]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/alpha-tdep.c
* alpha-tdep.c (alpha_gdbarch_init): Use LL suffix for large
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 \f
49 static const char *
50 alpha_register_name (int regno)
51 {
52 static const char * const register_names[] =
53 {
54 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
55 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
56 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
57 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
58 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
59 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
60 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
61 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
62 "pc", "", "unique"
63 };
64
65 if (regno < 0)
66 return NULL;
67 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
68 return NULL;
69 return register_names[regno];
70 }
71
72 static int
73 alpha_cannot_fetch_register (int regno)
74 {
75 return regno == ALPHA_ZERO_REGNUM;
76 }
77
78 static int
79 alpha_cannot_store_register (int regno)
80 {
81 return regno == ALPHA_ZERO_REGNUM;
82 }
83
84 static struct type *
85 alpha_register_type (struct gdbarch *gdbarch, int regno)
86 {
87 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
88 return builtin_type_void_data_ptr;
89 if (regno == ALPHA_PC_REGNUM)
90 return builtin_type_void_func_ptr;
91
92 /* Don't need to worry about little vs big endian until
93 some jerk tries to port to alpha-unicosmk. */
94 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
95 return builtin_type_ieee_double_little;
96
97 return builtin_type_int64;
98 }
99
100 /* Is REGNUM a member of REGGROUP? */
101
102 static int
103 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
104 struct reggroup *group)
105 {
106 /* Filter out any registers eliminated, but whose regnum is
107 reserved for backward compatibility, e.g. the vfp. */
108 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
109 return 0;
110
111 if (group == all_reggroup)
112 return 1;
113
114 /* Zero should not be saved or restored. Technically it is a general
115 register (just as $f31 would be a float if we represented it), but
116 there's no point displaying it during "info regs", so leave it out
117 of all groups except for "all". */
118 if (regnum == ALPHA_ZERO_REGNUM)
119 return 0;
120
121 /* All other registers are saved and restored. */
122 if (group == save_reggroup || group == restore_reggroup)
123 return 1;
124
125 /* All other groups are non-overlapping. */
126
127 /* Since this is really a PALcode memory slot... */
128 if (regnum == ALPHA_UNIQUE_REGNUM)
129 return group == system_reggroup;
130
131 /* Force the FPCR to be considered part of the floating point state. */
132 if (regnum == ALPHA_FPCR_REGNUM)
133 return group == float_reggroup;
134
135 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
136 return group == float_reggroup;
137 else
138 return group == general_reggroup;
139 }
140
141 static int
142 alpha_register_byte (int regno)
143 {
144 return (regno * 8);
145 }
146
147 static int
148 alpha_register_raw_size (int regno)
149 {
150 return 8;
151 }
152
153 static int
154 alpha_register_virtual_size (int regno)
155 {
156 return 8;
157 }
158
159 /* The following represents exactly the conversion performed by
160 the LDS instruction. This applies to both single-precision
161 floating point and 32-bit integers. */
162
163 static void
164 alpha_lds (void *out, const void *in)
165 {
166 ULONGEST mem = extract_unsigned_integer (in, 4);
167 ULONGEST frac = (mem >> 0) & 0x7fffff;
168 ULONGEST sign = (mem >> 31) & 1;
169 ULONGEST exp_msb = (mem >> 30) & 1;
170 ULONGEST exp_low = (mem >> 23) & 0x7f;
171 ULONGEST exp, reg;
172
173 exp = (exp_msb << 10) | exp_low;
174 if (exp_msb)
175 {
176 if (exp_low == 0x7f)
177 exp = 0x7ff;
178 }
179 else
180 {
181 if (exp_low != 0x00)
182 exp |= 0x380;
183 }
184
185 reg = (sign << 63) | (exp << 52) | (frac << 29);
186 store_unsigned_integer (out, 8, reg);
187 }
188
189 /* Similarly, this represents exactly the conversion performed by
190 the STS instruction. */
191
192 static void
193 alpha_sts (void *out, const void *in)
194 {
195 ULONGEST reg, mem;
196
197 reg = extract_unsigned_integer (in, 8);
198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
199 store_unsigned_integer (out, 4, mem);
200 }
201
202 /* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
205 bytes or less, as the representation of integers in floating point
206 registers is different. */
207
208 static int
209 alpha_convert_register_p (int regno, struct type *type)
210 {
211 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
212 }
213
214 static void
215 alpha_register_to_value (struct frame_info *frame, int regnum,
216 struct type *valtype, void *out)
217 {
218 char in[MAX_REGISTER_SIZE];
219 frame_register_read (frame, regnum, in);
220 switch (TYPE_LENGTH (valtype))
221 {
222 case 4:
223 alpha_sts (out, in);
224 break;
225 case 8:
226 memcpy (out, in, 8);
227 break;
228 default:
229 error ("Cannot retrieve value from floating point register");
230 }
231 }
232
233 static void
234 alpha_value_to_register (struct frame_info *frame, int regnum,
235 struct type *valtype, const void *in)
236 {
237 char out[MAX_REGISTER_SIZE];
238 switch (TYPE_LENGTH (valtype))
239 {
240 case 4:
241 alpha_lds (out, in);
242 break;
243 case 8:
244 memcpy (out, in, 8);
245 break;
246 default:
247 error ("Cannot store value in floating point register");
248 }
249 put_frame_register (frame, regnum, out);
250 }
251
252 \f
253 /* The alpha passes the first six arguments in the registers, the rest on
254 the stack. The register arguments are stored in ARG_REG_BUFFER, and
255 then moved into the register file; this simplifies the passing of a
256 large struct which extends from the registers to the stack, plus avoids
257 three ptrace invocations per word.
258
259 We don't bother tracking which register values should go in integer
260 regs or fp regs; we load the same values into both.
261
262 If the called function is returning a structure, the address of the
263 structure to be returned is passed as a hidden first argument. */
264
265 static CORE_ADDR
266 alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
267 struct regcache *regcache, CORE_ADDR bp_addr,
268 int nargs, struct value **args, CORE_ADDR sp,
269 int struct_return, CORE_ADDR struct_addr)
270 {
271 int i;
272 int accumulate_size = struct_return ? 8 : 0;
273 struct alpha_arg
274 {
275 char *contents;
276 int len;
277 int offset;
278 };
279 struct alpha_arg *alpha_args
280 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
281 struct alpha_arg *m_arg;
282 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
283 int required_arg_regs;
284
285 /* The ABI places the address of the called function in T12. */
286 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
287
288 /* Set the return address register to point to the entry point
289 of the program, where a breakpoint lies in wait. */
290 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
291
292 /* Lay out the arguments in memory. */
293 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
294 {
295 struct value *arg = args[i];
296 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
297
298 /* Cast argument to long if necessary as the compiler does it too. */
299 switch (TYPE_CODE (arg_type))
300 {
301 case TYPE_CODE_INT:
302 case TYPE_CODE_BOOL:
303 case TYPE_CODE_CHAR:
304 case TYPE_CODE_RANGE:
305 case TYPE_CODE_ENUM:
306 if (TYPE_LENGTH (arg_type) == 4)
307 {
308 /* 32-bit values must be sign-extended to 64 bits
309 even if the base data type is unsigned. */
310 arg_type = builtin_type_int32;
311 arg = value_cast (arg_type, arg);
312 }
313 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
314 {
315 arg_type = builtin_type_int64;
316 arg = value_cast (arg_type, arg);
317 }
318 break;
319
320 case TYPE_CODE_FLT:
321 /* "float" arguments loaded in registers must be passed in
322 register format, aka "double". */
323 if (accumulate_size < sizeof (arg_reg_buffer)
324 && TYPE_LENGTH (arg_type) == 4)
325 {
326 arg_type = builtin_type_ieee_double_little;
327 arg = value_cast (arg_type, arg);
328 }
329 /* Tru64 5.1 has a 128-bit long double, and passes this by
330 invisible reference. No one else uses this data type. */
331 else if (TYPE_LENGTH (arg_type) == 16)
332 {
333 /* Allocate aligned storage. */
334 sp = (sp & -16) - 16;
335
336 /* Write the real data into the stack. */
337 write_memory (sp, VALUE_CONTENTS (arg), 16);
338
339 /* Construct the indirection. */
340 arg_type = lookup_pointer_type (arg_type);
341 arg = value_from_pointer (arg_type, sp);
342 }
343 break;
344
345 case TYPE_CODE_COMPLEX:
346 /* ??? The ABI says that complex values are passed as two
347 separate scalar values. This distinction only matters
348 for complex float. However, GCC does not implement this. */
349
350 /* Tru64 5.1 has a 128-bit long double, and passes this by
351 invisible reference. */
352 if (TYPE_LENGTH (arg_type) == 32)
353 {
354 /* Allocate aligned storage. */
355 sp = (sp & -16) - 16;
356
357 /* Write the real data into the stack. */
358 write_memory (sp, VALUE_CONTENTS (arg), 32);
359
360 /* Construct the indirection. */
361 arg_type = lookup_pointer_type (arg_type);
362 arg = value_from_pointer (arg_type, sp);
363 }
364 break;
365
366 default:
367 break;
368 }
369 m_arg->len = TYPE_LENGTH (arg_type);
370 m_arg->offset = accumulate_size;
371 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
372 m_arg->contents = VALUE_CONTENTS (arg);
373 }
374
375 /* Determine required argument register loads, loading an argument register
376 is expensive as it uses three ptrace calls. */
377 required_arg_regs = accumulate_size / 8;
378 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
379 required_arg_regs = ALPHA_NUM_ARG_REGS;
380
381 /* Make room for the arguments on the stack. */
382 if (accumulate_size < sizeof(arg_reg_buffer))
383 accumulate_size = 0;
384 else
385 accumulate_size -= sizeof(arg_reg_buffer);
386 sp -= accumulate_size;
387
388 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
389 sp &= ~15;
390
391 /* `Push' arguments on the stack. */
392 for (i = nargs; m_arg--, --i >= 0;)
393 {
394 char *contents = m_arg->contents;
395 int offset = m_arg->offset;
396 int len = m_arg->len;
397
398 /* Copy the bytes destined for registers into arg_reg_buffer. */
399 if (offset < sizeof(arg_reg_buffer))
400 {
401 if (offset + len <= sizeof(arg_reg_buffer))
402 {
403 memcpy (arg_reg_buffer + offset, contents, len);
404 continue;
405 }
406 else
407 {
408 int tlen = sizeof(arg_reg_buffer) - offset;
409 memcpy (arg_reg_buffer + offset, contents, tlen);
410 offset += tlen;
411 contents += tlen;
412 len -= tlen;
413 }
414 }
415
416 /* Everything else goes to the stack. */
417 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
418 }
419 if (struct_return)
420 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
421
422 /* Load the argument registers. */
423 for (i = 0; i < required_arg_regs; i++)
424 {
425 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
426 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
427 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
428 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
429 }
430
431 /* Finally, update the stack pointer. */
432 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
433
434 return sp;
435 }
436
437 /* Extract from REGCACHE the value about to be returned from a function
438 and copy it into VALBUF. */
439
440 static void
441 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
442 void *valbuf)
443 {
444 int length = TYPE_LENGTH (valtype);
445 char raw_buffer[ALPHA_REGISTER_SIZE];
446 ULONGEST l;
447
448 switch (TYPE_CODE (valtype))
449 {
450 case TYPE_CODE_FLT:
451 switch (length)
452 {
453 case 4:
454 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
455 alpha_sts (valbuf, raw_buffer);
456 break;
457
458 case 8:
459 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
460 break;
461
462 case 16:
463 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
464 read_memory (l, valbuf, 16);
465 break;
466
467 default:
468 internal_error (__FILE__, __LINE__, "unknown floating point width");
469 }
470 break;
471
472 case TYPE_CODE_COMPLEX:
473 switch (length)
474 {
475 case 8:
476 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
477 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
478 break;
479
480 case 16:
481 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
482 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
483 (char *)valbuf + 8);
484 break;
485
486 case 32:
487 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
488 read_memory (l, valbuf, 32);
489 break;
490
491 default:
492 internal_error (__FILE__, __LINE__, "unknown floating point width");
493 }
494 break;
495
496 default:
497 /* Assume everything else degenerates to an integer. */
498 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
499 store_unsigned_integer (valbuf, length, l);
500 break;
501 }
502 }
503
504 /* Extract from REGCACHE the address of a structure about to be returned
505 from a function. */
506
507 static CORE_ADDR
508 alpha_extract_struct_value_address (struct regcache *regcache)
509 {
510 ULONGEST addr;
511 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
512 return addr;
513 }
514
515 /* Insert the given value into REGCACHE as if it was being
516 returned by a function. */
517
518 static void
519 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
520 const void *valbuf)
521 {
522 int length = TYPE_LENGTH (valtype);
523 char raw_buffer[ALPHA_REGISTER_SIZE];
524 ULONGEST l;
525
526 switch (TYPE_CODE (valtype))
527 {
528 case TYPE_CODE_FLT:
529 switch (length)
530 {
531 case 4:
532 alpha_lds (raw_buffer, valbuf);
533 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
534 break;
535
536 case 8:
537 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
538 break;
539
540 case 16:
541 /* FIXME: 128-bit long doubles are returned like structures:
542 by writing into indirect storage provided by the caller
543 as the first argument. */
544 error ("Cannot set a 128-bit long double return value.");
545
546 default:
547 internal_error (__FILE__, __LINE__, "unknown floating point width");
548 }
549 break;
550
551 case TYPE_CODE_COMPLEX:
552 switch (length)
553 {
554 case 8:
555 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
557 break;
558
559 case 16:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
562 (const char *)valbuf + 8);
563 break;
564
565 case 32:
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
569 error ("Cannot set a 128-bit long double return value.");
570
571 default:
572 internal_error (__FILE__, __LINE__, "unknown floating point width");
573 }
574 break;
575
576 default:
577 /* Assume everything else degenerates to an integer. */
578 /* 32-bit values must be sign-extended to 64 bits
579 even if the base data type is unsigned. */
580 if (length == 4)
581 valtype = builtin_type_int32;
582 l = unpack_long (valtype, valbuf);
583 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
584 break;
585 }
586 }
587
588 \f
589 static const unsigned char *
590 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
591 {
592 static const unsigned char alpha_breakpoint[] =
593 { 0x80, 0, 0, 0 }; /* call_pal bpt */
594
595 *lenptr = sizeof(alpha_breakpoint);
596 return (alpha_breakpoint);
597 }
598
599 \f
600 /* This returns the PC of the first insn after the prologue.
601 If we can't find the prologue, then return 0. */
602
603 CORE_ADDR
604 alpha_after_prologue (CORE_ADDR pc)
605 {
606 struct symtab_and_line sal;
607 CORE_ADDR func_addr, func_end;
608
609 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
610 return 0;
611
612 sal = find_pc_line (func_addr, 0);
613 if (sal.end < func_end)
614 return sal.end;
615
616 /* The line after the prologue is after the end of the function. In this
617 case, tell the caller to find the prologue the hard way. */
618 return 0;
619 }
620
621 /* Read an instruction from memory at PC, looking through breakpoints. */
622
623 unsigned int
624 alpha_read_insn (CORE_ADDR pc)
625 {
626 char buf[4];
627 int status;
628
629 status = read_memory_nobpt (pc, buf, 4);
630 if (status)
631 memory_error (status, pc);
632 return extract_unsigned_integer (buf, 4);
633 }
634
635 /* To skip prologues, I use this predicate. Returns either PC itself
636 if the code at PC does not look like a function prologue; otherwise
637 returns an address that (if we're lucky) follows the prologue. If
638 LENIENT, then we must skip everything which is involved in setting
639 up the frame (it's OK to skip more, just so long as we don't skip
640 anything which might clobber the registers which are being saved. */
641
642 static CORE_ADDR
643 alpha_skip_prologue (CORE_ADDR pc)
644 {
645 unsigned long inst;
646 int offset;
647 CORE_ADDR post_prologue_pc;
648 char buf[4];
649
650 /* Silently return the unaltered pc upon memory errors.
651 This could happen on OSF/1 if decode_line_1 tries to skip the
652 prologue for quickstarted shared library functions when the
653 shared library is not yet mapped in.
654 Reading target memory is slow over serial lines, so we perform
655 this check only if the target has shared libraries (which all
656 Alpha targets do). */
657 if (target_read_memory (pc, buf, 4))
658 return pc;
659
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
663
664 post_prologue_pc = alpha_after_prologue (pc);
665 if (post_prologue_pc != 0)
666 return max (pc, post_prologue_pc);
667
668 /* Can't determine prologue from the symbol table, need to examine
669 instructions. */
670
671 /* Skip the typical prologue instructions. These are the stack adjustment
672 instruction and the instructions that save registers on the stack
673 or in the gcc frame. */
674 for (offset = 0; offset < 100; offset += 4)
675 {
676 inst = alpha_read_insn (pc + offset);
677
678 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
679 continue;
680 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
681 continue;
682 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
683 continue;
684 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
685 continue;
686
687 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
688 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
689 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
690 continue;
691
692 if (inst == 0x47de040f) /* bis sp,sp,fp */
693 continue;
694 if (inst == 0x47fe040f) /* bis zero,sp,fp */
695 continue;
696
697 break;
698 }
699 return pc + offset;
700 }
701
702 \f
703 /* Figure out where the longjmp will land.
704 We expect the first arg to be a pointer to the jmp_buf structure from
705 which we extract the PC (JB_PC) that we will land at. The PC is copied
706 into the "pc". This routine returns true on success. */
707
708 static int
709 alpha_get_longjmp_target (CORE_ADDR *pc)
710 {
711 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
712 CORE_ADDR jb_addr;
713 char raw_buffer[ALPHA_REGISTER_SIZE];
714
715 jb_addr = read_register (ALPHA_A0_REGNUM);
716
717 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
718 raw_buffer, tdep->jb_elt_size))
719 return 0;
720
721 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
722 return 1;
723 }
724
725 \f
726 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
727 describe the location and shape of the sigcontext structure. After
728 that, all registers are in memory, so it's easy. */
729 /* ??? Shouldn't we be able to do this generically, rather than with
730 OSABI data specific to Alpha? */
731
732 struct alpha_sigtramp_unwind_cache
733 {
734 CORE_ADDR sigcontext_addr;
735 };
736
737 static struct alpha_sigtramp_unwind_cache *
738 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
739 void **this_prologue_cache)
740 {
741 struct alpha_sigtramp_unwind_cache *info;
742 struct gdbarch_tdep *tdep;
743
744 if (*this_prologue_cache)
745 return *this_prologue_cache;
746
747 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
748 *this_prologue_cache = info;
749
750 tdep = gdbarch_tdep (current_gdbarch);
751 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
752
753 return info;
754 }
755
756 /* Return the address of REGNUM in a sigtramp frame. Since this is
757 all arithmetic, it doesn't seem worthwhile to cache it. */
758
759 static CORE_ADDR
760 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
761 {
762 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
763
764 if (regnum >= 0 && regnum < 32)
765 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
766 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
767 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
768 else if (regnum == ALPHA_PC_REGNUM)
769 return sigcontext_addr + tdep->sc_pc_offset;
770
771 return 0;
772 }
773
774 /* Given a GDB frame, determine the address of the calling function's
775 frame. This will be used to create a new GDB frame struct. */
776
777 static void
778 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
779 void **this_prologue_cache,
780 struct frame_id *this_id)
781 {
782 struct alpha_sigtramp_unwind_cache *info
783 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
784 struct gdbarch_tdep *tdep;
785 CORE_ADDR stack_addr, code_addr;
786
787 /* If the OSABI couldn't locate the sigcontext, give up. */
788 if (info->sigcontext_addr == 0)
789 return;
790
791 /* If we have dynamic signal trampolines, find their start.
792 If we do not, then we must assume there is a symbol record
793 that can provide the start address. */
794 tdep = gdbarch_tdep (current_gdbarch);
795 if (tdep->dynamic_sigtramp_offset)
796 {
797 int offset;
798 code_addr = frame_pc_unwind (next_frame);
799 offset = tdep->dynamic_sigtramp_offset (code_addr);
800 if (offset >= 0)
801 code_addr -= offset;
802 else
803 code_addr = 0;
804 }
805 else
806 code_addr = frame_func_unwind (next_frame);
807
808 /* The stack address is trivially read from the sigcontext. */
809 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
810 ALPHA_SP_REGNUM);
811 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
812 ALPHA_REGISTER_SIZE);
813
814 *this_id = frame_id_build (stack_addr, code_addr);
815 }
816
817 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
818
819 static void
820 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
821 void **this_prologue_cache,
822 int regnum, int *optimizedp,
823 enum lval_type *lvalp, CORE_ADDR *addrp,
824 int *realnump, void *bufferp)
825 {
826 struct alpha_sigtramp_unwind_cache *info
827 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
828 CORE_ADDR addr;
829
830 if (info->sigcontext_addr != 0)
831 {
832 /* All integer and fp registers are stored in memory. */
833 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
834 if (addr != 0)
835 {
836 *optimizedp = 0;
837 *lvalp = lval_memory;
838 *addrp = addr;
839 *realnump = -1;
840 if (bufferp != NULL)
841 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
842 return;
843 }
844 }
845
846 /* This extra register may actually be in the sigcontext, but our
847 current description of it in alpha_sigtramp_frame_unwind_cache
848 doesn't include it. Too bad. Fall back on whatever's in the
849 outer frame. */
850 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
851 realnump, bufferp);
852 }
853
854 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
855 SIGTRAMP_FRAME,
856 alpha_sigtramp_frame_this_id,
857 alpha_sigtramp_frame_prev_register
858 };
859
860 static const struct frame_unwind *
861 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
862 {
863 CORE_ADDR pc = frame_pc_unwind (next_frame);
864 char *name;
865
866 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
867 look at tramp-frame.h and other simplier per-architecture
868 sigtramp unwinders. */
869
870 /* We shouldn't even bother to try if the OSABI didn't register a
871 sigcontext_addr handler or pc_in_sigtramp hander. */
872 if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL)
873 return NULL;
874 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL)
875 return NULL;
876
877 /* Otherwise we should be in a signal frame. */
878 find_pc_partial_function (pc, &name, NULL, NULL);
879 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name))
880 return &alpha_sigtramp_frame_unwind;
881
882 return NULL;
883 }
884 \f
885 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
886 something about the traditional layout of alpha stack frames. */
887
888 struct alpha_heuristic_unwind_cache
889 {
890 CORE_ADDR *saved_regs;
891 CORE_ADDR vfp;
892 CORE_ADDR start_pc;
893 int return_reg;
894 };
895
896 /* Heuristic_proc_start may hunt through the text section for a long
897 time across a 2400 baud serial line. Allows the user to limit this
898 search. */
899 static unsigned int heuristic_fence_post = 0;
900
901 /* Attempt to locate the start of the function containing PC. We assume that
902 the previous function ends with an about_to_return insn. Not foolproof by
903 any means, since gcc is happy to put the epilogue in the middle of a
904 function. But we're guessing anyway... */
905
906 static CORE_ADDR
907 alpha_heuristic_proc_start (CORE_ADDR pc)
908 {
909 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
910 CORE_ADDR last_non_nop = pc;
911 CORE_ADDR fence = pc - heuristic_fence_post;
912 CORE_ADDR orig_pc = pc;
913 CORE_ADDR func;
914
915 if (pc == 0)
916 return 0;
917
918 /* First see if we can find the start of the function from minimal
919 symbol information. This can succeed with a binary that doesn't
920 have debug info, but hasn't been stripped. */
921 func = get_pc_function_start (pc);
922 if (func)
923 return func;
924
925 if (heuristic_fence_post == UINT_MAX
926 || fence < tdep->vm_min_address)
927 fence = tdep->vm_min_address;
928
929 /* Search back for previous return; also stop at a 0, which might be
930 seen for instance before the start of a code section. Don't include
931 nops, since this usually indicates padding between functions. */
932 for (pc -= 4; pc >= fence; pc -= 4)
933 {
934 unsigned int insn = alpha_read_insn (pc);
935 switch (insn)
936 {
937 case 0: /* invalid insn */
938 case 0x6bfa8001: /* ret $31,($26),1 */
939 return last_non_nop;
940
941 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
942 case 0x47ff041f: /* nop: bis $31,$31,$31 */
943 break;
944
945 default:
946 last_non_nop = pc;
947 break;
948 }
949 }
950
951 /* It's not clear to me why we reach this point when stopping quietly,
952 but with this test, at least we don't print out warnings for every
953 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
954 if (stop_soon == NO_STOP_QUIETLY)
955 {
956 static int blurb_printed = 0;
957
958 if (fence == tdep->vm_min_address)
959 warning ("Hit beginning of text section without finding");
960 else
961 warning ("Hit heuristic-fence-post without finding");
962 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
963
964 if (!blurb_printed)
965 {
966 printf_filtered ("\
967 This warning occurs if you are debugging a function without any symbols\n\
968 (for example, in a stripped executable). In that case, you may wish to\n\
969 increase the size of the search with the `set heuristic-fence-post' command.\n\
970 \n\
971 Otherwise, you told GDB there was a function where there isn't one, or\n\
972 (more likely) you have encountered a bug in GDB.\n");
973 blurb_printed = 1;
974 }
975 }
976
977 return 0;
978 }
979
980 static struct alpha_heuristic_unwind_cache *
981 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
982 void **this_prologue_cache,
983 CORE_ADDR start_pc)
984 {
985 struct alpha_heuristic_unwind_cache *info;
986 ULONGEST val;
987 CORE_ADDR limit_pc, cur_pc;
988 int frame_reg, frame_size, return_reg, reg;
989
990 if (*this_prologue_cache)
991 return *this_prologue_cache;
992
993 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
994 *this_prologue_cache = info;
995 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
996
997 limit_pc = frame_pc_unwind (next_frame);
998 if (start_pc == 0)
999 start_pc = alpha_heuristic_proc_start (limit_pc);
1000 info->start_pc = start_pc;
1001
1002 frame_reg = ALPHA_SP_REGNUM;
1003 frame_size = 0;
1004 return_reg = -1;
1005
1006 /* If we've identified a likely place to start, do code scanning. */
1007 if (start_pc != 0)
1008 {
1009 /* Limit the forward search to 50 instructions. */
1010 if (start_pc + 200 < limit_pc)
1011 limit_pc = start_pc + 200;
1012
1013 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1014 {
1015 unsigned int word = alpha_read_insn (cur_pc);
1016
1017 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1018 {
1019 if (word & 0x8000)
1020 {
1021 /* Consider only the first stack allocation instruction
1022 to contain the static size of the frame. */
1023 if (frame_size == 0)
1024 frame_size = (-word) & 0xffff;
1025 }
1026 else
1027 {
1028 /* Exit loop if a positive stack adjustment is found, which
1029 usually means that the stack cleanup code in the function
1030 epilogue is reached. */
1031 break;
1032 }
1033 }
1034 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1035 {
1036 reg = (word & 0x03e00000) >> 21;
1037
1038 /* Ignore this instruction if we have already encountered
1039 an instruction saving the same register earlier in the
1040 function code. The current instruction does not tell
1041 us where the original value upon function entry is saved.
1042 All it says is that the function we are scanning reused
1043 that register for some computation of its own, and is now
1044 saving its result. */
1045 if (info->saved_regs[reg])
1046 continue;
1047
1048 if (reg == 31)
1049 continue;
1050
1051 /* Do not compute the address where the register was saved yet,
1052 because we don't know yet if the offset will need to be
1053 relative to $sp or $fp (we can not compute the address
1054 relative to $sp if $sp is updated during the execution of
1055 the current subroutine, for instance when doing some alloca).
1056 So just store the offset for the moment, and compute the
1057 address later when we know whether this frame has a frame
1058 pointer or not. */
1059 /* Hack: temporarily add one, so that the offset is non-zero
1060 and we can tell which registers have save offsets below. */
1061 info->saved_regs[reg] = (word & 0xffff) + 1;
1062
1063 /* Starting with OSF/1-3.2C, the system libraries are shipped
1064 without local symbols, but they still contain procedure
1065 descriptors without a symbol reference. GDB is currently
1066 unable to find these procedure descriptors and uses
1067 heuristic_proc_desc instead.
1068 As some low level compiler support routines (__div*, __add*)
1069 use a non-standard return address register, we have to
1070 add some heuristics to determine the return address register,
1071 or stepping over these routines will fail.
1072 Usually the return address register is the first register
1073 saved on the stack, but assembler optimization might
1074 rearrange the register saves.
1075 So we recognize only a few registers (t7, t9, ra) within
1076 the procedure prologue as valid return address registers.
1077 If we encounter a return instruction, we extract the
1078 the return address register from it.
1079
1080 FIXME: Rewriting GDB to access the procedure descriptors,
1081 e.g. via the minimal symbol table, might obviate this hack. */
1082 if (return_reg == -1
1083 && cur_pc < (start_pc + 80)
1084 && (reg == ALPHA_T7_REGNUM
1085 || reg == ALPHA_T9_REGNUM
1086 || reg == ALPHA_RA_REGNUM))
1087 return_reg = reg;
1088 }
1089 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1090 return_reg = (word >> 16) & 0x1f;
1091 else if (word == 0x47de040f) /* bis sp,sp,fp */
1092 frame_reg = ALPHA_GCC_FP_REGNUM;
1093 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1094 frame_reg = ALPHA_GCC_FP_REGNUM;
1095 }
1096
1097 /* If we haven't found a valid return address register yet, keep
1098 searching in the procedure prologue. */
1099 if (return_reg == -1)
1100 {
1101 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1102 {
1103 unsigned int word = alpha_read_insn (cur_pc);
1104
1105 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1106 {
1107 reg = (word & 0x03e00000) >> 21;
1108 if (reg == ALPHA_T7_REGNUM
1109 || reg == ALPHA_T9_REGNUM
1110 || reg == ALPHA_RA_REGNUM)
1111 {
1112 return_reg = reg;
1113 break;
1114 }
1115 }
1116 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1117 {
1118 return_reg = (word >> 16) & 0x1f;
1119 break;
1120 }
1121
1122 cur_pc += 4;
1123 }
1124 }
1125 }
1126
1127 /* Failing that, do default to the customary RA. */
1128 if (return_reg == -1)
1129 return_reg = ALPHA_RA_REGNUM;
1130 info->return_reg = return_reg;
1131
1132 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1133 info->vfp = val + frame_size;
1134
1135 /* Convert offsets to absolute addresses. See above about adding
1136 one to the offsets to make all detected offsets non-zero. */
1137 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1138 if (info->saved_regs[reg])
1139 info->saved_regs[reg] += val - 1;
1140
1141 return info;
1142 }
1143
1144 /* Given a GDB frame, determine the address of the calling function's
1145 frame. This will be used to create a new GDB frame struct. */
1146
1147 static void
1148 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1149 void **this_prologue_cache,
1150 struct frame_id *this_id)
1151 {
1152 struct alpha_heuristic_unwind_cache *info
1153 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1154
1155 *this_id = frame_id_build (info->vfp, info->start_pc);
1156 }
1157
1158 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1159
1160 static void
1161 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1162 void **this_prologue_cache,
1163 int regnum, int *optimizedp,
1164 enum lval_type *lvalp, CORE_ADDR *addrp,
1165 int *realnump, void *bufferp)
1166 {
1167 struct alpha_heuristic_unwind_cache *info
1168 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1169
1170 /* The PC of the previous frame is stored in the link register of
1171 the current frame. Frob regnum so that we pull the value from
1172 the correct place. */
1173 if (regnum == ALPHA_PC_REGNUM)
1174 regnum = info->return_reg;
1175
1176 /* For all registers known to be saved in the current frame,
1177 do the obvious and pull the value out. */
1178 if (info->saved_regs[regnum])
1179 {
1180 *optimizedp = 0;
1181 *lvalp = lval_memory;
1182 *addrp = info->saved_regs[regnum];
1183 *realnump = -1;
1184 if (bufferp != NULL)
1185 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1186 return;
1187 }
1188
1189 /* The stack pointer of the previous frame is computed by popping
1190 the current stack frame. */
1191 if (regnum == ALPHA_SP_REGNUM)
1192 {
1193 *optimizedp = 0;
1194 *lvalp = not_lval;
1195 *addrp = 0;
1196 *realnump = -1;
1197 if (bufferp != NULL)
1198 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1199 return;
1200 }
1201
1202 /* Otherwise assume the next frame has the same register value. */
1203 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1204 realnump, bufferp);
1205 }
1206
1207 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1208 NORMAL_FRAME,
1209 alpha_heuristic_frame_this_id,
1210 alpha_heuristic_frame_prev_register
1211 };
1212
1213 static const struct frame_unwind *
1214 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1215 {
1216 return &alpha_heuristic_frame_unwind;
1217 }
1218
1219 static CORE_ADDR
1220 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1221 void **this_prologue_cache)
1222 {
1223 struct alpha_heuristic_unwind_cache *info
1224 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1225
1226 return info->vfp;
1227 }
1228
1229 static const struct frame_base alpha_heuristic_frame_base = {
1230 &alpha_heuristic_frame_unwind,
1231 alpha_heuristic_frame_base_address,
1232 alpha_heuristic_frame_base_address,
1233 alpha_heuristic_frame_base_address
1234 };
1235
1236 /* Just like reinit_frame_cache, but with the right arguments to be
1237 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1238
1239 static void
1240 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1241 {
1242 reinit_frame_cache ();
1243 }
1244
1245 \f
1246 /* ALPHA stack frames are almost impenetrable. When execution stops,
1247 we basically have to look at symbol information for the function
1248 that we stopped in, which tells us *which* register (if any) is
1249 the base of the frame pointer, and what offset from that register
1250 the frame itself is at.
1251
1252 This presents a problem when trying to examine a stack in memory
1253 (that isn't executing at the moment), using the "frame" command. We
1254 don't have a PC, nor do we have any registers except SP.
1255
1256 This routine takes two arguments, SP and PC, and tries to make the
1257 cached frames look as if these two arguments defined a frame on the
1258 cache. This allows the rest of info frame to extract the important
1259 arguments without difficulty. */
1260
1261 struct frame_info *
1262 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1263 {
1264 if (argc != 2)
1265 error ("ALPHA frame specifications require two arguments: sp and pc");
1266
1267 return create_new_frame (argv[0], argv[1]);
1268 }
1269
1270 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1271 dummy frame. The frame ID's base needs to match the TOS value
1272 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1273 breakpoint. */
1274
1275 static struct frame_id
1276 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1277 {
1278 ULONGEST base;
1279 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1280 return frame_id_build (base, frame_pc_unwind (next_frame));
1281 }
1282
1283 static CORE_ADDR
1284 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1285 {
1286 ULONGEST pc;
1287 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1288 return pc;
1289 }
1290
1291 \f
1292 /* Helper routines for alpha*-nat.c files to move register sets to and
1293 from core files. The UNIQUE pointer is allowed to be NULL, as most
1294 targets don't supply this value in their core files. */
1295
1296 void
1297 alpha_supply_int_regs (int regno, const void *r0_r30,
1298 const void *pc, const void *unique)
1299 {
1300 int i;
1301
1302 for (i = 0; i < 31; ++i)
1303 if (regno == i || regno == -1)
1304 supply_register (i, (const char *)r0_r30 + i*8);
1305
1306 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1307 supply_register (ALPHA_ZERO_REGNUM, NULL);
1308
1309 if (regno == ALPHA_PC_REGNUM || regno == -1)
1310 supply_register (ALPHA_PC_REGNUM, pc);
1311
1312 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1313 supply_register (ALPHA_UNIQUE_REGNUM, unique);
1314 }
1315
1316 void
1317 alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1318 {
1319 int i;
1320
1321 for (i = 0; i < 31; ++i)
1322 if (regno == i || regno == -1)
1323 regcache_collect (i, (char *)r0_r30 + i*8);
1324
1325 if (regno == ALPHA_PC_REGNUM || regno == -1)
1326 regcache_collect (ALPHA_PC_REGNUM, pc);
1327
1328 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1329 regcache_collect (ALPHA_UNIQUE_REGNUM, unique);
1330 }
1331
1332 void
1333 alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1334 {
1335 int i;
1336
1337 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1338 if (regno == i || regno == -1)
1339 supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1340
1341 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1342 supply_register (ALPHA_FPCR_REGNUM, fpcr);
1343 }
1344
1345 void
1346 alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1347 {
1348 int i;
1349
1350 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1351 if (regno == i || regno == -1)
1352 regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1353
1354 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1355 regcache_collect (ALPHA_FPCR_REGNUM, fpcr);
1356 }
1357
1358 \f
1359 /* alpha_software_single_step() is called just before we want to resume
1360 the inferior, if we want to single-step it but there is no hardware
1361 or kernel single-step support (NetBSD on Alpha, for example). We find
1362 the target of the coming instruction and breakpoint it.
1363
1364 single_step is also called just after the inferior stops. If we had
1365 set up a simulated single-step, we undo our damage. */
1366
1367 static CORE_ADDR
1368 alpha_next_pc (CORE_ADDR pc)
1369 {
1370 unsigned int insn;
1371 unsigned int op;
1372 int offset;
1373 LONGEST rav;
1374
1375 insn = alpha_read_insn (pc);
1376
1377 /* Opcode is top 6 bits. */
1378 op = (insn >> 26) & 0x3f;
1379
1380 if (op == 0x1a)
1381 {
1382 /* Jump format: target PC is:
1383 RB & ~3 */
1384 return (read_register ((insn >> 16) & 0x1f) & ~3);
1385 }
1386
1387 if ((op & 0x30) == 0x30)
1388 {
1389 /* Branch format: target PC is:
1390 (new PC) + (4 * sext(displacement)) */
1391 if (op == 0x30 || /* BR */
1392 op == 0x34) /* BSR */
1393 {
1394 branch_taken:
1395 offset = (insn & 0x001fffff);
1396 if (offset & 0x00100000)
1397 offset |= 0xffe00000;
1398 offset *= 4;
1399 return (pc + 4 + offset);
1400 }
1401
1402 /* Need to determine if branch is taken; read RA. */
1403 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1404 switch (op)
1405 {
1406 case 0x38: /* BLBC */
1407 if ((rav & 1) == 0)
1408 goto branch_taken;
1409 break;
1410 case 0x3c: /* BLBS */
1411 if (rav & 1)
1412 goto branch_taken;
1413 break;
1414 case 0x39: /* BEQ */
1415 if (rav == 0)
1416 goto branch_taken;
1417 break;
1418 case 0x3d: /* BNE */
1419 if (rav != 0)
1420 goto branch_taken;
1421 break;
1422 case 0x3a: /* BLT */
1423 if (rav < 0)
1424 goto branch_taken;
1425 break;
1426 case 0x3b: /* BLE */
1427 if (rav <= 0)
1428 goto branch_taken;
1429 break;
1430 case 0x3f: /* BGT */
1431 if (rav > 0)
1432 goto branch_taken;
1433 break;
1434 case 0x3e: /* BGE */
1435 if (rav >= 0)
1436 goto branch_taken;
1437 break;
1438
1439 /* ??? Missing floating-point branches. */
1440 }
1441 }
1442
1443 /* Not a branch or branch not taken; target PC is:
1444 pc + 4 */
1445 return (pc + 4);
1446 }
1447
1448 void
1449 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1450 {
1451 static CORE_ADDR next_pc;
1452 typedef char binsn_quantum[BREAKPOINT_MAX];
1453 static binsn_quantum break_mem;
1454 CORE_ADDR pc;
1455
1456 if (insert_breakpoints_p)
1457 {
1458 pc = read_pc ();
1459 next_pc = alpha_next_pc (pc);
1460
1461 target_insert_breakpoint (next_pc, break_mem);
1462 }
1463 else
1464 {
1465 target_remove_breakpoint (next_pc, break_mem);
1466 write_pc (next_pc);
1467 }
1468 }
1469
1470 \f
1471 /* Initialize the current architecture based on INFO. If possible, re-use an
1472 architecture from ARCHES, which is a list of architectures already created
1473 during this debugging session.
1474
1475 Called e.g. at program startup, when reading a core file, and when reading
1476 a binary file. */
1477
1478 static struct gdbarch *
1479 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1480 {
1481 struct gdbarch_tdep *tdep;
1482 struct gdbarch *gdbarch;
1483
1484 /* Try to determine the ABI of the object we are loading. */
1485 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1486 {
1487 /* If it's an ECOFF file, assume it's OSF/1. */
1488 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1489 info.osabi = GDB_OSABI_OSF1;
1490 }
1491
1492 /* Find a candidate among extant architectures. */
1493 arches = gdbarch_list_lookup_by_info (arches, &info);
1494 if (arches != NULL)
1495 return arches->gdbarch;
1496
1497 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1498 gdbarch = gdbarch_alloc (&info, tdep);
1499
1500 /* Lowest text address. This is used by heuristic_proc_start()
1501 to decide when to stop looking. */
1502 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1503
1504 tdep->dynamic_sigtramp_offset = NULL;
1505 tdep->sigcontext_addr = NULL;
1506 tdep->sc_pc_offset = 2 * 8;
1507 tdep->sc_regs_offset = 4 * 8;
1508 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1509
1510 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1511
1512 /* Type sizes */
1513 set_gdbarch_short_bit (gdbarch, 16);
1514 set_gdbarch_int_bit (gdbarch, 32);
1515 set_gdbarch_long_bit (gdbarch, 64);
1516 set_gdbarch_long_long_bit (gdbarch, 64);
1517 set_gdbarch_float_bit (gdbarch, 32);
1518 set_gdbarch_double_bit (gdbarch, 64);
1519 set_gdbarch_long_double_bit (gdbarch, 64);
1520 set_gdbarch_ptr_bit (gdbarch, 64);
1521
1522 /* Register info */
1523 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1524 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1525 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1526 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1527
1528 set_gdbarch_register_name (gdbarch, alpha_register_name);
1529 set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte);
1530 set_gdbarch_deprecated_register_raw_size (gdbarch, alpha_register_raw_size);
1531 set_gdbarch_deprecated_register_virtual_size (gdbarch, alpha_register_virtual_size);
1532 set_gdbarch_register_type (gdbarch, alpha_register_type);
1533
1534 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1535 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1536
1537 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1538 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1539 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1540
1541 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1542
1543 /* Prologue heuristics. */
1544 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1545
1546 /* Disassembler. */
1547 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1548
1549 /* Call info. */
1550
1551 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1552 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1553 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1554 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, alpha_extract_struct_value_address);
1555
1556 /* Settings for calling functions in the inferior. */
1557 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1558
1559 /* Methods for saving / extracting a dummy frame's ID. */
1560 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1561
1562 /* Return the unwound PC value. */
1563 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1564
1565 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1566 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1567
1568 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1569 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1570
1571 /* Hook in ABI-specific overrides, if they have been registered. */
1572 gdbarch_init_osabi (info, gdbarch);
1573
1574 /* Now that we have tuned the configuration, set a few final things
1575 based on what the OS ABI has told us. */
1576
1577 if (tdep->jb_pc >= 0)
1578 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1579
1580 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1581 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1582
1583 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1584
1585 return gdbarch;
1586 }
1587
1588 void
1589 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1590 {
1591 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1592 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1593 }
1594
1595 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1596
1597 void
1598 _initialize_alpha_tdep (void)
1599 {
1600 struct cmd_list_element *c;
1601
1602 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1603
1604 /* Let the user set the fence post for heuristic_proc_start. */
1605
1606 /* We really would like to have both "0" and "unlimited" work, but
1607 command.c doesn't deal with that. So make it a var_zinteger
1608 because the user can always use "999999" or some such for unlimited. */
1609 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1610 (char *) &heuristic_fence_post,
1611 "\
1612 Set the distance searched for the start of a function.\n\
1613 If you are debugging a stripped executable, GDB needs to search through the\n\
1614 program for the start of a function. This command sets the distance of the\n\
1615 search. The only need to set it is when debugging a stripped executable.",
1616 &setlist);
1617 /* We need to throw away the frame cache when we set this, since it
1618 might change our ability to get backtraces. */
1619 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1620 add_show_from_set (c, &showlist);
1621 }