]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/alpha-tdep.c
remove gdb_string.h
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "doublest.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "dwarf2-frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include <string.h>
35 #include "linespec.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "arch-utils.h"
39 #include "osabi.h"
40 #include "block.h"
41 #include "infcall.h"
42 #include "trad-frame.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 /* Instruction decoding. The notations for registers, immediates and
49 opcodes are the same as the one used in Compaq's Alpha architecture
50 handbook. */
51
52 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53
54 /* Memory instruction format */
55 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57 #define MEM_DISP(insn) \
58 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59
60 static const int lda_opcode = 0x08;
61 static const int stq_opcode = 0x2d;
62
63 /* Branch instruction format */
64 #define BR_RA(insn) MEM_RA(insn)
65
66 static const int br_opcode = 0x30;
67 static const int bne_opcode = 0x3d;
68
69 /* Operate instruction format */
70 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72 #define OPR_RA(insn) MEM_RA(insn)
73 #define OPR_RC(insn) ((insn & 0x1f))
74 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75
76 static const int subq_opcode = 0x10;
77 static const int subq_function = 0x29;
78
79 \f
80 /* Return the name of the REGNO register.
81
82 An empty name corresponds to a register number that used to
83 be used for a virtual register. That virtual register has
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
86
87 static const char *
88 alpha_register_name (struct gdbarch *gdbarch, int regno)
89 {
90 static const char * const register_names[] =
91 {
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
100 "pc", "", "unique"
101 };
102
103 if (regno < 0)
104 return NULL;
105 if (regno >= ARRAY_SIZE(register_names))
106 return NULL;
107 return register_names[regno];
108 }
109
110 static int
111 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
112 {
113 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
114 }
115
116 static int
117 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
118 {
119 return (regno == ALPHA_ZERO_REGNUM
120 || strlen (alpha_register_name (gdbarch, regno)) == 0);
121 }
122
123 static struct type *
124 alpha_register_type (struct gdbarch *gdbarch, int regno)
125 {
126 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
127 return builtin_type (gdbarch)->builtin_data_ptr;
128 if (regno == ALPHA_PC_REGNUM)
129 return builtin_type (gdbarch)->builtin_func_ptr;
130
131 /* Don't need to worry about little vs big endian until
132 some jerk tries to port to alpha-unicosmk. */
133 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
134 return builtin_type (gdbarch)->builtin_double;
135
136 return builtin_type (gdbarch)->builtin_int64;
137 }
138
139 /* Is REGNUM a member of REGGROUP? */
140
141 static int
142 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 struct reggroup *group)
144 {
145 /* Filter out any registers eliminated, but whose regnum is
146 reserved for backward compatibility, e.g. the vfp. */
147 if (gdbarch_register_name (gdbarch, regnum) == NULL
148 || *gdbarch_register_name (gdbarch, regnum) == '\0')
149 return 0;
150
151 if (group == all_reggroup)
152 return 1;
153
154 /* Zero should not be saved or restored. Technically it is a general
155 register (just as $f31 would be a float if we represented it), but
156 there's no point displaying it during "info regs", so leave it out
157 of all groups except for "all". */
158 if (regnum == ALPHA_ZERO_REGNUM)
159 return 0;
160
161 /* All other registers are saved and restored. */
162 if (group == save_reggroup || group == restore_reggroup)
163 return 1;
164
165 /* All other groups are non-overlapping. */
166
167 /* Since this is really a PALcode memory slot... */
168 if (regnum == ALPHA_UNIQUE_REGNUM)
169 return group == system_reggroup;
170
171 /* Force the FPCR to be considered part of the floating point state. */
172 if (regnum == ALPHA_FPCR_REGNUM)
173 return group == float_reggroup;
174
175 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176 return group == float_reggroup;
177 else
178 return group == general_reggroup;
179 }
180
181 /* The following represents exactly the conversion performed by
182 the LDS instruction. This applies to both single-precision
183 floating point and 32-bit integers. */
184
185 static void
186 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
187 {
188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
189 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
209 store_unsigned_integer (out, 8, byte_order, reg);
210 }
211
212 /* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
215 static void
216 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
217 {
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 ULONGEST reg, mem;
220
221 reg = extract_unsigned_integer (in, 8, byte_order);
222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
223 store_unsigned_integer (out, 4, byte_order, mem);
224 }
225
226 /* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
229 bytes or less, as the representation of integers in floating point
230 registers is different. */
231
232 static int
233 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
235 {
236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 && TYPE_LENGTH (type) != 8);
238 }
239
240 static int
241 alpha_register_to_value (struct frame_info *frame, int regnum,
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
244 {
245 struct gdbarch *gdbarch = get_frame_arch (frame);
246 gdb_byte in[MAX_REGISTER_SIZE];
247
248 /* Convert to TYPE. */
249 if (!get_frame_register_bytes (frame, regnum, 0,
250 register_size (gdbarch, regnum),
251 in, optimizedp, unavailablep))
252 return 0;
253
254 if (TYPE_LENGTH (valtype) == 4)
255 {
256 alpha_sts (gdbarch, out, in);
257 *optimizedp = *unavailablep = 0;
258 return 1;
259 }
260
261 error (_("Cannot retrieve value from floating point register"));
262 }
263
264 static void
265 alpha_value_to_register (struct frame_info *frame, int regnum,
266 struct type *valtype, const gdb_byte *in)
267 {
268 gdb_byte out[MAX_REGISTER_SIZE];
269
270 switch (TYPE_LENGTH (valtype))
271 {
272 case 4:
273 alpha_lds (get_frame_arch (frame), out, in);
274 break;
275 default:
276 error (_("Cannot store value in floating point register"));
277 }
278 put_frame_register (frame, regnum, out);
279 }
280
281 \f
282 /* The alpha passes the first six arguments in the registers, the rest on
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
293
294 static CORE_ADDR
295 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
298 int struct_return, CORE_ADDR struct_addr)
299 {
300 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
301 int i;
302 int accumulate_size = struct_return ? 8 : 0;
303 struct alpha_arg
304 {
305 const gdb_byte *contents;
306 int len;
307 int offset;
308 };
309 struct alpha_arg *alpha_args
310 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
311 struct alpha_arg *m_arg;
312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
313 int required_arg_regs;
314 CORE_ADDR func_addr = find_function_addr (function, NULL);
315
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
327 struct type *arg_type = check_typedef (value_type (arg));
328
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (TYPE_CODE (arg_type))
331 {
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
337 if (TYPE_LENGTH (arg_type) == 4)
338 {
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
341 arg_type = builtin_type (gdbarch)->builtin_int32;
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
346 arg_type = builtin_type (gdbarch)->builtin_int64;
347 arg = value_cast (arg_type, arg);
348 }
349 break;
350
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
357 arg_type = builtin_type (gdbarch)->builtin_double;
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
368 write_memory (sp, value_contents (arg), 16);
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
389 write_memory (sp, value_contents (arg), 32);
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
397 default:
398 break;
399 }
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
403 m_arg->contents = value_contents (arg);
404 }
405
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
411
412 /* Make room for the arguments on the stack. */
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
417 sp -= accumulate_size;
418
419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
420 sp &= ~15;
421
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
424 {
425 const gdb_byte *contents = m_arg->contents;
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
449 }
450 if (struct_return)
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
453
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
457 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 }
462
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
466 return sp;
467 }
468
469 /* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
471
472 static void
473 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
474 gdb_byte *valbuf)
475 {
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
479 ULONGEST l;
480
481 switch (TYPE_CODE (valtype))
482 {
483 case TYPE_CODE_FLT:
484 switch (TYPE_LENGTH (valtype))
485 {
486 case 4:
487 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
488 alpha_sts (gdbarch, valbuf, raw_buffer);
489 break;
490
491 case 8:
492 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
493 break;
494
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
500 default:
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
503 }
504 break;
505
506 case TYPE_CODE_COMPLEX:
507 switch (TYPE_LENGTH (valtype))
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
511 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
512 break;
513
514 case 16:
515 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
517 break;
518
519 case 32:
520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
527 }
528 break;
529
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
533 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
534 break;
535 }
536 }
537
538 /* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
540
541 static void
542 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
543 const gdb_byte *valbuf)
544 {
545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
547 ULONGEST l;
548
549 switch (TYPE_CODE (valtype))
550 {
551 case TYPE_CODE_FLT:
552 switch (TYPE_LENGTH (valtype))
553 {
554 case 4:
555 alpha_lds (gdbarch, raw_buffer, valbuf);
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
557 break;
558
559 case 8:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 break;
562
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
567 error (_("Cannot set a 128-bit long double return value."));
568
569 default:
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
572 }
573 break;
574
575 case TYPE_CODE_COMPLEX:
576 switch (TYPE_LENGTH (valtype))
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
580 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
581 break;
582
583 case 16:
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
585 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
592 error (_("Cannot set a 128-bit long double return value."));
593
594 default:
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
597 }
598 break;
599
600 default:
601 /* Assume everything else degenerates to an integer. */
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
604 if (TYPE_LENGTH (valtype) == 4)
605 valtype = builtin_type (gdbarch)->builtin_int32;
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
610 }
611
612 static enum return_value_convention
613 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617 enum type_code code = TYPE_CODE (type);
618
619 if ((code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION
621 || code == TYPE_CODE_ARRAY)
622 && gdbarch_tdep (gdbarch)->return_in_memory (type))
623 {
624 if (readbuf)
625 {
626 ULONGEST addr;
627 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
628 read_memory (addr, readbuf, TYPE_LENGTH (type));
629 }
630
631 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
632 }
633
634 if (readbuf)
635 alpha_extract_return_value (type, regcache, readbuf);
636 if (writebuf)
637 alpha_store_return_value (type, regcache, writebuf);
638
639 return RETURN_VALUE_REGISTER_CONVENTION;
640 }
641
642 static int
643 alpha_return_in_memory_always (struct type *type)
644 {
645 return 1;
646 }
647 \f
648 static const gdb_byte *
649 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
650 {
651 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
652
653 *len = sizeof(break_insn);
654 return break_insn;
655 }
656
657 \f
658 /* This returns the PC of the first insn after the prologue.
659 If we can't find the prologue, then return 0. */
660
661 CORE_ADDR
662 alpha_after_prologue (CORE_ADDR pc)
663 {
664 struct symtab_and_line sal;
665 CORE_ADDR func_addr, func_end;
666
667 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
668 return 0;
669
670 sal = find_pc_line (func_addr, 0);
671 if (sal.end < func_end)
672 return sal.end;
673
674 /* The line after the prologue is after the end of the function. In this
675 case, tell the caller to find the prologue the hard way. */
676 return 0;
677 }
678
679 /* Read an instruction from memory at PC, looking through breakpoints. */
680
681 unsigned int
682 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
683 {
684 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
685 gdb_byte buf[ALPHA_INSN_SIZE];
686 int status;
687
688 status = target_read_memory (pc, buf, sizeof (buf));
689 if (status)
690 memory_error (status, pc);
691 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
692 }
693
694 /* To skip prologues, I use this predicate. Returns either PC itself
695 if the code at PC does not look like a function prologue; otherwise
696 returns an address that (if we're lucky) follows the prologue. If
697 LENIENT, then we must skip everything which is involved in setting
698 up the frame (it's OK to skip more, just so long as we don't skip
699 anything which might clobber the registers which are being saved. */
700
701 static CORE_ADDR
702 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
703 {
704 unsigned long inst;
705 int offset;
706 CORE_ADDR post_prologue_pc;
707 gdb_byte buf[ALPHA_INSN_SIZE];
708
709 /* Silently return the unaltered pc upon memory errors.
710 This could happen on OSF/1 if decode_line_1 tries to skip the
711 prologue for quickstarted shared library functions when the
712 shared library is not yet mapped in.
713 Reading target memory is slow over serial lines, so we perform
714 this check only if the target has shared libraries (which all
715 Alpha targets do). */
716 if (target_read_memory (pc, buf, sizeof (buf)))
717 return pc;
718
719 /* See if we can determine the end of the prologue via the symbol table.
720 If so, then return either PC, or the PC after the prologue, whichever
721 is greater. */
722
723 post_prologue_pc = alpha_after_prologue (pc);
724 if (post_prologue_pc != 0)
725 return max (pc, post_prologue_pc);
726
727 /* Can't determine prologue from the symbol table, need to examine
728 instructions. */
729
730 /* Skip the typical prologue instructions. These are the stack adjustment
731 instruction and the instructions that save registers on the stack
732 or in the gcc frame. */
733 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
734 {
735 inst = alpha_read_insn (gdbarch, pc + offset);
736
737 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
738 continue;
739 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
740 continue;
741 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
742 continue;
743 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
744 continue;
745
746 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
747 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
748 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
749 continue;
750
751 if (inst == 0x47de040f) /* bis sp,sp,fp */
752 continue;
753 if (inst == 0x47fe040f) /* bis zero,sp,fp */
754 continue;
755
756 break;
757 }
758 return pc + offset;
759 }
760
761 \f
762 static const int ldl_l_opcode = 0x2a;
763 static const int ldq_l_opcode = 0x2b;
764 static const int stl_c_opcode = 0x2e;
765 static const int stq_c_opcode = 0x2f;
766
767 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
768 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
769 is found, attempt to step through it. A breakpoint is placed at the end of
770 the sequence. */
771
772 static int
773 alpha_deal_with_atomic_sequence (struct frame_info *frame)
774 {
775 struct gdbarch *gdbarch = get_frame_arch (frame);
776 struct address_space *aspace = get_frame_address_space (frame);
777 CORE_ADDR pc = get_frame_pc (frame);
778 CORE_ADDR breaks[2] = {-1, -1};
779 CORE_ADDR loc = pc;
780 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
781 unsigned int insn = alpha_read_insn (gdbarch, loc);
782 int insn_count;
783 int index;
784 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
785 const int atomic_sequence_length = 16; /* Instruction sequence length. */
786 int bc_insn_count = 0; /* Conditional branch instruction count. */
787
788 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
789 if (INSN_OPCODE (insn) != ldl_l_opcode
790 && INSN_OPCODE (insn) != ldq_l_opcode)
791 return 0;
792
793 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
794 instructions. */
795 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
796 {
797 loc += ALPHA_INSN_SIZE;
798 insn = alpha_read_insn (gdbarch, loc);
799
800 /* Assume that there is at most one branch in the atomic
801 sequence. If a branch is found, put a breakpoint in
802 its destination address. */
803 if (INSN_OPCODE (insn) >= br_opcode)
804 {
805 int immediate = (insn & 0x001fffff) << 2;
806
807 immediate = (immediate ^ 0x400000) - 0x400000;
808
809 if (bc_insn_count >= 1)
810 return 0; /* More than one branch found, fallback
811 to the standard single-step code. */
812
813 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
814
815 bc_insn_count++;
816 last_breakpoint++;
817 }
818
819 if (INSN_OPCODE (insn) == stl_c_opcode
820 || INSN_OPCODE (insn) == stq_c_opcode)
821 break;
822 }
823
824 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
825 if (INSN_OPCODE (insn) != stl_c_opcode
826 && INSN_OPCODE (insn) != stq_c_opcode)
827 return 0;
828
829 closing_insn = loc;
830 loc += ALPHA_INSN_SIZE;
831
832 /* Insert a breakpoint right after the end of the atomic sequence. */
833 breaks[0] = loc;
834
835 /* Check for duplicated breakpoints. Check also for a breakpoint
836 placed (branch instruction's destination) anywhere in sequence. */
837 if (last_breakpoint
838 && (breaks[1] == breaks[0]
839 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
840 last_breakpoint = 0;
841
842 /* Effectively inserts the breakpoints. */
843 for (index = 0; index <= last_breakpoint; index++)
844 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
845
846 return 1;
847 }
848
849 \f
850 /* Figure out where the longjmp will land.
851 We expect the first arg to be a pointer to the jmp_buf structure from
852 which we extract the PC (JB_PC) that we will land at. The PC is copied
853 into the "pc". This routine returns true on success. */
854
855 static int
856 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
857 {
858 struct gdbarch *gdbarch = get_frame_arch (frame);
859 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
860 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
861 CORE_ADDR jb_addr;
862 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
863
864 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
865
866 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
867 raw_buffer, tdep->jb_elt_size))
868 return 0;
869
870 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
871 return 1;
872 }
873
874 \f
875 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
876 describe the location and shape of the sigcontext structure. After
877 that, all registers are in memory, so it's easy. */
878 /* ??? Shouldn't we be able to do this generically, rather than with
879 OSABI data specific to Alpha? */
880
881 struct alpha_sigtramp_unwind_cache
882 {
883 CORE_ADDR sigcontext_addr;
884 };
885
886 static struct alpha_sigtramp_unwind_cache *
887 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
888 void **this_prologue_cache)
889 {
890 struct alpha_sigtramp_unwind_cache *info;
891 struct gdbarch_tdep *tdep;
892
893 if (*this_prologue_cache)
894 return *this_prologue_cache;
895
896 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
897 *this_prologue_cache = info;
898
899 tdep = gdbarch_tdep (get_frame_arch (this_frame));
900 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
901
902 return info;
903 }
904
905 /* Return the address of REGNUM in a sigtramp frame. Since this is
906 all arithmetic, it doesn't seem worthwhile to cache it. */
907
908 static CORE_ADDR
909 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
910 CORE_ADDR sigcontext_addr, int regnum)
911 {
912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913
914 if (regnum >= 0 && regnum < 32)
915 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
916 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
917 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
918 else if (regnum == ALPHA_PC_REGNUM)
919 return sigcontext_addr + tdep->sc_pc_offset;
920
921 return 0;
922 }
923
924 /* Given a GDB frame, determine the address of the calling function's
925 frame. This will be used to create a new GDB frame struct. */
926
927 static void
928 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
929 void **this_prologue_cache,
930 struct frame_id *this_id)
931 {
932 struct gdbarch *gdbarch = get_frame_arch (this_frame);
933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
934 struct alpha_sigtramp_unwind_cache *info
935 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
936 CORE_ADDR stack_addr, code_addr;
937
938 /* If the OSABI couldn't locate the sigcontext, give up. */
939 if (info->sigcontext_addr == 0)
940 return;
941
942 /* If we have dynamic signal trampolines, find their start.
943 If we do not, then we must assume there is a symbol record
944 that can provide the start address. */
945 if (tdep->dynamic_sigtramp_offset)
946 {
947 int offset;
948 code_addr = get_frame_pc (this_frame);
949 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
950 if (offset >= 0)
951 code_addr -= offset;
952 else
953 code_addr = 0;
954 }
955 else
956 code_addr = get_frame_func (this_frame);
957
958 /* The stack address is trivially read from the sigcontext. */
959 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
960 ALPHA_SP_REGNUM);
961 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
962 ALPHA_REGISTER_SIZE);
963
964 *this_id = frame_id_build (stack_addr, code_addr);
965 }
966
967 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
968
969 static struct value *
970 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
971 void **this_prologue_cache, int regnum)
972 {
973 struct alpha_sigtramp_unwind_cache *info
974 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
975 CORE_ADDR addr;
976
977 if (info->sigcontext_addr != 0)
978 {
979 /* All integer and fp registers are stored in memory. */
980 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
981 info->sigcontext_addr, regnum);
982 if (addr != 0)
983 return frame_unwind_got_memory (this_frame, regnum, addr);
984 }
985
986 /* This extra register may actually be in the sigcontext, but our
987 current description of it in alpha_sigtramp_frame_unwind_cache
988 doesn't include it. Too bad. Fall back on whatever's in the
989 outer frame. */
990 return frame_unwind_got_register (this_frame, regnum, regnum);
991 }
992
993 static int
994 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
995 struct frame_info *this_frame,
996 void **this_prologue_cache)
997 {
998 struct gdbarch *gdbarch = get_frame_arch (this_frame);
999 CORE_ADDR pc = get_frame_pc (this_frame);
1000 const char *name;
1001
1002 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1003 look at tramp-frame.h and other simplier per-architecture
1004 sigtramp unwinders. */
1005
1006 /* We shouldn't even bother to try if the OSABI didn't register a
1007 sigcontext_addr handler or pc_in_sigtramp hander. */
1008 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
1009 return 0;
1010 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
1011 return 0;
1012
1013 /* Otherwise we should be in a signal frame. */
1014 find_pc_partial_function (pc, &name, NULL, NULL);
1015 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
1016 return 1;
1017
1018 return 0;
1019 }
1020
1021 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1022 SIGTRAMP_FRAME,
1023 default_frame_unwind_stop_reason,
1024 alpha_sigtramp_frame_this_id,
1025 alpha_sigtramp_frame_prev_register,
1026 NULL,
1027 alpha_sigtramp_frame_sniffer
1028 };
1029
1030 \f
1031
1032 /* Heuristic_proc_start may hunt through the text section for a long
1033 time across a 2400 baud serial line. Allows the user to limit this
1034 search. */
1035 static int heuristic_fence_post = 0;
1036
1037 /* Attempt to locate the start of the function containing PC. We assume that
1038 the previous function ends with an about_to_return insn. Not foolproof by
1039 any means, since gcc is happy to put the epilogue in the middle of a
1040 function. But we're guessing anyway... */
1041
1042 static CORE_ADDR
1043 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1044 {
1045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1046 CORE_ADDR last_non_nop = pc;
1047 CORE_ADDR fence = pc - heuristic_fence_post;
1048 CORE_ADDR orig_pc = pc;
1049 CORE_ADDR func;
1050 struct inferior *inf;
1051
1052 if (pc == 0)
1053 return 0;
1054
1055 /* First see if we can find the start of the function from minimal
1056 symbol information. This can succeed with a binary that doesn't
1057 have debug info, but hasn't been stripped. */
1058 func = get_pc_function_start (pc);
1059 if (func)
1060 return func;
1061
1062 if (heuristic_fence_post == -1
1063 || fence < tdep->vm_min_address)
1064 fence = tdep->vm_min_address;
1065
1066 /* Search back for previous return; also stop at a 0, which might be
1067 seen for instance before the start of a code section. Don't include
1068 nops, since this usually indicates padding between functions. */
1069 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1070 {
1071 unsigned int insn = alpha_read_insn (gdbarch, pc);
1072 switch (insn)
1073 {
1074 case 0: /* invalid insn */
1075 case 0x6bfa8001: /* ret $31,($26),1 */
1076 return last_non_nop;
1077
1078 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1079 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1080 break;
1081
1082 default:
1083 last_non_nop = pc;
1084 break;
1085 }
1086 }
1087
1088 inf = current_inferior ();
1089
1090 /* It's not clear to me why we reach this point when stopping quietly,
1091 but with this test, at least we don't print out warnings for every
1092 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1093 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1094 {
1095 static int blurb_printed = 0;
1096
1097 if (fence == tdep->vm_min_address)
1098 warning (_("Hit beginning of text section without finding \
1099 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1100 else
1101 warning (_("Hit heuristic-fence-post without finding \
1102 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1103
1104 if (!blurb_printed)
1105 {
1106 printf_filtered (_("\
1107 This warning occurs if you are debugging a function without any symbols\n\
1108 (for example, in a stripped executable). In that case, you may wish to\n\
1109 increase the size of the search with the `set heuristic-fence-post' command.\n\
1110 \n\
1111 Otherwise, you told GDB there was a function where there isn't one, or\n\
1112 (more likely) you have encountered a bug in GDB.\n"));
1113 blurb_printed = 1;
1114 }
1115 }
1116
1117 return 0;
1118 }
1119
1120 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1121 something about the traditional layout of alpha stack frames. */
1122
1123 struct alpha_heuristic_unwind_cache
1124 {
1125 CORE_ADDR vfp;
1126 CORE_ADDR start_pc;
1127 struct trad_frame_saved_reg *saved_regs;
1128 int return_reg;
1129 };
1130
1131 /* If a probing loop sequence starts at PC, simulate it and compute
1132 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1133 FRAME_SIZE unchanged. */
1134
1135 static void
1136 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1137 int *frame_size)
1138 {
1139 CORE_ADDR cur_pc = *pc;
1140 int cur_frame_size = *frame_size;
1141 int nb_of_iterations, reg_index, reg_probe;
1142 unsigned int insn;
1143
1144 /* The following pattern is recognized as a probing loop:
1145
1146 lda REG_INDEX,NB_OF_ITERATIONS
1147 lda REG_PROBE,<immediate>(sp)
1148
1149 LOOP_START:
1150 stq zero,<immediate>(REG_PROBE)
1151 subq REG_INDEX,0x1,REG_INDEX
1152 lda REG_PROBE,<immediate>(REG_PROBE)
1153 bne REG_INDEX, LOOP_START
1154
1155 lda sp,<immediate>(REG_PROBE)
1156
1157 If anything different is found, the function returns without
1158 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1159 after this sequence, and FRAME_SIZE will be updated. */
1160
1161 /* lda REG_INDEX,NB_OF_ITERATIONS */
1162
1163 insn = alpha_read_insn (gdbarch, cur_pc);
1164 if (INSN_OPCODE (insn) != lda_opcode)
1165 return;
1166 reg_index = MEM_RA (insn);
1167 nb_of_iterations = MEM_DISP (insn);
1168
1169 /* lda REG_PROBE,<immediate>(sp) */
1170
1171 cur_pc += ALPHA_INSN_SIZE;
1172 insn = alpha_read_insn (gdbarch, cur_pc);
1173 if (INSN_OPCODE (insn) != lda_opcode
1174 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1175 return;
1176 reg_probe = MEM_RA (insn);
1177 cur_frame_size -= MEM_DISP (insn);
1178
1179 /* stq zero,<immediate>(REG_PROBE) */
1180
1181 cur_pc += ALPHA_INSN_SIZE;
1182 insn = alpha_read_insn (gdbarch, cur_pc);
1183 if (INSN_OPCODE (insn) != stq_opcode
1184 || MEM_RA (insn) != 0x1f
1185 || MEM_RB (insn) != reg_probe)
1186 return;
1187
1188 /* subq REG_INDEX,0x1,REG_INDEX */
1189
1190 cur_pc += ALPHA_INSN_SIZE;
1191 insn = alpha_read_insn (gdbarch, cur_pc);
1192 if (INSN_OPCODE (insn) != subq_opcode
1193 || !OPR_HAS_IMMEDIATE (insn)
1194 || OPR_FUNCTION (insn) != subq_function
1195 || OPR_LIT(insn) != 1
1196 || OPR_RA (insn) != reg_index
1197 || OPR_RC (insn) != reg_index)
1198 return;
1199
1200 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1201
1202 cur_pc += ALPHA_INSN_SIZE;
1203 insn = alpha_read_insn (gdbarch, cur_pc);
1204 if (INSN_OPCODE (insn) != lda_opcode
1205 || MEM_RA (insn) != reg_probe
1206 || MEM_RB (insn) != reg_probe)
1207 return;
1208 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1209
1210 /* bne REG_INDEX, LOOP_START */
1211
1212 cur_pc += ALPHA_INSN_SIZE;
1213 insn = alpha_read_insn (gdbarch, cur_pc);
1214 if (INSN_OPCODE (insn) != bne_opcode
1215 || MEM_RA (insn) != reg_index)
1216 return;
1217
1218 /* lda sp,<immediate>(REG_PROBE) */
1219
1220 cur_pc += ALPHA_INSN_SIZE;
1221 insn = alpha_read_insn (gdbarch, cur_pc);
1222 if (INSN_OPCODE (insn) != lda_opcode
1223 || MEM_RA (insn) != ALPHA_SP_REGNUM
1224 || MEM_RB (insn) != reg_probe)
1225 return;
1226 cur_frame_size -= MEM_DISP (insn);
1227
1228 *pc = cur_pc;
1229 *frame_size = cur_frame_size;
1230 }
1231
1232 static struct alpha_heuristic_unwind_cache *
1233 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1234 void **this_prologue_cache,
1235 CORE_ADDR start_pc)
1236 {
1237 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1238 struct alpha_heuristic_unwind_cache *info;
1239 ULONGEST val;
1240 CORE_ADDR limit_pc, cur_pc;
1241 int frame_reg, frame_size, return_reg, reg;
1242
1243 if (*this_prologue_cache)
1244 return *this_prologue_cache;
1245
1246 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1247 *this_prologue_cache = info;
1248 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1249
1250 limit_pc = get_frame_pc (this_frame);
1251 if (start_pc == 0)
1252 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1253 info->start_pc = start_pc;
1254
1255 frame_reg = ALPHA_SP_REGNUM;
1256 frame_size = 0;
1257 return_reg = -1;
1258
1259 /* If we've identified a likely place to start, do code scanning. */
1260 if (start_pc != 0)
1261 {
1262 /* Limit the forward search to 50 instructions. */
1263 if (start_pc + 200 < limit_pc)
1264 limit_pc = start_pc + 200;
1265
1266 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1267 {
1268 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1269
1270 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1271 {
1272 if (word & 0x8000)
1273 {
1274 /* Consider only the first stack allocation instruction
1275 to contain the static size of the frame. */
1276 if (frame_size == 0)
1277 frame_size = (-word) & 0xffff;
1278 }
1279 else
1280 {
1281 /* Exit loop if a positive stack adjustment is found, which
1282 usually means that the stack cleanup code in the function
1283 epilogue is reached. */
1284 break;
1285 }
1286 }
1287 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1288 {
1289 reg = (word & 0x03e00000) >> 21;
1290
1291 /* Ignore this instruction if we have already encountered
1292 an instruction saving the same register earlier in the
1293 function code. The current instruction does not tell
1294 us where the original value upon function entry is saved.
1295 All it says is that the function we are scanning reused
1296 that register for some computation of its own, and is now
1297 saving its result. */
1298 if (trad_frame_addr_p(info->saved_regs, reg))
1299 continue;
1300
1301 if (reg == 31)
1302 continue;
1303
1304 /* Do not compute the address where the register was saved yet,
1305 because we don't know yet if the offset will need to be
1306 relative to $sp or $fp (we can not compute the address
1307 relative to $sp if $sp is updated during the execution of
1308 the current subroutine, for instance when doing some alloca).
1309 So just store the offset for the moment, and compute the
1310 address later when we know whether this frame has a frame
1311 pointer or not. */
1312 /* Hack: temporarily add one, so that the offset is non-zero
1313 and we can tell which registers have save offsets below. */
1314 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1315
1316 /* Starting with OSF/1-3.2C, the system libraries are shipped
1317 without local symbols, but they still contain procedure
1318 descriptors without a symbol reference. GDB is currently
1319 unable to find these procedure descriptors and uses
1320 heuristic_proc_desc instead.
1321 As some low level compiler support routines (__div*, __add*)
1322 use a non-standard return address register, we have to
1323 add some heuristics to determine the return address register,
1324 or stepping over these routines will fail.
1325 Usually the return address register is the first register
1326 saved on the stack, but assembler optimization might
1327 rearrange the register saves.
1328 So we recognize only a few registers (t7, t9, ra) within
1329 the procedure prologue as valid return address registers.
1330 If we encounter a return instruction, we extract the
1331 return address register from it.
1332
1333 FIXME: Rewriting GDB to access the procedure descriptors,
1334 e.g. via the minimal symbol table, might obviate this
1335 hack. */
1336 if (return_reg == -1
1337 && cur_pc < (start_pc + 80)
1338 && (reg == ALPHA_T7_REGNUM
1339 || reg == ALPHA_T9_REGNUM
1340 || reg == ALPHA_RA_REGNUM))
1341 return_reg = reg;
1342 }
1343 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1344 return_reg = (word >> 16) & 0x1f;
1345 else if (word == 0x47de040f) /* bis sp,sp,fp */
1346 frame_reg = ALPHA_GCC_FP_REGNUM;
1347 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1348 frame_reg = ALPHA_GCC_FP_REGNUM;
1349
1350 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1351 }
1352
1353 /* If we haven't found a valid return address register yet, keep
1354 searching in the procedure prologue. */
1355 if (return_reg == -1)
1356 {
1357 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1358 {
1359 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1360
1361 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1362 {
1363 reg = (word & 0x03e00000) >> 21;
1364 if (reg == ALPHA_T7_REGNUM
1365 || reg == ALPHA_T9_REGNUM
1366 || reg == ALPHA_RA_REGNUM)
1367 {
1368 return_reg = reg;
1369 break;
1370 }
1371 }
1372 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1373 {
1374 return_reg = (word >> 16) & 0x1f;
1375 break;
1376 }
1377
1378 cur_pc += ALPHA_INSN_SIZE;
1379 }
1380 }
1381 }
1382
1383 /* Failing that, do default to the customary RA. */
1384 if (return_reg == -1)
1385 return_reg = ALPHA_RA_REGNUM;
1386 info->return_reg = return_reg;
1387
1388 val = get_frame_register_unsigned (this_frame, frame_reg);
1389 info->vfp = val + frame_size;
1390
1391 /* Convert offsets to absolute addresses. See above about adding
1392 one to the offsets to make all detected offsets non-zero. */
1393 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1394 if (trad_frame_addr_p(info->saved_regs, reg))
1395 info->saved_regs[reg].addr += val - 1;
1396
1397 /* The stack pointer of the previous frame is computed by popping
1398 the current stack frame. */
1399 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1400 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1401
1402 return info;
1403 }
1404
1405 /* Given a GDB frame, determine the address of the calling function's
1406 frame. This will be used to create a new GDB frame struct. */
1407
1408 static void
1409 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1410 void **this_prologue_cache,
1411 struct frame_id *this_id)
1412 {
1413 struct alpha_heuristic_unwind_cache *info
1414 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1415
1416 *this_id = frame_id_build (info->vfp, info->start_pc);
1417 }
1418
1419 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1420
1421 static struct value *
1422 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1423 void **this_prologue_cache, int regnum)
1424 {
1425 struct alpha_heuristic_unwind_cache *info
1426 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1427
1428 /* The PC of the previous frame is stored in the link register of
1429 the current frame. Frob regnum so that we pull the value from
1430 the correct place. */
1431 if (regnum == ALPHA_PC_REGNUM)
1432 regnum = info->return_reg;
1433
1434 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1435 }
1436
1437 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1438 NORMAL_FRAME,
1439 default_frame_unwind_stop_reason,
1440 alpha_heuristic_frame_this_id,
1441 alpha_heuristic_frame_prev_register,
1442 NULL,
1443 default_frame_sniffer
1444 };
1445
1446 static CORE_ADDR
1447 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1448 void **this_prologue_cache)
1449 {
1450 struct alpha_heuristic_unwind_cache *info
1451 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1452
1453 return info->vfp;
1454 }
1455
1456 static const struct frame_base alpha_heuristic_frame_base = {
1457 &alpha_heuristic_frame_unwind,
1458 alpha_heuristic_frame_base_address,
1459 alpha_heuristic_frame_base_address,
1460 alpha_heuristic_frame_base_address
1461 };
1462
1463 /* Just like reinit_frame_cache, but with the right arguments to be
1464 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1465
1466 static void
1467 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1468 {
1469 reinit_frame_cache ();
1470 }
1471
1472 \f
1473 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1474 dummy frame. The frame ID's base needs to match the TOS value
1475 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1476 breakpoint. */
1477
1478 static struct frame_id
1479 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1480 {
1481 ULONGEST base;
1482 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1483 return frame_id_build (base, get_frame_pc (this_frame));
1484 }
1485
1486 static CORE_ADDR
1487 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1488 {
1489 ULONGEST pc;
1490 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1491 return pc;
1492 }
1493
1494 \f
1495 /* Helper routines for alpha*-nat.c files to move register sets to and
1496 from core files. The UNIQUE pointer is allowed to be NULL, as most
1497 targets don't supply this value in their core files. */
1498
1499 void
1500 alpha_supply_int_regs (struct regcache *regcache, int regno,
1501 const void *r0_r30, const void *pc, const void *unique)
1502 {
1503 const gdb_byte *regs = r0_r30;
1504 int i;
1505
1506 for (i = 0; i < 31; ++i)
1507 if (regno == i || regno == -1)
1508 regcache_raw_supply (regcache, i, regs + i * 8);
1509
1510 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1511 {
1512 const gdb_byte zero[8] = { 0 };
1513
1514 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1515 }
1516
1517 if (regno == ALPHA_PC_REGNUM || regno == -1)
1518 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1519
1520 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1521 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1522 }
1523
1524 void
1525 alpha_fill_int_regs (const struct regcache *regcache,
1526 int regno, void *r0_r30, void *pc, void *unique)
1527 {
1528 gdb_byte *regs = r0_r30;
1529 int i;
1530
1531 for (i = 0; i < 31; ++i)
1532 if (regno == i || regno == -1)
1533 regcache_raw_collect (regcache, i, regs + i * 8);
1534
1535 if (regno == ALPHA_PC_REGNUM || regno == -1)
1536 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1537
1538 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1539 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1540 }
1541
1542 void
1543 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1544 const void *f0_f30, const void *fpcr)
1545 {
1546 const gdb_byte *regs = f0_f30;
1547 int i;
1548
1549 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1550 if (regno == i || regno == -1)
1551 regcache_raw_supply (regcache, i,
1552 regs + (i - ALPHA_FP0_REGNUM) * 8);
1553
1554 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1555 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1556 }
1557
1558 void
1559 alpha_fill_fp_regs (const struct regcache *regcache,
1560 int regno, void *f0_f30, void *fpcr)
1561 {
1562 gdb_byte *regs = f0_f30;
1563 int i;
1564
1565 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1566 if (regno == i || regno == -1)
1567 regcache_raw_collect (regcache, i,
1568 regs + (i - ALPHA_FP0_REGNUM) * 8);
1569
1570 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1571 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1572 }
1573
1574 \f
1575
1576 /* Return nonzero if the G_floating register value in REG is equal to
1577 zero for FP control instructions. */
1578
1579 static int
1580 fp_register_zero_p (LONGEST reg)
1581 {
1582 /* Check that all bits except the sign bit are zero. */
1583 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1584
1585 return ((reg & zero_mask) == 0);
1586 }
1587
1588 /* Return the value of the sign bit for the G_floating register
1589 value held in REG. */
1590
1591 static int
1592 fp_register_sign_bit (LONGEST reg)
1593 {
1594 const LONGEST sign_mask = (LONGEST) 1 << 63;
1595
1596 return ((reg & sign_mask) != 0);
1597 }
1598
1599 /* alpha_software_single_step() is called just before we want to resume
1600 the inferior, if we want to single-step it but there is no hardware
1601 or kernel single-step support (NetBSD on Alpha, for example). We find
1602 the target of the coming instruction and breakpoint it. */
1603
1604 static CORE_ADDR
1605 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1606 {
1607 struct gdbarch *gdbarch = get_frame_arch (frame);
1608 unsigned int insn;
1609 unsigned int op;
1610 int regno;
1611 int offset;
1612 LONGEST rav;
1613
1614 insn = alpha_read_insn (gdbarch, pc);
1615
1616 /* Opcode is top 6 bits. */
1617 op = (insn >> 26) & 0x3f;
1618
1619 if (op == 0x1a)
1620 {
1621 /* Jump format: target PC is:
1622 RB & ~3 */
1623 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1624 }
1625
1626 if ((op & 0x30) == 0x30)
1627 {
1628 /* Branch format: target PC is:
1629 (new PC) + (4 * sext(displacement)) */
1630 if (op == 0x30 /* BR */
1631 || op == 0x34) /* BSR */
1632 {
1633 branch_taken:
1634 offset = (insn & 0x001fffff);
1635 if (offset & 0x00100000)
1636 offset |= 0xffe00000;
1637 offset *= ALPHA_INSN_SIZE;
1638 return (pc + ALPHA_INSN_SIZE + offset);
1639 }
1640
1641 /* Need to determine if branch is taken; read RA. */
1642 regno = (insn >> 21) & 0x1f;
1643 switch (op)
1644 {
1645 case 0x31: /* FBEQ */
1646 case 0x36: /* FBGE */
1647 case 0x37: /* FBGT */
1648 case 0x33: /* FBLE */
1649 case 0x32: /* FBLT */
1650 case 0x35: /* FBNE */
1651 regno += gdbarch_fp0_regnum (gdbarch);
1652 }
1653
1654 rav = get_frame_register_signed (frame, regno);
1655
1656 switch (op)
1657 {
1658 case 0x38: /* BLBC */
1659 if ((rav & 1) == 0)
1660 goto branch_taken;
1661 break;
1662 case 0x3c: /* BLBS */
1663 if (rav & 1)
1664 goto branch_taken;
1665 break;
1666 case 0x39: /* BEQ */
1667 if (rav == 0)
1668 goto branch_taken;
1669 break;
1670 case 0x3d: /* BNE */
1671 if (rav != 0)
1672 goto branch_taken;
1673 break;
1674 case 0x3a: /* BLT */
1675 if (rav < 0)
1676 goto branch_taken;
1677 break;
1678 case 0x3b: /* BLE */
1679 if (rav <= 0)
1680 goto branch_taken;
1681 break;
1682 case 0x3f: /* BGT */
1683 if (rav > 0)
1684 goto branch_taken;
1685 break;
1686 case 0x3e: /* BGE */
1687 if (rav >= 0)
1688 goto branch_taken;
1689 break;
1690
1691 /* Floating point branches. */
1692
1693 case 0x31: /* FBEQ */
1694 if (fp_register_zero_p (rav))
1695 goto branch_taken;
1696 break;
1697 case 0x36: /* FBGE */
1698 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1699 goto branch_taken;
1700 break;
1701 case 0x37: /* FBGT */
1702 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1703 goto branch_taken;
1704 break;
1705 case 0x33: /* FBLE */
1706 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1707 goto branch_taken;
1708 break;
1709 case 0x32: /* FBLT */
1710 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1711 goto branch_taken;
1712 break;
1713 case 0x35: /* FBNE */
1714 if (! fp_register_zero_p (rav))
1715 goto branch_taken;
1716 break;
1717 }
1718 }
1719
1720 /* Not a branch or branch not taken; target PC is:
1721 pc + 4 */
1722 return (pc + ALPHA_INSN_SIZE);
1723 }
1724
1725 int
1726 alpha_software_single_step (struct frame_info *frame)
1727 {
1728 struct gdbarch *gdbarch = get_frame_arch (frame);
1729 struct address_space *aspace = get_frame_address_space (frame);
1730 CORE_ADDR pc, next_pc;
1731
1732 pc = get_frame_pc (frame);
1733 next_pc = alpha_next_pc (frame, pc);
1734
1735 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1736 return 1;
1737 }
1738
1739 \f
1740 /* Initialize the current architecture based on INFO. If possible, re-use an
1741 architecture from ARCHES, which is a list of architectures already created
1742 during this debugging session.
1743
1744 Called e.g. at program startup, when reading a core file, and when reading
1745 a binary file. */
1746
1747 static struct gdbarch *
1748 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1749 {
1750 struct gdbarch_tdep *tdep;
1751 struct gdbarch *gdbarch;
1752
1753 /* Try to determine the ABI of the object we are loading. */
1754 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1755 {
1756 /* If it's an ECOFF file, assume it's OSF/1. */
1757 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1758 info.osabi = GDB_OSABI_OSF1;
1759 }
1760
1761 /* Find a candidate among extant architectures. */
1762 arches = gdbarch_list_lookup_by_info (arches, &info);
1763 if (arches != NULL)
1764 return arches->gdbarch;
1765
1766 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1767 gdbarch = gdbarch_alloc (&info, tdep);
1768
1769 /* Lowest text address. This is used by heuristic_proc_start()
1770 to decide when to stop looking. */
1771 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1772
1773 tdep->dynamic_sigtramp_offset = NULL;
1774 tdep->sigcontext_addr = NULL;
1775 tdep->sc_pc_offset = 2 * 8;
1776 tdep->sc_regs_offset = 4 * 8;
1777 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1778
1779 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1780
1781 tdep->return_in_memory = alpha_return_in_memory_always;
1782
1783 /* Type sizes */
1784 set_gdbarch_short_bit (gdbarch, 16);
1785 set_gdbarch_int_bit (gdbarch, 32);
1786 set_gdbarch_long_bit (gdbarch, 64);
1787 set_gdbarch_long_long_bit (gdbarch, 64);
1788 set_gdbarch_float_bit (gdbarch, 32);
1789 set_gdbarch_double_bit (gdbarch, 64);
1790 set_gdbarch_long_double_bit (gdbarch, 64);
1791 set_gdbarch_ptr_bit (gdbarch, 64);
1792
1793 /* Register info */
1794 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1795 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1796 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1797 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1798
1799 set_gdbarch_register_name (gdbarch, alpha_register_name);
1800 set_gdbarch_register_type (gdbarch, alpha_register_type);
1801
1802 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1803 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1804
1805 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1806 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1807 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1808
1809 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1810
1811 /* Prologue heuristics. */
1812 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1813
1814 /* Disassembler. */
1815 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1816
1817 /* Call info. */
1818
1819 set_gdbarch_return_value (gdbarch, alpha_return_value);
1820
1821 /* Settings for calling functions in the inferior. */
1822 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1823
1824 /* Methods for saving / extracting a dummy frame's ID. */
1825 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1826
1827 /* Return the unwound PC value. */
1828 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1829
1830 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1831 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1832
1833 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1834 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1835 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1836
1837 /* Handles single stepping of atomic sequences. */
1838 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1839
1840 /* Hook in ABI-specific overrides, if they have been registered. */
1841 gdbarch_init_osabi (info, gdbarch);
1842
1843 /* Now that we have tuned the configuration, set a few final things
1844 based on what the OS ABI has told us. */
1845
1846 if (tdep->jb_pc >= 0)
1847 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1848
1849 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1850 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1851
1852 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1853
1854 return gdbarch;
1855 }
1856
1857 void
1858 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1859 {
1860 dwarf2_append_unwinders (gdbarch);
1861 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1862 }
1863
1864 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1865
1866 void
1867 _initialize_alpha_tdep (void)
1868 {
1869 struct cmd_list_element *c;
1870
1871 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1872
1873 /* Let the user set the fence post for heuristic_proc_start. */
1874
1875 /* We really would like to have both "0" and "unlimited" work, but
1876 command.c doesn't deal with that. So make it a var_zinteger
1877 because the user can always use "999999" or some such for unlimited. */
1878 /* We need to throw away the frame cache when we set this, since it
1879 might change our ability to get backtraces. */
1880 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1881 &heuristic_fence_post, _("\
1882 Set the distance searched for the start of a function."), _("\
1883 Show the distance searched for the start of a function."), _("\
1884 If you are debugging a stripped executable, GDB needs to search through the\n\
1885 program for the start of a function. This command sets the distance of the\n\
1886 search. The only need to set it is when debugging a stripped executable."),
1887 reinit_frame_cache_sfunc,
1888 NULL, /* FIXME: i18n: The distance searched for
1889 the start of a function is \"%d\". */
1890 &setlist, &showlist);
1891 }