]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-mips.c
MIPS: Add Octeon 3 support
[thirdparty/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 register struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2093 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2094 major opcode) will require further modifications to the opcode
2095 table. */
2096
2097 static inline unsigned int
2098 micromips_insn_length (const struct mips_opcode *mo)
2099 {
2100 return (mo->mask >> 16) == 0 ? 2 : 4;
2101 }
2102
2103 /* Return the length of MIPS16 instruction OPCODE. */
2104
2105 static inline unsigned int
2106 mips16_opcode_length (unsigned long opcode)
2107 {
2108 return (opcode >> 16) == 0 ? 2 : 4;
2109 }
2110
2111 /* Return the length of instruction INSN. */
2112
2113 static inline unsigned int
2114 insn_length (const struct mips_cl_insn *insn)
2115 {
2116 if (mips_opts.micromips)
2117 return micromips_insn_length (insn->insn_mo);
2118 else if (mips_opts.mips16)
2119 return mips16_opcode_length (insn->insn_opcode);
2120 else
2121 return 4;
2122 }
2123
2124 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2125
2126 static void
2127 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2128 {
2129 size_t i;
2130
2131 insn->insn_mo = mo;
2132 insn->insn_opcode = mo->match;
2133 insn->frag = NULL;
2134 insn->where = 0;
2135 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2136 insn->fixp[i] = NULL;
2137 insn->fixed_p = (mips_opts.noreorder > 0);
2138 insn->noreorder_p = (mips_opts.noreorder > 0);
2139 insn->mips16_absolute_jump_p = 0;
2140 insn->complete_p = 0;
2141 insn->cleared_p = 0;
2142 }
2143
2144 /* Get a list of all the operands in INSN. */
2145
2146 static const struct mips_operand_array *
2147 insn_operands (const struct mips_cl_insn *insn)
2148 {
2149 if (insn->insn_mo >= &mips_opcodes[0]
2150 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2151 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2152
2153 if (insn->insn_mo >= &mips16_opcodes[0]
2154 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2155 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2156
2157 if (insn->insn_mo >= &micromips_opcodes[0]
2158 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2159 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2160
2161 abort ();
2162 }
2163
2164 /* Get a description of operand OPNO of INSN. */
2165
2166 static const struct mips_operand *
2167 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2168 {
2169 const struct mips_operand_array *operands;
2170
2171 operands = insn_operands (insn);
2172 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2173 abort ();
2174 return operands->operand[opno];
2175 }
2176
2177 /* Install UVAL as the value of OPERAND in INSN. */
2178
2179 static inline void
2180 insn_insert_operand (struct mips_cl_insn *insn,
2181 const struct mips_operand *operand, unsigned int uval)
2182 {
2183 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2184 }
2185
2186 /* Extract the value of OPERAND from INSN. */
2187
2188 static inline unsigned
2189 insn_extract_operand (const struct mips_cl_insn *insn,
2190 const struct mips_operand *operand)
2191 {
2192 return mips_extract_operand (operand, insn->insn_opcode);
2193 }
2194
2195 /* Record the current MIPS16/microMIPS mode in now_seg. */
2196
2197 static void
2198 mips_record_compressed_mode (void)
2199 {
2200 segment_info_type *si;
2201
2202 si = seg_info (now_seg);
2203 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2204 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2205 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2206 si->tc_segment_info_data.micromips = mips_opts.micromips;
2207 }
2208
2209 /* Read a standard MIPS instruction from BUF. */
2210
2211 static unsigned long
2212 read_insn (char *buf)
2213 {
2214 if (target_big_endian)
2215 return bfd_getb32 ((bfd_byte *) buf);
2216 else
2217 return bfd_getl32 ((bfd_byte *) buf);
2218 }
2219
2220 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2221 the next byte. */
2222
2223 static char *
2224 write_insn (char *buf, unsigned int insn)
2225 {
2226 md_number_to_chars (buf, insn, 4);
2227 return buf + 4;
2228 }
2229
2230 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2231 has length LENGTH. */
2232
2233 static unsigned long
2234 read_compressed_insn (char *buf, unsigned int length)
2235 {
2236 unsigned long insn;
2237 unsigned int i;
2238
2239 insn = 0;
2240 for (i = 0; i < length; i += 2)
2241 {
2242 insn <<= 16;
2243 if (target_big_endian)
2244 insn |= bfd_getb16 ((char *) buf);
2245 else
2246 insn |= bfd_getl16 ((char *) buf);
2247 buf += 2;
2248 }
2249 return insn;
2250 }
2251
2252 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2253 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2254
2255 static char *
2256 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2257 {
2258 unsigned int i;
2259
2260 for (i = 0; i < length; i += 2)
2261 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2262 return buf + length;
2263 }
2264
2265 /* Install INSN at the location specified by its "frag" and "where" fields. */
2266
2267 static void
2268 install_insn (const struct mips_cl_insn *insn)
2269 {
2270 char *f = insn->frag->fr_literal + insn->where;
2271 if (HAVE_CODE_COMPRESSION)
2272 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2273 else
2274 write_insn (f, insn->insn_opcode);
2275 mips_record_compressed_mode ();
2276 }
2277
2278 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2279 and install the opcode in the new location. */
2280
2281 static void
2282 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2283 {
2284 size_t i;
2285
2286 insn->frag = frag;
2287 insn->where = where;
2288 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2289 if (insn->fixp[i] != NULL)
2290 {
2291 insn->fixp[i]->fx_frag = frag;
2292 insn->fixp[i]->fx_where = where;
2293 }
2294 install_insn (insn);
2295 }
2296
2297 /* Add INSN to the end of the output. */
2298
2299 static void
2300 add_fixed_insn (struct mips_cl_insn *insn)
2301 {
2302 char *f = frag_more (insn_length (insn));
2303 move_insn (insn, frag_now, f - frag_now->fr_literal);
2304 }
2305
2306 /* Start a variant frag and move INSN to the start of the variant part,
2307 marking it as fixed. The other arguments are as for frag_var. */
2308
2309 static void
2310 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2311 relax_substateT subtype, symbolS *symbol, offsetT offset)
2312 {
2313 frag_grow (max_chars);
2314 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2315 insn->fixed_p = 1;
2316 frag_var (rs_machine_dependent, max_chars, var,
2317 subtype, symbol, offset, NULL);
2318 }
2319
2320 /* Insert N copies of INSN into the history buffer, starting at
2321 position FIRST. Neither FIRST nor N need to be clipped. */
2322
2323 static void
2324 insert_into_history (unsigned int first, unsigned int n,
2325 const struct mips_cl_insn *insn)
2326 {
2327 if (mips_relax.sequence != 2)
2328 {
2329 unsigned int i;
2330
2331 for (i = ARRAY_SIZE (history); i-- > first;)
2332 if (i >= first + n)
2333 history[i] = history[i - n];
2334 else
2335 history[i] = *insn;
2336 }
2337 }
2338
2339 /* Clear the error in insn_error. */
2340
2341 static void
2342 clear_insn_error (void)
2343 {
2344 memset (&insn_error, 0, sizeof (insn_error));
2345 }
2346
2347 /* Possibly record error message MSG for the current instruction.
2348 If the error is about a particular argument, ARGNUM is the 1-based
2349 number of that argument, otherwise it is 0. FORMAT is the format
2350 of MSG. Return true if MSG was used, false if the current message
2351 was kept. */
2352
2353 static bfd_boolean
2354 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2355 const char *msg)
2356 {
2357 if (argnum == 0)
2358 {
2359 /* Give priority to errors against specific arguments, and to
2360 the first whole-instruction message. */
2361 if (insn_error.msg)
2362 return FALSE;
2363 }
2364 else
2365 {
2366 /* Keep insn_error if it is against a later argument. */
2367 if (argnum < insn_error.min_argnum)
2368 return FALSE;
2369
2370 /* If both errors are against the same argument but are different,
2371 give up on reporting a specific error for this argument.
2372 See the comment about mips_insn_error for details. */
2373 if (argnum == insn_error.min_argnum
2374 && insn_error.msg
2375 && strcmp (insn_error.msg, msg) != 0)
2376 {
2377 insn_error.msg = 0;
2378 insn_error.min_argnum += 1;
2379 return FALSE;
2380 }
2381 }
2382 insn_error.min_argnum = argnum;
2383 insn_error.format = format;
2384 insn_error.msg = msg;
2385 return TRUE;
2386 }
2387
2388 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2389 as for set_insn_error_format. */
2390
2391 static void
2392 set_insn_error (int argnum, const char *msg)
2393 {
2394 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2395 }
2396
2397 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2398 as for set_insn_error_format. */
2399
2400 static void
2401 set_insn_error_i (int argnum, const char *msg, int i)
2402 {
2403 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2404 insn_error.u.i = i;
2405 }
2406
2407 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2408 are as for set_insn_error_format. */
2409
2410 static void
2411 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2412 {
2413 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2414 {
2415 insn_error.u.ss[0] = s1;
2416 insn_error.u.ss[1] = s2;
2417 }
2418 }
2419
2420 /* Report the error in insn_error, which is against assembly code STR. */
2421
2422 static void
2423 report_insn_error (const char *str)
2424 {
2425 const char *msg;
2426
2427 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2428 switch (insn_error.format)
2429 {
2430 case ERR_FMT_PLAIN:
2431 as_bad (msg, str);
2432 break;
2433
2434 case ERR_FMT_I:
2435 as_bad (msg, insn_error.u.i, str);
2436 break;
2437
2438 case ERR_FMT_SS:
2439 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2440 break;
2441 }
2442 }
2443
2444 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2445 the idea is to make it obvious at a glance that each errata is
2446 included. */
2447
2448 static void
2449 init_vr4120_conflicts (void)
2450 {
2451 #define CONFLICT(FIRST, SECOND) \
2452 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2453
2454 /* Errata 21 - [D]DIV[U] after [D]MACC */
2455 CONFLICT (MACC, DIV);
2456 CONFLICT (DMACC, DIV);
2457
2458 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2459 CONFLICT (DMULT, DMULT);
2460 CONFLICT (DMULT, DMACC);
2461 CONFLICT (DMACC, DMULT);
2462 CONFLICT (DMACC, DMACC);
2463
2464 /* Errata 24 - MT{LO,HI} after [D]MACC */
2465 CONFLICT (MACC, MTHILO);
2466 CONFLICT (DMACC, MTHILO);
2467
2468 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2469 instruction is executed immediately after a MACC or DMACC
2470 instruction, the result of [either instruction] is incorrect." */
2471 CONFLICT (MACC, MULT);
2472 CONFLICT (MACC, DMULT);
2473 CONFLICT (DMACC, MULT);
2474 CONFLICT (DMACC, DMULT);
2475
2476 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2477 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2478 DDIV or DDIVU instruction, the result of the MACC or
2479 DMACC instruction is incorrect.". */
2480 CONFLICT (DMULT, MACC);
2481 CONFLICT (DMULT, DMACC);
2482 CONFLICT (DIV, MACC);
2483 CONFLICT (DIV, DMACC);
2484
2485 #undef CONFLICT
2486 }
2487
2488 struct regname {
2489 const char *name;
2490 unsigned int num;
2491 };
2492
2493 #define RNUM_MASK 0x00000ff
2494 #define RTYPE_MASK 0x0ffff00
2495 #define RTYPE_NUM 0x0000100
2496 #define RTYPE_FPU 0x0000200
2497 #define RTYPE_FCC 0x0000400
2498 #define RTYPE_VEC 0x0000800
2499 #define RTYPE_GP 0x0001000
2500 #define RTYPE_CP0 0x0002000
2501 #define RTYPE_PC 0x0004000
2502 #define RTYPE_ACC 0x0008000
2503 #define RTYPE_CCC 0x0010000
2504 #define RTYPE_VI 0x0020000
2505 #define RTYPE_VF 0x0040000
2506 #define RTYPE_R5900_I 0x0080000
2507 #define RTYPE_R5900_Q 0x0100000
2508 #define RTYPE_R5900_R 0x0200000
2509 #define RTYPE_R5900_ACC 0x0400000
2510 #define RTYPE_MSA 0x0800000
2511 #define RWARN 0x8000000
2512
2513 #define GENERIC_REGISTER_NUMBERS \
2514 {"$0", RTYPE_NUM | 0}, \
2515 {"$1", RTYPE_NUM | 1}, \
2516 {"$2", RTYPE_NUM | 2}, \
2517 {"$3", RTYPE_NUM | 3}, \
2518 {"$4", RTYPE_NUM | 4}, \
2519 {"$5", RTYPE_NUM | 5}, \
2520 {"$6", RTYPE_NUM | 6}, \
2521 {"$7", RTYPE_NUM | 7}, \
2522 {"$8", RTYPE_NUM | 8}, \
2523 {"$9", RTYPE_NUM | 9}, \
2524 {"$10", RTYPE_NUM | 10}, \
2525 {"$11", RTYPE_NUM | 11}, \
2526 {"$12", RTYPE_NUM | 12}, \
2527 {"$13", RTYPE_NUM | 13}, \
2528 {"$14", RTYPE_NUM | 14}, \
2529 {"$15", RTYPE_NUM | 15}, \
2530 {"$16", RTYPE_NUM | 16}, \
2531 {"$17", RTYPE_NUM | 17}, \
2532 {"$18", RTYPE_NUM | 18}, \
2533 {"$19", RTYPE_NUM | 19}, \
2534 {"$20", RTYPE_NUM | 20}, \
2535 {"$21", RTYPE_NUM | 21}, \
2536 {"$22", RTYPE_NUM | 22}, \
2537 {"$23", RTYPE_NUM | 23}, \
2538 {"$24", RTYPE_NUM | 24}, \
2539 {"$25", RTYPE_NUM | 25}, \
2540 {"$26", RTYPE_NUM | 26}, \
2541 {"$27", RTYPE_NUM | 27}, \
2542 {"$28", RTYPE_NUM | 28}, \
2543 {"$29", RTYPE_NUM | 29}, \
2544 {"$30", RTYPE_NUM | 30}, \
2545 {"$31", RTYPE_NUM | 31}
2546
2547 #define FPU_REGISTER_NAMES \
2548 {"$f0", RTYPE_FPU | 0}, \
2549 {"$f1", RTYPE_FPU | 1}, \
2550 {"$f2", RTYPE_FPU | 2}, \
2551 {"$f3", RTYPE_FPU | 3}, \
2552 {"$f4", RTYPE_FPU | 4}, \
2553 {"$f5", RTYPE_FPU | 5}, \
2554 {"$f6", RTYPE_FPU | 6}, \
2555 {"$f7", RTYPE_FPU | 7}, \
2556 {"$f8", RTYPE_FPU | 8}, \
2557 {"$f9", RTYPE_FPU | 9}, \
2558 {"$f10", RTYPE_FPU | 10}, \
2559 {"$f11", RTYPE_FPU | 11}, \
2560 {"$f12", RTYPE_FPU | 12}, \
2561 {"$f13", RTYPE_FPU | 13}, \
2562 {"$f14", RTYPE_FPU | 14}, \
2563 {"$f15", RTYPE_FPU | 15}, \
2564 {"$f16", RTYPE_FPU | 16}, \
2565 {"$f17", RTYPE_FPU | 17}, \
2566 {"$f18", RTYPE_FPU | 18}, \
2567 {"$f19", RTYPE_FPU | 19}, \
2568 {"$f20", RTYPE_FPU | 20}, \
2569 {"$f21", RTYPE_FPU | 21}, \
2570 {"$f22", RTYPE_FPU | 22}, \
2571 {"$f23", RTYPE_FPU | 23}, \
2572 {"$f24", RTYPE_FPU | 24}, \
2573 {"$f25", RTYPE_FPU | 25}, \
2574 {"$f26", RTYPE_FPU | 26}, \
2575 {"$f27", RTYPE_FPU | 27}, \
2576 {"$f28", RTYPE_FPU | 28}, \
2577 {"$f29", RTYPE_FPU | 29}, \
2578 {"$f30", RTYPE_FPU | 30}, \
2579 {"$f31", RTYPE_FPU | 31}
2580
2581 #define FPU_CONDITION_CODE_NAMES \
2582 {"$fcc0", RTYPE_FCC | 0}, \
2583 {"$fcc1", RTYPE_FCC | 1}, \
2584 {"$fcc2", RTYPE_FCC | 2}, \
2585 {"$fcc3", RTYPE_FCC | 3}, \
2586 {"$fcc4", RTYPE_FCC | 4}, \
2587 {"$fcc5", RTYPE_FCC | 5}, \
2588 {"$fcc6", RTYPE_FCC | 6}, \
2589 {"$fcc7", RTYPE_FCC | 7}
2590
2591 #define COPROC_CONDITION_CODE_NAMES \
2592 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2593 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2594 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2595 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2596 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2597 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2598 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2599 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2600
2601 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2602 {"$a4", RTYPE_GP | 8}, \
2603 {"$a5", RTYPE_GP | 9}, \
2604 {"$a6", RTYPE_GP | 10}, \
2605 {"$a7", RTYPE_GP | 11}, \
2606 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2607 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2608 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2609 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2610 {"$t0", RTYPE_GP | 12}, \
2611 {"$t1", RTYPE_GP | 13}, \
2612 {"$t2", RTYPE_GP | 14}, \
2613 {"$t3", RTYPE_GP | 15}
2614
2615 #define O32_SYMBOLIC_REGISTER_NAMES \
2616 {"$t0", RTYPE_GP | 8}, \
2617 {"$t1", RTYPE_GP | 9}, \
2618 {"$t2", RTYPE_GP | 10}, \
2619 {"$t3", RTYPE_GP | 11}, \
2620 {"$t4", RTYPE_GP | 12}, \
2621 {"$t5", RTYPE_GP | 13}, \
2622 {"$t6", RTYPE_GP | 14}, \
2623 {"$t7", RTYPE_GP | 15}, \
2624 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2625 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2626 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2627 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2628
2629 /* Remaining symbolic register names */
2630 #define SYMBOLIC_REGISTER_NAMES \
2631 {"$zero", RTYPE_GP | 0}, \
2632 {"$at", RTYPE_GP | 1}, \
2633 {"$AT", RTYPE_GP | 1}, \
2634 {"$v0", RTYPE_GP | 2}, \
2635 {"$v1", RTYPE_GP | 3}, \
2636 {"$a0", RTYPE_GP | 4}, \
2637 {"$a1", RTYPE_GP | 5}, \
2638 {"$a2", RTYPE_GP | 6}, \
2639 {"$a3", RTYPE_GP | 7}, \
2640 {"$s0", RTYPE_GP | 16}, \
2641 {"$s1", RTYPE_GP | 17}, \
2642 {"$s2", RTYPE_GP | 18}, \
2643 {"$s3", RTYPE_GP | 19}, \
2644 {"$s4", RTYPE_GP | 20}, \
2645 {"$s5", RTYPE_GP | 21}, \
2646 {"$s6", RTYPE_GP | 22}, \
2647 {"$s7", RTYPE_GP | 23}, \
2648 {"$t8", RTYPE_GP | 24}, \
2649 {"$t9", RTYPE_GP | 25}, \
2650 {"$k0", RTYPE_GP | 26}, \
2651 {"$kt0", RTYPE_GP | 26}, \
2652 {"$k1", RTYPE_GP | 27}, \
2653 {"$kt1", RTYPE_GP | 27}, \
2654 {"$gp", RTYPE_GP | 28}, \
2655 {"$sp", RTYPE_GP | 29}, \
2656 {"$s8", RTYPE_GP | 30}, \
2657 {"$fp", RTYPE_GP | 30}, \
2658 {"$ra", RTYPE_GP | 31}
2659
2660 #define MIPS16_SPECIAL_REGISTER_NAMES \
2661 {"$pc", RTYPE_PC | 0}
2662
2663 #define MDMX_VECTOR_REGISTER_NAMES \
2664 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2665 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2666 {"$v2", RTYPE_VEC | 2}, \
2667 {"$v3", RTYPE_VEC | 3}, \
2668 {"$v4", RTYPE_VEC | 4}, \
2669 {"$v5", RTYPE_VEC | 5}, \
2670 {"$v6", RTYPE_VEC | 6}, \
2671 {"$v7", RTYPE_VEC | 7}, \
2672 {"$v8", RTYPE_VEC | 8}, \
2673 {"$v9", RTYPE_VEC | 9}, \
2674 {"$v10", RTYPE_VEC | 10}, \
2675 {"$v11", RTYPE_VEC | 11}, \
2676 {"$v12", RTYPE_VEC | 12}, \
2677 {"$v13", RTYPE_VEC | 13}, \
2678 {"$v14", RTYPE_VEC | 14}, \
2679 {"$v15", RTYPE_VEC | 15}, \
2680 {"$v16", RTYPE_VEC | 16}, \
2681 {"$v17", RTYPE_VEC | 17}, \
2682 {"$v18", RTYPE_VEC | 18}, \
2683 {"$v19", RTYPE_VEC | 19}, \
2684 {"$v20", RTYPE_VEC | 20}, \
2685 {"$v21", RTYPE_VEC | 21}, \
2686 {"$v22", RTYPE_VEC | 22}, \
2687 {"$v23", RTYPE_VEC | 23}, \
2688 {"$v24", RTYPE_VEC | 24}, \
2689 {"$v25", RTYPE_VEC | 25}, \
2690 {"$v26", RTYPE_VEC | 26}, \
2691 {"$v27", RTYPE_VEC | 27}, \
2692 {"$v28", RTYPE_VEC | 28}, \
2693 {"$v29", RTYPE_VEC | 29}, \
2694 {"$v30", RTYPE_VEC | 30}, \
2695 {"$v31", RTYPE_VEC | 31}
2696
2697 #define R5900_I_NAMES \
2698 {"$I", RTYPE_R5900_I | 0}
2699
2700 #define R5900_Q_NAMES \
2701 {"$Q", RTYPE_R5900_Q | 0}
2702
2703 #define R5900_R_NAMES \
2704 {"$R", RTYPE_R5900_R | 0}
2705
2706 #define R5900_ACC_NAMES \
2707 {"$ACC", RTYPE_R5900_ACC | 0 }
2708
2709 #define MIPS_DSP_ACCUMULATOR_NAMES \
2710 {"$ac0", RTYPE_ACC | 0}, \
2711 {"$ac1", RTYPE_ACC | 1}, \
2712 {"$ac2", RTYPE_ACC | 2}, \
2713 {"$ac3", RTYPE_ACC | 3}
2714
2715 static const struct regname reg_names[] = {
2716 GENERIC_REGISTER_NUMBERS,
2717 FPU_REGISTER_NAMES,
2718 FPU_CONDITION_CODE_NAMES,
2719 COPROC_CONDITION_CODE_NAMES,
2720
2721 /* The $txx registers depends on the abi,
2722 these will be added later into the symbol table from
2723 one of the tables below once mips_abi is set after
2724 parsing of arguments from the command line. */
2725 SYMBOLIC_REGISTER_NAMES,
2726
2727 MIPS16_SPECIAL_REGISTER_NAMES,
2728 MDMX_VECTOR_REGISTER_NAMES,
2729 R5900_I_NAMES,
2730 R5900_Q_NAMES,
2731 R5900_R_NAMES,
2732 R5900_ACC_NAMES,
2733 MIPS_DSP_ACCUMULATOR_NAMES,
2734 {0, 0}
2735 };
2736
2737 static const struct regname reg_names_o32[] = {
2738 O32_SYMBOLIC_REGISTER_NAMES,
2739 {0, 0}
2740 };
2741
2742 static const struct regname reg_names_n32n64[] = {
2743 N32N64_SYMBOLIC_REGISTER_NAMES,
2744 {0, 0}
2745 };
2746
2747 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2748 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2749 of these register symbols, return the associated vector register,
2750 otherwise return SYMVAL itself. */
2751
2752 static unsigned int
2753 mips_prefer_vec_regno (unsigned int symval)
2754 {
2755 if ((symval & -2) == (RTYPE_GP | 2))
2756 return RTYPE_VEC | (symval & 1);
2757 return symval;
2758 }
2759
2760 /* Return true if string [S, E) is a valid register name, storing its
2761 symbol value in *SYMVAL_PTR if so. */
2762
2763 static bfd_boolean
2764 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2765 {
2766 char save_c;
2767 symbolS *symbol;
2768
2769 /* Terminate name. */
2770 save_c = *e;
2771 *e = '\0';
2772
2773 /* Look up the name. */
2774 symbol = symbol_find (s);
2775 *e = save_c;
2776
2777 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2778 return FALSE;
2779
2780 *symval_ptr = S_GET_VALUE (symbol);
2781 return TRUE;
2782 }
2783
2784 /* Return true if the string at *SPTR is a valid register name. Allow it
2785 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2786 is nonnull.
2787
2788 When returning true, move *SPTR past the register, store the
2789 register's symbol value in *SYMVAL_PTR and the channel mask in
2790 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2791 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2792 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2793
2794 static bfd_boolean
2795 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2796 unsigned int *channels_ptr)
2797 {
2798 char *s, *e, *m;
2799 const char *q;
2800 unsigned int channels, symval, bit;
2801
2802 /* Find end of name. */
2803 s = e = *sptr;
2804 if (is_name_beginner (*e))
2805 ++e;
2806 while (is_part_of_name (*e))
2807 ++e;
2808
2809 channels = 0;
2810 if (!mips_parse_register_1 (s, e, &symval))
2811 {
2812 if (!channels_ptr)
2813 return FALSE;
2814
2815 /* Eat characters from the end of the string that are valid
2816 channel suffixes. The preceding register must be $ACC or
2817 end with a digit, so there is no ambiguity. */
2818 bit = 1;
2819 m = e;
2820 for (q = "wzyx"; *q; q++, bit <<= 1)
2821 if (m > s && m[-1] == *q)
2822 {
2823 --m;
2824 channels |= bit;
2825 }
2826
2827 if (channels == 0
2828 || !mips_parse_register_1 (s, m, &symval)
2829 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2830 return FALSE;
2831 }
2832
2833 *sptr = e;
2834 *symval_ptr = symval;
2835 if (channels_ptr)
2836 *channels_ptr = channels;
2837 return TRUE;
2838 }
2839
2840 /* Check if SPTR points at a valid register specifier according to TYPES.
2841 If so, then return 1, advance S to consume the specifier and store
2842 the register's number in REGNOP, otherwise return 0. */
2843
2844 static int
2845 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2846 {
2847 unsigned int regno;
2848
2849 if (mips_parse_register (s, &regno, NULL))
2850 {
2851 if (types & RTYPE_VEC)
2852 regno = mips_prefer_vec_regno (regno);
2853 if (regno & types)
2854 regno &= RNUM_MASK;
2855 else
2856 regno = ~0;
2857 }
2858 else
2859 {
2860 if (types & RWARN)
2861 as_warn (_("unrecognized register name `%s'"), *s);
2862 regno = ~0;
2863 }
2864 if (regnop)
2865 *regnop = regno;
2866 return regno <= RNUM_MASK;
2867 }
2868
2869 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2870 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2871
2872 static char *
2873 mips_parse_vu0_channels (char *s, unsigned int *channels)
2874 {
2875 unsigned int i;
2876
2877 *channels = 0;
2878 for (i = 0; i < 4; i++)
2879 if (*s == "xyzw"[i])
2880 {
2881 *channels |= 1 << (3 - i);
2882 ++s;
2883 }
2884 return s;
2885 }
2886
2887 /* Token types for parsed operand lists. */
2888 enum mips_operand_token_type {
2889 /* A plain register, e.g. $f2. */
2890 OT_REG,
2891
2892 /* A 4-bit XYZW channel mask. */
2893 OT_CHANNELS,
2894
2895 /* A constant vector index, e.g. [1]. */
2896 OT_INTEGER_INDEX,
2897
2898 /* A register vector index, e.g. [$2]. */
2899 OT_REG_INDEX,
2900
2901 /* A continuous range of registers, e.g. $s0-$s4. */
2902 OT_REG_RANGE,
2903
2904 /* A (possibly relocated) expression. */
2905 OT_INTEGER,
2906
2907 /* A floating-point value. */
2908 OT_FLOAT,
2909
2910 /* A single character. This can be '(', ')' or ',', but '(' only appears
2911 before OT_REGs. */
2912 OT_CHAR,
2913
2914 /* A doubled character, either "--" or "++". */
2915 OT_DOUBLE_CHAR,
2916
2917 /* The end of the operand list. */
2918 OT_END
2919 };
2920
2921 /* A parsed operand token. */
2922 struct mips_operand_token
2923 {
2924 /* The type of token. */
2925 enum mips_operand_token_type type;
2926 union
2927 {
2928 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2929 unsigned int regno;
2930
2931 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2932 unsigned int channels;
2933
2934 /* The integer value of an OT_INTEGER_INDEX. */
2935 addressT index;
2936
2937 /* The two register symbol values involved in an OT_REG_RANGE. */
2938 struct {
2939 unsigned int regno1;
2940 unsigned int regno2;
2941 } reg_range;
2942
2943 /* The value of an OT_INTEGER. The value is represented as an
2944 expression and the relocation operators that were applied to
2945 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2946 relocation operators were used. */
2947 struct {
2948 expressionS value;
2949 bfd_reloc_code_real_type relocs[3];
2950 } integer;
2951
2952 /* The binary data for an OT_FLOAT constant, and the number of bytes
2953 in the constant. */
2954 struct {
2955 unsigned char data[8];
2956 int length;
2957 } flt;
2958
2959 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2960 char ch;
2961 } u;
2962 };
2963
2964 /* An obstack used to construct lists of mips_operand_tokens. */
2965 static struct obstack mips_operand_tokens;
2966
2967 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2968
2969 static void
2970 mips_add_token (struct mips_operand_token *token,
2971 enum mips_operand_token_type type)
2972 {
2973 token->type = type;
2974 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2975 }
2976
2977 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2978 and OT_REG tokens for them if so, and return a pointer to the first
2979 unconsumed character. Return null otherwise. */
2980
2981 static char *
2982 mips_parse_base_start (char *s)
2983 {
2984 struct mips_operand_token token;
2985 unsigned int regno, channels;
2986 bfd_boolean decrement_p;
2987
2988 if (*s != '(')
2989 return 0;
2990
2991 ++s;
2992 SKIP_SPACE_TABS (s);
2993
2994 /* Only match "--" as part of a base expression. In other contexts "--X"
2995 is a double negative. */
2996 decrement_p = (s[0] == '-' && s[1] == '-');
2997 if (decrement_p)
2998 {
2999 s += 2;
3000 SKIP_SPACE_TABS (s);
3001 }
3002
3003 /* Allow a channel specifier because that leads to better error messages
3004 than treating something like "$vf0x++" as an expression. */
3005 if (!mips_parse_register (&s, &regno, &channels))
3006 return 0;
3007
3008 token.u.ch = '(';
3009 mips_add_token (&token, OT_CHAR);
3010
3011 if (decrement_p)
3012 {
3013 token.u.ch = '-';
3014 mips_add_token (&token, OT_DOUBLE_CHAR);
3015 }
3016
3017 token.u.regno = regno;
3018 mips_add_token (&token, OT_REG);
3019
3020 if (channels)
3021 {
3022 token.u.channels = channels;
3023 mips_add_token (&token, OT_CHANNELS);
3024 }
3025
3026 /* For consistency, only match "++" as part of base expressions too. */
3027 SKIP_SPACE_TABS (s);
3028 if (s[0] == '+' && s[1] == '+')
3029 {
3030 s += 2;
3031 token.u.ch = '+';
3032 mips_add_token (&token, OT_DOUBLE_CHAR);
3033 }
3034
3035 return s;
3036 }
3037
3038 /* Parse one or more tokens from S. Return a pointer to the first
3039 unconsumed character on success. Return null if an error was found
3040 and store the error text in insn_error. FLOAT_FORMAT is as for
3041 mips_parse_arguments. */
3042
3043 static char *
3044 mips_parse_argument_token (char *s, char float_format)
3045 {
3046 char *end, *save_in, *err;
3047 unsigned int regno1, regno2, channels;
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
3066 if (mips_parse_register (&s, &regno1, &channels))
3067 {
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
3081 {
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
3085 if (!mips_parse_register (&s, &regno2, NULL))
3086 {
3087 set_insn_error (0, _("invalid register range"));
3088 return 0;
3089 }
3090
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
3096
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
3104 ++s;
3105 SKIP_SPACE_TABS (s);
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
3109 {
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
3121 }
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
3125 set_insn_error (0, _("missing `]'"));
3126 return 0;
3127 }
3128 ++s;
3129 }
3130 return s;
3131 }
3132
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
3144 set_insn_error (0, err);
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162 }
3163
3164 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172 static struct mips_operand_token *
3173 mips_parse_arguments (char *s, char float_format)
3174 {
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3191 }
3192
3193 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3195
3196 static bfd_boolean
3197 is_opcode_valid (const struct mips_opcode *mo)
3198 {
3199 int isa = mips_opts.isa;
3200 int ase = mips_opts.ase;
3201 int fp_s, fp_d;
3202 unsigned int i;
3203
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
3208
3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233 }
3234
3235 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238 static bfd_boolean
3239 is_opcode_valid_16 (const struct mips_opcode *mo)
3240 {
3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3242 }
3243
3244 /* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247 static bfd_boolean
3248 is_size_valid (const struct mips_opcode *mo)
3249 {
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265 }
3266
3267 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
3280
3281 static bfd_boolean
3282 is_delay_slot_valid (const struct mips_opcode *mo)
3283 {
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297 }
3298
3299 /* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
3307
3308 static int
3309 validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
3313 {
3314 const char *s;
3315 unsigned long used_bits, doubled, undefined, opno, mask;
3316 const struct mips_operand *operand;
3317
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
3326 opno = 0;
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
3337 case '#':
3338 s++;
3339 break;
3340
3341 default:
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3355 {
3356 used_bits = mips_insert_operand (operand, used_bits, -1);
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
3364 /* Skip prefix characters. */
3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3366 ++s;
3367 opno += 1;
3368 break;
3369 }
3370 doubled = used_bits & mask & insn_bits;
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
3377 used_bits |= mask;
3378 undefined = ~used_bits & insn_bits;
3379 if (opcode->pinfo != INSN_MACRO && undefined)
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393 }
3394
3395 /* The MIPS16 version of validate_mips_insn. */
3396
3397 static int
3398 validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400 {
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413 }
3414
3415 /* The microMIPS version of validate_mips_insn. */
3416
3417 static int
3418 validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
3420 {
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
3440 as_bad (_("internal error: bad microMIPS opcode "
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
3451 }
3452
3453 /* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
3455
3456 void
3457 md_begin (void)
3458 {
3459 const char *retval = NULL;
3460 int i = 0;
3461 int broken = 0;
3462
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469
3470 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3471 as_warn (_("could not set architecture and machine"));
3472
3473 op_hash = hash_new ();
3474
3475 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3476 for (i = 0; i < NUMOPCODES;)
3477 {
3478 const char *name = mips_opcodes[i].name;
3479
3480 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3481 if (retval != NULL)
3482 {
3483 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3484 mips_opcodes[i].name, retval);
3485 /* Probably a memory allocation problem? Give up now. */
3486 as_fatal (_("broken assembler, no assembly attempted"));
3487 }
3488 do
3489 {
3490 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3491 decode_mips_operand, &mips_operands[i]))
3492 broken = 1;
3493 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3494 {
3495 create_insn (&nop_insn, mips_opcodes + i);
3496 if (mips_fix_loongson2f_nop)
3497 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3498 nop_insn.fixed_p = 1;
3499 }
3500 ++i;
3501 }
3502 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3503 }
3504
3505 mips16_op_hash = hash_new ();
3506 mips16_operands = XCNEWVEC (struct mips_operand_array,
3507 bfd_mips16_num_opcodes);
3508
3509 i = 0;
3510 while (i < bfd_mips16_num_opcodes)
3511 {
3512 const char *name = mips16_opcodes[i].name;
3513
3514 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3515 if (retval != NULL)
3516 as_fatal (_("internal: can't hash `%s': %s"),
3517 mips16_opcodes[i].name, retval);
3518 do
3519 {
3520 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3521 broken = 1;
3522 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3523 {
3524 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3525 mips16_nop_insn.fixed_p = 1;
3526 }
3527 ++i;
3528 }
3529 while (i < bfd_mips16_num_opcodes
3530 && strcmp (mips16_opcodes[i].name, name) == 0);
3531 }
3532
3533 micromips_op_hash = hash_new ();
3534 micromips_operands = XCNEWVEC (struct mips_operand_array,
3535 bfd_micromips_num_opcodes);
3536
3537 i = 0;
3538 while (i < bfd_micromips_num_opcodes)
3539 {
3540 const char *name = micromips_opcodes[i].name;
3541
3542 retval = hash_insert (micromips_op_hash, name,
3543 (void *) &micromips_opcodes[i]);
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 micromips_opcodes[i].name, retval);
3547 do
3548 {
3549 struct mips_cl_insn *micromips_nop_insn;
3550
3551 if (!validate_micromips_insn (&micromips_opcodes[i],
3552 &micromips_operands[i]))
3553 broken = 1;
3554
3555 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3556 {
3557 if (micromips_insn_length (micromips_opcodes + i) == 2)
3558 micromips_nop_insn = &micromips_nop16_insn;
3559 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3560 micromips_nop_insn = &micromips_nop32_insn;
3561 else
3562 continue;
3563
3564 if (micromips_nop_insn->insn_mo == NULL
3565 && strcmp (name, "nop") == 0)
3566 {
3567 create_insn (micromips_nop_insn, micromips_opcodes + i);
3568 micromips_nop_insn->fixed_p = 1;
3569 }
3570 }
3571 }
3572 while (++i < bfd_micromips_num_opcodes
3573 && strcmp (micromips_opcodes[i].name, name) == 0);
3574 }
3575
3576 if (broken)
3577 as_fatal (_("broken assembler, no assembly attempted"));
3578
3579 /* We add all the general register names to the symbol table. This
3580 helps us detect invalid uses of them. */
3581 for (i = 0; reg_names[i].name; i++)
3582 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3583 reg_names[i].num, /* & RNUM_MASK, */
3584 &zero_address_frag));
3585 if (HAVE_NEWABI)
3586 for (i = 0; reg_names_n32n64[i].name; i++)
3587 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3588 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3589 &zero_address_frag));
3590 else
3591 for (i = 0; reg_names_o32[i].name; i++)
3592 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3593 reg_names_o32[i].num, /* & RNUM_MASK, */
3594 &zero_address_frag));
3595
3596 for (i = 0; i < 32; i++)
3597 {
3598 char regname[7];
3599
3600 /* R5900 VU0 floating-point register. */
3601 regname[sizeof (rename) - 1] = 0;
3602 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3603 symbol_table_insert (symbol_new (regname, reg_section,
3604 RTYPE_VF | i, &zero_address_frag));
3605
3606 /* R5900 VU0 integer register. */
3607 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VI | i, &zero_address_frag));
3610
3611 /* MSA register. */
3612 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_MSA | i, &zero_address_frag));
3615 }
3616
3617 obstack_init (&mips_operand_tokens);
3618
3619 mips_no_prev_insn ();
3620
3621 mips_gprmask = 0;
3622 mips_cprmask[0] = 0;
3623 mips_cprmask[1] = 0;
3624 mips_cprmask[2] = 0;
3625 mips_cprmask[3] = 0;
3626
3627 /* set the default alignment for the text section (2**2) */
3628 record_alignment (text_section, 2);
3629
3630 bfd_set_gp_size (stdoutput, g_switch_value);
3631
3632 /* On a native system other than VxWorks, sections must be aligned
3633 to 16 byte boundaries. When configured for an embedded ELF
3634 target, we don't bother. */
3635 if (strncmp (TARGET_OS, "elf", 3) != 0
3636 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3637 {
3638 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3639 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3640 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3641 }
3642
3643 /* Create a .reginfo section for register masks and a .mdebug
3644 section for debugging information. */
3645 {
3646 segT seg;
3647 subsegT subseg;
3648 flagword flags;
3649 segT sec;
3650
3651 seg = now_seg;
3652 subseg = now_subseg;
3653
3654 /* The ABI says this section should be loaded so that the
3655 running program can access it. However, we don't load it
3656 if we are configured for an embedded target */
3657 flags = SEC_READONLY | SEC_DATA;
3658 if (strncmp (TARGET_OS, "elf", 3) != 0)
3659 flags |= SEC_ALLOC | SEC_LOAD;
3660
3661 if (mips_abi != N64_ABI)
3662 {
3663 sec = subseg_new (".reginfo", (subsegT) 0);
3664
3665 bfd_set_section_flags (stdoutput, sec, flags);
3666 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3667
3668 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3669 }
3670 else
3671 {
3672 /* The 64-bit ABI uses a .MIPS.options section rather than
3673 .reginfo section. */
3674 sec = subseg_new (".MIPS.options", (subsegT) 0);
3675 bfd_set_section_flags (stdoutput, sec, flags);
3676 bfd_set_section_alignment (stdoutput, sec, 3);
3677
3678 /* Set up the option header. */
3679 {
3680 Elf_Internal_Options opthdr;
3681 char *f;
3682
3683 opthdr.kind = ODK_REGINFO;
3684 opthdr.size = (sizeof (Elf_External_Options)
3685 + sizeof (Elf64_External_RegInfo));
3686 opthdr.section = 0;
3687 opthdr.info = 0;
3688 f = frag_more (sizeof (Elf_External_Options));
3689 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3690 (Elf_External_Options *) f);
3691
3692 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3693 }
3694 }
3695
3696 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3697 bfd_set_section_flags (stdoutput, sec,
3698 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3699 bfd_set_section_alignment (stdoutput, sec, 3);
3700 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3701
3702 if (ECOFF_DEBUGGING)
3703 {
3704 sec = subseg_new (".mdebug", (subsegT) 0);
3705 (void) bfd_set_section_flags (stdoutput, sec,
3706 SEC_HAS_CONTENTS | SEC_READONLY);
3707 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3708 }
3709 else if (mips_flag_pdr)
3710 {
3711 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3712 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3713 SEC_READONLY | SEC_RELOC
3714 | SEC_DEBUGGING);
3715 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3716 }
3717
3718 subseg_set (seg, subseg);
3719 }
3720
3721 if (mips_fix_vr4120)
3722 init_vr4120_conflicts ();
3723 }
3724
3725 static inline void
3726 fpabi_incompatible_with (int fpabi, const char *what)
3727 {
3728 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3729 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3730 }
3731
3732 static inline void
3733 fpabi_requires (int fpabi, const char *what)
3734 {
3735 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3736 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3737 }
3738
3739 /* Check -mabi and register sizes against the specified FP ABI. */
3740 static void
3741 check_fpabi (int fpabi)
3742 {
3743 switch (fpabi)
3744 {
3745 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3746 if (file_mips_opts.soft_float)
3747 fpabi_incompatible_with (fpabi, "softfloat");
3748 else if (file_mips_opts.single_float)
3749 fpabi_incompatible_with (fpabi, "singlefloat");
3750 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3751 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3752 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3753 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3754 break;
3755
3756 case Val_GNU_MIPS_ABI_FP_XX:
3757 if (mips_abi != O32_ABI)
3758 fpabi_requires (fpabi, "-mabi=32");
3759 else if (file_mips_opts.soft_float)
3760 fpabi_incompatible_with (fpabi, "softfloat");
3761 else if (file_mips_opts.single_float)
3762 fpabi_incompatible_with (fpabi, "singlefloat");
3763 else if (file_mips_opts.fp != 0)
3764 fpabi_requires (fpabi, "fp=xx");
3765 break;
3766
3767 case Val_GNU_MIPS_ABI_FP_64A:
3768 case Val_GNU_MIPS_ABI_FP_64:
3769 if (mips_abi != O32_ABI)
3770 fpabi_requires (fpabi, "-mabi=32");
3771 else if (file_mips_opts.soft_float)
3772 fpabi_incompatible_with (fpabi, "softfloat");
3773 else if (file_mips_opts.single_float)
3774 fpabi_incompatible_with (fpabi, "singlefloat");
3775 else if (file_mips_opts.fp != 64)
3776 fpabi_requires (fpabi, "fp=64");
3777 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3778 fpabi_incompatible_with (fpabi, "nooddspreg");
3779 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3780 fpabi_requires (fpabi, "nooddspreg");
3781 break;
3782
3783 case Val_GNU_MIPS_ABI_FP_SINGLE:
3784 if (file_mips_opts.soft_float)
3785 fpabi_incompatible_with (fpabi, "softfloat");
3786 else if (!file_mips_opts.single_float)
3787 fpabi_requires (fpabi, "singlefloat");
3788 break;
3789
3790 case Val_GNU_MIPS_ABI_FP_SOFT:
3791 if (!file_mips_opts.soft_float)
3792 fpabi_requires (fpabi, "softfloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_OLD_64:
3796 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3797 Tag_GNU_MIPS_ABI_FP, fpabi);
3798 break;
3799
3800 default:
3801 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3802 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3803 break;
3804 }
3805 }
3806
3807 /* Perform consistency checks on the current options. */
3808
3809 static void
3810 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3811 {
3812 /* Check the size of integer registers agrees with the ABI and ISA. */
3813 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3814 as_bad (_("`gp=64' used with a 32-bit processor"));
3815 else if (abi_checks
3816 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3817 as_bad (_("`gp=32' used with a 64-bit ABI"));
3818 else if (abi_checks
3819 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3820 as_bad (_("`gp=64' used with a 32-bit ABI"));
3821
3822 /* Check the size of the float registers agrees with the ABI and ISA. */
3823 switch (opts->fp)
3824 {
3825 case 0:
3826 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3827 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3828 else if (opts->single_float == 1)
3829 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3830 break;
3831 case 64:
3832 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3833 as_bad (_("`fp=64' used with a 32-bit fpu"));
3834 else if (abi_checks
3835 && ABI_NEEDS_32BIT_REGS (mips_abi)
3836 && !ISA_HAS_MXHC1 (opts->isa))
3837 as_warn (_("`fp=64' used with a 32-bit ABI"));
3838 break;
3839 case 32:
3840 if (abi_checks
3841 && ABI_NEEDS_64BIT_REGS (mips_abi))
3842 as_warn (_("`fp=32' used with a 64-bit ABI"));
3843 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3844 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3845 break;
3846 default:
3847 as_bad (_("Unknown size of floating point registers"));
3848 break;
3849 }
3850
3851 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3852 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3853
3854 if (opts->micromips == 1 && opts->mips16 == 1)
3855 as_bad (_("`mips16' cannot be used with `micromips'"));
3856 else if (ISA_IS_R6 (mips_opts.isa)
3857 && (opts->micromips == 1
3858 || opts->mips16 == 1))
3859 as_fatal (_("`%s' can not be used with `%s'"),
3860 opts->micromips ? "micromips" : "mips16",
3861 mips_cpu_info_from_isa (mips_opts.isa)->name);
3862
3863 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3864 as_fatal (_("branch relaxation is not supported in `%s'"),
3865 mips_cpu_info_from_isa (opts->isa)->name);
3866 }
3867
3868 /* Perform consistency checks on the module level options exactly once.
3869 This is a deferred check that happens:
3870 at the first .set directive
3871 or, at the first pseudo op that generates code (inc .dc.a)
3872 or, at the first instruction
3873 or, at the end. */
3874
3875 static void
3876 file_mips_check_options (void)
3877 {
3878 const struct mips_cpu_info *arch_info = 0;
3879
3880 if (file_mips_opts_checked)
3881 return;
3882
3883 /* The following code determines the register size.
3884 Similar code was added to GCC 3.3 (see override_options() in
3885 config/mips/mips.c). The GAS and GCC code should be kept in sync
3886 as much as possible. */
3887
3888 if (file_mips_opts.gp < 0)
3889 {
3890 /* Infer the integer register size from the ABI and processor.
3891 Restrict ourselves to 32-bit registers if that's all the
3892 processor has, or if the ABI cannot handle 64-bit registers. */
3893 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3894 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3895 ? 32 : 64;
3896 }
3897
3898 if (file_mips_opts.fp < 0)
3899 {
3900 /* No user specified float register size.
3901 ??? GAS treats single-float processors as though they had 64-bit
3902 float registers (although it complains when double-precision
3903 instructions are used). As things stand, saying they have 32-bit
3904 registers would lead to spurious "register must be even" messages.
3905 So here we assume float registers are never smaller than the
3906 integer ones. */
3907 if (file_mips_opts.gp == 64)
3908 /* 64-bit integer registers implies 64-bit float registers. */
3909 file_mips_opts.fp = 64;
3910 else if ((file_mips_opts.ase & FP64_ASES)
3911 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3912 /* Handle ASEs that require 64-bit float registers, if possible. */
3913 file_mips_opts.fp = 64;
3914 else if (ISA_IS_R6 (mips_opts.isa))
3915 /* R6 implies 64-bit float registers. */
3916 file_mips_opts.fp = 64;
3917 else
3918 /* 32-bit float registers. */
3919 file_mips_opts.fp = 32;
3920 }
3921
3922 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3923
3924 /* Disable operations on odd-numbered floating-point registers by default
3925 when using the FPXX ABI. */
3926 if (file_mips_opts.oddspreg < 0)
3927 {
3928 if (file_mips_opts.fp == 0)
3929 file_mips_opts.oddspreg = 0;
3930 else
3931 file_mips_opts.oddspreg = 1;
3932 }
3933
3934 /* End of GCC-shared inference code. */
3935
3936 /* This flag is set when we have a 64-bit capable CPU but use only
3937 32-bit wide registers. Note that EABI does not use it. */
3938 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3939 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3940 || mips_abi == O32_ABI))
3941 mips_32bitmode = 1;
3942
3943 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3944 as_bad (_("trap exception not supported at ISA 1"));
3945
3946 /* If the selected architecture includes support for ASEs, enable
3947 generation of code for them. */
3948 if (file_mips_opts.mips16 == -1)
3949 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3950 if (file_mips_opts.micromips == -1)
3951 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3952 ? 1 : 0;
3953
3954 if (mips_nan2008 == -1)
3955 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3956 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3957 as_fatal (_("`%s' does not support legacy NaN"),
3958 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3959
3960 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3961 being selected implicitly. */
3962 if (file_mips_opts.fp != 64)
3963 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3964
3965 /* If the user didn't explicitly select or deselect a particular ASE,
3966 use the default setting for the CPU. */
3967 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3968
3969 /* Set up the current options. These may change throughout assembly. */
3970 mips_opts = file_mips_opts;
3971
3972 mips_check_isa_supports_ases ();
3973 mips_check_options (&file_mips_opts, TRUE);
3974 file_mips_opts_checked = TRUE;
3975
3976 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3977 as_warn (_("could not set architecture and machine"));
3978 }
3979
3980 void
3981 md_assemble (char *str)
3982 {
3983 struct mips_cl_insn insn;
3984 bfd_reloc_code_real_type unused_reloc[3]
3985 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3986
3987 file_mips_check_options ();
3988
3989 imm_expr.X_op = O_absent;
3990 offset_expr.X_op = O_absent;
3991 offset_reloc[0] = BFD_RELOC_UNUSED;
3992 offset_reloc[1] = BFD_RELOC_UNUSED;
3993 offset_reloc[2] = BFD_RELOC_UNUSED;
3994
3995 mips_mark_labels ();
3996 mips_assembling_insn = TRUE;
3997 clear_insn_error ();
3998
3999 if (mips_opts.mips16)
4000 mips16_ip (str, &insn);
4001 else
4002 {
4003 mips_ip (str, &insn);
4004 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4005 str, insn.insn_opcode));
4006 }
4007
4008 if (insn_error.msg)
4009 report_insn_error (str);
4010 else if (insn.insn_mo->pinfo == INSN_MACRO)
4011 {
4012 macro_start ();
4013 if (mips_opts.mips16)
4014 mips16_macro (&insn);
4015 else
4016 macro (&insn, str);
4017 macro_end ();
4018 }
4019 else
4020 {
4021 if (offset_expr.X_op != O_absent)
4022 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4023 else
4024 append_insn (&insn, NULL, unused_reloc, FALSE);
4025 }
4026
4027 mips_assembling_insn = FALSE;
4028 }
4029
4030 /* Convenience functions for abstracting away the differences between
4031 MIPS16 and non-MIPS16 relocations. */
4032
4033 static inline bfd_boolean
4034 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4035 {
4036 switch (reloc)
4037 {
4038 case BFD_RELOC_MIPS16_JMP:
4039 case BFD_RELOC_MIPS16_GPREL:
4040 case BFD_RELOC_MIPS16_GOT16:
4041 case BFD_RELOC_MIPS16_CALL16:
4042 case BFD_RELOC_MIPS16_HI16_S:
4043 case BFD_RELOC_MIPS16_HI16:
4044 case BFD_RELOC_MIPS16_LO16:
4045 return TRUE;
4046
4047 default:
4048 return FALSE;
4049 }
4050 }
4051
4052 static inline bfd_boolean
4053 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4054 {
4055 switch (reloc)
4056 {
4057 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4058 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4059 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4060 case BFD_RELOC_MICROMIPS_GPREL16:
4061 case BFD_RELOC_MICROMIPS_JMP:
4062 case BFD_RELOC_MICROMIPS_HI16:
4063 case BFD_RELOC_MICROMIPS_HI16_S:
4064 case BFD_RELOC_MICROMIPS_LO16:
4065 case BFD_RELOC_MICROMIPS_LITERAL:
4066 case BFD_RELOC_MICROMIPS_GOT16:
4067 case BFD_RELOC_MICROMIPS_CALL16:
4068 case BFD_RELOC_MICROMIPS_GOT_HI16:
4069 case BFD_RELOC_MICROMIPS_GOT_LO16:
4070 case BFD_RELOC_MICROMIPS_CALL_HI16:
4071 case BFD_RELOC_MICROMIPS_CALL_LO16:
4072 case BFD_RELOC_MICROMIPS_SUB:
4073 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4074 case BFD_RELOC_MICROMIPS_GOT_OFST:
4075 case BFD_RELOC_MICROMIPS_GOT_DISP:
4076 case BFD_RELOC_MICROMIPS_HIGHEST:
4077 case BFD_RELOC_MICROMIPS_HIGHER:
4078 case BFD_RELOC_MICROMIPS_SCN_DISP:
4079 case BFD_RELOC_MICROMIPS_JALR:
4080 return TRUE;
4081
4082 default:
4083 return FALSE;
4084 }
4085 }
4086
4087 static inline bfd_boolean
4088 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4089 {
4090 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4091 }
4092
4093 static inline bfd_boolean
4094 got16_reloc_p (bfd_reloc_code_real_type reloc)
4095 {
4096 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4097 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4098 }
4099
4100 static inline bfd_boolean
4101 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4102 {
4103 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4104 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4105 }
4106
4107 static inline bfd_boolean
4108 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4109 {
4110 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4111 || reloc == BFD_RELOC_MICROMIPS_LO16);
4112 }
4113
4114 static inline bfd_boolean
4115 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4116 {
4117 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4118 }
4119
4120 static inline bfd_boolean
4121 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4122 {
4123 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4124 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4125 }
4126
4127 /* Return true if RELOC is a PC-relative relocation that does not have
4128 full address range. */
4129
4130 static inline bfd_boolean
4131 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4132 {
4133 switch (reloc)
4134 {
4135 case BFD_RELOC_16_PCREL_S2:
4136 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4137 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4138 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4139 case BFD_RELOC_MIPS_21_PCREL_S2:
4140 case BFD_RELOC_MIPS_26_PCREL_S2:
4141 case BFD_RELOC_MIPS_18_PCREL_S3:
4142 case BFD_RELOC_MIPS_19_PCREL_S2:
4143 return TRUE;
4144
4145 case BFD_RELOC_32_PCREL:
4146 case BFD_RELOC_HI16_S_PCREL:
4147 case BFD_RELOC_LO16_PCREL:
4148 return HAVE_64BIT_ADDRESSES;
4149
4150 default:
4151 return FALSE;
4152 }
4153 }
4154
4155 /* Return true if the given relocation might need a matching %lo().
4156 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4157 need a matching %lo() when applied to local symbols. */
4158
4159 static inline bfd_boolean
4160 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4161 {
4162 return (HAVE_IN_PLACE_ADDENDS
4163 && (hi16_reloc_p (reloc)
4164 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4165 all GOT16 relocations evaluate to "G". */
4166 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4167 }
4168
4169 /* Return the type of %lo() reloc needed by RELOC, given that
4170 reloc_needs_lo_p. */
4171
4172 static inline bfd_reloc_code_real_type
4173 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4174 {
4175 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4176 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4177 : BFD_RELOC_LO16));
4178 }
4179
4180 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4181 relocation. */
4182
4183 static inline bfd_boolean
4184 fixup_has_matching_lo_p (fixS *fixp)
4185 {
4186 return (fixp->fx_next != NULL
4187 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4188 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4189 && fixp->fx_offset == fixp->fx_next->fx_offset);
4190 }
4191
4192 /* Move all labels in LABELS to the current insertion point. TEXT_P
4193 says whether the labels refer to text or data. */
4194
4195 static void
4196 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4197 {
4198 struct insn_label_list *l;
4199 valueT val;
4200
4201 for (l = labels; l != NULL; l = l->next)
4202 {
4203 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4204 symbol_set_frag (l->label, frag_now);
4205 val = (valueT) frag_now_fix ();
4206 /* MIPS16/microMIPS text labels are stored as odd. */
4207 if (text_p && HAVE_CODE_COMPRESSION)
4208 ++val;
4209 S_SET_VALUE (l->label, val);
4210 }
4211 }
4212
4213 /* Move all labels in insn_labels to the current insertion point
4214 and treat them as text labels. */
4215
4216 static void
4217 mips_move_text_labels (void)
4218 {
4219 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4220 }
4221
4222 static bfd_boolean
4223 s_is_linkonce (symbolS *sym, segT from_seg)
4224 {
4225 bfd_boolean linkonce = FALSE;
4226 segT symseg = S_GET_SEGMENT (sym);
4227
4228 if (symseg != from_seg && !S_IS_LOCAL (sym))
4229 {
4230 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4231 linkonce = TRUE;
4232 /* The GNU toolchain uses an extension for ELF: a section
4233 beginning with the magic string .gnu.linkonce is a
4234 linkonce section. */
4235 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4236 sizeof ".gnu.linkonce" - 1) == 0)
4237 linkonce = TRUE;
4238 }
4239 return linkonce;
4240 }
4241
4242 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4243 linker to handle them specially, such as generating jalx instructions
4244 when needed. We also make them odd for the duration of the assembly,
4245 in order to generate the right sort of code. We will make them even
4246 in the adjust_symtab routine, while leaving them marked. This is
4247 convenient for the debugger and the disassembler. The linker knows
4248 to make them odd again. */
4249
4250 static void
4251 mips_compressed_mark_label (symbolS *label)
4252 {
4253 gas_assert (HAVE_CODE_COMPRESSION);
4254
4255 if (mips_opts.mips16)
4256 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4257 else
4258 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4259 if ((S_GET_VALUE (label) & 1) == 0
4260 /* Don't adjust the address if the label is global or weak, or
4261 in a link-once section, since we'll be emitting symbol reloc
4262 references to it which will be patched up by the linker, and
4263 the final value of the symbol may or may not be MIPS16/microMIPS. */
4264 && !S_IS_WEAK (label)
4265 && !S_IS_EXTERNAL (label)
4266 && !s_is_linkonce (label, now_seg))
4267 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4268 }
4269
4270 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4271
4272 static void
4273 mips_compressed_mark_labels (void)
4274 {
4275 struct insn_label_list *l;
4276
4277 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4278 mips_compressed_mark_label (l->label);
4279 }
4280
4281 /* End the current frag. Make it a variant frag and record the
4282 relaxation info. */
4283
4284 static void
4285 relax_close_frag (void)
4286 {
4287 mips_macro_warning.first_frag = frag_now;
4288 frag_var (rs_machine_dependent, 0, 0,
4289 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4290 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4291
4292 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4293 mips_relax.first_fixup = 0;
4294 }
4295
4296 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4297 See the comment above RELAX_ENCODE for more details. */
4298
4299 static void
4300 relax_start (symbolS *symbol)
4301 {
4302 gas_assert (mips_relax.sequence == 0);
4303 mips_relax.sequence = 1;
4304 mips_relax.symbol = symbol;
4305 }
4306
4307 /* Start generating the second version of a relaxable sequence.
4308 See the comment above RELAX_ENCODE for more details. */
4309
4310 static void
4311 relax_switch (void)
4312 {
4313 gas_assert (mips_relax.sequence == 1);
4314 mips_relax.sequence = 2;
4315 }
4316
4317 /* End the current relaxable sequence. */
4318
4319 static void
4320 relax_end (void)
4321 {
4322 gas_assert (mips_relax.sequence == 2);
4323 relax_close_frag ();
4324 mips_relax.sequence = 0;
4325 }
4326
4327 /* Return true if IP is a delayed branch or jump. */
4328
4329 static inline bfd_boolean
4330 delayed_branch_p (const struct mips_cl_insn *ip)
4331 {
4332 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4333 | INSN_COND_BRANCH_DELAY
4334 | INSN_COND_BRANCH_LIKELY)) != 0;
4335 }
4336
4337 /* Return true if IP is a compact branch or jump. */
4338
4339 static inline bfd_boolean
4340 compact_branch_p (const struct mips_cl_insn *ip)
4341 {
4342 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4343 | INSN2_COND_BRANCH)) != 0;
4344 }
4345
4346 /* Return true if IP is an unconditional branch or jump. */
4347
4348 static inline bfd_boolean
4349 uncond_branch_p (const struct mips_cl_insn *ip)
4350 {
4351 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4352 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4353 }
4354
4355 /* Return true if IP is a branch-likely instruction. */
4356
4357 static inline bfd_boolean
4358 branch_likely_p (const struct mips_cl_insn *ip)
4359 {
4360 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4361 }
4362
4363 /* Return the type of nop that should be used to fill the delay slot
4364 of delayed branch IP. */
4365
4366 static struct mips_cl_insn *
4367 get_delay_slot_nop (const struct mips_cl_insn *ip)
4368 {
4369 if (mips_opts.micromips
4370 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4371 return &micromips_nop32_insn;
4372 return NOP_INSN;
4373 }
4374
4375 /* Return a mask that has bit N set if OPCODE reads the register(s)
4376 in operand N. */
4377
4378 static unsigned int
4379 insn_read_mask (const struct mips_opcode *opcode)
4380 {
4381 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4382 }
4383
4384 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4385 in operand N. */
4386
4387 static unsigned int
4388 insn_write_mask (const struct mips_opcode *opcode)
4389 {
4390 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4391 }
4392
4393 /* Return a mask of the registers specified by operand OPERAND of INSN.
4394 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4395 is set. */
4396
4397 static unsigned int
4398 operand_reg_mask (const struct mips_cl_insn *insn,
4399 const struct mips_operand *operand,
4400 unsigned int type_mask)
4401 {
4402 unsigned int uval, vsel;
4403
4404 switch (operand->type)
4405 {
4406 case OP_INT:
4407 case OP_MAPPED_INT:
4408 case OP_MSB:
4409 case OP_PCREL:
4410 case OP_PERF_REG:
4411 case OP_ADDIUSP_INT:
4412 case OP_ENTRY_EXIT_LIST:
4413 case OP_REPEAT_DEST_REG:
4414 case OP_REPEAT_PREV_REG:
4415 case OP_PC:
4416 case OP_VU0_SUFFIX:
4417 case OP_VU0_MATCH_SUFFIX:
4418 case OP_IMM_INDEX:
4419 abort ();
4420
4421 case OP_REG:
4422 case OP_OPTIONAL_REG:
4423 {
4424 const struct mips_reg_operand *reg_op;
4425
4426 reg_op = (const struct mips_reg_operand *) operand;
4427 if (!(type_mask & (1 << reg_op->reg_type)))
4428 return 0;
4429 uval = insn_extract_operand (insn, operand);
4430 return 1 << mips_decode_reg_operand (reg_op, uval);
4431 }
4432
4433 case OP_REG_PAIR:
4434 {
4435 const struct mips_reg_pair_operand *pair_op;
4436
4437 pair_op = (const struct mips_reg_pair_operand *) operand;
4438 if (!(type_mask & (1 << pair_op->reg_type)))
4439 return 0;
4440 uval = insn_extract_operand (insn, operand);
4441 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4442 }
4443
4444 case OP_CLO_CLZ_DEST:
4445 if (!(type_mask & (1 << OP_REG_GP)))
4446 return 0;
4447 uval = insn_extract_operand (insn, operand);
4448 return (1 << (uval & 31)) | (1 << (uval >> 5));
4449
4450 case OP_SAME_RS_RT:
4451 if (!(type_mask & (1 << OP_REG_GP)))
4452 return 0;
4453 uval = insn_extract_operand (insn, operand);
4454 gas_assert ((uval & 31) == (uval >> 5));
4455 return 1 << (uval & 31);
4456
4457 case OP_CHECK_PREV:
4458 case OP_NON_ZERO_REG:
4459 if (!(type_mask & (1 << OP_REG_GP)))
4460 return 0;
4461 uval = insn_extract_operand (insn, operand);
4462 return 1 << (uval & 31);
4463
4464 case OP_LWM_SWM_LIST:
4465 abort ();
4466
4467 case OP_SAVE_RESTORE_LIST:
4468 abort ();
4469
4470 case OP_MDMX_IMM_REG:
4471 if (!(type_mask & (1 << OP_REG_VEC)))
4472 return 0;
4473 uval = insn_extract_operand (insn, operand);
4474 vsel = uval >> 5;
4475 if ((vsel & 0x18) == 0x18)
4476 return 0;
4477 return 1 << (uval & 31);
4478
4479 case OP_REG_INDEX:
4480 if (!(type_mask & (1 << OP_REG_GP)))
4481 return 0;
4482 return 1 << insn_extract_operand (insn, operand);
4483 }
4484 abort ();
4485 }
4486
4487 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4488 where bit N of OPNO_MASK is set if operand N should be included.
4489 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4490 is set. */
4491
4492 static unsigned int
4493 insn_reg_mask (const struct mips_cl_insn *insn,
4494 unsigned int type_mask, unsigned int opno_mask)
4495 {
4496 unsigned int opno, reg_mask;
4497
4498 opno = 0;
4499 reg_mask = 0;
4500 while (opno_mask != 0)
4501 {
4502 if (opno_mask & 1)
4503 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4504 opno_mask >>= 1;
4505 opno += 1;
4506 }
4507 return reg_mask;
4508 }
4509
4510 /* Return the mask of core registers that IP reads. */
4511
4512 static unsigned int
4513 gpr_read_mask (const struct mips_cl_insn *ip)
4514 {
4515 unsigned long pinfo, pinfo2;
4516 unsigned int mask;
4517
4518 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4519 pinfo = ip->insn_mo->pinfo;
4520 pinfo2 = ip->insn_mo->pinfo2;
4521 if (pinfo & INSN_UDI)
4522 {
4523 /* UDI instructions have traditionally been assumed to read RS
4524 and RT. */
4525 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4526 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4527 }
4528 if (pinfo & INSN_READ_GPR_24)
4529 mask |= 1 << 24;
4530 if (pinfo2 & INSN2_READ_GPR_16)
4531 mask |= 1 << 16;
4532 if (pinfo2 & INSN2_READ_SP)
4533 mask |= 1 << SP;
4534 if (pinfo2 & INSN2_READ_GPR_31)
4535 mask |= 1 << 31;
4536 /* Don't include register 0. */
4537 return mask & ~1;
4538 }
4539
4540 /* Return the mask of core registers that IP writes. */
4541
4542 static unsigned int
4543 gpr_write_mask (const struct mips_cl_insn *ip)
4544 {
4545 unsigned long pinfo, pinfo2;
4546 unsigned int mask;
4547
4548 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4549 pinfo = ip->insn_mo->pinfo;
4550 pinfo2 = ip->insn_mo->pinfo2;
4551 if (pinfo & INSN_WRITE_GPR_24)
4552 mask |= 1 << 24;
4553 if (pinfo & INSN_WRITE_GPR_31)
4554 mask |= 1 << 31;
4555 if (pinfo & INSN_UDI)
4556 /* UDI instructions have traditionally been assumed to write to RD. */
4557 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4558 if (pinfo2 & INSN2_WRITE_SP)
4559 mask |= 1 << SP;
4560 /* Don't include register 0. */
4561 return mask & ~1;
4562 }
4563
4564 /* Return the mask of floating-point registers that IP reads. */
4565
4566 static unsigned int
4567 fpr_read_mask (const struct mips_cl_insn *ip)
4568 {
4569 unsigned long pinfo;
4570 unsigned int mask;
4571
4572 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4573 | (1 << OP_REG_MSA)),
4574 insn_read_mask (ip->insn_mo));
4575 pinfo = ip->insn_mo->pinfo;
4576 /* Conservatively treat all operands to an FP_D instruction are doubles.
4577 (This is overly pessimistic for things like cvt.d.s.) */
4578 if (FPR_SIZE != 64 && (pinfo & FP_D))
4579 mask |= mask << 1;
4580 return mask;
4581 }
4582
4583 /* Return the mask of floating-point registers that IP writes. */
4584
4585 static unsigned int
4586 fpr_write_mask (const struct mips_cl_insn *ip)
4587 {
4588 unsigned long pinfo;
4589 unsigned int mask;
4590
4591 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4592 | (1 << OP_REG_MSA)),
4593 insn_write_mask (ip->insn_mo));
4594 pinfo = ip->insn_mo->pinfo;
4595 /* Conservatively treat all operands to an FP_D instruction are doubles.
4596 (This is overly pessimistic for things like cvt.s.d.) */
4597 if (FPR_SIZE != 64 && (pinfo & FP_D))
4598 mask |= mask << 1;
4599 return mask;
4600 }
4601
4602 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4603 Check whether that is allowed. */
4604
4605 static bfd_boolean
4606 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4607 {
4608 const char *s = insn->name;
4609 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4610 || FPR_SIZE == 64)
4611 && mips_opts.oddspreg;
4612
4613 if (insn->pinfo == INSN_MACRO)
4614 /* Let a macro pass, we'll catch it later when it is expanded. */
4615 return TRUE;
4616
4617 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4618 otherwise it depends on oddspreg. */
4619 if ((insn->pinfo & FP_S)
4620 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4621 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4622 return FPR_SIZE == 32 || oddspreg;
4623
4624 /* Allow odd registers for single-precision ops and double-precision if the
4625 floating-point registers are 64-bit wide. */
4626 switch (insn->pinfo & (FP_S | FP_D))
4627 {
4628 case FP_S:
4629 case 0:
4630 return oddspreg;
4631 case FP_D:
4632 return FPR_SIZE == 64;
4633 default:
4634 break;
4635 }
4636
4637 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4638 s = strchr (insn->name, '.');
4639 if (s != NULL && opnum == 2)
4640 s = strchr (s + 1, '.');
4641 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4642 return oddspreg;
4643
4644 return FPR_SIZE == 64;
4645 }
4646
4647 /* Information about an instruction argument that we're trying to match. */
4648 struct mips_arg_info
4649 {
4650 /* The instruction so far. */
4651 struct mips_cl_insn *insn;
4652
4653 /* The first unconsumed operand token. */
4654 struct mips_operand_token *token;
4655
4656 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4657 int opnum;
4658
4659 /* The 1-based argument number, for error reporting. This does not
4660 count elided optional registers, etc.. */
4661 int argnum;
4662
4663 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4664 unsigned int last_regno;
4665
4666 /* If the first operand was an OP_REG, this is the register that it
4667 specified, otherwise it is ILLEGAL_REG. */
4668 unsigned int dest_regno;
4669
4670 /* The value of the last OP_INT operand. Only used for OP_MSB,
4671 where it gives the lsb position. */
4672 unsigned int last_op_int;
4673
4674 /* If true, match routines should assume that no later instruction
4675 alternative matches and should therefore be as accomodating as
4676 possible. Match routines should not report errors if something
4677 is only invalid for !LAX_MATCH. */
4678 bfd_boolean lax_match;
4679
4680 /* True if a reference to the current AT register was seen. */
4681 bfd_boolean seen_at;
4682 };
4683
4684 /* Record that the argument is out of range. */
4685
4686 static void
4687 match_out_of_range (struct mips_arg_info *arg)
4688 {
4689 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4690 }
4691
4692 /* Record that the argument isn't constant but needs to be. */
4693
4694 static void
4695 match_not_constant (struct mips_arg_info *arg)
4696 {
4697 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4698 arg->argnum);
4699 }
4700
4701 /* Try to match an OT_CHAR token for character CH. Consume the token
4702 and return true on success, otherwise return false. */
4703
4704 static bfd_boolean
4705 match_char (struct mips_arg_info *arg, char ch)
4706 {
4707 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4708 {
4709 ++arg->token;
4710 if (ch == ',')
4711 arg->argnum += 1;
4712 return TRUE;
4713 }
4714 return FALSE;
4715 }
4716
4717 /* Try to get an expression from the next tokens in ARG. Consume the
4718 tokens and return true on success, storing the expression value in
4719 VALUE and relocation types in R. */
4720
4721 static bfd_boolean
4722 match_expression (struct mips_arg_info *arg, expressionS *value,
4723 bfd_reloc_code_real_type *r)
4724 {
4725 /* If the next token is a '(' that was parsed as being part of a base
4726 expression, assume we have an elided offset. The later match will fail
4727 if this turns out to be wrong. */
4728 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4729 {
4730 value->X_op = O_constant;
4731 value->X_add_number = 0;
4732 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4733 return TRUE;
4734 }
4735
4736 /* Reject register-based expressions such as "0+$2" and "(($2))".
4737 For plain registers the default error seems more appropriate. */
4738 if (arg->token->type == OT_INTEGER
4739 && arg->token->u.integer.value.X_op == O_register)
4740 {
4741 set_insn_error (arg->argnum, _("register value used as expression"));
4742 return FALSE;
4743 }
4744
4745 if (arg->token->type == OT_INTEGER)
4746 {
4747 *value = arg->token->u.integer.value;
4748 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4749 ++arg->token;
4750 return TRUE;
4751 }
4752
4753 set_insn_error_i
4754 (arg->argnum, _("operand %d must be an immediate expression"),
4755 arg->argnum);
4756 return FALSE;
4757 }
4758
4759 /* Try to get a constant expression from the next tokens in ARG. Consume
4760 the tokens and return return true on success, storing the constant value
4761 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4762 error. */
4763
4764 static bfd_boolean
4765 match_const_int (struct mips_arg_info *arg, offsetT *value)
4766 {
4767 expressionS ex;
4768 bfd_reloc_code_real_type r[3];
4769
4770 if (!match_expression (arg, &ex, r))
4771 return FALSE;
4772
4773 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4774 *value = ex.X_add_number;
4775 else
4776 {
4777 match_not_constant (arg);
4778 return FALSE;
4779 }
4780 return TRUE;
4781 }
4782
4783 /* Return the RTYPE_* flags for a register operand of type TYPE that
4784 appears in instruction OPCODE. */
4785
4786 static unsigned int
4787 convert_reg_type (const struct mips_opcode *opcode,
4788 enum mips_reg_operand_type type)
4789 {
4790 switch (type)
4791 {
4792 case OP_REG_GP:
4793 return RTYPE_NUM | RTYPE_GP;
4794
4795 case OP_REG_FP:
4796 /* Allow vector register names for MDMX if the instruction is a 64-bit
4797 FPR load, store or move (including moves to and from GPRs). */
4798 if ((mips_opts.ase & ASE_MDMX)
4799 && (opcode->pinfo & FP_D)
4800 && (opcode->pinfo & (INSN_COPROC_MOVE
4801 | INSN_COPROC_MEMORY_DELAY
4802 | INSN_LOAD_COPROC
4803 | INSN_LOAD_MEMORY
4804 | INSN_STORE_MEMORY)))
4805 return RTYPE_FPU | RTYPE_VEC;
4806 return RTYPE_FPU;
4807
4808 case OP_REG_CCC:
4809 if (opcode->pinfo & (FP_D | FP_S))
4810 return RTYPE_CCC | RTYPE_FCC;
4811 return RTYPE_CCC;
4812
4813 case OP_REG_VEC:
4814 if (opcode->membership & INSN_5400)
4815 return RTYPE_FPU;
4816 return RTYPE_FPU | RTYPE_VEC;
4817
4818 case OP_REG_ACC:
4819 return RTYPE_ACC;
4820
4821 case OP_REG_COPRO:
4822 if (opcode->name[strlen (opcode->name) - 1] == '0')
4823 return RTYPE_NUM | RTYPE_CP0;
4824 return RTYPE_NUM;
4825
4826 case OP_REG_HW:
4827 return RTYPE_NUM;
4828
4829 case OP_REG_VI:
4830 return RTYPE_NUM | RTYPE_VI;
4831
4832 case OP_REG_VF:
4833 return RTYPE_NUM | RTYPE_VF;
4834
4835 case OP_REG_R5900_I:
4836 return RTYPE_R5900_I;
4837
4838 case OP_REG_R5900_Q:
4839 return RTYPE_R5900_Q;
4840
4841 case OP_REG_R5900_R:
4842 return RTYPE_R5900_R;
4843
4844 case OP_REG_R5900_ACC:
4845 return RTYPE_R5900_ACC;
4846
4847 case OP_REG_MSA:
4848 return RTYPE_MSA;
4849
4850 case OP_REG_MSA_CTRL:
4851 return RTYPE_NUM;
4852 }
4853 abort ();
4854 }
4855
4856 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4857
4858 static void
4859 check_regno (struct mips_arg_info *arg,
4860 enum mips_reg_operand_type type, unsigned int regno)
4861 {
4862 if (AT && type == OP_REG_GP && regno == AT)
4863 arg->seen_at = TRUE;
4864
4865 if (type == OP_REG_FP
4866 && (regno & 1) != 0
4867 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4868 {
4869 /* This was a warning prior to introducing O32 FPXX and FP64 support
4870 so maintain a warning for FP32 but raise an error for the new
4871 cases. */
4872 if (FPR_SIZE == 32)
4873 as_warn (_("float register should be even, was %d"), regno);
4874 else
4875 as_bad (_("float register should be even, was %d"), regno);
4876 }
4877
4878 if (type == OP_REG_CCC)
4879 {
4880 const char *name;
4881 size_t length;
4882
4883 name = arg->insn->insn_mo->name;
4884 length = strlen (name);
4885 if ((regno & 1) != 0
4886 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4887 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4888 as_warn (_("condition code register should be even for %s, was %d"),
4889 name, regno);
4890
4891 if ((regno & 3) != 0
4892 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4893 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4894 name, regno);
4895 }
4896 }
4897
4898 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4899 a register of type TYPE. Return true on success, storing the register
4900 number in *REGNO and warning about any dubious uses. */
4901
4902 static bfd_boolean
4903 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4904 unsigned int symval, unsigned int *regno)
4905 {
4906 if (type == OP_REG_VEC)
4907 symval = mips_prefer_vec_regno (symval);
4908 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4909 return FALSE;
4910
4911 *regno = symval & RNUM_MASK;
4912 check_regno (arg, type, *regno);
4913 return TRUE;
4914 }
4915
4916 /* Try to interpret the next token in ARG as a register of type TYPE.
4917 Consume the token and return true on success, storing the register
4918 number in *REGNO. Return false on failure. */
4919
4920 static bfd_boolean
4921 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int *regno)
4923 {
4924 if (arg->token->type == OT_REG
4925 && match_regno (arg, type, arg->token->u.regno, regno))
4926 {
4927 ++arg->token;
4928 return TRUE;
4929 }
4930 return FALSE;
4931 }
4932
4933 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4934 Consume the token and return true on success, storing the register numbers
4935 in *REGNO1 and *REGNO2. Return false on failure. */
4936
4937 static bfd_boolean
4938 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4939 unsigned int *regno1, unsigned int *regno2)
4940 {
4941 if (match_reg (arg, type, regno1))
4942 {
4943 *regno2 = *regno1;
4944 return TRUE;
4945 }
4946 if (arg->token->type == OT_REG_RANGE
4947 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4948 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4949 && *regno1 <= *regno2)
4950 {
4951 ++arg->token;
4952 return TRUE;
4953 }
4954 return FALSE;
4955 }
4956
4957 /* OP_INT matcher. */
4958
4959 static bfd_boolean
4960 match_int_operand (struct mips_arg_info *arg,
4961 const struct mips_operand *operand_base)
4962 {
4963 const struct mips_int_operand *operand;
4964 unsigned int uval;
4965 int min_val, max_val, factor;
4966 offsetT sval;
4967
4968 operand = (const struct mips_int_operand *) operand_base;
4969 factor = 1 << operand->shift;
4970 min_val = mips_int_operand_min (operand);
4971 max_val = mips_int_operand_max (operand);
4972
4973 if (operand_base->lsb == 0
4974 && operand_base->size == 16
4975 && operand->shift == 0
4976 && operand->bias == 0
4977 && (operand->max_val == 32767 || operand->max_val == 65535))
4978 {
4979 /* The operand can be relocated. */
4980 if (!match_expression (arg, &offset_expr, offset_reloc))
4981 return FALSE;
4982
4983 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4984 /* Relocation operators were used. Accept the arguent and
4985 leave the relocation value in offset_expr and offset_relocs
4986 for the caller to process. */
4987 return TRUE;
4988
4989 if (offset_expr.X_op != O_constant)
4990 {
4991 /* Accept non-constant operands if no later alternative matches,
4992 leaving it for the caller to process. */
4993 if (!arg->lax_match)
4994 return FALSE;
4995 offset_reloc[0] = BFD_RELOC_LO16;
4996 return TRUE;
4997 }
4998
4999 /* Clear the global state; we're going to install the operand
5000 ourselves. */
5001 sval = offset_expr.X_add_number;
5002 offset_expr.X_op = O_absent;
5003
5004 /* For compatibility with older assemblers, we accept
5005 0x8000-0xffff as signed 16-bit numbers when only
5006 signed numbers are allowed. */
5007 if (sval > max_val)
5008 {
5009 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5010 if (!arg->lax_match && sval <= max_val)
5011 return FALSE;
5012 }
5013 }
5014 else
5015 {
5016 if (!match_const_int (arg, &sval))
5017 return FALSE;
5018 }
5019
5020 arg->last_op_int = sval;
5021
5022 if (sval < min_val || sval > max_val || sval % factor)
5023 {
5024 match_out_of_range (arg);
5025 return FALSE;
5026 }
5027
5028 uval = (unsigned int) sval >> operand->shift;
5029 uval -= operand->bias;
5030
5031 /* Handle -mfix-cn63xxp1. */
5032 if (arg->opnum == 1
5033 && mips_fix_cn63xxp1
5034 && !mips_opts.micromips
5035 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5036 switch (uval)
5037 {
5038 case 5:
5039 case 25:
5040 case 26:
5041 case 27:
5042 case 28:
5043 case 29:
5044 case 30:
5045 case 31:
5046 /* These are ok. */
5047 break;
5048
5049 default:
5050 /* The rest must be changed to 28. */
5051 uval = 28;
5052 break;
5053 }
5054
5055 insn_insert_operand (arg->insn, operand_base, uval);
5056 return TRUE;
5057 }
5058
5059 /* OP_MAPPED_INT matcher. */
5060
5061 static bfd_boolean
5062 match_mapped_int_operand (struct mips_arg_info *arg,
5063 const struct mips_operand *operand_base)
5064 {
5065 const struct mips_mapped_int_operand *operand;
5066 unsigned int uval, num_vals;
5067 offsetT sval;
5068
5069 operand = (const struct mips_mapped_int_operand *) operand_base;
5070 if (!match_const_int (arg, &sval))
5071 return FALSE;
5072
5073 num_vals = 1 << operand_base->size;
5074 for (uval = 0; uval < num_vals; uval++)
5075 if (operand->int_map[uval] == sval)
5076 break;
5077 if (uval == num_vals)
5078 {
5079 match_out_of_range (arg);
5080 return FALSE;
5081 }
5082
5083 insn_insert_operand (arg->insn, operand_base, uval);
5084 return TRUE;
5085 }
5086
5087 /* OP_MSB matcher. */
5088
5089 static bfd_boolean
5090 match_msb_operand (struct mips_arg_info *arg,
5091 const struct mips_operand *operand_base)
5092 {
5093 const struct mips_msb_operand *operand;
5094 int min_val, max_val, max_high;
5095 offsetT size, sval, high;
5096
5097 operand = (const struct mips_msb_operand *) operand_base;
5098 min_val = operand->bias;
5099 max_val = min_val + (1 << operand_base->size) - 1;
5100 max_high = operand->opsize;
5101
5102 if (!match_const_int (arg, &size))
5103 return FALSE;
5104
5105 high = size + arg->last_op_int;
5106 sval = operand->add_lsb ? high : size;
5107
5108 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5109 {
5110 match_out_of_range (arg);
5111 return FALSE;
5112 }
5113 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5114 return TRUE;
5115 }
5116
5117 /* OP_REG matcher. */
5118
5119 static bfd_boolean
5120 match_reg_operand (struct mips_arg_info *arg,
5121 const struct mips_operand *operand_base)
5122 {
5123 const struct mips_reg_operand *operand;
5124 unsigned int regno, uval, num_vals;
5125
5126 operand = (const struct mips_reg_operand *) operand_base;
5127 if (!match_reg (arg, operand->reg_type, &regno))
5128 return FALSE;
5129
5130 if (operand->reg_map)
5131 {
5132 num_vals = 1 << operand->root.size;
5133 for (uval = 0; uval < num_vals; uval++)
5134 if (operand->reg_map[uval] == regno)
5135 break;
5136 if (num_vals == uval)
5137 return FALSE;
5138 }
5139 else
5140 uval = regno;
5141
5142 arg->last_regno = regno;
5143 if (arg->opnum == 1)
5144 arg->dest_regno = regno;
5145 insn_insert_operand (arg->insn, operand_base, uval);
5146 return TRUE;
5147 }
5148
5149 /* OP_REG_PAIR matcher. */
5150
5151 static bfd_boolean
5152 match_reg_pair_operand (struct mips_arg_info *arg,
5153 const struct mips_operand *operand_base)
5154 {
5155 const struct mips_reg_pair_operand *operand;
5156 unsigned int regno1, regno2, uval, num_vals;
5157
5158 operand = (const struct mips_reg_pair_operand *) operand_base;
5159 if (!match_reg (arg, operand->reg_type, &regno1)
5160 || !match_char (arg, ',')
5161 || !match_reg (arg, operand->reg_type, &regno2))
5162 return FALSE;
5163
5164 num_vals = 1 << operand_base->size;
5165 for (uval = 0; uval < num_vals; uval++)
5166 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5167 break;
5168 if (uval == num_vals)
5169 return FALSE;
5170
5171 insn_insert_operand (arg->insn, operand_base, uval);
5172 return TRUE;
5173 }
5174
5175 /* OP_PCREL matcher. The caller chooses the relocation type. */
5176
5177 static bfd_boolean
5178 match_pcrel_operand (struct mips_arg_info *arg)
5179 {
5180 bfd_reloc_code_real_type r[3];
5181
5182 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5183 }
5184
5185 /* OP_PERF_REG matcher. */
5186
5187 static bfd_boolean
5188 match_perf_reg_operand (struct mips_arg_info *arg,
5189 const struct mips_operand *operand)
5190 {
5191 offsetT sval;
5192
5193 if (!match_const_int (arg, &sval))
5194 return FALSE;
5195
5196 if (sval != 0
5197 && (sval != 1
5198 || (mips_opts.arch == CPU_R5900
5199 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5200 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5201 {
5202 set_insn_error (arg->argnum, _("invalid performance register"));
5203 return FALSE;
5204 }
5205
5206 insn_insert_operand (arg->insn, operand, sval);
5207 return TRUE;
5208 }
5209
5210 /* OP_ADDIUSP matcher. */
5211
5212 static bfd_boolean
5213 match_addiusp_operand (struct mips_arg_info *arg,
5214 const struct mips_operand *operand)
5215 {
5216 offsetT sval;
5217 unsigned int uval;
5218
5219 if (!match_const_int (arg, &sval))
5220 return FALSE;
5221
5222 if (sval % 4)
5223 {
5224 match_out_of_range (arg);
5225 return FALSE;
5226 }
5227
5228 sval /= 4;
5229 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5230 {
5231 match_out_of_range (arg);
5232 return FALSE;
5233 }
5234
5235 uval = (unsigned int) sval;
5236 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5237 insn_insert_operand (arg->insn, operand, uval);
5238 return TRUE;
5239 }
5240
5241 /* OP_CLO_CLZ_DEST matcher. */
5242
5243 static bfd_boolean
5244 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5245 const struct mips_operand *operand)
5246 {
5247 unsigned int regno;
5248
5249 if (!match_reg (arg, OP_REG_GP, &regno))
5250 return FALSE;
5251
5252 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5253 return TRUE;
5254 }
5255
5256 /* OP_CHECK_PREV matcher. */
5257
5258 static bfd_boolean
5259 match_check_prev_operand (struct mips_arg_info *arg,
5260 const struct mips_operand *operand_base)
5261 {
5262 const struct mips_check_prev_operand *operand;
5263 unsigned int regno;
5264
5265 operand = (const struct mips_check_prev_operand *) operand_base;
5266
5267 if (!match_reg (arg, OP_REG_GP, &regno))
5268 return FALSE;
5269
5270 if (!operand->zero_ok && regno == 0)
5271 return FALSE;
5272
5273 if ((operand->less_than_ok && regno < arg->last_regno)
5274 || (operand->greater_than_ok && regno > arg->last_regno)
5275 || (operand->equal_ok && regno == arg->last_regno))
5276 {
5277 arg->last_regno = regno;
5278 insn_insert_operand (arg->insn, operand_base, regno);
5279 return TRUE;
5280 }
5281
5282 return FALSE;
5283 }
5284
5285 /* OP_SAME_RS_RT matcher. */
5286
5287 static bfd_boolean
5288 match_same_rs_rt_operand (struct mips_arg_info *arg,
5289 const struct mips_operand *operand)
5290 {
5291 unsigned int regno;
5292
5293 if (!match_reg (arg, OP_REG_GP, &regno))
5294 return FALSE;
5295
5296 if (regno == 0)
5297 {
5298 set_insn_error (arg->argnum, _("the source register must not be $0"));
5299 return FALSE;
5300 }
5301
5302 arg->last_regno = regno;
5303
5304 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5305 return TRUE;
5306 }
5307
5308 /* OP_LWM_SWM_LIST matcher. */
5309
5310 static bfd_boolean
5311 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5312 const struct mips_operand *operand)
5313 {
5314 unsigned int reglist, sregs, ra, regno1, regno2;
5315 struct mips_arg_info reset;
5316
5317 reglist = 0;
5318 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5319 return FALSE;
5320 do
5321 {
5322 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5323 {
5324 reglist |= 1 << FP;
5325 regno2 = S7;
5326 }
5327 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5328 reset = *arg;
5329 }
5330 while (match_char (arg, ',')
5331 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5332 *arg = reset;
5333
5334 if (operand->size == 2)
5335 {
5336 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5337
5338 s0, ra
5339 s0, s1, ra, s2, s3
5340 s0-s2, ra
5341
5342 and any permutations of these. */
5343 if ((reglist & 0xfff1ffff) != 0x80010000)
5344 return FALSE;
5345
5346 sregs = (reglist >> 17) & 7;
5347 ra = 0;
5348 }
5349 else
5350 {
5351 /* The list must include at least one of ra and s0-sN,
5352 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5353 which are $23 and $30 respectively.) E.g.:
5354
5355 ra
5356 s0
5357 ra, s0, s1, s2
5358 s0-s8
5359 s0-s5, ra
5360
5361 and any permutations of these. */
5362 if ((reglist & 0x3f00ffff) != 0)
5363 return FALSE;
5364
5365 ra = (reglist >> 27) & 0x10;
5366 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5367 }
5368 sregs += 1;
5369 if ((sregs & -sregs) != sregs)
5370 return FALSE;
5371
5372 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5373 return TRUE;
5374 }
5375
5376 /* OP_ENTRY_EXIT_LIST matcher. */
5377
5378 static unsigned int
5379 match_entry_exit_operand (struct mips_arg_info *arg,
5380 const struct mips_operand *operand)
5381 {
5382 unsigned int mask;
5383 bfd_boolean is_exit;
5384
5385 /* The format is the same for both ENTRY and EXIT, but the constraints
5386 are different. */
5387 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5388 mask = (is_exit ? 7 << 3 : 0);
5389 do
5390 {
5391 unsigned int regno1, regno2;
5392 bfd_boolean is_freg;
5393
5394 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5395 is_freg = FALSE;
5396 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5397 is_freg = TRUE;
5398 else
5399 return FALSE;
5400
5401 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5402 {
5403 mask &= ~(7 << 3);
5404 mask |= (5 + regno2) << 3;
5405 }
5406 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5407 mask |= (regno2 - 3) << 3;
5408 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5409 mask |= (regno2 - 15) << 1;
5410 else if (regno1 == RA && regno2 == RA)
5411 mask |= 1;
5412 else
5413 return FALSE;
5414 }
5415 while (match_char (arg, ','));
5416
5417 insn_insert_operand (arg->insn, operand, mask);
5418 return TRUE;
5419 }
5420
5421 /* OP_SAVE_RESTORE_LIST matcher. */
5422
5423 static bfd_boolean
5424 match_save_restore_list_operand (struct mips_arg_info *arg)
5425 {
5426 unsigned int opcode, args, statics, sregs;
5427 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5428 offsetT frame_size;
5429
5430 opcode = arg->insn->insn_opcode;
5431 frame_size = 0;
5432 num_frame_sizes = 0;
5433 args = 0;
5434 statics = 0;
5435 sregs = 0;
5436 do
5437 {
5438 unsigned int regno1, regno2;
5439
5440 if (arg->token->type == OT_INTEGER)
5441 {
5442 /* Handle the frame size. */
5443 if (!match_const_int (arg, &frame_size))
5444 return FALSE;
5445 num_frame_sizes += 1;
5446 }
5447 else
5448 {
5449 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5450 return FALSE;
5451
5452 while (regno1 <= regno2)
5453 {
5454 if (regno1 >= 4 && regno1 <= 7)
5455 {
5456 if (num_frame_sizes == 0)
5457 /* args $a0-$a3 */
5458 args |= 1 << (regno1 - 4);
5459 else
5460 /* statics $a0-$a3 */
5461 statics |= 1 << (regno1 - 4);
5462 }
5463 else if (regno1 >= 16 && regno1 <= 23)
5464 /* $s0-$s7 */
5465 sregs |= 1 << (regno1 - 16);
5466 else if (regno1 == 30)
5467 /* $s8 */
5468 sregs |= 1 << 8;
5469 else if (regno1 == 31)
5470 /* Add $ra to insn. */
5471 opcode |= 0x40;
5472 else
5473 return FALSE;
5474 regno1 += 1;
5475 if (regno1 == 24)
5476 regno1 = 30;
5477 }
5478 }
5479 }
5480 while (match_char (arg, ','));
5481
5482 /* Encode args/statics combination. */
5483 if (args & statics)
5484 return FALSE;
5485 else if (args == 0xf)
5486 /* All $a0-$a3 are args. */
5487 opcode |= MIPS16_ALL_ARGS << 16;
5488 else if (statics == 0xf)
5489 /* All $a0-$a3 are statics. */
5490 opcode |= MIPS16_ALL_STATICS << 16;
5491 else
5492 {
5493 /* Count arg registers. */
5494 num_args = 0;
5495 while (args & 0x1)
5496 {
5497 args >>= 1;
5498 num_args += 1;
5499 }
5500 if (args != 0)
5501 return FALSE;
5502
5503 /* Count static registers. */
5504 num_statics = 0;
5505 while (statics & 0x8)
5506 {
5507 statics = (statics << 1) & 0xf;
5508 num_statics += 1;
5509 }
5510 if (statics != 0)
5511 return FALSE;
5512
5513 /* Encode args/statics. */
5514 opcode |= ((num_args << 2) | num_statics) << 16;
5515 }
5516
5517 /* Encode $s0/$s1. */
5518 if (sregs & (1 << 0)) /* $s0 */
5519 opcode |= 0x20;
5520 if (sregs & (1 << 1)) /* $s1 */
5521 opcode |= 0x10;
5522 sregs >>= 2;
5523
5524 /* Encode $s2-$s8. */
5525 num_sregs = 0;
5526 while (sregs & 1)
5527 {
5528 sregs >>= 1;
5529 num_sregs += 1;
5530 }
5531 if (sregs != 0)
5532 return FALSE;
5533 opcode |= num_sregs << 24;
5534
5535 /* Encode frame size. */
5536 if (num_frame_sizes == 0)
5537 {
5538 set_insn_error (arg->argnum, _("missing frame size"));
5539 return FALSE;
5540 }
5541 if (num_frame_sizes > 1)
5542 {
5543 set_insn_error (arg->argnum, _("frame size specified twice"));
5544 return FALSE;
5545 }
5546 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5547 {
5548 set_insn_error (arg->argnum, _("invalid frame size"));
5549 return FALSE;
5550 }
5551 if (frame_size != 128 || (opcode >> 16) != 0)
5552 {
5553 frame_size /= 8;
5554 opcode |= (((frame_size & 0xf0) << 16)
5555 | (frame_size & 0x0f));
5556 }
5557
5558 /* Finally build the instruction. */
5559 if ((opcode >> 16) != 0 || frame_size == 0)
5560 opcode |= MIPS16_EXTEND;
5561 arg->insn->insn_opcode = opcode;
5562 return TRUE;
5563 }
5564
5565 /* OP_MDMX_IMM_REG matcher. */
5566
5567 static bfd_boolean
5568 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5569 const struct mips_operand *operand)
5570 {
5571 unsigned int regno, uval;
5572 bfd_boolean is_qh;
5573 const struct mips_opcode *opcode;
5574
5575 /* The mips_opcode records whether this is an octobyte or quadhalf
5576 instruction. Start out with that bit in place. */
5577 opcode = arg->insn->insn_mo;
5578 uval = mips_extract_operand (operand, opcode->match);
5579 is_qh = (uval != 0);
5580
5581 if (arg->token->type == OT_REG)
5582 {
5583 if ((opcode->membership & INSN_5400)
5584 && strcmp (opcode->name, "rzu.ob") == 0)
5585 {
5586 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5587 arg->argnum);
5588 return FALSE;
5589 }
5590
5591 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5592 return FALSE;
5593 ++arg->token;
5594
5595 /* Check whether this is a vector register or a broadcast of
5596 a single element. */
5597 if (arg->token->type == OT_INTEGER_INDEX)
5598 {
5599 if (arg->token->u.index > (is_qh ? 3 : 7))
5600 {
5601 set_insn_error (arg->argnum, _("invalid element selector"));
5602 return FALSE;
5603 }
5604 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5605 ++arg->token;
5606 }
5607 else
5608 {
5609 /* A full vector. */
5610 if ((opcode->membership & INSN_5400)
5611 && (strcmp (opcode->name, "sll.ob") == 0
5612 || strcmp (opcode->name, "srl.ob") == 0))
5613 {
5614 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5615 arg->argnum);
5616 return FALSE;
5617 }
5618
5619 if (is_qh)
5620 uval |= MDMX_FMTSEL_VEC_QH << 5;
5621 else
5622 uval |= MDMX_FMTSEL_VEC_OB << 5;
5623 }
5624 uval |= regno;
5625 }
5626 else
5627 {
5628 offsetT sval;
5629
5630 if (!match_const_int (arg, &sval))
5631 return FALSE;
5632 if (sval < 0 || sval > 31)
5633 {
5634 match_out_of_range (arg);
5635 return FALSE;
5636 }
5637 uval |= (sval & 31);
5638 if (is_qh)
5639 uval |= MDMX_FMTSEL_IMM_QH << 5;
5640 else
5641 uval |= MDMX_FMTSEL_IMM_OB << 5;
5642 }
5643 insn_insert_operand (arg->insn, operand, uval);
5644 return TRUE;
5645 }
5646
5647 /* OP_IMM_INDEX matcher. */
5648
5649 static bfd_boolean
5650 match_imm_index_operand (struct mips_arg_info *arg,
5651 const struct mips_operand *operand)
5652 {
5653 unsigned int max_val;
5654
5655 if (arg->token->type != OT_INTEGER_INDEX)
5656 return FALSE;
5657
5658 max_val = (1 << operand->size) - 1;
5659 if (arg->token->u.index > max_val)
5660 {
5661 match_out_of_range (arg);
5662 return FALSE;
5663 }
5664 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5665 ++arg->token;
5666 return TRUE;
5667 }
5668
5669 /* OP_REG_INDEX matcher. */
5670
5671 static bfd_boolean
5672 match_reg_index_operand (struct mips_arg_info *arg,
5673 const struct mips_operand *operand)
5674 {
5675 unsigned int regno;
5676
5677 if (arg->token->type != OT_REG_INDEX)
5678 return FALSE;
5679
5680 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5681 return FALSE;
5682
5683 insn_insert_operand (arg->insn, operand, regno);
5684 ++arg->token;
5685 return TRUE;
5686 }
5687
5688 /* OP_PC matcher. */
5689
5690 static bfd_boolean
5691 match_pc_operand (struct mips_arg_info *arg)
5692 {
5693 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5694 {
5695 ++arg->token;
5696 return TRUE;
5697 }
5698 return FALSE;
5699 }
5700
5701 /* OP_NON_ZERO_REG matcher. */
5702
5703 static bfd_boolean
5704 match_non_zero_reg_operand (struct mips_arg_info *arg,
5705 const struct mips_operand *operand)
5706 {
5707 unsigned int regno;
5708
5709 if (!match_reg (arg, OP_REG_GP, &regno))
5710 return FALSE;
5711
5712 if (regno == 0)
5713 return FALSE;
5714
5715 arg->last_regno = regno;
5716 insn_insert_operand (arg->insn, operand, regno);
5717 return TRUE;
5718 }
5719
5720 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5721 register that we need to match. */
5722
5723 static bfd_boolean
5724 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5725 {
5726 unsigned int regno;
5727
5728 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5729 }
5730
5731 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5732 the length of the value in bytes (4 for float, 8 for double) and
5733 USING_GPRS says whether the destination is a GPR rather than an FPR.
5734
5735 Return the constant in IMM and OFFSET as follows:
5736
5737 - If the constant should be loaded via memory, set IMM to O_absent and
5738 OFFSET to the memory address.
5739
5740 - Otherwise, if the constant should be loaded into two 32-bit registers,
5741 set IMM to the O_constant to load into the high register and OFFSET
5742 to the corresponding value for the low register.
5743
5744 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5745
5746 These constants only appear as the last operand in an instruction,
5747 and every instruction that accepts them in any variant accepts them
5748 in all variants. This means we don't have to worry about backing out
5749 any changes if the instruction does not match. We just match
5750 unconditionally and report an error if the constant is invalid. */
5751
5752 static bfd_boolean
5753 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5754 expressionS *offset, int length, bfd_boolean using_gprs)
5755 {
5756 char *p;
5757 segT seg, new_seg;
5758 subsegT subseg;
5759 const char *newname;
5760 unsigned char *data;
5761
5762 /* Where the constant is placed is based on how the MIPS assembler
5763 does things:
5764
5765 length == 4 && using_gprs -- immediate value only
5766 length == 8 && using_gprs -- .rdata or immediate value
5767 length == 4 && !using_gprs -- .lit4 or immediate value
5768 length == 8 && !using_gprs -- .lit8 or immediate value
5769
5770 The .lit4 and .lit8 sections are only used if permitted by the
5771 -G argument. */
5772 if (arg->token->type != OT_FLOAT)
5773 {
5774 set_insn_error (arg->argnum, _("floating-point expression required"));
5775 return FALSE;
5776 }
5777
5778 gas_assert (arg->token->u.flt.length == length);
5779 data = arg->token->u.flt.data;
5780 ++arg->token;
5781
5782 /* Handle 32-bit constants for which an immediate value is best. */
5783 if (length == 4
5784 && (using_gprs
5785 || g_switch_value < 4
5786 || (data[0] == 0 && data[1] == 0)
5787 || (data[2] == 0 && data[3] == 0)))
5788 {
5789 imm->X_op = O_constant;
5790 if (!target_big_endian)
5791 imm->X_add_number = bfd_getl32 (data);
5792 else
5793 imm->X_add_number = bfd_getb32 (data);
5794 offset->X_op = O_absent;
5795 return TRUE;
5796 }
5797
5798 /* Handle 64-bit constants for which an immediate value is best. */
5799 if (length == 8
5800 && !mips_disable_float_construction
5801 /* Constants can only be constructed in GPRs and copied to FPRs if the
5802 GPRs are at least as wide as the FPRs or MTHC1 is available.
5803 Unlike most tests for 32-bit floating-point registers this check
5804 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5805 permit 64-bit moves without MXHC1.
5806 Force the constant into memory otherwise. */
5807 && (using_gprs
5808 || GPR_SIZE == 64
5809 || ISA_HAS_MXHC1 (mips_opts.isa)
5810 || FPR_SIZE == 32)
5811 && ((data[0] == 0 && data[1] == 0)
5812 || (data[2] == 0 && data[3] == 0))
5813 && ((data[4] == 0 && data[5] == 0)
5814 || (data[6] == 0 && data[7] == 0)))
5815 {
5816 /* The value is simple enough to load with a couple of instructions.
5817 If using 32-bit registers, set IMM to the high order 32 bits and
5818 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5819 64 bit constant. */
5820 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5821 {
5822 imm->X_op = O_constant;
5823 offset->X_op = O_constant;
5824 if (!target_big_endian)
5825 {
5826 imm->X_add_number = bfd_getl32 (data + 4);
5827 offset->X_add_number = bfd_getl32 (data);
5828 }
5829 else
5830 {
5831 imm->X_add_number = bfd_getb32 (data);
5832 offset->X_add_number = bfd_getb32 (data + 4);
5833 }
5834 if (offset->X_add_number == 0)
5835 offset->X_op = O_absent;
5836 }
5837 else
5838 {
5839 imm->X_op = O_constant;
5840 if (!target_big_endian)
5841 imm->X_add_number = bfd_getl64 (data);
5842 else
5843 imm->X_add_number = bfd_getb64 (data);
5844 offset->X_op = O_absent;
5845 }
5846 return TRUE;
5847 }
5848
5849 /* Switch to the right section. */
5850 seg = now_seg;
5851 subseg = now_subseg;
5852 if (length == 4)
5853 {
5854 gas_assert (!using_gprs && g_switch_value >= 4);
5855 newname = ".lit4";
5856 }
5857 else
5858 {
5859 if (using_gprs || g_switch_value < 8)
5860 newname = RDATA_SECTION_NAME;
5861 else
5862 newname = ".lit8";
5863 }
5864
5865 new_seg = subseg_new (newname, (subsegT) 0);
5866 bfd_set_section_flags (stdoutput, new_seg,
5867 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5868 frag_align (length == 4 ? 2 : 3, 0, 0);
5869 if (strncmp (TARGET_OS, "elf", 3) != 0)
5870 record_alignment (new_seg, 4);
5871 else
5872 record_alignment (new_seg, length == 4 ? 2 : 3);
5873 if (seg == now_seg)
5874 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5875
5876 /* Set the argument to the current address in the section. */
5877 imm->X_op = O_absent;
5878 offset->X_op = O_symbol;
5879 offset->X_add_symbol = symbol_temp_new_now ();
5880 offset->X_add_number = 0;
5881
5882 /* Put the floating point number into the section. */
5883 p = frag_more (length);
5884 memcpy (p, data, length);
5885
5886 /* Switch back to the original section. */
5887 subseg_set (seg, subseg);
5888 return TRUE;
5889 }
5890
5891 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5892 them. */
5893
5894 static bfd_boolean
5895 match_vu0_suffix_operand (struct mips_arg_info *arg,
5896 const struct mips_operand *operand,
5897 bfd_boolean match_p)
5898 {
5899 unsigned int uval;
5900
5901 /* The operand can be an XYZW mask or a single 2-bit channel index
5902 (with X being 0). */
5903 gas_assert (operand->size == 2 || operand->size == 4);
5904
5905 /* The suffix can be omitted when it is already part of the opcode. */
5906 if (arg->token->type != OT_CHANNELS)
5907 return match_p;
5908
5909 uval = arg->token->u.channels;
5910 if (operand->size == 2)
5911 {
5912 /* Check that a single bit is set and convert it into a 2-bit index. */
5913 if ((uval & -uval) != uval)
5914 return FALSE;
5915 uval = 4 - ffs (uval);
5916 }
5917
5918 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5919 return FALSE;
5920
5921 ++arg->token;
5922 if (!match_p)
5923 insn_insert_operand (arg->insn, operand, uval);
5924 return TRUE;
5925 }
5926
5927 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5928 of the argument text if the match is successful, otherwise return null. */
5929
5930 static bfd_boolean
5931 match_operand (struct mips_arg_info *arg,
5932 const struct mips_operand *operand)
5933 {
5934 switch (operand->type)
5935 {
5936 case OP_INT:
5937 return match_int_operand (arg, operand);
5938
5939 case OP_MAPPED_INT:
5940 return match_mapped_int_operand (arg, operand);
5941
5942 case OP_MSB:
5943 return match_msb_operand (arg, operand);
5944
5945 case OP_REG:
5946 case OP_OPTIONAL_REG:
5947 return match_reg_operand (arg, operand);
5948
5949 case OP_REG_PAIR:
5950 return match_reg_pair_operand (arg, operand);
5951
5952 case OP_PCREL:
5953 return match_pcrel_operand (arg);
5954
5955 case OP_PERF_REG:
5956 return match_perf_reg_operand (arg, operand);
5957
5958 case OP_ADDIUSP_INT:
5959 return match_addiusp_operand (arg, operand);
5960
5961 case OP_CLO_CLZ_DEST:
5962 return match_clo_clz_dest_operand (arg, operand);
5963
5964 case OP_LWM_SWM_LIST:
5965 return match_lwm_swm_list_operand (arg, operand);
5966
5967 case OP_ENTRY_EXIT_LIST:
5968 return match_entry_exit_operand (arg, operand);
5969
5970 case OP_SAVE_RESTORE_LIST:
5971 return match_save_restore_list_operand (arg);
5972
5973 case OP_MDMX_IMM_REG:
5974 return match_mdmx_imm_reg_operand (arg, operand);
5975
5976 case OP_REPEAT_DEST_REG:
5977 return match_tied_reg_operand (arg, arg->dest_regno);
5978
5979 case OP_REPEAT_PREV_REG:
5980 return match_tied_reg_operand (arg, arg->last_regno);
5981
5982 case OP_PC:
5983 return match_pc_operand (arg);
5984
5985 case OP_VU0_SUFFIX:
5986 return match_vu0_suffix_operand (arg, operand, FALSE);
5987
5988 case OP_VU0_MATCH_SUFFIX:
5989 return match_vu0_suffix_operand (arg, operand, TRUE);
5990
5991 case OP_IMM_INDEX:
5992 return match_imm_index_operand (arg, operand);
5993
5994 case OP_REG_INDEX:
5995 return match_reg_index_operand (arg, operand);
5996
5997 case OP_SAME_RS_RT:
5998 return match_same_rs_rt_operand (arg, operand);
5999
6000 case OP_CHECK_PREV:
6001 return match_check_prev_operand (arg, operand);
6002
6003 case OP_NON_ZERO_REG:
6004 return match_non_zero_reg_operand (arg, operand);
6005 }
6006 abort ();
6007 }
6008
6009 /* ARG is the state after successfully matching an instruction.
6010 Issue any queued-up warnings. */
6011
6012 static void
6013 check_completed_insn (struct mips_arg_info *arg)
6014 {
6015 if (arg->seen_at)
6016 {
6017 if (AT == ATREG)
6018 as_warn (_("used $at without \".set noat\""));
6019 else
6020 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6021 }
6022 }
6023
6024 /* Return true if modifying general-purpose register REG needs a delay. */
6025
6026 static bfd_boolean
6027 reg_needs_delay (unsigned int reg)
6028 {
6029 unsigned long prev_pinfo;
6030
6031 prev_pinfo = history[0].insn_mo->pinfo;
6032 if (!mips_opts.noreorder
6033 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6034 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6035 && (gpr_write_mask (&history[0]) & (1 << reg)))
6036 return TRUE;
6037
6038 return FALSE;
6039 }
6040
6041 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6042 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6043 by VR4120 errata. */
6044
6045 static unsigned int
6046 classify_vr4120_insn (const char *name)
6047 {
6048 if (strncmp (name, "macc", 4) == 0)
6049 return FIX_VR4120_MACC;
6050 if (strncmp (name, "dmacc", 5) == 0)
6051 return FIX_VR4120_DMACC;
6052 if (strncmp (name, "mult", 4) == 0)
6053 return FIX_VR4120_MULT;
6054 if (strncmp (name, "dmult", 5) == 0)
6055 return FIX_VR4120_DMULT;
6056 if (strstr (name, "div"))
6057 return FIX_VR4120_DIV;
6058 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6059 return FIX_VR4120_MTHILO;
6060 return NUM_FIX_VR4120_CLASSES;
6061 }
6062
6063 #define INSN_ERET 0x42000018
6064 #define INSN_DERET 0x4200001f
6065 #define INSN_DMULT 0x1c
6066 #define INSN_DMULTU 0x1d
6067
6068 /* Return the number of instructions that must separate INSN1 and INSN2,
6069 where INSN1 is the earlier instruction. Return the worst-case value
6070 for any INSN2 if INSN2 is null. */
6071
6072 static unsigned int
6073 insns_between (const struct mips_cl_insn *insn1,
6074 const struct mips_cl_insn *insn2)
6075 {
6076 unsigned long pinfo1, pinfo2;
6077 unsigned int mask;
6078
6079 /* If INFO2 is null, pessimistically assume that all flags are set for
6080 the second instruction. */
6081 pinfo1 = insn1->insn_mo->pinfo;
6082 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6083
6084 /* For most targets, write-after-read dependencies on the HI and LO
6085 registers must be separated by at least two instructions. */
6086 if (!hilo_interlocks)
6087 {
6088 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6089 return 2;
6090 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6091 return 2;
6092 }
6093
6094 /* If we're working around r7000 errata, there must be two instructions
6095 between an mfhi or mflo and any instruction that uses the result. */
6096 if (mips_7000_hilo_fix
6097 && !mips_opts.micromips
6098 && MF_HILO_INSN (pinfo1)
6099 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6100 return 2;
6101
6102 /* If we're working around 24K errata, one instruction is required
6103 if an ERET or DERET is followed by a branch instruction. */
6104 if (mips_fix_24k && !mips_opts.micromips)
6105 {
6106 if (insn1->insn_opcode == INSN_ERET
6107 || insn1->insn_opcode == INSN_DERET)
6108 {
6109 if (insn2 == NULL
6110 || insn2->insn_opcode == INSN_ERET
6111 || insn2->insn_opcode == INSN_DERET
6112 || delayed_branch_p (insn2))
6113 return 1;
6114 }
6115 }
6116
6117 /* If we're working around PMC RM7000 errata, there must be three
6118 nops between a dmult and a load instruction. */
6119 if (mips_fix_rm7000 && !mips_opts.micromips)
6120 {
6121 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6122 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6123 {
6124 if (pinfo2 & INSN_LOAD_MEMORY)
6125 return 3;
6126 }
6127 }
6128
6129 /* If working around VR4120 errata, check for combinations that need
6130 a single intervening instruction. */
6131 if (mips_fix_vr4120 && !mips_opts.micromips)
6132 {
6133 unsigned int class1, class2;
6134
6135 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6136 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6137 {
6138 if (insn2 == NULL)
6139 return 1;
6140 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6141 if (vr4120_conflicts[class1] & (1 << class2))
6142 return 1;
6143 }
6144 }
6145
6146 if (!HAVE_CODE_COMPRESSION)
6147 {
6148 /* Check for GPR or coprocessor load delays. All such delays
6149 are on the RT register. */
6150 /* Itbl support may require additional care here. */
6151 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6152 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6153 {
6154 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6155 return 1;
6156 }
6157
6158 /* Check for generic coprocessor hazards.
6159
6160 This case is not handled very well. There is no special
6161 knowledge of CP0 handling, and the coprocessors other than
6162 the floating point unit are not distinguished at all. */
6163 /* Itbl support may require additional care here. FIXME!
6164 Need to modify this to include knowledge about
6165 user specified delays! */
6166 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6167 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6168 {
6169 /* Handle cases where INSN1 writes to a known general coprocessor
6170 register. There must be a one instruction delay before INSN2
6171 if INSN2 reads that register, otherwise no delay is needed. */
6172 mask = fpr_write_mask (insn1);
6173 if (mask != 0)
6174 {
6175 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6176 return 1;
6177 }
6178 else
6179 {
6180 /* Read-after-write dependencies on the control registers
6181 require a two-instruction gap. */
6182 if ((pinfo1 & INSN_WRITE_COND_CODE)
6183 && (pinfo2 & INSN_READ_COND_CODE))
6184 return 2;
6185
6186 /* We don't know exactly what INSN1 does. If INSN2 is
6187 also a coprocessor instruction, assume there must be
6188 a one instruction gap. */
6189 if (pinfo2 & INSN_COP)
6190 return 1;
6191 }
6192 }
6193
6194 /* Check for read-after-write dependencies on the coprocessor
6195 control registers in cases where INSN1 does not need a general
6196 coprocessor delay. This means that INSN1 is a floating point
6197 comparison instruction. */
6198 /* Itbl support may require additional care here. */
6199 else if (!cop_interlocks
6200 && (pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6202 return 1;
6203 }
6204
6205 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6206 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6207 and pause. */
6208 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6209 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6210 || (insn2 && delayed_branch_p (insn2))))
6211 return 1;
6212
6213 return 0;
6214 }
6215
6216 /* Return the number of nops that would be needed to work around the
6217 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6218 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6219 that are contained within the first IGNORE instructions of HIST. */
6220
6221 static int
6222 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6223 const struct mips_cl_insn *insn)
6224 {
6225 int i, j;
6226 unsigned int mask;
6227
6228 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6229 are not affected by the errata. */
6230 if (insn != 0
6231 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6232 || strcmp (insn->insn_mo->name, "mtlo") == 0
6233 || strcmp (insn->insn_mo->name, "mthi") == 0))
6234 return 0;
6235
6236 /* Search for the first MFLO or MFHI. */
6237 for (i = 0; i < MAX_VR4130_NOPS; i++)
6238 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6239 {
6240 /* Extract the destination register. */
6241 mask = gpr_write_mask (&hist[i]);
6242
6243 /* No nops are needed if INSN reads that register. */
6244 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6245 return 0;
6246
6247 /* ...or if any of the intervening instructions do. */
6248 for (j = 0; j < i; j++)
6249 if (gpr_read_mask (&hist[j]) & mask)
6250 return 0;
6251
6252 if (i >= ignore)
6253 return MAX_VR4130_NOPS - i;
6254 }
6255 return 0;
6256 }
6257
6258 #define BASE_REG_EQ(INSN1, INSN2) \
6259 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6260 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6261
6262 /* Return the minimum alignment for this store instruction. */
6263
6264 static int
6265 fix_24k_align_to (const struct mips_opcode *mo)
6266 {
6267 if (strcmp (mo->name, "sh") == 0)
6268 return 2;
6269
6270 if (strcmp (mo->name, "swc1") == 0
6271 || strcmp (mo->name, "swc2") == 0
6272 || strcmp (mo->name, "sw") == 0
6273 || strcmp (mo->name, "sc") == 0
6274 || strcmp (mo->name, "s.s") == 0)
6275 return 4;
6276
6277 if (strcmp (mo->name, "sdc1") == 0
6278 || strcmp (mo->name, "sdc2") == 0
6279 || strcmp (mo->name, "s.d") == 0)
6280 return 8;
6281
6282 /* sb, swl, swr */
6283 return 1;
6284 }
6285
6286 struct fix_24k_store_info
6287 {
6288 /* Immediate offset, if any, for this store instruction. */
6289 short off;
6290 /* Alignment required by this store instruction. */
6291 int align_to;
6292 /* True for register offsets. */
6293 int register_offset;
6294 };
6295
6296 /* Comparison function used by qsort. */
6297
6298 static int
6299 fix_24k_sort (const void *a, const void *b)
6300 {
6301 const struct fix_24k_store_info *pos1 = a;
6302 const struct fix_24k_store_info *pos2 = b;
6303
6304 return (pos1->off - pos2->off);
6305 }
6306
6307 /* INSN is a store instruction. Try to record the store information
6308 in STINFO. Return false if the information isn't known. */
6309
6310 static bfd_boolean
6311 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6312 const struct mips_cl_insn *insn)
6313 {
6314 /* The instruction must have a known offset. */
6315 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6316 return FALSE;
6317
6318 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6319 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6320 return TRUE;
6321 }
6322
6323 /* Return the number of nops that would be needed to work around the 24k
6324 "lost data on stores during refill" errata if instruction INSN
6325 immediately followed the 2 instructions described by HIST.
6326 Ignore hazards that are contained within the first IGNORE
6327 instructions of HIST.
6328
6329 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6330 for the data cache refills and store data. The following describes
6331 the scenario where the store data could be lost.
6332
6333 * A data cache miss, due to either a load or a store, causing fill
6334 data to be supplied by the memory subsystem
6335 * The first three doublewords of fill data are returned and written
6336 into the cache
6337 * A sequence of four stores occurs in consecutive cycles around the
6338 final doubleword of the fill:
6339 * Store A
6340 * Store B
6341 * Store C
6342 * Zero, One or more instructions
6343 * Store D
6344
6345 The four stores A-D must be to different doublewords of the line that
6346 is being filled. The fourth instruction in the sequence above permits
6347 the fill of the final doubleword to be transferred from the FSB into
6348 the cache. In the sequence above, the stores may be either integer
6349 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6350 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6351 different doublewords on the line. If the floating point unit is
6352 running in 1:2 mode, it is not possible to create the sequence above
6353 using only floating point store instructions.
6354
6355 In this case, the cache line being filled is incorrectly marked
6356 invalid, thereby losing the data from any store to the line that
6357 occurs between the original miss and the completion of the five
6358 cycle sequence shown above.
6359
6360 The workarounds are:
6361
6362 * Run the data cache in write-through mode.
6363 * Insert a non-store instruction between
6364 Store A and Store B or Store B and Store C. */
6365
6366 static int
6367 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6368 const struct mips_cl_insn *insn)
6369 {
6370 struct fix_24k_store_info pos[3];
6371 int align, i, base_offset;
6372
6373 if (ignore >= 2)
6374 return 0;
6375
6376 /* If the previous instruction wasn't a store, there's nothing to
6377 worry about. */
6378 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6379 return 0;
6380
6381 /* If the instructions after the previous one are unknown, we have
6382 to assume the worst. */
6383 if (!insn)
6384 return 1;
6385
6386 /* Check whether we are dealing with three consecutive stores. */
6387 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6388 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6389 return 0;
6390
6391 /* If we don't know the relationship between the store addresses,
6392 assume the worst. */
6393 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6394 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6395 return 1;
6396
6397 if (!fix_24k_record_store_info (&pos[0], insn)
6398 || !fix_24k_record_store_info (&pos[1], &hist[0])
6399 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6400 return 1;
6401
6402 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6403
6404 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6405 X bytes and such that the base register + X is known to be aligned
6406 to align bytes. */
6407
6408 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6409 align = 8;
6410 else
6411 {
6412 align = pos[0].align_to;
6413 base_offset = pos[0].off;
6414 for (i = 1; i < 3; i++)
6415 if (align < pos[i].align_to)
6416 {
6417 align = pos[i].align_to;
6418 base_offset = pos[i].off;
6419 }
6420 for (i = 0; i < 3; i++)
6421 pos[i].off -= base_offset;
6422 }
6423
6424 pos[0].off &= ~align + 1;
6425 pos[1].off &= ~align + 1;
6426 pos[2].off &= ~align + 1;
6427
6428 /* If any two stores write to the same chunk, they also write to the
6429 same doubleword. The offsets are still sorted at this point. */
6430 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6431 return 0;
6432
6433 /* A range of at least 9 bytes is needed for the stores to be in
6434 non-overlapping doublewords. */
6435 if (pos[2].off - pos[0].off <= 8)
6436 return 0;
6437
6438 if (pos[2].off - pos[1].off >= 24
6439 || pos[1].off - pos[0].off >= 24
6440 || pos[2].off - pos[0].off >= 32)
6441 return 0;
6442
6443 return 1;
6444 }
6445
6446 /* Return the number of nops that would be needed if instruction INSN
6447 immediately followed the MAX_NOPS instructions given by HIST,
6448 where HIST[0] is the most recent instruction. Ignore hazards
6449 between INSN and the first IGNORE instructions in HIST.
6450
6451 If INSN is null, return the worse-case number of nops for any
6452 instruction. */
6453
6454 static int
6455 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6456 const struct mips_cl_insn *insn)
6457 {
6458 int i, nops, tmp_nops;
6459
6460 nops = 0;
6461 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6462 {
6463 tmp_nops = insns_between (hist + i, insn) - i;
6464 if (tmp_nops > nops)
6465 nops = tmp_nops;
6466 }
6467
6468 if (mips_fix_vr4130 && !mips_opts.micromips)
6469 {
6470 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6471 if (tmp_nops > nops)
6472 nops = tmp_nops;
6473 }
6474
6475 if (mips_fix_24k && !mips_opts.micromips)
6476 {
6477 tmp_nops = nops_for_24k (ignore, hist, insn);
6478 if (tmp_nops > nops)
6479 nops = tmp_nops;
6480 }
6481
6482 return nops;
6483 }
6484
6485 /* The variable arguments provide NUM_INSNS extra instructions that
6486 might be added to HIST. Return the largest number of nops that
6487 would be needed after the extended sequence, ignoring hazards
6488 in the first IGNORE instructions. */
6489
6490 static int
6491 nops_for_sequence (int num_insns, int ignore,
6492 const struct mips_cl_insn *hist, ...)
6493 {
6494 va_list args;
6495 struct mips_cl_insn buffer[MAX_NOPS];
6496 struct mips_cl_insn *cursor;
6497 int nops;
6498
6499 va_start (args, hist);
6500 cursor = buffer + num_insns;
6501 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6502 while (cursor > buffer)
6503 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6504
6505 nops = nops_for_insn (ignore, buffer, NULL);
6506 va_end (args);
6507 return nops;
6508 }
6509
6510 /* Like nops_for_insn, but if INSN is a branch, take into account the
6511 worst-case delay for the branch target. */
6512
6513 static int
6514 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6515 const struct mips_cl_insn *insn)
6516 {
6517 int nops, tmp_nops;
6518
6519 nops = nops_for_insn (ignore, hist, insn);
6520 if (delayed_branch_p (insn))
6521 {
6522 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6523 hist, insn, get_delay_slot_nop (insn));
6524 if (tmp_nops > nops)
6525 nops = tmp_nops;
6526 }
6527 else if (compact_branch_p (insn))
6528 {
6529 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6530 if (tmp_nops > nops)
6531 nops = tmp_nops;
6532 }
6533 return nops;
6534 }
6535
6536 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6537
6538 static void
6539 fix_loongson2f_nop (struct mips_cl_insn * ip)
6540 {
6541 gas_assert (!HAVE_CODE_COMPRESSION);
6542 if (strcmp (ip->insn_mo->name, "nop") == 0)
6543 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6544 }
6545
6546 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6547 jr target pc &= 'hffff_ffff_cfff_ffff. */
6548
6549 static void
6550 fix_loongson2f_jump (struct mips_cl_insn * ip)
6551 {
6552 gas_assert (!HAVE_CODE_COMPRESSION);
6553 if (strcmp (ip->insn_mo->name, "j") == 0
6554 || strcmp (ip->insn_mo->name, "jr") == 0
6555 || strcmp (ip->insn_mo->name, "jalr") == 0)
6556 {
6557 int sreg;
6558 expressionS ep;
6559
6560 if (! mips_opts.at)
6561 return;
6562
6563 sreg = EXTRACT_OPERAND (0, RS, *ip);
6564 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6565 return;
6566
6567 ep.X_op = O_constant;
6568 ep.X_add_number = 0xcfff0000;
6569 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6570 ep.X_add_number = 0xffff;
6571 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6572 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6573 }
6574 }
6575
6576 static void
6577 fix_loongson2f (struct mips_cl_insn * ip)
6578 {
6579 if (mips_fix_loongson2f_nop)
6580 fix_loongson2f_nop (ip);
6581
6582 if (mips_fix_loongson2f_jump)
6583 fix_loongson2f_jump (ip);
6584 }
6585
6586 /* IP is a branch that has a delay slot, and we need to fill it
6587 automatically. Return true if we can do that by swapping IP
6588 with the previous instruction.
6589 ADDRESS_EXPR is an operand of the instruction to be used with
6590 RELOC_TYPE. */
6591
6592 static bfd_boolean
6593 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6594 bfd_reloc_code_real_type *reloc_type)
6595 {
6596 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6597 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6598 unsigned int fpr_read, prev_fpr_write;
6599
6600 /* -O2 and above is required for this optimization. */
6601 if (mips_optimize < 2)
6602 return FALSE;
6603
6604 /* If we have seen .set volatile or .set nomove, don't optimize. */
6605 if (mips_opts.nomove)
6606 return FALSE;
6607
6608 /* We can't swap if the previous instruction's position is fixed. */
6609 if (history[0].fixed_p)
6610 return FALSE;
6611
6612 /* If the previous previous insn was in a .set noreorder, we can't
6613 swap. Actually, the MIPS assembler will swap in this situation.
6614 However, gcc configured -with-gnu-as will generate code like
6615
6616 .set noreorder
6617 lw $4,XXX
6618 .set reorder
6619 INSN
6620 bne $4,$0,foo
6621
6622 in which we can not swap the bne and INSN. If gcc is not configured
6623 -with-gnu-as, it does not output the .set pseudo-ops. */
6624 if (history[1].noreorder_p)
6625 return FALSE;
6626
6627 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6628 This means that the previous instruction was a 4-byte one anyhow. */
6629 if (mips_opts.mips16 && history[0].fixp[0])
6630 return FALSE;
6631
6632 /* If the branch is itself the target of a branch, we can not swap.
6633 We cheat on this; all we check for is whether there is a label on
6634 this instruction. If there are any branches to anything other than
6635 a label, users must use .set noreorder. */
6636 if (seg_info (now_seg)->label_list)
6637 return FALSE;
6638
6639 /* If the previous instruction is in a variant frag other than this
6640 branch's one, we cannot do the swap. This does not apply to
6641 MIPS16 code, which uses variant frags for different purposes. */
6642 if (!mips_opts.mips16
6643 && history[0].frag
6644 && history[0].frag->fr_type == rs_machine_dependent)
6645 return FALSE;
6646
6647 /* We do not swap with instructions that cannot architecturally
6648 be placed in a branch delay slot, such as SYNC or ERET. We
6649 also refrain from swapping with a trap instruction, since it
6650 complicates trap handlers to have the trap instruction be in
6651 a delay slot. */
6652 prev_pinfo = history[0].insn_mo->pinfo;
6653 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6654 return FALSE;
6655
6656 /* Check for conflicts between the branch and the instructions
6657 before the candidate delay slot. */
6658 if (nops_for_insn (0, history + 1, ip) > 0)
6659 return FALSE;
6660
6661 /* Check for conflicts between the swapped sequence and the
6662 target of the branch. */
6663 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6664 return FALSE;
6665
6666 /* If the branch reads a register that the previous
6667 instruction sets, we can not swap. */
6668 gpr_read = gpr_read_mask (ip);
6669 prev_gpr_write = gpr_write_mask (&history[0]);
6670 if (gpr_read & prev_gpr_write)
6671 return FALSE;
6672
6673 fpr_read = fpr_read_mask (ip);
6674 prev_fpr_write = fpr_write_mask (&history[0]);
6675 if (fpr_read & prev_fpr_write)
6676 return FALSE;
6677
6678 /* If the branch writes a register that the previous
6679 instruction sets, we can not swap. */
6680 gpr_write = gpr_write_mask (ip);
6681 if (gpr_write & prev_gpr_write)
6682 return FALSE;
6683
6684 /* If the branch writes a register that the previous
6685 instruction reads, we can not swap. */
6686 prev_gpr_read = gpr_read_mask (&history[0]);
6687 if (gpr_write & prev_gpr_read)
6688 return FALSE;
6689
6690 /* If one instruction sets a condition code and the
6691 other one uses a condition code, we can not swap. */
6692 pinfo = ip->insn_mo->pinfo;
6693 if ((pinfo & INSN_READ_COND_CODE)
6694 && (prev_pinfo & INSN_WRITE_COND_CODE))
6695 return FALSE;
6696 if ((pinfo & INSN_WRITE_COND_CODE)
6697 && (prev_pinfo & INSN_READ_COND_CODE))
6698 return FALSE;
6699
6700 /* If the previous instruction uses the PC, we can not swap. */
6701 prev_pinfo2 = history[0].insn_mo->pinfo2;
6702 if (prev_pinfo2 & INSN2_READ_PC)
6703 return FALSE;
6704
6705 /* If the previous instruction has an incorrect size for a fixed
6706 branch delay slot in microMIPS mode, we cannot swap. */
6707 pinfo2 = ip->insn_mo->pinfo2;
6708 if (mips_opts.micromips
6709 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6710 && insn_length (history) != 2)
6711 return FALSE;
6712 if (mips_opts.micromips
6713 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6714 && insn_length (history) != 4)
6715 return FALSE;
6716
6717 /* On R5900 short loops need to be fixed by inserting a nop in
6718 the branch delay slots.
6719 A short loop can be terminated too early. */
6720 if (mips_opts.arch == CPU_R5900
6721 /* Check if instruction has a parameter, ignore "j $31". */
6722 && (address_expr != NULL)
6723 /* Parameter must be 16 bit. */
6724 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6725 /* Branch to same segment. */
6726 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6727 /* Branch to same code fragment. */
6728 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6729 /* Can only calculate branch offset if value is known. */
6730 && symbol_constant_p(address_expr->X_add_symbol)
6731 /* Check if branch is really conditional. */
6732 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6733 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6734 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6735 {
6736 int distance;
6737 /* Check if loop is shorter than 6 instructions including
6738 branch and delay slot. */
6739 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6740 if (distance <= 20)
6741 {
6742 int i;
6743 int rv;
6744
6745 rv = FALSE;
6746 /* When the loop includes branches or jumps,
6747 it is not a short loop. */
6748 for (i = 0; i < (distance / 4); i++)
6749 {
6750 if ((history[i].cleared_p)
6751 || delayed_branch_p(&history[i]))
6752 {
6753 rv = TRUE;
6754 break;
6755 }
6756 }
6757 if (rv == FALSE)
6758 {
6759 /* Insert nop after branch to fix short loop. */
6760 return FALSE;
6761 }
6762 }
6763 }
6764
6765 return TRUE;
6766 }
6767
6768 /* Decide how we should add IP to the instruction stream.
6769 ADDRESS_EXPR is an operand of the instruction to be used with
6770 RELOC_TYPE. */
6771
6772 static enum append_method
6773 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6774 bfd_reloc_code_real_type *reloc_type)
6775 {
6776 /* The relaxed version of a macro sequence must be inherently
6777 hazard-free. */
6778 if (mips_relax.sequence == 2)
6779 return APPEND_ADD;
6780
6781 /* We must not dabble with instructions in a ".set norerorder" block. */
6782 if (mips_opts.noreorder)
6783 return APPEND_ADD;
6784
6785 /* Otherwise, it's our responsibility to fill branch delay slots. */
6786 if (delayed_branch_p (ip))
6787 {
6788 if (!branch_likely_p (ip)
6789 && can_swap_branch_p (ip, address_expr, reloc_type))
6790 return APPEND_SWAP;
6791
6792 if (mips_opts.mips16
6793 && ISA_SUPPORTS_MIPS16E
6794 && gpr_read_mask (ip) != 0)
6795 return APPEND_ADD_COMPACT;
6796
6797 return APPEND_ADD_WITH_NOP;
6798 }
6799
6800 return APPEND_ADD;
6801 }
6802
6803 /* IP is a MIPS16 instruction whose opcode we have just changed.
6804 Point IP->insn_mo to the new opcode's definition. */
6805
6806 static void
6807 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6808 {
6809 const struct mips_opcode *mo, *end;
6810
6811 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6812 for (mo = ip->insn_mo; mo < end; mo++)
6813 if ((ip->insn_opcode & mo->mask) == mo->match)
6814 {
6815 ip->insn_mo = mo;
6816 return;
6817 }
6818 abort ();
6819 }
6820
6821 /* For microMIPS macros, we need to generate a local number label
6822 as the target of branches. */
6823 #define MICROMIPS_LABEL_CHAR '\037'
6824 static unsigned long micromips_target_label;
6825 static char micromips_target_name[32];
6826
6827 static char *
6828 micromips_label_name (void)
6829 {
6830 char *p = micromips_target_name;
6831 char symbol_name_temporary[24];
6832 unsigned long l;
6833 int i;
6834
6835 if (*p)
6836 return p;
6837
6838 i = 0;
6839 l = micromips_target_label;
6840 #ifdef LOCAL_LABEL_PREFIX
6841 *p++ = LOCAL_LABEL_PREFIX;
6842 #endif
6843 *p++ = 'L';
6844 *p++ = MICROMIPS_LABEL_CHAR;
6845 do
6846 {
6847 symbol_name_temporary[i++] = l % 10 + '0';
6848 l /= 10;
6849 }
6850 while (l != 0);
6851 while (i > 0)
6852 *p++ = symbol_name_temporary[--i];
6853 *p = '\0';
6854
6855 return micromips_target_name;
6856 }
6857
6858 static void
6859 micromips_label_expr (expressionS *label_expr)
6860 {
6861 label_expr->X_op = O_symbol;
6862 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6863 label_expr->X_add_number = 0;
6864 }
6865
6866 static void
6867 micromips_label_inc (void)
6868 {
6869 micromips_target_label++;
6870 *micromips_target_name = '\0';
6871 }
6872
6873 static void
6874 micromips_add_label (void)
6875 {
6876 symbolS *s;
6877
6878 s = colon (micromips_label_name ());
6879 micromips_label_inc ();
6880 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6881 }
6882
6883 /* If assembling microMIPS code, then return the microMIPS reloc
6884 corresponding to the requested one if any. Otherwise return
6885 the reloc unchanged. */
6886
6887 static bfd_reloc_code_real_type
6888 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6889 {
6890 static const bfd_reloc_code_real_type relocs[][2] =
6891 {
6892 /* Keep sorted incrementally by the left-hand key. */
6893 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6894 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6895 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6896 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6897 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6898 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6899 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6900 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6901 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6902 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6903 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6904 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6905 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6906 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6907 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6908 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6909 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6910 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6911 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6912 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6913 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6914 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6915 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6916 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6917 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6918 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6919 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6920 };
6921 bfd_reloc_code_real_type r;
6922 size_t i;
6923
6924 if (!mips_opts.micromips)
6925 return reloc;
6926 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6927 {
6928 r = relocs[i][0];
6929 if (r > reloc)
6930 return reloc;
6931 if (r == reloc)
6932 return relocs[i][1];
6933 }
6934 return reloc;
6935 }
6936
6937 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6938 Return true on success, storing the resolved value in RESULT. */
6939
6940 static bfd_boolean
6941 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6942 offsetT *result)
6943 {
6944 switch (reloc)
6945 {
6946 case BFD_RELOC_MIPS_HIGHEST:
6947 case BFD_RELOC_MICROMIPS_HIGHEST:
6948 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6949 return TRUE;
6950
6951 case BFD_RELOC_MIPS_HIGHER:
6952 case BFD_RELOC_MICROMIPS_HIGHER:
6953 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6954 return TRUE;
6955
6956 case BFD_RELOC_HI16_S:
6957 case BFD_RELOC_MICROMIPS_HI16_S:
6958 case BFD_RELOC_MIPS16_HI16_S:
6959 *result = ((operand + 0x8000) >> 16) & 0xffff;
6960 return TRUE;
6961
6962 case BFD_RELOC_HI16:
6963 case BFD_RELOC_MICROMIPS_HI16:
6964 case BFD_RELOC_MIPS16_HI16:
6965 *result = (operand >> 16) & 0xffff;
6966 return TRUE;
6967
6968 case BFD_RELOC_LO16:
6969 case BFD_RELOC_MICROMIPS_LO16:
6970 case BFD_RELOC_MIPS16_LO16:
6971 *result = operand & 0xffff;
6972 return TRUE;
6973
6974 case BFD_RELOC_UNUSED:
6975 *result = operand;
6976 return TRUE;
6977
6978 default:
6979 return FALSE;
6980 }
6981 }
6982
6983 /* Output an instruction. IP is the instruction information.
6984 ADDRESS_EXPR is an operand of the instruction to be used with
6985 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6986 a macro expansion. */
6987
6988 static void
6989 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6990 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6991 {
6992 unsigned long prev_pinfo2, pinfo;
6993 bfd_boolean relaxed_branch = FALSE;
6994 enum append_method method;
6995 bfd_boolean relax32;
6996 int branch_disp;
6997
6998 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
6999 fix_loongson2f (ip);
7000
7001 file_ase_mips16 |= mips_opts.mips16;
7002 file_ase_micromips |= mips_opts.micromips;
7003
7004 prev_pinfo2 = history[0].insn_mo->pinfo2;
7005 pinfo = ip->insn_mo->pinfo;
7006
7007 if (mips_opts.micromips
7008 && !expansionp
7009 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7010 && micromips_insn_length (ip->insn_mo) != 2)
7011 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7012 && micromips_insn_length (ip->insn_mo) != 4)))
7013 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7014 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7015
7016 if (address_expr == NULL)
7017 ip->complete_p = 1;
7018 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7019 && reloc_type[1] == BFD_RELOC_UNUSED
7020 && reloc_type[2] == BFD_RELOC_UNUSED
7021 && address_expr->X_op == O_constant)
7022 {
7023 switch (*reloc_type)
7024 {
7025 case BFD_RELOC_MIPS_JMP:
7026 {
7027 int shift;
7028
7029 shift = mips_opts.micromips ? 1 : 2;
7030 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7031 as_bad (_("jump to misaligned address (0x%lx)"),
7032 (unsigned long) address_expr->X_add_number);
7033 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7034 & 0x3ffffff);
7035 ip->complete_p = 1;
7036 }
7037 break;
7038
7039 case BFD_RELOC_MIPS16_JMP:
7040 if ((address_expr->X_add_number & 3) != 0)
7041 as_bad (_("jump to misaligned address (0x%lx)"),
7042 (unsigned long) address_expr->X_add_number);
7043 ip->insn_opcode |=
7044 (((address_expr->X_add_number & 0x7c0000) << 3)
7045 | ((address_expr->X_add_number & 0xf800000) >> 7)
7046 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7047 ip->complete_p = 1;
7048 break;
7049
7050 case BFD_RELOC_16_PCREL_S2:
7051 {
7052 int shift;
7053
7054 shift = mips_opts.micromips ? 1 : 2;
7055 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7056 as_bad (_("branch to misaligned address (0x%lx)"),
7057 (unsigned long) address_expr->X_add_number);
7058 if (!mips_relax_branch)
7059 {
7060 if ((address_expr->X_add_number + (1 << (shift + 15)))
7061 & ~((1 << (shift + 16)) - 1))
7062 as_bad (_("branch address range overflow (0x%lx)"),
7063 (unsigned long) address_expr->X_add_number);
7064 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7065 & 0xffff);
7066 }
7067 }
7068 break;
7069
7070 case BFD_RELOC_MIPS_21_PCREL_S2:
7071 {
7072 int shift;
7073
7074 shift = 2;
7075 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7076 as_bad (_("branch to misaligned address (0x%lx)"),
7077 (unsigned long) address_expr->X_add_number);
7078 if ((address_expr->X_add_number + (1 << (shift + 20)))
7079 & ~((1 << (shift + 21)) - 1))
7080 as_bad (_("branch address range overflow (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7083 & 0x1fffff);
7084 }
7085 break;
7086
7087 case BFD_RELOC_MIPS_26_PCREL_S2:
7088 {
7089 int shift;
7090
7091 shift = 2;
7092 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7093 as_bad (_("branch to misaligned address (0x%lx)"),
7094 (unsigned long) address_expr->X_add_number);
7095 if ((address_expr->X_add_number + (1 << (shift + 25)))
7096 & ~((1 << (shift + 26)) - 1))
7097 as_bad (_("branch address range overflow (0x%lx)"),
7098 (unsigned long) address_expr->X_add_number);
7099 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7100 & 0x3ffffff);
7101 }
7102 break;
7103
7104 default:
7105 {
7106 offsetT value;
7107
7108 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7109 &value))
7110 {
7111 ip->insn_opcode |= value & 0xffff;
7112 ip->complete_p = 1;
7113 }
7114 }
7115 break;
7116 }
7117 }
7118
7119 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7120 {
7121 /* There are a lot of optimizations we could do that we don't.
7122 In particular, we do not, in general, reorder instructions.
7123 If you use gcc with optimization, it will reorder
7124 instructions and generally do much more optimization then we
7125 do here; repeating all that work in the assembler would only
7126 benefit hand written assembly code, and does not seem worth
7127 it. */
7128 int nops = (mips_optimize == 0
7129 ? nops_for_insn (0, history, NULL)
7130 : nops_for_insn_or_target (0, history, ip));
7131 if (nops > 0)
7132 {
7133 fragS *old_frag;
7134 unsigned long old_frag_offset;
7135 int i;
7136
7137 old_frag = frag_now;
7138 old_frag_offset = frag_now_fix ();
7139
7140 for (i = 0; i < nops; i++)
7141 add_fixed_insn (NOP_INSN);
7142 insert_into_history (0, nops, NOP_INSN);
7143
7144 if (listing)
7145 {
7146 listing_prev_line ();
7147 /* We may be at the start of a variant frag. In case we
7148 are, make sure there is enough space for the frag
7149 after the frags created by listing_prev_line. The
7150 argument to frag_grow here must be at least as large
7151 as the argument to all other calls to frag_grow in
7152 this file. We don't have to worry about being in the
7153 middle of a variant frag, because the variants insert
7154 all needed nop instructions themselves. */
7155 frag_grow (40);
7156 }
7157
7158 mips_move_text_labels ();
7159
7160 #ifndef NO_ECOFF_DEBUGGING
7161 if (ECOFF_DEBUGGING)
7162 ecoff_fix_loc (old_frag, old_frag_offset);
7163 #endif
7164 }
7165 }
7166 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7167 {
7168 int nops;
7169
7170 /* Work out how many nops in prev_nop_frag are needed by IP,
7171 ignoring hazards generated by the first prev_nop_frag_since
7172 instructions. */
7173 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7174 gas_assert (nops <= prev_nop_frag_holds);
7175
7176 /* Enforce NOPS as a minimum. */
7177 if (nops > prev_nop_frag_required)
7178 prev_nop_frag_required = nops;
7179
7180 if (prev_nop_frag_holds == prev_nop_frag_required)
7181 {
7182 /* Settle for the current number of nops. Update the history
7183 accordingly (for the benefit of any future .set reorder code). */
7184 prev_nop_frag = NULL;
7185 insert_into_history (prev_nop_frag_since,
7186 prev_nop_frag_holds, NOP_INSN);
7187 }
7188 else
7189 {
7190 /* Allow this instruction to replace one of the nops that was
7191 tentatively added to prev_nop_frag. */
7192 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7193 prev_nop_frag_holds--;
7194 prev_nop_frag_since++;
7195 }
7196 }
7197
7198 method = get_append_method (ip, address_expr, reloc_type);
7199 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7200
7201 dwarf2_emit_insn (0);
7202 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7203 so "move" the instruction address accordingly.
7204
7205 Also, it doesn't seem appropriate for the assembler to reorder .loc
7206 entries. If this instruction is a branch that we are going to swap
7207 with the previous instruction, the two instructions should be
7208 treated as a unit, and the debug information for both instructions
7209 should refer to the start of the branch sequence. Using the
7210 current position is certainly wrong when swapping a 32-bit branch
7211 and a 16-bit delay slot, since the current position would then be
7212 in the middle of a branch. */
7213 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7214
7215 relax32 = (mips_relax_branch
7216 /* Don't try branch relaxation within .set nomacro, or within
7217 .set noat if we use $at for PIC computations. If it turns
7218 out that the branch was out-of-range, we'll get an error. */
7219 && !mips_opts.warn_about_macros
7220 && (mips_opts.at || mips_pic == NO_PIC)
7221 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7222 as they have no complementing branches. */
7223 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7224
7225 if (!HAVE_CODE_COMPRESSION
7226 && address_expr
7227 && relax32
7228 && *reloc_type == BFD_RELOC_16_PCREL_S2
7229 && delayed_branch_p (ip))
7230 {
7231 relaxed_branch = TRUE;
7232 add_relaxed_insn (ip, (relaxed_branch_length
7233 (NULL, NULL,
7234 uncond_branch_p (ip) ? -1
7235 : branch_likely_p (ip) ? 1
7236 : 0)), 4,
7237 RELAX_BRANCH_ENCODE
7238 (AT,
7239 uncond_branch_p (ip),
7240 branch_likely_p (ip),
7241 pinfo & INSN_WRITE_GPR_31,
7242 0),
7243 address_expr->X_add_symbol,
7244 address_expr->X_add_number);
7245 *reloc_type = BFD_RELOC_UNUSED;
7246 }
7247 else if (mips_opts.micromips
7248 && address_expr
7249 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7250 || *reloc_type > BFD_RELOC_UNUSED)
7251 && (delayed_branch_p (ip) || compact_branch_p (ip))
7252 /* Don't try branch relaxation when users specify
7253 16-bit/32-bit instructions. */
7254 && !forced_insn_length)
7255 {
7256 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7257 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7258 int uncond = uncond_branch_p (ip) ? -1 : 0;
7259 int compact = compact_branch_p (ip);
7260 int al = pinfo & INSN_WRITE_GPR_31;
7261 int length32;
7262
7263 gas_assert (address_expr != NULL);
7264 gas_assert (!mips_relax.sequence);
7265
7266 relaxed_branch = TRUE;
7267 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7268 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7269 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7270 relax32, 0, 0),
7271 address_expr->X_add_symbol,
7272 address_expr->X_add_number);
7273 *reloc_type = BFD_RELOC_UNUSED;
7274 }
7275 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7276 {
7277 /* We need to set up a variant frag. */
7278 gas_assert (address_expr != NULL);
7279 add_relaxed_insn (ip, 4, 0,
7280 RELAX_MIPS16_ENCODE
7281 (*reloc_type - BFD_RELOC_UNUSED,
7282 forced_insn_length == 2, forced_insn_length == 4,
7283 delayed_branch_p (&history[0]),
7284 history[0].mips16_absolute_jump_p),
7285 make_expr_symbol (address_expr), 0);
7286 }
7287 else if (mips_opts.mips16 && insn_length (ip) == 2)
7288 {
7289 if (!delayed_branch_p (ip))
7290 /* Make sure there is enough room to swap this instruction with
7291 a following jump instruction. */
7292 frag_grow (6);
7293 add_fixed_insn (ip);
7294 }
7295 else
7296 {
7297 if (mips_opts.mips16
7298 && mips_opts.noreorder
7299 && delayed_branch_p (&history[0]))
7300 as_warn (_("extended instruction in delay slot"));
7301
7302 if (mips_relax.sequence)
7303 {
7304 /* If we've reached the end of this frag, turn it into a variant
7305 frag and record the information for the instructions we've
7306 written so far. */
7307 if (frag_room () < 4)
7308 relax_close_frag ();
7309 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7310 }
7311
7312 if (mips_relax.sequence != 2)
7313 {
7314 if (mips_macro_warning.first_insn_sizes[0] == 0)
7315 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7316 mips_macro_warning.sizes[0] += insn_length (ip);
7317 mips_macro_warning.insns[0]++;
7318 }
7319 if (mips_relax.sequence != 1)
7320 {
7321 if (mips_macro_warning.first_insn_sizes[1] == 0)
7322 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7323 mips_macro_warning.sizes[1] += insn_length (ip);
7324 mips_macro_warning.insns[1]++;
7325 }
7326
7327 if (mips_opts.mips16)
7328 {
7329 ip->fixed_p = 1;
7330 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7331 }
7332 add_fixed_insn (ip);
7333 }
7334
7335 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7336 {
7337 bfd_reloc_code_real_type final_type[3];
7338 reloc_howto_type *howto0;
7339 reloc_howto_type *howto;
7340 int i;
7341
7342 /* Perform any necessary conversion to microMIPS relocations
7343 and find out how many relocations there actually are. */
7344 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7345 final_type[i] = micromips_map_reloc (reloc_type[i]);
7346
7347 /* In a compound relocation, it is the final (outermost)
7348 operator that determines the relocated field. */
7349 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7350 if (!howto)
7351 abort ();
7352
7353 if (i > 1)
7354 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7355 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7356 bfd_get_reloc_size (howto),
7357 address_expr,
7358 howto0 && howto0->pc_relative,
7359 final_type[0]);
7360
7361 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7362 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7363 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7364
7365 /* These relocations can have an addend that won't fit in
7366 4 octets for 64bit assembly. */
7367 if (GPR_SIZE == 64
7368 && ! howto->partial_inplace
7369 && (reloc_type[0] == BFD_RELOC_16
7370 || reloc_type[0] == BFD_RELOC_32
7371 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7372 || reloc_type[0] == BFD_RELOC_GPREL16
7373 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7374 || reloc_type[0] == BFD_RELOC_GPREL32
7375 || reloc_type[0] == BFD_RELOC_64
7376 || reloc_type[0] == BFD_RELOC_CTOR
7377 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7378 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7379 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7380 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7381 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7382 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7383 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7384 || hi16_reloc_p (reloc_type[0])
7385 || lo16_reloc_p (reloc_type[0])))
7386 ip->fixp[0]->fx_no_overflow = 1;
7387
7388 /* These relocations can have an addend that won't fit in 2 octets. */
7389 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7390 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7391 ip->fixp[0]->fx_no_overflow = 1;
7392
7393 if (mips_relax.sequence)
7394 {
7395 if (mips_relax.first_fixup == 0)
7396 mips_relax.first_fixup = ip->fixp[0];
7397 }
7398 else if (reloc_needs_lo_p (*reloc_type))
7399 {
7400 struct mips_hi_fixup *hi_fixup;
7401
7402 /* Reuse the last entry if it already has a matching %lo. */
7403 hi_fixup = mips_hi_fixup_list;
7404 if (hi_fixup == 0
7405 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7406 {
7407 hi_fixup = ((struct mips_hi_fixup *)
7408 xmalloc (sizeof (struct mips_hi_fixup)));
7409 hi_fixup->next = mips_hi_fixup_list;
7410 mips_hi_fixup_list = hi_fixup;
7411 }
7412 hi_fixup->fixp = ip->fixp[0];
7413 hi_fixup->seg = now_seg;
7414 }
7415
7416 /* Add fixups for the second and third relocations, if given.
7417 Note that the ABI allows the second relocation to be
7418 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7419 moment we only use RSS_UNDEF, but we could add support
7420 for the others if it ever becomes necessary. */
7421 for (i = 1; i < 3; i++)
7422 if (reloc_type[i] != BFD_RELOC_UNUSED)
7423 {
7424 ip->fixp[i] = fix_new (ip->frag, ip->where,
7425 ip->fixp[0]->fx_size, NULL, 0,
7426 FALSE, final_type[i]);
7427
7428 /* Use fx_tcbit to mark compound relocs. */
7429 ip->fixp[0]->fx_tcbit = 1;
7430 ip->fixp[i]->fx_tcbit = 1;
7431 }
7432 }
7433 install_insn (ip);
7434
7435 /* Update the register mask information. */
7436 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7437 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7438
7439 switch (method)
7440 {
7441 case APPEND_ADD:
7442 insert_into_history (0, 1, ip);
7443 break;
7444
7445 case APPEND_ADD_WITH_NOP:
7446 {
7447 struct mips_cl_insn *nop;
7448
7449 insert_into_history (0, 1, ip);
7450 nop = get_delay_slot_nop (ip);
7451 add_fixed_insn (nop);
7452 insert_into_history (0, 1, nop);
7453 if (mips_relax.sequence)
7454 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7455 }
7456 break;
7457
7458 case APPEND_ADD_COMPACT:
7459 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7460 gas_assert (mips_opts.mips16);
7461 ip->insn_opcode |= 0x0080;
7462 find_altered_mips16_opcode (ip);
7463 install_insn (ip);
7464 insert_into_history (0, 1, ip);
7465 break;
7466
7467 case APPEND_SWAP:
7468 {
7469 struct mips_cl_insn delay = history[0];
7470 if (mips_opts.mips16)
7471 {
7472 know (delay.frag == ip->frag);
7473 move_insn (ip, delay.frag, delay.where);
7474 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7475 }
7476 else if (relaxed_branch || delay.frag != ip->frag)
7477 {
7478 /* Add the delay slot instruction to the end of the
7479 current frag and shrink the fixed part of the
7480 original frag. If the branch occupies the tail of
7481 the latter, move it backwards to cover the gap. */
7482 delay.frag->fr_fix -= branch_disp;
7483 if (delay.frag == ip->frag)
7484 move_insn (ip, ip->frag, ip->where - branch_disp);
7485 add_fixed_insn (&delay);
7486 }
7487 else
7488 {
7489 move_insn (&delay, ip->frag,
7490 ip->where - branch_disp + insn_length (ip));
7491 move_insn (ip, history[0].frag, history[0].where);
7492 }
7493 history[0] = *ip;
7494 delay.fixed_p = 1;
7495 insert_into_history (0, 1, &delay);
7496 }
7497 break;
7498 }
7499
7500 /* If we have just completed an unconditional branch, clear the history. */
7501 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7502 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7503 {
7504 unsigned int i;
7505
7506 mips_no_prev_insn ();
7507
7508 for (i = 0; i < ARRAY_SIZE (history); i++)
7509 history[i].cleared_p = 1;
7510 }
7511
7512 /* We need to emit a label at the end of branch-likely macros. */
7513 if (emit_branch_likely_macro)
7514 {
7515 emit_branch_likely_macro = FALSE;
7516 micromips_add_label ();
7517 }
7518
7519 /* We just output an insn, so the next one doesn't have a label. */
7520 mips_clear_insn_labels ();
7521 }
7522
7523 /* Forget that there was any previous instruction or label.
7524 When BRANCH is true, the branch history is also flushed. */
7525
7526 static void
7527 mips_no_prev_insn (void)
7528 {
7529 prev_nop_frag = NULL;
7530 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7531 mips_clear_insn_labels ();
7532 }
7533
7534 /* This function must be called before we emit something other than
7535 instructions. It is like mips_no_prev_insn except that it inserts
7536 any NOPS that might be needed by previous instructions. */
7537
7538 void
7539 mips_emit_delays (void)
7540 {
7541 if (! mips_opts.noreorder)
7542 {
7543 int nops = nops_for_insn (0, history, NULL);
7544 if (nops > 0)
7545 {
7546 while (nops-- > 0)
7547 add_fixed_insn (NOP_INSN);
7548 mips_move_text_labels ();
7549 }
7550 }
7551 mips_no_prev_insn ();
7552 }
7553
7554 /* Start a (possibly nested) noreorder block. */
7555
7556 static void
7557 start_noreorder (void)
7558 {
7559 if (mips_opts.noreorder == 0)
7560 {
7561 unsigned int i;
7562 int nops;
7563
7564 /* None of the instructions before the .set noreorder can be moved. */
7565 for (i = 0; i < ARRAY_SIZE (history); i++)
7566 history[i].fixed_p = 1;
7567
7568 /* Insert any nops that might be needed between the .set noreorder
7569 block and the previous instructions. We will later remove any
7570 nops that turn out not to be needed. */
7571 nops = nops_for_insn (0, history, NULL);
7572 if (nops > 0)
7573 {
7574 if (mips_optimize != 0)
7575 {
7576 /* Record the frag which holds the nop instructions, so
7577 that we can remove them if we don't need them. */
7578 frag_grow (nops * NOP_INSN_SIZE);
7579 prev_nop_frag = frag_now;
7580 prev_nop_frag_holds = nops;
7581 prev_nop_frag_required = 0;
7582 prev_nop_frag_since = 0;
7583 }
7584
7585 for (; nops > 0; --nops)
7586 add_fixed_insn (NOP_INSN);
7587
7588 /* Move on to a new frag, so that it is safe to simply
7589 decrease the size of prev_nop_frag. */
7590 frag_wane (frag_now);
7591 frag_new (0);
7592 mips_move_text_labels ();
7593 }
7594 mips_mark_labels ();
7595 mips_clear_insn_labels ();
7596 }
7597 mips_opts.noreorder++;
7598 mips_any_noreorder = 1;
7599 }
7600
7601 /* End a nested noreorder block. */
7602
7603 static void
7604 end_noreorder (void)
7605 {
7606 mips_opts.noreorder--;
7607 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7608 {
7609 /* Commit to inserting prev_nop_frag_required nops and go back to
7610 handling nop insertion the .set reorder way. */
7611 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7612 * NOP_INSN_SIZE);
7613 insert_into_history (prev_nop_frag_since,
7614 prev_nop_frag_required, NOP_INSN);
7615 prev_nop_frag = NULL;
7616 }
7617 }
7618
7619 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7620 higher bits unset. */
7621
7622 static void
7623 normalize_constant_expr (expressionS *ex)
7624 {
7625 if (ex->X_op == O_constant
7626 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7627 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7628 - 0x80000000);
7629 }
7630
7631 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7632 all higher bits unset. */
7633
7634 static void
7635 normalize_address_expr (expressionS *ex)
7636 {
7637 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7638 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7639 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7640 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7641 - 0x80000000);
7642 }
7643
7644 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7645 Return true if the match was successful.
7646
7647 OPCODE_EXTRA is a value that should be ORed into the opcode
7648 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7649 there are more alternatives after OPCODE and SOFT_MATCH is
7650 as for mips_arg_info. */
7651
7652 static bfd_boolean
7653 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7654 struct mips_operand_token *tokens, unsigned int opcode_extra,
7655 bfd_boolean lax_match, bfd_boolean complete_p)
7656 {
7657 const char *args;
7658 struct mips_arg_info arg;
7659 const struct mips_operand *operand;
7660 char c;
7661
7662 imm_expr.X_op = O_absent;
7663 offset_expr.X_op = O_absent;
7664 offset_reloc[0] = BFD_RELOC_UNUSED;
7665 offset_reloc[1] = BFD_RELOC_UNUSED;
7666 offset_reloc[2] = BFD_RELOC_UNUSED;
7667
7668 create_insn (insn, opcode);
7669 /* When no opcode suffix is specified, assume ".xyzw". */
7670 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7671 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7672 else
7673 insn->insn_opcode |= opcode_extra;
7674 memset (&arg, 0, sizeof (arg));
7675 arg.insn = insn;
7676 arg.token = tokens;
7677 arg.argnum = 1;
7678 arg.last_regno = ILLEGAL_REG;
7679 arg.dest_regno = ILLEGAL_REG;
7680 arg.lax_match = lax_match;
7681 for (args = opcode->args;; ++args)
7682 {
7683 if (arg.token->type == OT_END)
7684 {
7685 /* Handle unary instructions in which only one operand is given.
7686 The source is then the same as the destination. */
7687 if (arg.opnum == 1 && *args == ',')
7688 {
7689 operand = (mips_opts.micromips
7690 ? decode_micromips_operand (args + 1)
7691 : decode_mips_operand (args + 1));
7692 if (operand && mips_optional_operand_p (operand))
7693 {
7694 arg.token = tokens;
7695 arg.argnum = 1;
7696 continue;
7697 }
7698 }
7699
7700 /* Treat elided base registers as $0. */
7701 if (strcmp (args, "(b)") == 0)
7702 args += 3;
7703
7704 if (args[0] == '+')
7705 switch (args[1])
7706 {
7707 case 'K':
7708 case 'N':
7709 /* The register suffix is optional. */
7710 args += 2;
7711 break;
7712 }
7713
7714 /* Fail the match if there were too few operands. */
7715 if (*args)
7716 return FALSE;
7717
7718 /* Successful match. */
7719 if (!complete_p)
7720 return TRUE;
7721 clear_insn_error ();
7722 if (arg.dest_regno == arg.last_regno
7723 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7724 {
7725 if (arg.opnum == 2)
7726 set_insn_error
7727 (0, _("source and destination must be different"));
7728 else if (arg.last_regno == 31)
7729 set_insn_error
7730 (0, _("a destination register must be supplied"));
7731 }
7732 else if (arg.last_regno == 31
7733 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7734 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7735 set_insn_error (0, _("the source register must not be $31"));
7736 check_completed_insn (&arg);
7737 return TRUE;
7738 }
7739
7740 /* Fail the match if the line has too many operands. */
7741 if (*args == 0)
7742 return FALSE;
7743
7744 /* Handle characters that need to match exactly. */
7745 if (*args == '(' || *args == ')' || *args == ',')
7746 {
7747 if (match_char (&arg, *args))
7748 continue;
7749 return FALSE;
7750 }
7751 if (*args == '#')
7752 {
7753 ++args;
7754 if (arg.token->type == OT_DOUBLE_CHAR
7755 && arg.token->u.ch == *args)
7756 {
7757 ++arg.token;
7758 continue;
7759 }
7760 return FALSE;
7761 }
7762
7763 /* Handle special macro operands. Work out the properties of
7764 other operands. */
7765 arg.opnum += 1;
7766 switch (*args)
7767 {
7768 case '-':
7769 switch (args[1])
7770 {
7771 case 'A':
7772 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7773 break;
7774
7775 case 'B':
7776 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7777 break;
7778 }
7779 break;
7780
7781 case '+':
7782 switch (args[1])
7783 {
7784 case 'i':
7785 *offset_reloc = BFD_RELOC_MIPS_JMP;
7786 break;
7787
7788 case '\'':
7789 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7790 break;
7791
7792 case '\"':
7793 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7794 break;
7795 }
7796 break;
7797
7798 case 'I':
7799 if (!match_const_int (&arg, &imm_expr.X_add_number))
7800 return FALSE;
7801 imm_expr.X_op = O_constant;
7802 if (GPR_SIZE == 32)
7803 normalize_constant_expr (&imm_expr);
7804 continue;
7805
7806 case 'A':
7807 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7808 {
7809 /* Assume that the offset has been elided and that what
7810 we saw was a base register. The match will fail later
7811 if that assumption turns out to be wrong. */
7812 offset_expr.X_op = O_constant;
7813 offset_expr.X_add_number = 0;
7814 }
7815 else
7816 {
7817 if (!match_expression (&arg, &offset_expr, offset_reloc))
7818 return FALSE;
7819 normalize_address_expr (&offset_expr);
7820 }
7821 continue;
7822
7823 case 'F':
7824 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7825 8, TRUE))
7826 return FALSE;
7827 continue;
7828
7829 case 'L':
7830 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7831 8, FALSE))
7832 return FALSE;
7833 continue;
7834
7835 case 'f':
7836 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7837 4, TRUE))
7838 return FALSE;
7839 continue;
7840
7841 case 'l':
7842 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7843 4, FALSE))
7844 return FALSE;
7845 continue;
7846
7847 case 'p':
7848 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7849 break;
7850
7851 case 'a':
7852 *offset_reloc = BFD_RELOC_MIPS_JMP;
7853 break;
7854
7855 case 'm':
7856 gas_assert (mips_opts.micromips);
7857 c = args[1];
7858 switch (c)
7859 {
7860 case 'D':
7861 case 'E':
7862 if (!forced_insn_length)
7863 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7864 else if (c == 'D')
7865 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7866 else
7867 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7868 break;
7869 }
7870 break;
7871 }
7872
7873 operand = (mips_opts.micromips
7874 ? decode_micromips_operand (args)
7875 : decode_mips_operand (args));
7876 if (!operand)
7877 abort ();
7878
7879 /* Skip prefixes. */
7880 if (*args == '+' || *args == 'm' || *args == '-')
7881 args++;
7882
7883 if (mips_optional_operand_p (operand)
7884 && args[1] == ','
7885 && (arg.token[0].type != OT_REG
7886 || arg.token[1].type == OT_END))
7887 {
7888 /* Assume that the register has been elided and is the
7889 same as the first operand. */
7890 arg.token = tokens;
7891 arg.argnum = 1;
7892 }
7893
7894 if (!match_operand (&arg, operand))
7895 return FALSE;
7896 }
7897 }
7898
7899 /* Like match_insn, but for MIPS16. */
7900
7901 static bfd_boolean
7902 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7903 struct mips_operand_token *tokens)
7904 {
7905 const char *args;
7906 const struct mips_operand *operand;
7907 const struct mips_operand *ext_operand;
7908 struct mips_arg_info arg;
7909 int relax_char;
7910
7911 create_insn (insn, opcode);
7912 imm_expr.X_op = O_absent;
7913 offset_expr.X_op = O_absent;
7914 offset_reloc[0] = BFD_RELOC_UNUSED;
7915 offset_reloc[1] = BFD_RELOC_UNUSED;
7916 offset_reloc[2] = BFD_RELOC_UNUSED;
7917 relax_char = 0;
7918
7919 memset (&arg, 0, sizeof (arg));
7920 arg.insn = insn;
7921 arg.token = tokens;
7922 arg.argnum = 1;
7923 arg.last_regno = ILLEGAL_REG;
7924 arg.dest_regno = ILLEGAL_REG;
7925 relax_char = 0;
7926 for (args = opcode->args;; ++args)
7927 {
7928 int c;
7929
7930 if (arg.token->type == OT_END)
7931 {
7932 offsetT value;
7933
7934 /* Handle unary instructions in which only one operand is given.
7935 The source is then the same as the destination. */
7936 if (arg.opnum == 1 && *args == ',')
7937 {
7938 operand = decode_mips16_operand (args[1], FALSE);
7939 if (operand && mips_optional_operand_p (operand))
7940 {
7941 arg.token = tokens;
7942 arg.argnum = 1;
7943 continue;
7944 }
7945 }
7946
7947 /* Fail the match if there were too few operands. */
7948 if (*args)
7949 return FALSE;
7950
7951 /* Successful match. Stuff the immediate value in now, if
7952 we can. */
7953 clear_insn_error ();
7954 if (opcode->pinfo == INSN_MACRO)
7955 {
7956 gas_assert (relax_char == 0 || relax_char == 'p');
7957 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7958 }
7959 else if (relax_char
7960 && offset_expr.X_op == O_constant
7961 && calculate_reloc (*offset_reloc,
7962 offset_expr.X_add_number,
7963 &value))
7964 {
7965 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7966 forced_insn_length, &insn->insn_opcode);
7967 offset_expr.X_op = O_absent;
7968 *offset_reloc = BFD_RELOC_UNUSED;
7969 }
7970 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7971 {
7972 if (forced_insn_length == 2)
7973 set_insn_error (0, _("invalid unextended operand value"));
7974 forced_insn_length = 4;
7975 insn->insn_opcode |= MIPS16_EXTEND;
7976 }
7977 else if (relax_char)
7978 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7979
7980 check_completed_insn (&arg);
7981 return TRUE;
7982 }
7983
7984 /* Fail the match if the line has too many operands. */
7985 if (*args == 0)
7986 return FALSE;
7987
7988 /* Handle characters that need to match exactly. */
7989 if (*args == '(' || *args == ')' || *args == ',')
7990 {
7991 if (match_char (&arg, *args))
7992 continue;
7993 return FALSE;
7994 }
7995
7996 arg.opnum += 1;
7997 c = *args;
7998 switch (c)
7999 {
8000 case 'p':
8001 case 'q':
8002 case 'A':
8003 case 'B':
8004 case 'E':
8005 relax_char = c;
8006 break;
8007
8008 case 'I':
8009 if (!match_const_int (&arg, &imm_expr.X_add_number))
8010 return FALSE;
8011 imm_expr.X_op = O_constant;
8012 if (GPR_SIZE == 32)
8013 normalize_constant_expr (&imm_expr);
8014 continue;
8015
8016 case 'a':
8017 case 'i':
8018 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8019 insn->insn_opcode <<= 16;
8020 break;
8021 }
8022
8023 operand = decode_mips16_operand (c, FALSE);
8024 if (!operand)
8025 abort ();
8026
8027 /* '6' is a special case. It is used for BREAK and SDBBP,
8028 whose operands are only meaningful to the software that decodes
8029 them. This means that there is no architectural reason why
8030 they cannot be prefixed by EXTEND, but in practice,
8031 exception handlers will only look at the instruction
8032 itself. We therefore allow '6' to be extended when
8033 disassembling but not when assembling. */
8034 if (operand->type != OP_PCREL && c != '6')
8035 {
8036 ext_operand = decode_mips16_operand (c, TRUE);
8037 if (operand != ext_operand)
8038 {
8039 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8040 {
8041 offset_expr.X_op = O_constant;
8042 offset_expr.X_add_number = 0;
8043 relax_char = c;
8044 continue;
8045 }
8046
8047 /* We need the OT_INTEGER check because some MIPS16
8048 immediate variants are listed before the register ones. */
8049 if (arg.token->type != OT_INTEGER
8050 || !match_expression (&arg, &offset_expr, offset_reloc))
8051 return FALSE;
8052
8053 /* '8' is used for SLTI(U) and has traditionally not
8054 been allowed to take relocation operators. */
8055 if (offset_reloc[0] != BFD_RELOC_UNUSED
8056 && (ext_operand->size != 16 || c == '8'))
8057 return FALSE;
8058
8059 relax_char = c;
8060 continue;
8061 }
8062 }
8063
8064 if (mips_optional_operand_p (operand)
8065 && args[1] == ','
8066 && (arg.token[0].type != OT_REG
8067 || arg.token[1].type == OT_END))
8068 {
8069 /* Assume that the register has been elided and is the
8070 same as the first operand. */
8071 arg.token = tokens;
8072 arg.argnum = 1;
8073 }
8074
8075 if (!match_operand (&arg, operand))
8076 return FALSE;
8077 }
8078 }
8079
8080 /* Record that the current instruction is invalid for the current ISA. */
8081
8082 static void
8083 match_invalid_for_isa (void)
8084 {
8085 set_insn_error_ss
8086 (0, _("opcode not supported on this processor: %s (%s)"),
8087 mips_cpu_info_from_arch (mips_opts.arch)->name,
8088 mips_cpu_info_from_isa (mips_opts.isa)->name);
8089 }
8090
8091 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8092 Return true if a definite match or failure was found, storing any match
8093 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8094 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8095 tried and failed to match under normal conditions and now want to try a
8096 more relaxed match. */
8097
8098 static bfd_boolean
8099 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8100 const struct mips_opcode *past, struct mips_operand_token *tokens,
8101 int opcode_extra, bfd_boolean lax_match)
8102 {
8103 const struct mips_opcode *opcode;
8104 const struct mips_opcode *invalid_delay_slot;
8105 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8106
8107 /* Search for a match, ignoring alternatives that don't satisfy the
8108 current ISA or forced_length. */
8109 invalid_delay_slot = 0;
8110 seen_valid_for_isa = FALSE;
8111 seen_valid_for_size = FALSE;
8112 opcode = first;
8113 do
8114 {
8115 gas_assert (strcmp (opcode->name, first->name) == 0);
8116 if (is_opcode_valid (opcode))
8117 {
8118 seen_valid_for_isa = TRUE;
8119 if (is_size_valid (opcode))
8120 {
8121 bfd_boolean delay_slot_ok;
8122
8123 seen_valid_for_size = TRUE;
8124 delay_slot_ok = is_delay_slot_valid (opcode);
8125 if (match_insn (insn, opcode, tokens, opcode_extra,
8126 lax_match, delay_slot_ok))
8127 {
8128 if (!delay_slot_ok)
8129 {
8130 if (!invalid_delay_slot)
8131 invalid_delay_slot = opcode;
8132 }
8133 else
8134 return TRUE;
8135 }
8136 }
8137 }
8138 ++opcode;
8139 }
8140 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8141
8142 /* If the only matches we found had the wrong length for the delay slot,
8143 pick the first such match. We'll issue an appropriate warning later. */
8144 if (invalid_delay_slot)
8145 {
8146 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8147 lax_match, TRUE))
8148 return TRUE;
8149 abort ();
8150 }
8151
8152 /* Handle the case where we didn't try to match an instruction because
8153 all the alternatives were incompatible with the current ISA. */
8154 if (!seen_valid_for_isa)
8155 {
8156 match_invalid_for_isa ();
8157 return TRUE;
8158 }
8159
8160 /* Handle the case where we didn't try to match an instruction because
8161 all the alternatives were of the wrong size. */
8162 if (!seen_valid_for_size)
8163 {
8164 if (mips_opts.insn32)
8165 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8166 else
8167 set_insn_error_i
8168 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8169 8 * forced_insn_length);
8170 return TRUE;
8171 }
8172
8173 return FALSE;
8174 }
8175
8176 /* Like match_insns, but for MIPS16. */
8177
8178 static bfd_boolean
8179 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8180 struct mips_operand_token *tokens)
8181 {
8182 const struct mips_opcode *opcode;
8183 bfd_boolean seen_valid_for_isa;
8184
8185 /* Search for a match, ignoring alternatives that don't satisfy the
8186 current ISA. There are no separate entries for extended forms so
8187 we deal with forced_length later. */
8188 seen_valid_for_isa = FALSE;
8189 opcode = first;
8190 do
8191 {
8192 gas_assert (strcmp (opcode->name, first->name) == 0);
8193 if (is_opcode_valid_16 (opcode))
8194 {
8195 seen_valid_for_isa = TRUE;
8196 if (match_mips16_insn (insn, opcode, tokens))
8197 return TRUE;
8198 }
8199 ++opcode;
8200 }
8201 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8202 && strcmp (opcode->name, first->name) == 0);
8203
8204 /* Handle the case where we didn't try to match an instruction because
8205 all the alternatives were incompatible with the current ISA. */
8206 if (!seen_valid_for_isa)
8207 {
8208 match_invalid_for_isa ();
8209 return TRUE;
8210 }
8211
8212 return FALSE;
8213 }
8214
8215 /* Set up global variables for the start of a new macro. */
8216
8217 static void
8218 macro_start (void)
8219 {
8220 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8221 memset (&mips_macro_warning.first_insn_sizes, 0,
8222 sizeof (mips_macro_warning.first_insn_sizes));
8223 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8224 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8225 && delayed_branch_p (&history[0]));
8226 switch (history[0].insn_mo->pinfo2
8227 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8228 {
8229 case INSN2_BRANCH_DELAY_32BIT:
8230 mips_macro_warning.delay_slot_length = 4;
8231 break;
8232 case INSN2_BRANCH_DELAY_16BIT:
8233 mips_macro_warning.delay_slot_length = 2;
8234 break;
8235 default:
8236 mips_macro_warning.delay_slot_length = 0;
8237 break;
8238 }
8239 mips_macro_warning.first_frag = NULL;
8240 }
8241
8242 /* Given that a macro is longer than one instruction or of the wrong size,
8243 return the appropriate warning for it. Return null if no warning is
8244 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8245 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8246 and RELAX_NOMACRO. */
8247
8248 static const char *
8249 macro_warning (relax_substateT subtype)
8250 {
8251 if (subtype & RELAX_DELAY_SLOT)
8252 return _("macro instruction expanded into multiple instructions"
8253 " in a branch delay slot");
8254 else if (subtype & RELAX_NOMACRO)
8255 return _("macro instruction expanded into multiple instructions");
8256 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8257 | RELAX_DELAY_SLOT_SIZE_SECOND))
8258 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8259 ? _("macro instruction expanded into a wrong size instruction"
8260 " in a 16-bit branch delay slot")
8261 : _("macro instruction expanded into a wrong size instruction"
8262 " in a 32-bit branch delay slot"));
8263 else
8264 return 0;
8265 }
8266
8267 /* Finish up a macro. Emit warnings as appropriate. */
8268
8269 static void
8270 macro_end (void)
8271 {
8272 /* Relaxation warning flags. */
8273 relax_substateT subtype = 0;
8274
8275 /* Check delay slot size requirements. */
8276 if (mips_macro_warning.delay_slot_length == 2)
8277 subtype |= RELAX_DELAY_SLOT_16BIT;
8278 if (mips_macro_warning.delay_slot_length != 0)
8279 {
8280 if (mips_macro_warning.delay_slot_length
8281 != mips_macro_warning.first_insn_sizes[0])
8282 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8283 if (mips_macro_warning.delay_slot_length
8284 != mips_macro_warning.first_insn_sizes[1])
8285 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8286 }
8287
8288 /* Check instruction count requirements. */
8289 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8290 {
8291 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8292 subtype |= RELAX_SECOND_LONGER;
8293 if (mips_opts.warn_about_macros)
8294 subtype |= RELAX_NOMACRO;
8295 if (mips_macro_warning.delay_slot_p)
8296 subtype |= RELAX_DELAY_SLOT;
8297 }
8298
8299 /* If both alternatives fail to fill a delay slot correctly,
8300 emit the warning now. */
8301 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8302 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8303 {
8304 relax_substateT s;
8305 const char *msg;
8306
8307 s = subtype & (RELAX_DELAY_SLOT_16BIT
8308 | RELAX_DELAY_SLOT_SIZE_FIRST
8309 | RELAX_DELAY_SLOT_SIZE_SECOND);
8310 msg = macro_warning (s);
8311 if (msg != NULL)
8312 as_warn ("%s", msg);
8313 subtype &= ~s;
8314 }
8315
8316 /* If both implementations are longer than 1 instruction, then emit the
8317 warning now. */
8318 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8319 {
8320 relax_substateT s;
8321 const char *msg;
8322
8323 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8324 msg = macro_warning (s);
8325 if (msg != NULL)
8326 as_warn ("%s", msg);
8327 subtype &= ~s;
8328 }
8329
8330 /* If any flags still set, then one implementation might need a warning
8331 and the other either will need one of a different kind or none at all.
8332 Pass any remaining flags over to relaxation. */
8333 if (mips_macro_warning.first_frag != NULL)
8334 mips_macro_warning.first_frag->fr_subtype |= subtype;
8335 }
8336
8337 /* Instruction operand formats used in macros that vary between
8338 standard MIPS and microMIPS code. */
8339
8340 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8341 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8342 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8343 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8344 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8345 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8346 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8347 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8348
8349 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8350 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8351 : cop12_fmt[mips_opts.micromips])
8352 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8353 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8354 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8355 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8356 : mem12_fmt[mips_opts.micromips])
8357 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8358 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8359 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8360
8361 /* Read a macro's relocation codes from *ARGS and store them in *R.
8362 The first argument in *ARGS will be either the code for a single
8363 relocation or -1 followed by the three codes that make up a
8364 composite relocation. */
8365
8366 static void
8367 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8368 {
8369 int i, next;
8370
8371 next = va_arg (*args, int);
8372 if (next >= 0)
8373 r[0] = (bfd_reloc_code_real_type) next;
8374 else
8375 {
8376 for (i = 0; i < 3; i++)
8377 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8378 /* This function is only used for 16-bit relocation fields.
8379 To make the macro code simpler, treat an unrelocated value
8380 in the same way as BFD_RELOC_LO16. */
8381 if (r[0] == BFD_RELOC_UNUSED)
8382 r[0] = BFD_RELOC_LO16;
8383 }
8384 }
8385
8386 /* Build an instruction created by a macro expansion. This is passed
8387 a pointer to the count of instructions created so far, an
8388 expression, the name of the instruction to build, an operand format
8389 string, and corresponding arguments. */
8390
8391 static void
8392 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8393 {
8394 const struct mips_opcode *mo = NULL;
8395 bfd_reloc_code_real_type r[3];
8396 const struct mips_opcode *amo;
8397 const struct mips_operand *operand;
8398 struct hash_control *hash;
8399 struct mips_cl_insn insn;
8400 va_list args;
8401 unsigned int uval;
8402
8403 va_start (args, fmt);
8404
8405 if (mips_opts.mips16)
8406 {
8407 mips16_macro_build (ep, name, fmt, &args);
8408 va_end (args);
8409 return;
8410 }
8411
8412 r[0] = BFD_RELOC_UNUSED;
8413 r[1] = BFD_RELOC_UNUSED;
8414 r[2] = BFD_RELOC_UNUSED;
8415 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8416 amo = (struct mips_opcode *) hash_find (hash, name);
8417 gas_assert (amo);
8418 gas_assert (strcmp (name, amo->name) == 0);
8419
8420 do
8421 {
8422 /* Search until we get a match for NAME. It is assumed here that
8423 macros will never generate MDMX, MIPS-3D, or MT instructions.
8424 We try to match an instruction that fulfils the branch delay
8425 slot instruction length requirement (if any) of the previous
8426 instruction. While doing this we record the first instruction
8427 seen that matches all the other conditions and use it anyway
8428 if the requirement cannot be met; we will issue an appropriate
8429 warning later on. */
8430 if (strcmp (fmt, amo->args) == 0
8431 && amo->pinfo != INSN_MACRO
8432 && is_opcode_valid (amo)
8433 && is_size_valid (amo))
8434 {
8435 if (is_delay_slot_valid (amo))
8436 {
8437 mo = amo;
8438 break;
8439 }
8440 else if (!mo)
8441 mo = amo;
8442 }
8443
8444 ++amo;
8445 gas_assert (amo->name);
8446 }
8447 while (strcmp (name, amo->name) == 0);
8448
8449 gas_assert (mo);
8450 create_insn (&insn, mo);
8451 for (; *fmt; ++fmt)
8452 {
8453 switch (*fmt)
8454 {
8455 case ',':
8456 case '(':
8457 case ')':
8458 case 'z':
8459 break;
8460
8461 case 'i':
8462 case 'j':
8463 macro_read_relocs (&args, r);
8464 gas_assert (*r == BFD_RELOC_GPREL16
8465 || *r == BFD_RELOC_MIPS_HIGHER
8466 || *r == BFD_RELOC_HI16_S
8467 || *r == BFD_RELOC_LO16
8468 || *r == BFD_RELOC_MIPS_GOT_OFST);
8469 break;
8470
8471 case 'o':
8472 macro_read_relocs (&args, r);
8473 break;
8474
8475 case 'u':
8476 macro_read_relocs (&args, r);
8477 gas_assert (ep != NULL
8478 && (ep->X_op == O_constant
8479 || (ep->X_op == O_symbol
8480 && (*r == BFD_RELOC_MIPS_HIGHEST
8481 || *r == BFD_RELOC_HI16_S
8482 || *r == BFD_RELOC_HI16
8483 || *r == BFD_RELOC_GPREL16
8484 || *r == BFD_RELOC_MIPS_GOT_HI16
8485 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8486 break;
8487
8488 case 'p':
8489 gas_assert (ep != NULL);
8490
8491 /*
8492 * This allows macro() to pass an immediate expression for
8493 * creating short branches without creating a symbol.
8494 *
8495 * We don't allow branch relaxation for these branches, as
8496 * they should only appear in ".set nomacro" anyway.
8497 */
8498 if (ep->X_op == O_constant)
8499 {
8500 /* For microMIPS we always use relocations for branches.
8501 So we should not resolve immediate values. */
8502 gas_assert (!mips_opts.micromips);
8503
8504 if ((ep->X_add_number & 3) != 0)
8505 as_bad (_("branch to misaligned address (0x%lx)"),
8506 (unsigned long) ep->X_add_number);
8507 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8508 as_bad (_("branch address range overflow (0x%lx)"),
8509 (unsigned long) ep->X_add_number);
8510 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8511 ep = NULL;
8512 }
8513 else
8514 *r = BFD_RELOC_16_PCREL_S2;
8515 break;
8516
8517 case 'a':
8518 gas_assert (ep != NULL);
8519 *r = BFD_RELOC_MIPS_JMP;
8520 break;
8521
8522 default:
8523 operand = (mips_opts.micromips
8524 ? decode_micromips_operand (fmt)
8525 : decode_mips_operand (fmt));
8526 if (!operand)
8527 abort ();
8528
8529 uval = va_arg (args, int);
8530 if (operand->type == OP_CLO_CLZ_DEST)
8531 uval |= (uval << 5);
8532 insn_insert_operand (&insn, operand, uval);
8533
8534 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8535 ++fmt;
8536 break;
8537 }
8538 }
8539 va_end (args);
8540 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8541
8542 append_insn (&insn, ep, r, TRUE);
8543 }
8544
8545 static void
8546 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8547 va_list *args)
8548 {
8549 struct mips_opcode *mo;
8550 struct mips_cl_insn insn;
8551 const struct mips_operand *operand;
8552 bfd_reloc_code_real_type r[3]
8553 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8554
8555 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8556 gas_assert (mo);
8557 gas_assert (strcmp (name, mo->name) == 0);
8558
8559 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8560 {
8561 ++mo;
8562 gas_assert (mo->name);
8563 gas_assert (strcmp (name, mo->name) == 0);
8564 }
8565
8566 create_insn (&insn, mo);
8567 for (; *fmt; ++fmt)
8568 {
8569 int c;
8570
8571 c = *fmt;
8572 switch (c)
8573 {
8574 case ',':
8575 case '(':
8576 case ')':
8577 break;
8578
8579 case '0':
8580 case 'S':
8581 case 'P':
8582 case 'R':
8583 break;
8584
8585 case '<':
8586 case '>':
8587 case '4':
8588 case '5':
8589 case 'H':
8590 case 'W':
8591 case 'D':
8592 case 'j':
8593 case '8':
8594 case 'V':
8595 case 'C':
8596 case 'U':
8597 case 'k':
8598 case 'K':
8599 case 'p':
8600 case 'q':
8601 {
8602 offsetT value;
8603
8604 gas_assert (ep != NULL);
8605
8606 if (ep->X_op != O_constant)
8607 *r = (int) BFD_RELOC_UNUSED + c;
8608 else if (calculate_reloc (*r, ep->X_add_number, &value))
8609 {
8610 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8611 ep = NULL;
8612 *r = BFD_RELOC_UNUSED;
8613 }
8614 }
8615 break;
8616
8617 default:
8618 operand = decode_mips16_operand (c, FALSE);
8619 if (!operand)
8620 abort ();
8621
8622 insn_insert_operand (&insn, operand, va_arg (*args, int));
8623 break;
8624 }
8625 }
8626
8627 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8628
8629 append_insn (&insn, ep, r, TRUE);
8630 }
8631
8632 /*
8633 * Generate a "jalr" instruction with a relocation hint to the called
8634 * function. This occurs in NewABI PIC code.
8635 */
8636 static void
8637 macro_build_jalr (expressionS *ep, int cprestore)
8638 {
8639 static const bfd_reloc_code_real_type jalr_relocs[2]
8640 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8641 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8642 const char *jalr;
8643 char *f = NULL;
8644
8645 if (MIPS_JALR_HINT_P (ep))
8646 {
8647 frag_grow (8);
8648 f = frag_more (0);
8649 }
8650 if (mips_opts.micromips)
8651 {
8652 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8653 ? "jalr" : "jalrs");
8654 if (MIPS_JALR_HINT_P (ep)
8655 || mips_opts.insn32
8656 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8657 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8658 else
8659 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8660 }
8661 else
8662 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8663 if (MIPS_JALR_HINT_P (ep))
8664 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8665 }
8666
8667 /*
8668 * Generate a "lui" instruction.
8669 */
8670 static void
8671 macro_build_lui (expressionS *ep, int regnum)
8672 {
8673 gas_assert (! mips_opts.mips16);
8674
8675 if (ep->X_op != O_constant)
8676 {
8677 gas_assert (ep->X_op == O_symbol);
8678 /* _gp_disp is a special case, used from s_cpload.
8679 __gnu_local_gp is used if mips_no_shared. */
8680 gas_assert (mips_pic == NO_PIC
8681 || (! HAVE_NEWABI
8682 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8683 || (! mips_in_shared
8684 && strcmp (S_GET_NAME (ep->X_add_symbol),
8685 "__gnu_local_gp") == 0));
8686 }
8687
8688 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8689 }
8690
8691 /* Generate a sequence of instructions to do a load or store from a constant
8692 offset off of a base register (breg) into/from a target register (treg),
8693 using AT if necessary. */
8694 static void
8695 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8696 int treg, int breg, int dbl)
8697 {
8698 gas_assert (ep->X_op == O_constant);
8699
8700 /* Sign-extending 32-bit constants makes their handling easier. */
8701 if (!dbl)
8702 normalize_constant_expr (ep);
8703
8704 /* Right now, this routine can only handle signed 32-bit constants. */
8705 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8706 as_warn (_("operand overflow"));
8707
8708 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8709 {
8710 /* Signed 16-bit offset will fit in the op. Easy! */
8711 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8712 }
8713 else
8714 {
8715 /* 32-bit offset, need multiple instructions and AT, like:
8716 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8717 addu $tempreg,$tempreg,$breg
8718 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8719 to handle the complete offset. */
8720 macro_build_lui (ep, AT);
8721 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8722 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8723
8724 if (!mips_opts.at)
8725 as_bad (_("macro used $at after \".set noat\""));
8726 }
8727 }
8728
8729 /* set_at()
8730 * Generates code to set the $at register to true (one)
8731 * if reg is less than the immediate expression.
8732 */
8733 static void
8734 set_at (int reg, int unsignedp)
8735 {
8736 if (imm_expr.X_add_number >= -0x8000
8737 && imm_expr.X_add_number < 0x8000)
8738 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8739 AT, reg, BFD_RELOC_LO16);
8740 else
8741 {
8742 load_register (AT, &imm_expr, GPR_SIZE == 64);
8743 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8744 }
8745 }
8746
8747 /* Count the leading zeroes by performing a binary chop. This is a
8748 bulky bit of source, but performance is a LOT better for the
8749 majority of values than a simple loop to count the bits:
8750 for (lcnt = 0; (lcnt < 32); lcnt++)
8751 if ((v) & (1 << (31 - lcnt)))
8752 break;
8753 However it is not code size friendly, and the gain will drop a bit
8754 on certain cached systems.
8755 */
8756 #define COUNT_TOP_ZEROES(v) \
8757 (((v) & ~0xffff) == 0 \
8758 ? ((v) & ~0xff) == 0 \
8759 ? ((v) & ~0xf) == 0 \
8760 ? ((v) & ~0x3) == 0 \
8761 ? ((v) & ~0x1) == 0 \
8762 ? !(v) \
8763 ? 32 \
8764 : 31 \
8765 : 30 \
8766 : ((v) & ~0x7) == 0 \
8767 ? 29 \
8768 : 28 \
8769 : ((v) & ~0x3f) == 0 \
8770 ? ((v) & ~0x1f) == 0 \
8771 ? 27 \
8772 : 26 \
8773 : ((v) & ~0x7f) == 0 \
8774 ? 25 \
8775 : 24 \
8776 : ((v) & ~0xfff) == 0 \
8777 ? ((v) & ~0x3ff) == 0 \
8778 ? ((v) & ~0x1ff) == 0 \
8779 ? 23 \
8780 : 22 \
8781 : ((v) & ~0x7ff) == 0 \
8782 ? 21 \
8783 : 20 \
8784 : ((v) & ~0x3fff) == 0 \
8785 ? ((v) & ~0x1fff) == 0 \
8786 ? 19 \
8787 : 18 \
8788 : ((v) & ~0x7fff) == 0 \
8789 ? 17 \
8790 : 16 \
8791 : ((v) & ~0xffffff) == 0 \
8792 ? ((v) & ~0xfffff) == 0 \
8793 ? ((v) & ~0x3ffff) == 0 \
8794 ? ((v) & ~0x1ffff) == 0 \
8795 ? 15 \
8796 : 14 \
8797 : ((v) & ~0x7ffff) == 0 \
8798 ? 13 \
8799 : 12 \
8800 : ((v) & ~0x3fffff) == 0 \
8801 ? ((v) & ~0x1fffff) == 0 \
8802 ? 11 \
8803 : 10 \
8804 : ((v) & ~0x7fffff) == 0 \
8805 ? 9 \
8806 : 8 \
8807 : ((v) & ~0xfffffff) == 0 \
8808 ? ((v) & ~0x3ffffff) == 0 \
8809 ? ((v) & ~0x1ffffff) == 0 \
8810 ? 7 \
8811 : 6 \
8812 : ((v) & ~0x7ffffff) == 0 \
8813 ? 5 \
8814 : 4 \
8815 : ((v) & ~0x3fffffff) == 0 \
8816 ? ((v) & ~0x1fffffff) == 0 \
8817 ? 3 \
8818 : 2 \
8819 : ((v) & ~0x7fffffff) == 0 \
8820 ? 1 \
8821 : 0)
8822
8823 /* load_register()
8824 * This routine generates the least number of instructions necessary to load
8825 * an absolute expression value into a register.
8826 */
8827 static void
8828 load_register (int reg, expressionS *ep, int dbl)
8829 {
8830 int freg;
8831 expressionS hi32, lo32;
8832
8833 if (ep->X_op != O_big)
8834 {
8835 gas_assert (ep->X_op == O_constant);
8836
8837 /* Sign-extending 32-bit constants makes their handling easier. */
8838 if (!dbl)
8839 normalize_constant_expr (ep);
8840
8841 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8842 {
8843 /* We can handle 16 bit signed values with an addiu to
8844 $zero. No need to ever use daddiu here, since $zero and
8845 the result are always correct in 32 bit mode. */
8846 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8847 return;
8848 }
8849 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8850 {
8851 /* We can handle 16 bit unsigned values with an ori to
8852 $zero. */
8853 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8854 return;
8855 }
8856 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8857 {
8858 /* 32 bit values require an lui. */
8859 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8860 if ((ep->X_add_number & 0xffff) != 0)
8861 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8862 return;
8863 }
8864 }
8865
8866 /* The value is larger than 32 bits. */
8867
8868 if (!dbl || GPR_SIZE == 32)
8869 {
8870 char value[32];
8871
8872 sprintf_vma (value, ep->X_add_number);
8873 as_bad (_("number (0x%s) larger than 32 bits"), value);
8874 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8875 return;
8876 }
8877
8878 if (ep->X_op != O_big)
8879 {
8880 hi32 = *ep;
8881 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8882 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8883 hi32.X_add_number &= 0xffffffff;
8884 lo32 = *ep;
8885 lo32.X_add_number &= 0xffffffff;
8886 }
8887 else
8888 {
8889 gas_assert (ep->X_add_number > 2);
8890 if (ep->X_add_number == 3)
8891 generic_bignum[3] = 0;
8892 else if (ep->X_add_number > 4)
8893 as_bad (_("number larger than 64 bits"));
8894 lo32.X_op = O_constant;
8895 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8896 hi32.X_op = O_constant;
8897 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8898 }
8899
8900 if (hi32.X_add_number == 0)
8901 freg = 0;
8902 else
8903 {
8904 int shift, bit;
8905 unsigned long hi, lo;
8906
8907 if (hi32.X_add_number == (offsetT) 0xffffffff)
8908 {
8909 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8910 {
8911 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8912 return;
8913 }
8914 if (lo32.X_add_number & 0x80000000)
8915 {
8916 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8917 if (lo32.X_add_number & 0xffff)
8918 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8919 return;
8920 }
8921 }
8922
8923 /* Check for 16bit shifted constant. We know that hi32 is
8924 non-zero, so start the mask on the first bit of the hi32
8925 value. */
8926 shift = 17;
8927 do
8928 {
8929 unsigned long himask, lomask;
8930
8931 if (shift < 32)
8932 {
8933 himask = 0xffff >> (32 - shift);
8934 lomask = (0xffff << shift) & 0xffffffff;
8935 }
8936 else
8937 {
8938 himask = 0xffff << (shift - 32);
8939 lomask = 0;
8940 }
8941 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8942 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8943 {
8944 expressionS tmp;
8945
8946 tmp.X_op = O_constant;
8947 if (shift < 32)
8948 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8949 | (lo32.X_add_number >> shift));
8950 else
8951 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8952 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8953 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8954 reg, reg, (shift >= 32) ? shift - 32 : shift);
8955 return;
8956 }
8957 ++shift;
8958 }
8959 while (shift <= (64 - 16));
8960
8961 /* Find the bit number of the lowest one bit, and store the
8962 shifted value in hi/lo. */
8963 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8964 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8965 if (lo != 0)
8966 {
8967 bit = 0;
8968 while ((lo & 1) == 0)
8969 {
8970 lo >>= 1;
8971 ++bit;
8972 }
8973 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8974 hi >>= bit;
8975 }
8976 else
8977 {
8978 bit = 32;
8979 while ((hi & 1) == 0)
8980 {
8981 hi >>= 1;
8982 ++bit;
8983 }
8984 lo = hi;
8985 hi = 0;
8986 }
8987
8988 /* Optimize if the shifted value is a (power of 2) - 1. */
8989 if ((hi == 0 && ((lo + 1) & lo) == 0)
8990 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8991 {
8992 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
8993 if (shift != 0)
8994 {
8995 expressionS tmp;
8996
8997 /* This instruction will set the register to be all
8998 ones. */
8999 tmp.X_op = O_constant;
9000 tmp.X_add_number = (offsetT) -1;
9001 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9002 if (bit != 0)
9003 {
9004 bit += shift;
9005 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9006 reg, reg, (bit >= 32) ? bit - 32 : bit);
9007 }
9008 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9009 reg, reg, (shift >= 32) ? shift - 32 : shift);
9010 return;
9011 }
9012 }
9013
9014 /* Sign extend hi32 before calling load_register, because we can
9015 generally get better code when we load a sign extended value. */
9016 if ((hi32.X_add_number & 0x80000000) != 0)
9017 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9018 load_register (reg, &hi32, 0);
9019 freg = reg;
9020 }
9021 if ((lo32.X_add_number & 0xffff0000) == 0)
9022 {
9023 if (freg != 0)
9024 {
9025 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9026 freg = reg;
9027 }
9028 }
9029 else
9030 {
9031 expressionS mid16;
9032
9033 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9034 {
9035 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9036 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9037 return;
9038 }
9039
9040 if (freg != 0)
9041 {
9042 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9043 freg = reg;
9044 }
9045 mid16 = lo32;
9046 mid16.X_add_number >>= 16;
9047 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9048 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9049 freg = reg;
9050 }
9051 if ((lo32.X_add_number & 0xffff) != 0)
9052 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9053 }
9054
9055 static inline void
9056 load_delay_nop (void)
9057 {
9058 if (!gpr_interlocks)
9059 macro_build (NULL, "nop", "");
9060 }
9061
9062 /* Load an address into a register. */
9063
9064 static void
9065 load_address (int reg, expressionS *ep, int *used_at)
9066 {
9067 if (ep->X_op != O_constant
9068 && ep->X_op != O_symbol)
9069 {
9070 as_bad (_("expression too complex"));
9071 ep->X_op = O_constant;
9072 }
9073
9074 if (ep->X_op == O_constant)
9075 {
9076 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9077 return;
9078 }
9079
9080 if (mips_pic == NO_PIC)
9081 {
9082 /* If this is a reference to a GP relative symbol, we want
9083 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9084 Otherwise we want
9085 lui $reg,<sym> (BFD_RELOC_HI16_S)
9086 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9087 If we have an addend, we always use the latter form.
9088
9089 With 64bit address space and a usable $at we want
9090 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9091 lui $at,<sym> (BFD_RELOC_HI16_S)
9092 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9093 daddiu $at,<sym> (BFD_RELOC_LO16)
9094 dsll32 $reg,0
9095 daddu $reg,$reg,$at
9096
9097 If $at is already in use, we use a path which is suboptimal
9098 on superscalar processors.
9099 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9100 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9101 dsll $reg,16
9102 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9103 dsll $reg,16
9104 daddiu $reg,<sym> (BFD_RELOC_LO16)
9105
9106 For GP relative symbols in 64bit address space we can use
9107 the same sequence as in 32bit address space. */
9108 if (HAVE_64BIT_SYMBOLS)
9109 {
9110 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9111 && !nopic_need_relax (ep->X_add_symbol, 1))
9112 {
9113 relax_start (ep->X_add_symbol);
9114 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9115 mips_gp_register, BFD_RELOC_GPREL16);
9116 relax_switch ();
9117 }
9118
9119 if (*used_at == 0 && mips_opts.at)
9120 {
9121 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9122 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9123 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9124 BFD_RELOC_MIPS_HIGHER);
9125 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9126 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9127 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9128 *used_at = 1;
9129 }
9130 else
9131 {
9132 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9133 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9134 BFD_RELOC_MIPS_HIGHER);
9135 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9136 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9137 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9138 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9139 }
9140
9141 if (mips_relax.sequence)
9142 relax_end ();
9143 }
9144 else
9145 {
9146 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9147 && !nopic_need_relax (ep->X_add_symbol, 1))
9148 {
9149 relax_start (ep->X_add_symbol);
9150 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9151 mips_gp_register, BFD_RELOC_GPREL16);
9152 relax_switch ();
9153 }
9154 macro_build_lui (ep, reg);
9155 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9156 reg, reg, BFD_RELOC_LO16);
9157 if (mips_relax.sequence)
9158 relax_end ();
9159 }
9160 }
9161 else if (!mips_big_got)
9162 {
9163 expressionS ex;
9164
9165 /* If this is a reference to an external symbol, we want
9166 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9167 Otherwise we want
9168 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9169 nop
9170 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9171 If there is a constant, it must be added in after.
9172
9173 If we have NewABI, we want
9174 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9175 unless we're referencing a global symbol with a non-zero
9176 offset, in which case cst must be added separately. */
9177 if (HAVE_NEWABI)
9178 {
9179 if (ep->X_add_number)
9180 {
9181 ex.X_add_number = ep->X_add_number;
9182 ep->X_add_number = 0;
9183 relax_start (ep->X_add_symbol);
9184 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9185 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9186 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9187 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9188 ex.X_op = O_constant;
9189 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9190 reg, reg, BFD_RELOC_LO16);
9191 ep->X_add_number = ex.X_add_number;
9192 relax_switch ();
9193 }
9194 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9195 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9196 if (mips_relax.sequence)
9197 relax_end ();
9198 }
9199 else
9200 {
9201 ex.X_add_number = ep->X_add_number;
9202 ep->X_add_number = 0;
9203 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9204 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9205 load_delay_nop ();
9206 relax_start (ep->X_add_symbol);
9207 relax_switch ();
9208 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9209 BFD_RELOC_LO16);
9210 relax_end ();
9211
9212 if (ex.X_add_number != 0)
9213 {
9214 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9215 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9216 ex.X_op = O_constant;
9217 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9218 reg, reg, BFD_RELOC_LO16);
9219 }
9220 }
9221 }
9222 else if (mips_big_got)
9223 {
9224 expressionS ex;
9225
9226 /* This is the large GOT case. If this is a reference to an
9227 external symbol, we want
9228 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9229 addu $reg,$reg,$gp
9230 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9231
9232 Otherwise, for a reference to a local symbol in old ABI, we want
9233 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9234 nop
9235 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9236 If there is a constant, it must be added in after.
9237
9238 In the NewABI, for local symbols, with or without offsets, we want:
9239 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9240 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9241 */
9242 if (HAVE_NEWABI)
9243 {
9244 ex.X_add_number = ep->X_add_number;
9245 ep->X_add_number = 0;
9246 relax_start (ep->X_add_symbol);
9247 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9248 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9249 reg, reg, mips_gp_register);
9250 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9251 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9252 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9253 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9254 else if (ex.X_add_number)
9255 {
9256 ex.X_op = O_constant;
9257 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9258 BFD_RELOC_LO16);
9259 }
9260
9261 ep->X_add_number = ex.X_add_number;
9262 relax_switch ();
9263 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9264 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9265 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9266 BFD_RELOC_MIPS_GOT_OFST);
9267 relax_end ();
9268 }
9269 else
9270 {
9271 ex.X_add_number = ep->X_add_number;
9272 ep->X_add_number = 0;
9273 relax_start (ep->X_add_symbol);
9274 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9275 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9276 reg, reg, mips_gp_register);
9277 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9278 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9279 relax_switch ();
9280 if (reg_needs_delay (mips_gp_register))
9281 {
9282 /* We need a nop before loading from $gp. This special
9283 check is required because the lui which starts the main
9284 instruction stream does not refer to $gp, and so will not
9285 insert the nop which may be required. */
9286 macro_build (NULL, "nop", "");
9287 }
9288 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9289 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9290 load_delay_nop ();
9291 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9292 BFD_RELOC_LO16);
9293 relax_end ();
9294
9295 if (ex.X_add_number != 0)
9296 {
9297 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9298 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9299 ex.X_op = O_constant;
9300 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9301 BFD_RELOC_LO16);
9302 }
9303 }
9304 }
9305 else
9306 abort ();
9307
9308 if (!mips_opts.at && *used_at == 1)
9309 as_bad (_("macro used $at after \".set noat\""));
9310 }
9311
9312 /* Move the contents of register SOURCE into register DEST. */
9313
9314 static void
9315 move_register (int dest, int source)
9316 {
9317 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9318 instruction specifically requires a 32-bit one. */
9319 if (mips_opts.micromips
9320 && !mips_opts.insn32
9321 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9322 macro_build (NULL, "move", "mp,mj", dest, source);
9323 else
9324 macro_build (NULL, GPR_SIZE == 32 ? "addu" : "daddu", "d,v,t",
9325 dest, source, 0);
9326 }
9327
9328 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9329 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9330 The two alternatives are:
9331
9332 Global symbol Local sybmol
9333 ------------- ------------
9334 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9335 ... ...
9336 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9337
9338 load_got_offset emits the first instruction and add_got_offset
9339 emits the second for a 16-bit offset or add_got_offset_hilo emits
9340 a sequence to add a 32-bit offset using a scratch register. */
9341
9342 static void
9343 load_got_offset (int dest, expressionS *local)
9344 {
9345 expressionS global;
9346
9347 global = *local;
9348 global.X_add_number = 0;
9349
9350 relax_start (local->X_add_symbol);
9351 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9352 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9353 relax_switch ();
9354 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9355 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9356 relax_end ();
9357 }
9358
9359 static void
9360 add_got_offset (int dest, expressionS *local)
9361 {
9362 expressionS global;
9363
9364 global.X_op = O_constant;
9365 global.X_op_symbol = NULL;
9366 global.X_add_symbol = NULL;
9367 global.X_add_number = local->X_add_number;
9368
9369 relax_start (local->X_add_symbol);
9370 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9371 dest, dest, BFD_RELOC_LO16);
9372 relax_switch ();
9373 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9374 relax_end ();
9375 }
9376
9377 static void
9378 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9379 {
9380 expressionS global;
9381 int hold_mips_optimize;
9382
9383 global.X_op = O_constant;
9384 global.X_op_symbol = NULL;
9385 global.X_add_symbol = NULL;
9386 global.X_add_number = local->X_add_number;
9387
9388 relax_start (local->X_add_symbol);
9389 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9390 relax_switch ();
9391 /* Set mips_optimize around the lui instruction to avoid
9392 inserting an unnecessary nop after the lw. */
9393 hold_mips_optimize = mips_optimize;
9394 mips_optimize = 2;
9395 macro_build_lui (&global, tmp);
9396 mips_optimize = hold_mips_optimize;
9397 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9398 relax_end ();
9399
9400 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9401 }
9402
9403 /* Emit a sequence of instructions to emulate a branch likely operation.
9404 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9405 is its complementing branch with the original condition negated.
9406 CALL is set if the original branch specified the link operation.
9407 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9408
9409 Code like this is produced in the noreorder mode:
9410
9411 BRNEG <args>, 1f
9412 nop
9413 b <sym>
9414 delay slot (executed only if branch taken)
9415 1:
9416
9417 or, if CALL is set:
9418
9419 BRNEG <args>, 1f
9420 nop
9421 bal <sym>
9422 delay slot (executed only if branch taken)
9423 1:
9424
9425 In the reorder mode the delay slot would be filled with a nop anyway,
9426 so code produced is simply:
9427
9428 BR <args>, <sym>
9429 nop
9430
9431 This function is used when producing code for the microMIPS ASE that
9432 does not implement branch likely instructions in hardware. */
9433
9434 static void
9435 macro_build_branch_likely (const char *br, const char *brneg,
9436 int call, expressionS *ep, const char *fmt,
9437 unsigned int sreg, unsigned int treg)
9438 {
9439 int noreorder = mips_opts.noreorder;
9440 expressionS expr1;
9441
9442 gas_assert (mips_opts.micromips);
9443 start_noreorder ();
9444 if (noreorder)
9445 {
9446 micromips_label_expr (&expr1);
9447 macro_build (&expr1, brneg, fmt, sreg, treg);
9448 macro_build (NULL, "nop", "");
9449 macro_build (ep, call ? "bal" : "b", "p");
9450
9451 /* Set to true so that append_insn adds a label. */
9452 emit_branch_likely_macro = TRUE;
9453 }
9454 else
9455 {
9456 macro_build (ep, br, fmt, sreg, treg);
9457 macro_build (NULL, "nop", "");
9458 }
9459 end_noreorder ();
9460 }
9461
9462 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9463 the condition code tested. EP specifies the branch target. */
9464
9465 static void
9466 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9467 {
9468 const int call = 0;
9469 const char *brneg;
9470 const char *br;
9471
9472 switch (type)
9473 {
9474 case M_BC1FL:
9475 br = "bc1f";
9476 brneg = "bc1t";
9477 break;
9478 case M_BC1TL:
9479 br = "bc1t";
9480 brneg = "bc1f";
9481 break;
9482 case M_BC2FL:
9483 br = "bc2f";
9484 brneg = "bc2t";
9485 break;
9486 case M_BC2TL:
9487 br = "bc2t";
9488 brneg = "bc2f";
9489 break;
9490 default:
9491 abort ();
9492 }
9493 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9494 }
9495
9496 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9497 the register tested. EP specifies the branch target. */
9498
9499 static void
9500 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9501 {
9502 const char *brneg = NULL;
9503 const char *br;
9504 int call = 0;
9505
9506 switch (type)
9507 {
9508 case M_BGEZ:
9509 br = "bgez";
9510 break;
9511 case M_BGEZL:
9512 br = mips_opts.micromips ? "bgez" : "bgezl";
9513 brneg = "bltz";
9514 break;
9515 case M_BGEZALL:
9516 gas_assert (mips_opts.micromips);
9517 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9518 brneg = "bltz";
9519 call = 1;
9520 break;
9521 case M_BGTZ:
9522 br = "bgtz";
9523 break;
9524 case M_BGTZL:
9525 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9526 brneg = "blez";
9527 break;
9528 case M_BLEZ:
9529 br = "blez";
9530 break;
9531 case M_BLEZL:
9532 br = mips_opts.micromips ? "blez" : "blezl";
9533 brneg = "bgtz";
9534 break;
9535 case M_BLTZ:
9536 br = "bltz";
9537 break;
9538 case M_BLTZL:
9539 br = mips_opts.micromips ? "bltz" : "bltzl";
9540 brneg = "bgez";
9541 break;
9542 case M_BLTZALL:
9543 gas_assert (mips_opts.micromips);
9544 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9545 brneg = "bgez";
9546 call = 1;
9547 break;
9548 default:
9549 abort ();
9550 }
9551 if (mips_opts.micromips && brneg)
9552 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9553 else
9554 macro_build (ep, br, "s,p", sreg);
9555 }
9556
9557 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9558 TREG as the registers tested. EP specifies the branch target. */
9559
9560 static void
9561 macro_build_branch_rsrt (int type, expressionS *ep,
9562 unsigned int sreg, unsigned int treg)
9563 {
9564 const char *brneg = NULL;
9565 const int call = 0;
9566 const char *br;
9567
9568 switch (type)
9569 {
9570 case M_BEQ:
9571 case M_BEQ_I:
9572 br = "beq";
9573 break;
9574 case M_BEQL:
9575 case M_BEQL_I:
9576 br = mips_opts.micromips ? "beq" : "beql";
9577 brneg = "bne";
9578 break;
9579 case M_BNE:
9580 case M_BNE_I:
9581 br = "bne";
9582 break;
9583 case M_BNEL:
9584 case M_BNEL_I:
9585 br = mips_opts.micromips ? "bne" : "bnel";
9586 brneg = "beq";
9587 break;
9588 default:
9589 abort ();
9590 }
9591 if (mips_opts.micromips && brneg)
9592 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9593 else
9594 macro_build (ep, br, "s,t,p", sreg, treg);
9595 }
9596
9597 /* Return the high part that should be loaded in order to make the low
9598 part of VALUE accessible using an offset of OFFBITS bits. */
9599
9600 static offsetT
9601 offset_high_part (offsetT value, unsigned int offbits)
9602 {
9603 offsetT bias;
9604 addressT low_mask;
9605
9606 if (offbits == 0)
9607 return value;
9608 bias = 1 << (offbits - 1);
9609 low_mask = bias * 2 - 1;
9610 return (value + bias) & ~low_mask;
9611 }
9612
9613 /* Return true if the value stored in offset_expr and offset_reloc
9614 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9615 amount that the caller wants to add without inducing overflow
9616 and ALIGN is the known alignment of the value in bytes. */
9617
9618 static bfd_boolean
9619 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9620 {
9621 if (offbits == 16)
9622 {
9623 /* Accept any relocation operator if overflow isn't a concern. */
9624 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9625 return TRUE;
9626
9627 /* These relocations are guaranteed not to overflow in correct links. */
9628 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9629 || gprel16_reloc_p (*offset_reloc))
9630 return TRUE;
9631 }
9632 if (offset_expr.X_op == O_constant
9633 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9634 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9635 return TRUE;
9636 return FALSE;
9637 }
9638
9639 /*
9640 * Build macros
9641 * This routine implements the seemingly endless macro or synthesized
9642 * instructions and addressing modes in the mips assembly language. Many
9643 * of these macros are simple and are similar to each other. These could
9644 * probably be handled by some kind of table or grammar approach instead of
9645 * this verbose method. Others are not simple macros but are more like
9646 * optimizing code generation.
9647 * One interesting optimization is when several store macros appear
9648 * consecutively that would load AT with the upper half of the same address.
9649 * The ensuing load upper instructions are ommited. This implies some kind
9650 * of global optimization. We currently only optimize within a single macro.
9651 * For many of the load and store macros if the address is specified as a
9652 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9653 * first load register 'at' with zero and use it as the base register. The
9654 * mips assembler simply uses register $zero. Just one tiny optimization
9655 * we're missing.
9656 */
9657 static void
9658 macro (struct mips_cl_insn *ip, char *str)
9659 {
9660 const struct mips_operand_array *operands;
9661 unsigned int breg, i;
9662 unsigned int tempreg;
9663 int mask;
9664 int used_at = 0;
9665 expressionS label_expr;
9666 expressionS expr1;
9667 expressionS *ep;
9668 const char *s;
9669 const char *s2;
9670 const char *fmt;
9671 int likely = 0;
9672 int coproc = 0;
9673 int offbits = 16;
9674 int call = 0;
9675 int jals = 0;
9676 int dbl = 0;
9677 int imm = 0;
9678 int ust = 0;
9679 int lp = 0;
9680 bfd_boolean large_offset;
9681 int off;
9682 int hold_mips_optimize;
9683 unsigned int align;
9684 unsigned int op[MAX_OPERANDS];
9685
9686 gas_assert (! mips_opts.mips16);
9687
9688 operands = insn_operands (ip);
9689 for (i = 0; i < MAX_OPERANDS; i++)
9690 if (operands->operand[i])
9691 op[i] = insn_extract_operand (ip, operands->operand[i]);
9692 else
9693 op[i] = -1;
9694
9695 mask = ip->insn_mo->mask;
9696
9697 label_expr.X_op = O_constant;
9698 label_expr.X_op_symbol = NULL;
9699 label_expr.X_add_symbol = NULL;
9700 label_expr.X_add_number = 0;
9701
9702 expr1.X_op = O_constant;
9703 expr1.X_op_symbol = NULL;
9704 expr1.X_add_symbol = NULL;
9705 expr1.X_add_number = 1;
9706 align = 1;
9707
9708 switch (mask)
9709 {
9710 case M_DABS:
9711 dbl = 1;
9712 case M_ABS:
9713 /* bgez $a0,1f
9714 move v0,$a0
9715 sub v0,$zero,$a0
9716 1:
9717 */
9718
9719 start_noreorder ();
9720
9721 if (mips_opts.micromips)
9722 micromips_label_expr (&label_expr);
9723 else
9724 label_expr.X_add_number = 8;
9725 macro_build (&label_expr, "bgez", "s,p", op[1]);
9726 if (op[0] == op[1])
9727 macro_build (NULL, "nop", "");
9728 else
9729 move_register (op[0], op[1]);
9730 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9731 if (mips_opts.micromips)
9732 micromips_add_label ();
9733
9734 end_noreorder ();
9735 break;
9736
9737 case M_ADD_I:
9738 s = "addi";
9739 s2 = "add";
9740 goto do_addi;
9741 case M_ADDU_I:
9742 s = "addiu";
9743 s2 = "addu";
9744 goto do_addi;
9745 case M_DADD_I:
9746 dbl = 1;
9747 s = "daddi";
9748 s2 = "dadd";
9749 if (!mips_opts.micromips)
9750 goto do_addi;
9751 if (imm_expr.X_add_number >= -0x200
9752 && imm_expr.X_add_number < 0x200)
9753 {
9754 macro_build (NULL, s, "t,r,.", op[0], op[1],
9755 (int) imm_expr.X_add_number);
9756 break;
9757 }
9758 goto do_addi_i;
9759 case M_DADDU_I:
9760 dbl = 1;
9761 s = "daddiu";
9762 s2 = "daddu";
9763 do_addi:
9764 if (imm_expr.X_add_number >= -0x8000
9765 && imm_expr.X_add_number < 0x8000)
9766 {
9767 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9768 break;
9769 }
9770 do_addi_i:
9771 used_at = 1;
9772 load_register (AT, &imm_expr, dbl);
9773 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9774 break;
9775
9776 case M_AND_I:
9777 s = "andi";
9778 s2 = "and";
9779 goto do_bit;
9780 case M_OR_I:
9781 s = "ori";
9782 s2 = "or";
9783 goto do_bit;
9784 case M_NOR_I:
9785 s = "";
9786 s2 = "nor";
9787 goto do_bit;
9788 case M_XOR_I:
9789 s = "xori";
9790 s2 = "xor";
9791 do_bit:
9792 if (imm_expr.X_add_number >= 0
9793 && imm_expr.X_add_number < 0x10000)
9794 {
9795 if (mask != M_NOR_I)
9796 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9797 else
9798 {
9799 macro_build (&imm_expr, "ori", "t,r,i",
9800 op[0], op[1], BFD_RELOC_LO16);
9801 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9802 }
9803 break;
9804 }
9805
9806 used_at = 1;
9807 load_register (AT, &imm_expr, GPR_SIZE == 64);
9808 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9809 break;
9810
9811 case M_BALIGN:
9812 switch (imm_expr.X_add_number)
9813 {
9814 case 0:
9815 macro_build (NULL, "nop", "");
9816 break;
9817 case 2:
9818 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9819 break;
9820 case 1:
9821 case 3:
9822 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9823 (int) imm_expr.X_add_number);
9824 break;
9825 default:
9826 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9827 (unsigned long) imm_expr.X_add_number);
9828 break;
9829 }
9830 break;
9831
9832 case M_BC1FL:
9833 case M_BC1TL:
9834 case M_BC2FL:
9835 case M_BC2TL:
9836 gas_assert (mips_opts.micromips);
9837 macro_build_branch_ccl (mask, &offset_expr,
9838 EXTRACT_OPERAND (1, BCC, *ip));
9839 break;
9840
9841 case M_BEQ_I:
9842 case M_BEQL_I:
9843 case M_BNE_I:
9844 case M_BNEL_I:
9845 if (imm_expr.X_add_number == 0)
9846 op[1] = 0;
9847 else
9848 {
9849 op[1] = AT;
9850 used_at = 1;
9851 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9852 }
9853 /* Fall through. */
9854 case M_BEQL:
9855 case M_BNEL:
9856 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9857 break;
9858
9859 case M_BGEL:
9860 likely = 1;
9861 case M_BGE:
9862 if (op[1] == 0)
9863 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9864 else if (op[0] == 0)
9865 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9866 else
9867 {
9868 used_at = 1;
9869 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9870 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9871 &offset_expr, AT, ZERO);
9872 }
9873 break;
9874
9875 case M_BGEZL:
9876 case M_BGEZALL:
9877 case M_BGTZL:
9878 case M_BLEZL:
9879 case M_BLTZL:
9880 case M_BLTZALL:
9881 macro_build_branch_rs (mask, &offset_expr, op[0]);
9882 break;
9883
9884 case M_BGTL_I:
9885 likely = 1;
9886 case M_BGT_I:
9887 /* Check for > max integer. */
9888 if (imm_expr.X_add_number >= GPR_SMAX)
9889 {
9890 do_false:
9891 /* Result is always false. */
9892 if (! likely)
9893 macro_build (NULL, "nop", "");
9894 else
9895 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9896 break;
9897 }
9898 ++imm_expr.X_add_number;
9899 /* FALLTHROUGH */
9900 case M_BGE_I:
9901 case M_BGEL_I:
9902 if (mask == M_BGEL_I)
9903 likely = 1;
9904 if (imm_expr.X_add_number == 0)
9905 {
9906 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9907 &offset_expr, op[0]);
9908 break;
9909 }
9910 if (imm_expr.X_add_number == 1)
9911 {
9912 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9913 &offset_expr, op[0]);
9914 break;
9915 }
9916 if (imm_expr.X_add_number <= GPR_SMIN)
9917 {
9918 do_true:
9919 /* result is always true */
9920 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9921 macro_build (&offset_expr, "b", "p");
9922 break;
9923 }
9924 used_at = 1;
9925 set_at (op[0], 0);
9926 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9927 &offset_expr, AT, ZERO);
9928 break;
9929
9930 case M_BGEUL:
9931 likely = 1;
9932 case M_BGEU:
9933 if (op[1] == 0)
9934 goto do_true;
9935 else if (op[0] == 0)
9936 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9937 &offset_expr, ZERO, op[1]);
9938 else
9939 {
9940 used_at = 1;
9941 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9942 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9943 &offset_expr, AT, ZERO);
9944 }
9945 break;
9946
9947 case M_BGTUL_I:
9948 likely = 1;
9949 case M_BGTU_I:
9950 if (op[0] == 0
9951 || (GPR_SIZE == 32
9952 && imm_expr.X_add_number == -1))
9953 goto do_false;
9954 ++imm_expr.X_add_number;
9955 /* FALLTHROUGH */
9956 case M_BGEU_I:
9957 case M_BGEUL_I:
9958 if (mask == M_BGEUL_I)
9959 likely = 1;
9960 if (imm_expr.X_add_number == 0)
9961 goto do_true;
9962 else if (imm_expr.X_add_number == 1)
9963 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9964 &offset_expr, op[0], ZERO);
9965 else
9966 {
9967 used_at = 1;
9968 set_at (op[0], 1);
9969 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9970 &offset_expr, AT, ZERO);
9971 }
9972 break;
9973
9974 case M_BGTL:
9975 likely = 1;
9976 case M_BGT:
9977 if (op[1] == 0)
9978 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9979 else if (op[0] == 0)
9980 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9981 else
9982 {
9983 used_at = 1;
9984 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9985 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9986 &offset_expr, AT, ZERO);
9987 }
9988 break;
9989
9990 case M_BGTUL:
9991 likely = 1;
9992 case M_BGTU:
9993 if (op[1] == 0)
9994 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9995 &offset_expr, op[0], ZERO);
9996 else if (op[0] == 0)
9997 goto do_false;
9998 else
9999 {
10000 used_at = 1;
10001 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10002 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10003 &offset_expr, AT, ZERO);
10004 }
10005 break;
10006
10007 case M_BLEL:
10008 likely = 1;
10009 case M_BLE:
10010 if (op[1] == 0)
10011 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10012 else if (op[0] == 0)
10013 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10014 else
10015 {
10016 used_at = 1;
10017 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10018 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10019 &offset_expr, AT, ZERO);
10020 }
10021 break;
10022
10023 case M_BLEL_I:
10024 likely = 1;
10025 case M_BLE_I:
10026 if (imm_expr.X_add_number >= GPR_SMAX)
10027 goto do_true;
10028 ++imm_expr.X_add_number;
10029 /* FALLTHROUGH */
10030 case M_BLT_I:
10031 case M_BLTL_I:
10032 if (mask == M_BLTL_I)
10033 likely = 1;
10034 if (imm_expr.X_add_number == 0)
10035 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10036 else if (imm_expr.X_add_number == 1)
10037 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10038 else
10039 {
10040 used_at = 1;
10041 set_at (op[0], 0);
10042 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10043 &offset_expr, AT, ZERO);
10044 }
10045 break;
10046
10047 case M_BLEUL:
10048 likely = 1;
10049 case M_BLEU:
10050 if (op[1] == 0)
10051 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10052 &offset_expr, op[0], ZERO);
10053 else if (op[0] == 0)
10054 goto do_true;
10055 else
10056 {
10057 used_at = 1;
10058 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10059 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10060 &offset_expr, AT, ZERO);
10061 }
10062 break;
10063
10064 case M_BLEUL_I:
10065 likely = 1;
10066 case M_BLEU_I:
10067 if (op[0] == 0
10068 || (GPR_SIZE == 32
10069 && imm_expr.X_add_number == -1))
10070 goto do_true;
10071 ++imm_expr.X_add_number;
10072 /* FALLTHROUGH */
10073 case M_BLTU_I:
10074 case M_BLTUL_I:
10075 if (mask == M_BLTUL_I)
10076 likely = 1;
10077 if (imm_expr.X_add_number == 0)
10078 goto do_false;
10079 else if (imm_expr.X_add_number == 1)
10080 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10081 &offset_expr, op[0], ZERO);
10082 else
10083 {
10084 used_at = 1;
10085 set_at (op[0], 1);
10086 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10087 &offset_expr, AT, ZERO);
10088 }
10089 break;
10090
10091 case M_BLTL:
10092 likely = 1;
10093 case M_BLT:
10094 if (op[1] == 0)
10095 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10096 else if (op[0] == 0)
10097 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10098 else
10099 {
10100 used_at = 1;
10101 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10102 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10103 &offset_expr, AT, ZERO);
10104 }
10105 break;
10106
10107 case M_BLTUL:
10108 likely = 1;
10109 case M_BLTU:
10110 if (op[1] == 0)
10111 goto do_false;
10112 else if (op[0] == 0)
10113 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10114 &offset_expr, ZERO, op[1]);
10115 else
10116 {
10117 used_at = 1;
10118 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10119 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10120 &offset_expr, AT, ZERO);
10121 }
10122 break;
10123
10124 case M_DDIV_3:
10125 dbl = 1;
10126 case M_DIV_3:
10127 s = "mflo";
10128 goto do_div3;
10129 case M_DREM_3:
10130 dbl = 1;
10131 case M_REM_3:
10132 s = "mfhi";
10133 do_div3:
10134 if (op[2] == 0)
10135 {
10136 as_warn (_("divide by zero"));
10137 if (mips_trap)
10138 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10139 else
10140 macro_build (NULL, "break", BRK_FMT, 7);
10141 break;
10142 }
10143
10144 start_noreorder ();
10145 if (mips_trap)
10146 {
10147 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10148 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10149 }
10150 else
10151 {
10152 if (mips_opts.micromips)
10153 micromips_label_expr (&label_expr);
10154 else
10155 label_expr.X_add_number = 8;
10156 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10157 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10158 macro_build (NULL, "break", BRK_FMT, 7);
10159 if (mips_opts.micromips)
10160 micromips_add_label ();
10161 }
10162 expr1.X_add_number = -1;
10163 used_at = 1;
10164 load_register (AT, &expr1, dbl);
10165 if (mips_opts.micromips)
10166 micromips_label_expr (&label_expr);
10167 else
10168 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10169 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10170 if (dbl)
10171 {
10172 expr1.X_add_number = 1;
10173 load_register (AT, &expr1, dbl);
10174 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10175 }
10176 else
10177 {
10178 expr1.X_add_number = 0x80000000;
10179 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10180 }
10181 if (mips_trap)
10182 {
10183 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10184 /* We want to close the noreorder block as soon as possible, so
10185 that later insns are available for delay slot filling. */
10186 end_noreorder ();
10187 }
10188 else
10189 {
10190 if (mips_opts.micromips)
10191 micromips_label_expr (&label_expr);
10192 else
10193 label_expr.X_add_number = 8;
10194 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10195 macro_build (NULL, "nop", "");
10196
10197 /* We want to close the noreorder block as soon as possible, so
10198 that later insns are available for delay slot filling. */
10199 end_noreorder ();
10200
10201 macro_build (NULL, "break", BRK_FMT, 6);
10202 }
10203 if (mips_opts.micromips)
10204 micromips_add_label ();
10205 macro_build (NULL, s, MFHL_FMT, op[0]);
10206 break;
10207
10208 case M_DIV_3I:
10209 s = "div";
10210 s2 = "mflo";
10211 goto do_divi;
10212 case M_DIVU_3I:
10213 s = "divu";
10214 s2 = "mflo";
10215 goto do_divi;
10216 case M_REM_3I:
10217 s = "div";
10218 s2 = "mfhi";
10219 goto do_divi;
10220 case M_REMU_3I:
10221 s = "divu";
10222 s2 = "mfhi";
10223 goto do_divi;
10224 case M_DDIV_3I:
10225 dbl = 1;
10226 s = "ddiv";
10227 s2 = "mflo";
10228 goto do_divi;
10229 case M_DDIVU_3I:
10230 dbl = 1;
10231 s = "ddivu";
10232 s2 = "mflo";
10233 goto do_divi;
10234 case M_DREM_3I:
10235 dbl = 1;
10236 s = "ddiv";
10237 s2 = "mfhi";
10238 goto do_divi;
10239 case M_DREMU_3I:
10240 dbl = 1;
10241 s = "ddivu";
10242 s2 = "mfhi";
10243 do_divi:
10244 if (imm_expr.X_add_number == 0)
10245 {
10246 as_warn (_("divide by zero"));
10247 if (mips_trap)
10248 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10249 else
10250 macro_build (NULL, "break", BRK_FMT, 7);
10251 break;
10252 }
10253 if (imm_expr.X_add_number == 1)
10254 {
10255 if (strcmp (s2, "mflo") == 0)
10256 move_register (op[0], op[1]);
10257 else
10258 move_register (op[0], ZERO);
10259 break;
10260 }
10261 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10262 {
10263 if (strcmp (s2, "mflo") == 0)
10264 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10265 else
10266 move_register (op[0], ZERO);
10267 break;
10268 }
10269
10270 used_at = 1;
10271 load_register (AT, &imm_expr, dbl);
10272 macro_build (NULL, s, "z,s,t", op[1], AT);
10273 macro_build (NULL, s2, MFHL_FMT, op[0]);
10274 break;
10275
10276 case M_DIVU_3:
10277 s = "divu";
10278 s2 = "mflo";
10279 goto do_divu3;
10280 case M_REMU_3:
10281 s = "divu";
10282 s2 = "mfhi";
10283 goto do_divu3;
10284 case M_DDIVU_3:
10285 s = "ddivu";
10286 s2 = "mflo";
10287 goto do_divu3;
10288 case M_DREMU_3:
10289 s = "ddivu";
10290 s2 = "mfhi";
10291 do_divu3:
10292 start_noreorder ();
10293 if (mips_trap)
10294 {
10295 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10296 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10297 /* We want to close the noreorder block as soon as possible, so
10298 that later insns are available for delay slot filling. */
10299 end_noreorder ();
10300 }
10301 else
10302 {
10303 if (mips_opts.micromips)
10304 micromips_label_expr (&label_expr);
10305 else
10306 label_expr.X_add_number = 8;
10307 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10308 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10309
10310 /* We want to close the noreorder block as soon as possible, so
10311 that later insns are available for delay slot filling. */
10312 end_noreorder ();
10313 macro_build (NULL, "break", BRK_FMT, 7);
10314 if (mips_opts.micromips)
10315 micromips_add_label ();
10316 }
10317 macro_build (NULL, s2, MFHL_FMT, op[0]);
10318 break;
10319
10320 case M_DLCA_AB:
10321 dbl = 1;
10322 case M_LCA_AB:
10323 call = 1;
10324 goto do_la;
10325 case M_DLA_AB:
10326 dbl = 1;
10327 case M_LA_AB:
10328 do_la:
10329 /* Load the address of a symbol into a register. If breg is not
10330 zero, we then add a base register to it. */
10331
10332 breg = op[2];
10333 if (dbl && GPR_SIZE == 32)
10334 as_warn (_("dla used to load 32-bit register"));
10335
10336 if (!dbl && HAVE_64BIT_OBJECTS)
10337 as_warn (_("la used to load 64-bit address"));
10338
10339 if (small_offset_p (0, align, 16))
10340 {
10341 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10342 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10343 break;
10344 }
10345
10346 if (mips_opts.at && (op[0] == breg))
10347 {
10348 tempreg = AT;
10349 used_at = 1;
10350 }
10351 else
10352 tempreg = op[0];
10353
10354 if (offset_expr.X_op != O_symbol
10355 && offset_expr.X_op != O_constant)
10356 {
10357 as_bad (_("expression too complex"));
10358 offset_expr.X_op = O_constant;
10359 }
10360
10361 if (offset_expr.X_op == O_constant)
10362 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10363 else if (mips_pic == NO_PIC)
10364 {
10365 /* If this is a reference to a GP relative symbol, we want
10366 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10367 Otherwise we want
10368 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10369 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10370 If we have a constant, we need two instructions anyhow,
10371 so we may as well always use the latter form.
10372
10373 With 64bit address space and a usable $at we want
10374 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10375 lui $at,<sym> (BFD_RELOC_HI16_S)
10376 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10377 daddiu $at,<sym> (BFD_RELOC_LO16)
10378 dsll32 $tempreg,0
10379 daddu $tempreg,$tempreg,$at
10380
10381 If $at is already in use, we use a path which is suboptimal
10382 on superscalar processors.
10383 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10384 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10385 dsll $tempreg,16
10386 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10387 dsll $tempreg,16
10388 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10389
10390 For GP relative symbols in 64bit address space we can use
10391 the same sequence as in 32bit address space. */
10392 if (HAVE_64BIT_SYMBOLS)
10393 {
10394 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10395 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10396 {
10397 relax_start (offset_expr.X_add_symbol);
10398 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10399 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10400 relax_switch ();
10401 }
10402
10403 if (used_at == 0 && mips_opts.at)
10404 {
10405 macro_build (&offset_expr, "lui", LUI_FMT,
10406 tempreg, BFD_RELOC_MIPS_HIGHEST);
10407 macro_build (&offset_expr, "lui", LUI_FMT,
10408 AT, BFD_RELOC_HI16_S);
10409 macro_build (&offset_expr, "daddiu", "t,r,j",
10410 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10411 macro_build (&offset_expr, "daddiu", "t,r,j",
10412 AT, AT, BFD_RELOC_LO16);
10413 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10414 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10415 used_at = 1;
10416 }
10417 else
10418 {
10419 macro_build (&offset_expr, "lui", LUI_FMT,
10420 tempreg, BFD_RELOC_MIPS_HIGHEST);
10421 macro_build (&offset_expr, "daddiu", "t,r,j",
10422 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10423 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10424 macro_build (&offset_expr, "daddiu", "t,r,j",
10425 tempreg, tempreg, BFD_RELOC_HI16_S);
10426 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10427 macro_build (&offset_expr, "daddiu", "t,r,j",
10428 tempreg, tempreg, BFD_RELOC_LO16);
10429 }
10430
10431 if (mips_relax.sequence)
10432 relax_end ();
10433 }
10434 else
10435 {
10436 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10437 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10438 {
10439 relax_start (offset_expr.X_add_symbol);
10440 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10441 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10442 relax_switch ();
10443 }
10444 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10445 as_bad (_("offset too large"));
10446 macro_build_lui (&offset_expr, tempreg);
10447 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10448 tempreg, tempreg, BFD_RELOC_LO16);
10449 if (mips_relax.sequence)
10450 relax_end ();
10451 }
10452 }
10453 else if (!mips_big_got && !HAVE_NEWABI)
10454 {
10455 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10456
10457 /* If this is a reference to an external symbol, and there
10458 is no constant, we want
10459 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10460 or for lca or if tempreg is PIC_CALL_REG
10461 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10462 For a local symbol, we want
10463 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10464 nop
10465 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10466
10467 If we have a small constant, and this is a reference to
10468 an external symbol, we want
10469 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10470 nop
10471 addiu $tempreg,$tempreg,<constant>
10472 For a local symbol, we want the same instruction
10473 sequence, but we output a BFD_RELOC_LO16 reloc on the
10474 addiu instruction.
10475
10476 If we have a large constant, and this is a reference to
10477 an external symbol, we want
10478 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10479 lui $at,<hiconstant>
10480 addiu $at,$at,<loconstant>
10481 addu $tempreg,$tempreg,$at
10482 For a local symbol, we want the same instruction
10483 sequence, but we output a BFD_RELOC_LO16 reloc on the
10484 addiu instruction.
10485 */
10486
10487 if (offset_expr.X_add_number == 0)
10488 {
10489 if (mips_pic == SVR4_PIC
10490 && breg == 0
10491 && (call || tempreg == PIC_CALL_REG))
10492 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10493
10494 relax_start (offset_expr.X_add_symbol);
10495 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10496 lw_reloc_type, mips_gp_register);
10497 if (breg != 0)
10498 {
10499 /* We're going to put in an addu instruction using
10500 tempreg, so we may as well insert the nop right
10501 now. */
10502 load_delay_nop ();
10503 }
10504 relax_switch ();
10505 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10506 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10507 load_delay_nop ();
10508 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10509 tempreg, tempreg, BFD_RELOC_LO16);
10510 relax_end ();
10511 /* FIXME: If breg == 0, and the next instruction uses
10512 $tempreg, then if this variant case is used an extra
10513 nop will be generated. */
10514 }
10515 else if (offset_expr.X_add_number >= -0x8000
10516 && offset_expr.X_add_number < 0x8000)
10517 {
10518 load_got_offset (tempreg, &offset_expr);
10519 load_delay_nop ();
10520 add_got_offset (tempreg, &offset_expr);
10521 }
10522 else
10523 {
10524 expr1.X_add_number = offset_expr.X_add_number;
10525 offset_expr.X_add_number =
10526 SEXT_16BIT (offset_expr.X_add_number);
10527 load_got_offset (tempreg, &offset_expr);
10528 offset_expr.X_add_number = expr1.X_add_number;
10529 /* If we are going to add in a base register, and the
10530 target register and the base register are the same,
10531 then we are using AT as a temporary register. Since
10532 we want to load the constant into AT, we add our
10533 current AT (from the global offset table) and the
10534 register into the register now, and pretend we were
10535 not using a base register. */
10536 if (breg == op[0])
10537 {
10538 load_delay_nop ();
10539 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10540 op[0], AT, breg);
10541 breg = 0;
10542 tempreg = op[0];
10543 }
10544 add_got_offset_hilo (tempreg, &offset_expr, AT);
10545 used_at = 1;
10546 }
10547 }
10548 else if (!mips_big_got && HAVE_NEWABI)
10549 {
10550 int add_breg_early = 0;
10551
10552 /* If this is a reference to an external, and there is no
10553 constant, or local symbol (*), with or without a
10554 constant, we want
10555 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10556 or for lca or if tempreg is PIC_CALL_REG
10557 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10558
10559 If we have a small constant, and this is a reference to
10560 an external symbol, we want
10561 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10562 addiu $tempreg,$tempreg,<constant>
10563
10564 If we have a large constant, and this is a reference to
10565 an external symbol, we want
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10567 lui $at,<hiconstant>
10568 addiu $at,$at,<loconstant>
10569 addu $tempreg,$tempreg,$at
10570
10571 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10572 local symbols, even though it introduces an additional
10573 instruction. */
10574
10575 if (offset_expr.X_add_number)
10576 {
10577 expr1.X_add_number = offset_expr.X_add_number;
10578 offset_expr.X_add_number = 0;
10579
10580 relax_start (offset_expr.X_add_symbol);
10581 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10582 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10583
10584 if (expr1.X_add_number >= -0x8000
10585 && expr1.X_add_number < 0x8000)
10586 {
10587 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10588 tempreg, tempreg, BFD_RELOC_LO16);
10589 }
10590 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10591 {
10592 unsigned int dreg;
10593
10594 /* If we are going to add in a base register, and the
10595 target register and the base register are the same,
10596 then we are using AT as a temporary register. Since
10597 we want to load the constant into AT, we add our
10598 current AT (from the global offset table) and the
10599 register into the register now, and pretend we were
10600 not using a base register. */
10601 if (breg != op[0])
10602 dreg = tempreg;
10603 else
10604 {
10605 gas_assert (tempreg == AT);
10606 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10607 op[0], AT, breg);
10608 dreg = op[0];
10609 add_breg_early = 1;
10610 }
10611
10612 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10613 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10614 dreg, dreg, AT);
10615
10616 used_at = 1;
10617 }
10618 else
10619 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10620
10621 relax_switch ();
10622 offset_expr.X_add_number = expr1.X_add_number;
10623
10624 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10625 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10626 if (add_breg_early)
10627 {
10628 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10629 op[0], tempreg, breg);
10630 breg = 0;
10631 tempreg = op[0];
10632 }
10633 relax_end ();
10634 }
10635 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10636 {
10637 relax_start (offset_expr.X_add_symbol);
10638 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10639 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10640 relax_switch ();
10641 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10642 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10643 relax_end ();
10644 }
10645 else
10646 {
10647 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10648 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10649 }
10650 }
10651 else if (mips_big_got && !HAVE_NEWABI)
10652 {
10653 int gpdelay;
10654 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10655 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10656 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10657
10658 /* This is the large GOT case. If this is a reference to an
10659 external symbol, and there is no constant, we want
10660 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10661 addu $tempreg,$tempreg,$gp
10662 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10663 or for lca or if tempreg is PIC_CALL_REG
10664 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10665 addu $tempreg,$tempreg,$gp
10666 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10667 For a local symbol, we want
10668 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10669 nop
10670 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10671
10672 If we have a small constant, and this is a reference to
10673 an external symbol, we want
10674 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10675 addu $tempreg,$tempreg,$gp
10676 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10677 nop
10678 addiu $tempreg,$tempreg,<constant>
10679 For a local symbol, we want
10680 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10681 nop
10682 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10683
10684 If we have a large constant, and this is a reference to
10685 an external symbol, we want
10686 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10687 addu $tempreg,$tempreg,$gp
10688 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10689 lui $at,<hiconstant>
10690 addiu $at,$at,<loconstant>
10691 addu $tempreg,$tempreg,$at
10692 For a local symbol, we want
10693 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10694 lui $at,<hiconstant>
10695 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10696 addu $tempreg,$tempreg,$at
10697 */
10698
10699 expr1.X_add_number = offset_expr.X_add_number;
10700 offset_expr.X_add_number = 0;
10701 relax_start (offset_expr.X_add_symbol);
10702 gpdelay = reg_needs_delay (mips_gp_register);
10703 if (expr1.X_add_number == 0 && breg == 0
10704 && (call || tempreg == PIC_CALL_REG))
10705 {
10706 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10707 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10708 }
10709 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10710 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10711 tempreg, tempreg, mips_gp_register);
10712 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10713 tempreg, lw_reloc_type, tempreg);
10714 if (expr1.X_add_number == 0)
10715 {
10716 if (breg != 0)
10717 {
10718 /* We're going to put in an addu instruction using
10719 tempreg, so we may as well insert the nop right
10720 now. */
10721 load_delay_nop ();
10722 }
10723 }
10724 else if (expr1.X_add_number >= -0x8000
10725 && expr1.X_add_number < 0x8000)
10726 {
10727 load_delay_nop ();
10728 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10729 tempreg, tempreg, BFD_RELOC_LO16);
10730 }
10731 else
10732 {
10733 unsigned int dreg;
10734
10735 /* If we are going to add in a base register, and the
10736 target register and the base register are the same,
10737 then we are using AT as a temporary register. Since
10738 we want to load the constant into AT, we add our
10739 current AT (from the global offset table) and the
10740 register into the register now, and pretend we were
10741 not using a base register. */
10742 if (breg != op[0])
10743 dreg = tempreg;
10744 else
10745 {
10746 gas_assert (tempreg == AT);
10747 load_delay_nop ();
10748 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10749 op[0], AT, breg);
10750 dreg = op[0];
10751 }
10752
10753 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10754 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10755
10756 used_at = 1;
10757 }
10758 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10759 relax_switch ();
10760
10761 if (gpdelay)
10762 {
10763 /* This is needed because this instruction uses $gp, but
10764 the first instruction on the main stream does not. */
10765 macro_build (NULL, "nop", "");
10766 }
10767
10768 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10769 local_reloc_type, mips_gp_register);
10770 if (expr1.X_add_number >= -0x8000
10771 && expr1.X_add_number < 0x8000)
10772 {
10773 load_delay_nop ();
10774 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10775 tempreg, tempreg, BFD_RELOC_LO16);
10776 /* FIXME: If add_number is 0, and there was no base
10777 register, the external symbol case ended with a load,
10778 so if the symbol turns out to not be external, and
10779 the next instruction uses tempreg, an unnecessary nop
10780 will be inserted. */
10781 }
10782 else
10783 {
10784 if (breg == op[0])
10785 {
10786 /* We must add in the base register now, as in the
10787 external symbol case. */
10788 gas_assert (tempreg == AT);
10789 load_delay_nop ();
10790 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10791 op[0], AT, breg);
10792 tempreg = op[0];
10793 /* We set breg to 0 because we have arranged to add
10794 it in in both cases. */
10795 breg = 0;
10796 }
10797
10798 macro_build_lui (&expr1, AT);
10799 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10800 AT, AT, BFD_RELOC_LO16);
10801 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10802 tempreg, tempreg, AT);
10803 used_at = 1;
10804 }
10805 relax_end ();
10806 }
10807 else if (mips_big_got && HAVE_NEWABI)
10808 {
10809 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10810 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10811 int add_breg_early = 0;
10812
10813 /* This is the large GOT case. If this is a reference to an
10814 external symbol, and there is no constant, we want
10815 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10816 add $tempreg,$tempreg,$gp
10817 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10818 or for lca or if tempreg is PIC_CALL_REG
10819 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10820 add $tempreg,$tempreg,$gp
10821 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10822
10823 If we have a small constant, and this is a reference to
10824 an external symbol, we want
10825 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10826 add $tempreg,$tempreg,$gp
10827 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10828 addi $tempreg,$tempreg,<constant>
10829
10830 If we have a large constant, and this is a reference to
10831 an external symbol, we want
10832 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10833 addu $tempreg,$tempreg,$gp
10834 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10835 lui $at,<hiconstant>
10836 addi $at,$at,<loconstant>
10837 add $tempreg,$tempreg,$at
10838
10839 If we have NewABI, and we know it's a local symbol, we want
10840 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10841 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10842 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10843
10844 relax_start (offset_expr.X_add_symbol);
10845
10846 expr1.X_add_number = offset_expr.X_add_number;
10847 offset_expr.X_add_number = 0;
10848
10849 if (expr1.X_add_number == 0 && breg == 0
10850 && (call || tempreg == PIC_CALL_REG))
10851 {
10852 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10853 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10854 }
10855 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10856 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10857 tempreg, tempreg, mips_gp_register);
10858 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10859 tempreg, lw_reloc_type, tempreg);
10860
10861 if (expr1.X_add_number == 0)
10862 ;
10863 else if (expr1.X_add_number >= -0x8000
10864 && expr1.X_add_number < 0x8000)
10865 {
10866 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10867 tempreg, tempreg, BFD_RELOC_LO16);
10868 }
10869 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10870 {
10871 unsigned int dreg;
10872
10873 /* If we are going to add in a base register, and the
10874 target register and the base register are the same,
10875 then we are using AT as a temporary register. Since
10876 we want to load the constant into AT, we add our
10877 current AT (from the global offset table) and the
10878 register into the register now, and pretend we were
10879 not using a base register. */
10880 if (breg != op[0])
10881 dreg = tempreg;
10882 else
10883 {
10884 gas_assert (tempreg == AT);
10885 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10886 op[0], AT, breg);
10887 dreg = op[0];
10888 add_breg_early = 1;
10889 }
10890
10891 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10892 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10893
10894 used_at = 1;
10895 }
10896 else
10897 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10898
10899 relax_switch ();
10900 offset_expr.X_add_number = expr1.X_add_number;
10901 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10902 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10903 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10904 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10905 if (add_breg_early)
10906 {
10907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10908 op[0], tempreg, breg);
10909 breg = 0;
10910 tempreg = op[0];
10911 }
10912 relax_end ();
10913 }
10914 else
10915 abort ();
10916
10917 if (breg != 0)
10918 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10919 break;
10920
10921 case M_MSGSND:
10922 gas_assert (!mips_opts.micromips);
10923 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10924 break;
10925
10926 case M_MSGLD:
10927 gas_assert (!mips_opts.micromips);
10928 macro_build (NULL, "c2", "C", 0x02);
10929 break;
10930
10931 case M_MSGLD_T:
10932 gas_assert (!mips_opts.micromips);
10933 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10934 break;
10935
10936 case M_MSGWAIT:
10937 gas_assert (!mips_opts.micromips);
10938 macro_build (NULL, "c2", "C", 3);
10939 break;
10940
10941 case M_MSGWAIT_T:
10942 gas_assert (!mips_opts.micromips);
10943 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10944 break;
10945
10946 case M_J_A:
10947 /* The j instruction may not be used in PIC code, since it
10948 requires an absolute address. We convert it to a b
10949 instruction. */
10950 if (mips_pic == NO_PIC)
10951 macro_build (&offset_expr, "j", "a");
10952 else
10953 macro_build (&offset_expr, "b", "p");
10954 break;
10955
10956 /* The jal instructions must be handled as macros because when
10957 generating PIC code they expand to multi-instruction
10958 sequences. Normally they are simple instructions. */
10959 case M_JALS_1:
10960 op[1] = op[0];
10961 op[0] = RA;
10962 /* Fall through. */
10963 case M_JALS_2:
10964 gas_assert (mips_opts.micromips);
10965 if (mips_opts.insn32)
10966 {
10967 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10968 break;
10969 }
10970 jals = 1;
10971 goto jal;
10972 case M_JAL_1:
10973 op[1] = op[0];
10974 op[0] = RA;
10975 /* Fall through. */
10976 case M_JAL_2:
10977 jal:
10978 if (mips_pic == NO_PIC)
10979 {
10980 s = jals ? "jalrs" : "jalr";
10981 if (mips_opts.micromips
10982 && !mips_opts.insn32
10983 && op[0] == RA
10984 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10985 macro_build (NULL, s, "mj", op[1]);
10986 else
10987 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10988 }
10989 else
10990 {
10991 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10992 && mips_cprestore_offset >= 0);
10993
10994 if (op[1] != PIC_CALL_REG)
10995 as_warn (_("MIPS PIC call to register other than $25"));
10996
10997 s = ((mips_opts.micromips
10998 && !mips_opts.insn32
10999 && (!mips_opts.noreorder || cprestore))
11000 ? "jalrs" : "jalr");
11001 if (mips_opts.micromips
11002 && !mips_opts.insn32
11003 && op[0] == RA
11004 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11005 macro_build (NULL, s, "mj", op[1]);
11006 else
11007 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11008 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11009 {
11010 if (mips_cprestore_offset < 0)
11011 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11012 else
11013 {
11014 if (!mips_frame_reg_valid)
11015 {
11016 as_warn (_("no .frame pseudo-op used in PIC code"));
11017 /* Quiet this warning. */
11018 mips_frame_reg_valid = 1;
11019 }
11020 if (!mips_cprestore_valid)
11021 {
11022 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11023 /* Quiet this warning. */
11024 mips_cprestore_valid = 1;
11025 }
11026 if (mips_opts.noreorder)
11027 macro_build (NULL, "nop", "");
11028 expr1.X_add_number = mips_cprestore_offset;
11029 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11030 mips_gp_register,
11031 mips_frame_reg,
11032 HAVE_64BIT_ADDRESSES);
11033 }
11034 }
11035 }
11036
11037 break;
11038
11039 case M_JALS_A:
11040 gas_assert (mips_opts.micromips);
11041 if (mips_opts.insn32)
11042 {
11043 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11044 break;
11045 }
11046 jals = 1;
11047 /* Fall through. */
11048 case M_JAL_A:
11049 if (mips_pic == NO_PIC)
11050 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11051 else if (mips_pic == SVR4_PIC)
11052 {
11053 /* If this is a reference to an external symbol, and we are
11054 using a small GOT, we want
11055 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11056 nop
11057 jalr $ra,$25
11058 nop
11059 lw $gp,cprestore($sp)
11060 The cprestore value is set using the .cprestore
11061 pseudo-op. If we are using a big GOT, we want
11062 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11063 addu $25,$25,$gp
11064 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11065 nop
11066 jalr $ra,$25
11067 nop
11068 lw $gp,cprestore($sp)
11069 If the symbol is not external, we want
11070 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11071 nop
11072 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11073 jalr $ra,$25
11074 nop
11075 lw $gp,cprestore($sp)
11076
11077 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11078 sequences above, minus nops, unless the symbol is local,
11079 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11080 GOT_DISP. */
11081 if (HAVE_NEWABI)
11082 {
11083 if (!mips_big_got)
11084 {
11085 relax_start (offset_expr.X_add_symbol);
11086 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11087 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11088 mips_gp_register);
11089 relax_switch ();
11090 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11091 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11092 mips_gp_register);
11093 relax_end ();
11094 }
11095 else
11096 {
11097 relax_start (offset_expr.X_add_symbol);
11098 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11099 BFD_RELOC_MIPS_CALL_HI16);
11100 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11101 PIC_CALL_REG, mips_gp_register);
11102 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11103 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11104 PIC_CALL_REG);
11105 relax_switch ();
11106 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11107 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11108 mips_gp_register);
11109 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11110 PIC_CALL_REG, PIC_CALL_REG,
11111 BFD_RELOC_MIPS_GOT_OFST);
11112 relax_end ();
11113 }
11114
11115 macro_build_jalr (&offset_expr, 0);
11116 }
11117 else
11118 {
11119 relax_start (offset_expr.X_add_symbol);
11120 if (!mips_big_got)
11121 {
11122 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11123 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11124 mips_gp_register);
11125 load_delay_nop ();
11126 relax_switch ();
11127 }
11128 else
11129 {
11130 int gpdelay;
11131
11132 gpdelay = reg_needs_delay (mips_gp_register);
11133 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11134 BFD_RELOC_MIPS_CALL_HI16);
11135 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11136 PIC_CALL_REG, mips_gp_register);
11137 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11138 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11139 PIC_CALL_REG);
11140 load_delay_nop ();
11141 relax_switch ();
11142 if (gpdelay)
11143 macro_build (NULL, "nop", "");
11144 }
11145 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11146 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11147 mips_gp_register);
11148 load_delay_nop ();
11149 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11150 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11151 relax_end ();
11152 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11153
11154 if (mips_cprestore_offset < 0)
11155 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11156 else
11157 {
11158 if (!mips_frame_reg_valid)
11159 {
11160 as_warn (_("no .frame pseudo-op used in PIC code"));
11161 /* Quiet this warning. */
11162 mips_frame_reg_valid = 1;
11163 }
11164 if (!mips_cprestore_valid)
11165 {
11166 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11167 /* Quiet this warning. */
11168 mips_cprestore_valid = 1;
11169 }
11170 if (mips_opts.noreorder)
11171 macro_build (NULL, "nop", "");
11172 expr1.X_add_number = mips_cprestore_offset;
11173 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11174 mips_gp_register,
11175 mips_frame_reg,
11176 HAVE_64BIT_ADDRESSES);
11177 }
11178 }
11179 }
11180 else if (mips_pic == VXWORKS_PIC)
11181 as_bad (_("non-PIC jump used in PIC library"));
11182 else
11183 abort ();
11184
11185 break;
11186
11187 case M_LBUE_AB:
11188 s = "lbue";
11189 fmt = "t,+j(b)";
11190 offbits = 9;
11191 goto ld_st;
11192 case M_LHUE_AB:
11193 s = "lhue";
11194 fmt = "t,+j(b)";
11195 offbits = 9;
11196 goto ld_st;
11197 case M_LBE_AB:
11198 s = "lbe";
11199 fmt = "t,+j(b)";
11200 offbits = 9;
11201 goto ld_st;
11202 case M_LHE_AB:
11203 s = "lhe";
11204 fmt = "t,+j(b)";
11205 offbits = 9;
11206 goto ld_st;
11207 case M_LLE_AB:
11208 s = "lle";
11209 fmt = "t,+j(b)";
11210 offbits = 9;
11211 goto ld_st;
11212 case M_LWE_AB:
11213 s = "lwe";
11214 fmt = "t,+j(b)";
11215 offbits = 9;
11216 goto ld_st;
11217 case M_LWLE_AB:
11218 s = "lwle";
11219 fmt = "t,+j(b)";
11220 offbits = 9;
11221 goto ld_st;
11222 case M_LWRE_AB:
11223 s = "lwre";
11224 fmt = "t,+j(b)";
11225 offbits = 9;
11226 goto ld_st;
11227 case M_SBE_AB:
11228 s = "sbe";
11229 fmt = "t,+j(b)";
11230 offbits = 9;
11231 goto ld_st;
11232 case M_SCE_AB:
11233 s = "sce";
11234 fmt = "t,+j(b)";
11235 offbits = 9;
11236 goto ld_st;
11237 case M_SHE_AB:
11238 s = "she";
11239 fmt = "t,+j(b)";
11240 offbits = 9;
11241 goto ld_st;
11242 case M_SWE_AB:
11243 s = "swe";
11244 fmt = "t,+j(b)";
11245 offbits = 9;
11246 goto ld_st;
11247 case M_SWLE_AB:
11248 s = "swle";
11249 fmt = "t,+j(b)";
11250 offbits = 9;
11251 goto ld_st;
11252 case M_SWRE_AB:
11253 s = "swre";
11254 fmt = "t,+j(b)";
11255 offbits = 9;
11256 goto ld_st;
11257 case M_ACLR_AB:
11258 s = "aclr";
11259 fmt = "\\,~(b)";
11260 offbits = 12;
11261 goto ld_st;
11262 case M_ASET_AB:
11263 s = "aset";
11264 fmt = "\\,~(b)";
11265 offbits = 12;
11266 goto ld_st;
11267 case M_LB_AB:
11268 s = "lb";
11269 fmt = "t,o(b)";
11270 goto ld;
11271 case M_LBU_AB:
11272 s = "lbu";
11273 fmt = "t,o(b)";
11274 goto ld;
11275 case M_LH_AB:
11276 s = "lh";
11277 fmt = "t,o(b)";
11278 goto ld;
11279 case M_LHU_AB:
11280 s = "lhu";
11281 fmt = "t,o(b)";
11282 goto ld;
11283 case M_LW_AB:
11284 s = "lw";
11285 fmt = "t,o(b)";
11286 goto ld;
11287 case M_LWC0_AB:
11288 gas_assert (!mips_opts.micromips);
11289 s = "lwc0";
11290 fmt = "E,o(b)";
11291 /* Itbl support may require additional care here. */
11292 coproc = 1;
11293 goto ld_st;
11294 case M_LWC1_AB:
11295 s = "lwc1";
11296 fmt = "T,o(b)";
11297 /* Itbl support may require additional care here. */
11298 coproc = 1;
11299 goto ld_st;
11300 case M_LWC2_AB:
11301 s = "lwc2";
11302 fmt = COP12_FMT;
11303 offbits = (mips_opts.micromips ? 12
11304 : ISA_IS_R6 (mips_opts.isa) ? 11
11305 : 16);
11306 /* Itbl support may require additional care here. */
11307 coproc = 1;
11308 goto ld_st;
11309 case M_LWC3_AB:
11310 gas_assert (!mips_opts.micromips);
11311 s = "lwc3";
11312 fmt = "E,o(b)";
11313 /* Itbl support may require additional care here. */
11314 coproc = 1;
11315 goto ld_st;
11316 case M_LWL_AB:
11317 s = "lwl";
11318 fmt = MEM12_FMT;
11319 offbits = (mips_opts.micromips ? 12 : 16);
11320 goto ld_st;
11321 case M_LWR_AB:
11322 s = "lwr";
11323 fmt = MEM12_FMT;
11324 offbits = (mips_opts.micromips ? 12 : 16);
11325 goto ld_st;
11326 case M_LDC1_AB:
11327 s = "ldc1";
11328 fmt = "T,o(b)";
11329 /* Itbl support may require additional care here. */
11330 coproc = 1;
11331 goto ld_st;
11332 case M_LDC2_AB:
11333 s = "ldc2";
11334 fmt = COP12_FMT;
11335 offbits = (mips_opts.micromips ? 12
11336 : ISA_IS_R6 (mips_opts.isa) ? 11
11337 : 16);
11338 /* Itbl support may require additional care here. */
11339 coproc = 1;
11340 goto ld_st;
11341 case M_LQC2_AB:
11342 s = "lqc2";
11343 fmt = "+7,o(b)";
11344 /* Itbl support may require additional care here. */
11345 coproc = 1;
11346 goto ld_st;
11347 case M_LDC3_AB:
11348 s = "ldc3";
11349 fmt = "E,o(b)";
11350 /* Itbl support may require additional care here. */
11351 coproc = 1;
11352 goto ld_st;
11353 case M_LDL_AB:
11354 s = "ldl";
11355 fmt = MEM12_FMT;
11356 offbits = (mips_opts.micromips ? 12 : 16);
11357 goto ld_st;
11358 case M_LDR_AB:
11359 s = "ldr";
11360 fmt = MEM12_FMT;
11361 offbits = (mips_opts.micromips ? 12 : 16);
11362 goto ld_st;
11363 case M_LL_AB:
11364 s = "ll";
11365 fmt = LL_SC_FMT;
11366 offbits = (mips_opts.micromips ? 12
11367 : ISA_IS_R6 (mips_opts.isa) ? 9
11368 : 16);
11369 goto ld;
11370 case M_LLD_AB:
11371 s = "lld";
11372 fmt = LL_SC_FMT;
11373 offbits = (mips_opts.micromips ? 12
11374 : ISA_IS_R6 (mips_opts.isa) ? 9
11375 : 16);
11376 goto ld;
11377 case M_LWU_AB:
11378 s = "lwu";
11379 fmt = MEM12_FMT;
11380 offbits = (mips_opts.micromips ? 12 : 16);
11381 goto ld;
11382 case M_LWP_AB:
11383 gas_assert (mips_opts.micromips);
11384 s = "lwp";
11385 fmt = "t,~(b)";
11386 offbits = 12;
11387 lp = 1;
11388 goto ld;
11389 case M_LDP_AB:
11390 gas_assert (mips_opts.micromips);
11391 s = "ldp";
11392 fmt = "t,~(b)";
11393 offbits = 12;
11394 lp = 1;
11395 goto ld;
11396 case M_LWM_AB:
11397 gas_assert (mips_opts.micromips);
11398 s = "lwm";
11399 fmt = "n,~(b)";
11400 offbits = 12;
11401 goto ld_st;
11402 case M_LDM_AB:
11403 gas_assert (mips_opts.micromips);
11404 s = "ldm";
11405 fmt = "n,~(b)";
11406 offbits = 12;
11407 goto ld_st;
11408
11409 ld:
11410 /* We don't want to use $0 as tempreg. */
11411 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11412 goto ld_st;
11413 else
11414 tempreg = op[0] + lp;
11415 goto ld_noat;
11416
11417 case M_SB_AB:
11418 s = "sb";
11419 fmt = "t,o(b)";
11420 goto ld_st;
11421 case M_SH_AB:
11422 s = "sh";
11423 fmt = "t,o(b)";
11424 goto ld_st;
11425 case M_SW_AB:
11426 s = "sw";
11427 fmt = "t,o(b)";
11428 goto ld_st;
11429 case M_SWC0_AB:
11430 gas_assert (!mips_opts.micromips);
11431 s = "swc0";
11432 fmt = "E,o(b)";
11433 /* Itbl support may require additional care here. */
11434 coproc = 1;
11435 goto ld_st;
11436 case M_SWC1_AB:
11437 s = "swc1";
11438 fmt = "T,o(b)";
11439 /* Itbl support may require additional care here. */
11440 coproc = 1;
11441 goto ld_st;
11442 case M_SWC2_AB:
11443 s = "swc2";
11444 fmt = COP12_FMT;
11445 offbits = (mips_opts.micromips ? 12
11446 : ISA_IS_R6 (mips_opts.isa) ? 11
11447 : 16);
11448 /* Itbl support may require additional care here. */
11449 coproc = 1;
11450 goto ld_st;
11451 case M_SWC3_AB:
11452 gas_assert (!mips_opts.micromips);
11453 s = "swc3";
11454 fmt = "E,o(b)";
11455 /* Itbl support may require additional care here. */
11456 coproc = 1;
11457 goto ld_st;
11458 case M_SWL_AB:
11459 s = "swl";
11460 fmt = MEM12_FMT;
11461 offbits = (mips_opts.micromips ? 12 : 16);
11462 goto ld_st;
11463 case M_SWR_AB:
11464 s = "swr";
11465 fmt = MEM12_FMT;
11466 offbits = (mips_opts.micromips ? 12 : 16);
11467 goto ld_st;
11468 case M_SC_AB:
11469 s = "sc";
11470 fmt = LL_SC_FMT;
11471 offbits = (mips_opts.micromips ? 12
11472 : ISA_IS_R6 (mips_opts.isa) ? 9
11473 : 16);
11474 goto ld_st;
11475 case M_SCD_AB:
11476 s = "scd";
11477 fmt = LL_SC_FMT;
11478 offbits = (mips_opts.micromips ? 12
11479 : ISA_IS_R6 (mips_opts.isa) ? 9
11480 : 16);
11481 goto ld_st;
11482 case M_CACHE_AB:
11483 s = "cache";
11484 fmt = (mips_opts.micromips ? "k,~(b)"
11485 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11486 : "k,o(b)");
11487 offbits = (mips_opts.micromips ? 12
11488 : ISA_IS_R6 (mips_opts.isa) ? 9
11489 : 16);
11490 goto ld_st;
11491 case M_CACHEE_AB:
11492 s = "cachee";
11493 fmt = "k,+j(b)";
11494 offbits = 9;
11495 goto ld_st;
11496 case M_PREF_AB:
11497 s = "pref";
11498 fmt = (mips_opts.micromips ? "k,~(b)"
11499 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11500 : "k,o(b)");
11501 offbits = (mips_opts.micromips ? 12
11502 : ISA_IS_R6 (mips_opts.isa) ? 9
11503 : 16);
11504 goto ld_st;
11505 case M_PREFE_AB:
11506 s = "prefe";
11507 fmt = "k,+j(b)";
11508 offbits = 9;
11509 goto ld_st;
11510 case M_SDC1_AB:
11511 s = "sdc1";
11512 fmt = "T,o(b)";
11513 coproc = 1;
11514 /* Itbl support may require additional care here. */
11515 goto ld_st;
11516 case M_SDC2_AB:
11517 s = "sdc2";
11518 fmt = COP12_FMT;
11519 offbits = (mips_opts.micromips ? 12
11520 : ISA_IS_R6 (mips_opts.isa) ? 11
11521 : 16);
11522 /* Itbl support may require additional care here. */
11523 coproc = 1;
11524 goto ld_st;
11525 case M_SQC2_AB:
11526 s = "sqc2";
11527 fmt = "+7,o(b)";
11528 /* Itbl support may require additional care here. */
11529 coproc = 1;
11530 goto ld_st;
11531 case M_SDC3_AB:
11532 gas_assert (!mips_opts.micromips);
11533 s = "sdc3";
11534 fmt = "E,o(b)";
11535 /* Itbl support may require additional care here. */
11536 coproc = 1;
11537 goto ld_st;
11538 case M_SDL_AB:
11539 s = "sdl";
11540 fmt = MEM12_FMT;
11541 offbits = (mips_opts.micromips ? 12 : 16);
11542 goto ld_st;
11543 case M_SDR_AB:
11544 s = "sdr";
11545 fmt = MEM12_FMT;
11546 offbits = (mips_opts.micromips ? 12 : 16);
11547 goto ld_st;
11548 case M_SWP_AB:
11549 gas_assert (mips_opts.micromips);
11550 s = "swp";
11551 fmt = "t,~(b)";
11552 offbits = 12;
11553 goto ld_st;
11554 case M_SDP_AB:
11555 gas_assert (mips_opts.micromips);
11556 s = "sdp";
11557 fmt = "t,~(b)";
11558 offbits = 12;
11559 goto ld_st;
11560 case M_SWM_AB:
11561 gas_assert (mips_opts.micromips);
11562 s = "swm";
11563 fmt = "n,~(b)";
11564 offbits = 12;
11565 goto ld_st;
11566 case M_SDM_AB:
11567 gas_assert (mips_opts.micromips);
11568 s = "sdm";
11569 fmt = "n,~(b)";
11570 offbits = 12;
11571
11572 ld_st:
11573 tempreg = AT;
11574 ld_noat:
11575 breg = op[2];
11576 if (small_offset_p (0, align, 16))
11577 {
11578 /* The first case exists for M_LD_AB and M_SD_AB, which are
11579 macros for o32 but which should act like normal instructions
11580 otherwise. */
11581 if (offbits == 16)
11582 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11583 offset_reloc[1], offset_reloc[2], breg);
11584 else if (small_offset_p (0, align, offbits))
11585 {
11586 if (offbits == 0)
11587 macro_build (NULL, s, fmt, op[0], breg);
11588 else
11589 macro_build (NULL, s, fmt, op[0],
11590 (int) offset_expr.X_add_number, breg);
11591 }
11592 else
11593 {
11594 if (tempreg == AT)
11595 used_at = 1;
11596 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11597 tempreg, breg, -1, offset_reloc[0],
11598 offset_reloc[1], offset_reloc[2]);
11599 if (offbits == 0)
11600 macro_build (NULL, s, fmt, op[0], tempreg);
11601 else
11602 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11603 }
11604 break;
11605 }
11606
11607 if (tempreg == AT)
11608 used_at = 1;
11609
11610 if (offset_expr.X_op != O_constant
11611 && offset_expr.X_op != O_symbol)
11612 {
11613 as_bad (_("expression too complex"));
11614 offset_expr.X_op = O_constant;
11615 }
11616
11617 if (HAVE_32BIT_ADDRESSES
11618 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11619 {
11620 char value [32];
11621
11622 sprintf_vma (value, offset_expr.X_add_number);
11623 as_bad (_("number (0x%s) larger than 32 bits"), value);
11624 }
11625
11626 /* A constant expression in PIC code can be handled just as it
11627 is in non PIC code. */
11628 if (offset_expr.X_op == O_constant)
11629 {
11630 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11631 offbits == 0 ? 16 : offbits);
11632 offset_expr.X_add_number -= expr1.X_add_number;
11633
11634 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11635 if (breg != 0)
11636 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11637 tempreg, tempreg, breg);
11638 if (offbits == 0)
11639 {
11640 if (offset_expr.X_add_number != 0)
11641 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11642 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11643 macro_build (NULL, s, fmt, op[0], tempreg);
11644 }
11645 else if (offbits == 16)
11646 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11647 else
11648 macro_build (NULL, s, fmt, op[0],
11649 (int) offset_expr.X_add_number, tempreg);
11650 }
11651 else if (offbits != 16)
11652 {
11653 /* The offset field is too narrow to be used for a low-part
11654 relocation, so load the whole address into the auxillary
11655 register. */
11656 load_address (tempreg, &offset_expr, &used_at);
11657 if (breg != 0)
11658 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11659 tempreg, tempreg, breg);
11660 if (offbits == 0)
11661 macro_build (NULL, s, fmt, op[0], tempreg);
11662 else
11663 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11664 }
11665 else if (mips_pic == NO_PIC)
11666 {
11667 /* If this is a reference to a GP relative symbol, and there
11668 is no base register, we want
11669 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11670 Otherwise, if there is no base register, we want
11671 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11672 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11673 If we have a constant, we need two instructions anyhow,
11674 so we always use the latter form.
11675
11676 If we have a base register, and this is a reference to a
11677 GP relative symbol, we want
11678 addu $tempreg,$breg,$gp
11679 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11680 Otherwise we want
11681 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11682 addu $tempreg,$tempreg,$breg
11683 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11684 With a constant we always use the latter case.
11685
11686 With 64bit address space and no base register and $at usable,
11687 we want
11688 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11689 lui $at,<sym> (BFD_RELOC_HI16_S)
11690 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11691 dsll32 $tempreg,0
11692 daddu $tempreg,$at
11693 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11694 If we have a base register, we want
11695 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11696 lui $at,<sym> (BFD_RELOC_HI16_S)
11697 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11698 daddu $at,$breg
11699 dsll32 $tempreg,0
11700 daddu $tempreg,$at
11701 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11702
11703 Without $at we can't generate the optimal path for superscalar
11704 processors here since this would require two temporary registers.
11705 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11706 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11707 dsll $tempreg,16
11708 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11709 dsll $tempreg,16
11710 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11711 If we have a base register, we want
11712 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11713 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11714 dsll $tempreg,16
11715 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11716 dsll $tempreg,16
11717 daddu $tempreg,$tempreg,$breg
11718 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11719
11720 For GP relative symbols in 64bit address space we can use
11721 the same sequence as in 32bit address space. */
11722 if (HAVE_64BIT_SYMBOLS)
11723 {
11724 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11725 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11726 {
11727 relax_start (offset_expr.X_add_symbol);
11728 if (breg == 0)
11729 {
11730 macro_build (&offset_expr, s, fmt, op[0],
11731 BFD_RELOC_GPREL16, mips_gp_register);
11732 }
11733 else
11734 {
11735 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11736 tempreg, breg, mips_gp_register);
11737 macro_build (&offset_expr, s, fmt, op[0],
11738 BFD_RELOC_GPREL16, tempreg);
11739 }
11740 relax_switch ();
11741 }
11742
11743 if (used_at == 0 && mips_opts.at)
11744 {
11745 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11746 BFD_RELOC_MIPS_HIGHEST);
11747 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11748 BFD_RELOC_HI16_S);
11749 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11750 tempreg, BFD_RELOC_MIPS_HIGHER);
11751 if (breg != 0)
11752 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11753 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11754 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11755 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11756 tempreg);
11757 used_at = 1;
11758 }
11759 else
11760 {
11761 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11762 BFD_RELOC_MIPS_HIGHEST);
11763 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11764 tempreg, BFD_RELOC_MIPS_HIGHER);
11765 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11766 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11767 tempreg, BFD_RELOC_HI16_S);
11768 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11769 if (breg != 0)
11770 macro_build (NULL, "daddu", "d,v,t",
11771 tempreg, tempreg, breg);
11772 macro_build (&offset_expr, s, fmt, op[0],
11773 BFD_RELOC_LO16, tempreg);
11774 }
11775
11776 if (mips_relax.sequence)
11777 relax_end ();
11778 break;
11779 }
11780
11781 if (breg == 0)
11782 {
11783 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11784 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11785 {
11786 relax_start (offset_expr.X_add_symbol);
11787 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11788 mips_gp_register);
11789 relax_switch ();
11790 }
11791 macro_build_lui (&offset_expr, tempreg);
11792 macro_build (&offset_expr, s, fmt, op[0],
11793 BFD_RELOC_LO16, tempreg);
11794 if (mips_relax.sequence)
11795 relax_end ();
11796 }
11797 else
11798 {
11799 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11800 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11801 {
11802 relax_start (offset_expr.X_add_symbol);
11803 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11804 tempreg, breg, mips_gp_register);
11805 macro_build (&offset_expr, s, fmt, op[0],
11806 BFD_RELOC_GPREL16, tempreg);
11807 relax_switch ();
11808 }
11809 macro_build_lui (&offset_expr, tempreg);
11810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11811 tempreg, tempreg, breg);
11812 macro_build (&offset_expr, s, fmt, op[0],
11813 BFD_RELOC_LO16, tempreg);
11814 if (mips_relax.sequence)
11815 relax_end ();
11816 }
11817 }
11818 else if (!mips_big_got)
11819 {
11820 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11821
11822 /* If this is a reference to an external symbol, we want
11823 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11824 nop
11825 <op> op[0],0($tempreg)
11826 Otherwise we want
11827 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11828 nop
11829 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11830 <op> op[0],0($tempreg)
11831
11832 For NewABI, we want
11833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11834 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11835
11836 If there is a base register, we add it to $tempreg before
11837 the <op>. If there is a constant, we stick it in the
11838 <op> instruction. We don't handle constants larger than
11839 16 bits, because we have no way to load the upper 16 bits
11840 (actually, we could handle them for the subset of cases
11841 in which we are not using $at). */
11842 gas_assert (offset_expr.X_op == O_symbol);
11843 if (HAVE_NEWABI)
11844 {
11845 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11846 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11847 if (breg != 0)
11848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11849 tempreg, tempreg, breg);
11850 macro_build (&offset_expr, s, fmt, op[0],
11851 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11852 break;
11853 }
11854 expr1.X_add_number = offset_expr.X_add_number;
11855 offset_expr.X_add_number = 0;
11856 if (expr1.X_add_number < -0x8000
11857 || expr1.X_add_number >= 0x8000)
11858 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11859 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11860 lw_reloc_type, mips_gp_register);
11861 load_delay_nop ();
11862 relax_start (offset_expr.X_add_symbol);
11863 relax_switch ();
11864 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11865 tempreg, BFD_RELOC_LO16);
11866 relax_end ();
11867 if (breg != 0)
11868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11869 tempreg, tempreg, breg);
11870 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11871 }
11872 else if (mips_big_got && !HAVE_NEWABI)
11873 {
11874 int gpdelay;
11875
11876 /* If this is a reference to an external symbol, we want
11877 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11878 addu $tempreg,$tempreg,$gp
11879 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11880 <op> op[0],0($tempreg)
11881 Otherwise we want
11882 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11883 nop
11884 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11885 <op> op[0],0($tempreg)
11886 If there is a base register, we add it to $tempreg before
11887 the <op>. If there is a constant, we stick it in the
11888 <op> instruction. We don't handle constants larger than
11889 16 bits, because we have no way to load the upper 16 bits
11890 (actually, we could handle them for the subset of cases
11891 in which we are not using $at). */
11892 gas_assert (offset_expr.X_op == O_symbol);
11893 expr1.X_add_number = offset_expr.X_add_number;
11894 offset_expr.X_add_number = 0;
11895 if (expr1.X_add_number < -0x8000
11896 || expr1.X_add_number >= 0x8000)
11897 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11898 gpdelay = reg_needs_delay (mips_gp_register);
11899 relax_start (offset_expr.X_add_symbol);
11900 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11901 BFD_RELOC_MIPS_GOT_HI16);
11902 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11903 mips_gp_register);
11904 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11905 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11906 relax_switch ();
11907 if (gpdelay)
11908 macro_build (NULL, "nop", "");
11909 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11910 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11911 load_delay_nop ();
11912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11913 tempreg, BFD_RELOC_LO16);
11914 relax_end ();
11915
11916 if (breg != 0)
11917 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11918 tempreg, tempreg, breg);
11919 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11920 }
11921 else if (mips_big_got && HAVE_NEWABI)
11922 {
11923 /* If this is a reference to an external symbol, we want
11924 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11925 add $tempreg,$tempreg,$gp
11926 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11927 <op> op[0],<ofst>($tempreg)
11928 Otherwise, for local symbols, we want:
11929 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11930 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11931 gas_assert (offset_expr.X_op == O_symbol);
11932 expr1.X_add_number = offset_expr.X_add_number;
11933 offset_expr.X_add_number = 0;
11934 if (expr1.X_add_number < -0x8000
11935 || expr1.X_add_number >= 0x8000)
11936 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11937 relax_start (offset_expr.X_add_symbol);
11938 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11939 BFD_RELOC_MIPS_GOT_HI16);
11940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11941 mips_gp_register);
11942 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11943 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11944 if (breg != 0)
11945 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11946 tempreg, tempreg, breg);
11947 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11948
11949 relax_switch ();
11950 offset_expr.X_add_number = expr1.X_add_number;
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11953 if (breg != 0)
11954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11955 tempreg, tempreg, breg);
11956 macro_build (&offset_expr, s, fmt, op[0],
11957 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11958 relax_end ();
11959 }
11960 else
11961 abort ();
11962
11963 break;
11964
11965 case M_JRADDIUSP:
11966 gas_assert (mips_opts.micromips);
11967 gas_assert (mips_opts.insn32);
11968 start_noreorder ();
11969 macro_build (NULL, "jr", "s", RA);
11970 expr1.X_add_number = op[0] << 2;
11971 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11972 end_noreorder ();
11973 break;
11974
11975 case M_JRC:
11976 gas_assert (mips_opts.micromips);
11977 gas_assert (mips_opts.insn32);
11978 macro_build (NULL, "jr", "s", op[0]);
11979 if (mips_opts.noreorder)
11980 macro_build (NULL, "nop", "");
11981 break;
11982
11983 case M_LI:
11984 case M_LI_S:
11985 load_register (op[0], &imm_expr, 0);
11986 break;
11987
11988 case M_DLI:
11989 load_register (op[0], &imm_expr, 1);
11990 break;
11991
11992 case M_LI_SS:
11993 if (imm_expr.X_op == O_constant)
11994 {
11995 used_at = 1;
11996 load_register (AT, &imm_expr, 0);
11997 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
11998 break;
11999 }
12000 else
12001 {
12002 gas_assert (imm_expr.X_op == O_absent
12003 && offset_expr.X_op == O_symbol
12004 && strcmp (segment_name (S_GET_SEGMENT
12005 (offset_expr.X_add_symbol)),
12006 ".lit4") == 0
12007 && offset_expr.X_add_number == 0);
12008 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12009 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12010 break;
12011 }
12012
12013 case M_LI_D:
12014 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12015 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12016 order 32 bits of the value and the low order 32 bits are either
12017 zero or in OFFSET_EXPR. */
12018 if (imm_expr.X_op == O_constant)
12019 {
12020 if (GPR_SIZE == 64)
12021 load_register (op[0], &imm_expr, 1);
12022 else
12023 {
12024 int hreg, lreg;
12025
12026 if (target_big_endian)
12027 {
12028 hreg = op[0];
12029 lreg = op[0] + 1;
12030 }
12031 else
12032 {
12033 hreg = op[0] + 1;
12034 lreg = op[0];
12035 }
12036
12037 if (hreg <= 31)
12038 load_register (hreg, &imm_expr, 0);
12039 if (lreg <= 31)
12040 {
12041 if (offset_expr.X_op == O_absent)
12042 move_register (lreg, 0);
12043 else
12044 {
12045 gas_assert (offset_expr.X_op == O_constant);
12046 load_register (lreg, &offset_expr, 0);
12047 }
12048 }
12049 }
12050 break;
12051 }
12052 gas_assert (imm_expr.X_op == O_absent);
12053
12054 /* We know that sym is in the .rdata section. First we get the
12055 upper 16 bits of the address. */
12056 if (mips_pic == NO_PIC)
12057 {
12058 macro_build_lui (&offset_expr, AT);
12059 used_at = 1;
12060 }
12061 else
12062 {
12063 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12064 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12065 used_at = 1;
12066 }
12067
12068 /* Now we load the register(s). */
12069 if (GPR_SIZE == 64)
12070 {
12071 used_at = 1;
12072 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12073 BFD_RELOC_LO16, AT);
12074 }
12075 else
12076 {
12077 used_at = 1;
12078 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12079 BFD_RELOC_LO16, AT);
12080 if (op[0] != RA)
12081 {
12082 /* FIXME: How in the world do we deal with the possible
12083 overflow here? */
12084 offset_expr.X_add_number += 4;
12085 macro_build (&offset_expr, "lw", "t,o(b)",
12086 op[0] + 1, BFD_RELOC_LO16, AT);
12087 }
12088 }
12089 break;
12090
12091 case M_LI_DD:
12092 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12093 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12094 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12095 the value and the low order 32 bits are either zero or in
12096 OFFSET_EXPR. */
12097 if (imm_expr.X_op == O_constant)
12098 {
12099 used_at = 1;
12100 load_register (AT, &imm_expr, FPR_SIZE == 64);
12101 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12102 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12103 else
12104 {
12105 if (ISA_HAS_MXHC1 (mips_opts.isa))
12106 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12107 else if (FPR_SIZE != 32)
12108 as_bad (_("Unable to generate `%s' compliant code "
12109 "without mthc1"),
12110 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12111 else
12112 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12113 if (offset_expr.X_op == O_absent)
12114 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12115 else
12116 {
12117 gas_assert (offset_expr.X_op == O_constant);
12118 load_register (AT, &offset_expr, 0);
12119 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12120 }
12121 }
12122 break;
12123 }
12124
12125 gas_assert (imm_expr.X_op == O_absent
12126 && offset_expr.X_op == O_symbol
12127 && offset_expr.X_add_number == 0);
12128 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12129 if (strcmp (s, ".lit8") == 0)
12130 {
12131 op[2] = mips_gp_register;
12132 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12133 offset_reloc[1] = BFD_RELOC_UNUSED;
12134 offset_reloc[2] = BFD_RELOC_UNUSED;
12135 }
12136 else
12137 {
12138 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12139 used_at = 1;
12140 if (mips_pic != NO_PIC)
12141 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12142 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12143 else
12144 {
12145 /* FIXME: This won't work for a 64 bit address. */
12146 macro_build_lui (&offset_expr, AT);
12147 }
12148
12149 op[2] = AT;
12150 offset_reloc[0] = BFD_RELOC_LO16;
12151 offset_reloc[1] = BFD_RELOC_UNUSED;
12152 offset_reloc[2] = BFD_RELOC_UNUSED;
12153 }
12154 align = 8;
12155 /* Fall through */
12156
12157 case M_L_DAB:
12158 /*
12159 * The MIPS assembler seems to check for X_add_number not
12160 * being double aligned and generating:
12161 * lui at,%hi(foo+1)
12162 * addu at,at,v1
12163 * addiu at,at,%lo(foo+1)
12164 * lwc1 f2,0(at)
12165 * lwc1 f3,4(at)
12166 * But, the resulting address is the same after relocation so why
12167 * generate the extra instruction?
12168 */
12169 /* Itbl support may require additional care here. */
12170 coproc = 1;
12171 fmt = "T,o(b)";
12172 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12173 {
12174 s = "ldc1";
12175 goto ld_st;
12176 }
12177 s = "lwc1";
12178 goto ldd_std;
12179
12180 case M_S_DAB:
12181 gas_assert (!mips_opts.micromips);
12182 /* Itbl support may require additional care here. */
12183 coproc = 1;
12184 fmt = "T,o(b)";
12185 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12186 {
12187 s = "sdc1";
12188 goto ld_st;
12189 }
12190 s = "swc1";
12191 goto ldd_std;
12192
12193 case M_LQ_AB:
12194 fmt = "t,o(b)";
12195 s = "lq";
12196 goto ld;
12197
12198 case M_SQ_AB:
12199 fmt = "t,o(b)";
12200 s = "sq";
12201 goto ld_st;
12202
12203 case M_LD_AB:
12204 fmt = "t,o(b)";
12205 if (GPR_SIZE == 64)
12206 {
12207 s = "ld";
12208 goto ld;
12209 }
12210 s = "lw";
12211 goto ldd_std;
12212
12213 case M_SD_AB:
12214 fmt = "t,o(b)";
12215 if (GPR_SIZE == 64)
12216 {
12217 s = "sd";
12218 goto ld_st;
12219 }
12220 s = "sw";
12221
12222 ldd_std:
12223 /* Even on a big endian machine $fn comes before $fn+1. We have
12224 to adjust when loading from memory. We set coproc if we must
12225 load $fn+1 first. */
12226 /* Itbl support may require additional care here. */
12227 if (!target_big_endian)
12228 coproc = 0;
12229
12230 breg = op[2];
12231 if (small_offset_p (0, align, 16))
12232 {
12233 ep = &offset_expr;
12234 if (!small_offset_p (4, align, 16))
12235 {
12236 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12237 -1, offset_reloc[0], offset_reloc[1],
12238 offset_reloc[2]);
12239 expr1.X_add_number = 0;
12240 ep = &expr1;
12241 breg = AT;
12242 used_at = 1;
12243 offset_reloc[0] = BFD_RELOC_LO16;
12244 offset_reloc[1] = BFD_RELOC_UNUSED;
12245 offset_reloc[2] = BFD_RELOC_UNUSED;
12246 }
12247 if (strcmp (s, "lw") == 0 && op[0] == breg)
12248 {
12249 ep->X_add_number += 4;
12250 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12251 offset_reloc[1], offset_reloc[2], breg);
12252 ep->X_add_number -= 4;
12253 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12254 offset_reloc[1], offset_reloc[2], breg);
12255 }
12256 else
12257 {
12258 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12259 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12260 breg);
12261 ep->X_add_number += 4;
12262 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12263 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12264 breg);
12265 }
12266 break;
12267 }
12268
12269 if (offset_expr.X_op != O_symbol
12270 && offset_expr.X_op != O_constant)
12271 {
12272 as_bad (_("expression too complex"));
12273 offset_expr.X_op = O_constant;
12274 }
12275
12276 if (HAVE_32BIT_ADDRESSES
12277 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12278 {
12279 char value [32];
12280
12281 sprintf_vma (value, offset_expr.X_add_number);
12282 as_bad (_("number (0x%s) larger than 32 bits"), value);
12283 }
12284
12285 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12286 {
12287 /* If this is a reference to a GP relative symbol, we want
12288 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12289 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12290 If we have a base register, we use this
12291 addu $at,$breg,$gp
12292 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12293 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12294 If this is not a GP relative symbol, we want
12295 lui $at,<sym> (BFD_RELOC_HI16_S)
12296 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12297 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12298 If there is a base register, we add it to $at after the
12299 lui instruction. If there is a constant, we always use
12300 the last case. */
12301 if (offset_expr.X_op == O_symbol
12302 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12303 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12304 {
12305 relax_start (offset_expr.X_add_symbol);
12306 if (breg == 0)
12307 {
12308 tempreg = mips_gp_register;
12309 }
12310 else
12311 {
12312 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12313 AT, breg, mips_gp_register);
12314 tempreg = AT;
12315 used_at = 1;
12316 }
12317
12318 /* Itbl support may require additional care here. */
12319 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12320 BFD_RELOC_GPREL16, tempreg);
12321 offset_expr.X_add_number += 4;
12322
12323 /* Set mips_optimize to 2 to avoid inserting an
12324 undesired nop. */
12325 hold_mips_optimize = mips_optimize;
12326 mips_optimize = 2;
12327 /* Itbl support may require additional care here. */
12328 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12329 BFD_RELOC_GPREL16, tempreg);
12330 mips_optimize = hold_mips_optimize;
12331
12332 relax_switch ();
12333
12334 offset_expr.X_add_number -= 4;
12335 }
12336 used_at = 1;
12337 if (offset_high_part (offset_expr.X_add_number, 16)
12338 != offset_high_part (offset_expr.X_add_number + 4, 16))
12339 {
12340 load_address (AT, &offset_expr, &used_at);
12341 offset_expr.X_op = O_constant;
12342 offset_expr.X_add_number = 0;
12343 }
12344 else
12345 macro_build_lui (&offset_expr, AT);
12346 if (breg != 0)
12347 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12348 /* Itbl support may require additional care here. */
12349 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12350 BFD_RELOC_LO16, AT);
12351 /* FIXME: How do we handle overflow here? */
12352 offset_expr.X_add_number += 4;
12353 /* Itbl support may require additional care here. */
12354 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12355 BFD_RELOC_LO16, AT);
12356 if (mips_relax.sequence)
12357 relax_end ();
12358 }
12359 else if (!mips_big_got)
12360 {
12361 /* If this is a reference to an external symbol, we want
12362 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12363 nop
12364 <op> op[0],0($at)
12365 <op> op[0]+1,4($at)
12366 Otherwise we want
12367 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12368 nop
12369 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12370 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12371 If there is a base register we add it to $at before the
12372 lwc1 instructions. If there is a constant we include it
12373 in the lwc1 instructions. */
12374 used_at = 1;
12375 expr1.X_add_number = offset_expr.X_add_number;
12376 if (expr1.X_add_number < -0x8000
12377 || expr1.X_add_number >= 0x8000 - 4)
12378 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12379 load_got_offset (AT, &offset_expr);
12380 load_delay_nop ();
12381 if (breg != 0)
12382 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12383
12384 /* Set mips_optimize to 2 to avoid inserting an undesired
12385 nop. */
12386 hold_mips_optimize = mips_optimize;
12387 mips_optimize = 2;
12388
12389 /* Itbl support may require additional care here. */
12390 relax_start (offset_expr.X_add_symbol);
12391 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12392 BFD_RELOC_LO16, AT);
12393 expr1.X_add_number += 4;
12394 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12395 BFD_RELOC_LO16, AT);
12396 relax_switch ();
12397 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12398 BFD_RELOC_LO16, AT);
12399 offset_expr.X_add_number += 4;
12400 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12401 BFD_RELOC_LO16, AT);
12402 relax_end ();
12403
12404 mips_optimize = hold_mips_optimize;
12405 }
12406 else if (mips_big_got)
12407 {
12408 int gpdelay;
12409
12410 /* If this is a reference to an external symbol, we want
12411 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12412 addu $at,$at,$gp
12413 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12414 nop
12415 <op> op[0],0($at)
12416 <op> op[0]+1,4($at)
12417 Otherwise we want
12418 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12419 nop
12420 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12421 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12422 If there is a base register we add it to $at before the
12423 lwc1 instructions. If there is a constant we include it
12424 in the lwc1 instructions. */
12425 used_at = 1;
12426 expr1.X_add_number = offset_expr.X_add_number;
12427 offset_expr.X_add_number = 0;
12428 if (expr1.X_add_number < -0x8000
12429 || expr1.X_add_number >= 0x8000 - 4)
12430 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12431 gpdelay = reg_needs_delay (mips_gp_register);
12432 relax_start (offset_expr.X_add_symbol);
12433 macro_build (&offset_expr, "lui", LUI_FMT,
12434 AT, BFD_RELOC_MIPS_GOT_HI16);
12435 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12436 AT, AT, mips_gp_register);
12437 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12438 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12439 load_delay_nop ();
12440 if (breg != 0)
12441 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12442 /* Itbl support may require additional care here. */
12443 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12444 BFD_RELOC_LO16, AT);
12445 expr1.X_add_number += 4;
12446
12447 /* Set mips_optimize to 2 to avoid inserting an undesired
12448 nop. */
12449 hold_mips_optimize = mips_optimize;
12450 mips_optimize = 2;
12451 /* Itbl support may require additional care here. */
12452 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12453 BFD_RELOC_LO16, AT);
12454 mips_optimize = hold_mips_optimize;
12455 expr1.X_add_number -= 4;
12456
12457 relax_switch ();
12458 offset_expr.X_add_number = expr1.X_add_number;
12459 if (gpdelay)
12460 macro_build (NULL, "nop", "");
12461 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12462 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12463 load_delay_nop ();
12464 if (breg != 0)
12465 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12466 /* Itbl support may require additional care here. */
12467 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12468 BFD_RELOC_LO16, AT);
12469 offset_expr.X_add_number += 4;
12470
12471 /* Set mips_optimize to 2 to avoid inserting an undesired
12472 nop. */
12473 hold_mips_optimize = mips_optimize;
12474 mips_optimize = 2;
12475 /* Itbl support may require additional care here. */
12476 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12477 BFD_RELOC_LO16, AT);
12478 mips_optimize = hold_mips_optimize;
12479 relax_end ();
12480 }
12481 else
12482 abort ();
12483
12484 break;
12485
12486 case M_SAA_AB:
12487 s = "saa";
12488 goto saa_saad;
12489 case M_SAAD_AB:
12490 s = "saad";
12491 saa_saad:
12492 gas_assert (!mips_opts.micromips);
12493 offbits = 0;
12494 fmt = "t,(b)";
12495 goto ld_st;
12496
12497 /* New code added to support COPZ instructions.
12498 This code builds table entries out of the macros in mip_opcodes.
12499 R4000 uses interlocks to handle coproc delays.
12500 Other chips (like the R3000) require nops to be inserted for delays.
12501
12502 FIXME: Currently, we require that the user handle delays.
12503 In order to fill delay slots for non-interlocked chips,
12504 we must have a way to specify delays based on the coprocessor.
12505 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12506 What are the side-effects of the cop instruction?
12507 What cache support might we have and what are its effects?
12508 Both coprocessor & memory require delays. how long???
12509 What registers are read/set/modified?
12510
12511 If an itbl is provided to interpret cop instructions,
12512 this knowledge can be encoded in the itbl spec. */
12513
12514 case M_COP0:
12515 s = "c0";
12516 goto copz;
12517 case M_COP1:
12518 s = "c1";
12519 goto copz;
12520 case M_COP2:
12521 s = "c2";
12522 goto copz;
12523 case M_COP3:
12524 s = "c3";
12525 copz:
12526 gas_assert (!mips_opts.micromips);
12527 /* For now we just do C (same as Cz). The parameter will be
12528 stored in insn_opcode by mips_ip. */
12529 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12530 break;
12531
12532 case M_MOVE:
12533 move_register (op[0], op[1]);
12534 break;
12535
12536 case M_MOVEP:
12537 gas_assert (mips_opts.micromips);
12538 gas_assert (mips_opts.insn32);
12539 move_register (micromips_to_32_reg_h_map1[op[0]],
12540 micromips_to_32_reg_m_map[op[1]]);
12541 move_register (micromips_to_32_reg_h_map2[op[0]],
12542 micromips_to_32_reg_n_map[op[2]]);
12543 break;
12544
12545 case M_DMUL:
12546 dbl = 1;
12547 case M_MUL:
12548 if (mips_opts.arch == CPU_R5900)
12549 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12550 op[2]);
12551 else
12552 {
12553 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12554 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12555 }
12556 break;
12557
12558 case M_DMUL_I:
12559 dbl = 1;
12560 case M_MUL_I:
12561 /* The MIPS assembler some times generates shifts and adds. I'm
12562 not trying to be that fancy. GCC should do this for us
12563 anyway. */
12564 used_at = 1;
12565 load_register (AT, &imm_expr, dbl);
12566 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12567 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12568 break;
12569
12570 case M_DMULO_I:
12571 dbl = 1;
12572 case M_MULO_I:
12573 imm = 1;
12574 goto do_mulo;
12575
12576 case M_DMULO:
12577 dbl = 1;
12578 case M_MULO:
12579 do_mulo:
12580 start_noreorder ();
12581 used_at = 1;
12582 if (imm)
12583 load_register (AT, &imm_expr, dbl);
12584 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12585 op[1], imm ? AT : op[2]);
12586 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12587 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12588 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12589 if (mips_trap)
12590 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12591 else
12592 {
12593 if (mips_opts.micromips)
12594 micromips_label_expr (&label_expr);
12595 else
12596 label_expr.X_add_number = 8;
12597 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12598 macro_build (NULL, "nop", "");
12599 macro_build (NULL, "break", BRK_FMT, 6);
12600 if (mips_opts.micromips)
12601 micromips_add_label ();
12602 }
12603 end_noreorder ();
12604 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12605 break;
12606
12607 case M_DMULOU_I:
12608 dbl = 1;
12609 case M_MULOU_I:
12610 imm = 1;
12611 goto do_mulou;
12612
12613 case M_DMULOU:
12614 dbl = 1;
12615 case M_MULOU:
12616 do_mulou:
12617 start_noreorder ();
12618 used_at = 1;
12619 if (imm)
12620 load_register (AT, &imm_expr, dbl);
12621 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12622 op[1], imm ? AT : op[2]);
12623 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12624 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12625 if (mips_trap)
12626 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12627 else
12628 {
12629 if (mips_opts.micromips)
12630 micromips_label_expr (&label_expr);
12631 else
12632 label_expr.X_add_number = 8;
12633 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12634 macro_build (NULL, "nop", "");
12635 macro_build (NULL, "break", BRK_FMT, 6);
12636 if (mips_opts.micromips)
12637 micromips_add_label ();
12638 }
12639 end_noreorder ();
12640 break;
12641
12642 case M_DROL:
12643 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12644 {
12645 if (op[0] == op[1])
12646 {
12647 tempreg = AT;
12648 used_at = 1;
12649 }
12650 else
12651 tempreg = op[0];
12652 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12653 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12654 break;
12655 }
12656 used_at = 1;
12657 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12658 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12659 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12660 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12661 break;
12662
12663 case M_ROL:
12664 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12665 {
12666 if (op[0] == op[1])
12667 {
12668 tempreg = AT;
12669 used_at = 1;
12670 }
12671 else
12672 tempreg = op[0];
12673 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12674 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12675 break;
12676 }
12677 used_at = 1;
12678 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12679 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12680 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12681 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12682 break;
12683
12684 case M_DROL_I:
12685 {
12686 unsigned int rot;
12687 char *l;
12688 char *rr;
12689
12690 rot = imm_expr.X_add_number & 0x3f;
12691 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12692 {
12693 rot = (64 - rot) & 0x3f;
12694 if (rot >= 32)
12695 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12696 else
12697 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12698 break;
12699 }
12700 if (rot == 0)
12701 {
12702 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12703 break;
12704 }
12705 l = (rot < 0x20) ? "dsll" : "dsll32";
12706 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12707 rot &= 0x1f;
12708 used_at = 1;
12709 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12710 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12711 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12712 }
12713 break;
12714
12715 case M_ROL_I:
12716 {
12717 unsigned int rot;
12718
12719 rot = imm_expr.X_add_number & 0x1f;
12720 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12721 {
12722 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12723 (32 - rot) & 0x1f);
12724 break;
12725 }
12726 if (rot == 0)
12727 {
12728 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12729 break;
12730 }
12731 used_at = 1;
12732 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12733 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12734 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12735 }
12736 break;
12737
12738 case M_DROR:
12739 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12740 {
12741 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12742 break;
12743 }
12744 used_at = 1;
12745 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12746 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12747 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12748 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12749 break;
12750
12751 case M_ROR:
12752 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12753 {
12754 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12755 break;
12756 }
12757 used_at = 1;
12758 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12759 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12760 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12761 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12762 break;
12763
12764 case M_DROR_I:
12765 {
12766 unsigned int rot;
12767 char *l;
12768 char *rr;
12769
12770 rot = imm_expr.X_add_number & 0x3f;
12771 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12772 {
12773 if (rot >= 32)
12774 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12775 else
12776 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12777 break;
12778 }
12779 if (rot == 0)
12780 {
12781 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12782 break;
12783 }
12784 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12785 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12786 rot &= 0x1f;
12787 used_at = 1;
12788 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12789 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12790 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12791 }
12792 break;
12793
12794 case M_ROR_I:
12795 {
12796 unsigned int rot;
12797
12798 rot = imm_expr.X_add_number & 0x1f;
12799 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12800 {
12801 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12802 break;
12803 }
12804 if (rot == 0)
12805 {
12806 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12807 break;
12808 }
12809 used_at = 1;
12810 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12811 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12812 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12813 }
12814 break;
12815
12816 case M_SEQ:
12817 if (op[1] == 0)
12818 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12819 else if (op[2] == 0)
12820 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12821 else
12822 {
12823 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12824 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12825 }
12826 break;
12827
12828 case M_SEQ_I:
12829 if (imm_expr.X_add_number == 0)
12830 {
12831 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12832 break;
12833 }
12834 if (op[1] == 0)
12835 {
12836 as_warn (_("instruction %s: result is always false"),
12837 ip->insn_mo->name);
12838 move_register (op[0], 0);
12839 break;
12840 }
12841 if (CPU_HAS_SEQ (mips_opts.arch)
12842 && -512 <= imm_expr.X_add_number
12843 && imm_expr.X_add_number < 512)
12844 {
12845 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12846 (int) imm_expr.X_add_number);
12847 break;
12848 }
12849 if (imm_expr.X_add_number >= 0
12850 && imm_expr.X_add_number < 0x10000)
12851 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12852 else if (imm_expr.X_add_number > -0x8000
12853 && imm_expr.X_add_number < 0)
12854 {
12855 imm_expr.X_add_number = -imm_expr.X_add_number;
12856 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12857 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12858 }
12859 else if (CPU_HAS_SEQ (mips_opts.arch))
12860 {
12861 used_at = 1;
12862 load_register (AT, &imm_expr, GPR_SIZE == 64);
12863 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12864 break;
12865 }
12866 else
12867 {
12868 load_register (AT, &imm_expr, GPR_SIZE == 64);
12869 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12870 used_at = 1;
12871 }
12872 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12873 break;
12874
12875 case M_SGE: /* X >= Y <==> not (X < Y) */
12876 s = "slt";
12877 goto sge;
12878 case M_SGEU:
12879 s = "sltu";
12880 sge:
12881 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12882 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12883 break;
12884
12885 case M_SGE_I: /* X >= I <==> not (X < I) */
12886 case M_SGEU_I:
12887 if (imm_expr.X_add_number >= -0x8000
12888 && imm_expr.X_add_number < 0x8000)
12889 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12890 op[0], op[1], BFD_RELOC_LO16);
12891 else
12892 {
12893 load_register (AT, &imm_expr, GPR_SIZE == 64);
12894 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12895 op[0], op[1], AT);
12896 used_at = 1;
12897 }
12898 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12899 break;
12900
12901 case M_SGT: /* X > Y <==> Y < X */
12902 s = "slt";
12903 goto sgt;
12904 case M_SGTU:
12905 s = "sltu";
12906 sgt:
12907 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12908 break;
12909
12910 case M_SGT_I: /* X > I <==> I < X */
12911 s = "slt";
12912 goto sgti;
12913 case M_SGTU_I:
12914 s = "sltu";
12915 sgti:
12916 used_at = 1;
12917 load_register (AT, &imm_expr, GPR_SIZE == 64);
12918 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12919 break;
12920
12921 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12922 s = "slt";
12923 goto sle;
12924 case M_SLEU:
12925 s = "sltu";
12926 sle:
12927 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12928 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12929 break;
12930
12931 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12932 s = "slt";
12933 goto slei;
12934 case M_SLEU_I:
12935 s = "sltu";
12936 slei:
12937 used_at = 1;
12938 load_register (AT, &imm_expr, GPR_SIZE == 64);
12939 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12940 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12941 break;
12942
12943 case M_SLT_I:
12944 if (imm_expr.X_add_number >= -0x8000
12945 && imm_expr.X_add_number < 0x8000)
12946 {
12947 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12948 BFD_RELOC_LO16);
12949 break;
12950 }
12951 used_at = 1;
12952 load_register (AT, &imm_expr, GPR_SIZE == 64);
12953 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12954 break;
12955
12956 case M_SLTU_I:
12957 if (imm_expr.X_add_number >= -0x8000
12958 && imm_expr.X_add_number < 0x8000)
12959 {
12960 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12961 BFD_RELOC_LO16);
12962 break;
12963 }
12964 used_at = 1;
12965 load_register (AT, &imm_expr, GPR_SIZE == 64);
12966 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12967 break;
12968
12969 case M_SNE:
12970 if (op[1] == 0)
12971 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12972 else if (op[2] == 0)
12973 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12974 else
12975 {
12976 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12977 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12978 }
12979 break;
12980
12981 case M_SNE_I:
12982 if (imm_expr.X_add_number == 0)
12983 {
12984 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12985 break;
12986 }
12987 if (op[1] == 0)
12988 {
12989 as_warn (_("instruction %s: result is always true"),
12990 ip->insn_mo->name);
12991 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
12992 op[0], 0, BFD_RELOC_LO16);
12993 break;
12994 }
12995 if (CPU_HAS_SEQ (mips_opts.arch)
12996 && -512 <= imm_expr.X_add_number
12997 && imm_expr.X_add_number < 512)
12998 {
12999 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13000 (int) imm_expr.X_add_number);
13001 break;
13002 }
13003 if (imm_expr.X_add_number >= 0
13004 && imm_expr.X_add_number < 0x10000)
13005 {
13006 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13007 BFD_RELOC_LO16);
13008 }
13009 else if (imm_expr.X_add_number > -0x8000
13010 && imm_expr.X_add_number < 0)
13011 {
13012 imm_expr.X_add_number = -imm_expr.X_add_number;
13013 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13014 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13015 }
13016 else if (CPU_HAS_SEQ (mips_opts.arch))
13017 {
13018 used_at = 1;
13019 load_register (AT, &imm_expr, GPR_SIZE == 64);
13020 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13021 break;
13022 }
13023 else
13024 {
13025 load_register (AT, &imm_expr, GPR_SIZE == 64);
13026 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13027 used_at = 1;
13028 }
13029 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13030 break;
13031
13032 case M_SUB_I:
13033 s = "addi";
13034 s2 = "sub";
13035 goto do_subi;
13036 case M_SUBU_I:
13037 s = "addiu";
13038 s2 = "subu";
13039 goto do_subi;
13040 case M_DSUB_I:
13041 dbl = 1;
13042 s = "daddi";
13043 s2 = "dsub";
13044 if (!mips_opts.micromips)
13045 goto do_subi;
13046 if (imm_expr.X_add_number > -0x200
13047 && imm_expr.X_add_number <= 0x200)
13048 {
13049 macro_build (NULL, s, "t,r,.", op[0], op[1],
13050 (int) -imm_expr.X_add_number);
13051 break;
13052 }
13053 goto do_subi_i;
13054 case M_DSUBU_I:
13055 dbl = 1;
13056 s = "daddiu";
13057 s2 = "dsubu";
13058 do_subi:
13059 if (imm_expr.X_add_number > -0x8000
13060 && imm_expr.X_add_number <= 0x8000)
13061 {
13062 imm_expr.X_add_number = -imm_expr.X_add_number;
13063 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13064 break;
13065 }
13066 do_subi_i:
13067 used_at = 1;
13068 load_register (AT, &imm_expr, dbl);
13069 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13070 break;
13071
13072 case M_TEQ_I:
13073 s = "teq";
13074 goto trap;
13075 case M_TGE_I:
13076 s = "tge";
13077 goto trap;
13078 case M_TGEU_I:
13079 s = "tgeu";
13080 goto trap;
13081 case M_TLT_I:
13082 s = "tlt";
13083 goto trap;
13084 case M_TLTU_I:
13085 s = "tltu";
13086 goto trap;
13087 case M_TNE_I:
13088 s = "tne";
13089 trap:
13090 used_at = 1;
13091 load_register (AT, &imm_expr, GPR_SIZE == 64);
13092 macro_build (NULL, s, "s,t", op[0], AT);
13093 break;
13094
13095 case M_TRUNCWS:
13096 case M_TRUNCWD:
13097 gas_assert (!mips_opts.micromips);
13098 gas_assert (mips_opts.isa == ISA_MIPS1);
13099 used_at = 1;
13100
13101 /*
13102 * Is the double cfc1 instruction a bug in the mips assembler;
13103 * or is there a reason for it?
13104 */
13105 start_noreorder ();
13106 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13107 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13108 macro_build (NULL, "nop", "");
13109 expr1.X_add_number = 3;
13110 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13111 expr1.X_add_number = 2;
13112 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13113 macro_build (NULL, "ctc1", "t,G", AT, RA);
13114 macro_build (NULL, "nop", "");
13115 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13116 op[0], op[1]);
13117 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13118 macro_build (NULL, "nop", "");
13119 end_noreorder ();
13120 break;
13121
13122 case M_ULH_AB:
13123 s = "lb";
13124 s2 = "lbu";
13125 off = 1;
13126 goto uld_st;
13127 case M_ULHU_AB:
13128 s = "lbu";
13129 s2 = "lbu";
13130 off = 1;
13131 goto uld_st;
13132 case M_ULW_AB:
13133 s = "lwl";
13134 s2 = "lwr";
13135 offbits = (mips_opts.micromips ? 12 : 16);
13136 off = 3;
13137 goto uld_st;
13138 case M_ULD_AB:
13139 s = "ldl";
13140 s2 = "ldr";
13141 offbits = (mips_opts.micromips ? 12 : 16);
13142 off = 7;
13143 goto uld_st;
13144 case M_USH_AB:
13145 s = "sb";
13146 s2 = "sb";
13147 off = 1;
13148 ust = 1;
13149 goto uld_st;
13150 case M_USW_AB:
13151 s = "swl";
13152 s2 = "swr";
13153 offbits = (mips_opts.micromips ? 12 : 16);
13154 off = 3;
13155 ust = 1;
13156 goto uld_st;
13157 case M_USD_AB:
13158 s = "sdl";
13159 s2 = "sdr";
13160 offbits = (mips_opts.micromips ? 12 : 16);
13161 off = 7;
13162 ust = 1;
13163
13164 uld_st:
13165 breg = op[2];
13166 large_offset = !small_offset_p (off, align, offbits);
13167 ep = &offset_expr;
13168 expr1.X_add_number = 0;
13169 if (large_offset)
13170 {
13171 used_at = 1;
13172 tempreg = AT;
13173 if (small_offset_p (0, align, 16))
13174 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13175 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13176 else
13177 {
13178 load_address (tempreg, ep, &used_at);
13179 if (breg != 0)
13180 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13181 tempreg, tempreg, breg);
13182 }
13183 offset_reloc[0] = BFD_RELOC_LO16;
13184 offset_reloc[1] = BFD_RELOC_UNUSED;
13185 offset_reloc[2] = BFD_RELOC_UNUSED;
13186 breg = tempreg;
13187 tempreg = op[0];
13188 ep = &expr1;
13189 }
13190 else if (!ust && op[0] == breg)
13191 {
13192 used_at = 1;
13193 tempreg = AT;
13194 }
13195 else
13196 tempreg = op[0];
13197
13198 if (off == 1)
13199 goto ulh_sh;
13200
13201 if (!target_big_endian)
13202 ep->X_add_number += off;
13203 if (offbits == 12)
13204 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13205 else
13206 macro_build (ep, s, "t,o(b)", tempreg, -1,
13207 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13208
13209 if (!target_big_endian)
13210 ep->X_add_number -= off;
13211 else
13212 ep->X_add_number += off;
13213 if (offbits == 12)
13214 macro_build (NULL, s2, "t,~(b)",
13215 tempreg, (int) ep->X_add_number, breg);
13216 else
13217 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13218 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13219
13220 /* If necessary, move the result in tempreg to the final destination. */
13221 if (!ust && op[0] != tempreg)
13222 {
13223 /* Protect second load's delay slot. */
13224 load_delay_nop ();
13225 move_register (op[0], tempreg);
13226 }
13227 break;
13228
13229 ulh_sh:
13230 used_at = 1;
13231 if (target_big_endian == ust)
13232 ep->X_add_number += off;
13233 tempreg = ust || large_offset ? op[0] : AT;
13234 macro_build (ep, s, "t,o(b)", tempreg, -1,
13235 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13236
13237 /* For halfword transfers we need a temporary register to shuffle
13238 bytes. Unfortunately for M_USH_A we have none available before
13239 the next store as AT holds the base address. We deal with this
13240 case by clobbering TREG and then restoring it as with ULH. */
13241 tempreg = ust == large_offset ? op[0] : AT;
13242 if (ust)
13243 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13244
13245 if (target_big_endian == ust)
13246 ep->X_add_number -= off;
13247 else
13248 ep->X_add_number += off;
13249 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13250 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13251
13252 /* For M_USH_A re-retrieve the LSB. */
13253 if (ust && large_offset)
13254 {
13255 if (target_big_endian)
13256 ep->X_add_number += off;
13257 else
13258 ep->X_add_number -= off;
13259 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13260 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13261 }
13262 /* For ULH and M_USH_A OR the LSB in. */
13263 if (!ust || large_offset)
13264 {
13265 tempreg = !large_offset ? AT : op[0];
13266 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13267 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13268 }
13269 break;
13270
13271 default:
13272 /* FIXME: Check if this is one of the itbl macros, since they
13273 are added dynamically. */
13274 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13275 break;
13276 }
13277 if (!mips_opts.at && used_at)
13278 as_bad (_("macro used $at after \".set noat\""));
13279 }
13280
13281 /* Implement macros in mips16 mode. */
13282
13283 static void
13284 mips16_macro (struct mips_cl_insn *ip)
13285 {
13286 const struct mips_operand_array *operands;
13287 int mask;
13288 int tmp;
13289 expressionS expr1;
13290 int dbl;
13291 const char *s, *s2, *s3;
13292 unsigned int op[MAX_OPERANDS];
13293 unsigned int i;
13294
13295 mask = ip->insn_mo->mask;
13296
13297 operands = insn_operands (ip);
13298 for (i = 0; i < MAX_OPERANDS; i++)
13299 if (operands->operand[i])
13300 op[i] = insn_extract_operand (ip, operands->operand[i]);
13301 else
13302 op[i] = -1;
13303
13304 expr1.X_op = O_constant;
13305 expr1.X_op_symbol = NULL;
13306 expr1.X_add_symbol = NULL;
13307 expr1.X_add_number = 1;
13308
13309 dbl = 0;
13310
13311 switch (mask)
13312 {
13313 default:
13314 abort ();
13315
13316 case M_DDIV_3:
13317 dbl = 1;
13318 case M_DIV_3:
13319 s = "mflo";
13320 goto do_div3;
13321 case M_DREM_3:
13322 dbl = 1;
13323 case M_REM_3:
13324 s = "mfhi";
13325 do_div3:
13326 start_noreorder ();
13327 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13328 expr1.X_add_number = 2;
13329 macro_build (&expr1, "bnez", "x,p", op[2]);
13330 macro_build (NULL, "break", "6", 7);
13331
13332 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13333 since that causes an overflow. We should do that as well,
13334 but I don't see how to do the comparisons without a temporary
13335 register. */
13336 end_noreorder ();
13337 macro_build (NULL, s, "x", op[0]);
13338 break;
13339
13340 case M_DIVU_3:
13341 s = "divu";
13342 s2 = "mflo";
13343 goto do_divu3;
13344 case M_REMU_3:
13345 s = "divu";
13346 s2 = "mfhi";
13347 goto do_divu3;
13348 case M_DDIVU_3:
13349 s = "ddivu";
13350 s2 = "mflo";
13351 goto do_divu3;
13352 case M_DREMU_3:
13353 s = "ddivu";
13354 s2 = "mfhi";
13355 do_divu3:
13356 start_noreorder ();
13357 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13358 expr1.X_add_number = 2;
13359 macro_build (&expr1, "bnez", "x,p", op[2]);
13360 macro_build (NULL, "break", "6", 7);
13361 end_noreorder ();
13362 macro_build (NULL, s2, "x", op[0]);
13363 break;
13364
13365 case M_DMUL:
13366 dbl = 1;
13367 case M_MUL:
13368 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13369 macro_build (NULL, "mflo", "x", op[0]);
13370 break;
13371
13372 case M_DSUBU_I:
13373 dbl = 1;
13374 goto do_subu;
13375 case M_SUBU_I:
13376 do_subu:
13377 imm_expr.X_add_number = -imm_expr.X_add_number;
13378 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13379 break;
13380
13381 case M_SUBU_I_2:
13382 imm_expr.X_add_number = -imm_expr.X_add_number;
13383 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13384 break;
13385
13386 case M_DSUBU_I_2:
13387 imm_expr.X_add_number = -imm_expr.X_add_number;
13388 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13389 break;
13390
13391 case M_BEQ:
13392 s = "cmp";
13393 s2 = "bteqz";
13394 goto do_branch;
13395 case M_BNE:
13396 s = "cmp";
13397 s2 = "btnez";
13398 goto do_branch;
13399 case M_BLT:
13400 s = "slt";
13401 s2 = "btnez";
13402 goto do_branch;
13403 case M_BLTU:
13404 s = "sltu";
13405 s2 = "btnez";
13406 goto do_branch;
13407 case M_BLE:
13408 s = "slt";
13409 s2 = "bteqz";
13410 goto do_reverse_branch;
13411 case M_BLEU:
13412 s = "sltu";
13413 s2 = "bteqz";
13414 goto do_reverse_branch;
13415 case M_BGE:
13416 s = "slt";
13417 s2 = "bteqz";
13418 goto do_branch;
13419 case M_BGEU:
13420 s = "sltu";
13421 s2 = "bteqz";
13422 goto do_branch;
13423 case M_BGT:
13424 s = "slt";
13425 s2 = "btnez";
13426 goto do_reverse_branch;
13427 case M_BGTU:
13428 s = "sltu";
13429 s2 = "btnez";
13430
13431 do_reverse_branch:
13432 tmp = op[1];
13433 op[1] = op[0];
13434 op[0] = tmp;
13435
13436 do_branch:
13437 macro_build (NULL, s, "x,y", op[0], op[1]);
13438 macro_build (&offset_expr, s2, "p");
13439 break;
13440
13441 case M_BEQ_I:
13442 s = "cmpi";
13443 s2 = "bteqz";
13444 s3 = "x,U";
13445 goto do_branch_i;
13446 case M_BNE_I:
13447 s = "cmpi";
13448 s2 = "btnez";
13449 s3 = "x,U";
13450 goto do_branch_i;
13451 case M_BLT_I:
13452 s = "slti";
13453 s2 = "btnez";
13454 s3 = "x,8";
13455 goto do_branch_i;
13456 case M_BLTU_I:
13457 s = "sltiu";
13458 s2 = "btnez";
13459 s3 = "x,8";
13460 goto do_branch_i;
13461 case M_BLE_I:
13462 s = "slti";
13463 s2 = "btnez";
13464 s3 = "x,8";
13465 goto do_addone_branch_i;
13466 case M_BLEU_I:
13467 s = "sltiu";
13468 s2 = "btnez";
13469 s3 = "x,8";
13470 goto do_addone_branch_i;
13471 case M_BGE_I:
13472 s = "slti";
13473 s2 = "bteqz";
13474 s3 = "x,8";
13475 goto do_branch_i;
13476 case M_BGEU_I:
13477 s = "sltiu";
13478 s2 = "bteqz";
13479 s3 = "x,8";
13480 goto do_branch_i;
13481 case M_BGT_I:
13482 s = "slti";
13483 s2 = "bteqz";
13484 s3 = "x,8";
13485 goto do_addone_branch_i;
13486 case M_BGTU_I:
13487 s = "sltiu";
13488 s2 = "bteqz";
13489 s3 = "x,8";
13490
13491 do_addone_branch_i:
13492 ++imm_expr.X_add_number;
13493
13494 do_branch_i:
13495 macro_build (&imm_expr, s, s3, op[0]);
13496 macro_build (&offset_expr, s2, "p");
13497 break;
13498
13499 case M_ABS:
13500 expr1.X_add_number = 0;
13501 macro_build (&expr1, "slti", "x,8", op[1]);
13502 if (op[0] != op[1])
13503 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13504 expr1.X_add_number = 2;
13505 macro_build (&expr1, "bteqz", "p");
13506 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13507 break;
13508 }
13509 }
13510
13511 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13512 opcode bits in *OPCODE_EXTRA. */
13513
13514 static struct mips_opcode *
13515 mips_lookup_insn (struct hash_control *hash, const char *start,
13516 ssize_t length, unsigned int *opcode_extra)
13517 {
13518 char *name, *dot, *p;
13519 unsigned int mask, suffix;
13520 ssize_t opend;
13521 struct mips_opcode *insn;
13522
13523 /* Make a copy of the instruction so that we can fiddle with it. */
13524 name = alloca (length + 1);
13525 memcpy (name, start, length);
13526 name[length] = '\0';
13527
13528 /* Look up the instruction as-is. */
13529 insn = (struct mips_opcode *) hash_find (hash, name);
13530 if (insn)
13531 return insn;
13532
13533 dot = strchr (name, '.');
13534 if (dot && dot[1])
13535 {
13536 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13537 p = mips_parse_vu0_channels (dot + 1, &mask);
13538 if (*p == 0 && mask != 0)
13539 {
13540 *dot = 0;
13541 insn = (struct mips_opcode *) hash_find (hash, name);
13542 *dot = '.';
13543 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13544 {
13545 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13546 return insn;
13547 }
13548 }
13549 }
13550
13551 if (mips_opts.micromips)
13552 {
13553 /* See if there's an instruction size override suffix,
13554 either `16' or `32', at the end of the mnemonic proper,
13555 that defines the operation, i.e. before the first `.'
13556 character if any. Strip it and retry. */
13557 opend = dot != NULL ? dot - name : length;
13558 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13559 suffix = 2;
13560 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13561 suffix = 4;
13562 else
13563 suffix = 0;
13564 if (suffix)
13565 {
13566 memcpy (name + opend - 2, name + opend, length - opend + 1);
13567 insn = (struct mips_opcode *) hash_find (hash, name);
13568 if (insn)
13569 {
13570 forced_insn_length = suffix;
13571 return insn;
13572 }
13573 }
13574 }
13575
13576 return NULL;
13577 }
13578
13579 /* Assemble an instruction into its binary format. If the instruction
13580 is a macro, set imm_expr and offset_expr to the values associated
13581 with "I" and "A" operands respectively. Otherwise store the value
13582 of the relocatable field (if any) in offset_expr. In both cases
13583 set offset_reloc to the relocation operators applied to offset_expr. */
13584
13585 static void
13586 mips_ip (char *str, struct mips_cl_insn *insn)
13587 {
13588 const struct mips_opcode *first, *past;
13589 struct hash_control *hash;
13590 char format;
13591 size_t end;
13592 struct mips_operand_token *tokens;
13593 unsigned int opcode_extra;
13594
13595 if (mips_opts.micromips)
13596 {
13597 hash = micromips_op_hash;
13598 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13599 }
13600 else
13601 {
13602 hash = op_hash;
13603 past = &mips_opcodes[NUMOPCODES];
13604 }
13605 forced_insn_length = 0;
13606 opcode_extra = 0;
13607
13608 /* We first try to match an instruction up to a space or to the end. */
13609 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13610 continue;
13611
13612 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13613 if (first == NULL)
13614 {
13615 set_insn_error (0, _("unrecognized opcode"));
13616 return;
13617 }
13618
13619 if (strcmp (first->name, "li.s") == 0)
13620 format = 'f';
13621 else if (strcmp (first->name, "li.d") == 0)
13622 format = 'd';
13623 else
13624 format = 0;
13625 tokens = mips_parse_arguments (str + end, format);
13626 if (!tokens)
13627 return;
13628
13629 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13630 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13631 set_insn_error (0, _("invalid operands"));
13632
13633 obstack_free (&mips_operand_tokens, tokens);
13634 }
13635
13636 /* As for mips_ip, but used when assembling MIPS16 code.
13637 Also set forced_insn_length to the resulting instruction size in
13638 bytes if the user explicitly requested a small or extended instruction. */
13639
13640 static void
13641 mips16_ip (char *str, struct mips_cl_insn *insn)
13642 {
13643 char *end, *s, c;
13644 struct mips_opcode *first;
13645 struct mips_operand_token *tokens;
13646
13647 forced_insn_length = 0;
13648
13649 for (s = str; ISLOWER (*s); ++s)
13650 ;
13651 end = s;
13652 c = *end;
13653 switch (c)
13654 {
13655 case '\0':
13656 break;
13657
13658 case ' ':
13659 s++;
13660 break;
13661
13662 case '.':
13663 if (s[1] == 't' && s[2] == ' ')
13664 {
13665 forced_insn_length = 2;
13666 s += 3;
13667 break;
13668 }
13669 else if (s[1] == 'e' && s[2] == ' ')
13670 {
13671 forced_insn_length = 4;
13672 s += 3;
13673 break;
13674 }
13675 /* Fall through. */
13676 default:
13677 set_insn_error (0, _("unrecognized opcode"));
13678 return;
13679 }
13680
13681 if (mips_opts.noautoextend && !forced_insn_length)
13682 forced_insn_length = 2;
13683
13684 *end = 0;
13685 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13686 *end = c;
13687
13688 if (!first)
13689 {
13690 set_insn_error (0, _("unrecognized opcode"));
13691 return;
13692 }
13693
13694 tokens = mips_parse_arguments (s, 0);
13695 if (!tokens)
13696 return;
13697
13698 if (!match_mips16_insns (insn, first, tokens))
13699 set_insn_error (0, _("invalid operands"));
13700
13701 obstack_free (&mips_operand_tokens, tokens);
13702 }
13703
13704 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13705 NBITS is the number of significant bits in VAL. */
13706
13707 static unsigned long
13708 mips16_immed_extend (offsetT val, unsigned int nbits)
13709 {
13710 int extval;
13711 if (nbits == 16)
13712 {
13713 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13714 val &= 0x1f;
13715 }
13716 else if (nbits == 15)
13717 {
13718 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13719 val &= 0xf;
13720 }
13721 else
13722 {
13723 extval = ((val & 0x1f) << 6) | (val & 0x20);
13724 val = 0;
13725 }
13726 return (extval << 16) | val;
13727 }
13728
13729 /* Like decode_mips16_operand, but require the operand to be defined and
13730 require it to be an integer. */
13731
13732 static const struct mips_int_operand *
13733 mips16_immed_operand (int type, bfd_boolean extended_p)
13734 {
13735 const struct mips_operand *operand;
13736
13737 operand = decode_mips16_operand (type, extended_p);
13738 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13739 abort ();
13740 return (const struct mips_int_operand *) operand;
13741 }
13742
13743 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13744
13745 static bfd_boolean
13746 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13747 bfd_reloc_code_real_type reloc, offsetT sval)
13748 {
13749 int min_val, max_val;
13750
13751 min_val = mips_int_operand_min (operand);
13752 max_val = mips_int_operand_max (operand);
13753 if (reloc != BFD_RELOC_UNUSED)
13754 {
13755 if (min_val < 0)
13756 sval = SEXT_16BIT (sval);
13757 else
13758 sval &= 0xffff;
13759 }
13760
13761 return (sval >= min_val
13762 && sval <= max_val
13763 && (sval & ((1 << operand->shift) - 1)) == 0);
13764 }
13765
13766 /* Install immediate value VAL into MIPS16 instruction *INSN,
13767 extending it if necessary. The instruction in *INSN may
13768 already be extended.
13769
13770 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13771 if none. In the former case, VAL is a 16-bit number with no
13772 defined signedness.
13773
13774 TYPE is the type of the immediate field. USER_INSN_LENGTH
13775 is the length that the user requested, or 0 if none. */
13776
13777 static void
13778 mips16_immed (char *file, unsigned int line, int type,
13779 bfd_reloc_code_real_type reloc, offsetT val,
13780 unsigned int user_insn_length, unsigned long *insn)
13781 {
13782 const struct mips_int_operand *operand;
13783 unsigned int uval, length;
13784
13785 operand = mips16_immed_operand (type, FALSE);
13786 if (!mips16_immed_in_range_p (operand, reloc, val))
13787 {
13788 /* We need an extended instruction. */
13789 if (user_insn_length == 2)
13790 as_bad_where (file, line, _("invalid unextended operand value"));
13791 else
13792 *insn |= MIPS16_EXTEND;
13793 }
13794 else if (user_insn_length == 4)
13795 {
13796 /* The operand doesn't force an unextended instruction to be extended.
13797 Warn if the user wanted an extended instruction anyway. */
13798 *insn |= MIPS16_EXTEND;
13799 as_warn_where (file, line,
13800 _("extended operand requested but not required"));
13801 }
13802
13803 length = mips16_opcode_length (*insn);
13804 if (length == 4)
13805 {
13806 operand = mips16_immed_operand (type, TRUE);
13807 if (!mips16_immed_in_range_p (operand, reloc, val))
13808 as_bad_where (file, line,
13809 _("operand value out of range for instruction"));
13810 }
13811 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13812 if (length == 2)
13813 *insn = mips_insert_operand (&operand->root, *insn, uval);
13814 else
13815 *insn |= mips16_immed_extend (uval, operand->root.size);
13816 }
13817 \f
13818 struct percent_op_match
13819 {
13820 const char *str;
13821 bfd_reloc_code_real_type reloc;
13822 };
13823
13824 static const struct percent_op_match mips_percent_op[] =
13825 {
13826 {"%lo", BFD_RELOC_LO16},
13827 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13828 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13829 {"%call16", BFD_RELOC_MIPS_CALL16},
13830 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13831 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13832 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13833 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13834 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13835 {"%got", BFD_RELOC_MIPS_GOT16},
13836 {"%gp_rel", BFD_RELOC_GPREL16},
13837 {"%half", BFD_RELOC_16},
13838 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13839 {"%higher", BFD_RELOC_MIPS_HIGHER},
13840 {"%neg", BFD_RELOC_MIPS_SUB},
13841 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13842 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13843 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13844 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13845 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13846 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13847 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13848 {"%hi", BFD_RELOC_HI16_S},
13849 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13850 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13851 };
13852
13853 static const struct percent_op_match mips16_percent_op[] =
13854 {
13855 {"%lo", BFD_RELOC_MIPS16_LO16},
13856 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13857 {"%got", BFD_RELOC_MIPS16_GOT16},
13858 {"%call16", BFD_RELOC_MIPS16_CALL16},
13859 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13860 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13861 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13862 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13863 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13864 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13865 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13866 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13867 };
13868
13869
13870 /* Return true if *STR points to a relocation operator. When returning true,
13871 move *STR over the operator and store its relocation code in *RELOC.
13872 Leave both *STR and *RELOC alone when returning false. */
13873
13874 static bfd_boolean
13875 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13876 {
13877 const struct percent_op_match *percent_op;
13878 size_t limit, i;
13879
13880 if (mips_opts.mips16)
13881 {
13882 percent_op = mips16_percent_op;
13883 limit = ARRAY_SIZE (mips16_percent_op);
13884 }
13885 else
13886 {
13887 percent_op = mips_percent_op;
13888 limit = ARRAY_SIZE (mips_percent_op);
13889 }
13890
13891 for (i = 0; i < limit; i++)
13892 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13893 {
13894 int len = strlen (percent_op[i].str);
13895
13896 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13897 continue;
13898
13899 *str += strlen (percent_op[i].str);
13900 *reloc = percent_op[i].reloc;
13901
13902 /* Check whether the output BFD supports this relocation.
13903 If not, issue an error and fall back on something safe. */
13904 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13905 {
13906 as_bad (_("relocation %s isn't supported by the current ABI"),
13907 percent_op[i].str);
13908 *reloc = BFD_RELOC_UNUSED;
13909 }
13910 return TRUE;
13911 }
13912 return FALSE;
13913 }
13914
13915
13916 /* Parse string STR as a 16-bit relocatable operand. Store the
13917 expression in *EP and the relocations in the array starting
13918 at RELOC. Return the number of relocation operators used.
13919
13920 On exit, EXPR_END points to the first character after the expression. */
13921
13922 static size_t
13923 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13924 char *str)
13925 {
13926 bfd_reloc_code_real_type reversed_reloc[3];
13927 size_t reloc_index, i;
13928 int crux_depth, str_depth;
13929 char *crux;
13930
13931 /* Search for the start of the main expression, recoding relocations
13932 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13933 of the main expression and with CRUX_DEPTH containing the number
13934 of open brackets at that point. */
13935 reloc_index = -1;
13936 str_depth = 0;
13937 do
13938 {
13939 reloc_index++;
13940 crux = str;
13941 crux_depth = str_depth;
13942
13943 /* Skip over whitespace and brackets, keeping count of the number
13944 of brackets. */
13945 while (*str == ' ' || *str == '\t' || *str == '(')
13946 if (*str++ == '(')
13947 str_depth++;
13948 }
13949 while (*str == '%'
13950 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13951 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13952
13953 my_getExpression (ep, crux);
13954 str = expr_end;
13955
13956 /* Match every open bracket. */
13957 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13958 if (*str++ == ')')
13959 crux_depth--;
13960
13961 if (crux_depth > 0)
13962 as_bad (_("unclosed '('"));
13963
13964 expr_end = str;
13965
13966 if (reloc_index != 0)
13967 {
13968 prev_reloc_op_frag = frag_now;
13969 for (i = 0; i < reloc_index; i++)
13970 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13971 }
13972
13973 return reloc_index;
13974 }
13975
13976 static void
13977 my_getExpression (expressionS *ep, char *str)
13978 {
13979 char *save_in;
13980
13981 save_in = input_line_pointer;
13982 input_line_pointer = str;
13983 expression (ep);
13984 expr_end = input_line_pointer;
13985 input_line_pointer = save_in;
13986 }
13987
13988 char *
13989 md_atof (int type, char *litP, int *sizeP)
13990 {
13991 return ieee_md_atof (type, litP, sizeP, target_big_endian);
13992 }
13993
13994 void
13995 md_number_to_chars (char *buf, valueT val, int n)
13996 {
13997 if (target_big_endian)
13998 number_to_chars_bigendian (buf, val, n);
13999 else
14000 number_to_chars_littleendian (buf, val, n);
14001 }
14002 \f
14003 static int support_64bit_objects(void)
14004 {
14005 const char **list, **l;
14006 int yes;
14007
14008 list = bfd_target_list ();
14009 for (l = list; *l != NULL; l++)
14010 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14011 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14012 break;
14013 yes = (*l != NULL);
14014 free (list);
14015 return yes;
14016 }
14017
14018 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14019 NEW_VALUE. Warn if another value was already specified. Note:
14020 we have to defer parsing the -march and -mtune arguments in order
14021 to handle 'from-abi' correctly, since the ABI might be specified
14022 in a later argument. */
14023
14024 static void
14025 mips_set_option_string (const char **string_ptr, const char *new_value)
14026 {
14027 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14028 as_warn (_("a different %s was already specified, is now %s"),
14029 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14030 new_value);
14031
14032 *string_ptr = new_value;
14033 }
14034
14035 int
14036 md_parse_option (int c, char *arg)
14037 {
14038 unsigned int i;
14039
14040 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14041 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14042 {
14043 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14044 c == mips_ases[i].option_on);
14045 return 1;
14046 }
14047
14048 switch (c)
14049 {
14050 case OPTION_CONSTRUCT_FLOATS:
14051 mips_disable_float_construction = 0;
14052 break;
14053
14054 case OPTION_NO_CONSTRUCT_FLOATS:
14055 mips_disable_float_construction = 1;
14056 break;
14057
14058 case OPTION_TRAP:
14059 mips_trap = 1;
14060 break;
14061
14062 case OPTION_BREAK:
14063 mips_trap = 0;
14064 break;
14065
14066 case OPTION_EB:
14067 target_big_endian = 1;
14068 break;
14069
14070 case OPTION_EL:
14071 target_big_endian = 0;
14072 break;
14073
14074 case 'O':
14075 if (arg == NULL)
14076 mips_optimize = 1;
14077 else if (arg[0] == '0')
14078 mips_optimize = 0;
14079 else if (arg[0] == '1')
14080 mips_optimize = 1;
14081 else
14082 mips_optimize = 2;
14083 break;
14084
14085 case 'g':
14086 if (arg == NULL)
14087 mips_debug = 2;
14088 else
14089 mips_debug = atoi (arg);
14090 break;
14091
14092 case OPTION_MIPS1:
14093 file_mips_opts.isa = ISA_MIPS1;
14094 break;
14095
14096 case OPTION_MIPS2:
14097 file_mips_opts.isa = ISA_MIPS2;
14098 break;
14099
14100 case OPTION_MIPS3:
14101 file_mips_opts.isa = ISA_MIPS3;
14102 break;
14103
14104 case OPTION_MIPS4:
14105 file_mips_opts.isa = ISA_MIPS4;
14106 break;
14107
14108 case OPTION_MIPS5:
14109 file_mips_opts.isa = ISA_MIPS5;
14110 break;
14111
14112 case OPTION_MIPS32:
14113 file_mips_opts.isa = ISA_MIPS32;
14114 break;
14115
14116 case OPTION_MIPS32R2:
14117 file_mips_opts.isa = ISA_MIPS32R2;
14118 break;
14119
14120 case OPTION_MIPS32R3:
14121 file_mips_opts.isa = ISA_MIPS32R3;
14122 break;
14123
14124 case OPTION_MIPS32R5:
14125 file_mips_opts.isa = ISA_MIPS32R5;
14126 break;
14127
14128 case OPTION_MIPS32R6:
14129 file_mips_opts.isa = ISA_MIPS32R6;
14130 break;
14131
14132 case OPTION_MIPS64R2:
14133 file_mips_opts.isa = ISA_MIPS64R2;
14134 break;
14135
14136 case OPTION_MIPS64R3:
14137 file_mips_opts.isa = ISA_MIPS64R3;
14138 break;
14139
14140 case OPTION_MIPS64R5:
14141 file_mips_opts.isa = ISA_MIPS64R5;
14142 break;
14143
14144 case OPTION_MIPS64R6:
14145 file_mips_opts.isa = ISA_MIPS64R6;
14146 break;
14147
14148 case OPTION_MIPS64:
14149 file_mips_opts.isa = ISA_MIPS64;
14150 break;
14151
14152 case OPTION_MTUNE:
14153 mips_set_option_string (&mips_tune_string, arg);
14154 break;
14155
14156 case OPTION_MARCH:
14157 mips_set_option_string (&mips_arch_string, arg);
14158 break;
14159
14160 case OPTION_M4650:
14161 mips_set_option_string (&mips_arch_string, "4650");
14162 mips_set_option_string (&mips_tune_string, "4650");
14163 break;
14164
14165 case OPTION_NO_M4650:
14166 break;
14167
14168 case OPTION_M4010:
14169 mips_set_option_string (&mips_arch_string, "4010");
14170 mips_set_option_string (&mips_tune_string, "4010");
14171 break;
14172
14173 case OPTION_NO_M4010:
14174 break;
14175
14176 case OPTION_M4100:
14177 mips_set_option_string (&mips_arch_string, "4100");
14178 mips_set_option_string (&mips_tune_string, "4100");
14179 break;
14180
14181 case OPTION_NO_M4100:
14182 break;
14183
14184 case OPTION_M3900:
14185 mips_set_option_string (&mips_arch_string, "3900");
14186 mips_set_option_string (&mips_tune_string, "3900");
14187 break;
14188
14189 case OPTION_NO_M3900:
14190 break;
14191
14192 case OPTION_MICROMIPS:
14193 if (file_mips_opts.mips16 == 1)
14194 {
14195 as_bad (_("-mmicromips cannot be used with -mips16"));
14196 return 0;
14197 }
14198 file_mips_opts.micromips = 1;
14199 mips_no_prev_insn ();
14200 break;
14201
14202 case OPTION_NO_MICROMIPS:
14203 file_mips_opts.micromips = 0;
14204 mips_no_prev_insn ();
14205 break;
14206
14207 case OPTION_MIPS16:
14208 if (file_mips_opts.micromips == 1)
14209 {
14210 as_bad (_("-mips16 cannot be used with -micromips"));
14211 return 0;
14212 }
14213 file_mips_opts.mips16 = 1;
14214 mips_no_prev_insn ();
14215 break;
14216
14217 case OPTION_NO_MIPS16:
14218 file_mips_opts.mips16 = 0;
14219 mips_no_prev_insn ();
14220 break;
14221
14222 case OPTION_FIX_24K:
14223 mips_fix_24k = 1;
14224 break;
14225
14226 case OPTION_NO_FIX_24K:
14227 mips_fix_24k = 0;
14228 break;
14229
14230 case OPTION_FIX_RM7000:
14231 mips_fix_rm7000 = 1;
14232 break;
14233
14234 case OPTION_NO_FIX_RM7000:
14235 mips_fix_rm7000 = 0;
14236 break;
14237
14238 case OPTION_FIX_LOONGSON2F_JUMP:
14239 mips_fix_loongson2f_jump = TRUE;
14240 break;
14241
14242 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14243 mips_fix_loongson2f_jump = FALSE;
14244 break;
14245
14246 case OPTION_FIX_LOONGSON2F_NOP:
14247 mips_fix_loongson2f_nop = TRUE;
14248 break;
14249
14250 case OPTION_NO_FIX_LOONGSON2F_NOP:
14251 mips_fix_loongson2f_nop = FALSE;
14252 break;
14253
14254 case OPTION_FIX_VR4120:
14255 mips_fix_vr4120 = 1;
14256 break;
14257
14258 case OPTION_NO_FIX_VR4120:
14259 mips_fix_vr4120 = 0;
14260 break;
14261
14262 case OPTION_FIX_VR4130:
14263 mips_fix_vr4130 = 1;
14264 break;
14265
14266 case OPTION_NO_FIX_VR4130:
14267 mips_fix_vr4130 = 0;
14268 break;
14269
14270 case OPTION_FIX_CN63XXP1:
14271 mips_fix_cn63xxp1 = TRUE;
14272 break;
14273
14274 case OPTION_NO_FIX_CN63XXP1:
14275 mips_fix_cn63xxp1 = FALSE;
14276 break;
14277
14278 case OPTION_RELAX_BRANCH:
14279 mips_relax_branch = 1;
14280 break;
14281
14282 case OPTION_NO_RELAX_BRANCH:
14283 mips_relax_branch = 0;
14284 break;
14285
14286 case OPTION_INSN32:
14287 file_mips_opts.insn32 = TRUE;
14288 break;
14289
14290 case OPTION_NO_INSN32:
14291 file_mips_opts.insn32 = FALSE;
14292 break;
14293
14294 case OPTION_MSHARED:
14295 mips_in_shared = TRUE;
14296 break;
14297
14298 case OPTION_MNO_SHARED:
14299 mips_in_shared = FALSE;
14300 break;
14301
14302 case OPTION_MSYM32:
14303 file_mips_opts.sym32 = TRUE;
14304 break;
14305
14306 case OPTION_MNO_SYM32:
14307 file_mips_opts.sym32 = FALSE;
14308 break;
14309
14310 /* When generating ELF code, we permit -KPIC and -call_shared to
14311 select SVR4_PIC, and -non_shared to select no PIC. This is
14312 intended to be compatible with Irix 5. */
14313 case OPTION_CALL_SHARED:
14314 mips_pic = SVR4_PIC;
14315 mips_abicalls = TRUE;
14316 break;
14317
14318 case OPTION_CALL_NONPIC:
14319 mips_pic = NO_PIC;
14320 mips_abicalls = TRUE;
14321 break;
14322
14323 case OPTION_NON_SHARED:
14324 mips_pic = NO_PIC;
14325 mips_abicalls = FALSE;
14326 break;
14327
14328 /* The -xgot option tells the assembler to use 32 bit offsets
14329 when accessing the got in SVR4_PIC mode. It is for Irix
14330 compatibility. */
14331 case OPTION_XGOT:
14332 mips_big_got = 1;
14333 break;
14334
14335 case 'G':
14336 g_switch_value = atoi (arg);
14337 g_switch_seen = 1;
14338 break;
14339
14340 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14341 and -mabi=64. */
14342 case OPTION_32:
14343 mips_abi = O32_ABI;
14344 break;
14345
14346 case OPTION_N32:
14347 mips_abi = N32_ABI;
14348 break;
14349
14350 case OPTION_64:
14351 mips_abi = N64_ABI;
14352 if (!support_64bit_objects())
14353 as_fatal (_("no compiled in support for 64 bit object file format"));
14354 break;
14355
14356 case OPTION_GP32:
14357 file_mips_opts.gp = 32;
14358 break;
14359
14360 case OPTION_GP64:
14361 file_mips_opts.gp = 64;
14362 break;
14363
14364 case OPTION_FP32:
14365 file_mips_opts.fp = 32;
14366 break;
14367
14368 case OPTION_FPXX:
14369 file_mips_opts.fp = 0;
14370 break;
14371
14372 case OPTION_FP64:
14373 file_mips_opts.fp = 64;
14374 break;
14375
14376 case OPTION_ODD_SPREG:
14377 file_mips_opts.oddspreg = 1;
14378 break;
14379
14380 case OPTION_NO_ODD_SPREG:
14381 file_mips_opts.oddspreg = 0;
14382 break;
14383
14384 case OPTION_SINGLE_FLOAT:
14385 file_mips_opts.single_float = 1;
14386 break;
14387
14388 case OPTION_DOUBLE_FLOAT:
14389 file_mips_opts.single_float = 0;
14390 break;
14391
14392 case OPTION_SOFT_FLOAT:
14393 file_mips_opts.soft_float = 1;
14394 break;
14395
14396 case OPTION_HARD_FLOAT:
14397 file_mips_opts.soft_float = 0;
14398 break;
14399
14400 case OPTION_MABI:
14401 if (strcmp (arg, "32") == 0)
14402 mips_abi = O32_ABI;
14403 else if (strcmp (arg, "o64") == 0)
14404 mips_abi = O64_ABI;
14405 else if (strcmp (arg, "n32") == 0)
14406 mips_abi = N32_ABI;
14407 else if (strcmp (arg, "64") == 0)
14408 {
14409 mips_abi = N64_ABI;
14410 if (! support_64bit_objects())
14411 as_fatal (_("no compiled in support for 64 bit object file "
14412 "format"));
14413 }
14414 else if (strcmp (arg, "eabi") == 0)
14415 mips_abi = EABI_ABI;
14416 else
14417 {
14418 as_fatal (_("invalid abi -mabi=%s"), arg);
14419 return 0;
14420 }
14421 break;
14422
14423 case OPTION_M7000_HILO_FIX:
14424 mips_7000_hilo_fix = TRUE;
14425 break;
14426
14427 case OPTION_MNO_7000_HILO_FIX:
14428 mips_7000_hilo_fix = FALSE;
14429 break;
14430
14431 case OPTION_MDEBUG:
14432 mips_flag_mdebug = TRUE;
14433 break;
14434
14435 case OPTION_NO_MDEBUG:
14436 mips_flag_mdebug = FALSE;
14437 break;
14438
14439 case OPTION_PDR:
14440 mips_flag_pdr = TRUE;
14441 break;
14442
14443 case OPTION_NO_PDR:
14444 mips_flag_pdr = FALSE;
14445 break;
14446
14447 case OPTION_MVXWORKS_PIC:
14448 mips_pic = VXWORKS_PIC;
14449 break;
14450
14451 case OPTION_NAN:
14452 if (strcmp (arg, "2008") == 0)
14453 mips_nan2008 = 1;
14454 else if (strcmp (arg, "legacy") == 0)
14455 mips_nan2008 = 0;
14456 else
14457 {
14458 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14459 return 0;
14460 }
14461 break;
14462
14463 default:
14464 return 0;
14465 }
14466
14467 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14468
14469 return 1;
14470 }
14471 \f
14472 /* Set up globals to tune for the ISA or processor described by INFO. */
14473
14474 static void
14475 mips_set_tune (const struct mips_cpu_info *info)
14476 {
14477 if (info != 0)
14478 mips_tune = info->cpu;
14479 }
14480
14481
14482 void
14483 mips_after_parse_args (void)
14484 {
14485 const struct mips_cpu_info *arch_info = 0;
14486 const struct mips_cpu_info *tune_info = 0;
14487
14488 /* GP relative stuff not working for PE */
14489 if (strncmp (TARGET_OS, "pe", 2) == 0)
14490 {
14491 if (g_switch_seen && g_switch_value != 0)
14492 as_bad (_("-G not supported in this configuration"));
14493 g_switch_value = 0;
14494 }
14495
14496 if (mips_abi == NO_ABI)
14497 mips_abi = MIPS_DEFAULT_ABI;
14498
14499 /* The following code determines the architecture.
14500 Similar code was added to GCC 3.3 (see override_options() in
14501 config/mips/mips.c). The GAS and GCC code should be kept in sync
14502 as much as possible. */
14503
14504 if (mips_arch_string != 0)
14505 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14506
14507 if (file_mips_opts.isa != ISA_UNKNOWN)
14508 {
14509 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14510 ISA level specified by -mipsN, while arch_info->isa contains
14511 the -march selection (if any). */
14512 if (arch_info != 0)
14513 {
14514 /* -march takes precedence over -mipsN, since it is more descriptive.
14515 There's no harm in specifying both as long as the ISA levels
14516 are the same. */
14517 if (file_mips_opts.isa != arch_info->isa)
14518 as_bad (_("-%s conflicts with the other architecture options,"
14519 " which imply -%s"),
14520 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14521 mips_cpu_info_from_isa (arch_info->isa)->name);
14522 }
14523 else
14524 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14525 }
14526
14527 if (arch_info == 0)
14528 {
14529 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14530 gas_assert (arch_info);
14531 }
14532
14533 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14534 as_bad (_("-march=%s is not compatible with the selected ABI"),
14535 arch_info->name);
14536
14537 file_mips_opts.arch = arch_info->cpu;
14538 file_mips_opts.isa = arch_info->isa;
14539
14540 /* Set up initial mips_opts state. */
14541 mips_opts = file_mips_opts;
14542
14543 /* The register size inference code is now placed in
14544 file_mips_check_options. */
14545
14546 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14547 processor. */
14548 if (mips_tune_string != 0)
14549 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14550
14551 if (tune_info == 0)
14552 mips_set_tune (arch_info);
14553 else
14554 mips_set_tune (tune_info);
14555
14556 if (mips_flag_mdebug < 0)
14557 mips_flag_mdebug = 0;
14558 }
14559 \f
14560 void
14561 mips_init_after_args (void)
14562 {
14563 /* initialize opcodes */
14564 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14565 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14566 }
14567
14568 long
14569 md_pcrel_from (fixS *fixP)
14570 {
14571 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14572 switch (fixP->fx_r_type)
14573 {
14574 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14575 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14576 /* Return the address of the delay slot. */
14577 return addr + 2;
14578
14579 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14580 case BFD_RELOC_MICROMIPS_JMP:
14581 case BFD_RELOC_16_PCREL_S2:
14582 case BFD_RELOC_MIPS_21_PCREL_S2:
14583 case BFD_RELOC_MIPS_26_PCREL_S2:
14584 case BFD_RELOC_MIPS_JMP:
14585 /* Return the address of the delay slot. */
14586 return addr + 4;
14587
14588 default:
14589 return addr;
14590 }
14591 }
14592
14593 /* This is called before the symbol table is processed. In order to
14594 work with gcc when using mips-tfile, we must keep all local labels.
14595 However, in other cases, we want to discard them. If we were
14596 called with -g, but we didn't see any debugging information, it may
14597 mean that gcc is smuggling debugging information through to
14598 mips-tfile, in which case we must generate all local labels. */
14599
14600 void
14601 mips_frob_file_before_adjust (void)
14602 {
14603 #ifndef NO_ECOFF_DEBUGGING
14604 if (ECOFF_DEBUGGING
14605 && mips_debug != 0
14606 && ! ecoff_debugging_seen)
14607 flag_keep_locals = 1;
14608 #endif
14609 }
14610
14611 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14612 the corresponding LO16 reloc. This is called before md_apply_fix and
14613 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14614 relocation operators.
14615
14616 For our purposes, a %lo() expression matches a %got() or %hi()
14617 expression if:
14618
14619 (a) it refers to the same symbol; and
14620 (b) the offset applied in the %lo() expression is no lower than
14621 the offset applied in the %got() or %hi().
14622
14623 (b) allows us to cope with code like:
14624
14625 lui $4,%hi(foo)
14626 lh $4,%lo(foo+2)($4)
14627
14628 ...which is legal on RELA targets, and has a well-defined behaviour
14629 if the user knows that adding 2 to "foo" will not induce a carry to
14630 the high 16 bits.
14631
14632 When several %lo()s match a particular %got() or %hi(), we use the
14633 following rules to distinguish them:
14634
14635 (1) %lo()s with smaller offsets are a better match than %lo()s with
14636 higher offsets.
14637
14638 (2) %lo()s with no matching %got() or %hi() are better than those
14639 that already have a matching %got() or %hi().
14640
14641 (3) later %lo()s are better than earlier %lo()s.
14642
14643 These rules are applied in order.
14644
14645 (1) means, among other things, that %lo()s with identical offsets are
14646 chosen if they exist.
14647
14648 (2) means that we won't associate several high-part relocations with
14649 the same low-part relocation unless there's no alternative. Having
14650 several high parts for the same low part is a GNU extension; this rule
14651 allows careful users to avoid it.
14652
14653 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14654 with the last high-part relocation being at the front of the list.
14655 It therefore makes sense to choose the last matching low-part
14656 relocation, all other things being equal. It's also easier
14657 to code that way. */
14658
14659 void
14660 mips_frob_file (void)
14661 {
14662 struct mips_hi_fixup *l;
14663 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14664
14665 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14666 {
14667 segment_info_type *seginfo;
14668 bfd_boolean matched_lo_p;
14669 fixS **hi_pos, **lo_pos, **pos;
14670
14671 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14672
14673 /* If a GOT16 relocation turns out to be against a global symbol,
14674 there isn't supposed to be a matching LO. Ignore %gots against
14675 constants; we'll report an error for those later. */
14676 if (got16_reloc_p (l->fixp->fx_r_type)
14677 && !(l->fixp->fx_addsy
14678 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14679 continue;
14680
14681 /* Check quickly whether the next fixup happens to be a matching %lo. */
14682 if (fixup_has_matching_lo_p (l->fixp))
14683 continue;
14684
14685 seginfo = seg_info (l->seg);
14686
14687 /* Set HI_POS to the position of this relocation in the chain.
14688 Set LO_POS to the position of the chosen low-part relocation.
14689 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14690 relocation that matches an immediately-preceding high-part
14691 relocation. */
14692 hi_pos = NULL;
14693 lo_pos = NULL;
14694 matched_lo_p = FALSE;
14695 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14696
14697 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14698 {
14699 if (*pos == l->fixp)
14700 hi_pos = pos;
14701
14702 if ((*pos)->fx_r_type == looking_for_rtype
14703 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14704 && (*pos)->fx_offset >= l->fixp->fx_offset
14705 && (lo_pos == NULL
14706 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14707 || (!matched_lo_p
14708 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14709 lo_pos = pos;
14710
14711 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14712 && fixup_has_matching_lo_p (*pos));
14713 }
14714
14715 /* If we found a match, remove the high-part relocation from its
14716 current position and insert it before the low-part relocation.
14717 Make the offsets match so that fixup_has_matching_lo_p()
14718 will return true.
14719
14720 We don't warn about unmatched high-part relocations since some
14721 versions of gcc have been known to emit dead "lui ...%hi(...)"
14722 instructions. */
14723 if (lo_pos != NULL)
14724 {
14725 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14726 if (l->fixp->fx_next != *lo_pos)
14727 {
14728 *hi_pos = l->fixp->fx_next;
14729 l->fixp->fx_next = *lo_pos;
14730 *lo_pos = l->fixp;
14731 }
14732 }
14733 }
14734 }
14735
14736 int
14737 mips_force_relocation (fixS *fixp)
14738 {
14739 if (generic_force_reloc (fixp))
14740 return 1;
14741
14742 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14743 so that the linker relaxation can update targets. */
14744 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14745 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14746 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14747 return 1;
14748
14749 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14750 if (ISA_IS_R6 (mips_opts.isa)
14751 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14752 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14753 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14754 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14755 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14756 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14757 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14758 return 1;
14759
14760 return 0;
14761 }
14762
14763 /* Read the instruction associated with RELOC from BUF. */
14764
14765 static unsigned int
14766 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14767 {
14768 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14769 return read_compressed_insn (buf, 4);
14770 else
14771 return read_insn (buf);
14772 }
14773
14774 /* Write instruction INSN to BUF, given that it has been relocated
14775 by RELOC. */
14776
14777 static void
14778 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14779 unsigned long insn)
14780 {
14781 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14782 write_compressed_insn (buf, insn, 4);
14783 else
14784 write_insn (buf, insn);
14785 }
14786
14787 /* Apply a fixup to the object file. */
14788
14789 void
14790 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14791 {
14792 char *buf;
14793 unsigned long insn;
14794 reloc_howto_type *howto;
14795
14796 if (fixP->fx_pcrel)
14797 switch (fixP->fx_r_type)
14798 {
14799 case BFD_RELOC_16_PCREL_S2:
14800 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14801 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14802 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14803 case BFD_RELOC_32_PCREL:
14804 case BFD_RELOC_MIPS_21_PCREL_S2:
14805 case BFD_RELOC_MIPS_26_PCREL_S2:
14806 case BFD_RELOC_MIPS_18_PCREL_S3:
14807 case BFD_RELOC_MIPS_19_PCREL_S2:
14808 case BFD_RELOC_HI16_S_PCREL:
14809 case BFD_RELOC_LO16_PCREL:
14810 break;
14811
14812 case BFD_RELOC_32:
14813 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14814 break;
14815
14816 default:
14817 as_bad_where (fixP->fx_file, fixP->fx_line,
14818 _("PC-relative reference to a different section"));
14819 break;
14820 }
14821
14822 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14823 that have no MIPS ELF equivalent. */
14824 if (fixP->fx_r_type != BFD_RELOC_8)
14825 {
14826 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14827 if (!howto)
14828 return;
14829 }
14830
14831 gas_assert (fixP->fx_size == 2
14832 || fixP->fx_size == 4
14833 || fixP->fx_r_type == BFD_RELOC_8
14834 || fixP->fx_r_type == BFD_RELOC_16
14835 || fixP->fx_r_type == BFD_RELOC_64
14836 || fixP->fx_r_type == BFD_RELOC_CTOR
14837 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14838 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14839 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14840 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14841 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
14842
14843 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14844
14845 /* Don't treat parts of a composite relocation as done. There are two
14846 reasons for this:
14847
14848 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14849 should nevertheless be emitted if the first part is.
14850
14851 (2) In normal usage, composite relocations are never assembly-time
14852 constants. The easiest way of dealing with the pathological
14853 exceptions is to generate a relocation against STN_UNDEF and
14854 leave everything up to the linker. */
14855 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14856 fixP->fx_done = 1;
14857
14858 switch (fixP->fx_r_type)
14859 {
14860 case BFD_RELOC_MIPS_TLS_GD:
14861 case BFD_RELOC_MIPS_TLS_LDM:
14862 case BFD_RELOC_MIPS_TLS_DTPREL32:
14863 case BFD_RELOC_MIPS_TLS_DTPREL64:
14864 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14865 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14866 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14867 case BFD_RELOC_MIPS_TLS_TPREL32:
14868 case BFD_RELOC_MIPS_TLS_TPREL64:
14869 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14870 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14871 case BFD_RELOC_MICROMIPS_TLS_GD:
14872 case BFD_RELOC_MICROMIPS_TLS_LDM:
14873 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14874 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14875 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14876 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14877 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14878 case BFD_RELOC_MIPS16_TLS_GD:
14879 case BFD_RELOC_MIPS16_TLS_LDM:
14880 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14881 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14882 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14883 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14884 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14885 if (!fixP->fx_addsy)
14886 {
14887 as_bad_where (fixP->fx_file, fixP->fx_line,
14888 _("TLS relocation against a constant"));
14889 break;
14890 }
14891 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14892 /* fall through */
14893
14894 case BFD_RELOC_MIPS_JMP:
14895 case BFD_RELOC_MIPS_SHIFT5:
14896 case BFD_RELOC_MIPS_SHIFT6:
14897 case BFD_RELOC_MIPS_GOT_DISP:
14898 case BFD_RELOC_MIPS_GOT_PAGE:
14899 case BFD_RELOC_MIPS_GOT_OFST:
14900 case BFD_RELOC_MIPS_SUB:
14901 case BFD_RELOC_MIPS_INSERT_A:
14902 case BFD_RELOC_MIPS_INSERT_B:
14903 case BFD_RELOC_MIPS_DELETE:
14904 case BFD_RELOC_MIPS_HIGHEST:
14905 case BFD_RELOC_MIPS_HIGHER:
14906 case BFD_RELOC_MIPS_SCN_DISP:
14907 case BFD_RELOC_MIPS_REL16:
14908 case BFD_RELOC_MIPS_RELGOT:
14909 case BFD_RELOC_MIPS_JALR:
14910 case BFD_RELOC_HI16:
14911 case BFD_RELOC_HI16_S:
14912 case BFD_RELOC_LO16:
14913 case BFD_RELOC_GPREL16:
14914 case BFD_RELOC_MIPS_LITERAL:
14915 case BFD_RELOC_MIPS_CALL16:
14916 case BFD_RELOC_MIPS_GOT16:
14917 case BFD_RELOC_GPREL32:
14918 case BFD_RELOC_MIPS_GOT_HI16:
14919 case BFD_RELOC_MIPS_GOT_LO16:
14920 case BFD_RELOC_MIPS_CALL_HI16:
14921 case BFD_RELOC_MIPS_CALL_LO16:
14922 case BFD_RELOC_MIPS16_GPREL:
14923 case BFD_RELOC_MIPS16_GOT16:
14924 case BFD_RELOC_MIPS16_CALL16:
14925 case BFD_RELOC_MIPS16_HI16:
14926 case BFD_RELOC_MIPS16_HI16_S:
14927 case BFD_RELOC_MIPS16_LO16:
14928 case BFD_RELOC_MIPS16_JMP:
14929 case BFD_RELOC_MICROMIPS_JMP:
14930 case BFD_RELOC_MICROMIPS_GOT_DISP:
14931 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14932 case BFD_RELOC_MICROMIPS_GOT_OFST:
14933 case BFD_RELOC_MICROMIPS_SUB:
14934 case BFD_RELOC_MICROMIPS_HIGHEST:
14935 case BFD_RELOC_MICROMIPS_HIGHER:
14936 case BFD_RELOC_MICROMIPS_SCN_DISP:
14937 case BFD_RELOC_MICROMIPS_JALR:
14938 case BFD_RELOC_MICROMIPS_HI16:
14939 case BFD_RELOC_MICROMIPS_HI16_S:
14940 case BFD_RELOC_MICROMIPS_LO16:
14941 case BFD_RELOC_MICROMIPS_GPREL16:
14942 case BFD_RELOC_MICROMIPS_LITERAL:
14943 case BFD_RELOC_MICROMIPS_CALL16:
14944 case BFD_RELOC_MICROMIPS_GOT16:
14945 case BFD_RELOC_MICROMIPS_GOT_HI16:
14946 case BFD_RELOC_MICROMIPS_GOT_LO16:
14947 case BFD_RELOC_MICROMIPS_CALL_HI16:
14948 case BFD_RELOC_MICROMIPS_CALL_LO16:
14949 case BFD_RELOC_MIPS_EH:
14950 if (fixP->fx_done)
14951 {
14952 offsetT value;
14953
14954 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14955 {
14956 insn = read_reloc_insn (buf, fixP->fx_r_type);
14957 if (mips16_reloc_p (fixP->fx_r_type))
14958 insn |= mips16_immed_extend (value, 16);
14959 else
14960 insn |= (value & 0xffff);
14961 write_reloc_insn (buf, fixP->fx_r_type, insn);
14962 }
14963 else
14964 as_bad_where (fixP->fx_file, fixP->fx_line,
14965 _("unsupported constant in relocation"));
14966 }
14967 break;
14968
14969 case BFD_RELOC_64:
14970 /* This is handled like BFD_RELOC_32, but we output a sign
14971 extended value if we are only 32 bits. */
14972 if (fixP->fx_done)
14973 {
14974 if (8 <= sizeof (valueT))
14975 md_number_to_chars (buf, *valP, 8);
14976 else
14977 {
14978 valueT hiv;
14979
14980 if ((*valP & 0x80000000) != 0)
14981 hiv = 0xffffffff;
14982 else
14983 hiv = 0;
14984 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14985 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14986 }
14987 }
14988 break;
14989
14990 case BFD_RELOC_RVA:
14991 case BFD_RELOC_32:
14992 case BFD_RELOC_32_PCREL:
14993 case BFD_RELOC_16:
14994 case BFD_RELOC_8:
14995 /* If we are deleting this reloc entry, we must fill in the
14996 value now. This can happen if we have a .word which is not
14997 resolved when it appears but is later defined. */
14998 if (fixP->fx_done)
14999 md_number_to_chars (buf, *valP, fixP->fx_size);
15000 break;
15001
15002 case BFD_RELOC_MIPS_21_PCREL_S2:
15003 case BFD_RELOC_MIPS_26_PCREL_S2:
15004 if ((*valP & 0x3) != 0)
15005 as_bad_where (fixP->fx_file, fixP->fx_line,
15006 _("branch to misaligned address (%lx)"), (long) *valP);
15007
15008 gas_assert (!fixP->fx_done);
15009 break;
15010
15011 case BFD_RELOC_MIPS_18_PCREL_S3:
15012 if ((*valP & 0x7) != 0)
15013 as_bad_where (fixP->fx_file, fixP->fx_line,
15014 _("PC-relative access to misaligned address (%lx)"),
15015 (long) *valP);
15016
15017 gas_assert (!fixP->fx_done);
15018 break;
15019
15020 case BFD_RELOC_MIPS_19_PCREL_S2:
15021 if ((*valP & 0x3) != 0)
15022 as_bad_where (fixP->fx_file, fixP->fx_line,
15023 _("PC-relative access to misaligned address (%lx)"),
15024 (long) *valP);
15025
15026 gas_assert (!fixP->fx_done);
15027 break;
15028
15029 case BFD_RELOC_HI16_S_PCREL:
15030 case BFD_RELOC_LO16_PCREL:
15031 gas_assert (!fixP->fx_done);
15032 break;
15033
15034 case BFD_RELOC_16_PCREL_S2:
15035 if ((*valP & 0x3) != 0)
15036 as_bad_where (fixP->fx_file, fixP->fx_line,
15037 _("branch to misaligned address (%lx)"), (long) *valP);
15038
15039 /* We need to save the bits in the instruction since fixup_segment()
15040 might be deleting the relocation entry (i.e., a branch within
15041 the current segment). */
15042 if (! fixP->fx_done)
15043 break;
15044
15045 /* Update old instruction data. */
15046 insn = read_insn (buf);
15047
15048 if (*valP + 0x20000 <= 0x3ffff)
15049 {
15050 insn |= (*valP >> 2) & 0xffff;
15051 write_insn (buf, insn);
15052 }
15053 else if (mips_pic == NO_PIC
15054 && fixP->fx_done
15055 && fixP->fx_frag->fr_address >= text_section->vma
15056 && (fixP->fx_frag->fr_address
15057 < text_section->vma + bfd_get_section_size (text_section))
15058 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15059 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15060 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15061 {
15062 /* The branch offset is too large. If this is an
15063 unconditional branch, and we are not generating PIC code,
15064 we can convert it to an absolute jump instruction. */
15065 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15066 insn = 0x0c000000; /* jal */
15067 else
15068 insn = 0x08000000; /* j */
15069 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15070 fixP->fx_done = 0;
15071 fixP->fx_addsy = section_symbol (text_section);
15072 *valP += md_pcrel_from (fixP);
15073 write_insn (buf, insn);
15074 }
15075 else
15076 {
15077 /* If we got here, we have branch-relaxation disabled,
15078 and there's nothing we can do to fix this instruction
15079 without turning it into a longer sequence. */
15080 as_bad_where (fixP->fx_file, fixP->fx_line,
15081 _("branch out of range"));
15082 }
15083 break;
15084
15085 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15086 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15087 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15088 /* We adjust the offset back to even. */
15089 if ((*valP & 0x1) != 0)
15090 --(*valP);
15091
15092 if (! fixP->fx_done)
15093 break;
15094
15095 /* Should never visit here, because we keep the relocation. */
15096 abort ();
15097 break;
15098
15099 case BFD_RELOC_VTABLE_INHERIT:
15100 fixP->fx_done = 0;
15101 if (fixP->fx_addsy
15102 && !S_IS_DEFINED (fixP->fx_addsy)
15103 && !S_IS_WEAK (fixP->fx_addsy))
15104 S_SET_WEAK (fixP->fx_addsy);
15105 break;
15106
15107 case BFD_RELOC_VTABLE_ENTRY:
15108 fixP->fx_done = 0;
15109 break;
15110
15111 default:
15112 abort ();
15113 }
15114
15115 /* Remember value for tc_gen_reloc. */
15116 fixP->fx_addnumber = *valP;
15117 }
15118
15119 static symbolS *
15120 get_symbol (void)
15121 {
15122 int c;
15123 char *name;
15124 symbolS *p;
15125
15126 name = input_line_pointer;
15127 c = get_symbol_end ();
15128 p = (symbolS *) symbol_find_or_make (name);
15129 *input_line_pointer = c;
15130 return p;
15131 }
15132
15133 /* Align the current frag to a given power of two. If a particular
15134 fill byte should be used, FILL points to an integer that contains
15135 that byte, otherwise FILL is null.
15136
15137 This function used to have the comment:
15138
15139 The MIPS assembler also automatically adjusts any preceding label.
15140
15141 The implementation therefore applied the adjustment to a maximum of
15142 one label. However, other label adjustments are applied to batches
15143 of labels, and adjusting just one caused problems when new labels
15144 were added for the sake of debugging or unwind information.
15145 We therefore adjust all preceding labels (given as LABELS) instead. */
15146
15147 static void
15148 mips_align (int to, int *fill, struct insn_label_list *labels)
15149 {
15150 mips_emit_delays ();
15151 mips_record_compressed_mode ();
15152 if (fill == NULL && subseg_text_p (now_seg))
15153 frag_align_code (to, 0);
15154 else
15155 frag_align (to, fill ? *fill : 0, 0);
15156 record_alignment (now_seg, to);
15157 mips_move_labels (labels, FALSE);
15158 }
15159
15160 /* Align to a given power of two. .align 0 turns off the automatic
15161 alignment used by the data creating pseudo-ops. */
15162
15163 static void
15164 s_align (int x ATTRIBUTE_UNUSED)
15165 {
15166 int temp, fill_value, *fill_ptr;
15167 long max_alignment = 28;
15168
15169 /* o Note that the assembler pulls down any immediately preceding label
15170 to the aligned address.
15171 o It's not documented but auto alignment is reinstated by
15172 a .align pseudo instruction.
15173 o Note also that after auto alignment is turned off the mips assembler
15174 issues an error on attempt to assemble an improperly aligned data item.
15175 We don't. */
15176
15177 temp = get_absolute_expression ();
15178 if (temp > max_alignment)
15179 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15180 else if (temp < 0)
15181 {
15182 as_warn (_("alignment negative, 0 assumed"));
15183 temp = 0;
15184 }
15185 if (*input_line_pointer == ',')
15186 {
15187 ++input_line_pointer;
15188 fill_value = get_absolute_expression ();
15189 fill_ptr = &fill_value;
15190 }
15191 else
15192 fill_ptr = 0;
15193 if (temp)
15194 {
15195 segment_info_type *si = seg_info (now_seg);
15196 struct insn_label_list *l = si->label_list;
15197 /* Auto alignment should be switched on by next section change. */
15198 auto_align = 1;
15199 mips_align (temp, fill_ptr, l);
15200 }
15201 else
15202 {
15203 auto_align = 0;
15204 }
15205
15206 demand_empty_rest_of_line ();
15207 }
15208
15209 static void
15210 s_change_sec (int sec)
15211 {
15212 segT seg;
15213
15214 /* The ELF backend needs to know that we are changing sections, so
15215 that .previous works correctly. We could do something like check
15216 for an obj_section_change_hook macro, but that might be confusing
15217 as it would not be appropriate to use it in the section changing
15218 functions in read.c, since obj-elf.c intercepts those. FIXME:
15219 This should be cleaner, somehow. */
15220 obj_elf_section_change_hook ();
15221
15222 mips_emit_delays ();
15223
15224 switch (sec)
15225 {
15226 case 't':
15227 s_text (0);
15228 break;
15229 case 'd':
15230 s_data (0);
15231 break;
15232 case 'b':
15233 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15234 demand_empty_rest_of_line ();
15235 break;
15236
15237 case 'r':
15238 seg = subseg_new (RDATA_SECTION_NAME,
15239 (subsegT) get_absolute_expression ());
15240 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15241 | SEC_READONLY | SEC_RELOC
15242 | SEC_DATA));
15243 if (strncmp (TARGET_OS, "elf", 3) != 0)
15244 record_alignment (seg, 4);
15245 demand_empty_rest_of_line ();
15246 break;
15247
15248 case 's':
15249 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15250 bfd_set_section_flags (stdoutput, seg,
15251 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15252 if (strncmp (TARGET_OS, "elf", 3) != 0)
15253 record_alignment (seg, 4);
15254 demand_empty_rest_of_line ();
15255 break;
15256
15257 case 'B':
15258 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15259 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15260 if (strncmp (TARGET_OS, "elf", 3) != 0)
15261 record_alignment (seg, 4);
15262 demand_empty_rest_of_line ();
15263 break;
15264 }
15265
15266 auto_align = 1;
15267 }
15268
15269 void
15270 s_change_section (int ignore ATTRIBUTE_UNUSED)
15271 {
15272 char *section_name;
15273 char c;
15274 char next_c = 0;
15275 int section_type;
15276 int section_flag;
15277 int section_entry_size;
15278 int section_alignment;
15279
15280 section_name = input_line_pointer;
15281 c = get_symbol_end ();
15282 if (c)
15283 next_c = *(input_line_pointer + 1);
15284
15285 /* Do we have .section Name<,"flags">? */
15286 if (c != ',' || (c == ',' && next_c == '"'))
15287 {
15288 /* just after name is now '\0'. */
15289 *input_line_pointer = c;
15290 input_line_pointer = section_name;
15291 obj_elf_section (ignore);
15292 return;
15293 }
15294 input_line_pointer++;
15295
15296 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15297 if (c == ',')
15298 section_type = get_absolute_expression ();
15299 else
15300 section_type = 0;
15301 if (*input_line_pointer++ == ',')
15302 section_flag = get_absolute_expression ();
15303 else
15304 section_flag = 0;
15305 if (*input_line_pointer++ == ',')
15306 section_entry_size = get_absolute_expression ();
15307 else
15308 section_entry_size = 0;
15309 if (*input_line_pointer++ == ',')
15310 section_alignment = get_absolute_expression ();
15311 else
15312 section_alignment = 0;
15313 /* FIXME: really ignore? */
15314 (void) section_alignment;
15315
15316 section_name = xstrdup (section_name);
15317
15318 /* When using the generic form of .section (as implemented by obj-elf.c),
15319 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15320 traditionally had to fall back on the more common @progbits instead.
15321
15322 There's nothing really harmful in this, since bfd will correct
15323 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15324 means that, for backwards compatibility, the special_section entries
15325 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15326
15327 Even so, we shouldn't force users of the MIPS .section syntax to
15328 incorrectly label the sections as SHT_PROGBITS. The best compromise
15329 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15330 generic type-checking code. */
15331 if (section_type == SHT_MIPS_DWARF)
15332 section_type = SHT_PROGBITS;
15333
15334 obj_elf_change_section (section_name, section_type, section_flag,
15335 section_entry_size, 0, 0, 0);
15336
15337 if (now_seg->name != section_name)
15338 free (section_name);
15339 }
15340
15341 void
15342 mips_enable_auto_align (void)
15343 {
15344 auto_align = 1;
15345 }
15346
15347 static void
15348 s_cons (int log_size)
15349 {
15350 segment_info_type *si = seg_info (now_seg);
15351 struct insn_label_list *l = si->label_list;
15352
15353 mips_emit_delays ();
15354 if (log_size > 0 && auto_align)
15355 mips_align (log_size, 0, l);
15356 cons (1 << log_size);
15357 mips_clear_insn_labels ();
15358 }
15359
15360 static void
15361 s_float_cons (int type)
15362 {
15363 segment_info_type *si = seg_info (now_seg);
15364 struct insn_label_list *l = si->label_list;
15365
15366 mips_emit_delays ();
15367
15368 if (auto_align)
15369 {
15370 if (type == 'd')
15371 mips_align (3, 0, l);
15372 else
15373 mips_align (2, 0, l);
15374 }
15375
15376 float_cons (type);
15377 mips_clear_insn_labels ();
15378 }
15379
15380 /* Handle .globl. We need to override it because on Irix 5 you are
15381 permitted to say
15382 .globl foo .text
15383 where foo is an undefined symbol, to mean that foo should be
15384 considered to be the address of a function. */
15385
15386 static void
15387 s_mips_globl (int x ATTRIBUTE_UNUSED)
15388 {
15389 char *name;
15390 int c;
15391 symbolS *symbolP;
15392 flagword flag;
15393
15394 do
15395 {
15396 name = input_line_pointer;
15397 c = get_symbol_end ();
15398 symbolP = symbol_find_or_make (name);
15399 S_SET_EXTERNAL (symbolP);
15400
15401 *input_line_pointer = c;
15402 SKIP_WHITESPACE ();
15403
15404 /* On Irix 5, every global symbol that is not explicitly labelled as
15405 being a function is apparently labelled as being an object. */
15406 flag = BSF_OBJECT;
15407
15408 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15409 && (*input_line_pointer != ','))
15410 {
15411 char *secname;
15412 asection *sec;
15413
15414 secname = input_line_pointer;
15415 c = get_symbol_end ();
15416 sec = bfd_get_section_by_name (stdoutput, secname);
15417 if (sec == NULL)
15418 as_bad (_("%s: no such section"), secname);
15419 *input_line_pointer = c;
15420
15421 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15422 flag = BSF_FUNCTION;
15423 }
15424
15425 symbol_get_bfdsym (symbolP)->flags |= flag;
15426
15427 c = *input_line_pointer;
15428 if (c == ',')
15429 {
15430 input_line_pointer++;
15431 SKIP_WHITESPACE ();
15432 if (is_end_of_line[(unsigned char) *input_line_pointer])
15433 c = '\n';
15434 }
15435 }
15436 while (c == ',');
15437
15438 demand_empty_rest_of_line ();
15439 }
15440
15441 static void
15442 s_option (int x ATTRIBUTE_UNUSED)
15443 {
15444 char *opt;
15445 char c;
15446
15447 opt = input_line_pointer;
15448 c = get_symbol_end ();
15449
15450 if (*opt == 'O')
15451 {
15452 /* FIXME: What does this mean? */
15453 }
15454 else if (strncmp (opt, "pic", 3) == 0)
15455 {
15456 int i;
15457
15458 i = atoi (opt + 3);
15459 if (i == 0)
15460 mips_pic = NO_PIC;
15461 else if (i == 2)
15462 {
15463 mips_pic = SVR4_PIC;
15464 mips_abicalls = TRUE;
15465 }
15466 else
15467 as_bad (_(".option pic%d not supported"), i);
15468
15469 if (mips_pic == SVR4_PIC)
15470 {
15471 if (g_switch_seen && g_switch_value != 0)
15472 as_warn (_("-G may not be used with SVR4 PIC code"));
15473 g_switch_value = 0;
15474 bfd_set_gp_size (stdoutput, 0);
15475 }
15476 }
15477 else
15478 as_warn (_("unrecognized option \"%s\""), opt);
15479
15480 *input_line_pointer = c;
15481 demand_empty_rest_of_line ();
15482 }
15483
15484 /* This structure is used to hold a stack of .set values. */
15485
15486 struct mips_option_stack
15487 {
15488 struct mips_option_stack *next;
15489 struct mips_set_options options;
15490 };
15491
15492 static struct mips_option_stack *mips_opts_stack;
15493
15494 static bfd_boolean
15495 parse_code_option (char * name)
15496 {
15497 const struct mips_ase *ase;
15498 if (strncmp (name, "at=", 3) == 0)
15499 {
15500 char *s = name + 3;
15501
15502 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15503 as_bad (_("unrecognized register name `%s'"), s);
15504 }
15505 else if (strcmp (name, "at") == 0)
15506 mips_opts.at = ATREG;
15507 else if (strcmp (name, "noat") == 0)
15508 mips_opts.at = ZERO;
15509 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15510 mips_opts.nomove = 0;
15511 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15512 mips_opts.nomove = 1;
15513 else if (strcmp (name, "bopt") == 0)
15514 mips_opts.nobopt = 0;
15515 else if (strcmp (name, "nobopt") == 0)
15516 mips_opts.nobopt = 1;
15517 else if (strcmp (name, "gp=32") == 0)
15518 mips_opts.gp = 32;
15519 else if (strcmp (name, "gp=64") == 0)
15520 mips_opts.gp = 64;
15521 else if (strcmp (name, "fp=32") == 0)
15522 mips_opts.fp = 32;
15523 else if (strcmp (name, "fp=xx") == 0)
15524 mips_opts.fp = 0;
15525 else if (strcmp (name, "fp=64") == 0)
15526 mips_opts.fp = 64;
15527 else if (strcmp (name, "softfloat") == 0)
15528 mips_opts.soft_float = 1;
15529 else if (strcmp (name, "hardfloat") == 0)
15530 mips_opts.soft_float = 0;
15531 else if (strcmp (name, "singlefloat") == 0)
15532 mips_opts.single_float = 1;
15533 else if (strcmp (name, "doublefloat") == 0)
15534 mips_opts.single_float = 0;
15535 else if (strcmp (name, "nooddspreg") == 0)
15536 mips_opts.oddspreg = 0;
15537 else if (strcmp (name, "oddspreg") == 0)
15538 mips_opts.oddspreg = 1;
15539 else if (strcmp (name, "mips16") == 0
15540 || strcmp (name, "MIPS-16") == 0)
15541 mips_opts.mips16 = 1;
15542 else if (strcmp (name, "nomips16") == 0
15543 || strcmp (name, "noMIPS-16") == 0)
15544 mips_opts.mips16 = 0;
15545 else if (strcmp (name, "micromips") == 0)
15546 mips_opts.micromips = 1;
15547 else if (strcmp (name, "nomicromips") == 0)
15548 mips_opts.micromips = 0;
15549 else if (name[0] == 'n'
15550 && name[1] == 'o'
15551 && (ase = mips_lookup_ase (name + 2)))
15552 mips_set_ase (ase, &mips_opts, FALSE);
15553 else if ((ase = mips_lookup_ase (name)))
15554 mips_set_ase (ase, &mips_opts, TRUE);
15555 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15556 {
15557 /* Permit the user to change the ISA and architecture on the fly.
15558 Needless to say, misuse can cause serious problems. */
15559 if (strncmp (name, "arch=", 5) == 0)
15560 {
15561 const struct mips_cpu_info *p;
15562
15563 p = mips_parse_cpu ("internal use", name + 5);
15564 if (!p)
15565 as_bad (_("unknown architecture %s"), name + 5);
15566 else
15567 {
15568 mips_opts.arch = p->cpu;
15569 mips_opts.isa = p->isa;
15570 }
15571 }
15572 else if (strncmp (name, "mips", 4) == 0)
15573 {
15574 const struct mips_cpu_info *p;
15575
15576 p = mips_parse_cpu ("internal use", name);
15577 if (!p)
15578 as_bad (_("unknown ISA level %s"), name + 4);
15579 else
15580 {
15581 mips_opts.arch = p->cpu;
15582 mips_opts.isa = p->isa;
15583 }
15584 }
15585 else
15586 as_bad (_("unknown ISA or architecture %s"), name);
15587 }
15588 else if (strcmp (name, "autoextend") == 0)
15589 mips_opts.noautoextend = 0;
15590 else if (strcmp (name, "noautoextend") == 0)
15591 mips_opts.noautoextend = 1;
15592 else if (strcmp (name, "insn32") == 0)
15593 mips_opts.insn32 = TRUE;
15594 else if (strcmp (name, "noinsn32") == 0)
15595 mips_opts.insn32 = FALSE;
15596 else if (strcmp (name, "sym32") == 0)
15597 mips_opts.sym32 = TRUE;
15598 else if (strcmp (name, "nosym32") == 0)
15599 mips_opts.sym32 = FALSE;
15600 else
15601 return FALSE;
15602 return TRUE;
15603 }
15604
15605 /* Handle the .set pseudo-op. */
15606
15607 static void
15608 s_mipsset (int x ATTRIBUTE_UNUSED)
15609 {
15610 char *name = input_line_pointer, ch;
15611 int prev_isa = mips_opts.isa;
15612
15613 file_mips_check_options ();
15614
15615 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15616 ++input_line_pointer;
15617 ch = *input_line_pointer;
15618 *input_line_pointer = '\0';
15619
15620 if (strchr (name, ','))
15621 {
15622 /* Generic ".set" directive; use the generic handler. */
15623 *input_line_pointer = ch;
15624 input_line_pointer = name;
15625 s_set (0);
15626 return;
15627 }
15628
15629 if (strcmp (name, "reorder") == 0)
15630 {
15631 if (mips_opts.noreorder)
15632 end_noreorder ();
15633 }
15634 else if (strcmp (name, "noreorder") == 0)
15635 {
15636 if (!mips_opts.noreorder)
15637 start_noreorder ();
15638 }
15639 else if (strcmp (name, "macro") == 0)
15640 mips_opts.warn_about_macros = 0;
15641 else if (strcmp (name, "nomacro") == 0)
15642 {
15643 if (mips_opts.noreorder == 0)
15644 as_bad (_("`noreorder' must be set before `nomacro'"));
15645 mips_opts.warn_about_macros = 1;
15646 }
15647 else if (strcmp (name, "gp=default") == 0)
15648 mips_opts.gp = file_mips_opts.gp;
15649 else if (strcmp (name, "fp=default") == 0)
15650 mips_opts.fp = file_mips_opts.fp;
15651 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15652 {
15653 mips_opts.isa = file_mips_opts.isa;
15654 mips_opts.arch = file_mips_opts.arch;
15655 mips_opts.gp = file_mips_opts.gp;
15656 mips_opts.fp = file_mips_opts.fp;
15657 }
15658 else if (strcmp (name, "push") == 0)
15659 {
15660 struct mips_option_stack *s;
15661
15662 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15663 s->next = mips_opts_stack;
15664 s->options = mips_opts;
15665 mips_opts_stack = s;
15666 }
15667 else if (strcmp (name, "pop") == 0)
15668 {
15669 struct mips_option_stack *s;
15670
15671 s = mips_opts_stack;
15672 if (s == NULL)
15673 as_bad (_(".set pop with no .set push"));
15674 else
15675 {
15676 /* If we're changing the reorder mode we need to handle
15677 delay slots correctly. */
15678 if (s->options.noreorder && ! mips_opts.noreorder)
15679 start_noreorder ();
15680 else if (! s->options.noreorder && mips_opts.noreorder)
15681 end_noreorder ();
15682
15683 mips_opts = s->options;
15684 mips_opts_stack = s->next;
15685 free (s);
15686 }
15687 }
15688 else if (!parse_code_option (name))
15689 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15690
15691 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15692 registers based on what is supported by the arch/cpu. */
15693 if (mips_opts.isa != prev_isa)
15694 {
15695 switch (mips_opts.isa)
15696 {
15697 case 0:
15698 break;
15699 case ISA_MIPS1:
15700 /* MIPS I cannot support FPXX. */
15701 mips_opts.fp = 32;
15702 /* fall-through. */
15703 case ISA_MIPS2:
15704 case ISA_MIPS32:
15705 case ISA_MIPS32R2:
15706 case ISA_MIPS32R3:
15707 case ISA_MIPS32R5:
15708 mips_opts.gp = 32;
15709 if (mips_opts.fp != 0)
15710 mips_opts.fp = 32;
15711 break;
15712 case ISA_MIPS32R6:
15713 mips_opts.gp = 32;
15714 mips_opts.fp = 64;
15715 break;
15716 case ISA_MIPS3:
15717 case ISA_MIPS4:
15718 case ISA_MIPS5:
15719 case ISA_MIPS64:
15720 case ISA_MIPS64R2:
15721 case ISA_MIPS64R3:
15722 case ISA_MIPS64R5:
15723 case ISA_MIPS64R6:
15724 mips_opts.gp = 64;
15725 if (mips_opts.fp != 0)
15726 {
15727 if (mips_opts.arch == CPU_R5900)
15728 mips_opts.fp = 32;
15729 else
15730 mips_opts.fp = 64;
15731 }
15732 break;
15733 default:
15734 as_bad (_("unknown ISA level %s"), name + 4);
15735 break;
15736 }
15737 }
15738
15739 mips_check_options (&mips_opts, FALSE);
15740
15741 mips_check_isa_supports_ases ();
15742 *input_line_pointer = ch;
15743 demand_empty_rest_of_line ();
15744 }
15745
15746 /* Handle the .module pseudo-op. */
15747
15748 static void
15749 s_module (int ignore ATTRIBUTE_UNUSED)
15750 {
15751 char *name = input_line_pointer, ch;
15752
15753 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15754 ++input_line_pointer;
15755 ch = *input_line_pointer;
15756 *input_line_pointer = '\0';
15757
15758 if (!file_mips_opts_checked)
15759 {
15760 if (!parse_code_option (name))
15761 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15762
15763 /* Update module level settings from mips_opts. */
15764 file_mips_opts = mips_opts;
15765 }
15766 else
15767 as_bad (_(".module is not permitted after generating code"));
15768
15769 *input_line_pointer = ch;
15770 demand_empty_rest_of_line ();
15771 }
15772
15773 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15774 .option pic2. It means to generate SVR4 PIC calls. */
15775
15776 static void
15777 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15778 {
15779 mips_pic = SVR4_PIC;
15780 mips_abicalls = TRUE;
15781
15782 if (g_switch_seen && g_switch_value != 0)
15783 as_warn (_("-G may not be used with SVR4 PIC code"));
15784 g_switch_value = 0;
15785
15786 bfd_set_gp_size (stdoutput, 0);
15787 demand_empty_rest_of_line ();
15788 }
15789
15790 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15791 PIC code. It sets the $gp register for the function based on the
15792 function address, which is in the register named in the argument.
15793 This uses a relocation against _gp_disp, which is handled specially
15794 by the linker. The result is:
15795 lui $gp,%hi(_gp_disp)
15796 addiu $gp,$gp,%lo(_gp_disp)
15797 addu $gp,$gp,.cpload argument
15798 The .cpload argument is normally $25 == $t9.
15799
15800 The -mno-shared option changes this to:
15801 lui $gp,%hi(__gnu_local_gp)
15802 addiu $gp,$gp,%lo(__gnu_local_gp)
15803 and the argument is ignored. This saves an instruction, but the
15804 resulting code is not position independent; it uses an absolute
15805 address for __gnu_local_gp. Thus code assembled with -mno-shared
15806 can go into an ordinary executable, but not into a shared library. */
15807
15808 static void
15809 s_cpload (int ignore ATTRIBUTE_UNUSED)
15810 {
15811 expressionS ex;
15812 int reg;
15813 int in_shared;
15814
15815 file_mips_check_options ();
15816
15817 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15818 .cpload is ignored. */
15819 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15820 {
15821 s_ignore (0);
15822 return;
15823 }
15824
15825 if (mips_opts.mips16)
15826 {
15827 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15828 ignore_rest_of_line ();
15829 return;
15830 }
15831
15832 /* .cpload should be in a .set noreorder section. */
15833 if (mips_opts.noreorder == 0)
15834 as_warn (_(".cpload not in noreorder section"));
15835
15836 reg = tc_get_register (0);
15837
15838 /* If we need to produce a 64-bit address, we are better off using
15839 the default instruction sequence. */
15840 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15841
15842 ex.X_op = O_symbol;
15843 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15844 "__gnu_local_gp");
15845 ex.X_op_symbol = NULL;
15846 ex.X_add_number = 0;
15847
15848 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15849 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15850
15851 mips_mark_labels ();
15852 mips_assembling_insn = TRUE;
15853
15854 macro_start ();
15855 macro_build_lui (&ex, mips_gp_register);
15856 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15857 mips_gp_register, BFD_RELOC_LO16);
15858 if (in_shared)
15859 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15860 mips_gp_register, reg);
15861 macro_end ();
15862
15863 mips_assembling_insn = FALSE;
15864 demand_empty_rest_of_line ();
15865 }
15866
15867 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15868 .cpsetup $reg1, offset|$reg2, label
15869
15870 If offset is given, this results in:
15871 sd $gp, offset($sp)
15872 lui $gp, %hi(%neg(%gp_rel(label)))
15873 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15874 daddu $gp, $gp, $reg1
15875
15876 If $reg2 is given, this results in:
15877 daddu $reg2, $gp, $0
15878 lui $gp, %hi(%neg(%gp_rel(label)))
15879 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15880 daddu $gp, $gp, $reg1
15881 $reg1 is normally $25 == $t9.
15882
15883 The -mno-shared option replaces the last three instructions with
15884 lui $gp,%hi(_gp)
15885 addiu $gp,$gp,%lo(_gp) */
15886
15887 static void
15888 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15889 {
15890 expressionS ex_off;
15891 expressionS ex_sym;
15892 int reg1;
15893
15894 file_mips_check_options ();
15895
15896 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15897 We also need NewABI support. */
15898 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15899 {
15900 s_ignore (0);
15901 return;
15902 }
15903
15904 if (mips_opts.mips16)
15905 {
15906 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15907 ignore_rest_of_line ();
15908 return;
15909 }
15910
15911 reg1 = tc_get_register (0);
15912 SKIP_WHITESPACE ();
15913 if (*input_line_pointer != ',')
15914 {
15915 as_bad (_("missing argument separator ',' for .cpsetup"));
15916 return;
15917 }
15918 else
15919 ++input_line_pointer;
15920 SKIP_WHITESPACE ();
15921 if (*input_line_pointer == '$')
15922 {
15923 mips_cpreturn_register = tc_get_register (0);
15924 mips_cpreturn_offset = -1;
15925 }
15926 else
15927 {
15928 mips_cpreturn_offset = get_absolute_expression ();
15929 mips_cpreturn_register = -1;
15930 }
15931 SKIP_WHITESPACE ();
15932 if (*input_line_pointer != ',')
15933 {
15934 as_bad (_("missing argument separator ',' for .cpsetup"));
15935 return;
15936 }
15937 else
15938 ++input_line_pointer;
15939 SKIP_WHITESPACE ();
15940 expression (&ex_sym);
15941
15942 mips_mark_labels ();
15943 mips_assembling_insn = TRUE;
15944
15945 macro_start ();
15946 if (mips_cpreturn_register == -1)
15947 {
15948 ex_off.X_op = O_constant;
15949 ex_off.X_add_symbol = NULL;
15950 ex_off.X_op_symbol = NULL;
15951 ex_off.X_add_number = mips_cpreturn_offset;
15952
15953 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15954 BFD_RELOC_LO16, SP);
15955 }
15956 else
15957 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
15958 mips_gp_register, 0);
15959
15960 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15961 {
15962 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15963 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15964 BFD_RELOC_HI16_S);
15965
15966 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15967 mips_gp_register, -1, BFD_RELOC_GPREL16,
15968 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15969
15970 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15971 mips_gp_register, reg1);
15972 }
15973 else
15974 {
15975 expressionS ex;
15976
15977 ex.X_op = O_symbol;
15978 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15979 ex.X_op_symbol = NULL;
15980 ex.X_add_number = 0;
15981
15982 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15983 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15984
15985 macro_build_lui (&ex, mips_gp_register);
15986 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15987 mips_gp_register, BFD_RELOC_LO16);
15988 }
15989
15990 macro_end ();
15991
15992 mips_assembling_insn = FALSE;
15993 demand_empty_rest_of_line ();
15994 }
15995
15996 static void
15997 s_cplocal (int ignore ATTRIBUTE_UNUSED)
15998 {
15999 file_mips_check_options ();
16000
16001 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16002 .cplocal is ignored. */
16003 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16004 {
16005 s_ignore (0);
16006 return;
16007 }
16008
16009 if (mips_opts.mips16)
16010 {
16011 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16012 ignore_rest_of_line ();
16013 return;
16014 }
16015
16016 mips_gp_register = tc_get_register (0);
16017 demand_empty_rest_of_line ();
16018 }
16019
16020 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16021 offset from $sp. The offset is remembered, and after making a PIC
16022 call $gp is restored from that location. */
16023
16024 static void
16025 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16026 {
16027 expressionS ex;
16028
16029 file_mips_check_options ();
16030
16031 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16032 .cprestore is ignored. */
16033 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16034 {
16035 s_ignore (0);
16036 return;
16037 }
16038
16039 if (mips_opts.mips16)
16040 {
16041 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16042 ignore_rest_of_line ();
16043 return;
16044 }
16045
16046 mips_cprestore_offset = get_absolute_expression ();
16047 mips_cprestore_valid = 1;
16048
16049 ex.X_op = O_constant;
16050 ex.X_add_symbol = NULL;
16051 ex.X_op_symbol = NULL;
16052 ex.X_add_number = mips_cprestore_offset;
16053
16054 mips_mark_labels ();
16055 mips_assembling_insn = TRUE;
16056
16057 macro_start ();
16058 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16059 SP, HAVE_64BIT_ADDRESSES);
16060 macro_end ();
16061
16062 mips_assembling_insn = FALSE;
16063 demand_empty_rest_of_line ();
16064 }
16065
16066 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16067 was given in the preceding .cpsetup, it results in:
16068 ld $gp, offset($sp)
16069
16070 If a register $reg2 was given there, it results in:
16071 daddu $gp, $reg2, $0 */
16072
16073 static void
16074 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16075 {
16076 expressionS ex;
16077
16078 file_mips_check_options ();
16079
16080 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16081 We also need NewABI support. */
16082 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16083 {
16084 s_ignore (0);
16085 return;
16086 }
16087
16088 if (mips_opts.mips16)
16089 {
16090 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16091 ignore_rest_of_line ();
16092 return;
16093 }
16094
16095 mips_mark_labels ();
16096 mips_assembling_insn = TRUE;
16097
16098 macro_start ();
16099 if (mips_cpreturn_register == -1)
16100 {
16101 ex.X_op = O_constant;
16102 ex.X_add_symbol = NULL;
16103 ex.X_op_symbol = NULL;
16104 ex.X_add_number = mips_cpreturn_offset;
16105
16106 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16107 }
16108 else
16109 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16110 mips_cpreturn_register, 0);
16111 macro_end ();
16112
16113 mips_assembling_insn = FALSE;
16114 demand_empty_rest_of_line ();
16115 }
16116
16117 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16118 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16119 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16120 debug information or MIPS16 TLS. */
16121
16122 static void
16123 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16124 bfd_reloc_code_real_type rtype)
16125 {
16126 expressionS ex;
16127 char *p;
16128
16129 expression (&ex);
16130
16131 if (ex.X_op != O_symbol)
16132 {
16133 as_bad (_("unsupported use of %s"), dirstr);
16134 ignore_rest_of_line ();
16135 }
16136
16137 p = frag_more (bytes);
16138 md_number_to_chars (p, 0, bytes);
16139 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16140 demand_empty_rest_of_line ();
16141 mips_clear_insn_labels ();
16142 }
16143
16144 /* Handle .dtprelword. */
16145
16146 static void
16147 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16148 {
16149 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16150 }
16151
16152 /* Handle .dtpreldword. */
16153
16154 static void
16155 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16156 {
16157 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16158 }
16159
16160 /* Handle .tprelword. */
16161
16162 static void
16163 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16164 {
16165 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16166 }
16167
16168 /* Handle .tpreldword. */
16169
16170 static void
16171 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16172 {
16173 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16174 }
16175
16176 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16177 code. It sets the offset to use in gp_rel relocations. */
16178
16179 static void
16180 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16181 {
16182 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16183 We also need NewABI support. */
16184 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16185 {
16186 s_ignore (0);
16187 return;
16188 }
16189
16190 mips_gprel_offset = get_absolute_expression ();
16191
16192 demand_empty_rest_of_line ();
16193 }
16194
16195 /* Handle the .gpword pseudo-op. This is used when generating PIC
16196 code. It generates a 32 bit GP relative reloc. */
16197
16198 static void
16199 s_gpword (int ignore ATTRIBUTE_UNUSED)
16200 {
16201 segment_info_type *si;
16202 struct insn_label_list *l;
16203 expressionS ex;
16204 char *p;
16205
16206 /* When not generating PIC code, this is treated as .word. */
16207 if (mips_pic != SVR4_PIC)
16208 {
16209 s_cons (2);
16210 return;
16211 }
16212
16213 si = seg_info (now_seg);
16214 l = si->label_list;
16215 mips_emit_delays ();
16216 if (auto_align)
16217 mips_align (2, 0, l);
16218
16219 expression (&ex);
16220 mips_clear_insn_labels ();
16221
16222 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16223 {
16224 as_bad (_("unsupported use of .gpword"));
16225 ignore_rest_of_line ();
16226 }
16227
16228 p = frag_more (4);
16229 md_number_to_chars (p, 0, 4);
16230 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16231 BFD_RELOC_GPREL32);
16232
16233 demand_empty_rest_of_line ();
16234 }
16235
16236 static void
16237 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16238 {
16239 segment_info_type *si;
16240 struct insn_label_list *l;
16241 expressionS ex;
16242 char *p;
16243
16244 /* When not generating PIC code, this is treated as .dword. */
16245 if (mips_pic != SVR4_PIC)
16246 {
16247 s_cons (3);
16248 return;
16249 }
16250
16251 si = seg_info (now_seg);
16252 l = si->label_list;
16253 mips_emit_delays ();
16254 if (auto_align)
16255 mips_align (3, 0, l);
16256
16257 expression (&ex);
16258 mips_clear_insn_labels ();
16259
16260 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16261 {
16262 as_bad (_("unsupported use of .gpdword"));
16263 ignore_rest_of_line ();
16264 }
16265
16266 p = frag_more (8);
16267 md_number_to_chars (p, 0, 8);
16268 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16269 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16270
16271 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16272 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16273 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16274
16275 demand_empty_rest_of_line ();
16276 }
16277
16278 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16279 tables. It generates a R_MIPS_EH reloc. */
16280
16281 static void
16282 s_ehword (int ignore ATTRIBUTE_UNUSED)
16283 {
16284 expressionS ex;
16285 char *p;
16286
16287 mips_emit_delays ();
16288
16289 expression (&ex);
16290 mips_clear_insn_labels ();
16291
16292 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16293 {
16294 as_bad (_("unsupported use of .ehword"));
16295 ignore_rest_of_line ();
16296 }
16297
16298 p = frag_more (4);
16299 md_number_to_chars (p, 0, 4);
16300 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16301 BFD_RELOC_MIPS_EH);
16302
16303 demand_empty_rest_of_line ();
16304 }
16305
16306 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16307 tables in SVR4 PIC code. */
16308
16309 static void
16310 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16311 {
16312 int reg;
16313
16314 file_mips_check_options ();
16315
16316 /* This is ignored when not generating SVR4 PIC code. */
16317 if (mips_pic != SVR4_PIC)
16318 {
16319 s_ignore (0);
16320 return;
16321 }
16322
16323 mips_mark_labels ();
16324 mips_assembling_insn = TRUE;
16325
16326 /* Add $gp to the register named as an argument. */
16327 macro_start ();
16328 reg = tc_get_register (0);
16329 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16330 macro_end ();
16331
16332 mips_assembling_insn = FALSE;
16333 demand_empty_rest_of_line ();
16334 }
16335
16336 /* Handle the .insn pseudo-op. This marks instruction labels in
16337 mips16/micromips mode. This permits the linker to handle them specially,
16338 such as generating jalx instructions when needed. We also make
16339 them odd for the duration of the assembly, in order to generate the
16340 right sort of code. We will make them even in the adjust_symtab
16341 routine, while leaving them marked. This is convenient for the
16342 debugger and the disassembler. The linker knows to make them odd
16343 again. */
16344
16345 static void
16346 s_insn (int ignore ATTRIBUTE_UNUSED)
16347 {
16348 file_mips_check_options ();
16349 file_ase_mips16 |= mips_opts.mips16;
16350 file_ase_micromips |= mips_opts.micromips;
16351
16352 mips_mark_labels ();
16353
16354 demand_empty_rest_of_line ();
16355 }
16356
16357 /* Handle the .nan pseudo-op. */
16358
16359 static void
16360 s_nan (int ignore ATTRIBUTE_UNUSED)
16361 {
16362 static const char str_legacy[] = "legacy";
16363 static const char str_2008[] = "2008";
16364 size_t i;
16365
16366 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16367
16368 if (i == sizeof (str_2008) - 1
16369 && memcmp (input_line_pointer, str_2008, i) == 0)
16370 mips_nan2008 = 1;
16371 else if (i == sizeof (str_legacy) - 1
16372 && memcmp (input_line_pointer, str_legacy, i) == 0)
16373 {
16374 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16375 mips_nan2008 = 0;
16376 else
16377 as_bad (_("`%s' does not support legacy NaN"),
16378 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16379 }
16380 else
16381 as_bad (_("bad .nan directive"));
16382
16383 input_line_pointer += i;
16384 demand_empty_rest_of_line ();
16385 }
16386
16387 /* Handle a .stab[snd] directive. Ideally these directives would be
16388 implemented in a transparent way, so that removing them would not
16389 have any effect on the generated instructions. However, s_stab
16390 internally changes the section, so in practice we need to decide
16391 now whether the preceding label marks compressed code. We do not
16392 support changing the compression mode of a label after a .stab*
16393 directive, such as in:
16394
16395 foo:
16396 .stabs ...
16397 .set mips16
16398
16399 so the current mode wins. */
16400
16401 static void
16402 s_mips_stab (int type)
16403 {
16404 mips_mark_labels ();
16405 s_stab (type);
16406 }
16407
16408 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16409
16410 static void
16411 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16412 {
16413 char *name;
16414 int c;
16415 symbolS *symbolP;
16416 expressionS exp;
16417
16418 name = input_line_pointer;
16419 c = get_symbol_end ();
16420 symbolP = symbol_find_or_make (name);
16421 S_SET_WEAK (symbolP);
16422 *input_line_pointer = c;
16423
16424 SKIP_WHITESPACE ();
16425
16426 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16427 {
16428 if (S_IS_DEFINED (symbolP))
16429 {
16430 as_bad (_("ignoring attempt to redefine symbol %s"),
16431 S_GET_NAME (symbolP));
16432 ignore_rest_of_line ();
16433 return;
16434 }
16435
16436 if (*input_line_pointer == ',')
16437 {
16438 ++input_line_pointer;
16439 SKIP_WHITESPACE ();
16440 }
16441
16442 expression (&exp);
16443 if (exp.X_op != O_symbol)
16444 {
16445 as_bad (_("bad .weakext directive"));
16446 ignore_rest_of_line ();
16447 return;
16448 }
16449 symbol_set_value_expression (symbolP, &exp);
16450 }
16451
16452 demand_empty_rest_of_line ();
16453 }
16454
16455 /* Parse a register string into a number. Called from the ECOFF code
16456 to parse .frame. The argument is non-zero if this is the frame
16457 register, so that we can record it in mips_frame_reg. */
16458
16459 int
16460 tc_get_register (int frame)
16461 {
16462 unsigned int reg;
16463
16464 SKIP_WHITESPACE ();
16465 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16466 reg = 0;
16467 if (frame)
16468 {
16469 mips_frame_reg = reg != 0 ? reg : SP;
16470 mips_frame_reg_valid = 1;
16471 mips_cprestore_valid = 0;
16472 }
16473 return reg;
16474 }
16475
16476 valueT
16477 md_section_align (asection *seg, valueT addr)
16478 {
16479 int align = bfd_get_section_alignment (stdoutput, seg);
16480
16481 /* We don't need to align ELF sections to the full alignment.
16482 However, Irix 5 may prefer that we align them at least to a 16
16483 byte boundary. We don't bother to align the sections if we
16484 are targeted for an embedded system. */
16485 if (strncmp (TARGET_OS, "elf", 3) == 0)
16486 return addr;
16487 if (align > 4)
16488 align = 4;
16489
16490 return ((addr + (1 << align) - 1) & (-1 << align));
16491 }
16492
16493 /* Utility routine, called from above as well. If called while the
16494 input file is still being read, it's only an approximation. (For
16495 example, a symbol may later become defined which appeared to be
16496 undefined earlier.) */
16497
16498 static int
16499 nopic_need_relax (symbolS *sym, int before_relaxing)
16500 {
16501 if (sym == 0)
16502 return 0;
16503
16504 if (g_switch_value > 0)
16505 {
16506 const char *symname;
16507 int change;
16508
16509 /* Find out whether this symbol can be referenced off the $gp
16510 register. It can be if it is smaller than the -G size or if
16511 it is in the .sdata or .sbss section. Certain symbols can
16512 not be referenced off the $gp, although it appears as though
16513 they can. */
16514 symname = S_GET_NAME (sym);
16515 if (symname != (const char *) NULL
16516 && (strcmp (symname, "eprol") == 0
16517 || strcmp (symname, "etext") == 0
16518 || strcmp (symname, "_gp") == 0
16519 || strcmp (symname, "edata") == 0
16520 || strcmp (symname, "_fbss") == 0
16521 || strcmp (symname, "_fdata") == 0
16522 || strcmp (symname, "_ftext") == 0
16523 || strcmp (symname, "end") == 0
16524 || strcmp (symname, "_gp_disp") == 0))
16525 change = 1;
16526 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16527 && (0
16528 #ifndef NO_ECOFF_DEBUGGING
16529 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16530 && (symbol_get_obj (sym)->ecoff_extern_size
16531 <= g_switch_value))
16532 #endif
16533 /* We must defer this decision until after the whole
16534 file has been read, since there might be a .extern
16535 after the first use of this symbol. */
16536 || (before_relaxing
16537 #ifndef NO_ECOFF_DEBUGGING
16538 && symbol_get_obj (sym)->ecoff_extern_size == 0
16539 #endif
16540 && S_GET_VALUE (sym) == 0)
16541 || (S_GET_VALUE (sym) != 0
16542 && S_GET_VALUE (sym) <= g_switch_value)))
16543 change = 0;
16544 else
16545 {
16546 const char *segname;
16547
16548 segname = segment_name (S_GET_SEGMENT (sym));
16549 gas_assert (strcmp (segname, ".lit8") != 0
16550 && strcmp (segname, ".lit4") != 0);
16551 change = (strcmp (segname, ".sdata") != 0
16552 && strcmp (segname, ".sbss") != 0
16553 && strncmp (segname, ".sdata.", 7) != 0
16554 && strncmp (segname, ".sbss.", 6) != 0
16555 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16556 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16557 }
16558 return change;
16559 }
16560 else
16561 /* We are not optimizing for the $gp register. */
16562 return 1;
16563 }
16564
16565
16566 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16567
16568 static bfd_boolean
16569 pic_need_relax (symbolS *sym, asection *segtype)
16570 {
16571 asection *symsec;
16572
16573 /* Handle the case of a symbol equated to another symbol. */
16574 while (symbol_equated_reloc_p (sym))
16575 {
16576 symbolS *n;
16577
16578 /* It's possible to get a loop here in a badly written program. */
16579 n = symbol_get_value_expression (sym)->X_add_symbol;
16580 if (n == sym)
16581 break;
16582 sym = n;
16583 }
16584
16585 if (symbol_section_p (sym))
16586 return TRUE;
16587
16588 symsec = S_GET_SEGMENT (sym);
16589
16590 /* This must duplicate the test in adjust_reloc_syms. */
16591 return (!bfd_is_und_section (symsec)
16592 && !bfd_is_abs_section (symsec)
16593 && !bfd_is_com_section (symsec)
16594 && !s_is_linkonce (sym, segtype)
16595 /* A global or weak symbol is treated as external. */
16596 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16597 }
16598
16599
16600 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16601 extended opcode. SEC is the section the frag is in. */
16602
16603 static int
16604 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16605 {
16606 int type;
16607 const struct mips_int_operand *operand;
16608 offsetT val;
16609 segT symsec;
16610 fragS *sym_frag;
16611
16612 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16613 return 0;
16614 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16615 return 1;
16616
16617 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16618 operand = mips16_immed_operand (type, FALSE);
16619
16620 sym_frag = symbol_get_frag (fragp->fr_symbol);
16621 val = S_GET_VALUE (fragp->fr_symbol);
16622 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16623
16624 if (operand->root.type == OP_PCREL)
16625 {
16626 const struct mips_pcrel_operand *pcrel_op;
16627 addressT addr;
16628 offsetT maxtiny;
16629
16630 /* We won't have the section when we are called from
16631 mips_relax_frag. However, we will always have been called
16632 from md_estimate_size_before_relax first. If this is a
16633 branch to a different section, we mark it as such. If SEC is
16634 NULL, and the frag is not marked, then it must be a branch to
16635 the same section. */
16636 pcrel_op = (const struct mips_pcrel_operand *) operand;
16637 if (sec == NULL)
16638 {
16639 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16640 return 1;
16641 }
16642 else
16643 {
16644 /* Must have been called from md_estimate_size_before_relax. */
16645 if (symsec != sec)
16646 {
16647 fragp->fr_subtype =
16648 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16649
16650 /* FIXME: We should support this, and let the linker
16651 catch branches and loads that are out of range. */
16652 as_bad_where (fragp->fr_file, fragp->fr_line,
16653 _("unsupported PC relative reference to different section"));
16654
16655 return 1;
16656 }
16657 if (fragp != sym_frag && sym_frag->fr_address == 0)
16658 /* Assume non-extended on the first relaxation pass.
16659 The address we have calculated will be bogus if this is
16660 a forward branch to another frag, as the forward frag
16661 will have fr_address == 0. */
16662 return 0;
16663 }
16664
16665 /* In this case, we know for sure that the symbol fragment is in
16666 the same section. If the relax_marker of the symbol fragment
16667 differs from the relax_marker of this fragment, we have not
16668 yet adjusted the symbol fragment fr_address. We want to add
16669 in STRETCH in order to get a better estimate of the address.
16670 This particularly matters because of the shift bits. */
16671 if (stretch != 0
16672 && sym_frag->relax_marker != fragp->relax_marker)
16673 {
16674 fragS *f;
16675
16676 /* Adjust stretch for any alignment frag. Note that if have
16677 been expanding the earlier code, the symbol may be
16678 defined in what appears to be an earlier frag. FIXME:
16679 This doesn't handle the fr_subtype field, which specifies
16680 a maximum number of bytes to skip when doing an
16681 alignment. */
16682 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16683 {
16684 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16685 {
16686 if (stretch < 0)
16687 stretch = - ((- stretch)
16688 & ~ ((1 << (int) f->fr_offset) - 1));
16689 else
16690 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16691 if (stretch == 0)
16692 break;
16693 }
16694 }
16695 if (f != NULL)
16696 val += stretch;
16697 }
16698
16699 addr = fragp->fr_address + fragp->fr_fix;
16700
16701 /* The base address rules are complicated. The base address of
16702 a branch is the following instruction. The base address of a
16703 PC relative load or add is the instruction itself, but if it
16704 is in a delay slot (in which case it can not be extended) use
16705 the address of the instruction whose delay slot it is in. */
16706 if (pcrel_op->include_isa_bit)
16707 {
16708 addr += 2;
16709
16710 /* If we are currently assuming that this frag should be
16711 extended, then, the current address is two bytes
16712 higher. */
16713 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16714 addr += 2;
16715
16716 /* Ignore the low bit in the target, since it will be set
16717 for a text label. */
16718 val &= -2;
16719 }
16720 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16721 addr -= 4;
16722 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16723 addr -= 2;
16724
16725 val -= addr & -(1 << pcrel_op->align_log2);
16726
16727 /* If any of the shifted bits are set, we must use an extended
16728 opcode. If the address depends on the size of this
16729 instruction, this can lead to a loop, so we arrange to always
16730 use an extended opcode. We only check this when we are in
16731 the main relaxation loop, when SEC is NULL. */
16732 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16733 {
16734 fragp->fr_subtype =
16735 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16736 return 1;
16737 }
16738
16739 /* If we are about to mark a frag as extended because the value
16740 is precisely the next value above maxtiny, then there is a
16741 chance of an infinite loop as in the following code:
16742 la $4,foo
16743 .skip 1020
16744 .align 2
16745 foo:
16746 In this case when the la is extended, foo is 0x3fc bytes
16747 away, so the la can be shrunk, but then foo is 0x400 away, so
16748 the la must be extended. To avoid this loop, we mark the
16749 frag as extended if it was small, and is about to become
16750 extended with the next value above maxtiny. */
16751 maxtiny = mips_int_operand_max (operand);
16752 if (val == maxtiny + (1 << operand->shift)
16753 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16754 && sec == NULL)
16755 {
16756 fragp->fr_subtype =
16757 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16758 return 1;
16759 }
16760 }
16761 else if (symsec != absolute_section && sec != NULL)
16762 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16763
16764 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16765 }
16766
16767 /* Compute the length of a branch sequence, and adjust the
16768 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16769 worst-case length is computed, with UPDATE being used to indicate
16770 whether an unconditional (-1), branch-likely (+1) or regular (0)
16771 branch is to be computed. */
16772 static int
16773 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16774 {
16775 bfd_boolean toofar;
16776 int length;
16777
16778 if (fragp
16779 && S_IS_DEFINED (fragp->fr_symbol)
16780 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16781 {
16782 addressT addr;
16783 offsetT val;
16784
16785 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16786
16787 addr = fragp->fr_address + fragp->fr_fix + 4;
16788
16789 val -= addr;
16790
16791 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16792 }
16793 else if (fragp)
16794 /* If the symbol is not defined or it's in a different segment,
16795 assume the user knows what's going on and emit a short
16796 branch. */
16797 toofar = FALSE;
16798 else
16799 toofar = TRUE;
16800
16801 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16802 fragp->fr_subtype
16803 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16804 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16805 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16806 RELAX_BRANCH_LINK (fragp->fr_subtype),
16807 toofar);
16808
16809 length = 4;
16810 if (toofar)
16811 {
16812 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16813 length += 8;
16814
16815 if (mips_pic != NO_PIC)
16816 {
16817 /* Additional space for PIC loading of target address. */
16818 length += 8;
16819 if (mips_opts.isa == ISA_MIPS1)
16820 /* Additional space for $at-stabilizing nop. */
16821 length += 4;
16822 }
16823
16824 /* If branch is conditional. */
16825 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16826 length += 8;
16827 }
16828
16829 return length;
16830 }
16831
16832 /* Compute the length of a branch sequence, and adjust the
16833 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16834 worst-case length is computed, with UPDATE being used to indicate
16835 whether an unconditional (-1), or regular (0) branch is to be
16836 computed. */
16837
16838 static int
16839 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16840 {
16841 bfd_boolean toofar;
16842 int length;
16843
16844 if (fragp
16845 && S_IS_DEFINED (fragp->fr_symbol)
16846 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16847 {
16848 addressT addr;
16849 offsetT val;
16850
16851 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16852 /* Ignore the low bit in the target, since it will be set
16853 for a text label. */
16854 if ((val & 1) != 0)
16855 --val;
16856
16857 addr = fragp->fr_address + fragp->fr_fix + 4;
16858
16859 val -= addr;
16860
16861 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16862 }
16863 else if (fragp)
16864 /* If the symbol is not defined or it's in a different segment,
16865 assume the user knows what's going on and emit a short
16866 branch. */
16867 toofar = FALSE;
16868 else
16869 toofar = TRUE;
16870
16871 if (fragp && update
16872 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16873 fragp->fr_subtype = (toofar
16874 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16875 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16876
16877 length = 4;
16878 if (toofar)
16879 {
16880 bfd_boolean compact_known = fragp != NULL;
16881 bfd_boolean compact = FALSE;
16882 bfd_boolean uncond;
16883
16884 if (compact_known)
16885 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16886 if (fragp)
16887 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16888 else
16889 uncond = update < 0;
16890
16891 /* If label is out of range, we turn branch <br>:
16892
16893 <br> label # 4 bytes
16894 0:
16895
16896 into:
16897
16898 j label # 4 bytes
16899 nop # 2 bytes if compact && !PIC
16900 0:
16901 */
16902 if (mips_pic == NO_PIC && (!compact_known || compact))
16903 length += 2;
16904
16905 /* If assembling PIC code, we further turn:
16906
16907 j label # 4 bytes
16908
16909 into:
16910
16911 lw/ld at, %got(label)(gp) # 4 bytes
16912 d/addiu at, %lo(label) # 4 bytes
16913 jr/c at # 2 bytes
16914 */
16915 if (mips_pic != NO_PIC)
16916 length += 6;
16917
16918 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16919
16920 <brneg> 0f # 4 bytes
16921 nop # 2 bytes if !compact
16922 */
16923 if (!uncond)
16924 length += (compact_known && compact) ? 4 : 6;
16925 }
16926
16927 return length;
16928 }
16929
16930 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16931 bit accordingly. */
16932
16933 static int
16934 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16935 {
16936 bfd_boolean toofar;
16937
16938 if (fragp
16939 && S_IS_DEFINED (fragp->fr_symbol)
16940 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16941 {
16942 addressT addr;
16943 offsetT val;
16944 int type;
16945
16946 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16947 /* Ignore the low bit in the target, since it will be set
16948 for a text label. */
16949 if ((val & 1) != 0)
16950 --val;
16951
16952 /* Assume this is a 2-byte branch. */
16953 addr = fragp->fr_address + fragp->fr_fix + 2;
16954
16955 /* We try to avoid the infinite loop by not adding 2 more bytes for
16956 long branches. */
16957
16958 val -= addr;
16959
16960 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16961 if (type == 'D')
16962 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16963 else if (type == 'E')
16964 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16965 else
16966 abort ();
16967 }
16968 else
16969 /* If the symbol is not defined or it's in a different segment,
16970 we emit a normal 32-bit branch. */
16971 toofar = TRUE;
16972
16973 if (fragp && update
16974 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16975 fragp->fr_subtype
16976 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16977 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16978
16979 if (toofar)
16980 return 4;
16981
16982 return 2;
16983 }
16984
16985 /* Estimate the size of a frag before relaxing. Unless this is the
16986 mips16, we are not really relaxing here, and the final size is
16987 encoded in the subtype information. For the mips16, we have to
16988 decide whether we are using an extended opcode or not. */
16989
16990 int
16991 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
16992 {
16993 int change;
16994
16995 if (RELAX_BRANCH_P (fragp->fr_subtype))
16996 {
16997
16998 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
16999
17000 return fragp->fr_var;
17001 }
17002
17003 if (RELAX_MIPS16_P (fragp->fr_subtype))
17004 /* We don't want to modify the EXTENDED bit here; it might get us
17005 into infinite loops. We change it only in mips_relax_frag(). */
17006 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17007
17008 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17009 {
17010 int length = 4;
17011
17012 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17013 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17014 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17015 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17016 fragp->fr_var = length;
17017
17018 return length;
17019 }
17020
17021 if (mips_pic == NO_PIC)
17022 change = nopic_need_relax (fragp->fr_symbol, 0);
17023 else if (mips_pic == SVR4_PIC)
17024 change = pic_need_relax (fragp->fr_symbol, segtype);
17025 else if (mips_pic == VXWORKS_PIC)
17026 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17027 change = 0;
17028 else
17029 abort ();
17030
17031 if (change)
17032 {
17033 fragp->fr_subtype |= RELAX_USE_SECOND;
17034 return -RELAX_FIRST (fragp->fr_subtype);
17035 }
17036 else
17037 return -RELAX_SECOND (fragp->fr_subtype);
17038 }
17039
17040 /* This is called to see whether a reloc against a defined symbol
17041 should be converted into a reloc against a section. */
17042
17043 int
17044 mips_fix_adjustable (fixS *fixp)
17045 {
17046 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17047 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17048 return 0;
17049
17050 if (fixp->fx_addsy == NULL)
17051 return 1;
17052
17053 /* If symbol SYM is in a mergeable section, relocations of the form
17054 SYM + 0 can usually be made section-relative. The mergeable data
17055 is then identified by the section offset rather than by the symbol.
17056
17057 However, if we're generating REL LO16 relocations, the offset is split
17058 between the LO16 and parterning high part relocation. The linker will
17059 need to recalculate the complete offset in order to correctly identify
17060 the merge data.
17061
17062 The linker has traditionally not looked for the parterning high part
17063 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17064 placed anywhere. Rather than break backwards compatibility by changing
17065 this, it seems better not to force the issue, and instead keep the
17066 original symbol. This will work with either linker behavior. */
17067 if ((lo16_reloc_p (fixp->fx_r_type)
17068 || reloc_needs_lo_p (fixp->fx_r_type))
17069 && HAVE_IN_PLACE_ADDENDS
17070 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17071 return 0;
17072
17073 /* There is no place to store an in-place offset for JALR relocations.
17074 Likewise an in-range offset of limited PC-relative relocations may
17075 overflow the in-place relocatable field if recalculated against the
17076 start address of the symbol's containing section.
17077
17078 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17079 section relative to allow linker relaxations to be performed later on. */
17080 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17081 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17082 || jalr_reloc_p (fixp->fx_r_type)))
17083 return 0;
17084
17085 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17086 to a floating-point stub. The same is true for non-R_MIPS16_26
17087 relocations against MIPS16 functions; in this case, the stub becomes
17088 the function's canonical address.
17089
17090 Floating-point stubs are stored in unique .mips16.call.* or
17091 .mips16.fn.* sections. If a stub T for function F is in section S,
17092 the first relocation in section S must be against F; this is how the
17093 linker determines the target function. All relocations that might
17094 resolve to T must also be against F. We therefore have the following
17095 restrictions, which are given in an intentionally-redundant way:
17096
17097 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17098 symbols.
17099
17100 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17101 if that stub might be used.
17102
17103 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17104 symbols.
17105
17106 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17107 that stub might be used.
17108
17109 There is a further restriction:
17110
17111 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17112 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17113 targets with in-place addends; the relocation field cannot
17114 encode the low bit.
17115
17116 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17117 against a MIPS16 symbol. We deal with (5) by by not reducing any
17118 such relocations on REL targets.
17119
17120 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17121 relocation against some symbol R, no relocation against R may be
17122 reduced. (Note that this deals with (2) as well as (1) because
17123 relocations against global symbols will never be reduced on ELF
17124 targets.) This approach is a little simpler than trying to detect
17125 stub sections, and gives the "all or nothing" per-symbol consistency
17126 that we have for MIPS16 symbols. */
17127 if (fixp->fx_subsy == NULL
17128 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17129 || *symbol_get_tc (fixp->fx_addsy)
17130 || (HAVE_IN_PLACE_ADDENDS
17131 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17132 && jmp_reloc_p (fixp->fx_r_type))))
17133 return 0;
17134
17135 return 1;
17136 }
17137
17138 /* Translate internal representation of relocation info to BFD target
17139 format. */
17140
17141 arelent **
17142 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17143 {
17144 static arelent *retval[4];
17145 arelent *reloc;
17146 bfd_reloc_code_real_type code;
17147
17148 memset (retval, 0, sizeof(retval));
17149 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17150 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17151 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17152 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17153
17154 if (fixp->fx_pcrel)
17155 {
17156 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17157 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17158 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17159 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17160 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17161 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17162 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17163 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17164 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17165 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17166 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17167
17168 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17169 Relocations want only the symbol offset. */
17170 reloc->addend = fixp->fx_addnumber + reloc->address;
17171 }
17172 else
17173 reloc->addend = fixp->fx_addnumber;
17174
17175 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17176 entry to be used in the relocation's section offset. */
17177 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17178 {
17179 reloc->address = reloc->addend;
17180 reloc->addend = 0;
17181 }
17182
17183 code = fixp->fx_r_type;
17184
17185 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17186 if (reloc->howto == NULL)
17187 {
17188 as_bad_where (fixp->fx_file, fixp->fx_line,
17189 _("cannot represent %s relocation in this object file"
17190 " format"),
17191 bfd_get_reloc_code_name (code));
17192 retval[0] = NULL;
17193 }
17194
17195 return retval;
17196 }
17197
17198 /* Relax a machine dependent frag. This returns the amount by which
17199 the current size of the frag should change. */
17200
17201 int
17202 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17203 {
17204 if (RELAX_BRANCH_P (fragp->fr_subtype))
17205 {
17206 offsetT old_var = fragp->fr_var;
17207
17208 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17209
17210 return fragp->fr_var - old_var;
17211 }
17212
17213 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17214 {
17215 offsetT old_var = fragp->fr_var;
17216 offsetT new_var = 4;
17217
17218 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17219 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17220 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17221 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17222 fragp->fr_var = new_var;
17223
17224 return new_var - old_var;
17225 }
17226
17227 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17228 return 0;
17229
17230 if (mips16_extended_frag (fragp, NULL, stretch))
17231 {
17232 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17233 return 0;
17234 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17235 return 2;
17236 }
17237 else
17238 {
17239 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17240 return 0;
17241 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17242 return -2;
17243 }
17244
17245 return 0;
17246 }
17247
17248 /* Convert a machine dependent frag. */
17249
17250 void
17251 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17252 {
17253 if (RELAX_BRANCH_P (fragp->fr_subtype))
17254 {
17255 char *buf;
17256 unsigned long insn;
17257 expressionS exp;
17258 fixS *fixp;
17259
17260 buf = fragp->fr_literal + fragp->fr_fix;
17261 insn = read_insn (buf);
17262
17263 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17264 {
17265 /* We generate a fixup instead of applying it right now
17266 because, if there are linker relaxations, we're going to
17267 need the relocations. */
17268 exp.X_op = O_symbol;
17269 exp.X_add_symbol = fragp->fr_symbol;
17270 exp.X_add_number = fragp->fr_offset;
17271
17272 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17273 BFD_RELOC_16_PCREL_S2);
17274 fixp->fx_file = fragp->fr_file;
17275 fixp->fx_line = fragp->fr_line;
17276
17277 buf = write_insn (buf, insn);
17278 }
17279 else
17280 {
17281 int i;
17282
17283 as_warn_where (fragp->fr_file, fragp->fr_line,
17284 _("relaxed out-of-range branch into a jump"));
17285
17286 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17287 goto uncond;
17288
17289 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17290 {
17291 /* Reverse the branch. */
17292 switch ((insn >> 28) & 0xf)
17293 {
17294 case 4:
17295 if ((insn & 0xff000000) == 0x47000000
17296 || (insn & 0xff600000) == 0x45600000)
17297 {
17298 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17299 reversed by tweaking bit 23. */
17300 insn ^= 0x00800000;
17301 }
17302 else
17303 {
17304 /* bc[0-3][tf]l? instructions can have the condition
17305 reversed by tweaking a single TF bit, and their
17306 opcodes all have 0x4???????. */
17307 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17308 insn ^= 0x00010000;
17309 }
17310 break;
17311
17312 case 0:
17313 /* bltz 0x04000000 bgez 0x04010000
17314 bltzal 0x04100000 bgezal 0x04110000 */
17315 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17316 insn ^= 0x00010000;
17317 break;
17318
17319 case 1:
17320 /* beq 0x10000000 bne 0x14000000
17321 blez 0x18000000 bgtz 0x1c000000 */
17322 insn ^= 0x04000000;
17323 break;
17324
17325 default:
17326 abort ();
17327 }
17328 }
17329
17330 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17331 {
17332 /* Clear the and-link bit. */
17333 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17334
17335 /* bltzal 0x04100000 bgezal 0x04110000
17336 bltzall 0x04120000 bgezall 0x04130000 */
17337 insn &= ~0x00100000;
17338 }
17339
17340 /* Branch over the branch (if the branch was likely) or the
17341 full jump (not likely case). Compute the offset from the
17342 current instruction to branch to. */
17343 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17344 i = 16;
17345 else
17346 {
17347 /* How many bytes in instructions we've already emitted? */
17348 i = buf - fragp->fr_literal - fragp->fr_fix;
17349 /* How many bytes in instructions from here to the end? */
17350 i = fragp->fr_var - i;
17351 }
17352 /* Convert to instruction count. */
17353 i >>= 2;
17354 /* Branch counts from the next instruction. */
17355 i--;
17356 insn |= i;
17357 /* Branch over the jump. */
17358 buf = write_insn (buf, insn);
17359
17360 /* nop */
17361 buf = write_insn (buf, 0);
17362
17363 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17364 {
17365 /* beql $0, $0, 2f */
17366 insn = 0x50000000;
17367 /* Compute the PC offset from the current instruction to
17368 the end of the variable frag. */
17369 /* How many bytes in instructions we've already emitted? */
17370 i = buf - fragp->fr_literal - fragp->fr_fix;
17371 /* How many bytes in instructions from here to the end? */
17372 i = fragp->fr_var - i;
17373 /* Convert to instruction count. */
17374 i >>= 2;
17375 /* Don't decrement i, because we want to branch over the
17376 delay slot. */
17377 insn |= i;
17378
17379 buf = write_insn (buf, insn);
17380 buf = write_insn (buf, 0);
17381 }
17382
17383 uncond:
17384 if (mips_pic == NO_PIC)
17385 {
17386 /* j or jal. */
17387 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17388 ? 0x0c000000 : 0x08000000);
17389 exp.X_op = O_symbol;
17390 exp.X_add_symbol = fragp->fr_symbol;
17391 exp.X_add_number = fragp->fr_offset;
17392
17393 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17394 FALSE, BFD_RELOC_MIPS_JMP);
17395 fixp->fx_file = fragp->fr_file;
17396 fixp->fx_line = fragp->fr_line;
17397
17398 buf = write_insn (buf, insn);
17399 }
17400 else
17401 {
17402 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17403
17404 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17405 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17406 insn |= at << OP_SH_RT;
17407 exp.X_op = O_symbol;
17408 exp.X_add_symbol = fragp->fr_symbol;
17409 exp.X_add_number = fragp->fr_offset;
17410
17411 if (fragp->fr_offset)
17412 {
17413 exp.X_add_symbol = make_expr_symbol (&exp);
17414 exp.X_add_number = 0;
17415 }
17416
17417 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17418 FALSE, BFD_RELOC_MIPS_GOT16);
17419 fixp->fx_file = fragp->fr_file;
17420 fixp->fx_line = fragp->fr_line;
17421
17422 buf = write_insn (buf, insn);
17423
17424 if (mips_opts.isa == ISA_MIPS1)
17425 /* nop */
17426 buf = write_insn (buf, 0);
17427
17428 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17429 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17430 insn |= at << OP_SH_RS | at << OP_SH_RT;
17431
17432 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17433 FALSE, BFD_RELOC_LO16);
17434 fixp->fx_file = fragp->fr_file;
17435 fixp->fx_line = fragp->fr_line;
17436
17437 buf = write_insn (buf, insn);
17438
17439 /* j(al)r $at. */
17440 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17441 insn = 0x0000f809;
17442 else
17443 insn = 0x00000008;
17444 insn |= at << OP_SH_RS;
17445
17446 buf = write_insn (buf, insn);
17447 }
17448 }
17449
17450 fragp->fr_fix += fragp->fr_var;
17451 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17452 return;
17453 }
17454
17455 /* Relax microMIPS branches. */
17456 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17457 {
17458 char *buf = fragp->fr_literal + fragp->fr_fix;
17459 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17460 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17461 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17462 bfd_boolean short_ds;
17463 unsigned long insn;
17464 expressionS exp;
17465 fixS *fixp;
17466
17467 exp.X_op = O_symbol;
17468 exp.X_add_symbol = fragp->fr_symbol;
17469 exp.X_add_number = fragp->fr_offset;
17470
17471 fragp->fr_fix += fragp->fr_var;
17472
17473 /* Handle 16-bit branches that fit or are forced to fit. */
17474 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17475 {
17476 /* We generate a fixup instead of applying it right now,
17477 because if there is linker relaxation, we're going to
17478 need the relocations. */
17479 if (type == 'D')
17480 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17481 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17482 else if (type == 'E')
17483 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17484 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17485 else
17486 abort ();
17487
17488 fixp->fx_file = fragp->fr_file;
17489 fixp->fx_line = fragp->fr_line;
17490
17491 /* These relocations can have an addend that won't fit in
17492 2 octets. */
17493 fixp->fx_no_overflow = 1;
17494
17495 return;
17496 }
17497
17498 /* Handle 32-bit branches that fit or are forced to fit. */
17499 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17500 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17501 {
17502 /* We generate a fixup instead of applying it right now,
17503 because if there is linker relaxation, we're going to
17504 need the relocations. */
17505 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17506 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17507 fixp->fx_file = fragp->fr_file;
17508 fixp->fx_line = fragp->fr_line;
17509
17510 if (type == 0)
17511 return;
17512 }
17513
17514 /* Relax 16-bit branches to 32-bit branches. */
17515 if (type != 0)
17516 {
17517 insn = read_compressed_insn (buf, 2);
17518
17519 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17520 insn = 0x94000000; /* beq */
17521 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17522 {
17523 unsigned long regno;
17524
17525 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17526 regno = micromips_to_32_reg_d_map [regno];
17527 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17528 insn |= regno << MICROMIPSOP_SH_RS;
17529 }
17530 else
17531 abort ();
17532
17533 /* Nothing else to do, just write it out. */
17534 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17535 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17536 {
17537 buf = write_compressed_insn (buf, insn, 4);
17538 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17539 return;
17540 }
17541 }
17542 else
17543 insn = read_compressed_insn (buf, 4);
17544
17545 /* Relax 32-bit branches to a sequence of instructions. */
17546 as_warn_where (fragp->fr_file, fragp->fr_line,
17547 _("relaxed out-of-range branch into a jump"));
17548
17549 /* Set the short-delay-slot bit. */
17550 short_ds = al && (insn & 0x02000000) != 0;
17551
17552 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17553 {
17554 symbolS *l;
17555
17556 /* Reverse the branch. */
17557 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17558 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17559 insn ^= 0x20000000;
17560 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17561 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17562 || (insn & 0xffe00000) == 0x40800000 /* blez */
17563 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17564 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17565 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17566 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17567 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17568 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17569 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17570 insn ^= 0x00400000;
17571 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17572 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17573 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17574 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17575 insn ^= 0x00200000;
17576 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17577 BNZ.df */
17578 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17579 BNZ.V */
17580 insn ^= 0x00800000;
17581 else
17582 abort ();
17583
17584 if (al)
17585 {
17586 /* Clear the and-link and short-delay-slot bits. */
17587 gas_assert ((insn & 0xfda00000) == 0x40200000);
17588
17589 /* bltzal 0x40200000 bgezal 0x40600000 */
17590 /* bltzals 0x42200000 bgezals 0x42600000 */
17591 insn &= ~0x02200000;
17592 }
17593
17594 /* Make a label at the end for use with the branch. */
17595 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17596 micromips_label_inc ();
17597 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17598
17599 /* Refer to it. */
17600 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17601 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17602 fixp->fx_file = fragp->fr_file;
17603 fixp->fx_line = fragp->fr_line;
17604
17605 /* Branch over the jump. */
17606 buf = write_compressed_insn (buf, insn, 4);
17607 if (!compact)
17608 /* nop */
17609 buf = write_compressed_insn (buf, 0x0c00, 2);
17610 }
17611
17612 if (mips_pic == NO_PIC)
17613 {
17614 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17615
17616 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17617 insn = al ? jal : 0xd4000000;
17618
17619 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17620 BFD_RELOC_MICROMIPS_JMP);
17621 fixp->fx_file = fragp->fr_file;
17622 fixp->fx_line = fragp->fr_line;
17623
17624 buf = write_compressed_insn (buf, insn, 4);
17625 if (compact)
17626 /* nop */
17627 buf = write_compressed_insn (buf, 0x0c00, 2);
17628 }
17629 else
17630 {
17631 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17632 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17633 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17634
17635 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17636 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17637 insn |= at << MICROMIPSOP_SH_RT;
17638
17639 if (exp.X_add_number)
17640 {
17641 exp.X_add_symbol = make_expr_symbol (&exp);
17642 exp.X_add_number = 0;
17643 }
17644
17645 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17646 BFD_RELOC_MICROMIPS_GOT16);
17647 fixp->fx_file = fragp->fr_file;
17648 fixp->fx_line = fragp->fr_line;
17649
17650 buf = write_compressed_insn (buf, insn, 4);
17651
17652 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17653 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17654 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17655
17656 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17657 BFD_RELOC_MICROMIPS_LO16);
17658 fixp->fx_file = fragp->fr_file;
17659 fixp->fx_line = fragp->fr_line;
17660
17661 buf = write_compressed_insn (buf, insn, 4);
17662
17663 /* jr/jrc/jalr/jalrs $at */
17664 insn = al ? jalr : jr;
17665 insn |= at << MICROMIPSOP_SH_MJ;
17666
17667 buf = write_compressed_insn (buf, insn, 2);
17668 }
17669
17670 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17671 return;
17672 }
17673
17674 if (RELAX_MIPS16_P (fragp->fr_subtype))
17675 {
17676 int type;
17677 const struct mips_int_operand *operand;
17678 offsetT val;
17679 char *buf;
17680 unsigned int user_length, length;
17681 unsigned long insn;
17682 bfd_boolean ext;
17683
17684 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17685 operand = mips16_immed_operand (type, FALSE);
17686
17687 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17688 val = resolve_symbol_value (fragp->fr_symbol);
17689 if (operand->root.type == OP_PCREL)
17690 {
17691 const struct mips_pcrel_operand *pcrel_op;
17692 addressT addr;
17693
17694 pcrel_op = (const struct mips_pcrel_operand *) operand;
17695 addr = fragp->fr_address + fragp->fr_fix;
17696
17697 /* The rules for the base address of a PC relative reloc are
17698 complicated; see mips16_extended_frag. */
17699 if (pcrel_op->include_isa_bit)
17700 {
17701 addr += 2;
17702 if (ext)
17703 addr += 2;
17704 /* Ignore the low bit in the target, since it will be
17705 set for a text label. */
17706 val &= -2;
17707 }
17708 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17709 addr -= 4;
17710 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17711 addr -= 2;
17712
17713 addr &= -(1 << pcrel_op->align_log2);
17714 val -= addr;
17715
17716 /* Make sure the section winds up with the alignment we have
17717 assumed. */
17718 if (operand->shift > 0)
17719 record_alignment (asec, operand->shift);
17720 }
17721
17722 if (ext
17723 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17724 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17725 as_warn_where (fragp->fr_file, fragp->fr_line,
17726 _("extended instruction in delay slot"));
17727
17728 buf = fragp->fr_literal + fragp->fr_fix;
17729
17730 insn = read_compressed_insn (buf, 2);
17731 if (ext)
17732 insn |= MIPS16_EXTEND;
17733
17734 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17735 user_length = 4;
17736 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17737 user_length = 2;
17738 else
17739 user_length = 0;
17740
17741 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17742 BFD_RELOC_UNUSED, val, user_length, &insn);
17743
17744 length = (ext ? 4 : 2);
17745 gas_assert (mips16_opcode_length (insn) == length);
17746 write_compressed_insn (buf, insn, length);
17747 fragp->fr_fix += length;
17748 }
17749 else
17750 {
17751 relax_substateT subtype = fragp->fr_subtype;
17752 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17753 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17754 int first, second;
17755 fixS *fixp;
17756
17757 first = RELAX_FIRST (subtype);
17758 second = RELAX_SECOND (subtype);
17759 fixp = (fixS *) fragp->fr_opcode;
17760
17761 /* If the delay slot chosen does not match the size of the instruction,
17762 then emit a warning. */
17763 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17764 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17765 {
17766 relax_substateT s;
17767 const char *msg;
17768
17769 s = subtype & (RELAX_DELAY_SLOT_16BIT
17770 | RELAX_DELAY_SLOT_SIZE_FIRST
17771 | RELAX_DELAY_SLOT_SIZE_SECOND);
17772 msg = macro_warning (s);
17773 if (msg != NULL)
17774 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17775 subtype &= ~s;
17776 }
17777
17778 /* Possibly emit a warning if we've chosen the longer option. */
17779 if (use_second == second_longer)
17780 {
17781 relax_substateT s;
17782 const char *msg;
17783
17784 s = (subtype
17785 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17786 msg = macro_warning (s);
17787 if (msg != NULL)
17788 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17789 subtype &= ~s;
17790 }
17791
17792 /* Go through all the fixups for the first sequence. Disable them
17793 (by marking them as done) if we're going to use the second
17794 sequence instead. */
17795 while (fixp
17796 && fixp->fx_frag == fragp
17797 && fixp->fx_where < fragp->fr_fix - second)
17798 {
17799 if (subtype & RELAX_USE_SECOND)
17800 fixp->fx_done = 1;
17801 fixp = fixp->fx_next;
17802 }
17803
17804 /* Go through the fixups for the second sequence. Disable them if
17805 we're going to use the first sequence, otherwise adjust their
17806 addresses to account for the relaxation. */
17807 while (fixp && fixp->fx_frag == fragp)
17808 {
17809 if (subtype & RELAX_USE_SECOND)
17810 fixp->fx_where -= first;
17811 else
17812 fixp->fx_done = 1;
17813 fixp = fixp->fx_next;
17814 }
17815
17816 /* Now modify the frag contents. */
17817 if (subtype & RELAX_USE_SECOND)
17818 {
17819 char *start;
17820
17821 start = fragp->fr_literal + fragp->fr_fix - first - second;
17822 memmove (start, start + first, second);
17823 fragp->fr_fix -= first;
17824 }
17825 else
17826 fragp->fr_fix -= second;
17827 }
17828 }
17829
17830 /* This function is called after the relocs have been generated.
17831 We've been storing mips16 text labels as odd. Here we convert them
17832 back to even for the convenience of the debugger. */
17833
17834 void
17835 mips_frob_file_after_relocs (void)
17836 {
17837 asymbol **syms;
17838 unsigned int count, i;
17839
17840 syms = bfd_get_outsymbols (stdoutput);
17841 count = bfd_get_symcount (stdoutput);
17842 for (i = 0; i < count; i++, syms++)
17843 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17844 && ((*syms)->value & 1) != 0)
17845 {
17846 (*syms)->value &= ~1;
17847 /* If the symbol has an odd size, it was probably computed
17848 incorrectly, so adjust that as well. */
17849 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17850 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17851 }
17852 }
17853
17854 /* This function is called whenever a label is defined, including fake
17855 labels instantiated off the dot special symbol. It is used when
17856 handling branch delays; if a branch has a label, we assume we cannot
17857 move it. This also bumps the value of the symbol by 1 in compressed
17858 code. */
17859
17860 static void
17861 mips_record_label (symbolS *sym)
17862 {
17863 segment_info_type *si = seg_info (now_seg);
17864 struct insn_label_list *l;
17865
17866 if (free_insn_labels == NULL)
17867 l = (struct insn_label_list *) xmalloc (sizeof *l);
17868 else
17869 {
17870 l = free_insn_labels;
17871 free_insn_labels = l->next;
17872 }
17873
17874 l->label = sym;
17875 l->next = si->label_list;
17876 si->label_list = l;
17877 }
17878
17879 /* This function is called as tc_frob_label() whenever a label is defined
17880 and adds a DWARF-2 record we only want for true labels. */
17881
17882 void
17883 mips_define_label (symbolS *sym)
17884 {
17885 mips_record_label (sym);
17886 dwarf2_emit_label (sym);
17887 }
17888
17889 /* This function is called by tc_new_dot_label whenever a new dot symbol
17890 is defined. */
17891
17892 void
17893 mips_add_dot_label (symbolS *sym)
17894 {
17895 mips_record_label (sym);
17896 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17897 mips_compressed_mark_label (sym);
17898 }
17899 \f
17900 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17901 static unsigned int
17902 mips_convert_ase_flags (int ase)
17903 {
17904 unsigned int ext_ases = 0;
17905
17906 if (ase & ASE_DSP)
17907 ext_ases |= AFL_ASE_DSP;
17908 if (ase & ASE_DSPR2)
17909 ext_ases |= AFL_ASE_DSPR2;
17910 if (ase & ASE_EVA)
17911 ext_ases |= AFL_ASE_EVA;
17912 if (ase & ASE_MCU)
17913 ext_ases |= AFL_ASE_MCU;
17914 if (ase & ASE_MDMX)
17915 ext_ases |= AFL_ASE_MDMX;
17916 if (ase & ASE_MIPS3D)
17917 ext_ases |= AFL_ASE_MIPS3D;
17918 if (ase & ASE_MT)
17919 ext_ases |= AFL_ASE_MT;
17920 if (ase & ASE_SMARTMIPS)
17921 ext_ases |= AFL_ASE_SMARTMIPS;
17922 if (ase & ASE_VIRT)
17923 ext_ases |= AFL_ASE_VIRT;
17924 if (ase & ASE_MSA)
17925 ext_ases |= AFL_ASE_MSA;
17926 if (ase & ASE_XPA)
17927 ext_ases |= AFL_ASE_XPA;
17928
17929 return ext_ases;
17930 }
17931 /* Some special processing for a MIPS ELF file. */
17932
17933 void
17934 mips_elf_final_processing (void)
17935 {
17936 int fpabi;
17937 Elf_Internal_ABIFlags_v0 flags;
17938
17939 flags.version = 0;
17940 flags.isa_rev = 0;
17941 switch (file_mips_opts.isa)
17942 {
17943 case INSN_ISA1:
17944 flags.isa_level = 1;
17945 break;
17946 case INSN_ISA2:
17947 flags.isa_level = 2;
17948 break;
17949 case INSN_ISA3:
17950 flags.isa_level = 3;
17951 break;
17952 case INSN_ISA4:
17953 flags.isa_level = 4;
17954 break;
17955 case INSN_ISA5:
17956 flags.isa_level = 5;
17957 break;
17958 case INSN_ISA32:
17959 flags.isa_level = 32;
17960 flags.isa_rev = 1;
17961 break;
17962 case INSN_ISA32R2:
17963 flags.isa_level = 32;
17964 flags.isa_rev = 2;
17965 break;
17966 case INSN_ISA32R3:
17967 flags.isa_level = 32;
17968 flags.isa_rev = 3;
17969 break;
17970 case INSN_ISA32R5:
17971 flags.isa_level = 32;
17972 flags.isa_rev = 5;
17973 break;
17974 case INSN_ISA64:
17975 flags.isa_level = 64;
17976 flags.isa_rev = 1;
17977 break;
17978 case INSN_ISA64R2:
17979 flags.isa_level = 64;
17980 flags.isa_rev = 2;
17981 break;
17982 case INSN_ISA64R3:
17983 flags.isa_level = 64;
17984 flags.isa_rev = 3;
17985 break;
17986 case INSN_ISA64R5:
17987 flags.isa_level = 64;
17988 flags.isa_rev = 5;
17989 break;
17990 }
17991
17992 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
17993 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
17994 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
17995 : (file_mips_opts.fp == 64) ? AFL_REG_64
17996 : AFL_REG_32;
17997 flags.cpr2_size = AFL_REG_NONE;
17998 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
17999 Tag_GNU_MIPS_ABI_FP);
18000 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18001 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18002 if (file_ase_mips16)
18003 flags.ases |= AFL_ASE_MIPS16;
18004 if (file_ase_micromips)
18005 flags.ases |= AFL_ASE_MICROMIPS;
18006 flags.flags1 = 0;
18007 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18008 || file_mips_opts.fp == 64)
18009 && file_mips_opts.oddspreg)
18010 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18011 flags.flags2 = 0;
18012
18013 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18014 ((Elf_External_ABIFlags_v0 *)
18015 mips_flags_frag));
18016
18017 /* Write out the register information. */
18018 if (mips_abi != N64_ABI)
18019 {
18020 Elf32_RegInfo s;
18021
18022 s.ri_gprmask = mips_gprmask;
18023 s.ri_cprmask[0] = mips_cprmask[0];
18024 s.ri_cprmask[1] = mips_cprmask[1];
18025 s.ri_cprmask[2] = mips_cprmask[2];
18026 s.ri_cprmask[3] = mips_cprmask[3];
18027 /* The gp_value field is set by the MIPS ELF backend. */
18028
18029 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18030 ((Elf32_External_RegInfo *)
18031 mips_regmask_frag));
18032 }
18033 else
18034 {
18035 Elf64_Internal_RegInfo s;
18036
18037 s.ri_gprmask = mips_gprmask;
18038 s.ri_pad = 0;
18039 s.ri_cprmask[0] = mips_cprmask[0];
18040 s.ri_cprmask[1] = mips_cprmask[1];
18041 s.ri_cprmask[2] = mips_cprmask[2];
18042 s.ri_cprmask[3] = mips_cprmask[3];
18043 /* The gp_value field is set by the MIPS ELF backend. */
18044
18045 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18046 ((Elf64_External_RegInfo *)
18047 mips_regmask_frag));
18048 }
18049
18050 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18051 sort of BFD interface for this. */
18052 if (mips_any_noreorder)
18053 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18054 if (mips_pic != NO_PIC)
18055 {
18056 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18057 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18058 }
18059 if (mips_abicalls)
18060 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18061
18062 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18063 defined at present; this might need to change in future. */
18064 if (file_ase_mips16)
18065 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18066 if (file_ase_micromips)
18067 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18068 if (file_mips_opts.ase & ASE_MDMX)
18069 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18070
18071 /* Set the MIPS ELF ABI flags. */
18072 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18073 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18074 else if (mips_abi == O64_ABI)
18075 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18076 else if (mips_abi == EABI_ABI)
18077 {
18078 if (file_mips_opts.gp == 64)
18079 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18080 else
18081 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18082 }
18083 else if (mips_abi == N32_ABI)
18084 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18085
18086 /* Nothing to do for N64_ABI. */
18087
18088 if (mips_32bitmode)
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18090
18091 if (mips_nan2008 == 1)
18092 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18093
18094 /* 32 bit code with 64 bit FP registers. */
18095 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18096 Tag_GNU_MIPS_ABI_FP);
18097 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18098 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18099 }
18100 \f
18101 typedef struct proc {
18102 symbolS *func_sym;
18103 symbolS *func_end_sym;
18104 unsigned long reg_mask;
18105 unsigned long reg_offset;
18106 unsigned long fpreg_mask;
18107 unsigned long fpreg_offset;
18108 unsigned long frame_offset;
18109 unsigned long frame_reg;
18110 unsigned long pc_reg;
18111 } procS;
18112
18113 static procS cur_proc;
18114 static procS *cur_proc_ptr;
18115 static int numprocs;
18116
18117 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18118 as "2", and a normal nop as "0". */
18119
18120 #define NOP_OPCODE_MIPS 0
18121 #define NOP_OPCODE_MIPS16 1
18122 #define NOP_OPCODE_MICROMIPS 2
18123
18124 char
18125 mips_nop_opcode (void)
18126 {
18127 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18128 return NOP_OPCODE_MICROMIPS;
18129 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18130 return NOP_OPCODE_MIPS16;
18131 else
18132 return NOP_OPCODE_MIPS;
18133 }
18134
18135 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18136 32-bit microMIPS NOPs here (if applicable). */
18137
18138 void
18139 mips_handle_align (fragS *fragp)
18140 {
18141 char nop_opcode;
18142 char *p;
18143 int bytes, size, excess;
18144 valueT opcode;
18145
18146 if (fragp->fr_type != rs_align_code)
18147 return;
18148
18149 p = fragp->fr_literal + fragp->fr_fix;
18150 nop_opcode = *p;
18151 switch (nop_opcode)
18152 {
18153 case NOP_OPCODE_MICROMIPS:
18154 opcode = micromips_nop32_insn.insn_opcode;
18155 size = 4;
18156 break;
18157 case NOP_OPCODE_MIPS16:
18158 opcode = mips16_nop_insn.insn_opcode;
18159 size = 2;
18160 break;
18161 case NOP_OPCODE_MIPS:
18162 default:
18163 opcode = nop_insn.insn_opcode;
18164 size = 4;
18165 break;
18166 }
18167
18168 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18169 excess = bytes % size;
18170
18171 /* Handle the leading part if we're not inserting a whole number of
18172 instructions, and make it the end of the fixed part of the frag.
18173 Try to fit in a short microMIPS NOP if applicable and possible,
18174 and use zeroes otherwise. */
18175 gas_assert (excess < 4);
18176 fragp->fr_fix += excess;
18177 switch (excess)
18178 {
18179 case 3:
18180 *p++ = '\0';
18181 /* Fall through. */
18182 case 2:
18183 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18184 {
18185 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18186 break;
18187 }
18188 *p++ = '\0';
18189 /* Fall through. */
18190 case 1:
18191 *p++ = '\0';
18192 /* Fall through. */
18193 case 0:
18194 break;
18195 }
18196
18197 md_number_to_chars (p, opcode, size);
18198 fragp->fr_var = size;
18199 }
18200
18201 static long
18202 get_number (void)
18203 {
18204 int negative = 0;
18205 long val = 0;
18206
18207 if (*input_line_pointer == '-')
18208 {
18209 ++input_line_pointer;
18210 negative = 1;
18211 }
18212 if (!ISDIGIT (*input_line_pointer))
18213 as_bad (_("expected simple number"));
18214 if (input_line_pointer[0] == '0')
18215 {
18216 if (input_line_pointer[1] == 'x')
18217 {
18218 input_line_pointer += 2;
18219 while (ISXDIGIT (*input_line_pointer))
18220 {
18221 val <<= 4;
18222 val |= hex_value (*input_line_pointer++);
18223 }
18224 return negative ? -val : val;
18225 }
18226 else
18227 {
18228 ++input_line_pointer;
18229 while (ISDIGIT (*input_line_pointer))
18230 {
18231 val <<= 3;
18232 val |= *input_line_pointer++ - '0';
18233 }
18234 return negative ? -val : val;
18235 }
18236 }
18237 if (!ISDIGIT (*input_line_pointer))
18238 {
18239 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18240 *input_line_pointer, *input_line_pointer);
18241 as_warn (_("invalid number"));
18242 return -1;
18243 }
18244 while (ISDIGIT (*input_line_pointer))
18245 {
18246 val *= 10;
18247 val += *input_line_pointer++ - '0';
18248 }
18249 return negative ? -val : val;
18250 }
18251
18252 /* The .file directive; just like the usual .file directive, but there
18253 is an initial number which is the ECOFF file index. In the non-ECOFF
18254 case .file implies DWARF-2. */
18255
18256 static void
18257 s_mips_file (int x ATTRIBUTE_UNUSED)
18258 {
18259 static int first_file_directive = 0;
18260
18261 if (ECOFF_DEBUGGING)
18262 {
18263 get_number ();
18264 s_app_file (0);
18265 }
18266 else
18267 {
18268 char *filename;
18269
18270 filename = dwarf2_directive_file (0);
18271
18272 /* Versions of GCC up to 3.1 start files with a ".file"
18273 directive even for stabs output. Make sure that this
18274 ".file" is handled. Note that you need a version of GCC
18275 after 3.1 in order to support DWARF-2 on MIPS. */
18276 if (filename != NULL && ! first_file_directive)
18277 {
18278 (void) new_logical_line (filename, -1);
18279 s_app_file_string (filename, 0);
18280 }
18281 first_file_directive = 1;
18282 }
18283 }
18284
18285 /* The .loc directive, implying DWARF-2. */
18286
18287 static void
18288 s_mips_loc (int x ATTRIBUTE_UNUSED)
18289 {
18290 if (!ECOFF_DEBUGGING)
18291 dwarf2_directive_loc (0);
18292 }
18293
18294 /* The .end directive. */
18295
18296 static void
18297 s_mips_end (int x ATTRIBUTE_UNUSED)
18298 {
18299 symbolS *p;
18300
18301 /* Following functions need their own .frame and .cprestore directives. */
18302 mips_frame_reg_valid = 0;
18303 mips_cprestore_valid = 0;
18304
18305 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18306 {
18307 p = get_symbol ();
18308 demand_empty_rest_of_line ();
18309 }
18310 else
18311 p = NULL;
18312
18313 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18314 as_warn (_(".end not in text section"));
18315
18316 if (!cur_proc_ptr)
18317 {
18318 as_warn (_(".end directive without a preceding .ent directive"));
18319 demand_empty_rest_of_line ();
18320 return;
18321 }
18322
18323 if (p != NULL)
18324 {
18325 gas_assert (S_GET_NAME (p));
18326 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18327 as_warn (_(".end symbol does not match .ent symbol"));
18328
18329 if (debug_type == DEBUG_STABS)
18330 stabs_generate_asm_endfunc (S_GET_NAME (p),
18331 S_GET_NAME (p));
18332 }
18333 else
18334 as_warn (_(".end directive missing or unknown symbol"));
18335
18336 /* Create an expression to calculate the size of the function. */
18337 if (p && cur_proc_ptr)
18338 {
18339 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18340 expressionS *exp = xmalloc (sizeof (expressionS));
18341
18342 obj->size = exp;
18343 exp->X_op = O_subtract;
18344 exp->X_add_symbol = symbol_temp_new_now ();
18345 exp->X_op_symbol = p;
18346 exp->X_add_number = 0;
18347
18348 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18349 }
18350
18351 /* Generate a .pdr section. */
18352 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18353 {
18354 segT saved_seg = now_seg;
18355 subsegT saved_subseg = now_subseg;
18356 expressionS exp;
18357 char *fragp;
18358
18359 #ifdef md_flush_pending_output
18360 md_flush_pending_output ();
18361 #endif
18362
18363 gas_assert (pdr_seg);
18364 subseg_set (pdr_seg, 0);
18365
18366 /* Write the symbol. */
18367 exp.X_op = O_symbol;
18368 exp.X_add_symbol = p;
18369 exp.X_add_number = 0;
18370 emit_expr (&exp, 4);
18371
18372 fragp = frag_more (7 * 4);
18373
18374 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18375 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18376 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18377 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18378 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18379 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18380 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18381
18382 subseg_set (saved_seg, saved_subseg);
18383 }
18384
18385 cur_proc_ptr = NULL;
18386 }
18387
18388 /* The .aent and .ent directives. */
18389
18390 static void
18391 s_mips_ent (int aent)
18392 {
18393 symbolS *symbolP;
18394
18395 symbolP = get_symbol ();
18396 if (*input_line_pointer == ',')
18397 ++input_line_pointer;
18398 SKIP_WHITESPACE ();
18399 if (ISDIGIT (*input_line_pointer)
18400 || *input_line_pointer == '-')
18401 get_number ();
18402
18403 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18404 as_warn (_(".ent or .aent not in text section"));
18405
18406 if (!aent && cur_proc_ptr)
18407 as_warn (_("missing .end"));
18408
18409 if (!aent)
18410 {
18411 /* This function needs its own .frame and .cprestore directives. */
18412 mips_frame_reg_valid = 0;
18413 mips_cprestore_valid = 0;
18414
18415 cur_proc_ptr = &cur_proc;
18416 memset (cur_proc_ptr, '\0', sizeof (procS));
18417
18418 cur_proc_ptr->func_sym = symbolP;
18419
18420 ++numprocs;
18421
18422 if (debug_type == DEBUG_STABS)
18423 stabs_generate_asm_func (S_GET_NAME (symbolP),
18424 S_GET_NAME (symbolP));
18425 }
18426
18427 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18428
18429 demand_empty_rest_of_line ();
18430 }
18431
18432 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18433 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18434 s_mips_frame is used so that we can set the PDR information correctly.
18435 We can't use the ecoff routines because they make reference to the ecoff
18436 symbol table (in the mdebug section). */
18437
18438 static void
18439 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18440 {
18441 if (ECOFF_DEBUGGING)
18442 s_ignore (ignore);
18443 else
18444 {
18445 long val;
18446
18447 if (cur_proc_ptr == (procS *) NULL)
18448 {
18449 as_warn (_(".frame outside of .ent"));
18450 demand_empty_rest_of_line ();
18451 return;
18452 }
18453
18454 cur_proc_ptr->frame_reg = tc_get_register (1);
18455
18456 SKIP_WHITESPACE ();
18457 if (*input_line_pointer++ != ','
18458 || get_absolute_expression_and_terminator (&val) != ',')
18459 {
18460 as_warn (_("bad .frame directive"));
18461 --input_line_pointer;
18462 demand_empty_rest_of_line ();
18463 return;
18464 }
18465
18466 cur_proc_ptr->frame_offset = val;
18467 cur_proc_ptr->pc_reg = tc_get_register (0);
18468
18469 demand_empty_rest_of_line ();
18470 }
18471 }
18472
18473 /* The .fmask and .mask directives. If the mdebug section is present
18474 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18475 embedded targets, s_mips_mask is used so that we can set the PDR
18476 information correctly. We can't use the ecoff routines because they
18477 make reference to the ecoff symbol table (in the mdebug section). */
18478
18479 static void
18480 s_mips_mask (int reg_type)
18481 {
18482 if (ECOFF_DEBUGGING)
18483 s_ignore (reg_type);
18484 else
18485 {
18486 long mask, off;
18487
18488 if (cur_proc_ptr == (procS *) NULL)
18489 {
18490 as_warn (_(".mask/.fmask outside of .ent"));
18491 demand_empty_rest_of_line ();
18492 return;
18493 }
18494
18495 if (get_absolute_expression_and_terminator (&mask) != ',')
18496 {
18497 as_warn (_("bad .mask/.fmask directive"));
18498 --input_line_pointer;
18499 demand_empty_rest_of_line ();
18500 return;
18501 }
18502
18503 off = get_absolute_expression ();
18504
18505 if (reg_type == 'F')
18506 {
18507 cur_proc_ptr->fpreg_mask = mask;
18508 cur_proc_ptr->fpreg_offset = off;
18509 }
18510 else
18511 {
18512 cur_proc_ptr->reg_mask = mask;
18513 cur_proc_ptr->reg_offset = off;
18514 }
18515
18516 demand_empty_rest_of_line ();
18517 }
18518 }
18519
18520 /* A table describing all the processors gas knows about. Names are
18521 matched in the order listed.
18522
18523 To ease comparison, please keep this table in the same order as
18524 gcc's mips_cpu_info_table[]. */
18525 static const struct mips_cpu_info mips_cpu_info_table[] =
18526 {
18527 /* Entries for generic ISAs */
18528 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18529 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18530 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18531 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18532 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18533 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18534 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18535 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18536 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18537 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18538 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18539 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18540 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18541 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18542 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18543
18544 /* MIPS I */
18545 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18546 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18547 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18548
18549 /* MIPS II */
18550 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18551
18552 /* MIPS III */
18553 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18554 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18555 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18556 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18557 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18558 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18559 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18560 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18561 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18562 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18563 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18564 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18565 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18566 /* ST Microelectronics Loongson 2E and 2F cores */
18567 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18568 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18569
18570 /* MIPS IV */
18571 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18572 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18573 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18574 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18575 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18576 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18577 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18578 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18579 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18580 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18581 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18582 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18583 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18584 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18585 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18586
18587 /* MIPS 32 */
18588 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18589 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18590 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18591 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18592
18593 /* MIPS 32 Release 2 */
18594 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18595 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18596 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18597 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18598 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18599 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18600 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18601 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18602 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18603 ISA_MIPS32R2, CPU_MIPS32R2 },
18604 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18605 ISA_MIPS32R2, CPU_MIPS32R2 },
18606 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18607 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18608 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18609 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18610 /* Deprecated forms of the above. */
18611 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18612 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18613 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18614 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18615 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18616 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18617 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18618 /* Deprecated forms of the above. */
18619 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18620 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18621 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18622 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18623 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18625 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18626 /* Deprecated forms of the above. */
18627 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 /* 34Kn is a 34kc without DSP. */
18630 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18632 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18634 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18635 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 /* Deprecated forms of the above. */
18638 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 /* 1004K cores are multiprocessor versions of the 34K. */
18641 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18643 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18644 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18646 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18647
18648 /* MIPS 64 */
18649 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18650 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18651 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18652 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18653
18654 /* Broadcom SB-1 CPU core */
18655 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18656 /* Broadcom SB-1A CPU core */
18657 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18658
18659 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18660
18661 /* MIPS 64 Release 2 */
18662
18663 /* Cavium Networks Octeon CPU core */
18664 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18665 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18666 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18667 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18668
18669 /* RMI Xlr */
18670 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18671
18672 /* Broadcom XLP.
18673 XLP is mostly like XLR, with the prominent exception that it is
18674 MIPS64R2 rather than MIPS64. */
18675 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18676
18677 /* End marker */
18678 { NULL, 0, 0, 0, 0 }
18679 };
18680
18681
18682 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18683 with a final "000" replaced by "k". Ignore case.
18684
18685 Note: this function is shared between GCC and GAS. */
18686
18687 static bfd_boolean
18688 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18689 {
18690 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18691 given++, canonical++;
18692
18693 return ((*given == 0 && *canonical == 0)
18694 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18695 }
18696
18697
18698 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18699 CPU name. We've traditionally allowed a lot of variation here.
18700
18701 Note: this function is shared between GCC and GAS. */
18702
18703 static bfd_boolean
18704 mips_matching_cpu_name_p (const char *canonical, const char *given)
18705 {
18706 /* First see if the name matches exactly, or with a final "000"
18707 turned into "k". */
18708 if (mips_strict_matching_cpu_name_p (canonical, given))
18709 return TRUE;
18710
18711 /* If not, try comparing based on numerical designation alone.
18712 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18713 if (TOLOWER (*given) == 'r')
18714 given++;
18715 if (!ISDIGIT (*given))
18716 return FALSE;
18717
18718 /* Skip over some well-known prefixes in the canonical name,
18719 hoping to find a number there too. */
18720 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18721 canonical += 2;
18722 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18723 canonical += 2;
18724 else if (TOLOWER (canonical[0]) == 'r')
18725 canonical += 1;
18726
18727 return mips_strict_matching_cpu_name_p (canonical, given);
18728 }
18729
18730
18731 /* Parse an option that takes the name of a processor as its argument.
18732 OPTION is the name of the option and CPU_STRING is the argument.
18733 Return the corresponding processor enumeration if the CPU_STRING is
18734 recognized, otherwise report an error and return null.
18735
18736 A similar function exists in GCC. */
18737
18738 static const struct mips_cpu_info *
18739 mips_parse_cpu (const char *option, const char *cpu_string)
18740 {
18741 const struct mips_cpu_info *p;
18742
18743 /* 'from-abi' selects the most compatible architecture for the given
18744 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18745 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18746 version. Look first at the -mgp options, if given, otherwise base
18747 the choice on MIPS_DEFAULT_64BIT.
18748
18749 Treat NO_ABI like the EABIs. One reason to do this is that the
18750 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18751 architecture. This code picks MIPS I for 'mips' and MIPS III for
18752 'mips64', just as we did in the days before 'from-abi'. */
18753 if (strcasecmp (cpu_string, "from-abi") == 0)
18754 {
18755 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18756 return mips_cpu_info_from_isa (ISA_MIPS1);
18757
18758 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18759 return mips_cpu_info_from_isa (ISA_MIPS3);
18760
18761 if (file_mips_opts.gp >= 0)
18762 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18763 ? ISA_MIPS1 : ISA_MIPS3);
18764
18765 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18766 ? ISA_MIPS3
18767 : ISA_MIPS1);
18768 }
18769
18770 /* 'default' has traditionally been a no-op. Probably not very useful. */
18771 if (strcasecmp (cpu_string, "default") == 0)
18772 return 0;
18773
18774 for (p = mips_cpu_info_table; p->name != 0; p++)
18775 if (mips_matching_cpu_name_p (p->name, cpu_string))
18776 return p;
18777
18778 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18779 return 0;
18780 }
18781
18782 /* Return the canonical processor information for ISA (a member of the
18783 ISA_MIPS* enumeration). */
18784
18785 static const struct mips_cpu_info *
18786 mips_cpu_info_from_isa (int isa)
18787 {
18788 int i;
18789
18790 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18791 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18792 && isa == mips_cpu_info_table[i].isa)
18793 return (&mips_cpu_info_table[i]);
18794
18795 return NULL;
18796 }
18797
18798 static const struct mips_cpu_info *
18799 mips_cpu_info_from_arch (int arch)
18800 {
18801 int i;
18802
18803 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18804 if (arch == mips_cpu_info_table[i].cpu)
18805 return (&mips_cpu_info_table[i]);
18806
18807 return NULL;
18808 }
18809 \f
18810 static void
18811 show (FILE *stream, const char *string, int *col_p, int *first_p)
18812 {
18813 if (*first_p)
18814 {
18815 fprintf (stream, "%24s", "");
18816 *col_p = 24;
18817 }
18818 else
18819 {
18820 fprintf (stream, ", ");
18821 *col_p += 2;
18822 }
18823
18824 if (*col_p + strlen (string) > 72)
18825 {
18826 fprintf (stream, "\n%24s", "");
18827 *col_p = 24;
18828 }
18829
18830 fprintf (stream, "%s", string);
18831 *col_p += strlen (string);
18832
18833 *first_p = 0;
18834 }
18835
18836 void
18837 md_show_usage (FILE *stream)
18838 {
18839 int column, first;
18840 size_t i;
18841
18842 fprintf (stream, _("\
18843 MIPS options:\n\
18844 -EB generate big endian output\n\
18845 -EL generate little endian output\n\
18846 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18847 -G NUM allow referencing objects up to NUM bytes\n\
18848 implicitly with the gp register [default 8]\n"));
18849 fprintf (stream, _("\
18850 -mips1 generate MIPS ISA I instructions\n\
18851 -mips2 generate MIPS ISA II instructions\n\
18852 -mips3 generate MIPS ISA III instructions\n\
18853 -mips4 generate MIPS ISA IV instructions\n\
18854 -mips5 generate MIPS ISA V instructions\n\
18855 -mips32 generate MIPS32 ISA instructions\n\
18856 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18857 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18858 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18859 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18860 -mips64 generate MIPS64 ISA instructions\n\
18861 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18862 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18863 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18864 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18865 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18866
18867 first = 1;
18868
18869 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18870 show (stream, mips_cpu_info_table[i].name, &column, &first);
18871 show (stream, "from-abi", &column, &first);
18872 fputc ('\n', stream);
18873
18874 fprintf (stream, _("\
18875 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18876 -no-mCPU don't generate code specific to CPU.\n\
18877 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18878
18879 first = 1;
18880
18881 show (stream, "3900", &column, &first);
18882 show (stream, "4010", &column, &first);
18883 show (stream, "4100", &column, &first);
18884 show (stream, "4650", &column, &first);
18885 fputc ('\n', stream);
18886
18887 fprintf (stream, _("\
18888 -mips16 generate mips16 instructions\n\
18889 -no-mips16 do not generate mips16 instructions\n"));
18890 fprintf (stream, _("\
18891 -mmicromips generate microMIPS instructions\n\
18892 -mno-micromips do not generate microMIPS instructions\n"));
18893 fprintf (stream, _("\
18894 -msmartmips generate smartmips instructions\n\
18895 -mno-smartmips do not generate smartmips instructions\n"));
18896 fprintf (stream, _("\
18897 -mdsp generate DSP instructions\n\
18898 -mno-dsp do not generate DSP instructions\n"));
18899 fprintf (stream, _("\
18900 -mdspr2 generate DSP R2 instructions\n\
18901 -mno-dspr2 do not generate DSP R2 instructions\n"));
18902 fprintf (stream, _("\
18903 -mmt generate MT instructions\n\
18904 -mno-mt do not generate MT instructions\n"));
18905 fprintf (stream, _("\
18906 -mmcu generate MCU instructions\n\
18907 -mno-mcu do not generate MCU instructions\n"));
18908 fprintf (stream, _("\
18909 -mmsa generate MSA instructions\n\
18910 -mno-msa do not generate MSA instructions\n"));
18911 fprintf (stream, _("\
18912 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18913 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18914 fprintf (stream, _("\
18915 -mvirt generate Virtualization instructions\n\
18916 -mno-virt do not generate Virtualization instructions\n"));
18917 fprintf (stream, _("\
18918 -minsn32 only generate 32-bit microMIPS instructions\n\
18919 -mno-insn32 generate all microMIPS instructions\n"));
18920 fprintf (stream, _("\
18921 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18922 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18923 -mfix-vr4120 work around certain VR4120 errata\n\
18924 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18925 -mfix-24k insert a nop after ERET and DERET instructions\n\
18926 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18927 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18928 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18929 -msym32 assume all symbols have 32-bit values\n\
18930 -O0 remove unneeded NOPs, do not swap branches\n\
18931 -O remove unneeded NOPs and swap branches\n\
18932 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18933 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18934 fprintf (stream, _("\
18935 -mhard-float allow floating-point instructions\n\
18936 -msoft-float do not allow floating-point instructions\n\
18937 -msingle-float only allow 32-bit floating-point operations\n\
18938 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18939 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18940 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18941 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18942
18943 first = 1;
18944
18945 show (stream, "legacy", &column, &first);
18946 show (stream, "2008", &column, &first);
18947
18948 fputc ('\n', stream);
18949
18950 fprintf (stream, _("\
18951 -KPIC, -call_shared generate SVR4 position independent code\n\
18952 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18953 -mvxworks-pic generate VxWorks position independent code\n\
18954 -non_shared do not generate code that can operate with DSOs\n\
18955 -xgot assume a 32 bit GOT\n\
18956 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18957 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18958 position dependent (non shared) code\n\
18959 -mabi=ABI create ABI conformant object file for:\n"));
18960
18961 first = 1;
18962
18963 show (stream, "32", &column, &first);
18964 show (stream, "o64", &column, &first);
18965 show (stream, "n32", &column, &first);
18966 show (stream, "64", &column, &first);
18967 show (stream, "eabi", &column, &first);
18968
18969 fputc ('\n', stream);
18970
18971 fprintf (stream, _("\
18972 -32 create o32 ABI object file (default)\n\
18973 -n32 create n32 ABI object file\n\
18974 -64 create 64 ABI object file\n"));
18975 }
18976
18977 #ifdef TE_IRIX
18978 enum dwarf2_format
18979 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
18980 {
18981 if (HAVE_64BIT_SYMBOLS)
18982 return dwarf2_format_64bit_irix;
18983 else
18984 return dwarf2_format_32bit;
18985 }
18986 #endif
18987
18988 int
18989 mips_dwarf2_addr_size (void)
18990 {
18991 if (HAVE_64BIT_OBJECTS)
18992 return 8;
18993 else
18994 return 4;
18995 }
18996
18997 /* Standard calling conventions leave the CFA at SP on entry. */
18998 void
18999 mips_cfi_frame_initial_instructions (void)
19000 {
19001 cfi_add_CFA_def_cfa_register (SP);
19002 }
19003
19004 int
19005 tc_mips_regname_to_dw2regnum (char *regname)
19006 {
19007 unsigned int regnum = -1;
19008 unsigned int reg;
19009
19010 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19011 regnum = reg;
19012
19013 return regnum;
19014 }
19015
19016 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19017 Given a symbolic attribute NAME, return the proper integer value.
19018 Returns -1 if the attribute is not known. */
19019
19020 int
19021 mips_convert_symbolic_attribute (const char *name)
19022 {
19023 static const struct
19024 {
19025 const char * name;
19026 const int tag;
19027 }
19028 attribute_table[] =
19029 {
19030 #define T(tag) {#tag, tag}
19031 T (Tag_GNU_MIPS_ABI_FP),
19032 T (Tag_GNU_MIPS_ABI_MSA),
19033 #undef T
19034 };
19035 unsigned int i;
19036
19037 if (name == NULL)
19038 return -1;
19039
19040 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19041 if (streq (name, attribute_table[i].name))
19042 return attribute_table[i].tag;
19043
19044 return -1;
19045 }
19046
19047 void
19048 md_mips_end (void)
19049 {
19050 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19051
19052 mips_emit_delays ();
19053 if (cur_proc_ptr)
19054 as_warn (_("missing .end at end of assembly"));
19055
19056 /* Just in case no code was emitted, do the consistency check. */
19057 file_mips_check_options ();
19058
19059 /* Set a floating-point ABI if the user did not. */
19060 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19061 {
19062 /* Perform consistency checks on the floating-point ABI. */
19063 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19064 Tag_GNU_MIPS_ABI_FP);
19065 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19066 check_fpabi (fpabi);
19067 }
19068 else
19069 {
19070 /* Soft-float gets precedence over single-float, the two options should
19071 not be used together so this should not matter. */
19072 if (file_mips_opts.soft_float == 1)
19073 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19074 /* Single-float gets precedence over all double_float cases. */
19075 else if (file_mips_opts.single_float == 1)
19076 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19077 else
19078 {
19079 switch (file_mips_opts.fp)
19080 {
19081 case 32:
19082 if (file_mips_opts.gp == 32)
19083 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19084 break;
19085 case 0:
19086 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19087 break;
19088 case 64:
19089 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19090 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19091 else if (file_mips_opts.gp == 32)
19092 fpabi = Val_GNU_MIPS_ABI_FP_64;
19093 else
19094 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19095 break;
19096 }
19097 }
19098
19099 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19100 Tag_GNU_MIPS_ABI_FP, fpabi);
19101 }
19102 }