]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/doc/c-i386.texi
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gas / doc / c-i386.texi
1 @c Copyright (C) 1991-2021 Free Software Foundation, Inc.
2 @c This is part of the GAS manual.
3 @c For copying conditions, see the file as.texinfo.
4 @c man end
5
6 @ifset GENERIC
7 @page
8 @node i386-Dependent
9 @chapter 80386 Dependent Features
10 @end ifset
11 @ifclear GENERIC
12 @node Machine Dependencies
13 @chapter 80386 Dependent Features
14 @end ifclear
15
16 @cindex i386 support
17 @cindex i80386 support
18 @cindex x86-64 support
19
20 The i386 version @code{@value{AS}} supports both the original Intel 386
21 architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22 extending the Intel architecture to 64-bits.
23
24 @menu
25 * i386-Options:: Options
26 * i386-Directives:: X86 specific directives
27 * i386-Syntax:: Syntactical considerations
28 * i386-Mnemonics:: Instruction Naming
29 * i386-Regs:: Register Naming
30 * i386-Prefixes:: Instruction Prefixes
31 * i386-Memory:: Memory References
32 * i386-Jumps:: Handling of Jump Instructions
33 * i386-Float:: Floating Point
34 * i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
35 * i386-LWP:: AMD's Lightweight Profiling Instructions
36 * i386-BMI:: Bit Manipulation Instruction
37 * i386-TBM:: AMD's Trailing Bit Manipulation Instructions
38 * i386-16bit:: Writing 16-bit Code
39 * i386-Arch:: Specifying an x86 CPU architecture
40 * i386-ISA:: AMD64 ISA vs. Intel64 ISA
41 * i386-Bugs:: AT&T Syntax bugs
42 * i386-Notes:: Notes
43 @end menu
44
45 @node i386-Options
46 @section Options
47
48 @cindex options for i386
49 @cindex options for x86-64
50 @cindex i386 options
51 @cindex x86-64 options
52
53 The i386 version of @code{@value{AS}} has a few machine
54 dependent options:
55
56 @c man begin OPTIONS
57 @table @gcctabopt
58 @cindex @samp{--32} option, i386
59 @cindex @samp{--32} option, x86-64
60 @cindex @samp{--x32} option, i386
61 @cindex @samp{--x32} option, x86-64
62 @cindex @samp{--64} option, i386
63 @cindex @samp{--64} option, x86-64
64 @item --32 | --x32 | --64
65 Select the word size, either 32 bits or 64 bits. @samp{--32}
66 implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
67 imply AMD x86-64 architecture with 32-bit or 64-bit word-size
68 respectively.
69
70 These options are only available with the ELF object file format, and
71 require that the necessary BFD support has been included (on a 32-bit
72 platform you have to add --enable-64-bit-bfd to configure enable 64-bit
73 usage and use x86-64 as target platform).
74
75 @item -n
76 By default, x86 GAS replaces multiple nop instructions used for
77 alignment within code sections with multi-byte nop instructions such
78 as leal 0(%esi,1),%esi. This switch disables the optimization if a single
79 byte nop (0x90) is explicitly specified as the fill byte for alignment.
80
81 @cindex @samp{--divide} option, i386
82 @item --divide
83 On SVR4-derived platforms, the character @samp{/} is treated as a comment
84 character, which means that it cannot be used in expressions. The
85 @samp{--divide} option turns @samp{/} into a normal character. This does
86 not disable @samp{/} at the beginning of a line starting a comment, or
87 affect using @samp{#} for starting a comment.
88
89 @cindex @samp{-march=} option, i386
90 @cindex @samp{-march=} option, x86-64
91 @item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
92 This option specifies the target processor. The assembler will
93 issue an error message if an attempt is made to assemble an instruction
94 which will not execute on the target processor. The following
95 processor names are recognized:
96 @code{i8086},
97 @code{i186},
98 @code{i286},
99 @code{i386},
100 @code{i486},
101 @code{i586},
102 @code{i686},
103 @code{pentium},
104 @code{pentiumpro},
105 @code{pentiumii},
106 @code{pentiumiii},
107 @code{pentium4},
108 @code{prescott},
109 @code{nocona},
110 @code{core},
111 @code{core2},
112 @code{corei7},
113 @code{l1om},
114 @code{k1om},
115 @code{iamcu},
116 @code{k6},
117 @code{k6_2},
118 @code{athlon},
119 @code{opteron},
120 @code{k8},
121 @code{amdfam10},
122 @code{bdver1},
123 @code{bdver2},
124 @code{bdver3},
125 @code{bdver4},
126 @code{znver1},
127 @code{znver2},
128 @code{znver3},
129 @code{btver1},
130 @code{btver2},
131 @code{generic32} and
132 @code{generic64}.
133
134 In addition to the basic instruction set, the assembler can be told to
135 accept various extension mnemonics. For example,
136 @code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
137 @var{vmx}. The following extensions are currently supported:
138 @code{8087},
139 @code{287},
140 @code{387},
141 @code{687},
142 @code{no87},
143 @code{no287},
144 @code{no387},
145 @code{no687},
146 @code{cmov},
147 @code{nocmov},
148 @code{fxsr},
149 @code{nofxsr},
150 @code{mmx},
151 @code{nommx},
152 @code{sse},
153 @code{sse2},
154 @code{sse3},
155 @code{sse4a},
156 @code{ssse3},
157 @code{sse4.1},
158 @code{sse4.2},
159 @code{sse4},
160 @code{nosse},
161 @code{nosse2},
162 @code{nosse3},
163 @code{nosse4a},
164 @code{nossse3},
165 @code{nosse4.1},
166 @code{nosse4.2},
167 @code{nosse4},
168 @code{avx},
169 @code{avx2},
170 @code{noavx},
171 @code{noavx2},
172 @code{adx},
173 @code{rdseed},
174 @code{prfchw},
175 @code{smap},
176 @code{mpx},
177 @code{sha},
178 @code{rdpid},
179 @code{ptwrite},
180 @code{cet},
181 @code{gfni},
182 @code{vaes},
183 @code{vpclmulqdq},
184 @code{prefetchwt1},
185 @code{clflushopt},
186 @code{se1},
187 @code{clwb},
188 @code{movdiri},
189 @code{movdir64b},
190 @code{enqcmd},
191 @code{serialize},
192 @code{tsxldtrk},
193 @code{kl},
194 @code{nokl},
195 @code{widekl},
196 @code{nowidekl},
197 @code{hreset},
198 @code{avx512f},
199 @code{avx512cd},
200 @code{avx512er},
201 @code{avx512pf},
202 @code{avx512vl},
203 @code{avx512bw},
204 @code{avx512dq},
205 @code{avx512ifma},
206 @code{avx512vbmi},
207 @code{avx512_4fmaps},
208 @code{avx512_4vnniw},
209 @code{avx512_vpopcntdq},
210 @code{avx512_vbmi2},
211 @code{avx512_vnni},
212 @code{avx512_bitalg},
213 @code{avx512_vp2intersect},
214 @code{tdx},
215 @code{avx512_bf16},
216 @code{avx_vnni},
217 @code{noavx512f},
218 @code{noavx512cd},
219 @code{noavx512er},
220 @code{noavx512pf},
221 @code{noavx512vl},
222 @code{noavx512bw},
223 @code{noavx512dq},
224 @code{noavx512ifma},
225 @code{noavx512vbmi},
226 @code{noavx512_4fmaps},
227 @code{noavx512_4vnniw},
228 @code{noavx512_vpopcntdq},
229 @code{noavx512_vbmi2},
230 @code{noavx512_vnni},
231 @code{noavx512_bitalg},
232 @code{noavx512_vp2intersect},
233 @code{notdx},
234 @code{noavx512_bf16},
235 @code{noavx_vnni},
236 @code{noenqcmd},
237 @code{noserialize},
238 @code{notsxldtrk},
239 @code{amx_int8},
240 @code{noamx_int8},
241 @code{amx_bf16},
242 @code{noamx_bf16},
243 @code{amx_tile},
244 @code{noamx_tile},
245 @code{nouintr},
246 @code{nohreset},
247 @code{vmx},
248 @code{vmfunc},
249 @code{smx},
250 @code{xsave},
251 @code{xsaveopt},
252 @code{xsavec},
253 @code{xsaves},
254 @code{aes},
255 @code{pclmul},
256 @code{fsgsbase},
257 @code{rdrnd},
258 @code{f16c},
259 @code{bmi2},
260 @code{fma},
261 @code{movbe},
262 @code{ept},
263 @code{lzcnt},
264 @code{popcnt},
265 @code{hle},
266 @code{rtm},
267 @code{invpcid},
268 @code{clflush},
269 @code{mwaitx},
270 @code{clzero},
271 @code{wbnoinvd},
272 @code{pconfig},
273 @code{waitpkg},
274 @code{uintr},
275 @code{cldemote},
276 @code{rdpru},
277 @code{mcommit},
278 @code{sev_es},
279 @code{lwp},
280 @code{fma4},
281 @code{xop},
282 @code{cx16},
283 @code{syscall},
284 @code{rdtscp},
285 @code{3dnow},
286 @code{3dnowa},
287 @code{sse4a},
288 @code{sse5},
289 @code{snp},
290 @code{invlpgb},
291 @code{tlbsync},
292 @code{svme} and
293 @code{padlock}.
294 Note that rather than extending a basic instruction set, the extension
295 mnemonics starting with @code{no} revoke the respective functionality.
296
297 When the @code{.arch} directive is used with @option{-march}, the
298 @code{.arch} directive will take precedent.
299
300 @cindex @samp{-mtune=} option, i386
301 @cindex @samp{-mtune=} option, x86-64
302 @item -mtune=@var{CPU}
303 This option specifies a processor to optimize for. When used in
304 conjunction with the @option{-march} option, only instructions
305 of the processor specified by the @option{-march} option will be
306 generated.
307
308 Valid @var{CPU} values are identical to the processor list of
309 @option{-march=@var{CPU}}.
310
311 @cindex @samp{-msse2avx} option, i386
312 @cindex @samp{-msse2avx} option, x86-64
313 @item -msse2avx
314 This option specifies that the assembler should encode SSE instructions
315 with VEX prefix.
316
317 @cindex @samp{-msse-check=} option, i386
318 @cindex @samp{-msse-check=} option, x86-64
319 @item -msse-check=@var{none}
320 @itemx -msse-check=@var{warning}
321 @itemx -msse-check=@var{error}
322 These options control if the assembler should check SSE instructions.
323 @option{-msse-check=@var{none}} will make the assembler not to check SSE
324 instructions, which is the default. @option{-msse-check=@var{warning}}
325 will make the assembler issue a warning for any SSE instruction.
326 @option{-msse-check=@var{error}} will make the assembler issue an error
327 for any SSE instruction.
328
329 @cindex @samp{-mavxscalar=} option, i386
330 @cindex @samp{-mavxscalar=} option, x86-64
331 @item -mavxscalar=@var{128}
332 @itemx -mavxscalar=@var{256}
333 These options control how the assembler should encode scalar AVX
334 instructions. @option{-mavxscalar=@var{128}} will encode scalar
335 AVX instructions with 128bit vector length, which is the default.
336 @option{-mavxscalar=@var{256}} will encode scalar AVX instructions
337 with 256bit vector length.
338
339 WARNING: Don't use this for production code - due to CPU errata the
340 resulting code may not work on certain models.
341
342 @cindex @samp{-mvexwig=} option, i386
343 @cindex @samp{-mvexwig=} option, x86-64
344 @item -mvexwig=@var{0}
345 @itemx -mvexwig=@var{1}
346 These options control how the assembler should encode VEX.W-ignored (WIG)
347 VEX instructions. @option{-mvexwig=@var{0}} will encode WIG VEX
348 instructions with vex.w = 0, which is the default.
349 @option{-mvexwig=@var{1}} will encode WIG EVEX instructions with
350 vex.w = 1.
351
352 WARNING: Don't use this for production code - due to CPU errata the
353 resulting code may not work on certain models.
354
355 @cindex @samp{-mevexlig=} option, i386
356 @cindex @samp{-mevexlig=} option, x86-64
357 @item -mevexlig=@var{128}
358 @itemx -mevexlig=@var{256}
359 @itemx -mevexlig=@var{512}
360 These options control how the assembler should encode length-ignored
361 (LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
362 EVEX instructions with 128bit vector length, which is the default.
363 @option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
364 encode LIG EVEX instructions with 256bit and 512bit vector length,
365 respectively.
366
367 @cindex @samp{-mevexwig=} option, i386
368 @cindex @samp{-mevexwig=} option, x86-64
369 @item -mevexwig=@var{0}
370 @itemx -mevexwig=@var{1}
371 These options control how the assembler should encode w-ignored (WIG)
372 EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
373 EVEX instructions with evex.w = 0, which is the default.
374 @option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
375 evex.w = 1.
376
377 @cindex @samp{-mmnemonic=} option, i386
378 @cindex @samp{-mmnemonic=} option, x86-64
379 @item -mmnemonic=@var{att}
380 @itemx -mmnemonic=@var{intel}
381 This option specifies instruction mnemonic for matching instructions.
382 The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
383 take precedent.
384
385 @cindex @samp{-msyntax=} option, i386
386 @cindex @samp{-msyntax=} option, x86-64
387 @item -msyntax=@var{att}
388 @itemx -msyntax=@var{intel}
389 This option specifies instruction syntax when processing instructions.
390 The @code{.att_syntax} and @code{.intel_syntax} directives will
391 take precedent.
392
393 @cindex @samp{-mnaked-reg} option, i386
394 @cindex @samp{-mnaked-reg} option, x86-64
395 @item -mnaked-reg
396 This option specifies that registers don't require a @samp{%} prefix.
397 The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
398
399 @cindex @samp{-madd-bnd-prefix} option, i386
400 @cindex @samp{-madd-bnd-prefix} option, x86-64
401 @item -madd-bnd-prefix
402 This option forces the assembler to add BND prefix to all branches, even
403 if such prefix was not explicitly specified in the source code.
404
405 @cindex @samp{-mshared} option, i386
406 @cindex @samp{-mshared} option, x86-64
407 @item -mno-shared
408 On ELF target, the assembler normally optimizes out non-PLT relocations
409 against defined non-weak global branch targets with default visibility.
410 The @samp{-mshared} option tells the assembler to generate code which
411 may go into a shared library where all non-weak global branch targets
412 with default visibility can be preempted. The resulting code is
413 slightly bigger. This option only affects the handling of branch
414 instructions.
415
416 @cindex @samp{-mbig-obj} option, i386
417 @cindex @samp{-mbig-obj} option, x86-64
418 @item -mbig-obj
419 On PE/COFF target this option forces the use of big object file
420 format, which allows more than 32768 sections.
421
422 @cindex @samp{-momit-lock-prefix=} option, i386
423 @cindex @samp{-momit-lock-prefix=} option, x86-64
424 @item -momit-lock-prefix=@var{no}
425 @itemx -momit-lock-prefix=@var{yes}
426 These options control how the assembler should encode lock prefix.
427 This option is intended as a workaround for processors, that fail on
428 lock prefix. This option can only be safely used with single-core,
429 single-thread computers
430 @option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
431 @option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
432 which is the default.
433
434 @cindex @samp{-mfence-as-lock-add=} option, i386
435 @cindex @samp{-mfence-as-lock-add=} option, x86-64
436 @item -mfence-as-lock-add=@var{no}
437 @itemx -mfence-as-lock-add=@var{yes}
438 These options control how the assembler should encode lfence, mfence and
439 sfence.
440 @option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
441 sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
442 @samp{lock addl $0x0, (%esp)} in 32-bit mode.
443 @option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
444 sfence as usual, which is the default.
445
446 @cindex @samp{-mrelax-relocations=} option, i386
447 @cindex @samp{-mrelax-relocations=} option, x86-64
448 @item -mrelax-relocations=@var{no}
449 @itemx -mrelax-relocations=@var{yes}
450 These options control whether the assembler should generate relax
451 relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
452 R_X86_64_REX_GOTPCRELX, in 64-bit mode.
453 @option{-mrelax-relocations=@var{yes}} will generate relax relocations.
454 @option{-mrelax-relocations=@var{no}} will not generate relax
455 relocations. The default can be controlled by a configure option
456 @option{--enable-x86-relax-relocations}.
457
458 @cindex @samp{-malign-branch-boundary=} option, i386
459 @cindex @samp{-malign-branch-boundary=} option, x86-64
460 @item -malign-branch-boundary=@var{NUM}
461 This option controls how the assembler should align branches with segment
462 prefixes or NOP. @var{NUM} must be a power of 2. It should be 0 or
463 no less than 16. Branches will be aligned within @var{NUM} byte
464 boundary. @option{-malign-branch-boundary=0}, which is the default,
465 doesn't align branches.
466
467 @cindex @samp{-malign-branch=} option, i386
468 @cindex @samp{-malign-branch=} option, x86-64
469 @item -malign-branch=@var{TYPE}[+@var{TYPE}...]
470 This option specifies types of branches to align. @var{TYPE} is
471 combination of @samp{jcc}, which aligns conditional jumps,
472 @samp{fused}, which aligns fused conditional jumps, @samp{jmp},
473 which aligns unconditional jumps, @samp{call} which aligns calls,
474 @samp{ret}, which aligns rets, @samp{indirect}, which aligns indirect
475 jumps and calls. The default is @option{-malign-branch=jcc+fused+jmp}.
476
477 @cindex @samp{-malign-branch-prefix-size=} option, i386
478 @cindex @samp{-malign-branch-prefix-size=} option, x86-64
479 @item -malign-branch-prefix-size=@var{NUM}
480 This option specifies the maximum number of prefixes on an instruction
481 to align branches. @var{NUM} should be between 0 and 5. The default
482 @var{NUM} is 5.
483
484 @cindex @samp{-mbranches-within-32B-boundaries} option, i386
485 @cindex @samp{-mbranches-within-32B-boundaries} option, x86-64
486 @item -mbranches-within-32B-boundaries
487 This option aligns conditional jumps, fused conditional jumps and
488 unconditional jumps within 32 byte boundary with up to 5 segment prefixes
489 on an instruction. It is equivalent to
490 @option{-malign-branch-boundary=32}
491 @option{-malign-branch=jcc+fused+jmp}
492 @option{-malign-branch-prefix-size=5}.
493 The default doesn't align branches.
494
495 @cindex @samp{-mlfence-after-load=} option, i386
496 @cindex @samp{-mlfence-after-load=} option, x86-64
497 @item -mlfence-after-load=@var{no}
498 @itemx -mlfence-after-load=@var{yes}
499 These options control whether the assembler should generate lfence
500 after load instructions. @option{-mlfence-after-load=@var{yes}} will
501 generate lfence. @option{-mlfence-after-load=@var{no}} will not generate
502 lfence, which is the default.
503
504 @cindex @samp{-mlfence-before-indirect-branch=} option, i386
505 @cindex @samp{-mlfence-before-indirect-branch=} option, x86-64
506 @item -mlfence-before-indirect-branch=@var{none}
507 @item -mlfence-before-indirect-branch=@var{all}
508 @item -mlfence-before-indirect-branch=@var{register}
509 @itemx -mlfence-before-indirect-branch=@var{memory}
510 These options control whether the assembler should generate lfence
511 before indirect near branch instructions.
512 @option{-mlfence-before-indirect-branch=@var{all}} will generate lfence
513 before indirect near branch via register and issue a warning before
514 indirect near branch via memory.
515 It also implicitly sets @option{-mlfence-before-ret=@var{shl}} when
516 there's no explict @option{-mlfence-before-ret=}.
517 @option{-mlfence-before-indirect-branch=@var{register}} will generate
518 lfence before indirect near branch via register.
519 @option{-mlfence-before-indirect-branch=@var{memory}} will issue a
520 warning before indirect near branch via memory.
521 @option{-mlfence-before-indirect-branch=@var{none}} will not generate
522 lfence nor issue warning, which is the default. Note that lfence won't
523 be generated before indirect near branch via register with
524 @option{-mlfence-after-load=@var{yes}} since lfence will be generated
525 after loading branch target register.
526
527 @cindex @samp{-mlfence-before-ret=} option, i386
528 @cindex @samp{-mlfence-before-ret=} option, x86-64
529 @item -mlfence-before-ret=@var{none}
530 @item -mlfence-before-ret=@var{shl}
531 @item -mlfence-before-ret=@var{or}
532 @item -mlfence-before-ret=@var{yes}
533 @itemx -mlfence-before-ret=@var{not}
534 These options control whether the assembler should generate lfence
535 before ret. @option{-mlfence-before-ret=@var{or}} will generate
536 generate or instruction with lfence.
537 @option{-mlfence-before-ret=@var{shl/yes}} will generate shl instruction
538 with lfence. @option{-mlfence-before-ret=@var{not}} will generate not
539 instruction with lfence. @option{-mlfence-before-ret=@var{none}} will not
540 generate lfence, which is the default.
541
542 @cindex @samp{-mx86-used-note=} option, i386
543 @cindex @samp{-mx86-used-note=} option, x86-64
544 @item -mx86-used-note=@var{no}
545 @itemx -mx86-used-note=@var{yes}
546 These options control whether the assembler should generate
547 GNU_PROPERTY_X86_ISA_1_USED and GNU_PROPERTY_X86_FEATURE_2_USED
548 GNU property notes. The default can be controlled by the
549 @option{--enable-x86-used-note} configure option.
550
551 @cindex @samp{-mevexrcig=} option, i386
552 @cindex @samp{-mevexrcig=} option, x86-64
553 @item -mevexrcig=@var{rne}
554 @itemx -mevexrcig=@var{rd}
555 @itemx -mevexrcig=@var{ru}
556 @itemx -mevexrcig=@var{rz}
557 These options control how the assembler should encode SAE-only
558 EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
559 of EVEX instruction with 00, which is the default.
560 @option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
561 and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
562 with 01, 10 and 11 RC bits, respectively.
563
564 @cindex @samp{-mamd64} option, x86-64
565 @cindex @samp{-mintel64} option, x86-64
566 @item -mamd64
567 @itemx -mintel64
568 This option specifies that the assembler should accept only AMD64 or
569 Intel64 ISA in 64-bit mode. The default is to accept common, Intel64
570 only and AMD64 ISAs.
571
572 @cindex @samp{-O0} option, i386
573 @cindex @samp{-O0} option, x86-64
574 @cindex @samp{-O} option, i386
575 @cindex @samp{-O} option, x86-64
576 @cindex @samp{-O1} option, i386
577 @cindex @samp{-O1} option, x86-64
578 @cindex @samp{-O2} option, i386
579 @cindex @samp{-O2} option, x86-64
580 @cindex @samp{-Os} option, i386
581 @cindex @samp{-Os} option, x86-64
582 @item -O0 | -O | -O1 | -O2 | -Os
583 Optimize instruction encoding with smaller instruction size. @samp{-O}
584 and @samp{-O1} encode 64-bit register load instructions with 64-bit
585 immediate as 32-bit register load instructions with 31-bit or 32-bits
586 immediates, encode 64-bit register clearing instructions with 32-bit
587 register clearing instructions, encode 256-bit/512-bit VEX/EVEX vector
588 register clearing instructions with 128-bit VEX vector register
589 clearing instructions, encode 128-bit/256-bit EVEX vector
590 register load/store instructions with VEX vector register load/store
591 instructions, and encode 128-bit/256-bit EVEX packed integer logical
592 instructions with 128-bit/256-bit VEX packed integer logical.
593
594 @samp{-O2} includes @samp{-O1} optimization plus encodes
595 256-bit/512-bit EVEX vector register clearing instructions with 128-bit
596 EVEX vector register clearing instructions. In 64-bit mode VEX encoded
597 instructions with commutative source operands will also have their
598 source operands swapped if this allows using the 2-byte VEX prefix form
599 instead of the 3-byte one. Certain forms of AND as well as OR with the
600 same (register) operand specified twice will also be changed to TEST.
601
602 @samp{-Os} includes @samp{-O2} optimization plus encodes 16-bit, 32-bit
603 and 64-bit register tests with immediate as 8-bit register test with
604 immediate. @samp{-O0} turns off this optimization.
605
606 @end table
607 @c man end
608
609 @node i386-Directives
610 @section x86 specific Directives
611
612 @cindex machine directives, x86
613 @cindex x86 machine directives
614 @table @code
615
616 @cindex @code{lcomm} directive, COFF
617 @item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
618 Reserve @var{length} (an absolute expression) bytes for a local common
619 denoted by @var{symbol}. The section and value of @var{symbol} are
620 those of the new local common. The addresses are allocated in the bss
621 section, so that at run-time the bytes start off zeroed. Since
622 @var{symbol} is not declared global, it is normally not visible to
623 @code{@value{LD}}. The optional third parameter, @var{alignment},
624 specifies the desired alignment of the symbol in the bss section.
625
626 This directive is only available for COFF based x86 targets.
627
628 @cindex @code{largecomm} directive, ELF
629 @item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
630 This directive behaves in the same way as the @code{comm} directive
631 except that the data is placed into the @var{.lbss} section instead of
632 the @var{.bss} section @ref{Comm}.
633
634 The directive is intended to be used for data which requires a large
635 amount of space, and it is only available for ELF based x86_64
636 targets.
637
638 @cindex @code{value} directive
639 @item .value @var{expression} [, @var{expression}]
640 This directive behaves in the same way as the @code{.short} directive,
641 taking a series of comma separated expressions and storing them as
642 two-byte wide values into the current section.
643
644 @c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
645
646 @end table
647
648 @node i386-Syntax
649 @section i386 Syntactical Considerations
650 @menu
651 * i386-Variations:: AT&T Syntax versus Intel Syntax
652 * i386-Chars:: Special Characters
653 @end menu
654
655 @node i386-Variations
656 @subsection AT&T Syntax versus Intel Syntax
657
658 @cindex i386 intel_syntax pseudo op
659 @cindex intel_syntax pseudo op, i386
660 @cindex i386 att_syntax pseudo op
661 @cindex att_syntax pseudo op, i386
662 @cindex i386 syntax compatibility
663 @cindex syntax compatibility, i386
664 @cindex x86-64 intel_syntax pseudo op
665 @cindex intel_syntax pseudo op, x86-64
666 @cindex x86-64 att_syntax pseudo op
667 @cindex att_syntax pseudo op, x86-64
668 @cindex x86-64 syntax compatibility
669 @cindex syntax compatibility, x86-64
670
671 @code{@value{AS}} now supports assembly using Intel assembler syntax.
672 @code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
673 back to the usual AT&T mode for compatibility with the output of
674 @code{@value{GCC}}. Either of these directives may have an optional
675 argument, @code{prefix}, or @code{noprefix} specifying whether registers
676 require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
677 different from Intel syntax. We mention these differences because
678 almost all 80386 documents use Intel syntax. Notable differences
679 between the two syntaxes are:
680
681 @cindex immediate operands, i386
682 @cindex i386 immediate operands
683 @cindex register operands, i386
684 @cindex i386 register operands
685 @cindex jump/call operands, i386
686 @cindex i386 jump/call operands
687 @cindex operand delimiters, i386
688
689 @cindex immediate operands, x86-64
690 @cindex x86-64 immediate operands
691 @cindex register operands, x86-64
692 @cindex x86-64 register operands
693 @cindex jump/call operands, x86-64
694 @cindex x86-64 jump/call operands
695 @cindex operand delimiters, x86-64
696 @itemize @bullet
697 @item
698 AT&T immediate operands are preceded by @samp{$}; Intel immediate
699 operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
700 AT&T register operands are preceded by @samp{%}; Intel register operands
701 are undelimited. AT&T absolute (as opposed to PC relative) jump/call
702 operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
703
704 @cindex i386 source, destination operands
705 @cindex source, destination operands; i386
706 @cindex x86-64 source, destination operands
707 @cindex source, destination operands; x86-64
708 @item
709 AT&T and Intel syntax use the opposite order for source and destination
710 operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
711 @samp{source, dest} convention is maintained for compatibility with
712 previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
713 instructions with 2 immediate operands, such as the @samp{enter}
714 instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
715
716 @cindex mnemonic suffixes, i386
717 @cindex sizes operands, i386
718 @cindex i386 size suffixes
719 @cindex mnemonic suffixes, x86-64
720 @cindex sizes operands, x86-64
721 @cindex x86-64 size suffixes
722 @item
723 In AT&T syntax the size of memory operands is determined from the last
724 character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
725 @samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
726 (32-bit) and quadruple word (64-bit) memory references. Mnemonic suffixes
727 of @samp{x}, @samp{y} and @samp{z} specify xmm (128-bit vector), ymm
728 (256-bit vector) and zmm (512-bit vector) memory references, only when there's
729 no other way to disambiguate an instruction. Intel syntax accomplishes this by
730 prefixing memory operands (@emph{not} the instruction mnemonics) with
731 @samp{byte ptr}, @samp{word ptr}, @samp{dword ptr}, @samp{qword ptr},
732 @samp{xmmword ptr}, @samp{ymmword ptr} and @samp{zmmword ptr}. Thus, Intel
733 syntax @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
734 syntax. In Intel syntax, @samp{fword ptr}, @samp{tbyte ptr} and
735 @samp{oword ptr} specify 48-bit, 80-bit and 128-bit memory references.
736
737 In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
738 instruction with the 64-bit displacement or immediate operand.
739
740 @cindex return instructions, i386
741 @cindex i386 jump, call, return
742 @cindex return instructions, x86-64
743 @cindex x86-64 jump, call, return
744 @item
745 Immediate form long jumps and calls are
746 @samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
747 Intel syntax is
748 @samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
749 instruction
750 is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
751 @samp{ret far @var{stack-adjust}}.
752
753 @cindex sections, i386
754 @cindex i386 sections
755 @cindex sections, x86-64
756 @cindex x86-64 sections
757 @item
758 The AT&T assembler does not provide support for multiple section
759 programs. Unix style systems expect all programs to be single sections.
760 @end itemize
761
762 @node i386-Chars
763 @subsection Special Characters
764
765 @cindex line comment character, i386
766 @cindex i386 line comment character
767 The presence of a @samp{#} appearing anywhere on a line indicates the
768 start of a comment that extends to the end of that line.
769
770 If a @samp{#} appears as the first character of a line then the whole
771 line is treated as a comment, but in this case the line can also be a
772 logical line number directive (@pxref{Comments}) or a preprocessor
773 control command (@pxref{Preprocessing}).
774
775 If the @option{--divide} command-line option has not been specified
776 then the @samp{/} character appearing anywhere on a line also
777 introduces a line comment.
778
779 @cindex line separator, i386
780 @cindex statement separator, i386
781 @cindex i386 line separator
782 The @samp{;} character can be used to separate statements on the same
783 line.
784
785 @node i386-Mnemonics
786 @section i386-Mnemonics
787 @subsection Instruction Naming
788
789 @cindex i386 instruction naming
790 @cindex instruction naming, i386
791 @cindex x86-64 instruction naming
792 @cindex instruction naming, x86-64
793
794 Instruction mnemonics are suffixed with one character modifiers which
795 specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
796 and @samp{q} specify byte, word, long and quadruple word operands. If
797 no suffix is specified by an instruction then @code{@value{AS}} tries to
798 fill in the missing suffix based on the destination register operand
799 (the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
800 to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
801 @samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
802 assembler which assumes that a missing mnemonic suffix implies long
803 operand size. (This incompatibility does not affect compiler output
804 since compilers always explicitly specify the mnemonic suffix.)
805
806 When there is no sizing suffix and no (suitable) register operands to
807 deduce the size of memory operands, with a few exceptions and where long
808 operand size is possible in the first place, operand size will default
809 to long in 32- and 64-bit modes. Similarly it will default to short in
810 16-bit mode. Noteworthy exceptions are
811
812 @itemize @bullet
813 @item
814 Instructions with an implicit on-stack operand as well as branches,
815 which default to quad in 64-bit mode.
816
817 @item
818 Sign- and zero-extending moves, which default to byte size source
819 operands.
820
821 @item
822 Floating point insns with integer operands, which default to short (for
823 perhaps historical reasons).
824
825 @item
826 CRC32 with a 64-bit destination, which defaults to a quad source
827 operand.
828
829 @end itemize
830
831 @cindex encoding options, i386
832 @cindex encoding options, x86-64
833
834 Different encoding options can be specified via pseudo prefixes:
835
836 @itemize @bullet
837 @item
838 @samp{@{disp8@}} -- prefer 8-bit displacement.
839
840 @item
841 @samp{@{disp32@}} -- prefer 32-bit displacement.
842
843 @item
844 @samp{@{disp16@}} -- prefer 16-bit displacement.
845
846 @item
847 @samp{@{load@}} -- prefer load-form instruction.
848
849 @item
850 @samp{@{store@}} -- prefer store-form instruction.
851
852 @item
853 @samp{@{vex@}} -- encode with VEX prefix.
854
855 @item
856 @samp{@{vex3@}} -- encode with 3-byte VEX prefix.
857
858 @item
859 @samp{@{evex@}} -- encode with EVEX prefix.
860
861 @item
862 @samp{@{rex@}} -- prefer REX prefix for integer and legacy vector
863 instructions (x86-64 only). Note that this differs from the @samp{rex}
864 prefix which generates REX prefix unconditionally.
865
866 @item
867 @samp{@{nooptimize@}} -- disable instruction size optimization.
868 @end itemize
869
870 Mnemonics of Intel VNNI instructions are encoded with the EVEX prefix
871 by default. The pseudo @samp{@{vex@}} prefix can be used to encode
872 mnemonics of Intel VNNI instructions with the VEX prefix.
873
874 @cindex conversion instructions, i386
875 @cindex i386 conversion instructions
876 @cindex conversion instructions, x86-64
877 @cindex x86-64 conversion instructions
878 The Intel-syntax conversion instructions
879
880 @itemize @bullet
881 @item
882 @samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
883
884 @item
885 @samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
886
887 @item
888 @samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
889
890 @item
891 @samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
892
893 @item
894 @samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
895 (x86-64 only),
896
897 @item
898 @samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
899 @samp{%rdx:%rax} (x86-64 only),
900 @end itemize
901
902 @noindent
903 are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
904 @samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
905 instructions.
906
907 @cindex extension instructions, i386
908 @cindex i386 extension instructions
909 @cindex extension instructions, x86-64
910 @cindex x86-64 extension instructions
911 The Intel-syntax extension instructions
912
913 @itemize @bullet
914 @item
915 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg16}.
916
917 @item
918 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg32}.
919
920 @item
921 @samp{movsx} --- sign-extend @samp{reg8/mem8} to @samp{reg64}
922 (x86-64 only).
923
924 @item
925 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg32}
926
927 @item
928 @samp{movsx} --- sign-extend @samp{reg16/mem16} to @samp{reg64}
929 (x86-64 only).
930
931 @item
932 @samp{movsxd} --- sign-extend @samp{reg32/mem32} to @samp{reg64}
933 (x86-64 only).
934
935 @item
936 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg16}.
937
938 @item
939 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg32}.
940
941 @item
942 @samp{movzx} --- zero-extend @samp{reg8/mem8} to @samp{reg64}
943 (x86-64 only).
944
945 @item
946 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg32}
947
948 @item
949 @samp{movzx} --- zero-extend @samp{reg16/mem16} to @samp{reg64}
950 (x86-64 only).
951 @end itemize
952
953 @noindent
954 are called @samp{movsbw/movsxb/movsx}, @samp{movsbl/movsxb/movsx},
955 @samp{movsbq/movsb/movsx}, @samp{movswl/movsxw}, @samp{movswq/movsxw},
956 @samp{movslq/movsxl}, @samp{movzbw/movzxb/movzx},
957 @samp{movzbl/movzxb/movzx}, @samp{movzbq/movzxb/movzx},
958 @samp{movzwl/movzxw} and @samp{movzwq/movzxw} in AT&T syntax.
959
960 @cindex jump instructions, i386
961 @cindex call instructions, i386
962 @cindex jump instructions, x86-64
963 @cindex call instructions, x86-64
964 Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
965 AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
966 convention.
967
968 @subsection AT&T Mnemonic versus Intel Mnemonic
969
970 @cindex i386 mnemonic compatibility
971 @cindex mnemonic compatibility, i386
972
973 @code{@value{AS}} supports assembly using Intel mnemonic.
974 @code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
975 @code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
976 syntax for compatibility with the output of @code{@value{GCC}}.
977 Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
978 @samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
979 @samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
980 assembler with different mnemonics from those in Intel IA32 specification.
981 @code{@value{GCC}} generates those instructions with AT&T mnemonic.
982
983 @itemize @bullet
984 @item @samp{movslq} with AT&T mnemonic only accepts 64-bit destination
985 register. @samp{movsxd} should be used to encode 16-bit or 32-bit
986 destination register with both AT&T and Intel mnemonics.
987 @end itemize
988
989 @node i386-Regs
990 @section Register Naming
991
992 @cindex i386 registers
993 @cindex registers, i386
994 @cindex x86-64 registers
995 @cindex registers, x86-64
996 Register operands are always prefixed with @samp{%}. The 80386 registers
997 consist of
998
999 @itemize @bullet
1000 @item
1001 the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
1002 @samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
1003 frame pointer), and @samp{%esp} (the stack pointer).
1004
1005 @item
1006 the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
1007 @samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
1008
1009 @item
1010 the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
1011 @samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
1012 are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
1013 @samp{%cx}, and @samp{%dx})
1014
1015 @item
1016 the 6 section registers @samp{%cs} (code section), @samp{%ds}
1017 (data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
1018 and @samp{%gs}.
1019
1020 @item
1021 the 5 processor control registers @samp{%cr0}, @samp{%cr2},
1022 @samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
1023
1024 @item
1025 the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
1026 @samp{%db3}, @samp{%db6}, and @samp{%db7}.
1027
1028 @item
1029 the 2 test registers @samp{%tr6} and @samp{%tr7}.
1030
1031 @item
1032 the 8 floating point register stack @samp{%st} or equivalently
1033 @samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
1034 @samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
1035 These registers are overloaded by 8 MMX registers @samp{%mm0},
1036 @samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
1037 @samp{%mm6} and @samp{%mm7}.
1038
1039 @item
1040 the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
1041 @samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
1042 @end itemize
1043
1044 The AMD x86-64 architecture extends the register set by:
1045
1046 @itemize @bullet
1047 @item
1048 enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
1049 accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
1050 @samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
1051 pointer)
1052
1053 @item
1054 the 8 extended registers @samp{%r8}--@samp{%r15}.
1055
1056 @item
1057 the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
1058
1059 @item
1060 the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
1061
1062 @item
1063 the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
1064
1065 @item
1066 the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
1067
1068 @item
1069 the 8 debug registers: @samp{%db8}--@samp{%db15}.
1070
1071 @item
1072 the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
1073 @end itemize
1074
1075 With the AVX extensions more registers were made available:
1076
1077 @itemize @bullet
1078
1079 @item
1080 the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
1081 available in 32-bit mode). The bottom 128 bits are overlaid with the
1082 @samp{xmm0}--@samp{xmm15} registers.
1083
1084 @end itemize
1085
1086 The AVX512 extensions added the following registers:
1087
1088 @itemize @bullet
1089
1090 @item
1091 the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
1092 available in 32-bit mode). The bottom 128 bits are overlaid with the
1093 @samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
1094 overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
1095
1096 @item
1097 the 8 mask registers @samp{%k0}--@samp{%k7}.
1098
1099 @end itemize
1100
1101 @node i386-Prefixes
1102 @section Instruction Prefixes
1103
1104 @cindex i386 instruction prefixes
1105 @cindex instruction prefixes, i386
1106 @cindex prefixes, i386
1107 Instruction prefixes are used to modify the following instruction. They
1108 are used to repeat string instructions, to provide section overrides, to
1109 perform bus lock operations, and to change operand and address sizes.
1110 (Most instructions that normally operate on 32-bit operands will use
1111 16-bit operands if the instruction has an ``operand size'' prefix.)
1112 Instruction prefixes are best written on the same line as the instruction
1113 they act upon. For example, the @samp{scas} (scan string) instruction is
1114 repeated with:
1115
1116 @smallexample
1117 repne scas %es:(%edi),%al
1118 @end smallexample
1119
1120 You may also place prefixes on the lines immediately preceding the
1121 instruction, but this circumvents checks that @code{@value{AS}} does
1122 with prefixes, and will not work with all prefixes.
1123
1124 Here is a list of instruction prefixes:
1125
1126 @cindex section override prefixes, i386
1127 @itemize @bullet
1128 @item
1129 Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
1130 @samp{fs}, @samp{gs}. These are automatically added by specifying
1131 using the @var{section}:@var{memory-operand} form for memory references.
1132
1133 @cindex size prefixes, i386
1134 @item
1135 Operand/Address size prefixes @samp{data16} and @samp{addr16}
1136 change 32-bit operands/addresses into 16-bit operands/addresses,
1137 while @samp{data32} and @samp{addr32} change 16-bit ones (in a
1138 @code{.code16} section) into 32-bit operands/addresses. These prefixes
1139 @emph{must} appear on the same line of code as the instruction they
1140 modify. For example, in a 16-bit @code{.code16} section, you might
1141 write:
1142
1143 @smallexample
1144 addr32 jmpl *(%ebx)
1145 @end smallexample
1146
1147 @cindex bus lock prefixes, i386
1148 @cindex inhibiting interrupts, i386
1149 @item
1150 The bus lock prefix @samp{lock} inhibits interrupts during execution of
1151 the instruction it precedes. (This is only valid with certain
1152 instructions; see a 80386 manual for details).
1153
1154 @cindex coprocessor wait, i386
1155 @item
1156 The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
1157 complete the current instruction. This should never be needed for the
1158 80386/80387 combination.
1159
1160 @cindex repeat prefixes, i386
1161 @item
1162 The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
1163 to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
1164 times if the current address size is 16-bits).
1165 @cindex REX prefixes, i386
1166 @item
1167 The @samp{rex} family of prefixes is used by x86-64 to encode
1168 extensions to i386 instruction set. The @samp{rex} prefix has four
1169 bits --- an operand size overwrite (@code{64}) used to change operand size
1170 from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
1171 register set.
1172
1173 You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
1174 instruction emits @samp{rex} prefix with all the bits set. By omitting
1175 the @code{64}, @code{x}, @code{y} or @code{z} you may write other
1176 prefixes as well. Normally, there is no need to write the prefixes
1177 explicitly, since gas will automatically generate them based on the
1178 instruction operands.
1179 @end itemize
1180
1181 @node i386-Memory
1182 @section Memory References
1183
1184 @cindex i386 memory references
1185 @cindex memory references, i386
1186 @cindex x86-64 memory references
1187 @cindex memory references, x86-64
1188 An Intel syntax indirect memory reference of the form
1189
1190 @smallexample
1191 @var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
1192 @end smallexample
1193
1194 @noindent
1195 is translated into the AT&T syntax
1196
1197 @smallexample
1198 @var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
1199 @end smallexample
1200
1201 @noindent
1202 where @var{base} and @var{index} are the optional 32-bit base and
1203 index registers, @var{disp} is the optional displacement, and
1204 @var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
1205 to calculate the address of the operand. If no @var{scale} is
1206 specified, @var{scale} is taken to be 1. @var{section} specifies the
1207 optional section register for the memory operand, and may override the
1208 default section register (see a 80386 manual for section register
1209 defaults). Note that section overrides in AT&T syntax @emph{must}
1210 be preceded by a @samp{%}. If you specify a section override which
1211 coincides with the default section register, @code{@value{AS}} does @emph{not}
1212 output any section register override prefixes to assemble the given
1213 instruction. Thus, section overrides can be specified to emphasize which
1214 section register is used for a given memory operand.
1215
1216 Here are some examples of Intel and AT&T style memory references:
1217
1218 @table @asis
1219 @item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
1220 @var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
1221 missing, and the default section is used (@samp{%ss} for addressing with
1222 @samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
1223
1224 @item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
1225 @var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
1226 @samp{foo}. All other fields are missing. The section register here
1227 defaults to @samp{%ds}.
1228
1229 @item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
1230 This uses the value pointed to by @samp{foo} as a memory operand.
1231 Note that @var{base} and @var{index} are both missing, but there is only
1232 @emph{one} @samp{,}. This is a syntactic exception.
1233
1234 @item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
1235 This selects the contents of the variable @samp{foo} with section
1236 register @var{section} being @samp{%gs}.
1237 @end table
1238
1239 Absolute (as opposed to PC relative) call and jump operands must be
1240 prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
1241 always chooses PC relative addressing for jump/call labels.
1242
1243 Any instruction that has a memory operand, but no register operand,
1244 @emph{must} specify its size (byte, word, long, or quadruple) with an
1245 instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
1246 respectively).
1247
1248 The x86-64 architecture adds an RIP (instruction pointer relative)
1249 addressing. This addressing mode is specified by using @samp{rip} as a
1250 base register. Only constant offsets are valid. For example:
1251
1252 @table @asis
1253 @item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
1254 Points to the address 1234 bytes past the end of the current
1255 instruction.
1256
1257 @item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
1258 Points to the @code{symbol} in RIP relative way, this is shorter than
1259 the default absolute addressing.
1260 @end table
1261
1262 Other addressing modes remain unchanged in x86-64 architecture, except
1263 registers used are 64-bit instead of 32-bit.
1264
1265 @node i386-Jumps
1266 @section Handling of Jump Instructions
1267
1268 @cindex jump optimization, i386
1269 @cindex i386 jump optimization
1270 @cindex jump optimization, x86-64
1271 @cindex x86-64 jump optimization
1272 Jump instructions are always optimized to use the smallest possible
1273 displacements. This is accomplished by using byte (8-bit) displacement
1274 jumps whenever the target is sufficiently close. If a byte displacement
1275 is insufficient a long displacement is used. We do not support
1276 word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
1277 instruction with the @samp{data16} instruction prefix), since the 80386
1278 insists upon masking @samp{%eip} to 16 bits after the word displacement
1279 is added. (See also @pxref{i386-Arch})
1280
1281 Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1282 @samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1283 displacements, so that if you use these instructions (@code{@value{GCC}} does
1284 not use them) you may get an error message (and incorrect code). The AT&T
1285 80386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1286 to
1287
1288 @smallexample
1289 jcxz cx_zero
1290 jmp cx_nonzero
1291 cx_zero: jmp foo
1292 cx_nonzero:
1293 @end smallexample
1294
1295 @node i386-Float
1296 @section Floating Point
1297
1298 @cindex i386 floating point
1299 @cindex floating point, i386
1300 @cindex x86-64 floating point
1301 @cindex floating point, x86-64
1302 All 80387 floating point types except packed BCD are supported.
1303 (BCD support may be added without much difficulty). These data
1304 types are 16-, 32-, and 64- bit integers, and single (32-bit),
1305 double (64-bit), and extended (80-bit) precision floating point.
1306 Each supported type has an instruction mnemonic suffix and a constructor
1307 associated with it. Instruction mnemonic suffixes specify the operand's
1308 data type. Constructors build these data types into memory.
1309
1310 @cindex @code{float} directive, i386
1311 @cindex @code{single} directive, i386
1312 @cindex @code{double} directive, i386
1313 @cindex @code{tfloat} directive, i386
1314 @cindex @code{float} directive, x86-64
1315 @cindex @code{single} directive, x86-64
1316 @cindex @code{double} directive, x86-64
1317 @cindex @code{tfloat} directive, x86-64
1318 @itemize @bullet
1319 @item
1320 Floating point constructors are @samp{.float} or @samp{.single},
1321 @samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1322 These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1323 and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1324 only supports this format via the @samp{fldt} (load 80-bit real to stack
1325 top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1326
1327 @cindex @code{word} directive, i386
1328 @cindex @code{long} directive, i386
1329 @cindex @code{int} directive, i386
1330 @cindex @code{quad} directive, i386
1331 @cindex @code{word} directive, x86-64
1332 @cindex @code{long} directive, x86-64
1333 @cindex @code{int} directive, x86-64
1334 @cindex @code{quad} directive, x86-64
1335 @item
1336 Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1337 @samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1338 corresponding instruction mnemonic suffixes are @samp{s} (short),
1339 @samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1340 the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1341 quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1342 stack) instructions.
1343 @end itemize
1344
1345 Register to register operations should not use instruction mnemonic suffixes.
1346 @samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1347 wrote @samp{fst %st, %st(1)}, since all register to register operations
1348 use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1349 which converts @samp{%st} from 80-bit to 64-bit floating point format,
1350 then stores the result in the 4 byte location @samp{mem})
1351
1352 @node i386-SIMD
1353 @section Intel's MMX and AMD's 3DNow! SIMD Operations
1354
1355 @cindex MMX, i386
1356 @cindex 3DNow!, i386
1357 @cindex SIMD, i386
1358 @cindex MMX, x86-64
1359 @cindex 3DNow!, x86-64
1360 @cindex SIMD, x86-64
1361
1362 @code{@value{AS}} supports Intel's MMX instruction set (SIMD
1363 instructions for integer data), available on Intel's Pentium MMX
1364 processors and Pentium II processors, AMD's K6 and K6-2 processors,
1365 Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
1366 instruction set (SIMD instructions for 32-bit floating point data)
1367 available on AMD's K6-2 processor and possibly others in the future.
1368
1369 Currently, @code{@value{AS}} does not support Intel's floating point
1370 SIMD, Katmai (KNI).
1371
1372 The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1373 @samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
1374 16-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1375 floating point values. The MMX registers cannot be used at the same time
1376 as the floating point stack.
1377
1378 See Intel and AMD documentation, keeping in mind that the operand order in
1379 instructions is reversed from the Intel syntax.
1380
1381 @node i386-LWP
1382 @section AMD's Lightweight Profiling Instructions
1383
1384 @cindex LWP, i386
1385 @cindex LWP, x86-64
1386
1387 @code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1388 instruction set, available on AMD's Family 15h (Orochi) processors.
1389
1390 LWP enables applications to collect and manage performance data, and
1391 react to performance events. The collection of performance data
1392 requires no context switches. LWP runs in the context of a thread and
1393 so several counters can be used independently across multiple threads.
1394 LWP can be used in both 64-bit and legacy 32-bit modes.
1395
1396 For detailed information on the LWP instruction set, see the
1397 @cite{AMD Lightweight Profiling Specification} available at
1398 @uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1399
1400 @node i386-BMI
1401 @section Bit Manipulation Instructions
1402
1403 @cindex BMI, i386
1404 @cindex BMI, x86-64
1405
1406 @code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1407
1408 BMI instructions provide several instructions implementing individual
1409 bit manipulation operations such as isolation, masking, setting, or
1410 resetting.
1411
1412 @c Need to add a specification citation here when available.
1413
1414 @node i386-TBM
1415 @section AMD's Trailing Bit Manipulation Instructions
1416
1417 @cindex TBM, i386
1418 @cindex TBM, x86-64
1419
1420 @code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1421 instruction set, available on AMD's BDVER2 processors (Trinity and
1422 Viperfish).
1423
1424 TBM instructions provide instructions implementing individual bit
1425 manipulation operations such as isolating, masking, setting, resetting,
1426 complementing, and operations on trailing zeros and ones.
1427
1428 @c Need to add a specification citation here when available.
1429
1430 @node i386-16bit
1431 @section Writing 16-bit Code
1432
1433 @cindex i386 16-bit code
1434 @cindex 16-bit code, i386
1435 @cindex real-mode code, i386
1436 @cindex @code{code16gcc} directive, i386
1437 @cindex @code{code16} directive, i386
1438 @cindex @code{code32} directive, i386
1439 @cindex @code{code64} directive, i386
1440 @cindex @code{code64} directive, x86-64
1441 While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1442 or 64-bit x86-64 code depending on the default configuration,
1443 it also supports writing code to run in real mode or in 16-bit protected
1444 mode code segments. To do this, put a @samp{.code16} or
1445 @samp{.code16gcc} directive before the assembly language instructions to
1446 be run in 16-bit mode. You can switch @code{@value{AS}} to writing
1447 32-bit code with the @samp{.code32} directive or 64-bit code with the
1448 @samp{.code64} directive.
1449
1450 @samp{.code16gcc} provides experimental support for generating 16-bit
1451 code from gcc, and differs from @samp{.code16} in that @samp{call},
1452 @samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1453 @samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1454 default to 32-bit size. This is so that the stack pointer is
1455 manipulated in the same way over function calls, allowing access to
1456 function parameters at the same stack offsets as in 32-bit mode.
1457 @samp{.code16gcc} also automatically adds address size prefixes where
1458 necessary to use the 32-bit addressing modes that gcc generates.
1459
1460 The code which @code{@value{AS}} generates in 16-bit mode will not
1461 necessarily run on a 16-bit pre-80386 processor. To write code that
1462 runs on such a processor, you must refrain from using @emph{any} 32-bit
1463 constructs which require @code{@value{AS}} to output address or operand
1464 size prefixes.
1465
1466 Note that writing 16-bit code instructions by explicitly specifying a
1467 prefix or an instruction mnemonic suffix within a 32-bit code section
1468 generates different machine instructions than those generated for a
1469 16-bit code segment. In a 32-bit code section, the following code
1470 generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1471 value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1472
1473 @smallexample
1474 pushw $4
1475 @end smallexample
1476
1477 The same code in a 16-bit code section would generate the machine
1478 opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
1479 is correct since the processor default operand size is assumed to be 16
1480 bits in a 16-bit code section.
1481
1482 @node i386-Arch
1483 @section Specifying CPU Architecture
1484
1485 @cindex arch directive, i386
1486 @cindex i386 arch directive
1487 @cindex arch directive, x86-64
1488 @cindex x86-64 arch directive
1489
1490 @code{@value{AS}} may be told to assemble for a particular CPU
1491 (sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
1492 directive enables a warning when gas detects an instruction that is not
1493 supported on the CPU specified. The choices for @var{cpu_type} are:
1494
1495 @multitable @columnfractions .20 .20 .20 .20
1496 @item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1497 @item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
1498 @item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
1499 @item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
1500 @item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @tab @samp{iamcu}
1501 @item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
1502 @item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
1503 @item @samp{bdver4} @tab @samp{znver1} @tab @samp{znver2} @tab @samp{znver3}
1504 @item @samp{btver1} @tab @samp{btver2} @tab @samp{generic32} @tab @samp{generic64}
1505 @item @samp{.cmov} @tab @samp{.fxsr} @tab @samp{.mmx}
1506 @item @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3} @tab @samp{.sse4a}
1507 @item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
1508 @item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1509 @item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1510 @item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
1511 @item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
1512 @item @samp{.lzcnt} @tab @samp{.popcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc}
1513 @item @samp{.hle}
1514 @item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1515 @item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1516 @item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1517 @item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
1518 @item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
1519 @item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
1520 @item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
1521 @item @samp{.avx512_bitalg} @tab @samp{.avx512_bf16} @tab @samp{.avx512_vp2intersect}
1522 @item @samp{.tdx} @tab @samp{.avx_vnni}
1523 @item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1524 @item @samp{.wbnoinvd} @tab @samp{.pconfig} @tab @samp{.waitpkg} @tab @samp{.cldemote}
1525 @item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1526 @item @samp{.movdiri} @tab @samp{.movdir64b} @tab @samp{.enqcmd} @tab @samp{.tsxldtrk}
1527 @item @samp{.amx_int8} @tab @samp{.amx_bf16} @tab @samp{.amx_tile}
1528 @item @samp{.kl} @tab @samp{.widekl} @tab @samp{.uintr} @tab @samp{.hreset}
1529 @item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
1530 @item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme}
1531 @item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
1532 @item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx} @tab @samp{.rdpru}
1533 @item @samp{.mcommit} @tab @samp{.sev_es} @tab @samp{.snp} @tab @samp{.invlpgb}
1534 @item @samp{.tlbsync}
1535 @end multitable
1536
1537 Apart from the warning, there are only two other effects on
1538 @code{@value{AS}} operation; Firstly, if you specify a CPU other than
1539 @samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1540 will automatically use a two byte opcode sequence. The larger three
1541 byte opcode sequence is used on the 486 (and when no architecture is
1542 specified) because it executes faster on the 486. Note that you can
1543 explicitly request the two byte opcode by writing @samp{sarl %eax}.
1544 Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1545 @emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1546 conditional jumps will be promoted when necessary to a two instruction
1547 sequence consisting of a conditional jump of the opposite sense around
1548 an unconditional jump to the target.
1549
1550 Following the CPU architecture (but not a sub-architecture, which are those
1551 starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1552 control automatic promotion of conditional jumps. @samp{jumps} is the
1553 default, and enables jump promotion; All external jumps will be of the long
1554 variety, and file-local jumps will be promoted as necessary.
1555 (@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1556 byte offset jumps, and warns about file-local conditional jumps that
1557 @code{@value{AS}} promotes.
1558 Unconditional jumps are treated as for @samp{jumps}.
1559
1560 For example
1561
1562 @smallexample
1563 .arch i8086,nojumps
1564 @end smallexample
1565
1566 @node i386-ISA
1567 @section AMD64 ISA vs. Intel64 ISA
1568
1569 There are some discrepancies between AMD64 and Intel64 ISAs.
1570
1571 @itemize @bullet
1572 @item For @samp{movsxd} with 16-bit destination register, AMD64
1573 supports 32-bit source operand and Intel64 supports 16-bit source
1574 operand.
1575
1576 @item For far branches (with explicit memory operand), both ISAs support
1577 32- and 16-bit operand size. Intel64 additionally supports 64-bit
1578 operand size, encoded as @samp{ljmpq} and @samp{lcallq} in AT&T syntax
1579 and with an explicit @samp{tbyte ptr} operand size specifier in Intel
1580 syntax.
1581
1582 @item @samp{lfs}, @samp{lgs}, and @samp{lss} similarly allow for 16-
1583 and 32-bit operand size (32- and 48-bit memory operand) in both ISAs,
1584 while Intel64 additionally supports 64-bit operand sise (80-bit memory
1585 operands).
1586
1587 @end itemize
1588
1589 @node i386-Bugs
1590 @section AT&T Syntax bugs
1591
1592 The UnixWare assembler, and probably other AT&T derived ix86 Unix
1593 assemblers, generate floating point instructions with reversed source
1594 and destination registers in certain cases. Unfortunately, gcc and
1595 possibly many other programs use this reversed syntax, so we're stuck
1596 with it.
1597
1598 For example
1599
1600 @smallexample
1601 fsub %st,%st(3)
1602 @end smallexample
1603 @noindent
1604 results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1605 than the expected @samp{%st(3) - %st}. This happens with all the
1606 non-commutative arithmetic floating point operations with two register
1607 operands where the source register is @samp{%st} and the destination
1608 register is @samp{%st(i)}.
1609
1610 @node i386-Notes
1611 @section Notes
1612
1613 @cindex i386 @code{mul}, @code{imul} instructions
1614 @cindex @code{mul} instruction, i386
1615 @cindex @code{imul} instruction, i386
1616 @cindex @code{mul} instruction, x86-64
1617 @cindex @code{imul} instruction, x86-64
1618 There is some trickery concerning the @samp{mul} and @samp{imul}
1619 instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
1620 multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1621 for @samp{imul}) can be output only in the one operand form. Thus,
1622 @samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1623 the expanding multiply would clobber the @samp{%edx} register, and this
1624 would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
1625 64-bit product in @samp{%edx:%eax}.
1626
1627 We have added a two operand form of @samp{imul} when the first operand
1628 is an immediate mode expression and the second operand is a register.
1629 This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1630 example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1631 $69, %eax, %eax}.
1632