]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gas/itbl-ops.c
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / gas / itbl-ops.c
1 /* itbl-ops.c
2 Copyright (C) 1997 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /*======================================================================*/
22 /*
23 * Herein lies the support for dynamic specification of processor
24 * instructions and registers. Mnemonics, values, and formats for each
25 * instruction and register are specified in an ascii file consisting of
26 * table entries. The grammar for the table is defined in the document
27 * "Processor instruction table specification".
28 *
29 * Instructions use the gnu assembler syntax, with the addition of
30 * allowing mnemonics for register.
31 * Eg. "func $2,reg3,0x100,symbol ; comment"
32 * func - opcode name
33 * $n - register n
34 * reg3 - mnemonic for processor's register defined in table
35 * 0xddd..d - immediate value
36 * symbol - address of label or external symbol
37 *
38 * First, itbl_parse reads in the table of register and instruction
39 * names and formats, and builds a list of entries for each
40 * processor/type combination. lex and yacc are used to parse
41 * the entries in the table and call functions defined here to
42 * add each entry to our list.
43 *
44 * Then, when assembling or disassembling, these functions are called to
45 * 1) get information on a processor's registers and
46 * 2) assemble/disassemble an instruction.
47 * To assemble(disassemble) an instruction, the function
48 * itbl_assemble(itbl_disassemble) is called to search the list of
49 * instruction entries, and if a match is found, uses the format
50 * described in the instruction entry structure to complete the action.
51 *
52 * Eg. Suppose we have a Mips coprocessor "cop3" with data register "d2"
53 * and we want to define function "pig" which takes two operands.
54 *
55 * Given the table entries:
56 * "p3 insn pig 0x1:24-21 dreg:20-16 immed:15-0"
57 * "p3 dreg d2 0x2"
58 * and that the instruction encoding for coprocessor pz has encoding:
59 * #define MIPS_ENCODE_COP_NUM(z) ((0x21|(z<<1))<<25)
60 * #define ITBL_ENCODE_PNUM(pnum) MIPS_ENCODE_COP_NUM(pnum)
61 *
62 * a structure to describe the instruction might look something like:
63 * struct itbl_entry = {
64 * e_processor processor = e_p3
65 * e_type type = e_insn
66 * char *name = "pig"
67 * uint value = 0x1
68 * uint flags = 0
69 * struct itbl_range range = 24-21
70 * struct itbl_field *field = {
71 * e_type type = e_dreg
72 * struct itbl_range range = 20-16
73 * struct itbl_field *next = {
74 * e_type type = e_immed
75 * struct itbl_range range = 15-0
76 * struct itbl_field *next = 0
77 * };
78 * };
79 * struct itbl_entry *next = 0
80 * };
81 *
82 * And the assembler instructions:
83 * "pig d2,0x100"
84 * "pig $2,0x100"
85 *
86 * would both assemble to the hex value:
87 * "0x4e220100"
88 *
89 */
90
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <string.h>
94 #include "itbl-ops.h"
95 #include "itbl-parse.h"
96
97 #define DEBUG
98
99 #ifdef DEBUG
100 #include <assert.h>
101 #define ASSERT(x) assert(x)
102 #define DBG(x) printf x
103 #else
104 #define ASSERT(x)
105 #define DBG(x)
106 #endif
107
108 #ifndef min
109 #define min(a,b) (a<b?a:b)
110 #endif
111
112 int itbl_have_entries = 0;
113
114 /*======================================================================*/
115 /* structures for keeping itbl format entries */
116
117 struct itbl_range
118 {
119 int sbit; /* mask starting bit position */
120 int ebit; /* mask ending bit position */
121 };
122
123 struct itbl_field
124 {
125 e_type type; /* dreg/creg/greg/immed/symb */
126 struct itbl_range range; /* field's bitfield range within instruction */
127 unsigned long flags; /* field flags */
128 struct itbl_field *next; /* next field in list */
129 };
130
131
132 /* These structures define the instructions and registers for a processor.
133 * If the type is an instruction, the structure defines the format of an
134 * instruction where the fields are the list of operands.
135 * The flags field below uses the same values as those defined in the
136 * gnu assembler and are machine specific. */
137 struct itbl_entry
138 {
139 e_processor processor; /* processor number */
140 e_type type; /* dreg/creg/greg/insn */
141 char *name; /* mnemionic name for insn/register */
142 unsigned long value; /* opcode/instruction mask/register number */
143 unsigned long flags; /* effects of the instruction */
144 struct itbl_range range; /* bit range within instruction for value */
145 struct itbl_field *fields; /* list of operand definitions (if any) */
146 struct itbl_entry *next; /* next entry */
147 };
148
149
150 /* local data and structures */
151
152 static int itbl_num_opcodes = 0;
153 /* Array of entries for each processor and entry type */
154 static struct itbl_entry *entries[e_nprocs][e_ntypes] =
155 {
156 {0, 0, 0, 0, 0, 0},
157 {0, 0, 0, 0, 0, 0},
158 {0, 0, 0, 0, 0, 0},
159 {0, 0, 0, 0, 0, 0}
160 };
161
162 /* local prototypes */
163 static unsigned long build_opcode PARAMS ((struct itbl_entry *e));
164 static e_type get_type PARAMS ((int yytype));
165 static e_processor get_processor PARAMS ((int yyproc));
166 static struct itbl_entry **get_entries PARAMS ((e_processor processor,
167 e_type type));
168 static struct itbl_entry *find_entry_byname PARAMS ((e_processor processor,
169 e_type type, char *name));
170 static struct itbl_entry *find_entry_byval PARAMS ((e_processor processor,
171 e_type type, unsigned long val, struct itbl_range *r));
172 static struct itbl_entry *alloc_entry PARAMS ((e_processor processor,
173 e_type type, char *name, unsigned long value));
174 static unsigned long apply_range PARAMS ((unsigned long value,
175 struct itbl_range r));
176 static unsigned long extract_range PARAMS ((unsigned long value,
177 struct itbl_range r));
178 static struct itbl_field *alloc_field PARAMS ((e_type type, int sbit,
179 int ebit, unsigned long flags));
180
181
182 /*======================================================================*/
183 /* Interfaces to the parser */
184
185
186 /* Open the table and use lex and yacc to parse the entries.
187 * Return 1 for failure; 0 for success. */
188
189 int
190 itbl_parse (char *insntbl)
191 {
192 extern FILE *yyin;
193 extern int yyparse (void);
194 yyin = fopen (insntbl, "r");
195 if (yyin == 0)
196 {
197 printf ("Can't open processor instruction specification file \"%s\"\n",
198 insntbl);
199 return 1;
200 }
201 else
202 {
203 while (yyparse ());
204 }
205 fclose (yyin);
206 itbl_have_entries = 1;
207 return 0;
208 }
209
210 /* Add a register entry */
211
212 struct itbl_entry *
213 itbl_add_reg (int yyprocessor, int yytype, char *regname,
214 int regnum)
215 {
216 #if 0
217 #include "as.h"
218 #include "symbols.h"
219 /* Since register names don't have a prefix, we put them in the symbol table so
220 they can't be used as symbols. This also simplifies argument parsing as
221 we can let gas parse registers for us. The recorded register number is
222 regnum. */
223 /* Use symbol_create here instead of symbol_new so we don't try to
224 output registers into the object file's symbol table. */
225 symbol_table_insert (symbol_create (regname, reg_section,
226 regnum, &zero_address_frag));
227 #endif
228 return alloc_entry (get_processor (yyprocessor), get_type (yytype), regname,
229 (unsigned long) regnum);
230 }
231
232 /* Add an instruction entry */
233
234 struct itbl_entry *
235 itbl_add_insn (int yyprocessor, char *name, unsigned long value,
236 int sbit, int ebit, unsigned long flags)
237 {
238 struct itbl_entry *e;
239 e = alloc_entry (get_processor (yyprocessor), e_insn, name, value);
240 if (e)
241 {
242 e->range.sbit = sbit;
243 e->range.ebit = ebit;
244 e->flags = flags;
245 itbl_num_opcodes++;
246 }
247 return e;
248 }
249
250 /* Add an operand to an instruction entry */
251
252 struct itbl_field *
253 itbl_add_operand (struct itbl_entry *e, int yytype, int sbit,
254 int ebit, unsigned long flags)
255 {
256 struct itbl_field *f, **last_f;
257 if (!e)
258 return 0;
259 /* Add to end of fields' list. */
260 f = alloc_field (get_type (yytype), sbit, ebit, flags);
261 if (f)
262 {
263 last_f = &e->fields;
264 while (*last_f)
265 last_f = &(*last_f)->next;
266 *last_f = f;
267 f->next = 0;
268 }
269 return f;
270 }
271
272
273 /*======================================================================*/
274 /* Interfaces for assembler and disassembler */
275
276 #ifndef STAND_ALONE
277 #include "as.h"
278 #include "symbols.h"
279 static void append_insns_as_macros (void);
280
281 /* initialize for gas */
282 void
283 itbl_init (void)
284 {
285 struct itbl_entry *e, **es;
286 e_processor procn;
287 e_type type;
288
289 if (!itbl_have_entries)
290 return;
291
292 /* Since register names don't have a prefix, put them in the symbol table so
293 they can't be used as symbols. This simplifies argument parsing as
294 we can let gas parse registers for us. */
295 /* Use symbol_create instead of symbol_new so we don't try to
296 output registers into the object file's symbol table. */
297
298 for (type = e_regtype0; type < e_nregtypes; type++)
299 for (procn = e_p0; procn < e_nprocs; procn++)
300 {
301 es = get_entries (procn, type);
302 for (e = *es; e; e = e->next)
303 {
304 symbol_table_insert (symbol_create (e->name, reg_section,
305 e->value, &zero_address_frag));
306 }
307 }
308 append_insns_as_macros ();
309 }
310
311
312 /* Append insns to opcodes table and increase number of opcodes
313 * Structure of opcodes table:
314 * struct itbl_opcode
315 * {
316 * const char *name;
317 * const char *args; - string describing the arguments.
318 * unsigned long match; - opcode, or ISA level if pinfo=INSN_MACRO
319 * unsigned long mask; - opcode mask, or macro id if pinfo=INSN_MACRO
320 * unsigned long pinfo; - insn flags, or INSN_MACRO
321 * };
322 * examples:
323 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
324 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
325 */
326
327 static char *form_args (struct itbl_entry *e);
328 static void
329 append_insns_as_macros (void)
330 {
331 struct ITBL_OPCODE_STRUCT *new_opcodes, *o;
332 struct itbl_entry *e, **es;
333 int n, id, size, new_size, new_num_opcodes;
334
335 if (!itbl_have_entries)
336 return;
337
338 if (!itbl_num_opcodes) /* no new instructions to add! */
339 {
340 return;
341 }
342 DBG (("previous num_opcodes=%d\n", ITBL_NUM_OPCODES));
343
344 new_num_opcodes = ITBL_NUM_OPCODES + itbl_num_opcodes;
345 ASSERT (new_num_opcodes >= itbl_num_opcodes);
346
347 size = sizeof (struct ITBL_OPCODE_STRUCT) * ITBL_NUM_OPCODES;
348 ASSERT (size >= 0);
349 DBG (("I get=%d\n", size / sizeof (ITBL_OPCODES[0])));
350
351 new_size = sizeof (struct ITBL_OPCODE_STRUCT) * new_num_opcodes;
352 ASSERT (new_size > size);
353
354 /* FIXME since ITBL_OPCODES culd be a static table,
355 we can't realloc or delete the old memory. */
356 new_opcodes = (struct ITBL_OPCODE_STRUCT *) malloc (new_size);
357 if (!new_opcodes)
358 {
359 printf ("Unable to allocate memory for new instructions\n");
360 return;
361 }
362 if (size) /* copy prexisting opcodes table */
363 memcpy (new_opcodes, ITBL_OPCODES, size);
364
365 /* FIXME! some NUMOPCODES are calculated expressions.
366 These need to be changed before itbls can be supported. */
367
368 id = ITBL_NUM_MACROS; /* begin the next macro id after the last */
369 o = &new_opcodes[ITBL_NUM_OPCODES]; /* append macro to opcodes list */
370 for (n = e_p0; n < e_nprocs; n++)
371 {
372 es = get_entries (n, e_insn);
373 for (e = *es; e; e = e->next)
374 {
375 /* name, args, mask, match, pinfo
376 * {"li", "t,i", 0x34000000, 0xffe00000, WR_t },
377 * {"li", "t,I", 0, (int) M_LI, INSN_MACRO },
378 * Construct args from itbl_fields.
379 */
380 o->name = e->name;
381 o->args = strdup (form_args (e));
382 o->mask = apply_range (e->value, e->range);
383 /* FIXME how to catch durring assembly? */
384 /* mask to identify this insn */
385 o->match = apply_range (e->value, e->range);
386 o->pinfo = 0;
387
388 #ifdef USE_MACROS
389 o->mask = id++; /* FIXME how to catch durring assembly? */
390 o->match = 0; /* for macros, the insn_isa number */
391 o->pinfo = INSN_MACRO;
392 #endif
393
394 /* Don't add instructions which caused an error */
395 if (o->args)
396 o++;
397 else
398 new_num_opcodes--;
399 }
400 }
401 ITBL_OPCODES = new_opcodes;
402 ITBL_NUM_OPCODES = new_num_opcodes;
403
404 /* FIXME
405 At this point, we can free the entries, as they should have
406 been added to the assembler's tables.
407 Don't free name though, since name is being used by the new
408 opcodes table.
409
410 Eventually, we should also free the new opcodes table itself
411 on exit.
412 */
413 }
414
415 static char *
416 form_args (struct itbl_entry *e)
417 {
418 static char s[31];
419 char c = 0, *p = s;
420 struct itbl_field *f;
421
422 ASSERT (e);
423 for (f = e->fields; f; f = f->next)
424 {
425 switch (f->type)
426 {
427 case e_dreg:
428 c = 'd';
429 break;
430 case e_creg:
431 c = 't';
432 break;
433 case e_greg:
434 c = 's';
435 break;
436 case e_immed:
437 c = 'i';
438 break;
439 case e_addr:
440 c = 'a';
441 break;
442 default:
443 c = 0; /* ignore; unknown field type */
444 }
445 if (c)
446 {
447 if (p != s)
448 *p++ = ',';
449 *p++ = c;
450 }
451 }
452 *p = 0;
453 return s;
454 }
455 #endif /* !STAND_ALONE */
456
457
458 /* Get processor's register name from val */
459
460 unsigned long
461 itbl_get_reg_val (char *name)
462 {
463 e_type t;
464 e_processor p;
465 int r = 0;
466 for (p = e_p0; p < e_nprocs; p++)
467 for (t = e_regtype0; t < e_nregtypes; t++)
468 {
469 if (r = itbl_get_val (p, t, name), r)
470 return r;
471 }
472 return 0;
473 }
474
475 char *
476 itbl_get_name (e_processor processor, e_type type, unsigned long val)
477 {
478 struct itbl_entry *r;
479 /* type depends on instruction passed */
480 r = find_entry_byval (processor, type, val, 0);
481 if (r)
482 return r->name;
483 else
484 return 0; /* error; invalid operand */
485 }
486
487 /* Get processor's register value from name */
488
489 unsigned long
490 itbl_get_val (e_processor processor, e_type type, char *name)
491 {
492 struct itbl_entry *r;
493 /* type depends on instruction passed */
494 r = find_entry_byname (processor, type, name);
495 if (r)
496 return r->value;
497 else
498 return 0; /* error; invalid operand */
499 }
500
501
502 /* Assemble instruction "name" with operands "s".
503 * name - name of instruction
504 * s - operands
505 * returns - long word for assembled instruction */
506
507 unsigned long
508 itbl_assemble (char *name, char *s)
509 {
510 unsigned long opcode;
511 struct itbl_entry *e;
512 struct itbl_field *f;
513 char *n;
514 int processor;
515
516 if (!name || !*name)
517 return 0; /* error! must have a opcode name/expr */
518
519 /* find entry in list of instructions for all processors */
520 for (processor = 0; processor < e_nprocs; processor++)
521 {
522 e = find_entry_byname (processor, e_insn, name);
523 if (e)
524 break;
525 }
526 if (!e)
527 return 0; /* opcode not in table; invalid instrustion */
528 opcode = build_opcode (e);
529
530 /* parse opcode's args (if any) */
531 for (f = e->fields; f; f = f->next) /* for each arg, ... */
532 {
533 struct itbl_entry *r;
534 unsigned long value;
535 if (!s || !*s)
536 return 0; /* error - not enough operands */
537 n = itbl_get_field (&s);
538 /* n should be in form $n or 0xhhh (are symbol names valid?? */
539 switch (f->type)
540 {
541 case e_dreg:
542 case e_creg:
543 case e_greg:
544 /* Accept either a string name
545 * or '$' followed by the register number */
546 if (*n == '$')
547 {
548 n++;
549 value = strtol (n, 0, 10);
550 /* FIXME! could have "0l"... then what?? */
551 if (value == 0 && *n != '0')
552 return 0; /* error; invalid operand */
553 }
554 else
555 {
556 r = find_entry_byname (e->processor, f->type, n);
557 if (r)
558 value = r->value;
559 else
560 return 0; /* error; invalid operand */
561 }
562 break;
563 case e_addr:
564 /* use assembler's symbol table to find symbol */
565 /* FIXME!! Do we need this?
566 if so, what about relocs??
567 my_getExpression (&imm_expr, s);
568 return 0; /-* error; invalid operand *-/
569 break;
570 */
571 /* If not a symbol, fall thru to IMMED */
572 case e_immed:
573 if (*n == '0' && *(n + 1) == 'x') /* hex begins 0x... */
574 {
575 n += 2;
576 value = strtol (n, 0, 16);
577 /* FIXME! could have "0xl"... then what?? */
578 }
579 else
580 {
581 value = strtol (n, 0, 10);
582 /* FIXME! could have "0l"... then what?? */
583 if (value == 0 && *n != '0')
584 return 0; /* error; invalid operand */
585 }
586 break;
587 default:
588 return 0; /* error; invalid field spec */
589 }
590 opcode |= apply_range (value, f->range);
591 }
592 if (s && *s)
593 return 0; /* error - too many operands */
594 return opcode; /* done! */
595 }
596
597 /* Disassemble instruction "insn".
598 * insn - instruction
599 * s - buffer to hold disassembled instruction
600 * returns - 1 if succeeded; 0 if failed
601 */
602
603 int
604 itbl_disassemble (char *s, unsigned long insn)
605 {
606 e_processor processor;
607 struct itbl_entry *e;
608 struct itbl_field *f;
609
610 if (!ITBL_IS_INSN (insn))
611 return 0; /* error*/
612 processor = get_processor (ITBL_DECODE_PNUM (insn));
613
614 /* find entry in list */
615 e = find_entry_byval (processor, e_insn, insn, 0);
616 if (!e)
617 return 0; /* opcode not in table; invalid instrustion */
618 strcpy (s, e->name);
619
620 /* parse insn's args (if any) */
621 for (f = e->fields; f; f = f->next) /* for each arg, ... */
622 {
623 struct itbl_entry *r;
624 unsigned long value;
625
626 if (f == e->fields) /* first operand is preceeded by tab */
627 strcat (s, "\t");
628 else /* ','s separate following operands */
629 strcat (s, ",");
630 value = extract_range (insn, f->range);
631 /* n should be in form $n or 0xhhh (are symbol names valid?? */
632 switch (f->type)
633 {
634 case e_dreg:
635 case e_creg:
636 case e_greg:
637 /* Accept either a string name
638 * or '$' followed by the register number */
639 r = find_entry_byval (e->processor, f->type, value, &f->range);
640 if (r)
641 strcat (s, r->name);
642 else
643 sprintf (s, "%s$%d", s, value);
644 break;
645 case e_addr:
646 /* use assembler's symbol table to find symbol */
647 /* FIXME!! Do we need this?
648 * if so, what about relocs??
649 */
650 /* If not a symbol, fall thru to IMMED */
651 case e_immed:
652 sprintf (s, "%s0x%x", s, value);
653 break;
654 default:
655 return 0; /* error; invalid field spec */
656 }
657 }
658 return 1; /* done! */
659 }
660
661 /*======================================================================*/
662 /*
663 * Local functions for manipulating private structures containing
664 * the names and format for the new instructions and registers
665 * for each processor.
666 */
667
668 /* Calculate instruction's opcode and function values from entry */
669
670 static unsigned long
671 build_opcode (struct itbl_entry *e)
672 {
673 unsigned long opcode;
674
675 opcode = apply_range (e->value, e->range);
676 opcode |= ITBL_ENCODE_PNUM (e->processor);
677 return opcode;
678 }
679
680 /* Calculate absolute value given the relative value and bit position range
681 * within the instruction.
682 * The range is inclusive where 0 is least significant bit.
683 * A range of { 24, 20 } will have a mask of
684 * bit 3 2 1
685 * pos: 1098 7654 3210 9876 5432 1098 7654 3210
686 * bin: 0000 0001 1111 0000 0000 0000 0000 0000
687 * hex: 0 1 f 0 0 0 0 0
688 * mask: 0x01f00000.
689 */
690
691 static unsigned long
692 apply_range (unsigned long rval, struct itbl_range r)
693 {
694 unsigned long mask;
695 unsigned long aval;
696 int len = MAX_BITPOS - r.sbit;
697
698 ASSERT (r.sbit >= r.ebit);
699 ASSERT (MAX_BITPOS >= r.sbit);
700 ASSERT (r.ebit >= 0);
701
702 /* create mask by truncating 1s by shifting */
703 mask = 0xffffffff << len;
704 mask = mask >> len;
705 mask = mask >> r.ebit;
706 mask = mask << r.ebit;
707
708 aval = (rval << r.ebit) & mask;
709 return aval;
710 }
711
712 /* Calculate relative value given the absolute value and bit position range
713 * within the instruction. */
714
715 static unsigned long
716 extract_range (unsigned long aval, struct itbl_range r)
717 {
718 unsigned long mask;
719 unsigned long rval;
720 int len = MAX_BITPOS - r.sbit;
721
722 /* create mask by truncating 1s by shifting */
723 mask = 0xffffffff << len;
724 mask = mask >> len;
725 mask = mask >> r.ebit;
726 mask = mask << r.ebit;
727
728 rval = (aval & mask) >> r.ebit;
729 return rval;
730 }
731
732 /* Extract processor's assembly instruction field name from s;
733 * forms are "n args" "n,args" or "n" */
734 /* Return next argument from string pointer "s" and advance s.
735 * delimiters are " ,\0" */
736
737 char *
738 itbl_get_field (char **S)
739 {
740 static char n[128];
741 char *p, *ps, *s;
742 int len;
743
744 s = *S;
745 if (!s || !*s)
746 return 0;
747 p = s + strlen (s);
748 if (ps = strchr (s, ','), ps)
749 p = ps;
750 if (ps = strchr (s, ' '), ps)
751 p = min (p, ps);
752 if (ps = strchr (s, '\0'), ps)
753 p = min (p, ps);
754 if (p == 0)
755 return 0; /* error! */
756 len = p - s;
757 ASSERT (128 > len + 1);
758 strncpy (n, s, len);
759 n[len] = 0;
760 if (s[len] == '\0')
761 s = 0; /* no more args */
762 else
763 s += len + 1; /* advance to next arg */
764
765 *S = s;
766 return n;
767 }
768
769 /* Search entries for a given processor and type
770 * to find one matching the name "n".
771 * Return a pointer to the entry */
772
773 static struct itbl_entry *
774 find_entry_byname (e_processor processor,
775 e_type type, char *n)
776 {
777 struct itbl_entry *e, **es;
778
779 es = get_entries (processor, type);
780 for (e = *es; e; e = e->next) /* for each entry, ... */
781 {
782 if (!strcmp (e->name, n))
783 return e;
784 }
785 return 0;
786 }
787
788 /* Search entries for a given processor and type
789 * to find one matching the value "val" for the range "r".
790 * Return a pointer to the entry.
791 * This function is used for disassembling fields of an instruction.
792 */
793
794 static struct itbl_entry *
795 find_entry_byval (e_processor processor, e_type type,
796 unsigned long val, struct itbl_range *r)
797 {
798 struct itbl_entry *e, **es;
799 unsigned long eval;
800
801 es = get_entries (processor, type);
802 for (e = *es; e; e = e->next) /* for each entry, ... */
803 {
804 if (processor != e->processor)
805 continue;
806 /* For insns, we might not know the range of the opcode,
807 * so a range of 0 will allow this routine to match against
808 * the range of the entry to be compared with.
809 * This could cause ambiguities.
810 * For operands, we get an extracted value and a range.
811 */
812 /* if range is 0, mask val against the range of the compared entry. */
813 if (r == 0) /* if no range passed, must be whole 32-bits
814 * so create 32-bit value from entry's range */
815 {
816 eval = apply_range (e->value, e->range);
817 val &= apply_range (0xffffffff, e->range);
818 }
819 else if (r->sbit == e->range.sbit && r->ebit == e->range.ebit
820 || e->range.sbit == 0 && e->range.ebit == 0)
821 {
822 eval = apply_range (e->value, *r);
823 val = apply_range (val, *r);
824 }
825 else
826 continue;
827 if (val == eval)
828 return e;
829 }
830 return 0;
831 }
832
833 /* Return a pointer to the list of entries for a given processor and type. */
834
835 static struct itbl_entry **
836 get_entries (e_processor processor, e_type type)
837 {
838 return &entries[processor][type];
839 }
840
841 /* Return an integral value for the processor passed from yyparse. */
842
843 static e_processor
844 get_processor (int yyproc)
845 {
846 /* translate from yacc's processor to enum */
847 if (yyproc >= e_p0 && yyproc < e_nprocs)
848 return (e_processor) yyproc;
849 return e_invproc; /* error; invalid processor */
850 }
851
852 /* Return an integral value for the entry type passed from yyparse. */
853
854 static e_type
855 get_type (int yytype)
856 {
857 switch (yytype)
858 {
859 /* translate from yacc's type to enum */
860 case INSN:
861 return e_insn;
862 case DREG:
863 return e_dreg;
864 case CREG:
865 return e_creg;
866 case GREG:
867 return e_greg;
868 case ADDR:
869 return e_addr;
870 case IMMED:
871 return e_immed;
872 default:
873 return e_invtype; /* error; invalid type */
874 }
875 }
876
877
878 /* Allocate and initialize an entry */
879
880 static struct itbl_entry *
881 alloc_entry (e_processor processor, e_type type,
882 char *name, unsigned long value)
883 {
884 struct itbl_entry *e, **es;
885 if (!name)
886 return 0;
887 e = (struct itbl_entry *) malloc (sizeof (struct itbl_entry));
888 if (e)
889 {
890 memset (e, 0, sizeof (struct itbl_entry));
891 e->name = (char *) malloc (sizeof (strlen (name)) + 1);
892 if (e->name)
893 strcpy (e->name, name);
894 e->processor = processor;
895 e->type = type;
896 e->value = value;
897 es = get_entries (e->processor, e->type);
898 e->next = *es;
899 *es = e;
900 }
901 return e;
902 }
903
904 /* Allocate and initialize an entry's field */
905
906 static struct itbl_field *
907 alloc_field (e_type type, int sbit, int ebit,
908 unsigned long flags)
909 {
910 struct itbl_field *f;
911 f = (struct itbl_field *) malloc (sizeof (struct itbl_field));
912 if (f)
913 {
914 memset (f, 0, sizeof (struct itbl_field));
915 f->type = type;
916 f->range.sbit = sbit;
917 f->range.ebit = ebit;
918 f->flags = flags;
919 }
920 return f;
921 }