]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/expr.c
gas: rework handling of backslashes in quoted symbol names
[thirdparty/binutils-gdb.git] / gas / expr.c
1 /* expr.c -operands, expressions-
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This is really a branch office of as-read.c. I split it out to clearly
22 distinguish the world of expressions from the world of statements.
23 (It also gives smaller files to re-compile.)
24 Here, "operand"s are of expressions, not instructions. */
25
26 #define min(a, b) ((a) < (b) ? (a) : (b))
27
28 #include "as.h"
29 #include "safe-ctype.h"
30
31 #include <limits.h>
32 #ifndef CHAR_BIT
33 #define CHAR_BIT 8
34 #endif
35
36 bool literal_prefix_dollar_hex = false;
37
38 static void clean_up_expression (expressionS * expressionP);
39
40 /* We keep a mapping of expression symbols to file positions, so that
41 we can provide better error messages. */
42
43 struct expr_symbol_line {
44 struct expr_symbol_line *next;
45 symbolS *sym;
46 const char *file;
47 unsigned int line;
48 };
49
50 static struct expr_symbol_line *expr_symbol_lines;
51 \f
52 /* Build a dummy symbol to hold a complex expression. This is how we
53 build expressions up out of other expressions. The symbol is put
54 into the fake section expr_section. */
55
56 symbolS *
57 make_expr_symbol (expressionS *expressionP)
58 {
59 expressionS zero;
60 symbolS *symbolP;
61 struct expr_symbol_line *n;
62
63 if (expressionP->X_op == O_symbol
64 && expressionP->X_add_number == 0)
65 return expressionP->X_add_symbol;
66
67 if (expressionP->X_op == O_big)
68 {
69 /* This won't work, because the actual value is stored in
70 generic_floating_point_number or generic_bignum, and we are
71 going to lose it if we haven't already. */
72 if (expressionP->X_add_number > 0)
73 as_bad (_("bignum invalid"));
74 else
75 as_bad (_("floating point number invalid"));
76 zero.X_op = O_constant;
77 zero.X_add_number = 0;
78 zero.X_unsigned = 0;
79 zero.X_extrabit = 0;
80 clean_up_expression (&zero);
81 expressionP = &zero;
82 }
83
84 /* Putting constant symbols in absolute_section rather than
85 expr_section is convenient for the old a.out code, for which
86 S_GET_SEGMENT does not always retrieve the value put in by
87 S_SET_SEGMENT. */
88 symbolP = symbol_create (FAKE_LABEL_NAME,
89 (expressionP->X_op == O_constant
90 ? absolute_section
91 : expressionP->X_op == O_register
92 ? reg_section
93 : expr_section),
94 &zero_address_frag, 0);
95 symbol_set_value_expression (symbolP, expressionP);
96
97 if (expressionP->X_op == O_constant)
98 resolve_symbol_value (symbolP);
99
100 n = XNEW (struct expr_symbol_line);
101 n->sym = symbolP;
102 n->file = as_where (&n->line);
103 n->next = expr_symbol_lines;
104 expr_symbol_lines = n;
105
106 return symbolP;
107 }
108
109 /* Return the file and line number for an expr symbol. Return
110 non-zero if something was found, 0 if no information is known for
111 the symbol. */
112
113 int
114 expr_symbol_where (symbolS *sym, const char **pfile, unsigned int *pline)
115 {
116 struct expr_symbol_line *l;
117
118 for (l = expr_symbol_lines; l != NULL; l = l->next)
119 {
120 if (l->sym == sym)
121 {
122 *pfile = l->file;
123 *pline = l->line;
124 return 1;
125 }
126 }
127
128 return 0;
129 }
130
131 /* Look up a previously used .startof. / .sizeof. symbol, or make a fresh
132 one. */
133
134 static symbolS *
135 symbol_lookup_or_make (const char *name, bool start)
136 {
137 static symbolS **seen[2];
138 static unsigned int nr_seen[2];
139 char *buf = concat (start ? ".startof." : ".sizeof.", name, NULL);
140 symbolS *symbolP;
141 unsigned int i;
142
143 for (i = 0; i < nr_seen[start]; ++i)
144 {
145 symbolP = seen[start][i];
146
147 if (! symbolP)
148 break;
149
150 name = S_GET_NAME (symbolP);
151 if ((symbols_case_sensitive
152 ? strcasecmp (buf, name)
153 : strcmp (buf, name)) == 0)
154 {
155 free (buf);
156 return symbolP;
157 }
158 }
159
160 symbolP = symbol_make (buf);
161 free (buf);
162
163 if (i >= nr_seen[start])
164 {
165 unsigned int nr = (i + 1) * 2;
166
167 seen[start] = XRESIZEVEC (symbolS *, seen[start], nr);
168 nr_seen[start] = nr;
169 memset (&seen[start][i + 1], 0, (nr - i - 1) * sizeof(seen[0][0]));
170 }
171
172 seen[start][i] = symbolP;
173
174 return symbolP;
175 }
176 \f
177 /* Utilities for building expressions.
178 Since complex expressions are recorded as symbols for use in other
179 expressions these return a symbolS * and not an expressionS *.
180 These explicitly do not take an "add_number" argument. */
181 /* ??? For completeness' sake one might want expr_build_symbol.
182 It would just return its argument. */
183
184 /* Build an expression for an unsigned constant.
185 The corresponding one for signed constants is missing because
186 there's currently no need for it. One could add an unsigned_p flag
187 but that seems more clumsy. */
188
189 symbolS *
190 expr_build_uconstant (offsetT value)
191 {
192 expressionS e;
193
194 e.X_op = O_constant;
195 e.X_add_number = value;
196 e.X_unsigned = 1;
197 e.X_extrabit = 0;
198 return make_expr_symbol (&e);
199 }
200
201 /* Build an expression for the current location ('.'). */
202
203 symbolS *
204 expr_build_dot (void)
205 {
206 expressionS e;
207
208 current_location (&e);
209 return symbol_clone_if_forward_ref (make_expr_symbol (&e));
210 }
211 \f
212 /* Build any floating-point literal here.
213 Also build any bignum literal here. */
214
215 /* Seems atof_machine can backscan through generic_bignum and hit whatever
216 happens to be loaded before it in memory. And its way too complicated
217 for me to fix right. Thus a hack. JF: Just make generic_bignum bigger,
218 and never write into the early words, thus they'll always be zero.
219 I hate Dean's floating-point code. Bleh. */
220 LITTLENUM_TYPE generic_bignum[SIZE_OF_LARGE_NUMBER + 6];
221
222 FLONUM_TYPE generic_floating_point_number = {
223 &generic_bignum[6], /* low. (JF: Was 0) */
224 &generic_bignum[SIZE_OF_LARGE_NUMBER + 6 - 1], /* high. JF: (added +6) */
225 0, /* leader. */
226 0, /* exponent. */
227 0 /* sign. */
228 };
229
230 \f
231 static void
232 floating_constant (expressionS *expressionP)
233 {
234 /* input_line_pointer -> floating-point constant. */
235 int error_code;
236
237 error_code = atof_generic (&input_line_pointer, ".", EXP_CHARS,
238 &generic_floating_point_number);
239
240 if (error_code)
241 {
242 if (error_code == ERROR_EXPONENT_OVERFLOW)
243 {
244 as_bad (_("bad floating-point constant: exponent overflow"));
245 }
246 else
247 {
248 as_bad (_("bad floating-point constant: unknown error code=%d"),
249 error_code);
250 }
251 }
252 expressionP->X_op = O_big;
253 /* input_line_pointer -> just after constant, which may point to
254 whitespace. */
255 expressionP->X_add_number = -1;
256 }
257
258 uint32_t
259 generic_bignum_to_int32 (void)
260 {
261 return ((((uint32_t) generic_bignum[1] & LITTLENUM_MASK)
262 << LITTLENUM_NUMBER_OF_BITS)
263 | ((uint32_t) generic_bignum[0] & LITTLENUM_MASK));
264 }
265
266 uint64_t
267 generic_bignum_to_int64 (void)
268 {
269 return ((((((((uint64_t) generic_bignum[3] & LITTLENUM_MASK)
270 << LITTLENUM_NUMBER_OF_BITS)
271 | ((uint64_t) generic_bignum[2] & LITTLENUM_MASK))
272 << LITTLENUM_NUMBER_OF_BITS)
273 | ((uint64_t) generic_bignum[1] & LITTLENUM_MASK))
274 << LITTLENUM_NUMBER_OF_BITS)
275 | ((uint64_t) generic_bignum[0] & LITTLENUM_MASK));
276 }
277
278 static void
279 integer_constant (int radix, expressionS *expressionP)
280 {
281 char *start; /* Start of number. */
282 char *suffix = NULL;
283 char c;
284 valueT number; /* Offset or (absolute) value. */
285 short int digit; /* Value of next digit in current radix. */
286 short int maxdig = 0; /* Highest permitted digit value. */
287 int too_many_digits = 0; /* If we see >= this number of. */
288 char *name; /* Points to name of symbol. */
289 symbolS *symbolP; /* Points to symbol. */
290
291 int small; /* True if fits in 32 bits. */
292
293 /* May be bignum, or may fit in 32 bits. */
294 /* Most numbers fit into 32 bits, and we want this case to be fast.
295 so we pretend it will fit into 32 bits. If, after making up a 32
296 bit number, we realise that we have scanned more digits than
297 comfortably fit into 32 bits, we re-scan the digits coding them
298 into a bignum. For decimal and octal numbers we are
299 conservative: Some numbers may be assumed bignums when in fact
300 they do fit into 32 bits. Numbers of any radix can have excess
301 leading zeros: We strive to recognise this and cast them back
302 into 32 bits. We must check that the bignum really is more than
303 32 bits, and change it back to a 32-bit number if it fits. The
304 number we are looking for is expected to be positive, but if it
305 fits into 32 bits as an unsigned number, we let it be a 32-bit
306 number. The cavalier approach is for speed in ordinary cases. */
307 /* This has been extended for 64 bits. We blindly assume that if
308 you're compiling in 64-bit mode, the target is a 64-bit machine.
309 This should be cleaned up. */
310
311 #ifdef BFD64
312 #define valuesize 64
313 #else /* includes non-bfd case, mostly */
314 #define valuesize 32
315 #endif
316
317 if (is_end_of_line[(unsigned char) *input_line_pointer])
318 {
319 expressionP->X_op = O_absent;
320 return;
321 }
322
323 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri) && radix == 0)
324 {
325 int flt = 0;
326
327 /* In MRI mode, the number may have a suffix indicating the
328 radix. For that matter, it might actually be a floating
329 point constant. */
330 for (suffix = input_line_pointer; ISALNUM (*suffix); suffix++)
331 {
332 if (*suffix == 'e' || *suffix == 'E')
333 flt = 1;
334 }
335
336 if (suffix == input_line_pointer)
337 {
338 radix = 10;
339 suffix = NULL;
340 }
341 else
342 {
343 c = *--suffix;
344 c = TOUPPER (c);
345 /* If we have both NUMBERS_WITH_SUFFIX and LOCAL_LABELS_FB,
346 we distinguish between 'B' and 'b'. This is the case for
347 Z80. */
348 if ((NUMBERS_WITH_SUFFIX && LOCAL_LABELS_FB ? *suffix : c) == 'B')
349 radix = 2;
350 else if (c == 'D')
351 radix = 10;
352 else if (c == 'O' || c == 'Q')
353 radix = 8;
354 else if (c == 'H')
355 radix = 16;
356 else if (suffix[1] == '.' || c == 'E' || flt)
357 {
358 floating_constant (expressionP);
359 return;
360 }
361 else
362 {
363 radix = 10;
364 suffix = NULL;
365 }
366 }
367 }
368
369 switch (radix)
370 {
371 case 2:
372 maxdig = 2;
373 too_many_digits = valuesize + 1;
374 break;
375 case 8:
376 maxdig = radix = 8;
377 too_many_digits = (valuesize + 2) / 3 + 1;
378 break;
379 case 16:
380 maxdig = radix = 16;
381 too_many_digits = (valuesize + 3) / 4 + 1;
382 break;
383 case 10:
384 maxdig = radix = 10;
385 too_many_digits = (valuesize + 11) / 4; /* Very rough. */
386 }
387 #undef valuesize
388 start = input_line_pointer;
389 c = *input_line_pointer++;
390 for (number = 0;
391 (digit = hex_value (c)) < maxdig;
392 c = *input_line_pointer++)
393 {
394 number = number * radix + digit;
395 }
396 /* c contains character after number. */
397 /* input_line_pointer->char after c. */
398 small = (input_line_pointer - start - 1) < too_many_digits;
399
400 if (radix == 16 && c == '_')
401 {
402 /* This is literal of the form 0x333_0_12345678_1.
403 This example is equivalent to 0x00000333000000001234567800000001. */
404
405 int num_little_digits = 0;
406 int i;
407 input_line_pointer = start; /* -> 1st digit. */
408
409 know (LITTLENUM_NUMBER_OF_BITS == 16);
410
411 for (c = '_'; c == '_'; num_little_digits += 2)
412 {
413
414 /* Convert one 64-bit word. */
415 int ndigit = 0;
416 number = 0;
417 for (c = *input_line_pointer++;
418 (digit = hex_value (c)) < maxdig;
419 c = *(input_line_pointer++))
420 {
421 number = number * radix + digit;
422 ndigit++;
423 }
424
425 /* Check for 8 digit per word max. */
426 if (ndigit > 8)
427 as_bad (_("a bignum with underscores may not have more than 8 hex digits in any word"));
428
429 /* Add this chunk to the bignum.
430 Shift things down 2 little digits. */
431 know (LITTLENUM_NUMBER_OF_BITS == 16);
432 for (i = min (num_little_digits + 1, SIZE_OF_LARGE_NUMBER - 1);
433 i >= 2;
434 i--)
435 generic_bignum[i] = generic_bignum[i - 2];
436
437 /* Add the new digits as the least significant new ones. */
438 generic_bignum[0] = number & 0xffffffff;
439 generic_bignum[1] = number >> 16;
440 }
441
442 /* Again, c is char after number, input_line_pointer->after c. */
443
444 if (num_little_digits > SIZE_OF_LARGE_NUMBER - 1)
445 num_little_digits = SIZE_OF_LARGE_NUMBER - 1;
446
447 gas_assert (num_little_digits >= 4);
448
449 if (num_little_digits != 8)
450 as_bad (_("a bignum with underscores must have exactly 4 words"));
451
452 /* We might have some leading zeros. These can be trimmed to give
453 us a change to fit this constant into a small number. */
454 while (generic_bignum[num_little_digits - 1] == 0
455 && num_little_digits > 1)
456 num_little_digits--;
457
458 if (num_little_digits <= 2)
459 {
460 /* will fit into 32 bits. */
461 number = generic_bignum_to_int32 ();
462 small = 1;
463 }
464 #ifdef BFD64
465 else if (num_little_digits <= 4)
466 {
467 /* Will fit into 64 bits. */
468 number = generic_bignum_to_int64 ();
469 small = 1;
470 }
471 #endif
472 else
473 {
474 small = 0;
475
476 /* Number of littlenums in the bignum. */
477 number = num_little_digits;
478 }
479 }
480 else if (!small)
481 {
482 /* We saw a lot of digits. manufacture a bignum the hard way. */
483 LITTLENUM_TYPE *leader; /* -> high order littlenum of the bignum. */
484 LITTLENUM_TYPE *pointer; /* -> littlenum we are frobbing now. */
485 long carry;
486
487 leader = generic_bignum;
488 generic_bignum[0] = 0;
489 generic_bignum[1] = 0;
490 generic_bignum[2] = 0;
491 generic_bignum[3] = 0;
492 input_line_pointer = start; /* -> 1st digit. */
493 c = *input_line_pointer++;
494 for (; (carry = hex_value (c)) < maxdig; c = *input_line_pointer++)
495 {
496 for (pointer = generic_bignum; pointer <= leader; pointer++)
497 {
498 long work;
499
500 work = carry + radix * *pointer;
501 *pointer = work & LITTLENUM_MASK;
502 carry = work >> LITTLENUM_NUMBER_OF_BITS;
503 }
504 if (carry)
505 {
506 if (leader < generic_bignum + SIZE_OF_LARGE_NUMBER - 1)
507 {
508 /* Room to grow a longer bignum. */
509 *++leader = carry;
510 }
511 }
512 }
513 /* Again, c is char after number. */
514 /* input_line_pointer -> after c. */
515 know (LITTLENUM_NUMBER_OF_BITS == 16);
516 if (leader < generic_bignum + 2)
517 {
518 /* Will fit into 32 bits. */
519 number = generic_bignum_to_int32 ();
520 small = 1;
521 }
522 #ifdef BFD64
523 else if (leader < generic_bignum + 4)
524 {
525 /* Will fit into 64 bits. */
526 number = generic_bignum_to_int64 ();
527 small = 1;
528 }
529 #endif
530 else
531 {
532 /* Number of littlenums in the bignum. */
533 number = leader - generic_bignum + 1;
534 }
535 }
536
537 if ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
538 && suffix != NULL
539 && input_line_pointer - 1 == suffix)
540 c = *input_line_pointer++;
541
542 #ifndef tc_allow_U_suffix
543 #define tc_allow_U_suffix 1
544 #endif
545 /* PR 19910: Look for, and ignore, a U suffix to the number. */
546 if (tc_allow_U_suffix && (c == 'U' || c == 'u'))
547 c = * input_line_pointer++;
548
549 #ifndef tc_allow_L_suffix
550 #define tc_allow_L_suffix 1
551 #endif
552 /* PR 20732: Look for, and ignore, a L or LL suffix to the number. */
553 if (tc_allow_L_suffix)
554 while (c == 'L' || c == 'l')
555 c = * input_line_pointer++;
556
557 if (small)
558 {
559 /* Here with number, in correct radix. c is the next char.
560 Note that unlike un*x, we allow "011f" "0x9f" to both mean
561 the same as the (conventional) "9f".
562 This is simply easier than checking for strict canonical
563 form. Syntax sux! */
564
565 if (LOCAL_LABELS_FB && c == 'b')
566 {
567 /* Backward ref to local label.
568 Because it is backward, expect it to be defined. */
569 /* Construct a local label. */
570 name = fb_label_name ((int) number, 0);
571
572 /* Seen before, or symbol is defined: OK. */
573 symbolP = symbol_find (name);
574 if ((symbolP != NULL) && (S_IS_DEFINED (symbolP)))
575 {
576 /* Local labels are never absolute. Don't waste time
577 checking absoluteness. */
578 know (SEG_NORMAL (S_GET_SEGMENT (symbolP)));
579
580 expressionP->X_op = O_symbol;
581 expressionP->X_add_symbol = symbolP;
582 }
583 else
584 {
585 /* Either not seen or not defined. */
586 /* @@ Should print out the original string instead of
587 the parsed number. */
588 as_bad (_("backward ref to unknown label \"%d:\""),
589 (int) number);
590 expressionP->X_op = O_constant;
591 }
592
593 expressionP->X_add_number = 0;
594 } /* case 'b' */
595 else if (LOCAL_LABELS_FB && c == 'f')
596 {
597 /* Forward reference. Expect symbol to be undefined or
598 unknown. undefined: seen it before. unknown: never seen
599 it before.
600
601 Construct a local label name, then an undefined symbol.
602 Don't create a xseg frag for it: caller may do that.
603 Just return it as never seen before. */
604 name = fb_label_name ((int) number, 1);
605 symbolP = symbol_find_or_make (name);
606 /* We have no need to check symbol properties. */
607 #ifndef many_segments
608 /* Since "know" puts its arg into a "string", we
609 can't have newlines in the argument. */
610 know (S_GET_SEGMENT (symbolP) == undefined_section || S_GET_SEGMENT (symbolP) == text_section || S_GET_SEGMENT (symbolP) == data_section);
611 #endif
612 expressionP->X_op = O_symbol;
613 expressionP->X_add_symbol = symbolP;
614 expressionP->X_add_number = 0;
615 } /* case 'f' */
616 else if (LOCAL_LABELS_DOLLAR && c == '$')
617 {
618 /* If the dollar label is *currently* defined, then this is just
619 another reference to it. If it is not *currently* defined,
620 then this is a fresh instantiation of that number, so create
621 it. */
622
623 if (dollar_label_defined ((long) number))
624 {
625 name = dollar_label_name ((long) number, 0);
626 symbolP = symbol_find (name);
627 know (symbolP != NULL);
628 }
629 else
630 {
631 name = dollar_label_name ((long) number, 1);
632 symbolP = symbol_find_or_make (name);
633 }
634
635 expressionP->X_op = O_symbol;
636 expressionP->X_add_symbol = symbolP;
637 expressionP->X_add_number = 0;
638 } /* case '$' */
639 else
640 {
641 expressionP->X_op = O_constant;
642 expressionP->X_add_number = number;
643 input_line_pointer--; /* Restore following character. */
644 } /* Really just a number. */
645 }
646 else
647 {
648 /* Not a small number. */
649 expressionP->X_op = O_big;
650 expressionP->X_add_number = number; /* Number of littlenums. */
651 input_line_pointer--; /* -> char following number. */
652 }
653 }
654
655 /* Parse an MRI multi character constant. */
656
657 static void
658 mri_char_constant (expressionS *expressionP)
659 {
660 int i;
661
662 if (*input_line_pointer == '\''
663 && input_line_pointer[1] != '\'')
664 {
665 expressionP->X_op = O_constant;
666 expressionP->X_add_number = 0;
667 return;
668 }
669
670 /* In order to get the correct byte ordering, we must build the
671 number in reverse. */
672 for (i = SIZE_OF_LARGE_NUMBER - 1; i >= 0; i--)
673 {
674 int j;
675
676 generic_bignum[i] = 0;
677 for (j = 0; j < CHARS_PER_LITTLENUM; j++)
678 {
679 if (*input_line_pointer == '\'')
680 {
681 if (input_line_pointer[1] != '\'')
682 break;
683 ++input_line_pointer;
684 }
685 generic_bignum[i] <<= 8;
686 generic_bignum[i] += *input_line_pointer;
687 ++input_line_pointer;
688 }
689
690 if (i < SIZE_OF_LARGE_NUMBER - 1)
691 {
692 /* If there is more than one littlenum, left justify the
693 last one to make it match the earlier ones. If there is
694 only one, we can just use the value directly. */
695 for (; j < CHARS_PER_LITTLENUM; j++)
696 generic_bignum[i] <<= 8;
697 }
698
699 if (*input_line_pointer == '\''
700 && input_line_pointer[1] != '\'')
701 break;
702 }
703
704 if (i < 0)
705 {
706 as_bad (_("character constant too large"));
707 i = 0;
708 }
709
710 if (i > 0)
711 {
712 int c;
713 int j;
714
715 c = SIZE_OF_LARGE_NUMBER - i;
716 for (j = 0; j < c; j++)
717 generic_bignum[j] = generic_bignum[i + j];
718 i = c;
719 }
720
721 know (LITTLENUM_NUMBER_OF_BITS == 16);
722 if (i > 2)
723 {
724 expressionP->X_op = O_big;
725 expressionP->X_add_number = i;
726 }
727 else
728 {
729 expressionP->X_op = O_constant;
730 if (i < 2)
731 expressionP->X_add_number = generic_bignum[0] & LITTLENUM_MASK;
732 else
733 expressionP->X_add_number =
734 (((generic_bignum[1] & LITTLENUM_MASK)
735 << LITTLENUM_NUMBER_OF_BITS)
736 | (generic_bignum[0] & LITTLENUM_MASK));
737 }
738
739 /* Skip the final closing quote. */
740 ++input_line_pointer;
741 }
742
743 /* Return an expression representing the current location. This
744 handles the magic symbol `.'. */
745
746 void
747 current_location (expressionS *expressionp)
748 {
749 if (now_seg == absolute_section)
750 {
751 expressionp->X_op = O_constant;
752 expressionp->X_add_number = abs_section_offset;
753 }
754 else
755 {
756 expressionp->X_op = O_symbol;
757 expressionp->X_add_symbol = &dot_symbol;
758 expressionp->X_add_number = 0;
759 }
760 }
761
762 /* In: Input_line_pointer points to 1st char of operand, which may
763 be a space.
764
765 Out: An expressionS.
766 The operand may have been empty: in this case X_op == O_absent.
767 Input_line_pointer->(next non-blank) char after operand. */
768
769 static segT
770 operand (expressionS *expressionP, enum expr_mode mode)
771 {
772 char c;
773 symbolS *symbolP; /* Points to symbol. */
774 char *name; /* Points to name of symbol. */
775 segT segment;
776
777 /* All integers are regarded as unsigned unless they are negated.
778 This is because the only thing which cares whether a number is
779 unsigned is the code in emit_expr which extends constants into
780 bignums. It should only sign extend negative numbers, so that
781 something like ``.quad 0x80000000'' is not sign extended even
782 though it appears negative if valueT is 32 bits. */
783 expressionP->X_unsigned = 1;
784 expressionP->X_extrabit = 0;
785
786 /* Digits, assume it is a bignum. */
787
788 SKIP_WHITESPACE (); /* Leading whitespace is part of operand. */
789 c = *input_line_pointer++; /* input_line_pointer -> past char in c. */
790
791 if (is_end_of_line[(unsigned char) c])
792 goto eol;
793
794 switch (c)
795 {
796 case '1':
797 case '2':
798 case '3':
799 case '4':
800 case '5':
801 case '6':
802 case '7':
803 case '8':
804 case '9':
805 input_line_pointer--;
806
807 integer_constant ((NUMBERS_WITH_SUFFIX || flag_m68k_mri)
808 ? 0 : 10,
809 expressionP);
810 break;
811
812 #ifdef LITERAL_PREFIXPERCENT_BIN
813 case '%':
814 integer_constant (2, expressionP);
815 break;
816 #endif
817
818 case '0':
819 /* Non-decimal radix. */
820
821 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
822 {
823 char *s;
824
825 /* Check for a hex or float constant. */
826 for (s = input_line_pointer; hex_p (*s); s++)
827 ;
828 if (*s == 'h' || *s == 'H' || *input_line_pointer == '.')
829 {
830 --input_line_pointer;
831 integer_constant (0, expressionP);
832 break;
833 }
834 }
835 c = *input_line_pointer;
836 switch (c)
837 {
838 case 'o':
839 case 'O':
840 case 'q':
841 case 'Q':
842 case '8':
843 case '9':
844 if (NUMBERS_WITH_SUFFIX || flag_m68k_mri)
845 {
846 integer_constant (0, expressionP);
847 break;
848 }
849 /* Fall through. */
850 default:
851 default_case:
852 if (c && strchr (FLT_CHARS, c))
853 {
854 input_line_pointer++;
855 floating_constant (expressionP);
856 expressionP->X_add_number = - TOLOWER (c);
857 }
858 else
859 {
860 /* The string was only zero. */
861 expressionP->X_op = O_constant;
862 expressionP->X_add_number = 0;
863 }
864
865 break;
866
867 case 'x':
868 case 'X':
869 if (flag_m68k_mri)
870 goto default_case;
871 input_line_pointer++;
872 integer_constant (16, expressionP);
873 break;
874
875 case 'b':
876 if (LOCAL_LABELS_FB && !flag_m68k_mri
877 && input_line_pointer[1] != '0'
878 && input_line_pointer[1] != '1')
879 {
880 /* Parse this as a back reference to label 0. */
881 input_line_pointer--;
882 integer_constant (10, expressionP);
883 break;
884 }
885 /* Otherwise, parse this as a binary number. */
886 /* Fall through. */
887 case 'B':
888 if (input_line_pointer[1] == '0'
889 || input_line_pointer[1] == '1')
890 {
891 input_line_pointer++;
892 integer_constant (2, expressionP);
893 break;
894 }
895 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
896 input_line_pointer++;
897 goto default_case;
898
899 case '0':
900 case '1':
901 case '2':
902 case '3':
903 case '4':
904 case '5':
905 case '6':
906 case '7':
907 integer_constant ((flag_m68k_mri || NUMBERS_WITH_SUFFIX)
908 ? 0 : 8,
909 expressionP);
910 break;
911
912 case 'f':
913 if (LOCAL_LABELS_FB)
914 {
915 int is_label = 1;
916
917 /* If it says "0f" and it could possibly be a floating point
918 number, make it one. Otherwise, make it a local label,
919 and try to deal with parsing the rest later. */
920 if (!is_end_of_line[(unsigned char) input_line_pointer[1]]
921 && strchr (FLT_CHARS, 'f') != NULL)
922 {
923 char *cp = input_line_pointer + 1;
924
925 atof_generic (&cp, ".", EXP_CHARS,
926 &generic_floating_point_number);
927
928 /* Was nothing parsed, or does it look like an
929 expression? */
930 is_label = (cp == input_line_pointer + 1
931 || (cp == input_line_pointer + 2
932 && (cp[-1] == '-' || cp[-1] == '+'))
933 || *cp == 'f'
934 || *cp == 'b');
935 }
936 if (is_label)
937 {
938 input_line_pointer--;
939 integer_constant (10, expressionP);
940 break;
941 }
942 }
943 /* Fall through. */
944
945 case 'd':
946 case 'D':
947 if (flag_m68k_mri || NUMBERS_WITH_SUFFIX)
948 {
949 integer_constant (0, expressionP);
950 break;
951 }
952 /* Fall through. */
953 case 'F':
954 case 'r':
955 case 'e':
956 case 'E':
957 case 'g':
958 case 'G':
959 input_line_pointer++;
960 floating_constant (expressionP);
961 expressionP->X_add_number = - TOLOWER (c);
962 break;
963
964 case '$':
965 if (LOCAL_LABELS_DOLLAR)
966 {
967 integer_constant (10, expressionP);
968 break;
969 }
970 else
971 goto default_case;
972 }
973
974 break;
975
976 #ifndef NEED_INDEX_OPERATOR
977 case '[':
978 # ifdef md_need_index_operator
979 if (md_need_index_operator())
980 goto de_fault;
981 # endif
982 #endif
983 /* Fall through. */
984 case '(':
985 /* Didn't begin with digit & not a name. */
986 segment = expr (0, expressionP, mode);
987 /* expression () will pass trailing whitespace. */
988 if ((c == '(' && *input_line_pointer != ')')
989 || (c == '[' && *input_line_pointer != ']'))
990 {
991 if (* input_line_pointer)
992 as_bad (_("found '%c', expected: '%c'"),
993 * input_line_pointer, c == '(' ? ')' : ']');
994 else
995 as_bad (_("missing '%c'"), c == '(' ? ')' : ']');
996 }
997 else
998 input_line_pointer++;
999 SKIP_WHITESPACE ();
1000 /* Here with input_line_pointer -> char after "(...)". */
1001 return segment;
1002
1003 #ifdef TC_M68K
1004 case 'E':
1005 if (! flag_m68k_mri || *input_line_pointer != '\'')
1006 goto de_fault;
1007 as_bad (_("EBCDIC constants are not supported"));
1008 /* Fall through. */
1009 case 'A':
1010 if (! flag_m68k_mri || *input_line_pointer != '\'')
1011 goto de_fault;
1012 ++input_line_pointer;
1013 #endif
1014 /* Fall through. */
1015 case '\'':
1016 if (! flag_m68k_mri)
1017 {
1018 /* Warning: to conform to other people's assemblers NO
1019 ESCAPEMENT is permitted for a single quote. The next
1020 character, parity errors and all, is taken as the value
1021 of the operand. VERY KINKY. */
1022 expressionP->X_op = O_constant;
1023 expressionP->X_add_number = *input_line_pointer++;
1024 break;
1025 }
1026
1027 mri_char_constant (expressionP);
1028 break;
1029
1030 #ifdef TC_M68K
1031 case '"':
1032 /* Double quote is the bitwise not operator in MRI mode. */
1033 if (! flag_m68k_mri)
1034 goto de_fault;
1035 #endif
1036 /* Fall through. */
1037 case '~':
1038 /* '~' is permitted to start a label on the Delta. */
1039 if (is_name_beginner (c))
1040 goto isname;
1041 /* Fall through. */
1042 case '!':
1043 case '-':
1044 case '+':
1045 {
1046 #ifdef md_operator
1047 unary:
1048 #endif
1049 operand (expressionP, mode);
1050 if (expressionP->X_op == O_constant)
1051 {
1052 /* input_line_pointer -> char after operand. */
1053 if (c == '-')
1054 {
1055 expressionP->X_add_number
1056 = - (addressT) expressionP->X_add_number;
1057 /* Notice: '-' may overflow: no warning is given.
1058 This is compatible with other people's
1059 assemblers. Sigh. */
1060 expressionP->X_unsigned = 0;
1061 if (expressionP->X_add_number)
1062 expressionP->X_extrabit ^= 1;
1063 }
1064 else if (c == '~' || c == '"')
1065 {
1066 expressionP->X_add_number = ~ expressionP->X_add_number;
1067 expressionP->X_extrabit ^= 1;
1068 }
1069 else if (c == '!')
1070 {
1071 expressionP->X_add_number = ! expressionP->X_add_number;
1072 expressionP->X_unsigned = 1;
1073 expressionP->X_extrabit = 0;
1074 }
1075 }
1076 else if (expressionP->X_op == O_big
1077 && expressionP->X_add_number <= 0
1078 && c == '-'
1079 && (generic_floating_point_number.sign == '+'
1080 || generic_floating_point_number.sign == 'P'))
1081 {
1082 /* Negative flonum (eg, -1.000e0). */
1083 if (generic_floating_point_number.sign == '+')
1084 generic_floating_point_number.sign = '-';
1085 else
1086 generic_floating_point_number.sign = 'N';
1087 }
1088 else if (expressionP->X_op == O_big
1089 && expressionP->X_add_number > 0)
1090 {
1091 int i;
1092
1093 if (c == '~' || c == '-')
1094 {
1095 for (i = 0; i < expressionP->X_add_number; ++i)
1096 generic_bignum[i] = ~generic_bignum[i];
1097
1098 /* Extend the bignum to at least the size of .octa. */
1099 if (expressionP->X_add_number < SIZE_OF_LARGE_NUMBER)
1100 {
1101 expressionP->X_add_number = SIZE_OF_LARGE_NUMBER;
1102 for (; i < expressionP->X_add_number; ++i)
1103 generic_bignum[i] = ~(LITTLENUM_TYPE) 0;
1104 }
1105
1106 if (c == '-')
1107 for (i = 0; i < expressionP->X_add_number; ++i)
1108 {
1109 generic_bignum[i] += 1;
1110 if (generic_bignum[i])
1111 break;
1112 }
1113 }
1114 else if (c == '!')
1115 {
1116 for (i = 0; i < expressionP->X_add_number; ++i)
1117 if (generic_bignum[i] != 0)
1118 break;
1119 expressionP->X_add_number = i >= expressionP->X_add_number;
1120 expressionP->X_op = O_constant;
1121 expressionP->X_unsigned = 1;
1122 expressionP->X_extrabit = 0;
1123 }
1124 }
1125 else if (expressionP->X_op != O_illegal
1126 && expressionP->X_op != O_absent)
1127 {
1128 if (c != '+')
1129 {
1130 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1131 if (c == '-')
1132 expressionP->X_op = O_uminus;
1133 else if (c == '~' || c == '"')
1134 expressionP->X_op = O_bit_not;
1135 else
1136 expressionP->X_op = O_logical_not;
1137 expressionP->X_add_number = 0;
1138 }
1139 }
1140 else
1141 as_warn (_("Unary operator %c ignored because bad operand follows"),
1142 c);
1143 }
1144 break;
1145
1146 #if !defined (DOLLAR_DOT) && !defined (TC_M68K)
1147 case '$':
1148 if (literal_prefix_dollar_hex)
1149 {
1150 /* $L is the start of a local label, not a hex constant. */
1151 if (* input_line_pointer == 'L')
1152 goto isname;
1153 integer_constant (16, expressionP);
1154 }
1155 else
1156 {
1157 goto isname;
1158 }
1159 break;
1160 #else
1161 case '$':
1162 /* '$' is the program counter when in MRI mode, or when
1163 DOLLAR_DOT is defined. */
1164 #ifndef DOLLAR_DOT
1165 if (! flag_m68k_mri)
1166 goto de_fault;
1167 #endif
1168 if (DOLLAR_AMBIGU && hex_p (*input_line_pointer))
1169 {
1170 /* In MRI mode and on Z80, '$' is also used as the prefix
1171 for a hexadecimal constant. */
1172 integer_constant (16, expressionP);
1173 break;
1174 }
1175
1176 if (is_part_of_name (*input_line_pointer))
1177 goto isname;
1178
1179 current_location (expressionP);
1180 break;
1181 #endif
1182
1183 case '.':
1184 if (!is_part_of_name (*input_line_pointer))
1185 {
1186 current_location (expressionP);
1187 break;
1188 }
1189 else if ((strncasecmp (input_line_pointer, "startof.", 8) == 0
1190 && ! is_part_of_name (input_line_pointer[8]))
1191 || (strncasecmp (input_line_pointer, "sizeof.", 7) == 0
1192 && ! is_part_of_name (input_line_pointer[7])))
1193 {
1194 int start;
1195
1196 start = (input_line_pointer[1] == 't'
1197 || input_line_pointer[1] == 'T');
1198 input_line_pointer += start ? 8 : 7;
1199 SKIP_WHITESPACE ();
1200
1201 /* Cover for the as_bad () invocations below. */
1202 expressionP->X_op = O_absent;
1203
1204 if (*input_line_pointer != '(')
1205 as_bad (_("syntax error in .startof. or .sizeof."));
1206 else
1207 {
1208 ++input_line_pointer;
1209 SKIP_WHITESPACE ();
1210 c = get_symbol_name (& name);
1211 if (! *name)
1212 {
1213 as_bad (_("expected symbol name"));
1214 (void) restore_line_pointer (c);
1215 if (c != ')')
1216 ignore_rest_of_line ();
1217 else
1218 ++input_line_pointer;
1219 break;
1220 }
1221
1222 expressionP->X_op = O_symbol;
1223 expressionP->X_add_symbol = symbol_lookup_or_make (name, start);
1224 expressionP->X_add_number = 0;
1225
1226 *input_line_pointer = c;
1227 SKIP_WHITESPACE_AFTER_NAME ();
1228 if (*input_line_pointer != ')')
1229 as_bad (_("syntax error in .startof. or .sizeof."));
1230 else
1231 ++input_line_pointer;
1232 }
1233 break;
1234 }
1235 else
1236 {
1237 goto isname;
1238 }
1239
1240 case ',':
1241 eol:
1242 /* Can't imagine any other kind of operand. */
1243 expressionP->X_op = O_absent;
1244 input_line_pointer--;
1245 break;
1246
1247 #ifdef TC_M68K
1248 case '%':
1249 if (! flag_m68k_mri)
1250 goto de_fault;
1251 integer_constant (2, expressionP);
1252 break;
1253
1254 case '@':
1255 if (! flag_m68k_mri)
1256 goto de_fault;
1257 integer_constant (8, expressionP);
1258 break;
1259
1260 case ':':
1261 if (! flag_m68k_mri)
1262 goto de_fault;
1263
1264 /* In MRI mode, this is a floating point constant represented
1265 using hexadecimal digits. */
1266
1267 ++input_line_pointer;
1268 integer_constant (16, expressionP);
1269 break;
1270
1271 case '*':
1272 if (! flag_m68k_mri || is_part_of_name (*input_line_pointer))
1273 goto de_fault;
1274
1275 current_location (expressionP);
1276 break;
1277 #endif
1278
1279 default:
1280 #if defined(md_need_index_operator) || defined(TC_M68K)
1281 de_fault:
1282 #endif
1283 if (is_name_beginner (c) || c == '"') /* Here if did not begin with a digit. */
1284 {
1285 /* Identifier begins here.
1286 This is kludged for speed, so code is repeated. */
1287 isname:
1288 -- input_line_pointer;
1289 c = get_symbol_name (&name);
1290
1291 #ifdef md_operator
1292 {
1293 operatorT op = md_operator (name, 1, &c);
1294
1295 switch (op)
1296 {
1297 case O_uminus:
1298 restore_line_pointer (c);
1299 c = '-';
1300 goto unary;
1301 case O_bit_not:
1302 restore_line_pointer (c);
1303 c = '~';
1304 goto unary;
1305 case O_logical_not:
1306 restore_line_pointer (c);
1307 c = '!';
1308 goto unary;
1309 case O_illegal:
1310 as_bad (_("invalid use of operator \"%s\""), name);
1311 break;
1312 default:
1313 break;
1314 }
1315
1316 if (op != O_absent && op != O_illegal)
1317 {
1318 restore_line_pointer (c);
1319 expr (9, expressionP, mode);
1320 expressionP->X_add_symbol = make_expr_symbol (expressionP);
1321 expressionP->X_op_symbol = NULL;
1322 expressionP->X_add_number = 0;
1323 expressionP->X_op = op;
1324 break;
1325 }
1326 }
1327 #endif
1328
1329 #ifdef md_parse_name
1330 /* This is a hook for the backend to parse certain names
1331 specially in certain contexts. If a name always has a
1332 specific value, it can often be handled by simply
1333 entering it in the symbol table. */
1334 if (md_parse_name (name, expressionP, mode, &c))
1335 {
1336 restore_line_pointer (c);
1337 break;
1338 }
1339 #endif
1340
1341 symbolP = symbol_find_or_make (name);
1342
1343 /* If we have an absolute symbol or a reg, then we know its
1344 value now. */
1345 segment = S_GET_SEGMENT (symbolP);
1346 if (mode != expr_defer
1347 && segment == absolute_section
1348 && !S_FORCE_RELOC (symbolP, 0))
1349 {
1350 expressionP->X_op = O_constant;
1351 expressionP->X_add_number = S_GET_VALUE (symbolP);
1352 }
1353 else if (mode != expr_defer && segment == reg_section)
1354 {
1355 expressionP->X_op = O_register;
1356 expressionP->X_add_number = S_GET_VALUE (symbolP);
1357 }
1358 else
1359 {
1360 expressionP->X_op = O_symbol;
1361 expressionP->X_add_symbol = symbolP;
1362 expressionP->X_add_number = 0;
1363 }
1364
1365 restore_line_pointer (c);
1366 }
1367 else
1368 {
1369 /* Let the target try to parse it. Success is indicated by changing
1370 the X_op field to something other than O_absent and pointing
1371 input_line_pointer past the expression. If it can't parse the
1372 expression, X_op and input_line_pointer should be unchanged. */
1373 expressionP->X_op = O_absent;
1374 --input_line_pointer;
1375 md_operand (expressionP);
1376 if (expressionP->X_op == O_absent)
1377 {
1378 ++input_line_pointer;
1379 as_bad (_("bad expression"));
1380 expressionP->X_op = O_constant;
1381 expressionP->X_add_number = 0;
1382 }
1383 }
1384 break;
1385 }
1386
1387 /* It is more 'efficient' to clean up the expressionS when they are
1388 created. Doing it here saves lines of code. */
1389 clean_up_expression (expressionP);
1390 SKIP_ALL_WHITESPACE (); /* -> 1st char after operand. */
1391 know (*input_line_pointer != ' ');
1392
1393 /* The PA port needs this information. */
1394 if (expressionP->X_add_symbol)
1395 symbol_mark_used (expressionP->X_add_symbol);
1396
1397 if (mode != expr_defer)
1398 {
1399 expressionP->X_add_symbol
1400 = symbol_clone_if_forward_ref (expressionP->X_add_symbol);
1401 expressionP->X_op_symbol
1402 = symbol_clone_if_forward_ref (expressionP->X_op_symbol);
1403 }
1404
1405 switch (expressionP->X_op)
1406 {
1407 default:
1408 return absolute_section;
1409 case O_symbol:
1410 return S_GET_SEGMENT (expressionP->X_add_symbol);
1411 case O_register:
1412 return reg_section;
1413 }
1414 }
1415 \f
1416 /* Internal. Simplify a struct expression for use by expr (). */
1417
1418 /* In: address of an expressionS.
1419 The X_op field of the expressionS may only take certain values.
1420 Elsewise we waste time special-case testing. Sigh. Ditto SEG_ABSENT.
1421
1422 Out: expressionS may have been modified:
1423 Unused fields zeroed to help expr (). */
1424
1425 static void
1426 clean_up_expression (expressionS *expressionP)
1427 {
1428 switch (expressionP->X_op)
1429 {
1430 case O_illegal:
1431 case O_absent:
1432 expressionP->X_add_number = 0;
1433 /* Fall through. */
1434 case O_big:
1435 case O_constant:
1436 case O_register:
1437 expressionP->X_add_symbol = NULL;
1438 /* Fall through. */
1439 case O_symbol:
1440 case O_uminus:
1441 case O_bit_not:
1442 expressionP->X_op_symbol = NULL;
1443 break;
1444 default:
1445 break;
1446 }
1447 }
1448 \f
1449 /* Expression parser. */
1450
1451 /* We allow an empty expression, and just assume (absolute,0) silently.
1452 Unary operators and parenthetical expressions are treated as operands.
1453 As usual, Q==quantity==operand, O==operator, X==expression mnemonics.
1454
1455 We used to do an aho/ullman shift-reduce parser, but the logic got so
1456 warped that I flushed it and wrote a recursive-descent parser instead.
1457 Now things are stable, would anybody like to write a fast parser?
1458 Most expressions are either register (which does not even reach here)
1459 or 1 symbol. Then "symbol+constant" and "symbol-symbol" are common.
1460 So I guess it doesn't really matter how inefficient more complex expressions
1461 are parsed.
1462
1463 After expr(RANK,resultP) input_line_pointer->operator of rank <= RANK.
1464 Also, we have consumed any leading or trailing spaces (operand does that)
1465 and done all intervening operators.
1466
1467 This returns the segment of the result, which will be
1468 absolute_section or the segment of a symbol. */
1469
1470 #undef __
1471 #define __ O_illegal
1472 #ifndef O_SINGLE_EQ
1473 #define O_SINGLE_EQ O_illegal
1474 #endif
1475
1476 /* Maps ASCII -> operators. */
1477 static const operatorT op_encoding[256] = {
1478 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1479 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1480
1481 __, O_bit_or_not, __, __, __, O_modulus, O_bit_and, __,
1482 __, __, O_multiply, O_add, __, O_subtract, __, O_divide,
1483 __, __, __, __, __, __, __, __,
1484 __, __, __, __, O_lt, O_SINGLE_EQ, O_gt, __,
1485 __, __, __, __, __, __, __, __,
1486 __, __, __, __, __, __, __, __,
1487 __, __, __, __, __, __, __, __,
1488 __, __, __,
1489 #ifdef NEED_INDEX_OPERATOR
1490 O_index,
1491 #else
1492 __,
1493 #endif
1494 __, __, O_bit_exclusive_or, __,
1495 __, __, __, __, __, __, __, __,
1496 __, __, __, __, __, __, __, __,
1497 __, __, __, __, __, __, __, __,
1498 __, __, __, __, O_bit_inclusive_or, __, __, __,
1499
1500 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1501 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1502 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1503 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1504 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1505 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1506 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __,
1507 __, __, __, __, __, __, __, __, __, __, __, __, __, __, __, __
1508 };
1509
1510 /* Rank Examples
1511 0 operand, (expression)
1512 1 ||
1513 2 &&
1514 3 == <> < <= >= >
1515 4 + -
1516 5 used for * / % in MRI mode
1517 6 & ^ ! |
1518 7 * / % << >>
1519 8 unary - unary ~
1520 */
1521 static operator_rankT op_rank[O_max] = {
1522 0, /* O_illegal */
1523 0, /* O_absent */
1524 0, /* O_constant */
1525 0, /* O_symbol */
1526 0, /* O_symbol_rva */
1527 0, /* O_register */
1528 0, /* O_big */
1529 9, /* O_uminus */
1530 9, /* O_bit_not */
1531 9, /* O_logical_not */
1532 8, /* O_multiply */
1533 8, /* O_divide */
1534 8, /* O_modulus */
1535 8, /* O_left_shift */
1536 8, /* O_right_shift */
1537 7, /* O_bit_inclusive_or */
1538 7, /* O_bit_or_not */
1539 7, /* O_bit_exclusive_or */
1540 7, /* O_bit_and */
1541 5, /* O_add */
1542 5, /* O_subtract */
1543 4, /* O_eq */
1544 4, /* O_ne */
1545 4, /* O_lt */
1546 4, /* O_le */
1547 4, /* O_ge */
1548 4, /* O_gt */
1549 3, /* O_logical_and */
1550 2, /* O_logical_or */
1551 1, /* O_index */
1552 };
1553
1554 /* Unfortunately, in MRI mode for the m68k, multiplication and
1555 division have lower precedence than the bit wise operators. This
1556 function sets the operator precedences correctly for the current
1557 mode. Also, MRI uses a different bit_not operator, and this fixes
1558 that as well. */
1559
1560 #define STANDARD_MUL_PRECEDENCE 8
1561 #define MRI_MUL_PRECEDENCE 6
1562
1563 void
1564 expr_set_precedence (void)
1565 {
1566 if (flag_m68k_mri)
1567 {
1568 op_rank[O_multiply] = MRI_MUL_PRECEDENCE;
1569 op_rank[O_divide] = MRI_MUL_PRECEDENCE;
1570 op_rank[O_modulus] = MRI_MUL_PRECEDENCE;
1571 }
1572 else
1573 {
1574 op_rank[O_multiply] = STANDARD_MUL_PRECEDENCE;
1575 op_rank[O_divide] = STANDARD_MUL_PRECEDENCE;
1576 op_rank[O_modulus] = STANDARD_MUL_PRECEDENCE;
1577 }
1578 }
1579
1580 void
1581 expr_set_rank (operatorT op, operator_rankT rank)
1582 {
1583 gas_assert (op >= O_md1 && op < ARRAY_SIZE (op_rank));
1584 op_rank[op] = rank;
1585 }
1586
1587 /* Initialize the expression parser. */
1588
1589 void
1590 expr_begin (void)
1591 {
1592 expr_set_precedence ();
1593
1594 /* Verify that X_op field is wide enough. */
1595 {
1596 expressionS e;
1597 e.X_op = O_max;
1598 gas_assert (e.X_op == O_max);
1599 }
1600 }
1601 \f
1602 /* Return the encoding for the operator at INPUT_LINE_POINTER, and
1603 sets NUM_CHARS to the number of characters in the operator.
1604 Does not advance INPUT_LINE_POINTER. */
1605
1606 static inline operatorT
1607 operatorf (int *num_chars)
1608 {
1609 int c;
1610 operatorT ret;
1611
1612 c = *input_line_pointer & 0xff;
1613 *num_chars = 1;
1614
1615 if (is_end_of_line[c])
1616 return O_illegal;
1617
1618 #ifdef md_operator
1619 if (is_name_beginner (c))
1620 {
1621 char *name;
1622 char ec = get_symbol_name (& name);
1623
1624 ret = md_operator (name, 2, &ec);
1625 switch (ret)
1626 {
1627 case O_absent:
1628 *input_line_pointer = ec;
1629 input_line_pointer = name;
1630 break;
1631 case O_uminus:
1632 case O_bit_not:
1633 case O_logical_not:
1634 as_bad (_("invalid use of operator \"%s\""), name);
1635 ret = O_illegal;
1636 /* FALLTHROUGH */
1637 default:
1638 *input_line_pointer = ec;
1639 *num_chars = input_line_pointer - name;
1640 input_line_pointer = name;
1641 return ret;
1642 }
1643 }
1644 #endif
1645
1646 switch (c)
1647 {
1648 default:
1649 ret = op_encoding[c];
1650 #ifdef md_operator
1651 if (ret == O_illegal)
1652 {
1653 char *start = input_line_pointer;
1654
1655 ret = md_operator (NULL, 2, NULL);
1656 if (ret != O_illegal)
1657 *num_chars = input_line_pointer - start;
1658 input_line_pointer = start;
1659 }
1660 #endif
1661 return ret;
1662
1663 case '+':
1664 case '-':
1665 return op_encoding[c];
1666
1667 case '<':
1668 switch (input_line_pointer[1])
1669 {
1670 default:
1671 return op_encoding[c];
1672 case '<':
1673 ret = O_left_shift;
1674 break;
1675 case '>':
1676 ret = O_ne;
1677 break;
1678 case '=':
1679 ret = O_le;
1680 break;
1681 }
1682 *num_chars = 2;
1683 return ret;
1684
1685 case '=':
1686 if (input_line_pointer[1] != '=')
1687 return op_encoding[c];
1688
1689 *num_chars = 2;
1690 return O_eq;
1691
1692 case '>':
1693 switch (input_line_pointer[1])
1694 {
1695 default:
1696 return op_encoding[c];
1697 case '>':
1698 ret = O_right_shift;
1699 break;
1700 case '=':
1701 ret = O_ge;
1702 break;
1703 }
1704 *num_chars = 2;
1705 return ret;
1706
1707 case '!':
1708 switch (input_line_pointer[1])
1709 {
1710 case '!':
1711 /* We accept !! as equivalent to ^ for MRI compatibility. */
1712 *num_chars = 2;
1713 return O_bit_exclusive_or;
1714 case '=':
1715 /* We accept != as equivalent to <>. */
1716 *num_chars = 2;
1717 return O_ne;
1718 default:
1719 if (flag_m68k_mri)
1720 return O_bit_inclusive_or;
1721 return op_encoding[c];
1722 }
1723
1724 case '|':
1725 if (input_line_pointer[1] != '|')
1726 return op_encoding[c];
1727
1728 *num_chars = 2;
1729 return O_logical_or;
1730
1731 case '&':
1732 if (input_line_pointer[1] != '&')
1733 return op_encoding[c];
1734
1735 *num_chars = 2;
1736 return O_logical_and;
1737 }
1738
1739 /* NOTREACHED */
1740 }
1741
1742 /* Implement "word-size + 1 bit" addition for
1743 {resultP->X_extrabit:resultP->X_add_number} + {rhs_highbit:amount}. This
1744 is used so that the full range of unsigned word values and the full range of
1745 signed word values can be represented in an O_constant expression, which is
1746 useful e.g. for .sleb128 directives. */
1747
1748 void
1749 add_to_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1750 {
1751 valueT ures = resultP->X_add_number;
1752 valueT uamount = amount;
1753
1754 resultP->X_add_number += uamount;
1755
1756 resultP->X_extrabit ^= rhs_highbit;
1757
1758 if (ures + uamount < ures)
1759 resultP->X_extrabit ^= 1;
1760 }
1761
1762 /* Similarly, for subtraction. */
1763
1764 void
1765 subtract_from_result (expressionS *resultP, offsetT amount, int rhs_highbit)
1766 {
1767 valueT ures = resultP->X_add_number;
1768 valueT uamount = amount;
1769
1770 resultP->X_add_number -= uamount;
1771
1772 resultP->X_extrabit ^= rhs_highbit;
1773
1774 if (ures < uamount)
1775 resultP->X_extrabit ^= 1;
1776 }
1777
1778 /* Parse an expression. */
1779
1780 segT
1781 expr (int rankarg, /* Larger # is higher rank. */
1782 expressionS *resultP, /* Deliver result here. */
1783 enum expr_mode mode /* Controls behavior. */)
1784 {
1785 operator_rankT rank = (operator_rankT) rankarg;
1786 segT retval;
1787 expressionS right;
1788 operatorT op_left;
1789 operatorT op_right;
1790 int op_chars;
1791
1792 know (rankarg >= 0);
1793
1794 /* Save the value of dot for the fixup code. */
1795 if (rank == 0)
1796 {
1797 dot_value = frag_now_fix ();
1798 dot_frag = frag_now;
1799 }
1800
1801 retval = operand (resultP, mode);
1802
1803 /* operand () gobbles spaces. */
1804 know (*input_line_pointer != ' ');
1805
1806 op_left = operatorf (&op_chars);
1807 while (op_left != O_illegal && op_rank[(int) op_left] > rank)
1808 {
1809 segT rightseg;
1810 offsetT frag_off;
1811
1812 input_line_pointer += op_chars; /* -> after operator. */
1813
1814 right.X_md = 0;
1815 rightseg = expr (op_rank[(int) op_left], &right, mode);
1816 if (right.X_op == O_absent)
1817 {
1818 as_warn (_("missing operand; zero assumed"));
1819 right.X_op = O_constant;
1820 right.X_add_number = 0;
1821 right.X_add_symbol = NULL;
1822 right.X_op_symbol = NULL;
1823 }
1824
1825 know (*input_line_pointer != ' ');
1826
1827 if (op_left == O_index)
1828 {
1829 if (*input_line_pointer != ']')
1830 as_bad ("missing right bracket");
1831 else
1832 {
1833 ++input_line_pointer;
1834 SKIP_WHITESPACE ();
1835 }
1836 }
1837
1838 op_right = operatorf (&op_chars);
1839
1840 know (op_right == O_illegal || op_left == O_index
1841 || op_rank[(int) op_right] <= op_rank[(int) op_left]);
1842 know ((int) op_left >= (int) O_multiply);
1843 #ifndef md_operator
1844 know ((int) op_left <= (int) O_index);
1845 #else
1846 know ((int) op_left < (int) O_max);
1847 #endif
1848
1849 /* input_line_pointer->after right-hand quantity. */
1850 /* left-hand quantity in resultP. */
1851 /* right-hand quantity in right. */
1852 /* operator in op_left. */
1853
1854 if (resultP->X_op == O_big)
1855 {
1856 if (resultP->X_add_number > 0)
1857 as_warn (_("left operand is a bignum; integer 0 assumed"));
1858 else
1859 as_warn (_("left operand is a float; integer 0 assumed"));
1860 resultP->X_op = O_constant;
1861 resultP->X_add_number = 0;
1862 resultP->X_add_symbol = NULL;
1863 resultP->X_op_symbol = NULL;
1864 }
1865 if (right.X_op == O_big)
1866 {
1867 if (right.X_add_number > 0)
1868 as_warn (_("right operand is a bignum; integer 0 assumed"));
1869 else
1870 as_warn (_("right operand is a float; integer 0 assumed"));
1871 right.X_op = O_constant;
1872 right.X_add_number = 0;
1873 right.X_add_symbol = NULL;
1874 right.X_op_symbol = NULL;
1875 }
1876
1877 if (mode == expr_defer
1878 && ((resultP->X_add_symbol != NULL
1879 && S_IS_FORWARD_REF (resultP->X_add_symbol))
1880 || (right.X_add_symbol != NULL
1881 && S_IS_FORWARD_REF (right.X_add_symbol))))
1882 goto general;
1883
1884 /* Optimize common cases. */
1885 #ifdef md_optimize_expr
1886 if (md_optimize_expr (resultP, op_left, &right))
1887 {
1888 /* Skip. */
1889 ;
1890 }
1891 else
1892 #endif
1893 #ifndef md_register_arithmetic
1894 # define md_register_arithmetic 1
1895 #endif
1896 if (op_left == O_add && right.X_op == O_constant
1897 && (md_register_arithmetic || resultP->X_op != O_register))
1898 {
1899 /* X + constant. */
1900 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1901 }
1902 /* This case comes up in PIC code. */
1903 else if (op_left == O_subtract
1904 && right.X_op == O_symbol
1905 && resultP->X_op == O_symbol
1906 && retval == rightseg
1907 #ifdef md_allow_local_subtract
1908 && md_allow_local_subtract (resultP, & right, rightseg)
1909 #endif
1910 && ((SEG_NORMAL (rightseg)
1911 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
1912 && !S_FORCE_RELOC (right.X_add_symbol, 0))
1913 || right.X_add_symbol == resultP->X_add_symbol)
1914 && frag_offset_fixed_p (symbol_get_frag (resultP->X_add_symbol),
1915 symbol_get_frag (right.X_add_symbol),
1916 &frag_off))
1917 {
1918 offsetT symval_diff = S_GET_VALUE (resultP->X_add_symbol)
1919 - S_GET_VALUE (right.X_add_symbol);
1920 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1921 subtract_from_result (resultP, frag_off / OCTETS_PER_BYTE, 0);
1922 add_to_result (resultP, symval_diff, symval_diff < 0);
1923 resultP->X_op = O_constant;
1924 resultP->X_add_symbol = 0;
1925 }
1926 else if (op_left == O_subtract && right.X_op == O_constant
1927 && (md_register_arithmetic || resultP->X_op != O_register))
1928 {
1929 /* X - constant. */
1930 subtract_from_result (resultP, right.X_add_number, right.X_extrabit);
1931 }
1932 else if (op_left == O_add && resultP->X_op == O_constant
1933 && (md_register_arithmetic || right.X_op != O_register))
1934 {
1935 /* Constant + X. */
1936 resultP->X_op = right.X_op;
1937 resultP->X_add_symbol = right.X_add_symbol;
1938 resultP->X_op_symbol = right.X_op_symbol;
1939 add_to_result (resultP, right.X_add_number, right.X_extrabit);
1940 retval = rightseg;
1941 }
1942 else if (resultP->X_op == O_constant && right.X_op == O_constant)
1943 {
1944 /* Constant OP constant. */
1945 offsetT v = right.X_add_number;
1946 if (v == 0 && (op_left == O_divide || op_left == O_modulus))
1947 {
1948 as_warn (_("division by zero"));
1949 v = 1;
1950 }
1951 if ((valueT) v >= sizeof(valueT) * CHAR_BIT
1952 && (op_left == O_left_shift || op_left == O_right_shift))
1953 {
1954 as_warn_value_out_of_range (_("shift count"), v, 0,
1955 sizeof(valueT) * CHAR_BIT - 1,
1956 NULL, 0);
1957 resultP->X_add_number = v = 0;
1958 }
1959 switch (op_left)
1960 {
1961 default: goto general;
1962 case O_multiply:
1963 /* Do the multiply as unsigned to silence ubsan. The
1964 result is of course the same when we throw away high
1965 bits of the result. */
1966 resultP->X_add_number *= (valueT) v;
1967 break;
1968 case O_divide: resultP->X_add_number /= v; break;
1969 case O_modulus: resultP->X_add_number %= v; break;
1970 case O_left_shift:
1971 /* We always use unsigned shifts. According to the ISO
1972 C standard, left shift of a signed type having a
1973 negative value is undefined behaviour, and right
1974 shift of a signed type having negative value is
1975 implementation defined. Left shift of a signed type
1976 when the result overflows is also undefined
1977 behaviour. So don't trigger ubsan warnings or rely
1978 on characteristics of the compiler. */
1979 resultP->X_add_number
1980 = (valueT) resultP->X_add_number << (valueT) v;
1981 break;
1982 case O_right_shift:
1983 resultP->X_add_number
1984 = (valueT) resultP->X_add_number >> (valueT) v;
1985 break;
1986 case O_bit_inclusive_or: resultP->X_add_number |= v; break;
1987 case O_bit_or_not: resultP->X_add_number |= ~v; break;
1988 case O_bit_exclusive_or: resultP->X_add_number ^= v; break;
1989 case O_bit_and: resultP->X_add_number &= v; break;
1990 /* Constant + constant (O_add) is handled by the
1991 previous if statement for constant + X, so is omitted
1992 here. */
1993 case O_subtract:
1994 subtract_from_result (resultP, v, 0);
1995 break;
1996 case O_eq:
1997 resultP->X_add_number =
1998 resultP->X_add_number == v ? ~ (offsetT) 0 : 0;
1999 break;
2000 case O_ne:
2001 resultP->X_add_number =
2002 resultP->X_add_number != v ? ~ (offsetT) 0 : 0;
2003 break;
2004 case O_lt:
2005 resultP->X_add_number =
2006 resultP->X_add_number < v ? ~ (offsetT) 0 : 0;
2007 break;
2008 case O_le:
2009 resultP->X_add_number =
2010 resultP->X_add_number <= v ? ~ (offsetT) 0 : 0;
2011 break;
2012 case O_ge:
2013 resultP->X_add_number =
2014 resultP->X_add_number >= v ? ~ (offsetT) 0 : 0;
2015 break;
2016 case O_gt:
2017 resultP->X_add_number =
2018 resultP->X_add_number > v ? ~ (offsetT) 0 : 0;
2019 break;
2020 case O_logical_and:
2021 resultP->X_add_number = resultP->X_add_number && v;
2022 break;
2023 case O_logical_or:
2024 resultP->X_add_number = resultP->X_add_number || v;
2025 break;
2026 }
2027 }
2028 else if (resultP->X_op == O_symbol
2029 && right.X_op == O_symbol
2030 && (op_left == O_add
2031 || op_left == O_subtract
2032 || (resultP->X_add_number == 0
2033 && right.X_add_number == 0)))
2034 {
2035 /* Symbol OP symbol. */
2036 resultP->X_op = op_left;
2037 resultP->X_op_symbol = right.X_add_symbol;
2038 if (op_left == O_add)
2039 add_to_result (resultP, right.X_add_number, right.X_extrabit);
2040 else if (op_left == O_subtract)
2041 {
2042 subtract_from_result (resultP, right.X_add_number,
2043 right.X_extrabit);
2044 if (retval == rightseg
2045 && SEG_NORMAL (retval)
2046 && !S_FORCE_RELOC (resultP->X_add_symbol, 0)
2047 && !S_FORCE_RELOC (right.X_add_symbol, 0))
2048 {
2049 retval = absolute_section;
2050 rightseg = absolute_section;
2051 }
2052 }
2053 }
2054 else
2055 {
2056 general:
2057 /* The general case. */
2058 resultP->X_add_symbol = make_expr_symbol (resultP);
2059 resultP->X_op_symbol = make_expr_symbol (&right);
2060 resultP->X_op = op_left;
2061 resultP->X_add_number = 0;
2062 resultP->X_unsigned = 1;
2063 resultP->X_extrabit = 0;
2064 }
2065
2066 if (retval != rightseg)
2067 {
2068 if (retval == undefined_section)
2069 ;
2070 else if (rightseg == undefined_section)
2071 retval = rightseg;
2072 else if (retval == expr_section)
2073 ;
2074 else if (rightseg == expr_section)
2075 retval = rightseg;
2076 else if (retval == reg_section)
2077 ;
2078 else if (rightseg == reg_section)
2079 retval = rightseg;
2080 else if (rightseg == absolute_section)
2081 ;
2082 else if (retval == absolute_section)
2083 retval = rightseg;
2084 #ifdef DIFF_EXPR_OK
2085 else if (op_left == O_subtract)
2086 ;
2087 #endif
2088 else
2089 as_bad (_("operation combines symbols in different segments"));
2090 }
2091
2092 op_left = op_right;
2093 } /* While next operator is >= this rank. */
2094
2095 /* The PA port needs this information. */
2096 if (resultP->X_add_symbol)
2097 symbol_mark_used (resultP->X_add_symbol);
2098
2099 if (rank == 0 && mode == expr_evaluate)
2100 resolve_expression (resultP);
2101
2102 return resultP->X_op == O_constant ? absolute_section : retval;
2103 }
2104
2105 /* Resolve an expression without changing any symbols/sub-expressions
2106 used. */
2107
2108 int
2109 resolve_expression (expressionS *expressionP)
2110 {
2111 /* Help out with CSE. */
2112 valueT final_val = expressionP->X_add_number;
2113 symbolS *add_symbol = expressionP->X_add_symbol;
2114 symbolS *orig_add_symbol = add_symbol;
2115 symbolS *op_symbol = expressionP->X_op_symbol;
2116 operatorT op = expressionP->X_op;
2117 valueT left, right;
2118 segT seg_left, seg_right;
2119 fragS *frag_left, *frag_right;
2120 offsetT frag_off;
2121
2122 switch (op)
2123 {
2124 default:
2125 return 0;
2126
2127 case O_constant:
2128 case O_register:
2129 left = 0;
2130 break;
2131
2132 case O_symbol:
2133 case O_symbol_rva:
2134 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2135 return 0;
2136
2137 break;
2138
2139 case O_uminus:
2140 case O_bit_not:
2141 case O_logical_not:
2142 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left))
2143 return 0;
2144
2145 if (seg_left != absolute_section)
2146 return 0;
2147
2148 if (op == O_logical_not)
2149 left = !left;
2150 else if (op == O_uminus)
2151 left = -left;
2152 else
2153 left = ~left;
2154 op = O_constant;
2155 break;
2156
2157 case O_multiply:
2158 case O_divide:
2159 case O_modulus:
2160 case O_left_shift:
2161 case O_right_shift:
2162 case O_bit_inclusive_or:
2163 case O_bit_or_not:
2164 case O_bit_exclusive_or:
2165 case O_bit_and:
2166 case O_add:
2167 case O_subtract:
2168 case O_eq:
2169 case O_ne:
2170 case O_lt:
2171 case O_le:
2172 case O_ge:
2173 case O_gt:
2174 case O_logical_and:
2175 case O_logical_or:
2176 if (!snapshot_symbol (&add_symbol, &left, &seg_left, &frag_left)
2177 || !snapshot_symbol (&op_symbol, &right, &seg_right, &frag_right))
2178 return 0;
2179
2180 /* Simplify addition or subtraction of a constant by folding the
2181 constant into X_add_number. */
2182 if (op == O_add)
2183 {
2184 if (seg_right == absolute_section)
2185 {
2186 final_val += right;
2187 op = O_symbol;
2188 break;
2189 }
2190 else if (seg_left == absolute_section)
2191 {
2192 final_val += left;
2193 left = right;
2194 seg_left = seg_right;
2195 add_symbol = op_symbol;
2196 orig_add_symbol = expressionP->X_op_symbol;
2197 op = O_symbol;
2198 break;
2199 }
2200 }
2201 else if (op == O_subtract)
2202 {
2203 if (seg_right == absolute_section)
2204 {
2205 final_val -= right;
2206 op = O_symbol;
2207 break;
2208 }
2209 }
2210
2211 /* Equality and non-equality tests are permitted on anything.
2212 Subtraction, and other comparison operators are permitted if
2213 both operands are in the same section.
2214 Shifts by constant zero are permitted on anything.
2215 Multiplies, bit-ors, and bit-ands with constant zero are
2216 permitted on anything.
2217 Multiplies and divides by constant one are permitted on
2218 anything.
2219 Binary operations with both operands being the same register
2220 or undefined symbol are permitted if the result doesn't depend
2221 on the input value.
2222 Otherwise, both operands must be absolute. We already handled
2223 the case of addition or subtraction of a constant above. */
2224 frag_off = 0;
2225 if (!(seg_left == absolute_section
2226 && seg_right == absolute_section)
2227 && !(op == O_eq || op == O_ne)
2228 && !((op == O_subtract
2229 || op == O_lt || op == O_le || op == O_ge || op == O_gt)
2230 && seg_left == seg_right
2231 && (finalize_syms
2232 || frag_offset_fixed_p (frag_left, frag_right, &frag_off)
2233 || (op == O_gt
2234 && frag_gtoffset_p (left, frag_left,
2235 right, frag_right, &frag_off)))
2236 && (seg_left != reg_section || left == right)
2237 && (seg_left != undefined_section || add_symbol == op_symbol)))
2238 {
2239 if ((seg_left == absolute_section && left == 0)
2240 || (seg_right == absolute_section && right == 0))
2241 {
2242 if (op == O_bit_exclusive_or || op == O_bit_inclusive_or)
2243 {
2244 if (!(seg_right == absolute_section && right == 0))
2245 {
2246 seg_left = seg_right;
2247 left = right;
2248 add_symbol = op_symbol;
2249 orig_add_symbol = expressionP->X_op_symbol;
2250 }
2251 op = O_symbol;
2252 break;
2253 }
2254 else if (op == O_left_shift || op == O_right_shift)
2255 {
2256 if (!(seg_left == absolute_section && left == 0))
2257 {
2258 op = O_symbol;
2259 break;
2260 }
2261 }
2262 else if (op != O_multiply
2263 && op != O_bit_or_not && op != O_bit_and)
2264 return 0;
2265 }
2266 else if (op == O_multiply
2267 && seg_left == absolute_section && left == 1)
2268 {
2269 seg_left = seg_right;
2270 left = right;
2271 add_symbol = op_symbol;
2272 orig_add_symbol = expressionP->X_op_symbol;
2273 op = O_symbol;
2274 break;
2275 }
2276 else if ((op == O_multiply || op == O_divide)
2277 && seg_right == absolute_section && right == 1)
2278 {
2279 op = O_symbol;
2280 break;
2281 }
2282 else if (!(left == right
2283 && ((seg_left == reg_section && seg_right == reg_section)
2284 || (seg_left == undefined_section
2285 && seg_right == undefined_section
2286 && add_symbol == op_symbol))))
2287 return 0;
2288 else if (op == O_bit_and || op == O_bit_inclusive_or)
2289 {
2290 op = O_symbol;
2291 break;
2292 }
2293 else if (op != O_bit_exclusive_or && op != O_bit_or_not)
2294 return 0;
2295 }
2296
2297 right += frag_off / OCTETS_PER_BYTE;
2298 switch (op)
2299 {
2300 case O_add: left += right; break;
2301 case O_subtract: left -= right; break;
2302 case O_multiply: left *= right; break;
2303 case O_divide:
2304 if (right == 0)
2305 return 0;
2306 left = (offsetT) left / (offsetT) right;
2307 break;
2308 case O_modulus:
2309 if (right == 0)
2310 return 0;
2311 left = (offsetT) left % (offsetT) right;
2312 break;
2313 case O_left_shift: left <<= right; break;
2314 case O_right_shift: left >>= right; break;
2315 case O_bit_inclusive_or: left |= right; break;
2316 case O_bit_or_not: left |= ~right; break;
2317 case O_bit_exclusive_or: left ^= right; break;
2318 case O_bit_and: left &= right; break;
2319 case O_eq:
2320 case O_ne:
2321 left = (left == right
2322 && seg_left == seg_right
2323 && (finalize_syms || frag_left == frag_right)
2324 && (seg_left != undefined_section
2325 || add_symbol == op_symbol)
2326 ? ~ (valueT) 0 : 0);
2327 if (op == O_ne)
2328 left = ~left;
2329 break;
2330 case O_lt:
2331 left = (offsetT) left < (offsetT) right ? ~ (valueT) 0 : 0;
2332 break;
2333 case O_le:
2334 left = (offsetT) left <= (offsetT) right ? ~ (valueT) 0 : 0;
2335 break;
2336 case O_ge:
2337 left = (offsetT) left >= (offsetT) right ? ~ (valueT) 0 : 0;
2338 break;
2339 case O_gt:
2340 left = (offsetT) left > (offsetT) right ? ~ (valueT) 0 : 0;
2341 break;
2342 case O_logical_and: left = left && right; break;
2343 case O_logical_or: left = left || right; break;
2344 default: abort ();
2345 }
2346
2347 op = O_constant;
2348 break;
2349 }
2350
2351 if (op == O_symbol)
2352 {
2353 if (seg_left == absolute_section)
2354 op = O_constant;
2355 else if (seg_left == reg_section && final_val == 0)
2356 op = O_register;
2357 else if (!symbol_same_p (add_symbol, orig_add_symbol))
2358 final_val += left;
2359 expressionP->X_add_symbol = add_symbol;
2360 }
2361 expressionP->X_op = op;
2362
2363 if (op == O_constant || op == O_register)
2364 final_val += left;
2365 expressionP->X_add_number = final_val;
2366
2367 return 1;
2368 }
2369 \f
2370 /* This lives here because it belongs equally in expr.c & read.c.
2371 expr.c is just a branch office read.c anyway, and putting it
2372 here lessens the crowd at read.c.
2373
2374 Assume input_line_pointer is at start of symbol name, or the
2375 start of a double quote enclosed symbol name.
2376 Advance input_line_pointer past symbol name.
2377 Turn that character into a '\0', returning its former value,
2378 which may be the closing double quote.
2379 This allows a string compare (RMS wants symbol names to be strings)
2380 of the symbol name.
2381 There will always be a char following symbol name, because all good
2382 lines end in end-of-line. */
2383
2384 char
2385 get_symbol_name (char ** ilp_return)
2386 {
2387 char c;
2388
2389 * ilp_return = input_line_pointer;
2390 /* We accept FAKE_LABEL_CHAR in a name in case this is being called with a
2391 constructed string. */
2392 if (is_name_beginner (c = *input_line_pointer++)
2393 || (input_from_string && c == FAKE_LABEL_CHAR))
2394 {
2395 while (is_part_of_name (c = *input_line_pointer++)
2396 || (input_from_string && c == FAKE_LABEL_CHAR))
2397 ;
2398 if (is_name_ender (c))
2399 c = *input_line_pointer++;
2400 }
2401 else if (c == '"')
2402 {
2403 char *dst = input_line_pointer;
2404
2405 * ilp_return = input_line_pointer;
2406 for (;;)
2407 {
2408 c = *input_line_pointer++;
2409
2410 if (c == 0)
2411 {
2412 as_warn (_("missing closing '\"'"));
2413 break;
2414 }
2415
2416 if (c == '"')
2417 {
2418 char *ilp_save = input_line_pointer;
2419
2420 SKIP_WHITESPACE ();
2421 if (*input_line_pointer == '"')
2422 {
2423 ++input_line_pointer;
2424 continue;
2425 }
2426 input_line_pointer = ilp_save;
2427 break;
2428 }
2429
2430 if (c == '\\')
2431 switch (*input_line_pointer)
2432 {
2433 case '"':
2434 case '\\':
2435 c = *input_line_pointer++;
2436 break;
2437
2438 default:
2439 if (c != 0)
2440 as_warn (_("'\\%c' in quoted symbol name; "
2441 "behavior may change in the future"),
2442 *input_line_pointer);
2443 break;
2444 }
2445
2446 *dst++ = c;
2447 }
2448 *dst = 0;
2449 }
2450 *--input_line_pointer = 0;
2451 return c;
2452 }
2453
2454 /* Replace the NUL character pointed to by input_line_pointer
2455 with C. If C is \" then advance past it. Return the character
2456 now pointed to by input_line_pointer. */
2457
2458 char
2459 restore_line_pointer (char c)
2460 {
2461 * input_line_pointer = c;
2462 if (c == '"')
2463 c = * ++ input_line_pointer;
2464 return c;
2465 }
2466
2467 unsigned int
2468 get_single_number (void)
2469 {
2470 expressionS exp;
2471 operand (&exp, expr_normal);
2472 return exp.X_add_number;
2473 }