]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-tasks.c
* gdbarch.sh (target_gdbarch): Remove macro.
[thirdparty/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
2 Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "observer.h"
21 #include "gdbcmd.h"
22 #include "target.h"
23 #include "ada-lang.h"
24 #include "gdbcore.h"
25 #include "inferior.h"
26 #include "gdbthread.h"
27 #include "progspace.h"
28 #include "objfiles.h"
29
30 /* The name of the array in the GNAT runtime where the Ada Task Control
31 Block of each task is stored. */
32 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
33
34 /* The maximum number of tasks known to the Ada runtime. */
35 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
36
37 /* The name of the variable in the GNAT runtime where the head of a task
38 chain is saved. This is an alternate mechanism to find the list of known
39 tasks. */
40 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
41
42 enum task_states
43 {
44 Unactivated,
45 Runnable,
46 Terminated,
47 Activator_Sleep,
48 Acceptor_Sleep,
49 Entry_Caller_Sleep,
50 Async_Select_Sleep,
51 Delay_Sleep,
52 Master_Completion_Sleep,
53 Master_Phase_2_Sleep,
54 Interrupt_Server_Idle_Sleep,
55 Interrupt_Server_Blocked_Interrupt_Sleep,
56 Timer_Server_Sleep,
57 AST_Server_Sleep,
58 Asynchronous_Hold,
59 Interrupt_Server_Blocked_On_Event_Flag,
60 Activating,
61 Acceptor_Delay_Sleep
62 };
63
64 /* A short description corresponding to each possible task state. */
65 static const char *task_states[] = {
66 N_("Unactivated"),
67 N_("Runnable"),
68 N_("Terminated"),
69 N_("Child Activation Wait"),
70 N_("Accept or Select Term"),
71 N_("Waiting on entry call"),
72 N_("Async Select Wait"),
73 N_("Delay Sleep"),
74 N_("Child Termination Wait"),
75 N_("Wait Child in Term Alt"),
76 "",
77 "",
78 "",
79 "",
80 N_("Asynchronous Hold"),
81 "",
82 N_("Activating"),
83 N_("Selective Wait")
84 };
85
86 /* A longer description corresponding to each possible task state. */
87 static const char *long_task_states[] = {
88 N_("Unactivated"),
89 N_("Runnable"),
90 N_("Terminated"),
91 N_("Waiting for child activation"),
92 N_("Blocked in accept or select with terminate"),
93 N_("Waiting on entry call"),
94 N_("Asynchronous Selective Wait"),
95 N_("Delay Sleep"),
96 N_("Waiting for children termination"),
97 N_("Waiting for children in terminate alternative"),
98 "",
99 "",
100 "",
101 "",
102 N_("Asynchronous Hold"),
103 "",
104 N_("Activating"),
105 N_("Blocked in selective wait statement")
106 };
107
108 /* The index of certain important fields in the Ada Task Control Block
109 record and sub-records. */
110
111 struct atcb_fieldnos
112 {
113 /* Fields in record Ada_Task_Control_Block. */
114 int common;
115 int entry_calls;
116 int atc_nesting_level;
117
118 /* Fields in record Common_ATCB. */
119 int state;
120 int parent;
121 int priority;
122 int image;
123 int image_len; /* This field may be missing. */
124 int activation_link;
125 int call;
126 int ll;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134 };
135
136 /* This module's per-program-space data. */
137
138 struct ada_tasks_pspace_data
139 {
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159 };
160
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164 typedef struct ada_task_info ada_task_info_s;
165 DEF_VEC_O(ada_task_info_s);
166
167 /* The kind of data structure used by the runtime to store the list
168 of Ada tasks. */
169
170 enum ada_known_tasks_kind
171 {
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
174
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
179
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
182 use tasking. */
183 ADA_TASKS_NOT_FOUND,
184
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
189 ADA_TASKS_ARRAY,
190
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
194 ADA_TASKS_LIST,
195 };
196
197 /* This module's per-inferior data. */
198
199 struct ada_tasks_inferior_data
200 {
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
205 been determined yet;
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind;
211
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
215 above. */
216 CORE_ADDR known_tasks_addr;
217
218 /* Type of elements of the known task. Usually a pointer. */
219 struct type *known_tasks_element;
220
221 /* Number of elements in the known tasks array. */
222 unsigned int known_tasks_length;
223
224 /* When nonzero, this flag indicates that the task_list field
225 below is up to date. When set to zero, the list has either
226 not been initialized, or has potentially become stale. */
227 int task_list_valid_p;
228
229 /* The list of Ada tasks.
230
231 Note: To each task we associate a number that the user can use to
232 reference it - this number is printed beside each task in the tasks
233 info listing displayed by "info tasks". This number is equal to
234 its index in the vector + 1. Reciprocally, to compute the index
235 of a task in the vector, we need to substract 1 from its number. */
236 VEC(ada_task_info_s) *task_list;
237 };
238
239 /* Key to our per-inferior data. */
240 static const struct inferior_data *ada_tasks_inferior_data_handle;
241
242 /* Return the ada-tasks module's data for the given program space (PSPACE).
243 If none is found, add a zero'ed one now.
244
245 This function always returns a valid object. */
246
247 static struct ada_tasks_pspace_data *
248 get_ada_tasks_pspace_data (struct program_space *pspace)
249 {
250 struct ada_tasks_pspace_data *data;
251
252 data = program_space_data (pspace, ada_tasks_pspace_data_handle);
253 if (data == NULL)
254 {
255 data = XZALLOC (struct ada_tasks_pspace_data);
256 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
257 }
258
259 return data;
260 }
261
262 /* Return the ada-tasks module's data for the given inferior (INF).
263 If none is found, add a zero'ed one now.
264
265 This function always returns a valid object.
266
267 Note that we could use an observer of the inferior-created event
268 to make sure that the ada-tasks per-inferior data always exists.
269 But we prefered this approach, as it avoids this entirely as long
270 as the user does not use any of the tasking features. This is
271 quite possible, particularly in the case where the inferior does
272 not use tasking. */
273
274 static struct ada_tasks_inferior_data *
275 get_ada_tasks_inferior_data (struct inferior *inf)
276 {
277 struct ada_tasks_inferior_data *data;
278
279 data = inferior_data (inf, ada_tasks_inferior_data_handle);
280 if (data == NULL)
281 {
282 data = XZALLOC (struct ada_tasks_inferior_data);
283 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
284 }
285
286 return data;
287 }
288
289 /* Return the task number of the task whose ptid is PTID, or zero
290 if the task could not be found. */
291
292 int
293 ada_get_task_number (ptid_t ptid)
294 {
295 int i;
296 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
297 struct ada_tasks_inferior_data *data;
298
299 gdb_assert (inf != NULL);
300 data = get_ada_tasks_inferior_data (inf);
301
302 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
303 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
304 ptid))
305 return i + 1;
306
307 return 0; /* No matching task found. */
308 }
309
310 /* Return the task number of the task running in inferior INF which
311 matches TASK_ID , or zero if the task could not be found. */
312
313 static int
314 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
315 {
316 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
317 int i;
318
319 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
320 {
321 struct ada_task_info *task_info =
322 VEC_index (ada_task_info_s, data->task_list, i);
323
324 if (task_info->task_id == task_id)
325 return i + 1;
326 }
327
328 /* Task not found. Return 0. */
329 return 0;
330 }
331
332 /* Return non-zero if TASK_NUM is a valid task number. */
333
334 int
335 valid_task_id (int task_num)
336 {
337 struct ada_tasks_inferior_data *data;
338
339 ada_build_task_list ();
340 data = get_ada_tasks_inferior_data (current_inferior ());
341 return (task_num > 0
342 && task_num <= VEC_length (ada_task_info_s, data->task_list));
343 }
344
345 /* Return non-zero iff the task STATE corresponds to a non-terminated
346 task state. */
347
348 static int
349 ada_task_is_alive (struct ada_task_info *task_info)
350 {
351 return (task_info->state != Terminated);
352 }
353
354 /* Call the ITERATOR function once for each Ada task that hasn't been
355 terminated yet. */
356
357 void
358 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
359 {
360 int i, nb_tasks;
361 struct ada_task_info *task;
362 struct ada_tasks_inferior_data *data;
363
364 ada_build_task_list ();
365 data = get_ada_tasks_inferior_data (current_inferior ());
366 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
367
368 for (i = 0; i < nb_tasks; i++)
369 {
370 task = VEC_index (ada_task_info_s, data->task_list, i);
371 if (!ada_task_is_alive (task))
372 continue;
373 iterator (task);
374 }
375 }
376
377 /* Extract the contents of the value as a string whose length is LENGTH,
378 and store the result in DEST. */
379
380 static void
381 value_as_string (char *dest, struct value *val, int length)
382 {
383 memcpy (dest, value_contents (val), length);
384 dest[length] = '\0';
385 }
386
387 /* Extract the string image from the fat string corresponding to VAL,
388 and store it in DEST. If the string length is greater than MAX_LEN,
389 then truncate the result to the first MAX_LEN characters of the fat
390 string. */
391
392 static void
393 read_fat_string_value (char *dest, struct value *val, int max_len)
394 {
395 struct value *array_val;
396 struct value *bounds_val;
397 int len;
398
399 /* The following variables are made static to avoid recomputing them
400 each time this function is called. */
401 static int initialize_fieldnos = 1;
402 static int array_fieldno;
403 static int bounds_fieldno;
404 static int upper_bound_fieldno;
405
406 /* Get the index of the fields that we will need to read in order
407 to extract the string from the fat string. */
408 if (initialize_fieldnos)
409 {
410 struct type *type = value_type (val);
411 struct type *bounds_type;
412
413 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
414 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
415
416 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
417 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
418 bounds_type = TYPE_TARGET_TYPE (bounds_type);
419 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
420 error (_("Unknown task name format. Aborting"));
421 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
422
423 initialize_fieldnos = 0;
424 }
425
426 /* Get the size of the task image by checking the value of the bounds.
427 The lower bound is always 1, so we only need to read the upper bound. */
428 bounds_val = value_ind (value_field (val, bounds_fieldno));
429 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
430
431 /* Make sure that we do not read more than max_len characters... */
432 if (len > max_len)
433 len = max_len;
434
435 /* Extract LEN characters from the fat string. */
436 array_val = value_ind (value_field (val, array_fieldno));
437 read_memory (value_address (array_val), dest, len);
438
439 /* Add the NUL character to close the string. */
440 dest[len] = '\0';
441 }
442
443 /* Get from the debugging information the type description of all types
444 related to the Ada Task Control Block that will be needed in order to
445 read the list of known tasks in the Ada runtime. Also return the
446 associated ATCB_FIELDNOS.
447
448 Error handling: Any data missing from the debugging info will cause
449 an error to be raised, and none of the return values to be set.
450 Users of this function can depend on the fact that all or none of the
451 return values will be set. */
452
453 static void
454 get_tcb_types_info (void)
455 {
456 struct type *type;
457 struct type *common_type;
458 struct type *ll_type;
459 struct type *call_type;
460 struct atcb_fieldnos fieldnos;
461 struct ada_tasks_pspace_data *pspace_data;
462
463 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
464 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
465 const char *common_atcb_name = "system__tasking__common_atcb";
466 const char *private_data_name = "system__task_primitives__private_data";
467 const char *entry_call_record_name = "system__tasking__entry_call_record";
468
469 /* ATCB symbols may be found in several compilation units. As we
470 are only interested in one instance, use standard (literal,
471 C-like) lookups to get the first match. */
472
473 struct symbol *atcb_sym =
474 lookup_symbol_in_language (atcb_name, NULL, VAR_DOMAIN,
475 language_c, NULL);
476 const struct symbol *common_atcb_sym =
477 lookup_symbol_in_language (common_atcb_name, NULL, VAR_DOMAIN,
478 language_c, NULL);
479 const struct symbol *private_data_sym =
480 lookup_symbol_in_language (private_data_name, NULL, VAR_DOMAIN,
481 language_c, NULL);
482 const struct symbol *entry_call_record_sym =
483 lookup_symbol_in_language (entry_call_record_name, NULL, VAR_DOMAIN,
484 language_c, NULL);
485
486 if (atcb_sym == NULL || atcb_sym->type == NULL)
487 {
488 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
489 size, so the symbol name differs. */
490 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, VAR_DOMAIN,
491 language_c, NULL);
492
493 if (atcb_sym == NULL || atcb_sym->type == NULL)
494 error (_("Cannot find Ada_Task_Control_Block type. Aborting"));
495
496 type = atcb_sym->type;
497 }
498 else
499 {
500 /* Get a static representation of the type record
501 Ada_Task_Control_Block. */
502 type = atcb_sym->type;
503 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
504 }
505
506 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
507 error (_("Cannot find Common_ATCB type. Aborting"));
508 if (private_data_sym == NULL || private_data_sym->type == NULL)
509 error (_("Cannot find Private_Data type. Aborting"));
510 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
511 error (_("Cannot find Entry_Call_Record type. Aborting"));
512
513 /* Get the type for Ada_Task_Control_Block.Common. */
514 common_type = common_atcb_sym->type;
515
516 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
517 ll_type = private_data_sym->type;
518
519 /* Get the type for Common_ATCB.Call.all. */
520 call_type = entry_call_record_sym->type;
521
522 /* Get the field indices. */
523 fieldnos.common = ada_get_field_index (type, "common", 0);
524 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
525 fieldnos.atc_nesting_level =
526 ada_get_field_index (type, "atc_nesting_level", 1);
527 fieldnos.state = ada_get_field_index (common_type, "state", 0);
528 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
529 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
530 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
531 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
532 fieldnos.activation_link = ada_get_field_index (common_type,
533 "activation_link", 1);
534 fieldnos.call = ada_get_field_index (common_type, "call", 1);
535 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
536 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
537 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
538 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
539
540 /* On certain platforms such as x86-windows, the "lwp" field has been
541 named "thread_id". This field will likely be renamed in the future,
542 but we need to support both possibilities to avoid an unnecessary
543 dependency on a recent compiler. We therefore try locating the
544 "thread_id" field in place of the "lwp" field if we did not find
545 the latter. */
546 if (fieldnos.ll_lwp < 0)
547 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
548
549 /* Set all the out parameters all at once, now that we are certain
550 that there are no potential error() anymore. */
551 pspace_data = get_ada_tasks_pspace_data (current_program_space);
552 pspace_data->initialized_p = 1;
553 pspace_data->atcb_type = type;
554 pspace_data->atcb_common_type = common_type;
555 pspace_data->atcb_ll_type = ll_type;
556 pspace_data->atcb_call_type = call_type;
557 pspace_data->atcb_fieldno = fieldnos;
558 }
559
560 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
561 component of its ATCB record. This PTID needs to match the PTID used
562 by the thread layer. */
563
564 static ptid_t
565 ptid_from_atcb_common (struct value *common_value)
566 {
567 long thread = 0;
568 CORE_ADDR lwp = 0;
569 struct value *ll_value;
570 ptid_t ptid;
571 const struct ada_tasks_pspace_data *pspace_data
572 = get_ada_tasks_pspace_data (current_program_space);
573
574 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
575
576 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
577 lwp = value_as_address (value_field (ll_value,
578 pspace_data->atcb_fieldno.ll_lwp));
579 thread = value_as_long (value_field (ll_value,
580 pspace_data->atcb_fieldno.ll_thread));
581
582 ptid = target_get_ada_task_ptid (lwp, thread);
583
584 return ptid;
585 }
586
587 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
588 the address of its assocated ATCB record), and store the result inside
589 TASK_INFO. */
590
591 static void
592 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
593 {
594 struct value *tcb_value;
595 struct value *common_value;
596 struct value *atc_nesting_level_value;
597 struct value *entry_calls_value;
598 struct value *entry_calls_value_element;
599 int called_task_fieldno = -1;
600 static const char ravenscar_task_name[] = "Ravenscar task";
601 const struct ada_tasks_pspace_data *pspace_data
602 = get_ada_tasks_pspace_data (current_program_space);
603
604 if (!pspace_data->initialized_p)
605 get_tcb_types_info ();
606
607 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
608 NULL, task_id);
609 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
610
611 /* Fill in the task_id. */
612
613 task_info->task_id = task_id;
614
615 /* Compute the name of the task.
616
617 Depending on the GNAT version used, the task image is either a fat
618 string, or a thin array of characters. Older versions of GNAT used
619 to use fat strings, and therefore did not need an extra field in
620 the ATCB to store the string length. For efficiency reasons, newer
621 versions of GNAT replaced the fat string by a static buffer, but this
622 also required the addition of a new field named "Image_Len" containing
623 the length of the task name. The method used to extract the task name
624 is selected depending on the existence of this field.
625
626 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
627 we may want to get it from the first user frame of the stack. For now,
628 we just give a dummy name. */
629
630 if (pspace_data->atcb_fieldno.image_len == -1)
631 {
632 if (pspace_data->atcb_fieldno.image >= 0)
633 read_fat_string_value (task_info->name,
634 value_field (common_value,
635 pspace_data->atcb_fieldno.image),
636 sizeof (task_info->name) - 1);
637 else
638 {
639 struct minimal_symbol *msym;
640
641 msym = lookup_minimal_symbol_by_pc (task_id);
642 if (msym)
643 {
644 const char *full_name = SYMBOL_LINKAGE_NAME (msym);
645 const char *task_name = full_name;
646 const char *p;
647
648 /* Strip the prefix. */
649 for (p = full_name; *p; p++)
650 if (p[0] == '_' && p[1] == '_')
651 task_name = p + 2;
652
653 /* Copy the task name. */
654 strncpy (task_info->name, task_name, sizeof (task_info->name));
655 task_info->name[sizeof (task_info->name) - 1] = 0;
656 }
657 else
658 {
659 /* No symbol found. Use a default name. */
660 strcpy (task_info->name, ravenscar_task_name);
661 }
662 }
663 }
664 else
665 {
666 int len = value_as_long
667 (value_field (common_value,
668 pspace_data->atcb_fieldno.image_len));
669
670 value_as_string (task_info->name,
671 value_field (common_value,
672 pspace_data->atcb_fieldno.image),
673 len);
674 }
675
676 /* Compute the task state and priority. */
677
678 task_info->state =
679 value_as_long (value_field (common_value,
680 pspace_data->atcb_fieldno.state));
681 task_info->priority =
682 value_as_long (value_field (common_value,
683 pspace_data->atcb_fieldno.priority));
684
685 /* If the ATCB contains some information about the parent task,
686 then compute it as well. Otherwise, zero. */
687
688 if (pspace_data->atcb_fieldno.parent >= 0)
689 task_info->parent =
690 value_as_address (value_field (common_value,
691 pspace_data->atcb_fieldno.parent));
692 else
693 task_info->parent = 0;
694
695
696 /* If the ATCB contains some information about entry calls, then
697 compute the "called_task" as well. Otherwise, zero. */
698
699 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
700 && pspace_data->atcb_fieldno.entry_calls > 0)
701 {
702 /* Let My_ATCB be the Ada task control block of a task calling the
703 entry of another task; then the Task_Id of the called task is
704 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
705 atc_nesting_level_value =
706 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
707 entry_calls_value =
708 ada_coerce_to_simple_array_ptr
709 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
710 entry_calls_value_element =
711 value_subscript (entry_calls_value,
712 value_as_long (atc_nesting_level_value));
713 called_task_fieldno =
714 ada_get_field_index (value_type (entry_calls_value_element),
715 "called_task", 0);
716 task_info->called_task =
717 value_as_address (value_field (entry_calls_value_element,
718 called_task_fieldno));
719 }
720 else
721 {
722 task_info->called_task = 0;
723 }
724
725 /* If the ATCB cotnains some information about RV callers,
726 then compute the "caller_task". Otherwise, zero. */
727
728 task_info->caller_task = 0;
729 if (pspace_data->atcb_fieldno.call >= 0)
730 {
731 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
732 If Common_ATCB.Call is null, then there is no caller. */
733 const CORE_ADDR call =
734 value_as_address (value_field (common_value,
735 pspace_data->atcb_fieldno.call));
736 struct value *call_val;
737
738 if (call != 0)
739 {
740 call_val =
741 value_from_contents_and_address (pspace_data->atcb_call_type,
742 NULL, call);
743 task_info->caller_task =
744 value_as_address
745 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
746 }
747 }
748
749 /* And finally, compute the task ptid. Note that there are situations
750 where this cannot be determined:
751 - The task is no longer alive - the ptid is irrelevant;
752 - We are debugging a core file - the thread is not always
753 completely preserved for us to link back a task to its
754 underlying thread. Since we do not support task switching
755 when debugging core files anyway, we don't need to compute
756 that task ptid.
757 In either case, we don't need that ptid, and it is just good enough
758 to set it to null_ptid. */
759
760 if (target_has_execution && ada_task_is_alive (task_info))
761 task_info->ptid = ptid_from_atcb_common (common_value);
762 else
763 task_info->ptid = null_ptid;
764 }
765
766 /* Read the ATCB info of the given task (identified by TASK_ID), and
767 add the result to the given inferior's TASK_LIST. */
768
769 static void
770 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
771 {
772 struct ada_task_info task_info;
773 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
774
775 read_atcb (task_id, &task_info);
776 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
777 }
778
779 /* Read the Known_Tasks array from the inferior memory, and store
780 it in the current inferior's TASK_LIST. Return non-zero upon success. */
781
782 static int
783 read_known_tasks_array (struct ada_tasks_inferior_data *data)
784 {
785 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
786 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
787 gdb_byte *known_tasks = alloca (known_tasks_size);
788 int i;
789
790 /* Build a new list by reading the ATCBs from the Known_Tasks array
791 in the Ada runtime. */
792 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
793 for (i = 0; i < data->known_tasks_length; i++)
794 {
795 CORE_ADDR task_id =
796 extract_typed_address (known_tasks + i * target_ptr_byte,
797 data->known_tasks_element);
798
799 if (task_id != 0)
800 add_ada_task (task_id, current_inferior ());
801 }
802
803 return 1;
804 }
805
806 /* Read the known tasks from the inferior memory, and store it in
807 the current inferior's TASK_LIST. Return non-zero upon success. */
808
809 static int
810 read_known_tasks_list (struct ada_tasks_inferior_data *data)
811 {
812 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
813 gdb_byte *known_tasks = alloca (target_ptr_byte);
814 CORE_ADDR task_id;
815 const struct ada_tasks_pspace_data *pspace_data
816 = get_ada_tasks_pspace_data (current_program_space);
817
818 /* Sanity check. */
819 if (pspace_data->atcb_fieldno.activation_link < 0)
820 return 0;
821
822 /* Build a new list by reading the ATCBs. Read head of the list. */
823 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
824 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
825 while (task_id != 0)
826 {
827 struct value *tcb_value;
828 struct value *common_value;
829
830 add_ada_task (task_id, current_inferior ());
831
832 /* Read the chain. */
833 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
834 NULL, task_id);
835 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
836 task_id = value_as_address
837 (value_field (common_value,
838 pspace_data->atcb_fieldno.activation_link));
839 }
840
841 return 1;
842 }
843
844 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
845 Do nothing if those fields are already set and still up to date. */
846
847 static void
848 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
849 {
850 struct minimal_symbol *msym;
851 struct symbol *sym;
852
853 /* Return now if already set. */
854 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
855 return;
856
857 /* Try array. */
858
859 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
860 if (msym != NULL)
861 {
862 data->known_tasks_kind = ADA_TASKS_ARRAY;
863 data->known_tasks_addr = SYMBOL_VALUE_ADDRESS (msym);
864
865 /* Try to get pointer type and array length from the symtab. */
866 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
867 language_c, NULL);
868 if (sym != NULL)
869 {
870 /* Validate. */
871 struct type *type = check_typedef (SYMBOL_TYPE (sym));
872 struct type *eltype = NULL;
873 struct type *idxtype = NULL;
874
875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
876 eltype = check_typedef (TYPE_TARGET_TYPE (type));
877 if (eltype != NULL
878 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
879 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
880 if (idxtype != NULL
881 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
882 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
883 {
884 data->known_tasks_element = eltype;
885 data->known_tasks_length =
886 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
887 return;
888 }
889 }
890
891 /* Fallback to default values. The runtime may have been stripped (as
892 in some distributions), but it is likely that the executable still
893 contains debug information on the task type (due to implicit with of
894 Ada.Tasking). */
895 data->known_tasks_element =
896 builtin_type (target_gdbarch ())->builtin_data_ptr;
897 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
898 return;
899 }
900
901
902 /* Try list. */
903
904 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
905 if (msym != NULL)
906 {
907 data->known_tasks_kind = ADA_TASKS_LIST;
908 data->known_tasks_addr = SYMBOL_VALUE_ADDRESS (msym);
909 data->known_tasks_length = 1;
910
911 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
912 language_c, NULL);
913 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
914 {
915 /* Validate. */
916 struct type *type = check_typedef (SYMBOL_TYPE (sym));
917
918 if (TYPE_CODE (type) == TYPE_CODE_PTR)
919 {
920 data->known_tasks_element = type;
921 return;
922 }
923 }
924
925 /* Fallback to default values. */
926 data->known_tasks_element =
927 builtin_type (target_gdbarch ())->builtin_data_ptr;
928 data->known_tasks_length = 1;
929 return;
930 }
931
932 /* Can't find tasks. */
933
934 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
935 data->known_tasks_addr = 0;
936 }
937
938 /* Read the known tasks from the current inferior's memory, and store it
939 in the current inferior's data TASK_LIST.
940 Return non-zero upon success. */
941
942 static int
943 read_known_tasks (void)
944 {
945 struct ada_tasks_inferior_data *data =
946 get_ada_tasks_inferior_data (current_inferior ());
947
948 /* Step 1: Clear the current list, if necessary. */
949 VEC_truncate (ada_task_info_s, data->task_list, 0);
950
951 /* Step 2: do the real work.
952 If the application does not use task, then no more needs to be done.
953 It is important to have the task list cleared (see above) before we
954 return, as we don't want a stale task list to be used... This can
955 happen for instance when debugging a non-multitasking program after
956 having debugged a multitasking one. */
957 ada_tasks_inferior_data_sniffer (data);
958 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
959
960 switch (data->known_tasks_kind)
961 {
962 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
963 return 0;
964 case ADA_TASKS_ARRAY:
965 return read_known_tasks_array (data);
966 case ADA_TASKS_LIST:
967 return read_known_tasks_list (data);
968 }
969
970 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
971 array unless needed. Then report a success. */
972 data->task_list_valid_p = 1;
973
974 return 1;
975 }
976
977 /* Build the task_list by reading the Known_Tasks array from
978 the inferior, and return the number of tasks in that list
979 (zero means that the program is not using tasking at all). */
980
981 int
982 ada_build_task_list (void)
983 {
984 struct ada_tasks_inferior_data *data;
985
986 if (!target_has_stack)
987 error (_("Cannot inspect Ada tasks when program is not running"));
988
989 data = get_ada_tasks_inferior_data (current_inferior ());
990 if (!data->task_list_valid_p)
991 read_known_tasks ();
992
993 return VEC_length (ada_task_info_s, data->task_list);
994 }
995
996 /* Print a table providing a short description of all Ada tasks
997 running inside inferior INF. If ARG_STR is set, it will be
998 interpreted as a task number, and the table will be limited to
999 that task only. */
1000
1001 void
1002 print_ada_task_info (struct ui_out *uiout,
1003 char *arg_str,
1004 struct inferior *inf)
1005 {
1006 struct ada_tasks_inferior_data *data;
1007 int taskno, nb_tasks;
1008 int taskno_arg = 0;
1009 struct cleanup *old_chain;
1010 int nb_columns;
1011
1012 if (ada_build_task_list () == 0)
1013 {
1014 ui_out_message (uiout, 0,
1015 _("Your application does not use any Ada tasks.\n"));
1016 return;
1017 }
1018
1019 if (arg_str != NULL && arg_str[0] != '\0')
1020 taskno_arg = value_as_long (parse_and_eval (arg_str));
1021
1022 if (ui_out_is_mi_like_p (uiout))
1023 /* In GDB/MI mode, we want to provide the thread ID corresponding
1024 to each task. This allows clients to quickly find the thread
1025 associated to any task, which is helpful for commands that
1026 take a --thread argument. However, in order to be able to
1027 provide that thread ID, the thread list must be up to date
1028 first. */
1029 target_find_new_threads ();
1030
1031 data = get_ada_tasks_inferior_data (inf);
1032
1033 /* Compute the number of tasks that are going to be displayed
1034 in the output. If an argument was given, there will be
1035 at most 1 entry. Otherwise, there will be as many entries
1036 as we have tasks. */
1037 if (taskno_arg)
1038 {
1039 if (taskno_arg > 0
1040 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list))
1041 nb_tasks = 1;
1042 else
1043 nb_tasks = 0;
1044 }
1045 else
1046 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
1047
1048 nb_columns = ui_out_is_mi_like_p (uiout) ? 8 : 7;
1049 old_chain = make_cleanup_ui_out_table_begin_end (uiout, nb_columns,
1050 nb_tasks, "tasks");
1051 ui_out_table_header (uiout, 1, ui_left, "current", "");
1052 ui_out_table_header (uiout, 3, ui_right, "id", "ID");
1053 ui_out_table_header (uiout, 9, ui_right, "task-id", "TID");
1054 /* The following column is provided in GDB/MI mode only because
1055 it is only really useful in that mode, and also because it
1056 allows us to keep the CLI output shorter and more compact. */
1057 if (ui_out_is_mi_like_p (uiout))
1058 ui_out_table_header (uiout, 4, ui_right, "thread-id", "");
1059 ui_out_table_header (uiout, 4, ui_right, "parent-id", "P-ID");
1060 ui_out_table_header (uiout, 3, ui_right, "priority", "Pri");
1061 ui_out_table_header (uiout, 22, ui_left, "state", "State");
1062 /* Use ui_noalign for the last column, to prevent the CLI uiout
1063 from printing an extra space at the end of each row. This
1064 is a bit of a hack, but does get the job done. */
1065 ui_out_table_header (uiout, 1, ui_noalign, "name", "Name");
1066 ui_out_table_body (uiout);
1067
1068 for (taskno = 1;
1069 taskno <= VEC_length (ada_task_info_s, data->task_list);
1070 taskno++)
1071 {
1072 const struct ada_task_info *const task_info =
1073 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1074 int parent_id;
1075 struct cleanup *chain2;
1076
1077 gdb_assert (task_info != NULL);
1078
1079 /* If the user asked for the output to be restricted
1080 to one task only, and this is not the task, skip
1081 to the next one. */
1082 if (taskno_arg && taskno != taskno_arg)
1083 continue;
1084
1085 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1086
1087 /* Print a star if this task is the current task (or the task
1088 currently selected). */
1089 if (ptid_equal (task_info->ptid, inferior_ptid))
1090 ui_out_field_string (uiout, "current", "*");
1091 else
1092 ui_out_field_skip (uiout, "current");
1093
1094 /* Print the task number. */
1095 ui_out_field_int (uiout, "id", taskno);
1096
1097 /* Print the Task ID. */
1098 ui_out_field_fmt (uiout, "task-id", "%9lx", (long) task_info->task_id);
1099
1100 /* Print the associated Thread ID. */
1101 if (ui_out_is_mi_like_p (uiout))
1102 {
1103 const int thread_id = pid_to_thread_id (task_info->ptid);
1104
1105 if (thread_id != 0)
1106 ui_out_field_int (uiout, "thread-id", thread_id);
1107 else
1108 /* This should never happen unless there is a bug somewhere,
1109 but be resilient when that happens. */
1110 ui_out_field_skip (uiout, "thread-id");
1111 }
1112
1113 /* Print the ID of the parent task. */
1114 parent_id = get_task_number_from_id (task_info->parent, inf);
1115 if (parent_id)
1116 ui_out_field_int (uiout, "parent-id", parent_id);
1117 else
1118 ui_out_field_skip (uiout, "parent-id");
1119
1120 /* Print the base priority of the task. */
1121 ui_out_field_int (uiout, "priority", task_info->priority);
1122
1123 /* Print the task current state. */
1124 if (task_info->caller_task)
1125 ui_out_field_fmt (uiout, "state",
1126 _("Accepting RV with %-4d"),
1127 get_task_number_from_id (task_info->caller_task,
1128 inf));
1129 else if (task_info->state == Entry_Caller_Sleep
1130 && task_info->called_task)
1131 ui_out_field_fmt (uiout, "state",
1132 _("Waiting on RV with %-3d"),
1133 get_task_number_from_id (task_info->called_task,
1134 inf));
1135 else
1136 ui_out_field_string (uiout, "state", task_states[task_info->state]);
1137
1138 /* Finally, print the task name. */
1139 ui_out_field_fmt (uiout, "name",
1140 "%s",
1141 task_info->name[0] != '\0' ? task_info->name
1142 : _("<no name>"));
1143
1144 ui_out_text (uiout, "\n");
1145 do_cleanups (chain2);
1146 }
1147
1148 do_cleanups (old_chain);
1149 }
1150
1151 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1152 for the given inferior (INF). */
1153
1154 static void
1155 info_task (struct ui_out *uiout, char *taskno_str, struct inferior *inf)
1156 {
1157 const int taskno = value_as_long (parse_and_eval (taskno_str));
1158 struct ada_task_info *task_info;
1159 int parent_taskno = 0;
1160 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1161
1162 if (ada_build_task_list () == 0)
1163 {
1164 ui_out_message (uiout, 0,
1165 _("Your application does not use any Ada tasks.\n"));
1166 return;
1167 }
1168
1169 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1170 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1171 "see the IDs of currently known tasks"), taskno);
1172 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1173
1174 /* Print the Ada task ID. */
1175 printf_filtered (_("Ada Task: %s\n"),
1176 paddress (target_gdbarch (), task_info->task_id));
1177
1178 /* Print the name of the task. */
1179 if (task_info->name[0] != '\0')
1180 printf_filtered (_("Name: %s\n"), task_info->name);
1181 else
1182 printf_filtered (_("<no name>\n"));
1183
1184 /* Print the TID and LWP. */
1185 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1186 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1187
1188 /* Print who is the parent (if any). */
1189 if (task_info->parent != 0)
1190 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1191 if (parent_taskno)
1192 {
1193 struct ada_task_info *parent =
1194 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1195
1196 printf_filtered (_("Parent: %d"), parent_taskno);
1197 if (parent->name[0] != '\0')
1198 printf_filtered (" (%s)", parent->name);
1199 printf_filtered ("\n");
1200 }
1201 else
1202 printf_filtered (_("No parent\n"));
1203
1204 /* Print the base priority. */
1205 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1206
1207 /* print the task current state. */
1208 {
1209 int target_taskno = 0;
1210
1211 if (task_info->caller_task)
1212 {
1213 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1214 printf_filtered (_("State: Accepting rendezvous with %d"),
1215 target_taskno);
1216 }
1217 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1218 {
1219 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1220 printf_filtered (_("State: Waiting on task %d's entry"),
1221 target_taskno);
1222 }
1223 else
1224 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1225
1226 if (target_taskno)
1227 {
1228 struct ada_task_info *target_task_info =
1229 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1230
1231 if (target_task_info->name[0] != '\0')
1232 printf_filtered (" (%s)", target_task_info->name);
1233 }
1234
1235 printf_filtered ("\n");
1236 }
1237 }
1238
1239 /* If ARG is empty or null, then print a list of all Ada tasks.
1240 Otherwise, print detailed information about the task whose ID
1241 is ARG.
1242
1243 Does nothing if the program doesn't use Ada tasking. */
1244
1245 static void
1246 info_tasks_command (char *arg, int from_tty)
1247 {
1248 struct ui_out *uiout = current_uiout;
1249
1250 if (arg == NULL || *arg == '\0')
1251 print_ada_task_info (uiout, NULL, current_inferior ());
1252 else
1253 info_task (uiout, arg, current_inferior ());
1254 }
1255
1256 /* Print a message telling the user id of the current task.
1257 This function assumes that tasking is in use in the inferior. */
1258
1259 static void
1260 display_current_task_id (void)
1261 {
1262 const int current_task = ada_get_task_number (inferior_ptid);
1263
1264 if (current_task == 0)
1265 printf_filtered (_("[Current task is unknown]\n"));
1266 else
1267 printf_filtered (_("[Current task is %d]\n"), current_task);
1268 }
1269
1270 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1271 that task. Print an error message if the task switch failed. */
1272
1273 static void
1274 task_command_1 (char *taskno_str, int from_tty, struct inferior *inf)
1275 {
1276 const int taskno = value_as_long (parse_and_eval (taskno_str));
1277 struct ada_task_info *task_info;
1278 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1279
1280 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1281 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1282 "see the IDs of currently known tasks"), taskno);
1283 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1284
1285 if (!ada_task_is_alive (task_info))
1286 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1287
1288 /* On some platforms, the thread list is not updated until the user
1289 performs a thread-related operation (by using the "info threads"
1290 command, for instance). So this thread list may not be up to date
1291 when the user attempts this task switch. Since we cannot switch
1292 to the thread associated to our task if GDB does not know about
1293 that thread, we need to make sure that any new threads gets added
1294 to the thread list. */
1295 target_find_new_threads ();
1296
1297 /* Verify that the ptid of the task we want to switch to is valid
1298 (in other words, a ptid that GDB knows about). Otherwise, we will
1299 cause an assertion failure later on, when we try to determine
1300 the ptid associated thread_info data. We should normally never
1301 encounter such an error, but the wrong ptid can actually easily be
1302 computed if target_get_ada_task_ptid has not been implemented for
1303 our target (yet). Rather than cause an assertion error in that case,
1304 it's nicer for the user to just refuse to perform the task switch. */
1305 if (!find_thread_ptid (task_info->ptid))
1306 error (_("Unable to compute thread ID for task %d.\n"
1307 "Cannot switch to this task."),
1308 taskno);
1309
1310 switch_to_thread (task_info->ptid);
1311 ada_find_printable_frame (get_selected_frame (NULL));
1312 printf_filtered (_("[Switching to task %d]\n"), taskno);
1313 print_stack_frame (get_selected_frame (NULL),
1314 frame_relative_level (get_selected_frame (NULL)), 1);
1315 }
1316
1317
1318 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1319 Otherwise, switch to the task indicated by TASKNO_STR. */
1320
1321 static void
1322 task_command (char *taskno_str, int from_tty)
1323 {
1324 struct ui_out *uiout = current_uiout;
1325
1326 if (ada_build_task_list () == 0)
1327 {
1328 ui_out_message (uiout, 0,
1329 _("Your application does not use any Ada tasks.\n"));
1330 return;
1331 }
1332
1333 if (taskno_str == NULL || taskno_str[0] == '\0')
1334 display_current_task_id ();
1335 else
1336 {
1337 /* Task switching in core files doesn't work, either because:
1338 1. Thread support is not implemented with core files
1339 2. Thread support is implemented, but the thread IDs created
1340 after having read the core file are not the same as the ones
1341 that were used during the program life, before the crash.
1342 As a consequence, there is no longer a way for the debugger
1343 to find the associated thead ID of any given Ada task.
1344 So, instead of attempting a task switch without giving the user
1345 any clue as to what might have happened, just error-out with
1346 a message explaining that this feature is not supported. */
1347 if (!target_has_execution)
1348 error (_("\
1349 Task switching not supported when debugging from core files\n\
1350 (use thread support instead)"));
1351 task_command_1 (taskno_str, from_tty, current_inferior ());
1352 }
1353 }
1354
1355 /* Indicate that the given inferior's task list may have changed,
1356 so invalidate the cache. */
1357
1358 static void
1359 ada_task_list_changed (struct inferior *inf)
1360 {
1361 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1362
1363 data->task_list_valid_p = 0;
1364 }
1365
1366 /* Invalidate the per-program-space data. */
1367
1368 static void
1369 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1370 {
1371 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1372 }
1373
1374 /* Invalidate the per-inferior data. */
1375
1376 static void
1377 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1378 {
1379 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1380
1381 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1382 data->task_list_valid_p = 0;
1383 }
1384
1385 /* The 'normal_stop' observer notification callback. */
1386
1387 static void
1388 ada_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1389 {
1390 /* The inferior has been resumed, and just stopped. This means that
1391 our task_list needs to be recomputed before it can be used again. */
1392 ada_task_list_changed (current_inferior ());
1393 }
1394
1395 /* A routine to be called when the objfiles have changed. */
1396
1397 static void
1398 ada_new_objfile_observer (struct objfile *objfile)
1399 {
1400 struct inferior *inf;
1401
1402 /* Invalidate the relevant data in our program-space data. */
1403
1404 if (objfile == NULL)
1405 {
1406 /* All objfiles are being cleared, so we should clear all
1407 our caches for all program spaces. */
1408 struct program_space *pspace;
1409
1410 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1411 ada_tasks_invalidate_pspace_data (pspace);
1412 }
1413 else
1414 {
1415 /* The associated program-space data might have changed after
1416 this objfile was added. Invalidate all cached data. */
1417 ada_tasks_invalidate_pspace_data (objfile->pspace);
1418 }
1419
1420 /* Invalidate the per-inferior cache for all inferiors using
1421 this objfile (or, in other words, for all inferiors who have
1422 the same program-space as the objfile's program space).
1423 If all objfiles are being cleared (OBJFILE is NULL), then
1424 clear the caches for all inferiors. */
1425
1426 for (inf = inferior_list; inf != NULL; inf = inf->next)
1427 if (objfile == NULL || inf->pspace == objfile->pspace)
1428 ada_tasks_invalidate_inferior_data (inf);
1429 }
1430
1431 /* Provide a prototype to silence -Wmissing-prototypes. */
1432 extern initialize_file_ftype _initialize_tasks;
1433
1434 void
1435 _initialize_tasks (void)
1436 {
1437 ada_tasks_pspace_data_handle = register_program_space_data ();
1438 ada_tasks_inferior_data_handle = register_inferior_data ();
1439
1440 /* Attach various observers. */
1441 observer_attach_normal_stop (ada_normal_stop_observer);
1442 observer_attach_new_objfile (ada_new_objfile_observer);
1443
1444 /* Some new commands provided by this module. */
1445 add_info ("tasks", info_tasks_command,
1446 _("Provide information about all known Ada tasks"));
1447 add_cmd ("task", class_run, task_command,
1448 _("Use this command to switch between Ada tasks.\n\
1449 Without argument, this command simply prints the current task ID"),
1450 &cmdlist);
1451 }
1452