]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-i386.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2021 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* parse_register() returns this when a register alias cannot be used. */
214 static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_sib_address,
294 invalid_vsib_address,
295 invalid_vector_register_set,
296 invalid_tmm_register_set,
297 unsupported_vector_index_register,
298 unsupported_broadcast,
299 broadcast_needed,
300 unsupported_masking,
301 mask_not_on_destination,
302 no_default_mask,
303 unsupported_rc_sae,
304 rc_sae_operand_not_last_imm,
305 invalid_register_operand,
306 };
307
308 struct _i386_insn
309 {
310 /* TM holds the template for the insn were currently assembling. */
311 insn_template tm;
312
313 /* SUFFIX holds the instruction size suffix for byte, word, dword
314 or qword, if given. */
315 char suffix;
316
317 /* OPERANDS gives the number of given operands. */
318 unsigned int operands;
319
320 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
321 of given register, displacement, memory operands and immediate
322 operands. */
323 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
324
325 /* TYPES [i] is the type (see above #defines) which tells us how to
326 use OP[i] for the corresponding operand. */
327 i386_operand_type types[MAX_OPERANDS];
328
329 /* Displacement expression, immediate expression, or register for each
330 operand. */
331 union i386_op op[MAX_OPERANDS];
332
333 /* Flags for operands. */
334 unsigned int flags[MAX_OPERANDS];
335 #define Operand_PCrel 1
336 #define Operand_Mem 2
337
338 /* Relocation type for operand */
339 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
340
341 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
342 the base index byte below. */
343 const reg_entry *base_reg;
344 const reg_entry *index_reg;
345 unsigned int log2_scale_factor;
346
347 /* SEG gives the seg_entries of this insn. They are zero unless
348 explicit segment overrides are given. */
349 const seg_entry *seg[2];
350
351 /* Copied first memory operand string, for re-checking. */
352 char *memop1_string;
353
354 /* PREFIX holds all the given prefix opcodes (usually null).
355 PREFIXES is the number of prefix opcodes. */
356 unsigned int prefixes;
357 unsigned char prefix[MAX_PREFIXES];
358
359 /* Register is in low 3 bits of opcode. */
360 bfd_boolean short_form;
361
362 /* The operand to a branch insn indicates an absolute branch. */
363 bfd_boolean jumpabsolute;
364
365 /* Extended states. */
366 enum
367 {
368 /* Use MMX state. */
369 xstate_mmx = 1 << 0,
370 /* Use XMM state. */
371 xstate_xmm = 1 << 1,
372 /* Use YMM state. */
373 xstate_ymm = 1 << 2 | xstate_xmm,
374 /* Use ZMM state. */
375 xstate_zmm = 1 << 3 | xstate_ymm,
376 /* Use TMM state. */
377 xstate_tmm = 1 << 4,
378 /* Use MASK state. */
379 xstate_mask = 1 << 5
380 } xstate;
381
382 /* Has GOTPC or TLS relocation. */
383 bfd_boolean has_gotpc_tls_reloc;
384
385 /* RM and SIB are the modrm byte and the sib byte where the
386 addressing modes of this insn are encoded. */
387 modrm_byte rm;
388 rex_byte rex;
389 rex_byte vrex;
390 sib_byte sib;
391 vex_prefix vex;
392
393 /* Masking attributes. */
394 struct Mask_Operation *mask;
395
396 /* Rounding control and SAE attributes. */
397 struct RC_Operation *rounding;
398
399 /* Broadcasting attributes. */
400 struct Broadcast_Operation *broadcast;
401
402 /* Compressed disp8*N attribute. */
403 unsigned int memshift;
404
405 /* Prefer load or store in encoding. */
406 enum
407 {
408 dir_encoding_default = 0,
409 dir_encoding_load,
410 dir_encoding_store,
411 dir_encoding_swap
412 } dir_encoding;
413
414 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
415 enum
416 {
417 disp_encoding_default = 0,
418 disp_encoding_8bit,
419 disp_encoding_16bit,
420 disp_encoding_32bit
421 } disp_encoding;
422
423 /* Prefer the REX byte in encoding. */
424 bfd_boolean rex_encoding;
425
426 /* Disable instruction size optimization. */
427 bfd_boolean no_optimize;
428
429 /* How to encode vector instructions. */
430 enum
431 {
432 vex_encoding_default = 0,
433 vex_encoding_vex,
434 vex_encoding_vex3,
435 vex_encoding_evex,
436 vex_encoding_error
437 } vec_encoding;
438
439 /* REP prefix. */
440 const char *rep_prefix;
441
442 /* HLE prefix. */
443 const char *hle_prefix;
444
445 /* Have BND prefix. */
446 const char *bnd_prefix;
447
448 /* Have NOTRACK prefix. */
449 const char *notrack_prefix;
450
451 /* Error message. */
452 enum i386_error error;
453 };
454
455 typedef struct _i386_insn i386_insn;
456
457 /* Link RC type with corresponding string, that'll be looked for in
458 asm. */
459 struct RC_name
460 {
461 enum rc_type type;
462 const char *name;
463 unsigned int len;
464 };
465
466 static const struct RC_name RC_NamesTable[] =
467 {
468 { rne, STRING_COMMA_LEN ("rn-sae") },
469 { rd, STRING_COMMA_LEN ("rd-sae") },
470 { ru, STRING_COMMA_LEN ("ru-sae") },
471 { rz, STRING_COMMA_LEN ("rz-sae") },
472 { saeonly, STRING_COMMA_LEN ("sae") },
473 };
474
475 /* List of chars besides those in app.c:symbol_chars that can start an
476 operand. Used to prevent the scrubber eating vital white-space. */
477 const char extra_symbol_chars[] = "*%-([{}"
478 #ifdef LEX_AT
479 "@"
480 #endif
481 #ifdef LEX_QM
482 "?"
483 #endif
484 ;
485
486 #if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
487 && !defined (TE_GNU) \
488 && !defined (TE_LINUX) \
489 && !defined (TE_FreeBSD) \
490 && !defined (TE_DragonFly) \
491 && !defined (TE_NetBSD))
492 /* This array holds the chars that always start a comment. If the
493 pre-processor is disabled, these aren't very useful. The option
494 --divide will remove '/' from this list. */
495 const char *i386_comment_chars = "#/";
496 #define SVR4_COMMENT_CHARS 1
497 #define PREFIX_SEPARATOR '\\'
498
499 #else
500 const char *i386_comment_chars = "#";
501 #define PREFIX_SEPARATOR '/'
502 #endif
503
504 /* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
506 .line and .file directives will appear in the pre-processed output.
507 Note that input_file.c hand checks for '#' at the beginning of the
508 first line of the input file. This is because the compiler outputs
509 #NO_APP at the beginning of its output.
510 Also note that comments started like this one will always work if
511 '/' isn't otherwise defined. */
512 const char line_comment_chars[] = "#/";
513
514 const char line_separator_chars[] = ";";
515
516 /* Chars that can be used to separate mant from exp in floating point
517 nums. */
518 const char EXP_CHARS[] = "eE";
519
520 /* Chars that mean this number is a floating point constant
521 As in 0f12.456
522 or 0d1.2345e12. */
523 const char FLT_CHARS[] = "fFdDxX";
524
525 /* Tables for lexical analysis. */
526 static char mnemonic_chars[256];
527 static char register_chars[256];
528 static char operand_chars[256];
529 static char identifier_chars[256];
530 static char digit_chars[256];
531
532 /* Lexical macros. */
533 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
534 #define is_operand_char(x) (operand_chars[(unsigned char) x])
535 #define is_register_char(x) (register_chars[(unsigned char) x])
536 #define is_space_char(x) ((x) == ' ')
537 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
538 #define is_digit_char(x) (digit_chars[(unsigned char) x])
539
540 /* All non-digit non-letter characters that may occur in an operand. */
541 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
542
543 /* md_assemble() always leaves the strings it's passed unaltered. To
544 effect this we maintain a stack of saved characters that we've smashed
545 with '\0's (indicating end of strings for various sub-fields of the
546 assembler instruction). */
547 static char save_stack[32];
548 static char *save_stack_p;
549 #define END_STRING_AND_SAVE(s) \
550 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
551 #define RESTORE_END_STRING(s) \
552 do { *(s) = *--save_stack_p; } while (0)
553
554 /* The instruction we're assembling. */
555 static i386_insn i;
556
557 /* Possible templates for current insn. */
558 static const templates *current_templates;
559
560 /* Per instruction expressionS buffers: max displacements & immediates. */
561 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
562 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
563
564 /* Current operand we are working on. */
565 static int this_operand = -1;
566
567 /* We support four different modes. FLAG_CODE variable is used to distinguish
568 these. */
569
570 enum flag_code {
571 CODE_32BIT,
572 CODE_16BIT,
573 CODE_64BIT };
574
575 static enum flag_code flag_code;
576 static unsigned int object_64bit;
577 static unsigned int disallow_64bit_reloc;
578 static int use_rela_relocations = 0;
579 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
580 static const char *tls_get_addr;
581
582 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
583 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
584 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
585
586 /* The ELF ABI to use. */
587 enum x86_elf_abi
588 {
589 I386_ABI,
590 X86_64_ABI,
591 X86_64_X32_ABI
592 };
593
594 static enum x86_elf_abi x86_elf_abi = I386_ABI;
595 #endif
596
597 #if defined (TE_PE) || defined (TE_PEP)
598 /* Use big object file format. */
599 static int use_big_obj = 0;
600 #endif
601
602 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
603 /* 1 if generating code for a shared library. */
604 static int shared = 0;
605 #endif
606
607 /* 1 for intel syntax,
608 0 if att syntax. */
609 static int intel_syntax = 0;
610
611 static enum x86_64_isa
612 {
613 amd64 = 1, /* AMD64 ISA. */
614 intel64 /* Intel64 ISA. */
615 } isa64;
616
617 /* 1 for intel mnemonic,
618 0 if att mnemonic. */
619 static int intel_mnemonic = !SYSV386_COMPAT;
620
621 /* 1 if pseudo registers are permitted. */
622 static int allow_pseudo_reg = 0;
623
624 /* 1 if register prefix % not required. */
625 static int allow_naked_reg = 0;
626
627 /* 1 if the assembler should add BND prefix for all control-transferring
628 instructions supporting it, even if this prefix wasn't specified
629 explicitly. */
630 static int add_bnd_prefix = 0;
631
632 /* 1 if pseudo index register, eiz/riz, is allowed . */
633 static int allow_index_reg = 0;
634
635 /* 1 if the assembler should ignore LOCK prefix, even if it was
636 specified explicitly. */
637 static int omit_lock_prefix = 0;
638
639 /* 1 if the assembler should encode lfence, mfence, and sfence as
640 "lock addl $0, (%{re}sp)". */
641 static int avoid_fence = 0;
642
643 /* 1 if lfence should be inserted after every load. */
644 static int lfence_after_load = 0;
645
646 /* Non-zero if lfence should be inserted before indirect branch. */
647 static enum lfence_before_indirect_branch_kind
648 {
649 lfence_branch_none = 0,
650 lfence_branch_register,
651 lfence_branch_memory,
652 lfence_branch_all
653 }
654 lfence_before_indirect_branch;
655
656 /* Non-zero if lfence should be inserted before ret. */
657 static enum lfence_before_ret_kind
658 {
659 lfence_before_ret_none = 0,
660 lfence_before_ret_not,
661 lfence_before_ret_or,
662 lfence_before_ret_shl
663 }
664 lfence_before_ret;
665
666 /* Types of previous instruction is .byte or prefix. */
667 static struct
668 {
669 segT seg;
670 const char *file;
671 const char *name;
672 unsigned int line;
673 enum last_insn_kind
674 {
675 last_insn_other = 0,
676 last_insn_directive,
677 last_insn_prefix
678 } kind;
679 } last_insn;
680
681 /* 1 if the assembler should generate relax relocations. */
682
683 static int generate_relax_relocations
684 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
685
686 static enum check_kind
687 {
688 check_none = 0,
689 check_warning,
690 check_error
691 }
692 sse_check, operand_check = check_warning;
693
694 /* Non-zero if branches should be aligned within power of 2 boundary. */
695 static int align_branch_power = 0;
696
697 /* Types of branches to align. */
698 enum align_branch_kind
699 {
700 align_branch_none = 0,
701 align_branch_jcc = 1,
702 align_branch_fused = 2,
703 align_branch_jmp = 3,
704 align_branch_call = 4,
705 align_branch_indirect = 5,
706 align_branch_ret = 6
707 };
708
709 /* Type bits of branches to align. */
710 enum align_branch_bit
711 {
712 align_branch_jcc_bit = 1 << align_branch_jcc,
713 align_branch_fused_bit = 1 << align_branch_fused,
714 align_branch_jmp_bit = 1 << align_branch_jmp,
715 align_branch_call_bit = 1 << align_branch_call,
716 align_branch_indirect_bit = 1 << align_branch_indirect,
717 align_branch_ret_bit = 1 << align_branch_ret
718 };
719
720 static unsigned int align_branch = (align_branch_jcc_bit
721 | align_branch_fused_bit
722 | align_branch_jmp_bit);
723
724 /* Types of condition jump used by macro-fusion. */
725 enum mf_jcc_kind
726 {
727 mf_jcc_jo = 0, /* base opcode 0x70 */
728 mf_jcc_jc, /* base opcode 0x72 */
729 mf_jcc_je, /* base opcode 0x74 */
730 mf_jcc_jna, /* base opcode 0x76 */
731 mf_jcc_js, /* base opcode 0x78 */
732 mf_jcc_jp, /* base opcode 0x7a */
733 mf_jcc_jl, /* base opcode 0x7c */
734 mf_jcc_jle, /* base opcode 0x7e */
735 };
736
737 /* Types of compare flag-modifying insntructions used by macro-fusion. */
738 enum mf_cmp_kind
739 {
740 mf_cmp_test_and, /* test/cmp */
741 mf_cmp_alu_cmp, /* add/sub/cmp */
742 mf_cmp_incdec /* inc/dec */
743 };
744
745 /* The maximum padding size for fused jcc. CMP like instruction can
746 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
747 prefixes. */
748 #define MAX_FUSED_JCC_PADDING_SIZE 20
749
750 /* The maximum number of prefixes added for an instruction. */
751 static unsigned int align_branch_prefix_size = 5;
752
753 /* Optimization:
754 1. Clear the REX_W bit with register operand if possible.
755 2. Above plus use 128bit vector instruction to clear the full vector
756 register.
757 */
758 static int optimize = 0;
759
760 /* Optimization:
761 1. Clear the REX_W bit with register operand if possible.
762 2. Above plus use 128bit vector instruction to clear the full vector
763 register.
764 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
765 "testb $imm7,%r8".
766 */
767 static int optimize_for_space = 0;
768
769 /* Register prefix used for error message. */
770 static const char *register_prefix = "%";
771
772 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
773 leave, push, and pop instructions so that gcc has the same stack
774 frame as in 32 bit mode. */
775 static char stackop_size = '\0';
776
777 /* Non-zero to optimize code alignment. */
778 int optimize_align_code = 1;
779
780 /* Non-zero to quieten some warnings. */
781 static int quiet_warnings = 0;
782
783 /* CPU name. */
784 static const char *cpu_arch_name = NULL;
785 static char *cpu_sub_arch_name = NULL;
786
787 /* CPU feature flags. */
788 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
789
790 /* If we have selected a cpu we are generating instructions for. */
791 static int cpu_arch_tune_set = 0;
792
793 /* Cpu we are generating instructions for. */
794 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
795
796 /* CPU feature flags of cpu we are generating instructions for. */
797 static i386_cpu_flags cpu_arch_tune_flags;
798
799 /* CPU instruction set architecture used. */
800 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
801
802 /* CPU feature flags of instruction set architecture used. */
803 i386_cpu_flags cpu_arch_isa_flags;
804
805 /* If set, conditional jumps are not automatically promoted to handle
806 larger than a byte offset. */
807 static unsigned int no_cond_jump_promotion = 0;
808
809 /* Encode SSE instructions with VEX prefix. */
810 static unsigned int sse2avx;
811
812 /* Encode scalar AVX instructions with specific vector length. */
813 static enum
814 {
815 vex128 = 0,
816 vex256
817 } avxscalar;
818
819 /* Encode VEX WIG instructions with specific vex.w. */
820 static enum
821 {
822 vexw0 = 0,
823 vexw1
824 } vexwig;
825
826 /* Encode scalar EVEX LIG instructions with specific vector length. */
827 static enum
828 {
829 evexl128 = 0,
830 evexl256,
831 evexl512
832 } evexlig;
833
834 /* Encode EVEX WIG instructions with specific evex.w. */
835 static enum
836 {
837 evexw0 = 0,
838 evexw1
839 } evexwig;
840
841 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
842 static enum rc_type evexrcig = rne;
843
844 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
845 static symbolS *GOT_symbol;
846
847 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
848 unsigned int x86_dwarf2_return_column;
849
850 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
851 int x86_cie_data_alignment;
852
853 /* Interface to relax_segment.
854 There are 3 major relax states for 386 jump insns because the
855 different types of jumps add different sizes to frags when we're
856 figuring out what sort of jump to choose to reach a given label.
857
858 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
859 branches which are handled by md_estimate_size_before_relax() and
860 i386_generic_table_relax_frag(). */
861
862 /* Types. */
863 #define UNCOND_JUMP 0
864 #define COND_JUMP 1
865 #define COND_JUMP86 2
866 #define BRANCH_PADDING 3
867 #define BRANCH_PREFIX 4
868 #define FUSED_JCC_PADDING 5
869
870 /* Sizes. */
871 #define CODE16 1
872 #define SMALL 0
873 #define SMALL16 (SMALL | CODE16)
874 #define BIG 2
875 #define BIG16 (BIG | CODE16)
876
877 #ifndef INLINE
878 #ifdef __GNUC__
879 #define INLINE __inline__
880 #else
881 #define INLINE
882 #endif
883 #endif
884
885 #define ENCODE_RELAX_STATE(type, size) \
886 ((relax_substateT) (((type) << 2) | (size)))
887 #define TYPE_FROM_RELAX_STATE(s) \
888 ((s) >> 2)
889 #define DISP_SIZE_FROM_RELAX_STATE(s) \
890 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
891
892 /* This table is used by relax_frag to promote short jumps to long
893 ones where necessary. SMALL (short) jumps may be promoted to BIG
894 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
895 don't allow a short jump in a 32 bit code segment to be promoted to
896 a 16 bit offset jump because it's slower (requires data size
897 prefix), and doesn't work, unless the destination is in the bottom
898 64k of the code segment (The top 16 bits of eip are zeroed). */
899
900 const relax_typeS md_relax_table[] =
901 {
902 /* The fields are:
903 1) most positive reach of this state,
904 2) most negative reach of this state,
905 3) how many bytes this mode will have in the variable part of the frag
906 4) which index into the table to try if we can't fit into this one. */
907
908 /* UNCOND_JUMP states. */
909 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
910 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
911 /* dword jmp adds 4 bytes to frag:
912 0 extra opcode bytes, 4 displacement bytes. */
913 {0, 0, 4, 0},
914 /* word jmp adds 2 byte2 to frag:
915 0 extra opcode bytes, 2 displacement bytes. */
916 {0, 0, 2, 0},
917
918 /* COND_JUMP states. */
919 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
920 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
921 /* dword conditionals adds 5 bytes to frag:
922 1 extra opcode byte, 4 displacement bytes. */
923 {0, 0, 5, 0},
924 /* word conditionals add 3 bytes to frag:
925 1 extra opcode byte, 2 displacement bytes. */
926 {0, 0, 3, 0},
927
928 /* COND_JUMP86 states. */
929 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
930 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
931 /* dword conditionals adds 5 bytes to frag:
932 1 extra opcode byte, 4 displacement bytes. */
933 {0, 0, 5, 0},
934 /* word conditionals add 4 bytes to frag:
935 1 displacement byte and a 3 byte long branch insn. */
936 {0, 0, 4, 0}
937 };
938
939 static const arch_entry cpu_arch[] =
940 {
941 /* Do not replace the first two entries - i386_target_format()
942 relies on them being there in this order. */
943 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
944 CPU_GENERIC32_FLAGS, 0 },
945 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
946 CPU_GENERIC64_FLAGS, 0 },
947 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
948 CPU_NONE_FLAGS, 0 },
949 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
950 CPU_I186_FLAGS, 0 },
951 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
952 CPU_I286_FLAGS, 0 },
953 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
954 CPU_I386_FLAGS, 0 },
955 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
956 CPU_I486_FLAGS, 0 },
957 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
958 CPU_I586_FLAGS, 0 },
959 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
960 CPU_I686_FLAGS, 0 },
961 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
962 CPU_I586_FLAGS, 0 },
963 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
964 CPU_PENTIUMPRO_FLAGS, 0 },
965 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
966 CPU_P2_FLAGS, 0 },
967 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
968 CPU_P3_FLAGS, 0 },
969 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
970 CPU_P4_FLAGS, 0 },
971 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
972 CPU_CORE_FLAGS, 0 },
973 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
974 CPU_NOCONA_FLAGS, 0 },
975 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
976 CPU_CORE_FLAGS, 1 },
977 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
978 CPU_CORE_FLAGS, 0 },
979 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
980 CPU_CORE2_FLAGS, 1 },
981 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
982 CPU_CORE2_FLAGS, 0 },
983 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
984 CPU_COREI7_FLAGS, 0 },
985 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
986 CPU_L1OM_FLAGS, 0 },
987 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
988 CPU_K1OM_FLAGS, 0 },
989 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
990 CPU_IAMCU_FLAGS, 0 },
991 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
992 CPU_K6_FLAGS, 0 },
993 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
994 CPU_K6_2_FLAGS, 0 },
995 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
996 CPU_ATHLON_FLAGS, 0 },
997 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
998 CPU_K8_FLAGS, 1 },
999 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
1000 CPU_K8_FLAGS, 0 },
1001 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
1002 CPU_K8_FLAGS, 0 },
1003 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
1004 CPU_AMDFAM10_FLAGS, 0 },
1005 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
1006 CPU_BDVER1_FLAGS, 0 },
1007 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
1008 CPU_BDVER2_FLAGS, 0 },
1009 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
1010 CPU_BDVER3_FLAGS, 0 },
1011 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1012 CPU_BDVER4_FLAGS, 0 },
1013 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1014 CPU_ZNVER1_FLAGS, 0 },
1015 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1016 CPU_ZNVER2_FLAGS, 0 },
1017 { STRING_COMMA_LEN ("znver3"), PROCESSOR_ZNVER,
1018 CPU_ZNVER3_FLAGS, 0 },
1019 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1020 CPU_BTVER1_FLAGS, 0 },
1021 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1022 CPU_BTVER2_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1024 CPU_8087_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1026 CPU_287_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1028 CPU_387_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1030 CPU_687_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1032 CPU_CMOV_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1034 CPU_FXSR_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1036 CPU_MMX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1038 CPU_SSE_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1040 CPU_SSE2_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1042 CPU_SSE3_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4A_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1046 CPU_SSSE3_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1048 CPU_SSE4_1_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1050 CPU_SSE4_2_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1052 CPU_SSE4_2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1054 CPU_AVX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1056 CPU_AVX2_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1058 CPU_AVX512F_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1060 CPU_AVX512CD_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1062 CPU_AVX512ER_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1064 CPU_AVX512PF_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1066 CPU_AVX512DQ_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1068 CPU_AVX512BW_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1070 CPU_AVX512VL_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1072 CPU_VMX_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1074 CPU_VMFUNC_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1076 CPU_SMX_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1078 CPU_XSAVE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1080 CPU_XSAVEOPT_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1082 CPU_XSAVEC_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1084 CPU_XSAVES_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1086 CPU_AES_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1088 CPU_PCLMUL_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1090 CPU_PCLMUL_FLAGS, 1 },
1091 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1092 CPU_FSGSBASE_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1094 CPU_RDRND_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1096 CPU_F16C_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1098 CPU_BMI2_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1100 CPU_FMA_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1102 CPU_FMA4_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1104 CPU_XOP_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1106 CPU_LWP_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1108 CPU_MOVBE_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1110 CPU_CX16_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1112 CPU_EPT_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1114 CPU_LZCNT_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1116 CPU_POPCNT_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1118 CPU_HLE_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1120 CPU_RTM_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1122 CPU_INVPCID_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1124 CPU_CLFLUSH_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1126 CPU_NOP_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1128 CPU_SYSCALL_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1130 CPU_RDTSCP_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1132 CPU_3DNOW_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1134 CPU_3DNOWA_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1136 CPU_PADLOCK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1138 CPU_SVME_FLAGS, 1 },
1139 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1140 CPU_SVME_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1142 CPU_SSE4A_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1144 CPU_ABM_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1146 CPU_BMI_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1148 CPU_TBM_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1150 CPU_ADX_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1152 CPU_RDSEED_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1154 CPU_PRFCHW_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1156 CPU_SMAP_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1158 CPU_MPX_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1160 CPU_SHA_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1162 CPU_CLFLUSHOPT_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1164 CPU_PREFETCHWT1_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1166 CPU_SE1_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1168 CPU_CLWB_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1170 CPU_AVX512IFMA_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1172 CPU_AVX512VBMI_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_4FMAPS_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_4VNNIW_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1178 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1180 CPU_AVX512_VBMI2_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_VNNI_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_BITALG_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".avx_vnni"), PROCESSOR_UNKNOWN,
1186 CPU_AVX_VNNI_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1188 CPU_CLZERO_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1190 CPU_MWAITX_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1192 CPU_OSPKE_FLAGS, 0 },
1193 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1194 CPU_RDPID_FLAGS, 0 },
1195 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1196 CPU_PTWRITE_FLAGS, 0 },
1197 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1198 CPU_IBT_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1200 CPU_SHSTK_FLAGS, 0 },
1201 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1202 CPU_GFNI_FLAGS, 0 },
1203 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1204 CPU_VAES_FLAGS, 0 },
1205 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1206 CPU_VPCLMULQDQ_FLAGS, 0 },
1207 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1208 CPU_WBNOINVD_FLAGS, 0 },
1209 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1210 CPU_PCONFIG_FLAGS, 0 },
1211 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1212 CPU_WAITPKG_FLAGS, 0 },
1213 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1214 CPU_CLDEMOTE_FLAGS, 0 },
1215 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1216 CPU_AMX_INT8_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1218 CPU_AMX_BF16_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1220 CPU_AMX_TILE_FLAGS, 0 },
1221 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1222 CPU_MOVDIRI_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1224 CPU_MOVDIR64B_FLAGS, 0 },
1225 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1226 CPU_AVX512_BF16_FLAGS, 0 },
1227 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1228 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1229 { STRING_COMMA_LEN (".tdx"), PROCESSOR_UNKNOWN,
1230 CPU_TDX_FLAGS, 0 },
1231 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1232 CPU_ENQCMD_FLAGS, 0 },
1233 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1234 CPU_SERIALIZE_FLAGS, 0 },
1235 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1236 CPU_RDPRU_FLAGS, 0 },
1237 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1238 CPU_MCOMMIT_FLAGS, 0 },
1239 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1240 CPU_SEV_ES_FLAGS, 0 },
1241 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1242 CPU_TSXLDTRK_FLAGS, 0 },
1243 { STRING_COMMA_LEN (".kl"), PROCESSOR_UNKNOWN,
1244 CPU_KL_FLAGS, 0 },
1245 { STRING_COMMA_LEN (".widekl"), PROCESSOR_UNKNOWN,
1246 CPU_WIDEKL_FLAGS, 0 },
1247 { STRING_COMMA_LEN (".uintr"), PROCESSOR_UNKNOWN,
1248 CPU_UINTR_FLAGS, 0 },
1249 { STRING_COMMA_LEN (".hreset"), PROCESSOR_UNKNOWN,
1250 CPU_HRESET_FLAGS, 0 },
1251 };
1252
1253 static const noarch_entry cpu_noarch[] =
1254 {
1255 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1256 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1257 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1258 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1259 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1260 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1261 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1262 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1263 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1264 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1265 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1266 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1267 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1268 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1269 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1270 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1271 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1272 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1273 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1274 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1275 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1276 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1277 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1278 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1279 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1280 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1281 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1282 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1283 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1284 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1285 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1286 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1287 { STRING_COMMA_LEN ("noavx_vnni"), CPU_ANY_AVX_VNNI_FLAGS },
1288 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1289 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1290 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1291 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1292 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
1293 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1294 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1295 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1296 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1297 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
1298 { STRING_COMMA_LEN ("notdx"), CPU_ANY_TDX_FLAGS },
1299 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1300 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1301 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1302 { STRING_COMMA_LEN ("nokl"), CPU_ANY_KL_FLAGS },
1303 { STRING_COMMA_LEN ("nowidekl"), CPU_ANY_WIDEKL_FLAGS },
1304 { STRING_COMMA_LEN ("nouintr"), CPU_ANY_UINTR_FLAGS },
1305 { STRING_COMMA_LEN ("nohreset"), CPU_ANY_HRESET_FLAGS },
1306 };
1307
1308 #ifdef I386COFF
1309 /* Like s_lcomm_internal in gas/read.c but the alignment string
1310 is allowed to be optional. */
1311
1312 static symbolS *
1313 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1314 {
1315 addressT align = 0;
1316
1317 SKIP_WHITESPACE ();
1318
1319 if (needs_align
1320 && *input_line_pointer == ',')
1321 {
1322 align = parse_align (needs_align - 1);
1323
1324 if (align == (addressT) -1)
1325 return NULL;
1326 }
1327 else
1328 {
1329 if (size >= 8)
1330 align = 3;
1331 else if (size >= 4)
1332 align = 2;
1333 else if (size >= 2)
1334 align = 1;
1335 else
1336 align = 0;
1337 }
1338
1339 bss_alloc (symbolP, size, align);
1340 return symbolP;
1341 }
1342
1343 static void
1344 pe_lcomm (int needs_align)
1345 {
1346 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1347 }
1348 #endif
1349
1350 const pseudo_typeS md_pseudo_table[] =
1351 {
1352 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1353 {"align", s_align_bytes, 0},
1354 #else
1355 {"align", s_align_ptwo, 0},
1356 #endif
1357 {"arch", set_cpu_arch, 0},
1358 #ifndef I386COFF
1359 {"bss", s_bss, 0},
1360 #else
1361 {"lcomm", pe_lcomm, 1},
1362 #endif
1363 {"ffloat", float_cons, 'f'},
1364 {"dfloat", float_cons, 'd'},
1365 {"tfloat", float_cons, 'x'},
1366 {"value", cons, 2},
1367 {"slong", signed_cons, 4},
1368 {"noopt", s_ignore, 0},
1369 {"optim", s_ignore, 0},
1370 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1371 {"code16", set_code_flag, CODE_16BIT},
1372 {"code32", set_code_flag, CODE_32BIT},
1373 #ifdef BFD64
1374 {"code64", set_code_flag, CODE_64BIT},
1375 #endif
1376 {"intel_syntax", set_intel_syntax, 1},
1377 {"att_syntax", set_intel_syntax, 0},
1378 {"intel_mnemonic", set_intel_mnemonic, 1},
1379 {"att_mnemonic", set_intel_mnemonic, 0},
1380 {"allow_index_reg", set_allow_index_reg, 1},
1381 {"disallow_index_reg", set_allow_index_reg, 0},
1382 {"sse_check", set_check, 0},
1383 {"operand_check", set_check, 1},
1384 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1385 {"largecomm", handle_large_common, 0},
1386 #else
1387 {"file", dwarf2_directive_file, 0},
1388 {"loc", dwarf2_directive_loc, 0},
1389 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1390 #endif
1391 #ifdef TE_PE
1392 {"secrel32", pe_directive_secrel, 0},
1393 #endif
1394 {0, 0, 0}
1395 };
1396
1397 /* For interface with expression (). */
1398 extern char *input_line_pointer;
1399
1400 /* Hash table for instruction mnemonic lookup. */
1401 static htab_t op_hash;
1402
1403 /* Hash table for register lookup. */
1404 static htab_t reg_hash;
1405 \f
1406 /* Various efficient no-op patterns for aligning code labels.
1407 Note: Don't try to assemble the instructions in the comments.
1408 0L and 0w are not legal. */
1409 static const unsigned char f32_1[] =
1410 {0x90}; /* nop */
1411 static const unsigned char f32_2[] =
1412 {0x66,0x90}; /* xchg %ax,%ax */
1413 static const unsigned char f32_3[] =
1414 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1415 static const unsigned char f32_4[] =
1416 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1417 static const unsigned char f32_6[] =
1418 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1419 static const unsigned char f32_7[] =
1420 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1421 static const unsigned char f16_3[] =
1422 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1423 static const unsigned char f16_4[] =
1424 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1425 static const unsigned char jump_disp8[] =
1426 {0xeb}; /* jmp disp8 */
1427 static const unsigned char jump32_disp32[] =
1428 {0xe9}; /* jmp disp32 */
1429 static const unsigned char jump16_disp32[] =
1430 {0x66,0xe9}; /* jmp disp32 */
1431 /* 32-bit NOPs patterns. */
1432 static const unsigned char *const f32_patt[] = {
1433 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1434 };
1435 /* 16-bit NOPs patterns. */
1436 static const unsigned char *const f16_patt[] = {
1437 f32_1, f32_2, f16_3, f16_4
1438 };
1439 /* nopl (%[re]ax) */
1440 static const unsigned char alt_3[] =
1441 {0x0f,0x1f,0x00};
1442 /* nopl 0(%[re]ax) */
1443 static const unsigned char alt_4[] =
1444 {0x0f,0x1f,0x40,0x00};
1445 /* nopl 0(%[re]ax,%[re]ax,1) */
1446 static const unsigned char alt_5[] =
1447 {0x0f,0x1f,0x44,0x00,0x00};
1448 /* nopw 0(%[re]ax,%[re]ax,1) */
1449 static const unsigned char alt_6[] =
1450 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1451 /* nopl 0L(%[re]ax) */
1452 static const unsigned char alt_7[] =
1453 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1454 /* nopl 0L(%[re]ax,%[re]ax,1) */
1455 static const unsigned char alt_8[] =
1456 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1457 /* nopw 0L(%[re]ax,%[re]ax,1) */
1458 static const unsigned char alt_9[] =
1459 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1460 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1461 static const unsigned char alt_10[] =
1462 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1463 /* data16 nopw %cs:0L(%eax,%eax,1) */
1464 static const unsigned char alt_11[] =
1465 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1466 /* 32-bit and 64-bit NOPs patterns. */
1467 static const unsigned char *const alt_patt[] = {
1468 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1469 alt_9, alt_10, alt_11
1470 };
1471
1472 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1473 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1474
1475 static void
1476 i386_output_nops (char *where, const unsigned char *const *patt,
1477 int count, int max_single_nop_size)
1478
1479 {
1480 /* Place the longer NOP first. */
1481 int last;
1482 int offset;
1483 const unsigned char *nops;
1484
1485 if (max_single_nop_size < 1)
1486 {
1487 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1488 max_single_nop_size);
1489 return;
1490 }
1491
1492 nops = patt[max_single_nop_size - 1];
1493
1494 /* Use the smaller one if the requsted one isn't available. */
1495 if (nops == NULL)
1496 {
1497 max_single_nop_size--;
1498 nops = patt[max_single_nop_size - 1];
1499 }
1500
1501 last = count % max_single_nop_size;
1502
1503 count -= last;
1504 for (offset = 0; offset < count; offset += max_single_nop_size)
1505 memcpy (where + offset, nops, max_single_nop_size);
1506
1507 if (last)
1508 {
1509 nops = patt[last - 1];
1510 if (nops == NULL)
1511 {
1512 /* Use the smaller one plus one-byte NOP if the needed one
1513 isn't available. */
1514 last--;
1515 nops = patt[last - 1];
1516 memcpy (where + offset, nops, last);
1517 where[offset + last] = *patt[0];
1518 }
1519 else
1520 memcpy (where + offset, nops, last);
1521 }
1522 }
1523
1524 static INLINE int
1525 fits_in_imm7 (offsetT num)
1526 {
1527 return (num & 0x7f) == num;
1528 }
1529
1530 static INLINE int
1531 fits_in_imm31 (offsetT num)
1532 {
1533 return (num & 0x7fffffff) == num;
1534 }
1535
1536 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1537 single NOP instruction LIMIT. */
1538
1539 void
1540 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1541 {
1542 const unsigned char *const *patt = NULL;
1543 int max_single_nop_size;
1544 /* Maximum number of NOPs before switching to jump over NOPs. */
1545 int max_number_of_nops;
1546
1547 switch (fragP->fr_type)
1548 {
1549 case rs_fill_nop:
1550 case rs_align_code:
1551 break;
1552 case rs_machine_dependent:
1553 /* Allow NOP padding for jumps and calls. */
1554 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1555 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1556 break;
1557 /* Fall through. */
1558 default:
1559 return;
1560 }
1561
1562 /* We need to decide which NOP sequence to use for 32bit and
1563 64bit. When -mtune= is used:
1564
1565 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1566 PROCESSOR_GENERIC32, f32_patt will be used.
1567 2. For the rest, alt_patt will be used.
1568
1569 When -mtune= isn't used, alt_patt will be used if
1570 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1571 be used.
1572
1573 When -march= or .arch is used, we can't use anything beyond
1574 cpu_arch_isa_flags. */
1575
1576 if (flag_code == CODE_16BIT)
1577 {
1578 patt = f16_patt;
1579 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1580 /* Limit number of NOPs to 2 in 16-bit mode. */
1581 max_number_of_nops = 2;
1582 }
1583 else
1584 {
1585 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1586 {
1587 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1588 switch (cpu_arch_tune)
1589 {
1590 case PROCESSOR_UNKNOWN:
1591 /* We use cpu_arch_isa_flags to check if we SHOULD
1592 optimize with nops. */
1593 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1594 patt = alt_patt;
1595 else
1596 patt = f32_patt;
1597 break;
1598 case PROCESSOR_PENTIUM4:
1599 case PROCESSOR_NOCONA:
1600 case PROCESSOR_CORE:
1601 case PROCESSOR_CORE2:
1602 case PROCESSOR_COREI7:
1603 case PROCESSOR_L1OM:
1604 case PROCESSOR_K1OM:
1605 case PROCESSOR_GENERIC64:
1606 case PROCESSOR_K6:
1607 case PROCESSOR_ATHLON:
1608 case PROCESSOR_K8:
1609 case PROCESSOR_AMDFAM10:
1610 case PROCESSOR_BD:
1611 case PROCESSOR_ZNVER:
1612 case PROCESSOR_BT:
1613 patt = alt_patt;
1614 break;
1615 case PROCESSOR_I386:
1616 case PROCESSOR_I486:
1617 case PROCESSOR_PENTIUM:
1618 case PROCESSOR_PENTIUMPRO:
1619 case PROCESSOR_IAMCU:
1620 case PROCESSOR_GENERIC32:
1621 patt = f32_patt;
1622 break;
1623 }
1624 }
1625 else
1626 {
1627 switch (fragP->tc_frag_data.tune)
1628 {
1629 case PROCESSOR_UNKNOWN:
1630 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1631 PROCESSOR_UNKNOWN. */
1632 abort ();
1633 break;
1634
1635 case PROCESSOR_I386:
1636 case PROCESSOR_I486:
1637 case PROCESSOR_PENTIUM:
1638 case PROCESSOR_IAMCU:
1639 case PROCESSOR_K6:
1640 case PROCESSOR_ATHLON:
1641 case PROCESSOR_K8:
1642 case PROCESSOR_AMDFAM10:
1643 case PROCESSOR_BD:
1644 case PROCESSOR_ZNVER:
1645 case PROCESSOR_BT:
1646 case PROCESSOR_GENERIC32:
1647 /* We use cpu_arch_isa_flags to check if we CAN optimize
1648 with nops. */
1649 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1650 patt = alt_patt;
1651 else
1652 patt = f32_patt;
1653 break;
1654 case PROCESSOR_PENTIUMPRO:
1655 case PROCESSOR_PENTIUM4:
1656 case PROCESSOR_NOCONA:
1657 case PROCESSOR_CORE:
1658 case PROCESSOR_CORE2:
1659 case PROCESSOR_COREI7:
1660 case PROCESSOR_L1OM:
1661 case PROCESSOR_K1OM:
1662 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1663 patt = alt_patt;
1664 else
1665 patt = f32_patt;
1666 break;
1667 case PROCESSOR_GENERIC64:
1668 patt = alt_patt;
1669 break;
1670 }
1671 }
1672
1673 if (patt == f32_patt)
1674 {
1675 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1676 /* Limit number of NOPs to 2 for older processors. */
1677 max_number_of_nops = 2;
1678 }
1679 else
1680 {
1681 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1682 /* Limit number of NOPs to 7 for newer processors. */
1683 max_number_of_nops = 7;
1684 }
1685 }
1686
1687 if (limit == 0)
1688 limit = max_single_nop_size;
1689
1690 if (fragP->fr_type == rs_fill_nop)
1691 {
1692 /* Output NOPs for .nop directive. */
1693 if (limit > max_single_nop_size)
1694 {
1695 as_bad_where (fragP->fr_file, fragP->fr_line,
1696 _("invalid single nop size: %d "
1697 "(expect within [0, %d])"),
1698 limit, max_single_nop_size);
1699 return;
1700 }
1701 }
1702 else if (fragP->fr_type != rs_machine_dependent)
1703 fragP->fr_var = count;
1704
1705 if ((count / max_single_nop_size) > max_number_of_nops)
1706 {
1707 /* Generate jump over NOPs. */
1708 offsetT disp = count - 2;
1709 if (fits_in_imm7 (disp))
1710 {
1711 /* Use "jmp disp8" if possible. */
1712 count = disp;
1713 where[0] = jump_disp8[0];
1714 where[1] = count;
1715 where += 2;
1716 }
1717 else
1718 {
1719 unsigned int size_of_jump;
1720
1721 if (flag_code == CODE_16BIT)
1722 {
1723 where[0] = jump16_disp32[0];
1724 where[1] = jump16_disp32[1];
1725 size_of_jump = 2;
1726 }
1727 else
1728 {
1729 where[0] = jump32_disp32[0];
1730 size_of_jump = 1;
1731 }
1732
1733 count -= size_of_jump + 4;
1734 if (!fits_in_imm31 (count))
1735 {
1736 as_bad_where (fragP->fr_file, fragP->fr_line,
1737 _("jump over nop padding out of range"));
1738 return;
1739 }
1740
1741 md_number_to_chars (where + size_of_jump, count, 4);
1742 where += size_of_jump + 4;
1743 }
1744 }
1745
1746 /* Generate multiple NOPs. */
1747 i386_output_nops (where, patt, count, limit);
1748 }
1749
1750 static INLINE int
1751 operand_type_all_zero (const union i386_operand_type *x)
1752 {
1753 switch (ARRAY_SIZE(x->array))
1754 {
1755 case 3:
1756 if (x->array[2])
1757 return 0;
1758 /* Fall through. */
1759 case 2:
1760 if (x->array[1])
1761 return 0;
1762 /* Fall through. */
1763 case 1:
1764 return !x->array[0];
1765 default:
1766 abort ();
1767 }
1768 }
1769
1770 static INLINE void
1771 operand_type_set (union i386_operand_type *x, unsigned int v)
1772 {
1773 switch (ARRAY_SIZE(x->array))
1774 {
1775 case 3:
1776 x->array[2] = v;
1777 /* Fall through. */
1778 case 2:
1779 x->array[1] = v;
1780 /* Fall through. */
1781 case 1:
1782 x->array[0] = v;
1783 /* Fall through. */
1784 break;
1785 default:
1786 abort ();
1787 }
1788
1789 x->bitfield.class = ClassNone;
1790 x->bitfield.instance = InstanceNone;
1791 }
1792
1793 static INLINE int
1794 operand_type_equal (const union i386_operand_type *x,
1795 const union i386_operand_type *y)
1796 {
1797 switch (ARRAY_SIZE(x->array))
1798 {
1799 case 3:
1800 if (x->array[2] != y->array[2])
1801 return 0;
1802 /* Fall through. */
1803 case 2:
1804 if (x->array[1] != y->array[1])
1805 return 0;
1806 /* Fall through. */
1807 case 1:
1808 return x->array[0] == y->array[0];
1809 break;
1810 default:
1811 abort ();
1812 }
1813 }
1814
1815 static INLINE int
1816 cpu_flags_all_zero (const union i386_cpu_flags *x)
1817 {
1818 switch (ARRAY_SIZE(x->array))
1819 {
1820 case 4:
1821 if (x->array[3])
1822 return 0;
1823 /* Fall through. */
1824 case 3:
1825 if (x->array[2])
1826 return 0;
1827 /* Fall through. */
1828 case 2:
1829 if (x->array[1])
1830 return 0;
1831 /* Fall through. */
1832 case 1:
1833 return !x->array[0];
1834 default:
1835 abort ();
1836 }
1837 }
1838
1839 static INLINE int
1840 cpu_flags_equal (const union i386_cpu_flags *x,
1841 const union i386_cpu_flags *y)
1842 {
1843 switch (ARRAY_SIZE(x->array))
1844 {
1845 case 4:
1846 if (x->array[3] != y->array[3])
1847 return 0;
1848 /* Fall through. */
1849 case 3:
1850 if (x->array[2] != y->array[2])
1851 return 0;
1852 /* Fall through. */
1853 case 2:
1854 if (x->array[1] != y->array[1])
1855 return 0;
1856 /* Fall through. */
1857 case 1:
1858 return x->array[0] == y->array[0];
1859 break;
1860 default:
1861 abort ();
1862 }
1863 }
1864
1865 static INLINE int
1866 cpu_flags_check_cpu64 (i386_cpu_flags f)
1867 {
1868 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1869 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1870 }
1871
1872 static INLINE i386_cpu_flags
1873 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1874 {
1875 switch (ARRAY_SIZE (x.array))
1876 {
1877 case 4:
1878 x.array [3] &= y.array [3];
1879 /* Fall through. */
1880 case 3:
1881 x.array [2] &= y.array [2];
1882 /* Fall through. */
1883 case 2:
1884 x.array [1] &= y.array [1];
1885 /* Fall through. */
1886 case 1:
1887 x.array [0] &= y.array [0];
1888 break;
1889 default:
1890 abort ();
1891 }
1892 return x;
1893 }
1894
1895 static INLINE i386_cpu_flags
1896 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1897 {
1898 switch (ARRAY_SIZE (x.array))
1899 {
1900 case 4:
1901 x.array [3] |= y.array [3];
1902 /* Fall through. */
1903 case 3:
1904 x.array [2] |= y.array [2];
1905 /* Fall through. */
1906 case 2:
1907 x.array [1] |= y.array [1];
1908 /* Fall through. */
1909 case 1:
1910 x.array [0] |= y.array [0];
1911 break;
1912 default:
1913 abort ();
1914 }
1915 return x;
1916 }
1917
1918 static INLINE i386_cpu_flags
1919 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1920 {
1921 switch (ARRAY_SIZE (x.array))
1922 {
1923 case 4:
1924 x.array [3] &= ~y.array [3];
1925 /* Fall through. */
1926 case 3:
1927 x.array [2] &= ~y.array [2];
1928 /* Fall through. */
1929 case 2:
1930 x.array [1] &= ~y.array [1];
1931 /* Fall through. */
1932 case 1:
1933 x.array [0] &= ~y.array [0];
1934 break;
1935 default:
1936 abort ();
1937 }
1938 return x;
1939 }
1940
1941 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1942
1943 #define CPU_FLAGS_ARCH_MATCH 0x1
1944 #define CPU_FLAGS_64BIT_MATCH 0x2
1945
1946 #define CPU_FLAGS_PERFECT_MATCH \
1947 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1948
1949 /* Return CPU flags match bits. */
1950
1951 static int
1952 cpu_flags_match (const insn_template *t)
1953 {
1954 i386_cpu_flags x = t->cpu_flags;
1955 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1956
1957 x.bitfield.cpu64 = 0;
1958 x.bitfield.cpuno64 = 0;
1959
1960 if (cpu_flags_all_zero (&x))
1961 {
1962 /* This instruction is available on all archs. */
1963 match |= CPU_FLAGS_ARCH_MATCH;
1964 }
1965 else
1966 {
1967 /* This instruction is available only on some archs. */
1968 i386_cpu_flags cpu = cpu_arch_flags;
1969
1970 /* AVX512VL is no standalone feature - match it and then strip it. */
1971 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1972 return match;
1973 x.bitfield.cpuavx512vl = 0;
1974
1975 cpu = cpu_flags_and (x, cpu);
1976 if (!cpu_flags_all_zero (&cpu))
1977 {
1978 if (x.bitfield.cpuavx)
1979 {
1980 /* We need to check a few extra flags with AVX. */
1981 if (cpu.bitfield.cpuavx
1982 && (!t->opcode_modifier.sse2avx
1983 || (sse2avx && !i.prefix[DATA_PREFIX]))
1984 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1985 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1986 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1987 match |= CPU_FLAGS_ARCH_MATCH;
1988 }
1989 else if (x.bitfield.cpuavx512f)
1990 {
1991 /* We need to check a few extra flags with AVX512F. */
1992 if (cpu.bitfield.cpuavx512f
1993 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1994 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1995 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1996 match |= CPU_FLAGS_ARCH_MATCH;
1997 }
1998 else
1999 match |= CPU_FLAGS_ARCH_MATCH;
2000 }
2001 }
2002 return match;
2003 }
2004
2005 static INLINE i386_operand_type
2006 operand_type_and (i386_operand_type x, i386_operand_type y)
2007 {
2008 if (x.bitfield.class != y.bitfield.class)
2009 x.bitfield.class = ClassNone;
2010 if (x.bitfield.instance != y.bitfield.instance)
2011 x.bitfield.instance = InstanceNone;
2012
2013 switch (ARRAY_SIZE (x.array))
2014 {
2015 case 3:
2016 x.array [2] &= y.array [2];
2017 /* Fall through. */
2018 case 2:
2019 x.array [1] &= y.array [1];
2020 /* Fall through. */
2021 case 1:
2022 x.array [0] &= y.array [0];
2023 break;
2024 default:
2025 abort ();
2026 }
2027 return x;
2028 }
2029
2030 static INLINE i386_operand_type
2031 operand_type_and_not (i386_operand_type x, i386_operand_type y)
2032 {
2033 gas_assert (y.bitfield.class == ClassNone);
2034 gas_assert (y.bitfield.instance == InstanceNone);
2035
2036 switch (ARRAY_SIZE (x.array))
2037 {
2038 case 3:
2039 x.array [2] &= ~y.array [2];
2040 /* Fall through. */
2041 case 2:
2042 x.array [1] &= ~y.array [1];
2043 /* Fall through. */
2044 case 1:
2045 x.array [0] &= ~y.array [0];
2046 break;
2047 default:
2048 abort ();
2049 }
2050 return x;
2051 }
2052
2053 static INLINE i386_operand_type
2054 operand_type_or (i386_operand_type x, i386_operand_type y)
2055 {
2056 gas_assert (x.bitfield.class == ClassNone ||
2057 y.bitfield.class == ClassNone ||
2058 x.bitfield.class == y.bitfield.class);
2059 gas_assert (x.bitfield.instance == InstanceNone ||
2060 y.bitfield.instance == InstanceNone ||
2061 x.bitfield.instance == y.bitfield.instance);
2062
2063 switch (ARRAY_SIZE (x.array))
2064 {
2065 case 3:
2066 x.array [2] |= y.array [2];
2067 /* Fall through. */
2068 case 2:
2069 x.array [1] |= y.array [1];
2070 /* Fall through. */
2071 case 1:
2072 x.array [0] |= y.array [0];
2073 break;
2074 default:
2075 abort ();
2076 }
2077 return x;
2078 }
2079
2080 static INLINE i386_operand_type
2081 operand_type_xor (i386_operand_type x, i386_operand_type y)
2082 {
2083 gas_assert (y.bitfield.class == ClassNone);
2084 gas_assert (y.bitfield.instance == InstanceNone);
2085
2086 switch (ARRAY_SIZE (x.array))
2087 {
2088 case 3:
2089 x.array [2] ^= y.array [2];
2090 /* Fall through. */
2091 case 2:
2092 x.array [1] ^= y.array [1];
2093 /* Fall through. */
2094 case 1:
2095 x.array [0] ^= y.array [0];
2096 break;
2097 default:
2098 abort ();
2099 }
2100 return x;
2101 }
2102
2103 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2104 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2105 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2106 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2107 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2108 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2109 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2110 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2111 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2112 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2113 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2114 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2115 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2116 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2117 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2118 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2119 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2120
2121 enum operand_type
2122 {
2123 reg,
2124 imm,
2125 disp,
2126 anymem
2127 };
2128
2129 static INLINE int
2130 operand_type_check (i386_operand_type t, enum operand_type c)
2131 {
2132 switch (c)
2133 {
2134 case reg:
2135 return t.bitfield.class == Reg;
2136
2137 case imm:
2138 return (t.bitfield.imm8
2139 || t.bitfield.imm8s
2140 || t.bitfield.imm16
2141 || t.bitfield.imm32
2142 || t.bitfield.imm32s
2143 || t.bitfield.imm64);
2144
2145 case disp:
2146 return (t.bitfield.disp8
2147 || t.bitfield.disp16
2148 || t.bitfield.disp32
2149 || t.bitfield.disp32s
2150 || t.bitfield.disp64);
2151
2152 case anymem:
2153 return (t.bitfield.disp8
2154 || t.bitfield.disp16
2155 || t.bitfield.disp32
2156 || t.bitfield.disp32s
2157 || t.bitfield.disp64
2158 || t.bitfield.baseindex);
2159
2160 default:
2161 abort ();
2162 }
2163
2164 return 0;
2165 }
2166
2167 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2168 between operand GIVEN and opeand WANTED for instruction template T. */
2169
2170 static INLINE int
2171 match_operand_size (const insn_template *t, unsigned int wanted,
2172 unsigned int given)
2173 {
2174 return !((i.types[given].bitfield.byte
2175 && !t->operand_types[wanted].bitfield.byte)
2176 || (i.types[given].bitfield.word
2177 && !t->operand_types[wanted].bitfield.word)
2178 || (i.types[given].bitfield.dword
2179 && !t->operand_types[wanted].bitfield.dword)
2180 || (i.types[given].bitfield.qword
2181 && !t->operand_types[wanted].bitfield.qword)
2182 || (i.types[given].bitfield.tbyte
2183 && !t->operand_types[wanted].bitfield.tbyte));
2184 }
2185
2186 /* Return 1 if there is no conflict in SIMD register between operand
2187 GIVEN and opeand WANTED for instruction template T. */
2188
2189 static INLINE int
2190 match_simd_size (const insn_template *t, unsigned int wanted,
2191 unsigned int given)
2192 {
2193 return !((i.types[given].bitfield.xmmword
2194 && !t->operand_types[wanted].bitfield.xmmword)
2195 || (i.types[given].bitfield.ymmword
2196 && !t->operand_types[wanted].bitfield.ymmword)
2197 || (i.types[given].bitfield.zmmword
2198 && !t->operand_types[wanted].bitfield.zmmword)
2199 || (i.types[given].bitfield.tmmword
2200 && !t->operand_types[wanted].bitfield.tmmword));
2201 }
2202
2203 /* Return 1 if there is no conflict in any size between operand GIVEN
2204 and opeand WANTED for instruction template T. */
2205
2206 static INLINE int
2207 match_mem_size (const insn_template *t, unsigned int wanted,
2208 unsigned int given)
2209 {
2210 return (match_operand_size (t, wanted, given)
2211 && !((i.types[given].bitfield.unspecified
2212 && !i.broadcast
2213 && !t->operand_types[wanted].bitfield.unspecified)
2214 || (i.types[given].bitfield.fword
2215 && !t->operand_types[wanted].bitfield.fword)
2216 /* For scalar opcode templates to allow register and memory
2217 operands at the same time, some special casing is needed
2218 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2219 down-conversion vpmov*. */
2220 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2221 && t->operand_types[wanted].bitfield.byte
2222 + t->operand_types[wanted].bitfield.word
2223 + t->operand_types[wanted].bitfield.dword
2224 + t->operand_types[wanted].bitfield.qword
2225 > !!t->opcode_modifier.broadcast)
2226 ? (i.types[given].bitfield.xmmword
2227 || i.types[given].bitfield.ymmword
2228 || i.types[given].bitfield.zmmword)
2229 : !match_simd_size(t, wanted, given))));
2230 }
2231
2232 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2233 operands for instruction template T, and it has MATCH_REVERSE set if there
2234 is no size conflict on any operands for the template with operands reversed
2235 (and the template allows for reversing in the first place). */
2236
2237 #define MATCH_STRAIGHT 1
2238 #define MATCH_REVERSE 2
2239
2240 static INLINE unsigned int
2241 operand_size_match (const insn_template *t)
2242 {
2243 unsigned int j, match = MATCH_STRAIGHT;
2244
2245 /* Don't check non-absolute jump instructions. */
2246 if (t->opcode_modifier.jump
2247 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2248 return match;
2249
2250 /* Check memory and accumulator operand size. */
2251 for (j = 0; j < i.operands; j++)
2252 {
2253 if (i.types[j].bitfield.class != Reg
2254 && i.types[j].bitfield.class != RegSIMD
2255 && t->opcode_modifier.anysize)
2256 continue;
2257
2258 if (t->operand_types[j].bitfield.class == Reg
2259 && !match_operand_size (t, j, j))
2260 {
2261 match = 0;
2262 break;
2263 }
2264
2265 if (t->operand_types[j].bitfield.class == RegSIMD
2266 && !match_simd_size (t, j, j))
2267 {
2268 match = 0;
2269 break;
2270 }
2271
2272 if (t->operand_types[j].bitfield.instance == Accum
2273 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2274 {
2275 match = 0;
2276 break;
2277 }
2278
2279 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2280 {
2281 match = 0;
2282 break;
2283 }
2284 }
2285
2286 if (!t->opcode_modifier.d)
2287 {
2288 mismatch:
2289 if (!match)
2290 i.error = operand_size_mismatch;
2291 return match;
2292 }
2293
2294 /* Check reverse. */
2295 gas_assert (i.operands >= 2 && i.operands <= 3);
2296
2297 for (j = 0; j < i.operands; j++)
2298 {
2299 unsigned int given = i.operands - j - 1;
2300
2301 if (t->operand_types[j].bitfield.class == Reg
2302 && !match_operand_size (t, j, given))
2303 goto mismatch;
2304
2305 if (t->operand_types[j].bitfield.class == RegSIMD
2306 && !match_simd_size (t, j, given))
2307 goto mismatch;
2308
2309 if (t->operand_types[j].bitfield.instance == Accum
2310 && (!match_operand_size (t, j, given)
2311 || !match_simd_size (t, j, given)))
2312 goto mismatch;
2313
2314 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2315 goto mismatch;
2316 }
2317
2318 return match | MATCH_REVERSE;
2319 }
2320
2321 static INLINE int
2322 operand_type_match (i386_operand_type overlap,
2323 i386_operand_type given)
2324 {
2325 i386_operand_type temp = overlap;
2326
2327 temp.bitfield.unspecified = 0;
2328 temp.bitfield.byte = 0;
2329 temp.bitfield.word = 0;
2330 temp.bitfield.dword = 0;
2331 temp.bitfield.fword = 0;
2332 temp.bitfield.qword = 0;
2333 temp.bitfield.tbyte = 0;
2334 temp.bitfield.xmmword = 0;
2335 temp.bitfield.ymmword = 0;
2336 temp.bitfield.zmmword = 0;
2337 temp.bitfield.tmmword = 0;
2338 if (operand_type_all_zero (&temp))
2339 goto mismatch;
2340
2341 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2342 return 1;
2343
2344 mismatch:
2345 i.error = operand_type_mismatch;
2346 return 0;
2347 }
2348
2349 /* If given types g0 and g1 are registers they must be of the same type
2350 unless the expected operand type register overlap is null.
2351 Some Intel syntax memory operand size checking also happens here. */
2352
2353 static INLINE int
2354 operand_type_register_match (i386_operand_type g0,
2355 i386_operand_type t0,
2356 i386_operand_type g1,
2357 i386_operand_type t1)
2358 {
2359 if (g0.bitfield.class != Reg
2360 && g0.bitfield.class != RegSIMD
2361 && (!operand_type_check (g0, anymem)
2362 || g0.bitfield.unspecified
2363 || (t0.bitfield.class != Reg
2364 && t0.bitfield.class != RegSIMD)))
2365 return 1;
2366
2367 if (g1.bitfield.class != Reg
2368 && g1.bitfield.class != RegSIMD
2369 && (!operand_type_check (g1, anymem)
2370 || g1.bitfield.unspecified
2371 || (t1.bitfield.class != Reg
2372 && t1.bitfield.class != RegSIMD)))
2373 return 1;
2374
2375 if (g0.bitfield.byte == g1.bitfield.byte
2376 && g0.bitfield.word == g1.bitfield.word
2377 && g0.bitfield.dword == g1.bitfield.dword
2378 && g0.bitfield.qword == g1.bitfield.qword
2379 && g0.bitfield.xmmword == g1.bitfield.xmmword
2380 && g0.bitfield.ymmword == g1.bitfield.ymmword
2381 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2382 return 1;
2383
2384 if (!(t0.bitfield.byte & t1.bitfield.byte)
2385 && !(t0.bitfield.word & t1.bitfield.word)
2386 && !(t0.bitfield.dword & t1.bitfield.dword)
2387 && !(t0.bitfield.qword & t1.bitfield.qword)
2388 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2389 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2390 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2391 return 1;
2392
2393 i.error = register_type_mismatch;
2394
2395 return 0;
2396 }
2397
2398 static INLINE unsigned int
2399 register_number (const reg_entry *r)
2400 {
2401 unsigned int nr = r->reg_num;
2402
2403 if (r->reg_flags & RegRex)
2404 nr += 8;
2405
2406 if (r->reg_flags & RegVRex)
2407 nr += 16;
2408
2409 return nr;
2410 }
2411
2412 static INLINE unsigned int
2413 mode_from_disp_size (i386_operand_type t)
2414 {
2415 if (t.bitfield.disp8)
2416 return 1;
2417 else if (t.bitfield.disp16
2418 || t.bitfield.disp32
2419 || t.bitfield.disp32s)
2420 return 2;
2421 else
2422 return 0;
2423 }
2424
2425 static INLINE int
2426 fits_in_signed_byte (addressT num)
2427 {
2428 return num + 0x80 <= 0xff;
2429 }
2430
2431 static INLINE int
2432 fits_in_unsigned_byte (addressT num)
2433 {
2434 return num <= 0xff;
2435 }
2436
2437 static INLINE int
2438 fits_in_unsigned_word (addressT num)
2439 {
2440 return num <= 0xffff;
2441 }
2442
2443 static INLINE int
2444 fits_in_signed_word (addressT num)
2445 {
2446 return num + 0x8000 <= 0xffff;
2447 }
2448
2449 static INLINE int
2450 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2451 {
2452 #ifndef BFD64
2453 return 1;
2454 #else
2455 return num + 0x80000000 <= 0xffffffff;
2456 #endif
2457 } /* fits_in_signed_long() */
2458
2459 static INLINE int
2460 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2461 {
2462 #ifndef BFD64
2463 return 1;
2464 #else
2465 return num <= 0xffffffff;
2466 #endif
2467 } /* fits_in_unsigned_long() */
2468
2469 static INLINE int
2470 fits_in_disp8 (offsetT num)
2471 {
2472 int shift = i.memshift;
2473 unsigned int mask;
2474
2475 if (shift == -1)
2476 abort ();
2477
2478 mask = (1 << shift) - 1;
2479
2480 /* Return 0 if NUM isn't properly aligned. */
2481 if ((num & mask))
2482 return 0;
2483
2484 /* Check if NUM will fit in 8bit after shift. */
2485 return fits_in_signed_byte (num >> shift);
2486 }
2487
2488 static INLINE int
2489 fits_in_imm4 (offsetT num)
2490 {
2491 return (num & 0xf) == num;
2492 }
2493
2494 static i386_operand_type
2495 smallest_imm_type (offsetT num)
2496 {
2497 i386_operand_type t;
2498
2499 operand_type_set (&t, 0);
2500 t.bitfield.imm64 = 1;
2501
2502 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2503 {
2504 /* This code is disabled on the 486 because all the Imm1 forms
2505 in the opcode table are slower on the i486. They're the
2506 versions with the implicitly specified single-position
2507 displacement, which has another syntax if you really want to
2508 use that form. */
2509 t.bitfield.imm1 = 1;
2510 t.bitfield.imm8 = 1;
2511 t.bitfield.imm8s = 1;
2512 t.bitfield.imm16 = 1;
2513 t.bitfield.imm32 = 1;
2514 t.bitfield.imm32s = 1;
2515 }
2516 else if (fits_in_signed_byte (num))
2517 {
2518 t.bitfield.imm8 = 1;
2519 t.bitfield.imm8s = 1;
2520 t.bitfield.imm16 = 1;
2521 t.bitfield.imm32 = 1;
2522 t.bitfield.imm32s = 1;
2523 }
2524 else if (fits_in_unsigned_byte (num))
2525 {
2526 t.bitfield.imm8 = 1;
2527 t.bitfield.imm16 = 1;
2528 t.bitfield.imm32 = 1;
2529 t.bitfield.imm32s = 1;
2530 }
2531 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2532 {
2533 t.bitfield.imm16 = 1;
2534 t.bitfield.imm32 = 1;
2535 t.bitfield.imm32s = 1;
2536 }
2537 else if (fits_in_signed_long (num))
2538 {
2539 t.bitfield.imm32 = 1;
2540 t.bitfield.imm32s = 1;
2541 }
2542 else if (fits_in_unsigned_long (num))
2543 t.bitfield.imm32 = 1;
2544
2545 return t;
2546 }
2547
2548 static offsetT
2549 offset_in_range (offsetT val, int size)
2550 {
2551 addressT mask;
2552
2553 switch (size)
2554 {
2555 case 1: mask = ((addressT) 1 << 8) - 1; break;
2556 case 2: mask = ((addressT) 1 << 16) - 1; break;
2557 case 4: mask = ((addressT) 2 << 31) - 1; break;
2558 #ifdef BFD64
2559 case 8: mask = ((addressT) 2 << 63) - 1; break;
2560 #endif
2561 default: abort ();
2562 }
2563
2564 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2565 {
2566 char buf1[40], buf2[40];
2567
2568 sprint_value (buf1, val);
2569 sprint_value (buf2, val & mask);
2570 as_warn (_("%s shortened to %s"), buf1, buf2);
2571 }
2572 return val & mask;
2573 }
2574
2575 enum PREFIX_GROUP
2576 {
2577 PREFIX_EXIST = 0,
2578 PREFIX_LOCK,
2579 PREFIX_REP,
2580 PREFIX_DS,
2581 PREFIX_OTHER
2582 };
2583
2584 /* Returns
2585 a. PREFIX_EXIST if attempting to add a prefix where one from the
2586 same class already exists.
2587 b. PREFIX_LOCK if lock prefix is added.
2588 c. PREFIX_REP if rep/repne prefix is added.
2589 d. PREFIX_DS if ds prefix is added.
2590 e. PREFIX_OTHER if other prefix is added.
2591 */
2592
2593 static enum PREFIX_GROUP
2594 add_prefix (unsigned int prefix)
2595 {
2596 enum PREFIX_GROUP ret = PREFIX_OTHER;
2597 unsigned int q;
2598
2599 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2600 && flag_code == CODE_64BIT)
2601 {
2602 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2603 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2604 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2605 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2606 ret = PREFIX_EXIST;
2607 q = REX_PREFIX;
2608 }
2609 else
2610 {
2611 switch (prefix)
2612 {
2613 default:
2614 abort ();
2615
2616 case DS_PREFIX_OPCODE:
2617 ret = PREFIX_DS;
2618 /* Fall through. */
2619 case CS_PREFIX_OPCODE:
2620 case ES_PREFIX_OPCODE:
2621 case FS_PREFIX_OPCODE:
2622 case GS_PREFIX_OPCODE:
2623 case SS_PREFIX_OPCODE:
2624 q = SEG_PREFIX;
2625 break;
2626
2627 case REPNE_PREFIX_OPCODE:
2628 case REPE_PREFIX_OPCODE:
2629 q = REP_PREFIX;
2630 ret = PREFIX_REP;
2631 break;
2632
2633 case LOCK_PREFIX_OPCODE:
2634 q = LOCK_PREFIX;
2635 ret = PREFIX_LOCK;
2636 break;
2637
2638 case FWAIT_OPCODE:
2639 q = WAIT_PREFIX;
2640 break;
2641
2642 case ADDR_PREFIX_OPCODE:
2643 q = ADDR_PREFIX;
2644 break;
2645
2646 case DATA_PREFIX_OPCODE:
2647 q = DATA_PREFIX;
2648 break;
2649 }
2650 if (i.prefix[q] != 0)
2651 ret = PREFIX_EXIST;
2652 }
2653
2654 if (ret)
2655 {
2656 if (!i.prefix[q])
2657 ++i.prefixes;
2658 i.prefix[q] |= prefix;
2659 }
2660 else
2661 as_bad (_("same type of prefix used twice"));
2662
2663 return ret;
2664 }
2665
2666 static void
2667 update_code_flag (int value, int check)
2668 {
2669 PRINTF_LIKE ((*as_error));
2670
2671 flag_code = (enum flag_code) value;
2672 if (flag_code == CODE_64BIT)
2673 {
2674 cpu_arch_flags.bitfield.cpu64 = 1;
2675 cpu_arch_flags.bitfield.cpuno64 = 0;
2676 }
2677 else
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 0;
2680 cpu_arch_flags.bitfield.cpuno64 = 1;
2681 }
2682 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2683 {
2684 if (check)
2685 as_error = as_fatal;
2686 else
2687 as_error = as_bad;
2688 (*as_error) (_("64bit mode not supported on `%s'."),
2689 cpu_arch_name ? cpu_arch_name : default_arch);
2690 }
2691 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2692 {
2693 if (check)
2694 as_error = as_fatal;
2695 else
2696 as_error = as_bad;
2697 (*as_error) (_("32bit mode not supported on `%s'."),
2698 cpu_arch_name ? cpu_arch_name : default_arch);
2699 }
2700 stackop_size = '\0';
2701 }
2702
2703 static void
2704 set_code_flag (int value)
2705 {
2706 update_code_flag (value, 0);
2707 }
2708
2709 static void
2710 set_16bit_gcc_code_flag (int new_code_flag)
2711 {
2712 flag_code = (enum flag_code) new_code_flag;
2713 if (flag_code != CODE_16BIT)
2714 abort ();
2715 cpu_arch_flags.bitfield.cpu64 = 0;
2716 cpu_arch_flags.bitfield.cpuno64 = 1;
2717 stackop_size = LONG_MNEM_SUFFIX;
2718 }
2719
2720 static void
2721 set_intel_syntax (int syntax_flag)
2722 {
2723 /* Find out if register prefixing is specified. */
2724 int ask_naked_reg = 0;
2725
2726 SKIP_WHITESPACE ();
2727 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2728 {
2729 char *string;
2730 int e = get_symbol_name (&string);
2731
2732 if (strcmp (string, "prefix") == 0)
2733 ask_naked_reg = 1;
2734 else if (strcmp (string, "noprefix") == 0)
2735 ask_naked_reg = -1;
2736 else
2737 as_bad (_("bad argument to syntax directive."));
2738 (void) restore_line_pointer (e);
2739 }
2740 demand_empty_rest_of_line ();
2741
2742 intel_syntax = syntax_flag;
2743
2744 if (ask_naked_reg == 0)
2745 allow_naked_reg = (intel_syntax
2746 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2747 else
2748 allow_naked_reg = (ask_naked_reg < 0);
2749
2750 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2751
2752 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2753 identifier_chars['$'] = intel_syntax ? '$' : 0;
2754 register_prefix = allow_naked_reg ? "" : "%";
2755 }
2756
2757 static void
2758 set_intel_mnemonic (int mnemonic_flag)
2759 {
2760 intel_mnemonic = mnemonic_flag;
2761 }
2762
2763 static void
2764 set_allow_index_reg (int flag)
2765 {
2766 allow_index_reg = flag;
2767 }
2768
2769 static void
2770 set_check (int what)
2771 {
2772 enum check_kind *kind;
2773 const char *str;
2774
2775 if (what)
2776 {
2777 kind = &operand_check;
2778 str = "operand";
2779 }
2780 else
2781 {
2782 kind = &sse_check;
2783 str = "sse";
2784 }
2785
2786 SKIP_WHITESPACE ();
2787
2788 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2789 {
2790 char *string;
2791 int e = get_symbol_name (&string);
2792
2793 if (strcmp (string, "none") == 0)
2794 *kind = check_none;
2795 else if (strcmp (string, "warning") == 0)
2796 *kind = check_warning;
2797 else if (strcmp (string, "error") == 0)
2798 *kind = check_error;
2799 else
2800 as_bad (_("bad argument to %s_check directive."), str);
2801 (void) restore_line_pointer (e);
2802 }
2803 else
2804 as_bad (_("missing argument for %s_check directive"), str);
2805
2806 demand_empty_rest_of_line ();
2807 }
2808
2809 static void
2810 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2811 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2812 {
2813 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2814 static const char *arch;
2815
2816 /* Intel LIOM is only supported on ELF. */
2817 if (!IS_ELF)
2818 return;
2819
2820 if (!arch)
2821 {
2822 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2823 use default_arch. */
2824 arch = cpu_arch_name;
2825 if (!arch)
2826 arch = default_arch;
2827 }
2828
2829 /* If we are targeting Intel MCU, we must enable it. */
2830 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2831 || new_flag.bitfield.cpuiamcu)
2832 return;
2833
2834 /* If we are targeting Intel L1OM, we must enable it. */
2835 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2836 || new_flag.bitfield.cpul1om)
2837 return;
2838
2839 /* If we are targeting Intel K1OM, we must enable it. */
2840 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2841 || new_flag.bitfield.cpuk1om)
2842 return;
2843
2844 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2845 #endif
2846 }
2847
2848 static void
2849 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2850 {
2851 SKIP_WHITESPACE ();
2852
2853 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2854 {
2855 char *string;
2856 int e = get_symbol_name (&string);
2857 unsigned int j;
2858 i386_cpu_flags flags;
2859
2860 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2861 {
2862 if (strcmp (string, cpu_arch[j].name) == 0)
2863 {
2864 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2865
2866 if (*string != '.')
2867 {
2868 cpu_arch_name = cpu_arch[j].name;
2869 cpu_sub_arch_name = NULL;
2870 cpu_arch_flags = cpu_arch[j].flags;
2871 if (flag_code == CODE_64BIT)
2872 {
2873 cpu_arch_flags.bitfield.cpu64 = 1;
2874 cpu_arch_flags.bitfield.cpuno64 = 0;
2875 }
2876 else
2877 {
2878 cpu_arch_flags.bitfield.cpu64 = 0;
2879 cpu_arch_flags.bitfield.cpuno64 = 1;
2880 }
2881 cpu_arch_isa = cpu_arch[j].type;
2882 cpu_arch_isa_flags = cpu_arch[j].flags;
2883 if (!cpu_arch_tune_set)
2884 {
2885 cpu_arch_tune = cpu_arch_isa;
2886 cpu_arch_tune_flags = cpu_arch_isa_flags;
2887 }
2888 break;
2889 }
2890
2891 flags = cpu_flags_or (cpu_arch_flags,
2892 cpu_arch[j].flags);
2893
2894 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2895 {
2896 if (cpu_sub_arch_name)
2897 {
2898 char *name = cpu_sub_arch_name;
2899 cpu_sub_arch_name = concat (name,
2900 cpu_arch[j].name,
2901 (const char *) NULL);
2902 free (name);
2903 }
2904 else
2905 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2906 cpu_arch_flags = flags;
2907 cpu_arch_isa_flags = flags;
2908 }
2909 else
2910 cpu_arch_isa_flags
2911 = cpu_flags_or (cpu_arch_isa_flags,
2912 cpu_arch[j].flags);
2913 (void) restore_line_pointer (e);
2914 demand_empty_rest_of_line ();
2915 return;
2916 }
2917 }
2918
2919 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2920 {
2921 /* Disable an ISA extension. */
2922 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2923 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2924 {
2925 flags = cpu_flags_and_not (cpu_arch_flags,
2926 cpu_noarch[j].flags);
2927 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2928 {
2929 if (cpu_sub_arch_name)
2930 {
2931 char *name = cpu_sub_arch_name;
2932 cpu_sub_arch_name = concat (name, string,
2933 (const char *) NULL);
2934 free (name);
2935 }
2936 else
2937 cpu_sub_arch_name = xstrdup (string);
2938 cpu_arch_flags = flags;
2939 cpu_arch_isa_flags = flags;
2940 }
2941 (void) restore_line_pointer (e);
2942 demand_empty_rest_of_line ();
2943 return;
2944 }
2945
2946 j = ARRAY_SIZE (cpu_arch);
2947 }
2948
2949 if (j >= ARRAY_SIZE (cpu_arch))
2950 as_bad (_("no such architecture: `%s'"), string);
2951
2952 *input_line_pointer = e;
2953 }
2954 else
2955 as_bad (_("missing cpu architecture"));
2956
2957 no_cond_jump_promotion = 0;
2958 if (*input_line_pointer == ','
2959 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2960 {
2961 char *string;
2962 char e;
2963
2964 ++input_line_pointer;
2965 e = get_symbol_name (&string);
2966
2967 if (strcmp (string, "nojumps") == 0)
2968 no_cond_jump_promotion = 1;
2969 else if (strcmp (string, "jumps") == 0)
2970 ;
2971 else
2972 as_bad (_("no such architecture modifier: `%s'"), string);
2973
2974 (void) restore_line_pointer (e);
2975 }
2976
2977 demand_empty_rest_of_line ();
2978 }
2979
2980 enum bfd_architecture
2981 i386_arch (void)
2982 {
2983 if (cpu_arch_isa == PROCESSOR_L1OM)
2984 {
2985 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2986 || flag_code != CODE_64BIT)
2987 as_fatal (_("Intel L1OM is 64bit ELF only"));
2988 return bfd_arch_l1om;
2989 }
2990 else if (cpu_arch_isa == PROCESSOR_K1OM)
2991 {
2992 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2993 || flag_code != CODE_64BIT)
2994 as_fatal (_("Intel K1OM is 64bit ELF only"));
2995 return bfd_arch_k1om;
2996 }
2997 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2998 {
2999 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3000 || flag_code == CODE_64BIT)
3001 as_fatal (_("Intel MCU is 32bit ELF only"));
3002 return bfd_arch_iamcu;
3003 }
3004 else
3005 return bfd_arch_i386;
3006 }
3007
3008 unsigned long
3009 i386_mach (void)
3010 {
3011 if (!strncmp (default_arch, "x86_64", 6))
3012 {
3013 if (cpu_arch_isa == PROCESSOR_L1OM)
3014 {
3015 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3016 || default_arch[6] != '\0')
3017 as_fatal (_("Intel L1OM is 64bit ELF only"));
3018 return bfd_mach_l1om;
3019 }
3020 else if (cpu_arch_isa == PROCESSOR_K1OM)
3021 {
3022 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3023 || default_arch[6] != '\0')
3024 as_fatal (_("Intel K1OM is 64bit ELF only"));
3025 return bfd_mach_k1om;
3026 }
3027 else if (default_arch[6] == '\0')
3028 return bfd_mach_x86_64;
3029 else
3030 return bfd_mach_x64_32;
3031 }
3032 else if (!strcmp (default_arch, "i386")
3033 || !strcmp (default_arch, "iamcu"))
3034 {
3035 if (cpu_arch_isa == PROCESSOR_IAMCU)
3036 {
3037 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3038 as_fatal (_("Intel MCU is 32bit ELF only"));
3039 return bfd_mach_i386_iamcu;
3040 }
3041 else
3042 return bfd_mach_i386_i386;
3043 }
3044 else
3045 as_fatal (_("unknown architecture"));
3046 }
3047 \f
3048 void
3049 md_begin (void)
3050 {
3051 /* Support pseudo prefixes like {disp32}. */
3052 lex_type ['{'] = LEX_BEGIN_NAME;
3053
3054 /* Initialize op_hash hash table. */
3055 op_hash = str_htab_create ();
3056
3057 {
3058 const insn_template *optab;
3059 templates *core_optab;
3060
3061 /* Setup for loop. */
3062 optab = i386_optab;
3063 core_optab = XNEW (templates);
3064 core_optab->start = optab;
3065
3066 while (1)
3067 {
3068 ++optab;
3069 if (optab->name == NULL
3070 || strcmp (optab->name, (optab - 1)->name) != 0)
3071 {
3072 /* different name --> ship out current template list;
3073 add to hash table; & begin anew. */
3074 core_optab->end = optab;
3075 if (str_hash_insert (op_hash, (optab - 1)->name, core_optab, 0))
3076 as_fatal (_("duplicate %s"), (optab - 1)->name);
3077
3078 if (optab->name == NULL)
3079 break;
3080 core_optab = XNEW (templates);
3081 core_optab->start = optab;
3082 }
3083 }
3084 }
3085
3086 /* Initialize reg_hash hash table. */
3087 reg_hash = str_htab_create ();
3088 {
3089 const reg_entry *regtab;
3090 unsigned int regtab_size = i386_regtab_size;
3091
3092 for (regtab = i386_regtab; regtab_size--; regtab++)
3093 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3094 as_fatal (_("duplicate %s"), regtab->reg_name);
3095 }
3096
3097 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3098 {
3099 int c;
3100 char *p;
3101
3102 for (c = 0; c < 256; c++)
3103 {
3104 if (ISDIGIT (c))
3105 {
3106 digit_chars[c] = c;
3107 mnemonic_chars[c] = c;
3108 register_chars[c] = c;
3109 operand_chars[c] = c;
3110 }
3111 else if (ISLOWER (c))
3112 {
3113 mnemonic_chars[c] = c;
3114 register_chars[c] = c;
3115 operand_chars[c] = c;
3116 }
3117 else if (ISUPPER (c))
3118 {
3119 mnemonic_chars[c] = TOLOWER (c);
3120 register_chars[c] = mnemonic_chars[c];
3121 operand_chars[c] = c;
3122 }
3123 else if (c == '{' || c == '}')
3124 {
3125 mnemonic_chars[c] = c;
3126 operand_chars[c] = c;
3127 }
3128 #ifdef SVR4_COMMENT_CHARS
3129 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3130 operand_chars[c] = c;
3131 #endif
3132
3133 if (ISALPHA (c) || ISDIGIT (c))
3134 identifier_chars[c] = c;
3135 else if (c >= 128)
3136 {
3137 identifier_chars[c] = c;
3138 operand_chars[c] = c;
3139 }
3140 }
3141
3142 #ifdef LEX_AT
3143 identifier_chars['@'] = '@';
3144 #endif
3145 #ifdef LEX_QM
3146 identifier_chars['?'] = '?';
3147 operand_chars['?'] = '?';
3148 #endif
3149 digit_chars['-'] = '-';
3150 mnemonic_chars['_'] = '_';
3151 mnemonic_chars['-'] = '-';
3152 mnemonic_chars['.'] = '.';
3153 identifier_chars['_'] = '_';
3154 identifier_chars['.'] = '.';
3155
3156 for (p = operand_special_chars; *p != '\0'; p++)
3157 operand_chars[(unsigned char) *p] = *p;
3158 }
3159
3160 if (flag_code == CODE_64BIT)
3161 {
3162 #if defined (OBJ_COFF) && defined (TE_PE)
3163 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3164 ? 32 : 16);
3165 #else
3166 x86_dwarf2_return_column = 16;
3167 #endif
3168 x86_cie_data_alignment = -8;
3169 }
3170 else
3171 {
3172 x86_dwarf2_return_column = 8;
3173 x86_cie_data_alignment = -4;
3174 }
3175
3176 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3177 can be turned into BRANCH_PREFIX frag. */
3178 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3179 abort ();
3180 }
3181
3182 void
3183 i386_print_statistics (FILE *file)
3184 {
3185 htab_print_statistics (file, "i386 opcode", op_hash);
3186 htab_print_statistics (file, "i386 register", reg_hash);
3187 }
3188 \f
3189 #ifdef DEBUG386
3190
3191 /* Debugging routines for md_assemble. */
3192 static void pte (insn_template *);
3193 static void pt (i386_operand_type);
3194 static void pe (expressionS *);
3195 static void ps (symbolS *);
3196
3197 static void
3198 pi (const char *line, i386_insn *x)
3199 {
3200 unsigned int j;
3201
3202 fprintf (stdout, "%s: template ", line);
3203 pte (&x->tm);
3204 fprintf (stdout, " address: base %s index %s scale %x\n",
3205 x->base_reg ? x->base_reg->reg_name : "none",
3206 x->index_reg ? x->index_reg->reg_name : "none",
3207 x->log2_scale_factor);
3208 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3209 x->rm.mode, x->rm.reg, x->rm.regmem);
3210 fprintf (stdout, " sib: base %x index %x scale %x\n",
3211 x->sib.base, x->sib.index, x->sib.scale);
3212 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3213 (x->rex & REX_W) != 0,
3214 (x->rex & REX_R) != 0,
3215 (x->rex & REX_X) != 0,
3216 (x->rex & REX_B) != 0);
3217 for (j = 0; j < x->operands; j++)
3218 {
3219 fprintf (stdout, " #%d: ", j + 1);
3220 pt (x->types[j]);
3221 fprintf (stdout, "\n");
3222 if (x->types[j].bitfield.class == Reg
3223 || x->types[j].bitfield.class == RegMMX
3224 || x->types[j].bitfield.class == RegSIMD
3225 || x->types[j].bitfield.class == RegMask
3226 || x->types[j].bitfield.class == SReg
3227 || x->types[j].bitfield.class == RegCR
3228 || x->types[j].bitfield.class == RegDR
3229 || x->types[j].bitfield.class == RegTR
3230 || x->types[j].bitfield.class == RegBND)
3231 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3232 if (operand_type_check (x->types[j], imm))
3233 pe (x->op[j].imms);
3234 if (operand_type_check (x->types[j], disp))
3235 pe (x->op[j].disps);
3236 }
3237 }
3238
3239 static void
3240 pte (insn_template *t)
3241 {
3242 unsigned int j;
3243 fprintf (stdout, " %d operands ", t->operands);
3244 fprintf (stdout, "opcode %x ", t->base_opcode);
3245 if (t->extension_opcode != None)
3246 fprintf (stdout, "ext %x ", t->extension_opcode);
3247 if (t->opcode_modifier.d)
3248 fprintf (stdout, "D");
3249 if (t->opcode_modifier.w)
3250 fprintf (stdout, "W");
3251 fprintf (stdout, "\n");
3252 for (j = 0; j < t->operands; j++)
3253 {
3254 fprintf (stdout, " #%d type ", j + 1);
3255 pt (t->operand_types[j]);
3256 fprintf (stdout, "\n");
3257 }
3258 }
3259
3260 static void
3261 pe (expressionS *e)
3262 {
3263 fprintf (stdout, " operation %d\n", e->X_op);
3264 fprintf (stdout, " add_number %ld (%lx)\n",
3265 (long) e->X_add_number, (long) e->X_add_number);
3266 if (e->X_add_symbol)
3267 {
3268 fprintf (stdout, " add_symbol ");
3269 ps (e->X_add_symbol);
3270 fprintf (stdout, "\n");
3271 }
3272 if (e->X_op_symbol)
3273 {
3274 fprintf (stdout, " op_symbol ");
3275 ps (e->X_op_symbol);
3276 fprintf (stdout, "\n");
3277 }
3278 }
3279
3280 static void
3281 ps (symbolS *s)
3282 {
3283 fprintf (stdout, "%s type %s%s",
3284 S_GET_NAME (s),
3285 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3286 segment_name (S_GET_SEGMENT (s)));
3287 }
3288
3289 static struct type_name
3290 {
3291 i386_operand_type mask;
3292 const char *name;
3293 }
3294 const type_names[] =
3295 {
3296 { OPERAND_TYPE_REG8, "r8" },
3297 { OPERAND_TYPE_REG16, "r16" },
3298 { OPERAND_TYPE_REG32, "r32" },
3299 { OPERAND_TYPE_REG64, "r64" },
3300 { OPERAND_TYPE_ACC8, "acc8" },
3301 { OPERAND_TYPE_ACC16, "acc16" },
3302 { OPERAND_TYPE_ACC32, "acc32" },
3303 { OPERAND_TYPE_ACC64, "acc64" },
3304 { OPERAND_TYPE_IMM8, "i8" },
3305 { OPERAND_TYPE_IMM8, "i8s" },
3306 { OPERAND_TYPE_IMM16, "i16" },
3307 { OPERAND_TYPE_IMM32, "i32" },
3308 { OPERAND_TYPE_IMM32S, "i32s" },
3309 { OPERAND_TYPE_IMM64, "i64" },
3310 { OPERAND_TYPE_IMM1, "i1" },
3311 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3312 { OPERAND_TYPE_DISP8, "d8" },
3313 { OPERAND_TYPE_DISP16, "d16" },
3314 { OPERAND_TYPE_DISP32, "d32" },
3315 { OPERAND_TYPE_DISP32S, "d32s" },
3316 { OPERAND_TYPE_DISP64, "d64" },
3317 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3318 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3319 { OPERAND_TYPE_CONTROL, "control reg" },
3320 { OPERAND_TYPE_TEST, "test reg" },
3321 { OPERAND_TYPE_DEBUG, "debug reg" },
3322 { OPERAND_TYPE_FLOATREG, "FReg" },
3323 { OPERAND_TYPE_FLOATACC, "FAcc" },
3324 { OPERAND_TYPE_SREG, "SReg" },
3325 { OPERAND_TYPE_REGMMX, "rMMX" },
3326 { OPERAND_TYPE_REGXMM, "rXMM" },
3327 { OPERAND_TYPE_REGYMM, "rYMM" },
3328 { OPERAND_TYPE_REGZMM, "rZMM" },
3329 { OPERAND_TYPE_REGTMM, "rTMM" },
3330 { OPERAND_TYPE_REGMASK, "Mask reg" },
3331 };
3332
3333 static void
3334 pt (i386_operand_type t)
3335 {
3336 unsigned int j;
3337 i386_operand_type a;
3338
3339 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3340 {
3341 a = operand_type_and (t, type_names[j].mask);
3342 if (operand_type_equal (&a, &type_names[j].mask))
3343 fprintf (stdout, "%s, ", type_names[j].name);
3344 }
3345 fflush (stdout);
3346 }
3347
3348 #endif /* DEBUG386 */
3349 \f
3350 static bfd_reloc_code_real_type
3351 reloc (unsigned int size,
3352 int pcrel,
3353 int sign,
3354 bfd_reloc_code_real_type other)
3355 {
3356 if (other != NO_RELOC)
3357 {
3358 reloc_howto_type *rel;
3359
3360 if (size == 8)
3361 switch (other)
3362 {
3363 case BFD_RELOC_X86_64_GOT32:
3364 return BFD_RELOC_X86_64_GOT64;
3365 break;
3366 case BFD_RELOC_X86_64_GOTPLT64:
3367 return BFD_RELOC_X86_64_GOTPLT64;
3368 break;
3369 case BFD_RELOC_X86_64_PLTOFF64:
3370 return BFD_RELOC_X86_64_PLTOFF64;
3371 break;
3372 case BFD_RELOC_X86_64_GOTPC32:
3373 other = BFD_RELOC_X86_64_GOTPC64;
3374 break;
3375 case BFD_RELOC_X86_64_GOTPCREL:
3376 other = BFD_RELOC_X86_64_GOTPCREL64;
3377 break;
3378 case BFD_RELOC_X86_64_TPOFF32:
3379 other = BFD_RELOC_X86_64_TPOFF64;
3380 break;
3381 case BFD_RELOC_X86_64_DTPOFF32:
3382 other = BFD_RELOC_X86_64_DTPOFF64;
3383 break;
3384 default:
3385 break;
3386 }
3387
3388 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3389 if (other == BFD_RELOC_SIZE32)
3390 {
3391 if (size == 8)
3392 other = BFD_RELOC_SIZE64;
3393 if (pcrel)
3394 {
3395 as_bad (_("there are no pc-relative size relocations"));
3396 return NO_RELOC;
3397 }
3398 }
3399 #endif
3400
3401 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3402 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3403 sign = -1;
3404
3405 rel = bfd_reloc_type_lookup (stdoutput, other);
3406 if (!rel)
3407 as_bad (_("unknown relocation (%u)"), other);
3408 else if (size != bfd_get_reloc_size (rel))
3409 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3410 bfd_get_reloc_size (rel),
3411 size);
3412 else if (pcrel && !rel->pc_relative)
3413 as_bad (_("non-pc-relative relocation for pc-relative field"));
3414 else if ((rel->complain_on_overflow == complain_overflow_signed
3415 && !sign)
3416 || (rel->complain_on_overflow == complain_overflow_unsigned
3417 && sign > 0))
3418 as_bad (_("relocated field and relocation type differ in signedness"));
3419 else
3420 return other;
3421 return NO_RELOC;
3422 }
3423
3424 if (pcrel)
3425 {
3426 if (!sign)
3427 as_bad (_("there are no unsigned pc-relative relocations"));
3428 switch (size)
3429 {
3430 case 1: return BFD_RELOC_8_PCREL;
3431 case 2: return BFD_RELOC_16_PCREL;
3432 case 4: return BFD_RELOC_32_PCREL;
3433 case 8: return BFD_RELOC_64_PCREL;
3434 }
3435 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3436 }
3437 else
3438 {
3439 if (sign > 0)
3440 switch (size)
3441 {
3442 case 4: return BFD_RELOC_X86_64_32S;
3443 }
3444 else
3445 switch (size)
3446 {
3447 case 1: return BFD_RELOC_8;
3448 case 2: return BFD_RELOC_16;
3449 case 4: return BFD_RELOC_32;
3450 case 8: return BFD_RELOC_64;
3451 }
3452 as_bad (_("cannot do %s %u byte relocation"),
3453 sign > 0 ? "signed" : "unsigned", size);
3454 }
3455
3456 return NO_RELOC;
3457 }
3458
3459 /* Here we decide which fixups can be adjusted to make them relative to
3460 the beginning of the section instead of the symbol. Basically we need
3461 to make sure that the dynamic relocations are done correctly, so in
3462 some cases we force the original symbol to be used. */
3463
3464 int
3465 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3466 {
3467 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3468 if (!IS_ELF)
3469 return 1;
3470
3471 /* Don't adjust pc-relative references to merge sections in 64-bit
3472 mode. */
3473 if (use_rela_relocations
3474 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3475 && fixP->fx_pcrel)
3476 return 0;
3477
3478 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3479 and changed later by validate_fix. */
3480 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3481 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3482 return 0;
3483
3484 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3485 for size relocations. */
3486 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3487 || fixP->fx_r_type == BFD_RELOC_SIZE64
3488 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3489 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3490 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3491 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3492 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3493 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3494 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3495 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3496 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3497 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3498 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3499 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3500 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3501 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3502 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3503 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3504 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3505 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3506 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3507 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3508 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3509 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3510 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3511 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3512 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3513 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3514 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3515 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3516 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3517 return 0;
3518 #endif
3519 return 1;
3520 }
3521
3522 static int
3523 intel_float_operand (const char *mnemonic)
3524 {
3525 /* Note that the value returned is meaningful only for opcodes with (memory)
3526 operands, hence the code here is free to improperly handle opcodes that
3527 have no operands (for better performance and smaller code). */
3528
3529 if (mnemonic[0] != 'f')
3530 return 0; /* non-math */
3531
3532 switch (mnemonic[1])
3533 {
3534 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3535 the fs segment override prefix not currently handled because no
3536 call path can make opcodes without operands get here */
3537 case 'i':
3538 return 2 /* integer op */;
3539 case 'l':
3540 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3541 return 3; /* fldcw/fldenv */
3542 break;
3543 case 'n':
3544 if (mnemonic[2] != 'o' /* fnop */)
3545 return 3; /* non-waiting control op */
3546 break;
3547 case 'r':
3548 if (mnemonic[2] == 's')
3549 return 3; /* frstor/frstpm */
3550 break;
3551 case 's':
3552 if (mnemonic[2] == 'a')
3553 return 3; /* fsave */
3554 if (mnemonic[2] == 't')
3555 {
3556 switch (mnemonic[3])
3557 {
3558 case 'c': /* fstcw */
3559 case 'd': /* fstdw */
3560 case 'e': /* fstenv */
3561 case 's': /* fsts[gw] */
3562 return 3;
3563 }
3564 }
3565 break;
3566 case 'x':
3567 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3568 return 0; /* fxsave/fxrstor are not really math ops */
3569 break;
3570 }
3571
3572 return 1;
3573 }
3574
3575 /* Build the VEX prefix. */
3576
3577 static void
3578 build_vex_prefix (const insn_template *t)
3579 {
3580 unsigned int register_specifier;
3581 unsigned int implied_prefix;
3582 unsigned int vector_length;
3583 unsigned int w;
3584
3585 /* Check register specifier. */
3586 if (i.vex.register_specifier)
3587 {
3588 register_specifier =
3589 ~register_number (i.vex.register_specifier) & 0xf;
3590 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3591 }
3592 else
3593 register_specifier = 0xf;
3594
3595 /* Use 2-byte VEX prefix by swapping destination and source operand
3596 if there are more than 1 register operand. */
3597 if (i.reg_operands > 1
3598 && i.vec_encoding != vex_encoding_vex3
3599 && i.dir_encoding == dir_encoding_default
3600 && i.operands == i.reg_operands
3601 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3602 && i.tm.opcode_modifier.opcodeprefix == VEX0F
3603 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3604 && i.rex == REX_B)
3605 {
3606 unsigned int xchg = i.operands - 1;
3607 union i386_op temp_op;
3608 i386_operand_type temp_type;
3609
3610 temp_type = i.types[xchg];
3611 i.types[xchg] = i.types[0];
3612 i.types[0] = temp_type;
3613 temp_op = i.op[xchg];
3614 i.op[xchg] = i.op[0];
3615 i.op[0] = temp_op;
3616
3617 gas_assert (i.rm.mode == 3);
3618
3619 i.rex = REX_R;
3620 xchg = i.rm.regmem;
3621 i.rm.regmem = i.rm.reg;
3622 i.rm.reg = xchg;
3623
3624 if (i.tm.opcode_modifier.d)
3625 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3626 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3627 else /* Use the next insn. */
3628 i.tm = t[1];
3629 }
3630
3631 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3632 are no memory operands and at least 3 register ones. */
3633 if (i.reg_operands >= 3
3634 && i.vec_encoding != vex_encoding_vex3
3635 && i.reg_operands == i.operands - i.imm_operands
3636 && i.tm.opcode_modifier.vex
3637 && i.tm.opcode_modifier.commutative
3638 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3639 && i.rex == REX_B
3640 && i.vex.register_specifier
3641 && !(i.vex.register_specifier->reg_flags & RegRex))
3642 {
3643 unsigned int xchg = i.operands - i.reg_operands;
3644 union i386_op temp_op;
3645 i386_operand_type temp_type;
3646
3647 gas_assert (i.tm.opcode_modifier.opcodeprefix == VEX0F);
3648 gas_assert (!i.tm.opcode_modifier.sae);
3649 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3650 &i.types[i.operands - 3]));
3651 gas_assert (i.rm.mode == 3);
3652
3653 temp_type = i.types[xchg];
3654 i.types[xchg] = i.types[xchg + 1];
3655 i.types[xchg + 1] = temp_type;
3656 temp_op = i.op[xchg];
3657 i.op[xchg] = i.op[xchg + 1];
3658 i.op[xchg + 1] = temp_op;
3659
3660 i.rex = 0;
3661 xchg = i.rm.regmem | 8;
3662 i.rm.regmem = ~register_specifier & 0xf;
3663 gas_assert (!(i.rm.regmem & 8));
3664 i.vex.register_specifier += xchg - i.rm.regmem;
3665 register_specifier = ~xchg & 0xf;
3666 }
3667
3668 if (i.tm.opcode_modifier.vex == VEXScalar)
3669 vector_length = avxscalar;
3670 else if (i.tm.opcode_modifier.vex == VEX256)
3671 vector_length = 1;
3672 else
3673 {
3674 unsigned int op;
3675
3676 /* Determine vector length from the last multi-length vector
3677 operand. */
3678 vector_length = 0;
3679 for (op = t->operands; op--;)
3680 if (t->operand_types[op].bitfield.xmmword
3681 && t->operand_types[op].bitfield.ymmword
3682 && i.types[op].bitfield.ymmword)
3683 {
3684 vector_length = 1;
3685 break;
3686 }
3687 }
3688
3689 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
3690 {
3691 case 0:
3692 implied_prefix = 0;
3693 break;
3694 case DATA_PREFIX_OPCODE:
3695 implied_prefix = 1;
3696 break;
3697 case REPE_PREFIX_OPCODE:
3698 implied_prefix = 2;
3699 break;
3700 case REPNE_PREFIX_OPCODE:
3701 implied_prefix = 3;
3702 break;
3703 default:
3704 abort ();
3705 }
3706
3707 /* Check the REX.W bit and VEXW. */
3708 if (i.tm.opcode_modifier.vexw == VEXWIG)
3709 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3710 else if (i.tm.opcode_modifier.vexw)
3711 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3712 else
3713 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3714
3715 /* Use 2-byte VEX prefix if possible. */
3716 if (w == 0
3717 && i.vec_encoding != vex_encoding_vex3
3718 && i.tm.opcode_modifier.opcodeprefix == VEX0F
3719 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3720 {
3721 /* 2-byte VEX prefix. */
3722 unsigned int r;
3723
3724 i.vex.length = 2;
3725 i.vex.bytes[0] = 0xc5;
3726
3727 /* Check the REX.R bit. */
3728 r = (i.rex & REX_R) ? 0 : 1;
3729 i.vex.bytes[1] = (r << 7
3730 | register_specifier << 3
3731 | vector_length << 2
3732 | implied_prefix);
3733 }
3734 else
3735 {
3736 /* 3-byte VEX prefix. */
3737 unsigned int m;
3738
3739 i.vex.length = 3;
3740
3741 switch (i.tm.opcode_modifier.opcodeprefix)
3742 {
3743 case VEX0F:
3744 m = 0x1;
3745 i.vex.bytes[0] = 0xc4;
3746 break;
3747 case VEX0F38:
3748 m = 0x2;
3749 i.vex.bytes[0] = 0xc4;
3750 break;
3751 case VEX0F3A:
3752 m = 0x3;
3753 i.vex.bytes[0] = 0xc4;
3754 break;
3755 case XOP08:
3756 m = 0x8;
3757 i.vex.bytes[0] = 0x8f;
3758 break;
3759 case XOP09:
3760 m = 0x9;
3761 i.vex.bytes[0] = 0x8f;
3762 break;
3763 case XOP0A:
3764 m = 0xa;
3765 i.vex.bytes[0] = 0x8f;
3766 break;
3767 default:
3768 abort ();
3769 }
3770
3771 /* The high 3 bits of the second VEX byte are 1's compliment
3772 of RXB bits from REX. */
3773 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3774
3775 i.vex.bytes[2] = (w << 7
3776 | register_specifier << 3
3777 | vector_length << 2
3778 | implied_prefix);
3779 }
3780 }
3781
3782 static INLINE bfd_boolean
3783 is_evex_encoding (const insn_template *t)
3784 {
3785 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3786 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3787 || t->opcode_modifier.sae;
3788 }
3789
3790 static INLINE bfd_boolean
3791 is_any_vex_encoding (const insn_template *t)
3792 {
3793 return t->opcode_modifier.vex || is_evex_encoding (t);
3794 }
3795
3796 /* Build the EVEX prefix. */
3797
3798 static void
3799 build_evex_prefix (void)
3800 {
3801 unsigned int register_specifier;
3802 unsigned int implied_prefix;
3803 unsigned int m, w;
3804 rex_byte vrex_used = 0;
3805
3806 /* Check register specifier. */
3807 if (i.vex.register_specifier)
3808 {
3809 gas_assert ((i.vrex & REX_X) == 0);
3810
3811 register_specifier = i.vex.register_specifier->reg_num;
3812 if ((i.vex.register_specifier->reg_flags & RegRex))
3813 register_specifier += 8;
3814 /* The upper 16 registers are encoded in the fourth byte of the
3815 EVEX prefix. */
3816 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3817 i.vex.bytes[3] = 0x8;
3818 register_specifier = ~register_specifier & 0xf;
3819 }
3820 else
3821 {
3822 register_specifier = 0xf;
3823
3824 /* Encode upper 16 vector index register in the fourth byte of
3825 the EVEX prefix. */
3826 if (!(i.vrex & REX_X))
3827 i.vex.bytes[3] = 0x8;
3828 else
3829 vrex_used |= REX_X;
3830 }
3831
3832 switch ((i.tm.base_opcode >> 8) & 0xff)
3833 {
3834 case 0:
3835 implied_prefix = 0;
3836 break;
3837 case DATA_PREFIX_OPCODE:
3838 implied_prefix = 1;
3839 break;
3840 case REPE_PREFIX_OPCODE:
3841 implied_prefix = 2;
3842 break;
3843 case REPNE_PREFIX_OPCODE:
3844 implied_prefix = 3;
3845 break;
3846 default:
3847 abort ();
3848 }
3849
3850 /* 4 byte EVEX prefix. */
3851 i.vex.length = 4;
3852 i.vex.bytes[0] = 0x62;
3853
3854 /* mmmm bits. */
3855 switch (i.tm.opcode_modifier.opcodeprefix)
3856 {
3857 case VEX0F:
3858 m = 1;
3859 break;
3860 case VEX0F38:
3861 m = 2;
3862 break;
3863 case VEX0F3A:
3864 m = 3;
3865 break;
3866 default:
3867 abort ();
3868 break;
3869 }
3870
3871 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3872 bits from REX. */
3873 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3874
3875 /* The fifth bit of the second EVEX byte is 1's compliment of the
3876 REX_R bit in VREX. */
3877 if (!(i.vrex & REX_R))
3878 i.vex.bytes[1] |= 0x10;
3879 else
3880 vrex_used |= REX_R;
3881
3882 if ((i.reg_operands + i.imm_operands) == i.operands)
3883 {
3884 /* When all operands are registers, the REX_X bit in REX is not
3885 used. We reuse it to encode the upper 16 registers, which is
3886 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3887 as 1's compliment. */
3888 if ((i.vrex & REX_B))
3889 {
3890 vrex_used |= REX_B;
3891 i.vex.bytes[1] &= ~0x40;
3892 }
3893 }
3894
3895 /* EVEX instructions shouldn't need the REX prefix. */
3896 i.vrex &= ~vrex_used;
3897 gas_assert (i.vrex == 0);
3898
3899 /* Check the REX.W bit and VEXW. */
3900 if (i.tm.opcode_modifier.vexw == VEXWIG)
3901 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3902 else if (i.tm.opcode_modifier.vexw)
3903 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3904 else
3905 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3906
3907 /* Encode the U bit. */
3908 implied_prefix |= 0x4;
3909
3910 /* The third byte of the EVEX prefix. */
3911 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3912
3913 /* The fourth byte of the EVEX prefix. */
3914 /* The zeroing-masking bit. */
3915 if (i.mask && i.mask->zeroing)
3916 i.vex.bytes[3] |= 0x80;
3917
3918 /* Don't always set the broadcast bit if there is no RC. */
3919 if (!i.rounding)
3920 {
3921 /* Encode the vector length. */
3922 unsigned int vec_length;
3923
3924 if (!i.tm.opcode_modifier.evex
3925 || i.tm.opcode_modifier.evex == EVEXDYN)
3926 {
3927 unsigned int op;
3928
3929 /* Determine vector length from the last multi-length vector
3930 operand. */
3931 for (op = i.operands; op--;)
3932 if (i.tm.operand_types[op].bitfield.xmmword
3933 + i.tm.operand_types[op].bitfield.ymmword
3934 + i.tm.operand_types[op].bitfield.zmmword > 1)
3935 {
3936 if (i.types[op].bitfield.zmmword)
3937 {
3938 i.tm.opcode_modifier.evex = EVEX512;
3939 break;
3940 }
3941 else if (i.types[op].bitfield.ymmword)
3942 {
3943 i.tm.opcode_modifier.evex = EVEX256;
3944 break;
3945 }
3946 else if (i.types[op].bitfield.xmmword)
3947 {
3948 i.tm.opcode_modifier.evex = EVEX128;
3949 break;
3950 }
3951 else if (i.broadcast && (int) op == i.broadcast->operand)
3952 {
3953 switch (i.broadcast->bytes)
3954 {
3955 case 64:
3956 i.tm.opcode_modifier.evex = EVEX512;
3957 break;
3958 case 32:
3959 i.tm.opcode_modifier.evex = EVEX256;
3960 break;
3961 case 16:
3962 i.tm.opcode_modifier.evex = EVEX128;
3963 break;
3964 default:
3965 abort ();
3966 }
3967 break;
3968 }
3969 }
3970
3971 if (op >= MAX_OPERANDS)
3972 abort ();
3973 }
3974
3975 switch (i.tm.opcode_modifier.evex)
3976 {
3977 case EVEXLIG: /* LL' is ignored */
3978 vec_length = evexlig << 5;
3979 break;
3980 case EVEX128:
3981 vec_length = 0 << 5;
3982 break;
3983 case EVEX256:
3984 vec_length = 1 << 5;
3985 break;
3986 case EVEX512:
3987 vec_length = 2 << 5;
3988 break;
3989 default:
3990 abort ();
3991 break;
3992 }
3993 i.vex.bytes[3] |= vec_length;
3994 /* Encode the broadcast bit. */
3995 if (i.broadcast)
3996 i.vex.bytes[3] |= 0x10;
3997 }
3998 else
3999 {
4000 if (i.rounding->type != saeonly)
4001 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
4002 else
4003 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
4004 }
4005
4006 if (i.mask && i.mask->mask)
4007 i.vex.bytes[3] |= i.mask->mask->reg_num;
4008 }
4009
4010 static void
4011 process_immext (void)
4012 {
4013 expressionS *exp;
4014
4015 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
4016 which is coded in the same place as an 8-bit immediate field
4017 would be. Here we fake an 8-bit immediate operand from the
4018 opcode suffix stored in tm.extension_opcode.
4019
4020 AVX instructions also use this encoding, for some of
4021 3 argument instructions. */
4022
4023 gas_assert (i.imm_operands <= 1
4024 && (i.operands <= 2
4025 || (is_any_vex_encoding (&i.tm)
4026 && i.operands <= 4)));
4027
4028 exp = &im_expressions[i.imm_operands++];
4029 i.op[i.operands].imms = exp;
4030 i.types[i.operands] = imm8;
4031 i.operands++;
4032 exp->X_op = O_constant;
4033 exp->X_add_number = i.tm.extension_opcode;
4034 i.tm.extension_opcode = None;
4035 }
4036
4037
4038 static int
4039 check_hle (void)
4040 {
4041 switch (i.tm.opcode_modifier.hleprefixok)
4042 {
4043 default:
4044 abort ();
4045 case HLEPrefixNone:
4046 as_bad (_("invalid instruction `%s' after `%s'"),
4047 i.tm.name, i.hle_prefix);
4048 return 0;
4049 case HLEPrefixLock:
4050 if (i.prefix[LOCK_PREFIX])
4051 return 1;
4052 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4053 return 0;
4054 case HLEPrefixAny:
4055 return 1;
4056 case HLEPrefixRelease:
4057 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4058 {
4059 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4060 i.tm.name);
4061 return 0;
4062 }
4063 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4064 {
4065 as_bad (_("memory destination needed for instruction `%s'"
4066 " after `xrelease'"), i.tm.name);
4067 return 0;
4068 }
4069 return 1;
4070 }
4071 }
4072
4073 /* Try the shortest encoding by shortening operand size. */
4074
4075 static void
4076 optimize_encoding (void)
4077 {
4078 unsigned int j;
4079
4080 if (optimize_for_space
4081 && !is_any_vex_encoding (&i.tm)
4082 && i.reg_operands == 1
4083 && i.imm_operands == 1
4084 && !i.types[1].bitfield.byte
4085 && i.op[0].imms->X_op == O_constant
4086 && fits_in_imm7 (i.op[0].imms->X_add_number)
4087 && (i.tm.base_opcode == 0xa8
4088 || (i.tm.base_opcode == 0xf6
4089 && i.tm.extension_opcode == 0x0)))
4090 {
4091 /* Optimize: -Os:
4092 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4093 */
4094 unsigned int base_regnum = i.op[1].regs->reg_num;
4095 if (flag_code == CODE_64BIT || base_regnum < 4)
4096 {
4097 i.types[1].bitfield.byte = 1;
4098 /* Ignore the suffix. */
4099 i.suffix = 0;
4100 /* Convert to byte registers. */
4101 if (i.types[1].bitfield.word)
4102 j = 16;
4103 else if (i.types[1].bitfield.dword)
4104 j = 32;
4105 else
4106 j = 48;
4107 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4108 j += 8;
4109 i.op[1].regs -= j;
4110 }
4111 }
4112 else if (flag_code == CODE_64BIT
4113 && !is_any_vex_encoding (&i.tm)
4114 && ((i.types[1].bitfield.qword
4115 && i.reg_operands == 1
4116 && i.imm_operands == 1
4117 && i.op[0].imms->X_op == O_constant
4118 && ((i.tm.base_opcode == 0xb8
4119 && i.tm.extension_opcode == None
4120 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4121 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4122 && ((i.tm.base_opcode == 0x24
4123 || i.tm.base_opcode == 0xa8)
4124 || (i.tm.base_opcode == 0x80
4125 && i.tm.extension_opcode == 0x4)
4126 || ((i.tm.base_opcode == 0xf6
4127 || (i.tm.base_opcode | 1) == 0xc7)
4128 && i.tm.extension_opcode == 0x0)))
4129 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4130 && i.tm.base_opcode == 0x83
4131 && i.tm.extension_opcode == 0x4)))
4132 || (i.types[0].bitfield.qword
4133 && ((i.reg_operands == 2
4134 && i.op[0].regs == i.op[1].regs
4135 && (i.tm.base_opcode == 0x30
4136 || i.tm.base_opcode == 0x28))
4137 || (i.reg_operands == 1
4138 && i.operands == 1
4139 && i.tm.base_opcode == 0x30)))))
4140 {
4141 /* Optimize: -O:
4142 andq $imm31, %r64 -> andl $imm31, %r32
4143 andq $imm7, %r64 -> andl $imm7, %r32
4144 testq $imm31, %r64 -> testl $imm31, %r32
4145 xorq %r64, %r64 -> xorl %r32, %r32
4146 subq %r64, %r64 -> subl %r32, %r32
4147 movq $imm31, %r64 -> movl $imm31, %r32
4148 movq $imm32, %r64 -> movl $imm32, %r32
4149 */
4150 i.tm.opcode_modifier.norex64 = 1;
4151 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4152 {
4153 /* Handle
4154 movq $imm31, %r64 -> movl $imm31, %r32
4155 movq $imm32, %r64 -> movl $imm32, %r32
4156 */
4157 i.tm.operand_types[0].bitfield.imm32 = 1;
4158 i.tm.operand_types[0].bitfield.imm32s = 0;
4159 i.tm.operand_types[0].bitfield.imm64 = 0;
4160 i.types[0].bitfield.imm32 = 1;
4161 i.types[0].bitfield.imm32s = 0;
4162 i.types[0].bitfield.imm64 = 0;
4163 i.types[1].bitfield.dword = 1;
4164 i.types[1].bitfield.qword = 0;
4165 if ((i.tm.base_opcode | 1) == 0xc7)
4166 {
4167 /* Handle
4168 movq $imm31, %r64 -> movl $imm31, %r32
4169 */
4170 i.tm.base_opcode = 0xb8;
4171 i.tm.extension_opcode = None;
4172 i.tm.opcode_modifier.w = 0;
4173 i.tm.opcode_modifier.modrm = 0;
4174 }
4175 }
4176 }
4177 else if (optimize > 1
4178 && !optimize_for_space
4179 && !is_any_vex_encoding (&i.tm)
4180 && i.reg_operands == 2
4181 && i.op[0].regs == i.op[1].regs
4182 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4183 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4184 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4185 {
4186 /* Optimize: -O2:
4187 andb %rN, %rN -> testb %rN, %rN
4188 andw %rN, %rN -> testw %rN, %rN
4189 andq %rN, %rN -> testq %rN, %rN
4190 orb %rN, %rN -> testb %rN, %rN
4191 orw %rN, %rN -> testw %rN, %rN
4192 orq %rN, %rN -> testq %rN, %rN
4193
4194 and outside of 64-bit mode
4195
4196 andl %rN, %rN -> testl %rN, %rN
4197 orl %rN, %rN -> testl %rN, %rN
4198 */
4199 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4200 }
4201 else if (i.reg_operands == 3
4202 && i.op[0].regs == i.op[1].regs
4203 && !i.types[2].bitfield.xmmword
4204 && (i.tm.opcode_modifier.vex
4205 || ((!i.mask || i.mask->zeroing)
4206 && !i.rounding
4207 && is_evex_encoding (&i.tm)
4208 && (i.vec_encoding != vex_encoding_evex
4209 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4210 || i.tm.cpu_flags.bitfield.cpuavx512vl
4211 || (i.tm.operand_types[2].bitfield.zmmword
4212 && i.types[2].bitfield.ymmword))))
4213 && ((i.tm.base_opcode == 0x55
4214 || i.tm.base_opcode == 0x6655
4215 || i.tm.base_opcode == 0x66df
4216 || i.tm.base_opcode == 0x57
4217 || i.tm.base_opcode == 0x6657
4218 || i.tm.base_opcode == 0x66ef
4219 || i.tm.base_opcode == 0x66f8
4220 || i.tm.base_opcode == 0x66f9
4221 || i.tm.base_opcode == 0x66fa
4222 || i.tm.base_opcode == 0x66fb
4223 || i.tm.base_opcode == 0x42
4224 || i.tm.base_opcode == 0x6642
4225 || i.tm.base_opcode == 0x47
4226 || i.tm.base_opcode == 0x6647)
4227 && i.tm.extension_opcode == None))
4228 {
4229 /* Optimize: -O1:
4230 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4231 vpsubq and vpsubw:
4232 EVEX VOP %zmmM, %zmmM, %zmmN
4233 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4235 EVEX VOP %ymmM, %ymmM, %ymmN
4236 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4237 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4238 VEX VOP %ymmM, %ymmM, %ymmN
4239 -> VEX VOP %xmmM, %xmmM, %xmmN
4240 VOP, one of vpandn and vpxor:
4241 VEX VOP %ymmM, %ymmM, %ymmN
4242 -> VEX VOP %xmmM, %xmmM, %xmmN
4243 VOP, one of vpandnd and vpandnq:
4244 EVEX VOP %zmmM, %zmmM, %zmmN
4245 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4246 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4247 EVEX VOP %ymmM, %ymmM, %ymmN
4248 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4249 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4250 VOP, one of vpxord and vpxorq:
4251 EVEX VOP %zmmM, %zmmM, %zmmN
4252 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4253 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4254 EVEX VOP %ymmM, %ymmM, %ymmN
4255 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4256 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4257 VOP, one of kxord and kxorq:
4258 VEX VOP %kM, %kM, %kN
4259 -> VEX kxorw %kM, %kM, %kN
4260 VOP, one of kandnd and kandnq:
4261 VEX VOP %kM, %kM, %kN
4262 -> VEX kandnw %kM, %kM, %kN
4263 */
4264 if (is_evex_encoding (&i.tm))
4265 {
4266 if (i.vec_encoding != vex_encoding_evex)
4267 {
4268 i.tm.opcode_modifier.vex = VEX128;
4269 i.tm.opcode_modifier.vexw = VEXW0;
4270 i.tm.opcode_modifier.evex = 0;
4271 }
4272 else if (optimize > 1)
4273 i.tm.opcode_modifier.evex = EVEX128;
4274 else
4275 return;
4276 }
4277 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4278 {
4279 i.tm.base_opcode &= 0xff;
4280 i.tm.opcode_modifier.vexw = VEXW0;
4281 }
4282 else
4283 i.tm.opcode_modifier.vex = VEX128;
4284
4285 if (i.tm.opcode_modifier.vex)
4286 for (j = 0; j < 3; j++)
4287 {
4288 i.types[j].bitfield.xmmword = 1;
4289 i.types[j].bitfield.ymmword = 0;
4290 }
4291 }
4292 else if (i.vec_encoding != vex_encoding_evex
4293 && !i.types[0].bitfield.zmmword
4294 && !i.types[1].bitfield.zmmword
4295 && !i.mask
4296 && !i.broadcast
4297 && is_evex_encoding (&i.tm)
4298 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4299 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4300 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4301 || (i.tm.base_opcode & ~4) == 0x66db
4302 || (i.tm.base_opcode & ~4) == 0x66eb)
4303 && i.tm.extension_opcode == None)
4304 {
4305 /* Optimize: -O1:
4306 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4307 vmovdqu32 and vmovdqu64:
4308 EVEX VOP %xmmM, %xmmN
4309 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4310 EVEX VOP %ymmM, %ymmN
4311 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4312 EVEX VOP %xmmM, mem
4313 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4314 EVEX VOP %ymmM, mem
4315 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4316 EVEX VOP mem, %xmmN
4317 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4318 EVEX VOP mem, %ymmN
4319 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4320 VOP, one of vpand, vpandn, vpor, vpxor:
4321 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4322 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4323 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4324 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4325 EVEX VOP{d,q} mem, %xmmM, %xmmN
4326 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4327 EVEX VOP{d,q} mem, %ymmM, %ymmN
4328 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4329 */
4330 for (j = 0; j < i.operands; j++)
4331 if (operand_type_check (i.types[j], disp)
4332 && i.op[j].disps->X_op == O_constant)
4333 {
4334 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4335 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4336 bytes, we choose EVEX Disp8 over VEX Disp32. */
4337 int evex_disp8, vex_disp8;
4338 unsigned int memshift = i.memshift;
4339 offsetT n = i.op[j].disps->X_add_number;
4340
4341 evex_disp8 = fits_in_disp8 (n);
4342 i.memshift = 0;
4343 vex_disp8 = fits_in_disp8 (n);
4344 if (evex_disp8 != vex_disp8)
4345 {
4346 i.memshift = memshift;
4347 return;
4348 }
4349
4350 i.types[j].bitfield.disp8 = vex_disp8;
4351 break;
4352 }
4353 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4354 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4355 i.tm.opcode_modifier.vex
4356 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4357 i.tm.opcode_modifier.vexw = VEXW0;
4358 /* VPAND, VPOR, and VPXOR are commutative. */
4359 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4360 i.tm.opcode_modifier.commutative = 1;
4361 i.tm.opcode_modifier.evex = 0;
4362 i.tm.opcode_modifier.masking = 0;
4363 i.tm.opcode_modifier.broadcast = 0;
4364 i.tm.opcode_modifier.disp8memshift = 0;
4365 i.memshift = 0;
4366 if (j < i.operands)
4367 i.types[j].bitfield.disp8
4368 = fits_in_disp8 (i.op[j].disps->X_add_number);
4369 }
4370 }
4371
4372 /* Return non-zero for load instruction. */
4373
4374 static int
4375 load_insn_p (void)
4376 {
4377 unsigned int dest;
4378 int any_vex_p = is_any_vex_encoding (&i.tm);
4379 unsigned int base_opcode = i.tm.base_opcode | 1;
4380
4381 if (!any_vex_p)
4382 {
4383 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4384 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4385 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4386 if (i.tm.opcode_modifier.anysize)
4387 return 0;
4388
4389 /* pop, popf, popa. */
4390 if (strcmp (i.tm.name, "pop") == 0
4391 || i.tm.base_opcode == 0x9d
4392 || i.tm.base_opcode == 0x61)
4393 return 1;
4394
4395 /* movs, cmps, lods, scas. */
4396 if ((i.tm.base_opcode | 0xb) == 0xaf)
4397 return 1;
4398
4399 /* outs, xlatb. */
4400 if (base_opcode == 0x6f
4401 || i.tm.base_opcode == 0xd7)
4402 return 1;
4403 /* NB: For AMD-specific insns with implicit memory operands,
4404 they're intentionally not covered. */
4405 }
4406
4407 /* No memory operand. */
4408 if (!i.mem_operands)
4409 return 0;
4410
4411 if (any_vex_p)
4412 {
4413 /* vldmxcsr. */
4414 if (i.tm.base_opcode == 0xae
4415 && i.tm.opcode_modifier.vex
4416 && i.tm.opcode_modifier.opcodeprefix == VEX0F
4417 && i.tm.extension_opcode == 2)
4418 return 1;
4419 }
4420 else
4421 {
4422 /* test, not, neg, mul, imul, div, idiv. */
4423 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4424 && i.tm.extension_opcode != 1)
4425 return 1;
4426
4427 /* inc, dec. */
4428 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4429 return 1;
4430
4431 /* add, or, adc, sbb, and, sub, xor, cmp. */
4432 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4433 return 1;
4434
4435 /* bt, bts, btr, btc. */
4436 if (i.tm.base_opcode == 0xfba
4437 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4438 return 1;
4439
4440 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4441 if ((base_opcode == 0xc1
4442 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4443 && i.tm.extension_opcode != 6)
4444 return 1;
4445
4446 /* cmpxchg8b, cmpxchg16b, xrstors. */
4447 if (i.tm.base_opcode == 0xfc7
4448 && i.tm.opcode_modifier.opcodeprefix == 0
4449 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4450 return 1;
4451
4452 /* fxrstor, ldmxcsr, xrstor. */
4453 if (i.tm.base_opcode == 0xfae
4454 && (i.tm.extension_opcode == 1
4455 || i.tm.extension_opcode == 2
4456 || i.tm.extension_opcode == 5))
4457 return 1;
4458
4459 /* lgdt, lidt, lmsw. */
4460 if (i.tm.base_opcode == 0xf01
4461 && (i.tm.extension_opcode == 2
4462 || i.tm.extension_opcode == 3
4463 || i.tm.extension_opcode == 6))
4464 return 1;
4465
4466 /* vmptrld */
4467 if (i.tm.base_opcode == 0xfc7
4468 && i.tm.opcode_modifier.opcodeprefix == 0
4469 && i.tm.extension_opcode == 6)
4470 return 1;
4471
4472 /* Check for x87 instructions. */
4473 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4474 {
4475 /* Skip fst, fstp, fstenv, fstcw. */
4476 if (i.tm.base_opcode == 0xd9
4477 && (i.tm.extension_opcode == 2
4478 || i.tm.extension_opcode == 3
4479 || i.tm.extension_opcode == 6
4480 || i.tm.extension_opcode == 7))
4481 return 0;
4482
4483 /* Skip fisttp, fist, fistp, fstp. */
4484 if (i.tm.base_opcode == 0xdb
4485 && (i.tm.extension_opcode == 1
4486 || i.tm.extension_opcode == 2
4487 || i.tm.extension_opcode == 3
4488 || i.tm.extension_opcode == 7))
4489 return 0;
4490
4491 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4492 if (i.tm.base_opcode == 0xdd
4493 && (i.tm.extension_opcode == 1
4494 || i.tm.extension_opcode == 2
4495 || i.tm.extension_opcode == 3
4496 || i.tm.extension_opcode == 6
4497 || i.tm.extension_opcode == 7))
4498 return 0;
4499
4500 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4501 if (i.tm.base_opcode == 0xdf
4502 && (i.tm.extension_opcode == 1
4503 || i.tm.extension_opcode == 2
4504 || i.tm.extension_opcode == 3
4505 || i.tm.extension_opcode == 6
4506 || i.tm.extension_opcode == 7))
4507 return 0;
4508
4509 return 1;
4510 }
4511 }
4512
4513 dest = i.operands - 1;
4514
4515 /* Check fake imm8 operand and 3 source operands. */
4516 if ((i.tm.opcode_modifier.immext
4517 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4518 && i.types[dest].bitfield.imm8)
4519 dest--;
4520
4521 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4522 if (!any_vex_p
4523 && (base_opcode == 0x1
4524 || base_opcode == 0x9
4525 || base_opcode == 0x11
4526 || base_opcode == 0x19
4527 || base_opcode == 0x21
4528 || base_opcode == 0x29
4529 || base_opcode == 0x31
4530 || base_opcode == 0x39
4531 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4532 || base_opcode == 0xfc1))
4533 return 1;
4534
4535 /* Check for load instruction. */
4536 return (i.types[dest].bitfield.class != ClassNone
4537 || i.types[dest].bitfield.instance == Accum);
4538 }
4539
4540 /* Output lfence, 0xfaee8, after instruction. */
4541
4542 static void
4543 insert_lfence_after (void)
4544 {
4545 if (lfence_after_load && load_insn_p ())
4546 {
4547 /* There are also two REP string instructions that require
4548 special treatment. Specifically, the compare string (CMPS)
4549 and scan string (SCAS) instructions set EFLAGS in a manner
4550 that depends on the data being compared/scanned. When used
4551 with a REP prefix, the number of iterations may therefore
4552 vary depending on this data. If the data is a program secret
4553 chosen by the adversary using an LVI method,
4554 then this data-dependent behavior may leak some aspect
4555 of the secret. */
4556 if (((i.tm.base_opcode | 0x1) == 0xa7
4557 || (i.tm.base_opcode | 0x1) == 0xaf)
4558 && i.prefix[REP_PREFIX])
4559 {
4560 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4561 i.tm.name);
4562 }
4563 char *p = frag_more (3);
4564 *p++ = 0xf;
4565 *p++ = 0xae;
4566 *p = 0xe8;
4567 }
4568 }
4569
4570 /* Output lfence, 0xfaee8, before instruction. */
4571
4572 static void
4573 insert_lfence_before (void)
4574 {
4575 char *p;
4576
4577 if (is_any_vex_encoding (&i.tm))
4578 return;
4579
4580 if (i.tm.base_opcode == 0xff
4581 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4582 {
4583 /* Insert lfence before indirect branch if needed. */
4584
4585 if (lfence_before_indirect_branch == lfence_branch_none)
4586 return;
4587
4588 if (i.operands != 1)
4589 abort ();
4590
4591 if (i.reg_operands == 1)
4592 {
4593 /* Indirect branch via register. Don't insert lfence with
4594 -mlfence-after-load=yes. */
4595 if (lfence_after_load
4596 || lfence_before_indirect_branch == lfence_branch_memory)
4597 return;
4598 }
4599 else if (i.mem_operands == 1
4600 && lfence_before_indirect_branch != lfence_branch_register)
4601 {
4602 as_warn (_("indirect `%s` with memory operand should be avoided"),
4603 i.tm.name);
4604 return;
4605 }
4606 else
4607 return;
4608
4609 if (last_insn.kind != last_insn_other
4610 && last_insn.seg == now_seg)
4611 {
4612 as_warn_where (last_insn.file, last_insn.line,
4613 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4614 last_insn.name, i.tm.name);
4615 return;
4616 }
4617
4618 p = frag_more (3);
4619 *p++ = 0xf;
4620 *p++ = 0xae;
4621 *p = 0xe8;
4622 return;
4623 }
4624
4625 /* Output or/not/shl and lfence before near ret. */
4626 if (lfence_before_ret != lfence_before_ret_none
4627 && (i.tm.base_opcode == 0xc2
4628 || i.tm.base_opcode == 0xc3))
4629 {
4630 if (last_insn.kind != last_insn_other
4631 && last_insn.seg == now_seg)
4632 {
4633 as_warn_where (last_insn.file, last_insn.line,
4634 _("`%s` skips -mlfence-before-ret on `%s`"),
4635 last_insn.name, i.tm.name);
4636 return;
4637 }
4638
4639 /* Near ret ingore operand size override under CPU64. */
4640 char prefix = flag_code == CODE_64BIT
4641 ? 0x48
4642 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
4643
4644 if (lfence_before_ret == lfence_before_ret_not)
4645 {
4646 /* not: 0xf71424, may add prefix
4647 for operand size override or 64-bit code. */
4648 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4649 if (prefix)
4650 *p++ = prefix;
4651 *p++ = 0xf7;
4652 *p++ = 0x14;
4653 *p++ = 0x24;
4654 if (prefix)
4655 *p++ = prefix;
4656 *p++ = 0xf7;
4657 *p++ = 0x14;
4658 *p++ = 0x24;
4659 }
4660 else
4661 {
4662 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4663 if (prefix)
4664 *p++ = prefix;
4665 if (lfence_before_ret == lfence_before_ret_or)
4666 {
4667 /* or: 0x830c2400, may add prefix
4668 for operand size override or 64-bit code. */
4669 *p++ = 0x83;
4670 *p++ = 0x0c;
4671 }
4672 else
4673 {
4674 /* shl: 0xc1242400, may add prefix
4675 for operand size override or 64-bit code. */
4676 *p++ = 0xc1;
4677 *p++ = 0x24;
4678 }
4679
4680 *p++ = 0x24;
4681 *p++ = 0x0;
4682 }
4683
4684 *p++ = 0xf;
4685 *p++ = 0xae;
4686 *p = 0xe8;
4687 }
4688 }
4689
4690 /* This is the guts of the machine-dependent assembler. LINE points to a
4691 machine dependent instruction. This function is supposed to emit
4692 the frags/bytes it assembles to. */
4693
4694 void
4695 md_assemble (char *line)
4696 {
4697 unsigned int j;
4698 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4699 const insn_template *t;
4700
4701 /* Initialize globals. */
4702 memset (&i, '\0', sizeof (i));
4703 for (j = 0; j < MAX_OPERANDS; j++)
4704 i.reloc[j] = NO_RELOC;
4705 memset (disp_expressions, '\0', sizeof (disp_expressions));
4706 memset (im_expressions, '\0', sizeof (im_expressions));
4707 save_stack_p = save_stack;
4708
4709 /* First parse an instruction mnemonic & call i386_operand for the operands.
4710 We assume that the scrubber has arranged it so that line[0] is the valid
4711 start of a (possibly prefixed) mnemonic. */
4712
4713 line = parse_insn (line, mnemonic);
4714 if (line == NULL)
4715 return;
4716 mnem_suffix = i.suffix;
4717
4718 line = parse_operands (line, mnemonic);
4719 this_operand = -1;
4720 xfree (i.memop1_string);
4721 i.memop1_string = NULL;
4722 if (line == NULL)
4723 return;
4724
4725 /* Now we've parsed the mnemonic into a set of templates, and have the
4726 operands at hand. */
4727
4728 /* All Intel opcodes have reversed operands except for "bound", "enter",
4729 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4730 intersegment "jmp" and "call" instructions with 2 immediate operands so
4731 that the immediate segment precedes the offset, as it does when in AT&T
4732 mode. */
4733 if (intel_syntax
4734 && i.operands > 1
4735 && (strcmp (mnemonic, "bound") != 0)
4736 && (strcmp (mnemonic, "invlpga") != 0)
4737 && (strncmp (mnemonic, "monitor", 7) != 0)
4738 && (strncmp (mnemonic, "mwait", 5) != 0)
4739 && (strcmp (mnemonic, "tpause") != 0)
4740 && (strcmp (mnemonic, "umwait") != 0)
4741 && !(operand_type_check (i.types[0], imm)
4742 && operand_type_check (i.types[1], imm)))
4743 swap_operands ();
4744
4745 /* The order of the immediates should be reversed
4746 for 2 immediates extrq and insertq instructions */
4747 if (i.imm_operands == 2
4748 && (strcmp (mnemonic, "extrq") == 0
4749 || strcmp (mnemonic, "insertq") == 0))
4750 swap_2_operands (0, 1);
4751
4752 if (i.imm_operands)
4753 optimize_imm ();
4754
4755 /* Don't optimize displacement for movabs since it only takes 64bit
4756 displacement. */
4757 if (i.disp_operands
4758 && i.disp_encoding != disp_encoding_32bit
4759 && (flag_code != CODE_64BIT
4760 || strcmp (mnemonic, "movabs") != 0))
4761 optimize_disp ();
4762
4763 /* Next, we find a template that matches the given insn,
4764 making sure the overlap of the given operands types is consistent
4765 with the template operand types. */
4766
4767 if (!(t = match_template (mnem_suffix)))
4768 return;
4769
4770 if (sse_check != check_none
4771 && !i.tm.opcode_modifier.noavx
4772 && !i.tm.cpu_flags.bitfield.cpuavx
4773 && !i.tm.cpu_flags.bitfield.cpuavx512f
4774 && (i.tm.cpu_flags.bitfield.cpusse
4775 || i.tm.cpu_flags.bitfield.cpusse2
4776 || i.tm.cpu_flags.bitfield.cpusse3
4777 || i.tm.cpu_flags.bitfield.cpussse3
4778 || i.tm.cpu_flags.bitfield.cpusse4_1
4779 || i.tm.cpu_flags.bitfield.cpusse4_2
4780 || i.tm.cpu_flags.bitfield.cpupclmul
4781 || i.tm.cpu_flags.bitfield.cpuaes
4782 || i.tm.cpu_flags.bitfield.cpusha
4783 || i.tm.cpu_flags.bitfield.cpugfni))
4784 {
4785 (sse_check == check_warning
4786 ? as_warn
4787 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4788 }
4789
4790 if (i.tm.opcode_modifier.fwait)
4791 if (!add_prefix (FWAIT_OPCODE))
4792 return;
4793
4794 /* Check if REP prefix is OK. */
4795 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4796 {
4797 as_bad (_("invalid instruction `%s' after `%s'"),
4798 i.tm.name, i.rep_prefix);
4799 return;
4800 }
4801
4802 /* Check for lock without a lockable instruction. Destination operand
4803 must be memory unless it is xchg (0x86). */
4804 if (i.prefix[LOCK_PREFIX]
4805 && (!i.tm.opcode_modifier.islockable
4806 || i.mem_operands == 0
4807 || (i.tm.base_opcode != 0x86
4808 && !(i.flags[i.operands - 1] & Operand_Mem))))
4809 {
4810 as_bad (_("expecting lockable instruction after `lock'"));
4811 return;
4812 }
4813
4814 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4815 if (i.prefix[DATA_PREFIX]
4816 && (is_any_vex_encoding (&i.tm)
4817 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4818 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
4819 {
4820 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4821 return;
4822 }
4823
4824 /* Check if HLE prefix is OK. */
4825 if (i.hle_prefix && !check_hle ())
4826 return;
4827
4828 /* Check BND prefix. */
4829 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4830 as_bad (_("expecting valid branch instruction after `bnd'"));
4831
4832 /* Check NOTRACK prefix. */
4833 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4834 as_bad (_("expecting indirect branch instruction after `notrack'"));
4835
4836 if (i.tm.cpu_flags.bitfield.cpumpx)
4837 {
4838 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4839 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4840 else if (flag_code != CODE_16BIT
4841 ? i.prefix[ADDR_PREFIX]
4842 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4843 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4844 }
4845
4846 /* Insert BND prefix. */
4847 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4848 {
4849 if (!i.prefix[BND_PREFIX])
4850 add_prefix (BND_PREFIX_OPCODE);
4851 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4852 {
4853 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4854 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4855 }
4856 }
4857
4858 /* Check string instruction segment overrides. */
4859 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4860 {
4861 gas_assert (i.mem_operands);
4862 if (!check_string ())
4863 return;
4864 i.disp_operands = 0;
4865 }
4866
4867 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4868 optimize_encoding ();
4869
4870 if (!process_suffix ())
4871 return;
4872
4873 /* Update operand types and check extended states. */
4874 for (j = 0; j < i.operands; j++)
4875 {
4876 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4877 switch (i.types[j].bitfield.class)
4878 {
4879 default:
4880 break;
4881 case RegMMX:
4882 i.xstate |= xstate_mmx;
4883 break;
4884 case RegMask:
4885 i.xstate |= xstate_mask;
4886 break;
4887 case RegSIMD:
4888 if (i.types[j].bitfield.tmmword)
4889 i.xstate |= xstate_tmm;
4890 else if (i.types[j].bitfield.zmmword)
4891 i.xstate |= xstate_zmm;
4892 else if (i.types[j].bitfield.ymmword)
4893 i.xstate |= xstate_ymm;
4894 else if (i.types[j].bitfield.xmmword)
4895 i.xstate |= xstate_xmm;
4896 break;
4897 }
4898 }
4899
4900 /* Make still unresolved immediate matches conform to size of immediate
4901 given in i.suffix. */
4902 if (!finalize_imm ())
4903 return;
4904
4905 if (i.types[0].bitfield.imm1)
4906 i.imm_operands = 0; /* kludge for shift insns. */
4907
4908 /* We only need to check those implicit registers for instructions
4909 with 3 operands or less. */
4910 if (i.operands <= 3)
4911 for (j = 0; j < i.operands; j++)
4912 if (i.types[j].bitfield.instance != InstanceNone
4913 && !i.types[j].bitfield.xmmword)
4914 i.reg_operands--;
4915
4916 /* For insns with operands there are more diddles to do to the opcode. */
4917 if (i.operands)
4918 {
4919 if (!process_operands ())
4920 return;
4921 }
4922 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4923 {
4924 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4925 as_warn (_("translating to `%sp'"), i.tm.name);
4926 }
4927
4928 if (is_any_vex_encoding (&i.tm))
4929 {
4930 if (!cpu_arch_flags.bitfield.cpui286)
4931 {
4932 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4933 i.tm.name);
4934 return;
4935 }
4936
4937 /* Check for explicit REX prefix. */
4938 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4939 {
4940 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4941 return;
4942 }
4943
4944 if (i.tm.opcode_modifier.vex)
4945 build_vex_prefix (t);
4946 else
4947 build_evex_prefix ();
4948
4949 /* The individual REX.RXBW bits got consumed. */
4950 i.rex &= REX_OPCODE;
4951 }
4952
4953 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4954 instructions may define INT_OPCODE as well, so avoid this corner
4955 case for those instructions that use MODRM. */
4956 if (i.tm.base_opcode == INT_OPCODE
4957 && !i.tm.opcode_modifier.modrm
4958 && i.op[0].imms->X_add_number == 3)
4959 {
4960 i.tm.base_opcode = INT3_OPCODE;
4961 i.imm_operands = 0;
4962 }
4963
4964 if ((i.tm.opcode_modifier.jump == JUMP
4965 || i.tm.opcode_modifier.jump == JUMP_BYTE
4966 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4967 && i.op[0].disps->X_op == O_constant)
4968 {
4969 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4970 the absolute address given by the constant. Since ix86 jumps and
4971 calls are pc relative, we need to generate a reloc. */
4972 i.op[0].disps->X_add_symbol = &abs_symbol;
4973 i.op[0].disps->X_op = O_symbol;
4974 }
4975
4976 /* For 8 bit registers we need an empty rex prefix. Also if the
4977 instruction already has a prefix, we need to convert old
4978 registers to new ones. */
4979
4980 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4981 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4982 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4983 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4984 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4985 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4986 && i.rex != 0))
4987 {
4988 int x;
4989
4990 i.rex |= REX_OPCODE;
4991 for (x = 0; x < 2; x++)
4992 {
4993 /* Look for 8 bit operand that uses old registers. */
4994 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4995 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4996 {
4997 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4998 /* In case it is "hi" register, give up. */
4999 if (i.op[x].regs->reg_num > 3)
5000 as_bad (_("can't encode register '%s%s' in an "
5001 "instruction requiring REX prefix."),
5002 register_prefix, i.op[x].regs->reg_name);
5003
5004 /* Otherwise it is equivalent to the extended register.
5005 Since the encoding doesn't change this is merely
5006 cosmetic cleanup for debug output. */
5007
5008 i.op[x].regs = i.op[x].regs + 8;
5009 }
5010 }
5011 }
5012
5013 if (i.rex == 0 && i.rex_encoding)
5014 {
5015 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
5016 that uses legacy register. If it is "hi" register, don't add
5017 the REX_OPCODE byte. */
5018 int x;
5019 for (x = 0; x < 2; x++)
5020 if (i.types[x].bitfield.class == Reg
5021 && i.types[x].bitfield.byte
5022 && (i.op[x].regs->reg_flags & RegRex64) == 0
5023 && i.op[x].regs->reg_num > 3)
5024 {
5025 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
5026 i.rex_encoding = FALSE;
5027 break;
5028 }
5029
5030 if (i.rex_encoding)
5031 i.rex = REX_OPCODE;
5032 }
5033
5034 if (i.rex != 0)
5035 add_prefix (REX_OPCODE | i.rex);
5036
5037 insert_lfence_before ();
5038
5039 /* We are ready to output the insn. */
5040 output_insn ();
5041
5042 insert_lfence_after ();
5043
5044 last_insn.seg = now_seg;
5045
5046 if (i.tm.opcode_modifier.isprefix)
5047 {
5048 last_insn.kind = last_insn_prefix;
5049 last_insn.name = i.tm.name;
5050 last_insn.file = as_where (&last_insn.line);
5051 }
5052 else
5053 last_insn.kind = last_insn_other;
5054 }
5055
5056 static char *
5057 parse_insn (char *line, char *mnemonic)
5058 {
5059 char *l = line;
5060 char *token_start = l;
5061 char *mnem_p;
5062 int supported;
5063 const insn_template *t;
5064 char *dot_p = NULL;
5065
5066 while (1)
5067 {
5068 mnem_p = mnemonic;
5069 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5070 {
5071 if (*mnem_p == '.')
5072 dot_p = mnem_p;
5073 mnem_p++;
5074 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5075 {
5076 as_bad (_("no such instruction: `%s'"), token_start);
5077 return NULL;
5078 }
5079 l++;
5080 }
5081 if (!is_space_char (*l)
5082 && *l != END_OF_INSN
5083 && (intel_syntax
5084 || (*l != PREFIX_SEPARATOR
5085 && *l != ',')))
5086 {
5087 as_bad (_("invalid character %s in mnemonic"),
5088 output_invalid (*l));
5089 return NULL;
5090 }
5091 if (token_start == l)
5092 {
5093 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5094 as_bad (_("expecting prefix; got nothing"));
5095 else
5096 as_bad (_("expecting mnemonic; got nothing"));
5097 return NULL;
5098 }
5099
5100 /* Look up instruction (or prefix) via hash table. */
5101 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5102
5103 if (*l != END_OF_INSN
5104 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5105 && current_templates
5106 && current_templates->start->opcode_modifier.isprefix)
5107 {
5108 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5109 {
5110 as_bad ((flag_code != CODE_64BIT
5111 ? _("`%s' is only supported in 64-bit mode")
5112 : _("`%s' is not supported in 64-bit mode")),
5113 current_templates->start->name);
5114 return NULL;
5115 }
5116 /* If we are in 16-bit mode, do not allow addr16 or data16.
5117 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5118 if ((current_templates->start->opcode_modifier.size == SIZE16
5119 || current_templates->start->opcode_modifier.size == SIZE32)
5120 && flag_code != CODE_64BIT
5121 && ((current_templates->start->opcode_modifier.size == SIZE32)
5122 ^ (flag_code == CODE_16BIT)))
5123 {
5124 as_bad (_("redundant %s prefix"),
5125 current_templates->start->name);
5126 return NULL;
5127 }
5128 if (current_templates->start->opcode_length == 0)
5129 {
5130 /* Handle pseudo prefixes. */
5131 switch (current_templates->start->base_opcode)
5132 {
5133 case Prefix_Disp8:
5134 /* {disp8} */
5135 i.disp_encoding = disp_encoding_8bit;
5136 break;
5137 case Prefix_Disp16:
5138 /* {disp16} */
5139 i.disp_encoding = disp_encoding_16bit;
5140 break;
5141 case Prefix_Disp32:
5142 /* {disp32} */
5143 i.disp_encoding = disp_encoding_32bit;
5144 break;
5145 case Prefix_Load:
5146 /* {load} */
5147 i.dir_encoding = dir_encoding_load;
5148 break;
5149 case Prefix_Store:
5150 /* {store} */
5151 i.dir_encoding = dir_encoding_store;
5152 break;
5153 case Prefix_VEX:
5154 /* {vex} */
5155 i.vec_encoding = vex_encoding_vex;
5156 break;
5157 case Prefix_VEX3:
5158 /* {vex3} */
5159 i.vec_encoding = vex_encoding_vex3;
5160 break;
5161 case Prefix_EVEX:
5162 /* {evex} */
5163 i.vec_encoding = vex_encoding_evex;
5164 break;
5165 case Prefix_REX:
5166 /* {rex} */
5167 i.rex_encoding = TRUE;
5168 break;
5169 case Prefix_NoOptimize:
5170 /* {nooptimize} */
5171 i.no_optimize = TRUE;
5172 break;
5173 default:
5174 abort ();
5175 }
5176 }
5177 else
5178 {
5179 /* Add prefix, checking for repeated prefixes. */
5180 switch (add_prefix (current_templates->start->base_opcode))
5181 {
5182 case PREFIX_EXIST:
5183 return NULL;
5184 case PREFIX_DS:
5185 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5186 i.notrack_prefix = current_templates->start->name;
5187 break;
5188 case PREFIX_REP:
5189 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5190 i.hle_prefix = current_templates->start->name;
5191 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5192 i.bnd_prefix = current_templates->start->name;
5193 else
5194 i.rep_prefix = current_templates->start->name;
5195 break;
5196 default:
5197 break;
5198 }
5199 }
5200 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5201 token_start = ++l;
5202 }
5203 else
5204 break;
5205 }
5206
5207 if (!current_templates)
5208 {
5209 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5210 Check if we should swap operand or force 32bit displacement in
5211 encoding. */
5212 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5213 i.dir_encoding = dir_encoding_swap;
5214 else if (mnem_p - 3 == dot_p
5215 && dot_p[1] == 'd'
5216 && dot_p[2] == '8')
5217 i.disp_encoding = disp_encoding_8bit;
5218 else if (mnem_p - 4 == dot_p
5219 && dot_p[1] == 'd'
5220 && dot_p[2] == '3'
5221 && dot_p[3] == '2')
5222 i.disp_encoding = disp_encoding_32bit;
5223 else
5224 goto check_suffix;
5225 mnem_p = dot_p;
5226 *dot_p = '\0';
5227 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5228 }
5229
5230 if (!current_templates)
5231 {
5232 check_suffix:
5233 if (mnem_p > mnemonic)
5234 {
5235 /* See if we can get a match by trimming off a suffix. */
5236 switch (mnem_p[-1])
5237 {
5238 case WORD_MNEM_SUFFIX:
5239 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5240 i.suffix = SHORT_MNEM_SUFFIX;
5241 else
5242 /* Fall through. */
5243 case BYTE_MNEM_SUFFIX:
5244 case QWORD_MNEM_SUFFIX:
5245 i.suffix = mnem_p[-1];
5246 mnem_p[-1] = '\0';
5247 current_templates
5248 = (const templates *) str_hash_find (op_hash, mnemonic);
5249 break;
5250 case SHORT_MNEM_SUFFIX:
5251 case LONG_MNEM_SUFFIX:
5252 if (!intel_syntax)
5253 {
5254 i.suffix = mnem_p[-1];
5255 mnem_p[-1] = '\0';
5256 current_templates
5257 = (const templates *) str_hash_find (op_hash, mnemonic);
5258 }
5259 break;
5260
5261 /* Intel Syntax. */
5262 case 'd':
5263 if (intel_syntax)
5264 {
5265 if (intel_float_operand (mnemonic) == 1)
5266 i.suffix = SHORT_MNEM_SUFFIX;
5267 else
5268 i.suffix = LONG_MNEM_SUFFIX;
5269 mnem_p[-1] = '\0';
5270 current_templates
5271 = (const templates *) str_hash_find (op_hash, mnemonic);
5272 }
5273 break;
5274 }
5275 }
5276
5277 if (!current_templates)
5278 {
5279 as_bad (_("no such instruction: `%s'"), token_start);
5280 return NULL;
5281 }
5282 }
5283
5284 if (current_templates->start->opcode_modifier.jump == JUMP
5285 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5286 {
5287 /* Check for a branch hint. We allow ",pt" and ",pn" for
5288 predict taken and predict not taken respectively.
5289 I'm not sure that branch hints actually do anything on loop
5290 and jcxz insns (JumpByte) for current Pentium4 chips. They
5291 may work in the future and it doesn't hurt to accept them
5292 now. */
5293 if (l[0] == ',' && l[1] == 'p')
5294 {
5295 if (l[2] == 't')
5296 {
5297 if (!add_prefix (DS_PREFIX_OPCODE))
5298 return NULL;
5299 l += 3;
5300 }
5301 else if (l[2] == 'n')
5302 {
5303 if (!add_prefix (CS_PREFIX_OPCODE))
5304 return NULL;
5305 l += 3;
5306 }
5307 }
5308 }
5309 /* Any other comma loses. */
5310 if (*l == ',')
5311 {
5312 as_bad (_("invalid character %s in mnemonic"),
5313 output_invalid (*l));
5314 return NULL;
5315 }
5316
5317 /* Check if instruction is supported on specified architecture. */
5318 supported = 0;
5319 for (t = current_templates->start; t < current_templates->end; ++t)
5320 {
5321 supported |= cpu_flags_match (t);
5322 if (supported == CPU_FLAGS_PERFECT_MATCH)
5323 {
5324 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5325 as_warn (_("use .code16 to ensure correct addressing mode"));
5326
5327 return l;
5328 }
5329 }
5330
5331 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5332 as_bad (flag_code == CODE_64BIT
5333 ? _("`%s' is not supported in 64-bit mode")
5334 : _("`%s' is only supported in 64-bit mode"),
5335 current_templates->start->name);
5336 else
5337 as_bad (_("`%s' is not supported on `%s%s'"),
5338 current_templates->start->name,
5339 cpu_arch_name ? cpu_arch_name : default_arch,
5340 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5341
5342 return NULL;
5343 }
5344
5345 static char *
5346 parse_operands (char *l, const char *mnemonic)
5347 {
5348 char *token_start;
5349
5350 /* 1 if operand is pending after ','. */
5351 unsigned int expecting_operand = 0;
5352
5353 /* Non-zero if operand parens not balanced. */
5354 unsigned int paren_not_balanced;
5355
5356 while (*l != END_OF_INSN)
5357 {
5358 /* Skip optional white space before operand. */
5359 if (is_space_char (*l))
5360 ++l;
5361 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5362 {
5363 as_bad (_("invalid character %s before operand %d"),
5364 output_invalid (*l),
5365 i.operands + 1);
5366 return NULL;
5367 }
5368 token_start = l; /* After white space. */
5369 paren_not_balanced = 0;
5370 while (paren_not_balanced || *l != ',')
5371 {
5372 if (*l == END_OF_INSN)
5373 {
5374 if (paren_not_balanced)
5375 {
5376 if (!intel_syntax)
5377 as_bad (_("unbalanced parenthesis in operand %d."),
5378 i.operands + 1);
5379 else
5380 as_bad (_("unbalanced brackets in operand %d."),
5381 i.operands + 1);
5382 return NULL;
5383 }
5384 else
5385 break; /* we are done */
5386 }
5387 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
5388 {
5389 as_bad (_("invalid character %s in operand %d"),
5390 output_invalid (*l),
5391 i.operands + 1);
5392 return NULL;
5393 }
5394 if (!intel_syntax)
5395 {
5396 if (*l == '(')
5397 ++paren_not_balanced;
5398 if (*l == ')')
5399 --paren_not_balanced;
5400 }
5401 else
5402 {
5403 if (*l == '[')
5404 ++paren_not_balanced;
5405 if (*l == ']')
5406 --paren_not_balanced;
5407 }
5408 l++;
5409 }
5410 if (l != token_start)
5411 { /* Yes, we've read in another operand. */
5412 unsigned int operand_ok;
5413 this_operand = i.operands++;
5414 if (i.operands > MAX_OPERANDS)
5415 {
5416 as_bad (_("spurious operands; (%d operands/instruction max)"),
5417 MAX_OPERANDS);
5418 return NULL;
5419 }
5420 i.types[this_operand].bitfield.unspecified = 1;
5421 /* Now parse operand adding info to 'i' as we go along. */
5422 END_STRING_AND_SAVE (l);
5423
5424 if (i.mem_operands > 1)
5425 {
5426 as_bad (_("too many memory references for `%s'"),
5427 mnemonic);
5428 return 0;
5429 }
5430
5431 if (intel_syntax)
5432 operand_ok =
5433 i386_intel_operand (token_start,
5434 intel_float_operand (mnemonic));
5435 else
5436 operand_ok = i386_att_operand (token_start);
5437
5438 RESTORE_END_STRING (l);
5439 if (!operand_ok)
5440 return NULL;
5441 }
5442 else
5443 {
5444 if (expecting_operand)
5445 {
5446 expecting_operand_after_comma:
5447 as_bad (_("expecting operand after ','; got nothing"));
5448 return NULL;
5449 }
5450 if (*l == ',')
5451 {
5452 as_bad (_("expecting operand before ','; got nothing"));
5453 return NULL;
5454 }
5455 }
5456
5457 /* Now *l must be either ',' or END_OF_INSN. */
5458 if (*l == ',')
5459 {
5460 if (*++l == END_OF_INSN)
5461 {
5462 /* Just skip it, if it's \n complain. */
5463 goto expecting_operand_after_comma;
5464 }
5465 expecting_operand = 1;
5466 }
5467 }
5468 return l;
5469 }
5470
5471 static void
5472 swap_2_operands (int xchg1, int xchg2)
5473 {
5474 union i386_op temp_op;
5475 i386_operand_type temp_type;
5476 unsigned int temp_flags;
5477 enum bfd_reloc_code_real temp_reloc;
5478
5479 temp_type = i.types[xchg2];
5480 i.types[xchg2] = i.types[xchg1];
5481 i.types[xchg1] = temp_type;
5482
5483 temp_flags = i.flags[xchg2];
5484 i.flags[xchg2] = i.flags[xchg1];
5485 i.flags[xchg1] = temp_flags;
5486
5487 temp_op = i.op[xchg2];
5488 i.op[xchg2] = i.op[xchg1];
5489 i.op[xchg1] = temp_op;
5490
5491 temp_reloc = i.reloc[xchg2];
5492 i.reloc[xchg2] = i.reloc[xchg1];
5493 i.reloc[xchg1] = temp_reloc;
5494
5495 if (i.mask)
5496 {
5497 if (i.mask->operand == xchg1)
5498 i.mask->operand = xchg2;
5499 else if (i.mask->operand == xchg2)
5500 i.mask->operand = xchg1;
5501 }
5502 if (i.broadcast)
5503 {
5504 if (i.broadcast->operand == xchg1)
5505 i.broadcast->operand = xchg2;
5506 else if (i.broadcast->operand == xchg2)
5507 i.broadcast->operand = xchg1;
5508 }
5509 if (i.rounding)
5510 {
5511 if (i.rounding->operand == xchg1)
5512 i.rounding->operand = xchg2;
5513 else if (i.rounding->operand == xchg2)
5514 i.rounding->operand = xchg1;
5515 }
5516 }
5517
5518 static void
5519 swap_operands (void)
5520 {
5521 switch (i.operands)
5522 {
5523 case 5:
5524 case 4:
5525 swap_2_operands (1, i.operands - 2);
5526 /* Fall through. */
5527 case 3:
5528 case 2:
5529 swap_2_operands (0, i.operands - 1);
5530 break;
5531 default:
5532 abort ();
5533 }
5534
5535 if (i.mem_operands == 2)
5536 {
5537 const seg_entry *temp_seg;
5538 temp_seg = i.seg[0];
5539 i.seg[0] = i.seg[1];
5540 i.seg[1] = temp_seg;
5541 }
5542 }
5543
5544 /* Try to ensure constant immediates are represented in the smallest
5545 opcode possible. */
5546 static void
5547 optimize_imm (void)
5548 {
5549 char guess_suffix = 0;
5550 int op;
5551
5552 if (i.suffix)
5553 guess_suffix = i.suffix;
5554 else if (i.reg_operands)
5555 {
5556 /* Figure out a suffix from the last register operand specified.
5557 We can't do this properly yet, i.e. excluding special register
5558 instances, but the following works for instructions with
5559 immediates. In any case, we can't set i.suffix yet. */
5560 for (op = i.operands; --op >= 0;)
5561 if (i.types[op].bitfield.class != Reg)
5562 continue;
5563 else if (i.types[op].bitfield.byte)
5564 {
5565 guess_suffix = BYTE_MNEM_SUFFIX;
5566 break;
5567 }
5568 else if (i.types[op].bitfield.word)
5569 {
5570 guess_suffix = WORD_MNEM_SUFFIX;
5571 break;
5572 }
5573 else if (i.types[op].bitfield.dword)
5574 {
5575 guess_suffix = LONG_MNEM_SUFFIX;
5576 break;
5577 }
5578 else if (i.types[op].bitfield.qword)
5579 {
5580 guess_suffix = QWORD_MNEM_SUFFIX;
5581 break;
5582 }
5583 }
5584 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5585 guess_suffix = WORD_MNEM_SUFFIX;
5586
5587 for (op = i.operands; --op >= 0;)
5588 if (operand_type_check (i.types[op], imm))
5589 {
5590 switch (i.op[op].imms->X_op)
5591 {
5592 case O_constant:
5593 /* If a suffix is given, this operand may be shortened. */
5594 switch (guess_suffix)
5595 {
5596 case LONG_MNEM_SUFFIX:
5597 i.types[op].bitfield.imm32 = 1;
5598 i.types[op].bitfield.imm64 = 1;
5599 break;
5600 case WORD_MNEM_SUFFIX:
5601 i.types[op].bitfield.imm16 = 1;
5602 i.types[op].bitfield.imm32 = 1;
5603 i.types[op].bitfield.imm32s = 1;
5604 i.types[op].bitfield.imm64 = 1;
5605 break;
5606 case BYTE_MNEM_SUFFIX:
5607 i.types[op].bitfield.imm8 = 1;
5608 i.types[op].bitfield.imm8s = 1;
5609 i.types[op].bitfield.imm16 = 1;
5610 i.types[op].bitfield.imm32 = 1;
5611 i.types[op].bitfield.imm32s = 1;
5612 i.types[op].bitfield.imm64 = 1;
5613 break;
5614 }
5615
5616 /* If this operand is at most 16 bits, convert it
5617 to a signed 16 bit number before trying to see
5618 whether it will fit in an even smaller size.
5619 This allows a 16-bit operand such as $0xffe0 to
5620 be recognised as within Imm8S range. */
5621 if ((i.types[op].bitfield.imm16)
5622 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5623 {
5624 i.op[op].imms->X_add_number =
5625 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5626 }
5627 #ifdef BFD64
5628 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5629 if ((i.types[op].bitfield.imm32)
5630 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5631 == 0))
5632 {
5633 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5634 ^ ((offsetT) 1 << 31))
5635 - ((offsetT) 1 << 31));
5636 }
5637 #endif
5638 i.types[op]
5639 = operand_type_or (i.types[op],
5640 smallest_imm_type (i.op[op].imms->X_add_number));
5641
5642 /* We must avoid matching of Imm32 templates when 64bit
5643 only immediate is available. */
5644 if (guess_suffix == QWORD_MNEM_SUFFIX)
5645 i.types[op].bitfield.imm32 = 0;
5646 break;
5647
5648 case O_absent:
5649 case O_register:
5650 abort ();
5651
5652 /* Symbols and expressions. */
5653 default:
5654 /* Convert symbolic operand to proper sizes for matching, but don't
5655 prevent matching a set of insns that only supports sizes other
5656 than those matching the insn suffix. */
5657 {
5658 i386_operand_type mask, allowed;
5659 const insn_template *t;
5660
5661 operand_type_set (&mask, 0);
5662 operand_type_set (&allowed, 0);
5663
5664 for (t = current_templates->start;
5665 t < current_templates->end;
5666 ++t)
5667 {
5668 allowed = operand_type_or (allowed, t->operand_types[op]);
5669 allowed = operand_type_and (allowed, anyimm);
5670 }
5671 switch (guess_suffix)
5672 {
5673 case QWORD_MNEM_SUFFIX:
5674 mask.bitfield.imm64 = 1;
5675 mask.bitfield.imm32s = 1;
5676 break;
5677 case LONG_MNEM_SUFFIX:
5678 mask.bitfield.imm32 = 1;
5679 break;
5680 case WORD_MNEM_SUFFIX:
5681 mask.bitfield.imm16 = 1;
5682 break;
5683 case BYTE_MNEM_SUFFIX:
5684 mask.bitfield.imm8 = 1;
5685 break;
5686 default:
5687 break;
5688 }
5689 allowed = operand_type_and (mask, allowed);
5690 if (!operand_type_all_zero (&allowed))
5691 i.types[op] = operand_type_and (i.types[op], mask);
5692 }
5693 break;
5694 }
5695 }
5696 }
5697
5698 /* Try to use the smallest displacement type too. */
5699 static void
5700 optimize_disp (void)
5701 {
5702 int op;
5703
5704 for (op = i.operands; --op >= 0;)
5705 if (operand_type_check (i.types[op], disp))
5706 {
5707 if (i.op[op].disps->X_op == O_constant)
5708 {
5709 offsetT op_disp = i.op[op].disps->X_add_number;
5710
5711 if (i.types[op].bitfield.disp16
5712 && (op_disp & ~(offsetT) 0xffff) == 0)
5713 {
5714 /* If this operand is at most 16 bits, convert
5715 to a signed 16 bit number and don't use 64bit
5716 displacement. */
5717 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5718 i.types[op].bitfield.disp64 = 0;
5719 }
5720 #ifdef BFD64
5721 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5722 if (i.types[op].bitfield.disp32
5723 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5724 {
5725 /* If this operand is at most 32 bits, convert
5726 to a signed 32 bit number and don't use 64bit
5727 displacement. */
5728 op_disp &= (((offsetT) 2 << 31) - 1);
5729 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5730 i.types[op].bitfield.disp64 = 0;
5731 }
5732 #endif
5733 if (!op_disp && i.types[op].bitfield.baseindex)
5734 {
5735 i.types[op].bitfield.disp8 = 0;
5736 i.types[op].bitfield.disp16 = 0;
5737 i.types[op].bitfield.disp32 = 0;
5738 i.types[op].bitfield.disp32s = 0;
5739 i.types[op].bitfield.disp64 = 0;
5740 i.op[op].disps = 0;
5741 i.disp_operands--;
5742 }
5743 else if (flag_code == CODE_64BIT)
5744 {
5745 if (fits_in_signed_long (op_disp))
5746 {
5747 i.types[op].bitfield.disp64 = 0;
5748 i.types[op].bitfield.disp32s = 1;
5749 }
5750 if (i.prefix[ADDR_PREFIX]
5751 && fits_in_unsigned_long (op_disp))
5752 i.types[op].bitfield.disp32 = 1;
5753 }
5754 if ((i.types[op].bitfield.disp32
5755 || i.types[op].bitfield.disp32s
5756 || i.types[op].bitfield.disp16)
5757 && fits_in_disp8 (op_disp))
5758 i.types[op].bitfield.disp8 = 1;
5759 }
5760 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5761 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5762 {
5763 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5764 i.op[op].disps, 0, i.reloc[op]);
5765 i.types[op].bitfield.disp8 = 0;
5766 i.types[op].bitfield.disp16 = 0;
5767 i.types[op].bitfield.disp32 = 0;
5768 i.types[op].bitfield.disp32s = 0;
5769 i.types[op].bitfield.disp64 = 0;
5770 }
5771 else
5772 /* We only support 64bit displacement on constants. */
5773 i.types[op].bitfield.disp64 = 0;
5774 }
5775 }
5776
5777 /* Return 1 if there is a match in broadcast bytes between operand
5778 GIVEN and instruction template T. */
5779
5780 static INLINE int
5781 match_broadcast_size (const insn_template *t, unsigned int given)
5782 {
5783 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5784 && i.types[given].bitfield.byte)
5785 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5786 && i.types[given].bitfield.word)
5787 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5788 && i.types[given].bitfield.dword)
5789 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5790 && i.types[given].bitfield.qword));
5791 }
5792
5793 /* Check if operands are valid for the instruction. */
5794
5795 static int
5796 check_VecOperands (const insn_template *t)
5797 {
5798 unsigned int op;
5799 i386_cpu_flags cpu;
5800
5801 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5802 any one operand are implicity requiring AVX512VL support if the actual
5803 operand size is YMMword or XMMword. Since this function runs after
5804 template matching, there's no need to check for YMMword/XMMword in
5805 the template. */
5806 cpu = cpu_flags_and (t->cpu_flags, avx512);
5807 if (!cpu_flags_all_zero (&cpu)
5808 && !t->cpu_flags.bitfield.cpuavx512vl
5809 && !cpu_arch_flags.bitfield.cpuavx512vl)
5810 {
5811 for (op = 0; op < t->operands; ++op)
5812 {
5813 if (t->operand_types[op].bitfield.zmmword
5814 && (i.types[op].bitfield.ymmword
5815 || i.types[op].bitfield.xmmword))
5816 {
5817 i.error = unsupported;
5818 return 1;
5819 }
5820 }
5821 }
5822
5823 /* Without VSIB byte, we can't have a vector register for index. */
5824 if (!t->opcode_modifier.sib
5825 && i.index_reg
5826 && (i.index_reg->reg_type.bitfield.xmmword
5827 || i.index_reg->reg_type.bitfield.ymmword
5828 || i.index_reg->reg_type.bitfield.zmmword))
5829 {
5830 i.error = unsupported_vector_index_register;
5831 return 1;
5832 }
5833
5834 /* Check if default mask is allowed. */
5835 if (t->opcode_modifier.nodefmask
5836 && (!i.mask || i.mask->mask->reg_num == 0))
5837 {
5838 i.error = no_default_mask;
5839 return 1;
5840 }
5841
5842 /* For VSIB byte, we need a vector register for index, and all vector
5843 registers must be distinct. */
5844 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
5845 {
5846 if (!i.index_reg
5847 || !((t->opcode_modifier.sib == VECSIB128
5848 && i.index_reg->reg_type.bitfield.xmmword)
5849 || (t->opcode_modifier.sib == VECSIB256
5850 && i.index_reg->reg_type.bitfield.ymmword)
5851 || (t->opcode_modifier.sib == VECSIB512
5852 && i.index_reg->reg_type.bitfield.zmmword)))
5853 {
5854 i.error = invalid_vsib_address;
5855 return 1;
5856 }
5857
5858 gas_assert (i.reg_operands == 2 || i.mask);
5859 if (i.reg_operands == 2 && !i.mask)
5860 {
5861 gas_assert (i.types[0].bitfield.class == RegSIMD);
5862 gas_assert (i.types[0].bitfield.xmmword
5863 || i.types[0].bitfield.ymmword);
5864 gas_assert (i.types[2].bitfield.class == RegSIMD);
5865 gas_assert (i.types[2].bitfield.xmmword
5866 || i.types[2].bitfield.ymmword);
5867 if (operand_check == check_none)
5868 return 0;
5869 if (register_number (i.op[0].regs)
5870 != register_number (i.index_reg)
5871 && register_number (i.op[2].regs)
5872 != register_number (i.index_reg)
5873 && register_number (i.op[0].regs)
5874 != register_number (i.op[2].regs))
5875 return 0;
5876 if (operand_check == check_error)
5877 {
5878 i.error = invalid_vector_register_set;
5879 return 1;
5880 }
5881 as_warn (_("mask, index, and destination registers should be distinct"));
5882 }
5883 else if (i.reg_operands == 1 && i.mask)
5884 {
5885 if (i.types[1].bitfield.class == RegSIMD
5886 && (i.types[1].bitfield.xmmword
5887 || i.types[1].bitfield.ymmword
5888 || i.types[1].bitfield.zmmword)
5889 && (register_number (i.op[1].regs)
5890 == register_number (i.index_reg)))
5891 {
5892 if (operand_check == check_error)
5893 {
5894 i.error = invalid_vector_register_set;
5895 return 1;
5896 }
5897 if (operand_check != check_none)
5898 as_warn (_("index and destination registers should be distinct"));
5899 }
5900 }
5901 }
5902
5903 /* For AMX instructions with three tmmword operands, all tmmword operand must be
5904 distinct */
5905 if (t->operand_types[0].bitfield.tmmword
5906 && i.reg_operands == 3)
5907 {
5908 if (register_number (i.op[0].regs)
5909 == register_number (i.op[1].regs)
5910 || register_number (i.op[0].regs)
5911 == register_number (i.op[2].regs)
5912 || register_number (i.op[1].regs)
5913 == register_number (i.op[2].regs))
5914 {
5915 i.error = invalid_tmm_register_set;
5916 return 1;
5917 }
5918 }
5919
5920 /* Check if broadcast is supported by the instruction and is applied
5921 to the memory operand. */
5922 if (i.broadcast)
5923 {
5924 i386_operand_type type, overlap;
5925
5926 /* Check if specified broadcast is supported in this instruction,
5927 and its broadcast bytes match the memory operand. */
5928 op = i.broadcast->operand;
5929 if (!t->opcode_modifier.broadcast
5930 || !(i.flags[op] & Operand_Mem)
5931 || (!i.types[op].bitfield.unspecified
5932 && !match_broadcast_size (t, op)))
5933 {
5934 bad_broadcast:
5935 i.error = unsupported_broadcast;
5936 return 1;
5937 }
5938
5939 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5940 * i.broadcast->type);
5941 operand_type_set (&type, 0);
5942 switch (i.broadcast->bytes)
5943 {
5944 case 2:
5945 type.bitfield.word = 1;
5946 break;
5947 case 4:
5948 type.bitfield.dword = 1;
5949 break;
5950 case 8:
5951 type.bitfield.qword = 1;
5952 break;
5953 case 16:
5954 type.bitfield.xmmword = 1;
5955 break;
5956 case 32:
5957 type.bitfield.ymmword = 1;
5958 break;
5959 case 64:
5960 type.bitfield.zmmword = 1;
5961 break;
5962 default:
5963 goto bad_broadcast;
5964 }
5965
5966 overlap = operand_type_and (type, t->operand_types[op]);
5967 if (t->operand_types[op].bitfield.class == RegSIMD
5968 && t->operand_types[op].bitfield.byte
5969 + t->operand_types[op].bitfield.word
5970 + t->operand_types[op].bitfield.dword
5971 + t->operand_types[op].bitfield.qword > 1)
5972 {
5973 overlap.bitfield.xmmword = 0;
5974 overlap.bitfield.ymmword = 0;
5975 overlap.bitfield.zmmword = 0;
5976 }
5977 if (operand_type_all_zero (&overlap))
5978 goto bad_broadcast;
5979
5980 if (t->opcode_modifier.checkregsize)
5981 {
5982 unsigned int j;
5983
5984 type.bitfield.baseindex = 1;
5985 for (j = 0; j < i.operands; ++j)
5986 {
5987 if (j != op
5988 && !operand_type_register_match(i.types[j],
5989 t->operand_types[j],
5990 type,
5991 t->operand_types[op]))
5992 goto bad_broadcast;
5993 }
5994 }
5995 }
5996 /* If broadcast is supported in this instruction, we need to check if
5997 operand of one-element size isn't specified without broadcast. */
5998 else if (t->opcode_modifier.broadcast && i.mem_operands)
5999 {
6000 /* Find memory operand. */
6001 for (op = 0; op < i.operands; op++)
6002 if (i.flags[op] & Operand_Mem)
6003 break;
6004 gas_assert (op < i.operands);
6005 /* Check size of the memory operand. */
6006 if (match_broadcast_size (t, op))
6007 {
6008 i.error = broadcast_needed;
6009 return 1;
6010 }
6011 }
6012 else
6013 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
6014
6015 /* Check if requested masking is supported. */
6016 if (i.mask)
6017 {
6018 switch (t->opcode_modifier.masking)
6019 {
6020 case BOTH_MASKING:
6021 break;
6022 case MERGING_MASKING:
6023 if (i.mask->zeroing)
6024 {
6025 case 0:
6026 i.error = unsupported_masking;
6027 return 1;
6028 }
6029 break;
6030 case DYNAMIC_MASKING:
6031 /* Memory destinations allow only merging masking. */
6032 if (i.mask->zeroing && i.mem_operands)
6033 {
6034 /* Find memory operand. */
6035 for (op = 0; op < i.operands; op++)
6036 if (i.flags[op] & Operand_Mem)
6037 break;
6038 gas_assert (op < i.operands);
6039 if (op == i.operands - 1)
6040 {
6041 i.error = unsupported_masking;
6042 return 1;
6043 }
6044 }
6045 break;
6046 default:
6047 abort ();
6048 }
6049 }
6050
6051 /* Check if masking is applied to dest operand. */
6052 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
6053 {
6054 i.error = mask_not_on_destination;
6055 return 1;
6056 }
6057
6058 /* Check RC/SAE. */
6059 if (i.rounding)
6060 {
6061 if (!t->opcode_modifier.sae
6062 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
6063 {
6064 i.error = unsupported_rc_sae;
6065 return 1;
6066 }
6067 /* If the instruction has several immediate operands and one of
6068 them is rounding, the rounding operand should be the last
6069 immediate operand. */
6070 if (i.imm_operands > 1
6071 && i.rounding->operand != (int) (i.imm_operands - 1))
6072 {
6073 i.error = rc_sae_operand_not_last_imm;
6074 return 1;
6075 }
6076 }
6077
6078 /* Check the special Imm4 cases; must be the first operand. */
6079 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6080 {
6081 if (i.op[0].imms->X_op != O_constant
6082 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6083 {
6084 i.error = bad_imm4;
6085 return 1;
6086 }
6087
6088 /* Turn off Imm<N> so that update_imm won't complain. */
6089 operand_type_set (&i.types[0], 0);
6090 }
6091
6092 /* Check vector Disp8 operand. */
6093 if (t->opcode_modifier.disp8memshift
6094 && i.disp_encoding != disp_encoding_32bit)
6095 {
6096 if (i.broadcast)
6097 i.memshift = t->opcode_modifier.broadcast - 1;
6098 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6099 i.memshift = t->opcode_modifier.disp8memshift;
6100 else
6101 {
6102 const i386_operand_type *type = NULL;
6103
6104 i.memshift = 0;
6105 for (op = 0; op < i.operands; op++)
6106 if (i.flags[op] & Operand_Mem)
6107 {
6108 if (t->opcode_modifier.evex == EVEXLIG)
6109 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6110 else if (t->operand_types[op].bitfield.xmmword
6111 + t->operand_types[op].bitfield.ymmword
6112 + t->operand_types[op].bitfield.zmmword <= 1)
6113 type = &t->operand_types[op];
6114 else if (!i.types[op].bitfield.unspecified)
6115 type = &i.types[op];
6116 }
6117 else if (i.types[op].bitfield.class == RegSIMD
6118 && t->opcode_modifier.evex != EVEXLIG)
6119 {
6120 if (i.types[op].bitfield.zmmword)
6121 i.memshift = 6;
6122 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6123 i.memshift = 5;
6124 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6125 i.memshift = 4;
6126 }
6127
6128 if (type)
6129 {
6130 if (type->bitfield.zmmword)
6131 i.memshift = 6;
6132 else if (type->bitfield.ymmword)
6133 i.memshift = 5;
6134 else if (type->bitfield.xmmword)
6135 i.memshift = 4;
6136 }
6137
6138 /* For the check in fits_in_disp8(). */
6139 if (i.memshift == 0)
6140 i.memshift = -1;
6141 }
6142
6143 for (op = 0; op < i.operands; op++)
6144 if (operand_type_check (i.types[op], disp)
6145 && i.op[op].disps->X_op == O_constant)
6146 {
6147 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6148 {
6149 i.types[op].bitfield.disp8 = 1;
6150 return 0;
6151 }
6152 i.types[op].bitfield.disp8 = 0;
6153 }
6154 }
6155
6156 i.memshift = 0;
6157
6158 return 0;
6159 }
6160
6161 /* Check if encoding requirements are met by the instruction. */
6162
6163 static int
6164 VEX_check_encoding (const insn_template *t)
6165 {
6166 if (i.vec_encoding == vex_encoding_error)
6167 {
6168 i.error = unsupported;
6169 return 1;
6170 }
6171
6172 if (i.vec_encoding == vex_encoding_evex)
6173 {
6174 /* This instruction must be encoded with EVEX prefix. */
6175 if (!is_evex_encoding (t))
6176 {
6177 i.error = unsupported;
6178 return 1;
6179 }
6180 return 0;
6181 }
6182
6183 if (!t->opcode_modifier.vex)
6184 {
6185 /* This instruction template doesn't have VEX prefix. */
6186 if (i.vec_encoding != vex_encoding_default)
6187 {
6188 i.error = unsupported;
6189 return 1;
6190 }
6191 return 0;
6192 }
6193
6194 return 0;
6195 }
6196
6197 static const insn_template *
6198 match_template (char mnem_suffix)
6199 {
6200 /* Points to template once we've found it. */
6201 const insn_template *t;
6202 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6203 i386_operand_type overlap4;
6204 unsigned int found_reverse_match;
6205 i386_opcode_modifier suffix_check;
6206 i386_operand_type operand_types [MAX_OPERANDS];
6207 int addr_prefix_disp;
6208 unsigned int j, size_match, check_register;
6209 enum i386_error specific_error = 0;
6210
6211 #if MAX_OPERANDS != 5
6212 # error "MAX_OPERANDS must be 5."
6213 #endif
6214
6215 found_reverse_match = 0;
6216 addr_prefix_disp = -1;
6217
6218 /* Prepare for mnemonic suffix check. */
6219 memset (&suffix_check, 0, sizeof (suffix_check));
6220 switch (mnem_suffix)
6221 {
6222 case BYTE_MNEM_SUFFIX:
6223 suffix_check.no_bsuf = 1;
6224 break;
6225 case WORD_MNEM_SUFFIX:
6226 suffix_check.no_wsuf = 1;
6227 break;
6228 case SHORT_MNEM_SUFFIX:
6229 suffix_check.no_ssuf = 1;
6230 break;
6231 case LONG_MNEM_SUFFIX:
6232 suffix_check.no_lsuf = 1;
6233 break;
6234 case QWORD_MNEM_SUFFIX:
6235 suffix_check.no_qsuf = 1;
6236 break;
6237 default:
6238 /* NB: In Intel syntax, normally we can check for memory operand
6239 size when there is no mnemonic suffix. But jmp and call have
6240 2 different encodings with Dword memory operand size, one with
6241 No_ldSuf and the other without. i.suffix is set to
6242 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6243 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6244 suffix_check.no_ldsuf = 1;
6245 }
6246
6247 /* Must have right number of operands. */
6248 i.error = number_of_operands_mismatch;
6249
6250 for (t = current_templates->start; t < current_templates->end; t++)
6251 {
6252 addr_prefix_disp = -1;
6253 found_reverse_match = 0;
6254
6255 if (i.operands != t->operands)
6256 continue;
6257
6258 /* Check processor support. */
6259 i.error = unsupported;
6260 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6261 continue;
6262
6263 /* Check Pseudo Prefix. */
6264 i.error = unsupported;
6265 if (t->opcode_modifier.pseudovexprefix
6266 && !(i.vec_encoding == vex_encoding_vex
6267 || i.vec_encoding == vex_encoding_vex3))
6268 continue;
6269
6270 /* Check AT&T mnemonic. */
6271 i.error = unsupported_with_intel_mnemonic;
6272 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6273 continue;
6274
6275 /* Check AT&T/Intel syntax. */
6276 i.error = unsupported_syntax;
6277 if ((intel_syntax && t->opcode_modifier.attsyntax)
6278 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6279 continue;
6280
6281 /* Check Intel64/AMD64 ISA. */
6282 switch (isa64)
6283 {
6284 default:
6285 /* Default: Don't accept Intel64. */
6286 if (t->opcode_modifier.isa64 == INTEL64)
6287 continue;
6288 break;
6289 case amd64:
6290 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6291 if (t->opcode_modifier.isa64 >= INTEL64)
6292 continue;
6293 break;
6294 case intel64:
6295 /* -mintel64: Don't accept AMD64. */
6296 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6297 continue;
6298 break;
6299 }
6300
6301 /* Check the suffix. */
6302 i.error = invalid_instruction_suffix;
6303 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6304 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6305 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6306 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6307 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6308 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6309 continue;
6310
6311 size_match = operand_size_match (t);
6312 if (!size_match)
6313 continue;
6314
6315 /* This is intentionally not
6316
6317 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6318
6319 as the case of a missing * on the operand is accepted (perhaps with
6320 a warning, issued further down). */
6321 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6322 {
6323 i.error = operand_type_mismatch;
6324 continue;
6325 }
6326
6327 for (j = 0; j < MAX_OPERANDS; j++)
6328 operand_types[j] = t->operand_types[j];
6329
6330 /* In general, don't allow
6331 - 64-bit operands outside of 64-bit mode,
6332 - 32-bit operands on pre-386. */
6333 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6334 if (((i.suffix == QWORD_MNEM_SUFFIX
6335 && flag_code != CODE_64BIT
6336 && !(t->base_opcode == 0xfc7
6337 && i.tm.opcode_modifier.opcodeprefix == 0
6338 && t->extension_opcode == 1) /* cmpxchg8b */)
6339 || (i.suffix == LONG_MNEM_SUFFIX
6340 && !cpu_arch_flags.bitfield.cpui386))
6341 && (intel_syntax
6342 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6343 && !intel_float_operand (t->name))
6344 : intel_float_operand (t->name) != 2)
6345 && (t->operands == i.imm_operands
6346 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6347 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6348 && operand_types[i.imm_operands].bitfield.class != RegMask)
6349 || (operand_types[j].bitfield.class != RegMMX
6350 && operand_types[j].bitfield.class != RegSIMD
6351 && operand_types[j].bitfield.class != RegMask))
6352 && !t->opcode_modifier.sib)
6353 continue;
6354
6355 /* Do not verify operands when there are none. */
6356 if (!t->operands)
6357 {
6358 if (VEX_check_encoding (t))
6359 {
6360 specific_error = i.error;
6361 continue;
6362 }
6363
6364 /* We've found a match; break out of loop. */
6365 break;
6366 }
6367
6368 if (!t->opcode_modifier.jump
6369 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6370 {
6371 /* There should be only one Disp operand. */
6372 for (j = 0; j < MAX_OPERANDS; j++)
6373 if (operand_type_check (operand_types[j], disp))
6374 break;
6375 if (j < MAX_OPERANDS)
6376 {
6377 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6378
6379 addr_prefix_disp = j;
6380
6381 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6382 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6383 switch (flag_code)
6384 {
6385 case CODE_16BIT:
6386 override = !override;
6387 /* Fall through. */
6388 case CODE_32BIT:
6389 if (operand_types[j].bitfield.disp32
6390 && operand_types[j].bitfield.disp16)
6391 {
6392 operand_types[j].bitfield.disp16 = override;
6393 operand_types[j].bitfield.disp32 = !override;
6394 }
6395 operand_types[j].bitfield.disp32s = 0;
6396 operand_types[j].bitfield.disp64 = 0;
6397 break;
6398
6399 case CODE_64BIT:
6400 if (operand_types[j].bitfield.disp32s
6401 || operand_types[j].bitfield.disp64)
6402 {
6403 operand_types[j].bitfield.disp64 &= !override;
6404 operand_types[j].bitfield.disp32s &= !override;
6405 operand_types[j].bitfield.disp32 = override;
6406 }
6407 operand_types[j].bitfield.disp16 = 0;
6408 break;
6409 }
6410 }
6411 }
6412
6413 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6414 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6415 continue;
6416
6417 /* We check register size if needed. */
6418 if (t->opcode_modifier.checkregsize)
6419 {
6420 check_register = (1 << t->operands) - 1;
6421 if (i.broadcast)
6422 check_register &= ~(1 << i.broadcast->operand);
6423 }
6424 else
6425 check_register = 0;
6426
6427 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6428 switch (t->operands)
6429 {
6430 case 1:
6431 if (!operand_type_match (overlap0, i.types[0]))
6432 continue;
6433 break;
6434 case 2:
6435 /* xchg %eax, %eax is a special case. It is an alias for nop
6436 only in 32bit mode and we can use opcode 0x90. In 64bit
6437 mode, we can't use 0x90 for xchg %eax, %eax since it should
6438 zero-extend %eax to %rax. */
6439 if (flag_code == CODE_64BIT
6440 && t->base_opcode == 0x90
6441 && i.types[0].bitfield.instance == Accum
6442 && i.types[0].bitfield.dword
6443 && i.types[1].bitfield.instance == Accum
6444 && i.types[1].bitfield.dword)
6445 continue;
6446 /* xrelease mov %eax, <disp> is another special case. It must not
6447 match the accumulator-only encoding of mov. */
6448 if (flag_code != CODE_64BIT
6449 && i.hle_prefix
6450 && t->base_opcode == 0xa0
6451 && i.types[0].bitfield.instance == Accum
6452 && (i.flags[1] & Operand_Mem))
6453 continue;
6454 /* Fall through. */
6455
6456 case 3:
6457 if (!(size_match & MATCH_STRAIGHT))
6458 goto check_reverse;
6459 /* Reverse direction of operands if swapping is possible in the first
6460 place (operands need to be symmetric) and
6461 - the load form is requested, and the template is a store form,
6462 - the store form is requested, and the template is a load form,
6463 - the non-default (swapped) form is requested. */
6464 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6465 if (t->opcode_modifier.d && i.reg_operands == i.operands
6466 && !operand_type_all_zero (&overlap1))
6467 switch (i.dir_encoding)
6468 {
6469 case dir_encoding_load:
6470 if (operand_type_check (operand_types[i.operands - 1], anymem)
6471 || t->opcode_modifier.regmem)
6472 goto check_reverse;
6473 break;
6474
6475 case dir_encoding_store:
6476 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6477 && !t->opcode_modifier.regmem)
6478 goto check_reverse;
6479 break;
6480
6481 case dir_encoding_swap:
6482 goto check_reverse;
6483
6484 case dir_encoding_default:
6485 break;
6486 }
6487 /* If we want store form, we skip the current load. */
6488 if ((i.dir_encoding == dir_encoding_store
6489 || i.dir_encoding == dir_encoding_swap)
6490 && i.mem_operands == 0
6491 && t->opcode_modifier.load)
6492 continue;
6493 /* Fall through. */
6494 case 4:
6495 case 5:
6496 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6497 if (!operand_type_match (overlap0, i.types[0])
6498 || !operand_type_match (overlap1, i.types[1])
6499 || ((check_register & 3) == 3
6500 && !operand_type_register_match (i.types[0],
6501 operand_types[0],
6502 i.types[1],
6503 operand_types[1])))
6504 {
6505 /* Check if other direction is valid ... */
6506 if (!t->opcode_modifier.d)
6507 continue;
6508
6509 check_reverse:
6510 if (!(size_match & MATCH_REVERSE))
6511 continue;
6512 /* Try reversing direction of operands. */
6513 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6514 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6515 if (!operand_type_match (overlap0, i.types[0])
6516 || !operand_type_match (overlap1, i.types[i.operands - 1])
6517 || (check_register
6518 && !operand_type_register_match (i.types[0],
6519 operand_types[i.operands - 1],
6520 i.types[i.operands - 1],
6521 operand_types[0])))
6522 {
6523 /* Does not match either direction. */
6524 continue;
6525 }
6526 /* found_reverse_match holds which of D or FloatR
6527 we've found. */
6528 if (!t->opcode_modifier.d)
6529 found_reverse_match = 0;
6530 else if (operand_types[0].bitfield.tbyte)
6531 found_reverse_match = Opcode_FloatD;
6532 else if (operand_types[0].bitfield.xmmword
6533 || operand_types[i.operands - 1].bitfield.xmmword
6534 || operand_types[0].bitfield.class == RegMMX
6535 || operand_types[i.operands - 1].bitfield.class == RegMMX
6536 || is_any_vex_encoding(t))
6537 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6539 else
6540 found_reverse_match = Opcode_D;
6541 if (t->opcode_modifier.floatr)
6542 found_reverse_match |= Opcode_FloatR;
6543 }
6544 else
6545 {
6546 /* Found a forward 2 operand match here. */
6547 switch (t->operands)
6548 {
6549 case 5:
6550 overlap4 = operand_type_and (i.types[4],
6551 operand_types[4]);
6552 /* Fall through. */
6553 case 4:
6554 overlap3 = operand_type_and (i.types[3],
6555 operand_types[3]);
6556 /* Fall through. */
6557 case 3:
6558 overlap2 = operand_type_and (i.types[2],
6559 operand_types[2]);
6560 break;
6561 }
6562
6563 switch (t->operands)
6564 {
6565 case 5:
6566 if (!operand_type_match (overlap4, i.types[4])
6567 || !operand_type_register_match (i.types[3],
6568 operand_types[3],
6569 i.types[4],
6570 operand_types[4]))
6571 continue;
6572 /* Fall through. */
6573 case 4:
6574 if (!operand_type_match (overlap3, i.types[3])
6575 || ((check_register & 0xa) == 0xa
6576 && !operand_type_register_match (i.types[1],
6577 operand_types[1],
6578 i.types[3],
6579 operand_types[3]))
6580 || ((check_register & 0xc) == 0xc
6581 && !operand_type_register_match (i.types[2],
6582 operand_types[2],
6583 i.types[3],
6584 operand_types[3])))
6585 continue;
6586 /* Fall through. */
6587 case 3:
6588 /* Here we make use of the fact that there are no
6589 reverse match 3 operand instructions. */
6590 if (!operand_type_match (overlap2, i.types[2])
6591 || ((check_register & 5) == 5
6592 && !operand_type_register_match (i.types[0],
6593 operand_types[0],
6594 i.types[2],
6595 operand_types[2]))
6596 || ((check_register & 6) == 6
6597 && !operand_type_register_match (i.types[1],
6598 operand_types[1],
6599 i.types[2],
6600 operand_types[2])))
6601 continue;
6602 break;
6603 }
6604 }
6605 /* Found either forward/reverse 2, 3 or 4 operand match here:
6606 slip through to break. */
6607 }
6608
6609 /* Check if vector operands are valid. */
6610 if (check_VecOperands (t))
6611 {
6612 specific_error = i.error;
6613 continue;
6614 }
6615
6616 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6617 if (VEX_check_encoding (t))
6618 {
6619 specific_error = i.error;
6620 continue;
6621 }
6622
6623 /* We've found a match; break out of loop. */
6624 break;
6625 }
6626
6627 if (t == current_templates->end)
6628 {
6629 /* We found no match. */
6630 const char *err_msg;
6631 switch (specific_error ? specific_error : i.error)
6632 {
6633 default:
6634 abort ();
6635 case operand_size_mismatch:
6636 err_msg = _("operand size mismatch");
6637 break;
6638 case operand_type_mismatch:
6639 err_msg = _("operand type mismatch");
6640 break;
6641 case register_type_mismatch:
6642 err_msg = _("register type mismatch");
6643 break;
6644 case number_of_operands_mismatch:
6645 err_msg = _("number of operands mismatch");
6646 break;
6647 case invalid_instruction_suffix:
6648 err_msg = _("invalid instruction suffix");
6649 break;
6650 case bad_imm4:
6651 err_msg = _("constant doesn't fit in 4 bits");
6652 break;
6653 case unsupported_with_intel_mnemonic:
6654 err_msg = _("unsupported with Intel mnemonic");
6655 break;
6656 case unsupported_syntax:
6657 err_msg = _("unsupported syntax");
6658 break;
6659 case unsupported:
6660 as_bad (_("unsupported instruction `%s'"),
6661 current_templates->start->name);
6662 return NULL;
6663 case invalid_sib_address:
6664 err_msg = _("invalid SIB address");
6665 break;
6666 case invalid_vsib_address:
6667 err_msg = _("invalid VSIB address");
6668 break;
6669 case invalid_vector_register_set:
6670 err_msg = _("mask, index, and destination registers must be distinct");
6671 break;
6672 case invalid_tmm_register_set:
6673 err_msg = _("all tmm registers must be distinct");
6674 break;
6675 case unsupported_vector_index_register:
6676 err_msg = _("unsupported vector index register");
6677 break;
6678 case unsupported_broadcast:
6679 err_msg = _("unsupported broadcast");
6680 break;
6681 case broadcast_needed:
6682 err_msg = _("broadcast is needed for operand of such type");
6683 break;
6684 case unsupported_masking:
6685 err_msg = _("unsupported masking");
6686 break;
6687 case mask_not_on_destination:
6688 err_msg = _("mask not on destination operand");
6689 break;
6690 case no_default_mask:
6691 err_msg = _("default mask isn't allowed");
6692 break;
6693 case unsupported_rc_sae:
6694 err_msg = _("unsupported static rounding/sae");
6695 break;
6696 case rc_sae_operand_not_last_imm:
6697 if (intel_syntax)
6698 err_msg = _("RC/SAE operand must precede immediate operands");
6699 else
6700 err_msg = _("RC/SAE operand must follow immediate operands");
6701 break;
6702 case invalid_register_operand:
6703 err_msg = _("invalid register operand");
6704 break;
6705 }
6706 as_bad (_("%s for `%s'"), err_msg,
6707 current_templates->start->name);
6708 return NULL;
6709 }
6710
6711 if (!quiet_warnings)
6712 {
6713 if (!intel_syntax
6714 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6715 as_warn (_("indirect %s without `*'"), t->name);
6716
6717 if (t->opcode_modifier.isprefix
6718 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6719 {
6720 /* Warn them that a data or address size prefix doesn't
6721 affect assembly of the next line of code. */
6722 as_warn (_("stand-alone `%s' prefix"), t->name);
6723 }
6724 }
6725
6726 /* Copy the template we found. */
6727 i.tm = *t;
6728
6729 if (addr_prefix_disp != -1)
6730 i.tm.operand_types[addr_prefix_disp]
6731 = operand_types[addr_prefix_disp];
6732
6733 if (found_reverse_match)
6734 {
6735 /* If we found a reverse match we must alter the opcode direction
6736 bit and clear/flip the regmem modifier one. found_reverse_match
6737 holds bits to change (different for int & float insns). */
6738
6739 i.tm.base_opcode ^= found_reverse_match;
6740
6741 i.tm.operand_types[0] = operand_types[i.operands - 1];
6742 i.tm.operand_types[i.operands - 1] = operand_types[0];
6743
6744 /* Certain SIMD insns have their load forms specified in the opcode
6745 table, and hence we need to _set_ RegMem instead of clearing it.
6746 We need to avoid setting the bit though on insns like KMOVW. */
6747 i.tm.opcode_modifier.regmem
6748 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6749 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6750 && !i.tm.opcode_modifier.regmem;
6751 }
6752
6753 return t;
6754 }
6755
6756 static int
6757 check_string (void)
6758 {
6759 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6760 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6761
6762 if (i.seg[op] != NULL && i.seg[op] != &es)
6763 {
6764 as_bad (_("`%s' operand %u must use `%ses' segment"),
6765 i.tm.name,
6766 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6767 register_prefix);
6768 return 0;
6769 }
6770
6771 /* There's only ever one segment override allowed per instruction.
6772 This instruction possibly has a legal segment override on the
6773 second operand, so copy the segment to where non-string
6774 instructions store it, allowing common code. */
6775 i.seg[op] = i.seg[1];
6776
6777 return 1;
6778 }
6779
6780 static int
6781 process_suffix (void)
6782 {
6783 bfd_boolean is_crc32 = FALSE;
6784
6785 /* If matched instruction specifies an explicit instruction mnemonic
6786 suffix, use it. */
6787 if (i.tm.opcode_modifier.size == SIZE16)
6788 i.suffix = WORD_MNEM_SUFFIX;
6789 else if (i.tm.opcode_modifier.size == SIZE32)
6790 i.suffix = LONG_MNEM_SUFFIX;
6791 else if (i.tm.opcode_modifier.size == SIZE64)
6792 i.suffix = QWORD_MNEM_SUFFIX;
6793 else if (i.reg_operands
6794 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6795 && !i.tm.opcode_modifier.addrprefixopreg)
6796 {
6797 unsigned int numop = i.operands;
6798 /* CRC32 */
6799 is_crc32 = (i.tm.base_opcode == 0xf38f0
6800 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2);
6801
6802 /* movsx/movzx want only their source operand considered here, for the
6803 ambiguity checking below. The suffix will be replaced afterwards
6804 to represent the destination (register). */
6805 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6806 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6807 --i.operands;
6808
6809 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6810 if (is_crc32 && i.tm.operand_types[1].bitfield.qword)
6811 i.rex |= REX_W;
6812
6813 /* If there's no instruction mnemonic suffix we try to invent one
6814 based on GPR operands. */
6815 if (!i.suffix)
6816 {
6817 /* We take i.suffix from the last register operand specified,
6818 Destination register type is more significant than source
6819 register type. crc32 in SSE4.2 prefers source register
6820 type. */
6821 unsigned int op = is_crc32 ? 1 : i.operands;
6822
6823 while (op--)
6824 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6825 || i.tm.operand_types[op].bitfield.instance == Accum)
6826 {
6827 if (i.types[op].bitfield.class != Reg)
6828 continue;
6829 if (i.types[op].bitfield.byte)
6830 i.suffix = BYTE_MNEM_SUFFIX;
6831 else if (i.types[op].bitfield.word)
6832 i.suffix = WORD_MNEM_SUFFIX;
6833 else if (i.types[op].bitfield.dword)
6834 i.suffix = LONG_MNEM_SUFFIX;
6835 else if (i.types[op].bitfield.qword)
6836 i.suffix = QWORD_MNEM_SUFFIX;
6837 else
6838 continue;
6839 break;
6840 }
6841
6842 /* As an exception, movsx/movzx silently default to a byte source
6843 in AT&T mode. */
6844 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6845 && !i.suffix && !intel_syntax)
6846 i.suffix = BYTE_MNEM_SUFFIX;
6847 }
6848 else if (i.suffix == BYTE_MNEM_SUFFIX)
6849 {
6850 if (intel_syntax
6851 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6852 && i.tm.opcode_modifier.no_bsuf)
6853 i.suffix = 0;
6854 else if (!check_byte_reg ())
6855 return 0;
6856 }
6857 else if (i.suffix == LONG_MNEM_SUFFIX)
6858 {
6859 if (intel_syntax
6860 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6861 && i.tm.opcode_modifier.no_lsuf
6862 && !i.tm.opcode_modifier.todword
6863 && !i.tm.opcode_modifier.toqword)
6864 i.suffix = 0;
6865 else if (!check_long_reg ())
6866 return 0;
6867 }
6868 else if (i.suffix == QWORD_MNEM_SUFFIX)
6869 {
6870 if (intel_syntax
6871 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6872 && i.tm.opcode_modifier.no_qsuf
6873 && !i.tm.opcode_modifier.todword
6874 && !i.tm.opcode_modifier.toqword)
6875 i.suffix = 0;
6876 else if (!check_qword_reg ())
6877 return 0;
6878 }
6879 else if (i.suffix == WORD_MNEM_SUFFIX)
6880 {
6881 if (intel_syntax
6882 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6883 && i.tm.opcode_modifier.no_wsuf)
6884 i.suffix = 0;
6885 else if (!check_word_reg ())
6886 return 0;
6887 }
6888 else if (intel_syntax
6889 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6890 /* Do nothing if the instruction is going to ignore the prefix. */
6891 ;
6892 else
6893 abort ();
6894
6895 /* Undo the movsx/movzx change done above. */
6896 i.operands = numop;
6897 }
6898 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6899 && !i.suffix)
6900 {
6901 i.suffix = stackop_size;
6902 if (stackop_size == LONG_MNEM_SUFFIX)
6903 {
6904 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6905 .code16gcc directive to support 16-bit mode with
6906 32-bit address. For IRET without a suffix, generate
6907 16-bit IRET (opcode 0xcf) to return from an interrupt
6908 handler. */
6909 if (i.tm.base_opcode == 0xcf)
6910 {
6911 i.suffix = WORD_MNEM_SUFFIX;
6912 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6913 }
6914 /* Warn about changed behavior for segment register push/pop. */
6915 else if ((i.tm.base_opcode | 1) == 0x07)
6916 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6917 i.tm.name);
6918 }
6919 }
6920 else if (!i.suffix
6921 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6922 || i.tm.opcode_modifier.jump == JUMP_BYTE
6923 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6924 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6925 && i.tm.extension_opcode <= 3)))
6926 {
6927 switch (flag_code)
6928 {
6929 case CODE_64BIT:
6930 if (!i.tm.opcode_modifier.no_qsuf)
6931 {
6932 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6933 || i.tm.opcode_modifier.no_lsuf)
6934 i.suffix = QWORD_MNEM_SUFFIX;
6935 break;
6936 }
6937 /* Fall through. */
6938 case CODE_32BIT:
6939 if (!i.tm.opcode_modifier.no_lsuf)
6940 i.suffix = LONG_MNEM_SUFFIX;
6941 break;
6942 case CODE_16BIT:
6943 if (!i.tm.opcode_modifier.no_wsuf)
6944 i.suffix = WORD_MNEM_SUFFIX;
6945 break;
6946 }
6947 }
6948
6949 if (!i.suffix
6950 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6951 /* Also cover lret/retf/iret in 64-bit mode. */
6952 || (flag_code == CODE_64BIT
6953 && !i.tm.opcode_modifier.no_lsuf
6954 && !i.tm.opcode_modifier.no_qsuf))
6955 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6956 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6957 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
6958 /* Accept FLDENV et al without suffix. */
6959 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6960 {
6961 unsigned int suffixes, evex = 0;
6962
6963 suffixes = !i.tm.opcode_modifier.no_bsuf;
6964 if (!i.tm.opcode_modifier.no_wsuf)
6965 suffixes |= 1 << 1;
6966 if (!i.tm.opcode_modifier.no_lsuf)
6967 suffixes |= 1 << 2;
6968 if (!i.tm.opcode_modifier.no_ldsuf)
6969 suffixes |= 1 << 3;
6970 if (!i.tm.opcode_modifier.no_ssuf)
6971 suffixes |= 1 << 4;
6972 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6973 suffixes |= 1 << 5;
6974
6975 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6976 also suitable for AT&T syntax mode, it was requested that this be
6977 restricted to just Intel syntax. */
6978 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6979 {
6980 unsigned int op;
6981
6982 for (op = 0; op < i.tm.operands; ++op)
6983 {
6984 if (is_evex_encoding (&i.tm)
6985 && !cpu_arch_flags.bitfield.cpuavx512vl)
6986 {
6987 if (i.tm.operand_types[op].bitfield.ymmword)
6988 i.tm.operand_types[op].bitfield.xmmword = 0;
6989 if (i.tm.operand_types[op].bitfield.zmmword)
6990 i.tm.operand_types[op].bitfield.ymmword = 0;
6991 if (!i.tm.opcode_modifier.evex
6992 || i.tm.opcode_modifier.evex == EVEXDYN)
6993 i.tm.opcode_modifier.evex = EVEX512;
6994 }
6995
6996 if (i.tm.operand_types[op].bitfield.xmmword
6997 + i.tm.operand_types[op].bitfield.ymmword
6998 + i.tm.operand_types[op].bitfield.zmmword < 2)
6999 continue;
7000
7001 /* Any properly sized operand disambiguates the insn. */
7002 if (i.types[op].bitfield.xmmword
7003 || i.types[op].bitfield.ymmword
7004 || i.types[op].bitfield.zmmword)
7005 {
7006 suffixes &= ~(7 << 6);
7007 evex = 0;
7008 break;
7009 }
7010
7011 if ((i.flags[op] & Operand_Mem)
7012 && i.tm.operand_types[op].bitfield.unspecified)
7013 {
7014 if (i.tm.operand_types[op].bitfield.xmmword)
7015 suffixes |= 1 << 6;
7016 if (i.tm.operand_types[op].bitfield.ymmword)
7017 suffixes |= 1 << 7;
7018 if (i.tm.operand_types[op].bitfield.zmmword)
7019 suffixes |= 1 << 8;
7020 if (is_evex_encoding (&i.tm))
7021 evex = EVEX512;
7022 }
7023 }
7024 }
7025
7026 /* Are multiple suffixes / operand sizes allowed? */
7027 if (suffixes & (suffixes - 1))
7028 {
7029 if (intel_syntax
7030 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
7031 || operand_check == check_error))
7032 {
7033 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
7034 return 0;
7035 }
7036 if (operand_check == check_error)
7037 {
7038 as_bad (_("no instruction mnemonic suffix given and "
7039 "no register operands; can't size `%s'"), i.tm.name);
7040 return 0;
7041 }
7042 if (operand_check == check_warning)
7043 as_warn (_("%s; using default for `%s'"),
7044 intel_syntax
7045 ? _("ambiguous operand size")
7046 : _("no instruction mnemonic suffix given and "
7047 "no register operands"),
7048 i.tm.name);
7049
7050 if (i.tm.opcode_modifier.floatmf)
7051 i.suffix = SHORT_MNEM_SUFFIX;
7052 else if ((i.tm.base_opcode | 8) == 0xfbe
7053 || (i.tm.base_opcode == 0x63
7054 && i.tm.cpu_flags.bitfield.cpu64))
7055 /* handled below */;
7056 else if (evex)
7057 i.tm.opcode_modifier.evex = evex;
7058 else if (flag_code == CODE_16BIT)
7059 i.suffix = WORD_MNEM_SUFFIX;
7060 else if (!i.tm.opcode_modifier.no_lsuf)
7061 i.suffix = LONG_MNEM_SUFFIX;
7062 else
7063 i.suffix = QWORD_MNEM_SUFFIX;
7064 }
7065 }
7066
7067 if ((i.tm.base_opcode | 8) == 0xfbe
7068 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
7069 {
7070 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7071 In AT&T syntax, if there is no suffix (warned about above), the default
7072 will be byte extension. */
7073 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7074 i.tm.base_opcode |= 1;
7075
7076 /* For further processing, the suffix should represent the destination
7077 (register). This is already the case when one was used with
7078 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7079 no suffix to begin with. */
7080 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7081 {
7082 if (i.types[1].bitfield.word)
7083 i.suffix = WORD_MNEM_SUFFIX;
7084 else if (i.types[1].bitfield.qword)
7085 i.suffix = QWORD_MNEM_SUFFIX;
7086 else
7087 i.suffix = LONG_MNEM_SUFFIX;
7088
7089 i.tm.opcode_modifier.w = 0;
7090 }
7091 }
7092
7093 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7094 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7095 != (i.tm.operand_types[1].bitfield.class == Reg);
7096
7097 /* Change the opcode based on the operand size given by i.suffix. */
7098 switch (i.suffix)
7099 {
7100 /* Size floating point instruction. */
7101 case LONG_MNEM_SUFFIX:
7102 if (i.tm.opcode_modifier.floatmf)
7103 {
7104 i.tm.base_opcode ^= 4;
7105 break;
7106 }
7107 /* fall through */
7108 case WORD_MNEM_SUFFIX:
7109 case QWORD_MNEM_SUFFIX:
7110 /* It's not a byte, select word/dword operation. */
7111 if (i.tm.opcode_modifier.w)
7112 {
7113 if (i.short_form)
7114 i.tm.base_opcode |= 8;
7115 else
7116 i.tm.base_opcode |= 1;
7117 }
7118 /* fall through */
7119 case SHORT_MNEM_SUFFIX:
7120 /* Now select between word & dword operations via the operand
7121 size prefix, except for instructions that will ignore this
7122 prefix anyway. */
7123 if (i.suffix != QWORD_MNEM_SUFFIX
7124 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7125 && !i.tm.opcode_modifier.floatmf
7126 && !is_any_vex_encoding (&i.tm)
7127 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7128 || (flag_code == CODE_64BIT
7129 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7130 {
7131 unsigned int prefix = DATA_PREFIX_OPCODE;
7132
7133 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7134 prefix = ADDR_PREFIX_OPCODE;
7135
7136 if (!add_prefix (prefix))
7137 return 0;
7138 }
7139
7140 /* Set mode64 for an operand. */
7141 if (i.suffix == QWORD_MNEM_SUFFIX
7142 && flag_code == CODE_64BIT
7143 && !i.tm.opcode_modifier.norex64
7144 && !i.tm.opcode_modifier.vexw
7145 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7146 need rex64. */
7147 && ! (i.operands == 2
7148 && i.tm.base_opcode == 0x90
7149 && i.tm.extension_opcode == None
7150 && i.types[0].bitfield.instance == Accum
7151 && i.types[0].bitfield.qword
7152 && i.types[1].bitfield.instance == Accum
7153 && i.types[1].bitfield.qword))
7154 i.rex |= REX_W;
7155
7156 break;
7157
7158 case 0:
7159 /* Select word/dword/qword operation with explict data sizing prefix
7160 when there are no suitable register operands. */
7161 if (i.tm.opcode_modifier.w
7162 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7163 && (!i.reg_operands
7164 || (i.reg_operands == 1
7165 /* ShiftCount */
7166 && (i.tm.operand_types[0].bitfield.instance == RegC
7167 /* InOutPortReg */
7168 || i.tm.operand_types[0].bitfield.instance == RegD
7169 || i.tm.operand_types[1].bitfield.instance == RegD
7170 /* CRC32 */
7171 || is_crc32))))
7172 i.tm.base_opcode |= 1;
7173 break;
7174 }
7175
7176 if (i.tm.opcode_modifier.addrprefixopreg)
7177 {
7178 gas_assert (!i.suffix);
7179 gas_assert (i.reg_operands);
7180
7181 if (i.tm.operand_types[0].bitfield.instance == Accum
7182 || i.operands == 1)
7183 {
7184 /* The address size override prefix changes the size of the
7185 first operand. */
7186 if (flag_code == CODE_64BIT
7187 && i.op[0].regs->reg_type.bitfield.word)
7188 {
7189 as_bad (_("16-bit addressing unavailable for `%s'"),
7190 i.tm.name);
7191 return 0;
7192 }
7193
7194 if ((flag_code == CODE_32BIT
7195 ? i.op[0].regs->reg_type.bitfield.word
7196 : i.op[0].regs->reg_type.bitfield.dword)
7197 && !add_prefix (ADDR_PREFIX_OPCODE))
7198 return 0;
7199 }
7200 else
7201 {
7202 /* Check invalid register operand when the address size override
7203 prefix changes the size of register operands. */
7204 unsigned int op;
7205 enum { need_word, need_dword, need_qword } need;
7206
7207 /* Check the register operand for the address size prefix if
7208 the memory operand has no real registers, like symbol, DISP
7209 or symbol(%rip). */
7210 if (i.mem_operands == 1
7211 && i.reg_operands == 1
7212 && i.operands == 2
7213 && i.types[1].bitfield.class == Reg
7214 && (flag_code == CODE_32BIT
7215 ? i.op[1].regs->reg_type.bitfield.word
7216 : i.op[1].regs->reg_type.bitfield.dword)
7217 && ((i.base_reg == NULL && i.index_reg == NULL)
7218 || (i.base_reg
7219 && i.base_reg->reg_num == RegIP
7220 && i.base_reg->reg_type.bitfield.qword))
7221 && !add_prefix (ADDR_PREFIX_OPCODE))
7222 return 0;
7223
7224 if (flag_code == CODE_32BIT)
7225 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7226 else if (i.prefix[ADDR_PREFIX])
7227 need = need_dword;
7228 else
7229 need = flag_code == CODE_64BIT ? need_qword : need_word;
7230
7231 for (op = 0; op < i.operands; op++)
7232 {
7233 if (i.types[op].bitfield.class != Reg)
7234 continue;
7235
7236 switch (need)
7237 {
7238 case need_word:
7239 if (i.op[op].regs->reg_type.bitfield.word)
7240 continue;
7241 break;
7242 case need_dword:
7243 if (i.op[op].regs->reg_type.bitfield.dword)
7244 continue;
7245 break;
7246 case need_qword:
7247 if (i.op[op].regs->reg_type.bitfield.qword)
7248 continue;
7249 break;
7250 }
7251
7252 as_bad (_("invalid register operand size for `%s'"),
7253 i.tm.name);
7254 return 0;
7255 }
7256 }
7257 }
7258
7259 return 1;
7260 }
7261
7262 static int
7263 check_byte_reg (void)
7264 {
7265 int op;
7266
7267 for (op = i.operands; --op >= 0;)
7268 {
7269 /* Skip non-register operands. */
7270 if (i.types[op].bitfield.class != Reg)
7271 continue;
7272
7273 /* If this is an eight bit register, it's OK. If it's the 16 or
7274 32 bit version of an eight bit register, we will just use the
7275 low portion, and that's OK too. */
7276 if (i.types[op].bitfield.byte)
7277 continue;
7278
7279 /* I/O port address operands are OK too. */
7280 if (i.tm.operand_types[op].bitfield.instance == RegD
7281 && i.tm.operand_types[op].bitfield.word)
7282 continue;
7283
7284 /* crc32 only wants its source operand checked here. */
7285 if (i.tm.base_opcode == 0xf38f0
7286 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2
7287 && op != 0)
7288 continue;
7289
7290 /* Any other register is bad. */
7291 as_bad (_("`%s%s' not allowed with `%s%c'"),
7292 register_prefix, i.op[op].regs->reg_name,
7293 i.tm.name, i.suffix);
7294 return 0;
7295 }
7296 return 1;
7297 }
7298
7299 static int
7300 check_long_reg (void)
7301 {
7302 int op;
7303
7304 for (op = i.operands; --op >= 0;)
7305 /* Skip non-register operands. */
7306 if (i.types[op].bitfield.class != Reg)
7307 continue;
7308 /* Reject eight bit registers, except where the template requires
7309 them. (eg. movzb) */
7310 else if (i.types[op].bitfield.byte
7311 && (i.tm.operand_types[op].bitfield.class == Reg
7312 || i.tm.operand_types[op].bitfield.instance == Accum)
7313 && (i.tm.operand_types[op].bitfield.word
7314 || i.tm.operand_types[op].bitfield.dword))
7315 {
7316 as_bad (_("`%s%s' not allowed with `%s%c'"),
7317 register_prefix,
7318 i.op[op].regs->reg_name,
7319 i.tm.name,
7320 i.suffix);
7321 return 0;
7322 }
7323 /* Error if the e prefix on a general reg is missing. */
7324 else if (i.types[op].bitfield.word
7325 && (i.tm.operand_types[op].bitfield.class == Reg
7326 || i.tm.operand_types[op].bitfield.instance == Accum)
7327 && i.tm.operand_types[op].bitfield.dword)
7328 {
7329 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7330 register_prefix, i.op[op].regs->reg_name,
7331 i.suffix);
7332 return 0;
7333 }
7334 /* Warn if the r prefix on a general reg is present. */
7335 else if (i.types[op].bitfield.qword
7336 && (i.tm.operand_types[op].bitfield.class == Reg
7337 || i.tm.operand_types[op].bitfield.instance == Accum)
7338 && i.tm.operand_types[op].bitfield.dword)
7339 {
7340 if (intel_syntax
7341 && i.tm.opcode_modifier.toqword
7342 && i.types[0].bitfield.class != RegSIMD)
7343 {
7344 /* Convert to QWORD. We want REX byte. */
7345 i.suffix = QWORD_MNEM_SUFFIX;
7346 }
7347 else
7348 {
7349 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7350 register_prefix, i.op[op].regs->reg_name,
7351 i.suffix);
7352 return 0;
7353 }
7354 }
7355 return 1;
7356 }
7357
7358 static int
7359 check_qword_reg (void)
7360 {
7361 int op;
7362
7363 for (op = i.operands; --op >= 0; )
7364 /* Skip non-register operands. */
7365 if (i.types[op].bitfield.class != Reg)
7366 continue;
7367 /* Reject eight bit registers, except where the template requires
7368 them. (eg. movzb) */
7369 else if (i.types[op].bitfield.byte
7370 && (i.tm.operand_types[op].bitfield.class == Reg
7371 || i.tm.operand_types[op].bitfield.instance == Accum)
7372 && (i.tm.operand_types[op].bitfield.word
7373 || i.tm.operand_types[op].bitfield.dword))
7374 {
7375 as_bad (_("`%s%s' not allowed with `%s%c'"),
7376 register_prefix,
7377 i.op[op].regs->reg_name,
7378 i.tm.name,
7379 i.suffix);
7380 return 0;
7381 }
7382 /* Warn if the r prefix on a general reg is missing. */
7383 else if ((i.types[op].bitfield.word
7384 || i.types[op].bitfield.dword)
7385 && (i.tm.operand_types[op].bitfield.class == Reg
7386 || i.tm.operand_types[op].bitfield.instance == Accum)
7387 && i.tm.operand_types[op].bitfield.qword)
7388 {
7389 /* Prohibit these changes in the 64bit mode, since the
7390 lowering is more complicated. */
7391 if (intel_syntax
7392 && i.tm.opcode_modifier.todword
7393 && i.types[0].bitfield.class != RegSIMD)
7394 {
7395 /* Convert to DWORD. We don't want REX byte. */
7396 i.suffix = LONG_MNEM_SUFFIX;
7397 }
7398 else
7399 {
7400 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7401 register_prefix, i.op[op].regs->reg_name,
7402 i.suffix);
7403 return 0;
7404 }
7405 }
7406 return 1;
7407 }
7408
7409 static int
7410 check_word_reg (void)
7411 {
7412 int op;
7413 for (op = i.operands; --op >= 0;)
7414 /* Skip non-register operands. */
7415 if (i.types[op].bitfield.class != Reg)
7416 continue;
7417 /* Reject eight bit registers, except where the template requires
7418 them. (eg. movzb) */
7419 else if (i.types[op].bitfield.byte
7420 && (i.tm.operand_types[op].bitfield.class == Reg
7421 || i.tm.operand_types[op].bitfield.instance == Accum)
7422 && (i.tm.operand_types[op].bitfield.word
7423 || i.tm.operand_types[op].bitfield.dword))
7424 {
7425 as_bad (_("`%s%s' not allowed with `%s%c'"),
7426 register_prefix,
7427 i.op[op].regs->reg_name,
7428 i.tm.name,
7429 i.suffix);
7430 return 0;
7431 }
7432 /* Error if the e or r prefix on a general reg is present. */
7433 else if ((i.types[op].bitfield.dword
7434 || i.types[op].bitfield.qword)
7435 && (i.tm.operand_types[op].bitfield.class == Reg
7436 || i.tm.operand_types[op].bitfield.instance == Accum)
7437 && i.tm.operand_types[op].bitfield.word)
7438 {
7439 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7440 register_prefix, i.op[op].regs->reg_name,
7441 i.suffix);
7442 return 0;
7443 }
7444 return 1;
7445 }
7446
7447 static int
7448 update_imm (unsigned int j)
7449 {
7450 i386_operand_type overlap = i.types[j];
7451 if ((overlap.bitfield.imm8
7452 || overlap.bitfield.imm8s
7453 || overlap.bitfield.imm16
7454 || overlap.bitfield.imm32
7455 || overlap.bitfield.imm32s
7456 || overlap.bitfield.imm64)
7457 && !operand_type_equal (&overlap, &imm8)
7458 && !operand_type_equal (&overlap, &imm8s)
7459 && !operand_type_equal (&overlap, &imm16)
7460 && !operand_type_equal (&overlap, &imm32)
7461 && !operand_type_equal (&overlap, &imm32s)
7462 && !operand_type_equal (&overlap, &imm64))
7463 {
7464 if (i.suffix)
7465 {
7466 i386_operand_type temp;
7467
7468 operand_type_set (&temp, 0);
7469 if (i.suffix == BYTE_MNEM_SUFFIX)
7470 {
7471 temp.bitfield.imm8 = overlap.bitfield.imm8;
7472 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7473 }
7474 else if (i.suffix == WORD_MNEM_SUFFIX)
7475 temp.bitfield.imm16 = overlap.bitfield.imm16;
7476 else if (i.suffix == QWORD_MNEM_SUFFIX)
7477 {
7478 temp.bitfield.imm64 = overlap.bitfield.imm64;
7479 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7480 }
7481 else
7482 temp.bitfield.imm32 = overlap.bitfield.imm32;
7483 overlap = temp;
7484 }
7485 else if (operand_type_equal (&overlap, &imm16_32_32s)
7486 || operand_type_equal (&overlap, &imm16_32)
7487 || operand_type_equal (&overlap, &imm16_32s))
7488 {
7489 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7490 overlap = imm16;
7491 else
7492 overlap = imm32s;
7493 }
7494 else if (i.prefix[REX_PREFIX] & REX_W)
7495 overlap = operand_type_and (overlap, imm32s);
7496 else if (i.prefix[DATA_PREFIX])
7497 overlap = operand_type_and (overlap,
7498 flag_code != CODE_16BIT ? imm16 : imm32);
7499 if (!operand_type_equal (&overlap, &imm8)
7500 && !operand_type_equal (&overlap, &imm8s)
7501 && !operand_type_equal (&overlap, &imm16)
7502 && !operand_type_equal (&overlap, &imm32)
7503 && !operand_type_equal (&overlap, &imm32s)
7504 && !operand_type_equal (&overlap, &imm64))
7505 {
7506 as_bad (_("no instruction mnemonic suffix given; "
7507 "can't determine immediate size"));
7508 return 0;
7509 }
7510 }
7511 i.types[j] = overlap;
7512
7513 return 1;
7514 }
7515
7516 static int
7517 finalize_imm (void)
7518 {
7519 unsigned int j, n;
7520
7521 /* Update the first 2 immediate operands. */
7522 n = i.operands > 2 ? 2 : i.operands;
7523 if (n)
7524 {
7525 for (j = 0; j < n; j++)
7526 if (update_imm (j) == 0)
7527 return 0;
7528
7529 /* The 3rd operand can't be immediate operand. */
7530 gas_assert (operand_type_check (i.types[2], imm) == 0);
7531 }
7532
7533 return 1;
7534 }
7535
7536 static int
7537 process_operands (void)
7538 {
7539 /* Default segment register this instruction will use for memory
7540 accesses. 0 means unknown. This is only for optimizing out
7541 unnecessary segment overrides. */
7542 const seg_entry *default_seg = 0;
7543
7544 if (i.tm.opcode_modifier.sse2avx)
7545 {
7546 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7547 need converting. */
7548 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7549 i.prefix[REX_PREFIX] = 0;
7550 i.rex_encoding = 0;
7551 }
7552 /* ImmExt should be processed after SSE2AVX. */
7553 else if (i.tm.opcode_modifier.immext)
7554 process_immext ();
7555
7556 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7557 {
7558 unsigned int dupl = i.operands;
7559 unsigned int dest = dupl - 1;
7560 unsigned int j;
7561
7562 /* The destination must be an xmm register. */
7563 gas_assert (i.reg_operands
7564 && MAX_OPERANDS > dupl
7565 && operand_type_equal (&i.types[dest], &regxmm));
7566
7567 if (i.tm.operand_types[0].bitfield.instance == Accum
7568 && i.tm.operand_types[0].bitfield.xmmword)
7569 {
7570 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7571 {
7572 /* Keep xmm0 for instructions with VEX prefix and 3
7573 sources. */
7574 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7575 i.tm.operand_types[0].bitfield.class = RegSIMD;
7576 goto duplicate;
7577 }
7578 else
7579 {
7580 /* We remove the first xmm0 and keep the number of
7581 operands unchanged, which in fact duplicates the
7582 destination. */
7583 for (j = 1; j < i.operands; j++)
7584 {
7585 i.op[j - 1] = i.op[j];
7586 i.types[j - 1] = i.types[j];
7587 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7588 i.flags[j - 1] = i.flags[j];
7589 }
7590 }
7591 }
7592 else if (i.tm.opcode_modifier.implicit1stxmm0)
7593 {
7594 gas_assert ((MAX_OPERANDS - 1) > dupl
7595 && (i.tm.opcode_modifier.vexsources
7596 == VEX3SOURCES));
7597
7598 /* Add the implicit xmm0 for instructions with VEX prefix
7599 and 3 sources. */
7600 for (j = i.operands; j > 0; j--)
7601 {
7602 i.op[j] = i.op[j - 1];
7603 i.types[j] = i.types[j - 1];
7604 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7605 i.flags[j] = i.flags[j - 1];
7606 }
7607 i.op[0].regs
7608 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7609 i.types[0] = regxmm;
7610 i.tm.operand_types[0] = regxmm;
7611
7612 i.operands += 2;
7613 i.reg_operands += 2;
7614 i.tm.operands += 2;
7615
7616 dupl++;
7617 dest++;
7618 i.op[dupl] = i.op[dest];
7619 i.types[dupl] = i.types[dest];
7620 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7621 i.flags[dupl] = i.flags[dest];
7622 }
7623 else
7624 {
7625 duplicate:
7626 i.operands++;
7627 i.reg_operands++;
7628 i.tm.operands++;
7629
7630 i.op[dupl] = i.op[dest];
7631 i.types[dupl] = i.types[dest];
7632 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7633 i.flags[dupl] = i.flags[dest];
7634 }
7635
7636 if (i.tm.opcode_modifier.immext)
7637 process_immext ();
7638 }
7639 else if (i.tm.operand_types[0].bitfield.instance == Accum
7640 && i.tm.operand_types[0].bitfield.xmmword)
7641 {
7642 unsigned int j;
7643
7644 for (j = 1; j < i.operands; j++)
7645 {
7646 i.op[j - 1] = i.op[j];
7647 i.types[j - 1] = i.types[j];
7648
7649 /* We need to adjust fields in i.tm since they are used by
7650 build_modrm_byte. */
7651 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7652
7653 i.flags[j - 1] = i.flags[j];
7654 }
7655
7656 i.operands--;
7657 i.reg_operands--;
7658 i.tm.operands--;
7659 }
7660 else if (i.tm.opcode_modifier.implicitquadgroup)
7661 {
7662 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7663
7664 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7665 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7666 regnum = register_number (i.op[1].regs);
7667 first_reg_in_group = regnum & ~3;
7668 last_reg_in_group = first_reg_in_group + 3;
7669 if (regnum != first_reg_in_group)
7670 as_warn (_("source register `%s%s' implicitly denotes"
7671 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7672 register_prefix, i.op[1].regs->reg_name,
7673 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7674 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7675 i.tm.name);
7676 }
7677 else if (i.tm.opcode_modifier.regkludge)
7678 {
7679 /* The imul $imm, %reg instruction is converted into
7680 imul $imm, %reg, %reg, and the clr %reg instruction
7681 is converted into xor %reg, %reg. */
7682
7683 unsigned int first_reg_op;
7684
7685 if (operand_type_check (i.types[0], reg))
7686 first_reg_op = 0;
7687 else
7688 first_reg_op = 1;
7689 /* Pretend we saw the extra register operand. */
7690 gas_assert (i.reg_operands == 1
7691 && i.op[first_reg_op + 1].regs == 0);
7692 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7693 i.types[first_reg_op + 1] = i.types[first_reg_op];
7694 i.operands++;
7695 i.reg_operands++;
7696 }
7697
7698 if (i.tm.opcode_modifier.modrm)
7699 {
7700 /* The opcode is completed (modulo i.tm.extension_opcode which
7701 must be put into the modrm byte). Now, we make the modrm and
7702 index base bytes based on all the info we've collected. */
7703
7704 default_seg = build_modrm_byte ();
7705 }
7706 else if (i.types[0].bitfield.class == SReg)
7707 {
7708 if (flag_code != CODE_64BIT
7709 ? i.tm.base_opcode == POP_SEG_SHORT
7710 && i.op[0].regs->reg_num == 1
7711 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7712 && i.op[0].regs->reg_num < 4)
7713 {
7714 as_bad (_("you can't `%s %s%s'"),
7715 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7716 return 0;
7717 }
7718 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7719 {
7720 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7721 i.tm.opcode_length = 2;
7722 }
7723 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7724 }
7725 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7726 {
7727 default_seg = &ds;
7728 }
7729 else if (i.tm.opcode_modifier.isstring)
7730 {
7731 /* For the string instructions that allow a segment override
7732 on one of their operands, the default segment is ds. */
7733 default_seg = &ds;
7734 }
7735 else if (i.short_form)
7736 {
7737 /* The register or float register operand is in operand
7738 0 or 1. */
7739 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7740
7741 /* Register goes in low 3 bits of opcode. */
7742 i.tm.base_opcode |= i.op[op].regs->reg_num;
7743 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7744 i.rex |= REX_B;
7745 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7746 {
7747 /* Warn about some common errors, but press on regardless.
7748 The first case can be generated by gcc (<= 2.8.1). */
7749 if (i.operands == 2)
7750 {
7751 /* Reversed arguments on faddp, fsubp, etc. */
7752 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7753 register_prefix, i.op[!intel_syntax].regs->reg_name,
7754 register_prefix, i.op[intel_syntax].regs->reg_name);
7755 }
7756 else
7757 {
7758 /* Extraneous `l' suffix on fp insn. */
7759 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7760 register_prefix, i.op[0].regs->reg_name);
7761 }
7762 }
7763 }
7764
7765 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7766 && i.tm.base_opcode == 0x8d /* lea */
7767 && !is_any_vex_encoding(&i.tm))
7768 {
7769 if (!quiet_warnings)
7770 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7771 if (optimize)
7772 {
7773 i.seg[0] = NULL;
7774 i.prefix[SEG_PREFIX] = 0;
7775 }
7776 }
7777
7778 /* If a segment was explicitly specified, and the specified segment
7779 is neither the default nor the one already recorded from a prefix,
7780 use an opcode prefix to select it. If we never figured out what
7781 the default segment is, then default_seg will be zero at this
7782 point, and the specified segment prefix will always be used. */
7783 if (i.seg[0]
7784 && i.seg[0] != default_seg
7785 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7786 {
7787 if (!add_prefix (i.seg[0]->seg_prefix))
7788 return 0;
7789 }
7790 return 1;
7791 }
7792
7793 static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7794 bfd_boolean do_sse2avx)
7795 {
7796 if (r->reg_flags & RegRex)
7797 {
7798 if (i.rex & rex_bit)
7799 as_bad (_("same type of prefix used twice"));
7800 i.rex |= rex_bit;
7801 }
7802 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7803 {
7804 gas_assert (i.vex.register_specifier == r);
7805 i.vex.register_specifier += 8;
7806 }
7807
7808 if (r->reg_flags & RegVRex)
7809 i.vrex |= rex_bit;
7810 }
7811
7812 static const seg_entry *
7813 build_modrm_byte (void)
7814 {
7815 const seg_entry *default_seg = 0;
7816 unsigned int source, dest;
7817 int vex_3_sources;
7818
7819 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7820 if (vex_3_sources)
7821 {
7822 unsigned int nds, reg_slot;
7823 expressionS *exp;
7824
7825 dest = i.operands - 1;
7826 nds = dest - 1;
7827
7828 /* There are 2 kinds of instructions:
7829 1. 5 operands: 4 register operands or 3 register operands
7830 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7831 VexW0 or VexW1. The destination must be either XMM, YMM or
7832 ZMM register.
7833 2. 4 operands: 4 register operands or 3 register operands
7834 plus 1 memory operand, with VexXDS. */
7835 gas_assert ((i.reg_operands == 4
7836 || (i.reg_operands == 3 && i.mem_operands == 1))
7837 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7838 && i.tm.opcode_modifier.vexw
7839 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7840
7841 /* If VexW1 is set, the first non-immediate operand is the source and
7842 the second non-immediate one is encoded in the immediate operand. */
7843 if (i.tm.opcode_modifier.vexw == VEXW1)
7844 {
7845 source = i.imm_operands;
7846 reg_slot = i.imm_operands + 1;
7847 }
7848 else
7849 {
7850 source = i.imm_operands + 1;
7851 reg_slot = i.imm_operands;
7852 }
7853
7854 if (i.imm_operands == 0)
7855 {
7856 /* When there is no immediate operand, generate an 8bit
7857 immediate operand to encode the first operand. */
7858 exp = &im_expressions[i.imm_operands++];
7859 i.op[i.operands].imms = exp;
7860 i.types[i.operands] = imm8;
7861 i.operands++;
7862
7863 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7864 exp->X_op = O_constant;
7865 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7866 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7867 }
7868 else
7869 {
7870 gas_assert (i.imm_operands == 1);
7871 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7872 gas_assert (!i.tm.opcode_modifier.immext);
7873
7874 /* Turn on Imm8 again so that output_imm will generate it. */
7875 i.types[0].bitfield.imm8 = 1;
7876
7877 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7878 i.op[0].imms->X_add_number
7879 |= register_number (i.op[reg_slot].regs) << 4;
7880 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7881 }
7882
7883 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7884 i.vex.register_specifier = i.op[nds].regs;
7885 }
7886 else
7887 source = dest = 0;
7888
7889 /* i.reg_operands MUST be the number of real register operands;
7890 implicit registers do not count. If there are 3 register
7891 operands, it must be a instruction with VexNDS. For a
7892 instruction with VexNDD, the destination register is encoded
7893 in VEX prefix. If there are 4 register operands, it must be
7894 a instruction with VEX prefix and 3 sources. */
7895 if (i.mem_operands == 0
7896 && ((i.reg_operands == 2
7897 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7898 || (i.reg_operands == 3
7899 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7900 || (i.reg_operands == 4 && vex_3_sources)))
7901 {
7902 switch (i.operands)
7903 {
7904 case 2:
7905 source = 0;
7906 break;
7907 case 3:
7908 /* When there are 3 operands, one of them may be immediate,
7909 which may be the first or the last operand. Otherwise,
7910 the first operand must be shift count register (cl) or it
7911 is an instruction with VexNDS. */
7912 gas_assert (i.imm_operands == 1
7913 || (i.imm_operands == 0
7914 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7915 || (i.types[0].bitfield.instance == RegC
7916 && i.types[0].bitfield.byte))));
7917 if (operand_type_check (i.types[0], imm)
7918 || (i.types[0].bitfield.instance == RegC
7919 && i.types[0].bitfield.byte))
7920 source = 1;
7921 else
7922 source = 0;
7923 break;
7924 case 4:
7925 /* When there are 4 operands, the first two must be 8bit
7926 immediate operands. The source operand will be the 3rd
7927 one.
7928
7929 For instructions with VexNDS, if the first operand
7930 an imm8, the source operand is the 2nd one. If the last
7931 operand is imm8, the source operand is the first one. */
7932 gas_assert ((i.imm_operands == 2
7933 && i.types[0].bitfield.imm8
7934 && i.types[1].bitfield.imm8)
7935 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7936 && i.imm_operands == 1
7937 && (i.types[0].bitfield.imm8
7938 || i.types[i.operands - 1].bitfield.imm8
7939 || i.rounding)));
7940 if (i.imm_operands == 2)
7941 source = 2;
7942 else
7943 {
7944 if (i.types[0].bitfield.imm8)
7945 source = 1;
7946 else
7947 source = 0;
7948 }
7949 break;
7950 case 5:
7951 if (is_evex_encoding (&i.tm))
7952 {
7953 /* For EVEX instructions, when there are 5 operands, the
7954 first one must be immediate operand. If the second one
7955 is immediate operand, the source operand is the 3th
7956 one. If the last one is immediate operand, the source
7957 operand is the 2nd one. */
7958 gas_assert (i.imm_operands == 2
7959 && i.tm.opcode_modifier.sae
7960 && operand_type_check (i.types[0], imm));
7961 if (operand_type_check (i.types[1], imm))
7962 source = 2;
7963 else if (operand_type_check (i.types[4], imm))
7964 source = 1;
7965 else
7966 abort ();
7967 }
7968 break;
7969 default:
7970 abort ();
7971 }
7972
7973 if (!vex_3_sources)
7974 {
7975 dest = source + 1;
7976
7977 /* RC/SAE operand could be between DEST and SRC. That happens
7978 when one operand is GPR and the other one is XMM/YMM/ZMM
7979 register. */
7980 if (i.rounding && i.rounding->operand == (int) dest)
7981 dest++;
7982
7983 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7984 {
7985 /* For instructions with VexNDS, the register-only source
7986 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7987 register. It is encoded in VEX prefix. */
7988
7989 i386_operand_type op;
7990 unsigned int vvvv;
7991
7992 /* Swap two source operands if needed. */
7993 if (i.tm.opcode_modifier.swapsources)
7994 {
7995 vvvv = source;
7996 source = dest;
7997 }
7998 else
7999 vvvv = dest;
8000
8001 op = i.tm.operand_types[vvvv];
8002 if ((dest + 1) >= i.operands
8003 || ((op.bitfield.class != Reg
8004 || (!op.bitfield.dword && !op.bitfield.qword))
8005 && op.bitfield.class != RegSIMD
8006 && !operand_type_equal (&op, &regmask)))
8007 abort ();
8008 i.vex.register_specifier = i.op[vvvv].regs;
8009 dest++;
8010 }
8011 }
8012
8013 i.rm.mode = 3;
8014 /* One of the register operands will be encoded in the i.rm.reg
8015 field, the other in the combined i.rm.mode and i.rm.regmem
8016 fields. If no form of this instruction supports a memory
8017 destination operand, then we assume the source operand may
8018 sometimes be a memory operand and so we need to store the
8019 destination in the i.rm.reg field. */
8020 if (!i.tm.opcode_modifier.regmem
8021 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
8022 {
8023 i.rm.reg = i.op[dest].regs->reg_num;
8024 i.rm.regmem = i.op[source].regs->reg_num;
8025 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
8026 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
8027 }
8028 else
8029 {
8030 i.rm.reg = i.op[source].regs->reg_num;
8031 i.rm.regmem = i.op[dest].regs->reg_num;
8032 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
8033 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
8034 }
8035 if (flag_code != CODE_64BIT && (i.rex & REX_R))
8036 {
8037 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
8038 abort ();
8039 i.rex &= ~REX_R;
8040 add_prefix (LOCK_PREFIX_OPCODE);
8041 }
8042 }
8043 else
8044 { /* If it's not 2 reg operands... */
8045 unsigned int mem;
8046
8047 if (i.mem_operands)
8048 {
8049 unsigned int fake_zero_displacement = 0;
8050 unsigned int op;
8051
8052 for (op = 0; op < i.operands; op++)
8053 if (i.flags[op] & Operand_Mem)
8054 break;
8055 gas_assert (op < i.operands);
8056
8057 if (i.tm.opcode_modifier.sib)
8058 {
8059 /* The index register of VSIB shouldn't be RegIZ. */
8060 if (i.tm.opcode_modifier.sib != SIBMEM
8061 && i.index_reg->reg_num == RegIZ)
8062 abort ();
8063
8064 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8065 if (!i.base_reg)
8066 {
8067 i.sib.base = NO_BASE_REGISTER;
8068 i.sib.scale = i.log2_scale_factor;
8069 i.types[op].bitfield.disp8 = 0;
8070 i.types[op].bitfield.disp16 = 0;
8071 i.types[op].bitfield.disp64 = 0;
8072 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8073 {
8074 /* Must be 32 bit */
8075 i.types[op].bitfield.disp32 = 1;
8076 i.types[op].bitfield.disp32s = 0;
8077 }
8078 else
8079 {
8080 i.types[op].bitfield.disp32 = 0;
8081 i.types[op].bitfield.disp32s = 1;
8082 }
8083 }
8084
8085 /* Since the mandatory SIB always has index register, so
8086 the code logic remains unchanged. The non-mandatory SIB
8087 without index register is allowed and will be handled
8088 later. */
8089 if (i.index_reg)
8090 {
8091 if (i.index_reg->reg_num == RegIZ)
8092 i.sib.index = NO_INDEX_REGISTER;
8093 else
8094 i.sib.index = i.index_reg->reg_num;
8095 set_rex_vrex (i.index_reg, REX_X, FALSE);
8096 }
8097 }
8098
8099 default_seg = &ds;
8100
8101 if (i.base_reg == 0)
8102 {
8103 i.rm.mode = 0;
8104 if (!i.disp_operands)
8105 fake_zero_displacement = 1;
8106 if (i.index_reg == 0)
8107 {
8108 i386_operand_type newdisp;
8109
8110 /* Both check for VSIB and mandatory non-vector SIB. */
8111 gas_assert (!i.tm.opcode_modifier.sib
8112 || i.tm.opcode_modifier.sib == SIBMEM);
8113 /* Operand is just <disp> */
8114 if (flag_code == CODE_64BIT)
8115 {
8116 /* 64bit mode overwrites the 32bit absolute
8117 addressing by RIP relative addressing and
8118 absolute addressing is encoded by one of the
8119 redundant SIB forms. */
8120 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8121 i.sib.base = NO_BASE_REGISTER;
8122 i.sib.index = NO_INDEX_REGISTER;
8123 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
8124 }
8125 else if ((flag_code == CODE_16BIT)
8126 ^ (i.prefix[ADDR_PREFIX] != 0))
8127 {
8128 i.rm.regmem = NO_BASE_REGISTER_16;
8129 newdisp = disp16;
8130 }
8131 else
8132 {
8133 i.rm.regmem = NO_BASE_REGISTER;
8134 newdisp = disp32;
8135 }
8136 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8137 i.types[op] = operand_type_or (i.types[op], newdisp);
8138 }
8139 else if (!i.tm.opcode_modifier.sib)
8140 {
8141 /* !i.base_reg && i.index_reg */
8142 if (i.index_reg->reg_num == RegIZ)
8143 i.sib.index = NO_INDEX_REGISTER;
8144 else
8145 i.sib.index = i.index_reg->reg_num;
8146 i.sib.base = NO_BASE_REGISTER;
8147 i.sib.scale = i.log2_scale_factor;
8148 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8149 i.types[op].bitfield.disp8 = 0;
8150 i.types[op].bitfield.disp16 = 0;
8151 i.types[op].bitfield.disp64 = 0;
8152 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8153 {
8154 /* Must be 32 bit */
8155 i.types[op].bitfield.disp32 = 1;
8156 i.types[op].bitfield.disp32s = 0;
8157 }
8158 else
8159 {
8160 i.types[op].bitfield.disp32 = 0;
8161 i.types[op].bitfield.disp32s = 1;
8162 }
8163 if ((i.index_reg->reg_flags & RegRex) != 0)
8164 i.rex |= REX_X;
8165 }
8166 }
8167 /* RIP addressing for 64bit mode. */
8168 else if (i.base_reg->reg_num == RegIP)
8169 {
8170 gas_assert (!i.tm.opcode_modifier.sib);
8171 i.rm.regmem = NO_BASE_REGISTER;
8172 i.types[op].bitfield.disp8 = 0;
8173 i.types[op].bitfield.disp16 = 0;
8174 i.types[op].bitfield.disp32 = 0;
8175 i.types[op].bitfield.disp32s = 1;
8176 i.types[op].bitfield.disp64 = 0;
8177 i.flags[op] |= Operand_PCrel;
8178 if (! i.disp_operands)
8179 fake_zero_displacement = 1;
8180 }
8181 else if (i.base_reg->reg_type.bitfield.word)
8182 {
8183 gas_assert (!i.tm.opcode_modifier.sib);
8184 switch (i.base_reg->reg_num)
8185 {
8186 case 3: /* (%bx) */
8187 if (i.index_reg == 0)
8188 i.rm.regmem = 7;
8189 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8190 i.rm.regmem = i.index_reg->reg_num - 6;
8191 break;
8192 case 5: /* (%bp) */
8193 default_seg = &ss;
8194 if (i.index_reg == 0)
8195 {
8196 i.rm.regmem = 6;
8197 if (operand_type_check (i.types[op], disp) == 0)
8198 {
8199 /* fake (%bp) into 0(%bp) */
8200 if (i.disp_encoding == disp_encoding_16bit)
8201 i.types[op].bitfield.disp16 = 1;
8202 else
8203 i.types[op].bitfield.disp8 = 1;
8204 fake_zero_displacement = 1;
8205 }
8206 }
8207 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8208 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8209 break;
8210 default: /* (%si) -> 4 or (%di) -> 5 */
8211 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8212 }
8213 if (!fake_zero_displacement
8214 && !i.disp_operands
8215 && i.disp_encoding)
8216 {
8217 fake_zero_displacement = 1;
8218 if (i.disp_encoding == disp_encoding_8bit)
8219 i.types[op].bitfield.disp8 = 1;
8220 else
8221 i.types[op].bitfield.disp16 = 1;
8222 }
8223 i.rm.mode = mode_from_disp_size (i.types[op]);
8224 }
8225 else /* i.base_reg and 32/64 bit mode */
8226 {
8227 if (flag_code == CODE_64BIT
8228 && operand_type_check (i.types[op], disp))
8229 {
8230 i.types[op].bitfield.disp16 = 0;
8231 i.types[op].bitfield.disp64 = 0;
8232 if (i.prefix[ADDR_PREFIX] == 0)
8233 {
8234 i.types[op].bitfield.disp32 = 0;
8235 i.types[op].bitfield.disp32s = 1;
8236 }
8237 else
8238 {
8239 i.types[op].bitfield.disp32 = 1;
8240 i.types[op].bitfield.disp32s = 0;
8241 }
8242 }
8243
8244 if (!i.tm.opcode_modifier.sib)
8245 i.rm.regmem = i.base_reg->reg_num;
8246 if ((i.base_reg->reg_flags & RegRex) != 0)
8247 i.rex |= REX_B;
8248 i.sib.base = i.base_reg->reg_num;
8249 /* x86-64 ignores REX prefix bit here to avoid decoder
8250 complications. */
8251 if (!(i.base_reg->reg_flags & RegRex)
8252 && (i.base_reg->reg_num == EBP_REG_NUM
8253 || i.base_reg->reg_num == ESP_REG_NUM))
8254 default_seg = &ss;
8255 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8256 {
8257 fake_zero_displacement = 1;
8258 if (i.disp_encoding == disp_encoding_32bit)
8259 i.types[op].bitfield.disp32 = 1;
8260 else
8261 i.types[op].bitfield.disp8 = 1;
8262 }
8263 i.sib.scale = i.log2_scale_factor;
8264 if (i.index_reg == 0)
8265 {
8266 /* Only check for VSIB. */
8267 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8268 && i.tm.opcode_modifier.sib != VECSIB256
8269 && i.tm.opcode_modifier.sib != VECSIB512);
8270
8271 /* <disp>(%esp) becomes two byte modrm with no index
8272 register. We've already stored the code for esp
8273 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8274 Any base register besides %esp will not use the
8275 extra modrm byte. */
8276 i.sib.index = NO_INDEX_REGISTER;
8277 }
8278 else if (!i.tm.opcode_modifier.sib)
8279 {
8280 if (i.index_reg->reg_num == RegIZ)
8281 i.sib.index = NO_INDEX_REGISTER;
8282 else
8283 i.sib.index = i.index_reg->reg_num;
8284 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8285 if ((i.index_reg->reg_flags & RegRex) != 0)
8286 i.rex |= REX_X;
8287 }
8288
8289 if (i.disp_operands
8290 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8291 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8292 i.rm.mode = 0;
8293 else
8294 {
8295 if (!fake_zero_displacement
8296 && !i.disp_operands
8297 && i.disp_encoding)
8298 {
8299 fake_zero_displacement = 1;
8300 if (i.disp_encoding == disp_encoding_8bit)
8301 i.types[op].bitfield.disp8 = 1;
8302 else
8303 i.types[op].bitfield.disp32 = 1;
8304 }
8305 i.rm.mode = mode_from_disp_size (i.types[op]);
8306 }
8307 }
8308
8309 if (fake_zero_displacement)
8310 {
8311 /* Fakes a zero displacement assuming that i.types[op]
8312 holds the correct displacement size. */
8313 expressionS *exp;
8314
8315 gas_assert (i.op[op].disps == 0);
8316 exp = &disp_expressions[i.disp_operands++];
8317 i.op[op].disps = exp;
8318 exp->X_op = O_constant;
8319 exp->X_add_number = 0;
8320 exp->X_add_symbol = (symbolS *) 0;
8321 exp->X_op_symbol = (symbolS *) 0;
8322 }
8323
8324 mem = op;
8325 }
8326 else
8327 mem = ~0;
8328
8329 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8330 {
8331 if (operand_type_check (i.types[0], imm))
8332 i.vex.register_specifier = NULL;
8333 else
8334 {
8335 /* VEX.vvvv encodes one of the sources when the first
8336 operand is not an immediate. */
8337 if (i.tm.opcode_modifier.vexw == VEXW0)
8338 i.vex.register_specifier = i.op[0].regs;
8339 else
8340 i.vex.register_specifier = i.op[1].regs;
8341 }
8342
8343 /* Destination is a XMM register encoded in the ModRM.reg
8344 and VEX.R bit. */
8345 i.rm.reg = i.op[2].regs->reg_num;
8346 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8347 i.rex |= REX_R;
8348
8349 /* ModRM.rm and VEX.B encodes the other source. */
8350 if (!i.mem_operands)
8351 {
8352 i.rm.mode = 3;
8353
8354 if (i.tm.opcode_modifier.vexw == VEXW0)
8355 i.rm.regmem = i.op[1].regs->reg_num;
8356 else
8357 i.rm.regmem = i.op[0].regs->reg_num;
8358
8359 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8360 i.rex |= REX_B;
8361 }
8362 }
8363 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8364 {
8365 i.vex.register_specifier = i.op[2].regs;
8366 if (!i.mem_operands)
8367 {
8368 i.rm.mode = 3;
8369 i.rm.regmem = i.op[1].regs->reg_num;
8370 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8371 i.rex |= REX_B;
8372 }
8373 }
8374 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8375 (if any) based on i.tm.extension_opcode. Again, we must be
8376 careful to make sure that segment/control/debug/test/MMX
8377 registers are coded into the i.rm.reg field. */
8378 else if (i.reg_operands)
8379 {
8380 unsigned int op;
8381 unsigned int vex_reg = ~0;
8382
8383 for (op = 0; op < i.operands; op++)
8384 if (i.types[op].bitfield.class == Reg
8385 || i.types[op].bitfield.class == RegBND
8386 || i.types[op].bitfield.class == RegMask
8387 || i.types[op].bitfield.class == SReg
8388 || i.types[op].bitfield.class == RegCR
8389 || i.types[op].bitfield.class == RegDR
8390 || i.types[op].bitfield.class == RegTR
8391 || i.types[op].bitfield.class == RegSIMD
8392 || i.types[op].bitfield.class == RegMMX)
8393 break;
8394
8395 if (vex_3_sources)
8396 op = dest;
8397 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8398 {
8399 /* For instructions with VexNDS, the register-only
8400 source operand is encoded in VEX prefix. */
8401 gas_assert (mem != (unsigned int) ~0);
8402
8403 if (op > mem)
8404 {
8405 vex_reg = op++;
8406 gas_assert (op < i.operands);
8407 }
8408 else
8409 {
8410 /* Check register-only source operand when two source
8411 operands are swapped. */
8412 if (!i.tm.operand_types[op].bitfield.baseindex
8413 && i.tm.operand_types[op + 1].bitfield.baseindex)
8414 {
8415 vex_reg = op;
8416 op += 2;
8417 gas_assert (mem == (vex_reg + 1)
8418 && op < i.operands);
8419 }
8420 else
8421 {
8422 vex_reg = op + 1;
8423 gas_assert (vex_reg < i.operands);
8424 }
8425 }
8426 }
8427 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8428 {
8429 /* For instructions with VexNDD, the register destination
8430 is encoded in VEX prefix. */
8431 if (i.mem_operands == 0)
8432 {
8433 /* There is no memory operand. */
8434 gas_assert ((op + 2) == i.operands);
8435 vex_reg = op + 1;
8436 }
8437 else
8438 {
8439 /* There are only 2 non-immediate operands. */
8440 gas_assert (op < i.imm_operands + 2
8441 && i.operands == i.imm_operands + 2);
8442 vex_reg = i.imm_operands + 1;
8443 }
8444 }
8445 else
8446 gas_assert (op < i.operands);
8447
8448 if (vex_reg != (unsigned int) ~0)
8449 {
8450 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8451
8452 if ((type->bitfield.class != Reg
8453 || (!type->bitfield.dword && !type->bitfield.qword))
8454 && type->bitfield.class != RegSIMD
8455 && !operand_type_equal (type, &regmask))
8456 abort ();
8457
8458 i.vex.register_specifier = i.op[vex_reg].regs;
8459 }
8460
8461 /* Don't set OP operand twice. */
8462 if (vex_reg != op)
8463 {
8464 /* If there is an extension opcode to put here, the
8465 register number must be put into the regmem field. */
8466 if (i.tm.extension_opcode != None)
8467 {
8468 i.rm.regmem = i.op[op].regs->reg_num;
8469 set_rex_vrex (i.op[op].regs, REX_B,
8470 i.tm.opcode_modifier.sse2avx);
8471 }
8472 else
8473 {
8474 i.rm.reg = i.op[op].regs->reg_num;
8475 set_rex_vrex (i.op[op].regs, REX_R,
8476 i.tm.opcode_modifier.sse2avx);
8477 }
8478 }
8479
8480 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8481 must set it to 3 to indicate this is a register operand
8482 in the regmem field. */
8483 if (!i.mem_operands)
8484 i.rm.mode = 3;
8485 }
8486
8487 /* Fill in i.rm.reg field with extension opcode (if any). */
8488 if (i.tm.extension_opcode != None)
8489 i.rm.reg = i.tm.extension_opcode;
8490 }
8491 return default_seg;
8492 }
8493
8494 static INLINE void
8495 frag_opcode_byte (unsigned char byte)
8496 {
8497 if (now_seg != absolute_section)
8498 FRAG_APPEND_1_CHAR (byte);
8499 else
8500 ++abs_section_offset;
8501 }
8502
8503 static unsigned int
8504 flip_code16 (unsigned int code16)
8505 {
8506 gas_assert (i.tm.operands == 1);
8507
8508 return !(i.prefix[REX_PREFIX] & REX_W)
8509 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8510 || i.tm.operand_types[0].bitfield.disp32s
8511 : i.tm.operand_types[0].bitfield.disp16)
8512 ? CODE16 : 0;
8513 }
8514
8515 static void
8516 output_branch (void)
8517 {
8518 char *p;
8519 int size;
8520 int code16;
8521 int prefix;
8522 relax_substateT subtype;
8523 symbolS *sym;
8524 offsetT off;
8525
8526 if (now_seg == absolute_section)
8527 {
8528 as_bad (_("relaxable branches not supported in absolute section"));
8529 return;
8530 }
8531
8532 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8533 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8534
8535 prefix = 0;
8536 if (i.prefix[DATA_PREFIX] != 0)
8537 {
8538 prefix = 1;
8539 i.prefixes -= 1;
8540 code16 ^= flip_code16(code16);
8541 }
8542 /* Pentium4 branch hints. */
8543 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8544 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8545 {
8546 prefix++;
8547 i.prefixes--;
8548 }
8549 if (i.prefix[REX_PREFIX] != 0)
8550 {
8551 prefix++;
8552 i.prefixes--;
8553 }
8554
8555 /* BND prefixed jump. */
8556 if (i.prefix[BND_PREFIX] != 0)
8557 {
8558 prefix++;
8559 i.prefixes--;
8560 }
8561
8562 if (i.prefixes != 0)
8563 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8564
8565 /* It's always a symbol; End frag & setup for relax.
8566 Make sure there is enough room in this frag for the largest
8567 instruction we may generate in md_convert_frag. This is 2
8568 bytes for the opcode and room for the prefix and largest
8569 displacement. */
8570 frag_grow (prefix + 2 + 4);
8571 /* Prefix and 1 opcode byte go in fr_fix. */
8572 p = frag_more (prefix + 1);
8573 if (i.prefix[DATA_PREFIX] != 0)
8574 *p++ = DATA_PREFIX_OPCODE;
8575 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8576 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8577 *p++ = i.prefix[SEG_PREFIX];
8578 if (i.prefix[BND_PREFIX] != 0)
8579 *p++ = BND_PREFIX_OPCODE;
8580 if (i.prefix[REX_PREFIX] != 0)
8581 *p++ = i.prefix[REX_PREFIX];
8582 *p = i.tm.base_opcode;
8583
8584 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8585 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8586 else if (cpu_arch_flags.bitfield.cpui386)
8587 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8588 else
8589 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8590 subtype |= code16;
8591
8592 sym = i.op[0].disps->X_add_symbol;
8593 off = i.op[0].disps->X_add_number;
8594
8595 if (i.op[0].disps->X_op != O_constant
8596 && i.op[0].disps->X_op != O_symbol)
8597 {
8598 /* Handle complex expressions. */
8599 sym = make_expr_symbol (i.op[0].disps);
8600 off = 0;
8601 }
8602
8603 /* 1 possible extra opcode + 4 byte displacement go in var part.
8604 Pass reloc in fr_var. */
8605 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8606 }
8607
8608 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8609 /* Return TRUE iff PLT32 relocation should be used for branching to
8610 symbol S. */
8611
8612 static bfd_boolean
8613 need_plt32_p (symbolS *s)
8614 {
8615 /* PLT32 relocation is ELF only. */
8616 if (!IS_ELF)
8617 return FALSE;
8618
8619 #ifdef TE_SOLARIS
8620 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8621 krtld support it. */
8622 return FALSE;
8623 #endif
8624
8625 /* Since there is no need to prepare for PLT branch on x86-64, we
8626 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8627 be used as a marker for 32-bit PC-relative branches. */
8628 if (!object_64bit)
8629 return FALSE;
8630
8631 /* Weak or undefined symbol need PLT32 relocation. */
8632 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8633 return TRUE;
8634
8635 /* Non-global symbol doesn't need PLT32 relocation. */
8636 if (! S_IS_EXTERNAL (s))
8637 return FALSE;
8638
8639 /* Other global symbols need PLT32 relocation. NB: Symbol with
8640 non-default visibilities are treated as normal global symbol
8641 so that PLT32 relocation can be used as a marker for 32-bit
8642 PC-relative branches. It is useful for linker relaxation. */
8643 return TRUE;
8644 }
8645 #endif
8646
8647 static void
8648 output_jump (void)
8649 {
8650 char *p;
8651 int size;
8652 fixS *fixP;
8653 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8654
8655 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8656 {
8657 /* This is a loop or jecxz type instruction. */
8658 size = 1;
8659 if (i.prefix[ADDR_PREFIX] != 0)
8660 {
8661 frag_opcode_byte (ADDR_PREFIX_OPCODE);
8662 i.prefixes -= 1;
8663 }
8664 /* Pentium4 branch hints. */
8665 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8666 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8667 {
8668 frag_opcode_byte (i.prefix[SEG_PREFIX]);
8669 i.prefixes--;
8670 }
8671 }
8672 else
8673 {
8674 int code16;
8675
8676 code16 = 0;
8677 if (flag_code == CODE_16BIT)
8678 code16 = CODE16;
8679
8680 if (i.prefix[DATA_PREFIX] != 0)
8681 {
8682 frag_opcode_byte (DATA_PREFIX_OPCODE);
8683 i.prefixes -= 1;
8684 code16 ^= flip_code16(code16);
8685 }
8686
8687 size = 4;
8688 if (code16)
8689 size = 2;
8690 }
8691
8692 /* BND prefixed jump. */
8693 if (i.prefix[BND_PREFIX] != 0)
8694 {
8695 frag_opcode_byte (i.prefix[BND_PREFIX]);
8696 i.prefixes -= 1;
8697 }
8698
8699 if (i.prefix[REX_PREFIX] != 0)
8700 {
8701 frag_opcode_byte (i.prefix[REX_PREFIX]);
8702 i.prefixes -= 1;
8703 }
8704
8705 if (i.prefixes != 0)
8706 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8707
8708 if (now_seg == absolute_section)
8709 {
8710 abs_section_offset += i.tm.opcode_length + size;
8711 return;
8712 }
8713
8714 p = frag_more (i.tm.opcode_length + size);
8715 switch (i.tm.opcode_length)
8716 {
8717 case 2:
8718 *p++ = i.tm.base_opcode >> 8;
8719 /* Fall through. */
8720 case 1:
8721 *p++ = i.tm.base_opcode;
8722 break;
8723 default:
8724 abort ();
8725 }
8726
8727 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8728 if (size == 4
8729 && jump_reloc == NO_RELOC
8730 && need_plt32_p (i.op[0].disps->X_add_symbol))
8731 jump_reloc = BFD_RELOC_X86_64_PLT32;
8732 #endif
8733
8734 jump_reloc = reloc (size, 1, 1, jump_reloc);
8735
8736 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8737 i.op[0].disps, 1, jump_reloc);
8738
8739 /* All jumps handled here are signed, but don't use a signed limit
8740 check for 32 and 16 bit jumps as we want to allow wrap around at
8741 4G and 64k respectively. */
8742 if (size == 1)
8743 fixP->fx_signed = 1;
8744 }
8745
8746 static void
8747 output_interseg_jump (void)
8748 {
8749 char *p;
8750 int size;
8751 int prefix;
8752 int code16;
8753
8754 code16 = 0;
8755 if (flag_code == CODE_16BIT)
8756 code16 = CODE16;
8757
8758 prefix = 0;
8759 if (i.prefix[DATA_PREFIX] != 0)
8760 {
8761 prefix = 1;
8762 i.prefixes -= 1;
8763 code16 ^= CODE16;
8764 }
8765
8766 gas_assert (!i.prefix[REX_PREFIX]);
8767
8768 size = 4;
8769 if (code16)
8770 size = 2;
8771
8772 if (i.prefixes != 0)
8773 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8774
8775 if (now_seg == absolute_section)
8776 {
8777 abs_section_offset += prefix + 1 + 2 + size;
8778 return;
8779 }
8780
8781 /* 1 opcode; 2 segment; offset */
8782 p = frag_more (prefix + 1 + 2 + size);
8783
8784 if (i.prefix[DATA_PREFIX] != 0)
8785 *p++ = DATA_PREFIX_OPCODE;
8786
8787 if (i.prefix[REX_PREFIX] != 0)
8788 *p++ = i.prefix[REX_PREFIX];
8789
8790 *p++ = i.tm.base_opcode;
8791 if (i.op[1].imms->X_op == O_constant)
8792 {
8793 offsetT n = i.op[1].imms->X_add_number;
8794
8795 if (size == 2
8796 && !fits_in_unsigned_word (n)
8797 && !fits_in_signed_word (n))
8798 {
8799 as_bad (_("16-bit jump out of range"));
8800 return;
8801 }
8802 md_number_to_chars (p, n, size);
8803 }
8804 else
8805 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8806 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8807
8808 p += size;
8809 if (i.op[0].imms->X_op == O_constant)
8810 md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
8811 else
8812 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
8813 i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
8814 }
8815
8816 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8817 void
8818 x86_cleanup (void)
8819 {
8820 char *p;
8821 asection *seg = now_seg;
8822 subsegT subseg = now_subseg;
8823 asection *sec;
8824 unsigned int alignment, align_size_1;
8825 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8826 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8827 unsigned int padding;
8828
8829 if (!IS_ELF || !x86_used_note)
8830 return;
8831
8832 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8833
8834 /* The .note.gnu.property section layout:
8835
8836 Field Length Contents
8837 ---- ---- ----
8838 n_namsz 4 4
8839 n_descsz 4 The note descriptor size
8840 n_type 4 NT_GNU_PROPERTY_TYPE_0
8841 n_name 4 "GNU"
8842 n_desc n_descsz The program property array
8843 .... .... ....
8844 */
8845
8846 /* Create the .note.gnu.property section. */
8847 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8848 bfd_set_section_flags (sec,
8849 (SEC_ALLOC
8850 | SEC_LOAD
8851 | SEC_DATA
8852 | SEC_HAS_CONTENTS
8853 | SEC_READONLY));
8854
8855 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8856 {
8857 align_size_1 = 7;
8858 alignment = 3;
8859 }
8860 else
8861 {
8862 align_size_1 = 3;
8863 alignment = 2;
8864 }
8865
8866 bfd_set_section_alignment (sec, alignment);
8867 elf_section_type (sec) = SHT_NOTE;
8868
8869 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8870 + 4-byte data */
8871 isa_1_descsz_raw = 4 + 4 + 4;
8872 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8873 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8874
8875 feature_2_descsz_raw = isa_1_descsz;
8876 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8877 + 4-byte data */
8878 feature_2_descsz_raw += 4 + 4 + 4;
8879 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8880 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8881 & ~align_size_1);
8882
8883 descsz = feature_2_descsz;
8884 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8885 p = frag_more (4 + 4 + 4 + 4 + descsz);
8886
8887 /* Write n_namsz. */
8888 md_number_to_chars (p, (valueT) 4, 4);
8889
8890 /* Write n_descsz. */
8891 md_number_to_chars (p + 4, (valueT) descsz, 4);
8892
8893 /* Write n_type. */
8894 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8895
8896 /* Write n_name. */
8897 memcpy (p + 4 * 3, "GNU", 4);
8898
8899 /* Write 4-byte type. */
8900 md_number_to_chars (p + 4 * 4,
8901 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8902
8903 /* Write 4-byte data size. */
8904 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8905
8906 /* Write 4-byte data. */
8907 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8908
8909 /* Zero out paddings. */
8910 padding = isa_1_descsz - isa_1_descsz_raw;
8911 if (padding)
8912 memset (p + 4 * 7, 0, padding);
8913
8914 /* Write 4-byte type. */
8915 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8916 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8917
8918 /* Write 4-byte data size. */
8919 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8920
8921 /* Write 4-byte data. */
8922 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8923 (valueT) x86_feature_2_used, 4);
8924
8925 /* Zero out paddings. */
8926 padding = feature_2_descsz - feature_2_descsz_raw;
8927 if (padding)
8928 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8929
8930 /* We probably can't restore the current segment, for there likely
8931 isn't one yet... */
8932 if (seg && subseg)
8933 subseg_set (seg, subseg);
8934 }
8935 #endif
8936
8937 static unsigned int
8938 encoding_length (const fragS *start_frag, offsetT start_off,
8939 const char *frag_now_ptr)
8940 {
8941 unsigned int len = 0;
8942
8943 if (start_frag != frag_now)
8944 {
8945 const fragS *fr = start_frag;
8946
8947 do {
8948 len += fr->fr_fix;
8949 fr = fr->fr_next;
8950 } while (fr && fr != frag_now);
8951 }
8952
8953 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8954 }
8955
8956 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8957 be macro-fused with conditional jumps.
8958 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8959 or is one of the following format:
8960
8961 cmp m, imm
8962 add m, imm
8963 sub m, imm
8964 test m, imm
8965 and m, imm
8966 inc m
8967 dec m
8968
8969 it is unfusible. */
8970
8971 static int
8972 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8973 {
8974 /* No RIP address. */
8975 if (i.base_reg && i.base_reg->reg_num == RegIP)
8976 return 0;
8977
8978 /* No VEX/EVEX encoding. */
8979 if (is_any_vex_encoding (&i.tm))
8980 return 0;
8981
8982 /* add, sub without add/sub m, imm. */
8983 if (i.tm.base_opcode <= 5
8984 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8985 || ((i.tm.base_opcode | 3) == 0x83
8986 && (i.tm.extension_opcode == 0x5
8987 || i.tm.extension_opcode == 0x0)))
8988 {
8989 *mf_cmp_p = mf_cmp_alu_cmp;
8990 return !(i.mem_operands && i.imm_operands);
8991 }
8992
8993 /* and without and m, imm. */
8994 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8995 || ((i.tm.base_opcode | 3) == 0x83
8996 && i.tm.extension_opcode == 0x4))
8997 {
8998 *mf_cmp_p = mf_cmp_test_and;
8999 return !(i.mem_operands && i.imm_operands);
9000 }
9001
9002 /* test without test m imm. */
9003 if ((i.tm.base_opcode | 1) == 0x85
9004 || (i.tm.base_opcode | 1) == 0xa9
9005 || ((i.tm.base_opcode | 1) == 0xf7
9006 && i.tm.extension_opcode == 0))
9007 {
9008 *mf_cmp_p = mf_cmp_test_and;
9009 return !(i.mem_operands && i.imm_operands);
9010 }
9011
9012 /* cmp without cmp m, imm. */
9013 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
9014 || ((i.tm.base_opcode | 3) == 0x83
9015 && (i.tm.extension_opcode == 0x7)))
9016 {
9017 *mf_cmp_p = mf_cmp_alu_cmp;
9018 return !(i.mem_operands && i.imm_operands);
9019 }
9020
9021 /* inc, dec without inc/dec m. */
9022 if ((i.tm.cpu_flags.bitfield.cpuno64
9023 && (i.tm.base_opcode | 0xf) == 0x4f)
9024 || ((i.tm.base_opcode | 1) == 0xff
9025 && i.tm.extension_opcode <= 0x1))
9026 {
9027 *mf_cmp_p = mf_cmp_incdec;
9028 return !i.mem_operands;
9029 }
9030
9031 return 0;
9032 }
9033
9034 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
9035
9036 static int
9037 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
9038 {
9039 /* NB: Don't work with COND_JUMP86 without i386. */
9040 if (!align_branch_power
9041 || now_seg == absolute_section
9042 || !cpu_arch_flags.bitfield.cpui386
9043 || !(align_branch & align_branch_fused_bit))
9044 return 0;
9045
9046 if (maybe_fused_with_jcc_p (mf_cmp_p))
9047 {
9048 if (last_insn.kind == last_insn_other
9049 || last_insn.seg != now_seg)
9050 return 1;
9051 if (flag_debug)
9052 as_warn_where (last_insn.file, last_insn.line,
9053 _("`%s` skips -malign-branch-boundary on `%s`"),
9054 last_insn.name, i.tm.name);
9055 }
9056
9057 return 0;
9058 }
9059
9060 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
9061
9062 static int
9063 add_branch_prefix_frag_p (void)
9064 {
9065 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
9066 to PadLock instructions since they include prefixes in opcode. */
9067 if (!align_branch_power
9068 || !align_branch_prefix_size
9069 || now_seg == absolute_section
9070 || i.tm.cpu_flags.bitfield.cpupadlock
9071 || !cpu_arch_flags.bitfield.cpui386)
9072 return 0;
9073
9074 /* Don't add prefix if it is a prefix or there is no operand in case
9075 that segment prefix is special. */
9076 if (!i.operands || i.tm.opcode_modifier.isprefix)
9077 return 0;
9078
9079 if (last_insn.kind == last_insn_other
9080 || last_insn.seg != now_seg)
9081 return 1;
9082
9083 if (flag_debug)
9084 as_warn_where (last_insn.file, last_insn.line,
9085 _("`%s` skips -malign-branch-boundary on `%s`"),
9086 last_insn.name, i.tm.name);
9087
9088 return 0;
9089 }
9090
9091 /* Return 1 if a BRANCH_PADDING frag should be generated. */
9092
9093 static int
9094 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9095 enum mf_jcc_kind *mf_jcc_p)
9096 {
9097 int add_padding;
9098
9099 /* NB: Don't work with COND_JUMP86 without i386. */
9100 if (!align_branch_power
9101 || now_seg == absolute_section
9102 || !cpu_arch_flags.bitfield.cpui386)
9103 return 0;
9104
9105 add_padding = 0;
9106
9107 /* Check for jcc and direct jmp. */
9108 if (i.tm.opcode_modifier.jump == JUMP)
9109 {
9110 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9111 {
9112 *branch_p = align_branch_jmp;
9113 add_padding = align_branch & align_branch_jmp_bit;
9114 }
9115 else
9116 {
9117 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9118 igore the lowest bit. */
9119 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
9120 *branch_p = align_branch_jcc;
9121 if ((align_branch & align_branch_jcc_bit))
9122 add_padding = 1;
9123 }
9124 }
9125 else if (is_any_vex_encoding (&i.tm))
9126 return 0;
9127 else if ((i.tm.base_opcode | 1) == 0xc3)
9128 {
9129 /* Near ret. */
9130 *branch_p = align_branch_ret;
9131 if ((align_branch & align_branch_ret_bit))
9132 add_padding = 1;
9133 }
9134 else
9135 {
9136 /* Check for indirect jmp, direct and indirect calls. */
9137 if (i.tm.base_opcode == 0xe8)
9138 {
9139 /* Direct call. */
9140 *branch_p = align_branch_call;
9141 if ((align_branch & align_branch_call_bit))
9142 add_padding = 1;
9143 }
9144 else if (i.tm.base_opcode == 0xff
9145 && (i.tm.extension_opcode == 2
9146 || i.tm.extension_opcode == 4))
9147 {
9148 /* Indirect call and jmp. */
9149 *branch_p = align_branch_indirect;
9150 if ((align_branch & align_branch_indirect_bit))
9151 add_padding = 1;
9152 }
9153
9154 if (add_padding
9155 && i.disp_operands
9156 && tls_get_addr
9157 && (i.op[0].disps->X_op == O_symbol
9158 || (i.op[0].disps->X_op == O_subtract
9159 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9160 {
9161 symbolS *s = i.op[0].disps->X_add_symbol;
9162 /* No padding to call to global or undefined tls_get_addr. */
9163 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9164 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9165 return 0;
9166 }
9167 }
9168
9169 if (add_padding
9170 && last_insn.kind != last_insn_other
9171 && last_insn.seg == now_seg)
9172 {
9173 if (flag_debug)
9174 as_warn_where (last_insn.file, last_insn.line,
9175 _("`%s` skips -malign-branch-boundary on `%s`"),
9176 last_insn.name, i.tm.name);
9177 return 0;
9178 }
9179
9180 return add_padding;
9181 }
9182
9183 static void
9184 output_insn (void)
9185 {
9186 fragS *insn_start_frag;
9187 offsetT insn_start_off;
9188 fragS *fragP = NULL;
9189 enum align_branch_kind branch = align_branch_none;
9190 /* The initializer is arbitrary just to avoid uninitialized error.
9191 it's actually either assigned in add_branch_padding_frag_p
9192 or never be used. */
9193 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9194
9195 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9196 if (IS_ELF && x86_used_note && now_seg != absolute_section)
9197 {
9198 if ((i.xstate & xstate_tmm) == xstate_tmm
9199 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9200 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9201
9202 if (i.tm.cpu_flags.bitfield.cpu8087
9203 || i.tm.cpu_flags.bitfield.cpu287
9204 || i.tm.cpu_flags.bitfield.cpu387
9205 || i.tm.cpu_flags.bitfield.cpu687
9206 || i.tm.cpu_flags.bitfield.cpufisttp)
9207 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9208 if ((i.xstate & xstate_mmx)
9209 || i.tm.base_opcode == 0xf77 /* emms */
9210 || i.tm.base_opcode == 0xf0e /* femms */)
9211 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9212 if (i.index_reg)
9213 {
9214 if (i.index_reg->reg_type.bitfield.zmmword)
9215 i.xstate |= xstate_zmm;
9216 else if (i.index_reg->reg_type.bitfield.ymmword)
9217 i.xstate |= xstate_ymm;
9218 else if (i.index_reg->reg_type.bitfield.xmmword)
9219 i.xstate |= xstate_xmm;
9220 }
9221 if ((i.xstate & xstate_xmm)
9222 || i.tm.cpu_flags.bitfield.cpuwidekl
9223 || i.tm.cpu_flags.bitfield.cpukl)
9224 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9225 if ((i.xstate & xstate_ymm) == xstate_ymm)
9226 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9227 if ((i.xstate & xstate_zmm) == xstate_zmm)
9228 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9229 if (i.mask || (i.xstate & xstate_mask) == xstate_mask)
9230 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
9231 if (i.tm.cpu_flags.bitfield.cpufxsr)
9232 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9233 if (i.tm.cpu_flags.bitfield.cpuxsave)
9234 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9235 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9236 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9237 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9238 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9239
9240 if (x86_feature_2_used
9241 || i.tm.cpu_flags.bitfield.cpucmov
9242 || i.tm.cpu_flags.bitfield.cpusyscall
9243 || (i.tm.base_opcode == 0xfc7
9244 && i.tm.opcode_modifier.opcodeprefix == 0
9245 && i.tm.extension_opcode == 1) /* cmpxchg8b */)
9246 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_BASELINE;
9247 if (i.tm.cpu_flags.bitfield.cpusse3
9248 || i.tm.cpu_flags.bitfield.cpussse3
9249 || i.tm.cpu_flags.bitfield.cpusse4_1
9250 || i.tm.cpu_flags.bitfield.cpusse4_2
9251 || i.tm.cpu_flags.bitfield.cpucx16
9252 || i.tm.cpu_flags.bitfield.cpupopcnt
9253 /* LAHF-SAHF insns in 64-bit mode. */
9254 || (flag_code == CODE_64BIT
9255 && (i.tm.base_opcode | 1) == 0x9f))
9256 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
9257 if (i.tm.cpu_flags.bitfield.cpuavx
9258 || i.tm.cpu_flags.bitfield.cpuavx2
9259 /* Any VEX encoded insns execpt for CpuAVX512F, CpuAVX512BW,
9260 CpuAVX512DQ, LPW, TBM and AMX. */
9261 || (i.tm.opcode_modifier.vex
9262 && !i.tm.cpu_flags.bitfield.cpuavx512f
9263 && !i.tm.cpu_flags.bitfield.cpuavx512bw
9264 && !i.tm.cpu_flags.bitfield.cpuavx512dq
9265 && !i.tm.cpu_flags.bitfield.cpulwp
9266 && !i.tm.cpu_flags.bitfield.cputbm
9267 && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
9268 || i.tm.cpu_flags.bitfield.cpuf16c
9269 || i.tm.cpu_flags.bitfield.cpufma
9270 || i.tm.cpu_flags.bitfield.cpulzcnt
9271 || i.tm.cpu_flags.bitfield.cpumovbe
9272 || i.tm.cpu_flags.bitfield.cpuxsaves
9273 || (x86_feature_2_used
9274 & (GNU_PROPERTY_X86_FEATURE_2_XSAVE
9275 | GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
9276 | GNU_PROPERTY_X86_FEATURE_2_XSAVEC)) != 0)
9277 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
9278 if (i.tm.cpu_flags.bitfield.cpuavx512f
9279 || i.tm.cpu_flags.bitfield.cpuavx512bw
9280 || i.tm.cpu_flags.bitfield.cpuavx512dq
9281 || i.tm.cpu_flags.bitfield.cpuavx512vl
9282 /* Any EVEX encoded insns except for AVX512ER, AVX512PF and
9283 VNNIW. */
9284 || (i.tm.opcode_modifier.evex
9285 && !i.tm.cpu_flags.bitfield.cpuavx512er
9286 && !i.tm.cpu_flags.bitfield.cpuavx512pf
9287 && !i.tm.cpu_flags.bitfield.cpuavx512_4vnniw))
9288 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
9289 }
9290 #endif
9291
9292 /* Tie dwarf2 debug info to the address at the start of the insn.
9293 We can't do this after the insn has been output as the current
9294 frag may have been closed off. eg. by frag_var. */
9295 dwarf2_emit_insn (0);
9296
9297 insn_start_frag = frag_now;
9298 insn_start_off = frag_now_fix ();
9299
9300 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9301 {
9302 char *p;
9303 /* Branch can be 8 bytes. Leave some room for prefixes. */
9304 unsigned int max_branch_padding_size = 14;
9305
9306 /* Align section to boundary. */
9307 record_alignment (now_seg, align_branch_power);
9308
9309 /* Make room for padding. */
9310 frag_grow (max_branch_padding_size);
9311
9312 /* Start of the padding. */
9313 p = frag_more (0);
9314
9315 fragP = frag_now;
9316
9317 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9318 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9319 NULL, 0, p);
9320
9321 fragP->tc_frag_data.mf_type = mf_jcc;
9322 fragP->tc_frag_data.branch_type = branch;
9323 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9324 }
9325
9326 /* Output jumps. */
9327 if (i.tm.opcode_modifier.jump == JUMP)
9328 output_branch ();
9329 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9330 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9331 output_jump ();
9332 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9333 output_interseg_jump ();
9334 else
9335 {
9336 /* Output normal instructions here. */
9337 char *p;
9338 unsigned char *q;
9339 unsigned int j;
9340 enum mf_cmp_kind mf_cmp;
9341
9342 if (avoid_fence
9343 && (i.tm.base_opcode == 0xfaee8
9344 || i.tm.base_opcode == 0xfaef0
9345 || i.tm.base_opcode == 0xfaef8))
9346 {
9347 /* Encode lfence, mfence, and sfence as
9348 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9349 if (now_seg != absolute_section)
9350 {
9351 offsetT val = 0x240483f0ULL;
9352
9353 p = frag_more (5);
9354 md_number_to_chars (p, val, 5);
9355 }
9356 else
9357 abs_section_offset += 5;
9358 return;
9359 }
9360
9361 /* Some processors fail on LOCK prefix. This options makes
9362 assembler ignore LOCK prefix and serves as a workaround. */
9363 if (omit_lock_prefix)
9364 {
9365 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9366 return;
9367 i.prefix[LOCK_PREFIX] = 0;
9368 }
9369
9370 if (branch)
9371 /* Skip if this is a branch. */
9372 ;
9373 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9374 {
9375 /* Make room for padding. */
9376 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9377 p = frag_more (0);
9378
9379 fragP = frag_now;
9380
9381 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9382 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9383 NULL, 0, p);
9384
9385 fragP->tc_frag_data.mf_type = mf_cmp;
9386 fragP->tc_frag_data.branch_type = align_branch_fused;
9387 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9388 }
9389 else if (add_branch_prefix_frag_p ())
9390 {
9391 unsigned int max_prefix_size = align_branch_prefix_size;
9392
9393 /* Make room for padding. */
9394 frag_grow (max_prefix_size);
9395 p = frag_more (0);
9396
9397 fragP = frag_now;
9398
9399 frag_var (rs_machine_dependent, max_prefix_size, 0,
9400 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9401 NULL, 0, p);
9402
9403 fragP->tc_frag_data.max_bytes = max_prefix_size;
9404 }
9405
9406 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9407 don't need the explicit prefix. */
9408 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9409 {
9410 switch (i.tm.opcode_modifier.opcodeprefix)
9411 {
9412 case PREFIX_0X66:
9413 add_prefix (0x66);
9414 break;
9415 case PREFIX_0XF2:
9416 add_prefix (0xf2);
9417 break;
9418 case PREFIX_0XF3:
9419 if (!i.tm.cpu_flags.bitfield.cpupadlock
9420 || (i.prefix[REP_PREFIX] != 0xf3))
9421 add_prefix (0xf3);
9422 break;
9423 case PREFIX_NONE:
9424 switch (i.tm.opcode_length)
9425 {
9426 case 3:
9427 case 2:
9428 case 1:
9429 break;
9430 case 0:
9431 /* Check for pseudo prefixes. */
9432 as_bad_where (insn_start_frag->fr_file,
9433 insn_start_frag->fr_line,
9434 _("pseudo prefix without instruction"));
9435 return;
9436 default:
9437 abort ();
9438 }
9439 break;
9440 default:
9441 abort ();
9442 }
9443
9444 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9445 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9446 R_X86_64_GOTTPOFF relocation so that linker can safely
9447 perform IE->LE optimization. A dummy REX_OPCODE prefix
9448 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9449 relocation for GDesc -> IE/LE optimization. */
9450 if (x86_elf_abi == X86_64_X32_ABI
9451 && i.operands == 2
9452 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9453 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9454 && i.prefix[REX_PREFIX] == 0)
9455 add_prefix (REX_OPCODE);
9456 #endif
9457
9458 /* The prefix bytes. */
9459 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9460 if (*q)
9461 frag_opcode_byte (*q);
9462 }
9463 else
9464 {
9465 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9466 if (*q)
9467 switch (j)
9468 {
9469 case SEG_PREFIX:
9470 case ADDR_PREFIX:
9471 frag_opcode_byte (*q);
9472 break;
9473 default:
9474 /* There should be no other prefixes for instructions
9475 with VEX prefix. */
9476 abort ();
9477 }
9478
9479 /* For EVEX instructions i.vrex should become 0 after
9480 build_evex_prefix. For VEX instructions upper 16 registers
9481 aren't available, so VREX should be 0. */
9482 if (i.vrex)
9483 abort ();
9484 /* Now the VEX prefix. */
9485 if (now_seg != absolute_section)
9486 {
9487 p = frag_more (i.vex.length);
9488 for (j = 0; j < i.vex.length; j++)
9489 p[j] = i.vex.bytes[j];
9490 }
9491 else
9492 abs_section_offset += i.vex.length;
9493 }
9494
9495 /* Now the opcode; be careful about word order here! */
9496 if (now_seg == absolute_section)
9497 abs_section_offset += i.tm.opcode_length;
9498 else if (i.tm.opcode_length == 1)
9499 {
9500 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9501 }
9502 else
9503 {
9504 switch (i.tm.opcode_length)
9505 {
9506 case 4:
9507 p = frag_more (4);
9508 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9509 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9510 break;
9511 case 3:
9512 p = frag_more (3);
9513 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9514 break;
9515 case 2:
9516 p = frag_more (2);
9517 break;
9518 default:
9519 abort ();
9520 break;
9521 }
9522
9523 /* Put out high byte first: can't use md_number_to_chars! */
9524 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9525 *p = i.tm.base_opcode & 0xff;
9526 }
9527
9528 /* Now the modrm byte and sib byte (if present). */
9529 if (i.tm.opcode_modifier.modrm)
9530 {
9531 frag_opcode_byte ((i.rm.regmem << 0)
9532 | (i.rm.reg << 3)
9533 | (i.rm.mode << 6));
9534 /* If i.rm.regmem == ESP (4)
9535 && i.rm.mode != (Register mode)
9536 && not 16 bit
9537 ==> need second modrm byte. */
9538 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9539 && i.rm.mode != 3
9540 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9541 frag_opcode_byte ((i.sib.base << 0)
9542 | (i.sib.index << 3)
9543 | (i.sib.scale << 6));
9544 }
9545
9546 if (i.disp_operands)
9547 output_disp (insn_start_frag, insn_start_off);
9548
9549 if (i.imm_operands)
9550 output_imm (insn_start_frag, insn_start_off);
9551
9552 /*
9553 * frag_now_fix () returning plain abs_section_offset when we're in the
9554 * absolute section, and abs_section_offset not getting updated as data
9555 * gets added to the frag breaks the logic below.
9556 */
9557 if (now_seg != absolute_section)
9558 {
9559 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9560 if (j > 15)
9561 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9562 j);
9563 else if (fragP)
9564 {
9565 /* NB: Don't add prefix with GOTPC relocation since
9566 output_disp() above depends on the fixed encoding
9567 length. Can't add prefix with TLS relocation since
9568 it breaks TLS linker optimization. */
9569 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9570 /* Prefix count on the current instruction. */
9571 unsigned int count = i.vex.length;
9572 unsigned int k;
9573 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9574 /* REX byte is encoded in VEX/EVEX prefix. */
9575 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9576 count++;
9577
9578 /* Count prefixes for extended opcode maps. */
9579 if (!i.vex.length)
9580 switch (i.tm.opcode_length)
9581 {
9582 case 3:
9583 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9584 {
9585 count++;
9586 switch ((i.tm.base_opcode >> 8) & 0xff)
9587 {
9588 case 0x38:
9589 case 0x3a:
9590 count++;
9591 break;
9592 default:
9593 break;
9594 }
9595 }
9596 break;
9597 case 2:
9598 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9599 count++;
9600 break;
9601 case 1:
9602 break;
9603 default:
9604 abort ();
9605 }
9606
9607 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9608 == BRANCH_PREFIX)
9609 {
9610 /* Set the maximum prefix size in BRANCH_PREFIX
9611 frag. */
9612 if (fragP->tc_frag_data.max_bytes > max)
9613 fragP->tc_frag_data.max_bytes = max;
9614 if (fragP->tc_frag_data.max_bytes > count)
9615 fragP->tc_frag_data.max_bytes -= count;
9616 else
9617 fragP->tc_frag_data.max_bytes = 0;
9618 }
9619 else
9620 {
9621 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9622 frag. */
9623 unsigned int max_prefix_size;
9624 if (align_branch_prefix_size > max)
9625 max_prefix_size = max;
9626 else
9627 max_prefix_size = align_branch_prefix_size;
9628 if (max_prefix_size > count)
9629 fragP->tc_frag_data.max_prefix_length
9630 = max_prefix_size - count;
9631 }
9632
9633 /* Use existing segment prefix if possible. Use CS
9634 segment prefix in 64-bit mode. In 32-bit mode, use SS
9635 segment prefix with ESP/EBP base register and use DS
9636 segment prefix without ESP/EBP base register. */
9637 if (i.prefix[SEG_PREFIX])
9638 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9639 else if (flag_code == CODE_64BIT)
9640 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9641 else if (i.base_reg
9642 && (i.base_reg->reg_num == 4
9643 || i.base_reg->reg_num == 5))
9644 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9645 else
9646 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9647 }
9648 }
9649 }
9650
9651 /* NB: Don't work with COND_JUMP86 without i386. */
9652 if (align_branch_power
9653 && now_seg != absolute_section
9654 && cpu_arch_flags.bitfield.cpui386)
9655 {
9656 /* Terminate each frag so that we can add prefix and check for
9657 fused jcc. */
9658 frag_wane (frag_now);
9659 frag_new (0);
9660 }
9661
9662 #ifdef DEBUG386
9663 if (flag_debug)
9664 {
9665 pi ("" /*line*/, &i);
9666 }
9667 #endif /* DEBUG386 */
9668 }
9669
9670 /* Return the size of the displacement operand N. */
9671
9672 static int
9673 disp_size (unsigned int n)
9674 {
9675 int size = 4;
9676
9677 if (i.types[n].bitfield.disp64)
9678 size = 8;
9679 else if (i.types[n].bitfield.disp8)
9680 size = 1;
9681 else if (i.types[n].bitfield.disp16)
9682 size = 2;
9683 return size;
9684 }
9685
9686 /* Return the size of the immediate operand N. */
9687
9688 static int
9689 imm_size (unsigned int n)
9690 {
9691 int size = 4;
9692 if (i.types[n].bitfield.imm64)
9693 size = 8;
9694 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9695 size = 1;
9696 else if (i.types[n].bitfield.imm16)
9697 size = 2;
9698 return size;
9699 }
9700
9701 static void
9702 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9703 {
9704 char *p;
9705 unsigned int n;
9706
9707 for (n = 0; n < i.operands; n++)
9708 {
9709 if (operand_type_check (i.types[n], disp))
9710 {
9711 int size = disp_size (n);
9712
9713 if (now_seg == absolute_section)
9714 abs_section_offset += size;
9715 else if (i.op[n].disps->X_op == O_constant)
9716 {
9717 offsetT val = i.op[n].disps->X_add_number;
9718
9719 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9720 size);
9721 p = frag_more (size);
9722 md_number_to_chars (p, val, size);
9723 }
9724 else
9725 {
9726 enum bfd_reloc_code_real reloc_type;
9727 int sign = i.types[n].bitfield.disp32s;
9728 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9729 fixS *fixP;
9730
9731 /* We can't have 8 bit displacement here. */
9732 gas_assert (!i.types[n].bitfield.disp8);
9733
9734 /* The PC relative address is computed relative
9735 to the instruction boundary, so in case immediate
9736 fields follows, we need to adjust the value. */
9737 if (pcrel && i.imm_operands)
9738 {
9739 unsigned int n1;
9740 int sz = 0;
9741
9742 for (n1 = 0; n1 < i.operands; n1++)
9743 if (operand_type_check (i.types[n1], imm))
9744 {
9745 /* Only one immediate is allowed for PC
9746 relative address. */
9747 gas_assert (sz == 0);
9748 sz = imm_size (n1);
9749 i.op[n].disps->X_add_number -= sz;
9750 }
9751 /* We should find the immediate. */
9752 gas_assert (sz != 0);
9753 }
9754
9755 p = frag_more (size);
9756 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9757 if (GOT_symbol
9758 && GOT_symbol == i.op[n].disps->X_add_symbol
9759 && (((reloc_type == BFD_RELOC_32
9760 || reloc_type == BFD_RELOC_X86_64_32S
9761 || (reloc_type == BFD_RELOC_64
9762 && object_64bit))
9763 && (i.op[n].disps->X_op == O_symbol
9764 || (i.op[n].disps->X_op == O_add
9765 && ((symbol_get_value_expression
9766 (i.op[n].disps->X_op_symbol)->X_op)
9767 == O_subtract))))
9768 || reloc_type == BFD_RELOC_32_PCREL))
9769 {
9770 if (!object_64bit)
9771 {
9772 reloc_type = BFD_RELOC_386_GOTPC;
9773 i.has_gotpc_tls_reloc = TRUE;
9774 i.op[n].imms->X_add_number +=
9775 encoding_length (insn_start_frag, insn_start_off, p);
9776 }
9777 else if (reloc_type == BFD_RELOC_64)
9778 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9779 else
9780 /* Don't do the adjustment for x86-64, as there
9781 the pcrel addressing is relative to the _next_
9782 insn, and that is taken care of in other code. */
9783 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9784 }
9785 else if (align_branch_power)
9786 {
9787 switch (reloc_type)
9788 {
9789 case BFD_RELOC_386_TLS_GD:
9790 case BFD_RELOC_386_TLS_LDM:
9791 case BFD_RELOC_386_TLS_IE:
9792 case BFD_RELOC_386_TLS_IE_32:
9793 case BFD_RELOC_386_TLS_GOTIE:
9794 case BFD_RELOC_386_TLS_GOTDESC:
9795 case BFD_RELOC_386_TLS_DESC_CALL:
9796 case BFD_RELOC_X86_64_TLSGD:
9797 case BFD_RELOC_X86_64_TLSLD:
9798 case BFD_RELOC_X86_64_GOTTPOFF:
9799 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9800 case BFD_RELOC_X86_64_TLSDESC_CALL:
9801 i.has_gotpc_tls_reloc = TRUE;
9802 default:
9803 break;
9804 }
9805 }
9806 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9807 size, i.op[n].disps, pcrel,
9808 reloc_type);
9809 /* Check for "call/jmp *mem", "mov mem, %reg",
9810 "test %reg, mem" and "binop mem, %reg" where binop
9811 is one of adc, add, and, cmp, or, sbb, sub, xor
9812 instructions without data prefix. Always generate
9813 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9814 if (i.prefix[DATA_PREFIX] == 0
9815 && (generate_relax_relocations
9816 || (!object_64bit
9817 && i.rm.mode == 0
9818 && i.rm.regmem == 5))
9819 && (i.rm.mode == 2
9820 || (i.rm.mode == 0 && i.rm.regmem == 5))
9821 && !is_any_vex_encoding(&i.tm)
9822 && ((i.operands == 1
9823 && i.tm.base_opcode == 0xff
9824 && (i.rm.reg == 2 || i.rm.reg == 4))
9825 || (i.operands == 2
9826 && (i.tm.base_opcode == 0x8b
9827 || i.tm.base_opcode == 0x85
9828 || (i.tm.base_opcode & ~0x38) == 0x03))))
9829 {
9830 if (object_64bit)
9831 {
9832 fixP->fx_tcbit = i.rex != 0;
9833 if (i.base_reg
9834 && (i.base_reg->reg_num == RegIP))
9835 fixP->fx_tcbit2 = 1;
9836 }
9837 else
9838 fixP->fx_tcbit2 = 1;
9839 }
9840 }
9841 }
9842 }
9843 }
9844
9845 static void
9846 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9847 {
9848 char *p;
9849 unsigned int n;
9850
9851 for (n = 0; n < i.operands; n++)
9852 {
9853 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9854 if (i.rounding && (int) n == i.rounding->operand)
9855 continue;
9856
9857 if (operand_type_check (i.types[n], imm))
9858 {
9859 int size = imm_size (n);
9860
9861 if (now_seg == absolute_section)
9862 abs_section_offset += size;
9863 else if (i.op[n].imms->X_op == O_constant)
9864 {
9865 offsetT val;
9866
9867 val = offset_in_range (i.op[n].imms->X_add_number,
9868 size);
9869 p = frag_more (size);
9870 md_number_to_chars (p, val, size);
9871 }
9872 else
9873 {
9874 /* Not absolute_section.
9875 Need a 32-bit fixup (don't support 8bit
9876 non-absolute imms). Try to support other
9877 sizes ... */
9878 enum bfd_reloc_code_real reloc_type;
9879 int sign;
9880
9881 if (i.types[n].bitfield.imm32s
9882 && (i.suffix == QWORD_MNEM_SUFFIX
9883 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9884 sign = 1;
9885 else
9886 sign = 0;
9887
9888 p = frag_more (size);
9889 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9890
9891 /* This is tough to explain. We end up with this one if we
9892 * have operands that look like
9893 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9894 * obtain the absolute address of the GOT, and it is strongly
9895 * preferable from a performance point of view to avoid using
9896 * a runtime relocation for this. The actual sequence of
9897 * instructions often look something like:
9898 *
9899 * call .L66
9900 * .L66:
9901 * popl %ebx
9902 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9903 *
9904 * The call and pop essentially return the absolute address
9905 * of the label .L66 and store it in %ebx. The linker itself
9906 * will ultimately change the first operand of the addl so
9907 * that %ebx points to the GOT, but to keep things simple, the
9908 * .o file must have this operand set so that it generates not
9909 * the absolute address of .L66, but the absolute address of
9910 * itself. This allows the linker itself simply treat a GOTPC
9911 * relocation as asking for a pcrel offset to the GOT to be
9912 * added in, and the addend of the relocation is stored in the
9913 * operand field for the instruction itself.
9914 *
9915 * Our job here is to fix the operand so that it would add
9916 * the correct offset so that %ebx would point to itself. The
9917 * thing that is tricky is that .-.L66 will point to the
9918 * beginning of the instruction, so we need to further modify
9919 * the operand so that it will point to itself. There are
9920 * other cases where you have something like:
9921 *
9922 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9923 *
9924 * and here no correction would be required. Internally in
9925 * the assembler we treat operands of this form as not being
9926 * pcrel since the '.' is explicitly mentioned, and I wonder
9927 * whether it would simplify matters to do it this way. Who
9928 * knows. In earlier versions of the PIC patches, the
9929 * pcrel_adjust field was used to store the correction, but
9930 * since the expression is not pcrel, I felt it would be
9931 * confusing to do it this way. */
9932
9933 if ((reloc_type == BFD_RELOC_32
9934 || reloc_type == BFD_RELOC_X86_64_32S
9935 || reloc_type == BFD_RELOC_64)
9936 && GOT_symbol
9937 && GOT_symbol == i.op[n].imms->X_add_symbol
9938 && (i.op[n].imms->X_op == O_symbol
9939 || (i.op[n].imms->X_op == O_add
9940 && ((symbol_get_value_expression
9941 (i.op[n].imms->X_op_symbol)->X_op)
9942 == O_subtract))))
9943 {
9944 if (!object_64bit)
9945 reloc_type = BFD_RELOC_386_GOTPC;
9946 else if (size == 4)
9947 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9948 else if (size == 8)
9949 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9950 i.has_gotpc_tls_reloc = TRUE;
9951 i.op[n].imms->X_add_number +=
9952 encoding_length (insn_start_frag, insn_start_off, p);
9953 }
9954 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9955 i.op[n].imms, 0, reloc_type);
9956 }
9957 }
9958 }
9959 }
9960 \f
9961 /* x86_cons_fix_new is called via the expression parsing code when a
9962 reloc is needed. We use this hook to get the correct .got reloc. */
9963 static int cons_sign = -1;
9964
9965 void
9966 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9967 expressionS *exp, bfd_reloc_code_real_type r)
9968 {
9969 r = reloc (len, 0, cons_sign, r);
9970
9971 #ifdef TE_PE
9972 if (exp->X_op == O_secrel)
9973 {
9974 exp->X_op = O_symbol;
9975 r = BFD_RELOC_32_SECREL;
9976 }
9977 #endif
9978
9979 fix_new_exp (frag, off, len, exp, 0, r);
9980 }
9981
9982 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9983 purpose of the `.dc.a' internal pseudo-op. */
9984
9985 int
9986 x86_address_bytes (void)
9987 {
9988 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9989 return 4;
9990 return stdoutput->arch_info->bits_per_address / 8;
9991 }
9992
9993 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9994 || defined (LEX_AT)
9995 # define lex_got(reloc, adjust, types) NULL
9996 #else
9997 /* Parse operands of the form
9998 <symbol>@GOTOFF+<nnn>
9999 and similar .plt or .got references.
10000
10001 If we find one, set up the correct relocation in RELOC and copy the
10002 input string, minus the `@GOTOFF' into a malloc'd buffer for
10003 parsing by the calling routine. Return this buffer, and if ADJUST
10004 is non-null set it to the length of the string we removed from the
10005 input line. Otherwise return NULL. */
10006 static char *
10007 lex_got (enum bfd_reloc_code_real *rel,
10008 int *adjust,
10009 i386_operand_type *types)
10010 {
10011 /* Some of the relocations depend on the size of what field is to
10012 be relocated. But in our callers i386_immediate and i386_displacement
10013 we don't yet know the operand size (this will be set by insn
10014 matching). Hence we record the word32 relocation here,
10015 and adjust the reloc according to the real size in reloc(). */
10016 static const struct {
10017 const char *str;
10018 int len;
10019 const enum bfd_reloc_code_real rel[2];
10020 const i386_operand_type types64;
10021 } gotrel[] = {
10022 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10023 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
10024 BFD_RELOC_SIZE32 },
10025 OPERAND_TYPE_IMM32_64 },
10026 #endif
10027 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
10028 BFD_RELOC_X86_64_PLTOFF64 },
10029 OPERAND_TYPE_IMM64 },
10030 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
10031 BFD_RELOC_X86_64_PLT32 },
10032 OPERAND_TYPE_IMM32_32S_DISP32 },
10033 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
10034 BFD_RELOC_X86_64_GOTPLT64 },
10035 OPERAND_TYPE_IMM64_DISP64 },
10036 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
10037 BFD_RELOC_X86_64_GOTOFF64 },
10038 OPERAND_TYPE_IMM64_DISP64 },
10039 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
10040 BFD_RELOC_X86_64_GOTPCREL },
10041 OPERAND_TYPE_IMM32_32S_DISP32 },
10042 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
10043 BFD_RELOC_X86_64_TLSGD },
10044 OPERAND_TYPE_IMM32_32S_DISP32 },
10045 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
10046 _dummy_first_bfd_reloc_code_real },
10047 OPERAND_TYPE_NONE },
10048 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
10049 BFD_RELOC_X86_64_TLSLD },
10050 OPERAND_TYPE_IMM32_32S_DISP32 },
10051 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
10052 BFD_RELOC_X86_64_GOTTPOFF },
10053 OPERAND_TYPE_IMM32_32S_DISP32 },
10054 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
10055 BFD_RELOC_X86_64_TPOFF32 },
10056 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10057 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
10058 _dummy_first_bfd_reloc_code_real },
10059 OPERAND_TYPE_NONE },
10060 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
10061 BFD_RELOC_X86_64_DTPOFF32 },
10062 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10063 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
10064 _dummy_first_bfd_reloc_code_real },
10065 OPERAND_TYPE_NONE },
10066 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
10067 _dummy_first_bfd_reloc_code_real },
10068 OPERAND_TYPE_NONE },
10069 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
10070 BFD_RELOC_X86_64_GOT32 },
10071 OPERAND_TYPE_IMM32_32S_64_DISP32 },
10072 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
10073 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
10074 OPERAND_TYPE_IMM32_32S_DISP32 },
10075 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
10076 BFD_RELOC_X86_64_TLSDESC_CALL },
10077 OPERAND_TYPE_IMM32_32S_DISP32 },
10078 };
10079 char *cp;
10080 unsigned int j;
10081
10082 #if defined (OBJ_MAYBE_ELF)
10083 if (!IS_ELF)
10084 return NULL;
10085 #endif
10086
10087 for (cp = input_line_pointer; *cp != '@'; cp++)
10088 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10089 return NULL;
10090
10091 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10092 {
10093 int len = gotrel[j].len;
10094 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10095 {
10096 if (gotrel[j].rel[object_64bit] != 0)
10097 {
10098 int first, second;
10099 char *tmpbuf, *past_reloc;
10100
10101 *rel = gotrel[j].rel[object_64bit];
10102
10103 if (types)
10104 {
10105 if (flag_code != CODE_64BIT)
10106 {
10107 types->bitfield.imm32 = 1;
10108 types->bitfield.disp32 = 1;
10109 }
10110 else
10111 *types = gotrel[j].types64;
10112 }
10113
10114 if (j != 0 && GOT_symbol == NULL)
10115 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
10116
10117 /* The length of the first part of our input line. */
10118 first = cp - input_line_pointer;
10119
10120 /* The second part goes from after the reloc token until
10121 (and including) an end_of_line char or comma. */
10122 past_reloc = cp + 1 + len;
10123 cp = past_reloc;
10124 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10125 ++cp;
10126 second = cp + 1 - past_reloc;
10127
10128 /* Allocate and copy string. The trailing NUL shouldn't
10129 be necessary, but be safe. */
10130 tmpbuf = XNEWVEC (char, first + second + 2);
10131 memcpy (tmpbuf, input_line_pointer, first);
10132 if (second != 0 && *past_reloc != ' ')
10133 /* Replace the relocation token with ' ', so that
10134 errors like foo@GOTOFF1 will be detected. */
10135 tmpbuf[first++] = ' ';
10136 else
10137 /* Increment length by 1 if the relocation token is
10138 removed. */
10139 len++;
10140 if (adjust)
10141 *adjust = len;
10142 memcpy (tmpbuf + first, past_reloc, second);
10143 tmpbuf[first + second] = '\0';
10144 return tmpbuf;
10145 }
10146
10147 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10148 gotrel[j].str, 1 << (5 + object_64bit));
10149 return NULL;
10150 }
10151 }
10152
10153 /* Might be a symbol version string. Don't as_bad here. */
10154 return NULL;
10155 }
10156 #endif
10157
10158 #ifdef TE_PE
10159 #ifdef lex_got
10160 #undef lex_got
10161 #endif
10162 /* Parse operands of the form
10163 <symbol>@SECREL32+<nnn>
10164
10165 If we find one, set up the correct relocation in RELOC and copy the
10166 input string, minus the `@SECREL32' into a malloc'd buffer for
10167 parsing by the calling routine. Return this buffer, and if ADJUST
10168 is non-null set it to the length of the string we removed from the
10169 input line. Otherwise return NULL.
10170
10171 This function is copied from the ELF version above adjusted for PE targets. */
10172
10173 static char *
10174 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10175 int *adjust ATTRIBUTE_UNUSED,
10176 i386_operand_type *types)
10177 {
10178 static const struct
10179 {
10180 const char *str;
10181 int len;
10182 const enum bfd_reloc_code_real rel[2];
10183 const i386_operand_type types64;
10184 }
10185 gotrel[] =
10186 {
10187 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10188 BFD_RELOC_32_SECREL },
10189 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10190 };
10191
10192 char *cp;
10193 unsigned j;
10194
10195 for (cp = input_line_pointer; *cp != '@'; cp++)
10196 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10197 return NULL;
10198
10199 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10200 {
10201 int len = gotrel[j].len;
10202
10203 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10204 {
10205 if (gotrel[j].rel[object_64bit] != 0)
10206 {
10207 int first, second;
10208 char *tmpbuf, *past_reloc;
10209
10210 *rel = gotrel[j].rel[object_64bit];
10211 if (adjust)
10212 *adjust = len;
10213
10214 if (types)
10215 {
10216 if (flag_code != CODE_64BIT)
10217 {
10218 types->bitfield.imm32 = 1;
10219 types->bitfield.disp32 = 1;
10220 }
10221 else
10222 *types = gotrel[j].types64;
10223 }
10224
10225 /* The length of the first part of our input line. */
10226 first = cp - input_line_pointer;
10227
10228 /* The second part goes from after the reloc token until
10229 (and including) an end_of_line char or comma. */
10230 past_reloc = cp + 1 + len;
10231 cp = past_reloc;
10232 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10233 ++cp;
10234 second = cp + 1 - past_reloc;
10235
10236 /* Allocate and copy string. The trailing NUL shouldn't
10237 be necessary, but be safe. */
10238 tmpbuf = XNEWVEC (char, first + second + 2);
10239 memcpy (tmpbuf, input_line_pointer, first);
10240 if (second != 0 && *past_reloc != ' ')
10241 /* Replace the relocation token with ' ', so that
10242 errors like foo@SECLREL321 will be detected. */
10243 tmpbuf[first++] = ' ';
10244 memcpy (tmpbuf + first, past_reloc, second);
10245 tmpbuf[first + second] = '\0';
10246 return tmpbuf;
10247 }
10248
10249 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10250 gotrel[j].str, 1 << (5 + object_64bit));
10251 return NULL;
10252 }
10253 }
10254
10255 /* Might be a symbol version string. Don't as_bad here. */
10256 return NULL;
10257 }
10258
10259 #endif /* TE_PE */
10260
10261 bfd_reloc_code_real_type
10262 x86_cons (expressionS *exp, int size)
10263 {
10264 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10265
10266 intel_syntax = -intel_syntax;
10267
10268 exp->X_md = 0;
10269 if (size == 4 || (object_64bit && size == 8))
10270 {
10271 /* Handle @GOTOFF and the like in an expression. */
10272 char *save;
10273 char *gotfree_input_line;
10274 int adjust = 0;
10275
10276 save = input_line_pointer;
10277 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10278 if (gotfree_input_line)
10279 input_line_pointer = gotfree_input_line;
10280
10281 expression (exp);
10282
10283 if (gotfree_input_line)
10284 {
10285 /* expression () has merrily parsed up to the end of line,
10286 or a comma - in the wrong buffer. Transfer how far
10287 input_line_pointer has moved to the right buffer. */
10288 input_line_pointer = (save
10289 + (input_line_pointer - gotfree_input_line)
10290 + adjust);
10291 free (gotfree_input_line);
10292 if (exp->X_op == O_constant
10293 || exp->X_op == O_absent
10294 || exp->X_op == O_illegal
10295 || exp->X_op == O_register
10296 || exp->X_op == O_big)
10297 {
10298 char c = *input_line_pointer;
10299 *input_line_pointer = 0;
10300 as_bad (_("missing or invalid expression `%s'"), save);
10301 *input_line_pointer = c;
10302 }
10303 else if ((got_reloc == BFD_RELOC_386_PLT32
10304 || got_reloc == BFD_RELOC_X86_64_PLT32)
10305 && exp->X_op != O_symbol)
10306 {
10307 char c = *input_line_pointer;
10308 *input_line_pointer = 0;
10309 as_bad (_("invalid PLT expression `%s'"), save);
10310 *input_line_pointer = c;
10311 }
10312 }
10313 }
10314 else
10315 expression (exp);
10316
10317 intel_syntax = -intel_syntax;
10318
10319 if (intel_syntax)
10320 i386_intel_simplify (exp);
10321
10322 return got_reloc;
10323 }
10324
10325 static void
10326 signed_cons (int size)
10327 {
10328 if (flag_code == CODE_64BIT)
10329 cons_sign = 1;
10330 cons (size);
10331 cons_sign = -1;
10332 }
10333
10334 #ifdef TE_PE
10335 static void
10336 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10337 {
10338 expressionS exp;
10339
10340 do
10341 {
10342 expression (&exp);
10343 if (exp.X_op == O_symbol)
10344 exp.X_op = O_secrel;
10345
10346 emit_expr (&exp, 4);
10347 }
10348 while (*input_line_pointer++ == ',');
10349
10350 input_line_pointer--;
10351 demand_empty_rest_of_line ();
10352 }
10353 #endif
10354
10355 /* Handle Vector operations. */
10356
10357 static char *
10358 check_VecOperations (char *op_string, char *op_end)
10359 {
10360 const reg_entry *mask;
10361 const char *saved;
10362 char *end_op;
10363
10364 while (*op_string
10365 && (op_end == NULL || op_string < op_end))
10366 {
10367 saved = op_string;
10368 if (*op_string == '{')
10369 {
10370 op_string++;
10371
10372 /* Check broadcasts. */
10373 if (strncmp (op_string, "1to", 3) == 0)
10374 {
10375 int bcst_type;
10376
10377 if (i.broadcast)
10378 goto duplicated_vec_op;
10379
10380 op_string += 3;
10381 if (*op_string == '8')
10382 bcst_type = 8;
10383 else if (*op_string == '4')
10384 bcst_type = 4;
10385 else if (*op_string == '2')
10386 bcst_type = 2;
10387 else if (*op_string == '1'
10388 && *(op_string+1) == '6')
10389 {
10390 bcst_type = 16;
10391 op_string++;
10392 }
10393 else
10394 {
10395 as_bad (_("Unsupported broadcast: `%s'"), saved);
10396 return NULL;
10397 }
10398 op_string++;
10399
10400 broadcast_op.type = bcst_type;
10401 broadcast_op.operand = this_operand;
10402 broadcast_op.bytes = 0;
10403 i.broadcast = &broadcast_op;
10404 }
10405 /* Check masking operation. */
10406 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10407 {
10408 if (mask == &bad_reg)
10409 return NULL;
10410
10411 /* k0 can't be used for write mask. */
10412 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10413 {
10414 as_bad (_("`%s%s' can't be used for write mask"),
10415 register_prefix, mask->reg_name);
10416 return NULL;
10417 }
10418
10419 if (!i.mask)
10420 {
10421 mask_op.mask = mask;
10422 mask_op.zeroing = 0;
10423 mask_op.operand = this_operand;
10424 i.mask = &mask_op;
10425 }
10426 else
10427 {
10428 if (i.mask->mask)
10429 goto duplicated_vec_op;
10430
10431 i.mask->mask = mask;
10432
10433 /* Only "{z}" is allowed here. No need to check
10434 zeroing mask explicitly. */
10435 if (i.mask->operand != this_operand)
10436 {
10437 as_bad (_("invalid write mask `%s'"), saved);
10438 return NULL;
10439 }
10440 }
10441
10442 op_string = end_op;
10443 }
10444 /* Check zeroing-flag for masking operation. */
10445 else if (*op_string == 'z')
10446 {
10447 if (!i.mask)
10448 {
10449 mask_op.mask = NULL;
10450 mask_op.zeroing = 1;
10451 mask_op.operand = this_operand;
10452 i.mask = &mask_op;
10453 }
10454 else
10455 {
10456 if (i.mask->zeroing)
10457 {
10458 duplicated_vec_op:
10459 as_bad (_("duplicated `%s'"), saved);
10460 return NULL;
10461 }
10462
10463 i.mask->zeroing = 1;
10464
10465 /* Only "{%k}" is allowed here. No need to check mask
10466 register explicitly. */
10467 if (i.mask->operand != this_operand)
10468 {
10469 as_bad (_("invalid zeroing-masking `%s'"),
10470 saved);
10471 return NULL;
10472 }
10473 }
10474
10475 op_string++;
10476 }
10477 else
10478 goto unknown_vec_op;
10479
10480 if (*op_string != '}')
10481 {
10482 as_bad (_("missing `}' in `%s'"), saved);
10483 return NULL;
10484 }
10485 op_string++;
10486
10487 /* Strip whitespace since the addition of pseudo prefixes
10488 changed how the scrubber treats '{'. */
10489 if (is_space_char (*op_string))
10490 ++op_string;
10491
10492 continue;
10493 }
10494 unknown_vec_op:
10495 /* We don't know this one. */
10496 as_bad (_("unknown vector operation: `%s'"), saved);
10497 return NULL;
10498 }
10499
10500 if (i.mask && i.mask->zeroing && !i.mask->mask)
10501 {
10502 as_bad (_("zeroing-masking only allowed with write mask"));
10503 return NULL;
10504 }
10505
10506 return op_string;
10507 }
10508
10509 static int
10510 i386_immediate (char *imm_start)
10511 {
10512 char *save_input_line_pointer;
10513 char *gotfree_input_line;
10514 segT exp_seg = 0;
10515 expressionS *exp;
10516 i386_operand_type types;
10517
10518 operand_type_set (&types, ~0);
10519
10520 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10521 {
10522 as_bad (_("at most %d immediate operands are allowed"),
10523 MAX_IMMEDIATE_OPERANDS);
10524 return 0;
10525 }
10526
10527 exp = &im_expressions[i.imm_operands++];
10528 i.op[this_operand].imms = exp;
10529
10530 if (is_space_char (*imm_start))
10531 ++imm_start;
10532
10533 save_input_line_pointer = input_line_pointer;
10534 input_line_pointer = imm_start;
10535
10536 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10537 if (gotfree_input_line)
10538 input_line_pointer = gotfree_input_line;
10539
10540 exp_seg = expression (exp);
10541
10542 SKIP_WHITESPACE ();
10543
10544 /* Handle vector operations. */
10545 if (*input_line_pointer == '{')
10546 {
10547 input_line_pointer = check_VecOperations (input_line_pointer,
10548 NULL);
10549 if (input_line_pointer == NULL)
10550 return 0;
10551 }
10552
10553 if (*input_line_pointer)
10554 as_bad (_("junk `%s' after expression"), input_line_pointer);
10555
10556 input_line_pointer = save_input_line_pointer;
10557 if (gotfree_input_line)
10558 {
10559 free (gotfree_input_line);
10560
10561 if (exp->X_op == O_constant || exp->X_op == O_register)
10562 exp->X_op = O_illegal;
10563 }
10564
10565 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10566 }
10567
10568 static int
10569 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10570 i386_operand_type types, const char *imm_start)
10571 {
10572 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10573 {
10574 if (imm_start)
10575 as_bad (_("missing or invalid immediate expression `%s'"),
10576 imm_start);
10577 return 0;
10578 }
10579 else if (exp->X_op == O_constant)
10580 {
10581 /* Size it properly later. */
10582 i.types[this_operand].bitfield.imm64 = 1;
10583 /* If not 64bit, sign extend val. */
10584 if (flag_code != CODE_64BIT
10585 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10586 exp->X_add_number
10587 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10588 }
10589 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10590 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10591 && exp_seg != absolute_section
10592 && exp_seg != text_section
10593 && exp_seg != data_section
10594 && exp_seg != bss_section
10595 && exp_seg != undefined_section
10596 && !bfd_is_com_section (exp_seg))
10597 {
10598 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10599 return 0;
10600 }
10601 #endif
10602 else if (!intel_syntax && exp_seg == reg_section)
10603 {
10604 if (imm_start)
10605 as_bad (_("illegal immediate register operand %s"), imm_start);
10606 return 0;
10607 }
10608 else
10609 {
10610 /* This is an address. The size of the address will be
10611 determined later, depending on destination register,
10612 suffix, or the default for the section. */
10613 i.types[this_operand].bitfield.imm8 = 1;
10614 i.types[this_operand].bitfield.imm16 = 1;
10615 i.types[this_operand].bitfield.imm32 = 1;
10616 i.types[this_operand].bitfield.imm32s = 1;
10617 i.types[this_operand].bitfield.imm64 = 1;
10618 i.types[this_operand] = operand_type_and (i.types[this_operand],
10619 types);
10620 }
10621
10622 return 1;
10623 }
10624
10625 static char *
10626 i386_scale (char *scale)
10627 {
10628 offsetT val;
10629 char *save = input_line_pointer;
10630
10631 input_line_pointer = scale;
10632 val = get_absolute_expression ();
10633
10634 switch (val)
10635 {
10636 case 1:
10637 i.log2_scale_factor = 0;
10638 break;
10639 case 2:
10640 i.log2_scale_factor = 1;
10641 break;
10642 case 4:
10643 i.log2_scale_factor = 2;
10644 break;
10645 case 8:
10646 i.log2_scale_factor = 3;
10647 break;
10648 default:
10649 {
10650 char sep = *input_line_pointer;
10651
10652 *input_line_pointer = '\0';
10653 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10654 scale);
10655 *input_line_pointer = sep;
10656 input_line_pointer = save;
10657 return NULL;
10658 }
10659 }
10660 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10661 {
10662 as_warn (_("scale factor of %d without an index register"),
10663 1 << i.log2_scale_factor);
10664 i.log2_scale_factor = 0;
10665 }
10666 scale = input_line_pointer;
10667 input_line_pointer = save;
10668 return scale;
10669 }
10670
10671 static int
10672 i386_displacement (char *disp_start, char *disp_end)
10673 {
10674 expressionS *exp;
10675 segT exp_seg = 0;
10676 char *save_input_line_pointer;
10677 char *gotfree_input_line;
10678 int override;
10679 i386_operand_type bigdisp, types = anydisp;
10680 int ret;
10681
10682 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10683 {
10684 as_bad (_("at most %d displacement operands are allowed"),
10685 MAX_MEMORY_OPERANDS);
10686 return 0;
10687 }
10688
10689 operand_type_set (&bigdisp, 0);
10690 if (i.jumpabsolute
10691 || i.types[this_operand].bitfield.baseindex
10692 || (current_templates->start->opcode_modifier.jump != JUMP
10693 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10694 {
10695 i386_addressing_mode ();
10696 override = (i.prefix[ADDR_PREFIX] != 0);
10697 if (flag_code == CODE_64BIT)
10698 {
10699 if (!override)
10700 {
10701 bigdisp.bitfield.disp32s = 1;
10702 bigdisp.bitfield.disp64 = 1;
10703 }
10704 else
10705 bigdisp.bitfield.disp32 = 1;
10706 }
10707 else if ((flag_code == CODE_16BIT) ^ override)
10708 bigdisp.bitfield.disp16 = 1;
10709 else
10710 bigdisp.bitfield.disp32 = 1;
10711 }
10712 else
10713 {
10714 /* For PC-relative branches, the width of the displacement may be
10715 dependent upon data size, but is never dependent upon address size.
10716 Also make sure to not unintentionally match against a non-PC-relative
10717 branch template. */
10718 static templates aux_templates;
10719 const insn_template *t = current_templates->start;
10720 bfd_boolean has_intel64 = FALSE;
10721
10722 aux_templates.start = t;
10723 while (++t < current_templates->end)
10724 {
10725 if (t->opcode_modifier.jump
10726 != current_templates->start->opcode_modifier.jump)
10727 break;
10728 if ((t->opcode_modifier.isa64 >= INTEL64))
10729 has_intel64 = TRUE;
10730 }
10731 if (t < current_templates->end)
10732 {
10733 aux_templates.end = t;
10734 current_templates = &aux_templates;
10735 }
10736
10737 override = (i.prefix[DATA_PREFIX] != 0);
10738 if (flag_code == CODE_64BIT)
10739 {
10740 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10741 && (!intel64 || !has_intel64))
10742 bigdisp.bitfield.disp16 = 1;
10743 else
10744 bigdisp.bitfield.disp32s = 1;
10745 }
10746 else
10747 {
10748 if (!override)
10749 override = (i.suffix == (flag_code != CODE_16BIT
10750 ? WORD_MNEM_SUFFIX
10751 : LONG_MNEM_SUFFIX));
10752 bigdisp.bitfield.disp32 = 1;
10753 if ((flag_code == CODE_16BIT) ^ override)
10754 {
10755 bigdisp.bitfield.disp32 = 0;
10756 bigdisp.bitfield.disp16 = 1;
10757 }
10758 }
10759 }
10760 i.types[this_operand] = operand_type_or (i.types[this_operand],
10761 bigdisp);
10762
10763 exp = &disp_expressions[i.disp_operands];
10764 i.op[this_operand].disps = exp;
10765 i.disp_operands++;
10766 save_input_line_pointer = input_line_pointer;
10767 input_line_pointer = disp_start;
10768 END_STRING_AND_SAVE (disp_end);
10769
10770 #ifndef GCC_ASM_O_HACK
10771 #define GCC_ASM_O_HACK 0
10772 #endif
10773 #if GCC_ASM_O_HACK
10774 END_STRING_AND_SAVE (disp_end + 1);
10775 if (i.types[this_operand].bitfield.baseIndex
10776 && displacement_string_end[-1] == '+')
10777 {
10778 /* This hack is to avoid a warning when using the "o"
10779 constraint within gcc asm statements.
10780 For instance:
10781
10782 #define _set_tssldt_desc(n,addr,limit,type) \
10783 __asm__ __volatile__ ( \
10784 "movw %w2,%0\n\t" \
10785 "movw %w1,2+%0\n\t" \
10786 "rorl $16,%1\n\t" \
10787 "movb %b1,4+%0\n\t" \
10788 "movb %4,5+%0\n\t" \
10789 "movb $0,6+%0\n\t" \
10790 "movb %h1,7+%0\n\t" \
10791 "rorl $16,%1" \
10792 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10793
10794 This works great except that the output assembler ends
10795 up looking a bit weird if it turns out that there is
10796 no offset. You end up producing code that looks like:
10797
10798 #APP
10799 movw $235,(%eax)
10800 movw %dx,2+(%eax)
10801 rorl $16,%edx
10802 movb %dl,4+(%eax)
10803 movb $137,5+(%eax)
10804 movb $0,6+(%eax)
10805 movb %dh,7+(%eax)
10806 rorl $16,%edx
10807 #NO_APP
10808
10809 So here we provide the missing zero. */
10810
10811 *displacement_string_end = '0';
10812 }
10813 #endif
10814 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10815 if (gotfree_input_line)
10816 input_line_pointer = gotfree_input_line;
10817
10818 exp_seg = expression (exp);
10819
10820 SKIP_WHITESPACE ();
10821 if (*input_line_pointer)
10822 as_bad (_("junk `%s' after expression"), input_line_pointer);
10823 #if GCC_ASM_O_HACK
10824 RESTORE_END_STRING (disp_end + 1);
10825 #endif
10826 input_line_pointer = save_input_line_pointer;
10827 if (gotfree_input_line)
10828 {
10829 free (gotfree_input_line);
10830
10831 if (exp->X_op == O_constant || exp->X_op == O_register)
10832 exp->X_op = O_illegal;
10833 }
10834
10835 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10836
10837 RESTORE_END_STRING (disp_end);
10838
10839 return ret;
10840 }
10841
10842 static int
10843 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10844 i386_operand_type types, const char *disp_start)
10845 {
10846 i386_operand_type bigdisp;
10847 int ret = 1;
10848
10849 /* We do this to make sure that the section symbol is in
10850 the symbol table. We will ultimately change the relocation
10851 to be relative to the beginning of the section. */
10852 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10853 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10854 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10855 {
10856 if (exp->X_op != O_symbol)
10857 goto inv_disp;
10858
10859 if (S_IS_LOCAL (exp->X_add_symbol)
10860 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10861 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10862 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10863 exp->X_op = O_subtract;
10864 exp->X_op_symbol = GOT_symbol;
10865 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10866 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10867 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10868 i.reloc[this_operand] = BFD_RELOC_64;
10869 else
10870 i.reloc[this_operand] = BFD_RELOC_32;
10871 }
10872
10873 else if (exp->X_op == O_absent
10874 || exp->X_op == O_illegal
10875 || exp->X_op == O_big)
10876 {
10877 inv_disp:
10878 as_bad (_("missing or invalid displacement expression `%s'"),
10879 disp_start);
10880 ret = 0;
10881 }
10882
10883 else if (flag_code == CODE_64BIT
10884 && !i.prefix[ADDR_PREFIX]
10885 && exp->X_op == O_constant)
10886 {
10887 /* Since displacement is signed extended to 64bit, don't allow
10888 disp32 and turn off disp32s if they are out of range. */
10889 i.types[this_operand].bitfield.disp32 = 0;
10890 if (!fits_in_signed_long (exp->X_add_number))
10891 {
10892 i.types[this_operand].bitfield.disp32s = 0;
10893 if (i.types[this_operand].bitfield.baseindex)
10894 {
10895 as_bad (_("0x%lx out range of signed 32bit displacement"),
10896 (long) exp->X_add_number);
10897 ret = 0;
10898 }
10899 }
10900 }
10901
10902 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10903 else if (exp->X_op != O_constant
10904 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10905 && exp_seg != absolute_section
10906 && exp_seg != text_section
10907 && exp_seg != data_section
10908 && exp_seg != bss_section
10909 && exp_seg != undefined_section
10910 && !bfd_is_com_section (exp_seg))
10911 {
10912 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10913 ret = 0;
10914 }
10915 #endif
10916
10917 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10918 /* Constants get taken care of by optimize_disp(). */
10919 && exp->X_op != O_constant)
10920 i.types[this_operand].bitfield.disp8 = 1;
10921
10922 /* Check if this is a displacement only operand. */
10923 bigdisp = i.types[this_operand];
10924 bigdisp.bitfield.disp8 = 0;
10925 bigdisp.bitfield.disp16 = 0;
10926 bigdisp.bitfield.disp32 = 0;
10927 bigdisp.bitfield.disp32s = 0;
10928 bigdisp.bitfield.disp64 = 0;
10929 if (operand_type_all_zero (&bigdisp))
10930 i.types[this_operand] = operand_type_and (i.types[this_operand],
10931 types);
10932
10933 return ret;
10934 }
10935
10936 /* Return the active addressing mode, taking address override and
10937 registers forming the address into consideration. Update the
10938 address override prefix if necessary. */
10939
10940 static enum flag_code
10941 i386_addressing_mode (void)
10942 {
10943 enum flag_code addr_mode;
10944
10945 if (i.prefix[ADDR_PREFIX])
10946 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10947 else if (flag_code == CODE_16BIT
10948 && current_templates->start->cpu_flags.bitfield.cpumpx
10949 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10950 from md_assemble() by "is not a valid base/index expression"
10951 when there is a base and/or index. */
10952 && !i.types[this_operand].bitfield.baseindex)
10953 {
10954 /* MPX insn memory operands with neither base nor index must be forced
10955 to use 32-bit addressing in 16-bit mode. */
10956 addr_mode = CODE_32BIT;
10957 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10958 ++i.prefixes;
10959 gas_assert (!i.types[this_operand].bitfield.disp16);
10960 gas_assert (!i.types[this_operand].bitfield.disp32);
10961 }
10962 else
10963 {
10964 addr_mode = flag_code;
10965
10966 #if INFER_ADDR_PREFIX
10967 if (i.mem_operands == 0)
10968 {
10969 /* Infer address prefix from the first memory operand. */
10970 const reg_entry *addr_reg = i.base_reg;
10971
10972 if (addr_reg == NULL)
10973 addr_reg = i.index_reg;
10974
10975 if (addr_reg)
10976 {
10977 if (addr_reg->reg_type.bitfield.dword)
10978 addr_mode = CODE_32BIT;
10979 else if (flag_code != CODE_64BIT
10980 && addr_reg->reg_type.bitfield.word)
10981 addr_mode = CODE_16BIT;
10982
10983 if (addr_mode != flag_code)
10984 {
10985 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10986 i.prefixes += 1;
10987 /* Change the size of any displacement too. At most one
10988 of Disp16 or Disp32 is set.
10989 FIXME. There doesn't seem to be any real need for
10990 separate Disp16 and Disp32 flags. The same goes for
10991 Imm16 and Imm32. Removing them would probably clean
10992 up the code quite a lot. */
10993 if (flag_code != CODE_64BIT
10994 && (i.types[this_operand].bitfield.disp16
10995 || i.types[this_operand].bitfield.disp32))
10996 i.types[this_operand]
10997 = operand_type_xor (i.types[this_operand], disp16_32);
10998 }
10999 }
11000 }
11001 #endif
11002 }
11003
11004 return addr_mode;
11005 }
11006
11007 /* Make sure the memory operand we've been dealt is valid.
11008 Return 1 on success, 0 on a failure. */
11009
11010 static int
11011 i386_index_check (const char *operand_string)
11012 {
11013 const char *kind = "base/index";
11014 enum flag_code addr_mode = i386_addressing_mode ();
11015
11016 if (current_templates->start->opcode_modifier.isstring
11017 && !current_templates->start->cpu_flags.bitfield.cpupadlock
11018 && (current_templates->end[-1].opcode_modifier.isstring
11019 || i.mem_operands))
11020 {
11021 /* Memory operands of string insns are special in that they only allow
11022 a single register (rDI, rSI, or rBX) as their memory address. */
11023 const reg_entry *expected_reg;
11024 static const char *di_si[][2] =
11025 {
11026 { "esi", "edi" },
11027 { "si", "di" },
11028 { "rsi", "rdi" }
11029 };
11030 static const char *bx[] = { "ebx", "bx", "rbx" };
11031
11032 kind = "string address";
11033
11034 if (current_templates->start->opcode_modifier.repprefixok)
11035 {
11036 int es_op = current_templates->end[-1].opcode_modifier.isstring
11037 - IS_STRING_ES_OP0;
11038 int op = 0;
11039
11040 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
11041 || ((!i.mem_operands != !intel_syntax)
11042 && current_templates->end[-1].operand_types[1]
11043 .bitfield.baseindex))
11044 op = 1;
11045 expected_reg
11046 = (const reg_entry *) str_hash_find (reg_hash,
11047 di_si[addr_mode][op == es_op]);
11048 }
11049 else
11050 expected_reg
11051 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
11052
11053 if (i.base_reg != expected_reg
11054 || i.index_reg
11055 || operand_type_check (i.types[this_operand], disp))
11056 {
11057 /* The second memory operand must have the same size as
11058 the first one. */
11059 if (i.mem_operands
11060 && i.base_reg
11061 && !((addr_mode == CODE_64BIT
11062 && i.base_reg->reg_type.bitfield.qword)
11063 || (addr_mode == CODE_32BIT
11064 ? i.base_reg->reg_type.bitfield.dword
11065 : i.base_reg->reg_type.bitfield.word)))
11066 goto bad_address;
11067
11068 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
11069 operand_string,
11070 intel_syntax ? '[' : '(',
11071 register_prefix,
11072 expected_reg->reg_name,
11073 intel_syntax ? ']' : ')');
11074 return 1;
11075 }
11076 else
11077 return 1;
11078
11079 bad_address:
11080 as_bad (_("`%s' is not a valid %s expression"),
11081 operand_string, kind);
11082 return 0;
11083 }
11084 else
11085 {
11086 if (addr_mode != CODE_16BIT)
11087 {
11088 /* 32-bit/64-bit checks. */
11089 if (i.disp_encoding == disp_encoding_16bit)
11090 {
11091 bad_disp:
11092 as_bad (_("invalid `%s' prefix"),
11093 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
11094 return 0;
11095 }
11096
11097 if ((i.base_reg
11098 && ((addr_mode == CODE_64BIT
11099 ? !i.base_reg->reg_type.bitfield.qword
11100 : !i.base_reg->reg_type.bitfield.dword)
11101 || (i.index_reg && i.base_reg->reg_num == RegIP)
11102 || i.base_reg->reg_num == RegIZ))
11103 || (i.index_reg
11104 && !i.index_reg->reg_type.bitfield.xmmword
11105 && !i.index_reg->reg_type.bitfield.ymmword
11106 && !i.index_reg->reg_type.bitfield.zmmword
11107 && ((addr_mode == CODE_64BIT
11108 ? !i.index_reg->reg_type.bitfield.qword
11109 : !i.index_reg->reg_type.bitfield.dword)
11110 || !i.index_reg->reg_type.bitfield.baseindex)))
11111 goto bad_address;
11112
11113 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
11114 if (current_templates->start->base_opcode == 0xf30f1b
11115 || (current_templates->start->base_opcode & ~1) == 0x0f1a
11116 || current_templates->start->opcode_modifier.sib == SIBMEM)
11117 {
11118 /* They cannot use RIP-relative addressing. */
11119 if (i.base_reg && i.base_reg->reg_num == RegIP)
11120 {
11121 as_bad (_("`%s' cannot be used here"), operand_string);
11122 return 0;
11123 }
11124
11125 /* bndldx and bndstx ignore their scale factor. */
11126 if ((current_templates->start->base_opcode & ~1) == 0x0f1a
11127 && i.log2_scale_factor)
11128 as_warn (_("register scaling is being ignored here"));
11129 }
11130 }
11131 else
11132 {
11133 /* 16-bit checks. */
11134 if (i.disp_encoding == disp_encoding_32bit)
11135 goto bad_disp;
11136
11137 if ((i.base_reg
11138 && (!i.base_reg->reg_type.bitfield.word
11139 || !i.base_reg->reg_type.bitfield.baseindex))
11140 || (i.index_reg
11141 && (!i.index_reg->reg_type.bitfield.word
11142 || !i.index_reg->reg_type.bitfield.baseindex
11143 || !(i.base_reg
11144 && i.base_reg->reg_num < 6
11145 && i.index_reg->reg_num >= 6
11146 && i.log2_scale_factor == 0))))
11147 goto bad_address;
11148 }
11149 }
11150 return 1;
11151 }
11152
11153 /* Handle vector immediates. */
11154
11155 static int
11156 RC_SAE_immediate (const char *imm_start)
11157 {
11158 unsigned int match_found, j;
11159 const char *pstr = imm_start;
11160 expressionS *exp;
11161
11162 if (*pstr != '{')
11163 return 0;
11164
11165 pstr++;
11166 match_found = 0;
11167 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11168 {
11169 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11170 {
11171 if (!i.rounding)
11172 {
11173 rc_op.type = RC_NamesTable[j].type;
11174 rc_op.operand = this_operand;
11175 i.rounding = &rc_op;
11176 }
11177 else
11178 {
11179 as_bad (_("duplicated `%s'"), imm_start);
11180 return 0;
11181 }
11182 pstr += RC_NamesTable[j].len;
11183 match_found = 1;
11184 break;
11185 }
11186 }
11187 if (!match_found)
11188 return 0;
11189
11190 if (*pstr++ != '}')
11191 {
11192 as_bad (_("Missing '}': '%s'"), imm_start);
11193 return 0;
11194 }
11195 /* RC/SAE immediate string should contain nothing more. */;
11196 if (*pstr != 0)
11197 {
11198 as_bad (_("Junk after '}': '%s'"), imm_start);
11199 return 0;
11200 }
11201
11202 exp = &im_expressions[i.imm_operands++];
11203 i.op[this_operand].imms = exp;
11204
11205 exp->X_op = O_constant;
11206 exp->X_add_number = 0;
11207 exp->X_add_symbol = (symbolS *) 0;
11208 exp->X_op_symbol = (symbolS *) 0;
11209
11210 i.types[this_operand].bitfield.imm8 = 1;
11211 return 1;
11212 }
11213
11214 /* Only string instructions can have a second memory operand, so
11215 reduce current_templates to just those if it contains any. */
11216 static int
11217 maybe_adjust_templates (void)
11218 {
11219 const insn_template *t;
11220
11221 gas_assert (i.mem_operands == 1);
11222
11223 for (t = current_templates->start; t < current_templates->end; ++t)
11224 if (t->opcode_modifier.isstring)
11225 break;
11226
11227 if (t < current_templates->end)
11228 {
11229 static templates aux_templates;
11230 bfd_boolean recheck;
11231
11232 aux_templates.start = t;
11233 for (; t < current_templates->end; ++t)
11234 if (!t->opcode_modifier.isstring)
11235 break;
11236 aux_templates.end = t;
11237
11238 /* Determine whether to re-check the first memory operand. */
11239 recheck = (aux_templates.start != current_templates->start
11240 || t != current_templates->end);
11241
11242 current_templates = &aux_templates;
11243
11244 if (recheck)
11245 {
11246 i.mem_operands = 0;
11247 if (i.memop1_string != NULL
11248 && i386_index_check (i.memop1_string) == 0)
11249 return 0;
11250 i.mem_operands = 1;
11251 }
11252 }
11253
11254 return 1;
11255 }
11256
11257 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11258 on error. */
11259
11260 static int
11261 i386_att_operand (char *operand_string)
11262 {
11263 const reg_entry *r;
11264 char *end_op;
11265 char *op_string = operand_string;
11266
11267 if (is_space_char (*op_string))
11268 ++op_string;
11269
11270 /* We check for an absolute prefix (differentiating,
11271 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11272 if (*op_string == ABSOLUTE_PREFIX)
11273 {
11274 ++op_string;
11275 if (is_space_char (*op_string))
11276 ++op_string;
11277 i.jumpabsolute = TRUE;
11278 }
11279
11280 /* Check if operand is a register. */
11281 if ((r = parse_register (op_string, &end_op)) != NULL)
11282 {
11283 i386_operand_type temp;
11284
11285 if (r == &bad_reg)
11286 return 0;
11287
11288 /* Check for a segment override by searching for ':' after a
11289 segment register. */
11290 op_string = end_op;
11291 if (is_space_char (*op_string))
11292 ++op_string;
11293 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11294 {
11295 switch (r->reg_num)
11296 {
11297 case 0:
11298 i.seg[i.mem_operands] = &es;
11299 break;
11300 case 1:
11301 i.seg[i.mem_operands] = &cs;
11302 break;
11303 case 2:
11304 i.seg[i.mem_operands] = &ss;
11305 break;
11306 case 3:
11307 i.seg[i.mem_operands] = &ds;
11308 break;
11309 case 4:
11310 i.seg[i.mem_operands] = &fs;
11311 break;
11312 case 5:
11313 i.seg[i.mem_operands] = &gs;
11314 break;
11315 }
11316
11317 /* Skip the ':' and whitespace. */
11318 ++op_string;
11319 if (is_space_char (*op_string))
11320 ++op_string;
11321
11322 if (!is_digit_char (*op_string)
11323 && !is_identifier_char (*op_string)
11324 && *op_string != '('
11325 && *op_string != ABSOLUTE_PREFIX)
11326 {
11327 as_bad (_("bad memory operand `%s'"), op_string);
11328 return 0;
11329 }
11330 /* Handle case of %es:*foo. */
11331 if (*op_string == ABSOLUTE_PREFIX)
11332 {
11333 ++op_string;
11334 if (is_space_char (*op_string))
11335 ++op_string;
11336 i.jumpabsolute = TRUE;
11337 }
11338 goto do_memory_reference;
11339 }
11340
11341 /* Handle vector operations. */
11342 if (*op_string == '{')
11343 {
11344 op_string = check_VecOperations (op_string, NULL);
11345 if (op_string == NULL)
11346 return 0;
11347 }
11348
11349 if (*op_string)
11350 {
11351 as_bad (_("junk `%s' after register"), op_string);
11352 return 0;
11353 }
11354 temp = r->reg_type;
11355 temp.bitfield.baseindex = 0;
11356 i.types[this_operand] = operand_type_or (i.types[this_operand],
11357 temp);
11358 i.types[this_operand].bitfield.unspecified = 0;
11359 i.op[this_operand].regs = r;
11360 i.reg_operands++;
11361 }
11362 else if (*op_string == REGISTER_PREFIX)
11363 {
11364 as_bad (_("bad register name `%s'"), op_string);
11365 return 0;
11366 }
11367 else if (*op_string == IMMEDIATE_PREFIX)
11368 {
11369 ++op_string;
11370 if (i.jumpabsolute)
11371 {
11372 as_bad (_("immediate operand illegal with absolute jump"));
11373 return 0;
11374 }
11375 if (!i386_immediate (op_string))
11376 return 0;
11377 }
11378 else if (RC_SAE_immediate (operand_string))
11379 {
11380 /* If it is a RC or SAE immediate, do nothing. */
11381 ;
11382 }
11383 else if (is_digit_char (*op_string)
11384 || is_identifier_char (*op_string)
11385 || *op_string == '"'
11386 || *op_string == '(')
11387 {
11388 /* This is a memory reference of some sort. */
11389 char *base_string;
11390
11391 /* Start and end of displacement string expression (if found). */
11392 char *displacement_string_start;
11393 char *displacement_string_end;
11394 char *vop_start;
11395
11396 do_memory_reference:
11397 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11398 return 0;
11399 if ((i.mem_operands == 1
11400 && !current_templates->start->opcode_modifier.isstring)
11401 || i.mem_operands == 2)
11402 {
11403 as_bad (_("too many memory references for `%s'"),
11404 current_templates->start->name);
11405 return 0;
11406 }
11407
11408 /* Check for base index form. We detect the base index form by
11409 looking for an ')' at the end of the operand, searching
11410 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11411 after the '('. */
11412 base_string = op_string + strlen (op_string);
11413
11414 /* Handle vector operations. */
11415 vop_start = strchr (op_string, '{');
11416 if (vop_start && vop_start < base_string)
11417 {
11418 if (check_VecOperations (vop_start, base_string) == NULL)
11419 return 0;
11420 base_string = vop_start;
11421 }
11422
11423 --base_string;
11424 if (is_space_char (*base_string))
11425 --base_string;
11426
11427 /* If we only have a displacement, set-up for it to be parsed later. */
11428 displacement_string_start = op_string;
11429 displacement_string_end = base_string + 1;
11430
11431 if (*base_string == ')')
11432 {
11433 char *temp_string;
11434 unsigned int parens_balanced = 1;
11435 /* We've already checked that the number of left & right ()'s are
11436 equal, so this loop will not be infinite. */
11437 do
11438 {
11439 base_string--;
11440 if (*base_string == ')')
11441 parens_balanced++;
11442 if (*base_string == '(')
11443 parens_balanced--;
11444 }
11445 while (parens_balanced);
11446
11447 temp_string = base_string;
11448
11449 /* Skip past '(' and whitespace. */
11450 ++base_string;
11451 if (is_space_char (*base_string))
11452 ++base_string;
11453
11454 if (*base_string == ','
11455 || ((i.base_reg = parse_register (base_string, &end_op))
11456 != NULL))
11457 {
11458 displacement_string_end = temp_string;
11459
11460 i.types[this_operand].bitfield.baseindex = 1;
11461
11462 if (i.base_reg)
11463 {
11464 if (i.base_reg == &bad_reg)
11465 return 0;
11466 base_string = end_op;
11467 if (is_space_char (*base_string))
11468 ++base_string;
11469 }
11470
11471 /* There may be an index reg or scale factor here. */
11472 if (*base_string == ',')
11473 {
11474 ++base_string;
11475 if (is_space_char (*base_string))
11476 ++base_string;
11477
11478 if ((i.index_reg = parse_register (base_string, &end_op))
11479 != NULL)
11480 {
11481 if (i.index_reg == &bad_reg)
11482 return 0;
11483 base_string = end_op;
11484 if (is_space_char (*base_string))
11485 ++base_string;
11486 if (*base_string == ',')
11487 {
11488 ++base_string;
11489 if (is_space_char (*base_string))
11490 ++base_string;
11491 }
11492 else if (*base_string != ')')
11493 {
11494 as_bad (_("expecting `,' or `)' "
11495 "after index register in `%s'"),
11496 operand_string);
11497 return 0;
11498 }
11499 }
11500 else if (*base_string == REGISTER_PREFIX)
11501 {
11502 end_op = strchr (base_string, ',');
11503 if (end_op)
11504 *end_op = '\0';
11505 as_bad (_("bad register name `%s'"), base_string);
11506 return 0;
11507 }
11508
11509 /* Check for scale factor. */
11510 if (*base_string != ')')
11511 {
11512 char *end_scale = i386_scale (base_string);
11513
11514 if (!end_scale)
11515 return 0;
11516
11517 base_string = end_scale;
11518 if (is_space_char (*base_string))
11519 ++base_string;
11520 if (*base_string != ')')
11521 {
11522 as_bad (_("expecting `)' "
11523 "after scale factor in `%s'"),
11524 operand_string);
11525 return 0;
11526 }
11527 }
11528 else if (!i.index_reg)
11529 {
11530 as_bad (_("expecting index register or scale factor "
11531 "after `,'; got '%c'"),
11532 *base_string);
11533 return 0;
11534 }
11535 }
11536 else if (*base_string != ')')
11537 {
11538 as_bad (_("expecting `,' or `)' "
11539 "after base register in `%s'"),
11540 operand_string);
11541 return 0;
11542 }
11543 }
11544 else if (*base_string == REGISTER_PREFIX)
11545 {
11546 end_op = strchr (base_string, ',');
11547 if (end_op)
11548 *end_op = '\0';
11549 as_bad (_("bad register name `%s'"), base_string);
11550 return 0;
11551 }
11552 }
11553
11554 /* If there's an expression beginning the operand, parse it,
11555 assuming displacement_string_start and
11556 displacement_string_end are meaningful. */
11557 if (displacement_string_start != displacement_string_end)
11558 {
11559 if (!i386_displacement (displacement_string_start,
11560 displacement_string_end))
11561 return 0;
11562 }
11563
11564 /* Special case for (%dx) while doing input/output op. */
11565 if (i.base_reg
11566 && i.base_reg->reg_type.bitfield.instance == RegD
11567 && i.base_reg->reg_type.bitfield.word
11568 && i.index_reg == 0
11569 && i.log2_scale_factor == 0
11570 && i.seg[i.mem_operands] == 0
11571 && !operand_type_check (i.types[this_operand], disp))
11572 {
11573 i.types[this_operand] = i.base_reg->reg_type;
11574 return 1;
11575 }
11576
11577 if (i386_index_check (operand_string) == 0)
11578 return 0;
11579 i.flags[this_operand] |= Operand_Mem;
11580 if (i.mem_operands == 0)
11581 i.memop1_string = xstrdup (operand_string);
11582 i.mem_operands++;
11583 }
11584 else
11585 {
11586 /* It's not a memory operand; argh! */
11587 as_bad (_("invalid char %s beginning operand %d `%s'"),
11588 output_invalid (*op_string),
11589 this_operand + 1,
11590 op_string);
11591 return 0;
11592 }
11593 return 1; /* Normal return. */
11594 }
11595 \f
11596 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11597 that an rs_machine_dependent frag may reach. */
11598
11599 unsigned int
11600 i386_frag_max_var (fragS *frag)
11601 {
11602 /* The only relaxable frags are for jumps.
11603 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11604 gas_assert (frag->fr_type == rs_machine_dependent);
11605 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11606 }
11607
11608 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11609 static int
11610 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11611 {
11612 /* STT_GNU_IFUNC symbol must go through PLT. */
11613 if ((symbol_get_bfdsym (fr_symbol)->flags
11614 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11615 return 0;
11616
11617 if (!S_IS_EXTERNAL (fr_symbol))
11618 /* Symbol may be weak or local. */
11619 return !S_IS_WEAK (fr_symbol);
11620
11621 /* Global symbols with non-default visibility can't be preempted. */
11622 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11623 return 1;
11624
11625 if (fr_var != NO_RELOC)
11626 switch ((enum bfd_reloc_code_real) fr_var)
11627 {
11628 case BFD_RELOC_386_PLT32:
11629 case BFD_RELOC_X86_64_PLT32:
11630 /* Symbol with PLT relocation may be preempted. */
11631 return 0;
11632 default:
11633 abort ();
11634 }
11635
11636 /* Global symbols with default visibility in a shared library may be
11637 preempted by another definition. */
11638 return !shared;
11639 }
11640 #endif
11641
11642 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11643 Note also work for Skylake and Cascadelake.
11644 ---------------------------------------------------------------------
11645 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11646 | ------ | ----------- | ------- | -------- |
11647 | Jo | N | N | Y |
11648 | Jno | N | N | Y |
11649 | Jc/Jb | Y | N | Y |
11650 | Jae/Jnb | Y | N | Y |
11651 | Je/Jz | Y | Y | Y |
11652 | Jne/Jnz | Y | Y | Y |
11653 | Jna/Jbe | Y | N | Y |
11654 | Ja/Jnbe | Y | N | Y |
11655 | Js | N | N | Y |
11656 | Jns | N | N | Y |
11657 | Jp/Jpe | N | N | Y |
11658 | Jnp/Jpo | N | N | Y |
11659 | Jl/Jnge | Y | Y | Y |
11660 | Jge/Jnl | Y | Y | Y |
11661 | Jle/Jng | Y | Y | Y |
11662 | Jg/Jnle | Y | Y | Y |
11663 --------------------------------------------------------------------- */
11664 static int
11665 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11666 {
11667 if (mf_cmp == mf_cmp_alu_cmp)
11668 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11669 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11670 if (mf_cmp == mf_cmp_incdec)
11671 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11672 || mf_jcc == mf_jcc_jle);
11673 if (mf_cmp == mf_cmp_test_and)
11674 return 1;
11675 return 0;
11676 }
11677
11678 /* Return the next non-empty frag. */
11679
11680 static fragS *
11681 i386_next_non_empty_frag (fragS *fragP)
11682 {
11683 /* There may be a frag with a ".fill 0" when there is no room in
11684 the current frag for frag_grow in output_insn. */
11685 for (fragP = fragP->fr_next;
11686 (fragP != NULL
11687 && fragP->fr_type == rs_fill
11688 && fragP->fr_fix == 0);
11689 fragP = fragP->fr_next)
11690 ;
11691 return fragP;
11692 }
11693
11694 /* Return the next jcc frag after BRANCH_PADDING. */
11695
11696 static fragS *
11697 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11698 {
11699 fragS *branch_fragP;
11700 if (!pad_fragP)
11701 return NULL;
11702
11703 if (pad_fragP->fr_type == rs_machine_dependent
11704 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11705 == BRANCH_PADDING))
11706 {
11707 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11708 if (branch_fragP->fr_type != rs_machine_dependent)
11709 return NULL;
11710 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11711 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11712 pad_fragP->tc_frag_data.mf_type))
11713 return branch_fragP;
11714 }
11715
11716 return NULL;
11717 }
11718
11719 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11720
11721 static void
11722 i386_classify_machine_dependent_frag (fragS *fragP)
11723 {
11724 fragS *cmp_fragP;
11725 fragS *pad_fragP;
11726 fragS *branch_fragP;
11727 fragS *next_fragP;
11728 unsigned int max_prefix_length;
11729
11730 if (fragP->tc_frag_data.classified)
11731 return;
11732
11733 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11734 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11735 for (next_fragP = fragP;
11736 next_fragP != NULL;
11737 next_fragP = next_fragP->fr_next)
11738 {
11739 next_fragP->tc_frag_data.classified = 1;
11740 if (next_fragP->fr_type == rs_machine_dependent)
11741 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11742 {
11743 case BRANCH_PADDING:
11744 /* The BRANCH_PADDING frag must be followed by a branch
11745 frag. */
11746 branch_fragP = i386_next_non_empty_frag (next_fragP);
11747 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11748 break;
11749 case FUSED_JCC_PADDING:
11750 /* Check if this is a fused jcc:
11751 FUSED_JCC_PADDING
11752 CMP like instruction
11753 BRANCH_PADDING
11754 COND_JUMP
11755 */
11756 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11757 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11758 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11759 if (branch_fragP)
11760 {
11761 /* The BRANCH_PADDING frag is merged with the
11762 FUSED_JCC_PADDING frag. */
11763 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11764 /* CMP like instruction size. */
11765 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11766 frag_wane (pad_fragP);
11767 /* Skip to branch_fragP. */
11768 next_fragP = branch_fragP;
11769 }
11770 else if (next_fragP->tc_frag_data.max_prefix_length)
11771 {
11772 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11773 a fused jcc. */
11774 next_fragP->fr_subtype
11775 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11776 next_fragP->tc_frag_data.max_bytes
11777 = next_fragP->tc_frag_data.max_prefix_length;
11778 /* This will be updated in the BRANCH_PREFIX scan. */
11779 next_fragP->tc_frag_data.max_prefix_length = 0;
11780 }
11781 else
11782 frag_wane (next_fragP);
11783 break;
11784 }
11785 }
11786
11787 /* Stop if there is no BRANCH_PREFIX. */
11788 if (!align_branch_prefix_size)
11789 return;
11790
11791 /* Scan for BRANCH_PREFIX. */
11792 for (; fragP != NULL; fragP = fragP->fr_next)
11793 {
11794 if (fragP->fr_type != rs_machine_dependent
11795 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11796 != BRANCH_PREFIX))
11797 continue;
11798
11799 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11800 COND_JUMP_PREFIX. */
11801 max_prefix_length = 0;
11802 for (next_fragP = fragP;
11803 next_fragP != NULL;
11804 next_fragP = next_fragP->fr_next)
11805 {
11806 if (next_fragP->fr_type == rs_fill)
11807 /* Skip rs_fill frags. */
11808 continue;
11809 else if (next_fragP->fr_type != rs_machine_dependent)
11810 /* Stop for all other frags. */
11811 break;
11812
11813 /* rs_machine_dependent frags. */
11814 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11815 == BRANCH_PREFIX)
11816 {
11817 /* Count BRANCH_PREFIX frags. */
11818 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11819 {
11820 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11821 frag_wane (next_fragP);
11822 }
11823 else
11824 max_prefix_length
11825 += next_fragP->tc_frag_data.max_bytes;
11826 }
11827 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11828 == BRANCH_PADDING)
11829 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11830 == FUSED_JCC_PADDING))
11831 {
11832 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11833 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11834 break;
11835 }
11836 else
11837 /* Stop for other rs_machine_dependent frags. */
11838 break;
11839 }
11840
11841 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11842
11843 /* Skip to the next frag. */
11844 fragP = next_fragP;
11845 }
11846 }
11847
11848 /* Compute padding size for
11849
11850 FUSED_JCC_PADDING
11851 CMP like instruction
11852 BRANCH_PADDING
11853 COND_JUMP/UNCOND_JUMP
11854
11855 or
11856
11857 BRANCH_PADDING
11858 COND_JUMP/UNCOND_JUMP
11859 */
11860
11861 static int
11862 i386_branch_padding_size (fragS *fragP, offsetT address)
11863 {
11864 unsigned int offset, size, padding_size;
11865 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11866
11867 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11868 if (!address)
11869 address = fragP->fr_address;
11870 address += fragP->fr_fix;
11871
11872 /* CMP like instrunction size. */
11873 size = fragP->tc_frag_data.cmp_size;
11874
11875 /* The base size of the branch frag. */
11876 size += branch_fragP->fr_fix;
11877
11878 /* Add opcode and displacement bytes for the rs_machine_dependent
11879 branch frag. */
11880 if (branch_fragP->fr_type == rs_machine_dependent)
11881 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11882
11883 /* Check if branch is within boundary and doesn't end at the last
11884 byte. */
11885 offset = address & ((1U << align_branch_power) - 1);
11886 if ((offset + size) >= (1U << align_branch_power))
11887 /* Padding needed to avoid crossing boundary. */
11888 padding_size = (1U << align_branch_power) - offset;
11889 else
11890 /* No padding needed. */
11891 padding_size = 0;
11892
11893 /* The return value may be saved in tc_frag_data.length which is
11894 unsigned byte. */
11895 if (!fits_in_unsigned_byte (padding_size))
11896 abort ();
11897
11898 return padding_size;
11899 }
11900
11901 /* i386_generic_table_relax_frag()
11902
11903 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11904 grow/shrink padding to align branch frags. Hand others to
11905 relax_frag(). */
11906
11907 long
11908 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11909 {
11910 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11911 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11912 {
11913 long padding_size = i386_branch_padding_size (fragP, 0);
11914 long grow = padding_size - fragP->tc_frag_data.length;
11915
11916 /* When the BRANCH_PREFIX frag is used, the computed address
11917 must match the actual address and there should be no padding. */
11918 if (fragP->tc_frag_data.padding_address
11919 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11920 || padding_size))
11921 abort ();
11922
11923 /* Update the padding size. */
11924 if (grow)
11925 fragP->tc_frag_data.length = padding_size;
11926
11927 return grow;
11928 }
11929 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11930 {
11931 fragS *padding_fragP, *next_fragP;
11932 long padding_size, left_size, last_size;
11933
11934 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11935 if (!padding_fragP)
11936 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11937 return (fragP->tc_frag_data.length
11938 - fragP->tc_frag_data.last_length);
11939
11940 /* Compute the relative address of the padding frag in the very
11941 first time where the BRANCH_PREFIX frag sizes are zero. */
11942 if (!fragP->tc_frag_data.padding_address)
11943 fragP->tc_frag_data.padding_address
11944 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11945
11946 /* First update the last length from the previous interation. */
11947 left_size = fragP->tc_frag_data.prefix_length;
11948 for (next_fragP = fragP;
11949 next_fragP != padding_fragP;
11950 next_fragP = next_fragP->fr_next)
11951 if (next_fragP->fr_type == rs_machine_dependent
11952 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11953 == BRANCH_PREFIX))
11954 {
11955 if (left_size)
11956 {
11957 int max = next_fragP->tc_frag_data.max_bytes;
11958 if (max)
11959 {
11960 int size;
11961 if (max > left_size)
11962 size = left_size;
11963 else
11964 size = max;
11965 left_size -= size;
11966 next_fragP->tc_frag_data.last_length = size;
11967 }
11968 }
11969 else
11970 next_fragP->tc_frag_data.last_length = 0;
11971 }
11972
11973 /* Check the padding size for the padding frag. */
11974 padding_size = i386_branch_padding_size
11975 (padding_fragP, (fragP->fr_address
11976 + fragP->tc_frag_data.padding_address));
11977
11978 last_size = fragP->tc_frag_data.prefix_length;
11979 /* Check if there is change from the last interation. */
11980 if (padding_size == last_size)
11981 {
11982 /* Update the expected address of the padding frag. */
11983 padding_fragP->tc_frag_data.padding_address
11984 = (fragP->fr_address + padding_size
11985 + fragP->tc_frag_data.padding_address);
11986 return 0;
11987 }
11988
11989 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11990 {
11991 /* No padding if there is no sufficient room. Clear the
11992 expected address of the padding frag. */
11993 padding_fragP->tc_frag_data.padding_address = 0;
11994 padding_size = 0;
11995 }
11996 else
11997 /* Store the expected address of the padding frag. */
11998 padding_fragP->tc_frag_data.padding_address
11999 = (fragP->fr_address + padding_size
12000 + fragP->tc_frag_data.padding_address);
12001
12002 fragP->tc_frag_data.prefix_length = padding_size;
12003
12004 /* Update the length for the current interation. */
12005 left_size = padding_size;
12006 for (next_fragP = fragP;
12007 next_fragP != padding_fragP;
12008 next_fragP = next_fragP->fr_next)
12009 if (next_fragP->fr_type == rs_machine_dependent
12010 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
12011 == BRANCH_PREFIX))
12012 {
12013 if (left_size)
12014 {
12015 int max = next_fragP->tc_frag_data.max_bytes;
12016 if (max)
12017 {
12018 int size;
12019 if (max > left_size)
12020 size = left_size;
12021 else
12022 size = max;
12023 left_size -= size;
12024 next_fragP->tc_frag_data.length = size;
12025 }
12026 }
12027 else
12028 next_fragP->tc_frag_data.length = 0;
12029 }
12030
12031 return (fragP->tc_frag_data.length
12032 - fragP->tc_frag_data.last_length);
12033 }
12034 return relax_frag (segment, fragP, stretch);
12035 }
12036
12037 /* md_estimate_size_before_relax()
12038
12039 Called just before relax() for rs_machine_dependent frags. The x86
12040 assembler uses these frags to handle variable size jump
12041 instructions.
12042
12043 Any symbol that is now undefined will not become defined.
12044 Return the correct fr_subtype in the frag.
12045 Return the initial "guess for variable size of frag" to caller.
12046 The guess is actually the growth beyond the fixed part. Whatever
12047 we do to grow the fixed or variable part contributes to our
12048 returned value. */
12049
12050 int
12051 md_estimate_size_before_relax (fragS *fragP, segT segment)
12052 {
12053 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12054 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
12055 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12056 {
12057 i386_classify_machine_dependent_frag (fragP);
12058 return fragP->tc_frag_data.length;
12059 }
12060
12061 /* We've already got fragP->fr_subtype right; all we have to do is
12062 check for un-relaxable symbols. On an ELF system, we can't relax
12063 an externally visible symbol, because it may be overridden by a
12064 shared library. */
12065 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
12066 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12067 || (IS_ELF
12068 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
12069 fragP->fr_var))
12070 #endif
12071 #if defined (OBJ_COFF) && defined (TE_PE)
12072 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
12073 && S_IS_WEAK (fragP->fr_symbol))
12074 #endif
12075 )
12076 {
12077 /* Symbol is undefined in this segment, or we need to keep a
12078 reloc so that weak symbols can be overridden. */
12079 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
12080 enum bfd_reloc_code_real reloc_type;
12081 unsigned char *opcode;
12082 int old_fr_fix;
12083
12084 if (fragP->fr_var != NO_RELOC)
12085 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
12086 else if (size == 2)
12087 reloc_type = BFD_RELOC_16_PCREL;
12088 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12089 else if (need_plt32_p (fragP->fr_symbol))
12090 reloc_type = BFD_RELOC_X86_64_PLT32;
12091 #endif
12092 else
12093 reloc_type = BFD_RELOC_32_PCREL;
12094
12095 old_fr_fix = fragP->fr_fix;
12096 opcode = (unsigned char *) fragP->fr_opcode;
12097
12098 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
12099 {
12100 case UNCOND_JUMP:
12101 /* Make jmp (0xeb) a (d)word displacement jump. */
12102 opcode[0] = 0xe9;
12103 fragP->fr_fix += size;
12104 fix_new (fragP, old_fr_fix, size,
12105 fragP->fr_symbol,
12106 fragP->fr_offset, 1,
12107 reloc_type);
12108 break;
12109
12110 case COND_JUMP86:
12111 if (size == 2
12112 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
12113 {
12114 /* Negate the condition, and branch past an
12115 unconditional jump. */
12116 opcode[0] ^= 1;
12117 opcode[1] = 3;
12118 /* Insert an unconditional jump. */
12119 opcode[2] = 0xe9;
12120 /* We added two extra opcode bytes, and have a two byte
12121 offset. */
12122 fragP->fr_fix += 2 + 2;
12123 fix_new (fragP, old_fr_fix + 2, 2,
12124 fragP->fr_symbol,
12125 fragP->fr_offset, 1,
12126 reloc_type);
12127 break;
12128 }
12129 /* Fall through. */
12130
12131 case COND_JUMP:
12132 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
12133 {
12134 fixS *fixP;
12135
12136 fragP->fr_fix += 1;
12137 fixP = fix_new (fragP, old_fr_fix, 1,
12138 fragP->fr_symbol,
12139 fragP->fr_offset, 1,
12140 BFD_RELOC_8_PCREL);
12141 fixP->fx_signed = 1;
12142 break;
12143 }
12144
12145 /* This changes the byte-displacement jump 0x7N
12146 to the (d)word-displacement jump 0x0f,0x8N. */
12147 opcode[1] = opcode[0] + 0x10;
12148 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12149 /* We've added an opcode byte. */
12150 fragP->fr_fix += 1 + size;
12151 fix_new (fragP, old_fr_fix + 1, size,
12152 fragP->fr_symbol,
12153 fragP->fr_offset, 1,
12154 reloc_type);
12155 break;
12156
12157 default:
12158 BAD_CASE (fragP->fr_subtype);
12159 break;
12160 }
12161 frag_wane (fragP);
12162 return fragP->fr_fix - old_fr_fix;
12163 }
12164
12165 /* Guess size depending on current relax state. Initially the relax
12166 state will correspond to a short jump and we return 1, because
12167 the variable part of the frag (the branch offset) is one byte
12168 long. However, we can relax a section more than once and in that
12169 case we must either set fr_subtype back to the unrelaxed state,
12170 or return the value for the appropriate branch. */
12171 return md_relax_table[fragP->fr_subtype].rlx_length;
12172 }
12173
12174 /* Called after relax() is finished.
12175
12176 In: Address of frag.
12177 fr_type == rs_machine_dependent.
12178 fr_subtype is what the address relaxed to.
12179
12180 Out: Any fixSs and constants are set up.
12181 Caller will turn frag into a ".space 0". */
12182
12183 void
12184 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12185 fragS *fragP)
12186 {
12187 unsigned char *opcode;
12188 unsigned char *where_to_put_displacement = NULL;
12189 offsetT target_address;
12190 offsetT opcode_address;
12191 unsigned int extension = 0;
12192 offsetT displacement_from_opcode_start;
12193
12194 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12195 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12196 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12197 {
12198 /* Generate nop padding. */
12199 unsigned int size = fragP->tc_frag_data.length;
12200 if (size)
12201 {
12202 if (size > fragP->tc_frag_data.max_bytes)
12203 abort ();
12204
12205 if (flag_debug)
12206 {
12207 const char *msg;
12208 const char *branch = "branch";
12209 const char *prefix = "";
12210 fragS *padding_fragP;
12211 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12212 == BRANCH_PREFIX)
12213 {
12214 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12215 switch (fragP->tc_frag_data.default_prefix)
12216 {
12217 default:
12218 abort ();
12219 break;
12220 case CS_PREFIX_OPCODE:
12221 prefix = " cs";
12222 break;
12223 case DS_PREFIX_OPCODE:
12224 prefix = " ds";
12225 break;
12226 case ES_PREFIX_OPCODE:
12227 prefix = " es";
12228 break;
12229 case FS_PREFIX_OPCODE:
12230 prefix = " fs";
12231 break;
12232 case GS_PREFIX_OPCODE:
12233 prefix = " gs";
12234 break;
12235 case SS_PREFIX_OPCODE:
12236 prefix = " ss";
12237 break;
12238 }
12239 if (padding_fragP)
12240 msg = _("%s:%u: add %d%s at 0x%llx to align "
12241 "%s within %d-byte boundary\n");
12242 else
12243 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12244 "align %s within %d-byte boundary\n");
12245 }
12246 else
12247 {
12248 padding_fragP = fragP;
12249 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12250 "%s within %d-byte boundary\n");
12251 }
12252
12253 if (padding_fragP)
12254 switch (padding_fragP->tc_frag_data.branch_type)
12255 {
12256 case align_branch_jcc:
12257 branch = "jcc";
12258 break;
12259 case align_branch_fused:
12260 branch = "fused jcc";
12261 break;
12262 case align_branch_jmp:
12263 branch = "jmp";
12264 break;
12265 case align_branch_call:
12266 branch = "call";
12267 break;
12268 case align_branch_indirect:
12269 branch = "indiret branch";
12270 break;
12271 case align_branch_ret:
12272 branch = "ret";
12273 break;
12274 default:
12275 break;
12276 }
12277
12278 fprintf (stdout, msg,
12279 fragP->fr_file, fragP->fr_line, size, prefix,
12280 (long long) fragP->fr_address, branch,
12281 1 << align_branch_power);
12282 }
12283 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12284 memset (fragP->fr_opcode,
12285 fragP->tc_frag_data.default_prefix, size);
12286 else
12287 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12288 size, 0);
12289 fragP->fr_fix += size;
12290 }
12291 return;
12292 }
12293
12294 opcode = (unsigned char *) fragP->fr_opcode;
12295
12296 /* Address we want to reach in file space. */
12297 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12298
12299 /* Address opcode resides at in file space. */
12300 opcode_address = fragP->fr_address + fragP->fr_fix;
12301
12302 /* Displacement from opcode start to fill into instruction. */
12303 displacement_from_opcode_start = target_address - opcode_address;
12304
12305 if ((fragP->fr_subtype & BIG) == 0)
12306 {
12307 /* Don't have to change opcode. */
12308 extension = 1; /* 1 opcode + 1 displacement */
12309 where_to_put_displacement = &opcode[1];
12310 }
12311 else
12312 {
12313 if (no_cond_jump_promotion
12314 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12315 as_warn_where (fragP->fr_file, fragP->fr_line,
12316 _("long jump required"));
12317
12318 switch (fragP->fr_subtype)
12319 {
12320 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12321 extension = 4; /* 1 opcode + 4 displacement */
12322 opcode[0] = 0xe9;
12323 where_to_put_displacement = &opcode[1];
12324 break;
12325
12326 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12327 extension = 2; /* 1 opcode + 2 displacement */
12328 opcode[0] = 0xe9;
12329 where_to_put_displacement = &opcode[1];
12330 break;
12331
12332 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12333 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12334 extension = 5; /* 2 opcode + 4 displacement */
12335 opcode[1] = opcode[0] + 0x10;
12336 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12337 where_to_put_displacement = &opcode[2];
12338 break;
12339
12340 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12341 extension = 3; /* 2 opcode + 2 displacement */
12342 opcode[1] = opcode[0] + 0x10;
12343 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12344 where_to_put_displacement = &opcode[2];
12345 break;
12346
12347 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12348 extension = 4;
12349 opcode[0] ^= 1;
12350 opcode[1] = 3;
12351 opcode[2] = 0xe9;
12352 where_to_put_displacement = &opcode[3];
12353 break;
12354
12355 default:
12356 BAD_CASE (fragP->fr_subtype);
12357 break;
12358 }
12359 }
12360
12361 /* If size if less then four we are sure that the operand fits,
12362 but if it's 4, then it could be that the displacement is larger
12363 then -/+ 2GB. */
12364 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12365 && object_64bit
12366 && ((addressT) (displacement_from_opcode_start - extension
12367 + ((addressT) 1 << 31))
12368 > (((addressT) 2 << 31) - 1)))
12369 {
12370 as_bad_where (fragP->fr_file, fragP->fr_line,
12371 _("jump target out of range"));
12372 /* Make us emit 0. */
12373 displacement_from_opcode_start = extension;
12374 }
12375 /* Now put displacement after opcode. */
12376 md_number_to_chars ((char *) where_to_put_displacement,
12377 (valueT) (displacement_from_opcode_start - extension),
12378 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12379 fragP->fr_fix += extension;
12380 }
12381 \f
12382 /* Apply a fixup (fixP) to segment data, once it has been determined
12383 by our caller that we have all the info we need to fix it up.
12384
12385 Parameter valP is the pointer to the value of the bits.
12386
12387 On the 386, immediates, displacements, and data pointers are all in
12388 the same (little-endian) format, so we don't need to care about which
12389 we are handling. */
12390
12391 void
12392 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12393 {
12394 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12395 valueT value = *valP;
12396
12397 #if !defined (TE_Mach)
12398 if (fixP->fx_pcrel)
12399 {
12400 switch (fixP->fx_r_type)
12401 {
12402 default:
12403 break;
12404
12405 case BFD_RELOC_64:
12406 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12407 break;
12408 case BFD_RELOC_32:
12409 case BFD_RELOC_X86_64_32S:
12410 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12411 break;
12412 case BFD_RELOC_16:
12413 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12414 break;
12415 case BFD_RELOC_8:
12416 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12417 break;
12418 }
12419 }
12420
12421 if (fixP->fx_addsy != NULL
12422 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12423 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12424 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12425 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12426 && !use_rela_relocations)
12427 {
12428 /* This is a hack. There should be a better way to handle this.
12429 This covers for the fact that bfd_install_relocation will
12430 subtract the current location (for partial_inplace, PC relative
12431 relocations); see more below. */
12432 #ifndef OBJ_AOUT
12433 if (IS_ELF
12434 #ifdef TE_PE
12435 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12436 #endif
12437 )
12438 value += fixP->fx_where + fixP->fx_frag->fr_address;
12439 #endif
12440 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12441 if (IS_ELF)
12442 {
12443 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12444
12445 if ((sym_seg == seg
12446 || (symbol_section_p (fixP->fx_addsy)
12447 && sym_seg != absolute_section))
12448 && !generic_force_reloc (fixP))
12449 {
12450 /* Yes, we add the values in twice. This is because
12451 bfd_install_relocation subtracts them out again. I think
12452 bfd_install_relocation is broken, but I don't dare change
12453 it. FIXME. */
12454 value += fixP->fx_where + fixP->fx_frag->fr_address;
12455 }
12456 }
12457 #endif
12458 #if defined (OBJ_COFF) && defined (TE_PE)
12459 /* For some reason, the PE format does not store a
12460 section address offset for a PC relative symbol. */
12461 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12462 || S_IS_WEAK (fixP->fx_addsy))
12463 value += md_pcrel_from (fixP);
12464 #endif
12465 }
12466 #if defined (OBJ_COFF) && defined (TE_PE)
12467 if (fixP->fx_addsy != NULL
12468 && S_IS_WEAK (fixP->fx_addsy)
12469 /* PR 16858: Do not modify weak function references. */
12470 && ! fixP->fx_pcrel)
12471 {
12472 #if !defined (TE_PEP)
12473 /* For x86 PE weak function symbols are neither PC-relative
12474 nor do they set S_IS_FUNCTION. So the only reliable way
12475 to detect them is to check the flags of their containing
12476 section. */
12477 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12478 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12479 ;
12480 else
12481 #endif
12482 value -= S_GET_VALUE (fixP->fx_addsy);
12483 }
12484 #endif
12485
12486 /* Fix a few things - the dynamic linker expects certain values here,
12487 and we must not disappoint it. */
12488 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12489 if (IS_ELF && fixP->fx_addsy)
12490 switch (fixP->fx_r_type)
12491 {
12492 case BFD_RELOC_386_PLT32:
12493 case BFD_RELOC_X86_64_PLT32:
12494 /* Make the jump instruction point to the address of the operand.
12495 At runtime we merely add the offset to the actual PLT entry.
12496 NB: Subtract the offset size only for jump instructions. */
12497 if (fixP->fx_pcrel)
12498 value = -4;
12499 break;
12500
12501 case BFD_RELOC_386_TLS_GD:
12502 case BFD_RELOC_386_TLS_LDM:
12503 case BFD_RELOC_386_TLS_IE_32:
12504 case BFD_RELOC_386_TLS_IE:
12505 case BFD_RELOC_386_TLS_GOTIE:
12506 case BFD_RELOC_386_TLS_GOTDESC:
12507 case BFD_RELOC_X86_64_TLSGD:
12508 case BFD_RELOC_X86_64_TLSLD:
12509 case BFD_RELOC_X86_64_GOTTPOFF:
12510 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12511 value = 0; /* Fully resolved at runtime. No addend. */
12512 /* Fallthrough */
12513 case BFD_RELOC_386_TLS_LE:
12514 case BFD_RELOC_386_TLS_LDO_32:
12515 case BFD_RELOC_386_TLS_LE_32:
12516 case BFD_RELOC_X86_64_DTPOFF32:
12517 case BFD_RELOC_X86_64_DTPOFF64:
12518 case BFD_RELOC_X86_64_TPOFF32:
12519 case BFD_RELOC_X86_64_TPOFF64:
12520 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12521 break;
12522
12523 case BFD_RELOC_386_TLS_DESC_CALL:
12524 case BFD_RELOC_X86_64_TLSDESC_CALL:
12525 value = 0; /* Fully resolved at runtime. No addend. */
12526 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12527 fixP->fx_done = 0;
12528 return;
12529
12530 case BFD_RELOC_VTABLE_INHERIT:
12531 case BFD_RELOC_VTABLE_ENTRY:
12532 fixP->fx_done = 0;
12533 return;
12534
12535 default:
12536 break;
12537 }
12538 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12539 *valP = value;
12540 #endif /* !defined (TE_Mach) */
12541
12542 /* Are we finished with this relocation now? */
12543 if (fixP->fx_addsy == NULL)
12544 fixP->fx_done = 1;
12545 #if defined (OBJ_COFF) && defined (TE_PE)
12546 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12547 {
12548 fixP->fx_done = 0;
12549 /* Remember value for tc_gen_reloc. */
12550 fixP->fx_addnumber = value;
12551 /* Clear out the frag for now. */
12552 value = 0;
12553 }
12554 #endif
12555 else if (use_rela_relocations)
12556 {
12557 fixP->fx_no_overflow = 1;
12558 /* Remember value for tc_gen_reloc. */
12559 fixP->fx_addnumber = value;
12560 value = 0;
12561 }
12562
12563 md_number_to_chars (p, value, fixP->fx_size);
12564 }
12565 \f
12566 const char *
12567 md_atof (int type, char *litP, int *sizeP)
12568 {
12569 /* This outputs the LITTLENUMs in REVERSE order;
12570 in accord with the bigendian 386. */
12571 return ieee_md_atof (type, litP, sizeP, FALSE);
12572 }
12573 \f
12574 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12575
12576 static char *
12577 output_invalid (int c)
12578 {
12579 if (ISPRINT (c))
12580 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12581 "'%c'", c);
12582 else
12583 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12584 "(0x%x)", (unsigned char) c);
12585 return output_invalid_buf;
12586 }
12587
12588 /* Verify that @r can be used in the current context. */
12589
12590 static bfd_boolean check_register (const reg_entry *r)
12591 {
12592 if (allow_pseudo_reg)
12593 return TRUE;
12594
12595 if (operand_type_all_zero (&r->reg_type))
12596 return FALSE;
12597
12598 if ((r->reg_type.bitfield.dword
12599 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12600 || r->reg_type.bitfield.class == RegCR
12601 || r->reg_type.bitfield.class == RegDR)
12602 && !cpu_arch_flags.bitfield.cpui386)
12603 return FALSE;
12604
12605 if (r->reg_type.bitfield.class == RegTR
12606 && (flag_code == CODE_64BIT
12607 || !cpu_arch_flags.bitfield.cpui386
12608 || cpu_arch_isa_flags.bitfield.cpui586
12609 || cpu_arch_isa_flags.bitfield.cpui686))
12610 return FALSE;
12611
12612 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12613 return FALSE;
12614
12615 if (!cpu_arch_flags.bitfield.cpuavx512f)
12616 {
12617 if (r->reg_type.bitfield.zmmword
12618 || r->reg_type.bitfield.class == RegMask)
12619 return FALSE;
12620
12621 if (!cpu_arch_flags.bitfield.cpuavx)
12622 {
12623 if (r->reg_type.bitfield.ymmword)
12624 return FALSE;
12625
12626 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12627 return FALSE;
12628 }
12629 }
12630
12631 if (r->reg_type.bitfield.tmmword
12632 && (!cpu_arch_flags.bitfield.cpuamx_tile
12633 || flag_code != CODE_64BIT))
12634 return FALSE;
12635
12636 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12637 return FALSE;
12638
12639 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12640 if (!allow_index_reg && r->reg_num == RegIZ)
12641 return FALSE;
12642
12643 /* Upper 16 vector registers are only available with VREX in 64bit
12644 mode, and require EVEX encoding. */
12645 if (r->reg_flags & RegVRex)
12646 {
12647 if (!cpu_arch_flags.bitfield.cpuavx512f
12648 || flag_code != CODE_64BIT)
12649 return FALSE;
12650
12651 if (i.vec_encoding == vex_encoding_default)
12652 i.vec_encoding = vex_encoding_evex;
12653 else if (i.vec_encoding != vex_encoding_evex)
12654 i.vec_encoding = vex_encoding_error;
12655 }
12656
12657 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12658 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12659 && flag_code != CODE_64BIT)
12660 return FALSE;
12661
12662 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12663 && !intel_syntax)
12664 return FALSE;
12665
12666 return TRUE;
12667 }
12668
12669 /* REG_STRING starts *before* REGISTER_PREFIX. */
12670
12671 static const reg_entry *
12672 parse_real_register (char *reg_string, char **end_op)
12673 {
12674 char *s = reg_string;
12675 char *p;
12676 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12677 const reg_entry *r;
12678
12679 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12680 if (*s == REGISTER_PREFIX)
12681 ++s;
12682
12683 if (is_space_char (*s))
12684 ++s;
12685
12686 p = reg_name_given;
12687 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12688 {
12689 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12690 return (const reg_entry *) NULL;
12691 s++;
12692 }
12693
12694 /* For naked regs, make sure that we are not dealing with an identifier.
12695 This prevents confusing an identifier like `eax_var' with register
12696 `eax'. */
12697 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12698 return (const reg_entry *) NULL;
12699
12700 *end_op = s;
12701
12702 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
12703
12704 /* Handle floating point regs, allowing spaces in the (i) part. */
12705 if (r == i386_regtab /* %st is first entry of table */)
12706 {
12707 if (!cpu_arch_flags.bitfield.cpu8087
12708 && !cpu_arch_flags.bitfield.cpu287
12709 && !cpu_arch_flags.bitfield.cpu387
12710 && !allow_pseudo_reg)
12711 return (const reg_entry *) NULL;
12712
12713 if (is_space_char (*s))
12714 ++s;
12715 if (*s == '(')
12716 {
12717 ++s;
12718 if (is_space_char (*s))
12719 ++s;
12720 if (*s >= '0' && *s <= '7')
12721 {
12722 int fpr = *s - '0';
12723 ++s;
12724 if (is_space_char (*s))
12725 ++s;
12726 if (*s == ')')
12727 {
12728 *end_op = s + 1;
12729 r = (const reg_entry *) str_hash_find (reg_hash, "st(0)");
12730 know (r);
12731 return r + fpr;
12732 }
12733 }
12734 /* We have "%st(" then garbage. */
12735 return (const reg_entry *) NULL;
12736 }
12737 }
12738
12739 return r && check_register (r) ? r : NULL;
12740 }
12741
12742 /* REG_STRING starts *before* REGISTER_PREFIX. */
12743
12744 static const reg_entry *
12745 parse_register (char *reg_string, char **end_op)
12746 {
12747 const reg_entry *r;
12748
12749 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12750 r = parse_real_register (reg_string, end_op);
12751 else
12752 r = NULL;
12753 if (!r)
12754 {
12755 char *save = input_line_pointer;
12756 char c;
12757 symbolS *symbolP;
12758
12759 input_line_pointer = reg_string;
12760 c = get_symbol_name (&reg_string);
12761 symbolP = symbol_find (reg_string);
12762 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12763 {
12764 const expressionS *e = symbol_get_value_expression (symbolP);
12765
12766 know (e->X_op == O_register);
12767 know (e->X_add_number >= 0
12768 && (valueT) e->X_add_number < i386_regtab_size);
12769 r = i386_regtab + e->X_add_number;
12770 if (!check_register (r))
12771 {
12772 as_bad (_("register '%s%s' cannot be used here"),
12773 register_prefix, r->reg_name);
12774 r = &bad_reg;
12775 }
12776 *end_op = input_line_pointer;
12777 }
12778 *input_line_pointer = c;
12779 input_line_pointer = save;
12780 }
12781 return r;
12782 }
12783
12784 int
12785 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12786 {
12787 const reg_entry *r;
12788 char *end = input_line_pointer;
12789
12790 *end = *nextcharP;
12791 r = parse_register (name, &input_line_pointer);
12792 if (r && end <= input_line_pointer)
12793 {
12794 *nextcharP = *input_line_pointer;
12795 *input_line_pointer = 0;
12796 if (r != &bad_reg)
12797 {
12798 e->X_op = O_register;
12799 e->X_add_number = r - i386_regtab;
12800 }
12801 else
12802 e->X_op = O_illegal;
12803 return 1;
12804 }
12805 input_line_pointer = end;
12806 *end = 0;
12807 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12808 }
12809
12810 void
12811 md_operand (expressionS *e)
12812 {
12813 char *end;
12814 const reg_entry *r;
12815
12816 switch (*input_line_pointer)
12817 {
12818 case REGISTER_PREFIX:
12819 r = parse_real_register (input_line_pointer, &end);
12820 if (r)
12821 {
12822 e->X_op = O_register;
12823 e->X_add_number = r - i386_regtab;
12824 input_line_pointer = end;
12825 }
12826 break;
12827
12828 case '[':
12829 gas_assert (intel_syntax);
12830 end = input_line_pointer++;
12831 expression (e);
12832 if (*input_line_pointer == ']')
12833 {
12834 ++input_line_pointer;
12835 e->X_op_symbol = make_expr_symbol (e);
12836 e->X_add_symbol = NULL;
12837 e->X_add_number = 0;
12838 e->X_op = O_index;
12839 }
12840 else
12841 {
12842 e->X_op = O_absent;
12843 input_line_pointer = end;
12844 }
12845 break;
12846 }
12847 }
12848
12849 \f
12850 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12851 const char *md_shortopts = "kVQ:sqnO::";
12852 #else
12853 const char *md_shortopts = "qnO::";
12854 #endif
12855
12856 #define OPTION_32 (OPTION_MD_BASE + 0)
12857 #define OPTION_64 (OPTION_MD_BASE + 1)
12858 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12859 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12860 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12861 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12862 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12863 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12864 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12865 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12866 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12867 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12868 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12869 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12870 #define OPTION_X32 (OPTION_MD_BASE + 14)
12871 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12872 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12873 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12874 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12875 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12876 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12877 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12878 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12879 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12880 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12881 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12882 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12883 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12884 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12885 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12886 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12887 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12888 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12889 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
12890
12891 struct option md_longopts[] =
12892 {
12893 {"32", no_argument, NULL, OPTION_32},
12894 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12895 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12896 {"64", no_argument, NULL, OPTION_64},
12897 #endif
12898 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12899 {"x32", no_argument, NULL, OPTION_X32},
12900 {"mshared", no_argument, NULL, OPTION_MSHARED},
12901 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12902 #endif
12903 {"divide", no_argument, NULL, OPTION_DIVIDE},
12904 {"march", required_argument, NULL, OPTION_MARCH},
12905 {"mtune", required_argument, NULL, OPTION_MTUNE},
12906 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12907 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12908 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12909 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12910 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12911 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12912 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12913 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12914 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12915 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12916 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12917 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12918 # if defined (TE_PE) || defined (TE_PEP)
12919 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12920 #endif
12921 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12922 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12923 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12924 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12925 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12926 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12927 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12928 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12929 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12930 {"mlfence-before-indirect-branch", required_argument, NULL,
12931 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12932 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
12933 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12934 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12935 {NULL, no_argument, NULL, 0}
12936 };
12937 size_t md_longopts_size = sizeof (md_longopts);
12938
12939 int
12940 md_parse_option (int c, const char *arg)
12941 {
12942 unsigned int j;
12943 char *arch, *next, *saved, *type;
12944
12945 switch (c)
12946 {
12947 case 'n':
12948 optimize_align_code = 0;
12949 break;
12950
12951 case 'q':
12952 quiet_warnings = 1;
12953 break;
12954
12955 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12956 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12957 should be emitted or not. FIXME: Not implemented. */
12958 case 'Q':
12959 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12960 return 0;
12961 break;
12962
12963 /* -V: SVR4 argument to print version ID. */
12964 case 'V':
12965 print_version_id ();
12966 break;
12967
12968 /* -k: Ignore for FreeBSD compatibility. */
12969 case 'k':
12970 break;
12971
12972 case 's':
12973 /* -s: On i386 Solaris, this tells the native assembler to use
12974 .stab instead of .stab.excl. We always use .stab anyhow. */
12975 break;
12976
12977 case OPTION_MSHARED:
12978 shared = 1;
12979 break;
12980
12981 case OPTION_X86_USED_NOTE:
12982 if (strcasecmp (arg, "yes") == 0)
12983 x86_used_note = 1;
12984 else if (strcasecmp (arg, "no") == 0)
12985 x86_used_note = 0;
12986 else
12987 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12988 break;
12989
12990
12991 #endif
12992 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12993 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12994 case OPTION_64:
12995 {
12996 const char **list, **l;
12997
12998 list = bfd_target_list ();
12999 for (l = list; *l != NULL; l++)
13000 if (CONST_STRNEQ (*l, "elf64-x86-64")
13001 || strcmp (*l, "coff-x86-64") == 0
13002 || strcmp (*l, "pe-x86-64") == 0
13003 || strcmp (*l, "pei-x86-64") == 0
13004 || strcmp (*l, "mach-o-x86-64") == 0)
13005 {
13006 default_arch = "x86_64";
13007 break;
13008 }
13009 if (*l == NULL)
13010 as_fatal (_("no compiled in support for x86_64"));
13011 free (list);
13012 }
13013 break;
13014 #endif
13015
13016 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13017 case OPTION_X32:
13018 if (IS_ELF)
13019 {
13020 const char **list, **l;
13021
13022 list = bfd_target_list ();
13023 for (l = list; *l != NULL; l++)
13024 if (CONST_STRNEQ (*l, "elf32-x86-64"))
13025 {
13026 default_arch = "x86_64:32";
13027 break;
13028 }
13029 if (*l == NULL)
13030 as_fatal (_("no compiled in support for 32bit x86_64"));
13031 free (list);
13032 }
13033 else
13034 as_fatal (_("32bit x86_64 is only supported for ELF"));
13035 break;
13036 #endif
13037
13038 case OPTION_32:
13039 default_arch = "i386";
13040 break;
13041
13042 case OPTION_DIVIDE:
13043 #ifdef SVR4_COMMENT_CHARS
13044 {
13045 char *n, *t;
13046 const char *s;
13047
13048 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
13049 t = n;
13050 for (s = i386_comment_chars; *s != '\0'; s++)
13051 if (*s != '/')
13052 *t++ = *s;
13053 *t = '\0';
13054 i386_comment_chars = n;
13055 }
13056 #endif
13057 break;
13058
13059 case OPTION_MARCH:
13060 saved = xstrdup (arg);
13061 arch = saved;
13062 /* Allow -march=+nosse. */
13063 if (*arch == '+')
13064 arch++;
13065 do
13066 {
13067 if (*arch == '.')
13068 as_fatal (_("invalid -march= option: `%s'"), arg);
13069 next = strchr (arch, '+');
13070 if (next)
13071 *next++ = '\0';
13072 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13073 {
13074 if (strcmp (arch, cpu_arch [j].name) == 0)
13075 {
13076 /* Processor. */
13077 if (! cpu_arch[j].flags.bitfield.cpui386)
13078 continue;
13079
13080 cpu_arch_name = cpu_arch[j].name;
13081 cpu_sub_arch_name = NULL;
13082 cpu_arch_flags = cpu_arch[j].flags;
13083 cpu_arch_isa = cpu_arch[j].type;
13084 cpu_arch_isa_flags = cpu_arch[j].flags;
13085 if (!cpu_arch_tune_set)
13086 {
13087 cpu_arch_tune = cpu_arch_isa;
13088 cpu_arch_tune_flags = cpu_arch_isa_flags;
13089 }
13090 break;
13091 }
13092 else if (*cpu_arch [j].name == '.'
13093 && strcmp (arch, cpu_arch [j].name + 1) == 0)
13094 {
13095 /* ISA extension. */
13096 i386_cpu_flags flags;
13097
13098 flags = cpu_flags_or (cpu_arch_flags,
13099 cpu_arch[j].flags);
13100
13101 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13102 {
13103 if (cpu_sub_arch_name)
13104 {
13105 char *name = cpu_sub_arch_name;
13106 cpu_sub_arch_name = concat (name,
13107 cpu_arch[j].name,
13108 (const char *) NULL);
13109 free (name);
13110 }
13111 else
13112 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
13113 cpu_arch_flags = flags;
13114 cpu_arch_isa_flags = flags;
13115 }
13116 else
13117 cpu_arch_isa_flags
13118 = cpu_flags_or (cpu_arch_isa_flags,
13119 cpu_arch[j].flags);
13120 break;
13121 }
13122 }
13123
13124 if (j >= ARRAY_SIZE (cpu_arch))
13125 {
13126 /* Disable an ISA extension. */
13127 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13128 if (strcmp (arch, cpu_noarch [j].name) == 0)
13129 {
13130 i386_cpu_flags flags;
13131
13132 flags = cpu_flags_and_not (cpu_arch_flags,
13133 cpu_noarch[j].flags);
13134 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13135 {
13136 if (cpu_sub_arch_name)
13137 {
13138 char *name = cpu_sub_arch_name;
13139 cpu_sub_arch_name = concat (arch,
13140 (const char *) NULL);
13141 free (name);
13142 }
13143 else
13144 cpu_sub_arch_name = xstrdup (arch);
13145 cpu_arch_flags = flags;
13146 cpu_arch_isa_flags = flags;
13147 }
13148 break;
13149 }
13150
13151 if (j >= ARRAY_SIZE (cpu_noarch))
13152 j = ARRAY_SIZE (cpu_arch);
13153 }
13154
13155 if (j >= ARRAY_SIZE (cpu_arch))
13156 as_fatal (_("invalid -march= option: `%s'"), arg);
13157
13158 arch = next;
13159 }
13160 while (next != NULL);
13161 free (saved);
13162 break;
13163
13164 case OPTION_MTUNE:
13165 if (*arg == '.')
13166 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13167 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13168 {
13169 if (strcmp (arg, cpu_arch [j].name) == 0)
13170 {
13171 cpu_arch_tune_set = 1;
13172 cpu_arch_tune = cpu_arch [j].type;
13173 cpu_arch_tune_flags = cpu_arch[j].flags;
13174 break;
13175 }
13176 }
13177 if (j >= ARRAY_SIZE (cpu_arch))
13178 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13179 break;
13180
13181 case OPTION_MMNEMONIC:
13182 if (strcasecmp (arg, "att") == 0)
13183 intel_mnemonic = 0;
13184 else if (strcasecmp (arg, "intel") == 0)
13185 intel_mnemonic = 1;
13186 else
13187 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
13188 break;
13189
13190 case OPTION_MSYNTAX:
13191 if (strcasecmp (arg, "att") == 0)
13192 intel_syntax = 0;
13193 else if (strcasecmp (arg, "intel") == 0)
13194 intel_syntax = 1;
13195 else
13196 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
13197 break;
13198
13199 case OPTION_MINDEX_REG:
13200 allow_index_reg = 1;
13201 break;
13202
13203 case OPTION_MNAKED_REG:
13204 allow_naked_reg = 1;
13205 break;
13206
13207 case OPTION_MSSE2AVX:
13208 sse2avx = 1;
13209 break;
13210
13211 case OPTION_MSSE_CHECK:
13212 if (strcasecmp (arg, "error") == 0)
13213 sse_check = check_error;
13214 else if (strcasecmp (arg, "warning") == 0)
13215 sse_check = check_warning;
13216 else if (strcasecmp (arg, "none") == 0)
13217 sse_check = check_none;
13218 else
13219 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
13220 break;
13221
13222 case OPTION_MOPERAND_CHECK:
13223 if (strcasecmp (arg, "error") == 0)
13224 operand_check = check_error;
13225 else if (strcasecmp (arg, "warning") == 0)
13226 operand_check = check_warning;
13227 else if (strcasecmp (arg, "none") == 0)
13228 operand_check = check_none;
13229 else
13230 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13231 break;
13232
13233 case OPTION_MAVXSCALAR:
13234 if (strcasecmp (arg, "128") == 0)
13235 avxscalar = vex128;
13236 else if (strcasecmp (arg, "256") == 0)
13237 avxscalar = vex256;
13238 else
13239 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
13240 break;
13241
13242 case OPTION_MVEXWIG:
13243 if (strcmp (arg, "0") == 0)
13244 vexwig = vexw0;
13245 else if (strcmp (arg, "1") == 0)
13246 vexwig = vexw1;
13247 else
13248 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13249 break;
13250
13251 case OPTION_MADD_BND_PREFIX:
13252 add_bnd_prefix = 1;
13253 break;
13254
13255 case OPTION_MEVEXLIG:
13256 if (strcmp (arg, "128") == 0)
13257 evexlig = evexl128;
13258 else if (strcmp (arg, "256") == 0)
13259 evexlig = evexl256;
13260 else if (strcmp (arg, "512") == 0)
13261 evexlig = evexl512;
13262 else
13263 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13264 break;
13265
13266 case OPTION_MEVEXRCIG:
13267 if (strcmp (arg, "rne") == 0)
13268 evexrcig = rne;
13269 else if (strcmp (arg, "rd") == 0)
13270 evexrcig = rd;
13271 else if (strcmp (arg, "ru") == 0)
13272 evexrcig = ru;
13273 else if (strcmp (arg, "rz") == 0)
13274 evexrcig = rz;
13275 else
13276 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13277 break;
13278
13279 case OPTION_MEVEXWIG:
13280 if (strcmp (arg, "0") == 0)
13281 evexwig = evexw0;
13282 else if (strcmp (arg, "1") == 0)
13283 evexwig = evexw1;
13284 else
13285 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13286 break;
13287
13288 # if defined (TE_PE) || defined (TE_PEP)
13289 case OPTION_MBIG_OBJ:
13290 use_big_obj = 1;
13291 break;
13292 #endif
13293
13294 case OPTION_MOMIT_LOCK_PREFIX:
13295 if (strcasecmp (arg, "yes") == 0)
13296 omit_lock_prefix = 1;
13297 else if (strcasecmp (arg, "no") == 0)
13298 omit_lock_prefix = 0;
13299 else
13300 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13301 break;
13302
13303 case OPTION_MFENCE_AS_LOCK_ADD:
13304 if (strcasecmp (arg, "yes") == 0)
13305 avoid_fence = 1;
13306 else if (strcasecmp (arg, "no") == 0)
13307 avoid_fence = 0;
13308 else
13309 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13310 break;
13311
13312 case OPTION_MLFENCE_AFTER_LOAD:
13313 if (strcasecmp (arg, "yes") == 0)
13314 lfence_after_load = 1;
13315 else if (strcasecmp (arg, "no") == 0)
13316 lfence_after_load = 0;
13317 else
13318 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13319 break;
13320
13321 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13322 if (strcasecmp (arg, "all") == 0)
13323 {
13324 lfence_before_indirect_branch = lfence_branch_all;
13325 if (lfence_before_ret == lfence_before_ret_none)
13326 lfence_before_ret = lfence_before_ret_shl;
13327 }
13328 else if (strcasecmp (arg, "memory") == 0)
13329 lfence_before_indirect_branch = lfence_branch_memory;
13330 else if (strcasecmp (arg, "register") == 0)
13331 lfence_before_indirect_branch = lfence_branch_register;
13332 else if (strcasecmp (arg, "none") == 0)
13333 lfence_before_indirect_branch = lfence_branch_none;
13334 else
13335 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13336 arg);
13337 break;
13338
13339 case OPTION_MLFENCE_BEFORE_RET:
13340 if (strcasecmp (arg, "or") == 0)
13341 lfence_before_ret = lfence_before_ret_or;
13342 else if (strcasecmp (arg, "not") == 0)
13343 lfence_before_ret = lfence_before_ret_not;
13344 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13345 lfence_before_ret = lfence_before_ret_shl;
13346 else if (strcasecmp (arg, "none") == 0)
13347 lfence_before_ret = lfence_before_ret_none;
13348 else
13349 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13350 arg);
13351 break;
13352
13353 case OPTION_MRELAX_RELOCATIONS:
13354 if (strcasecmp (arg, "yes") == 0)
13355 generate_relax_relocations = 1;
13356 else if (strcasecmp (arg, "no") == 0)
13357 generate_relax_relocations = 0;
13358 else
13359 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13360 break;
13361
13362 case OPTION_MALIGN_BRANCH_BOUNDARY:
13363 {
13364 char *end;
13365 long int align = strtoul (arg, &end, 0);
13366 if (*end == '\0')
13367 {
13368 if (align == 0)
13369 {
13370 align_branch_power = 0;
13371 break;
13372 }
13373 else if (align >= 16)
13374 {
13375 int align_power;
13376 for (align_power = 0;
13377 (align & 1) == 0;
13378 align >>= 1, align_power++)
13379 continue;
13380 /* Limit alignment power to 31. */
13381 if (align == 1 && align_power < 32)
13382 {
13383 align_branch_power = align_power;
13384 break;
13385 }
13386 }
13387 }
13388 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13389 }
13390 break;
13391
13392 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13393 {
13394 char *end;
13395 int align = strtoul (arg, &end, 0);
13396 /* Some processors only support 5 prefixes. */
13397 if (*end == '\0' && align >= 0 && align < 6)
13398 {
13399 align_branch_prefix_size = align;
13400 break;
13401 }
13402 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13403 arg);
13404 }
13405 break;
13406
13407 case OPTION_MALIGN_BRANCH:
13408 align_branch = 0;
13409 saved = xstrdup (arg);
13410 type = saved;
13411 do
13412 {
13413 next = strchr (type, '+');
13414 if (next)
13415 *next++ = '\0';
13416 if (strcasecmp (type, "jcc") == 0)
13417 align_branch |= align_branch_jcc_bit;
13418 else if (strcasecmp (type, "fused") == 0)
13419 align_branch |= align_branch_fused_bit;
13420 else if (strcasecmp (type, "jmp") == 0)
13421 align_branch |= align_branch_jmp_bit;
13422 else if (strcasecmp (type, "call") == 0)
13423 align_branch |= align_branch_call_bit;
13424 else if (strcasecmp (type, "ret") == 0)
13425 align_branch |= align_branch_ret_bit;
13426 else if (strcasecmp (type, "indirect") == 0)
13427 align_branch |= align_branch_indirect_bit;
13428 else
13429 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13430 type = next;
13431 }
13432 while (next != NULL);
13433 free (saved);
13434 break;
13435
13436 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13437 align_branch_power = 5;
13438 align_branch_prefix_size = 5;
13439 align_branch = (align_branch_jcc_bit
13440 | align_branch_fused_bit
13441 | align_branch_jmp_bit);
13442 break;
13443
13444 case OPTION_MAMD64:
13445 isa64 = amd64;
13446 break;
13447
13448 case OPTION_MINTEL64:
13449 isa64 = intel64;
13450 break;
13451
13452 case 'O':
13453 if (arg == NULL)
13454 {
13455 optimize = 1;
13456 /* Turn off -Os. */
13457 optimize_for_space = 0;
13458 }
13459 else if (*arg == 's')
13460 {
13461 optimize_for_space = 1;
13462 /* Turn on all encoding optimizations. */
13463 optimize = INT_MAX;
13464 }
13465 else
13466 {
13467 optimize = atoi (arg);
13468 /* Turn off -Os. */
13469 optimize_for_space = 0;
13470 }
13471 break;
13472
13473 default:
13474 return 0;
13475 }
13476 return 1;
13477 }
13478
13479 #define MESSAGE_TEMPLATE \
13480 " "
13481
13482 static char *
13483 output_message (FILE *stream, char *p, char *message, char *start,
13484 int *left_p, const char *name, int len)
13485 {
13486 int size = sizeof (MESSAGE_TEMPLATE);
13487 int left = *left_p;
13488
13489 /* Reserve 2 spaces for ", " or ",\0" */
13490 left -= len + 2;
13491
13492 /* Check if there is any room. */
13493 if (left >= 0)
13494 {
13495 if (p != start)
13496 {
13497 *p++ = ',';
13498 *p++ = ' ';
13499 }
13500 p = mempcpy (p, name, len);
13501 }
13502 else
13503 {
13504 /* Output the current message now and start a new one. */
13505 *p++ = ',';
13506 *p = '\0';
13507 fprintf (stream, "%s\n", message);
13508 p = start;
13509 left = size - (start - message) - len - 2;
13510
13511 gas_assert (left >= 0);
13512
13513 p = mempcpy (p, name, len);
13514 }
13515
13516 *left_p = left;
13517 return p;
13518 }
13519
13520 static void
13521 show_arch (FILE *stream, int ext, int check)
13522 {
13523 static char message[] = MESSAGE_TEMPLATE;
13524 char *start = message + 27;
13525 char *p;
13526 int size = sizeof (MESSAGE_TEMPLATE);
13527 int left;
13528 const char *name;
13529 int len;
13530 unsigned int j;
13531
13532 p = start;
13533 left = size - (start - message);
13534 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13535 {
13536 /* Should it be skipped? */
13537 if (cpu_arch [j].skip)
13538 continue;
13539
13540 name = cpu_arch [j].name;
13541 len = cpu_arch [j].len;
13542 if (*name == '.')
13543 {
13544 /* It is an extension. Skip if we aren't asked to show it. */
13545 if (ext)
13546 {
13547 name++;
13548 len--;
13549 }
13550 else
13551 continue;
13552 }
13553 else if (ext)
13554 {
13555 /* It is an processor. Skip if we show only extension. */
13556 continue;
13557 }
13558 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13559 {
13560 /* It is an impossible processor - skip. */
13561 continue;
13562 }
13563
13564 p = output_message (stream, p, message, start, &left, name, len);
13565 }
13566
13567 /* Display disabled extensions. */
13568 if (ext)
13569 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13570 {
13571 name = cpu_noarch [j].name;
13572 len = cpu_noarch [j].len;
13573 p = output_message (stream, p, message, start, &left, name,
13574 len);
13575 }
13576
13577 *p = '\0';
13578 fprintf (stream, "%s\n", message);
13579 }
13580
13581 void
13582 md_show_usage (FILE *stream)
13583 {
13584 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13585 fprintf (stream, _("\
13586 -Qy, -Qn ignored\n\
13587 -V print assembler version number\n\
13588 -k ignored\n"));
13589 #endif
13590 fprintf (stream, _("\
13591 -n Do not optimize code alignment\n\
13592 -q quieten some warnings\n"));
13593 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13594 fprintf (stream, _("\
13595 -s ignored\n"));
13596 #endif
13597 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13598 || defined (TE_PE) || defined (TE_PEP))
13599 fprintf (stream, _("\
13600 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13601 #endif
13602 #ifdef SVR4_COMMENT_CHARS
13603 fprintf (stream, _("\
13604 --divide do not treat `/' as a comment character\n"));
13605 #else
13606 fprintf (stream, _("\
13607 --divide ignored\n"));
13608 #endif
13609 fprintf (stream, _("\
13610 -march=CPU[,+EXTENSION...]\n\
13611 generate code for CPU and EXTENSION, CPU is one of:\n"));
13612 show_arch (stream, 0, 1);
13613 fprintf (stream, _("\
13614 EXTENSION is combination of:\n"));
13615 show_arch (stream, 1, 0);
13616 fprintf (stream, _("\
13617 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13618 show_arch (stream, 0, 0);
13619 fprintf (stream, _("\
13620 -msse2avx encode SSE instructions with VEX prefix\n"));
13621 fprintf (stream, _("\
13622 -msse-check=[none|error|warning] (default: warning)\n\
13623 check SSE instructions\n"));
13624 fprintf (stream, _("\
13625 -moperand-check=[none|error|warning] (default: warning)\n\
13626 check operand combinations for validity\n"));
13627 fprintf (stream, _("\
13628 -mavxscalar=[128|256] (default: 128)\n\
13629 encode scalar AVX instructions with specific vector\n\
13630 length\n"));
13631 fprintf (stream, _("\
13632 -mvexwig=[0|1] (default: 0)\n\
13633 encode VEX instructions with specific VEX.W value\n\
13634 for VEX.W bit ignored instructions\n"));
13635 fprintf (stream, _("\
13636 -mevexlig=[128|256|512] (default: 128)\n\
13637 encode scalar EVEX instructions with specific vector\n\
13638 length\n"));
13639 fprintf (stream, _("\
13640 -mevexwig=[0|1] (default: 0)\n\
13641 encode EVEX instructions with specific EVEX.W value\n\
13642 for EVEX.W bit ignored instructions\n"));
13643 fprintf (stream, _("\
13644 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13645 encode EVEX instructions with specific EVEX.RC value\n\
13646 for SAE-only ignored instructions\n"));
13647 fprintf (stream, _("\
13648 -mmnemonic=[att|intel] "));
13649 if (SYSV386_COMPAT)
13650 fprintf (stream, _("(default: att)\n"));
13651 else
13652 fprintf (stream, _("(default: intel)\n"));
13653 fprintf (stream, _("\
13654 use AT&T/Intel mnemonic\n"));
13655 fprintf (stream, _("\
13656 -msyntax=[att|intel] (default: att)\n\
13657 use AT&T/Intel syntax\n"));
13658 fprintf (stream, _("\
13659 -mindex-reg support pseudo index registers\n"));
13660 fprintf (stream, _("\
13661 -mnaked-reg don't require `%%' prefix for registers\n"));
13662 fprintf (stream, _("\
13663 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13664 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13665 fprintf (stream, _("\
13666 -mshared disable branch optimization for shared code\n"));
13667 fprintf (stream, _("\
13668 -mx86-used-note=[no|yes] "));
13669 if (DEFAULT_X86_USED_NOTE)
13670 fprintf (stream, _("(default: yes)\n"));
13671 else
13672 fprintf (stream, _("(default: no)\n"));
13673 fprintf (stream, _("\
13674 generate x86 used ISA and feature properties\n"));
13675 #endif
13676 #if defined (TE_PE) || defined (TE_PEP)
13677 fprintf (stream, _("\
13678 -mbig-obj generate big object files\n"));
13679 #endif
13680 fprintf (stream, _("\
13681 -momit-lock-prefix=[no|yes] (default: no)\n\
13682 strip all lock prefixes\n"));
13683 fprintf (stream, _("\
13684 -mfence-as-lock-add=[no|yes] (default: no)\n\
13685 encode lfence, mfence and sfence as\n\
13686 lock addl $0x0, (%%{re}sp)\n"));
13687 fprintf (stream, _("\
13688 -mrelax-relocations=[no|yes] "));
13689 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13690 fprintf (stream, _("(default: yes)\n"));
13691 else
13692 fprintf (stream, _("(default: no)\n"));
13693 fprintf (stream, _("\
13694 generate relax relocations\n"));
13695 fprintf (stream, _("\
13696 -malign-branch-boundary=NUM (default: 0)\n\
13697 align branches within NUM byte boundary\n"));
13698 fprintf (stream, _("\
13699 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13700 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13701 indirect\n\
13702 specify types of branches to align\n"));
13703 fprintf (stream, _("\
13704 -malign-branch-prefix-size=NUM (default: 5)\n\
13705 align branches with NUM prefixes per instruction\n"));
13706 fprintf (stream, _("\
13707 -mbranches-within-32B-boundaries\n\
13708 align branches within 32 byte boundary\n"));
13709 fprintf (stream, _("\
13710 -mlfence-after-load=[no|yes] (default: no)\n\
13711 generate lfence after load\n"));
13712 fprintf (stream, _("\
13713 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13714 generate lfence before indirect near branch\n"));
13715 fprintf (stream, _("\
13716 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13717 generate lfence before ret\n"));
13718 fprintf (stream, _("\
13719 -mamd64 accept only AMD64 ISA [default]\n"));
13720 fprintf (stream, _("\
13721 -mintel64 accept only Intel64 ISA\n"));
13722 }
13723
13724 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13725 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13726 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13727
13728 /* Pick the target format to use. */
13729
13730 const char *
13731 i386_target_format (void)
13732 {
13733 if (!strncmp (default_arch, "x86_64", 6))
13734 {
13735 update_code_flag (CODE_64BIT, 1);
13736 if (default_arch[6] == '\0')
13737 x86_elf_abi = X86_64_ABI;
13738 else
13739 x86_elf_abi = X86_64_X32_ABI;
13740 }
13741 else if (!strcmp (default_arch, "i386"))
13742 update_code_flag (CODE_32BIT, 1);
13743 else if (!strcmp (default_arch, "iamcu"))
13744 {
13745 update_code_flag (CODE_32BIT, 1);
13746 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13747 {
13748 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13749 cpu_arch_name = "iamcu";
13750 cpu_sub_arch_name = NULL;
13751 cpu_arch_flags = iamcu_flags;
13752 cpu_arch_isa = PROCESSOR_IAMCU;
13753 cpu_arch_isa_flags = iamcu_flags;
13754 if (!cpu_arch_tune_set)
13755 {
13756 cpu_arch_tune = cpu_arch_isa;
13757 cpu_arch_tune_flags = cpu_arch_isa_flags;
13758 }
13759 }
13760 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13761 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13762 cpu_arch_name);
13763 }
13764 else
13765 as_fatal (_("unknown architecture"));
13766
13767 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13768 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13769 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13770 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13771
13772 switch (OUTPUT_FLAVOR)
13773 {
13774 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13775 case bfd_target_aout_flavour:
13776 return AOUT_TARGET_FORMAT;
13777 #endif
13778 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13779 # if defined (TE_PE) || defined (TE_PEP)
13780 case bfd_target_coff_flavour:
13781 if (flag_code == CODE_64BIT)
13782 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13783 else
13784 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
13785 # elif defined (TE_GO32)
13786 case bfd_target_coff_flavour:
13787 return "coff-go32";
13788 # else
13789 case bfd_target_coff_flavour:
13790 return "coff-i386";
13791 # endif
13792 #endif
13793 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13794 case bfd_target_elf_flavour:
13795 {
13796 const char *format;
13797
13798 switch (x86_elf_abi)
13799 {
13800 default:
13801 format = ELF_TARGET_FORMAT;
13802 #ifndef TE_SOLARIS
13803 tls_get_addr = "___tls_get_addr";
13804 #endif
13805 break;
13806 case X86_64_ABI:
13807 use_rela_relocations = 1;
13808 object_64bit = 1;
13809 #ifndef TE_SOLARIS
13810 tls_get_addr = "__tls_get_addr";
13811 #endif
13812 format = ELF_TARGET_FORMAT64;
13813 break;
13814 case X86_64_X32_ABI:
13815 use_rela_relocations = 1;
13816 object_64bit = 1;
13817 #ifndef TE_SOLARIS
13818 tls_get_addr = "__tls_get_addr";
13819 #endif
13820 disallow_64bit_reloc = 1;
13821 format = ELF_TARGET_FORMAT32;
13822 break;
13823 }
13824 if (cpu_arch_isa == PROCESSOR_L1OM)
13825 {
13826 if (x86_elf_abi != X86_64_ABI)
13827 as_fatal (_("Intel L1OM is 64bit only"));
13828 return ELF_TARGET_L1OM_FORMAT;
13829 }
13830 else if (cpu_arch_isa == PROCESSOR_K1OM)
13831 {
13832 if (x86_elf_abi != X86_64_ABI)
13833 as_fatal (_("Intel K1OM is 64bit only"));
13834 return ELF_TARGET_K1OM_FORMAT;
13835 }
13836 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13837 {
13838 if (x86_elf_abi != I386_ABI)
13839 as_fatal (_("Intel MCU is 32bit only"));
13840 return ELF_TARGET_IAMCU_FORMAT;
13841 }
13842 else
13843 return format;
13844 }
13845 #endif
13846 #if defined (OBJ_MACH_O)
13847 case bfd_target_mach_o_flavour:
13848 if (flag_code == CODE_64BIT)
13849 {
13850 use_rela_relocations = 1;
13851 object_64bit = 1;
13852 return "mach-o-x86-64";
13853 }
13854 else
13855 return "mach-o-i386";
13856 #endif
13857 default:
13858 abort ();
13859 return NULL;
13860 }
13861 }
13862
13863 #endif /* OBJ_MAYBE_ more than one */
13864 \f
13865 symbolS *
13866 md_undefined_symbol (char *name)
13867 {
13868 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13869 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13870 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13871 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13872 {
13873 if (!GOT_symbol)
13874 {
13875 if (symbol_find (name))
13876 as_bad (_("GOT already in symbol table"));
13877 GOT_symbol = symbol_new (name, undefined_section,
13878 &zero_address_frag, 0);
13879 };
13880 return GOT_symbol;
13881 }
13882 return 0;
13883 }
13884
13885 /* Round up a section size to the appropriate boundary. */
13886
13887 valueT
13888 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13889 {
13890 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13891 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13892 {
13893 /* For a.out, force the section size to be aligned. If we don't do
13894 this, BFD will align it for us, but it will not write out the
13895 final bytes of the section. This may be a bug in BFD, but it is
13896 easier to fix it here since that is how the other a.out targets
13897 work. */
13898 int align;
13899
13900 align = bfd_section_alignment (segment);
13901 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13902 }
13903 #endif
13904
13905 return size;
13906 }
13907
13908 /* On the i386, PC-relative offsets are relative to the start of the
13909 next instruction. That is, the address of the offset, plus its
13910 size, since the offset is always the last part of the insn. */
13911
13912 long
13913 md_pcrel_from (fixS *fixP)
13914 {
13915 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13916 }
13917
13918 #ifndef I386COFF
13919
13920 static void
13921 s_bss (int ignore ATTRIBUTE_UNUSED)
13922 {
13923 int temp;
13924
13925 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13926 if (IS_ELF)
13927 obj_elf_section_change_hook ();
13928 #endif
13929 temp = get_absolute_expression ();
13930 subseg_set (bss_section, (subsegT) temp);
13931 demand_empty_rest_of_line ();
13932 }
13933
13934 #endif
13935
13936 /* Remember constant directive. */
13937
13938 void
13939 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13940 {
13941 if (last_insn.kind != last_insn_directive
13942 && (bfd_section_flags (now_seg) & SEC_CODE))
13943 {
13944 last_insn.seg = now_seg;
13945 last_insn.kind = last_insn_directive;
13946 last_insn.name = "constant directive";
13947 last_insn.file = as_where (&last_insn.line);
13948 if (lfence_before_ret != lfence_before_ret_none)
13949 {
13950 if (lfence_before_indirect_branch != lfence_branch_none)
13951 as_warn (_("constant directive skips -mlfence-before-ret "
13952 "and -mlfence-before-indirect-branch"));
13953 else
13954 as_warn (_("constant directive skips -mlfence-before-ret"));
13955 }
13956 else if (lfence_before_indirect_branch != lfence_branch_none)
13957 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
13958 }
13959 }
13960
13961 void
13962 i386_validate_fix (fixS *fixp)
13963 {
13964 if (fixp->fx_subsy)
13965 {
13966 if (fixp->fx_subsy == GOT_symbol)
13967 {
13968 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13969 {
13970 if (!object_64bit)
13971 abort ();
13972 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13973 if (fixp->fx_tcbit2)
13974 fixp->fx_r_type = (fixp->fx_tcbit
13975 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13976 : BFD_RELOC_X86_64_GOTPCRELX);
13977 else
13978 #endif
13979 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13980 }
13981 else
13982 {
13983 if (!object_64bit)
13984 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13985 else
13986 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13987 }
13988 fixp->fx_subsy = 0;
13989 }
13990 }
13991 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13992 else
13993 {
13994 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
13995 to section. Since PLT32 relocation must be against symbols,
13996 turn such PLT32 relocation into PC32 relocation. */
13997 if (fixp->fx_addsy
13998 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
13999 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
14000 && symbol_section_p (fixp->fx_addsy))
14001 fixp->fx_r_type = BFD_RELOC_32_PCREL;
14002 if (!object_64bit)
14003 {
14004 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
14005 && fixp->fx_tcbit2)
14006 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
14007 }
14008 }
14009 #endif
14010 }
14011
14012 arelent *
14013 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14014 {
14015 arelent *rel;
14016 bfd_reloc_code_real_type code;
14017
14018 switch (fixp->fx_r_type)
14019 {
14020 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14021 case BFD_RELOC_SIZE32:
14022 case BFD_RELOC_SIZE64:
14023 if (S_IS_DEFINED (fixp->fx_addsy)
14024 && !S_IS_EXTERNAL (fixp->fx_addsy))
14025 {
14026 /* Resolve size relocation against local symbol to size of
14027 the symbol plus addend. */
14028 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
14029 if (fixp->fx_r_type == BFD_RELOC_SIZE32
14030 && !fits_in_unsigned_long (value))
14031 as_bad_where (fixp->fx_file, fixp->fx_line,
14032 _("symbol size computation overflow"));
14033 fixp->fx_addsy = NULL;
14034 fixp->fx_subsy = NULL;
14035 md_apply_fix (fixp, (valueT *) &value, NULL);
14036 return NULL;
14037 }
14038 #endif
14039 /* Fall through. */
14040
14041 case BFD_RELOC_X86_64_PLT32:
14042 case BFD_RELOC_X86_64_GOT32:
14043 case BFD_RELOC_X86_64_GOTPCREL:
14044 case BFD_RELOC_X86_64_GOTPCRELX:
14045 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14046 case BFD_RELOC_386_PLT32:
14047 case BFD_RELOC_386_GOT32:
14048 case BFD_RELOC_386_GOT32X:
14049 case BFD_RELOC_386_GOTOFF:
14050 case BFD_RELOC_386_GOTPC:
14051 case BFD_RELOC_386_TLS_GD:
14052 case BFD_RELOC_386_TLS_LDM:
14053 case BFD_RELOC_386_TLS_LDO_32:
14054 case BFD_RELOC_386_TLS_IE_32:
14055 case BFD_RELOC_386_TLS_IE:
14056 case BFD_RELOC_386_TLS_GOTIE:
14057 case BFD_RELOC_386_TLS_LE_32:
14058 case BFD_RELOC_386_TLS_LE:
14059 case BFD_RELOC_386_TLS_GOTDESC:
14060 case BFD_RELOC_386_TLS_DESC_CALL:
14061 case BFD_RELOC_X86_64_TLSGD:
14062 case BFD_RELOC_X86_64_TLSLD:
14063 case BFD_RELOC_X86_64_DTPOFF32:
14064 case BFD_RELOC_X86_64_DTPOFF64:
14065 case BFD_RELOC_X86_64_GOTTPOFF:
14066 case BFD_RELOC_X86_64_TPOFF32:
14067 case BFD_RELOC_X86_64_TPOFF64:
14068 case BFD_RELOC_X86_64_GOTOFF64:
14069 case BFD_RELOC_X86_64_GOTPC32:
14070 case BFD_RELOC_X86_64_GOT64:
14071 case BFD_RELOC_X86_64_GOTPCREL64:
14072 case BFD_RELOC_X86_64_GOTPC64:
14073 case BFD_RELOC_X86_64_GOTPLT64:
14074 case BFD_RELOC_X86_64_PLTOFF64:
14075 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14076 case BFD_RELOC_X86_64_TLSDESC_CALL:
14077 case BFD_RELOC_RVA:
14078 case BFD_RELOC_VTABLE_ENTRY:
14079 case BFD_RELOC_VTABLE_INHERIT:
14080 #ifdef TE_PE
14081 case BFD_RELOC_32_SECREL:
14082 #endif
14083 code = fixp->fx_r_type;
14084 break;
14085 case BFD_RELOC_X86_64_32S:
14086 if (!fixp->fx_pcrel)
14087 {
14088 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
14089 code = fixp->fx_r_type;
14090 break;
14091 }
14092 /* Fall through. */
14093 default:
14094 if (fixp->fx_pcrel)
14095 {
14096 switch (fixp->fx_size)
14097 {
14098 default:
14099 as_bad_where (fixp->fx_file, fixp->fx_line,
14100 _("can not do %d byte pc-relative relocation"),
14101 fixp->fx_size);
14102 code = BFD_RELOC_32_PCREL;
14103 break;
14104 case 1: code = BFD_RELOC_8_PCREL; break;
14105 case 2: code = BFD_RELOC_16_PCREL; break;
14106 case 4: code = BFD_RELOC_32_PCREL; break;
14107 #ifdef BFD64
14108 case 8: code = BFD_RELOC_64_PCREL; break;
14109 #endif
14110 }
14111 }
14112 else
14113 {
14114 switch (fixp->fx_size)
14115 {
14116 default:
14117 as_bad_where (fixp->fx_file, fixp->fx_line,
14118 _("can not do %d byte relocation"),
14119 fixp->fx_size);
14120 code = BFD_RELOC_32;
14121 break;
14122 case 1: code = BFD_RELOC_8; break;
14123 case 2: code = BFD_RELOC_16; break;
14124 case 4: code = BFD_RELOC_32; break;
14125 #ifdef BFD64
14126 case 8: code = BFD_RELOC_64; break;
14127 #endif
14128 }
14129 }
14130 break;
14131 }
14132
14133 if ((code == BFD_RELOC_32
14134 || code == BFD_RELOC_32_PCREL
14135 || code == BFD_RELOC_X86_64_32S)
14136 && GOT_symbol
14137 && fixp->fx_addsy == GOT_symbol)
14138 {
14139 if (!object_64bit)
14140 code = BFD_RELOC_386_GOTPC;
14141 else
14142 code = BFD_RELOC_X86_64_GOTPC32;
14143 }
14144 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
14145 && GOT_symbol
14146 && fixp->fx_addsy == GOT_symbol)
14147 {
14148 code = BFD_RELOC_X86_64_GOTPC64;
14149 }
14150
14151 rel = XNEW (arelent);
14152 rel->sym_ptr_ptr = XNEW (asymbol *);
14153 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14154
14155 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
14156
14157 if (!use_rela_relocations)
14158 {
14159 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14160 vtable entry to be used in the relocation's section offset. */
14161 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14162 rel->address = fixp->fx_offset;
14163 #if defined (OBJ_COFF) && defined (TE_PE)
14164 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14165 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14166 else
14167 #endif
14168 rel->addend = 0;
14169 }
14170 /* Use the rela in 64bit mode. */
14171 else
14172 {
14173 if (disallow_64bit_reloc)
14174 switch (code)
14175 {
14176 case BFD_RELOC_X86_64_DTPOFF64:
14177 case BFD_RELOC_X86_64_TPOFF64:
14178 case BFD_RELOC_64_PCREL:
14179 case BFD_RELOC_X86_64_GOTOFF64:
14180 case BFD_RELOC_X86_64_GOT64:
14181 case BFD_RELOC_X86_64_GOTPCREL64:
14182 case BFD_RELOC_X86_64_GOTPC64:
14183 case BFD_RELOC_X86_64_GOTPLT64:
14184 case BFD_RELOC_X86_64_PLTOFF64:
14185 as_bad_where (fixp->fx_file, fixp->fx_line,
14186 _("cannot represent relocation type %s in x32 mode"),
14187 bfd_get_reloc_code_name (code));
14188 break;
14189 default:
14190 break;
14191 }
14192
14193 if (!fixp->fx_pcrel)
14194 rel->addend = fixp->fx_offset;
14195 else
14196 switch (code)
14197 {
14198 case BFD_RELOC_X86_64_PLT32:
14199 case BFD_RELOC_X86_64_GOT32:
14200 case BFD_RELOC_X86_64_GOTPCREL:
14201 case BFD_RELOC_X86_64_GOTPCRELX:
14202 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14203 case BFD_RELOC_X86_64_TLSGD:
14204 case BFD_RELOC_X86_64_TLSLD:
14205 case BFD_RELOC_X86_64_GOTTPOFF:
14206 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14207 case BFD_RELOC_X86_64_TLSDESC_CALL:
14208 rel->addend = fixp->fx_offset - fixp->fx_size;
14209 break;
14210 default:
14211 rel->addend = (section->vma
14212 - fixp->fx_size
14213 + fixp->fx_addnumber
14214 + md_pcrel_from (fixp));
14215 break;
14216 }
14217 }
14218
14219 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14220 if (rel->howto == NULL)
14221 {
14222 as_bad_where (fixp->fx_file, fixp->fx_line,
14223 _("cannot represent relocation type %s"),
14224 bfd_get_reloc_code_name (code));
14225 /* Set howto to a garbage value so that we can keep going. */
14226 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
14227 gas_assert (rel->howto != NULL);
14228 }
14229
14230 return rel;
14231 }
14232
14233 #include "tc-i386-intel.c"
14234
14235 void
14236 tc_x86_parse_to_dw2regnum (expressionS *exp)
14237 {
14238 int saved_naked_reg;
14239 char saved_register_dot;
14240
14241 saved_naked_reg = allow_naked_reg;
14242 allow_naked_reg = 1;
14243 saved_register_dot = register_chars['.'];
14244 register_chars['.'] = '.';
14245 allow_pseudo_reg = 1;
14246 expression_and_evaluate (exp);
14247 allow_pseudo_reg = 0;
14248 register_chars['.'] = saved_register_dot;
14249 allow_naked_reg = saved_naked_reg;
14250
14251 if (exp->X_op == O_register && exp->X_add_number >= 0)
14252 {
14253 if ((addressT) exp->X_add_number < i386_regtab_size)
14254 {
14255 exp->X_op = O_constant;
14256 exp->X_add_number = i386_regtab[exp->X_add_number]
14257 .dw2_regnum[flag_code >> 1];
14258 }
14259 else
14260 exp->X_op = O_illegal;
14261 }
14262 }
14263
14264 void
14265 tc_x86_frame_initial_instructions (void)
14266 {
14267 static unsigned int sp_regno[2];
14268
14269 if (!sp_regno[flag_code >> 1])
14270 {
14271 char *saved_input = input_line_pointer;
14272 char sp[][4] = {"esp", "rsp"};
14273 expressionS exp;
14274
14275 input_line_pointer = sp[flag_code >> 1];
14276 tc_x86_parse_to_dw2regnum (&exp);
14277 gas_assert (exp.X_op == O_constant);
14278 sp_regno[flag_code >> 1] = exp.X_add_number;
14279 input_line_pointer = saved_input;
14280 }
14281
14282 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14283 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
14284 }
14285
14286 int
14287 x86_dwarf2_addr_size (void)
14288 {
14289 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14290 if (x86_elf_abi == X86_64_X32_ABI)
14291 return 4;
14292 #endif
14293 return bfd_arch_bits_per_address (stdoutput) / 8;
14294 }
14295
14296 int
14297 i386_elf_section_type (const char *str, size_t len)
14298 {
14299 if (flag_code == CODE_64BIT
14300 && len == sizeof ("unwind") - 1
14301 && strncmp (str, "unwind", 6) == 0)
14302 return SHT_X86_64_UNWIND;
14303
14304 return -1;
14305 }
14306
14307 #ifdef TE_SOLARIS
14308 void
14309 i386_solaris_fix_up_eh_frame (segT sec)
14310 {
14311 if (flag_code == CODE_64BIT)
14312 elf_section_type (sec) = SHT_X86_64_UNWIND;
14313 }
14314 #endif
14315
14316 #ifdef TE_PE
14317 void
14318 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14319 {
14320 expressionS exp;
14321
14322 exp.X_op = O_secrel;
14323 exp.X_add_symbol = symbol;
14324 exp.X_add_number = 0;
14325 emit_expr (&exp, size);
14326 }
14327 #endif
14328
14329 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14330 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14331
14332 bfd_vma
14333 x86_64_section_letter (int letter, const char **ptr_msg)
14334 {
14335 if (flag_code == CODE_64BIT)
14336 {
14337 if (letter == 'l')
14338 return SHF_X86_64_LARGE;
14339
14340 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14341 }
14342 else
14343 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14344 return -1;
14345 }
14346
14347 bfd_vma
14348 x86_64_section_word (char *str, size_t len)
14349 {
14350 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
14351 return SHF_X86_64_LARGE;
14352
14353 return -1;
14354 }
14355
14356 static void
14357 handle_large_common (int small ATTRIBUTE_UNUSED)
14358 {
14359 if (flag_code != CODE_64BIT)
14360 {
14361 s_comm_internal (0, elf_common_parse);
14362 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14363 }
14364 else
14365 {
14366 static segT lbss_section;
14367 asection *saved_com_section_ptr = elf_com_section_ptr;
14368 asection *saved_bss_section = bss_section;
14369
14370 if (lbss_section == NULL)
14371 {
14372 flagword applicable;
14373 segT seg = now_seg;
14374 subsegT subseg = now_subseg;
14375
14376 /* The .lbss section is for local .largecomm symbols. */
14377 lbss_section = subseg_new (".lbss", 0);
14378 applicable = bfd_applicable_section_flags (stdoutput);
14379 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14380 seg_info (lbss_section)->bss = 1;
14381
14382 subseg_set (seg, subseg);
14383 }
14384
14385 elf_com_section_ptr = &_bfd_elf_large_com_section;
14386 bss_section = lbss_section;
14387
14388 s_comm_internal (0, elf_common_parse);
14389
14390 elf_com_section_ptr = saved_com_section_ptr;
14391 bss_section = saved_bss_section;
14392 }
14393 }
14394 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */