]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Update Copyright year range in all files maintained by GDB.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "exceptions.h"
68 #include "cli/cli-utils.h"
69
70 /* Define whether or not the C operator '/' truncates towards zero for
71 differently signed operands (truncation direction is undefined in C).
72 Copied from valarith.c. */
73
74 #ifndef TRUNCATION_TOWARDS_ZERO
75 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
76 #endif
77
78 static struct type *desc_base_type (struct type *);
79
80 static struct type *desc_bounds_type (struct type *);
81
82 static struct value *desc_bounds (struct value *);
83
84 static int fat_pntr_bounds_bitpos (struct type *);
85
86 static int fat_pntr_bounds_bitsize (struct type *);
87
88 static struct type *desc_data_target_type (struct type *);
89
90 static struct value *desc_data (struct value *);
91
92 static int fat_pntr_data_bitpos (struct type *);
93
94 static int fat_pntr_data_bitsize (struct type *);
95
96 static struct value *desc_one_bound (struct value *, int, int);
97
98 static int desc_bound_bitpos (struct type *, int, int);
99
100 static int desc_bound_bitsize (struct type *, int, int);
101
102 static struct type *desc_index_type (struct type *, int);
103
104 static int desc_arity (struct type *);
105
106 static int ada_type_match (struct type *, struct type *, int);
107
108 static int ada_args_match (struct symbol *, struct value **, int);
109
110 static int full_match (const char *, const char *);
111
112 static struct value *make_array_descriptor (struct type *, struct value *);
113
114 static void ada_add_block_symbols (struct obstack *,
115 struct block *, const char *,
116 domain_enum, struct objfile *, int);
117
118 static int is_nonfunction (struct ada_symbol_info *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct ada_symbol_info *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
156 int, int, int *);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static struct value *get_var_value (char *, char *);
199
200 static int lesseq_defined_than (struct symbol *, struct symbol *);
201
202 static int equiv_types (struct type *, struct type *);
203
204 static int is_name_suffix (const char *);
205
206 static int advance_wild_match (const char **, const char *, int);
207
208 static int wild_match (const char *, const char *);
209
210 static struct value *ada_coerce_ref (struct value *);
211
212 static LONGEST pos_atr (struct value *);
213
214 static struct value *value_pos_atr (struct type *, struct value *);
215
216 static struct value *value_val_atr (struct type *, struct value *);
217
218 static struct symbol *standard_lookup (const char *, const struct block *,
219 domain_enum);
220
221 static struct value *ada_search_struct_field (char *, struct value *, int,
222 struct type *);
223
224 static struct value *ada_value_primitive_field (struct value *, int, int,
225 struct type *);
226
227 static int find_struct_field (const char *, struct type *, int,
228 struct type **, int *, int *, int *, int *);
229
230 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
231 struct value *);
232
233 static int ada_resolve_function (struct ada_symbol_info *, int,
234 struct value **, int, const char *,
235 struct type *);
236
237 static int ada_is_direct_array_type (struct type *);
238
239 static void ada_language_arch_info (struct gdbarch *,
240 struct language_arch_info *);
241
242 static void check_size (const struct type *);
243
244 static struct value *ada_index_struct_field (int, struct value *, int,
245 struct type *);
246
247 static struct value *assign_aggregate (struct value *, struct value *,
248 struct expression *,
249 int *, enum noside);
250
251 static void aggregate_assign_from_choices (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *,
254 int, LONGEST, LONGEST);
255
256 static void aggregate_assign_positional (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int *, int,
259 LONGEST, LONGEST);
260
261
262 static void aggregate_assign_others (struct value *, struct value *,
263 struct expression *,
264 int *, LONGEST *, int, LONGEST, LONGEST);
265
266
267 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
268
269
270 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
271 int *, enum noside);
272
273 static void ada_forward_operator_length (struct expression *, int, int *,
274 int *);
275
276 static struct type *ada_find_any_type (const char *name);
277 \f
278
279
280 /* Maximum-sized dynamic type. */
281 static unsigned int varsize_limit;
282
283 /* FIXME: brobecker/2003-09-17: No longer a const because it is
284 returned by a function that does not return a const char *. */
285 static char *ada_completer_word_break_characters =
286 #ifdef VMS
287 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
288 #else
289 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
290 #endif
291
292 /* The name of the symbol to use to get the name of the main subprogram. */
293 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
294 = "__gnat_ada_main_program_name";
295
296 /* Limit on the number of warnings to raise per expression evaluation. */
297 static int warning_limit = 2;
298
299 /* Number of warning messages issued; reset to 0 by cleanups after
300 expression evaluation. */
301 static int warnings_issued = 0;
302
303 static const char *known_runtime_file_name_patterns[] = {
304 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
305 };
306
307 static const char *known_auxiliary_function_name_patterns[] = {
308 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
309 };
310
311 /* Space for allocating results of ada_lookup_symbol_list. */
312 static struct obstack symbol_list_obstack;
313
314 /* Inferior-specific data. */
315
316 /* Per-inferior data for this module. */
317
318 struct ada_inferior_data
319 {
320 /* The ada__tags__type_specific_data type, which is used when decoding
321 tagged types. With older versions of GNAT, this type was directly
322 accessible through a component ("tsd") in the object tag. But this
323 is no longer the case, so we cache it for each inferior. */
324 struct type *tsd_type;
325
326 /* The exception_support_info data. This data is used to determine
327 how to implement support for Ada exception catchpoints in a given
328 inferior. */
329 const struct exception_support_info *exception_info;
330 };
331
332 /* Our key to this module's inferior data. */
333 static const struct inferior_data *ada_inferior_data;
334
335 /* A cleanup routine for our inferior data. */
336 static void
337 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
338 {
339 struct ada_inferior_data *data;
340
341 data = inferior_data (inf, ada_inferior_data);
342 if (data != NULL)
343 xfree (data);
344 }
345
346 /* Return our inferior data for the given inferior (INF).
347
348 This function always returns a valid pointer to an allocated
349 ada_inferior_data structure. If INF's inferior data has not
350 been previously set, this functions creates a new one with all
351 fields set to zero, sets INF's inferior to it, and then returns
352 a pointer to that newly allocated ada_inferior_data. */
353
354 static struct ada_inferior_data *
355 get_ada_inferior_data (struct inferior *inf)
356 {
357 struct ada_inferior_data *data;
358
359 data = inferior_data (inf, ada_inferior_data);
360 if (data == NULL)
361 {
362 data = XZALLOC (struct ada_inferior_data);
363 set_inferior_data (inf, ada_inferior_data, data);
364 }
365
366 return data;
367 }
368
369 /* Perform all necessary cleanups regarding our module's inferior data
370 that is required after the inferior INF just exited. */
371
372 static void
373 ada_inferior_exit (struct inferior *inf)
374 {
375 ada_inferior_data_cleanup (inf, NULL);
376 set_inferior_data (inf, ada_inferior_data, NULL);
377 }
378
379 /* Utilities */
380
381 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
382 all typedef layers have been peeled. Otherwise, return TYPE.
383
384 Normally, we really expect a typedef type to only have 1 typedef layer.
385 In other words, we really expect the target type of a typedef type to be
386 a non-typedef type. This is particularly true for Ada units, because
387 the language does not have a typedef vs not-typedef distinction.
388 In that respect, the Ada compiler has been trying to eliminate as many
389 typedef definitions in the debugging information, since they generally
390 do not bring any extra information (we still use typedef under certain
391 circumstances related mostly to the GNAT encoding).
392
393 Unfortunately, we have seen situations where the debugging information
394 generated by the compiler leads to such multiple typedef layers. For
395 instance, consider the following example with stabs:
396
397 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
398 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
399
400 This is an error in the debugging information which causes type
401 pck__float_array___XUP to be defined twice, and the second time,
402 it is defined as a typedef of a typedef.
403
404 This is on the fringe of legality as far as debugging information is
405 concerned, and certainly unexpected. But it is easy to handle these
406 situations correctly, so we can afford to be lenient in this case. */
407
408 static struct type *
409 ada_typedef_target_type (struct type *type)
410 {
411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
412 type = TYPE_TARGET_TYPE (type);
413 return type;
414 }
415
416 /* Given DECODED_NAME a string holding a symbol name in its
417 decoded form (ie using the Ada dotted notation), returns
418 its unqualified name. */
419
420 static const char *
421 ada_unqualified_name (const char *decoded_name)
422 {
423 const char *result = strrchr (decoded_name, '.');
424
425 if (result != NULL)
426 result++; /* Skip the dot... */
427 else
428 result = decoded_name;
429
430 return result;
431 }
432
433 /* Return a string starting with '<', followed by STR, and '>'.
434 The result is good until the next call. */
435
436 static char *
437 add_angle_brackets (const char *str)
438 {
439 static char *result = NULL;
440
441 xfree (result);
442 result = xstrprintf ("<%s>", str);
443 return result;
444 }
445
446 static char *
447 ada_get_gdb_completer_word_break_characters (void)
448 {
449 return ada_completer_word_break_characters;
450 }
451
452 /* Print an array element index using the Ada syntax. */
453
454 static void
455 ada_print_array_index (struct value *index_value, struct ui_file *stream,
456 const struct value_print_options *options)
457 {
458 LA_VALUE_PRINT (index_value, stream, options);
459 fprintf_filtered (stream, " => ");
460 }
461
462 /* Assuming VECT points to an array of *SIZE objects of size
463 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
464 updating *SIZE as necessary and returning the (new) array. */
465
466 void *
467 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
468 {
469 if (*size < min_size)
470 {
471 *size *= 2;
472 if (*size < min_size)
473 *size = min_size;
474 vect = xrealloc (vect, *size * element_size);
475 }
476 return vect;
477 }
478
479 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
480 suffix of FIELD_NAME beginning "___". */
481
482 static int
483 field_name_match (const char *field_name, const char *target)
484 {
485 int len = strlen (target);
486
487 return
488 (strncmp (field_name, target, len) == 0
489 && (field_name[len] == '\0'
490 || (strncmp (field_name + len, "___", 3) == 0
491 && strcmp (field_name + strlen (field_name) - 6,
492 "___XVN") != 0)));
493 }
494
495
496 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
497 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
498 and return its index. This function also handles fields whose name
499 have ___ suffixes because the compiler sometimes alters their name
500 by adding such a suffix to represent fields with certain constraints.
501 If the field could not be found, return a negative number if
502 MAYBE_MISSING is set. Otherwise raise an error. */
503
504 int
505 ada_get_field_index (const struct type *type, const char *field_name,
506 int maybe_missing)
507 {
508 int fieldno;
509 struct type *struct_type = check_typedef ((struct type *) type);
510
511 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
512 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
513 return fieldno;
514
515 if (!maybe_missing)
516 error (_("Unable to find field %s in struct %s. Aborting"),
517 field_name, TYPE_NAME (struct_type));
518
519 return -1;
520 }
521
522 /* The length of the prefix of NAME prior to any "___" suffix. */
523
524 int
525 ada_name_prefix_len (const char *name)
526 {
527 if (name == NULL)
528 return 0;
529 else
530 {
531 const char *p = strstr (name, "___");
532
533 if (p == NULL)
534 return strlen (name);
535 else
536 return p - name;
537 }
538 }
539
540 /* Return non-zero if SUFFIX is a suffix of STR.
541 Return zero if STR is null. */
542
543 static int
544 is_suffix (const char *str, const char *suffix)
545 {
546 int len1, len2;
547
548 if (str == NULL)
549 return 0;
550 len1 = strlen (str);
551 len2 = strlen (suffix);
552 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
553 }
554
555 /* The contents of value VAL, treated as a value of type TYPE. The
556 result is an lval in memory if VAL is. */
557
558 static struct value *
559 coerce_unspec_val_to_type (struct value *val, struct type *type)
560 {
561 type = ada_check_typedef (type);
562 if (value_type (val) == type)
563 return val;
564 else
565 {
566 struct value *result;
567
568 /* Make sure that the object size is not unreasonable before
569 trying to allocate some memory for it. */
570 check_size (type);
571
572 if (value_lazy (val)
573 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
574 result = allocate_value_lazy (type);
575 else
576 {
577 result = allocate_value (type);
578 memcpy (value_contents_raw (result), value_contents (val),
579 TYPE_LENGTH (type));
580 }
581 set_value_component_location (result, val);
582 set_value_bitsize (result, value_bitsize (val));
583 set_value_bitpos (result, value_bitpos (val));
584 set_value_address (result, value_address (val));
585 set_value_optimized_out (result, value_optimized_out_const (val));
586 return result;
587 }
588 }
589
590 static const gdb_byte *
591 cond_offset_host (const gdb_byte *valaddr, long offset)
592 {
593 if (valaddr == NULL)
594 return NULL;
595 else
596 return valaddr + offset;
597 }
598
599 static CORE_ADDR
600 cond_offset_target (CORE_ADDR address, long offset)
601 {
602 if (address == 0)
603 return 0;
604 else
605 return address + offset;
606 }
607
608 /* Issue a warning (as for the definition of warning in utils.c, but
609 with exactly one argument rather than ...), unless the limit on the
610 number of warnings has passed during the evaluation of the current
611 expression. */
612
613 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
614 provided by "complaint". */
615 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
616
617 static void
618 lim_warning (const char *format, ...)
619 {
620 va_list args;
621
622 va_start (args, format);
623 warnings_issued += 1;
624 if (warnings_issued <= warning_limit)
625 vwarning (format, args);
626
627 va_end (args);
628 }
629
630 /* Issue an error if the size of an object of type T is unreasonable,
631 i.e. if it would be a bad idea to allocate a value of this type in
632 GDB. */
633
634 static void
635 check_size (const struct type *type)
636 {
637 if (TYPE_LENGTH (type) > varsize_limit)
638 error (_("object size is larger than varsize-limit"));
639 }
640
641 /* Maximum value of a SIZE-byte signed integer type. */
642 static LONGEST
643 max_of_size (int size)
644 {
645 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
646
647 return top_bit | (top_bit - 1);
648 }
649
650 /* Minimum value of a SIZE-byte signed integer type. */
651 static LONGEST
652 min_of_size (int size)
653 {
654 return -max_of_size (size) - 1;
655 }
656
657 /* Maximum value of a SIZE-byte unsigned integer type. */
658 static ULONGEST
659 umax_of_size (int size)
660 {
661 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
662
663 return top_bit | (top_bit - 1);
664 }
665
666 /* Maximum value of integral type T, as a signed quantity. */
667 static LONGEST
668 max_of_type (struct type *t)
669 {
670 if (TYPE_UNSIGNED (t))
671 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
672 else
673 return max_of_size (TYPE_LENGTH (t));
674 }
675
676 /* Minimum value of integral type T, as a signed quantity. */
677 static LONGEST
678 min_of_type (struct type *t)
679 {
680 if (TYPE_UNSIGNED (t))
681 return 0;
682 else
683 return min_of_size (TYPE_LENGTH (t));
684 }
685
686 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
687 LONGEST
688 ada_discrete_type_high_bound (struct type *type)
689 {
690 switch (TYPE_CODE (type))
691 {
692 case TYPE_CODE_RANGE:
693 return TYPE_HIGH_BOUND (type);
694 case TYPE_CODE_ENUM:
695 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
696 case TYPE_CODE_BOOL:
697 return 1;
698 case TYPE_CODE_CHAR:
699 case TYPE_CODE_INT:
700 return max_of_type (type);
701 default:
702 error (_("Unexpected type in ada_discrete_type_high_bound."));
703 }
704 }
705
706 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
707 LONGEST
708 ada_discrete_type_low_bound (struct type *type)
709 {
710 switch (TYPE_CODE (type))
711 {
712 case TYPE_CODE_RANGE:
713 return TYPE_LOW_BOUND (type);
714 case TYPE_CODE_ENUM:
715 return TYPE_FIELD_ENUMVAL (type, 0);
716 case TYPE_CODE_BOOL:
717 return 0;
718 case TYPE_CODE_CHAR:
719 case TYPE_CODE_INT:
720 return min_of_type (type);
721 default:
722 error (_("Unexpected type in ada_discrete_type_low_bound."));
723 }
724 }
725
726 /* The identity on non-range types. For range types, the underlying
727 non-range scalar type. */
728
729 static struct type *
730 get_base_type (struct type *type)
731 {
732 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
733 {
734 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
735 return type;
736 type = TYPE_TARGET_TYPE (type);
737 }
738 return type;
739 }
740
741 /* Return a decoded version of the given VALUE. This means returning
742 a value whose type is obtained by applying all the GNAT-specific
743 encondings, making the resulting type a static but standard description
744 of the initial type. */
745
746 struct value *
747 ada_get_decoded_value (struct value *value)
748 {
749 struct type *type = ada_check_typedef (value_type (value));
750
751 if (ada_is_array_descriptor_type (type)
752 || (ada_is_constrained_packed_array_type (type)
753 && TYPE_CODE (type) != TYPE_CODE_PTR))
754 {
755 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
756 value = ada_coerce_to_simple_array_ptr (value);
757 else
758 value = ada_coerce_to_simple_array (value);
759 }
760 else
761 value = ada_to_fixed_value (value);
762
763 return value;
764 }
765
766 /* Same as ada_get_decoded_value, but with the given TYPE.
767 Because there is no associated actual value for this type,
768 the resulting type might be a best-effort approximation in
769 the case of dynamic types. */
770
771 struct type *
772 ada_get_decoded_type (struct type *type)
773 {
774 type = to_static_fixed_type (type);
775 if (ada_is_constrained_packed_array_type (type))
776 type = ada_coerce_to_simple_array_type (type);
777 return type;
778 }
779
780 \f
781
782 /* Language Selection */
783
784 /* If the main program is in Ada, return language_ada, otherwise return LANG
785 (the main program is in Ada iif the adainit symbol is found). */
786
787 enum language
788 ada_update_initial_language (enum language lang)
789 {
790 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
791 (struct objfile *) NULL) != NULL)
792 return language_ada;
793
794 return lang;
795 }
796
797 /* If the main procedure is written in Ada, then return its name.
798 The result is good until the next call. Return NULL if the main
799 procedure doesn't appear to be in Ada. */
800
801 char *
802 ada_main_name (void)
803 {
804 struct minimal_symbol *msym;
805 static char *main_program_name = NULL;
806
807 /* For Ada, the name of the main procedure is stored in a specific
808 string constant, generated by the binder. Look for that symbol,
809 extract its address, and then read that string. If we didn't find
810 that string, then most probably the main procedure is not written
811 in Ada. */
812 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
813
814 if (msym != NULL)
815 {
816 CORE_ADDR main_program_name_addr;
817 int err_code;
818
819 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
820 if (main_program_name_addr == 0)
821 error (_("Invalid address for Ada main program name."));
822
823 xfree (main_program_name);
824 target_read_string (main_program_name_addr, &main_program_name,
825 1024, &err_code);
826
827 if (err_code != 0)
828 return NULL;
829 return main_program_name;
830 }
831
832 /* The main procedure doesn't seem to be in Ada. */
833 return NULL;
834 }
835 \f
836 /* Symbols */
837
838 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
839 of NULLs. */
840
841 const struct ada_opname_map ada_opname_table[] = {
842 {"Oadd", "\"+\"", BINOP_ADD},
843 {"Osubtract", "\"-\"", BINOP_SUB},
844 {"Omultiply", "\"*\"", BINOP_MUL},
845 {"Odivide", "\"/\"", BINOP_DIV},
846 {"Omod", "\"mod\"", BINOP_MOD},
847 {"Orem", "\"rem\"", BINOP_REM},
848 {"Oexpon", "\"**\"", BINOP_EXP},
849 {"Olt", "\"<\"", BINOP_LESS},
850 {"Ole", "\"<=\"", BINOP_LEQ},
851 {"Ogt", "\">\"", BINOP_GTR},
852 {"Oge", "\">=\"", BINOP_GEQ},
853 {"Oeq", "\"=\"", BINOP_EQUAL},
854 {"One", "\"/=\"", BINOP_NOTEQUAL},
855 {"Oand", "\"and\"", BINOP_BITWISE_AND},
856 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
857 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
858 {"Oconcat", "\"&\"", BINOP_CONCAT},
859 {"Oabs", "\"abs\"", UNOP_ABS},
860 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
861 {"Oadd", "\"+\"", UNOP_PLUS},
862 {"Osubtract", "\"-\"", UNOP_NEG},
863 {NULL, NULL}
864 };
865
866 /* The "encoded" form of DECODED, according to GNAT conventions.
867 The result is valid until the next call to ada_encode. */
868
869 char *
870 ada_encode (const char *decoded)
871 {
872 static char *encoding_buffer = NULL;
873 static size_t encoding_buffer_size = 0;
874 const char *p;
875 int k;
876
877 if (decoded == NULL)
878 return NULL;
879
880 GROW_VECT (encoding_buffer, encoding_buffer_size,
881 2 * strlen (decoded) + 10);
882
883 k = 0;
884 for (p = decoded; *p != '\0'; p += 1)
885 {
886 if (*p == '.')
887 {
888 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
889 k += 2;
890 }
891 else if (*p == '"')
892 {
893 const struct ada_opname_map *mapping;
894
895 for (mapping = ada_opname_table;
896 mapping->encoded != NULL
897 && strncmp (mapping->decoded, p,
898 strlen (mapping->decoded)) != 0; mapping += 1)
899 ;
900 if (mapping->encoded == NULL)
901 error (_("invalid Ada operator name: %s"), p);
902 strcpy (encoding_buffer + k, mapping->encoded);
903 k += strlen (mapping->encoded);
904 break;
905 }
906 else
907 {
908 encoding_buffer[k] = *p;
909 k += 1;
910 }
911 }
912
913 encoding_buffer[k] = '\0';
914 return encoding_buffer;
915 }
916
917 /* Return NAME folded to lower case, or, if surrounded by single
918 quotes, unfolded, but with the quotes stripped away. Result good
919 to next call. */
920
921 char *
922 ada_fold_name (const char *name)
923 {
924 static char *fold_buffer = NULL;
925 static size_t fold_buffer_size = 0;
926
927 int len = strlen (name);
928 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
929
930 if (name[0] == '\'')
931 {
932 strncpy (fold_buffer, name + 1, len - 2);
933 fold_buffer[len - 2] = '\000';
934 }
935 else
936 {
937 int i;
938
939 for (i = 0; i <= len; i += 1)
940 fold_buffer[i] = tolower (name[i]);
941 }
942
943 return fold_buffer;
944 }
945
946 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
947
948 static int
949 is_lower_alphanum (const char c)
950 {
951 return (isdigit (c) || (isalpha (c) && islower (c)));
952 }
953
954 /* ENCODED is the linkage name of a symbol and LEN contains its length.
955 This function saves in LEN the length of that same symbol name but
956 without either of these suffixes:
957 . .{DIGIT}+
958 . ${DIGIT}+
959 . ___{DIGIT}+
960 . __{DIGIT}+.
961
962 These are suffixes introduced by the compiler for entities such as
963 nested subprogram for instance, in order to avoid name clashes.
964 They do not serve any purpose for the debugger. */
965
966 static void
967 ada_remove_trailing_digits (const char *encoded, int *len)
968 {
969 if (*len > 1 && isdigit (encoded[*len - 1]))
970 {
971 int i = *len - 2;
972
973 while (i > 0 && isdigit (encoded[i]))
974 i--;
975 if (i >= 0 && encoded[i] == '.')
976 *len = i;
977 else if (i >= 0 && encoded[i] == '$')
978 *len = i;
979 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
980 *len = i - 2;
981 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
982 *len = i - 1;
983 }
984 }
985
986 /* Remove the suffix introduced by the compiler for protected object
987 subprograms. */
988
989 static void
990 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
991 {
992 /* Remove trailing N. */
993
994 /* Protected entry subprograms are broken into two
995 separate subprograms: The first one is unprotected, and has
996 a 'N' suffix; the second is the protected version, and has
997 the 'P' suffix. The second calls the first one after handling
998 the protection. Since the P subprograms are internally generated,
999 we leave these names undecoded, giving the user a clue that this
1000 entity is internal. */
1001
1002 if (*len > 1
1003 && encoded[*len - 1] == 'N'
1004 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1005 *len = *len - 1;
1006 }
1007
1008 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1009
1010 static void
1011 ada_remove_Xbn_suffix (const char *encoded, int *len)
1012 {
1013 int i = *len - 1;
1014
1015 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1016 i--;
1017
1018 if (encoded[i] != 'X')
1019 return;
1020
1021 if (i == 0)
1022 return;
1023
1024 if (isalnum (encoded[i-1]))
1025 *len = i;
1026 }
1027
1028 /* If ENCODED follows the GNAT entity encoding conventions, then return
1029 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1030 replaced by ENCODED.
1031
1032 The resulting string is valid until the next call of ada_decode.
1033 If the string is unchanged by decoding, the original string pointer
1034 is returned. */
1035
1036 const char *
1037 ada_decode (const char *encoded)
1038 {
1039 int i, j;
1040 int len0;
1041 const char *p;
1042 char *decoded;
1043 int at_start_name;
1044 static char *decoding_buffer = NULL;
1045 static size_t decoding_buffer_size = 0;
1046
1047 /* The name of the Ada main procedure starts with "_ada_".
1048 This prefix is not part of the decoded name, so skip this part
1049 if we see this prefix. */
1050 if (strncmp (encoded, "_ada_", 5) == 0)
1051 encoded += 5;
1052
1053 /* If the name starts with '_', then it is not a properly encoded
1054 name, so do not attempt to decode it. Similarly, if the name
1055 starts with '<', the name should not be decoded. */
1056 if (encoded[0] == '_' || encoded[0] == '<')
1057 goto Suppress;
1058
1059 len0 = strlen (encoded);
1060
1061 ada_remove_trailing_digits (encoded, &len0);
1062 ada_remove_po_subprogram_suffix (encoded, &len0);
1063
1064 /* Remove the ___X.* suffix if present. Do not forget to verify that
1065 the suffix is located before the current "end" of ENCODED. We want
1066 to avoid re-matching parts of ENCODED that have previously been
1067 marked as discarded (by decrementing LEN0). */
1068 p = strstr (encoded, "___");
1069 if (p != NULL && p - encoded < len0 - 3)
1070 {
1071 if (p[3] == 'X')
1072 len0 = p - encoded;
1073 else
1074 goto Suppress;
1075 }
1076
1077 /* Remove any trailing TKB suffix. It tells us that this symbol
1078 is for the body of a task, but that information does not actually
1079 appear in the decoded name. */
1080
1081 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1082 len0 -= 3;
1083
1084 /* Remove any trailing TB suffix. The TB suffix is slightly different
1085 from the TKB suffix because it is used for non-anonymous task
1086 bodies. */
1087
1088 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1089 len0 -= 2;
1090
1091 /* Remove trailing "B" suffixes. */
1092 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1093
1094 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1095 len0 -= 1;
1096
1097 /* Make decoded big enough for possible expansion by operator name. */
1098
1099 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1100 decoded = decoding_buffer;
1101
1102 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1103
1104 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1105 {
1106 i = len0 - 2;
1107 while ((i >= 0 && isdigit (encoded[i]))
1108 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1109 i -= 1;
1110 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1111 len0 = i - 1;
1112 else if (encoded[i] == '$')
1113 len0 = i;
1114 }
1115
1116 /* The first few characters that are not alphabetic are not part
1117 of any encoding we use, so we can copy them over verbatim. */
1118
1119 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1120 decoded[j] = encoded[i];
1121
1122 at_start_name = 1;
1123 while (i < len0)
1124 {
1125 /* Is this a symbol function? */
1126 if (at_start_name && encoded[i] == 'O')
1127 {
1128 int k;
1129
1130 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1131 {
1132 int op_len = strlen (ada_opname_table[k].encoded);
1133 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1134 op_len - 1) == 0)
1135 && !isalnum (encoded[i + op_len]))
1136 {
1137 strcpy (decoded + j, ada_opname_table[k].decoded);
1138 at_start_name = 0;
1139 i += op_len;
1140 j += strlen (ada_opname_table[k].decoded);
1141 break;
1142 }
1143 }
1144 if (ada_opname_table[k].encoded != NULL)
1145 continue;
1146 }
1147 at_start_name = 0;
1148
1149 /* Replace "TK__" with "__", which will eventually be translated
1150 into "." (just below). */
1151
1152 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1153 i += 2;
1154
1155 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1156 be translated into "." (just below). These are internal names
1157 generated for anonymous blocks inside which our symbol is nested. */
1158
1159 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1160 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1161 && isdigit (encoded [i+4]))
1162 {
1163 int k = i + 5;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++; /* Skip any extra digit. */
1167
1168 /* Double-check that the "__B_{DIGITS}+" sequence we found
1169 is indeed followed by "__". */
1170 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1171 i = k;
1172 }
1173
1174 /* Remove _E{DIGITS}+[sb] */
1175
1176 /* Just as for protected object subprograms, there are 2 categories
1177 of subprograms created by the compiler for each entry. The first
1178 one implements the actual entry code, and has a suffix following
1179 the convention above; the second one implements the barrier and
1180 uses the same convention as above, except that the 'E' is replaced
1181 by a 'B'.
1182
1183 Just as above, we do not decode the name of barrier functions
1184 to give the user a clue that the code he is debugging has been
1185 internally generated. */
1186
1187 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1188 && isdigit (encoded[i+2]))
1189 {
1190 int k = i + 3;
1191
1192 while (k < len0 && isdigit (encoded[k]))
1193 k++;
1194
1195 if (k < len0
1196 && (encoded[k] == 'b' || encoded[k] == 's'))
1197 {
1198 k++;
1199 /* Just as an extra precaution, make sure that if this
1200 suffix is followed by anything else, it is a '_'.
1201 Otherwise, we matched this sequence by accident. */
1202 if (k == len0
1203 || (k < len0 && encoded[k] == '_'))
1204 i = k;
1205 }
1206 }
1207
1208 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1209 the GNAT front-end in protected object subprograms. */
1210
1211 if (i < len0 + 3
1212 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1213 {
1214 /* Backtrack a bit up until we reach either the begining of
1215 the encoded name, or "__". Make sure that we only find
1216 digits or lowercase characters. */
1217 const char *ptr = encoded + i - 1;
1218
1219 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1220 ptr--;
1221 if (ptr < encoded
1222 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1223 i++;
1224 }
1225
1226 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1227 {
1228 /* This is a X[bn]* sequence not separated from the previous
1229 part of the name with a non-alpha-numeric character (in other
1230 words, immediately following an alpha-numeric character), then
1231 verify that it is placed at the end of the encoded name. If
1232 not, then the encoding is not valid and we should abort the
1233 decoding. Otherwise, just skip it, it is used in body-nested
1234 package names. */
1235 do
1236 i += 1;
1237 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1238 if (i < len0)
1239 goto Suppress;
1240 }
1241 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1242 {
1243 /* Replace '__' by '.'. */
1244 decoded[j] = '.';
1245 at_start_name = 1;
1246 i += 2;
1247 j += 1;
1248 }
1249 else
1250 {
1251 /* It's a character part of the decoded name, so just copy it
1252 over. */
1253 decoded[j] = encoded[i];
1254 i += 1;
1255 j += 1;
1256 }
1257 }
1258 decoded[j] = '\000';
1259
1260 /* Decoded names should never contain any uppercase character.
1261 Double-check this, and abort the decoding if we find one. */
1262
1263 for (i = 0; decoded[i] != '\0'; i += 1)
1264 if (isupper (decoded[i]) || decoded[i] == ' ')
1265 goto Suppress;
1266
1267 if (strcmp (decoded, encoded) == 0)
1268 return encoded;
1269 else
1270 return decoded;
1271
1272 Suppress:
1273 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1274 decoded = decoding_buffer;
1275 if (encoded[0] == '<')
1276 strcpy (decoded, encoded);
1277 else
1278 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1279 return decoded;
1280
1281 }
1282
1283 /* Table for keeping permanent unique copies of decoded names. Once
1284 allocated, names in this table are never released. While this is a
1285 storage leak, it should not be significant unless there are massive
1286 changes in the set of decoded names in successive versions of a
1287 symbol table loaded during a single session. */
1288 static struct htab *decoded_names_store;
1289
1290 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1291 in the language-specific part of GSYMBOL, if it has not been
1292 previously computed. Tries to save the decoded name in the same
1293 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1294 in any case, the decoded symbol has a lifetime at least that of
1295 GSYMBOL).
1296 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1297 const, but nevertheless modified to a semantically equivalent form
1298 when a decoded name is cached in it. */
1299
1300 const char *
1301 ada_decode_symbol (const struct general_symbol_info *arg)
1302 {
1303 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1304 const char **resultp =
1305 &gsymbol->language_specific.mangled_lang.demangled_name;
1306
1307 if (!gsymbol->ada_mangled)
1308 {
1309 const char *decoded = ada_decode (gsymbol->name);
1310 struct obstack *obstack = gsymbol->language_specific.obstack;
1311
1312 gsymbol->ada_mangled = 1;
1313
1314 if (obstack != NULL)
1315 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1316 else
1317 {
1318 /* Sometimes, we can't find a corresponding objfile, in
1319 which case, we put the result on the heap. Since we only
1320 decode when needed, we hope this usually does not cause a
1321 significant memory leak (FIXME). */
1322
1323 char **slot = (char **) htab_find_slot (decoded_names_store,
1324 decoded, INSERT);
1325
1326 if (*slot == NULL)
1327 *slot = xstrdup (decoded);
1328 *resultp = *slot;
1329 }
1330 }
1331
1332 return *resultp;
1333 }
1334
1335 static char *
1336 ada_la_decode (const char *encoded, int options)
1337 {
1338 return xstrdup (ada_decode (encoded));
1339 }
1340
1341 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1342 suffixes that encode debugging information or leading _ada_ on
1343 SYM_NAME (see is_name_suffix commentary for the debugging
1344 information that is ignored). If WILD, then NAME need only match a
1345 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1346 either argument is NULL. */
1347
1348 static int
1349 match_name (const char *sym_name, const char *name, int wild)
1350 {
1351 if (sym_name == NULL || name == NULL)
1352 return 0;
1353 else if (wild)
1354 return wild_match (sym_name, name) == 0;
1355 else
1356 {
1357 int len_name = strlen (name);
1358
1359 return (strncmp (sym_name, name, len_name) == 0
1360 && is_name_suffix (sym_name + len_name))
1361 || (strncmp (sym_name, "_ada_", 5) == 0
1362 && strncmp (sym_name + 5, name, len_name) == 0
1363 && is_name_suffix (sym_name + len_name + 5));
1364 }
1365 }
1366 \f
1367
1368 /* Arrays */
1369
1370 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1371 generated by the GNAT compiler to describe the index type used
1372 for each dimension of an array, check whether it follows the latest
1373 known encoding. If not, fix it up to conform to the latest encoding.
1374 Otherwise, do nothing. This function also does nothing if
1375 INDEX_DESC_TYPE is NULL.
1376
1377 The GNAT encoding used to describle the array index type evolved a bit.
1378 Initially, the information would be provided through the name of each
1379 field of the structure type only, while the type of these fields was
1380 described as unspecified and irrelevant. The debugger was then expected
1381 to perform a global type lookup using the name of that field in order
1382 to get access to the full index type description. Because these global
1383 lookups can be very expensive, the encoding was later enhanced to make
1384 the global lookup unnecessary by defining the field type as being
1385 the full index type description.
1386
1387 The purpose of this routine is to allow us to support older versions
1388 of the compiler by detecting the use of the older encoding, and by
1389 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1390 we essentially replace each field's meaningless type by the associated
1391 index subtype). */
1392
1393 void
1394 ada_fixup_array_indexes_type (struct type *index_desc_type)
1395 {
1396 int i;
1397
1398 if (index_desc_type == NULL)
1399 return;
1400 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1401
1402 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1403 to check one field only, no need to check them all). If not, return
1404 now.
1405
1406 If our INDEX_DESC_TYPE was generated using the older encoding,
1407 the field type should be a meaningless integer type whose name
1408 is not equal to the field name. */
1409 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1410 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1411 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1412 return;
1413
1414 /* Fixup each field of INDEX_DESC_TYPE. */
1415 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1416 {
1417 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1418 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1419
1420 if (raw_type)
1421 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1422 }
1423 }
1424
1425 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1426
1427 static char *bound_name[] = {
1428 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1429 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1430 };
1431
1432 /* Maximum number of array dimensions we are prepared to handle. */
1433
1434 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1435
1436
1437 /* The desc_* routines return primitive portions of array descriptors
1438 (fat pointers). */
1439
1440 /* The descriptor or array type, if any, indicated by TYPE; removes
1441 level of indirection, if needed. */
1442
1443 static struct type *
1444 desc_base_type (struct type *type)
1445 {
1446 if (type == NULL)
1447 return NULL;
1448 type = ada_check_typedef (type);
1449 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1450 type = ada_typedef_target_type (type);
1451
1452 if (type != NULL
1453 && (TYPE_CODE (type) == TYPE_CODE_PTR
1454 || TYPE_CODE (type) == TYPE_CODE_REF))
1455 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1456 else
1457 return type;
1458 }
1459
1460 /* True iff TYPE indicates a "thin" array pointer type. */
1461
1462 static int
1463 is_thin_pntr (struct type *type)
1464 {
1465 return
1466 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1467 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1468 }
1469
1470 /* The descriptor type for thin pointer type TYPE. */
1471
1472 static struct type *
1473 thin_descriptor_type (struct type *type)
1474 {
1475 struct type *base_type = desc_base_type (type);
1476
1477 if (base_type == NULL)
1478 return NULL;
1479 if (is_suffix (ada_type_name (base_type), "___XVE"))
1480 return base_type;
1481 else
1482 {
1483 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1484
1485 if (alt_type == NULL)
1486 return base_type;
1487 else
1488 return alt_type;
1489 }
1490 }
1491
1492 /* A pointer to the array data for thin-pointer value VAL. */
1493
1494 static struct value *
1495 thin_data_pntr (struct value *val)
1496 {
1497 struct type *type = ada_check_typedef (value_type (val));
1498 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1499
1500 data_type = lookup_pointer_type (data_type);
1501
1502 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1503 return value_cast (data_type, value_copy (val));
1504 else
1505 return value_from_longest (data_type, value_address (val));
1506 }
1507
1508 /* True iff TYPE indicates a "thick" array pointer type. */
1509
1510 static int
1511 is_thick_pntr (struct type *type)
1512 {
1513 type = desc_base_type (type);
1514 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1515 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1516 }
1517
1518 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1519 pointer to one, the type of its bounds data; otherwise, NULL. */
1520
1521 static struct type *
1522 desc_bounds_type (struct type *type)
1523 {
1524 struct type *r;
1525
1526 type = desc_base_type (type);
1527
1528 if (type == NULL)
1529 return NULL;
1530 else if (is_thin_pntr (type))
1531 {
1532 type = thin_descriptor_type (type);
1533 if (type == NULL)
1534 return NULL;
1535 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1536 if (r != NULL)
1537 return ada_check_typedef (r);
1538 }
1539 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1540 {
1541 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1542 if (r != NULL)
1543 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1544 }
1545 return NULL;
1546 }
1547
1548 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1549 one, a pointer to its bounds data. Otherwise NULL. */
1550
1551 static struct value *
1552 desc_bounds (struct value *arr)
1553 {
1554 struct type *type = ada_check_typedef (value_type (arr));
1555
1556 if (is_thin_pntr (type))
1557 {
1558 struct type *bounds_type =
1559 desc_bounds_type (thin_descriptor_type (type));
1560 LONGEST addr;
1561
1562 if (bounds_type == NULL)
1563 error (_("Bad GNAT array descriptor"));
1564
1565 /* NOTE: The following calculation is not really kosher, but
1566 since desc_type is an XVE-encoded type (and shouldn't be),
1567 the correct calculation is a real pain. FIXME (and fix GCC). */
1568 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1569 addr = value_as_long (arr);
1570 else
1571 addr = value_address (arr);
1572
1573 return
1574 value_from_longest (lookup_pointer_type (bounds_type),
1575 addr - TYPE_LENGTH (bounds_type));
1576 }
1577
1578 else if (is_thick_pntr (type))
1579 {
1580 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1581 _("Bad GNAT array descriptor"));
1582 struct type *p_bounds_type = value_type (p_bounds);
1583
1584 if (p_bounds_type
1585 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1586 {
1587 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1588
1589 if (TYPE_STUB (target_type))
1590 p_bounds = value_cast (lookup_pointer_type
1591 (ada_check_typedef (target_type)),
1592 p_bounds);
1593 }
1594 else
1595 error (_("Bad GNAT array descriptor"));
1596
1597 return p_bounds;
1598 }
1599 else
1600 return NULL;
1601 }
1602
1603 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1604 position of the field containing the address of the bounds data. */
1605
1606 static int
1607 fat_pntr_bounds_bitpos (struct type *type)
1608 {
1609 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1610 }
1611
1612 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1613 size of the field containing the address of the bounds data. */
1614
1615 static int
1616 fat_pntr_bounds_bitsize (struct type *type)
1617 {
1618 type = desc_base_type (type);
1619
1620 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1621 return TYPE_FIELD_BITSIZE (type, 1);
1622 else
1623 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1624 }
1625
1626 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1627 pointer to one, the type of its array data (a array-with-no-bounds type);
1628 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1629 data. */
1630
1631 static struct type *
1632 desc_data_target_type (struct type *type)
1633 {
1634 type = desc_base_type (type);
1635
1636 /* NOTE: The following is bogus; see comment in desc_bounds. */
1637 if (is_thin_pntr (type))
1638 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1639 else if (is_thick_pntr (type))
1640 {
1641 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1642
1643 if (data_type
1644 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1645 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1652 its array data. */
1653
1654 static struct value *
1655 desc_data (struct value *arr)
1656 {
1657 struct type *type = value_type (arr);
1658
1659 if (is_thin_pntr (type))
1660 return thin_data_pntr (arr);
1661 else if (is_thick_pntr (type))
1662 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1663 _("Bad GNAT array descriptor"));
1664 else
1665 return NULL;
1666 }
1667
1668
1669 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1670 position of the field containing the address of the data. */
1671
1672 static int
1673 fat_pntr_data_bitpos (struct type *type)
1674 {
1675 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1676 }
1677
1678 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1679 size of the field containing the address of the data. */
1680
1681 static int
1682 fat_pntr_data_bitsize (struct type *type)
1683 {
1684 type = desc_base_type (type);
1685
1686 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1687 return TYPE_FIELD_BITSIZE (type, 0);
1688 else
1689 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1690 }
1691
1692 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1693 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1694 bound, if WHICH is 1. The first bound is I=1. */
1695
1696 static struct value *
1697 desc_one_bound (struct value *bounds, int i, int which)
1698 {
1699 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1700 _("Bad GNAT array descriptor bounds"));
1701 }
1702
1703 /* If BOUNDS is an array-bounds structure type, return the bit position
1704 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1705 bound, if WHICH is 1. The first bound is I=1. */
1706
1707 static int
1708 desc_bound_bitpos (struct type *type, int i, int which)
1709 {
1710 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1711 }
1712
1713 /* If BOUNDS is an array-bounds structure type, return the bit field size
1714 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1715 bound, if WHICH is 1. The first bound is I=1. */
1716
1717 static int
1718 desc_bound_bitsize (struct type *type, int i, int which)
1719 {
1720 type = desc_base_type (type);
1721
1722 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1723 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1724 else
1725 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1726 }
1727
1728 /* If TYPE is the type of an array-bounds structure, the type of its
1729 Ith bound (numbering from 1). Otherwise, NULL. */
1730
1731 static struct type *
1732 desc_index_type (struct type *type, int i)
1733 {
1734 type = desc_base_type (type);
1735
1736 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1737 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1738 else
1739 return NULL;
1740 }
1741
1742 /* The number of index positions in the array-bounds type TYPE.
1743 Return 0 if TYPE is NULL. */
1744
1745 static int
1746 desc_arity (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (type != NULL)
1751 return TYPE_NFIELDS (type) / 2;
1752 return 0;
1753 }
1754
1755 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1756 an array descriptor type (representing an unconstrained array
1757 type). */
1758
1759 static int
1760 ada_is_direct_array_type (struct type *type)
1761 {
1762 if (type == NULL)
1763 return 0;
1764 type = ada_check_typedef (type);
1765 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1766 || ada_is_array_descriptor_type (type));
1767 }
1768
1769 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1770 * to one. */
1771
1772 static int
1773 ada_is_array_type (struct type *type)
1774 {
1775 while (type != NULL
1776 && (TYPE_CODE (type) == TYPE_CODE_PTR
1777 || TYPE_CODE (type) == TYPE_CODE_REF))
1778 type = TYPE_TARGET_TYPE (type);
1779 return ada_is_direct_array_type (type);
1780 }
1781
1782 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1783
1784 int
1785 ada_is_simple_array_type (struct type *type)
1786 {
1787 if (type == NULL)
1788 return 0;
1789 type = ada_check_typedef (type);
1790 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1791 || (TYPE_CODE (type) == TYPE_CODE_PTR
1792 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1793 == TYPE_CODE_ARRAY));
1794 }
1795
1796 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1797
1798 int
1799 ada_is_array_descriptor_type (struct type *type)
1800 {
1801 struct type *data_type = desc_data_target_type (type);
1802
1803 if (type == NULL)
1804 return 0;
1805 type = ada_check_typedef (type);
1806 return (data_type != NULL
1807 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1808 && desc_arity (desc_bounds_type (type)) > 0);
1809 }
1810
1811 /* Non-zero iff type is a partially mal-formed GNAT array
1812 descriptor. FIXME: This is to compensate for some problems with
1813 debugging output from GNAT. Re-examine periodically to see if it
1814 is still needed. */
1815
1816 int
1817 ada_is_bogus_array_descriptor (struct type *type)
1818 {
1819 return
1820 type != NULL
1821 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1822 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1823 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1824 && !ada_is_array_descriptor_type (type);
1825 }
1826
1827
1828 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1829 (fat pointer) returns the type of the array data described---specifically,
1830 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1831 in from the descriptor; otherwise, they are left unspecified. If
1832 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1833 returns NULL. The result is simply the type of ARR if ARR is not
1834 a descriptor. */
1835 struct type *
1836 ada_type_of_array (struct value *arr, int bounds)
1837 {
1838 if (ada_is_constrained_packed_array_type (value_type (arr)))
1839 return decode_constrained_packed_array_type (value_type (arr));
1840
1841 if (!ada_is_array_descriptor_type (value_type (arr)))
1842 return value_type (arr);
1843
1844 if (!bounds)
1845 {
1846 struct type *array_type =
1847 ada_check_typedef (desc_data_target_type (value_type (arr)));
1848
1849 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1850 TYPE_FIELD_BITSIZE (array_type, 0) =
1851 decode_packed_array_bitsize (value_type (arr));
1852
1853 return array_type;
1854 }
1855 else
1856 {
1857 struct type *elt_type;
1858 int arity;
1859 struct value *descriptor;
1860
1861 elt_type = ada_array_element_type (value_type (arr), -1);
1862 arity = ada_array_arity (value_type (arr));
1863
1864 if (elt_type == NULL || arity == 0)
1865 return ada_check_typedef (value_type (arr));
1866
1867 descriptor = desc_bounds (arr);
1868 if (value_as_long (descriptor) == 0)
1869 return NULL;
1870 while (arity > 0)
1871 {
1872 struct type *range_type = alloc_type_copy (value_type (arr));
1873 struct type *array_type = alloc_type_copy (value_type (arr));
1874 struct value *low = desc_one_bound (descriptor, arity, 0);
1875 struct value *high = desc_one_bound (descriptor, arity, 1);
1876
1877 arity -= 1;
1878 create_range_type (range_type, value_type (low),
1879 longest_to_int (value_as_long (low)),
1880 longest_to_int (value_as_long (high)));
1881 elt_type = create_array_type (array_type, elt_type, range_type);
1882
1883 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1884 {
1885 /* We need to store the element packed bitsize, as well as
1886 recompute the array size, because it was previously
1887 computed based on the unpacked element size. */
1888 LONGEST lo = value_as_long (low);
1889 LONGEST hi = value_as_long (high);
1890
1891 TYPE_FIELD_BITSIZE (elt_type, 0) =
1892 decode_packed_array_bitsize (value_type (arr));
1893 /* If the array has no element, then the size is already
1894 zero, and does not need to be recomputed. */
1895 if (lo < hi)
1896 {
1897 int array_bitsize =
1898 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1899
1900 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1901 }
1902 }
1903 }
1904
1905 return lookup_pointer_type (elt_type);
1906 }
1907 }
1908
1909 /* If ARR does not represent an array, returns ARR unchanged.
1910 Otherwise, returns either a standard GDB array with bounds set
1911 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1912 GDB array. Returns NULL if ARR is a null fat pointer. */
1913
1914 struct value *
1915 ada_coerce_to_simple_array_ptr (struct value *arr)
1916 {
1917 if (ada_is_array_descriptor_type (value_type (arr)))
1918 {
1919 struct type *arrType = ada_type_of_array (arr, 1);
1920
1921 if (arrType == NULL)
1922 return NULL;
1923 return value_cast (arrType, value_copy (desc_data (arr)));
1924 }
1925 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1926 return decode_constrained_packed_array (arr);
1927 else
1928 return arr;
1929 }
1930
1931 /* If ARR does not represent an array, returns ARR unchanged.
1932 Otherwise, returns a standard GDB array describing ARR (which may
1933 be ARR itself if it already is in the proper form). */
1934
1935 struct value *
1936 ada_coerce_to_simple_array (struct value *arr)
1937 {
1938 if (ada_is_array_descriptor_type (value_type (arr)))
1939 {
1940 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1941
1942 if (arrVal == NULL)
1943 error (_("Bounds unavailable for null array pointer."));
1944 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1945 return value_ind (arrVal);
1946 }
1947 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1948 return decode_constrained_packed_array (arr);
1949 else
1950 return arr;
1951 }
1952
1953 /* If TYPE represents a GNAT array type, return it translated to an
1954 ordinary GDB array type (possibly with BITSIZE fields indicating
1955 packing). For other types, is the identity. */
1956
1957 struct type *
1958 ada_coerce_to_simple_array_type (struct type *type)
1959 {
1960 if (ada_is_constrained_packed_array_type (type))
1961 return decode_constrained_packed_array_type (type);
1962
1963 if (ada_is_array_descriptor_type (type))
1964 return ada_check_typedef (desc_data_target_type (type));
1965
1966 return type;
1967 }
1968
1969 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1970
1971 static int
1972 ada_is_packed_array_type (struct type *type)
1973 {
1974 if (type == NULL)
1975 return 0;
1976 type = desc_base_type (type);
1977 type = ada_check_typedef (type);
1978 return
1979 ada_type_name (type) != NULL
1980 && strstr (ada_type_name (type), "___XP") != NULL;
1981 }
1982
1983 /* Non-zero iff TYPE represents a standard GNAT constrained
1984 packed-array type. */
1985
1986 int
1987 ada_is_constrained_packed_array_type (struct type *type)
1988 {
1989 return ada_is_packed_array_type (type)
1990 && !ada_is_array_descriptor_type (type);
1991 }
1992
1993 /* Non-zero iff TYPE represents an array descriptor for a
1994 unconstrained packed-array type. */
1995
1996 static int
1997 ada_is_unconstrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2004 return the size of its elements in bits. */
2005
2006 static long
2007 decode_packed_array_bitsize (struct type *type)
2008 {
2009 const char *raw_name;
2010 const char *tail;
2011 long bits;
2012
2013 /* Access to arrays implemented as fat pointers are encoded as a typedef
2014 of the fat pointer type. We need the name of the fat pointer type
2015 to do the decoding, so strip the typedef layer. */
2016 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2017 type = ada_typedef_target_type (type);
2018
2019 raw_name = ada_type_name (ada_check_typedef (type));
2020 if (!raw_name)
2021 raw_name = ada_type_name (desc_base_type (type));
2022
2023 if (!raw_name)
2024 return 0;
2025
2026 tail = strstr (raw_name, "___XP");
2027 gdb_assert (tail != NULL);
2028
2029 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2030 {
2031 lim_warning
2032 (_("could not understand bit size information on packed array"));
2033 return 0;
2034 }
2035
2036 return bits;
2037 }
2038
2039 /* Given that TYPE is a standard GDB array type with all bounds filled
2040 in, and that the element size of its ultimate scalar constituents
2041 (that is, either its elements, or, if it is an array of arrays, its
2042 elements' elements, etc.) is *ELT_BITS, return an identical type,
2043 but with the bit sizes of its elements (and those of any
2044 constituent arrays) recorded in the BITSIZE components of its
2045 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2046 in bits. */
2047
2048 static struct type *
2049 constrained_packed_array_type (struct type *type, long *elt_bits)
2050 {
2051 struct type *new_elt_type;
2052 struct type *new_type;
2053 struct type *index_type_desc;
2054 struct type *index_type;
2055 LONGEST low_bound, high_bound;
2056
2057 type = ada_check_typedef (type);
2058 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2059 return type;
2060
2061 index_type_desc = ada_find_parallel_type (type, "___XA");
2062 if (index_type_desc)
2063 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2064 NULL);
2065 else
2066 index_type = TYPE_INDEX_TYPE (type);
2067
2068 new_type = alloc_type_copy (type);
2069 new_elt_type =
2070 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2071 elt_bits);
2072 create_array_type (new_type, new_elt_type, index_type);
2073 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2074 TYPE_NAME (new_type) = ada_type_name (type);
2075
2076 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2077 low_bound = high_bound = 0;
2078 if (high_bound < low_bound)
2079 *elt_bits = TYPE_LENGTH (new_type) = 0;
2080 else
2081 {
2082 *elt_bits *= (high_bound - low_bound + 1);
2083 TYPE_LENGTH (new_type) =
2084 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2085 }
2086
2087 TYPE_FIXED_INSTANCE (new_type) = 1;
2088 return new_type;
2089 }
2090
2091 /* The array type encoded by TYPE, where
2092 ada_is_constrained_packed_array_type (TYPE). */
2093
2094 static struct type *
2095 decode_constrained_packed_array_type (struct type *type)
2096 {
2097 const char *raw_name = ada_type_name (ada_check_typedef (type));
2098 char *name;
2099 const char *tail;
2100 struct type *shadow_type;
2101 long bits;
2102
2103 if (!raw_name)
2104 raw_name = ada_type_name (desc_base_type (type));
2105
2106 if (!raw_name)
2107 return NULL;
2108
2109 name = (char *) alloca (strlen (raw_name) + 1);
2110 tail = strstr (raw_name, "___XP");
2111 type = desc_base_type (type);
2112
2113 memcpy (name, raw_name, tail - raw_name);
2114 name[tail - raw_name] = '\000';
2115
2116 shadow_type = ada_find_parallel_type_with_name (type, name);
2117
2118 if (shadow_type == NULL)
2119 {
2120 lim_warning (_("could not find bounds information on packed array"));
2121 return NULL;
2122 }
2123 CHECK_TYPEDEF (shadow_type);
2124
2125 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2126 {
2127 lim_warning (_("could not understand bounds "
2128 "information on packed array"));
2129 return NULL;
2130 }
2131
2132 bits = decode_packed_array_bitsize (type);
2133 return constrained_packed_array_type (shadow_type, &bits);
2134 }
2135
2136 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2137 array, returns a simple array that denotes that array. Its type is a
2138 standard GDB array type except that the BITSIZEs of the array
2139 target types are set to the number of bits in each element, and the
2140 type length is set appropriately. */
2141
2142 static struct value *
2143 decode_constrained_packed_array (struct value *arr)
2144 {
2145 struct type *type;
2146
2147 arr = ada_coerce_ref (arr);
2148
2149 /* If our value is a pointer, then dererence it. Make sure that
2150 this operation does not cause the target type to be fixed, as
2151 this would indirectly cause this array to be decoded. The rest
2152 of the routine assumes that the array hasn't been decoded yet,
2153 so we use the basic "value_ind" routine to perform the dereferencing,
2154 as opposed to using "ada_value_ind". */
2155 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2156 arr = value_ind (arr);
2157
2158 type = decode_constrained_packed_array_type (value_type (arr));
2159 if (type == NULL)
2160 {
2161 error (_("can't unpack array"));
2162 return NULL;
2163 }
2164
2165 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2166 && ada_is_modular_type (value_type (arr)))
2167 {
2168 /* This is a (right-justified) modular type representing a packed
2169 array with no wrapper. In order to interpret the value through
2170 the (left-justified) packed array type we just built, we must
2171 first left-justify it. */
2172 int bit_size, bit_pos;
2173 ULONGEST mod;
2174
2175 mod = ada_modulus (value_type (arr)) - 1;
2176 bit_size = 0;
2177 while (mod > 0)
2178 {
2179 bit_size += 1;
2180 mod >>= 1;
2181 }
2182 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2183 arr = ada_value_primitive_packed_val (arr, NULL,
2184 bit_pos / HOST_CHAR_BIT,
2185 bit_pos % HOST_CHAR_BIT,
2186 bit_size,
2187 type);
2188 }
2189
2190 return coerce_unspec_val_to_type (arr, type);
2191 }
2192
2193
2194 /* The value of the element of packed array ARR at the ARITY indices
2195 given in IND. ARR must be a simple array. */
2196
2197 static struct value *
2198 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2199 {
2200 int i;
2201 int bits, elt_off, bit_off;
2202 long elt_total_bit_offset;
2203 struct type *elt_type;
2204 struct value *v;
2205
2206 bits = 0;
2207 elt_total_bit_offset = 0;
2208 elt_type = ada_check_typedef (value_type (arr));
2209 for (i = 0; i < arity; i += 1)
2210 {
2211 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2212 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2213 error
2214 (_("attempt to do packed indexing of "
2215 "something other than a packed array"));
2216 else
2217 {
2218 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2219 LONGEST lowerbound, upperbound;
2220 LONGEST idx;
2221
2222 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2223 {
2224 lim_warning (_("don't know bounds of array"));
2225 lowerbound = upperbound = 0;
2226 }
2227
2228 idx = pos_atr (ind[i]);
2229 if (idx < lowerbound || idx > upperbound)
2230 lim_warning (_("packed array index %ld out of bounds"),
2231 (long) idx);
2232 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2233 elt_total_bit_offset += (idx - lowerbound) * bits;
2234 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2235 }
2236 }
2237 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2238 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2239
2240 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2241 bits, elt_type);
2242 return v;
2243 }
2244
2245 /* Non-zero iff TYPE includes negative integer values. */
2246
2247 static int
2248 has_negatives (struct type *type)
2249 {
2250 switch (TYPE_CODE (type))
2251 {
2252 default:
2253 return 0;
2254 case TYPE_CODE_INT:
2255 return !TYPE_UNSIGNED (type);
2256 case TYPE_CODE_RANGE:
2257 return TYPE_LOW_BOUND (type) < 0;
2258 }
2259 }
2260
2261
2262 /* Create a new value of type TYPE from the contents of OBJ starting
2263 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2264 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2265 assigning through the result will set the field fetched from.
2266 VALADDR is ignored unless OBJ is NULL, in which case,
2267 VALADDR+OFFSET must address the start of storage containing the
2268 packed value. The value returned in this case is never an lval.
2269 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2270
2271 struct value *
2272 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2273 long offset, int bit_offset, int bit_size,
2274 struct type *type)
2275 {
2276 struct value *v;
2277 int src, /* Index into the source area */
2278 targ, /* Index into the target area */
2279 srcBitsLeft, /* Number of source bits left to move */
2280 nsrc, ntarg, /* Number of source and target bytes */
2281 unusedLS, /* Number of bits in next significant
2282 byte of source that are unused */
2283 accumSize; /* Number of meaningful bits in accum */
2284 unsigned char *bytes; /* First byte containing data to unpack */
2285 unsigned char *unpacked;
2286 unsigned long accum; /* Staging area for bits being transferred */
2287 unsigned char sign;
2288 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2289 /* Transmit bytes from least to most significant; delta is the direction
2290 the indices move. */
2291 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2292
2293 type = ada_check_typedef (type);
2294
2295 if (obj == NULL)
2296 {
2297 v = allocate_value (type);
2298 bytes = (unsigned char *) (valaddr + offset);
2299 }
2300 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2301 {
2302 v = value_at (type, value_address (obj));
2303 bytes = (unsigned char *) alloca (len);
2304 read_memory (value_address (v) + offset, bytes, len);
2305 }
2306 else
2307 {
2308 v = allocate_value (type);
2309 bytes = (unsigned char *) value_contents (obj) + offset;
2310 }
2311
2312 if (obj != NULL)
2313 {
2314 long new_offset = offset;
2315
2316 set_value_component_location (v, obj);
2317 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2318 set_value_bitsize (v, bit_size);
2319 if (value_bitpos (v) >= HOST_CHAR_BIT)
2320 {
2321 ++new_offset;
2322 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2323 }
2324 set_value_offset (v, new_offset);
2325
2326 /* Also set the parent value. This is needed when trying to
2327 assign a new value (in inferior memory). */
2328 set_value_parent (v, obj);
2329 }
2330 else
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2344 {
2345 src = len - 1;
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2348 sign = ~0;
2349
2350 unusedLS =
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
2353
2354 switch (TYPE_CODE (type))
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2365 ntarg = targ + 1;
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
2372 }
2373 else
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2382 sign = ~0;
2383 }
2384
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2395
2396 accum |=
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423 }
2424
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2427 not overlap. */
2428 static void
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2431 {
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
2445 while (n > 0)
2446 {
2447 int unused_right;
2448
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
2472 while (n > 0)
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
2488 }
2489 }
2490
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2495
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2498 {
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2501
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2512
2513 if (VALUE_LVAL (toval) == lval_memory
2514 && bits > 0
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 {
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 int from_size;
2521 gdb_byte *buffer = alloca (len);
2522 struct value *val;
2523 CORE_ADDR to_addr = value_address (toval);
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2527
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2535 else
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2792 {
2793 struct type *type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 index_type_desc = ada_find_parallel_type (type, "___XA");
2810 ada_fixup_array_indexes_type (index_type_desc);
2811 if (index_type_desc != NULL)
2812 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2813 NULL);
2814 else
2815 {
2816 struct type *elt_type = check_typedef (type);
2817
2818 for (i = 1; i < n; i++)
2819 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2820
2821 index_type = TYPE_INDEX_TYPE (elt_type);
2822 }
2823
2824 return
2825 (LONGEST) (which == 0
2826 ? ada_discrete_type_low_bound (index_type)
2827 : ada_discrete_type_high_bound (index_type));
2828 }
2829
2830 /* Given that arr is an array value, returns the lower bound of the
2831 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2832 WHICH is 1. This routine will also work for arrays with bounds
2833 supplied by run-time quantities other than discriminants. */
2834
2835 static LONGEST
2836 ada_array_bound (struct value *arr, int n, int which)
2837 {
2838 struct type *arr_type = value_type (arr);
2839
2840 if (ada_is_constrained_packed_array_type (arr_type))
2841 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2842 else if (ada_is_simple_array_type (arr_type))
2843 return ada_array_bound_from_type (arr_type, n, which);
2844 else
2845 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2846 }
2847
2848 /* Given that arr is an array value, returns the length of the
2849 nth index. This routine will also work for arrays with bounds
2850 supplied by run-time quantities other than discriminants.
2851 Does not work for arrays indexed by enumeration types with representation
2852 clauses at the moment. */
2853
2854 static LONGEST
2855 ada_array_length (struct value *arr, int n)
2856 {
2857 struct type *arr_type = ada_check_typedef (value_type (arr));
2858
2859 if (ada_is_constrained_packed_array_type (arr_type))
2860 return ada_array_length (decode_constrained_packed_array (arr), n);
2861
2862 if (ada_is_simple_array_type (arr_type))
2863 return (ada_array_bound_from_type (arr_type, n, 1)
2864 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2865 else
2866 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2867 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2868 }
2869
2870 /* An empty array whose type is that of ARR_TYPE (an array type),
2871 with bounds LOW to LOW-1. */
2872
2873 static struct value *
2874 empty_array (struct type *arr_type, int low)
2875 {
2876 struct type *arr_type0 = ada_check_typedef (arr_type);
2877 struct type *index_type =
2878 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2879 low, low - 1);
2880 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2881
2882 return allocate_value (create_array_type (NULL, elt_type, index_type));
2883 }
2884 \f
2885
2886 /* Name resolution */
2887
2888 /* The "decoded" name for the user-definable Ada operator corresponding
2889 to OP. */
2890
2891 static const char *
2892 ada_decoded_op_name (enum exp_opcode op)
2893 {
2894 int i;
2895
2896 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2897 {
2898 if (ada_opname_table[i].op == op)
2899 return ada_opname_table[i].decoded;
2900 }
2901 error (_("Could not find operator name for opcode"));
2902 }
2903
2904
2905 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2906 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2907 undefined namespace) and converts operators that are
2908 user-defined into appropriate function calls. If CONTEXT_TYPE is
2909 non-null, it provides a preferred result type [at the moment, only
2910 type void has any effect---causing procedures to be preferred over
2911 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2912 return type is preferred. May change (expand) *EXP. */
2913
2914 static void
2915 resolve (struct expression **expp, int void_context_p)
2916 {
2917 struct type *context_type = NULL;
2918 int pc = 0;
2919
2920 if (void_context_p)
2921 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2922
2923 resolve_subexp (expp, &pc, 1, context_type);
2924 }
2925
2926 /* Resolve the operator of the subexpression beginning at
2927 position *POS of *EXPP. "Resolving" consists of replacing
2928 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2929 with their resolutions, replacing built-in operators with
2930 function calls to user-defined operators, where appropriate, and,
2931 when DEPROCEDURE_P is non-zero, converting function-valued variables
2932 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2933 are as in ada_resolve, above. */
2934
2935 static struct value *
2936 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2937 struct type *context_type)
2938 {
2939 int pc = *pos;
2940 int i;
2941 struct expression *exp; /* Convenience: == *expp. */
2942 enum exp_opcode op = (*expp)->elts[pc].opcode;
2943 struct value **argvec; /* Vector of operand types (alloca'ed). */
2944 int nargs; /* Number of operands. */
2945 int oplen;
2946
2947 argvec = NULL;
2948 nargs = 0;
2949 exp = *expp;
2950
2951 /* Pass one: resolve operands, saving their types and updating *pos,
2952 if needed. */
2953 switch (op)
2954 {
2955 case OP_FUNCALL:
2956 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2957 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2958 *pos += 7;
2959 else
2960 {
2961 *pos += 3;
2962 resolve_subexp (expp, pos, 0, NULL);
2963 }
2964 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2965 break;
2966
2967 case UNOP_ADDR:
2968 *pos += 1;
2969 resolve_subexp (expp, pos, 0, NULL);
2970 break;
2971
2972 case UNOP_QUAL:
2973 *pos += 3;
2974 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2975 break;
2976
2977 case OP_ATR_MODULUS:
2978 case OP_ATR_SIZE:
2979 case OP_ATR_TAG:
2980 case OP_ATR_FIRST:
2981 case OP_ATR_LAST:
2982 case OP_ATR_LENGTH:
2983 case OP_ATR_POS:
2984 case OP_ATR_VAL:
2985 case OP_ATR_MIN:
2986 case OP_ATR_MAX:
2987 case TERNOP_IN_RANGE:
2988 case BINOP_IN_BOUNDS:
2989 case UNOP_IN_RANGE:
2990 case OP_AGGREGATE:
2991 case OP_OTHERS:
2992 case OP_CHOICES:
2993 case OP_POSITIONAL:
2994 case OP_DISCRETE_RANGE:
2995 case OP_NAME:
2996 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2997 *pos += oplen;
2998 break;
2999
3000 case BINOP_ASSIGN:
3001 {
3002 struct value *arg1;
3003
3004 *pos += 1;
3005 arg1 = resolve_subexp (expp, pos, 0, NULL);
3006 if (arg1 == NULL)
3007 resolve_subexp (expp, pos, 1, NULL);
3008 else
3009 resolve_subexp (expp, pos, 1, value_type (arg1));
3010 break;
3011 }
3012
3013 case UNOP_CAST:
3014 *pos += 3;
3015 nargs = 1;
3016 break;
3017
3018 case BINOP_ADD:
3019 case BINOP_SUB:
3020 case BINOP_MUL:
3021 case BINOP_DIV:
3022 case BINOP_REM:
3023 case BINOP_MOD:
3024 case BINOP_EXP:
3025 case BINOP_CONCAT:
3026 case BINOP_LOGICAL_AND:
3027 case BINOP_LOGICAL_OR:
3028 case BINOP_BITWISE_AND:
3029 case BINOP_BITWISE_IOR:
3030 case BINOP_BITWISE_XOR:
3031
3032 case BINOP_EQUAL:
3033 case BINOP_NOTEQUAL:
3034 case BINOP_LESS:
3035 case BINOP_GTR:
3036 case BINOP_LEQ:
3037 case BINOP_GEQ:
3038
3039 case BINOP_REPEAT:
3040 case BINOP_SUBSCRIPT:
3041 case BINOP_COMMA:
3042 *pos += 1;
3043 nargs = 2;
3044 break;
3045
3046 case UNOP_NEG:
3047 case UNOP_PLUS:
3048 case UNOP_LOGICAL_NOT:
3049 case UNOP_ABS:
3050 case UNOP_IND:
3051 *pos += 1;
3052 nargs = 1;
3053 break;
3054
3055 case OP_LONG:
3056 case OP_DOUBLE:
3057 case OP_VAR_VALUE:
3058 *pos += 4;
3059 break;
3060
3061 case OP_TYPE:
3062 case OP_BOOL:
3063 case OP_LAST:
3064 case OP_INTERNALVAR:
3065 *pos += 3;
3066 break;
3067
3068 case UNOP_MEMVAL:
3069 *pos += 3;
3070 nargs = 1;
3071 break;
3072
3073 case OP_REGISTER:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 break;
3076
3077 case STRUCTOP_STRUCT:
3078 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3079 nargs = 1;
3080 break;
3081
3082 case TERNOP_SLICE:
3083 *pos += 1;
3084 nargs = 3;
3085 break;
3086
3087 case OP_STRING:
3088 break;
3089
3090 default:
3091 error (_("Unexpected operator during name resolution"));
3092 }
3093
3094 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3095 for (i = 0; i < nargs; i += 1)
3096 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3097 argvec[i] = NULL;
3098 exp = *expp;
3099
3100 /* Pass two: perform any resolution on principal operator. */
3101 switch (op)
3102 {
3103 default:
3104 break;
3105
3106 case OP_VAR_VALUE:
3107 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3108 {
3109 struct ada_symbol_info *candidates;
3110 int n_candidates;
3111
3112 n_candidates =
3113 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3114 (exp->elts[pc + 2].symbol),
3115 exp->elts[pc + 1].block, VAR_DOMAIN,
3116 &candidates);
3117
3118 if (n_candidates > 1)
3119 {
3120 /* Types tend to get re-introduced locally, so if there
3121 are any local symbols that are not types, first filter
3122 out all types. */
3123 int j;
3124 for (j = 0; j < n_candidates; j += 1)
3125 switch (SYMBOL_CLASS (candidates[j].sym))
3126 {
3127 case LOC_REGISTER:
3128 case LOC_ARG:
3129 case LOC_REF_ARG:
3130 case LOC_REGPARM_ADDR:
3131 case LOC_LOCAL:
3132 case LOC_COMPUTED:
3133 goto FoundNonType;
3134 default:
3135 break;
3136 }
3137 FoundNonType:
3138 if (j < n_candidates)
3139 {
3140 j = 0;
3141 while (j < n_candidates)
3142 {
3143 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3144 {
3145 candidates[j] = candidates[n_candidates - 1];
3146 n_candidates -= 1;
3147 }
3148 else
3149 j += 1;
3150 }
3151 }
3152 }
3153
3154 if (n_candidates == 0)
3155 error (_("No definition found for %s"),
3156 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3157 else if (n_candidates == 1)
3158 i = 0;
3159 else if (deprocedure_p
3160 && !is_nonfunction (candidates, n_candidates))
3161 {
3162 i = ada_resolve_function
3163 (candidates, n_candidates, NULL, 0,
3164 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3165 context_type);
3166 if (i < 0)
3167 error (_("Could not find a match for %s"),
3168 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3169 }
3170 else
3171 {
3172 printf_filtered (_("Multiple matches for %s\n"),
3173 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3174 user_select_syms (candidates, n_candidates, 1);
3175 i = 0;
3176 }
3177
3178 exp->elts[pc + 1].block = candidates[i].block;
3179 exp->elts[pc + 2].symbol = candidates[i].sym;
3180 if (innermost_block == NULL
3181 || contained_in (candidates[i].block, innermost_block))
3182 innermost_block = candidates[i].block;
3183 }
3184
3185 if (deprocedure_p
3186 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3187 == TYPE_CODE_FUNC))
3188 {
3189 replace_operator_with_call (expp, pc, 0, 0,
3190 exp->elts[pc + 2].symbol,
3191 exp->elts[pc + 1].block);
3192 exp = *expp;
3193 }
3194 break;
3195
3196 case OP_FUNCALL:
3197 {
3198 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3199 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3200 {
3201 struct ada_symbol_info *candidates;
3202 int n_candidates;
3203
3204 n_candidates =
3205 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3206 (exp->elts[pc + 5].symbol),
3207 exp->elts[pc + 4].block, VAR_DOMAIN,
3208 &candidates);
3209 if (n_candidates == 1)
3210 i = 0;
3211 else
3212 {
3213 i = ada_resolve_function
3214 (candidates, n_candidates,
3215 argvec, nargs,
3216 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3217 context_type);
3218 if (i < 0)
3219 error (_("Could not find a match for %s"),
3220 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3221 }
3222
3223 exp->elts[pc + 4].block = candidates[i].block;
3224 exp->elts[pc + 5].symbol = candidates[i].sym;
3225 if (innermost_block == NULL
3226 || contained_in (candidates[i].block, innermost_block))
3227 innermost_block = candidates[i].block;
3228 }
3229 }
3230 break;
3231 case BINOP_ADD:
3232 case BINOP_SUB:
3233 case BINOP_MUL:
3234 case BINOP_DIV:
3235 case BINOP_REM:
3236 case BINOP_MOD:
3237 case BINOP_CONCAT:
3238 case BINOP_BITWISE_AND:
3239 case BINOP_BITWISE_IOR:
3240 case BINOP_BITWISE_XOR:
3241 case BINOP_EQUAL:
3242 case BINOP_NOTEQUAL:
3243 case BINOP_LESS:
3244 case BINOP_GTR:
3245 case BINOP_LEQ:
3246 case BINOP_GEQ:
3247 case BINOP_EXP:
3248 case UNOP_NEG:
3249 case UNOP_PLUS:
3250 case UNOP_LOGICAL_NOT:
3251 case UNOP_ABS:
3252 if (possible_user_operator_p (op, argvec))
3253 {
3254 struct ada_symbol_info *candidates;
3255 int n_candidates;
3256
3257 n_candidates =
3258 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3259 (struct block *) NULL, VAR_DOMAIN,
3260 &candidates);
3261 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3262 ada_decoded_op_name (op), NULL);
3263 if (i < 0)
3264 break;
3265
3266 replace_operator_with_call (expp, pc, nargs, 1,
3267 candidates[i].sym, candidates[i].block);
3268 exp = *expp;
3269 }
3270 break;
3271
3272 case OP_TYPE:
3273 case OP_REGISTER:
3274 return NULL;
3275 }
3276
3277 *pos = pc;
3278 return evaluate_subexp_type (exp, pos);
3279 }
3280
3281 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3282 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3283 a non-pointer. */
3284 /* The term "match" here is rather loose. The match is heuristic and
3285 liberal. */
3286
3287 static int
3288 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3289 {
3290 ftype = ada_check_typedef (ftype);
3291 atype = ada_check_typedef (atype);
3292
3293 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3294 ftype = TYPE_TARGET_TYPE (ftype);
3295 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3296 atype = TYPE_TARGET_TYPE (atype);
3297
3298 switch (TYPE_CODE (ftype))
3299 {
3300 default:
3301 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3302 case TYPE_CODE_PTR:
3303 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3304 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3305 TYPE_TARGET_TYPE (atype), 0);
3306 else
3307 return (may_deref
3308 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3309 case TYPE_CODE_INT:
3310 case TYPE_CODE_ENUM:
3311 case TYPE_CODE_RANGE:
3312 switch (TYPE_CODE (atype))
3313 {
3314 case TYPE_CODE_INT:
3315 case TYPE_CODE_ENUM:
3316 case TYPE_CODE_RANGE:
3317 return 1;
3318 default:
3319 return 0;
3320 }
3321
3322 case TYPE_CODE_ARRAY:
3323 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3324 || ada_is_array_descriptor_type (atype));
3325
3326 case TYPE_CODE_STRUCT:
3327 if (ada_is_array_descriptor_type (ftype))
3328 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3329 || ada_is_array_descriptor_type (atype));
3330 else
3331 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3332 && !ada_is_array_descriptor_type (atype));
3333
3334 case TYPE_CODE_UNION:
3335 case TYPE_CODE_FLT:
3336 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3337 }
3338 }
3339
3340 /* Return non-zero if the formals of FUNC "sufficiently match" the
3341 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3342 may also be an enumeral, in which case it is treated as a 0-
3343 argument function. */
3344
3345 static int
3346 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3347 {
3348 int i;
3349 struct type *func_type = SYMBOL_TYPE (func);
3350
3351 if (SYMBOL_CLASS (func) == LOC_CONST
3352 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3353 return (n_actuals == 0);
3354 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3355 return 0;
3356
3357 if (TYPE_NFIELDS (func_type) != n_actuals)
3358 return 0;
3359
3360 for (i = 0; i < n_actuals; i += 1)
3361 {
3362 if (actuals[i] == NULL)
3363 return 0;
3364 else
3365 {
3366 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3367 i));
3368 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3369
3370 if (!ada_type_match (ftype, atype, 1))
3371 return 0;
3372 }
3373 }
3374 return 1;
3375 }
3376
3377 /* False iff function type FUNC_TYPE definitely does not produce a value
3378 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3379 FUNC_TYPE is not a valid function type with a non-null return type
3380 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3381
3382 static int
3383 return_match (struct type *func_type, struct type *context_type)
3384 {
3385 struct type *return_type;
3386
3387 if (func_type == NULL)
3388 return 1;
3389
3390 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3391 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3392 else
3393 return_type = get_base_type (func_type);
3394 if (return_type == NULL)
3395 return 1;
3396
3397 context_type = get_base_type (context_type);
3398
3399 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3400 return context_type == NULL || return_type == context_type;
3401 else if (context_type == NULL)
3402 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3403 else
3404 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3405 }
3406
3407
3408 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3409 function (if any) that matches the types of the NARGS arguments in
3410 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3411 that returns that type, then eliminate matches that don't. If
3412 CONTEXT_TYPE is void and there is at least one match that does not
3413 return void, eliminate all matches that do.
3414
3415 Asks the user if there is more than one match remaining. Returns -1
3416 if there is no such symbol or none is selected. NAME is used
3417 solely for messages. May re-arrange and modify SYMS in
3418 the process; the index returned is for the modified vector. */
3419
3420 static int
3421 ada_resolve_function (struct ada_symbol_info syms[],
3422 int nsyms, struct value **args, int nargs,
3423 const char *name, struct type *context_type)
3424 {
3425 int fallback;
3426 int k;
3427 int m; /* Number of hits */
3428
3429 m = 0;
3430 /* In the first pass of the loop, we only accept functions matching
3431 context_type. If none are found, we add a second pass of the loop
3432 where every function is accepted. */
3433 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3434 {
3435 for (k = 0; k < nsyms; k += 1)
3436 {
3437 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3438
3439 if (ada_args_match (syms[k].sym, args, nargs)
3440 && (fallback || return_match (type, context_type)))
3441 {
3442 syms[m] = syms[k];
3443 m += 1;
3444 }
3445 }
3446 }
3447
3448 if (m == 0)
3449 return -1;
3450 else if (m > 1)
3451 {
3452 printf_filtered (_("Multiple matches for %s\n"), name);
3453 user_select_syms (syms, m, 1);
3454 return 0;
3455 }
3456 return 0;
3457 }
3458
3459 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3460 in a listing of choices during disambiguation (see sort_choices, below).
3461 The idea is that overloadings of a subprogram name from the
3462 same package should sort in their source order. We settle for ordering
3463 such symbols by their trailing number (__N or $N). */
3464
3465 static int
3466 encoded_ordered_before (const char *N0, const char *N1)
3467 {
3468 if (N1 == NULL)
3469 return 0;
3470 else if (N0 == NULL)
3471 return 1;
3472 else
3473 {
3474 int k0, k1;
3475
3476 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3477 ;
3478 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3479 ;
3480 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3481 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3482 {
3483 int n0, n1;
3484
3485 n0 = k0;
3486 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3487 n0 -= 1;
3488 n1 = k1;
3489 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3490 n1 -= 1;
3491 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3492 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3493 }
3494 return (strcmp (N0, N1) < 0);
3495 }
3496 }
3497
3498 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3499 encoded names. */
3500
3501 static void
3502 sort_choices (struct ada_symbol_info syms[], int nsyms)
3503 {
3504 int i;
3505
3506 for (i = 1; i < nsyms; i += 1)
3507 {
3508 struct ada_symbol_info sym = syms[i];
3509 int j;
3510
3511 for (j = i - 1; j >= 0; j -= 1)
3512 {
3513 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3514 SYMBOL_LINKAGE_NAME (sym.sym)))
3515 break;
3516 syms[j + 1] = syms[j];
3517 }
3518 syms[j + 1] = sym;
3519 }
3520 }
3521
3522 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3523 by asking the user (if necessary), returning the number selected,
3524 and setting the first elements of SYMS items. Error if no symbols
3525 selected. */
3526
3527 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3528 to be re-integrated one of these days. */
3529
3530 int
3531 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3532 {
3533 int i;
3534 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3535 int n_chosen;
3536 int first_choice = (max_results == 1) ? 1 : 2;
3537 const char *select_mode = multiple_symbols_select_mode ();
3538
3539 if (max_results < 1)
3540 error (_("Request to select 0 symbols!"));
3541 if (nsyms <= 1)
3542 return nsyms;
3543
3544 if (select_mode == multiple_symbols_cancel)
3545 error (_("\
3546 canceled because the command is ambiguous\n\
3547 See set/show multiple-symbol."));
3548
3549 /* If select_mode is "all", then return all possible symbols.
3550 Only do that if more than one symbol can be selected, of course.
3551 Otherwise, display the menu as usual. */
3552 if (select_mode == multiple_symbols_all && max_results > 1)
3553 return nsyms;
3554
3555 printf_unfiltered (_("[0] cancel\n"));
3556 if (max_results > 1)
3557 printf_unfiltered (_("[1] all\n"));
3558
3559 sort_choices (syms, nsyms);
3560
3561 for (i = 0; i < nsyms; i += 1)
3562 {
3563 if (syms[i].sym == NULL)
3564 continue;
3565
3566 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3567 {
3568 struct symtab_and_line sal =
3569 find_function_start_sal (syms[i].sym, 1);
3570
3571 if (sal.symtab == NULL)
3572 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3573 i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
3575 sal.line);
3576 else
3577 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3578 SYMBOL_PRINT_NAME (syms[i].sym),
3579 symtab_to_filename_for_display (sal.symtab),
3580 sal.line);
3581 continue;
3582 }
3583 else
3584 {
3585 int is_enumeral =
3586 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3587 && SYMBOL_TYPE (syms[i].sym) != NULL
3588 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3589 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3590
3591 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3592 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3593 i + first_choice,
3594 SYMBOL_PRINT_NAME (syms[i].sym),
3595 symtab_to_filename_for_display (symtab),
3596 SYMBOL_LINE (syms[i].sym));
3597 else if (is_enumeral
3598 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3599 {
3600 printf_unfiltered (("[%d] "), i + first_choice);
3601 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3602 gdb_stdout, -1, 0, &type_print_raw_options);
3603 printf_unfiltered (_("'(%s) (enumeral)\n"),
3604 SYMBOL_PRINT_NAME (syms[i].sym));
3605 }
3606 else if (symtab != NULL)
3607 printf_unfiltered (is_enumeral
3608 ? _("[%d] %s in %s (enumeral)\n")
3609 : _("[%d] %s at %s:?\n"),
3610 i + first_choice,
3611 SYMBOL_PRINT_NAME (syms[i].sym),
3612 symtab_to_filename_for_display (symtab));
3613 else
3614 printf_unfiltered (is_enumeral
3615 ? _("[%d] %s (enumeral)\n")
3616 : _("[%d] %s at ?\n"),
3617 i + first_choice,
3618 SYMBOL_PRINT_NAME (syms[i].sym));
3619 }
3620 }
3621
3622 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3623 "overload-choice");
3624
3625 for (i = 0; i < n_chosen; i += 1)
3626 syms[i] = syms[chosen[i]];
3627
3628 return n_chosen;
3629 }
3630
3631 /* Read and validate a set of numeric choices from the user in the
3632 range 0 .. N_CHOICES-1. Place the results in increasing
3633 order in CHOICES[0 .. N-1], and return N.
3634
3635 The user types choices as a sequence of numbers on one line
3636 separated by blanks, encoding them as follows:
3637
3638 + A choice of 0 means to cancel the selection, throwing an error.
3639 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3640 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3641
3642 The user is not allowed to choose more than MAX_RESULTS values.
3643
3644 ANNOTATION_SUFFIX, if present, is used to annotate the input
3645 prompts (for use with the -f switch). */
3646
3647 int
3648 get_selections (int *choices, int n_choices, int max_results,
3649 int is_all_choice, char *annotation_suffix)
3650 {
3651 char *args;
3652 char *prompt;
3653 int n_chosen;
3654 int first_choice = is_all_choice ? 2 : 1;
3655
3656 prompt = getenv ("PS2");
3657 if (prompt == NULL)
3658 prompt = "> ";
3659
3660 args = command_line_input (prompt, 0, annotation_suffix);
3661
3662 if (args == NULL)
3663 error_no_arg (_("one or more choice numbers"));
3664
3665 n_chosen = 0;
3666
3667 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3668 order, as given in args. Choices are validated. */
3669 while (1)
3670 {
3671 char *args2;
3672 int choice, j;
3673
3674 args = skip_spaces (args);
3675 if (*args == '\0' && n_chosen == 0)
3676 error_no_arg (_("one or more choice numbers"));
3677 else if (*args == '\0')
3678 break;
3679
3680 choice = strtol (args, &args2, 10);
3681 if (args == args2 || choice < 0
3682 || choice > n_choices + first_choice - 1)
3683 error (_("Argument must be choice number"));
3684 args = args2;
3685
3686 if (choice == 0)
3687 error (_("cancelled"));
3688
3689 if (choice < first_choice)
3690 {
3691 n_chosen = n_choices;
3692 for (j = 0; j < n_choices; j += 1)
3693 choices[j] = j;
3694 break;
3695 }
3696 choice -= first_choice;
3697
3698 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3699 {
3700 }
3701
3702 if (j < 0 || choice != choices[j])
3703 {
3704 int k;
3705
3706 for (k = n_chosen - 1; k > j; k -= 1)
3707 choices[k + 1] = choices[k];
3708 choices[j + 1] = choice;
3709 n_chosen += 1;
3710 }
3711 }
3712
3713 if (n_chosen > max_results)
3714 error (_("Select no more than %d of the above"), max_results);
3715
3716 return n_chosen;
3717 }
3718
3719 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3720 on the function identified by SYM and BLOCK, and taking NARGS
3721 arguments. Update *EXPP as needed to hold more space. */
3722
3723 static void
3724 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3725 int oplen, struct symbol *sym,
3726 const struct block *block)
3727 {
3728 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3729 symbol, -oplen for operator being replaced). */
3730 struct expression *newexp = (struct expression *)
3731 xzalloc (sizeof (struct expression)
3732 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3733 struct expression *exp = *expp;
3734
3735 newexp->nelts = exp->nelts + 7 - oplen;
3736 newexp->language_defn = exp->language_defn;
3737 newexp->gdbarch = exp->gdbarch;
3738 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3739 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3740 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3741
3742 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3743 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3744
3745 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3746 newexp->elts[pc + 4].block = block;
3747 newexp->elts[pc + 5].symbol = sym;
3748
3749 *expp = newexp;
3750 xfree (exp);
3751 }
3752
3753 /* Type-class predicates */
3754
3755 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3756 or FLOAT). */
3757
3758 static int
3759 numeric_type_p (struct type *type)
3760 {
3761 if (type == NULL)
3762 return 0;
3763 else
3764 {
3765 switch (TYPE_CODE (type))
3766 {
3767 case TYPE_CODE_INT:
3768 case TYPE_CODE_FLT:
3769 return 1;
3770 case TYPE_CODE_RANGE:
3771 return (type == TYPE_TARGET_TYPE (type)
3772 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3773 default:
3774 return 0;
3775 }
3776 }
3777 }
3778
3779 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3780
3781 static int
3782 integer_type_p (struct type *type)
3783 {
3784 if (type == NULL)
3785 return 0;
3786 else
3787 {
3788 switch (TYPE_CODE (type))
3789 {
3790 case TYPE_CODE_INT:
3791 return 1;
3792 case TYPE_CODE_RANGE:
3793 return (type == TYPE_TARGET_TYPE (type)
3794 || integer_type_p (TYPE_TARGET_TYPE (type)));
3795 default:
3796 return 0;
3797 }
3798 }
3799 }
3800
3801 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3802
3803 static int
3804 scalar_type_p (struct type *type)
3805 {
3806 if (type == NULL)
3807 return 0;
3808 else
3809 {
3810 switch (TYPE_CODE (type))
3811 {
3812 case TYPE_CODE_INT:
3813 case TYPE_CODE_RANGE:
3814 case TYPE_CODE_ENUM:
3815 case TYPE_CODE_FLT:
3816 return 1;
3817 default:
3818 return 0;
3819 }
3820 }
3821 }
3822
3823 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3824
3825 static int
3826 discrete_type_p (struct type *type)
3827 {
3828 if (type == NULL)
3829 return 0;
3830 else
3831 {
3832 switch (TYPE_CODE (type))
3833 {
3834 case TYPE_CODE_INT:
3835 case TYPE_CODE_RANGE:
3836 case TYPE_CODE_ENUM:
3837 case TYPE_CODE_BOOL:
3838 return 1;
3839 default:
3840 return 0;
3841 }
3842 }
3843 }
3844
3845 /* Returns non-zero if OP with operands in the vector ARGS could be
3846 a user-defined function. Errs on the side of pre-defined operators
3847 (i.e., result 0). */
3848
3849 static int
3850 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3851 {
3852 struct type *type0 =
3853 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3854 struct type *type1 =
3855 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3856
3857 if (type0 == NULL)
3858 return 0;
3859
3860 switch (op)
3861 {
3862 default:
3863 return 0;
3864
3865 case BINOP_ADD:
3866 case BINOP_SUB:
3867 case BINOP_MUL:
3868 case BINOP_DIV:
3869 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3870
3871 case BINOP_REM:
3872 case BINOP_MOD:
3873 case BINOP_BITWISE_AND:
3874 case BINOP_BITWISE_IOR:
3875 case BINOP_BITWISE_XOR:
3876 return (!(integer_type_p (type0) && integer_type_p (type1)));
3877
3878 case BINOP_EQUAL:
3879 case BINOP_NOTEQUAL:
3880 case BINOP_LESS:
3881 case BINOP_GTR:
3882 case BINOP_LEQ:
3883 case BINOP_GEQ:
3884 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3885
3886 case BINOP_CONCAT:
3887 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3888
3889 case BINOP_EXP:
3890 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3891
3892 case UNOP_NEG:
3893 case UNOP_PLUS:
3894 case UNOP_LOGICAL_NOT:
3895 case UNOP_ABS:
3896 return (!numeric_type_p (type0));
3897
3898 }
3899 }
3900 \f
3901 /* Renaming */
3902
3903 /* NOTES:
3904
3905 1. In the following, we assume that a renaming type's name may
3906 have an ___XD suffix. It would be nice if this went away at some
3907 point.
3908 2. We handle both the (old) purely type-based representation of
3909 renamings and the (new) variable-based encoding. At some point,
3910 it is devoutly to be hoped that the former goes away
3911 (FIXME: hilfinger-2007-07-09).
3912 3. Subprogram renamings are not implemented, although the XRS
3913 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3914
3915 /* If SYM encodes a renaming,
3916
3917 <renaming> renames <renamed entity>,
3918
3919 sets *LEN to the length of the renamed entity's name,
3920 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3921 the string describing the subcomponent selected from the renamed
3922 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3923 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3924 are undefined). Otherwise, returns a value indicating the category
3925 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3926 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3927 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3928 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3929 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3930 may be NULL, in which case they are not assigned.
3931
3932 [Currently, however, GCC does not generate subprogram renamings.] */
3933
3934 enum ada_renaming_category
3935 ada_parse_renaming (struct symbol *sym,
3936 const char **renamed_entity, int *len,
3937 const char **renaming_expr)
3938 {
3939 enum ada_renaming_category kind;
3940 const char *info;
3941 const char *suffix;
3942
3943 if (sym == NULL)
3944 return ADA_NOT_RENAMING;
3945 switch (SYMBOL_CLASS (sym))
3946 {
3947 default:
3948 return ADA_NOT_RENAMING;
3949 case LOC_TYPEDEF:
3950 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3951 renamed_entity, len, renaming_expr);
3952 case LOC_LOCAL:
3953 case LOC_STATIC:
3954 case LOC_COMPUTED:
3955 case LOC_OPTIMIZED_OUT:
3956 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3957 if (info == NULL)
3958 return ADA_NOT_RENAMING;
3959 switch (info[5])
3960 {
3961 case '_':
3962 kind = ADA_OBJECT_RENAMING;
3963 info += 6;
3964 break;
3965 case 'E':
3966 kind = ADA_EXCEPTION_RENAMING;
3967 info += 7;
3968 break;
3969 case 'P':
3970 kind = ADA_PACKAGE_RENAMING;
3971 info += 7;
3972 break;
3973 case 'S':
3974 kind = ADA_SUBPROGRAM_RENAMING;
3975 info += 7;
3976 break;
3977 default:
3978 return ADA_NOT_RENAMING;
3979 }
3980 }
3981
3982 if (renamed_entity != NULL)
3983 *renamed_entity = info;
3984 suffix = strstr (info, "___XE");
3985 if (suffix == NULL || suffix == info)
3986 return ADA_NOT_RENAMING;
3987 if (len != NULL)
3988 *len = strlen (info) - strlen (suffix);
3989 suffix += 5;
3990 if (renaming_expr != NULL)
3991 *renaming_expr = suffix;
3992 return kind;
3993 }
3994
3995 /* Assuming TYPE encodes a renaming according to the old encoding in
3996 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3997 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3998 ADA_NOT_RENAMING otherwise. */
3999 static enum ada_renaming_category
4000 parse_old_style_renaming (struct type *type,
4001 const char **renamed_entity, int *len,
4002 const char **renaming_expr)
4003 {
4004 enum ada_renaming_category kind;
4005 const char *name;
4006 const char *info;
4007 const char *suffix;
4008
4009 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4010 || TYPE_NFIELDS (type) != 1)
4011 return ADA_NOT_RENAMING;
4012
4013 name = type_name_no_tag (type);
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016
4017 name = strstr (name, "___XR");
4018 if (name == NULL)
4019 return ADA_NOT_RENAMING;
4020 switch (name[5])
4021 {
4022 case '\0':
4023 case '_':
4024 kind = ADA_OBJECT_RENAMING;
4025 break;
4026 case 'E':
4027 kind = ADA_EXCEPTION_RENAMING;
4028 break;
4029 case 'P':
4030 kind = ADA_PACKAGE_RENAMING;
4031 break;
4032 case 'S':
4033 kind = ADA_SUBPROGRAM_RENAMING;
4034 break;
4035 default:
4036 return ADA_NOT_RENAMING;
4037 }
4038
4039 info = TYPE_FIELD_NAME (type, 0);
4040 if (info == NULL)
4041 return ADA_NOT_RENAMING;
4042 if (renamed_entity != NULL)
4043 *renamed_entity = info;
4044 suffix = strstr (info, "___XE");
4045 if (renaming_expr != NULL)
4046 *renaming_expr = suffix + 5;
4047 if (suffix == NULL || suffix == info)
4048 return ADA_NOT_RENAMING;
4049 if (len != NULL)
4050 *len = suffix - info;
4051 return kind;
4052 }
4053
4054 /* Compute the value of the given RENAMING_SYM, which is expected to
4055 be a symbol encoding a renaming expression. BLOCK is the block
4056 used to evaluate the renaming. */
4057
4058 static struct value *
4059 ada_read_renaming_var_value (struct symbol *renaming_sym,
4060 struct block *block)
4061 {
4062 const char *sym_name;
4063 struct expression *expr;
4064 struct value *value;
4065 struct cleanup *old_chain = NULL;
4066
4067 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4068 expr = parse_exp_1 (&sym_name, 0, block, 0);
4069 old_chain = make_cleanup (free_current_contents, &expr);
4070 value = evaluate_expression (expr);
4071
4072 do_cleanups (old_chain);
4073 return value;
4074 }
4075 \f
4076
4077 /* Evaluation: Function Calls */
4078
4079 /* Return an lvalue containing the value VAL. This is the identity on
4080 lvalues, and otherwise has the side-effect of allocating memory
4081 in the inferior where a copy of the value contents is copied. */
4082
4083 static struct value *
4084 ensure_lval (struct value *val)
4085 {
4086 if (VALUE_LVAL (val) == not_lval
4087 || VALUE_LVAL (val) == lval_internalvar)
4088 {
4089 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4090 const CORE_ADDR addr =
4091 value_as_long (value_allocate_space_in_inferior (len));
4092
4093 set_value_address (val, addr);
4094 VALUE_LVAL (val) = lval_memory;
4095 write_memory (addr, value_contents (val), len);
4096 }
4097
4098 return val;
4099 }
4100
4101 /* Return the value ACTUAL, converted to be an appropriate value for a
4102 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4103 allocating any necessary descriptors (fat pointers), or copies of
4104 values not residing in memory, updating it as needed. */
4105
4106 struct value *
4107 ada_convert_actual (struct value *actual, struct type *formal_type0)
4108 {
4109 struct type *actual_type = ada_check_typedef (value_type (actual));
4110 struct type *formal_type = ada_check_typedef (formal_type0);
4111 struct type *formal_target =
4112 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4113 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4114 struct type *actual_target =
4115 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4116 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4117
4118 if (ada_is_array_descriptor_type (formal_target)
4119 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4120 return make_array_descriptor (formal_type, actual);
4121 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4122 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4123 {
4124 struct value *result;
4125
4126 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4127 && ada_is_array_descriptor_type (actual_target))
4128 result = desc_data (actual);
4129 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4130 {
4131 if (VALUE_LVAL (actual) != lval_memory)
4132 {
4133 struct value *val;
4134
4135 actual_type = ada_check_typedef (value_type (actual));
4136 val = allocate_value (actual_type);
4137 memcpy ((char *) value_contents_raw (val),
4138 (char *) value_contents (actual),
4139 TYPE_LENGTH (actual_type));
4140 actual = ensure_lval (val);
4141 }
4142 result = value_addr (actual);
4143 }
4144 else
4145 return actual;
4146 return value_cast_pointers (formal_type, result, 0);
4147 }
4148 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4149 return ada_value_ind (actual);
4150
4151 return actual;
4152 }
4153
4154 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4155 type TYPE. This is usually an inefficient no-op except on some targets
4156 (such as AVR) where the representation of a pointer and an address
4157 differs. */
4158
4159 static CORE_ADDR
4160 value_pointer (struct value *value, struct type *type)
4161 {
4162 struct gdbarch *gdbarch = get_type_arch (type);
4163 unsigned len = TYPE_LENGTH (type);
4164 gdb_byte *buf = alloca (len);
4165 CORE_ADDR addr;
4166
4167 addr = value_address (value);
4168 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4169 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4170 return addr;
4171 }
4172
4173
4174 /* Push a descriptor of type TYPE for array value ARR on the stack at
4175 *SP, updating *SP to reflect the new descriptor. Return either
4176 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4177 to-descriptor type rather than a descriptor type), a struct value *
4178 representing a pointer to this descriptor. */
4179
4180 static struct value *
4181 make_array_descriptor (struct type *type, struct value *arr)
4182 {
4183 struct type *bounds_type = desc_bounds_type (type);
4184 struct type *desc_type = desc_base_type (type);
4185 struct value *descriptor = allocate_value (desc_type);
4186 struct value *bounds = allocate_value (bounds_type);
4187 int i;
4188
4189 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4190 i > 0; i -= 1)
4191 {
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 0),
4194 desc_bound_bitpos (bounds_type, i, 0),
4195 desc_bound_bitsize (bounds_type, i, 0));
4196 modify_field (value_type (bounds), value_contents_writeable (bounds),
4197 ada_array_bound (arr, i, 1),
4198 desc_bound_bitpos (bounds_type, i, 1),
4199 desc_bound_bitsize (bounds_type, i, 1));
4200 }
4201
4202 bounds = ensure_lval (bounds);
4203
4204 modify_field (value_type (descriptor),
4205 value_contents_writeable (descriptor),
4206 value_pointer (ensure_lval (arr),
4207 TYPE_FIELD_TYPE (desc_type, 0)),
4208 fat_pntr_data_bitpos (desc_type),
4209 fat_pntr_data_bitsize (desc_type));
4210
4211 modify_field (value_type (descriptor),
4212 value_contents_writeable (descriptor),
4213 value_pointer (bounds,
4214 TYPE_FIELD_TYPE (desc_type, 1)),
4215 fat_pntr_bounds_bitpos (desc_type),
4216 fat_pntr_bounds_bitsize (desc_type));
4217
4218 descriptor = ensure_lval (descriptor);
4219
4220 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4221 return value_addr (descriptor);
4222 else
4223 return descriptor;
4224 }
4225 \f
4226 /* Dummy definitions for an experimental caching module that is not
4227 * used in the public sources. */
4228
4229 static int
4230 lookup_cached_symbol (const char *name, domain_enum namespace,
4231 struct symbol **sym, struct block **block)
4232 {
4233 return 0;
4234 }
4235
4236 static void
4237 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4238 const struct block *block)
4239 {
4240 }
4241 \f
4242 /* Symbol Lookup */
4243
4244 /* Return nonzero if wild matching should be used when searching for
4245 all symbols matching LOOKUP_NAME.
4246
4247 LOOKUP_NAME is expected to be a symbol name after transformation
4248 for Ada lookups (see ada_name_for_lookup). */
4249
4250 static int
4251 should_use_wild_match (const char *lookup_name)
4252 {
4253 return (strstr (lookup_name, "__") == NULL);
4254 }
4255
4256 /* Return the result of a standard (literal, C-like) lookup of NAME in
4257 given DOMAIN, visible from lexical block BLOCK. */
4258
4259 static struct symbol *
4260 standard_lookup (const char *name, const struct block *block,
4261 domain_enum domain)
4262 {
4263 /* Initialize it just to avoid a GCC false warning. */
4264 struct symbol *sym = NULL;
4265
4266 if (lookup_cached_symbol (name, domain, &sym, NULL))
4267 return sym;
4268 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4269 cache_symbol (name, domain, sym, block_found);
4270 return sym;
4271 }
4272
4273
4274 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4275 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4276 since they contend in overloading in the same way. */
4277 static int
4278 is_nonfunction (struct ada_symbol_info syms[], int n)
4279 {
4280 int i;
4281
4282 for (i = 0; i < n; i += 1)
4283 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4284 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4285 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4286 return 1;
4287
4288 return 0;
4289 }
4290
4291 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4292 struct types. Otherwise, they may not. */
4293
4294 static int
4295 equiv_types (struct type *type0, struct type *type1)
4296 {
4297 if (type0 == type1)
4298 return 1;
4299 if (type0 == NULL || type1 == NULL
4300 || TYPE_CODE (type0) != TYPE_CODE (type1))
4301 return 0;
4302 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4303 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4304 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4305 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4306 return 1;
4307
4308 return 0;
4309 }
4310
4311 /* True iff SYM0 represents the same entity as SYM1, or one that is
4312 no more defined than that of SYM1. */
4313
4314 static int
4315 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4316 {
4317 if (sym0 == sym1)
4318 return 1;
4319 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4320 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4321 return 0;
4322
4323 switch (SYMBOL_CLASS (sym0))
4324 {
4325 case LOC_UNDEF:
4326 return 1;
4327 case LOC_TYPEDEF:
4328 {
4329 struct type *type0 = SYMBOL_TYPE (sym0);
4330 struct type *type1 = SYMBOL_TYPE (sym1);
4331 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4332 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4333 int len0 = strlen (name0);
4334
4335 return
4336 TYPE_CODE (type0) == TYPE_CODE (type1)
4337 && (equiv_types (type0, type1)
4338 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4339 && strncmp (name1 + len0, "___XV", 5) == 0));
4340 }
4341 case LOC_CONST:
4342 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4343 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4344 default:
4345 return 0;
4346 }
4347 }
4348
4349 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4350 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4351
4352 static void
4353 add_defn_to_vec (struct obstack *obstackp,
4354 struct symbol *sym,
4355 struct block *block)
4356 {
4357 int i;
4358 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4359
4360 /* Do not try to complete stub types, as the debugger is probably
4361 already scanning all symbols matching a certain name at the
4362 time when this function is called. Trying to replace the stub
4363 type by its associated full type will cause us to restart a scan
4364 which may lead to an infinite recursion. Instead, the client
4365 collecting the matching symbols will end up collecting several
4366 matches, with at least one of them complete. It can then filter
4367 out the stub ones if needed. */
4368
4369 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4370 {
4371 if (lesseq_defined_than (sym, prevDefns[i].sym))
4372 return;
4373 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4374 {
4375 prevDefns[i].sym = sym;
4376 prevDefns[i].block = block;
4377 return;
4378 }
4379 }
4380
4381 {
4382 struct ada_symbol_info info;
4383
4384 info.sym = sym;
4385 info.block = block;
4386 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4387 }
4388 }
4389
4390 /* Number of ada_symbol_info structures currently collected in
4391 current vector in *OBSTACKP. */
4392
4393 static int
4394 num_defns_collected (struct obstack *obstackp)
4395 {
4396 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4397 }
4398
4399 /* Vector of ada_symbol_info structures currently collected in current
4400 vector in *OBSTACKP. If FINISH, close off the vector and return
4401 its final address. */
4402
4403 static struct ada_symbol_info *
4404 defns_collected (struct obstack *obstackp, int finish)
4405 {
4406 if (finish)
4407 return obstack_finish (obstackp);
4408 else
4409 return (struct ada_symbol_info *) obstack_base (obstackp);
4410 }
4411
4412 /* Return a bound minimal symbol matching NAME according to Ada
4413 decoding rules. Returns an invalid symbol if there is no such
4414 minimal symbol. Names prefixed with "standard__" are handled
4415 specially: "standard__" is first stripped off, and only static and
4416 global symbols are searched. */
4417
4418 struct bound_minimal_symbol
4419 ada_lookup_simple_minsym (const char *name)
4420 {
4421 struct bound_minimal_symbol result;
4422 struct objfile *objfile;
4423 struct minimal_symbol *msymbol;
4424 const int wild_match_p = should_use_wild_match (name);
4425
4426 memset (&result, 0, sizeof (result));
4427
4428 /* Special case: If the user specifies a symbol name inside package
4429 Standard, do a non-wild matching of the symbol name without
4430 the "standard__" prefix. This was primarily introduced in order
4431 to allow the user to specifically access the standard exceptions
4432 using, for instance, Standard.Constraint_Error when Constraint_Error
4433 is ambiguous (due to the user defining its own Constraint_Error
4434 entity inside its program). */
4435 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4436 name += sizeof ("standard__") - 1;
4437
4438 ALL_MSYMBOLS (objfile, msymbol)
4439 {
4440 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4441 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4442 {
4443 result.minsym = msymbol;
4444 result.objfile = objfile;
4445 break;
4446 }
4447 }
4448
4449 return result;
4450 }
4451
4452 /* For all subprograms that statically enclose the subprogram of the
4453 selected frame, add symbols matching identifier NAME in DOMAIN
4454 and their blocks to the list of data in OBSTACKP, as for
4455 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4456 with a wildcard prefix. */
4457
4458 static void
4459 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4460 const char *name, domain_enum namespace,
4461 int wild_match_p)
4462 {
4463 }
4464
4465 /* True if TYPE is definitely an artificial type supplied to a symbol
4466 for which no debugging information was given in the symbol file. */
4467
4468 static int
4469 is_nondebugging_type (struct type *type)
4470 {
4471 const char *name = ada_type_name (type);
4472
4473 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4474 }
4475
4476 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4477 that are deemed "identical" for practical purposes.
4478
4479 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4480 types and that their number of enumerals is identical (in other
4481 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4482
4483 static int
4484 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4485 {
4486 int i;
4487
4488 /* The heuristic we use here is fairly conservative. We consider
4489 that 2 enumerate types are identical if they have the same
4490 number of enumerals and that all enumerals have the same
4491 underlying value and name. */
4492
4493 /* All enums in the type should have an identical underlying value. */
4494 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4495 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4496 return 0;
4497
4498 /* All enumerals should also have the same name (modulo any numerical
4499 suffix). */
4500 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4501 {
4502 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4503 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4504 int len_1 = strlen (name_1);
4505 int len_2 = strlen (name_2);
4506
4507 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4508 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4509 if (len_1 != len_2
4510 || strncmp (TYPE_FIELD_NAME (type1, i),
4511 TYPE_FIELD_NAME (type2, i),
4512 len_1) != 0)
4513 return 0;
4514 }
4515
4516 return 1;
4517 }
4518
4519 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4520 that are deemed "identical" for practical purposes. Sometimes,
4521 enumerals are not strictly identical, but their types are so similar
4522 that they can be considered identical.
4523
4524 For instance, consider the following code:
4525
4526 type Color is (Black, Red, Green, Blue, White);
4527 type RGB_Color is new Color range Red .. Blue;
4528
4529 Type RGB_Color is a subrange of an implicit type which is a copy
4530 of type Color. If we call that implicit type RGB_ColorB ("B" is
4531 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4532 As a result, when an expression references any of the enumeral
4533 by name (Eg. "print green"), the expression is technically
4534 ambiguous and the user should be asked to disambiguate. But
4535 doing so would only hinder the user, since it wouldn't matter
4536 what choice he makes, the outcome would always be the same.
4537 So, for practical purposes, we consider them as the same. */
4538
4539 static int
4540 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4541 {
4542 int i;
4543
4544 /* Before performing a thorough comparison check of each type,
4545 we perform a series of inexpensive checks. We expect that these
4546 checks will quickly fail in the vast majority of cases, and thus
4547 help prevent the unnecessary use of a more expensive comparison.
4548 Said comparison also expects us to make some of these checks
4549 (see ada_identical_enum_types_p). */
4550
4551 /* Quick check: All symbols should have an enum type. */
4552 for (i = 0; i < nsyms; i++)
4553 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4554 return 0;
4555
4556 /* Quick check: They should all have the same value. */
4557 for (i = 1; i < nsyms; i++)
4558 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4559 return 0;
4560
4561 /* Quick check: They should all have the same number of enumerals. */
4562 for (i = 1; i < nsyms; i++)
4563 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4564 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4565 return 0;
4566
4567 /* All the sanity checks passed, so we might have a set of
4568 identical enumeration types. Perform a more complete
4569 comparison of the type of each symbol. */
4570 for (i = 1; i < nsyms; i++)
4571 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4572 SYMBOL_TYPE (syms[0].sym)))
4573 return 0;
4574
4575 return 1;
4576 }
4577
4578 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4579 duplicate other symbols in the list (The only case I know of where
4580 this happens is when object files containing stabs-in-ecoff are
4581 linked with files containing ordinary ecoff debugging symbols (or no
4582 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4583 Returns the number of items in the modified list. */
4584
4585 static int
4586 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4587 {
4588 int i, j;
4589
4590 /* We should never be called with less than 2 symbols, as there
4591 cannot be any extra symbol in that case. But it's easy to
4592 handle, since we have nothing to do in that case. */
4593 if (nsyms < 2)
4594 return nsyms;
4595
4596 i = 0;
4597 while (i < nsyms)
4598 {
4599 int remove_p = 0;
4600
4601 /* If two symbols have the same name and one of them is a stub type,
4602 the get rid of the stub. */
4603
4604 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4605 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4606 {
4607 for (j = 0; j < nsyms; j++)
4608 {
4609 if (j != i
4610 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4611 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4612 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4613 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4614 remove_p = 1;
4615 }
4616 }
4617
4618 /* Two symbols with the same name, same class and same address
4619 should be identical. */
4620
4621 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4622 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4623 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4624 {
4625 for (j = 0; j < nsyms; j += 1)
4626 {
4627 if (i != j
4628 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4629 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4630 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4631 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4632 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4633 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4634 remove_p = 1;
4635 }
4636 }
4637
4638 if (remove_p)
4639 {
4640 for (j = i + 1; j < nsyms; j += 1)
4641 syms[j - 1] = syms[j];
4642 nsyms -= 1;
4643 }
4644
4645 i += 1;
4646 }
4647
4648 /* If all the remaining symbols are identical enumerals, then
4649 just keep the first one and discard the rest.
4650
4651 Unlike what we did previously, we do not discard any entry
4652 unless they are ALL identical. This is because the symbol
4653 comparison is not a strict comparison, but rather a practical
4654 comparison. If all symbols are considered identical, then
4655 we can just go ahead and use the first one and discard the rest.
4656 But if we cannot reduce the list to a single element, we have
4657 to ask the user to disambiguate anyways. And if we have to
4658 present a multiple-choice menu, it's less confusing if the list
4659 isn't missing some choices that were identical and yet distinct. */
4660 if (symbols_are_identical_enums (syms, nsyms))
4661 nsyms = 1;
4662
4663 return nsyms;
4664 }
4665
4666 /* Given a type that corresponds to a renaming entity, use the type name
4667 to extract the scope (package name or function name, fully qualified,
4668 and following the GNAT encoding convention) where this renaming has been
4669 defined. The string returned needs to be deallocated after use. */
4670
4671 static char *
4672 xget_renaming_scope (struct type *renaming_type)
4673 {
4674 /* The renaming types adhere to the following convention:
4675 <scope>__<rename>___<XR extension>.
4676 So, to extract the scope, we search for the "___XR" extension,
4677 and then backtrack until we find the first "__". */
4678
4679 const char *name = type_name_no_tag (renaming_type);
4680 char *suffix = strstr (name, "___XR");
4681 char *last;
4682 int scope_len;
4683 char *scope;
4684
4685 /* Now, backtrack a bit until we find the first "__". Start looking
4686 at suffix - 3, as the <rename> part is at least one character long. */
4687
4688 for (last = suffix - 3; last > name; last--)
4689 if (last[0] == '_' && last[1] == '_')
4690 break;
4691
4692 /* Make a copy of scope and return it. */
4693
4694 scope_len = last - name;
4695 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4696
4697 strncpy (scope, name, scope_len);
4698 scope[scope_len] = '\0';
4699
4700 return scope;
4701 }
4702
4703 /* Return nonzero if NAME corresponds to a package name. */
4704
4705 static int
4706 is_package_name (const char *name)
4707 {
4708 /* Here, We take advantage of the fact that no symbols are generated
4709 for packages, while symbols are generated for each function.
4710 So the condition for NAME represent a package becomes equivalent
4711 to NAME not existing in our list of symbols. There is only one
4712 small complication with library-level functions (see below). */
4713
4714 char *fun_name;
4715
4716 /* If it is a function that has not been defined at library level,
4717 then we should be able to look it up in the symbols. */
4718 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4719 return 0;
4720
4721 /* Library-level function names start with "_ada_". See if function
4722 "_ada_" followed by NAME can be found. */
4723
4724 /* Do a quick check that NAME does not contain "__", since library-level
4725 functions names cannot contain "__" in them. */
4726 if (strstr (name, "__") != NULL)
4727 return 0;
4728
4729 fun_name = xstrprintf ("_ada_%s", name);
4730
4731 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4732 }
4733
4734 /* Return nonzero if SYM corresponds to a renaming entity that is
4735 not visible from FUNCTION_NAME. */
4736
4737 static int
4738 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4739 {
4740 char *scope;
4741 struct cleanup *old_chain;
4742
4743 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4744 return 0;
4745
4746 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4747 old_chain = make_cleanup (xfree, scope);
4748
4749 /* If the rename has been defined in a package, then it is visible. */
4750 if (is_package_name (scope))
4751 {
4752 do_cleanups (old_chain);
4753 return 0;
4754 }
4755
4756 /* Check that the rename is in the current function scope by checking
4757 that its name starts with SCOPE. */
4758
4759 /* If the function name starts with "_ada_", it means that it is
4760 a library-level function. Strip this prefix before doing the
4761 comparison, as the encoding for the renaming does not contain
4762 this prefix. */
4763 if (strncmp (function_name, "_ada_", 5) == 0)
4764 function_name += 5;
4765
4766 {
4767 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4768
4769 do_cleanups (old_chain);
4770 return is_invisible;
4771 }
4772 }
4773
4774 /* Remove entries from SYMS that corresponds to a renaming entity that
4775 is not visible from the function associated with CURRENT_BLOCK or
4776 that is superfluous due to the presence of more specific renaming
4777 information. Places surviving symbols in the initial entries of
4778 SYMS and returns the number of surviving symbols.
4779
4780 Rationale:
4781 First, in cases where an object renaming is implemented as a
4782 reference variable, GNAT may produce both the actual reference
4783 variable and the renaming encoding. In this case, we discard the
4784 latter.
4785
4786 Second, GNAT emits a type following a specified encoding for each renaming
4787 entity. Unfortunately, STABS currently does not support the definition
4788 of types that are local to a given lexical block, so all renamings types
4789 are emitted at library level. As a consequence, if an application
4790 contains two renaming entities using the same name, and a user tries to
4791 print the value of one of these entities, the result of the ada symbol
4792 lookup will also contain the wrong renaming type.
4793
4794 This function partially covers for this limitation by attempting to
4795 remove from the SYMS list renaming symbols that should be visible
4796 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4797 method with the current information available. The implementation
4798 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4799
4800 - When the user tries to print a rename in a function while there
4801 is another rename entity defined in a package: Normally, the
4802 rename in the function has precedence over the rename in the
4803 package, so the latter should be removed from the list. This is
4804 currently not the case.
4805
4806 - This function will incorrectly remove valid renames if
4807 the CURRENT_BLOCK corresponds to a function which symbol name
4808 has been changed by an "Export" pragma. As a consequence,
4809 the user will be unable to print such rename entities. */
4810
4811 static int
4812 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4813 int nsyms, const struct block *current_block)
4814 {
4815 struct symbol *current_function;
4816 const char *current_function_name;
4817 int i;
4818 int is_new_style_renaming;
4819
4820 /* If there is both a renaming foo___XR... encoded as a variable and
4821 a simple variable foo in the same block, discard the latter.
4822 First, zero out such symbols, then compress. */
4823 is_new_style_renaming = 0;
4824 for (i = 0; i < nsyms; i += 1)
4825 {
4826 struct symbol *sym = syms[i].sym;
4827 const struct block *block = syms[i].block;
4828 const char *name;
4829 const char *suffix;
4830
4831 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4832 continue;
4833 name = SYMBOL_LINKAGE_NAME (sym);
4834 suffix = strstr (name, "___XR");
4835
4836 if (suffix != NULL)
4837 {
4838 int name_len = suffix - name;
4839 int j;
4840
4841 is_new_style_renaming = 1;
4842 for (j = 0; j < nsyms; j += 1)
4843 if (i != j && syms[j].sym != NULL
4844 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4845 name_len) == 0
4846 && block == syms[j].block)
4847 syms[j].sym = NULL;
4848 }
4849 }
4850 if (is_new_style_renaming)
4851 {
4852 int j, k;
4853
4854 for (j = k = 0; j < nsyms; j += 1)
4855 if (syms[j].sym != NULL)
4856 {
4857 syms[k] = syms[j];
4858 k += 1;
4859 }
4860 return k;
4861 }
4862
4863 /* Extract the function name associated to CURRENT_BLOCK.
4864 Abort if unable to do so. */
4865
4866 if (current_block == NULL)
4867 return nsyms;
4868
4869 current_function = block_linkage_function (current_block);
4870 if (current_function == NULL)
4871 return nsyms;
4872
4873 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4874 if (current_function_name == NULL)
4875 return nsyms;
4876
4877 /* Check each of the symbols, and remove it from the list if it is
4878 a type corresponding to a renaming that is out of the scope of
4879 the current block. */
4880
4881 i = 0;
4882 while (i < nsyms)
4883 {
4884 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4885 == ADA_OBJECT_RENAMING
4886 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4887 {
4888 int j;
4889
4890 for (j = i + 1; j < nsyms; j += 1)
4891 syms[j - 1] = syms[j];
4892 nsyms -= 1;
4893 }
4894 else
4895 i += 1;
4896 }
4897
4898 return nsyms;
4899 }
4900
4901 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4902 whose name and domain match NAME and DOMAIN respectively.
4903 If no match was found, then extend the search to "enclosing"
4904 routines (in other words, if we're inside a nested function,
4905 search the symbols defined inside the enclosing functions).
4906 If WILD_MATCH_P is nonzero, perform the naming matching in
4907 "wild" mode (see function "wild_match" for more info).
4908
4909 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4910
4911 static void
4912 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4913 struct block *block, domain_enum domain,
4914 int wild_match_p)
4915 {
4916 int block_depth = 0;
4917
4918 while (block != NULL)
4919 {
4920 block_depth += 1;
4921 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4922 wild_match_p);
4923
4924 /* If we found a non-function match, assume that's the one. */
4925 if (is_nonfunction (defns_collected (obstackp, 0),
4926 num_defns_collected (obstackp)))
4927 return;
4928
4929 block = BLOCK_SUPERBLOCK (block);
4930 }
4931
4932 /* If no luck so far, try to find NAME as a local symbol in some lexically
4933 enclosing subprogram. */
4934 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4935 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4936 }
4937
4938 /* An object of this type is used as the user_data argument when
4939 calling the map_matching_symbols method. */
4940
4941 struct match_data
4942 {
4943 struct objfile *objfile;
4944 struct obstack *obstackp;
4945 struct symbol *arg_sym;
4946 int found_sym;
4947 };
4948
4949 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4950 to a list of symbols. DATA0 is a pointer to a struct match_data *
4951 containing the obstack that collects the symbol list, the file that SYM
4952 must come from, a flag indicating whether a non-argument symbol has
4953 been found in the current block, and the last argument symbol
4954 passed in SYM within the current block (if any). When SYM is null,
4955 marking the end of a block, the argument symbol is added if no
4956 other has been found. */
4957
4958 static int
4959 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4960 {
4961 struct match_data *data = (struct match_data *) data0;
4962
4963 if (sym == NULL)
4964 {
4965 if (!data->found_sym && data->arg_sym != NULL)
4966 add_defn_to_vec (data->obstackp,
4967 fixup_symbol_section (data->arg_sym, data->objfile),
4968 block);
4969 data->found_sym = 0;
4970 data->arg_sym = NULL;
4971 }
4972 else
4973 {
4974 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4975 return 0;
4976 else if (SYMBOL_IS_ARGUMENT (sym))
4977 data->arg_sym = sym;
4978 else
4979 {
4980 data->found_sym = 1;
4981 add_defn_to_vec (data->obstackp,
4982 fixup_symbol_section (sym, data->objfile),
4983 block);
4984 }
4985 }
4986 return 0;
4987 }
4988
4989 /* Implements compare_names, but only applying the comparision using
4990 the given CASING. */
4991
4992 static int
4993 compare_names_with_case (const char *string1, const char *string2,
4994 enum case_sensitivity casing)
4995 {
4996 while (*string1 != '\0' && *string2 != '\0')
4997 {
4998 char c1, c2;
4999
5000 if (isspace (*string1) || isspace (*string2))
5001 return strcmp_iw_ordered (string1, string2);
5002
5003 if (casing == case_sensitive_off)
5004 {
5005 c1 = tolower (*string1);
5006 c2 = tolower (*string2);
5007 }
5008 else
5009 {
5010 c1 = *string1;
5011 c2 = *string2;
5012 }
5013 if (c1 != c2)
5014 break;
5015
5016 string1 += 1;
5017 string2 += 1;
5018 }
5019
5020 switch (*string1)
5021 {
5022 case '(':
5023 return strcmp_iw_ordered (string1, string2);
5024 case '_':
5025 if (*string2 == '\0')
5026 {
5027 if (is_name_suffix (string1))
5028 return 0;
5029 else
5030 return 1;
5031 }
5032 /* FALLTHROUGH */
5033 default:
5034 if (*string2 == '(')
5035 return strcmp_iw_ordered (string1, string2);
5036 else
5037 {
5038 if (casing == case_sensitive_off)
5039 return tolower (*string1) - tolower (*string2);
5040 else
5041 return *string1 - *string2;
5042 }
5043 }
5044 }
5045
5046 /* Compare STRING1 to STRING2, with results as for strcmp.
5047 Compatible with strcmp_iw_ordered in that...
5048
5049 strcmp_iw_ordered (STRING1, STRING2) <= 0
5050
5051 ... implies...
5052
5053 compare_names (STRING1, STRING2) <= 0
5054
5055 (they may differ as to what symbols compare equal). */
5056
5057 static int
5058 compare_names (const char *string1, const char *string2)
5059 {
5060 int result;
5061
5062 /* Similar to what strcmp_iw_ordered does, we need to perform
5063 a case-insensitive comparison first, and only resort to
5064 a second, case-sensitive, comparison if the first one was
5065 not sufficient to differentiate the two strings. */
5066
5067 result = compare_names_with_case (string1, string2, case_sensitive_off);
5068 if (result == 0)
5069 result = compare_names_with_case (string1, string2, case_sensitive_on);
5070
5071 return result;
5072 }
5073
5074 /* Add to OBSTACKP all non-local symbols whose name and domain match
5075 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5076 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5077
5078 static void
5079 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5080 domain_enum domain, int global,
5081 int is_wild_match)
5082 {
5083 struct objfile *objfile;
5084 struct match_data data;
5085
5086 memset (&data, 0, sizeof data);
5087 data.obstackp = obstackp;
5088
5089 ALL_OBJFILES (objfile)
5090 {
5091 data.objfile = objfile;
5092
5093 if (is_wild_match)
5094 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5095 aux_add_nonlocal_symbols, &data,
5096 wild_match, NULL);
5097 else
5098 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5099 aux_add_nonlocal_symbols, &data,
5100 full_match, compare_names);
5101 }
5102
5103 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5104 {
5105 ALL_OBJFILES (objfile)
5106 {
5107 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5108 strcpy (name1, "_ada_");
5109 strcpy (name1 + sizeof ("_ada_") - 1, name);
5110 data.objfile = objfile;
5111 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5112 global,
5113 aux_add_nonlocal_symbols,
5114 &data,
5115 full_match, compare_names);
5116 }
5117 }
5118 }
5119
5120 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5121 non-zero, enclosing scope and in global scopes, returning the number of
5122 matches.
5123 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5124 indicating the symbols found and the blocks and symbol tables (if
5125 any) in which they were found. This vector is transient---good only to
5126 the next call of ada_lookup_symbol_list.
5127
5128 When full_search is non-zero, any non-function/non-enumeral
5129 symbol match within the nest of blocks whose innermost member is BLOCK0,
5130 is the one match returned (no other matches in that or
5131 enclosing blocks is returned). If there are any matches in or
5132 surrounding BLOCK0, then these alone are returned.
5133
5134 Names prefixed with "standard__" are handled specially: "standard__"
5135 is first stripped off, and only static and global symbols are searched. */
5136
5137 static int
5138 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5139 domain_enum namespace,
5140 struct ada_symbol_info **results,
5141 int full_search)
5142 {
5143 struct symbol *sym;
5144 struct block *block;
5145 const char *name;
5146 const int wild_match_p = should_use_wild_match (name0);
5147 int cacheIfUnique;
5148 int ndefns;
5149
5150 obstack_free (&symbol_list_obstack, NULL);
5151 obstack_init (&symbol_list_obstack);
5152
5153 cacheIfUnique = 0;
5154
5155 /* Search specified block and its superiors. */
5156
5157 name = name0;
5158 block = (struct block *) block0; /* FIXME: No cast ought to be
5159 needed, but adding const will
5160 have a cascade effect. */
5161
5162 /* Special case: If the user specifies a symbol name inside package
5163 Standard, do a non-wild matching of the symbol name without
5164 the "standard__" prefix. This was primarily introduced in order
5165 to allow the user to specifically access the standard exceptions
5166 using, for instance, Standard.Constraint_Error when Constraint_Error
5167 is ambiguous (due to the user defining its own Constraint_Error
5168 entity inside its program). */
5169 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5170 {
5171 block = NULL;
5172 name = name0 + sizeof ("standard__") - 1;
5173 }
5174
5175 /* Check the non-global symbols. If we have ANY match, then we're done. */
5176
5177 if (block != NULL)
5178 {
5179 if (full_search)
5180 {
5181 ada_add_local_symbols (&symbol_list_obstack, name, block,
5182 namespace, wild_match_p);
5183 }
5184 else
5185 {
5186 /* In the !full_search case we're are being called by
5187 ada_iterate_over_symbols, and we don't want to search
5188 superblocks. */
5189 ada_add_block_symbols (&symbol_list_obstack, block, name,
5190 namespace, NULL, wild_match_p);
5191 }
5192 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5193 goto done;
5194 }
5195
5196 /* No non-global symbols found. Check our cache to see if we have
5197 already performed this search before. If we have, then return
5198 the same result. */
5199
5200 cacheIfUnique = 1;
5201 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5202 {
5203 if (sym != NULL)
5204 add_defn_to_vec (&symbol_list_obstack, sym, block);
5205 goto done;
5206 }
5207
5208 /* Search symbols from all global blocks. */
5209
5210 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5211 wild_match_p);
5212
5213 /* Now add symbols from all per-file blocks if we've gotten no hits
5214 (not strictly correct, but perhaps better than an error). */
5215
5216 if (num_defns_collected (&symbol_list_obstack) == 0)
5217 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5218 wild_match_p);
5219
5220 done:
5221 ndefns = num_defns_collected (&symbol_list_obstack);
5222 *results = defns_collected (&symbol_list_obstack, 1);
5223
5224 ndefns = remove_extra_symbols (*results, ndefns);
5225
5226 if (ndefns == 0 && full_search)
5227 cache_symbol (name0, namespace, NULL, NULL);
5228
5229 if (ndefns == 1 && full_search && cacheIfUnique)
5230 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5231
5232 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5233
5234 return ndefns;
5235 }
5236
5237 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5238 in global scopes, returning the number of matches, and setting *RESULTS
5239 to a vector of (SYM,BLOCK) tuples.
5240 See ada_lookup_symbol_list_worker for further details. */
5241
5242 int
5243 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5244 domain_enum domain, struct ada_symbol_info **results)
5245 {
5246 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5247 }
5248
5249 /* Implementation of the la_iterate_over_symbols method. */
5250
5251 static void
5252 ada_iterate_over_symbols (const struct block *block,
5253 const char *name, domain_enum domain,
5254 symbol_found_callback_ftype *callback,
5255 void *data)
5256 {
5257 int ndefs, i;
5258 struct ada_symbol_info *results;
5259
5260 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5261 for (i = 0; i < ndefs; ++i)
5262 {
5263 if (! (*callback) (results[i].sym, data))
5264 break;
5265 }
5266 }
5267
5268 /* If NAME is the name of an entity, return a string that should
5269 be used to look that entity up in Ada units. This string should
5270 be deallocated after use using xfree.
5271
5272 NAME can have any form that the "break" or "print" commands might
5273 recognize. In other words, it does not have to be the "natural"
5274 name, or the "encoded" name. */
5275
5276 char *
5277 ada_name_for_lookup (const char *name)
5278 {
5279 char *canon;
5280 int nlen = strlen (name);
5281
5282 if (name[0] == '<' && name[nlen - 1] == '>')
5283 {
5284 canon = xmalloc (nlen - 1);
5285 memcpy (canon, name + 1, nlen - 2);
5286 canon[nlen - 2] = '\0';
5287 }
5288 else
5289 canon = xstrdup (ada_encode (ada_fold_name (name)));
5290 return canon;
5291 }
5292
5293 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5294 to 1, but choosing the first symbol found if there are multiple
5295 choices.
5296
5297 The result is stored in *INFO, which must be non-NULL.
5298 If no match is found, INFO->SYM is set to NULL. */
5299
5300 void
5301 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5302 domain_enum namespace,
5303 struct ada_symbol_info *info)
5304 {
5305 struct ada_symbol_info *candidates;
5306 int n_candidates;
5307
5308 gdb_assert (info != NULL);
5309 memset (info, 0, sizeof (struct ada_symbol_info));
5310
5311 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5312 if (n_candidates == 0)
5313 return;
5314
5315 *info = candidates[0];
5316 info->sym = fixup_symbol_section (info->sym, NULL);
5317 }
5318
5319 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5320 scope and in global scopes, or NULL if none. NAME is folded and
5321 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5322 choosing the first symbol if there are multiple choices.
5323 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5324
5325 struct symbol *
5326 ada_lookup_symbol (const char *name, const struct block *block0,
5327 domain_enum namespace, int *is_a_field_of_this)
5328 {
5329 struct ada_symbol_info info;
5330
5331 if (is_a_field_of_this != NULL)
5332 *is_a_field_of_this = 0;
5333
5334 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5335 block0, namespace, &info);
5336 return info.sym;
5337 }
5338
5339 static struct symbol *
5340 ada_lookup_symbol_nonlocal (const char *name,
5341 const struct block *block,
5342 const domain_enum domain)
5343 {
5344 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5345 }
5346
5347
5348 /* True iff STR is a possible encoded suffix of a normal Ada name
5349 that is to be ignored for matching purposes. Suffixes of parallel
5350 names (e.g., XVE) are not included here. Currently, the possible suffixes
5351 are given by any of the regular expressions:
5352
5353 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5354 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5355 TKB [subprogram suffix for task bodies]
5356 _E[0-9]+[bs]$ [protected object entry suffixes]
5357 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5358
5359 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5360 match is performed. This sequence is used to differentiate homonyms,
5361 is an optional part of a valid name suffix. */
5362
5363 static int
5364 is_name_suffix (const char *str)
5365 {
5366 int k;
5367 const char *matching;
5368 const int len = strlen (str);
5369
5370 /* Skip optional leading __[0-9]+. */
5371
5372 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5373 {
5374 str += 3;
5375 while (isdigit (str[0]))
5376 str += 1;
5377 }
5378
5379 /* [.$][0-9]+ */
5380
5381 if (str[0] == '.' || str[0] == '$')
5382 {
5383 matching = str + 1;
5384 while (isdigit (matching[0]))
5385 matching += 1;
5386 if (matching[0] == '\0')
5387 return 1;
5388 }
5389
5390 /* ___[0-9]+ */
5391
5392 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5393 {
5394 matching = str + 3;
5395 while (isdigit (matching[0]))
5396 matching += 1;
5397 if (matching[0] == '\0')
5398 return 1;
5399 }
5400
5401 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5402
5403 if (strcmp (str, "TKB") == 0)
5404 return 1;
5405
5406 #if 0
5407 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5408 with a N at the end. Unfortunately, the compiler uses the same
5409 convention for other internal types it creates. So treating
5410 all entity names that end with an "N" as a name suffix causes
5411 some regressions. For instance, consider the case of an enumerated
5412 type. To support the 'Image attribute, it creates an array whose
5413 name ends with N.
5414 Having a single character like this as a suffix carrying some
5415 information is a bit risky. Perhaps we should change the encoding
5416 to be something like "_N" instead. In the meantime, do not do
5417 the following check. */
5418 /* Protected Object Subprograms */
5419 if (len == 1 && str [0] == 'N')
5420 return 1;
5421 #endif
5422
5423 /* _E[0-9]+[bs]$ */
5424 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5425 {
5426 matching = str + 3;
5427 while (isdigit (matching[0]))
5428 matching += 1;
5429 if ((matching[0] == 'b' || matching[0] == 's')
5430 && matching [1] == '\0')
5431 return 1;
5432 }
5433
5434 /* ??? We should not modify STR directly, as we are doing below. This
5435 is fine in this case, but may become problematic later if we find
5436 that this alternative did not work, and want to try matching
5437 another one from the begining of STR. Since we modified it, we
5438 won't be able to find the begining of the string anymore! */
5439 if (str[0] == 'X')
5440 {
5441 str += 1;
5442 while (str[0] != '_' && str[0] != '\0')
5443 {
5444 if (str[0] != 'n' && str[0] != 'b')
5445 return 0;
5446 str += 1;
5447 }
5448 }
5449
5450 if (str[0] == '\000')
5451 return 1;
5452
5453 if (str[0] == '_')
5454 {
5455 if (str[1] != '_' || str[2] == '\000')
5456 return 0;
5457 if (str[2] == '_')
5458 {
5459 if (strcmp (str + 3, "JM") == 0)
5460 return 1;
5461 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5462 the LJM suffix in favor of the JM one. But we will
5463 still accept LJM as a valid suffix for a reasonable
5464 amount of time, just to allow ourselves to debug programs
5465 compiled using an older version of GNAT. */
5466 if (strcmp (str + 3, "LJM") == 0)
5467 return 1;
5468 if (str[3] != 'X')
5469 return 0;
5470 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5471 || str[4] == 'U' || str[4] == 'P')
5472 return 1;
5473 if (str[4] == 'R' && str[5] != 'T')
5474 return 1;
5475 return 0;
5476 }
5477 if (!isdigit (str[2]))
5478 return 0;
5479 for (k = 3; str[k] != '\0'; k += 1)
5480 if (!isdigit (str[k]) && str[k] != '_')
5481 return 0;
5482 return 1;
5483 }
5484 if (str[0] == '$' && isdigit (str[1]))
5485 {
5486 for (k = 2; str[k] != '\0'; k += 1)
5487 if (!isdigit (str[k]) && str[k] != '_')
5488 return 0;
5489 return 1;
5490 }
5491 return 0;
5492 }
5493
5494 /* Return non-zero if the string starting at NAME and ending before
5495 NAME_END contains no capital letters. */
5496
5497 static int
5498 is_valid_name_for_wild_match (const char *name0)
5499 {
5500 const char *decoded_name = ada_decode (name0);
5501 int i;
5502
5503 /* If the decoded name starts with an angle bracket, it means that
5504 NAME0 does not follow the GNAT encoding format. It should then
5505 not be allowed as a possible wild match. */
5506 if (decoded_name[0] == '<')
5507 return 0;
5508
5509 for (i=0; decoded_name[i] != '\0'; i++)
5510 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5511 return 0;
5512
5513 return 1;
5514 }
5515
5516 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5517 that could start a simple name. Assumes that *NAMEP points into
5518 the string beginning at NAME0. */
5519
5520 static int
5521 advance_wild_match (const char **namep, const char *name0, int target0)
5522 {
5523 const char *name = *namep;
5524
5525 while (1)
5526 {
5527 int t0, t1;
5528
5529 t0 = *name;
5530 if (t0 == '_')
5531 {
5532 t1 = name[1];
5533 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5534 {
5535 name += 1;
5536 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5537 break;
5538 else
5539 name += 1;
5540 }
5541 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5542 || name[2] == target0))
5543 {
5544 name += 2;
5545 break;
5546 }
5547 else
5548 return 0;
5549 }
5550 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5551 name += 1;
5552 else
5553 return 0;
5554 }
5555
5556 *namep = name;
5557 return 1;
5558 }
5559
5560 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5561 informational suffixes of NAME (i.e., for which is_name_suffix is
5562 true). Assumes that PATN is a lower-cased Ada simple name. */
5563
5564 static int
5565 wild_match (const char *name, const char *patn)
5566 {
5567 const char *p;
5568 const char *name0 = name;
5569
5570 while (1)
5571 {
5572 const char *match = name;
5573
5574 if (*name == *patn)
5575 {
5576 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5577 if (*p != *name)
5578 break;
5579 if (*p == '\0' && is_name_suffix (name))
5580 return match != name0 && !is_valid_name_for_wild_match (name0);
5581
5582 if (name[-1] == '_')
5583 name -= 1;
5584 }
5585 if (!advance_wild_match (&name, name0, *patn))
5586 return 1;
5587 }
5588 }
5589
5590 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5591 informational suffix. */
5592
5593 static int
5594 full_match (const char *sym_name, const char *search_name)
5595 {
5596 return !match_name (sym_name, search_name, 0);
5597 }
5598
5599
5600 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5601 vector *defn_symbols, updating the list of symbols in OBSTACKP
5602 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5603 OBJFILE is the section containing BLOCK. */
5604
5605 static void
5606 ada_add_block_symbols (struct obstack *obstackp,
5607 struct block *block, const char *name,
5608 domain_enum domain, struct objfile *objfile,
5609 int wild)
5610 {
5611 struct block_iterator iter;
5612 int name_len = strlen (name);
5613 /* A matching argument symbol, if any. */
5614 struct symbol *arg_sym;
5615 /* Set true when we find a matching non-argument symbol. */
5616 int found_sym;
5617 struct symbol *sym;
5618
5619 arg_sym = NULL;
5620 found_sym = 0;
5621 if (wild)
5622 {
5623 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5624 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5625 {
5626 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5627 SYMBOL_DOMAIN (sym), domain)
5628 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5629 {
5630 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5631 continue;
5632 else if (SYMBOL_IS_ARGUMENT (sym))
5633 arg_sym = sym;
5634 else
5635 {
5636 found_sym = 1;
5637 add_defn_to_vec (obstackp,
5638 fixup_symbol_section (sym, objfile),
5639 block);
5640 }
5641 }
5642 }
5643 }
5644 else
5645 {
5646 for (sym = block_iter_match_first (block, name, full_match, &iter);
5647 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5648 {
5649 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5650 SYMBOL_DOMAIN (sym), domain))
5651 {
5652 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5653 {
5654 if (SYMBOL_IS_ARGUMENT (sym))
5655 arg_sym = sym;
5656 else
5657 {
5658 found_sym = 1;
5659 add_defn_to_vec (obstackp,
5660 fixup_symbol_section (sym, objfile),
5661 block);
5662 }
5663 }
5664 }
5665 }
5666 }
5667
5668 if (!found_sym && arg_sym != NULL)
5669 {
5670 add_defn_to_vec (obstackp,
5671 fixup_symbol_section (arg_sym, objfile),
5672 block);
5673 }
5674
5675 if (!wild)
5676 {
5677 arg_sym = NULL;
5678 found_sym = 0;
5679
5680 ALL_BLOCK_SYMBOLS (block, iter, sym)
5681 {
5682 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5683 SYMBOL_DOMAIN (sym), domain))
5684 {
5685 int cmp;
5686
5687 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5688 if (cmp == 0)
5689 {
5690 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5691 if (cmp == 0)
5692 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5693 name_len);
5694 }
5695
5696 if (cmp == 0
5697 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5698 {
5699 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5700 {
5701 if (SYMBOL_IS_ARGUMENT (sym))
5702 arg_sym = sym;
5703 else
5704 {
5705 found_sym = 1;
5706 add_defn_to_vec (obstackp,
5707 fixup_symbol_section (sym, objfile),
5708 block);
5709 }
5710 }
5711 }
5712 }
5713 }
5714
5715 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5716 They aren't parameters, right? */
5717 if (!found_sym && arg_sym != NULL)
5718 {
5719 add_defn_to_vec (obstackp,
5720 fixup_symbol_section (arg_sym, objfile),
5721 block);
5722 }
5723 }
5724 }
5725 \f
5726
5727 /* Symbol Completion */
5728
5729 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5730 name in a form that's appropriate for the completion. The result
5731 does not need to be deallocated, but is only good until the next call.
5732
5733 TEXT_LEN is equal to the length of TEXT.
5734 Perform a wild match if WILD_MATCH_P is set.
5735 ENCODED_P should be set if TEXT represents the start of a symbol name
5736 in its encoded form. */
5737
5738 static const char *
5739 symbol_completion_match (const char *sym_name,
5740 const char *text, int text_len,
5741 int wild_match_p, int encoded_p)
5742 {
5743 const int verbatim_match = (text[0] == '<');
5744 int match = 0;
5745
5746 if (verbatim_match)
5747 {
5748 /* Strip the leading angle bracket. */
5749 text = text + 1;
5750 text_len--;
5751 }
5752
5753 /* First, test against the fully qualified name of the symbol. */
5754
5755 if (strncmp (sym_name, text, text_len) == 0)
5756 match = 1;
5757
5758 if (match && !encoded_p)
5759 {
5760 /* One needed check before declaring a positive match is to verify
5761 that iff we are doing a verbatim match, the decoded version
5762 of the symbol name starts with '<'. Otherwise, this symbol name
5763 is not a suitable completion. */
5764 const char *sym_name_copy = sym_name;
5765 int has_angle_bracket;
5766
5767 sym_name = ada_decode (sym_name);
5768 has_angle_bracket = (sym_name[0] == '<');
5769 match = (has_angle_bracket == verbatim_match);
5770 sym_name = sym_name_copy;
5771 }
5772
5773 if (match && !verbatim_match)
5774 {
5775 /* When doing non-verbatim match, another check that needs to
5776 be done is to verify that the potentially matching symbol name
5777 does not include capital letters, because the ada-mode would
5778 not be able to understand these symbol names without the
5779 angle bracket notation. */
5780 const char *tmp;
5781
5782 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5783 if (*tmp != '\0')
5784 match = 0;
5785 }
5786
5787 /* Second: Try wild matching... */
5788
5789 if (!match && wild_match_p)
5790 {
5791 /* Since we are doing wild matching, this means that TEXT
5792 may represent an unqualified symbol name. We therefore must
5793 also compare TEXT against the unqualified name of the symbol. */
5794 sym_name = ada_unqualified_name (ada_decode (sym_name));
5795
5796 if (strncmp (sym_name, text, text_len) == 0)
5797 match = 1;
5798 }
5799
5800 /* Finally: If we found a mach, prepare the result to return. */
5801
5802 if (!match)
5803 return NULL;
5804
5805 if (verbatim_match)
5806 sym_name = add_angle_brackets (sym_name);
5807
5808 if (!encoded_p)
5809 sym_name = ada_decode (sym_name);
5810
5811 return sym_name;
5812 }
5813
5814 /* A companion function to ada_make_symbol_completion_list().
5815 Check if SYM_NAME represents a symbol which name would be suitable
5816 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5817 it is appended at the end of the given string vector SV.
5818
5819 ORIG_TEXT is the string original string from the user command
5820 that needs to be completed. WORD is the entire command on which
5821 completion should be performed. These two parameters are used to
5822 determine which part of the symbol name should be added to the
5823 completion vector.
5824 if WILD_MATCH_P is set, then wild matching is performed.
5825 ENCODED_P should be set if TEXT represents a symbol name in its
5826 encoded formed (in which case the completion should also be
5827 encoded). */
5828
5829 static void
5830 symbol_completion_add (VEC(char_ptr) **sv,
5831 const char *sym_name,
5832 const char *text, int text_len,
5833 const char *orig_text, const char *word,
5834 int wild_match_p, int encoded_p)
5835 {
5836 const char *match = symbol_completion_match (sym_name, text, text_len,
5837 wild_match_p, encoded_p);
5838 char *completion;
5839
5840 if (match == NULL)
5841 return;
5842
5843 /* We found a match, so add the appropriate completion to the given
5844 string vector. */
5845
5846 if (word == orig_text)
5847 {
5848 completion = xmalloc (strlen (match) + 5);
5849 strcpy (completion, match);
5850 }
5851 else if (word > orig_text)
5852 {
5853 /* Return some portion of sym_name. */
5854 completion = xmalloc (strlen (match) + 5);
5855 strcpy (completion, match + (word - orig_text));
5856 }
5857 else
5858 {
5859 /* Return some of ORIG_TEXT plus sym_name. */
5860 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5861 strncpy (completion, word, orig_text - word);
5862 completion[orig_text - word] = '\0';
5863 strcat (completion, match);
5864 }
5865
5866 VEC_safe_push (char_ptr, *sv, completion);
5867 }
5868
5869 /* An object of this type is passed as the user_data argument to the
5870 expand_partial_symbol_names method. */
5871 struct add_partial_datum
5872 {
5873 VEC(char_ptr) **completions;
5874 const char *text;
5875 int text_len;
5876 const char *text0;
5877 const char *word;
5878 int wild_match;
5879 int encoded;
5880 };
5881
5882 /* A callback for expand_partial_symbol_names. */
5883 static int
5884 ada_expand_partial_symbol_name (const char *name, void *user_data)
5885 {
5886 struct add_partial_datum *data = user_data;
5887
5888 return symbol_completion_match (name, data->text, data->text_len,
5889 data->wild_match, data->encoded) != NULL;
5890 }
5891
5892 /* Return a list of possible symbol names completing TEXT0. WORD is
5893 the entire command on which completion is made. */
5894
5895 static VEC (char_ptr) *
5896 ada_make_symbol_completion_list (const char *text0, const char *word,
5897 enum type_code code)
5898 {
5899 char *text;
5900 int text_len;
5901 int wild_match_p;
5902 int encoded_p;
5903 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5904 struct symbol *sym;
5905 struct symtab *s;
5906 struct minimal_symbol *msymbol;
5907 struct objfile *objfile;
5908 struct block *b, *surrounding_static_block = 0;
5909 int i;
5910 struct block_iterator iter;
5911 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5912
5913 gdb_assert (code == TYPE_CODE_UNDEF);
5914
5915 if (text0[0] == '<')
5916 {
5917 text = xstrdup (text0);
5918 make_cleanup (xfree, text);
5919 text_len = strlen (text);
5920 wild_match_p = 0;
5921 encoded_p = 1;
5922 }
5923 else
5924 {
5925 text = xstrdup (ada_encode (text0));
5926 make_cleanup (xfree, text);
5927 text_len = strlen (text);
5928 for (i = 0; i < text_len; i++)
5929 text[i] = tolower (text[i]);
5930
5931 encoded_p = (strstr (text0, "__") != NULL);
5932 /* If the name contains a ".", then the user is entering a fully
5933 qualified entity name, and the match must not be done in wild
5934 mode. Similarly, if the user wants to complete what looks like
5935 an encoded name, the match must not be done in wild mode. */
5936 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5937 }
5938
5939 /* First, look at the partial symtab symbols. */
5940 {
5941 struct add_partial_datum data;
5942
5943 data.completions = &completions;
5944 data.text = text;
5945 data.text_len = text_len;
5946 data.text0 = text0;
5947 data.word = word;
5948 data.wild_match = wild_match_p;
5949 data.encoded = encoded_p;
5950 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5951 }
5952
5953 /* At this point scan through the misc symbol vectors and add each
5954 symbol you find to the list. Eventually we want to ignore
5955 anything that isn't a text symbol (everything else will be
5956 handled by the psymtab code above). */
5957
5958 ALL_MSYMBOLS (objfile, msymbol)
5959 {
5960 QUIT;
5961 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5962 text, text_len, text0, word, wild_match_p,
5963 encoded_p);
5964 }
5965
5966 /* Search upwards from currently selected frame (so that we can
5967 complete on local vars. */
5968
5969 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5970 {
5971 if (!BLOCK_SUPERBLOCK (b))
5972 surrounding_static_block = b; /* For elmin of dups */
5973
5974 ALL_BLOCK_SYMBOLS (b, iter, sym)
5975 {
5976 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5977 text, text_len, text0, word,
5978 wild_match_p, encoded_p);
5979 }
5980 }
5981
5982 /* Go through the symtabs and check the externs and statics for
5983 symbols which match. */
5984
5985 ALL_SYMTABS (objfile, s)
5986 {
5987 QUIT;
5988 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5989 ALL_BLOCK_SYMBOLS (b, iter, sym)
5990 {
5991 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5992 text, text_len, text0, word,
5993 wild_match_p, encoded_p);
5994 }
5995 }
5996
5997 ALL_SYMTABS (objfile, s)
5998 {
5999 QUIT;
6000 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6001 /* Don't do this block twice. */
6002 if (b == surrounding_static_block)
6003 continue;
6004 ALL_BLOCK_SYMBOLS (b, iter, sym)
6005 {
6006 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6007 text, text_len, text0, word,
6008 wild_match_p, encoded_p);
6009 }
6010 }
6011
6012 do_cleanups (old_chain);
6013 return completions;
6014 }
6015
6016 /* Field Access */
6017
6018 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6019 for tagged types. */
6020
6021 static int
6022 ada_is_dispatch_table_ptr_type (struct type *type)
6023 {
6024 const char *name;
6025
6026 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6027 return 0;
6028
6029 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6030 if (name == NULL)
6031 return 0;
6032
6033 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6034 }
6035
6036 /* Return non-zero if TYPE is an interface tag. */
6037
6038 static int
6039 ada_is_interface_tag (struct type *type)
6040 {
6041 const char *name = TYPE_NAME (type);
6042
6043 if (name == NULL)
6044 return 0;
6045
6046 return (strcmp (name, "ada__tags__interface_tag") == 0);
6047 }
6048
6049 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6050 to be invisible to users. */
6051
6052 int
6053 ada_is_ignored_field (struct type *type, int field_num)
6054 {
6055 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6056 return 1;
6057
6058 /* Check the name of that field. */
6059 {
6060 const char *name = TYPE_FIELD_NAME (type, field_num);
6061
6062 /* Anonymous field names should not be printed.
6063 brobecker/2007-02-20: I don't think this can actually happen
6064 but we don't want to print the value of annonymous fields anyway. */
6065 if (name == NULL)
6066 return 1;
6067
6068 /* Normally, fields whose name start with an underscore ("_")
6069 are fields that have been internally generated by the compiler,
6070 and thus should not be printed. The "_parent" field is special,
6071 however: This is a field internally generated by the compiler
6072 for tagged types, and it contains the components inherited from
6073 the parent type. This field should not be printed as is, but
6074 should not be ignored either. */
6075 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6076 return 1;
6077 }
6078
6079 /* If this is the dispatch table of a tagged type or an interface tag,
6080 then ignore. */
6081 if (ada_is_tagged_type (type, 1)
6082 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6083 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6084 return 1;
6085
6086 /* Not a special field, so it should not be ignored. */
6087 return 0;
6088 }
6089
6090 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6091 pointer or reference type whose ultimate target has a tag field. */
6092
6093 int
6094 ada_is_tagged_type (struct type *type, int refok)
6095 {
6096 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6097 }
6098
6099 /* True iff TYPE represents the type of X'Tag */
6100
6101 int
6102 ada_is_tag_type (struct type *type)
6103 {
6104 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6105 return 0;
6106 else
6107 {
6108 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6109
6110 return (name != NULL
6111 && strcmp (name, "ada__tags__dispatch_table") == 0);
6112 }
6113 }
6114
6115 /* The type of the tag on VAL. */
6116
6117 struct type *
6118 ada_tag_type (struct value *val)
6119 {
6120 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6121 }
6122
6123 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6124 retired at Ada 05). */
6125
6126 static int
6127 is_ada95_tag (struct value *tag)
6128 {
6129 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6130 }
6131
6132 /* The value of the tag on VAL. */
6133
6134 struct value *
6135 ada_value_tag (struct value *val)
6136 {
6137 return ada_value_struct_elt (val, "_tag", 0);
6138 }
6139
6140 /* The value of the tag on the object of type TYPE whose contents are
6141 saved at VALADDR, if it is non-null, or is at memory address
6142 ADDRESS. */
6143
6144 static struct value *
6145 value_tag_from_contents_and_address (struct type *type,
6146 const gdb_byte *valaddr,
6147 CORE_ADDR address)
6148 {
6149 int tag_byte_offset;
6150 struct type *tag_type;
6151
6152 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6153 NULL, NULL, NULL))
6154 {
6155 const gdb_byte *valaddr1 = ((valaddr == NULL)
6156 ? NULL
6157 : valaddr + tag_byte_offset);
6158 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6159
6160 return value_from_contents_and_address (tag_type, valaddr1, address1);
6161 }
6162 return NULL;
6163 }
6164
6165 static struct type *
6166 type_from_tag (struct value *tag)
6167 {
6168 const char *type_name = ada_tag_name (tag);
6169
6170 if (type_name != NULL)
6171 return ada_find_any_type (ada_encode (type_name));
6172 return NULL;
6173 }
6174
6175 /* Given a value OBJ of a tagged type, return a value of this
6176 type at the base address of the object. The base address, as
6177 defined in Ada.Tags, it is the address of the primary tag of
6178 the object, and therefore where the field values of its full
6179 view can be fetched. */
6180
6181 struct value *
6182 ada_tag_value_at_base_address (struct value *obj)
6183 {
6184 volatile struct gdb_exception e;
6185 struct value *val;
6186 LONGEST offset_to_top = 0;
6187 struct type *ptr_type, *obj_type;
6188 struct value *tag;
6189 CORE_ADDR base_address;
6190
6191 obj_type = value_type (obj);
6192
6193 /* It is the responsability of the caller to deref pointers. */
6194
6195 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6196 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6197 return obj;
6198
6199 tag = ada_value_tag (obj);
6200 if (!tag)
6201 return obj;
6202
6203 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6204
6205 if (is_ada95_tag (tag))
6206 return obj;
6207
6208 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6209 ptr_type = lookup_pointer_type (ptr_type);
6210 val = value_cast (ptr_type, tag);
6211 if (!val)
6212 return obj;
6213
6214 /* It is perfectly possible that an exception be raised while
6215 trying to determine the base address, just like for the tag;
6216 see ada_tag_name for more details. We do not print the error
6217 message for the same reason. */
6218
6219 TRY_CATCH (e, RETURN_MASK_ERROR)
6220 {
6221 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6222 }
6223
6224 if (e.reason < 0)
6225 return obj;
6226
6227 /* If offset is null, nothing to do. */
6228
6229 if (offset_to_top == 0)
6230 return obj;
6231
6232 /* -1 is a special case in Ada.Tags; however, what should be done
6233 is not quite clear from the documentation. So do nothing for
6234 now. */
6235
6236 if (offset_to_top == -1)
6237 return obj;
6238
6239 base_address = value_address (obj) - offset_to_top;
6240 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6241
6242 /* Make sure that we have a proper tag at the new address.
6243 Otherwise, offset_to_top is bogus (which can happen when
6244 the object is not initialized yet). */
6245
6246 if (!tag)
6247 return obj;
6248
6249 obj_type = type_from_tag (tag);
6250
6251 if (!obj_type)
6252 return obj;
6253
6254 return value_from_contents_and_address (obj_type, NULL, base_address);
6255 }
6256
6257 /* Return the "ada__tags__type_specific_data" type. */
6258
6259 static struct type *
6260 ada_get_tsd_type (struct inferior *inf)
6261 {
6262 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6263
6264 if (data->tsd_type == 0)
6265 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6266 return data->tsd_type;
6267 }
6268
6269 /* Return the TSD (type-specific data) associated to the given TAG.
6270 TAG is assumed to be the tag of a tagged-type entity.
6271
6272 May return NULL if we are unable to get the TSD. */
6273
6274 static struct value *
6275 ada_get_tsd_from_tag (struct value *tag)
6276 {
6277 struct value *val;
6278 struct type *type;
6279
6280 /* First option: The TSD is simply stored as a field of our TAG.
6281 Only older versions of GNAT would use this format, but we have
6282 to test it first, because there are no visible markers for
6283 the current approach except the absence of that field. */
6284
6285 val = ada_value_struct_elt (tag, "tsd", 1);
6286 if (val)
6287 return val;
6288
6289 /* Try the second representation for the dispatch table (in which
6290 there is no explicit 'tsd' field in the referent of the tag pointer,
6291 and instead the tsd pointer is stored just before the dispatch
6292 table. */
6293
6294 type = ada_get_tsd_type (current_inferior());
6295 if (type == NULL)
6296 return NULL;
6297 type = lookup_pointer_type (lookup_pointer_type (type));
6298 val = value_cast (type, tag);
6299 if (val == NULL)
6300 return NULL;
6301 return value_ind (value_ptradd (val, -1));
6302 }
6303
6304 /* Given the TSD of a tag (type-specific data), return a string
6305 containing the name of the associated type.
6306
6307 The returned value is good until the next call. May return NULL
6308 if we are unable to determine the tag name. */
6309
6310 static char *
6311 ada_tag_name_from_tsd (struct value *tsd)
6312 {
6313 static char name[1024];
6314 char *p;
6315 struct value *val;
6316
6317 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6318 if (val == NULL)
6319 return NULL;
6320 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6321 for (p = name; *p != '\0'; p += 1)
6322 if (isalpha (*p))
6323 *p = tolower (*p);
6324 return name;
6325 }
6326
6327 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6328 a C string.
6329
6330 Return NULL if the TAG is not an Ada tag, or if we were unable to
6331 determine the name of that tag. The result is good until the next
6332 call. */
6333
6334 const char *
6335 ada_tag_name (struct value *tag)
6336 {
6337 volatile struct gdb_exception e;
6338 char *name = NULL;
6339
6340 if (!ada_is_tag_type (value_type (tag)))
6341 return NULL;
6342
6343 /* It is perfectly possible that an exception be raised while trying
6344 to determine the TAG's name, even under normal circumstances:
6345 The associated variable may be uninitialized or corrupted, for
6346 instance. We do not let any exception propagate past this point.
6347 instead we return NULL.
6348
6349 We also do not print the error message either (which often is very
6350 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6351 the caller print a more meaningful message if necessary. */
6352 TRY_CATCH (e, RETURN_MASK_ERROR)
6353 {
6354 struct value *tsd = ada_get_tsd_from_tag (tag);
6355
6356 if (tsd != NULL)
6357 name = ada_tag_name_from_tsd (tsd);
6358 }
6359
6360 return name;
6361 }
6362
6363 /* The parent type of TYPE, or NULL if none. */
6364
6365 struct type *
6366 ada_parent_type (struct type *type)
6367 {
6368 int i;
6369
6370 type = ada_check_typedef (type);
6371
6372 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6373 return NULL;
6374
6375 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6376 if (ada_is_parent_field (type, i))
6377 {
6378 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6379
6380 /* If the _parent field is a pointer, then dereference it. */
6381 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6382 parent_type = TYPE_TARGET_TYPE (parent_type);
6383 /* If there is a parallel XVS type, get the actual base type. */
6384 parent_type = ada_get_base_type (parent_type);
6385
6386 return ada_check_typedef (parent_type);
6387 }
6388
6389 return NULL;
6390 }
6391
6392 /* True iff field number FIELD_NUM of structure type TYPE contains the
6393 parent-type (inherited) fields of a derived type. Assumes TYPE is
6394 a structure type with at least FIELD_NUM+1 fields. */
6395
6396 int
6397 ada_is_parent_field (struct type *type, int field_num)
6398 {
6399 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6400
6401 return (name != NULL
6402 && (strncmp (name, "PARENT", 6) == 0
6403 || strncmp (name, "_parent", 7) == 0));
6404 }
6405
6406 /* True iff field number FIELD_NUM of structure type TYPE is a
6407 transparent wrapper field (which should be silently traversed when doing
6408 field selection and flattened when printing). Assumes TYPE is a
6409 structure type with at least FIELD_NUM+1 fields. Such fields are always
6410 structures. */
6411
6412 int
6413 ada_is_wrapper_field (struct type *type, int field_num)
6414 {
6415 const char *name = TYPE_FIELD_NAME (type, field_num);
6416
6417 return (name != NULL
6418 && (strncmp (name, "PARENT", 6) == 0
6419 || strcmp (name, "REP") == 0
6420 || strncmp (name, "_parent", 7) == 0
6421 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6422 }
6423
6424 /* True iff field number FIELD_NUM of structure or union type TYPE
6425 is a variant wrapper. Assumes TYPE is a structure type with at least
6426 FIELD_NUM+1 fields. */
6427
6428 int
6429 ada_is_variant_part (struct type *type, int field_num)
6430 {
6431 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6432
6433 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6434 || (is_dynamic_field (type, field_num)
6435 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6436 == TYPE_CODE_UNION)));
6437 }
6438
6439 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6440 whose discriminants are contained in the record type OUTER_TYPE,
6441 returns the type of the controlling discriminant for the variant.
6442 May return NULL if the type could not be found. */
6443
6444 struct type *
6445 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6446 {
6447 char *name = ada_variant_discrim_name (var_type);
6448
6449 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6450 }
6451
6452 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6453 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6454 represents a 'when others' clause; otherwise 0. */
6455
6456 int
6457 ada_is_others_clause (struct type *type, int field_num)
6458 {
6459 const char *name = TYPE_FIELD_NAME (type, field_num);
6460
6461 return (name != NULL && name[0] == 'O');
6462 }
6463
6464 /* Assuming that TYPE0 is the type of the variant part of a record,
6465 returns the name of the discriminant controlling the variant.
6466 The value is valid until the next call to ada_variant_discrim_name. */
6467
6468 char *
6469 ada_variant_discrim_name (struct type *type0)
6470 {
6471 static char *result = NULL;
6472 static size_t result_len = 0;
6473 struct type *type;
6474 const char *name;
6475 const char *discrim_end;
6476 const char *discrim_start;
6477
6478 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6479 type = TYPE_TARGET_TYPE (type0);
6480 else
6481 type = type0;
6482
6483 name = ada_type_name (type);
6484
6485 if (name == NULL || name[0] == '\000')
6486 return "";
6487
6488 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6489 discrim_end -= 1)
6490 {
6491 if (strncmp (discrim_end, "___XVN", 6) == 0)
6492 break;
6493 }
6494 if (discrim_end == name)
6495 return "";
6496
6497 for (discrim_start = discrim_end; discrim_start != name + 3;
6498 discrim_start -= 1)
6499 {
6500 if (discrim_start == name + 1)
6501 return "";
6502 if ((discrim_start > name + 3
6503 && strncmp (discrim_start - 3, "___", 3) == 0)
6504 || discrim_start[-1] == '.')
6505 break;
6506 }
6507
6508 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6509 strncpy (result, discrim_start, discrim_end - discrim_start);
6510 result[discrim_end - discrim_start] = '\0';
6511 return result;
6512 }
6513
6514 /* Scan STR for a subtype-encoded number, beginning at position K.
6515 Put the position of the character just past the number scanned in
6516 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6517 Return 1 if there was a valid number at the given position, and 0
6518 otherwise. A "subtype-encoded" number consists of the absolute value
6519 in decimal, followed by the letter 'm' to indicate a negative number.
6520 Assumes 0m does not occur. */
6521
6522 int
6523 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6524 {
6525 ULONGEST RU;
6526
6527 if (!isdigit (str[k]))
6528 return 0;
6529
6530 /* Do it the hard way so as not to make any assumption about
6531 the relationship of unsigned long (%lu scan format code) and
6532 LONGEST. */
6533 RU = 0;
6534 while (isdigit (str[k]))
6535 {
6536 RU = RU * 10 + (str[k] - '0');
6537 k += 1;
6538 }
6539
6540 if (str[k] == 'm')
6541 {
6542 if (R != NULL)
6543 *R = (-(LONGEST) (RU - 1)) - 1;
6544 k += 1;
6545 }
6546 else if (R != NULL)
6547 *R = (LONGEST) RU;
6548
6549 /* NOTE on the above: Technically, C does not say what the results of
6550 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6551 number representable as a LONGEST (although either would probably work
6552 in most implementations). When RU>0, the locution in the then branch
6553 above is always equivalent to the negative of RU. */
6554
6555 if (new_k != NULL)
6556 *new_k = k;
6557 return 1;
6558 }
6559
6560 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6561 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6562 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6563
6564 int
6565 ada_in_variant (LONGEST val, struct type *type, int field_num)
6566 {
6567 const char *name = TYPE_FIELD_NAME (type, field_num);
6568 int p;
6569
6570 p = 0;
6571 while (1)
6572 {
6573 switch (name[p])
6574 {
6575 case '\0':
6576 return 0;
6577 case 'S':
6578 {
6579 LONGEST W;
6580
6581 if (!ada_scan_number (name, p + 1, &W, &p))
6582 return 0;
6583 if (val == W)
6584 return 1;
6585 break;
6586 }
6587 case 'R':
6588 {
6589 LONGEST L, U;
6590
6591 if (!ada_scan_number (name, p + 1, &L, &p)
6592 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6593 return 0;
6594 if (val >= L && val <= U)
6595 return 1;
6596 break;
6597 }
6598 case 'O':
6599 return 1;
6600 default:
6601 return 0;
6602 }
6603 }
6604 }
6605
6606 /* FIXME: Lots of redundancy below. Try to consolidate. */
6607
6608 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6609 ARG_TYPE, extract and return the value of one of its (non-static)
6610 fields. FIELDNO says which field. Differs from value_primitive_field
6611 only in that it can handle packed values of arbitrary type. */
6612
6613 static struct value *
6614 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6615 struct type *arg_type)
6616 {
6617 struct type *type;
6618
6619 arg_type = ada_check_typedef (arg_type);
6620 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6621
6622 /* Handle packed fields. */
6623
6624 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6625 {
6626 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6627 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6628
6629 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6630 offset + bit_pos / 8,
6631 bit_pos % 8, bit_size, type);
6632 }
6633 else
6634 return value_primitive_field (arg1, offset, fieldno, arg_type);
6635 }
6636
6637 /* Find field with name NAME in object of type TYPE. If found,
6638 set the following for each argument that is non-null:
6639 - *FIELD_TYPE_P to the field's type;
6640 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6641 an object of that type;
6642 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6643 - *BIT_SIZE_P to its size in bits if the field is packed, and
6644 0 otherwise;
6645 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6646 fields up to but not including the desired field, or by the total
6647 number of fields if not found. A NULL value of NAME never
6648 matches; the function just counts visible fields in this case.
6649
6650 Returns 1 if found, 0 otherwise. */
6651
6652 static int
6653 find_struct_field (const char *name, struct type *type, int offset,
6654 struct type **field_type_p,
6655 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6656 int *index_p)
6657 {
6658 int i;
6659
6660 type = ada_check_typedef (type);
6661
6662 if (field_type_p != NULL)
6663 *field_type_p = NULL;
6664 if (byte_offset_p != NULL)
6665 *byte_offset_p = 0;
6666 if (bit_offset_p != NULL)
6667 *bit_offset_p = 0;
6668 if (bit_size_p != NULL)
6669 *bit_size_p = 0;
6670
6671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6672 {
6673 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6674 int fld_offset = offset + bit_pos / 8;
6675 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6676
6677 if (t_field_name == NULL)
6678 continue;
6679
6680 else if (name != NULL && field_name_match (t_field_name, name))
6681 {
6682 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6683
6684 if (field_type_p != NULL)
6685 *field_type_p = TYPE_FIELD_TYPE (type, i);
6686 if (byte_offset_p != NULL)
6687 *byte_offset_p = fld_offset;
6688 if (bit_offset_p != NULL)
6689 *bit_offset_p = bit_pos % 8;
6690 if (bit_size_p != NULL)
6691 *bit_size_p = bit_size;
6692 return 1;
6693 }
6694 else if (ada_is_wrapper_field (type, i))
6695 {
6696 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6697 field_type_p, byte_offset_p, bit_offset_p,
6698 bit_size_p, index_p))
6699 return 1;
6700 }
6701 else if (ada_is_variant_part (type, i))
6702 {
6703 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6704 fixed type?? */
6705 int j;
6706 struct type *field_type
6707 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6708
6709 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6710 {
6711 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6712 fld_offset
6713 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6714 field_type_p, byte_offset_p,
6715 bit_offset_p, bit_size_p, index_p))
6716 return 1;
6717 }
6718 }
6719 else if (index_p != NULL)
6720 *index_p += 1;
6721 }
6722 return 0;
6723 }
6724
6725 /* Number of user-visible fields in record type TYPE. */
6726
6727 static int
6728 num_visible_fields (struct type *type)
6729 {
6730 int n;
6731
6732 n = 0;
6733 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6734 return n;
6735 }
6736
6737 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6738 and search in it assuming it has (class) type TYPE.
6739 If found, return value, else return NULL.
6740
6741 Searches recursively through wrapper fields (e.g., '_parent'). */
6742
6743 static struct value *
6744 ada_search_struct_field (char *name, struct value *arg, int offset,
6745 struct type *type)
6746 {
6747 int i;
6748
6749 type = ada_check_typedef (type);
6750 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6751 {
6752 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6753
6754 if (t_field_name == NULL)
6755 continue;
6756
6757 else if (field_name_match (t_field_name, name))
6758 return ada_value_primitive_field (arg, offset, i, type);
6759
6760 else if (ada_is_wrapper_field (type, i))
6761 {
6762 struct value *v = /* Do not let indent join lines here. */
6763 ada_search_struct_field (name, arg,
6764 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6765 TYPE_FIELD_TYPE (type, i));
6766
6767 if (v != NULL)
6768 return v;
6769 }
6770
6771 else if (ada_is_variant_part (type, i))
6772 {
6773 /* PNH: Do we ever get here? See find_struct_field. */
6774 int j;
6775 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6776 i));
6777 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6778
6779 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6780 {
6781 struct value *v = ada_search_struct_field /* Force line
6782 break. */
6783 (name, arg,
6784 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6785 TYPE_FIELD_TYPE (field_type, j));
6786
6787 if (v != NULL)
6788 return v;
6789 }
6790 }
6791 }
6792 return NULL;
6793 }
6794
6795 static struct value *ada_index_struct_field_1 (int *, struct value *,
6796 int, struct type *);
6797
6798
6799 /* Return field #INDEX in ARG, where the index is that returned by
6800 * find_struct_field through its INDEX_P argument. Adjust the address
6801 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6802 * If found, return value, else return NULL. */
6803
6804 static struct value *
6805 ada_index_struct_field (int index, struct value *arg, int offset,
6806 struct type *type)
6807 {
6808 return ada_index_struct_field_1 (&index, arg, offset, type);
6809 }
6810
6811
6812 /* Auxiliary function for ada_index_struct_field. Like
6813 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6814 * *INDEX_P. */
6815
6816 static struct value *
6817 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6818 struct type *type)
6819 {
6820 int i;
6821 type = ada_check_typedef (type);
6822
6823 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6824 {
6825 if (TYPE_FIELD_NAME (type, i) == NULL)
6826 continue;
6827 else if (ada_is_wrapper_field (type, i))
6828 {
6829 struct value *v = /* Do not let indent join lines here. */
6830 ada_index_struct_field_1 (index_p, arg,
6831 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6832 TYPE_FIELD_TYPE (type, i));
6833
6834 if (v != NULL)
6835 return v;
6836 }
6837
6838 else if (ada_is_variant_part (type, i))
6839 {
6840 /* PNH: Do we ever get here? See ada_search_struct_field,
6841 find_struct_field. */
6842 error (_("Cannot assign this kind of variant record"));
6843 }
6844 else if (*index_p == 0)
6845 return ada_value_primitive_field (arg, offset, i, type);
6846 else
6847 *index_p -= 1;
6848 }
6849 return NULL;
6850 }
6851
6852 /* Given ARG, a value of type (pointer or reference to a)*
6853 structure/union, extract the component named NAME from the ultimate
6854 target structure/union and return it as a value with its
6855 appropriate type.
6856
6857 The routine searches for NAME among all members of the structure itself
6858 and (recursively) among all members of any wrapper members
6859 (e.g., '_parent').
6860
6861 If NO_ERR, then simply return NULL in case of error, rather than
6862 calling error. */
6863
6864 struct value *
6865 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6866 {
6867 struct type *t, *t1;
6868 struct value *v;
6869
6870 v = NULL;
6871 t1 = t = ada_check_typedef (value_type (arg));
6872 if (TYPE_CODE (t) == TYPE_CODE_REF)
6873 {
6874 t1 = TYPE_TARGET_TYPE (t);
6875 if (t1 == NULL)
6876 goto BadValue;
6877 t1 = ada_check_typedef (t1);
6878 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6879 {
6880 arg = coerce_ref (arg);
6881 t = t1;
6882 }
6883 }
6884
6885 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6886 {
6887 t1 = TYPE_TARGET_TYPE (t);
6888 if (t1 == NULL)
6889 goto BadValue;
6890 t1 = ada_check_typedef (t1);
6891 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6892 {
6893 arg = value_ind (arg);
6894 t = t1;
6895 }
6896 else
6897 break;
6898 }
6899
6900 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6901 goto BadValue;
6902
6903 if (t1 == t)
6904 v = ada_search_struct_field (name, arg, 0, t);
6905 else
6906 {
6907 int bit_offset, bit_size, byte_offset;
6908 struct type *field_type;
6909 CORE_ADDR address;
6910
6911 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6912 address = value_address (ada_value_ind (arg));
6913 else
6914 address = value_address (ada_coerce_ref (arg));
6915
6916 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6917 if (find_struct_field (name, t1, 0,
6918 &field_type, &byte_offset, &bit_offset,
6919 &bit_size, NULL))
6920 {
6921 if (bit_size != 0)
6922 {
6923 if (TYPE_CODE (t) == TYPE_CODE_REF)
6924 arg = ada_coerce_ref (arg);
6925 else
6926 arg = ada_value_ind (arg);
6927 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6928 bit_offset, bit_size,
6929 field_type);
6930 }
6931 else
6932 v = value_at_lazy (field_type, address + byte_offset);
6933 }
6934 }
6935
6936 if (v != NULL || no_err)
6937 return v;
6938 else
6939 error (_("There is no member named %s."), name);
6940
6941 BadValue:
6942 if (no_err)
6943 return NULL;
6944 else
6945 error (_("Attempt to extract a component of "
6946 "a value that is not a record."));
6947 }
6948
6949 /* Given a type TYPE, look up the type of the component of type named NAME.
6950 If DISPP is non-null, add its byte displacement from the beginning of a
6951 structure (pointed to by a value) of type TYPE to *DISPP (does not
6952 work for packed fields).
6953
6954 Matches any field whose name has NAME as a prefix, possibly
6955 followed by "___".
6956
6957 TYPE can be either a struct or union. If REFOK, TYPE may also
6958 be a (pointer or reference)+ to a struct or union, and the
6959 ultimate target type will be searched.
6960
6961 Looks recursively into variant clauses and parent types.
6962
6963 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6964 TYPE is not a type of the right kind. */
6965
6966 static struct type *
6967 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6968 int noerr, int *dispp)
6969 {
6970 int i;
6971
6972 if (name == NULL)
6973 goto BadName;
6974
6975 if (refok && type != NULL)
6976 while (1)
6977 {
6978 type = ada_check_typedef (type);
6979 if (TYPE_CODE (type) != TYPE_CODE_PTR
6980 && TYPE_CODE (type) != TYPE_CODE_REF)
6981 break;
6982 type = TYPE_TARGET_TYPE (type);
6983 }
6984
6985 if (type == NULL
6986 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6987 && TYPE_CODE (type) != TYPE_CODE_UNION))
6988 {
6989 if (noerr)
6990 return NULL;
6991 else
6992 {
6993 target_terminal_ours ();
6994 gdb_flush (gdb_stdout);
6995 if (type == NULL)
6996 error (_("Type (null) is not a structure or union type"));
6997 else
6998 {
6999 /* XXX: type_sprint */
7000 fprintf_unfiltered (gdb_stderr, _("Type "));
7001 type_print (type, "", gdb_stderr, -1);
7002 error (_(" is not a structure or union type"));
7003 }
7004 }
7005 }
7006
7007 type = to_static_fixed_type (type);
7008
7009 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7010 {
7011 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7012 struct type *t;
7013 int disp;
7014
7015 if (t_field_name == NULL)
7016 continue;
7017
7018 else if (field_name_match (t_field_name, name))
7019 {
7020 if (dispp != NULL)
7021 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7022 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7023 }
7024
7025 else if (ada_is_wrapper_field (type, i))
7026 {
7027 disp = 0;
7028 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7029 0, 1, &disp);
7030 if (t != NULL)
7031 {
7032 if (dispp != NULL)
7033 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7034 return t;
7035 }
7036 }
7037
7038 else if (ada_is_variant_part (type, i))
7039 {
7040 int j;
7041 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7042 i));
7043
7044 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7045 {
7046 /* FIXME pnh 2008/01/26: We check for a field that is
7047 NOT wrapped in a struct, since the compiler sometimes
7048 generates these for unchecked variant types. Revisit
7049 if the compiler changes this practice. */
7050 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7051 disp = 0;
7052 if (v_field_name != NULL
7053 && field_name_match (v_field_name, name))
7054 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7055 else
7056 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7057 j),
7058 name, 0, 1, &disp);
7059
7060 if (t != NULL)
7061 {
7062 if (dispp != NULL)
7063 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7064 return t;
7065 }
7066 }
7067 }
7068
7069 }
7070
7071 BadName:
7072 if (!noerr)
7073 {
7074 target_terminal_ours ();
7075 gdb_flush (gdb_stdout);
7076 if (name == NULL)
7077 {
7078 /* XXX: type_sprint */
7079 fprintf_unfiltered (gdb_stderr, _("Type "));
7080 type_print (type, "", gdb_stderr, -1);
7081 error (_(" has no component named <null>"));
7082 }
7083 else
7084 {
7085 /* XXX: type_sprint */
7086 fprintf_unfiltered (gdb_stderr, _("Type "));
7087 type_print (type, "", gdb_stderr, -1);
7088 error (_(" has no component named %s"), name);
7089 }
7090 }
7091
7092 return NULL;
7093 }
7094
7095 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7096 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7097 represents an unchecked union (that is, the variant part of a
7098 record that is named in an Unchecked_Union pragma). */
7099
7100 static int
7101 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7102 {
7103 char *discrim_name = ada_variant_discrim_name (var_type);
7104
7105 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7106 == NULL);
7107 }
7108
7109
7110 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7111 within a value of type OUTER_TYPE that is stored in GDB at
7112 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7113 numbering from 0) is applicable. Returns -1 if none are. */
7114
7115 int
7116 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7117 const gdb_byte *outer_valaddr)
7118 {
7119 int others_clause;
7120 int i;
7121 char *discrim_name = ada_variant_discrim_name (var_type);
7122 struct value *outer;
7123 struct value *discrim;
7124 LONGEST discrim_val;
7125
7126 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7127 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7128 if (discrim == NULL)
7129 return -1;
7130 discrim_val = value_as_long (discrim);
7131
7132 others_clause = -1;
7133 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7134 {
7135 if (ada_is_others_clause (var_type, i))
7136 others_clause = i;
7137 else if (ada_in_variant (discrim_val, var_type, i))
7138 return i;
7139 }
7140
7141 return others_clause;
7142 }
7143 \f
7144
7145
7146 /* Dynamic-Sized Records */
7147
7148 /* Strategy: The type ostensibly attached to a value with dynamic size
7149 (i.e., a size that is not statically recorded in the debugging
7150 data) does not accurately reflect the size or layout of the value.
7151 Our strategy is to convert these values to values with accurate,
7152 conventional types that are constructed on the fly. */
7153
7154 /* There is a subtle and tricky problem here. In general, we cannot
7155 determine the size of dynamic records without its data. However,
7156 the 'struct value' data structure, which GDB uses to represent
7157 quantities in the inferior process (the target), requires the size
7158 of the type at the time of its allocation in order to reserve space
7159 for GDB's internal copy of the data. That's why the
7160 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7161 rather than struct value*s.
7162
7163 However, GDB's internal history variables ($1, $2, etc.) are
7164 struct value*s containing internal copies of the data that are not, in
7165 general, the same as the data at their corresponding addresses in
7166 the target. Fortunately, the types we give to these values are all
7167 conventional, fixed-size types (as per the strategy described
7168 above), so that we don't usually have to perform the
7169 'to_fixed_xxx_type' conversions to look at their values.
7170 Unfortunately, there is one exception: if one of the internal
7171 history variables is an array whose elements are unconstrained
7172 records, then we will need to create distinct fixed types for each
7173 element selected. */
7174
7175 /* The upshot of all of this is that many routines take a (type, host
7176 address, target address) triple as arguments to represent a value.
7177 The host address, if non-null, is supposed to contain an internal
7178 copy of the relevant data; otherwise, the program is to consult the
7179 target at the target address. */
7180
7181 /* Assuming that VAL0 represents a pointer value, the result of
7182 dereferencing it. Differs from value_ind in its treatment of
7183 dynamic-sized types. */
7184
7185 struct value *
7186 ada_value_ind (struct value *val0)
7187 {
7188 struct value *val = value_ind (val0);
7189
7190 if (ada_is_tagged_type (value_type (val), 0))
7191 val = ada_tag_value_at_base_address (val);
7192
7193 return ada_to_fixed_value (val);
7194 }
7195
7196 /* The value resulting from dereferencing any "reference to"
7197 qualifiers on VAL0. */
7198
7199 static struct value *
7200 ada_coerce_ref (struct value *val0)
7201 {
7202 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7203 {
7204 struct value *val = val0;
7205
7206 val = coerce_ref (val);
7207
7208 if (ada_is_tagged_type (value_type (val), 0))
7209 val = ada_tag_value_at_base_address (val);
7210
7211 return ada_to_fixed_value (val);
7212 }
7213 else
7214 return val0;
7215 }
7216
7217 /* Return OFF rounded upward if necessary to a multiple of
7218 ALIGNMENT (a power of 2). */
7219
7220 static unsigned int
7221 align_value (unsigned int off, unsigned int alignment)
7222 {
7223 return (off + alignment - 1) & ~(alignment - 1);
7224 }
7225
7226 /* Return the bit alignment required for field #F of template type TYPE. */
7227
7228 static unsigned int
7229 field_alignment (struct type *type, int f)
7230 {
7231 const char *name = TYPE_FIELD_NAME (type, f);
7232 int len;
7233 int align_offset;
7234
7235 /* The field name should never be null, unless the debugging information
7236 is somehow malformed. In this case, we assume the field does not
7237 require any alignment. */
7238 if (name == NULL)
7239 return 1;
7240
7241 len = strlen (name);
7242
7243 if (!isdigit (name[len - 1]))
7244 return 1;
7245
7246 if (isdigit (name[len - 2]))
7247 align_offset = len - 2;
7248 else
7249 align_offset = len - 1;
7250
7251 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7252 return TARGET_CHAR_BIT;
7253
7254 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7255 }
7256
7257 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7258
7259 static struct symbol *
7260 ada_find_any_type_symbol (const char *name)
7261 {
7262 struct symbol *sym;
7263
7264 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7265 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7266 return sym;
7267
7268 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7269 return sym;
7270 }
7271
7272 /* Find a type named NAME. Ignores ambiguity. This routine will look
7273 solely for types defined by debug info, it will not search the GDB
7274 primitive types. */
7275
7276 static struct type *
7277 ada_find_any_type (const char *name)
7278 {
7279 struct symbol *sym = ada_find_any_type_symbol (name);
7280
7281 if (sym != NULL)
7282 return SYMBOL_TYPE (sym);
7283
7284 return NULL;
7285 }
7286
7287 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7288 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7289 symbol, in which case it is returned. Otherwise, this looks for
7290 symbols whose name is that of NAME_SYM suffixed with "___XR".
7291 Return symbol if found, and NULL otherwise. */
7292
7293 struct symbol *
7294 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7295 {
7296 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7297 struct symbol *sym;
7298
7299 if (strstr (name, "___XR") != NULL)
7300 return name_sym;
7301
7302 sym = find_old_style_renaming_symbol (name, block);
7303
7304 if (sym != NULL)
7305 return sym;
7306
7307 /* Not right yet. FIXME pnh 7/20/2007. */
7308 sym = ada_find_any_type_symbol (name);
7309 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7310 return sym;
7311 else
7312 return NULL;
7313 }
7314
7315 static struct symbol *
7316 find_old_style_renaming_symbol (const char *name, const struct block *block)
7317 {
7318 const struct symbol *function_sym = block_linkage_function (block);
7319 char *rename;
7320
7321 if (function_sym != NULL)
7322 {
7323 /* If the symbol is defined inside a function, NAME is not fully
7324 qualified. This means we need to prepend the function name
7325 as well as adding the ``___XR'' suffix to build the name of
7326 the associated renaming symbol. */
7327 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7328 /* Function names sometimes contain suffixes used
7329 for instance to qualify nested subprograms. When building
7330 the XR type name, we need to make sure that this suffix is
7331 not included. So do not include any suffix in the function
7332 name length below. */
7333 int function_name_len = ada_name_prefix_len (function_name);
7334 const int rename_len = function_name_len + 2 /* "__" */
7335 + strlen (name) + 6 /* "___XR\0" */ ;
7336
7337 /* Strip the suffix if necessary. */
7338 ada_remove_trailing_digits (function_name, &function_name_len);
7339 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7340 ada_remove_Xbn_suffix (function_name, &function_name_len);
7341
7342 /* Library-level functions are a special case, as GNAT adds
7343 a ``_ada_'' prefix to the function name to avoid namespace
7344 pollution. However, the renaming symbols themselves do not
7345 have this prefix, so we need to skip this prefix if present. */
7346 if (function_name_len > 5 /* "_ada_" */
7347 && strstr (function_name, "_ada_") == function_name)
7348 {
7349 function_name += 5;
7350 function_name_len -= 5;
7351 }
7352
7353 rename = (char *) alloca (rename_len * sizeof (char));
7354 strncpy (rename, function_name, function_name_len);
7355 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7356 "__%s___XR", name);
7357 }
7358 else
7359 {
7360 const int rename_len = strlen (name) + 6;
7361
7362 rename = (char *) alloca (rename_len * sizeof (char));
7363 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7364 }
7365
7366 return ada_find_any_type_symbol (rename);
7367 }
7368
7369 /* Because of GNAT encoding conventions, several GDB symbols may match a
7370 given type name. If the type denoted by TYPE0 is to be preferred to
7371 that of TYPE1 for purposes of type printing, return non-zero;
7372 otherwise return 0. */
7373
7374 int
7375 ada_prefer_type (struct type *type0, struct type *type1)
7376 {
7377 if (type1 == NULL)
7378 return 1;
7379 else if (type0 == NULL)
7380 return 0;
7381 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7382 return 1;
7383 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7384 return 0;
7385 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7386 return 1;
7387 else if (ada_is_constrained_packed_array_type (type0))
7388 return 1;
7389 else if (ada_is_array_descriptor_type (type0)
7390 && !ada_is_array_descriptor_type (type1))
7391 return 1;
7392 else
7393 {
7394 const char *type0_name = type_name_no_tag (type0);
7395 const char *type1_name = type_name_no_tag (type1);
7396
7397 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7398 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7399 return 1;
7400 }
7401 return 0;
7402 }
7403
7404 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7405 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7406
7407 const char *
7408 ada_type_name (struct type *type)
7409 {
7410 if (type == NULL)
7411 return NULL;
7412 else if (TYPE_NAME (type) != NULL)
7413 return TYPE_NAME (type);
7414 else
7415 return TYPE_TAG_NAME (type);
7416 }
7417
7418 /* Search the list of "descriptive" types associated to TYPE for a type
7419 whose name is NAME. */
7420
7421 static struct type *
7422 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7423 {
7424 struct type *result;
7425
7426 /* If there no descriptive-type info, then there is no parallel type
7427 to be found. */
7428 if (!HAVE_GNAT_AUX_INFO (type))
7429 return NULL;
7430
7431 result = TYPE_DESCRIPTIVE_TYPE (type);
7432 while (result != NULL)
7433 {
7434 const char *result_name = ada_type_name (result);
7435
7436 if (result_name == NULL)
7437 {
7438 warning (_("unexpected null name on descriptive type"));
7439 return NULL;
7440 }
7441
7442 /* If the names match, stop. */
7443 if (strcmp (result_name, name) == 0)
7444 break;
7445
7446 /* Otherwise, look at the next item on the list, if any. */
7447 if (HAVE_GNAT_AUX_INFO (result))
7448 result = TYPE_DESCRIPTIVE_TYPE (result);
7449 else
7450 result = NULL;
7451 }
7452
7453 /* If we didn't find a match, see whether this is a packed array. With
7454 older compilers, the descriptive type information is either absent or
7455 irrelevant when it comes to packed arrays so the above lookup fails.
7456 Fall back to using a parallel lookup by name in this case. */
7457 if (result == NULL && ada_is_constrained_packed_array_type (type))
7458 return ada_find_any_type (name);
7459
7460 return result;
7461 }
7462
7463 /* Find a parallel type to TYPE with the specified NAME, using the
7464 descriptive type taken from the debugging information, if available,
7465 and otherwise using the (slower) name-based method. */
7466
7467 static struct type *
7468 ada_find_parallel_type_with_name (struct type *type, const char *name)
7469 {
7470 struct type *result = NULL;
7471
7472 if (HAVE_GNAT_AUX_INFO (type))
7473 result = find_parallel_type_by_descriptive_type (type, name);
7474 else
7475 result = ada_find_any_type (name);
7476
7477 return result;
7478 }
7479
7480 /* Same as above, but specify the name of the parallel type by appending
7481 SUFFIX to the name of TYPE. */
7482
7483 struct type *
7484 ada_find_parallel_type (struct type *type, const char *suffix)
7485 {
7486 char *name;
7487 const char *typename = ada_type_name (type);
7488 int len;
7489
7490 if (typename == NULL)
7491 return NULL;
7492
7493 len = strlen (typename);
7494
7495 name = (char *) alloca (len + strlen (suffix) + 1);
7496
7497 strcpy (name, typename);
7498 strcpy (name + len, suffix);
7499
7500 return ada_find_parallel_type_with_name (type, name);
7501 }
7502
7503 /* If TYPE is a variable-size record type, return the corresponding template
7504 type describing its fields. Otherwise, return NULL. */
7505
7506 static struct type *
7507 dynamic_template_type (struct type *type)
7508 {
7509 type = ada_check_typedef (type);
7510
7511 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7512 || ada_type_name (type) == NULL)
7513 return NULL;
7514 else
7515 {
7516 int len = strlen (ada_type_name (type));
7517
7518 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7519 return type;
7520 else
7521 return ada_find_parallel_type (type, "___XVE");
7522 }
7523 }
7524
7525 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7526 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7527
7528 static int
7529 is_dynamic_field (struct type *templ_type, int field_num)
7530 {
7531 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7532
7533 return name != NULL
7534 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7535 && strstr (name, "___XVL") != NULL;
7536 }
7537
7538 /* The index of the variant field of TYPE, or -1 if TYPE does not
7539 represent a variant record type. */
7540
7541 static int
7542 variant_field_index (struct type *type)
7543 {
7544 int f;
7545
7546 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7547 return -1;
7548
7549 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7550 {
7551 if (ada_is_variant_part (type, f))
7552 return f;
7553 }
7554 return -1;
7555 }
7556
7557 /* A record type with no fields. */
7558
7559 static struct type *
7560 empty_record (struct type *template)
7561 {
7562 struct type *type = alloc_type_copy (template);
7563
7564 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7565 TYPE_NFIELDS (type) = 0;
7566 TYPE_FIELDS (type) = NULL;
7567 INIT_CPLUS_SPECIFIC (type);
7568 TYPE_NAME (type) = "<empty>";
7569 TYPE_TAG_NAME (type) = NULL;
7570 TYPE_LENGTH (type) = 0;
7571 return type;
7572 }
7573
7574 /* An ordinary record type (with fixed-length fields) that describes
7575 the value of type TYPE at VALADDR or ADDRESS (see comments at
7576 the beginning of this section) VAL according to GNAT conventions.
7577 DVAL0 should describe the (portion of a) record that contains any
7578 necessary discriminants. It should be NULL if value_type (VAL) is
7579 an outer-level type (i.e., as opposed to a branch of a variant.) A
7580 variant field (unless unchecked) is replaced by a particular branch
7581 of the variant.
7582
7583 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7584 length are not statically known are discarded. As a consequence,
7585 VALADDR, ADDRESS and DVAL0 are ignored.
7586
7587 NOTE: Limitations: For now, we assume that dynamic fields and
7588 variants occupy whole numbers of bytes. However, they need not be
7589 byte-aligned. */
7590
7591 struct type *
7592 ada_template_to_fixed_record_type_1 (struct type *type,
7593 const gdb_byte *valaddr,
7594 CORE_ADDR address, struct value *dval0,
7595 int keep_dynamic_fields)
7596 {
7597 struct value *mark = value_mark ();
7598 struct value *dval;
7599 struct type *rtype;
7600 int nfields, bit_len;
7601 int variant_field;
7602 long off;
7603 int fld_bit_len;
7604 int f;
7605
7606 /* Compute the number of fields in this record type that are going
7607 to be processed: unless keep_dynamic_fields, this includes only
7608 fields whose position and length are static will be processed. */
7609 if (keep_dynamic_fields)
7610 nfields = TYPE_NFIELDS (type);
7611 else
7612 {
7613 nfields = 0;
7614 while (nfields < TYPE_NFIELDS (type)
7615 && !ada_is_variant_part (type, nfields)
7616 && !is_dynamic_field (type, nfields))
7617 nfields++;
7618 }
7619
7620 rtype = alloc_type_copy (type);
7621 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7622 INIT_CPLUS_SPECIFIC (rtype);
7623 TYPE_NFIELDS (rtype) = nfields;
7624 TYPE_FIELDS (rtype) = (struct field *)
7625 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7626 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7627 TYPE_NAME (rtype) = ada_type_name (type);
7628 TYPE_TAG_NAME (rtype) = NULL;
7629 TYPE_FIXED_INSTANCE (rtype) = 1;
7630
7631 off = 0;
7632 bit_len = 0;
7633 variant_field = -1;
7634
7635 for (f = 0; f < nfields; f += 1)
7636 {
7637 off = align_value (off, field_alignment (type, f))
7638 + TYPE_FIELD_BITPOS (type, f);
7639 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7640 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7641
7642 if (ada_is_variant_part (type, f))
7643 {
7644 variant_field = f;
7645 fld_bit_len = 0;
7646 }
7647 else if (is_dynamic_field (type, f))
7648 {
7649 const gdb_byte *field_valaddr = valaddr;
7650 CORE_ADDR field_address = address;
7651 struct type *field_type =
7652 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7653
7654 if (dval0 == NULL)
7655 {
7656 /* rtype's length is computed based on the run-time
7657 value of discriminants. If the discriminants are not
7658 initialized, the type size may be completely bogus and
7659 GDB may fail to allocate a value for it. So check the
7660 size first before creating the value. */
7661 check_size (rtype);
7662 dval = value_from_contents_and_address (rtype, valaddr, address);
7663 }
7664 else
7665 dval = dval0;
7666
7667 /* If the type referenced by this field is an aligner type, we need
7668 to unwrap that aligner type, because its size might not be set.
7669 Keeping the aligner type would cause us to compute the wrong
7670 size for this field, impacting the offset of the all the fields
7671 that follow this one. */
7672 if (ada_is_aligner_type (field_type))
7673 {
7674 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7675
7676 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7677 field_address = cond_offset_target (field_address, field_offset);
7678 field_type = ada_aligned_type (field_type);
7679 }
7680
7681 field_valaddr = cond_offset_host (field_valaddr,
7682 off / TARGET_CHAR_BIT);
7683 field_address = cond_offset_target (field_address,
7684 off / TARGET_CHAR_BIT);
7685
7686 /* Get the fixed type of the field. Note that, in this case,
7687 we do not want to get the real type out of the tag: if
7688 the current field is the parent part of a tagged record,
7689 we will get the tag of the object. Clearly wrong: the real
7690 type of the parent is not the real type of the child. We
7691 would end up in an infinite loop. */
7692 field_type = ada_get_base_type (field_type);
7693 field_type = ada_to_fixed_type (field_type, field_valaddr,
7694 field_address, dval, 0);
7695 /* If the field size is already larger than the maximum
7696 object size, then the record itself will necessarily
7697 be larger than the maximum object size. We need to make
7698 this check now, because the size might be so ridiculously
7699 large (due to an uninitialized variable in the inferior)
7700 that it would cause an overflow when adding it to the
7701 record size. */
7702 check_size (field_type);
7703
7704 TYPE_FIELD_TYPE (rtype, f) = field_type;
7705 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7706 /* The multiplication can potentially overflow. But because
7707 the field length has been size-checked just above, and
7708 assuming that the maximum size is a reasonable value,
7709 an overflow should not happen in practice. So rather than
7710 adding overflow recovery code to this already complex code,
7711 we just assume that it's not going to happen. */
7712 fld_bit_len =
7713 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7714 }
7715 else
7716 {
7717 /* Note: If this field's type is a typedef, it is important
7718 to preserve the typedef layer.
7719
7720 Otherwise, we might be transforming a typedef to a fat
7721 pointer (encoding a pointer to an unconstrained array),
7722 into a basic fat pointer (encoding an unconstrained
7723 array). As both types are implemented using the same
7724 structure, the typedef is the only clue which allows us
7725 to distinguish between the two options. Stripping it
7726 would prevent us from printing this field appropriately. */
7727 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7728 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7729 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7730 fld_bit_len =
7731 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7732 else
7733 {
7734 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7735
7736 /* We need to be careful of typedefs when computing
7737 the length of our field. If this is a typedef,
7738 get the length of the target type, not the length
7739 of the typedef. */
7740 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7741 field_type = ada_typedef_target_type (field_type);
7742
7743 fld_bit_len =
7744 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7745 }
7746 }
7747 if (off + fld_bit_len > bit_len)
7748 bit_len = off + fld_bit_len;
7749 off += fld_bit_len;
7750 TYPE_LENGTH (rtype) =
7751 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7752 }
7753
7754 /* We handle the variant part, if any, at the end because of certain
7755 odd cases in which it is re-ordered so as NOT to be the last field of
7756 the record. This can happen in the presence of representation
7757 clauses. */
7758 if (variant_field >= 0)
7759 {
7760 struct type *branch_type;
7761
7762 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7763
7764 if (dval0 == NULL)
7765 dval = value_from_contents_and_address (rtype, valaddr, address);
7766 else
7767 dval = dval0;
7768
7769 branch_type =
7770 to_fixed_variant_branch_type
7771 (TYPE_FIELD_TYPE (type, variant_field),
7772 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7773 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7774 if (branch_type == NULL)
7775 {
7776 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7777 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7778 TYPE_NFIELDS (rtype) -= 1;
7779 }
7780 else
7781 {
7782 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7783 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7784 fld_bit_len =
7785 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7786 TARGET_CHAR_BIT;
7787 if (off + fld_bit_len > bit_len)
7788 bit_len = off + fld_bit_len;
7789 TYPE_LENGTH (rtype) =
7790 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7791 }
7792 }
7793
7794 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7795 should contain the alignment of that record, which should be a strictly
7796 positive value. If null or negative, then something is wrong, most
7797 probably in the debug info. In that case, we don't round up the size
7798 of the resulting type. If this record is not part of another structure,
7799 the current RTYPE length might be good enough for our purposes. */
7800 if (TYPE_LENGTH (type) <= 0)
7801 {
7802 if (TYPE_NAME (rtype))
7803 warning (_("Invalid type size for `%s' detected: %d."),
7804 TYPE_NAME (rtype), TYPE_LENGTH (type));
7805 else
7806 warning (_("Invalid type size for <unnamed> detected: %d."),
7807 TYPE_LENGTH (type));
7808 }
7809 else
7810 {
7811 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7812 TYPE_LENGTH (type));
7813 }
7814
7815 value_free_to_mark (mark);
7816 if (TYPE_LENGTH (rtype) > varsize_limit)
7817 error (_("record type with dynamic size is larger than varsize-limit"));
7818 return rtype;
7819 }
7820
7821 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7822 of 1. */
7823
7824 static struct type *
7825 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7826 CORE_ADDR address, struct value *dval0)
7827 {
7828 return ada_template_to_fixed_record_type_1 (type, valaddr,
7829 address, dval0, 1);
7830 }
7831
7832 /* An ordinary record type in which ___XVL-convention fields and
7833 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7834 static approximations, containing all possible fields. Uses
7835 no runtime values. Useless for use in values, but that's OK,
7836 since the results are used only for type determinations. Works on both
7837 structs and unions. Representation note: to save space, we memorize
7838 the result of this function in the TYPE_TARGET_TYPE of the
7839 template type. */
7840
7841 static struct type *
7842 template_to_static_fixed_type (struct type *type0)
7843 {
7844 struct type *type;
7845 int nfields;
7846 int f;
7847
7848 if (TYPE_TARGET_TYPE (type0) != NULL)
7849 return TYPE_TARGET_TYPE (type0);
7850
7851 nfields = TYPE_NFIELDS (type0);
7852 type = type0;
7853
7854 for (f = 0; f < nfields; f += 1)
7855 {
7856 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7857 struct type *new_type;
7858
7859 if (is_dynamic_field (type0, f))
7860 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7861 else
7862 new_type = static_unwrap_type (field_type);
7863 if (type == type0 && new_type != field_type)
7864 {
7865 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7866 TYPE_CODE (type) = TYPE_CODE (type0);
7867 INIT_CPLUS_SPECIFIC (type);
7868 TYPE_NFIELDS (type) = nfields;
7869 TYPE_FIELDS (type) = (struct field *)
7870 TYPE_ALLOC (type, nfields * sizeof (struct field));
7871 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7872 sizeof (struct field) * nfields);
7873 TYPE_NAME (type) = ada_type_name (type0);
7874 TYPE_TAG_NAME (type) = NULL;
7875 TYPE_FIXED_INSTANCE (type) = 1;
7876 TYPE_LENGTH (type) = 0;
7877 }
7878 TYPE_FIELD_TYPE (type, f) = new_type;
7879 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7880 }
7881 return type;
7882 }
7883
7884 /* Given an object of type TYPE whose contents are at VALADDR and
7885 whose address in memory is ADDRESS, returns a revision of TYPE,
7886 which should be a non-dynamic-sized record, in which the variant
7887 part, if any, is replaced with the appropriate branch. Looks
7888 for discriminant values in DVAL0, which can be NULL if the record
7889 contains the necessary discriminant values. */
7890
7891 static struct type *
7892 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7893 CORE_ADDR address, struct value *dval0)
7894 {
7895 struct value *mark = value_mark ();
7896 struct value *dval;
7897 struct type *rtype;
7898 struct type *branch_type;
7899 int nfields = TYPE_NFIELDS (type);
7900 int variant_field = variant_field_index (type);
7901
7902 if (variant_field == -1)
7903 return type;
7904
7905 if (dval0 == NULL)
7906 dval = value_from_contents_and_address (type, valaddr, address);
7907 else
7908 dval = dval0;
7909
7910 rtype = alloc_type_copy (type);
7911 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7912 INIT_CPLUS_SPECIFIC (rtype);
7913 TYPE_NFIELDS (rtype) = nfields;
7914 TYPE_FIELDS (rtype) =
7915 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7916 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7917 sizeof (struct field) * nfields);
7918 TYPE_NAME (rtype) = ada_type_name (type);
7919 TYPE_TAG_NAME (rtype) = NULL;
7920 TYPE_FIXED_INSTANCE (rtype) = 1;
7921 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7922
7923 branch_type = to_fixed_variant_branch_type
7924 (TYPE_FIELD_TYPE (type, variant_field),
7925 cond_offset_host (valaddr,
7926 TYPE_FIELD_BITPOS (type, variant_field)
7927 / TARGET_CHAR_BIT),
7928 cond_offset_target (address,
7929 TYPE_FIELD_BITPOS (type, variant_field)
7930 / TARGET_CHAR_BIT), dval);
7931 if (branch_type == NULL)
7932 {
7933 int f;
7934
7935 for (f = variant_field + 1; f < nfields; f += 1)
7936 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7937 TYPE_NFIELDS (rtype) -= 1;
7938 }
7939 else
7940 {
7941 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7942 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7943 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7944 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7945 }
7946 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7947
7948 value_free_to_mark (mark);
7949 return rtype;
7950 }
7951
7952 /* An ordinary record type (with fixed-length fields) that describes
7953 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7954 beginning of this section]. Any necessary discriminants' values
7955 should be in DVAL, a record value; it may be NULL if the object
7956 at ADDR itself contains any necessary discriminant values.
7957 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7958 values from the record are needed. Except in the case that DVAL,
7959 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7960 unchecked) is replaced by a particular branch of the variant.
7961
7962 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7963 is questionable and may be removed. It can arise during the
7964 processing of an unconstrained-array-of-record type where all the
7965 variant branches have exactly the same size. This is because in
7966 such cases, the compiler does not bother to use the XVS convention
7967 when encoding the record. I am currently dubious of this
7968 shortcut and suspect the compiler should be altered. FIXME. */
7969
7970 static struct type *
7971 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7972 CORE_ADDR address, struct value *dval)
7973 {
7974 struct type *templ_type;
7975
7976 if (TYPE_FIXED_INSTANCE (type0))
7977 return type0;
7978
7979 templ_type = dynamic_template_type (type0);
7980
7981 if (templ_type != NULL)
7982 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7983 else if (variant_field_index (type0) >= 0)
7984 {
7985 if (dval == NULL && valaddr == NULL && address == 0)
7986 return type0;
7987 return to_record_with_fixed_variant_part (type0, valaddr, address,
7988 dval);
7989 }
7990 else
7991 {
7992 TYPE_FIXED_INSTANCE (type0) = 1;
7993 return type0;
7994 }
7995
7996 }
7997
7998 /* An ordinary record type (with fixed-length fields) that describes
7999 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8000 union type. Any necessary discriminants' values should be in DVAL,
8001 a record value. That is, this routine selects the appropriate
8002 branch of the union at ADDR according to the discriminant value
8003 indicated in the union's type name. Returns VAR_TYPE0 itself if
8004 it represents a variant subject to a pragma Unchecked_Union. */
8005
8006 static struct type *
8007 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8008 CORE_ADDR address, struct value *dval)
8009 {
8010 int which;
8011 struct type *templ_type;
8012 struct type *var_type;
8013
8014 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8015 var_type = TYPE_TARGET_TYPE (var_type0);
8016 else
8017 var_type = var_type0;
8018
8019 templ_type = ada_find_parallel_type (var_type, "___XVU");
8020
8021 if (templ_type != NULL)
8022 var_type = templ_type;
8023
8024 if (is_unchecked_variant (var_type, value_type (dval)))
8025 return var_type0;
8026 which =
8027 ada_which_variant_applies (var_type,
8028 value_type (dval), value_contents (dval));
8029
8030 if (which < 0)
8031 return empty_record (var_type);
8032 else if (is_dynamic_field (var_type, which))
8033 return to_fixed_record_type
8034 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8035 valaddr, address, dval);
8036 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8037 return
8038 to_fixed_record_type
8039 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8040 else
8041 return TYPE_FIELD_TYPE (var_type, which);
8042 }
8043
8044 /* Assuming that TYPE0 is an array type describing the type of a value
8045 at ADDR, and that DVAL describes a record containing any
8046 discriminants used in TYPE0, returns a type for the value that
8047 contains no dynamic components (that is, no components whose sizes
8048 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8049 true, gives an error message if the resulting type's size is over
8050 varsize_limit. */
8051
8052 static struct type *
8053 to_fixed_array_type (struct type *type0, struct value *dval,
8054 int ignore_too_big)
8055 {
8056 struct type *index_type_desc;
8057 struct type *result;
8058 int constrained_packed_array_p;
8059
8060 type0 = ada_check_typedef (type0);
8061 if (TYPE_FIXED_INSTANCE (type0))
8062 return type0;
8063
8064 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8065 if (constrained_packed_array_p)
8066 type0 = decode_constrained_packed_array_type (type0);
8067
8068 index_type_desc = ada_find_parallel_type (type0, "___XA");
8069 ada_fixup_array_indexes_type (index_type_desc);
8070 if (index_type_desc == NULL)
8071 {
8072 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8073
8074 /* NOTE: elt_type---the fixed version of elt_type0---should never
8075 depend on the contents of the array in properly constructed
8076 debugging data. */
8077 /* Create a fixed version of the array element type.
8078 We're not providing the address of an element here,
8079 and thus the actual object value cannot be inspected to do
8080 the conversion. This should not be a problem, since arrays of
8081 unconstrained objects are not allowed. In particular, all
8082 the elements of an array of a tagged type should all be of
8083 the same type specified in the debugging info. No need to
8084 consult the object tag. */
8085 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8086
8087 /* Make sure we always create a new array type when dealing with
8088 packed array types, since we're going to fix-up the array
8089 type length and element bitsize a little further down. */
8090 if (elt_type0 == elt_type && !constrained_packed_array_p)
8091 result = type0;
8092 else
8093 result = create_array_type (alloc_type_copy (type0),
8094 elt_type, TYPE_INDEX_TYPE (type0));
8095 }
8096 else
8097 {
8098 int i;
8099 struct type *elt_type0;
8100
8101 elt_type0 = type0;
8102 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8103 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8104
8105 /* NOTE: result---the fixed version of elt_type0---should never
8106 depend on the contents of the array in properly constructed
8107 debugging data. */
8108 /* Create a fixed version of the array element type.
8109 We're not providing the address of an element here,
8110 and thus the actual object value cannot be inspected to do
8111 the conversion. This should not be a problem, since arrays of
8112 unconstrained objects are not allowed. In particular, all
8113 the elements of an array of a tagged type should all be of
8114 the same type specified in the debugging info. No need to
8115 consult the object tag. */
8116 result =
8117 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8118
8119 elt_type0 = type0;
8120 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8121 {
8122 struct type *range_type =
8123 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8124
8125 result = create_array_type (alloc_type_copy (elt_type0),
8126 result, range_type);
8127 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8128 }
8129 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8130 error (_("array type with dynamic size is larger than varsize-limit"));
8131 }
8132
8133 /* We want to preserve the type name. This can be useful when
8134 trying to get the type name of a value that has already been
8135 printed (for instance, if the user did "print VAR; whatis $". */
8136 TYPE_NAME (result) = TYPE_NAME (type0);
8137
8138 if (constrained_packed_array_p)
8139 {
8140 /* So far, the resulting type has been created as if the original
8141 type was a regular (non-packed) array type. As a result, the
8142 bitsize of the array elements needs to be set again, and the array
8143 length needs to be recomputed based on that bitsize. */
8144 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8145 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8146
8147 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8148 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8149 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8150 TYPE_LENGTH (result)++;
8151 }
8152
8153 TYPE_FIXED_INSTANCE (result) = 1;
8154 return result;
8155 }
8156
8157
8158 /* A standard type (containing no dynamically sized components)
8159 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8160 DVAL describes a record containing any discriminants used in TYPE0,
8161 and may be NULL if there are none, or if the object of type TYPE at
8162 ADDRESS or in VALADDR contains these discriminants.
8163
8164 If CHECK_TAG is not null, in the case of tagged types, this function
8165 attempts to locate the object's tag and use it to compute the actual
8166 type. However, when ADDRESS is null, we cannot use it to determine the
8167 location of the tag, and therefore compute the tagged type's actual type.
8168 So we return the tagged type without consulting the tag. */
8169
8170 static struct type *
8171 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8172 CORE_ADDR address, struct value *dval, int check_tag)
8173 {
8174 type = ada_check_typedef (type);
8175 switch (TYPE_CODE (type))
8176 {
8177 default:
8178 return type;
8179 case TYPE_CODE_STRUCT:
8180 {
8181 struct type *static_type = to_static_fixed_type (type);
8182 struct type *fixed_record_type =
8183 to_fixed_record_type (type, valaddr, address, NULL);
8184
8185 /* If STATIC_TYPE is a tagged type and we know the object's address,
8186 then we can determine its tag, and compute the object's actual
8187 type from there. Note that we have to use the fixed record
8188 type (the parent part of the record may have dynamic fields
8189 and the way the location of _tag is expressed may depend on
8190 them). */
8191
8192 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8193 {
8194 struct value *tag =
8195 value_tag_from_contents_and_address
8196 (fixed_record_type,
8197 valaddr,
8198 address);
8199 struct type *real_type = type_from_tag (tag);
8200 struct value *obj =
8201 value_from_contents_and_address (fixed_record_type,
8202 valaddr,
8203 address);
8204 if (real_type != NULL)
8205 return to_fixed_record_type
8206 (real_type, NULL,
8207 value_address (ada_tag_value_at_base_address (obj)), NULL);
8208 }
8209
8210 /* Check to see if there is a parallel ___XVZ variable.
8211 If there is, then it provides the actual size of our type. */
8212 else if (ada_type_name (fixed_record_type) != NULL)
8213 {
8214 const char *name = ada_type_name (fixed_record_type);
8215 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8216 int xvz_found = 0;
8217 LONGEST size;
8218
8219 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8220 size = get_int_var_value (xvz_name, &xvz_found);
8221 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8222 {
8223 fixed_record_type = copy_type (fixed_record_type);
8224 TYPE_LENGTH (fixed_record_type) = size;
8225
8226 /* The FIXED_RECORD_TYPE may have be a stub. We have
8227 observed this when the debugging info is STABS, and
8228 apparently it is something that is hard to fix.
8229
8230 In practice, we don't need the actual type definition
8231 at all, because the presence of the XVZ variable allows us
8232 to assume that there must be a XVS type as well, which we
8233 should be able to use later, when we need the actual type
8234 definition.
8235
8236 In the meantime, pretend that the "fixed" type we are
8237 returning is NOT a stub, because this can cause trouble
8238 when using this type to create new types targeting it.
8239 Indeed, the associated creation routines often check
8240 whether the target type is a stub and will try to replace
8241 it, thus using a type with the wrong size. This, in turn,
8242 might cause the new type to have the wrong size too.
8243 Consider the case of an array, for instance, where the size
8244 of the array is computed from the number of elements in
8245 our array multiplied by the size of its element. */
8246 TYPE_STUB (fixed_record_type) = 0;
8247 }
8248 }
8249 return fixed_record_type;
8250 }
8251 case TYPE_CODE_ARRAY:
8252 return to_fixed_array_type (type, dval, 1);
8253 case TYPE_CODE_UNION:
8254 if (dval == NULL)
8255 return type;
8256 else
8257 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8258 }
8259 }
8260
8261 /* The same as ada_to_fixed_type_1, except that it preserves the type
8262 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8263
8264 The typedef layer needs be preserved in order to differentiate between
8265 arrays and array pointers when both types are implemented using the same
8266 fat pointer. In the array pointer case, the pointer is encoded as
8267 a typedef of the pointer type. For instance, considering:
8268
8269 type String_Access is access String;
8270 S1 : String_Access := null;
8271
8272 To the debugger, S1 is defined as a typedef of type String. But
8273 to the user, it is a pointer. So if the user tries to print S1,
8274 we should not dereference the array, but print the array address
8275 instead.
8276
8277 If we didn't preserve the typedef layer, we would lose the fact that
8278 the type is to be presented as a pointer (needs de-reference before
8279 being printed). And we would also use the source-level type name. */
8280
8281 struct type *
8282 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8283 CORE_ADDR address, struct value *dval, int check_tag)
8284
8285 {
8286 struct type *fixed_type =
8287 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8288
8289 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8290 then preserve the typedef layer.
8291
8292 Implementation note: We can only check the main-type portion of
8293 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8294 from TYPE now returns a type that has the same instance flags
8295 as TYPE. For instance, if TYPE is a "typedef const", and its
8296 target type is a "struct", then the typedef elimination will return
8297 a "const" version of the target type. See check_typedef for more
8298 details about how the typedef layer elimination is done.
8299
8300 brobecker/2010-11-19: It seems to me that the only case where it is
8301 useful to preserve the typedef layer is when dealing with fat pointers.
8302 Perhaps, we could add a check for that and preserve the typedef layer
8303 only in that situation. But this seems unecessary so far, probably
8304 because we call check_typedef/ada_check_typedef pretty much everywhere.
8305 */
8306 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8307 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8308 == TYPE_MAIN_TYPE (fixed_type)))
8309 return type;
8310
8311 return fixed_type;
8312 }
8313
8314 /* A standard (static-sized) type corresponding as well as possible to
8315 TYPE0, but based on no runtime data. */
8316
8317 static struct type *
8318 to_static_fixed_type (struct type *type0)
8319 {
8320 struct type *type;
8321
8322 if (type0 == NULL)
8323 return NULL;
8324
8325 if (TYPE_FIXED_INSTANCE (type0))
8326 return type0;
8327
8328 type0 = ada_check_typedef (type0);
8329
8330 switch (TYPE_CODE (type0))
8331 {
8332 default:
8333 return type0;
8334 case TYPE_CODE_STRUCT:
8335 type = dynamic_template_type (type0);
8336 if (type != NULL)
8337 return template_to_static_fixed_type (type);
8338 else
8339 return template_to_static_fixed_type (type0);
8340 case TYPE_CODE_UNION:
8341 type = ada_find_parallel_type (type0, "___XVU");
8342 if (type != NULL)
8343 return template_to_static_fixed_type (type);
8344 else
8345 return template_to_static_fixed_type (type0);
8346 }
8347 }
8348
8349 /* A static approximation of TYPE with all type wrappers removed. */
8350
8351 static struct type *
8352 static_unwrap_type (struct type *type)
8353 {
8354 if (ada_is_aligner_type (type))
8355 {
8356 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8357 if (ada_type_name (type1) == NULL)
8358 TYPE_NAME (type1) = ada_type_name (type);
8359
8360 return static_unwrap_type (type1);
8361 }
8362 else
8363 {
8364 struct type *raw_real_type = ada_get_base_type (type);
8365
8366 if (raw_real_type == type)
8367 return type;
8368 else
8369 return to_static_fixed_type (raw_real_type);
8370 }
8371 }
8372
8373 /* In some cases, incomplete and private types require
8374 cross-references that are not resolved as records (for example,
8375 type Foo;
8376 type FooP is access Foo;
8377 V: FooP;
8378 type Foo is array ...;
8379 ). In these cases, since there is no mechanism for producing
8380 cross-references to such types, we instead substitute for FooP a
8381 stub enumeration type that is nowhere resolved, and whose tag is
8382 the name of the actual type. Call these types "non-record stubs". */
8383
8384 /* A type equivalent to TYPE that is not a non-record stub, if one
8385 exists, otherwise TYPE. */
8386
8387 struct type *
8388 ada_check_typedef (struct type *type)
8389 {
8390 if (type == NULL)
8391 return NULL;
8392
8393 /* If our type is a typedef type of a fat pointer, then we're done.
8394 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8395 what allows us to distinguish between fat pointers that represent
8396 array types, and fat pointers that represent array access types
8397 (in both cases, the compiler implements them as fat pointers). */
8398 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8399 && is_thick_pntr (ada_typedef_target_type (type)))
8400 return type;
8401
8402 CHECK_TYPEDEF (type);
8403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8404 || !TYPE_STUB (type)
8405 || TYPE_TAG_NAME (type) == NULL)
8406 return type;
8407 else
8408 {
8409 const char *name = TYPE_TAG_NAME (type);
8410 struct type *type1 = ada_find_any_type (name);
8411
8412 if (type1 == NULL)
8413 return type;
8414
8415 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8416 stubs pointing to arrays, as we don't create symbols for array
8417 types, only for the typedef-to-array types). If that's the case,
8418 strip the typedef layer. */
8419 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8420 type1 = ada_check_typedef (type1);
8421
8422 return type1;
8423 }
8424 }
8425
8426 /* A value representing the data at VALADDR/ADDRESS as described by
8427 type TYPE0, but with a standard (static-sized) type that correctly
8428 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8429 type, then return VAL0 [this feature is simply to avoid redundant
8430 creation of struct values]. */
8431
8432 static struct value *
8433 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8434 struct value *val0)
8435 {
8436 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8437
8438 if (type == type0 && val0 != NULL)
8439 return val0;
8440 else
8441 return value_from_contents_and_address (type, 0, address);
8442 }
8443
8444 /* A value representing VAL, but with a standard (static-sized) type
8445 that correctly describes it. Does not necessarily create a new
8446 value. */
8447
8448 struct value *
8449 ada_to_fixed_value (struct value *val)
8450 {
8451 val = unwrap_value (val);
8452 val = ada_to_fixed_value_create (value_type (val),
8453 value_address (val),
8454 val);
8455 return val;
8456 }
8457 \f
8458
8459 /* Attributes */
8460
8461 /* Table mapping attribute numbers to names.
8462 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8463
8464 static const char *attribute_names[] = {
8465 "<?>",
8466
8467 "first",
8468 "last",
8469 "length",
8470 "image",
8471 "max",
8472 "min",
8473 "modulus",
8474 "pos",
8475 "size",
8476 "tag",
8477 "val",
8478 0
8479 };
8480
8481 const char *
8482 ada_attribute_name (enum exp_opcode n)
8483 {
8484 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8485 return attribute_names[n - OP_ATR_FIRST + 1];
8486 else
8487 return attribute_names[0];
8488 }
8489
8490 /* Evaluate the 'POS attribute applied to ARG. */
8491
8492 static LONGEST
8493 pos_atr (struct value *arg)
8494 {
8495 struct value *val = coerce_ref (arg);
8496 struct type *type = value_type (val);
8497
8498 if (!discrete_type_p (type))
8499 error (_("'POS only defined on discrete types"));
8500
8501 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8502 {
8503 int i;
8504 LONGEST v = value_as_long (val);
8505
8506 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8507 {
8508 if (v == TYPE_FIELD_ENUMVAL (type, i))
8509 return i;
8510 }
8511 error (_("enumeration value is invalid: can't find 'POS"));
8512 }
8513 else
8514 return value_as_long (val);
8515 }
8516
8517 static struct value *
8518 value_pos_atr (struct type *type, struct value *arg)
8519 {
8520 return value_from_longest (type, pos_atr (arg));
8521 }
8522
8523 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8524
8525 static struct value *
8526 value_val_atr (struct type *type, struct value *arg)
8527 {
8528 if (!discrete_type_p (type))
8529 error (_("'VAL only defined on discrete types"));
8530 if (!integer_type_p (value_type (arg)))
8531 error (_("'VAL requires integral argument"));
8532
8533 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8534 {
8535 long pos = value_as_long (arg);
8536
8537 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8538 error (_("argument to 'VAL out of range"));
8539 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8540 }
8541 else
8542 return value_from_longest (type, value_as_long (arg));
8543 }
8544 \f
8545
8546 /* Evaluation */
8547
8548 /* True if TYPE appears to be an Ada character type.
8549 [At the moment, this is true only for Character and Wide_Character;
8550 It is a heuristic test that could stand improvement]. */
8551
8552 int
8553 ada_is_character_type (struct type *type)
8554 {
8555 const char *name;
8556
8557 /* If the type code says it's a character, then assume it really is,
8558 and don't check any further. */
8559 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8560 return 1;
8561
8562 /* Otherwise, assume it's a character type iff it is a discrete type
8563 with a known character type name. */
8564 name = ada_type_name (type);
8565 return (name != NULL
8566 && (TYPE_CODE (type) == TYPE_CODE_INT
8567 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8568 && (strcmp (name, "character") == 0
8569 || strcmp (name, "wide_character") == 0
8570 || strcmp (name, "wide_wide_character") == 0
8571 || strcmp (name, "unsigned char") == 0));
8572 }
8573
8574 /* True if TYPE appears to be an Ada string type. */
8575
8576 int
8577 ada_is_string_type (struct type *type)
8578 {
8579 type = ada_check_typedef (type);
8580 if (type != NULL
8581 && TYPE_CODE (type) != TYPE_CODE_PTR
8582 && (ada_is_simple_array_type (type)
8583 || ada_is_array_descriptor_type (type))
8584 && ada_array_arity (type) == 1)
8585 {
8586 struct type *elttype = ada_array_element_type (type, 1);
8587
8588 return ada_is_character_type (elttype);
8589 }
8590 else
8591 return 0;
8592 }
8593
8594 /* The compiler sometimes provides a parallel XVS type for a given
8595 PAD type. Normally, it is safe to follow the PAD type directly,
8596 but older versions of the compiler have a bug that causes the offset
8597 of its "F" field to be wrong. Following that field in that case
8598 would lead to incorrect results, but this can be worked around
8599 by ignoring the PAD type and using the associated XVS type instead.
8600
8601 Set to True if the debugger should trust the contents of PAD types.
8602 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8603 static int trust_pad_over_xvs = 1;
8604
8605 /* True if TYPE is a struct type introduced by the compiler to force the
8606 alignment of a value. Such types have a single field with a
8607 distinctive name. */
8608
8609 int
8610 ada_is_aligner_type (struct type *type)
8611 {
8612 type = ada_check_typedef (type);
8613
8614 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8615 return 0;
8616
8617 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8618 && TYPE_NFIELDS (type) == 1
8619 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8620 }
8621
8622 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8623 the parallel type. */
8624
8625 struct type *
8626 ada_get_base_type (struct type *raw_type)
8627 {
8628 struct type *real_type_namer;
8629 struct type *raw_real_type;
8630
8631 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8632 return raw_type;
8633
8634 if (ada_is_aligner_type (raw_type))
8635 /* The encoding specifies that we should always use the aligner type.
8636 So, even if this aligner type has an associated XVS type, we should
8637 simply ignore it.
8638
8639 According to the compiler gurus, an XVS type parallel to an aligner
8640 type may exist because of a stabs limitation. In stabs, aligner
8641 types are empty because the field has a variable-sized type, and
8642 thus cannot actually be used as an aligner type. As a result,
8643 we need the associated parallel XVS type to decode the type.
8644 Since the policy in the compiler is to not change the internal
8645 representation based on the debugging info format, we sometimes
8646 end up having a redundant XVS type parallel to the aligner type. */
8647 return raw_type;
8648
8649 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8650 if (real_type_namer == NULL
8651 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8652 || TYPE_NFIELDS (real_type_namer) != 1)
8653 return raw_type;
8654
8655 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8656 {
8657 /* This is an older encoding form where the base type needs to be
8658 looked up by name. We prefer the newer enconding because it is
8659 more efficient. */
8660 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8661 if (raw_real_type == NULL)
8662 return raw_type;
8663 else
8664 return raw_real_type;
8665 }
8666
8667 /* The field in our XVS type is a reference to the base type. */
8668 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8669 }
8670
8671 /* The type of value designated by TYPE, with all aligners removed. */
8672
8673 struct type *
8674 ada_aligned_type (struct type *type)
8675 {
8676 if (ada_is_aligner_type (type))
8677 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8678 else
8679 return ada_get_base_type (type);
8680 }
8681
8682
8683 /* The address of the aligned value in an object at address VALADDR
8684 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8685
8686 const gdb_byte *
8687 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8688 {
8689 if (ada_is_aligner_type (type))
8690 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8691 valaddr +
8692 TYPE_FIELD_BITPOS (type,
8693 0) / TARGET_CHAR_BIT);
8694 else
8695 return valaddr;
8696 }
8697
8698
8699
8700 /* The printed representation of an enumeration literal with encoded
8701 name NAME. The value is good to the next call of ada_enum_name. */
8702 const char *
8703 ada_enum_name (const char *name)
8704 {
8705 static char *result;
8706 static size_t result_len = 0;
8707 char *tmp;
8708
8709 /* First, unqualify the enumeration name:
8710 1. Search for the last '.' character. If we find one, then skip
8711 all the preceding characters, the unqualified name starts
8712 right after that dot.
8713 2. Otherwise, we may be debugging on a target where the compiler
8714 translates dots into "__". Search forward for double underscores,
8715 but stop searching when we hit an overloading suffix, which is
8716 of the form "__" followed by digits. */
8717
8718 tmp = strrchr (name, '.');
8719 if (tmp != NULL)
8720 name = tmp + 1;
8721 else
8722 {
8723 while ((tmp = strstr (name, "__")) != NULL)
8724 {
8725 if (isdigit (tmp[2]))
8726 break;
8727 else
8728 name = tmp + 2;
8729 }
8730 }
8731
8732 if (name[0] == 'Q')
8733 {
8734 int v;
8735
8736 if (name[1] == 'U' || name[1] == 'W')
8737 {
8738 if (sscanf (name + 2, "%x", &v) != 1)
8739 return name;
8740 }
8741 else
8742 return name;
8743
8744 GROW_VECT (result, result_len, 16);
8745 if (isascii (v) && isprint (v))
8746 xsnprintf (result, result_len, "'%c'", v);
8747 else if (name[1] == 'U')
8748 xsnprintf (result, result_len, "[\"%02x\"]", v);
8749 else
8750 xsnprintf (result, result_len, "[\"%04x\"]", v);
8751
8752 return result;
8753 }
8754 else
8755 {
8756 tmp = strstr (name, "__");
8757 if (tmp == NULL)
8758 tmp = strstr (name, "$");
8759 if (tmp != NULL)
8760 {
8761 GROW_VECT (result, result_len, tmp - name + 1);
8762 strncpy (result, name, tmp - name);
8763 result[tmp - name] = '\0';
8764 return result;
8765 }
8766
8767 return name;
8768 }
8769 }
8770
8771 /* Evaluate the subexpression of EXP starting at *POS as for
8772 evaluate_type, updating *POS to point just past the evaluated
8773 expression. */
8774
8775 static struct value *
8776 evaluate_subexp_type (struct expression *exp, int *pos)
8777 {
8778 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8779 }
8780
8781 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8782 value it wraps. */
8783
8784 static struct value *
8785 unwrap_value (struct value *val)
8786 {
8787 struct type *type = ada_check_typedef (value_type (val));
8788
8789 if (ada_is_aligner_type (type))
8790 {
8791 struct value *v = ada_value_struct_elt (val, "F", 0);
8792 struct type *val_type = ada_check_typedef (value_type (v));
8793
8794 if (ada_type_name (val_type) == NULL)
8795 TYPE_NAME (val_type) = ada_type_name (type);
8796
8797 return unwrap_value (v);
8798 }
8799 else
8800 {
8801 struct type *raw_real_type =
8802 ada_check_typedef (ada_get_base_type (type));
8803
8804 /* If there is no parallel XVS or XVE type, then the value is
8805 already unwrapped. Return it without further modification. */
8806 if ((type == raw_real_type)
8807 && ada_find_parallel_type (type, "___XVE") == NULL)
8808 return val;
8809
8810 return
8811 coerce_unspec_val_to_type
8812 (val, ada_to_fixed_type (raw_real_type, 0,
8813 value_address (val),
8814 NULL, 1));
8815 }
8816 }
8817
8818 static struct value *
8819 cast_to_fixed (struct type *type, struct value *arg)
8820 {
8821 LONGEST val;
8822
8823 if (type == value_type (arg))
8824 return arg;
8825 else if (ada_is_fixed_point_type (value_type (arg)))
8826 val = ada_float_to_fixed (type,
8827 ada_fixed_to_float (value_type (arg),
8828 value_as_long (arg)));
8829 else
8830 {
8831 DOUBLEST argd = value_as_double (arg);
8832
8833 val = ada_float_to_fixed (type, argd);
8834 }
8835
8836 return value_from_longest (type, val);
8837 }
8838
8839 static struct value *
8840 cast_from_fixed (struct type *type, struct value *arg)
8841 {
8842 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8843 value_as_long (arg));
8844
8845 return value_from_double (type, val);
8846 }
8847
8848 /* Given two array types T1 and T2, return nonzero iff both arrays
8849 contain the same number of elements. */
8850
8851 static int
8852 ada_same_array_size_p (struct type *t1, struct type *t2)
8853 {
8854 LONGEST lo1, hi1, lo2, hi2;
8855
8856 /* Get the array bounds in order to verify that the size of
8857 the two arrays match. */
8858 if (!get_array_bounds (t1, &lo1, &hi1)
8859 || !get_array_bounds (t2, &lo2, &hi2))
8860 error (_("unable to determine array bounds"));
8861
8862 /* To make things easier for size comparison, normalize a bit
8863 the case of empty arrays by making sure that the difference
8864 between upper bound and lower bound is always -1. */
8865 if (lo1 > hi1)
8866 hi1 = lo1 - 1;
8867 if (lo2 > hi2)
8868 hi2 = lo2 - 1;
8869
8870 return (hi1 - lo1 == hi2 - lo2);
8871 }
8872
8873 /* Assuming that VAL is an array of integrals, and TYPE represents
8874 an array with the same number of elements, but with wider integral
8875 elements, return an array "casted" to TYPE. In practice, this
8876 means that the returned array is built by casting each element
8877 of the original array into TYPE's (wider) element type. */
8878
8879 static struct value *
8880 ada_promote_array_of_integrals (struct type *type, struct value *val)
8881 {
8882 struct type *elt_type = TYPE_TARGET_TYPE (type);
8883 LONGEST lo, hi;
8884 struct value *res;
8885 LONGEST i;
8886
8887 /* Verify that both val and type are arrays of scalars, and
8888 that the size of val's elements is smaller than the size
8889 of type's element. */
8890 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8891 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8892 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8893 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8894 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8895 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8896
8897 if (!get_array_bounds (type, &lo, &hi))
8898 error (_("unable to determine array bounds"));
8899
8900 res = allocate_value (type);
8901
8902 /* Promote each array element. */
8903 for (i = 0; i < hi - lo + 1; i++)
8904 {
8905 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8906
8907 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8908 value_contents_all (elt), TYPE_LENGTH (elt_type));
8909 }
8910
8911 return res;
8912 }
8913
8914 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8915 return the converted value. */
8916
8917 static struct value *
8918 coerce_for_assign (struct type *type, struct value *val)
8919 {
8920 struct type *type2 = value_type (val);
8921
8922 if (type == type2)
8923 return val;
8924
8925 type2 = ada_check_typedef (type2);
8926 type = ada_check_typedef (type);
8927
8928 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8929 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8930 {
8931 val = ada_value_ind (val);
8932 type2 = value_type (val);
8933 }
8934
8935 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8936 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8937 {
8938 if (!ada_same_array_size_p (type, type2))
8939 error (_("cannot assign arrays of different length"));
8940
8941 if (is_integral_type (TYPE_TARGET_TYPE (type))
8942 && is_integral_type (TYPE_TARGET_TYPE (type2))
8943 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8944 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8945 {
8946 /* Allow implicit promotion of the array elements to
8947 a wider type. */
8948 return ada_promote_array_of_integrals (type, val);
8949 }
8950
8951 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8952 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8953 error (_("Incompatible types in assignment"));
8954 deprecated_set_value_type (val, type);
8955 }
8956 return val;
8957 }
8958
8959 static struct value *
8960 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8961 {
8962 struct value *val;
8963 struct type *type1, *type2;
8964 LONGEST v, v1, v2;
8965
8966 arg1 = coerce_ref (arg1);
8967 arg2 = coerce_ref (arg2);
8968 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8969 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8970
8971 if (TYPE_CODE (type1) != TYPE_CODE_INT
8972 || TYPE_CODE (type2) != TYPE_CODE_INT)
8973 return value_binop (arg1, arg2, op);
8974
8975 switch (op)
8976 {
8977 case BINOP_MOD:
8978 case BINOP_DIV:
8979 case BINOP_REM:
8980 break;
8981 default:
8982 return value_binop (arg1, arg2, op);
8983 }
8984
8985 v2 = value_as_long (arg2);
8986 if (v2 == 0)
8987 error (_("second operand of %s must not be zero."), op_string (op));
8988
8989 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8990 return value_binop (arg1, arg2, op);
8991
8992 v1 = value_as_long (arg1);
8993 switch (op)
8994 {
8995 case BINOP_DIV:
8996 v = v1 / v2;
8997 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8998 v += v > 0 ? -1 : 1;
8999 break;
9000 case BINOP_REM:
9001 v = v1 % v2;
9002 if (v * v1 < 0)
9003 v -= v2;
9004 break;
9005 default:
9006 /* Should not reach this point. */
9007 v = 0;
9008 }
9009
9010 val = allocate_value (type1);
9011 store_unsigned_integer (value_contents_raw (val),
9012 TYPE_LENGTH (value_type (val)),
9013 gdbarch_byte_order (get_type_arch (type1)), v);
9014 return val;
9015 }
9016
9017 static int
9018 ada_value_equal (struct value *arg1, struct value *arg2)
9019 {
9020 if (ada_is_direct_array_type (value_type (arg1))
9021 || ada_is_direct_array_type (value_type (arg2)))
9022 {
9023 /* Automatically dereference any array reference before
9024 we attempt to perform the comparison. */
9025 arg1 = ada_coerce_ref (arg1);
9026 arg2 = ada_coerce_ref (arg2);
9027
9028 arg1 = ada_coerce_to_simple_array (arg1);
9029 arg2 = ada_coerce_to_simple_array (arg2);
9030 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9031 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9032 error (_("Attempt to compare array with non-array"));
9033 /* FIXME: The following works only for types whose
9034 representations use all bits (no padding or undefined bits)
9035 and do not have user-defined equality. */
9036 return
9037 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9038 && memcmp (value_contents (arg1), value_contents (arg2),
9039 TYPE_LENGTH (value_type (arg1))) == 0;
9040 }
9041 return value_equal (arg1, arg2);
9042 }
9043
9044 /* Total number of component associations in the aggregate starting at
9045 index PC in EXP. Assumes that index PC is the start of an
9046 OP_AGGREGATE. */
9047
9048 static int
9049 num_component_specs (struct expression *exp, int pc)
9050 {
9051 int n, m, i;
9052
9053 m = exp->elts[pc + 1].longconst;
9054 pc += 3;
9055 n = 0;
9056 for (i = 0; i < m; i += 1)
9057 {
9058 switch (exp->elts[pc].opcode)
9059 {
9060 default:
9061 n += 1;
9062 break;
9063 case OP_CHOICES:
9064 n += exp->elts[pc + 1].longconst;
9065 break;
9066 }
9067 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9068 }
9069 return n;
9070 }
9071
9072 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9073 component of LHS (a simple array or a record), updating *POS past
9074 the expression, assuming that LHS is contained in CONTAINER. Does
9075 not modify the inferior's memory, nor does it modify LHS (unless
9076 LHS == CONTAINER). */
9077
9078 static void
9079 assign_component (struct value *container, struct value *lhs, LONGEST index,
9080 struct expression *exp, int *pos)
9081 {
9082 struct value *mark = value_mark ();
9083 struct value *elt;
9084
9085 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9086 {
9087 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9088 struct value *index_val = value_from_longest (index_type, index);
9089
9090 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9091 }
9092 else
9093 {
9094 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9095 elt = ada_to_fixed_value (elt);
9096 }
9097
9098 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9099 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9100 else
9101 value_assign_to_component (container, elt,
9102 ada_evaluate_subexp (NULL, exp, pos,
9103 EVAL_NORMAL));
9104
9105 value_free_to_mark (mark);
9106 }
9107
9108 /* Assuming that LHS represents an lvalue having a record or array
9109 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9110 of that aggregate's value to LHS, advancing *POS past the
9111 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9112 lvalue containing LHS (possibly LHS itself). Does not modify
9113 the inferior's memory, nor does it modify the contents of
9114 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9115
9116 static struct value *
9117 assign_aggregate (struct value *container,
9118 struct value *lhs, struct expression *exp,
9119 int *pos, enum noside noside)
9120 {
9121 struct type *lhs_type;
9122 int n = exp->elts[*pos+1].longconst;
9123 LONGEST low_index, high_index;
9124 int num_specs;
9125 LONGEST *indices;
9126 int max_indices, num_indices;
9127 int i;
9128
9129 *pos += 3;
9130 if (noside != EVAL_NORMAL)
9131 {
9132 for (i = 0; i < n; i += 1)
9133 ada_evaluate_subexp (NULL, exp, pos, noside);
9134 return container;
9135 }
9136
9137 container = ada_coerce_ref (container);
9138 if (ada_is_direct_array_type (value_type (container)))
9139 container = ada_coerce_to_simple_array (container);
9140 lhs = ada_coerce_ref (lhs);
9141 if (!deprecated_value_modifiable (lhs))
9142 error (_("Left operand of assignment is not a modifiable lvalue."));
9143
9144 lhs_type = value_type (lhs);
9145 if (ada_is_direct_array_type (lhs_type))
9146 {
9147 lhs = ada_coerce_to_simple_array (lhs);
9148 lhs_type = value_type (lhs);
9149 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9150 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9151 }
9152 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9153 {
9154 low_index = 0;
9155 high_index = num_visible_fields (lhs_type) - 1;
9156 }
9157 else
9158 error (_("Left-hand side must be array or record."));
9159
9160 num_specs = num_component_specs (exp, *pos - 3);
9161 max_indices = 4 * num_specs + 4;
9162 indices = alloca (max_indices * sizeof (indices[0]));
9163 indices[0] = indices[1] = low_index - 1;
9164 indices[2] = indices[3] = high_index + 1;
9165 num_indices = 4;
9166
9167 for (i = 0; i < n; i += 1)
9168 {
9169 switch (exp->elts[*pos].opcode)
9170 {
9171 case OP_CHOICES:
9172 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9173 &num_indices, max_indices,
9174 low_index, high_index);
9175 break;
9176 case OP_POSITIONAL:
9177 aggregate_assign_positional (container, lhs, exp, pos, indices,
9178 &num_indices, max_indices,
9179 low_index, high_index);
9180 break;
9181 case OP_OTHERS:
9182 if (i != n-1)
9183 error (_("Misplaced 'others' clause"));
9184 aggregate_assign_others (container, lhs, exp, pos, indices,
9185 num_indices, low_index, high_index);
9186 break;
9187 default:
9188 error (_("Internal error: bad aggregate clause"));
9189 }
9190 }
9191
9192 return container;
9193 }
9194
9195 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9196 construct at *POS, updating *POS past the construct, given that
9197 the positions are relative to lower bound LOW, where HIGH is the
9198 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9199 updating *NUM_INDICES as needed. CONTAINER is as for
9200 assign_aggregate. */
9201 static void
9202 aggregate_assign_positional (struct value *container,
9203 struct value *lhs, struct expression *exp,
9204 int *pos, LONGEST *indices, int *num_indices,
9205 int max_indices, LONGEST low, LONGEST high)
9206 {
9207 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9208
9209 if (ind - 1 == high)
9210 warning (_("Extra components in aggregate ignored."));
9211 if (ind <= high)
9212 {
9213 add_component_interval (ind, ind, indices, num_indices, max_indices);
9214 *pos += 3;
9215 assign_component (container, lhs, ind, exp, pos);
9216 }
9217 else
9218 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9219 }
9220
9221 /* Assign into the components of LHS indexed by the OP_CHOICES
9222 construct at *POS, updating *POS past the construct, given that
9223 the allowable indices are LOW..HIGH. Record the indices assigned
9224 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9225 needed. CONTAINER is as for assign_aggregate. */
9226 static void
9227 aggregate_assign_from_choices (struct value *container,
9228 struct value *lhs, struct expression *exp,
9229 int *pos, LONGEST *indices, int *num_indices,
9230 int max_indices, LONGEST low, LONGEST high)
9231 {
9232 int j;
9233 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9234 int choice_pos, expr_pc;
9235 int is_array = ada_is_direct_array_type (value_type (lhs));
9236
9237 choice_pos = *pos += 3;
9238
9239 for (j = 0; j < n_choices; j += 1)
9240 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9241 expr_pc = *pos;
9242 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9243
9244 for (j = 0; j < n_choices; j += 1)
9245 {
9246 LONGEST lower, upper;
9247 enum exp_opcode op = exp->elts[choice_pos].opcode;
9248
9249 if (op == OP_DISCRETE_RANGE)
9250 {
9251 choice_pos += 1;
9252 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9253 EVAL_NORMAL));
9254 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9255 EVAL_NORMAL));
9256 }
9257 else if (is_array)
9258 {
9259 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9260 EVAL_NORMAL));
9261 upper = lower;
9262 }
9263 else
9264 {
9265 int ind;
9266 const char *name;
9267
9268 switch (op)
9269 {
9270 case OP_NAME:
9271 name = &exp->elts[choice_pos + 2].string;
9272 break;
9273 case OP_VAR_VALUE:
9274 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9275 break;
9276 default:
9277 error (_("Invalid record component association."));
9278 }
9279 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9280 ind = 0;
9281 if (! find_struct_field (name, value_type (lhs), 0,
9282 NULL, NULL, NULL, NULL, &ind))
9283 error (_("Unknown component name: %s."), name);
9284 lower = upper = ind;
9285 }
9286
9287 if (lower <= upper && (lower < low || upper > high))
9288 error (_("Index in component association out of bounds."));
9289
9290 add_component_interval (lower, upper, indices, num_indices,
9291 max_indices);
9292 while (lower <= upper)
9293 {
9294 int pos1;
9295
9296 pos1 = expr_pc;
9297 assign_component (container, lhs, lower, exp, &pos1);
9298 lower += 1;
9299 }
9300 }
9301 }
9302
9303 /* Assign the value of the expression in the OP_OTHERS construct in
9304 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9305 have not been previously assigned. The index intervals already assigned
9306 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9307 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9308 static void
9309 aggregate_assign_others (struct value *container,
9310 struct value *lhs, struct expression *exp,
9311 int *pos, LONGEST *indices, int num_indices,
9312 LONGEST low, LONGEST high)
9313 {
9314 int i;
9315 int expr_pc = *pos + 1;
9316
9317 for (i = 0; i < num_indices - 2; i += 2)
9318 {
9319 LONGEST ind;
9320
9321 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9322 {
9323 int localpos;
9324
9325 localpos = expr_pc;
9326 assign_component (container, lhs, ind, exp, &localpos);
9327 }
9328 }
9329 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9330 }
9331
9332 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9333 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9334 modifying *SIZE as needed. It is an error if *SIZE exceeds
9335 MAX_SIZE. The resulting intervals do not overlap. */
9336 static void
9337 add_component_interval (LONGEST low, LONGEST high,
9338 LONGEST* indices, int *size, int max_size)
9339 {
9340 int i, j;
9341
9342 for (i = 0; i < *size; i += 2) {
9343 if (high >= indices[i] && low <= indices[i + 1])
9344 {
9345 int kh;
9346
9347 for (kh = i + 2; kh < *size; kh += 2)
9348 if (high < indices[kh])
9349 break;
9350 if (low < indices[i])
9351 indices[i] = low;
9352 indices[i + 1] = indices[kh - 1];
9353 if (high > indices[i + 1])
9354 indices[i + 1] = high;
9355 memcpy (indices + i + 2, indices + kh, *size - kh);
9356 *size -= kh - i - 2;
9357 return;
9358 }
9359 else if (high < indices[i])
9360 break;
9361 }
9362
9363 if (*size == max_size)
9364 error (_("Internal error: miscounted aggregate components."));
9365 *size += 2;
9366 for (j = *size-1; j >= i+2; j -= 1)
9367 indices[j] = indices[j - 2];
9368 indices[i] = low;
9369 indices[i + 1] = high;
9370 }
9371
9372 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9373 is different. */
9374
9375 static struct value *
9376 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9377 {
9378 if (type == ada_check_typedef (value_type (arg2)))
9379 return arg2;
9380
9381 if (ada_is_fixed_point_type (type))
9382 return (cast_to_fixed (type, arg2));
9383
9384 if (ada_is_fixed_point_type (value_type (arg2)))
9385 return cast_from_fixed (type, arg2);
9386
9387 return value_cast (type, arg2);
9388 }
9389
9390 /* Evaluating Ada expressions, and printing their result.
9391 ------------------------------------------------------
9392
9393 1. Introduction:
9394 ----------------
9395
9396 We usually evaluate an Ada expression in order to print its value.
9397 We also evaluate an expression in order to print its type, which
9398 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9399 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9400 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9401 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9402 similar.
9403
9404 Evaluating expressions is a little more complicated for Ada entities
9405 than it is for entities in languages such as C. The main reason for
9406 this is that Ada provides types whose definition might be dynamic.
9407 One example of such types is variant records. Or another example
9408 would be an array whose bounds can only be known at run time.
9409
9410 The following description is a general guide as to what should be
9411 done (and what should NOT be done) in order to evaluate an expression
9412 involving such types, and when. This does not cover how the semantic
9413 information is encoded by GNAT as this is covered separatly. For the
9414 document used as the reference for the GNAT encoding, see exp_dbug.ads
9415 in the GNAT sources.
9416
9417 Ideally, we should embed each part of this description next to its
9418 associated code. Unfortunately, the amount of code is so vast right
9419 now that it's hard to see whether the code handling a particular
9420 situation might be duplicated or not. One day, when the code is
9421 cleaned up, this guide might become redundant with the comments
9422 inserted in the code, and we might want to remove it.
9423
9424 2. ``Fixing'' an Entity, the Simple Case:
9425 -----------------------------------------
9426
9427 When evaluating Ada expressions, the tricky issue is that they may
9428 reference entities whose type contents and size are not statically
9429 known. Consider for instance a variant record:
9430
9431 type Rec (Empty : Boolean := True) is record
9432 case Empty is
9433 when True => null;
9434 when False => Value : Integer;
9435 end case;
9436 end record;
9437 Yes : Rec := (Empty => False, Value => 1);
9438 No : Rec := (empty => True);
9439
9440 The size and contents of that record depends on the value of the
9441 descriminant (Rec.Empty). At this point, neither the debugging
9442 information nor the associated type structure in GDB are able to
9443 express such dynamic types. So what the debugger does is to create
9444 "fixed" versions of the type that applies to the specific object.
9445 We also informally refer to this opperation as "fixing" an object,
9446 which means creating its associated fixed type.
9447
9448 Example: when printing the value of variable "Yes" above, its fixed
9449 type would look like this:
9450
9451 type Rec is record
9452 Empty : Boolean;
9453 Value : Integer;
9454 end record;
9455
9456 On the other hand, if we printed the value of "No", its fixed type
9457 would become:
9458
9459 type Rec is record
9460 Empty : Boolean;
9461 end record;
9462
9463 Things become a little more complicated when trying to fix an entity
9464 with a dynamic type that directly contains another dynamic type,
9465 such as an array of variant records, for instance. There are
9466 two possible cases: Arrays, and records.
9467
9468 3. ``Fixing'' Arrays:
9469 ---------------------
9470
9471 The type structure in GDB describes an array in terms of its bounds,
9472 and the type of its elements. By design, all elements in the array
9473 have the same type and we cannot represent an array of variant elements
9474 using the current type structure in GDB. When fixing an array,
9475 we cannot fix the array element, as we would potentially need one
9476 fixed type per element of the array. As a result, the best we can do
9477 when fixing an array is to produce an array whose bounds and size
9478 are correct (allowing us to read it from memory), but without having
9479 touched its element type. Fixing each element will be done later,
9480 when (if) necessary.
9481
9482 Arrays are a little simpler to handle than records, because the same
9483 amount of memory is allocated for each element of the array, even if
9484 the amount of space actually used by each element differs from element
9485 to element. Consider for instance the following array of type Rec:
9486
9487 type Rec_Array is array (1 .. 2) of Rec;
9488
9489 The actual amount of memory occupied by each element might be different
9490 from element to element, depending on the value of their discriminant.
9491 But the amount of space reserved for each element in the array remains
9492 fixed regardless. So we simply need to compute that size using
9493 the debugging information available, from which we can then determine
9494 the array size (we multiply the number of elements of the array by
9495 the size of each element).
9496
9497 The simplest case is when we have an array of a constrained element
9498 type. For instance, consider the following type declarations:
9499
9500 type Bounded_String (Max_Size : Integer) is
9501 Length : Integer;
9502 Buffer : String (1 .. Max_Size);
9503 end record;
9504 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9505
9506 In this case, the compiler describes the array as an array of
9507 variable-size elements (identified by its XVS suffix) for which
9508 the size can be read in the parallel XVZ variable.
9509
9510 In the case of an array of an unconstrained element type, the compiler
9511 wraps the array element inside a private PAD type. This type should not
9512 be shown to the user, and must be "unwrap"'ed before printing. Note
9513 that we also use the adjective "aligner" in our code to designate
9514 these wrapper types.
9515
9516 In some cases, the size allocated for each element is statically
9517 known. In that case, the PAD type already has the correct size,
9518 and the array element should remain unfixed.
9519
9520 But there are cases when this size is not statically known.
9521 For instance, assuming that "Five" is an integer variable:
9522
9523 type Dynamic is array (1 .. Five) of Integer;
9524 type Wrapper (Has_Length : Boolean := False) is record
9525 Data : Dynamic;
9526 case Has_Length is
9527 when True => Length : Integer;
9528 when False => null;
9529 end case;
9530 end record;
9531 type Wrapper_Array is array (1 .. 2) of Wrapper;
9532
9533 Hello : Wrapper_Array := (others => (Has_Length => True,
9534 Data => (others => 17),
9535 Length => 1));
9536
9537
9538 The debugging info would describe variable Hello as being an
9539 array of a PAD type. The size of that PAD type is not statically
9540 known, but can be determined using a parallel XVZ variable.
9541 In that case, a copy of the PAD type with the correct size should
9542 be used for the fixed array.
9543
9544 3. ``Fixing'' record type objects:
9545 ----------------------------------
9546
9547 Things are slightly different from arrays in the case of dynamic
9548 record types. In this case, in order to compute the associated
9549 fixed type, we need to determine the size and offset of each of
9550 its components. This, in turn, requires us to compute the fixed
9551 type of each of these components.
9552
9553 Consider for instance the example:
9554
9555 type Bounded_String (Max_Size : Natural) is record
9556 Str : String (1 .. Max_Size);
9557 Length : Natural;
9558 end record;
9559 My_String : Bounded_String (Max_Size => 10);
9560
9561 In that case, the position of field "Length" depends on the size
9562 of field Str, which itself depends on the value of the Max_Size
9563 discriminant. In order to fix the type of variable My_String,
9564 we need to fix the type of field Str. Therefore, fixing a variant
9565 record requires us to fix each of its components.
9566
9567 However, if a component does not have a dynamic size, the component
9568 should not be fixed. In particular, fields that use a PAD type
9569 should not fixed. Here is an example where this might happen
9570 (assuming type Rec above):
9571
9572 type Container (Big : Boolean) is record
9573 First : Rec;
9574 After : Integer;
9575 case Big is
9576 when True => Another : Integer;
9577 when False => null;
9578 end case;
9579 end record;
9580 My_Container : Container := (Big => False,
9581 First => (Empty => True),
9582 After => 42);
9583
9584 In that example, the compiler creates a PAD type for component First,
9585 whose size is constant, and then positions the component After just
9586 right after it. The offset of component After is therefore constant
9587 in this case.
9588
9589 The debugger computes the position of each field based on an algorithm
9590 that uses, among other things, the actual position and size of the field
9591 preceding it. Let's now imagine that the user is trying to print
9592 the value of My_Container. If the type fixing was recursive, we would
9593 end up computing the offset of field After based on the size of the
9594 fixed version of field First. And since in our example First has
9595 only one actual field, the size of the fixed type is actually smaller
9596 than the amount of space allocated to that field, and thus we would
9597 compute the wrong offset of field After.
9598
9599 To make things more complicated, we need to watch out for dynamic
9600 components of variant records (identified by the ___XVL suffix in
9601 the component name). Even if the target type is a PAD type, the size
9602 of that type might not be statically known. So the PAD type needs
9603 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9604 we might end up with the wrong size for our component. This can be
9605 observed with the following type declarations:
9606
9607 type Octal is new Integer range 0 .. 7;
9608 type Octal_Array is array (Positive range <>) of Octal;
9609 pragma Pack (Octal_Array);
9610
9611 type Octal_Buffer (Size : Positive) is record
9612 Buffer : Octal_Array (1 .. Size);
9613 Length : Integer;
9614 end record;
9615
9616 In that case, Buffer is a PAD type whose size is unset and needs
9617 to be computed by fixing the unwrapped type.
9618
9619 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9620 ----------------------------------------------------------
9621
9622 Lastly, when should the sub-elements of an entity that remained unfixed
9623 thus far, be actually fixed?
9624
9625 The answer is: Only when referencing that element. For instance
9626 when selecting one component of a record, this specific component
9627 should be fixed at that point in time. Or when printing the value
9628 of a record, each component should be fixed before its value gets
9629 printed. Similarly for arrays, the element of the array should be
9630 fixed when printing each element of the array, or when extracting
9631 one element out of that array. On the other hand, fixing should
9632 not be performed on the elements when taking a slice of an array!
9633
9634 Note that one of the side-effects of miscomputing the offset and
9635 size of each field is that we end up also miscomputing the size
9636 of the containing type. This can have adverse results when computing
9637 the value of an entity. GDB fetches the value of an entity based
9638 on the size of its type, and thus a wrong size causes GDB to fetch
9639 the wrong amount of memory. In the case where the computed size is
9640 too small, GDB fetches too little data to print the value of our
9641 entiry. Results in this case as unpredicatble, as we usually read
9642 past the buffer containing the data =:-o. */
9643
9644 /* Implement the evaluate_exp routine in the exp_descriptor structure
9645 for the Ada language. */
9646
9647 static struct value *
9648 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9649 int *pos, enum noside noside)
9650 {
9651 enum exp_opcode op;
9652 int tem;
9653 int pc;
9654 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9655 struct type *type;
9656 int nargs, oplen;
9657 struct value **argvec;
9658
9659 pc = *pos;
9660 *pos += 1;
9661 op = exp->elts[pc].opcode;
9662
9663 switch (op)
9664 {
9665 default:
9666 *pos -= 1;
9667 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9668
9669 if (noside == EVAL_NORMAL)
9670 arg1 = unwrap_value (arg1);
9671
9672 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9673 then we need to perform the conversion manually, because
9674 evaluate_subexp_standard doesn't do it. This conversion is
9675 necessary in Ada because the different kinds of float/fixed
9676 types in Ada have different representations.
9677
9678 Similarly, we need to perform the conversion from OP_LONG
9679 ourselves. */
9680 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9681 arg1 = ada_value_cast (expect_type, arg1, noside);
9682
9683 return arg1;
9684
9685 case OP_STRING:
9686 {
9687 struct value *result;
9688
9689 *pos -= 1;
9690 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9691 /* The result type will have code OP_STRING, bashed there from
9692 OP_ARRAY. Bash it back. */
9693 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9694 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9695 return result;
9696 }
9697
9698 case UNOP_CAST:
9699 (*pos) += 2;
9700 type = exp->elts[pc + 1].type;
9701 arg1 = evaluate_subexp (type, exp, pos, noside);
9702 if (noside == EVAL_SKIP)
9703 goto nosideret;
9704 arg1 = ada_value_cast (type, arg1, noside);
9705 return arg1;
9706
9707 case UNOP_QUAL:
9708 (*pos) += 2;
9709 type = exp->elts[pc + 1].type;
9710 return ada_evaluate_subexp (type, exp, pos, noside);
9711
9712 case BINOP_ASSIGN:
9713 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9714 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9715 {
9716 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9717 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9718 return arg1;
9719 return ada_value_assign (arg1, arg1);
9720 }
9721 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9722 except if the lhs of our assignment is a convenience variable.
9723 In the case of assigning to a convenience variable, the lhs
9724 should be exactly the result of the evaluation of the rhs. */
9725 type = value_type (arg1);
9726 if (VALUE_LVAL (arg1) == lval_internalvar)
9727 type = NULL;
9728 arg2 = evaluate_subexp (type, exp, pos, noside);
9729 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9730 return arg1;
9731 if (ada_is_fixed_point_type (value_type (arg1)))
9732 arg2 = cast_to_fixed (value_type (arg1), arg2);
9733 else if (ada_is_fixed_point_type (value_type (arg2)))
9734 error
9735 (_("Fixed-point values must be assigned to fixed-point variables"));
9736 else
9737 arg2 = coerce_for_assign (value_type (arg1), arg2);
9738 return ada_value_assign (arg1, arg2);
9739
9740 case BINOP_ADD:
9741 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9742 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9743 if (noside == EVAL_SKIP)
9744 goto nosideret;
9745 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9746 return (value_from_longest
9747 (value_type (arg1),
9748 value_as_long (arg1) + value_as_long (arg2)));
9749 if ((ada_is_fixed_point_type (value_type (arg1))
9750 || ada_is_fixed_point_type (value_type (arg2)))
9751 && value_type (arg1) != value_type (arg2))
9752 error (_("Operands of fixed-point addition must have the same type"));
9753 /* Do the addition, and cast the result to the type of the first
9754 argument. We cannot cast the result to a reference type, so if
9755 ARG1 is a reference type, find its underlying type. */
9756 type = value_type (arg1);
9757 while (TYPE_CODE (type) == TYPE_CODE_REF)
9758 type = TYPE_TARGET_TYPE (type);
9759 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9760 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9761
9762 case BINOP_SUB:
9763 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9764 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9765 if (noside == EVAL_SKIP)
9766 goto nosideret;
9767 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9768 return (value_from_longest
9769 (value_type (arg1),
9770 value_as_long (arg1) - value_as_long (arg2)));
9771 if ((ada_is_fixed_point_type (value_type (arg1))
9772 || ada_is_fixed_point_type (value_type (arg2)))
9773 && value_type (arg1) != value_type (arg2))
9774 error (_("Operands of fixed-point subtraction "
9775 "must have the same type"));
9776 /* Do the substraction, and cast the result to the type of the first
9777 argument. We cannot cast the result to a reference type, so if
9778 ARG1 is a reference type, find its underlying type. */
9779 type = value_type (arg1);
9780 while (TYPE_CODE (type) == TYPE_CODE_REF)
9781 type = TYPE_TARGET_TYPE (type);
9782 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9783 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9784
9785 case BINOP_MUL:
9786 case BINOP_DIV:
9787 case BINOP_REM:
9788 case BINOP_MOD:
9789 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9791 if (noside == EVAL_SKIP)
9792 goto nosideret;
9793 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9794 {
9795 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9796 return value_zero (value_type (arg1), not_lval);
9797 }
9798 else
9799 {
9800 type = builtin_type (exp->gdbarch)->builtin_double;
9801 if (ada_is_fixed_point_type (value_type (arg1)))
9802 arg1 = cast_from_fixed (type, arg1);
9803 if (ada_is_fixed_point_type (value_type (arg2)))
9804 arg2 = cast_from_fixed (type, arg2);
9805 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9806 return ada_value_binop (arg1, arg2, op);
9807 }
9808
9809 case BINOP_EQUAL:
9810 case BINOP_NOTEQUAL:
9811 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9812 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9813 if (noside == EVAL_SKIP)
9814 goto nosideret;
9815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9816 tem = 0;
9817 else
9818 {
9819 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9820 tem = ada_value_equal (arg1, arg2);
9821 }
9822 if (op == BINOP_NOTEQUAL)
9823 tem = !tem;
9824 type = language_bool_type (exp->language_defn, exp->gdbarch);
9825 return value_from_longest (type, (LONGEST) tem);
9826
9827 case UNOP_NEG:
9828 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9829 if (noside == EVAL_SKIP)
9830 goto nosideret;
9831 else if (ada_is_fixed_point_type (value_type (arg1)))
9832 return value_cast (value_type (arg1), value_neg (arg1));
9833 else
9834 {
9835 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9836 return value_neg (arg1);
9837 }
9838
9839 case BINOP_LOGICAL_AND:
9840 case BINOP_LOGICAL_OR:
9841 case UNOP_LOGICAL_NOT:
9842 {
9843 struct value *val;
9844
9845 *pos -= 1;
9846 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9847 type = language_bool_type (exp->language_defn, exp->gdbarch);
9848 return value_cast (type, val);
9849 }
9850
9851 case BINOP_BITWISE_AND:
9852 case BINOP_BITWISE_IOR:
9853 case BINOP_BITWISE_XOR:
9854 {
9855 struct value *val;
9856
9857 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9858 *pos = pc;
9859 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9860
9861 return value_cast (value_type (arg1), val);
9862 }
9863
9864 case OP_VAR_VALUE:
9865 *pos -= 1;
9866
9867 if (noside == EVAL_SKIP)
9868 {
9869 *pos += 4;
9870 goto nosideret;
9871 }
9872 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9873 /* Only encountered when an unresolved symbol occurs in a
9874 context other than a function call, in which case, it is
9875 invalid. */
9876 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9877 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9878 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9879 {
9880 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9881 /* Check to see if this is a tagged type. We also need to handle
9882 the case where the type is a reference to a tagged type, but
9883 we have to be careful to exclude pointers to tagged types.
9884 The latter should be shown as usual (as a pointer), whereas
9885 a reference should mostly be transparent to the user. */
9886 if (ada_is_tagged_type (type, 0)
9887 || (TYPE_CODE(type) == TYPE_CODE_REF
9888 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9889 {
9890 /* Tagged types are a little special in the fact that the real
9891 type is dynamic and can only be determined by inspecting the
9892 object's tag. This means that we need to get the object's
9893 value first (EVAL_NORMAL) and then extract the actual object
9894 type from its tag.
9895
9896 Note that we cannot skip the final step where we extract
9897 the object type from its tag, because the EVAL_NORMAL phase
9898 results in dynamic components being resolved into fixed ones.
9899 This can cause problems when trying to print the type
9900 description of tagged types whose parent has a dynamic size:
9901 We use the type name of the "_parent" component in order
9902 to print the name of the ancestor type in the type description.
9903 If that component had a dynamic size, the resolution into
9904 a fixed type would result in the loss of that type name,
9905 thus preventing us from printing the name of the ancestor
9906 type in the type description. */
9907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9908
9909 if (TYPE_CODE (type) != TYPE_CODE_REF)
9910 {
9911 struct type *actual_type;
9912
9913 actual_type = type_from_tag (ada_value_tag (arg1));
9914 if (actual_type == NULL)
9915 /* If, for some reason, we were unable to determine
9916 the actual type from the tag, then use the static
9917 approximation that we just computed as a fallback.
9918 This can happen if the debugging information is
9919 incomplete, for instance. */
9920 actual_type = type;
9921 return value_zero (actual_type, not_lval);
9922 }
9923 else
9924 {
9925 /* In the case of a ref, ada_coerce_ref takes care
9926 of determining the actual type. But the evaluation
9927 should return a ref as it should be valid to ask
9928 for its address; so rebuild a ref after coerce. */
9929 arg1 = ada_coerce_ref (arg1);
9930 return value_ref (arg1);
9931 }
9932 }
9933
9934 *pos += 4;
9935 return value_zero
9936 (to_static_fixed_type
9937 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9938 not_lval);
9939 }
9940 else
9941 {
9942 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9943 return ada_to_fixed_value (arg1);
9944 }
9945
9946 case OP_FUNCALL:
9947 (*pos) += 2;
9948
9949 /* Allocate arg vector, including space for the function to be
9950 called in argvec[0] and a terminating NULL. */
9951 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9952 argvec =
9953 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9954
9955 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9956 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9957 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9958 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9959 else
9960 {
9961 for (tem = 0; tem <= nargs; tem += 1)
9962 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9963 argvec[tem] = 0;
9964
9965 if (noside == EVAL_SKIP)
9966 goto nosideret;
9967 }
9968
9969 if (ada_is_constrained_packed_array_type
9970 (desc_base_type (value_type (argvec[0]))))
9971 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9972 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9973 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9974 /* This is a packed array that has already been fixed, and
9975 therefore already coerced to a simple array. Nothing further
9976 to do. */
9977 ;
9978 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9979 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9980 && VALUE_LVAL (argvec[0]) == lval_memory))
9981 argvec[0] = value_addr (argvec[0]);
9982
9983 type = ada_check_typedef (value_type (argvec[0]));
9984
9985 /* Ada allows us to implicitly dereference arrays when subscripting
9986 them. So, if this is an array typedef (encoding use for array
9987 access types encoded as fat pointers), strip it now. */
9988 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9989 type = ada_typedef_target_type (type);
9990
9991 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9992 {
9993 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9994 {
9995 case TYPE_CODE_FUNC:
9996 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9997 break;
9998 case TYPE_CODE_ARRAY:
9999 break;
10000 case TYPE_CODE_STRUCT:
10001 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10002 argvec[0] = ada_value_ind (argvec[0]);
10003 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10004 break;
10005 default:
10006 error (_("cannot subscript or call something of type `%s'"),
10007 ada_type_name (value_type (argvec[0])));
10008 break;
10009 }
10010 }
10011
10012 switch (TYPE_CODE (type))
10013 {
10014 case TYPE_CODE_FUNC:
10015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10016 {
10017 struct type *rtype = TYPE_TARGET_TYPE (type);
10018
10019 if (TYPE_GNU_IFUNC (type))
10020 return allocate_value (TYPE_TARGET_TYPE (rtype));
10021 return allocate_value (rtype);
10022 }
10023 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10024 case TYPE_CODE_INTERNAL_FUNCTION:
10025 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10026 /* We don't know anything about what the internal
10027 function might return, but we have to return
10028 something. */
10029 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10030 not_lval);
10031 else
10032 return call_internal_function (exp->gdbarch, exp->language_defn,
10033 argvec[0], nargs, argvec + 1);
10034
10035 case TYPE_CODE_STRUCT:
10036 {
10037 int arity;
10038
10039 arity = ada_array_arity (type);
10040 type = ada_array_element_type (type, nargs);
10041 if (type == NULL)
10042 error (_("cannot subscript or call a record"));
10043 if (arity != nargs)
10044 error (_("wrong number of subscripts; expecting %d"), arity);
10045 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10046 return value_zero (ada_aligned_type (type), lval_memory);
10047 return
10048 unwrap_value (ada_value_subscript
10049 (argvec[0], nargs, argvec + 1));
10050 }
10051 case TYPE_CODE_ARRAY:
10052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10053 {
10054 type = ada_array_element_type (type, nargs);
10055 if (type == NULL)
10056 error (_("element type of array unknown"));
10057 else
10058 return value_zero (ada_aligned_type (type), lval_memory);
10059 }
10060 return
10061 unwrap_value (ada_value_subscript
10062 (ada_coerce_to_simple_array (argvec[0]),
10063 nargs, argvec + 1));
10064 case TYPE_CODE_PTR: /* Pointer to array */
10065 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10067 {
10068 type = ada_array_element_type (type, nargs);
10069 if (type == NULL)
10070 error (_("element type of array unknown"));
10071 else
10072 return value_zero (ada_aligned_type (type), lval_memory);
10073 }
10074 return
10075 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10076 nargs, argvec + 1));
10077
10078 default:
10079 error (_("Attempt to index or call something other than an "
10080 "array or function"));
10081 }
10082
10083 case TERNOP_SLICE:
10084 {
10085 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10086 struct value *low_bound_val =
10087 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10088 struct value *high_bound_val =
10089 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10090 LONGEST low_bound;
10091 LONGEST high_bound;
10092
10093 low_bound_val = coerce_ref (low_bound_val);
10094 high_bound_val = coerce_ref (high_bound_val);
10095 low_bound = pos_atr (low_bound_val);
10096 high_bound = pos_atr (high_bound_val);
10097
10098 if (noside == EVAL_SKIP)
10099 goto nosideret;
10100
10101 /* If this is a reference to an aligner type, then remove all
10102 the aligners. */
10103 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10104 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10105 TYPE_TARGET_TYPE (value_type (array)) =
10106 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10107
10108 if (ada_is_constrained_packed_array_type (value_type (array)))
10109 error (_("cannot slice a packed array"));
10110
10111 /* If this is a reference to an array or an array lvalue,
10112 convert to a pointer. */
10113 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10114 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10115 && VALUE_LVAL (array) == lval_memory))
10116 array = value_addr (array);
10117
10118 if (noside == EVAL_AVOID_SIDE_EFFECTS
10119 && ada_is_array_descriptor_type (ada_check_typedef
10120 (value_type (array))))
10121 return empty_array (ada_type_of_array (array, 0), low_bound);
10122
10123 array = ada_coerce_to_simple_array_ptr (array);
10124
10125 /* If we have more than one level of pointer indirection,
10126 dereference the value until we get only one level. */
10127 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10128 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10129 == TYPE_CODE_PTR))
10130 array = value_ind (array);
10131
10132 /* Make sure we really do have an array type before going further,
10133 to avoid a SEGV when trying to get the index type or the target
10134 type later down the road if the debug info generated by
10135 the compiler is incorrect or incomplete. */
10136 if (!ada_is_simple_array_type (value_type (array)))
10137 error (_("cannot take slice of non-array"));
10138
10139 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10140 == TYPE_CODE_PTR)
10141 {
10142 struct type *type0 = ada_check_typedef (value_type (array));
10143
10144 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10145 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10146 else
10147 {
10148 struct type *arr_type0 =
10149 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10150
10151 return ada_value_slice_from_ptr (array, arr_type0,
10152 longest_to_int (low_bound),
10153 longest_to_int (high_bound));
10154 }
10155 }
10156 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10157 return array;
10158 else if (high_bound < low_bound)
10159 return empty_array (value_type (array), low_bound);
10160 else
10161 return ada_value_slice (array, longest_to_int (low_bound),
10162 longest_to_int (high_bound));
10163 }
10164
10165 case UNOP_IN_RANGE:
10166 (*pos) += 2;
10167 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10168 type = check_typedef (exp->elts[pc + 1].type);
10169
10170 if (noside == EVAL_SKIP)
10171 goto nosideret;
10172
10173 switch (TYPE_CODE (type))
10174 {
10175 default:
10176 lim_warning (_("Membership test incompletely implemented; "
10177 "always returns true"));
10178 type = language_bool_type (exp->language_defn, exp->gdbarch);
10179 return value_from_longest (type, (LONGEST) 1);
10180
10181 case TYPE_CODE_RANGE:
10182 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10183 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10186 type = language_bool_type (exp->language_defn, exp->gdbarch);
10187 return
10188 value_from_longest (type,
10189 (value_less (arg1, arg3)
10190 || value_equal (arg1, arg3))
10191 && (value_less (arg2, arg1)
10192 || value_equal (arg2, arg1)));
10193 }
10194
10195 case BINOP_IN_BOUNDS:
10196 (*pos) += 2;
10197 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10198 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10199
10200 if (noside == EVAL_SKIP)
10201 goto nosideret;
10202
10203 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10204 {
10205 type = language_bool_type (exp->language_defn, exp->gdbarch);
10206 return value_zero (type, not_lval);
10207 }
10208
10209 tem = longest_to_int (exp->elts[pc + 1].longconst);
10210
10211 type = ada_index_type (value_type (arg2), tem, "range");
10212 if (!type)
10213 type = value_type (arg1);
10214
10215 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10216 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10217
10218 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10219 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10220 type = language_bool_type (exp->language_defn, exp->gdbarch);
10221 return
10222 value_from_longest (type,
10223 (value_less (arg1, arg3)
10224 || value_equal (arg1, arg3))
10225 && (value_less (arg2, arg1)
10226 || value_equal (arg2, arg1)));
10227
10228 case TERNOP_IN_RANGE:
10229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10230 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10231 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10232
10233 if (noside == EVAL_SKIP)
10234 goto nosideret;
10235
10236 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10237 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10238 type = language_bool_type (exp->language_defn, exp->gdbarch);
10239 return
10240 value_from_longest (type,
10241 (value_less (arg1, arg3)
10242 || value_equal (arg1, arg3))
10243 && (value_less (arg2, arg1)
10244 || value_equal (arg2, arg1)));
10245
10246 case OP_ATR_FIRST:
10247 case OP_ATR_LAST:
10248 case OP_ATR_LENGTH:
10249 {
10250 struct type *type_arg;
10251
10252 if (exp->elts[*pos].opcode == OP_TYPE)
10253 {
10254 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10255 arg1 = NULL;
10256 type_arg = check_typedef (exp->elts[pc + 2].type);
10257 }
10258 else
10259 {
10260 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10261 type_arg = NULL;
10262 }
10263
10264 if (exp->elts[*pos].opcode != OP_LONG)
10265 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10266 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10267 *pos += 4;
10268
10269 if (noside == EVAL_SKIP)
10270 goto nosideret;
10271
10272 if (type_arg == NULL)
10273 {
10274 arg1 = ada_coerce_ref (arg1);
10275
10276 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10277 arg1 = ada_coerce_to_simple_array (arg1);
10278
10279 type = ada_index_type (value_type (arg1), tem,
10280 ada_attribute_name (op));
10281 if (type == NULL)
10282 type = builtin_type (exp->gdbarch)->builtin_int;
10283
10284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10285 return allocate_value (type);
10286
10287 switch (op)
10288 {
10289 default: /* Should never happen. */
10290 error (_("unexpected attribute encountered"));
10291 case OP_ATR_FIRST:
10292 return value_from_longest
10293 (type, ada_array_bound (arg1, tem, 0));
10294 case OP_ATR_LAST:
10295 return value_from_longest
10296 (type, ada_array_bound (arg1, tem, 1));
10297 case OP_ATR_LENGTH:
10298 return value_from_longest
10299 (type, ada_array_length (arg1, tem));
10300 }
10301 }
10302 else if (discrete_type_p (type_arg))
10303 {
10304 struct type *range_type;
10305 const char *name = ada_type_name (type_arg);
10306
10307 range_type = NULL;
10308 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10309 range_type = to_fixed_range_type (type_arg, NULL);
10310 if (range_type == NULL)
10311 range_type = type_arg;
10312 switch (op)
10313 {
10314 default:
10315 error (_("unexpected attribute encountered"));
10316 case OP_ATR_FIRST:
10317 return value_from_longest
10318 (range_type, ada_discrete_type_low_bound (range_type));
10319 case OP_ATR_LAST:
10320 return value_from_longest
10321 (range_type, ada_discrete_type_high_bound (range_type));
10322 case OP_ATR_LENGTH:
10323 error (_("the 'length attribute applies only to array types"));
10324 }
10325 }
10326 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10327 error (_("unimplemented type attribute"));
10328 else
10329 {
10330 LONGEST low, high;
10331
10332 if (ada_is_constrained_packed_array_type (type_arg))
10333 type_arg = decode_constrained_packed_array_type (type_arg);
10334
10335 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10336 if (type == NULL)
10337 type = builtin_type (exp->gdbarch)->builtin_int;
10338
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 return allocate_value (type);
10341
10342 switch (op)
10343 {
10344 default:
10345 error (_("unexpected attribute encountered"));
10346 case OP_ATR_FIRST:
10347 low = ada_array_bound_from_type (type_arg, tem, 0);
10348 return value_from_longest (type, low);
10349 case OP_ATR_LAST:
10350 high = ada_array_bound_from_type (type_arg, tem, 1);
10351 return value_from_longest (type, high);
10352 case OP_ATR_LENGTH:
10353 low = ada_array_bound_from_type (type_arg, tem, 0);
10354 high = ada_array_bound_from_type (type_arg, tem, 1);
10355 return value_from_longest (type, high - low + 1);
10356 }
10357 }
10358 }
10359
10360 case OP_ATR_TAG:
10361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10362 if (noside == EVAL_SKIP)
10363 goto nosideret;
10364
10365 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10366 return value_zero (ada_tag_type (arg1), not_lval);
10367
10368 return ada_value_tag (arg1);
10369
10370 case OP_ATR_MIN:
10371 case OP_ATR_MAX:
10372 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10373 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10374 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10375 if (noside == EVAL_SKIP)
10376 goto nosideret;
10377 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10378 return value_zero (value_type (arg1), not_lval);
10379 else
10380 {
10381 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10382 return value_binop (arg1, arg2,
10383 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10384 }
10385
10386 case OP_ATR_MODULUS:
10387 {
10388 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10389
10390 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10391 if (noside == EVAL_SKIP)
10392 goto nosideret;
10393
10394 if (!ada_is_modular_type (type_arg))
10395 error (_("'modulus must be applied to modular type"));
10396
10397 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10398 ada_modulus (type_arg));
10399 }
10400
10401
10402 case OP_ATR_POS:
10403 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10404 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10405 if (noside == EVAL_SKIP)
10406 goto nosideret;
10407 type = builtin_type (exp->gdbarch)->builtin_int;
10408 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10409 return value_zero (type, not_lval);
10410 else
10411 return value_pos_atr (type, arg1);
10412
10413 case OP_ATR_SIZE:
10414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10415 type = value_type (arg1);
10416
10417 /* If the argument is a reference, then dereference its type, since
10418 the user is really asking for the size of the actual object,
10419 not the size of the pointer. */
10420 if (TYPE_CODE (type) == TYPE_CODE_REF)
10421 type = TYPE_TARGET_TYPE (type);
10422
10423 if (noside == EVAL_SKIP)
10424 goto nosideret;
10425 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10426 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10427 else
10428 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10429 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10430
10431 case OP_ATR_VAL:
10432 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10433 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10434 type = exp->elts[pc + 2].type;
10435 if (noside == EVAL_SKIP)
10436 goto nosideret;
10437 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10438 return value_zero (type, not_lval);
10439 else
10440 return value_val_atr (type, arg1);
10441
10442 case BINOP_EXP:
10443 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10444 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10445 if (noside == EVAL_SKIP)
10446 goto nosideret;
10447 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10448 return value_zero (value_type (arg1), not_lval);
10449 else
10450 {
10451 /* For integer exponentiation operations,
10452 only promote the first argument. */
10453 if (is_integral_type (value_type (arg2)))
10454 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10455 else
10456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10457
10458 return value_binop (arg1, arg2, op);
10459 }
10460
10461 case UNOP_PLUS:
10462 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10463 if (noside == EVAL_SKIP)
10464 goto nosideret;
10465 else
10466 return arg1;
10467
10468 case UNOP_ABS:
10469 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10470 if (noside == EVAL_SKIP)
10471 goto nosideret;
10472 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10473 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10474 return value_neg (arg1);
10475 else
10476 return arg1;
10477
10478 case UNOP_IND:
10479 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10480 if (noside == EVAL_SKIP)
10481 goto nosideret;
10482 type = ada_check_typedef (value_type (arg1));
10483 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10484 {
10485 if (ada_is_array_descriptor_type (type))
10486 /* GDB allows dereferencing GNAT array descriptors. */
10487 {
10488 struct type *arrType = ada_type_of_array (arg1, 0);
10489
10490 if (arrType == NULL)
10491 error (_("Attempt to dereference null array pointer."));
10492 return value_at_lazy (arrType, 0);
10493 }
10494 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10495 || TYPE_CODE (type) == TYPE_CODE_REF
10496 /* In C you can dereference an array to get the 1st elt. */
10497 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10498 {
10499 type = to_static_fixed_type
10500 (ada_aligned_type
10501 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10502 check_size (type);
10503 return value_zero (type, lval_memory);
10504 }
10505 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10506 {
10507 /* GDB allows dereferencing an int. */
10508 if (expect_type == NULL)
10509 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10510 lval_memory);
10511 else
10512 {
10513 expect_type =
10514 to_static_fixed_type (ada_aligned_type (expect_type));
10515 return value_zero (expect_type, lval_memory);
10516 }
10517 }
10518 else
10519 error (_("Attempt to take contents of a non-pointer value."));
10520 }
10521 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10522 type = ada_check_typedef (value_type (arg1));
10523
10524 if (TYPE_CODE (type) == TYPE_CODE_INT)
10525 /* GDB allows dereferencing an int. If we were given
10526 the expect_type, then use that as the target type.
10527 Otherwise, assume that the target type is an int. */
10528 {
10529 if (expect_type != NULL)
10530 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10531 arg1));
10532 else
10533 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10534 (CORE_ADDR) value_as_address (arg1));
10535 }
10536
10537 if (ada_is_array_descriptor_type (type))
10538 /* GDB allows dereferencing GNAT array descriptors. */
10539 return ada_coerce_to_simple_array (arg1);
10540 else
10541 return ada_value_ind (arg1);
10542
10543 case STRUCTOP_STRUCT:
10544 tem = longest_to_int (exp->elts[pc + 1].longconst);
10545 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10546 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10547 if (noside == EVAL_SKIP)
10548 goto nosideret;
10549 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10550 {
10551 struct type *type1 = value_type (arg1);
10552
10553 if (ada_is_tagged_type (type1, 1))
10554 {
10555 type = ada_lookup_struct_elt_type (type1,
10556 &exp->elts[pc + 2].string,
10557 1, 1, NULL);
10558 if (type == NULL)
10559 /* In this case, we assume that the field COULD exist
10560 in some extension of the type. Return an object of
10561 "type" void, which will match any formal
10562 (see ada_type_match). */
10563 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10564 lval_memory);
10565 }
10566 else
10567 type =
10568 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10569 0, NULL);
10570
10571 return value_zero (ada_aligned_type (type), lval_memory);
10572 }
10573 else
10574 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10575 arg1 = unwrap_value (arg1);
10576 return ada_to_fixed_value (arg1);
10577
10578 case OP_TYPE:
10579 /* The value is not supposed to be used. This is here to make it
10580 easier to accommodate expressions that contain types. */
10581 (*pos) += 2;
10582 if (noside == EVAL_SKIP)
10583 goto nosideret;
10584 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10585 return allocate_value (exp->elts[pc + 1].type);
10586 else
10587 error (_("Attempt to use a type name as an expression"));
10588
10589 case OP_AGGREGATE:
10590 case OP_CHOICES:
10591 case OP_OTHERS:
10592 case OP_DISCRETE_RANGE:
10593 case OP_POSITIONAL:
10594 case OP_NAME:
10595 if (noside == EVAL_NORMAL)
10596 switch (op)
10597 {
10598 case OP_NAME:
10599 error (_("Undefined name, ambiguous name, or renaming used in "
10600 "component association: %s."), &exp->elts[pc+2].string);
10601 case OP_AGGREGATE:
10602 error (_("Aggregates only allowed on the right of an assignment"));
10603 default:
10604 internal_error (__FILE__, __LINE__,
10605 _("aggregate apparently mangled"));
10606 }
10607
10608 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10609 *pos += oplen - 1;
10610 for (tem = 0; tem < nargs; tem += 1)
10611 ada_evaluate_subexp (NULL, exp, pos, noside);
10612 goto nosideret;
10613 }
10614
10615 nosideret:
10616 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10617 }
10618 \f
10619
10620 /* Fixed point */
10621
10622 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10623 type name that encodes the 'small and 'delta information.
10624 Otherwise, return NULL. */
10625
10626 static const char *
10627 fixed_type_info (struct type *type)
10628 {
10629 const char *name = ada_type_name (type);
10630 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10631
10632 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10633 {
10634 const char *tail = strstr (name, "___XF_");
10635
10636 if (tail == NULL)
10637 return NULL;
10638 else
10639 return tail + 5;
10640 }
10641 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10642 return fixed_type_info (TYPE_TARGET_TYPE (type));
10643 else
10644 return NULL;
10645 }
10646
10647 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10648
10649 int
10650 ada_is_fixed_point_type (struct type *type)
10651 {
10652 return fixed_type_info (type) != NULL;
10653 }
10654
10655 /* Return non-zero iff TYPE represents a System.Address type. */
10656
10657 int
10658 ada_is_system_address_type (struct type *type)
10659 {
10660 return (TYPE_NAME (type)
10661 && strcmp (TYPE_NAME (type), "system__address") == 0);
10662 }
10663
10664 /* Assuming that TYPE is the representation of an Ada fixed-point
10665 type, return its delta, or -1 if the type is malformed and the
10666 delta cannot be determined. */
10667
10668 DOUBLEST
10669 ada_delta (struct type *type)
10670 {
10671 const char *encoding = fixed_type_info (type);
10672 DOUBLEST num, den;
10673
10674 /* Strictly speaking, num and den are encoded as integer. However,
10675 they may not fit into a long, and they will have to be converted
10676 to DOUBLEST anyway. So scan them as DOUBLEST. */
10677 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10678 &num, &den) < 2)
10679 return -1.0;
10680 else
10681 return num / den;
10682 }
10683
10684 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10685 factor ('SMALL value) associated with the type. */
10686
10687 static DOUBLEST
10688 scaling_factor (struct type *type)
10689 {
10690 const char *encoding = fixed_type_info (type);
10691 DOUBLEST num0, den0, num1, den1;
10692 int n;
10693
10694 /* Strictly speaking, num's and den's are encoded as integer. However,
10695 they may not fit into a long, and they will have to be converted
10696 to DOUBLEST anyway. So scan them as DOUBLEST. */
10697 n = sscanf (encoding,
10698 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10699 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10700 &num0, &den0, &num1, &den1);
10701
10702 if (n < 2)
10703 return 1.0;
10704 else if (n == 4)
10705 return num1 / den1;
10706 else
10707 return num0 / den0;
10708 }
10709
10710
10711 /* Assuming that X is the representation of a value of fixed-point
10712 type TYPE, return its floating-point equivalent. */
10713
10714 DOUBLEST
10715 ada_fixed_to_float (struct type *type, LONGEST x)
10716 {
10717 return (DOUBLEST) x *scaling_factor (type);
10718 }
10719
10720 /* The representation of a fixed-point value of type TYPE
10721 corresponding to the value X. */
10722
10723 LONGEST
10724 ada_float_to_fixed (struct type *type, DOUBLEST x)
10725 {
10726 return (LONGEST) (x / scaling_factor (type) + 0.5);
10727 }
10728
10729 \f
10730
10731 /* Range types */
10732
10733 /* Scan STR beginning at position K for a discriminant name, and
10734 return the value of that discriminant field of DVAL in *PX. If
10735 PNEW_K is not null, put the position of the character beyond the
10736 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10737 not alter *PX and *PNEW_K if unsuccessful. */
10738
10739 static int
10740 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10741 int *pnew_k)
10742 {
10743 static char *bound_buffer = NULL;
10744 static size_t bound_buffer_len = 0;
10745 char *bound;
10746 char *pend;
10747 struct value *bound_val;
10748
10749 if (dval == NULL || str == NULL || str[k] == '\0')
10750 return 0;
10751
10752 pend = strstr (str + k, "__");
10753 if (pend == NULL)
10754 {
10755 bound = str + k;
10756 k += strlen (bound);
10757 }
10758 else
10759 {
10760 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10761 bound = bound_buffer;
10762 strncpy (bound_buffer, str + k, pend - (str + k));
10763 bound[pend - (str + k)] = '\0';
10764 k = pend - str;
10765 }
10766
10767 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10768 if (bound_val == NULL)
10769 return 0;
10770
10771 *px = value_as_long (bound_val);
10772 if (pnew_k != NULL)
10773 *pnew_k = k;
10774 return 1;
10775 }
10776
10777 /* Value of variable named NAME in the current environment. If
10778 no such variable found, then if ERR_MSG is null, returns 0, and
10779 otherwise causes an error with message ERR_MSG. */
10780
10781 static struct value *
10782 get_var_value (char *name, char *err_msg)
10783 {
10784 struct ada_symbol_info *syms;
10785 int nsyms;
10786
10787 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10788 &syms);
10789
10790 if (nsyms != 1)
10791 {
10792 if (err_msg == NULL)
10793 return 0;
10794 else
10795 error (("%s"), err_msg);
10796 }
10797
10798 return value_of_variable (syms[0].sym, syms[0].block);
10799 }
10800
10801 /* Value of integer variable named NAME in the current environment. If
10802 no such variable found, returns 0, and sets *FLAG to 0. If
10803 successful, sets *FLAG to 1. */
10804
10805 LONGEST
10806 get_int_var_value (char *name, int *flag)
10807 {
10808 struct value *var_val = get_var_value (name, 0);
10809
10810 if (var_val == 0)
10811 {
10812 if (flag != NULL)
10813 *flag = 0;
10814 return 0;
10815 }
10816 else
10817 {
10818 if (flag != NULL)
10819 *flag = 1;
10820 return value_as_long (var_val);
10821 }
10822 }
10823
10824
10825 /* Return a range type whose base type is that of the range type named
10826 NAME in the current environment, and whose bounds are calculated
10827 from NAME according to the GNAT range encoding conventions.
10828 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10829 corresponding range type from debug information; fall back to using it
10830 if symbol lookup fails. If a new type must be created, allocate it
10831 like ORIG_TYPE was. The bounds information, in general, is encoded
10832 in NAME, the base type given in the named range type. */
10833
10834 static struct type *
10835 to_fixed_range_type (struct type *raw_type, struct value *dval)
10836 {
10837 const char *name;
10838 struct type *base_type;
10839 char *subtype_info;
10840
10841 gdb_assert (raw_type != NULL);
10842 gdb_assert (TYPE_NAME (raw_type) != NULL);
10843
10844 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10845 base_type = TYPE_TARGET_TYPE (raw_type);
10846 else
10847 base_type = raw_type;
10848
10849 name = TYPE_NAME (raw_type);
10850 subtype_info = strstr (name, "___XD");
10851 if (subtype_info == NULL)
10852 {
10853 LONGEST L = ada_discrete_type_low_bound (raw_type);
10854 LONGEST U = ada_discrete_type_high_bound (raw_type);
10855
10856 if (L < INT_MIN || U > INT_MAX)
10857 return raw_type;
10858 else
10859 return create_range_type (alloc_type_copy (raw_type), raw_type,
10860 ada_discrete_type_low_bound (raw_type),
10861 ada_discrete_type_high_bound (raw_type));
10862 }
10863 else
10864 {
10865 static char *name_buf = NULL;
10866 static size_t name_len = 0;
10867 int prefix_len = subtype_info - name;
10868 LONGEST L, U;
10869 struct type *type;
10870 char *bounds_str;
10871 int n;
10872
10873 GROW_VECT (name_buf, name_len, prefix_len + 5);
10874 strncpy (name_buf, name, prefix_len);
10875 name_buf[prefix_len] = '\0';
10876
10877 subtype_info += 5;
10878 bounds_str = strchr (subtype_info, '_');
10879 n = 1;
10880
10881 if (*subtype_info == 'L')
10882 {
10883 if (!ada_scan_number (bounds_str, n, &L, &n)
10884 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10885 return raw_type;
10886 if (bounds_str[n] == '_')
10887 n += 2;
10888 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10889 n += 1;
10890 subtype_info += 1;
10891 }
10892 else
10893 {
10894 int ok;
10895
10896 strcpy (name_buf + prefix_len, "___L");
10897 L = get_int_var_value (name_buf, &ok);
10898 if (!ok)
10899 {
10900 lim_warning (_("Unknown lower bound, using 1."));
10901 L = 1;
10902 }
10903 }
10904
10905 if (*subtype_info == 'U')
10906 {
10907 if (!ada_scan_number (bounds_str, n, &U, &n)
10908 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10909 return raw_type;
10910 }
10911 else
10912 {
10913 int ok;
10914
10915 strcpy (name_buf + prefix_len, "___U");
10916 U = get_int_var_value (name_buf, &ok);
10917 if (!ok)
10918 {
10919 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10920 U = L;
10921 }
10922 }
10923
10924 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10925 TYPE_NAME (type) = name;
10926 return type;
10927 }
10928 }
10929
10930 /* True iff NAME is the name of a range type. */
10931
10932 int
10933 ada_is_range_type_name (const char *name)
10934 {
10935 return (name != NULL && strstr (name, "___XD"));
10936 }
10937 \f
10938
10939 /* Modular types */
10940
10941 /* True iff TYPE is an Ada modular type. */
10942
10943 int
10944 ada_is_modular_type (struct type *type)
10945 {
10946 struct type *subranged_type = get_base_type (type);
10947
10948 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10949 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10950 && TYPE_UNSIGNED (subranged_type));
10951 }
10952
10953 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10954
10955 ULONGEST
10956 ada_modulus (struct type *type)
10957 {
10958 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10959 }
10960 \f
10961
10962 /* Ada exception catchpoint support:
10963 ---------------------------------
10964
10965 We support 3 kinds of exception catchpoints:
10966 . catchpoints on Ada exceptions
10967 . catchpoints on unhandled Ada exceptions
10968 . catchpoints on failed assertions
10969
10970 Exceptions raised during failed assertions, or unhandled exceptions
10971 could perfectly be caught with the general catchpoint on Ada exceptions.
10972 However, we can easily differentiate these two special cases, and having
10973 the option to distinguish these two cases from the rest can be useful
10974 to zero-in on certain situations.
10975
10976 Exception catchpoints are a specialized form of breakpoint,
10977 since they rely on inserting breakpoints inside known routines
10978 of the GNAT runtime. The implementation therefore uses a standard
10979 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10980 of breakpoint_ops.
10981
10982 Support in the runtime for exception catchpoints have been changed
10983 a few times already, and these changes affect the implementation
10984 of these catchpoints. In order to be able to support several
10985 variants of the runtime, we use a sniffer that will determine
10986 the runtime variant used by the program being debugged. */
10987
10988 /* Ada's standard exceptions. */
10989
10990 static char *standard_exc[] = {
10991 "constraint_error",
10992 "program_error",
10993 "storage_error",
10994 "tasking_error"
10995 };
10996
10997 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10998
10999 /* A structure that describes how to support exception catchpoints
11000 for a given executable. */
11001
11002 struct exception_support_info
11003 {
11004 /* The name of the symbol to break on in order to insert
11005 a catchpoint on exceptions. */
11006 const char *catch_exception_sym;
11007
11008 /* The name of the symbol to break on in order to insert
11009 a catchpoint on unhandled exceptions. */
11010 const char *catch_exception_unhandled_sym;
11011
11012 /* The name of the symbol to break on in order to insert
11013 a catchpoint on failed assertions. */
11014 const char *catch_assert_sym;
11015
11016 /* Assuming that the inferior just triggered an unhandled exception
11017 catchpoint, this function is responsible for returning the address
11018 in inferior memory where the name of that exception is stored.
11019 Return zero if the address could not be computed. */
11020 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11021 };
11022
11023 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11024 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11025
11026 /* The following exception support info structure describes how to
11027 implement exception catchpoints with the latest version of the
11028 Ada runtime (as of 2007-03-06). */
11029
11030 static const struct exception_support_info default_exception_support_info =
11031 {
11032 "__gnat_debug_raise_exception", /* catch_exception_sym */
11033 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11034 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11035 ada_unhandled_exception_name_addr
11036 };
11037
11038 /* The following exception support info structure describes how to
11039 implement exception catchpoints with a slightly older version
11040 of the Ada runtime. */
11041
11042 static const struct exception_support_info exception_support_info_fallback =
11043 {
11044 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11045 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11046 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11047 ada_unhandled_exception_name_addr_from_raise
11048 };
11049
11050 /* Return nonzero if we can detect the exception support routines
11051 described in EINFO.
11052
11053 This function errors out if an abnormal situation is detected
11054 (for instance, if we find the exception support routines, but
11055 that support is found to be incomplete). */
11056
11057 static int
11058 ada_has_this_exception_support (const struct exception_support_info *einfo)
11059 {
11060 struct symbol *sym;
11061
11062 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11063 that should be compiled with debugging information. As a result, we
11064 expect to find that symbol in the symtabs. */
11065
11066 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11067 if (sym == NULL)
11068 {
11069 /* Perhaps we did not find our symbol because the Ada runtime was
11070 compiled without debugging info, or simply stripped of it.
11071 It happens on some GNU/Linux distributions for instance, where
11072 users have to install a separate debug package in order to get
11073 the runtime's debugging info. In that situation, let the user
11074 know why we cannot insert an Ada exception catchpoint.
11075
11076 Note: Just for the purpose of inserting our Ada exception
11077 catchpoint, we could rely purely on the associated minimal symbol.
11078 But we would be operating in degraded mode anyway, since we are
11079 still lacking the debugging info needed later on to extract
11080 the name of the exception being raised (this name is printed in
11081 the catchpoint message, and is also used when trying to catch
11082 a specific exception). We do not handle this case for now. */
11083 struct minimal_symbol *msym
11084 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11085
11086 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11087 error (_("Your Ada runtime appears to be missing some debugging "
11088 "information.\nCannot insert Ada exception catchpoint "
11089 "in this configuration."));
11090
11091 return 0;
11092 }
11093
11094 /* Make sure that the symbol we found corresponds to a function. */
11095
11096 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11097 error (_("Symbol \"%s\" is not a function (class = %d)"),
11098 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11099
11100 return 1;
11101 }
11102
11103 /* Inspect the Ada runtime and determine which exception info structure
11104 should be used to provide support for exception catchpoints.
11105
11106 This function will always set the per-inferior exception_info,
11107 or raise an error. */
11108
11109 static void
11110 ada_exception_support_info_sniffer (void)
11111 {
11112 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11113
11114 /* If the exception info is already known, then no need to recompute it. */
11115 if (data->exception_info != NULL)
11116 return;
11117
11118 /* Check the latest (default) exception support info. */
11119 if (ada_has_this_exception_support (&default_exception_support_info))
11120 {
11121 data->exception_info = &default_exception_support_info;
11122 return;
11123 }
11124
11125 /* Try our fallback exception suport info. */
11126 if (ada_has_this_exception_support (&exception_support_info_fallback))
11127 {
11128 data->exception_info = &exception_support_info_fallback;
11129 return;
11130 }
11131
11132 /* Sometimes, it is normal for us to not be able to find the routine
11133 we are looking for. This happens when the program is linked with
11134 the shared version of the GNAT runtime, and the program has not been
11135 started yet. Inform the user of these two possible causes if
11136 applicable. */
11137
11138 if (ada_update_initial_language (language_unknown) != language_ada)
11139 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11140
11141 /* If the symbol does not exist, then check that the program is
11142 already started, to make sure that shared libraries have been
11143 loaded. If it is not started, this may mean that the symbol is
11144 in a shared library. */
11145
11146 if (ptid_get_pid (inferior_ptid) == 0)
11147 error (_("Unable to insert catchpoint. Try to start the program first."));
11148
11149 /* At this point, we know that we are debugging an Ada program and
11150 that the inferior has been started, but we still are not able to
11151 find the run-time symbols. That can mean that we are in
11152 configurable run time mode, or that a-except as been optimized
11153 out by the linker... In any case, at this point it is not worth
11154 supporting this feature. */
11155
11156 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11157 }
11158
11159 /* True iff FRAME is very likely to be that of a function that is
11160 part of the runtime system. This is all very heuristic, but is
11161 intended to be used as advice as to what frames are uninteresting
11162 to most users. */
11163
11164 static int
11165 is_known_support_routine (struct frame_info *frame)
11166 {
11167 struct symtab_and_line sal;
11168 char *func_name;
11169 enum language func_lang;
11170 int i;
11171 const char *fullname;
11172
11173 /* If this code does not have any debugging information (no symtab),
11174 This cannot be any user code. */
11175
11176 find_frame_sal (frame, &sal);
11177 if (sal.symtab == NULL)
11178 return 1;
11179
11180 /* If there is a symtab, but the associated source file cannot be
11181 located, then assume this is not user code: Selecting a frame
11182 for which we cannot display the code would not be very helpful
11183 for the user. This should also take care of case such as VxWorks
11184 where the kernel has some debugging info provided for a few units. */
11185
11186 fullname = symtab_to_fullname (sal.symtab);
11187 if (access (fullname, R_OK) != 0)
11188 return 1;
11189
11190 /* Check the unit filename againt the Ada runtime file naming.
11191 We also check the name of the objfile against the name of some
11192 known system libraries that sometimes come with debugging info
11193 too. */
11194
11195 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11196 {
11197 re_comp (known_runtime_file_name_patterns[i]);
11198 if (re_exec (lbasename (sal.symtab->filename)))
11199 return 1;
11200 if (sal.symtab->objfile != NULL
11201 && re_exec (objfile_name (sal.symtab->objfile)))
11202 return 1;
11203 }
11204
11205 /* Check whether the function is a GNAT-generated entity. */
11206
11207 find_frame_funname (frame, &func_name, &func_lang, NULL);
11208 if (func_name == NULL)
11209 return 1;
11210
11211 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11212 {
11213 re_comp (known_auxiliary_function_name_patterns[i]);
11214 if (re_exec (func_name))
11215 {
11216 xfree (func_name);
11217 return 1;
11218 }
11219 }
11220
11221 xfree (func_name);
11222 return 0;
11223 }
11224
11225 /* Find the first frame that contains debugging information and that is not
11226 part of the Ada run-time, starting from FI and moving upward. */
11227
11228 void
11229 ada_find_printable_frame (struct frame_info *fi)
11230 {
11231 for (; fi != NULL; fi = get_prev_frame (fi))
11232 {
11233 if (!is_known_support_routine (fi))
11234 {
11235 select_frame (fi);
11236 break;
11237 }
11238 }
11239
11240 }
11241
11242 /* Assuming that the inferior just triggered an unhandled exception
11243 catchpoint, return the address in inferior memory where the name
11244 of the exception is stored.
11245
11246 Return zero if the address could not be computed. */
11247
11248 static CORE_ADDR
11249 ada_unhandled_exception_name_addr (void)
11250 {
11251 return parse_and_eval_address ("e.full_name");
11252 }
11253
11254 /* Same as ada_unhandled_exception_name_addr, except that this function
11255 should be used when the inferior uses an older version of the runtime,
11256 where the exception name needs to be extracted from a specific frame
11257 several frames up in the callstack. */
11258
11259 static CORE_ADDR
11260 ada_unhandled_exception_name_addr_from_raise (void)
11261 {
11262 int frame_level;
11263 struct frame_info *fi;
11264 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11265 struct cleanup *old_chain;
11266
11267 /* To determine the name of this exception, we need to select
11268 the frame corresponding to RAISE_SYM_NAME. This frame is
11269 at least 3 levels up, so we simply skip the first 3 frames
11270 without checking the name of their associated function. */
11271 fi = get_current_frame ();
11272 for (frame_level = 0; frame_level < 3; frame_level += 1)
11273 if (fi != NULL)
11274 fi = get_prev_frame (fi);
11275
11276 old_chain = make_cleanup (null_cleanup, NULL);
11277 while (fi != NULL)
11278 {
11279 char *func_name;
11280 enum language func_lang;
11281
11282 find_frame_funname (fi, &func_name, &func_lang, NULL);
11283 if (func_name != NULL)
11284 {
11285 make_cleanup (xfree, func_name);
11286
11287 if (strcmp (func_name,
11288 data->exception_info->catch_exception_sym) == 0)
11289 break; /* We found the frame we were looking for... */
11290 fi = get_prev_frame (fi);
11291 }
11292 }
11293 do_cleanups (old_chain);
11294
11295 if (fi == NULL)
11296 return 0;
11297
11298 select_frame (fi);
11299 return parse_and_eval_address ("id.full_name");
11300 }
11301
11302 /* Assuming the inferior just triggered an Ada exception catchpoint
11303 (of any type), return the address in inferior memory where the name
11304 of the exception is stored, if applicable.
11305
11306 Return zero if the address could not be computed, or if not relevant. */
11307
11308 static CORE_ADDR
11309 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11310 struct breakpoint *b)
11311 {
11312 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11313
11314 switch (ex)
11315 {
11316 case ada_catch_exception:
11317 return (parse_and_eval_address ("e.full_name"));
11318 break;
11319
11320 case ada_catch_exception_unhandled:
11321 return data->exception_info->unhandled_exception_name_addr ();
11322 break;
11323
11324 case ada_catch_assert:
11325 return 0; /* Exception name is not relevant in this case. */
11326 break;
11327
11328 default:
11329 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11330 break;
11331 }
11332
11333 return 0; /* Should never be reached. */
11334 }
11335
11336 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11337 any error that ada_exception_name_addr_1 might cause to be thrown.
11338 When an error is intercepted, a warning with the error message is printed,
11339 and zero is returned. */
11340
11341 static CORE_ADDR
11342 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11343 struct breakpoint *b)
11344 {
11345 volatile struct gdb_exception e;
11346 CORE_ADDR result = 0;
11347
11348 TRY_CATCH (e, RETURN_MASK_ERROR)
11349 {
11350 result = ada_exception_name_addr_1 (ex, b);
11351 }
11352
11353 if (e.reason < 0)
11354 {
11355 warning (_("failed to get exception name: %s"), e.message);
11356 return 0;
11357 }
11358
11359 return result;
11360 }
11361
11362 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11363
11364 /* Ada catchpoints.
11365
11366 In the case of catchpoints on Ada exceptions, the catchpoint will
11367 stop the target on every exception the program throws. When a user
11368 specifies the name of a specific exception, we translate this
11369 request into a condition expression (in text form), and then parse
11370 it into an expression stored in each of the catchpoint's locations.
11371 We then use this condition to check whether the exception that was
11372 raised is the one the user is interested in. If not, then the
11373 target is resumed again. We store the name of the requested
11374 exception, in order to be able to re-set the condition expression
11375 when symbols change. */
11376
11377 /* An instance of this type is used to represent an Ada catchpoint
11378 breakpoint location. It includes a "struct bp_location" as a kind
11379 of base class; users downcast to "struct bp_location *" when
11380 needed. */
11381
11382 struct ada_catchpoint_location
11383 {
11384 /* The base class. */
11385 struct bp_location base;
11386
11387 /* The condition that checks whether the exception that was raised
11388 is the specific exception the user specified on catchpoint
11389 creation. */
11390 struct expression *excep_cond_expr;
11391 };
11392
11393 /* Implement the DTOR method in the bp_location_ops structure for all
11394 Ada exception catchpoint kinds. */
11395
11396 static void
11397 ada_catchpoint_location_dtor (struct bp_location *bl)
11398 {
11399 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11400
11401 xfree (al->excep_cond_expr);
11402 }
11403
11404 /* The vtable to be used in Ada catchpoint locations. */
11405
11406 static const struct bp_location_ops ada_catchpoint_location_ops =
11407 {
11408 ada_catchpoint_location_dtor
11409 };
11410
11411 /* An instance of this type is used to represent an Ada catchpoint.
11412 It includes a "struct breakpoint" as a kind of base class; users
11413 downcast to "struct breakpoint *" when needed. */
11414
11415 struct ada_catchpoint
11416 {
11417 /* The base class. */
11418 struct breakpoint base;
11419
11420 /* The name of the specific exception the user specified. */
11421 char *excep_string;
11422 };
11423
11424 /* Parse the exception condition string in the context of each of the
11425 catchpoint's locations, and store them for later evaluation. */
11426
11427 static void
11428 create_excep_cond_exprs (struct ada_catchpoint *c)
11429 {
11430 struct cleanup *old_chain;
11431 struct bp_location *bl;
11432 char *cond_string;
11433
11434 /* Nothing to do if there's no specific exception to catch. */
11435 if (c->excep_string == NULL)
11436 return;
11437
11438 /* Same if there are no locations... */
11439 if (c->base.loc == NULL)
11440 return;
11441
11442 /* Compute the condition expression in text form, from the specific
11443 expection we want to catch. */
11444 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11445 old_chain = make_cleanup (xfree, cond_string);
11446
11447 /* Iterate over all the catchpoint's locations, and parse an
11448 expression for each. */
11449 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11450 {
11451 struct ada_catchpoint_location *ada_loc
11452 = (struct ada_catchpoint_location *) bl;
11453 struct expression *exp = NULL;
11454
11455 if (!bl->shlib_disabled)
11456 {
11457 volatile struct gdb_exception e;
11458 const char *s;
11459
11460 s = cond_string;
11461 TRY_CATCH (e, RETURN_MASK_ERROR)
11462 {
11463 exp = parse_exp_1 (&s, bl->address,
11464 block_for_pc (bl->address), 0);
11465 }
11466 if (e.reason < 0)
11467 {
11468 warning (_("failed to reevaluate internal exception condition "
11469 "for catchpoint %d: %s"),
11470 c->base.number, e.message);
11471 /* There is a bug in GCC on sparc-solaris when building with
11472 optimization which causes EXP to change unexpectedly
11473 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11474 The problem should be fixed starting with GCC 4.9.
11475 In the meantime, work around it by forcing EXP back
11476 to NULL. */
11477 exp = NULL;
11478 }
11479 }
11480
11481 ada_loc->excep_cond_expr = exp;
11482 }
11483
11484 do_cleanups (old_chain);
11485 }
11486
11487 /* Implement the DTOR method in the breakpoint_ops structure for all
11488 exception catchpoint kinds. */
11489
11490 static void
11491 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11492 {
11493 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11494
11495 xfree (c->excep_string);
11496
11497 bkpt_breakpoint_ops.dtor (b);
11498 }
11499
11500 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11501 structure for all exception catchpoint kinds. */
11502
11503 static struct bp_location *
11504 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11505 struct breakpoint *self)
11506 {
11507 struct ada_catchpoint_location *loc;
11508
11509 loc = XNEW (struct ada_catchpoint_location);
11510 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11511 loc->excep_cond_expr = NULL;
11512 return &loc->base;
11513 }
11514
11515 /* Implement the RE_SET method in the breakpoint_ops structure for all
11516 exception catchpoint kinds. */
11517
11518 static void
11519 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11520 {
11521 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11522
11523 /* Call the base class's method. This updates the catchpoint's
11524 locations. */
11525 bkpt_breakpoint_ops.re_set (b);
11526
11527 /* Reparse the exception conditional expressions. One for each
11528 location. */
11529 create_excep_cond_exprs (c);
11530 }
11531
11532 /* Returns true if we should stop for this breakpoint hit. If the
11533 user specified a specific exception, we only want to cause a stop
11534 if the program thrown that exception. */
11535
11536 static int
11537 should_stop_exception (const struct bp_location *bl)
11538 {
11539 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11540 const struct ada_catchpoint_location *ada_loc
11541 = (const struct ada_catchpoint_location *) bl;
11542 volatile struct gdb_exception ex;
11543 int stop;
11544
11545 /* With no specific exception, should always stop. */
11546 if (c->excep_string == NULL)
11547 return 1;
11548
11549 if (ada_loc->excep_cond_expr == NULL)
11550 {
11551 /* We will have a NULL expression if back when we were creating
11552 the expressions, this location's had failed to parse. */
11553 return 1;
11554 }
11555
11556 stop = 1;
11557 TRY_CATCH (ex, RETURN_MASK_ALL)
11558 {
11559 struct value *mark;
11560
11561 mark = value_mark ();
11562 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11563 value_free_to_mark (mark);
11564 }
11565 if (ex.reason < 0)
11566 exception_fprintf (gdb_stderr, ex,
11567 _("Error in testing exception condition:\n"));
11568 return stop;
11569 }
11570
11571 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11572 for all exception catchpoint kinds. */
11573
11574 static void
11575 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11576 {
11577 bs->stop = should_stop_exception (bs->bp_location_at);
11578 }
11579
11580 /* Implement the PRINT_IT method in the breakpoint_ops structure
11581 for all exception catchpoint kinds. */
11582
11583 static enum print_stop_action
11584 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11585 {
11586 struct ui_out *uiout = current_uiout;
11587 struct breakpoint *b = bs->breakpoint_at;
11588
11589 annotate_catchpoint (b->number);
11590
11591 if (ui_out_is_mi_like_p (uiout))
11592 {
11593 ui_out_field_string (uiout, "reason",
11594 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11595 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11596 }
11597
11598 ui_out_text (uiout,
11599 b->disposition == disp_del ? "\nTemporary catchpoint "
11600 : "\nCatchpoint ");
11601 ui_out_field_int (uiout, "bkptno", b->number);
11602 ui_out_text (uiout, ", ");
11603
11604 switch (ex)
11605 {
11606 case ada_catch_exception:
11607 case ada_catch_exception_unhandled:
11608 {
11609 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11610 char exception_name[256];
11611
11612 if (addr != 0)
11613 {
11614 read_memory (addr, (gdb_byte *) exception_name,
11615 sizeof (exception_name) - 1);
11616 exception_name [sizeof (exception_name) - 1] = '\0';
11617 }
11618 else
11619 {
11620 /* For some reason, we were unable to read the exception
11621 name. This could happen if the Runtime was compiled
11622 without debugging info, for instance. In that case,
11623 just replace the exception name by the generic string
11624 "exception" - it will read as "an exception" in the
11625 notification we are about to print. */
11626 memcpy (exception_name, "exception", sizeof ("exception"));
11627 }
11628 /* In the case of unhandled exception breakpoints, we print
11629 the exception name as "unhandled EXCEPTION_NAME", to make
11630 it clearer to the user which kind of catchpoint just got
11631 hit. We used ui_out_text to make sure that this extra
11632 info does not pollute the exception name in the MI case. */
11633 if (ex == ada_catch_exception_unhandled)
11634 ui_out_text (uiout, "unhandled ");
11635 ui_out_field_string (uiout, "exception-name", exception_name);
11636 }
11637 break;
11638 case ada_catch_assert:
11639 /* In this case, the name of the exception is not really
11640 important. Just print "failed assertion" to make it clearer
11641 that his program just hit an assertion-failure catchpoint.
11642 We used ui_out_text because this info does not belong in
11643 the MI output. */
11644 ui_out_text (uiout, "failed assertion");
11645 break;
11646 }
11647 ui_out_text (uiout, " at ");
11648 ada_find_printable_frame (get_current_frame ());
11649
11650 return PRINT_SRC_AND_LOC;
11651 }
11652
11653 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11654 for all exception catchpoint kinds. */
11655
11656 static void
11657 print_one_exception (enum ada_exception_catchpoint_kind ex,
11658 struct breakpoint *b, struct bp_location **last_loc)
11659 {
11660 struct ui_out *uiout = current_uiout;
11661 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11662 struct value_print_options opts;
11663
11664 get_user_print_options (&opts);
11665 if (opts.addressprint)
11666 {
11667 annotate_field (4);
11668 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11669 }
11670
11671 annotate_field (5);
11672 *last_loc = b->loc;
11673 switch (ex)
11674 {
11675 case ada_catch_exception:
11676 if (c->excep_string != NULL)
11677 {
11678 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11679
11680 ui_out_field_string (uiout, "what", msg);
11681 xfree (msg);
11682 }
11683 else
11684 ui_out_field_string (uiout, "what", "all Ada exceptions");
11685
11686 break;
11687
11688 case ada_catch_exception_unhandled:
11689 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11690 break;
11691
11692 case ada_catch_assert:
11693 ui_out_field_string (uiout, "what", "failed Ada assertions");
11694 break;
11695
11696 default:
11697 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11698 break;
11699 }
11700 }
11701
11702 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11703 for all exception catchpoint kinds. */
11704
11705 static void
11706 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11707 struct breakpoint *b)
11708 {
11709 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11710 struct ui_out *uiout = current_uiout;
11711
11712 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11713 : _("Catchpoint "));
11714 ui_out_field_int (uiout, "bkptno", b->number);
11715 ui_out_text (uiout, ": ");
11716
11717 switch (ex)
11718 {
11719 case ada_catch_exception:
11720 if (c->excep_string != NULL)
11721 {
11722 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11723 struct cleanup *old_chain = make_cleanup (xfree, info);
11724
11725 ui_out_text (uiout, info);
11726 do_cleanups (old_chain);
11727 }
11728 else
11729 ui_out_text (uiout, _("all Ada exceptions"));
11730 break;
11731
11732 case ada_catch_exception_unhandled:
11733 ui_out_text (uiout, _("unhandled Ada exceptions"));
11734 break;
11735
11736 case ada_catch_assert:
11737 ui_out_text (uiout, _("failed Ada assertions"));
11738 break;
11739
11740 default:
11741 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11742 break;
11743 }
11744 }
11745
11746 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11747 for all exception catchpoint kinds. */
11748
11749 static void
11750 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
11751 struct breakpoint *b, struct ui_file *fp)
11752 {
11753 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11754
11755 switch (ex)
11756 {
11757 case ada_catch_exception:
11758 fprintf_filtered (fp, "catch exception");
11759 if (c->excep_string != NULL)
11760 fprintf_filtered (fp, " %s", c->excep_string);
11761 break;
11762
11763 case ada_catch_exception_unhandled:
11764 fprintf_filtered (fp, "catch exception unhandled");
11765 break;
11766
11767 case ada_catch_assert:
11768 fprintf_filtered (fp, "catch assert");
11769 break;
11770
11771 default:
11772 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11773 }
11774 print_recreate_thread (b, fp);
11775 }
11776
11777 /* Virtual table for "catch exception" breakpoints. */
11778
11779 static void
11780 dtor_catch_exception (struct breakpoint *b)
11781 {
11782 dtor_exception (ada_catch_exception, b);
11783 }
11784
11785 static struct bp_location *
11786 allocate_location_catch_exception (struct breakpoint *self)
11787 {
11788 return allocate_location_exception (ada_catch_exception, self);
11789 }
11790
11791 static void
11792 re_set_catch_exception (struct breakpoint *b)
11793 {
11794 re_set_exception (ada_catch_exception, b);
11795 }
11796
11797 static void
11798 check_status_catch_exception (bpstat bs)
11799 {
11800 check_status_exception (ada_catch_exception, bs);
11801 }
11802
11803 static enum print_stop_action
11804 print_it_catch_exception (bpstat bs)
11805 {
11806 return print_it_exception (ada_catch_exception, bs);
11807 }
11808
11809 static void
11810 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11811 {
11812 print_one_exception (ada_catch_exception, b, last_loc);
11813 }
11814
11815 static void
11816 print_mention_catch_exception (struct breakpoint *b)
11817 {
11818 print_mention_exception (ada_catch_exception, b);
11819 }
11820
11821 static void
11822 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11823 {
11824 print_recreate_exception (ada_catch_exception, b, fp);
11825 }
11826
11827 static struct breakpoint_ops catch_exception_breakpoint_ops;
11828
11829 /* Virtual table for "catch exception unhandled" breakpoints. */
11830
11831 static void
11832 dtor_catch_exception_unhandled (struct breakpoint *b)
11833 {
11834 dtor_exception (ada_catch_exception_unhandled, b);
11835 }
11836
11837 static struct bp_location *
11838 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11839 {
11840 return allocate_location_exception (ada_catch_exception_unhandled, self);
11841 }
11842
11843 static void
11844 re_set_catch_exception_unhandled (struct breakpoint *b)
11845 {
11846 re_set_exception (ada_catch_exception_unhandled, b);
11847 }
11848
11849 static void
11850 check_status_catch_exception_unhandled (bpstat bs)
11851 {
11852 check_status_exception (ada_catch_exception_unhandled, bs);
11853 }
11854
11855 static enum print_stop_action
11856 print_it_catch_exception_unhandled (bpstat bs)
11857 {
11858 return print_it_exception (ada_catch_exception_unhandled, bs);
11859 }
11860
11861 static void
11862 print_one_catch_exception_unhandled (struct breakpoint *b,
11863 struct bp_location **last_loc)
11864 {
11865 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
11866 }
11867
11868 static void
11869 print_mention_catch_exception_unhandled (struct breakpoint *b)
11870 {
11871 print_mention_exception (ada_catch_exception_unhandled, b);
11872 }
11873
11874 static void
11875 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11876 struct ui_file *fp)
11877 {
11878 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
11879 }
11880
11881 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11882
11883 /* Virtual table for "catch assert" breakpoints. */
11884
11885 static void
11886 dtor_catch_assert (struct breakpoint *b)
11887 {
11888 dtor_exception (ada_catch_assert, b);
11889 }
11890
11891 static struct bp_location *
11892 allocate_location_catch_assert (struct breakpoint *self)
11893 {
11894 return allocate_location_exception (ada_catch_assert, self);
11895 }
11896
11897 static void
11898 re_set_catch_assert (struct breakpoint *b)
11899 {
11900 re_set_exception (ada_catch_assert, b);
11901 }
11902
11903 static void
11904 check_status_catch_assert (bpstat bs)
11905 {
11906 check_status_exception (ada_catch_assert, bs);
11907 }
11908
11909 static enum print_stop_action
11910 print_it_catch_assert (bpstat bs)
11911 {
11912 return print_it_exception (ada_catch_assert, bs);
11913 }
11914
11915 static void
11916 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11917 {
11918 print_one_exception (ada_catch_assert, b, last_loc);
11919 }
11920
11921 static void
11922 print_mention_catch_assert (struct breakpoint *b)
11923 {
11924 print_mention_exception (ada_catch_assert, b);
11925 }
11926
11927 static void
11928 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11929 {
11930 print_recreate_exception (ada_catch_assert, b, fp);
11931 }
11932
11933 static struct breakpoint_ops catch_assert_breakpoint_ops;
11934
11935 /* Return a newly allocated copy of the first space-separated token
11936 in ARGSP, and then adjust ARGSP to point immediately after that
11937 token.
11938
11939 Return NULL if ARGPS does not contain any more tokens. */
11940
11941 static char *
11942 ada_get_next_arg (char **argsp)
11943 {
11944 char *args = *argsp;
11945 char *end;
11946 char *result;
11947
11948 args = skip_spaces (args);
11949 if (args[0] == '\0')
11950 return NULL; /* No more arguments. */
11951
11952 /* Find the end of the current argument. */
11953
11954 end = skip_to_space (args);
11955
11956 /* Adjust ARGSP to point to the start of the next argument. */
11957
11958 *argsp = end;
11959
11960 /* Make a copy of the current argument and return it. */
11961
11962 result = xmalloc (end - args + 1);
11963 strncpy (result, args, end - args);
11964 result[end - args] = '\0';
11965
11966 return result;
11967 }
11968
11969 /* Split the arguments specified in a "catch exception" command.
11970 Set EX to the appropriate catchpoint type.
11971 Set EXCEP_STRING to the name of the specific exception if
11972 specified by the user.
11973 If a condition is found at the end of the arguments, the condition
11974 expression is stored in COND_STRING (memory must be deallocated
11975 after use). Otherwise COND_STRING is set to NULL. */
11976
11977 static void
11978 catch_ada_exception_command_split (char *args,
11979 enum ada_exception_catchpoint_kind *ex,
11980 char **excep_string,
11981 char **cond_string)
11982 {
11983 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11984 char *exception_name;
11985 char *cond = NULL;
11986
11987 exception_name = ada_get_next_arg (&args);
11988 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11989 {
11990 /* This is not an exception name; this is the start of a condition
11991 expression for a catchpoint on all exceptions. So, "un-get"
11992 this token, and set exception_name to NULL. */
11993 xfree (exception_name);
11994 exception_name = NULL;
11995 args -= 2;
11996 }
11997 make_cleanup (xfree, exception_name);
11998
11999 /* Check to see if we have a condition. */
12000
12001 args = skip_spaces (args);
12002 if (strncmp (args, "if", 2) == 0
12003 && (isspace (args[2]) || args[2] == '\0'))
12004 {
12005 args += 2;
12006 args = skip_spaces (args);
12007
12008 if (args[0] == '\0')
12009 error (_("Condition missing after `if' keyword"));
12010 cond = xstrdup (args);
12011 make_cleanup (xfree, cond);
12012
12013 args += strlen (args);
12014 }
12015
12016 /* Check that we do not have any more arguments. Anything else
12017 is unexpected. */
12018
12019 if (args[0] != '\0')
12020 error (_("Junk at end of expression"));
12021
12022 discard_cleanups (old_chain);
12023
12024 if (exception_name == NULL)
12025 {
12026 /* Catch all exceptions. */
12027 *ex = ada_catch_exception;
12028 *excep_string = NULL;
12029 }
12030 else if (strcmp (exception_name, "unhandled") == 0)
12031 {
12032 /* Catch unhandled exceptions. */
12033 *ex = ada_catch_exception_unhandled;
12034 *excep_string = NULL;
12035 }
12036 else
12037 {
12038 /* Catch a specific exception. */
12039 *ex = ada_catch_exception;
12040 *excep_string = exception_name;
12041 }
12042 *cond_string = cond;
12043 }
12044
12045 /* Return the name of the symbol on which we should break in order to
12046 implement a catchpoint of the EX kind. */
12047
12048 static const char *
12049 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12050 {
12051 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12052
12053 gdb_assert (data->exception_info != NULL);
12054
12055 switch (ex)
12056 {
12057 case ada_catch_exception:
12058 return (data->exception_info->catch_exception_sym);
12059 break;
12060 case ada_catch_exception_unhandled:
12061 return (data->exception_info->catch_exception_unhandled_sym);
12062 break;
12063 case ada_catch_assert:
12064 return (data->exception_info->catch_assert_sym);
12065 break;
12066 default:
12067 internal_error (__FILE__, __LINE__,
12068 _("unexpected catchpoint kind (%d)"), ex);
12069 }
12070 }
12071
12072 /* Return the breakpoint ops "virtual table" used for catchpoints
12073 of the EX kind. */
12074
12075 static const struct breakpoint_ops *
12076 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12077 {
12078 switch (ex)
12079 {
12080 case ada_catch_exception:
12081 return (&catch_exception_breakpoint_ops);
12082 break;
12083 case ada_catch_exception_unhandled:
12084 return (&catch_exception_unhandled_breakpoint_ops);
12085 break;
12086 case ada_catch_assert:
12087 return (&catch_assert_breakpoint_ops);
12088 break;
12089 default:
12090 internal_error (__FILE__, __LINE__,
12091 _("unexpected catchpoint kind (%d)"), ex);
12092 }
12093 }
12094
12095 /* Return the condition that will be used to match the current exception
12096 being raised with the exception that the user wants to catch. This
12097 assumes that this condition is used when the inferior just triggered
12098 an exception catchpoint.
12099
12100 The string returned is a newly allocated string that needs to be
12101 deallocated later. */
12102
12103 static char *
12104 ada_exception_catchpoint_cond_string (const char *excep_string)
12105 {
12106 int i;
12107
12108 /* The standard exceptions are a special case. They are defined in
12109 runtime units that have been compiled without debugging info; if
12110 EXCEP_STRING is the not-fully-qualified name of a standard
12111 exception (e.g. "constraint_error") then, during the evaluation
12112 of the condition expression, the symbol lookup on this name would
12113 *not* return this standard exception. The catchpoint condition
12114 may then be set only on user-defined exceptions which have the
12115 same not-fully-qualified name (e.g. my_package.constraint_error).
12116
12117 To avoid this unexcepted behavior, these standard exceptions are
12118 systematically prefixed by "standard". This means that "catch
12119 exception constraint_error" is rewritten into "catch exception
12120 standard.constraint_error".
12121
12122 If an exception named contraint_error is defined in another package of
12123 the inferior program, then the only way to specify this exception as a
12124 breakpoint condition is to use its fully-qualified named:
12125 e.g. my_package.constraint_error. */
12126
12127 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12128 {
12129 if (strcmp (standard_exc [i], excep_string) == 0)
12130 {
12131 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12132 excep_string);
12133 }
12134 }
12135 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12136 }
12137
12138 /* Return the symtab_and_line that should be used to insert an exception
12139 catchpoint of the TYPE kind.
12140
12141 EXCEP_STRING should contain the name of a specific exception that
12142 the catchpoint should catch, or NULL otherwise.
12143
12144 ADDR_STRING returns the name of the function where the real
12145 breakpoint that implements the catchpoints is set, depending on the
12146 type of catchpoint we need to create. */
12147
12148 static struct symtab_and_line
12149 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12150 char **addr_string, const struct breakpoint_ops **ops)
12151 {
12152 const char *sym_name;
12153 struct symbol *sym;
12154
12155 /* First, find out which exception support info to use. */
12156 ada_exception_support_info_sniffer ();
12157
12158 /* Then lookup the function on which we will break in order to catch
12159 the Ada exceptions requested by the user. */
12160 sym_name = ada_exception_sym_name (ex);
12161 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12162
12163 /* We can assume that SYM is not NULL at this stage. If the symbol
12164 did not exist, ada_exception_support_info_sniffer would have
12165 raised an exception.
12166
12167 Also, ada_exception_support_info_sniffer should have already
12168 verified that SYM is a function symbol. */
12169 gdb_assert (sym != NULL);
12170 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12171
12172 /* Set ADDR_STRING. */
12173 *addr_string = xstrdup (sym_name);
12174
12175 /* Set OPS. */
12176 *ops = ada_exception_breakpoint_ops (ex);
12177
12178 return find_function_start_sal (sym, 1);
12179 }
12180
12181 /* Create an Ada exception catchpoint.
12182
12183 EX_KIND is the kind of exception catchpoint to be created.
12184
12185 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12186 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12187 of the exception to which this catchpoint applies. When not NULL,
12188 the string must be allocated on the heap, and its deallocation
12189 is no longer the responsibility of the caller.
12190
12191 COND_STRING, if not NULL, is the catchpoint condition. This string
12192 must be allocated on the heap, and its deallocation is no longer
12193 the responsibility of the caller.
12194
12195 TEMPFLAG, if nonzero, means that the underlying breakpoint
12196 should be temporary.
12197
12198 FROM_TTY is the usual argument passed to all commands implementations. */
12199
12200 void
12201 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12202 enum ada_exception_catchpoint_kind ex_kind,
12203 char *excep_string,
12204 char *cond_string,
12205 int tempflag,
12206 int disabled,
12207 int from_tty)
12208 {
12209 struct ada_catchpoint *c;
12210 char *addr_string = NULL;
12211 const struct breakpoint_ops *ops = NULL;
12212 struct symtab_and_line sal
12213 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12214
12215 c = XNEW (struct ada_catchpoint);
12216 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12217 ops, tempflag, disabled, from_tty);
12218 c->excep_string = excep_string;
12219 create_excep_cond_exprs (c);
12220 if (cond_string != NULL)
12221 set_breakpoint_condition (&c->base, cond_string, from_tty);
12222 install_breakpoint (0, &c->base, 1);
12223 }
12224
12225 /* Implement the "catch exception" command. */
12226
12227 static void
12228 catch_ada_exception_command (char *arg, int from_tty,
12229 struct cmd_list_element *command)
12230 {
12231 struct gdbarch *gdbarch = get_current_arch ();
12232 int tempflag;
12233 enum ada_exception_catchpoint_kind ex_kind;
12234 char *excep_string = NULL;
12235 char *cond_string = NULL;
12236
12237 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12238
12239 if (!arg)
12240 arg = "";
12241 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12242 &cond_string);
12243 create_ada_exception_catchpoint (gdbarch, ex_kind,
12244 excep_string, cond_string,
12245 tempflag, 1 /* enabled */,
12246 from_tty);
12247 }
12248
12249 /* Split the arguments specified in a "catch assert" command.
12250
12251 ARGS contains the command's arguments (or the empty string if
12252 no arguments were passed).
12253
12254 If ARGS contains a condition, set COND_STRING to that condition
12255 (the memory needs to be deallocated after use). */
12256
12257 static void
12258 catch_ada_assert_command_split (char *args, char **cond_string)
12259 {
12260 args = skip_spaces (args);
12261
12262 /* Check whether a condition was provided. */
12263 if (strncmp (args, "if", 2) == 0
12264 && (isspace (args[2]) || args[2] == '\0'))
12265 {
12266 args += 2;
12267 args = skip_spaces (args);
12268 if (args[0] == '\0')
12269 error (_("condition missing after `if' keyword"));
12270 *cond_string = xstrdup (args);
12271 }
12272
12273 /* Otherwise, there should be no other argument at the end of
12274 the command. */
12275 else if (args[0] != '\0')
12276 error (_("Junk at end of arguments."));
12277 }
12278
12279 /* Implement the "catch assert" command. */
12280
12281 static void
12282 catch_assert_command (char *arg, int from_tty,
12283 struct cmd_list_element *command)
12284 {
12285 struct gdbarch *gdbarch = get_current_arch ();
12286 int tempflag;
12287 char *cond_string = NULL;
12288
12289 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12290
12291 if (!arg)
12292 arg = "";
12293 catch_ada_assert_command_split (arg, &cond_string);
12294 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12295 NULL, cond_string,
12296 tempflag, 1 /* enabled */,
12297 from_tty);
12298 }
12299
12300 /* Return non-zero if the symbol SYM is an Ada exception object. */
12301
12302 static int
12303 ada_is_exception_sym (struct symbol *sym)
12304 {
12305 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12306
12307 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12308 && SYMBOL_CLASS (sym) != LOC_BLOCK
12309 && SYMBOL_CLASS (sym) != LOC_CONST
12310 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12311 && type_name != NULL && strcmp (type_name, "exception") == 0);
12312 }
12313
12314 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12315 Ada exception object. This matches all exceptions except the ones
12316 defined by the Ada language. */
12317
12318 static int
12319 ada_is_non_standard_exception_sym (struct symbol *sym)
12320 {
12321 int i;
12322
12323 if (!ada_is_exception_sym (sym))
12324 return 0;
12325
12326 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12327 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12328 return 0; /* A standard exception. */
12329
12330 /* Numeric_Error is also a standard exception, so exclude it.
12331 See the STANDARD_EXC description for more details as to why
12332 this exception is not listed in that array. */
12333 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12334 return 0;
12335
12336 return 1;
12337 }
12338
12339 /* A helper function for qsort, comparing two struct ada_exc_info
12340 objects.
12341
12342 The comparison is determined first by exception name, and then
12343 by exception address. */
12344
12345 static int
12346 compare_ada_exception_info (const void *a, const void *b)
12347 {
12348 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12349 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12350 int result;
12351
12352 result = strcmp (exc_a->name, exc_b->name);
12353 if (result != 0)
12354 return result;
12355
12356 if (exc_a->addr < exc_b->addr)
12357 return -1;
12358 if (exc_a->addr > exc_b->addr)
12359 return 1;
12360
12361 return 0;
12362 }
12363
12364 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12365 routine, but keeping the first SKIP elements untouched.
12366
12367 All duplicates are also removed. */
12368
12369 static void
12370 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12371 int skip)
12372 {
12373 struct ada_exc_info *to_sort
12374 = VEC_address (ada_exc_info, *exceptions) + skip;
12375 int to_sort_len
12376 = VEC_length (ada_exc_info, *exceptions) - skip;
12377 int i, j;
12378
12379 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12380 compare_ada_exception_info);
12381
12382 for (i = 1, j = 1; i < to_sort_len; i++)
12383 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12384 to_sort[j++] = to_sort[i];
12385 to_sort_len = j;
12386 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12387 }
12388
12389 /* A function intended as the "name_matcher" callback in the struct
12390 quick_symbol_functions' expand_symtabs_matching method.
12391
12392 SEARCH_NAME is the symbol's search name.
12393
12394 If USER_DATA is not NULL, it is a pointer to a regext_t object
12395 used to match the symbol (by natural name). Otherwise, when USER_DATA
12396 is null, no filtering is performed, and all symbols are a positive
12397 match. */
12398
12399 static int
12400 ada_exc_search_name_matches (const char *search_name, void *user_data)
12401 {
12402 regex_t *preg = user_data;
12403
12404 if (preg == NULL)
12405 return 1;
12406
12407 /* In Ada, the symbol "search name" is a linkage name, whereas
12408 the regular expression used to do the matching refers to
12409 the natural name. So match against the decoded name. */
12410 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12411 }
12412
12413 /* Add all exceptions defined by the Ada standard whose name match
12414 a regular expression.
12415
12416 If PREG is not NULL, then this regexp_t object is used to
12417 perform the symbol name matching. Otherwise, no name-based
12418 filtering is performed.
12419
12420 EXCEPTIONS is a vector of exceptions to which matching exceptions
12421 gets pushed. */
12422
12423 static void
12424 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12425 {
12426 int i;
12427
12428 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12429 {
12430 if (preg == NULL
12431 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12432 {
12433 struct bound_minimal_symbol msymbol
12434 = ada_lookup_simple_minsym (standard_exc[i]);
12435
12436 if (msymbol.minsym != NULL)
12437 {
12438 struct ada_exc_info info
12439 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12440
12441 VEC_safe_push (ada_exc_info, *exceptions, &info);
12442 }
12443 }
12444 }
12445 }
12446
12447 /* Add all Ada exceptions defined locally and accessible from the given
12448 FRAME.
12449
12450 If PREG is not NULL, then this regexp_t object is used to
12451 perform the symbol name matching. Otherwise, no name-based
12452 filtering is performed.
12453
12454 EXCEPTIONS is a vector of exceptions to which matching exceptions
12455 gets pushed. */
12456
12457 static void
12458 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12459 VEC(ada_exc_info) **exceptions)
12460 {
12461 struct block *block = get_frame_block (frame, 0);
12462
12463 while (block != 0)
12464 {
12465 struct block_iterator iter;
12466 struct symbol *sym;
12467
12468 ALL_BLOCK_SYMBOLS (block, iter, sym)
12469 {
12470 switch (SYMBOL_CLASS (sym))
12471 {
12472 case LOC_TYPEDEF:
12473 case LOC_BLOCK:
12474 case LOC_CONST:
12475 break;
12476 default:
12477 if (ada_is_exception_sym (sym))
12478 {
12479 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12480 SYMBOL_VALUE_ADDRESS (sym)};
12481
12482 VEC_safe_push (ada_exc_info, *exceptions, &info);
12483 }
12484 }
12485 }
12486 if (BLOCK_FUNCTION (block) != NULL)
12487 break;
12488 block = BLOCK_SUPERBLOCK (block);
12489 }
12490 }
12491
12492 /* Add all exceptions defined globally whose name name match
12493 a regular expression, excluding standard exceptions.
12494
12495 The reason we exclude standard exceptions is that they need
12496 to be handled separately: Standard exceptions are defined inside
12497 a runtime unit which is normally not compiled with debugging info,
12498 and thus usually do not show up in our symbol search. However,
12499 if the unit was in fact built with debugging info, we need to
12500 exclude them because they would duplicate the entry we found
12501 during the special loop that specifically searches for those
12502 standard exceptions.
12503
12504 If PREG is not NULL, then this regexp_t object is used to
12505 perform the symbol name matching. Otherwise, no name-based
12506 filtering is performed.
12507
12508 EXCEPTIONS is a vector of exceptions to which matching exceptions
12509 gets pushed. */
12510
12511 static void
12512 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12513 {
12514 struct objfile *objfile;
12515 struct symtab *s;
12516
12517 ALL_OBJFILES (objfile)
12518 if (objfile->sf)
12519 objfile->sf->qf->expand_symtabs_matching
12520 (objfile, NULL, ada_exc_search_name_matches,
12521 VARIABLES_DOMAIN, preg);
12522
12523 ALL_PRIMARY_SYMTABS (objfile, s)
12524 {
12525 struct blockvector *bv = BLOCKVECTOR (s);
12526 int i;
12527
12528 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12529 {
12530 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12531 struct block_iterator iter;
12532 struct symbol *sym;
12533
12534 ALL_BLOCK_SYMBOLS (b, iter, sym)
12535 if (ada_is_non_standard_exception_sym (sym)
12536 && (preg == NULL
12537 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12538 0, NULL, 0) == 0))
12539 {
12540 struct ada_exc_info info
12541 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12542
12543 VEC_safe_push (ada_exc_info, *exceptions, &info);
12544 }
12545 }
12546 }
12547 }
12548
12549 /* Implements ada_exceptions_list with the regular expression passed
12550 as a regex_t, rather than a string.
12551
12552 If not NULL, PREG is used to filter out exceptions whose names
12553 do not match. Otherwise, all exceptions are listed. */
12554
12555 static VEC(ada_exc_info) *
12556 ada_exceptions_list_1 (regex_t *preg)
12557 {
12558 VEC(ada_exc_info) *result = NULL;
12559 struct cleanup *old_chain
12560 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12561 int prev_len;
12562
12563 /* First, list the known standard exceptions. These exceptions
12564 need to be handled separately, as they are usually defined in
12565 runtime units that have been compiled without debugging info. */
12566
12567 ada_add_standard_exceptions (preg, &result);
12568
12569 /* Next, find all exceptions whose scope is local and accessible
12570 from the currently selected frame. */
12571
12572 if (has_stack_frames ())
12573 {
12574 prev_len = VEC_length (ada_exc_info, result);
12575 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12576 &result);
12577 if (VEC_length (ada_exc_info, result) > prev_len)
12578 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12579 }
12580
12581 /* Add all exceptions whose scope is global. */
12582
12583 prev_len = VEC_length (ada_exc_info, result);
12584 ada_add_global_exceptions (preg, &result);
12585 if (VEC_length (ada_exc_info, result) > prev_len)
12586 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12587
12588 discard_cleanups (old_chain);
12589 return result;
12590 }
12591
12592 /* Return a vector of ada_exc_info.
12593
12594 If REGEXP is NULL, all exceptions are included in the result.
12595 Otherwise, it should contain a valid regular expression,
12596 and only the exceptions whose names match that regular expression
12597 are included in the result.
12598
12599 The exceptions are sorted in the following order:
12600 - Standard exceptions (defined by the Ada language), in
12601 alphabetical order;
12602 - Exceptions only visible from the current frame, in
12603 alphabetical order;
12604 - Exceptions whose scope is global, in alphabetical order. */
12605
12606 VEC(ada_exc_info) *
12607 ada_exceptions_list (const char *regexp)
12608 {
12609 VEC(ada_exc_info) *result = NULL;
12610 struct cleanup *old_chain = NULL;
12611 regex_t reg;
12612
12613 if (regexp != NULL)
12614 old_chain = compile_rx_or_error (&reg, regexp,
12615 _("invalid regular expression"));
12616
12617 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12618
12619 if (old_chain != NULL)
12620 do_cleanups (old_chain);
12621 return result;
12622 }
12623
12624 /* Implement the "info exceptions" command. */
12625
12626 static void
12627 info_exceptions_command (char *regexp, int from_tty)
12628 {
12629 VEC(ada_exc_info) *exceptions;
12630 struct cleanup *cleanup;
12631 struct gdbarch *gdbarch = get_current_arch ();
12632 int ix;
12633 struct ada_exc_info *info;
12634
12635 exceptions = ada_exceptions_list (regexp);
12636 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12637
12638 if (regexp != NULL)
12639 printf_filtered
12640 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12641 else
12642 printf_filtered (_("All defined Ada exceptions:\n"));
12643
12644 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12645 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12646
12647 do_cleanups (cleanup);
12648 }
12649
12650 /* Operators */
12651 /* Information about operators given special treatment in functions
12652 below. */
12653 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12654
12655 #define ADA_OPERATORS \
12656 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12657 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12658 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12659 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12660 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12661 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12662 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12663 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12664 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12665 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12666 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12667 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12668 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12669 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12670 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12671 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12672 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12673 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12674 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12675
12676 static void
12677 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12678 int *argsp)
12679 {
12680 switch (exp->elts[pc - 1].opcode)
12681 {
12682 default:
12683 operator_length_standard (exp, pc, oplenp, argsp);
12684 break;
12685
12686 #define OP_DEFN(op, len, args, binop) \
12687 case op: *oplenp = len; *argsp = args; break;
12688 ADA_OPERATORS;
12689 #undef OP_DEFN
12690
12691 case OP_AGGREGATE:
12692 *oplenp = 3;
12693 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12694 break;
12695
12696 case OP_CHOICES:
12697 *oplenp = 3;
12698 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12699 break;
12700 }
12701 }
12702
12703 /* Implementation of the exp_descriptor method operator_check. */
12704
12705 static int
12706 ada_operator_check (struct expression *exp, int pos,
12707 int (*objfile_func) (struct objfile *objfile, void *data),
12708 void *data)
12709 {
12710 const union exp_element *const elts = exp->elts;
12711 struct type *type = NULL;
12712
12713 switch (elts[pos].opcode)
12714 {
12715 case UNOP_IN_RANGE:
12716 case UNOP_QUAL:
12717 type = elts[pos + 1].type;
12718 break;
12719
12720 default:
12721 return operator_check_standard (exp, pos, objfile_func, data);
12722 }
12723
12724 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12725
12726 if (type && TYPE_OBJFILE (type)
12727 && (*objfile_func) (TYPE_OBJFILE (type), data))
12728 return 1;
12729
12730 return 0;
12731 }
12732
12733 static char *
12734 ada_op_name (enum exp_opcode opcode)
12735 {
12736 switch (opcode)
12737 {
12738 default:
12739 return op_name_standard (opcode);
12740
12741 #define OP_DEFN(op, len, args, binop) case op: return #op;
12742 ADA_OPERATORS;
12743 #undef OP_DEFN
12744
12745 case OP_AGGREGATE:
12746 return "OP_AGGREGATE";
12747 case OP_CHOICES:
12748 return "OP_CHOICES";
12749 case OP_NAME:
12750 return "OP_NAME";
12751 }
12752 }
12753
12754 /* As for operator_length, but assumes PC is pointing at the first
12755 element of the operator, and gives meaningful results only for the
12756 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12757
12758 static void
12759 ada_forward_operator_length (struct expression *exp, int pc,
12760 int *oplenp, int *argsp)
12761 {
12762 switch (exp->elts[pc].opcode)
12763 {
12764 default:
12765 *oplenp = *argsp = 0;
12766 break;
12767
12768 #define OP_DEFN(op, len, args, binop) \
12769 case op: *oplenp = len; *argsp = args; break;
12770 ADA_OPERATORS;
12771 #undef OP_DEFN
12772
12773 case OP_AGGREGATE:
12774 *oplenp = 3;
12775 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12776 break;
12777
12778 case OP_CHOICES:
12779 *oplenp = 3;
12780 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12781 break;
12782
12783 case OP_STRING:
12784 case OP_NAME:
12785 {
12786 int len = longest_to_int (exp->elts[pc + 1].longconst);
12787
12788 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12789 *argsp = 0;
12790 break;
12791 }
12792 }
12793 }
12794
12795 static int
12796 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12797 {
12798 enum exp_opcode op = exp->elts[elt].opcode;
12799 int oplen, nargs;
12800 int pc = elt;
12801 int i;
12802
12803 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12804
12805 switch (op)
12806 {
12807 /* Ada attributes ('Foo). */
12808 case OP_ATR_FIRST:
12809 case OP_ATR_LAST:
12810 case OP_ATR_LENGTH:
12811 case OP_ATR_IMAGE:
12812 case OP_ATR_MAX:
12813 case OP_ATR_MIN:
12814 case OP_ATR_MODULUS:
12815 case OP_ATR_POS:
12816 case OP_ATR_SIZE:
12817 case OP_ATR_TAG:
12818 case OP_ATR_VAL:
12819 break;
12820
12821 case UNOP_IN_RANGE:
12822 case UNOP_QUAL:
12823 /* XXX: gdb_sprint_host_address, type_sprint */
12824 fprintf_filtered (stream, _("Type @"));
12825 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12826 fprintf_filtered (stream, " (");
12827 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12828 fprintf_filtered (stream, ")");
12829 break;
12830 case BINOP_IN_BOUNDS:
12831 fprintf_filtered (stream, " (%d)",
12832 longest_to_int (exp->elts[pc + 2].longconst));
12833 break;
12834 case TERNOP_IN_RANGE:
12835 break;
12836
12837 case OP_AGGREGATE:
12838 case OP_OTHERS:
12839 case OP_DISCRETE_RANGE:
12840 case OP_POSITIONAL:
12841 case OP_CHOICES:
12842 break;
12843
12844 case OP_NAME:
12845 case OP_STRING:
12846 {
12847 char *name = &exp->elts[elt + 2].string;
12848 int len = longest_to_int (exp->elts[elt + 1].longconst);
12849
12850 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12851 break;
12852 }
12853
12854 default:
12855 return dump_subexp_body_standard (exp, stream, elt);
12856 }
12857
12858 elt += oplen;
12859 for (i = 0; i < nargs; i += 1)
12860 elt = dump_subexp (exp, stream, elt);
12861
12862 return elt;
12863 }
12864
12865 /* The Ada extension of print_subexp (q.v.). */
12866
12867 static void
12868 ada_print_subexp (struct expression *exp, int *pos,
12869 struct ui_file *stream, enum precedence prec)
12870 {
12871 int oplen, nargs, i;
12872 int pc = *pos;
12873 enum exp_opcode op = exp->elts[pc].opcode;
12874
12875 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12876
12877 *pos += oplen;
12878 switch (op)
12879 {
12880 default:
12881 *pos -= oplen;
12882 print_subexp_standard (exp, pos, stream, prec);
12883 return;
12884
12885 case OP_VAR_VALUE:
12886 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12887 return;
12888
12889 case BINOP_IN_BOUNDS:
12890 /* XXX: sprint_subexp */
12891 print_subexp (exp, pos, stream, PREC_SUFFIX);
12892 fputs_filtered (" in ", stream);
12893 print_subexp (exp, pos, stream, PREC_SUFFIX);
12894 fputs_filtered ("'range", stream);
12895 if (exp->elts[pc + 1].longconst > 1)
12896 fprintf_filtered (stream, "(%ld)",
12897 (long) exp->elts[pc + 1].longconst);
12898 return;
12899
12900 case TERNOP_IN_RANGE:
12901 if (prec >= PREC_EQUAL)
12902 fputs_filtered ("(", stream);
12903 /* XXX: sprint_subexp */
12904 print_subexp (exp, pos, stream, PREC_SUFFIX);
12905 fputs_filtered (" in ", stream);
12906 print_subexp (exp, pos, stream, PREC_EQUAL);
12907 fputs_filtered (" .. ", stream);
12908 print_subexp (exp, pos, stream, PREC_EQUAL);
12909 if (prec >= PREC_EQUAL)
12910 fputs_filtered (")", stream);
12911 return;
12912
12913 case OP_ATR_FIRST:
12914 case OP_ATR_LAST:
12915 case OP_ATR_LENGTH:
12916 case OP_ATR_IMAGE:
12917 case OP_ATR_MAX:
12918 case OP_ATR_MIN:
12919 case OP_ATR_MODULUS:
12920 case OP_ATR_POS:
12921 case OP_ATR_SIZE:
12922 case OP_ATR_TAG:
12923 case OP_ATR_VAL:
12924 if (exp->elts[*pos].opcode == OP_TYPE)
12925 {
12926 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12927 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12928 &type_print_raw_options);
12929 *pos += 3;
12930 }
12931 else
12932 print_subexp (exp, pos, stream, PREC_SUFFIX);
12933 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12934 if (nargs > 1)
12935 {
12936 int tem;
12937
12938 for (tem = 1; tem < nargs; tem += 1)
12939 {
12940 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12941 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12942 }
12943 fputs_filtered (")", stream);
12944 }
12945 return;
12946
12947 case UNOP_QUAL:
12948 type_print (exp->elts[pc + 1].type, "", stream, 0);
12949 fputs_filtered ("'(", stream);
12950 print_subexp (exp, pos, stream, PREC_PREFIX);
12951 fputs_filtered (")", stream);
12952 return;
12953
12954 case UNOP_IN_RANGE:
12955 /* XXX: sprint_subexp */
12956 print_subexp (exp, pos, stream, PREC_SUFFIX);
12957 fputs_filtered (" in ", stream);
12958 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12959 &type_print_raw_options);
12960 return;
12961
12962 case OP_DISCRETE_RANGE:
12963 print_subexp (exp, pos, stream, PREC_SUFFIX);
12964 fputs_filtered ("..", stream);
12965 print_subexp (exp, pos, stream, PREC_SUFFIX);
12966 return;
12967
12968 case OP_OTHERS:
12969 fputs_filtered ("others => ", stream);
12970 print_subexp (exp, pos, stream, PREC_SUFFIX);
12971 return;
12972
12973 case OP_CHOICES:
12974 for (i = 0; i < nargs-1; i += 1)
12975 {
12976 if (i > 0)
12977 fputs_filtered ("|", stream);
12978 print_subexp (exp, pos, stream, PREC_SUFFIX);
12979 }
12980 fputs_filtered (" => ", stream);
12981 print_subexp (exp, pos, stream, PREC_SUFFIX);
12982 return;
12983
12984 case OP_POSITIONAL:
12985 print_subexp (exp, pos, stream, PREC_SUFFIX);
12986 return;
12987
12988 case OP_AGGREGATE:
12989 fputs_filtered ("(", stream);
12990 for (i = 0; i < nargs; i += 1)
12991 {
12992 if (i > 0)
12993 fputs_filtered (", ", stream);
12994 print_subexp (exp, pos, stream, PREC_SUFFIX);
12995 }
12996 fputs_filtered (")", stream);
12997 return;
12998 }
12999 }
13000
13001 /* Table mapping opcodes into strings for printing operators
13002 and precedences of the operators. */
13003
13004 static const struct op_print ada_op_print_tab[] = {
13005 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13006 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13007 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13008 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13009 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13010 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13011 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13012 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13013 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13014 {">=", BINOP_GEQ, PREC_ORDER, 0},
13015 {">", BINOP_GTR, PREC_ORDER, 0},
13016 {"<", BINOP_LESS, PREC_ORDER, 0},
13017 {">>", BINOP_RSH, PREC_SHIFT, 0},
13018 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13019 {"+", BINOP_ADD, PREC_ADD, 0},
13020 {"-", BINOP_SUB, PREC_ADD, 0},
13021 {"&", BINOP_CONCAT, PREC_ADD, 0},
13022 {"*", BINOP_MUL, PREC_MUL, 0},
13023 {"/", BINOP_DIV, PREC_MUL, 0},
13024 {"rem", BINOP_REM, PREC_MUL, 0},
13025 {"mod", BINOP_MOD, PREC_MUL, 0},
13026 {"**", BINOP_EXP, PREC_REPEAT, 0},
13027 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13028 {"-", UNOP_NEG, PREC_PREFIX, 0},
13029 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13030 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13031 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13032 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13033 {".all", UNOP_IND, PREC_SUFFIX, 1},
13034 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13035 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13036 {NULL, 0, 0, 0}
13037 };
13038 \f
13039 enum ada_primitive_types {
13040 ada_primitive_type_int,
13041 ada_primitive_type_long,
13042 ada_primitive_type_short,
13043 ada_primitive_type_char,
13044 ada_primitive_type_float,
13045 ada_primitive_type_double,
13046 ada_primitive_type_void,
13047 ada_primitive_type_long_long,
13048 ada_primitive_type_long_double,
13049 ada_primitive_type_natural,
13050 ada_primitive_type_positive,
13051 ada_primitive_type_system_address,
13052 nr_ada_primitive_types
13053 };
13054
13055 static void
13056 ada_language_arch_info (struct gdbarch *gdbarch,
13057 struct language_arch_info *lai)
13058 {
13059 const struct builtin_type *builtin = builtin_type (gdbarch);
13060
13061 lai->primitive_type_vector
13062 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13063 struct type *);
13064
13065 lai->primitive_type_vector [ada_primitive_type_int]
13066 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13067 0, "integer");
13068 lai->primitive_type_vector [ada_primitive_type_long]
13069 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13070 0, "long_integer");
13071 lai->primitive_type_vector [ada_primitive_type_short]
13072 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13073 0, "short_integer");
13074 lai->string_char_type
13075 = lai->primitive_type_vector [ada_primitive_type_char]
13076 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13077 lai->primitive_type_vector [ada_primitive_type_float]
13078 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13079 "float", NULL);
13080 lai->primitive_type_vector [ada_primitive_type_double]
13081 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13082 "long_float", NULL);
13083 lai->primitive_type_vector [ada_primitive_type_long_long]
13084 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13085 0, "long_long_integer");
13086 lai->primitive_type_vector [ada_primitive_type_long_double]
13087 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13088 "long_long_float", NULL);
13089 lai->primitive_type_vector [ada_primitive_type_natural]
13090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13091 0, "natural");
13092 lai->primitive_type_vector [ada_primitive_type_positive]
13093 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13094 0, "positive");
13095 lai->primitive_type_vector [ada_primitive_type_void]
13096 = builtin->builtin_void;
13097
13098 lai->primitive_type_vector [ada_primitive_type_system_address]
13099 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13100 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13101 = "system__address";
13102
13103 lai->bool_type_symbol = NULL;
13104 lai->bool_type_default = builtin->builtin_bool;
13105 }
13106 \f
13107 /* Language vector */
13108
13109 /* Not really used, but needed in the ada_language_defn. */
13110
13111 static void
13112 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13113 {
13114 ada_emit_char (c, type, stream, quoter, 1);
13115 }
13116
13117 static int
13118 parse (void)
13119 {
13120 warnings_issued = 0;
13121 return ada_parse ();
13122 }
13123
13124 static const struct exp_descriptor ada_exp_descriptor = {
13125 ada_print_subexp,
13126 ada_operator_length,
13127 ada_operator_check,
13128 ada_op_name,
13129 ada_dump_subexp_body,
13130 ada_evaluate_subexp
13131 };
13132
13133 /* Implement the "la_get_symbol_name_cmp" language_defn method
13134 for Ada. */
13135
13136 static symbol_name_cmp_ftype
13137 ada_get_symbol_name_cmp (const char *lookup_name)
13138 {
13139 if (should_use_wild_match (lookup_name))
13140 return wild_match;
13141 else
13142 return compare_names;
13143 }
13144
13145 /* Implement the "la_read_var_value" language_defn method for Ada. */
13146
13147 static struct value *
13148 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13149 {
13150 struct block *frame_block = NULL;
13151 struct symbol *renaming_sym = NULL;
13152
13153 /* The only case where default_read_var_value is not sufficient
13154 is when VAR is a renaming... */
13155 if (frame)
13156 frame_block = get_frame_block (frame, NULL);
13157 if (frame_block)
13158 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13159 if (renaming_sym != NULL)
13160 return ada_read_renaming_var_value (renaming_sym, frame_block);
13161
13162 /* This is a typical case where we expect the default_read_var_value
13163 function to work. */
13164 return default_read_var_value (var, frame);
13165 }
13166
13167 const struct language_defn ada_language_defn = {
13168 "ada", /* Language name */
13169 "Ada",
13170 language_ada,
13171 range_check_off,
13172 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13173 that's not quite what this means. */
13174 array_row_major,
13175 macro_expansion_no,
13176 &ada_exp_descriptor,
13177 parse,
13178 ada_error,
13179 resolve,
13180 ada_printchar, /* Print a character constant */
13181 ada_printstr, /* Function to print string constant */
13182 emit_char, /* Function to print single char (not used) */
13183 ada_print_type, /* Print a type using appropriate syntax */
13184 ada_print_typedef, /* Print a typedef using appropriate syntax */
13185 ada_val_print, /* Print a value using appropriate syntax */
13186 ada_value_print, /* Print a top-level value */
13187 ada_read_var_value, /* la_read_var_value */
13188 NULL, /* Language specific skip_trampoline */
13189 NULL, /* name_of_this */
13190 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13191 basic_lookup_transparent_type, /* lookup_transparent_type */
13192 ada_la_decode, /* Language specific symbol demangler */
13193 NULL, /* Language specific
13194 class_name_from_physname */
13195 ada_op_print_tab, /* expression operators for printing */
13196 0, /* c-style arrays */
13197 1, /* String lower bound */
13198 ada_get_gdb_completer_word_break_characters,
13199 ada_make_symbol_completion_list,
13200 ada_language_arch_info,
13201 ada_print_array_index,
13202 default_pass_by_reference,
13203 c_get_string,
13204 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13205 ada_iterate_over_symbols,
13206 &ada_varobj_ops,
13207 LANG_MAGIC
13208 };
13209
13210 /* Provide a prototype to silence -Wmissing-prototypes. */
13211 extern initialize_file_ftype _initialize_ada_language;
13212
13213 /* Command-list for the "set/show ada" prefix command. */
13214 static struct cmd_list_element *set_ada_list;
13215 static struct cmd_list_element *show_ada_list;
13216
13217 /* Implement the "set ada" prefix command. */
13218
13219 static void
13220 set_ada_command (char *arg, int from_tty)
13221 {
13222 printf_unfiltered (_(\
13223 "\"set ada\" must be followed by the name of a setting.\n"));
13224 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13225 }
13226
13227 /* Implement the "show ada" prefix command. */
13228
13229 static void
13230 show_ada_command (char *args, int from_tty)
13231 {
13232 cmd_show_list (show_ada_list, from_tty, "");
13233 }
13234
13235 static void
13236 initialize_ada_catchpoint_ops (void)
13237 {
13238 struct breakpoint_ops *ops;
13239
13240 initialize_breakpoint_ops ();
13241
13242 ops = &catch_exception_breakpoint_ops;
13243 *ops = bkpt_breakpoint_ops;
13244 ops->dtor = dtor_catch_exception;
13245 ops->allocate_location = allocate_location_catch_exception;
13246 ops->re_set = re_set_catch_exception;
13247 ops->check_status = check_status_catch_exception;
13248 ops->print_it = print_it_catch_exception;
13249 ops->print_one = print_one_catch_exception;
13250 ops->print_mention = print_mention_catch_exception;
13251 ops->print_recreate = print_recreate_catch_exception;
13252
13253 ops = &catch_exception_unhandled_breakpoint_ops;
13254 *ops = bkpt_breakpoint_ops;
13255 ops->dtor = dtor_catch_exception_unhandled;
13256 ops->allocate_location = allocate_location_catch_exception_unhandled;
13257 ops->re_set = re_set_catch_exception_unhandled;
13258 ops->check_status = check_status_catch_exception_unhandled;
13259 ops->print_it = print_it_catch_exception_unhandled;
13260 ops->print_one = print_one_catch_exception_unhandled;
13261 ops->print_mention = print_mention_catch_exception_unhandled;
13262 ops->print_recreate = print_recreate_catch_exception_unhandled;
13263
13264 ops = &catch_assert_breakpoint_ops;
13265 *ops = bkpt_breakpoint_ops;
13266 ops->dtor = dtor_catch_assert;
13267 ops->allocate_location = allocate_location_catch_assert;
13268 ops->re_set = re_set_catch_assert;
13269 ops->check_status = check_status_catch_assert;
13270 ops->print_it = print_it_catch_assert;
13271 ops->print_one = print_one_catch_assert;
13272 ops->print_mention = print_mention_catch_assert;
13273 ops->print_recreate = print_recreate_catch_assert;
13274 }
13275
13276 void
13277 _initialize_ada_language (void)
13278 {
13279 add_language (&ada_language_defn);
13280
13281 initialize_ada_catchpoint_ops ();
13282
13283 add_prefix_cmd ("ada", no_class, set_ada_command,
13284 _("Prefix command for changing Ada-specfic settings"),
13285 &set_ada_list, "set ada ", 0, &setlist);
13286
13287 add_prefix_cmd ("ada", no_class, show_ada_command,
13288 _("Generic command for showing Ada-specific settings."),
13289 &show_ada_list, "show ada ", 0, &showlist);
13290
13291 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13292 &trust_pad_over_xvs, _("\
13293 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13294 Show whether an optimization trusting PAD types over XVS types is activated"),
13295 _("\
13296 This is related to the encoding used by the GNAT compiler. The debugger\n\
13297 should normally trust the contents of PAD types, but certain older versions\n\
13298 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13299 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13300 work around this bug. It is always safe to turn this option \"off\", but\n\
13301 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13302 this option to \"off\" unless necessary."),
13303 NULL, NULL, &set_ada_list, &show_ada_list);
13304
13305 add_catch_command ("exception", _("\
13306 Catch Ada exceptions, when raised.\n\
13307 With an argument, catch only exceptions with the given name."),
13308 catch_ada_exception_command,
13309 NULL,
13310 CATCH_PERMANENT,
13311 CATCH_TEMPORARY);
13312 add_catch_command ("assert", _("\
13313 Catch failed Ada assertions, when raised.\n\
13314 With an argument, catch only exceptions with the given name."),
13315 catch_assert_command,
13316 NULL,
13317 CATCH_PERMANENT,
13318 CATCH_TEMPORARY);
13319
13320 varsize_limit = 65536;
13321
13322 add_info ("exceptions", info_exceptions_command,
13323 _("\
13324 List all Ada exception names.\n\
13325 If a regular expression is passed as an argument, only those matching\n\
13326 the regular expression are listed."));
13327
13328 obstack_init (&symbol_list_obstack);
13329
13330 decoded_names_store = htab_create_alloc
13331 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13332 NULL, xcalloc, xfree);
13333
13334 /* Setup per-inferior data. */
13335 observer_attach_inferior_exit (ada_inferior_exit);
13336 ada_inferior_data
13337 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13338 }