]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/as.texi
[MIPS/GAS] Split Loongson EXT Instructions from loongson3a.
[thirdparty/binutils-gdb.git] / gas / doc / as.texi
1 \input texinfo @c -*-Texinfo-*-
2 @c Copyright (C) 1991-2018 Free Software Foundation, Inc.
3 @c UPDATE!! On future updates--
4 @c (1) check for new machine-dep cmdline options in
5 @c md_parse_option definitions in config/tc-*.c
6 @c (2) for platform-specific directives, examine md_pseudo_op
7 @c in config/tc-*.c
8 @c (3) for object-format specific directives, examine obj_pseudo_op
9 @c in config/obj-*.c
10 @c (4) portable directives in potable[] in read.c
11 @c %**start of header
12 @setfilename as.info
13 @c ---config---
14 @macro gcctabopt{body}
15 @code{\body\}
16 @end macro
17 @c defaults, config file may override:
18 @set have-stabs
19 @c ---
20 @c man begin NAME
21 @c ---
22 @include asconfig.texi
23 @include bfdver.texi
24 @c ---
25 @c man end
26 @c ---
27 @c common OR combinations of conditions
28 @ifset COFF
29 @set COFF-ELF
30 @end ifset
31 @ifset ELF
32 @set COFF-ELF
33 @end ifset
34 @ifset AOUT
35 @set aout
36 @end ifset
37 @ifset ARM/Thumb
38 @set ARM
39 @end ifset
40 @ifset Blackfin
41 @set Blackfin
42 @end ifset
43 @ifset H8/300
44 @set H8
45 @end ifset
46 @ifset SH
47 @set H8
48 @end ifset
49 @ifset HPPA
50 @set abnormal-separator
51 @end ifset
52 @c ------------
53 @ifset GENERIC
54 @settitle Using @value{AS}
55 @end ifset
56 @ifclear GENERIC
57 @settitle Using @value{AS} (@value{TARGET})
58 @end ifclear
59 @setchapternewpage odd
60 @c %**end of header
61
62 @c @smallbook
63 @c @set SMALL
64 @c WARE! Some of the machine-dependent sections contain tables of machine
65 @c instructions. Except in multi-column format, these tables look silly.
66 @c Unfortunately, Texinfo doesn't have a general-purpose multi-col format, so
67 @c the multi-col format is faked within @example sections.
68 @c
69 @c Again unfortunately, the natural size that fits on a page, for these tables,
70 @c is different depending on whether or not smallbook is turned on.
71 @c This matters, because of order: text flow switches columns at each page
72 @c break.
73 @c
74 @c The format faked in this source works reasonably well for smallbook,
75 @c not well for the default large-page format. This manual expects that if you
76 @c turn on @smallbook, you will also uncomment the "@set SMALL" to enable the
77 @c tables in question. You can turn on one without the other at your
78 @c discretion, of course.
79 @ifinfo
80 @set SMALL
81 @c the insn tables look just as silly in info files regardless of smallbook,
82 @c might as well show 'em anyways.
83 @end ifinfo
84
85 @ifnottex
86 @dircategory Software development
87 @direntry
88 * As: (as). The GNU assembler.
89 * Gas: (as). The GNU assembler.
90 @end direntry
91 @end ifnottex
92
93 @finalout
94 @syncodeindex ky cp
95
96 @copying
97 This file documents the GNU Assembler "@value{AS}".
98
99 @c man begin COPYRIGHT
100 Copyright @copyright{} 1991-2018 Free Software Foundation, Inc.
101
102 Permission is granted to copy, distribute and/or modify this document
103 under the terms of the GNU Free Documentation License, Version 1.3
104 or any later version published by the Free Software Foundation;
105 with no Invariant Sections, with no Front-Cover Texts, and with no
106 Back-Cover Texts. A copy of the license is included in the
107 section entitled ``GNU Free Documentation License''.
108
109 @c man end
110 @end copying
111
112 @titlepage
113 @title Using @value{AS}
114 @subtitle The @sc{gnu} Assembler
115 @ifclear GENERIC
116 @subtitle for the @value{TARGET} family
117 @end ifclear
118 @ifset VERSION_PACKAGE
119 @sp 1
120 @subtitle @value{VERSION_PACKAGE}
121 @end ifset
122 @sp 1
123 @subtitle Version @value{VERSION}
124 @sp 1
125 @sp 13
126 The Free Software Foundation Inc.@: thanks The Nice Computer
127 Company of Australia for loaning Dean Elsner to write the
128 first (Vax) version of @command{as} for Project @sc{gnu}.
129 The proprietors, management and staff of TNCCA thank FSF for
130 distracting the boss while they got some work
131 done.
132 @sp 3
133 @author Dean Elsner, Jay Fenlason & friends
134 @page
135 @tex
136 {\parskip=0pt
137 \hfill {\it Using {\tt @value{AS}}}\par
138 \hfill Edited by Cygnus Support\par
139 }
140 %"boxit" macro for figures:
141 %Modified from Knuth's ``boxit'' macro from TeXbook (answer to exercise 21.3)
142 \gdef\boxit#1#2{\vbox{\hrule\hbox{\vrule\kern3pt
143 \vbox{\parindent=0pt\parskip=0pt\hsize=#1\kern3pt\strut\hfil
144 #2\hfil\strut\kern3pt}\kern3pt\vrule}\hrule}}%box with visible outline
145 \gdef\ibox#1#2{\hbox to #1{#2\hfil}\kern8pt}% invisible box
146 @end tex
147
148 @vskip 0pt plus 1filll
149 Copyright @copyright{} 1991-2018 Free Software Foundation, Inc.
150
151 Permission is granted to copy, distribute and/or modify this document
152 under the terms of the GNU Free Documentation License, Version 1.3
153 or any later version published by the Free Software Foundation;
154 with no Invariant Sections, with no Front-Cover Texts, and with no
155 Back-Cover Texts. A copy of the license is included in the
156 section entitled ``GNU Free Documentation License''.
157
158 @end titlepage
159 @contents
160
161 @ifnottex
162 @node Top
163 @top Using @value{AS}
164
165 This file is a user guide to the @sc{gnu} assembler @command{@value{AS}}
166 @ifset VERSION_PACKAGE
167 @value{VERSION_PACKAGE}
168 @end ifset
169 version @value{VERSION}.
170 @ifclear GENERIC
171 This version of the file describes @command{@value{AS}} configured to generate
172 code for @value{TARGET} architectures.
173 @end ifclear
174
175 This document is distributed under the terms of the GNU Free
176 Documentation License. A copy of the license is included in the
177 section entitled ``GNU Free Documentation License''.
178
179 @menu
180 * Overview:: Overview
181 * Invoking:: Command-Line Options
182 * Syntax:: Syntax
183 * Sections:: Sections and Relocation
184 * Symbols:: Symbols
185 * Expressions:: Expressions
186 * Pseudo Ops:: Assembler Directives
187 @ifset ELF
188 * Object Attributes:: Object Attributes
189 @end ifset
190 * Machine Dependencies:: Machine Dependent Features
191 * Reporting Bugs:: Reporting Bugs
192 * Acknowledgements:: Who Did What
193 * GNU Free Documentation License:: GNU Free Documentation License
194 * AS Index:: AS Index
195 @end menu
196 @end ifnottex
197
198 @node Overview
199 @chapter Overview
200 @iftex
201 This manual is a user guide to the @sc{gnu} assembler @command{@value{AS}}.
202 @ifclear GENERIC
203 This version of the manual describes @command{@value{AS}} configured to generate
204 code for @value{TARGET} architectures.
205 @end ifclear
206 @end iftex
207
208 @cindex invocation summary
209 @cindex option summary
210 @cindex summary of options
211 Here is a brief summary of how to invoke @command{@value{AS}}. For details,
212 see @ref{Invoking,,Command-Line Options}.
213
214 @c man title AS the portable GNU assembler.
215
216 @ignore
217 @c man begin SEEALSO
218 gcc(1), ld(1), and the Info entries for @file{binutils} and @file{ld}.
219 @c man end
220 @end ignore
221
222 @c We don't use deffn and friends for the following because they seem
223 @c to be limited to one line for the header.
224 @smallexample
225 @c man begin SYNOPSIS
226 @value{AS} [@b{-a}[@b{cdghlns}][=@var{file}]] [@b{--alternate}] [@b{-D}]
227 [@b{--compress-debug-sections}] [@b{--nocompress-debug-sections}]
228 [@b{--debug-prefix-map} @var{old}=@var{new}]
229 [@b{--defsym} @var{sym}=@var{val}] [@b{-f}] [@b{-g}] [@b{--gstabs}]
230 [@b{--gstabs+}] [@b{--gdwarf-2}] [@b{--gdwarf-sections}]
231 [@b{--help}] [@b{-I} @var{dir}] [@b{-J}]
232 [@b{-K}] [@b{-L}] [@b{--listing-lhs-width}=@var{NUM}]
233 [@b{--listing-lhs-width2}=@var{NUM}] [@b{--listing-rhs-width}=@var{NUM}]
234 [@b{--listing-cont-lines}=@var{NUM}] [@b{--keep-locals}]
235 [@b{--no-pad-sections}]
236 [@b{-o} @var{objfile}] [@b{-R}]
237 [@b{--hash-size}=@var{NUM}] [@b{--reduce-memory-overheads}]
238 [@b{--statistics}]
239 [@b{-v}] [@b{-version}] [@b{--version}]
240 [@b{-W}] [@b{--warn}] [@b{--fatal-warnings}] [@b{-w}] [@b{-x}]
241 [@b{-Z}] [@b{@@@var{FILE}}]
242 [@b{--sectname-subst}] [@b{--size-check=[error|warning]}]
243 [@b{--elf-stt-common=[no|yes]}]
244 [@b{--generate-missing-build-notes=[no|yes]}]
245 [@b{--target-help}] [@var{target-options}]
246 [@b{--}|@var{files} @dots{}]
247 @c
248 @c man end
249 @c Target dependent options are listed below. Keep the list sorted.
250 @c Add an empty line for separation.
251 @c man begin TARGET
252 @ifset AARCH64
253
254 @emph{Target AArch64 options:}
255 [@b{-EB}|@b{-EL}]
256 [@b{-mabi}=@var{ABI}]
257 @end ifset
258 @ifset ALPHA
259
260 @emph{Target Alpha options:}
261 [@b{-m@var{cpu}}]
262 [@b{-mdebug} | @b{-no-mdebug}]
263 [@b{-replace} | @b{-noreplace}]
264 [@b{-relax}] [@b{-g}] [@b{-G@var{size}}]
265 [@b{-F}] [@b{-32addr}]
266 @end ifset
267 @ifset ARC
268
269 @emph{Target ARC options:}
270 [@b{-mcpu=@var{cpu}}]
271 [@b{-mA6}|@b{-mARC600}|@b{-mARC601}|@b{-mA7}|@b{-mARC700}|@b{-mEM}|@b{-mHS}]
272 [@b{-mcode-density}]
273 [@b{-mrelax}]
274 [@b{-EB}|@b{-EL}]
275 @end ifset
276 @ifset ARM
277
278 @emph{Target ARM options:}
279 @c Don't document the deprecated options
280 [@b{-mcpu}=@var{processor}[+@var{extension}@dots{}]]
281 [@b{-march}=@var{architecture}[+@var{extension}@dots{}]]
282 [@b{-mfpu}=@var{floating-point-format}]
283 [@b{-mfloat-abi}=@var{abi}]
284 [@b{-meabi}=@var{ver}]
285 [@b{-mthumb}]
286 [@b{-EB}|@b{-EL}]
287 [@b{-mapcs-32}|@b{-mapcs-26}|@b{-mapcs-float}|
288 @b{-mapcs-reentrant}]
289 [@b{-mthumb-interwork}] [@b{-k}]
290 @end ifset
291 @ifset Blackfin
292
293 @emph{Target Blackfin options:}
294 [@b{-mcpu}=@var{processor}[-@var{sirevision}]]
295 [@b{-mfdpic}]
296 [@b{-mno-fdpic}]
297 [@b{-mnopic}]
298 @end ifset
299 @ifset CRIS
300
301 @emph{Target CRIS options:}
302 [@b{--underscore} | @b{--no-underscore}]
303 [@b{--pic}] [@b{-N}]
304 [@b{--emulation=criself} | @b{--emulation=crisaout}]
305 [@b{--march=v0_v10} | @b{--march=v10} | @b{--march=v32} | @b{--march=common_v10_v32}]
306 @c Deprecated -- deliberately not documented.
307 @c [@b{-h}] [@b{-H}]
308 @end ifset
309 @ifset CSKY
310
311 @emph{Target C-SKY options:}
312 [@b{-march=@var{arch}}] [@b{-mcpu=@var{cpu}}]
313 [@b{-EL}] [@b{-mlittle-endian}] [@b{-EB}] [@b{-mbig-endian}]
314 [@b{-fpic}] [@b{-pic}]
315 [@b{-mljump}] [@b{-mno-ljump}]
316 [@b{-force2bsr}] [@b{-mforce2bsr}] [@b{-no-force2bsr}] [@b{-mno-force2bsr}]
317 [@b{-jsri2bsr}] [@b{-mjsri2bsr}] [@b{-no-jsri2bsr }] [@b{-mno-jsri2bsr}]
318 [@b{-mnolrw }] [@b{-mno-lrw}]
319 [@b{-melrw}] [@b{-mno-elrw}]
320 [@b{-mlaf }] [@b{-mliterals-after-func}]
321 [@b{-mno-laf}] [@b{-mno-literals-after-func}]
322 [@b{-mlabr}] [@b{-mliterals-after-br}]
323 [@b{-mno-labr}] [@b{-mnoliterals-after-br}]
324 [@b{-mistack}] [@b{-mno-istack}]
325 [@b{-mhard-float}] [@b{-mmp}] [@b{-mcp}] [@b{-mcache}]
326 [@b{-msecurity}] [@b{-mtrust}]
327 [@b{-mdsp}] [@b{-medsp}] [@b{-mvdsp}]
328 @end ifset
329 @ifset D10V
330
331 @emph{Target D10V options:}
332 [@b{-O}]
333 @end ifset
334 @ifset D30V
335
336 @emph{Target D30V options:}
337 [@b{-O}|@b{-n}|@b{-N}]
338 @end ifset
339 @ifset EPIPHANY
340
341 @emph{Target EPIPHANY options:}
342 [@b{-mepiphany}|@b{-mepiphany16}]
343 @end ifset
344 @ifset H8
345
346 @emph{Target H8/300 options:}
347 [-h-tick-hex]
348 @end ifset
349 @ifset HPPA
350 @c HPPA has no machine-dependent assembler options (yet).
351 @end ifset
352 @ifset I80386
353
354 @emph{Target i386 options:}
355 [@b{--32}|@b{--x32}|@b{--64}] [@b{-n}]
356 [@b{-march}=@var{CPU}[+@var{EXTENSION}@dots{}]] [@b{-mtune}=@var{CPU}]
357 @end ifset
358 @ifset IA64
359
360 @emph{Target IA-64 options:}
361 [@b{-mconstant-gp}|@b{-mauto-pic}]
362 [@b{-milp32}|@b{-milp64}|@b{-mlp64}|@b{-mp64}]
363 [@b{-mle}|@b{mbe}]
364 [@b{-mtune=itanium1}|@b{-mtune=itanium2}]
365 [@b{-munwind-check=warning}|@b{-munwind-check=error}]
366 [@b{-mhint.b=ok}|@b{-mhint.b=warning}|@b{-mhint.b=error}]
367 [@b{-x}|@b{-xexplicit}] [@b{-xauto}] [@b{-xdebug}]
368 @end ifset
369 @ifset IP2K
370
371 @emph{Target IP2K options:}
372 [@b{-mip2022}|@b{-mip2022ext}]
373 @end ifset
374 @ifset M32C
375
376 @emph{Target M32C options:}
377 [@b{-m32c}|@b{-m16c}] [-relax] [-h-tick-hex]
378 @end ifset
379 @ifset M32R
380
381 @emph{Target M32R options:}
382 [@b{--m32rx}|@b{--[no-]warn-explicit-parallel-conflicts}|
383 @b{--W[n]p}]
384 @end ifset
385 @ifset M680X0
386
387 @emph{Target M680X0 options:}
388 [@b{-l}] [@b{-m68000}|@b{-m68010}|@b{-m68020}|@dots{}]
389 @end ifset
390 @ifset M68HC11
391
392 @emph{Target M68HC11 options:}
393 [@b{-m68hc11}|@b{-m68hc12}|@b{-m68hcs12}|@b{-mm9s12x}|@b{-mm9s12xg}]
394 [@b{-mshort}|@b{-mlong}]
395 [@b{-mshort-double}|@b{-mlong-double}]
396 [@b{--force-long-branches}] [@b{--short-branches}]
397 [@b{--strict-direct-mode}] [@b{--print-insn-syntax}]
398 [@b{--print-opcodes}] [@b{--generate-example}]
399 @end ifset
400 @ifset MCORE
401
402 @emph{Target MCORE options:}
403 [@b{-jsri2bsr}] [@b{-sifilter}] [@b{-relax}]
404 [@b{-mcpu=[210|340]}]
405 @end ifset
406 @ifset METAG
407
408 @emph{Target Meta options:}
409 [@b{-mcpu=@var{cpu}}] [@b{-mfpu=@var{cpu}}] [@b{-mdsp=@var{cpu}}]
410 @end ifset
411 @ifset MICROBLAZE
412 @emph{Target MICROBLAZE options:}
413 @c MicroBlaze has no machine-dependent assembler options.
414 @end ifset
415 @ifset MIPS
416
417 @emph{Target MIPS options:}
418 [@b{-nocpp}] [@b{-EL}] [@b{-EB}] [@b{-O}[@var{optimization level}]]
419 [@b{-g}[@var{debug level}]] [@b{-G} @var{num}] [@b{-KPIC}] [@b{-call_shared}]
420 [@b{-non_shared}] [@b{-xgot} [@b{-mvxworks-pic}]
421 [@b{-mabi}=@var{ABI}] [@b{-32}] [@b{-n32}] [@b{-64}] [@b{-mfp32}] [@b{-mgp32}]
422 [@b{-mfp64}] [@b{-mgp64}] [@b{-mfpxx}]
423 [@b{-modd-spreg}] [@b{-mno-odd-spreg}]
424 [@b{-march}=@var{CPU}] [@b{-mtune}=@var{CPU}] [@b{-mips1}] [@b{-mips2}]
425 [@b{-mips3}] [@b{-mips4}] [@b{-mips5}] [@b{-mips32}] [@b{-mips32r2}]
426 [@b{-mips32r3}] [@b{-mips32r5}] [@b{-mips32r6}] [@b{-mips64}] [@b{-mips64r2}]
427 [@b{-mips64r3}] [@b{-mips64r5}] [@b{-mips64r6}]
428 [@b{-construct-floats}] [@b{-no-construct-floats}]
429 [@b{-mignore-branch-isa}] [@b{-mno-ignore-branch-isa}]
430 [@b{-mnan=@var{encoding}}]
431 [@b{-trap}] [@b{-no-break}] [@b{-break}] [@b{-no-trap}]
432 [@b{-mips16}] [@b{-no-mips16}]
433 [@b{-mmips16e2}] [@b{-mno-mips16e2}]
434 [@b{-mmicromips}] [@b{-mno-micromips}]
435 [@b{-msmartmips}] [@b{-mno-smartmips}]
436 [@b{-mips3d}] [@b{-no-mips3d}]
437 [@b{-mdmx}] [@b{-no-mdmx}]
438 [@b{-mdsp}] [@b{-mno-dsp}]
439 [@b{-mdspr2}] [@b{-mno-dspr2}]
440 [@b{-mdspr3}] [@b{-mno-dspr3}]
441 [@b{-mmsa}] [@b{-mno-msa}]
442 [@b{-mxpa}] [@b{-mno-xpa}]
443 [@b{-mmt}] [@b{-mno-mt}]
444 [@b{-mmcu}] [@b{-mno-mcu}]
445 [@b{-mcrc}] [@b{-mno-crc}]
446 [@b{-mginv}] [@b{-mno-ginv}]
447 [@b{-mloongson-mmi}] [@b{-mno-loongson-mmi}]
448 [@b{-mloongson-cam}] [@b{-mno-loongson-cam}]
449 [@b{-mloongson-ext}] [@b{-mno-loongson-ext}]
450 [@b{-minsn32}] [@b{-mno-insn32}]
451 [@b{-mfix7000}] [@b{-mno-fix7000}]
452 [@b{-mfix-rm7000}] [@b{-mno-fix-rm7000}]
453 [@b{-mfix-vr4120}] [@b{-mno-fix-vr4120}]
454 [@b{-mfix-vr4130}] [@b{-mno-fix-vr4130}]
455 [@b{-mdebug}] [@b{-no-mdebug}]
456 [@b{-mpdr}] [@b{-mno-pdr}]
457 @end ifset
458 @ifset MMIX
459
460 @emph{Target MMIX options:}
461 [@b{--fixed-special-register-names}] [@b{--globalize-symbols}]
462 [@b{--gnu-syntax}] [@b{--relax}] [@b{--no-predefined-symbols}]
463 [@b{--no-expand}] [@b{--no-merge-gregs}] [@b{-x}]
464 [@b{--linker-allocated-gregs}]
465 @end ifset
466 @ifset NIOSII
467
468 @emph{Target Nios II options:}
469 [@b{-relax-all}] [@b{-relax-section}] [@b{-no-relax}]
470 [@b{-EB}] [@b{-EL}]
471 @end ifset
472 @ifset NDS32
473
474 @emph{Target NDS32 options:}
475 [@b{-EL}] [@b{-EB}] [@b{-O}] [@b{-Os}] [@b{-mcpu=@var{cpu}}]
476 [@b{-misa=@var{isa}}] [@b{-mabi=@var{abi}}] [@b{-mall-ext}]
477 [@b{-m[no-]16-bit}] [@b{-m[no-]perf-ext}] [@b{-m[no-]perf2-ext}]
478 [@b{-m[no-]string-ext}] [@b{-m[no-]dsp-ext}] [@b{-m[no-]mac}] [@b{-m[no-]div}]
479 [@b{-m[no-]audio-isa-ext}] [@b{-m[no-]fpu-sp-ext}] [@b{-m[no-]fpu-dp-ext}]
480 [@b{-m[no-]fpu-fma}] [@b{-mfpu-freg=@var{FREG}}] [@b{-mreduced-regs}]
481 [@b{-mfull-regs}] [@b{-m[no-]dx-regs}] [@b{-mpic}] [@b{-mno-relax}]
482 [@b{-mb2bb}]
483 @end ifset
484 @ifset PDP11
485
486 @emph{Target PDP11 options:}
487 [@b{-mpic}|@b{-mno-pic}] [@b{-mall}] [@b{-mno-extensions}]
488 [@b{-m}@var{extension}|@b{-mno-}@var{extension}]
489 [@b{-m}@var{cpu}] [@b{-m}@var{machine}]
490 @end ifset
491 @ifset PJ
492
493 @emph{Target picoJava options:}
494 [@b{-mb}|@b{-me}]
495 @end ifset
496 @ifset PPC
497
498 @emph{Target PowerPC options:}
499 [@b{-a32}|@b{-a64}]
500 [@b{-mpwrx}|@b{-mpwr2}|@b{-mpwr}|@b{-m601}|@b{-mppc}|@b{-mppc32}|@b{-m603}|@b{-m604}|@b{-m403}|@b{-m405}|
501 @b{-m440}|@b{-m464}|@b{-m476}|@b{-m7400}|@b{-m7410}|@b{-m7450}|@b{-m7455}|@b{-m750cl}|@b{-mgekko}|
502 @b{-mbroadway}|@b{-mppc64}|@b{-m620}|@b{-me500}|@b{-e500x2}|@b{-me500mc}|@b{-me500mc64}|@b{-me5500}|
503 @b{-me6500}|@b{-mppc64bridge}|@b{-mbooke}|@b{-mpower4}|@b{-mpwr4}|@b{-mpower5}|@b{-mpwr5}|@b{-mpwr5x}|
504 @b{-mpower6}|@b{-mpwr6}|@b{-mpower7}|@b{-mpwr7}|@b{-mpower8}|@b{-mpwr8}|@b{-mpower9}|@b{-mpwr9}@b{-ma2}|
505 @b{-mcell}|@b{-mspe}|@b{-mspe2}|@b{-mtitan}|@b{-me300}|@b{-mcom}]
506 [@b{-many}] [@b{-maltivec}|@b{-mvsx}|@b{-mhtm}|@b{-mvle}]
507 [@b{-mregnames}|@b{-mno-regnames}]
508 [@b{-mrelocatable}|@b{-mrelocatable-lib}|@b{-K PIC}] [@b{-memb}]
509 [@b{-mlittle}|@b{-mlittle-endian}|@b{-le}|@b{-mbig}|@b{-mbig-endian}|@b{-be}]
510 [@b{-msolaris}|@b{-mno-solaris}]
511 [@b{-nops=@var{count}}]
512 @end ifset
513 @ifset PRU
514
515 @emph{Target PRU options:}
516 [@b{-link-relax}]
517 [@b{-mnolink-relax}]
518 [@b{-mno-warn-regname-label}]
519 @end ifset
520 @ifset RISCV
521
522 @emph{Target RISC-V options:}
523 [@b{-fpic}|@b{-fPIC}|@b{-fno-pic}]
524 [@b{-march}=@var{ISA}]
525 [@b{-mabi}=@var{ABI}]
526 @end ifset
527 @ifset RL78
528
529 @emph{Target RL78 options:}
530 [@b{-mg10}]
531 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
532 @end ifset
533 @ifset RX
534
535 @emph{Target RX options:}
536 [@b{-mlittle-endian}|@b{-mbig-endian}]
537 [@b{-m32bit-doubles}|@b{-m64bit-doubles}]
538 [@b{-muse-conventional-section-names}]
539 [@b{-msmall-data-limit}]
540 [@b{-mpid}]
541 [@b{-mrelax}]
542 [@b{-mint-register=@var{number}}]
543 [@b{-mgcc-abi}|@b{-mrx-abi}]
544 @end ifset
545 @ifset S390
546
547 @emph{Target s390 options:}
548 [@b{-m31}|@b{-m64}] [@b{-mesa}|@b{-mzarch}] [@b{-march}=@var{CPU}]
549 [@b{-mregnames}|@b{-mno-regnames}]
550 [@b{-mwarn-areg-zero}]
551 @end ifset
552 @ifset SCORE
553
554 @emph{Target SCORE options:}
555 [@b{-EB}][@b{-EL}][@b{-FIXDD}][@b{-NWARN}]
556 [@b{-SCORE5}][@b{-SCORE5U}][@b{-SCORE7}][@b{-SCORE3}]
557 [@b{-march=score7}][@b{-march=score3}]
558 [@b{-USE_R1}][@b{-KPIC}][@b{-O0}][@b{-G} @var{num}][@b{-V}]
559 @end ifset
560 @ifset SPARC
561
562 @emph{Target SPARC options:}
563 @c The order here is important. See c-sparc.texi.
564 [@b{-Av6}|@b{-Av7}|@b{-Av8}|@b{-Aleon}|@b{-Asparclet}|@b{-Asparclite}
565 @b{-Av8plus}|@b{-Av8plusa}|@b{-Av8plusb}|@b{-Av8plusc}|@b{-Av8plusd}
566 @b{-Av8plusv}|@b{-Av8plusm}|@b{-Av9}|@b{-Av9a}|@b{-Av9b}|@b{-Av9c}
567 @b{-Av9d}|@b{-Av9e}|@b{-Av9v}|@b{-Av9m}|@b{-Asparc}|@b{-Asparcvis}
568 @b{-Asparcvis2}|@b{-Asparcfmaf}|@b{-Asparcima}|@b{-Asparcvis3}
569 @b{-Asparcvisr}|@b{-Asparc5}]
570 [@b{-xarch=v8plus}|@b{-xarch=v8plusa}]|@b{-xarch=v8plusb}|@b{-xarch=v8plusc}
571 @b{-xarch=v8plusd}|@b{-xarch=v8plusv}|@b{-xarch=v8plusm}|@b{-xarch=v9}
572 @b{-xarch=v9a}|@b{-xarch=v9b}|@b{-xarch=v9c}|@b{-xarch=v9d}|@b{-xarch=v9e}
573 @b{-xarch=v9v}|@b{-xarch=v9m}|@b{-xarch=sparc}|@b{-xarch=sparcvis}
574 @b{-xarch=sparcvis2}|@b{-xarch=sparcfmaf}|@b{-xarch=sparcima}
575 @b{-xarch=sparcvis3}|@b{-xarch=sparcvisr}|@b{-xarch=sparc5}
576 @b{-bump}]
577 [@b{-32}|@b{-64}]
578 [@b{--enforce-aligned-data}][@b{--dcti-couples-detect}]
579 @end ifset
580 @ifset TIC54X
581
582 @emph{Target TIC54X options:}
583 [@b{-mcpu=54[123589]}|@b{-mcpu=54[56]lp}] [@b{-mfar-mode}|@b{-mf}]
584 [@b{-merrors-to-file} @var{<filename>}|@b{-me} @var{<filename>}]
585 @end ifset
586 @ifset TIC6X
587
588 @emph{Target TIC6X options:}
589 [@b{-march=@var{arch}}] [@b{-mbig-endian}|@b{-mlittle-endian}]
590 [@b{-mdsbt}|@b{-mno-dsbt}] [@b{-mpid=no}|@b{-mpid=near}|@b{-mpid=far}]
591 [@b{-mpic}|@b{-mno-pic}]
592 @end ifset
593 @ifset TILEGX
594
595 @emph{Target TILE-Gx options:}
596 [@b{-m32}|@b{-m64}][@b{-EB}][@b{-EL}]
597 @end ifset
598 @ifset TILEPRO
599 @c TILEPro has no machine-dependent assembler options
600 @end ifset
601 @ifset VISIUM
602
603 @emph{Target Visium options:}
604 [@b{-mtune=@var{arch}}]
605 @end ifset
606 @ifset XTENSA
607
608 @emph{Target Xtensa options:}
609 [@b{--[no-]text-section-literals}] [@b{--[no-]auto-litpools}]
610 [@b{--[no-]absolute-literals}]
611 [@b{--[no-]target-align}] [@b{--[no-]longcalls}]
612 [@b{--[no-]transform}]
613 [@b{--rename-section} @var{oldname}=@var{newname}]
614 [@b{--[no-]trampolines}]
615 @end ifset
616 @ifset Z80
617
618 @emph{Target Z80 options:}
619 [@b{-z80}] [@b{-r800}]
620 [@b{ -ignore-undocumented-instructions}] [@b{-Wnud}]
621 [@b{ -ignore-unportable-instructions}] [@b{-Wnup}]
622 [@b{ -warn-undocumented-instructions}] [@b{-Wud}]
623 [@b{ -warn-unportable-instructions}] [@b{-Wup}]
624 [@b{ -forbid-undocumented-instructions}] [@b{-Fud}]
625 [@b{ -forbid-unportable-instructions}] [@b{-Fup}]
626 @end ifset
627 @ifset Z8000
628
629 @c Z8000 has no machine-dependent assembler options
630 @end ifset
631
632 @c man end
633 @end smallexample
634
635 @c man begin OPTIONS
636
637 @table @gcctabopt
638 @include at-file.texi
639
640 @item -a[cdghlmns]
641 Turn on listings, in any of a variety of ways:
642
643 @table @gcctabopt
644 @item -ac
645 omit false conditionals
646
647 @item -ad
648 omit debugging directives
649
650 @item -ag
651 include general information, like @value{AS} version and options passed
652
653 @item -ah
654 include high-level source
655
656 @item -al
657 include assembly
658
659 @item -am
660 include macro expansions
661
662 @item -an
663 omit forms processing
664
665 @item -as
666 include symbols
667
668 @item =file
669 set the name of the listing file
670 @end table
671
672 You may combine these options; for example, use @samp{-aln} for assembly
673 listing without forms processing. The @samp{=file} option, if used, must be
674 the last one. By itself, @samp{-a} defaults to @samp{-ahls}.
675
676 @item --alternate
677 Begin in alternate macro mode.
678 @ifclear man
679 @xref{Altmacro,,@code{.altmacro}}.
680 @end ifclear
681
682 @item --compress-debug-sections
683 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the
684 ELF ABI. The resulting object file may not be compatible with older
685 linkers and object file utilities. Note if compression would make a
686 given section @emph{larger} then it is not compressed.
687
688 @ifset ELF
689 @cindex @samp{--compress-debug-sections=} option
690 @item --compress-debug-sections=none
691 @itemx --compress-debug-sections=zlib
692 @itemx --compress-debug-sections=zlib-gnu
693 @itemx --compress-debug-sections=zlib-gabi
694 These options control how DWARF debug sections are compressed.
695 @option{--compress-debug-sections=none} is equivalent to
696 @option{--nocompress-debug-sections}.
697 @option{--compress-debug-sections=zlib} and
698 @option{--compress-debug-sections=zlib-gabi} are equivalent to
699 @option{--compress-debug-sections}.
700 @option{--compress-debug-sections=zlib-gnu} compresses DWARF debug
701 sections using zlib. The debug sections are renamed to begin with
702 @samp{.zdebug}. Note if compression would make a given section
703 @emph{larger} then it is not compressed nor renamed.
704
705 @end ifset
706
707 @item --nocompress-debug-sections
708 Do not compress DWARF debug sections. This is usually the default for all
709 targets except the x86/x86_64, but a configure time option can be used to
710 override this.
711
712 @item -D
713 Ignored. This option is accepted for script compatibility with calls to
714 other assemblers.
715
716 @item --debug-prefix-map @var{old}=@var{new}
717 When assembling files in directory @file{@var{old}}, record debugging
718 information describing them as in @file{@var{new}} instead.
719
720 @item --defsym @var{sym}=@var{value}
721 Define the symbol @var{sym} to be @var{value} before assembling the input file.
722 @var{value} must be an integer constant. As in C, a leading @samp{0x}
723 indicates a hexadecimal value, and a leading @samp{0} indicates an octal
724 value. The value of the symbol can be overridden inside a source file via the
725 use of a @code{.set} pseudo-op.
726
727 @item -f
728 ``fast''---skip whitespace and comment preprocessing (assume source is
729 compiler output).
730
731 @item -g
732 @itemx --gen-debug
733 Generate debugging information for each assembler source line using whichever
734 debug format is preferred by the target. This currently means either STABS,
735 ECOFF or DWARF2.
736
737 @item --gstabs
738 Generate stabs debugging information for each assembler line. This
739 may help debugging assembler code, if the debugger can handle it.
740
741 @item --gstabs+
742 Generate stabs debugging information for each assembler line, with GNU
743 extensions that probably only gdb can handle, and that could make other
744 debuggers crash or refuse to read your program. This
745 may help debugging assembler code. Currently the only GNU extension is
746 the location of the current working directory at assembling time.
747
748 @item --gdwarf-2
749 Generate DWARF2 debugging information for each assembler line. This
750 may help debugging assembler code, if the debugger can handle it. Note---this
751 option is only supported by some targets, not all of them.
752
753 @item --gdwarf-sections
754 Instead of creating a .debug_line section, create a series of
755 .debug_line.@var{foo} sections where @var{foo} is the name of the
756 corresponding code section. For example a code section called @var{.text.func}
757 will have its dwarf line number information placed into a section called
758 @var{.debug_line.text.func}. If the code section is just called @var{.text}
759 then debug line section will still be called just @var{.debug_line} without any
760 suffix.
761
762 @ifset ELF
763 @item --size-check=error
764 @itemx --size-check=warning
765 Issue an error or warning for invalid ELF .size directive.
766
767 @item --elf-stt-common=no
768 @itemx --elf-stt-common=yes
769 These options control whether the ELF assembler should generate common
770 symbols with the @code{STT_COMMON} type. The default can be controlled
771 by a configure option @option{--enable-elf-stt-common}.
772
773 @item --generate-missing-build-notes=yes
774 @itemx --generate-missing-build-notes=no
775 These options control whether the ELF assembler should generate GNU Build
776 attribute notes if none are present in the input sources.
777 The default can be controlled by the @option{--enable-generate-build-notes}
778 configure option.
779
780 @end ifset
781
782 @item --help
783 Print a summary of the command-line options and exit.
784
785 @item --target-help
786 Print a summary of all target specific options and exit.
787
788 @item -I @var{dir}
789 Add directory @var{dir} to the search list for @code{.include} directives.
790
791 @item -J
792 Don't warn about signed overflow.
793
794 @item -K
795 @ifclear DIFF-TBL-KLUGE
796 This option is accepted but has no effect on the @value{TARGET} family.
797 @end ifclear
798 @ifset DIFF-TBL-KLUGE
799 Issue warnings when difference tables altered for long displacements.
800 @end ifset
801
802 @item -L
803 @itemx --keep-locals
804 Keep (in the symbol table) local symbols. These symbols start with
805 system-specific local label prefixes, typically @samp{.L} for ELF systems
806 or @samp{L} for traditional a.out systems.
807 @ifclear man
808 @xref{Symbol Names}.
809 @end ifclear
810
811 @item --listing-lhs-width=@var{number}
812 Set the maximum width, in words, of the output data column for an assembler
813 listing to @var{number}.
814
815 @item --listing-lhs-width2=@var{number}
816 Set the maximum width, in words, of the output data column for continuation
817 lines in an assembler listing to @var{number}.
818
819 @item --listing-rhs-width=@var{number}
820 Set the maximum width of an input source line, as displayed in a listing, to
821 @var{number} bytes.
822
823 @item --listing-cont-lines=@var{number}
824 Set the maximum number of lines printed in a listing for a single line of input
825 to @var{number} + 1.
826
827 @item --no-pad-sections
828 Stop the assembler for padding the ends of output sections to the alignment
829 of that section. The default is to pad the sections, but this can waste space
830 which might be needed on targets which have tight memory constraints.
831
832 @item -o @var{objfile}
833 Name the object-file output from @command{@value{AS}} @var{objfile}.
834
835 @item -R
836 Fold the data section into the text section.
837
838 @item --hash-size=@var{number}
839 Set the default size of GAS's hash tables to a prime number close to
840 @var{number}. Increasing this value can reduce the length of time it takes the
841 assembler to perform its tasks, at the expense of increasing the assembler's
842 memory requirements. Similarly reducing this value can reduce the memory
843 requirements at the expense of speed.
844
845 @item --reduce-memory-overheads
846 This option reduces GAS's memory requirements, at the expense of making the
847 assembly processes slower. Currently this switch is a synonym for
848 @samp{--hash-size=4051}, but in the future it may have other effects as well.
849
850 @ifset ELF
851 @item --sectname-subst
852 Honor substitution sequences in section names.
853 @ifclear man
854 @xref{Section Name Substitutions,,@code{.section @var{name}}}.
855 @end ifclear
856 @end ifset
857
858 @item --statistics
859 Print the maximum space (in bytes) and total time (in seconds) used by
860 assembly.
861
862 @item --strip-local-absolute
863 Remove local absolute symbols from the outgoing symbol table.
864
865 @item -v
866 @itemx -version
867 Print the @command{as} version.
868
869 @item --version
870 Print the @command{as} version and exit.
871
872 @item -W
873 @itemx --no-warn
874 Suppress warning messages.
875
876 @item --fatal-warnings
877 Treat warnings as errors.
878
879 @item --warn
880 Don't suppress warning messages or treat them as errors.
881
882 @item -w
883 Ignored.
884
885 @item -x
886 Ignored.
887
888 @item -Z
889 Generate an object file even after errors.
890
891 @item -- | @var{files} @dots{}
892 Standard input, or source files to assemble.
893
894 @end table
895 @c man end
896
897 @ifset AARCH64
898
899 @ifclear man
900 @xref{AArch64 Options}, for the options available when @value{AS} is configured
901 for the 64-bit mode of the ARM Architecture (AArch64).
902 @end ifclear
903
904 @ifset man
905 @c man begin OPTIONS
906 The following options are available when @value{AS} is configured for the
907 64-bit mode of the ARM Architecture (AArch64).
908 @c man end
909 @c man begin INCLUDE
910 @include c-aarch64.texi
911 @c ended inside the included file
912 @end ifset
913
914 @end ifset
915
916 @ifset ALPHA
917
918 @ifclear man
919 @xref{Alpha Options}, for the options available when @value{AS} is configured
920 for an Alpha processor.
921 @end ifclear
922
923 @ifset man
924 @c man begin OPTIONS
925 The following options are available when @value{AS} is configured for an Alpha
926 processor.
927 @c man end
928 @c man begin INCLUDE
929 @include c-alpha.texi
930 @c ended inside the included file
931 @end ifset
932
933 @end ifset
934
935 @c man begin OPTIONS
936 @ifset ARC
937 The following options are available when @value{AS} is configured for an ARC
938 processor.
939
940 @table @gcctabopt
941 @item -mcpu=@var{cpu}
942 This option selects the core processor variant.
943 @item -EB | -EL
944 Select either big-endian (-EB) or little-endian (-EL) output.
945 @item -mcode-density
946 Enable Code Density extenssion instructions.
947 @end table
948 @end ifset
949
950 @ifset ARM
951 The following options are available when @value{AS} is configured for the ARM
952 processor family.
953
954 @table @gcctabopt
955 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
956 Specify which ARM processor variant is the target.
957 @item -march=@var{architecture}[+@var{extension}@dots{}]
958 Specify which ARM architecture variant is used by the target.
959 @item -mfpu=@var{floating-point-format}
960 Select which Floating Point architecture is the target.
961 @item -mfloat-abi=@var{abi}
962 Select which floating point ABI is in use.
963 @item -mthumb
964 Enable Thumb only instruction decoding.
965 @item -mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant
966 Select which procedure calling convention is in use.
967 @item -EB | -EL
968 Select either big-endian (-EB) or little-endian (-EL) output.
969 @item -mthumb-interwork
970 Specify that the code has been generated with interworking between Thumb and
971 ARM code in mind.
972 @item -mccs
973 Turns on CodeComposer Studio assembly syntax compatibility mode.
974 @item -k
975 Specify that PIC code has been generated.
976 @end table
977 @end ifset
978 @c man end
979
980 @ifset Blackfin
981
982 @ifclear man
983 @xref{Blackfin Options}, for the options available when @value{AS} is
984 configured for the Blackfin processor family.
985 @end ifclear
986
987 @ifset man
988 @c man begin OPTIONS
989 The following options are available when @value{AS} is configured for
990 the Blackfin processor family.
991 @c man end
992 @c man begin INCLUDE
993 @include c-bfin.texi
994 @c ended inside the included file
995 @end ifset
996
997 @end ifset
998
999 @c man begin OPTIONS
1000 @ifset CRIS
1001 See the info pages for documentation of the CRIS-specific options.
1002 @end ifset
1003
1004 @ifset CSKY
1005
1006 @ifclear man
1007 @xref{C-SKY Options}, for the options available when @value{AS} is
1008 configured for the C-SKY processor family.
1009 @end ifclear
1010
1011 @ifset man
1012 @c man begin OPTIONS
1013 The following options are available when @value{AS} is configured for
1014 the C-SKY processor family.
1015 @c man end
1016 @c man begin INCLUDE
1017 @include c-csky.texi
1018 @c ended inside the included file
1019 @end ifset
1020
1021 @end ifset
1022
1023 @ifset D10V
1024 The following options are available when @value{AS} is configured for
1025 a D10V processor.
1026 @table @gcctabopt
1027 @cindex D10V optimization
1028 @cindex optimization, D10V
1029 @item -O
1030 Optimize output by parallelizing instructions.
1031 @end table
1032 @end ifset
1033
1034 @ifset D30V
1035 The following options are available when @value{AS} is configured for a D30V
1036 processor.
1037 @table @gcctabopt
1038 @cindex D30V optimization
1039 @cindex optimization, D30V
1040 @item -O
1041 Optimize output by parallelizing instructions.
1042
1043 @cindex D30V nops
1044 @item -n
1045 Warn when nops are generated.
1046
1047 @cindex D30V nops after 32-bit multiply
1048 @item -N
1049 Warn when a nop after a 32-bit multiply instruction is generated.
1050 @end table
1051 @end ifset
1052 @c man end
1053
1054 @ifset EPIPHANY
1055 The following options are available when @value{AS} is configured for the
1056 Adapteva EPIPHANY series.
1057
1058 @ifclear man
1059 @xref{Epiphany Options}, for the options available when @value{AS} is
1060 configured for an Epiphany processor.
1061 @end ifclear
1062
1063 @ifset man
1064 @c man begin OPTIONS
1065 The following options are available when @value{AS} is configured for
1066 an Epiphany processor.
1067 @c man end
1068 @c man begin INCLUDE
1069 @include c-epiphany.texi
1070 @c ended inside the included file
1071 @end ifset
1072
1073 @end ifset
1074
1075 @ifset H8300
1076
1077 @ifclear man
1078 @xref{H8/300 Options}, for the options available when @value{AS} is configured
1079 for an H8/300 processor.
1080 @end ifclear
1081
1082 @ifset man
1083 @c man begin OPTIONS
1084 The following options are available when @value{AS} is configured for an H8/300
1085 processor.
1086 @c man end
1087 @c man begin INCLUDE
1088 @include c-h8300.texi
1089 @c ended inside the included file
1090 @end ifset
1091
1092 @end ifset
1093
1094 @ifset I80386
1095
1096 @ifclear man
1097 @xref{i386-Options}, for the options available when @value{AS} is
1098 configured for an i386 processor.
1099 @end ifclear
1100
1101 @ifset man
1102 @c man begin OPTIONS
1103 The following options are available when @value{AS} is configured for
1104 an i386 processor.
1105 @c man end
1106 @c man begin INCLUDE
1107 @include c-i386.texi
1108 @c ended inside the included file
1109 @end ifset
1110
1111 @end ifset
1112
1113 @c man begin OPTIONS
1114 @ifset IP2K
1115 The following options are available when @value{AS} is configured for the
1116 Ubicom IP2K series.
1117
1118 @table @gcctabopt
1119
1120 @item -mip2022ext
1121 Specifies that the extended IP2022 instructions are allowed.
1122
1123 @item -mip2022
1124 Restores the default behaviour, which restricts the permitted instructions to
1125 just the basic IP2022 ones.
1126
1127 @end table
1128 @end ifset
1129
1130 @ifset M32C
1131 The following options are available when @value{AS} is configured for the
1132 Renesas M32C and M16C processors.
1133
1134 @table @gcctabopt
1135
1136 @item -m32c
1137 Assemble M32C instructions.
1138
1139 @item -m16c
1140 Assemble M16C instructions (the default).
1141
1142 @item -relax
1143 Enable support for link-time relaxations.
1144
1145 @item -h-tick-hex
1146 Support H'00 style hex constants in addition to 0x00 style.
1147
1148 @end table
1149 @end ifset
1150
1151 @ifset M32R
1152 The following options are available when @value{AS} is configured for the
1153 Renesas M32R (formerly Mitsubishi M32R) series.
1154
1155 @table @gcctabopt
1156
1157 @item --m32rx
1158 Specify which processor in the M32R family is the target. The default
1159 is normally the M32R, but this option changes it to the M32RX.
1160
1161 @item --warn-explicit-parallel-conflicts or --Wp
1162 Produce warning messages when questionable parallel constructs are
1163 encountered.
1164
1165 @item --no-warn-explicit-parallel-conflicts or --Wnp
1166 Do not produce warning messages when questionable parallel constructs are
1167 encountered.
1168
1169 @end table
1170 @end ifset
1171
1172 @ifset M680X0
1173 The following options are available when @value{AS} is configured for the
1174 Motorola 68000 series.
1175
1176 @table @gcctabopt
1177
1178 @item -l
1179 Shorten references to undefined symbols, to one word instead of two.
1180
1181 @item -m68000 | -m68008 | -m68010 | -m68020 | -m68030
1182 @itemx | -m68040 | -m68060 | -m68302 | -m68331 | -m68332
1183 @itemx | -m68333 | -m68340 | -mcpu32 | -m5200
1184 Specify what processor in the 68000 family is the target. The default
1185 is normally the 68020, but this can be changed at configuration time.
1186
1187 @item -m68881 | -m68882 | -mno-68881 | -mno-68882
1188 The target machine does (or does not) have a floating-point coprocessor.
1189 The default is to assume a coprocessor for 68020, 68030, and cpu32. Although
1190 the basic 68000 is not compatible with the 68881, a combination of the
1191 two can be specified, since it's possible to do emulation of the
1192 coprocessor instructions with the main processor.
1193
1194 @item -m68851 | -mno-68851
1195 The target machine does (or does not) have a memory-management
1196 unit coprocessor. The default is to assume an MMU for 68020 and up.
1197
1198 @end table
1199 @end ifset
1200
1201 @ifset NIOSII
1202
1203 @ifclear man
1204 @xref{Nios II Options}, for the options available when @value{AS} is configured
1205 for an Altera Nios II processor.
1206 @end ifclear
1207
1208 @ifset man
1209 @c man begin OPTIONS
1210 The following options are available when @value{AS} is configured for an
1211 Altera Nios II processor.
1212 @c man end
1213 @c man begin INCLUDE
1214 @include c-nios2.texi
1215 @c ended inside the included file
1216 @end ifset
1217 @end ifset
1218
1219 @ifset PDP11
1220
1221 For details about the PDP-11 machine dependent features options,
1222 see @ref{PDP-11-Options}.
1223
1224 @table @gcctabopt
1225 @item -mpic | -mno-pic
1226 Generate position-independent (or position-dependent) code. The
1227 default is @option{-mpic}.
1228
1229 @item -mall
1230 @itemx -mall-extensions
1231 Enable all instruction set extensions. This is the default.
1232
1233 @item -mno-extensions
1234 Disable all instruction set extensions.
1235
1236 @item -m@var{extension} | -mno-@var{extension}
1237 Enable (or disable) a particular instruction set extension.
1238
1239 @item -m@var{cpu}
1240 Enable the instruction set extensions supported by a particular CPU, and
1241 disable all other extensions.
1242
1243 @item -m@var{machine}
1244 Enable the instruction set extensions supported by a particular machine
1245 model, and disable all other extensions.
1246 @end table
1247
1248 @end ifset
1249
1250 @ifset PJ
1251 The following options are available when @value{AS} is configured for
1252 a picoJava processor.
1253
1254 @table @gcctabopt
1255
1256 @cindex PJ endianness
1257 @cindex endianness, PJ
1258 @cindex big endian output, PJ
1259 @item -mb
1260 Generate ``big endian'' format output.
1261
1262 @cindex little endian output, PJ
1263 @item -ml
1264 Generate ``little endian'' format output.
1265
1266 @end table
1267 @end ifset
1268
1269 @ifset PRU
1270
1271 @ifclear man
1272 @xref{PRU Options}, for the options available when @value{AS} is configured
1273 for a PRU processor.
1274 @end ifclear
1275
1276 @ifset man
1277 @c man begin OPTIONS
1278 The following options are available when @value{AS} is configured for a
1279 PRU processor.
1280 @c man end
1281 @c man begin INCLUDE
1282 @include c-pru.texi
1283 @c ended inside the included file
1284 @end ifset
1285 @end ifset
1286
1287 @ifset M68HC11
1288 The following options are available when @value{AS} is configured for the
1289 Motorola 68HC11 or 68HC12 series.
1290
1291 @table @gcctabopt
1292
1293 @item -m68hc11 | -m68hc12 | -m68hcs12 | -mm9s12x | -mm9s12xg
1294 Specify what processor is the target. The default is
1295 defined by the configuration option when building the assembler.
1296
1297 @item --xgate-ramoffset
1298 Instruct the linker to offset RAM addresses from S12X address space into
1299 XGATE address space.
1300
1301 @item -mshort
1302 Specify to use the 16-bit integer ABI.
1303
1304 @item -mlong
1305 Specify to use the 32-bit integer ABI.
1306
1307 @item -mshort-double
1308 Specify to use the 32-bit double ABI.
1309
1310 @item -mlong-double
1311 Specify to use the 64-bit double ABI.
1312
1313 @item --force-long-branches
1314 Relative branches are turned into absolute ones. This concerns
1315 conditional branches, unconditional branches and branches to a
1316 sub routine.
1317
1318 @item -S | --short-branches
1319 Do not turn relative branches into absolute ones
1320 when the offset is out of range.
1321
1322 @item --strict-direct-mode
1323 Do not turn the direct addressing mode into extended addressing mode
1324 when the instruction does not support direct addressing mode.
1325
1326 @item --print-insn-syntax
1327 Print the syntax of instruction in case of error.
1328
1329 @item --print-opcodes
1330 Print the list of instructions with syntax and then exit.
1331
1332 @item --generate-example
1333 Print an example of instruction for each possible instruction and then exit.
1334 This option is only useful for testing @command{@value{AS}}.
1335
1336 @end table
1337 @end ifset
1338
1339 @ifset SPARC
1340 The following options are available when @command{@value{AS}} is configured
1341 for the SPARC architecture:
1342
1343 @table @gcctabopt
1344 @item -Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
1345 @itemx -Av8plus | -Av8plusa | -Av9 | -Av9a
1346 Explicitly select a variant of the SPARC architecture.
1347
1348 @samp{-Av8plus} and @samp{-Av8plusa} select a 32 bit environment.
1349 @samp{-Av9} and @samp{-Av9a} select a 64 bit environment.
1350
1351 @samp{-Av8plusa} and @samp{-Av9a} enable the SPARC V9 instruction set with
1352 UltraSPARC extensions.
1353
1354 @item -xarch=v8plus | -xarch=v8plusa
1355 For compatibility with the Solaris v9 assembler. These options are
1356 equivalent to -Av8plus and -Av8plusa, respectively.
1357
1358 @item -bump
1359 Warn when the assembler switches to another architecture.
1360 @end table
1361 @end ifset
1362
1363 @ifset TIC54X
1364 The following options are available when @value{AS} is configured for the 'c54x
1365 architecture.
1366
1367 @table @gcctabopt
1368 @item -mfar-mode
1369 Enable extended addressing mode. All addresses and relocations will assume
1370 extended addressing (usually 23 bits).
1371 @item -mcpu=@var{CPU_VERSION}
1372 Sets the CPU version being compiled for.
1373 @item -merrors-to-file @var{FILENAME}
1374 Redirect error output to a file, for broken systems which don't support such
1375 behaviour in the shell.
1376 @end table
1377 @end ifset
1378
1379 @ifset MIPS
1380 @c man begin OPTIONS
1381 The following options are available when @value{AS} is configured for
1382 a MIPS processor.
1383
1384 @table @gcctabopt
1385 @item -G @var{num}
1386 This option sets the largest size of an object that can be referenced
1387 implicitly with the @code{gp} register. It is only accepted for targets that
1388 use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
1389
1390 @cindex MIPS endianness
1391 @cindex endianness, MIPS
1392 @cindex big endian output, MIPS
1393 @item -EB
1394 Generate ``big endian'' format output.
1395
1396 @cindex little endian output, MIPS
1397 @item -EL
1398 Generate ``little endian'' format output.
1399
1400 @cindex MIPS ISA
1401 @item -mips1
1402 @itemx -mips2
1403 @itemx -mips3
1404 @itemx -mips4
1405 @itemx -mips5
1406 @itemx -mips32
1407 @itemx -mips32r2
1408 @itemx -mips32r3
1409 @itemx -mips32r5
1410 @itemx -mips32r6
1411 @itemx -mips64
1412 @itemx -mips64r2
1413 @itemx -mips64r3
1414 @itemx -mips64r5
1415 @itemx -mips64r6
1416 Generate code for a particular MIPS Instruction Set Architecture level.
1417 @samp{-mips1} is an alias for @samp{-march=r3000}, @samp{-mips2} is an
1418 alias for @samp{-march=r6000}, @samp{-mips3} is an alias for
1419 @samp{-march=r4000} and @samp{-mips4} is an alias for @samp{-march=r8000}.
1420 @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2}, @samp{-mips32r3},
1421 @samp{-mips32r5}, @samp{-mips32r6}, @samp{-mips64}, @samp{-mips64r2},
1422 @samp{-mips64r3}, @samp{-mips64r5}, and @samp{-mips64r6} correspond to generic
1423 MIPS V, MIPS32, MIPS32 Release 2, MIPS32 Release 3, MIPS32 Release 5, MIPS32
1424 Release 6, MIPS64, MIPS64 Release 2, MIPS64 Release 3, MIPS64 Release 5, and
1425 MIPS64 Release 6 ISA processors, respectively.
1426
1427 @item -march=@var{cpu}
1428 Generate code for a particular MIPS CPU.
1429
1430 @item -mtune=@var{cpu}
1431 Schedule and tune for a particular MIPS CPU.
1432
1433 @item -mfix7000
1434 @itemx -mno-fix7000
1435 Cause nops to be inserted if the read of the destination register
1436 of an mfhi or mflo instruction occurs in the following two instructions.
1437
1438 @item -mfix-rm7000
1439 @itemx -mno-fix-rm7000
1440 Cause nops to be inserted if a dmult or dmultu instruction is
1441 followed by a load instruction.
1442
1443 @item -mdebug
1444 @itemx -no-mdebug
1445 Cause stabs-style debugging output to go into an ECOFF-style .mdebug
1446 section instead of the standard ELF .stabs sections.
1447
1448 @item -mpdr
1449 @itemx -mno-pdr
1450 Control generation of @code{.pdr} sections.
1451
1452 @item -mgp32
1453 @itemx -mfp32
1454 The register sizes are normally inferred from the ISA and ABI, but these
1455 flags force a certain group of registers to be treated as 32 bits wide at
1456 all times. @samp{-mgp32} controls the size of general-purpose registers
1457 and @samp{-mfp32} controls the size of floating-point registers.
1458
1459 @item -mgp64
1460 @itemx -mfp64
1461 The register sizes are normally inferred from the ISA and ABI, but these
1462 flags force a certain group of registers to be treated as 64 bits wide at
1463 all times. @samp{-mgp64} controls the size of general-purpose registers
1464 and @samp{-mfp64} controls the size of floating-point registers.
1465
1466 @item -mfpxx
1467 The register sizes are normally inferred from the ISA and ABI, but using
1468 this flag in combination with @samp{-mabi=32} enables an ABI variant
1469 which will operate correctly with floating-point registers which are
1470 32 or 64 bits wide.
1471
1472 @item -modd-spreg
1473 @itemx -mno-odd-spreg
1474 Enable use of floating-point operations on odd-numbered single-precision
1475 registers when supported by the ISA. @samp{-mfpxx} implies
1476 @samp{-mno-odd-spreg}, otherwise the default is @samp{-modd-spreg}.
1477
1478 @item -mips16
1479 @itemx -no-mips16
1480 Generate code for the MIPS 16 processor. This is equivalent to putting
1481 @code{.module mips16} at the start of the assembly file. @samp{-no-mips16}
1482 turns off this option.
1483
1484 @item -mmips16e2
1485 @itemx -mno-mips16e2
1486 Enable the use of MIPS16e2 instructions in MIPS16 mode. This is equivalent
1487 to putting @code{.module mips16e2} at the start of the assembly file.
1488 @samp{-mno-mips16e2} turns off this option.
1489
1490 @item -mmicromips
1491 @itemx -mno-micromips
1492 Generate code for the microMIPS processor. This is equivalent to putting
1493 @code{.module micromips} at the start of the assembly file.
1494 @samp{-mno-micromips} turns off this option. This is equivalent to putting
1495 @code{.module nomicromips} at the start of the assembly file.
1496
1497 @item -msmartmips
1498 @itemx -mno-smartmips
1499 Enables the SmartMIPS extension to the MIPS32 instruction set. This is
1500 equivalent to putting @code{.module smartmips} at the start of the assembly
1501 file. @samp{-mno-smartmips} turns off this option.
1502
1503 @item -mips3d
1504 @itemx -no-mips3d
1505 Generate code for the MIPS-3D Application Specific Extension.
1506 This tells the assembler to accept MIPS-3D instructions.
1507 @samp{-no-mips3d} turns off this option.
1508
1509 @item -mdmx
1510 @itemx -no-mdmx
1511 Generate code for the MDMX Application Specific Extension.
1512 This tells the assembler to accept MDMX instructions.
1513 @samp{-no-mdmx} turns off this option.
1514
1515 @item -mdsp
1516 @itemx -mno-dsp
1517 Generate code for the DSP Release 1 Application Specific Extension.
1518 This tells the assembler to accept DSP Release 1 instructions.
1519 @samp{-mno-dsp} turns off this option.
1520
1521 @item -mdspr2
1522 @itemx -mno-dspr2
1523 Generate code for the DSP Release 2 Application Specific Extension.
1524 This option implies @samp{-mdsp}.
1525 This tells the assembler to accept DSP Release 2 instructions.
1526 @samp{-mno-dspr2} turns off this option.
1527
1528 @item -mdspr3
1529 @itemx -mno-dspr3
1530 Generate code for the DSP Release 3 Application Specific Extension.
1531 This option implies @samp{-mdsp} and @samp{-mdspr2}.
1532 This tells the assembler to accept DSP Release 3 instructions.
1533 @samp{-mno-dspr3} turns off this option.
1534
1535 @item -mmsa
1536 @itemx -mno-msa
1537 Generate code for the MIPS SIMD Architecture Extension.
1538 This tells the assembler to accept MSA instructions.
1539 @samp{-mno-msa} turns off this option.
1540
1541 @item -mxpa
1542 @itemx -mno-xpa
1543 Generate code for the MIPS eXtended Physical Address (XPA) Extension.
1544 This tells the assembler to accept XPA instructions.
1545 @samp{-mno-xpa} turns off this option.
1546
1547 @item -mmt
1548 @itemx -mno-mt
1549 Generate code for the MT Application Specific Extension.
1550 This tells the assembler to accept MT instructions.
1551 @samp{-mno-mt} turns off this option.
1552
1553 @item -mmcu
1554 @itemx -mno-mcu
1555 Generate code for the MCU Application Specific Extension.
1556 This tells the assembler to accept MCU instructions.
1557 @samp{-mno-mcu} turns off this option.
1558
1559 @item -mcrc
1560 @itemx -mno-crc
1561 Generate code for the MIPS cyclic redundancy check (CRC) Application
1562 Specific Extension. This tells the assembler to accept CRC instructions.
1563 @samp{-mno-crc} turns off this option.
1564
1565 @item -mginv
1566 @itemx -mno-ginv
1567 Generate code for the Global INValidate (GINV) Application Specific
1568 Extension. This tells the assembler to accept GINV instructions.
1569 @samp{-mno-ginv} turns off this option.
1570
1571 @item -mloongson-mmi
1572 @itemx -mno-loongson-mmi
1573 Generate code for the Loongson MultiMedia extensions Instructions (MMI)
1574 Application Specific Extension. This tells the assembler to accept MMI
1575 instructions.
1576 @samp{-mno-loongson-mmi} turns off this option.
1577
1578 @item -mloongson-cam
1579 @itemx -mno-loongson-cam
1580 Generate code for the Loongson Content Address Memory (CAM) instructions.
1581 This tells the assembler to accept Loongson CAM instructions.
1582 @samp{-mno-loongson-cam} turns off this option.
1583
1584 @item -mloongson-ext
1585 @itemx -mno-loongson-ext
1586 Generate code for the Loongson EXTensions (EXT) instructions.
1587 This tells the assembler to accept Loongson EXT instructions.
1588 @samp{-mno-loongson-ext} turns off this option.
1589
1590 @item -minsn32
1591 @itemx -mno-insn32
1592 Only use 32-bit instruction encodings when generating code for the
1593 microMIPS processor. This option inhibits the use of any 16-bit
1594 instructions. This is equivalent to putting @code{.set insn32} at
1595 the start of the assembly file. @samp{-mno-insn32} turns off this
1596 option. This is equivalent to putting @code{.set noinsn32} at the
1597 start of the assembly file. By default @samp{-mno-insn32} is
1598 selected, allowing all instructions to be used.
1599
1600 @item --construct-floats
1601 @itemx --no-construct-floats
1602 The @samp{--no-construct-floats} option disables the construction of
1603 double width floating point constants by loading the two halves of the
1604 value into the two single width floating point registers that make up
1605 the double width register. By default @samp{--construct-floats} is
1606 selected, allowing construction of these floating point constants.
1607
1608 @item --relax-branch
1609 @itemx --no-relax-branch
1610 The @samp{--relax-branch} option enables the relaxation of out-of-range
1611 branches. By default @samp{--no-relax-branch} is selected, causing any
1612 out-of-range branches to produce an error.
1613
1614 @item -mignore-branch-isa
1615 @itemx -mno-ignore-branch-isa
1616 Ignore branch checks for invalid transitions between ISA modes. The
1617 semantics of branches does not provide for an ISA mode switch, so in
1618 most cases the ISA mode a branch has been encoded for has to be the
1619 same as the ISA mode of the branch's target label. Therefore GAS has
1620 checks implemented that verify in branch assembly that the two ISA
1621 modes match. @samp{-mignore-branch-isa} disables these checks. By
1622 default @samp{-mno-ignore-branch-isa} is selected, causing any invalid
1623 branch requiring a transition between ISA modes to produce an error.
1624
1625 @item -mnan=@var{encoding}
1626 Select between the IEEE 754-2008 (@option{-mnan=2008}) or the legacy
1627 (@option{-mnan=legacy}) NaN encoding format. The latter is the default.
1628
1629 @cindex emulation
1630 @item --emulation=@var{name}
1631 This option was formerly used to switch between ELF and ECOFF output
1632 on targets like IRIX 5 that supported both. MIPS ECOFF support was
1633 removed in GAS 2.24, so the option now serves little purpose.
1634 It is retained for backwards compatibility.
1635
1636 The available configuration names are: @samp{mipself}, @samp{mipslelf} and
1637 @samp{mipsbelf}. Choosing @samp{mipself} now has no effect, since the output
1638 is always ELF. @samp{mipslelf} and @samp{mipsbelf} select little- and
1639 big-endian output respectively, but @samp{-EL} and @samp{-EB} are now the
1640 preferred options instead.
1641
1642 @item -nocpp
1643 @command{@value{AS}} ignores this option. It is accepted for compatibility with
1644 the native tools.
1645
1646 @item --trap
1647 @itemx --no-trap
1648 @itemx --break
1649 @itemx --no-break
1650 Control how to deal with multiplication overflow and division by zero.
1651 @samp{--trap} or @samp{--no-break} (which are synonyms) take a trap exception
1652 (and only work for Instruction Set Architecture level 2 and higher);
1653 @samp{--break} or @samp{--no-trap} (also synonyms, and the default) take a
1654 break exception.
1655
1656 @item -n
1657 When this option is used, @command{@value{AS}} will issue a warning every
1658 time it generates a nop instruction from a macro.
1659 @end table
1660 @c man end
1661 @end ifset
1662
1663 @ifset MCORE
1664 The following options are available when @value{AS} is configured for
1665 an MCore processor.
1666
1667 @table @gcctabopt
1668 @item -jsri2bsr
1669 @itemx -nojsri2bsr
1670 Enable or disable the JSRI to BSR transformation. By default this is enabled.
1671 The command-line option @samp{-nojsri2bsr} can be used to disable it.
1672
1673 @item -sifilter
1674 @itemx -nosifilter
1675 Enable or disable the silicon filter behaviour. By default this is disabled.
1676 The default can be overridden by the @samp{-sifilter} command-line option.
1677
1678 @item -relax
1679 Alter jump instructions for long displacements.
1680
1681 @item -mcpu=[210|340]
1682 Select the cpu type on the target hardware. This controls which instructions
1683 can be assembled.
1684
1685 @item -EB
1686 Assemble for a big endian target.
1687
1688 @item -EL
1689 Assemble for a little endian target.
1690
1691 @end table
1692 @end ifset
1693 @c man end
1694
1695 @ifset METAG
1696
1697 @ifclear man
1698 @xref{Meta Options}, for the options available when @value{AS} is configured
1699 for a Meta processor.
1700 @end ifclear
1701
1702 @ifset man
1703 @c man begin OPTIONS
1704 The following options are available when @value{AS} is configured for a
1705 Meta processor.
1706 @c man end
1707 @c man begin INCLUDE
1708 @include c-metag.texi
1709 @c ended inside the included file
1710 @end ifset
1711
1712 @end ifset
1713
1714 @c man begin OPTIONS
1715 @ifset MMIX
1716 See the info pages for documentation of the MMIX-specific options.
1717 @end ifset
1718
1719 @ifset NDS32
1720
1721 @ifclear man
1722 @xref{NDS32 Options}, for the options available when @value{AS} is configured
1723 for a NDS32 processor.
1724 @end ifclear
1725 @c ended inside the included file
1726 @end ifset
1727
1728 @ifset man
1729 @c man begin OPTIONS
1730 The following options are available when @value{AS} is configured for a
1731 NDS32 processor.
1732 @c man end
1733 @c man begin INCLUDE
1734 @include c-nds32.texi
1735 @c ended inside the included file
1736 @end ifset
1737
1738 @c man end
1739 @ifset PPC
1740
1741 @ifclear man
1742 @xref{PowerPC-Opts}, for the options available when @value{AS} is configured
1743 for a PowerPC processor.
1744 @end ifclear
1745
1746 @ifset man
1747 @c man begin OPTIONS
1748 The following options are available when @value{AS} is configured for a
1749 PowerPC processor.
1750 @c man end
1751 @c man begin INCLUDE
1752 @include c-ppc.texi
1753 @c ended inside the included file
1754 @end ifset
1755
1756 @end ifset
1757
1758 @ifset RISCV
1759
1760 @ifclear man
1761 @xref{RISC-V-Options}, for the options available when @value{AS} is configured
1762 for a RISC-V processor.
1763 @end ifclear
1764
1765 @ifset man
1766 @c man begin OPTIONS
1767 The following options are available when @value{AS} is configured for a
1768 RISC-V processor.
1769 @c man end
1770 @c man begin INCLUDE
1771 @include c-riscv.texi
1772 @c ended inside the included file
1773 @end ifset
1774
1775 @end ifset
1776
1777 @c man begin OPTIONS
1778 @ifset RX
1779 See the info pages for documentation of the RX-specific options.
1780 @end ifset
1781
1782 @ifset S390
1783 The following options are available when @value{AS} is configured for the s390
1784 processor family.
1785
1786 @table @gcctabopt
1787 @item -m31
1788 @itemx -m64
1789 Select the word size, either 31/32 bits or 64 bits.
1790 @item -mesa
1791 @item -mzarch
1792 Select the architecture mode, either the Enterprise System
1793 Architecture (esa) or the z/Architecture mode (zarch).
1794 @item -march=@var{processor}
1795 Specify which s390 processor variant is the target, @samp{g5} (or
1796 @samp{arch3}), @samp{g6}, @samp{z900} (or @samp{arch5}), @samp{z990} (or
1797 @samp{arch6}), @samp{z9-109}, @samp{z9-ec} (or @samp{arch7}), @samp{z10} (or
1798 @samp{arch8}), @samp{z196} (or @samp{arch9}), @samp{zEC12} (or @samp{arch10}),
1799 @samp{z13} (or @samp{arch11}), or @samp{z14} (or @samp{arch12}).
1800 @item -mregnames
1801 @itemx -mno-regnames
1802 Allow or disallow symbolic names for registers.
1803 @item -mwarn-areg-zero
1804 Warn whenever the operand for a base or index register has been specified
1805 but evaluates to zero.
1806 @end table
1807 @end ifset
1808 @c man end
1809
1810 @ifset TIC6X
1811
1812 @ifclear man
1813 @xref{TIC6X Options}, for the options available when @value{AS} is configured
1814 for a TMS320C6000 processor.
1815 @end ifclear
1816
1817 @ifset man
1818 @c man begin OPTIONS
1819 The following options are available when @value{AS} is configured for a
1820 TMS320C6000 processor.
1821 @c man end
1822 @c man begin INCLUDE
1823 @include c-tic6x.texi
1824 @c ended inside the included file
1825 @end ifset
1826
1827 @end ifset
1828
1829 @ifset TILEGX
1830
1831 @ifclear man
1832 @xref{TILE-Gx Options}, for the options available when @value{AS} is configured
1833 for a TILE-Gx processor.
1834 @end ifclear
1835
1836 @ifset man
1837 @c man begin OPTIONS
1838 The following options are available when @value{AS} is configured for a TILE-Gx
1839 processor.
1840 @c man end
1841 @c man begin INCLUDE
1842 @include c-tilegx.texi
1843 @c ended inside the included file
1844 @end ifset
1845
1846 @end ifset
1847
1848 @ifset VISIUM
1849
1850 @ifclear man
1851 @xref{Visium Options}, for the options available when @value{AS} is configured
1852 for a Visium processor.
1853 @end ifclear
1854
1855 @ifset man
1856 @c man begin OPTIONS
1857 The following option is available when @value{AS} is configured for a Visium
1858 processor.
1859 @c man end
1860 @c man begin INCLUDE
1861 @include c-visium.texi
1862 @c ended inside the included file
1863 @end ifset
1864
1865 @end ifset
1866
1867 @ifset XTENSA
1868
1869 @ifclear man
1870 @xref{Xtensa Options}, for the options available when @value{AS} is configured
1871 for an Xtensa processor.
1872 @end ifclear
1873
1874 @ifset man
1875 @c man begin OPTIONS
1876 The following options are available when @value{AS} is configured for an
1877 Xtensa processor.
1878 @c man end
1879 @c man begin INCLUDE
1880 @include c-xtensa.texi
1881 @c ended inside the included file
1882 @end ifset
1883
1884 @end ifset
1885
1886 @c man begin OPTIONS
1887
1888 @ifset Z80
1889 The following options are available when @value{AS} is configured for
1890 a Z80 family processor.
1891 @table @gcctabopt
1892 @item -z80
1893 Assemble for Z80 processor.
1894 @item -r800
1895 Assemble for R800 processor.
1896 @item -ignore-undocumented-instructions
1897 @itemx -Wnud
1898 Assemble undocumented Z80 instructions that also work on R800 without warning.
1899 @item -ignore-unportable-instructions
1900 @itemx -Wnup
1901 Assemble all undocumented Z80 instructions without warning.
1902 @item -warn-undocumented-instructions
1903 @itemx -Wud
1904 Issue a warning for undocumented Z80 instructions that also work on R800.
1905 @item -warn-unportable-instructions
1906 @itemx -Wup
1907 Issue a warning for undocumented Z80 instructions that do not work on R800.
1908 @item -forbid-undocumented-instructions
1909 @itemx -Fud
1910 Treat all undocumented instructions as errors.
1911 @item -forbid-unportable-instructions
1912 @itemx -Fup
1913 Treat undocumented Z80 instructions that do not work on R800 as errors.
1914 @end table
1915 @end ifset
1916
1917 @c man end
1918
1919 @menu
1920 * Manual:: Structure of this Manual
1921 * GNU Assembler:: The GNU Assembler
1922 * Object Formats:: Object File Formats
1923 * Command Line:: Command Line
1924 * Input Files:: Input Files
1925 * Object:: Output (Object) File
1926 * Errors:: Error and Warning Messages
1927 @end menu
1928
1929 @node Manual
1930 @section Structure of this Manual
1931
1932 @cindex manual, structure and purpose
1933 This manual is intended to describe what you need to know to use
1934 @sc{gnu} @command{@value{AS}}. We cover the syntax expected in source files, including
1935 notation for symbols, constants, and expressions; the directives that
1936 @command{@value{AS}} understands; and of course how to invoke @command{@value{AS}}.
1937
1938 @ifclear GENERIC
1939 We also cover special features in the @value{TARGET}
1940 configuration of @command{@value{AS}}, including assembler directives.
1941 @end ifclear
1942 @ifset GENERIC
1943 This manual also describes some of the machine-dependent features of
1944 various flavors of the assembler.
1945 @end ifset
1946
1947 @cindex machine instructions (not covered)
1948 On the other hand, this manual is @emph{not} intended as an introduction
1949 to programming in assembly language---let alone programming in general!
1950 In a similar vein, we make no attempt to introduce the machine
1951 architecture; we do @emph{not} describe the instruction set, standard
1952 mnemonics, registers or addressing modes that are standard to a
1953 particular architecture.
1954 @ifset GENERIC
1955 You may want to consult the manufacturer's
1956 machine architecture manual for this information.
1957 @end ifset
1958 @ifclear GENERIC
1959 @ifset H8/300
1960 For information on the H8/300 machine instruction set, see @cite{H8/300
1961 Series Programming Manual}. For the H8/300H, see @cite{H8/300H Series
1962 Programming Manual} (Renesas).
1963 @end ifset
1964 @ifset SH
1965 For information on the Renesas (formerly Hitachi) / SuperH SH machine instruction set,
1966 see @cite{SH-Microcomputer User's Manual} (Renesas) or
1967 @cite{SH-4 32-bit CPU Core Architecture} (SuperH) and
1968 @cite{SuperH (SH) 64-Bit RISC Series} (SuperH).
1969 @end ifset
1970 @ifset Z8000
1971 For information on the Z8000 machine instruction set, see @cite{Z8000 CPU Technical Manual}
1972 @end ifset
1973 @end ifclear
1974
1975 @c I think this is premature---doc@cygnus.com, 17jan1991
1976 @ignore
1977 Throughout this manual, we assume that you are running @dfn{GNU},
1978 the portable operating system from the @dfn{Free Software
1979 Foundation, Inc.}. This restricts our attention to certain kinds of
1980 computer (in particular, the kinds of computers that @sc{gnu} can run on);
1981 once this assumption is granted examples and definitions need less
1982 qualification.
1983
1984 @command{@value{AS}} is part of a team of programs that turn a high-level
1985 human-readable series of instructions into a low-level
1986 computer-readable series of instructions. Different versions of
1987 @command{@value{AS}} are used for different kinds of computer.
1988 @end ignore
1989
1990 @c There used to be a section "Terminology" here, which defined
1991 @c "contents", "byte", "word", and "long". Defining "word" to any
1992 @c particular size is confusing when the .word directive may generate 16
1993 @c bits on one machine and 32 bits on another; in general, for the user
1994 @c version of this manual, none of these terms seem essential to define.
1995 @c They were used very little even in the former draft of the manual;
1996 @c this draft makes an effort to avoid them (except in names of
1997 @c directives).
1998
1999 @node GNU Assembler
2000 @section The GNU Assembler
2001
2002 @c man begin DESCRIPTION
2003
2004 @sc{gnu} @command{as} is really a family of assemblers.
2005 @ifclear GENERIC
2006 This manual describes @command{@value{AS}}, a member of that family which is
2007 configured for the @value{TARGET} architectures.
2008 @end ifclear
2009 If you use (or have used) the @sc{gnu} assembler on one architecture, you
2010 should find a fairly similar environment when you use it on another
2011 architecture. Each version has much in common with the others,
2012 including object file formats, most assembler directives (often called
2013 @dfn{pseudo-ops}) and assembler syntax.@refill
2014
2015 @cindex purpose of @sc{gnu} assembler
2016 @command{@value{AS}} is primarily intended to assemble the output of the
2017 @sc{gnu} C compiler @code{@value{GCC}} for use by the linker
2018 @code{@value{LD}}. Nevertheless, we've tried to make @command{@value{AS}}
2019 assemble correctly everything that other assemblers for the same
2020 machine would assemble.
2021 @ifset VAX
2022 Any exceptions are documented explicitly (@pxref{Machine Dependencies}).
2023 @end ifset
2024 @ifset M680X0
2025 @c This remark should appear in generic version of manual; assumption
2026 @c here is that generic version sets M680x0.
2027 This doesn't mean @command{@value{AS}} always uses the same syntax as another
2028 assembler for the same architecture; for example, we know of several
2029 incompatible versions of 680x0 assembly language syntax.
2030 @end ifset
2031
2032 @c man end
2033
2034 Unlike older assemblers, @command{@value{AS}} is designed to assemble a source
2035 program in one pass of the source file. This has a subtle impact on the
2036 @kbd{.org} directive (@pxref{Org,,@code{.org}}).
2037
2038 @node Object Formats
2039 @section Object File Formats
2040
2041 @cindex object file format
2042 The @sc{gnu} assembler can be configured to produce several alternative
2043 object file formats. For the most part, this does not affect how you
2044 write assembly language programs; but directives for debugging symbols
2045 are typically different in different file formats. @xref{Symbol
2046 Attributes,,Symbol Attributes}.
2047 @ifclear GENERIC
2048 @ifclear MULTI-OBJ
2049 For the @value{TARGET} target, @command{@value{AS}} is configured to produce
2050 @value{OBJ-NAME} format object files.
2051 @end ifclear
2052 @c The following should exhaust all configs that set MULTI-OBJ, ideally
2053 @ifset HPPA
2054 On the @value{TARGET}, @command{@value{AS}} can be configured to produce either
2055 SOM or ELF format object files.
2056 @end ifset
2057 @end ifclear
2058
2059 @node Command Line
2060 @section Command Line
2061
2062 @cindex command line conventions
2063
2064 After the program name @command{@value{AS}}, the command line may contain
2065 options and file names. Options may appear in any order, and may be
2066 before, after, or between file names. The order of file names is
2067 significant.
2068
2069 @cindex standard input, as input file
2070 @kindex --
2071 @file{--} (two hyphens) by itself names the standard input file
2072 explicitly, as one of the files for @command{@value{AS}} to assemble.
2073
2074 @cindex options, command line
2075 Except for @samp{--} any command-line argument that begins with a
2076 hyphen (@samp{-}) is an option. Each option changes the behavior of
2077 @command{@value{AS}}. No option changes the way another option works. An
2078 option is a @samp{-} followed by one or more letters; the case of
2079 the letter is important. All options are optional.
2080
2081 Some options expect exactly one file name to follow them. The file
2082 name may either immediately follow the option's letter (compatible
2083 with older assemblers) or it may be the next command argument (@sc{gnu}
2084 standard). These two command lines are equivalent:
2085
2086 @smallexample
2087 @value{AS} -o my-object-file.o mumble.s
2088 @value{AS} -omy-object-file.o mumble.s
2089 @end smallexample
2090
2091 @node Input Files
2092 @section Input Files
2093
2094 @cindex input
2095 @cindex source program
2096 @cindex files, input
2097 We use the phrase @dfn{source program}, abbreviated @dfn{source}, to
2098 describe the program input to one run of @command{@value{AS}}. The program may
2099 be in one or more files; how the source is partitioned into files
2100 doesn't change the meaning of the source.
2101
2102 @c I added "con" prefix to "catenation" just to prove I can overcome my
2103 @c APL training... doc@cygnus.com
2104 The source program is a concatenation of the text in all the files, in the
2105 order specified.
2106
2107 @c man begin DESCRIPTION
2108 Each time you run @command{@value{AS}} it assembles exactly one source
2109 program. The source program is made up of one or more files.
2110 (The standard input is also a file.)
2111
2112 You give @command{@value{AS}} a command line that has zero or more input file
2113 names. The input files are read (from left file name to right). A
2114 command-line argument (in any position) that has no special meaning
2115 is taken to be an input file name.
2116
2117 If you give @command{@value{AS}} no file names it attempts to read one input file
2118 from the @command{@value{AS}} standard input, which is normally your terminal. You
2119 may have to type @key{ctl-D} to tell @command{@value{AS}} there is no more program
2120 to assemble.
2121
2122 Use @samp{--} if you need to explicitly name the standard input file
2123 in your command line.
2124
2125 If the source is empty, @command{@value{AS}} produces a small, empty object
2126 file.
2127
2128 @c man end
2129
2130 @subheading Filenames and Line-numbers
2131
2132 @cindex input file linenumbers
2133 @cindex line numbers, in input files
2134 There are two ways of locating a line in the input file (or files) and
2135 either may be used in reporting error messages. One way refers to a line
2136 number in a physical file; the other refers to a line number in a
2137 ``logical'' file. @xref{Errors, ,Error and Warning Messages}.
2138
2139 @dfn{Physical files} are those files named in the command line given
2140 to @command{@value{AS}}.
2141
2142 @dfn{Logical files} are simply names declared explicitly by assembler
2143 directives; they bear no relation to physical files. Logical file names help
2144 error messages reflect the original source file, when @command{@value{AS}} source
2145 is itself synthesized from other files. @command{@value{AS}} understands the
2146 @samp{#} directives emitted by the @code{@value{GCC}} preprocessor. See also
2147 @ref{File,,@code{.file}}.
2148
2149 @node Object
2150 @section Output (Object) File
2151
2152 @cindex object file
2153 @cindex output file
2154 @kindex a.out
2155 @kindex .o
2156 Every time you run @command{@value{AS}} it produces an output file, which is
2157 your assembly language program translated into numbers. This file
2158 is the object file. Its default name is @code{a.out}.
2159 You can give it another name by using the @option{-o} option. Conventionally,
2160 object file names end with @file{.o}. The default name is used for historical
2161 reasons: older assemblers were capable of assembling self-contained programs
2162 directly into a runnable program. (For some formats, this isn't currently
2163 possible, but it can be done for the @code{a.out} format.)
2164
2165 @cindex linker
2166 @kindex ld
2167 The object file is meant for input to the linker @code{@value{LD}}. It contains
2168 assembled program code, information to help @code{@value{LD}} integrate
2169 the assembled program into a runnable file, and (optionally) symbolic
2170 information for the debugger.
2171
2172 @c link above to some info file(s) like the description of a.out.
2173 @c don't forget to describe @sc{gnu} info as well as Unix lossage.
2174
2175 @node Errors
2176 @section Error and Warning Messages
2177
2178 @c man begin DESCRIPTION
2179
2180 @cindex error messages
2181 @cindex warning messages
2182 @cindex messages from assembler
2183 @command{@value{AS}} may write warnings and error messages to the standard error
2184 file (usually your terminal). This should not happen when a compiler
2185 runs @command{@value{AS}} automatically. Warnings report an assumption made so
2186 that @command{@value{AS}} could keep assembling a flawed program; errors report a
2187 grave problem that stops the assembly.
2188
2189 @c man end
2190
2191 @cindex format of warning messages
2192 Warning messages have the format
2193
2194 @smallexample
2195 file_name:@b{NNN}:Warning Message Text
2196 @end smallexample
2197
2198 @noindent
2199 @cindex file names and line numbers, in warnings/errors
2200 (where @b{NNN} is a line number). If both a logical file name
2201 (@pxref{File,,@code{.file}}) and a logical line number
2202 @ifset GENERIC
2203 (@pxref{Line,,@code{.line}})
2204 @end ifset
2205 have been given then they will be used, otherwise the file name and line number
2206 in the current assembler source file will be used. The message text is
2207 intended to be self explanatory (in the grand Unix tradition).
2208
2209 Note the file name must be set via the logical version of the @code{.file}
2210 directive, not the DWARF2 version of the @code{.file} directive. For example:
2211
2212 @smallexample
2213 .file 2 "bar.c"
2214 error_assembler_source
2215 .file "foo.c"
2216 .line 30
2217 error_c_source
2218 @end smallexample
2219
2220 produces this output:
2221
2222 @smallexample
2223 Assembler messages:
2224 asm.s:2: Error: no such instruction: `error_assembler_source'
2225 foo.c:31: Error: no such instruction: `error_c_source'
2226 @end smallexample
2227
2228 @cindex format of error messages
2229 Error messages have the format
2230
2231 @smallexample
2232 file_name:@b{NNN}:FATAL:Error Message Text
2233 @end smallexample
2234
2235 The file name and line number are derived as for warning
2236 messages. The actual message text may be rather less explanatory
2237 because many of them aren't supposed to happen.
2238
2239 @node Invoking
2240 @chapter Command-Line Options
2241
2242 @cindex options, all versions of assembler
2243 This chapter describes command-line options available in @emph{all}
2244 versions of the @sc{gnu} assembler; see @ref{Machine Dependencies},
2245 for options specific
2246 @ifclear GENERIC
2247 to the @value{TARGET} target.
2248 @end ifclear
2249 @ifset GENERIC
2250 to particular machine architectures.
2251 @end ifset
2252
2253 @c man begin DESCRIPTION
2254
2255 If you are invoking @command{@value{AS}} via the @sc{gnu} C compiler,
2256 you can use the @samp{-Wa} option to pass arguments through to the assembler.
2257 The assembler arguments must be separated from each other (and the @samp{-Wa})
2258 by commas. For example:
2259
2260 @smallexample
2261 gcc -c -g -O -Wa,-alh,-L file.c
2262 @end smallexample
2263
2264 @noindent
2265 This passes two options to the assembler: @samp{-alh} (emit a listing to
2266 standard output with high-level and assembly source) and @samp{-L} (retain
2267 local symbols in the symbol table).
2268
2269 Usually you do not need to use this @samp{-Wa} mechanism, since many compiler
2270 command-line options are automatically passed to the assembler by the compiler.
2271 (You can call the @sc{gnu} compiler driver with the @samp{-v} option to see
2272 precisely what options it passes to each compilation pass, including the
2273 assembler.)
2274
2275 @c man end
2276
2277 @menu
2278 * a:: -a[cdghlns] enable listings
2279 * alternate:: --alternate enable alternate macro syntax
2280 * D:: -D for compatibility
2281 * f:: -f to work faster
2282 * I:: -I for .include search path
2283 @ifclear DIFF-TBL-KLUGE
2284 * K:: -K for compatibility
2285 @end ifclear
2286 @ifset DIFF-TBL-KLUGE
2287 * K:: -K for difference tables
2288 @end ifset
2289
2290 * L:: -L to retain local symbols
2291 * listing:: --listing-XXX to configure listing output
2292 * M:: -M or --mri to assemble in MRI compatibility mode
2293 * MD:: --MD for dependency tracking
2294 * no-pad-sections:: --no-pad-sections to stop section padding
2295 * o:: -o to name the object file
2296 * R:: -R to join data and text sections
2297 * statistics:: --statistics to see statistics about assembly
2298 * traditional-format:: --traditional-format for compatible output
2299 * v:: -v to announce version
2300 * W:: -W, --no-warn, --warn, --fatal-warnings to control warnings
2301 * Z:: -Z to make object file even after errors
2302 @end menu
2303
2304 @node a
2305 @section Enable Listings: @option{-a[cdghlns]}
2306
2307 @kindex -a
2308 @kindex -ac
2309 @kindex -ad
2310 @kindex -ag
2311 @kindex -ah
2312 @kindex -al
2313 @kindex -an
2314 @kindex -as
2315 @cindex listings, enabling
2316 @cindex assembly listings, enabling
2317
2318 These options enable listing output from the assembler. By itself,
2319 @samp{-a} requests high-level, assembly, and symbols listing.
2320 You can use other letters to select specific options for the list:
2321 @samp{-ah} requests a high-level language listing,
2322 @samp{-al} requests an output-program assembly listing, and
2323 @samp{-as} requests a symbol table listing.
2324 High-level listings require that a compiler debugging option like
2325 @samp{-g} be used, and that assembly listings (@samp{-al}) be requested
2326 also.
2327
2328 Use the @samp{-ag} option to print a first section with general assembly
2329 information, like @value{AS} version, switches passed, or time stamp.
2330
2331 Use the @samp{-ac} option to omit false conditionals from a listing. Any lines
2332 which are not assembled because of a false @code{.if} (or @code{.ifdef}, or any
2333 other conditional), or a true @code{.if} followed by an @code{.else}, will be
2334 omitted from the listing.
2335
2336 Use the @samp{-ad} option to omit debugging directives from the
2337 listing.
2338
2339 Once you have specified one of these options, you can further control
2340 listing output and its appearance using the directives @code{.list},
2341 @code{.nolist}, @code{.psize}, @code{.eject}, @code{.title}, and
2342 @code{.sbttl}.
2343 The @samp{-an} option turns off all forms processing.
2344 If you do not request listing output with one of the @samp{-a} options, the
2345 listing-control directives have no effect.
2346
2347 The letters after @samp{-a} may be combined into one option,
2348 @emph{e.g.}, @samp{-aln}.
2349
2350 Note if the assembler source is coming from the standard input (e.g.,
2351 because it
2352 is being created by @code{@value{GCC}} and the @samp{-pipe} command-line switch
2353 is being used) then the listing will not contain any comments or preprocessor
2354 directives. This is because the listing code buffers input source lines from
2355 stdin only after they have been preprocessed by the assembler. This reduces
2356 memory usage and makes the code more efficient.
2357
2358 @node alternate
2359 @section @option{--alternate}
2360
2361 @kindex --alternate
2362 Begin in alternate macro mode, see @ref{Altmacro,,@code{.altmacro}}.
2363
2364 @node D
2365 @section @option{-D}
2366
2367 @kindex -D
2368 This option has no effect whatsoever, but it is accepted to make it more
2369 likely that scripts written for other assemblers also work with
2370 @command{@value{AS}}.
2371
2372 @node f
2373 @section Work Faster: @option{-f}
2374
2375 @kindex -f
2376 @cindex trusted compiler
2377 @cindex faster processing (@option{-f})
2378 @samp{-f} should only be used when assembling programs written by a
2379 (trusted) compiler. @samp{-f} stops the assembler from doing whitespace
2380 and comment preprocessing on
2381 the input file(s) before assembling them. @xref{Preprocessing,
2382 ,Preprocessing}.
2383
2384 @quotation
2385 @emph{Warning:} if you use @samp{-f} when the files actually need to be
2386 preprocessed (if they contain comments, for example), @command{@value{AS}} does
2387 not work correctly.
2388 @end quotation
2389
2390 @node I
2391 @section @code{.include} Search Path: @option{-I} @var{path}
2392
2393 @kindex -I @var{path}
2394 @cindex paths for @code{.include}
2395 @cindex search path for @code{.include}
2396 @cindex @code{include} directive search path
2397 Use this option to add a @var{path} to the list of directories
2398 @command{@value{AS}} searches for files specified in @code{.include}
2399 directives (@pxref{Include,,@code{.include}}). You may use @option{-I} as
2400 many times as necessary to include a variety of paths. The current
2401 working directory is always searched first; after that, @command{@value{AS}}
2402 searches any @samp{-I} directories in the same order as they were
2403 specified (left to right) on the command line.
2404
2405 @node K
2406 @section Difference Tables: @option{-K}
2407
2408 @kindex -K
2409 @ifclear DIFF-TBL-KLUGE
2410 On the @value{TARGET} family, this option is allowed, but has no effect. It is
2411 permitted for compatibility with the @sc{gnu} assembler on other platforms,
2412 where it can be used to warn when the assembler alters the machine code
2413 generated for @samp{.word} directives in difference tables. The @value{TARGET}
2414 family does not have the addressing limitations that sometimes lead to this
2415 alteration on other platforms.
2416 @end ifclear
2417
2418 @ifset DIFF-TBL-KLUGE
2419 @cindex difference tables, warning
2420 @cindex warning for altered difference tables
2421 @command{@value{AS}} sometimes alters the code emitted for directives of the
2422 form @samp{.word @var{sym1}-@var{sym2}}. @xref{Word,,@code{.word}}.
2423 You can use the @samp{-K} option if you want a warning issued when this
2424 is done.
2425 @end ifset
2426
2427 @node L
2428 @section Include Local Symbols: @option{-L}
2429
2430 @kindex -L
2431 @cindex local symbols, retaining in output
2432 Symbols beginning with system-specific local label prefixes, typically
2433 @samp{.L} for ELF systems or @samp{L} for traditional a.out systems, are
2434 called @dfn{local symbols}. @xref{Symbol Names}. Normally you do not see
2435 such symbols when debugging, because they are intended for the use of
2436 programs (like compilers) that compose assembler programs, not for your
2437 notice. Normally both @command{@value{AS}} and @code{@value{LD}} discard
2438 such symbols, so you do not normally debug with them.
2439
2440 This option tells @command{@value{AS}} to retain those local symbols
2441 in the object file. Usually if you do this you also tell the linker
2442 @code{@value{LD}} to preserve those symbols.
2443
2444 @node listing
2445 @section Configuring listing output: @option{--listing}
2446
2447 The listing feature of the assembler can be enabled via the command-line switch
2448 @samp{-a} (@pxref{a}). This feature combines the input source file(s) with a
2449 hex dump of the corresponding locations in the output object file, and displays
2450 them as a listing file. The format of this listing can be controlled by
2451 directives inside the assembler source (i.e., @code{.list} (@pxref{List}),
2452 @code{.title} (@pxref{Title}), @code{.sbttl} (@pxref{Sbttl}),
2453 @code{.psize} (@pxref{Psize}), and
2454 @code{.eject} (@pxref{Eject}) and also by the following switches:
2455
2456 @table @gcctabopt
2457 @item --listing-lhs-width=@samp{number}
2458 @kindex --listing-lhs-width
2459 @cindex Width of first line disassembly output
2460 Sets the maximum width, in words, of the first line of the hex byte dump. This
2461 dump appears on the left hand side of the listing output.
2462
2463 @item --listing-lhs-width2=@samp{number}
2464 @kindex --listing-lhs-width2
2465 @cindex Width of continuation lines of disassembly output
2466 Sets the maximum width, in words, of any further lines of the hex byte dump for
2467 a given input source line. If this value is not specified, it defaults to being
2468 the same as the value specified for @samp{--listing-lhs-width}. If neither
2469 switch is used the default is to one.
2470
2471 @item --listing-rhs-width=@samp{number}
2472 @kindex --listing-rhs-width
2473 @cindex Width of source line output
2474 Sets the maximum width, in characters, of the source line that is displayed
2475 alongside the hex dump. The default value for this parameter is 100. The
2476 source line is displayed on the right hand side of the listing output.
2477
2478 @item --listing-cont-lines=@samp{number}
2479 @kindex --listing-cont-lines
2480 @cindex Maximum number of continuation lines
2481 Sets the maximum number of continuation lines of hex dump that will be
2482 displayed for a given single line of source input. The default value is 4.
2483 @end table
2484
2485 @node M
2486 @section Assemble in MRI Compatibility Mode: @option{-M}
2487
2488 @kindex -M
2489 @cindex MRI compatibility mode
2490 The @option{-M} or @option{--mri} option selects MRI compatibility mode. This
2491 changes the syntax and pseudo-op handling of @command{@value{AS}} to make it
2492 compatible with the @code{ASM68K} assembler from Microtec Research.
2493 The exact nature of the
2494 MRI syntax will not be documented here; see the MRI manuals for more
2495 information. Note in particular that the handling of macros and macro
2496 arguments is somewhat different. The purpose of this option is to permit
2497 assembling existing MRI assembler code using @command{@value{AS}}.
2498
2499 The MRI compatibility is not complete. Certain operations of the MRI assembler
2500 depend upon its object file format, and can not be supported using other object
2501 file formats. Supporting these would require enhancing each object file format
2502 individually. These are:
2503
2504 @itemize @bullet
2505 @item global symbols in common section
2506
2507 The m68k MRI assembler supports common sections which are merged by the linker.
2508 Other object file formats do not support this. @command{@value{AS}} handles
2509 common sections by treating them as a single common symbol. It permits local
2510 symbols to be defined within a common section, but it can not support global
2511 symbols, since it has no way to describe them.
2512
2513 @item complex relocations
2514
2515 The MRI assemblers support relocations against a negated section address, and
2516 relocations which combine the start addresses of two or more sections. These
2517 are not support by other object file formats.
2518
2519 @item @code{END} pseudo-op specifying start address
2520
2521 The MRI @code{END} pseudo-op permits the specification of a start address.
2522 This is not supported by other object file formats. The start address may
2523 instead be specified using the @option{-e} option to the linker, or in a linker
2524 script.
2525
2526 @item @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops
2527
2528 The MRI @code{IDNT}, @code{.ident} and @code{NAME} pseudo-ops assign a module
2529 name to the output file. This is not supported by other object file formats.
2530
2531 @item @code{ORG} pseudo-op
2532
2533 The m68k MRI @code{ORG} pseudo-op begins an absolute section at a given
2534 address. This differs from the usual @command{@value{AS}} @code{.org} pseudo-op,
2535 which changes the location within the current section. Absolute sections are
2536 not supported by other object file formats. The address of a section may be
2537 assigned within a linker script.
2538 @end itemize
2539
2540 There are some other features of the MRI assembler which are not supported by
2541 @command{@value{AS}}, typically either because they are difficult or because they
2542 seem of little consequence. Some of these may be supported in future releases.
2543
2544 @itemize @bullet
2545
2546 @item EBCDIC strings
2547
2548 EBCDIC strings are not supported.
2549
2550 @item packed binary coded decimal
2551
2552 Packed binary coded decimal is not supported. This means that the @code{DC.P}
2553 and @code{DCB.P} pseudo-ops are not supported.
2554
2555 @item @code{FEQU} pseudo-op
2556
2557 The m68k @code{FEQU} pseudo-op is not supported.
2558
2559 @item @code{NOOBJ} pseudo-op
2560
2561 The m68k @code{NOOBJ} pseudo-op is not supported.
2562
2563 @item @code{OPT} branch control options
2564
2565 The m68k @code{OPT} branch control options---@code{B}, @code{BRS}, @code{BRB},
2566 @code{BRL}, and @code{BRW}---are ignored. @command{@value{AS}} automatically
2567 relaxes all branches, whether forward or backward, to an appropriate size, so
2568 these options serve no purpose.
2569
2570 @item @code{OPT} list control options
2571
2572 The following m68k @code{OPT} list control options are ignored: @code{C},
2573 @code{CEX}, @code{CL}, @code{CRE}, @code{E}, @code{G}, @code{I}, @code{M},
2574 @code{MEX}, @code{MC}, @code{MD}, @code{X}.
2575
2576 @item other @code{OPT} options
2577
2578 The following m68k @code{OPT} options are ignored: @code{NEST}, @code{O},
2579 @code{OLD}, @code{OP}, @code{P}, @code{PCO}, @code{PCR}, @code{PCS}, @code{R}.
2580
2581 @item @code{OPT} @code{D} option is default
2582
2583 The m68k @code{OPT} @code{D} option is the default, unlike the MRI assembler.
2584 @code{OPT NOD} may be used to turn it off.
2585
2586 @item @code{XREF} pseudo-op.
2587
2588 The m68k @code{XREF} pseudo-op is ignored.
2589
2590 @end itemize
2591
2592 @node MD
2593 @section Dependency Tracking: @option{--MD}
2594
2595 @kindex --MD
2596 @cindex dependency tracking
2597 @cindex make rules
2598
2599 @command{@value{AS}} can generate a dependency file for the file it creates. This
2600 file consists of a single rule suitable for @code{make} describing the
2601 dependencies of the main source file.
2602
2603 The rule is written to the file named in its argument.
2604
2605 This feature is used in the automatic updating of makefiles.
2606
2607 @node no-pad-sections
2608 @section Output Section Padding
2609 @kindex --no-pad-sections
2610 @cindex output section padding
2611 Normally the assembler will pad the end of each output section up to its
2612 alignment boundary. But this can waste space, which can be significant on
2613 memory constrained targets. So the @option{--no-pad-sections} option will
2614 disable this behaviour.
2615
2616 @node o
2617 @section Name the Object File: @option{-o}
2618
2619 @kindex -o
2620 @cindex naming object file
2621 @cindex object file name
2622 There is always one object file output when you run @command{@value{AS}}. By
2623 default it has the name @file{a.out}.
2624 You use this option (which takes exactly one filename) to give the
2625 object file a different name.
2626
2627 Whatever the object file is called, @command{@value{AS}} overwrites any
2628 existing file of the same name.
2629
2630 @node R
2631 @section Join Data and Text Sections: @option{-R}
2632
2633 @kindex -R
2634 @cindex data and text sections, joining
2635 @cindex text and data sections, joining
2636 @cindex joining text and data sections
2637 @cindex merging text and data sections
2638 @option{-R} tells @command{@value{AS}} to write the object file as if all
2639 data-section data lives in the text section. This is only done at
2640 the very last moment: your binary data are the same, but data
2641 section parts are relocated differently. The data section part of
2642 your object file is zero bytes long because all its bytes are
2643 appended to the text section. (@xref{Sections,,Sections and Relocation}.)
2644
2645 When you specify @option{-R} it would be possible to generate shorter
2646 address displacements (because we do not have to cross between text and
2647 data section). We refrain from doing this simply for compatibility with
2648 older versions of @command{@value{AS}}. In future, @option{-R} may work this way.
2649
2650 @ifset COFF-ELF
2651 When @command{@value{AS}} is configured for COFF or ELF output,
2652 this option is only useful if you use sections named @samp{.text} and
2653 @samp{.data}.
2654 @end ifset
2655
2656 @ifset HPPA
2657 @option{-R} is not supported for any of the HPPA targets. Using
2658 @option{-R} generates a warning from @command{@value{AS}}.
2659 @end ifset
2660
2661 @node statistics
2662 @section Display Assembly Statistics: @option{--statistics}
2663
2664 @kindex --statistics
2665 @cindex statistics, about assembly
2666 @cindex time, total for assembly
2667 @cindex space used, maximum for assembly
2668 Use @samp{--statistics} to display two statistics about the resources used by
2669 @command{@value{AS}}: the maximum amount of space allocated during the assembly
2670 (in bytes), and the total execution time taken for the assembly (in @sc{cpu}
2671 seconds).
2672
2673 @node traditional-format
2674 @section Compatible Output: @option{--traditional-format}
2675
2676 @kindex --traditional-format
2677 For some targets, the output of @command{@value{AS}} is different in some ways
2678 from the output of some existing assembler. This switch requests
2679 @command{@value{AS}} to use the traditional format instead.
2680
2681 For example, it disables the exception frame optimizations which
2682 @command{@value{AS}} normally does by default on @code{@value{GCC}} output.
2683
2684 @node v
2685 @section Announce Version: @option{-v}
2686
2687 @kindex -v
2688 @kindex -version
2689 @cindex assembler version
2690 @cindex version of assembler
2691 You can find out what version of as is running by including the
2692 option @samp{-v} (which you can also spell as @samp{-version}) on the
2693 command line.
2694
2695 @node W
2696 @section Control Warnings: @option{-W}, @option{--warn}, @option{--no-warn}, @option{--fatal-warnings}
2697
2698 @command{@value{AS}} should never give a warning or error message when
2699 assembling compiler output. But programs written by people often
2700 cause @command{@value{AS}} to give a warning that a particular assumption was
2701 made. All such warnings are directed to the standard error file.
2702
2703 @kindex -W
2704 @kindex --no-warn
2705 @cindex suppressing warnings
2706 @cindex warnings, suppressing
2707 If you use the @option{-W} and @option{--no-warn} options, no warnings are issued.
2708 This only affects the warning messages: it does not change any particular of
2709 how @command{@value{AS}} assembles your file. Errors, which stop the assembly,
2710 are still reported.
2711
2712 @kindex --fatal-warnings
2713 @cindex errors, caused by warnings
2714 @cindex warnings, causing error
2715 If you use the @option{--fatal-warnings} option, @command{@value{AS}} considers
2716 files that generate warnings to be in error.
2717
2718 @kindex --warn
2719 @cindex warnings, switching on
2720 You can switch these options off again by specifying @option{--warn}, which
2721 causes warnings to be output as usual.
2722
2723 @node Z
2724 @section Generate Object File in Spite of Errors: @option{-Z}
2725 @cindex object file, after errors
2726 @cindex errors, continuing after
2727 After an error message, @command{@value{AS}} normally produces no output. If for
2728 some reason you are interested in object file output even after
2729 @command{@value{AS}} gives an error message on your program, use the @samp{-Z}
2730 option. If there are any errors, @command{@value{AS}} continues anyways, and
2731 writes an object file after a final warning message of the form @samp{@var{n}
2732 errors, @var{m} warnings, generating bad object file.}
2733
2734 @node Syntax
2735 @chapter Syntax
2736
2737 @cindex machine-independent syntax
2738 @cindex syntax, machine-independent
2739 This chapter describes the machine-independent syntax allowed in a
2740 source file. @command{@value{AS}} syntax is similar to what many other
2741 assemblers use; it is inspired by the BSD 4.2
2742 @ifclear VAX
2743 assembler.
2744 @end ifclear
2745 @ifset VAX
2746 assembler, except that @command{@value{AS}} does not assemble Vax bit-fields.
2747 @end ifset
2748
2749 @menu
2750 * Preprocessing:: Preprocessing
2751 * Whitespace:: Whitespace
2752 * Comments:: Comments
2753 * Symbol Intro:: Symbols
2754 * Statements:: Statements
2755 * Constants:: Constants
2756 @end menu
2757
2758 @node Preprocessing
2759 @section Preprocessing
2760
2761 @cindex preprocessing
2762 The @command{@value{AS}} internal preprocessor:
2763 @itemize @bullet
2764 @cindex whitespace, removed by preprocessor
2765 @item
2766 adjusts and removes extra whitespace. It leaves one space or tab before
2767 the keywords on a line, and turns any other whitespace on the line into
2768 a single space.
2769
2770 @cindex comments, removed by preprocessor
2771 @item
2772 removes all comments, replacing them with a single space, or an
2773 appropriate number of newlines.
2774
2775 @cindex constants, converted by preprocessor
2776 @item
2777 converts character constants into the appropriate numeric values.
2778 @end itemize
2779
2780 It does not do macro processing, include file handling, or
2781 anything else you may get from your C compiler's preprocessor. You can
2782 do include file processing with the @code{.include} directive
2783 (@pxref{Include,,@code{.include}}). You can use the @sc{gnu} C compiler driver
2784 to get other ``CPP'' style preprocessing by giving the input file a
2785 @samp{.S} suffix. @xref{Overall Options, ,Options Controlling the Kind of
2786 Output, gcc info, Using GNU CC}.
2787
2788 Excess whitespace, comments, and character constants
2789 cannot be used in the portions of the input text that are not
2790 preprocessed.
2791
2792 @cindex turning preprocessing on and off
2793 @cindex preprocessing, turning on and off
2794 @kindex #NO_APP
2795 @kindex #APP
2796 If the first line of an input file is @code{#NO_APP} or if you use the
2797 @samp{-f} option, whitespace and comments are not removed from the input file.
2798 Within an input file, you can ask for whitespace and comment removal in
2799 specific portions of the by putting a line that says @code{#APP} before the
2800 text that may contain whitespace or comments, and putting a line that says
2801 @code{#NO_APP} after this text. This feature is mainly intend to support
2802 @code{asm} statements in compilers whose output is otherwise free of comments
2803 and whitespace.
2804
2805 @node Whitespace
2806 @section Whitespace
2807
2808 @cindex whitespace
2809 @dfn{Whitespace} is one or more blanks or tabs, in any order.
2810 Whitespace is used to separate symbols, and to make programs neater for
2811 people to read. Unless within character constants
2812 (@pxref{Characters,,Character Constants}), any whitespace means the same
2813 as exactly one space.
2814
2815 @node Comments
2816 @section Comments
2817
2818 @cindex comments
2819 There are two ways of rendering comments to @command{@value{AS}}. In both
2820 cases the comment is equivalent to one space.
2821
2822 Anything from @samp{/*} through the next @samp{*/} is a comment.
2823 This means you may not nest these comments.
2824
2825 @smallexample
2826 /*
2827 The only way to include a newline ('\n') in a comment
2828 is to use this sort of comment.
2829 */
2830
2831 /* This sort of comment does not nest. */
2832 @end smallexample
2833
2834 @cindex line comment character
2835 Anything from a @dfn{line comment} character up to the next newline is
2836 considered a comment and is ignored. The line comment character is target
2837 specific, and some targets multiple comment characters. Some targets also have
2838 line comment characters that only work if they are the first character on a
2839 line. Some targets use a sequence of two characters to introduce a line
2840 comment. Some targets can also change their line comment characters depending
2841 upon command-line options that have been used. For more details see the
2842 @emph{Syntax} section in the documentation for individual targets.
2843
2844 If the line comment character is the hash sign (@samp{#}) then it still has the
2845 special ability to enable and disable preprocessing (@pxref{Preprocessing}) and
2846 to specify logical line numbers:
2847
2848 @kindex #
2849 @cindex lines starting with @code{#}
2850 @cindex logical line numbers
2851 To be compatible with past assemblers, lines that begin with @samp{#} have a
2852 special interpretation. Following the @samp{#} should be an absolute
2853 expression (@pxref{Expressions}): the logical line number of the @emph{next}
2854 line. Then a string (@pxref{Strings, ,Strings}) is allowed: if present it is a
2855 new logical file name. The rest of the line, if any, should be whitespace.
2856
2857 If the first non-whitespace characters on the line are not numeric,
2858 the line is ignored. (Just like a comment.)
2859
2860 @smallexample
2861 # This is an ordinary comment.
2862 # 42-6 "new_file_name" # New logical file name
2863 # This is logical line # 36.
2864 @end smallexample
2865 This feature is deprecated, and may disappear from future versions
2866 of @command{@value{AS}}.
2867
2868 @node Symbol Intro
2869 @section Symbols
2870
2871 @cindex characters used in symbols
2872 @ifclear SPECIAL-SYMS
2873 A @dfn{symbol} is one or more characters chosen from the set of all
2874 letters (both upper and lower case), digits and the three characters
2875 @samp{_.$}.
2876 @end ifclear
2877 @ifset SPECIAL-SYMS
2878 @ifclear GENERIC
2879 @ifset H8
2880 A @dfn{symbol} is one or more characters chosen from the set of all
2881 letters (both upper and lower case), digits and the three characters
2882 @samp{._$}. (Save that, on the H8/300 only, you may not use @samp{$} in
2883 symbol names.)
2884 @end ifset
2885 @end ifclear
2886 @end ifset
2887 @ifset GENERIC
2888 On most machines, you can also use @code{$} in symbol names; exceptions
2889 are noted in @ref{Machine Dependencies}.
2890 @end ifset
2891 No symbol may begin with a digit. Case is significant.
2892 There is no length limit; all characters are significant. Multibyte characters
2893 are supported. Symbols are delimited by characters not in that set, or by the
2894 beginning of a file (since the source program must end with a newline, the end
2895 of a file is not a possible symbol delimiter). @xref{Symbols}.
2896
2897 Symbol names may also be enclosed in double quote @code{"} characters. In such
2898 cases any characters are allowed, except for the NUL character. If a double
2899 quote character is to be included in the symbol name it must be preceeded by a
2900 backslash @code{\} character.
2901 @cindex length of symbols
2902
2903 @node Statements
2904 @section Statements
2905
2906 @cindex statements, structure of
2907 @cindex line separator character
2908 @cindex statement separator character
2909
2910 A @dfn{statement} ends at a newline character (@samp{\n}) or a
2911 @dfn{line separator character}. The line separator character is target
2912 specific and described in the @emph{Syntax} section of each
2913 target's documentation. Not all targets support a line separator character.
2914 The newline or line separator character is considered to be part of the
2915 preceding statement. Newlines and separators within character constants are an
2916 exception: they do not end statements.
2917
2918 @cindex newline, required at file end
2919 @cindex EOF, newline must precede
2920 It is an error to end any statement with end-of-file: the last
2921 character of any input file should be a newline.@refill
2922
2923 An empty statement is allowed, and may include whitespace. It is ignored.
2924
2925 @cindex instructions and directives
2926 @cindex directives and instructions
2927 @c "key symbol" is not used elsewhere in the document; seems pedantic to
2928 @c @defn{} it in that case, as was done previously... doc@cygnus.com,
2929 @c 13feb91.
2930 A statement begins with zero or more labels, optionally followed by a
2931 key symbol which determines what kind of statement it is. The key
2932 symbol determines the syntax of the rest of the statement. If the
2933 symbol begins with a dot @samp{.} then the statement is an assembler
2934 directive: typically valid for any computer. If the symbol begins with
2935 a letter the statement is an assembly language @dfn{instruction}: it
2936 assembles into a machine language instruction.
2937 @ifset GENERIC
2938 Different versions of @command{@value{AS}} for different computers
2939 recognize different instructions. In fact, the same symbol may
2940 represent a different instruction in a different computer's assembly
2941 language.@refill
2942 @end ifset
2943
2944 @cindex @code{:} (label)
2945 @cindex label (@code{:})
2946 A label is a symbol immediately followed by a colon (@code{:}).
2947 Whitespace before a label or after a colon is permitted, but you may not
2948 have whitespace between a label's symbol and its colon. @xref{Labels}.
2949
2950 @ifset HPPA
2951 For HPPA targets, labels need not be immediately followed by a colon, but
2952 the definition of a label must begin in column zero. This also implies that
2953 only one label may be defined on each line.
2954 @end ifset
2955
2956 @smallexample
2957 label: .directive followed by something
2958 another_label: # This is an empty statement.
2959 instruction operand_1, operand_2, @dots{}
2960 @end smallexample
2961
2962 @node Constants
2963 @section Constants
2964
2965 @cindex constants
2966 A constant is a number, written so that its value is known by
2967 inspection, without knowing any context. Like this:
2968 @smallexample
2969 @group
2970 .byte 74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
2971 .ascii "Ring the bell\7" # A string constant.
2972 .octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.
2973 .float 0f-314159265358979323846264338327\
2974 95028841971.693993751E-40 # - pi, a flonum.
2975 @end group
2976 @end smallexample
2977
2978 @menu
2979 * Characters:: Character Constants
2980 * Numbers:: Number Constants
2981 @end menu
2982
2983 @node Characters
2984 @subsection Character Constants
2985
2986 @cindex character constants
2987 @cindex constants, character
2988 There are two kinds of character constants. A @dfn{character} stands
2989 for one character in one byte and its value may be used in
2990 numeric expressions. String constants (properly called string
2991 @emph{literals}) are potentially many bytes and their values may not be
2992 used in arithmetic expressions.
2993
2994 @menu
2995 * Strings:: Strings
2996 * Chars:: Characters
2997 @end menu
2998
2999 @node Strings
3000 @subsubsection Strings
3001
3002 @cindex string constants
3003 @cindex constants, string
3004 A @dfn{string} is written between double-quotes. It may contain
3005 double-quotes or null characters. The way to get special characters
3006 into a string is to @dfn{escape} these characters: precede them with
3007 a backslash @samp{\} character. For example @samp{\\} represents
3008 one backslash: the first @code{\} is an escape which tells
3009 @command{@value{AS}} to interpret the second character literally as a backslash
3010 (which prevents @command{@value{AS}} from recognizing the second @code{\} as an
3011 escape character). The complete list of escapes follows.
3012
3013 @cindex escape codes, character
3014 @cindex character escape codes
3015 @c NOTE: Cindex entries must not start with a backlash character.
3016 @c NOTE: This confuses the pdf2texi script when it is creating the
3017 @c NOTE: index based upon the first character and so it generates:
3018 @c NOTE: \initial {\\}
3019 @c NOTE: which then results in the error message:
3020 @c NOTE: Argument of \\ has an extra }.
3021 @c NOTE: So in the index entries below a space character has been
3022 @c NOTE: prepended to avoid this problem.
3023 @table @kbd
3024 @c @item \a
3025 @c Mnemonic for ACKnowledge; for ASCII this is octal code 007.
3026 @c
3027 @cindex @code{ \b} (backspace character)
3028 @cindex backspace (@code{\b})
3029 @item \b
3030 Mnemonic for backspace; for ASCII this is octal code 010.
3031
3032 @c @item \e
3033 @c Mnemonic for EOText; for ASCII this is octal code 004.
3034 @c
3035 @cindex @code{ \f} (formfeed character)
3036 @cindex formfeed (@code{\f})
3037 @item backslash-f
3038 Mnemonic for FormFeed; for ASCII this is octal code 014.
3039
3040 @cindex @code{ \n} (newline character)
3041 @cindex newline (@code{\n})
3042 @item \n
3043 Mnemonic for newline; for ASCII this is octal code 012.
3044
3045 @c @item \p
3046 @c Mnemonic for prefix; for ASCII this is octal code 033, usually known as @code{escape}.
3047 @c
3048 @cindex @code{ \r} (carriage return character)
3049 @cindex carriage return (@code{backslash-r})
3050 @item \r
3051 Mnemonic for carriage-Return; for ASCII this is octal code 015.
3052
3053 @c @item \s
3054 @c Mnemonic for space; for ASCII this is octal code 040. Included for compliance with
3055 @c other assemblers.
3056 @c
3057 @cindex @code{ \t} (tab)
3058 @cindex tab (@code{\t})
3059 @item \t
3060 Mnemonic for horizontal Tab; for ASCII this is octal code 011.
3061
3062 @c @item \v
3063 @c Mnemonic for Vertical tab; for ASCII this is octal code 013.
3064 @c @item \x @var{digit} @var{digit} @var{digit}
3065 @c A hexadecimal character code. The numeric code is 3 hexadecimal digits.
3066 @c
3067 @cindex @code{ \@var{ddd}} (octal character code)
3068 @cindex octal character code (@code{\@var{ddd}})
3069 @item \ @var{digit} @var{digit} @var{digit}
3070 An octal character code. The numeric code is 3 octal digits.
3071 For compatibility with other Unix systems, 8 and 9 are accepted as digits:
3072 for example, @code{\008} has the value 010, and @code{\009} the value 011.
3073
3074 @cindex @code{ \@var{xd...}} (hex character code)
3075 @cindex hex character code (@code{\@var{xd...}})
3076 @item \@code{x} @var{hex-digits...}
3077 A hex character code. All trailing hex digits are combined. Either upper or
3078 lower case @code{x} works.
3079
3080 @cindex @code{ \\} (@samp{\} character)
3081 @cindex backslash (@code{\\})
3082 @item \\
3083 Represents one @samp{\} character.
3084
3085 @c @item \'
3086 @c Represents one @samp{'} (accent acute) character.
3087 @c This is needed in single character literals
3088 @c (@xref{Characters,,Character Constants}.) to represent
3089 @c a @samp{'}.
3090 @c
3091 @cindex @code{ \"} (doublequote character)
3092 @cindex doublequote (@code{\"})
3093 @item \"
3094 Represents one @samp{"} character. Needed in strings to represent
3095 this character, because an unescaped @samp{"} would end the string.
3096
3097 @item \ @var{anything-else}
3098 Any other character when escaped by @kbd{\} gives a warning, but
3099 assembles as if the @samp{\} was not present. The idea is that if
3100 you used an escape sequence you clearly didn't want the literal
3101 interpretation of the following character. However @command{@value{AS}} has no
3102 other interpretation, so @command{@value{AS}} knows it is giving you the wrong
3103 code and warns you of the fact.
3104 @end table
3105
3106 Which characters are escapable, and what those escapes represent,
3107 varies widely among assemblers. The current set is what we think
3108 the BSD 4.2 assembler recognizes, and is a subset of what most C
3109 compilers recognize. If you are in doubt, do not use an escape
3110 sequence.
3111
3112 @node Chars
3113 @subsubsection Characters
3114
3115 @cindex single character constant
3116 @cindex character, single
3117 @cindex constant, single character
3118 A single character may be written as a single quote immediately followed by
3119 that character. Some backslash escapes apply to characters, @code{\b},
3120 @code{\f}, @code{\n}, @code{\r}, @code{\t}, and @code{\"} with the same meaning
3121 as for strings, plus @code{\'} for a single quote. So if you want to write the
3122 character backslash, you must write @kbd{'\\} where the first @code{\} escapes
3123 the second @code{\}. As you can see, the quote is an acute accent, not a grave
3124 accent. A newline
3125 @ifclear GENERIC
3126 @ifclear abnormal-separator
3127 (or semicolon @samp{;})
3128 @end ifclear
3129 @ifset abnormal-separator
3130 @ifset H8
3131 (or dollar sign @samp{$}, for the H8/300; or semicolon @samp{;} for the
3132 Renesas SH)
3133 @end ifset
3134 @end ifset
3135 @end ifclear
3136 immediately following an acute accent is taken as a literal character
3137 and does not count as the end of a statement. The value of a character
3138 constant in a numeric expression is the machine's byte-wide code for
3139 that character. @command{@value{AS}} assumes your character code is ASCII:
3140 @kbd{'A} means 65, @kbd{'B} means 66, and so on. @refill
3141
3142 @node Numbers
3143 @subsection Number Constants
3144
3145 @cindex constants, number
3146 @cindex number constants
3147 @command{@value{AS}} distinguishes three kinds of numbers according to how they
3148 are stored in the target machine. @emph{Integers} are numbers that
3149 would fit into an @code{int} in the C language. @emph{Bignums} are
3150 integers, but they are stored in more than 32 bits. @emph{Flonums}
3151 are floating point numbers, described below.
3152
3153 @menu
3154 * Integers:: Integers
3155 * Bignums:: Bignums
3156 * Flonums:: Flonums
3157 @ifclear GENERIC
3158 @end ifclear
3159 @end menu
3160
3161 @node Integers
3162 @subsubsection Integers
3163 @cindex integers
3164 @cindex constants, integer
3165
3166 @cindex binary integers
3167 @cindex integers, binary
3168 A binary integer is @samp{0b} or @samp{0B} followed by zero or more of
3169 the binary digits @samp{01}.
3170
3171 @cindex octal integers
3172 @cindex integers, octal
3173 An octal integer is @samp{0} followed by zero or more of the octal
3174 digits (@samp{01234567}).
3175
3176 @cindex decimal integers
3177 @cindex integers, decimal
3178 A decimal integer starts with a non-zero digit followed by zero or
3179 more digits (@samp{0123456789}).
3180
3181 @cindex hexadecimal integers
3182 @cindex integers, hexadecimal
3183 A hexadecimal integer is @samp{0x} or @samp{0X} followed by one or
3184 more hexadecimal digits chosen from @samp{0123456789abcdefABCDEF}.
3185
3186 Integers have the usual values. To denote a negative integer, use
3187 the prefix operator @samp{-} discussed under expressions
3188 (@pxref{Prefix Ops,,Prefix Operators}).
3189
3190 @node Bignums
3191 @subsubsection Bignums
3192
3193 @cindex bignums
3194 @cindex constants, bignum
3195 A @dfn{bignum} has the same syntax and semantics as an integer
3196 except that the number (or its negative) takes more than 32 bits to
3197 represent in binary. The distinction is made because in some places
3198 integers are permitted while bignums are not.
3199
3200 @node Flonums
3201 @subsubsection Flonums
3202 @cindex flonums
3203 @cindex floating point numbers
3204 @cindex constants, floating point
3205
3206 @cindex precision, floating point
3207 A @dfn{flonum} represents a floating point number. The translation is
3208 indirect: a decimal floating point number from the text is converted by
3209 @command{@value{AS}} to a generic binary floating point number of more than
3210 sufficient precision. This generic floating point number is converted
3211 to a particular computer's floating point format (or formats) by a
3212 portion of @command{@value{AS}} specialized to that computer.
3213
3214 A flonum is written by writing (in order)
3215 @itemize @bullet
3216 @item
3217 The digit @samp{0}.
3218 @ifset HPPA
3219 (@samp{0} is optional on the HPPA.)
3220 @end ifset
3221
3222 @item
3223 A letter, to tell @command{@value{AS}} the rest of the number is a flonum.
3224 @ifset GENERIC
3225 @kbd{e} is recommended. Case is not important.
3226 @ignore
3227 @c FIXME: verify if flonum syntax really this vague for most cases
3228 (Any otherwise illegal letter works here, but that might be changed. Vax BSD
3229 4.2 assembler seems to allow any of @samp{defghDEFGH}.)
3230 @end ignore
3231
3232 On the H8/300 and Renesas / SuperH SH architectures, the letter must be
3233 one of the letters @samp{DFPRSX} (in upper or lower case).
3234
3235 On the ARC, the letter must be one of the letters @samp{DFRS}
3236 (in upper or lower case).
3237
3238 On the HPPA architecture, the letter must be @samp{E} (upper case only).
3239 @end ifset
3240 @ifclear GENERIC
3241 @ifset ARC
3242 One of the letters @samp{DFRS} (in upper or lower case).
3243 @end ifset
3244 @ifset H8
3245 One of the letters @samp{DFPRSX} (in upper or lower case).
3246 @end ifset
3247 @ifset HPPA
3248 The letter @samp{E} (upper case only).
3249 @end ifset
3250 @end ifclear
3251
3252 @item
3253 An optional sign: either @samp{+} or @samp{-}.
3254
3255 @item
3256 An optional @dfn{integer part}: zero or more decimal digits.
3257
3258 @item
3259 An optional @dfn{fractional part}: @samp{.} followed by zero
3260 or more decimal digits.
3261
3262 @item
3263 An optional exponent, consisting of:
3264
3265 @itemize @bullet
3266 @item
3267 An @samp{E} or @samp{e}.
3268 @c I can't find a config where "EXP_CHARS" is other than 'eE', but in
3269 @c principle this can perfectly well be different on different targets.
3270 @item
3271 Optional sign: either @samp{+} or @samp{-}.
3272 @item
3273 One or more decimal digits.
3274 @end itemize
3275
3276 @end itemize
3277
3278 At least one of the integer part or the fractional part must be
3279 present. The floating point number has the usual base-10 value.
3280
3281 @command{@value{AS}} does all processing using integers. Flonums are computed
3282 independently of any floating point hardware in the computer running
3283 @command{@value{AS}}.
3284
3285 @node Sections
3286 @chapter Sections and Relocation
3287 @cindex sections
3288 @cindex relocation
3289
3290 @menu
3291 * Secs Background:: Background
3292 * Ld Sections:: Linker Sections
3293 * As Sections:: Assembler Internal Sections
3294 * Sub-Sections:: Sub-Sections
3295 * bss:: bss Section
3296 @end menu
3297
3298 @node Secs Background
3299 @section Background
3300
3301 Roughly, a section is a range of addresses, with no gaps; all data
3302 ``in'' those addresses is treated the same for some particular purpose.
3303 For example there may be a ``read only'' section.
3304
3305 @cindex linker, and assembler
3306 @cindex assembler, and linker
3307 The linker @code{@value{LD}} reads many object files (partial programs) and
3308 combines their contents to form a runnable program. When @command{@value{AS}}
3309 emits an object file, the partial program is assumed to start at address 0.
3310 @code{@value{LD}} assigns the final addresses for the partial program, so that
3311 different partial programs do not overlap. This is actually an
3312 oversimplification, but it suffices to explain how @command{@value{AS}} uses
3313 sections.
3314
3315 @code{@value{LD}} moves blocks of bytes of your program to their run-time
3316 addresses. These blocks slide to their run-time addresses as rigid
3317 units; their length does not change and neither does the order of bytes
3318 within them. Such a rigid unit is called a @emph{section}. Assigning
3319 run-time addresses to sections is called @dfn{relocation}. It includes
3320 the task of adjusting mentions of object-file addresses so they refer to
3321 the proper run-time addresses.
3322 @ifset H8
3323 For the H8/300, and for the Renesas / SuperH SH,
3324 @command{@value{AS}} pads sections if needed to
3325 ensure they end on a word (sixteen bit) boundary.
3326 @end ifset
3327
3328 @cindex standard assembler sections
3329 An object file written by @command{@value{AS}} has at least three sections, any
3330 of which may be empty. These are named @dfn{text}, @dfn{data} and
3331 @dfn{bss} sections.
3332
3333 @ifset COFF-ELF
3334 @ifset GENERIC
3335 When it generates COFF or ELF output,
3336 @end ifset
3337 @command{@value{AS}} can also generate whatever other named sections you specify
3338 using the @samp{.section} directive (@pxref{Section,,@code{.section}}).
3339 If you do not use any directives that place output in the @samp{.text}
3340 or @samp{.data} sections, these sections still exist, but are empty.
3341 @end ifset
3342
3343 @ifset HPPA
3344 @ifset GENERIC
3345 When @command{@value{AS}} generates SOM or ELF output for the HPPA,
3346 @end ifset
3347 @command{@value{AS}} can also generate whatever other named sections you
3348 specify using the @samp{.space} and @samp{.subspace} directives. See
3349 @cite{HP9000 Series 800 Assembly Language Reference Manual}
3350 (HP 92432-90001) for details on the @samp{.space} and @samp{.subspace}
3351 assembler directives.
3352
3353 @ifset SOM
3354 Additionally, @command{@value{AS}} uses different names for the standard
3355 text, data, and bss sections when generating SOM output. Program text
3356 is placed into the @samp{$CODE$} section, data into @samp{$DATA$}, and
3357 BSS into @samp{$BSS$}.
3358 @end ifset
3359 @end ifset
3360
3361 Within the object file, the text section starts at address @code{0}, the
3362 data section follows, and the bss section follows the data section.
3363
3364 @ifset HPPA
3365 When generating either SOM or ELF output files on the HPPA, the text
3366 section starts at address @code{0}, the data section at address
3367 @code{0x4000000}, and the bss section follows the data section.
3368 @end ifset
3369
3370 To let @code{@value{LD}} know which data changes when the sections are
3371 relocated, and how to change that data, @command{@value{AS}} also writes to the
3372 object file details of the relocation needed. To perform relocation
3373 @code{@value{LD}} must know, each time an address in the object
3374 file is mentioned:
3375 @itemize @bullet
3376 @item
3377 Where in the object file is the beginning of this reference to
3378 an address?
3379 @item
3380 How long (in bytes) is this reference?
3381 @item
3382 Which section does the address refer to? What is the numeric value of
3383 @display
3384 (@var{address}) @minus{} (@var{start-address of section})?
3385 @end display
3386 @item
3387 Is the reference to an address ``Program-Counter relative''?
3388 @end itemize
3389
3390 @cindex addresses, format of
3391 @cindex section-relative addressing
3392 In fact, every address @command{@value{AS}} ever uses is expressed as
3393 @display
3394 (@var{section}) + (@var{offset into section})
3395 @end display
3396 @noindent
3397 Further, most expressions @command{@value{AS}} computes have this section-relative
3398 nature.
3399 @ifset SOM
3400 (For some object formats, such as SOM for the HPPA, some expressions are
3401 symbol-relative instead.)
3402 @end ifset
3403
3404 In this manual we use the notation @{@var{secname} @var{N}@} to mean ``offset
3405 @var{N} into section @var{secname}.''
3406
3407 Apart from text, data and bss sections you need to know about the
3408 @dfn{absolute} section. When @code{@value{LD}} mixes partial programs,
3409 addresses in the absolute section remain unchanged. For example, address
3410 @code{@{absolute 0@}} is ``relocated'' to run-time address 0 by
3411 @code{@value{LD}}. Although the linker never arranges two partial programs'
3412 data sections with overlapping addresses after linking, @emph{by definition}
3413 their absolute sections must overlap. Address @code{@{absolute@ 239@}} in one
3414 part of a program is always the same address when the program is running as
3415 address @code{@{absolute@ 239@}} in any other part of the program.
3416
3417 The idea of sections is extended to the @dfn{undefined} section. Any
3418 address whose section is unknown at assembly time is by definition
3419 rendered @{undefined @var{U}@}---where @var{U} is filled in later.
3420 Since numbers are always defined, the only way to generate an undefined
3421 address is to mention an undefined symbol. A reference to a named
3422 common block would be such a symbol: its value is unknown at assembly
3423 time so it has section @emph{undefined}.
3424
3425 By analogy the word @emph{section} is used to describe groups of sections in
3426 the linked program. @code{@value{LD}} puts all partial programs' text
3427 sections in contiguous addresses in the linked program. It is
3428 customary to refer to the @emph{text section} of a program, meaning all
3429 the addresses of all partial programs' text sections. Likewise for
3430 data and bss sections.
3431
3432 Some sections are manipulated by @code{@value{LD}}; others are invented for
3433 use of @command{@value{AS}} and have no meaning except during assembly.
3434
3435 @node Ld Sections
3436 @section Linker Sections
3437 @code{@value{LD}} deals with just four kinds of sections, summarized below.
3438
3439 @table @strong
3440
3441 @ifset COFF-ELF
3442 @cindex named sections
3443 @cindex sections, named
3444 @item named sections
3445 @end ifset
3446 @ifset aout
3447 @cindex text section
3448 @cindex data section
3449 @itemx text section
3450 @itemx data section
3451 @end ifset
3452 These sections hold your program. @command{@value{AS}} and @code{@value{LD}} treat them as
3453 separate but equal sections. Anything you can say of one section is
3454 true of another.
3455 @c @ifset aout
3456 When the program is running, however, it is
3457 customary for the text section to be unalterable. The
3458 text section is often shared among processes: it contains
3459 instructions, constants and the like. The data section of a running
3460 program is usually alterable: for example, C variables would be stored
3461 in the data section.
3462 @c @end ifset
3463
3464 @cindex bss section
3465 @item bss section
3466 This section contains zeroed bytes when your program begins running. It
3467 is used to hold uninitialized variables or common storage. The length of
3468 each partial program's bss section is important, but because it starts
3469 out containing zeroed bytes there is no need to store explicit zero
3470 bytes in the object file. The bss section was invented to eliminate
3471 those explicit zeros from object files.
3472
3473 @cindex absolute section
3474 @item absolute section
3475 Address 0 of this section is always ``relocated'' to runtime address 0.
3476 This is useful if you want to refer to an address that @code{@value{LD}} must
3477 not change when relocating. In this sense we speak of absolute
3478 addresses being ``unrelocatable'': they do not change during relocation.
3479
3480 @cindex undefined section
3481 @item undefined section
3482 This ``section'' is a catch-all for address references to objects not in
3483 the preceding sections.
3484 @c FIXME: ref to some other doc on obj-file formats could go here.
3485 @end table
3486
3487 @cindex relocation example
3488 An idealized example of three relocatable sections follows.
3489 @ifset COFF-ELF
3490 The example uses the traditional section names @samp{.text} and @samp{.data}.
3491 @end ifset
3492 Memory addresses are on the horizontal axis.
3493
3494 @c TEXI2ROFF-KILL
3495 @ifnottex
3496 @c END TEXI2ROFF-KILL
3497 @smallexample
3498 +-----+----+--+
3499 partial program # 1: |ttttt|dddd|00|
3500 +-----+----+--+
3501
3502 text data bss
3503 seg. seg. seg.
3504
3505 +---+---+---+
3506 partial program # 2: |TTT|DDD|000|
3507 +---+---+---+
3508
3509 +--+---+-----+--+----+---+-----+~~
3510 linked program: | |TTT|ttttt| |dddd|DDD|00000|
3511 +--+---+-----+--+----+---+-----+~~
3512
3513 addresses: 0 @dots{}
3514 @end smallexample
3515 @c TEXI2ROFF-KILL
3516 @end ifnottex
3517 @need 5000
3518 @tex
3519 \bigskip
3520 \line{\it Partial program \#1: \hfil}
3521 \line{\ibox{2.5cm}{\tt text}\ibox{2cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3522 \line{\boxit{2.5cm}{\tt ttttt}\boxit{2cm}{\tt dddd}\boxit{1cm}{\tt 00}\hfil}
3523
3524 \line{\it Partial program \#2: \hfil}
3525 \line{\ibox{1cm}{\tt text}\ibox{1.5cm}{\tt data}\ibox{1cm}{\tt bss}\hfil}
3526 \line{\boxit{1cm}{\tt TTT}\boxit{1.5cm}{\tt DDDD}\boxit{1cm}{\tt 000}\hfil}
3527
3528 \line{\it linked program: \hfil}
3529 \line{\ibox{.5cm}{}\ibox{1cm}{\tt text}\ibox{2.5cm}{}\ibox{.75cm}{}\ibox{2cm}{\tt data}\ibox{1.5cm}{}\ibox{2cm}{\tt bss}\hfil}
3530 \line{\boxit{.5cm}{}\boxit{1cm}{\tt TTT}\boxit{2.5cm}{\tt
3531 ttttt}\boxit{.75cm}{}\boxit{2cm}{\tt dddd}\boxit{1.5cm}{\tt
3532 DDDD}\boxit{2cm}{\tt 00000}\ \dots\hfil}
3533
3534 \line{\it addresses: \hfil}
3535 \line{0\dots\hfil}
3536
3537 @end tex
3538 @c END TEXI2ROFF-KILL
3539
3540 @node As Sections
3541 @section Assembler Internal Sections
3542
3543 @cindex internal assembler sections
3544 @cindex sections in messages, internal
3545 These sections are meant only for the internal use of @command{@value{AS}}. They
3546 have no meaning at run-time. You do not really need to know about these
3547 sections for most purposes; but they can be mentioned in @command{@value{AS}}
3548 warning messages, so it might be helpful to have an idea of their
3549 meanings to @command{@value{AS}}. These sections are used to permit the
3550 value of every expression in your assembly language program to be a
3551 section-relative address.
3552
3553 @table @b
3554 @cindex assembler internal logic error
3555 @item ASSEMBLER-INTERNAL-LOGIC-ERROR!
3556 An internal assembler logic error has been found. This means there is a
3557 bug in the assembler.
3558
3559 @cindex expr (internal section)
3560 @item expr section
3561 The assembler stores complex expression internally as combinations of
3562 symbols. When it needs to represent an expression as a symbol, it puts
3563 it in the expr section.
3564 @c FIXME item debug
3565 @c FIXME item transfer[t] vector preload
3566 @c FIXME item transfer[t] vector postload
3567 @c FIXME item register
3568 @end table
3569
3570 @node Sub-Sections
3571 @section Sub-Sections
3572
3573 @cindex numbered subsections
3574 @cindex grouping data
3575 @ifset aout
3576 Assembled bytes
3577 @ifset COFF-ELF
3578 conventionally
3579 @end ifset
3580 fall into two sections: text and data.
3581 @end ifset
3582 You may have separate groups of
3583 @ifset GENERIC
3584 data in named sections
3585 @end ifset
3586 @ifclear GENERIC
3587 @ifclear aout
3588 data in named sections
3589 @end ifclear
3590 @ifset aout
3591 text or data
3592 @end ifset
3593 @end ifclear
3594 that you want to end up near to each other in the object file, even though they
3595 are not contiguous in the assembler source. @command{@value{AS}} allows you to
3596 use @dfn{subsections} for this purpose. Within each section, there can be
3597 numbered subsections with values from 0 to 8192. Objects assembled into the
3598 same subsection go into the object file together with other objects in the same
3599 subsection. For example, a compiler might want to store constants in the text
3600 section, but might not want to have them interspersed with the program being
3601 assembled. In this case, the compiler could issue a @samp{.text 0} before each
3602 section of code being output, and a @samp{.text 1} before each group of
3603 constants being output.
3604
3605 Subsections are optional. If you do not use subsections, everything
3606 goes in subsection number zero.
3607
3608 @ifset GENERIC
3609 Each subsection is zero-padded up to a multiple of four bytes.
3610 (Subsections may be padded a different amount on different flavors
3611 of @command{@value{AS}}.)
3612 @end ifset
3613 @ifclear GENERIC
3614 @ifset H8
3615 On the H8/300 platform, each subsection is zero-padded to a word
3616 boundary (two bytes).
3617 The same is true on the Renesas SH.
3618 @end ifset
3619 @end ifclear
3620
3621 Subsections appear in your object file in numeric order, lowest numbered
3622 to highest. (All this to be compatible with other people's assemblers.)
3623 The object file contains no representation of subsections; @code{@value{LD}} and
3624 other programs that manipulate object files see no trace of them.
3625 They just see all your text subsections as a text section, and all your
3626 data subsections as a data section.
3627
3628 To specify which subsection you want subsequent statements assembled
3629 into, use a numeric argument to specify it, in a @samp{.text
3630 @var{expression}} or a @samp{.data @var{expression}} statement.
3631 @ifset COFF
3632 @ifset GENERIC
3633 When generating COFF output, you
3634 @end ifset
3635 @ifclear GENERIC
3636 You
3637 @end ifclear
3638 can also use an extra subsection
3639 argument with arbitrary named sections: @samp{.section @var{name},
3640 @var{expression}}.
3641 @end ifset
3642 @ifset ELF
3643 @ifset GENERIC
3644 When generating ELF output, you
3645 @end ifset
3646 @ifclear GENERIC
3647 You
3648 @end ifclear
3649 can also use the @code{.subsection} directive (@pxref{SubSection})
3650 to specify a subsection: @samp{.subsection @var{expression}}.
3651 @end ifset
3652 @var{Expression} should be an absolute expression
3653 (@pxref{Expressions}). If you just say @samp{.text} then @samp{.text 0}
3654 is assumed. Likewise @samp{.data} means @samp{.data 0}. Assembly
3655 begins in @code{text 0}. For instance:
3656 @smallexample
3657 .text 0 # The default subsection is text 0 anyway.
3658 .ascii "This lives in the first text subsection. *"
3659 .text 1
3660 .ascii "But this lives in the second text subsection."
3661 .data 0
3662 .ascii "This lives in the data section,"
3663 .ascii "in the first data subsection."
3664 .text 0
3665 .ascii "This lives in the first text section,"
3666 .ascii "immediately following the asterisk (*)."
3667 @end smallexample
3668
3669 Each section has a @dfn{location counter} incremented by one for every byte
3670 assembled into that section. Because subsections are merely a convenience
3671 restricted to @command{@value{AS}} there is no concept of a subsection location
3672 counter. There is no way to directly manipulate a location counter---but the
3673 @code{.align} directive changes it, and any label definition captures its
3674 current value. The location counter of the section where statements are being
3675 assembled is said to be the @dfn{active} location counter.
3676
3677 @node bss
3678 @section bss Section
3679
3680 @cindex bss section
3681 @cindex common variable storage
3682 The bss section is used for local common variable storage.
3683 You may allocate address space in the bss section, but you may
3684 not dictate data to load into it before your program executes. When
3685 your program starts running, all the contents of the bss
3686 section are zeroed bytes.
3687
3688 The @code{.lcomm} pseudo-op defines a symbol in the bss section; see
3689 @ref{Lcomm,,@code{.lcomm}}.
3690
3691 The @code{.comm} pseudo-op may be used to declare a common symbol, which is
3692 another form of uninitialized symbol; see @ref{Comm,,@code{.comm}}.
3693
3694 @ifset GENERIC
3695 When assembling for a target which supports multiple sections, such as ELF or
3696 COFF, you may switch into the @code{.bss} section and define symbols as usual;
3697 see @ref{Section,,@code{.section}}. You may only assemble zero values into the
3698 section. Typically the section will only contain symbol definitions and
3699 @code{.skip} directives (@pxref{Skip,,@code{.skip}}).
3700 @end ifset
3701
3702 @node Symbols
3703 @chapter Symbols
3704
3705 @cindex symbols
3706 Symbols are a central concept: the programmer uses symbols to name
3707 things, the linker uses symbols to link, and the debugger uses symbols
3708 to debug.
3709
3710 @quotation
3711 @cindex debuggers, and symbol order
3712 @emph{Warning:} @command{@value{AS}} does not place symbols in the object file in
3713 the same order they were declared. This may break some debuggers.
3714 @end quotation
3715
3716 @menu
3717 * Labels:: Labels
3718 * Setting Symbols:: Giving Symbols Other Values
3719 * Symbol Names:: Symbol Names
3720 * Dot:: The Special Dot Symbol
3721 * Symbol Attributes:: Symbol Attributes
3722 @end menu
3723
3724 @node Labels
3725 @section Labels
3726
3727 @cindex labels
3728 A @dfn{label} is written as a symbol immediately followed by a colon
3729 @samp{:}. The symbol then represents the current value of the
3730 active location counter, and is, for example, a suitable instruction
3731 operand. You are warned if you use the same symbol to represent two
3732 different locations: the first definition overrides any other
3733 definitions.
3734
3735 @ifset HPPA
3736 On the HPPA, the usual form for a label need not be immediately followed by a
3737 colon, but instead must start in column zero. Only one label may be defined on
3738 a single line. To work around this, the HPPA version of @command{@value{AS}} also
3739 provides a special directive @code{.label} for defining labels more flexibly.
3740 @end ifset
3741
3742 @node Setting Symbols
3743 @section Giving Symbols Other Values
3744
3745 @cindex assigning values to symbols
3746 @cindex symbol values, assigning
3747 A symbol can be given an arbitrary value by writing a symbol, followed
3748 by an equals sign @samp{=}, followed by an expression
3749 (@pxref{Expressions}). This is equivalent to using the @code{.set}
3750 directive. @xref{Set,,@code{.set}}. In the same way, using a double
3751 equals sign @samp{=}@samp{=} here represents an equivalent of the
3752 @code{.eqv} directive. @xref{Eqv,,@code{.eqv}}.
3753
3754 @ifset Blackfin
3755 Blackfin does not support symbol assignment with @samp{=}.
3756 @end ifset
3757
3758 @node Symbol Names
3759 @section Symbol Names
3760
3761 @cindex symbol names
3762 @cindex names, symbol
3763 @ifclear SPECIAL-SYMS
3764 Symbol names begin with a letter or with one of @samp{._}. On most
3765 machines, you can also use @code{$} in symbol names; exceptions are
3766 noted in @ref{Machine Dependencies}. That character may be followed by any
3767 string of digits, letters, dollar signs (unless otherwise noted for a
3768 particular target machine), and underscores.
3769 @end ifclear
3770 @ifset SPECIAL-SYMS
3771 @ifset H8
3772 Symbol names begin with a letter or with one of @samp{._}. On the
3773 Renesas SH you can also use @code{$} in symbol names. That
3774 character may be followed by any string of digits, letters, dollar signs (save
3775 on the H8/300), and underscores.
3776 @end ifset
3777 @end ifset
3778
3779 Case of letters is significant: @code{foo} is a different symbol name
3780 than @code{Foo}.
3781
3782 Symbol names do not start with a digit. An exception to this rule is made for
3783 Local Labels. See below.
3784
3785 Multibyte characters are supported. To generate a symbol name containing
3786 multibyte characters enclose it within double quotes and use escape codes. cf
3787 @xref{Strings}. Generating a multibyte symbol name from a label is not
3788 currently supported.
3789
3790 Each symbol has exactly one name. Each name in an assembly language program
3791 refers to exactly one symbol. You may use that symbol name any number of times
3792 in a program.
3793
3794 @subheading Local Symbol Names
3795
3796 @cindex local symbol names
3797 @cindex symbol names, local
3798 A local symbol is any symbol beginning with certain local label prefixes.
3799 By default, the local label prefix is @samp{.L} for ELF systems or
3800 @samp{L} for traditional a.out systems, but each target may have its own
3801 set of local label prefixes.
3802 @ifset HPPA
3803 On the HPPA local symbols begin with @samp{L$}.
3804 @end ifset
3805
3806 Local symbols are defined and used within the assembler, but they are
3807 normally not saved in object files. Thus, they are not visible when debugging.
3808 You may use the @samp{-L} option (@pxref{L, ,Include Local Symbols})
3809 to retain the local symbols in the object files.
3810
3811 @subheading Local Labels
3812
3813 @cindex local labels
3814 @cindex temporary symbol names
3815 @cindex symbol names, temporary
3816 Local labels are different from local symbols. Local labels help compilers and
3817 programmers use names temporarily. They create symbols which are guaranteed to
3818 be unique over the entire scope of the input source code and which can be
3819 referred to by a simple notation. To define a local label, write a label of
3820 the form @samp{@b{N}:} (where @b{N} represents any non-negative integer).
3821 To refer to the most recent previous definition of that label write
3822 @samp{@b{N}b}, using the same number as when you defined the label. To refer
3823 to the next definition of a local label, write @samp{@b{N}f}. The @samp{b}
3824 stands for ``backwards'' and the @samp{f} stands for ``forwards''.
3825
3826 There is no restriction on how you can use these labels, and you can reuse them
3827 too. So that it is possible to repeatedly define the same local label (using
3828 the same number @samp{@b{N}}), although you can only refer to the most recently
3829 defined local label of that number (for a backwards reference) or the next
3830 definition of a specific local label for a forward reference. It is also worth
3831 noting that the first 10 local labels (@samp{@b{0:}}@dots{}@samp{@b{9:}}) are
3832 implemented in a slightly more efficient manner than the others.
3833
3834 Here is an example:
3835
3836 @smallexample
3837 1: branch 1f
3838 2: branch 1b
3839 1: branch 2f
3840 2: branch 1b
3841 @end smallexample
3842
3843 Which is the equivalent of:
3844
3845 @smallexample
3846 label_1: branch label_3
3847 label_2: branch label_1
3848 label_3: branch label_4
3849 label_4: branch label_3
3850 @end smallexample
3851
3852 Local label names are only a notational device. They are immediately
3853 transformed into more conventional symbol names before the assembler uses them.
3854 The symbol names are stored in the symbol table, appear in error messages, and
3855 are optionally emitted to the object file. The names are constructed using
3856 these parts:
3857
3858 @table @code
3859 @item @emph{local label prefix}
3860 All local symbols begin with the system-specific local label prefix.
3861 Normally both @command{@value{AS}} and @code{@value{LD}} forget symbols
3862 that start with the local label prefix. These labels are
3863 used for symbols you are never intended to see. If you use the
3864 @samp{-L} option then @command{@value{AS}} retains these symbols in the
3865 object file. If you also instruct @code{@value{LD}} to retain these symbols,
3866 you may use them in debugging.
3867
3868 @item @var{number}
3869 This is the number that was used in the local label definition. So if the
3870 label is written @samp{55:} then the number is @samp{55}.
3871
3872 @item @kbd{C-B}
3873 This unusual character is included so you do not accidentally invent a symbol
3874 of the same name. The character has ASCII value of @samp{\002} (control-B).
3875
3876 @item @emph{ordinal number}
3877 This is a serial number to keep the labels distinct. The first definition of
3878 @samp{0:} gets the number @samp{1}. The 15th definition of @samp{0:} gets the
3879 number @samp{15}, and so on. Likewise the first definition of @samp{1:} gets
3880 the number @samp{1} and its 15th definition gets @samp{15} as well.
3881 @end table
3882
3883 So for example, the first @code{1:} may be named @code{.L1@kbd{C-B}1}, and
3884 the 44th @code{3:} may be named @code{.L3@kbd{C-B}44}.
3885
3886 @subheading Dollar Local Labels
3887 @cindex dollar local symbols
3888
3889 On some targets @code{@value{AS}} also supports an even more local form of
3890 local labels called dollar labels. These labels go out of scope (i.e., they
3891 become undefined) as soon as a non-local label is defined. Thus they remain
3892 valid for only a small region of the input source code. Normal local labels,
3893 by contrast, remain in scope for the entire file, or until they are redefined
3894 by another occurrence of the same local label.
3895
3896 Dollar labels are defined in exactly the same way as ordinary local labels,
3897 except that they have a dollar sign suffix to their numeric value, e.g.,
3898 @samp{@b{55$:}}.
3899
3900 They can also be distinguished from ordinary local labels by their transformed
3901 names which use ASCII character @samp{\001} (control-A) as the magic character
3902 to distinguish them from ordinary labels. For example, the fifth definition of
3903 @samp{6$} may be named @samp{.L6@kbd{C-A}5}.
3904
3905 @node Dot
3906 @section The Special Dot Symbol
3907
3908 @cindex dot (symbol)
3909 @cindex @code{.} (symbol)
3910 @cindex current address
3911 @cindex location counter
3912 The special symbol @samp{.} refers to the current address that
3913 @command{@value{AS}} is assembling into. Thus, the expression @samp{melvin:
3914 .long .} defines @code{melvin} to contain its own address.
3915 Assigning a value to @code{.} is treated the same as a @code{.org}
3916 directive.
3917 @ifclear no-space-dir
3918 Thus, the expression @samp{.=.+4} is the same as saying
3919 @samp{.space 4}.
3920 @end ifclear
3921
3922 @node Symbol Attributes
3923 @section Symbol Attributes
3924
3925 @cindex symbol attributes
3926 @cindex attributes, symbol
3927 Every symbol has, as well as its name, the attributes ``Value'' and
3928 ``Type''. Depending on output format, symbols can also have auxiliary
3929 attributes.
3930 @ifset INTERNALS
3931 The detailed definitions are in @file{a.out.h}.
3932 @end ifset
3933
3934 If you use a symbol without defining it, @command{@value{AS}} assumes zero for
3935 all these attributes, and probably won't warn you. This makes the
3936 symbol an externally defined symbol, which is generally what you
3937 would want.
3938
3939 @menu
3940 * Symbol Value:: Value
3941 * Symbol Type:: Type
3942 @ifset aout
3943 * a.out Symbols:: Symbol Attributes: @code{a.out}
3944 @end ifset
3945 @ifset COFF
3946 * COFF Symbols:: Symbol Attributes for COFF
3947 @end ifset
3948 @ifset SOM
3949 * SOM Symbols:: Symbol Attributes for SOM
3950 @end ifset
3951 @end menu
3952
3953 @node Symbol Value
3954 @subsection Value
3955
3956 @cindex value of a symbol
3957 @cindex symbol value
3958 The value of a symbol is (usually) 32 bits. For a symbol which labels a
3959 location in the text, data, bss or absolute sections the value is the
3960 number of addresses from the start of that section to the label.
3961 Naturally for text, data and bss sections the value of a symbol changes
3962 as @code{@value{LD}} changes section base addresses during linking. Absolute
3963 symbols' values do not change during linking: that is why they are
3964 called absolute.
3965
3966 The value of an undefined symbol is treated in a special way. If it is
3967 0 then the symbol is not defined in this assembler source file, and
3968 @code{@value{LD}} tries to determine its value from other files linked into the
3969 same program. You make this kind of symbol simply by mentioning a symbol
3970 name without defining it. A non-zero value represents a @code{.comm}
3971 common declaration. The value is how much common storage to reserve, in
3972 bytes (addresses). The symbol refers to the first address of the
3973 allocated storage.
3974
3975 @node Symbol Type
3976 @subsection Type
3977
3978 @cindex type of a symbol
3979 @cindex symbol type
3980 The type attribute of a symbol contains relocation (section)
3981 information, any flag settings indicating that a symbol is external, and
3982 (optionally), other information for linkers and debuggers. The exact
3983 format depends on the object-code output format in use.
3984
3985 @ifset aout
3986 @node a.out Symbols
3987 @subsection Symbol Attributes: @code{a.out}
3988
3989 @cindex @code{a.out} symbol attributes
3990 @cindex symbol attributes, @code{a.out}
3991
3992 @menu
3993 * Symbol Desc:: Descriptor
3994 * Symbol Other:: Other
3995 @end menu
3996
3997 @node Symbol Desc
3998 @subsubsection Descriptor
3999
4000 @cindex descriptor, of @code{a.out} symbol
4001 This is an arbitrary 16-bit value. You may establish a symbol's
4002 descriptor value by using a @code{.desc} statement
4003 (@pxref{Desc,,@code{.desc}}). A descriptor value means nothing to
4004 @command{@value{AS}}.
4005
4006 @node Symbol Other
4007 @subsubsection Other
4008
4009 @cindex other attribute, of @code{a.out} symbol
4010 This is an arbitrary 8-bit value. It means nothing to @command{@value{AS}}.
4011 @end ifset
4012
4013 @ifset COFF
4014 @node COFF Symbols
4015 @subsection Symbol Attributes for COFF
4016
4017 @cindex COFF symbol attributes
4018 @cindex symbol attributes, COFF
4019
4020 The COFF format supports a multitude of auxiliary symbol attributes;
4021 like the primary symbol attributes, they are set between @code{.def} and
4022 @code{.endef} directives.
4023
4024 @subsubsection Primary Attributes
4025
4026 @cindex primary attributes, COFF symbols
4027 The symbol name is set with @code{.def}; the value and type,
4028 respectively, with @code{.val} and @code{.type}.
4029
4030 @subsubsection Auxiliary Attributes
4031
4032 @cindex auxiliary attributes, COFF symbols
4033 The @command{@value{AS}} directives @code{.dim}, @code{.line}, @code{.scl},
4034 @code{.size}, @code{.tag}, and @code{.weak} can generate auxiliary symbol
4035 table information for COFF.
4036 @end ifset
4037
4038 @ifset SOM
4039 @node SOM Symbols
4040 @subsection Symbol Attributes for SOM
4041
4042 @cindex SOM symbol attributes
4043 @cindex symbol attributes, SOM
4044
4045 The SOM format for the HPPA supports a multitude of symbol attributes set with
4046 the @code{.EXPORT} and @code{.IMPORT} directives.
4047
4048 The attributes are described in @cite{HP9000 Series 800 Assembly
4049 Language Reference Manual} (HP 92432-90001) under the @code{IMPORT} and
4050 @code{EXPORT} assembler directive documentation.
4051 @end ifset
4052
4053 @node Expressions
4054 @chapter Expressions
4055
4056 @cindex expressions
4057 @cindex addresses
4058 @cindex numeric values
4059 An @dfn{expression} specifies an address or numeric value.
4060 Whitespace may precede and/or follow an expression.
4061
4062 The result of an expression must be an absolute number, or else an offset into
4063 a particular section. If an expression is not absolute, and there is not
4064 enough information when @command{@value{AS}} sees the expression to know its
4065 section, a second pass over the source program might be necessary to interpret
4066 the expression---but the second pass is currently not implemented.
4067 @command{@value{AS}} aborts with an error message in this situation.
4068
4069 @menu
4070 * Empty Exprs:: Empty Expressions
4071 * Integer Exprs:: Integer Expressions
4072 @end menu
4073
4074 @node Empty Exprs
4075 @section Empty Expressions
4076
4077 @cindex empty expressions
4078 @cindex expressions, empty
4079 An empty expression has no value: it is just whitespace or null.
4080 Wherever an absolute expression is required, you may omit the
4081 expression, and @command{@value{AS}} assumes a value of (absolute) 0. This
4082 is compatible with other assemblers.
4083
4084 @node Integer Exprs
4085 @section Integer Expressions
4086
4087 @cindex integer expressions
4088 @cindex expressions, integer
4089 An @dfn{integer expression} is one or more @emph{arguments} delimited
4090 by @emph{operators}.
4091
4092 @menu
4093 * Arguments:: Arguments
4094 * Operators:: Operators
4095 * Prefix Ops:: Prefix Operators
4096 * Infix Ops:: Infix Operators
4097 @end menu
4098
4099 @node Arguments
4100 @subsection Arguments
4101
4102 @cindex expression arguments
4103 @cindex arguments in expressions
4104 @cindex operands in expressions
4105 @cindex arithmetic operands
4106 @dfn{Arguments} are symbols, numbers or subexpressions. In other
4107 contexts arguments are sometimes called ``arithmetic operands''. In
4108 this manual, to avoid confusing them with the ``instruction operands'' of
4109 the machine language, we use the term ``argument'' to refer to parts of
4110 expressions only, reserving the word ``operand'' to refer only to machine
4111 instruction operands.
4112
4113 Symbols are evaluated to yield @{@var{section} @var{NNN}@} where
4114 @var{section} is one of text, data, bss, absolute,
4115 or undefined. @var{NNN} is a signed, 2's complement 32 bit
4116 integer.
4117
4118 Numbers are usually integers.
4119
4120 A number can be a flonum or bignum. In this case, you are warned
4121 that only the low order 32 bits are used, and @command{@value{AS}} pretends
4122 these 32 bits are an integer. You may write integer-manipulating
4123 instructions that act on exotic constants, compatible with other
4124 assemblers.
4125
4126 @cindex subexpressions
4127 Subexpressions are a left parenthesis @samp{(} followed by an integer
4128 expression, followed by a right parenthesis @samp{)}; or a prefix
4129 operator followed by an argument.
4130
4131 @node Operators
4132 @subsection Operators
4133
4134 @cindex operators, in expressions
4135 @cindex arithmetic functions
4136 @cindex functions, in expressions
4137 @dfn{Operators} are arithmetic functions, like @code{+} or @code{%}. Prefix
4138 operators are followed by an argument. Infix operators appear
4139 between their arguments. Operators may be preceded and/or followed by
4140 whitespace.
4141
4142 @node Prefix Ops
4143 @subsection Prefix Operator
4144
4145 @cindex prefix operators
4146 @command{@value{AS}} has the following @dfn{prefix operators}. They each take
4147 one argument, which must be absolute.
4148
4149 @c the tex/end tex stuff surrounding this small table is meant to make
4150 @c it align, on the printed page, with the similar table in the next
4151 @c section (which is inside an enumerate).
4152 @tex
4153 \global\advance\leftskip by \itemindent
4154 @end tex
4155
4156 @table @code
4157 @item -
4158 @dfn{Negation}. Two's complement negation.
4159 @item ~
4160 @dfn{Complementation}. Bitwise not.
4161 @end table
4162
4163 @tex
4164 \global\advance\leftskip by -\itemindent
4165 @end tex
4166
4167 @node Infix Ops
4168 @subsection Infix Operators
4169
4170 @cindex infix operators
4171 @cindex operators, permitted arguments
4172 @dfn{Infix operators} take two arguments, one on either side. Operators
4173 have precedence, but operations with equal precedence are performed left
4174 to right. Apart from @code{+} or @option{-}, both arguments must be
4175 absolute, and the result is absolute.
4176
4177 @enumerate
4178 @cindex operator precedence
4179 @cindex precedence of operators
4180
4181 @item
4182 Highest Precedence
4183
4184 @table @code
4185 @item *
4186 @dfn{Multiplication}.
4187
4188 @item /
4189 @dfn{Division}. Truncation is the same as the C operator @samp{/}
4190
4191 @item %
4192 @dfn{Remainder}.
4193
4194 @item <<
4195 @dfn{Shift Left}. Same as the C operator @samp{<<}.
4196
4197 @item >>
4198 @dfn{Shift Right}. Same as the C operator @samp{>>}.
4199 @end table
4200
4201 @item
4202 Intermediate precedence
4203
4204 @table @code
4205 @item |
4206
4207 @dfn{Bitwise Inclusive Or}.
4208
4209 @item &
4210 @dfn{Bitwise And}.
4211
4212 @item ^
4213 @dfn{Bitwise Exclusive Or}.
4214
4215 @item !
4216 @dfn{Bitwise Or Not}.
4217 @end table
4218
4219 @item
4220 Low Precedence
4221
4222 @table @code
4223 @cindex addition, permitted arguments
4224 @cindex plus, permitted arguments
4225 @cindex arguments for addition
4226 @item +
4227 @dfn{Addition}. If either argument is absolute, the result has the section of
4228 the other argument. You may not add together arguments from different
4229 sections.
4230
4231 @cindex subtraction, permitted arguments
4232 @cindex minus, permitted arguments
4233 @cindex arguments for subtraction
4234 @item -
4235 @dfn{Subtraction}. If the right argument is absolute, the
4236 result has the section of the left argument.
4237 If both arguments are in the same section, the result is absolute.
4238 You may not subtract arguments from different sections.
4239 @c FIXME is there still something useful to say about undefined - undefined ?
4240
4241 @cindex comparison expressions
4242 @cindex expressions, comparison
4243 @item ==
4244 @dfn{Is Equal To}
4245 @item <>
4246 @itemx !=
4247 @dfn{Is Not Equal To}
4248 @item <
4249 @dfn{Is Less Than}
4250 @item >
4251 @dfn{Is Greater Than}
4252 @item >=
4253 @dfn{Is Greater Than Or Equal To}
4254 @item <=
4255 @dfn{Is Less Than Or Equal To}
4256
4257 The comparison operators can be used as infix operators. A true results has a
4258 value of -1 whereas a false result has a value of 0. Note, these operators
4259 perform signed comparisons.
4260 @end table
4261
4262 @item Lowest Precedence
4263
4264 @table @code
4265 @item &&
4266 @dfn{Logical And}.
4267
4268 @item ||
4269 @dfn{Logical Or}.
4270
4271 These two logical operations can be used to combine the results of sub
4272 expressions. Note, unlike the comparison operators a true result returns a
4273 value of 1 but a false results does still return 0. Also note that the logical
4274 or operator has a slightly lower precedence than logical and.
4275
4276 @end table
4277 @end enumerate
4278
4279 In short, it's only meaningful to add or subtract the @emph{offsets} in an
4280 address; you can only have a defined section in one of the two arguments.
4281
4282 @node Pseudo Ops
4283 @chapter Assembler Directives
4284
4285 @cindex directives, machine independent
4286 @cindex pseudo-ops, machine independent
4287 @cindex machine independent directives
4288 All assembler directives have names that begin with a period (@samp{.}).
4289 The names are case insensitive for most targets, and usually written
4290 in lower case.
4291
4292 This chapter discusses directives that are available regardless of the
4293 target machine configuration for the @sc{gnu} assembler.
4294 @ifset GENERIC
4295 Some machine configurations provide additional directives.
4296 @xref{Machine Dependencies}.
4297 @end ifset
4298 @ifclear GENERIC
4299 @ifset machine-directives
4300 @xref{Machine Dependencies}, for additional directives.
4301 @end ifset
4302 @end ifclear
4303
4304 @menu
4305 * Abort:: @code{.abort}
4306 @ifset COFF
4307 * ABORT (COFF):: @code{.ABORT}
4308 @end ifset
4309
4310 * Align:: @code{.align @var{abs-expr} , @var{abs-expr}}
4311 * Altmacro:: @code{.altmacro}
4312 * Ascii:: @code{.ascii "@var{string}"}@dots{}
4313 * Asciz:: @code{.asciz "@var{string}"}@dots{}
4314 * Balign:: @code{.balign @var{abs-expr} , @var{abs-expr}}
4315 * Bundle directives:: @code{.bundle_align_mode @var{abs-expr}}, etc
4316 * Byte:: @code{.byte @var{expressions}}
4317 * CFI directives:: @code{.cfi_startproc [simple]}, @code{.cfi_endproc}, etc.
4318 * Comm:: @code{.comm @var{symbol} , @var{length} }
4319 * Data:: @code{.data @var{subsection}}
4320 * Dc:: @code{.dc[@var{size}] @var{expressions}}
4321 * Dcb:: @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
4322 * Ds:: @code{.ds[@var{size}] @var{number} [,@var{fill}]}
4323 @ifset COFF
4324 * Def:: @code{.def @var{name}}
4325 @end ifset
4326 @ifset aout
4327 * Desc:: @code{.desc @var{symbol}, @var{abs-expression}}
4328 @end ifset
4329 @ifset COFF
4330 * Dim:: @code{.dim}
4331 @end ifset
4332
4333 * Double:: @code{.double @var{flonums}}
4334 * Eject:: @code{.eject}
4335 * Else:: @code{.else}
4336 * Elseif:: @code{.elseif}
4337 * End:: @code{.end}
4338 @ifset COFF
4339 * Endef:: @code{.endef}
4340 @end ifset
4341
4342 * Endfunc:: @code{.endfunc}
4343 * Endif:: @code{.endif}
4344 * Equ:: @code{.equ @var{symbol}, @var{expression}}
4345 * Equiv:: @code{.equiv @var{symbol}, @var{expression}}
4346 * Eqv:: @code{.eqv @var{symbol}, @var{expression}}
4347 * Err:: @code{.err}
4348 * Error:: @code{.error @var{string}}
4349 * Exitm:: @code{.exitm}
4350 * Extern:: @code{.extern}
4351 * Fail:: @code{.fail}
4352 * File:: @code{.file}
4353 * Fill:: @code{.fill @var{repeat} , @var{size} , @var{value}}
4354 * Float:: @code{.float @var{flonums}}
4355 * Func:: @code{.func}
4356 * Global:: @code{.global @var{symbol}}, @code{.globl @var{symbol}}
4357 @ifset ELF
4358 * Gnu_attribute:: @code{.gnu_attribute @var{tag},@var{value}}
4359 * Hidden:: @code{.hidden @var{names}}
4360 @end ifset
4361
4362 * hword:: @code{.hword @var{expressions}}
4363 * Ident:: @code{.ident}
4364 * If:: @code{.if @var{absolute expression}}
4365 * Incbin:: @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
4366 * Include:: @code{.include "@var{file}"}
4367 * Int:: @code{.int @var{expressions}}
4368 @ifset ELF
4369 * Internal:: @code{.internal @var{names}}
4370 @end ifset
4371
4372 * Irp:: @code{.irp @var{symbol},@var{values}}@dots{}
4373 * Irpc:: @code{.irpc @var{symbol},@var{values}}@dots{}
4374 * Lcomm:: @code{.lcomm @var{symbol} , @var{length}}
4375 * Lflags:: @code{.lflags}
4376 @ifclear no-line-dir
4377 * Line:: @code{.line @var{line-number}}
4378 @end ifclear
4379
4380 * Linkonce:: @code{.linkonce [@var{type}]}
4381 * List:: @code{.list}
4382 * Ln:: @code{.ln @var{line-number}}
4383 * Loc:: @code{.loc @var{fileno} @var{lineno}}
4384 * Loc_mark_labels:: @code{.loc_mark_labels @var{enable}}
4385 @ifset ELF
4386 * Local:: @code{.local @var{names}}
4387 @end ifset
4388
4389 * Long:: @code{.long @var{expressions}}
4390 @ignore
4391 * Lsym:: @code{.lsym @var{symbol}, @var{expression}}
4392 @end ignore
4393
4394 * Macro:: @code{.macro @var{name} @var{args}}@dots{}
4395 * MRI:: @code{.mri @var{val}}
4396 * Noaltmacro:: @code{.noaltmacro}
4397 * Nolist:: @code{.nolist}
4398 * Nops:: @code{.nops @var{size}[, @var{control}]}
4399 * Octa:: @code{.octa @var{bignums}}
4400 * Offset:: @code{.offset @var{loc}}
4401 * Org:: @code{.org @var{new-lc}, @var{fill}}
4402 * P2align:: @code{.p2align @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4403 @ifset ELF
4404 * PopSection:: @code{.popsection}
4405 * Previous:: @code{.previous}
4406 @end ifset
4407
4408 * Print:: @code{.print @var{string}}
4409 @ifset ELF
4410 * Protected:: @code{.protected @var{names}}
4411 @end ifset
4412
4413 * Psize:: @code{.psize @var{lines}, @var{columns}}
4414 * Purgem:: @code{.purgem @var{name}}
4415 @ifset ELF
4416 * PushSection:: @code{.pushsection @var{name}}
4417 @end ifset
4418
4419 * Quad:: @code{.quad @var{bignums}}
4420 * Reloc:: @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
4421 * Rept:: @code{.rept @var{count}}
4422 * Sbttl:: @code{.sbttl "@var{subheading}"}
4423 @ifset COFF
4424 * Scl:: @code{.scl @var{class}}
4425 @end ifset
4426 @ifset COFF-ELF
4427 * Section:: @code{.section @var{name}[, @var{flags}]}
4428 @end ifset
4429
4430 * Set:: @code{.set @var{symbol}, @var{expression}}
4431 * Short:: @code{.short @var{expressions}}
4432 * Single:: @code{.single @var{flonums}}
4433 @ifset COFF-ELF
4434 * Size:: @code{.size [@var{name} , @var{expression}]}
4435 @end ifset
4436 @ifclear no-space-dir
4437 * Skip:: @code{.skip @var{size} [,@var{fill}]}
4438 @end ifclear
4439
4440 * Sleb128:: @code{.sleb128 @var{expressions}}
4441 @ifclear no-space-dir
4442 * Space:: @code{.space @var{size} [,@var{fill}]}
4443 @end ifclear
4444 @ifset have-stabs
4445 * Stab:: @code{.stabd, .stabn, .stabs}
4446 @end ifset
4447
4448 * String:: @code{.string "@var{str}"}, @code{.string8 "@var{str}"}, @code{.string16 "@var{str}"}, @code{.string32 "@var{str}"}, @code{.string64 "@var{str}"}
4449 * Struct:: @code{.struct @var{expression}}
4450 @ifset ELF
4451 * SubSection:: @code{.subsection}
4452 * Symver:: @code{.symver @var{name},@var{name2@@nodename}}
4453 @end ifset
4454
4455 @ifset COFF
4456 * Tag:: @code{.tag @var{structname}}
4457 @end ifset
4458
4459 * Text:: @code{.text @var{subsection}}
4460 * Title:: @code{.title "@var{heading}"}
4461 @ifset COFF-ELF
4462 * Type:: @code{.type <@var{int} | @var{name} , @var{type description}>}
4463 @end ifset
4464
4465 * Uleb128:: @code{.uleb128 @var{expressions}}
4466 @ifset COFF
4467 * Val:: @code{.val @var{addr}}
4468 @end ifset
4469
4470 @ifset ELF
4471 * Version:: @code{.version "@var{string}"}
4472 * VTableEntry:: @code{.vtable_entry @var{table}, @var{offset}}
4473 * VTableInherit:: @code{.vtable_inherit @var{child}, @var{parent}}
4474 @end ifset
4475
4476 * Warning:: @code{.warning @var{string}}
4477 * Weak:: @code{.weak @var{names}}
4478 * Weakref:: @code{.weakref @var{alias}, @var{symbol}}
4479 * Word:: @code{.word @var{expressions}}
4480 @ifclear no-space-dir
4481 * Zero:: @code{.zero @var{size}}
4482 @end ifclear
4483 @ifset ELF
4484 * 2byte:: @code{.2byte @var{expressions}}
4485 * 4byte:: @code{.4byte @var{expressions}}
4486 * 8byte:: @code{.8byte @var{bignums}}
4487 @end ifset
4488 * Deprecated:: Deprecated Directives
4489 @end menu
4490
4491 @node Abort
4492 @section @code{.abort}
4493
4494 @cindex @code{abort} directive
4495 @cindex stopping the assembly
4496 This directive stops the assembly immediately. It is for
4497 compatibility with other assemblers. The original idea was that the
4498 assembly language source would be piped into the assembler. If the sender
4499 of the source quit, it could use this directive tells @command{@value{AS}} to
4500 quit also. One day @code{.abort} will not be supported.
4501
4502 @ifset COFF
4503 @node ABORT (COFF)
4504 @section @code{.ABORT} (COFF)
4505
4506 @cindex @code{ABORT} directive
4507 When producing COFF output, @command{@value{AS}} accepts this directive as a
4508 synonym for @samp{.abort}.
4509
4510 @end ifset
4511
4512 @node Align
4513 @section @code{.align @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4514
4515 @cindex padding the location counter
4516 @cindex @code{align} directive
4517 Pad the location counter (in the current subsection) to a particular storage
4518 boundary. The first expression (which must be absolute) is the alignment
4519 required, as described below.
4520
4521 The second expression (also absolute) gives the fill value to be stored in the
4522 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4523 padding bytes are normally zero. However, on most systems, if the section is
4524 marked as containing code and the fill value is omitted, the space is filled
4525 with no-op instructions.
4526
4527 The third expression is also absolute, and is also optional. If it is present,
4528 it is the maximum number of bytes that should be skipped by this alignment
4529 directive. If doing the alignment would require skipping more bytes than the
4530 specified maximum, then the alignment is not done at all. You can omit the
4531 fill value (the second argument) entirely by simply using two commas after the
4532 required alignment; this can be useful if you want the alignment to be filled
4533 with no-op instructions when appropriate.
4534
4535 The way the required alignment is specified varies from system to system.
4536 For the arc, hppa, i386 using ELF, iq2000, m68k, or1k,
4537 s390, sparc, tic4x, tic80 and xtensa, the first expression is the
4538 alignment request in bytes. For example @samp{.align 8} advances
4539 the location counter until it is a multiple of 8. If the location counter
4540 is already a multiple of 8, no change is needed. For the tic54x, the
4541 first expression is the alignment request in words.
4542
4543 For other systems, including ppc, i386 using a.out format, arm and
4544 strongarm, it is the
4545 number of low-order zero bits the location counter must have after
4546 advancement. For example @samp{.align 3} advances the location
4547 counter until it a multiple of 8. If the location counter is already a
4548 multiple of 8, no change is needed.
4549
4550 This inconsistency is due to the different behaviors of the various
4551 native assemblers for these systems which GAS must emulate.
4552 GAS also provides @code{.balign} and @code{.p2align} directives,
4553 described later, which have a consistent behavior across all
4554 architectures (but are specific to GAS).
4555
4556 @node Altmacro
4557 @section @code{.altmacro}
4558 Enable alternate macro mode, enabling:
4559
4560 @ftable @code
4561 @item LOCAL @var{name} [ , @dots{} ]
4562 One additional directive, @code{LOCAL}, is available. It is used to
4563 generate a string replacement for each of the @var{name} arguments, and
4564 replace any instances of @var{name} in each macro expansion. The
4565 replacement string is unique in the assembly, and different for each
4566 separate macro expansion. @code{LOCAL} allows you to write macros that
4567 define symbols, without fear of conflict between separate macro expansions.
4568
4569 @item String delimiters
4570 You can write strings delimited in these other ways besides
4571 @code{"@var{string}"}:
4572
4573 @table @code
4574 @item '@var{string}'
4575 You can delimit strings with single-quote characters.
4576
4577 @item <@var{string}>
4578 You can delimit strings with matching angle brackets.
4579 @end table
4580
4581 @item single-character string escape
4582 To include any single character literally in a string (even if the
4583 character would otherwise have some special meaning), you can prefix the
4584 character with @samp{!} (an exclamation mark). For example, you can
4585 write @samp{<4.3 !> 5.4!!>} to get the literal text @samp{4.3 > 5.4!}.
4586
4587 @item Expression results as strings
4588 You can write @samp{%@var{expr}} to evaluate the expression @var{expr}
4589 and use the result as a string.
4590 @end ftable
4591
4592 @node Ascii
4593 @section @code{.ascii "@var{string}"}@dots{}
4594
4595 @cindex @code{ascii} directive
4596 @cindex string literals
4597 @code{.ascii} expects zero or more string literals (@pxref{Strings})
4598 separated by commas. It assembles each string (with no automatic
4599 trailing zero byte) into consecutive addresses.
4600
4601 @node Asciz
4602 @section @code{.asciz "@var{string}"}@dots{}
4603
4604 @cindex @code{asciz} directive
4605 @cindex zero-terminated strings
4606 @cindex null-terminated strings
4607 @code{.asciz} is just like @code{.ascii}, but each string is followed by
4608 a zero byte. The ``z'' in @samp{.asciz} stands for ``zero''.
4609
4610 @node Balign
4611 @section @code{.balign[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
4612
4613 @cindex padding the location counter given number of bytes
4614 @cindex @code{balign} directive
4615 Pad the location counter (in the current subsection) to a particular
4616 storage boundary. The first expression (which must be absolute) is the
4617 alignment request in bytes. For example @samp{.balign 8} advances
4618 the location counter until it is a multiple of 8. If the location counter
4619 is already a multiple of 8, no change is needed.
4620
4621 The second expression (also absolute) gives the fill value to be stored in the
4622 padding bytes. It (and the comma) may be omitted. If it is omitted, the
4623 padding bytes are normally zero. However, on most systems, if the section is
4624 marked as containing code and the fill value is omitted, the space is filled
4625 with no-op instructions.
4626
4627 The third expression is also absolute, and is also optional. If it is present,
4628 it is the maximum number of bytes that should be skipped by this alignment
4629 directive. If doing the alignment would require skipping more bytes than the
4630 specified maximum, then the alignment is not done at all. You can omit the
4631 fill value (the second argument) entirely by simply using two commas after the
4632 required alignment; this can be useful if you want the alignment to be filled
4633 with no-op instructions when appropriate.
4634
4635 @cindex @code{balignw} directive
4636 @cindex @code{balignl} directive
4637 The @code{.balignw} and @code{.balignl} directives are variants of the
4638 @code{.balign} directive. The @code{.balignw} directive treats the fill
4639 pattern as a two byte word value. The @code{.balignl} directives treats the
4640 fill pattern as a four byte longword value. For example, @code{.balignw
4641 4,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
4642 filled in with the value 0x368d (the exact placement of the bytes depends upon
4643 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
4644 undefined.
4645
4646 @node Bundle directives
4647 @section Bundle directives
4648 @subsection @code{.bundle_align_mode @var{abs-expr}}
4649 @cindex @code{bundle_align_mode} directive
4650 @cindex bundle
4651 @cindex instruction bundle
4652 @cindex aligned instruction bundle
4653 @code{.bundle_align_mode} enables or disables @dfn{aligned instruction
4654 bundle} mode. In this mode, sequences of adjacent instructions are grouped
4655 into fixed-sized @dfn{bundles}. If the argument is zero, this mode is
4656 disabled (which is the default state). If the argument it not zero, it
4657 gives the size of an instruction bundle as a power of two (as for the
4658 @code{.p2align} directive, @pxref{P2align}).
4659
4660 For some targets, it's an ABI requirement that no instruction may span a
4661 certain aligned boundary. A @dfn{bundle} is simply a sequence of
4662 instructions that starts on an aligned boundary. For example, if
4663 @var{abs-expr} is @code{5} then the bundle size is 32, so each aligned
4664 chunk of 32 bytes is a bundle. When aligned instruction bundle mode is in
4665 effect, no single instruction may span a boundary between bundles. If an
4666 instruction would start too close to the end of a bundle for the length of
4667 that particular instruction to fit within the bundle, then the space at the
4668 end of that bundle is filled with no-op instructions so the instruction
4669 starts in the next bundle. As a corollary, it's an error if any single
4670 instruction's encoding is longer than the bundle size.
4671
4672 @subsection @code{.bundle_lock} and @code{.bundle_unlock}
4673 @cindex @code{bundle_lock} directive
4674 @cindex @code{bundle_unlock} directive
4675 The @code{.bundle_lock} and directive @code{.bundle_unlock} directives
4676 allow explicit control over instruction bundle padding. These directives
4677 are only valid when @code{.bundle_align_mode} has been used to enable
4678 aligned instruction bundle mode. It's an error if they appear when
4679 @code{.bundle_align_mode} has not been used at all, or when the last
4680 directive was @w{@code{.bundle_align_mode 0}}.
4681
4682 @cindex bundle-locked
4683 For some targets, it's an ABI requirement that certain instructions may
4684 appear only as part of specified permissible sequences of multiple
4685 instructions, all within the same bundle. A pair of @code{.bundle_lock}
4686 and @code{.bundle_unlock} directives define a @dfn{bundle-locked}
4687 instruction sequence. For purposes of aligned instruction bundle mode, a
4688 sequence starting with @code{.bundle_lock} and ending with
4689 @code{.bundle_unlock} is treated as a single instruction. That is, the
4690 entire sequence must fit into a single bundle and may not span a bundle
4691 boundary. If necessary, no-op instructions will be inserted before the
4692 first instruction of the sequence so that the whole sequence starts on an
4693 aligned bundle boundary. It's an error if the sequence is longer than the
4694 bundle size.
4695
4696 For convenience when using @code{.bundle_lock} and @code{.bundle_unlock}
4697 inside assembler macros (@pxref{Macro}), bundle-locked sequences may be
4698 nested. That is, a second @code{.bundle_lock} directive before the next
4699 @code{.bundle_unlock} directive has no effect except that it must be
4700 matched by another closing @code{.bundle_unlock} so that there is the
4701 same number of @code{.bundle_lock} and @code{.bundle_unlock} directives.
4702
4703 @node Byte
4704 @section @code{.byte @var{expressions}}
4705
4706 @cindex @code{byte} directive
4707 @cindex integers, one byte
4708 @code{.byte} expects zero or more expressions, separated by commas.
4709 Each expression is assembled into the next byte.
4710
4711 @node CFI directives
4712 @section CFI directives
4713 @subsection @code{.cfi_sections @var{section_list}}
4714 @cindex @code{cfi_sections} directive
4715 @code{.cfi_sections} may be used to specify whether CFI directives
4716 should emit @code{.eh_frame} section and/or @code{.debug_frame} section.
4717 If @var{section_list} is @code{.eh_frame}, @code{.eh_frame} is emitted,
4718 if @var{section_list} is @code{.debug_frame}, @code{.debug_frame} is emitted.
4719 To emit both use @code{.eh_frame, .debug_frame}. The default if this
4720 directive is not used is @code{.cfi_sections .eh_frame}.
4721
4722 On targets that support compact unwinding tables these can be generated
4723 by specifying @code{.eh_frame_entry} instead of @code{.eh_frame}.
4724
4725 Some targets may support an additional name, such as @code{.c6xabi.exidx}
4726 which is used by the @value{TIC6X} target.
4727
4728 The @code{.cfi_sections} directive can be repeated, with the same or different
4729 arguments, provided that CFI generation has not yet started. Once CFI
4730 generation has started however the section list is fixed and any attempts to
4731 redefine it will result in an error.
4732
4733 @subsection @code{.cfi_startproc [simple]}
4734 @cindex @code{cfi_startproc} directive
4735 @code{.cfi_startproc} is used at the beginning of each function that
4736 should have an entry in @code{.eh_frame}. It initializes some internal
4737 data structures. Don't forget to close the function by
4738 @code{.cfi_endproc}.
4739
4740 Unless @code{.cfi_startproc} is used along with parameter @code{simple}
4741 it also emits some architecture dependent initial CFI instructions.
4742
4743 @subsection @code{.cfi_endproc}
4744 @cindex @code{cfi_endproc} directive
4745 @code{.cfi_endproc} is used at the end of a function where it closes its
4746 unwind entry previously opened by
4747 @code{.cfi_startproc}, and emits it to @code{.eh_frame}.
4748
4749 @subsection @code{.cfi_personality @var{encoding} [, @var{exp}]}
4750 @cindex @code{cfi_personality} directive
4751 @code{.cfi_personality} defines personality routine and its encoding.
4752 @var{encoding} must be a constant determining how the personality
4753 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), second
4754 argument is not present, otherwise second argument should be
4755 a constant or a symbol name. When using indirect encodings,
4756 the symbol provided should be the location where personality
4757 can be loaded from, not the personality routine itself.
4758 The default after @code{.cfi_startproc} is @code{.cfi_personality 0xff},
4759 no personality routine.
4760
4761 @subsection @code{.cfi_personality_id @var{id}}
4762 @cindex @code{cfi_personality_id} directive
4763 @code{cfi_personality_id} defines a personality routine by its index as
4764 defined in a compact unwinding format.
4765 Only valid when generating compact EH frames (i.e.
4766 with @code{.cfi_sections eh_frame_entry}.
4767
4768 @subsection @code{.cfi_fde_data [@var{opcode1} [, @dots{}]]}
4769 @cindex @code{cfi_fde_data} directive
4770 @code{cfi_fde_data} is used to describe the compact unwind opcodes to be
4771 used for the current function. These are emitted inline in the
4772 @code{.eh_frame_entry} section if small enough and there is no LSDA, or
4773 in the @code{.gnu.extab} section otherwise.
4774 Only valid when generating compact EH frames (i.e.
4775 with @code{.cfi_sections eh_frame_entry}.
4776
4777 @subsection @code{.cfi_lsda @var{encoding} [, @var{exp}]}
4778 @code{.cfi_lsda} defines LSDA and its encoding.
4779 @var{encoding} must be a constant determining how the LSDA
4780 should be encoded. If it is 255 (@code{DW_EH_PE_omit}), the second
4781 argument is not present, otherwise the second argument should be a constant
4782 or a symbol name. The default after @code{.cfi_startproc} is @code{.cfi_lsda 0xff},
4783 meaning that no LSDA is present.
4784
4785 @subsection @code{.cfi_inline_lsda} [@var{align}]
4786 @code{.cfi_inline_lsda} marks the start of a LSDA data section and
4787 switches to the corresponding @code{.gnu.extab} section.
4788 Must be preceded by a CFI block containing a @code{.cfi_lsda} directive.
4789 Only valid when generating compact EH frames (i.e.
4790 with @code{.cfi_sections eh_frame_entry}.
4791
4792 The table header and unwinding opcodes will be generated at this point,
4793 so that they are immediately followed by the LSDA data. The symbol
4794 referenced by the @code{.cfi_lsda} directive should still be defined
4795 in case a fallback FDE based encoding is used. The LSDA data is terminated
4796 by a section directive.
4797
4798 The optional @var{align} argument specifies the alignment required.
4799 The alignment is specified as a power of two, as with the
4800 @code{.p2align} directive.
4801
4802 @subsection @code{.cfi_def_cfa @var{register}, @var{offset}}
4803 @code{.cfi_def_cfa} defines a rule for computing CFA as: @i{take
4804 address from @var{register} and add @var{offset} to it}.
4805
4806 @subsection @code{.cfi_def_cfa_register @var{register}}
4807 @code{.cfi_def_cfa_register} modifies a rule for computing CFA. From
4808 now on @var{register} will be used instead of the old one. Offset
4809 remains the same.
4810
4811 @subsection @code{.cfi_def_cfa_offset @var{offset}}
4812 @code{.cfi_def_cfa_offset} modifies a rule for computing CFA. Register
4813 remains the same, but @var{offset} is new. Note that it is the
4814 absolute offset that will be added to a defined register to compute
4815 CFA address.
4816
4817 @subsection @code{.cfi_adjust_cfa_offset @var{offset}}
4818 Same as @code{.cfi_def_cfa_offset} but @var{offset} is a relative
4819 value that is added/subtracted from the previous offset.
4820
4821 @subsection @code{.cfi_offset @var{register}, @var{offset}}
4822 Previous value of @var{register} is saved at offset @var{offset} from
4823 CFA.
4824
4825 @subsection @code{.cfi_val_offset @var{register}, @var{offset}}
4826 Previous value of @var{register} is CFA + @var{offset}.
4827
4828 @subsection @code{.cfi_rel_offset @var{register}, @var{offset}}
4829 Previous value of @var{register} is saved at offset @var{offset} from
4830 the current CFA register. This is transformed to @code{.cfi_offset}
4831 using the known displacement of the CFA register from the CFA.
4832 This is often easier to use, because the number will match the
4833 code it's annotating.
4834
4835 @subsection @code{.cfi_register @var{register1}, @var{register2}}
4836 Previous value of @var{register1} is saved in register @var{register2}.
4837
4838 @subsection @code{.cfi_restore @var{register}}
4839 @code{.cfi_restore} says that the rule for @var{register} is now the
4840 same as it was at the beginning of the function, after all initial
4841 instruction added by @code{.cfi_startproc} were executed.
4842
4843 @subsection @code{.cfi_undefined @var{register}}
4844 From now on the previous value of @var{register} can't be restored anymore.
4845
4846 @subsection @code{.cfi_same_value @var{register}}
4847 Current value of @var{register} is the same like in the previous frame,
4848 i.e. no restoration needed.
4849
4850 @subsection @code{.cfi_remember_state} and @code{.cfi_restore_state}
4851 @code{.cfi_remember_state} pushes the set of rules for every register onto an
4852 implicit stack, while @code{.cfi_restore_state} pops them off the stack and
4853 places them in the current row. This is useful for situations where you have
4854 multiple @code{.cfi_*} directives that need to be undone due to the control
4855 flow of the program. For example, we could have something like this (assuming
4856 the CFA is the value of @code{rbp}):
4857
4858 @smallexample
4859 je label
4860 popq %rbx
4861 .cfi_restore %rbx
4862 popq %r12
4863 .cfi_restore %r12
4864 popq %rbp
4865 .cfi_restore %rbp
4866 .cfi_def_cfa %rsp, 8
4867 ret
4868 label:
4869 /* Do something else */
4870 @end smallexample
4871
4872 Here, we want the @code{.cfi} directives to affect only the rows corresponding
4873 to the instructions before @code{label}. This means we'd have to add multiple
4874 @code{.cfi} directives after @code{label} to recreate the original save
4875 locations of the registers, as well as setting the CFA back to the value of
4876 @code{rbp}. This would be clumsy, and result in a larger binary size. Instead,
4877 we can write:
4878
4879 @smallexample
4880 je label
4881 popq %rbx
4882 .cfi_remember_state
4883 .cfi_restore %rbx
4884 popq %r12
4885 .cfi_restore %r12
4886 popq %rbp
4887 .cfi_restore %rbp
4888 .cfi_def_cfa %rsp, 8
4889 ret
4890 label:
4891 .cfi_restore_state
4892 /* Do something else */
4893 @end smallexample
4894
4895 That way, the rules for the instructions after @code{label} will be the same
4896 as before the first @code{.cfi_restore} without having to use multiple
4897 @code{.cfi} directives.
4898
4899 @subsection @code{.cfi_return_column @var{register}}
4900 Change return column @var{register}, i.e. the return address is either
4901 directly in @var{register} or can be accessed by rules for @var{register}.
4902
4903 @subsection @code{.cfi_signal_frame}
4904 Mark current function as signal trampoline.
4905
4906 @subsection @code{.cfi_window_save}
4907 SPARC register window has been saved.
4908
4909 @subsection @code{.cfi_escape} @var{expression}[, @dots{}]
4910 Allows the user to add arbitrary bytes to the unwind info. One
4911 might use this to add OS-specific CFI opcodes, or generic CFI
4912 opcodes that GAS does not yet support.
4913
4914 @subsection @code{.cfi_val_encoded_addr @var{register}, @var{encoding}, @var{label}}
4915 The current value of @var{register} is @var{label}. The value of @var{label}
4916 will be encoded in the output file according to @var{encoding}; see the
4917 description of @code{.cfi_personality} for details on this encoding.
4918
4919 The usefulness of equating a register to a fixed label is probably
4920 limited to the return address register. Here, it can be useful to
4921 mark a code segment that has only one return address which is reached
4922 by a direct branch and no copy of the return address exists in memory
4923 or another register.
4924
4925 @node Comm
4926 @section @code{.comm @var{symbol} , @var{length} }
4927
4928 @cindex @code{comm} directive
4929 @cindex symbol, common
4930 @code{.comm} declares a common symbol named @var{symbol}. When linking, a
4931 common symbol in one object file may be merged with a defined or common symbol
4932 of the same name in another object file. If @code{@value{LD}} does not see a
4933 definition for the symbol--just one or more common symbols--then it will
4934 allocate @var{length} bytes of uninitialized memory. @var{length} must be an
4935 absolute expression. If @code{@value{LD}} sees multiple common symbols with
4936 the same name, and they do not all have the same size, it will allocate space
4937 using the largest size.
4938
4939 @ifset COFF-ELF
4940 When using ELF or (as a GNU extension) PE, the @code{.comm} directive takes
4941 an optional third argument. This is the desired alignment of the symbol,
4942 specified for ELF as a byte boundary (for example, an alignment of 16 means
4943 that the least significant 4 bits of the address should be zero), and for PE
4944 as a power of two (for example, an alignment of 5 means aligned to a 32-byte
4945 boundary). The alignment must be an absolute expression, and it must be a
4946 power of two. If @code{@value{LD}} allocates uninitialized memory for the
4947 common symbol, it will use the alignment when placing the symbol. If no
4948 alignment is specified, @command{@value{AS}} will set the alignment to the
4949 largest power of two less than or equal to the size of the symbol, up to a
4950 maximum of 16 on ELF, or the default section alignment of 4 on PE@footnote{This
4951 is not the same as the executable image file alignment controlled by @code{@value{LD}}'s
4952 @samp{--section-alignment} option; image file sections in PE are aligned to
4953 multiples of 4096, which is far too large an alignment for ordinary variables.
4954 It is rather the default alignment for (non-debug) sections within object
4955 (@samp{*.o}) files, which are less strictly aligned.}.
4956 @end ifset
4957
4958 @ifset HPPA
4959 The syntax for @code{.comm} differs slightly on the HPPA. The syntax is
4960 @samp{@var{symbol} .comm, @var{length}}; @var{symbol} is optional.
4961 @end ifset
4962
4963 @node Data
4964 @section @code{.data @var{subsection}}
4965 @cindex @code{data} directive
4966
4967 @code{.data} tells @command{@value{AS}} to assemble the following statements onto the
4968 end of the data subsection numbered @var{subsection} (which is an
4969 absolute expression). If @var{subsection} is omitted, it defaults
4970 to zero.
4971
4972 @node Dc
4973 @section @code{.dc[@var{size}] @var{expressions}}
4974 @cindex @code{dc} directive
4975
4976 The @code{.dc} directive expects zero or more @var{expressions} separated by
4977 commas. These expressions are evaluated and their values inserted into the
4978 current section. The size of the emitted value depends upon the suffix to the
4979 @code{.dc} directive:
4980
4981 @table @code
4982 @item @samp{.a}
4983 Emits N-bit values, where N is the size of an address on the target system.
4984 @item @samp{.b}
4985 Emits 8-bit values.
4986 @item @samp{.d}
4987 Emits double precision floating-point values.
4988 @item @samp{.l}
4989 Emits 32-bit values.
4990 @item @samp{.s}
4991 Emits single precision floating-point values.
4992 @item @samp{.w}
4993 Emits 16-bit values.
4994 Note - this is true even on targets where the @code{.word} directive would emit
4995 32-bit values.
4996 @item @samp{.x}
4997 Emits long double precision floating-point values.
4998 @end table
4999
5000 If no suffix is used then @samp{.w} is assumed.
5001
5002 The byte ordering is target dependent, as is the size and format of floating
5003 point values.
5004
5005 @node Dcb
5006 @section @code{.dcb[@var{size}] @var{number} [,@var{fill}]}
5007 @cindex @code{dcb} directive
5008 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5009 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5010 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5011 @var{size} suffix, if present, must be one of:
5012
5013 @table @code
5014 @item @samp{.b}
5015 Emits single byte values.
5016 @item @samp{.d}
5017 Emits double-precision floating point values.
5018 @item @samp{.l}
5019 Emits 4-byte values.
5020 @item @samp{.s}
5021 Emits single-precision floating point values.
5022 @item @samp{.w}
5023 Emits 2-byte values.
5024 @item @samp{.x}
5025 Emits long double-precision floating point values.
5026 @end table
5027
5028 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5029
5030 The byte ordering is target dependent, as is the size and format of floating
5031 point values.
5032
5033 @node Ds
5034 @section @code{.ds[@var{size}] @var{number} [,@var{fill}]}
5035 @cindex @code{ds} directive
5036 This directive emits @var{number} copies of @var{fill}, each of @var{size}
5037 bytes. Both @var{number} and @var{fill} are absolute expressions. If the
5038 comma and @var{fill} are omitted, @var{fill} is assumed to be zero. The
5039 @var{size} suffix, if present, must be one of:
5040
5041 @table @code
5042 @item @samp{.b}
5043 Emits single byte values.
5044 @item @samp{.d}
5045 Emits 8-byte values.
5046 @item @samp{.l}
5047 Emits 4-byte values.
5048 @item @samp{.p}
5049 Emits 12-byte values.
5050 @item @samp{.s}
5051 Emits 4-byte values.
5052 @item @samp{.w}
5053 Emits 2-byte values.
5054 @item @samp{.x}
5055 Emits 12-byte values.
5056 @end table
5057
5058 Note - unlike the @code{.dcb} directive the @samp{.d}, @samp{.s} and @samp{.x}
5059 suffixes do not indicate that floating-point values are to be inserted.
5060
5061 If the @var{size} suffix is omitted then @samp{.w} is assumed.
5062
5063 The byte ordering is target dependent.
5064
5065
5066 @ifset COFF
5067 @node Def
5068 @section @code{.def @var{name}}
5069
5070 @cindex @code{def} directive
5071 @cindex COFF symbols, debugging
5072 @cindex debugging COFF symbols
5073 Begin defining debugging information for a symbol @var{name}; the
5074 definition extends until the @code{.endef} directive is encountered.
5075 @end ifset
5076
5077 @ifset aout
5078 @node Desc
5079 @section @code{.desc @var{symbol}, @var{abs-expression}}
5080
5081 @cindex @code{desc} directive
5082 @cindex COFF symbol descriptor
5083 @cindex symbol descriptor, COFF
5084 This directive sets the descriptor of the symbol (@pxref{Symbol Attributes})
5085 to the low 16 bits of an absolute expression.
5086
5087 @ifset COFF
5088 The @samp{.desc} directive is not available when @command{@value{AS}} is
5089 configured for COFF output; it is only for @code{a.out} or @code{b.out}
5090 object format. For the sake of compatibility, @command{@value{AS}} accepts
5091 it, but produces no output, when configured for COFF.
5092 @end ifset
5093 @end ifset
5094
5095 @ifset COFF
5096 @node Dim
5097 @section @code{.dim}
5098
5099 @cindex @code{dim} directive
5100 @cindex COFF auxiliary symbol information
5101 @cindex auxiliary symbol information, COFF
5102 This directive is generated by compilers to include auxiliary debugging
5103 information in the symbol table. It is only permitted inside
5104 @code{.def}/@code{.endef} pairs.
5105 @end ifset
5106
5107 @node Double
5108 @section @code{.double @var{flonums}}
5109
5110 @cindex @code{double} directive
5111 @cindex floating point numbers (double)
5112 @code{.double} expects zero or more flonums, separated by commas. It
5113 assembles floating point numbers.
5114 @ifset GENERIC
5115 The exact kind of floating point numbers emitted depends on how
5116 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
5117 @end ifset
5118 @ifclear GENERIC
5119 @ifset IEEEFLOAT
5120 On the @value{TARGET} family @samp{.double} emits 64-bit floating-point numbers
5121 in @sc{ieee} format.
5122 @end ifset
5123 @end ifclear
5124
5125 @node Eject
5126 @section @code{.eject}
5127
5128 @cindex @code{eject} directive
5129 @cindex new page, in listings
5130 @cindex page, in listings
5131 @cindex listing control: new page
5132 Force a page break at this point, when generating assembly listings.
5133
5134 @node Else
5135 @section @code{.else}
5136
5137 @cindex @code{else} directive
5138 @code{.else} is part of the @command{@value{AS}} support for conditional
5139 assembly; see @ref{If,,@code{.if}}. It marks the beginning of a section
5140 of code to be assembled if the condition for the preceding @code{.if}
5141 was false.
5142
5143 @node Elseif
5144 @section @code{.elseif}
5145
5146 @cindex @code{elseif} directive
5147 @code{.elseif} is part of the @command{@value{AS}} support for conditional
5148 assembly; see @ref{If,,@code{.if}}. It is shorthand for beginning a new
5149 @code{.if} block that would otherwise fill the entire @code{.else} section.
5150
5151 @node End
5152 @section @code{.end}
5153
5154 @cindex @code{end} directive
5155 @code{.end} marks the end of the assembly file. @command{@value{AS}} does not
5156 process anything in the file past the @code{.end} directive.
5157
5158 @ifset COFF
5159 @node Endef
5160 @section @code{.endef}
5161
5162 @cindex @code{endef} directive
5163 This directive flags the end of a symbol definition begun with
5164 @code{.def}.
5165 @end ifset
5166
5167 @node Endfunc
5168 @section @code{.endfunc}
5169 @cindex @code{endfunc} directive
5170 @code{.endfunc} marks the end of a function specified with @code{.func}.
5171
5172 @node Endif
5173 @section @code{.endif}
5174
5175 @cindex @code{endif} directive
5176 @code{.endif} is part of the @command{@value{AS}} support for conditional assembly;
5177 it marks the end of a block of code that is only assembled
5178 conditionally. @xref{If,,@code{.if}}.
5179
5180 @node Equ
5181 @section @code{.equ @var{symbol}, @var{expression}}
5182
5183 @cindex @code{equ} directive
5184 @cindex assigning values to symbols
5185 @cindex symbols, assigning values to
5186 This directive sets the value of @var{symbol} to @var{expression}.
5187 It is synonymous with @samp{.set}; see @ref{Set,,@code{.set}}.
5188
5189 @ifset HPPA
5190 The syntax for @code{equ} on the HPPA is
5191 @samp{@var{symbol} .equ @var{expression}}.
5192 @end ifset
5193
5194 @ifset Z80
5195 The syntax for @code{equ} on the Z80 is
5196 @samp{@var{symbol} equ @var{expression}}.
5197 On the Z80 it is an error if @var{symbol} is already defined,
5198 but the symbol is not protected from later redefinition.
5199 Compare @ref{Equiv}.
5200 @end ifset
5201
5202 @node Equiv
5203 @section @code{.equiv @var{symbol}, @var{expression}}
5204 @cindex @code{equiv} directive
5205 The @code{.equiv} directive is like @code{.equ} and @code{.set}, except that
5206 the assembler will signal an error if @var{symbol} is already defined. Note a
5207 symbol which has been referenced but not actually defined is considered to be
5208 undefined.
5209
5210 Except for the contents of the error message, this is roughly equivalent to
5211 @smallexample
5212 .ifdef SYM
5213 .err
5214 .endif
5215 .equ SYM,VAL
5216 @end smallexample
5217 plus it protects the symbol from later redefinition.
5218
5219 @node Eqv
5220 @section @code{.eqv @var{symbol}, @var{expression}}
5221 @cindex @code{eqv} directive
5222 The @code{.eqv} directive is like @code{.equiv}, but no attempt is made to
5223 evaluate the expression or any part of it immediately. Instead each time
5224 the resulting symbol is used in an expression, a snapshot of its current
5225 value is taken.
5226
5227 @node Err
5228 @section @code{.err}
5229 @cindex @code{err} directive
5230 If @command{@value{AS}} assembles a @code{.err} directive, it will print an error
5231 message and, unless the @option{-Z} option was used, it will not generate an
5232 object file. This can be used to signal an error in conditionally compiled code.
5233
5234 @node Error
5235 @section @code{.error "@var{string}"}
5236 @cindex error directive
5237
5238 Similarly to @code{.err}, this directive emits an error, but you can specify a
5239 string that will be emitted as the error message. If you don't specify the
5240 message, it defaults to @code{".error directive invoked in source file"}.
5241 @xref{Errors, ,Error and Warning Messages}.
5242
5243 @smallexample
5244 .error "This code has not been assembled and tested."
5245 @end smallexample
5246
5247 @node Exitm
5248 @section @code{.exitm}
5249 Exit early from the current macro definition. @xref{Macro}.
5250
5251 @node Extern
5252 @section @code{.extern}
5253
5254 @cindex @code{extern} directive
5255 @code{.extern} is accepted in the source program---for compatibility
5256 with other assemblers---but it is ignored. @command{@value{AS}} treats
5257 all undefined symbols as external.
5258
5259 @node Fail
5260 @section @code{.fail @var{expression}}
5261
5262 @cindex @code{fail} directive
5263 Generates an error or a warning. If the value of the @var{expression} is 500
5264 or more, @command{@value{AS}} will print a warning message. If the value is less
5265 than 500, @command{@value{AS}} will print an error message. The message will
5266 include the value of @var{expression}. This can occasionally be useful inside
5267 complex nested macros or conditional assembly.
5268
5269 @node File
5270 @section @code{.file}
5271 @cindex @code{file} directive
5272
5273 @ifclear no-file-dir
5274 There are two different versions of the @code{.file} directive. Targets
5275 that support DWARF2 line number information use the DWARF2 version of
5276 @code{.file}. Other targets use the default version.
5277
5278 @subheading Default Version
5279
5280 @cindex logical file name
5281 @cindex file name, logical
5282 This version of the @code{.file} directive tells @command{@value{AS}} that we
5283 are about to start a new logical file. The syntax is:
5284
5285 @smallexample
5286 .file @var{string}
5287 @end smallexample
5288
5289 @var{string} is the new file name. In general, the filename is
5290 recognized whether or not it is surrounded by quotes @samp{"}; but if you wish
5291 to specify an empty file name, you must give the quotes--@code{""}. This
5292 statement may go away in future: it is only recognized to be compatible with
5293 old @command{@value{AS}} programs.
5294
5295 @subheading DWARF2 Version
5296 @end ifclear
5297
5298 When emitting DWARF2 line number information, @code{.file} assigns filenames
5299 to the @code{.debug_line} file name table. The syntax is:
5300
5301 @smallexample
5302 .file @var{fileno} @var{filename}
5303 @end smallexample
5304
5305 The @var{fileno} operand should be a unique positive integer to use as the
5306 index of the entry in the table. The @var{filename} operand is a C string
5307 literal.
5308
5309 The detail of filename indices is exposed to the user because the filename
5310 table is shared with the @code{.debug_info} section of the DWARF2 debugging
5311 information, and thus the user must know the exact indices that table
5312 entries will have.
5313
5314 @node Fill
5315 @section @code{.fill @var{repeat} , @var{size} , @var{value}}
5316
5317 @cindex @code{fill} directive
5318 @cindex writing patterns in memory
5319 @cindex patterns, writing in memory
5320 @var{repeat}, @var{size} and @var{value} are absolute expressions.
5321 This emits @var{repeat} copies of @var{size} bytes. @var{Repeat}
5322 may be zero or more. @var{Size} may be zero or more, but if it is
5323 more than 8, then it is deemed to have the value 8, compatible with
5324 other people's assemblers. The contents of each @var{repeat} bytes
5325 is taken from an 8-byte number. The highest order 4 bytes are
5326 zero. The lowest order 4 bytes are @var{value} rendered in the
5327 byte-order of an integer on the computer @command{@value{AS}} is assembling for.
5328 Each @var{size} bytes in a repetition is taken from the lowest order
5329 @var{size} bytes of this number. Again, this bizarre behavior is
5330 compatible with other people's assemblers.
5331
5332 @var{size} and @var{value} are optional.
5333 If the second comma and @var{value} are absent, @var{value} is
5334 assumed zero. If the first comma and following tokens are absent,
5335 @var{size} is assumed to be 1.
5336
5337 @node Float
5338 @section @code{.float @var{flonums}}
5339
5340 @cindex floating point numbers (single)
5341 @cindex @code{float} directive
5342 This directive assembles zero or more flonums, separated by commas. It
5343 has the same effect as @code{.single}.
5344 @ifset GENERIC
5345 The exact kind of floating point numbers emitted depends on how
5346 @command{@value{AS}} is configured.
5347 @xref{Machine Dependencies}.
5348 @end ifset
5349 @ifclear GENERIC
5350 @ifset IEEEFLOAT
5351 On the @value{TARGET} family, @code{.float} emits 32-bit floating point numbers
5352 in @sc{ieee} format.
5353 @end ifset
5354 @end ifclear
5355
5356 @node Func
5357 @section @code{.func @var{name}[,@var{label}]}
5358 @cindex @code{func} directive
5359 @code{.func} emits debugging information to denote function @var{name}, and
5360 is ignored unless the file is assembled with debugging enabled.
5361 Only @samp{--gstabs[+]} is currently supported.
5362 @var{label} is the entry point of the function and if omitted @var{name}
5363 prepended with the @samp{leading char} is used.
5364 @samp{leading char} is usually @code{_} or nothing, depending on the target.
5365 All functions are currently defined to have @code{void} return type.
5366 The function must be terminated with @code{.endfunc}.
5367
5368 @node Global
5369 @section @code{.global @var{symbol}}, @code{.globl @var{symbol}}
5370
5371 @cindex @code{global} directive
5372 @cindex symbol, making visible to linker
5373 @code{.global} makes the symbol visible to @code{@value{LD}}. If you define
5374 @var{symbol} in your partial program, its value is made available to
5375 other partial programs that are linked with it. Otherwise,
5376 @var{symbol} takes its attributes from a symbol of the same name
5377 from another file linked into the same program.
5378
5379 Both spellings (@samp{.globl} and @samp{.global}) are accepted, for
5380 compatibility with other assemblers.
5381
5382 @ifset HPPA
5383 On the HPPA, @code{.global} is not always enough to make it accessible to other
5384 partial programs. You may need the HPPA-only @code{.EXPORT} directive as well.
5385 @xref{HPPA Directives, ,HPPA Assembler Directives}.
5386 @end ifset
5387
5388 @ifset ELF
5389 @node Gnu_attribute
5390 @section @code{.gnu_attribute @var{tag},@var{value}}
5391 Record a @sc{gnu} object attribute for this file. @xref{Object Attributes}.
5392
5393 @node Hidden
5394 @section @code{.hidden @var{names}}
5395
5396 @cindex @code{hidden} directive
5397 @cindex visibility
5398 This is one of the ELF visibility directives. The other two are
5399 @code{.internal} (@pxref{Internal,,@code{.internal}}) and
5400 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5401
5402 This directive overrides the named symbols default visibility (which is set by
5403 their binding: local, global or weak). The directive sets the visibility to
5404 @code{hidden} which means that the symbols are not visible to other components.
5405 Such symbols are always considered to be @code{protected} as well.
5406 @end ifset
5407
5408 @node hword
5409 @section @code{.hword @var{expressions}}
5410
5411 @cindex @code{hword} directive
5412 @cindex integers, 16-bit
5413 @cindex numbers, 16-bit
5414 @cindex sixteen bit integers
5415 This expects zero or more @var{expressions}, and emits
5416 a 16 bit number for each.
5417
5418 @ifset GENERIC
5419 This directive is a synonym for @samp{.short}; depending on the target
5420 architecture, it may also be a synonym for @samp{.word}.
5421 @end ifset
5422 @ifclear GENERIC
5423 @ifset W32
5424 This directive is a synonym for @samp{.short}.
5425 @end ifset
5426 @ifset W16
5427 This directive is a synonym for both @samp{.short} and @samp{.word}.
5428 @end ifset
5429 @end ifclear
5430
5431 @node Ident
5432 @section @code{.ident}
5433
5434 @cindex @code{ident} directive
5435
5436 This directive is used by some assemblers to place tags in object files. The
5437 behavior of this directive varies depending on the target. When using the
5438 a.out object file format, @command{@value{AS}} simply accepts the directive for
5439 source-file compatibility with existing assemblers, but does not emit anything
5440 for it. When using COFF, comments are emitted to the @code{.comment} or
5441 @code{.rdata} section, depending on the target. When using ELF, comments are
5442 emitted to the @code{.comment} section.
5443
5444 @node If
5445 @section @code{.if @var{absolute expression}}
5446
5447 @cindex conditional assembly
5448 @cindex @code{if} directive
5449 @code{.if} marks the beginning of a section of code which is only
5450 considered part of the source program being assembled if the argument
5451 (which must be an @var{absolute expression}) is non-zero. The end of
5452 the conditional section of code must be marked by @code{.endif}
5453 (@pxref{Endif,,@code{.endif}}); optionally, you may include code for the
5454 alternative condition, flagged by @code{.else} (@pxref{Else,,@code{.else}}).
5455 If you have several conditions to check, @code{.elseif} may be used to avoid
5456 nesting blocks if/else within each subsequent @code{.else} block.
5457
5458 The following variants of @code{.if} are also supported:
5459 @table @code
5460 @cindex @code{ifdef} directive
5461 @item .ifdef @var{symbol}
5462 Assembles the following section of code if the specified @var{symbol}
5463 has been defined. Note a symbol which has been referenced but not yet defined
5464 is considered to be undefined.
5465
5466 @cindex @code{ifb} directive
5467 @item .ifb @var{text}
5468 Assembles the following section of code if the operand is blank (empty).
5469
5470 @cindex @code{ifc} directive
5471 @item .ifc @var{string1},@var{string2}
5472 Assembles the following section of code if the two strings are the same. The
5473 strings may be optionally quoted with single quotes. If they are not quoted,
5474 the first string stops at the first comma, and the second string stops at the
5475 end of the line. Strings which contain whitespace should be quoted. The
5476 string comparison is case sensitive.
5477
5478 @cindex @code{ifeq} directive
5479 @item .ifeq @var{absolute expression}
5480 Assembles the following section of code if the argument is zero.
5481
5482 @cindex @code{ifeqs} directive
5483 @item .ifeqs @var{string1},@var{string2}
5484 Another form of @code{.ifc}. The strings must be quoted using double quotes.
5485
5486 @cindex @code{ifge} directive
5487 @item .ifge @var{absolute expression}
5488 Assembles the following section of code if the argument is greater than or
5489 equal to zero.
5490
5491 @cindex @code{ifgt} directive
5492 @item .ifgt @var{absolute expression}
5493 Assembles the following section of code if the argument is greater than zero.
5494
5495 @cindex @code{ifle} directive
5496 @item .ifle @var{absolute expression}
5497 Assembles the following section of code if the argument is less than or equal
5498 to zero.
5499
5500 @cindex @code{iflt} directive
5501 @item .iflt @var{absolute expression}
5502 Assembles the following section of code if the argument is less than zero.
5503
5504 @cindex @code{ifnb} directive
5505 @item .ifnb @var{text}
5506 Like @code{.ifb}, but the sense of the test is reversed: this assembles the
5507 following section of code if the operand is non-blank (non-empty).
5508
5509 @cindex @code{ifnc} directive
5510 @item .ifnc @var{string1},@var{string2}.
5511 Like @code{.ifc}, but the sense of the test is reversed: this assembles the
5512 following section of code if the two strings are not the same.
5513
5514 @cindex @code{ifndef} directive
5515 @cindex @code{ifnotdef} directive
5516 @item .ifndef @var{symbol}
5517 @itemx .ifnotdef @var{symbol}
5518 Assembles the following section of code if the specified @var{symbol}
5519 has not been defined. Both spelling variants are equivalent. Note a symbol
5520 which has been referenced but not yet defined is considered to be undefined.
5521
5522 @cindex @code{ifne} directive
5523 @item .ifne @var{absolute expression}
5524 Assembles the following section of code if the argument is not equal to zero
5525 (in other words, this is equivalent to @code{.if}).
5526
5527 @cindex @code{ifnes} directive
5528 @item .ifnes @var{string1},@var{string2}
5529 Like @code{.ifeqs}, but the sense of the test is reversed: this assembles the
5530 following section of code if the two strings are not the same.
5531 @end table
5532
5533 @node Incbin
5534 @section @code{.incbin "@var{file}"[,@var{skip}[,@var{count}]]}
5535
5536 @cindex @code{incbin} directive
5537 @cindex binary files, including
5538 The @code{incbin} directive includes @var{file} verbatim at the current
5539 location. You can control the search paths used with the @samp{-I} command-line
5540 option (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5541 around @var{file}.
5542
5543 The @var{skip} argument skips a number of bytes from the start of the
5544 @var{file}. The @var{count} argument indicates the maximum number of bytes to
5545 read. Note that the data is not aligned in any way, so it is the user's
5546 responsibility to make sure that proper alignment is provided both before and
5547 after the @code{incbin} directive.
5548
5549 @node Include
5550 @section @code{.include "@var{file}"}
5551
5552 @cindex @code{include} directive
5553 @cindex supporting files, including
5554 @cindex files, including
5555 This directive provides a way to include supporting files at specified
5556 points in your source program. The code from @var{file} is assembled as
5557 if it followed the point of the @code{.include}; when the end of the
5558 included file is reached, assembly of the original file continues. You
5559 can control the search paths used with the @samp{-I} command-line option
5560 (@pxref{Invoking,,Command-Line Options}). Quotation marks are required
5561 around @var{file}.
5562
5563 @node Int
5564 @section @code{.int @var{expressions}}
5565
5566 @cindex @code{int} directive
5567 @cindex integers, 32-bit
5568 Expect zero or more @var{expressions}, of any section, separated by commas.
5569 For each expression, emit a number that, at run time, is the value of that
5570 expression. The byte order and bit size of the number depends on what kind
5571 of target the assembly is for.
5572
5573 @ifclear GENERIC
5574 @ifset H8
5575 On most forms of the H8/300, @code{.int} emits 16-bit
5576 integers. On the H8/300H and the Renesas SH, however, @code{.int} emits
5577 32-bit integers.
5578 @end ifset
5579 @end ifclear
5580
5581 @ifset ELF
5582 @node Internal
5583 @section @code{.internal @var{names}}
5584
5585 @cindex @code{internal} directive
5586 @cindex visibility
5587 This is one of the ELF visibility directives. The other two are
5588 @code{.hidden} (@pxref{Hidden,,@code{.hidden}}) and
5589 @code{.protected} (@pxref{Protected,,@code{.protected}}).
5590
5591 This directive overrides the named symbols default visibility (which is set by
5592 their binding: local, global or weak). The directive sets the visibility to
5593 @code{internal} which means that the symbols are considered to be @code{hidden}
5594 (i.e., not visible to other components), and that some extra, processor specific
5595 processing must also be performed upon the symbols as well.
5596 @end ifset
5597
5598 @node Irp
5599 @section @code{.irp @var{symbol},@var{values}}@dots{}
5600
5601 @cindex @code{irp} directive
5602 Evaluate a sequence of statements assigning different values to @var{symbol}.
5603 The sequence of statements starts at the @code{.irp} directive, and is
5604 terminated by an @code{.endr} directive. For each @var{value}, @var{symbol} is
5605 set to @var{value}, and the sequence of statements is assembled. If no
5606 @var{value} is listed, the sequence of statements is assembled once, with
5607 @var{symbol} set to the null string. To refer to @var{symbol} within the
5608 sequence of statements, use @var{\symbol}.
5609
5610 For example, assembling
5611
5612 @example
5613 .irp param,1,2,3
5614 move d\param,sp@@-
5615 .endr
5616 @end example
5617
5618 is equivalent to assembling
5619
5620 @example
5621 move d1,sp@@-
5622 move d2,sp@@-
5623 move d3,sp@@-
5624 @end example
5625
5626 For some caveats with the spelling of @var{symbol}, see also @ref{Macro}.
5627
5628 @node Irpc
5629 @section @code{.irpc @var{symbol},@var{values}}@dots{}
5630
5631 @cindex @code{irpc} directive
5632 Evaluate a sequence of statements assigning different values to @var{symbol}.
5633 The sequence of statements starts at the @code{.irpc} directive, and is
5634 terminated by an @code{.endr} directive. For each character in @var{value},
5635 @var{symbol} is set to the character, and the sequence of statements is
5636 assembled. If no @var{value} is listed, the sequence of statements is
5637 assembled once, with @var{symbol} set to the null string. To refer to
5638 @var{symbol} within the sequence of statements, use @var{\symbol}.
5639
5640 For example, assembling
5641
5642 @example
5643 .irpc param,123
5644 move d\param,sp@@-
5645 .endr
5646 @end example
5647
5648 is equivalent to assembling
5649
5650 @example
5651 move d1,sp@@-
5652 move d2,sp@@-
5653 move d3,sp@@-
5654 @end example
5655
5656 For some caveats with the spelling of @var{symbol}, see also the discussion
5657 at @xref{Macro}.
5658
5659 @node Lcomm
5660 @section @code{.lcomm @var{symbol} , @var{length}}
5661
5662 @cindex @code{lcomm} directive
5663 @cindex local common symbols
5664 @cindex symbols, local common
5665 Reserve @var{length} (an absolute expression) bytes for a local common
5666 denoted by @var{symbol}. The section and value of @var{symbol} are
5667 those of the new local common. The addresses are allocated in the bss
5668 section, so that at run-time the bytes start off zeroed. @var{Symbol}
5669 is not declared global (@pxref{Global,,@code{.global}}), so is normally
5670 not visible to @code{@value{LD}}.
5671
5672 @ifset GENERIC
5673 Some targets permit a third argument to be used with @code{.lcomm}. This
5674 argument specifies the desired alignment of the symbol in the bss section.
5675 @end ifset
5676
5677 @ifset HPPA
5678 The syntax for @code{.lcomm} differs slightly on the HPPA. The syntax is
5679 @samp{@var{symbol} .lcomm, @var{length}}; @var{symbol} is optional.
5680 @end ifset
5681
5682 @node Lflags
5683 @section @code{.lflags}
5684
5685 @cindex @code{lflags} directive (ignored)
5686 @command{@value{AS}} accepts this directive, for compatibility with other
5687 assemblers, but ignores it.
5688
5689 @ifclear no-line-dir
5690 @node Line
5691 @section @code{.line @var{line-number}}
5692
5693 @cindex @code{line} directive
5694 @cindex logical line number
5695 @ifset aout
5696 Change the logical line number. @var{line-number} must be an absolute
5697 expression. The next line has that logical line number. Therefore any other
5698 statements on the current line (after a statement separator character) are
5699 reported as on logical line number @var{line-number} @minus{} 1. One day
5700 @command{@value{AS}} will no longer support this directive: it is recognized only
5701 for compatibility with existing assembler programs.
5702 @end ifset
5703
5704 Even though this is a directive associated with the @code{a.out} or
5705 @code{b.out} object-code formats, @command{@value{AS}} still recognizes it
5706 when producing COFF output, and treats @samp{.line} as though it
5707 were the COFF @samp{.ln} @emph{if} it is found outside a
5708 @code{.def}/@code{.endef} pair.
5709
5710 Inside a @code{.def}, @samp{.line} is, instead, one of the directives
5711 used by compilers to generate auxiliary symbol information for
5712 debugging.
5713 @end ifclear
5714
5715 @node Linkonce
5716 @section @code{.linkonce [@var{type}]}
5717 @cindex COMDAT
5718 @cindex @code{linkonce} directive
5719 @cindex common sections
5720 Mark the current section so that the linker only includes a single copy of it.
5721 This may be used to include the same section in several different object files,
5722 but ensure that the linker will only include it once in the final output file.
5723 The @code{.linkonce} pseudo-op must be used for each instance of the section.
5724 Duplicate sections are detected based on the section name, so it should be
5725 unique.
5726
5727 This directive is only supported by a few object file formats; as of this
5728 writing, the only object file format which supports it is the Portable
5729 Executable format used on Windows NT.
5730
5731 The @var{type} argument is optional. If specified, it must be one of the
5732 following strings. For example:
5733 @smallexample
5734 .linkonce same_size
5735 @end smallexample
5736 Not all types may be supported on all object file formats.
5737
5738 @table @code
5739 @item discard
5740 Silently discard duplicate sections. This is the default.
5741
5742 @item one_only
5743 Warn if there are duplicate sections, but still keep only one copy.
5744
5745 @item same_size
5746 Warn if any of the duplicates have different sizes.
5747
5748 @item same_contents
5749 Warn if any of the duplicates do not have exactly the same contents.
5750 @end table
5751
5752 @node List
5753 @section @code{.list}
5754
5755 @cindex @code{list} directive
5756 @cindex listing control, turning on
5757 Control (in conjunction with the @code{.nolist} directive) whether or
5758 not assembly listings are generated. These two directives maintain an
5759 internal counter (which is zero initially). @code{.list} increments the
5760 counter, and @code{.nolist} decrements it. Assembly listings are
5761 generated whenever the counter is greater than zero.
5762
5763 By default, listings are disabled. When you enable them (with the
5764 @samp{-a} command-line option; @pxref{Invoking,,Command-Line Options}),
5765 the initial value of the listing counter is one.
5766
5767 @node Ln
5768 @section @code{.ln @var{line-number}}
5769
5770 @cindex @code{ln} directive
5771 @ifclear no-line-dir
5772 @samp{.ln} is a synonym for @samp{.line}.
5773 @end ifclear
5774 @ifset no-line-dir
5775 Tell @command{@value{AS}} to change the logical line number. @var{line-number}
5776 must be an absolute expression. The next line has that logical
5777 line number, so any other statements on the current line (after a
5778 statement separator character @code{;}) are reported as on logical
5779 line number @var{line-number} @minus{} 1.
5780 @end ifset
5781
5782 @node Loc
5783 @section @code{.loc @var{fileno} @var{lineno} [@var{column}] [@var{options}]}
5784 @cindex @code{loc} directive
5785 When emitting DWARF2 line number information,
5786 the @code{.loc} directive will add a row to the @code{.debug_line} line
5787 number matrix corresponding to the immediately following assembly
5788 instruction. The @var{fileno}, @var{lineno}, and optional @var{column}
5789 arguments will be applied to the @code{.debug_line} state machine before
5790 the row is added.
5791
5792 The @var{options} are a sequence of the following tokens in any order:
5793
5794 @table @code
5795 @item basic_block
5796 This option will set the @code{basic_block} register in the
5797 @code{.debug_line} state machine to @code{true}.
5798
5799 @item prologue_end
5800 This option will set the @code{prologue_end} register in the
5801 @code{.debug_line} state machine to @code{true}.
5802
5803 @item epilogue_begin
5804 This option will set the @code{epilogue_begin} register in the
5805 @code{.debug_line} state machine to @code{true}.
5806
5807 @item is_stmt @var{value}
5808 This option will set the @code{is_stmt} register in the
5809 @code{.debug_line} state machine to @code{value}, which must be
5810 either 0 or 1.
5811
5812 @item isa @var{value}
5813 This directive will set the @code{isa} register in the @code{.debug_line}
5814 state machine to @var{value}, which must be an unsigned integer.
5815
5816 @item discriminator @var{value}
5817 This directive will set the @code{discriminator} register in the @code{.debug_line}
5818 state machine to @var{value}, which must be an unsigned integer.
5819
5820 @item view @var{value}
5821 This option causes a row to be added to @code{.debug_line} in reference to the
5822 current address (which might not be the same as that of the following assembly
5823 instruction), and to associate @var{value} with the @code{view} register in the
5824 @code{.debug_line} state machine. If @var{value} is a label, both the
5825 @code{view} register and the label are set to the number of prior @code{.loc}
5826 directives at the same program location. If @var{value} is the literal
5827 @code{0}, the @code{view} register is set to zero, and the assembler asserts
5828 that there aren't any prior @code{.loc} directives at the same program
5829 location. If @var{value} is the literal @code{-0}, the assembler arrange for
5830 the @code{view} register to be reset in this row, even if there are prior
5831 @code{.loc} directives at the same program location.
5832
5833 @end table
5834
5835 @node Loc_mark_labels
5836 @section @code{.loc_mark_labels @var{enable}}
5837 @cindex @code{loc_mark_labels} directive
5838 When emitting DWARF2 line number information,
5839 the @code{.loc_mark_labels} directive makes the assembler emit an entry
5840 to the @code{.debug_line} line number matrix with the @code{basic_block}
5841 register in the state machine set whenever a code label is seen.
5842 The @var{enable} argument should be either 1 or 0, to enable or disable
5843 this function respectively.
5844
5845 @ifset ELF
5846 @node Local
5847 @section @code{.local @var{names}}
5848
5849 @cindex @code{local} directive
5850 This directive, which is available for ELF targets, marks each symbol in
5851 the comma-separated list of @code{names} as a local symbol so that it
5852 will not be externally visible. If the symbols do not already exist,
5853 they will be created.
5854
5855 For targets where the @code{.lcomm} directive (@pxref{Lcomm}) does not
5856 accept an alignment argument, which is the case for most ELF targets,
5857 the @code{.local} directive can be used in combination with @code{.comm}
5858 (@pxref{Comm}) to define aligned local common data.
5859 @end ifset
5860
5861 @node Long
5862 @section @code{.long @var{expressions}}
5863
5864 @cindex @code{long} directive
5865 @code{.long} is the same as @samp{.int}. @xref{Int,,@code{.int}}.
5866
5867 @ignore
5868 @c no one seems to know what this is for or whether this description is
5869 @c what it really ought to do
5870 @node Lsym
5871 @section @code{.lsym @var{symbol}, @var{expression}}
5872
5873 @cindex @code{lsym} directive
5874 @cindex symbol, not referenced in assembly
5875 @code{.lsym} creates a new symbol named @var{symbol}, but does not put it in
5876 the hash table, ensuring it cannot be referenced by name during the
5877 rest of the assembly. This sets the attributes of the symbol to be
5878 the same as the expression value:
5879 @smallexample
5880 @var{other} = @var{descriptor} = 0
5881 @var{type} = @r{(section of @var{expression})}
5882 @var{value} = @var{expression}
5883 @end smallexample
5884 @noindent
5885 The new symbol is not flagged as external.
5886 @end ignore
5887
5888 @node Macro
5889 @section @code{.macro}
5890
5891 @cindex macros
5892 The commands @code{.macro} and @code{.endm} allow you to define macros that
5893 generate assembly output. For example, this definition specifies a macro
5894 @code{sum} that puts a sequence of numbers into memory:
5895
5896 @example
5897 .macro sum from=0, to=5
5898 .long \from
5899 .if \to-\from
5900 sum "(\from+1)",\to
5901 .endif
5902 .endm
5903 @end example
5904
5905 @noindent
5906 With that definition, @samp{SUM 0,5} is equivalent to this assembly input:
5907
5908 @example
5909 .long 0
5910 .long 1
5911 .long 2
5912 .long 3
5913 .long 4
5914 .long 5
5915 @end example
5916
5917 @ftable @code
5918 @item .macro @var{macname}
5919 @itemx .macro @var{macname} @var{macargs} @dots{}
5920 @cindex @code{macro} directive
5921 Begin the definition of a macro called @var{macname}. If your macro
5922 definition requires arguments, specify their names after the macro name,
5923 separated by commas or spaces. You can qualify the macro argument to
5924 indicate whether all invocations must specify a non-blank value (through
5925 @samp{:@code{req}}), or whether it takes all of the remaining arguments
5926 (through @samp{:@code{vararg}}). You can supply a default value for any
5927 macro argument by following the name with @samp{=@var{deflt}}. You
5928 cannot define two macros with the same @var{macname} unless it has been
5929 subject to the @code{.purgem} directive (@pxref{Purgem}) between the two
5930 definitions. For example, these are all valid @code{.macro} statements:
5931
5932 @table @code
5933 @item .macro comm
5934 Begin the definition of a macro called @code{comm}, which takes no
5935 arguments.
5936
5937 @item .macro plus1 p, p1
5938 @itemx .macro plus1 p p1
5939 Either statement begins the definition of a macro called @code{plus1},
5940 which takes two arguments; within the macro definition, write
5941 @samp{\p} or @samp{\p1} to evaluate the arguments.
5942
5943 @item .macro reserve_str p1=0 p2
5944 Begin the definition of a macro called @code{reserve_str}, with two
5945 arguments. The first argument has a default value, but not the second.
5946 After the definition is complete, you can call the macro either as
5947 @samp{reserve_str @var{a},@var{b}} (with @samp{\p1} evaluating to
5948 @var{a} and @samp{\p2} evaluating to @var{b}), or as @samp{reserve_str
5949 ,@var{b}} (with @samp{\p1} evaluating as the default, in this case
5950 @samp{0}, and @samp{\p2} evaluating to @var{b}).
5951
5952 @item .macro m p1:req, p2=0, p3:vararg
5953 Begin the definition of a macro called @code{m}, with at least three
5954 arguments. The first argument must always have a value specified, but
5955 not the second, which instead has a default value. The third formal
5956 will get assigned all remaining arguments specified at invocation time.
5957
5958 When you call a macro, you can specify the argument values either by
5959 position, or by keyword. For example, @samp{sum 9,17} is equivalent to
5960 @samp{sum to=17, from=9}.
5961
5962 @end table
5963
5964 Note that since each of the @var{macargs} can be an identifier exactly
5965 as any other one permitted by the target architecture, there may be
5966 occasional problems if the target hand-crafts special meanings to certain
5967 characters when they occur in a special position. For example, if the colon
5968 (@code{:}) is generally permitted to be part of a symbol name, but the
5969 architecture specific code special-cases it when occurring as the final
5970 character of a symbol (to denote a label), then the macro parameter
5971 replacement code will have no way of knowing that and consider the whole
5972 construct (including the colon) an identifier, and check only this
5973 identifier for being the subject to parameter substitution. So for example
5974 this macro definition:
5975
5976 @example
5977 .macro label l
5978 \l:
5979 .endm
5980 @end example
5981
5982 might not work as expected. Invoking @samp{label foo} might not create a label
5983 called @samp{foo} but instead just insert the text @samp{\l:} into the
5984 assembler source, probably generating an error about an unrecognised
5985 identifier.
5986
5987 Similarly problems might occur with the period character (@samp{.})
5988 which is often allowed inside opcode names (and hence identifier names). So
5989 for example constructing a macro to build an opcode from a base name and a
5990 length specifier like this:
5991
5992 @example
5993 .macro opcode base length
5994 \base.\length
5995 .endm
5996 @end example
5997
5998 and invoking it as @samp{opcode store l} will not create a @samp{store.l}
5999 instruction but instead generate some kind of error as the assembler tries to
6000 interpret the text @samp{\base.\length}.
6001
6002 There are several possible ways around this problem:
6003
6004 @table @code
6005 @item Insert white space
6006 If it is possible to use white space characters then this is the simplest
6007 solution. eg:
6008
6009 @example
6010 .macro label l
6011 \l :
6012 .endm
6013 @end example
6014
6015 @item Use @samp{\()}
6016 The string @samp{\()} can be used to separate the end of a macro argument from
6017 the following text. eg:
6018
6019 @example
6020 .macro opcode base length
6021 \base\().\length
6022 .endm
6023 @end example
6024
6025 @item Use the alternate macro syntax mode
6026 In the alternative macro syntax mode the ampersand character (@samp{&}) can be
6027 used as a separator. eg:
6028
6029 @example
6030 .altmacro
6031 .macro label l
6032 l&:
6033 .endm
6034 @end example
6035 @end table
6036
6037 Note: this problem of correctly identifying string parameters to pseudo ops
6038 also applies to the identifiers used in @code{.irp} (@pxref{Irp})
6039 and @code{.irpc} (@pxref{Irpc}) as well.
6040
6041 @item .endm
6042 @cindex @code{endm} directive
6043 Mark the end of a macro definition.
6044
6045 @item .exitm
6046 @cindex @code{exitm} directive
6047 Exit early from the current macro definition.
6048
6049 @cindex number of macros executed
6050 @cindex macros, count executed
6051 @item \@@
6052 @command{@value{AS}} maintains a counter of how many macros it has
6053 executed in this pseudo-variable; you can copy that number to your
6054 output with @samp{\@@}, but @emph{only within a macro definition}.
6055
6056 @item LOCAL @var{name} [ , @dots{} ]
6057 @emph{Warning: @code{LOCAL} is only available if you select ``alternate
6058 macro syntax'' with @samp{--alternate} or @code{.altmacro}.}
6059 @xref{Altmacro,,@code{.altmacro}}.
6060 @end ftable
6061
6062 @node MRI
6063 @section @code{.mri @var{val}}
6064
6065 @cindex @code{mri} directive
6066 @cindex MRI mode, temporarily
6067 If @var{val} is non-zero, this tells @command{@value{AS}} to enter MRI mode. If
6068 @var{val} is zero, this tells @command{@value{AS}} to exit MRI mode. This change
6069 affects code assembled until the next @code{.mri} directive, or until the end
6070 of the file. @xref{M, MRI mode, MRI mode}.
6071
6072 @node Noaltmacro
6073 @section @code{.noaltmacro}
6074 Disable alternate macro mode. @xref{Altmacro}.
6075
6076 @node Nolist
6077 @section @code{.nolist}
6078
6079 @cindex @code{nolist} directive
6080 @cindex listing control, turning off
6081 Control (in conjunction with the @code{.list} directive) whether or
6082 not assembly listings are generated. These two directives maintain an
6083 internal counter (which is zero initially). @code{.list} increments the
6084 counter, and @code{.nolist} decrements it. Assembly listings are
6085 generated whenever the counter is greater than zero.
6086
6087 @node Nops
6088 @section @code{.nops @var{size}[, @var{control}]}
6089
6090 @cindex @code{nops} directive
6091 @cindex filling memory with no-op instructions
6092 This directive emits @var{size} bytes filled with no-op instructions.
6093 @var{size} is absolute expression, which must be a positve value.
6094 @var{control} controls how no-op instructions should be generated. If
6095 the comma and @var{control} are omitted, @var{control} is assumed to be
6096 zero.
6097
6098 Note: For Intel 80386 and AMD x86-64 targets, @var{control} specifies
6099 the size limit of a no-op instruction. The valid values of @var{control}
6100 are between 0 and 4 in 16-bit mode, between 0 and 7 when tuning for
6101 older processors in 32-bit mode, between 0 and 11 in 64-bit mode or when
6102 tuning for newer processors in 32-bit mode. When 0 is used, the no-op
6103 instruction size limit is set to the maximum supported size.
6104
6105 @node Octa
6106 @section @code{.octa @var{bignums}}
6107
6108 @c FIXME: double size emitted for "octa" on some? Or warn?
6109 @cindex @code{octa} directive
6110 @cindex integer, 16-byte
6111 @cindex sixteen byte integer
6112 This directive expects zero or more bignums, separated by commas. For each
6113 bignum, it emits a 16-byte integer.
6114
6115 The term ``octa'' comes from contexts in which a ``word'' is two bytes;
6116 hence @emph{octa}-word for 16 bytes.
6117
6118 @node Offset
6119 @section @code{.offset @var{loc}}
6120
6121 @cindex @code{offset} directive
6122 Set the location counter to @var{loc} in the absolute section. @var{loc} must
6123 be an absolute expression. This directive may be useful for defining
6124 symbols with absolute values. Do not confuse it with the @code{.org}
6125 directive.
6126
6127 @node Org
6128 @section @code{.org @var{new-lc} , @var{fill}}
6129
6130 @cindex @code{org} directive
6131 @cindex location counter, advancing
6132 @cindex advancing location counter
6133 @cindex current address, advancing
6134 Advance the location counter of the current section to
6135 @var{new-lc}. @var{new-lc} is either an absolute expression or an
6136 expression with the same section as the current subsection. That is,
6137 you can't use @code{.org} to cross sections: if @var{new-lc} has the
6138 wrong section, the @code{.org} directive is ignored. To be compatible
6139 with former assemblers, if the section of @var{new-lc} is absolute,
6140 @command{@value{AS}} issues a warning, then pretends the section of @var{new-lc}
6141 is the same as the current subsection.
6142
6143 @code{.org} may only increase the location counter, or leave it
6144 unchanged; you cannot use @code{.org} to move the location counter
6145 backwards.
6146
6147 @c double negative used below "not undefined" because this is a specific
6148 @c reference to "undefined" (as SEG_UNKNOWN is called in this manual)
6149 @c section. doc@cygnus.com 18feb91
6150 Because @command{@value{AS}} tries to assemble programs in one pass, @var{new-lc}
6151 may not be undefined. If you really detest this restriction we eagerly await
6152 a chance to share your improved assembler.
6153
6154 Beware that the origin is relative to the start of the section, not
6155 to the start of the subsection. This is compatible with other
6156 people's assemblers.
6157
6158 When the location counter (of the current subsection) is advanced, the
6159 intervening bytes are filled with @var{fill} which should be an
6160 absolute expression. If the comma and @var{fill} are omitted,
6161 @var{fill} defaults to zero.
6162
6163 @node P2align
6164 @section @code{.p2align[wl] @var{abs-expr}, @var{abs-expr}, @var{abs-expr}}
6165
6166 @cindex padding the location counter given a power of two
6167 @cindex @code{p2align} directive
6168 Pad the location counter (in the current subsection) to a particular
6169 storage boundary. The first expression (which must be absolute) is the
6170 number of low-order zero bits the location counter must have after
6171 advancement. For example @samp{.p2align 3} advances the location
6172 counter until it a multiple of 8. If the location counter is already a
6173 multiple of 8, no change is needed.
6174
6175 The second expression (also absolute) gives the fill value to be stored in the
6176 padding bytes. It (and the comma) may be omitted. If it is omitted, the
6177 padding bytes are normally zero. However, on most systems, if the section is
6178 marked as containing code and the fill value is omitted, the space is filled
6179 with no-op instructions.
6180
6181 The third expression is also absolute, and is also optional. If it is present,
6182 it is the maximum number of bytes that should be skipped by this alignment
6183 directive. If doing the alignment would require skipping more bytes than the
6184 specified maximum, then the alignment is not done at all. You can omit the
6185 fill value (the second argument) entirely by simply using two commas after the
6186 required alignment; this can be useful if you want the alignment to be filled
6187 with no-op instructions when appropriate.
6188
6189 @cindex @code{p2alignw} directive
6190 @cindex @code{p2alignl} directive
6191 The @code{.p2alignw} and @code{.p2alignl} directives are variants of the
6192 @code{.p2align} directive. The @code{.p2alignw} directive treats the fill
6193 pattern as a two byte word value. The @code{.p2alignl} directives treats the
6194 fill pattern as a four byte longword value. For example, @code{.p2alignw
6195 2,0x368d} will align to a multiple of 4. If it skips two bytes, they will be
6196 filled in with the value 0x368d (the exact placement of the bytes depends upon
6197 the endianness of the processor). If it skips 1 or 3 bytes, the fill value is
6198 undefined.
6199
6200 @ifset ELF
6201 @node PopSection
6202 @section @code{.popsection}
6203
6204 @cindex @code{popsection} directive
6205 @cindex Section Stack
6206 This is one of the ELF section stack manipulation directives. The others are
6207 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6208 @code{.pushsection} (@pxref{PushSection}), and @code{.previous}
6209 (@pxref{Previous}).
6210
6211 This directive replaces the current section (and subsection) with the top
6212 section (and subsection) on the section stack. This section is popped off the
6213 stack.
6214 @end ifset
6215
6216 @ifset ELF
6217 @node Previous
6218 @section @code{.previous}
6219
6220 @cindex @code{previous} directive
6221 @cindex Section Stack
6222 This is one of the ELF section stack manipulation directives. The others are
6223 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6224 @code{.pushsection} (@pxref{PushSection}), and @code{.popsection}
6225 (@pxref{PopSection}).
6226
6227 This directive swaps the current section (and subsection) with most recently
6228 referenced section/subsection pair prior to this one. Multiple
6229 @code{.previous} directives in a row will flip between two sections (and their
6230 subsections). For example:
6231
6232 @smallexample
6233 .section A
6234 .subsection 1
6235 .word 0x1234
6236 .subsection 2
6237 .word 0x5678
6238 .previous
6239 .word 0x9abc
6240 @end smallexample
6241
6242 Will place 0x1234 and 0x9abc into subsection 1 and 0x5678 into subsection 2 of
6243 section A. Whilst:
6244
6245 @smallexample
6246 .section A
6247 .subsection 1
6248 # Now in section A subsection 1
6249 .word 0x1234
6250 .section B
6251 .subsection 0
6252 # Now in section B subsection 0
6253 .word 0x5678
6254 .subsection 1
6255 # Now in section B subsection 1
6256 .word 0x9abc
6257 .previous
6258 # Now in section B subsection 0
6259 .word 0xdef0
6260 @end smallexample
6261
6262 Will place 0x1234 into section A, 0x5678 and 0xdef0 into subsection 0 of
6263 section B and 0x9abc into subsection 1 of section B.
6264
6265 In terms of the section stack, this directive swaps the current section with
6266 the top section on the section stack.
6267 @end ifset
6268
6269 @node Print
6270 @section @code{.print @var{string}}
6271
6272 @cindex @code{print} directive
6273 @command{@value{AS}} will print @var{string} on the standard output during
6274 assembly. You must put @var{string} in double quotes.
6275
6276 @ifset ELF
6277 @node Protected
6278 @section @code{.protected @var{names}}
6279
6280 @cindex @code{protected} directive
6281 @cindex visibility
6282 This is one of the ELF visibility directives. The other two are
6283 @code{.hidden} (@pxref{Hidden}) and @code{.internal} (@pxref{Internal}).
6284
6285 This directive overrides the named symbols default visibility (which is set by
6286 their binding: local, global or weak). The directive sets the visibility to
6287 @code{protected} which means that any references to the symbols from within the
6288 components that defines them must be resolved to the definition in that
6289 component, even if a definition in another component would normally preempt
6290 this.
6291 @end ifset
6292
6293 @node Psize
6294 @section @code{.psize @var{lines} , @var{columns}}
6295
6296 @cindex @code{psize} directive
6297 @cindex listing control: paper size
6298 @cindex paper size, for listings
6299 Use this directive to declare the number of lines---and, optionally, the
6300 number of columns---to use for each page, when generating listings.
6301
6302 If you do not use @code{.psize}, listings use a default line-count
6303 of 60. You may omit the comma and @var{columns} specification; the
6304 default width is 200 columns.
6305
6306 @command{@value{AS}} generates formfeeds whenever the specified number of
6307 lines is exceeded (or whenever you explicitly request one, using
6308 @code{.eject}).
6309
6310 If you specify @var{lines} as @code{0}, no formfeeds are generated save
6311 those explicitly specified with @code{.eject}.
6312
6313 @node Purgem
6314 @section @code{.purgem @var{name}}
6315
6316 @cindex @code{purgem} directive
6317 Undefine the macro @var{name}, so that later uses of the string will not be
6318 expanded. @xref{Macro}.
6319
6320 @ifset ELF
6321 @node PushSection
6322 @section @code{.pushsection @var{name} [, @var{subsection}] [, "@var{flags}"[, @@@var{type}[,@var{arguments}]]]}
6323
6324 @cindex @code{pushsection} directive
6325 @cindex Section Stack
6326 This is one of the ELF section stack manipulation directives. The others are
6327 @code{.section} (@pxref{Section}), @code{.subsection} (@pxref{SubSection}),
6328 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6329 (@pxref{Previous}).
6330
6331 This directive pushes the current section (and subsection) onto the
6332 top of the section stack, and then replaces the current section and
6333 subsection with @code{name} and @code{subsection}. The optional
6334 @code{flags}, @code{type} and @code{arguments} are treated the same
6335 as in the @code{.section} (@pxref{Section}) directive.
6336 @end ifset
6337
6338 @node Quad
6339 @section @code{.quad @var{bignums}}
6340
6341 @cindex @code{quad} directive
6342 @code{.quad} expects zero or more bignums, separated by commas. For
6343 each bignum, it emits
6344 @ifclear bignum-16
6345 an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a
6346 warning message; and just takes the lowest order 8 bytes of the bignum.
6347 @cindex eight-byte integer
6348 @cindex integer, 8-byte
6349
6350 The term ``quad'' comes from contexts in which a ``word'' is two bytes;
6351 hence @emph{quad}-word for 8 bytes.
6352 @end ifclear
6353 @ifset bignum-16
6354 a 16-byte integer. If the bignum won't fit in 16 bytes, it prints a
6355 warning message; and just takes the lowest order 16 bytes of the bignum.
6356 @cindex sixteen-byte integer
6357 @cindex integer, 16-byte
6358 @end ifset
6359
6360 @node Reloc
6361 @section @code{.reloc @var{offset}, @var{reloc_name}[, @var{expression}]}
6362
6363 @cindex @code{reloc} directive
6364 Generate a relocation at @var{offset} of type @var{reloc_name} with value
6365 @var{expression}. If @var{offset} is a number, the relocation is generated in
6366 the current section. If @var{offset} is an expression that resolves to a
6367 symbol plus offset, the relocation is generated in the given symbol's section.
6368 @var{expression}, if present, must resolve to a symbol plus addend or to an
6369 absolute value, but note that not all targets support an addend. e.g. ELF REL
6370 targets such as i386 store an addend in the section contents rather than in the
6371 relocation. This low level interface does not support addends stored in the
6372 section.
6373
6374 @node Rept
6375 @section @code{.rept @var{count}}
6376
6377 @cindex @code{rept} directive
6378 Repeat the sequence of lines between the @code{.rept} directive and the next
6379 @code{.endr} directive @var{count} times.
6380
6381 For example, assembling
6382
6383 @example
6384 .rept 3
6385 .long 0
6386 .endr
6387 @end example
6388
6389 is equivalent to assembling
6390
6391 @example
6392 .long 0
6393 .long 0
6394 .long 0
6395 @end example
6396
6397 A count of zero is allowed, but nothing is generated. Negative counts are not
6398 allowed and if encountered will be treated as if they were zero.
6399
6400 @node Sbttl
6401 @section @code{.sbttl "@var{subheading}"}
6402
6403 @cindex @code{sbttl} directive
6404 @cindex subtitles for listings
6405 @cindex listing control: subtitle
6406 Use @var{subheading} as the title (third line, immediately after the
6407 title line) when generating assembly listings.
6408
6409 This directive affects subsequent pages, as well as the current page if
6410 it appears within ten lines of the top of a page.
6411
6412 @ifset COFF
6413 @node Scl
6414 @section @code{.scl @var{class}}
6415
6416 @cindex @code{scl} directive
6417 @cindex symbol storage class (COFF)
6418 @cindex COFF symbol storage class
6419 Set the storage-class value for a symbol. This directive may only be
6420 used inside a @code{.def}/@code{.endef} pair. Storage class may flag
6421 whether a symbol is static or external, or it may record further
6422 symbolic debugging information.
6423 @end ifset
6424
6425 @ifset COFF-ELF
6426 @node Section
6427 @section @code{.section @var{name}}
6428
6429 @cindex named section
6430 Use the @code{.section} directive to assemble the following code into a section
6431 named @var{name}.
6432
6433 This directive is only supported for targets that actually support arbitrarily
6434 named sections; on @code{a.out} targets, for example, it is not accepted, even
6435 with a standard @code{a.out} section name.
6436
6437 @ifset COFF
6438 @ifset ELF
6439 @c only print the extra heading if both COFF and ELF are set
6440 @subheading COFF Version
6441 @end ifset
6442
6443 @cindex @code{section} directive (COFF version)
6444 For COFF targets, the @code{.section} directive is used in one of the following
6445 ways:
6446
6447 @smallexample
6448 .section @var{name}[, "@var{flags}"]
6449 .section @var{name}[, @var{subsection}]
6450 @end smallexample
6451
6452 If the optional argument is quoted, it is taken as flags to use for the
6453 section. Each flag is a single character. The following flags are recognized:
6454
6455 @table @code
6456 @item b
6457 bss section (uninitialized data)
6458 @item n
6459 section is not loaded
6460 @item w
6461 writable section
6462 @item d
6463 data section
6464 @item e
6465 exclude section from linking
6466 @item r
6467 read-only section
6468 @item x
6469 executable section
6470 @item s
6471 shared section (meaningful for PE targets)
6472 @item a
6473 ignored. (For compatibility with the ELF version)
6474 @item y
6475 section is not readable (meaningful for PE targets)
6476 @item 0-9
6477 single-digit power-of-two section alignment (GNU extension)
6478 @end table
6479
6480 If no flags are specified, the default flags depend upon the section name. If
6481 the section name is not recognized, the default will be for the section to be
6482 loaded and writable. Note the @code{n} and @code{w} flags remove attributes
6483 from the section, rather than adding them, so if they are used on their own it
6484 will be as if no flags had been specified at all.
6485
6486 If the optional argument to the @code{.section} directive is not quoted, it is
6487 taken as a subsection number (@pxref{Sub-Sections}).
6488 @end ifset
6489
6490 @ifset ELF
6491 @ifset COFF
6492 @c only print the extra heading if both COFF and ELF are set
6493 @subheading ELF Version
6494 @end ifset
6495
6496 @cindex Section Stack
6497 This is one of the ELF section stack manipulation directives. The others are
6498 @code{.subsection} (@pxref{SubSection}), @code{.pushsection}
6499 (@pxref{PushSection}), @code{.popsection} (@pxref{PopSection}), and
6500 @code{.previous} (@pxref{Previous}).
6501
6502 @cindex @code{section} directive (ELF version)
6503 For ELF targets, the @code{.section} directive is used like this:
6504
6505 @smallexample
6506 .section @var{name} [, "@var{flags}"[, @@@var{type}[,@var{flag_specific_arguments}]]]
6507 @end smallexample
6508
6509 @anchor{Section Name Substitutions}
6510 @kindex --sectname-subst
6511 @cindex section name substitution
6512 If the @samp{--sectname-subst} command-line option is provided, the @var{name}
6513 argument may contain a substitution sequence. Only @code{%S} is supported
6514 at the moment, and substitutes the current section name. For example:
6515
6516 @smallexample
6517 .macro exception_code
6518 .section %S.exception
6519 [exception code here]
6520 .previous
6521 .endm
6522
6523 .text
6524 [code]
6525 exception_code
6526 [...]
6527
6528 .section .init
6529 [init code]
6530 exception_code
6531 [...]
6532 @end smallexample
6533
6534 The two @code{exception_code} invocations above would create the
6535 @code{.text.exception} and @code{.init.exception} sections respectively.
6536 This is useful e.g. to discriminate between ancillary sections that are
6537 tied to setup code to be discarded after use from ancillary sections that
6538 need to stay resident without having to define multiple @code{exception_code}
6539 macros just for that purpose.
6540
6541 The optional @var{flags} argument is a quoted string which may contain any
6542 combination of the following characters:
6543
6544 @table @code
6545 @item a
6546 section is allocatable
6547 @item d
6548 section is a GNU_MBIND section
6549 @item e
6550 section is excluded from executable and shared library.
6551 @item w
6552 section is writable
6553 @item x
6554 section is executable
6555 @item M
6556 section is mergeable
6557 @item S
6558 section contains zero terminated strings
6559 @item G
6560 section is a member of a section group
6561 @item T
6562 section is used for thread-local-storage
6563 @item ?
6564 section is a member of the previously-current section's group, if any
6565 @item @code{<number>}
6566 a numeric value indicating the bits to be set in the ELF section header's flags
6567 field. Note - if one or more of the alphabetic characters described above is
6568 also included in the flags field, their bit values will be ORed into the
6569 resulting value.
6570 @item @code{<target specific>}
6571 some targets extend this list with their own flag characters
6572 @end table
6573
6574 Note - once a section's flags have been set they cannot be changed. There are
6575 a few exceptions to this rule however. Processor and application specific
6576 flags can be added to an already defined section. The @code{.interp},
6577 @code{.strtab} and @code{.symtab} sections can have the allocate flag
6578 (@code{a}) set after they are initially defined, and the @code{.note-GNU-stack}
6579 section may have the executable (@code{x}) flag added.
6580
6581 The optional @var{type} argument may contain one of the following constants:
6582
6583 @table @code
6584 @item @@progbits
6585 section contains data
6586 @item @@nobits
6587 section does not contain data (i.e., section only occupies space)
6588 @item @@note
6589 section contains data which is used by things other than the program
6590 @item @@init_array
6591 section contains an array of pointers to init functions
6592 @item @@fini_array
6593 section contains an array of pointers to finish functions
6594 @item @@preinit_array
6595 section contains an array of pointers to pre-init functions
6596 @item @@@code{<number>}
6597 a numeric value to be set as the ELF section header's type field.
6598 @item @@@code{<target specific>}
6599 some targets extend this list with their own types
6600 @end table
6601
6602 Many targets only support the first three section types. The type may be
6603 enclosed in double quotes if necessary.
6604
6605 Note on targets where the @code{@@} character is the start of a comment (eg
6606 ARM) then another character is used instead. For example the ARM port uses the
6607 @code{%} character.
6608
6609 Note - some sections, eg @code{.text} and @code{.data} are considered to be
6610 special and have fixed types. Any attempt to declare them with a different
6611 type will generate an error from the assembler.
6612
6613 If @var{flags} contains the @code{M} symbol then the @var{type} argument must
6614 be specified as well as an extra argument---@var{entsize}---like this:
6615
6616 @smallexample
6617 .section @var{name} , "@var{flags}"M, @@@var{type}, @var{entsize}
6618 @end smallexample
6619
6620 Sections with the @code{M} flag but not @code{S} flag must contain fixed size
6621 constants, each @var{entsize} octets long. Sections with both @code{M} and
6622 @code{S} must contain zero terminated strings where each character is
6623 @var{entsize} bytes long. The linker may remove duplicates within sections with
6624 the same name, same entity size and same flags. @var{entsize} must be an
6625 absolute expression. For sections with both @code{M} and @code{S}, a string
6626 which is a suffix of a larger string is considered a duplicate. Thus
6627 @code{"def"} will be merged with @code{"abcdef"}; A reference to the first
6628 @code{"def"} will be changed to a reference to @code{"abcdef"+3}.
6629
6630 If @var{flags} contains the @code{G} symbol then the @var{type} argument must
6631 be present along with an additional field like this:
6632
6633 @smallexample
6634 .section @var{name} , "@var{flags}"G, @@@var{type}, @var{GroupName}[, @var{linkage}]
6635 @end smallexample
6636
6637 The @var{GroupName} field specifies the name of the section group to which this
6638 particular section belongs. The optional linkage field can contain:
6639
6640 @table @code
6641 @item comdat
6642 indicates that only one copy of this section should be retained
6643 @item .gnu.linkonce
6644 an alias for comdat
6645 @end table
6646
6647 Note: if both the @var{M} and @var{G} flags are present then the fields for
6648 the Merge flag should come first, like this:
6649
6650 @smallexample
6651 .section @var{name} , "@var{flags}"MG, @@@var{type}, @var{entsize}, @var{GroupName}[, @var{linkage}]
6652 @end smallexample
6653
6654 If @var{flags} contains the @code{?} symbol then it may not also contain the
6655 @code{G} symbol and the @var{GroupName} or @var{linkage} fields should not be
6656 present. Instead, @code{?} says to consider the section that's current before
6657 this directive. If that section used @code{G}, then the new section will use
6658 @code{G} with those same @var{GroupName} and @var{linkage} fields implicitly.
6659 If not, then the @code{?} symbol has no effect.
6660
6661 If no flags are specified, the default flags depend upon the section name. If
6662 the section name is not recognized, the default will be for the section to have
6663 none of the above flags: it will not be allocated in memory, nor writable, nor
6664 executable. The section will contain data.
6665
6666 For ELF targets, the assembler supports another type of @code{.section}
6667 directive for compatibility with the Solaris assembler:
6668
6669 @smallexample
6670 .section "@var{name}"[, @var{flags}...]
6671 @end smallexample
6672
6673 Note that the section name is quoted. There may be a sequence of comma
6674 separated flags:
6675
6676 @table @code
6677 @item #alloc
6678 section is allocatable
6679 @item #write
6680 section is writable
6681 @item #execinstr
6682 section is executable
6683 @item #exclude
6684 section is excluded from executable and shared library.
6685 @item #tls
6686 section is used for thread local storage
6687 @end table
6688
6689 This directive replaces the current section and subsection. See the
6690 contents of the gas testsuite directory @code{gas/testsuite/gas/elf} for
6691 some examples of how this directive and the other section stack directives
6692 work.
6693 @end ifset
6694 @end ifset
6695
6696 @node Set
6697 @section @code{.set @var{symbol}, @var{expression}}
6698
6699 @cindex @code{set} directive
6700 @cindex symbol value, setting
6701 Set the value of @var{symbol} to @var{expression}. This
6702 changes @var{symbol}'s value and type to conform to
6703 @var{expression}. If @var{symbol} was flagged as external, it remains
6704 flagged (@pxref{Symbol Attributes}).
6705
6706 You may @code{.set} a symbol many times in the same assembly provided that the
6707 values given to the symbol are constants. Values that are based on expressions
6708 involving other symbols are allowed, but some targets may restrict this to only
6709 being done once per assembly. This is because those targets do not set the
6710 addresses of symbols at assembly time, but rather delay the assignment until a
6711 final link is performed. This allows the linker a chance to change the code in
6712 the files, changing the location of, and the relative distance between, various
6713 different symbols.
6714
6715 If you @code{.set} a global symbol, the value stored in the object
6716 file is the last value stored into it.
6717
6718 @ifset Z80
6719 On Z80 @code{set} is a real instruction, use
6720 @samp{@var{symbol} defl @var{expression}} instead.
6721 @end ifset
6722
6723 @node Short
6724 @section @code{.short @var{expressions}}
6725
6726 @cindex @code{short} directive
6727 @ifset GENERIC
6728 @code{.short} is normally the same as @samp{.word}.
6729 @xref{Word,,@code{.word}}.
6730
6731 In some configurations, however, @code{.short} and @code{.word} generate
6732 numbers of different lengths. @xref{Machine Dependencies}.
6733 @end ifset
6734 @ifclear GENERIC
6735 @ifset W16
6736 @code{.short} is the same as @samp{.word}. @xref{Word,,@code{.word}}.
6737 @end ifset
6738 @ifset W32
6739 This expects zero or more @var{expressions}, and emits
6740 a 16 bit number for each.
6741 @end ifset
6742 @end ifclear
6743
6744 @node Single
6745 @section @code{.single @var{flonums}}
6746
6747 @cindex @code{single} directive
6748 @cindex floating point numbers (single)
6749 This directive assembles zero or more flonums, separated by commas. It
6750 has the same effect as @code{.float}.
6751 @ifset GENERIC
6752 The exact kind of floating point numbers emitted depends on how
6753 @command{@value{AS}} is configured. @xref{Machine Dependencies}.
6754 @end ifset
6755 @ifclear GENERIC
6756 @ifset IEEEFLOAT
6757 On the @value{TARGET} family, @code{.single} emits 32-bit floating point
6758 numbers in @sc{ieee} format.
6759 @end ifset
6760 @end ifclear
6761
6762 @ifset COFF-ELF
6763 @node Size
6764 @section @code{.size}
6765
6766 This directive is used to set the size associated with a symbol.
6767
6768 @ifset COFF
6769 @ifset ELF
6770 @c only print the extra heading if both COFF and ELF are set
6771 @subheading COFF Version
6772 @end ifset
6773
6774 @cindex @code{size} directive (COFF version)
6775 For COFF targets, the @code{.size} directive is only permitted inside
6776 @code{.def}/@code{.endef} pairs. It is used like this:
6777
6778 @smallexample
6779 .size @var{expression}
6780 @end smallexample
6781
6782 @end ifset
6783
6784 @ifset ELF
6785 @ifset COFF
6786 @c only print the extra heading if both COFF and ELF are set
6787 @subheading ELF Version
6788 @end ifset
6789
6790 @cindex @code{size} directive (ELF version)
6791 For ELF targets, the @code{.size} directive is used like this:
6792
6793 @smallexample
6794 .size @var{name} , @var{expression}
6795 @end smallexample
6796
6797 This directive sets the size associated with a symbol @var{name}.
6798 The size in bytes is computed from @var{expression} which can make use of label
6799 arithmetic. This directive is typically used to set the size of function
6800 symbols.
6801 @end ifset
6802 @end ifset
6803
6804 @ifclear no-space-dir
6805 @node Skip
6806 @section @code{.skip @var{size} [,@var{fill}]}
6807
6808 @cindex @code{skip} directive
6809 @cindex filling memory
6810 This directive emits @var{size} bytes, each of value @var{fill}. Both
6811 @var{size} and @var{fill} are absolute expressions. If the comma and
6812 @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same as
6813 @samp{.space}.
6814 @end ifclear
6815
6816 @node Sleb128
6817 @section @code{.sleb128 @var{expressions}}
6818
6819 @cindex @code{sleb128} directive
6820 @var{sleb128} stands for ``signed little endian base 128.'' This is a
6821 compact, variable length representation of numbers used by the DWARF
6822 symbolic debugging format. @xref{Uleb128, ,@code{.uleb128}}.
6823
6824 @ifclear no-space-dir
6825 @node Space
6826 @section @code{.space @var{size} [,@var{fill}]}
6827
6828 @cindex @code{space} directive
6829 @cindex filling memory
6830 This directive emits @var{size} bytes, each of value @var{fill}. Both
6831 @var{size} and @var{fill} are absolute expressions. If the comma
6832 and @var{fill} are omitted, @var{fill} is assumed to be zero. This is the same
6833 as @samp{.skip}.
6834
6835 @ifset HPPA
6836 @quotation
6837 @emph{Warning:} @code{.space} has a completely different meaning for HPPA
6838 targets; use @code{.block} as a substitute. See @cite{HP9000 Series 800
6839 Assembly Language Reference Manual} (HP 92432-90001) for the meaning of the
6840 @code{.space} directive. @xref{HPPA Directives,,HPPA Assembler Directives},
6841 for a summary.
6842 @end quotation
6843 @end ifset
6844 @end ifclear
6845
6846 @ifset have-stabs
6847 @node Stab
6848 @section @code{.stabd, .stabn, .stabs}
6849
6850 @cindex symbolic debuggers, information for
6851 @cindex @code{stab@var{x}} directives
6852 There are three directives that begin @samp{.stab}.
6853 All emit symbols (@pxref{Symbols}), for use by symbolic debuggers.
6854 The symbols are not entered in the @command{@value{AS}} hash table: they
6855 cannot be referenced elsewhere in the source file.
6856 Up to five fields are required:
6857
6858 @table @var
6859 @item string
6860 This is the symbol's name. It may contain any character except
6861 @samp{\000}, so is more general than ordinary symbol names. Some
6862 debuggers used to code arbitrarily complex structures into symbol names
6863 using this field.
6864
6865 @item type
6866 An absolute expression. The symbol's type is set to the low 8 bits of
6867 this expression. Any bit pattern is permitted, but @code{@value{LD}}
6868 and debuggers choke on silly bit patterns.
6869
6870 @item other
6871 An absolute expression. The symbol's ``other'' attribute is set to the
6872 low 8 bits of this expression.
6873
6874 @item desc
6875 An absolute expression. The symbol's descriptor is set to the low 16
6876 bits of this expression.
6877
6878 @item value
6879 An absolute expression which becomes the symbol's value.
6880 @end table
6881
6882 If a warning is detected while reading a @code{.stabd}, @code{.stabn},
6883 or @code{.stabs} statement, the symbol has probably already been created;
6884 you get a half-formed symbol in your object file. This is
6885 compatible with earlier assemblers!
6886
6887 @table @code
6888 @cindex @code{stabd} directive
6889 @item .stabd @var{type} , @var{other} , @var{desc}
6890
6891 The ``name'' of the symbol generated is not even an empty string.
6892 It is a null pointer, for compatibility. Older assemblers used a
6893 null pointer so they didn't waste space in object files with empty
6894 strings.
6895
6896 The symbol's value is set to the location counter,
6897 relocatably. When your program is linked, the value of this symbol
6898 is the address of the location counter when the @code{.stabd} was
6899 assembled.
6900
6901 @cindex @code{stabn} directive
6902 @item .stabn @var{type} , @var{other} , @var{desc} , @var{value}
6903 The name of the symbol is set to the empty string @code{""}.
6904
6905 @cindex @code{stabs} directive
6906 @item .stabs @var{string} , @var{type} , @var{other} , @var{desc} , @var{value}
6907 All five fields are specified.
6908 @end table
6909 @end ifset
6910 @c end have-stabs
6911
6912 @node String
6913 @section @code{.string} "@var{str}", @code{.string8} "@var{str}", @code{.string16}
6914 "@var{str}", @code{.string32} "@var{str}", @code{.string64} "@var{str}"
6915
6916 @cindex string, copying to object file
6917 @cindex string8, copying to object file
6918 @cindex string16, copying to object file
6919 @cindex string32, copying to object file
6920 @cindex string64, copying to object file
6921 @cindex @code{string} directive
6922 @cindex @code{string8} directive
6923 @cindex @code{string16} directive
6924 @cindex @code{string32} directive
6925 @cindex @code{string64} directive
6926
6927 Copy the characters in @var{str} to the object file. You may specify more than
6928 one string to copy, separated by commas. Unless otherwise specified for a
6929 particular machine, the assembler marks the end of each string with a 0 byte.
6930 You can use any of the escape sequences described in @ref{Strings,,Strings}.
6931
6932 The variants @code{string16}, @code{string32} and @code{string64} differ from
6933 the @code{string} pseudo opcode in that each 8-bit character from @var{str} is
6934 copied and expanded to 16, 32 or 64 bits respectively. The expanded characters
6935 are stored in target endianness byte order.
6936
6937 Example:
6938 @smallexample
6939 .string32 "BYE"
6940 expands to:
6941 .string "B\0\0\0Y\0\0\0E\0\0\0" /* On little endian targets. */
6942 .string "\0\0\0B\0\0\0Y\0\0\0E" /* On big endian targets. */
6943 @end smallexample
6944
6945
6946 @node Struct
6947 @section @code{.struct @var{expression}}
6948
6949 @cindex @code{struct} directive
6950 Switch to the absolute section, and set the section offset to @var{expression},
6951 which must be an absolute expression. You might use this as follows:
6952 @smallexample
6953 .struct 0
6954 field1:
6955 .struct field1 + 4
6956 field2:
6957 .struct field2 + 4
6958 field3:
6959 @end smallexample
6960 This would define the symbol @code{field1} to have the value 0, the symbol
6961 @code{field2} to have the value 4, and the symbol @code{field3} to have the
6962 value 8. Assembly would be left in the absolute section, and you would need to
6963 use a @code{.section} directive of some sort to change to some other section
6964 before further assembly.
6965
6966 @ifset ELF
6967 @node SubSection
6968 @section @code{.subsection @var{name}}
6969
6970 @cindex @code{subsection} directive
6971 @cindex Section Stack
6972 This is one of the ELF section stack manipulation directives. The others are
6973 @code{.section} (@pxref{Section}), @code{.pushsection} (@pxref{PushSection}),
6974 @code{.popsection} (@pxref{PopSection}), and @code{.previous}
6975 (@pxref{Previous}).
6976
6977 This directive replaces the current subsection with @code{name}. The current
6978 section is not changed. The replaced subsection is put onto the section stack
6979 in place of the then current top of stack subsection.
6980 @end ifset
6981
6982 @ifset ELF
6983 @node Symver
6984 @section @code{.symver}
6985 @cindex @code{symver} directive
6986 @cindex symbol versioning
6987 @cindex versions of symbols
6988 Use the @code{.symver} directive to bind symbols to specific version nodes
6989 within a source file. This is only supported on ELF platforms, and is
6990 typically used when assembling files to be linked into a shared library.
6991 There are cases where it may make sense to use this in objects to be bound
6992 into an application itself so as to override a versioned symbol from a
6993 shared library.
6994
6995 For ELF targets, the @code{.symver} directive can be used like this:
6996 @smallexample
6997 .symver @var{name}, @var{name2@@nodename}
6998 @end smallexample
6999 If the symbol @var{name} is defined within the file
7000 being assembled, the @code{.symver} directive effectively creates a symbol
7001 alias with the name @var{name2@@nodename}, and in fact the main reason that we
7002 just don't try and create a regular alias is that the @var{@@} character isn't
7003 permitted in symbol names. The @var{name2} part of the name is the actual name
7004 of the symbol by which it will be externally referenced. The name @var{name}
7005 itself is merely a name of convenience that is used so that it is possible to
7006 have definitions for multiple versions of a function within a single source
7007 file, and so that the compiler can unambiguously know which version of a
7008 function is being mentioned. The @var{nodename} portion of the alias should be
7009 the name of a node specified in the version script supplied to the linker when
7010 building a shared library. If you are attempting to override a versioned
7011 symbol from a shared library, then @var{nodename} should correspond to the
7012 nodename of the symbol you are trying to override.
7013
7014 If the symbol @var{name} is not defined within the file being assembled, all
7015 references to @var{name} will be changed to @var{name2@@nodename}. If no
7016 reference to @var{name} is made, @var{name2@@nodename} will be removed from the
7017 symbol table.
7018
7019 Another usage of the @code{.symver} directive is:
7020 @smallexample
7021 .symver @var{name}, @var{name2@@@@nodename}
7022 @end smallexample
7023 In this case, the symbol @var{name} must exist and be defined within
7024 the file being assembled. It is similar to @var{name2@@nodename}. The
7025 difference is @var{name2@@@@nodename} will also be used to resolve
7026 references to @var{name2} by the linker.
7027
7028 The third usage of the @code{.symver} directive is:
7029 @smallexample
7030 .symver @var{name}, @var{name2@@@@@@nodename}
7031 @end smallexample
7032 When @var{name} is not defined within the
7033 file being assembled, it is treated as @var{name2@@nodename}. When
7034 @var{name} is defined within the file being assembled, the symbol
7035 name, @var{name}, will be changed to @var{name2@@@@nodename}.
7036 @end ifset
7037
7038 @ifset COFF
7039 @node Tag
7040 @section @code{.tag @var{structname}}
7041
7042 @cindex COFF structure debugging
7043 @cindex structure debugging, COFF
7044 @cindex @code{tag} directive
7045 This directive is generated by compilers to include auxiliary debugging
7046 information in the symbol table. It is only permitted inside
7047 @code{.def}/@code{.endef} pairs. Tags are used to link structure
7048 definitions in the symbol table with instances of those structures.
7049 @end ifset
7050
7051 @node Text
7052 @section @code{.text @var{subsection}}
7053
7054 @cindex @code{text} directive
7055 Tells @command{@value{AS}} to assemble the following statements onto the end of
7056 the text subsection numbered @var{subsection}, which is an absolute
7057 expression. If @var{subsection} is omitted, subsection number zero
7058 is used.
7059
7060 @node Title
7061 @section @code{.title "@var{heading}"}
7062
7063 @cindex @code{title} directive
7064 @cindex listing control: title line
7065 Use @var{heading} as the title (second line, immediately after the
7066 source file name and pagenumber) when generating assembly listings.
7067
7068 This directive affects subsequent pages, as well as the current page if
7069 it appears within ten lines of the top of a page.
7070
7071 @ifset COFF-ELF
7072 @node Type
7073 @section @code{.type}
7074
7075 This directive is used to set the type of a symbol.
7076
7077 @ifset COFF
7078 @ifset ELF
7079 @c only print the extra heading if both COFF and ELF are set
7080 @subheading COFF Version
7081 @end ifset
7082
7083 @cindex COFF symbol type
7084 @cindex symbol type, COFF
7085 @cindex @code{type} directive (COFF version)
7086 For COFF targets, this directive is permitted only within
7087 @code{.def}/@code{.endef} pairs. It is used like this:
7088
7089 @smallexample
7090 .type @var{int}
7091 @end smallexample
7092
7093 This records the integer @var{int} as the type attribute of a symbol table
7094 entry.
7095
7096 @end ifset
7097
7098 @ifset ELF
7099 @ifset COFF
7100 @c only print the extra heading if both COFF and ELF are set
7101 @subheading ELF Version
7102 @end ifset
7103
7104 @cindex ELF symbol type
7105 @cindex symbol type, ELF
7106 @cindex @code{type} directive (ELF version)
7107 For ELF targets, the @code{.type} directive is used like this:
7108
7109 @smallexample
7110 .type @var{name} , @var{type description}
7111 @end smallexample
7112
7113 This sets the type of symbol @var{name} to be either a
7114 function symbol or an object symbol. There are five different syntaxes
7115 supported for the @var{type description} field, in order to provide
7116 compatibility with various other assemblers.
7117
7118 Because some of the characters used in these syntaxes (such as @samp{@@} and
7119 @samp{#}) are comment characters for some architectures, some of the syntaxes
7120 below do not work on all architectures. The first variant will be accepted by
7121 the GNU assembler on all architectures so that variant should be used for
7122 maximum portability, if you do not need to assemble your code with other
7123 assemblers.
7124
7125 The syntaxes supported are:
7126
7127 @smallexample
7128 .type <name> STT_<TYPE_IN_UPPER_CASE>
7129 .type <name>,#<type>
7130 .type <name>,@@<type>
7131 .type <name>,%<type>
7132 .type <name>,"<type>"
7133 @end smallexample
7134
7135 The types supported are:
7136
7137 @table @gcctabopt
7138 @item STT_FUNC
7139 @itemx function
7140 Mark the symbol as being a function name.
7141
7142 @item STT_GNU_IFUNC
7143 @itemx gnu_indirect_function
7144 Mark the symbol as an indirect function when evaluated during reloc
7145 processing. (This is only supported on assemblers targeting GNU systems).
7146
7147 @item STT_OBJECT
7148 @itemx object
7149 Mark the symbol as being a data object.
7150
7151 @item STT_TLS
7152 @itemx tls_object
7153 Mark the symbol as being a thread-local data object.
7154
7155 @item STT_COMMON
7156 @itemx common
7157 Mark the symbol as being a common data object.
7158
7159 @item STT_NOTYPE
7160 @itemx notype
7161 Does not mark the symbol in any way. It is supported just for completeness.
7162
7163 @item gnu_unique_object
7164 Marks the symbol as being a globally unique data object. The dynamic linker
7165 will make sure that in the entire process there is just one symbol with this
7166 name and type in use. (This is only supported on assemblers targeting GNU
7167 systems).
7168
7169 @end table
7170
7171 Note: Some targets support extra types in addition to those listed above.
7172
7173 @end ifset
7174 @end ifset
7175
7176 @node Uleb128
7177 @section @code{.uleb128 @var{expressions}}
7178
7179 @cindex @code{uleb128} directive
7180 @var{uleb128} stands for ``unsigned little endian base 128.'' This is a
7181 compact, variable length representation of numbers used by the DWARF
7182 symbolic debugging format. @xref{Sleb128, ,@code{.sleb128}}.
7183
7184 @ifset COFF
7185 @node Val
7186 @section @code{.val @var{addr}}
7187
7188 @cindex @code{val} directive
7189 @cindex COFF value attribute
7190 @cindex value attribute, COFF
7191 This directive, permitted only within @code{.def}/@code{.endef} pairs,
7192 records the address @var{addr} as the value attribute of a symbol table
7193 entry.
7194 @end ifset
7195
7196 @ifset ELF
7197 @node Version
7198 @section @code{.version "@var{string}"}
7199
7200 @cindex @code{version} directive
7201 This directive creates a @code{.note} section and places into it an ELF
7202 formatted note of type NT_VERSION. The note's name is set to @code{string}.
7203 @end ifset
7204
7205 @ifset ELF
7206 @node VTableEntry
7207 @section @code{.vtable_entry @var{table}, @var{offset}}
7208
7209 @cindex @code{vtable_entry} directive
7210 This directive finds or creates a symbol @code{table} and creates a
7211 @code{VTABLE_ENTRY} relocation for it with an addend of @code{offset}.
7212
7213 @node VTableInherit
7214 @section @code{.vtable_inherit @var{child}, @var{parent}}
7215
7216 @cindex @code{vtable_inherit} directive
7217 This directive finds the symbol @code{child} and finds or creates the symbol
7218 @code{parent} and then creates a @code{VTABLE_INHERIT} relocation for the
7219 parent whose addend is the value of the child symbol. As a special case the
7220 parent name of @code{0} is treated as referring to the @code{*ABS*} section.
7221 @end ifset
7222
7223 @node Warning
7224 @section @code{.warning "@var{string}"}
7225 @cindex warning directive
7226 Similar to the directive @code{.error}
7227 (@pxref{Error,,@code{.error "@var{string}"}}), but just emits a warning.
7228
7229 @node Weak
7230 @section @code{.weak @var{names}}
7231
7232 @cindex @code{weak} directive
7233 This directive sets the weak attribute on the comma separated list of symbol
7234 @code{names}. If the symbols do not already exist, they will be created.
7235
7236 On COFF targets other than PE, weak symbols are a GNU extension. This
7237 directive sets the weak attribute on the comma separated list of symbol
7238 @code{names}. If the symbols do not already exist, they will be created.
7239
7240 On the PE target, weak symbols are supported natively as weak aliases.
7241 When a weak symbol is created that is not an alias, GAS creates an
7242 alternate symbol to hold the default value.
7243
7244 @node Weakref
7245 @section @code{.weakref @var{alias}, @var{target}}
7246
7247 @cindex @code{weakref} directive
7248 This directive creates an alias to the target symbol that enables the symbol to
7249 be referenced with weak-symbol semantics, but without actually making it weak.
7250 If direct references or definitions of the symbol are present, then the symbol
7251 will not be weak, but if all references to it are through weak references, the
7252 symbol will be marked as weak in the symbol table.
7253
7254 The effect is equivalent to moving all references to the alias to a separate
7255 assembly source file, renaming the alias to the symbol in it, declaring the
7256 symbol as weak there, and running a reloadable link to merge the object files
7257 resulting from the assembly of the new source file and the old source file that
7258 had the references to the alias removed.
7259
7260 The alias itself never makes to the symbol table, and is entirely handled
7261 within the assembler.
7262
7263 @node Word
7264 @section @code{.word @var{expressions}}
7265
7266 @cindex @code{word} directive
7267 This directive expects zero or more @var{expressions}, of any section,
7268 separated by commas.
7269 @ifclear GENERIC
7270 @ifset W32
7271 For each expression, @command{@value{AS}} emits a 32-bit number.
7272 @end ifset
7273 @ifset W16
7274 For each expression, @command{@value{AS}} emits a 16-bit number.
7275 @end ifset
7276 @end ifclear
7277 @ifset GENERIC
7278
7279 The size of the number emitted, and its byte order,
7280 depend on what target computer the assembly is for.
7281 @end ifset
7282
7283 @c on sparc the "special treatment to support compilers" doesn't
7284 @c happen---32-bit addressability, period; no long/short jumps.
7285 @ifset DIFF-TBL-KLUGE
7286 @cindex difference tables altered
7287 @cindex altered difference tables
7288 @quotation
7289 @emph{Warning: Special Treatment to support Compilers}
7290 @end quotation
7291
7292 @ifset GENERIC
7293 Machines with a 32-bit address space, but that do less than 32-bit
7294 addressing, require the following special treatment. If the machine of
7295 interest to you does 32-bit addressing (or doesn't require it;
7296 @pxref{Machine Dependencies}), you can ignore this issue.
7297
7298 @end ifset
7299 In order to assemble compiler output into something that works,
7300 @command{@value{AS}} occasionally does strange things to @samp{.word} directives.
7301 Directives of the form @samp{.word sym1-sym2} are often emitted by
7302 compilers as part of jump tables. Therefore, when @command{@value{AS}} assembles a
7303 directive of the form @samp{.word sym1-sym2}, and the difference between
7304 @code{sym1} and @code{sym2} does not fit in 16 bits, @command{@value{AS}}
7305 creates a @dfn{secondary jump table}, immediately before the next label.
7306 This secondary jump table is preceded by a short-jump to the
7307 first byte after the secondary table. This short-jump prevents the flow
7308 of control from accidentally falling into the new table. Inside the
7309 table is a long-jump to @code{sym2}. The original @samp{.word}
7310 contains @code{sym1} minus the address of the long-jump to
7311 @code{sym2}.
7312
7313 If there were several occurrences of @samp{.word sym1-sym2} before the
7314 secondary jump table, all of them are adjusted. If there was a
7315 @samp{.word sym3-sym4}, that also did not fit in sixteen bits, a
7316 long-jump to @code{sym4} is included in the secondary jump table,
7317 and the @code{.word} directives are adjusted to contain @code{sym3}
7318 minus the address of the long-jump to @code{sym4}; and so on, for as many
7319 entries in the original jump table as necessary.
7320
7321 @ifset INTERNALS
7322 @emph{This feature may be disabled by compiling @command{@value{AS}} with the
7323 @samp{-DWORKING_DOT_WORD} option.} This feature is likely to confuse
7324 assembly language programmers.
7325 @end ifset
7326 @end ifset
7327 @c end DIFF-TBL-KLUGE
7328
7329 @ifclear no-space-dir
7330 @node Zero
7331 @section @code{.zero @var{size}}
7332
7333 @cindex @code{zero} directive
7334 @cindex filling memory with zero bytes
7335 This directive emits @var{size} 0-valued bytes. @var{size} must be an absolute
7336 expression. This directive is actually an alias for the @samp{.skip} directive
7337 so in can take an optional second argument of the value to store in the bytes
7338 instead of zero. Using @samp{.zero} in this way would be confusing however.
7339 @end ifclear
7340
7341 @ifset ELF
7342 @node 2byte
7343 @section @code{.2byte @var{expression} [, @var{expression}]*}
7344 @cindex @code{2byte} directive
7345 @cindex two-byte integer
7346 @cindex integer, 2-byte
7347
7348 This directive expects zero or more expressions, separated by commas. If there
7349 are no expressions then the directive does nothing. Otherwise each expression
7350 is evaluated in turn and placed in the next two bytes of the current output
7351 section, using the endian model of the target. If an expression will not fit
7352 in two bytes, a warning message is displayed and the least significant two
7353 bytes of the expression's value are used. If an expression cannot be evaluated
7354 at assembly time then relocations will be generated in order to compute the
7355 value at link time.
7356
7357 This directive does not apply any alignment before or after inserting the
7358 values. As a result of this, if relocations are generated, they may be
7359 different from those used for inserting values with a guaranteed alignment.
7360
7361 This directive is only available for ELF targets,
7362
7363 @node 4byte
7364 @section @code{.4byte @var{expression} [, @var{expression}]*}
7365 @cindex @code{4byte} directive
7366 @cindex four-byte integer
7367 @cindex integer, 4-byte
7368
7369 Like the @option{.2byte} directive, except that it inserts unaligned, four byte
7370 long values into the output.
7371
7372 @node 8byte
7373 @section @code{.8byte @var{expression} [, @var{expression}]*}
7374 @cindex @code{8byte} directive
7375 @cindex eight-byte integer
7376 @cindex integer, 8-byte
7377
7378 Like the @option{.2byte} directive, except that it inserts unaligned, eight
7379 byte long bignum values into the output.
7380
7381 @end ifset
7382
7383 @node Deprecated
7384 @section Deprecated Directives
7385
7386 @cindex deprecated directives
7387 @cindex obsolescent directives
7388 One day these directives won't work.
7389 They are included for compatibility with older assemblers.
7390 @table @t
7391 @item .abort
7392 @item .line
7393 @end table
7394
7395 @ifset ELF
7396 @node Object Attributes
7397 @chapter Object Attributes
7398 @cindex object attributes
7399
7400 @command{@value{AS}} assembles source files written for a specific architecture
7401 into object files for that architecture. But not all object files are alike.
7402 Many architectures support incompatible variations. For instance, floating
7403 point arguments might be passed in floating point registers if the object file
7404 requires hardware floating point support---or floating point arguments might be
7405 passed in integer registers if the object file supports processors with no
7406 hardware floating point unit. Or, if two objects are built for different
7407 generations of the same architecture, the combination may require the
7408 newer generation at run-time.
7409
7410 This information is useful during and after linking. At link time,
7411 @command{@value{LD}} can warn about incompatible object files. After link
7412 time, tools like @command{gdb} can use it to process the linked file
7413 correctly.
7414
7415 Compatibility information is recorded as a series of object attributes. Each
7416 attribute has a @dfn{vendor}, @dfn{tag}, and @dfn{value}. The vendor is a
7417 string, and indicates who sets the meaning of the tag. The tag is an integer,
7418 and indicates what property the attribute describes. The value may be a string
7419 or an integer, and indicates how the property affects this object. Missing
7420 attributes are the same as attributes with a zero value or empty string value.
7421
7422 Object attributes were developed as part of the ABI for the ARM Architecture.
7423 The file format is documented in @cite{ELF for the ARM Architecture}.
7424
7425 @menu
7426 * GNU Object Attributes:: @sc{gnu} Object Attributes
7427 * Defining New Object Attributes:: Defining New Object Attributes
7428 @end menu
7429
7430 @node GNU Object Attributes
7431 @section @sc{gnu} Object Attributes
7432
7433 The @code{.gnu_attribute} directive records an object attribute
7434 with vendor @samp{gnu}.
7435
7436 Except for @samp{Tag_compatibility}, which has both an integer and a string for
7437 its value, @sc{gnu} attributes have a string value if the tag number is odd and
7438 an integer value if the tag number is even. The second bit (@code{@var{tag} &
7439 2} is set for architecture-independent attributes and clear for
7440 architecture-dependent ones.
7441
7442 @subsection Common @sc{gnu} attributes
7443
7444 These attributes are valid on all architectures.
7445
7446 @table @r
7447 @item Tag_compatibility (32)
7448 The compatibility attribute takes an integer flag value and a vendor name. If
7449 the flag value is 0, the file is compatible with other toolchains. If it is 1,
7450 then the file is only compatible with the named toolchain. If it is greater
7451 than 1, the file can only be processed by other toolchains under some private
7452 arrangement indicated by the flag value and the vendor name.
7453 @end table
7454
7455 @subsection MIPS Attributes
7456
7457 @table @r
7458 @item Tag_GNU_MIPS_ABI_FP (4)
7459 The floating-point ABI used by this object file. The value will be:
7460
7461 @itemize @bullet
7462 @item
7463 0 for files not affected by the floating-point ABI.
7464 @item
7465 1 for files using the hardware floating-point ABI with a standard
7466 double-precision FPU.
7467 @item
7468 2 for files using the hardware floating-point ABI with a single-precision FPU.
7469 @item
7470 3 for files using the software floating-point ABI.
7471 @item
7472 4 for files using the deprecated hardware floating-point ABI which used 64-bit
7473 floating-point registers, 32-bit general-purpose registers and increased the
7474 number of callee-saved floating-point registers.
7475 @item
7476 5 for files using the hardware floating-point ABI with a double-precision FPU
7477 with either 32-bit or 64-bit floating-point registers and 32-bit
7478 general-purpose registers.
7479 @item
7480 6 for files using the hardware floating-point ABI with 64-bit floating-point
7481 registers and 32-bit general-purpose registers.
7482 @item
7483 7 for files using the hardware floating-point ABI with 64-bit floating-point
7484 registers, 32-bit general-purpose registers and a rule that forbids the
7485 direct use of odd-numbered single-precision floating-point registers.
7486 @end itemize
7487 @end table
7488
7489 @subsection PowerPC Attributes
7490
7491 @table @r
7492 @item Tag_GNU_Power_ABI_FP (4)
7493 The floating-point ABI used by this object file. The value will be:
7494
7495 @itemize @bullet
7496 @item
7497 0 for files not affected by the floating-point ABI.
7498 @item
7499 1 for files using double-precision hardware floating-point ABI.
7500 @item
7501 2 for files using the software floating-point ABI.
7502 @item
7503 3 for files using single-precision hardware floating-point ABI.
7504 @end itemize
7505
7506 @item Tag_GNU_Power_ABI_Vector (8)
7507 The vector ABI used by this object file. The value will be:
7508
7509 @itemize @bullet
7510 @item
7511 0 for files not affected by the vector ABI.
7512 @item
7513 1 for files using general purpose registers to pass vectors.
7514 @item
7515 2 for files using AltiVec registers to pass vectors.
7516 @item
7517 3 for files using SPE registers to pass vectors.
7518 @end itemize
7519 @end table
7520
7521 @subsection IBM z Systems Attributes
7522
7523 @table @r
7524 @item Tag_GNU_S390_ABI_Vector (8)
7525 The vector ABI used by this object file. The value will be:
7526
7527 @itemize @bullet
7528 @item
7529 0 for files not affected by the vector ABI.
7530 @item
7531 1 for files using software vector ABI.
7532 @item
7533 2 for files using hardware vector ABI.
7534 @end itemize
7535 @end table
7536
7537 @node Defining New Object Attributes
7538 @section Defining New Object Attributes
7539
7540 If you want to define a new @sc{gnu} object attribute, here are the places you
7541 will need to modify. New attributes should be discussed on the @samp{binutils}
7542 mailing list.
7543
7544 @itemize @bullet
7545 @item
7546 This manual, which is the official register of attributes.
7547 @item
7548 The header for your architecture @file{include/elf}, to define the tag.
7549 @item
7550 The @file{bfd} support file for your architecture, to merge the attribute
7551 and issue any appropriate link warnings.
7552 @item
7553 Test cases in @file{ld/testsuite} for merging and link warnings.
7554 @item
7555 @file{binutils/readelf.c} to display your attribute.
7556 @item
7557 GCC, if you want the compiler to mark the attribute automatically.
7558 @end itemize
7559
7560 @end ifset
7561
7562 @ifset GENERIC
7563 @node Machine Dependencies
7564 @chapter Machine Dependent Features
7565
7566 @cindex machine dependencies
7567 The machine instruction sets are (almost by definition) different on
7568 each machine where @command{@value{AS}} runs. Floating point representations
7569 vary as well, and @command{@value{AS}} often supports a few additional
7570 directives or command-line options for compatibility with other
7571 assemblers on a particular platform. Finally, some versions of
7572 @command{@value{AS}} support special pseudo-instructions for branch
7573 optimization.
7574
7575 This chapter discusses most of these differences, though it does not
7576 include details on any machine's instruction set. For details on that
7577 subject, see the hardware manufacturer's manual.
7578
7579 @menu
7580 @ifset AARCH64
7581 * AArch64-Dependent:: AArch64 Dependent Features
7582 @end ifset
7583 @ifset ALPHA
7584 * Alpha-Dependent:: Alpha Dependent Features
7585 @end ifset
7586 @ifset ARC
7587 * ARC-Dependent:: ARC Dependent Features
7588 @end ifset
7589 @ifset ARM
7590 * ARM-Dependent:: ARM Dependent Features
7591 @end ifset
7592 @ifset AVR
7593 * AVR-Dependent:: AVR Dependent Features
7594 @end ifset
7595 @ifset Blackfin
7596 * Blackfin-Dependent:: Blackfin Dependent Features
7597 @end ifset
7598 @ifset CR16
7599 * CR16-Dependent:: CR16 Dependent Features
7600 @end ifset
7601 @ifset CRIS
7602 * CRIS-Dependent:: CRIS Dependent Features
7603 @end ifset
7604 @ifset CSKY
7605 * C-SKY-Dependent:: C-SKY Dependent Features
7606 @end ifset
7607 @ifset D10V
7608 * D10V-Dependent:: D10V Dependent Features
7609 @end ifset
7610 @ifset D30V
7611 * D30V-Dependent:: D30V Dependent Features
7612 @end ifset
7613 @ifset EPIPHANY
7614 * Epiphany-Dependent:: EPIPHANY Dependent Features
7615 @end ifset
7616 @ifset H8/300
7617 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7618 @end ifset
7619 @ifset HPPA
7620 * HPPA-Dependent:: HPPA Dependent Features
7621 @end ifset
7622 @ifset I80386
7623 * i386-Dependent:: Intel 80386 and AMD x86-64 Dependent Features
7624 @end ifset
7625 @ifset IA64
7626 * IA-64-Dependent:: Intel IA-64 Dependent Features
7627 @end ifset
7628 @ifset IP2K
7629 * IP2K-Dependent:: IP2K Dependent Features
7630 @end ifset
7631 @ifset LM32
7632 * LM32-Dependent:: LM32 Dependent Features
7633 @end ifset
7634 @ifset M32C
7635 * M32C-Dependent:: M32C Dependent Features
7636 @end ifset
7637 @ifset M32R
7638 * M32R-Dependent:: M32R Dependent Features
7639 @end ifset
7640 @ifset M680X0
7641 * M68K-Dependent:: M680x0 Dependent Features
7642 @end ifset
7643 @ifset M68HC11
7644 * M68HC11-Dependent:: M68HC11 and 68HC12 Dependent Features
7645 @end ifset
7646 @ifset S12Z
7647 * S12Z-Dependent:: S12Z Dependent Features
7648 @end ifset
7649 @ifset METAG
7650 * Meta-Dependent :: Meta Dependent Features
7651 @end ifset
7652 @ifset MICROBLAZE
7653 * MicroBlaze-Dependent:: MICROBLAZE Dependent Features
7654 @end ifset
7655 @ifset MIPS
7656 * MIPS-Dependent:: MIPS Dependent Features
7657 @end ifset
7658 @ifset MMIX
7659 * MMIX-Dependent:: MMIX Dependent Features
7660 @end ifset
7661 @ifset MSP430
7662 * MSP430-Dependent:: MSP430 Dependent Features
7663 @end ifset
7664 @ifset NDS32
7665 * NDS32-Dependent:: Andes NDS32 Dependent Features
7666 @end ifset
7667 @ifset NIOSII
7668 * NiosII-Dependent:: Altera Nios II Dependent Features
7669 @end ifset
7670 @ifset NS32K
7671 * NS32K-Dependent:: NS32K Dependent Features
7672 @end ifset
7673 @ifset PDP11
7674 * PDP-11-Dependent:: PDP-11 Dependent Features
7675 @end ifset
7676 @ifset PJ
7677 * PJ-Dependent:: picoJava Dependent Features
7678 @end ifset
7679 @ifset PPC
7680 * PPC-Dependent:: PowerPC Dependent Features
7681 @end ifset
7682 @ifset PRU
7683 * PRU-Dependent:: PRU Dependent Features
7684 @end ifset
7685 @ifset RISCV
7686 * RISC-V-Dependent:: RISC-V Dependent Features
7687 @end ifset
7688 @ifset RL78
7689 * RL78-Dependent:: RL78 Dependent Features
7690 @end ifset
7691 @ifset RX
7692 * RX-Dependent:: RX Dependent Features
7693 @end ifset
7694 @ifset S390
7695 * S/390-Dependent:: IBM S/390 Dependent Features
7696 @end ifset
7697 @ifset SCORE
7698 * SCORE-Dependent:: SCORE Dependent Features
7699 @end ifset
7700 @ifset SH
7701 * SH-Dependent:: Renesas / SuperH SH Dependent Features
7702 @end ifset
7703 @ifset SPARC
7704 * Sparc-Dependent:: SPARC Dependent Features
7705 @end ifset
7706 @ifset TIC54X
7707 * TIC54X-Dependent:: TI TMS320C54x Dependent Features
7708 @end ifset
7709 @ifset TIC6X
7710 * TIC6X-Dependent :: TI TMS320C6x Dependent Features
7711 @end ifset
7712 @ifset TILEGX
7713 * TILE-Gx-Dependent :: Tilera TILE-Gx Dependent Features
7714 @end ifset
7715 @ifset TILEPRO
7716 * TILEPro-Dependent :: Tilera TILEPro Dependent Features
7717 @end ifset
7718 @ifset V850
7719 * V850-Dependent:: V850 Dependent Features
7720 @end ifset
7721 @ifset VAX
7722 * Vax-Dependent:: VAX Dependent Features
7723 @end ifset
7724 @ifset VISIUM
7725 * Visium-Dependent:: Visium Dependent Features
7726 @end ifset
7727 @ifset WASM32
7728 * WebAssembly-Dependent:: WebAssembly Dependent Features
7729 @end ifset
7730 @ifset XGATE
7731 * XGATE-Dependent:: XGATE Dependent Features
7732 @end ifset
7733 @ifset XSTORMY16
7734 * XSTORMY16-Dependent:: XStormy16 Dependent Features
7735 @end ifset
7736 @ifset XTENSA
7737 * Xtensa-Dependent:: Xtensa Dependent Features
7738 @end ifset
7739 @ifset Z80
7740 * Z80-Dependent:: Z80 Dependent Features
7741 @end ifset
7742 @ifset Z8000
7743 * Z8000-Dependent:: Z8000 Dependent Features
7744 @end ifset
7745 @end menu
7746
7747 @lowersections
7748 @end ifset
7749
7750 @c The following major nodes are *sections* in the GENERIC version, *chapters*
7751 @c in single-cpu versions. This is mainly achieved by @lowersections. There is a
7752 @c peculiarity: to preserve cross-references, there must be a node called
7753 @c "Machine Dependencies". Hence the conditional nodenames in each
7754 @c major node below. Node defaulting in makeinfo requires adjacency of
7755 @c node and sectioning commands; hence the repetition of @chapter BLAH
7756 @c in both conditional blocks.
7757
7758 @ifset AARCH64
7759 @include c-aarch64.texi
7760 @end ifset
7761
7762 @ifset ALPHA
7763 @include c-alpha.texi
7764 @end ifset
7765
7766 @ifset ARC
7767 @include c-arc.texi
7768 @end ifset
7769
7770 @ifset ARM
7771 @include c-arm.texi
7772 @end ifset
7773
7774 @ifset AVR
7775 @include c-avr.texi
7776 @end ifset
7777
7778 @ifset Blackfin
7779 @include c-bfin.texi
7780 @end ifset
7781
7782 @ifset CR16
7783 @include c-cr16.texi
7784 @end ifset
7785
7786 @ifset CRIS
7787 @include c-cris.texi
7788 @end ifset
7789
7790 @ifset CSKY
7791 @include c-csky.texi
7792 @end ifset
7793
7794 @ifset Renesas-all
7795 @ifclear GENERIC
7796 @node Machine Dependencies
7797 @chapter Machine Dependent Features
7798
7799 The machine instruction sets are different on each Renesas chip family,
7800 and there are also some syntax differences among the families. This
7801 chapter describes the specific @command{@value{AS}} features for each
7802 family.
7803
7804 @menu
7805 * H8/300-Dependent:: Renesas H8/300 Dependent Features
7806 * SH-Dependent:: Renesas SH Dependent Features
7807 @end menu
7808 @lowersections
7809 @end ifclear
7810 @end ifset
7811
7812 @ifset D10V
7813 @include c-d10v.texi
7814 @end ifset
7815
7816 @ifset D30V
7817 @include c-d30v.texi
7818 @end ifset
7819
7820 @ifset EPIPHANY
7821 @include c-epiphany.texi
7822 @end ifset
7823
7824 @ifset H8/300
7825 @include c-h8300.texi
7826 @end ifset
7827
7828 @ifset HPPA
7829 @include c-hppa.texi
7830 @end ifset
7831
7832 @ifset I80386
7833 @include c-i386.texi
7834 @end ifset
7835
7836 @ifset IA64
7837 @include c-ia64.texi
7838 @end ifset
7839
7840 @ifset IP2K
7841 @include c-ip2k.texi
7842 @end ifset
7843
7844 @ifset LM32
7845 @include c-lm32.texi
7846 @end ifset
7847
7848 @ifset M32C
7849 @include c-m32c.texi
7850 @end ifset
7851
7852 @ifset M32R
7853 @include c-m32r.texi
7854 @end ifset
7855
7856 @ifset M680X0
7857 @include c-m68k.texi
7858 @end ifset
7859
7860 @ifset M68HC11
7861 @include c-m68hc11.texi
7862 @end ifset
7863
7864 @ifset S12Z
7865 @include c-s12z.texi
7866 @end ifset
7867
7868 @ifset METAG
7869 @include c-metag.texi
7870 @end ifset
7871
7872 @ifset MICROBLAZE
7873 @include c-microblaze.texi
7874 @end ifset
7875
7876 @ifset MIPS
7877 @include c-mips.texi
7878 @end ifset
7879
7880 @ifset MMIX
7881 @include c-mmix.texi
7882 @end ifset
7883
7884 @ifset MSP430
7885 @include c-msp430.texi
7886 @end ifset
7887
7888 @ifset NDS32
7889 @include c-nds32.texi
7890 @end ifset
7891
7892 @ifset NIOSII
7893 @include c-nios2.texi
7894 @end ifset
7895
7896 @ifset NS32K
7897 @include c-ns32k.texi
7898 @end ifset
7899
7900 @ifset PDP11
7901 @include c-pdp11.texi
7902 @end ifset
7903
7904 @ifset PJ
7905 @include c-pj.texi
7906 @end ifset
7907
7908 @ifset PPC
7909 @include c-ppc.texi
7910 @end ifset
7911
7912 @ifset PRU
7913 @include c-pru.texi
7914 @end ifset
7915
7916 @ifset RISCV
7917 @include c-riscv.texi
7918 @end ifset
7919
7920 @ifset RL78
7921 @include c-rl78.texi
7922 @end ifset
7923
7924 @ifset RX
7925 @include c-rx.texi
7926 @end ifset
7927
7928 @ifset S390
7929 @include c-s390.texi
7930 @end ifset
7931
7932 @ifset SCORE
7933 @include c-score.texi
7934 @end ifset
7935
7936 @ifset SH
7937 @include c-sh.texi
7938 @end ifset
7939
7940 @ifset SPARC
7941 @include c-sparc.texi
7942 @end ifset
7943
7944 @ifset TIC54X
7945 @include c-tic54x.texi
7946 @end ifset
7947
7948 @ifset TIC6X
7949 @include c-tic6x.texi
7950 @end ifset
7951
7952 @ifset TILEGX
7953 @include c-tilegx.texi
7954 @end ifset
7955
7956 @ifset TILEPRO
7957 @include c-tilepro.texi
7958 @end ifset
7959
7960 @ifset V850
7961 @include c-v850.texi
7962 @end ifset
7963
7964 @ifset VAX
7965 @include c-vax.texi
7966 @end ifset
7967
7968 @ifset VISIUM
7969 @include c-visium.texi
7970 @end ifset
7971
7972 @ifset WASM32
7973 @include c-wasm32.texi
7974 @end ifset
7975
7976 @ifset XGATE
7977 @include c-xgate.texi
7978 @end ifset
7979
7980 @ifset XSTORMY16
7981 @include c-xstormy16.texi
7982 @end ifset
7983
7984 @ifset XTENSA
7985 @include c-xtensa.texi
7986 @end ifset
7987
7988 @ifset Z80
7989 @include c-z80.texi
7990 @end ifset
7991
7992 @ifset Z8000
7993 @include c-z8k.texi
7994 @end ifset
7995
7996 @ifset GENERIC
7997 @c reverse effect of @down at top of generic Machine-Dep chapter
7998 @raisesections
7999 @end ifset
8000
8001 @node Reporting Bugs
8002 @chapter Reporting Bugs
8003 @cindex bugs in assembler
8004 @cindex reporting bugs in assembler
8005
8006 Your bug reports play an essential role in making @command{@value{AS}} reliable.
8007
8008 Reporting a bug may help you by bringing a solution to your problem, or it may
8009 not. But in any case the principal function of a bug report is to help the
8010 entire community by making the next version of @command{@value{AS}} work better.
8011 Bug reports are your contribution to the maintenance of @command{@value{AS}}.
8012
8013 In order for a bug report to serve its purpose, you must include the
8014 information that enables us to fix the bug.
8015
8016 @menu
8017 * Bug Criteria:: Have you found a bug?
8018 * Bug Reporting:: How to report bugs
8019 @end menu
8020
8021 @node Bug Criteria
8022 @section Have You Found a Bug?
8023 @cindex bug criteria
8024
8025 If you are not sure whether you have found a bug, here are some guidelines:
8026
8027 @itemize @bullet
8028 @cindex fatal signal
8029 @cindex assembler crash
8030 @cindex crash of assembler
8031 @item
8032 If the assembler gets a fatal signal, for any input whatever, that is a
8033 @command{@value{AS}} bug. Reliable assemblers never crash.
8034
8035 @cindex error on valid input
8036 @item
8037 If @command{@value{AS}} produces an error message for valid input, that is a bug.
8038
8039 @cindex invalid input
8040 @item
8041 If @command{@value{AS}} does not produce an error message for invalid input, that
8042 is a bug. However, you should note that your idea of ``invalid input'' might
8043 be our idea of ``an extension'' or ``support for traditional practice''.
8044
8045 @item
8046 If you are an experienced user of assemblers, your suggestions for improvement
8047 of @command{@value{AS}} are welcome in any case.
8048 @end itemize
8049
8050 @node Bug Reporting
8051 @section How to Report Bugs
8052 @cindex bug reports
8053 @cindex assembler bugs, reporting
8054
8055 A number of companies and individuals offer support for @sc{gnu} products. If
8056 you obtained @command{@value{AS}} from a support organization, we recommend you
8057 contact that organization first.
8058
8059 You can find contact information for many support companies and
8060 individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
8061 distribution.
8062
8063 @ifset BUGURL
8064 In any event, we also recommend that you send bug reports for @command{@value{AS}}
8065 to @value{BUGURL}.
8066 @end ifset
8067
8068 The fundamental principle of reporting bugs usefully is this:
8069 @strong{report all the facts}. If you are not sure whether to state a
8070 fact or leave it out, state it!
8071
8072 Often people omit facts because they think they know what causes the problem
8073 and assume that some details do not matter. Thus, you might assume that the
8074 name of a symbol you use in an example does not matter. Well, probably it does
8075 not, but one cannot be sure. Perhaps the bug is a stray memory reference which
8076 happens to fetch from the location where that name is stored in memory;
8077 perhaps, if the name were different, the contents of that location would fool
8078 the assembler into doing the right thing despite the bug. Play it safe and
8079 give a specific, complete example. That is the easiest thing for you to do,
8080 and the most helpful.
8081
8082 Keep in mind that the purpose of a bug report is to enable us to fix the bug if
8083 it is new to us. Therefore, always write your bug reports on the assumption
8084 that the bug has not been reported previously.
8085
8086 Sometimes people give a few sketchy facts and ask, ``Does this ring a
8087 bell?'' This cannot help us fix a bug, so it is basically useless. We
8088 respond by asking for enough details to enable us to investigate.
8089 You might as well expedite matters by sending them to begin with.
8090
8091 To enable us to fix the bug, you should include all these things:
8092
8093 @itemize @bullet
8094 @item
8095 The version of @command{@value{AS}}. @command{@value{AS}} announces it if you start
8096 it with the @samp{--version} argument.
8097
8098 Without this, we will not know whether there is any point in looking for
8099 the bug in the current version of @command{@value{AS}}.
8100
8101 @item
8102 Any patches you may have applied to the @command{@value{AS}} source.
8103
8104 @item
8105 The type of machine you are using, and the operating system name and
8106 version number.
8107
8108 @item
8109 What compiler (and its version) was used to compile @command{@value{AS}}---e.g.
8110 ``@code{gcc-2.7}''.
8111
8112 @item
8113 The command arguments you gave the assembler to assemble your example and
8114 observe the bug. To guarantee you will not omit something important, list them
8115 all. A copy of the Makefile (or the output from make) is sufficient.
8116
8117 If we were to try to guess the arguments, we would probably guess wrong
8118 and then we might not encounter the bug.
8119
8120 @item
8121 A complete input file that will reproduce the bug. If the bug is observed when
8122 the assembler is invoked via a compiler, send the assembler source, not the
8123 high level language source. Most compilers will produce the assembler source
8124 when run with the @samp{-S} option. If you are using @code{@value{GCC}}, use
8125 the options @samp{-v --save-temps}; this will save the assembler source in a
8126 file with an extension of @file{.s}, and also show you exactly how
8127 @command{@value{AS}} is being run.
8128
8129 @item
8130 A description of what behavior you observe that you believe is
8131 incorrect. For example, ``It gets a fatal signal.''
8132
8133 Of course, if the bug is that @command{@value{AS}} gets a fatal signal, then we
8134 will certainly notice it. But if the bug is incorrect output, we might not
8135 notice unless it is glaringly wrong. You might as well not give us a chance to
8136 make a mistake.
8137
8138 Even if the problem you experience is a fatal signal, you should still say so
8139 explicitly. Suppose something strange is going on, such as, your copy of
8140 @command{@value{AS}} is out of sync, or you have encountered a bug in the C
8141 library on your system. (This has happened!) Your copy might crash and ours
8142 would not. If you told us to expect a crash, then when ours fails to crash, we
8143 would know that the bug was not happening for us. If you had not told us to
8144 expect a crash, then we would not be able to draw any conclusion from our
8145 observations.
8146
8147 @item
8148 If you wish to suggest changes to the @command{@value{AS}} source, send us context
8149 diffs, as generated by @code{diff} with the @samp{-u}, @samp{-c}, or @samp{-p}
8150 option. Always send diffs from the old file to the new file. If you even
8151 discuss something in the @command{@value{AS}} source, refer to it by context, not
8152 by line number.
8153
8154 The line numbers in our development sources will not match those in your
8155 sources. Your line numbers would convey no useful information to us.
8156 @end itemize
8157
8158 Here are some things that are not necessary:
8159
8160 @itemize @bullet
8161 @item
8162 A description of the envelope of the bug.
8163
8164 Often people who encounter a bug spend a lot of time investigating
8165 which changes to the input file will make the bug go away and which
8166 changes will not affect it.
8167
8168 This is often time consuming and not very useful, because the way we
8169 will find the bug is by running a single example under the debugger
8170 with breakpoints, not by pure deduction from a series of examples.
8171 We recommend that you save your time for something else.
8172
8173 Of course, if you can find a simpler example to report @emph{instead}
8174 of the original one, that is a convenience for us. Errors in the
8175 output will be easier to spot, running under the debugger will take
8176 less time, and so on.
8177
8178 However, simplification is not vital; if you do not want to do this,
8179 report the bug anyway and send us the entire test case you used.
8180
8181 @item
8182 A patch for the bug.
8183
8184 A patch for the bug does help us if it is a good one. But do not omit
8185 the necessary information, such as the test case, on the assumption that
8186 a patch is all we need. We might see problems with your patch and decide
8187 to fix the problem another way, or we might not understand it at all.
8188
8189 Sometimes with a program as complicated as @command{@value{AS}} it is very hard to
8190 construct an example that will make the program follow a certain path through
8191 the code. If you do not send us the example, we will not be able to construct
8192 one, so we will not be able to verify that the bug is fixed.
8193
8194 And if we cannot understand what bug you are trying to fix, or why your
8195 patch should be an improvement, we will not install it. A test case will
8196 help us to understand.
8197
8198 @item
8199 A guess about what the bug is or what it depends on.
8200
8201 Such guesses are usually wrong. Even we cannot guess right about such
8202 things without first using the debugger to find the facts.
8203 @end itemize
8204
8205 @node Acknowledgements
8206 @chapter Acknowledgements
8207
8208 If you have contributed to GAS and your name isn't listed here,
8209 it is not meant as a slight. We just don't know about it. Send mail to the
8210 maintainer, and we'll correct the situation. Currently
8211 @c (October 2012),
8212 the maintainer is Nick Clifton (email address @code{nickc@@redhat.com}).
8213
8214 Dean Elsner wrote the original @sc{gnu} assembler for the VAX.@footnote{Any
8215 more details?}
8216
8217 Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug
8218 information and the 68k series machines, most of the preprocessing pass, and
8219 extensive changes in @file{messages.c}, @file{input-file.c}, @file{write.c}.
8220
8221 K. Richard Pixley maintained GAS for a while, adding various enhancements and
8222 many bug fixes, including merging support for several processors, breaking GAS
8223 up to handle multiple object file format back ends (including heavy rewrite,
8224 testing, an integration of the coff and b.out back ends), adding configuration
8225 including heavy testing and verification of cross assemblers and file splits
8226 and renaming, converted GAS to strictly ANSI C including full prototypes, added
8227 support for m680[34]0 and cpu32, did considerable work on i960 including a COFF
8228 port (including considerable amounts of reverse engineering), a SPARC opcode
8229 file rewrite, DECstation, rs6000, and hp300hpux host ports, updated ``know''
8230 assertions and made them work, much other reorganization, cleanup, and lint.
8231
8232 Ken Raeburn wrote the high-level BFD interface code to replace most of the code
8233 in format-specific I/O modules.
8234
8235 The original VMS support was contributed by David L. Kashtan. Eric Youngdale
8236 has done much work with it since.
8237
8238 The Intel 80386 machine description was written by Eliot Dresselhaus.
8239
8240 Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
8241
8242 The Motorola 88k machine description was contributed by Devon Bowen of Buffalo
8243 University and Torbjorn Granlund of the Swedish Institute of Computer Science.
8244
8245 Keith Knowles at the Open Software Foundation wrote the original MIPS back end
8246 (@file{tc-mips.c}, @file{tc-mips.h}), and contributed Rose format support
8247 (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to
8248 support a.out format.
8249
8250 Support for the Zilog Z8k and Renesas H8/300 processors (tc-z8k,
8251 tc-h8300), and IEEE 695 object file format (obj-ieee), was written by
8252 Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to
8253 use BFD for some low-level operations, for use with the H8/300 and AMD 29k
8254 targets.
8255
8256 John Gilmore built the AMD 29000 support, added @code{.include} support, and
8257 simplified the configuration of which versions accept which directives. He
8258 updated the 68k machine description so that Motorola's opcodes always produced
8259 fixed-size instructions (e.g., @code{jsr}), while synthetic instructions
8260 remained shrinkable (@code{jbsr}). John fixed many bugs, including true tested
8261 cross-compilation support, and one bug in relaxation that took a week and
8262 required the proverbial one-bit fix.
8263
8264 Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
8265 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix),
8266 added support for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and
8267 PowerPC assembler, and made a few other minor patches.
8268
8269 Steve Chamberlain made GAS able to generate listings.
8270
8271 Hewlett-Packard contributed support for the HP9000/300.
8272
8273 Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM)
8274 along with a fairly extensive HPPA testsuite (for both SOM and ELF object
8275 formats). This work was supported by both the Center for Software Science at
8276 the University of Utah and Cygnus Support.
8277
8278 Support for ELF format files has been worked on by Mark Eichin of Cygnus
8279 Support (original, incomplete implementation for SPARC), Pete Hoogenboom and
8280 Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open
8281 Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc,
8282 and some initial 64-bit support).
8283
8284 Linas Vepstas added GAS support for the ESA/390 ``IBM 370'' architecture.
8285
8286 Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD
8287 support for openVMS/Alpha.
8288
8289 Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic*
8290 flavors.
8291
8292 David Heine, Sterling Augustine, Bob Wilson and John Ruttenberg from Tensilica,
8293 Inc.@: added support for Xtensa processors.
8294
8295 Several engineers at Cygnus Support have also provided many small bug fixes and
8296 configuration enhancements.
8297
8298 Jon Beniston added support for the Lattice Mico32 architecture.
8299
8300 Many others have contributed large or small bugfixes and enhancements. If
8301 you have contributed significant work and are not mentioned on this list, and
8302 want to be, let us know. Some of the history has been lost; we are not
8303 intentionally leaving anyone out.
8304
8305 @node GNU Free Documentation License
8306 @appendix GNU Free Documentation License
8307 @include fdl.texi
8308
8309 @node AS Index
8310 @unnumbered AS Index
8311
8312 @printindex cp
8313
8314 @bye
8315 @c Local Variables:
8316 @c fill-column: 79
8317 @c End: