]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
49a7d5b36b6ca18a69aae2333b8b651b1854c4aa
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60 #include "ada-exp.h"
61
62 /* Define whether or not the C operator '/' truncates towards zero for
63 differently signed operands (truncation direction is undefined in C).
64 Copied from valarith.c. */
65
66 #ifndef TRUNCATION_TOWARDS_ZERO
67 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
68 #endif
69
70 static struct type *desc_base_type (struct type *);
71
72 static struct type *desc_bounds_type (struct type *);
73
74 static struct value *desc_bounds (struct value *);
75
76 static int fat_pntr_bounds_bitpos (struct type *);
77
78 static int fat_pntr_bounds_bitsize (struct type *);
79
80 static struct type *desc_data_target_type (struct type *);
81
82 static struct value *desc_data (struct value *);
83
84 static int fat_pntr_data_bitpos (struct type *);
85
86 static int fat_pntr_data_bitsize (struct type *);
87
88 static struct value *desc_one_bound (struct value *, int, int);
89
90 static int desc_bound_bitpos (struct type *, int, int);
91
92 static int desc_bound_bitsize (struct type *, int, int);
93
94 static struct type *desc_index_type (struct type *, int);
95
96 static int desc_arity (struct type *);
97
98 static int ada_args_match (struct symbol *, struct value **, int);
99
100 static struct value *make_array_descriptor (struct type *, struct value *);
101
102 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
103 const struct block *,
104 const lookup_name_info &lookup_name,
105 domain_enum, struct objfile *);
106
107 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
108 const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (const std::vector<struct block_symbol> &);
113
114 static void add_defn_to_vec (std::vector<struct block_symbol> &,
115 struct symbol *,
116 const struct block *);
117
118 static int possible_user_operator_p (enum exp_opcode, struct value **);
119
120 static const char *ada_decoded_op_name (enum exp_opcode);
121
122 static int numeric_type_p (struct type *);
123
124 static int integer_type_p (struct type *);
125
126 static int scalar_type_p (struct type *);
127
128 static int discrete_type_p (struct type *);
129
130 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
131 int, int);
132
133 static struct type *ada_find_parallel_type_with_name (struct type *,
134 const char *);
135
136 static int is_dynamic_field (struct type *, int);
137
138 static struct type *to_fixed_variant_branch_type (struct type *,
139 const gdb_byte *,
140 CORE_ADDR, struct value *);
141
142 static struct type *to_fixed_array_type (struct type *, struct value *, int);
143
144 static struct type *to_fixed_range_type (struct type *, struct value *);
145
146 static struct type *to_static_fixed_type (struct type *);
147 static struct type *static_unwrap_type (struct type *type);
148
149 static struct value *unwrap_value (struct value *);
150
151 static struct type *constrained_packed_array_type (struct type *, long *);
152
153 static struct type *decode_constrained_packed_array_type (struct type *);
154
155 static long decode_packed_array_bitsize (struct type *);
156
157 static struct value *decode_constrained_packed_array (struct value *);
158
159 static int ada_is_unconstrained_packed_array_type (struct type *);
160
161 static struct value *value_subscript_packed (struct value *, int,
162 struct value **);
163
164 static struct value *coerce_unspec_val_to_type (struct value *,
165 struct type *);
166
167 static int lesseq_defined_than (struct symbol *, struct symbol *);
168
169 static int equiv_types (struct type *, struct type *);
170
171 static int is_name_suffix (const char *);
172
173 static int advance_wild_match (const char **, const char *, char);
174
175 static bool wild_match (const char *name, const char *patn);
176
177 static struct value *ada_coerce_ref (struct value *);
178
179 static LONGEST pos_atr (struct value *);
180
181 static struct value *val_atr (struct type *, LONGEST);
182
183 static struct symbol *standard_lookup (const char *, const struct block *,
184 domain_enum);
185
186 static struct value *ada_search_struct_field (const char *, struct value *, int,
187 struct type *);
188
189 static int find_struct_field (const char *, struct type *, int,
190 struct type **, int *, int *, int *, int *);
191
192 static int ada_resolve_function (std::vector<struct block_symbol> &,
193 struct value **, int, const char *,
194 struct type *, bool);
195
196 static int ada_is_direct_array_type (struct type *);
197
198 static struct value *ada_index_struct_field (int, struct value *, int,
199 struct type *);
200
201 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
202
203
204 static struct type *ada_find_any_type (const char *name);
205
206 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
207 (const lookup_name_info &lookup_name);
208
209 \f
210
211 /* The result of a symbol lookup to be stored in our symbol cache. */
212
213 struct cache_entry
214 {
215 /* The name used to perform the lookup. */
216 const char *name;
217 /* The namespace used during the lookup. */
218 domain_enum domain;
219 /* The symbol returned by the lookup, or NULL if no matching symbol
220 was found. */
221 struct symbol *sym;
222 /* The block where the symbol was found, or NULL if no matching
223 symbol was found. */
224 const struct block *block;
225 /* A pointer to the next entry with the same hash. */
226 struct cache_entry *next;
227 };
228
229 /* The Ada symbol cache, used to store the result of Ada-mode symbol
230 lookups in the course of executing the user's commands.
231
232 The cache is implemented using a simple, fixed-sized hash.
233 The size is fixed on the grounds that there are not likely to be
234 all that many symbols looked up during any given session, regardless
235 of the size of the symbol table. If we decide to go to a resizable
236 table, let's just use the stuff from libiberty instead. */
237
238 #define HASH_SIZE 1009
239
240 struct ada_symbol_cache
241 {
242 /* An obstack used to store the entries in our cache. */
243 struct auto_obstack cache_space;
244
245 /* The root of the hash table used to implement our symbol cache. */
246 struct cache_entry *root[HASH_SIZE] {};
247 };
248
249 /* Maximum-sized dynamic type. */
250 static unsigned int varsize_limit;
251
252 static const char ada_completer_word_break_characters[] =
253 #ifdef VMS
254 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
255 #else
256 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
257 #endif
258
259 /* The name of the symbol to use to get the name of the main subprogram. */
260 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
261 = "__gnat_ada_main_program_name";
262
263 /* Limit on the number of warnings to raise per expression evaluation. */
264 static int warning_limit = 2;
265
266 /* Number of warning messages issued; reset to 0 by cleanups after
267 expression evaluation. */
268 static int warnings_issued = 0;
269
270 static const char * const known_runtime_file_name_patterns[] = {
271 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
272 };
273
274 static const char * const known_auxiliary_function_name_patterns[] = {
275 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
276 };
277
278 /* Maintenance-related settings for this module. */
279
280 static struct cmd_list_element *maint_set_ada_cmdlist;
281 static struct cmd_list_element *maint_show_ada_cmdlist;
282
283 /* The "maintenance ada set/show ignore-descriptive-type" value. */
284
285 static bool ada_ignore_descriptive_types_p = false;
286
287 /* Inferior-specific data. */
288
289 /* Per-inferior data for this module. */
290
291 struct ada_inferior_data
292 {
293 /* The ada__tags__type_specific_data type, which is used when decoding
294 tagged types. With older versions of GNAT, this type was directly
295 accessible through a component ("tsd") in the object tag. But this
296 is no longer the case, so we cache it for each inferior. */
297 struct type *tsd_type = nullptr;
298
299 /* The exception_support_info data. This data is used to determine
300 how to implement support for Ada exception catchpoints in a given
301 inferior. */
302 const struct exception_support_info *exception_info = nullptr;
303 };
304
305 /* Our key to this module's inferior data. */
306 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
307
308 /* Return our inferior data for the given inferior (INF).
309
310 This function always returns a valid pointer to an allocated
311 ada_inferior_data structure. If INF's inferior data has not
312 been previously set, this functions creates a new one with all
313 fields set to zero, sets INF's inferior to it, and then returns
314 a pointer to that newly allocated ada_inferior_data. */
315
316 static struct ada_inferior_data *
317 get_ada_inferior_data (struct inferior *inf)
318 {
319 struct ada_inferior_data *data;
320
321 data = ada_inferior_data.get (inf);
322 if (data == NULL)
323 data = ada_inferior_data.emplace (inf);
324
325 return data;
326 }
327
328 /* Perform all necessary cleanups regarding our module's inferior data
329 that is required after the inferior INF just exited. */
330
331 static void
332 ada_inferior_exit (struct inferior *inf)
333 {
334 ada_inferior_data.clear (inf);
335 }
336
337
338 /* program-space-specific data. */
339
340 /* This module's per-program-space data. */
341 struct ada_pspace_data
342 {
343 /* The Ada symbol cache. */
344 std::unique_ptr<ada_symbol_cache> sym_cache;
345 };
346
347 /* Key to our per-program-space data. */
348 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
349
350 /* Return this module's data for the given program space (PSPACE).
351 If not is found, add a zero'ed one now.
352
353 This function always returns a valid object. */
354
355 static struct ada_pspace_data *
356 get_ada_pspace_data (struct program_space *pspace)
357 {
358 struct ada_pspace_data *data;
359
360 data = ada_pspace_data_handle.get (pspace);
361 if (data == NULL)
362 data = ada_pspace_data_handle.emplace (pspace);
363
364 return data;
365 }
366
367 /* Utilities */
368
369 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
370 all typedef layers have been peeled. Otherwise, return TYPE.
371
372 Normally, we really expect a typedef type to only have 1 typedef layer.
373 In other words, we really expect the target type of a typedef type to be
374 a non-typedef type. This is particularly true for Ada units, because
375 the language does not have a typedef vs not-typedef distinction.
376 In that respect, the Ada compiler has been trying to eliminate as many
377 typedef definitions in the debugging information, since they generally
378 do not bring any extra information (we still use typedef under certain
379 circumstances related mostly to the GNAT encoding).
380
381 Unfortunately, we have seen situations where the debugging information
382 generated by the compiler leads to such multiple typedef layers. For
383 instance, consider the following example with stabs:
384
385 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
386 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387
388 This is an error in the debugging information which causes type
389 pck__float_array___XUP to be defined twice, and the second time,
390 it is defined as a typedef of a typedef.
391
392 This is on the fringe of legality as far as debugging information is
393 concerned, and certainly unexpected. But it is easy to handle these
394 situations correctly, so we can afford to be lenient in this case. */
395
396 static struct type *
397 ada_typedef_target_type (struct type *type)
398 {
399 while (type->code () == TYPE_CODE_TYPEDEF)
400 type = TYPE_TARGET_TYPE (type);
401 return type;
402 }
403
404 /* Given DECODED_NAME a string holding a symbol name in its
405 decoded form (ie using the Ada dotted notation), returns
406 its unqualified name. */
407
408 static const char *
409 ada_unqualified_name (const char *decoded_name)
410 {
411 const char *result;
412
413 /* If the decoded name starts with '<', it means that the encoded
414 name does not follow standard naming conventions, and thus that
415 it is not your typical Ada symbol name. Trying to unqualify it
416 is therefore pointless and possibly erroneous. */
417 if (decoded_name[0] == '<')
418 return decoded_name;
419
420 result = strrchr (decoded_name, '.');
421 if (result != NULL)
422 result++; /* Skip the dot... */
423 else
424 result = decoded_name;
425
426 return result;
427 }
428
429 /* Return a string starting with '<', followed by STR, and '>'. */
430
431 static std::string
432 add_angle_brackets (const char *str)
433 {
434 return string_printf ("<%s>", str);
435 }
436
437 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
438 suffix of FIELD_NAME beginning "___". */
439
440 static int
441 field_name_match (const char *field_name, const char *target)
442 {
443 int len = strlen (target);
444
445 return
446 (strncmp (field_name, target, len) == 0
447 && (field_name[len] == '\0'
448 || (startswith (field_name + len, "___")
449 && strcmp (field_name + strlen (field_name) - 6,
450 "___XVN") != 0)));
451 }
452
453
454 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
455 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
456 and return its index. This function also handles fields whose name
457 have ___ suffixes because the compiler sometimes alters their name
458 by adding such a suffix to represent fields with certain constraints.
459 If the field could not be found, return a negative number if
460 MAYBE_MISSING is set. Otherwise raise an error. */
461
462 int
463 ada_get_field_index (const struct type *type, const char *field_name,
464 int maybe_missing)
465 {
466 int fieldno;
467 struct type *struct_type = check_typedef ((struct type *) type);
468
469 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
470 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
471 return fieldno;
472
473 if (!maybe_missing)
474 error (_("Unable to find field %s in struct %s. Aborting"),
475 field_name, struct_type->name ());
476
477 return -1;
478 }
479
480 /* The length of the prefix of NAME prior to any "___" suffix. */
481
482 int
483 ada_name_prefix_len (const char *name)
484 {
485 if (name == NULL)
486 return 0;
487 else
488 {
489 const char *p = strstr (name, "___");
490
491 if (p == NULL)
492 return strlen (name);
493 else
494 return p - name;
495 }
496 }
497
498 /* Return non-zero if SUFFIX is a suffix of STR.
499 Return zero if STR is null. */
500
501 static int
502 is_suffix (const char *str, const char *suffix)
503 {
504 int len1, len2;
505
506 if (str == NULL)
507 return 0;
508 len1 = strlen (str);
509 len2 = strlen (suffix);
510 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
511 }
512
513 /* The contents of value VAL, treated as a value of type TYPE. The
514 result is an lval in memory if VAL is. */
515
516 static struct value *
517 coerce_unspec_val_to_type (struct value *val, struct type *type)
518 {
519 type = ada_check_typedef (type);
520 if (value_type (val) == type)
521 return val;
522 else
523 {
524 struct value *result;
525
526 /* Make sure that the object size is not unreasonable before
527 trying to allocate some memory for it. */
528 ada_ensure_varsize_limit (type);
529
530 if (value_optimized_out (val))
531 result = allocate_optimized_out_value (type);
532 else if (value_lazy (val)
533 /* Be careful not to make a lazy not_lval value. */
534 || (VALUE_LVAL (val) != not_lval
535 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
536 result = allocate_value_lazy (type);
537 else
538 {
539 result = allocate_value (type);
540 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
541 }
542 set_value_component_location (result, val);
543 set_value_bitsize (result, value_bitsize (val));
544 set_value_bitpos (result, value_bitpos (val));
545 if (VALUE_LVAL (result) == lval_memory)
546 set_value_address (result, value_address (val));
547 return result;
548 }
549 }
550
551 static const gdb_byte *
552 cond_offset_host (const gdb_byte *valaddr, long offset)
553 {
554 if (valaddr == NULL)
555 return NULL;
556 else
557 return valaddr + offset;
558 }
559
560 static CORE_ADDR
561 cond_offset_target (CORE_ADDR address, long offset)
562 {
563 if (address == 0)
564 return 0;
565 else
566 return address + offset;
567 }
568
569 /* Issue a warning (as for the definition of warning in utils.c, but
570 with exactly one argument rather than ...), unless the limit on the
571 number of warnings has passed during the evaluation of the current
572 expression. */
573
574 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
575 provided by "complaint". */
576 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
577
578 static void
579 lim_warning (const char *format, ...)
580 {
581 va_list args;
582
583 va_start (args, format);
584 warnings_issued += 1;
585 if (warnings_issued <= warning_limit)
586 vwarning (format, args);
587
588 va_end (args);
589 }
590
591 /* Issue an error if the size of an object of type T is unreasonable,
592 i.e. if it would be a bad idea to allocate a value of this type in
593 GDB. */
594
595 void
596 ada_ensure_varsize_limit (const struct type *type)
597 {
598 if (TYPE_LENGTH (type) > varsize_limit)
599 error (_("object size is larger than varsize-limit"));
600 }
601
602 /* Maximum value of a SIZE-byte signed integer type. */
603 static LONGEST
604 max_of_size (int size)
605 {
606 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
607
608 return top_bit | (top_bit - 1);
609 }
610
611 /* Minimum value of a SIZE-byte signed integer type. */
612 static LONGEST
613 min_of_size (int size)
614 {
615 return -max_of_size (size) - 1;
616 }
617
618 /* Maximum value of a SIZE-byte unsigned integer type. */
619 static ULONGEST
620 umax_of_size (int size)
621 {
622 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
623
624 return top_bit | (top_bit - 1);
625 }
626
627 /* Maximum value of integral type T, as a signed quantity. */
628 static LONGEST
629 max_of_type (struct type *t)
630 {
631 if (t->is_unsigned ())
632 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
633 else
634 return max_of_size (TYPE_LENGTH (t));
635 }
636
637 /* Minimum value of integral type T, as a signed quantity. */
638 static LONGEST
639 min_of_type (struct type *t)
640 {
641 if (t->is_unsigned ())
642 return 0;
643 else
644 return min_of_size (TYPE_LENGTH (t));
645 }
646
647 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
648 LONGEST
649 ada_discrete_type_high_bound (struct type *type)
650 {
651 type = resolve_dynamic_type (type, {}, 0);
652 switch (type->code ())
653 {
654 case TYPE_CODE_RANGE:
655 {
656 const dynamic_prop &high = type->bounds ()->high;
657
658 if (high.kind () == PROP_CONST)
659 return high.const_val ();
660 else
661 {
662 gdb_assert (high.kind () == PROP_UNDEFINED);
663
664 /* This happens when trying to evaluate a type's dynamic bound
665 without a live target. There is nothing relevant for us to
666 return here, so return 0. */
667 return 0;
668 }
669 }
670 case TYPE_CODE_ENUM:
671 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
672 case TYPE_CODE_BOOL:
673 return 1;
674 case TYPE_CODE_CHAR:
675 case TYPE_CODE_INT:
676 return max_of_type (type);
677 default:
678 error (_("Unexpected type in ada_discrete_type_high_bound."));
679 }
680 }
681
682 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
683 LONGEST
684 ada_discrete_type_low_bound (struct type *type)
685 {
686 type = resolve_dynamic_type (type, {}, 0);
687 switch (type->code ())
688 {
689 case TYPE_CODE_RANGE:
690 {
691 const dynamic_prop &low = type->bounds ()->low;
692
693 if (low.kind () == PROP_CONST)
694 return low.const_val ();
695 else
696 {
697 gdb_assert (low.kind () == PROP_UNDEFINED);
698
699 /* This happens when trying to evaluate a type's dynamic bound
700 without a live target. There is nothing relevant for us to
701 return here, so return 0. */
702 return 0;
703 }
704 }
705 case TYPE_CODE_ENUM:
706 return TYPE_FIELD_ENUMVAL (type, 0);
707 case TYPE_CODE_BOOL:
708 return 0;
709 case TYPE_CODE_CHAR:
710 case TYPE_CODE_INT:
711 return min_of_type (type);
712 default:
713 error (_("Unexpected type in ada_discrete_type_low_bound."));
714 }
715 }
716
717 /* The identity on non-range types. For range types, the underlying
718 non-range scalar type. */
719
720 static struct type *
721 get_base_type (struct type *type)
722 {
723 while (type != NULL && type->code () == TYPE_CODE_RANGE)
724 {
725 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
726 return type;
727 type = TYPE_TARGET_TYPE (type);
728 }
729 return type;
730 }
731
732 /* Return a decoded version of the given VALUE. This means returning
733 a value whose type is obtained by applying all the GNAT-specific
734 encodings, making the resulting type a static but standard description
735 of the initial type. */
736
737 struct value *
738 ada_get_decoded_value (struct value *value)
739 {
740 struct type *type = ada_check_typedef (value_type (value));
741
742 if (ada_is_array_descriptor_type (type)
743 || (ada_is_constrained_packed_array_type (type)
744 && type->code () != TYPE_CODE_PTR))
745 {
746 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
747 value = ada_coerce_to_simple_array_ptr (value);
748 else
749 value = ada_coerce_to_simple_array (value);
750 }
751 else
752 value = ada_to_fixed_value (value);
753
754 return value;
755 }
756
757 /* Same as ada_get_decoded_value, but with the given TYPE.
758 Because there is no associated actual value for this type,
759 the resulting type might be a best-effort approximation in
760 the case of dynamic types. */
761
762 struct type *
763 ada_get_decoded_type (struct type *type)
764 {
765 type = to_static_fixed_type (type);
766 if (ada_is_constrained_packed_array_type (type))
767 type = ada_coerce_to_simple_array_type (type);
768 return type;
769 }
770
771 \f
772
773 /* Language Selection */
774
775 /* If the main program is in Ada, return language_ada, otherwise return LANG
776 (the main program is in Ada iif the adainit symbol is found). */
777
778 static enum language
779 ada_update_initial_language (enum language lang)
780 {
781 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
782 return language_ada;
783
784 return lang;
785 }
786
787 /* If the main procedure is written in Ada, then return its name.
788 The result is good until the next call. Return NULL if the main
789 procedure doesn't appear to be in Ada. */
790
791 char *
792 ada_main_name (void)
793 {
794 struct bound_minimal_symbol msym;
795 static gdb::unique_xmalloc_ptr<char> main_program_name;
796
797 /* For Ada, the name of the main procedure is stored in a specific
798 string constant, generated by the binder. Look for that symbol,
799 extract its address, and then read that string. If we didn't find
800 that string, then most probably the main procedure is not written
801 in Ada. */
802 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
803
804 if (msym.minsym != NULL)
805 {
806 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
807 if (main_program_name_addr == 0)
808 error (_("Invalid address for Ada main program name."));
809
810 main_program_name = target_read_string (main_program_name_addr, 1024);
811 return main_program_name.get ();
812 }
813
814 /* The main procedure doesn't seem to be in Ada. */
815 return NULL;
816 }
817 \f
818 /* Symbols */
819
820 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
821 of NULLs. */
822
823 const struct ada_opname_map ada_opname_table[] = {
824 {"Oadd", "\"+\"", BINOP_ADD},
825 {"Osubtract", "\"-\"", BINOP_SUB},
826 {"Omultiply", "\"*\"", BINOP_MUL},
827 {"Odivide", "\"/\"", BINOP_DIV},
828 {"Omod", "\"mod\"", BINOP_MOD},
829 {"Orem", "\"rem\"", BINOP_REM},
830 {"Oexpon", "\"**\"", BINOP_EXP},
831 {"Olt", "\"<\"", BINOP_LESS},
832 {"Ole", "\"<=\"", BINOP_LEQ},
833 {"Ogt", "\">\"", BINOP_GTR},
834 {"Oge", "\">=\"", BINOP_GEQ},
835 {"Oeq", "\"=\"", BINOP_EQUAL},
836 {"One", "\"/=\"", BINOP_NOTEQUAL},
837 {"Oand", "\"and\"", BINOP_BITWISE_AND},
838 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
839 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
840 {"Oconcat", "\"&\"", BINOP_CONCAT},
841 {"Oabs", "\"abs\"", UNOP_ABS},
842 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
843 {"Oadd", "\"+\"", UNOP_PLUS},
844 {"Osubtract", "\"-\"", UNOP_NEG},
845 {NULL, NULL}
846 };
847
848 /* The "encoded" form of DECODED, according to GNAT conventions. If
849 THROW_ERRORS, throw an error if invalid operator name is found.
850 Otherwise, return the empty string in that case. */
851
852 static std::string
853 ada_encode_1 (const char *decoded, bool throw_errors)
854 {
855 if (decoded == NULL)
856 return {};
857
858 std::string encoding_buffer;
859 for (const char *p = decoded; *p != '\0'; p += 1)
860 {
861 if (*p == '.')
862 encoding_buffer.append ("__");
863 else if (*p == '"')
864 {
865 const struct ada_opname_map *mapping;
866
867 for (mapping = ada_opname_table;
868 mapping->encoded != NULL
869 && !startswith (p, mapping->decoded); mapping += 1)
870 ;
871 if (mapping->encoded == NULL)
872 {
873 if (throw_errors)
874 error (_("invalid Ada operator name: %s"), p);
875 else
876 return {};
877 }
878 encoding_buffer.append (mapping->encoded);
879 break;
880 }
881 else
882 encoding_buffer.push_back (*p);
883 }
884
885 return encoding_buffer;
886 }
887
888 /* The "encoded" form of DECODED, according to GNAT conventions. */
889
890 std::string
891 ada_encode (const char *decoded)
892 {
893 return ada_encode_1 (decoded, true);
894 }
895
896 /* Return NAME folded to lower case, or, if surrounded by single
897 quotes, unfolded, but with the quotes stripped away. Result good
898 to next call. */
899
900 static const char *
901 ada_fold_name (gdb::string_view name)
902 {
903 static std::string fold_storage;
904
905 if (!name.empty () && name[0] == '\'')
906 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
907 else
908 {
909 fold_storage = gdb::to_string (name);
910 for (int i = 0; i < name.size (); i += 1)
911 fold_storage[i] = tolower (fold_storage[i]);
912 }
913
914 return fold_storage.c_str ();
915 }
916
917 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
918
919 static int
920 is_lower_alphanum (const char c)
921 {
922 return (isdigit (c) || (isalpha (c) && islower (c)));
923 }
924
925 /* ENCODED is the linkage name of a symbol and LEN contains its length.
926 This function saves in LEN the length of that same symbol name but
927 without either of these suffixes:
928 . .{DIGIT}+
929 . ${DIGIT}+
930 . ___{DIGIT}+
931 . __{DIGIT}+.
932
933 These are suffixes introduced by the compiler for entities such as
934 nested subprogram for instance, in order to avoid name clashes.
935 They do not serve any purpose for the debugger. */
936
937 static void
938 ada_remove_trailing_digits (const char *encoded, int *len)
939 {
940 if (*len > 1 && isdigit (encoded[*len - 1]))
941 {
942 int i = *len - 2;
943
944 while (i > 0 && isdigit (encoded[i]))
945 i--;
946 if (i >= 0 && encoded[i] == '.')
947 *len = i;
948 else if (i >= 0 && encoded[i] == '$')
949 *len = i;
950 else if (i >= 2 && startswith (encoded + i - 2, "___"))
951 *len = i - 2;
952 else if (i >= 1 && startswith (encoded + i - 1, "__"))
953 *len = i - 1;
954 }
955 }
956
957 /* Remove the suffix introduced by the compiler for protected object
958 subprograms. */
959
960 static void
961 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
962 {
963 /* Remove trailing N. */
964
965 /* Protected entry subprograms are broken into two
966 separate subprograms: The first one is unprotected, and has
967 a 'N' suffix; the second is the protected version, and has
968 the 'P' suffix. The second calls the first one after handling
969 the protection. Since the P subprograms are internally generated,
970 we leave these names undecoded, giving the user a clue that this
971 entity is internal. */
972
973 if (*len > 1
974 && encoded[*len - 1] == 'N'
975 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
976 *len = *len - 1;
977 }
978
979 /* See ada-lang.h. */
980
981 std::string
982 ada_decode (const char *encoded, bool wrap)
983 {
984 int i, j;
985 int len0;
986 const char *p;
987 int at_start_name;
988 std::string decoded;
989
990 /* With function descriptors on PPC64, the value of a symbol named
991 ".FN", if it exists, is the entry point of the function "FN". */
992 if (encoded[0] == '.')
993 encoded += 1;
994
995 /* The name of the Ada main procedure starts with "_ada_".
996 This prefix is not part of the decoded name, so skip this part
997 if we see this prefix. */
998 if (startswith (encoded, "_ada_"))
999 encoded += 5;
1000
1001 /* If the name starts with '_', then it is not a properly encoded
1002 name, so do not attempt to decode it. Similarly, if the name
1003 starts with '<', the name should not be decoded. */
1004 if (encoded[0] == '_' || encoded[0] == '<')
1005 goto Suppress;
1006
1007 len0 = strlen (encoded);
1008
1009 ada_remove_trailing_digits (encoded, &len0);
1010 ada_remove_po_subprogram_suffix (encoded, &len0);
1011
1012 /* Remove the ___X.* suffix if present. Do not forget to verify that
1013 the suffix is located before the current "end" of ENCODED. We want
1014 to avoid re-matching parts of ENCODED that have previously been
1015 marked as discarded (by decrementing LEN0). */
1016 p = strstr (encoded, "___");
1017 if (p != NULL && p - encoded < len0 - 3)
1018 {
1019 if (p[3] == 'X')
1020 len0 = p - encoded;
1021 else
1022 goto Suppress;
1023 }
1024
1025 /* Remove any trailing TKB suffix. It tells us that this symbol
1026 is for the body of a task, but that information does not actually
1027 appear in the decoded name. */
1028
1029 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1030 len0 -= 3;
1031
1032 /* Remove any trailing TB suffix. The TB suffix is slightly different
1033 from the TKB suffix because it is used for non-anonymous task
1034 bodies. */
1035
1036 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1037 len0 -= 2;
1038
1039 /* Remove trailing "B" suffixes. */
1040 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1041
1042 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1043 len0 -= 1;
1044
1045 /* Make decoded big enough for possible expansion by operator name. */
1046
1047 decoded.resize (2 * len0 + 1, 'X');
1048
1049 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1050
1051 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1052 {
1053 i = len0 - 2;
1054 while ((i >= 0 && isdigit (encoded[i]))
1055 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1056 i -= 1;
1057 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1058 len0 = i - 1;
1059 else if (encoded[i] == '$')
1060 len0 = i;
1061 }
1062
1063 /* The first few characters that are not alphabetic are not part
1064 of any encoding we use, so we can copy them over verbatim. */
1065
1066 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1067 decoded[j] = encoded[i];
1068
1069 at_start_name = 1;
1070 while (i < len0)
1071 {
1072 /* Is this a symbol function? */
1073 if (at_start_name && encoded[i] == 'O')
1074 {
1075 int k;
1076
1077 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1078 {
1079 int op_len = strlen (ada_opname_table[k].encoded);
1080 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1081 op_len - 1) == 0)
1082 && !isalnum (encoded[i + op_len]))
1083 {
1084 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1085 at_start_name = 0;
1086 i += op_len;
1087 j += strlen (ada_opname_table[k].decoded);
1088 break;
1089 }
1090 }
1091 if (ada_opname_table[k].encoded != NULL)
1092 continue;
1093 }
1094 at_start_name = 0;
1095
1096 /* Replace "TK__" with "__", which will eventually be translated
1097 into "." (just below). */
1098
1099 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1100 i += 2;
1101
1102 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1103 be translated into "." (just below). These are internal names
1104 generated for anonymous blocks inside which our symbol is nested. */
1105
1106 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1107 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1108 && isdigit (encoded [i+4]))
1109 {
1110 int k = i + 5;
1111
1112 while (k < len0 && isdigit (encoded[k]))
1113 k++; /* Skip any extra digit. */
1114
1115 /* Double-check that the "__B_{DIGITS}+" sequence we found
1116 is indeed followed by "__". */
1117 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1118 i = k;
1119 }
1120
1121 /* Remove _E{DIGITS}+[sb] */
1122
1123 /* Just as for protected object subprograms, there are 2 categories
1124 of subprograms created by the compiler for each entry. The first
1125 one implements the actual entry code, and has a suffix following
1126 the convention above; the second one implements the barrier and
1127 uses the same convention as above, except that the 'E' is replaced
1128 by a 'B'.
1129
1130 Just as above, we do not decode the name of barrier functions
1131 to give the user a clue that the code he is debugging has been
1132 internally generated. */
1133
1134 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1135 && isdigit (encoded[i+2]))
1136 {
1137 int k = i + 3;
1138
1139 while (k < len0 && isdigit (encoded[k]))
1140 k++;
1141
1142 if (k < len0
1143 && (encoded[k] == 'b' || encoded[k] == 's'))
1144 {
1145 k++;
1146 /* Just as an extra precaution, make sure that if this
1147 suffix is followed by anything else, it is a '_'.
1148 Otherwise, we matched this sequence by accident. */
1149 if (k == len0
1150 || (k < len0 && encoded[k] == '_'))
1151 i = k;
1152 }
1153 }
1154
1155 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1156 the GNAT front-end in protected object subprograms. */
1157
1158 if (i < len0 + 3
1159 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1160 {
1161 /* Backtrack a bit up until we reach either the begining of
1162 the encoded name, or "__". Make sure that we only find
1163 digits or lowercase characters. */
1164 const char *ptr = encoded + i - 1;
1165
1166 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1167 ptr--;
1168 if (ptr < encoded
1169 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1170 i++;
1171 }
1172
1173 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1174 {
1175 /* This is a X[bn]* sequence not separated from the previous
1176 part of the name with a non-alpha-numeric character (in other
1177 words, immediately following an alpha-numeric character), then
1178 verify that it is placed at the end of the encoded name. If
1179 not, then the encoding is not valid and we should abort the
1180 decoding. Otherwise, just skip it, it is used in body-nested
1181 package names. */
1182 do
1183 i += 1;
1184 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1185 if (i < len0)
1186 goto Suppress;
1187 }
1188 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1189 {
1190 /* Replace '__' by '.'. */
1191 decoded[j] = '.';
1192 at_start_name = 1;
1193 i += 2;
1194 j += 1;
1195 }
1196 else
1197 {
1198 /* It's a character part of the decoded name, so just copy it
1199 over. */
1200 decoded[j] = encoded[i];
1201 i += 1;
1202 j += 1;
1203 }
1204 }
1205 decoded.resize (j);
1206
1207 /* Decoded names should never contain any uppercase character.
1208 Double-check this, and abort the decoding if we find one. */
1209
1210 for (i = 0; i < decoded.length(); ++i)
1211 if (isupper (decoded[i]) || decoded[i] == ' ')
1212 goto Suppress;
1213
1214 return decoded;
1215
1216 Suppress:
1217 if (!wrap)
1218 return {};
1219
1220 if (encoded[0] == '<')
1221 decoded = encoded;
1222 else
1223 decoded = '<' + std::string(encoded) + '>';
1224 return decoded;
1225 }
1226
1227 /* Table for keeping permanent unique copies of decoded names. Once
1228 allocated, names in this table are never released. While this is a
1229 storage leak, it should not be significant unless there are massive
1230 changes in the set of decoded names in successive versions of a
1231 symbol table loaded during a single session. */
1232 static struct htab *decoded_names_store;
1233
1234 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1235 in the language-specific part of GSYMBOL, if it has not been
1236 previously computed. Tries to save the decoded name in the same
1237 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1238 in any case, the decoded symbol has a lifetime at least that of
1239 GSYMBOL).
1240 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1241 const, but nevertheless modified to a semantically equivalent form
1242 when a decoded name is cached in it. */
1243
1244 const char *
1245 ada_decode_symbol (const struct general_symbol_info *arg)
1246 {
1247 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1248 const char **resultp =
1249 &gsymbol->language_specific.demangled_name;
1250
1251 if (!gsymbol->ada_mangled)
1252 {
1253 std::string decoded = ada_decode (gsymbol->linkage_name ());
1254 struct obstack *obstack = gsymbol->language_specific.obstack;
1255
1256 gsymbol->ada_mangled = 1;
1257
1258 if (obstack != NULL)
1259 *resultp = obstack_strdup (obstack, decoded.c_str ());
1260 else
1261 {
1262 /* Sometimes, we can't find a corresponding objfile, in
1263 which case, we put the result on the heap. Since we only
1264 decode when needed, we hope this usually does not cause a
1265 significant memory leak (FIXME). */
1266
1267 char **slot = (char **) htab_find_slot (decoded_names_store,
1268 decoded.c_str (), INSERT);
1269
1270 if (*slot == NULL)
1271 *slot = xstrdup (decoded.c_str ());
1272 *resultp = *slot;
1273 }
1274 }
1275
1276 return *resultp;
1277 }
1278
1279 static char *
1280 ada_la_decode (const char *encoded, int options)
1281 {
1282 return xstrdup (ada_decode (encoded).c_str ());
1283 }
1284
1285 \f
1286
1287 /* Arrays */
1288
1289 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1290 generated by the GNAT compiler to describe the index type used
1291 for each dimension of an array, check whether it follows the latest
1292 known encoding. If not, fix it up to conform to the latest encoding.
1293 Otherwise, do nothing. This function also does nothing if
1294 INDEX_DESC_TYPE is NULL.
1295
1296 The GNAT encoding used to describe the array index type evolved a bit.
1297 Initially, the information would be provided through the name of each
1298 field of the structure type only, while the type of these fields was
1299 described as unspecified and irrelevant. The debugger was then expected
1300 to perform a global type lookup using the name of that field in order
1301 to get access to the full index type description. Because these global
1302 lookups can be very expensive, the encoding was later enhanced to make
1303 the global lookup unnecessary by defining the field type as being
1304 the full index type description.
1305
1306 The purpose of this routine is to allow us to support older versions
1307 of the compiler by detecting the use of the older encoding, and by
1308 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1309 we essentially replace each field's meaningless type by the associated
1310 index subtype). */
1311
1312 void
1313 ada_fixup_array_indexes_type (struct type *index_desc_type)
1314 {
1315 int i;
1316
1317 if (index_desc_type == NULL)
1318 return;
1319 gdb_assert (index_desc_type->num_fields () > 0);
1320
1321 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1322 to check one field only, no need to check them all). If not, return
1323 now.
1324
1325 If our INDEX_DESC_TYPE was generated using the older encoding,
1326 the field type should be a meaningless integer type whose name
1327 is not equal to the field name. */
1328 if (index_desc_type->field (0).type ()->name () != NULL
1329 && strcmp (index_desc_type->field (0).type ()->name (),
1330 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1331 return;
1332
1333 /* Fixup each field of INDEX_DESC_TYPE. */
1334 for (i = 0; i < index_desc_type->num_fields (); i++)
1335 {
1336 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1337 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1338
1339 if (raw_type)
1340 index_desc_type->field (i).set_type (raw_type);
1341 }
1342 }
1343
1344 /* The desc_* routines return primitive portions of array descriptors
1345 (fat pointers). */
1346
1347 /* The descriptor or array type, if any, indicated by TYPE; removes
1348 level of indirection, if needed. */
1349
1350 static struct type *
1351 desc_base_type (struct type *type)
1352 {
1353 if (type == NULL)
1354 return NULL;
1355 type = ada_check_typedef (type);
1356 if (type->code () == TYPE_CODE_TYPEDEF)
1357 type = ada_typedef_target_type (type);
1358
1359 if (type != NULL
1360 && (type->code () == TYPE_CODE_PTR
1361 || type->code () == TYPE_CODE_REF))
1362 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1363 else
1364 return type;
1365 }
1366
1367 /* True iff TYPE indicates a "thin" array pointer type. */
1368
1369 static int
1370 is_thin_pntr (struct type *type)
1371 {
1372 return
1373 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1374 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1375 }
1376
1377 /* The descriptor type for thin pointer type TYPE. */
1378
1379 static struct type *
1380 thin_descriptor_type (struct type *type)
1381 {
1382 struct type *base_type = desc_base_type (type);
1383
1384 if (base_type == NULL)
1385 return NULL;
1386 if (is_suffix (ada_type_name (base_type), "___XVE"))
1387 return base_type;
1388 else
1389 {
1390 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1391
1392 if (alt_type == NULL)
1393 return base_type;
1394 else
1395 return alt_type;
1396 }
1397 }
1398
1399 /* A pointer to the array data for thin-pointer value VAL. */
1400
1401 static struct value *
1402 thin_data_pntr (struct value *val)
1403 {
1404 struct type *type = ada_check_typedef (value_type (val));
1405 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1406
1407 data_type = lookup_pointer_type (data_type);
1408
1409 if (type->code () == TYPE_CODE_PTR)
1410 return value_cast (data_type, value_copy (val));
1411 else
1412 return value_from_longest (data_type, value_address (val));
1413 }
1414
1415 /* True iff TYPE indicates a "thick" array pointer type. */
1416
1417 static int
1418 is_thick_pntr (struct type *type)
1419 {
1420 type = desc_base_type (type);
1421 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1422 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1423 }
1424
1425 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1426 pointer to one, the type of its bounds data; otherwise, NULL. */
1427
1428 static struct type *
1429 desc_bounds_type (struct type *type)
1430 {
1431 struct type *r;
1432
1433 type = desc_base_type (type);
1434
1435 if (type == NULL)
1436 return NULL;
1437 else if (is_thin_pntr (type))
1438 {
1439 type = thin_descriptor_type (type);
1440 if (type == NULL)
1441 return NULL;
1442 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1443 if (r != NULL)
1444 return ada_check_typedef (r);
1445 }
1446 else if (type->code () == TYPE_CODE_STRUCT)
1447 {
1448 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1449 if (r != NULL)
1450 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1451 }
1452 return NULL;
1453 }
1454
1455 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1456 one, a pointer to its bounds data. Otherwise NULL. */
1457
1458 static struct value *
1459 desc_bounds (struct value *arr)
1460 {
1461 struct type *type = ada_check_typedef (value_type (arr));
1462
1463 if (is_thin_pntr (type))
1464 {
1465 struct type *bounds_type =
1466 desc_bounds_type (thin_descriptor_type (type));
1467 LONGEST addr;
1468
1469 if (bounds_type == NULL)
1470 error (_("Bad GNAT array descriptor"));
1471
1472 /* NOTE: The following calculation is not really kosher, but
1473 since desc_type is an XVE-encoded type (and shouldn't be),
1474 the correct calculation is a real pain. FIXME (and fix GCC). */
1475 if (type->code () == TYPE_CODE_PTR)
1476 addr = value_as_long (arr);
1477 else
1478 addr = value_address (arr);
1479
1480 return
1481 value_from_longest (lookup_pointer_type (bounds_type),
1482 addr - TYPE_LENGTH (bounds_type));
1483 }
1484
1485 else if (is_thick_pntr (type))
1486 {
1487 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1488 _("Bad GNAT array descriptor"));
1489 struct type *p_bounds_type = value_type (p_bounds);
1490
1491 if (p_bounds_type
1492 && p_bounds_type->code () == TYPE_CODE_PTR)
1493 {
1494 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1495
1496 if (target_type->is_stub ())
1497 p_bounds = value_cast (lookup_pointer_type
1498 (ada_check_typedef (target_type)),
1499 p_bounds);
1500 }
1501 else
1502 error (_("Bad GNAT array descriptor"));
1503
1504 return p_bounds;
1505 }
1506 else
1507 return NULL;
1508 }
1509
1510 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1511 position of the field containing the address of the bounds data. */
1512
1513 static int
1514 fat_pntr_bounds_bitpos (struct type *type)
1515 {
1516 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1517 }
1518
1519 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1520 size of the field containing the address of the bounds data. */
1521
1522 static int
1523 fat_pntr_bounds_bitsize (struct type *type)
1524 {
1525 type = desc_base_type (type);
1526
1527 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1528 return TYPE_FIELD_BITSIZE (type, 1);
1529 else
1530 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1531 }
1532
1533 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1534 pointer to one, the type of its array data (a array-with-no-bounds type);
1535 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1536 data. */
1537
1538 static struct type *
1539 desc_data_target_type (struct type *type)
1540 {
1541 type = desc_base_type (type);
1542
1543 /* NOTE: The following is bogus; see comment in desc_bounds. */
1544 if (is_thin_pntr (type))
1545 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1546 else if (is_thick_pntr (type))
1547 {
1548 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1549
1550 if (data_type
1551 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1552 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1559 its array data. */
1560
1561 static struct value *
1562 desc_data (struct value *arr)
1563 {
1564 struct type *type = value_type (arr);
1565
1566 if (is_thin_pntr (type))
1567 return thin_data_pntr (arr);
1568 else if (is_thick_pntr (type))
1569 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1570 _("Bad GNAT array descriptor"));
1571 else
1572 return NULL;
1573 }
1574
1575
1576 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1577 position of the field containing the address of the data. */
1578
1579 static int
1580 fat_pntr_data_bitpos (struct type *type)
1581 {
1582 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1583 }
1584
1585 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1586 size of the field containing the address of the data. */
1587
1588 static int
1589 fat_pntr_data_bitsize (struct type *type)
1590 {
1591 type = desc_base_type (type);
1592
1593 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1594 return TYPE_FIELD_BITSIZE (type, 0);
1595 else
1596 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1597 }
1598
1599 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1600 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1601 bound, if WHICH is 1. The first bound is I=1. */
1602
1603 static struct value *
1604 desc_one_bound (struct value *bounds, int i, int which)
1605 {
1606 char bound_name[20];
1607 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1608 which ? 'U' : 'L', i - 1);
1609 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1610 _("Bad GNAT array descriptor bounds"));
1611 }
1612
1613 /* If BOUNDS is an array-bounds structure type, return the bit position
1614 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1615 bound, if WHICH is 1. The first bound is I=1. */
1616
1617 static int
1618 desc_bound_bitpos (struct type *type, int i, int which)
1619 {
1620 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1621 }
1622
1623 /* If BOUNDS is an array-bounds structure type, return the bit field size
1624 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1625 bound, if WHICH is 1. The first bound is I=1. */
1626
1627 static int
1628 desc_bound_bitsize (struct type *type, int i, int which)
1629 {
1630 type = desc_base_type (type);
1631
1632 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1633 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1634 else
1635 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1636 }
1637
1638 /* If TYPE is the type of an array-bounds structure, the type of its
1639 Ith bound (numbering from 1). Otherwise, NULL. */
1640
1641 static struct type *
1642 desc_index_type (struct type *type, int i)
1643 {
1644 type = desc_base_type (type);
1645
1646 if (type->code () == TYPE_CODE_STRUCT)
1647 {
1648 char bound_name[20];
1649 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1650 return lookup_struct_elt_type (type, bound_name, 1);
1651 }
1652 else
1653 return NULL;
1654 }
1655
1656 /* The number of index positions in the array-bounds type TYPE.
1657 Return 0 if TYPE is NULL. */
1658
1659 static int
1660 desc_arity (struct type *type)
1661 {
1662 type = desc_base_type (type);
1663
1664 if (type != NULL)
1665 return type->num_fields () / 2;
1666 return 0;
1667 }
1668
1669 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1670 an array descriptor type (representing an unconstrained array
1671 type). */
1672
1673 static int
1674 ada_is_direct_array_type (struct type *type)
1675 {
1676 if (type == NULL)
1677 return 0;
1678 type = ada_check_typedef (type);
1679 return (type->code () == TYPE_CODE_ARRAY
1680 || ada_is_array_descriptor_type (type));
1681 }
1682
1683 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1684 * to one. */
1685
1686 static int
1687 ada_is_array_type (struct type *type)
1688 {
1689 while (type != NULL
1690 && (type->code () == TYPE_CODE_PTR
1691 || type->code () == TYPE_CODE_REF))
1692 type = TYPE_TARGET_TYPE (type);
1693 return ada_is_direct_array_type (type);
1694 }
1695
1696 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1697
1698 int
1699 ada_is_simple_array_type (struct type *type)
1700 {
1701 if (type == NULL)
1702 return 0;
1703 type = ada_check_typedef (type);
1704 return (type->code () == TYPE_CODE_ARRAY
1705 || (type->code () == TYPE_CODE_PTR
1706 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1707 == TYPE_CODE_ARRAY)));
1708 }
1709
1710 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1711
1712 int
1713 ada_is_array_descriptor_type (struct type *type)
1714 {
1715 struct type *data_type = desc_data_target_type (type);
1716
1717 if (type == NULL)
1718 return 0;
1719 type = ada_check_typedef (type);
1720 return (data_type != NULL
1721 && data_type->code () == TYPE_CODE_ARRAY
1722 && desc_arity (desc_bounds_type (type)) > 0);
1723 }
1724
1725 /* Non-zero iff type is a partially mal-formed GNAT array
1726 descriptor. FIXME: This is to compensate for some problems with
1727 debugging output from GNAT. Re-examine periodically to see if it
1728 is still needed. */
1729
1730 int
1731 ada_is_bogus_array_descriptor (struct type *type)
1732 {
1733 return
1734 type != NULL
1735 && type->code () == TYPE_CODE_STRUCT
1736 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1737 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1738 && !ada_is_array_descriptor_type (type);
1739 }
1740
1741
1742 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1743 (fat pointer) returns the type of the array data described---specifically,
1744 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1745 in from the descriptor; otherwise, they are left unspecified. If
1746 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1747 returns NULL. The result is simply the type of ARR if ARR is not
1748 a descriptor. */
1749
1750 static struct type *
1751 ada_type_of_array (struct value *arr, int bounds)
1752 {
1753 if (ada_is_constrained_packed_array_type (value_type (arr)))
1754 return decode_constrained_packed_array_type (value_type (arr));
1755
1756 if (!ada_is_array_descriptor_type (value_type (arr)))
1757 return value_type (arr);
1758
1759 if (!bounds)
1760 {
1761 struct type *array_type =
1762 ada_check_typedef (desc_data_target_type (value_type (arr)));
1763
1764 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1765 TYPE_FIELD_BITSIZE (array_type, 0) =
1766 decode_packed_array_bitsize (value_type (arr));
1767
1768 return array_type;
1769 }
1770 else
1771 {
1772 struct type *elt_type;
1773 int arity;
1774 struct value *descriptor;
1775
1776 elt_type = ada_array_element_type (value_type (arr), -1);
1777 arity = ada_array_arity (value_type (arr));
1778
1779 if (elt_type == NULL || arity == 0)
1780 return ada_check_typedef (value_type (arr));
1781
1782 descriptor = desc_bounds (arr);
1783 if (value_as_long (descriptor) == 0)
1784 return NULL;
1785 while (arity > 0)
1786 {
1787 struct type *range_type = alloc_type_copy (value_type (arr));
1788 struct type *array_type = alloc_type_copy (value_type (arr));
1789 struct value *low = desc_one_bound (descriptor, arity, 0);
1790 struct value *high = desc_one_bound (descriptor, arity, 1);
1791
1792 arity -= 1;
1793 create_static_range_type (range_type, value_type (low),
1794 longest_to_int (value_as_long (low)),
1795 longest_to_int (value_as_long (high)));
1796 elt_type = create_array_type (array_type, elt_type, range_type);
1797
1798 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1799 {
1800 /* We need to store the element packed bitsize, as well as
1801 recompute the array size, because it was previously
1802 computed based on the unpacked element size. */
1803 LONGEST lo = value_as_long (low);
1804 LONGEST hi = value_as_long (high);
1805
1806 TYPE_FIELD_BITSIZE (elt_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1808 /* If the array has no element, then the size is already
1809 zero, and does not need to be recomputed. */
1810 if (lo < hi)
1811 {
1812 int array_bitsize =
1813 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1814
1815 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1816 }
1817 }
1818 }
1819
1820 return lookup_pointer_type (elt_type);
1821 }
1822 }
1823
1824 /* If ARR does not represent an array, returns ARR unchanged.
1825 Otherwise, returns either a standard GDB array with bounds set
1826 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1827 GDB array. Returns NULL if ARR is a null fat pointer. */
1828
1829 struct value *
1830 ada_coerce_to_simple_array_ptr (struct value *arr)
1831 {
1832 if (ada_is_array_descriptor_type (value_type (arr)))
1833 {
1834 struct type *arrType = ada_type_of_array (arr, 1);
1835
1836 if (arrType == NULL)
1837 return NULL;
1838 return value_cast (arrType, value_copy (desc_data (arr)));
1839 }
1840 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1841 return decode_constrained_packed_array (arr);
1842 else
1843 return arr;
1844 }
1845
1846 /* If ARR does not represent an array, returns ARR unchanged.
1847 Otherwise, returns a standard GDB array describing ARR (which may
1848 be ARR itself if it already is in the proper form). */
1849
1850 struct value *
1851 ada_coerce_to_simple_array (struct value *arr)
1852 {
1853 if (ada_is_array_descriptor_type (value_type (arr)))
1854 {
1855 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1856
1857 if (arrVal == NULL)
1858 error (_("Bounds unavailable for null array pointer."));
1859 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1860 return value_ind (arrVal);
1861 }
1862 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1863 return decode_constrained_packed_array (arr);
1864 else
1865 return arr;
1866 }
1867
1868 /* If TYPE represents a GNAT array type, return it translated to an
1869 ordinary GDB array type (possibly with BITSIZE fields indicating
1870 packing). For other types, is the identity. */
1871
1872 struct type *
1873 ada_coerce_to_simple_array_type (struct type *type)
1874 {
1875 if (ada_is_constrained_packed_array_type (type))
1876 return decode_constrained_packed_array_type (type);
1877
1878 if (ada_is_array_descriptor_type (type))
1879 return ada_check_typedef (desc_data_target_type (type));
1880
1881 return type;
1882 }
1883
1884 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1885
1886 static int
1887 ada_is_gnat_encoded_packed_array_type (struct type *type)
1888 {
1889 if (type == NULL)
1890 return 0;
1891 type = desc_base_type (type);
1892 type = ada_check_typedef (type);
1893 return
1894 ada_type_name (type) != NULL
1895 && strstr (ada_type_name (type), "___XP") != NULL;
1896 }
1897
1898 /* Non-zero iff TYPE represents a standard GNAT constrained
1899 packed-array type. */
1900
1901 int
1902 ada_is_constrained_packed_array_type (struct type *type)
1903 {
1904 return ada_is_gnat_encoded_packed_array_type (type)
1905 && !ada_is_array_descriptor_type (type);
1906 }
1907
1908 /* Non-zero iff TYPE represents an array descriptor for a
1909 unconstrained packed-array type. */
1910
1911 static int
1912 ada_is_unconstrained_packed_array_type (struct type *type)
1913 {
1914 if (!ada_is_array_descriptor_type (type))
1915 return 0;
1916
1917 if (ada_is_gnat_encoded_packed_array_type (type))
1918 return 1;
1919
1920 /* If we saw GNAT encodings, then the above code is sufficient.
1921 However, with minimal encodings, we will just have a thick
1922 pointer instead. */
1923 if (is_thick_pntr (type))
1924 {
1925 type = desc_base_type (type);
1926 /* The structure's first field is a pointer to an array, so this
1927 fetches the array type. */
1928 type = TYPE_TARGET_TYPE (type->field (0).type ());
1929 /* Now we can see if the array elements are packed. */
1930 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1931 }
1932
1933 return 0;
1934 }
1935
1936 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1937 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1938
1939 static bool
1940 ada_is_any_packed_array_type (struct type *type)
1941 {
1942 return (ada_is_constrained_packed_array_type (type)
1943 || (type->code () == TYPE_CODE_ARRAY
1944 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1945 }
1946
1947 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1948 return the size of its elements in bits. */
1949
1950 static long
1951 decode_packed_array_bitsize (struct type *type)
1952 {
1953 const char *raw_name;
1954 const char *tail;
1955 long bits;
1956
1957 /* Access to arrays implemented as fat pointers are encoded as a typedef
1958 of the fat pointer type. We need the name of the fat pointer type
1959 to do the decoding, so strip the typedef layer. */
1960 if (type->code () == TYPE_CODE_TYPEDEF)
1961 type = ada_typedef_target_type (type);
1962
1963 raw_name = ada_type_name (ada_check_typedef (type));
1964 if (!raw_name)
1965 raw_name = ada_type_name (desc_base_type (type));
1966
1967 if (!raw_name)
1968 return 0;
1969
1970 tail = strstr (raw_name, "___XP");
1971 if (tail == nullptr)
1972 {
1973 gdb_assert (is_thick_pntr (type));
1974 /* The structure's first field is a pointer to an array, so this
1975 fetches the array type. */
1976 type = TYPE_TARGET_TYPE (type->field (0).type ());
1977 /* Now we can see if the array elements are packed. */
1978 return TYPE_FIELD_BITSIZE (type, 0);
1979 }
1980
1981 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1982 {
1983 lim_warning
1984 (_("could not understand bit size information on packed array"));
1985 return 0;
1986 }
1987
1988 return bits;
1989 }
1990
1991 /* Given that TYPE is a standard GDB array type with all bounds filled
1992 in, and that the element size of its ultimate scalar constituents
1993 (that is, either its elements, or, if it is an array of arrays, its
1994 elements' elements, etc.) is *ELT_BITS, return an identical type,
1995 but with the bit sizes of its elements (and those of any
1996 constituent arrays) recorded in the BITSIZE components of its
1997 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1998 in bits.
1999
2000 Note that, for arrays whose index type has an XA encoding where
2001 a bound references a record discriminant, getting that discriminant,
2002 and therefore the actual value of that bound, is not possible
2003 because none of the given parameters gives us access to the record.
2004 This function assumes that it is OK in the context where it is being
2005 used to return an array whose bounds are still dynamic and where
2006 the length is arbitrary. */
2007
2008 static struct type *
2009 constrained_packed_array_type (struct type *type, long *elt_bits)
2010 {
2011 struct type *new_elt_type;
2012 struct type *new_type;
2013 struct type *index_type_desc;
2014 struct type *index_type;
2015 LONGEST low_bound, high_bound;
2016
2017 type = ada_check_typedef (type);
2018 if (type->code () != TYPE_CODE_ARRAY)
2019 return type;
2020
2021 index_type_desc = ada_find_parallel_type (type, "___XA");
2022 if (index_type_desc)
2023 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2024 NULL);
2025 else
2026 index_type = type->index_type ();
2027
2028 new_type = alloc_type_copy (type);
2029 new_elt_type =
2030 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2031 elt_bits);
2032 create_array_type (new_type, new_elt_type, index_type);
2033 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2034 new_type->set_name (ada_type_name (type));
2035
2036 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2037 && is_dynamic_type (check_typedef (index_type)))
2038 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2039 low_bound = high_bound = 0;
2040 if (high_bound < low_bound)
2041 *elt_bits = TYPE_LENGTH (new_type) = 0;
2042 else
2043 {
2044 *elt_bits *= (high_bound - low_bound + 1);
2045 TYPE_LENGTH (new_type) =
2046 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2047 }
2048
2049 new_type->set_is_fixed_instance (true);
2050 return new_type;
2051 }
2052
2053 /* The array type encoded by TYPE, where
2054 ada_is_constrained_packed_array_type (TYPE). */
2055
2056 static struct type *
2057 decode_constrained_packed_array_type (struct type *type)
2058 {
2059 const char *raw_name = ada_type_name (ada_check_typedef (type));
2060 char *name;
2061 const char *tail;
2062 struct type *shadow_type;
2063 long bits;
2064
2065 if (!raw_name)
2066 raw_name = ada_type_name (desc_base_type (type));
2067
2068 if (!raw_name)
2069 return NULL;
2070
2071 name = (char *) alloca (strlen (raw_name) + 1);
2072 tail = strstr (raw_name, "___XP");
2073 type = desc_base_type (type);
2074
2075 memcpy (name, raw_name, tail - raw_name);
2076 name[tail - raw_name] = '\000';
2077
2078 shadow_type = ada_find_parallel_type_with_name (type, name);
2079
2080 if (shadow_type == NULL)
2081 {
2082 lim_warning (_("could not find bounds information on packed array"));
2083 return NULL;
2084 }
2085 shadow_type = check_typedef (shadow_type);
2086
2087 if (shadow_type->code () != TYPE_CODE_ARRAY)
2088 {
2089 lim_warning (_("could not understand bounds "
2090 "information on packed array"));
2091 return NULL;
2092 }
2093
2094 bits = decode_packed_array_bitsize (type);
2095 return constrained_packed_array_type (shadow_type, &bits);
2096 }
2097
2098 /* Helper function for decode_constrained_packed_array. Set the field
2099 bitsize on a series of packed arrays. Returns the number of
2100 elements in TYPE. */
2101
2102 static LONGEST
2103 recursively_update_array_bitsize (struct type *type)
2104 {
2105 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2106
2107 LONGEST low, high;
2108 if (!get_discrete_bounds (type->index_type (), &low, &high)
2109 || low > high)
2110 return 0;
2111 LONGEST our_len = high - low + 1;
2112
2113 struct type *elt_type = TYPE_TARGET_TYPE (type);
2114 if (elt_type->code () == TYPE_CODE_ARRAY)
2115 {
2116 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2117 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2118 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2119
2120 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2121 / HOST_CHAR_BIT);
2122 }
2123
2124 return our_len;
2125 }
2126
2127 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2128 array, returns a simple array that denotes that array. Its type is a
2129 standard GDB array type except that the BITSIZEs of the array
2130 target types are set to the number of bits in each element, and the
2131 type length is set appropriately. */
2132
2133 static struct value *
2134 decode_constrained_packed_array (struct value *arr)
2135 {
2136 struct type *type;
2137
2138 /* If our value is a pointer, then dereference it. Likewise if
2139 the value is a reference. Make sure that this operation does not
2140 cause the target type to be fixed, as this would indirectly cause
2141 this array to be decoded. The rest of the routine assumes that
2142 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2143 and "value_ind" routines to perform the dereferencing, as opposed
2144 to using "ada_coerce_ref" or "ada_value_ind". */
2145 arr = coerce_ref (arr);
2146 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2147 arr = value_ind (arr);
2148
2149 type = decode_constrained_packed_array_type (value_type (arr));
2150 if (type == NULL)
2151 {
2152 error (_("can't unpack array"));
2153 return NULL;
2154 }
2155
2156 /* Decoding the packed array type could not correctly set the field
2157 bitsizes for any dimension except the innermost, because the
2158 bounds may be variable and were not passed to that function. So,
2159 we further resolve the array bounds here and then update the
2160 sizes. */
2161 const gdb_byte *valaddr = value_contents_for_printing (arr);
2162 CORE_ADDR address = value_address (arr);
2163 gdb::array_view<const gdb_byte> view
2164 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2165 type = resolve_dynamic_type (type, view, address);
2166 recursively_update_array_bitsize (type);
2167
2168 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2169 && ada_is_modular_type (value_type (arr)))
2170 {
2171 /* This is a (right-justified) modular type representing a packed
2172 array with no wrapper. In order to interpret the value through
2173 the (left-justified) packed array type we just built, we must
2174 first left-justify it. */
2175 int bit_size, bit_pos;
2176 ULONGEST mod;
2177
2178 mod = ada_modulus (value_type (arr)) - 1;
2179 bit_size = 0;
2180 while (mod > 0)
2181 {
2182 bit_size += 1;
2183 mod >>= 1;
2184 }
2185 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2186 arr = ada_value_primitive_packed_val (arr, NULL,
2187 bit_pos / HOST_CHAR_BIT,
2188 bit_pos % HOST_CHAR_BIT,
2189 bit_size,
2190 type);
2191 }
2192
2193 return coerce_unspec_val_to_type (arr, type);
2194 }
2195
2196
2197 /* The value of the element of packed array ARR at the ARITY indices
2198 given in IND. ARR must be a simple array. */
2199
2200 static struct value *
2201 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2202 {
2203 int i;
2204 int bits, elt_off, bit_off;
2205 long elt_total_bit_offset;
2206 struct type *elt_type;
2207 struct value *v;
2208
2209 bits = 0;
2210 elt_total_bit_offset = 0;
2211 elt_type = ada_check_typedef (value_type (arr));
2212 for (i = 0; i < arity; i += 1)
2213 {
2214 if (elt_type->code () != TYPE_CODE_ARRAY
2215 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2216 error
2217 (_("attempt to do packed indexing of "
2218 "something other than a packed array"));
2219 else
2220 {
2221 struct type *range_type = elt_type->index_type ();
2222 LONGEST lowerbound, upperbound;
2223 LONGEST idx;
2224
2225 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2226 {
2227 lim_warning (_("don't know bounds of array"));
2228 lowerbound = upperbound = 0;
2229 }
2230
2231 idx = pos_atr (ind[i]);
2232 if (idx < lowerbound || idx > upperbound)
2233 lim_warning (_("packed array index %ld out of bounds"),
2234 (long) idx);
2235 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2236 elt_total_bit_offset += (idx - lowerbound) * bits;
2237 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2238 }
2239 }
2240 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2241 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2242
2243 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2244 bits, elt_type);
2245 return v;
2246 }
2247
2248 /* Non-zero iff TYPE includes negative integer values. */
2249
2250 static int
2251 has_negatives (struct type *type)
2252 {
2253 switch (type->code ())
2254 {
2255 default:
2256 return 0;
2257 case TYPE_CODE_INT:
2258 return !type->is_unsigned ();
2259 case TYPE_CODE_RANGE:
2260 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2261 }
2262 }
2263
2264 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2265 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2266 the unpacked buffer.
2267
2268 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2269 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2270
2271 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2272 zero otherwise.
2273
2274 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2275
2276 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2277
2278 static void
2279 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2280 gdb_byte *unpacked, int unpacked_len,
2281 int is_big_endian, int is_signed_type,
2282 int is_scalar)
2283 {
2284 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2285 int src_idx; /* Index into the source area */
2286 int src_bytes_left; /* Number of source bytes left to process. */
2287 int srcBitsLeft; /* Number of source bits left to move */
2288 int unusedLS; /* Number of bits in next significant
2289 byte of source that are unused */
2290
2291 int unpacked_idx; /* Index into the unpacked buffer */
2292 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2293
2294 unsigned long accum; /* Staging area for bits being transferred */
2295 int accumSize; /* Number of meaningful bits in accum */
2296 unsigned char sign;
2297
2298 /* Transmit bytes from least to most significant; delta is the direction
2299 the indices move. */
2300 int delta = is_big_endian ? -1 : 1;
2301
2302 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2303 bits from SRC. .*/
2304 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2305 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2306 bit_size, unpacked_len);
2307
2308 srcBitsLeft = bit_size;
2309 src_bytes_left = src_len;
2310 unpacked_bytes_left = unpacked_len;
2311 sign = 0;
2312
2313 if (is_big_endian)
2314 {
2315 src_idx = src_len - 1;
2316 if (is_signed_type
2317 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2318 sign = ~0;
2319
2320 unusedLS =
2321 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2322 % HOST_CHAR_BIT;
2323
2324 if (is_scalar)
2325 {
2326 accumSize = 0;
2327 unpacked_idx = unpacked_len - 1;
2328 }
2329 else
2330 {
2331 /* Non-scalar values must be aligned at a byte boundary... */
2332 accumSize =
2333 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2334 /* ... And are placed at the beginning (most-significant) bytes
2335 of the target. */
2336 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2337 unpacked_bytes_left = unpacked_idx + 1;
2338 }
2339 }
2340 else
2341 {
2342 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2343
2344 src_idx = unpacked_idx = 0;
2345 unusedLS = bit_offset;
2346 accumSize = 0;
2347
2348 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2349 sign = ~0;
2350 }
2351
2352 accum = 0;
2353 while (src_bytes_left > 0)
2354 {
2355 /* Mask for removing bits of the next source byte that are not
2356 part of the value. */
2357 unsigned int unusedMSMask =
2358 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2359 1;
2360 /* Sign-extend bits for this byte. */
2361 unsigned int signMask = sign & ~unusedMSMask;
2362
2363 accum |=
2364 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2365 accumSize += HOST_CHAR_BIT - unusedLS;
2366 if (accumSize >= HOST_CHAR_BIT)
2367 {
2368 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2369 accumSize -= HOST_CHAR_BIT;
2370 accum >>= HOST_CHAR_BIT;
2371 unpacked_bytes_left -= 1;
2372 unpacked_idx += delta;
2373 }
2374 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2375 unusedLS = 0;
2376 src_bytes_left -= 1;
2377 src_idx += delta;
2378 }
2379 while (unpacked_bytes_left > 0)
2380 {
2381 accum |= sign << accumSize;
2382 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2383 accumSize -= HOST_CHAR_BIT;
2384 if (accumSize < 0)
2385 accumSize = 0;
2386 accum >>= HOST_CHAR_BIT;
2387 unpacked_bytes_left -= 1;
2388 unpacked_idx += delta;
2389 }
2390 }
2391
2392 /* Create a new value of type TYPE from the contents of OBJ starting
2393 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2394 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2395 assigning through the result will set the field fetched from.
2396 VALADDR is ignored unless OBJ is NULL, in which case,
2397 VALADDR+OFFSET must address the start of storage containing the
2398 packed value. The value returned in this case is never an lval.
2399 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2400
2401 struct value *
2402 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2403 long offset, int bit_offset, int bit_size,
2404 struct type *type)
2405 {
2406 struct value *v;
2407 const gdb_byte *src; /* First byte containing data to unpack */
2408 gdb_byte *unpacked;
2409 const int is_scalar = is_scalar_type (type);
2410 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2411 gdb::byte_vector staging;
2412
2413 type = ada_check_typedef (type);
2414
2415 if (obj == NULL)
2416 src = valaddr + offset;
2417 else
2418 src = value_contents (obj) + offset;
2419
2420 if (is_dynamic_type (type))
2421 {
2422 /* The length of TYPE might by dynamic, so we need to resolve
2423 TYPE in order to know its actual size, which we then use
2424 to create the contents buffer of the value we return.
2425 The difficulty is that the data containing our object is
2426 packed, and therefore maybe not at a byte boundary. So, what
2427 we do, is unpack the data into a byte-aligned buffer, and then
2428 use that buffer as our object's value for resolving the type. */
2429 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2430 staging.resize (staging_len);
2431
2432 ada_unpack_from_contents (src, bit_offset, bit_size,
2433 staging.data (), staging.size (),
2434 is_big_endian, has_negatives (type),
2435 is_scalar);
2436 type = resolve_dynamic_type (type, staging, 0);
2437 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2438 {
2439 /* This happens when the length of the object is dynamic,
2440 and is actually smaller than the space reserved for it.
2441 For instance, in an array of variant records, the bit_size
2442 we're given is the array stride, which is constant and
2443 normally equal to the maximum size of its element.
2444 But, in reality, each element only actually spans a portion
2445 of that stride. */
2446 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2447 }
2448 }
2449
2450 if (obj == NULL)
2451 {
2452 v = allocate_value (type);
2453 src = valaddr + offset;
2454 }
2455 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2456 {
2457 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2458 gdb_byte *buf;
2459
2460 v = value_at (type, value_address (obj) + offset);
2461 buf = (gdb_byte *) alloca (src_len);
2462 read_memory (value_address (v), buf, src_len);
2463 src = buf;
2464 }
2465 else
2466 {
2467 v = allocate_value (type);
2468 src = value_contents (obj) + offset;
2469 }
2470
2471 if (obj != NULL)
2472 {
2473 long new_offset = offset;
2474
2475 set_value_component_location (v, obj);
2476 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2477 set_value_bitsize (v, bit_size);
2478 if (value_bitpos (v) >= HOST_CHAR_BIT)
2479 {
2480 ++new_offset;
2481 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2482 }
2483 set_value_offset (v, new_offset);
2484
2485 /* Also set the parent value. This is needed when trying to
2486 assign a new value (in inferior memory). */
2487 set_value_parent (v, obj);
2488 }
2489 else
2490 set_value_bitsize (v, bit_size);
2491 unpacked = value_contents_writeable (v);
2492
2493 if (bit_size == 0)
2494 {
2495 memset (unpacked, 0, TYPE_LENGTH (type));
2496 return v;
2497 }
2498
2499 if (staging.size () == TYPE_LENGTH (type))
2500 {
2501 /* Small short-cut: If we've unpacked the data into a buffer
2502 of the same size as TYPE's length, then we can reuse that,
2503 instead of doing the unpacking again. */
2504 memcpy (unpacked, staging.data (), staging.size ());
2505 }
2506 else
2507 ada_unpack_from_contents (src, bit_offset, bit_size,
2508 unpacked, TYPE_LENGTH (type),
2509 is_big_endian, has_negatives (type), is_scalar);
2510
2511 return v;
2512 }
2513
2514 /* Store the contents of FROMVAL into the location of TOVAL.
2515 Return a new value with the location of TOVAL and contents of
2516 FROMVAL. Handles assignment into packed fields that have
2517 floating-point or non-scalar types. */
2518
2519 static struct value *
2520 ada_value_assign (struct value *toval, struct value *fromval)
2521 {
2522 struct type *type = value_type (toval);
2523 int bits = value_bitsize (toval);
2524
2525 toval = ada_coerce_ref (toval);
2526 fromval = ada_coerce_ref (fromval);
2527
2528 if (ada_is_direct_array_type (value_type (toval)))
2529 toval = ada_coerce_to_simple_array (toval);
2530 if (ada_is_direct_array_type (value_type (fromval)))
2531 fromval = ada_coerce_to_simple_array (fromval);
2532
2533 if (!deprecated_value_modifiable (toval))
2534 error (_("Left operand of assignment is not a modifiable lvalue."));
2535
2536 if (VALUE_LVAL (toval) == lval_memory
2537 && bits > 0
2538 && (type->code () == TYPE_CODE_FLT
2539 || type->code () == TYPE_CODE_STRUCT))
2540 {
2541 int len = (value_bitpos (toval)
2542 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2543 int from_size;
2544 gdb_byte *buffer = (gdb_byte *) alloca (len);
2545 struct value *val;
2546 CORE_ADDR to_addr = value_address (toval);
2547
2548 if (type->code () == TYPE_CODE_FLT)
2549 fromval = value_cast (type, fromval);
2550
2551 read_memory (to_addr, buffer, len);
2552 from_size = value_bitsize (fromval);
2553 if (from_size == 0)
2554 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2555
2556 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2557 ULONGEST from_offset = 0;
2558 if (is_big_endian && is_scalar_type (value_type (fromval)))
2559 from_offset = from_size - bits;
2560 copy_bitwise (buffer, value_bitpos (toval),
2561 value_contents (fromval), from_offset,
2562 bits, is_big_endian);
2563 write_memory_with_notification (to_addr, buffer, len);
2564
2565 val = value_copy (toval);
2566 memcpy (value_contents_raw (val), value_contents (fromval),
2567 TYPE_LENGTH (type));
2568 deprecated_set_value_type (val, type);
2569
2570 return val;
2571 }
2572
2573 return value_assign (toval, fromval);
2574 }
2575
2576
2577 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2578 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2579 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2580 COMPONENT, and not the inferior's memory. The current contents
2581 of COMPONENT are ignored.
2582
2583 Although not part of the initial design, this function also works
2584 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2585 had a null address, and COMPONENT had an address which is equal to
2586 its offset inside CONTAINER. */
2587
2588 static void
2589 value_assign_to_component (struct value *container, struct value *component,
2590 struct value *val)
2591 {
2592 LONGEST offset_in_container =
2593 (LONGEST) (value_address (component) - value_address (container));
2594 int bit_offset_in_container =
2595 value_bitpos (component) - value_bitpos (container);
2596 int bits;
2597
2598 val = value_cast (value_type (component), val);
2599
2600 if (value_bitsize (component) == 0)
2601 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2602 else
2603 bits = value_bitsize (component);
2604
2605 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2606 {
2607 int src_offset;
2608
2609 if (is_scalar_type (check_typedef (value_type (component))))
2610 src_offset
2611 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2612 else
2613 src_offset = 0;
2614 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2615 value_bitpos (container) + bit_offset_in_container,
2616 value_contents (val), src_offset, bits, 1);
2617 }
2618 else
2619 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2620 value_bitpos (container) + bit_offset_in_container,
2621 value_contents (val), 0, bits, 0);
2622 }
2623
2624 /* Determine if TYPE is an access to an unconstrained array. */
2625
2626 bool
2627 ada_is_access_to_unconstrained_array (struct type *type)
2628 {
2629 return (type->code () == TYPE_CODE_TYPEDEF
2630 && is_thick_pntr (ada_typedef_target_type (type)));
2631 }
2632
2633 /* The value of the element of array ARR at the ARITY indices given in IND.
2634 ARR may be either a simple array, GNAT array descriptor, or pointer
2635 thereto. */
2636
2637 struct value *
2638 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2639 {
2640 int k;
2641 struct value *elt;
2642 struct type *elt_type;
2643
2644 elt = ada_coerce_to_simple_array (arr);
2645
2646 elt_type = ada_check_typedef (value_type (elt));
2647 if (elt_type->code () == TYPE_CODE_ARRAY
2648 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2649 return value_subscript_packed (elt, arity, ind);
2650
2651 for (k = 0; k < arity; k += 1)
2652 {
2653 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2654
2655 if (elt_type->code () != TYPE_CODE_ARRAY)
2656 error (_("too many subscripts (%d expected)"), k);
2657
2658 elt = value_subscript (elt, pos_atr (ind[k]));
2659
2660 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2661 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2662 {
2663 /* The element is a typedef to an unconstrained array,
2664 except that the value_subscript call stripped the
2665 typedef layer. The typedef layer is GNAT's way to
2666 specify that the element is, at the source level, an
2667 access to the unconstrained array, rather than the
2668 unconstrained array. So, we need to restore that
2669 typedef layer, which we can do by forcing the element's
2670 type back to its original type. Otherwise, the returned
2671 value is going to be printed as the array, rather
2672 than as an access. Another symptom of the same issue
2673 would be that an expression trying to dereference the
2674 element would also be improperly rejected. */
2675 deprecated_set_value_type (elt, saved_elt_type);
2676 }
2677
2678 elt_type = ada_check_typedef (value_type (elt));
2679 }
2680
2681 return elt;
2682 }
2683
2684 /* Assuming ARR is a pointer to a GDB array, the value of the element
2685 of *ARR at the ARITY indices given in IND.
2686 Does not read the entire array into memory.
2687
2688 Note: Unlike what one would expect, this function is used instead of
2689 ada_value_subscript for basically all non-packed array types. The reason
2690 for this is that a side effect of doing our own pointer arithmetics instead
2691 of relying on value_subscript is that there is no implicit typedef peeling.
2692 This is important for arrays of array accesses, where it allows us to
2693 preserve the fact that the array's element is an array access, where the
2694 access part os encoded in a typedef layer. */
2695
2696 static struct value *
2697 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2698 {
2699 int k;
2700 struct value *array_ind = ada_value_ind (arr);
2701 struct type *type
2702 = check_typedef (value_enclosing_type (array_ind));
2703
2704 if (type->code () == TYPE_CODE_ARRAY
2705 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2706 return value_subscript_packed (array_ind, arity, ind);
2707
2708 for (k = 0; k < arity; k += 1)
2709 {
2710 LONGEST lwb, upb;
2711
2712 if (type->code () != TYPE_CODE_ARRAY)
2713 error (_("too many subscripts (%d expected)"), k);
2714 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2715 value_copy (arr));
2716 get_discrete_bounds (type->index_type (), &lwb, &upb);
2717 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2718 type = TYPE_TARGET_TYPE (type);
2719 }
2720
2721 return value_ind (arr);
2722 }
2723
2724 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2725 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2726 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2727 this array is LOW, as per Ada rules. */
2728 static struct value *
2729 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2730 int low, int high)
2731 {
2732 struct type *type0 = ada_check_typedef (type);
2733 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2734 struct type *index_type
2735 = create_static_range_type (NULL, base_index_type, low, high);
2736 struct type *slice_type = create_array_type_with_stride
2737 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2738 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2739 TYPE_FIELD_BITSIZE (type0, 0));
2740 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2741 gdb::optional<LONGEST> base_low_pos, low_pos;
2742 CORE_ADDR base;
2743
2744 low_pos = discrete_position (base_index_type, low);
2745 base_low_pos = discrete_position (base_index_type, base_low);
2746
2747 if (!low_pos.has_value () || !base_low_pos.has_value ())
2748 {
2749 warning (_("unable to get positions in slice, use bounds instead"));
2750 low_pos = low;
2751 base_low_pos = base_low;
2752 }
2753
2754 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2755 if (stride == 0)
2756 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2757
2758 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2759 return value_at_lazy (slice_type, base);
2760 }
2761
2762
2763 static struct value *
2764 ada_value_slice (struct value *array, int low, int high)
2765 {
2766 struct type *type = ada_check_typedef (value_type (array));
2767 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2768 struct type *index_type
2769 = create_static_range_type (NULL, type->index_type (), low, high);
2770 struct type *slice_type = create_array_type_with_stride
2771 (NULL, TYPE_TARGET_TYPE (type), index_type,
2772 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2773 TYPE_FIELD_BITSIZE (type, 0));
2774 gdb::optional<LONGEST> low_pos, high_pos;
2775
2776
2777 low_pos = discrete_position (base_index_type, low);
2778 high_pos = discrete_position (base_index_type, high);
2779
2780 if (!low_pos.has_value () || !high_pos.has_value ())
2781 {
2782 warning (_("unable to get positions in slice, use bounds instead"));
2783 low_pos = low;
2784 high_pos = high;
2785 }
2786
2787 return value_cast (slice_type,
2788 value_slice (array, low, *high_pos - *low_pos + 1));
2789 }
2790
2791 /* If type is a record type in the form of a standard GNAT array
2792 descriptor, returns the number of dimensions for type. If arr is a
2793 simple array, returns the number of "array of"s that prefix its
2794 type designation. Otherwise, returns 0. */
2795
2796 int
2797 ada_array_arity (struct type *type)
2798 {
2799 int arity;
2800
2801 if (type == NULL)
2802 return 0;
2803
2804 type = desc_base_type (type);
2805
2806 arity = 0;
2807 if (type->code () == TYPE_CODE_STRUCT)
2808 return desc_arity (desc_bounds_type (type));
2809 else
2810 while (type->code () == TYPE_CODE_ARRAY)
2811 {
2812 arity += 1;
2813 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2814 }
2815
2816 return arity;
2817 }
2818
2819 /* If TYPE is a record type in the form of a standard GNAT array
2820 descriptor or a simple array type, returns the element type for
2821 TYPE after indexing by NINDICES indices, or by all indices if
2822 NINDICES is -1. Otherwise, returns NULL. */
2823
2824 struct type *
2825 ada_array_element_type (struct type *type, int nindices)
2826 {
2827 type = desc_base_type (type);
2828
2829 if (type->code () == TYPE_CODE_STRUCT)
2830 {
2831 int k;
2832 struct type *p_array_type;
2833
2834 p_array_type = desc_data_target_type (type);
2835
2836 k = ada_array_arity (type);
2837 if (k == 0)
2838 return NULL;
2839
2840 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2841 if (nindices >= 0 && k > nindices)
2842 k = nindices;
2843 while (k > 0 && p_array_type != NULL)
2844 {
2845 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2846 k -= 1;
2847 }
2848 return p_array_type;
2849 }
2850 else if (type->code () == TYPE_CODE_ARRAY)
2851 {
2852 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2853 {
2854 type = TYPE_TARGET_TYPE (type);
2855 nindices -= 1;
2856 }
2857 return type;
2858 }
2859
2860 return NULL;
2861 }
2862
2863 /* See ada-lang.h. */
2864
2865 struct type *
2866 ada_index_type (struct type *type, int n, const char *name)
2867 {
2868 struct type *result_type;
2869
2870 type = desc_base_type (type);
2871
2872 if (n < 0 || n > ada_array_arity (type))
2873 error (_("invalid dimension number to '%s"), name);
2874
2875 if (ada_is_simple_array_type (type))
2876 {
2877 int i;
2878
2879 for (i = 1; i < n; i += 1)
2880 {
2881 type = ada_check_typedef (type);
2882 type = TYPE_TARGET_TYPE (type);
2883 }
2884 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2885 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2886 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2887 perhaps stabsread.c would make more sense. */
2888 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2889 result_type = NULL;
2890 }
2891 else
2892 {
2893 result_type = desc_index_type (desc_bounds_type (type), n);
2894 if (result_type == NULL)
2895 error (_("attempt to take bound of something that is not an array"));
2896 }
2897
2898 return result_type;
2899 }
2900
2901 /* Given that arr is an array type, returns the lower bound of the
2902 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2903 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2904 array-descriptor type. It works for other arrays with bounds supplied
2905 by run-time quantities other than discriminants. */
2906
2907 static LONGEST
2908 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2909 {
2910 struct type *type, *index_type_desc, *index_type;
2911 int i;
2912
2913 gdb_assert (which == 0 || which == 1);
2914
2915 if (ada_is_constrained_packed_array_type (arr_type))
2916 arr_type = decode_constrained_packed_array_type (arr_type);
2917
2918 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2919 return (LONGEST) - which;
2920
2921 if (arr_type->code () == TYPE_CODE_PTR)
2922 type = TYPE_TARGET_TYPE (arr_type);
2923 else
2924 type = arr_type;
2925
2926 if (type->is_fixed_instance ())
2927 {
2928 /* The array has already been fixed, so we do not need to
2929 check the parallel ___XA type again. That encoding has
2930 already been applied, so ignore it now. */
2931 index_type_desc = NULL;
2932 }
2933 else
2934 {
2935 index_type_desc = ada_find_parallel_type (type, "___XA");
2936 ada_fixup_array_indexes_type (index_type_desc);
2937 }
2938
2939 if (index_type_desc != NULL)
2940 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2941 NULL);
2942 else
2943 {
2944 struct type *elt_type = check_typedef (type);
2945
2946 for (i = 1; i < n; i++)
2947 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2948
2949 index_type = elt_type->index_type ();
2950 }
2951
2952 return
2953 (LONGEST) (which == 0
2954 ? ada_discrete_type_low_bound (index_type)
2955 : ada_discrete_type_high_bound (index_type));
2956 }
2957
2958 /* Given that arr is an array value, returns the lower bound of the
2959 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2960 WHICH is 1. This routine will also work for arrays with bounds
2961 supplied by run-time quantities other than discriminants. */
2962
2963 static LONGEST
2964 ada_array_bound (struct value *arr, int n, int which)
2965 {
2966 struct type *arr_type;
2967
2968 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2969 arr = value_ind (arr);
2970 arr_type = value_enclosing_type (arr);
2971
2972 if (ada_is_constrained_packed_array_type (arr_type))
2973 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2974 else if (ada_is_simple_array_type (arr_type))
2975 return ada_array_bound_from_type (arr_type, n, which);
2976 else
2977 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2978 }
2979
2980 /* Given that arr is an array value, returns the length of the
2981 nth index. This routine will also work for arrays with bounds
2982 supplied by run-time quantities other than discriminants.
2983 Does not work for arrays indexed by enumeration types with representation
2984 clauses at the moment. */
2985
2986 static LONGEST
2987 ada_array_length (struct value *arr, int n)
2988 {
2989 struct type *arr_type, *index_type;
2990 int low, high;
2991
2992 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2993 arr = value_ind (arr);
2994 arr_type = value_enclosing_type (arr);
2995
2996 if (ada_is_constrained_packed_array_type (arr_type))
2997 return ada_array_length (decode_constrained_packed_array (arr), n);
2998
2999 if (ada_is_simple_array_type (arr_type))
3000 {
3001 low = ada_array_bound_from_type (arr_type, n, 0);
3002 high = ada_array_bound_from_type (arr_type, n, 1);
3003 }
3004 else
3005 {
3006 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3007 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3008 }
3009
3010 arr_type = check_typedef (arr_type);
3011 index_type = ada_index_type (arr_type, n, "length");
3012 if (index_type != NULL)
3013 {
3014 struct type *base_type;
3015 if (index_type->code () == TYPE_CODE_RANGE)
3016 base_type = TYPE_TARGET_TYPE (index_type);
3017 else
3018 base_type = index_type;
3019
3020 low = pos_atr (value_from_longest (base_type, low));
3021 high = pos_atr (value_from_longest (base_type, high));
3022 }
3023 return high - low + 1;
3024 }
3025
3026 /* An array whose type is that of ARR_TYPE (an array type), with
3027 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3028 less than LOW, then LOW-1 is used. */
3029
3030 static struct value *
3031 empty_array (struct type *arr_type, int low, int high)
3032 {
3033 struct type *arr_type0 = ada_check_typedef (arr_type);
3034 struct type *index_type
3035 = create_static_range_type
3036 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3037 high < low ? low - 1 : high);
3038 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3039
3040 return allocate_value (create_array_type (NULL, elt_type, index_type));
3041 }
3042 \f
3043
3044 /* Name resolution */
3045
3046 /* The "decoded" name for the user-definable Ada operator corresponding
3047 to OP. */
3048
3049 static const char *
3050 ada_decoded_op_name (enum exp_opcode op)
3051 {
3052 int i;
3053
3054 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3055 {
3056 if (ada_opname_table[i].op == op)
3057 return ada_opname_table[i].decoded;
3058 }
3059 error (_("Could not find operator name for opcode"));
3060 }
3061
3062 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3063 in a listing of choices during disambiguation (see sort_choices, below).
3064 The idea is that overloadings of a subprogram name from the
3065 same package should sort in their source order. We settle for ordering
3066 such symbols by their trailing number (__N or $N). */
3067
3068 static int
3069 encoded_ordered_before (const char *N0, const char *N1)
3070 {
3071 if (N1 == NULL)
3072 return 0;
3073 else if (N0 == NULL)
3074 return 1;
3075 else
3076 {
3077 int k0, k1;
3078
3079 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3080 ;
3081 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3082 ;
3083 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3084 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3085 {
3086 int n0, n1;
3087
3088 n0 = k0;
3089 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3090 n0 -= 1;
3091 n1 = k1;
3092 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3093 n1 -= 1;
3094 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3095 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3096 }
3097 return (strcmp (N0, N1) < 0);
3098 }
3099 }
3100
3101 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3102 encoded names. */
3103
3104 static void
3105 sort_choices (struct block_symbol syms[], int nsyms)
3106 {
3107 int i;
3108
3109 for (i = 1; i < nsyms; i += 1)
3110 {
3111 struct block_symbol sym = syms[i];
3112 int j;
3113
3114 for (j = i - 1; j >= 0; j -= 1)
3115 {
3116 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3117 sym.symbol->linkage_name ()))
3118 break;
3119 syms[j + 1] = syms[j];
3120 }
3121 syms[j + 1] = sym;
3122 }
3123 }
3124
3125 /* Whether GDB should display formals and return types for functions in the
3126 overloads selection menu. */
3127 static bool print_signatures = true;
3128
3129 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3130 all but functions, the signature is just the name of the symbol. For
3131 functions, this is the name of the function, the list of types for formals
3132 and the return type (if any). */
3133
3134 static void
3135 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3136 const struct type_print_options *flags)
3137 {
3138 struct type *type = SYMBOL_TYPE (sym);
3139
3140 fprintf_filtered (stream, "%s", sym->print_name ());
3141 if (!print_signatures
3142 || type == NULL
3143 || type->code () != TYPE_CODE_FUNC)
3144 return;
3145
3146 if (type->num_fields () > 0)
3147 {
3148 int i;
3149
3150 fprintf_filtered (stream, " (");
3151 for (i = 0; i < type->num_fields (); ++i)
3152 {
3153 if (i > 0)
3154 fprintf_filtered (stream, "; ");
3155 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3156 flags);
3157 }
3158 fprintf_filtered (stream, ")");
3159 }
3160 if (TYPE_TARGET_TYPE (type) != NULL
3161 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3162 {
3163 fprintf_filtered (stream, " return ");
3164 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3165 }
3166 }
3167
3168 /* Read and validate a set of numeric choices from the user in the
3169 range 0 .. N_CHOICES-1. Place the results in increasing
3170 order in CHOICES[0 .. N-1], and return N.
3171
3172 The user types choices as a sequence of numbers on one line
3173 separated by blanks, encoding them as follows:
3174
3175 + A choice of 0 means to cancel the selection, throwing an error.
3176 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3177 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3178
3179 The user is not allowed to choose more than MAX_RESULTS values.
3180
3181 ANNOTATION_SUFFIX, if present, is used to annotate the input
3182 prompts (for use with the -f switch). */
3183
3184 static int
3185 get_selections (int *choices, int n_choices, int max_results,
3186 int is_all_choice, const char *annotation_suffix)
3187 {
3188 const char *args;
3189 const char *prompt;
3190 int n_chosen;
3191 int first_choice = is_all_choice ? 2 : 1;
3192
3193 prompt = getenv ("PS2");
3194 if (prompt == NULL)
3195 prompt = "> ";
3196
3197 args = command_line_input (prompt, annotation_suffix);
3198
3199 if (args == NULL)
3200 error_no_arg (_("one or more choice numbers"));
3201
3202 n_chosen = 0;
3203
3204 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3205 order, as given in args. Choices are validated. */
3206 while (1)
3207 {
3208 char *args2;
3209 int choice, j;
3210
3211 args = skip_spaces (args);
3212 if (*args == '\0' && n_chosen == 0)
3213 error_no_arg (_("one or more choice numbers"));
3214 else if (*args == '\0')
3215 break;
3216
3217 choice = strtol (args, &args2, 10);
3218 if (args == args2 || choice < 0
3219 || choice > n_choices + first_choice - 1)
3220 error (_("Argument must be choice number"));
3221 args = args2;
3222
3223 if (choice == 0)
3224 error (_("cancelled"));
3225
3226 if (choice < first_choice)
3227 {
3228 n_chosen = n_choices;
3229 for (j = 0; j < n_choices; j += 1)
3230 choices[j] = j;
3231 break;
3232 }
3233 choice -= first_choice;
3234
3235 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3236 {
3237 }
3238
3239 if (j < 0 || choice != choices[j])
3240 {
3241 int k;
3242
3243 for (k = n_chosen - 1; k > j; k -= 1)
3244 choices[k + 1] = choices[k];
3245 choices[j + 1] = choice;
3246 n_chosen += 1;
3247 }
3248 }
3249
3250 if (n_chosen > max_results)
3251 error (_("Select no more than %d of the above"), max_results);
3252
3253 return n_chosen;
3254 }
3255
3256 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3257 by asking the user (if necessary), returning the number selected,
3258 and setting the first elements of SYMS items. Error if no symbols
3259 selected. */
3260
3261 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3262 to be re-integrated one of these days. */
3263
3264 static int
3265 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3266 {
3267 int i;
3268 int *chosen = XALLOCAVEC (int , nsyms);
3269 int n_chosen;
3270 int first_choice = (max_results == 1) ? 1 : 2;
3271 const char *select_mode = multiple_symbols_select_mode ();
3272
3273 if (max_results < 1)
3274 error (_("Request to select 0 symbols!"));
3275 if (nsyms <= 1)
3276 return nsyms;
3277
3278 if (select_mode == multiple_symbols_cancel)
3279 error (_("\
3280 canceled because the command is ambiguous\n\
3281 See set/show multiple-symbol."));
3282
3283 /* If select_mode is "all", then return all possible symbols.
3284 Only do that if more than one symbol can be selected, of course.
3285 Otherwise, display the menu as usual. */
3286 if (select_mode == multiple_symbols_all && max_results > 1)
3287 return nsyms;
3288
3289 printf_filtered (_("[0] cancel\n"));
3290 if (max_results > 1)
3291 printf_filtered (_("[1] all\n"));
3292
3293 sort_choices (syms, nsyms);
3294
3295 for (i = 0; i < nsyms; i += 1)
3296 {
3297 if (syms[i].symbol == NULL)
3298 continue;
3299
3300 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3301 {
3302 struct symtab_and_line sal =
3303 find_function_start_sal (syms[i].symbol, 1);
3304
3305 printf_filtered ("[%d] ", i + first_choice);
3306 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3307 &type_print_raw_options);
3308 if (sal.symtab == NULL)
3309 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3310 metadata_style.style ().ptr (), nullptr, sal.line);
3311 else
3312 printf_filtered
3313 (_(" at %ps:%d\n"),
3314 styled_string (file_name_style.style (),
3315 symtab_to_filename_for_display (sal.symtab)),
3316 sal.line);
3317 continue;
3318 }
3319 else
3320 {
3321 int is_enumeral =
3322 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3323 && SYMBOL_TYPE (syms[i].symbol) != NULL
3324 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3325 struct symtab *symtab = NULL;
3326
3327 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3328 symtab = symbol_symtab (syms[i].symbol);
3329
3330 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3331 {
3332 printf_filtered ("[%d] ", i + first_choice);
3333 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3334 &type_print_raw_options);
3335 printf_filtered (_(" at %s:%d\n"),
3336 symtab_to_filename_for_display (symtab),
3337 SYMBOL_LINE (syms[i].symbol));
3338 }
3339 else if (is_enumeral
3340 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3341 {
3342 printf_filtered (("[%d] "), i + first_choice);
3343 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3344 gdb_stdout, -1, 0, &type_print_raw_options);
3345 printf_filtered (_("'(%s) (enumeral)\n"),
3346 syms[i].symbol->print_name ());
3347 }
3348 else
3349 {
3350 printf_filtered ("[%d] ", i + first_choice);
3351 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3352 &type_print_raw_options);
3353
3354 if (symtab != NULL)
3355 printf_filtered (is_enumeral
3356 ? _(" in %s (enumeral)\n")
3357 : _(" at %s:?\n"),
3358 symtab_to_filename_for_display (symtab));
3359 else
3360 printf_filtered (is_enumeral
3361 ? _(" (enumeral)\n")
3362 : _(" at ?\n"));
3363 }
3364 }
3365 }
3366
3367 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3368 "overload-choice");
3369
3370 for (i = 0; i < n_chosen; i += 1)
3371 syms[i] = syms[chosen[i]];
3372
3373 return n_chosen;
3374 }
3375
3376 /* See ada-lang.h. */
3377
3378 block_symbol
3379 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3380 int nargs, value *argvec[])
3381 {
3382 if (possible_user_operator_p (op, argvec))
3383 {
3384 std::vector<struct block_symbol> candidates
3385 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3386 NULL, VAR_DOMAIN);
3387
3388 int i = ada_resolve_function (candidates, argvec,
3389 nargs, ada_decoded_op_name (op), NULL,
3390 parse_completion);
3391 if (i >= 0)
3392 return candidates[i];
3393 }
3394 return {};
3395 }
3396
3397 /* See ada-lang.h. */
3398
3399 block_symbol
3400 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3401 struct type *context_type,
3402 bool parse_completion,
3403 int nargs, value *argvec[],
3404 innermost_block_tracker *tracker)
3405 {
3406 std::vector<struct block_symbol> candidates
3407 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3408
3409 int i;
3410 if (candidates.size () == 1)
3411 i = 0;
3412 else
3413 {
3414 i = ada_resolve_function
3415 (candidates,
3416 argvec, nargs,
3417 sym->linkage_name (),
3418 context_type, parse_completion);
3419 if (i < 0)
3420 error (_("Could not find a match for %s"), sym->print_name ());
3421 }
3422
3423 tracker->update (candidates[i]);
3424 return candidates[i];
3425 }
3426
3427 /* See ada-lang.h. */
3428
3429 block_symbol
3430 ada_resolve_variable (struct symbol *sym, const struct block *block,
3431 struct type *context_type,
3432 bool parse_completion,
3433 int deprocedure_p,
3434 innermost_block_tracker *tracker)
3435 {
3436 std::vector<struct block_symbol> candidates
3437 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3438
3439 if (std::any_of (candidates.begin (),
3440 candidates.end (),
3441 [] (block_symbol &bsym)
3442 {
3443 switch (SYMBOL_CLASS (bsym.symbol))
3444 {
3445 case LOC_REGISTER:
3446 case LOC_ARG:
3447 case LOC_REF_ARG:
3448 case LOC_REGPARM_ADDR:
3449 case LOC_LOCAL:
3450 case LOC_COMPUTED:
3451 return true;
3452 default:
3453 return false;
3454 }
3455 }))
3456 {
3457 /* Types tend to get re-introduced locally, so if there
3458 are any local symbols that are not types, first filter
3459 out all types. */
3460 candidates.erase
3461 (std::remove_if
3462 (candidates.begin (),
3463 candidates.end (),
3464 [] (block_symbol &bsym)
3465 {
3466 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3467 }),
3468 candidates.end ());
3469 }
3470
3471 int i;
3472 if (candidates.empty ())
3473 error (_("No definition found for %s"), sym->print_name ());
3474 else if (candidates.size () == 1)
3475 i = 0;
3476 else if (deprocedure_p && !is_nonfunction (candidates))
3477 {
3478 i = ada_resolve_function
3479 (candidates, NULL, 0,
3480 sym->linkage_name (),
3481 context_type, parse_completion);
3482 if (i < 0)
3483 error (_("Could not find a match for %s"), sym->print_name ());
3484 }
3485 else
3486 {
3487 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3488 user_select_syms (candidates.data (), candidates.size (), 1);
3489 i = 0;
3490 }
3491
3492 tracker->update (candidates[i]);
3493 return candidates[i];
3494 }
3495
3496 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3497 /* The term "match" here is rather loose. The match is heuristic and
3498 liberal. */
3499
3500 static int
3501 ada_type_match (struct type *ftype, struct type *atype)
3502 {
3503 ftype = ada_check_typedef (ftype);
3504 atype = ada_check_typedef (atype);
3505
3506 if (ftype->code () == TYPE_CODE_REF)
3507 ftype = TYPE_TARGET_TYPE (ftype);
3508 if (atype->code () == TYPE_CODE_REF)
3509 atype = TYPE_TARGET_TYPE (atype);
3510
3511 switch (ftype->code ())
3512 {
3513 default:
3514 return ftype->code () == atype->code ();
3515 case TYPE_CODE_PTR:
3516 if (atype->code () != TYPE_CODE_PTR)
3517 return 0;
3518 atype = TYPE_TARGET_TYPE (atype);
3519 /* This can only happen if the actual argument is 'null'. */
3520 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3521 return 1;
3522 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3523 case TYPE_CODE_INT:
3524 case TYPE_CODE_ENUM:
3525 case TYPE_CODE_RANGE:
3526 switch (atype->code ())
3527 {
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_ENUM:
3530 case TYPE_CODE_RANGE:
3531 return 1;
3532 default:
3533 return 0;
3534 }
3535
3536 case TYPE_CODE_ARRAY:
3537 return (atype->code () == TYPE_CODE_ARRAY
3538 || ada_is_array_descriptor_type (atype));
3539
3540 case TYPE_CODE_STRUCT:
3541 if (ada_is_array_descriptor_type (ftype))
3542 return (atype->code () == TYPE_CODE_ARRAY
3543 || ada_is_array_descriptor_type (atype));
3544 else
3545 return (atype->code () == TYPE_CODE_STRUCT
3546 && !ada_is_array_descriptor_type (atype));
3547
3548 case TYPE_CODE_UNION:
3549 case TYPE_CODE_FLT:
3550 return (atype->code () == ftype->code ());
3551 }
3552 }
3553
3554 /* Return non-zero if the formals of FUNC "sufficiently match" the
3555 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3556 may also be an enumeral, in which case it is treated as a 0-
3557 argument function. */
3558
3559 static int
3560 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3561 {
3562 int i;
3563 struct type *func_type = SYMBOL_TYPE (func);
3564
3565 if (SYMBOL_CLASS (func) == LOC_CONST
3566 && func_type->code () == TYPE_CODE_ENUM)
3567 return (n_actuals == 0);
3568 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3569 return 0;
3570
3571 if (func_type->num_fields () != n_actuals)
3572 return 0;
3573
3574 for (i = 0; i < n_actuals; i += 1)
3575 {
3576 if (actuals[i] == NULL)
3577 return 0;
3578 else
3579 {
3580 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3581 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3582
3583 if (!ada_type_match (ftype, atype))
3584 return 0;
3585 }
3586 }
3587 return 1;
3588 }
3589
3590 /* False iff function type FUNC_TYPE definitely does not produce a value
3591 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3592 FUNC_TYPE is not a valid function type with a non-null return type
3593 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3594
3595 static int
3596 return_match (struct type *func_type, struct type *context_type)
3597 {
3598 struct type *return_type;
3599
3600 if (func_type == NULL)
3601 return 1;
3602
3603 if (func_type->code () == TYPE_CODE_FUNC)
3604 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3605 else
3606 return_type = get_base_type (func_type);
3607 if (return_type == NULL)
3608 return 1;
3609
3610 context_type = get_base_type (context_type);
3611
3612 if (return_type->code () == TYPE_CODE_ENUM)
3613 return context_type == NULL || return_type == context_type;
3614 else if (context_type == NULL)
3615 return return_type->code () != TYPE_CODE_VOID;
3616 else
3617 return return_type->code () == context_type->code ();
3618 }
3619
3620
3621 /* Returns the index in SYMS that contains the symbol for the
3622 function (if any) that matches the types of the NARGS arguments in
3623 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3624 that returns that type, then eliminate matches that don't. If
3625 CONTEXT_TYPE is void and there is at least one match that does not
3626 return void, eliminate all matches that do.
3627
3628 Asks the user if there is more than one match remaining. Returns -1
3629 if there is no such symbol or none is selected. NAME is used
3630 solely for messages. May re-arrange and modify SYMS in
3631 the process; the index returned is for the modified vector. */
3632
3633 static int
3634 ada_resolve_function (std::vector<struct block_symbol> &syms,
3635 struct value **args, int nargs,
3636 const char *name, struct type *context_type,
3637 bool parse_completion)
3638 {
3639 int fallback;
3640 int k;
3641 int m; /* Number of hits */
3642
3643 m = 0;
3644 /* In the first pass of the loop, we only accept functions matching
3645 context_type. If none are found, we add a second pass of the loop
3646 where every function is accepted. */
3647 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3648 {
3649 for (k = 0; k < syms.size (); k += 1)
3650 {
3651 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3652
3653 if (ada_args_match (syms[k].symbol, args, nargs)
3654 && (fallback || return_match (type, context_type)))
3655 {
3656 syms[m] = syms[k];
3657 m += 1;
3658 }
3659 }
3660 }
3661
3662 /* If we got multiple matches, ask the user which one to use. Don't do this
3663 interactive thing during completion, though, as the purpose of the
3664 completion is providing a list of all possible matches. Prompting the
3665 user to filter it down would be completely unexpected in this case. */
3666 if (m == 0)
3667 return -1;
3668 else if (m > 1 && !parse_completion)
3669 {
3670 printf_filtered (_("Multiple matches for %s\n"), name);
3671 user_select_syms (syms.data (), m, 1);
3672 return 0;
3673 }
3674 return 0;
3675 }
3676
3677 /* Type-class predicates */
3678
3679 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3680 or FLOAT). */
3681
3682 static int
3683 numeric_type_p (struct type *type)
3684 {
3685 if (type == NULL)
3686 return 0;
3687 else
3688 {
3689 switch (type->code ())
3690 {
3691 case TYPE_CODE_INT:
3692 case TYPE_CODE_FLT:
3693 case TYPE_CODE_FIXED_POINT:
3694 return 1;
3695 case TYPE_CODE_RANGE:
3696 return (type == TYPE_TARGET_TYPE (type)
3697 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3698 default:
3699 return 0;
3700 }
3701 }
3702 }
3703
3704 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3705
3706 static int
3707 integer_type_p (struct type *type)
3708 {
3709 if (type == NULL)
3710 return 0;
3711 else
3712 {
3713 switch (type->code ())
3714 {
3715 case TYPE_CODE_INT:
3716 return 1;
3717 case TYPE_CODE_RANGE:
3718 return (type == TYPE_TARGET_TYPE (type)
3719 || integer_type_p (TYPE_TARGET_TYPE (type)));
3720 default:
3721 return 0;
3722 }
3723 }
3724 }
3725
3726 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3727
3728 static int
3729 scalar_type_p (struct type *type)
3730 {
3731 if (type == NULL)
3732 return 0;
3733 else
3734 {
3735 switch (type->code ())
3736 {
3737 case TYPE_CODE_INT:
3738 case TYPE_CODE_RANGE:
3739 case TYPE_CODE_ENUM:
3740 case TYPE_CODE_FLT:
3741 case TYPE_CODE_FIXED_POINT:
3742 return 1;
3743 default:
3744 return 0;
3745 }
3746 }
3747 }
3748
3749 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3750
3751 static int
3752 discrete_type_p (struct type *type)
3753 {
3754 if (type == NULL)
3755 return 0;
3756 else
3757 {
3758 switch (type->code ())
3759 {
3760 case TYPE_CODE_INT:
3761 case TYPE_CODE_RANGE:
3762 case TYPE_CODE_ENUM:
3763 case TYPE_CODE_BOOL:
3764 return 1;
3765 default:
3766 return 0;
3767 }
3768 }
3769 }
3770
3771 /* Returns non-zero if OP with operands in the vector ARGS could be
3772 a user-defined function. Errs on the side of pre-defined operators
3773 (i.e., result 0). */
3774
3775 static int
3776 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3777 {
3778 struct type *type0 =
3779 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3780 struct type *type1 =
3781 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3782
3783 if (type0 == NULL)
3784 return 0;
3785
3786 switch (op)
3787 {
3788 default:
3789 return 0;
3790
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3796
3797 case BINOP_REM:
3798 case BINOP_MOD:
3799 case BINOP_BITWISE_AND:
3800 case BINOP_BITWISE_IOR:
3801 case BINOP_BITWISE_XOR:
3802 return (!(integer_type_p (type0) && integer_type_p (type1)));
3803
3804 case BINOP_EQUAL:
3805 case BINOP_NOTEQUAL:
3806 case BINOP_LESS:
3807 case BINOP_GTR:
3808 case BINOP_LEQ:
3809 case BINOP_GEQ:
3810 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3811
3812 case BINOP_CONCAT:
3813 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3814
3815 case BINOP_EXP:
3816 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3817
3818 case UNOP_NEG:
3819 case UNOP_PLUS:
3820 case UNOP_LOGICAL_NOT:
3821 case UNOP_ABS:
3822 return (!numeric_type_p (type0));
3823
3824 }
3825 }
3826 \f
3827 /* Renaming */
3828
3829 /* NOTES:
3830
3831 1. In the following, we assume that a renaming type's name may
3832 have an ___XD suffix. It would be nice if this went away at some
3833 point.
3834 2. We handle both the (old) purely type-based representation of
3835 renamings and the (new) variable-based encoding. At some point,
3836 it is devoutly to be hoped that the former goes away
3837 (FIXME: hilfinger-2007-07-09).
3838 3. Subprogram renamings are not implemented, although the XRS
3839 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3840
3841 /* If SYM encodes a renaming,
3842
3843 <renaming> renames <renamed entity>,
3844
3845 sets *LEN to the length of the renamed entity's name,
3846 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3847 the string describing the subcomponent selected from the renamed
3848 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3849 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3850 are undefined). Otherwise, returns a value indicating the category
3851 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3852 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3853 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3854 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3855 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3856 may be NULL, in which case they are not assigned.
3857
3858 [Currently, however, GCC does not generate subprogram renamings.] */
3859
3860 enum ada_renaming_category
3861 ada_parse_renaming (struct symbol *sym,
3862 const char **renamed_entity, int *len,
3863 const char **renaming_expr)
3864 {
3865 enum ada_renaming_category kind;
3866 const char *info;
3867 const char *suffix;
3868
3869 if (sym == NULL)
3870 return ADA_NOT_RENAMING;
3871 switch (SYMBOL_CLASS (sym))
3872 {
3873 default:
3874 return ADA_NOT_RENAMING;
3875 case LOC_LOCAL:
3876 case LOC_STATIC:
3877 case LOC_COMPUTED:
3878 case LOC_OPTIMIZED_OUT:
3879 info = strstr (sym->linkage_name (), "___XR");
3880 if (info == NULL)
3881 return ADA_NOT_RENAMING;
3882 switch (info[5])
3883 {
3884 case '_':
3885 kind = ADA_OBJECT_RENAMING;
3886 info += 6;
3887 break;
3888 case 'E':
3889 kind = ADA_EXCEPTION_RENAMING;
3890 info += 7;
3891 break;
3892 case 'P':
3893 kind = ADA_PACKAGE_RENAMING;
3894 info += 7;
3895 break;
3896 case 'S':
3897 kind = ADA_SUBPROGRAM_RENAMING;
3898 info += 7;
3899 break;
3900 default:
3901 return ADA_NOT_RENAMING;
3902 }
3903 }
3904
3905 if (renamed_entity != NULL)
3906 *renamed_entity = info;
3907 suffix = strstr (info, "___XE");
3908 if (suffix == NULL || suffix == info)
3909 return ADA_NOT_RENAMING;
3910 if (len != NULL)
3911 *len = strlen (info) - strlen (suffix);
3912 suffix += 5;
3913 if (renaming_expr != NULL)
3914 *renaming_expr = suffix;
3915 return kind;
3916 }
3917
3918 /* Compute the value of the given RENAMING_SYM, which is expected to
3919 be a symbol encoding a renaming expression. BLOCK is the block
3920 used to evaluate the renaming. */
3921
3922 static struct value *
3923 ada_read_renaming_var_value (struct symbol *renaming_sym,
3924 const struct block *block)
3925 {
3926 const char *sym_name;
3927
3928 sym_name = renaming_sym->linkage_name ();
3929 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3930 return evaluate_expression (expr.get ());
3931 }
3932 \f
3933
3934 /* Evaluation: Function Calls */
3935
3936 /* Return an lvalue containing the value VAL. This is the identity on
3937 lvalues, and otherwise has the side-effect of allocating memory
3938 in the inferior where a copy of the value contents is copied. */
3939
3940 static struct value *
3941 ensure_lval (struct value *val)
3942 {
3943 if (VALUE_LVAL (val) == not_lval
3944 || VALUE_LVAL (val) == lval_internalvar)
3945 {
3946 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
3947 const CORE_ADDR addr =
3948 value_as_long (value_allocate_space_in_inferior (len));
3949
3950 VALUE_LVAL (val) = lval_memory;
3951 set_value_address (val, addr);
3952 write_memory (addr, value_contents (val), len);
3953 }
3954
3955 return val;
3956 }
3957
3958 /* Given ARG, a value of type (pointer or reference to a)*
3959 structure/union, extract the component named NAME from the ultimate
3960 target structure/union and return it as a value with its
3961 appropriate type.
3962
3963 The routine searches for NAME among all members of the structure itself
3964 and (recursively) among all members of any wrapper members
3965 (e.g., '_parent').
3966
3967 If NO_ERR, then simply return NULL in case of error, rather than
3968 calling error. */
3969
3970 static struct value *
3971 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
3972 {
3973 struct type *t, *t1;
3974 struct value *v;
3975 int check_tag;
3976
3977 v = NULL;
3978 t1 = t = ada_check_typedef (value_type (arg));
3979 if (t->code () == TYPE_CODE_REF)
3980 {
3981 t1 = TYPE_TARGET_TYPE (t);
3982 if (t1 == NULL)
3983 goto BadValue;
3984 t1 = ada_check_typedef (t1);
3985 if (t1->code () == TYPE_CODE_PTR)
3986 {
3987 arg = coerce_ref (arg);
3988 t = t1;
3989 }
3990 }
3991
3992 while (t->code () == TYPE_CODE_PTR)
3993 {
3994 t1 = TYPE_TARGET_TYPE (t);
3995 if (t1 == NULL)
3996 goto BadValue;
3997 t1 = ada_check_typedef (t1);
3998 if (t1->code () == TYPE_CODE_PTR)
3999 {
4000 arg = value_ind (arg);
4001 t = t1;
4002 }
4003 else
4004 break;
4005 }
4006
4007 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4008 goto BadValue;
4009
4010 if (t1 == t)
4011 v = ada_search_struct_field (name, arg, 0, t);
4012 else
4013 {
4014 int bit_offset, bit_size, byte_offset;
4015 struct type *field_type;
4016 CORE_ADDR address;
4017
4018 if (t->code () == TYPE_CODE_PTR)
4019 address = value_address (ada_value_ind (arg));
4020 else
4021 address = value_address (ada_coerce_ref (arg));
4022
4023 /* Check to see if this is a tagged type. We also need to handle
4024 the case where the type is a reference to a tagged type, but
4025 we have to be careful to exclude pointers to tagged types.
4026 The latter should be shown as usual (as a pointer), whereas
4027 a reference should mostly be transparent to the user. */
4028
4029 if (ada_is_tagged_type (t1, 0)
4030 || (t1->code () == TYPE_CODE_REF
4031 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4032 {
4033 /* We first try to find the searched field in the current type.
4034 If not found then let's look in the fixed type. */
4035
4036 if (!find_struct_field (name, t1, 0,
4037 &field_type, &byte_offset, &bit_offset,
4038 &bit_size, NULL))
4039 check_tag = 1;
4040 else
4041 check_tag = 0;
4042 }
4043 else
4044 check_tag = 0;
4045
4046 /* Convert to fixed type in all cases, so that we have proper
4047 offsets to each field in unconstrained record types. */
4048 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4049 address, NULL, check_tag);
4050
4051 /* Resolve the dynamic type as well. */
4052 arg = value_from_contents_and_address (t1, nullptr, address);
4053 t1 = value_type (arg);
4054
4055 if (find_struct_field (name, t1, 0,
4056 &field_type, &byte_offset, &bit_offset,
4057 &bit_size, NULL))
4058 {
4059 if (bit_size != 0)
4060 {
4061 if (t->code () == TYPE_CODE_REF)
4062 arg = ada_coerce_ref (arg);
4063 else
4064 arg = ada_value_ind (arg);
4065 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4066 bit_offset, bit_size,
4067 field_type);
4068 }
4069 else
4070 v = value_at_lazy (field_type, address + byte_offset);
4071 }
4072 }
4073
4074 if (v != NULL || no_err)
4075 return v;
4076 else
4077 error (_("There is no member named %s."), name);
4078
4079 BadValue:
4080 if (no_err)
4081 return NULL;
4082 else
4083 error (_("Attempt to extract a component of "
4084 "a value that is not a record."));
4085 }
4086
4087 /* Return the value ACTUAL, converted to be an appropriate value for a
4088 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4089 allocating any necessary descriptors (fat pointers), or copies of
4090 values not residing in memory, updating it as needed. */
4091
4092 struct value *
4093 ada_convert_actual (struct value *actual, struct type *formal_type0)
4094 {
4095 struct type *actual_type = ada_check_typedef (value_type (actual));
4096 struct type *formal_type = ada_check_typedef (formal_type0);
4097 struct type *formal_target =
4098 formal_type->code () == TYPE_CODE_PTR
4099 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4100 struct type *actual_target =
4101 actual_type->code () == TYPE_CODE_PTR
4102 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4103
4104 if (ada_is_array_descriptor_type (formal_target)
4105 && actual_target->code () == TYPE_CODE_ARRAY)
4106 return make_array_descriptor (formal_type, actual);
4107 else if (formal_type->code () == TYPE_CODE_PTR
4108 || formal_type->code () == TYPE_CODE_REF)
4109 {
4110 struct value *result;
4111
4112 if (formal_target->code () == TYPE_CODE_ARRAY
4113 && ada_is_array_descriptor_type (actual_target))
4114 result = desc_data (actual);
4115 else if (formal_type->code () != TYPE_CODE_PTR)
4116 {
4117 if (VALUE_LVAL (actual) != lval_memory)
4118 {
4119 struct value *val;
4120
4121 actual_type = ada_check_typedef (value_type (actual));
4122 val = allocate_value (actual_type);
4123 memcpy ((char *) value_contents_raw (val),
4124 (char *) value_contents (actual),
4125 TYPE_LENGTH (actual_type));
4126 actual = ensure_lval (val);
4127 }
4128 result = value_addr (actual);
4129 }
4130 else
4131 return actual;
4132 return value_cast_pointers (formal_type, result, 0);
4133 }
4134 else if (actual_type->code () == TYPE_CODE_PTR)
4135 return ada_value_ind (actual);
4136 else if (ada_is_aligner_type (formal_type))
4137 {
4138 /* We need to turn this parameter into an aligner type
4139 as well. */
4140 struct value *aligner = allocate_value (formal_type);
4141 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4142
4143 value_assign_to_component (aligner, component, actual);
4144 return aligner;
4145 }
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 unsigned len = TYPE_LENGTH (type);
4159 gdb_byte *buf = (gdb_byte *) alloca (len);
4160 CORE_ADDR addr;
4161
4162 addr = value_address (value);
4163 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4164 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4165 return addr;
4166 }
4167
4168
4169 /* Push a descriptor of type TYPE for array value ARR on the stack at
4170 *SP, updating *SP to reflect the new descriptor. Return either
4171 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4172 to-descriptor type rather than a descriptor type), a struct value *
4173 representing a pointer to this descriptor. */
4174
4175 static struct value *
4176 make_array_descriptor (struct type *type, struct value *arr)
4177 {
4178 struct type *bounds_type = desc_bounds_type (type);
4179 struct type *desc_type = desc_base_type (type);
4180 struct value *descriptor = allocate_value (desc_type);
4181 struct value *bounds = allocate_value (bounds_type);
4182 int i;
4183
4184 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4185 i > 0; i -= 1)
4186 {
4187 modify_field (value_type (bounds), value_contents_writeable (bounds),
4188 ada_array_bound (arr, i, 0),
4189 desc_bound_bitpos (bounds_type, i, 0),
4190 desc_bound_bitsize (bounds_type, i, 0));
4191 modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 ada_array_bound (arr, i, 1),
4193 desc_bound_bitpos (bounds_type, i, 1),
4194 desc_bound_bitsize (bounds_type, i, 1));
4195 }
4196
4197 bounds = ensure_lval (bounds);
4198
4199 modify_field (value_type (descriptor),
4200 value_contents_writeable (descriptor),
4201 value_pointer (ensure_lval (arr),
4202 desc_type->field (0).type ()),
4203 fat_pntr_data_bitpos (desc_type),
4204 fat_pntr_data_bitsize (desc_type));
4205
4206 modify_field (value_type (descriptor),
4207 value_contents_writeable (descriptor),
4208 value_pointer (bounds,
4209 desc_type->field (1).type ()),
4210 fat_pntr_bounds_bitpos (desc_type),
4211 fat_pntr_bounds_bitsize (desc_type));
4212
4213 descriptor = ensure_lval (descriptor);
4214
4215 if (type->code () == TYPE_CODE_PTR)
4216 return value_addr (descriptor);
4217 else
4218 return descriptor;
4219 }
4220 \f
4221 /* Symbol Cache Module */
4222
4223 /* Performance measurements made as of 2010-01-15 indicate that
4224 this cache does bring some noticeable improvements. Depending
4225 on the type of entity being printed, the cache can make it as much
4226 as an order of magnitude faster than without it.
4227
4228 The descriptive type DWARF extension has significantly reduced
4229 the need for this cache, at least when DWARF is being used. However,
4230 even in this case, some expensive name-based symbol searches are still
4231 sometimes necessary - to find an XVZ variable, mostly. */
4232
4233 /* Return the symbol cache associated to the given program space PSPACE.
4234 If not allocated for this PSPACE yet, allocate and initialize one. */
4235
4236 static struct ada_symbol_cache *
4237 ada_get_symbol_cache (struct program_space *pspace)
4238 {
4239 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4240
4241 if (pspace_data->sym_cache == nullptr)
4242 pspace_data->sym_cache.reset (new ada_symbol_cache);
4243
4244 return pspace_data->sym_cache.get ();
4245 }
4246
4247 /* Clear all entries from the symbol cache. */
4248
4249 static void
4250 ada_clear_symbol_cache ()
4251 {
4252 struct ada_pspace_data *pspace_data
4253 = get_ada_pspace_data (current_program_space);
4254
4255 if (pspace_data->sym_cache != nullptr)
4256 pspace_data->sym_cache.reset ();
4257 }
4258
4259 /* Search our cache for an entry matching NAME and DOMAIN.
4260 Return it if found, or NULL otherwise. */
4261
4262 static struct cache_entry **
4263 find_entry (const char *name, domain_enum domain)
4264 {
4265 struct ada_symbol_cache *sym_cache
4266 = ada_get_symbol_cache (current_program_space);
4267 int h = msymbol_hash (name) % HASH_SIZE;
4268 struct cache_entry **e;
4269
4270 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4271 {
4272 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4273 return e;
4274 }
4275 return NULL;
4276 }
4277
4278 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4279 Return 1 if found, 0 otherwise.
4280
4281 If an entry was found and SYM is not NULL, set *SYM to the entry's
4282 SYM. Same principle for BLOCK if not NULL. */
4283
4284 static int
4285 lookup_cached_symbol (const char *name, domain_enum domain,
4286 struct symbol **sym, const struct block **block)
4287 {
4288 struct cache_entry **e = find_entry (name, domain);
4289
4290 if (e == NULL)
4291 return 0;
4292 if (sym != NULL)
4293 *sym = (*e)->sym;
4294 if (block != NULL)
4295 *block = (*e)->block;
4296 return 1;
4297 }
4298
4299 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4300 in domain DOMAIN, save this result in our symbol cache. */
4301
4302 static void
4303 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4304 const struct block *block)
4305 {
4306 struct ada_symbol_cache *sym_cache
4307 = ada_get_symbol_cache (current_program_space);
4308 int h;
4309 struct cache_entry *e;
4310
4311 /* Symbols for builtin types don't have a block.
4312 For now don't cache such symbols. */
4313 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4314 return;
4315
4316 /* If the symbol is a local symbol, then do not cache it, as a search
4317 for that symbol depends on the context. To determine whether
4318 the symbol is local or not, we check the block where we found it
4319 against the global and static blocks of its associated symtab. */
4320 if (sym
4321 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4322 GLOBAL_BLOCK) != block
4323 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4324 STATIC_BLOCK) != block)
4325 return;
4326
4327 h = msymbol_hash (name) % HASH_SIZE;
4328 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4329 e->next = sym_cache->root[h];
4330 sym_cache->root[h] = e;
4331 e->name = obstack_strdup (&sym_cache->cache_space, name);
4332 e->sym = sym;
4333 e->domain = domain;
4334 e->block = block;
4335 }
4336 \f
4337 /* Symbol Lookup */
4338
4339 /* Return the symbol name match type that should be used used when
4340 searching for all symbols matching LOOKUP_NAME.
4341
4342 LOOKUP_NAME is expected to be a symbol name after transformation
4343 for Ada lookups. */
4344
4345 static symbol_name_match_type
4346 name_match_type_from_name (const char *lookup_name)
4347 {
4348 return (strstr (lookup_name, "__") == NULL
4349 ? symbol_name_match_type::WILD
4350 : symbol_name_match_type::FULL);
4351 }
4352
4353 /* Return the result of a standard (literal, C-like) lookup of NAME in
4354 given DOMAIN, visible from lexical block BLOCK. */
4355
4356 static struct symbol *
4357 standard_lookup (const char *name, const struct block *block,
4358 domain_enum domain)
4359 {
4360 /* Initialize it just to avoid a GCC false warning. */
4361 struct block_symbol sym = {};
4362
4363 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4364 return sym.symbol;
4365 ada_lookup_encoded_symbol (name, block, domain, &sym);
4366 cache_symbol (name, domain, sym.symbol, sym.block);
4367 return sym.symbol;
4368 }
4369
4370
4371 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4372 in the symbol fields of SYMS. We treat enumerals as functions,
4373 since they contend in overloading in the same way. */
4374 static int
4375 is_nonfunction (const std::vector<struct block_symbol> &syms)
4376 {
4377 for (const block_symbol &sym : syms)
4378 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4379 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4380 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4381 return 1;
4382
4383 return 0;
4384 }
4385
4386 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4387 struct types. Otherwise, they may not. */
4388
4389 static int
4390 equiv_types (struct type *type0, struct type *type1)
4391 {
4392 if (type0 == type1)
4393 return 1;
4394 if (type0 == NULL || type1 == NULL
4395 || type0->code () != type1->code ())
4396 return 0;
4397 if ((type0->code () == TYPE_CODE_STRUCT
4398 || type0->code () == TYPE_CODE_ENUM)
4399 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4400 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4401 return 1;
4402
4403 return 0;
4404 }
4405
4406 /* True iff SYM0 represents the same entity as SYM1, or one that is
4407 no more defined than that of SYM1. */
4408
4409 static int
4410 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4411 {
4412 if (sym0 == sym1)
4413 return 1;
4414 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4415 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4416 return 0;
4417
4418 switch (SYMBOL_CLASS (sym0))
4419 {
4420 case LOC_UNDEF:
4421 return 1;
4422 case LOC_TYPEDEF:
4423 {
4424 struct type *type0 = SYMBOL_TYPE (sym0);
4425 struct type *type1 = SYMBOL_TYPE (sym1);
4426 const char *name0 = sym0->linkage_name ();
4427 const char *name1 = sym1->linkage_name ();
4428 int len0 = strlen (name0);
4429
4430 return
4431 type0->code () == type1->code ()
4432 && (equiv_types (type0, type1)
4433 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4434 && startswith (name1 + len0, "___XV")));
4435 }
4436 case LOC_CONST:
4437 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4438 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4439
4440 case LOC_STATIC:
4441 {
4442 const char *name0 = sym0->linkage_name ();
4443 const char *name1 = sym1->linkage_name ();
4444 return (strcmp (name0, name1) == 0
4445 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4446 }
4447
4448 default:
4449 return 0;
4450 }
4451 }
4452
4453 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4454 records in RESULT. Do nothing if SYM is a duplicate. */
4455
4456 static void
4457 add_defn_to_vec (std::vector<struct block_symbol> &result,
4458 struct symbol *sym,
4459 const struct block *block)
4460 {
4461 /* Do not try to complete stub types, as the debugger is probably
4462 already scanning all symbols matching a certain name at the
4463 time when this function is called. Trying to replace the stub
4464 type by its associated full type will cause us to restart a scan
4465 which may lead to an infinite recursion. Instead, the client
4466 collecting the matching symbols will end up collecting several
4467 matches, with at least one of them complete. It can then filter
4468 out the stub ones if needed. */
4469
4470 for (int i = result.size () - 1; i >= 0; i -= 1)
4471 {
4472 if (lesseq_defined_than (sym, result[i].symbol))
4473 return;
4474 else if (lesseq_defined_than (result[i].symbol, sym))
4475 {
4476 result[i].symbol = sym;
4477 result[i].block = block;
4478 return;
4479 }
4480 }
4481
4482 struct block_symbol info;
4483 info.symbol = sym;
4484 info.block = block;
4485 result.push_back (info);
4486 }
4487
4488 /* Return a bound minimal symbol matching NAME according to Ada
4489 decoding rules. Returns an invalid symbol if there is no such
4490 minimal symbol. Names prefixed with "standard__" are handled
4491 specially: "standard__" is first stripped off, and only static and
4492 global symbols are searched. */
4493
4494 struct bound_minimal_symbol
4495 ada_lookup_simple_minsym (const char *name)
4496 {
4497 struct bound_minimal_symbol result;
4498
4499 memset (&result, 0, sizeof (result));
4500
4501 symbol_name_match_type match_type = name_match_type_from_name (name);
4502 lookup_name_info lookup_name (name, match_type);
4503
4504 symbol_name_matcher_ftype *match_name
4505 = ada_get_symbol_name_matcher (lookup_name);
4506
4507 for (objfile *objfile : current_program_space->objfiles ())
4508 {
4509 for (minimal_symbol *msymbol : objfile->msymbols ())
4510 {
4511 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4512 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4513 {
4514 result.minsym = msymbol;
4515 result.objfile = objfile;
4516 break;
4517 }
4518 }
4519 }
4520
4521 return result;
4522 }
4523
4524 /* For all subprograms that statically enclose the subprogram of the
4525 selected frame, add symbols matching identifier NAME in DOMAIN
4526 and their blocks to the list of data in RESULT, as for
4527 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4528 with a wildcard prefix. */
4529
4530 static void
4531 add_symbols_from_enclosing_procs (std::vector<struct block_symbol> &result,
4532 const lookup_name_info &lookup_name,
4533 domain_enum domain)
4534 {
4535 }
4536
4537 /* True if TYPE is definitely an artificial type supplied to a symbol
4538 for which no debugging information was given in the symbol file. */
4539
4540 static int
4541 is_nondebugging_type (struct type *type)
4542 {
4543 const char *name = ada_type_name (type);
4544
4545 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4546 }
4547
4548 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4549 that are deemed "identical" for practical purposes.
4550
4551 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4552 types and that their number of enumerals is identical (in other
4553 words, type1->num_fields () == type2->num_fields ()). */
4554
4555 static int
4556 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4557 {
4558 int i;
4559
4560 /* The heuristic we use here is fairly conservative. We consider
4561 that 2 enumerate types are identical if they have the same
4562 number of enumerals and that all enumerals have the same
4563 underlying value and name. */
4564
4565 /* All enums in the type should have an identical underlying value. */
4566 for (i = 0; i < type1->num_fields (); i++)
4567 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4568 return 0;
4569
4570 /* All enumerals should also have the same name (modulo any numerical
4571 suffix). */
4572 for (i = 0; i < type1->num_fields (); i++)
4573 {
4574 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4575 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4576 int len_1 = strlen (name_1);
4577 int len_2 = strlen (name_2);
4578
4579 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4580 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4581 if (len_1 != len_2
4582 || strncmp (TYPE_FIELD_NAME (type1, i),
4583 TYPE_FIELD_NAME (type2, i),
4584 len_1) != 0)
4585 return 0;
4586 }
4587
4588 return 1;
4589 }
4590
4591 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4592 that are deemed "identical" for practical purposes. Sometimes,
4593 enumerals are not strictly identical, but their types are so similar
4594 that they can be considered identical.
4595
4596 For instance, consider the following code:
4597
4598 type Color is (Black, Red, Green, Blue, White);
4599 type RGB_Color is new Color range Red .. Blue;
4600
4601 Type RGB_Color is a subrange of an implicit type which is a copy
4602 of type Color. If we call that implicit type RGB_ColorB ("B" is
4603 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4604 As a result, when an expression references any of the enumeral
4605 by name (Eg. "print green"), the expression is technically
4606 ambiguous and the user should be asked to disambiguate. But
4607 doing so would only hinder the user, since it wouldn't matter
4608 what choice he makes, the outcome would always be the same.
4609 So, for practical purposes, we consider them as the same. */
4610
4611 static int
4612 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4613 {
4614 int i;
4615
4616 /* Before performing a thorough comparison check of each type,
4617 we perform a series of inexpensive checks. We expect that these
4618 checks will quickly fail in the vast majority of cases, and thus
4619 help prevent the unnecessary use of a more expensive comparison.
4620 Said comparison also expects us to make some of these checks
4621 (see ada_identical_enum_types_p). */
4622
4623 /* Quick check: All symbols should have an enum type. */
4624 for (i = 0; i < syms.size (); i++)
4625 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4626 return 0;
4627
4628 /* Quick check: They should all have the same value. */
4629 for (i = 1; i < syms.size (); i++)
4630 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4631 return 0;
4632
4633 /* Quick check: They should all have the same number of enumerals. */
4634 for (i = 1; i < syms.size (); i++)
4635 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4636 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4637 return 0;
4638
4639 /* All the sanity checks passed, so we might have a set of
4640 identical enumeration types. Perform a more complete
4641 comparison of the type of each symbol. */
4642 for (i = 1; i < syms.size (); i++)
4643 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4644 SYMBOL_TYPE (syms[0].symbol)))
4645 return 0;
4646
4647 return 1;
4648 }
4649
4650 /* Remove any non-debugging symbols in SYMS that definitely
4651 duplicate other symbols in the list (The only case I know of where
4652 this happens is when object files containing stabs-in-ecoff are
4653 linked with files containing ordinary ecoff debugging symbols (or no
4654 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4655
4656 static void
4657 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4658 {
4659 int i, j;
4660
4661 /* We should never be called with less than 2 symbols, as there
4662 cannot be any extra symbol in that case. But it's easy to
4663 handle, since we have nothing to do in that case. */
4664 if (syms->size () < 2)
4665 return;
4666
4667 i = 0;
4668 while (i < syms->size ())
4669 {
4670 int remove_p = 0;
4671
4672 /* If two symbols have the same name and one of them is a stub type,
4673 the get rid of the stub. */
4674
4675 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4676 && (*syms)[i].symbol->linkage_name () != NULL)
4677 {
4678 for (j = 0; j < syms->size (); j++)
4679 {
4680 if (j != i
4681 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4682 && (*syms)[j].symbol->linkage_name () != NULL
4683 && strcmp ((*syms)[i].symbol->linkage_name (),
4684 (*syms)[j].symbol->linkage_name ()) == 0)
4685 remove_p = 1;
4686 }
4687 }
4688
4689 /* Two symbols with the same name, same class and same address
4690 should be identical. */
4691
4692 else if ((*syms)[i].symbol->linkage_name () != NULL
4693 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4694 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4695 {
4696 for (j = 0; j < syms->size (); j += 1)
4697 {
4698 if (i != j
4699 && (*syms)[j].symbol->linkage_name () != NULL
4700 && strcmp ((*syms)[i].symbol->linkage_name (),
4701 (*syms)[j].symbol->linkage_name ()) == 0
4702 && SYMBOL_CLASS ((*syms)[i].symbol)
4703 == SYMBOL_CLASS ((*syms)[j].symbol)
4704 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4705 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4706 remove_p = 1;
4707 }
4708 }
4709
4710 if (remove_p)
4711 syms->erase (syms->begin () + i);
4712 else
4713 i += 1;
4714 }
4715
4716 /* If all the remaining symbols are identical enumerals, then
4717 just keep the first one and discard the rest.
4718
4719 Unlike what we did previously, we do not discard any entry
4720 unless they are ALL identical. This is because the symbol
4721 comparison is not a strict comparison, but rather a practical
4722 comparison. If all symbols are considered identical, then
4723 we can just go ahead and use the first one and discard the rest.
4724 But if we cannot reduce the list to a single element, we have
4725 to ask the user to disambiguate anyways. And if we have to
4726 present a multiple-choice menu, it's less confusing if the list
4727 isn't missing some choices that were identical and yet distinct. */
4728 if (symbols_are_identical_enums (*syms))
4729 syms->resize (1);
4730 }
4731
4732 /* Given a type that corresponds to a renaming entity, use the type name
4733 to extract the scope (package name or function name, fully qualified,
4734 and following the GNAT encoding convention) where this renaming has been
4735 defined. */
4736
4737 static std::string
4738 xget_renaming_scope (struct type *renaming_type)
4739 {
4740 /* The renaming types adhere to the following convention:
4741 <scope>__<rename>___<XR extension>.
4742 So, to extract the scope, we search for the "___XR" extension,
4743 and then backtrack until we find the first "__". */
4744
4745 const char *name = renaming_type->name ();
4746 const char *suffix = strstr (name, "___XR");
4747 const char *last;
4748
4749 /* Now, backtrack a bit until we find the first "__". Start looking
4750 at suffix - 3, as the <rename> part is at least one character long. */
4751
4752 for (last = suffix - 3; last > name; last--)
4753 if (last[0] == '_' && last[1] == '_')
4754 break;
4755
4756 /* Make a copy of scope and return it. */
4757 return std::string (name, last);
4758 }
4759
4760 /* Return nonzero if NAME corresponds to a package name. */
4761
4762 static int
4763 is_package_name (const char *name)
4764 {
4765 /* Here, We take advantage of the fact that no symbols are generated
4766 for packages, while symbols are generated for each function.
4767 So the condition for NAME represent a package becomes equivalent
4768 to NAME not existing in our list of symbols. There is only one
4769 small complication with library-level functions (see below). */
4770
4771 /* If it is a function that has not been defined at library level,
4772 then we should be able to look it up in the symbols. */
4773 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4774 return 0;
4775
4776 /* Library-level function names start with "_ada_". See if function
4777 "_ada_" followed by NAME can be found. */
4778
4779 /* Do a quick check that NAME does not contain "__", since library-level
4780 functions names cannot contain "__" in them. */
4781 if (strstr (name, "__") != NULL)
4782 return 0;
4783
4784 std::string fun_name = string_printf ("_ada_%s", name);
4785
4786 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4787 }
4788
4789 /* Return nonzero if SYM corresponds to a renaming entity that is
4790 not visible from FUNCTION_NAME. */
4791
4792 static int
4793 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4794 {
4795 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4796 return 0;
4797
4798 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4799
4800 /* If the rename has been defined in a package, then it is visible. */
4801 if (is_package_name (scope.c_str ()))
4802 return 0;
4803
4804 /* Check that the rename is in the current function scope by checking
4805 that its name starts with SCOPE. */
4806
4807 /* If the function name starts with "_ada_", it means that it is
4808 a library-level function. Strip this prefix before doing the
4809 comparison, as the encoding for the renaming does not contain
4810 this prefix. */
4811 if (startswith (function_name, "_ada_"))
4812 function_name += 5;
4813
4814 return !startswith (function_name, scope.c_str ());
4815 }
4816
4817 /* Remove entries from SYMS that corresponds to a renaming entity that
4818 is not visible from the function associated with CURRENT_BLOCK or
4819 that is superfluous due to the presence of more specific renaming
4820 information. Places surviving symbols in the initial entries of
4821 SYMS.
4822
4823 Rationale:
4824 First, in cases where an object renaming is implemented as a
4825 reference variable, GNAT may produce both the actual reference
4826 variable and the renaming encoding. In this case, we discard the
4827 latter.
4828
4829 Second, GNAT emits a type following a specified encoding for each renaming
4830 entity. Unfortunately, STABS currently does not support the definition
4831 of types that are local to a given lexical block, so all renamings types
4832 are emitted at library level. As a consequence, if an application
4833 contains two renaming entities using the same name, and a user tries to
4834 print the value of one of these entities, the result of the ada symbol
4835 lookup will also contain the wrong renaming type.
4836
4837 This function partially covers for this limitation by attempting to
4838 remove from the SYMS list renaming symbols that should be visible
4839 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4840 method with the current information available. The implementation
4841 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4842
4843 - When the user tries to print a rename in a function while there
4844 is another rename entity defined in a package: Normally, the
4845 rename in the function has precedence over the rename in the
4846 package, so the latter should be removed from the list. This is
4847 currently not the case.
4848
4849 - This function will incorrectly remove valid renames if
4850 the CURRENT_BLOCK corresponds to a function which symbol name
4851 has been changed by an "Export" pragma. As a consequence,
4852 the user will be unable to print such rename entities. */
4853
4854 static void
4855 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4856 const struct block *current_block)
4857 {
4858 struct symbol *current_function;
4859 const char *current_function_name;
4860 int i;
4861 int is_new_style_renaming;
4862
4863 /* If there is both a renaming foo___XR... encoded as a variable and
4864 a simple variable foo in the same block, discard the latter.
4865 First, zero out such symbols, then compress. */
4866 is_new_style_renaming = 0;
4867 for (i = 0; i < syms->size (); i += 1)
4868 {
4869 struct symbol *sym = (*syms)[i].symbol;
4870 const struct block *block = (*syms)[i].block;
4871 const char *name;
4872 const char *suffix;
4873
4874 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4875 continue;
4876 name = sym->linkage_name ();
4877 suffix = strstr (name, "___XR");
4878
4879 if (suffix != NULL)
4880 {
4881 int name_len = suffix - name;
4882 int j;
4883
4884 is_new_style_renaming = 1;
4885 for (j = 0; j < syms->size (); j += 1)
4886 if (i != j && (*syms)[j].symbol != NULL
4887 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4888 name_len) == 0
4889 && block == (*syms)[j].block)
4890 (*syms)[j].symbol = NULL;
4891 }
4892 }
4893 if (is_new_style_renaming)
4894 {
4895 int j, k;
4896
4897 for (j = k = 0; j < syms->size (); j += 1)
4898 if ((*syms)[j].symbol != NULL)
4899 {
4900 (*syms)[k] = (*syms)[j];
4901 k += 1;
4902 }
4903 syms->resize (k);
4904 return;
4905 }
4906
4907 /* Extract the function name associated to CURRENT_BLOCK.
4908 Abort if unable to do so. */
4909
4910 if (current_block == NULL)
4911 return;
4912
4913 current_function = block_linkage_function (current_block);
4914 if (current_function == NULL)
4915 return;
4916
4917 current_function_name = current_function->linkage_name ();
4918 if (current_function_name == NULL)
4919 return;
4920
4921 /* Check each of the symbols, and remove it from the list if it is
4922 a type corresponding to a renaming that is out of the scope of
4923 the current block. */
4924
4925 i = 0;
4926 while (i < syms->size ())
4927 {
4928 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4929 == ADA_OBJECT_RENAMING
4930 && old_renaming_is_invisible ((*syms)[i].symbol,
4931 current_function_name))
4932 syms->erase (syms->begin () + i);
4933 else
4934 i += 1;
4935 }
4936 }
4937
4938 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4939 whose name and domain match NAME and DOMAIN respectively.
4940 If no match was found, then extend the search to "enclosing"
4941 routines (in other words, if we're inside a nested function,
4942 search the symbols defined inside the enclosing functions).
4943 If WILD_MATCH_P is nonzero, perform the naming matching in
4944 "wild" mode (see function "wild_match" for more info).
4945
4946 Note: This function assumes that RESULT has 0 (zero) element in it. */
4947
4948 static void
4949 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4950 const lookup_name_info &lookup_name,
4951 const struct block *block, domain_enum domain)
4952 {
4953 int block_depth = 0;
4954
4955 while (block != NULL)
4956 {
4957 block_depth += 1;
4958 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
4959
4960 /* If we found a non-function match, assume that's the one. */
4961 if (is_nonfunction (result))
4962 return;
4963
4964 block = BLOCK_SUPERBLOCK (block);
4965 }
4966
4967 /* If no luck so far, try to find NAME as a local symbol in some lexically
4968 enclosing subprogram. */
4969 if (result.empty () && block_depth > 2)
4970 add_symbols_from_enclosing_procs (result, lookup_name, domain);
4971 }
4972
4973 /* An object of this type is used as the callback argument when
4974 calling the map_matching_symbols method. */
4975
4976 struct match_data
4977 {
4978 explicit match_data (std::vector<struct block_symbol> *rp)
4979 : resultp (rp)
4980 {
4981 }
4982 DISABLE_COPY_AND_ASSIGN (match_data);
4983
4984 bool operator() (struct block_symbol *bsym);
4985
4986 struct objfile *objfile = nullptr;
4987 std::vector<struct block_symbol> *resultp;
4988 struct symbol *arg_sym = nullptr;
4989 bool found_sym = false;
4990 };
4991
4992 /* A callback for add_nonlocal_symbols that adds symbol, found in
4993 BSYM, to a list of symbols. */
4994
4995 bool
4996 match_data::operator() (struct block_symbol *bsym)
4997 {
4998 const struct block *block = bsym->block;
4999 struct symbol *sym = bsym->symbol;
5000
5001 if (sym == NULL)
5002 {
5003 if (!found_sym && arg_sym != NULL)
5004 add_defn_to_vec (*resultp,
5005 fixup_symbol_section (arg_sym, objfile),
5006 block);
5007 found_sym = false;
5008 arg_sym = NULL;
5009 }
5010 else
5011 {
5012 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5013 return true;
5014 else if (SYMBOL_IS_ARGUMENT (sym))
5015 arg_sym = sym;
5016 else
5017 {
5018 found_sym = true;
5019 add_defn_to_vec (*resultp,
5020 fixup_symbol_section (sym, objfile),
5021 block);
5022 }
5023 }
5024 return true;
5025 }
5026
5027 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5028 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5029 symbols to RESULT. Return whether we found such symbols. */
5030
5031 static int
5032 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5033 const struct block *block,
5034 const lookup_name_info &lookup_name,
5035 domain_enum domain)
5036 {
5037 struct using_direct *renaming;
5038 int defns_mark = result.size ();
5039
5040 symbol_name_matcher_ftype *name_match
5041 = ada_get_symbol_name_matcher (lookup_name);
5042
5043 for (renaming = block_using (block);
5044 renaming != NULL;
5045 renaming = renaming->next)
5046 {
5047 const char *r_name;
5048
5049 /* Avoid infinite recursions: skip this renaming if we are actually
5050 already traversing it.
5051
5052 Currently, symbol lookup in Ada don't use the namespace machinery from
5053 C++/Fortran support: skip namespace imports that use them. */
5054 if (renaming->searched
5055 || (renaming->import_src != NULL
5056 && renaming->import_src[0] != '\0')
5057 || (renaming->import_dest != NULL
5058 && renaming->import_dest[0] != '\0'))
5059 continue;
5060 renaming->searched = 1;
5061
5062 /* TODO: here, we perform another name-based symbol lookup, which can
5063 pull its own multiple overloads. In theory, we should be able to do
5064 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5065 not a simple name. But in order to do this, we would need to enhance
5066 the DWARF reader to associate a symbol to this renaming, instead of a
5067 name. So, for now, we do something simpler: re-use the C++/Fortran
5068 namespace machinery. */
5069 r_name = (renaming->alias != NULL
5070 ? renaming->alias
5071 : renaming->declaration);
5072 if (name_match (r_name, lookup_name, NULL))
5073 {
5074 lookup_name_info decl_lookup_name (renaming->declaration,
5075 lookup_name.match_type ());
5076 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5077 1, NULL);
5078 }
5079 renaming->searched = 0;
5080 }
5081 return result.size () != defns_mark;
5082 }
5083
5084 /* Implements compare_names, but only applying the comparision using
5085 the given CASING. */
5086
5087 static int
5088 compare_names_with_case (const char *string1, const char *string2,
5089 enum case_sensitivity casing)
5090 {
5091 while (*string1 != '\0' && *string2 != '\0')
5092 {
5093 char c1, c2;
5094
5095 if (isspace (*string1) || isspace (*string2))
5096 return strcmp_iw_ordered (string1, string2);
5097
5098 if (casing == case_sensitive_off)
5099 {
5100 c1 = tolower (*string1);
5101 c2 = tolower (*string2);
5102 }
5103 else
5104 {
5105 c1 = *string1;
5106 c2 = *string2;
5107 }
5108 if (c1 != c2)
5109 break;
5110
5111 string1 += 1;
5112 string2 += 1;
5113 }
5114
5115 switch (*string1)
5116 {
5117 case '(':
5118 return strcmp_iw_ordered (string1, string2);
5119 case '_':
5120 if (*string2 == '\0')
5121 {
5122 if (is_name_suffix (string1))
5123 return 0;
5124 else
5125 return 1;
5126 }
5127 /* FALLTHROUGH */
5128 default:
5129 if (*string2 == '(')
5130 return strcmp_iw_ordered (string1, string2);
5131 else
5132 {
5133 if (casing == case_sensitive_off)
5134 return tolower (*string1) - tolower (*string2);
5135 else
5136 return *string1 - *string2;
5137 }
5138 }
5139 }
5140
5141 /* Compare STRING1 to STRING2, with results as for strcmp.
5142 Compatible with strcmp_iw_ordered in that...
5143
5144 strcmp_iw_ordered (STRING1, STRING2) <= 0
5145
5146 ... implies...
5147
5148 compare_names (STRING1, STRING2) <= 0
5149
5150 (they may differ as to what symbols compare equal). */
5151
5152 static int
5153 compare_names (const char *string1, const char *string2)
5154 {
5155 int result;
5156
5157 /* Similar to what strcmp_iw_ordered does, we need to perform
5158 a case-insensitive comparison first, and only resort to
5159 a second, case-sensitive, comparison if the first one was
5160 not sufficient to differentiate the two strings. */
5161
5162 result = compare_names_with_case (string1, string2, case_sensitive_off);
5163 if (result == 0)
5164 result = compare_names_with_case (string1, string2, case_sensitive_on);
5165
5166 return result;
5167 }
5168
5169 /* Convenience function to get at the Ada encoded lookup name for
5170 LOOKUP_NAME, as a C string. */
5171
5172 static const char *
5173 ada_lookup_name (const lookup_name_info &lookup_name)
5174 {
5175 return lookup_name.ada ().lookup_name ().c_str ();
5176 }
5177
5178 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5179 for OBJFILE, then walk the objfile's symtabs and update the
5180 results. */
5181
5182 static void
5183 map_matching_symbols (struct objfile *objfile,
5184 const lookup_name_info &lookup_name,
5185 bool is_wild_match,
5186 domain_enum domain,
5187 int global,
5188 match_data &data)
5189 {
5190 data.objfile = objfile;
5191 objfile->expand_matching_symbols (lookup_name, domain, global,
5192 is_wild_match ? nullptr : compare_names);
5193
5194 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5195 for (compunit_symtab *symtab : objfile->compunits ())
5196 {
5197 const struct block *block
5198 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5199 if (!iterate_over_symbols_terminated (block, lookup_name,
5200 domain, data))
5201 break;
5202 }
5203 }
5204
5205 /* Add to RESULT all non-local symbols whose name and domain match
5206 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5207 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5208 symbols otherwise. */
5209
5210 static void
5211 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5212 const lookup_name_info &lookup_name,
5213 domain_enum domain, int global)
5214 {
5215 struct match_data data (&result);
5216
5217 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5218
5219 for (objfile *objfile : current_program_space->objfiles ())
5220 {
5221 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5222 global, data);
5223
5224 for (compunit_symtab *cu : objfile->compunits ())
5225 {
5226 const struct block *global_block
5227 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5228
5229 if (ada_add_block_renamings (result, global_block, lookup_name,
5230 domain))
5231 data.found_sym = true;
5232 }
5233 }
5234
5235 if (result.empty () && global && !is_wild_match)
5236 {
5237 const char *name = ada_lookup_name (lookup_name);
5238 std::string bracket_name = std::string ("<_ada_") + name + '>';
5239 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5240
5241 for (objfile *objfile : current_program_space->objfiles ())
5242 map_matching_symbols (objfile, name1, false, domain, global, data);
5243 }
5244 }
5245
5246 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5247 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5248 returning the number of matches. Add these to RESULT.
5249
5250 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5251 symbol match within the nest of blocks whose innermost member is BLOCK,
5252 is the one match returned (no other matches in that or
5253 enclosing blocks is returned). If there are any matches in or
5254 surrounding BLOCK, then these alone are returned.
5255
5256 Names prefixed with "standard__" are handled specially:
5257 "standard__" is first stripped off (by the lookup_name
5258 constructor), and only static and global symbols are searched.
5259
5260 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5261 to lookup global symbols. */
5262
5263 static void
5264 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5265 const struct block *block,
5266 const lookup_name_info &lookup_name,
5267 domain_enum domain,
5268 int full_search,
5269 int *made_global_lookup_p)
5270 {
5271 struct symbol *sym;
5272
5273 if (made_global_lookup_p)
5274 *made_global_lookup_p = 0;
5275
5276 /* Special case: If the user specifies a symbol name inside package
5277 Standard, do a non-wild matching of the symbol name without
5278 the "standard__" prefix. This was primarily introduced in order
5279 to allow the user to specifically access the standard exceptions
5280 using, for instance, Standard.Constraint_Error when Constraint_Error
5281 is ambiguous (due to the user defining its own Constraint_Error
5282 entity inside its program). */
5283 if (lookup_name.ada ().standard_p ())
5284 block = NULL;
5285
5286 /* Check the non-global symbols. If we have ANY match, then we're done. */
5287
5288 if (block != NULL)
5289 {
5290 if (full_search)
5291 ada_add_local_symbols (result, lookup_name, block, domain);
5292 else
5293 {
5294 /* In the !full_search case we're are being called by
5295 iterate_over_symbols, and we don't want to search
5296 superblocks. */
5297 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5298 }
5299 if (!result.empty () || !full_search)
5300 return;
5301 }
5302
5303 /* No non-global symbols found. Check our cache to see if we have
5304 already performed this search before. If we have, then return
5305 the same result. */
5306
5307 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5308 domain, &sym, &block))
5309 {
5310 if (sym != NULL)
5311 add_defn_to_vec (result, sym, block);
5312 return;
5313 }
5314
5315 if (made_global_lookup_p)
5316 *made_global_lookup_p = 1;
5317
5318 /* Search symbols from all global blocks. */
5319
5320 add_nonlocal_symbols (result, lookup_name, domain, 1);
5321
5322 /* Now add symbols from all per-file blocks if we've gotten no hits
5323 (not strictly correct, but perhaps better than an error). */
5324
5325 if (result.empty ())
5326 add_nonlocal_symbols (result, lookup_name, domain, 0);
5327 }
5328
5329 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5330 is non-zero, enclosing scope and in global scopes.
5331
5332 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5333 blocks and symbol tables (if any) in which they were found.
5334
5335 When full_search is non-zero, any non-function/non-enumeral
5336 symbol match within the nest of blocks whose innermost member is BLOCK,
5337 is the one match returned (no other matches in that or
5338 enclosing blocks is returned). If there are any matches in or
5339 surrounding BLOCK, then these alone are returned.
5340
5341 Names prefixed with "standard__" are handled specially: "standard__"
5342 is first stripped off, and only static and global symbols are searched. */
5343
5344 static std::vector<struct block_symbol>
5345 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5346 const struct block *block,
5347 domain_enum domain,
5348 int full_search)
5349 {
5350 int syms_from_global_search;
5351 std::vector<struct block_symbol> results;
5352
5353 ada_add_all_symbols (results, block, lookup_name,
5354 domain, full_search, &syms_from_global_search);
5355
5356 remove_extra_symbols (&results);
5357
5358 if (results.empty () && full_search && syms_from_global_search)
5359 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5360
5361 if (results.size () == 1 && full_search && syms_from_global_search)
5362 cache_symbol (ada_lookup_name (lookup_name), domain,
5363 results[0].symbol, results[0].block);
5364
5365 remove_irrelevant_renamings (&results, block);
5366 return results;
5367 }
5368
5369 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5370 in global scopes, returning (SYM,BLOCK) tuples.
5371
5372 See ada_lookup_symbol_list_worker for further details. */
5373
5374 std::vector<struct block_symbol>
5375 ada_lookup_symbol_list (const char *name, const struct block *block,
5376 domain_enum domain)
5377 {
5378 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5379 lookup_name_info lookup_name (name, name_match_type);
5380
5381 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5382 }
5383
5384 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5385 to 1, but choosing the first symbol found if there are multiple
5386 choices.
5387
5388 The result is stored in *INFO, which must be non-NULL.
5389 If no match is found, INFO->SYM is set to NULL. */
5390
5391 void
5392 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5393 domain_enum domain,
5394 struct block_symbol *info)
5395 {
5396 /* Since we already have an encoded name, wrap it in '<>' to force a
5397 verbatim match. Otherwise, if the name happens to not look like
5398 an encoded name (because it doesn't include a "__"),
5399 ada_lookup_name_info would re-encode/fold it again, and that
5400 would e.g., incorrectly lowercase object renaming names like
5401 "R28b" -> "r28b". */
5402 std::string verbatim = add_angle_brackets (name);
5403
5404 gdb_assert (info != NULL);
5405 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5406 }
5407
5408 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5409 scope and in global scopes, or NULL if none. NAME is folded and
5410 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5411 choosing the first symbol if there are multiple choices. */
5412
5413 struct block_symbol
5414 ada_lookup_symbol (const char *name, const struct block *block0,
5415 domain_enum domain)
5416 {
5417 std::vector<struct block_symbol> candidates
5418 = ada_lookup_symbol_list (name, block0, domain);
5419
5420 if (candidates.empty ())
5421 return {};
5422
5423 block_symbol info = candidates[0];
5424 info.symbol = fixup_symbol_section (info.symbol, NULL);
5425 return info;
5426 }
5427
5428
5429 /* True iff STR is a possible encoded suffix of a normal Ada name
5430 that is to be ignored for matching purposes. Suffixes of parallel
5431 names (e.g., XVE) are not included here. Currently, the possible suffixes
5432 are given by any of the regular expressions:
5433
5434 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5435 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5436 TKB [subprogram suffix for task bodies]
5437 _E[0-9]+[bs]$ [protected object entry suffixes]
5438 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5439
5440 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5441 match is performed. This sequence is used to differentiate homonyms,
5442 is an optional part of a valid name suffix. */
5443
5444 static int
5445 is_name_suffix (const char *str)
5446 {
5447 int k;
5448 const char *matching;
5449 const int len = strlen (str);
5450
5451 /* Skip optional leading __[0-9]+. */
5452
5453 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5454 {
5455 str += 3;
5456 while (isdigit (str[0]))
5457 str += 1;
5458 }
5459
5460 /* [.$][0-9]+ */
5461
5462 if (str[0] == '.' || str[0] == '$')
5463 {
5464 matching = str + 1;
5465 while (isdigit (matching[0]))
5466 matching += 1;
5467 if (matching[0] == '\0')
5468 return 1;
5469 }
5470
5471 /* ___[0-9]+ */
5472
5473 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5474 {
5475 matching = str + 3;
5476 while (isdigit (matching[0]))
5477 matching += 1;
5478 if (matching[0] == '\0')
5479 return 1;
5480 }
5481
5482 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5483
5484 if (strcmp (str, "TKB") == 0)
5485 return 1;
5486
5487 #if 0
5488 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5489 with a N at the end. Unfortunately, the compiler uses the same
5490 convention for other internal types it creates. So treating
5491 all entity names that end with an "N" as a name suffix causes
5492 some regressions. For instance, consider the case of an enumerated
5493 type. To support the 'Image attribute, it creates an array whose
5494 name ends with N.
5495 Having a single character like this as a suffix carrying some
5496 information is a bit risky. Perhaps we should change the encoding
5497 to be something like "_N" instead. In the meantime, do not do
5498 the following check. */
5499 /* Protected Object Subprograms */
5500 if (len == 1 && str [0] == 'N')
5501 return 1;
5502 #endif
5503
5504 /* _E[0-9]+[bs]$ */
5505 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5506 {
5507 matching = str + 3;
5508 while (isdigit (matching[0]))
5509 matching += 1;
5510 if ((matching[0] == 'b' || matching[0] == 's')
5511 && matching [1] == '\0')
5512 return 1;
5513 }
5514
5515 /* ??? We should not modify STR directly, as we are doing below. This
5516 is fine in this case, but may become problematic later if we find
5517 that this alternative did not work, and want to try matching
5518 another one from the begining of STR. Since we modified it, we
5519 won't be able to find the begining of the string anymore! */
5520 if (str[0] == 'X')
5521 {
5522 str += 1;
5523 while (str[0] != '_' && str[0] != '\0')
5524 {
5525 if (str[0] != 'n' && str[0] != 'b')
5526 return 0;
5527 str += 1;
5528 }
5529 }
5530
5531 if (str[0] == '\000')
5532 return 1;
5533
5534 if (str[0] == '_')
5535 {
5536 if (str[1] != '_' || str[2] == '\000')
5537 return 0;
5538 if (str[2] == '_')
5539 {
5540 if (strcmp (str + 3, "JM") == 0)
5541 return 1;
5542 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5543 the LJM suffix in favor of the JM one. But we will
5544 still accept LJM as a valid suffix for a reasonable
5545 amount of time, just to allow ourselves to debug programs
5546 compiled using an older version of GNAT. */
5547 if (strcmp (str + 3, "LJM") == 0)
5548 return 1;
5549 if (str[3] != 'X')
5550 return 0;
5551 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5552 || str[4] == 'U' || str[4] == 'P')
5553 return 1;
5554 if (str[4] == 'R' && str[5] != 'T')
5555 return 1;
5556 return 0;
5557 }
5558 if (!isdigit (str[2]))
5559 return 0;
5560 for (k = 3; str[k] != '\0'; k += 1)
5561 if (!isdigit (str[k]) && str[k] != '_')
5562 return 0;
5563 return 1;
5564 }
5565 if (str[0] == '$' && isdigit (str[1]))
5566 {
5567 for (k = 2; str[k] != '\0'; k += 1)
5568 if (!isdigit (str[k]) && str[k] != '_')
5569 return 0;
5570 return 1;
5571 }
5572 return 0;
5573 }
5574
5575 /* Return non-zero if the string starting at NAME and ending before
5576 NAME_END contains no capital letters. */
5577
5578 static int
5579 is_valid_name_for_wild_match (const char *name0)
5580 {
5581 std::string decoded_name = ada_decode (name0);
5582 int i;
5583
5584 /* If the decoded name starts with an angle bracket, it means that
5585 NAME0 does not follow the GNAT encoding format. It should then
5586 not be allowed as a possible wild match. */
5587 if (decoded_name[0] == '<')
5588 return 0;
5589
5590 for (i=0; decoded_name[i] != '\0'; i++)
5591 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5592 return 0;
5593
5594 return 1;
5595 }
5596
5597 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5598 character which could start a simple name. Assumes that *NAMEP points
5599 somewhere inside the string beginning at NAME0. */
5600
5601 static int
5602 advance_wild_match (const char **namep, const char *name0, char target0)
5603 {
5604 const char *name = *namep;
5605
5606 while (1)
5607 {
5608 char t0, t1;
5609
5610 t0 = *name;
5611 if (t0 == '_')
5612 {
5613 t1 = name[1];
5614 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5615 {
5616 name += 1;
5617 if (name == name0 + 5 && startswith (name0, "_ada"))
5618 break;
5619 else
5620 name += 1;
5621 }
5622 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5623 || name[2] == target0))
5624 {
5625 name += 2;
5626 break;
5627 }
5628 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5629 {
5630 /* Names like "pkg__B_N__name", where N is a number, are
5631 block-local. We can handle these by simply skipping
5632 the "B_" here. */
5633 name += 4;
5634 }
5635 else
5636 return 0;
5637 }
5638 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5639 name += 1;
5640 else
5641 return 0;
5642 }
5643
5644 *namep = name;
5645 return 1;
5646 }
5647
5648 /* Return true iff NAME encodes a name of the form prefix.PATN.
5649 Ignores any informational suffixes of NAME (i.e., for which
5650 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5651 simple name. */
5652
5653 static bool
5654 wild_match (const char *name, const char *patn)
5655 {
5656 const char *p;
5657 const char *name0 = name;
5658
5659 while (1)
5660 {
5661 const char *match = name;
5662
5663 if (*name == *patn)
5664 {
5665 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5666 if (*p != *name)
5667 break;
5668 if (*p == '\0' && is_name_suffix (name))
5669 return match == name0 || is_valid_name_for_wild_match (name0);
5670
5671 if (name[-1] == '_')
5672 name -= 1;
5673 }
5674 if (!advance_wild_match (&name, name0, *patn))
5675 return false;
5676 }
5677 }
5678
5679 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5680 necessary). OBJFILE is the section containing BLOCK. */
5681
5682 static void
5683 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5684 const struct block *block,
5685 const lookup_name_info &lookup_name,
5686 domain_enum domain, struct objfile *objfile)
5687 {
5688 struct block_iterator iter;
5689 /* A matching argument symbol, if any. */
5690 struct symbol *arg_sym;
5691 /* Set true when we find a matching non-argument symbol. */
5692 bool found_sym;
5693 struct symbol *sym;
5694
5695 arg_sym = NULL;
5696 found_sym = false;
5697 for (sym = block_iter_match_first (block, lookup_name, &iter);
5698 sym != NULL;
5699 sym = block_iter_match_next (lookup_name, &iter))
5700 {
5701 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5702 {
5703 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5704 {
5705 if (SYMBOL_IS_ARGUMENT (sym))
5706 arg_sym = sym;
5707 else
5708 {
5709 found_sym = true;
5710 add_defn_to_vec (result,
5711 fixup_symbol_section (sym, objfile),
5712 block);
5713 }
5714 }
5715 }
5716 }
5717
5718 /* Handle renamings. */
5719
5720 if (ada_add_block_renamings (result, block, lookup_name, domain))
5721 found_sym = true;
5722
5723 if (!found_sym && arg_sym != NULL)
5724 {
5725 add_defn_to_vec (result,
5726 fixup_symbol_section (arg_sym, objfile),
5727 block);
5728 }
5729
5730 if (!lookup_name.ada ().wild_match_p ())
5731 {
5732 arg_sym = NULL;
5733 found_sym = false;
5734 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5735 const char *name = ada_lookup_name.c_str ();
5736 size_t name_len = ada_lookup_name.size ();
5737
5738 ALL_BLOCK_SYMBOLS (block, iter, sym)
5739 {
5740 if (symbol_matches_domain (sym->language (),
5741 SYMBOL_DOMAIN (sym), domain))
5742 {
5743 int cmp;
5744
5745 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5746 if (cmp == 0)
5747 {
5748 cmp = !startswith (sym->linkage_name (), "_ada_");
5749 if (cmp == 0)
5750 cmp = strncmp (name, sym->linkage_name () + 5,
5751 name_len);
5752 }
5753
5754 if (cmp == 0
5755 && is_name_suffix (sym->linkage_name () + name_len + 5))
5756 {
5757 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5758 {
5759 if (SYMBOL_IS_ARGUMENT (sym))
5760 arg_sym = sym;
5761 else
5762 {
5763 found_sym = true;
5764 add_defn_to_vec (result,
5765 fixup_symbol_section (sym, objfile),
5766 block);
5767 }
5768 }
5769 }
5770 }
5771 }
5772
5773 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5774 They aren't parameters, right? */
5775 if (!found_sym && arg_sym != NULL)
5776 {
5777 add_defn_to_vec (result,
5778 fixup_symbol_section (arg_sym, objfile),
5779 block);
5780 }
5781 }
5782 }
5783 \f
5784
5785 /* Symbol Completion */
5786
5787 /* See symtab.h. */
5788
5789 bool
5790 ada_lookup_name_info::matches
5791 (const char *sym_name,
5792 symbol_name_match_type match_type,
5793 completion_match_result *comp_match_res) const
5794 {
5795 bool match = false;
5796 const char *text = m_encoded_name.c_str ();
5797 size_t text_len = m_encoded_name.size ();
5798
5799 /* First, test against the fully qualified name of the symbol. */
5800
5801 if (strncmp (sym_name, text, text_len) == 0)
5802 match = true;
5803
5804 std::string decoded_name = ada_decode (sym_name);
5805 if (match && !m_encoded_p)
5806 {
5807 /* One needed check before declaring a positive match is to verify
5808 that iff we are doing a verbatim match, the decoded version
5809 of the symbol name starts with '<'. Otherwise, this symbol name
5810 is not a suitable completion. */
5811
5812 bool has_angle_bracket = (decoded_name[0] == '<');
5813 match = (has_angle_bracket == m_verbatim_p);
5814 }
5815
5816 if (match && !m_verbatim_p)
5817 {
5818 /* When doing non-verbatim match, another check that needs to
5819 be done is to verify that the potentially matching symbol name
5820 does not include capital letters, because the ada-mode would
5821 not be able to understand these symbol names without the
5822 angle bracket notation. */
5823 const char *tmp;
5824
5825 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5826 if (*tmp != '\0')
5827 match = false;
5828 }
5829
5830 /* Second: Try wild matching... */
5831
5832 if (!match && m_wild_match_p)
5833 {
5834 /* Since we are doing wild matching, this means that TEXT
5835 may represent an unqualified symbol name. We therefore must
5836 also compare TEXT against the unqualified name of the symbol. */
5837 sym_name = ada_unqualified_name (decoded_name.c_str ());
5838
5839 if (strncmp (sym_name, text, text_len) == 0)
5840 match = true;
5841 }
5842
5843 /* Finally: If we found a match, prepare the result to return. */
5844
5845 if (!match)
5846 return false;
5847
5848 if (comp_match_res != NULL)
5849 {
5850 std::string &match_str = comp_match_res->match.storage ();
5851
5852 if (!m_encoded_p)
5853 match_str = ada_decode (sym_name);
5854 else
5855 {
5856 if (m_verbatim_p)
5857 match_str = add_angle_brackets (sym_name);
5858 else
5859 match_str = sym_name;
5860
5861 }
5862
5863 comp_match_res->set_match (match_str.c_str ());
5864 }
5865
5866 return true;
5867 }
5868
5869 /* Field Access */
5870
5871 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5872 for tagged types. */
5873
5874 static int
5875 ada_is_dispatch_table_ptr_type (struct type *type)
5876 {
5877 const char *name;
5878
5879 if (type->code () != TYPE_CODE_PTR)
5880 return 0;
5881
5882 name = TYPE_TARGET_TYPE (type)->name ();
5883 if (name == NULL)
5884 return 0;
5885
5886 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5887 }
5888
5889 /* Return non-zero if TYPE is an interface tag. */
5890
5891 static int
5892 ada_is_interface_tag (struct type *type)
5893 {
5894 const char *name = type->name ();
5895
5896 if (name == NULL)
5897 return 0;
5898
5899 return (strcmp (name, "ada__tags__interface_tag") == 0);
5900 }
5901
5902 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5903 to be invisible to users. */
5904
5905 int
5906 ada_is_ignored_field (struct type *type, int field_num)
5907 {
5908 if (field_num < 0 || field_num > type->num_fields ())
5909 return 1;
5910
5911 /* Check the name of that field. */
5912 {
5913 const char *name = TYPE_FIELD_NAME (type, field_num);
5914
5915 /* Anonymous field names should not be printed.
5916 brobecker/2007-02-20: I don't think this can actually happen
5917 but we don't want to print the value of anonymous fields anyway. */
5918 if (name == NULL)
5919 return 1;
5920
5921 /* Normally, fields whose name start with an underscore ("_")
5922 are fields that have been internally generated by the compiler,
5923 and thus should not be printed. The "_parent" field is special,
5924 however: This is a field internally generated by the compiler
5925 for tagged types, and it contains the components inherited from
5926 the parent type. This field should not be printed as is, but
5927 should not be ignored either. */
5928 if (name[0] == '_' && !startswith (name, "_parent"))
5929 return 1;
5930 }
5931
5932 /* If this is the dispatch table of a tagged type or an interface tag,
5933 then ignore. */
5934 if (ada_is_tagged_type (type, 1)
5935 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5936 || ada_is_interface_tag (type->field (field_num).type ())))
5937 return 1;
5938
5939 /* Not a special field, so it should not be ignored. */
5940 return 0;
5941 }
5942
5943 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5944 pointer or reference type whose ultimate target has a tag field. */
5945
5946 int
5947 ada_is_tagged_type (struct type *type, int refok)
5948 {
5949 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5950 }
5951
5952 /* True iff TYPE represents the type of X'Tag */
5953
5954 int
5955 ada_is_tag_type (struct type *type)
5956 {
5957 type = ada_check_typedef (type);
5958
5959 if (type == NULL || type->code () != TYPE_CODE_PTR)
5960 return 0;
5961 else
5962 {
5963 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5964
5965 return (name != NULL
5966 && strcmp (name, "ada__tags__dispatch_table") == 0);
5967 }
5968 }
5969
5970 /* The type of the tag on VAL. */
5971
5972 static struct type *
5973 ada_tag_type (struct value *val)
5974 {
5975 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
5976 }
5977
5978 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
5979 retired at Ada 05). */
5980
5981 static int
5982 is_ada95_tag (struct value *tag)
5983 {
5984 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
5985 }
5986
5987 /* The value of the tag on VAL. */
5988
5989 static struct value *
5990 ada_value_tag (struct value *val)
5991 {
5992 return ada_value_struct_elt (val, "_tag", 0);
5993 }
5994
5995 /* The value of the tag on the object of type TYPE whose contents are
5996 saved at VALADDR, if it is non-null, or is at memory address
5997 ADDRESS. */
5998
5999 static struct value *
6000 value_tag_from_contents_and_address (struct type *type,
6001 const gdb_byte *valaddr,
6002 CORE_ADDR address)
6003 {
6004 int tag_byte_offset;
6005 struct type *tag_type;
6006
6007 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6008 NULL, NULL, NULL))
6009 {
6010 const gdb_byte *valaddr1 = ((valaddr == NULL)
6011 ? NULL
6012 : valaddr + tag_byte_offset);
6013 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6014
6015 return value_from_contents_and_address (tag_type, valaddr1, address1);
6016 }
6017 return NULL;
6018 }
6019
6020 static struct type *
6021 type_from_tag (struct value *tag)
6022 {
6023 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6024
6025 if (type_name != NULL)
6026 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6027 return NULL;
6028 }
6029
6030 /* Given a value OBJ of a tagged type, return a value of this
6031 type at the base address of the object. The base address, as
6032 defined in Ada.Tags, it is the address of the primary tag of
6033 the object, and therefore where the field values of its full
6034 view can be fetched. */
6035
6036 struct value *
6037 ada_tag_value_at_base_address (struct value *obj)
6038 {
6039 struct value *val;
6040 LONGEST offset_to_top = 0;
6041 struct type *ptr_type, *obj_type;
6042 struct value *tag;
6043 CORE_ADDR base_address;
6044
6045 obj_type = value_type (obj);
6046
6047 /* It is the responsability of the caller to deref pointers. */
6048
6049 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6050 return obj;
6051
6052 tag = ada_value_tag (obj);
6053 if (!tag)
6054 return obj;
6055
6056 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6057
6058 if (is_ada95_tag (tag))
6059 return obj;
6060
6061 ptr_type = language_lookup_primitive_type
6062 (language_def (language_ada), target_gdbarch(), "storage_offset");
6063 ptr_type = lookup_pointer_type (ptr_type);
6064 val = value_cast (ptr_type, tag);
6065 if (!val)
6066 return obj;
6067
6068 /* It is perfectly possible that an exception be raised while
6069 trying to determine the base address, just like for the tag;
6070 see ada_tag_name for more details. We do not print the error
6071 message for the same reason. */
6072
6073 try
6074 {
6075 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6076 }
6077
6078 catch (const gdb_exception_error &e)
6079 {
6080 return obj;
6081 }
6082
6083 /* If offset is null, nothing to do. */
6084
6085 if (offset_to_top == 0)
6086 return obj;
6087
6088 /* -1 is a special case in Ada.Tags; however, what should be done
6089 is not quite clear from the documentation. So do nothing for
6090 now. */
6091
6092 if (offset_to_top == -1)
6093 return obj;
6094
6095 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6096 from the base address. This was however incompatible with
6097 C++ dispatch table: C++ uses a *negative* value to *add*
6098 to the base address. Ada's convention has therefore been
6099 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6100 use the same convention. Here, we support both cases by
6101 checking the sign of OFFSET_TO_TOP. */
6102
6103 if (offset_to_top > 0)
6104 offset_to_top = -offset_to_top;
6105
6106 base_address = value_address (obj) + offset_to_top;
6107 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6108
6109 /* Make sure that we have a proper tag at the new address.
6110 Otherwise, offset_to_top is bogus (which can happen when
6111 the object is not initialized yet). */
6112
6113 if (!tag)
6114 return obj;
6115
6116 obj_type = type_from_tag (tag);
6117
6118 if (!obj_type)
6119 return obj;
6120
6121 return value_from_contents_and_address (obj_type, NULL, base_address);
6122 }
6123
6124 /* Return the "ada__tags__type_specific_data" type. */
6125
6126 static struct type *
6127 ada_get_tsd_type (struct inferior *inf)
6128 {
6129 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6130
6131 if (data->tsd_type == 0)
6132 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6133 return data->tsd_type;
6134 }
6135
6136 /* Return the TSD (type-specific data) associated to the given TAG.
6137 TAG is assumed to be the tag of a tagged-type entity.
6138
6139 May return NULL if we are unable to get the TSD. */
6140
6141 static struct value *
6142 ada_get_tsd_from_tag (struct value *tag)
6143 {
6144 struct value *val;
6145 struct type *type;
6146
6147 /* First option: The TSD is simply stored as a field of our TAG.
6148 Only older versions of GNAT would use this format, but we have
6149 to test it first, because there are no visible markers for
6150 the current approach except the absence of that field. */
6151
6152 val = ada_value_struct_elt (tag, "tsd", 1);
6153 if (val)
6154 return val;
6155
6156 /* Try the second representation for the dispatch table (in which
6157 there is no explicit 'tsd' field in the referent of the tag pointer,
6158 and instead the tsd pointer is stored just before the dispatch
6159 table. */
6160
6161 type = ada_get_tsd_type (current_inferior());
6162 if (type == NULL)
6163 return NULL;
6164 type = lookup_pointer_type (lookup_pointer_type (type));
6165 val = value_cast (type, tag);
6166 if (val == NULL)
6167 return NULL;
6168 return value_ind (value_ptradd (val, -1));
6169 }
6170
6171 /* Given the TSD of a tag (type-specific data), return a string
6172 containing the name of the associated type.
6173
6174 May return NULL if we are unable to determine the tag name. */
6175
6176 static gdb::unique_xmalloc_ptr<char>
6177 ada_tag_name_from_tsd (struct value *tsd)
6178 {
6179 char *p;
6180 struct value *val;
6181
6182 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6183 if (val == NULL)
6184 return NULL;
6185 gdb::unique_xmalloc_ptr<char> buffer
6186 = target_read_string (value_as_address (val), INT_MAX);
6187 if (buffer == nullptr)
6188 return nullptr;
6189
6190 for (p = buffer.get (); *p != '\0'; ++p)
6191 {
6192 if (isalpha (*p))
6193 *p = tolower (*p);
6194 }
6195
6196 return buffer;
6197 }
6198
6199 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6200 a C string.
6201
6202 Return NULL if the TAG is not an Ada tag, or if we were unable to
6203 determine the name of that tag. */
6204
6205 gdb::unique_xmalloc_ptr<char>
6206 ada_tag_name (struct value *tag)
6207 {
6208 gdb::unique_xmalloc_ptr<char> name;
6209
6210 if (!ada_is_tag_type (value_type (tag)))
6211 return NULL;
6212
6213 /* It is perfectly possible that an exception be raised while trying
6214 to determine the TAG's name, even under normal circumstances:
6215 The associated variable may be uninitialized or corrupted, for
6216 instance. We do not let any exception propagate past this point.
6217 instead we return NULL.
6218
6219 We also do not print the error message either (which often is very
6220 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6221 the caller print a more meaningful message if necessary. */
6222 try
6223 {
6224 struct value *tsd = ada_get_tsd_from_tag (tag);
6225
6226 if (tsd != NULL)
6227 name = ada_tag_name_from_tsd (tsd);
6228 }
6229 catch (const gdb_exception_error &e)
6230 {
6231 }
6232
6233 return name;
6234 }
6235
6236 /* The parent type of TYPE, or NULL if none. */
6237
6238 struct type *
6239 ada_parent_type (struct type *type)
6240 {
6241 int i;
6242
6243 type = ada_check_typedef (type);
6244
6245 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6246 return NULL;
6247
6248 for (i = 0; i < type->num_fields (); i += 1)
6249 if (ada_is_parent_field (type, i))
6250 {
6251 struct type *parent_type = type->field (i).type ();
6252
6253 /* If the _parent field is a pointer, then dereference it. */
6254 if (parent_type->code () == TYPE_CODE_PTR)
6255 parent_type = TYPE_TARGET_TYPE (parent_type);
6256 /* If there is a parallel XVS type, get the actual base type. */
6257 parent_type = ada_get_base_type (parent_type);
6258
6259 return ada_check_typedef (parent_type);
6260 }
6261
6262 return NULL;
6263 }
6264
6265 /* True iff field number FIELD_NUM of structure type TYPE contains the
6266 parent-type (inherited) fields of a derived type. Assumes TYPE is
6267 a structure type with at least FIELD_NUM+1 fields. */
6268
6269 int
6270 ada_is_parent_field (struct type *type, int field_num)
6271 {
6272 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6273
6274 return (name != NULL
6275 && (startswith (name, "PARENT")
6276 || startswith (name, "_parent")));
6277 }
6278
6279 /* True iff field number FIELD_NUM of structure type TYPE is a
6280 transparent wrapper field (which should be silently traversed when doing
6281 field selection and flattened when printing). Assumes TYPE is a
6282 structure type with at least FIELD_NUM+1 fields. Such fields are always
6283 structures. */
6284
6285 int
6286 ada_is_wrapper_field (struct type *type, int field_num)
6287 {
6288 const char *name = TYPE_FIELD_NAME (type, field_num);
6289
6290 if (name != NULL && strcmp (name, "RETVAL") == 0)
6291 {
6292 /* This happens in functions with "out" or "in out" parameters
6293 which are passed by copy. For such functions, GNAT describes
6294 the function's return type as being a struct where the return
6295 value is in a field called RETVAL, and where the other "out"
6296 or "in out" parameters are fields of that struct. This is not
6297 a wrapper. */
6298 return 0;
6299 }
6300
6301 return (name != NULL
6302 && (startswith (name, "PARENT")
6303 || strcmp (name, "REP") == 0
6304 || startswith (name, "_parent")
6305 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6306 }
6307
6308 /* True iff field number FIELD_NUM of structure or union type TYPE
6309 is a variant wrapper. Assumes TYPE is a structure type with at least
6310 FIELD_NUM+1 fields. */
6311
6312 int
6313 ada_is_variant_part (struct type *type, int field_num)
6314 {
6315 /* Only Ada types are eligible. */
6316 if (!ADA_TYPE_P (type))
6317 return 0;
6318
6319 struct type *field_type = type->field (field_num).type ();
6320
6321 return (field_type->code () == TYPE_CODE_UNION
6322 || (is_dynamic_field (type, field_num)
6323 && (TYPE_TARGET_TYPE (field_type)->code ()
6324 == TYPE_CODE_UNION)));
6325 }
6326
6327 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6328 whose discriminants are contained in the record type OUTER_TYPE,
6329 returns the type of the controlling discriminant for the variant.
6330 May return NULL if the type could not be found. */
6331
6332 struct type *
6333 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6334 {
6335 const char *name = ada_variant_discrim_name (var_type);
6336
6337 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6338 }
6339
6340 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6341 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6342 represents a 'when others' clause; otherwise 0. */
6343
6344 static int
6345 ada_is_others_clause (struct type *type, int field_num)
6346 {
6347 const char *name = TYPE_FIELD_NAME (type, field_num);
6348
6349 return (name != NULL && name[0] == 'O');
6350 }
6351
6352 /* Assuming that TYPE0 is the type of the variant part of a record,
6353 returns the name of the discriminant controlling the variant.
6354 The value is valid until the next call to ada_variant_discrim_name. */
6355
6356 const char *
6357 ada_variant_discrim_name (struct type *type0)
6358 {
6359 static std::string result;
6360 struct type *type;
6361 const char *name;
6362 const char *discrim_end;
6363 const char *discrim_start;
6364
6365 if (type0->code () == TYPE_CODE_PTR)
6366 type = TYPE_TARGET_TYPE (type0);
6367 else
6368 type = type0;
6369
6370 name = ada_type_name (type);
6371
6372 if (name == NULL || name[0] == '\000')
6373 return "";
6374
6375 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6376 discrim_end -= 1)
6377 {
6378 if (startswith (discrim_end, "___XVN"))
6379 break;
6380 }
6381 if (discrim_end == name)
6382 return "";
6383
6384 for (discrim_start = discrim_end; discrim_start != name + 3;
6385 discrim_start -= 1)
6386 {
6387 if (discrim_start == name + 1)
6388 return "";
6389 if ((discrim_start > name + 3
6390 && startswith (discrim_start - 3, "___"))
6391 || discrim_start[-1] == '.')
6392 break;
6393 }
6394
6395 result = std::string (discrim_start, discrim_end - discrim_start);
6396 return result.c_str ();
6397 }
6398
6399 /* Scan STR for a subtype-encoded number, beginning at position K.
6400 Put the position of the character just past the number scanned in
6401 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6402 Return 1 if there was a valid number at the given position, and 0
6403 otherwise. A "subtype-encoded" number consists of the absolute value
6404 in decimal, followed by the letter 'm' to indicate a negative number.
6405 Assumes 0m does not occur. */
6406
6407 int
6408 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6409 {
6410 ULONGEST RU;
6411
6412 if (!isdigit (str[k]))
6413 return 0;
6414
6415 /* Do it the hard way so as not to make any assumption about
6416 the relationship of unsigned long (%lu scan format code) and
6417 LONGEST. */
6418 RU = 0;
6419 while (isdigit (str[k]))
6420 {
6421 RU = RU * 10 + (str[k] - '0');
6422 k += 1;
6423 }
6424
6425 if (str[k] == 'm')
6426 {
6427 if (R != NULL)
6428 *R = (-(LONGEST) (RU - 1)) - 1;
6429 k += 1;
6430 }
6431 else if (R != NULL)
6432 *R = (LONGEST) RU;
6433
6434 /* NOTE on the above: Technically, C does not say what the results of
6435 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6436 number representable as a LONGEST (although either would probably work
6437 in most implementations). When RU>0, the locution in the then branch
6438 above is always equivalent to the negative of RU. */
6439
6440 if (new_k != NULL)
6441 *new_k = k;
6442 return 1;
6443 }
6444
6445 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6446 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6447 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6448
6449 static int
6450 ada_in_variant (LONGEST val, struct type *type, int field_num)
6451 {
6452 const char *name = TYPE_FIELD_NAME (type, field_num);
6453 int p;
6454
6455 p = 0;
6456 while (1)
6457 {
6458 switch (name[p])
6459 {
6460 case '\0':
6461 return 0;
6462 case 'S':
6463 {
6464 LONGEST W;
6465
6466 if (!ada_scan_number (name, p + 1, &W, &p))
6467 return 0;
6468 if (val == W)
6469 return 1;
6470 break;
6471 }
6472 case 'R':
6473 {
6474 LONGEST L, U;
6475
6476 if (!ada_scan_number (name, p + 1, &L, &p)
6477 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6478 return 0;
6479 if (val >= L && val <= U)
6480 return 1;
6481 break;
6482 }
6483 case 'O':
6484 return 1;
6485 default:
6486 return 0;
6487 }
6488 }
6489 }
6490
6491 /* FIXME: Lots of redundancy below. Try to consolidate. */
6492
6493 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6494 ARG_TYPE, extract and return the value of one of its (non-static)
6495 fields. FIELDNO says which field. Differs from value_primitive_field
6496 only in that it can handle packed values of arbitrary type. */
6497
6498 struct value *
6499 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6500 struct type *arg_type)
6501 {
6502 struct type *type;
6503
6504 arg_type = ada_check_typedef (arg_type);
6505 type = arg_type->field (fieldno).type ();
6506
6507 /* Handle packed fields. It might be that the field is not packed
6508 relative to its containing structure, but the structure itself is
6509 packed; in this case we must take the bit-field path. */
6510 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6511 {
6512 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6513 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6514
6515 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6516 offset + bit_pos / 8,
6517 bit_pos % 8, bit_size, type);
6518 }
6519 else
6520 return value_primitive_field (arg1, offset, fieldno, arg_type);
6521 }
6522
6523 /* Find field with name NAME in object of type TYPE. If found,
6524 set the following for each argument that is non-null:
6525 - *FIELD_TYPE_P to the field's type;
6526 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6527 an object of that type;
6528 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6529 - *BIT_SIZE_P to its size in bits if the field is packed, and
6530 0 otherwise;
6531 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6532 fields up to but not including the desired field, or by the total
6533 number of fields if not found. A NULL value of NAME never
6534 matches; the function just counts visible fields in this case.
6535
6536 Notice that we need to handle when a tagged record hierarchy
6537 has some components with the same name, like in this scenario:
6538
6539 type Top_T is tagged record
6540 N : Integer := 1;
6541 U : Integer := 974;
6542 A : Integer := 48;
6543 end record;
6544
6545 type Middle_T is new Top.Top_T with record
6546 N : Character := 'a';
6547 C : Integer := 3;
6548 end record;
6549
6550 type Bottom_T is new Middle.Middle_T with record
6551 N : Float := 4.0;
6552 C : Character := '5';
6553 X : Integer := 6;
6554 A : Character := 'J';
6555 end record;
6556
6557 Let's say we now have a variable declared and initialized as follow:
6558
6559 TC : Top_A := new Bottom_T;
6560
6561 And then we use this variable to call this function
6562
6563 procedure Assign (Obj: in out Top_T; TV : Integer);
6564
6565 as follow:
6566
6567 Assign (Top_T (B), 12);
6568
6569 Now, we're in the debugger, and we're inside that procedure
6570 then and we want to print the value of obj.c:
6571
6572 Usually, the tagged record or one of the parent type owns the
6573 component to print and there's no issue but in this particular
6574 case, what does it mean to ask for Obj.C? Since the actual
6575 type for object is type Bottom_T, it could mean two things: type
6576 component C from the Middle_T view, but also component C from
6577 Bottom_T. So in that "undefined" case, when the component is
6578 not found in the non-resolved type (which includes all the
6579 components of the parent type), then resolve it and see if we
6580 get better luck once expanded.
6581
6582 In the case of homonyms in the derived tagged type, we don't
6583 guaranty anything, and pick the one that's easiest for us
6584 to program.
6585
6586 Returns 1 if found, 0 otherwise. */
6587
6588 static int
6589 find_struct_field (const char *name, struct type *type, int offset,
6590 struct type **field_type_p,
6591 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6592 int *index_p)
6593 {
6594 int i;
6595 int parent_offset = -1;
6596
6597 type = ada_check_typedef (type);
6598
6599 if (field_type_p != NULL)
6600 *field_type_p = NULL;
6601 if (byte_offset_p != NULL)
6602 *byte_offset_p = 0;
6603 if (bit_offset_p != NULL)
6604 *bit_offset_p = 0;
6605 if (bit_size_p != NULL)
6606 *bit_size_p = 0;
6607
6608 for (i = 0; i < type->num_fields (); i += 1)
6609 {
6610 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6611 int fld_offset = offset + bit_pos / 8;
6612 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6613
6614 if (t_field_name == NULL)
6615 continue;
6616
6617 else if (ada_is_parent_field (type, i))
6618 {
6619 /* This is a field pointing us to the parent type of a tagged
6620 type. As hinted in this function's documentation, we give
6621 preference to fields in the current record first, so what
6622 we do here is just record the index of this field before
6623 we skip it. If it turns out we couldn't find our field
6624 in the current record, then we'll get back to it and search
6625 inside it whether the field might exist in the parent. */
6626
6627 parent_offset = i;
6628 continue;
6629 }
6630
6631 else if (name != NULL && field_name_match (t_field_name, name))
6632 {
6633 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6634
6635 if (field_type_p != NULL)
6636 *field_type_p = type->field (i).type ();
6637 if (byte_offset_p != NULL)
6638 *byte_offset_p = fld_offset;
6639 if (bit_offset_p != NULL)
6640 *bit_offset_p = bit_pos % 8;
6641 if (bit_size_p != NULL)
6642 *bit_size_p = bit_size;
6643 return 1;
6644 }
6645 else if (ada_is_wrapper_field (type, i))
6646 {
6647 if (find_struct_field (name, type->field (i).type (), fld_offset,
6648 field_type_p, byte_offset_p, bit_offset_p,
6649 bit_size_p, index_p))
6650 return 1;
6651 }
6652 else if (ada_is_variant_part (type, i))
6653 {
6654 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6655 fixed type?? */
6656 int j;
6657 struct type *field_type
6658 = ada_check_typedef (type->field (i).type ());
6659
6660 for (j = 0; j < field_type->num_fields (); j += 1)
6661 {
6662 if (find_struct_field (name, field_type->field (j).type (),
6663 fld_offset
6664 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6665 field_type_p, byte_offset_p,
6666 bit_offset_p, bit_size_p, index_p))
6667 return 1;
6668 }
6669 }
6670 else if (index_p != NULL)
6671 *index_p += 1;
6672 }
6673
6674 /* Field not found so far. If this is a tagged type which
6675 has a parent, try finding that field in the parent now. */
6676
6677 if (parent_offset != -1)
6678 {
6679 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
6680 int fld_offset = offset + bit_pos / 8;
6681
6682 if (find_struct_field (name, type->field (parent_offset).type (),
6683 fld_offset, field_type_p, byte_offset_p,
6684 bit_offset_p, bit_size_p, index_p))
6685 return 1;
6686 }
6687
6688 return 0;
6689 }
6690
6691 /* Number of user-visible fields in record type TYPE. */
6692
6693 static int
6694 num_visible_fields (struct type *type)
6695 {
6696 int n;
6697
6698 n = 0;
6699 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6700 return n;
6701 }
6702
6703 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6704 and search in it assuming it has (class) type TYPE.
6705 If found, return value, else return NULL.
6706
6707 Searches recursively through wrapper fields (e.g., '_parent').
6708
6709 In the case of homonyms in the tagged types, please refer to the
6710 long explanation in find_struct_field's function documentation. */
6711
6712 static struct value *
6713 ada_search_struct_field (const char *name, struct value *arg, int offset,
6714 struct type *type)
6715 {
6716 int i;
6717 int parent_offset = -1;
6718
6719 type = ada_check_typedef (type);
6720 for (i = 0; i < type->num_fields (); i += 1)
6721 {
6722 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6723
6724 if (t_field_name == NULL)
6725 continue;
6726
6727 else if (ada_is_parent_field (type, i))
6728 {
6729 /* This is a field pointing us to the parent type of a tagged
6730 type. As hinted in this function's documentation, we give
6731 preference to fields in the current record first, so what
6732 we do here is just record the index of this field before
6733 we skip it. If it turns out we couldn't find our field
6734 in the current record, then we'll get back to it and search
6735 inside it whether the field might exist in the parent. */
6736
6737 parent_offset = i;
6738 continue;
6739 }
6740
6741 else if (field_name_match (t_field_name, name))
6742 return ada_value_primitive_field (arg, offset, i, type);
6743
6744 else if (ada_is_wrapper_field (type, i))
6745 {
6746 struct value *v = /* Do not let indent join lines here. */
6747 ada_search_struct_field (name, arg,
6748 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6749 type->field (i).type ());
6750
6751 if (v != NULL)
6752 return v;
6753 }
6754
6755 else if (ada_is_variant_part (type, i))
6756 {
6757 /* PNH: Do we ever get here? See find_struct_field. */
6758 int j;
6759 struct type *field_type = ada_check_typedef (type->field (i).type ());
6760 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6761
6762 for (j = 0; j < field_type->num_fields (); j += 1)
6763 {
6764 struct value *v = ada_search_struct_field /* Force line
6765 break. */
6766 (name, arg,
6767 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6768 field_type->field (j).type ());
6769
6770 if (v != NULL)
6771 return v;
6772 }
6773 }
6774 }
6775
6776 /* Field not found so far. If this is a tagged type which
6777 has a parent, try finding that field in the parent now. */
6778
6779 if (parent_offset != -1)
6780 {
6781 struct value *v = ada_search_struct_field (
6782 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
6783 type->field (parent_offset).type ());
6784
6785 if (v != NULL)
6786 return v;
6787 }
6788
6789 return NULL;
6790 }
6791
6792 static struct value *ada_index_struct_field_1 (int *, struct value *,
6793 int, struct type *);
6794
6795
6796 /* Return field #INDEX in ARG, where the index is that returned by
6797 * find_struct_field through its INDEX_P argument. Adjust the address
6798 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6799 * If found, return value, else return NULL. */
6800
6801 static struct value *
6802 ada_index_struct_field (int index, struct value *arg, int offset,
6803 struct type *type)
6804 {
6805 return ada_index_struct_field_1 (&index, arg, offset, type);
6806 }
6807
6808
6809 /* Auxiliary function for ada_index_struct_field. Like
6810 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6811 * *INDEX_P. */
6812
6813 static struct value *
6814 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6815 struct type *type)
6816 {
6817 int i;
6818 type = ada_check_typedef (type);
6819
6820 for (i = 0; i < type->num_fields (); i += 1)
6821 {
6822 if (TYPE_FIELD_NAME (type, i) == NULL)
6823 continue;
6824 else if (ada_is_wrapper_field (type, i))
6825 {
6826 struct value *v = /* Do not let indent join lines here. */
6827 ada_index_struct_field_1 (index_p, arg,
6828 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6829 type->field (i).type ());
6830
6831 if (v != NULL)
6832 return v;
6833 }
6834
6835 else if (ada_is_variant_part (type, i))
6836 {
6837 /* PNH: Do we ever get here? See ada_search_struct_field,
6838 find_struct_field. */
6839 error (_("Cannot assign this kind of variant record"));
6840 }
6841 else if (*index_p == 0)
6842 return ada_value_primitive_field (arg, offset, i, type);
6843 else
6844 *index_p -= 1;
6845 }
6846 return NULL;
6847 }
6848
6849 /* Return a string representation of type TYPE. */
6850
6851 static std::string
6852 type_as_string (struct type *type)
6853 {
6854 string_file tmp_stream;
6855
6856 type_print (type, "", &tmp_stream, -1);
6857
6858 return std::move (tmp_stream.string ());
6859 }
6860
6861 /* Given a type TYPE, look up the type of the component of type named NAME.
6862 If DISPP is non-null, add its byte displacement from the beginning of a
6863 structure (pointed to by a value) of type TYPE to *DISPP (does not
6864 work for packed fields).
6865
6866 Matches any field whose name has NAME as a prefix, possibly
6867 followed by "___".
6868
6869 TYPE can be either a struct or union. If REFOK, TYPE may also
6870 be a (pointer or reference)+ to a struct or union, and the
6871 ultimate target type will be searched.
6872
6873 Looks recursively into variant clauses and parent types.
6874
6875 In the case of homonyms in the tagged types, please refer to the
6876 long explanation in find_struct_field's function documentation.
6877
6878 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6879 TYPE is not a type of the right kind. */
6880
6881 static struct type *
6882 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6883 int noerr)
6884 {
6885 int i;
6886 int parent_offset = -1;
6887
6888 if (name == NULL)
6889 goto BadName;
6890
6891 if (refok && type != NULL)
6892 while (1)
6893 {
6894 type = ada_check_typedef (type);
6895 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6896 break;
6897 type = TYPE_TARGET_TYPE (type);
6898 }
6899
6900 if (type == NULL
6901 || (type->code () != TYPE_CODE_STRUCT
6902 && type->code () != TYPE_CODE_UNION))
6903 {
6904 if (noerr)
6905 return NULL;
6906
6907 error (_("Type %s is not a structure or union type"),
6908 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6909 }
6910
6911 type = to_static_fixed_type (type);
6912
6913 for (i = 0; i < type->num_fields (); i += 1)
6914 {
6915 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6916 struct type *t;
6917
6918 if (t_field_name == NULL)
6919 continue;
6920
6921 else if (ada_is_parent_field (type, i))
6922 {
6923 /* This is a field pointing us to the parent type of a tagged
6924 type. As hinted in this function's documentation, we give
6925 preference to fields in the current record first, so what
6926 we do here is just record the index of this field before
6927 we skip it. If it turns out we couldn't find our field
6928 in the current record, then we'll get back to it and search
6929 inside it whether the field might exist in the parent. */
6930
6931 parent_offset = i;
6932 continue;
6933 }
6934
6935 else if (field_name_match (t_field_name, name))
6936 return type->field (i).type ();
6937
6938 else if (ada_is_wrapper_field (type, i))
6939 {
6940 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
6941 0, 1);
6942 if (t != NULL)
6943 return t;
6944 }
6945
6946 else if (ada_is_variant_part (type, i))
6947 {
6948 int j;
6949 struct type *field_type = ada_check_typedef (type->field (i).type ());
6950
6951 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
6952 {
6953 /* FIXME pnh 2008/01/26: We check for a field that is
6954 NOT wrapped in a struct, since the compiler sometimes
6955 generates these for unchecked variant types. Revisit
6956 if the compiler changes this practice. */
6957 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6958
6959 if (v_field_name != NULL
6960 && field_name_match (v_field_name, name))
6961 t = field_type->field (j).type ();
6962 else
6963 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
6964 name, 0, 1);
6965
6966 if (t != NULL)
6967 return t;
6968 }
6969 }
6970
6971 }
6972
6973 /* Field not found so far. If this is a tagged type which
6974 has a parent, try finding that field in the parent now. */
6975
6976 if (parent_offset != -1)
6977 {
6978 struct type *t;
6979
6980 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
6981 name, 0, 1);
6982 if (t != NULL)
6983 return t;
6984 }
6985
6986 BadName:
6987 if (!noerr)
6988 {
6989 const char *name_str = name != NULL ? name : _("<null>");
6990
6991 error (_("Type %s has no component named %s"),
6992 type_as_string (type).c_str (), name_str);
6993 }
6994
6995 return NULL;
6996 }
6997
6998 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6999 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7000 represents an unchecked union (that is, the variant part of a
7001 record that is named in an Unchecked_Union pragma). */
7002
7003 static int
7004 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7005 {
7006 const char *discrim_name = ada_variant_discrim_name (var_type);
7007
7008 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7009 }
7010
7011
7012 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7013 within OUTER, determine which variant clause (field number in VAR_TYPE,
7014 numbering from 0) is applicable. Returns -1 if none are. */
7015
7016 int
7017 ada_which_variant_applies (struct type *var_type, struct value *outer)
7018 {
7019 int others_clause;
7020 int i;
7021 const char *discrim_name = ada_variant_discrim_name (var_type);
7022 struct value *discrim;
7023 LONGEST discrim_val;
7024
7025 /* Using plain value_from_contents_and_address here causes problems
7026 because we will end up trying to resolve a type that is currently
7027 being constructed. */
7028 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7029 if (discrim == NULL)
7030 return -1;
7031 discrim_val = value_as_long (discrim);
7032
7033 others_clause = -1;
7034 for (i = 0; i < var_type->num_fields (); i += 1)
7035 {
7036 if (ada_is_others_clause (var_type, i))
7037 others_clause = i;
7038 else if (ada_in_variant (discrim_val, var_type, i))
7039 return i;
7040 }
7041
7042 return others_clause;
7043 }
7044 \f
7045
7046
7047 /* Dynamic-Sized Records */
7048
7049 /* Strategy: The type ostensibly attached to a value with dynamic size
7050 (i.e., a size that is not statically recorded in the debugging
7051 data) does not accurately reflect the size or layout of the value.
7052 Our strategy is to convert these values to values with accurate,
7053 conventional types that are constructed on the fly. */
7054
7055 /* There is a subtle and tricky problem here. In general, we cannot
7056 determine the size of dynamic records without its data. However,
7057 the 'struct value' data structure, which GDB uses to represent
7058 quantities in the inferior process (the target), requires the size
7059 of the type at the time of its allocation in order to reserve space
7060 for GDB's internal copy of the data. That's why the
7061 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7062 rather than struct value*s.
7063
7064 However, GDB's internal history variables ($1, $2, etc.) are
7065 struct value*s containing internal copies of the data that are not, in
7066 general, the same as the data at their corresponding addresses in
7067 the target. Fortunately, the types we give to these values are all
7068 conventional, fixed-size types (as per the strategy described
7069 above), so that we don't usually have to perform the
7070 'to_fixed_xxx_type' conversions to look at their values.
7071 Unfortunately, there is one exception: if one of the internal
7072 history variables is an array whose elements are unconstrained
7073 records, then we will need to create distinct fixed types for each
7074 element selected. */
7075
7076 /* The upshot of all of this is that many routines take a (type, host
7077 address, target address) triple as arguments to represent a value.
7078 The host address, if non-null, is supposed to contain an internal
7079 copy of the relevant data; otherwise, the program is to consult the
7080 target at the target address. */
7081
7082 /* Assuming that VAL0 represents a pointer value, the result of
7083 dereferencing it. Differs from value_ind in its treatment of
7084 dynamic-sized types. */
7085
7086 struct value *
7087 ada_value_ind (struct value *val0)
7088 {
7089 struct value *val = value_ind (val0);
7090
7091 if (ada_is_tagged_type (value_type (val), 0))
7092 val = ada_tag_value_at_base_address (val);
7093
7094 return ada_to_fixed_value (val);
7095 }
7096
7097 /* The value resulting from dereferencing any "reference to"
7098 qualifiers on VAL0. */
7099
7100 static struct value *
7101 ada_coerce_ref (struct value *val0)
7102 {
7103 if (value_type (val0)->code () == TYPE_CODE_REF)
7104 {
7105 struct value *val = val0;
7106
7107 val = coerce_ref (val);
7108
7109 if (ada_is_tagged_type (value_type (val), 0))
7110 val = ada_tag_value_at_base_address (val);
7111
7112 return ada_to_fixed_value (val);
7113 }
7114 else
7115 return val0;
7116 }
7117
7118 /* Return the bit alignment required for field #F of template type TYPE. */
7119
7120 static unsigned int
7121 field_alignment (struct type *type, int f)
7122 {
7123 const char *name = TYPE_FIELD_NAME (type, f);
7124 int len;
7125 int align_offset;
7126
7127 /* The field name should never be null, unless the debugging information
7128 is somehow malformed. In this case, we assume the field does not
7129 require any alignment. */
7130 if (name == NULL)
7131 return 1;
7132
7133 len = strlen (name);
7134
7135 if (!isdigit (name[len - 1]))
7136 return 1;
7137
7138 if (isdigit (name[len - 2]))
7139 align_offset = len - 2;
7140 else
7141 align_offset = len - 1;
7142
7143 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7144 return TARGET_CHAR_BIT;
7145
7146 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7147 }
7148
7149 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7150
7151 static struct symbol *
7152 ada_find_any_type_symbol (const char *name)
7153 {
7154 struct symbol *sym;
7155
7156 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7157 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7158 return sym;
7159
7160 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7161 return sym;
7162 }
7163
7164 /* Find a type named NAME. Ignores ambiguity. This routine will look
7165 solely for types defined by debug info, it will not search the GDB
7166 primitive types. */
7167
7168 static struct type *
7169 ada_find_any_type (const char *name)
7170 {
7171 struct symbol *sym = ada_find_any_type_symbol (name);
7172
7173 if (sym != NULL)
7174 return SYMBOL_TYPE (sym);
7175
7176 return NULL;
7177 }
7178
7179 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7180 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7181 symbol, in which case it is returned. Otherwise, this looks for
7182 symbols whose name is that of NAME_SYM suffixed with "___XR".
7183 Return symbol if found, and NULL otherwise. */
7184
7185 static bool
7186 ada_is_renaming_symbol (struct symbol *name_sym)
7187 {
7188 const char *name = name_sym->linkage_name ();
7189 return strstr (name, "___XR") != NULL;
7190 }
7191
7192 /* Because of GNAT encoding conventions, several GDB symbols may match a
7193 given type name. If the type denoted by TYPE0 is to be preferred to
7194 that of TYPE1 for purposes of type printing, return non-zero;
7195 otherwise return 0. */
7196
7197 int
7198 ada_prefer_type (struct type *type0, struct type *type1)
7199 {
7200 if (type1 == NULL)
7201 return 1;
7202 else if (type0 == NULL)
7203 return 0;
7204 else if (type1->code () == TYPE_CODE_VOID)
7205 return 1;
7206 else if (type0->code () == TYPE_CODE_VOID)
7207 return 0;
7208 else if (type1->name () == NULL && type0->name () != NULL)
7209 return 1;
7210 else if (ada_is_constrained_packed_array_type (type0))
7211 return 1;
7212 else if (ada_is_array_descriptor_type (type0)
7213 && !ada_is_array_descriptor_type (type1))
7214 return 1;
7215 else
7216 {
7217 const char *type0_name = type0->name ();
7218 const char *type1_name = type1->name ();
7219
7220 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7221 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7222 return 1;
7223 }
7224 return 0;
7225 }
7226
7227 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7228 null. */
7229
7230 const char *
7231 ada_type_name (struct type *type)
7232 {
7233 if (type == NULL)
7234 return NULL;
7235 return type->name ();
7236 }
7237
7238 /* Search the list of "descriptive" types associated to TYPE for a type
7239 whose name is NAME. */
7240
7241 static struct type *
7242 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7243 {
7244 struct type *result, *tmp;
7245
7246 if (ada_ignore_descriptive_types_p)
7247 return NULL;
7248
7249 /* If there no descriptive-type info, then there is no parallel type
7250 to be found. */
7251 if (!HAVE_GNAT_AUX_INFO (type))
7252 return NULL;
7253
7254 result = TYPE_DESCRIPTIVE_TYPE (type);
7255 while (result != NULL)
7256 {
7257 const char *result_name = ada_type_name (result);
7258
7259 if (result_name == NULL)
7260 {
7261 warning (_("unexpected null name on descriptive type"));
7262 return NULL;
7263 }
7264
7265 /* If the names match, stop. */
7266 if (strcmp (result_name, name) == 0)
7267 break;
7268
7269 /* Otherwise, look at the next item on the list, if any. */
7270 if (HAVE_GNAT_AUX_INFO (result))
7271 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7272 else
7273 tmp = NULL;
7274
7275 /* If not found either, try after having resolved the typedef. */
7276 if (tmp != NULL)
7277 result = tmp;
7278 else
7279 {
7280 result = check_typedef (result);
7281 if (HAVE_GNAT_AUX_INFO (result))
7282 result = TYPE_DESCRIPTIVE_TYPE (result);
7283 else
7284 result = NULL;
7285 }
7286 }
7287
7288 /* If we didn't find a match, see whether this is a packed array. With
7289 older compilers, the descriptive type information is either absent or
7290 irrelevant when it comes to packed arrays so the above lookup fails.
7291 Fall back to using a parallel lookup by name in this case. */
7292 if (result == NULL && ada_is_constrained_packed_array_type (type))
7293 return ada_find_any_type (name);
7294
7295 return result;
7296 }
7297
7298 /* Find a parallel type to TYPE with the specified NAME, using the
7299 descriptive type taken from the debugging information, if available,
7300 and otherwise using the (slower) name-based method. */
7301
7302 static struct type *
7303 ada_find_parallel_type_with_name (struct type *type, const char *name)
7304 {
7305 struct type *result = NULL;
7306
7307 if (HAVE_GNAT_AUX_INFO (type))
7308 result = find_parallel_type_by_descriptive_type (type, name);
7309 else
7310 result = ada_find_any_type (name);
7311
7312 return result;
7313 }
7314
7315 /* Same as above, but specify the name of the parallel type by appending
7316 SUFFIX to the name of TYPE. */
7317
7318 struct type *
7319 ada_find_parallel_type (struct type *type, const char *suffix)
7320 {
7321 char *name;
7322 const char *type_name = ada_type_name (type);
7323 int len;
7324
7325 if (type_name == NULL)
7326 return NULL;
7327
7328 len = strlen (type_name);
7329
7330 name = (char *) alloca (len + strlen (suffix) + 1);
7331
7332 strcpy (name, type_name);
7333 strcpy (name + len, suffix);
7334
7335 return ada_find_parallel_type_with_name (type, name);
7336 }
7337
7338 /* If TYPE is a variable-size record type, return the corresponding template
7339 type describing its fields. Otherwise, return NULL. */
7340
7341 static struct type *
7342 dynamic_template_type (struct type *type)
7343 {
7344 type = ada_check_typedef (type);
7345
7346 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7347 || ada_type_name (type) == NULL)
7348 return NULL;
7349 else
7350 {
7351 int len = strlen (ada_type_name (type));
7352
7353 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7354 return type;
7355 else
7356 return ada_find_parallel_type (type, "___XVE");
7357 }
7358 }
7359
7360 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7361 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7362
7363 static int
7364 is_dynamic_field (struct type *templ_type, int field_num)
7365 {
7366 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7367
7368 return name != NULL
7369 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7370 && strstr (name, "___XVL") != NULL;
7371 }
7372
7373 /* The index of the variant field of TYPE, or -1 if TYPE does not
7374 represent a variant record type. */
7375
7376 static int
7377 variant_field_index (struct type *type)
7378 {
7379 int f;
7380
7381 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7382 return -1;
7383
7384 for (f = 0; f < type->num_fields (); f += 1)
7385 {
7386 if (ada_is_variant_part (type, f))
7387 return f;
7388 }
7389 return -1;
7390 }
7391
7392 /* A record type with no fields. */
7393
7394 static struct type *
7395 empty_record (struct type *templ)
7396 {
7397 struct type *type = alloc_type_copy (templ);
7398
7399 type->set_code (TYPE_CODE_STRUCT);
7400 INIT_NONE_SPECIFIC (type);
7401 type->set_name ("<empty>");
7402 TYPE_LENGTH (type) = 0;
7403 return type;
7404 }
7405
7406 /* An ordinary record type (with fixed-length fields) that describes
7407 the value of type TYPE at VALADDR or ADDRESS (see comments at
7408 the beginning of this section) VAL according to GNAT conventions.
7409 DVAL0 should describe the (portion of a) record that contains any
7410 necessary discriminants. It should be NULL if value_type (VAL) is
7411 an outer-level type (i.e., as opposed to a branch of a variant.) A
7412 variant field (unless unchecked) is replaced by a particular branch
7413 of the variant.
7414
7415 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7416 length are not statically known are discarded. As a consequence,
7417 VALADDR, ADDRESS and DVAL0 are ignored.
7418
7419 NOTE: Limitations: For now, we assume that dynamic fields and
7420 variants occupy whole numbers of bytes. However, they need not be
7421 byte-aligned. */
7422
7423 struct type *
7424 ada_template_to_fixed_record_type_1 (struct type *type,
7425 const gdb_byte *valaddr,
7426 CORE_ADDR address, struct value *dval0,
7427 int keep_dynamic_fields)
7428 {
7429 struct value *mark = value_mark ();
7430 struct value *dval;
7431 struct type *rtype;
7432 int nfields, bit_len;
7433 int variant_field;
7434 long off;
7435 int fld_bit_len;
7436 int f;
7437
7438 /* Compute the number of fields in this record type that are going
7439 to be processed: unless keep_dynamic_fields, this includes only
7440 fields whose position and length are static will be processed. */
7441 if (keep_dynamic_fields)
7442 nfields = type->num_fields ();
7443 else
7444 {
7445 nfields = 0;
7446 while (nfields < type->num_fields ()
7447 && !ada_is_variant_part (type, nfields)
7448 && !is_dynamic_field (type, nfields))
7449 nfields++;
7450 }
7451
7452 rtype = alloc_type_copy (type);
7453 rtype->set_code (TYPE_CODE_STRUCT);
7454 INIT_NONE_SPECIFIC (rtype);
7455 rtype->set_num_fields (nfields);
7456 rtype->set_fields
7457 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7458 rtype->set_name (ada_type_name (type));
7459 rtype->set_is_fixed_instance (true);
7460
7461 off = 0;
7462 bit_len = 0;
7463 variant_field = -1;
7464
7465 for (f = 0; f < nfields; f += 1)
7466 {
7467 off = align_up (off, field_alignment (type, f))
7468 + TYPE_FIELD_BITPOS (type, f);
7469 SET_FIELD_BITPOS (rtype->field (f), off);
7470 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7471
7472 if (ada_is_variant_part (type, f))
7473 {
7474 variant_field = f;
7475 fld_bit_len = 0;
7476 }
7477 else if (is_dynamic_field (type, f))
7478 {
7479 const gdb_byte *field_valaddr = valaddr;
7480 CORE_ADDR field_address = address;
7481 struct type *field_type =
7482 TYPE_TARGET_TYPE (type->field (f).type ());
7483
7484 if (dval0 == NULL)
7485 {
7486 /* rtype's length is computed based on the run-time
7487 value of discriminants. If the discriminants are not
7488 initialized, the type size may be completely bogus and
7489 GDB may fail to allocate a value for it. So check the
7490 size first before creating the value. */
7491 ada_ensure_varsize_limit (rtype);
7492 /* Using plain value_from_contents_and_address here
7493 causes problems because we will end up trying to
7494 resolve a type that is currently being
7495 constructed. */
7496 dval = value_from_contents_and_address_unresolved (rtype,
7497 valaddr,
7498 address);
7499 rtype = value_type (dval);
7500 }
7501 else
7502 dval = dval0;
7503
7504 /* If the type referenced by this field is an aligner type, we need
7505 to unwrap that aligner type, because its size might not be set.
7506 Keeping the aligner type would cause us to compute the wrong
7507 size for this field, impacting the offset of the all the fields
7508 that follow this one. */
7509 if (ada_is_aligner_type (field_type))
7510 {
7511 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7512
7513 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7514 field_address = cond_offset_target (field_address, field_offset);
7515 field_type = ada_aligned_type (field_type);
7516 }
7517
7518 field_valaddr = cond_offset_host (field_valaddr,
7519 off / TARGET_CHAR_BIT);
7520 field_address = cond_offset_target (field_address,
7521 off / TARGET_CHAR_BIT);
7522
7523 /* Get the fixed type of the field. Note that, in this case,
7524 we do not want to get the real type out of the tag: if
7525 the current field is the parent part of a tagged record,
7526 we will get the tag of the object. Clearly wrong: the real
7527 type of the parent is not the real type of the child. We
7528 would end up in an infinite loop. */
7529 field_type = ada_get_base_type (field_type);
7530 field_type = ada_to_fixed_type (field_type, field_valaddr,
7531 field_address, dval, 0);
7532 /* If the field size is already larger than the maximum
7533 object size, then the record itself will necessarily
7534 be larger than the maximum object size. We need to make
7535 this check now, because the size might be so ridiculously
7536 large (due to an uninitialized variable in the inferior)
7537 that it would cause an overflow when adding it to the
7538 record size. */
7539 ada_ensure_varsize_limit (field_type);
7540
7541 rtype->field (f).set_type (field_type);
7542 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7543 /* The multiplication can potentially overflow. But because
7544 the field length has been size-checked just above, and
7545 assuming that the maximum size is a reasonable value,
7546 an overflow should not happen in practice. So rather than
7547 adding overflow recovery code to this already complex code,
7548 we just assume that it's not going to happen. */
7549 fld_bit_len =
7550 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7551 }
7552 else
7553 {
7554 /* Note: If this field's type is a typedef, it is important
7555 to preserve the typedef layer.
7556
7557 Otherwise, we might be transforming a typedef to a fat
7558 pointer (encoding a pointer to an unconstrained array),
7559 into a basic fat pointer (encoding an unconstrained
7560 array). As both types are implemented using the same
7561 structure, the typedef is the only clue which allows us
7562 to distinguish between the two options. Stripping it
7563 would prevent us from printing this field appropriately. */
7564 rtype->field (f).set_type (type->field (f).type ());
7565 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7566 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7567 fld_bit_len =
7568 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7569 else
7570 {
7571 struct type *field_type = type->field (f).type ();
7572
7573 /* We need to be careful of typedefs when computing
7574 the length of our field. If this is a typedef,
7575 get the length of the target type, not the length
7576 of the typedef. */
7577 if (field_type->code () == TYPE_CODE_TYPEDEF)
7578 field_type = ada_typedef_target_type (field_type);
7579
7580 fld_bit_len =
7581 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7582 }
7583 }
7584 if (off + fld_bit_len > bit_len)
7585 bit_len = off + fld_bit_len;
7586 off += fld_bit_len;
7587 TYPE_LENGTH (rtype) =
7588 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7589 }
7590
7591 /* We handle the variant part, if any, at the end because of certain
7592 odd cases in which it is re-ordered so as NOT to be the last field of
7593 the record. This can happen in the presence of representation
7594 clauses. */
7595 if (variant_field >= 0)
7596 {
7597 struct type *branch_type;
7598
7599 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7600
7601 if (dval0 == NULL)
7602 {
7603 /* Using plain value_from_contents_and_address here causes
7604 problems because we will end up trying to resolve a type
7605 that is currently being constructed. */
7606 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7607 address);
7608 rtype = value_type (dval);
7609 }
7610 else
7611 dval = dval0;
7612
7613 branch_type =
7614 to_fixed_variant_branch_type
7615 (type->field (variant_field).type (),
7616 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7617 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7618 if (branch_type == NULL)
7619 {
7620 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7621 rtype->field (f - 1) = rtype->field (f);
7622 rtype->set_num_fields (rtype->num_fields () - 1);
7623 }
7624 else
7625 {
7626 rtype->field (variant_field).set_type (branch_type);
7627 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7628 fld_bit_len =
7629 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7630 TARGET_CHAR_BIT;
7631 if (off + fld_bit_len > bit_len)
7632 bit_len = off + fld_bit_len;
7633 TYPE_LENGTH (rtype) =
7634 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7635 }
7636 }
7637
7638 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7639 should contain the alignment of that record, which should be a strictly
7640 positive value. If null or negative, then something is wrong, most
7641 probably in the debug info. In that case, we don't round up the size
7642 of the resulting type. If this record is not part of another structure,
7643 the current RTYPE length might be good enough for our purposes. */
7644 if (TYPE_LENGTH (type) <= 0)
7645 {
7646 if (rtype->name ())
7647 warning (_("Invalid type size for `%s' detected: %s."),
7648 rtype->name (), pulongest (TYPE_LENGTH (type)));
7649 else
7650 warning (_("Invalid type size for <unnamed> detected: %s."),
7651 pulongest (TYPE_LENGTH (type)));
7652 }
7653 else
7654 {
7655 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7656 TYPE_LENGTH (type));
7657 }
7658
7659 value_free_to_mark (mark);
7660 if (TYPE_LENGTH (rtype) > varsize_limit)
7661 error (_("record type with dynamic size is larger than varsize-limit"));
7662 return rtype;
7663 }
7664
7665 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7666 of 1. */
7667
7668 static struct type *
7669 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7670 CORE_ADDR address, struct value *dval0)
7671 {
7672 return ada_template_to_fixed_record_type_1 (type, valaddr,
7673 address, dval0, 1);
7674 }
7675
7676 /* An ordinary record type in which ___XVL-convention fields and
7677 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7678 static approximations, containing all possible fields. Uses
7679 no runtime values. Useless for use in values, but that's OK,
7680 since the results are used only for type determinations. Works on both
7681 structs and unions. Representation note: to save space, we memorize
7682 the result of this function in the TYPE_TARGET_TYPE of the
7683 template type. */
7684
7685 static struct type *
7686 template_to_static_fixed_type (struct type *type0)
7687 {
7688 struct type *type;
7689 int nfields;
7690 int f;
7691
7692 /* No need no do anything if the input type is already fixed. */
7693 if (type0->is_fixed_instance ())
7694 return type0;
7695
7696 /* Likewise if we already have computed the static approximation. */
7697 if (TYPE_TARGET_TYPE (type0) != NULL)
7698 return TYPE_TARGET_TYPE (type0);
7699
7700 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7701 type = type0;
7702 nfields = type0->num_fields ();
7703
7704 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7705 recompute all over next time. */
7706 TYPE_TARGET_TYPE (type0) = type;
7707
7708 for (f = 0; f < nfields; f += 1)
7709 {
7710 struct type *field_type = type0->field (f).type ();
7711 struct type *new_type;
7712
7713 if (is_dynamic_field (type0, f))
7714 {
7715 field_type = ada_check_typedef (field_type);
7716 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7717 }
7718 else
7719 new_type = static_unwrap_type (field_type);
7720
7721 if (new_type != field_type)
7722 {
7723 /* Clone TYPE0 only the first time we get a new field type. */
7724 if (type == type0)
7725 {
7726 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7727 type->set_code (type0->code ());
7728 INIT_NONE_SPECIFIC (type);
7729 type->set_num_fields (nfields);
7730
7731 field *fields =
7732 ((struct field *)
7733 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7734 memcpy (fields, type0->fields (),
7735 sizeof (struct field) * nfields);
7736 type->set_fields (fields);
7737
7738 type->set_name (ada_type_name (type0));
7739 type->set_is_fixed_instance (true);
7740 TYPE_LENGTH (type) = 0;
7741 }
7742 type->field (f).set_type (new_type);
7743 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7744 }
7745 }
7746
7747 return type;
7748 }
7749
7750 /* Given an object of type TYPE whose contents are at VALADDR and
7751 whose address in memory is ADDRESS, returns a revision of TYPE,
7752 which should be a non-dynamic-sized record, in which the variant
7753 part, if any, is replaced with the appropriate branch. Looks
7754 for discriminant values in DVAL0, which can be NULL if the record
7755 contains the necessary discriminant values. */
7756
7757 static struct type *
7758 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7759 CORE_ADDR address, struct value *dval0)
7760 {
7761 struct value *mark = value_mark ();
7762 struct value *dval;
7763 struct type *rtype;
7764 struct type *branch_type;
7765 int nfields = type->num_fields ();
7766 int variant_field = variant_field_index (type);
7767
7768 if (variant_field == -1)
7769 return type;
7770
7771 if (dval0 == NULL)
7772 {
7773 dval = value_from_contents_and_address (type, valaddr, address);
7774 type = value_type (dval);
7775 }
7776 else
7777 dval = dval0;
7778
7779 rtype = alloc_type_copy (type);
7780 rtype->set_code (TYPE_CODE_STRUCT);
7781 INIT_NONE_SPECIFIC (rtype);
7782 rtype->set_num_fields (nfields);
7783
7784 field *fields =
7785 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7786 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7787 rtype->set_fields (fields);
7788
7789 rtype->set_name (ada_type_name (type));
7790 rtype->set_is_fixed_instance (true);
7791 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7792
7793 branch_type = to_fixed_variant_branch_type
7794 (type->field (variant_field).type (),
7795 cond_offset_host (valaddr,
7796 TYPE_FIELD_BITPOS (type, variant_field)
7797 / TARGET_CHAR_BIT),
7798 cond_offset_target (address,
7799 TYPE_FIELD_BITPOS (type, variant_field)
7800 / TARGET_CHAR_BIT), dval);
7801 if (branch_type == NULL)
7802 {
7803 int f;
7804
7805 for (f = variant_field + 1; f < nfields; f += 1)
7806 rtype->field (f - 1) = rtype->field (f);
7807 rtype->set_num_fields (rtype->num_fields () - 1);
7808 }
7809 else
7810 {
7811 rtype->field (variant_field).set_type (branch_type);
7812 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7813 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7814 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7815 }
7816 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7817
7818 value_free_to_mark (mark);
7819 return rtype;
7820 }
7821
7822 /* An ordinary record type (with fixed-length fields) that describes
7823 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7824 beginning of this section]. Any necessary discriminants' values
7825 should be in DVAL, a record value; it may be NULL if the object
7826 at ADDR itself contains any necessary discriminant values.
7827 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7828 values from the record are needed. Except in the case that DVAL,
7829 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7830 unchecked) is replaced by a particular branch of the variant.
7831
7832 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7833 is questionable and may be removed. It can arise during the
7834 processing of an unconstrained-array-of-record type where all the
7835 variant branches have exactly the same size. This is because in
7836 such cases, the compiler does not bother to use the XVS convention
7837 when encoding the record. I am currently dubious of this
7838 shortcut and suspect the compiler should be altered. FIXME. */
7839
7840 static struct type *
7841 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7842 CORE_ADDR address, struct value *dval)
7843 {
7844 struct type *templ_type;
7845
7846 if (type0->is_fixed_instance ())
7847 return type0;
7848
7849 templ_type = dynamic_template_type (type0);
7850
7851 if (templ_type != NULL)
7852 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7853 else if (variant_field_index (type0) >= 0)
7854 {
7855 if (dval == NULL && valaddr == NULL && address == 0)
7856 return type0;
7857 return to_record_with_fixed_variant_part (type0, valaddr, address,
7858 dval);
7859 }
7860 else
7861 {
7862 type0->set_is_fixed_instance (true);
7863 return type0;
7864 }
7865
7866 }
7867
7868 /* An ordinary record type (with fixed-length fields) that describes
7869 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7870 union type. Any necessary discriminants' values should be in DVAL,
7871 a record value. That is, this routine selects the appropriate
7872 branch of the union at ADDR according to the discriminant value
7873 indicated in the union's type name. Returns VAR_TYPE0 itself if
7874 it represents a variant subject to a pragma Unchecked_Union. */
7875
7876 static struct type *
7877 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7878 CORE_ADDR address, struct value *dval)
7879 {
7880 int which;
7881 struct type *templ_type;
7882 struct type *var_type;
7883
7884 if (var_type0->code () == TYPE_CODE_PTR)
7885 var_type = TYPE_TARGET_TYPE (var_type0);
7886 else
7887 var_type = var_type0;
7888
7889 templ_type = ada_find_parallel_type (var_type, "___XVU");
7890
7891 if (templ_type != NULL)
7892 var_type = templ_type;
7893
7894 if (is_unchecked_variant (var_type, value_type (dval)))
7895 return var_type0;
7896 which = ada_which_variant_applies (var_type, dval);
7897
7898 if (which < 0)
7899 return empty_record (var_type);
7900 else if (is_dynamic_field (var_type, which))
7901 return to_fixed_record_type
7902 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7903 valaddr, address, dval);
7904 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7905 return
7906 to_fixed_record_type
7907 (var_type->field (which).type (), valaddr, address, dval);
7908 else
7909 return var_type->field (which).type ();
7910 }
7911
7912 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7913 ENCODING_TYPE, a type following the GNAT conventions for discrete
7914 type encodings, only carries redundant information. */
7915
7916 static int
7917 ada_is_redundant_range_encoding (struct type *range_type,
7918 struct type *encoding_type)
7919 {
7920 const char *bounds_str;
7921 int n;
7922 LONGEST lo, hi;
7923
7924 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7925
7926 if (get_base_type (range_type)->code ()
7927 != get_base_type (encoding_type)->code ())
7928 {
7929 /* The compiler probably used a simple base type to describe
7930 the range type instead of the range's actual base type,
7931 expecting us to get the real base type from the encoding
7932 anyway. In this situation, the encoding cannot be ignored
7933 as redundant. */
7934 return 0;
7935 }
7936
7937 if (is_dynamic_type (range_type))
7938 return 0;
7939
7940 if (encoding_type->name () == NULL)
7941 return 0;
7942
7943 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7944 if (bounds_str == NULL)
7945 return 0;
7946
7947 n = 8; /* Skip "___XDLU_". */
7948 if (!ada_scan_number (bounds_str, n, &lo, &n))
7949 return 0;
7950 if (range_type->bounds ()->low.const_val () != lo)
7951 return 0;
7952
7953 n += 2; /* Skip the "__" separator between the two bounds. */
7954 if (!ada_scan_number (bounds_str, n, &hi, &n))
7955 return 0;
7956 if (range_type->bounds ()->high.const_val () != hi)
7957 return 0;
7958
7959 return 1;
7960 }
7961
7962 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
7963 a type following the GNAT encoding for describing array type
7964 indices, only carries redundant information. */
7965
7966 static int
7967 ada_is_redundant_index_type_desc (struct type *array_type,
7968 struct type *desc_type)
7969 {
7970 struct type *this_layer = check_typedef (array_type);
7971 int i;
7972
7973 for (i = 0; i < desc_type->num_fields (); i++)
7974 {
7975 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
7976 desc_type->field (i).type ()))
7977 return 0;
7978 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
7979 }
7980
7981 return 1;
7982 }
7983
7984 /* Assuming that TYPE0 is an array type describing the type of a value
7985 at ADDR, and that DVAL describes a record containing any
7986 discriminants used in TYPE0, returns a type for the value that
7987 contains no dynamic components (that is, no components whose sizes
7988 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7989 true, gives an error message if the resulting type's size is over
7990 varsize_limit. */
7991
7992 static struct type *
7993 to_fixed_array_type (struct type *type0, struct value *dval,
7994 int ignore_too_big)
7995 {
7996 struct type *index_type_desc;
7997 struct type *result;
7998 int constrained_packed_array_p;
7999 static const char *xa_suffix = "___XA";
8000
8001 type0 = ada_check_typedef (type0);
8002 if (type0->is_fixed_instance ())
8003 return type0;
8004
8005 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8006 if (constrained_packed_array_p)
8007 {
8008 type0 = decode_constrained_packed_array_type (type0);
8009 if (type0 == nullptr)
8010 error (_("could not decode constrained packed array type"));
8011 }
8012
8013 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8014
8015 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8016 encoding suffixed with 'P' may still be generated. If so,
8017 it should be used to find the XA type. */
8018
8019 if (index_type_desc == NULL)
8020 {
8021 const char *type_name = ada_type_name (type0);
8022
8023 if (type_name != NULL)
8024 {
8025 const int len = strlen (type_name);
8026 char *name = (char *) alloca (len + strlen (xa_suffix));
8027
8028 if (type_name[len - 1] == 'P')
8029 {
8030 strcpy (name, type_name);
8031 strcpy (name + len - 1, xa_suffix);
8032 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8033 }
8034 }
8035 }
8036
8037 ada_fixup_array_indexes_type (index_type_desc);
8038 if (index_type_desc != NULL
8039 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8040 {
8041 /* Ignore this ___XA parallel type, as it does not bring any
8042 useful information. This allows us to avoid creating fixed
8043 versions of the array's index types, which would be identical
8044 to the original ones. This, in turn, can also help avoid
8045 the creation of fixed versions of the array itself. */
8046 index_type_desc = NULL;
8047 }
8048
8049 if (index_type_desc == NULL)
8050 {
8051 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8052
8053 /* NOTE: elt_type---the fixed version of elt_type0---should never
8054 depend on the contents of the array in properly constructed
8055 debugging data. */
8056 /* Create a fixed version of the array element type.
8057 We're not providing the address of an element here,
8058 and thus the actual object value cannot be inspected to do
8059 the conversion. This should not be a problem, since arrays of
8060 unconstrained objects are not allowed. In particular, all
8061 the elements of an array of a tagged type should all be of
8062 the same type specified in the debugging info. No need to
8063 consult the object tag. */
8064 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8065
8066 /* Make sure we always create a new array type when dealing with
8067 packed array types, since we're going to fix-up the array
8068 type length and element bitsize a little further down. */
8069 if (elt_type0 == elt_type && !constrained_packed_array_p)
8070 result = type0;
8071 else
8072 result = create_array_type (alloc_type_copy (type0),
8073 elt_type, type0->index_type ());
8074 }
8075 else
8076 {
8077 int i;
8078 struct type *elt_type0;
8079
8080 elt_type0 = type0;
8081 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8082 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8083
8084 /* NOTE: result---the fixed version of elt_type0---should never
8085 depend on the contents of the array in properly constructed
8086 debugging data. */
8087 /* Create a fixed version of the array element type.
8088 We're not providing the address of an element here,
8089 and thus the actual object value cannot be inspected to do
8090 the conversion. This should not be a problem, since arrays of
8091 unconstrained objects are not allowed. In particular, all
8092 the elements of an array of a tagged type should all be of
8093 the same type specified in the debugging info. No need to
8094 consult the object tag. */
8095 result =
8096 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8097
8098 elt_type0 = type0;
8099 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8100 {
8101 struct type *range_type =
8102 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8103
8104 result = create_array_type (alloc_type_copy (elt_type0),
8105 result, range_type);
8106 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8107 }
8108 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8109 error (_("array type with dynamic size is larger than varsize-limit"));
8110 }
8111
8112 /* We want to preserve the type name. This can be useful when
8113 trying to get the type name of a value that has already been
8114 printed (for instance, if the user did "print VAR; whatis $". */
8115 result->set_name (type0->name ());
8116
8117 if (constrained_packed_array_p)
8118 {
8119 /* So far, the resulting type has been created as if the original
8120 type was a regular (non-packed) array type. As a result, the
8121 bitsize of the array elements needs to be set again, and the array
8122 length needs to be recomputed based on that bitsize. */
8123 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8124 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8125
8126 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8127 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8128 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8129 TYPE_LENGTH (result)++;
8130 }
8131
8132 result->set_is_fixed_instance (true);
8133 return result;
8134 }
8135
8136
8137 /* A standard type (containing no dynamically sized components)
8138 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8139 DVAL describes a record containing any discriminants used in TYPE0,
8140 and may be NULL if there are none, or if the object of type TYPE at
8141 ADDRESS or in VALADDR contains these discriminants.
8142
8143 If CHECK_TAG is not null, in the case of tagged types, this function
8144 attempts to locate the object's tag and use it to compute the actual
8145 type. However, when ADDRESS is null, we cannot use it to determine the
8146 location of the tag, and therefore compute the tagged type's actual type.
8147 So we return the tagged type without consulting the tag. */
8148
8149 static struct type *
8150 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8151 CORE_ADDR address, struct value *dval, int check_tag)
8152 {
8153 type = ada_check_typedef (type);
8154
8155 /* Only un-fixed types need to be handled here. */
8156 if (!HAVE_GNAT_AUX_INFO (type))
8157 return type;
8158
8159 switch (type->code ())
8160 {
8161 default:
8162 return type;
8163 case TYPE_CODE_STRUCT:
8164 {
8165 struct type *static_type = to_static_fixed_type (type);
8166 struct type *fixed_record_type =
8167 to_fixed_record_type (type, valaddr, address, NULL);
8168
8169 /* If STATIC_TYPE is a tagged type and we know the object's address,
8170 then we can determine its tag, and compute the object's actual
8171 type from there. Note that we have to use the fixed record
8172 type (the parent part of the record may have dynamic fields
8173 and the way the location of _tag is expressed may depend on
8174 them). */
8175
8176 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8177 {
8178 struct value *tag =
8179 value_tag_from_contents_and_address
8180 (fixed_record_type,
8181 valaddr,
8182 address);
8183 struct type *real_type = type_from_tag (tag);
8184 struct value *obj =
8185 value_from_contents_and_address (fixed_record_type,
8186 valaddr,
8187 address);
8188 fixed_record_type = value_type (obj);
8189 if (real_type != NULL)
8190 return to_fixed_record_type
8191 (real_type, NULL,
8192 value_address (ada_tag_value_at_base_address (obj)), NULL);
8193 }
8194
8195 /* Check to see if there is a parallel ___XVZ variable.
8196 If there is, then it provides the actual size of our type. */
8197 else if (ada_type_name (fixed_record_type) != NULL)
8198 {
8199 const char *name = ada_type_name (fixed_record_type);
8200 char *xvz_name
8201 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8202 bool xvz_found = false;
8203 LONGEST size;
8204
8205 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8206 try
8207 {
8208 xvz_found = get_int_var_value (xvz_name, size);
8209 }
8210 catch (const gdb_exception_error &except)
8211 {
8212 /* We found the variable, but somehow failed to read
8213 its value. Rethrow the same error, but with a little
8214 bit more information, to help the user understand
8215 what went wrong (Eg: the variable might have been
8216 optimized out). */
8217 throw_error (except.error,
8218 _("unable to read value of %s (%s)"),
8219 xvz_name, except.what ());
8220 }
8221
8222 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8223 {
8224 fixed_record_type = copy_type (fixed_record_type);
8225 TYPE_LENGTH (fixed_record_type) = size;
8226
8227 /* The FIXED_RECORD_TYPE may have be a stub. We have
8228 observed this when the debugging info is STABS, and
8229 apparently it is something that is hard to fix.
8230
8231 In practice, we don't need the actual type definition
8232 at all, because the presence of the XVZ variable allows us
8233 to assume that there must be a XVS type as well, which we
8234 should be able to use later, when we need the actual type
8235 definition.
8236
8237 In the meantime, pretend that the "fixed" type we are
8238 returning is NOT a stub, because this can cause trouble
8239 when using this type to create new types targeting it.
8240 Indeed, the associated creation routines often check
8241 whether the target type is a stub and will try to replace
8242 it, thus using a type with the wrong size. This, in turn,
8243 might cause the new type to have the wrong size too.
8244 Consider the case of an array, for instance, where the size
8245 of the array is computed from the number of elements in
8246 our array multiplied by the size of its element. */
8247 fixed_record_type->set_is_stub (false);
8248 }
8249 }
8250 return fixed_record_type;
8251 }
8252 case TYPE_CODE_ARRAY:
8253 return to_fixed_array_type (type, dval, 1);
8254 case TYPE_CODE_UNION:
8255 if (dval == NULL)
8256 return type;
8257 else
8258 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8259 }
8260 }
8261
8262 /* The same as ada_to_fixed_type_1, except that it preserves the type
8263 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8264
8265 The typedef layer needs be preserved in order to differentiate between
8266 arrays and array pointers when both types are implemented using the same
8267 fat pointer. In the array pointer case, the pointer is encoded as
8268 a typedef of the pointer type. For instance, considering:
8269
8270 type String_Access is access String;
8271 S1 : String_Access := null;
8272
8273 To the debugger, S1 is defined as a typedef of type String. But
8274 to the user, it is a pointer. So if the user tries to print S1,
8275 we should not dereference the array, but print the array address
8276 instead.
8277
8278 If we didn't preserve the typedef layer, we would lose the fact that
8279 the type is to be presented as a pointer (needs de-reference before
8280 being printed). And we would also use the source-level type name. */
8281
8282 struct type *
8283 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8284 CORE_ADDR address, struct value *dval, int check_tag)
8285
8286 {
8287 struct type *fixed_type =
8288 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8289
8290 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8291 then preserve the typedef layer.
8292
8293 Implementation note: We can only check the main-type portion of
8294 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8295 from TYPE now returns a type that has the same instance flags
8296 as TYPE. For instance, if TYPE is a "typedef const", and its
8297 target type is a "struct", then the typedef elimination will return
8298 a "const" version of the target type. See check_typedef for more
8299 details about how the typedef layer elimination is done.
8300
8301 brobecker/2010-11-19: It seems to me that the only case where it is
8302 useful to preserve the typedef layer is when dealing with fat pointers.
8303 Perhaps, we could add a check for that and preserve the typedef layer
8304 only in that situation. But this seems unnecessary so far, probably
8305 because we call check_typedef/ada_check_typedef pretty much everywhere.
8306 */
8307 if (type->code () == TYPE_CODE_TYPEDEF
8308 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8309 == TYPE_MAIN_TYPE (fixed_type)))
8310 return type;
8311
8312 return fixed_type;
8313 }
8314
8315 /* A standard (static-sized) type corresponding as well as possible to
8316 TYPE0, but based on no runtime data. */
8317
8318 static struct type *
8319 to_static_fixed_type (struct type *type0)
8320 {
8321 struct type *type;
8322
8323 if (type0 == NULL)
8324 return NULL;
8325
8326 if (type0->is_fixed_instance ())
8327 return type0;
8328
8329 type0 = ada_check_typedef (type0);
8330
8331 switch (type0->code ())
8332 {
8333 default:
8334 return type0;
8335 case TYPE_CODE_STRUCT:
8336 type = dynamic_template_type (type0);
8337 if (type != NULL)
8338 return template_to_static_fixed_type (type);
8339 else
8340 return template_to_static_fixed_type (type0);
8341 case TYPE_CODE_UNION:
8342 type = ada_find_parallel_type (type0, "___XVU");
8343 if (type != NULL)
8344 return template_to_static_fixed_type (type);
8345 else
8346 return template_to_static_fixed_type (type0);
8347 }
8348 }
8349
8350 /* A static approximation of TYPE with all type wrappers removed. */
8351
8352 static struct type *
8353 static_unwrap_type (struct type *type)
8354 {
8355 if (ada_is_aligner_type (type))
8356 {
8357 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8358 if (ada_type_name (type1) == NULL)
8359 type1->set_name (ada_type_name (type));
8360
8361 return static_unwrap_type (type1);
8362 }
8363 else
8364 {
8365 struct type *raw_real_type = ada_get_base_type (type);
8366
8367 if (raw_real_type == type)
8368 return type;
8369 else
8370 return to_static_fixed_type (raw_real_type);
8371 }
8372 }
8373
8374 /* In some cases, incomplete and private types require
8375 cross-references that are not resolved as records (for example,
8376 type Foo;
8377 type FooP is access Foo;
8378 V: FooP;
8379 type Foo is array ...;
8380 ). In these cases, since there is no mechanism for producing
8381 cross-references to such types, we instead substitute for FooP a
8382 stub enumeration type that is nowhere resolved, and whose tag is
8383 the name of the actual type. Call these types "non-record stubs". */
8384
8385 /* A type equivalent to TYPE that is not a non-record stub, if one
8386 exists, otherwise TYPE. */
8387
8388 struct type *
8389 ada_check_typedef (struct type *type)
8390 {
8391 if (type == NULL)
8392 return NULL;
8393
8394 /* If our type is an access to an unconstrained array, which is encoded
8395 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8396 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8397 what allows us to distinguish between fat pointers that represent
8398 array types, and fat pointers that represent array access types
8399 (in both cases, the compiler implements them as fat pointers). */
8400 if (ada_is_access_to_unconstrained_array (type))
8401 return type;
8402
8403 type = check_typedef (type);
8404 if (type == NULL || type->code () != TYPE_CODE_ENUM
8405 || !type->is_stub ()
8406 || type->name () == NULL)
8407 return type;
8408 else
8409 {
8410 const char *name = type->name ();
8411 struct type *type1 = ada_find_any_type (name);
8412
8413 if (type1 == NULL)
8414 return type;
8415
8416 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8417 stubs pointing to arrays, as we don't create symbols for array
8418 types, only for the typedef-to-array types). If that's the case,
8419 strip the typedef layer. */
8420 if (type1->code () == TYPE_CODE_TYPEDEF)
8421 type1 = ada_check_typedef (type1);
8422
8423 return type1;
8424 }
8425 }
8426
8427 /* A value representing the data at VALADDR/ADDRESS as described by
8428 type TYPE0, but with a standard (static-sized) type that correctly
8429 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8430 type, then return VAL0 [this feature is simply to avoid redundant
8431 creation of struct values]. */
8432
8433 static struct value *
8434 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8435 struct value *val0)
8436 {
8437 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8438
8439 if (type == type0 && val0 != NULL)
8440 return val0;
8441
8442 if (VALUE_LVAL (val0) != lval_memory)
8443 {
8444 /* Our value does not live in memory; it could be a convenience
8445 variable, for instance. Create a not_lval value using val0's
8446 contents. */
8447 return value_from_contents (type, value_contents (val0));
8448 }
8449
8450 return value_from_contents_and_address (type, 0, address);
8451 }
8452
8453 /* A value representing VAL, but with a standard (static-sized) type
8454 that correctly describes it. Does not necessarily create a new
8455 value. */
8456
8457 struct value *
8458 ada_to_fixed_value (struct value *val)
8459 {
8460 val = unwrap_value (val);
8461 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8462 return val;
8463 }
8464 \f
8465
8466 /* Attributes */
8467
8468 /* Table mapping attribute numbers to names.
8469 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8470
8471 static const char * const attribute_names[] = {
8472 "<?>",
8473
8474 "first",
8475 "last",
8476 "length",
8477 "image",
8478 "max",
8479 "min",
8480 "modulus",
8481 "pos",
8482 "size",
8483 "tag",
8484 "val",
8485 0
8486 };
8487
8488 static const char *
8489 ada_attribute_name (enum exp_opcode n)
8490 {
8491 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8492 return attribute_names[n - OP_ATR_FIRST + 1];
8493 else
8494 return attribute_names[0];
8495 }
8496
8497 /* Evaluate the 'POS attribute applied to ARG. */
8498
8499 static LONGEST
8500 pos_atr (struct value *arg)
8501 {
8502 struct value *val = coerce_ref (arg);
8503 struct type *type = value_type (val);
8504
8505 if (!discrete_type_p (type))
8506 error (_("'POS only defined on discrete types"));
8507
8508 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8509 if (!result.has_value ())
8510 error (_("enumeration value is invalid: can't find 'POS"));
8511
8512 return *result;
8513 }
8514
8515 struct value *
8516 ada_pos_atr (struct type *expect_type,
8517 struct expression *exp,
8518 enum noside noside, enum exp_opcode op,
8519 struct value *arg)
8520 {
8521 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8522 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8523 return value_zero (type, not_lval);
8524 return value_from_longest (type, pos_atr (arg));
8525 }
8526
8527 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8528
8529 static struct value *
8530 val_atr (struct type *type, LONGEST val)
8531 {
8532 gdb_assert (discrete_type_p (type));
8533 if (type->code () == TYPE_CODE_RANGE)
8534 type = TYPE_TARGET_TYPE (type);
8535 if (type->code () == TYPE_CODE_ENUM)
8536 {
8537 if (val < 0 || val >= type->num_fields ())
8538 error (_("argument to 'VAL out of range"));
8539 val = TYPE_FIELD_ENUMVAL (type, val);
8540 }
8541 return value_from_longest (type, val);
8542 }
8543
8544 struct value *
8545 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8546 {
8547 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8548 return value_zero (type, not_lval);
8549
8550 if (!discrete_type_p (type))
8551 error (_("'VAL only defined on discrete types"));
8552 if (!integer_type_p (value_type (arg)))
8553 error (_("'VAL requires integral argument"));
8554
8555 return val_atr (type, value_as_long (arg));
8556 }
8557 \f
8558
8559 /* Evaluation */
8560
8561 /* True if TYPE appears to be an Ada character type.
8562 [At the moment, this is true only for Character and Wide_Character;
8563 It is a heuristic test that could stand improvement]. */
8564
8565 bool
8566 ada_is_character_type (struct type *type)
8567 {
8568 const char *name;
8569
8570 /* If the type code says it's a character, then assume it really is,
8571 and don't check any further. */
8572 if (type->code () == TYPE_CODE_CHAR)
8573 return true;
8574
8575 /* Otherwise, assume it's a character type iff it is a discrete type
8576 with a known character type name. */
8577 name = ada_type_name (type);
8578 return (name != NULL
8579 && (type->code () == TYPE_CODE_INT
8580 || type->code () == TYPE_CODE_RANGE)
8581 && (strcmp (name, "character") == 0
8582 || strcmp (name, "wide_character") == 0
8583 || strcmp (name, "wide_wide_character") == 0
8584 || strcmp (name, "unsigned char") == 0));
8585 }
8586
8587 /* True if TYPE appears to be an Ada string type. */
8588
8589 bool
8590 ada_is_string_type (struct type *type)
8591 {
8592 type = ada_check_typedef (type);
8593 if (type != NULL
8594 && type->code () != TYPE_CODE_PTR
8595 && (ada_is_simple_array_type (type)
8596 || ada_is_array_descriptor_type (type))
8597 && ada_array_arity (type) == 1)
8598 {
8599 struct type *elttype = ada_array_element_type (type, 1);
8600
8601 return ada_is_character_type (elttype);
8602 }
8603 else
8604 return false;
8605 }
8606
8607 /* The compiler sometimes provides a parallel XVS type for a given
8608 PAD type. Normally, it is safe to follow the PAD type directly,
8609 but older versions of the compiler have a bug that causes the offset
8610 of its "F" field to be wrong. Following that field in that case
8611 would lead to incorrect results, but this can be worked around
8612 by ignoring the PAD type and using the associated XVS type instead.
8613
8614 Set to True if the debugger should trust the contents of PAD types.
8615 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8616 static bool trust_pad_over_xvs = true;
8617
8618 /* True if TYPE is a struct type introduced by the compiler to force the
8619 alignment of a value. Such types have a single field with a
8620 distinctive name. */
8621
8622 int
8623 ada_is_aligner_type (struct type *type)
8624 {
8625 type = ada_check_typedef (type);
8626
8627 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8628 return 0;
8629
8630 return (type->code () == TYPE_CODE_STRUCT
8631 && type->num_fields () == 1
8632 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8633 }
8634
8635 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8636 the parallel type. */
8637
8638 struct type *
8639 ada_get_base_type (struct type *raw_type)
8640 {
8641 struct type *real_type_namer;
8642 struct type *raw_real_type;
8643
8644 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8645 return raw_type;
8646
8647 if (ada_is_aligner_type (raw_type))
8648 /* The encoding specifies that we should always use the aligner type.
8649 So, even if this aligner type has an associated XVS type, we should
8650 simply ignore it.
8651
8652 According to the compiler gurus, an XVS type parallel to an aligner
8653 type may exist because of a stabs limitation. In stabs, aligner
8654 types are empty because the field has a variable-sized type, and
8655 thus cannot actually be used as an aligner type. As a result,
8656 we need the associated parallel XVS type to decode the type.
8657 Since the policy in the compiler is to not change the internal
8658 representation based on the debugging info format, we sometimes
8659 end up having a redundant XVS type parallel to the aligner type. */
8660 return raw_type;
8661
8662 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8663 if (real_type_namer == NULL
8664 || real_type_namer->code () != TYPE_CODE_STRUCT
8665 || real_type_namer->num_fields () != 1)
8666 return raw_type;
8667
8668 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8669 {
8670 /* This is an older encoding form where the base type needs to be
8671 looked up by name. We prefer the newer encoding because it is
8672 more efficient. */
8673 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8674 if (raw_real_type == NULL)
8675 return raw_type;
8676 else
8677 return raw_real_type;
8678 }
8679
8680 /* The field in our XVS type is a reference to the base type. */
8681 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8682 }
8683
8684 /* The type of value designated by TYPE, with all aligners removed. */
8685
8686 struct type *
8687 ada_aligned_type (struct type *type)
8688 {
8689 if (ada_is_aligner_type (type))
8690 return ada_aligned_type (type->field (0).type ());
8691 else
8692 return ada_get_base_type (type);
8693 }
8694
8695
8696 /* The address of the aligned value in an object at address VALADDR
8697 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8698
8699 const gdb_byte *
8700 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8701 {
8702 if (ada_is_aligner_type (type))
8703 return ada_aligned_value_addr (type->field (0).type (),
8704 valaddr +
8705 TYPE_FIELD_BITPOS (type,
8706 0) / TARGET_CHAR_BIT);
8707 else
8708 return valaddr;
8709 }
8710
8711
8712
8713 /* The printed representation of an enumeration literal with encoded
8714 name NAME. The value is good to the next call of ada_enum_name. */
8715 const char *
8716 ada_enum_name (const char *name)
8717 {
8718 static std::string storage;
8719 const char *tmp;
8720
8721 /* First, unqualify the enumeration name:
8722 1. Search for the last '.' character. If we find one, then skip
8723 all the preceding characters, the unqualified name starts
8724 right after that dot.
8725 2. Otherwise, we may be debugging on a target where the compiler
8726 translates dots into "__". Search forward for double underscores,
8727 but stop searching when we hit an overloading suffix, which is
8728 of the form "__" followed by digits. */
8729
8730 tmp = strrchr (name, '.');
8731 if (tmp != NULL)
8732 name = tmp + 1;
8733 else
8734 {
8735 while ((tmp = strstr (name, "__")) != NULL)
8736 {
8737 if (isdigit (tmp[2]))
8738 break;
8739 else
8740 name = tmp + 2;
8741 }
8742 }
8743
8744 if (name[0] == 'Q')
8745 {
8746 int v;
8747
8748 if (name[1] == 'U' || name[1] == 'W')
8749 {
8750 if (sscanf (name + 2, "%x", &v) != 1)
8751 return name;
8752 }
8753 else if (((name[1] >= '0' && name[1] <= '9')
8754 || (name[1] >= 'a' && name[1] <= 'z'))
8755 && name[2] == '\0')
8756 {
8757 storage = string_printf ("'%c'", name[1]);
8758 return storage.c_str ();
8759 }
8760 else
8761 return name;
8762
8763 if (isascii (v) && isprint (v))
8764 storage = string_printf ("'%c'", v);
8765 else if (name[1] == 'U')
8766 storage = string_printf ("[\"%02x\"]", v);
8767 else
8768 storage = string_printf ("[\"%04x\"]", v);
8769
8770 return storage.c_str ();
8771 }
8772 else
8773 {
8774 tmp = strstr (name, "__");
8775 if (tmp == NULL)
8776 tmp = strstr (name, "$");
8777 if (tmp != NULL)
8778 {
8779 storage = std::string (name, tmp - name);
8780 return storage.c_str ();
8781 }
8782
8783 return name;
8784 }
8785 }
8786
8787 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8788 value it wraps. */
8789
8790 static struct value *
8791 unwrap_value (struct value *val)
8792 {
8793 struct type *type = ada_check_typedef (value_type (val));
8794
8795 if (ada_is_aligner_type (type))
8796 {
8797 struct value *v = ada_value_struct_elt (val, "F", 0);
8798 struct type *val_type = ada_check_typedef (value_type (v));
8799
8800 if (ada_type_name (val_type) == NULL)
8801 val_type->set_name (ada_type_name (type));
8802
8803 return unwrap_value (v);
8804 }
8805 else
8806 {
8807 struct type *raw_real_type =
8808 ada_check_typedef (ada_get_base_type (type));
8809
8810 /* If there is no parallel XVS or XVE type, then the value is
8811 already unwrapped. Return it without further modification. */
8812 if ((type == raw_real_type)
8813 && ada_find_parallel_type (type, "___XVE") == NULL)
8814 return val;
8815
8816 return
8817 coerce_unspec_val_to_type
8818 (val, ada_to_fixed_type (raw_real_type, 0,
8819 value_address (val),
8820 NULL, 1));
8821 }
8822 }
8823
8824 /* Given two array types T1 and T2, return nonzero iff both arrays
8825 contain the same number of elements. */
8826
8827 static int
8828 ada_same_array_size_p (struct type *t1, struct type *t2)
8829 {
8830 LONGEST lo1, hi1, lo2, hi2;
8831
8832 /* Get the array bounds in order to verify that the size of
8833 the two arrays match. */
8834 if (!get_array_bounds (t1, &lo1, &hi1)
8835 || !get_array_bounds (t2, &lo2, &hi2))
8836 error (_("unable to determine array bounds"));
8837
8838 /* To make things easier for size comparison, normalize a bit
8839 the case of empty arrays by making sure that the difference
8840 between upper bound and lower bound is always -1. */
8841 if (lo1 > hi1)
8842 hi1 = lo1 - 1;
8843 if (lo2 > hi2)
8844 hi2 = lo2 - 1;
8845
8846 return (hi1 - lo1 == hi2 - lo2);
8847 }
8848
8849 /* Assuming that VAL is an array of integrals, and TYPE represents
8850 an array with the same number of elements, but with wider integral
8851 elements, return an array "casted" to TYPE. In practice, this
8852 means that the returned array is built by casting each element
8853 of the original array into TYPE's (wider) element type. */
8854
8855 static struct value *
8856 ada_promote_array_of_integrals (struct type *type, struct value *val)
8857 {
8858 struct type *elt_type = TYPE_TARGET_TYPE (type);
8859 LONGEST lo, hi;
8860 struct value *res;
8861 LONGEST i;
8862
8863 /* Verify that both val and type are arrays of scalars, and
8864 that the size of val's elements is smaller than the size
8865 of type's element. */
8866 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8867 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8868 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8869 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8870 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8871 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8872
8873 if (!get_array_bounds (type, &lo, &hi))
8874 error (_("unable to determine array bounds"));
8875
8876 res = allocate_value (type);
8877
8878 /* Promote each array element. */
8879 for (i = 0; i < hi - lo + 1; i++)
8880 {
8881 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8882
8883 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8884 value_contents_all (elt), TYPE_LENGTH (elt_type));
8885 }
8886
8887 return res;
8888 }
8889
8890 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8891 return the converted value. */
8892
8893 static struct value *
8894 coerce_for_assign (struct type *type, struct value *val)
8895 {
8896 struct type *type2 = value_type (val);
8897
8898 if (type == type2)
8899 return val;
8900
8901 type2 = ada_check_typedef (type2);
8902 type = ada_check_typedef (type);
8903
8904 if (type2->code () == TYPE_CODE_PTR
8905 && type->code () == TYPE_CODE_ARRAY)
8906 {
8907 val = ada_value_ind (val);
8908 type2 = value_type (val);
8909 }
8910
8911 if (type2->code () == TYPE_CODE_ARRAY
8912 && type->code () == TYPE_CODE_ARRAY)
8913 {
8914 if (!ada_same_array_size_p (type, type2))
8915 error (_("cannot assign arrays of different length"));
8916
8917 if (is_integral_type (TYPE_TARGET_TYPE (type))
8918 && is_integral_type (TYPE_TARGET_TYPE (type2))
8919 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8920 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8921 {
8922 /* Allow implicit promotion of the array elements to
8923 a wider type. */
8924 return ada_promote_array_of_integrals (type, val);
8925 }
8926
8927 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8928 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8929 error (_("Incompatible types in assignment"));
8930 deprecated_set_value_type (val, type);
8931 }
8932 return val;
8933 }
8934
8935 static struct value *
8936 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8937 {
8938 struct value *val;
8939 struct type *type1, *type2;
8940 LONGEST v, v1, v2;
8941
8942 arg1 = coerce_ref (arg1);
8943 arg2 = coerce_ref (arg2);
8944 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8945 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8946
8947 if (type1->code () != TYPE_CODE_INT
8948 || type2->code () != TYPE_CODE_INT)
8949 return value_binop (arg1, arg2, op);
8950
8951 switch (op)
8952 {
8953 case BINOP_MOD:
8954 case BINOP_DIV:
8955 case BINOP_REM:
8956 break;
8957 default:
8958 return value_binop (arg1, arg2, op);
8959 }
8960
8961 v2 = value_as_long (arg2);
8962 if (v2 == 0)
8963 {
8964 const char *name;
8965 if (op == BINOP_MOD)
8966 name = "mod";
8967 else if (op == BINOP_DIV)
8968 name = "/";
8969 else
8970 {
8971 gdb_assert (op == BINOP_REM);
8972 name = "rem";
8973 }
8974
8975 error (_("second operand of %s must not be zero."), name);
8976 }
8977
8978 if (type1->is_unsigned () || op == BINOP_MOD)
8979 return value_binop (arg1, arg2, op);
8980
8981 v1 = value_as_long (arg1);
8982 switch (op)
8983 {
8984 case BINOP_DIV:
8985 v = v1 / v2;
8986 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8987 v += v > 0 ? -1 : 1;
8988 break;
8989 case BINOP_REM:
8990 v = v1 % v2;
8991 if (v * v1 < 0)
8992 v -= v2;
8993 break;
8994 default:
8995 /* Should not reach this point. */
8996 v = 0;
8997 }
8998
8999 val = allocate_value (type1);
9000 store_unsigned_integer (value_contents_raw (val),
9001 TYPE_LENGTH (value_type (val)),
9002 type_byte_order (type1), v);
9003 return val;
9004 }
9005
9006 static int
9007 ada_value_equal (struct value *arg1, struct value *arg2)
9008 {
9009 if (ada_is_direct_array_type (value_type (arg1))
9010 || ada_is_direct_array_type (value_type (arg2)))
9011 {
9012 struct type *arg1_type, *arg2_type;
9013
9014 /* Automatically dereference any array reference before
9015 we attempt to perform the comparison. */
9016 arg1 = ada_coerce_ref (arg1);
9017 arg2 = ada_coerce_ref (arg2);
9018
9019 arg1 = ada_coerce_to_simple_array (arg1);
9020 arg2 = ada_coerce_to_simple_array (arg2);
9021
9022 arg1_type = ada_check_typedef (value_type (arg1));
9023 arg2_type = ada_check_typedef (value_type (arg2));
9024
9025 if (arg1_type->code () != TYPE_CODE_ARRAY
9026 || arg2_type->code () != TYPE_CODE_ARRAY)
9027 error (_("Attempt to compare array with non-array"));
9028 /* FIXME: The following works only for types whose
9029 representations use all bits (no padding or undefined bits)
9030 and do not have user-defined equality. */
9031 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9032 && memcmp (value_contents (arg1), value_contents (arg2),
9033 TYPE_LENGTH (arg1_type)) == 0);
9034 }
9035 return value_equal (arg1, arg2);
9036 }
9037
9038 namespace expr
9039 {
9040
9041 bool
9042 check_objfile (const std::unique_ptr<ada_component> &comp,
9043 struct objfile *objfile)
9044 {
9045 return comp->uses_objfile (objfile);
9046 }
9047
9048 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9049 component of LHS (a simple array or a record). Does not modify the
9050 inferior's memory, nor does it modify LHS (unless LHS ==
9051 CONTAINER). */
9052
9053 static void
9054 assign_component (struct value *container, struct value *lhs, LONGEST index,
9055 struct expression *exp, operation_up &arg)
9056 {
9057 scoped_value_mark mark;
9058
9059 struct value *elt;
9060 struct type *lhs_type = check_typedef (value_type (lhs));
9061
9062 if (lhs_type->code () == TYPE_CODE_ARRAY)
9063 {
9064 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9065 struct value *index_val = value_from_longest (index_type, index);
9066
9067 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9068 }
9069 else
9070 {
9071 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9072 elt = ada_to_fixed_value (elt);
9073 }
9074
9075 ada_aggregate_operation *ag_op
9076 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9077 if (ag_op != nullptr)
9078 ag_op->assign_aggregate (container, elt, exp);
9079 else
9080 value_assign_to_component (container, elt,
9081 arg->evaluate (nullptr, exp,
9082 EVAL_NORMAL));
9083 }
9084
9085 bool
9086 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9087 {
9088 for (const auto &item : m_components)
9089 if (item->uses_objfile (objfile))
9090 return true;
9091 return false;
9092 }
9093
9094 void
9095 ada_aggregate_component::dump (ui_file *stream, int depth)
9096 {
9097 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9098 for (const auto &item : m_components)
9099 item->dump (stream, depth + 1);
9100 }
9101
9102 void
9103 ada_aggregate_component::assign (struct value *container,
9104 struct value *lhs, struct expression *exp,
9105 std::vector<LONGEST> &indices,
9106 LONGEST low, LONGEST high)
9107 {
9108 for (auto &item : m_components)
9109 item->assign (container, lhs, exp, indices, low, high);
9110 }
9111
9112 /* See ada-exp.h. */
9113
9114 value *
9115 ada_aggregate_operation::assign_aggregate (struct value *container,
9116 struct value *lhs,
9117 struct expression *exp)
9118 {
9119 struct type *lhs_type;
9120 LONGEST low_index, high_index;
9121
9122 container = ada_coerce_ref (container);
9123 if (ada_is_direct_array_type (value_type (container)))
9124 container = ada_coerce_to_simple_array (container);
9125 lhs = ada_coerce_ref (lhs);
9126 if (!deprecated_value_modifiable (lhs))
9127 error (_("Left operand of assignment is not a modifiable lvalue."));
9128
9129 lhs_type = check_typedef (value_type (lhs));
9130 if (ada_is_direct_array_type (lhs_type))
9131 {
9132 lhs = ada_coerce_to_simple_array (lhs);
9133 lhs_type = check_typedef (value_type (lhs));
9134 low_index = lhs_type->bounds ()->low.const_val ();
9135 high_index = lhs_type->bounds ()->high.const_val ();
9136 }
9137 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9138 {
9139 low_index = 0;
9140 high_index = num_visible_fields (lhs_type) - 1;
9141 }
9142 else
9143 error (_("Left-hand side must be array or record."));
9144
9145 std::vector<LONGEST> indices (4);
9146 indices[0] = indices[1] = low_index - 1;
9147 indices[2] = indices[3] = high_index + 1;
9148
9149 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9150 low_index, high_index);
9151
9152 return container;
9153 }
9154
9155 bool
9156 ada_positional_component::uses_objfile (struct objfile *objfile)
9157 {
9158 return m_op->uses_objfile (objfile);
9159 }
9160
9161 void
9162 ada_positional_component::dump (ui_file *stream, int depth)
9163 {
9164 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9165 depth, "", m_index);
9166 m_op->dump (stream, depth + 1);
9167 }
9168
9169 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9170 construct, given that the positions are relative to lower bound
9171 LOW, where HIGH is the upper bound. Record the position in
9172 INDICES. CONTAINER is as for assign_aggregate. */
9173 void
9174 ada_positional_component::assign (struct value *container,
9175 struct value *lhs, struct expression *exp,
9176 std::vector<LONGEST> &indices,
9177 LONGEST low, LONGEST high)
9178 {
9179 LONGEST ind = m_index + low;
9180
9181 if (ind - 1 == high)
9182 warning (_("Extra components in aggregate ignored."));
9183 if (ind <= high)
9184 {
9185 add_component_interval (ind, ind, indices);
9186 assign_component (container, lhs, ind, exp, m_op);
9187 }
9188 }
9189
9190 bool
9191 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9192 {
9193 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9194 }
9195
9196 void
9197 ada_discrete_range_association::dump (ui_file *stream, int depth)
9198 {
9199 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9200 m_low->dump (stream, depth + 1);
9201 m_high->dump (stream, depth + 1);
9202 }
9203
9204 void
9205 ada_discrete_range_association::assign (struct value *container,
9206 struct value *lhs,
9207 struct expression *exp,
9208 std::vector<LONGEST> &indices,
9209 LONGEST low, LONGEST high,
9210 operation_up &op)
9211 {
9212 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9213 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9214
9215 if (lower <= upper && (lower < low || upper > high))
9216 error (_("Index in component association out of bounds."));
9217
9218 add_component_interval (lower, upper, indices);
9219 while (lower <= upper)
9220 {
9221 assign_component (container, lhs, lower, exp, op);
9222 lower += 1;
9223 }
9224 }
9225
9226 bool
9227 ada_name_association::uses_objfile (struct objfile *objfile)
9228 {
9229 return m_val->uses_objfile (objfile);
9230 }
9231
9232 void
9233 ada_name_association::dump (ui_file *stream, int depth)
9234 {
9235 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9236 m_val->dump (stream, depth + 1);
9237 }
9238
9239 void
9240 ada_name_association::assign (struct value *container,
9241 struct value *lhs,
9242 struct expression *exp,
9243 std::vector<LONGEST> &indices,
9244 LONGEST low, LONGEST high,
9245 operation_up &op)
9246 {
9247 int index;
9248
9249 if (ada_is_direct_array_type (value_type (lhs)))
9250 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9251 EVAL_NORMAL)));
9252 else
9253 {
9254 ada_string_operation *strop
9255 = dynamic_cast<ada_string_operation *> (m_val.get ());
9256
9257 const char *name;
9258 if (strop != nullptr)
9259 name = strop->get_name ();
9260 else
9261 {
9262 ada_var_value_operation *vvo
9263 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9264 if (vvo != nullptr)
9265 error (_("Invalid record component association."));
9266 name = vvo->get_symbol ()->natural_name ();
9267 }
9268
9269 index = 0;
9270 if (! find_struct_field (name, value_type (lhs), 0,
9271 NULL, NULL, NULL, NULL, &index))
9272 error (_("Unknown component name: %s."), name);
9273 }
9274
9275 add_component_interval (index, index, indices);
9276 assign_component (container, lhs, index, exp, op);
9277 }
9278
9279 bool
9280 ada_choices_component::uses_objfile (struct objfile *objfile)
9281 {
9282 if (m_op->uses_objfile (objfile))
9283 return true;
9284 for (const auto &item : m_assocs)
9285 if (item->uses_objfile (objfile))
9286 return true;
9287 return false;
9288 }
9289
9290 void
9291 ada_choices_component::dump (ui_file *stream, int depth)
9292 {
9293 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9294 m_op->dump (stream, depth + 1);
9295 for (const auto &item : m_assocs)
9296 item->dump (stream, depth + 1);
9297 }
9298
9299 /* Assign into the components of LHS indexed by the OP_CHOICES
9300 construct at *POS, updating *POS past the construct, given that
9301 the allowable indices are LOW..HIGH. Record the indices assigned
9302 to in INDICES. CONTAINER is as for assign_aggregate. */
9303 void
9304 ada_choices_component::assign (struct value *container,
9305 struct value *lhs, struct expression *exp,
9306 std::vector<LONGEST> &indices,
9307 LONGEST low, LONGEST high)
9308 {
9309 for (auto &item : m_assocs)
9310 item->assign (container, lhs, exp, indices, low, high, m_op);
9311 }
9312
9313 bool
9314 ada_others_component::uses_objfile (struct objfile *objfile)
9315 {
9316 return m_op->uses_objfile (objfile);
9317 }
9318
9319 void
9320 ada_others_component::dump (ui_file *stream, int depth)
9321 {
9322 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9323 m_op->dump (stream, depth + 1);
9324 }
9325
9326 /* Assign the value of the expression in the OP_OTHERS construct in
9327 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9328 have not been previously assigned. The index intervals already assigned
9329 are in INDICES. CONTAINER is as for assign_aggregate. */
9330 void
9331 ada_others_component::assign (struct value *container,
9332 struct value *lhs, struct expression *exp,
9333 std::vector<LONGEST> &indices,
9334 LONGEST low, LONGEST high)
9335 {
9336 int num_indices = indices.size ();
9337 for (int i = 0; i < num_indices - 2; i += 2)
9338 {
9339 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9340 assign_component (container, lhs, ind, exp, m_op);
9341 }
9342 }
9343
9344 struct value *
9345 ada_assign_operation::evaluate (struct type *expect_type,
9346 struct expression *exp,
9347 enum noside noside)
9348 {
9349 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9350
9351 ada_aggregate_operation *ag_op
9352 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9353 if (ag_op != nullptr)
9354 {
9355 if (noside != EVAL_NORMAL)
9356 return arg1;
9357
9358 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9359 return ada_value_assign (arg1, arg1);
9360 }
9361 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9362 except if the lhs of our assignment is a convenience variable.
9363 In the case of assigning to a convenience variable, the lhs
9364 should be exactly the result of the evaluation of the rhs. */
9365 struct type *type = value_type (arg1);
9366 if (VALUE_LVAL (arg1) == lval_internalvar)
9367 type = NULL;
9368 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9370 return arg1;
9371 if (VALUE_LVAL (arg1) == lval_internalvar)
9372 {
9373 /* Nothing. */
9374 }
9375 else
9376 arg2 = coerce_for_assign (value_type (arg1), arg2);
9377 return ada_value_assign (arg1, arg2);
9378 }
9379
9380 } /* namespace expr */
9381
9382 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9383 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9384 overlap. */
9385 static void
9386 add_component_interval (LONGEST low, LONGEST high,
9387 std::vector<LONGEST> &indices)
9388 {
9389 int i, j;
9390
9391 int size = indices.size ();
9392 for (i = 0; i < size; i += 2) {
9393 if (high >= indices[i] && low <= indices[i + 1])
9394 {
9395 int kh;
9396
9397 for (kh = i + 2; kh < size; kh += 2)
9398 if (high < indices[kh])
9399 break;
9400 if (low < indices[i])
9401 indices[i] = low;
9402 indices[i + 1] = indices[kh - 1];
9403 if (high > indices[i + 1])
9404 indices[i + 1] = high;
9405 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9406 indices.resize (kh - i - 2);
9407 return;
9408 }
9409 else if (high < indices[i])
9410 break;
9411 }
9412
9413 indices.resize (indices.size () + 2);
9414 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9415 indices[j] = indices[j - 2];
9416 indices[i] = low;
9417 indices[i + 1] = high;
9418 }
9419
9420 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9421 is different. */
9422
9423 static struct value *
9424 ada_value_cast (struct type *type, struct value *arg2)
9425 {
9426 if (type == ada_check_typedef (value_type (arg2)))
9427 return arg2;
9428
9429 return value_cast (type, arg2);
9430 }
9431
9432 /* Evaluating Ada expressions, and printing their result.
9433 ------------------------------------------------------
9434
9435 1. Introduction:
9436 ----------------
9437
9438 We usually evaluate an Ada expression in order to print its value.
9439 We also evaluate an expression in order to print its type, which
9440 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9441 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9442 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9443 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9444 similar.
9445
9446 Evaluating expressions is a little more complicated for Ada entities
9447 than it is for entities in languages such as C. The main reason for
9448 this is that Ada provides types whose definition might be dynamic.
9449 One example of such types is variant records. Or another example
9450 would be an array whose bounds can only be known at run time.
9451
9452 The following description is a general guide as to what should be
9453 done (and what should NOT be done) in order to evaluate an expression
9454 involving such types, and when. This does not cover how the semantic
9455 information is encoded by GNAT as this is covered separatly. For the
9456 document used as the reference for the GNAT encoding, see exp_dbug.ads
9457 in the GNAT sources.
9458
9459 Ideally, we should embed each part of this description next to its
9460 associated code. Unfortunately, the amount of code is so vast right
9461 now that it's hard to see whether the code handling a particular
9462 situation might be duplicated or not. One day, when the code is
9463 cleaned up, this guide might become redundant with the comments
9464 inserted in the code, and we might want to remove it.
9465
9466 2. ``Fixing'' an Entity, the Simple Case:
9467 -----------------------------------------
9468
9469 When evaluating Ada expressions, the tricky issue is that they may
9470 reference entities whose type contents and size are not statically
9471 known. Consider for instance a variant record:
9472
9473 type Rec (Empty : Boolean := True) is record
9474 case Empty is
9475 when True => null;
9476 when False => Value : Integer;
9477 end case;
9478 end record;
9479 Yes : Rec := (Empty => False, Value => 1);
9480 No : Rec := (empty => True);
9481
9482 The size and contents of that record depends on the value of the
9483 descriminant (Rec.Empty). At this point, neither the debugging
9484 information nor the associated type structure in GDB are able to
9485 express such dynamic types. So what the debugger does is to create
9486 "fixed" versions of the type that applies to the specific object.
9487 We also informally refer to this operation as "fixing" an object,
9488 which means creating its associated fixed type.
9489
9490 Example: when printing the value of variable "Yes" above, its fixed
9491 type would look like this:
9492
9493 type Rec is record
9494 Empty : Boolean;
9495 Value : Integer;
9496 end record;
9497
9498 On the other hand, if we printed the value of "No", its fixed type
9499 would become:
9500
9501 type Rec is record
9502 Empty : Boolean;
9503 end record;
9504
9505 Things become a little more complicated when trying to fix an entity
9506 with a dynamic type that directly contains another dynamic type,
9507 such as an array of variant records, for instance. There are
9508 two possible cases: Arrays, and records.
9509
9510 3. ``Fixing'' Arrays:
9511 ---------------------
9512
9513 The type structure in GDB describes an array in terms of its bounds,
9514 and the type of its elements. By design, all elements in the array
9515 have the same type and we cannot represent an array of variant elements
9516 using the current type structure in GDB. When fixing an array,
9517 we cannot fix the array element, as we would potentially need one
9518 fixed type per element of the array. As a result, the best we can do
9519 when fixing an array is to produce an array whose bounds and size
9520 are correct (allowing us to read it from memory), but without having
9521 touched its element type. Fixing each element will be done later,
9522 when (if) necessary.
9523
9524 Arrays are a little simpler to handle than records, because the same
9525 amount of memory is allocated for each element of the array, even if
9526 the amount of space actually used by each element differs from element
9527 to element. Consider for instance the following array of type Rec:
9528
9529 type Rec_Array is array (1 .. 2) of Rec;
9530
9531 The actual amount of memory occupied by each element might be different
9532 from element to element, depending on the value of their discriminant.
9533 But the amount of space reserved for each element in the array remains
9534 fixed regardless. So we simply need to compute that size using
9535 the debugging information available, from which we can then determine
9536 the array size (we multiply the number of elements of the array by
9537 the size of each element).
9538
9539 The simplest case is when we have an array of a constrained element
9540 type. For instance, consider the following type declarations:
9541
9542 type Bounded_String (Max_Size : Integer) is
9543 Length : Integer;
9544 Buffer : String (1 .. Max_Size);
9545 end record;
9546 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9547
9548 In this case, the compiler describes the array as an array of
9549 variable-size elements (identified by its XVS suffix) for which
9550 the size can be read in the parallel XVZ variable.
9551
9552 In the case of an array of an unconstrained element type, the compiler
9553 wraps the array element inside a private PAD type. This type should not
9554 be shown to the user, and must be "unwrap"'ed before printing. Note
9555 that we also use the adjective "aligner" in our code to designate
9556 these wrapper types.
9557
9558 In some cases, the size allocated for each element is statically
9559 known. In that case, the PAD type already has the correct size,
9560 and the array element should remain unfixed.
9561
9562 But there are cases when this size is not statically known.
9563 For instance, assuming that "Five" is an integer variable:
9564
9565 type Dynamic is array (1 .. Five) of Integer;
9566 type Wrapper (Has_Length : Boolean := False) is record
9567 Data : Dynamic;
9568 case Has_Length is
9569 when True => Length : Integer;
9570 when False => null;
9571 end case;
9572 end record;
9573 type Wrapper_Array is array (1 .. 2) of Wrapper;
9574
9575 Hello : Wrapper_Array := (others => (Has_Length => True,
9576 Data => (others => 17),
9577 Length => 1));
9578
9579
9580 The debugging info would describe variable Hello as being an
9581 array of a PAD type. The size of that PAD type is not statically
9582 known, but can be determined using a parallel XVZ variable.
9583 In that case, a copy of the PAD type with the correct size should
9584 be used for the fixed array.
9585
9586 3. ``Fixing'' record type objects:
9587 ----------------------------------
9588
9589 Things are slightly different from arrays in the case of dynamic
9590 record types. In this case, in order to compute the associated
9591 fixed type, we need to determine the size and offset of each of
9592 its components. This, in turn, requires us to compute the fixed
9593 type of each of these components.
9594
9595 Consider for instance the example:
9596
9597 type Bounded_String (Max_Size : Natural) is record
9598 Str : String (1 .. Max_Size);
9599 Length : Natural;
9600 end record;
9601 My_String : Bounded_String (Max_Size => 10);
9602
9603 In that case, the position of field "Length" depends on the size
9604 of field Str, which itself depends on the value of the Max_Size
9605 discriminant. In order to fix the type of variable My_String,
9606 we need to fix the type of field Str. Therefore, fixing a variant
9607 record requires us to fix each of its components.
9608
9609 However, if a component does not have a dynamic size, the component
9610 should not be fixed. In particular, fields that use a PAD type
9611 should not fixed. Here is an example where this might happen
9612 (assuming type Rec above):
9613
9614 type Container (Big : Boolean) is record
9615 First : Rec;
9616 After : Integer;
9617 case Big is
9618 when True => Another : Integer;
9619 when False => null;
9620 end case;
9621 end record;
9622 My_Container : Container := (Big => False,
9623 First => (Empty => True),
9624 After => 42);
9625
9626 In that example, the compiler creates a PAD type for component First,
9627 whose size is constant, and then positions the component After just
9628 right after it. The offset of component After is therefore constant
9629 in this case.
9630
9631 The debugger computes the position of each field based on an algorithm
9632 that uses, among other things, the actual position and size of the field
9633 preceding it. Let's now imagine that the user is trying to print
9634 the value of My_Container. If the type fixing was recursive, we would
9635 end up computing the offset of field After based on the size of the
9636 fixed version of field First. And since in our example First has
9637 only one actual field, the size of the fixed type is actually smaller
9638 than the amount of space allocated to that field, and thus we would
9639 compute the wrong offset of field After.
9640
9641 To make things more complicated, we need to watch out for dynamic
9642 components of variant records (identified by the ___XVL suffix in
9643 the component name). Even if the target type is a PAD type, the size
9644 of that type might not be statically known. So the PAD type needs
9645 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9646 we might end up with the wrong size for our component. This can be
9647 observed with the following type declarations:
9648
9649 type Octal is new Integer range 0 .. 7;
9650 type Octal_Array is array (Positive range <>) of Octal;
9651 pragma Pack (Octal_Array);
9652
9653 type Octal_Buffer (Size : Positive) is record
9654 Buffer : Octal_Array (1 .. Size);
9655 Length : Integer;
9656 end record;
9657
9658 In that case, Buffer is a PAD type whose size is unset and needs
9659 to be computed by fixing the unwrapped type.
9660
9661 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9662 ----------------------------------------------------------
9663
9664 Lastly, when should the sub-elements of an entity that remained unfixed
9665 thus far, be actually fixed?
9666
9667 The answer is: Only when referencing that element. For instance
9668 when selecting one component of a record, this specific component
9669 should be fixed at that point in time. Or when printing the value
9670 of a record, each component should be fixed before its value gets
9671 printed. Similarly for arrays, the element of the array should be
9672 fixed when printing each element of the array, or when extracting
9673 one element out of that array. On the other hand, fixing should
9674 not be performed on the elements when taking a slice of an array!
9675
9676 Note that one of the side effects of miscomputing the offset and
9677 size of each field is that we end up also miscomputing the size
9678 of the containing type. This can have adverse results when computing
9679 the value of an entity. GDB fetches the value of an entity based
9680 on the size of its type, and thus a wrong size causes GDB to fetch
9681 the wrong amount of memory. In the case where the computed size is
9682 too small, GDB fetches too little data to print the value of our
9683 entity. Results in this case are unpredictable, as we usually read
9684 past the buffer containing the data =:-o. */
9685
9686 /* A helper function for TERNOP_IN_RANGE. */
9687
9688 static value *
9689 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9690 enum noside noside,
9691 value *arg1, value *arg2, value *arg3)
9692 {
9693 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9694 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9695 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9696 return
9697 value_from_longest (type,
9698 (value_less (arg1, arg3)
9699 || value_equal (arg1, arg3))
9700 && (value_less (arg2, arg1)
9701 || value_equal (arg2, arg1)));
9702 }
9703
9704 /* A helper function for UNOP_NEG. */
9705
9706 value *
9707 ada_unop_neg (struct type *expect_type,
9708 struct expression *exp,
9709 enum noside noside, enum exp_opcode op,
9710 struct value *arg1)
9711 {
9712 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9713 return value_neg (arg1);
9714 }
9715
9716 /* A helper function for UNOP_IN_RANGE. */
9717
9718 value *
9719 ada_unop_in_range (struct type *expect_type,
9720 struct expression *exp,
9721 enum noside noside, enum exp_opcode op,
9722 struct value *arg1, struct type *type)
9723 {
9724 struct value *arg2, *arg3;
9725 switch (type->code ())
9726 {
9727 default:
9728 lim_warning (_("Membership test incompletely implemented; "
9729 "always returns true"));
9730 type = language_bool_type (exp->language_defn, exp->gdbarch);
9731 return value_from_longest (type, (LONGEST) 1);
9732
9733 case TYPE_CODE_RANGE:
9734 arg2 = value_from_longest (type,
9735 type->bounds ()->low.const_val ());
9736 arg3 = value_from_longest (type,
9737 type->bounds ()->high.const_val ());
9738 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9739 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9740 type = language_bool_type (exp->language_defn, exp->gdbarch);
9741 return
9742 value_from_longest (type,
9743 (value_less (arg1, arg3)
9744 || value_equal (arg1, arg3))
9745 && (value_less (arg2, arg1)
9746 || value_equal (arg2, arg1)));
9747 }
9748 }
9749
9750 /* A helper function for OP_ATR_TAG. */
9751
9752 value *
9753 ada_atr_tag (struct type *expect_type,
9754 struct expression *exp,
9755 enum noside noside, enum exp_opcode op,
9756 struct value *arg1)
9757 {
9758 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9759 return value_zero (ada_tag_type (arg1), not_lval);
9760
9761 return ada_value_tag (arg1);
9762 }
9763
9764 /* A helper function for OP_ATR_SIZE. */
9765
9766 value *
9767 ada_atr_size (struct type *expect_type,
9768 struct expression *exp,
9769 enum noside noside, enum exp_opcode op,
9770 struct value *arg1)
9771 {
9772 struct type *type = value_type (arg1);
9773
9774 /* If the argument is a reference, then dereference its type, since
9775 the user is really asking for the size of the actual object,
9776 not the size of the pointer. */
9777 if (type->code () == TYPE_CODE_REF)
9778 type = TYPE_TARGET_TYPE (type);
9779
9780 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9781 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9782 else
9783 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9784 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9785 }
9786
9787 /* A helper function for UNOP_ABS. */
9788
9789 value *
9790 ada_abs (struct type *expect_type,
9791 struct expression *exp,
9792 enum noside noside, enum exp_opcode op,
9793 struct value *arg1)
9794 {
9795 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9796 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9797 return value_neg (arg1);
9798 else
9799 return arg1;
9800 }
9801
9802 /* A helper function for BINOP_MUL. */
9803
9804 value *
9805 ada_mult_binop (struct type *expect_type,
9806 struct expression *exp,
9807 enum noside noside, enum exp_opcode op,
9808 struct value *arg1, struct value *arg2)
9809 {
9810 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9811 {
9812 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9813 return value_zero (value_type (arg1), not_lval);
9814 }
9815 else
9816 {
9817 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9818 return ada_value_binop (arg1, arg2, op);
9819 }
9820 }
9821
9822 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9823
9824 value *
9825 ada_equal_binop (struct type *expect_type,
9826 struct expression *exp,
9827 enum noside noside, enum exp_opcode op,
9828 struct value *arg1, struct value *arg2)
9829 {
9830 int tem;
9831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9832 tem = 0;
9833 else
9834 {
9835 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9836 tem = ada_value_equal (arg1, arg2);
9837 }
9838 if (op == BINOP_NOTEQUAL)
9839 tem = !tem;
9840 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9841 return value_from_longest (type, (LONGEST) tem);
9842 }
9843
9844 /* A helper function for TERNOP_SLICE. */
9845
9846 value *
9847 ada_ternop_slice (struct expression *exp,
9848 enum noside noside,
9849 struct value *array, struct value *low_bound_val,
9850 struct value *high_bound_val)
9851 {
9852 LONGEST low_bound;
9853 LONGEST high_bound;
9854
9855 low_bound_val = coerce_ref (low_bound_val);
9856 high_bound_val = coerce_ref (high_bound_val);
9857 low_bound = value_as_long (low_bound_val);
9858 high_bound = value_as_long (high_bound_val);
9859
9860 /* If this is a reference to an aligner type, then remove all
9861 the aligners. */
9862 if (value_type (array)->code () == TYPE_CODE_REF
9863 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9864 TYPE_TARGET_TYPE (value_type (array)) =
9865 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9866
9867 if (ada_is_any_packed_array_type (value_type (array)))
9868 error (_("cannot slice a packed array"));
9869
9870 /* If this is a reference to an array or an array lvalue,
9871 convert to a pointer. */
9872 if (value_type (array)->code () == TYPE_CODE_REF
9873 || (value_type (array)->code () == TYPE_CODE_ARRAY
9874 && VALUE_LVAL (array) == lval_memory))
9875 array = value_addr (array);
9876
9877 if (noside == EVAL_AVOID_SIDE_EFFECTS
9878 && ada_is_array_descriptor_type (ada_check_typedef
9879 (value_type (array))))
9880 return empty_array (ada_type_of_array (array, 0), low_bound,
9881 high_bound);
9882
9883 array = ada_coerce_to_simple_array_ptr (array);
9884
9885 /* If we have more than one level of pointer indirection,
9886 dereference the value until we get only one level. */
9887 while (value_type (array)->code () == TYPE_CODE_PTR
9888 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9889 == TYPE_CODE_PTR))
9890 array = value_ind (array);
9891
9892 /* Make sure we really do have an array type before going further,
9893 to avoid a SEGV when trying to get the index type or the target
9894 type later down the road if the debug info generated by
9895 the compiler is incorrect or incomplete. */
9896 if (!ada_is_simple_array_type (value_type (array)))
9897 error (_("cannot take slice of non-array"));
9898
9899 if (ada_check_typedef (value_type (array))->code ()
9900 == TYPE_CODE_PTR)
9901 {
9902 struct type *type0 = ada_check_typedef (value_type (array));
9903
9904 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9905 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9906 else
9907 {
9908 struct type *arr_type0 =
9909 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9910
9911 return ada_value_slice_from_ptr (array, arr_type0,
9912 longest_to_int (low_bound),
9913 longest_to_int (high_bound));
9914 }
9915 }
9916 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9917 return array;
9918 else if (high_bound < low_bound)
9919 return empty_array (value_type (array), low_bound, high_bound);
9920 else
9921 return ada_value_slice (array, longest_to_int (low_bound),
9922 longest_to_int (high_bound));
9923 }
9924
9925 /* A helper function for BINOP_IN_BOUNDS. */
9926
9927 value *
9928 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9929 struct value *arg1, struct value *arg2, int n)
9930 {
9931 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9932 {
9933 struct type *type = language_bool_type (exp->language_defn,
9934 exp->gdbarch);
9935 return value_zero (type, not_lval);
9936 }
9937
9938 struct type *type = ada_index_type (value_type (arg2), n, "range");
9939 if (!type)
9940 type = value_type (arg1);
9941
9942 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9943 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9944
9945 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9947 type = language_bool_type (exp->language_defn, exp->gdbarch);
9948 return value_from_longest (type,
9949 (value_less (arg1, arg3)
9950 || value_equal (arg1, arg3))
9951 && (value_less (arg2, arg1)
9952 || value_equal (arg2, arg1)));
9953 }
9954
9955 /* A helper function for some attribute operations. */
9956
9957 static value *
9958 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
9959 struct value *arg1, struct type *type_arg, int tem)
9960 {
9961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9962 {
9963 if (type_arg == NULL)
9964 type_arg = value_type (arg1);
9965
9966 if (ada_is_constrained_packed_array_type (type_arg))
9967 type_arg = decode_constrained_packed_array_type (type_arg);
9968
9969 if (!discrete_type_p (type_arg))
9970 {
9971 switch (op)
9972 {
9973 default: /* Should never happen. */
9974 error (_("unexpected attribute encountered"));
9975 case OP_ATR_FIRST:
9976 case OP_ATR_LAST:
9977 type_arg = ada_index_type (type_arg, tem,
9978 ada_attribute_name (op));
9979 break;
9980 case OP_ATR_LENGTH:
9981 type_arg = builtin_type (exp->gdbarch)->builtin_int;
9982 break;
9983 }
9984 }
9985
9986 return value_zero (type_arg, not_lval);
9987 }
9988 else if (type_arg == NULL)
9989 {
9990 arg1 = ada_coerce_ref (arg1);
9991
9992 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9993 arg1 = ada_coerce_to_simple_array (arg1);
9994
9995 struct type *type;
9996 if (op == OP_ATR_LENGTH)
9997 type = builtin_type (exp->gdbarch)->builtin_int;
9998 else
9999 {
10000 type = ada_index_type (value_type (arg1), tem,
10001 ada_attribute_name (op));
10002 if (type == NULL)
10003 type = builtin_type (exp->gdbarch)->builtin_int;
10004 }
10005
10006 switch (op)
10007 {
10008 default: /* Should never happen. */
10009 error (_("unexpected attribute encountered"));
10010 case OP_ATR_FIRST:
10011 return value_from_longest
10012 (type, ada_array_bound (arg1, tem, 0));
10013 case OP_ATR_LAST:
10014 return value_from_longest
10015 (type, ada_array_bound (arg1, tem, 1));
10016 case OP_ATR_LENGTH:
10017 return value_from_longest
10018 (type, ada_array_length (arg1, tem));
10019 }
10020 }
10021 else if (discrete_type_p (type_arg))
10022 {
10023 struct type *range_type;
10024 const char *name = ada_type_name (type_arg);
10025
10026 range_type = NULL;
10027 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10028 range_type = to_fixed_range_type (type_arg, NULL);
10029 if (range_type == NULL)
10030 range_type = type_arg;
10031 switch (op)
10032 {
10033 default:
10034 error (_("unexpected attribute encountered"));
10035 case OP_ATR_FIRST:
10036 return value_from_longest
10037 (range_type, ada_discrete_type_low_bound (range_type));
10038 case OP_ATR_LAST:
10039 return value_from_longest
10040 (range_type, ada_discrete_type_high_bound (range_type));
10041 case OP_ATR_LENGTH:
10042 error (_("the 'length attribute applies only to array types"));
10043 }
10044 }
10045 else if (type_arg->code () == TYPE_CODE_FLT)
10046 error (_("unimplemented type attribute"));
10047 else
10048 {
10049 LONGEST low, high;
10050
10051 if (ada_is_constrained_packed_array_type (type_arg))
10052 type_arg = decode_constrained_packed_array_type (type_arg);
10053
10054 struct type *type;
10055 if (op == OP_ATR_LENGTH)
10056 type = builtin_type (exp->gdbarch)->builtin_int;
10057 else
10058 {
10059 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10060 if (type == NULL)
10061 type = builtin_type (exp->gdbarch)->builtin_int;
10062 }
10063
10064 switch (op)
10065 {
10066 default:
10067 error (_("unexpected attribute encountered"));
10068 case OP_ATR_FIRST:
10069 low = ada_array_bound_from_type (type_arg, tem, 0);
10070 return value_from_longest (type, low);
10071 case OP_ATR_LAST:
10072 high = ada_array_bound_from_type (type_arg, tem, 1);
10073 return value_from_longest (type, high);
10074 case OP_ATR_LENGTH:
10075 low = ada_array_bound_from_type (type_arg, tem, 0);
10076 high = ada_array_bound_from_type (type_arg, tem, 1);
10077 return value_from_longest (type, high - low + 1);
10078 }
10079 }
10080 }
10081
10082 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10083
10084 struct value *
10085 ada_binop_minmax (struct type *expect_type,
10086 struct expression *exp,
10087 enum noside noside, enum exp_opcode op,
10088 struct value *arg1, struct value *arg2)
10089 {
10090 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10091 return value_zero (value_type (arg1), not_lval);
10092 else
10093 {
10094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10095 return value_binop (arg1, arg2, op);
10096 }
10097 }
10098
10099 /* A helper function for BINOP_EXP. */
10100
10101 struct value *
10102 ada_binop_exp (struct type *expect_type,
10103 struct expression *exp,
10104 enum noside noside, enum exp_opcode op,
10105 struct value *arg1, struct value *arg2)
10106 {
10107 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10108 return value_zero (value_type (arg1), not_lval);
10109 else
10110 {
10111 /* For integer exponentiation operations,
10112 only promote the first argument. */
10113 if (is_integral_type (value_type (arg2)))
10114 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10115 else
10116 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10117
10118 return value_binop (arg1, arg2, op);
10119 }
10120 }
10121
10122 namespace expr
10123 {
10124
10125 value *
10126 ada_wrapped_operation::evaluate (struct type *expect_type,
10127 struct expression *exp,
10128 enum noside noside)
10129 {
10130 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10131 if (noside == EVAL_NORMAL)
10132 result = unwrap_value (result);
10133
10134 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10135 then we need to perform the conversion manually, because
10136 evaluate_subexp_standard doesn't do it. This conversion is
10137 necessary in Ada because the different kinds of float/fixed
10138 types in Ada have different representations.
10139
10140 Similarly, we need to perform the conversion from OP_LONG
10141 ourselves. */
10142 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10143 result = ada_value_cast (expect_type, result);
10144
10145 return result;
10146 }
10147
10148 value *
10149 ada_string_operation::evaluate (struct type *expect_type,
10150 struct expression *exp,
10151 enum noside noside)
10152 {
10153 value *result = string_operation::evaluate (expect_type, exp, noside);
10154 /* The result type will have code OP_STRING, bashed there from
10155 OP_ARRAY. Bash it back. */
10156 if (value_type (result)->code () == TYPE_CODE_STRING)
10157 value_type (result)->set_code (TYPE_CODE_ARRAY);
10158 return result;
10159 }
10160
10161 value *
10162 ada_qual_operation::evaluate (struct type *expect_type,
10163 struct expression *exp,
10164 enum noside noside)
10165 {
10166 struct type *type = std::get<1> (m_storage);
10167 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10168 }
10169
10170 value *
10171 ada_ternop_range_operation::evaluate (struct type *expect_type,
10172 struct expression *exp,
10173 enum noside noside)
10174 {
10175 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10176 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10177 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10178 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10179 }
10180
10181 value *
10182 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10183 struct expression *exp,
10184 enum noside noside)
10185 {
10186 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10187 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10188
10189 auto do_op = [=] (LONGEST x, LONGEST y)
10190 {
10191 if (std::get<0> (m_storage) == BINOP_ADD)
10192 return x + y;
10193 return x - y;
10194 };
10195
10196 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10197 return (value_from_longest
10198 (value_type (arg1),
10199 do_op (value_as_long (arg1), value_as_long (arg2))));
10200 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10201 return (value_from_longest
10202 (value_type (arg2),
10203 do_op (value_as_long (arg1), value_as_long (arg2))));
10204 /* Preserve the original type for use by the range case below.
10205 We cannot cast the result to a reference type, so if ARG1 is
10206 a reference type, find its underlying type. */
10207 struct type *type = value_type (arg1);
10208 while (type->code () == TYPE_CODE_REF)
10209 type = TYPE_TARGET_TYPE (type);
10210 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10211 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10212 /* We need to special-case the result with a range.
10213 This is done for the benefit of "ptype". gdb's Ada support
10214 historically used the LHS to set the result type here, so
10215 preserve this behavior. */
10216 if (type->code () == TYPE_CODE_RANGE)
10217 arg1 = value_cast (type, arg1);
10218 return arg1;
10219 }
10220
10221 value *
10222 ada_unop_atr_operation::evaluate (struct type *expect_type,
10223 struct expression *exp,
10224 enum noside noside)
10225 {
10226 struct type *type_arg = nullptr;
10227 value *val = nullptr;
10228
10229 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10230 {
10231 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10232 EVAL_AVOID_SIDE_EFFECTS);
10233 type_arg = value_type (tem);
10234 }
10235 else
10236 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10237
10238 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10239 val, type_arg, std::get<2> (m_storage));
10240 }
10241
10242 value *
10243 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10244 struct expression *exp,
10245 enum noside noside)
10246 {
10247 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10248 return value_zero (expect_type, not_lval);
10249
10250 const bound_minimal_symbol &b = std::get<0> (m_storage);
10251 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10252
10253 val = ada_value_cast (expect_type, val);
10254
10255 /* Follow the Ada language semantics that do not allow taking
10256 an address of the result of a cast (view conversion in Ada). */
10257 if (VALUE_LVAL (val) == lval_memory)
10258 {
10259 if (value_lazy (val))
10260 value_fetch_lazy (val);
10261 VALUE_LVAL (val) = not_lval;
10262 }
10263 return val;
10264 }
10265
10266 value *
10267 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10268 struct expression *exp,
10269 enum noside noside)
10270 {
10271 value *val = evaluate_var_value (noside,
10272 std::get<0> (m_storage).block,
10273 std::get<0> (m_storage).symbol);
10274
10275 val = ada_value_cast (expect_type, val);
10276
10277 /* Follow the Ada language semantics that do not allow taking
10278 an address of the result of a cast (view conversion in Ada). */
10279 if (VALUE_LVAL (val) == lval_memory)
10280 {
10281 if (value_lazy (val))
10282 value_fetch_lazy (val);
10283 VALUE_LVAL (val) = not_lval;
10284 }
10285 return val;
10286 }
10287
10288 value *
10289 ada_var_value_operation::evaluate (struct type *expect_type,
10290 struct expression *exp,
10291 enum noside noside)
10292 {
10293 symbol *sym = std::get<0> (m_storage).symbol;
10294
10295 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10296 /* Only encountered when an unresolved symbol occurs in a
10297 context other than a function call, in which case, it is
10298 invalid. */
10299 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10300 sym->print_name ());
10301
10302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10303 {
10304 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10305 /* Check to see if this is a tagged type. We also need to handle
10306 the case where the type is a reference to a tagged type, but
10307 we have to be careful to exclude pointers to tagged types.
10308 The latter should be shown as usual (as a pointer), whereas
10309 a reference should mostly be transparent to the user. */
10310 if (ada_is_tagged_type (type, 0)
10311 || (type->code () == TYPE_CODE_REF
10312 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10313 {
10314 /* Tagged types are a little special in the fact that the real
10315 type is dynamic and can only be determined by inspecting the
10316 object's tag. This means that we need to get the object's
10317 value first (EVAL_NORMAL) and then extract the actual object
10318 type from its tag.
10319
10320 Note that we cannot skip the final step where we extract
10321 the object type from its tag, because the EVAL_NORMAL phase
10322 results in dynamic components being resolved into fixed ones.
10323 This can cause problems when trying to print the type
10324 description of tagged types whose parent has a dynamic size:
10325 We use the type name of the "_parent" component in order
10326 to print the name of the ancestor type in the type description.
10327 If that component had a dynamic size, the resolution into
10328 a fixed type would result in the loss of that type name,
10329 thus preventing us from printing the name of the ancestor
10330 type in the type description. */
10331 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10332
10333 if (type->code () != TYPE_CODE_REF)
10334 {
10335 struct type *actual_type;
10336
10337 actual_type = type_from_tag (ada_value_tag (arg1));
10338 if (actual_type == NULL)
10339 /* If, for some reason, we were unable to determine
10340 the actual type from the tag, then use the static
10341 approximation that we just computed as a fallback.
10342 This can happen if the debugging information is
10343 incomplete, for instance. */
10344 actual_type = type;
10345 return value_zero (actual_type, not_lval);
10346 }
10347 else
10348 {
10349 /* In the case of a ref, ada_coerce_ref takes care
10350 of determining the actual type. But the evaluation
10351 should return a ref as it should be valid to ask
10352 for its address; so rebuild a ref after coerce. */
10353 arg1 = ada_coerce_ref (arg1);
10354 return value_ref (arg1, TYPE_CODE_REF);
10355 }
10356 }
10357
10358 /* Records and unions for which GNAT encodings have been
10359 generated need to be statically fixed as well.
10360 Otherwise, non-static fixing produces a type where
10361 all dynamic properties are removed, which prevents "ptype"
10362 from being able to completely describe the type.
10363 For instance, a case statement in a variant record would be
10364 replaced by the relevant components based on the actual
10365 value of the discriminants. */
10366 if ((type->code () == TYPE_CODE_STRUCT
10367 && dynamic_template_type (type) != NULL)
10368 || (type->code () == TYPE_CODE_UNION
10369 && ada_find_parallel_type (type, "___XVU") != NULL))
10370 return value_zero (to_static_fixed_type (type), not_lval);
10371 }
10372
10373 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10374 return ada_to_fixed_value (arg1);
10375 }
10376
10377 bool
10378 ada_var_value_operation::resolve (struct expression *exp,
10379 bool deprocedure_p,
10380 bool parse_completion,
10381 innermost_block_tracker *tracker,
10382 struct type *context_type)
10383 {
10384 symbol *sym = std::get<0> (m_storage).symbol;
10385 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10386 {
10387 block_symbol resolved
10388 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10389 context_type, parse_completion,
10390 deprocedure_p, tracker);
10391 std::get<0> (m_storage) = resolved;
10392 }
10393
10394 if (deprocedure_p
10395 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10396 == TYPE_CODE_FUNC))
10397 return true;
10398
10399 return false;
10400 }
10401
10402 value *
10403 ada_atr_val_operation::evaluate (struct type *expect_type,
10404 struct expression *exp,
10405 enum noside noside)
10406 {
10407 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10408 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10409 }
10410
10411 value *
10412 ada_unop_ind_operation::evaluate (struct type *expect_type,
10413 struct expression *exp,
10414 enum noside noside)
10415 {
10416 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10417
10418 struct type *type = ada_check_typedef (value_type (arg1));
10419 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10420 {
10421 if (ada_is_array_descriptor_type (type))
10422 /* GDB allows dereferencing GNAT array descriptors. */
10423 {
10424 struct type *arrType = ada_type_of_array (arg1, 0);
10425
10426 if (arrType == NULL)
10427 error (_("Attempt to dereference null array pointer."));
10428 return value_at_lazy (arrType, 0);
10429 }
10430 else if (type->code () == TYPE_CODE_PTR
10431 || type->code () == TYPE_CODE_REF
10432 /* In C you can dereference an array to get the 1st elt. */
10433 || type->code () == TYPE_CODE_ARRAY)
10434 {
10435 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10436 only be determined by inspecting the object's tag.
10437 This means that we need to evaluate completely the
10438 expression in order to get its type. */
10439
10440 if ((type->code () == TYPE_CODE_REF
10441 || type->code () == TYPE_CODE_PTR)
10442 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10443 {
10444 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10445 EVAL_NORMAL);
10446 type = value_type (ada_value_ind (arg1));
10447 }
10448 else
10449 {
10450 type = to_static_fixed_type
10451 (ada_aligned_type
10452 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10453 }
10454 ada_ensure_varsize_limit (type);
10455 return value_zero (type, lval_memory);
10456 }
10457 else if (type->code () == TYPE_CODE_INT)
10458 {
10459 /* GDB allows dereferencing an int. */
10460 if (expect_type == NULL)
10461 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10462 lval_memory);
10463 else
10464 {
10465 expect_type =
10466 to_static_fixed_type (ada_aligned_type (expect_type));
10467 return value_zero (expect_type, lval_memory);
10468 }
10469 }
10470 else
10471 error (_("Attempt to take contents of a non-pointer value."));
10472 }
10473 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10474 type = ada_check_typedef (value_type (arg1));
10475
10476 if (type->code () == TYPE_CODE_INT)
10477 /* GDB allows dereferencing an int. If we were given
10478 the expect_type, then use that as the target type.
10479 Otherwise, assume that the target type is an int. */
10480 {
10481 if (expect_type != NULL)
10482 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10483 arg1));
10484 else
10485 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10486 (CORE_ADDR) value_as_address (arg1));
10487 }
10488
10489 struct type *target_type = (to_static_fixed_type
10490 (ada_aligned_type
10491 (ada_check_typedef (TYPE_TARGET_TYPE (type)))));
10492 ada_ensure_varsize_limit (target_type);
10493
10494 if (ada_is_array_descriptor_type (type))
10495 /* GDB allows dereferencing GNAT array descriptors. */
10496 return ada_coerce_to_simple_array (arg1);
10497 else
10498 return ada_value_ind (arg1);
10499 }
10500
10501 value *
10502 ada_structop_operation::evaluate (struct type *expect_type,
10503 struct expression *exp,
10504 enum noside noside)
10505 {
10506 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10507 const char *str = std::get<1> (m_storage).c_str ();
10508 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10509 {
10510 struct type *type;
10511 struct type *type1 = value_type (arg1);
10512
10513 if (ada_is_tagged_type (type1, 1))
10514 {
10515 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10516
10517 /* If the field is not found, check if it exists in the
10518 extension of this object's type. This means that we
10519 need to evaluate completely the expression. */
10520
10521 if (type == NULL)
10522 {
10523 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10524 EVAL_NORMAL);
10525 arg1 = ada_value_struct_elt (arg1, str, 0);
10526 arg1 = unwrap_value (arg1);
10527 type = value_type (ada_to_fixed_value (arg1));
10528 }
10529 }
10530 else
10531 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10532
10533 return value_zero (ada_aligned_type (type), lval_memory);
10534 }
10535 else
10536 {
10537 arg1 = ada_value_struct_elt (arg1, str, 0);
10538 arg1 = unwrap_value (arg1);
10539 return ada_to_fixed_value (arg1);
10540 }
10541 }
10542
10543 value *
10544 ada_funcall_operation::evaluate (struct type *expect_type,
10545 struct expression *exp,
10546 enum noside noside)
10547 {
10548 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10549 int nargs = args_up.size ();
10550 std::vector<value *> argvec (nargs);
10551 operation_up &callee_op = std::get<0> (m_storage);
10552
10553 ada_var_value_operation *avv
10554 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10555 if (avv != nullptr
10556 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10557 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10558 avv->get_symbol ()->print_name ());
10559
10560 value *callee = callee_op->evaluate (nullptr, exp, noside);
10561 for (int i = 0; i < args_up.size (); ++i)
10562 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10563
10564 if (ada_is_constrained_packed_array_type
10565 (desc_base_type (value_type (callee))))
10566 callee = ada_coerce_to_simple_array (callee);
10567 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10568 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10569 /* This is a packed array that has already been fixed, and
10570 therefore already coerced to a simple array. Nothing further
10571 to do. */
10572 ;
10573 else if (value_type (callee)->code () == TYPE_CODE_REF)
10574 {
10575 /* Make sure we dereference references so that all the code below
10576 feels like it's really handling the referenced value. Wrapping
10577 types (for alignment) may be there, so make sure we strip them as
10578 well. */
10579 callee = ada_to_fixed_value (coerce_ref (callee));
10580 }
10581 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10582 && VALUE_LVAL (callee) == lval_memory)
10583 callee = value_addr (callee);
10584
10585 struct type *type = ada_check_typedef (value_type (callee));
10586
10587 /* Ada allows us to implicitly dereference arrays when subscripting
10588 them. So, if this is an array typedef (encoding use for array
10589 access types encoded as fat pointers), strip it now. */
10590 if (type->code () == TYPE_CODE_TYPEDEF)
10591 type = ada_typedef_target_type (type);
10592
10593 if (type->code () == TYPE_CODE_PTR)
10594 {
10595 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10596 {
10597 case TYPE_CODE_FUNC:
10598 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10599 break;
10600 case TYPE_CODE_ARRAY:
10601 break;
10602 case TYPE_CODE_STRUCT:
10603 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10604 callee = ada_value_ind (callee);
10605 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10606 break;
10607 default:
10608 error (_("cannot subscript or call something of type `%s'"),
10609 ada_type_name (value_type (callee)));
10610 break;
10611 }
10612 }
10613
10614 switch (type->code ())
10615 {
10616 case TYPE_CODE_FUNC:
10617 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10618 {
10619 if (TYPE_TARGET_TYPE (type) == NULL)
10620 error_call_unknown_return_type (NULL);
10621 return allocate_value (TYPE_TARGET_TYPE (type));
10622 }
10623 return call_function_by_hand (callee, NULL, argvec);
10624 case TYPE_CODE_INTERNAL_FUNCTION:
10625 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10626 /* We don't know anything about what the internal
10627 function might return, but we have to return
10628 something. */
10629 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10630 not_lval);
10631 else
10632 return call_internal_function (exp->gdbarch, exp->language_defn,
10633 callee, nargs,
10634 argvec.data ());
10635
10636 case TYPE_CODE_STRUCT:
10637 {
10638 int arity;
10639
10640 arity = ada_array_arity (type);
10641 type = ada_array_element_type (type, nargs);
10642 if (type == NULL)
10643 error (_("cannot subscript or call a record"));
10644 if (arity != nargs)
10645 error (_("wrong number of subscripts; expecting %d"), arity);
10646 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10647 return value_zero (ada_aligned_type (type), lval_memory);
10648 return
10649 unwrap_value (ada_value_subscript
10650 (callee, nargs, argvec.data ()));
10651 }
10652 case TYPE_CODE_ARRAY:
10653 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10654 {
10655 type = ada_array_element_type (type, nargs);
10656 if (type == NULL)
10657 error (_("element type of array unknown"));
10658 else
10659 return value_zero (ada_aligned_type (type), lval_memory);
10660 }
10661 return
10662 unwrap_value (ada_value_subscript
10663 (ada_coerce_to_simple_array (callee),
10664 nargs, argvec.data ()));
10665 case TYPE_CODE_PTR: /* Pointer to array */
10666 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10667 {
10668 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10669 type = ada_array_element_type (type, nargs);
10670 if (type == NULL)
10671 error (_("element type of array unknown"));
10672 else
10673 return value_zero (ada_aligned_type (type), lval_memory);
10674 }
10675 return
10676 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10677 argvec.data ()));
10678
10679 default:
10680 error (_("Attempt to index or call something other than an "
10681 "array or function"));
10682 }
10683 }
10684
10685 bool
10686 ada_funcall_operation::resolve (struct expression *exp,
10687 bool deprocedure_p,
10688 bool parse_completion,
10689 innermost_block_tracker *tracker,
10690 struct type *context_type)
10691 {
10692 operation_up &callee_op = std::get<0> (m_storage);
10693
10694 ada_var_value_operation *avv
10695 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10696 if (avv == nullptr)
10697 return false;
10698
10699 symbol *sym = avv->get_symbol ();
10700 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10701 return false;
10702
10703 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10704 int nargs = args_up.size ();
10705 std::vector<value *> argvec (nargs);
10706
10707 for (int i = 0; i < args_up.size (); ++i)
10708 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10709
10710 const block *block = avv->get_block ();
10711 block_symbol resolved
10712 = ada_resolve_funcall (sym, block,
10713 context_type, parse_completion,
10714 nargs, argvec.data (),
10715 tracker);
10716
10717 std::get<0> (m_storage)
10718 = make_operation<ada_var_value_operation> (resolved);
10719 return false;
10720 }
10721
10722 bool
10723 ada_ternop_slice_operation::resolve (struct expression *exp,
10724 bool deprocedure_p,
10725 bool parse_completion,
10726 innermost_block_tracker *tracker,
10727 struct type *context_type)
10728 {
10729 /* Historically this check was done during resolution, so we
10730 continue that here. */
10731 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10732 EVAL_AVOID_SIDE_EFFECTS);
10733 if (ada_is_any_packed_array_type (value_type (v)))
10734 error (_("cannot slice a packed array"));
10735 return false;
10736 }
10737
10738 }
10739
10740 \f
10741
10742 /* Return non-zero iff TYPE represents a System.Address type. */
10743
10744 int
10745 ada_is_system_address_type (struct type *type)
10746 {
10747 return (type->name () && strcmp (type->name (), "system__address") == 0);
10748 }
10749
10750 \f
10751
10752 /* Range types */
10753
10754 /* Scan STR beginning at position K for a discriminant name, and
10755 return the value of that discriminant field of DVAL in *PX. If
10756 PNEW_K is not null, put the position of the character beyond the
10757 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10758 not alter *PX and *PNEW_K if unsuccessful. */
10759
10760 static int
10761 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10762 int *pnew_k)
10763 {
10764 static std::string storage;
10765 const char *pstart, *pend, *bound;
10766 struct value *bound_val;
10767
10768 if (dval == NULL || str == NULL || str[k] == '\0')
10769 return 0;
10770
10771 pstart = str + k;
10772 pend = strstr (pstart, "__");
10773 if (pend == NULL)
10774 {
10775 bound = pstart;
10776 k += strlen (bound);
10777 }
10778 else
10779 {
10780 int len = pend - pstart;
10781
10782 /* Strip __ and beyond. */
10783 storage = std::string (pstart, len);
10784 bound = storage.c_str ();
10785 k = pend - str;
10786 }
10787
10788 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10789 if (bound_val == NULL)
10790 return 0;
10791
10792 *px = value_as_long (bound_val);
10793 if (pnew_k != NULL)
10794 *pnew_k = k;
10795 return 1;
10796 }
10797
10798 /* Value of variable named NAME. Only exact matches are considered.
10799 If no such variable found, then if ERR_MSG is null, returns 0, and
10800 otherwise causes an error with message ERR_MSG. */
10801
10802 static struct value *
10803 get_var_value (const char *name, const char *err_msg)
10804 {
10805 std::string quoted_name = add_angle_brackets (name);
10806
10807 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10808
10809 std::vector<struct block_symbol> syms
10810 = ada_lookup_symbol_list_worker (lookup_name,
10811 get_selected_block (0),
10812 VAR_DOMAIN, 1);
10813
10814 if (syms.size () != 1)
10815 {
10816 if (err_msg == NULL)
10817 return 0;
10818 else
10819 error (("%s"), err_msg);
10820 }
10821
10822 return value_of_variable (syms[0].symbol, syms[0].block);
10823 }
10824
10825 /* Value of integer variable named NAME in the current environment.
10826 If no such variable is found, returns false. Otherwise, sets VALUE
10827 to the variable's value and returns true. */
10828
10829 bool
10830 get_int_var_value (const char *name, LONGEST &value)
10831 {
10832 struct value *var_val = get_var_value (name, 0);
10833
10834 if (var_val == 0)
10835 return false;
10836
10837 value = value_as_long (var_val);
10838 return true;
10839 }
10840
10841
10842 /* Return a range type whose base type is that of the range type named
10843 NAME in the current environment, and whose bounds are calculated
10844 from NAME according to the GNAT range encoding conventions.
10845 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10846 corresponding range type from debug information; fall back to using it
10847 if symbol lookup fails. If a new type must be created, allocate it
10848 like ORIG_TYPE was. The bounds information, in general, is encoded
10849 in NAME, the base type given in the named range type. */
10850
10851 static struct type *
10852 to_fixed_range_type (struct type *raw_type, struct value *dval)
10853 {
10854 const char *name;
10855 struct type *base_type;
10856 const char *subtype_info;
10857
10858 gdb_assert (raw_type != NULL);
10859 gdb_assert (raw_type->name () != NULL);
10860
10861 if (raw_type->code () == TYPE_CODE_RANGE)
10862 base_type = TYPE_TARGET_TYPE (raw_type);
10863 else
10864 base_type = raw_type;
10865
10866 name = raw_type->name ();
10867 subtype_info = strstr (name, "___XD");
10868 if (subtype_info == NULL)
10869 {
10870 LONGEST L = ada_discrete_type_low_bound (raw_type);
10871 LONGEST U = ada_discrete_type_high_bound (raw_type);
10872
10873 if (L < INT_MIN || U > INT_MAX)
10874 return raw_type;
10875 else
10876 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10877 L, U);
10878 }
10879 else
10880 {
10881 int prefix_len = subtype_info - name;
10882 LONGEST L, U;
10883 struct type *type;
10884 const char *bounds_str;
10885 int n;
10886
10887 subtype_info += 5;
10888 bounds_str = strchr (subtype_info, '_');
10889 n = 1;
10890
10891 if (*subtype_info == 'L')
10892 {
10893 if (!ada_scan_number (bounds_str, n, &L, &n)
10894 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10895 return raw_type;
10896 if (bounds_str[n] == '_')
10897 n += 2;
10898 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10899 n += 1;
10900 subtype_info += 1;
10901 }
10902 else
10903 {
10904 std::string name_buf = std::string (name, prefix_len) + "___L";
10905 if (!get_int_var_value (name_buf.c_str (), L))
10906 {
10907 lim_warning (_("Unknown lower bound, using 1."));
10908 L = 1;
10909 }
10910 }
10911
10912 if (*subtype_info == 'U')
10913 {
10914 if (!ada_scan_number (bounds_str, n, &U, &n)
10915 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10916 return raw_type;
10917 }
10918 else
10919 {
10920 std::string name_buf = std::string (name, prefix_len) + "___U";
10921 if (!get_int_var_value (name_buf.c_str (), U))
10922 {
10923 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10924 U = L;
10925 }
10926 }
10927
10928 type = create_static_range_type (alloc_type_copy (raw_type),
10929 base_type, L, U);
10930 /* create_static_range_type alters the resulting type's length
10931 to match the size of the base_type, which is not what we want.
10932 Set it back to the original range type's length. */
10933 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
10934 type->set_name (name);
10935 return type;
10936 }
10937 }
10938
10939 /* True iff NAME is the name of a range type. */
10940
10941 int
10942 ada_is_range_type_name (const char *name)
10943 {
10944 return (name != NULL && strstr (name, "___XD"));
10945 }
10946 \f
10947
10948 /* Modular types */
10949
10950 /* True iff TYPE is an Ada modular type. */
10951
10952 int
10953 ada_is_modular_type (struct type *type)
10954 {
10955 struct type *subranged_type = get_base_type (type);
10956
10957 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
10958 && subranged_type->code () == TYPE_CODE_INT
10959 && subranged_type->is_unsigned ());
10960 }
10961
10962 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10963
10964 ULONGEST
10965 ada_modulus (struct type *type)
10966 {
10967 const dynamic_prop &high = type->bounds ()->high;
10968
10969 if (high.kind () == PROP_CONST)
10970 return (ULONGEST) high.const_val () + 1;
10971
10972 /* If TYPE is unresolved, the high bound might be a location list. Return
10973 0, for lack of a better value to return. */
10974 return 0;
10975 }
10976 \f
10977
10978 /* Ada exception catchpoint support:
10979 ---------------------------------
10980
10981 We support 3 kinds of exception catchpoints:
10982 . catchpoints on Ada exceptions
10983 . catchpoints on unhandled Ada exceptions
10984 . catchpoints on failed assertions
10985
10986 Exceptions raised during failed assertions, or unhandled exceptions
10987 could perfectly be caught with the general catchpoint on Ada exceptions.
10988 However, we can easily differentiate these two special cases, and having
10989 the option to distinguish these two cases from the rest can be useful
10990 to zero-in on certain situations.
10991
10992 Exception catchpoints are a specialized form of breakpoint,
10993 since they rely on inserting breakpoints inside known routines
10994 of the GNAT runtime. The implementation therefore uses a standard
10995 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10996 of breakpoint_ops.
10997
10998 Support in the runtime for exception catchpoints have been changed
10999 a few times already, and these changes affect the implementation
11000 of these catchpoints. In order to be able to support several
11001 variants of the runtime, we use a sniffer that will determine
11002 the runtime variant used by the program being debugged. */
11003
11004 /* Ada's standard exceptions.
11005
11006 The Ada 83 standard also defined Numeric_Error. But there so many
11007 situations where it was unclear from the Ada 83 Reference Manual
11008 (RM) whether Constraint_Error or Numeric_Error should be raised,
11009 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11010 Interpretation saying that anytime the RM says that Numeric_Error
11011 should be raised, the implementation may raise Constraint_Error.
11012 Ada 95 went one step further and pretty much removed Numeric_Error
11013 from the list of standard exceptions (it made it a renaming of
11014 Constraint_Error, to help preserve compatibility when compiling
11015 an Ada83 compiler). As such, we do not include Numeric_Error from
11016 this list of standard exceptions. */
11017
11018 static const char * const standard_exc[] = {
11019 "constraint_error",
11020 "program_error",
11021 "storage_error",
11022 "tasking_error"
11023 };
11024
11025 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11026
11027 /* A structure that describes how to support exception catchpoints
11028 for a given executable. */
11029
11030 struct exception_support_info
11031 {
11032 /* The name of the symbol to break on in order to insert
11033 a catchpoint on exceptions. */
11034 const char *catch_exception_sym;
11035
11036 /* The name of the symbol to break on in order to insert
11037 a catchpoint on unhandled exceptions. */
11038 const char *catch_exception_unhandled_sym;
11039
11040 /* The name of the symbol to break on in order to insert
11041 a catchpoint on failed assertions. */
11042 const char *catch_assert_sym;
11043
11044 /* The name of the symbol to break on in order to insert
11045 a catchpoint on exception handling. */
11046 const char *catch_handlers_sym;
11047
11048 /* Assuming that the inferior just triggered an unhandled exception
11049 catchpoint, this function is responsible for returning the address
11050 in inferior memory where the name of that exception is stored.
11051 Return zero if the address could not be computed. */
11052 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11053 };
11054
11055 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11056 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11057
11058 /* The following exception support info structure describes how to
11059 implement exception catchpoints with the latest version of the
11060 Ada runtime (as of 2019-08-??). */
11061
11062 static const struct exception_support_info default_exception_support_info =
11063 {
11064 "__gnat_debug_raise_exception", /* catch_exception_sym */
11065 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11066 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11067 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11068 ada_unhandled_exception_name_addr
11069 };
11070
11071 /* The following exception support info structure describes how to
11072 implement exception catchpoints with an earlier version of the
11073 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11074
11075 static const struct exception_support_info exception_support_info_v0 =
11076 {
11077 "__gnat_debug_raise_exception", /* catch_exception_sym */
11078 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11079 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11080 "__gnat_begin_handler", /* catch_handlers_sym */
11081 ada_unhandled_exception_name_addr
11082 };
11083
11084 /* The following exception support info structure describes how to
11085 implement exception catchpoints with a slightly older version
11086 of the Ada runtime. */
11087
11088 static const struct exception_support_info exception_support_info_fallback =
11089 {
11090 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11091 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11092 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11093 "__gnat_begin_handler", /* catch_handlers_sym */
11094 ada_unhandled_exception_name_addr_from_raise
11095 };
11096
11097 /* Return nonzero if we can detect the exception support routines
11098 described in EINFO.
11099
11100 This function errors out if an abnormal situation is detected
11101 (for instance, if we find the exception support routines, but
11102 that support is found to be incomplete). */
11103
11104 static int
11105 ada_has_this_exception_support (const struct exception_support_info *einfo)
11106 {
11107 struct symbol *sym;
11108
11109 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11110 that should be compiled with debugging information. As a result, we
11111 expect to find that symbol in the symtabs. */
11112
11113 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11114 if (sym == NULL)
11115 {
11116 /* Perhaps we did not find our symbol because the Ada runtime was
11117 compiled without debugging info, or simply stripped of it.
11118 It happens on some GNU/Linux distributions for instance, where
11119 users have to install a separate debug package in order to get
11120 the runtime's debugging info. In that situation, let the user
11121 know why we cannot insert an Ada exception catchpoint.
11122
11123 Note: Just for the purpose of inserting our Ada exception
11124 catchpoint, we could rely purely on the associated minimal symbol.
11125 But we would be operating in degraded mode anyway, since we are
11126 still lacking the debugging info needed later on to extract
11127 the name of the exception being raised (this name is printed in
11128 the catchpoint message, and is also used when trying to catch
11129 a specific exception). We do not handle this case for now. */
11130 struct bound_minimal_symbol msym
11131 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11132
11133 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11134 error (_("Your Ada runtime appears to be missing some debugging "
11135 "information.\nCannot insert Ada exception catchpoint "
11136 "in this configuration."));
11137
11138 return 0;
11139 }
11140
11141 /* Make sure that the symbol we found corresponds to a function. */
11142
11143 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11144 {
11145 error (_("Symbol \"%s\" is not a function (class = %d)"),
11146 sym->linkage_name (), SYMBOL_CLASS (sym));
11147 return 0;
11148 }
11149
11150 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11151 if (sym == NULL)
11152 {
11153 struct bound_minimal_symbol msym
11154 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11155
11156 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11157 error (_("Your Ada runtime appears to be missing some debugging "
11158 "information.\nCannot insert Ada exception catchpoint "
11159 "in this configuration."));
11160
11161 return 0;
11162 }
11163
11164 /* Make sure that the symbol we found corresponds to a function. */
11165
11166 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11167 {
11168 error (_("Symbol \"%s\" is not a function (class = %d)"),
11169 sym->linkage_name (), SYMBOL_CLASS (sym));
11170 return 0;
11171 }
11172
11173 return 1;
11174 }
11175
11176 /* Inspect the Ada runtime and determine which exception info structure
11177 should be used to provide support for exception catchpoints.
11178
11179 This function will always set the per-inferior exception_info,
11180 or raise an error. */
11181
11182 static void
11183 ada_exception_support_info_sniffer (void)
11184 {
11185 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11186
11187 /* If the exception info is already known, then no need to recompute it. */
11188 if (data->exception_info != NULL)
11189 return;
11190
11191 /* Check the latest (default) exception support info. */
11192 if (ada_has_this_exception_support (&default_exception_support_info))
11193 {
11194 data->exception_info = &default_exception_support_info;
11195 return;
11196 }
11197
11198 /* Try the v0 exception suport info. */
11199 if (ada_has_this_exception_support (&exception_support_info_v0))
11200 {
11201 data->exception_info = &exception_support_info_v0;
11202 return;
11203 }
11204
11205 /* Try our fallback exception suport info. */
11206 if (ada_has_this_exception_support (&exception_support_info_fallback))
11207 {
11208 data->exception_info = &exception_support_info_fallback;
11209 return;
11210 }
11211
11212 /* Sometimes, it is normal for us to not be able to find the routine
11213 we are looking for. This happens when the program is linked with
11214 the shared version of the GNAT runtime, and the program has not been
11215 started yet. Inform the user of these two possible causes if
11216 applicable. */
11217
11218 if (ada_update_initial_language (language_unknown) != language_ada)
11219 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11220
11221 /* If the symbol does not exist, then check that the program is
11222 already started, to make sure that shared libraries have been
11223 loaded. If it is not started, this may mean that the symbol is
11224 in a shared library. */
11225
11226 if (inferior_ptid.pid () == 0)
11227 error (_("Unable to insert catchpoint. Try to start the program first."));
11228
11229 /* At this point, we know that we are debugging an Ada program and
11230 that the inferior has been started, but we still are not able to
11231 find the run-time symbols. That can mean that we are in
11232 configurable run time mode, or that a-except as been optimized
11233 out by the linker... In any case, at this point it is not worth
11234 supporting this feature. */
11235
11236 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11237 }
11238
11239 /* True iff FRAME is very likely to be that of a function that is
11240 part of the runtime system. This is all very heuristic, but is
11241 intended to be used as advice as to what frames are uninteresting
11242 to most users. */
11243
11244 static int
11245 is_known_support_routine (struct frame_info *frame)
11246 {
11247 enum language func_lang;
11248 int i;
11249 const char *fullname;
11250
11251 /* If this code does not have any debugging information (no symtab),
11252 This cannot be any user code. */
11253
11254 symtab_and_line sal = find_frame_sal (frame);
11255 if (sal.symtab == NULL)
11256 return 1;
11257
11258 /* If there is a symtab, but the associated source file cannot be
11259 located, then assume this is not user code: Selecting a frame
11260 for which we cannot display the code would not be very helpful
11261 for the user. This should also take care of case such as VxWorks
11262 where the kernel has some debugging info provided for a few units. */
11263
11264 fullname = symtab_to_fullname (sal.symtab);
11265 if (access (fullname, R_OK) != 0)
11266 return 1;
11267
11268 /* Check the unit filename against the Ada runtime file naming.
11269 We also check the name of the objfile against the name of some
11270 known system libraries that sometimes come with debugging info
11271 too. */
11272
11273 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11274 {
11275 re_comp (known_runtime_file_name_patterns[i]);
11276 if (re_exec (lbasename (sal.symtab->filename)))
11277 return 1;
11278 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11279 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11280 return 1;
11281 }
11282
11283 /* Check whether the function is a GNAT-generated entity. */
11284
11285 gdb::unique_xmalloc_ptr<char> func_name
11286 = find_frame_funname (frame, &func_lang, NULL);
11287 if (func_name == NULL)
11288 return 1;
11289
11290 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11291 {
11292 re_comp (known_auxiliary_function_name_patterns[i]);
11293 if (re_exec (func_name.get ()))
11294 return 1;
11295 }
11296
11297 return 0;
11298 }
11299
11300 /* Find the first frame that contains debugging information and that is not
11301 part of the Ada run-time, starting from FI and moving upward. */
11302
11303 void
11304 ada_find_printable_frame (struct frame_info *fi)
11305 {
11306 for (; fi != NULL; fi = get_prev_frame (fi))
11307 {
11308 if (!is_known_support_routine (fi))
11309 {
11310 select_frame (fi);
11311 break;
11312 }
11313 }
11314
11315 }
11316
11317 /* Assuming that the inferior just triggered an unhandled exception
11318 catchpoint, return the address in inferior memory where the name
11319 of the exception is stored.
11320
11321 Return zero if the address could not be computed. */
11322
11323 static CORE_ADDR
11324 ada_unhandled_exception_name_addr (void)
11325 {
11326 return parse_and_eval_address ("e.full_name");
11327 }
11328
11329 /* Same as ada_unhandled_exception_name_addr, except that this function
11330 should be used when the inferior uses an older version of the runtime,
11331 where the exception name needs to be extracted from a specific frame
11332 several frames up in the callstack. */
11333
11334 static CORE_ADDR
11335 ada_unhandled_exception_name_addr_from_raise (void)
11336 {
11337 int frame_level;
11338 struct frame_info *fi;
11339 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11340
11341 /* To determine the name of this exception, we need to select
11342 the frame corresponding to RAISE_SYM_NAME. This frame is
11343 at least 3 levels up, so we simply skip the first 3 frames
11344 without checking the name of their associated function. */
11345 fi = get_current_frame ();
11346 for (frame_level = 0; frame_level < 3; frame_level += 1)
11347 if (fi != NULL)
11348 fi = get_prev_frame (fi);
11349
11350 while (fi != NULL)
11351 {
11352 enum language func_lang;
11353
11354 gdb::unique_xmalloc_ptr<char> func_name
11355 = find_frame_funname (fi, &func_lang, NULL);
11356 if (func_name != NULL)
11357 {
11358 if (strcmp (func_name.get (),
11359 data->exception_info->catch_exception_sym) == 0)
11360 break; /* We found the frame we were looking for... */
11361 }
11362 fi = get_prev_frame (fi);
11363 }
11364
11365 if (fi == NULL)
11366 return 0;
11367
11368 select_frame (fi);
11369 return parse_and_eval_address ("id.full_name");
11370 }
11371
11372 /* Assuming the inferior just triggered an Ada exception catchpoint
11373 (of any type), return the address in inferior memory where the name
11374 of the exception is stored, if applicable.
11375
11376 Assumes the selected frame is the current frame.
11377
11378 Return zero if the address could not be computed, or if not relevant. */
11379
11380 static CORE_ADDR
11381 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11382 struct breakpoint *b)
11383 {
11384 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11385
11386 switch (ex)
11387 {
11388 case ada_catch_exception:
11389 return (parse_and_eval_address ("e.full_name"));
11390 break;
11391
11392 case ada_catch_exception_unhandled:
11393 return data->exception_info->unhandled_exception_name_addr ();
11394 break;
11395
11396 case ada_catch_handlers:
11397 return 0; /* The runtimes does not provide access to the exception
11398 name. */
11399 break;
11400
11401 case ada_catch_assert:
11402 return 0; /* Exception name is not relevant in this case. */
11403 break;
11404
11405 default:
11406 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11407 break;
11408 }
11409
11410 return 0; /* Should never be reached. */
11411 }
11412
11413 /* Assuming the inferior is stopped at an exception catchpoint,
11414 return the message which was associated to the exception, if
11415 available. Return NULL if the message could not be retrieved.
11416
11417 Note: The exception message can be associated to an exception
11418 either through the use of the Raise_Exception function, or
11419 more simply (Ada 2005 and later), via:
11420
11421 raise Exception_Name with "exception message";
11422
11423 */
11424
11425 static gdb::unique_xmalloc_ptr<char>
11426 ada_exception_message_1 (void)
11427 {
11428 struct value *e_msg_val;
11429 int e_msg_len;
11430
11431 /* For runtimes that support this feature, the exception message
11432 is passed as an unbounded string argument called "message". */
11433 e_msg_val = parse_and_eval ("message");
11434 if (e_msg_val == NULL)
11435 return NULL; /* Exception message not supported. */
11436
11437 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11438 gdb_assert (e_msg_val != NULL);
11439 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11440
11441 /* If the message string is empty, then treat it as if there was
11442 no exception message. */
11443 if (e_msg_len <= 0)
11444 return NULL;
11445
11446 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11447 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11448 e_msg_len);
11449 e_msg.get ()[e_msg_len] = '\0';
11450
11451 return e_msg;
11452 }
11453
11454 /* Same as ada_exception_message_1, except that all exceptions are
11455 contained here (returning NULL instead). */
11456
11457 static gdb::unique_xmalloc_ptr<char>
11458 ada_exception_message (void)
11459 {
11460 gdb::unique_xmalloc_ptr<char> e_msg;
11461
11462 try
11463 {
11464 e_msg = ada_exception_message_1 ();
11465 }
11466 catch (const gdb_exception_error &e)
11467 {
11468 e_msg.reset (nullptr);
11469 }
11470
11471 return e_msg;
11472 }
11473
11474 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11475 any error that ada_exception_name_addr_1 might cause to be thrown.
11476 When an error is intercepted, a warning with the error message is printed,
11477 and zero is returned. */
11478
11479 static CORE_ADDR
11480 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11481 struct breakpoint *b)
11482 {
11483 CORE_ADDR result = 0;
11484
11485 try
11486 {
11487 result = ada_exception_name_addr_1 (ex, b);
11488 }
11489
11490 catch (const gdb_exception_error &e)
11491 {
11492 warning (_("failed to get exception name: %s"), e.what ());
11493 return 0;
11494 }
11495
11496 return result;
11497 }
11498
11499 static std::string ada_exception_catchpoint_cond_string
11500 (const char *excep_string,
11501 enum ada_exception_catchpoint_kind ex);
11502
11503 /* Ada catchpoints.
11504
11505 In the case of catchpoints on Ada exceptions, the catchpoint will
11506 stop the target on every exception the program throws. When a user
11507 specifies the name of a specific exception, we translate this
11508 request into a condition expression (in text form), and then parse
11509 it into an expression stored in each of the catchpoint's locations.
11510 We then use this condition to check whether the exception that was
11511 raised is the one the user is interested in. If not, then the
11512 target is resumed again. We store the name of the requested
11513 exception, in order to be able to re-set the condition expression
11514 when symbols change. */
11515
11516 /* An instance of this type is used to represent an Ada catchpoint
11517 breakpoint location. */
11518
11519 class ada_catchpoint_location : public bp_location
11520 {
11521 public:
11522 ada_catchpoint_location (breakpoint *owner)
11523 : bp_location (owner, bp_loc_software_breakpoint)
11524 {}
11525
11526 /* The condition that checks whether the exception that was raised
11527 is the specific exception the user specified on catchpoint
11528 creation. */
11529 expression_up excep_cond_expr;
11530 };
11531
11532 /* An instance of this type is used to represent an Ada catchpoint. */
11533
11534 struct ada_catchpoint : public breakpoint
11535 {
11536 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11537 : m_kind (kind)
11538 {
11539 }
11540
11541 /* The name of the specific exception the user specified. */
11542 std::string excep_string;
11543
11544 /* What kind of catchpoint this is. */
11545 enum ada_exception_catchpoint_kind m_kind;
11546 };
11547
11548 /* Parse the exception condition string in the context of each of the
11549 catchpoint's locations, and store them for later evaluation. */
11550
11551 static void
11552 create_excep_cond_exprs (struct ada_catchpoint *c,
11553 enum ada_exception_catchpoint_kind ex)
11554 {
11555 /* Nothing to do if there's no specific exception to catch. */
11556 if (c->excep_string.empty ())
11557 return;
11558
11559 /* Same if there are no locations... */
11560 if (c->loc == NULL)
11561 return;
11562
11563 /* Compute the condition expression in text form, from the specific
11564 expection we want to catch. */
11565 std::string cond_string
11566 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11567
11568 /* Iterate over all the catchpoint's locations, and parse an
11569 expression for each. */
11570 for (bp_location *bl : c->locations ())
11571 {
11572 struct ada_catchpoint_location *ada_loc
11573 = (struct ada_catchpoint_location *) bl;
11574 expression_up exp;
11575
11576 if (!bl->shlib_disabled)
11577 {
11578 const char *s;
11579
11580 s = cond_string.c_str ();
11581 try
11582 {
11583 exp = parse_exp_1 (&s, bl->address,
11584 block_for_pc (bl->address),
11585 0);
11586 }
11587 catch (const gdb_exception_error &e)
11588 {
11589 warning (_("failed to reevaluate internal exception condition "
11590 "for catchpoint %d: %s"),
11591 c->number, e.what ());
11592 }
11593 }
11594
11595 ada_loc->excep_cond_expr = std::move (exp);
11596 }
11597 }
11598
11599 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11600 structure for all exception catchpoint kinds. */
11601
11602 static struct bp_location *
11603 allocate_location_exception (struct breakpoint *self)
11604 {
11605 return new ada_catchpoint_location (self);
11606 }
11607
11608 /* Implement the RE_SET method in the breakpoint_ops structure for all
11609 exception catchpoint kinds. */
11610
11611 static void
11612 re_set_exception (struct breakpoint *b)
11613 {
11614 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11615
11616 /* Call the base class's method. This updates the catchpoint's
11617 locations. */
11618 bkpt_breakpoint_ops.re_set (b);
11619
11620 /* Reparse the exception conditional expressions. One for each
11621 location. */
11622 create_excep_cond_exprs (c, c->m_kind);
11623 }
11624
11625 /* Returns true if we should stop for this breakpoint hit. If the
11626 user specified a specific exception, we only want to cause a stop
11627 if the program thrown that exception. */
11628
11629 static int
11630 should_stop_exception (const struct bp_location *bl)
11631 {
11632 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11633 const struct ada_catchpoint_location *ada_loc
11634 = (const struct ada_catchpoint_location *) bl;
11635 int stop;
11636
11637 struct internalvar *var = lookup_internalvar ("_ada_exception");
11638 if (c->m_kind == ada_catch_assert)
11639 clear_internalvar (var);
11640 else
11641 {
11642 try
11643 {
11644 const char *expr;
11645
11646 if (c->m_kind == ada_catch_handlers)
11647 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11648 ".all.occurrence.id");
11649 else
11650 expr = "e";
11651
11652 struct value *exc = parse_and_eval (expr);
11653 set_internalvar (var, exc);
11654 }
11655 catch (const gdb_exception_error &ex)
11656 {
11657 clear_internalvar (var);
11658 }
11659 }
11660
11661 /* With no specific exception, should always stop. */
11662 if (c->excep_string.empty ())
11663 return 1;
11664
11665 if (ada_loc->excep_cond_expr == NULL)
11666 {
11667 /* We will have a NULL expression if back when we were creating
11668 the expressions, this location's had failed to parse. */
11669 return 1;
11670 }
11671
11672 stop = 1;
11673 try
11674 {
11675 struct value *mark;
11676
11677 mark = value_mark ();
11678 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11679 value_free_to_mark (mark);
11680 }
11681 catch (const gdb_exception &ex)
11682 {
11683 exception_fprintf (gdb_stderr, ex,
11684 _("Error in testing exception condition:\n"));
11685 }
11686
11687 return stop;
11688 }
11689
11690 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11691 for all exception catchpoint kinds. */
11692
11693 static void
11694 check_status_exception (bpstat bs)
11695 {
11696 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11697 }
11698
11699 /* Implement the PRINT_IT method in the breakpoint_ops structure
11700 for all exception catchpoint kinds. */
11701
11702 static enum print_stop_action
11703 print_it_exception (bpstat bs)
11704 {
11705 struct ui_out *uiout = current_uiout;
11706 struct breakpoint *b = bs->breakpoint_at;
11707
11708 annotate_catchpoint (b->number);
11709
11710 if (uiout->is_mi_like_p ())
11711 {
11712 uiout->field_string ("reason",
11713 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11714 uiout->field_string ("disp", bpdisp_text (b->disposition));
11715 }
11716
11717 uiout->text (b->disposition == disp_del
11718 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11719 uiout->field_signed ("bkptno", b->number);
11720 uiout->text (", ");
11721
11722 /* ada_exception_name_addr relies on the selected frame being the
11723 current frame. Need to do this here because this function may be
11724 called more than once when printing a stop, and below, we'll
11725 select the first frame past the Ada run-time (see
11726 ada_find_printable_frame). */
11727 select_frame (get_current_frame ());
11728
11729 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11730 switch (c->m_kind)
11731 {
11732 case ada_catch_exception:
11733 case ada_catch_exception_unhandled:
11734 case ada_catch_handlers:
11735 {
11736 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11737 char exception_name[256];
11738
11739 if (addr != 0)
11740 {
11741 read_memory (addr, (gdb_byte *) exception_name,
11742 sizeof (exception_name) - 1);
11743 exception_name [sizeof (exception_name) - 1] = '\0';
11744 }
11745 else
11746 {
11747 /* For some reason, we were unable to read the exception
11748 name. This could happen if the Runtime was compiled
11749 without debugging info, for instance. In that case,
11750 just replace the exception name by the generic string
11751 "exception" - it will read as "an exception" in the
11752 notification we are about to print. */
11753 memcpy (exception_name, "exception", sizeof ("exception"));
11754 }
11755 /* In the case of unhandled exception breakpoints, we print
11756 the exception name as "unhandled EXCEPTION_NAME", to make
11757 it clearer to the user which kind of catchpoint just got
11758 hit. We used ui_out_text to make sure that this extra
11759 info does not pollute the exception name in the MI case. */
11760 if (c->m_kind == ada_catch_exception_unhandled)
11761 uiout->text ("unhandled ");
11762 uiout->field_string ("exception-name", exception_name);
11763 }
11764 break;
11765 case ada_catch_assert:
11766 /* In this case, the name of the exception is not really
11767 important. Just print "failed assertion" to make it clearer
11768 that his program just hit an assertion-failure catchpoint.
11769 We used ui_out_text because this info does not belong in
11770 the MI output. */
11771 uiout->text ("failed assertion");
11772 break;
11773 }
11774
11775 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11776 if (exception_message != NULL)
11777 {
11778 uiout->text (" (");
11779 uiout->field_string ("exception-message", exception_message.get ());
11780 uiout->text (")");
11781 }
11782
11783 uiout->text (" at ");
11784 ada_find_printable_frame (get_current_frame ());
11785
11786 return PRINT_SRC_AND_LOC;
11787 }
11788
11789 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11790 for all exception catchpoint kinds. */
11791
11792 static void
11793 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11794 {
11795 struct ui_out *uiout = current_uiout;
11796 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11797 struct value_print_options opts;
11798
11799 get_user_print_options (&opts);
11800
11801 if (opts.addressprint)
11802 uiout->field_skip ("addr");
11803
11804 annotate_field (5);
11805 switch (c->m_kind)
11806 {
11807 case ada_catch_exception:
11808 if (!c->excep_string.empty ())
11809 {
11810 std::string msg = string_printf (_("`%s' Ada exception"),
11811 c->excep_string.c_str ());
11812
11813 uiout->field_string ("what", msg);
11814 }
11815 else
11816 uiout->field_string ("what", "all Ada exceptions");
11817
11818 break;
11819
11820 case ada_catch_exception_unhandled:
11821 uiout->field_string ("what", "unhandled Ada exceptions");
11822 break;
11823
11824 case ada_catch_handlers:
11825 if (!c->excep_string.empty ())
11826 {
11827 uiout->field_fmt ("what",
11828 _("`%s' Ada exception handlers"),
11829 c->excep_string.c_str ());
11830 }
11831 else
11832 uiout->field_string ("what", "all Ada exceptions handlers");
11833 break;
11834
11835 case ada_catch_assert:
11836 uiout->field_string ("what", "failed Ada assertions");
11837 break;
11838
11839 default:
11840 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11841 break;
11842 }
11843 }
11844
11845 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11846 for all exception catchpoint kinds. */
11847
11848 static void
11849 print_mention_exception (struct breakpoint *b)
11850 {
11851 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11852 struct ui_out *uiout = current_uiout;
11853
11854 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11855 : _("Catchpoint "));
11856 uiout->field_signed ("bkptno", b->number);
11857 uiout->text (": ");
11858
11859 switch (c->m_kind)
11860 {
11861 case ada_catch_exception:
11862 if (!c->excep_string.empty ())
11863 {
11864 std::string info = string_printf (_("`%s' Ada exception"),
11865 c->excep_string.c_str ());
11866 uiout->text (info);
11867 }
11868 else
11869 uiout->text (_("all Ada exceptions"));
11870 break;
11871
11872 case ada_catch_exception_unhandled:
11873 uiout->text (_("unhandled Ada exceptions"));
11874 break;
11875
11876 case ada_catch_handlers:
11877 if (!c->excep_string.empty ())
11878 {
11879 std::string info
11880 = string_printf (_("`%s' Ada exception handlers"),
11881 c->excep_string.c_str ());
11882 uiout->text (info);
11883 }
11884 else
11885 uiout->text (_("all Ada exceptions handlers"));
11886 break;
11887
11888 case ada_catch_assert:
11889 uiout->text (_("failed Ada assertions"));
11890 break;
11891
11892 default:
11893 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11894 break;
11895 }
11896 }
11897
11898 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11899 for all exception catchpoint kinds. */
11900
11901 static void
11902 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
11903 {
11904 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11905
11906 switch (c->m_kind)
11907 {
11908 case ada_catch_exception:
11909 fprintf_filtered (fp, "catch exception");
11910 if (!c->excep_string.empty ())
11911 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
11912 break;
11913
11914 case ada_catch_exception_unhandled:
11915 fprintf_filtered (fp, "catch exception unhandled");
11916 break;
11917
11918 case ada_catch_handlers:
11919 fprintf_filtered (fp, "catch handlers");
11920 break;
11921
11922 case ada_catch_assert:
11923 fprintf_filtered (fp, "catch assert");
11924 break;
11925
11926 default:
11927 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11928 }
11929 print_recreate_thread (b, fp);
11930 }
11931
11932 /* Virtual tables for various breakpoint types. */
11933 static struct breakpoint_ops catch_exception_breakpoint_ops;
11934 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11935 static struct breakpoint_ops catch_assert_breakpoint_ops;
11936 static struct breakpoint_ops catch_handlers_breakpoint_ops;
11937
11938 /* See ada-lang.h. */
11939
11940 bool
11941 is_ada_exception_catchpoint (breakpoint *bp)
11942 {
11943 return (bp->ops == &catch_exception_breakpoint_ops
11944 || bp->ops == &catch_exception_unhandled_breakpoint_ops
11945 || bp->ops == &catch_assert_breakpoint_ops
11946 || bp->ops == &catch_handlers_breakpoint_ops);
11947 }
11948
11949 /* Split the arguments specified in a "catch exception" command.
11950 Set EX to the appropriate catchpoint type.
11951 Set EXCEP_STRING to the name of the specific exception if
11952 specified by the user.
11953 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
11954 "catch handlers" command. False otherwise.
11955 If a condition is found at the end of the arguments, the condition
11956 expression is stored in COND_STRING (memory must be deallocated
11957 after use). Otherwise COND_STRING is set to NULL. */
11958
11959 static void
11960 catch_ada_exception_command_split (const char *args,
11961 bool is_catch_handlers_cmd,
11962 enum ada_exception_catchpoint_kind *ex,
11963 std::string *excep_string,
11964 std::string *cond_string)
11965 {
11966 std::string exception_name;
11967
11968 exception_name = extract_arg (&args);
11969 if (exception_name == "if")
11970 {
11971 /* This is not an exception name; this is the start of a condition
11972 expression for a catchpoint on all exceptions. So, "un-get"
11973 this token, and set exception_name to NULL. */
11974 exception_name.clear ();
11975 args -= 2;
11976 }
11977
11978 /* Check to see if we have a condition. */
11979
11980 args = skip_spaces (args);
11981 if (startswith (args, "if")
11982 && (isspace (args[2]) || args[2] == '\0'))
11983 {
11984 args += 2;
11985 args = skip_spaces (args);
11986
11987 if (args[0] == '\0')
11988 error (_("Condition missing after `if' keyword"));
11989 *cond_string = args;
11990
11991 args += strlen (args);
11992 }
11993
11994 /* Check that we do not have any more arguments. Anything else
11995 is unexpected. */
11996
11997 if (args[0] != '\0')
11998 error (_("Junk at end of expression"));
11999
12000 if (is_catch_handlers_cmd)
12001 {
12002 /* Catch handling of exceptions. */
12003 *ex = ada_catch_handlers;
12004 *excep_string = exception_name;
12005 }
12006 else if (exception_name.empty ())
12007 {
12008 /* Catch all exceptions. */
12009 *ex = ada_catch_exception;
12010 excep_string->clear ();
12011 }
12012 else if (exception_name == "unhandled")
12013 {
12014 /* Catch unhandled exceptions. */
12015 *ex = ada_catch_exception_unhandled;
12016 excep_string->clear ();
12017 }
12018 else
12019 {
12020 /* Catch a specific exception. */
12021 *ex = ada_catch_exception;
12022 *excep_string = exception_name;
12023 }
12024 }
12025
12026 /* Return the name of the symbol on which we should break in order to
12027 implement a catchpoint of the EX kind. */
12028
12029 static const char *
12030 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12031 {
12032 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12033
12034 gdb_assert (data->exception_info != NULL);
12035
12036 switch (ex)
12037 {
12038 case ada_catch_exception:
12039 return (data->exception_info->catch_exception_sym);
12040 break;
12041 case ada_catch_exception_unhandled:
12042 return (data->exception_info->catch_exception_unhandled_sym);
12043 break;
12044 case ada_catch_assert:
12045 return (data->exception_info->catch_assert_sym);
12046 break;
12047 case ada_catch_handlers:
12048 return (data->exception_info->catch_handlers_sym);
12049 break;
12050 default:
12051 internal_error (__FILE__, __LINE__,
12052 _("unexpected catchpoint kind (%d)"), ex);
12053 }
12054 }
12055
12056 /* Return the breakpoint ops "virtual table" used for catchpoints
12057 of the EX kind. */
12058
12059 static const struct breakpoint_ops *
12060 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12061 {
12062 switch (ex)
12063 {
12064 case ada_catch_exception:
12065 return (&catch_exception_breakpoint_ops);
12066 break;
12067 case ada_catch_exception_unhandled:
12068 return (&catch_exception_unhandled_breakpoint_ops);
12069 break;
12070 case ada_catch_assert:
12071 return (&catch_assert_breakpoint_ops);
12072 break;
12073 case ada_catch_handlers:
12074 return (&catch_handlers_breakpoint_ops);
12075 break;
12076 default:
12077 internal_error (__FILE__, __LINE__,
12078 _("unexpected catchpoint kind (%d)"), ex);
12079 }
12080 }
12081
12082 /* Return the condition that will be used to match the current exception
12083 being raised with the exception that the user wants to catch. This
12084 assumes that this condition is used when the inferior just triggered
12085 an exception catchpoint.
12086 EX: the type of catchpoints used for catching Ada exceptions. */
12087
12088 static std::string
12089 ada_exception_catchpoint_cond_string (const char *excep_string,
12090 enum ada_exception_catchpoint_kind ex)
12091 {
12092 int i;
12093 bool is_standard_exc = false;
12094 std::string result;
12095
12096 if (ex == ada_catch_handlers)
12097 {
12098 /* For exception handlers catchpoints, the condition string does
12099 not use the same parameter as for the other exceptions. */
12100 result = ("long_integer (GNAT_GCC_exception_Access"
12101 "(gcc_exception).all.occurrence.id)");
12102 }
12103 else
12104 result = "long_integer (e)";
12105
12106 /* The standard exceptions are a special case. They are defined in
12107 runtime units that have been compiled without debugging info; if
12108 EXCEP_STRING is the not-fully-qualified name of a standard
12109 exception (e.g. "constraint_error") then, during the evaluation
12110 of the condition expression, the symbol lookup on this name would
12111 *not* return this standard exception. The catchpoint condition
12112 may then be set only on user-defined exceptions which have the
12113 same not-fully-qualified name (e.g. my_package.constraint_error).
12114
12115 To avoid this unexcepted behavior, these standard exceptions are
12116 systematically prefixed by "standard". This means that "catch
12117 exception constraint_error" is rewritten into "catch exception
12118 standard.constraint_error".
12119
12120 If an exception named constraint_error is defined in another package of
12121 the inferior program, then the only way to specify this exception as a
12122 breakpoint condition is to use its fully-qualified named:
12123 e.g. my_package.constraint_error. */
12124
12125 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12126 {
12127 if (strcmp (standard_exc [i], excep_string) == 0)
12128 {
12129 is_standard_exc = true;
12130 break;
12131 }
12132 }
12133
12134 result += " = ";
12135
12136 if (is_standard_exc)
12137 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12138 else
12139 string_appendf (result, "long_integer (&%s)", excep_string);
12140
12141 return result;
12142 }
12143
12144 /* Return the symtab_and_line that should be used to insert an exception
12145 catchpoint of the TYPE kind.
12146
12147 ADDR_STRING returns the name of the function where the real
12148 breakpoint that implements the catchpoints is set, depending on the
12149 type of catchpoint we need to create. */
12150
12151 static struct symtab_and_line
12152 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12153 std::string *addr_string, const struct breakpoint_ops **ops)
12154 {
12155 const char *sym_name;
12156 struct symbol *sym;
12157
12158 /* First, find out which exception support info to use. */
12159 ada_exception_support_info_sniffer ();
12160
12161 /* Then lookup the function on which we will break in order to catch
12162 the Ada exceptions requested by the user. */
12163 sym_name = ada_exception_sym_name (ex);
12164 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12165
12166 if (sym == NULL)
12167 error (_("Catchpoint symbol not found: %s"), sym_name);
12168
12169 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12170 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12171
12172 /* Set ADDR_STRING. */
12173 *addr_string = sym_name;
12174
12175 /* Set OPS. */
12176 *ops = ada_exception_breakpoint_ops (ex);
12177
12178 return find_function_start_sal (sym, 1);
12179 }
12180
12181 /* Create an Ada exception catchpoint.
12182
12183 EX_KIND is the kind of exception catchpoint to be created.
12184
12185 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12186 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12187 of the exception to which this catchpoint applies.
12188
12189 COND_STRING, if not empty, is the catchpoint condition.
12190
12191 TEMPFLAG, if nonzero, means that the underlying breakpoint
12192 should be temporary.
12193
12194 FROM_TTY is the usual argument passed to all commands implementations. */
12195
12196 void
12197 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12198 enum ada_exception_catchpoint_kind ex_kind,
12199 const std::string &excep_string,
12200 const std::string &cond_string,
12201 int tempflag,
12202 int disabled,
12203 int from_tty)
12204 {
12205 std::string addr_string;
12206 const struct breakpoint_ops *ops = NULL;
12207 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12208
12209 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12210 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12211 ops, tempflag, disabled, from_tty);
12212 c->excep_string = excep_string;
12213 create_excep_cond_exprs (c.get (), ex_kind);
12214 if (!cond_string.empty ())
12215 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12216 install_breakpoint (0, std::move (c), 1);
12217 }
12218
12219 /* Implement the "catch exception" command. */
12220
12221 static void
12222 catch_ada_exception_command (const char *arg_entry, int from_tty,
12223 struct cmd_list_element *command)
12224 {
12225 const char *arg = arg_entry;
12226 struct gdbarch *gdbarch = get_current_arch ();
12227 int tempflag;
12228 enum ada_exception_catchpoint_kind ex_kind;
12229 std::string excep_string;
12230 std::string cond_string;
12231
12232 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12233
12234 if (!arg)
12235 arg = "";
12236 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12237 &cond_string);
12238 create_ada_exception_catchpoint (gdbarch, ex_kind,
12239 excep_string, cond_string,
12240 tempflag, 1 /* enabled */,
12241 from_tty);
12242 }
12243
12244 /* Implement the "catch handlers" command. */
12245
12246 static void
12247 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12248 struct cmd_list_element *command)
12249 {
12250 const char *arg = arg_entry;
12251 struct gdbarch *gdbarch = get_current_arch ();
12252 int tempflag;
12253 enum ada_exception_catchpoint_kind ex_kind;
12254 std::string excep_string;
12255 std::string cond_string;
12256
12257 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12258
12259 if (!arg)
12260 arg = "";
12261 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12262 &cond_string);
12263 create_ada_exception_catchpoint (gdbarch, ex_kind,
12264 excep_string, cond_string,
12265 tempflag, 1 /* enabled */,
12266 from_tty);
12267 }
12268
12269 /* Completion function for the Ada "catch" commands. */
12270
12271 static void
12272 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12273 const char *text, const char *word)
12274 {
12275 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12276
12277 for (const ada_exc_info &info : exceptions)
12278 {
12279 if (startswith (info.name, word))
12280 tracker.add_completion (make_unique_xstrdup (info.name));
12281 }
12282 }
12283
12284 /* Split the arguments specified in a "catch assert" command.
12285
12286 ARGS contains the command's arguments (or the empty string if
12287 no arguments were passed).
12288
12289 If ARGS contains a condition, set COND_STRING to that condition
12290 (the memory needs to be deallocated after use). */
12291
12292 static void
12293 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12294 {
12295 args = skip_spaces (args);
12296
12297 /* Check whether a condition was provided. */
12298 if (startswith (args, "if")
12299 && (isspace (args[2]) || args[2] == '\0'))
12300 {
12301 args += 2;
12302 args = skip_spaces (args);
12303 if (args[0] == '\0')
12304 error (_("condition missing after `if' keyword"));
12305 cond_string.assign (args);
12306 }
12307
12308 /* Otherwise, there should be no other argument at the end of
12309 the command. */
12310 else if (args[0] != '\0')
12311 error (_("Junk at end of arguments."));
12312 }
12313
12314 /* Implement the "catch assert" command. */
12315
12316 static void
12317 catch_assert_command (const char *arg_entry, int from_tty,
12318 struct cmd_list_element *command)
12319 {
12320 const char *arg = arg_entry;
12321 struct gdbarch *gdbarch = get_current_arch ();
12322 int tempflag;
12323 std::string cond_string;
12324
12325 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12326
12327 if (!arg)
12328 arg = "";
12329 catch_ada_assert_command_split (arg, cond_string);
12330 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12331 "", cond_string,
12332 tempflag, 1 /* enabled */,
12333 from_tty);
12334 }
12335
12336 /* Return non-zero if the symbol SYM is an Ada exception object. */
12337
12338 static int
12339 ada_is_exception_sym (struct symbol *sym)
12340 {
12341 const char *type_name = SYMBOL_TYPE (sym)->name ();
12342
12343 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12344 && SYMBOL_CLASS (sym) != LOC_BLOCK
12345 && SYMBOL_CLASS (sym) != LOC_CONST
12346 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12347 && type_name != NULL && strcmp (type_name, "exception") == 0);
12348 }
12349
12350 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12351 Ada exception object. This matches all exceptions except the ones
12352 defined by the Ada language. */
12353
12354 static int
12355 ada_is_non_standard_exception_sym (struct symbol *sym)
12356 {
12357 int i;
12358
12359 if (!ada_is_exception_sym (sym))
12360 return 0;
12361
12362 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12363 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
12364 return 0; /* A standard exception. */
12365
12366 /* Numeric_Error is also a standard exception, so exclude it.
12367 See the STANDARD_EXC description for more details as to why
12368 this exception is not listed in that array. */
12369 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12370 return 0;
12371
12372 return 1;
12373 }
12374
12375 /* A helper function for std::sort, comparing two struct ada_exc_info
12376 objects.
12377
12378 The comparison is determined first by exception name, and then
12379 by exception address. */
12380
12381 bool
12382 ada_exc_info::operator< (const ada_exc_info &other) const
12383 {
12384 int result;
12385
12386 result = strcmp (name, other.name);
12387 if (result < 0)
12388 return true;
12389 if (result == 0 && addr < other.addr)
12390 return true;
12391 return false;
12392 }
12393
12394 bool
12395 ada_exc_info::operator== (const ada_exc_info &other) const
12396 {
12397 return addr == other.addr && strcmp (name, other.name) == 0;
12398 }
12399
12400 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12401 routine, but keeping the first SKIP elements untouched.
12402
12403 All duplicates are also removed. */
12404
12405 static void
12406 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12407 int skip)
12408 {
12409 std::sort (exceptions->begin () + skip, exceptions->end ());
12410 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12411 exceptions->end ());
12412 }
12413
12414 /* Add all exceptions defined by the Ada standard whose name match
12415 a regular expression.
12416
12417 If PREG is not NULL, then this regexp_t object is used to
12418 perform the symbol name matching. Otherwise, no name-based
12419 filtering is performed.
12420
12421 EXCEPTIONS is a vector of exceptions to which matching exceptions
12422 gets pushed. */
12423
12424 static void
12425 ada_add_standard_exceptions (compiled_regex *preg,
12426 std::vector<ada_exc_info> *exceptions)
12427 {
12428 int i;
12429
12430 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12431 {
12432 if (preg == NULL
12433 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
12434 {
12435 struct bound_minimal_symbol msymbol
12436 = ada_lookup_simple_minsym (standard_exc[i]);
12437
12438 if (msymbol.minsym != NULL)
12439 {
12440 struct ada_exc_info info
12441 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
12442
12443 exceptions->push_back (info);
12444 }
12445 }
12446 }
12447 }
12448
12449 /* Add all Ada exceptions defined locally and accessible from the given
12450 FRAME.
12451
12452 If PREG is not NULL, then this regexp_t object is used to
12453 perform the symbol name matching. Otherwise, no name-based
12454 filtering is performed.
12455
12456 EXCEPTIONS is a vector of exceptions to which matching exceptions
12457 gets pushed. */
12458
12459 static void
12460 ada_add_exceptions_from_frame (compiled_regex *preg,
12461 struct frame_info *frame,
12462 std::vector<ada_exc_info> *exceptions)
12463 {
12464 const struct block *block = get_frame_block (frame, 0);
12465
12466 while (block != 0)
12467 {
12468 struct block_iterator iter;
12469 struct symbol *sym;
12470
12471 ALL_BLOCK_SYMBOLS (block, iter, sym)
12472 {
12473 switch (SYMBOL_CLASS (sym))
12474 {
12475 case LOC_TYPEDEF:
12476 case LOC_BLOCK:
12477 case LOC_CONST:
12478 break;
12479 default:
12480 if (ada_is_exception_sym (sym))
12481 {
12482 struct ada_exc_info info = {sym->print_name (),
12483 SYMBOL_VALUE_ADDRESS (sym)};
12484
12485 exceptions->push_back (info);
12486 }
12487 }
12488 }
12489 if (BLOCK_FUNCTION (block) != NULL)
12490 break;
12491 block = BLOCK_SUPERBLOCK (block);
12492 }
12493 }
12494
12495 /* Return true if NAME matches PREG or if PREG is NULL. */
12496
12497 static bool
12498 name_matches_regex (const char *name, compiled_regex *preg)
12499 {
12500 return (preg == NULL
12501 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12502 }
12503
12504 /* Add all exceptions defined globally whose name name match
12505 a regular expression, excluding standard exceptions.
12506
12507 The reason we exclude standard exceptions is that they need
12508 to be handled separately: Standard exceptions are defined inside
12509 a runtime unit which is normally not compiled with debugging info,
12510 and thus usually do not show up in our symbol search. However,
12511 if the unit was in fact built with debugging info, we need to
12512 exclude them because they would duplicate the entry we found
12513 during the special loop that specifically searches for those
12514 standard exceptions.
12515
12516 If PREG is not NULL, then this regexp_t object is used to
12517 perform the symbol name matching. Otherwise, no name-based
12518 filtering is performed.
12519
12520 EXCEPTIONS is a vector of exceptions to which matching exceptions
12521 gets pushed. */
12522
12523 static void
12524 ada_add_global_exceptions (compiled_regex *preg,
12525 std::vector<ada_exc_info> *exceptions)
12526 {
12527 /* In Ada, the symbol "search name" is a linkage name, whereas the
12528 regular expression used to do the matching refers to the natural
12529 name. So match against the decoded name. */
12530 expand_symtabs_matching (NULL,
12531 lookup_name_info::match_any (),
12532 [&] (const char *search_name)
12533 {
12534 std::string decoded = ada_decode (search_name);
12535 return name_matches_regex (decoded.c_str (), preg);
12536 },
12537 NULL,
12538 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12539 VARIABLES_DOMAIN);
12540
12541 for (objfile *objfile : current_program_space->objfiles ())
12542 {
12543 for (compunit_symtab *s : objfile->compunits ())
12544 {
12545 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12546 int i;
12547
12548 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12549 {
12550 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12551 struct block_iterator iter;
12552 struct symbol *sym;
12553
12554 ALL_BLOCK_SYMBOLS (b, iter, sym)
12555 if (ada_is_non_standard_exception_sym (sym)
12556 && name_matches_regex (sym->natural_name (), preg))
12557 {
12558 struct ada_exc_info info
12559 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12560
12561 exceptions->push_back (info);
12562 }
12563 }
12564 }
12565 }
12566 }
12567
12568 /* Implements ada_exceptions_list with the regular expression passed
12569 as a regex_t, rather than a string.
12570
12571 If not NULL, PREG is used to filter out exceptions whose names
12572 do not match. Otherwise, all exceptions are listed. */
12573
12574 static std::vector<ada_exc_info>
12575 ada_exceptions_list_1 (compiled_regex *preg)
12576 {
12577 std::vector<ada_exc_info> result;
12578 int prev_len;
12579
12580 /* First, list the known standard exceptions. These exceptions
12581 need to be handled separately, as they are usually defined in
12582 runtime units that have been compiled without debugging info. */
12583
12584 ada_add_standard_exceptions (preg, &result);
12585
12586 /* Next, find all exceptions whose scope is local and accessible
12587 from the currently selected frame. */
12588
12589 if (has_stack_frames ())
12590 {
12591 prev_len = result.size ();
12592 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12593 &result);
12594 if (result.size () > prev_len)
12595 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12596 }
12597
12598 /* Add all exceptions whose scope is global. */
12599
12600 prev_len = result.size ();
12601 ada_add_global_exceptions (preg, &result);
12602 if (result.size () > prev_len)
12603 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12604
12605 return result;
12606 }
12607
12608 /* Return a vector of ada_exc_info.
12609
12610 If REGEXP is NULL, all exceptions are included in the result.
12611 Otherwise, it should contain a valid regular expression,
12612 and only the exceptions whose names match that regular expression
12613 are included in the result.
12614
12615 The exceptions are sorted in the following order:
12616 - Standard exceptions (defined by the Ada language), in
12617 alphabetical order;
12618 - Exceptions only visible from the current frame, in
12619 alphabetical order;
12620 - Exceptions whose scope is global, in alphabetical order. */
12621
12622 std::vector<ada_exc_info>
12623 ada_exceptions_list (const char *regexp)
12624 {
12625 if (regexp == NULL)
12626 return ada_exceptions_list_1 (NULL);
12627
12628 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12629 return ada_exceptions_list_1 (&reg);
12630 }
12631
12632 /* Implement the "info exceptions" command. */
12633
12634 static void
12635 info_exceptions_command (const char *regexp, int from_tty)
12636 {
12637 struct gdbarch *gdbarch = get_current_arch ();
12638
12639 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12640
12641 if (regexp != NULL)
12642 printf_filtered
12643 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12644 else
12645 printf_filtered (_("All defined Ada exceptions:\n"));
12646
12647 for (const ada_exc_info &info : exceptions)
12648 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12649 }
12650
12651 \f
12652 /* Language vector */
12653
12654 /* symbol_name_matcher_ftype adapter for wild_match. */
12655
12656 static bool
12657 do_wild_match (const char *symbol_search_name,
12658 const lookup_name_info &lookup_name,
12659 completion_match_result *comp_match_res)
12660 {
12661 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12662 }
12663
12664 /* symbol_name_matcher_ftype adapter for full_match. */
12665
12666 static bool
12667 do_full_match (const char *symbol_search_name,
12668 const lookup_name_info &lookup_name,
12669 completion_match_result *comp_match_res)
12670 {
12671 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12672
12673 /* If both symbols start with "_ada_", just let the loop below
12674 handle the comparison. However, if only the symbol name starts
12675 with "_ada_", skip the prefix and let the match proceed as
12676 usual. */
12677 if (startswith (symbol_search_name, "_ada_")
12678 && !startswith (lname, "_ada"))
12679 symbol_search_name += 5;
12680
12681 int uscore_count = 0;
12682 while (*lname != '\0')
12683 {
12684 if (*symbol_search_name != *lname)
12685 {
12686 if (*symbol_search_name == 'B' && uscore_count == 2
12687 && symbol_search_name[1] == '_')
12688 {
12689 symbol_search_name += 2;
12690 while (isdigit (*symbol_search_name))
12691 ++symbol_search_name;
12692 if (symbol_search_name[0] == '_'
12693 && symbol_search_name[1] == '_')
12694 {
12695 symbol_search_name += 2;
12696 continue;
12697 }
12698 }
12699 return false;
12700 }
12701
12702 if (*symbol_search_name == '_')
12703 ++uscore_count;
12704 else
12705 uscore_count = 0;
12706
12707 ++symbol_search_name;
12708 ++lname;
12709 }
12710
12711 return is_name_suffix (symbol_search_name);
12712 }
12713
12714 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12715
12716 static bool
12717 do_exact_match (const char *symbol_search_name,
12718 const lookup_name_info &lookup_name,
12719 completion_match_result *comp_match_res)
12720 {
12721 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12722 }
12723
12724 /* Build the Ada lookup name for LOOKUP_NAME. */
12725
12726 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12727 {
12728 gdb::string_view user_name = lookup_name.name ();
12729
12730 if (!user_name.empty () && user_name[0] == '<')
12731 {
12732 if (user_name.back () == '>')
12733 m_encoded_name
12734 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12735 else
12736 m_encoded_name
12737 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12738 m_encoded_p = true;
12739 m_verbatim_p = true;
12740 m_wild_match_p = false;
12741 m_standard_p = false;
12742 }
12743 else
12744 {
12745 m_verbatim_p = false;
12746
12747 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12748
12749 if (!m_encoded_p)
12750 {
12751 const char *folded = ada_fold_name (user_name);
12752 m_encoded_name = ada_encode_1 (folded, false);
12753 if (m_encoded_name.empty ())
12754 m_encoded_name = gdb::to_string (user_name);
12755 }
12756 else
12757 m_encoded_name = gdb::to_string (user_name);
12758
12759 /* Handle the 'package Standard' special case. See description
12760 of m_standard_p. */
12761 if (startswith (m_encoded_name.c_str (), "standard__"))
12762 {
12763 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12764 m_standard_p = true;
12765 }
12766 else
12767 m_standard_p = false;
12768
12769 /* If the name contains a ".", then the user is entering a fully
12770 qualified entity name, and the match must not be done in wild
12771 mode. Similarly, if the user wants to complete what looks
12772 like an encoded name, the match must not be done in wild
12773 mode. Also, in the standard__ special case always do
12774 non-wild matching. */
12775 m_wild_match_p
12776 = (lookup_name.match_type () != symbol_name_match_type::FULL
12777 && !m_encoded_p
12778 && !m_standard_p
12779 && user_name.find ('.') == std::string::npos);
12780 }
12781 }
12782
12783 /* symbol_name_matcher_ftype method for Ada. This only handles
12784 completion mode. */
12785
12786 static bool
12787 ada_symbol_name_matches (const char *symbol_search_name,
12788 const lookup_name_info &lookup_name,
12789 completion_match_result *comp_match_res)
12790 {
12791 return lookup_name.ada ().matches (symbol_search_name,
12792 lookup_name.match_type (),
12793 comp_match_res);
12794 }
12795
12796 /* A name matcher that matches the symbol name exactly, with
12797 strcmp. */
12798
12799 static bool
12800 literal_symbol_name_matcher (const char *symbol_search_name,
12801 const lookup_name_info &lookup_name,
12802 completion_match_result *comp_match_res)
12803 {
12804 gdb::string_view name_view = lookup_name.name ();
12805
12806 if (lookup_name.completion_mode ()
12807 ? (strncmp (symbol_search_name, name_view.data (),
12808 name_view.size ()) == 0)
12809 : symbol_search_name == name_view)
12810 {
12811 if (comp_match_res != NULL)
12812 comp_match_res->set_match (symbol_search_name);
12813 return true;
12814 }
12815 else
12816 return false;
12817 }
12818
12819 /* Implement the "get_symbol_name_matcher" language_defn method for
12820 Ada. */
12821
12822 static symbol_name_matcher_ftype *
12823 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12824 {
12825 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12826 return literal_symbol_name_matcher;
12827
12828 if (lookup_name.completion_mode ())
12829 return ada_symbol_name_matches;
12830 else
12831 {
12832 if (lookup_name.ada ().wild_match_p ())
12833 return do_wild_match;
12834 else if (lookup_name.ada ().verbatim_p ())
12835 return do_exact_match;
12836 else
12837 return do_full_match;
12838 }
12839 }
12840
12841 /* Class representing the Ada language. */
12842
12843 class ada_language : public language_defn
12844 {
12845 public:
12846 ada_language ()
12847 : language_defn (language_ada)
12848 { /* Nothing. */ }
12849
12850 /* See language.h. */
12851
12852 const char *name () const override
12853 { return "ada"; }
12854
12855 /* See language.h. */
12856
12857 const char *natural_name () const override
12858 { return "Ada"; }
12859
12860 /* See language.h. */
12861
12862 const std::vector<const char *> &filename_extensions () const override
12863 {
12864 static const std::vector<const char *> extensions
12865 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12866 return extensions;
12867 }
12868
12869 /* Print an array element index using the Ada syntax. */
12870
12871 void print_array_index (struct type *index_type,
12872 LONGEST index,
12873 struct ui_file *stream,
12874 const value_print_options *options) const override
12875 {
12876 struct value *index_value = val_atr (index_type, index);
12877
12878 value_print (index_value, stream, options);
12879 fprintf_filtered (stream, " => ");
12880 }
12881
12882 /* Implement the "read_var_value" language_defn method for Ada. */
12883
12884 struct value *read_var_value (struct symbol *var,
12885 const struct block *var_block,
12886 struct frame_info *frame) const override
12887 {
12888 /* The only case where default_read_var_value is not sufficient
12889 is when VAR is a renaming... */
12890 if (frame != nullptr)
12891 {
12892 const struct block *frame_block = get_frame_block (frame, NULL);
12893 if (frame_block != nullptr && ada_is_renaming_symbol (var))
12894 return ada_read_renaming_var_value (var, frame_block);
12895 }
12896
12897 /* This is a typical case where we expect the default_read_var_value
12898 function to work. */
12899 return language_defn::read_var_value (var, var_block, frame);
12900 }
12901
12902 /* See language.h. */
12903 void language_arch_info (struct gdbarch *gdbarch,
12904 struct language_arch_info *lai) const override
12905 {
12906 const struct builtin_type *builtin = builtin_type (gdbarch);
12907
12908 /* Helper function to allow shorter lines below. */
12909 auto add = [&] (struct type *t)
12910 {
12911 lai->add_primitive_type (t);
12912 };
12913
12914 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12915 0, "integer"));
12916 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12917 0, "long_integer"));
12918 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12919 0, "short_integer"));
12920 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
12921 0, "character");
12922 lai->set_string_char_type (char_type);
12923 add (char_type);
12924 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12925 "float", gdbarch_float_format (gdbarch)));
12926 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12927 "long_float", gdbarch_double_format (gdbarch)));
12928 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12929 0, "long_long_integer"));
12930 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
12931 "long_long_float",
12932 gdbarch_long_double_format (gdbarch)));
12933 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12934 0, "natural"));
12935 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12936 0, "positive"));
12937 add (builtin->builtin_void);
12938
12939 struct type *system_addr_ptr
12940 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
12941 "void"));
12942 system_addr_ptr->set_name ("system__address");
12943 add (system_addr_ptr);
12944
12945 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
12946 type. This is a signed integral type whose size is the same as
12947 the size of addresses. */
12948 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
12949 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
12950 "storage_offset"));
12951
12952 lai->set_bool_type (builtin->builtin_bool);
12953 }
12954
12955 /* See language.h. */
12956
12957 bool iterate_over_symbols
12958 (const struct block *block, const lookup_name_info &name,
12959 domain_enum domain,
12960 gdb::function_view<symbol_found_callback_ftype> callback) const override
12961 {
12962 std::vector<struct block_symbol> results
12963 = ada_lookup_symbol_list_worker (name, block, domain, 0);
12964 for (block_symbol &sym : results)
12965 {
12966 if (!callback (&sym))
12967 return false;
12968 }
12969
12970 return true;
12971 }
12972
12973 /* See language.h. */
12974 bool sniff_from_mangled_name (const char *mangled,
12975 char **out) const override
12976 {
12977 std::string demangled = ada_decode (mangled);
12978
12979 *out = NULL;
12980
12981 if (demangled != mangled && demangled[0] != '<')
12982 {
12983 /* Set the gsymbol language to Ada, but still return 0.
12984 Two reasons for that:
12985
12986 1. For Ada, we prefer computing the symbol's decoded name
12987 on the fly rather than pre-compute it, in order to save
12988 memory (Ada projects are typically very large).
12989
12990 2. There are some areas in the definition of the GNAT
12991 encoding where, with a bit of bad luck, we might be able
12992 to decode a non-Ada symbol, generating an incorrect
12993 demangled name (Eg: names ending with "TB" for instance
12994 are identified as task bodies and so stripped from
12995 the decoded name returned).
12996
12997 Returning true, here, but not setting *DEMANGLED, helps us get
12998 a little bit of the best of both worlds. Because we're last,
12999 we should not affect any of the other languages that were
13000 able to demangle the symbol before us; we get to correctly
13001 tag Ada symbols as such; and even if we incorrectly tagged a
13002 non-Ada symbol, which should be rare, any routing through the
13003 Ada language should be transparent (Ada tries to behave much
13004 like C/C++ with non-Ada symbols). */
13005 return true;
13006 }
13007
13008 return false;
13009 }
13010
13011 /* See language.h. */
13012
13013 char *demangle_symbol (const char *mangled, int options) const override
13014 {
13015 return ada_la_decode (mangled, options);
13016 }
13017
13018 /* See language.h. */
13019
13020 void print_type (struct type *type, const char *varstring,
13021 struct ui_file *stream, int show, int level,
13022 const struct type_print_options *flags) const override
13023 {
13024 ada_print_type (type, varstring, stream, show, level, flags);
13025 }
13026
13027 /* See language.h. */
13028
13029 const char *word_break_characters (void) const override
13030 {
13031 return ada_completer_word_break_characters;
13032 }
13033
13034 /* See language.h. */
13035
13036 void collect_symbol_completion_matches (completion_tracker &tracker,
13037 complete_symbol_mode mode,
13038 symbol_name_match_type name_match_type,
13039 const char *text, const char *word,
13040 enum type_code code) const override
13041 {
13042 struct symbol *sym;
13043 const struct block *b, *surrounding_static_block = 0;
13044 struct block_iterator iter;
13045
13046 gdb_assert (code == TYPE_CODE_UNDEF);
13047
13048 lookup_name_info lookup_name (text, name_match_type, true);
13049
13050 /* First, look at the partial symtab symbols. */
13051 expand_symtabs_matching (NULL,
13052 lookup_name,
13053 NULL,
13054 NULL,
13055 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13056 ALL_DOMAIN);
13057
13058 /* At this point scan through the misc symbol vectors and add each
13059 symbol you find to the list. Eventually we want to ignore
13060 anything that isn't a text symbol (everything else will be
13061 handled by the psymtab code above). */
13062
13063 for (objfile *objfile : current_program_space->objfiles ())
13064 {
13065 for (minimal_symbol *msymbol : objfile->msymbols ())
13066 {
13067 QUIT;
13068
13069 if (completion_skip_symbol (mode, msymbol))
13070 continue;
13071
13072 language symbol_language = msymbol->language ();
13073
13074 /* Ada minimal symbols won't have their language set to Ada. If
13075 we let completion_list_add_name compare using the
13076 default/C-like matcher, then when completing e.g., symbols in a
13077 package named "pck", we'd match internal Ada symbols like
13078 "pckS", which are invalid in an Ada expression, unless you wrap
13079 them in '<' '>' to request a verbatim match.
13080
13081 Unfortunately, some Ada encoded names successfully demangle as
13082 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13083 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13084 with the wrong language set. Paper over that issue here. */
13085 if (symbol_language == language_auto
13086 || symbol_language == language_cplus)
13087 symbol_language = language_ada;
13088
13089 completion_list_add_name (tracker,
13090 symbol_language,
13091 msymbol->linkage_name (),
13092 lookup_name, text, word);
13093 }
13094 }
13095
13096 /* Search upwards from currently selected frame (so that we can
13097 complete on local vars. */
13098
13099 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13100 {
13101 if (!BLOCK_SUPERBLOCK (b))
13102 surrounding_static_block = b; /* For elmin of dups */
13103
13104 ALL_BLOCK_SYMBOLS (b, iter, sym)
13105 {
13106 if (completion_skip_symbol (mode, sym))
13107 continue;
13108
13109 completion_list_add_name (tracker,
13110 sym->language (),
13111 sym->linkage_name (),
13112 lookup_name, text, word);
13113 }
13114 }
13115
13116 /* Go through the symtabs and check the externs and statics for
13117 symbols which match. */
13118
13119 for (objfile *objfile : current_program_space->objfiles ())
13120 {
13121 for (compunit_symtab *s : objfile->compunits ())
13122 {
13123 QUIT;
13124 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13125 ALL_BLOCK_SYMBOLS (b, iter, sym)
13126 {
13127 if (completion_skip_symbol (mode, sym))
13128 continue;
13129
13130 completion_list_add_name (tracker,
13131 sym->language (),
13132 sym->linkage_name (),
13133 lookup_name, text, word);
13134 }
13135 }
13136 }
13137
13138 for (objfile *objfile : current_program_space->objfiles ())
13139 {
13140 for (compunit_symtab *s : objfile->compunits ())
13141 {
13142 QUIT;
13143 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13144 /* Don't do this block twice. */
13145 if (b == surrounding_static_block)
13146 continue;
13147 ALL_BLOCK_SYMBOLS (b, iter, sym)
13148 {
13149 if (completion_skip_symbol (mode, sym))
13150 continue;
13151
13152 completion_list_add_name (tracker,
13153 sym->language (),
13154 sym->linkage_name (),
13155 lookup_name, text, word);
13156 }
13157 }
13158 }
13159 }
13160
13161 /* See language.h. */
13162
13163 gdb::unique_xmalloc_ptr<char> watch_location_expression
13164 (struct type *type, CORE_ADDR addr) const override
13165 {
13166 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13167 std::string name = type_to_string (type);
13168 return gdb::unique_xmalloc_ptr<char>
13169 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
13170 }
13171
13172 /* See language.h. */
13173
13174 void value_print (struct value *val, struct ui_file *stream,
13175 const struct value_print_options *options) const override
13176 {
13177 return ada_value_print (val, stream, options);
13178 }
13179
13180 /* See language.h. */
13181
13182 void value_print_inner
13183 (struct value *val, struct ui_file *stream, int recurse,
13184 const struct value_print_options *options) const override
13185 {
13186 return ada_value_print_inner (val, stream, recurse, options);
13187 }
13188
13189 /* See language.h. */
13190
13191 struct block_symbol lookup_symbol_nonlocal
13192 (const char *name, const struct block *block,
13193 const domain_enum domain) const override
13194 {
13195 struct block_symbol sym;
13196
13197 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13198 if (sym.symbol != NULL)
13199 return sym;
13200
13201 /* If we haven't found a match at this point, try the primitive
13202 types. In other languages, this search is performed before
13203 searching for global symbols in order to short-circuit that
13204 global-symbol search if it happens that the name corresponds
13205 to a primitive type. But we cannot do the same in Ada, because
13206 it is perfectly legitimate for a program to declare a type which
13207 has the same name as a standard type. If looking up a type in
13208 that situation, we have traditionally ignored the primitive type
13209 in favor of user-defined types. This is why, unlike most other
13210 languages, we search the primitive types this late and only after
13211 having searched the global symbols without success. */
13212
13213 if (domain == VAR_DOMAIN)
13214 {
13215 struct gdbarch *gdbarch;
13216
13217 if (block == NULL)
13218 gdbarch = target_gdbarch ();
13219 else
13220 gdbarch = block_gdbarch (block);
13221 sym.symbol
13222 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13223 if (sym.symbol != NULL)
13224 return sym;
13225 }
13226
13227 return {};
13228 }
13229
13230 /* See language.h. */
13231
13232 int parser (struct parser_state *ps) const override
13233 {
13234 warnings_issued = 0;
13235 return ada_parse (ps);
13236 }
13237
13238 /* See language.h. */
13239
13240 void emitchar (int ch, struct type *chtype,
13241 struct ui_file *stream, int quoter) const override
13242 {
13243 ada_emit_char (ch, chtype, stream, quoter, 1);
13244 }
13245
13246 /* See language.h. */
13247
13248 void printchar (int ch, struct type *chtype,
13249 struct ui_file *stream) const override
13250 {
13251 ada_printchar (ch, chtype, stream);
13252 }
13253
13254 /* See language.h. */
13255
13256 void printstr (struct ui_file *stream, struct type *elttype,
13257 const gdb_byte *string, unsigned int length,
13258 const char *encoding, int force_ellipses,
13259 const struct value_print_options *options) const override
13260 {
13261 ada_printstr (stream, elttype, string, length, encoding,
13262 force_ellipses, options);
13263 }
13264
13265 /* See language.h. */
13266
13267 void print_typedef (struct type *type, struct symbol *new_symbol,
13268 struct ui_file *stream) const override
13269 {
13270 ada_print_typedef (type, new_symbol, stream);
13271 }
13272
13273 /* See language.h. */
13274
13275 bool is_string_type_p (struct type *type) const override
13276 {
13277 return ada_is_string_type (type);
13278 }
13279
13280 /* See language.h. */
13281
13282 const char *struct_too_deep_ellipsis () const override
13283 { return "(...)"; }
13284
13285 /* See language.h. */
13286
13287 bool c_style_arrays_p () const override
13288 { return false; }
13289
13290 /* See language.h. */
13291
13292 bool store_sym_names_in_linkage_form_p () const override
13293 { return true; }
13294
13295 /* See language.h. */
13296
13297 const struct lang_varobj_ops *varobj_ops () const override
13298 { return &ada_varobj_ops; }
13299
13300 protected:
13301 /* See language.h. */
13302
13303 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13304 (const lookup_name_info &lookup_name) const override
13305 {
13306 return ada_get_symbol_name_matcher (lookup_name);
13307 }
13308 };
13309
13310 /* Single instance of the Ada language class. */
13311
13312 static ada_language ada_language_defn;
13313
13314 /* Command-list for the "set/show ada" prefix command. */
13315 static struct cmd_list_element *set_ada_list;
13316 static struct cmd_list_element *show_ada_list;
13317
13318 static void
13319 initialize_ada_catchpoint_ops (void)
13320 {
13321 struct breakpoint_ops *ops;
13322
13323 initialize_breakpoint_ops ();
13324
13325 ops = &catch_exception_breakpoint_ops;
13326 *ops = bkpt_breakpoint_ops;
13327 ops->allocate_location = allocate_location_exception;
13328 ops->re_set = re_set_exception;
13329 ops->check_status = check_status_exception;
13330 ops->print_it = print_it_exception;
13331 ops->print_one = print_one_exception;
13332 ops->print_mention = print_mention_exception;
13333 ops->print_recreate = print_recreate_exception;
13334
13335 ops = &catch_exception_unhandled_breakpoint_ops;
13336 *ops = bkpt_breakpoint_ops;
13337 ops->allocate_location = allocate_location_exception;
13338 ops->re_set = re_set_exception;
13339 ops->check_status = check_status_exception;
13340 ops->print_it = print_it_exception;
13341 ops->print_one = print_one_exception;
13342 ops->print_mention = print_mention_exception;
13343 ops->print_recreate = print_recreate_exception;
13344
13345 ops = &catch_assert_breakpoint_ops;
13346 *ops = bkpt_breakpoint_ops;
13347 ops->allocate_location = allocate_location_exception;
13348 ops->re_set = re_set_exception;
13349 ops->check_status = check_status_exception;
13350 ops->print_it = print_it_exception;
13351 ops->print_one = print_one_exception;
13352 ops->print_mention = print_mention_exception;
13353 ops->print_recreate = print_recreate_exception;
13354
13355 ops = &catch_handlers_breakpoint_ops;
13356 *ops = bkpt_breakpoint_ops;
13357 ops->allocate_location = allocate_location_exception;
13358 ops->re_set = re_set_exception;
13359 ops->check_status = check_status_exception;
13360 ops->print_it = print_it_exception;
13361 ops->print_one = print_one_exception;
13362 ops->print_mention = print_mention_exception;
13363 ops->print_recreate = print_recreate_exception;
13364 }
13365
13366 /* This module's 'new_objfile' observer. */
13367
13368 static void
13369 ada_new_objfile_observer (struct objfile *objfile)
13370 {
13371 ada_clear_symbol_cache ();
13372 }
13373
13374 /* This module's 'free_objfile' observer. */
13375
13376 static void
13377 ada_free_objfile_observer (struct objfile *objfile)
13378 {
13379 ada_clear_symbol_cache ();
13380 }
13381
13382 void _initialize_ada_language ();
13383 void
13384 _initialize_ada_language ()
13385 {
13386 initialize_ada_catchpoint_ops ();
13387
13388 add_basic_prefix_cmd ("ada", no_class,
13389 _("Prefix command for changing Ada-specific settings."),
13390 &set_ada_list, 0, &setlist);
13391
13392 add_show_prefix_cmd ("ada", no_class,
13393 _("Generic command for showing Ada-specific settings."),
13394 &show_ada_list, 0, &showlist);
13395
13396 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13397 &trust_pad_over_xvs, _("\
13398 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13399 Show whether an optimization trusting PAD types over XVS types is activated."),
13400 _("\
13401 This is related to the encoding used by the GNAT compiler. The debugger\n\
13402 should normally trust the contents of PAD types, but certain older versions\n\
13403 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13404 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13405 work around this bug. It is always safe to turn this option \"off\", but\n\
13406 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13407 this option to \"off\" unless necessary."),
13408 NULL, NULL, &set_ada_list, &show_ada_list);
13409
13410 add_setshow_boolean_cmd ("print-signatures", class_vars,
13411 &print_signatures, _("\
13412 Enable or disable the output of formal and return types for functions in the \
13413 overloads selection menu."), _("\
13414 Show whether the output of formal and return types for functions in the \
13415 overloads selection menu is activated."),
13416 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13417
13418 add_catch_command ("exception", _("\
13419 Catch Ada exceptions, when raised.\n\
13420 Usage: catch exception [ARG] [if CONDITION]\n\
13421 Without any argument, stop when any Ada exception is raised.\n\
13422 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13423 being raised does not have a handler (and will therefore lead to the task's\n\
13424 termination).\n\
13425 Otherwise, the catchpoint only stops when the name of the exception being\n\
13426 raised is the same as ARG.\n\
13427 CONDITION is a boolean expression that is evaluated to see whether the\n\
13428 exception should cause a stop."),
13429 catch_ada_exception_command,
13430 catch_ada_completer,
13431 CATCH_PERMANENT,
13432 CATCH_TEMPORARY);
13433
13434 add_catch_command ("handlers", _("\
13435 Catch Ada exceptions, when handled.\n\
13436 Usage: catch handlers [ARG] [if CONDITION]\n\
13437 Without any argument, stop when any Ada exception is handled.\n\
13438 With an argument, catch only exceptions with the given name.\n\
13439 CONDITION is a boolean expression that is evaluated to see whether the\n\
13440 exception should cause a stop."),
13441 catch_ada_handlers_command,
13442 catch_ada_completer,
13443 CATCH_PERMANENT,
13444 CATCH_TEMPORARY);
13445 add_catch_command ("assert", _("\
13446 Catch failed Ada assertions, when raised.\n\
13447 Usage: catch assert [if CONDITION]\n\
13448 CONDITION is a boolean expression that is evaluated to see whether the\n\
13449 exception should cause a stop."),
13450 catch_assert_command,
13451 NULL,
13452 CATCH_PERMANENT,
13453 CATCH_TEMPORARY);
13454
13455 varsize_limit = 65536;
13456 add_setshow_uinteger_cmd ("varsize-limit", class_support,
13457 &varsize_limit, _("\
13458 Set the maximum number of bytes allowed in a variable-size object."), _("\
13459 Show the maximum number of bytes allowed in a variable-size object."), _("\
13460 Attempts to access an object whose size is not a compile-time constant\n\
13461 and exceeds this limit will cause an error."),
13462 NULL, NULL, &setlist, &showlist);
13463
13464 add_info ("exceptions", info_exceptions_command,
13465 _("\
13466 List all Ada exception names.\n\
13467 Usage: info exceptions [REGEXP]\n\
13468 If a regular expression is passed as an argument, only those matching\n\
13469 the regular expression are listed."));
13470
13471 add_basic_prefix_cmd ("ada", class_maintenance,
13472 _("Set Ada maintenance-related variables."),
13473 &maint_set_ada_cmdlist,
13474 0/*allow-unknown*/, &maintenance_set_cmdlist);
13475
13476 add_show_prefix_cmd ("ada", class_maintenance,
13477 _("Show Ada maintenance-related variables."),
13478 &maint_show_ada_cmdlist,
13479 0/*allow-unknown*/, &maintenance_show_cmdlist);
13480
13481 add_setshow_boolean_cmd
13482 ("ignore-descriptive-types", class_maintenance,
13483 &ada_ignore_descriptive_types_p,
13484 _("Set whether descriptive types generated by GNAT should be ignored."),
13485 _("Show whether descriptive types generated by GNAT should be ignored."),
13486 _("\
13487 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13488 DWARF attribute."),
13489 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13490
13491 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13492 htab_eq_string,
13493 NULL, xcalloc, xfree);
13494
13495 /* The ada-lang observers. */
13496 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13497 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13498 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
13499 }