]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/alpha-nat.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / alpha-nat.c
1 /* Low level Alpha interface, for GDB when running native.
2 Copyright 1993, 1995, 1996, 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include <sys/ptrace.h>
25 #ifdef __linux__
26 # include <asm/reg.h>
27 # include <alpha/ptrace.h>
28 #else
29 # include <machine/reg.h>
30 #endif
31 #include <sys/user.h>
32
33 /* Prototypes for local functions. */
34
35 static void fetch_osf_core_registers PARAMS ((char *,
36 unsigned, int, CORE_ADDR));
37 static void fetch_elf_core_registers PARAMS ((char *,
38 unsigned, int, CORE_ADDR));
39
40 /* Size of elements in jmpbuf */
41
42 #define JB_ELEMENT_SIZE 8
43
44 /* The definition for JB_PC in machine/reg.h is wrong.
45 And we can't get at the correct definition in setjmp.h as it is
46 not always available (eg. if _POSIX_SOURCE is defined which is the
47 default). As the defintion is unlikely to change (see comment
48 in <setjmp.h>, define the correct value here. */
49
50 #undef JB_PC
51 #define JB_PC 2
52
53 /* Figure out where the longjmp will land.
54 We expect the first arg to be a pointer to the jmp_buf structure from which
55 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
56 This routine returns true on success. */
57
58 int
59 get_longjmp_target (pc)
60 CORE_ADDR *pc;
61 {
62 CORE_ADDR jb_addr;
63 char raw_buffer[MAX_REGISTER_RAW_SIZE];
64
65 jb_addr = read_register(A0_REGNUM);
66
67 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
68 sizeof(CORE_ADDR)))
69 return 0;
70
71 *pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
72 return 1;
73 }
74
75 /* Extract the register values out of the core file and store
76 them where `read_register' will find them.
77
78 CORE_REG_SECT points to the register values themselves, read into memory.
79 CORE_REG_SIZE is the size of that area.
80 WHICH says which set of registers we are handling (0 = int, 2 = float
81 on machines where they are discontiguous).
82 REG_ADDR is the offset from u.u_ar0 to the register values relative to
83 core_reg_sect. This is used with old-fashioned core files to
84 locate the registers in a large upage-plus-stack ".reg" section.
85 Original upage address X is at location core_reg_sect+x+reg_addr.
86 */
87
88 static void
89 fetch_osf_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
90 char *core_reg_sect;
91 unsigned core_reg_size;
92 int which;
93 CORE_ADDR reg_addr;
94 {
95 register int regno;
96 register int addr;
97 int bad_reg = -1;
98
99 /* Table to map a gdb regnum to an index in the core register section.
100 The floating point register values are garbage in OSF/1.2 core files. */
101 static int core_reg_mapping[NUM_REGS] =
102 {
103 #define EFL (EF_SIZE / 8)
104 EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
105 EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
106 EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
107 EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
108 EFL+0, EFL+1, EFL+2, EFL+3, EFL+4, EFL+5, EFL+6, EFL+7,
109 EFL+8, EFL+9, EFL+10, EFL+11, EFL+12, EFL+13, EFL+14, EFL+15,
110 EFL+16, EFL+17, EFL+18, EFL+19, EFL+20, EFL+21, EFL+22, EFL+23,
111 EFL+24, EFL+25, EFL+26, EFL+27, EFL+28, EFL+29, EFL+30, EFL+31,
112 EF_PC, -1
113 };
114 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
115
116 for (regno = 0; regno < NUM_REGS; regno++)
117 {
118 if (CANNOT_FETCH_REGISTER (regno))
119 {
120 supply_register (regno, zerobuf);
121 continue;
122 }
123 addr = 8 * core_reg_mapping[regno];
124 if (addr < 0 || addr >= core_reg_size)
125 {
126 if (bad_reg < 0)
127 bad_reg = regno;
128 }
129 else
130 {
131 supply_register (regno, core_reg_sect + addr);
132 }
133 }
134 if (bad_reg >= 0)
135 {
136 error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
137 }
138 }
139
140 static void
141 fetch_elf_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
142 char *core_reg_sect;
143 unsigned core_reg_size;
144 int which;
145 CORE_ADDR reg_addr;
146 {
147 if (core_reg_size < 32*8)
148 {
149 error ("Core file register section too small (%u bytes).", core_reg_size);
150 return;
151 }
152
153 if (which == 2)
154 {
155 /* The FPU Registers. */
156 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 31*8);
157 memset (&registers[REGISTER_BYTE (FP0_REGNUM+31)], 0, 8);
158 memset (&register_valid[FP0_REGNUM], 1, 32);
159 }
160 else
161 {
162 /* The General Registers. */
163 memcpy (&registers[REGISTER_BYTE (V0_REGNUM)], core_reg_sect, 31*8);
164 memcpy (&registers[REGISTER_BYTE (PC_REGNUM)], core_reg_sect+31*8, 8);
165 memset (&registers[REGISTER_BYTE (ZERO_REGNUM)], 0, 8);
166 memset (&register_valid[V0_REGNUM], 1, 32);
167 register_valid[PC_REGNUM] = 1;
168 }
169 }
170
171
172 /* Map gdb internal register number to a ptrace ``address''.
173 These ``addresses'' are defined in <sys/ptrace.h> */
174
175 #define REGISTER_PTRACE_ADDR(regno) \
176 (regno < FP0_REGNUM ? GPR_BASE + (regno) \
177 : regno == PC_REGNUM ? PC \
178 : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
179 : 0)
180
181 /* Return the ptrace ``address'' of register REGNO. */
182
183 CORE_ADDR
184 register_addr (regno, blockend)
185 int regno;
186 CORE_ADDR blockend;
187 {
188 return REGISTER_PTRACE_ADDR (regno);
189 }
190
191 int
192 kernel_u_size ()
193 {
194 return (sizeof (struct user));
195 }
196
197 #if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
198 #include <sys/procfs.h>
199
200 /*
201 * See the comment in m68k-tdep.c regarding the utility of these functions.
202 */
203
204 void
205 supply_gregset (gregsetp)
206 gregset_t *gregsetp;
207 {
208 register int regi;
209 register long *regp = ALPHA_REGSET_BASE (gregsetp);
210 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
211
212 for (regi = 0; regi < 31; regi++)
213 supply_register (regi, (char *)(regp + regi));
214
215 supply_register (PC_REGNUM, (char *)(regp + 31));
216
217 /* Fill inaccessible registers with zero. */
218 supply_register (ZERO_REGNUM, zerobuf);
219 supply_register (FP_REGNUM, zerobuf);
220 }
221
222 void
223 fill_gregset (gregsetp, regno)
224 gregset_t *gregsetp;
225 int regno;
226 {
227 int regi;
228 register long *regp = ALPHA_REGSET_BASE (gregsetp);
229
230 for (regi = 0; regi < 31; regi++)
231 if ((regno == -1) || (regno == regi))
232 *(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
233
234 if ((regno == -1) || (regno == PC_REGNUM))
235 *(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
236 }
237
238 /*
239 * Now we do the same thing for floating-point registers.
240 * Again, see the comments in m68k-tdep.c.
241 */
242
243 void
244 supply_fpregset (fpregsetp)
245 fpregset_t *fpregsetp;
246 {
247 register int regi;
248 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
249
250 for (regi = 0; regi < 32; regi++)
251 supply_register (regi + FP0_REGNUM, (char *)(regp + regi));
252 }
253
254 void
255 fill_fpregset (fpregsetp, regno)
256 fpregset_t *fpregsetp;
257 int regno;
258 {
259 int regi;
260 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
261
262 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
263 {
264 if ((regno == -1) || (regno == regi))
265 {
266 *(regp + regi - FP0_REGNUM) =
267 *(long *) &registers[REGISTER_BYTE (regi)];
268 }
269 }
270 }
271 #endif
272
273 \f
274 /* Register that we are able to handle alpha core file formats. */
275
276 static struct core_fns alpha_osf_core_fns =
277 {
278 /* This really is bfd_target_unknown_flavour. */
279
280 bfd_target_unknown_flavour,
281 fetch_osf_core_registers,
282 NULL
283 };
284
285 static struct core_fns alpha_elf_core_fns =
286 {
287 bfd_target_elf_flavour,
288 fetch_elf_core_registers,
289 NULL
290 };
291
292 void
293 _initialize_core_alpha ()
294 {
295 add_core_fns (&alpha_osf_core_fns);
296 add_core_fns (&alpha_elf_core_fns);
297 }