]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/c-arm.texi
2006-09-16 Paul Brook <paul@codesourcery.com>
[thirdparty/binutils-gdb.git] / gas / doc / c-arm.texi
1 @c Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
2 @c Free Software Foundation, Inc.
3 @c This is part of the GAS manual.
4 @c For copying conditions, see the file as.texinfo.
5
6 @ifset GENERIC
7 @page
8 @node ARM-Dependent
9 @chapter ARM Dependent Features
10 @end ifset
11
12 @ifclear GENERIC
13 @node Machine Dependencies
14 @chapter ARM Dependent Features
15 @end ifclear
16
17 @cindex ARM support
18 @cindex Thumb support
19 @menu
20 * ARM Options:: Options
21 * ARM Syntax:: Syntax
22 * ARM Floating Point:: Floating Point
23 * ARM Directives:: ARM Machine Directives
24 * ARM Opcodes:: Opcodes
25 * ARM Mapping Symbols:: Mapping Symbols
26 @end menu
27
28 @node ARM Options
29 @section Options
30 @cindex ARM options (none)
31 @cindex options for ARM (none)
32
33 @table @code
34
35 @cindex @code{-mcpu=} command line option, ARM
36 @item -mcpu=@var{processor}[+@var{extension}@dots{}]
37 This option specifies the target processor. The assembler will issue an
38 error message if an attempt is made to assemble an instruction which
39 will not execute on the target processor. The following processor names are
40 recognized:
41 @code{arm1},
42 @code{arm2},
43 @code{arm250},
44 @code{arm3},
45 @code{arm6},
46 @code{arm60},
47 @code{arm600},
48 @code{arm610},
49 @code{arm620},
50 @code{arm7},
51 @code{arm7m},
52 @code{arm7d},
53 @code{arm7dm},
54 @code{arm7di},
55 @code{arm7dmi},
56 @code{arm70},
57 @code{arm700},
58 @code{arm700i},
59 @code{arm710},
60 @code{arm710t},
61 @code{arm720},
62 @code{arm720t},
63 @code{arm740t},
64 @code{arm710c},
65 @code{arm7100},
66 @code{arm7500},
67 @code{arm7500fe},
68 @code{arm7t},
69 @code{arm7tdmi},
70 @code{arm7tdmi-s},
71 @code{arm8},
72 @code{arm810},
73 @code{strongarm},
74 @code{strongarm1},
75 @code{strongarm110},
76 @code{strongarm1100},
77 @code{strongarm1110},
78 @code{arm9},
79 @code{arm920},
80 @code{arm920t},
81 @code{arm922t},
82 @code{arm940t},
83 @code{arm9tdmi},
84 @code{arm9e},
85 @code{arm926e},
86 @code{arm926ej-s},
87 @code{arm946e-r0},
88 @code{arm946e},
89 @code{arm946e-s},
90 @code{arm966e-r0},
91 @code{arm966e},
92 @code{arm966e-s},
93 @code{arm968e-s},
94 @code{arm10t},
95 @code{arm10tdmi},
96 @code{arm10e},
97 @code{arm1020},
98 @code{arm1020t},
99 @code{arm1020e},
100 @code{arm1022e},
101 @code{arm1026ej-s},
102 @code{arm1136j-s},
103 @code{arm1136jf-s},
104 @code{arm1156t2-s},
105 @code{arm1156t2f-s},
106 @code{arm1176jz-s},
107 @code{arm1176jzf-s},
108 @code{mpcore},
109 @code{mpcorenovfp},
110 @code{cortex-a8},
111 @code{cortex-r4},
112 @code{cortex-m3},
113 @code{ep9312} (ARM920 with Cirrus Maverick coprocessor),
114 @code{i80200} (Intel XScale processor)
115 @code{iwmmxt} (Intel(r) XScale processor with Wireless MMX(tm) technology coprocessor)
116 and
117 @code{xscale}.
118 The special name @code{all} may be used to allow the
119 assembler to accept instructions valid for any ARM processor.
120
121 In addition to the basic instruction set, the assembler can be told to
122 accept various extension mnemonics that extend the processor using the
123 co-processor instruction space. For example, @code{-mcpu=arm920+maverick}
124 is equivalent to specifying @code{-mcpu=ep9312}. The following extensions
125 are currently supported:
126 @code{+maverick}
127 @code{+iwmmxt}
128 and
129 @code{+xscale}.
130
131 @cindex @code{-march=} command line option, ARM
132 @item -march=@var{architecture}[+@var{extension}@dots{}]
133 This option specifies the target architecture. The assembler will issue
134 an error message if an attempt is made to assemble an instruction which
135 will not execute on the target architecture. The following architecture
136 names are recognized:
137 @code{armv1},
138 @code{armv2},
139 @code{armv2a},
140 @code{armv2s},
141 @code{armv3},
142 @code{armv3m},
143 @code{armv4},
144 @code{armv4xm},
145 @code{armv4t},
146 @code{armv4txm},
147 @code{armv5},
148 @code{armv5t},
149 @code{armv5txm},
150 @code{armv5te},
151 @code{armv5texp},
152 @code{armv6},
153 @code{armv6j},
154 @code{armv6k},
155 @code{armv6z},
156 @code{armv6zk},
157 @code{armv7},
158 @code{armv7a},
159 @code{armv7r},
160 @code{armv7m},
161 @code{iwmmxt}
162 and
163 @code{xscale}.
164 If both @code{-mcpu} and
165 @code{-march} are specified, the assembler will use
166 the setting for @code{-mcpu}.
167
168 The architecture option can be extended with the same instruction set
169 extension options as the @code{-mcpu} option.
170
171 @cindex @code{-mfpu=} command line option, ARM
172 @item -mfpu=@var{floating-point-format}
173
174 This option specifies the floating point format to assemble for. The
175 assembler will issue an error message if an attempt is made to assemble
176 an instruction which will not execute on the target floating point unit.
177 The following format options are recognized:
178 @code{softfpa},
179 @code{fpe},
180 @code{fpe2},
181 @code{fpe3},
182 @code{fpa},
183 @code{fpa10},
184 @code{fpa11},
185 @code{arm7500fe},
186 @code{softvfp},
187 @code{softvfp+vfp},
188 @code{vfp},
189 @code{vfp10},
190 @code{vfp10-r0},
191 @code{vfp9},
192 @code{vfpxd},
193 @code{arm1020t},
194 @code{arm1020e},
195 @code{arm1136jf-s}
196 and
197 @code{maverick}.
198
199 In addition to determining which instructions are assembled, this option
200 also affects the way in which the @code{.double} assembler directive behaves
201 when assembling little-endian code.
202
203 The default is dependent on the processor selected. For Architecture 5 or
204 later, the default is to assembler for VFP instructions; for earlier
205 architectures the default is to assemble for FPA instructions.
206
207 @cindex @code{-mthumb} command line option, ARM
208 @item -mthumb
209 This option specifies that the assembler should start assembling Thumb
210 instructions; that is, it should behave as though the file starts with a
211 @code{.code 16} directive.
212
213 @cindex @code{-mthumb-interwork} command line option, ARM
214 @item -mthumb-interwork
215 This option specifies that the output generated by the assembler should
216 be marked as supporting interworking.
217
218 @cindex @code{-mapcs} command line option, ARM
219 @item -mapcs @code{[26|32]}
220 This option specifies that the output generated by the assembler should
221 be marked as supporting the indicated version of the Arm Procedure.
222 Calling Standard.
223
224 @cindex @code{-matpcs} command line option, ARM
225 @item -matpcs
226 This option specifies that the output generated by the assembler should
227 be marked as supporting the Arm/Thumb Procedure Calling Standard. If
228 enabled this option will cause the assembler to create an empty
229 debugging section in the object file called .arm.atpcs. Debuggers can
230 use this to determine the ABI being used by.
231
232 @cindex @code{-mapcs-float} command line option, ARM
233 @item -mapcs-float
234 This indicates the floating point variant of the APCS should be
235 used. In this variant floating point arguments are passed in FP
236 registers rather than integer registers.
237
238 @cindex @code{-mapcs-reentrant} command line option, ARM
239 @item -mapcs-reentrant
240 This indicates that the reentrant variant of the APCS should be used.
241 This variant supports position independent code.
242
243 @cindex @code{-mfloat-abi=} command line option, ARM
244 @item -mfloat-abi=@var{abi}
245 This option specifies that the output generated by the assembler should be
246 marked as using specified floating point ABI.
247 The following values are recognized:
248 @code{soft},
249 @code{softfp}
250 and
251 @code{hard}.
252
253 @cindex @code{-eabi=} command line option, ARM
254 @item -meabi=@var{ver}
255 This option specifies which EABI version the produced object files should
256 conform to.
257 The following values are recognized:
258 @code{gnu},
259 @code{4}
260 and
261 @code{5}.
262
263 @cindex @code{-EB} command line option, ARM
264 @item -EB
265 This option specifies that the output generated by the assembler should
266 be marked as being encoded for a big-endian processor.
267
268 @cindex @code{-EL} command line option, ARM
269 @item -EL
270 This option specifies that the output generated by the assembler should
271 be marked as being encoded for a little-endian processor.
272
273 @cindex @code{-k} command line option, ARM
274 @cindex PIC code generation for ARM
275 @item -k
276 This option specifies that the output of the assembler should be marked
277 as position-independent code (PIC).
278
279 @end table
280
281
282 @node ARM Syntax
283 @section Syntax
284 @menu
285 * ARM-Chars:: Special Characters
286 * ARM-Regs:: Register Names
287 * ARM-Relocations:: Relocations
288 @end menu
289
290 @node ARM-Chars
291 @subsection Special Characters
292
293 @cindex line comment character, ARM
294 @cindex ARM line comment character
295 The presence of a @samp{@@} on a line indicates the start of a comment
296 that extends to the end of the current line. If a @samp{#} appears as
297 the first character of a line, the whole line is treated as a comment.
298
299 @cindex line separator, ARM
300 @cindex statement separator, ARM
301 @cindex ARM line separator
302 The @samp{;} character can be used instead of a newline to separate
303 statements.
304
305 @cindex immediate character, ARM
306 @cindex ARM immediate character
307 Either @samp{#} or @samp{$} can be used to indicate immediate operands.
308
309 @cindex identifiers, ARM
310 @cindex ARM identifiers
311 *TODO* Explain about /data modifier on symbols.
312
313 @node ARM-Regs
314 @subsection Register Names
315
316 @cindex ARM register names
317 @cindex register names, ARM
318 *TODO* Explain about ARM register naming, and the predefined names.
319
320 @node ARM Floating Point
321 @section Floating Point
322
323 @cindex floating point, ARM (@sc{ieee})
324 @cindex ARM floating point (@sc{ieee})
325 The ARM family uses @sc{ieee} floating-point numbers.
326
327 @node ARM-Relocations
328 @subsection ARM relocation generation
329
330 @cindex data relocations, ARM
331 @cindex ARM data relocations
332 Specific data relocations can be generated by putting the relocation name
333 in parentheses after the symbol name. For example:
334
335 @smallexample
336 .word foo(TARGET1)
337 @end smallexample
338
339 This will generate an @samp{R_ARM_TARGET1} relocation against the symbol
340 @var{foo}.
341 The following relocations are supported:
342 @code{GOT},
343 @code{GOTOFF},
344 @code{TARGET1},
345 @code{TARGET2},
346 @code{SBREL},
347 @code{TLSGD},
348 @code{TLSLDM},
349 @code{TLSLDO},
350 @code{GOTTPOFF}
351 and
352 @code{TPOFF}.
353
354 For compatibility with older toolchains the assembler also accepts
355 @code{(PLT)} after branch targets. This will generate the deprecated
356 @samp{R_ARM_PLT32} relocation.
357
358 @cindex MOVW and MOVT relocations, ARM
359 Relocations for @samp{MOVW} and @samp{MOVT} instructions can be generated
360 by prefixing the value with @samp{#:lower16:} and @samp{#:upper16}
361 respectively. For example to load the 32-bit address of foo into r0:
362
363 @smallexample
364 MOVW r0, #:lower16:foo
365 MOVT r0, #:upper16:foo
366 @end smallexample
367
368 @node ARM Directives
369 @section ARM Machine Directives
370
371 @cindex machine directives, ARM
372 @cindex ARM machine directives
373 @table @code
374
375 @cindex @code{align} directive, ARM
376 @item .align @var{expression} [, @var{expression}]
377 This is the generic @var{.align} directive. For the ARM however if the
378 first argument is zero (ie no alignment is needed) the assembler will
379 behave as if the argument had been 2 (ie pad to the next four byte
380 boundary). This is for compatibility with ARM's own assembler.
381
382 @cindex @code{req} directive, ARM
383 @item @var{name} .req @var{register name}
384 This creates an alias for @var{register name} called @var{name}. For
385 example:
386
387 @smallexample
388 foo .req r0
389 @end smallexample
390
391 @cindex @code{unreq} directive, ARM
392 @item .unreq @var{alias-name}
393 This undefines a register alias which was previously defined using the
394 @code{req} directive. For example:
395
396 @smallexample
397 foo .req r0
398 .unreq foo
399 @end smallexample
400
401 An error occurs if the name is undefined. Note - this pseudo op can
402 be used to delete builtin in register name aliases (eg 'r0'). This
403 should only be done if it is really necessary.
404
405 @cindex @code{code} directive, ARM
406 @item .code @code{[16|32]}
407 This directive selects the instruction set being generated. The value 16
408 selects Thumb, with the value 32 selecting ARM.
409
410 @cindex @code{thumb} directive, ARM
411 @item .thumb
412 This performs the same action as @var{.code 16}.
413
414 @cindex @code{arm} directive, ARM
415 @item .arm
416 This performs the same action as @var{.code 32}.
417
418 @cindex @code{force_thumb} directive, ARM
419 @item .force_thumb
420 This directive forces the selection of Thumb instructions, even if the
421 target processor does not support those instructions
422
423 @cindex @code{thumb_func} directive, ARM
424 @item .thumb_func
425 This directive specifies that the following symbol is the name of a
426 Thumb encoded function. This information is necessary in order to allow
427 the assembler and linker to generate correct code for interworking
428 between Arm and Thumb instructions and should be used even if
429 interworking is not going to be performed. The presence of this
430 directive also implies @code{.thumb}
431
432 @cindex @code{thumb_set} directive, ARM
433 @item .thumb_set
434 This performs the equivalent of a @code{.set} directive in that it
435 creates a symbol which is an alias for another symbol (possibly not yet
436 defined). This directive also has the added property in that it marks
437 the aliased symbol as being a thumb function entry point, in the same
438 way that the @code{.thumb_func} directive does.
439
440 @cindex @code{.ltorg} directive, ARM
441 @item .ltorg
442 This directive causes the current contents of the literal pool to be
443 dumped into the current section (which is assumed to be the .text
444 section) at the current location (aligned to a word boundary).
445 @code{GAS} maintains a separate literal pool for each section and each
446 sub-section. The @code{.ltorg} directive will only affect the literal
447 pool of the current section and sub-section. At the end of assembly
448 all remaining, un-empty literal pools will automatically be dumped.
449
450 Note - older versions of @code{GAS} would dump the current literal
451 pool any time a section change occurred. This is no longer done, since
452 it prevents accurate control of the placement of literal pools.
453
454 @cindex @code{.pool} directive, ARM
455 @item .pool
456 This is a synonym for .ltorg.
457
458 @cindex @code{.fnstart} directive, ARM
459 @item .unwind_fnstart
460 Marks the start of a function with an unwind table entry.
461
462 @cindex @code{.fnend} directive, ARM
463 @item .unwind_fnend
464 Marks the end of a function with an unwind table entry. The unwind index
465 table entry is created when this directive is processed.
466
467 If no personality routine has been specified then standard personality
468 routine 0 or 1 will be used, depending on the number of unwind opcodes
469 required.
470
471 @cindex @code{.cantunwind} directive, ARM
472 @item .cantunwind
473 Prevents unwinding through the current function. No personality routine
474 or exception table data is required or permitted.
475
476 @cindex @code{.personality} directive, ARM
477 @item .personality @var{name}
478 Sets the personality routine for the current function to @var{name}.
479
480 @cindex @code{.personalityindex} directive, ARM
481 @item .personalityindex @var{index}
482 Sets the personality routine for the current function to the EABI standard
483 routine number @var{index}
484
485 @cindex @code{.handlerdata} directive, ARM
486 @item .handlerdata
487 Marks the end of the current function, and the start of the exception table
488 entry for that function. Anything between this directive and the
489 @code{.fnend} directive will be added to the exception table entry.
490
491 Must be preceded by a @code{.personality} or @code{.personalityindex}
492 directive.
493
494 @cindex @code{.save} directive, ARM
495 @item .save @var{reglist}
496 Generate unwinder annotations to restore the registers in @var{reglist}.
497 The format of @var{reglist} is the same as the corresponding store-multiple
498 instruction.
499
500 @smallexample
501 @exdent @emph{core registers}
502 .save @{r4, r5, r6, lr@}
503 stmfd sp!, @{r4, r5, r6, lr@}
504 @exdent @emph{FPA registers}
505 .save f4, 2
506 sfmfd f4, 2, [sp]!
507 @exdent @emph{VFP registers}
508 .save @{d8, d9, d10@}
509 fstmdx sp!, @{d8, d9, d10@}
510 @exdent @emph{iWMMXt registers}
511 .save @{wr10, wr11@}
512 wstrd wr11, [sp, #-8]!
513 wstrd wr10, [sp, #-8]!
514 or
515 .save wr11
516 wstrd wr11, [sp, #-8]!
517 .save wr10
518 wstrd wr10, [sp, #-8]!
519 @end smallexample
520
521 @cindex @code{.vsave} directive, ARM
522 @item .vsave @var{vfp-reglist}
523 Generate unwinder annotations to restore the VFP registers in @var{vfp-reglist}
524 using FLDMD. Also works for VFPv3 registers
525 that are to be restored using VLDM.
526 The format of @var{vfp-reglist} is the same as the corresponding store-multiple
527 instruction.
528
529 @smallexample
530 @exdent @emph{VFP registers}
531 .vsave @{d8, d9, d10@}
532 fstmdd sp!, @{d8, d9, d10@}
533 @exdent @emph{VFPv3 registers}
534 .vsave @{d15, d16, d17@}
535 vstm sp!, @{d15, d16, d17@}
536 @end smallexample
537
538 Since FLDMX and FSTMX are now deprecated, this directive should be
539 used in favour of @code{.save} for saving VFP registers for ARMv6 and above.
540
541 @cindex @code{.pad} directive, ARM
542 @item .pad #@var{count}
543 Generate unwinder annotations for a stack adjustment of @var{count} bytes.
544 A positive value indicates the function prologue allocated stack space by
545 decrementing the stack pointer.
546
547 @cindex @code{.movsp} directive, ARM
548 @item .movsp @var{reg} [, #@var{offset}]
549 Tell the unwinder that @var{reg} contains an offset from the current
550 stack pointer. If @var{offset} is not specified then it is assumed to be
551 zero.
552
553 @cindex @code{.setfp} directive, ARM
554 @item .setfp @var{fpreg}, @var{spreg} [, #@var{offset}]
555 Make all unwinder annotations relaive to a frame pointer. Without this
556 the unwinder will use offsets from the stack pointer.
557
558 The syntax of this directive is the same as the @code{sub} or @code{mov}
559 instruction used to set the frame pointer. @var{spreg} must be either
560 @code{sp} or mentioned in a previous @code{.movsp} directive.
561
562 @smallexample
563 .movsp ip
564 mov ip, sp
565 @dots{}
566 .setfp fp, ip, #4
567 sub fp, ip, #4
568 @end smallexample
569
570 @cindex @code{.unwind_raw} directive, ARM
571 @item .raw @var{offset}, @var{byte1}, @dots{}
572 Insert one of more arbitary unwind opcode bytes, which are known to adjust
573 the stack pointer by @var{offset} bytes.
574
575 For example @code{.unwind_raw 4, 0xb1, 0x01} is equivalent to
576 @code{.save @{r0@}}
577
578 @cindex @code{.cpu} directive, ARM
579 @item .cpu @var{name}
580 Select the target processor. Valid values for @var{name} are the same as
581 for the @option{-mcpu} commandline option.
582
583 @cindex @code{.arch} directive, ARM
584 @item .arch @var{name}
585 Select the target architecture. Valid values for @var{name} are the same as
586 for the @option{-march} commandline option.
587
588 @cindex @code{.fpu} directive, ARM
589 @item .fpu @var{name}
590 Select the floating point unit to assemble for. Valid values for @var{name}
591 are the same as for the @option{-mfpu} commandline option.
592
593 @cindex @code{.eabi_attribute} directive, ARM
594 @item .eabi_attribute @var{tag}, @var{value}
595 Set the EABI object attribute number @var{tag} to @var{value}. The value
596 is either a @code{number}, @code{"string"}, or @code{number, "string"}
597 depending on the tag.
598
599 @end table
600
601 @node ARM Opcodes
602 @section Opcodes
603
604 @cindex ARM opcodes
605 @cindex opcodes for ARM
606 @code{@value{AS}} implements all the standard ARM opcodes. It also
607 implements several pseudo opcodes, including several synthetic load
608 instructions.
609
610 @table @code
611
612 @cindex @code{NOP} pseudo op, ARM
613 @item NOP
614 @smallexample
615 nop
616 @end smallexample
617
618 This pseudo op will always evaluate to a legal ARM instruction that does
619 nothing. Currently it will evaluate to MOV r0, r0.
620
621 @cindex @code{LDR reg,=<label>} pseudo op, ARM
622 @item LDR
623 @smallexample
624 ldr <register> , = <expression>
625 @end smallexample
626
627 If expression evaluates to a numeric constant then a MOV or MVN
628 instruction will be used in place of the LDR instruction, if the
629 constant can be generated by either of these instructions. Otherwise
630 the constant will be placed into the nearest literal pool (if it not
631 already there) and a PC relative LDR instruction will be generated.
632
633 @cindex @code{ADR reg,<label>} pseudo op, ARM
634 @item ADR
635 @smallexample
636 adr <register> <label>
637 @end smallexample
638
639 This instruction will load the address of @var{label} into the indicated
640 register. The instruction will evaluate to a PC relative ADD or SUB
641 instruction depending upon where the label is located. If the label is
642 out of range, or if it is not defined in the same file (and section) as
643 the ADR instruction, then an error will be generated. This instruction
644 will not make use of the literal pool.
645
646 @cindex @code{ADRL reg,<label>} pseudo op, ARM
647 @item ADRL
648 @smallexample
649 adrl <register> <label>
650 @end smallexample
651
652 This instruction will load the address of @var{label} into the indicated
653 register. The instruction will evaluate to one or two PC relative ADD
654 or SUB instructions depending upon where the label is located. If a
655 second instruction is not needed a NOP instruction will be generated in
656 its place, so that this instruction is always 8 bytes long.
657
658 If the label is out of range, or if it is not defined in the same file
659 (and section) as the ADRL instruction, then an error will be generated.
660 This instruction will not make use of the literal pool.
661
662 @end table
663
664 For information on the ARM or Thumb instruction sets, see @cite{ARM
665 Software Development Toolkit Reference Manual}, Advanced RISC Machines
666 Ltd.
667
668 @node ARM Mapping Symbols
669 @section Mapping Symbols
670
671 The ARM ELF specification requires that special symbols be inserted
672 into object files to mark certain features:
673
674 @table @code
675
676 @cindex @code{$a}
677 @item $a
678 At the start of a region of code containing ARM instructions.
679
680 @cindex @code{$t}
681 @item $t
682 At the start of a region of code containing THUMB instructions.
683
684 @cindex @code{$d}
685 @item $d
686 At the start of a region of data.
687
688 @end table
689
690 The assembler will automatically insert these symbols for you - there
691 is no need to code them yourself. Support for tagging symbols ($b,
692 $f, $p and $m) which is also mentioned in the current ARM ELF
693 specification is not implemented. This is because they have been
694 dropped from the new EABI and so tools cannot rely upon their
695 presence.
696