo_offset, dynamic_syminfo_nent);
9966
9967 printf (_(" Num: Name BoundTo Flags\n"));
9968 for (i = 0; i < dynamic_syminfo_nent; ++i)
9969 {
9970 unsigned short int flags = dynamic_syminfo[i].si_flags;
9971
9972 printf ("%4d: ", i);
9973 if (VALID_DYNAMIC_NAME (dynamic_symbols[i].st_name))
9974 print_symbol (30, GET_DYNAMIC_NAME (dynamic_symbols[i].st_name));
9975 else
9976 printf (_("<corrupt: %19ld>"), dynamic_symbols[i].st_name);
9977 putchar (' ');
9978
9979 switch (dynamic_syminfo[i].si_boundto)
9980 {
9981 case SYMINFO_BT_SELF:
9982 fputs ("SELF ", stdout);
9983 break;
9984 case SYMINFO_BT_PARENT:
9985 fputs ("PARENT ", stdout);
9986 break;
9987 default:
9988 if (dynamic_syminfo[i].si_boundto > 0
9989 && dynamic_syminfo[i].si_boundto < dynamic_nent
9990 && VALID_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val))
9991 {
9992 print_symbol (10, GET_DYNAMIC_NAME (dynamic_section[dynamic_syminfo[i].si_boundto].d_un.d_val));
9993 putchar (' ' );
9994 }
9995 else
9996 printf ("%-10d ", dynamic_syminfo[i].si_boundto);
9997 break;
9998 }
9999
10000 if (flags & SYMINFO_FLG_DIRECT)
10001 printf (" DIRECT");
10002 if (flags & SYMINFO_FLG_PASSTHRU)
10003 printf (" PASSTHRU");
10004 if (flags & SYMINFO_FLG_COPY)
10005 printf (" COPY");
10006 if (flags & SYMINFO_FLG_LAZYLOAD)
10007 printf (" LAZYLOAD");
10008
10009 puts ("");
10010 }
10011
10012 return 1;
10013 }
10014
10015 /* Check to see if the given reloc needs to be handled in a target specific
10016 manner. If so then process the reloc and return TRUE otherwise return
10017 FALSE. */
10018
10019 static bfd_boolean
10020 target_specific_reloc_handling (Elf_Internal_Rela * reloc,
10021 unsigned char * start,
10022 Elf_Internal_Sym * symtab)
10023 {
10024 unsigned int reloc_type = get_reloc_type (reloc->r_info);
10025
10026 switch (elf_header.e_machine)
10027 {
10028 case EM_MSP430:
10029 case EM_MSP430_OLD:
10030 {
10031 static Elf_Internal_Sym * saved_sym = NULL;
10032
10033 switch (reloc_type)
10034 {
10035 case 10: /* R_MSP430_SYM_DIFF */
10036 if (uses_msp430x_relocs ())
10037 break;
10038 case 21: /* R_MSP430X_SYM_DIFF */
10039 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10040 return TRUE;
10041
10042 case 1: /* R_MSP430_32 or R_MSP430_ABS32 */
10043 case 3: /* R_MSP430_16 or R_MSP430_ABS8 */
10044 goto handle_sym_diff;
10045
10046 case 5: /* R_MSP430_16_BYTE */
10047 case 9: /* R_MSP430_8 */
10048 if (uses_msp430x_relocs ())
10049 break;
10050 goto handle_sym_diff;
10051
10052 case 2: /* R_MSP430_ABS16 */
10053 case 15: /* R_MSP430X_ABS16 */
10054 if (! uses_msp430x_relocs ())
10055 break;
10056 goto handle_sym_diff;
10057
10058 handle_sym_diff:
10059 if (saved_sym != NULL)
10060 {
10061 bfd_vma value;
10062
10063 value = reloc->r_addend
10064 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10065 - saved_sym->st_value);
10066
10067 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10068
10069 saved_sym = NULL;
10070 return TRUE;
10071 }
10072 break;
10073
10074 default:
10075 if (saved_sym != NULL)
10076 error (_("Unhandled MSP430 reloc type found after SYM_DIFF reloc"));
10077 break;
10078 }
10079 break;
10080 }
10081
10082 case EM_MN10300:
10083 case EM_CYGNUS_MN10300:
10084 {
10085 static Elf_Internal_Sym * saved_sym = NULL;
10086
10087 switch (reloc_type)
10088 {
10089 case 34: /* R_MN10300_ALIGN */
10090 return TRUE;
10091 case 33: /* R_MN10300_SYM_DIFF */
10092 saved_sym = symtab + get_reloc_symindex (reloc->r_info);
10093 return TRUE;
10094 case 1: /* R_MN10300_32 */
10095 case 2: /* R_MN10300_16 */
10096 if (saved_sym != NULL)
10097 {
10098 bfd_vma value;
10099
10100 value = reloc->r_addend
10101 + (symtab[get_reloc_symindex (reloc->r_info)].st_value
10102 - saved_sym->st_value);
10103
10104 byte_put (start + reloc->r_offset, value, reloc_type == 1 ? 4 : 2);
10105
10106 saved_sym = NULL;
10107 return TRUE;
10108 }
10109 break;
10110 default:
10111 if (saved_sym != NULL)
10112 error (_("Unhandled MN10300 reloc type found after SYM_DIFF reloc"));
10113 break;
10114 }
10115 break;
10116 }
10117 }
10118
10119 return FALSE;
10120 }
10121
10122 /* Returns TRUE iff RELOC_TYPE is a 32-bit absolute RELA relocation used in
10123 DWARF debug sections. This is a target specific test. Note - we do not
10124 go through the whole including-target-headers-multiple-times route, (as
10125 we have already done with <elf/h8.h>) because this would become very
10126 messy and even then this function would have to contain target specific
10127 information (the names of the relocs instead of their numeric values).
10128 FIXME: This is not the correct way to solve this problem. The proper way
10129 is to have target specific reloc sizing and typing functions created by
10130 the reloc-macros.h header, in the same way that it already creates the
10131 reloc naming functions. */
10132
10133 static bfd_boolean
10134 is_32bit_abs_reloc (unsigned int reloc_type)
10135 {
10136 switch (elf_header.e_machine)
10137 {
10138 case EM_386:
10139 case EM_486:
10140 return reloc_type == 1; /* R_386_32. */
10141 case EM_68K:
10142 return reloc_type == 1; /* R_68K_32. */
10143 case EM_860:
10144 return reloc_type == 1; /* R_860_32. */
10145 case EM_960:
10146 return reloc_type == 2; /* R_960_32. */
10147 case EM_AARCH64:
10148 return reloc_type == 258; /* R_AARCH64_ABS32 */
10149 case EM_ALPHA:
10150 return reloc_type == 1; /* R_ALPHA_REFLONG. */
10151 case EM_ARC:
10152 return reloc_type == 1; /* R_ARC_32. */
10153 case EM_ARM:
10154 return reloc_type == 2; /* R_ARM_ABS32 */
10155 case EM_AVR_OLD:
10156 case EM_AVR:
10157 return reloc_type == 1;
10158 case EM_ADAPTEVA_EPIPHANY:
10159 return reloc_type == 3;
10160 case EM_BLACKFIN:
10161 return reloc_type == 0x12; /* R_byte4_data. */
10162 case EM_CRIS:
10163 return reloc_type == 3; /* R_CRIS_32. */
10164 case EM_CR16:
10165 return reloc_type == 3; /* R_CR16_NUM32. */
10166 case EM_CRX:
10167 return reloc_type == 15; /* R_CRX_NUM32. */
10168 case EM_CYGNUS_FRV:
10169 return reloc_type == 1;
10170 case EM_CYGNUS_D10V:
10171 case EM_D10V:
10172 return reloc_type == 6; /* R_D10V_32. */
10173 case EM_CYGNUS_D30V:
10174 case EM_D30V:
10175 return reloc_type == 12; /* R_D30V_32_NORMAL. */
10176 case EM_DLX:
10177 return reloc_type == 3; /* R_DLX_RELOC_32. */
10178 case EM_CYGNUS_FR30:
10179 case EM_FR30:
10180 return reloc_type == 3; /* R_FR30_32. */
10181 case EM_H8S:
10182 case EM_H8_300:
10183 case EM_H8_300H:
10184 return reloc_type == 1; /* R_H8_DIR32. */
10185 case EM_IA_64:
10186 return reloc_type == 0x65; /* R_IA64_SECREL32LSB. */
10187 case EM_IP2K_OLD:
10188 case EM_IP2K:
10189 return reloc_type == 2; /* R_IP2K_32. */
10190 case EM_IQ2000:
10191 return reloc_type == 2; /* R_IQ2000_32. */
10192 case EM_LATTICEMICO32:
10193 return reloc_type == 3; /* R_LM32_32. */
10194 case EM_M32C_OLD:
10195 case EM_M32C:
10196 return reloc_type == 3; /* R_M32C_32. */
10197 case EM_M32R:
10198 return reloc_type == 34; /* R_M32R_32_RELA. */
10199 case EM_MCORE:
10200 return reloc_type == 1; /* R_MCORE_ADDR32. */
10201 case EM_CYGNUS_MEP:
10202 return reloc_type == 4; /* R_MEP_32. */
10203 case EM_METAG:
10204 return reloc_type == 2; /* R_METAG_ADDR32. */
10205 case EM_MICROBLAZE:
10206 return reloc_type == 1; /* R_MICROBLAZE_32. */
10207 case EM_MIPS:
10208 return reloc_type == 2; /* R_MIPS_32. */
10209 case EM_MMIX:
10210 return reloc_type == 4; /* R_MMIX_32. */
10211 case EM_CYGNUS_MN10200:
10212 case EM_MN10200:
10213 return reloc_type == 1; /* R_MN10200_32. */
10214 case EM_CYGNUS_MN10300:
10215 case EM_MN10300:
10216 return reloc_type == 1; /* R_MN10300_32. */
10217 case EM_MOXIE:
10218 return reloc_type == 1; /* R_MOXIE_32. */
10219 case EM_MSP430_OLD:
10220 case EM_MSP430:
10221 return reloc_type == 1; /* R_MSP430_32 or R_MSP320_ABS32. */
10222 case EM_MT:
10223 return reloc_type == 2; /* R_MT_32. */
10224 case EM_ALTERA_NIOS2:
10225 return reloc_type == 12; /* R_NIOS2_BFD_RELOC_32. */
10226 case EM_NIOS32:
10227 return reloc_type == 1; /* R_NIOS_32. */
10228 case EM_OPENRISC:
10229 case EM_OR32:
10230 return reloc_type == 1; /* R_OR32_32. */
10231 case EM_PARISC:
10232 return (reloc_type == 1 /* R_PARISC_DIR32. */
10233 || reloc_type == 41); /* R_PARISC_SECREL32. */
10234 case EM_PJ:
10235 case EM_PJ_OLD:
10236 return reloc_type == 1; /* R_PJ_DATA_DIR32. */
10237 case EM_PPC64:
10238 return reloc_type == 1; /* R_PPC64_ADDR32. */
10239 case EM_PPC:
10240 return reloc_type == 1; /* R_PPC_ADDR32. */
10241 case EM_RL78:
10242 return reloc_type == 1; /* R_RL78_DIR32. */
10243 case EM_RX:
10244 return reloc_type == 1; /* R_RX_DIR32. */
10245 case EM_S370:
10246 return reloc_type == 1; /* R_I370_ADDR31. */
10247 case EM_S390_OLD:
10248 case EM_S390:
10249 return reloc_type == 4; /* R_S390_32. */
10250 case EM_SCORE:
10251 return reloc_type == 8; /* R_SCORE_ABS32. */
10252 case EM_SH:
10253 return reloc_type == 1; /* R_SH_DIR32. */
10254 case EM_SPARC32PLUS:
10255 case EM_SPARCV9:
10256 case EM_SPARC:
10257 return reloc_type == 3 /* R_SPARC_32. */
10258 || reloc_type == 23; /* R_SPARC_UA32. */
10259 case EM_SPU:
10260 return reloc_type == 6; /* R_SPU_ADDR32 */
10261 case EM_TI_C6000:
10262 return reloc_type == 1; /* R_C6000_ABS32. */
10263 case EM_TILEGX:
10264 return reloc_type == 2; /* R_TILEGX_32. */
10265 case EM_TILEPRO:
10266 return reloc_type == 1; /* R_TILEPRO_32. */
10267 case EM_CYGNUS_V850:
10268 case EM_V850:
10269 return reloc_type == 6; /* R_V850_ABS32. */
10270 case EM_V800:
10271 return reloc_type == 0x33; /* R_V810_WORD. */
10272 case EM_VAX:
10273 return reloc_type == 1; /* R_VAX_32. */
10274 case EM_X86_64:
10275 case EM_L1OM:
10276 case EM_K1OM:
10277 return reloc_type == 10; /* R_X86_64_32. */
10278 case EM_XC16X:
10279 case EM_C166:
10280 return reloc_type == 3; /* R_XC16C_ABS_32. */
10281 case EM_XGATE:
10282 return reloc_type == 4; /* R_XGATE_32. */
10283 case EM_XSTORMY16:
10284 return reloc_type == 1; /* R_XSTROMY16_32. */
10285 case EM_XTENSA_OLD:
10286 case EM_XTENSA:
10287 return reloc_type == 1; /* R_XTENSA_32. */
10288 default:
10289 error (_("Missing knowledge of 32-bit reloc types used in DWARF sections of machine number %d\n"),
10290 elf_header.e_machine);
10291 abort ();
10292 }
10293 }
10294
10295 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10296 a 32-bit pc-relative RELA relocation used in DWARF debug sections. */
10297
10298 static bfd_boolean
10299 is_32bit_pcrel_reloc (unsigned int reloc_type)
10300 {
10301 switch (elf_header.e_machine)
10302 {
10303 case EM_386:
10304 case EM_486:
10305 return reloc_type == 2; /* R_386_PC32. */
10306 case EM_68K:
10307 return reloc_type == 4; /* R_68K_PC32. */
10308 case EM_AARCH64:
10309 return reloc_type == 261; /* R_AARCH64_PREL32 */
10310 case EM_ADAPTEVA_EPIPHANY:
10311 return reloc_type == 6;
10312 case EM_ALPHA:
10313 return reloc_type == 10; /* R_ALPHA_SREL32. */
10314 case EM_ARM:
10315 return reloc_type == 3; /* R_ARM_REL32 */
10316 case EM_MICROBLAZE:
10317 return reloc_type == 2; /* R_MICROBLAZE_32_PCREL. */
10318 case EM_PARISC:
10319 return reloc_type == 9; /* R_PARISC_PCREL32. */
10320 case EM_PPC:
10321 return reloc_type == 26; /* R_PPC_REL32. */
10322 case EM_PPC64:
10323 return reloc_type == 26; /* R_PPC64_REL32. */
10324 case EM_S390_OLD:
10325 case EM_S390:
10326 return reloc_type == 5; /* R_390_PC32. */
10327 case EM_SH:
10328 return reloc_type == 2; /* R_SH_REL32. */
10329 case EM_SPARC32PLUS:
10330 case EM_SPARCV9:
10331 case EM_SPARC:
10332 return reloc_type == 6; /* R_SPARC_DISP32. */
10333 case EM_SPU:
10334 return reloc_type == 13; /* R_SPU_REL32. */
10335 case EM_TILEGX:
10336 return reloc_type == 6; /* R_TILEGX_32_PCREL. */
10337 case EM_TILEPRO:
10338 return reloc_type == 4; /* R_TILEPRO_32_PCREL. */
10339 case EM_X86_64:
10340 case EM_L1OM:
10341 case EM_K1OM:
10342 return reloc_type == 2; /* R_X86_64_PC32. */
10343 case EM_XTENSA_OLD:
10344 case EM_XTENSA:
10345 return reloc_type == 14; /* R_XTENSA_32_PCREL. */
10346 default:
10347 /* Do not abort or issue an error message here. Not all targets use
10348 pc-relative 32-bit relocs in their DWARF debug information and we
10349 have already tested for target coverage in is_32bit_abs_reloc. A
10350 more helpful warning message will be generated by apply_relocations
10351 anyway, so just return. */
10352 return FALSE;
10353 }
10354 }
10355
10356 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10357 a 64-bit absolute RELA relocation used in DWARF debug sections. */
10358
10359 static bfd_boolean
10360 is_64bit_abs_reloc (unsigned int reloc_type)
10361 {
10362 switch (elf_header.e_machine)
10363 {
10364 case EM_AARCH64:
10365 return reloc_type == 257; /* R_AARCH64_ABS64. */
10366 case EM_ALPHA:
10367 return reloc_type == 2; /* R_ALPHA_REFQUAD. */
10368 case EM_IA_64:
10369 return reloc_type == 0x27; /* R_IA64_DIR64LSB. */
10370 case EM_PARISC:
10371 return reloc_type == 80; /* R_PARISC_DIR64. */
10372 case EM_PPC64:
10373 return reloc_type == 38; /* R_PPC64_ADDR64. */
10374 case EM_SPARC32PLUS:
10375 case EM_SPARCV9:
10376 case EM_SPARC:
10377 return reloc_type == 54; /* R_SPARC_UA64. */
10378 case EM_X86_64:
10379 case EM_L1OM:
10380 case EM_K1OM:
10381 return reloc_type == 1; /* R_X86_64_64. */
10382 case EM_S390_OLD:
10383 case EM_S390:
10384 return reloc_type == 22; /* R_S390_64. */
10385 case EM_TILEGX:
10386 return reloc_type == 1; /* R_TILEGX_64. */
10387 case EM_MIPS:
10388 return reloc_type == 18; /* R_MIPS_64. */
10389 default:
10390 return FALSE;
10391 }
10392 }
10393
10394 /* Like is_32bit_pcrel_reloc except that it returns TRUE iff RELOC_TYPE is
10395 a 64-bit pc-relative RELA relocation used in DWARF debug sections. */
10396
10397 static bfd_boolean
10398 is_64bit_pcrel_reloc (unsigned int reloc_type)
10399 {
10400 switch (elf_header.e_machine)
10401 {
10402 case EM_AARCH64:
10403 return reloc_type == 260; /* R_AARCH64_PREL64. */
10404 case EM_ALPHA:
10405 return reloc_type == 11; /* R_ALPHA_SREL64. */
10406 case EM_IA_64:
10407 return reloc_type == 0x4f; /* R_IA64_PCREL64LSB. */
10408 case EM_PARISC:
10409 return reloc_type == 72; /* R_PARISC_PCREL64. */
10410 case EM_PPC64:
10411 return reloc_type == 44; /* R_PPC64_REL64. */
10412 case EM_SPARC32PLUS:
10413 case EM_SPARCV9:
10414 case EM_SPARC:
10415 return reloc_type == 46; /* R_SPARC_DISP64. */
10416 case EM_X86_64:
10417 case EM_L1OM:
10418 case EM_K1OM:
10419 return reloc_type == 24; /* R_X86_64_PC64. */
10420 case EM_S390_OLD:
10421 case EM_S390:
10422 return reloc_type == 23; /* R_S390_PC64. */
10423 case EM_TILEGX:
10424 return reloc_type == 5; /* R_TILEGX_64_PCREL. */
10425 default:
10426 return FALSE;
10427 }
10428 }
10429
10430 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10431 a 24-bit absolute RELA relocation used in DWARF debug sections. */
10432
10433 static bfd_boolean
10434 is_24bit_abs_reloc (unsigned int reloc_type)
10435 {
10436 switch (elf_header.e_machine)
10437 {
10438 case EM_CYGNUS_MN10200:
10439 case EM_MN10200:
10440 return reloc_type == 4; /* R_MN10200_24. */
10441 default:
10442 return FALSE;
10443 }
10444 }
10445
10446 /* Like is_32bit_abs_reloc except that it returns TRUE iff RELOC_TYPE is
10447 a 16-bit absolute RELA relocation used in DWARF debug sections. */
10448
10449 static bfd_boolean
10450 is_16bit_abs_reloc (unsigned int reloc_type)
10451 {
10452 switch (elf_header.e_machine)
10453 {
10454 case EM_AVR_OLD:
10455 case EM_AVR:
10456 return reloc_type == 4; /* R_AVR_16. */
10457 case EM_ADAPTEVA_EPIPHANY:
10458 return reloc_type == 5;
10459 case EM_CYGNUS_D10V:
10460 case EM_D10V:
10461 return reloc_type == 3; /* R_D10V_16. */
10462 case EM_H8S:
10463 case EM_H8_300:
10464 case EM_H8_300H:
10465 return reloc_type == R_H8_DIR16;
10466 case EM_IP2K_OLD:
10467 case EM_IP2K:
10468 return reloc_type == 1; /* R_IP2K_16. */
10469 case EM_M32C_OLD:
10470 case EM_M32C:
10471 return reloc_type == 1; /* R_M32C_16 */
10472 case EM_MSP430:
10473 if (uses_msp430x_relocs ())
10474 return reloc_type == 2; /* R_MSP430_ABS16. */
10475 case EM_MSP430_OLD:
10476 return reloc_type == 5; /* R_MSP430_16_BYTE. */
10477 case EM_ALTERA_NIOS2:
10478 return reloc_type == 13; /* R_NIOS2_BFD_RELOC_16. */
10479 case EM_NIOS32:
10480 return reloc_type == 9; /* R_NIOS_16. */
10481 case EM_TI_C6000:
10482 return reloc_type == 2; /* R_C6000_ABS16. */
10483 case EM_XC16X:
10484 case EM_C166:
10485 return reloc_type == 2; /* R_XC16C_ABS_16. */
10486 case EM_CYGNUS_MN10200:
10487 case EM_MN10200:
10488 return reloc_type == 2; /* R_MN10200_16. */
10489 case EM_CYGNUS_MN10300:
10490 case EM_MN10300:
10491 return reloc_type == 2; /* R_MN10300_16. */
10492 case EM_XGATE:
10493 return reloc_type == 3; /* R_XGATE_16. */
10494 default:
10495 return FALSE;
10496 }
10497 }
10498
10499 /* Returns TRUE iff RELOC_TYPE is a NONE relocation used for discarded
10500 relocation entries (possibly formerly used for SHT_GROUP sections). */
10501
10502 static bfd_boolean
10503 is_none_reloc (unsigned int reloc_type)
10504 {
10505 switch (elf_header.e_machine)
10506 {
10507 case EM_68K: /* R_68K_NONE. */
10508 case EM_386: /* R_386_NONE. */
10509 case EM_SPARC32PLUS:
10510 case EM_SPARCV9:
10511 case EM_SPARC: /* R_SPARC_NONE. */
10512 case EM_MIPS: /* R_MIPS_NONE. */
10513 case EM_PARISC: /* R_PARISC_NONE. */
10514 case EM_ALPHA: /* R_ALPHA_NONE. */
10515 case EM_ADAPTEVA_EPIPHANY:
10516 case EM_PPC: /* R_PPC_NONE. */
10517 case EM_PPC64: /* R_PPC64_NONE. */
10518 case EM_ARM: /* R_ARM_NONE. */
10519 case EM_IA_64: /* R_IA64_NONE. */
10520 case EM_SH: /* R_SH_NONE. */
10521 case EM_S390_OLD:
10522 case EM_S390: /* R_390_NONE. */
10523 case EM_CRIS: /* R_CRIS_NONE. */
10524 case EM_X86_64: /* R_X86_64_NONE. */
10525 case EM_L1OM: /* R_X86_64_NONE. */
10526 case EM_K1OM: /* R_X86_64_NONE. */
10527 case EM_MN10300: /* R_MN10300_NONE. */
10528 case EM_MOXIE: /* R_MOXIE_NONE. */
10529 case EM_M32R: /* R_M32R_NONE. */
10530 case EM_TI_C6000:/* R_C6000_NONE. */
10531 case EM_TILEGX: /* R_TILEGX_NONE. */
10532 case EM_TILEPRO: /* R_TILEPRO_NONE. */
10533 case EM_XC16X:
10534 case EM_C166: /* R_XC16X_NONE. */
10535 case EM_ALTERA_NIOS2: /* R_NIOS2_NONE. */
10536 case EM_NIOS32: /* R_NIOS_NONE. */
10537 return reloc_type == 0;
10538 case EM_AARCH64:
10539 return reloc_type == 0 || reloc_type == 256;
10540 case EM_XTENSA_OLD:
10541 case EM_XTENSA:
10542 return (reloc_type == 0 /* R_XTENSA_NONE. */
10543 || reloc_type == 17 /* R_XTENSA_DIFF8. */
10544 || reloc_type == 18 /* R_XTENSA_DIFF16. */
10545 || reloc_type == 19 /* R_XTENSA_DIFF32. */);
10546 case EM_METAG:
10547 return reloc_type == 3; /* R_METAG_NONE. */
10548 }
10549 return FALSE;
10550 }
10551
10552 /* Apply relocations to a section.
10553 Note: So far support has been added only for those relocations
10554 which can be found in debug sections.
10555 FIXME: Add support for more relocations ? */
10556
10557 static void
10558 apply_relocations (void * file,
10559 Elf_Internal_Shdr * section,
10560 unsigned char * start)
10561 {
10562 Elf_Internal_Shdr * relsec;
10563 unsigned char * end = start + section->sh_size;
10564
10565 if (elf_header.e_type != ET_REL)
10566 return;
10567
10568 /* Find the reloc section associated with the section. */
10569 for (relsec = section_headers;
10570 relsec < section_headers + elf_header.e_shnum;
10571 ++relsec)
10572 {
10573 bfd_boolean is_rela;
10574 unsigned long num_relocs;
10575 Elf_Internal_Rela * relocs;
10576 Elf_Internal_Rela * rp;
10577 Elf_Internal_Shdr * symsec;
10578 Elf_Internal_Sym * symtab;
10579 unsigned long num_syms;
10580 Elf_Internal_Sym * sym;
10581
10582 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10583 || relsec->sh_info >= elf_header.e_shnum
10584 || section_headers + relsec->sh_info != section
10585 || relsec->sh_size == 0
10586 || relsec->sh_link >= elf_header.e_shnum)
10587 continue;
10588
10589 is_rela = relsec->sh_type == SHT_RELA;
10590
10591 if (is_rela)
10592 {
10593 if (!slurp_rela_relocs ((FILE *) file, relsec->sh_offset,
10594 relsec->sh_size, & relocs, & num_relocs))
10595 return;
10596 }
10597 else
10598 {
10599 if (!slurp_rel_relocs ((FILE *) file, relsec->sh_offset,
10600 relsec->sh_size, & relocs, & num_relocs))
10601 return;
10602 }
10603
10604 /* SH uses RELA but uses in place value instead of the addend field. */
10605 if (elf_header.e_machine == EM_SH)
10606 is_rela = FALSE;
10607
10608 symsec = section_headers + relsec->sh_link;
10609 symtab = GET_ELF_SYMBOLS ((FILE *) file, symsec, & num_syms);
10610
10611 for (rp = relocs; rp < relocs + num_relocs; ++rp)
10612 {
10613 bfd_vma addend;
10614 unsigned int reloc_type;
10615 unsigned int reloc_size;
10616 unsigned char * rloc;
10617 unsigned long sym_index;
10618
10619 reloc_type = get_reloc_type (rp->r_info);
10620
10621 if (target_specific_reloc_handling (rp, start, symtab))
10622 continue;
10623 else if (is_none_reloc (reloc_type))
10624 continue;
10625 else if (is_32bit_abs_reloc (reloc_type)
10626 || is_32bit_pcrel_reloc (reloc_type))
10627 reloc_size = 4;
10628 else if (is_64bit_abs_reloc (reloc_type)
10629 || is_64bit_pcrel_reloc (reloc_type))
10630 reloc_size = 8;
10631 else if (is_24bit_abs_reloc (reloc_type))
10632 reloc_size = 3;
10633 else if (is_16bit_abs_reloc (reloc_type))
10634 reloc_size = 2;
10635 else
10636 {
10637 warn (_("unable to apply unsupported reloc type %d to section %s\n"),
10638 reloc_type, SECTION_NAME (section));
10639 continue;
10640 }
10641
10642 rloc = start + rp->r_offset;
10643 if ((rloc + reloc_size) > end || (rloc < start))
10644 {
10645 warn (_("skipping invalid relocation offset 0x%lx in section %s\n"),
10646 (unsigned long) rp->r_offset,
10647 SECTION_NAME (section));
10648 continue;
10649 }
10650
10651 sym_index = (unsigned long) get_reloc_symindex (rp->r_info);
10652 if (sym_index >= num_syms)
10653 {
10654 warn (_("skipping invalid relocation symbol index 0x%lx in section %s\n"),
10655 sym_index, SECTION_NAME (section));
10656 continue;
10657 }
10658 sym = symtab + sym_index;
10659
10660 /* If the reloc has a symbol associated with it,
10661 make sure that it is of an appropriate type.
10662
10663 Relocations against symbols without type can happen.
10664 Gcc -feliminate-dwarf2-dups may generate symbols
10665 without type for debug info.
10666
10667 Icc generates relocations against function symbols
10668 instead of local labels.
10669
10670 Relocations against object symbols can happen, eg when
10671 referencing a global array. For an example of this see
10672 the _clz.o binary in libgcc.a. */
10673 if (sym != symtab
10674 && ELF_ST_TYPE (sym->st_info) > STT_SECTION)
10675 {
10676 warn (_("skipping unexpected symbol type %s in %ld'th relocation in section %s\n"),
10677 get_symbol_type (ELF_ST_TYPE (sym->st_info)),
10678 (long int)(rp - relocs),
10679 SECTION_NAME (relsec));
10680 continue;
10681 }
10682
10683 addend = 0;
10684 if (is_rela)
10685 addend += rp->r_addend;
10686 /* R_XTENSA_32, R_PJ_DATA_DIR32 and R_D30V_32_NORMAL are
10687 partial_inplace. */
10688 if (!is_rela
10689 || (elf_header.e_machine == EM_XTENSA
10690 && reloc_type == 1)
10691 || ((elf_header.e_machine == EM_PJ
10692 || elf_header.e_machine == EM_PJ_OLD)
10693 && reloc_type == 1)
10694 || ((elf_header.e_machine == EM_D30V
10695 || elf_header.e_machine == EM_CYGNUS_D30V)
10696 && reloc_type == 12))
10697 addend += byte_get (rloc, reloc_size);
10698
10699 if (is_32bit_pcrel_reloc (reloc_type)
10700 || is_64bit_pcrel_reloc (reloc_type))
10701 {
10702 /* On HPPA, all pc-relative relocations are biased by 8. */
10703 if (elf_header.e_machine == EM_PARISC)
10704 addend -= 8;
10705 byte_put (rloc, (addend + sym->st_value) - rp->r_offset,
10706 reloc_size);
10707 }
10708 else
10709 byte_put (rloc, addend + sym->st_value, reloc_size);
10710 }
10711
10712 free (symtab);
10713 free (relocs);
10714 break;
10715 }
10716 }
10717
10718 #ifdef SUPPORT_DISASSEMBLY
10719 static int
10720 disassemble_section (Elf_Internal_Shdr * section, FILE * file)
10721 {
10722 printf (_("\nAssembly dump of section %s\n"),
10723 SECTION_NAME (section));
10724
10725 /* XXX -- to be done --- XXX */
10726
10727 return 1;
10728 }
10729 #endif
10730
10731 /* Reads in the contents of SECTION from FILE, returning a pointer
10732 to a malloc'ed buffer or NULL if something went wrong. */
10733
10734 static char *
10735 get_section_contents (Elf_Internal_Shdr * section, FILE * file)
10736 {
10737 bfd_size_type num_bytes;
10738
10739 num_bytes = section->sh_size;
10740
10741 if (num_bytes == 0 || section->sh_type == SHT_NOBITS)
10742 {
10743 printf (_("\nSection '%s' has no data to dump.\n"),
10744 SECTION_NAME (section));
10745 return NULL;
10746 }
10747
10748 return (char *) get_data (NULL, file, section->sh_offset, 1, num_bytes,
10749 _("section contents"));
10750 }
10751
10752
10753 static void
10754 dump_section_as_strings (Elf_Internal_Shdr * section, FILE * file)
10755 {
10756 Elf_Internal_Shdr * relsec;
10757 bfd_size_type num_bytes;
10758 char * data;
10759 char * end;
10760 char * start;
10761 char * name = SECTION_NAME (section);
10762 bfd_boolean some_strings_shown;
10763
10764 start = get_section_contents (section, file);
10765 if (start == NULL)
10766 return;
10767
10768 printf (_("\nString dump of section '%s':\n"), name);
10769
10770 /* If the section being dumped has relocations against it the user might
10771 be expecting these relocations to have been applied. Check for this
10772 case and issue a warning message in order to avoid confusion.
10773 FIXME: Maybe we ought to have an option that dumps a section with
10774 relocs applied ? */
10775 for (relsec = section_headers;
10776 relsec < section_headers + elf_header.e_shnum;
10777 ++relsec)
10778 {
10779 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10780 || relsec->sh_info >= elf_header.e_shnum
10781 || section_headers + relsec->sh_info != section
10782 || relsec->sh_size == 0
10783 || relsec->sh_link >= elf_header.e_shnum)
10784 continue;
10785
10786 printf (_(" Note: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10787 break;
10788 }
10789
10790 num_bytes = section->sh_size;
10791 data = start;
10792 end = start + num_bytes;
10793 some_strings_shown = FALSE;
10794
10795 while (data < end)
10796 {
10797 while (!ISPRINT (* data))
10798 if (++ data >= end)
10799 break;
10800
10801 if (data < end)
10802 {
10803 #ifndef __MSVCRT__
10804 /* PR 11128: Use two separate invocations in order to work
10805 around bugs in the Solaris 8 implementation of printf. */
10806 printf (" [%6tx] ", data - start);
10807 printf ("%s\n", data);
10808 #else
10809 printf (" [%6Ix] %s\n", (size_t) (data - start), data);
10810 #endif
10811 data += strlen (data);
10812 some_strings_shown = TRUE;
10813 }
10814 }
10815
10816 if (! some_strings_shown)
10817 printf (_(" No strings found in this section."));
10818
10819 free (start);
10820
10821 putchar ('\n');
10822 }
10823
10824 static void
10825 dump_section_as_bytes (Elf_Internal_Shdr * section,
10826 FILE * file,
10827 bfd_boolean relocate)
10828 {
10829 Elf_Internal_Shdr * relsec;
10830 bfd_size_type bytes;
10831 bfd_vma addr;
10832 unsigned char * data;
10833 unsigned char * start;
10834
10835 start = (unsigned char *) get_section_contents (section, file);
10836 if (start == NULL)
10837 return;
10838
10839 printf (_("\nHex dump of section '%s':\n"), SECTION_NAME (section));
10840
10841 if (relocate)
10842 {
10843 apply_relocations (file, section, start);
10844 }
10845 else
10846 {
10847 /* If the section being dumped has relocations against it the user might
10848 be expecting these relocations to have been applied. Check for this
10849 case and issue a warning message in order to avoid confusion.
10850 FIXME: Maybe we ought to have an option that dumps a section with
10851 relocs applied ? */
10852 for (relsec = section_headers;
10853 relsec < section_headers + elf_header.e_shnum;
10854 ++relsec)
10855 {
10856 if ((relsec->sh_type != SHT_RELA && relsec->sh_type != SHT_REL)
10857 || relsec->sh_info >= elf_header.e_shnum
10858 || section_headers + relsec->sh_info != section
10859 || relsec->sh_size == 0
10860 || relsec->sh_link >= elf_header.e_shnum)
10861 continue;
10862
10863 printf (_(" NOTE: This section has relocations against it, but these have NOT been applied to this dump.\n"));
10864 break;
10865 }
10866 }
10867
10868 addr = section->sh_addr;
10869 bytes = section->sh_size;
10870 data = start;
10871
10872 while (bytes)
10873 {
10874 int j;
10875 int k;
10876 int lbytes;
10877
10878 lbytes = (bytes > 16 ? 16 : bytes);
10879
10880 printf (" 0x%8.8lx ", (unsigned long) addr);
10881
10882 for (j = 0; j < 16; j++)
10883 {
10884 if (j < lbytes)
10885 printf ("%2.2x", data[j]);
10886 else
10887 printf (" ");
10888
10889 if ((j & 3) == 3)
10890 printf (" ");
10891 }
10892
10893 for (j = 0; j < lbytes; j++)
10894 {
10895 k = data[j];
10896 if (k >= ' ' && k < 0x7f)
10897 printf ("%c", k);
10898 else
10899 printf (".");
10900 }
10901
10902 putchar ('\n');
10903
10904 data += lbytes;
10905 addr += lbytes;
10906 bytes -= lbytes;
10907 }
10908
10909 free (start);
10910
10911 putchar ('\n');
10912 }
10913
10914 /* Uncompresses a section that was compressed using zlib, in place. */
10915
10916 static int
10917 uncompress_section_contents (unsigned char **buffer ATTRIBUTE_UNUSED,
10918 dwarf_size_type *size ATTRIBUTE_UNUSED)
10919 {
10920 #ifndef HAVE_ZLIB_H
10921 return FALSE;
10922 #else
10923 dwarf_size_type compressed_size = *size;
10924 unsigned char * compressed_buffer = *buffer;
10925 dwarf_size_type uncompressed_size;
10926 unsigned char * uncompressed_buffer;
10927 z_stream strm;
10928 int rc;
10929 dwarf_size_type header_size = 12;
10930
10931 /* Read the zlib header. In this case, it should be "ZLIB" followed
10932 by the uncompressed section size, 8 bytes in big-endian order. */
10933 if (compressed_size < header_size
10934 || ! streq ((char *) compressed_buffer, "ZLIB"))
10935 return 0;
10936
10937 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
10938 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
10939 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
10940 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
10941 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
10942 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
10943 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
10944 uncompressed_size += compressed_buffer[11];
10945
10946 /* It is possible the section consists of several compressed
10947 buffers concatenated together, so we uncompress in a loop. */
10948 strm.zalloc = NULL;
10949 strm.zfree = NULL;
10950 strm.opaque = NULL;
10951 strm.avail_in = compressed_size - header_size;
10952 strm.next_in = (Bytef *) compressed_buffer + header_size;
10953 strm.avail_out = uncompressed_size;
10954 uncompressed_buffer = (unsigned char *) xmalloc (uncompressed_size);
10955
10956 rc = inflateInit (& strm);
10957 while (strm.avail_in > 0)
10958 {
10959 if (rc != Z_OK)
10960 goto fail;
10961 strm.next_out = ((Bytef *) uncompressed_buffer
10962 + (uncompressed_size - strm.avail_out));
10963 rc = inflate (&strm, Z_FINISH);
10964 if (rc != Z_STREAM_END)
10965 goto fail;
10966 rc = inflateReset (& strm);
10967 }
10968 rc = inflateEnd (& strm);
10969 if (rc != Z_OK
10970 || strm.avail_out != 0)
10971 goto fail;
10972
10973 free (compressed_buffer);
10974 *buffer = uncompressed_buffer;
10975 *size = uncompressed_size;
10976 return 1;
10977
10978 fail:
10979 free (uncompressed_buffer);
10980 /* Indicate decompression failure. */
10981 *buffer = NULL;
10982 return 0;
10983 #endif /* HAVE_ZLIB_H */
10984 }
10985
10986 static int
10987 load_specific_debug_section (enum dwarf_section_display_enum debug,
10988 Elf_Internal_Shdr * sec, void * file)
10989 {
10990 struct dwarf_section * section = &debug_displays [debug].section;
10991 char buf [64];
10992
10993 /* If it is already loaded, do nothing. */
10994 if (section->start != NULL)
10995 return 1;
10996
10997 snprintf (buf, sizeof (buf), _("%s section data"), section->name);
10998 section->address = sec->sh_addr;
10999 section->start = (unsigned char *) get_data (NULL, (FILE *) file,
11000 sec->sh_offset, 1,
11001 sec->sh_size, buf);
11002 if (section->start == NULL)
11003 section->size = 0;
11004 else
11005 {
11006 section->size = sec->sh_size;
11007 if (uncompress_section_contents (&section->start, &section->size))
11008 sec->sh_size = section->size;
11009 }
11010
11011 if (section->start == NULL)
11012 return 0;
11013
11014 if (debug_displays [debug].relocate)
11015 apply_relocations ((FILE *) file, sec, section->start);
11016
11017 return 1;
11018 }
11019
11020 /* If this is not NULL, load_debug_section will only look for sections
11021 within the list of sections given here. */
11022 unsigned int *section_subset = NULL;
11023
11024 int
11025 load_debug_section (enum dwarf_section_display_enum debug, void * file)
11026 {
11027 struct dwarf_section * section = &debug_displays [debug].section;
11028 Elf_Internal_Shdr * sec;
11029
11030 /* Locate the debug section. */
11031 sec = find_section_in_set (section->uncompressed_name, section_subset);
11032 if (sec != NULL)
11033 section->name = section->uncompressed_name;
11034 else
11035 {
11036 sec = find_section_in_set (section->compressed_name, section_subset);
11037 if (sec != NULL)
11038 section->name = section->compressed_name;
11039 }
11040 if (sec == NULL)
11041 return 0;
11042
11043 /* If we're loading from a subset of sections, and we've loaded
11044 a section matching this name before, it's likely that it's a
11045 different one. */
11046 if (section_subset != NULL)
11047 free_debug_section (debug);
11048
11049 return load_specific_debug_section (debug, sec, (FILE *) file);
11050 }
11051
11052 void
11053 free_debug_section (enum dwarf_section_display_enum debug)
11054 {
11055 struct dwarf_section * section = &debug_displays [debug].section;
11056
11057 if (section->start == NULL)
11058 return;
11059
11060 free ((char *) section->start);
11061 section->start = NULL;
11062 section->address = 0;
11063 section->size = 0;
11064 }
11065
11066 static int
11067 display_debug_section (int shndx, Elf_Internal_Shdr * section, FILE * file)
11068 {
11069 char * name = SECTION_NAME (section);
11070 bfd_size_type length;
11071 int result = 1;
11072 int i;
11073
11074 length = section->sh_size;
11075 if (length == 0)
11076 {
11077 printf (_("\nSection '%s' has no debugging data.\n"), name);
11078 return 0;
11079 }
11080 if (section->sh_type == SHT_NOBITS)
11081 {
11082 /* There is no point in dumping the contents of a debugging section
11083 which has the NOBITS type - the bits in the file will be random.
11084 This can happen when a file containing a .eh_frame section is
11085 stripped with the --only-keep-debug command line option. */
11086 printf (_("section '%s' has the NOBITS type - its contents are unreliable.\n"), name);
11087 return 0;
11088 }
11089
11090 if (const_strneq (name, ".gnu.linkonce.wi."))
11091 name = ".debug_info";
11092
11093 /* See if we know how to display the contents of this section. */
11094 for (i = 0; i < max; i++)
11095 if (streq (debug_displays[i].section.uncompressed_name, name)
11096 || (i == line && const_strneq (name, ".debug_line."))
11097 || streq (debug_displays[i].section.compressed_name, name))
11098 {
11099 struct dwarf_section * sec = &debug_displays [i].section;
11100 int secondary = (section != find_section (name));
11101
11102 if (secondary)
11103 free_debug_section ((enum dwarf_section_display_enum) i);
11104
11105 if (i == line && const_strneq (name, ".debug_line."))
11106 sec->name = name;
11107 else if (streq (sec->uncompressed_name, name))
11108 sec->name = sec->uncompressed_name;
11109 else
11110 sec->name = sec->compressed_name;
11111 if (load_specific_debug_section ((enum dwarf_section_display_enum) i,
11112 section, file))
11113 {
11114 /* If this debug section is part of a CU/TU set in a .dwp file,
11115 restrict load_debug_section to the sections in that set. */
11116 section_subset = find_cu_tu_set (file, shndx);
11117
11118 result &= debug_displays[i].display (sec, file);
11119
11120 section_subset = NULL;
11121
11122 if (secondary || (i != info && i != abbrev))
11123 free_debug_section ((enum dwarf_section_display_enum) i);
11124 }
11125
11126 break;
11127 }
11128
11129 if (i == max)
11130 {
11131 printf (_("Unrecognized debug section: %s\n"), name);
11132 result = 0;
11133 }
11134
11135 return result;
11136 }
11137
11138 /* Set DUMP_SECTS for all sections where dumps were requested
11139 based on section name. */
11140
11141 static void
11142 initialise_dumps_byname (void)
11143 {
11144 struct dump_list_entry * cur;
11145
11146 for (cur = dump_sects_byname; cur; cur = cur->next)
11147 {
11148 unsigned int i;
11149 int any;
11150
11151 for (i = 0, any = 0; i < elf_header.e_shnum; i++)
11152 if (streq (SECTION_NAME (section_headers + i), cur->name))
11153 {
11154 request_dump_bynumber (i, cur->type);
11155 any = 1;
11156 }
11157
11158 if (!any)
11159 warn (_("Section '%s' was not dumped because it does not exist!\n"),
11160 cur->name);
11161 }
11162 }
11163
11164 static void
11165 process_section_contents (FILE * file)
11166 {
11167 Elf_Internal_Shdr * section;
11168 unsigned int i;
11169
11170 if (! do_dump)
11171 return;
11172
11173 initialise_dumps_byname ();
11174
11175 for (i = 0, section = section_headers;
11176 i < elf_header.e_shnum && i < num_dump_sects;
11177 i++, section++)
11178 {
11179 #ifdef SUPPORT_DISASSEMBLY
11180 if (dump_sects[i] & DISASS_DUMP)
11181 disassemble_section (section, file);
11182 #endif
11183 if (dump_sects[i] & HEX_DUMP)
11184 dump_section_as_bytes (section, file, FALSE);
11185
11186 if (dump_sects[i] & RELOC_DUMP)
11187 dump_section_as_bytes (section, file, TRUE);
11188
11189 if (dump_sects[i] & STRING_DUMP)
11190 dump_section_as_strings (section, file);
11191
11192 if (dump_sects[i] & DEBUG_DUMP)
11193 display_debug_section (i, section, file);
11194 }
11195
11196 /* Check to see if the user requested a
11197 dump of a section that does not exist. */
11198 while (i++ < num_dump_sects)
11199 if (dump_sects[i])
11200 warn (_("Section %d was not dumped because it does not exist!\n"), i);
11201 }
11202
11203 static void
11204 process_mips_fpe_exception (int mask)
11205 {
11206 if (mask)
11207 {
11208 int first = 1;
11209 if (mask & OEX_FPU_INEX)
11210 fputs ("INEX", stdout), first = 0;
11211 if (mask & OEX_FPU_UFLO)
11212 printf ("%sUFLO", first ? "" : "|"), first = 0;
11213 if (mask & OEX_FPU_OFLO)
11214 printf ("%sOFLO", first ? "" : "|"), first = 0;
11215 if (mask & OEX_FPU_DIV0)
11216 printf ("%sDIV0", first ? "" : "|"), first = 0;
11217 if (mask & OEX_FPU_INVAL)
11218 printf ("%sINVAL", first ? "" : "|");
11219 }
11220 else
11221 fputs ("0", stdout);
11222 }
11223
11224 /* Display's the value of TAG at location P. If TAG is
11225 greater than 0 it is assumed to be an unknown tag, and
11226 a message is printed to this effect. Otherwise it is
11227 assumed that a message has already been printed.
11228
11229 If the bottom bit of TAG is set it assumed to have a
11230 string value, otherwise it is assumed to have an integer
11231 value.
11232
11233 Returns an updated P pointing to the first unread byte
11234 beyond the end of TAG's value.
11235
11236 Reads at or beyond END will not be made. */
11237
11238 static unsigned char *
11239 display_tag_value (int tag,
11240 unsigned char * p,
11241 const unsigned char * const end)
11242 {
11243 unsigned long val;
11244
11245 if (tag > 0)
11246 printf (" Tag_unknown_%d: ", tag);
11247
11248 if (p >= end)
11249 {
11250 warn (_("corrupt tag\n"));
11251 }
11252 else if (tag & 1)
11253 {
11254 /* FIXME: we could read beyond END here. */
11255 printf ("\"%s\"\n", p);
11256 p += strlen ((char *) p) + 1;
11257 }
11258 else
11259 {
11260 unsigned int len;
11261
11262 val = read_uleb128 (p, &len, end);
11263 p += len;
11264 printf ("%ld (0x%lx)\n", val, val);
11265 }
11266
11267 return p;
11268 }
11269
11270 /* ARM EABI attributes section. */
11271 typedef struct
11272 {
11273 int tag;
11274 const char * name;
11275 /* 0 = special, 1 = string, 2 = uleb123, > 0x80 == table lookup. */
11276 int type;
11277 const char ** table;
11278 } arm_attr_public_tag;
11279
11280 static const char * arm_attr_tag_CPU_arch[] =
11281 {"Pre-v4", "v4", "v4T", "v5T", "v5TE", "v5TEJ", "v6", "v6KZ", "v6T2",
11282 "v6K", "v7", "v6-M", "v6S-M", "v7E-M", "v8"};
11283 static const char * arm_attr_tag_ARM_ISA_use[] = {"No", "Yes"};
11284 static const char * arm_attr_tag_THUMB_ISA_use[] =
11285 {"No", "Thumb-1", "Thumb-2"};
11286 static const char * arm_attr_tag_FP_arch[] =
11287 {"No", "VFPv1", "VFPv2", "VFPv3", "VFPv3-D16", "VFPv4", "VFPv4-D16",
11288 "FP for ARMv8"};
11289 static const char * arm_attr_tag_WMMX_arch[] = {"No", "WMMXv1", "WMMXv2"};
11290 static const char * arm_attr_tag_Advanced_SIMD_arch[] =
11291 {"No", "NEONv1", "NEONv1 with Fused-MAC", "NEON for ARMv8"};
11292 static const char * arm_attr_tag_PCS_config[] =
11293 {"None", "Bare platform", "Linux application", "Linux DSO", "PalmOS 2004",
11294 "PalmOS (reserved)", "SymbianOS 2004", "SymbianOS (reserved)"};
11295 static const char * arm_attr_tag_ABI_PCS_R9_use[] =
11296 {"V6", "SB", "TLS", "Unused"};
11297 static const char * arm_attr_tag_ABI_PCS_RW_data[] =
11298 {"Absolute", "PC-relative", "SB-relative", "None"};
11299 static const char * arm_attr_tag_ABI_PCS_RO_data[] =
11300 {"Absolute", "PC-relative", "None"};
11301 static const char * arm_attr_tag_ABI_PCS_GOT_use[] =
11302 {"None", "direct", "GOT-indirect"};
11303 static const char * arm_attr_tag_ABI_PCS_wchar_t[] =
11304 {"None", "??? 1", "2", "??? 3", "4"};
11305 static const char * arm_attr_tag_ABI_FP_rounding[] = {"Unused", "Needed"};
11306 static const char * arm_attr_tag_ABI_FP_denormal[] =
11307 {"Unused", "Needed", "Sign only"};
11308 static const char * arm_attr_tag_ABI_FP_exceptions[] = {"Unused", "Needed"};
11309 static const char * arm_attr_tag_ABI_FP_user_exceptions[] = {"Unused", "Needed"};
11310 static const char * arm_attr_tag_ABI_FP_number_model[] =
11311 {"Unused", "Finite", "RTABI", "IEEE 754"};
11312 static const char * arm_attr_tag_ABI_enum_size[] =
11313 {"Unused", "small", "int", "forced to int"};
11314 static const char * arm_attr_tag_ABI_HardFP_use[] =
11315 {"As Tag_FP_arch", "SP only", "DP only", "SP and DP"};
11316 static const char * arm_attr_tag_ABI_VFP_args[] =
11317 {"AAPCS", "VFP registers", "custom"};
11318 static const char * arm_attr_tag_ABI_WMMX_args[] =
11319 {"AAPCS", "WMMX registers", "custom"};
11320 static const char * arm_attr_tag_ABI_optimization_goals[] =
11321 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11322 "Aggressive Size", "Prefer Debug", "Aggressive Debug"};
11323 static const char * arm_attr_tag_ABI_FP_optimization_goals[] =
11324 {"None", "Prefer Speed", "Aggressive Speed", "Prefer Size",
11325 "Aggressive Size", "Prefer Accuracy", "Aggressive Accuracy"};
11326 static const char * arm_attr_tag_CPU_unaligned_access[] = {"None", "v6"};
11327 static const char * arm_attr_tag_FP_HP_extension[] =
11328 {"Not Allowed", "Allowed"};
11329 static const char * arm_attr_tag_ABI_FP_16bit_format[] =
11330 {"None", "IEEE 754", "Alternative Format"};
11331 static const char * arm_attr_tag_MPextension_use[] =
11332 {"Not Allowed", "Allowed"};
11333 static const char * arm_attr_tag_DIV_use[] =
11334 {"Allowed in Thumb-ISA, v7-R or v7-M", "Not allowed",
11335 "Allowed in v7-A with integer division extension"};
11336 static const char * arm_attr_tag_T2EE_use[] = {"Not Allowed", "Allowed"};
11337 static const char * arm_attr_tag_Virtualization_use[] =
11338 {"Not Allowed", "TrustZone", "Virtualization Extensions",
11339 "TrustZone and Virtualization Extensions"};
11340 static const char * arm_attr_tag_MPextension_use_legacy[] =
11341 {"Not Allowed", "Allowed"};
11342
11343 #define LOOKUP(id, name) \
11344 {id, #name, 0x80 | ARRAY_SIZE(arm_attr_tag_##name), arm_attr_tag_##name}
11345 static arm_attr_public_tag arm_attr_public_tags[] =
11346 {
11347 {4, "CPU_raw_name", 1, NULL},
11348 {5, "CPU_name", 1, NULL},
11349 LOOKUP(6, CPU_arch),
11350 {7, "CPU_arch_profile", 0, NULL},
11351 LOOKUP(8, ARM_ISA_use),
11352 LOOKUP(9, THUMB_ISA_use),
11353 LOOKUP(10, FP_arch),
11354 LOOKUP(11, WMMX_arch),
11355 LOOKUP(12, Advanced_SIMD_arch),
11356 LOOKUP(13, PCS_config),
11357 LOOKUP(14, ABI_PCS_R9_use),
11358 LOOKUP(15, ABI_PCS_RW_data),
11359 LOOKUP(16, ABI_PCS_RO_data),
11360 LOOKUP(17, ABI_PCS_GOT_use),
11361 LOOKUP(18, ABI_PCS_wchar_t),
11362 LOOKUP(19, ABI_FP_rounding),
11363 LOOKUP(20, ABI_FP_denormal),
11364 LOOKUP(21, ABI_FP_exceptions),
11365 LOOKUP(22, ABI_FP_user_exceptions),
11366 LOOKUP(23, ABI_FP_number_model),
11367 {24, "ABI_align_needed", 0, NULL},
11368 {25, "ABI_align_preserved", 0, NULL},
11369 LOOKUP(26, ABI_enum_size),
11370 LOOKUP(27, ABI_HardFP_use),
11371 LOOKUP(28, ABI_VFP_args),
11372 LOOKUP(29, ABI_WMMX_args),
11373 LOOKUP(30, ABI_optimization_goals),
11374 LOOKUP(31, ABI_FP_optimization_goals),
11375 {32, "compatibility", 0, NULL},
11376 LOOKUP(34, CPU_unaligned_access),
11377 LOOKUP(36, FP_HP_extension),
11378 LOOKUP(38, ABI_FP_16bit_format),
11379 LOOKUP(42, MPextension_use),
11380 LOOKUP(44, DIV_use),
11381 {64, "nodefaults", 0, NULL},
11382 {65, "also_compatible_with", 0, NULL},
11383 LOOKUP(66, T2EE_use),
11384 {67, "conformance", 1, NULL},
11385 LOOKUP(68, Virtualization_use),
11386 LOOKUP(70, MPextension_use_legacy)
11387 };
11388 #undef LOOKUP
11389
11390 static unsigned char *
11391 display_arm_attribute (unsigned char * p,
11392 const unsigned char * const end)
11393 {
11394 int tag;
11395 unsigned int len;
11396 int val;
11397 arm_attr_public_tag * attr;
11398 unsigned i;
11399 int type;
11400
11401 tag = read_uleb128 (p, &len, end);
11402 p += len;
11403 attr = NULL;
11404 for (i = 0; i < ARRAY_SIZE (arm_attr_public_tags); i++)
11405 {
11406 if (arm_attr_public_tags[i].tag == tag)
11407 {
11408 attr = &arm_attr_public_tags[i];
11409 break;
11410 }
11411 }
11412
11413 if (attr)
11414 {
11415 printf (" Tag_%s: ", attr->name);
11416 switch (attr->type)
11417 {
11418 case 0:
11419 switch (tag)
11420 {
11421 case 7: /* Tag_CPU_arch_profile. */
11422 val = read_uleb128 (p, &len, end);
11423 p += len;
11424 switch (val)
11425 {
11426 case 0: printf (_("None\n")); break;
11427 case 'A': printf (_("Application\n")); break;
11428 case 'R': printf (_("Realtime\n")); break;
11429 case 'M': printf (_("Microcontroller\n")); break;
11430 case 'S': printf (_("Application or Realtime\n")); break;
11431 default: printf ("??? (%d)\n", val); break;
11432 }
11433 break;
11434
11435 case 24: /* Tag_align_needed. */
11436 val = read_uleb128 (p, &len, end);
11437 p += len;
11438 switch (val)
11439 {
11440 case 0: printf (_("None\n")); break;
11441 case 1: printf (_("8-byte\n")); break;
11442 case 2: printf (_("4-byte\n")); break;
11443 case 3: printf ("??? 3\n"); break;
11444 default:
11445 if (val <= 12)
11446 printf (_("8-byte and up to %d-byte extended\n"),
11447 1 << val);
11448 else
11449 printf ("??? (%d)\n", val);
11450 break;
11451 }
11452 break;
11453
11454 case 25: /* Tag_align_preserved. */
11455 val = read_uleb128 (p, &len, end);
11456 p += len;
11457 switch (val)
11458 {
11459 case 0: printf (_("None\n")); break;
11460 case 1: printf (_("8-byte, except leaf SP\n")); break;
11461 case 2: printf (_("8-byte\n")); break;
11462 case 3: printf ("??? 3\n"); break;
11463 default:
11464 if (val <= 12)
11465 printf (_("8-byte and up to %d-byte extended\n"),
11466 1 << val);
11467 else
11468 printf ("??? (%d)\n", val);
11469 break;
11470 }
11471 break;
11472
11473 case 32: /* Tag_compatibility. */
11474 val = read_uleb128 (p, &len, end);
11475 p += len;
11476 printf (_("flag = %d, vendor = %s\n"), val, p);
11477 p += strlen ((char *) p) + 1;
11478 break;
11479
11480 case 64: /* Tag_nodefaults. */
11481 p++;
11482 printf (_("True\n"));
11483 break;
11484
11485 case 65: /* Tag_also_compatible_with. */
11486 val = read_uleb128 (p, &len, end);
11487 p += len;
11488 if (val == 6 /* Tag_CPU_arch. */)
11489 {
11490 val = read_uleb128 (p, &len, end);
11491 p += len;
11492 if ((unsigned int)val >= ARRAY_SIZE (arm_attr_tag_CPU_arch))
11493 printf ("??? (%d)\n", val);
11494 else
11495 printf ("%s\n", arm_attr_tag_CPU_arch[val]);
11496 }
11497 else
11498 printf ("???\n");
11499 while (*(p++) != '\0' /* NUL terminator. */);
11500 break;
11501
11502 default:
11503 abort ();
11504 }
11505 return p;
11506
11507 case 1:
11508 return display_tag_value (-1, p, end);
11509 case 2:
11510 return display_tag_value (0, p, end);
11511
11512 default:
11513 assert (attr->type & 0x80);
11514 val = read_uleb128 (p, &len, end);
11515 p += len;
11516 type = attr->type & 0x7f;
11517 if (val >= type)
11518 printf ("??? (%d)\n", val);
11519 else
11520 printf ("%s\n", attr->table[val]);
11521 return p;
11522 }
11523 }
11524
11525 return display_tag_value (tag, p, end);
11526 }
11527
11528 static unsigned char *
11529 display_gnu_attribute (unsigned char * p,
11530 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const),
11531 const unsigned char * const end)
11532 {
11533 int tag;
11534 unsigned int len;
11535 int val;
11536
11537 tag = read_uleb128 (p, &len, end);
11538 p += len;
11539
11540 /* Tag_compatibility is the only generic GNU attribute defined at
11541 present. */
11542 if (tag == 32)
11543 {
11544 val = read_uleb128 (p, &len, end);
11545 p += len;
11546 if (p == end)
11547 {
11548 printf (_("flag = %d, vendor = <corrupt>\n"), val);
11549 warn (_("corrupt vendor attribute\n"));
11550 }
11551 else
11552 {
11553 printf (_("flag = %d, vendor = %s\n"), val, p);
11554 p += strlen ((char *) p) + 1;
11555 }
11556 return p;
11557 }
11558
11559 if ((tag & 2) == 0 && display_proc_gnu_attribute)
11560 return display_proc_gnu_attribute (p, tag, end);
11561
11562 return display_tag_value (tag, p, end);
11563 }
11564
11565 static unsigned char *
11566 display_power_gnu_attribute (unsigned char * p,
11567 int tag,
11568 const unsigned char * const end)
11569 {
11570 unsigned int len;
11571 int val;
11572
11573 if (tag == Tag_GNU_Power_ABI_FP)
11574 {
11575 val = read_uleb128 (p, &len, end);
11576 p += len;
11577 printf (" Tag_GNU_Power_ABI_FP: ");
11578
11579 switch (val)
11580 {
11581 case 0:
11582 printf (_("Hard or soft float\n"));
11583 break;
11584 case 1:
11585 printf (_("Hard float\n"));
11586 break;
11587 case 2:
11588 printf (_("Soft float\n"));
11589 break;
11590 case 3:
11591 printf (_("Single-precision hard float\n"));
11592 break;
11593 default:
11594 printf ("??? (%d)\n", val);
11595 break;
11596 }
11597 return p;
11598 }
11599
11600 if (tag == Tag_GNU_Power_ABI_Vector)
11601 {
11602 val = read_uleb128 (p, &len, end);
11603 p += len;
11604 printf (" Tag_GNU_Power_ABI_Vector: ");
11605 switch (val)
11606 {
11607 case 0:
11608 printf (_("Any\n"));
11609 break;
11610 case 1:
11611 printf (_("Generic\n"));
11612 break;
11613 case 2:
11614 printf ("AltiVec\n");
11615 break;
11616 case 3:
11617 printf ("SPE\n");
11618 break;
11619 default:
11620 printf ("??? (%d)\n", val);
11621 break;
11622 }
11623 return p;
11624 }
11625
11626 if (tag == Tag_GNU_Power_ABI_Struct_Return)
11627 {
11628 if (p == end)
11629 {
11630 warn (_("corrupt Tag_GNU_Power_ABI_Struct_Return"));
11631 return p;
11632 }
11633
11634 val = read_uleb128 (p, &len, end);
11635 p += len;
11636 printf (" Tag_GNU_Power_ABI_Struct_Return: ");
11637 switch (val)
11638 {
11639 case 0:
11640 printf (_("Any\n"));
11641 break;
11642 case 1:
11643 printf ("r3/r4\n");
11644 break;
11645 case 2:
11646 printf (_("Memory\n"));
11647 break;
11648 default:
11649 printf ("??? (%d)\n", val);
11650 break;
11651 }
11652 return p;
11653 }
11654
11655 return display_tag_value (tag & 1, p, end);
11656 }
11657
11658 static void
11659 display_sparc_hwcaps (int mask)
11660 {
11661 if (mask)
11662 {
11663 int first = 1;
11664 if (mask & ELF_SPARC_HWCAP_MUL32)
11665 fputs ("mul32", stdout), first = 0;
11666 if (mask & ELF_SPARC_HWCAP_DIV32)
11667 printf ("%sdiv32", first ? "" : "|"), first = 0;
11668 if (mask & ELF_SPARC_HWCAP_FSMULD)
11669 printf ("%sfsmuld", first ? "" : "|"), first = 0;
11670 if (mask & ELF_SPARC_HWCAP_V8PLUS)
11671 printf ("%sv8plus", first ? "" : "|"), first = 0;
11672 if (mask & ELF_SPARC_HWCAP_POPC)
11673 printf ("%spopc", first ? "" : "|"), first = 0;
11674 if (mask & ELF_SPARC_HWCAP_VIS)
11675 printf ("%svis", first ? "" : "|"), first = 0;
11676 if (mask & ELF_SPARC_HWCAP_VIS2)
11677 printf ("%svis2", first ? "" : "|"), first = 0;
11678 if (mask & ELF_SPARC_HWCAP_ASI_BLK_INIT)
11679 printf ("%sASIBlkInit", first ? "" : "|"), first = 0;
11680 if (mask & ELF_SPARC_HWCAP_FMAF)
11681 printf ("%sfmaf", first ? "" : "|"), first = 0;
11682 if (mask & ELF_SPARC_HWCAP_VIS3)
11683 printf ("%svis3", first ? "" : "|"), first = 0;
11684 if (mask & ELF_SPARC_HWCAP_HPC)
11685 printf ("%shpc", first ? "" : "|"), first = 0;
11686 if (mask & ELF_SPARC_HWCAP_RANDOM)
11687 printf ("%srandom", first ? "" : "|"), first = 0;
11688 if (mask & ELF_SPARC_HWCAP_TRANS)
11689 printf ("%strans", first ? "" : "|"), first = 0;
11690 if (mask & ELF_SPARC_HWCAP_FJFMAU)
11691 printf ("%sfjfmau", first ? "" : "|"), first = 0;
11692 if (mask & ELF_SPARC_HWCAP_IMA)
11693 printf ("%sima", first ? "" : "|"), first = 0;
11694 if (mask & ELF_SPARC_HWCAP_ASI_CACHE_SPARING)
11695 printf ("%scspare", first ? "" : "|"), first = 0;
11696 }
11697 else
11698 fputc('0', stdout);
11699 fputc('\n', stdout);
11700 }
11701
11702 static unsigned char *
11703 display_sparc_gnu_attribute (unsigned char * p,
11704 int tag,
11705 const unsigned char * const end)
11706 {
11707 if (tag == Tag_GNU_Sparc_HWCAPS)
11708 {
11709 unsigned int len;
11710 int val;
11711
11712 val = read_uleb128 (p, &len, end);
11713 p += len;
11714 printf (" Tag_GNU_Sparc_HWCAPS: ");
11715 display_sparc_hwcaps (val);
11716 return p;
11717 }
11718
11719 return display_tag_value (tag, p, end);
11720 }
11721
11722 static unsigned char *
11723 display_mips_gnu_attribute (unsigned char * p,
11724 int tag,
11725 const unsigned char * const end)
11726 {
11727 if (tag == Tag_GNU_MIPS_ABI_FP)
11728 {
11729 unsigned int len;
11730 int val;
11731
11732 val = read_uleb128 (p, &len, end);
11733 p += len;
11734 printf (" Tag_GNU_MIPS_ABI_FP: ");
11735
11736 switch (val)
11737 {
11738 case 0:
11739 printf (_("Hard or soft float\n"));
11740 break;
11741 case 1:
11742 printf (_("Hard float (double precision)\n"));
11743 break;
11744 case 2:
11745 printf (_("Hard float (single precision)\n"));
11746 break;
11747 case 3:
11748 printf (_("Soft float\n"));
11749 break;
11750 case 4:
11751 printf (_("Hard float (MIPS32r2 64-bit FPU)\n"));
11752 break;
11753 default:
11754 printf ("??? (%d)\n", val);
11755 break;
11756 }
11757 return p;
11758 }
11759
11760 return display_tag_value (tag & 1, p, end);
11761 }
11762
11763 static unsigned char *
11764 display_tic6x_attribute (unsigned char * p,
11765 const unsigned char * const end)
11766 {
11767 int tag;
11768 unsigned int len;
11769 int val;
11770
11771 tag = read_uleb128 (p, &len, end);
11772 p += len;
11773
11774 switch (tag)
11775 {
11776 case Tag_ISA:
11777 val = read_uleb128 (p, &len, end);
11778 p += len;
11779 printf (" Tag_ISA: ");
11780
11781 switch (val)
11782 {
11783 case C6XABI_Tag_ISA_none:
11784 printf (_("None\n"));
11785 break;
11786 case C6XABI_Tag_ISA_C62X:
11787 printf ("C62x\n");
11788 break;
11789 case C6XABI_Tag_ISA_C67X:
11790 printf ("C67x\n");
11791 break;
11792 case C6XABI_Tag_ISA_C67XP:
11793 printf ("C67x+\n");
11794 break;
11795 case C6XABI_Tag_ISA_C64X:
11796 printf ("C64x\n");
11797 break;
11798 case C6XABI_Tag_ISA_C64XP:
11799 printf ("C64x+\n");
11800 break;
11801 case C6XABI_Tag_ISA_C674X:
11802 printf ("C674x\n");
11803 break;
11804 default:
11805 printf ("??? (%d)\n", val);
11806 break;
11807 }
11808 return p;
11809
11810 case Tag_ABI_wchar_t:
11811 val = read_uleb128 (p, &len, end);
11812 p += len;
11813 printf (" Tag_ABI_wchar_t: ");
11814 switch (val)
11815 {
11816 case 0:
11817 printf (_("Not used\n"));
11818 break;
11819 case 1:
11820 printf (_("2 bytes\n"));
11821 break;
11822 case 2:
11823 printf (_("4 bytes\n"));
11824 break;
11825 default:
11826 printf ("??? (%d)\n", val);
11827 break;
11828 }
11829 return p;
11830
11831 case Tag_ABI_stack_align_needed:
11832 val = read_uleb128 (p, &len, end);
11833 p += len;
11834 printf (" Tag_ABI_stack_align_needed: ");
11835 switch (val)
11836 {
11837 case 0:
11838 printf (_("8-byte\n"));
11839 break;
11840 case 1:
11841 printf (_("16-byte\n"));
11842 break;
11843 default:
11844 printf ("??? (%d)\n", val);
11845 break;
11846 }
11847 return p;
11848
11849 case Tag_ABI_stack_align_preserved:
11850 val = read_uleb128 (p, &len, end);
11851 p += len;
11852 printf (" Tag_ABI_stack_align_preserved: ");
11853 switch (val)
11854 {
11855 case 0:
11856 printf (_("8-byte\n"));
11857 break;
11858 case 1:
11859 printf (_("16-byte\n"));
11860 break;
11861 default:
11862 printf ("??? (%d)\n", val);
11863 break;
11864 }
11865 return p;
11866
11867 case Tag_ABI_DSBT:
11868 val = read_uleb128 (p, &len, end);
11869 p += len;
11870 printf (" Tag_ABI_DSBT: ");
11871 switch (val)
11872 {
11873 case 0:
11874 printf (_("DSBT addressing not used\n"));
11875 break;
11876 case 1:
11877 printf (_("DSBT addressing used\n"));
11878 break;
11879 default:
11880 printf ("??? (%d)\n", val);
11881 break;
11882 }
11883 return p;
11884
11885 case Tag_ABI_PID:
11886 val = read_uleb128 (p, &len, end);
11887 p += len;
11888 printf (" Tag_ABI_PID: ");
11889 switch (val)
11890 {
11891 case 0:
11892 printf (_("Data addressing position-dependent\n"));
11893 break;
11894 case 1:
11895 printf (_("Data addressing position-independent, GOT near DP\n"));
11896 break;
11897 case 2:
11898 printf (_("Data addressing position-independent, GOT far from DP\n"));
11899 break;
11900 default:
11901 printf ("??? (%d)\n", val);
11902 break;
11903 }
11904 return p;
11905
11906 case Tag_ABI_PIC:
11907 val = read_uleb128 (p, &len, end);
11908 p += len;
11909 printf (" Tag_ABI_PIC: ");
11910 switch (val)
11911 {
11912 case 0:
11913 printf (_("Code addressing position-dependent\n"));
11914 break;
11915 case 1:
11916 printf (_("Code addressing position-independent\n"));
11917 break;
11918 default:
11919 printf ("??? (%d)\n", val);
11920 break;
11921 }
11922 return p;
11923
11924 case Tag_ABI_array_object_alignment:
11925 val = read_uleb128 (p, &len, end);
11926 p += len;
11927 printf (" Tag_ABI_array_object_alignment: ");
11928 switch (val)
11929 {
11930 case 0:
11931 printf (_("8-byte\n"));
11932 break;
11933 case 1:
11934 printf (_("4-byte\n"));
11935 break;
11936 case 2:
11937 printf (_("16-byte\n"));
11938 break;
11939 default:
11940 printf ("??? (%d)\n", val);
11941 break;
11942 }
11943 return p;
11944
11945 case Tag_ABI_array_object_align_expected:
11946 val = read_uleb128 (p, &len, end);
11947 p += len;
11948 printf (" Tag_ABI_array_object_align_expected: ");
11949 switch (val)
11950 {
11951 case 0:
11952 printf (_("8-byte\n"));
11953 break;
11954 case 1:
11955 printf (_("4-byte\n"));
11956 break;
11957 case 2:
11958 printf (_("16-byte\n"));
11959 break;
11960 default:
11961 printf ("??? (%d)\n", val);
11962 break;
11963 }
11964 return p;
11965
11966 case Tag_ABI_compatibility:
11967 val = read_uleb128 (p, &len, end);
11968 p += len;
11969 printf (" Tag_ABI_compatibility: ");
11970 printf (_("flag = %d, vendor = %s\n"), val, p);
11971 p += strlen ((char *) p) + 1;
11972 return p;
11973
11974 case Tag_ABI_conformance:
11975 printf (" Tag_ABI_conformance: ");
11976 printf ("\"%s\"\n", p);
11977 p += strlen ((char *) p) + 1;
11978 return p;
11979 }
11980
11981 return display_tag_value (tag, p, end);
11982 }
11983
11984 static void
11985 display_raw_attribute (unsigned char * p, unsigned char * end)
11986 {
11987 unsigned long addr = 0;
11988 size_t bytes = end - p;
11989
11990 while (bytes)
11991 {
11992 int j;
11993 int k;
11994 int lbytes = (bytes > 16 ? 16 : bytes);
11995
11996 printf (" 0x%8.8lx ", addr);
11997
11998 for (j = 0; j < 16; j++)
11999 {
12000 if (j < lbytes)
12001 printf ("%2.2x", p[j]);
12002 else
12003 printf (" ");
12004
12005 if ((j & 3) == 3)
12006 printf (" ");
12007 }
12008
12009 for (j = 0; j < lbytes; j++)
12010 {
12011 k = p[j];
12012 if (k >= ' ' && k < 0x7f)
12013 printf ("%c", k);
12014 else
12015 printf (".");
12016 }
12017
12018 putchar ('\n');
12019
12020 p += lbytes;
12021 bytes -= lbytes;
12022 addr += lbytes;
12023 }
12024
12025 putchar ('\n');
12026 }
12027
12028 static unsigned char *
12029 display_msp430x_attribute (unsigned char * p,
12030 const unsigned char * const end)
12031 {
12032 unsigned int len;
12033 int val;
12034 int tag;
12035
12036 tag = read_uleb128 (p, & len, end);
12037 p += len;
12038
12039 switch (tag)
12040 {
12041 case OFBA_MSPABI_Tag_ISA:
12042 val = read_uleb128 (p, &len, end);
12043 p += len;
12044 printf (" Tag_ISA: ");
12045 switch (val)
12046 {
12047 case 0: printf (_("None\n")); break;
12048 case 1: printf (_("MSP430\n")); break;
12049 case 2: printf (_("MSP430X\n")); break;
12050 default: printf ("??? (%d)\n", val); break;
12051 }
12052 break;
12053
12054 case OFBA_MSPABI_Tag_Code_Model:
12055 val = read_uleb128 (p, &len, end);
12056 p += len;
12057 printf (" Tag_Code_Model: ");
12058 switch (val)
12059 {
12060 case 0: printf (_("None\n")); break;
12061 case 1: printf (_("Small\n")); break;
12062 case 2: printf (_("Large\n")); break;
12063 default: printf ("??? (%d)\n", val); break;
12064 }
12065 break;
12066
12067 case OFBA_MSPABI_Tag_Data_Model:
12068 val = read_uleb128 (p, &len, end);
12069 p += len;
12070 printf (" Tag_Data_Model: ");
12071 switch (val)
12072 {
12073 case 0: printf (_("None\n")); break;
12074 case 1: printf (_("Small\n")); break;
12075 case 2: printf (_("Large\n")); break;
12076 case 3: printf (_("Restricted Large\n")); break;
12077 default: printf ("??? (%d)\n", val); break;
12078 }
12079 break;
12080
12081 default:
12082 printf (_(" <unknown tag %d>: "), tag);
12083
12084 if (tag & 1)
12085 {
12086 printf ("\"%s\"\n", p);
12087 p += strlen ((char *) p) + 1;
12088 }
12089 else
12090 {
12091 val = read_uleb128 (p, &len, end);
12092 p += len;
12093 printf ("%d (0x%x)\n", val, val);
12094 }
12095 break;
12096 }
12097
12098 return p;
12099 }
12100
12101 static int
12102 process_attributes (FILE * file,
12103 const char * public_name,
12104 unsigned int proc_type,
12105 unsigned char * (* display_pub_attribute) (unsigned char *, const unsigned char * const),
12106 unsigned char * (* display_proc_gnu_attribute) (unsigned char *, int, const unsigned char * const))
12107 {
12108 Elf_Internal_Shdr * sect;
12109 unsigned char * contents;
12110 unsigned char * p;
12111 unsigned char * end;
12112 bfd_vma section_len;
12113 bfd_vma len;
12114 unsigned i;
12115
12116 /* Find the section header so that we get the size. */
12117 for (i = 0, sect = section_headers;
12118 i < elf_header.e_shnum;
12119 i++, sect++)
12120 {
12121 if (sect->sh_type != proc_type && sect->sh_type != SHT_GNU_ATTRIBUTES)
12122 continue;
12123
12124 contents = (unsigned char *) get_data (NULL, file, sect->sh_offset, 1,
12125 sect->sh_size, _("attributes"));
12126 if (contents == NULL)
12127 continue;
12128
12129 p = contents;
12130 if (*p == 'A')
12131 {
12132 len = sect->sh_size - 1;
12133 p++;
12134
12135 while (len > 0)
12136 {
12137 int namelen;
12138 bfd_boolean public_section;
12139 bfd_boolean gnu_section;
12140
12141 section_len = byte_get (p, 4);
12142 p += 4;
12143
12144 if (section_len > len)
12145 {
12146 printf (_("ERROR: Bad section length (%d > %d)\n"),
12147 (int) section_len, (int) len);
12148 section_len = len;
12149 }
12150
12151 len -= section_len;
12152 printf (_("Attribute Section: %s\n"), p);
12153
12154 if (public_name && streq ((char *) p, public_name))
12155 public_section = TRUE;
12156 else
12157 public_section = FALSE;
12158
12159 if (streq ((char *) p, "gnu"))
12160 gnu_section = TRUE;
12161 else
12162 gnu_section = FALSE;
12163
12164 namelen = strlen ((char *) p) + 1;
12165 p += namelen;
12166 section_len -= namelen + 4;
12167
12168 while (section_len > 0)
12169 {
12170 int tag = *(p++);
12171 int val;
12172 bfd_vma size;
12173
12174 size = byte_get (p, 4);
12175 if (size > section_len)
12176 {
12177 printf (_("ERROR: Bad subsection length (%d > %d)\n"),
12178 (int) size, (int) section_len);
12179 size = section_len;
12180 }
12181
12182 section_len -= size;
12183 end = p + size - 1;
12184 p += 4;
12185
12186 switch (tag)
12187 {
12188 case 1:
12189 printf (_("File Attributes\n"));
12190 break;
12191 case 2:
12192 printf (_("Section Attributes:"));
12193 goto do_numlist;
12194 case 3:
12195 printf (_("Symbol Attributes:"));
12196 do_numlist:
12197 for (;;)
12198 {
12199 unsigned int j;
12200
12201 val = read_uleb128 (p, &j, end);
12202 p += j;
12203 if (val == 0)
12204 break;
12205 printf (" %d", val);
12206 }
12207 printf ("\n");
12208 break;
12209 default:
12210 printf (_("Unknown tag: %d\n"), tag);
12211 public_section = FALSE;
12212 break;
12213 }
12214
12215 if (public_section)
12216 {
12217 while (p < end)
12218 p = display_pub_attribute (p, end);
12219 }
12220 else if (gnu_section)
12221 {
12222 while (p < end)
12223 p = display_gnu_attribute (p,
12224 display_proc_gnu_attribute,
12225 end);
12226 }
12227 else
12228 {
12229 printf (_(" Unknown section contexts\n"));
12230 display_raw_attribute (p, end);
12231 p = end;
12232 }
12233 }
12234 }
12235 }
12236 else
12237 printf (_("Unknown format '%c'\n"), *p);
12238
12239 free (contents);
12240 }
12241 return 1;
12242 }
12243
12244 static int
12245 process_arm_specific (FILE * file)
12246 {
12247 return process_attributes (file, "aeabi", SHT_ARM_ATTRIBUTES,
12248 display_arm_attribute, NULL);
12249 }
12250
12251 static int
12252 process_power_specific (FILE * file)
12253 {
12254 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12255 display_power_gnu_attribute);
12256 }
12257
12258 static int
12259 process_sparc_specific (FILE * file)
12260 {
12261 return process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12262 display_sparc_gnu_attribute);
12263 }
12264
12265 static int
12266 process_tic6x_specific (FILE * file)
12267 {
12268 return process_attributes (file, "c6xabi", SHT_C6000_ATTRIBUTES,
12269 display_tic6x_attribute, NULL);
12270 }
12271
12272 static int
12273 process_msp430x_specific (FILE * file)
12274 {
12275 return process_attributes (file, "mspabi", SHT_MSP430_ATTRIBUTES,
12276 display_msp430x_attribute, NULL);
12277 }
12278
12279 /* DATA points to the contents of a MIPS GOT that starts at VMA PLTGOT.
12280 Print the Address, Access and Initial fields of an entry at VMA ADDR
12281 and return the VMA of the next entry. */
12282
12283 static bfd_vma
12284 print_mips_got_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12285 {
12286 printf (" ");
12287 print_vma (addr, LONG_HEX);
12288 printf (" ");
12289 if (addr < pltgot + 0xfff0)
12290 printf ("%6d(gp)", (int) (addr - pltgot - 0x7ff0));
12291 else
12292 printf ("%10s", "");
12293 printf (" ");
12294 if (data == NULL)
12295 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12296 else
12297 {
12298 bfd_vma entry;
12299
12300 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12301 print_vma (entry, LONG_HEX);
12302 }
12303 return addr + (is_32bit_elf ? 4 : 8);
12304 }
12305
12306 /* DATA points to the contents of a MIPS PLT GOT that starts at VMA
12307 PLTGOT. Print the Address and Initial fields of an entry at VMA
12308 ADDR and return the VMA of the next entry. */
12309
12310 static bfd_vma
12311 print_mips_pltgot_entry (unsigned char * data, bfd_vma pltgot, bfd_vma addr)
12312 {
12313 printf (" ");
12314 print_vma (addr, LONG_HEX);
12315 printf (" ");
12316 if (data == NULL)
12317 printf ("%*s", is_32bit_elf ? 8 : 16, _("<unknown>"));
12318 else
12319 {
12320 bfd_vma entry;
12321
12322 entry = byte_get (data + addr - pltgot, is_32bit_elf ? 4 : 8);
12323 print_vma (entry, LONG_HEX);
12324 }
12325 return addr + (is_32bit_elf ? 4 : 8);
12326 }
12327
12328 static int
12329 process_mips_specific (FILE * file)
12330 {
12331 Elf_Internal_Dyn * entry;
12332 size_t liblist_offset = 0;
12333 size_t liblistno = 0;
12334 size_t conflictsno = 0;
12335 size_t options_offset = 0;
12336 size_t conflicts_offset = 0;
12337 size_t pltrelsz = 0;
12338 size_t pltrel = 0;
12339 bfd_vma pltgot = 0;
12340 bfd_vma mips_pltgot = 0;
12341 bfd_vma jmprel = 0;
12342 bfd_vma local_gotno = 0;
12343 bfd_vma gotsym = 0;
12344 bfd_vma symtabno = 0;
12345
12346 process_attributes (file, NULL, SHT_GNU_ATTRIBUTES, NULL,
12347 display_mips_gnu_attribute);
12348
12349 /* We have a lot of special sections. Thanks SGI! */
12350 if (dynamic_section == NULL)
12351 /* No information available. */
12352 return 0;
12353
12354 for (entry = dynamic_section; entry->d_tag != DT_NULL; ++entry)
12355 switch (entry->d_tag)
12356 {
12357 case DT_MIPS_LIBLIST:
12358 liblist_offset
12359 = offset_from_vma (file, entry->d_un.d_val,
12360 liblistno * sizeof (Elf32_External_Lib));
12361 break;
12362 case DT_MIPS_LIBLISTNO:
12363 liblistno = entry->d_un.d_val;
12364 break;
12365 case DT_MIPS_OPTIONS:
12366 options_offset = offset_from_vma (file, entry->d_un.d_val, 0);
12367 break;
12368 case DT_MIPS_CONFLICT:
12369 conflicts_offset
12370 = offset_from_vma (file, entry->d_un.d_val,
12371 conflictsno * sizeof (Elf32_External_Conflict));
12372 break;
12373 case DT_MIPS_CONFLICTNO:
12374 conflictsno = entry->d_un.d_val;
12375 break;
12376 case DT_PLTGOT:
12377 pltgot = entry->d_un.d_ptr;
12378 break;
12379 case DT_MIPS_LOCAL_GOTNO:
12380 local_gotno = entry->d_un.d_val;
12381 break;
12382 case DT_MIPS_GOTSYM:
12383 gotsym = entry->d_un.d_val;
12384 break;
12385 case DT_MIPS_SYMTABNO:
12386 symtabno = entry->d_un.d_val;
12387 break;
12388 case DT_MIPS_PLTGOT:
12389 mips_pltgot = entry->d_un.d_ptr;
12390 break;
12391 case DT_PLTREL:
12392 pltrel = entry->d_un.d_val;
12393 break;
12394 case DT_PLTRELSZ:
12395 pltrelsz = entry->d_un.d_val;
12396 break;
12397 case DT_JMPREL:
12398 jmprel = entry->d_un.d_ptr;
12399 break;
12400 default:
12401 break;
12402 }
12403
12404 if (liblist_offset != 0 && liblistno != 0 && do_dynamic)
12405 {
12406 Elf32_External_Lib * elib;
12407 size_t cnt;
12408
12409 elib = (Elf32_External_Lib *) get_data (NULL, file, liblist_offset,
12410 liblistno,
12411 sizeof (Elf32_External_Lib),
12412 _("liblist section data"));
12413 if (elib)
12414 {
12415 printf (_("\nSection '.liblist' contains %lu entries:\n"),
12416 (unsigned long) liblistno);
12417 fputs (_(" Library Time Stamp Checksum Version Flags\n"),
12418 stdout);
12419
12420 for (cnt = 0; cnt < liblistno; ++cnt)
12421 {
12422 Elf32_Lib liblist;
12423 time_t atime;
12424 char timebuf[20];
12425 struct tm * tmp;
12426
12427 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12428 atime = BYTE_GET (elib[cnt].l_time_stamp);
12429 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12430 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12431 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12432
12433 tmp = gmtime (&atime);
12434 snprintf (timebuf, sizeof (timebuf),
12435 "%04u-%02u-%02uT%02u:%02u:%02u",
12436 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12437 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12438
12439 printf ("%3lu: ", (unsigned long) cnt);
12440 if (VALID_DYNAMIC_NAME (liblist.l_name))
12441 print_symbol (20, GET_DYNAMIC_NAME (liblist.l_name));
12442 else
12443 printf (_("<corrupt: %9ld>"), liblist.l_name);
12444 printf (" %s %#10lx %-7ld", timebuf, liblist.l_checksum,
12445 liblist.l_version);
12446
12447 if (liblist.l_flags == 0)
12448 puts (_(" NONE"));
12449 else
12450 {
12451 static const struct
12452 {
12453 const char * name;
12454 int bit;
12455 }
12456 l_flags_vals[] =
12457 {
12458 { " EXACT_MATCH", LL_EXACT_MATCH },
12459 { " IGNORE_INT_VER", LL_IGNORE_INT_VER },
12460 { " REQUIRE_MINOR", LL_REQUIRE_MINOR },
12461 { " EXPORTS", LL_EXPORTS },
12462 { " DELAY_LOAD", LL_DELAY_LOAD },
12463 { " DELTA", LL_DELTA }
12464 };
12465 int flags = liblist.l_flags;
12466 size_t fcnt;
12467
12468 for (fcnt = 0; fcnt < ARRAY_SIZE (l_flags_vals); ++fcnt)
12469 if ((flags & l_flags_vals[fcnt].bit) != 0)
12470 {
12471 fputs (l_flags_vals[fcnt].name, stdout);
12472 flags ^= l_flags_vals[fcnt].bit;
12473 }
12474 if (flags != 0)
12475 printf (" %#x", (unsigned int) flags);
12476
12477 puts ("");
12478 }
12479 }
12480
12481 free (elib);
12482 }
12483 }
12484
12485 if (options_offset != 0)
12486 {
12487 Elf_External_Options * eopt;
12488 Elf_Internal_Shdr * sect = section_headers;
12489 Elf_Internal_Options * iopt;
12490 Elf_Internal_Options * option;
12491 size_t offset;
12492 int cnt;
12493
12494 /* Find the section header so that we get the size. */
12495 while (sect->sh_type != SHT_MIPS_OPTIONS)
12496 ++sect;
12497
12498 eopt = (Elf_External_Options *) get_data (NULL, file, options_offset, 1,
12499 sect->sh_size, _("options"));
12500 if (eopt)
12501 {
12502 iopt = (Elf_Internal_Options *)
12503 cmalloc ((sect->sh_size / sizeof (eopt)), sizeof (* iopt));
12504 if (iopt == NULL)
12505 {
12506 error (_("Out of memory\n"));
12507 return 0;
12508 }
12509
12510 offset = cnt = 0;
12511 option = iopt;
12512
12513 while (offset < sect->sh_size)
12514 {
12515 Elf_External_Options * eoption;
12516
12517 eoption = (Elf_External_Options *) ((char *) eopt + offset);
12518
12519 option->kind = BYTE_GET (eoption->kind);
12520 option->size = BYTE_GET (eoption->size);
12521 option->section = BYTE_GET (eoption->section);
12522 option->info = BYTE_GET (eoption->info);
12523
12524 offset += option->size;
12525
12526 ++option;
12527 ++cnt;
12528 }
12529
12530 printf (_("\nSection '%s' contains %d entries:\n"),
12531 SECTION_NAME (sect), cnt);
12532
12533 option = iopt;
12534
12535 while (cnt-- > 0)
12536 {
12537 size_t len;
12538
12539 switch (option->kind)
12540 {
12541 case ODK_NULL:
12542 /* This shouldn't happen. */
12543 printf (" NULL %d %lx", option->section, option->info);
12544 break;
12545 case ODK_REGINFO:
12546 printf (" REGINFO ");
12547 if (elf_header.e_machine == EM_MIPS)
12548 {
12549 /* 32bit form. */
12550 Elf32_External_RegInfo * ereg;
12551 Elf32_RegInfo reginfo;
12552
12553 ereg = (Elf32_External_RegInfo *) (option + 1);
12554 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12555 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12556 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12557 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12558 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12559 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12560
12561 printf ("GPR %08lx GP 0x%lx\n",
12562 reginfo.ri_gprmask,
12563 (unsigned long) reginfo.ri_gp_value);
12564 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12565 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12566 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12567 }
12568 else
12569 {
12570 /* 64 bit form. */
12571 Elf64_External_RegInfo * ereg;
12572 Elf64_Internal_RegInfo reginfo;
12573
12574 ereg = (Elf64_External_RegInfo *) (option + 1);
12575 reginfo.ri_gprmask = BYTE_GET (ereg->ri_gprmask);
12576 reginfo.ri_cprmask[0] = BYTE_GET (ereg->ri_cprmask[0]);
12577 reginfo.ri_cprmask[1] = BYTE_GET (ereg->ri_cprmask[1]);
12578 reginfo.ri_cprmask[2] = BYTE_GET (ereg->ri_cprmask[2]);
12579 reginfo.ri_cprmask[3] = BYTE_GET (ereg->ri_cprmask[3]);
12580 reginfo.ri_gp_value = BYTE_GET (ereg->ri_gp_value);
12581
12582 printf ("GPR %08lx GP 0x",
12583 reginfo.ri_gprmask);
12584 printf_vma (reginfo.ri_gp_value);
12585 printf ("\n");
12586
12587 printf (" CPR0 %08lx CPR1 %08lx CPR2 %08lx CPR3 %08lx\n",
12588 reginfo.ri_cprmask[0], reginfo.ri_cprmask[1],
12589 reginfo.ri_cprmask[2], reginfo.ri_cprmask[3]);
12590 }
12591 ++option;
12592 continue;
12593 case ODK_EXCEPTIONS:
12594 fputs (" EXCEPTIONS fpe_min(", stdout);
12595 process_mips_fpe_exception (option->info & OEX_FPU_MIN);
12596 fputs (") fpe_max(", stdout);
12597 process_mips_fpe_exception ((option->info & OEX_FPU_MAX) >> 8);
12598 fputs (")", stdout);
12599
12600 if (option->info & OEX_PAGE0)
12601 fputs (" PAGE0", stdout);
12602 if (option->info & OEX_SMM)
12603 fputs (" SMM", stdout);
12604 if (option->info & OEX_FPDBUG)
12605 fputs (" FPDBUG", stdout);
12606 if (option->info & OEX_DISMISS)
12607 fputs (" DISMISS", stdout);
12608 break;
12609 case ODK_PAD:
12610 fputs (" PAD ", stdout);
12611 if (option->info & OPAD_PREFIX)
12612 fputs (" PREFIX", stdout);
12613 if (option->info & OPAD_POSTFIX)
12614 fputs (" POSTFIX", stdout);
12615 if (option->info & OPAD_SYMBOL)
12616 fputs (" SYMBOL", stdout);
12617 break;
12618 case ODK_HWPATCH:
12619 fputs (" HWPATCH ", stdout);
12620 if (option->info & OHW_R4KEOP)
12621 fputs (" R4KEOP", stdout);
12622 if (option->info & OHW_R8KPFETCH)
12623 fputs (" R8KPFETCH", stdout);
12624 if (option->info & OHW_R5KEOP)
12625 fputs (" R5KEOP", stdout);
12626 if (option->info & OHW_R5KCVTL)
12627 fputs (" R5KCVTL", stdout);
12628 break;
12629 case ODK_FILL:
12630 fputs (" FILL ", stdout);
12631 /* XXX Print content of info word? */
12632 break;
12633 case ODK_TAGS:
12634 fputs (" TAGS ", stdout);
12635 /* XXX Print content of info word? */
12636 break;
12637 case ODK_HWAND:
12638 fputs (" HWAND ", stdout);
12639 if (option->info & OHWA0_R4KEOP_CHECKED)
12640 fputs (" R4KEOP_CHECKED", stdout);
12641 if (option->info & OHWA0_R4KEOP_CLEAN)
12642 fputs (" R4KEOP_CLEAN", stdout);
12643 break;
12644 case ODK_HWOR:
12645 fputs (" HWOR ", stdout);
12646 if (option->info & OHWA0_R4KEOP_CHECKED)
12647 fputs (" R4KEOP_CHECKED", stdout);
12648 if (option->info & OHWA0_R4KEOP_CLEAN)
12649 fputs (" R4KEOP_CLEAN", stdout);
12650 break;
12651 case ODK_GP_GROUP:
12652 printf (" GP_GROUP %#06lx self-contained %#06lx",
12653 option->info & OGP_GROUP,
12654 (option->info & OGP_SELF) >> 16);
12655 break;
12656 case ODK_IDENT:
12657 printf (" IDENT %#06lx self-contained %#06lx",
12658 option->info & OGP_GROUP,
12659 (option->info & OGP_SELF) >> 16);
12660 break;
12661 default:
12662 /* This shouldn't happen. */
12663 printf (" %3d ??? %d %lx",
12664 option->kind, option->section, option->info);
12665 break;
12666 }
12667
12668 len = sizeof (* eopt);
12669 while (len < option->size)
12670 if (((char *) option)[len] >= ' '
12671 && ((char *) option)[len] < 0x7f)
12672 printf ("%c", ((char *) option)[len++]);
12673 else
12674 printf ("\\%03o", ((char *) option)[len++]);
12675
12676 fputs ("\n", stdout);
12677 ++option;
12678 }
12679
12680 free (eopt);
12681 }
12682 }
12683
12684 if (conflicts_offset != 0 && conflictsno != 0)
12685 {
12686 Elf32_Conflict * iconf;
12687 size_t cnt;
12688
12689 if (dynamic_symbols == NULL)
12690 {
12691 error (_("conflict list found without a dynamic symbol table\n"));
12692 return 0;
12693 }
12694
12695 iconf = (Elf32_Conflict *) cmalloc (conflictsno, sizeof (* iconf));
12696 if (iconf == NULL)
12697 {
12698 error (_("Out of memory\n"));
12699 return 0;
12700 }
12701
12702 if (is_32bit_elf)
12703 {
12704 Elf32_External_Conflict * econf32;
12705
12706 econf32 = (Elf32_External_Conflict *)
12707 get_data (NULL, file, conflicts_offset, conflictsno,
12708 sizeof (* econf32), _("conflict"));
12709 if (!econf32)
12710 return 0;
12711
12712 for (cnt = 0; cnt < conflictsno; ++cnt)
12713 iconf[cnt] = BYTE_GET (econf32[cnt]);
12714
12715 free (econf32);
12716 }
12717 else
12718 {
12719 Elf64_External_Conflict * econf64;
12720
12721 econf64 = (Elf64_External_Conflict *)
12722 get_data (NULL, file, conflicts_offset, conflictsno,
12723 sizeof (* econf64), _("conflict"));
12724 if (!econf64)
12725 return 0;
12726
12727 for (cnt = 0; cnt < conflictsno; ++cnt)
12728 iconf[cnt] = BYTE_GET (econf64[cnt]);
12729
12730 free (econf64);
12731 }
12732
12733 printf (_("\nSection '.conflict' contains %lu entries:\n"),
12734 (unsigned long) conflictsno);
12735 puts (_(" Num: Index Value Name"));
12736
12737 for (cnt = 0; cnt < conflictsno; ++cnt)
12738 {
12739 Elf_Internal_Sym * psym = & dynamic_symbols[iconf[cnt]];
12740
12741 printf ("%5lu: %8lu ", (unsigned long) cnt, iconf[cnt]);
12742 print_vma (psym->st_value, FULL_HEX);
12743 putchar (' ');
12744 if (VALID_DYNAMIC_NAME (psym->st_name))
12745 print_symbol (25, GET_DYNAMIC_NAME (psym->st_name));
12746 else
12747 printf (_("<corrupt: %14ld>"), psym->st_name);
12748 putchar ('\n');
12749 }
12750
12751 free (iconf);
12752 }
12753
12754 if (pltgot != 0 && local_gotno != 0)
12755 {
12756 bfd_vma ent, local_end, global_end;
12757 size_t i, offset;
12758 unsigned char * data;
12759 int addr_size;
12760
12761 ent = pltgot;
12762 addr_size = (is_32bit_elf ? 4 : 8);
12763 local_end = pltgot + local_gotno * addr_size;
12764 global_end = local_end + (symtabno - gotsym) * addr_size;
12765
12766 offset = offset_from_vma (file, pltgot, global_end - pltgot);
12767 data = (unsigned char *) get_data (NULL, file, offset,
12768 global_end - pltgot, 1,
12769 _("Global Offset Table data"));
12770 if (data == NULL)
12771 return 0;
12772
12773 printf (_("\nPrimary GOT:\n"));
12774 printf (_(" Canonical gp value: "));
12775 print_vma (pltgot + 0x7ff0, LONG_HEX);
12776 printf ("\n\n");
12777
12778 printf (_(" Reserved entries:\n"));
12779 printf (_(" %*s %10s %*s Purpose\n"),
12780 addr_size * 2, _("Address"), _("Access"),
12781 addr_size * 2, _("Initial"));
12782 ent = print_mips_got_entry (data, pltgot, ent);
12783 printf (_(" Lazy resolver\n"));
12784 if (data
12785 && (byte_get (data + ent - pltgot, addr_size)
12786 >> (addr_size * 8 - 1)) != 0)
12787 {
12788 ent = print_mips_got_entry (data, pltgot, ent);
12789 printf (_(" Module pointer (GNU extension)\n"));
12790 }
12791 printf ("\n");
12792
12793 if (ent < local_end)
12794 {
12795 printf (_(" Local entries:\n"));
12796 printf (" %*s %10s %*s\n",
12797 addr_size * 2, _("Address"), _("Access"),
12798 addr_size * 2, _("Initial"));
12799 while (ent < local_end)
12800 {
12801 ent = print_mips_got_entry (data, pltgot, ent);
12802 printf ("\n");
12803 }
12804 printf ("\n");
12805 }
12806
12807 if (gotsym < symtabno)
12808 {
12809 int sym_width;
12810
12811 printf (_(" Global entries:\n"));
12812 printf (" %*s %10s %*s %*s %-7s %3s %s\n",
12813 addr_size * 2, _("Address"),
12814 _("Access"),
12815 addr_size * 2, _("Initial"),
12816 addr_size * 2, _("Sym.Val."),
12817 _("Type"),
12818 /* Note for translators: "Ndx" = abbreviated form of "Index". */
12819 _("Ndx"), _("Name"));
12820
12821 sym_width = (is_32bit_elf ? 80 : 160) - 28 - addr_size * 6 - 1;
12822 for (i = gotsym; i < symtabno; i++)
12823 {
12824 Elf_Internal_Sym * psym;
12825
12826 psym = dynamic_symbols + i;
12827 ent = print_mips_got_entry (data, pltgot, ent);
12828 printf (" ");
12829 print_vma (psym->st_value, LONG_HEX);
12830 printf (" %-7s %3s ",
12831 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12832 get_symbol_index_type (psym->st_shndx));
12833 if (VALID_DYNAMIC_NAME (psym->st_name))
12834 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12835 else
12836 printf (_("<corrupt: %14ld>"), psym->st_name);
12837 printf ("\n");
12838 }
12839 printf ("\n");
12840 }
12841
12842 if (data)
12843 free (data);
12844 }
12845
12846 if (mips_pltgot != 0 && jmprel != 0 && pltrel != 0 && pltrelsz != 0)
12847 {
12848 bfd_vma ent, end;
12849 size_t offset, rel_offset;
12850 unsigned long count, i;
12851 unsigned char * data;
12852 int addr_size, sym_width;
12853 Elf_Internal_Rela * rels;
12854
12855 rel_offset = offset_from_vma (file, jmprel, pltrelsz);
12856 if (pltrel == DT_RELA)
12857 {
12858 if (!slurp_rela_relocs (file, rel_offset, pltrelsz, &rels, &count))
12859 return 0;
12860 }
12861 else
12862 {
12863 if (!slurp_rel_relocs (file, rel_offset, pltrelsz, &rels, &count))
12864 return 0;
12865 }
12866
12867 ent = mips_pltgot;
12868 addr_size = (is_32bit_elf ? 4 : 8);
12869 end = mips_pltgot + (2 + count) * addr_size;
12870
12871 offset = offset_from_vma (file, mips_pltgot, end - mips_pltgot);
12872 data = (unsigned char *) get_data (NULL, file, offset, end - mips_pltgot,
12873 1, _("Procedure Linkage Table data"));
12874 if (data == NULL)
12875 return 0;
12876
12877 printf ("\nPLT GOT:\n\n");
12878 printf (_(" Reserved entries:\n"));
12879 printf (_(" %*s %*s Purpose\n"),
12880 addr_size * 2, _("Address"), addr_size * 2, _("Initial"));
12881 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12882 printf (_(" PLT lazy resolver\n"));
12883 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12884 printf (_(" Module pointer\n"));
12885 printf ("\n");
12886
12887 printf (_(" Entries:\n"));
12888 printf (" %*s %*s %*s %-7s %3s %s\n",
12889 addr_size * 2, _("Address"),
12890 addr_size * 2, _("Initial"),
12891 addr_size * 2, _("Sym.Val."), _("Type"), _("Ndx"), _("Name"));
12892 sym_width = (is_32bit_elf ? 80 : 160) - 17 - addr_size * 6 - 1;
12893 for (i = 0; i < count; i++)
12894 {
12895 Elf_Internal_Sym * psym;
12896
12897 psym = dynamic_symbols + get_reloc_symindex (rels[i].r_info);
12898 ent = print_mips_pltgot_entry (data, mips_pltgot, ent);
12899 printf (" ");
12900 print_vma (psym->st_value, LONG_HEX);
12901 printf (" %-7s %3s ",
12902 get_symbol_type (ELF_ST_TYPE (psym->st_info)),
12903 get_symbol_index_type (psym->st_shndx));
12904 if (VALID_DYNAMIC_NAME (psym->st_name))
12905 print_symbol (sym_width, GET_DYNAMIC_NAME (psym->st_name));
12906 else
12907 printf (_("<corrupt: %14ld>"), psym->st_name);
12908 printf ("\n");
12909 }
12910 printf ("\n");
12911
12912 if (data)
12913 free (data);
12914 free (rels);
12915 }
12916
12917 return 1;
12918 }
12919
12920 static int
12921 process_gnu_liblist (FILE * file)
12922 {
12923 Elf_Internal_Shdr * section;
12924 Elf_Internal_Shdr * string_sec;
12925 Elf32_External_Lib * elib;
12926 char * strtab;
12927 size_t strtab_size;
12928 size_t cnt;
12929 unsigned i;
12930
12931 if (! do_arch)
12932 return 0;
12933
12934 for (i = 0, section = section_headers;
12935 i < elf_header.e_shnum;
12936 i++, section++)
12937 {
12938 switch (section->sh_type)
12939 {
12940 case SHT_GNU_LIBLIST:
12941 if (section->sh_link >= elf_header.e_shnum)
12942 break;
12943
12944 elib = (Elf32_External_Lib *)
12945 get_data (NULL, file, section->sh_offset, 1, section->sh_size,
12946 _("liblist section data"));
12947
12948 if (elib == NULL)
12949 break;
12950 string_sec = section_headers + section->sh_link;
12951
12952 strtab = (char *) get_data (NULL, file, string_sec->sh_offset, 1,
12953 string_sec->sh_size,
12954 _("liblist string table"));
12955 if (strtab == NULL
12956 || section->sh_entsize != sizeof (Elf32_External_Lib))
12957 {
12958 free (elib);
12959 free (strtab);
12960 break;
12961 }
12962 strtab_size = string_sec->sh_size;
12963
12964 printf (_("\nLibrary list section '%s' contains %lu entries:\n"),
12965 SECTION_NAME (section),
12966 (unsigned long) (section->sh_size / sizeof (Elf32_External_Lib)));
12967
12968 puts (_(" Library Time Stamp Checksum Version Flags"));
12969
12970 for (cnt = 0; cnt < section->sh_size / sizeof (Elf32_External_Lib);
12971 ++cnt)
12972 {
12973 Elf32_Lib liblist;
12974 time_t atime;
12975 char timebuf[20];
12976 struct tm * tmp;
12977
12978 liblist.l_name = BYTE_GET (elib[cnt].l_name);
12979 atime = BYTE_GET (elib[cnt].l_time_stamp);
12980 liblist.l_checksum = BYTE_GET (elib[cnt].l_checksum);
12981 liblist.l_version = BYTE_GET (elib[cnt].l_version);
12982 liblist.l_flags = BYTE_GET (elib[cnt].l_flags);
12983
12984 tmp = gmtime (&atime);
12985 snprintf (timebuf, sizeof (timebuf),
12986 "%04u-%02u-%02uT%02u:%02u:%02u",
12987 tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
12988 tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
12989
12990 printf ("%3lu: ", (unsigned long) cnt);
12991 if (do_wide)
12992 printf ("%-20s", liblist.l_name < strtab_size
12993 ? strtab + liblist.l_name : _("<corrupt>"));
12994 else
12995 printf ("%-20.20s", liblist.l_name < strtab_size
12996 ? strtab + liblist.l_name : _("<corrupt>"));
12997 printf (" %s %#010lx %-7ld %-7ld\n", timebuf, liblist.l_checksum,
12998 liblist.l_version, liblist.l_flags);
12999 }
13000
13001 free (elib);
13002 free (strtab);
13003 }
13004 }
13005
13006 return 1;
13007 }
13008
13009 static const char *
13010 get_note_type (unsigned e_type)
13011 {
13012 static char buff[64];
13013
13014 if (elf_header.e_type == ET_CORE)
13015 switch (e_type)
13016 {
13017 case NT_AUXV:
13018 return _("NT_AUXV (auxiliary vector)");
13019 case NT_PRSTATUS:
13020 return _("NT_PRSTATUS (prstatus structure)");
13021 case NT_FPREGSET:
13022 return _("NT_FPREGSET (floating point registers)");
13023 case NT_PRPSINFO:
13024 return _("NT_PRPSINFO (prpsinfo structure)");
13025 case NT_TASKSTRUCT:
13026 return _("NT_TASKSTRUCT (task structure)");
13027 case NT_PRXFPREG:
13028 return _("NT_PRXFPREG (user_xfpregs structure)");
13029 case NT_PPC_VMX:
13030 return _("NT_PPC_VMX (ppc Altivec registers)");
13031 case NT_PPC_VSX:
13032 return _("NT_PPC_VSX (ppc VSX registers)");
13033 case NT_386_TLS:
13034 return _("NT_386_TLS (x86 TLS information)");
13035 case NT_386_IOPERM:
13036 return _("NT_386_IOPERM (x86 I/O permissions)");
13037 case NT_X86_XSTATE:
13038 return _("NT_X86_XSTATE (x86 XSAVE extended state)");
13039 case NT_S390_HIGH_GPRS:
13040 return _("NT_S390_HIGH_GPRS (s390 upper register halves)");
13041 case NT_S390_TIMER:
13042 return _("NT_S390_TIMER (s390 timer register)");
13043 case NT_S390_TODCMP:
13044 return _("NT_S390_TODCMP (s390 TOD comparator register)");
13045 case NT_S390_TODPREG:
13046 return _("NT_S390_TODPREG (s390 TOD programmable register)");
13047 case NT_S390_CTRS:
13048 return _("NT_S390_CTRS (s390 control registers)");
13049 case NT_S390_PREFIX:
13050 return _("NT_S390_PREFIX (s390 prefix register)");
13051 case NT_S390_LAST_BREAK:
13052 return _("NT_S390_LAST_BREAK (s390 last breaking event address)");
13053 case NT_S390_SYSTEM_CALL:
13054 return _("NT_S390_SYSTEM_CALL (s390 system call restart data)");
13055 case NT_S390_TDB:
13056 return _("NT_S390_TDB (s390 transaction diagnostic block)");
13057 case NT_ARM_VFP:
13058 return _("NT_ARM_VFP (arm VFP registers)");
13059 case NT_ARM_TLS:
13060 return _("NT_ARM_TLS (AArch TLS registers)");
13061 case NT_ARM_HW_BREAK:
13062 return _("NT_ARM_HW_BREAK (AArch hardware breakpoint registers)");
13063 case NT_ARM_HW_WATCH:
13064 return _("NT_ARM_HW_WATCH (AArch hardware watchpoint registers)");
13065 case NT_PSTATUS:
13066 return _("NT_PSTATUS (pstatus structure)");
13067 case NT_FPREGS:
13068 return _("NT_FPREGS (floating point registers)");
13069 case NT_PSINFO:
13070 return _("NT_PSINFO (psinfo structure)");
13071 case NT_LWPSTATUS:
13072 return _("NT_LWPSTATUS (lwpstatus_t structure)");
13073 case NT_LWPSINFO:
13074 return _("NT_LWPSINFO (lwpsinfo_t structure)");
13075 case NT_WIN32PSTATUS:
13076 return _("NT_WIN32PSTATUS (win32_pstatus structure)");
13077 case NT_SIGINFO:
13078 return _("NT_SIGINFO (siginfo_t data)");
13079 case NT_FILE:
13080 return _("NT_FILE (mapped files)");
13081 default:
13082 break;
13083 }
13084 else
13085 switch (e_type)
13086 {
13087 case NT_VERSION:
13088 return _("NT_VERSION (version)");
13089 case NT_ARCH:
13090 return _("NT_ARCH (architecture)");
13091 default:
13092 break;
13093 }
13094
13095 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13096 return buff;
13097 }
13098
13099 static int
13100 print_core_note (Elf_Internal_Note *pnote)
13101 {
13102 unsigned int addr_size = is_32bit_elf ? 4 : 8;
13103 bfd_vma count, page_size;
13104 unsigned char *descdata, *filenames, *descend;
13105
13106 if (pnote->type != NT_FILE)
13107 return 1;
13108
13109 #ifndef BFD64
13110 if (!is_32bit_elf)
13111 {
13112 printf (_(" Cannot decode 64-bit note in 32-bit build\n"));
13113 /* Still "successful". */
13114 return 1;
13115 }
13116 #endif
13117
13118 if (pnote->descsz < 2 * addr_size)
13119 {
13120 printf (_(" Malformed note - too short for header\n"));
13121 return 0;
13122 }
13123
13124 descdata = (unsigned char *) pnote->descdata;
13125 descend = descdata + pnote->descsz;
13126
13127 if (descdata[pnote->descsz - 1] != '\0')
13128 {
13129 printf (_(" Malformed note - does not end with \\0\n"));
13130 return 0;
13131 }
13132
13133 count = byte_get (descdata, addr_size);
13134 descdata += addr_size;
13135
13136 page_size = byte_get (descdata, addr_size);
13137 descdata += addr_size;
13138
13139 if (pnote->descsz < 2 * addr_size + count * 3 * addr_size)
13140 {
13141 printf (_(" Malformed note - too short for supplied file count\n"));
13142 return 0;
13143 }
13144
13145 printf (_(" Page size: "));
13146 print_vma (page_size, DEC);
13147 printf ("\n");
13148
13149 printf (_(" %*s%*s%*s\n"),
13150 (int) (2 + 2 * addr_size), _("Start"),
13151 (int) (4 + 2 * addr_size), _("End"),
13152 (int) (4 + 2 * addr_size), _("Page Offset"));
13153 filenames = descdata + count * 3 * addr_size;
13154 while (--count > 0)
13155 {
13156 bfd_vma start, end, file_ofs;
13157
13158 if (filenames == descend)
13159 {
13160 printf (_(" Malformed note - filenames end too early\n"));
13161 return 0;
13162 }
13163
13164 start = byte_get (descdata, addr_size);
13165 descdata += addr_size;
13166 end = byte_get (descdata, addr_size);
13167 descdata += addr_size;
13168 file_ofs = byte_get (descdata, addr_size);
13169 descdata += addr_size;
13170
13171 printf (" ");
13172 print_vma (start, FULL_HEX);
13173 printf (" ");
13174 print_vma (end, FULL_HEX);
13175 printf (" ");
13176 print_vma (file_ofs, FULL_HEX);
13177 printf ("\n %s\n", filenames);
13178
13179 filenames += 1 + strlen ((char *) filenames);
13180 }
13181
13182 return 1;
13183 }
13184
13185 static const char *
13186 get_gnu_elf_note_type (unsigned e_type)
13187 {
13188 static char buff[64];
13189
13190 switch (e_type)
13191 {
13192 case NT_GNU_ABI_TAG:
13193 return _("NT_GNU_ABI_TAG (ABI version tag)");
13194 case NT_GNU_HWCAP:
13195 return _("NT_GNU_HWCAP (DSO-supplied software HWCAP info)");
13196 case NT_GNU_BUILD_ID:
13197 return _("NT_GNU_BUILD_ID (unique build ID bitstring)");
13198 case NT_GNU_GOLD_VERSION:
13199 return _("NT_GNU_GOLD_VERSION (gold version)");
13200 default:
13201 break;
13202 }
13203
13204 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13205 return buff;
13206 }
13207
13208 static int
13209 print_gnu_note (Elf_Internal_Note *pnote)
13210 {
13211 switch (pnote->type)
13212 {
13213 case NT_GNU_BUILD_ID:
13214 {
13215 unsigned long i;
13216
13217 printf (_(" Build ID: "));
13218 for (i = 0; i < pnote->descsz; ++i)
13219 printf ("%02x", pnote->descdata[i] & 0xff);
13220 printf ("\n");
13221 }
13222 break;
13223
13224 case NT_GNU_ABI_TAG:
13225 {
13226 unsigned long os, major, minor, subminor;
13227 const char *osname;
13228
13229 os = byte_get ((unsigned char *) pnote->descdata, 4);
13230 major = byte_get ((unsigned char *) pnote->descdata + 4, 4);
13231 minor = byte_get ((unsigned char *) pnote->descdata + 8, 4);
13232 subminor = byte_get ((unsigned char *) pnote->descdata + 12, 4);
13233
13234 switch (os)
13235 {
13236 case GNU_ABI_TAG_LINUX:
13237 osname = "Linux";
13238 break;
13239 case GNU_ABI_TAG_HURD:
13240 osname = "Hurd";
13241 break;
13242 case GNU_ABI_TAG_SOLARIS:
13243 osname = "Solaris";
13244 break;
13245 case GNU_ABI_TAG_FREEBSD:
13246 osname = "FreeBSD";
13247 break;
13248 case GNU_ABI_TAG_NETBSD:
13249 osname = "NetBSD";
13250 break;
13251 default:
13252 osname = "Unknown";
13253 break;
13254 }
13255
13256 printf (_(" OS: %s, ABI: %ld.%ld.%ld\n"), osname,
13257 major, minor, subminor);
13258 }
13259 break;
13260 }
13261
13262 return 1;
13263 }
13264
13265 static const char *
13266 get_netbsd_elfcore_note_type (unsigned e_type)
13267 {
13268 static char buff[64];
13269
13270 if (e_type == NT_NETBSDCORE_PROCINFO)
13271 {
13272 /* NetBSD core "procinfo" structure. */
13273 return _("NetBSD procinfo structure");
13274 }
13275
13276 /* As of Jan 2002 there are no other machine-independent notes
13277 defined for NetBSD core files. If the note type is less
13278 than the start of the machine-dependent note types, we don't
13279 understand it. */
13280
13281 if (e_type < NT_NETBSDCORE_FIRSTMACH)
13282 {
13283 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13284 return buff;
13285 }
13286
13287 switch (elf_header.e_machine)
13288 {
13289 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0
13290 and PT_GETFPREGS == mach+2. */
13291
13292 case EM_OLD_ALPHA:
13293 case EM_ALPHA:
13294 case EM_SPARC:
13295 case EM_SPARC32PLUS:
13296 case EM_SPARCV9:
13297 switch (e_type)
13298 {
13299 case NT_NETBSDCORE_FIRSTMACH + 0:
13300 return _("PT_GETREGS (reg structure)");
13301 case NT_NETBSDCORE_FIRSTMACH + 2:
13302 return _("PT_GETFPREGS (fpreg structure)");
13303 default:
13304 break;
13305 }
13306 break;
13307
13308 /* On all other arch's, PT_GETREGS == mach+1 and
13309 PT_GETFPREGS == mach+3. */
13310 default:
13311 switch (e_type)
13312 {
13313 case NT_NETBSDCORE_FIRSTMACH + 1:
13314 return _("PT_GETREGS (reg structure)");
13315 case NT_NETBSDCORE_FIRSTMACH + 3:
13316 return _("PT_GETFPREGS (fpreg structure)");
13317 default:
13318 break;
13319 }
13320 }
13321
13322 snprintf (buff, sizeof (buff), "PT_FIRSTMACH+%d",
13323 e_type - NT_NETBSDCORE_FIRSTMACH);
13324 return buff;
13325 }
13326
13327 static const char *
13328 get_stapsdt_note_type (unsigned e_type)
13329 {
13330 static char buff[64];
13331
13332 switch (e_type)
13333 {
13334 case NT_STAPSDT:
13335 return _("NT_STAPSDT (SystemTap probe descriptors)");
13336
13337 default:
13338 break;
13339 }
13340
13341 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13342 return buff;
13343 }
13344
13345 static int
13346 print_stapsdt_note (Elf_Internal_Note *pnote)
13347 {
13348 int addr_size = is_32bit_elf ? 4 : 8;
13349 char *data = pnote->descdata;
13350 char *data_end = pnote->descdata + pnote->descsz;
13351 bfd_vma pc, base_addr, semaphore;
13352 char *provider, *probe, *arg_fmt;
13353
13354 pc = byte_get ((unsigned char *) data, addr_size);
13355 data += addr_size;
13356 base_addr = byte_get ((unsigned char *) data, addr_size);
13357 data += addr_size;
13358 semaphore = byte_get ((unsigned char *) data, addr_size);
13359 data += addr_size;
13360
13361 provider = data;
13362 data += strlen (data) + 1;
13363 probe = data;
13364 data += strlen (data) + 1;
13365 arg_fmt = data;
13366 data += strlen (data) + 1;
13367
13368 printf (_(" Provider: %s\n"), provider);
13369 printf (_(" Name: %s\n"), probe);
13370 printf (_(" Location: "));
13371 print_vma (pc, FULL_HEX);
13372 printf (_(", Base: "));
13373 print_vma (base_addr, FULL_HEX);
13374 printf (_(", Semaphore: "));
13375 print_vma (semaphore, FULL_HEX);
13376 printf ("\n");
13377 printf (_(" Arguments: %s\n"), arg_fmt);
13378
13379 return data == data_end;
13380 }
13381
13382 static const char *
13383 get_ia64_vms_note_type (unsigned e_type)
13384 {
13385 static char buff[64];
13386
13387 switch (e_type)
13388 {
13389 case NT_VMS_MHD:
13390 return _("NT_VMS_MHD (module header)");
13391 case NT_VMS_LNM:
13392 return _("NT_VMS_LNM (language name)");
13393 case NT_VMS_SRC:
13394 return _("NT_VMS_SRC (source files)");
13395 case NT_VMS_TITLE:
13396 return "NT_VMS_TITLE";
13397 case NT_VMS_EIDC:
13398 return _("NT_VMS_EIDC (consistency check)");
13399 case NT_VMS_FPMODE:
13400 return _("NT_VMS_FPMODE (FP mode)");
13401 case NT_VMS_LINKTIME:
13402 return "NT_VMS_LINKTIME";
13403 case NT_VMS_IMGNAM:
13404 return _("NT_VMS_IMGNAM (image name)");
13405 case NT_VMS_IMGID:
13406 return _("NT_VMS_IMGID (image id)");
13407 case NT_VMS_LINKID:
13408 return _("NT_VMS_LINKID (link id)");
13409 case NT_VMS_IMGBID:
13410 return _("NT_VMS_IMGBID (build id)");
13411 case NT_VMS_GSTNAM:
13412 return _("NT_VMS_GSTNAM (sym table name)");
13413 case NT_VMS_ORIG_DYN:
13414 return "NT_VMS_ORIG_DYN";
13415 case NT_VMS_PATCHTIME:
13416 return "NT_VMS_PATCHTIME";
13417 default:
13418 snprintf (buff, sizeof (buff), _("Unknown note type: (0x%08x)"), e_type);
13419 return buff;
13420 }
13421 }
13422
13423 static int
13424 print_ia64_vms_note (Elf_Internal_Note * pnote)
13425 {
13426 switch (pnote->type)
13427 {
13428 case NT_VMS_MHD:
13429 if (pnote->descsz > 36)
13430 {
13431 size_t l = strlen (pnote->descdata + 34);
13432 printf (_(" Creation date : %.17s\n"), pnote->descdata);
13433 printf (_(" Last patch date: %.17s\n"), pnote->descdata + 17);
13434 printf (_(" Module name : %s\n"), pnote->descdata + 34);
13435 printf (_(" Module version : %s\n"), pnote->descdata + 34 + l + 1);
13436 }
13437 else
13438 printf (_(" Invalid size\n"));
13439 break;
13440 case NT_VMS_LNM:
13441 printf (_(" Language: %s\n"), pnote->descdata);
13442 break;
13443 #ifdef BFD64
13444 case NT_VMS_FPMODE:
13445 printf (_(" Floating Point mode: "));
13446 printf ("0x%016" BFD_VMA_FMT "x\n",
13447 (bfd_vma)byte_get ((unsigned char *)pnote->descdata, 8));
13448 break;
13449 case NT_VMS_LINKTIME:
13450 printf (_(" Link time: "));
13451 print_vms_time
13452 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13453 printf ("\n");
13454 break;
13455 case NT_VMS_PATCHTIME:
13456 printf (_(" Patch time: "));
13457 print_vms_time
13458 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata, 8));
13459 printf ("\n");
13460 break;
13461 case NT_VMS_ORIG_DYN:
13462 printf (_(" Major id: %u, minor id: %u\n"),
13463 (unsigned) byte_get ((unsigned char *)pnote->descdata, 4),
13464 (unsigned) byte_get ((unsigned char *)pnote->descdata + 4, 4));
13465 printf (_(" Last modified : "));
13466 print_vms_time
13467 ((bfd_int64_t) byte_get ((unsigned char *)pnote->descdata + 8, 8));
13468 printf (_("\n Link flags : "));
13469 printf ("0x%016" BFD_VMA_FMT "x\n",
13470 (bfd_vma)byte_get ((unsigned char *)pnote->descdata + 16, 8));
13471 printf (_(" Header flags: 0x%08x\n"),
13472 (unsigned)byte_get ((unsigned char *)pnote->descdata + 24, 4));
13473 printf (_(" Image id : %s\n"), pnote->descdata + 32);
13474 break;
13475 #endif
13476 case NT_VMS_IMGNAM:
13477 printf (_(" Image name: %s\n"), pnote->descdata);
13478 break;
13479 case NT_VMS_GSTNAM:
13480 printf (_(" Global symbol table name: %s\n"), pnote->descdata);
13481 break;
13482 case NT_VMS_IMGID:
13483 printf (_(" Image id: %s\n"), pnote->descdata);
13484 break;
13485 case NT_VMS_LINKID:
13486 printf (_(" Linker id: %s\n"), pnote->descdata);
13487 break;
13488 default:
13489 break;
13490 }
13491 return 1;
13492 }
13493
13494 /* Note that by the ELF standard, the name field is already null byte
13495 terminated, and namesz includes the terminating null byte.
13496 I.E. the value of namesz for the name "FSF" is 4.
13497
13498 If the value of namesz is zero, there is no name present. */
13499 static int
13500 process_note (Elf_Internal_Note * pnote)
13501 {
13502 const char * name = pnote->namesz ? pnote->namedata : "(NONE)";
13503 const char * nt;
13504
13505 if (pnote->namesz == 0)
13506 /* If there is no note name, then use the default set of
13507 note type strings. */
13508 nt = get_note_type (pnote->type);
13509
13510 else if (const_strneq (pnote->namedata, "GNU"))
13511 /* GNU-specific object file notes. */
13512 nt = get_gnu_elf_note_type (pnote->type);
13513
13514 else if (const_strneq (pnote->namedata, "NetBSD-CORE"))
13515 /* NetBSD-specific core file notes. */
13516 nt = get_netbsd_elfcore_note_type (pnote->type);
13517
13518 else if (strneq (pnote->namedata, "SPU/", 4))
13519 {
13520 /* SPU-specific core file notes. */
13521 nt = pnote->namedata + 4;
13522 name = "SPU";
13523 }
13524
13525 else if (const_strneq (pnote->namedata, "IPF/VMS"))
13526 /* VMS/ia64-specific file notes. */
13527 nt = get_ia64_vms_note_type (pnote->type);
13528
13529 else if (const_strneq (pnote->namedata, "stapsdt"))
13530 nt = get_stapsdt_note_type (pnote->type);
13531
13532 else
13533 /* Don't recognize this note name; just use the default set of
13534 note type strings. */
13535 nt = get_note_type (pnote->type);
13536
13537 printf (" %-20s 0x%08lx\t%s\n", name, pnote->descsz, nt);
13538
13539 if (const_strneq (pnote->namedata, "IPF/VMS"))
13540 return print_ia64_vms_note (pnote);
13541 else if (const_strneq (pnote->namedata, "GNU"))
13542 return print_gnu_note (pnote);
13543 else if (const_strneq (pnote->namedata, "stapsdt"))
13544 return print_stapsdt_note (pnote);
13545 else if (const_strneq (pnote->namedata, "CORE"))
13546 return print_core_note (pnote);
13547 else
13548 return 1;
13549 }
13550
13551
13552 static int
13553 process_corefile_note_segment (FILE * file, bfd_vma offset, bfd_vma length)
13554 {
13555 Elf_External_Note * pnotes;
13556 Elf_External_Note * external;
13557 int res = 1;
13558
13559 if (length <= 0)
13560 return 0;
13561
13562 pnotes = (Elf_External_Note *) get_data (NULL, file, offset, 1, length,
13563 _("notes"));
13564 if (pnotes == NULL)
13565 return 0;
13566
13567 external = pnotes;
13568
13569 printf (_("\nDisplaying notes found at file offset 0x%08lx with length 0x%08lx:\n"),
13570 (unsigned long) offset, (unsigned long) length);
13571 printf (_(" %-20s %10s\tDescription\n"), _("Owner"), _("Data size"));
13572
13573 while ((char *) external < (char *) pnotes + length)
13574 {
13575 Elf_Internal_Note inote;
13576 size_t min_notesz;
13577 char *next;
13578 char * temp = NULL;
13579 size_t data_remaining = ((char *) pnotes + length) - (char *) external;
13580
13581 if (!is_ia64_vms ())
13582 {
13583 /* PR binutils/15191
13584 Make sure that there is enough data to read. */
13585 min_notesz = offsetof (Elf_External_Note, name);
13586 if (data_remaining < min_notesz)
13587 {
13588 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13589 (int) data_remaining);
13590 break;
13591 }
13592 inote.type = BYTE_GET (external->type);
13593 inote.namesz = BYTE_GET (external->namesz);
13594 inote.namedata = external->name;
13595 inote.descsz = BYTE_GET (external->descsz);
13596 inote.descdata = inote.namedata + align_power (inote.namesz, 2);
13597 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13598 next = inote.descdata + align_power (inote.descsz, 2);
13599 }
13600 else
13601 {
13602 Elf64_External_VMS_Note *vms_external;
13603
13604 /* PR binutils/15191
13605 Make sure that there is enough data to read. */
13606 min_notesz = offsetof (Elf64_External_VMS_Note, name);
13607 if (data_remaining < min_notesz)
13608 {
13609 warn (_("Corrupt note: only %d bytes remain, not enough for a full note\n"),
13610 (int) data_remaining);
13611 break;
13612 }
13613
13614 vms_external = (Elf64_External_VMS_Note *) external;
13615 inote.type = BYTE_GET (vms_external->type);
13616 inote.namesz = BYTE_GET (vms_external->namesz);
13617 inote.namedata = vms_external->name;
13618 inote.descsz = BYTE_GET (vms_external->descsz);
13619 inote.descdata = inote.namedata + align_power (inote.namesz, 3);
13620 inote.descpos = offset + (inote.descdata - (char *) pnotes);
13621 next = inote.descdata + align_power (inote.descsz, 3);
13622 }
13623
13624 if (inote.descdata < (char *) external + min_notesz
13625 || next < (char *) external + min_notesz
13626 || data_remaining < (size_t)(next - (char *) external))
13627 {
13628 warn (_("note with invalid namesz and/or descsz found at offset 0x%lx\n"),
13629 (unsigned long) ((char *) external - (char *) pnotes));
13630 warn (_(" type: 0x%lx, namesize: 0x%08lx, descsize: 0x%08lx\n"),
13631 inote.type, inote.namesz, inote.descsz);
13632 break;
13633 }
13634
13635 external = (Elf_External_Note *) next;
13636
13637 /* Verify that name is null terminated. It appears that at least
13638 one version of Linux (RedHat 6.0) generates corefiles that don't
13639 comply with the ELF spec by failing to include the null byte in
13640 namesz. */
13641 if (inote.namedata[inote.namesz - 1] != '\0')
13642 {
13643 temp = (char *) malloc (inote.namesz + 1);
13644
13645 if (temp == NULL)
13646 {
13647 error (_("Out of memory\n"));
13648 res = 0;
13649 break;
13650 }
13651
13652 strncpy (temp, inote.namedata, inote.namesz);
13653 temp[inote.namesz] = 0;
13654
13655 /* warn (_("'%s' NOTE name not properly null terminated\n"), temp); */
13656 inote.namedata = temp;
13657 }
13658
13659 res &= process_note (& inote);
13660
13661 if (temp != NULL)
13662 {
13663 free (temp);
13664 temp = NULL;
13665 }
13666 }
13667
13668 free (pnotes);
13669
13670 return res;
13671 }
13672
13673 static int
13674 process_corefile_note_segments (FILE * file)
13675 {
13676 Elf_Internal_Phdr * segment;
13677 unsigned int i;
13678 int res = 1;
13679
13680 if (! get_program_headers (file))
13681 return 0;
13682
13683 for (i = 0, segment = program_headers;
13684 i < elf_header.e_phnum;
13685 i++, segment++)
13686 {
13687 if (segment->p_type == PT_NOTE)
13688 res &= process_corefile_note_segment (file,
13689 (bfd_vma) segment->p_offset,
13690 (bfd_vma) segment->p_filesz);
13691 }
13692
13693 return res;
13694 }
13695
13696 static int
13697 process_note_sections (FILE * file)
13698 {
13699 Elf_Internal_Shdr * section;
13700 unsigned long i;
13701 int res = 1;
13702
13703 for (i = 0, section = section_headers;
13704 i < elf_header.e_shnum && section != NULL;
13705 i++, section++)
13706 if (section->sh_type == SHT_NOTE)
13707 res &= process_corefile_note_segment (file,
13708 (bfd_vma) section->sh_offset,
13709 (bfd_vma) section->sh_size);
13710
13711 return res;
13712 }
13713
13714 static int
13715 process_notes (FILE * file)
13716 {
13717 /* If we have not been asked to display the notes then do nothing. */
13718 if (! do_notes)
13719 return 1;
13720
13721 if (elf_header.e_type != ET_CORE)
13722 return process_note_sections (file);
13723
13724 /* No program headers means no NOTE segment. */
13725 if (elf_header.e_phnum > 0)
13726 return process_corefile_note_segments (file);
13727
13728 printf (_("No note segments present in the core file.\n"));
13729 return 1;
13730 }
13731
13732 static int
13733 process_arch_specific (FILE * file)
13734 {
13735 if (! do_arch)
13736 return 1;
13737
13738 switch (elf_header.e_machine)
13739 {
13740 case EM_ARM:
13741 return process_arm_specific (file);
13742 case EM_MIPS:
13743 case EM_MIPS_RS3_LE:
13744 return process_mips_specific (file);
13745 break;
13746 case EM_PPC:
13747 return process_power_specific (file);
13748 break;
13749 case EM_SPARC:
13750 case EM_SPARC32PLUS:
13751 case EM_SPARCV9:
13752 return process_sparc_specific (file);
13753 break;
13754 case EM_TI_C6000:
13755 return process_tic6x_specific (file);
13756 break;
13757 case EM_MSP430:
13758 return process_msp430x_specific (file);
13759 default:
13760 break;
13761 }
13762 return 1;
13763 }
13764
13765 static int
13766 get_file_header (FILE * file)
13767 {
13768 /* Read in the identity array. */
13769 if (fread (elf_header.e_ident, EI_NIDENT, 1, file) != 1)
13770 return 0;
13771
13772 /* Determine how to read the rest of the header. */
13773 switch (elf_header.e_ident[EI_DATA])
13774 {
13775 default: /* fall through */
13776 case ELFDATANONE: /* fall through */
13777 case ELFDATA2LSB:
13778 byte_get = byte_get_little_endian;
13779 byte_put = byte_put_little_endian;
13780 break;
13781 case ELFDATA2MSB:
13782 byte_get = byte_get_big_endian;
13783 byte_put = byte_put_big_endian;
13784 break;
13785 }
13786
13787 /* For now we only support 32 bit and 64 bit ELF files. */
13788 is_32bit_elf = (elf_header.e_ident[EI_CLASS] != ELFCLASS64);
13789
13790 /* Read in the rest of the header. */
13791 if (is_32bit_elf)
13792 {
13793 Elf32_External_Ehdr ehdr32;
13794
13795 if (fread (ehdr32.e_type, sizeof (ehdr32) - EI_NIDENT, 1, file) != 1)
13796 return 0;
13797
13798 elf_header.e_type = BYTE_GET (ehdr32.e_type);
13799 elf_header.e_machine = BYTE_GET (ehdr32.e_machine);
13800 elf_header.e_version = BYTE_GET (ehdr32.e_version);
13801 elf_header.e_entry = BYTE_GET (ehdr32.e_entry);
13802 elf_header.e_phoff = BYTE_GET (ehdr32.e_phoff);
13803 elf_header.e_shoff = BYTE_GET (ehdr32.e_shoff);
13804 elf_header.e_flags = BYTE_GET (ehdr32.e_flags);
13805 elf_header.e_ehsize = BYTE_GET (ehdr32.e_ehsize);
13806 elf_header.e_phentsize = BYTE_GET (ehdr32.e_phentsize);
13807 elf_header.e_phnum = BYTE_GET (ehdr32.e_phnum);
13808 elf_header.e_shentsize = BYTE_GET (ehdr32.e_shentsize);
13809 elf_header.e_shnum = BYTE_GET (ehdr32.e_shnum);
13810 elf_header.e_shstrndx = BYTE_GET (ehdr32.e_shstrndx);
13811 }
13812 else
13813 {
13814 Elf64_External_Ehdr ehdr64;
13815
13816 /* If we have been compiled with sizeof (bfd_vma) == 4, then
13817 we will not be able to cope with the 64bit data found in
13818 64 ELF files. Detect this now and abort before we start
13819 overwriting things. */
13820 if (sizeof (bfd_vma) < 8)
13821 {
13822 error (_("This instance of readelf has been built without support for a\n\
13823 64 bit data type and so it cannot read 64 bit ELF files.\n"));
13824 return 0;
13825 }
13826
13827 if (fread (ehdr64.e_type, sizeof (ehdr64) - EI_NIDENT, 1, file) != 1)
13828 return 0;
13829
13830 elf_header.e_type = BYTE_GET (ehdr64.e_type);
13831 elf_header.e_machine = BYTE_GET (ehdr64.e_machine);
13832 elf_header.e_version = BYTE_GET (ehdr64.e_version);
13833 elf_header.e_entry = BYTE_GET (ehdr64.e_entry);
13834 elf_header.e_phoff = BYTE_GET (ehdr64.e_phoff);
13835 elf_header.e_shoff = BYTE_GET (ehdr64.e_shoff);
13836 elf_header.e_flags = BYTE_GET (ehdr64.e_flags);
13837 elf_header.e_ehsize = BYTE_GET (ehdr64.e_ehsize);
13838 elf_header.e_phentsize = BYTE_GET (ehdr64.e_phentsize);
13839 elf_header.e_phnum = BYTE_GET (ehdr64.e_phnum);
13840 elf_header.e_shentsize = BYTE_GET (ehdr64.e_shentsize);
13841 elf_header.e_shnum = BYTE_GET (ehdr64.e_shnum);
13842 elf_header.e_shstrndx = BYTE_GET (ehdr64.e_shstrndx);
13843 }
13844
13845 if (elf_header.e_shoff)
13846 {
13847 /* There may be some extensions in the first section header. Don't
13848 bomb if we can't read it. */
13849 if (is_32bit_elf)
13850 get_32bit_section_headers (file, 1);
13851 else
13852 get_64bit_section_headers (file, 1);
13853 }
13854
13855 return 1;
13856 }
13857
13858 /* Process one ELF object file according to the command line options.
13859 This file may actually be stored in an archive. The file is
13860 positioned at the start of the ELF object. */
13861
13862 static int
13863 process_object (char * file_name, FILE * file)
13864 {
13865 unsigned int i;
13866
13867 if (! get_file_header (file))
13868 {
13869 error (_("%s: Failed to read file header\n"), file_name);
13870 return 1;
13871 }
13872
13873 /* Initialise per file variables. */
13874 for (i = ARRAY_SIZE (version_info); i--;)
13875 version_info[i] = 0;
13876
13877 for (i = ARRAY_SIZE (dynamic_info); i--;)
13878 dynamic_info[i] = 0;
13879 dynamic_info_DT_GNU_HASH = 0;
13880
13881 /* Process the file. */
13882 if (show_name)
13883 printf (_("\nFile: %s\n"), file_name);
13884
13885 /* Initialise the dump_sects array from the cmdline_dump_sects array.
13886 Note we do this even if cmdline_dump_sects is empty because we
13887 must make sure that the dump_sets array is zeroed out before each
13888 object file is processed. */
13889 if (num_dump_sects > num_cmdline_dump_sects)
13890 memset (dump_sects, 0, num_dump_sects * sizeof (* dump_sects));
13891
13892 if (num_cmdline_dump_sects > 0)
13893 {
13894 if (num_dump_sects == 0)
13895 /* A sneaky way of allocating the dump_sects array. */
13896 request_dump_bynumber (num_cmdline_dump_sects, 0);
13897
13898 assert (num_dump_sects >= num_cmdline_dump_sects);
13899 memcpy (dump_sects, cmdline_dump_sects,
13900 num_cmdline_dump_sects * sizeof (* dump_sects));
13901 }
13902
13903 if (! process_file_header ())
13904 return 1;
13905
13906 if (! process_section_headers (file))
13907 {
13908 /* Without loaded section headers we cannot process lots of
13909 things. */
13910 do_unwind = do_version = do_dump = do_arch = 0;
13911
13912 if (! do_using_dynamic)
13913 do_syms = do_dyn_syms = do_reloc = 0;
13914 }
13915
13916 if (! process_section_groups (file))
13917 {
13918 /* Without loaded section groups we cannot process unwind. */
13919 do_unwind = 0;
13920 }
13921
13922 if (process_program_headers (file))
13923 process_dynamic_section (file);
13924
13925 process_relocs (file);
13926
13927 process_unwind (file);
13928
13929 process_symbol_table (file);
13930
13931 process_syminfo (file);
13932
13933 process_version_sections (file);
13934
13935 process_section_contents (file);
13936
13937 process_notes (file);
13938
13939 process_gnu_liblist (file);
13940
13941 process_arch_specific (file);
13942
13943 if (program_headers)
13944 {
13945 free (program_headers);
13946 program_headers = NULL;
13947 }
13948
13949 if (section_headers)
13950 {
13951 free (section_headers);
13952 section_headers = NULL;
13953 }
13954
13955 if (string_table)
13956 {
13957 free (string_table);
13958 string_table = NULL;
13959 string_table_length = 0;
13960 }
13961
13962 if (dynamic_strings)
13963 {
13964 free (dynamic_strings);
13965 dynamic_strings = NULL;
13966 dynamic_strings_length = 0;
13967 }
13968
13969 if (dynamic_symbols)
13970 {
13971 free (dynamic_symbols);
13972 dynamic_symbols = NULL;
13973 num_dynamic_syms = 0;
13974 }
13975
13976 if (dynamic_syminfo)
13977 {
13978 free (dynamic_syminfo);
13979 dynamic_syminfo = NULL;
13980 }
13981
13982 if (dynamic_section)
13983 {
13984 free (dynamic_section);
13985 dynamic_section = NULL;
13986 }
13987
13988 if (section_headers_groups)
13989 {
13990 free (section_headers_groups);
13991 section_headers_groups = NULL;
13992 }
13993
13994 if (section_groups)
13995 {
13996 struct group_list * g;
13997 struct group_list * next;
13998
13999 for (i = 0; i < group_count; i++)
14000 {
14001 for (g = section_groups [i].root; g != NULL; g = next)
14002 {
14003 next = g->next;
14004 free (g);
14005 }
14006 }
14007
14008 free (section_groups);
14009 section_groups = NULL;
14010 }
14011
14012 free_debug_memory ();
14013
14014 return 0;
14015 }
14016
14017 /* Process an ELF archive.
14018 On entry the file is positioned just after the ARMAG string. */
14019
14020 static int
14021 process_archive (char * file_name, FILE * file, bfd_boolean is_thin_archive)
14022 {
14023 struct archive_info arch;
14024 struct archive_info nested_arch;
14025 size_t got;
14026 int ret;
14027
14028 show_name = 1;
14029
14030 /* The ARCH structure is used to hold information about this archive. */
14031 arch.file_name = NULL;
14032 arch.file = NULL;
14033 arch.index_array = NULL;
14034 arch.sym_table = NULL;
14035 arch.longnames = NULL;
14036
14037 /* The NESTED_ARCH structure is used as a single-item cache of information
14038 about a nested archive (when members of a thin archive reside within
14039 another regular archive file). */
14040 nested_arch.file_name = NULL;
14041 nested_arch.file = NULL;
14042 nested_arch.index_array = NULL;
14043 nested_arch.sym_table = NULL;
14044 nested_arch.longnames = NULL;
14045
14046 if (setup_archive (&arch, file_name, file, is_thin_archive, do_archive_index) != 0)
14047 {
14048 ret = 1;
14049 goto out;
14050 }
14051
14052 if (do_archive_index)
14053 {
14054 if (arch.sym_table == NULL)
14055 error (_("%s: unable to dump the index as none was found\n"), file_name);
14056 else
14057 {
14058 unsigned int i, l;
14059 unsigned long current_pos;
14060
14061 printf (_("Index of archive %s: (%ld entries, 0x%lx bytes in the symbol table)\n"),
14062 file_name, (long) arch.index_num, arch.sym_size);
14063 current_pos = ftell (file);
14064
14065 for (i = l = 0; i < arch.index_num; i++)
14066 {
14067 if ((i == 0) || ((i > 0) && (arch.index_array[i] != arch.index_array[i - 1])))
14068 {
14069 char * member_name;
14070
14071 member_name = get_archive_member_name_at (&arch, arch.index_array[i], &nested_arch);
14072
14073 if (member_name != NULL)
14074 {
14075 char * qualified_name = make_qualified_name (&arch, &nested_arch, member_name);
14076
14077 if (qualified_name != NULL)
14078 {
14079 printf (_("Contents of binary %s at offset "), qualified_name);
14080 (void) print_vma (arch.index_array[i], PREFIX_HEX);
14081 putchar ('\n');
14082 free (qualified_name);
14083 }
14084 }
14085 }
14086
14087 if (l >= arch.sym_size)
14088 {
14089 error (_("%s: end of the symbol table reached before the end of the index\n"),
14090 file_name);
14091 break;
14092 }
14093 printf ("\t%s\n", arch.sym_table + l);
14094 l += strlen (arch.sym_table + l) + 1;
14095 }
14096
14097 if (arch.uses_64bit_indicies)
14098 l = (l + 7) & ~ 7;
14099 else
14100 l += l & 1;
14101
14102 if (l < arch.sym_size)
14103 error (_("%s: %ld bytes remain in the symbol table, but without corresponding entries in the index table\n"),
14104 file_name, arch.sym_size - l);
14105
14106 if (fseek (file, current_pos, SEEK_SET) != 0)
14107 {
14108 error (_("%s: failed to seek back to start of object files in the archive\n"), file_name);
14109 ret = 1;
14110 goto out;
14111 }
14112 }
14113
14114 if (!do_dynamic && !do_syms && !do_reloc && !do_unwind && !do_sections
14115 && !do_segments && !do_header && !do_dump && !do_version
14116 && !do_histogram && !do_debugging && !do_arch && !do_notes
14117 && !do_section_groups && !do_dyn_syms)
14118 {
14119 ret = 0; /* Archive index only. */
14120 goto out;
14121 }
14122 }
14123
14124 ret = 0;
14125
14126 while (1)
14127 {
14128 char * name;
14129 size_t namelen;
14130 char * qualified_name;
14131
14132 /* Read the next archive header. */
14133 if (fseek (file, arch.next_arhdr_offset, SEEK_SET) != 0)
14134 {
14135 error (_("%s: failed to seek to next archive header\n"), file_name);
14136 return 1;
14137 }
14138 got = fread (&arch.arhdr, 1, sizeof arch.arhdr, file);
14139 if (got != sizeof arch.arhdr)
14140 {
14141 if (got == 0)
14142 break;
14143 error (_("%s: failed to read archive header\n"), file_name);
14144 ret = 1;
14145 break;
14146 }
14147 if (memcmp (arch.arhdr.ar_fmag, ARFMAG, 2) != 0)
14148 {
14149 error (_("%s: did not find a valid archive header\n"), arch.file_name);
14150 ret = 1;
14151 break;
14152 }
14153
14154 arch.next_arhdr_offset += sizeof arch.arhdr;
14155
14156 archive_file_size = strtoul (arch.arhdr.ar_size, NULL, 10);
14157 if (archive_file_size & 01)
14158 ++archive_file_size;
14159
14160 name = get_archive_member_name (&arch, &nested_arch);
14161 if (name == NULL)
14162 {
14163 error (_("%s: bad archive file name\n"), file_name);
14164 ret = 1;
14165 break;
14166 }
14167 namelen = strlen (name);
14168
14169 qualified_name = make_qualified_name (&arch, &nested_arch, name);
14170 if (qualified_name == NULL)
14171 {
14172 error (_("%s: bad archive file name\n"), file_name);
14173 ret = 1;
14174 break;
14175 }
14176
14177 if (is_thin_archive && arch.nested_member_origin == 0)
14178 {
14179 /* This is a proxy for an external member of a thin archive. */
14180 FILE * member_file;
14181 char * member_file_name = adjust_relative_path (file_name, name, namelen);
14182 if (member_file_name == NULL)
14183 {
14184 ret = 1;
14185 break;
14186 }
14187
14188 member_file = fopen (member_file_name, "rb");
14189 if (member_file == NULL)
14190 {
14191 error (_("Input file '%s' is not readable.\n"), member_file_name);
14192 free (member_file_name);
14193 ret = 1;
14194 break;
14195 }
14196
14197 archive_file_offset = arch.nested_member_origin;
14198
14199 ret |= process_object (qualified_name, member_file);
14200
14201 fclose (member_file);
14202 free (member_file_name);
14203 }
14204 else if (is_thin_archive)
14205 {
14206 /* PR 15140: Allow for corrupt thin archives. */
14207 if (nested_arch.file == NULL)
14208 {
14209 error (_("%s: contains corrupt thin archive: %s\n"),
14210 file_name, name);
14211 ret = 1;
14212 break;
14213 }
14214
14215 /* This is a proxy for a member of a nested archive. */
14216 archive_file_offset = arch.nested_member_origin + sizeof arch.arhdr;
14217
14218 /* The nested archive file will have been opened and setup by
14219 get_archive_member_name. */
14220 if (fseek (nested_arch.file, archive_file_offset, SEEK_SET) != 0)
14221 {
14222 error (_("%s: failed to seek to archive member.\n"), nested_arch.file_name);
14223 ret = 1;
14224 break;
14225 }
14226
14227 ret |= process_object (qualified_name, nested_arch.file);
14228 }
14229 else
14230 {
14231 archive_file_offset = arch.next_arhdr_offset;
14232 arch.next_arhdr_offset += archive_file_size;
14233
14234 ret |= process_object (qualified_name, file);
14235 }
14236
14237 if (dump_sects != NULL)
14238 {
14239 free (dump_sects);
14240 dump_sects = NULL;
14241 num_dump_sects = 0;
14242 }
14243
14244 free (qualified_name);
14245 }
14246
14247 out:
14248 if (nested_arch.file != NULL)
14249 fclose (nested_arch.file);
14250 release_archive (&nested_arch);
14251 release_archive (&arch);
14252
14253 return ret;
14254 }
14255
14256 static int
14257 process_file (char * file_name)
14258 {
14259 FILE * file;
14260 struct stat statbuf;
14261 char armag[SARMAG];
14262 int ret;
14263
14264 if (stat (file_name, &statbuf) < 0)
14265 {
14266 if (errno == ENOENT)
14267 error (_("'%s': No such file\n"), file_name);
14268 else
14269 error (_("Could not locate '%s'. System error message: %s\n"),
14270 file_name, strerror (errno));
14271 return 1;
14272 }
14273
14274 if (! S_ISREG (statbuf.st_mode))
14275 {
14276 error (_("'%s' is not an ordinary file\n"), file_name);
14277 return 1;
14278 }
14279
14280 file = fopen (file_name, "rb");
14281 if (file == NULL)
14282 {
14283 error (_("Input file '%s' is not readable.\n"), file_name);
14284 return 1;
14285 }
14286
14287 if (fread (armag, SARMAG, 1, file) != 1)
14288 {
14289 error (_("%s: Failed to read file's magic number\n"), file_name);
14290 fclose (file);
14291 return 1;
14292 }
14293
14294 if (memcmp (armag, ARMAG, SARMAG) == 0)
14295 ret = process_archive (file_name, file, FALSE);
14296 else if (memcmp (armag, ARMAGT, SARMAG) == 0)
14297 ret = process_archive (file_name, file, TRUE);
14298 else
14299 {
14300 if (do_archive_index)
14301 error (_("File %s is not an archive so its index cannot be displayed.\n"),
14302 file_name);
14303
14304 rewind (file);
14305 archive_file_size = archive_file_offset = 0;
14306 ret = process_object (file_name, file);
14307 }
14308
14309 fclose (file);
14310
14311 return ret;
14312 }
14313
14314 #ifdef SUPPORT_DISASSEMBLY
14315 /* Needed by the i386 disassembler. For extra credit, someone could
14316 fix this so that we insert symbolic addresses here, esp for GOT/PLT
14317 symbols. */
14318
14319 void
14320 print_address (unsigned int addr, FILE * outfile)
14321 {
14322 fprintf (outfile,"0x%8.8x", addr);
14323 }
14324
14325 /* Needed by the i386 disassembler. */
14326 void
14327 db_task_printsym (unsigned int addr)
14328 {
14329 print_address (addr, stderr);
14330 }
14331 #endif
14332
14333 int
14334 main (int argc, char ** argv)
14335 {
14336 int err;
14337
14338 #if defined (HAVE_SETLOCALE) && defined (HAVE_LC_MESSAGES)
14339 setlocale (LC_MESSAGES, "");
14340 #endif
14341 #if defined (HAVE_SETLOCALE)
14342 setlocale (LC_CTYPE, "");
14343 #endif
14344 bindtextdomain (PACKAGE, LOCALEDIR);
14345 textdomain (PACKAGE);
14346
14347 expandargv (&argc, &argv);
14348
14349 parse_args (argc, argv);
14350
14351 if (num_dump_sects > 0)
14352 {
14353 /* Make a copy of the dump_sects array. */
14354 cmdline_dump_sects = (dump_type *)
14355 malloc (num_dump_sects * sizeof (* dump_sects));
14356 if (cmdline_dump_sects == NULL)
14357 error (_("Out of memory allocating dump request table.\n"));
14358 else
14359 {
14360 memcpy (cmdline_dump_sects, dump_sects,
14361 num_dump_sects * sizeof (* dump_sects));
14362 num_cmdline_dump_sects = num_dump_sects;
14363 }
14364 }
14365
14366 if (optind < (argc - 1))
14367 show_name = 1;
14368
14369 err = 0;
14370 while (optind < argc)
14371 err |= process_file (argv[optind++]);
14372
14373 if (dump_sects != NULL)
14374 free (dump_sects);
14375 if (cmdline_dump_sects != NULL)
14376 free (cmdline_dump_sects);
14377
14378 return err;
14379 }