]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/config/tc-xtensa.c
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / config / tc-xtensa.c
1 /* tc-xtensa.c -- Assemble Xtensa instructions.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "as.h"
22 #include <limits.h>
23 #include "sb.h"
24 #include "safe-ctype.h"
25 #include "tc-xtensa.h"
26 #include "subsegs.h"
27 #include "xtensa-relax.h"
28 #include "dwarf2dbg.h"
29 #include "xtensa-istack.h"
30 #include "xtensa-config.h"
31 #include "elf/xtensa.h"
32
33 /* Provide default values for new configuration settings. */
34 #ifndef XTHAL_ABI_WINDOWED
35 #define XTHAL_ABI_WINDOWED 0
36 #endif
37
38 #ifndef XTHAL_ABI_CALL0
39 #define XTHAL_ABI_CALL0 1
40 #endif
41
42 #ifndef XTENSA_MARCH_EARLIEST
43 #define XTENSA_MARCH_EARLIEST 0
44 #endif
45
46 #ifndef uint32
47 #define uint32 unsigned int
48 #endif
49 #ifndef int32
50 #define int32 signed int
51 #endif
52
53 /* Notes:
54
55 Naming conventions (used somewhat inconsistently):
56 The xtensa_ functions are exported
57 The xg_ functions are internal
58
59 We also have a couple of different extensibility mechanisms.
60 1) The idiom replacement:
61 This is used when a line is first parsed to
62 replace an instruction pattern with another instruction
63 It is currently limited to replacements of instructions
64 with constant operands.
65 2) The xtensa-relax.c mechanism that has stronger instruction
66 replacement patterns. When an instruction's immediate field
67 does not fit the next instruction sequence is attempted.
68 In addition, "narrow" opcodes are supported this way. */
69
70
71 /* Define characters with special meanings to GAS. */
72 const char comment_chars[] = "#";
73 const char line_comment_chars[] = "#";
74 const char line_separator_chars[] = ";";
75 const char EXP_CHARS[] = "eE";
76 const char FLT_CHARS[] = "rRsSfFdDxXpP";
77
78
79 /* Flags to indicate whether the hardware supports the density and
80 absolute literals options. */
81
82 bfd_boolean density_supported;
83 bfd_boolean absolute_literals_supported;
84
85 static unsigned microarch_earliest;
86
87 static vliw_insn cur_vinsn;
88
89 unsigned xtensa_num_pipe_stages;
90 unsigned xtensa_fetch_width;
91
92 static enum debug_info_type xt_saved_debug_type = DEBUG_NONE;
93
94 /* Some functions are only valid in the front end. This variable
95 allows us to assert that we haven't crossed over into the
96 back end. */
97 static bfd_boolean past_xtensa_end = FALSE;
98
99 /* Flags for properties of the last instruction in a segment. */
100 #define FLAG_IS_A0_WRITER 0x1
101 #define FLAG_IS_BAD_LOOPEND 0x2
102
103
104 /* We define a special segment names ".literal" to place literals
105 into. The .fini and .init sections are special because they
106 contain code that is moved together by the linker. We give them
107 their own special .fini.literal and .init.literal sections. */
108
109 #define LITERAL_SECTION_NAME xtensa_section_rename (".literal")
110 #define LIT4_SECTION_NAME xtensa_section_rename (".lit4")
111 #define INIT_SECTION_NAME xtensa_section_rename (".init")
112 #define FINI_SECTION_NAME xtensa_section_rename (".fini")
113
114
115 /* This type is used for the directive_stack to keep track of the
116 state of the literal collection pools. If lit_prefix is set, it is
117 used to determine the literal section names; otherwise, the literal
118 sections are determined based on the current text section. The
119 lit_seg and lit4_seg fields cache these literal sections, with the
120 current_text_seg field used a tag to indicate whether the cached
121 values are valid. */
122
123 typedef struct lit_state_struct
124 {
125 char *lit_prefix;
126 segT current_text_seg;
127 segT lit_seg;
128 segT lit4_seg;
129 } lit_state;
130
131 static lit_state default_lit_sections;
132
133
134 /* We keep a list of literal segments. The seg_list type is the node
135 for this list. The literal_head pointer is the head of the list,
136 with the literal_head_h dummy node at the start. */
137
138 typedef struct seg_list_struct
139 {
140 struct seg_list_struct *next;
141 segT seg;
142 } seg_list;
143
144 static seg_list literal_head_h;
145 static seg_list *literal_head = &literal_head_h;
146
147
148 /* Lists of symbols. We keep a list of symbols that label the current
149 instruction, so that we can adjust the symbols when inserting alignment
150 for various instructions. We also keep a list of all the symbols on
151 literals, so that we can fix up those symbols when the literals are
152 later moved into the text sections. */
153
154 typedef struct sym_list_struct
155 {
156 struct sym_list_struct *next;
157 symbolS *sym;
158 } sym_list;
159
160 static sym_list *insn_labels = NULL;
161 static sym_list *free_insn_labels = NULL;
162 static sym_list *saved_insn_labels = NULL;
163
164 static sym_list *literal_syms;
165
166
167 /* Flags to determine whether to prefer const16 or l32r
168 if both options are available. */
169 int prefer_const16 = 0;
170 int prefer_l32r = 0;
171
172 /* Global flag to indicate when we are emitting literals. */
173 int generating_literals = 0;
174
175 /* The following PROPERTY table definitions are copied from
176 <elf/xtensa.h> and must be kept in sync with the code there. */
177
178 /* Flags in the property tables to specify whether blocks of memory
179 are literals, instructions, data, or unreachable. For
180 instructions, blocks that begin loop targets and branch targets are
181 designated. Blocks that do not allow density, instruction
182 reordering or transformation are also specified. Finally, for
183 branch targets, branch target alignment priority is included.
184 Alignment of the next block is specified in the current block
185 and the size of the current block does not include any fill required
186 to align to the next block. */
187
188 #define XTENSA_PROP_LITERAL 0x00000001
189 #define XTENSA_PROP_INSN 0x00000002
190 #define XTENSA_PROP_DATA 0x00000004
191 #define XTENSA_PROP_UNREACHABLE 0x00000008
192 /* Instruction only properties at beginning of code. */
193 #define XTENSA_PROP_INSN_LOOP_TARGET 0x00000010
194 #define XTENSA_PROP_INSN_BRANCH_TARGET 0x00000020
195 /* Instruction only properties about code. */
196 #define XTENSA_PROP_INSN_NO_DENSITY 0x00000040
197 #define XTENSA_PROP_INSN_NO_REORDER 0x00000080
198 /* Historically, NO_TRANSFORM was a property of instructions,
199 but it should apply to literals under certain circumstances. */
200 #define XTENSA_PROP_NO_TRANSFORM 0x00000100
201
202 /* Branch target alignment information. This transmits information
203 to the linker optimization about the priority of aligning a
204 particular block for branch target alignment: None, low priority,
205 high priority, or required. These only need to be checked in
206 instruction blocks marked as XTENSA_PROP_INSN_BRANCH_TARGET.
207 Common usage is
208
209 switch (GET_XTENSA_PROP_BT_ALIGN (flags))
210 case XTENSA_PROP_BT_ALIGN_NONE:
211 case XTENSA_PROP_BT_ALIGN_LOW:
212 case XTENSA_PROP_BT_ALIGN_HIGH:
213 case XTENSA_PROP_BT_ALIGN_REQUIRE:
214 */
215 #define XTENSA_PROP_BT_ALIGN_MASK 0x00000600
216
217 /* No branch target alignment. */
218 #define XTENSA_PROP_BT_ALIGN_NONE 0x0
219 /* Low priority branch target alignment. */
220 #define XTENSA_PROP_BT_ALIGN_LOW 0x1
221 /* High priority branch target alignment. */
222 #define XTENSA_PROP_BT_ALIGN_HIGH 0x2
223 /* Required branch target alignment. */
224 #define XTENSA_PROP_BT_ALIGN_REQUIRE 0x3
225
226 #define SET_XTENSA_PROP_BT_ALIGN(flag, align) \
227 (((flag) & (~XTENSA_PROP_BT_ALIGN_MASK)) | \
228 (((align) << 9) & XTENSA_PROP_BT_ALIGN_MASK))
229
230
231 /* Alignment is specified in the block BEFORE the one that needs
232 alignment. Up to 5 bits. Use GET_XTENSA_PROP_ALIGNMENT(flags) to
233 get the required alignment specified as a power of 2. Use
234 SET_XTENSA_PROP_ALIGNMENT(flags, pow2) to set the required
235 alignment. Be careful of side effects since the SET will evaluate
236 flags twice. Also, note that the SIZE of a block in the property
237 table does not include the alignment size, so the alignment fill
238 must be calculated to determine if two blocks are contiguous.
239 TEXT_ALIGN is not currently implemented but is a placeholder for a
240 possible future implementation. */
241
242 #define XTENSA_PROP_ALIGN 0x00000800
243
244 #define XTENSA_PROP_ALIGNMENT_MASK 0x0001f000
245
246 #define SET_XTENSA_PROP_ALIGNMENT(flag, align) \
247 (((flag) & (~XTENSA_PROP_ALIGNMENT_MASK)) | \
248 (((align) << 12) & XTENSA_PROP_ALIGNMENT_MASK))
249
250 #define XTENSA_PROP_INSN_ABSLIT 0x00020000
251
252
253 /* Structure for saving instruction and alignment per-fragment data
254 that will be written to the object file. This structure is
255 equivalent to the actual data that will be written out to the file
256 but is easier to use. We provide a conversion to file flags
257 in frag_flags_to_number. */
258
259 typedef struct frag_flags_struct frag_flags;
260
261 struct frag_flags_struct
262 {
263 /* is_literal should only be used after xtensa_move_literals.
264 If you need to check if you are generating a literal fragment,
265 then use the generating_literals global. */
266
267 unsigned is_literal : 1;
268 unsigned is_insn : 1;
269 unsigned is_data : 1;
270 unsigned is_unreachable : 1;
271
272 /* is_specific_opcode implies no_transform. */
273 unsigned is_no_transform : 1;
274
275 struct
276 {
277 unsigned is_loop_target : 1;
278 unsigned is_branch_target : 1; /* Branch targets have a priority. */
279 unsigned bt_align_priority : 2;
280
281 unsigned is_no_density : 1;
282 /* no_longcalls flag does not need to be placed in the object file. */
283
284 unsigned is_no_reorder : 1;
285
286 /* Uses absolute literal addressing for l32r. */
287 unsigned is_abslit : 1;
288 } insn;
289 unsigned is_align : 1;
290 unsigned alignment : 5;
291 };
292
293
294 /* Structure for saving information about a block of property data
295 for frags that have the same flags. */
296 struct xtensa_block_info_struct
297 {
298 segT sec;
299 bfd_vma offset;
300 size_t size;
301 frag_flags flags;
302 struct xtensa_block_info_struct *next;
303 };
304
305
306 /* Structure for saving the current state before emitting literals. */
307 typedef struct emit_state_struct
308 {
309 const char *name;
310 segT now_seg;
311 subsegT now_subseg;
312 int generating_literals;
313 } emit_state;
314
315
316 /* Opcode placement information */
317
318 typedef unsigned long long bitfield;
319 #define bit_is_set(bit, bf) ((bf) & (0x01ll << (bit)))
320 #define set_bit(bit, bf) ((bf) |= (0x01ll << (bit)))
321 #define clear_bit(bit, bf) ((bf) &= ~(0x01ll << (bit)))
322
323 #define MAX_FORMATS 32
324
325 typedef struct op_placement_info_struct
326 {
327 int num_formats;
328 /* A number describing how restrictive the issue is for this
329 opcode. For example, an opcode that fits lots of different
330 formats has a high freedom, as does an opcode that fits
331 only one format but many slots in that format. The most
332 restrictive is the opcode that fits only one slot in one
333 format. */
334 int issuef;
335 xtensa_format narrowest;
336 char narrowest_size;
337 char narrowest_slot;
338
339 /* formats is a bitfield with the Nth bit set
340 if the opcode fits in the Nth xtensa_format. */
341 bitfield formats;
342
343 /* slots[N]'s Mth bit is set if the op fits in the
344 Mth slot of the Nth xtensa_format. */
345 bitfield slots[MAX_FORMATS];
346
347 /* A count of the number of slots in a given format
348 an op can fit (i.e., the bitcount of the slot field above). */
349 char slots_in_format[MAX_FORMATS];
350
351 } op_placement_info, *op_placement_info_table;
352
353 op_placement_info_table op_placement_table;
354
355
356 /* Extra expression types. */
357
358 #define O_pltrel O_md1 /* like O_symbol but use a PLT reloc */
359 #define O_hi16 O_md2 /* use high 16 bits of symbolic value */
360 #define O_lo16 O_md3 /* use low 16 bits of symbolic value */
361 #define O_pcrel O_md4 /* value is a PC-relative offset */
362 #define O_tlsfunc O_md5 /* TLS_FUNC/TLSDESC_FN relocation */
363 #define O_tlsarg O_md6 /* TLS_ARG/TLSDESC_ARG relocation */
364 #define O_tlscall O_md7 /* TLS_CALL relocation */
365 #define O_tpoff O_md8 /* TPOFF relocation */
366 #define O_dtpoff O_md9 /* DTPOFF relocation */
367
368 struct suffix_reloc_map
369 {
370 const char *suffix;
371 int length;
372 bfd_reloc_code_real_type reloc;
373 operatorT operator;
374 };
375
376 #define SUFFIX_MAP(str, reloc, op) { str, sizeof (str) - 1, reloc, op }
377
378 static struct suffix_reloc_map suffix_relocs[] =
379 {
380 SUFFIX_MAP ("l", BFD_RELOC_LO16, O_lo16),
381 SUFFIX_MAP ("h", BFD_RELOC_HI16, O_hi16),
382 SUFFIX_MAP ("plt", BFD_RELOC_XTENSA_PLT, O_pltrel),
383 SUFFIX_MAP ("pcrel", BFD_RELOC_32_PCREL, O_pcrel),
384 SUFFIX_MAP ("tlsfunc", BFD_RELOC_XTENSA_TLS_FUNC, O_tlsfunc),
385 SUFFIX_MAP ("tlsarg", BFD_RELOC_XTENSA_TLS_ARG, O_tlsarg),
386 SUFFIX_MAP ("tlscall", BFD_RELOC_XTENSA_TLS_CALL, O_tlscall),
387 SUFFIX_MAP ("tpoff", BFD_RELOC_XTENSA_TLS_TPOFF, O_tpoff),
388 SUFFIX_MAP ("dtpoff", BFD_RELOC_XTENSA_TLS_DTPOFF, O_dtpoff),
389 };
390
391
392 /* Directives. */
393
394 typedef enum
395 {
396 directive_none = 0,
397 directive_literal,
398 directive_density,
399 directive_transform,
400 directive_freeregs,
401 directive_longcalls,
402 directive_literal_prefix,
403 directive_schedule,
404 directive_absolute_literals,
405 directive_last_directive
406 } directiveE;
407
408 typedef struct
409 {
410 const char *name;
411 bfd_boolean can_be_negated;
412 } directive_infoS;
413
414 const directive_infoS directive_info[] =
415 {
416 { "none", FALSE },
417 { "literal", FALSE },
418 { "density", TRUE },
419 { "transform", TRUE },
420 { "freeregs", FALSE },
421 { "longcalls", TRUE },
422 { "literal_prefix", FALSE },
423 { "schedule", TRUE },
424 { "absolute-literals", TRUE }
425 };
426
427 bfd_boolean directive_state[] =
428 {
429 FALSE, /* none */
430 FALSE, /* literal */
431 FALSE, /* density */
432 TRUE, /* transform */
433 FALSE, /* freeregs */
434 FALSE, /* longcalls */
435 FALSE, /* literal_prefix */
436 FALSE, /* schedule */
437 FALSE /* absolute_literals */
438 };
439
440 /* A circular list of all potential and actual literal pool locations
441 in a segment. */
442 struct litpool_frag
443 {
444 struct litpool_frag *next;
445 struct litpool_frag *prev;
446 fragS *fragP;
447 addressT addr;
448 short priority; /* 1, 2, or 3 -- 1 is highest */
449 short original_priority;
450 int literal_count;
451 };
452
453 /* Map a segment to its litpool_frag list. */
454 struct litpool_seg
455 {
456 struct litpool_seg *next;
457 asection *seg;
458 struct litpool_frag frag_list;
459 int frag_count; /* since last litpool location */
460 };
461
462 static struct litpool_seg litpool_seg_list;
463
464 /* Limit maximal size of auto litpool by half of the j range. */
465 #define MAX_AUTO_POOL_LITERALS 16384
466
467 /* Limit maximal size of explicit literal pool by l32r range. */
468 #define MAX_EXPLICIT_POOL_LITERALS 65536
469
470 #define MAX_POOL_LITERALS \
471 (auto_litpools ? MAX_AUTO_POOL_LITERALS : MAX_EXPLICIT_POOL_LITERALS)
472
473 /* Directive functions. */
474
475 static void xtensa_begin_directive (int);
476 static void xtensa_end_directive (int);
477 static void xtensa_literal_prefix (void);
478 static void xtensa_literal_position (int);
479 static void xtensa_literal_pseudo (int);
480 static void xtensa_frequency_pseudo (int);
481 static void xtensa_elf_cons (int);
482 static void xtensa_leb128 (int);
483
484 /* Parsing and Idiom Translation. */
485
486 static bfd_reloc_code_real_type xtensa_elf_suffix (char **, expressionS *);
487
488 /* Various Other Internal Functions. */
489
490 extern bfd_boolean xg_is_single_relaxable_insn (TInsn *, TInsn *, bfd_boolean);
491 static bfd_boolean xg_build_to_insn (TInsn *, TInsn *, BuildInstr *);
492 static void xtensa_mark_literal_pool_location (void);
493 static addressT get_expanded_loop_offset (xtensa_opcode);
494 static fragS *get_literal_pool_location (segT);
495 static void set_literal_pool_location (segT, fragS *);
496 static void xtensa_set_frag_assembly_state (fragS *);
497 static void finish_vinsn (vliw_insn *);
498 static bfd_boolean emit_single_op (TInsn *);
499 static int total_frag_text_expansion (fragS *);
500 static bfd_boolean use_trampolines = TRUE;
501 static void xtensa_check_frag_count (void);
502 static void xtensa_create_trampoline_frag (bfd_boolean);
503 static void xtensa_maybe_create_trampoline_frag (void);
504 struct trampoline_frag;
505 static int init_trampoline_frag (fragS *);
506 static fixS *xg_append_jump (fragS *fragP, symbolS *sym, offsetT offset);
507 static void xtensa_maybe_create_literal_pool_frag (bfd_boolean, bfd_boolean);
508 static bfd_boolean auto_litpools = FALSE;
509 static int auto_litpool_limit = 0;
510 static bfd_boolean xtensa_is_init_fini (segT seg);
511
512 /* Alignment Functions. */
513
514 static int get_text_align_power (unsigned);
515 static int get_text_align_max_fill_size (int, bfd_boolean, bfd_boolean);
516 static int branch_align_power (segT);
517
518 /* Helpers for xtensa_relax_frag(). */
519
520 static long relax_frag_add_nop (fragS *);
521
522 /* Accessors for additional per-subsegment information. */
523
524 static unsigned get_last_insn_flags (segT, subsegT);
525 static void set_last_insn_flags (segT, subsegT, unsigned, bfd_boolean);
526 static float get_subseg_total_freq (segT, subsegT);
527 static float get_subseg_target_freq (segT, subsegT);
528 static void set_subseg_freq (segT, subsegT, float, float);
529
530 /* Segment list functions. */
531
532 static void xtensa_move_literals (void);
533 static void xtensa_reorder_segments (void);
534 static void xtensa_switch_to_literal_fragment (emit_state *);
535 static void xtensa_switch_to_non_abs_literal_fragment (emit_state *);
536 static void xtensa_switch_section_emit_state (emit_state *, segT, subsegT);
537 static void xtensa_restore_emit_state (emit_state *);
538 static segT cache_literal_section (bfd_boolean);
539
540 /* op_placement_info functions. */
541
542 static void init_op_placement_info_table (void);
543 extern bfd_boolean opcode_fits_format_slot (xtensa_opcode, xtensa_format, int);
544 static int xg_get_single_size (xtensa_opcode);
545 static xtensa_format xg_get_single_format (xtensa_opcode);
546 static int xg_get_single_slot (xtensa_opcode);
547
548 /* TInsn and IStack functions. */
549
550 static bfd_boolean tinsn_has_symbolic_operands (const TInsn *);
551 static bfd_boolean tinsn_has_invalid_symbolic_operands (const TInsn *);
552 static bfd_boolean tinsn_has_complex_operands (const TInsn *);
553 static bfd_boolean tinsn_to_insnbuf (TInsn *, xtensa_insnbuf);
554 static bfd_boolean tinsn_check_arguments (const TInsn *);
555 static void tinsn_from_chars (TInsn *, char *, int);
556 static void tinsn_immed_from_frag (TInsn *, fragS *, int);
557 static int get_num_stack_text_bytes (IStack *);
558 static int get_num_stack_literal_bytes (IStack *);
559 static bfd_boolean tinsn_to_slotbuf (xtensa_format, int, TInsn *, xtensa_insnbuf);
560
561 /* vliw_insn functions. */
562
563 static void xg_init_vinsn (vliw_insn *);
564 static void xg_copy_vinsn (vliw_insn *, vliw_insn *);
565 static void xg_clear_vinsn (vliw_insn *);
566 static bfd_boolean vinsn_has_specific_opcodes (vliw_insn *);
567 static void xg_free_vinsn (vliw_insn *);
568 static bfd_boolean vinsn_to_insnbuf
569 (vliw_insn *, char *, fragS *, bfd_boolean);
570 static void vinsn_from_chars (vliw_insn *, char *);
571
572 /* Expression Utilities. */
573
574 bfd_boolean expr_is_const (const expressionS *);
575 offsetT get_expr_const (const expressionS *);
576 void set_expr_const (expressionS *, offsetT);
577 bfd_boolean expr_is_register (const expressionS *);
578 offsetT get_expr_register (const expressionS *);
579 void set_expr_symbol_offset (expressionS *, symbolS *, offsetT);
580 bfd_boolean expr_is_equal (expressionS *, expressionS *);
581 static void copy_expr (expressionS *, const expressionS *);
582
583 /* Section renaming. */
584
585 static void build_section_rename (const char *);
586
587
588 /* ISA imported from bfd. */
589 extern xtensa_isa xtensa_default_isa;
590
591 extern int target_big_endian;
592
593 static xtensa_opcode xtensa_addi_opcode;
594 static xtensa_opcode xtensa_addmi_opcode;
595 static xtensa_opcode xtensa_call0_opcode;
596 static xtensa_opcode xtensa_call4_opcode;
597 static xtensa_opcode xtensa_call8_opcode;
598 static xtensa_opcode xtensa_call12_opcode;
599 static xtensa_opcode xtensa_callx0_opcode;
600 static xtensa_opcode xtensa_callx4_opcode;
601 static xtensa_opcode xtensa_callx8_opcode;
602 static xtensa_opcode xtensa_callx12_opcode;
603 static xtensa_opcode xtensa_const16_opcode;
604 static xtensa_opcode xtensa_entry_opcode;
605 static xtensa_opcode xtensa_extui_opcode;
606 static xtensa_opcode xtensa_movi_opcode;
607 static xtensa_opcode xtensa_movi_n_opcode;
608 static xtensa_opcode xtensa_isync_opcode;
609 static xtensa_opcode xtensa_j_opcode;
610 static xtensa_opcode xtensa_jx_opcode;
611 static xtensa_opcode xtensa_l32r_opcode;
612 static xtensa_opcode xtensa_loop_opcode;
613 static xtensa_opcode xtensa_loopnez_opcode;
614 static xtensa_opcode xtensa_loopgtz_opcode;
615 static xtensa_opcode xtensa_nop_opcode;
616 static xtensa_opcode xtensa_nop_n_opcode;
617 static xtensa_opcode xtensa_or_opcode;
618 static xtensa_opcode xtensa_ret_opcode;
619 static xtensa_opcode xtensa_ret_n_opcode;
620 static xtensa_opcode xtensa_retw_opcode;
621 static xtensa_opcode xtensa_retw_n_opcode;
622 static xtensa_opcode xtensa_rsr_lcount_opcode;
623 static xtensa_opcode xtensa_waiti_opcode;
624 static int config_max_slots = 0;
625
626 \f
627 /* Command-line Options. */
628
629 bfd_boolean use_literal_section = TRUE;
630 enum flix_level produce_flix = FLIX_ALL;
631 static bfd_boolean align_targets = TRUE;
632 static bfd_boolean warn_unaligned_branch_targets = FALSE;
633 static bfd_boolean has_a0_b_retw = FALSE;
634 static bfd_boolean workaround_a0_b_retw = FALSE;
635 static bfd_boolean workaround_b_j_loop_end = FALSE;
636 static bfd_boolean workaround_short_loop = FALSE;
637 static bfd_boolean maybe_has_short_loop = FALSE;
638 static bfd_boolean workaround_close_loop_end = FALSE;
639 static bfd_boolean maybe_has_close_loop_end = FALSE;
640 static bfd_boolean enforce_three_byte_loop_align = FALSE;
641 static bfd_boolean opt_linkrelax = TRUE;
642
643 /* When workaround_short_loops is TRUE, all loops with early exits must
644 have at least 3 instructions. workaround_all_short_loops is a modifier
645 to the workaround_short_loop flag. In addition to the
646 workaround_short_loop actions, all straightline loopgtz and loopnez
647 must have at least 3 instructions. */
648
649 static bfd_boolean workaround_all_short_loops = FALSE;
650
651 /* Generate individual property section for every section.
652 This option is defined in BDF library. */
653 extern bfd_boolean elf32xtensa_separate_props;
654
655 /* Xtensa ABI.
656 This option is defined in BDF library. */
657 extern int elf32xtensa_abi;
658
659 static void
660 xtensa_setup_hw_workarounds (int earliest, int latest)
661 {
662 if (earliest > latest)
663 as_fatal (_("illegal range of target hardware versions"));
664
665 /* Enable all workarounds for pre-T1050.0 hardware. */
666 if (earliest < 105000 || latest < 105000)
667 {
668 workaround_a0_b_retw |= TRUE;
669 workaround_b_j_loop_end |= TRUE;
670 workaround_short_loop |= TRUE;
671 workaround_close_loop_end |= TRUE;
672 workaround_all_short_loops |= TRUE;
673 enforce_three_byte_loop_align = TRUE;
674 }
675 }
676
677
678 enum
679 {
680 option_density = OPTION_MD_BASE,
681 option_no_density,
682
683 option_flix,
684 option_no_generate_flix,
685 option_no_flix,
686
687 option_relax,
688 option_no_relax,
689
690 option_link_relax,
691 option_no_link_relax,
692
693 option_generics,
694 option_no_generics,
695
696 option_transform,
697 option_no_transform,
698
699 option_text_section_literals,
700 option_no_text_section_literals,
701
702 option_absolute_literals,
703 option_no_absolute_literals,
704
705 option_align_targets,
706 option_no_align_targets,
707
708 option_warn_unaligned_targets,
709
710 option_longcalls,
711 option_no_longcalls,
712
713 option_workaround_a0_b_retw,
714 option_no_workaround_a0_b_retw,
715
716 option_workaround_b_j_loop_end,
717 option_no_workaround_b_j_loop_end,
718
719 option_workaround_short_loop,
720 option_no_workaround_short_loop,
721
722 option_workaround_all_short_loops,
723 option_no_workaround_all_short_loops,
724
725 option_workaround_close_loop_end,
726 option_no_workaround_close_loop_end,
727
728 option_no_workarounds,
729
730 option_rename_section_name,
731
732 option_prefer_l32r,
733 option_prefer_const16,
734
735 option_target_hardware,
736
737 option_trampolines,
738 option_no_trampolines,
739
740 option_auto_litpools,
741 option_no_auto_litpools,
742 option_auto_litpool_limit,
743
744 option_separate_props,
745 option_no_separate_props,
746
747 option_abi_windowed,
748 option_abi_call0,
749 };
750
751 const char *md_shortopts = "";
752
753 struct option md_longopts[] =
754 {
755 { "density", no_argument, NULL, option_density },
756 { "no-density", no_argument, NULL, option_no_density },
757
758 { "flix", no_argument, NULL, option_flix },
759 { "no-generate-flix", no_argument, NULL, option_no_generate_flix },
760 { "no-allow-flix", no_argument, NULL, option_no_flix },
761
762 /* Both "relax" and "generics" are deprecated and treated as equivalent
763 to the "transform" option. */
764 { "relax", no_argument, NULL, option_relax },
765 { "no-relax", no_argument, NULL, option_no_relax },
766 { "generics", no_argument, NULL, option_generics },
767 { "no-generics", no_argument, NULL, option_no_generics },
768
769 { "transform", no_argument, NULL, option_transform },
770 { "no-transform", no_argument, NULL, option_no_transform },
771 { "text-section-literals", no_argument, NULL, option_text_section_literals },
772 { "no-text-section-literals", no_argument, NULL,
773 option_no_text_section_literals },
774 { "absolute-literals", no_argument, NULL, option_absolute_literals },
775 { "no-absolute-literals", no_argument, NULL, option_no_absolute_literals },
776 /* This option was changed from -align-target to -target-align
777 because it conflicted with the "-al" option. */
778 { "target-align", no_argument, NULL, option_align_targets },
779 { "no-target-align", no_argument, NULL, option_no_align_targets },
780 { "warn-unaligned-targets", no_argument, NULL,
781 option_warn_unaligned_targets },
782 { "longcalls", no_argument, NULL, option_longcalls },
783 { "no-longcalls", no_argument, NULL, option_no_longcalls },
784
785 { "no-workaround-a0-b-retw", no_argument, NULL,
786 option_no_workaround_a0_b_retw },
787 { "workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw },
788
789 { "no-workaround-b-j-loop-end", no_argument, NULL,
790 option_no_workaround_b_j_loop_end },
791 { "workaround-b-j-loop-end", no_argument, NULL,
792 option_workaround_b_j_loop_end },
793
794 { "no-workaround-short-loops", no_argument, NULL,
795 option_no_workaround_short_loop },
796 { "workaround-short-loops", no_argument, NULL,
797 option_workaround_short_loop },
798
799 { "no-workaround-all-short-loops", no_argument, NULL,
800 option_no_workaround_all_short_loops },
801 { "workaround-all-short-loop", no_argument, NULL,
802 option_workaround_all_short_loops },
803
804 { "prefer-l32r", no_argument, NULL, option_prefer_l32r },
805 { "prefer-const16", no_argument, NULL, option_prefer_const16 },
806
807 { "no-workarounds", no_argument, NULL, option_no_workarounds },
808
809 { "no-workaround-close-loop-end", no_argument, NULL,
810 option_no_workaround_close_loop_end },
811 { "workaround-close-loop-end", no_argument, NULL,
812 option_workaround_close_loop_end },
813
814 { "rename-section", required_argument, NULL, option_rename_section_name },
815
816 { "link-relax", no_argument, NULL, option_link_relax },
817 { "no-link-relax", no_argument, NULL, option_no_link_relax },
818
819 { "target-hardware", required_argument, NULL, option_target_hardware },
820
821 { "trampolines", no_argument, NULL, option_trampolines },
822 { "no-trampolines", no_argument, NULL, option_no_trampolines },
823
824 { "auto-litpools", no_argument, NULL, option_auto_litpools },
825 { "no-auto-litpools", no_argument, NULL, option_no_auto_litpools },
826 { "auto-litpool-limit", required_argument, NULL, option_auto_litpool_limit },
827
828 { "separate-prop-tables", no_argument, NULL, option_separate_props },
829
830 { "abi-windowed", no_argument, NULL, option_abi_windowed },
831 { "abi-call0", no_argument, NULL, option_abi_call0 },
832
833 { NULL, no_argument, NULL, 0 }
834 };
835
836 size_t md_longopts_size = sizeof md_longopts;
837
838
839 int
840 md_parse_option (int c, const char *arg)
841 {
842 switch (c)
843 {
844 case option_density:
845 as_warn (_("--density option is ignored"));
846 return 1;
847 case option_no_density:
848 as_warn (_("--no-density option is ignored"));
849 return 1;
850 case option_link_relax:
851 opt_linkrelax = TRUE;
852 return 1;
853 case option_no_link_relax:
854 opt_linkrelax = FALSE;
855 return 1;
856 case option_flix:
857 produce_flix = FLIX_ALL;
858 return 1;
859 case option_no_generate_flix:
860 produce_flix = FLIX_NO_GENERATE;
861 return 1;
862 case option_no_flix:
863 produce_flix = FLIX_NONE;
864 return 1;
865 case option_generics:
866 as_warn (_("--generics is deprecated; use --transform instead"));
867 return md_parse_option (option_transform, arg);
868 case option_no_generics:
869 as_warn (_("--no-generics is deprecated; use --no-transform instead"));
870 return md_parse_option (option_no_transform, arg);
871 case option_relax:
872 as_warn (_("--relax is deprecated; use --transform instead"));
873 return md_parse_option (option_transform, arg);
874 case option_no_relax:
875 as_warn (_("--no-relax is deprecated; use --no-transform instead"));
876 return md_parse_option (option_no_transform, arg);
877 case option_longcalls:
878 directive_state[directive_longcalls] = TRUE;
879 return 1;
880 case option_no_longcalls:
881 directive_state[directive_longcalls] = FALSE;
882 return 1;
883 case option_text_section_literals:
884 use_literal_section = FALSE;
885 return 1;
886 case option_no_text_section_literals:
887 use_literal_section = TRUE;
888 return 1;
889 case option_absolute_literals:
890 if (!absolute_literals_supported)
891 {
892 as_fatal (_("--absolute-literals option not supported in this Xtensa configuration"));
893 return 0;
894 }
895 directive_state[directive_absolute_literals] = TRUE;
896 return 1;
897 case option_no_absolute_literals:
898 directive_state[directive_absolute_literals] = FALSE;
899 return 1;
900
901 case option_workaround_a0_b_retw:
902 workaround_a0_b_retw = TRUE;
903 return 1;
904 case option_no_workaround_a0_b_retw:
905 workaround_a0_b_retw = FALSE;
906 return 1;
907 case option_workaround_b_j_loop_end:
908 workaround_b_j_loop_end = TRUE;
909 return 1;
910 case option_no_workaround_b_j_loop_end:
911 workaround_b_j_loop_end = FALSE;
912 return 1;
913
914 case option_workaround_short_loop:
915 workaround_short_loop = TRUE;
916 return 1;
917 case option_no_workaround_short_loop:
918 workaround_short_loop = FALSE;
919 return 1;
920
921 case option_workaround_all_short_loops:
922 workaround_all_short_loops = TRUE;
923 return 1;
924 case option_no_workaround_all_short_loops:
925 workaround_all_short_loops = FALSE;
926 return 1;
927
928 case option_workaround_close_loop_end:
929 workaround_close_loop_end = TRUE;
930 return 1;
931 case option_no_workaround_close_loop_end:
932 workaround_close_loop_end = FALSE;
933 return 1;
934
935 case option_no_workarounds:
936 workaround_a0_b_retw = FALSE;
937 workaround_b_j_loop_end = FALSE;
938 workaround_short_loop = FALSE;
939 workaround_all_short_loops = FALSE;
940 workaround_close_loop_end = FALSE;
941 return 1;
942
943 case option_align_targets:
944 align_targets = TRUE;
945 return 1;
946 case option_no_align_targets:
947 align_targets = FALSE;
948 return 1;
949
950 case option_warn_unaligned_targets:
951 warn_unaligned_branch_targets = TRUE;
952 return 1;
953
954 case option_rename_section_name:
955 build_section_rename (arg);
956 return 1;
957
958 case 'Q':
959 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
960 should be emitted or not. FIXME: Not implemented. */
961 return 1;
962
963 case option_prefer_l32r:
964 if (prefer_const16)
965 as_fatal (_("prefer-l32r conflicts with prefer-const16"));
966 prefer_l32r = 1;
967 return 1;
968
969 case option_prefer_const16:
970 if (prefer_l32r)
971 as_fatal (_("prefer-const16 conflicts with prefer-l32r"));
972 prefer_const16 = 1;
973 return 1;
974
975 case option_target_hardware:
976 {
977 int earliest, latest = 0;
978 char *end;
979 if (*arg == 0 || *arg == '-')
980 as_fatal (_("invalid target hardware version"));
981
982 earliest = strtol (arg, &end, 0);
983
984 if (*end == 0)
985 latest = earliest;
986 else if (*end == '-')
987 {
988 if (*++end == 0)
989 as_fatal (_("invalid target hardware version"));
990 latest = strtol (end, &end, 0);
991 }
992 if (*end != 0)
993 as_fatal (_("invalid target hardware version"));
994
995 xtensa_setup_hw_workarounds (earliest, latest);
996 return 1;
997 }
998
999 case option_transform:
1000 /* This option has no affect other than to use the defaults,
1001 which are already set. */
1002 return 1;
1003
1004 case option_no_transform:
1005 /* This option turns off all transformations of any kind.
1006 However, because we want to preserve the state of other
1007 directives, we only change its own field. Thus, before
1008 you perform any transformation, always check if transform
1009 is available. If you use the functions we provide for this
1010 purpose, you will be ok. */
1011 directive_state[directive_transform] = FALSE;
1012 return 1;
1013
1014 case option_trampolines:
1015 use_trampolines = TRUE;
1016 return 1;
1017
1018 case option_no_trampolines:
1019 use_trampolines = FALSE;
1020 return 1;
1021
1022 case option_auto_litpools:
1023 auto_litpools = TRUE;
1024 use_literal_section = FALSE;
1025 if (auto_litpool_limit <= 0)
1026 auto_litpool_limit = MAX_AUTO_POOL_LITERALS / 2;
1027 return 1;
1028
1029 case option_no_auto_litpools:
1030 auto_litpools = FALSE;
1031 auto_litpool_limit = -1;
1032 return 1;
1033
1034 case option_auto_litpool_limit:
1035 {
1036 int value = 0;
1037 char *end;
1038 if (auto_litpool_limit < 0)
1039 as_fatal (_("no-auto-litpools is incompatible with auto-litpool-limit"));
1040 if (*arg == 0 || *arg == '-')
1041 as_fatal (_("invalid auto-litpool-limit argument"));
1042 value = strtol (arg, &end, 10);
1043 if (*end != 0)
1044 as_fatal (_("invalid auto-litpool-limit argument"));
1045 if (value < 100 || value > 10000)
1046 as_fatal (_("invalid auto-litpool-limit argument (range is 100-10000)"));
1047 auto_litpool_limit = value;
1048 auto_litpools = TRUE;
1049 use_literal_section = FALSE;
1050 return 1;
1051 }
1052
1053 case option_separate_props:
1054 elf32xtensa_separate_props = TRUE;
1055 return 1;
1056
1057 case option_no_separate_props:
1058 elf32xtensa_separate_props = FALSE;
1059 return 1;
1060
1061 case option_abi_windowed:
1062 elf32xtensa_abi = XTHAL_ABI_WINDOWED;
1063 return 1;
1064
1065 case option_abi_call0:
1066 elf32xtensa_abi = XTHAL_ABI_CALL0;
1067 return 1;
1068
1069 default:
1070 return 0;
1071 }
1072 }
1073
1074
1075 void
1076 md_show_usage (FILE *stream)
1077 {
1078 fputs ("\n\
1079 Xtensa options:\n\
1080 --[no-]text-section-literals\n\
1081 [Do not] put literals in the text section\n\
1082 --[no-]absolute-literals\n\
1083 [Do not] default to use non-PC-relative literals\n\
1084 --[no-]target-align [Do not] try to align branch targets\n\
1085 --[no-]longcalls [Do not] emit 32-bit call sequences\n\
1086 --[no-]transform [Do not] transform instructions\n\
1087 --flix both allow hand-written and generate flix bundles\n\
1088 --no-generate-flix allow hand-written but do not generate\n\
1089 flix bundles\n\
1090 --no-allow-flix neither allow hand-written nor generate\n\
1091 flix bundles\n\
1092 --rename-section old=new Rename section 'old' to 'new'\n\
1093 --[no-]trampolines [Do not] generate trampolines (jumps to jumps)\n\
1094 when jumps do not reach their targets\n\
1095 --[no-]auto-litpools [Do not] automatically create literal pools\n\
1096 --auto-litpool-limit=<value>\n\
1097 (range 100-10000) Maximum number of blocks of\n\
1098 instructions to emit between literal pool\n\
1099 locations; implies --auto-litpools flag\n\
1100 --[no-]separate-prop-tables\n\
1101 [Do not] place Xtensa property records into\n\
1102 individual property sections for each section.\n\
1103 Default is to generate single property section.\n", stream);
1104 }
1105
1106 \f
1107 /* Functions related to the list of current label symbols. */
1108
1109 static void
1110 xtensa_add_insn_label (symbolS *sym)
1111 {
1112 sym_list *l;
1113
1114 if (!free_insn_labels)
1115 l = XNEW (sym_list);
1116 else
1117 {
1118 l = free_insn_labels;
1119 free_insn_labels = l->next;
1120 }
1121
1122 l->sym = sym;
1123 l->next = insn_labels;
1124 insn_labels = l;
1125 }
1126
1127
1128 static void
1129 xtensa_clear_insn_labels (void)
1130 {
1131 sym_list **pl;
1132
1133 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1134 ;
1135 *pl = insn_labels;
1136 insn_labels = NULL;
1137 }
1138
1139
1140 static void
1141 xtensa_move_labels (fragS *new_frag, valueT new_offset)
1142 {
1143 sym_list *lit;
1144
1145 for (lit = insn_labels; lit; lit = lit->next)
1146 {
1147 symbolS *lit_sym = lit->sym;
1148 S_SET_VALUE (lit_sym, new_offset);
1149 symbol_set_frag (lit_sym, new_frag);
1150 }
1151 }
1152
1153 \f
1154 /* Directive data and functions. */
1155
1156 typedef struct state_stackS_struct
1157 {
1158 directiveE directive;
1159 bfd_boolean negated;
1160 bfd_boolean old_state;
1161 const char *file;
1162 unsigned int line;
1163 const void *datum;
1164 struct state_stackS_struct *prev;
1165 } state_stackS;
1166
1167 state_stackS *directive_state_stack;
1168
1169 const pseudo_typeS md_pseudo_table[] =
1170 {
1171 { "align", s_align_bytes, 0 }, /* Defaulting is invalid (0). */
1172 { "literal_position", xtensa_literal_position, 0 },
1173 { "frame", s_ignore, 0 }, /* Formerly used for STABS debugging. */
1174 { "long", xtensa_elf_cons, 4 },
1175 { "word", xtensa_elf_cons, 4 },
1176 { "4byte", xtensa_elf_cons, 4 },
1177 { "short", xtensa_elf_cons, 2 },
1178 { "2byte", xtensa_elf_cons, 2 },
1179 { "sleb128", xtensa_leb128, 1},
1180 { "uleb128", xtensa_leb128, 0},
1181 { "begin", xtensa_begin_directive, 0 },
1182 { "end", xtensa_end_directive, 0 },
1183 { "literal", xtensa_literal_pseudo, 0 },
1184 { "frequency", xtensa_frequency_pseudo, 0 },
1185 { NULL, 0, 0 },
1186 };
1187
1188
1189 static bfd_boolean
1190 use_transform (void)
1191 {
1192 /* After md_end, you should be checking frag by frag, rather
1193 than state directives. */
1194 gas_assert (!past_xtensa_end);
1195 return directive_state[directive_transform];
1196 }
1197
1198
1199 static bfd_boolean
1200 do_align_targets (void)
1201 {
1202 /* Do not use this function after md_end; just look at align_targets
1203 instead. There is no target-align directive, so alignment is either
1204 enabled for all frags or not done at all. */
1205 gas_assert (!past_xtensa_end);
1206 return align_targets && use_transform ();
1207 }
1208
1209
1210 static void
1211 directive_push (directiveE directive, bfd_boolean negated, const void *datum)
1212 {
1213 const char *file;
1214 unsigned int line;
1215 state_stackS *stack = XNEW (state_stackS);
1216
1217 file = as_where (&line);
1218
1219 stack->directive = directive;
1220 stack->negated = negated;
1221 stack->old_state = directive_state[directive];
1222 stack->file = file;
1223 stack->line = line;
1224 stack->datum = datum;
1225 stack->prev = directive_state_stack;
1226 directive_state_stack = stack;
1227
1228 directive_state[directive] = !negated;
1229 }
1230
1231
1232 static void
1233 directive_pop (directiveE *directive,
1234 bfd_boolean *negated,
1235 const char **file,
1236 unsigned int *line,
1237 const void **datum)
1238 {
1239 state_stackS *top = directive_state_stack;
1240
1241 if (!directive_state_stack)
1242 {
1243 as_bad (_("unmatched .end directive"));
1244 *directive = directive_none;
1245 return;
1246 }
1247
1248 directive_state[directive_state_stack->directive] = top->old_state;
1249 *directive = top->directive;
1250 *negated = top->negated;
1251 *file = top->file;
1252 *line = top->line;
1253 *datum = top->datum;
1254 directive_state_stack = top->prev;
1255 free (top);
1256 }
1257
1258
1259 static void
1260 directive_balance (void)
1261 {
1262 while (directive_state_stack)
1263 {
1264 directiveE directive;
1265 bfd_boolean negated;
1266 const char *file;
1267 unsigned int line;
1268 const void *datum;
1269
1270 directive_pop (&directive, &negated, &file, &line, &datum);
1271 as_warn_where ((char *) file, line,
1272 _(".begin directive with no matching .end directive"));
1273 }
1274 }
1275
1276
1277 static bfd_boolean
1278 inside_directive (directiveE dir)
1279 {
1280 state_stackS *top = directive_state_stack;
1281
1282 while (top && top->directive != dir)
1283 top = top->prev;
1284
1285 return (top != NULL);
1286 }
1287
1288
1289 static void
1290 get_directive (directiveE *directive, bfd_boolean *negated)
1291 {
1292 int len;
1293 unsigned i;
1294 const char *directive_string;
1295
1296 if (strncmp (input_line_pointer, "no-", 3) != 0)
1297 *negated = FALSE;
1298 else
1299 {
1300 *negated = TRUE;
1301 input_line_pointer += 3;
1302 }
1303
1304 len = strspn (input_line_pointer,
1305 "abcdefghijklmnopqrstuvwxyz_-/0123456789.");
1306
1307 /* This code is a hack to make .begin [no-][generics|relax] exactly
1308 equivalent to .begin [no-]transform. We should remove it when
1309 we stop accepting those options. */
1310
1311 if (strncmp (input_line_pointer, "generics", strlen ("generics")) == 0)
1312 {
1313 as_warn (_("[no-]generics is deprecated; use [no-]transform instead"));
1314 directive_string = "transform";
1315 }
1316 else if (strncmp (input_line_pointer, "relax", strlen ("relax")) == 0)
1317 {
1318 as_warn (_("[no-]relax is deprecated; use [no-]transform instead"));
1319 directive_string = "transform";
1320 }
1321 else
1322 directive_string = input_line_pointer;
1323
1324 for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i)
1325 {
1326 if (strncmp (directive_string, directive_info[i].name, len) == 0)
1327 {
1328 input_line_pointer += len;
1329 *directive = (directiveE) i;
1330 if (*negated && !directive_info[i].can_be_negated)
1331 as_bad (_("directive %s cannot be negated"),
1332 directive_info[i].name);
1333 return;
1334 }
1335 }
1336
1337 as_bad (_("unknown directive"));
1338 *directive = (directiveE) XTENSA_UNDEFINED;
1339 }
1340
1341
1342 static void
1343 xtensa_begin_directive (int ignore ATTRIBUTE_UNUSED)
1344 {
1345 directiveE directive;
1346 bfd_boolean negated;
1347 emit_state *state;
1348 lit_state *ls;
1349
1350 get_directive (&directive, &negated);
1351 if (directive == (directiveE) XTENSA_UNDEFINED)
1352 {
1353 discard_rest_of_line ();
1354 return;
1355 }
1356
1357 if (cur_vinsn.inside_bundle)
1358 as_bad (_("directives are not valid inside bundles"));
1359
1360 switch (directive)
1361 {
1362 case directive_literal:
1363 if (!inside_directive (directive_literal))
1364 {
1365 /* Previous labels go with whatever follows this directive, not with
1366 the literal, so save them now. */
1367 saved_insn_labels = insn_labels;
1368 insn_labels = NULL;
1369 }
1370 as_warn (_(".begin literal is deprecated; use .literal instead"));
1371 state = XNEW (emit_state);
1372 xtensa_switch_to_literal_fragment (state);
1373 directive_push (directive_literal, negated, state);
1374 break;
1375
1376 case directive_literal_prefix:
1377 /* Have to flush pending output because a movi relaxed to an l32r
1378 might produce a literal. */
1379 md_flush_pending_output ();
1380 /* Check to see if the current fragment is a literal
1381 fragment. If it is, then this operation is not allowed. */
1382 if (generating_literals)
1383 {
1384 as_bad (_("cannot set literal_prefix inside literal fragment"));
1385 return;
1386 }
1387
1388 /* Allocate the literal state for this section and push
1389 onto the directive stack. */
1390 ls = XNEW (lit_state);
1391 gas_assert (ls);
1392
1393 *ls = default_lit_sections;
1394 directive_push (directive_literal_prefix, negated, ls);
1395
1396 /* Process the new prefix. */
1397 xtensa_literal_prefix ();
1398 break;
1399
1400 case directive_freeregs:
1401 /* This information is currently unused, but we'll accept the statement
1402 and just discard the rest of the line. This won't check the syntax,
1403 but it will accept every correct freeregs directive. */
1404 input_line_pointer += strcspn (input_line_pointer, "\n");
1405 directive_push (directive_freeregs, negated, 0);
1406 break;
1407
1408 case directive_schedule:
1409 md_flush_pending_output ();
1410 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
1411 frag_now->fr_symbol, frag_now->fr_offset, NULL);
1412 directive_push (directive_schedule, negated, 0);
1413 xtensa_set_frag_assembly_state (frag_now);
1414 break;
1415
1416 case directive_density:
1417 as_warn (_(".begin [no-]density is ignored"));
1418 break;
1419
1420 case directive_absolute_literals:
1421 md_flush_pending_output ();
1422 if (!absolute_literals_supported && !negated)
1423 {
1424 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1425 break;
1426 }
1427 xtensa_set_frag_assembly_state (frag_now);
1428 directive_push (directive, negated, 0);
1429 break;
1430
1431 default:
1432 md_flush_pending_output ();
1433 xtensa_set_frag_assembly_state (frag_now);
1434 directive_push (directive, negated, 0);
1435 break;
1436 }
1437
1438 demand_empty_rest_of_line ();
1439 }
1440
1441
1442 static void
1443 xtensa_end_directive (int ignore ATTRIBUTE_UNUSED)
1444 {
1445 directiveE begin_directive, end_directive;
1446 bfd_boolean begin_negated, end_negated;
1447 const char *file;
1448 unsigned int line;
1449 emit_state *state;
1450 emit_state **state_ptr;
1451 lit_state *s;
1452
1453 if (cur_vinsn.inside_bundle)
1454 as_bad (_("directives are not valid inside bundles"));
1455
1456 get_directive (&end_directive, &end_negated);
1457
1458 md_flush_pending_output ();
1459
1460 switch ((int) end_directive)
1461 {
1462 case XTENSA_UNDEFINED:
1463 discard_rest_of_line ();
1464 return;
1465
1466 case (int) directive_density:
1467 as_warn (_(".end [no-]density is ignored"));
1468 demand_empty_rest_of_line ();
1469 break;
1470
1471 case (int) directive_absolute_literals:
1472 if (!absolute_literals_supported && !end_negated)
1473 {
1474 as_warn (_("Xtensa absolute literals option not supported; ignored"));
1475 demand_empty_rest_of_line ();
1476 return;
1477 }
1478 break;
1479
1480 default:
1481 break;
1482 }
1483
1484 state_ptr = &state; /* use state_ptr to avoid type-punning warning */
1485 directive_pop (&begin_directive, &begin_negated, &file, &line,
1486 (const void **) state_ptr);
1487
1488 if (begin_directive != directive_none)
1489 {
1490 if (begin_directive != end_directive || begin_negated != end_negated)
1491 {
1492 as_bad (_("does not match begin %s%s at %s:%d"),
1493 begin_negated ? "no-" : "",
1494 directive_info[begin_directive].name, file, line);
1495 }
1496 else
1497 {
1498 switch (end_directive)
1499 {
1500 case directive_literal:
1501 frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL);
1502 xtensa_restore_emit_state (state);
1503 xtensa_set_frag_assembly_state (frag_now);
1504 free (state);
1505 if (!inside_directive (directive_literal))
1506 {
1507 /* Restore the list of current labels. */
1508 xtensa_clear_insn_labels ();
1509 insn_labels = saved_insn_labels;
1510 }
1511 break;
1512
1513 case directive_literal_prefix:
1514 /* Restore the default collection sections from saved state. */
1515 s = (lit_state *) state;
1516 gas_assert (s);
1517 default_lit_sections = *s;
1518
1519 /* Free the state storage. */
1520 free (s->lit_prefix);
1521 free (s);
1522 break;
1523
1524 case directive_schedule:
1525 case directive_freeregs:
1526 break;
1527
1528 default:
1529 xtensa_set_frag_assembly_state (frag_now);
1530 break;
1531 }
1532 }
1533 }
1534
1535 demand_empty_rest_of_line ();
1536 }
1537
1538
1539 /* Place an aligned literal fragment at the current location. */
1540
1541 static void
1542 xtensa_literal_position (int ignore ATTRIBUTE_UNUSED)
1543 {
1544 md_flush_pending_output ();
1545
1546 if (inside_directive (directive_literal))
1547 as_warn (_(".literal_position inside literal directive; ignoring"));
1548 xtensa_mark_literal_pool_location ();
1549
1550 demand_empty_rest_of_line ();
1551 xtensa_clear_insn_labels ();
1552 }
1553
1554
1555 /* Support .literal label, expr, ... */
1556
1557 static void
1558 xtensa_literal_pseudo (int ignored ATTRIBUTE_UNUSED)
1559 {
1560 emit_state state;
1561 char *p, *base_name;
1562 char c;
1563
1564 if (inside_directive (directive_literal))
1565 {
1566 as_bad (_(".literal not allowed inside .begin literal region"));
1567 ignore_rest_of_line ();
1568 return;
1569 }
1570
1571 md_flush_pending_output ();
1572
1573 /* Previous labels go with whatever follows this directive, not with
1574 the literal, so save them now. */
1575 saved_insn_labels = insn_labels;
1576 insn_labels = NULL;
1577
1578 base_name = input_line_pointer;
1579
1580 xtensa_switch_to_literal_fragment (&state);
1581
1582 /* All literals are aligned to four-byte boundaries. */
1583 frag_align (2, 0, 0);
1584 record_alignment (now_seg, 2);
1585
1586 c = get_symbol_name (&base_name);
1587 /* Just after name is now '\0'. */
1588 p = input_line_pointer;
1589 *p = c;
1590 SKIP_WHITESPACE_AFTER_NAME ();
1591
1592 if (*input_line_pointer != ',' && *input_line_pointer != ':')
1593 {
1594 as_bad (_("expected comma or colon after symbol name; "
1595 "rest of line ignored"));
1596 ignore_rest_of_line ();
1597 xtensa_restore_emit_state (&state);
1598 return;
1599 }
1600
1601 *p = 0;
1602 colon (base_name);
1603 *p = c;
1604
1605 input_line_pointer++; /* skip ',' or ':' */
1606
1607 xtensa_elf_cons (4);
1608
1609 xtensa_restore_emit_state (&state);
1610
1611 /* Restore the list of current labels. */
1612 xtensa_clear_insn_labels ();
1613 insn_labels = saved_insn_labels;
1614 }
1615
1616
1617 static void
1618 xtensa_literal_prefix (void)
1619 {
1620 char *name;
1621 int len;
1622
1623 /* Parse the new prefix from the input_line_pointer. */
1624 SKIP_WHITESPACE ();
1625 len = strspn (input_line_pointer,
1626 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
1627 "abcdefghijklmnopqrstuvwxyz_/0123456789.$");
1628
1629 /* Get a null-terminated copy of the name. */
1630 name = xmemdup0 (input_line_pointer, len);
1631
1632 /* Skip the name in the input line. */
1633 input_line_pointer += len;
1634
1635 default_lit_sections.lit_prefix = name;
1636
1637 /* Clear cached literal sections, since the prefix has changed. */
1638 default_lit_sections.lit_seg = NULL;
1639 default_lit_sections.lit4_seg = NULL;
1640 }
1641
1642
1643 /* Support ".frequency branch_target_frequency fall_through_frequency". */
1644
1645 static void
1646 xtensa_frequency_pseudo (int ignored ATTRIBUTE_UNUSED)
1647 {
1648 float fall_through_f, target_f;
1649
1650 fall_through_f = (float) strtod (input_line_pointer, &input_line_pointer);
1651 if (fall_through_f < 0)
1652 {
1653 as_bad (_("fall through frequency must be greater than 0"));
1654 ignore_rest_of_line ();
1655 return;
1656 }
1657
1658 target_f = (float) strtod (input_line_pointer, &input_line_pointer);
1659 if (target_f < 0)
1660 {
1661 as_bad (_("branch target frequency must be greater than 0"));
1662 ignore_rest_of_line ();
1663 return;
1664 }
1665
1666 set_subseg_freq (now_seg, now_subseg, target_f + fall_through_f, target_f);
1667
1668 demand_empty_rest_of_line ();
1669 }
1670
1671
1672 /* Like normal .long/.short/.word, except support @plt, etc.
1673 Clobbers input_line_pointer, checks end-of-line. */
1674
1675 static void
1676 xtensa_elf_cons (int nbytes)
1677 {
1678 expressionS exp;
1679 bfd_reloc_code_real_type reloc;
1680
1681 md_flush_pending_output ();
1682
1683 if (cur_vinsn.inside_bundle)
1684 as_bad (_("directives are not valid inside bundles"));
1685
1686 if (is_it_end_of_statement ())
1687 {
1688 demand_empty_rest_of_line ();
1689 return;
1690 }
1691
1692 do
1693 {
1694 expression (&exp);
1695 if (exp.X_op == O_symbol
1696 && *input_line_pointer == '@'
1697 && ((reloc = xtensa_elf_suffix (&input_line_pointer, &exp))
1698 != BFD_RELOC_NONE))
1699 {
1700 reloc_howto_type *reloc_howto =
1701 bfd_reloc_type_lookup (stdoutput, reloc);
1702
1703 if (reloc == BFD_RELOC_UNUSED || !reloc_howto)
1704 as_bad (_("unsupported relocation"));
1705 else if ((reloc >= BFD_RELOC_XTENSA_SLOT0_OP
1706 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
1707 || (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
1708 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT))
1709 as_bad (_("opcode-specific %s relocation used outside "
1710 "an instruction"), reloc_howto->name);
1711 else if (nbytes != (int) bfd_get_reloc_size (reloc_howto))
1712 as_bad (ngettext ("%s relocations do not fit in %d byte",
1713 "%s relocations do not fit in %d bytes",
1714 nbytes),
1715 reloc_howto->name, nbytes);
1716 else if (reloc == BFD_RELOC_XTENSA_TLS_FUNC
1717 || reloc == BFD_RELOC_XTENSA_TLS_ARG
1718 || reloc == BFD_RELOC_XTENSA_TLS_CALL)
1719 as_bad (_("invalid use of %s relocation"), reloc_howto->name);
1720 else
1721 {
1722 char *p = frag_more ((int) nbytes);
1723 xtensa_set_frag_assembly_state (frag_now);
1724 fix_new_exp (frag_now, p - frag_now->fr_literal,
1725 nbytes, &exp, reloc_howto->pc_relative, reloc);
1726 }
1727 }
1728 else
1729 {
1730 xtensa_set_frag_assembly_state (frag_now);
1731 emit_expr (&exp, (unsigned int) nbytes);
1732 }
1733 }
1734 while (*input_line_pointer++ == ',');
1735
1736 input_line_pointer--; /* Put terminator back into stream. */
1737 demand_empty_rest_of_line ();
1738 }
1739
1740 static bfd_boolean is_leb128_expr;
1741
1742 static void
1743 xtensa_leb128 (int sign)
1744 {
1745 is_leb128_expr = TRUE;
1746 s_leb128 (sign);
1747 is_leb128_expr = FALSE;
1748 }
1749
1750 \f
1751 /* Parsing and Idiom Translation. */
1752
1753 /* Parse @plt, etc. and return the desired relocation. */
1754 static bfd_reloc_code_real_type
1755 xtensa_elf_suffix (char **str_p, expressionS *exp_p)
1756 {
1757 char ident[20];
1758 char *str = *str_p;
1759 char *str2;
1760 int ch;
1761 int len;
1762 unsigned int i;
1763
1764 if (*str++ != '@')
1765 return BFD_RELOC_NONE;
1766
1767 for (ch = *str, str2 = ident;
1768 (str2 < ident + sizeof (ident) - 1
1769 && (ISALNUM (ch) || ch == '@'));
1770 ch = *++str)
1771 {
1772 *str2++ = (ISLOWER (ch)) ? ch : TOLOWER (ch);
1773 }
1774
1775 *str2 = '\0';
1776 len = str2 - ident;
1777
1778 ch = ident[0];
1779 for (i = 0; i < ARRAY_SIZE (suffix_relocs); i++)
1780 if (ch == suffix_relocs[i].suffix[0]
1781 && len == suffix_relocs[i].length
1782 && memcmp (ident, suffix_relocs[i].suffix, suffix_relocs[i].length) == 0)
1783 {
1784 /* Now check for "identifier@suffix+constant". */
1785 if (*str == '-' || *str == '+')
1786 {
1787 char *orig_line = input_line_pointer;
1788 expressionS new_exp;
1789
1790 input_line_pointer = str;
1791 expression (&new_exp);
1792 if (new_exp.X_op == O_constant)
1793 {
1794 exp_p->X_add_number += new_exp.X_add_number;
1795 str = input_line_pointer;
1796 }
1797
1798 if (&input_line_pointer != str_p)
1799 input_line_pointer = orig_line;
1800 }
1801
1802 *str_p = str;
1803 return suffix_relocs[i].reloc;
1804 }
1805
1806 return BFD_RELOC_UNUSED;
1807 }
1808
1809
1810 /* Find the matching operator type. */
1811 static operatorT
1812 map_suffix_reloc_to_operator (bfd_reloc_code_real_type reloc)
1813 {
1814 operatorT operator = O_illegal;
1815 unsigned int i;
1816
1817 for (i = 0; i < ARRAY_SIZE (suffix_relocs); i++)
1818 {
1819 if (suffix_relocs[i].reloc == reloc)
1820 {
1821 operator = suffix_relocs[i].operator;
1822 break;
1823 }
1824 }
1825 gas_assert (operator != O_illegal);
1826 return operator;
1827 }
1828
1829
1830 /* Find the matching reloc type. */
1831 static bfd_reloc_code_real_type
1832 map_operator_to_reloc (unsigned char operator, bfd_boolean is_literal)
1833 {
1834 unsigned int i;
1835 bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
1836
1837 for (i = 0; i < ARRAY_SIZE (suffix_relocs); i++)
1838 {
1839 if (suffix_relocs[i].operator == operator)
1840 {
1841 reloc = suffix_relocs[i].reloc;
1842 break;
1843 }
1844 }
1845
1846 if (is_literal)
1847 {
1848 if (reloc == BFD_RELOC_XTENSA_TLS_FUNC)
1849 return BFD_RELOC_XTENSA_TLSDESC_FN;
1850 else if (reloc == BFD_RELOC_XTENSA_TLS_ARG)
1851 return BFD_RELOC_XTENSA_TLSDESC_ARG;
1852 }
1853
1854 if (reloc == BFD_RELOC_UNUSED)
1855 return BFD_RELOC_32;
1856
1857 return reloc;
1858 }
1859
1860
1861 static const char *
1862 expression_end (const char *name)
1863 {
1864 while (1)
1865 {
1866 switch (*name)
1867 {
1868 case '}':
1869 case ';':
1870 case '\0':
1871 case ',':
1872 case ':':
1873 return name;
1874 case ' ':
1875 case '\t':
1876 ++name;
1877 continue;
1878 default:
1879 return 0;
1880 }
1881 }
1882 }
1883
1884
1885 #define ERROR_REG_NUM ((unsigned) -1)
1886
1887 static unsigned
1888 tc_get_register (const char *prefix)
1889 {
1890 unsigned reg;
1891 const char *next_expr;
1892 const char *old_line_pointer;
1893
1894 SKIP_WHITESPACE ();
1895 old_line_pointer = input_line_pointer;
1896
1897 if (*input_line_pointer == '$')
1898 ++input_line_pointer;
1899
1900 /* Accept "sp" as a synonym for "a1". */
1901 if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p'
1902 && expression_end (input_line_pointer + 2))
1903 {
1904 input_line_pointer += 2;
1905 return 1; /* AR[1] */
1906 }
1907
1908 while (*input_line_pointer++ == *prefix++)
1909 ;
1910 --input_line_pointer;
1911 --prefix;
1912
1913 if (*prefix)
1914 {
1915 as_bad (_("bad register name: %s"), old_line_pointer);
1916 return ERROR_REG_NUM;
1917 }
1918
1919 if (!ISDIGIT ((unsigned char) *input_line_pointer))
1920 {
1921 as_bad (_("bad register number: %s"), input_line_pointer);
1922 return ERROR_REG_NUM;
1923 }
1924
1925 reg = 0;
1926
1927 while (ISDIGIT ((int) *input_line_pointer))
1928 reg = reg * 10 + *input_line_pointer++ - '0';
1929
1930 if (!(next_expr = expression_end (input_line_pointer)))
1931 {
1932 as_bad (_("bad register name: %s"), old_line_pointer);
1933 return ERROR_REG_NUM;
1934 }
1935
1936 input_line_pointer = (char *) next_expr;
1937
1938 return reg;
1939 }
1940
1941
1942 static void
1943 expression_maybe_register (xtensa_opcode opc, int opnd, expressionS *tok)
1944 {
1945 xtensa_isa isa = xtensa_default_isa;
1946
1947 /* Check if this is an immediate operand. */
1948 if (xtensa_operand_is_register (isa, opc, opnd) == 0)
1949 {
1950 bfd_reloc_code_real_type reloc;
1951 segT t = expression (tok);
1952
1953 if (t == absolute_section
1954 && xtensa_operand_is_PCrelative (isa, opc, opnd) == 1)
1955 {
1956 gas_assert (tok->X_op == O_constant);
1957 tok->X_op = O_symbol;
1958 tok->X_add_symbol = &abs_symbol;
1959 }
1960
1961 if ((tok->X_op == O_constant || tok->X_op == O_symbol)
1962 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
1963 != BFD_RELOC_NONE))
1964 {
1965 switch (reloc)
1966 {
1967 case BFD_RELOC_LO16:
1968 if (tok->X_op == O_constant)
1969 {
1970 tok->X_add_number &= 0xffff;
1971 return;
1972 }
1973 break;
1974 case BFD_RELOC_HI16:
1975 if (tok->X_op == O_constant)
1976 {
1977 tok->X_add_number = ((unsigned) tok->X_add_number) >> 16;
1978 return;
1979 }
1980 break;
1981 case BFD_RELOC_UNUSED:
1982 as_bad (_("unsupported relocation"));
1983 return;
1984 case BFD_RELOC_32_PCREL:
1985 as_bad (_("pcrel relocation not allowed in an instruction"));
1986 return;
1987 default:
1988 break;
1989 }
1990 tok->X_op = map_suffix_reloc_to_operator (reloc);
1991 }
1992 }
1993 else
1994 {
1995 xtensa_regfile opnd_rf = xtensa_operand_regfile (isa, opc, opnd);
1996 unsigned reg = tc_get_register (xtensa_regfile_shortname (isa, opnd_rf));
1997
1998 if (reg != ERROR_REG_NUM) /* Already errored */
1999 {
2000 uint32 buf = reg;
2001 if (xtensa_operand_encode (isa, opc, opnd, &buf))
2002 as_bad (_("register number out of range"));
2003 }
2004
2005 tok->X_op = O_register;
2006 tok->X_add_symbol = 0;
2007 tok->X_add_number = reg;
2008 }
2009 }
2010
2011
2012 /* Split up the arguments for an opcode or pseudo-op. */
2013
2014 static int
2015 tokenize_arguments (char **args, char *str)
2016 {
2017 char *old_input_line_pointer;
2018 bfd_boolean saw_comma = FALSE;
2019 bfd_boolean saw_arg = FALSE;
2020 bfd_boolean saw_colon = FALSE;
2021 int num_args = 0;
2022 char *arg_end, *arg;
2023 int arg_len;
2024
2025 /* Save and restore input_line_pointer around this function. */
2026 old_input_line_pointer = input_line_pointer;
2027 input_line_pointer = str;
2028
2029 while (*input_line_pointer)
2030 {
2031 SKIP_WHITESPACE ();
2032 switch (*input_line_pointer)
2033 {
2034 case '\0':
2035 case '}':
2036 goto fini;
2037
2038 case ':':
2039 input_line_pointer++;
2040 if (saw_comma || saw_colon || !saw_arg)
2041 goto err;
2042 saw_colon = TRUE;
2043 break;
2044
2045 case ',':
2046 input_line_pointer++;
2047 if (saw_comma || saw_colon || !saw_arg)
2048 goto err;
2049 saw_comma = TRUE;
2050 break;
2051
2052 default:
2053 if (!saw_comma && !saw_colon && saw_arg)
2054 goto err;
2055
2056 arg_end = input_line_pointer + 1;
2057 while (!expression_end (arg_end))
2058 arg_end += 1;
2059
2060 arg_len = arg_end - input_line_pointer;
2061 arg = XNEWVEC (char, (saw_colon ? 1 : 0) + arg_len + 1);
2062 args[num_args] = arg;
2063
2064 if (saw_colon)
2065 *arg++ = ':';
2066 strncpy (arg, input_line_pointer, arg_len);
2067 arg[arg_len] = '\0';
2068
2069 input_line_pointer = arg_end;
2070 num_args += 1;
2071 saw_comma = FALSE;
2072 saw_colon = FALSE;
2073 saw_arg = TRUE;
2074 break;
2075 }
2076 }
2077
2078 fini:
2079 if (saw_comma || saw_colon)
2080 goto err;
2081 input_line_pointer = old_input_line_pointer;
2082 return num_args;
2083
2084 err:
2085 if (saw_comma)
2086 as_bad (_("extra comma"));
2087 else if (saw_colon)
2088 as_bad (_("extra colon"));
2089 else if (!saw_arg)
2090 as_bad (_("missing argument"));
2091 else
2092 as_bad (_("missing comma or colon"));
2093 input_line_pointer = old_input_line_pointer;
2094 return -1;
2095 }
2096
2097
2098 /* Parse the arguments to an opcode. Return TRUE on error. */
2099
2100 static bfd_boolean
2101 parse_arguments (TInsn *insn, int num_args, char **arg_strings)
2102 {
2103 expressionS *tok, *last_tok;
2104 xtensa_opcode opcode = insn->opcode;
2105 bfd_boolean had_error = TRUE;
2106 xtensa_isa isa = xtensa_default_isa;
2107 int n, num_regs = 0;
2108 int opcode_operand_count;
2109 int opnd_cnt, last_opnd_cnt;
2110 unsigned int next_reg = 0;
2111 char *old_input_line_pointer;
2112
2113 if (insn->insn_type == ITYPE_LITERAL)
2114 opcode_operand_count = 1;
2115 else
2116 opcode_operand_count = xtensa_opcode_num_operands (isa, opcode);
2117
2118 tok = insn->tok;
2119 memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS);
2120
2121 /* Save and restore input_line_pointer around this function. */
2122 old_input_line_pointer = input_line_pointer;
2123
2124 last_tok = 0;
2125 last_opnd_cnt = -1;
2126 opnd_cnt = 0;
2127
2128 /* Skip invisible operands. */
2129 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0)
2130 {
2131 opnd_cnt += 1;
2132 tok++;
2133 }
2134
2135 for (n = 0; n < num_args; n++)
2136 {
2137 input_line_pointer = arg_strings[n];
2138 if (*input_line_pointer == ':')
2139 {
2140 xtensa_regfile opnd_rf;
2141 input_line_pointer++;
2142 if (num_regs == 0)
2143 goto err;
2144 gas_assert (opnd_cnt > 0);
2145 num_regs--;
2146 opnd_rf = xtensa_operand_regfile (isa, opcode, last_opnd_cnt);
2147 if (next_reg
2148 != tc_get_register (xtensa_regfile_shortname (isa, opnd_rf)))
2149 as_warn (_("incorrect register number, ignoring"));
2150 next_reg++;
2151 }
2152 else
2153 {
2154 if (opnd_cnt >= opcode_operand_count)
2155 {
2156 as_warn (_("too many arguments"));
2157 goto err;
2158 }
2159 gas_assert (opnd_cnt < MAX_INSN_ARGS);
2160
2161 expression_maybe_register (opcode, opnd_cnt, tok);
2162 next_reg = tok->X_add_number + 1;
2163
2164 if (tok->X_op == O_illegal || tok->X_op == O_absent)
2165 goto err;
2166 if (xtensa_operand_is_register (isa, opcode, opnd_cnt) == 1)
2167 {
2168 num_regs = xtensa_operand_num_regs (isa, opcode, opnd_cnt) - 1;
2169 /* minus 1 because we are seeing one right now */
2170 }
2171 else
2172 num_regs = 0;
2173
2174 last_tok = tok;
2175 last_opnd_cnt = opnd_cnt;
2176 demand_empty_rest_of_line ();
2177
2178 do
2179 {
2180 opnd_cnt += 1;
2181 tok++;
2182 }
2183 while (xtensa_operand_is_visible (isa, opcode, opnd_cnt) == 0);
2184 }
2185 }
2186
2187 if (num_regs > 0 && ((int) next_reg != last_tok->X_add_number + 1))
2188 goto err;
2189
2190 insn->ntok = tok - insn->tok;
2191 had_error = FALSE;
2192
2193 err:
2194 input_line_pointer = old_input_line_pointer;
2195 return had_error;
2196 }
2197
2198
2199 static int
2200 get_invisible_operands (TInsn *insn)
2201 {
2202 xtensa_isa isa = xtensa_default_isa;
2203 static xtensa_insnbuf slotbuf = NULL;
2204 xtensa_format fmt;
2205 xtensa_opcode opc = insn->opcode;
2206 int slot, opnd, fmt_found;
2207 unsigned val;
2208
2209 if (!slotbuf)
2210 slotbuf = xtensa_insnbuf_alloc (isa);
2211
2212 /* Find format/slot where this can be encoded. */
2213 fmt_found = 0;
2214 slot = 0;
2215 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
2216 {
2217 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
2218 {
2219 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opc) == 0)
2220 {
2221 fmt_found = 1;
2222 break;
2223 }
2224 }
2225 if (fmt_found) break;
2226 }
2227
2228 if (!fmt_found)
2229 {
2230 as_bad (_("cannot encode opcode \"%s\""), xtensa_opcode_name (isa, opc));
2231 return -1;
2232 }
2233
2234 /* First encode all the visible operands
2235 (to deal with shared field operands). */
2236 for (opnd = 0; opnd < insn->ntok; opnd++)
2237 {
2238 if (xtensa_operand_is_visible (isa, opc, opnd) == 1
2239 && (insn->tok[opnd].X_op == O_register
2240 || insn->tok[opnd].X_op == O_constant))
2241 {
2242 val = insn->tok[opnd].X_add_number;
2243 xtensa_operand_encode (isa, opc, opnd, &val);
2244 xtensa_operand_set_field (isa, opc, opnd, fmt, slot, slotbuf, val);
2245 }
2246 }
2247
2248 /* Then pull out the values for the invisible ones. */
2249 for (opnd = 0; opnd < insn->ntok; opnd++)
2250 {
2251 if (xtensa_operand_is_visible (isa, opc, opnd) == 0)
2252 {
2253 xtensa_operand_get_field (isa, opc, opnd, fmt, slot, slotbuf, &val);
2254 xtensa_operand_decode (isa, opc, opnd, &val);
2255 insn->tok[opnd].X_add_number = val;
2256 if (xtensa_operand_is_register (isa, opc, opnd) == 1)
2257 insn->tok[opnd].X_op = O_register;
2258 else
2259 insn->tok[opnd].X_op = O_constant;
2260 }
2261 }
2262
2263 return 0;
2264 }
2265
2266
2267 static void
2268 xg_reverse_shift_count (char **cnt_argp)
2269 {
2270 char *cnt_arg, *new_arg;
2271 cnt_arg = *cnt_argp;
2272
2273 /* replace the argument with "31-(argument)" */
2274 new_arg = concat ("31-(", cnt_arg, ")", (char *) NULL);
2275
2276 free (cnt_arg);
2277 *cnt_argp = new_arg;
2278 }
2279
2280
2281 /* If "arg" is a constant expression, return non-zero with the value
2282 in *valp. */
2283
2284 static int
2285 xg_arg_is_constant (char *arg, offsetT *valp)
2286 {
2287 expressionS exp;
2288 char *save_ptr = input_line_pointer;
2289
2290 input_line_pointer = arg;
2291 expression (&exp);
2292 input_line_pointer = save_ptr;
2293
2294 if (exp.X_op == O_constant)
2295 {
2296 *valp = exp.X_add_number;
2297 return 1;
2298 }
2299
2300 return 0;
2301 }
2302
2303
2304 static void
2305 xg_replace_opname (char **popname, const char *newop)
2306 {
2307 free (*popname);
2308 *popname = xstrdup (newop);
2309 }
2310
2311
2312 static int
2313 xg_check_num_args (int *pnum_args,
2314 int expected_num,
2315 char *opname,
2316 char **arg_strings)
2317 {
2318 int num_args = *pnum_args;
2319
2320 if (num_args < expected_num)
2321 {
2322 as_bad (_("not enough operands (%d) for '%s'; expected %d"),
2323 num_args, opname, expected_num);
2324 return -1;
2325 }
2326
2327 if (num_args > expected_num)
2328 {
2329 as_warn (_("too many operands (%d) for '%s'; expected %d"),
2330 num_args, opname, expected_num);
2331 while (num_args-- > expected_num)
2332 {
2333 free (arg_strings[num_args]);
2334 arg_strings[num_args] = 0;
2335 }
2336 *pnum_args = expected_num;
2337 return -1;
2338 }
2339
2340 return 0;
2341 }
2342
2343
2344 /* If the register is not specified as part of the opcode,
2345 then get it from the operand and move it to the opcode. */
2346
2347 static int
2348 xg_translate_sysreg_op (char **popname, int *pnum_args, char **arg_strings)
2349 {
2350 xtensa_isa isa = xtensa_default_isa;
2351 xtensa_sysreg sr;
2352 char *opname, *new_opname;
2353 const char *sr_name;
2354 int is_user, is_write;
2355
2356 opname = *popname;
2357 if (*opname == '_')
2358 opname += 1;
2359 is_user = (opname[1] == 'u');
2360 is_write = (opname[0] == 'w');
2361
2362 /* Opname == [rw]ur or [rwx]sr... */
2363
2364 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2365 return -1;
2366
2367 /* Check if the argument is a symbolic register name. */
2368 sr = xtensa_sysreg_lookup_name (isa, arg_strings[1]);
2369 /* Handle WSR to "INTSET" as a special case. */
2370 if (sr == XTENSA_UNDEFINED && is_write && !is_user
2371 && !strcasecmp (arg_strings[1], "intset"))
2372 sr = xtensa_sysreg_lookup_name (isa, "interrupt");
2373 if (sr == XTENSA_UNDEFINED
2374 || (xtensa_sysreg_is_user (isa, sr) == 1) != is_user)
2375 {
2376 /* Maybe it's a register number.... */
2377 offsetT val;
2378 if (!xg_arg_is_constant (arg_strings[1], &val))
2379 {
2380 as_bad (_("invalid register '%s' for '%s' instruction"),
2381 arg_strings[1], opname);
2382 return -1;
2383 }
2384 sr = xtensa_sysreg_lookup (isa, val, is_user);
2385 if (sr == XTENSA_UNDEFINED)
2386 {
2387 as_bad (_("invalid register number (%ld) for '%s' instruction"),
2388 (long) val, opname);
2389 return -1;
2390 }
2391 }
2392
2393 /* Remove the last argument, which is now part of the opcode. */
2394 free (arg_strings[1]);
2395 arg_strings[1] = 0;
2396 *pnum_args = 1;
2397
2398 /* Translate the opcode. */
2399 sr_name = xtensa_sysreg_name (isa, sr);
2400 /* Another special case for "WSR.INTSET".... */
2401 if (is_write && !is_user && !strcasecmp ("interrupt", sr_name))
2402 sr_name = "intset";
2403 new_opname = concat (*popname, ".", sr_name, (char *) NULL);
2404 free (*popname);
2405 *popname = new_opname;
2406
2407 return 0;
2408 }
2409
2410
2411 static int
2412 xtensa_translate_old_userreg_ops (char **popname)
2413 {
2414 xtensa_isa isa = xtensa_default_isa;
2415 xtensa_sysreg sr;
2416 char *opname, *new_opname;
2417 const char *sr_name;
2418 bfd_boolean has_underbar = FALSE;
2419
2420 opname = *popname;
2421 if (opname[0] == '_')
2422 {
2423 has_underbar = TRUE;
2424 opname += 1;
2425 }
2426
2427 sr = xtensa_sysreg_lookup_name (isa, opname + 1);
2428 if (sr != XTENSA_UNDEFINED)
2429 {
2430 /* The new default name ("nnn") is different from the old default
2431 name ("URnnn"). The old default is handled below, and we don't
2432 want to recognize [RW]nnn, so do nothing if the name is the (new)
2433 default. */
2434 static char namebuf[10];
2435 sprintf (namebuf, "%d", xtensa_sysreg_number (isa, sr));
2436 if (strcmp (namebuf, opname + 1) == 0)
2437 return 0;
2438 }
2439 else
2440 {
2441 offsetT val;
2442 char *end;
2443
2444 /* Only continue if the reg name is "URnnn". */
2445 if (opname[1] != 'u' || opname[2] != 'r')
2446 return 0;
2447 val = strtoul (opname + 3, &end, 10);
2448 if (*end != '\0')
2449 return 0;
2450
2451 sr = xtensa_sysreg_lookup (isa, val, 1);
2452 if (sr == XTENSA_UNDEFINED)
2453 {
2454 as_bad (_("invalid register number (%ld) for '%s'"),
2455 (long) val, opname);
2456 return -1;
2457 }
2458 }
2459
2460 /* Translate the opcode. */
2461 sr_name = xtensa_sysreg_name (isa, sr);
2462 new_opname = XNEWVEC (char, strlen (sr_name) + 6);
2463 sprintf (new_opname, "%s%cur.%s", (has_underbar ? "_" : ""),
2464 opname[0], sr_name);
2465 free (*popname);
2466 *popname = new_opname;
2467
2468 return 0;
2469 }
2470
2471
2472 static int
2473 xtensa_translate_zero_immed (const char *old_op,
2474 const char *new_op,
2475 char **popname,
2476 int *pnum_args,
2477 char **arg_strings)
2478 {
2479 char *opname;
2480 offsetT val;
2481
2482 opname = *popname;
2483 gas_assert (opname[0] != '_');
2484
2485 if (strcmp (opname, old_op) != 0)
2486 return 0;
2487
2488 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2489 return -1;
2490 if (xg_arg_is_constant (arg_strings[1], &val) && val == 0)
2491 {
2492 xg_replace_opname (popname, new_op);
2493 free (arg_strings[1]);
2494 arg_strings[1] = arg_strings[2];
2495 arg_strings[2] = 0;
2496 *pnum_args = 2;
2497 }
2498
2499 return 0;
2500 }
2501
2502
2503 /* If the instruction is an idiom (i.e., a built-in macro), translate it.
2504 Returns non-zero if an error was found. */
2505
2506 static int
2507 xg_translate_idioms (char **popname, int *pnum_args, char **arg_strings)
2508 {
2509 char *opname = *popname;
2510 bfd_boolean has_underbar = FALSE;
2511
2512 if (*opname == '_')
2513 {
2514 has_underbar = TRUE;
2515 opname += 1;
2516 }
2517
2518 if (strcmp (opname, "mov") == 0)
2519 {
2520 if (use_transform () && !has_underbar && density_supported)
2521 xg_replace_opname (popname, "mov.n");
2522 else
2523 {
2524 if (xg_check_num_args (pnum_args, 2, opname, arg_strings))
2525 return -1;
2526 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2527 arg_strings[2] = xstrdup (arg_strings[1]);
2528 *pnum_args = 3;
2529 }
2530 return 0;
2531 }
2532
2533 /* Without an operand, this is given a default immediate operand of 0. */
2534 if ((strcmp (opname, "simcall") == 0 && microarch_earliest >= 280000))
2535 {
2536 if (*pnum_args == 0)
2537 {
2538 arg_strings[0] = (char *) xmalloc (2);
2539 strcpy (arg_strings[0], "0");
2540 *pnum_args = 1;
2541 }
2542 return 0;
2543 }
2544
2545 if (strcmp (opname, "bbsi.l") == 0)
2546 {
2547 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2548 return -1;
2549 xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi"));
2550 if (target_big_endian)
2551 xg_reverse_shift_count (&arg_strings[1]);
2552 return 0;
2553 }
2554
2555 if (strcmp (opname, "bbci.l") == 0)
2556 {
2557 if (xg_check_num_args (pnum_args, 3, opname, arg_strings))
2558 return -1;
2559 xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci"));
2560 if (target_big_endian)
2561 xg_reverse_shift_count (&arg_strings[1]);
2562 return 0;
2563 }
2564
2565 /* Don't do anything special with NOPs inside FLIX instructions. They
2566 are handled elsewhere. Real NOP instructions are always available
2567 in configurations with FLIX, so this should never be an issue but
2568 check for it anyway. */
2569 if (!cur_vinsn.inside_bundle && xtensa_nop_opcode == XTENSA_UNDEFINED
2570 && strcmp (opname, "nop") == 0)
2571 {
2572 if (use_transform () && !has_underbar && density_supported)
2573 xg_replace_opname (popname, "nop.n");
2574 else
2575 {
2576 if (xg_check_num_args (pnum_args, 0, opname, arg_strings))
2577 return -1;
2578 xg_replace_opname (popname, (has_underbar ? "_or" : "or"));
2579 arg_strings[0] = xstrdup ("a1");
2580 arg_strings[1] = xstrdup ("a1");
2581 arg_strings[2] = xstrdup ("a1");
2582 *pnum_args = 3;
2583 }
2584 return 0;
2585 }
2586
2587 /* Recognize [RW]UR and [RWX]SR. */
2588 if ((((opname[0] == 'r' || opname[0] == 'w')
2589 && (opname[1] == 'u' || opname[1] == 's'))
2590 || (opname[0] == 'x' && opname[1] == 's'))
2591 && opname[2] == 'r'
2592 && opname[3] == '\0')
2593 return xg_translate_sysreg_op (popname, pnum_args, arg_strings);
2594
2595 /* Backward compatibility for RUR and WUR: Recognize [RW]UR<nnn> and
2596 [RW]<name> if <name> is the non-default name of a user register. */
2597 if ((opname[0] == 'r' || opname[0] == 'w')
2598 && xtensa_opcode_lookup (xtensa_default_isa, opname) == XTENSA_UNDEFINED)
2599 return xtensa_translate_old_userreg_ops (popname);
2600
2601 /* Relax branches that don't allow comparisons against an immediate value
2602 of zero to the corresponding branches with implicit zero immediates. */
2603 if (!has_underbar && use_transform ())
2604 {
2605 if (xtensa_translate_zero_immed ("bnei", "bnez", popname,
2606 pnum_args, arg_strings))
2607 return -1;
2608
2609 if (xtensa_translate_zero_immed ("beqi", "beqz", popname,
2610 pnum_args, arg_strings))
2611 return -1;
2612
2613 if (xtensa_translate_zero_immed ("bgei", "bgez", popname,
2614 pnum_args, arg_strings))
2615 return -1;
2616
2617 if (xtensa_translate_zero_immed ("blti", "bltz", popname,
2618 pnum_args, arg_strings))
2619 return -1;
2620 }
2621
2622 return 0;
2623 }
2624
2625 \f
2626 /* Functions for dealing with the Xtensa ISA. */
2627
2628 /* Currently the assembler only allows us to use a single target per
2629 fragment. Because of this, only one operand for a given
2630 instruction may be symbolic. If there is a PC-relative operand,
2631 the last one is chosen. Otherwise, the result is the number of the
2632 last immediate operand, and if there are none of those, we fail and
2633 return -1. */
2634
2635 static int
2636 get_relaxable_immed (xtensa_opcode opcode)
2637 {
2638 int last_immed = -1;
2639 int noperands, opi;
2640
2641 if (opcode == XTENSA_UNDEFINED)
2642 return -1;
2643
2644 noperands = xtensa_opcode_num_operands (xtensa_default_isa, opcode);
2645 for (opi = noperands - 1; opi >= 0; opi--)
2646 {
2647 if (xtensa_operand_is_visible (xtensa_default_isa, opcode, opi) == 0)
2648 continue;
2649 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, opi) == 1)
2650 return opi;
2651 if (last_immed == -1
2652 && xtensa_operand_is_register (xtensa_default_isa, opcode, opi) == 0)
2653 last_immed = opi;
2654 }
2655 return last_immed;
2656 }
2657
2658
2659 static xtensa_opcode
2660 get_opcode_from_buf (const char *buf, int slot)
2661 {
2662 static xtensa_insnbuf insnbuf = NULL;
2663 static xtensa_insnbuf slotbuf = NULL;
2664 xtensa_isa isa = xtensa_default_isa;
2665 xtensa_format fmt;
2666
2667 if (!insnbuf)
2668 {
2669 insnbuf = xtensa_insnbuf_alloc (isa);
2670 slotbuf = xtensa_insnbuf_alloc (isa);
2671 }
2672
2673 xtensa_insnbuf_from_chars (isa, insnbuf, (const unsigned char *) buf, 0);
2674 fmt = xtensa_format_decode (isa, insnbuf);
2675 if (fmt == XTENSA_UNDEFINED)
2676 return XTENSA_UNDEFINED;
2677
2678 if (slot >= xtensa_format_num_slots (isa, fmt))
2679 return XTENSA_UNDEFINED;
2680
2681 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
2682 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
2683 }
2684
2685
2686 #ifdef TENSILICA_DEBUG
2687
2688 /* For debugging, print out the mapping of opcode numbers to opcodes. */
2689
2690 static void
2691 xtensa_print_insn_table (void)
2692 {
2693 int num_opcodes, num_operands;
2694 xtensa_opcode opcode;
2695 xtensa_isa isa = xtensa_default_isa;
2696
2697 num_opcodes = xtensa_isa_num_opcodes (xtensa_default_isa);
2698 for (opcode = 0; opcode < num_opcodes; opcode++)
2699 {
2700 int opn;
2701 fprintf (stderr, "%d: %s: ", opcode, xtensa_opcode_name (isa, opcode));
2702 num_operands = xtensa_opcode_num_operands (isa, opcode);
2703 for (opn = 0; opn < num_operands; opn++)
2704 {
2705 if (xtensa_operand_is_visible (isa, opcode, opn) == 0)
2706 continue;
2707 if (xtensa_operand_is_register (isa, opcode, opn) == 1)
2708 {
2709 xtensa_regfile opnd_rf =
2710 xtensa_operand_regfile (isa, opcode, opn);
2711 fprintf (stderr, "%s ", xtensa_regfile_shortname (isa, opnd_rf));
2712 }
2713 else if (xtensa_operand_is_PCrelative (isa, opcode, opn) == 1)
2714 fputs ("[lLr] ", stderr);
2715 else
2716 fputs ("i ", stderr);
2717 }
2718 fprintf (stderr, "\n");
2719 }
2720 }
2721
2722
2723 static void
2724 print_vliw_insn (xtensa_insnbuf vbuf)
2725 {
2726 xtensa_isa isa = xtensa_default_isa;
2727 xtensa_format f = xtensa_format_decode (isa, vbuf);
2728 xtensa_insnbuf sbuf = xtensa_insnbuf_alloc (isa);
2729 int op;
2730
2731 fprintf (stderr, "format = %d\n", f);
2732
2733 for (op = 0; op < xtensa_format_num_slots (isa, f); op++)
2734 {
2735 xtensa_opcode opcode;
2736 const char *opname;
2737 int operands;
2738
2739 xtensa_format_get_slot (isa, f, op, vbuf, sbuf);
2740 opcode = xtensa_opcode_decode (isa, f, op, sbuf);
2741 opname = xtensa_opcode_name (isa, opcode);
2742
2743 fprintf (stderr, "op in slot %i is %s;\n", op, opname);
2744 fprintf (stderr, " operands = ");
2745 for (operands = 0;
2746 operands < xtensa_opcode_num_operands (isa, opcode);
2747 operands++)
2748 {
2749 unsigned int val;
2750 if (xtensa_operand_is_visible (isa, opcode, operands) == 0)
2751 continue;
2752 xtensa_operand_get_field (isa, opcode, operands, f, op, sbuf, &val);
2753 xtensa_operand_decode (isa, opcode, operands, &val);
2754 fprintf (stderr, "%d ", val);
2755 }
2756 fprintf (stderr, "\n");
2757 }
2758 xtensa_insnbuf_free (isa, sbuf);
2759 }
2760
2761 #endif /* TENSILICA_DEBUG */
2762
2763
2764 static bfd_boolean
2765 is_direct_call_opcode (xtensa_opcode opcode)
2766 {
2767 xtensa_isa isa = xtensa_default_isa;
2768 int n, num_operands;
2769
2770 if (xtensa_opcode_is_call (isa, opcode) != 1)
2771 return FALSE;
2772
2773 num_operands = xtensa_opcode_num_operands (isa, opcode);
2774 for (n = 0; n < num_operands; n++)
2775 {
2776 if (xtensa_operand_is_register (isa, opcode, n) == 0
2777 && xtensa_operand_is_PCrelative (isa, opcode, n) == 1)
2778 return TRUE;
2779 }
2780 return FALSE;
2781 }
2782
2783
2784 /* Convert from BFD relocation type code to slot and operand number.
2785 Returns non-zero on failure. */
2786
2787 static int
2788 decode_reloc (bfd_reloc_code_real_type reloc, int *slot, bfd_boolean *is_alt)
2789 {
2790 if (reloc >= BFD_RELOC_XTENSA_SLOT0_OP
2791 && reloc <= BFD_RELOC_XTENSA_SLOT14_OP)
2792 {
2793 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_OP;
2794 *is_alt = FALSE;
2795 }
2796 else if (reloc >= BFD_RELOC_XTENSA_SLOT0_ALT
2797 && reloc <= BFD_RELOC_XTENSA_SLOT14_ALT)
2798 {
2799 *slot = reloc - BFD_RELOC_XTENSA_SLOT0_ALT;
2800 *is_alt = TRUE;
2801 }
2802 else
2803 return -1;
2804
2805 return 0;
2806 }
2807
2808
2809 /* Convert from slot number to BFD relocation type code for the
2810 standard PC-relative relocations. Return BFD_RELOC_NONE on
2811 failure. */
2812
2813 static bfd_reloc_code_real_type
2814 encode_reloc (int slot)
2815 {
2816 if (slot < 0 || slot > 14)
2817 return BFD_RELOC_NONE;
2818
2819 return BFD_RELOC_XTENSA_SLOT0_OP + slot;
2820 }
2821
2822
2823 /* Convert from slot numbers to BFD relocation type code for the
2824 "alternate" relocations. Return BFD_RELOC_NONE on failure. */
2825
2826 static bfd_reloc_code_real_type
2827 encode_alt_reloc (int slot)
2828 {
2829 if (slot < 0 || slot > 14)
2830 return BFD_RELOC_NONE;
2831
2832 return BFD_RELOC_XTENSA_SLOT0_ALT + slot;
2833 }
2834
2835
2836 static void
2837 xtensa_insnbuf_set_operand (xtensa_insnbuf slotbuf,
2838 xtensa_format fmt,
2839 int slot,
2840 xtensa_opcode opcode,
2841 int operand,
2842 uint32 value,
2843 const char *file,
2844 unsigned int line)
2845 {
2846 uint32 valbuf = value;
2847
2848 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
2849 {
2850 if (xtensa_operand_is_PCrelative (xtensa_default_isa, opcode, operand)
2851 == 1)
2852 as_bad_where ((char *) file, line,
2853 _("operand %d of '%s' has out of range value '%u'"),
2854 operand + 1,
2855 xtensa_opcode_name (xtensa_default_isa, opcode),
2856 value);
2857 else
2858 as_bad_where ((char *) file, line,
2859 _("operand %d of '%s' has invalid value '%u'"),
2860 operand + 1,
2861 xtensa_opcode_name (xtensa_default_isa, opcode),
2862 value);
2863 return;
2864 }
2865
2866 xtensa_operand_set_field (xtensa_default_isa, opcode, operand, fmt, slot,
2867 slotbuf, valbuf);
2868 }
2869
2870
2871 static uint32
2872 xtensa_insnbuf_get_operand (xtensa_insnbuf slotbuf,
2873 xtensa_format fmt,
2874 int slot,
2875 xtensa_opcode opcode,
2876 int opnum)
2877 {
2878 uint32 val = 0;
2879 (void) xtensa_operand_get_field (xtensa_default_isa, opcode, opnum,
2880 fmt, slot, slotbuf, &val);
2881 (void) xtensa_operand_decode (xtensa_default_isa, opcode, opnum, &val);
2882 return val;
2883 }
2884
2885 \f
2886 /* Checks for rules from xtensa-relax tables. */
2887
2888 /* The routine xg_instruction_matches_option_term must return TRUE
2889 when a given option term is true. The meaning of all of the option
2890 terms is given interpretation by this function. */
2891
2892 static bfd_boolean
2893 xg_instruction_matches_option_term (TInsn *insn, const ReqOrOption *option)
2894 {
2895 if (strcmp (option->option_name, "realnop") == 0
2896 || strncmp (option->option_name, "IsaUse", 6) == 0)
2897 {
2898 /* These conditions were evaluated statically when building the
2899 relaxation table. There's no need to reevaluate them now. */
2900 return TRUE;
2901 }
2902 else if (strcmp (option->option_name, "FREEREG") == 0)
2903 return insn->extra_arg.X_op == O_register;
2904 else
2905 {
2906 as_fatal (_("internal error: unknown option name '%s'"),
2907 option->option_name);
2908 }
2909 }
2910
2911
2912 static bfd_boolean
2913 xg_instruction_matches_or_options (TInsn *insn,
2914 const ReqOrOptionList *or_option)
2915 {
2916 const ReqOrOption *option;
2917 /* Must match each of the AND terms. */
2918 for (option = or_option; option != NULL; option = option->next)
2919 {
2920 if (xg_instruction_matches_option_term (insn, option))
2921 return TRUE;
2922 }
2923 return FALSE;
2924 }
2925
2926
2927 static bfd_boolean
2928 xg_instruction_matches_options (TInsn *insn, const ReqOptionList *options)
2929 {
2930 const ReqOption *req_options;
2931 /* Must match each of the AND terms. */
2932 for (req_options = options;
2933 req_options != NULL;
2934 req_options = req_options->next)
2935 {
2936 /* Must match one of the OR clauses. */
2937 if (!xg_instruction_matches_or_options (insn,
2938 req_options->or_option_terms))
2939 return FALSE;
2940 }
2941 return TRUE;
2942 }
2943
2944
2945 /* Return the transition rule that matches or NULL if none matches. */
2946
2947 static bfd_boolean
2948 xg_instruction_matches_rule (TInsn *insn, TransitionRule *rule)
2949 {
2950 PreconditionList *condition_l;
2951
2952 if (rule->opcode != insn->opcode)
2953 return FALSE;
2954
2955 for (condition_l = rule->conditions;
2956 condition_l != NULL;
2957 condition_l = condition_l->next)
2958 {
2959 expressionS *exp1;
2960 expressionS *exp2;
2961 Precondition *cond = condition_l->precond;
2962
2963 switch (cond->typ)
2964 {
2965 case OP_CONSTANT:
2966 /* The expression must be the constant. */
2967 gas_assert (cond->op_num < insn->ntok);
2968 exp1 = &insn->tok[cond->op_num];
2969 if (expr_is_const (exp1))
2970 {
2971 switch (cond->cmp)
2972 {
2973 case OP_EQUAL:
2974 if (get_expr_const (exp1) != cond->op_data)
2975 return FALSE;
2976 break;
2977 case OP_NOTEQUAL:
2978 if (get_expr_const (exp1) == cond->op_data)
2979 return FALSE;
2980 break;
2981 default:
2982 return FALSE;
2983 }
2984 }
2985 else if (expr_is_register (exp1))
2986 {
2987 switch (cond->cmp)
2988 {
2989 case OP_EQUAL:
2990 if (get_expr_register (exp1) != cond->op_data)
2991 return FALSE;
2992 break;
2993 case OP_NOTEQUAL:
2994 if (get_expr_register (exp1) == cond->op_data)
2995 return FALSE;
2996 break;
2997 default:
2998 return FALSE;
2999 }
3000 }
3001 else
3002 return FALSE;
3003 break;
3004
3005 case OP_OPERAND:
3006 gas_assert (cond->op_num < insn->ntok);
3007 gas_assert (cond->op_data < insn->ntok);
3008 exp1 = &insn->tok[cond->op_num];
3009 exp2 = &insn->tok[cond->op_data];
3010
3011 switch (cond->cmp)
3012 {
3013 case OP_EQUAL:
3014 if (!expr_is_equal (exp1, exp2))
3015 return FALSE;
3016 break;
3017 case OP_NOTEQUAL:
3018 if (expr_is_equal (exp1, exp2))
3019 return FALSE;
3020 break;
3021 }
3022 break;
3023
3024 case OP_LITERAL:
3025 case OP_LABEL:
3026 default:
3027 return FALSE;
3028 }
3029 }
3030 if (!xg_instruction_matches_options (insn, rule->options))
3031 return FALSE;
3032
3033 return TRUE;
3034 }
3035
3036
3037 static int
3038 transition_rule_cmp (const TransitionRule *a, const TransitionRule *b)
3039 {
3040 bfd_boolean a_greater = FALSE;
3041 bfd_boolean b_greater = FALSE;
3042
3043 ReqOptionList *l_a = a->options;
3044 ReqOptionList *l_b = b->options;
3045
3046 /* We only care if they both are the same except for
3047 a const16 vs. an l32r. */
3048
3049 while (l_a && l_b && ((l_a->next == NULL) == (l_b->next == NULL)))
3050 {
3051 ReqOrOptionList *l_or_a = l_a->or_option_terms;
3052 ReqOrOptionList *l_or_b = l_b->or_option_terms;
3053 while (l_or_a && l_or_b && ((l_a->next == NULL) == (l_b->next == NULL)))
3054 {
3055 if (l_or_a->is_true != l_or_b->is_true)
3056 return 0;
3057 if (strcmp (l_or_a->option_name, l_or_b->option_name) != 0)
3058 {
3059 /* This is the case we care about. */
3060 if (strcmp (l_or_a->option_name, "IsaUseConst16") == 0
3061 && strcmp (l_or_b->option_name, "IsaUseL32R") == 0)
3062 {
3063 if (prefer_const16)
3064 a_greater = TRUE;
3065 else
3066 b_greater = TRUE;
3067 }
3068 else if (strcmp (l_or_a->option_name, "IsaUseL32R") == 0
3069 && strcmp (l_or_b->option_name, "IsaUseConst16") == 0)
3070 {
3071 if (prefer_const16)
3072 b_greater = TRUE;
3073 else
3074 a_greater = TRUE;
3075 }
3076 else
3077 return 0;
3078 }
3079 l_or_a = l_or_a->next;
3080 l_or_b = l_or_b->next;
3081 }
3082 if (l_or_a || l_or_b)
3083 return 0;
3084
3085 l_a = l_a->next;
3086 l_b = l_b->next;
3087 }
3088 if (l_a || l_b)
3089 return 0;
3090
3091 /* Incomparable if the substitution was used differently in two cases. */
3092 if (a_greater && b_greater)
3093 return 0;
3094
3095 if (b_greater)
3096 return 1;
3097 if (a_greater)
3098 return -1;
3099
3100 return 0;
3101 }
3102
3103
3104 static TransitionRule *
3105 xg_instruction_match (TInsn *insn)
3106 {
3107 TransitionTable *table = xg_build_simplify_table (&transition_rule_cmp);
3108 TransitionList *l;
3109 gas_assert (insn->opcode < table->num_opcodes);
3110
3111 /* Walk through all of the possible transitions. */
3112 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3113 {
3114 TransitionRule *rule = l->rule;
3115 if (xg_instruction_matches_rule (insn, rule))
3116 return rule;
3117 }
3118 return NULL;
3119 }
3120
3121 \f
3122 /* Various Other Internal Functions. */
3123
3124 static bfd_boolean
3125 is_unique_insn_expansion (TransitionRule *r)
3126 {
3127 if (!r->to_instr || r->to_instr->next != NULL)
3128 return FALSE;
3129 if (r->to_instr->typ != INSTR_INSTR)
3130 return FALSE;
3131 return TRUE;
3132 }
3133
3134
3135 /* Check if there is exactly one relaxation for INSN that converts it to
3136 another instruction of equal or larger size. If so, and if TARG is
3137 non-null, go ahead and generate the relaxed instruction into TARG. If
3138 NARROW_ONLY is true, then only consider relaxations that widen a narrow
3139 instruction, i.e., ignore relaxations that convert to an instruction of
3140 equal size. In some contexts where this function is used, only
3141 a single widening is allowed and the NARROW_ONLY argument is used to
3142 exclude cases like ADDI being "widened" to an ADDMI, which may
3143 later be relaxed to an ADDMI/ADDI pair. */
3144
3145 bfd_boolean
3146 xg_is_single_relaxable_insn (TInsn *insn, TInsn *targ, bfd_boolean narrow_only)
3147 {
3148 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3149 TransitionList *l;
3150 TransitionRule *match = 0;
3151
3152 gas_assert (insn->insn_type == ITYPE_INSN);
3153 gas_assert (insn->opcode < table->num_opcodes);
3154
3155 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3156 {
3157 TransitionRule *rule = l->rule;
3158
3159 if (xg_instruction_matches_rule (insn, rule)
3160 && is_unique_insn_expansion (rule)
3161 && (xg_get_single_size (insn->opcode) + (narrow_only ? 1 : 0)
3162 <= xg_get_single_size (rule->to_instr->opcode)))
3163 {
3164 if (match)
3165 return FALSE;
3166 match = rule;
3167 }
3168 }
3169 if (!match)
3170 return FALSE;
3171
3172 if (targ)
3173 xg_build_to_insn (targ, insn, match->to_instr);
3174 return TRUE;
3175 }
3176
3177
3178 /* Return the maximum number of bytes this opcode can expand to. */
3179
3180 static int
3181 xg_get_max_insn_widen_size (xtensa_opcode opcode)
3182 {
3183 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3184 TransitionList *l;
3185 int max_size = xg_get_single_size (opcode);
3186
3187 gas_assert (opcode < table->num_opcodes);
3188
3189 for (l = table->table[opcode]; l != NULL; l = l->next)
3190 {
3191 TransitionRule *rule = l->rule;
3192 BuildInstr *build_list;
3193 int this_size = 0;
3194
3195 if (!rule)
3196 continue;
3197 build_list = rule->to_instr;
3198 if (is_unique_insn_expansion (rule))
3199 {
3200 gas_assert (build_list->typ == INSTR_INSTR);
3201 this_size = xg_get_max_insn_widen_size (build_list->opcode);
3202 }
3203 else
3204 for (; build_list != NULL; build_list = build_list->next)
3205 {
3206 switch (build_list->typ)
3207 {
3208 case INSTR_INSTR:
3209 this_size += xg_get_single_size (build_list->opcode);
3210 break;
3211 case INSTR_LITERAL_DEF:
3212 case INSTR_LABEL_DEF:
3213 default:
3214 break;
3215 }
3216 }
3217 if (this_size > max_size)
3218 max_size = this_size;
3219 }
3220 return max_size;
3221 }
3222
3223
3224 /* Return the maximum number of literal bytes this opcode can generate. */
3225
3226 static int
3227 xg_get_max_insn_widen_literal_size (xtensa_opcode opcode)
3228 {
3229 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3230 TransitionList *l;
3231 int max_size = 0;
3232
3233 gas_assert (opcode < table->num_opcodes);
3234
3235 for (l = table->table[opcode]; l != NULL; l = l->next)
3236 {
3237 TransitionRule *rule = l->rule;
3238 BuildInstr *build_list;
3239 int this_size = 0;
3240
3241 if (!rule)
3242 continue;
3243 build_list = rule->to_instr;
3244 if (is_unique_insn_expansion (rule))
3245 {
3246 gas_assert (build_list->typ == INSTR_INSTR);
3247 this_size = xg_get_max_insn_widen_literal_size (build_list->opcode);
3248 }
3249 else
3250 for (; build_list != NULL; build_list = build_list->next)
3251 {
3252 switch (build_list->typ)
3253 {
3254 case INSTR_LITERAL_DEF:
3255 /* Hard-coded 4-byte literal. */
3256 this_size += 4;
3257 break;
3258 case INSTR_INSTR:
3259 case INSTR_LABEL_DEF:
3260 default:
3261 break;
3262 }
3263 }
3264 if (this_size > max_size)
3265 max_size = this_size;
3266 }
3267 return max_size;
3268 }
3269
3270
3271 static bfd_boolean
3272 xg_is_relaxable_insn (TInsn *insn, int lateral_steps)
3273 {
3274 int steps_taken = 0;
3275 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3276 TransitionList *l;
3277
3278 gas_assert (insn->insn_type == ITYPE_INSN);
3279 gas_assert (insn->opcode < table->num_opcodes);
3280
3281 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3282 {
3283 TransitionRule *rule = l->rule;
3284
3285 if (xg_instruction_matches_rule (insn, rule))
3286 {
3287 if (steps_taken == lateral_steps)
3288 return TRUE;
3289 steps_taken++;
3290 }
3291 }
3292 return FALSE;
3293 }
3294
3295
3296 static symbolS *
3297 get_special_literal_symbol (void)
3298 {
3299 static symbolS *sym = NULL;
3300
3301 if (sym == NULL)
3302 sym = symbol_find_or_make ("SPECIAL_LITERAL0\001");
3303 return sym;
3304 }
3305
3306
3307 static symbolS *
3308 get_special_label_symbol (void)
3309 {
3310 static symbolS *sym = NULL;
3311
3312 if (sym == NULL)
3313 sym = symbol_find_or_make ("SPECIAL_LABEL0\001");
3314 return sym;
3315 }
3316
3317
3318 static bfd_boolean
3319 xg_valid_literal_expression (const expressionS *exp)
3320 {
3321 switch (exp->X_op)
3322 {
3323 case O_constant:
3324 case O_symbol:
3325 case O_big:
3326 case O_uminus:
3327 case O_subtract:
3328 case O_pltrel:
3329 case O_pcrel:
3330 case O_tlsfunc:
3331 case O_tlsarg:
3332 case O_tpoff:
3333 case O_dtpoff:
3334 return TRUE;
3335 default:
3336 return FALSE;
3337 }
3338 }
3339
3340
3341 /* This will check to see if the value can be converted into the
3342 operand type. It will return TRUE if it does not fit. */
3343
3344 static bfd_boolean
3345 xg_check_operand (int32 value, xtensa_opcode opcode, int operand)
3346 {
3347 uint32 valbuf = value;
3348 if (xtensa_operand_encode (xtensa_default_isa, opcode, operand, &valbuf))
3349 return TRUE;
3350 return FALSE;
3351 }
3352
3353
3354 /* Assumes: All immeds are constants. Check that all constants fit
3355 into their immeds; return FALSE if not. */
3356
3357 static bfd_boolean
3358 xg_immeds_fit (const TInsn *insn)
3359 {
3360 xtensa_isa isa = xtensa_default_isa;
3361 int i;
3362
3363 int n = insn->ntok;
3364 gas_assert (insn->insn_type == ITYPE_INSN);
3365 for (i = 0; i < n; ++i)
3366 {
3367 const expressionS *exp = &insn->tok[i];
3368
3369 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3370 continue;
3371
3372 switch (exp->X_op)
3373 {
3374 case O_register:
3375 case O_constant:
3376 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3377 return FALSE;
3378 break;
3379
3380 default:
3381 /* The symbol should have a fixup associated with it. */
3382 gas_assert (FALSE);
3383 break;
3384 }
3385 }
3386 return TRUE;
3387 }
3388
3389
3390 /* This should only be called after we have an initial
3391 estimate of the addresses. */
3392
3393 static bfd_boolean
3394 xg_symbolic_immeds_fit (const TInsn *insn,
3395 segT pc_seg,
3396 fragS *pc_frag,
3397 offsetT pc_offset,
3398 long stretch)
3399 {
3400 xtensa_isa isa = xtensa_default_isa;
3401 symbolS *symbolP;
3402 fragS *sym_frag;
3403 offsetT target, pc;
3404 uint32 new_offset;
3405 int i;
3406 int n = insn->ntok;
3407
3408 gas_assert (insn->insn_type == ITYPE_INSN);
3409
3410 for (i = 0; i < n; ++i)
3411 {
3412 const expressionS *exp = &insn->tok[i];
3413
3414 if (xtensa_operand_is_register (isa, insn->opcode, i) == 1)
3415 continue;
3416
3417 switch (exp->X_op)
3418 {
3419 case O_register:
3420 case O_constant:
3421 if (xg_check_operand (exp->X_add_number, insn->opcode, i))
3422 return FALSE;
3423 break;
3424
3425 case O_lo16:
3426 case O_hi16:
3427 /* Check for the worst case. */
3428 if (xg_check_operand (0xffff, insn->opcode, i))
3429 return FALSE;
3430 break;
3431
3432 case O_symbol:
3433 /* We only allow symbols for PC-relative references.
3434 If pc_frag == 0, then we don't have frag locations yet. */
3435 if (pc_frag == 0
3436 || xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 0)
3437 return FALSE;
3438
3439 /* If it is a weak symbol or a symbol in a different section,
3440 it cannot be known to fit at assembly time. */
3441 if (S_IS_WEAK (exp->X_add_symbol)
3442 || S_GET_SEGMENT (exp->X_add_symbol) != pc_seg)
3443 {
3444 /* For a direct call with --no-longcalls, be optimistic and
3445 assume it will be in range. If the symbol is weak and
3446 undefined, it may remain undefined at link-time, in which
3447 case it will have a zero value and almost certainly be out
3448 of range for a direct call; thus, relax for undefined weak
3449 symbols even if longcalls is not enabled. */
3450 if (is_direct_call_opcode (insn->opcode)
3451 && ! pc_frag->tc_frag_data.use_longcalls
3452 && (! S_IS_WEAK (exp->X_add_symbol)
3453 || S_IS_DEFINED (exp->X_add_symbol)))
3454 return TRUE;
3455
3456 return FALSE;
3457 }
3458
3459 symbolP = exp->X_add_symbol;
3460 sym_frag = symbol_get_frag (symbolP);
3461 target = S_GET_VALUE (symbolP) + exp->X_add_number;
3462 pc = pc_frag->fr_address + pc_offset;
3463
3464 /* If frag has yet to be reached on this pass, assume it
3465 will move by STRETCH just as we did. If this is not so,
3466 it will be because some frag between grows, and that will
3467 force another pass. Beware zero-length frags. There
3468 should be a faster way to do this. */
3469
3470 if (stretch != 0
3471 && sym_frag->relax_marker != pc_frag->relax_marker
3472 && S_GET_SEGMENT (symbolP) == pc_seg)
3473 {
3474 target += stretch;
3475 }
3476
3477 new_offset = target;
3478 xtensa_operand_do_reloc (isa, insn->opcode, i, &new_offset, pc);
3479 if (xg_check_operand (new_offset, insn->opcode, i))
3480 return FALSE;
3481 break;
3482
3483 default:
3484 /* The symbol should have a fixup associated with it. */
3485 return FALSE;
3486 }
3487 }
3488
3489 return TRUE;
3490 }
3491
3492
3493 /* Return TRUE on success. */
3494
3495 static bfd_boolean
3496 xg_build_to_insn (TInsn *targ, TInsn *insn, BuildInstr *bi)
3497 {
3498 BuildOp *op;
3499 symbolS *sym;
3500
3501 tinsn_init (targ);
3502 targ->debug_line = insn->debug_line;
3503 targ->loc_directive_seen = insn->loc_directive_seen;
3504 switch (bi->typ)
3505 {
3506 case INSTR_INSTR:
3507 op = bi->ops;
3508 targ->opcode = bi->opcode;
3509 targ->insn_type = ITYPE_INSN;
3510 targ->is_specific_opcode = FALSE;
3511
3512 for (; op != NULL; op = op->next)
3513 {
3514 int op_num = op->op_num;
3515 int op_data = op->op_data;
3516
3517 gas_assert (op->op_num < MAX_INSN_ARGS);
3518
3519 if (targ->ntok <= op_num)
3520 targ->ntok = op_num + 1;
3521
3522 switch (op->typ)
3523 {
3524 case OP_CONSTANT:
3525 set_expr_const (&targ->tok[op_num], op_data);
3526 break;
3527 case OP_OPERAND:
3528 gas_assert (op_data < insn->ntok);
3529 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3530 break;
3531 case OP_FREEREG:
3532 if (insn->extra_arg.X_op != O_register)
3533 return FALSE;
3534 copy_expr (&targ->tok[op_num], &insn->extra_arg);
3535 break;
3536 case OP_LITERAL:
3537 sym = get_special_literal_symbol ();
3538 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3539 if (insn->tok[op_data].X_op == O_tlsfunc
3540 || insn->tok[op_data].X_op == O_tlsarg)
3541 copy_expr (&targ->extra_arg, &insn->tok[op_data]);
3542 break;
3543 case OP_LABEL:
3544 sym = get_special_label_symbol ();
3545 set_expr_symbol_offset (&targ->tok[op_num], sym, 0);
3546 break;
3547 case OP_OPERAND_HI16U:
3548 case OP_OPERAND_LOW16U:
3549 gas_assert (op_data < insn->ntok);
3550 if (expr_is_const (&insn->tok[op_data]))
3551 {
3552 long val;
3553 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3554 val = xg_apply_userdef_op_fn (op->typ,
3555 targ->tok[op_num].
3556 X_add_number);
3557 targ->tok[op_num].X_add_number = val;
3558 }
3559 else
3560 {
3561 /* For const16 we can create relocations for these. */
3562 if (targ->opcode == XTENSA_UNDEFINED
3563 || (targ->opcode != xtensa_const16_opcode))
3564 return FALSE;
3565 gas_assert (op_data < insn->ntok);
3566 /* Need to build a O_lo16 or O_hi16. */
3567 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3568 if (targ->tok[op_num].X_op == O_symbol)
3569 {
3570 if (op->typ == OP_OPERAND_HI16U)
3571 targ->tok[op_num].X_op = O_hi16;
3572 else if (op->typ == OP_OPERAND_LOW16U)
3573 targ->tok[op_num].X_op = O_lo16;
3574 else
3575 return FALSE;
3576 }
3577 }
3578 break;
3579 default:
3580 /* currently handles:
3581 OP_OPERAND_LOW8
3582 OP_OPERAND_HI24S
3583 OP_OPERAND_F32MINUS */
3584 if (xg_has_userdef_op_fn (op->typ))
3585 {
3586 gas_assert (op_data < insn->ntok);
3587 if (expr_is_const (&insn->tok[op_data]))
3588 {
3589 long val;
3590 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3591 val = xg_apply_userdef_op_fn (op->typ,
3592 targ->tok[op_num].
3593 X_add_number);
3594 targ->tok[op_num].X_add_number = val;
3595 }
3596 else
3597 return FALSE; /* We cannot use a relocation for this. */
3598 break;
3599 }
3600 gas_assert (0);
3601 break;
3602 }
3603 }
3604 break;
3605
3606 case INSTR_LITERAL_DEF:
3607 op = bi->ops;
3608 targ->opcode = XTENSA_UNDEFINED;
3609 targ->insn_type = ITYPE_LITERAL;
3610 targ->is_specific_opcode = FALSE;
3611 for (; op != NULL; op = op->next)
3612 {
3613 int op_num = op->op_num;
3614 int op_data = op->op_data;
3615 gas_assert (op->op_num < MAX_INSN_ARGS);
3616
3617 if (targ->ntok <= op_num)
3618 targ->ntok = op_num + 1;
3619
3620 switch (op->typ)
3621 {
3622 case OP_OPERAND:
3623 gas_assert (op_data < insn->ntok);
3624 /* We can only pass resolvable literals through. */
3625 if (!xg_valid_literal_expression (&insn->tok[op_data]))
3626 return FALSE;
3627 copy_expr (&targ->tok[op_num], &insn->tok[op_data]);
3628 break;
3629 case OP_LITERAL:
3630 case OP_CONSTANT:
3631 case OP_LABEL:
3632 default:
3633 gas_assert (0);
3634 break;
3635 }
3636 }
3637 break;
3638
3639 case INSTR_LABEL_DEF:
3640 op = bi->ops;
3641 targ->opcode = XTENSA_UNDEFINED;
3642 targ->insn_type = ITYPE_LABEL;
3643 targ->is_specific_opcode = FALSE;
3644 /* Literal with no ops is a label? */
3645 gas_assert (op == NULL);
3646 break;
3647
3648 default:
3649 gas_assert (0);
3650 }
3651
3652 return TRUE;
3653 }
3654
3655
3656 /* Return TRUE on success. */
3657
3658 static bfd_boolean
3659 xg_build_to_stack (IStack *istack, TInsn *insn, BuildInstr *bi)
3660 {
3661 for (; bi != NULL; bi = bi->next)
3662 {
3663 TInsn *next_insn = istack_push_space (istack);
3664
3665 if (!xg_build_to_insn (next_insn, insn, bi))
3666 return FALSE;
3667 }
3668 return TRUE;
3669 }
3670
3671
3672 /* Return TRUE on valid expansion. */
3673
3674 static bfd_boolean
3675 xg_expand_to_stack (IStack *istack, TInsn *insn, int lateral_steps)
3676 {
3677 int stack_size = istack->ninsn;
3678 int steps_taken = 0;
3679 TransitionTable *table = xg_build_widen_table (&transition_rule_cmp);
3680 TransitionList *l;
3681
3682 gas_assert (insn->insn_type == ITYPE_INSN);
3683 gas_assert (insn->opcode < table->num_opcodes);
3684
3685 for (l = table->table[insn->opcode]; l != NULL; l = l->next)
3686 {
3687 TransitionRule *rule = l->rule;
3688
3689 if (xg_instruction_matches_rule (insn, rule))
3690 {
3691 if (lateral_steps == steps_taken)
3692 {
3693 int i;
3694
3695 /* This is it. Expand the rule to the stack. */
3696 if (!xg_build_to_stack (istack, insn, rule->to_instr))
3697 return FALSE;
3698
3699 /* Check to see if it fits. */
3700 for (i = stack_size; i < istack->ninsn; i++)
3701 {
3702 TInsn *tinsn = &istack->insn[i];
3703
3704 if (tinsn->insn_type == ITYPE_INSN
3705 && !tinsn_has_symbolic_operands (tinsn)
3706 && !xg_immeds_fit (tinsn))
3707 {
3708 istack->ninsn = stack_size;
3709 return FALSE;
3710 }
3711 }
3712 return TRUE;
3713 }
3714 steps_taken++;
3715 }
3716 }
3717 return FALSE;
3718 }
3719
3720 \f
3721 /* Relax the assembly instruction at least "min_steps".
3722 Return the number of steps taken.
3723
3724 For relaxation to correctly terminate, every relaxation chain must
3725 terminate in one of two ways:
3726
3727 1. If the chain from one instruction to the next consists entirely of
3728 single instructions, then the chain *must* handle all possible
3729 immediates without failing. It must not ever fail because an
3730 immediate is out of range. The MOVI.N -> MOVI -> L32R relaxation
3731 chain is one example. L32R loads 32 bits, and there cannot be an
3732 immediate larger than 32 bits, so it satisfies this condition.
3733 Single instruction relaxation chains are as defined by
3734 xg_is_single_relaxable_instruction.
3735
3736 2. Otherwise, the chain must end in a multi-instruction expansion: e.g.,
3737 BNEZ.N -> BNEZ -> BNEZ.W15 -> BENZ.N/J
3738
3739 Strictly speaking, in most cases you can violate condition 1 and be OK
3740 -- in particular when the last two instructions have the same single
3741 size. But nevertheless, you should guarantee the above two conditions.
3742
3743 We could fix this so that single-instruction expansions correctly
3744 terminate when they can't handle the range, but the error messages are
3745 worse, and it actually turns out that in every case but one (18-bit wide
3746 branches), you need a multi-instruction expansion to get the full range
3747 anyway. And because 18-bit branches are handled identically to 15-bit
3748 branches, there isn't any point in changing it. */
3749
3750 static int
3751 xg_assembly_relax (IStack *istack,
3752 TInsn *insn,
3753 segT pc_seg,
3754 fragS *pc_frag, /* if pc_frag == 0, not pc-relative */
3755 offsetT pc_offset, /* offset in fragment */
3756 int min_steps, /* minimum conversion steps */
3757 long stretch) /* number of bytes stretched so far */
3758 {
3759 int steps_taken = 0;
3760
3761 /* Some of its immeds don't fit. Try to build a relaxed version.
3762 This may go through a couple of stages of single instruction
3763 transformations before we get there. */
3764
3765 TInsn single_target;
3766 TInsn current_insn;
3767 int lateral_steps = 0;
3768 int istack_size = istack->ninsn;
3769
3770 if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch)
3771 && steps_taken >= min_steps)
3772 {
3773 istack_push (istack, insn);
3774 return steps_taken;
3775 }
3776 current_insn = *insn;
3777
3778 /* Walk through all of the single instruction expansions. */
3779 while (xg_is_single_relaxable_insn (&current_insn, &single_target, FALSE))
3780 {
3781 steps_taken++;
3782 if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset,
3783 stretch))
3784 {
3785 if (steps_taken >= min_steps)
3786 {
3787 istack_push (istack, &single_target);
3788 return steps_taken;
3789 }
3790 }
3791 current_insn = single_target;
3792 }
3793
3794 /* Now check for a multi-instruction expansion. */
3795 while (xg_is_relaxable_insn (&current_insn, lateral_steps))
3796 {
3797 if (xg_symbolic_immeds_fit (&current_insn, pc_seg, pc_frag, pc_offset,
3798 stretch))
3799 {
3800 if (steps_taken >= min_steps)
3801 {
3802 istack_push (istack, &current_insn);
3803 return steps_taken;
3804 }
3805 }
3806 steps_taken++;
3807 if (xg_expand_to_stack (istack, &current_insn, lateral_steps))
3808 {
3809 if (steps_taken >= min_steps)
3810 return steps_taken;
3811 }
3812 lateral_steps++;
3813 istack->ninsn = istack_size;
3814 }
3815
3816 /* It's not going to work -- use the original. */
3817 istack_push (istack, insn);
3818 return steps_taken;
3819 }
3820
3821
3822 static void
3823 xg_finish_frag (char *last_insn,
3824 enum xtensa_relax_statesE frag_state,
3825 enum xtensa_relax_statesE slot0_state,
3826 int max_growth,
3827 bfd_boolean is_insn)
3828 {
3829 /* Finish off this fragment so that it has at LEAST the desired
3830 max_growth. If it doesn't fit in this fragment, close this one
3831 and start a new one. In either case, return a pointer to the
3832 beginning of the growth area. */
3833
3834 fragS *old_frag;
3835
3836 frag_grow (max_growth);
3837 old_frag = frag_now;
3838
3839 frag_now->fr_opcode = last_insn;
3840 if (is_insn)
3841 frag_now->tc_frag_data.is_insn = TRUE;
3842
3843 frag_var (rs_machine_dependent, max_growth, max_growth,
3844 frag_state, frag_now->fr_symbol, frag_now->fr_offset, last_insn);
3845
3846 old_frag->tc_frag_data.slot_subtypes[0] = slot0_state;
3847 xtensa_set_frag_assembly_state (frag_now);
3848
3849 /* Just to make sure that we did not split it up. */
3850 gas_assert (old_frag->fr_next == frag_now);
3851 }
3852
3853
3854 /* Return TRUE if the target frag is one of the next non-empty frags. */
3855
3856 static bfd_boolean
3857 is_next_frag_target (const fragS *fragP, const fragS *target)
3858 {
3859 if (fragP == NULL)
3860 return FALSE;
3861
3862 for (; fragP; fragP = fragP->fr_next)
3863 {
3864 if (fragP == target)
3865 return TRUE;
3866 if (fragP->fr_fix != 0)
3867 return FALSE;
3868 if (fragP->fr_type == rs_fill && fragP->fr_offset != 0)
3869 return FALSE;
3870 if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code)
3871 && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0))
3872 return FALSE;
3873 if (fragP->fr_type == rs_space)
3874 return FALSE;
3875 }
3876 return FALSE;
3877 }
3878
3879
3880 static bfd_boolean
3881 is_branch_jmp_to_next (TInsn *insn, fragS *fragP)
3882 {
3883 xtensa_isa isa = xtensa_default_isa;
3884 int i;
3885 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3886 int target_op = -1;
3887 symbolS *sym;
3888 fragS *target_frag;
3889
3890 if (xtensa_opcode_is_branch (isa, insn->opcode) != 1
3891 && xtensa_opcode_is_jump (isa, insn->opcode) != 1)
3892 return FALSE;
3893
3894 for (i = 0; i < num_ops; i++)
3895 {
3896 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1)
3897 {
3898 target_op = i;
3899 break;
3900 }
3901 }
3902 if (target_op == -1)
3903 return FALSE;
3904
3905 if (insn->ntok <= target_op)
3906 return FALSE;
3907
3908 if (insn->tok[target_op].X_op != O_symbol)
3909 return FALSE;
3910
3911 sym = insn->tok[target_op].X_add_symbol;
3912 if (sym == NULL)
3913 return FALSE;
3914
3915 if (insn->tok[target_op].X_add_number != 0)
3916 return FALSE;
3917
3918 target_frag = symbol_get_frag (sym);
3919 if (target_frag == NULL)
3920 return FALSE;
3921
3922 if (is_next_frag_target (fragP->fr_next, target_frag)
3923 && S_GET_VALUE (sym) == target_frag->fr_address)
3924 return TRUE;
3925
3926 return FALSE;
3927 }
3928
3929
3930 static void
3931 xg_add_branch_and_loop_targets (TInsn *insn)
3932 {
3933 xtensa_isa isa = xtensa_default_isa;
3934 int num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
3935
3936 if (xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3937 {
3938 int i = 1;
3939 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3940 && insn->tok[i].X_op == O_symbol)
3941 symbol_get_tc (insn->tok[i].X_add_symbol)->is_loop_target = TRUE;
3942 return;
3943 }
3944
3945 if (xtensa_opcode_is_branch (isa, insn->opcode) == 1
3946 || xtensa_opcode_is_loop (isa, insn->opcode) == 1)
3947 {
3948 int i;
3949
3950 for (i = 0; i < insn->ntok && i < num_ops; i++)
3951 {
3952 if (xtensa_operand_is_PCrelative (isa, insn->opcode, i) == 1
3953 && insn->tok[i].X_op == O_symbol)
3954 {
3955 symbolS *sym = insn->tok[i].X_add_symbol;
3956 symbol_get_tc (sym)->is_branch_target = TRUE;
3957 if (S_IS_DEFINED (sym))
3958 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
3959 }
3960 }
3961 }
3962 }
3963
3964
3965 /* Return FALSE if no error. */
3966
3967 static bfd_boolean
3968 xg_build_token_insn (BuildInstr *instr_spec, TInsn *old_insn, TInsn *new_insn)
3969 {
3970 int num_ops = 0;
3971 BuildOp *b_op;
3972
3973 switch (instr_spec->typ)
3974 {
3975 case INSTR_INSTR:
3976 new_insn->insn_type = ITYPE_INSN;
3977 new_insn->opcode = instr_spec->opcode;
3978 break;
3979 case INSTR_LITERAL_DEF:
3980 new_insn->insn_type = ITYPE_LITERAL;
3981 new_insn->opcode = XTENSA_UNDEFINED;
3982 break;
3983 case INSTR_LABEL_DEF:
3984 abort ();
3985 }
3986 new_insn->is_specific_opcode = FALSE;
3987 new_insn->debug_line = old_insn->debug_line;
3988 new_insn->loc_directive_seen = old_insn->loc_directive_seen;
3989
3990 for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next)
3991 {
3992 expressionS *exp;
3993 const expressionS *src_exp;
3994
3995 num_ops++;
3996 switch (b_op->typ)
3997 {
3998 case OP_CONSTANT:
3999 /* The expression must be the constant. */
4000 gas_assert (b_op->op_num < MAX_INSN_ARGS);
4001 exp = &new_insn->tok[b_op->op_num];
4002 set_expr_const (exp, b_op->op_data);
4003 break;
4004
4005 case OP_OPERAND:
4006 gas_assert (b_op->op_num < MAX_INSN_ARGS);
4007 gas_assert (b_op->op_data < (unsigned) old_insn->ntok);
4008 src_exp = &old_insn->tok[b_op->op_data];
4009 exp = &new_insn->tok[b_op->op_num];
4010 copy_expr (exp, src_exp);
4011 break;
4012
4013 case OP_LITERAL:
4014 case OP_LABEL:
4015 as_bad (_("can't handle generation of literal/labels yet"));
4016 gas_assert (0);
4017
4018 default:
4019 as_bad (_("can't handle undefined OP TYPE"));
4020 gas_assert (0);
4021 }
4022 }
4023
4024 new_insn->ntok = num_ops;
4025 return FALSE;
4026 }
4027
4028
4029 /* Return TRUE if it was simplified. */
4030
4031 static bfd_boolean
4032 xg_simplify_insn (TInsn *old_insn, TInsn *new_insn)
4033 {
4034 TransitionRule *rule;
4035 BuildInstr *insn_spec;
4036
4037 if (old_insn->is_specific_opcode || !density_supported)
4038 return FALSE;
4039
4040 rule = xg_instruction_match (old_insn);
4041 if (rule == NULL)
4042 return FALSE;
4043
4044 insn_spec = rule->to_instr;
4045 /* There should only be one. */
4046 gas_assert (insn_spec != NULL);
4047 gas_assert (insn_spec->next == NULL);
4048 if (insn_spec->next != NULL)
4049 return FALSE;
4050
4051 xg_build_token_insn (insn_spec, old_insn, new_insn);
4052
4053 return TRUE;
4054 }
4055
4056
4057 /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i ->
4058 l32i.n. (2) Check the number of operands. (3) Place the instruction
4059 tokens into the stack or relax it and place multiple
4060 instructions/literals onto the stack. Return FALSE if no error. */
4061
4062 static bfd_boolean
4063 xg_expand_assembly_insn (IStack *istack, TInsn *orig_insn)
4064 {
4065 int noperands;
4066 TInsn new_insn;
4067 bfd_boolean do_expand;
4068
4069 tinsn_init (&new_insn);
4070
4071 /* Narrow it if we can. xg_simplify_insn now does all the
4072 appropriate checking (e.g., for the density option). */
4073 if (xg_simplify_insn (orig_insn, &new_insn))
4074 orig_insn = &new_insn;
4075
4076 noperands = xtensa_opcode_num_operands (xtensa_default_isa,
4077 orig_insn->opcode);
4078 if (orig_insn->ntok < noperands)
4079 {
4080 as_bad (ngettext ("found %d operand for '%s': Expected %d",
4081 "found %d operands for '%s': Expected %d",
4082 orig_insn->ntok),
4083 orig_insn->ntok,
4084 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
4085 noperands);
4086 return TRUE;
4087 }
4088 if (orig_insn->ntok > noperands)
4089 as_warn (ngettext ("found %d operand for '%s': Expected %d",
4090 "found %d operands for '%s': Expected %d",
4091 orig_insn->ntok),
4092 orig_insn->ntok,
4093 xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode),
4094 noperands);
4095
4096 /* If there are not enough operands, we will assert above. If there
4097 are too many, just cut out the extras here. */
4098 orig_insn->ntok = noperands;
4099
4100 if (tinsn_has_invalid_symbolic_operands (orig_insn))
4101 return TRUE;
4102
4103 /* Special case for extui opcode which has constraints not handled
4104 by the ordinary operand encoding checks. The number of operands
4105 and related syntax issues have already been checked. */
4106 if (orig_insn->opcode == xtensa_extui_opcode)
4107 {
4108 int shiftimm = orig_insn->tok[2].X_add_number;
4109 int maskimm = orig_insn->tok[3].X_add_number;
4110 if (shiftimm + maskimm > 32)
4111 {
4112 as_bad (_("immediate operands sum to greater than 32"));
4113 return TRUE;
4114 }
4115 }
4116
4117 /* If the instruction will definitely need to be relaxed, it is better
4118 to expand it now for better scheduling. Decide whether to expand
4119 now.... */
4120 do_expand = (!orig_insn->is_specific_opcode && use_transform ());
4121
4122 /* Calls should be expanded to longcalls only in the backend relaxation
4123 so that the assembly scheduler will keep the L32R/CALLX instructions
4124 adjacent. */
4125 if (is_direct_call_opcode (orig_insn->opcode))
4126 do_expand = FALSE;
4127
4128 if (tinsn_has_symbolic_operands (orig_insn))
4129 {
4130 /* The values of symbolic operands are not known yet, so only expand
4131 now if an operand is "complex" (e.g., difference of symbols) and
4132 will have to be stored as a literal regardless of the value. */
4133 if (!tinsn_has_complex_operands (orig_insn))
4134 do_expand = FALSE;
4135 }
4136 else if (xg_immeds_fit (orig_insn))
4137 do_expand = FALSE;
4138
4139 if (do_expand)
4140 xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0);
4141 else
4142 istack_push (istack, orig_insn);
4143
4144 return FALSE;
4145 }
4146
4147
4148 /* Return TRUE if the section flags are marked linkonce
4149 or the name is .gnu.linkonce.*. */
4150
4151 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
4152
4153 static bfd_boolean
4154 get_is_linkonce_section (bfd *abfd ATTRIBUTE_UNUSED, segT sec)
4155 {
4156 flagword flags, link_once_flags;
4157
4158 flags = bfd_section_flags (sec);
4159 link_once_flags = (flags & SEC_LINK_ONCE);
4160
4161 /* Flags might not be set yet. */
4162 if (!link_once_flags
4163 && strncmp (segment_name (sec), ".gnu.linkonce.", linkonce_len) == 0)
4164 link_once_flags = SEC_LINK_ONCE;
4165
4166 return (link_once_flags != 0);
4167 }
4168
4169
4170 static void
4171 xtensa_add_literal_sym (symbolS *sym)
4172 {
4173 sym_list *l;
4174
4175 l = XNEW (sym_list);
4176 l->sym = sym;
4177 l->next = literal_syms;
4178 literal_syms = l;
4179 }
4180
4181
4182 static symbolS *
4183 xtensa_create_literal_symbol (segT sec, fragS *frag)
4184 {
4185 static int lit_num = 0;
4186 static char name[256];
4187 symbolS *symbolP;
4188
4189 sprintf (name, ".L_lit_sym%d", lit_num);
4190
4191 /* Create a local symbol. If it is in a linkonce section, we have to
4192 be careful to make sure that if it is used in a relocation that the
4193 symbol will be in the output file. */
4194 if (get_is_linkonce_section (stdoutput, sec))
4195 {
4196 symbolP = symbol_new (name, sec, frag, 0);
4197 S_CLEAR_EXTERNAL (symbolP);
4198 /* symbolP->local = 1; */
4199 }
4200 else
4201 symbolP = symbol_new (name, sec, frag, 0);
4202
4203 xtensa_add_literal_sym (symbolP);
4204
4205 lit_num++;
4206 return symbolP;
4207 }
4208
4209
4210 /* Currently all literals that are generated here are 32-bit L32R targets. */
4211
4212 static symbolS *
4213 xg_assemble_literal (/* const */ TInsn *insn)
4214 {
4215 emit_state state;
4216 symbolS *lit_sym = NULL;
4217 bfd_reloc_code_real_type reloc;
4218 bfd_boolean pcrel = FALSE;
4219 char *p;
4220
4221 /* size = 4 for L32R. It could easily be larger when we move to
4222 larger constants. Add a parameter later. */
4223 offsetT litsize = 4;
4224 offsetT litalign = 2; /* 2^2 = 4 */
4225 expressionS saved_loc;
4226 expressionS * emit_val;
4227
4228 set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ());
4229
4230 gas_assert (insn->insn_type == ITYPE_LITERAL);
4231 gas_assert (insn->ntok == 1); /* must be only one token here */
4232
4233 xtensa_switch_to_literal_fragment (&state);
4234
4235 emit_val = &insn->tok[0];
4236 if (emit_val->X_op == O_big)
4237 {
4238 int size = emit_val->X_add_number * CHARS_PER_LITTLENUM;
4239 if (size > litsize)
4240 {
4241 /* This happens when someone writes a "movi a2, big_number". */
4242 as_bad_where (frag_now->fr_file, frag_now->fr_line,
4243 _("invalid immediate"));
4244 xtensa_restore_emit_state (&state);
4245 return NULL;
4246 }
4247 }
4248
4249 /* Force a 4-byte align here. Note that this opens a new frag, so all
4250 literals done with this function have a frag to themselves. That's
4251 important for the way text section literals work. */
4252 frag_align (litalign, 0, 0);
4253 record_alignment (now_seg, litalign);
4254
4255 switch (emit_val->X_op)
4256 {
4257 case O_pcrel:
4258 pcrel = TRUE;
4259 /* fall through */
4260 case O_pltrel:
4261 case O_tlsfunc:
4262 case O_tlsarg:
4263 case O_tpoff:
4264 case O_dtpoff:
4265 p = frag_more (litsize);
4266 xtensa_set_frag_assembly_state (frag_now);
4267 reloc = map_operator_to_reloc (emit_val->X_op, TRUE);
4268 if (emit_val->X_add_symbol)
4269 emit_val->X_op = O_symbol;
4270 else
4271 emit_val->X_op = O_constant;
4272 fix_new_exp (frag_now, p - frag_now->fr_literal,
4273 litsize, emit_val, pcrel, reloc);
4274 break;
4275
4276 default:
4277 emit_expr (emit_val, litsize);
4278 break;
4279 }
4280
4281 gas_assert (frag_now->tc_frag_data.literal_frag == NULL);
4282 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4283 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4284 lit_sym = frag_now->fr_symbol;
4285
4286 /* Go back. */
4287 xtensa_restore_emit_state (&state);
4288 return lit_sym;
4289 }
4290
4291
4292 static void
4293 xg_assemble_literal_space (/* const */ int size, int slot)
4294 {
4295 emit_state state;
4296 /* We might have to do something about this alignment. It only
4297 takes effect if something is placed here. */
4298 offsetT litalign = 2; /* 2^2 = 4 */
4299 fragS *lit_saved_frag;
4300
4301 gas_assert (size % 4 == 0);
4302
4303 xtensa_switch_to_literal_fragment (&state);
4304
4305 /* Force a 4-byte align here. */
4306 frag_align (litalign, 0, 0);
4307 record_alignment (now_seg, litalign);
4308
4309 frag_grow (size);
4310
4311 lit_saved_frag = frag_now;
4312 frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg);
4313 frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now);
4314 xg_finish_frag (0, RELAX_LITERAL, 0, size, FALSE);
4315
4316 /* Go back. */
4317 xtensa_restore_emit_state (&state);
4318 frag_now->tc_frag_data.literal_frags[slot] = lit_saved_frag;
4319 }
4320
4321
4322 /* Put in a fixup record based on the opcode.
4323 Return TRUE on success. */
4324
4325 static bfd_boolean
4326 xg_add_opcode_fix (TInsn *tinsn,
4327 int opnum,
4328 xtensa_format fmt,
4329 int slot,
4330 expressionS *exp,
4331 fragS *fragP,
4332 offsetT offset)
4333 {
4334 xtensa_opcode opcode = tinsn->opcode;
4335 bfd_reloc_code_real_type reloc;
4336 reloc_howto_type *howto;
4337 int fmt_length;
4338 fixS *the_fix;
4339
4340 reloc = BFD_RELOC_NONE;
4341
4342 /* First try the special cases for "alternate" relocs. */
4343 if (opcode == xtensa_l32r_opcode)
4344 {
4345 if (fragP->tc_frag_data.use_absolute_literals)
4346 reloc = encode_alt_reloc (slot);
4347 }
4348 else if (opcode == xtensa_const16_opcode)
4349 {
4350 if (exp->X_op == O_lo16)
4351 {
4352 reloc = encode_reloc (slot);
4353 exp->X_op = O_symbol;
4354 }
4355 else if (exp->X_op == O_hi16)
4356 {
4357 reloc = encode_alt_reloc (slot);
4358 exp->X_op = O_symbol;
4359 }
4360 }
4361
4362 if (opnum != get_relaxable_immed (opcode))
4363 {
4364 as_bad (_("invalid relocation for operand %i of '%s'"),
4365 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4366 return FALSE;
4367 }
4368
4369 /* Handle erroneous "@h" and "@l" expressions here before they propagate
4370 into the symbol table where the generic portions of the assembler
4371 won't know what to do with them. */
4372 if (exp->X_op == O_lo16 || exp->X_op == O_hi16)
4373 {
4374 as_bad (_("invalid expression for operand %i of '%s'"),
4375 opnum + 1, xtensa_opcode_name (xtensa_default_isa, opcode));
4376 return FALSE;
4377 }
4378
4379 /* Next try the generic relocs. */
4380 if (reloc == BFD_RELOC_NONE)
4381 reloc = encode_reloc (slot);
4382 if (reloc == BFD_RELOC_NONE)
4383 {
4384 as_bad (_("invalid relocation in instruction slot %i"), slot);
4385 return FALSE;
4386 }
4387
4388 howto = bfd_reloc_type_lookup (stdoutput, reloc);
4389 if (!howto)
4390 {
4391 as_bad (_("undefined symbol for opcode \"%s\""),
4392 xtensa_opcode_name (xtensa_default_isa, opcode));
4393 return FALSE;
4394 }
4395
4396 fmt_length = xtensa_format_length (xtensa_default_isa, fmt);
4397 the_fix = fix_new_exp (fragP, offset, fmt_length, exp,
4398 howto->pc_relative, reloc);
4399 the_fix->fx_no_overflow = 1;
4400 the_fix->tc_fix_data.X_add_symbol = exp->X_add_symbol;
4401 the_fix->tc_fix_data.X_add_number = exp->X_add_number;
4402 the_fix->tc_fix_data.slot = slot;
4403
4404 return TRUE;
4405 }
4406
4407
4408 static bfd_boolean
4409 xg_emit_insn_to_buf (TInsn *tinsn,
4410 char *buf,
4411 fragS *fragP,
4412 offsetT offset,
4413 bfd_boolean build_fix)
4414 {
4415 static xtensa_insnbuf insnbuf = NULL;
4416 bfd_boolean has_symbolic_immed = FALSE;
4417 bfd_boolean ok = TRUE;
4418
4419 if (!insnbuf)
4420 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4421
4422 has_symbolic_immed = tinsn_to_insnbuf (tinsn, insnbuf);
4423 if (has_symbolic_immed && build_fix)
4424 {
4425 /* Add a fixup. */
4426 xtensa_format fmt = xg_get_single_format (tinsn->opcode);
4427 int slot = xg_get_single_slot (tinsn->opcode);
4428 int opnum = get_relaxable_immed (tinsn->opcode);
4429 expressionS *exp = &tinsn->tok[opnum];
4430
4431 if (!xg_add_opcode_fix (tinsn, opnum, fmt, slot, exp, fragP, offset))
4432 ok = FALSE;
4433 }
4434 fragP->tc_frag_data.is_insn = TRUE;
4435 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4436 (unsigned char *) buf, 0);
4437 return ok;
4438 }
4439
4440
4441 static void
4442 xg_resolve_literals (TInsn *insn, symbolS *lit_sym)
4443 {
4444 symbolS *sym = get_special_literal_symbol ();
4445 int i;
4446 if (lit_sym == 0)
4447 return;
4448 gas_assert (insn->insn_type == ITYPE_INSN);
4449 for (i = 0; i < insn->ntok; i++)
4450 if (insn->tok[i].X_add_symbol == sym)
4451 insn->tok[i].X_add_symbol = lit_sym;
4452
4453 }
4454
4455
4456 static void
4457 xg_resolve_labels (TInsn *insn, symbolS *label_sym)
4458 {
4459 symbolS *sym = get_special_label_symbol ();
4460 int i;
4461 for (i = 0; i < insn->ntok; i++)
4462 if (insn->tok[i].X_add_symbol == sym)
4463 insn->tok[i].X_add_symbol = label_sym;
4464
4465 }
4466
4467
4468 /* Return TRUE if the instruction can write to the specified
4469 integer register. */
4470
4471 static bfd_boolean
4472 is_register_writer (const TInsn *insn, const char *regset, int regnum)
4473 {
4474 int i;
4475 int num_ops;
4476 xtensa_isa isa = xtensa_default_isa;
4477
4478 num_ops = xtensa_opcode_num_operands (isa, insn->opcode);
4479
4480 for (i = 0; i < num_ops; i++)
4481 {
4482 char inout;
4483 inout = xtensa_operand_inout (isa, insn->opcode, i);
4484 if ((inout == 'o' || inout == 'm')
4485 && xtensa_operand_is_register (isa, insn->opcode, i) == 1)
4486 {
4487 xtensa_regfile opnd_rf =
4488 xtensa_operand_regfile (isa, insn->opcode, i);
4489 if (!strcmp (xtensa_regfile_shortname (isa, opnd_rf), regset))
4490 {
4491 if ((insn->tok[i].X_op == O_register)
4492 && (insn->tok[i].X_add_number == regnum))
4493 return TRUE;
4494 }
4495 }
4496 }
4497 return FALSE;
4498 }
4499
4500
4501 static bfd_boolean
4502 is_bad_loopend_opcode (const TInsn *tinsn)
4503 {
4504 xtensa_opcode opcode = tinsn->opcode;
4505
4506 if (opcode == XTENSA_UNDEFINED)
4507 return FALSE;
4508
4509 if (opcode == xtensa_call0_opcode
4510 || opcode == xtensa_callx0_opcode
4511 || opcode == xtensa_call4_opcode
4512 || opcode == xtensa_callx4_opcode
4513 || opcode == xtensa_call8_opcode
4514 || opcode == xtensa_callx8_opcode
4515 || opcode == xtensa_call12_opcode
4516 || opcode == xtensa_callx12_opcode
4517 || opcode == xtensa_isync_opcode
4518 || opcode == xtensa_ret_opcode
4519 || opcode == xtensa_ret_n_opcode
4520 || opcode == xtensa_retw_opcode
4521 || opcode == xtensa_retw_n_opcode
4522 || opcode == xtensa_waiti_opcode
4523 || opcode == xtensa_rsr_lcount_opcode)
4524 return TRUE;
4525
4526 return FALSE;
4527 }
4528
4529
4530 /* Labels that begin with ".Ln" or ".LM" are unaligned.
4531 This allows the debugger to add unaligned labels.
4532 Also, the assembler generates stabs labels that need
4533 not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */
4534
4535 static bfd_boolean
4536 is_unaligned_label (symbolS *sym)
4537 {
4538 const char *name = S_GET_NAME (sym);
4539 static size_t fake_size = 0;
4540
4541 if (name
4542 && name[0] == '.'
4543 && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M'))
4544 return TRUE;
4545
4546 /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */
4547 if (fake_size == 0)
4548 fake_size = strlen (FAKE_LABEL_NAME);
4549
4550 if (name
4551 && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0
4552 && (name[fake_size] == 'F'
4553 || name[fake_size] == 'L'
4554 || (name[fake_size] == 'e'
4555 && strncmp ("endfunc", name+fake_size, 7) == 0)))
4556 return TRUE;
4557
4558 return FALSE;
4559 }
4560
4561
4562 static fragS *
4563 next_non_empty_frag (const fragS *fragP)
4564 {
4565 fragS *next_fragP = fragP->fr_next;
4566
4567 /* Sometimes an empty will end up here due storage allocation issues.
4568 So we have to skip until we find something legit. */
4569 while (next_fragP && next_fragP->fr_fix == 0)
4570 next_fragP = next_fragP->fr_next;
4571
4572 if (next_fragP == NULL || next_fragP->fr_fix == 0)
4573 return NULL;
4574
4575 return next_fragP;
4576 }
4577
4578
4579 static bfd_boolean
4580 next_frag_opcode_is_loop (const fragS *fragP, xtensa_opcode *opcode)
4581 {
4582 xtensa_opcode out_opcode;
4583 const fragS *next_fragP = next_non_empty_frag (fragP);
4584
4585 if (next_fragP == NULL)
4586 return FALSE;
4587
4588 out_opcode = get_opcode_from_buf (next_fragP->fr_literal, 0);
4589 if (xtensa_opcode_is_loop (xtensa_default_isa, out_opcode) == 1)
4590 {
4591 *opcode = out_opcode;
4592 return TRUE;
4593 }
4594 return FALSE;
4595 }
4596
4597
4598 static int
4599 frag_format_size (const fragS *fragP)
4600 {
4601 static xtensa_insnbuf insnbuf = NULL;
4602 xtensa_isa isa = xtensa_default_isa;
4603 xtensa_format fmt;
4604 int fmt_size;
4605
4606 if (!insnbuf)
4607 insnbuf = xtensa_insnbuf_alloc (isa);
4608
4609 if (fragP == NULL)
4610 return XTENSA_UNDEFINED;
4611
4612 xtensa_insnbuf_from_chars (isa, insnbuf,
4613 (unsigned char *) fragP->fr_literal, 0);
4614
4615 fmt = xtensa_format_decode (isa, insnbuf);
4616 if (fmt == XTENSA_UNDEFINED)
4617 return XTENSA_UNDEFINED;
4618 fmt_size = xtensa_format_length (isa, fmt);
4619
4620 /* If the next format won't be changing due to relaxation, just
4621 return the length of the first format. */
4622 if (fragP->fr_opcode != fragP->fr_literal)
4623 return fmt_size;
4624
4625 /* If during relaxation we have to pull an instruction out of a
4626 multi-slot instruction, we will return the more conservative
4627 number. This works because alignment on bigger instructions
4628 is more restrictive than alignment on smaller instructions.
4629 This is more conservative than we would like, but it happens
4630 infrequently. */
4631
4632 if (xtensa_format_num_slots (xtensa_default_isa, fmt) > 1)
4633 return fmt_size;
4634
4635 /* If we aren't doing one of our own relaxations or it isn't
4636 slot-based, then the insn size won't change. */
4637 if (fragP->fr_type != rs_machine_dependent)
4638 return fmt_size;
4639 if (fragP->fr_subtype != RELAX_SLOTS)
4640 return fmt_size;
4641
4642 /* If an instruction is about to grow, return the longer size. */
4643 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP1
4644 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP2
4645 || fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED_STEP3)
4646 {
4647 /* For most frags at RELAX_IMMED_STEPX, with X > 0, the first
4648 instruction in the relaxed version is of length 3. (The case
4649 where we have to pull the instruction out of a FLIX bundle
4650 is handled conservatively above.) However, frags with opcodes
4651 that are expanding to wide branches end up having formats that
4652 are not determinable by the RELAX_IMMED_STEPX enumeration, and
4653 we can't tell directly what format the relaxer picked. This
4654 is a wart in the design of the relaxer that should someday be
4655 fixed, but would require major changes, or at least should
4656 be accompanied by major changes to make use of that data.
4657
4658 In any event, we can tell that we are expanding from a single-slot
4659 format to a wider one with the logic below. */
4660
4661 int i;
4662 int relaxed_size = fmt_size + fragP->tc_frag_data.text_expansion[0];
4663
4664 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
4665 {
4666 if (relaxed_size == xtensa_format_length (isa, i))
4667 return relaxed_size;
4668 }
4669
4670 return 3;
4671 }
4672
4673 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
4674 return 2 + fragP->tc_frag_data.text_expansion[0];
4675
4676 return fmt_size;
4677 }
4678
4679
4680 static int
4681 next_frag_format_size (const fragS *fragP)
4682 {
4683 const fragS *next_fragP = next_non_empty_frag (fragP);
4684 return frag_format_size (next_fragP);
4685 }
4686
4687
4688 /* In early Xtensa Processors, for reasons that are unclear, the ISA
4689 required two-byte instructions to be treated as three-byte instructions
4690 for loop instruction alignment. This restriction was removed beginning
4691 with Xtensa LX. Now the only requirement on loop instruction alignment
4692 is that the first instruction of the loop must appear at an address that
4693 does not cross a fetch boundary. */
4694
4695 static int
4696 get_loop_align_size (int insn_size)
4697 {
4698 if (insn_size == XTENSA_UNDEFINED)
4699 return xtensa_fetch_width;
4700
4701 if (enforce_three_byte_loop_align && insn_size == 2)
4702 return 3;
4703
4704 return insn_size;
4705 }
4706
4707
4708 /* If the next legit fragment is an end-of-loop marker,
4709 switch its state so it will instantiate a NOP. */
4710
4711 static void
4712 update_next_frag_state (fragS *fragP)
4713 {
4714 fragS *next_fragP = fragP->fr_next;
4715 fragS *new_target = NULL;
4716
4717 if (align_targets)
4718 {
4719 /* We are guaranteed there will be one of these... */
4720 while (!(next_fragP->fr_type == rs_machine_dependent
4721 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4722 || next_fragP->fr_subtype == RELAX_UNREACHABLE)))
4723 next_fragP = next_fragP->fr_next;
4724
4725 gas_assert (next_fragP->fr_type == rs_machine_dependent
4726 && (next_fragP->fr_subtype == RELAX_MAYBE_UNREACHABLE
4727 || next_fragP->fr_subtype == RELAX_UNREACHABLE));
4728
4729 /* ...and one of these. */
4730 new_target = next_fragP->fr_next;
4731 while (!(new_target->fr_type == rs_machine_dependent
4732 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4733 || new_target->fr_subtype == RELAX_DESIRE_ALIGN)))
4734 new_target = new_target->fr_next;
4735
4736 gas_assert (new_target->fr_type == rs_machine_dependent
4737 && (new_target->fr_subtype == RELAX_MAYBE_DESIRE_ALIGN
4738 || new_target->fr_subtype == RELAX_DESIRE_ALIGN));
4739 }
4740
4741 while (next_fragP && next_fragP->fr_fix == 0)
4742 {
4743 if (next_fragP->fr_type == rs_machine_dependent
4744 && next_fragP->fr_subtype == RELAX_LOOP_END)
4745 {
4746 next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP;
4747 return;
4748 }
4749
4750 next_fragP = next_fragP->fr_next;
4751 }
4752 }
4753
4754
4755 static bfd_boolean
4756 next_frag_is_branch_target (const fragS *fragP)
4757 {
4758 /* Sometimes an empty will end up here due to storage allocation issues,
4759 so we have to skip until we find something legit. */
4760 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4761 {
4762 if (fragP->tc_frag_data.is_branch_target)
4763 return TRUE;
4764 if (fragP->fr_fix != 0)
4765 break;
4766 }
4767 return FALSE;
4768 }
4769
4770
4771 static bfd_boolean
4772 next_frag_is_loop_target (const fragS *fragP)
4773 {
4774 /* Sometimes an empty will end up here due storage allocation issues.
4775 So we have to skip until we find something legit. */
4776 for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next)
4777 {
4778 if (fragP->tc_frag_data.is_loop_target)
4779 return TRUE;
4780 if (fragP->fr_fix != 0)
4781 break;
4782 }
4783 return FALSE;
4784 }
4785
4786
4787 /* As specified in the relaxation table, when a loop instruction is
4788 relaxed, there are 24 bytes between the loop instruction itself and
4789 the first instruction in the loop. */
4790
4791 #define RELAXED_LOOP_INSN_BYTES 24
4792
4793 static addressT
4794 next_frag_pre_opcode_bytes (const fragS *fragp)
4795 {
4796 const fragS *next_fragp = fragp->fr_next;
4797 xtensa_opcode next_opcode;
4798
4799 if (!next_frag_opcode_is_loop (fragp, &next_opcode))
4800 return 0;
4801
4802 /* Sometimes an empty will end up here due to storage allocation issues,
4803 so we have to skip until we find something legit. */
4804 while (next_fragp->fr_fix == 0)
4805 next_fragp = next_fragp->fr_next;
4806
4807 if (next_fragp->fr_type != rs_machine_dependent)
4808 return 0;
4809
4810 /* There is some implicit knowledge encoded in here.
4811 The LOOP instructions that are NOT RELAX_IMMED have
4812 been relaxed. Note that we can assume that the LOOP
4813 instruction is in slot 0 because loops aren't bundleable. */
4814 if (next_fragp->tc_frag_data.slot_subtypes[0] > RELAX_IMMED)
4815 return get_expanded_loop_offset (next_opcode) + RELAXED_LOOP_INSN_BYTES;
4816
4817 return 0;
4818 }
4819
4820
4821 /* Mark a location where we can later insert literal frags. Update
4822 the section's literal_pool_loc, so subsequent literals can be
4823 placed nearest to their use. */
4824
4825 static void
4826 xtensa_mark_literal_pool_location (void)
4827 {
4828 /* Any labels pointing to the current location need
4829 to be adjusted to after the literal pool. */
4830 fragS *pool_location;
4831
4832 if (use_literal_section)
4833 return;
4834
4835 /* We stash info in these frags so we can later move the literal's
4836 fixes into this frchain's fix list. */
4837 pool_location = frag_now;
4838 frag_now->tc_frag_data.lit_frchain = frchain_now;
4839 frag_now->tc_frag_data.literal_frag = frag_now;
4840 /* Just record this frag. */
4841 xtensa_maybe_create_literal_pool_frag (FALSE, FALSE);
4842 frag_variant (rs_machine_dependent, 0, 0,
4843 RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL);
4844 xtensa_set_frag_assembly_state (frag_now);
4845 frag_now->tc_frag_data.lit_seg = now_seg;
4846 frag_variant (rs_machine_dependent, 0, 0,
4847 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
4848 xtensa_set_frag_assembly_state (frag_now);
4849
4850 set_literal_pool_location (now_seg, pool_location);
4851 }
4852
4853
4854 /* Build a nop of the correct size into tinsn. */
4855
4856 static void
4857 build_nop (TInsn *tinsn, int size)
4858 {
4859 tinsn_init (tinsn);
4860 switch (size)
4861 {
4862 case 2:
4863 tinsn->opcode = xtensa_nop_n_opcode;
4864 tinsn->ntok = 0;
4865 if (tinsn->opcode == XTENSA_UNDEFINED)
4866 as_fatal (_("opcode 'NOP.N' unavailable in this configuration"));
4867 break;
4868
4869 case 3:
4870 if (xtensa_nop_opcode == XTENSA_UNDEFINED)
4871 {
4872 tinsn->opcode = xtensa_or_opcode;
4873 set_expr_const (&tinsn->tok[0], 1);
4874 set_expr_const (&tinsn->tok[1], 1);
4875 set_expr_const (&tinsn->tok[2], 1);
4876 tinsn->ntok = 3;
4877 }
4878 else
4879 tinsn->opcode = xtensa_nop_opcode;
4880
4881 gas_assert (tinsn->opcode != XTENSA_UNDEFINED);
4882 }
4883 }
4884
4885
4886 /* Assemble a NOP of the requested size in the buffer. User must have
4887 allocated "buf" with at least "size" bytes. */
4888
4889 static void
4890 assemble_nop (int size, char *buf)
4891 {
4892 static xtensa_insnbuf insnbuf = NULL;
4893 TInsn tinsn;
4894
4895 build_nop (&tinsn, size);
4896
4897 if (!insnbuf)
4898 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
4899
4900 tinsn_to_insnbuf (&tinsn, insnbuf);
4901 xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf,
4902 (unsigned char *) buf, 0);
4903 }
4904
4905
4906 /* Return the number of bytes for the offset of the expanded loop
4907 instruction. This should be incorporated into the relaxation
4908 specification but is hard-coded here. This is used to auto-align
4909 the loop instruction. It is invalid to call this function if the
4910 configuration does not have loops or if the opcode is not a loop
4911 opcode. */
4912
4913 static addressT
4914 get_expanded_loop_offset (xtensa_opcode opcode)
4915 {
4916 /* This is the OFFSET of the loop instruction in the expanded loop.
4917 This MUST correspond directly to the specification of the loop
4918 expansion. It will be validated on fragment conversion. */
4919 gas_assert (opcode != XTENSA_UNDEFINED);
4920 if (opcode == xtensa_loop_opcode)
4921 return 0;
4922 if (opcode == xtensa_loopnez_opcode)
4923 return 3;
4924 if (opcode == xtensa_loopgtz_opcode)
4925 return 6;
4926 as_fatal (_("get_expanded_loop_offset: invalid opcode"));
4927 return 0;
4928 }
4929
4930
4931 static fragS *
4932 get_literal_pool_location (segT seg)
4933 {
4934 if (auto_litpools)
4935 {
4936 struct litpool_seg *lps = litpool_seg_list.next;
4937 struct litpool_frag *lpf;
4938 for ( ; lps && lps->seg->id != seg->id; lps = lps->next)
4939 ;
4940 if (lps)
4941 {
4942 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4943 { /* Skip "candidates" for now. */
4944 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN &&
4945 lpf->priority == 1)
4946 return lpf->fragP;
4947 }
4948 /* Must convert a lower-priority pool. */
4949 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4950 {
4951 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN)
4952 return lpf->fragP;
4953 }
4954 /* Still no match -- try for a low priority pool. */
4955 for (lpf = lps->frag_list.prev; lpf->fragP; lpf = lpf->prev)
4956 {
4957 if (lpf->fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
4958 return lpf->fragP;
4959 }
4960 }
4961 }
4962 return seg_info (seg)->tc_segment_info_data.literal_pool_loc;
4963 }
4964
4965
4966 static void
4967 set_literal_pool_location (segT seg, fragS *literal_pool_loc)
4968 {
4969 seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc;
4970 }
4971
4972
4973 /* Set frag assembly state should be called when a new frag is
4974 opened and after a frag has been closed. */
4975
4976 static void
4977 xtensa_set_frag_assembly_state (fragS *fragP)
4978 {
4979 if (!density_supported)
4980 fragP->tc_frag_data.is_no_density = TRUE;
4981
4982 /* This function is called from subsegs_finish, which is called
4983 after xtensa_end, so we can't use "use_transform" or
4984 "use_schedule" here. */
4985 if (!directive_state[directive_transform])
4986 fragP->tc_frag_data.is_no_transform = TRUE;
4987 if (directive_state[directive_longcalls])
4988 fragP->tc_frag_data.use_longcalls = TRUE;
4989 fragP->tc_frag_data.use_absolute_literals =
4990 directive_state[directive_absolute_literals];
4991 fragP->tc_frag_data.is_assembly_state_set = TRUE;
4992 }
4993
4994
4995 static bfd_boolean
4996 relaxable_section (asection *sec)
4997 {
4998 return ((sec->flags & SEC_DEBUGGING) == 0
4999 && strcmp (sec->name, ".eh_frame") != 0);
5000 }
5001
5002
5003 static void
5004 xtensa_mark_frags_for_org (void)
5005 {
5006 segT *seclist;
5007
5008 /* Walk over each fragment of all of the current segments. If we find
5009 a .org frag in any of the segments, mark all frags prior to it as
5010 "no transform", which will prevent linker optimizations from messing
5011 up the .org distance. This should be done after
5012 xtensa_find_unmarked_state_frags, because we don't want to worry here
5013 about that function trashing the data we save here. */
5014
5015 for (seclist = &stdoutput->sections;
5016 seclist && *seclist;
5017 seclist = &(*seclist)->next)
5018 {
5019 segT sec = *seclist;
5020 segment_info_type *seginfo;
5021 fragS *fragP;
5022 flagword flags;
5023 flags = bfd_section_flags (sec);
5024 if (flags & SEC_DEBUGGING)
5025 continue;
5026 if (!(flags & SEC_ALLOC))
5027 continue;
5028
5029 seginfo = seg_info (sec);
5030 if (seginfo && seginfo->frchainP)
5031 {
5032 fragS *last_fragP = seginfo->frchainP->frch_root;
5033 for (fragP = seginfo->frchainP->frch_root; fragP;
5034 fragP = fragP->fr_next)
5035 {
5036 /* cvt_frag_to_fill has changed the fr_type of org frags to
5037 rs_fill, so use the value as cached in rs_subtype here. */
5038 if (fragP->fr_subtype == RELAX_ORG)
5039 {
5040 while (last_fragP != fragP->fr_next)
5041 {
5042 last_fragP->tc_frag_data.is_no_transform = TRUE;
5043 last_fragP = last_fragP->fr_next;
5044 }
5045 }
5046 }
5047 }
5048 }
5049 }
5050
5051
5052 static void
5053 xtensa_find_unmarked_state_frags (void)
5054 {
5055 segT *seclist;
5056
5057 /* Walk over each fragment of all of the current segments. For each
5058 unmarked fragment, mark it with the same info as the previous
5059 fragment. */
5060 for (seclist = &stdoutput->sections;
5061 seclist && *seclist;
5062 seclist = &(*seclist)->next)
5063 {
5064 segT sec = *seclist;
5065 segment_info_type *seginfo;
5066 fragS *fragP;
5067 flagword flags;
5068 flags = bfd_section_flags (sec);
5069 if (flags & SEC_DEBUGGING)
5070 continue;
5071 if (!(flags & SEC_ALLOC))
5072 continue;
5073
5074 seginfo = seg_info (sec);
5075 if (seginfo && seginfo->frchainP)
5076 {
5077 fragS *last_fragP = 0;
5078 for (fragP = seginfo->frchainP->frch_root; fragP;
5079 fragP = fragP->fr_next)
5080 {
5081 if (fragP->fr_fix != 0
5082 && !fragP->tc_frag_data.is_assembly_state_set)
5083 {
5084 if (last_fragP == 0)
5085 {
5086 as_warn_where (fragP->fr_file, fragP->fr_line,
5087 _("assembly state not set for first frag in section %s"),
5088 sec->name);
5089 }
5090 else
5091 {
5092 fragP->tc_frag_data.is_assembly_state_set = TRUE;
5093 fragP->tc_frag_data.is_no_density =
5094 last_fragP->tc_frag_data.is_no_density;
5095 fragP->tc_frag_data.is_no_transform =
5096 last_fragP->tc_frag_data.is_no_transform;
5097 fragP->tc_frag_data.use_longcalls =
5098 last_fragP->tc_frag_data.use_longcalls;
5099 fragP->tc_frag_data.use_absolute_literals =
5100 last_fragP->tc_frag_data.use_absolute_literals;
5101 }
5102 }
5103 if (fragP->tc_frag_data.is_assembly_state_set)
5104 last_fragP = fragP;
5105 }
5106 }
5107 }
5108 }
5109
5110
5111 static void
5112 xtensa_find_unaligned_branch_targets (bfd *abfd ATTRIBUTE_UNUSED,
5113 asection *sec,
5114 void *unused ATTRIBUTE_UNUSED)
5115 {
5116 flagword flags = bfd_section_flags (sec);
5117 segment_info_type *seginfo = seg_info (sec);
5118 fragS *frag = seginfo->frchainP->frch_root;
5119
5120 if (flags & SEC_CODE)
5121 {
5122 xtensa_isa isa = xtensa_default_isa;
5123 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5124 while (frag != NULL)
5125 {
5126 if (frag->tc_frag_data.is_branch_target)
5127 {
5128 int op_size;
5129 addressT branch_align, frag_addr;
5130 xtensa_format fmt;
5131
5132 xtensa_insnbuf_from_chars
5133 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5134 fmt = xtensa_format_decode (isa, insnbuf);
5135 op_size = xtensa_format_length (isa, fmt);
5136 branch_align = 1 << branch_align_power (sec);
5137 frag_addr = frag->fr_address % branch_align;
5138 if (frag_addr + op_size > branch_align)
5139 as_warn_where (frag->fr_file, frag->fr_line,
5140 _("unaligned branch target: %d bytes at 0x%lx"),
5141 op_size, (long) frag->fr_address);
5142 }
5143 frag = frag->fr_next;
5144 }
5145 xtensa_insnbuf_free (isa, insnbuf);
5146 }
5147 }
5148
5149
5150 static void
5151 xtensa_find_unaligned_loops (bfd *abfd ATTRIBUTE_UNUSED,
5152 asection *sec,
5153 void *unused ATTRIBUTE_UNUSED)
5154 {
5155 flagword flags = bfd_section_flags (sec);
5156 segment_info_type *seginfo = seg_info (sec);
5157 fragS *frag = seginfo->frchainP->frch_root;
5158 xtensa_isa isa = xtensa_default_isa;
5159
5160 if (flags & SEC_CODE)
5161 {
5162 xtensa_insnbuf insnbuf = xtensa_insnbuf_alloc (isa);
5163 while (frag != NULL)
5164 {
5165 if (frag->tc_frag_data.is_first_loop_insn)
5166 {
5167 int op_size;
5168 addressT frag_addr;
5169 xtensa_format fmt;
5170
5171 if (frag->fr_fix == 0)
5172 frag = next_non_empty_frag (frag);
5173
5174 if (frag)
5175 {
5176 xtensa_insnbuf_from_chars
5177 (isa, insnbuf, (unsigned char *) frag->fr_literal, 0);
5178 fmt = xtensa_format_decode (isa, insnbuf);
5179 op_size = xtensa_format_length (isa, fmt);
5180 frag_addr = frag->fr_address % xtensa_fetch_width;
5181
5182 if (frag_addr + op_size > xtensa_fetch_width)
5183 as_warn_where (frag->fr_file, frag->fr_line,
5184 _("unaligned loop: %d bytes at 0x%lx"),
5185 op_size, (long) frag->fr_address);
5186 }
5187 }
5188 frag = frag->fr_next;
5189 }
5190 xtensa_insnbuf_free (isa, insnbuf);
5191 }
5192 }
5193
5194
5195 static int
5196 xg_apply_fix_value (fixS *fixP, valueT val)
5197 {
5198 xtensa_isa isa = xtensa_default_isa;
5199 static xtensa_insnbuf insnbuf = NULL;
5200 static xtensa_insnbuf slotbuf = NULL;
5201 xtensa_format fmt;
5202 int slot;
5203 bfd_boolean alt_reloc;
5204 xtensa_opcode opcode;
5205 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
5206
5207 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc)
5208 || alt_reloc)
5209 as_fatal (_("unexpected fix"));
5210
5211 if (!insnbuf)
5212 {
5213 insnbuf = xtensa_insnbuf_alloc (isa);
5214 slotbuf = xtensa_insnbuf_alloc (isa);
5215 }
5216
5217 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5218 fmt = xtensa_format_decode (isa, insnbuf);
5219 if (fmt == XTENSA_UNDEFINED)
5220 as_fatal (_("undecodable fix"));
5221 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5222 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5223 if (opcode == XTENSA_UNDEFINED)
5224 as_fatal (_("undecodable fix"));
5225
5226 /* CONST16 immediates are not PC-relative, despite the fact that we
5227 reuse the normal PC-relative operand relocations for the low part
5228 of a CONST16 operand. */
5229 if (opcode == xtensa_const16_opcode)
5230 return 0;
5231
5232 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode,
5233 get_relaxable_immed (opcode), val,
5234 fixP->fx_file, fixP->fx_line);
5235
5236 xtensa_format_set_slot (isa, fmt, slot, insnbuf, slotbuf);
5237 xtensa_insnbuf_to_chars (isa, insnbuf, (unsigned char *) fixpos, 0);
5238
5239 return 1;
5240 }
5241
5242 \f
5243 /* External Functions and Other GAS Hooks. */
5244
5245 const char *
5246 xtensa_target_format (void)
5247 {
5248 return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le");
5249 }
5250
5251
5252 void
5253 xtensa_file_arch_init (bfd *abfd)
5254 {
5255 bfd_set_private_flags (abfd, 0x100 | 0x200);
5256 }
5257
5258
5259 void
5260 md_number_to_chars (char *buf, valueT val, int n)
5261 {
5262 if (target_big_endian)
5263 number_to_chars_bigendian (buf, val, n);
5264 else
5265 number_to_chars_littleendian (buf, val, n);
5266 }
5267
5268 static void
5269 xg_init_global_config (void)
5270 {
5271 target_big_endian = XCHAL_HAVE_BE;
5272
5273 density_supported = XCHAL_HAVE_DENSITY;
5274 absolute_literals_supported = XSHAL_USE_ABSOLUTE_LITERALS;
5275 xtensa_fetch_width = XCHAL_INST_FETCH_WIDTH;
5276
5277 directive_state[directive_density] = XCHAL_HAVE_DENSITY;
5278 directive_state[directive_absolute_literals] = XSHAL_USE_ABSOLUTE_LITERALS;
5279
5280 microarch_earliest = XTENSA_MARCH_EARLIEST;
5281 }
5282
5283 void
5284 xtensa_init (int argc ATTRIBUTE_UNUSED, char **argv ATTRIBUTE_UNUSED)
5285 {
5286 xg_init_global_config ();
5287 }
5288
5289 /* This function is called once, at assembler startup time. It should
5290 set up all the tables, etc. that the MD part of the assembler will
5291 need. */
5292
5293 void
5294 md_begin (void)
5295 {
5296 segT current_section = now_seg;
5297 int current_subsec = now_subseg;
5298 xtensa_isa isa;
5299 int i;
5300
5301 xtensa_default_isa = xtensa_isa_init (0, 0);
5302 isa = xtensa_default_isa;
5303
5304 linkrelax = opt_linkrelax;
5305
5306 /* Set up the literal sections. */
5307 memset (&default_lit_sections, 0, sizeof (default_lit_sections));
5308
5309 subseg_set (current_section, current_subsec);
5310
5311 xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi");
5312 xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi");
5313 xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0");
5314 xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4");
5315 xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8");
5316 xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12");
5317 xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0");
5318 xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4");
5319 xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8");
5320 xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12");
5321 xtensa_const16_opcode = xtensa_opcode_lookup (isa, "const16");
5322 xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry");
5323 xtensa_extui_opcode = xtensa_opcode_lookup (isa, "extui");
5324 xtensa_movi_opcode = xtensa_opcode_lookup (isa, "movi");
5325 xtensa_movi_n_opcode = xtensa_opcode_lookup (isa, "movi.n");
5326 xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync");
5327 xtensa_j_opcode = xtensa_opcode_lookup (isa, "j");
5328 xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx");
5329 xtensa_l32r_opcode = xtensa_opcode_lookup (isa, "l32r");
5330 xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop");
5331 xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez");
5332 xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz");
5333 xtensa_nop_opcode = xtensa_opcode_lookup (isa, "nop");
5334 xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n");
5335 xtensa_or_opcode = xtensa_opcode_lookup (isa, "or");
5336 xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret");
5337 xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n");
5338 xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw");
5339 xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n");
5340 xtensa_rsr_lcount_opcode = xtensa_opcode_lookup (isa, "rsr.lcount");
5341 xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti");
5342
5343 for (i = 0; i < xtensa_isa_num_formats (isa); i++)
5344 {
5345 int format_slots = xtensa_format_num_slots (isa, i);
5346 if (format_slots > config_max_slots)
5347 config_max_slots = format_slots;
5348 }
5349
5350 xg_init_vinsn (&cur_vinsn);
5351
5352 xtensa_num_pipe_stages = xtensa_isa_num_pipe_stages (isa);
5353
5354 init_op_placement_info_table ();
5355
5356 /* Set up the assembly state. */
5357 if (!frag_now->tc_frag_data.is_assembly_state_set)
5358 xtensa_set_frag_assembly_state (frag_now);
5359
5360 if (!use_literal_section)
5361 xtensa_mark_literal_pool_location ();
5362 }
5363
5364
5365 /* TC_INIT_FIX_DATA hook */
5366
5367 void
5368 xtensa_init_fix_data (fixS *x)
5369 {
5370 x->tc_fix_data.slot = 0;
5371 x->tc_fix_data.X_add_symbol = NULL;
5372 x->tc_fix_data.X_add_number = 0;
5373 }
5374
5375
5376 /* tc_frob_label hook */
5377
5378 void
5379 xtensa_frob_label (symbolS *sym)
5380 {
5381 float freq;
5382
5383 if (cur_vinsn.inside_bundle)
5384 {
5385 as_bad (_("labels are not valid inside bundles"));
5386 return;
5387 }
5388
5389 freq = get_subseg_target_freq (now_seg, now_subseg);
5390
5391 /* Since the label was already attached to a frag associated with the
5392 previous basic block, it now needs to be reset to the current frag. */
5393 symbol_set_frag (sym, frag_now);
5394 S_SET_VALUE (sym, (valueT) frag_now_fix ());
5395
5396 if (generating_literals)
5397 xtensa_add_literal_sym (sym);
5398 else
5399 xtensa_add_insn_label (sym);
5400
5401 if (symbol_get_tc (sym)->is_loop_target)
5402 {
5403 if ((get_last_insn_flags (now_seg, now_subseg)
5404 & FLAG_IS_BAD_LOOPEND) != 0)
5405 as_bad (_("invalid last instruction for a zero-overhead loop"));
5406
5407 xtensa_set_frag_assembly_state (frag_now);
5408 frag_var (rs_machine_dependent, 4, 4, RELAX_LOOP_END,
5409 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5410
5411 xtensa_set_frag_assembly_state (frag_now);
5412 xtensa_move_labels (frag_now, 0);
5413 }
5414
5415 /* No target aligning in the absolute section. */
5416 if (now_seg != absolute_section
5417 && !is_unaligned_label (sym)
5418 && !generating_literals)
5419 {
5420 xtensa_set_frag_assembly_state (frag_now);
5421
5422 if (do_align_targets ())
5423 frag_var (rs_machine_dependent, 0, (int) freq,
5424 RELAX_DESIRE_ALIGN_IF_TARGET, frag_now->fr_symbol,
5425 frag_now->fr_offset, NULL);
5426 else
5427 frag_var (rs_fill, 0, 0, frag_now->fr_subtype,
5428 frag_now->fr_symbol, frag_now->fr_offset, NULL);
5429 xtensa_set_frag_assembly_state (frag_now);
5430 xtensa_move_labels (frag_now, 0);
5431 }
5432
5433 /* We need to mark the following properties even if we aren't aligning. */
5434
5435 /* If the label is already known to be a branch target, i.e., a
5436 forward branch, mark the frag accordingly. Backward branches
5437 are handled by xg_add_branch_and_loop_targets. */
5438 if (symbol_get_tc (sym)->is_branch_target)
5439 symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE;
5440
5441 /* Loops only go forward, so they can be identified here. */
5442 if (symbol_get_tc (sym)->is_loop_target)
5443 symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE;
5444
5445 dwarf2_emit_label (sym);
5446 }
5447
5448
5449 /* tc_unrecognized_line hook */
5450
5451 int
5452 xtensa_unrecognized_line (int ch)
5453 {
5454 switch (ch)
5455 {
5456 case '{' :
5457 if (cur_vinsn.inside_bundle == 0)
5458 {
5459 /* PR8110: Cannot emit line number info inside a FLIX bundle
5460 when using --gstabs. Temporarily disable debug info. */
5461 generate_lineno_debug ();
5462 if (debug_type == DEBUG_STABS)
5463 {
5464 xt_saved_debug_type = debug_type;
5465 debug_type = DEBUG_NONE;
5466 }
5467
5468 cur_vinsn.inside_bundle = 1;
5469 }
5470 else
5471 {
5472 as_bad (_("extra opening brace"));
5473 return 0;
5474 }
5475 break;
5476
5477 case '}' :
5478 if (cur_vinsn.inside_bundle)
5479 finish_vinsn (&cur_vinsn);
5480 else
5481 {
5482 as_bad (_("extra closing brace"));
5483 return 0;
5484 }
5485 break;
5486 default:
5487 as_bad (_("syntax error"));
5488 return 0;
5489 }
5490 return 1;
5491 }
5492
5493
5494 /* md_flush_pending_output hook */
5495
5496 void
5497 xtensa_flush_pending_output (void)
5498 {
5499 /* This line fixes a bug where automatically generated gstabs info
5500 separates a function label from its entry instruction, ending up
5501 with the literal position between the function label and the entry
5502 instruction and crashing code. It only happens with --gstabs and
5503 --text-section-literals, and when several other obscure relaxation
5504 conditions are met. */
5505 if (outputting_stabs_line_debug)
5506 return;
5507
5508 if (cur_vinsn.inside_bundle)
5509 as_bad (_("missing closing brace"));
5510
5511 /* If there is a non-zero instruction fragment, close it. */
5512 if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn)
5513 {
5514 frag_wane (frag_now);
5515 frag_new (0);
5516 xtensa_set_frag_assembly_state (frag_now);
5517 }
5518 frag_now->tc_frag_data.is_insn = FALSE;
5519
5520 xtensa_clear_insn_labels ();
5521 }
5522
5523
5524 /* We had an error while parsing an instruction. The string might look
5525 like this: "insn arg1, arg2 }". If so, we need to see the closing
5526 brace and reset some fields. Otherwise, the vinsn never gets closed
5527 and the num_slots field will grow past the end of the array of slots,
5528 and bad things happen. */
5529
5530 static void
5531 error_reset_cur_vinsn (void)
5532 {
5533 if (cur_vinsn.inside_bundle)
5534 {
5535 if (*input_line_pointer == '}'
5536 || *(input_line_pointer - 1) == '}'
5537 || *(input_line_pointer - 2) == '}')
5538 xg_clear_vinsn (&cur_vinsn);
5539 }
5540 }
5541
5542
5543 void
5544 md_assemble (char *str)
5545 {
5546 xtensa_isa isa = xtensa_default_isa;
5547 char *opname;
5548 unsigned opnamelen;
5549 bfd_boolean has_underbar = FALSE;
5550 char *arg_strings[MAX_INSN_ARGS];
5551 int num_args;
5552 TInsn orig_insn; /* Original instruction from the input. */
5553
5554 tinsn_init (&orig_insn);
5555
5556 /* Split off the opcode. */
5557 opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789.");
5558 opname = xstrndup (str, opnamelen);
5559
5560 num_args = tokenize_arguments (arg_strings, str + opnamelen);
5561 if (num_args == -1)
5562 {
5563 as_bad (_("syntax error"));
5564 return;
5565 }
5566
5567 if (xg_translate_idioms (&opname, &num_args, arg_strings))
5568 return;
5569
5570 /* Check for an underbar prefix. */
5571 if (*opname == '_')
5572 {
5573 has_underbar = TRUE;
5574 opname += 1;
5575 }
5576
5577 orig_insn.insn_type = ITYPE_INSN;
5578 orig_insn.ntok = 0;
5579 orig_insn.is_specific_opcode = (has_underbar || !use_transform ());
5580 orig_insn.opcode = xtensa_opcode_lookup (isa, opname);
5581
5582 /* Special case: Check for "CALLXn.TLS" pseudo op. If found, grab its
5583 extra argument and set the opcode to "CALLXn". */
5584 if (orig_insn.opcode == XTENSA_UNDEFINED
5585 && strncasecmp (opname, "callx", 5) == 0)
5586 {
5587 unsigned long window_size;
5588 char *suffix;
5589
5590 window_size = strtoul (opname + 5, &suffix, 10);
5591 if (suffix != opname + 5
5592 && (window_size == 0
5593 || window_size == 4
5594 || window_size == 8
5595 || window_size == 12)
5596 && strcasecmp (suffix, ".tls") == 0)
5597 {
5598 switch (window_size)
5599 {
5600 case 0: orig_insn.opcode = xtensa_callx0_opcode; break;
5601 case 4: orig_insn.opcode = xtensa_callx4_opcode; break;
5602 case 8: orig_insn.opcode = xtensa_callx8_opcode; break;
5603 case 12: orig_insn.opcode = xtensa_callx12_opcode; break;
5604 }
5605
5606 if (num_args != 2)
5607 as_bad (_("wrong number of operands for '%s'"), opname);
5608 else
5609 {
5610 bfd_reloc_code_real_type reloc;
5611 char *old_input_line_pointer;
5612 expressionS *tok = &orig_insn.extra_arg;
5613
5614 old_input_line_pointer = input_line_pointer;
5615 input_line_pointer = arg_strings[num_args - 1];
5616
5617 expression (tok);
5618 if (tok->X_op == O_symbol
5619 && ((reloc = xtensa_elf_suffix (&input_line_pointer, tok))
5620 == BFD_RELOC_XTENSA_TLS_CALL))
5621 tok->X_op = map_suffix_reloc_to_operator (reloc);
5622 else
5623 as_bad (_("bad relocation expression for '%s'"), opname);
5624
5625 input_line_pointer = old_input_line_pointer;
5626 num_args -= 1;
5627 }
5628 }
5629 }
5630
5631 /* Special case: Check for "j.l" pseudo op. */
5632 if (orig_insn.opcode == XTENSA_UNDEFINED
5633 && strncasecmp (opname, "j.l", 3) == 0)
5634 {
5635 if (num_args != 2)
5636 as_bad (_("wrong number of operands for '%s'"), opname);
5637 else
5638 {
5639 char *old_input_line_pointer;
5640 expressionS *tok = &orig_insn.extra_arg;
5641
5642 old_input_line_pointer = input_line_pointer;
5643 input_line_pointer = arg_strings[num_args - 1];
5644
5645 expression_maybe_register (xtensa_jx_opcode, 0, tok);
5646 input_line_pointer = old_input_line_pointer;
5647
5648 num_args -= 1;
5649 orig_insn.opcode = xtensa_j_opcode;
5650 }
5651 }
5652
5653 if (orig_insn.opcode == XTENSA_UNDEFINED)
5654 {
5655 xtensa_format fmt = xtensa_format_lookup (isa, opname);
5656 if (fmt == XTENSA_UNDEFINED)
5657 {
5658 as_bad (_("unknown opcode or format name '%s'"), opname);
5659 error_reset_cur_vinsn ();
5660 return;
5661 }
5662 if (!cur_vinsn.inside_bundle)
5663 {
5664 as_bad (_("format names only valid inside bundles"));
5665 error_reset_cur_vinsn ();
5666 return;
5667 }
5668 if (cur_vinsn.format != XTENSA_UNDEFINED)
5669 as_warn (_("multiple formats specified for one bundle; using '%s'"),
5670 opname);
5671 cur_vinsn.format = fmt;
5672 free (has_underbar ? opname - 1 : opname);
5673 error_reset_cur_vinsn ();
5674 return;
5675 }
5676
5677 /* Parse the arguments. */
5678 if (parse_arguments (&orig_insn, num_args, arg_strings))
5679 {
5680 as_bad (_("syntax error"));
5681 error_reset_cur_vinsn ();
5682 return;
5683 }
5684
5685 /* Free the opcode and argument strings, now that they've been parsed. */
5686 free (has_underbar ? opname - 1 : opname);
5687 opname = 0;
5688 while (num_args-- > 0)
5689 free (arg_strings[num_args]);
5690
5691 /* Get expressions for invisible operands. */
5692 if (get_invisible_operands (&orig_insn))
5693 {
5694 error_reset_cur_vinsn ();
5695 return;
5696 }
5697
5698 /* Check for the right number and type of arguments. */
5699 if (tinsn_check_arguments (&orig_insn))
5700 {
5701 error_reset_cur_vinsn ();
5702 return;
5703 }
5704
5705 /* Record the line number for each TInsn, because a FLIX bundle may be
5706 spread across multiple input lines and individual instructions may be
5707 moved around in some cases. */
5708 orig_insn.loc_directive_seen = dwarf2_loc_directive_seen;
5709 dwarf2_where (&orig_insn.debug_line);
5710 dwarf2_consume_line_info ();
5711
5712 xg_add_branch_and_loop_targets (&orig_insn);
5713
5714 /* Check that immediate value for ENTRY is >= 16. */
5715 if (orig_insn.opcode == xtensa_entry_opcode && orig_insn.ntok >= 3)
5716 {
5717 expressionS *exp = &orig_insn.tok[2];
5718 if (exp->X_op == O_constant && exp->X_add_number < 16)
5719 as_warn (_("entry instruction with stack decrement < 16"));
5720 }
5721
5722 /* Finish it off:
5723 assemble_tokens (opcode, tok, ntok);
5724 expand the tokens from the orig_insn into the
5725 stack of instructions that will not expand
5726 unless required at relaxation time. */
5727
5728 if (!cur_vinsn.inside_bundle)
5729 emit_single_op (&orig_insn);
5730 else /* We are inside a bundle. */
5731 {
5732 cur_vinsn.slots[cur_vinsn.num_slots] = orig_insn;
5733 cur_vinsn.num_slots++;
5734 if (*input_line_pointer == '}'
5735 || *(input_line_pointer - 1) == '}'
5736 || *(input_line_pointer - 2) == '}')
5737 finish_vinsn (&cur_vinsn);
5738 }
5739
5740 /* We've just emitted a new instruction so clear the list of labels. */
5741 xtensa_clear_insn_labels ();
5742
5743 xtensa_check_frag_count ();
5744 }
5745
5746
5747 /* HANDLE_ALIGN hook */
5748
5749 /* For a .align directive, we mark the previous block with the alignment
5750 information. This will be placed in the object file in the
5751 property section corresponding to this section. */
5752
5753 void
5754 xtensa_handle_align (fragS *fragP)
5755 {
5756 if (linkrelax
5757 && ! fragP->tc_frag_data.is_literal
5758 && (fragP->fr_type == rs_align
5759 || fragP->fr_type == rs_align_code)
5760 && fragP->fr_offset > 0
5761 && now_seg != bss_section)
5762 {
5763 fragP->tc_frag_data.is_align = TRUE;
5764 fragP->tc_frag_data.alignment = fragP->fr_offset;
5765 }
5766
5767 if (fragP->fr_type == rs_align_test)
5768 {
5769 int count;
5770 count = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
5771 if (count != 0)
5772 as_bad_where (fragP->fr_file, fragP->fr_line,
5773 _("unaligned entry instruction"));
5774 }
5775
5776 if (linkrelax && fragP->fr_type == rs_org)
5777 fragP->fr_subtype = RELAX_ORG;
5778 }
5779
5780
5781 /* TC_FRAG_INIT hook */
5782
5783 void
5784 xtensa_frag_init (fragS *frag)
5785 {
5786 xtensa_set_frag_assembly_state (frag);
5787 }
5788
5789
5790 symbolS *
5791 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
5792 {
5793 return NULL;
5794 }
5795
5796
5797 /* Round up a section size to the appropriate boundary. */
5798
5799 valueT
5800 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
5801 {
5802 return size; /* Byte alignment is fine. */
5803 }
5804
5805
5806 long
5807 md_pcrel_from (fixS *fixP)
5808 {
5809 char *insn_p;
5810 static xtensa_insnbuf insnbuf = NULL;
5811 static xtensa_insnbuf slotbuf = NULL;
5812 int opnum;
5813 uint32 opnd_value;
5814 xtensa_opcode opcode;
5815 xtensa_format fmt;
5816 int slot;
5817 xtensa_isa isa = xtensa_default_isa;
5818 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
5819 bfd_boolean alt_reloc;
5820
5821 if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND)
5822 return 0;
5823
5824 if (fixP->fx_r_type == BFD_RELOC_32_PCREL)
5825 return addr;
5826
5827 if (!insnbuf)
5828 {
5829 insnbuf = xtensa_insnbuf_alloc (isa);
5830 slotbuf = xtensa_insnbuf_alloc (isa);
5831 }
5832
5833 insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where];
5834 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) insn_p, 0);
5835 fmt = xtensa_format_decode (isa, insnbuf);
5836
5837 if (fmt == XTENSA_UNDEFINED)
5838 as_fatal (_("bad instruction format"));
5839
5840 if (decode_reloc (fixP->fx_r_type, &slot, &alt_reloc) != 0)
5841 as_fatal (_("invalid relocation"));
5842
5843 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
5844 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
5845
5846 /* Check for "alternate" relocations (operand not specified). None
5847 of the current uses for these are really PC-relative. */
5848 if (alt_reloc || opcode == xtensa_const16_opcode)
5849 {
5850 if (opcode != xtensa_l32r_opcode
5851 && opcode != xtensa_const16_opcode)
5852 as_fatal (_("invalid relocation for '%s' instruction"),
5853 xtensa_opcode_name (isa, opcode));
5854 return 0;
5855 }
5856
5857 opnum = get_relaxable_immed (opcode);
5858 opnd_value = 0;
5859 if (xtensa_operand_is_PCrelative (isa, opcode, opnum) != 1
5860 || xtensa_operand_do_reloc (isa, opcode, opnum, &opnd_value, addr))
5861 {
5862 as_bad_where (fixP->fx_file,
5863 fixP->fx_line,
5864 _("invalid relocation for operand %d of '%s'"),
5865 opnum, xtensa_opcode_name (isa, opcode));
5866 return 0;
5867 }
5868 return 0 - opnd_value;
5869 }
5870
5871
5872 /* TC_FORCE_RELOCATION hook */
5873
5874 int
5875 xtensa_force_relocation (fixS *fix)
5876 {
5877 switch (fix->fx_r_type)
5878 {
5879 case BFD_RELOC_XTENSA_ASM_EXPAND:
5880 case BFD_RELOC_XTENSA_SLOT0_ALT:
5881 case BFD_RELOC_XTENSA_SLOT1_ALT:
5882 case BFD_RELOC_XTENSA_SLOT2_ALT:
5883 case BFD_RELOC_XTENSA_SLOT3_ALT:
5884 case BFD_RELOC_XTENSA_SLOT4_ALT:
5885 case BFD_RELOC_XTENSA_SLOT5_ALT:
5886 case BFD_RELOC_XTENSA_SLOT6_ALT:
5887 case BFD_RELOC_XTENSA_SLOT7_ALT:
5888 case BFD_RELOC_XTENSA_SLOT8_ALT:
5889 case BFD_RELOC_XTENSA_SLOT9_ALT:
5890 case BFD_RELOC_XTENSA_SLOT10_ALT:
5891 case BFD_RELOC_XTENSA_SLOT11_ALT:
5892 case BFD_RELOC_XTENSA_SLOT12_ALT:
5893 case BFD_RELOC_XTENSA_SLOT13_ALT:
5894 case BFD_RELOC_XTENSA_SLOT14_ALT:
5895 return 1;
5896 default:
5897 break;
5898 }
5899
5900 if (linkrelax && fix->fx_addsy
5901 && relaxable_section (S_GET_SEGMENT (fix->fx_addsy)))
5902 return 1;
5903
5904 return generic_force_reloc (fix);
5905 }
5906
5907
5908 /* TC_VALIDATE_FIX_SUB hook */
5909
5910 int
5911 xtensa_validate_fix_sub (fixS *fix)
5912 {
5913 segT add_symbol_segment, sub_symbol_segment;
5914
5915 /* The difference of two symbols should be resolved by the assembler when
5916 linkrelax is not set. If the linker may relax the section containing
5917 the symbols, then an Xtensa DIFF relocation must be generated so that
5918 the linker knows to adjust the difference value. */
5919 if (!linkrelax || fix->fx_addsy == NULL)
5920 return 0;
5921
5922 /* Make sure both symbols are in the same segment, and that segment is
5923 "normal" and relaxable. If the segment is not "normal", then the
5924 fix is not valid. If the segment is not "relaxable", then the fix
5925 should have been handled earlier. */
5926 add_symbol_segment = S_GET_SEGMENT (fix->fx_addsy);
5927 if (! SEG_NORMAL (add_symbol_segment) ||
5928 ! relaxable_section (add_symbol_segment))
5929 return 0;
5930 sub_symbol_segment = S_GET_SEGMENT (fix->fx_subsy);
5931 return (sub_symbol_segment == add_symbol_segment);
5932 }
5933
5934
5935 /* NO_PSEUDO_DOT hook */
5936
5937 /* This function has nothing to do with pseudo dots, but this is the
5938 nearest macro to where the check needs to take place. FIXME: This
5939 seems wrong. */
5940
5941 bfd_boolean
5942 xtensa_check_inside_bundle (void)
5943 {
5944 if (cur_vinsn.inside_bundle && input_line_pointer[-1] == '.')
5945 as_bad (_("directives are not valid inside bundles"));
5946
5947 /* This function must always return FALSE because it is called via a
5948 macro that has nothing to do with bundling. */
5949 return FALSE;
5950 }
5951
5952
5953 /* md_elf_section_change_hook */
5954
5955 void
5956 xtensa_elf_section_change_hook (void)
5957 {
5958 /* Set up the assembly state. */
5959 if (!frag_now->tc_frag_data.is_assembly_state_set)
5960 xtensa_set_frag_assembly_state (frag_now);
5961
5962 if (!use_literal_section
5963 && seg_info (now_seg)->tc_segment_info_data.literal_pool_loc == NULL
5964 && !xtensa_is_init_fini (now_seg))
5965 xtensa_mark_literal_pool_location ();
5966 }
5967
5968
5969 /* tc_fix_adjustable hook */
5970
5971 bfd_boolean
5972 xtensa_fix_adjustable (fixS *fixP)
5973 {
5974 /* We need the symbol name for the VTABLE entries. */
5975 if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
5976 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5977 return 0;
5978
5979 return 1;
5980 }
5981
5982
5983 /* tc_symbol_new_hook */
5984
5985 symbolS *expr_symbols = NULL;
5986
5987 void
5988 xtensa_symbol_new_hook (symbolS *sym)
5989 {
5990 if (is_leb128_expr && S_GET_SEGMENT (sym) == expr_section)
5991 {
5992 symbol_get_tc (sym)->next_expr_symbol = expr_symbols;
5993 expr_symbols = sym;
5994 }
5995 }
5996
5997
5998 void
5999 md_apply_fix (fixS *fixP, valueT *valP, segT seg)
6000 {
6001 char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
6002 valueT val = 0;
6003
6004 /* Subtracted symbols are only allowed for a few relocation types, and
6005 unless linkrelax is enabled, they should not make it to this point. */
6006 if (fixP->fx_subsy && !(linkrelax && (fixP->fx_r_type == BFD_RELOC_32
6007 || fixP->fx_r_type == BFD_RELOC_16
6008 || fixP->fx_r_type == BFD_RELOC_8)))
6009 as_bad_where (fixP->fx_file, fixP->fx_line, _("expression too complex"));
6010
6011 switch (fixP->fx_r_type)
6012 {
6013 case BFD_RELOC_32_PCREL:
6014 case BFD_RELOC_32:
6015 case BFD_RELOC_16:
6016 case BFD_RELOC_8:
6017 if (fixP->fx_subsy)
6018 {
6019 bfd_boolean neg = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
6020 < S_GET_VALUE (fixP->fx_subsy);
6021
6022 switch (fixP->fx_r_type)
6023 {
6024 case BFD_RELOC_8:
6025 fixP->fx_r_type = neg
6026 ? BFD_RELOC_XTENSA_NDIFF8 : BFD_RELOC_XTENSA_PDIFF8;
6027 fixP->fx_signed = 0;
6028 break;
6029 case BFD_RELOC_16:
6030 fixP->fx_r_type = neg
6031 ? BFD_RELOC_XTENSA_NDIFF16 : BFD_RELOC_XTENSA_PDIFF16;
6032 fixP->fx_signed = 0;
6033 break;
6034 case BFD_RELOC_32:
6035 fixP->fx_r_type = neg
6036 ? BFD_RELOC_XTENSA_NDIFF32 : BFD_RELOC_XTENSA_PDIFF32;
6037 fixP->fx_signed = 0;
6038 break;
6039 default:
6040 break;
6041 }
6042
6043 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
6044 - S_GET_VALUE (fixP->fx_subsy));
6045
6046 /* The difference value gets written out, and the DIFF reloc
6047 identifies the address of the subtracted symbol (i.e., the one
6048 with the lowest address). */
6049 *valP = val;
6050 fixP->fx_offset -= val;
6051 fixP->fx_subsy = NULL;
6052 }
6053 else if (! fixP->fx_addsy)
6054 {
6055 val = *valP;
6056 fixP->fx_done = 1;
6057 }
6058 else if (S_GET_SEGMENT (fixP->fx_addsy) == absolute_section)
6059 {
6060 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
6061 *valP = val;
6062 fixP->fx_done = 1;
6063 }
6064 /* fall through */
6065
6066 case BFD_RELOC_XTENSA_PLT:
6067 md_number_to_chars (fixpos, val, fixP->fx_size);
6068 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
6069 break;
6070
6071 case BFD_RELOC_XTENSA_TLSDESC_FN:
6072 case BFD_RELOC_XTENSA_TLSDESC_ARG:
6073 case BFD_RELOC_XTENSA_TLS_TPOFF:
6074 case BFD_RELOC_XTENSA_TLS_DTPOFF:
6075 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6076 md_number_to_chars (fixpos, 0, fixP->fx_size);
6077 fixP->fx_no_overflow = 0; /* Use the standard overflow check. */
6078 break;
6079
6080 case BFD_RELOC_XTENSA_SLOT0_OP:
6081 case BFD_RELOC_XTENSA_SLOT1_OP:
6082 case BFD_RELOC_XTENSA_SLOT2_OP:
6083 case BFD_RELOC_XTENSA_SLOT3_OP:
6084 case BFD_RELOC_XTENSA_SLOT4_OP:
6085 case BFD_RELOC_XTENSA_SLOT5_OP:
6086 case BFD_RELOC_XTENSA_SLOT6_OP:
6087 case BFD_RELOC_XTENSA_SLOT7_OP:
6088 case BFD_RELOC_XTENSA_SLOT8_OP:
6089 case BFD_RELOC_XTENSA_SLOT9_OP:
6090 case BFD_RELOC_XTENSA_SLOT10_OP:
6091 case BFD_RELOC_XTENSA_SLOT11_OP:
6092 case BFD_RELOC_XTENSA_SLOT12_OP:
6093 case BFD_RELOC_XTENSA_SLOT13_OP:
6094 case BFD_RELOC_XTENSA_SLOT14_OP:
6095 if (linkrelax)
6096 {
6097 /* Write the tentative value of a PC-relative relocation to a
6098 local symbol into the instruction. The value will be ignored
6099 by the linker, and it makes the object file disassembly
6100 readable when all branch targets are encoded in relocations. */
6101
6102 gas_assert (fixP->fx_addsy);
6103 if (S_GET_SEGMENT (fixP->fx_addsy) == seg
6104 && !S_FORCE_RELOC (fixP->fx_addsy, 1))
6105 {
6106 val = (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset
6107 - md_pcrel_from (fixP));
6108 (void) xg_apply_fix_value (fixP, val);
6109 }
6110 }
6111 else if (! fixP->fx_addsy)
6112 {
6113 val = *valP;
6114 if (xg_apply_fix_value (fixP, val))
6115 fixP->fx_done = 1;
6116 }
6117 break;
6118
6119 case BFD_RELOC_XTENSA_ASM_EXPAND:
6120 case BFD_RELOC_XTENSA_TLS_FUNC:
6121 case BFD_RELOC_XTENSA_TLS_ARG:
6122 case BFD_RELOC_XTENSA_TLS_CALL:
6123 case BFD_RELOC_XTENSA_SLOT0_ALT:
6124 case BFD_RELOC_XTENSA_SLOT1_ALT:
6125 case BFD_RELOC_XTENSA_SLOT2_ALT:
6126 case BFD_RELOC_XTENSA_SLOT3_ALT:
6127 case BFD_RELOC_XTENSA_SLOT4_ALT:
6128 case BFD_RELOC_XTENSA_SLOT5_ALT:
6129 case BFD_RELOC_XTENSA_SLOT6_ALT:
6130 case BFD_RELOC_XTENSA_SLOT7_ALT:
6131 case BFD_RELOC_XTENSA_SLOT8_ALT:
6132 case BFD_RELOC_XTENSA_SLOT9_ALT:
6133 case BFD_RELOC_XTENSA_SLOT10_ALT:
6134 case BFD_RELOC_XTENSA_SLOT11_ALT:
6135 case BFD_RELOC_XTENSA_SLOT12_ALT:
6136 case BFD_RELOC_XTENSA_SLOT13_ALT:
6137 case BFD_RELOC_XTENSA_SLOT14_ALT:
6138 /* These all need to be resolved at link-time. Do nothing now. */
6139 break;
6140
6141 case BFD_RELOC_VTABLE_INHERIT:
6142 case BFD_RELOC_VTABLE_ENTRY:
6143 fixP->fx_done = 0;
6144 break;
6145
6146 default:
6147 as_bad (_("unhandled local relocation fix %s"),
6148 bfd_get_reloc_code_name (fixP->fx_r_type));
6149 }
6150 }
6151
6152
6153 const char *
6154 md_atof (int type, char *litP, int *sizeP)
6155 {
6156 return ieee_md_atof (type, litP, sizeP, target_big_endian);
6157 }
6158
6159
6160 int
6161 md_estimate_size_before_relax (fragS *fragP, segT seg ATTRIBUTE_UNUSED)
6162 {
6163 return total_frag_text_expansion (fragP);
6164 }
6165
6166
6167 /* Translate internal representation of relocation info to BFD target
6168 format. */
6169
6170 arelent *
6171 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
6172 {
6173 arelent *reloc;
6174
6175 reloc = XNEW (arelent);
6176 reloc->sym_ptr_ptr = XNEW (asymbol *);
6177 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6178 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
6179
6180 /* Make sure none of our internal relocations make it this far.
6181 They'd better have been fully resolved by this point. */
6182 gas_assert ((int) fixp->fx_r_type > 0);
6183
6184 reloc->addend = fixp->fx_offset;
6185
6186 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
6187 if (reloc->howto == NULL)
6188 {
6189 as_bad_where (fixp->fx_file, fixp->fx_line,
6190 _("cannot represent `%s' relocation in object file"),
6191 bfd_get_reloc_code_name (fixp->fx_r_type));
6192 free (reloc->sym_ptr_ptr);
6193 free (reloc);
6194 return NULL;
6195 }
6196
6197 if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
6198 as_fatal (_("internal error; cannot generate `%s' relocation"),
6199 bfd_get_reloc_code_name (fixp->fx_r_type));
6200
6201 return reloc;
6202 }
6203
6204 \f
6205 /* Checks for resource conflicts between instructions. */
6206
6207 /* The func unit stuff could be implemented as bit-vectors rather
6208 than the iterative approach here. If it ends up being too
6209 slow, we will switch it. */
6210
6211 resource_table *
6212 new_resource_table (void *data,
6213 int cycles,
6214 int nu,
6215 unit_num_copies_func uncf,
6216 opcode_num_units_func onuf,
6217 opcode_funcUnit_use_unit_func ouuf,
6218 opcode_funcUnit_use_stage_func ousf)
6219 {
6220 int i;
6221 resource_table *rt = XNEW (resource_table);
6222 rt->data = data;
6223 rt->cycles = cycles;
6224 rt->allocated_cycles = cycles;
6225 rt->num_units = nu;
6226 rt->unit_num_copies = uncf;
6227 rt->opcode_num_units = onuf;
6228 rt->opcode_unit_use = ouuf;
6229 rt->opcode_unit_stage = ousf;
6230
6231 rt->units = XCNEWVEC (unsigned char *, cycles);
6232 for (i = 0; i < cycles; i++)
6233 rt->units[i] = XCNEWVEC (unsigned char, nu);
6234
6235 return rt;
6236 }
6237
6238
6239 void
6240 clear_resource_table (resource_table *rt)
6241 {
6242 int i, j;
6243 for (i = 0; i < rt->allocated_cycles; i++)
6244 for (j = 0; j < rt->num_units; j++)
6245 rt->units[i][j] = 0;
6246 }
6247
6248
6249 /* We never shrink it, just fake it into thinking so. */
6250
6251 void
6252 resize_resource_table (resource_table *rt, int cycles)
6253 {
6254 int i, old_cycles;
6255
6256 rt->cycles = cycles;
6257 if (cycles <= rt->allocated_cycles)
6258 return;
6259
6260 old_cycles = rt->allocated_cycles;
6261 rt->allocated_cycles = cycles;
6262
6263 rt->units = XRESIZEVEC (unsigned char *, rt->units, rt->allocated_cycles);
6264 for (i = 0; i < old_cycles; i++)
6265 rt->units[i] = XRESIZEVEC (unsigned char, rt->units[i], rt->num_units);
6266 for (i = old_cycles; i < cycles; i++)
6267 rt->units[i] = XCNEWVEC (unsigned char, rt->num_units);
6268 }
6269
6270
6271 bfd_boolean
6272 resources_available (resource_table *rt, xtensa_opcode opcode, int cycle)
6273 {
6274 int i;
6275 int uses = (rt->opcode_num_units) (rt->data, opcode);
6276
6277 for (i = 0; i < uses; i++)
6278 {
6279 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6280 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6281 int copies_in_use = rt->units[stage + cycle][unit];
6282 int copies = (rt->unit_num_copies) (rt->data, unit);
6283 if (copies_in_use >= copies)
6284 return FALSE;
6285 }
6286 return TRUE;
6287 }
6288
6289
6290 void
6291 reserve_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6292 {
6293 int i;
6294 int uses = (rt->opcode_num_units) (rt->data, opcode);
6295
6296 for (i = 0; i < uses; i++)
6297 {
6298 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6299 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6300 /* Note that this allows resources to be oversubscribed. That's
6301 essential to the way the optional scheduler works.
6302 resources_available reports when a resource is over-subscribed,
6303 so it's easy to tell. */
6304 rt->units[stage + cycle][unit]++;
6305 }
6306 }
6307
6308
6309 void
6310 release_resources (resource_table *rt, xtensa_opcode opcode, int cycle)
6311 {
6312 int i;
6313 int uses = (rt->opcode_num_units) (rt->data, opcode);
6314
6315 for (i = 0; i < uses; i++)
6316 {
6317 xtensa_funcUnit unit = (rt->opcode_unit_use) (rt->data, opcode, i);
6318 int stage = (rt->opcode_unit_stage) (rt->data, opcode, i);
6319 gas_assert (rt->units[stage + cycle][unit] > 0);
6320 rt->units[stage + cycle][unit]--;
6321 }
6322 }
6323
6324
6325 /* Wrapper functions make parameterized resource reservation
6326 more convenient. */
6327
6328 int
6329 opcode_funcUnit_use_unit (void *data, xtensa_opcode opcode, int idx)
6330 {
6331 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6332 return use->unit;
6333 }
6334
6335
6336 int
6337 opcode_funcUnit_use_stage (void *data, xtensa_opcode opcode, int idx)
6338 {
6339 xtensa_funcUnit_use *use = xtensa_opcode_funcUnit_use (data, opcode, idx);
6340 return use->stage;
6341 }
6342
6343
6344 /* Note that this function does not check issue constraints, but
6345 solely whether the hardware is available to execute the given
6346 instructions together. It also doesn't check if the tinsns
6347 write the same state, or access the same tieports. That is
6348 checked by check_t1_t2_reads_and_writes. */
6349
6350 static bfd_boolean
6351 resources_conflict (vliw_insn *vinsn)
6352 {
6353 int i;
6354 static resource_table *rt = NULL;
6355
6356 /* This is the most common case by far. Optimize it. */
6357 if (vinsn->num_slots == 1)
6358 return FALSE;
6359
6360 if (rt == NULL)
6361 {
6362 xtensa_isa isa = xtensa_default_isa;
6363 rt = new_resource_table
6364 (isa, xtensa_num_pipe_stages,
6365 xtensa_isa_num_funcUnits (isa),
6366 (unit_num_copies_func) xtensa_funcUnit_num_copies,
6367 (opcode_num_units_func) xtensa_opcode_num_funcUnit_uses,
6368 opcode_funcUnit_use_unit,
6369 opcode_funcUnit_use_stage);
6370 }
6371
6372 clear_resource_table (rt);
6373
6374 for (i = 0; i < vinsn->num_slots; i++)
6375 {
6376 if (!resources_available (rt, vinsn->slots[i].opcode, 0))
6377 return TRUE;
6378 reserve_resources (rt, vinsn->slots[i].opcode, 0);
6379 }
6380
6381 return FALSE;
6382 }
6383
6384 \f
6385 /* finish_vinsn, emit_single_op and helper functions. */
6386
6387 static bfd_boolean find_vinsn_conflicts (vliw_insn *);
6388 static xtensa_format xg_find_narrowest_format (vliw_insn *);
6389 static void xg_assemble_vliw_tokens (vliw_insn *);
6390
6391
6392 /* We have reached the end of a bundle; emit into the frag. */
6393
6394 static void
6395 finish_vinsn (vliw_insn *vinsn)
6396 {
6397 IStack slotstack;
6398 int i;
6399 int slots;
6400
6401 if (find_vinsn_conflicts (vinsn))
6402 {
6403 xg_clear_vinsn (vinsn);
6404 return;
6405 }
6406
6407 /* First, find a format that works. */
6408 if (vinsn->format == XTENSA_UNDEFINED)
6409 vinsn->format = xg_find_narrowest_format (vinsn);
6410
6411 slots = xtensa_format_num_slots (xtensa_default_isa, vinsn->format);
6412 if (slots > 1
6413 && produce_flix == FLIX_NONE)
6414 {
6415 as_bad (_("The option \"--no-allow-flix\" prohibits multi-slot flix."));
6416 xg_clear_vinsn (vinsn);
6417 return;
6418 }
6419
6420 if (vinsn->format == XTENSA_UNDEFINED)
6421 {
6422 as_bad (_("couldn't find a valid instruction format"));
6423 fprintf (stderr, _(" ops were: "));
6424 for (i = 0; i < vinsn->num_slots; i++)
6425 fprintf (stderr, _(" %s;"),
6426 xtensa_opcode_name (xtensa_default_isa,
6427 vinsn->slots[i].opcode));
6428 fprintf (stderr, _("\n"));
6429 xg_clear_vinsn (vinsn);
6430 return;
6431 }
6432
6433 if (vinsn->num_slots != slots)
6434 {
6435 as_bad (_("mismatch for format '%s': #slots = %d, #opcodes = %d"),
6436 xtensa_format_name (xtensa_default_isa, vinsn->format),
6437 slots, vinsn->num_slots);
6438 xg_clear_vinsn (vinsn);
6439 return;
6440 }
6441
6442 if (resources_conflict (vinsn))
6443 {
6444 as_bad (_("illegal resource usage in bundle"));
6445 fprintf (stderr, " ops were: ");
6446 for (i = 0; i < vinsn->num_slots; i++)
6447 fprintf (stderr, " %s;",
6448 xtensa_opcode_name (xtensa_default_isa,
6449 vinsn->slots[i].opcode));
6450 fprintf (stderr, "\n");
6451 xg_clear_vinsn (vinsn);
6452 return;
6453 }
6454
6455 for (i = 0; i < vinsn->num_slots; i++)
6456 {
6457 if (vinsn->slots[i].opcode != XTENSA_UNDEFINED)
6458 {
6459 symbolS *lit_sym = NULL;
6460 int j;
6461 bfd_boolean e = FALSE;
6462 bfd_boolean saved_density = density_supported;
6463
6464 /* We don't want to narrow ops inside multi-slot bundles. */
6465 if (vinsn->num_slots > 1)
6466 density_supported = FALSE;
6467
6468 istack_init (&slotstack);
6469 if (vinsn->slots[i].opcode == xtensa_nop_opcode)
6470 {
6471 vinsn->slots[i].opcode =
6472 xtensa_format_slot_nop_opcode (xtensa_default_isa,
6473 vinsn->format, i);
6474 vinsn->slots[i].ntok = 0;
6475 }
6476
6477 if (xg_expand_assembly_insn (&slotstack, &vinsn->slots[i]))
6478 {
6479 e = TRUE;
6480 continue;
6481 }
6482
6483 density_supported = saved_density;
6484
6485 if (e)
6486 {
6487 xg_clear_vinsn (vinsn);
6488 return;
6489 }
6490
6491 for (j = 0; j < slotstack.ninsn; j++)
6492 {
6493 TInsn *insn = &slotstack.insn[j];
6494 if (insn->insn_type == ITYPE_LITERAL)
6495 {
6496 gas_assert (lit_sym == NULL);
6497 lit_sym = xg_assemble_literal (insn);
6498 }
6499 else
6500 {
6501 gas_assert (insn->insn_type == ITYPE_INSN);
6502 if (lit_sym)
6503 xg_resolve_literals (insn, lit_sym);
6504 if (j != slotstack.ninsn - 1)
6505 emit_single_op (insn);
6506 }
6507 }
6508
6509 if (vinsn->num_slots > 1)
6510 {
6511 if (opcode_fits_format_slot
6512 (slotstack.insn[slotstack.ninsn - 1].opcode,
6513 vinsn->format, i))
6514 {
6515 vinsn->slots[i] = slotstack.insn[slotstack.ninsn - 1];
6516 }
6517 else
6518 {
6519 emit_single_op (&slotstack.insn[slotstack.ninsn - 1]);
6520 if (vinsn->format == XTENSA_UNDEFINED)
6521 vinsn->slots[i].opcode = xtensa_nop_opcode;
6522 else
6523 vinsn->slots[i].opcode
6524 = xtensa_format_slot_nop_opcode (xtensa_default_isa,
6525 vinsn->format, i);
6526
6527 vinsn->slots[i].ntok = 0;
6528 }
6529 }
6530 else
6531 {
6532 vinsn->slots[0] = slotstack.insn[slotstack.ninsn - 1];
6533 vinsn->format = XTENSA_UNDEFINED;
6534 }
6535 }
6536 }
6537
6538 /* Now check resource conflicts on the modified bundle. */
6539 if (resources_conflict (vinsn))
6540 {
6541 as_bad (_("illegal resource usage in bundle"));
6542 fprintf (stderr, " ops were: ");
6543 for (i = 0; i < vinsn->num_slots; i++)
6544 fprintf (stderr, " %s;",
6545 xtensa_opcode_name (xtensa_default_isa,
6546 vinsn->slots[i].opcode));
6547 fprintf (stderr, "\n");
6548 xg_clear_vinsn (vinsn);
6549 return;
6550 }
6551
6552 /* First, find a format that works. */
6553 if (vinsn->format == XTENSA_UNDEFINED)
6554 vinsn->format = xg_find_narrowest_format (vinsn);
6555
6556 xg_assemble_vliw_tokens (vinsn);
6557
6558 xg_clear_vinsn (vinsn);
6559
6560 xtensa_check_frag_count ();
6561 }
6562
6563
6564 /* Given an vliw instruction, what conflicts are there in register
6565 usage and in writes to states and queues?
6566
6567 This function does two things:
6568 1. Reports an error when a vinsn contains illegal combinations
6569 of writes to registers states or queues.
6570 2. Marks individual tinsns as not relaxable if the combination
6571 contains antidependencies.
6572
6573 Job 2 handles things like swap semantics in instructions that need
6574 to be relaxed. For example,
6575
6576 addi a0, a1, 100000
6577
6578 normally would be relaxed to
6579
6580 l32r a0, some_label
6581 add a0, a1, a0
6582
6583 _but_, if the above instruction is bundled with an a0 reader, e.g.,
6584
6585 { addi a0, a1, 10000 ; add a2, a0, a4 ; }
6586
6587 then we can't relax it into
6588
6589 l32r a0, some_label
6590 { add a0, a1, a0 ; add a2, a0, a4 ; }
6591
6592 because the value of a0 is trashed before the second add can read it. */
6593
6594 static char check_t1_t2_reads_and_writes (TInsn *, TInsn *);
6595
6596 static bfd_boolean
6597 find_vinsn_conflicts (vliw_insn *vinsn)
6598 {
6599 int i, j;
6600 int branches = 0;
6601 xtensa_isa isa = xtensa_default_isa;
6602
6603 gas_assert (!past_xtensa_end);
6604
6605 for (i = 0 ; i < vinsn->num_slots; i++)
6606 {
6607 TInsn *op1 = &vinsn->slots[i];
6608 if (op1->is_specific_opcode)
6609 op1->keep_wide = TRUE;
6610 else
6611 op1->keep_wide = FALSE;
6612 }
6613
6614 for (i = 0 ; i < vinsn->num_slots; i++)
6615 {
6616 TInsn *op1 = &vinsn->slots[i];
6617
6618 if (xtensa_opcode_is_branch (isa, op1->opcode) == 1)
6619 branches++;
6620
6621 for (j = 0; j < vinsn->num_slots; j++)
6622 {
6623 if (i != j)
6624 {
6625 TInsn *op2 = &vinsn->slots[j];
6626 char conflict_type = check_t1_t2_reads_and_writes (op1, op2);
6627 switch (conflict_type)
6628 {
6629 case 'c':
6630 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same register"),
6631 xtensa_opcode_name (isa, op1->opcode), i,
6632 xtensa_opcode_name (isa, op2->opcode), j);
6633 return TRUE;
6634 case 'd':
6635 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same state"),
6636 xtensa_opcode_name (isa, op1->opcode), i,
6637 xtensa_opcode_name (isa, op2->opcode), j);
6638 return TRUE;
6639 case 'e':
6640 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) write the same port"),
6641 xtensa_opcode_name (isa, op1->opcode), i,
6642 xtensa_opcode_name (isa, op2->opcode), j);
6643 return TRUE;
6644 case 'f':
6645 as_bad (_("opcodes '%s' (slot %d) and '%s' (slot %d) both have volatile port accesses"),
6646 xtensa_opcode_name (isa, op1->opcode), i,
6647 xtensa_opcode_name (isa, op2->opcode), j);
6648 return TRUE;
6649 default:
6650 /* Everything is OK. */
6651 break;
6652 }
6653 op2->is_specific_opcode = (op2->is_specific_opcode
6654 || conflict_type == 'a');
6655 }
6656 }
6657 }
6658
6659 if (branches > 1)
6660 {
6661 as_bad (_("multiple branches or jumps in the same bundle"));
6662 return TRUE;
6663 }
6664
6665 return FALSE;
6666 }
6667
6668
6669 /* Check how the state used by t1 and t2 relate.
6670 Cases found are:
6671
6672 case A: t1 reads a register t2 writes (an antidependency within a bundle)
6673 case B: no relationship between what is read and written (both could
6674 read the same reg though)
6675 case C: t1 writes a register t2 writes (a register conflict within a
6676 bundle)
6677 case D: t1 writes a state that t2 also writes
6678 case E: t1 writes a tie queue that t2 also writes
6679 case F: two volatile queue accesses
6680 */
6681
6682 static char
6683 check_t1_t2_reads_and_writes (TInsn *t1, TInsn *t2)
6684 {
6685 xtensa_isa isa = xtensa_default_isa;
6686 xtensa_regfile t1_regfile, t2_regfile;
6687 int t1_reg, t2_reg;
6688 int t1_base_reg, t1_last_reg;
6689 int t2_base_reg, t2_last_reg;
6690 char t1_inout, t2_inout;
6691 int i, j;
6692 char conflict = 'b';
6693 int t1_states;
6694 int t2_states;
6695 int t1_interfaces;
6696 int t2_interfaces;
6697 bfd_boolean t1_volatile = FALSE;
6698 bfd_boolean t2_volatile = FALSE;
6699
6700 /* Check registers. */
6701 for (j = 0; j < t2->ntok; j++)
6702 {
6703 if (xtensa_operand_is_register (isa, t2->opcode, j) != 1)
6704 continue;
6705
6706 t2_regfile = xtensa_operand_regfile (isa, t2->opcode, j);
6707 t2_base_reg = t2->tok[j].X_add_number;
6708 t2_last_reg = t2_base_reg + xtensa_operand_num_regs (isa, t2->opcode, j);
6709
6710 for (i = 0; i < t1->ntok; i++)
6711 {
6712 if (xtensa_operand_is_register (isa, t1->opcode, i) != 1)
6713 continue;
6714
6715 t1_regfile = xtensa_operand_regfile (isa, t1->opcode, i);
6716
6717 if (t1_regfile != t2_regfile)
6718 continue;
6719
6720 t1_inout = xtensa_operand_inout (isa, t1->opcode, i);
6721 t2_inout = xtensa_operand_inout (isa, t2->opcode, j);
6722
6723 if (xtensa_operand_is_known_reg (isa, t1->opcode, i) == 0
6724 || xtensa_operand_is_known_reg (isa, t2->opcode, j) == 0)
6725 {
6726 if (t1_inout == 'm' || t1_inout == 'o'
6727 || t2_inout == 'm' || t2_inout == 'o')
6728 {
6729 conflict = 'a';
6730 continue;
6731 }
6732 }
6733
6734 t1_base_reg = t1->tok[i].X_add_number;
6735 t1_last_reg = (t1_base_reg
6736 + xtensa_operand_num_regs (isa, t1->opcode, i));
6737
6738 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
6739 {
6740 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
6741 {
6742 if (t1_reg != t2_reg)
6743 continue;
6744
6745 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6746 {
6747 conflict = 'a';
6748 continue;
6749 }
6750
6751 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6752 {
6753 conflict = 'a';
6754 continue;
6755 }
6756
6757 if (t1_inout != 'i' && t2_inout != 'i')
6758 return 'c';
6759 }
6760 }
6761 }
6762 }
6763
6764 /* Check states. */
6765 t1_states = xtensa_opcode_num_stateOperands (isa, t1->opcode);
6766 t2_states = xtensa_opcode_num_stateOperands (isa, t2->opcode);
6767 for (j = 0; j < t2_states; j++)
6768 {
6769 xtensa_state t2_so = xtensa_stateOperand_state (isa, t2->opcode, j);
6770 t2_inout = xtensa_stateOperand_inout (isa, t2->opcode, j);
6771 for (i = 0; i < t1_states; i++)
6772 {
6773 xtensa_state t1_so = xtensa_stateOperand_state (isa, t1->opcode, i);
6774 t1_inout = xtensa_stateOperand_inout (isa, t1->opcode, i);
6775 if (t1_so != t2_so || xtensa_state_is_shared_or (isa, t1_so) == 1)
6776 continue;
6777
6778 if (t2_inout == 'i' && (t1_inout == 'm' || t1_inout == 'o'))
6779 {
6780 conflict = 'a';
6781 continue;
6782 }
6783
6784 if (t1_inout == 'i' && (t2_inout == 'm' || t2_inout == 'o'))
6785 {
6786 conflict = 'a';
6787 continue;
6788 }
6789
6790 if (t1_inout != 'i' && t2_inout != 'i')
6791 return 'd';
6792 }
6793 }
6794
6795 /* Check tieports. */
6796 t1_interfaces = xtensa_opcode_num_interfaceOperands (isa, t1->opcode);
6797 t2_interfaces = xtensa_opcode_num_interfaceOperands (isa, t2->opcode);
6798 for (j = 0; j < t2_interfaces; j++)
6799 {
6800 xtensa_interface t2_int
6801 = xtensa_interfaceOperand_interface (isa, t2->opcode, j);
6802 int t2_class = xtensa_interface_class_id (isa, t2_int);
6803
6804 t2_inout = xtensa_interface_inout (isa, t2_int);
6805 if (xtensa_interface_has_side_effect (isa, t2_int) == 1)
6806 t2_volatile = TRUE;
6807
6808 for (i = 0; i < t1_interfaces; i++)
6809 {
6810 xtensa_interface t1_int
6811 = xtensa_interfaceOperand_interface (isa, t1->opcode, j);
6812 int t1_class = xtensa_interface_class_id (isa, t1_int);
6813
6814 t1_inout = xtensa_interface_inout (isa, t1_int);
6815 if (xtensa_interface_has_side_effect (isa, t1_int) == 1)
6816 t1_volatile = TRUE;
6817
6818 if (t1_volatile && t2_volatile && (t1_class == t2_class))
6819 return 'f';
6820
6821 if (t1_int != t2_int)
6822 continue;
6823
6824 if (t2_inout == 'i' && t1_inout == 'o')
6825 {
6826 conflict = 'a';
6827 continue;
6828 }
6829
6830 if (t1_inout == 'i' && t2_inout == 'o')
6831 {
6832 conflict = 'a';
6833 continue;
6834 }
6835
6836 if (t1_inout != 'i' && t2_inout != 'i')
6837 return 'e';
6838 }
6839 }
6840
6841 return conflict;
6842 }
6843
6844
6845 static xtensa_format
6846 xg_find_narrowest_format (vliw_insn *vinsn)
6847 {
6848 /* Right now we assume that the ops within the vinsn are properly
6849 ordered for the slots that the programmer wanted them in. In
6850 other words, we don't rearrange the ops in hopes of finding a
6851 better format. The scheduler handles that. */
6852
6853 xtensa_isa isa = xtensa_default_isa;
6854 xtensa_format format;
6855 xtensa_opcode nop_opcode = xtensa_nop_opcode;
6856
6857 if (vinsn->num_slots == 1)
6858 return xg_get_single_format (vinsn->slots[0].opcode);
6859
6860 for (format = 0; format < xtensa_isa_num_formats (isa); format++)
6861 {
6862 vliw_insn v_copy;
6863 xg_copy_vinsn (&v_copy, vinsn);
6864 if (xtensa_format_num_slots (isa, format) == v_copy.num_slots)
6865 {
6866 int slot;
6867 int fit = 0;
6868 for (slot = 0; slot < v_copy.num_slots; slot++)
6869 {
6870 if (v_copy.slots[slot].opcode == nop_opcode)
6871 {
6872 v_copy.slots[slot].opcode =
6873 xtensa_format_slot_nop_opcode (isa, format, slot);
6874 v_copy.slots[slot].ntok = 0;
6875 }
6876
6877 if (opcode_fits_format_slot (v_copy.slots[slot].opcode,
6878 format, slot))
6879 fit++;
6880 else if (v_copy.num_slots > 1)
6881 {
6882 TInsn widened;
6883 /* Try the widened version. */
6884 if (!v_copy.slots[slot].keep_wide
6885 && !v_copy.slots[slot].is_specific_opcode
6886 && xg_is_single_relaxable_insn (&v_copy.slots[slot],
6887 &widened, TRUE)
6888 && opcode_fits_format_slot (widened.opcode,
6889 format, slot))
6890 {
6891 v_copy.slots[slot] = widened;
6892 fit++;
6893 }
6894 }
6895 }
6896 if (fit == v_copy.num_slots)
6897 {
6898 xg_copy_vinsn (vinsn, &v_copy);
6899 xtensa_format_encode (isa, format, vinsn->insnbuf);
6900 vinsn->format = format;
6901 break;
6902 }
6903 }
6904 }
6905
6906 if (format == xtensa_isa_num_formats (isa))
6907 return XTENSA_UNDEFINED;
6908
6909 return format;
6910 }
6911
6912
6913 /* Return the additional space needed in a frag
6914 for possible relaxations of any ops in a VLIW insn.
6915 Also fill out the relaxations that might be required of
6916 each tinsn in the vinsn. */
6917
6918 static int
6919 relaxation_requirements (vliw_insn *vinsn, bfd_boolean *pfinish_frag)
6920 {
6921 bfd_boolean finish_frag = FALSE;
6922 int extra_space = 0;
6923 int slot;
6924
6925 for (slot = 0; slot < vinsn->num_slots; slot++)
6926 {
6927 TInsn *tinsn = &vinsn->slots[slot];
6928 if (!tinsn_has_symbolic_operands (tinsn))
6929 {
6930 /* A narrow instruction could be widened later to help
6931 alignment issues. */
6932 if (xg_is_single_relaxable_insn (tinsn, 0, TRUE)
6933 && !tinsn->is_specific_opcode
6934 && vinsn->num_slots == 1)
6935 {
6936 /* Difference in bytes between narrow and wide insns... */
6937 extra_space += 1;
6938 tinsn->subtype = RELAX_NARROW;
6939 }
6940 }
6941 else
6942 {
6943 if (workaround_b_j_loop_end
6944 && tinsn->opcode == xtensa_jx_opcode
6945 && use_transform ())
6946 {
6947 /* Add 2 of these. */
6948 extra_space += 3; /* for the nop size */
6949 tinsn->subtype = RELAX_ADD_NOP_IF_PRE_LOOP_END;
6950 }
6951
6952 /* Need to assemble it with space for the relocation. */
6953 if (xg_is_relaxable_insn (tinsn, 0)
6954 && !tinsn->is_specific_opcode)
6955 {
6956 int max_size = xg_get_max_insn_widen_size (tinsn->opcode);
6957 int max_literal_size =
6958 xg_get_max_insn_widen_literal_size (tinsn->opcode);
6959
6960 tinsn->literal_space = max_literal_size;
6961
6962 tinsn->subtype = RELAX_IMMED;
6963 extra_space += max_size;
6964 }
6965 else
6966 {
6967 /* A fix record will be added for this instruction prior
6968 to relaxation, so make it end the frag. */
6969 finish_frag = TRUE;
6970 }
6971 }
6972 }
6973 *pfinish_frag = finish_frag;
6974 return extra_space;
6975 }
6976
6977
6978 static void
6979 bundle_tinsn (TInsn *tinsn, vliw_insn *vinsn)
6980 {
6981 xtensa_isa isa = xtensa_default_isa;
6982 int slot, chosen_slot;
6983
6984 vinsn->format = xg_get_single_format (tinsn->opcode);
6985 gas_assert (vinsn->format != XTENSA_UNDEFINED);
6986 vinsn->num_slots = xtensa_format_num_slots (isa, vinsn->format);
6987
6988 chosen_slot = xg_get_single_slot (tinsn->opcode);
6989 for (slot = 0; slot < vinsn->num_slots; slot++)
6990 {
6991 if (slot == chosen_slot)
6992 vinsn->slots[slot] = *tinsn;
6993 else
6994 {
6995 vinsn->slots[slot].opcode =
6996 xtensa_format_slot_nop_opcode (isa, vinsn->format, slot);
6997 vinsn->slots[slot].ntok = 0;
6998 vinsn->slots[slot].insn_type = ITYPE_INSN;
6999 }
7000 }
7001 }
7002
7003
7004 static bfd_boolean
7005 emit_single_op (TInsn *orig_insn)
7006 {
7007 int i;
7008 IStack istack; /* put instructions into here */
7009 symbolS *lit_sym = NULL;
7010 symbolS *label_sym = NULL;
7011
7012 istack_init (&istack);
7013
7014 /* Special-case for "movi aX, foo" which is guaranteed to need relaxing.
7015 Because the scheduling and bundling characteristics of movi and
7016 l32r or const16 are so different, we can do much better if we relax
7017 it prior to scheduling and bundling, rather than after. */
7018 if ((orig_insn->opcode == xtensa_movi_opcode
7019 || orig_insn->opcode == xtensa_movi_n_opcode)
7020 && !cur_vinsn.inside_bundle
7021 && (orig_insn->tok[1].X_op == O_symbol
7022 || orig_insn->tok[1].X_op == O_pltrel
7023 || orig_insn->tok[1].X_op == O_tlsfunc
7024 || orig_insn->tok[1].X_op == O_tlsarg
7025 || orig_insn->tok[1].X_op == O_tpoff
7026 || orig_insn->tok[1].X_op == O_dtpoff)
7027 && !orig_insn->is_specific_opcode && use_transform ())
7028 xg_assembly_relax (&istack, orig_insn, now_seg, frag_now, 0, 1, 0);
7029 else
7030 if (xg_expand_assembly_insn (&istack, orig_insn))
7031 return TRUE;
7032
7033 for (i = 0; i < istack.ninsn; i++)
7034 {
7035 TInsn *insn = &istack.insn[i];
7036 switch (insn->insn_type)
7037 {
7038 case ITYPE_LITERAL:
7039 gas_assert (lit_sym == NULL);
7040 lit_sym = xg_assemble_literal (insn);
7041 break;
7042 case ITYPE_LABEL:
7043 {
7044 static int relaxed_sym_idx = 0;
7045 char *label = XNEWVEC (char, strlen (FAKE_LABEL_NAME) + 12);
7046 sprintf (label, "%s_rl_%x", FAKE_LABEL_NAME, relaxed_sym_idx++);
7047 colon (label);
7048 gas_assert (label_sym == NULL);
7049 label_sym = symbol_find_or_make (label);
7050 gas_assert (label_sym);
7051 free (label);
7052 }
7053 break;
7054 case ITYPE_INSN:
7055 {
7056 vliw_insn v;
7057 if (lit_sym)
7058 xg_resolve_literals (insn, lit_sym);
7059 if (label_sym)
7060 xg_resolve_labels (insn, label_sym);
7061 xg_init_vinsn (&v);
7062 bundle_tinsn (insn, &v);
7063 finish_vinsn (&v);
7064 xg_free_vinsn (&v);
7065 }
7066 break;
7067 default:
7068 gas_assert (0);
7069 break;
7070 }
7071 }
7072 return FALSE;
7073 }
7074
7075
7076 static int
7077 total_frag_text_expansion (fragS *fragP)
7078 {
7079 int slot;
7080 int total_expansion = 0;
7081
7082 for (slot = 0; slot < config_max_slots; slot++)
7083 total_expansion += fragP->tc_frag_data.text_expansion[slot];
7084
7085 return total_expansion;
7086 }
7087
7088
7089 /* Emit a vliw instruction to the current fragment. */
7090
7091 static void
7092 xg_assemble_vliw_tokens (vliw_insn *vinsn)
7093 {
7094 bfd_boolean finish_frag;
7095 bfd_boolean is_jump = FALSE;
7096 bfd_boolean is_branch = FALSE;
7097 xtensa_isa isa = xtensa_default_isa;
7098 int insn_size;
7099 int extra_space;
7100 char *f = NULL;
7101 int slot;
7102 struct dwarf2_line_info debug_line;
7103 bfd_boolean loc_directive_seen = FALSE;
7104 TInsn *tinsn;
7105
7106 memset (&debug_line, 0, sizeof (struct dwarf2_line_info));
7107
7108 if (generating_literals)
7109 {
7110 static int reported = 0;
7111 if (reported < 4)
7112 as_bad_where (frag_now->fr_file, frag_now->fr_line,
7113 _("cannot assemble into a literal fragment"));
7114 if (reported == 3)
7115 as_bad (_("..."));
7116 reported++;
7117 return;
7118 }
7119
7120 if (frag_now_fix () != 0
7121 && (! frag_now->tc_frag_data.is_insn
7122 || (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7123 || (!use_transform ()) != frag_now->tc_frag_data.is_no_transform
7124 || (directive_state[directive_longcalls]
7125 != frag_now->tc_frag_data.use_longcalls)
7126 || (directive_state[directive_absolute_literals]
7127 != frag_now->tc_frag_data.use_absolute_literals)))
7128 {
7129 frag_wane (frag_now);
7130 frag_new (0);
7131 xtensa_set_frag_assembly_state (frag_now);
7132 }
7133
7134 if (workaround_a0_b_retw
7135 && vinsn->num_slots == 1
7136 && (get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0
7137 && xtensa_opcode_is_branch (isa, vinsn->slots[0].opcode) == 1
7138 && use_transform ())
7139 {
7140 has_a0_b_retw = TRUE;
7141
7142 /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW.
7143 After the first assembly pass we will check all of them and
7144 add a nop if needed. */
7145 frag_now->tc_frag_data.is_insn = TRUE;
7146 frag_var (rs_machine_dependent, 4, 4,
7147 RELAX_ADD_NOP_IF_A0_B_RETW,
7148 frag_now->fr_symbol,
7149 frag_now->fr_offset,
7150 NULL);
7151 xtensa_set_frag_assembly_state (frag_now);
7152 frag_now->tc_frag_data.is_insn = TRUE;
7153 frag_var (rs_machine_dependent, 4, 4,
7154 RELAX_ADD_NOP_IF_A0_B_RETW,
7155 frag_now->fr_symbol,
7156 frag_now->fr_offset,
7157 NULL);
7158 xtensa_set_frag_assembly_state (frag_now);
7159 }
7160
7161 for (slot = 0; slot < vinsn->num_slots; slot++)
7162 {
7163 tinsn = &vinsn->slots[slot];
7164
7165 /* See if the instruction implies an aligned section. */
7166 if (xtensa_opcode_is_loop (isa, tinsn->opcode) == 1)
7167 record_alignment (now_seg, 2);
7168
7169 /* Determine the best line number for debug info. */
7170 if ((tinsn->loc_directive_seen || !loc_directive_seen)
7171 && (tinsn->debug_line.filenum != debug_line.filenum
7172 || tinsn->debug_line.line < debug_line.line
7173 || tinsn->debug_line.column < debug_line.column))
7174 debug_line = tinsn->debug_line;
7175 if (tinsn->loc_directive_seen)
7176 loc_directive_seen = TRUE;
7177 }
7178
7179 /* Special cases for instructions that force an alignment... */
7180 /* None of these opcodes are bundle-able. */
7181 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1)
7182 {
7183 int max_fill;
7184
7185 /* Remember the symbol that marks the end of the loop in the frag
7186 that marks the start of the loop. This way we can easily find
7187 the end of the loop at the beginning, without adding special code
7188 to mark the loop instructions themselves. */
7189 symbolS *target_sym = NULL;
7190 if (vinsn->slots[0].tok[1].X_op == O_symbol)
7191 target_sym = vinsn->slots[0].tok[1].X_add_symbol;
7192
7193 xtensa_set_frag_assembly_state (frag_now);
7194 frag_now->tc_frag_data.is_insn = TRUE;
7195
7196 max_fill = get_text_align_max_fill_size
7197 (get_text_align_power (xtensa_fetch_width),
7198 TRUE, frag_now->tc_frag_data.is_no_density);
7199
7200 if (use_transform ())
7201 frag_var (rs_machine_dependent, max_fill, max_fill,
7202 RELAX_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7203 else
7204 frag_var (rs_machine_dependent, 0, 0,
7205 RELAX_CHECK_ALIGN_NEXT_OPCODE, target_sym, 0, NULL);
7206 xtensa_set_frag_assembly_state (frag_now);
7207 }
7208
7209 if (vinsn->slots[0].opcode == xtensa_entry_opcode
7210 && !vinsn->slots[0].is_specific_opcode)
7211 {
7212 xtensa_mark_literal_pool_location ();
7213 xtensa_move_labels (frag_now, 0);
7214 frag_var (rs_align_test, 1, 1, 0, NULL, 2, NULL);
7215 }
7216
7217 if (vinsn->num_slots == 1)
7218 {
7219 if (workaround_a0_b_retw && use_transform ())
7220 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER,
7221 is_register_writer (&vinsn->slots[0], "a", 0));
7222
7223 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND,
7224 is_bad_loopend_opcode (&vinsn->slots[0]));
7225 }
7226 else
7227 set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, FALSE);
7228
7229 insn_size = xtensa_format_length (isa, vinsn->format);
7230
7231 extra_space = relaxation_requirements (vinsn, &finish_frag);
7232
7233 /* vinsn_to_insnbuf will produce the error. */
7234 if (vinsn->format != XTENSA_UNDEFINED)
7235 {
7236 f = frag_more (insn_size + extra_space);
7237 xtensa_set_frag_assembly_state (frag_now);
7238 frag_now->tc_frag_data.is_insn = TRUE;
7239 }
7240
7241 vinsn_to_insnbuf (vinsn, f, frag_now, FALSE);
7242 if (vinsn->format == XTENSA_UNDEFINED)
7243 return;
7244
7245 xtensa_insnbuf_to_chars (isa, vinsn->insnbuf, (unsigned char *) f, 0);
7246
7247 if (debug_type == DEBUG_DWARF2 || loc_directive_seen)
7248 dwarf2_gen_line_info (frag_now_fix () - (insn_size + extra_space),
7249 &debug_line);
7250
7251 for (slot = 0; slot < vinsn->num_slots; slot++)
7252 {
7253 tinsn = &vinsn->slots[slot];
7254 frag_now->tc_frag_data.slot_subtypes[slot] = tinsn->subtype;
7255 frag_now->tc_frag_data.slot_symbols[slot] = tinsn->symbol;
7256 frag_now->tc_frag_data.slot_offsets[slot] = tinsn->offset;
7257 frag_now->tc_frag_data.literal_frags[slot] = tinsn->literal_frag;
7258 if (tinsn->opcode == xtensa_l32r_opcode)
7259 frag_now->tc_frag_data.literal_frags[slot]
7260 = symbol_get_frag (tinsn->tok[1].X_add_symbol);
7261 if (tinsn->literal_space != 0)
7262 xg_assemble_literal_space (tinsn->literal_space, slot);
7263 frag_now->tc_frag_data.free_reg[slot] = tinsn->extra_arg;
7264
7265 if (tinsn->subtype == RELAX_NARROW)
7266 gas_assert (vinsn->num_slots == 1);
7267 if (xtensa_opcode_is_jump (isa, tinsn->opcode) == 1)
7268 is_jump = TRUE;
7269 if (xtensa_opcode_is_branch (isa, tinsn->opcode) == 1)
7270 is_branch = TRUE;
7271
7272 if (tinsn->subtype || tinsn->symbol || tinsn->offset
7273 || tinsn->literal_frag || is_jump || is_branch)
7274 finish_frag = TRUE;
7275 }
7276
7277 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7278 frag_now->tc_frag_data.is_specific_opcode = TRUE;
7279
7280 if (finish_frag)
7281 {
7282 frag_variant (rs_machine_dependent,
7283 extra_space, extra_space, RELAX_SLOTS,
7284 frag_now->fr_symbol, frag_now->fr_offset, f);
7285 xtensa_set_frag_assembly_state (frag_now);
7286 }
7287
7288 /* Special cases for loops:
7289 close_loop_end should be inserted AFTER short_loop.
7290 Make sure that CLOSE loops are processed BEFORE short_loops
7291 when converting them. */
7292
7293 /* "short_loop": Add a NOP if the loop is < 4 bytes. */
7294 if (xtensa_opcode_is_loop (isa, vinsn->slots[0].opcode) == 1
7295 && !vinsn->slots[0].is_specific_opcode)
7296 {
7297 if (workaround_short_loop && use_transform ())
7298 {
7299 maybe_has_short_loop = TRUE;
7300 frag_now->tc_frag_data.is_insn = TRUE;
7301 frag_var (rs_machine_dependent, 4, 4,
7302 RELAX_ADD_NOP_IF_SHORT_LOOP,
7303 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7304 frag_now->tc_frag_data.is_insn = TRUE;
7305 frag_var (rs_machine_dependent, 4, 4,
7306 RELAX_ADD_NOP_IF_SHORT_LOOP,
7307 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7308 }
7309
7310 /* "close_loop_end": Add up to 12 bytes of NOPs to keep a
7311 loop at least 12 bytes away from another loop's end. */
7312 if (workaround_close_loop_end && use_transform ())
7313 {
7314 maybe_has_close_loop_end = TRUE;
7315 frag_now->tc_frag_data.is_insn = TRUE;
7316 frag_var (rs_machine_dependent, 12, 12,
7317 RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
7318 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7319 }
7320 }
7321
7322 if (use_transform ())
7323 {
7324 if (is_jump)
7325 {
7326 gas_assert (finish_frag);
7327 frag_var (rs_machine_dependent,
7328 xtensa_fetch_width, xtensa_fetch_width,
7329 RELAX_UNREACHABLE,
7330 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7331 xtensa_set_frag_assembly_state (frag_now);
7332 xtensa_maybe_create_trampoline_frag ();
7333 /* Always create one here. */
7334 xtensa_maybe_create_literal_pool_frag (TRUE, FALSE);
7335 }
7336 else if (is_branch && do_align_targets ())
7337 {
7338 gas_assert (finish_frag);
7339 frag_var (rs_machine_dependent,
7340 xtensa_fetch_width, xtensa_fetch_width,
7341 RELAX_MAYBE_UNREACHABLE,
7342 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7343 xtensa_set_frag_assembly_state (frag_now);
7344 frag_var (rs_machine_dependent,
7345 0, 0,
7346 RELAX_MAYBE_DESIRE_ALIGN,
7347 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7348 xtensa_set_frag_assembly_state (frag_now);
7349 }
7350 }
7351
7352 /* Now, if the original opcode was a call... */
7353 if (do_align_targets ()
7354 && xtensa_opcode_is_call (isa, vinsn->slots[0].opcode) == 1)
7355 {
7356 float freq = get_subseg_total_freq (now_seg, now_subseg);
7357 frag_now->tc_frag_data.is_insn = TRUE;
7358 frag_var (rs_machine_dependent, 4, (int) freq, RELAX_DESIRE_ALIGN,
7359 frag_now->fr_symbol, frag_now->fr_offset, NULL);
7360 xtensa_set_frag_assembly_state (frag_now);
7361 }
7362
7363 if (vinsn_has_specific_opcodes (vinsn) && use_transform ())
7364 {
7365 frag_wane (frag_now);
7366 frag_new (0);
7367 xtensa_set_frag_assembly_state (frag_now);
7368 }
7369 }
7370
7371 \f
7372 /* xtensa_end and helper functions. */
7373
7374 static void xtensa_cleanup_align_frags (void);
7375 static void xtensa_fix_target_frags (void);
7376 static void xtensa_mark_narrow_branches (void);
7377 static void xtensa_mark_zcl_first_insns (void);
7378 static void xtensa_mark_difference_of_two_symbols (void);
7379 static void xtensa_fix_a0_b_retw_frags (void);
7380 static void xtensa_fix_b_j_loop_end_frags (void);
7381 static void xtensa_fix_close_loop_end_frags (void);
7382 static void xtensa_fix_short_loop_frags (void);
7383 static void xtensa_sanity_check (void);
7384 static void xtensa_add_config_info (void);
7385
7386 void
7387 xtensa_end (void)
7388 {
7389 directive_balance ();
7390 xtensa_flush_pending_output ();
7391
7392 past_xtensa_end = TRUE;
7393
7394 xtensa_move_literals ();
7395
7396 xtensa_reorder_segments ();
7397 xtensa_cleanup_align_frags ();
7398 xtensa_fix_target_frags ();
7399 if (workaround_a0_b_retw && has_a0_b_retw)
7400 xtensa_fix_a0_b_retw_frags ();
7401 if (workaround_b_j_loop_end)
7402 xtensa_fix_b_j_loop_end_frags ();
7403
7404 /* "close_loop_end" should be processed BEFORE "short_loop". */
7405 if (workaround_close_loop_end && maybe_has_close_loop_end)
7406 xtensa_fix_close_loop_end_frags ();
7407
7408 if (workaround_short_loop && maybe_has_short_loop)
7409 xtensa_fix_short_loop_frags ();
7410 if (align_targets)
7411 xtensa_mark_narrow_branches ();
7412 xtensa_mark_zcl_first_insns ();
7413
7414 xtensa_sanity_check ();
7415
7416 xtensa_add_config_info ();
7417
7418 xtensa_check_frag_count ();
7419 }
7420
7421 struct trampoline_chain_entry
7422 {
7423 symbolS *sym;
7424 addressT offset;
7425 };
7426
7427 /* Trampoline chain for a given (sym, offset) pair is a sorted array
7428 of locations of trampoline jumps leading there. Jumps are represented
7429 as pairs (sym, offset): trampoline frag symbol and offset of the jump
7430 inside the frag. */
7431 struct trampoline_chain
7432 {
7433 struct trampoline_chain_entry target;
7434 struct trampoline_chain_entry *entry;
7435 size_t n_entries;
7436 size_t n_max;
7437 bfd_boolean needs_sorting;
7438 };
7439
7440 struct trampoline_chain_index
7441 {
7442 struct trampoline_chain *entry;
7443 size_t n_entries;
7444 size_t n_max;
7445 bfd_boolean needs_sorting;
7446 };
7447
7448 struct trampoline_index
7449 {
7450 fragS **entry;
7451 size_t n_entries;
7452 size_t n_max;
7453 };
7454
7455 struct trampoline_seg
7456 {
7457 struct trampoline_seg *next;
7458 asection *seg;
7459 /* Trampolines ordered by their frag fr_address */
7460 struct trampoline_index index;
7461 /* Known trampoline chains ordered by (sym, offset) pair */
7462 struct trampoline_chain_index chain_index;
7463 };
7464
7465 static struct trampoline_seg trampoline_seg_list;
7466 #define J_RANGE (128 * 1024)
7467 #define J_MARGIN 4096
7468
7469 static int unreachable_count = 0;
7470
7471
7472 static void
7473 xtensa_maybe_create_trampoline_frag (void)
7474 {
7475 if (!use_trampolines)
7476 return;
7477
7478 /* We create an area for possible trampolines every 10 unreachable frags.
7479 These are preferred over the ones not preceded by an unreachable frag,
7480 because we don't have to jump around them. This function is called after
7481 each RELAX_UNREACHABLE frag is created. */
7482
7483 if (++unreachable_count > 10)
7484 {
7485 xtensa_create_trampoline_frag (FALSE);
7486 clear_frag_count ();
7487 unreachable_count = 0;
7488 }
7489 }
7490
7491 static void
7492 xtensa_check_frag_count (void)
7493 {
7494 if (!use_trampolines || frag_now->tc_frag_data.is_no_transform)
7495 return;
7496
7497 /* We create an area for possible trampolines every 8000 frags or so. This
7498 is an estimate based on the max range of a "j" insn (+/-128K) divided
7499 by a typical frag byte count (16), minus a few for safety. This function
7500 is called after each source line is processed. */
7501
7502 if (get_frag_count () > 8000)
7503 {
7504 xtensa_create_trampoline_frag (TRUE);
7505 clear_frag_count ();
7506 unreachable_count = 0;
7507 }
7508
7509 /* We create an area for a possible literal pool every N (default 5000)
7510 frags or so. */
7511 xtensa_maybe_create_literal_pool_frag (TRUE, TRUE);
7512 }
7513
7514 static xtensa_insnbuf trampoline_buf = NULL;
7515 static xtensa_insnbuf trampoline_slotbuf = NULL;
7516
7517 static xtensa_insnbuf litpool_buf = NULL;
7518 static xtensa_insnbuf litpool_slotbuf = NULL;
7519
7520 #define TRAMPOLINE_FRAG_SIZE 3000
7521
7522 static struct trampoline_seg *
7523 find_trampoline_seg (asection *seg)
7524 {
7525 struct trampoline_seg *ts = trampoline_seg_list.next;
7526 static struct trampoline_seg *mr;
7527
7528 if (mr && mr->seg == seg)
7529 return mr;
7530
7531 for ( ; ts; ts = ts->next)
7532 {
7533 if (ts->seg == seg)
7534 {
7535 mr = ts;
7536 return ts;
7537 }
7538 }
7539
7540 return NULL;
7541 }
7542
7543 static size_t xg_find_trampoline (const struct trampoline_index *idx,
7544 addressT addr)
7545 {
7546 size_t a = 0;
7547 size_t b = idx->n_entries;
7548
7549 while (b - a > 1)
7550 {
7551 size_t c = (a + b) / 2;
7552
7553 if (idx->entry[c]->fr_address <= addr)
7554 a = c;
7555 else
7556 b = c;
7557 }
7558 return a;
7559 }
7560
7561 static void xg_add_trampoline_to_index (struct trampoline_index *idx,
7562 fragS *fragP)
7563 {
7564 if (idx->n_entries == idx->n_max)
7565 {
7566 idx->n_max = (idx->n_entries + 1) * 2;
7567 idx->entry = xrealloc (idx->entry,
7568 sizeof (*idx->entry) * idx->n_max);
7569 }
7570 idx->entry[idx->n_entries] = fragP;
7571 ++idx->n_entries;
7572 }
7573
7574 static void xg_remove_trampoline_from_index (struct trampoline_index *idx,
7575 size_t i)
7576 {
7577 gas_assert (i < idx->n_entries);
7578 memmove (idx->entry + i, idx->entry + i + 1,
7579 (idx->n_entries - i - 1) * sizeof (*idx->entry));
7580 --idx->n_entries;
7581 }
7582
7583 static void xg_add_trampoline_to_seg (struct trampoline_seg *ts,
7584 fragS *fragP)
7585 {
7586 xg_add_trampoline_to_index (&ts->index, fragP);
7587 }
7588
7589 static void
7590 xtensa_create_trampoline_frag (bfd_boolean needs_jump_around)
7591 {
7592 /* Emit a frag where we can place intermediate jump instructions,
7593 in case we need to jump farther than 128K bytes.
7594 Each jump instruction takes three bytes.
7595 We allocate enough for 1000 trampolines in each frag.
7596 If that's not enough, oh well. */
7597
7598 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
7599 char *varP;
7600 fragS *fragP;
7601 int size = TRAMPOLINE_FRAG_SIZE;
7602
7603 if (ts == NULL)
7604 {
7605 ts = XCNEW(struct trampoline_seg);
7606 ts->next = trampoline_seg_list.next;
7607 trampoline_seg_list.next = ts;
7608 ts->seg = now_seg;
7609 }
7610
7611 frag_wane (frag_now);
7612 frag_new (0);
7613 xtensa_set_frag_assembly_state (frag_now);
7614 varP = frag_var (rs_machine_dependent, size, size, RELAX_TRAMPOLINE, NULL, 0, NULL);
7615 fragP = (fragS *)(varP - SIZEOF_STRUCT_FRAG);
7616 if (trampoline_buf == NULL)
7617 {
7618 trampoline_buf = xtensa_insnbuf_alloc (xtensa_default_isa);
7619 trampoline_slotbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
7620 }
7621 fragP->tc_frag_data.needs_jump_around = needs_jump_around;
7622 xg_add_trampoline_to_seg (ts, fragP);
7623 }
7624
7625 static bfd_boolean xg_is_trampoline_frag_full (const fragS *fragP)
7626 {
7627 return fragP->fr_var < 3;
7628 }
7629
7630 static int xg_order_trampoline_chain_entry (const void *a, const void *b)
7631 {
7632 const struct trampoline_chain_entry *pa = a;
7633 const struct trampoline_chain_entry *pb = b;
7634
7635 if (pa->sym != pb->sym)
7636 {
7637 valueT aval = S_GET_VALUE (pa->sym);
7638 valueT bval = S_GET_VALUE (pb->sym);
7639
7640 if (aval != bval)
7641 return aval < bval ? -1 : 1;
7642 }
7643 if (pa->offset != pb->offset)
7644 return pa->offset < pb->offset ? -1 : 1;
7645 return 0;
7646 }
7647
7648 static void xg_sort_trampoline_chain (struct trampoline_chain *tc)
7649 {
7650 qsort (tc->entry, tc->n_entries, sizeof (*tc->entry),
7651 xg_order_trampoline_chain_entry);
7652 tc->needs_sorting = FALSE;
7653 }
7654
7655 /* Find entry index in the given chain with maximal address <= source. */
7656 static size_t xg_find_chain_entry (struct trampoline_chain *tc,
7657 addressT source)
7658 {
7659 size_t a = 0;
7660 size_t b = tc->n_entries;
7661
7662 if (tc->needs_sorting)
7663 xg_sort_trampoline_chain (tc);
7664
7665 while (b - a > 1)
7666 {
7667 size_t c = (a + b) / 2;
7668 struct trampoline_chain_entry *e = tc->entry + c;
7669
7670 if (S_GET_VALUE(e->sym) + e->offset <= source)
7671 a = c;
7672 else
7673 b = c;
7674 }
7675 return a;
7676 }
7677
7678 /* Find the best jump target for the source in the given trampoline chain.
7679 The best jump target is the one that results in the shortest path to the
7680 final target, it's the location of the jump closest to the final target,
7681 but within the J_RANGE - J_MARGIN from the source. */
7682 static struct trampoline_chain_entry *
7683 xg_get_best_chain_entry (struct trampoline_chain *tc, addressT source)
7684 {
7685 addressT target = S_GET_VALUE(tc->target.sym) + tc->target.offset;
7686 size_t i = xg_find_chain_entry (tc, source);
7687 struct trampoline_chain_entry *e = tc->entry + i;
7688 int step = target < source ? -1 : 1;
7689 addressT chained_target;
7690 offsetT off;
7691
7692 if (target > source &&
7693 S_GET_VALUE(e->sym) + e->offset <= source &&
7694 i + 1 < tc->n_entries)
7695 ++i;
7696
7697 while (i + step < tc->n_entries)
7698 {
7699 struct trampoline_chain_entry *next = tc->entry + i + step;
7700
7701 chained_target = S_GET_VALUE(next->sym) + next->offset;
7702 off = source - chained_target;
7703
7704 if (labs (off) >= J_RANGE - J_MARGIN)
7705 break;
7706
7707 i += step;
7708 }
7709
7710 e = tc->entry + i;
7711 chained_target = S_GET_VALUE(e->sym) + e->offset;
7712 off = source - chained_target;
7713
7714 if (labs (off) < J_MARGIN ||
7715 labs (off) >= J_RANGE - J_MARGIN)
7716 return &tc->target;
7717 return tc->entry + i;
7718 }
7719
7720 static int xg_order_trampoline_chain (const void *a, const void *b)
7721 {
7722 const struct trampoline_chain *_pa = a;
7723 const struct trampoline_chain *_pb = b;
7724 const struct trampoline_chain_entry *pa = &_pa->target;
7725 const struct trampoline_chain_entry *pb = &_pb->target;
7726 symbolS *s1 = pa->sym;
7727 symbolS *s2 = pb->sym;
7728
7729 if (s1 != s2)
7730 {
7731 symbolS *tmp = symbol_symbolS (s1);
7732 if (tmp)
7733 s1 = tmp;
7734
7735 tmp = symbol_symbolS (s2);
7736 if (tmp)
7737 s2 = tmp;
7738
7739 if (s1 != s2)
7740 return s1 < s2 ? -1 : 1;
7741 }
7742
7743 if (pa->offset != pb->offset)
7744 return pa->offset < pb->offset ? -1 : 1;
7745 return 0;
7746 }
7747
7748 static struct trampoline_chain *
7749 xg_get_trampoline_chain (struct trampoline_seg *ts,
7750 symbolS *sym,
7751 addressT offset)
7752 {
7753 struct trampoline_chain_index *idx = &ts->chain_index;
7754 struct trampoline_chain c;
7755
7756 if (idx->n_entries == 0)
7757 return NULL;
7758
7759 if (idx->needs_sorting)
7760 {
7761 qsort (idx->entry, idx->n_entries, sizeof (*idx->entry),
7762 xg_order_trampoline_chain);
7763 idx->needs_sorting = FALSE;
7764 }
7765 c.target.sym = sym;
7766 c.target.offset = offset;
7767 return bsearch (&c, idx->entry, idx->n_entries,
7768 sizeof (struct trampoline_chain),
7769 xg_order_trampoline_chain);
7770 }
7771
7772 /* Find trampoline chain in the given trampoline segment that is going
7773 to the *sym + *offset. If found, replace *sym and *offset with the
7774 best jump target in that chain. */
7775 static struct trampoline_chain *
7776 xg_find_best_eq_target (struct trampoline_seg *ts,
7777 addressT source, symbolS **sym,
7778 addressT *offset)
7779 {
7780 struct trampoline_chain *tc = xg_get_trampoline_chain (ts, *sym, *offset);
7781
7782 if (tc)
7783 {
7784 struct trampoline_chain_entry *e = xg_get_best_chain_entry (tc, source);
7785
7786 *sym = e->sym;
7787 *offset = e->offset;
7788 }
7789 return tc;
7790 }
7791
7792 static void xg_add_location_to_chain (struct trampoline_chain *tc,
7793 symbolS *sym, addressT offset)
7794 {
7795 struct trampoline_chain_entry *e;
7796
7797 if (tc->n_entries == tc->n_max)
7798 {
7799 tc->n_max = (tc->n_max + 1) * 2;
7800 tc->entry = xrealloc (tc->entry, sizeof (*tc->entry) * tc->n_max);
7801 }
7802 e = tc->entry + tc->n_entries;
7803 e->sym = sym;
7804 e->offset = offset;
7805 ++tc->n_entries;
7806 tc->needs_sorting = TRUE;
7807 }
7808
7809 static struct trampoline_chain *
7810 xg_create_trampoline_chain (struct trampoline_seg *ts,
7811 symbolS *sym, addressT offset)
7812 {
7813 struct trampoline_chain_index *idx = &ts->chain_index;
7814 struct trampoline_chain *tc;
7815
7816 if (idx->n_entries == idx->n_max)
7817 {
7818 idx->n_max = (idx->n_max + 1) * 2;
7819 idx->entry = xrealloc (idx->entry,
7820 sizeof (*idx->entry) * idx->n_max);
7821 }
7822
7823 tc = idx->entry + idx->n_entries;
7824 tc->target.sym = sym;
7825 tc->target.offset = offset;
7826 tc->entry = NULL;
7827 tc->n_entries = 0;
7828 tc->n_max = 0;
7829 xg_add_location_to_chain (tc, sym, offset);
7830
7831 ++idx->n_entries;
7832 idx->needs_sorting = TRUE;
7833
7834 return tc;
7835 }
7836
7837 void dump_trampolines (void);
7838
7839 void
7840 dump_trampolines (void)
7841 {
7842 struct trampoline_seg *ts = trampoline_seg_list.next;
7843
7844 for ( ; ts; ts = ts->next)
7845 {
7846 size_t i;
7847 asection *seg = ts->seg;
7848
7849 if (seg == NULL)
7850 continue;
7851 fprintf(stderr, "SECTION %s\n", seg->name);
7852
7853 for (i = 0; i < ts->index.n_entries; ++i)
7854 {
7855 fragS *tf = ts->index.entry[i];
7856
7857 fprintf(stderr, " 0x%08x: fix=%d, jump_around=%s\n",
7858 (int)tf->fr_address, (int)tf->fr_fix,
7859 tf->tc_frag_data.needs_jump_around ? "T" : "F");
7860 }
7861 }
7862 }
7863
7864 static void dump_litpools (void) __attribute__ ((unused));
7865
7866 static void
7867 dump_litpools (void)
7868 {
7869 struct litpool_seg *lps = litpool_seg_list.next;
7870 struct litpool_frag *lpf;
7871
7872 for ( ; lps ; lps = lps->next )
7873 {
7874 printf("litpool seg %s\n", lps->seg->name);
7875 for ( lpf = lps->frag_list.next; lpf->fragP; lpf = lpf->next )
7876 {
7877 fragS *litfrag = lpf->fragP->fr_next;
7878 int count = 0;
7879 while (litfrag && litfrag->fr_subtype != RELAX_LITERAL_POOL_END)
7880 {
7881 if (litfrag->fr_fix == 4)
7882 count++;
7883 litfrag = litfrag->fr_next;
7884 }
7885 printf(" %ld <%d:%d> (%d) [%d]: ",
7886 lpf->addr, lpf->priority, lpf->original_priority,
7887 lpf->fragP->fr_line, count);
7888 /* dump_frag(lpf->fragP); */
7889 }
7890 }
7891 }
7892
7893 static void
7894 xtensa_maybe_create_literal_pool_frag (bfd_boolean create,
7895 bfd_boolean only_if_needed)
7896 {
7897 struct litpool_seg *lps = litpool_seg_list.next;
7898 fragS *fragP;
7899 struct litpool_frag *lpf;
7900 bfd_boolean needed = FALSE;
7901
7902 if (use_literal_section || !auto_litpools)
7903 return;
7904
7905 for ( ; lps ; lps = lps->next )
7906 {
7907 if (lps->seg == now_seg)
7908 break;
7909 }
7910
7911 if (lps == NULL)
7912 {
7913 lps = XCNEW (struct litpool_seg);
7914 lps->next = litpool_seg_list.next;
7915 litpool_seg_list.next = lps;
7916 lps->seg = now_seg;
7917 lps->frag_list.next = &lps->frag_list;
7918 lps->frag_list.prev = &lps->frag_list;
7919 /* Put candidate literal pool at the beginning of every section,
7920 so that even when section starts with literal load there's a
7921 literal pool available. */
7922 lps->frag_count = auto_litpool_limit;
7923 }
7924
7925 lps->frag_count++;
7926
7927 if (create)
7928 {
7929 if (only_if_needed)
7930 {
7931 if (past_xtensa_end || !use_transform() ||
7932 frag_now->tc_frag_data.is_no_transform)
7933 {
7934 return;
7935 }
7936 if (auto_litpool_limit <= 0)
7937 {
7938 /* Don't create a litpool based only on frag count. */
7939 return;
7940 }
7941 else if (lps->frag_count > auto_litpool_limit)
7942 {
7943 needed = TRUE;
7944 }
7945 else
7946 {
7947 return;
7948 }
7949 }
7950 else
7951 {
7952 needed = TRUE;
7953 }
7954 }
7955
7956 if (needed)
7957 {
7958 int size = (only_if_needed) ? 3 : 0; /* Space for a "j" insn. */
7959 /* Create a potential site for a literal pool. */
7960 frag_wane (frag_now);
7961 frag_new (0);
7962 xtensa_set_frag_assembly_state (frag_now);
7963 fragP = frag_now;
7964 fragP->tc_frag_data.lit_frchain = frchain_now;
7965 fragP->tc_frag_data.literal_frag = fragP;
7966 frag_var (rs_machine_dependent, size, size,
7967 (only_if_needed) ?
7968 RELAX_LITERAL_POOL_CANDIDATE_BEGIN :
7969 RELAX_LITERAL_POOL_BEGIN,
7970 NULL, 0, NULL);
7971 frag_now->tc_frag_data.lit_seg = now_seg;
7972 frag_variant (rs_machine_dependent, 0, 0,
7973 RELAX_LITERAL_POOL_END, NULL, 0, NULL);
7974 xtensa_set_frag_assembly_state (frag_now);
7975 }
7976 else
7977 {
7978 /* RELAX_LITERAL_POOL_BEGIN frag is being created;
7979 just record it here. */
7980 fragP = frag_now;
7981 }
7982
7983 lpf = XNEW (struct litpool_frag);
7984 /* Insert at tail of circular list. */
7985 lpf->addr = 0;
7986 lps->frag_list.prev->next = lpf;
7987 lpf->next = &lps->frag_list;
7988 lpf->prev = lps->frag_list.prev;
7989 lps->frag_list.prev = lpf;
7990 lpf->fragP = fragP;
7991 lpf->priority = (needed) ? (only_if_needed) ? 3 : 2 : 1;
7992 lpf->original_priority = lpf->priority;
7993 lpf->literal_count = 0;
7994
7995 lps->frag_count = 0;
7996 }
7997
7998 static void
7999 xtensa_cleanup_align_frags (void)
8000 {
8001 frchainS *frchP;
8002 asection *s;
8003
8004 for (s = stdoutput->sections; s; s = s->next)
8005 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8006 {
8007 fragS *fragP;
8008 /* Walk over all of the fragments in a subsection. */
8009 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8010 {
8011 if ((fragP->fr_type == rs_align
8012 || fragP->fr_type == rs_align_code
8013 || (fragP->fr_type == rs_machine_dependent
8014 && (fragP->fr_subtype == RELAX_DESIRE_ALIGN
8015 || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)))
8016 && fragP->fr_fix == 0)
8017 {
8018 fragS *next = fragP->fr_next;
8019
8020 while (next
8021 && next->fr_fix == 0
8022 && next->fr_type == rs_machine_dependent
8023 && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
8024 {
8025 frag_wane (next);
8026 next = next->fr_next;
8027 }
8028 }
8029 /* If we don't widen branch targets, then they
8030 will be easier to align. */
8031 if (fragP->tc_frag_data.is_branch_target
8032 && fragP->fr_opcode == fragP->fr_literal
8033 && fragP->fr_type == rs_machine_dependent
8034 && fragP->fr_subtype == RELAX_SLOTS
8035 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
8036 frag_wane (fragP);
8037 if (fragP->fr_type == rs_machine_dependent
8038 && fragP->fr_subtype == RELAX_UNREACHABLE)
8039 fragP->tc_frag_data.is_unreachable = TRUE;
8040 }
8041 }
8042 }
8043
8044
8045 /* Re-process all of the fragments looking to convert all of the
8046 RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch
8047 target in the next fragment, convert this to RELAX_DESIRE_ALIGN.
8048 Otherwise, convert to a .fill 0. */
8049
8050 static void
8051 xtensa_fix_target_frags (void)
8052 {
8053 frchainS *frchP;
8054 asection *s;
8055
8056 /* When this routine is called, all of the subsections are still intact
8057 so we walk over subsections instead of sections. */
8058 for (s = stdoutput->sections; s; s = s->next)
8059 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8060 {
8061 fragS *fragP;
8062
8063 /* Walk over all of the fragments in a subsection. */
8064 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8065 {
8066 if (fragP->fr_type == rs_machine_dependent
8067 && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET)
8068 {
8069 if (next_frag_is_branch_target (fragP))
8070 fragP->fr_subtype = RELAX_DESIRE_ALIGN;
8071 else
8072 frag_wane (fragP);
8073 }
8074 }
8075 }
8076 }
8077
8078
8079 static bfd_boolean is_narrow_branch_guaranteed_in_range (fragS *, TInsn *);
8080
8081 static void
8082 xtensa_mark_narrow_branches (void)
8083 {
8084 frchainS *frchP;
8085 asection *s;
8086
8087 for (s = stdoutput->sections; s; s = s->next)
8088 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8089 {
8090 fragS *fragP;
8091 /* Walk over all of the fragments in a subsection. */
8092 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8093 {
8094 if (fragP->fr_type == rs_machine_dependent
8095 && fragP->fr_subtype == RELAX_SLOTS
8096 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
8097 {
8098 vliw_insn vinsn;
8099
8100 vinsn_from_chars (&vinsn, fragP->fr_opcode);
8101 tinsn_immed_from_frag (&vinsn.slots[0], fragP, 0);
8102
8103 if (vinsn.num_slots == 1
8104 && xtensa_opcode_is_branch (xtensa_default_isa,
8105 vinsn.slots[0].opcode) == 1
8106 && xg_get_single_size (vinsn.slots[0].opcode) == 2
8107 && is_narrow_branch_guaranteed_in_range (fragP,
8108 &vinsn.slots[0]))
8109 {
8110 fragP->fr_subtype = RELAX_SLOTS;
8111 fragP->tc_frag_data.slot_subtypes[0] = RELAX_NARROW;
8112 fragP->tc_frag_data.is_aligning_branch = 1;
8113 }
8114 }
8115 }
8116 }
8117 }
8118
8119
8120 /* A branch is typically widened only when its target is out of
8121 range. However, we would like to widen them to align a subsequent
8122 branch target when possible.
8123
8124 Because the branch relaxation code is so convoluted, the optimal solution
8125 (combining the two cases) is difficult to get right in all circumstances.
8126 We therefore go with an "almost as good" solution, where we only
8127 use for alignment narrow branches that definitely will not expand to a
8128 jump and a branch. These functions find and mark these cases. */
8129
8130 /* The range in bytes of BNEZ.N and BEQZ.N. The target operand is encoded
8131 as PC + 4 + imm6, where imm6 is a 6-bit immediate ranging from 0 to 63.
8132 We start counting beginning with the frag after the 2-byte branch, so the
8133 maximum offset is (4 - 2) + 63 = 65. */
8134 #define MAX_IMMED6 65
8135
8136 static offsetT unrelaxed_frag_max_size (fragS *);
8137
8138 static bfd_boolean
8139 is_narrow_branch_guaranteed_in_range (fragS *fragP, TInsn *tinsn)
8140 {
8141 const expressionS *exp = &tinsn->tok[1];
8142 symbolS *symbolP = exp->X_add_symbol;
8143 offsetT max_distance = exp->X_add_number;
8144 fragS *target_frag;
8145
8146 if (exp->X_op != O_symbol)
8147 return FALSE;
8148
8149 target_frag = symbol_get_frag (symbolP);
8150
8151 max_distance += (S_GET_VALUE (symbolP) - target_frag->fr_address);
8152 if (is_branch_jmp_to_next (tinsn, fragP))
8153 return FALSE;
8154
8155 /* The branch doesn't branch over it's own frag,
8156 but over the subsequent ones. */
8157 fragP = fragP->fr_next;
8158 while (fragP != NULL && fragP != target_frag && max_distance <= MAX_IMMED6)
8159 {
8160 max_distance += unrelaxed_frag_max_size (fragP);
8161 fragP = fragP->fr_next;
8162 }
8163 if (max_distance <= MAX_IMMED6 && fragP == target_frag)
8164 return TRUE;
8165 return FALSE;
8166 }
8167
8168
8169 static void
8170 xtensa_mark_zcl_first_insns (void)
8171 {
8172 frchainS *frchP;
8173 asection *s;
8174
8175 for (s = stdoutput->sections; s; s = s->next)
8176 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8177 {
8178 fragS *fragP;
8179 /* Walk over all of the fragments in a subsection. */
8180 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8181 {
8182 if (fragP->fr_type == rs_machine_dependent
8183 && (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
8184 || fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE))
8185 {
8186 /* Find the loop frag. */
8187 fragS *loop_frag = next_non_empty_frag (fragP);
8188 /* Find the first insn frag. */
8189 fragS *targ_frag = next_non_empty_frag (loop_frag);
8190
8191 /* Handle a corner case that comes up in hardware
8192 diagnostics. The original assembly looks like this:
8193
8194 loop aX, LabelA
8195 <empty_frag>--not found by next_non_empty_frag
8196 loop aY, LabelB
8197
8198 Depending on the start address, the assembler may or
8199 may not change it to look something like this:
8200
8201 loop aX, LabelA
8202 nop--frag isn't empty anymore
8203 loop aY, LabelB
8204
8205 So set up to check the alignment of the nop if it
8206 exists */
8207 while (loop_frag != targ_frag)
8208 {
8209 if (loop_frag->fr_type == rs_machine_dependent
8210 && (loop_frag->fr_subtype == RELAX_ALIGN_NEXT_OPCODE
8211 || loop_frag->fr_subtype
8212 == RELAX_CHECK_ALIGN_NEXT_OPCODE))
8213 targ_frag = loop_frag;
8214 else
8215 loop_frag = loop_frag->fr_next;
8216 }
8217
8218 /* Of course, sometimes (mostly for toy test cases) a
8219 zero-cost loop instruction is the last in a section. */
8220 if (targ_frag)
8221 {
8222 targ_frag->tc_frag_data.is_first_loop_insn = TRUE;
8223 /* Do not widen a frag that is the first instruction of a
8224 zero-cost loop. It makes that loop harder to align. */
8225 if (targ_frag->fr_type == rs_machine_dependent
8226 && targ_frag->fr_subtype == RELAX_SLOTS
8227 && (targ_frag->tc_frag_data.slot_subtypes[0]
8228 == RELAX_NARROW))
8229 {
8230 if (targ_frag->tc_frag_data.is_aligning_branch)
8231 targ_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
8232 else
8233 {
8234 frag_wane (targ_frag);
8235 targ_frag->tc_frag_data.slot_subtypes[0] = 0;
8236 }
8237 }
8238 }
8239 if (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)
8240 frag_wane (fragP);
8241 }
8242 }
8243 }
8244 }
8245
8246
8247 /* When a difference-of-symbols expression is encoded as a uleb128 or
8248 sleb128 value, the linker is unable to adjust that value to account for
8249 link-time relaxation. Mark all the code between such symbols so that
8250 its size cannot be changed by linker relaxation. */
8251
8252 static void
8253 xtensa_mark_difference_of_two_symbols (void)
8254 {
8255 symbolS *expr_sym;
8256
8257 for (expr_sym = expr_symbols; expr_sym;
8258 expr_sym = symbol_get_tc (expr_sym)->next_expr_symbol)
8259 {
8260 expressionS *exp = symbol_get_value_expression (expr_sym);
8261
8262 if (exp->X_op == O_subtract)
8263 {
8264 symbolS *left = exp->X_add_symbol;
8265 symbolS *right = exp->X_op_symbol;
8266
8267 /* Difference of two symbols not in the same section
8268 are handled with relocations in the linker. */
8269 if (S_GET_SEGMENT (left) == S_GET_SEGMENT (right))
8270 {
8271 fragS *start;
8272 fragS *end;
8273 fragS *walk;
8274
8275 if (symbol_get_frag (left)->fr_address
8276 <= symbol_get_frag (right)->fr_address)
8277 {
8278 start = symbol_get_frag (left);
8279 end = symbol_get_frag (right);
8280 }
8281 else
8282 {
8283 start = symbol_get_frag (right);
8284 end = symbol_get_frag (left);
8285 }
8286
8287 if (start->tc_frag_data.no_transform_end != NULL)
8288 walk = start->tc_frag_data.no_transform_end;
8289 else
8290 walk = start;
8291 do
8292 {
8293 walk->tc_frag_data.is_no_transform = 1;
8294 walk = walk->fr_next;
8295 }
8296 while (walk && walk->fr_address < end->fr_address);
8297
8298 start->tc_frag_data.no_transform_end = walk;
8299 }
8300 }
8301 }
8302 }
8303
8304
8305 /* Re-process all of the fragments looking to convert all of the
8306 RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a
8307 conditional branch or a retw/retw.n, convert this frag to one that
8308 will generate a NOP. In any case close it off with a .fill 0. */
8309
8310 static bfd_boolean next_instrs_are_b_retw (fragS *);
8311
8312 static void
8313 xtensa_fix_a0_b_retw_frags (void)
8314 {
8315 frchainS *frchP;
8316 asection *s;
8317
8318 /* When this routine is called, all of the subsections are still intact
8319 so we walk over subsections instead of sections. */
8320 for (s = stdoutput->sections; s; s = s->next)
8321 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8322 {
8323 fragS *fragP;
8324
8325 /* Walk over all of the fragments in a subsection. */
8326 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8327 {
8328 if (fragP->fr_type == rs_machine_dependent
8329 && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW)
8330 {
8331 if (next_instrs_are_b_retw (fragP))
8332 {
8333 if (fragP->tc_frag_data.is_no_transform)
8334 as_bad (_("instruction sequence (write a0, branch, retw) may trigger hardware errata"));
8335 else
8336 relax_frag_add_nop (fragP);
8337 }
8338 frag_wane (fragP);
8339 }
8340 }
8341 }
8342 }
8343
8344
8345 static bfd_boolean
8346 next_instrs_are_b_retw (fragS *fragP)
8347 {
8348 xtensa_opcode opcode;
8349 xtensa_format fmt;
8350 const fragS *next_fragP = next_non_empty_frag (fragP);
8351 static xtensa_insnbuf insnbuf = NULL;
8352 static xtensa_insnbuf slotbuf = NULL;
8353 xtensa_isa isa = xtensa_default_isa;
8354 unsigned int offset = 0;
8355 int slot;
8356 bfd_boolean branch_seen = FALSE;
8357
8358 if (!insnbuf)
8359 {
8360 insnbuf = xtensa_insnbuf_alloc (isa);
8361 slotbuf = xtensa_insnbuf_alloc (isa);
8362 }
8363
8364 if (next_fragP == NULL)
8365 return FALSE;
8366
8367 /* Check for the conditional branch. */
8368 xtensa_insnbuf_from_chars
8369 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
8370 fmt = xtensa_format_decode (isa, insnbuf);
8371 if (fmt == XTENSA_UNDEFINED)
8372 return FALSE;
8373
8374 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8375 {
8376 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
8377 opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
8378
8379 branch_seen = (branch_seen
8380 || xtensa_opcode_is_branch (isa, opcode) == 1);
8381 }
8382
8383 if (!branch_seen)
8384 return FALSE;
8385
8386 offset += xtensa_format_length (isa, fmt);
8387 if (offset == next_fragP->fr_fix)
8388 {
8389 next_fragP = next_non_empty_frag (next_fragP);
8390 offset = 0;
8391 }
8392
8393 if (next_fragP == NULL)
8394 return FALSE;
8395
8396 /* Check for the retw/retw.n. */
8397 xtensa_insnbuf_from_chars
8398 (isa, insnbuf, (unsigned char *) &next_fragP->fr_literal[offset], 0);
8399 fmt = xtensa_format_decode (isa, insnbuf);
8400
8401 /* Because RETW[.N] is not bundleable, a VLIW bundle here means that we
8402 have no problems. */
8403 if (fmt == XTENSA_UNDEFINED
8404 || xtensa_format_num_slots (isa, fmt) != 1)
8405 return FALSE;
8406
8407 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
8408 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
8409
8410 if (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode)
8411 return TRUE;
8412
8413 return FALSE;
8414 }
8415
8416
8417 /* Re-process all of the fragments looking to convert all of the
8418 RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a
8419 loop end label, convert this frag to one that will generate a NOP.
8420 In any case close it off with a .fill 0. */
8421
8422 static bfd_boolean next_instr_is_loop_end (fragS *);
8423
8424 static void
8425 xtensa_fix_b_j_loop_end_frags (void)
8426 {
8427 frchainS *frchP;
8428 asection *s;
8429
8430 /* When this routine is called, all of the subsections are still intact
8431 so we walk over subsections instead of sections. */
8432 for (s = stdoutput->sections; s; s = s->next)
8433 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8434 {
8435 fragS *fragP;
8436
8437 /* Walk over all of the fragments in a subsection. */
8438 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8439 {
8440 if (fragP->fr_type == rs_machine_dependent
8441 && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END)
8442 {
8443 if (next_instr_is_loop_end (fragP))
8444 {
8445 if (fragP->tc_frag_data.is_no_transform)
8446 as_bad (_("branching or jumping to a loop end may trigger hardware errata"));
8447 else
8448 relax_frag_add_nop (fragP);
8449 }
8450 frag_wane (fragP);
8451 }
8452 }
8453 }
8454 }
8455
8456
8457 static bfd_boolean
8458 next_instr_is_loop_end (fragS *fragP)
8459 {
8460 const fragS *next_fragP;
8461
8462 if (next_frag_is_loop_target (fragP))
8463 return FALSE;
8464
8465 next_fragP = next_non_empty_frag (fragP);
8466 if (next_fragP == NULL)
8467 return FALSE;
8468
8469 if (!next_frag_is_loop_target (next_fragP))
8470 return FALSE;
8471
8472 /* If the size is >= 3 then there is more than one instruction here.
8473 The hardware bug will not fire. */
8474 if (next_fragP->fr_fix > 3)
8475 return FALSE;
8476
8477 return TRUE;
8478 }
8479
8480
8481 /* Re-process all of the fragments looking to convert all of the
8482 RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is
8483 not MY loop's loop end within 12 bytes, add enough nops here to
8484 make it at least 12 bytes away. In any case close it off with a
8485 .fill 0. */
8486
8487 static offsetT min_bytes_to_other_loop_end
8488 (fragS *, fragS *, offsetT);
8489
8490 static void
8491 xtensa_fix_close_loop_end_frags (void)
8492 {
8493 frchainS *frchP;
8494 asection *s;
8495
8496 /* When this routine is called, all of the subsections are still intact
8497 so we walk over subsections instead of sections. */
8498 for (s = stdoutput->sections; s; s = s->next)
8499 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8500 {
8501 fragS *fragP;
8502
8503 fragS *current_target = NULL;
8504
8505 /* Walk over all of the fragments in a subsection. */
8506 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8507 {
8508 if (fragP->fr_type == rs_machine_dependent
8509 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8510 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8511 current_target = symbol_get_frag (fragP->fr_symbol);
8512
8513 if (current_target
8514 && fragP->fr_type == rs_machine_dependent
8515 && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END)
8516 {
8517 offsetT min_bytes;
8518 int bytes_added = 0;
8519
8520 #define REQUIRED_LOOP_DIVIDING_BYTES 12
8521 /* Max out at 12. */
8522 min_bytes = min_bytes_to_other_loop_end
8523 (fragP->fr_next, current_target, REQUIRED_LOOP_DIVIDING_BYTES);
8524
8525 if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES)
8526 {
8527 if (fragP->tc_frag_data.is_no_transform)
8528 as_bad (_("loop end too close to another loop end may trigger hardware errata"));
8529 else
8530 {
8531 while (min_bytes + bytes_added
8532 < REQUIRED_LOOP_DIVIDING_BYTES)
8533 {
8534 int length = 3;
8535
8536 if (fragP->fr_var < length)
8537 as_fatal (_("fr_var %lu < length %d"),
8538 (long) fragP->fr_var, length);
8539 else
8540 {
8541 assemble_nop (length,
8542 fragP->fr_literal + fragP->fr_fix);
8543 fragP->fr_fix += length;
8544 fragP->fr_var -= length;
8545 }
8546 bytes_added += length;
8547 }
8548 }
8549 }
8550 frag_wane (fragP);
8551 }
8552 gas_assert (fragP->fr_type != rs_machine_dependent
8553 || fragP->fr_subtype != RELAX_ADD_NOP_IF_CLOSE_LOOP_END);
8554 }
8555 }
8556 }
8557
8558
8559 static offsetT unrelaxed_frag_min_size (fragS *);
8560
8561 static offsetT
8562 min_bytes_to_other_loop_end (fragS *fragP,
8563 fragS *current_target,
8564 offsetT max_size)
8565 {
8566 offsetT offset = 0;
8567 fragS *current_fragP;
8568
8569 for (current_fragP = fragP;
8570 current_fragP;
8571 current_fragP = current_fragP->fr_next)
8572 {
8573 if (current_fragP->tc_frag_data.is_loop_target
8574 && current_fragP != current_target)
8575 return offset;
8576
8577 offset += unrelaxed_frag_min_size (current_fragP);
8578
8579 if (offset >= max_size)
8580 return max_size;
8581 }
8582 return max_size;
8583 }
8584
8585
8586 static offsetT
8587 unrelaxed_frag_min_size (fragS *fragP)
8588 {
8589 offsetT size = fragP->fr_fix;
8590
8591 /* Add fill size. */
8592 if (fragP->fr_type == rs_fill)
8593 size += fragP->fr_offset;
8594
8595 return size;
8596 }
8597
8598
8599 static offsetT
8600 unrelaxed_frag_max_size (fragS *fragP)
8601 {
8602 offsetT size = fragP->fr_fix;
8603 switch (fragP->fr_type)
8604 {
8605 case 0:
8606 /* Empty frags created by the obstack allocation scheme
8607 end up with type 0. */
8608 break;
8609 case rs_fill:
8610 case rs_org:
8611 case rs_space:
8612 size += fragP->fr_offset;
8613 break;
8614 case rs_align:
8615 case rs_align_code:
8616 case rs_align_test:
8617 case rs_leb128:
8618 case rs_cfa:
8619 case rs_dwarf2dbg:
8620 /* No further adjustments needed. */
8621 break;
8622 case rs_machine_dependent:
8623 if (fragP->fr_subtype != RELAX_DESIRE_ALIGN)
8624 size += fragP->fr_var;
8625 break;
8626 default:
8627 /* We had darn well better know how big it is. */
8628 gas_assert (0);
8629 break;
8630 }
8631
8632 return size;
8633 }
8634
8635
8636 /* Re-process all of the fragments looking to convert all
8637 of the RELAX_ADD_NOP_IF_SHORT_LOOP. If:
8638
8639 A)
8640 1) the instruction size count to the loop end label
8641 is too short (<= 2 instructions),
8642 2) loop has a jump or branch in it
8643
8644 or B)
8645 1) workaround_all_short_loops is TRUE
8646 2) The generating loop was a 'loopgtz' or 'loopnez'
8647 3) the instruction size count to the loop end label is too short
8648 (<= 2 instructions)
8649 then convert this frag (and maybe the next one) to generate a NOP.
8650 In any case close it off with a .fill 0. */
8651
8652 static int count_insns_to_loop_end (fragS *, bfd_boolean, int);
8653 static bfd_boolean branch_before_loop_end (fragS *);
8654
8655 static void
8656 xtensa_fix_short_loop_frags (void)
8657 {
8658 frchainS *frchP;
8659 asection *s;
8660
8661 /* When this routine is called, all of the subsections are still intact
8662 so we walk over subsections instead of sections. */
8663 for (s = stdoutput->sections; s; s = s->next)
8664 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8665 {
8666 fragS *fragP;
8667 xtensa_opcode current_opcode = XTENSA_UNDEFINED;
8668
8669 /* Walk over all of the fragments in a subsection. */
8670 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8671 {
8672 if (fragP->fr_type == rs_machine_dependent
8673 && ((fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE)
8674 || (fragP->fr_subtype == RELAX_CHECK_ALIGN_NEXT_OPCODE)))
8675 {
8676 TInsn t_insn;
8677 fragS *loop_frag = next_non_empty_frag (fragP);
8678 tinsn_from_chars (&t_insn, loop_frag->fr_opcode, 0);
8679 current_opcode = t_insn.opcode;
8680 gas_assert (xtensa_opcode_is_loop (xtensa_default_isa,
8681 current_opcode) == 1);
8682 }
8683
8684 if (fragP->fr_type == rs_machine_dependent
8685 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8686 {
8687 if (count_insns_to_loop_end (fragP->fr_next, TRUE, 3) < 3
8688 && (branch_before_loop_end (fragP->fr_next)
8689 || (workaround_all_short_loops
8690 && current_opcode != XTENSA_UNDEFINED
8691 && current_opcode != xtensa_loop_opcode)))
8692 {
8693 if (fragP->tc_frag_data.is_no_transform)
8694 as_bad (_("loop containing less than three instructions may trigger hardware errata"));
8695 else
8696 relax_frag_add_nop (fragP);
8697 }
8698 frag_wane (fragP);
8699 }
8700 }
8701 }
8702 }
8703
8704
8705 static int unrelaxed_frag_min_insn_count (fragS *);
8706
8707 static int
8708 count_insns_to_loop_end (fragS *base_fragP,
8709 bfd_boolean count_relax_add,
8710 int max_count)
8711 {
8712 fragS *fragP = NULL;
8713 int insn_count = 0;
8714
8715 fragP = base_fragP;
8716
8717 for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next)
8718 {
8719 insn_count += unrelaxed_frag_min_insn_count (fragP);
8720 if (insn_count >= max_count)
8721 return max_count;
8722
8723 if (count_relax_add)
8724 {
8725 if (fragP->fr_type == rs_machine_dependent
8726 && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP)
8727 {
8728 /* In order to add the appropriate number of
8729 NOPs, we count an instruction for downstream
8730 occurrences. */
8731 insn_count++;
8732 if (insn_count >= max_count)
8733 return max_count;
8734 }
8735 }
8736 }
8737 return insn_count;
8738 }
8739
8740
8741 static int
8742 unrelaxed_frag_min_insn_count (fragS *fragP)
8743 {
8744 xtensa_isa isa = xtensa_default_isa;
8745 static xtensa_insnbuf insnbuf = NULL;
8746 int insn_count = 0;
8747 unsigned int offset = 0;
8748
8749 if (!fragP->tc_frag_data.is_insn)
8750 return insn_count;
8751
8752 if (!insnbuf)
8753 insnbuf = xtensa_insnbuf_alloc (isa);
8754
8755 /* Decode the fixed instructions. */
8756 while (offset < fragP->fr_fix)
8757 {
8758 xtensa_format fmt;
8759
8760 xtensa_insnbuf_from_chars
8761 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8762 fmt = xtensa_format_decode (isa, insnbuf);
8763
8764 if (fmt == XTENSA_UNDEFINED)
8765 {
8766 as_fatal (_("undecodable instruction in instruction frag"));
8767 return insn_count;
8768 }
8769 offset += xtensa_format_length (isa, fmt);
8770 insn_count++;
8771 }
8772
8773 return insn_count;
8774 }
8775
8776
8777 static bfd_boolean unrelaxed_frag_has_b_j (fragS *);
8778
8779 static bfd_boolean
8780 branch_before_loop_end (fragS *base_fragP)
8781 {
8782 fragS *fragP;
8783
8784 for (fragP = base_fragP;
8785 fragP && !fragP->tc_frag_data.is_loop_target;
8786 fragP = fragP->fr_next)
8787 {
8788 if (unrelaxed_frag_has_b_j (fragP))
8789 return TRUE;
8790 }
8791 return FALSE;
8792 }
8793
8794
8795 static bfd_boolean
8796 unrelaxed_frag_has_b_j (fragS *fragP)
8797 {
8798 static xtensa_insnbuf insnbuf = NULL;
8799 xtensa_isa isa = xtensa_default_isa;
8800 unsigned int offset = 0;
8801
8802 if (!fragP->tc_frag_data.is_insn)
8803 return FALSE;
8804
8805 if (!insnbuf)
8806 insnbuf = xtensa_insnbuf_alloc (isa);
8807
8808 /* Decode the fixed instructions. */
8809 while (offset < fragP->fr_fix)
8810 {
8811 xtensa_format fmt;
8812 int slot;
8813
8814 xtensa_insnbuf_from_chars
8815 (isa, insnbuf, (unsigned char *) fragP->fr_literal + offset, 0);
8816 fmt = xtensa_format_decode (isa, insnbuf);
8817 if (fmt == XTENSA_UNDEFINED)
8818 return FALSE;
8819
8820 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
8821 {
8822 xtensa_opcode opcode =
8823 get_opcode_from_buf (fragP->fr_literal + offset, slot);
8824 if (xtensa_opcode_is_branch (isa, opcode) == 1
8825 || xtensa_opcode_is_jump (isa, opcode) == 1)
8826 return TRUE;
8827 }
8828 offset += xtensa_format_length (isa, fmt);
8829 }
8830 return FALSE;
8831 }
8832
8833
8834 /* Checks to be made after initial assembly but before relaxation. */
8835
8836 static bfd_boolean is_empty_loop (const TInsn *, fragS *);
8837 static bfd_boolean is_local_forward_loop (const TInsn *, fragS *);
8838
8839 static void
8840 xtensa_sanity_check (void)
8841 {
8842 const char *file_name;
8843 unsigned line;
8844 frchainS *frchP;
8845 asection *s;
8846
8847 file_name = as_where (&line);
8848 for (s = stdoutput->sections; s; s = s->next)
8849 for (frchP = seg_info (s)->frchainP; frchP; frchP = frchP->frch_next)
8850 {
8851 fragS *fragP;
8852
8853 /* Walk over all of the fragments in a subsection. */
8854 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
8855 {
8856 if (fragP->fr_type == rs_machine_dependent
8857 && fragP->fr_subtype == RELAX_SLOTS
8858 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_IMMED)
8859 {
8860 static xtensa_insnbuf insnbuf = NULL;
8861 TInsn t_insn;
8862
8863 if (fragP->fr_opcode != NULL)
8864 {
8865 if (!insnbuf)
8866 insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa);
8867 tinsn_from_chars (&t_insn, fragP->fr_opcode, 0);
8868 tinsn_immed_from_frag (&t_insn, fragP, 0);
8869
8870 if (xtensa_opcode_is_loop (xtensa_default_isa,
8871 t_insn.opcode) == 1)
8872 {
8873 if (is_empty_loop (&t_insn, fragP))
8874 {
8875 new_logical_line (fragP->fr_file, fragP->fr_line);
8876 as_bad (_("invalid empty loop"));
8877 }
8878 if (!is_local_forward_loop (&t_insn, fragP))
8879 {
8880 new_logical_line (fragP->fr_file, fragP->fr_line);
8881 as_bad (_("loop target does not follow "
8882 "loop instruction in section"));
8883 }
8884 }
8885 }
8886 }
8887 }
8888 }
8889 new_logical_line (file_name, line);
8890 }
8891
8892
8893 #define LOOP_IMMED_OPN 1
8894
8895 /* Return TRUE if the loop target is the next non-zero fragment. */
8896
8897 static bfd_boolean
8898 is_empty_loop (const TInsn *insn, fragS *fragP)
8899 {
8900 const expressionS *exp;
8901 symbolS *symbolP;
8902 fragS *next_fragP;
8903
8904 if (insn->insn_type != ITYPE_INSN)
8905 return FALSE;
8906
8907 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8908 return FALSE;
8909
8910 if (insn->ntok <= LOOP_IMMED_OPN)
8911 return FALSE;
8912
8913 exp = &insn->tok[LOOP_IMMED_OPN];
8914
8915 if (exp->X_op != O_symbol)
8916 return FALSE;
8917
8918 symbolP = exp->X_add_symbol;
8919 if (!symbolP)
8920 return FALSE;
8921
8922 if (symbol_get_frag (symbolP) == NULL)
8923 return FALSE;
8924
8925 if (S_GET_VALUE (symbolP) != 0)
8926 return FALSE;
8927
8928 /* Walk through the zero-size fragments from this one. If we find
8929 the target fragment, then this is a zero-size loop. */
8930
8931 for (next_fragP = fragP->fr_next;
8932 next_fragP != NULL;
8933 next_fragP = next_fragP->fr_next)
8934 {
8935 if (next_fragP == symbol_get_frag (symbolP))
8936 return TRUE;
8937 if (next_fragP->fr_fix != 0)
8938 return FALSE;
8939 }
8940 return FALSE;
8941 }
8942
8943
8944 static bfd_boolean
8945 is_local_forward_loop (const TInsn *insn, fragS *fragP)
8946 {
8947 const expressionS *exp;
8948 symbolS *symbolP;
8949 fragS *next_fragP;
8950
8951 if (insn->insn_type != ITYPE_INSN)
8952 return FALSE;
8953
8954 if (xtensa_opcode_is_loop (xtensa_default_isa, insn->opcode) != 1)
8955 return FALSE;
8956
8957 if (insn->ntok <= LOOP_IMMED_OPN)
8958 return FALSE;
8959
8960 exp = &insn->tok[LOOP_IMMED_OPN];
8961
8962 if (exp->X_op != O_symbol)
8963 return FALSE;
8964
8965 symbolP = exp->X_add_symbol;
8966 if (!symbolP)
8967 return FALSE;
8968
8969 if (symbol_get_frag (symbolP) == NULL)
8970 return FALSE;
8971
8972 /* Walk through fragments until we find the target.
8973 If we do not find the target, then this is an invalid loop. */
8974
8975 for (next_fragP = fragP->fr_next;
8976 next_fragP != NULL;
8977 next_fragP = next_fragP->fr_next)
8978 {
8979 if (next_fragP == symbol_get_frag (symbolP))
8980 return TRUE;
8981 }
8982
8983 return FALSE;
8984 }
8985
8986 #define XTINFO_NAME "Xtensa_Info"
8987 #define XTINFO_NAMESZ 12
8988 #define XTINFO_TYPE 1
8989
8990 static void
8991 xtensa_add_config_info (void)
8992 {
8993 asection *info_sec;
8994 char *data, *p;
8995 int sz;
8996
8997 info_sec = subseg_new (".xtensa.info", 0);
8998 bfd_set_section_flags (info_sec, SEC_HAS_CONTENTS | SEC_READONLY);
8999
9000 data = XNEWVEC (char, 100);
9001 sprintf (data, "USE_ABSOLUTE_LITERALS=%d\nABI=%d\n",
9002 XSHAL_USE_ABSOLUTE_LITERALS, xtensa_abi_choice ());
9003 sz = strlen (data) + 1;
9004
9005 /* Add enough null terminators to pad to a word boundary. */
9006 do
9007 data[sz++] = 0;
9008 while ((sz & 3) != 0);
9009
9010 /* Follow the standard note section layout:
9011 First write the length of the name string. */
9012 p = frag_more (4);
9013 md_number_to_chars (p, (valueT) XTINFO_NAMESZ, 4);
9014
9015 /* Next comes the length of the "descriptor", i.e., the actual data. */
9016 p = frag_more (4);
9017 md_number_to_chars (p, (valueT) sz, 4);
9018
9019 /* Write the note type. */
9020 p = frag_more (4);
9021 md_number_to_chars (p, (valueT) XTINFO_TYPE, 4);
9022
9023 /* Write the name field. */
9024 p = frag_more (XTINFO_NAMESZ);
9025 memcpy (p, XTINFO_NAME, XTINFO_NAMESZ);
9026
9027 /* Finally, write the descriptor. */
9028 p = frag_more (sz);
9029 memcpy (p, data, sz);
9030
9031 free (data);
9032 }
9033
9034 \f
9035 /* Alignment Functions. */
9036
9037 static int
9038 get_text_align_power (unsigned target_size)
9039 {
9040 if (target_size <= 4)
9041 return 2;
9042
9043 if (target_size <= 8)
9044 return 3;
9045
9046 if (target_size <= 16)
9047 return 4;
9048
9049 if (target_size <= 32)
9050 return 5;
9051
9052 if (target_size <= 64)
9053 return 6;
9054
9055 if (target_size <= 128)
9056 return 7;
9057
9058 if (target_size <= 256)
9059 return 8;
9060
9061 if (target_size <= 512)
9062 return 9;
9063
9064 if (target_size <= 1024)
9065 return 10;
9066
9067 gas_assert (0);
9068 return 0;
9069 }
9070
9071
9072 static int
9073 get_text_align_max_fill_size (int align_pow,
9074 bfd_boolean use_nops,
9075 bfd_boolean use_no_density)
9076 {
9077 if (!use_nops)
9078 return (1 << align_pow);
9079 if (use_no_density)
9080 return 3 * (1 << align_pow);
9081
9082 return 1 + (1 << align_pow);
9083 }
9084
9085
9086 /* Calculate the minimum bytes of fill needed at "address" to align a
9087 target instruction of size "target_size" so that it does not cross a
9088 power-of-two boundary specified by "align_pow". If "use_nops" is FALSE,
9089 the fill can be an arbitrary number of bytes. Otherwise, the space must
9090 be filled by NOP instructions. */
9091
9092 static int
9093 get_text_align_fill_size (addressT address,
9094 int align_pow,
9095 int target_size,
9096 bfd_boolean use_nops,
9097 bfd_boolean use_no_density)
9098 {
9099 addressT alignment, fill, fill_limit, fill_step;
9100 bfd_boolean skip_one = FALSE;
9101
9102 alignment = (1 << align_pow);
9103 gas_assert (target_size > 0 && alignment >= (addressT) target_size);
9104
9105 if (!use_nops)
9106 {
9107 fill_limit = alignment;
9108 fill_step = 1;
9109 }
9110 else if (!use_no_density)
9111 {
9112 /* Combine 2- and 3-byte NOPs to fill anything larger than one. */
9113 fill_limit = alignment * 2;
9114 fill_step = 1;
9115 skip_one = TRUE;
9116 }
9117 else
9118 {
9119 /* Fill with 3-byte NOPs -- can only fill multiples of 3. */
9120 fill_limit = alignment * 3;
9121 fill_step = 3;
9122 }
9123
9124 /* Try all fill sizes until finding one that works. */
9125 for (fill = 0; fill < fill_limit; fill += fill_step)
9126 {
9127 if (skip_one && fill == 1)
9128 continue;
9129 if ((address + fill) >> align_pow
9130 == (address + fill + target_size - 1) >> align_pow)
9131 return fill;
9132 }
9133 gas_assert (0);
9134 return 0;
9135 }
9136
9137
9138 static int
9139 branch_align_power (segT sec)
9140 {
9141 /* If the Xtensa processor has a fetch width of X, and
9142 the section is aligned to at least that boundary, then a branch
9143 target need only fit within that aligned block of memory to avoid
9144 a stall. Otherwise, try to fit branch targets within 4-byte
9145 aligned blocks (which may be insufficient, e.g., if the section
9146 has no alignment, but it's good enough). */
9147 int fetch_align = get_text_align_power(xtensa_fetch_width);
9148 int sec_align = get_recorded_alignment (sec);
9149
9150 if (sec_align >= fetch_align)
9151 return fetch_align;
9152
9153 return 2;
9154 }
9155
9156
9157 /* This will assert if it is not possible. */
9158
9159 static int
9160 get_text_align_nop_count (offsetT fill_size, bfd_boolean use_no_density)
9161 {
9162 int count = 0;
9163
9164 if (use_no_density)
9165 {
9166 gas_assert (fill_size % 3 == 0);
9167 return (fill_size / 3);
9168 }
9169
9170 gas_assert (fill_size != 1); /* Bad argument. */
9171
9172 while (fill_size > 1)
9173 {
9174 int insn_size = 3;
9175 if (fill_size == 2 || fill_size == 4)
9176 insn_size = 2;
9177 fill_size -= insn_size;
9178 count++;
9179 }
9180 gas_assert (fill_size != 1); /* Bad algorithm. */
9181 return count;
9182 }
9183
9184
9185 static int
9186 get_text_align_nth_nop_size (offsetT fill_size,
9187 int n,
9188 bfd_boolean use_no_density)
9189 {
9190 int count = 0;
9191
9192 if (use_no_density)
9193 return 3;
9194
9195 gas_assert (fill_size != 1); /* Bad argument. */
9196
9197 while (fill_size > 1)
9198 {
9199 int insn_size = 3;
9200 if (fill_size == 2 || fill_size == 4)
9201 insn_size = 2;
9202 fill_size -= insn_size;
9203 count++;
9204 if (n + 1 == count)
9205 return insn_size;
9206 }
9207 gas_assert (0);
9208 return 0;
9209 }
9210
9211
9212 /* For the given fragment, find the appropriate address
9213 for it to begin at if we are using NOPs to align it. */
9214
9215 static addressT
9216 get_noop_aligned_address (fragS *fragP, addressT address)
9217 {
9218 /* The rule is: get next fragment's FIRST instruction. Find
9219 the smallest number of bytes that need to be added to
9220 ensure that the next fragment's FIRST instruction will fit
9221 in a single word.
9222
9223 E.G., 2 bytes : 0, 1, 2 mod 4
9224 3 bytes: 0, 1 mod 4
9225
9226 If the FIRST instruction MIGHT be relaxed,
9227 assume that it will become a 3-byte instruction.
9228
9229 Note again here that LOOP instructions are not bundleable,
9230 and this relaxation only applies to LOOP opcodes. */
9231
9232 int fill_size = 0;
9233 int first_insn_size;
9234 int loop_insn_size;
9235 addressT pre_opcode_bytes;
9236 int align_power;
9237 fragS *first_insn;
9238 xtensa_opcode opcode;
9239 bfd_boolean is_loop;
9240
9241 gas_assert (fragP->fr_type == rs_machine_dependent);
9242 gas_assert (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE);
9243
9244 /* Find the loop frag. */
9245 first_insn = next_non_empty_frag (fragP);
9246 /* Now find the first insn frag. */
9247 first_insn = next_non_empty_frag (first_insn);
9248
9249 is_loop = next_frag_opcode_is_loop (fragP, &opcode);
9250 gas_assert (is_loop);
9251 loop_insn_size = xg_get_single_size (opcode);
9252
9253 pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP);
9254 pre_opcode_bytes += loop_insn_size;
9255
9256 /* For loops, the alignment depends on the size of the
9257 instruction following the loop, not the LOOP instruction. */
9258
9259 if (first_insn == NULL)
9260 first_insn_size = xtensa_fetch_width;
9261 else
9262 first_insn_size = get_loop_align_size (frag_format_size (first_insn));
9263
9264 /* If it was 8, then we'll need a larger alignment for the section. */
9265 align_power = get_text_align_power (first_insn_size);
9266 record_alignment (now_seg, align_power);
9267
9268 fill_size = get_text_align_fill_size
9269 (address + pre_opcode_bytes, align_power, first_insn_size, TRUE,
9270 fragP->tc_frag_data.is_no_density);
9271
9272 return address + fill_size;
9273 }
9274
9275
9276 /* 3 mechanisms for relaxing an alignment:
9277
9278 Align to a power of 2.
9279 Align so the next fragment's instruction does not cross a word boundary.
9280 Align the current instruction so that if the next instruction
9281 were 3 bytes, it would not cross a word boundary.
9282
9283 We can align with:
9284
9285 zeros - This is easy; always insert zeros.
9286 nops - 3-byte and 2-byte instructions
9287 2 - 2-byte nop
9288 3 - 3-byte nop
9289 4 - 2 2-byte nops
9290 >=5 : 3-byte instruction + fn (n-3)
9291 widening - widen previous instructions. */
9292
9293 static offsetT
9294 get_aligned_diff (fragS *fragP, addressT address, offsetT *max_diff)
9295 {
9296 addressT target_address, loop_insn_offset;
9297 int target_size;
9298 xtensa_opcode loop_opcode;
9299 bfd_boolean is_loop;
9300 int align_power;
9301 offsetT opt_diff;
9302 offsetT branch_align;
9303 fragS *loop_frag;
9304
9305 gas_assert (fragP->fr_type == rs_machine_dependent);
9306 switch (fragP->fr_subtype)
9307 {
9308 case RELAX_DESIRE_ALIGN:
9309 target_size = next_frag_format_size (fragP);
9310 if (target_size == XTENSA_UNDEFINED)
9311 target_size = 3;
9312 align_power = branch_align_power (now_seg);
9313 branch_align = 1 << align_power;
9314 /* Don't count on the section alignment being as large as the target. */
9315 if (target_size > branch_align)
9316 target_size = branch_align;
9317 opt_diff = get_text_align_fill_size (address, align_power,
9318 target_size, FALSE, FALSE);
9319
9320 *max_diff = (opt_diff + branch_align
9321 - (target_size + ((address + opt_diff) % branch_align)));
9322 gas_assert (*max_diff >= opt_diff);
9323 return opt_diff;
9324
9325 case RELAX_ALIGN_NEXT_OPCODE:
9326 /* The next non-empty frag after this one holds the LOOP instruction
9327 that needs to be aligned. The required alignment depends on the
9328 size of the next non-empty frag after the loop frag, i.e., the
9329 first instruction in the loop. */
9330 loop_frag = next_non_empty_frag (fragP);
9331 target_size = get_loop_align_size (next_frag_format_size (loop_frag));
9332 loop_insn_offset = 0;
9333 is_loop = next_frag_opcode_is_loop (fragP, &loop_opcode);
9334 gas_assert (is_loop);
9335
9336 /* If the loop has been expanded then the LOOP instruction
9337 could be at an offset from this fragment. */
9338 if (loop_frag->tc_frag_data.slot_subtypes[0] != RELAX_IMMED)
9339 loop_insn_offset = get_expanded_loop_offset (loop_opcode);
9340
9341 /* In an ideal world, which is what we are shooting for here,
9342 we wouldn't need to use any NOPs immediately prior to the
9343 LOOP instruction. If this approach fails, relax_frag_loop_align
9344 will call get_noop_aligned_address. */
9345 target_address =
9346 address + loop_insn_offset + xg_get_single_size (loop_opcode);
9347 align_power = get_text_align_power (target_size);
9348 opt_diff = get_text_align_fill_size (target_address, align_power,
9349 target_size, FALSE, FALSE);
9350
9351 *max_diff = xtensa_fetch_width
9352 - ((target_address + opt_diff) % xtensa_fetch_width)
9353 - target_size + opt_diff;
9354 gas_assert (*max_diff >= opt_diff);
9355 return opt_diff;
9356
9357 default:
9358 break;
9359 }
9360 gas_assert (0);
9361 return 0;
9362 }
9363
9364 \f
9365 /* md_relax_frag Hook and Helper Functions. */
9366
9367 static long relax_frag_loop_align (fragS *, long);
9368 static long relax_frag_for_align (fragS *, long);
9369 static long relax_frag_immed
9370 (segT, fragS *, long, int, xtensa_format, int, int *, bfd_boolean);
9371
9372 /* Get projected address for the first fulcrum on a path from source to
9373 target. */
9374 static addressT xg_get_fulcrum (addressT source, addressT target)
9375 {
9376 offsetT delta = target - source;
9377 int n;
9378
9379 n = (labs (delta) + J_RANGE - J_MARGIN - 1) / (J_RANGE - J_MARGIN);
9380 return source + delta / n;
9381 }
9382
9383 /* Given trampoline index, source and target of a jump find the best
9384 candidate trampoline for the first fulcrum. The best trampoline is
9385 the one in the reach of "j' instruction from the source, closest to
9386 the projected fulcrum address, and preferrably w/o a jump around or
9387 with already initialized jump around. */
9388 static size_t xg_find_best_trampoline (struct trampoline_index *idx,
9389 addressT source, addressT target)
9390 {
9391 addressT fulcrum = xg_get_fulcrum (source, target);
9392 size_t dist = 0;
9393 size_t best = -1;
9394 size_t base_tr = xg_find_trampoline (idx, fulcrum);
9395 int checked = 1;
9396
9397 /* Check trampoline frags around the base_tr to find the best. */
9398 for (dist = 0; checked; ++dist)
9399 {
9400 int i;
9401 size_t tr = base_tr - dist;
9402
9403 checked = 0;
9404
9405 /* Trampolines are checked in the following order:
9406 base_tr, base_tr + 1, base_tr - 1, base_tr + 2, base_tr - 2 */
9407 for (i = 0; i < 2; ++i, tr = base_tr + dist + 1)
9408 if (tr < idx->n_entries)
9409 {
9410 fragS *trampoline_frag = idx->entry[tr];
9411 offsetT off;
9412
9413 /* Don't check trampolines outside source - target interval. */
9414 if ((trampoline_frag->fr_address < source &&
9415 trampoline_frag->fr_address < target) ||
9416 (trampoline_frag->fr_address > source &&
9417 trampoline_frag->fr_address > target))
9418 continue;
9419
9420 /* Don't choose trampoline that contains the source. */
9421 if (source >= trampoline_frag->fr_address
9422 && source <= trampoline_frag->fr_address +
9423 trampoline_frag->fr_fix)
9424 continue;
9425
9426 off = trampoline_frag->fr_address - fulcrum;
9427 /* Stop if some trampoline is found and the search is more than
9428 J_RANGE / 4 from the projected fulcrum. A trampoline w/o jump
9429 around is nice, but it shouldn't have much overhead. */
9430 if (best < idx->n_entries && labs (off) > J_RANGE / 4)
9431 return best;
9432
9433 off = trampoline_frag->fr_address - source;
9434 if (labs (off) < J_RANGE - J_MARGIN)
9435 {
9436 ++checked;
9437 /* Stop if a trampoline w/o jump around is found or initialized
9438 trampoline with jump around is found. */
9439 if (!trampoline_frag->tc_frag_data.needs_jump_around ||
9440 trampoline_frag->fr_fix)
9441 return tr;
9442 else if (best >= idx->n_entries)
9443 best = tr;
9444 }
9445 }
9446 }
9447
9448 if (best < idx->n_entries)
9449 return best;
9450 else
9451 as_fatal (_("cannot find suitable trampoline"));
9452 }
9453
9454 static fixS *xg_relax_fixup (struct trampoline_index *idx, fixS *fixP)
9455 {
9456 symbolS *s = fixP->fx_addsy;
9457 addressT source = fixP->fx_frag->fr_address;
9458 addressT target = S_GET_VALUE (s) + fixP->fx_offset;
9459 size_t tr = xg_find_best_trampoline (idx, source, target);
9460 fragS *trampoline_frag = idx->entry[tr];
9461 fixS *newfixP;
9462
9463 init_trampoline_frag (trampoline_frag);
9464 newfixP = xg_append_jump (trampoline_frag,
9465 fixP->fx_addsy, fixP->fx_offset);
9466
9467 /* Adjust the fixup for the original "j" instruction to
9468 point to the newly added jump. */
9469 fixP->fx_addsy = trampoline_frag->fr_symbol;
9470 fixP->fx_offset = trampoline_frag->fr_fix - 3;
9471 fixP->tc_fix_data.X_add_symbol = trampoline_frag->fr_symbol;
9472 fixP->tc_fix_data.X_add_number = trampoline_frag->fr_fix - 3;
9473
9474 trampoline_frag->tc_frag_data.relax_seen = FALSE;
9475
9476 if (xg_is_trampoline_frag_full (trampoline_frag))
9477 xg_remove_trampoline_from_index (idx, tr);
9478
9479 return newfixP;
9480 }
9481
9482 static bfd_boolean xg_is_relaxable_fixup (fixS *fixP)
9483 {
9484 xtensa_isa isa = xtensa_default_isa;
9485 addressT addr = fixP->fx_frag->fr_address;
9486 addressT target;
9487 offsetT delta;
9488 symbolS *s = fixP->fx_addsy;
9489 int slot;
9490 xtensa_format fmt;
9491 xtensa_opcode opcode;
9492
9493 if (fixP->fx_r_type < BFD_RELOC_XTENSA_SLOT0_OP ||
9494 fixP->fx_r_type > BFD_RELOC_XTENSA_SLOT14_OP)
9495 return FALSE;
9496
9497 target = S_GET_VALUE (s) + fixP->fx_offset;
9498 delta = target - addr;
9499
9500 if (labs (delta) < J_RANGE - J_MARGIN)
9501 return FALSE;
9502
9503 xtensa_insnbuf_from_chars (isa, trampoline_buf,
9504 (unsigned char *) fixP->fx_frag->fr_literal +
9505 fixP->fx_where, 0);
9506 fmt = xtensa_format_decode (isa, trampoline_buf);
9507 gas_assert (fmt != XTENSA_UNDEFINED);
9508 slot = fixP->tc_fix_data.slot;
9509 xtensa_format_get_slot (isa, fmt, slot, trampoline_buf, trampoline_slotbuf);
9510 opcode = xtensa_opcode_decode (isa, fmt, slot, trampoline_slotbuf);
9511 return opcode == xtensa_j_opcode;
9512 }
9513
9514 static void xg_relax_fixups (struct trampoline_seg *ts)
9515 {
9516 struct trampoline_index *idx = &ts->index;
9517 segment_info_type *seginfo = seg_info (now_seg);
9518 fixS *fx;
9519
9520 for (fx = seginfo->fix_root; fx; fx = fx->fx_next)
9521 {
9522 fixS *fixP = fx;
9523 struct trampoline_chain *tc = NULL;
9524
9525 if (xg_is_relaxable_fixup (fixP))
9526 {
9527 tc = xg_find_best_eq_target (ts, fixP->fx_frag->fr_address,
9528 &fixP->fx_addsy, &fixP->fx_offset);
9529 if (!tc)
9530 tc = xg_create_trampoline_chain (ts, fixP->fx_addsy,
9531 fixP->fx_offset);
9532 gas_assert (tc);
9533 }
9534
9535 while (xg_is_relaxable_fixup (fixP))
9536 {
9537 fixP = xg_relax_fixup (idx, fixP);
9538 xg_add_location_to_chain (tc, fixP->fx_frag->fr_symbol,
9539 fixP->fx_where);
9540 }
9541 }
9542 }
9543
9544 /* Given a trampoline frag relax all jumps that might want to use this
9545 trampoline. Only do real work once per relaxation cycle, when
9546 xg_relax_trampoline is called for the first trampoline in the now_seg.
9547 Don't use stretch, don't update new_stretch: place fulcrums with a
9548 slack to tolerate code movement. In the worst case if a jump between
9549 two trampolines wouldn't reach the next relaxation pass will fix it. */
9550 static void xg_relax_trampoline (fragS *fragP, long stretch ATTRIBUTE_UNUSED,
9551 long *new_stretch ATTRIBUTE_UNUSED)
9552 {
9553 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
9554
9555 if (ts->index.n_entries && ts->index.entry[0] == fragP)
9556 xg_relax_fixups (ts);
9557 }
9558
9559 /* Return the number of bytes added to this fragment, given that the
9560 input has been stretched already by "stretch". */
9561
9562 long
9563 xtensa_relax_frag (fragS *fragP, long stretch, int *stretched_p)
9564 {
9565 xtensa_isa isa = xtensa_default_isa;
9566 int unreported = fragP->tc_frag_data.unreported_expansion;
9567 long new_stretch = 0;
9568 const char *file_name;
9569 unsigned line;
9570 int lit_size;
9571 static xtensa_insnbuf vbuf = NULL;
9572 int slot, num_slots;
9573 xtensa_format fmt;
9574
9575 file_name = as_where (&line);
9576 new_logical_line (fragP->fr_file, fragP->fr_line);
9577
9578 fragP->tc_frag_data.unreported_expansion = 0;
9579
9580 switch (fragP->fr_subtype)
9581 {
9582 case RELAX_ALIGN_NEXT_OPCODE:
9583 /* Always convert. */
9584 if (fragP->tc_frag_data.relax_seen)
9585 new_stretch = relax_frag_loop_align (fragP, stretch);
9586 break;
9587
9588 case RELAX_LOOP_END:
9589 /* Do nothing. */
9590 break;
9591
9592 case RELAX_LOOP_END_ADD_NOP:
9593 /* Add a NOP and switch to .fill 0. */
9594 new_stretch = relax_frag_add_nop (fragP);
9595 frag_wane (fragP);
9596 break;
9597
9598 case RELAX_DESIRE_ALIGN:
9599 /* Do nothing. The narrowing before this frag will either align
9600 it or not. */
9601 break;
9602
9603 case RELAX_LITERAL:
9604 case RELAX_LITERAL_FINAL:
9605 return 0;
9606
9607 case RELAX_LITERAL_NR:
9608 lit_size = 4;
9609 fragP->fr_subtype = RELAX_LITERAL_FINAL;
9610 gas_assert (unreported == lit_size);
9611 memset (&fragP->fr_literal[fragP->fr_fix], 0, 4);
9612 fragP->fr_var -= lit_size;
9613 fragP->fr_fix += lit_size;
9614 new_stretch = 4;
9615 break;
9616
9617 case RELAX_SLOTS:
9618 if (vbuf == NULL)
9619 vbuf = xtensa_insnbuf_alloc (isa);
9620
9621 xtensa_insnbuf_from_chars
9622 (isa, vbuf, (unsigned char *) fragP->fr_opcode, 0);
9623 fmt = xtensa_format_decode (isa, vbuf);
9624 num_slots = xtensa_format_num_slots (isa, fmt);
9625
9626 for (slot = 0; slot < num_slots; slot++)
9627 {
9628 switch (fragP->tc_frag_data.slot_subtypes[slot])
9629 {
9630 case RELAX_NARROW:
9631 if (fragP->tc_frag_data.relax_seen)
9632 new_stretch += relax_frag_for_align (fragP, stretch);
9633 break;
9634
9635 case RELAX_IMMED:
9636 case RELAX_IMMED_STEP1:
9637 case RELAX_IMMED_STEP2:
9638 case RELAX_IMMED_STEP3:
9639 /* Place the immediate. */
9640 new_stretch += relax_frag_immed
9641 (now_seg, fragP, stretch,
9642 fragP->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
9643 fmt, slot, stretched_p, FALSE);
9644 break;
9645
9646 default:
9647 /* This is OK; see the note in xg_assemble_vliw_tokens. */
9648 break;
9649 }
9650 }
9651 break;
9652
9653 case RELAX_LITERAL_POOL_BEGIN:
9654 if (fragP->fr_var != 0)
9655 {
9656 /* We have a converted "candidate" literal pool;
9657 assemble a jump around it. */
9658 TInsn insn;
9659 if (!litpool_slotbuf)
9660 {
9661 litpool_buf = xtensa_insnbuf_alloc (isa);
9662 litpool_slotbuf = xtensa_insnbuf_alloc (isa);
9663 }
9664 new_stretch += 3;
9665 fragP->tc_frag_data.relax_seen = FALSE; /* Need another pass. */
9666 fragP->tc_frag_data.is_insn = TRUE;
9667 tinsn_init (&insn);
9668 insn.insn_type = ITYPE_INSN;
9669 insn.opcode = xtensa_j_opcode;
9670 insn.ntok = 1;
9671 set_expr_symbol_offset (&insn.tok[0], fragP->fr_symbol,
9672 fragP->fr_fix);
9673 fmt = xg_get_single_format (xtensa_j_opcode);
9674 tinsn_to_slotbuf (fmt, 0, &insn, litpool_slotbuf);
9675 xtensa_format_set_slot (isa, fmt, 0, litpool_buf, litpool_slotbuf);
9676 xtensa_insnbuf_to_chars (isa, litpool_buf,
9677 (unsigned char *)fragP->fr_literal +
9678 fragP->fr_fix, 3);
9679 fragP->fr_fix += 3;
9680 fragP->fr_var -= 3;
9681 /* Add a fix-up. */
9682 fix_new (fragP, 0, 3, fragP->fr_symbol, 0, TRUE,
9683 BFD_RELOC_XTENSA_SLOT0_OP);
9684 }
9685 break;
9686
9687 case RELAX_LITERAL_POOL_END:
9688 case RELAX_LITERAL_POOL_CANDIDATE_BEGIN:
9689 case RELAX_MAYBE_UNREACHABLE:
9690 case RELAX_MAYBE_DESIRE_ALIGN:
9691 /* No relaxation required. */
9692 break;
9693
9694 case RELAX_FILL_NOP:
9695 case RELAX_UNREACHABLE:
9696 if (fragP->tc_frag_data.relax_seen)
9697 new_stretch += relax_frag_for_align (fragP, stretch);
9698 break;
9699
9700 case RELAX_TRAMPOLINE:
9701 if (fragP->tc_frag_data.relax_seen)
9702 xg_relax_trampoline (fragP, stretch, &new_stretch);
9703 break;
9704
9705 default:
9706 as_bad (_("bad relaxation state"));
9707 }
9708
9709 /* Tell gas we need another relaxation pass. */
9710 if (! fragP->tc_frag_data.relax_seen)
9711 {
9712 fragP->tc_frag_data.relax_seen = TRUE;
9713 *stretched_p = 1;
9714 }
9715
9716 new_logical_line (file_name, line);
9717 return new_stretch;
9718 }
9719
9720
9721 static long
9722 relax_frag_loop_align (fragS *fragP, long stretch)
9723 {
9724 addressT old_address, old_next_address, old_size;
9725 addressT new_address, new_next_address, new_size;
9726 addressT growth;
9727
9728 /* All the frags with relax_frag_for_alignment prior to this one in the
9729 section have been done, hopefully eliminating the need for a NOP here.
9730 But, this will put it in if necessary. */
9731
9732 /* Calculate the old address of this fragment and the next fragment. */
9733 old_address = fragP->fr_address - stretch;
9734 old_next_address = (fragP->fr_address - stretch + fragP->fr_fix +
9735 fragP->tc_frag_data.text_expansion[0]);
9736 old_size = old_next_address - old_address;
9737
9738 /* Calculate the new address of this fragment and the next fragment. */
9739 new_address = fragP->fr_address;
9740 new_next_address =
9741 get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix);
9742 new_size = new_next_address - new_address;
9743
9744 growth = new_size - old_size;
9745
9746 /* Fix up the text_expansion field and return the new growth. */
9747 fragP->tc_frag_data.text_expansion[0] += growth;
9748 return growth;
9749 }
9750
9751
9752 /* Add a NOP instruction. */
9753
9754 static long
9755 relax_frag_add_nop (fragS *fragP)
9756 {
9757 char *nop_buf = fragP->fr_literal + fragP->fr_fix;
9758 int length = fragP->tc_frag_data.is_no_density ? 3 : 2;
9759 assemble_nop (length, nop_buf);
9760 fragP->tc_frag_data.is_insn = TRUE;
9761
9762 if (fragP->fr_var < length)
9763 {
9764 as_fatal (_("fr_var (%ld) < length (%d)"), (long) fragP->fr_var, length);
9765 return 0;
9766 }
9767
9768 fragP->fr_fix += length;
9769 fragP->fr_var -= length;
9770 return length;
9771 }
9772
9773
9774 static long future_alignment_required (fragS *, long);
9775
9776 static long
9777 relax_frag_for_align (fragS *fragP, long stretch)
9778 {
9779 /* Overview of the relaxation procedure for alignment:
9780 We can widen with NOPs or by widening instructions or by filling
9781 bytes after jump instructions. Find the opportune places and widen
9782 them if necessary. */
9783
9784 long stretch_me;
9785 long diff;
9786
9787 gas_assert (fragP->fr_subtype == RELAX_FILL_NOP
9788 || fragP->fr_subtype == RELAX_UNREACHABLE
9789 || (fragP->fr_subtype == RELAX_SLOTS
9790 && fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW));
9791
9792 stretch_me = future_alignment_required (fragP, stretch);
9793 diff = stretch_me - fragP->tc_frag_data.text_expansion[0];
9794 if (diff == 0)
9795 return 0;
9796
9797 if (diff < 0)
9798 {
9799 /* We expanded on a previous pass. Can we shrink now? */
9800 long shrink = fragP->tc_frag_data.text_expansion[0] - stretch_me;
9801 if (shrink <= stretch && stretch > 0)
9802 {
9803 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9804 return -shrink;
9805 }
9806 return 0;
9807 }
9808
9809 /* Below here, diff > 0. */
9810 fragP->tc_frag_data.text_expansion[0] = stretch_me;
9811
9812 return diff;
9813 }
9814
9815
9816 /* Return the address of the next frag that should be aligned.
9817
9818 By "address" we mean the address it _would_ be at if there
9819 is no action taken to align it between here and the target frag.
9820 In other words, if no narrows and no fill nops are used between
9821 here and the frag to align, _even_if_ some of the frags we use
9822 to align targets have already expanded on a previous relaxation
9823 pass.
9824
9825 Also, count each frag that may be used to help align the target.
9826
9827 Return 0 if there are no frags left in the chain that need to be
9828 aligned. */
9829
9830 static addressT
9831 find_address_of_next_align_frag (fragS **fragPP,
9832 int *wide_nops,
9833 int *narrow_nops,
9834 int *widens,
9835 bfd_boolean *paddable)
9836 {
9837 fragS *fragP = *fragPP;
9838 addressT address = fragP->fr_address;
9839
9840 /* Do not reset the counts to 0. */
9841
9842 while (fragP)
9843 {
9844 /* Limit this to a small search. */
9845 if (*widens >= (int) xtensa_fetch_width)
9846 {
9847 *fragPP = fragP;
9848 return 0;
9849 }
9850 address += fragP->fr_fix;
9851
9852 if (fragP->fr_type == rs_fill)
9853 address += fragP->fr_offset * fragP->fr_var;
9854 else if (fragP->fr_type == rs_machine_dependent)
9855 {
9856 switch (fragP->fr_subtype)
9857 {
9858 case RELAX_UNREACHABLE:
9859 *paddable = TRUE;
9860 break;
9861
9862 case RELAX_FILL_NOP:
9863 (*wide_nops)++;
9864 if (!fragP->tc_frag_data.is_no_density)
9865 (*narrow_nops)++;
9866 break;
9867
9868 case RELAX_SLOTS:
9869 if (fragP->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
9870 {
9871 (*widens)++;
9872 break;
9873 }
9874 address += total_frag_text_expansion (fragP);
9875 break;
9876
9877 case RELAX_IMMED:
9878 address += fragP->tc_frag_data.text_expansion[0];
9879 break;
9880
9881 case RELAX_ALIGN_NEXT_OPCODE:
9882 case RELAX_DESIRE_ALIGN:
9883 *fragPP = fragP;
9884 return address;
9885
9886 case RELAX_MAYBE_UNREACHABLE:
9887 case RELAX_MAYBE_DESIRE_ALIGN:
9888 /* Do nothing. */
9889 break;
9890
9891 default:
9892 /* Just punt if we don't know the type. */
9893 *fragPP = fragP;
9894 return 0;
9895 }
9896 }
9897 else
9898 {
9899 /* Just punt if we don't know the type. */
9900 *fragPP = fragP;
9901 return 0;
9902 }
9903 fragP = fragP->fr_next;
9904 }
9905
9906 *fragPP = fragP;
9907 return 0;
9908 }
9909
9910
9911 static long bytes_to_stretch (fragS *, int, int, int, int);
9912
9913 static long
9914 future_alignment_required (fragS *fragP, long stretch ATTRIBUTE_UNUSED)
9915 {
9916 fragS *this_frag = fragP;
9917 long address;
9918 int num_widens = 0;
9919 int wide_nops = 0;
9920 int narrow_nops = 0;
9921 bfd_boolean paddable = FALSE;
9922 offsetT local_opt_diff;
9923 offsetT opt_diff;
9924 offsetT max_diff;
9925 int stretch_amount = 0;
9926 int local_stretch_amount;
9927 int global_stretch_amount;
9928
9929 address = find_address_of_next_align_frag
9930 (&fragP, &wide_nops, &narrow_nops, &num_widens, &paddable);
9931
9932 if (!address)
9933 {
9934 if (this_frag->tc_frag_data.is_aligning_branch)
9935 this_frag->tc_frag_data.slot_subtypes[0] = RELAX_IMMED;
9936 else
9937 frag_wane (this_frag);
9938 }
9939 else
9940 {
9941 local_opt_diff = get_aligned_diff (fragP, address, &max_diff);
9942 opt_diff = local_opt_diff;
9943 gas_assert (opt_diff >= 0);
9944 gas_assert (max_diff >= opt_diff);
9945 if (max_diff == 0)
9946 return 0;
9947
9948 if (fragP)
9949 fragP = fragP->fr_next;
9950
9951 while (fragP && opt_diff < max_diff && address)
9952 {
9953 /* We only use these to determine if we can exit early
9954 because there will be plenty of ways to align future
9955 align frags. */
9956 int glob_widens = 0;
9957 int dnn = 0;
9958 int dw = 0;
9959 bfd_boolean glob_pad = 0;
9960 address = find_address_of_next_align_frag
9961 (&fragP, &glob_widens, &dnn, &dw, &glob_pad);
9962 /* If there is a padable portion, then skip. */
9963 if (glob_pad || glob_widens >= (1 << branch_align_power (now_seg)))
9964 address = 0;
9965
9966 if (address)
9967 {
9968 offsetT next_m_diff;
9969 offsetT next_o_diff;
9970
9971 /* Downrange frags haven't had stretch added to them yet. */
9972 address += stretch;
9973
9974 /* The address also includes any text expansion from this
9975 frag in a previous pass, but we don't want that. */
9976 address -= this_frag->tc_frag_data.text_expansion[0];
9977
9978 /* Assume we are going to move at least opt_diff. In
9979 reality, we might not be able to, but assuming that
9980 we will helps catch cases where moving opt_diff pushes
9981 the next target from aligned to unaligned. */
9982 address += opt_diff;
9983
9984 next_o_diff = get_aligned_diff (fragP, address, &next_m_diff);
9985
9986 /* Now cleanup for the adjustments to address. */
9987 next_o_diff += opt_diff;
9988 next_m_diff += opt_diff;
9989 if (next_o_diff <= max_diff && next_o_diff > opt_diff)
9990 opt_diff = next_o_diff;
9991 if (next_m_diff < max_diff)
9992 max_diff = next_m_diff;
9993 fragP = fragP->fr_next;
9994 }
9995 }
9996
9997 /* If there are enough wideners in between, do it. */
9998 if (paddable)
9999 {
10000 if (this_frag->fr_subtype == RELAX_UNREACHABLE)
10001 {
10002 gas_assert (opt_diff <= (signed) xtensa_fetch_width);
10003 return opt_diff;
10004 }
10005 return 0;
10006 }
10007 local_stretch_amount
10008 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
10009 num_widens, local_opt_diff);
10010 global_stretch_amount
10011 = bytes_to_stretch (this_frag, wide_nops, narrow_nops,
10012 num_widens, opt_diff);
10013 /* If the condition below is true, then the frag couldn't
10014 stretch the correct amount for the global case, so we just
10015 optimize locally. We'll rely on the subsequent frags to get
10016 the correct alignment in the global case. */
10017 if (global_stretch_amount < local_stretch_amount)
10018 stretch_amount = local_stretch_amount;
10019 else
10020 stretch_amount = global_stretch_amount;
10021
10022 if (this_frag->fr_subtype == RELAX_SLOTS
10023 && this_frag->tc_frag_data.slot_subtypes[0] == RELAX_NARROW)
10024 gas_assert (stretch_amount <= 1);
10025 else if (this_frag->fr_subtype == RELAX_FILL_NOP)
10026 {
10027 if (this_frag->tc_frag_data.is_no_density)
10028 gas_assert (stretch_amount == 3 || stretch_amount == 0);
10029 else
10030 gas_assert (stretch_amount <= 3);
10031 }
10032 }
10033 return stretch_amount;
10034 }
10035
10036
10037 /* The idea: widen everything you can to get a target or loop aligned,
10038 then start using NOPs.
10039
10040 wide_nops = the number of wide NOPs available for aligning
10041 narrow_nops = the number of narrow NOPs available for aligning
10042 (a subset of wide_nops)
10043 widens = the number of narrow instructions that should be widened
10044
10045 */
10046
10047 static long
10048 bytes_to_stretch (fragS *this_frag,
10049 int wide_nops,
10050 int narrow_nops,
10051 int num_widens,
10052 int desired_diff)
10053 {
10054 int nops_needed;
10055 int nop_bytes;
10056 int extra_bytes;
10057 int bytes_short = desired_diff - num_widens;
10058
10059 gas_assert (desired_diff >= 0
10060 && desired_diff < (signed) xtensa_fetch_width);
10061 if (desired_diff == 0)
10062 return 0;
10063
10064 gas_assert (wide_nops > 0 || num_widens > 0);
10065
10066 /* Always prefer widening to NOP-filling. */
10067 if (bytes_short < 0)
10068 {
10069 /* There are enough RELAX_NARROW frags after this one
10070 to align the target without widening this frag in any way. */
10071 return 0;
10072 }
10073
10074 if (bytes_short == 0)
10075 {
10076 /* Widen every narrow between here and the align target
10077 and the align target will be properly aligned. */
10078 if (this_frag->fr_subtype == RELAX_FILL_NOP)
10079 return 0;
10080 else
10081 return 1;
10082 }
10083
10084 /* From here we will need at least one NOP to get an alignment.
10085 However, we may not be able to align at all, in which case,
10086 don't widen. */
10087 nops_needed = desired_diff / 3;
10088
10089 /* If there aren't enough nops, don't widen. */
10090 if (nops_needed > wide_nops)
10091 return 0;
10092
10093 /* First try it with all wide nops. */
10094 nop_bytes = nops_needed * 3;
10095 extra_bytes = desired_diff - nop_bytes;
10096
10097 if (nop_bytes + num_widens >= desired_diff)
10098 {
10099 if (this_frag->fr_subtype == RELAX_FILL_NOP)
10100 return 3;
10101 else if (num_widens == extra_bytes)
10102 return 1;
10103 return 0;
10104 }
10105
10106 /* Add a narrow nop. */
10107 nops_needed++;
10108 nop_bytes += 2;
10109 extra_bytes -= 2;
10110 if (narrow_nops == 0 || nops_needed > wide_nops)
10111 return 0;
10112
10113 if (nop_bytes + num_widens >= desired_diff && extra_bytes >= 0)
10114 {
10115 if (this_frag->fr_subtype == RELAX_FILL_NOP)
10116 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
10117 else if (num_widens == extra_bytes)
10118 return 1;
10119 return 0;
10120 }
10121
10122 /* Replace a wide nop with a narrow nop--we can get here if
10123 extra_bytes was negative in the previous conditional. */
10124 if (narrow_nops == 1)
10125 return 0;
10126 nop_bytes--;
10127 extra_bytes++;
10128 if (nop_bytes + num_widens >= desired_diff)
10129 {
10130 if (this_frag->fr_subtype == RELAX_FILL_NOP)
10131 return !this_frag->tc_frag_data.is_no_density ? 2 : 3;
10132 else if (num_widens == extra_bytes)
10133 return 1;
10134 return 0;
10135 }
10136
10137 /* If we can't satisfy any of the above cases, then we can't align
10138 using padding or fill nops. */
10139 return 0;
10140 }
10141
10142
10143 static fragS *
10144 xg_find_best_trampoline_for_tinsn (TInsn *tinsn, fragS *fragP)
10145 {
10146 symbolS *sym = tinsn->tok[0].X_add_symbol;
10147 addressT source = fragP->fr_address;
10148 addressT target = S_GET_VALUE (sym) + tinsn->tok[0].X_add_number;
10149 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
10150 size_t i;
10151
10152 if (!ts || !ts->index.n_entries)
10153 return NULL;
10154
10155 i = xg_find_best_trampoline (&ts->index, source, target);
10156
10157 return ts->index.entry[i];
10158 }
10159
10160
10161 /* Append jump to sym + offset to the end of the trampoline frag fragP.
10162 Adjust fragP's jump around if it's present. Adjust fragP's fr_fix/fr_var
10163 and finish the frag if it's full (but don't remove it from the trampoline
10164 frag index). Return fixup for the newly created jump. */
10165 static fixS *xg_append_jump (fragS *fragP, symbolS *sym, offsetT offset)
10166 {
10167 fixS *fixP;
10168 TInsn insn;
10169 xtensa_format fmt;
10170 xtensa_isa isa = xtensa_default_isa;
10171
10172 gas_assert (fragP->fr_var >= 3);
10173 tinsn_init (&insn);
10174 insn.insn_type = ITYPE_INSN;
10175 insn.opcode = xtensa_j_opcode;
10176 insn.ntok = 1;
10177 set_expr_symbol_offset (&insn.tok[0], sym, offset);
10178 fmt = xg_get_single_format (xtensa_j_opcode);
10179 tinsn_to_slotbuf (fmt, 0, &insn, trampoline_slotbuf);
10180 xtensa_format_set_slot (isa, fmt, 0, trampoline_buf, trampoline_slotbuf);
10181 xtensa_insnbuf_to_chars (isa, trampoline_buf,
10182 (unsigned char *)fragP->fr_literal + fragP->fr_fix, 3);
10183 fixP = fix_new (fragP, fragP->fr_fix, 3, sym, offset, TRUE,
10184 BFD_RELOC_XTENSA_SLOT0_OP);
10185 fixP->tc_fix_data.slot = 0;
10186
10187 fragP->fr_fix += 3;
10188 fragP->fr_var -= 3;
10189
10190 /* Adjust the jump around this trampoline (if present). */
10191 if (fragP->tc_frag_data.jump_around_fix)
10192 fragP->tc_frag_data.jump_around_fix->fx_offset += 3;
10193
10194 /* Do we have room for more? */
10195 if (xg_is_trampoline_frag_full (fragP))
10196 {
10197 frag_wane (fragP);
10198 fragP->fr_subtype = 0;
10199 }
10200
10201 return fixP;
10202 }
10203
10204
10205 static int
10206 init_trampoline_frag (fragS *fp)
10207 {
10208 int growth = 0;
10209
10210 if (fp->fr_fix == 0)
10211 {
10212 symbolS *lsym;
10213 char label[10 + 2 * sizeof(fp)];
10214
10215 sprintf (label, ".L0_TR_%p", fp);
10216 lsym = (symbolS *) local_symbol_make (label, now_seg, fp, 0);
10217 fp->fr_symbol = lsym;
10218 if (fp->tc_frag_data.needs_jump_around)
10219 {
10220 fp->tc_frag_data.jump_around_fix = xg_append_jump (fp, lsym, 3);
10221 growth = 3;
10222 }
10223 }
10224 return growth;
10225 }
10226
10227 static int
10228 xg_get_single_symbol_slot (fragS *fragP)
10229 {
10230 int i;
10231 int slot = -1;
10232
10233 for (i = 0; i < MAX_SLOTS; ++i)
10234 if (fragP->tc_frag_data.slot_symbols[i])
10235 {
10236 gas_assert (slot == -1);
10237 slot = i;
10238 }
10239
10240 gas_assert (slot >= 0 && slot < MAX_SLOTS);
10241
10242 return slot;
10243 }
10244
10245 static fixS *
10246 add_jump_to_trampoline (fragS *tramp, fragS *origfrag)
10247 {
10248 int slot = xg_get_single_symbol_slot (origfrag);
10249 fixS *fixP;
10250
10251 /* Assemble a jump to the target label in the trampoline frag. */
10252 fixP = xg_append_jump (tramp,
10253 origfrag->tc_frag_data.slot_symbols[slot],
10254 origfrag->tc_frag_data.slot_offsets[slot]);
10255
10256 /* Modify the original j to point here. */
10257 origfrag->tc_frag_data.slot_symbols[slot] = tramp->fr_symbol;
10258 origfrag->tc_frag_data.slot_offsets[slot] = tramp->fr_fix - 3;
10259
10260 /* If trampoline is full, remove it from the list. */
10261 if (xg_is_trampoline_frag_full (tramp))
10262 {
10263 struct trampoline_seg *ts = find_trampoline_seg (now_seg);
10264 size_t tr = xg_find_trampoline (&ts->index, tramp->fr_address);
10265
10266 gas_assert (ts->index.entry[tr] == tramp);
10267 xg_remove_trampoline_from_index (&ts->index, tr);
10268 }
10269
10270 return fixP;
10271 }
10272
10273
10274 static long
10275 relax_frag_immed (segT segP,
10276 fragS *fragP,
10277 long stretch,
10278 int min_steps,
10279 xtensa_format fmt,
10280 int slot,
10281 int *stretched_p,
10282 bfd_boolean estimate_only)
10283 {
10284 TInsn tinsn;
10285 int old_size;
10286 bfd_boolean negatable_branch = FALSE;
10287 bfd_boolean branch_jmp_to_next = FALSE;
10288 bfd_boolean from_wide_insn = FALSE;
10289 xtensa_isa isa = xtensa_default_isa;
10290 IStack istack;
10291 offsetT frag_offset;
10292 int num_steps;
10293 int num_text_bytes, num_literal_bytes;
10294 int literal_diff, total_text_diff, this_text_diff;
10295
10296 gas_assert (fragP->fr_opcode != NULL);
10297
10298 xg_clear_vinsn (&cur_vinsn);
10299 vinsn_from_chars (&cur_vinsn, fragP->fr_opcode);
10300 if (cur_vinsn.num_slots > 1)
10301 from_wide_insn = TRUE;
10302
10303 tinsn = cur_vinsn.slots[slot];
10304 tinsn_immed_from_frag (&tinsn, fragP, slot);
10305
10306 if (estimate_only && xtensa_opcode_is_loop (isa, tinsn.opcode) == 1)
10307 return 0;
10308
10309 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
10310 branch_jmp_to_next = is_branch_jmp_to_next (&tinsn, fragP);
10311
10312 negatable_branch = (xtensa_opcode_is_branch (isa, tinsn.opcode) == 1);
10313
10314 old_size = xtensa_format_length (isa, fmt);
10315
10316 /* Special case: replace a branch to the next instruction with a NOP.
10317 This is required to work around a hardware bug in T1040.0 and also
10318 serves as an optimization. */
10319
10320 if (branch_jmp_to_next
10321 && ((old_size == 2) || (old_size == 3))
10322 && !next_frag_is_loop_target (fragP))
10323 return 0;
10324
10325 /* Here is the fun stuff: Get the immediate field from this
10326 instruction. If it fits, we are done. If not, find the next
10327 instruction sequence that fits. */
10328
10329 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10330 istack_init (&istack);
10331 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP, frag_offset,
10332 min_steps, stretch);
10333 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
10334
10335 fragP->tc_frag_data.slot_subtypes[slot] = (int) RELAX_IMMED + num_steps;
10336
10337 /* Figure out the number of bytes needed. */
10338 num_literal_bytes = get_num_stack_literal_bytes (&istack);
10339 literal_diff
10340 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
10341 num_text_bytes = get_num_stack_text_bytes (&istack);
10342
10343 if (from_wide_insn)
10344 {
10345 int first = 0;
10346 while (istack.insn[first].opcode == XTENSA_UNDEFINED)
10347 first++;
10348
10349 num_text_bytes += old_size;
10350 if (opcode_fits_format_slot (istack.insn[first].opcode, fmt, slot))
10351 num_text_bytes -= xg_get_single_size (istack.insn[first].opcode);
10352 else
10353 {
10354 /* The first instruction in the relaxed sequence will go after
10355 the current wide instruction, and thus its symbolic immediates
10356 might not fit. */
10357
10358 istack_init (&istack);
10359 num_steps = xg_assembly_relax (&istack, &tinsn, segP, fragP,
10360 frag_offset + old_size,
10361 min_steps, stretch + old_size);
10362 gas_assert (num_steps >= min_steps && num_steps <= RELAX_IMMED_MAXSTEPS);
10363
10364 fragP->tc_frag_data.slot_subtypes[slot]
10365 = (int) RELAX_IMMED + num_steps;
10366
10367 num_literal_bytes = get_num_stack_literal_bytes (&istack);
10368 literal_diff
10369 = num_literal_bytes - fragP->tc_frag_data.literal_expansion[slot];
10370
10371 num_text_bytes = get_num_stack_text_bytes (&istack) + old_size;
10372 }
10373 }
10374
10375 total_text_diff = num_text_bytes - old_size;
10376 this_text_diff = total_text_diff - fragP->tc_frag_data.text_expansion[slot];
10377
10378 /* It MUST get larger. If not, we could get an infinite loop. */
10379 gas_assert (num_text_bytes >= 0);
10380 gas_assert (literal_diff >= 0);
10381 gas_assert (total_text_diff >= 0);
10382
10383 fragP->tc_frag_data.text_expansion[slot] = total_text_diff;
10384 fragP->tc_frag_data.literal_expansion[slot] = num_literal_bytes;
10385 gas_assert (fragP->tc_frag_data.text_expansion[slot] >= 0);
10386 gas_assert (fragP->tc_frag_data.literal_expansion[slot] >= 0);
10387
10388 /* Find the associated expandable literal for this. */
10389 if (literal_diff != 0)
10390 {
10391 fragS *lit_fragP = fragP->tc_frag_data.literal_frags[slot];
10392 if (lit_fragP)
10393 {
10394 gas_assert (literal_diff == 4);
10395 lit_fragP->tc_frag_data.unreported_expansion += literal_diff;
10396
10397 /* We expect that the literal section state has NOT been
10398 modified yet. */
10399 gas_assert (lit_fragP->fr_type == rs_machine_dependent
10400 && lit_fragP->fr_subtype == RELAX_LITERAL);
10401 lit_fragP->fr_subtype = RELAX_LITERAL_NR;
10402
10403 /* We need to mark this section for another iteration
10404 of relaxation. */
10405 (*stretched_p)++;
10406 }
10407 }
10408
10409 if (negatable_branch && istack.ninsn > 1)
10410 update_next_frag_state (fragP);
10411
10412 /* If last insn is a jump, and it cannot reach its target, try to find a trampoline. */
10413 if (istack.ninsn > 2 &&
10414 istack.insn[istack.ninsn - 1].insn_type == ITYPE_LABEL &&
10415 istack.insn[istack.ninsn - 2].insn_type == ITYPE_INSN &&
10416 istack.insn[istack.ninsn - 2].opcode == xtensa_j_opcode)
10417 {
10418 TInsn *jinsn = &istack.insn[istack.ninsn - 2];
10419 struct trampoline_seg *ts = find_trampoline_seg (segP);
10420 struct trampoline_chain *tc = NULL;
10421
10422 if (ts &&
10423 !xg_symbolic_immeds_fit (jinsn, segP, fragP, fragP->fr_offset,
10424 total_text_diff))
10425 {
10426 int s = xg_get_single_symbol_slot (fragP);
10427 addressT offset = fragP->tc_frag_data.slot_offsets[s];
10428
10429 tc = xg_find_best_eq_target (ts, fragP->fr_address,
10430 &fragP->tc_frag_data.slot_symbols[s],
10431 &offset);
10432
10433 if (!tc)
10434 tc = xg_create_trampoline_chain (ts,
10435 fragP->tc_frag_data.slot_symbols[s],
10436 offset);
10437 fragP->tc_frag_data.slot_offsets[s] = offset;
10438 tinsn_immed_from_frag (jinsn, fragP, s);
10439 }
10440
10441 if (!xg_symbolic_immeds_fit (jinsn, segP, fragP, fragP->fr_offset,
10442 total_text_diff))
10443 {
10444 fragS *tf = xg_find_best_trampoline_for_tinsn (jinsn, fragP);
10445
10446 if (tf)
10447 {
10448 fixS *fixP;
10449
10450 this_text_diff += init_trampoline_frag (tf) + 3;
10451 fixP = add_jump_to_trampoline (tf, fragP);
10452 xg_add_location_to_chain (tc, fixP->fx_frag->fr_symbol,
10453 fixP->fx_where);
10454 fragP->tc_frag_data.relax_seen = FALSE;
10455 }
10456 else
10457 {
10458 /* If target symbol is undefined, assume it will reach once linked. */
10459 expressionS *exp = &istack.insn[istack.ninsn - 2].tok[0];
10460
10461 if (exp->X_op == O_symbol && S_IS_DEFINED (exp->X_add_symbol))
10462 {
10463 as_bad_where (fragP->fr_file, fragP->fr_line,
10464 _("jump target out of range; no usable trampoline found"));
10465 }
10466 }
10467 }
10468 }
10469
10470 return this_text_diff;
10471 }
10472
10473 \f
10474 /* md_convert_frag Hook and Helper Functions. */
10475
10476 static void convert_frag_align_next_opcode (fragS *);
10477 static void convert_frag_narrow (segT, fragS *, xtensa_format, int);
10478 static void convert_frag_fill_nop (fragS *);
10479 static void convert_frag_immed (segT, fragS *, int, xtensa_format, int);
10480
10481 void
10482 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec, fragS *fragp)
10483 {
10484 static xtensa_insnbuf vbuf = NULL;
10485 xtensa_isa isa = xtensa_default_isa;
10486 int slot;
10487 int num_slots;
10488 xtensa_format fmt;
10489 const char *file_name;
10490 unsigned line;
10491
10492 file_name = as_where (&line);
10493 new_logical_line (fragp->fr_file, fragp->fr_line);
10494
10495 switch (fragp->fr_subtype)
10496 {
10497 case RELAX_ALIGN_NEXT_OPCODE:
10498 /* Always convert. */
10499 convert_frag_align_next_opcode (fragp);
10500 break;
10501
10502 case RELAX_DESIRE_ALIGN:
10503 /* Do nothing. If not aligned already, too bad. */
10504 break;
10505
10506 case RELAX_LITERAL:
10507 case RELAX_LITERAL_FINAL:
10508 break;
10509
10510 case RELAX_SLOTS:
10511 if (vbuf == NULL)
10512 vbuf = xtensa_insnbuf_alloc (isa);
10513
10514 xtensa_insnbuf_from_chars
10515 (isa, vbuf, (unsigned char *) fragp->fr_opcode, 0);
10516 fmt = xtensa_format_decode (isa, vbuf);
10517 num_slots = xtensa_format_num_slots (isa, fmt);
10518
10519 for (slot = 0; slot < num_slots; slot++)
10520 {
10521 switch (fragp->tc_frag_data.slot_subtypes[slot])
10522 {
10523 case RELAX_NARROW:
10524 convert_frag_narrow (sec, fragp, fmt, slot);
10525 break;
10526
10527 case RELAX_IMMED:
10528 case RELAX_IMMED_STEP1:
10529 case RELAX_IMMED_STEP2:
10530 case RELAX_IMMED_STEP3:
10531 /* Place the immediate. */
10532 convert_frag_immed
10533 (sec, fragp,
10534 fragp->tc_frag_data.slot_subtypes[slot] - RELAX_IMMED,
10535 fmt, slot);
10536 break;
10537
10538 default:
10539 /* This is OK because some slots could have
10540 relaxations and others have none. */
10541 break;
10542 }
10543 }
10544 break;
10545
10546 case RELAX_UNREACHABLE:
10547 memset (&fragp->fr_literal[fragp->fr_fix], 0, fragp->fr_var);
10548 fragp->fr_fix += fragp->tc_frag_data.text_expansion[0];
10549 fragp->fr_var -= fragp->tc_frag_data.text_expansion[0];
10550 frag_wane (fragp);
10551 break;
10552
10553 case RELAX_MAYBE_UNREACHABLE:
10554 case RELAX_MAYBE_DESIRE_ALIGN:
10555 frag_wane (fragp);
10556 break;
10557
10558 case RELAX_FILL_NOP:
10559 convert_frag_fill_nop (fragp);
10560 break;
10561
10562 case RELAX_LITERAL_NR:
10563 if (use_literal_section)
10564 {
10565 /* This should have been handled during relaxation. When
10566 relaxing a code segment, literals sometimes need to be
10567 added to the corresponding literal segment. If that
10568 literal segment has already been relaxed, then we end up
10569 in this situation. Marking the literal segments as data
10570 would make this happen less often (since GAS always relaxes
10571 code before data), but we could still get into trouble if
10572 there are instructions in a segment that is not marked as
10573 containing code. Until we can implement a better solution,
10574 cheat and adjust the addresses of all the following frags.
10575 This could break subsequent alignments, but the linker's
10576 literal coalescing will do that anyway. */
10577
10578 fragS *f;
10579 fragp->fr_subtype = RELAX_LITERAL_FINAL;
10580 gas_assert (fragp->tc_frag_data.unreported_expansion == 4);
10581 memset (&fragp->fr_literal[fragp->fr_fix], 0, 4);
10582 fragp->fr_var -= 4;
10583 fragp->fr_fix += 4;
10584 for (f = fragp->fr_next; f; f = f->fr_next)
10585 f->fr_address += 4;
10586 }
10587 else
10588 as_bad (_("invalid relaxation fragment result"));
10589 break;
10590
10591 case RELAX_TRAMPOLINE:
10592 break;
10593 }
10594
10595 fragp->fr_var = 0;
10596 new_logical_line (file_name, line);
10597 }
10598
10599
10600 static void
10601 convert_frag_align_next_opcode (fragS *fragp)
10602 {
10603 char *nop_buf; /* Location for Writing. */
10604 bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density;
10605 addressT aligned_address;
10606 offsetT fill_size;
10607 int nop, nop_count;
10608
10609 aligned_address = get_noop_aligned_address (fragp, fragp->fr_address +
10610 fragp->fr_fix);
10611 fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix);
10612 nop_count = get_text_align_nop_count (fill_size, use_no_density);
10613 nop_buf = fragp->fr_literal + fragp->fr_fix;
10614
10615 for (nop = 0; nop < nop_count; nop++)
10616 {
10617 int nop_size;
10618 nop_size = get_text_align_nth_nop_size (fill_size, nop, use_no_density);
10619
10620 assemble_nop (nop_size, nop_buf);
10621 nop_buf += nop_size;
10622 }
10623
10624 fragp->fr_fix += fill_size;
10625 fragp->fr_var -= fill_size;
10626 }
10627
10628
10629 static void
10630 convert_frag_narrow (segT segP, fragS *fragP, xtensa_format fmt, int slot)
10631 {
10632 TInsn tinsn, single_target;
10633 int size, old_size, diff;
10634 offsetT frag_offset;
10635
10636 gas_assert (slot == 0);
10637 tinsn_from_chars (&tinsn, fragP->fr_opcode, 0);
10638
10639 if (fragP->tc_frag_data.is_aligning_branch == 1)
10640 {
10641 gas_assert (fragP->tc_frag_data.text_expansion[0] == 1
10642 || fragP->tc_frag_data.text_expansion[0] == 0);
10643 convert_frag_immed (segP, fragP, fragP->tc_frag_data.text_expansion[0],
10644 fmt, slot);
10645 return;
10646 }
10647
10648 if (fragP->tc_frag_data.text_expansion[0] == 0)
10649 {
10650 /* No conversion. */
10651 fragP->fr_var = 0;
10652 return;
10653 }
10654
10655 gas_assert (fragP->fr_opcode != NULL);
10656
10657 /* Frags in this relaxation state should only contain
10658 single instruction bundles. */
10659 tinsn_immed_from_frag (&tinsn, fragP, 0);
10660
10661 /* Just convert it to a wide form.... */
10662 size = 0;
10663 old_size = xg_get_single_size (tinsn.opcode);
10664
10665 tinsn_init (&single_target);
10666 frag_offset = fragP->fr_opcode - fragP->fr_literal;
10667
10668 if (! xg_is_single_relaxable_insn (&tinsn, &single_target, FALSE))
10669 {
10670 as_bad (_("unable to widen instruction"));
10671 return;
10672 }
10673
10674 size = xg_get_single_size (single_target.opcode);
10675 xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, fragP,
10676 frag_offset, TRUE);
10677
10678 diff = size - old_size;
10679 gas_assert (diff >= 0);
10680 gas_assert (diff <= fragP->fr_var);
10681 fragP->fr_var -= diff;
10682 fragP->fr_fix += diff;
10683
10684 /* clean it up */
10685 fragP->fr_var = 0;
10686 }
10687
10688
10689 static void
10690 convert_frag_fill_nop (fragS *fragP)
10691 {
10692 char *loc = &fragP->fr_literal[fragP->fr_fix];
10693 int size = fragP->tc_frag_data.text_expansion[0];
10694 gas_assert ((unsigned) size == (fragP->fr_next->fr_address
10695 - fragP->fr_address - fragP->fr_fix));
10696 if (size == 0)
10697 {
10698 /* No conversion. */
10699 fragP->fr_var = 0;
10700 return;
10701 }
10702 assemble_nop (size, loc);
10703 fragP->tc_frag_data.is_insn = TRUE;
10704 fragP->fr_var -= size;
10705 fragP->fr_fix += size;
10706 frag_wane (fragP);
10707 }
10708
10709
10710 static fixS *fix_new_exp_in_seg
10711 (segT, subsegT, fragS *, int, int, expressionS *, int,
10712 bfd_reloc_code_real_type);
10713
10714 static void
10715 convert_frag_immed (segT segP,
10716 fragS *fragP,
10717 int min_steps,
10718 xtensa_format fmt,
10719 int slot)
10720 {
10721 char *immed_instr = fragP->fr_opcode;
10722 TInsn orig_tinsn;
10723 bfd_boolean expanded = FALSE;
10724 bfd_boolean branch_jmp_to_next = FALSE;
10725 char *fr_opcode = fragP->fr_opcode;
10726 xtensa_isa isa = xtensa_default_isa;
10727 bfd_boolean from_wide_insn = FALSE;
10728 int bytes;
10729 bfd_boolean is_loop;
10730
10731 gas_assert (fr_opcode != NULL);
10732
10733 xg_clear_vinsn (&cur_vinsn);
10734
10735 vinsn_from_chars (&cur_vinsn, fr_opcode);
10736 if (cur_vinsn.num_slots > 1)
10737 from_wide_insn = TRUE;
10738
10739 orig_tinsn = cur_vinsn.slots[slot];
10740 tinsn_immed_from_frag (&orig_tinsn, fragP, slot);
10741
10742 is_loop = xtensa_opcode_is_loop (xtensa_default_isa, orig_tinsn.opcode) == 1;
10743
10744 if (workaround_b_j_loop_end && ! fragP->tc_frag_data.is_no_transform)
10745 branch_jmp_to_next = is_branch_jmp_to_next (&orig_tinsn, fragP);
10746
10747 if (branch_jmp_to_next && !next_frag_is_loop_target (fragP))
10748 {
10749 /* Conversion just inserts a NOP and marks the fix as completed. */
10750 bytes = xtensa_format_length (isa, fmt);
10751 if (bytes >= 4)
10752 {
10753 cur_vinsn.slots[slot].opcode =
10754 xtensa_format_slot_nop_opcode (isa, cur_vinsn.format, slot);
10755 cur_vinsn.slots[slot].ntok = 0;
10756 }
10757 else
10758 {
10759 bytes += fragP->tc_frag_data.text_expansion[0];
10760 gas_assert (bytes == 2 || bytes == 3);
10761 build_nop (&cur_vinsn.slots[0], bytes);
10762 fragP->fr_fix += fragP->tc_frag_data.text_expansion[0];
10763 }
10764 vinsn_to_insnbuf (&cur_vinsn, fr_opcode, frag_now, TRUE);
10765 xtensa_insnbuf_to_chars
10766 (isa, cur_vinsn.insnbuf, (unsigned char *) fr_opcode, 0);
10767 fragP->fr_var = 0;
10768 }
10769 else
10770 {
10771 /* Here is the fun stuff: Get the immediate field from this
10772 instruction. If it fits, we're done. If not, find the next
10773 instruction sequence that fits. */
10774
10775 IStack istack;
10776 int i;
10777 symbolS *lit_sym = NULL;
10778 int total_size = 0;
10779 int target_offset = 0;
10780 int old_size;
10781 int diff;
10782 symbolS *gen_label = NULL;
10783 offsetT frag_offset;
10784 bfd_boolean first = TRUE;
10785
10786 /* It does not fit. Find something that does and
10787 convert immediately. */
10788 frag_offset = fr_opcode - fragP->fr_literal;
10789 istack_init (&istack);
10790 xg_assembly_relax (&istack, &orig_tinsn,
10791 segP, fragP, frag_offset, min_steps, 0);
10792
10793 old_size = xtensa_format_length (isa, fmt);
10794
10795 /* Assemble this right inline. */
10796
10797 /* First, create the mapping from a label name to the REAL label. */
10798 target_offset = 0;
10799 for (i = 0; i < istack.ninsn; i++)
10800 {
10801 TInsn *tinsn = &istack.insn[i];
10802 fragS *lit_frag;
10803
10804 switch (tinsn->insn_type)
10805 {
10806 case ITYPE_LITERAL:
10807 if (lit_sym != NULL)
10808 as_bad (_("multiple literals in expansion"));
10809 /* First find the appropriate space in the literal pool. */
10810 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10811 if (lit_frag == NULL)
10812 as_bad (_("no registered fragment for literal"));
10813 if (tinsn->ntok != 1)
10814 as_bad (_("number of literal tokens != 1"));
10815
10816 /* Set the literal symbol and add a fixup. */
10817 lit_sym = lit_frag->fr_symbol;
10818 break;
10819
10820 case ITYPE_LABEL:
10821 if (align_targets && !is_loop)
10822 {
10823 fragS *unreach = fragP->fr_next;
10824 while (!(unreach->fr_type == rs_machine_dependent
10825 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10826 || unreach->fr_subtype == RELAX_UNREACHABLE)))
10827 {
10828 unreach = unreach->fr_next;
10829 }
10830
10831 gas_assert (unreach->fr_type == rs_machine_dependent
10832 && (unreach->fr_subtype == RELAX_MAYBE_UNREACHABLE
10833 || unreach->fr_subtype == RELAX_UNREACHABLE));
10834
10835 target_offset += unreach->tc_frag_data.text_expansion[0];
10836 }
10837 gas_assert (gen_label == NULL);
10838 gen_label = symbol_new (FAKE_LABEL_NAME, now_seg, fragP,
10839 fr_opcode - fragP->fr_literal
10840 + target_offset);
10841 break;
10842
10843 case ITYPE_INSN:
10844 if (first && from_wide_insn)
10845 {
10846 target_offset += xtensa_format_length (isa, fmt);
10847 first = FALSE;
10848 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10849 target_offset += xg_get_single_size (tinsn->opcode);
10850 }
10851 else
10852 target_offset += xg_get_single_size (tinsn->opcode);
10853 break;
10854 }
10855 }
10856
10857 total_size = 0;
10858 first = TRUE;
10859 for (i = 0; i < istack.ninsn; i++)
10860 {
10861 TInsn *tinsn = &istack.insn[i];
10862 fragS *lit_frag;
10863 int size;
10864 segT target_seg;
10865 bfd_reloc_code_real_type reloc_type;
10866
10867 switch (tinsn->insn_type)
10868 {
10869 case ITYPE_LITERAL:
10870 lit_frag = fragP->tc_frag_data.literal_frags[slot];
10871 /* Already checked. */
10872 gas_assert (lit_frag != NULL);
10873 gas_assert (lit_sym != NULL);
10874 gas_assert (tinsn->ntok == 1);
10875 /* Add a fixup. */
10876 target_seg = S_GET_SEGMENT (lit_sym);
10877 gas_assert (target_seg);
10878 reloc_type = map_operator_to_reloc (tinsn->tok[0].X_op, TRUE);
10879 fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4,
10880 &tinsn->tok[0], FALSE, reloc_type);
10881 break;
10882
10883 case ITYPE_LABEL:
10884 break;
10885
10886 case ITYPE_INSN:
10887 xg_resolve_labels (tinsn, gen_label);
10888 xg_resolve_literals (tinsn, lit_sym);
10889 if (from_wide_insn && first)
10890 {
10891 first = FALSE;
10892 if (opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10893 {
10894 cur_vinsn.slots[slot] = *tinsn;
10895 }
10896 else
10897 {
10898 cur_vinsn.slots[slot].opcode =
10899 xtensa_format_slot_nop_opcode (isa, fmt, slot);
10900 cur_vinsn.slots[slot].ntok = 0;
10901 }
10902 vinsn_to_insnbuf (&cur_vinsn, immed_instr, fragP, TRUE);
10903 xtensa_insnbuf_to_chars (isa, cur_vinsn.insnbuf,
10904 (unsigned char *) immed_instr, 0);
10905 fragP->tc_frag_data.is_insn = TRUE;
10906 size = xtensa_format_length (isa, fmt);
10907 if (!opcode_fits_format_slot (tinsn->opcode, fmt, slot))
10908 {
10909 xg_emit_insn_to_buf
10910 (tinsn, immed_instr + size, fragP,
10911 immed_instr - fragP->fr_literal + size, TRUE);
10912 size += xg_get_single_size (tinsn->opcode);
10913 }
10914 }
10915 else
10916 {
10917 size = xg_get_single_size (tinsn->opcode);
10918 xg_emit_insn_to_buf (tinsn, immed_instr, fragP,
10919 immed_instr - fragP->fr_literal, TRUE);
10920 }
10921 immed_instr += size;
10922 total_size += size;
10923 break;
10924 }
10925 }
10926
10927 diff = total_size - old_size;
10928 gas_assert (diff >= 0);
10929 if (diff != 0)
10930 expanded = TRUE;
10931 gas_assert (diff <= fragP->fr_var);
10932 fragP->fr_var -= diff;
10933 fragP->fr_fix += diff;
10934 }
10935
10936 /* Check for undefined immediates in LOOP instructions. */
10937 if (is_loop)
10938 {
10939 symbolS *sym;
10940 sym = orig_tinsn.tok[1].X_add_symbol;
10941 if (sym != NULL && !S_IS_DEFINED (sym))
10942 {
10943 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10944 return;
10945 }
10946 sym = orig_tinsn.tok[1].X_op_symbol;
10947 if (sym != NULL && !S_IS_DEFINED (sym))
10948 {
10949 as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym));
10950 return;
10951 }
10952 }
10953
10954 if (expanded && is_direct_call_opcode (orig_tinsn.opcode))
10955 {
10956 /* Add an expansion note on the expanded instruction. */
10957 fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4,
10958 &orig_tinsn.tok[0], TRUE,
10959 BFD_RELOC_XTENSA_ASM_EXPAND);
10960 }
10961 }
10962
10963
10964 /* Add a new fix expression into the desired segment. We have to
10965 switch to that segment to do this. */
10966
10967 static fixS *
10968 fix_new_exp_in_seg (segT new_seg,
10969 subsegT new_subseg,
10970 fragS *frag,
10971 int where,
10972 int size,
10973 expressionS *exp,
10974 int pcrel,
10975 bfd_reloc_code_real_type r_type)
10976 {
10977 fixS *new_fix;
10978 segT seg = now_seg;
10979 subsegT subseg = now_subseg;
10980
10981 gas_assert (new_seg != 0);
10982 subseg_set (new_seg, new_subseg);
10983
10984 new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type);
10985 subseg_set (seg, subseg);
10986 return new_fix;
10987 }
10988
10989
10990 \f
10991 /* A map that keeps information on a per-subsegment basis. This is
10992 maintained during initial assembly, but is invalid once the
10993 subsegments are smashed together. I.E., it cannot be used during
10994 the relaxation. */
10995
10996 typedef struct subseg_map_struct
10997 {
10998 /* the key */
10999 segT seg;
11000 subsegT subseg;
11001
11002 /* the data */
11003 unsigned flags;
11004 float total_freq; /* fall-through + branch target frequency */
11005 float target_freq; /* branch target frequency alone */
11006
11007 struct subseg_map_struct *next;
11008 } subseg_map;
11009
11010
11011 static subseg_map *sseg_map = NULL;
11012
11013 static subseg_map *
11014 get_subseg_info (segT seg, subsegT subseg)
11015 {
11016 subseg_map *subseg_e;
11017
11018 for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next)
11019 {
11020 if (seg == subseg_e->seg && subseg == subseg_e->subseg)
11021 break;
11022 }
11023 return subseg_e;
11024 }
11025
11026
11027 static subseg_map *
11028 add_subseg_info (segT seg, subsegT subseg)
11029 {
11030 subseg_map *subseg_e = XNEW (subseg_map);
11031 memset (subseg_e, 0, sizeof (subseg_map));
11032 subseg_e->seg = seg;
11033 subseg_e->subseg = subseg;
11034 subseg_e->flags = 0;
11035 /* Start off considering every branch target very important. */
11036 subseg_e->target_freq = 1.0;
11037 subseg_e->total_freq = 1.0;
11038 subseg_e->next = sseg_map;
11039 sseg_map = subseg_e;
11040 return subseg_e;
11041 }
11042
11043
11044 static unsigned
11045 get_last_insn_flags (segT seg, subsegT subseg)
11046 {
11047 subseg_map *subseg_e = get_subseg_info (seg, subseg);
11048 if (subseg_e)
11049 return subseg_e->flags;
11050 return 0;
11051 }
11052
11053
11054 static void
11055 set_last_insn_flags (segT seg,
11056 subsegT subseg,
11057 unsigned fl,
11058 bfd_boolean val)
11059 {
11060 subseg_map *subseg_e = get_subseg_info (seg, subseg);
11061 if (! subseg_e)
11062 subseg_e = add_subseg_info (seg, subseg);
11063 if (val)
11064 subseg_e->flags |= fl;
11065 else
11066 subseg_e->flags &= ~fl;
11067 }
11068
11069
11070 static float
11071 get_subseg_total_freq (segT seg, subsegT subseg)
11072 {
11073 subseg_map *subseg_e = get_subseg_info (seg, subseg);
11074 if (subseg_e)
11075 return subseg_e->total_freq;
11076 return 1.0;
11077 }
11078
11079
11080 static float
11081 get_subseg_target_freq (segT seg, subsegT subseg)
11082 {
11083 subseg_map *subseg_e = get_subseg_info (seg, subseg);
11084 if (subseg_e)
11085 return subseg_e->target_freq;
11086 return 1.0;
11087 }
11088
11089
11090 static void
11091 set_subseg_freq (segT seg, subsegT subseg, float total_f, float target_f)
11092 {
11093 subseg_map *subseg_e = get_subseg_info (seg, subseg);
11094 if (! subseg_e)
11095 subseg_e = add_subseg_info (seg, subseg);
11096 subseg_e->total_freq = total_f;
11097 subseg_e->target_freq = target_f;
11098 }
11099
11100 \f
11101 /* Segment Lists and emit_state Stuff. */
11102
11103 static void
11104 xtensa_move_seg_list_to_beginning (seg_list *head)
11105 {
11106 head = head->next;
11107 while (head)
11108 {
11109 segT literal_section = head->seg;
11110
11111 /* Move the literal section to the front of the section list. */
11112 gas_assert (literal_section);
11113 if (literal_section != stdoutput->sections)
11114 {
11115 bfd_section_list_remove (stdoutput, literal_section);
11116 bfd_section_list_prepend (stdoutput, literal_section);
11117 }
11118 head = head->next;
11119 }
11120 }
11121
11122
11123 static void mark_literal_frags (seg_list *);
11124
11125 static void
11126 xg_promote_candidate_litpool (struct litpool_seg *lps,
11127 struct litpool_frag *lp)
11128 {
11129 fragS *poolbeg;
11130 fragS *poolend;
11131 symbolS *lsym;
11132 char label[10 + 2 * sizeof (fragS *)];
11133
11134 poolbeg = lp->fragP;
11135 lp->priority = 1;
11136 poolbeg->fr_subtype = RELAX_LITERAL_POOL_BEGIN;
11137 poolend = poolbeg->fr_next;
11138 gas_assert (poolend->fr_type == rs_machine_dependent &&
11139 poolend->fr_subtype == RELAX_LITERAL_POOL_END);
11140 /* Create a local symbol pointing to the
11141 end of the pool. */
11142 sprintf (label, ".L0_LT_%p", poolbeg);
11143 lsym = (symbolS *) local_symbol_make (label, lps->seg, poolend, 0);
11144 poolbeg->fr_symbol = lsym;
11145 /* Rest is done in xtensa_relax_frag. */
11146 }
11147
11148 static struct litpool_frag *xg_find_litpool (struct litpool_seg *lps,
11149 struct litpool_frag *lpf,
11150 addressT addr)
11151 {
11152 struct litpool_frag *lp = lpf->prev;
11153
11154 gas_assert (lp->fragP);
11155
11156 while (lp->fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
11157 {
11158 lp = lp->prev;
11159 if (lp->fragP == NULL)
11160 {
11161 /* End of list; have to bite the bullet.
11162 Take the nearest. */
11163 lp = lpf->prev;
11164 break;
11165 }
11166 /* Does it (conservatively) reach? */
11167 if (addr - lp->addr <= 128 * 1024)
11168 {
11169 if (lp->fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN &&
11170 lp->literal_count < MAX_POOL_LITERALS)
11171 {
11172 /* Found a good one. */
11173 break;
11174 }
11175 else if (lp->prev->fragP &&
11176 addr - lp->prev->addr > 128 * 1024 &&
11177 lp->prev->literal_count < MAX_POOL_LITERALS)
11178 {
11179 /* This is still a "candidate" but the next one
11180 will be too far away, so revert to the nearest
11181 one, convert it and add the jump around. */
11182 lp = lpf->prev;
11183 break;
11184 }
11185 }
11186 }
11187
11188 if (lp->literal_count >= MAX_POOL_LITERALS)
11189 {
11190 lp = lpf->prev;
11191 while (lp && lp->fragP && lp->literal_count >= MAX_POOL_LITERALS)
11192 {
11193 lp = lp->prev;
11194 }
11195 gas_assert (lp);
11196 }
11197
11198 gas_assert (lp && lp->fragP && lp->literal_count < MAX_POOL_LITERALS);
11199 ++lp->literal_count;
11200
11201 /* Convert candidate and add the jump around. */
11202 if (lp->fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN)
11203 xg_promote_candidate_litpool (lps, lp);
11204
11205 return lp;
11206 }
11207
11208 static bfd_boolean xtensa_is_init_fini (segT seg)
11209 {
11210 if (!seg)
11211 return 0;
11212 return strcmp (segment_name (seg), INIT_SECTION_NAME) == 0
11213 || strcmp (segment_name (seg), FINI_SECTION_NAME) == 0;
11214 }
11215
11216 static void
11217 xtensa_assign_litpool_addresses (void)
11218 {
11219 struct litpool_seg *lps;
11220
11221 for (lps = litpool_seg_list.next; lps; lps = lps->next)
11222 {
11223 frchainS *frchP = seg_info (lps->seg)->frchainP;
11224 struct litpool_frag *lpf = lps->frag_list.next;
11225 addressT addr = 0;
11226
11227 if (xtensa_is_init_fini (lps->seg))
11228 continue;
11229
11230 for ( ; frchP; frchP = frchP->frch_next)
11231 {
11232 fragS *fragP;
11233 for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next)
11234 {
11235 if (lpf && fragP == lpf->fragP)
11236 {
11237 gas_assert(fragP->fr_type == rs_machine_dependent &&
11238 (fragP->fr_subtype == RELAX_LITERAL_POOL_BEGIN ||
11239 fragP->fr_subtype == RELAX_LITERAL_POOL_CANDIDATE_BEGIN));
11240 /* Found a litpool location. */
11241 lpf->addr = addr;
11242 lpf = lpf->next;
11243 }
11244 if (fragP->fr_type == rs_machine_dependent &&
11245 fragP->fr_subtype == RELAX_SLOTS)
11246 {
11247 int slot;
11248 for (slot = 0; slot < MAX_SLOTS; slot++)
11249 {
11250 fragS *litfrag = fragP->tc_frag_data.literal_frags[slot];
11251
11252 if (litfrag
11253 && litfrag->tc_frag_data.is_literal
11254 && !litfrag->tc_frag_data.literal_frag)
11255 {
11256 /* L32R referring .literal or generated as a result
11257 of relaxation. Point its literal to the nearest
11258 litpool preferring non-"candidate" positions to
11259 avoid the jump-around. */
11260
11261 struct litpool_frag *lp;
11262
11263 lp = xg_find_litpool (lps, lpf, addr);
11264 /* Take earliest use of this literal to avoid
11265 forward refs. */
11266 litfrag->tc_frag_data.literal_frag = lp->fragP;
11267 }
11268 }
11269 }
11270 addr += fragP->fr_fix;
11271 if (fragP->fr_type == rs_fill)
11272 addr += fragP->fr_offset;
11273 }
11274 }
11275 }
11276 }
11277
11278 static void
11279 xtensa_move_literals (void)
11280 {
11281 seg_list *segment;
11282 frchainS *frchain_from, *frchain_to;
11283 fragS *search_frag, *next_frag, *literal_pool, *insert_after;
11284 fragS **frag_splice;
11285 emit_state state;
11286 segT dest_seg;
11287 fixS *fix, *next_fix, **fix_splice;
11288 sym_list *lit;
11289 const char *init_name = INIT_SECTION_NAME;
11290 const char *fini_name = FINI_SECTION_NAME;
11291 int init_name_len = strlen(init_name);
11292 int fini_name_len = strlen(fini_name);
11293
11294 mark_literal_frags (literal_head->next);
11295
11296 if (use_literal_section)
11297 return;
11298
11299 /* Assign addresses (rough estimates) to the potential literal pool locations
11300 and create new ones if the gaps are too large. */
11301
11302 xtensa_assign_litpool_addresses ();
11303
11304 /* Walk through the literal segments. */
11305 for (segment = literal_head->next; segment; segment = segment->next)
11306 {
11307 const char *seg_name = segment_name (segment->seg);
11308
11309 /* Keep the literals for .init and .fini in separate sections. */
11310 if ((!memcmp (seg_name, init_name, init_name_len) &&
11311 !strcmp (seg_name + init_name_len, ".literal")) ||
11312 (!memcmp (seg_name, fini_name, fini_name_len) &&
11313 !strcmp (seg_name + fini_name_len, ".literal")))
11314 continue;
11315
11316 frchain_from = seg_info (segment->seg)->frchainP;
11317 search_frag = frchain_from->frch_root;
11318 literal_pool = NULL;
11319 frchain_to = NULL;
11320 frag_splice = &(frchain_from->frch_root);
11321
11322 while (search_frag && !search_frag->tc_frag_data.literal_frag)
11323 {
11324 gas_assert (search_frag->fr_fix == 0
11325 || search_frag->fr_type == rs_align);
11326 search_frag = search_frag->fr_next;
11327 }
11328
11329 if (!search_frag)
11330 continue;
11331
11332 gas_assert (search_frag->tc_frag_data.literal_frag->fr_subtype
11333 == RELAX_LITERAL_POOL_BEGIN);
11334 xtensa_switch_section_emit_state (&state, segment->seg, 0);
11335
11336 /* Make sure that all the frags in this series are closed, and
11337 that there is at least one left over of zero-size. This
11338 prevents us from making a segment with an frchain without any
11339 frags in it. */
11340 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11341 xtensa_set_frag_assembly_state (frag_now);
11342 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11343 xtensa_set_frag_assembly_state (frag_now);
11344
11345 while (search_frag != frag_now)
11346 {
11347 next_frag = search_frag->fr_next;
11348 if (search_frag->tc_frag_data.literal_frag)
11349 {
11350 literal_pool = search_frag->tc_frag_data.literal_frag;
11351 gas_assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN);
11352 frchain_to = literal_pool->tc_frag_data.lit_frchain;
11353 gas_assert (frchain_to);
11354 }
11355
11356 if (search_frag->fr_type == rs_fill && search_frag->fr_fix == 0)
11357 {
11358 /* Skip empty fill frags. */
11359 *frag_splice = next_frag;
11360 search_frag = next_frag;
11361 continue;
11362 }
11363
11364 if (search_frag->fr_type == rs_align)
11365 {
11366 /* Skip alignment frags, because the pool as a whole will be
11367 aligned if used, and we don't want to force alignment if the
11368 pool is unused. */
11369 *frag_splice = next_frag;
11370 search_frag = next_frag;
11371 continue;
11372 }
11373
11374 /* First, move the frag out of the literal section and
11375 to the appropriate place. */
11376
11377 /* Insert an alignment frag at start of pool. */
11378 if (literal_pool->fr_next->fr_type == rs_machine_dependent &&
11379 literal_pool->fr_next->fr_subtype == RELAX_LITERAL_POOL_END)
11380 {
11381 segT pool_seg = literal_pool->fr_next->tc_frag_data.lit_seg;
11382 emit_state prev_state;
11383 fragS *prev_frag;
11384 fragS *align_frag;
11385 xtensa_switch_section_emit_state (&prev_state, pool_seg, 0);
11386 prev_frag = frag_now;
11387 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11388 align_frag = frag_now;
11389 frag_align (2, 0, 0);
11390 /* Splice it into the right place. */
11391 prev_frag->fr_next = align_frag->fr_next;
11392 align_frag->fr_next = literal_pool->fr_next;
11393 literal_pool->fr_next = align_frag;
11394 /* Insert after this one. */
11395 literal_pool->tc_frag_data.literal_frag = align_frag;
11396 xtensa_restore_emit_state (&prev_state);
11397 }
11398 insert_after = literal_pool->tc_frag_data.literal_frag;
11399 dest_seg = insert_after->fr_next->tc_frag_data.lit_seg;
11400 /* Skip align frag. */
11401 if (insert_after->fr_next->fr_type == rs_align)
11402 {
11403 insert_after = insert_after->fr_next;
11404 }
11405
11406 *frag_splice = next_frag;
11407 search_frag->fr_next = insert_after->fr_next;
11408 insert_after->fr_next = search_frag;
11409 search_frag->tc_frag_data.lit_seg = dest_seg;
11410 literal_pool->tc_frag_data.literal_frag = search_frag;
11411
11412 /* Now move any fixups associated with this frag to the
11413 right section. */
11414 fix = frchain_from->fix_root;
11415 fix_splice = &(frchain_from->fix_root);
11416 while (fix)
11417 {
11418 next_fix = fix->fx_next;
11419 if (fix->fx_frag == search_frag)
11420 {
11421 *fix_splice = next_fix;
11422 fix->fx_next = frchain_to->fix_root;
11423 frchain_to->fix_root = fix;
11424 if (frchain_to->fix_tail == NULL)
11425 frchain_to->fix_tail = fix;
11426 }
11427 else
11428 fix_splice = &(fix->fx_next);
11429 fix = next_fix;
11430 }
11431 search_frag = next_frag;
11432 }
11433
11434 if (frchain_from->fix_root != NULL)
11435 {
11436 frchain_from = seg_info (segment->seg)->frchainP;
11437 as_warn (_("fixes not all moved from %s"), segment->seg->name);
11438
11439 gas_assert (frchain_from->fix_root == NULL);
11440 }
11441 frchain_from->fix_tail = NULL;
11442 xtensa_restore_emit_state (&state);
11443 }
11444
11445 /* Now fix up the SEGMENT value for all the literal symbols. */
11446 for (lit = literal_syms; lit; lit = lit->next)
11447 {
11448 symbolS *lit_sym = lit->sym;
11449 segT dseg = symbol_get_frag (lit_sym)->tc_frag_data.lit_seg;
11450 if (dseg)
11451 S_SET_SEGMENT (lit_sym, dseg);
11452 }
11453 }
11454
11455
11456 /* Walk over all the frags for segments in a list and mark them as
11457 containing literals. As clunky as this is, we can't rely on frag_var
11458 and frag_variant to get called in all situations. */
11459
11460 static void
11461 mark_literal_frags (seg_list *segment)
11462 {
11463 frchainS *frchain_from;
11464 fragS *search_frag;
11465
11466 while (segment)
11467 {
11468 frchain_from = seg_info (segment->seg)->frchainP;
11469 search_frag = frchain_from->frch_root;
11470 while (search_frag)
11471 {
11472 search_frag->tc_frag_data.is_literal = TRUE;
11473 search_frag = search_frag->fr_next;
11474 }
11475 segment = segment->next;
11476 }
11477 }
11478
11479
11480 static void
11481 xtensa_reorder_seg_list (seg_list *head, segT after)
11482 {
11483 /* Move all of the sections in the section list to come
11484 after "after" in the gnu segment list. */
11485
11486 head = head->next;
11487 while (head)
11488 {
11489 segT literal_section = head->seg;
11490
11491 /* Move the literal section after "after". */
11492 gas_assert (literal_section);
11493 if (literal_section != after)
11494 {
11495 bfd_section_list_remove (stdoutput, literal_section);
11496 bfd_section_list_insert_after (stdoutput, after, literal_section);
11497 }
11498
11499 head = head->next;
11500 }
11501 }
11502
11503
11504 /* Push all the literal segments to the end of the gnu list. */
11505
11506 static void
11507 xtensa_reorder_segments (void)
11508 {
11509 segT sec;
11510 segT last_sec = 0;
11511 int old_count = 0;
11512 int new_count = 0;
11513
11514 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
11515 {
11516 last_sec = sec;
11517 old_count++;
11518 }
11519
11520 /* Now that we have the last section, push all the literal
11521 sections to the end. */
11522 xtensa_reorder_seg_list (literal_head, last_sec);
11523
11524 /* Now perform the final error check. */
11525 for (sec = stdoutput->sections; sec != NULL; sec = sec->next)
11526 new_count++;
11527 gas_assert (new_count == old_count);
11528 }
11529
11530
11531 /* Change the emit state (seg, subseg, and frag related stuff) to the
11532 correct location. Return a emit_state which can be passed to
11533 xtensa_restore_emit_state to return to current fragment. */
11534
11535 static void
11536 xtensa_switch_to_literal_fragment (emit_state *result)
11537 {
11538 if (directive_state[directive_absolute_literals])
11539 {
11540 segT lit4_seg = cache_literal_section (TRUE);
11541 xtensa_switch_section_emit_state (result, lit4_seg, 0);
11542 }
11543 else
11544 xtensa_switch_to_non_abs_literal_fragment (result);
11545
11546 /* Do a 4-byte align here. */
11547 frag_align (2, 0, 0);
11548 record_alignment (now_seg, 2);
11549 }
11550
11551
11552 static void
11553 xtensa_switch_to_non_abs_literal_fragment (emit_state *result)
11554 {
11555 fragS *pool_location = get_literal_pool_location (now_seg);
11556 segT lit_seg;
11557 bfd_boolean is_init_fini = xtensa_is_init_fini (now_seg);
11558
11559 if (pool_location == NULL
11560 && !use_literal_section
11561 && !is_init_fini)
11562 {
11563 if (!auto_litpools)
11564 {
11565 as_bad (_("literal pool location required for text-section-literals; specify with .literal_position"));
11566 }
11567 xtensa_maybe_create_literal_pool_frag (TRUE, TRUE);
11568 pool_location = get_literal_pool_location (now_seg);
11569 }
11570
11571 lit_seg = cache_literal_section (FALSE);
11572 xtensa_switch_section_emit_state (result, lit_seg, 0);
11573
11574 if (!use_literal_section
11575 && !is_init_fini
11576 && get_literal_pool_location (now_seg) != pool_location)
11577 {
11578 /* Close whatever frag is there. */
11579 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11580 xtensa_set_frag_assembly_state (frag_now);
11581 frag_now->tc_frag_data.literal_frag = pool_location;
11582 frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL);
11583 xtensa_set_frag_assembly_state (frag_now);
11584 }
11585 }
11586
11587
11588 /* Call this function before emitting data into the literal section.
11589 This is a helper function for xtensa_switch_to_literal_fragment.
11590 This is similar to a .section new_now_seg subseg. */
11591
11592 static void
11593 xtensa_switch_section_emit_state (emit_state *state,
11594 segT new_now_seg,
11595 subsegT new_now_subseg)
11596 {
11597 state->name = now_seg->name;
11598 state->now_seg = now_seg;
11599 state->now_subseg = now_subseg;
11600 state->generating_literals = generating_literals;
11601 generating_literals++;
11602 subseg_set (new_now_seg, new_now_subseg);
11603 }
11604
11605
11606 /* Use to restore the emitting into the normal place. */
11607
11608 static void
11609 xtensa_restore_emit_state (emit_state *state)
11610 {
11611 generating_literals = state->generating_literals;
11612 subseg_set (state->now_seg, state->now_subseg);
11613 }
11614
11615
11616 /* Predicate function used to look up a section in a particular group. */
11617
11618 static bfd_boolean
11619 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11620 {
11621 const char *gname = inf;
11622 const char *group_name = elf_group_name (sec);
11623
11624 return (group_name == gname
11625 || (group_name != NULL
11626 && gname != NULL
11627 && strcmp (group_name, gname) == 0));
11628 }
11629
11630
11631 /* Get the literal section to be used for the current text section.
11632 The result may be cached in the default_lit_sections structure. */
11633
11634 static segT
11635 cache_literal_section (bfd_boolean use_abs_literals)
11636 {
11637 const char *text_name, *group_name = 0;
11638 const char *base_name, *suffix;
11639 char *name;
11640 segT *pcached;
11641 segT seg, current_section;
11642 int current_subsec;
11643 bfd_boolean linkonce = FALSE;
11644
11645 /* Save the current section/subsection. */
11646 current_section = now_seg;
11647 current_subsec = now_subseg;
11648
11649 /* Clear the cached values if they are no longer valid. */
11650 if (now_seg != default_lit_sections.current_text_seg)
11651 {
11652 default_lit_sections.current_text_seg = now_seg;
11653 default_lit_sections.lit_seg = NULL;
11654 default_lit_sections.lit4_seg = NULL;
11655 }
11656
11657 /* Check if the literal section is already cached. */
11658 if (use_abs_literals)
11659 pcached = &default_lit_sections.lit4_seg;
11660 else
11661 pcached = &default_lit_sections.lit_seg;
11662
11663 if (*pcached)
11664 return *pcached;
11665
11666 text_name = default_lit_sections.lit_prefix;
11667 if (! text_name || ! *text_name)
11668 {
11669 text_name = segment_name (current_section);
11670 group_name = elf_group_name (current_section);
11671 linkonce = (current_section->flags & SEC_LINK_ONCE) != 0;
11672 }
11673
11674 base_name = use_abs_literals ? ".lit4" : ".literal";
11675 if (group_name)
11676 {
11677 name = concat (base_name, ".", group_name, (char *) NULL);
11678 }
11679 else if (strncmp (text_name, ".gnu.linkonce.", linkonce_len) == 0)
11680 {
11681 suffix = strchr (text_name + linkonce_len, '.');
11682
11683 name = concat (".gnu.linkonce", base_name, suffix ? suffix : "",
11684 (char *) NULL);
11685 linkonce = TRUE;
11686 }
11687 else
11688 {
11689 /* If the section name begins or ends with ".text", then replace
11690 that portion instead of appending an additional suffix. */
11691 size_t len = strlen (text_name);
11692 if (len >= 5
11693 && (strcmp (text_name + len - 5, ".text") == 0
11694 || strncmp (text_name, ".text", 5) == 0))
11695 len -= 5;
11696
11697 name = XNEWVEC (char, len + strlen (base_name) + 1);
11698 if (strncmp (text_name, ".text", 5) == 0)
11699 {
11700 strcpy (name, base_name);
11701 strcat (name, text_name + 5);
11702 }
11703 else
11704 {
11705 strcpy (name, text_name);
11706 strcpy (name + len, base_name);
11707 }
11708 }
11709
11710 /* Canonicalize section names to allow renaming literal sections.
11711 The group name, if any, came from the current text section and
11712 has already been canonicalized. */
11713 name = tc_canonicalize_symbol_name (name);
11714
11715 seg = bfd_get_section_by_name_if (stdoutput, name, match_section_group,
11716 (void *) group_name);
11717 if (! seg)
11718 {
11719 flagword flags;
11720
11721 seg = subseg_force_new (name, 0);
11722
11723 if (! use_abs_literals)
11724 {
11725 /* Add the newly created literal segment to the list. */
11726 seg_list *n = XNEW (seg_list);
11727 n->seg = seg;
11728 n->next = literal_head->next;
11729 literal_head->next = n;
11730 }
11731
11732 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_ALLOC | SEC_LOAD
11733 | (linkonce ? (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD) : 0)
11734 | (use_abs_literals ? SEC_DATA : SEC_CODE));
11735
11736 elf_group_name (seg) = group_name;
11737
11738 bfd_set_section_flags (seg, flags);
11739 bfd_set_section_alignment (seg, 2);
11740 }
11741
11742 *pcached = seg;
11743 subseg_set (current_section, current_subsec);
11744 return seg;
11745 }
11746
11747 \f
11748 /* Property Tables Stuff. */
11749
11750 #define XTENSA_INSN_SEC_NAME ".xt.insn"
11751 #define XTENSA_LIT_SEC_NAME ".xt.lit"
11752 #define XTENSA_PROP_SEC_NAME ".xt.prop"
11753
11754 typedef bfd_boolean (*frag_predicate) (const fragS *);
11755 typedef void (*frag_flags_fn) (const fragS *, frag_flags *);
11756
11757 static bfd_boolean get_frag_is_literal (const fragS *);
11758 static void xtensa_create_property_segments
11759 (frag_predicate, frag_predicate, const char *, xt_section_type);
11760 static void xtensa_create_xproperty_segments
11761 (frag_flags_fn, const char *, xt_section_type);
11762 static bfd_boolean exclude_section_from_property_tables (segT);
11763 static bfd_boolean section_has_property (segT, frag_predicate);
11764 static bfd_boolean section_has_xproperty (segT, frag_flags_fn);
11765 static void add_xt_block_frags
11766 (segT, xtensa_block_info **, frag_predicate, frag_predicate);
11767 static bfd_boolean xtensa_frag_flags_is_empty (const frag_flags *);
11768 static void xtensa_frag_flags_init (frag_flags *);
11769 static void get_frag_property_flags (const fragS *, frag_flags *);
11770 static flagword frag_flags_to_number (const frag_flags *);
11771 static void add_xt_prop_frags (segT, xtensa_block_info **, frag_flags_fn);
11772
11773 /* Set up property tables after relaxation. */
11774
11775 void
11776 xtensa_post_relax_hook (void)
11777 {
11778 xtensa_move_seg_list_to_beginning (literal_head);
11779
11780 xtensa_find_unmarked_state_frags ();
11781 xtensa_mark_frags_for_org ();
11782 xtensa_mark_difference_of_two_symbols ();
11783
11784 xtensa_create_property_segments (get_frag_is_literal,
11785 NULL,
11786 XTENSA_LIT_SEC_NAME,
11787 xt_literal_sec);
11788 xtensa_create_xproperty_segments (get_frag_property_flags,
11789 XTENSA_PROP_SEC_NAME,
11790 xt_prop_sec);
11791
11792 if (warn_unaligned_branch_targets)
11793 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_branch_targets, 0);
11794 bfd_map_over_sections (stdoutput, xtensa_find_unaligned_loops, 0);
11795 }
11796
11797
11798 /* This function is only meaningful after xtensa_move_literals. */
11799
11800 static bfd_boolean
11801 get_frag_is_literal (const fragS *fragP)
11802 {
11803 gas_assert (fragP != NULL);
11804 return fragP->tc_frag_data.is_literal;
11805 }
11806
11807
11808 static void
11809 xtensa_create_property_segments (frag_predicate property_function,
11810 frag_predicate end_property_function,
11811 const char *section_name_base,
11812 xt_section_type sec_type)
11813 {
11814 segT *seclist;
11815
11816 /* Walk over all of the current segments.
11817 Walk over each fragment
11818 For each non-empty fragment,
11819 Build a property record (append where possible). */
11820
11821 for (seclist = &stdoutput->sections;
11822 seclist && *seclist;
11823 seclist = &(*seclist)->next)
11824 {
11825 segT sec = *seclist;
11826
11827 if (exclude_section_from_property_tables (sec))
11828 continue;
11829
11830 if (section_has_property (sec, property_function))
11831 {
11832 segment_info_type *xt_seg_info;
11833 xtensa_block_info **xt_blocks;
11834 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11835
11836 prop_sec->output_section = prop_sec;
11837 subseg_set (prop_sec, 0);
11838 xt_seg_info = seg_info (prop_sec);
11839 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11840
11841 /* Walk over all of the frchains here and add new sections. */
11842 add_xt_block_frags (sec, xt_blocks, property_function,
11843 end_property_function);
11844 }
11845 }
11846
11847 /* Now we fill them out.... */
11848
11849 for (seclist = &stdoutput->sections;
11850 seclist && *seclist;
11851 seclist = &(*seclist)->next)
11852 {
11853 segment_info_type *seginfo;
11854 xtensa_block_info *block;
11855 segT sec = *seclist;
11856
11857 seginfo = seg_info (sec);
11858 block = seginfo->tc_segment_info_data.blocks[sec_type];
11859
11860 if (block)
11861 {
11862 xtensa_block_info *cur_block;
11863 int num_recs = 0;
11864 bfd_size_type rec_size;
11865
11866 for (cur_block = block; cur_block; cur_block = cur_block->next)
11867 num_recs++;
11868
11869 rec_size = num_recs * 8;
11870 bfd_set_section_size (sec, rec_size);
11871
11872 if (num_recs)
11873 {
11874 char *frag_data;
11875 int i;
11876
11877 subseg_set (sec, 0);
11878 frag_data = frag_more (rec_size);
11879 cur_block = block;
11880 for (i = 0; i < num_recs; i++)
11881 {
11882 fixS *fix;
11883
11884 /* Write the fixup. */
11885 gas_assert (cur_block);
11886 fix = fix_new (frag_now, i * 8, 4,
11887 section_symbol (cur_block->sec),
11888 cur_block->offset,
11889 FALSE, BFD_RELOC_32);
11890 fix->fx_file = "<internal>";
11891 fix->fx_line = 0;
11892
11893 /* Write the length. */
11894 md_number_to_chars (&frag_data[4 + i * 8],
11895 cur_block->size, 4);
11896 cur_block = cur_block->next;
11897 }
11898 frag_wane (frag_now);
11899 frag_new (0);
11900 frag_wane (frag_now);
11901 }
11902 }
11903 }
11904 }
11905
11906
11907 static void
11908 xtensa_create_xproperty_segments (frag_flags_fn flag_fn,
11909 const char *section_name_base,
11910 xt_section_type sec_type)
11911 {
11912 segT *seclist;
11913
11914 /* Walk over all of the current segments.
11915 Walk over each fragment.
11916 For each fragment that has instructions,
11917 build an instruction record (append where possible). */
11918
11919 for (seclist = &stdoutput->sections;
11920 seclist && *seclist;
11921 seclist = &(*seclist)->next)
11922 {
11923 segT sec = *seclist;
11924
11925 if (exclude_section_from_property_tables (sec))
11926 continue;
11927
11928 if (section_has_xproperty (sec, flag_fn))
11929 {
11930 segment_info_type *xt_seg_info;
11931 xtensa_block_info **xt_blocks;
11932 segT prop_sec = xtensa_make_property_section (sec, section_name_base);
11933
11934 prop_sec->output_section = prop_sec;
11935 subseg_set (prop_sec, 0);
11936 xt_seg_info = seg_info (prop_sec);
11937 xt_blocks = &xt_seg_info->tc_segment_info_data.blocks[sec_type];
11938
11939 /* Walk over all of the frchains here and add new sections. */
11940 add_xt_prop_frags (sec, xt_blocks, flag_fn);
11941 }
11942 }
11943
11944 /* Now we fill them out.... */
11945
11946 for (seclist = &stdoutput->sections;
11947 seclist && *seclist;
11948 seclist = &(*seclist)->next)
11949 {
11950 segment_info_type *seginfo;
11951 xtensa_block_info *block;
11952 segT sec = *seclist;
11953
11954 seginfo = seg_info (sec);
11955 block = seginfo->tc_segment_info_data.blocks[sec_type];
11956
11957 if (block)
11958 {
11959 xtensa_block_info *cur_block;
11960 int num_recs = 0;
11961 bfd_size_type rec_size;
11962
11963 for (cur_block = block; cur_block; cur_block = cur_block->next)
11964 num_recs++;
11965
11966 rec_size = num_recs * (8 + 4);
11967 bfd_set_section_size (sec, rec_size);
11968 /* elf_section_data (sec)->this_hdr.sh_entsize = 12; */
11969
11970 if (num_recs)
11971 {
11972 char *frag_data;
11973 int i;
11974
11975 subseg_set (sec, 0);
11976 frag_data = frag_more (rec_size);
11977 cur_block = block;
11978 for (i = 0; i < num_recs; i++)
11979 {
11980 fixS *fix;
11981
11982 /* Write the fixup. */
11983 gas_assert (cur_block);
11984 fix = fix_new (frag_now, i * 12, 4,
11985 section_symbol (cur_block->sec),
11986 cur_block->offset,
11987 FALSE, BFD_RELOC_32);
11988 fix->fx_file = "<internal>";
11989 fix->fx_line = 0;
11990
11991 /* Write the length. */
11992 md_number_to_chars (&frag_data[4 + i * 12],
11993 cur_block->size, 4);
11994 md_number_to_chars (&frag_data[8 + i * 12],
11995 frag_flags_to_number (&cur_block->flags),
11996 sizeof (flagword));
11997 cur_block = cur_block->next;
11998 }
11999 frag_wane (frag_now);
12000 frag_new (0);
12001 frag_wane (frag_now);
12002 }
12003 }
12004 }
12005 }
12006
12007
12008 static bfd_boolean
12009 exclude_section_from_property_tables (segT sec)
12010 {
12011 flagword flags = bfd_section_flags (sec);
12012
12013 /* Sections that don't contribute to the memory footprint are excluded. */
12014 if ((flags & SEC_DEBUGGING)
12015 || !(flags & SEC_ALLOC)
12016 || (flags & SEC_MERGE))
12017 return TRUE;
12018
12019 /* Linker cie and fde optimizations mess up property entries for
12020 eh_frame sections, but there is nothing inside them relevant to
12021 property tables anyway. */
12022 if (strcmp (sec->name, ".eh_frame") == 0)
12023 return TRUE;
12024
12025 return FALSE;
12026 }
12027
12028
12029 static bfd_boolean
12030 section_has_property (segT sec, frag_predicate property_function)
12031 {
12032 segment_info_type *seginfo = seg_info (sec);
12033 fragS *fragP;
12034
12035 if (seginfo && seginfo->frchainP)
12036 {
12037 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
12038 {
12039 if (property_function (fragP)
12040 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
12041 return TRUE;
12042 }
12043 }
12044 return FALSE;
12045 }
12046
12047
12048 static bfd_boolean
12049 section_has_xproperty (segT sec, frag_flags_fn property_function)
12050 {
12051 segment_info_type *seginfo = seg_info (sec);
12052 fragS *fragP;
12053
12054 if (seginfo && seginfo->frchainP)
12055 {
12056 for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next)
12057 {
12058 frag_flags prop_flags;
12059 property_function (fragP, &prop_flags);
12060 if (!xtensa_frag_flags_is_empty (&prop_flags))
12061 return TRUE;
12062 }
12063 }
12064 return FALSE;
12065 }
12066
12067
12068 /* Two types of block sections exist right now: literal and insns. */
12069
12070 static void
12071 add_xt_block_frags (segT sec,
12072 xtensa_block_info **xt_block,
12073 frag_predicate property_function,
12074 frag_predicate end_property_function)
12075 {
12076 fragS *fragP;
12077
12078 /* Build it if needed. */
12079 while (*xt_block != NULL)
12080 xt_block = &(*xt_block)->next;
12081 /* We are either at NULL at the beginning or at the end. */
12082
12083 /* Walk through the frags. */
12084 if (seg_info (sec)->frchainP)
12085 {
12086 for (fragP = seg_info (sec)->frchainP->frch_root;
12087 fragP;
12088 fragP = fragP->fr_next)
12089 {
12090 if (property_function (fragP)
12091 && (fragP->fr_type != rs_fill || fragP->fr_fix != 0))
12092 {
12093 if (*xt_block != NULL)
12094 {
12095 if ((*xt_block)->offset + (*xt_block)->size
12096 == fragP->fr_address)
12097 (*xt_block)->size += fragP->fr_fix;
12098 else
12099 xt_block = &((*xt_block)->next);
12100 }
12101 if (*xt_block == NULL)
12102 {
12103 xtensa_block_info *new_block = XNEW (xtensa_block_info);
12104 new_block->sec = sec;
12105 new_block->offset = fragP->fr_address;
12106 new_block->size = fragP->fr_fix;
12107 new_block->next = NULL;
12108 xtensa_frag_flags_init (&new_block->flags);
12109 *xt_block = new_block;
12110 }
12111 if (end_property_function
12112 && end_property_function (fragP))
12113 {
12114 xt_block = &((*xt_block)->next);
12115 }
12116 }
12117 }
12118 }
12119 }
12120
12121
12122 /* Break the encapsulation of add_xt_prop_frags here. */
12123
12124 static bfd_boolean
12125 xtensa_frag_flags_is_empty (const frag_flags *prop_flags)
12126 {
12127 if (prop_flags->is_literal
12128 || prop_flags->is_insn
12129 || prop_flags->is_data
12130 || prop_flags->is_unreachable)
12131 return FALSE;
12132 return TRUE;
12133 }
12134
12135
12136 static void
12137 xtensa_frag_flags_init (frag_flags *prop_flags)
12138 {
12139 memset (prop_flags, 0, sizeof (frag_flags));
12140 }
12141
12142
12143 static void
12144 get_frag_property_flags (const fragS *fragP, frag_flags *prop_flags)
12145 {
12146 xtensa_frag_flags_init (prop_flags);
12147 if (fragP->tc_frag_data.is_literal)
12148 prop_flags->is_literal = TRUE;
12149 if (fragP->tc_frag_data.is_specific_opcode
12150 || fragP->tc_frag_data.is_no_transform)
12151 {
12152 prop_flags->is_no_transform = TRUE;
12153 if (xtensa_frag_flags_is_empty (prop_flags))
12154 prop_flags->is_data = TRUE;
12155 }
12156 if (fragP->tc_frag_data.is_unreachable)
12157 prop_flags->is_unreachable = TRUE;
12158 else if (fragP->tc_frag_data.is_insn)
12159 {
12160 prop_flags->is_insn = TRUE;
12161 if (fragP->tc_frag_data.is_loop_target)
12162 prop_flags->insn.is_loop_target = TRUE;
12163 if (fragP->tc_frag_data.is_branch_target)
12164 prop_flags->insn.is_branch_target = TRUE;
12165 if (fragP->tc_frag_data.is_no_density)
12166 prop_flags->insn.is_no_density = TRUE;
12167 if (fragP->tc_frag_data.use_absolute_literals)
12168 prop_flags->insn.is_abslit = TRUE;
12169 }
12170 if (fragP->tc_frag_data.is_align)
12171 {
12172 prop_flags->is_align = TRUE;
12173 prop_flags->alignment = fragP->tc_frag_data.alignment;
12174 if (xtensa_frag_flags_is_empty (prop_flags))
12175 prop_flags->is_data = TRUE;
12176 }
12177 }
12178
12179
12180 static flagword
12181 frag_flags_to_number (const frag_flags *prop_flags)
12182 {
12183 flagword num = 0;
12184 if (prop_flags->is_literal)
12185 num |= XTENSA_PROP_LITERAL;
12186 if (prop_flags->is_insn)
12187 num |= XTENSA_PROP_INSN;
12188 if (prop_flags->is_data)
12189 num |= XTENSA_PROP_DATA;
12190 if (prop_flags->is_unreachable)
12191 num |= XTENSA_PROP_UNREACHABLE;
12192 if (prop_flags->insn.is_loop_target)
12193 num |= XTENSA_PROP_INSN_LOOP_TARGET;
12194 if (prop_flags->insn.is_branch_target)
12195 {
12196 num |= XTENSA_PROP_INSN_BRANCH_TARGET;
12197 num = SET_XTENSA_PROP_BT_ALIGN (num, prop_flags->insn.bt_align_priority);
12198 }
12199
12200 if (prop_flags->insn.is_no_density)
12201 num |= XTENSA_PROP_INSN_NO_DENSITY;
12202 if (prop_flags->is_no_transform)
12203 num |= XTENSA_PROP_NO_TRANSFORM;
12204 if (prop_flags->insn.is_no_reorder)
12205 num |= XTENSA_PROP_INSN_NO_REORDER;
12206 if (prop_flags->insn.is_abslit)
12207 num |= XTENSA_PROP_INSN_ABSLIT;
12208
12209 if (prop_flags->is_align)
12210 {
12211 num |= XTENSA_PROP_ALIGN;
12212 num = SET_XTENSA_PROP_ALIGNMENT (num, prop_flags->alignment);
12213 }
12214
12215 return num;
12216 }
12217
12218
12219 static bfd_boolean
12220 xtensa_frag_flags_combinable (const frag_flags *prop_flags_1,
12221 const frag_flags *prop_flags_2)
12222 {
12223 /* Cannot combine with an end marker. */
12224
12225 if (prop_flags_1->is_literal != prop_flags_2->is_literal)
12226 return FALSE;
12227 if (prop_flags_1->is_insn != prop_flags_2->is_insn)
12228 return FALSE;
12229 if (prop_flags_1->is_data != prop_flags_2->is_data)
12230 return FALSE;
12231
12232 if (prop_flags_1->is_insn)
12233 {
12234 /* Properties of the beginning of the frag. */
12235 if (prop_flags_2->insn.is_loop_target)
12236 return FALSE;
12237 if (prop_flags_2->insn.is_branch_target)
12238 return FALSE;
12239 if (prop_flags_1->insn.is_no_density !=
12240 prop_flags_2->insn.is_no_density)
12241 return FALSE;
12242 if (prop_flags_1->is_no_transform !=
12243 prop_flags_2->is_no_transform)
12244 return FALSE;
12245 if (prop_flags_1->insn.is_no_reorder !=
12246 prop_flags_2->insn.is_no_reorder)
12247 return FALSE;
12248 if (prop_flags_1->insn.is_abslit !=
12249 prop_flags_2->insn.is_abslit)
12250 return FALSE;
12251 }
12252
12253 if (prop_flags_1->is_align)
12254 return FALSE;
12255
12256 return TRUE;
12257 }
12258
12259
12260 static bfd_vma
12261 xt_block_aligned_size (const xtensa_block_info *xt_block)
12262 {
12263 bfd_vma end_addr;
12264 unsigned align_bits;
12265
12266 if (!xt_block->flags.is_align)
12267 return xt_block->size;
12268
12269 end_addr = xt_block->offset + xt_block->size;
12270 align_bits = xt_block->flags.alignment;
12271 end_addr = ((end_addr + ((1 << align_bits) -1)) >> align_bits) << align_bits;
12272 return end_addr - xt_block->offset;
12273 }
12274
12275
12276 static bfd_boolean
12277 xtensa_xt_block_combine (xtensa_block_info *xt_block,
12278 const xtensa_block_info *xt_block_2)
12279 {
12280 if (xt_block->sec != xt_block_2->sec)
12281 return FALSE;
12282 if (xt_block->offset + xt_block_aligned_size (xt_block)
12283 != xt_block_2->offset)
12284 return FALSE;
12285
12286 if (xt_block_2->size == 0
12287 && (!xt_block_2->flags.is_unreachable
12288 || xt_block->flags.is_unreachable))
12289 {
12290 if (xt_block_2->flags.is_align
12291 && xt_block->flags.is_align)
12292 {
12293 /* Nothing needed. */
12294 if (xt_block->flags.alignment >= xt_block_2->flags.alignment)
12295 return TRUE;
12296 }
12297 else
12298 {
12299 if (xt_block_2->flags.is_align)
12300 {
12301 /* Push alignment to previous entry. */
12302 xt_block->flags.is_align = xt_block_2->flags.is_align;
12303 xt_block->flags.alignment = xt_block_2->flags.alignment;
12304 }
12305 return TRUE;
12306 }
12307 }
12308 if (!xtensa_frag_flags_combinable (&xt_block->flags,
12309 &xt_block_2->flags))
12310 return FALSE;
12311
12312 xt_block->size += xt_block_2->size;
12313
12314 if (xt_block_2->flags.is_align)
12315 {
12316 xt_block->flags.is_align = TRUE;
12317 xt_block->flags.alignment = xt_block_2->flags.alignment;
12318 }
12319
12320 return TRUE;
12321 }
12322
12323
12324 static void
12325 add_xt_prop_frags (segT sec,
12326 xtensa_block_info **xt_block,
12327 frag_flags_fn property_function)
12328 {
12329 fragS *fragP;
12330
12331 /* Build it if needed. */
12332 while (*xt_block != NULL)
12333 {
12334 xt_block = &(*xt_block)->next;
12335 }
12336 /* We are either at NULL at the beginning or at the end. */
12337
12338 /* Walk through the frags. */
12339 if (seg_info (sec)->frchainP)
12340 {
12341 for (fragP = seg_info (sec)->frchainP->frch_root; fragP;
12342 fragP = fragP->fr_next)
12343 {
12344 xtensa_block_info tmp_block;
12345 tmp_block.sec = sec;
12346 tmp_block.offset = fragP->fr_address;
12347 tmp_block.size = fragP->fr_fix;
12348 tmp_block.next = NULL;
12349 property_function (fragP, &tmp_block.flags);
12350
12351 if (!xtensa_frag_flags_is_empty (&tmp_block.flags))
12352 /* && fragP->fr_fix != 0) */
12353 {
12354 if ((*xt_block) == NULL
12355 || !xtensa_xt_block_combine (*xt_block, &tmp_block))
12356 {
12357 xtensa_block_info *new_block;
12358 if ((*xt_block) != NULL)
12359 xt_block = &(*xt_block)->next;
12360 new_block = XNEW (xtensa_block_info);
12361 *new_block = tmp_block;
12362 *xt_block = new_block;
12363 }
12364 }
12365 }
12366 }
12367 }
12368
12369 \f
12370 /* op_placement_info_table */
12371
12372 /* op_placement_info makes it easier to determine which
12373 ops can go in which slots. */
12374
12375 static void
12376 init_op_placement_info_table (void)
12377 {
12378 xtensa_isa isa = xtensa_default_isa;
12379 xtensa_insnbuf ibuf = xtensa_insnbuf_alloc (isa);
12380 xtensa_opcode opcode;
12381 xtensa_format fmt;
12382 int slot;
12383 int num_opcodes = xtensa_isa_num_opcodes (isa);
12384
12385 op_placement_table = XNEWVEC (op_placement_info, num_opcodes);
12386 gas_assert (xtensa_isa_num_formats (isa) < MAX_FORMATS);
12387
12388 for (opcode = 0; opcode < num_opcodes; opcode++)
12389 {
12390 op_placement_info *opi = &op_placement_table[opcode];
12391 /* FIXME: Make tinsn allocation dynamic. */
12392 if (xtensa_opcode_num_operands (isa, opcode) > MAX_INSN_ARGS)
12393 as_fatal (_("too many operands in instruction"));
12394 opi->narrowest = XTENSA_UNDEFINED;
12395 opi->narrowest_size = 0x7F;
12396 opi->narrowest_slot = 0;
12397 opi->formats = 0;
12398 opi->num_formats = 0;
12399 opi->issuef = 0;
12400 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
12401 {
12402 opi->slots[fmt] = 0;
12403 for (slot = 0; slot < xtensa_format_num_slots (isa, fmt); slot++)
12404 {
12405 if (xtensa_opcode_encode (isa, fmt, slot, ibuf, opcode) == 0)
12406 {
12407 int fmt_length = xtensa_format_length (isa, fmt);
12408 opi->issuef++;
12409 set_bit (fmt, opi->formats);
12410 set_bit (slot, opi->slots[fmt]);
12411 if (fmt_length < opi->narrowest_size
12412 || (fmt_length == opi->narrowest_size
12413 && (xtensa_format_num_slots (isa, fmt)
12414 < xtensa_format_num_slots (isa,
12415 opi->narrowest))))
12416 {
12417 opi->narrowest = fmt;
12418 opi->narrowest_size = fmt_length;
12419 opi->narrowest_slot = slot;
12420 }
12421 }
12422 }
12423 if (opi->formats)
12424 opi->num_formats++;
12425 }
12426 }
12427 xtensa_insnbuf_free (isa, ibuf);
12428 }
12429
12430
12431 bfd_boolean
12432 opcode_fits_format_slot (xtensa_opcode opcode, xtensa_format fmt, int slot)
12433 {
12434 return bit_is_set (slot, op_placement_table[opcode].slots[fmt]);
12435 }
12436
12437
12438 /* If the opcode is available in a single slot format, return its size. */
12439
12440 static int
12441 xg_get_single_size (xtensa_opcode opcode)
12442 {
12443 return op_placement_table[opcode].narrowest_size;
12444 }
12445
12446
12447 static xtensa_format
12448 xg_get_single_format (xtensa_opcode opcode)
12449 {
12450 return op_placement_table[opcode].narrowest;
12451 }
12452
12453
12454 static int
12455 xg_get_single_slot (xtensa_opcode opcode)
12456 {
12457 return op_placement_table[opcode].narrowest_slot;
12458 }
12459
12460 \f
12461 /* Instruction Stack Functions (from "xtensa-istack.h"). */
12462
12463 void
12464 istack_init (IStack *stack)
12465 {
12466 stack->ninsn = 0;
12467 }
12468
12469
12470 bfd_boolean
12471 istack_empty (IStack *stack)
12472 {
12473 return (stack->ninsn == 0);
12474 }
12475
12476
12477 bfd_boolean
12478 istack_full (IStack *stack)
12479 {
12480 return (stack->ninsn == MAX_ISTACK);
12481 }
12482
12483
12484 /* Return a pointer to the top IStack entry.
12485 It is an error to call this if istack_empty () is TRUE. */
12486
12487 TInsn *
12488 istack_top (IStack *stack)
12489 {
12490 int rec = stack->ninsn - 1;
12491 gas_assert (!istack_empty (stack));
12492 return &stack->insn[rec];
12493 }
12494
12495
12496 /* Add a new TInsn to an IStack.
12497 It is an error to call this if istack_full () is TRUE. */
12498
12499 void
12500 istack_push (IStack *stack, TInsn *insn)
12501 {
12502 int rec = stack->ninsn;
12503 gas_assert (!istack_full (stack));
12504 stack->insn[rec] = *insn;
12505 stack->ninsn++;
12506 }
12507
12508
12509 /* Clear space for the next TInsn on the IStack and return a pointer
12510 to it. It is an error to call this if istack_full () is TRUE. */
12511
12512 TInsn *
12513 istack_push_space (IStack *stack)
12514 {
12515 int rec = stack->ninsn;
12516 TInsn *insn;
12517 gas_assert (!istack_full (stack));
12518 insn = &stack->insn[rec];
12519 tinsn_init (insn);
12520 stack->ninsn++;
12521 return insn;
12522 }
12523
12524
12525 /* Remove the last pushed instruction. It is an error to call this if
12526 istack_empty () returns TRUE. */
12527
12528 void
12529 istack_pop (IStack *stack)
12530 {
12531 int rec = stack->ninsn - 1;
12532 gas_assert (!istack_empty (stack));
12533 stack->ninsn--;
12534 tinsn_init (&stack->insn[rec]);
12535 }
12536
12537 \f
12538 /* TInsn functions. */
12539
12540 void
12541 tinsn_init (TInsn *dst)
12542 {
12543 memset (dst, 0, sizeof (TInsn));
12544 }
12545
12546
12547 /* Return TRUE if ANY of the operands in the insn are symbolic. */
12548
12549 static bfd_boolean
12550 tinsn_has_symbolic_operands (const TInsn *insn)
12551 {
12552 int i;
12553 int n = insn->ntok;
12554
12555 gas_assert (insn->insn_type == ITYPE_INSN);
12556
12557 for (i = 0; i < n; ++i)
12558 {
12559 switch (insn->tok[i].X_op)
12560 {
12561 case O_register:
12562 case O_constant:
12563 break;
12564 default:
12565 return TRUE;
12566 }
12567 }
12568 return FALSE;
12569 }
12570
12571
12572 bfd_boolean
12573 tinsn_has_invalid_symbolic_operands (const TInsn *insn)
12574 {
12575 xtensa_isa isa = xtensa_default_isa;
12576 int i;
12577 int n = insn->ntok;
12578
12579 gas_assert (insn->insn_type == ITYPE_INSN);
12580
12581 for (i = 0; i < n; ++i)
12582 {
12583 switch (insn->tok[i].X_op)
12584 {
12585 case O_register:
12586 case O_constant:
12587 break;
12588 case O_big:
12589 case O_illegal:
12590 case O_absent:
12591 /* Errors for these types are caught later. */
12592 break;
12593 case O_hi16:
12594 case O_lo16:
12595 default:
12596 /* Symbolic immediates are only allowed on the last immediate
12597 operand. At this time, CONST16 is the only opcode where we
12598 support non-PC-relative relocations. */
12599 if (i != get_relaxable_immed (insn->opcode)
12600 || (xtensa_operand_is_PCrelative (isa, insn->opcode, i) != 1
12601 && insn->opcode != xtensa_const16_opcode))
12602 {
12603 as_bad (_("invalid symbolic operand"));
12604 return TRUE;
12605 }
12606 }
12607 }
12608 return FALSE;
12609 }
12610
12611
12612 /* For assembly code with complex expressions (e.g. subtraction),
12613 we have to build them in the literal pool so that
12614 their results are calculated correctly after relaxation.
12615 The relaxation only handles expressions that
12616 boil down to SYMBOL + OFFSET. */
12617
12618 static bfd_boolean
12619 tinsn_has_complex_operands (const TInsn *insn)
12620 {
12621 int i;
12622 int n = insn->ntok;
12623 gas_assert (insn->insn_type == ITYPE_INSN);
12624 for (i = 0; i < n; ++i)
12625 {
12626 switch (insn->tok[i].X_op)
12627 {
12628 case O_register:
12629 case O_constant:
12630 case O_symbol:
12631 case O_lo16:
12632 case O_hi16:
12633 break;
12634 default:
12635 return TRUE;
12636 }
12637 }
12638 return FALSE;
12639 }
12640
12641
12642 /* Encode a TInsn opcode and its constant operands into slotbuf.
12643 Return TRUE if there is a symbol in the immediate field. This
12644 function assumes that:
12645 1) The number of operands are correct.
12646 2) The insn_type is ITYPE_INSN.
12647 3) The opcode can be encoded in the specified format and slot.
12648 4) Operands are either O_constant or O_symbol, and all constants fit. */
12649
12650 static bfd_boolean
12651 tinsn_to_slotbuf (xtensa_format fmt,
12652 int slot,
12653 TInsn *tinsn,
12654 xtensa_insnbuf slotbuf)
12655 {
12656 xtensa_isa isa = xtensa_default_isa;
12657 xtensa_opcode opcode = tinsn->opcode;
12658 bfd_boolean has_fixup = FALSE;
12659 int noperands = xtensa_opcode_num_operands (isa, opcode);
12660 int i;
12661
12662 gas_assert (tinsn->insn_type == ITYPE_INSN);
12663 if (noperands != tinsn->ntok)
12664 as_fatal (_("operand number mismatch"));
12665
12666 if (xtensa_opcode_encode (isa, fmt, slot, slotbuf, opcode))
12667 {
12668 as_bad (_("cannot encode opcode \"%s\" in the given format \"%s\""),
12669 xtensa_opcode_name (isa, opcode), xtensa_format_name (isa, fmt));
12670 return FALSE;
12671 }
12672
12673 for (i = 0; i < noperands; i++)
12674 {
12675 expressionS *exp = &tinsn->tok[i];
12676 int rc;
12677 unsigned line;
12678 const char *file_name;
12679 uint32 opnd_value;
12680
12681 switch (exp->X_op)
12682 {
12683 case O_register:
12684 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12685 break;
12686 /* The register number has already been checked in
12687 expression_maybe_register, so we don't need to check here. */
12688 opnd_value = exp->X_add_number;
12689 (void) xtensa_operand_encode (isa, opcode, i, &opnd_value);
12690 rc = xtensa_operand_set_field (isa, opcode, i, fmt, slot, slotbuf,
12691 opnd_value);
12692 if (rc != 0)
12693 as_warn (_("xtensa-isa failure: %s"), xtensa_isa_error_msg (isa));
12694 break;
12695
12696 case O_constant:
12697 if (xtensa_operand_is_visible (isa, opcode, i) == 0)
12698 break;
12699 file_name = as_where (&line);
12700 /* It is a constant and we called this function
12701 then we have to try to fit it. */
12702 xtensa_insnbuf_set_operand (slotbuf, fmt, slot, opcode, i,
12703 exp->X_add_number, file_name, line);
12704 break;
12705
12706 default:
12707 has_fixup = TRUE;
12708 break;
12709 }
12710 }
12711
12712 return has_fixup;
12713 }
12714
12715
12716 /* Encode a single TInsn into an insnbuf. If the opcode can only be encoded
12717 into a multi-slot instruction, fill the other slots with NOPs.
12718 Return TRUE if there is a symbol in the immediate field. See also the
12719 assumptions listed for tinsn_to_slotbuf. */
12720
12721 static bfd_boolean
12722 tinsn_to_insnbuf (TInsn *tinsn, xtensa_insnbuf insnbuf)
12723 {
12724 static xtensa_insnbuf slotbuf = 0;
12725 static vliw_insn vinsn;
12726 xtensa_isa isa = xtensa_default_isa;
12727 bfd_boolean has_fixup = FALSE;
12728 int i;
12729
12730 if (!slotbuf)
12731 {
12732 slotbuf = xtensa_insnbuf_alloc (isa);
12733 xg_init_vinsn (&vinsn);
12734 }
12735
12736 xg_clear_vinsn (&vinsn);
12737
12738 bundle_tinsn (tinsn, &vinsn);
12739
12740 xtensa_format_encode (isa, vinsn.format, insnbuf);
12741
12742 for (i = 0; i < vinsn.num_slots; i++)
12743 {
12744 /* Only one slot may have a fix-up because the rest contains NOPs. */
12745 has_fixup |=
12746 tinsn_to_slotbuf (vinsn.format, i, &vinsn.slots[i], vinsn.slotbuf[i]);
12747 xtensa_format_set_slot (isa, vinsn.format, i, insnbuf, vinsn.slotbuf[i]);
12748 }
12749
12750 return has_fixup;
12751 }
12752
12753
12754 /* Check the instruction arguments. Return TRUE on failure. */
12755
12756 static bfd_boolean
12757 tinsn_check_arguments (const TInsn *insn)
12758 {
12759 xtensa_isa isa = xtensa_default_isa;
12760 xtensa_opcode opcode = insn->opcode;
12761 xtensa_regfile t1_regfile, t2_regfile;
12762 int t1_reg, t2_reg;
12763 int t1_base_reg, t1_last_reg;
12764 int t2_base_reg, t2_last_reg;
12765 char t1_inout, t2_inout;
12766 int i, j;
12767
12768 if (opcode == XTENSA_UNDEFINED)
12769 {
12770 as_bad (_("invalid opcode"));
12771 return TRUE;
12772 }
12773
12774 if (xtensa_opcode_num_operands (isa, opcode) > insn->ntok)
12775 {
12776 as_bad (_("too few operands"));
12777 return TRUE;
12778 }
12779
12780 if (xtensa_opcode_num_operands (isa, opcode) < insn->ntok)
12781 {
12782 as_bad (_("too many operands"));
12783 return TRUE;
12784 }
12785
12786 /* Check registers. */
12787 for (j = 0; j < insn->ntok; j++)
12788 {
12789 if (xtensa_operand_is_register (isa, insn->opcode, j) != 1)
12790 continue;
12791
12792 t2_regfile = xtensa_operand_regfile (isa, insn->opcode, j);
12793 t2_base_reg = insn->tok[j].X_add_number;
12794 t2_last_reg
12795 = t2_base_reg + xtensa_operand_num_regs (isa, insn->opcode, j);
12796
12797 for (i = 0; i < insn->ntok; i++)
12798 {
12799 if (i == j)
12800 continue;
12801
12802 if (xtensa_operand_is_register (isa, insn->opcode, i) != 1)
12803 continue;
12804
12805 t1_regfile = xtensa_operand_regfile (isa, insn->opcode, i);
12806
12807 if (t1_regfile != t2_regfile)
12808 continue;
12809
12810 t1_inout = xtensa_operand_inout (isa, insn->opcode, i);
12811 t2_inout = xtensa_operand_inout (isa, insn->opcode, j);
12812
12813 t1_base_reg = insn->tok[i].X_add_number;
12814 t1_last_reg = (t1_base_reg
12815 + xtensa_operand_num_regs (isa, insn->opcode, i));
12816
12817 for (t1_reg = t1_base_reg; t1_reg < t1_last_reg; t1_reg++)
12818 {
12819 for (t2_reg = t2_base_reg; t2_reg < t2_last_reg; t2_reg++)
12820 {
12821 if (t1_reg != t2_reg)
12822 continue;
12823
12824 if (t1_inout != 'i' && t2_inout != 'i')
12825 {
12826 as_bad (_("multiple writes to the same register"));
12827 return TRUE;
12828 }
12829 }
12830 }
12831 }
12832 }
12833 return FALSE;
12834 }
12835
12836
12837 /* Load an instruction from its encoded form. */
12838
12839 static void
12840 tinsn_from_chars (TInsn *tinsn, char *f, int slot)
12841 {
12842 vliw_insn vinsn;
12843
12844 xg_init_vinsn (&vinsn);
12845 vinsn_from_chars (&vinsn, f);
12846
12847 *tinsn = vinsn.slots[slot];
12848 xg_free_vinsn (&vinsn);
12849 }
12850
12851
12852 static void
12853 tinsn_from_insnbuf (TInsn *tinsn,
12854 xtensa_insnbuf slotbuf,
12855 xtensa_format fmt,
12856 int slot)
12857 {
12858 int i;
12859 xtensa_isa isa = xtensa_default_isa;
12860
12861 /* Find the immed. */
12862 tinsn_init (tinsn);
12863 tinsn->insn_type = ITYPE_INSN;
12864 tinsn->is_specific_opcode = FALSE; /* must not be specific */
12865 tinsn->opcode = xtensa_opcode_decode (isa, fmt, slot, slotbuf);
12866 tinsn->ntok = xtensa_opcode_num_operands (isa, tinsn->opcode);
12867 for (i = 0; i < tinsn->ntok; i++)
12868 {
12869 set_expr_const (&tinsn->tok[i],
12870 xtensa_insnbuf_get_operand (slotbuf, fmt, slot,
12871 tinsn->opcode, i));
12872 }
12873 }
12874
12875
12876 /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */
12877
12878 static void
12879 tinsn_immed_from_frag (TInsn *tinsn, fragS *fragP, int slot)
12880 {
12881 xtensa_opcode opcode = tinsn->opcode;
12882 int opnum;
12883
12884 if (fragP->tc_frag_data.slot_symbols[slot])
12885 {
12886 opnum = get_relaxable_immed (opcode);
12887 gas_assert (opnum >= 0);
12888 set_expr_symbol_offset (&tinsn->tok[opnum],
12889 fragP->tc_frag_data.slot_symbols[slot],
12890 fragP->tc_frag_data.slot_offsets[slot]);
12891 }
12892 tinsn->extra_arg = fragP->tc_frag_data.free_reg[slot];
12893 }
12894
12895
12896 static int
12897 get_num_stack_text_bytes (IStack *istack)
12898 {
12899 int i;
12900 int text_bytes = 0;
12901
12902 for (i = 0; i < istack->ninsn; i++)
12903 {
12904 TInsn *tinsn = &istack->insn[i];
12905 if (tinsn->insn_type == ITYPE_INSN)
12906 text_bytes += xg_get_single_size (tinsn->opcode);
12907 }
12908 return text_bytes;
12909 }
12910
12911
12912 static int
12913 get_num_stack_literal_bytes (IStack *istack)
12914 {
12915 int i;
12916 int lit_bytes = 0;
12917
12918 for (i = 0; i < istack->ninsn; i++)
12919 {
12920 TInsn *tinsn = &istack->insn[i];
12921 if (tinsn->insn_type == ITYPE_LITERAL && tinsn->ntok == 1)
12922 lit_bytes += 4;
12923 }
12924 return lit_bytes;
12925 }
12926
12927 \f
12928 /* vliw_insn functions. */
12929
12930 static void
12931 xg_init_vinsn (vliw_insn *v)
12932 {
12933 int i;
12934 xtensa_isa isa = xtensa_default_isa;
12935
12936 xg_clear_vinsn (v);
12937
12938 v->insnbuf = xtensa_insnbuf_alloc (isa);
12939 if (v->insnbuf == NULL)
12940 as_fatal (_("out of memory"));
12941
12942 for (i = 0; i < config_max_slots; i++)
12943 {
12944 v->slotbuf[i] = xtensa_insnbuf_alloc (isa);
12945 if (v->slotbuf[i] == NULL)
12946 as_fatal (_("out of memory"));
12947 }
12948 }
12949
12950
12951 static void
12952 xg_clear_vinsn (vliw_insn *v)
12953 {
12954 int i;
12955
12956 memset (v, 0, offsetof (vliw_insn, slots)
12957 + sizeof(TInsn) * config_max_slots);
12958
12959 v->format = XTENSA_UNDEFINED;
12960 v->num_slots = 0;
12961 v->inside_bundle = FALSE;
12962
12963 if (xt_saved_debug_type != DEBUG_NONE)
12964 debug_type = xt_saved_debug_type;
12965
12966 for (i = 0; i < config_max_slots; i++)
12967 v->slots[i].opcode = XTENSA_UNDEFINED;
12968 }
12969
12970
12971 static void
12972 xg_copy_vinsn (vliw_insn *dst, vliw_insn *src)
12973 {
12974 memcpy (dst, src,
12975 offsetof(vliw_insn, slots) + src->num_slots * sizeof(TInsn));
12976 dst->insnbuf = src->insnbuf;
12977 memcpy (dst->slotbuf, src->slotbuf, src->num_slots * sizeof(xtensa_insnbuf));
12978 }
12979
12980
12981 static bfd_boolean
12982 vinsn_has_specific_opcodes (vliw_insn *v)
12983 {
12984 int i;
12985
12986 for (i = 0; i < v->num_slots; i++)
12987 {
12988 if (v->slots[i].is_specific_opcode)
12989 return TRUE;
12990 }
12991 return FALSE;
12992 }
12993
12994
12995 static void
12996 xg_free_vinsn (vliw_insn *v)
12997 {
12998 int i;
12999 xtensa_insnbuf_free (xtensa_default_isa, v->insnbuf);
13000 for (i = 0; i < config_max_slots; i++)
13001 xtensa_insnbuf_free (xtensa_default_isa, v->slotbuf[i]);
13002 }
13003
13004
13005 /* Encode a vliw_insn into an insnbuf. Return TRUE if there are any symbolic
13006 operands. See also the assumptions listed for tinsn_to_slotbuf. */
13007
13008 static bfd_boolean
13009 vinsn_to_insnbuf (vliw_insn *vinsn,
13010 char *frag_offset,
13011 fragS *fragP,
13012 bfd_boolean record_fixup)
13013 {
13014 xtensa_isa isa = xtensa_default_isa;
13015 xtensa_format fmt = vinsn->format;
13016 xtensa_insnbuf insnbuf = vinsn->insnbuf;
13017 int slot;
13018 bfd_boolean has_fixup = FALSE;
13019
13020 xtensa_format_encode (isa, fmt, insnbuf);
13021
13022 for (slot = 0; slot < vinsn->num_slots; slot++)
13023 {
13024 TInsn *tinsn = &vinsn->slots[slot];
13025 expressionS *extra_arg = &tinsn->extra_arg;
13026 bfd_boolean tinsn_has_fixup =
13027 tinsn_to_slotbuf (vinsn->format, slot, tinsn,
13028 vinsn->slotbuf[slot]);
13029
13030 xtensa_format_set_slot (isa, fmt, slot,
13031 insnbuf, vinsn->slotbuf[slot]);
13032 if (extra_arg->X_op != O_illegal && extra_arg->X_op != O_register)
13033 {
13034 if (vinsn->num_slots != 1)
13035 as_bad (_("TLS relocation not allowed in FLIX bundle"));
13036 else if (record_fixup)
13037 /* Instructions that generate TLS relocations should always be
13038 relaxed in the front-end. If "record_fixup" is set, then this
13039 function is being called during back-end relaxation, so flag
13040 the unexpected behavior as an error. */
13041 as_bad (_("unexpected TLS relocation"));
13042 else
13043 fix_new (fragP, frag_offset - fragP->fr_literal,
13044 xtensa_format_length (isa, fmt),
13045 extra_arg->X_add_symbol, extra_arg->X_add_number,
13046 FALSE, map_operator_to_reloc (extra_arg->X_op, FALSE));
13047 }
13048 if (tinsn_has_fixup)
13049 {
13050 int i;
13051 xtensa_opcode opcode = tinsn->opcode;
13052 int noperands = xtensa_opcode_num_operands (isa, opcode);
13053 has_fixup = TRUE;
13054
13055 for (i = 0; i < noperands; i++)
13056 {
13057 expressionS* exp = &tinsn->tok[i];
13058 switch (exp->X_op)
13059 {
13060 case O_symbol:
13061 case O_lo16:
13062 case O_hi16:
13063 if (get_relaxable_immed (opcode) == i)
13064 {
13065 /* Add a fix record for the instruction, except if this
13066 function is being called prior to relaxation, i.e.,
13067 if record_fixup is false, and the instruction might
13068 be relaxed later. */
13069 if (record_fixup
13070 || tinsn->is_specific_opcode
13071 || !xg_is_relaxable_insn (tinsn, 0))
13072 {
13073 xg_add_opcode_fix (tinsn, i, fmt, slot, exp, fragP,
13074 frag_offset - fragP->fr_literal);
13075 }
13076 else
13077 {
13078 if (exp->X_op != O_symbol)
13079 as_bad (_("invalid operand"));
13080 tinsn->symbol = exp->X_add_symbol;
13081 tinsn->offset = exp->X_add_number;
13082 }
13083 }
13084 else
13085 as_bad (_("symbolic operand not allowed"));
13086 break;
13087
13088 case O_constant:
13089 case O_register:
13090 break;
13091
13092 default:
13093 as_bad (_("expression too complex"));
13094 break;
13095 }
13096 }
13097 }
13098 }
13099
13100 return has_fixup;
13101 }
13102
13103
13104 static void
13105 vinsn_from_chars (vliw_insn *vinsn, char *f)
13106 {
13107 static xtensa_insnbuf insnbuf = NULL;
13108 static xtensa_insnbuf slotbuf = NULL;
13109 int i;
13110 xtensa_format fmt;
13111 xtensa_isa isa = xtensa_default_isa;
13112
13113 if (!insnbuf)
13114 {
13115 insnbuf = xtensa_insnbuf_alloc (isa);
13116 slotbuf = xtensa_insnbuf_alloc (isa);
13117 }
13118
13119 xtensa_insnbuf_from_chars (isa, insnbuf, (unsigned char *) f, 0);
13120 fmt = xtensa_format_decode (isa, insnbuf);
13121 if (fmt == XTENSA_UNDEFINED)
13122 as_fatal (_("cannot decode instruction format"));
13123 vinsn->format = fmt;
13124 vinsn->num_slots = xtensa_format_num_slots (isa, fmt);
13125
13126 for (i = 0; i < vinsn->num_slots; i++)
13127 {
13128 TInsn *tinsn = &vinsn->slots[i];
13129 xtensa_format_get_slot (isa, fmt, i, insnbuf, slotbuf);
13130 tinsn_from_insnbuf (tinsn, slotbuf, fmt, i);
13131 }
13132 }
13133
13134 \f
13135 /* Expression utilities. */
13136
13137 /* Return TRUE if the expression is an integer constant. */
13138
13139 bfd_boolean
13140 expr_is_const (const expressionS *s)
13141 {
13142 return (s->X_op == O_constant);
13143 }
13144
13145
13146 /* Get the expression constant.
13147 Calling this is illegal if expr_is_const () returns TRUE. */
13148
13149 offsetT
13150 get_expr_const (const expressionS *s)
13151 {
13152 gas_assert (expr_is_const (s));
13153 return s->X_add_number;
13154 }
13155
13156
13157 /* Set the expression to a constant value. */
13158
13159 void
13160 set_expr_const (expressionS *s, offsetT val)
13161 {
13162 s->X_op = O_constant;
13163 s->X_add_number = val;
13164 s->X_add_symbol = NULL;
13165 s->X_op_symbol = NULL;
13166 }
13167
13168
13169 bfd_boolean
13170 expr_is_register (const expressionS *s)
13171 {
13172 return (s->X_op == O_register);
13173 }
13174
13175
13176 /* Get the expression constant.
13177 Calling this is illegal if expr_is_const () returns TRUE. */
13178
13179 offsetT
13180 get_expr_register (const expressionS *s)
13181 {
13182 gas_assert (expr_is_register (s));
13183 return s->X_add_number;
13184 }
13185
13186
13187 /* Set the expression to a symbol + constant offset. */
13188
13189 void
13190 set_expr_symbol_offset (expressionS *s, symbolS *sym, offsetT offset)
13191 {
13192 s->X_op = O_symbol;
13193 s->X_add_symbol = sym;
13194 s->X_op_symbol = NULL; /* unused */
13195 s->X_add_number = offset;
13196 }
13197
13198
13199 /* Return TRUE if the two expressions are equal. */
13200
13201 bfd_boolean
13202 expr_is_equal (expressionS *s1, expressionS *s2)
13203 {
13204 if (s1->X_op != s2->X_op)
13205 return FALSE;
13206 if (s1->X_add_symbol != s2->X_add_symbol)
13207 return FALSE;
13208 if (s1->X_op_symbol != s2->X_op_symbol)
13209 return FALSE;
13210 if (s1->X_add_number != s2->X_add_number)
13211 return FALSE;
13212 return TRUE;
13213 }
13214
13215
13216 static void
13217 copy_expr (expressionS *dst, const expressionS *src)
13218 {
13219 memcpy (dst, src, sizeof (expressionS));
13220 }
13221
13222 \f
13223 /* Support for the "--rename-section" option. */
13224
13225 struct rename_section_struct
13226 {
13227 const char *old_name;
13228 char *new_name;
13229 struct rename_section_struct *next;
13230 };
13231
13232 static struct rename_section_struct *section_rename;
13233
13234
13235 /* Parse the string "oldname=new_name(:oldname2=new_name2)*" and add
13236 entries to the section_rename list. Note: Specifying multiple
13237 renamings separated by colons is not documented and is retained only
13238 for backward compatibility. */
13239
13240 static void
13241 build_section_rename (const char *arg)
13242 {
13243 struct rename_section_struct *r;
13244 char *this_arg = NULL;
13245 char *next_arg = NULL;
13246
13247 for (this_arg = xstrdup (arg); this_arg != NULL; this_arg = next_arg)
13248 {
13249 char *old_name, *new_name;
13250
13251 if (this_arg)
13252 {
13253 next_arg = strchr (this_arg, ':');
13254 if (next_arg)
13255 {
13256 *next_arg = '\0';
13257 next_arg++;
13258 }
13259 }
13260
13261 old_name = this_arg;
13262 new_name = strchr (this_arg, '=');
13263
13264 if (*old_name == '\0')
13265 {
13266 as_warn (_("ignoring extra '-rename-section' delimiter ':'"));
13267 continue;
13268 }
13269 if (!new_name || new_name[1] == '\0')
13270 {
13271 as_warn (_("ignoring invalid '-rename-section' specification: '%s'"),
13272 old_name);
13273 continue;
13274 }
13275 *new_name = '\0';
13276 new_name++;
13277
13278 /* Check for invalid section renaming. */
13279 for (r = section_rename; r != NULL; r = r->next)
13280 {
13281 if (strcmp (r->old_name, old_name) == 0)
13282 as_bad (_("section %s renamed multiple times"), old_name);
13283 if (strcmp (r->new_name, new_name) == 0)
13284 as_bad (_("multiple sections remapped to output section %s"),
13285 new_name);
13286 }
13287
13288 /* Now add it. */
13289 r = XNEW (struct rename_section_struct);
13290 r->old_name = xstrdup (old_name);
13291 r->new_name = xstrdup (new_name);
13292 r->next = section_rename;
13293 section_rename = r;
13294 }
13295 }
13296
13297
13298 char *
13299 xtensa_section_rename (const char *name)
13300 {
13301 struct rename_section_struct *r = section_rename;
13302
13303 for (r = section_rename; r != NULL; r = r->next)
13304 {
13305 if (strcmp (r->old_name, name) == 0)
13306 return r->new_name;
13307 }
13308
13309 return (char *) name;
13310 }