]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/amd64-tdep.c
update copyright year range in GDB files
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43 #include <algorithm>
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47 #include "features/i386/amd64-mpx.c"
48 #include "features/i386/amd64-avx-mpx.c"
49 #include "features/i386/amd64-avx512.c"
50
51 #include "features/i386/x32.c"
52 #include "features/i386/x32-avx.c"
53 #include "features/i386/x32-avx512.c"
54
55 #include "ax.h"
56 #include "ax-gdb.h"
57
58 /* Note that the AMD64 architecture was previously known as x86-64.
59 The latter is (forever) engraved into the canonical system name as
60 returned by config.guess, and used as the name for the AMD64 port
61 of GNU/Linux. The BSD's have renamed their ports to amd64; they
62 don't like to shout. For GDB we prefer the amd64_-prefix over the
63 x86_64_-prefix since it's so much easier to type. */
64
65 /* Register information. */
66
67 static const char *amd64_register_names[] =
68 {
69 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
70
71 /* %r8 is indeed register number 8. */
72 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
73 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
74
75 /* %st0 is register number 24. */
76 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
77 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
78
79 /* %xmm0 is register number 40. */
80 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
81 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
82 "mxcsr",
83 };
84
85 static const char *amd64_ymm_names[] =
86 {
87 "ymm0", "ymm1", "ymm2", "ymm3",
88 "ymm4", "ymm5", "ymm6", "ymm7",
89 "ymm8", "ymm9", "ymm10", "ymm11",
90 "ymm12", "ymm13", "ymm14", "ymm15"
91 };
92
93 static const char *amd64_ymm_avx512_names[] =
94 {
95 "ymm16", "ymm17", "ymm18", "ymm19",
96 "ymm20", "ymm21", "ymm22", "ymm23",
97 "ymm24", "ymm25", "ymm26", "ymm27",
98 "ymm28", "ymm29", "ymm30", "ymm31"
99 };
100
101 static const char *amd64_ymmh_names[] =
102 {
103 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
104 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
105 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
106 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
107 };
108
109 static const char *amd64_ymmh_avx512_names[] =
110 {
111 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
112 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
113 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
114 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
115 };
116
117 static const char *amd64_mpx_names[] =
118 {
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 };
121
122 static const char *amd64_k_names[] =
123 {
124 "k0", "k1", "k2", "k3",
125 "k4", "k5", "k6", "k7"
126 };
127
128 static const char *amd64_zmmh_names[] =
129 {
130 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
131 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
132 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
133 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
134 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
135 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
136 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
137 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
138 };
139
140 static const char *amd64_zmm_names[] =
141 {
142 "zmm0", "zmm1", "zmm2", "zmm3",
143 "zmm4", "zmm5", "zmm6", "zmm7",
144 "zmm8", "zmm9", "zmm10", "zmm11",
145 "zmm12", "zmm13", "zmm14", "zmm15",
146 "zmm16", "zmm17", "zmm18", "zmm19",
147 "zmm20", "zmm21", "zmm22", "zmm23",
148 "zmm24", "zmm25", "zmm26", "zmm27",
149 "zmm28", "zmm29", "zmm30", "zmm31"
150 };
151
152 static const char *amd64_xmm_avx512_names[] = {
153 "xmm16", "xmm17", "xmm18", "xmm19",
154 "xmm20", "xmm21", "xmm22", "xmm23",
155 "xmm24", "xmm25", "xmm26", "xmm27",
156 "xmm28", "xmm29", "xmm30", "xmm31"
157 };
158
159 /* DWARF Register Number Mapping as defined in the System V psABI,
160 section 3.6. */
161
162 static int amd64_dwarf_regmap[] =
163 {
164 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
165 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
166 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
167 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
168
169 /* Frame Pointer Register RBP. */
170 AMD64_RBP_REGNUM,
171
172 /* Stack Pointer Register RSP. */
173 AMD64_RSP_REGNUM,
174
175 /* Extended Integer Registers 8 - 15. */
176 AMD64_R8_REGNUM, /* %r8 */
177 AMD64_R9_REGNUM, /* %r9 */
178 AMD64_R10_REGNUM, /* %r10 */
179 AMD64_R11_REGNUM, /* %r11 */
180 AMD64_R12_REGNUM, /* %r12 */
181 AMD64_R13_REGNUM, /* %r13 */
182 AMD64_R14_REGNUM, /* %r14 */
183 AMD64_R15_REGNUM, /* %r15 */
184
185 /* Return Address RA. Mapped to RIP. */
186 AMD64_RIP_REGNUM,
187
188 /* SSE Registers 0 - 7. */
189 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
190 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
191 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
192 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
193
194 /* Extended SSE Registers 8 - 15. */
195 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
196 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
197 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
198 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
199
200 /* Floating Point Registers 0-7. */
201 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
202 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
203 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
204 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
205
206 /* MMX Registers 0 - 7.
207 We have to handle those registers specifically, as their register
208 number within GDB depends on the target (or they may even not be
209 available at all). */
210 -1, -1, -1, -1, -1, -1, -1, -1,
211
212 /* Control and Status Flags Register. */
213 AMD64_EFLAGS_REGNUM,
214
215 /* Selector Registers. */
216 AMD64_ES_REGNUM,
217 AMD64_CS_REGNUM,
218 AMD64_SS_REGNUM,
219 AMD64_DS_REGNUM,
220 AMD64_FS_REGNUM,
221 AMD64_GS_REGNUM,
222 -1,
223 -1,
224
225 /* Segment Base Address Registers. */
226 -1,
227 -1,
228 -1,
229 -1,
230
231 /* Special Selector Registers. */
232 -1,
233 -1,
234
235 /* Floating Point Control Registers. */
236 AMD64_MXCSR_REGNUM,
237 AMD64_FCTRL_REGNUM,
238 AMD64_FSTAT_REGNUM
239 };
240
241 static const int amd64_dwarf_regmap_len =
242 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
243
244 /* Convert DWARF register number REG to the appropriate register
245 number used by GDB. */
246
247 static int
248 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
249 {
250 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
251 int ymm0_regnum = tdep->ymm0_regnum;
252 int regnum = -1;
253
254 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
255 regnum = amd64_dwarf_regmap[reg];
256
257 if (ymm0_regnum >= 0
258 && i386_xmm_regnum_p (gdbarch, regnum))
259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
260
261 return regnum;
262 }
263
264 /* Map architectural register numbers to gdb register numbers. */
265
266 static const int amd64_arch_regmap[16] =
267 {
268 AMD64_RAX_REGNUM, /* %rax */
269 AMD64_RCX_REGNUM, /* %rcx */
270 AMD64_RDX_REGNUM, /* %rdx */
271 AMD64_RBX_REGNUM, /* %rbx */
272 AMD64_RSP_REGNUM, /* %rsp */
273 AMD64_RBP_REGNUM, /* %rbp */
274 AMD64_RSI_REGNUM, /* %rsi */
275 AMD64_RDI_REGNUM, /* %rdi */
276 AMD64_R8_REGNUM, /* %r8 */
277 AMD64_R9_REGNUM, /* %r9 */
278 AMD64_R10_REGNUM, /* %r10 */
279 AMD64_R11_REGNUM, /* %r11 */
280 AMD64_R12_REGNUM, /* %r12 */
281 AMD64_R13_REGNUM, /* %r13 */
282 AMD64_R14_REGNUM, /* %r14 */
283 AMD64_R15_REGNUM /* %r15 */
284 };
285
286 static const int amd64_arch_regmap_len =
287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
288
289 /* Convert architectural register number REG to the appropriate register
290 number used by GDB. */
291
292 static int
293 amd64_arch_reg_to_regnum (int reg)
294 {
295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
296
297 return amd64_arch_regmap[reg];
298 }
299
300 /* Register names for byte pseudo-registers. */
301
302 static const char *amd64_byte_names[] =
303 {
304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
306 "ah", "bh", "ch", "dh"
307 };
308
309 /* Number of lower byte registers. */
310 #define AMD64_NUM_LOWER_BYTE_REGS 16
311
312 /* Register names for word pseudo-registers. */
313
314 static const char *amd64_word_names[] =
315 {
316 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
318 };
319
320 /* Register names for dword pseudo-registers. */
321
322 static const char *amd64_dword_names[] =
323 {
324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 "eip"
327 };
328
329 /* Return the name of register REGNUM. */
330
331 static const char *
332 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 if (i386_byte_regnum_p (gdbarch, regnum))
336 return amd64_byte_names[regnum - tdep->al_regnum];
337 else if (i386_zmm_regnum_p (gdbarch, regnum))
338 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
339 else if (i386_ymm_regnum_p (gdbarch, regnum))
340 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
343 else if (i386_word_regnum_p (gdbarch, regnum))
344 return amd64_word_names[regnum - tdep->ax_regnum];
345 else if (i386_dword_regnum_p (gdbarch, regnum))
346 return amd64_dword_names[regnum - tdep->eax_regnum];
347 else
348 return i386_pseudo_register_name (gdbarch, regnum);
349 }
350
351 static struct value *
352 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
353 struct regcache *regcache,
354 int regnum)
355 {
356 gdb_byte raw_buf[MAX_REGISTER_SIZE];
357 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
358 enum register_status status;
359 struct value *result_value;
360 gdb_byte *buf;
361
362 result_value = allocate_value (register_type (gdbarch, regnum));
363 VALUE_LVAL (result_value) = lval_register;
364 VALUE_REGNUM (result_value) = regnum;
365 buf = value_contents_raw (result_value);
366
367 if (i386_byte_regnum_p (gdbarch, regnum))
368 {
369 int gpnum = regnum - tdep->al_regnum;
370
371 /* Extract (always little endian). */
372 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
373 {
374 /* Special handling for AH, BH, CH, DH. */
375 status = regcache_raw_read (regcache,
376 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
377 raw_buf);
378 if (status == REG_VALID)
379 memcpy (buf, raw_buf + 1, 1);
380 else
381 mark_value_bytes_unavailable (result_value, 0,
382 TYPE_LENGTH (value_type (result_value)));
383 }
384 else
385 {
386 status = regcache_raw_read (regcache, gpnum, raw_buf);
387 if (status == REG_VALID)
388 memcpy (buf, raw_buf, 1);
389 else
390 mark_value_bytes_unavailable (result_value, 0,
391 TYPE_LENGTH (value_type (result_value)));
392 }
393 }
394 else if (i386_dword_regnum_p (gdbarch, regnum))
395 {
396 int gpnum = regnum - tdep->eax_regnum;
397 /* Extract (always little endian). */
398 status = regcache_raw_read (regcache, gpnum, raw_buf);
399 if (status == REG_VALID)
400 memcpy (buf, raw_buf, 4);
401 else
402 mark_value_bytes_unavailable (result_value, 0,
403 TYPE_LENGTH (value_type (result_value)));
404 }
405 else
406 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
407 result_value);
408
409 return result_value;
410 }
411
412 static void
413 amd64_pseudo_register_write (struct gdbarch *gdbarch,
414 struct regcache *regcache,
415 int regnum, const gdb_byte *buf)
416 {
417 gdb_byte raw_buf[MAX_REGISTER_SIZE];
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419
420 if (i386_byte_regnum_p (gdbarch, regnum))
421 {
422 int gpnum = regnum - tdep->al_regnum;
423
424 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
425 {
426 /* Read ... AH, BH, CH, DH. */
427 regcache_raw_read (regcache,
428 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
429 /* ... Modify ... (always little endian). */
430 memcpy (raw_buf + 1, buf, 1);
431 /* ... Write. */
432 regcache_raw_write (regcache,
433 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
434 }
435 else
436 {
437 /* Read ... */
438 regcache_raw_read (regcache, gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache_raw_write (regcache, gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448
449 /* Read ... */
450 regcache_raw_read (regcache, gpnum, raw_buf);
451 /* ... Modify ... (always little endian). */
452 memcpy (raw_buf, buf, 4);
453 /* ... Write. */
454 regcache_raw_write (regcache, gpnum, raw_buf);
455 }
456 else
457 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
458 }
459
460 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
461
462 static int
463 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
464 struct agent_expr *ax, int regnum)
465 {
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
468 if (i386_byte_regnum_p (gdbarch, regnum))
469 {
470 int gpnum = regnum - tdep->al_regnum;
471
472 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
473 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
474 else
475 ax_reg_mask (ax, gpnum);
476 return 0;
477 }
478 else if (i386_dword_regnum_p (gdbarch, regnum))
479 {
480 int gpnum = regnum - tdep->eax_regnum;
481
482 ax_reg_mask (ax, gpnum);
483 return 0;
484 }
485 else
486 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
487 }
488
489 \f
490
491 /* Register classes as defined in the psABI. */
492
493 enum amd64_reg_class
494 {
495 AMD64_INTEGER,
496 AMD64_SSE,
497 AMD64_SSEUP,
498 AMD64_X87,
499 AMD64_X87UP,
500 AMD64_COMPLEX_X87,
501 AMD64_NO_CLASS,
502 AMD64_MEMORY
503 };
504
505 /* Return the union class of CLASS1 and CLASS2. See the psABI for
506 details. */
507
508 static enum amd64_reg_class
509 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
510 {
511 /* Rule (a): If both classes are equal, this is the resulting class. */
512 if (class1 == class2)
513 return class1;
514
515 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
516 is the other class. */
517 if (class1 == AMD64_NO_CLASS)
518 return class2;
519 if (class2 == AMD64_NO_CLASS)
520 return class1;
521
522 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
523 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
524 return AMD64_MEMORY;
525
526 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
527 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
528 return AMD64_INTEGER;
529
530 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
531 MEMORY is used as class. */
532 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
533 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
534 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
535 return AMD64_MEMORY;
536
537 /* Rule (f): Otherwise class SSE is used. */
538 return AMD64_SSE;
539 }
540
541 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
542
543 /* Return non-zero if TYPE is a non-POD structure or union type. */
544
545 static int
546 amd64_non_pod_p (struct type *type)
547 {
548 /* ??? A class with a base class certainly isn't POD, but does this
549 catch all non-POD structure types? */
550 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
551 return 1;
552
553 return 0;
554 }
555
556 /* Classify TYPE according to the rules for aggregate (structures and
557 arrays) and union types, and store the result in CLASS. */
558
559 static void
560 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
561 {
562 /* 1. If the size of an object is larger than two eightbytes, or in
563 C++, is a non-POD structure or union type, or contains
564 unaligned fields, it has class memory. */
565 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
566 {
567 theclass[0] = theclass[1] = AMD64_MEMORY;
568 return;
569 }
570
571 /* 2. Both eightbytes get initialized to class NO_CLASS. */
572 theclass[0] = theclass[1] = AMD64_NO_CLASS;
573
574 /* 3. Each field of an object is classified recursively so that
575 always two fields are considered. The resulting class is
576 calculated according to the classes of the fields in the
577 eightbyte: */
578
579 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
580 {
581 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
582
583 /* All fields in an array have the same type. */
584 amd64_classify (subtype, theclass);
585 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
586 theclass[1] = theclass[0];
587 }
588 else
589 {
590 int i;
591
592 /* Structure or union. */
593 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
594 || TYPE_CODE (type) == TYPE_CODE_UNION);
595
596 for (i = 0; i < TYPE_NFIELDS (type); i++)
597 {
598 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
599 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
600 enum amd64_reg_class subclass[2];
601 int bitsize = TYPE_FIELD_BITSIZE (type, i);
602 int endpos;
603
604 if (bitsize == 0)
605 bitsize = TYPE_LENGTH (subtype) * 8;
606 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
607
608 /* Ignore static fields. */
609 if (field_is_static (&TYPE_FIELD (type, i)))
610 continue;
611
612 gdb_assert (pos == 0 || pos == 1);
613
614 amd64_classify (subtype, subclass);
615 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
616 if (bitsize <= 64 && pos == 0 && endpos == 1)
617 /* This is a bit of an odd case: We have a field that would
618 normally fit in one of the two eightbytes, except that
619 it is placed in a way that this field straddles them.
620 This has been seen with a structure containing an array.
621
622 The ABI is a bit unclear in this case, but we assume that
623 this field's class (stored in subclass[0]) must also be merged
624 into class[1]. In other words, our field has a piece stored
625 in the second eight-byte, and thus its class applies to
626 the second eight-byte as well.
627
628 In the case where the field length exceeds 8 bytes,
629 it should not be necessary to merge the field class
630 into class[1]. As LEN > 8, subclass[1] is necessarily
631 different from AMD64_NO_CLASS. If subclass[1] is equal
632 to subclass[0], then the normal class[1]/subclass[1]
633 merging will take care of everything. For subclass[1]
634 to be different from subclass[0], I can only see the case
635 where we have a SSE/SSEUP or X87/X87UP pair, which both
636 use up all 16 bytes of the aggregate, and are already
637 handled just fine (because each portion sits on its own
638 8-byte). */
639 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
640 if (pos == 0)
641 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
642 }
643 }
644
645 /* 4. Then a post merger cleanup is done: */
646
647 /* Rule (a): If one of the classes is MEMORY, the whole argument is
648 passed in memory. */
649 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
650 theclass[0] = theclass[1] = AMD64_MEMORY;
651
652 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
653 SSE. */
654 if (theclass[0] == AMD64_SSEUP)
655 theclass[0] = AMD64_SSE;
656 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
657 theclass[1] = AMD64_SSE;
658 }
659
660 /* Classify TYPE, and store the result in CLASS. */
661
662 static void
663 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
664 {
665 enum type_code code = TYPE_CODE (type);
666 int len = TYPE_LENGTH (type);
667
668 theclass[0] = theclass[1] = AMD64_NO_CLASS;
669
670 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
671 long, long long, and pointers are in the INTEGER class. Similarly,
672 range types, used by languages such as Ada, are also in the INTEGER
673 class. */
674 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
675 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
676 || code == TYPE_CODE_CHAR
677 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
678 && (len == 1 || len == 2 || len == 4 || len == 8))
679 theclass[0] = AMD64_INTEGER;
680
681 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
682 are in class SSE. */
683 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
684 && (len == 4 || len == 8))
685 /* FIXME: __m64 . */
686 theclass[0] = AMD64_SSE;
687
688 /* Arguments of types __float128, _Decimal128 and __m128 are split into
689 two halves. The least significant ones belong to class SSE, the most
690 significant one to class SSEUP. */
691 else if (code == TYPE_CODE_DECFLOAT && len == 16)
692 /* FIXME: __float128, __m128. */
693 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
694
695 /* The 64-bit mantissa of arguments of type long double belongs to
696 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
697 class X87UP. */
698 else if (code == TYPE_CODE_FLT && len == 16)
699 /* Class X87 and X87UP. */
700 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
701
702 /* Arguments of complex T where T is one of the types float or
703 double get treated as if they are implemented as:
704
705 struct complexT {
706 T real;
707 T imag;
708 };
709
710 */
711 else if (code == TYPE_CODE_COMPLEX && len == 8)
712 theclass[0] = AMD64_SSE;
713 else if (code == TYPE_CODE_COMPLEX && len == 16)
714 theclass[0] = theclass[1] = AMD64_SSE;
715
716 /* A variable of type complex long double is classified as type
717 COMPLEX_X87. */
718 else if (code == TYPE_CODE_COMPLEX && len == 32)
719 theclass[0] = AMD64_COMPLEX_X87;
720
721 /* Aggregates. */
722 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
723 || code == TYPE_CODE_UNION)
724 amd64_classify_aggregate (type, theclass);
725 }
726
727 static enum return_value_convention
728 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
729 struct type *type, struct regcache *regcache,
730 gdb_byte *readbuf, const gdb_byte *writebuf)
731 {
732 enum amd64_reg_class theclass[2];
733 int len = TYPE_LENGTH (type);
734 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
735 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
736 int integer_reg = 0;
737 int sse_reg = 0;
738 int i;
739
740 gdb_assert (!(readbuf && writebuf));
741
742 /* 1. Classify the return type with the classification algorithm. */
743 amd64_classify (type, theclass);
744
745 /* 2. If the type has class MEMORY, then the caller provides space
746 for the return value and passes the address of this storage in
747 %rdi as if it were the first argument to the function. In effect,
748 this address becomes a hidden first argument.
749
750 On return %rax will contain the address that has been passed in
751 by the caller in %rdi. */
752 if (theclass[0] == AMD64_MEMORY)
753 {
754 /* As indicated by the comment above, the ABI guarantees that we
755 can always find the return value just after the function has
756 returned. */
757
758 if (readbuf)
759 {
760 ULONGEST addr;
761
762 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
763 read_memory (addr, readbuf, TYPE_LENGTH (type));
764 }
765
766 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
767 }
768
769 /* 8. If the class is COMPLEX_X87, the real part of the value is
770 returned in %st0 and the imaginary part in %st1. */
771 if (theclass[0] == AMD64_COMPLEX_X87)
772 {
773 if (readbuf)
774 {
775 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
776 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
777 }
778
779 if (writebuf)
780 {
781 i387_return_value (gdbarch, regcache);
782 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
783 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
784
785 /* Fix up the tag word such that both %st(0) and %st(1) are
786 marked as valid. */
787 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
788 }
789
790 return RETURN_VALUE_REGISTER_CONVENTION;
791 }
792
793 gdb_assert (theclass[1] != AMD64_MEMORY);
794 gdb_assert (len <= 16);
795
796 for (i = 0; len > 0; i++, len -= 8)
797 {
798 int regnum = -1;
799 int offset = 0;
800
801 switch (theclass[i])
802 {
803 case AMD64_INTEGER:
804 /* 3. If the class is INTEGER, the next available register
805 of the sequence %rax, %rdx is used. */
806 regnum = integer_regnum[integer_reg++];
807 break;
808
809 case AMD64_SSE:
810 /* 4. If the class is SSE, the next available SSE register
811 of the sequence %xmm0, %xmm1 is used. */
812 regnum = sse_regnum[sse_reg++];
813 break;
814
815 case AMD64_SSEUP:
816 /* 5. If the class is SSEUP, the eightbyte is passed in the
817 upper half of the last used SSE register. */
818 gdb_assert (sse_reg > 0);
819 regnum = sse_regnum[sse_reg - 1];
820 offset = 8;
821 break;
822
823 case AMD64_X87:
824 /* 6. If the class is X87, the value is returned on the X87
825 stack in %st0 as 80-bit x87 number. */
826 regnum = AMD64_ST0_REGNUM;
827 if (writebuf)
828 i387_return_value (gdbarch, regcache);
829 break;
830
831 case AMD64_X87UP:
832 /* 7. If the class is X87UP, the value is returned together
833 with the previous X87 value in %st0. */
834 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
835 regnum = AMD64_ST0_REGNUM;
836 offset = 8;
837 len = 2;
838 break;
839
840 case AMD64_NO_CLASS:
841 continue;
842
843 default:
844 gdb_assert (!"Unexpected register class.");
845 }
846
847 gdb_assert (regnum != -1);
848
849 if (readbuf)
850 regcache_raw_read_part (regcache, regnum, offset, std::min (len, 8),
851 readbuf + i * 8);
852 if (writebuf)
853 regcache_raw_write_part (regcache, regnum, offset, std::min (len, 8),
854 writebuf + i * 8);
855 }
856
857 return RETURN_VALUE_REGISTER_CONVENTION;
858 }
859 \f
860
861 static CORE_ADDR
862 amd64_push_arguments (struct regcache *regcache, int nargs,
863 struct value **args, CORE_ADDR sp, int struct_return)
864 {
865 static int integer_regnum[] =
866 {
867 AMD64_RDI_REGNUM, /* %rdi */
868 AMD64_RSI_REGNUM, /* %rsi */
869 AMD64_RDX_REGNUM, /* %rdx */
870 AMD64_RCX_REGNUM, /* %rcx */
871 AMD64_R8_REGNUM, /* %r8 */
872 AMD64_R9_REGNUM /* %r9 */
873 };
874 static int sse_regnum[] =
875 {
876 /* %xmm0 ... %xmm7 */
877 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
878 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
879 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
880 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
881 };
882 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
883 int num_stack_args = 0;
884 int num_elements = 0;
885 int element = 0;
886 int integer_reg = 0;
887 int sse_reg = 0;
888 int i;
889
890 /* Reserve a register for the "hidden" argument. */
891 if (struct_return)
892 integer_reg++;
893
894 for (i = 0; i < nargs; i++)
895 {
896 struct type *type = value_type (args[i]);
897 int len = TYPE_LENGTH (type);
898 enum amd64_reg_class theclass[2];
899 int needed_integer_regs = 0;
900 int needed_sse_regs = 0;
901 int j;
902
903 /* Classify argument. */
904 amd64_classify (type, theclass);
905
906 /* Calculate the number of integer and SSE registers needed for
907 this argument. */
908 for (j = 0; j < 2; j++)
909 {
910 if (theclass[j] == AMD64_INTEGER)
911 needed_integer_regs++;
912 else if (theclass[j] == AMD64_SSE)
913 needed_sse_regs++;
914 }
915
916 /* Check whether enough registers are available, and if the
917 argument should be passed in registers at all. */
918 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
919 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
920 || (needed_integer_regs == 0 && needed_sse_regs == 0))
921 {
922 /* The argument will be passed on the stack. */
923 num_elements += ((len + 7) / 8);
924 stack_args[num_stack_args++] = args[i];
925 }
926 else
927 {
928 /* The argument will be passed in registers. */
929 const gdb_byte *valbuf = value_contents (args[i]);
930 gdb_byte buf[8];
931
932 gdb_assert (len <= 16);
933
934 for (j = 0; len > 0; j++, len -= 8)
935 {
936 int regnum = -1;
937 int offset = 0;
938
939 switch (theclass[j])
940 {
941 case AMD64_INTEGER:
942 regnum = integer_regnum[integer_reg++];
943 break;
944
945 case AMD64_SSE:
946 regnum = sse_regnum[sse_reg++];
947 break;
948
949 case AMD64_SSEUP:
950 gdb_assert (sse_reg > 0);
951 regnum = sse_regnum[sse_reg - 1];
952 offset = 8;
953 break;
954
955 default:
956 gdb_assert (!"Unexpected register class.");
957 }
958
959 gdb_assert (regnum != -1);
960 memset (buf, 0, sizeof buf);
961 memcpy (buf, valbuf + j * 8, std::min (len, 8));
962 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
963 }
964 }
965 }
966
967 /* Allocate space for the arguments on the stack. */
968 sp -= num_elements * 8;
969
970 /* The psABI says that "The end of the input argument area shall be
971 aligned on a 16 byte boundary." */
972 sp &= ~0xf;
973
974 /* Write out the arguments to the stack. */
975 for (i = 0; i < num_stack_args; i++)
976 {
977 struct type *type = value_type (stack_args[i]);
978 const gdb_byte *valbuf = value_contents (stack_args[i]);
979 int len = TYPE_LENGTH (type);
980
981 write_memory (sp + element * 8, valbuf, len);
982 element += ((len + 7) / 8);
983 }
984
985 /* The psABI says that "For calls that may call functions that use
986 varargs or stdargs (prototype-less calls or calls to functions
987 containing ellipsis (...) in the declaration) %al is used as
988 hidden argument to specify the number of SSE registers used. */
989 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
990 return sp;
991 }
992
993 static CORE_ADDR
994 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
995 struct regcache *regcache, CORE_ADDR bp_addr,
996 int nargs, struct value **args, CORE_ADDR sp,
997 int struct_return, CORE_ADDR struct_addr)
998 {
999 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1000 gdb_byte buf[8];
1001
1002 /* Pass arguments. */
1003 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1004
1005 /* Pass "hidden" argument". */
1006 if (struct_return)
1007 {
1008 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1009 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1010 }
1011
1012 /* Store return address. */
1013 sp -= 8;
1014 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1015 write_memory (sp, buf, 8);
1016
1017 /* Finally, update the stack pointer... */
1018 store_unsigned_integer (buf, 8, byte_order, sp);
1019 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1020
1021 /* ...and fake a frame pointer. */
1022 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1023
1024 return sp + 16;
1025 }
1026 \f
1027 /* Displaced instruction handling. */
1028
1029 /* A partially decoded instruction.
1030 This contains enough details for displaced stepping purposes. */
1031
1032 struct amd64_insn
1033 {
1034 /* The number of opcode bytes. */
1035 int opcode_len;
1036 /* The offset of the rex prefix or -1 if not present. */
1037 int rex_offset;
1038 /* The offset to the first opcode byte. */
1039 int opcode_offset;
1040 /* The offset to the modrm byte or -1 if not present. */
1041 int modrm_offset;
1042
1043 /* The raw instruction. */
1044 gdb_byte *raw_insn;
1045 };
1046
1047 struct displaced_step_closure
1048 {
1049 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1050 int tmp_used;
1051 int tmp_regno;
1052 ULONGEST tmp_save;
1053
1054 /* Details of the instruction. */
1055 struct amd64_insn insn_details;
1056
1057 /* Amount of space allocated to insn_buf. */
1058 int max_len;
1059
1060 /* The possibly modified insn.
1061 This is a variable-length field. */
1062 gdb_byte insn_buf[1];
1063 };
1064
1065 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1066 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1067 at which point delete these in favor of libopcodes' versions). */
1068
1069 static const unsigned char onebyte_has_modrm[256] = {
1070 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1071 /* ------------------------------- */
1072 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1073 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1074 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1075 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1076 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1077 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1078 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1079 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1080 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1081 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1082 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1083 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1084 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1085 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1086 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1087 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1088 /* ------------------------------- */
1089 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1090 };
1091
1092 static const unsigned char twobyte_has_modrm[256] = {
1093 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1094 /* ------------------------------- */
1095 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1096 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1097 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1098 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1099 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1100 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1101 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1102 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1103 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1104 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1105 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1106 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1107 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1108 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1109 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1110 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1111 /* ------------------------------- */
1112 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1113 };
1114
1115 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1116
1117 static int
1118 rex_prefix_p (gdb_byte pfx)
1119 {
1120 return REX_PREFIX_P (pfx);
1121 }
1122
1123 /* Skip the legacy instruction prefixes in INSN.
1124 We assume INSN is properly sentineled so we don't have to worry
1125 about falling off the end of the buffer. */
1126
1127 static gdb_byte *
1128 amd64_skip_prefixes (gdb_byte *insn)
1129 {
1130 while (1)
1131 {
1132 switch (*insn)
1133 {
1134 case DATA_PREFIX_OPCODE:
1135 case ADDR_PREFIX_OPCODE:
1136 case CS_PREFIX_OPCODE:
1137 case DS_PREFIX_OPCODE:
1138 case ES_PREFIX_OPCODE:
1139 case FS_PREFIX_OPCODE:
1140 case GS_PREFIX_OPCODE:
1141 case SS_PREFIX_OPCODE:
1142 case LOCK_PREFIX_OPCODE:
1143 case REPE_PREFIX_OPCODE:
1144 case REPNE_PREFIX_OPCODE:
1145 ++insn;
1146 continue;
1147 default:
1148 break;
1149 }
1150 break;
1151 }
1152
1153 return insn;
1154 }
1155
1156 /* Return an integer register (other than RSP) that is unused as an input
1157 operand in INSN.
1158 In order to not require adding a rex prefix if the insn doesn't already
1159 have one, the result is restricted to RAX ... RDI, sans RSP.
1160 The register numbering of the result follows architecture ordering,
1161 e.g. RDI = 7. */
1162
1163 static int
1164 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1165 {
1166 /* 1 bit for each reg */
1167 int used_regs_mask = 0;
1168
1169 /* There can be at most 3 int regs used as inputs in an insn, and we have
1170 7 to choose from (RAX ... RDI, sans RSP).
1171 This allows us to take a conservative approach and keep things simple.
1172 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1173 that implicitly specify RAX. */
1174
1175 /* Avoid RAX. */
1176 used_regs_mask |= 1 << EAX_REG_NUM;
1177 /* Similarily avoid RDX, implicit operand in divides. */
1178 used_regs_mask |= 1 << EDX_REG_NUM;
1179 /* Avoid RSP. */
1180 used_regs_mask |= 1 << ESP_REG_NUM;
1181
1182 /* If the opcode is one byte long and there's no ModRM byte,
1183 assume the opcode specifies a register. */
1184 if (details->opcode_len == 1 && details->modrm_offset == -1)
1185 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1186
1187 /* Mark used regs in the modrm/sib bytes. */
1188 if (details->modrm_offset != -1)
1189 {
1190 int modrm = details->raw_insn[details->modrm_offset];
1191 int mod = MODRM_MOD_FIELD (modrm);
1192 int reg = MODRM_REG_FIELD (modrm);
1193 int rm = MODRM_RM_FIELD (modrm);
1194 int have_sib = mod != 3 && rm == 4;
1195
1196 /* Assume the reg field of the modrm byte specifies a register. */
1197 used_regs_mask |= 1 << reg;
1198
1199 if (have_sib)
1200 {
1201 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1202 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1203 used_regs_mask |= 1 << base;
1204 used_regs_mask |= 1 << idx;
1205 }
1206 else
1207 {
1208 used_regs_mask |= 1 << rm;
1209 }
1210 }
1211
1212 gdb_assert (used_regs_mask < 256);
1213 gdb_assert (used_regs_mask != 255);
1214
1215 /* Finally, find a free reg. */
1216 {
1217 int i;
1218
1219 for (i = 0; i < 8; ++i)
1220 {
1221 if (! (used_regs_mask & (1 << i)))
1222 return i;
1223 }
1224
1225 /* We shouldn't get here. */
1226 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1227 }
1228 }
1229
1230 /* Extract the details of INSN that we need. */
1231
1232 static void
1233 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1234 {
1235 gdb_byte *start = insn;
1236 int need_modrm;
1237
1238 details->raw_insn = insn;
1239
1240 details->opcode_len = -1;
1241 details->rex_offset = -1;
1242 details->opcode_offset = -1;
1243 details->modrm_offset = -1;
1244
1245 /* Skip legacy instruction prefixes. */
1246 insn = amd64_skip_prefixes (insn);
1247
1248 /* Skip REX instruction prefix. */
1249 if (rex_prefix_p (*insn))
1250 {
1251 details->rex_offset = insn - start;
1252 ++insn;
1253 }
1254
1255 details->opcode_offset = insn - start;
1256
1257 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1258 {
1259 /* Two or three-byte opcode. */
1260 ++insn;
1261 need_modrm = twobyte_has_modrm[*insn];
1262
1263 /* Check for three-byte opcode. */
1264 switch (*insn)
1265 {
1266 case 0x24:
1267 case 0x25:
1268 case 0x38:
1269 case 0x3a:
1270 case 0x7a:
1271 case 0x7b:
1272 ++insn;
1273 details->opcode_len = 3;
1274 break;
1275 default:
1276 details->opcode_len = 2;
1277 break;
1278 }
1279 }
1280 else
1281 {
1282 /* One-byte opcode. */
1283 need_modrm = onebyte_has_modrm[*insn];
1284 details->opcode_len = 1;
1285 }
1286
1287 if (need_modrm)
1288 {
1289 ++insn;
1290 details->modrm_offset = insn - start;
1291 }
1292 }
1293
1294 /* Update %rip-relative addressing in INSN.
1295
1296 %rip-relative addressing only uses a 32-bit displacement.
1297 32 bits is not enough to be guaranteed to cover the distance between where
1298 the real instruction is and where its copy is.
1299 Convert the insn to use base+disp addressing.
1300 We set base = pc + insn_length so we can leave disp unchanged. */
1301
1302 static void
1303 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1304 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1305 {
1306 const struct amd64_insn *insn_details = &dsc->insn_details;
1307 int modrm_offset = insn_details->modrm_offset;
1308 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1309 CORE_ADDR rip_base;
1310 int insn_length;
1311 int arch_tmp_regno, tmp_regno;
1312 ULONGEST orig_value;
1313
1314 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1315 ++insn;
1316
1317 /* Compute the rip-relative address. */
1318 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1319 dsc->max_len, from);
1320 rip_base = from + insn_length;
1321
1322 /* We need a register to hold the address.
1323 Pick one not used in the insn.
1324 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1325 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1326 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1327
1328 /* REX.B should be unset as we were using rip-relative addressing,
1329 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1330 if (insn_details->rex_offset != -1)
1331 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1332
1333 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1334 dsc->tmp_regno = tmp_regno;
1335 dsc->tmp_save = orig_value;
1336 dsc->tmp_used = 1;
1337
1338 /* Convert the ModRM field to be base+disp. */
1339 dsc->insn_buf[modrm_offset] &= ~0xc7;
1340 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1341
1342 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1343
1344 if (debug_displaced)
1345 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1346 "displaced: using temp reg %d, old value %s, new value %s\n",
1347 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1348 paddress (gdbarch, rip_base));
1349 }
1350
1351 static void
1352 fixup_displaced_copy (struct gdbarch *gdbarch,
1353 struct displaced_step_closure *dsc,
1354 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1355 {
1356 const struct amd64_insn *details = &dsc->insn_details;
1357
1358 if (details->modrm_offset != -1)
1359 {
1360 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1361
1362 if ((modrm & 0xc7) == 0x05)
1363 {
1364 /* The insn uses rip-relative addressing.
1365 Deal with it. */
1366 fixup_riprel (gdbarch, dsc, from, to, regs);
1367 }
1368 }
1369 }
1370
1371 struct displaced_step_closure *
1372 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1373 CORE_ADDR from, CORE_ADDR to,
1374 struct regcache *regs)
1375 {
1376 int len = gdbarch_max_insn_length (gdbarch);
1377 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1378 continually watch for running off the end of the buffer. */
1379 int fixup_sentinel_space = len;
1380 struct displaced_step_closure *dsc
1381 = ((struct displaced_step_closure *)
1382 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space));
1383 gdb_byte *buf = &dsc->insn_buf[0];
1384 struct amd64_insn *details = &dsc->insn_details;
1385
1386 dsc->tmp_used = 0;
1387 dsc->max_len = len + fixup_sentinel_space;
1388
1389 read_memory (from, buf, len);
1390
1391 /* Set up the sentinel space so we don't have to worry about running
1392 off the end of the buffer. An excessive number of leading prefixes
1393 could otherwise cause this. */
1394 memset (buf + len, 0, fixup_sentinel_space);
1395
1396 amd64_get_insn_details (buf, details);
1397
1398 /* GDB may get control back after the insn after the syscall.
1399 Presumably this is a kernel bug.
1400 If this is a syscall, make sure there's a nop afterwards. */
1401 {
1402 int syscall_length;
1403
1404 if (amd64_syscall_p (details, &syscall_length))
1405 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1406 }
1407
1408 /* Modify the insn to cope with the address where it will be executed from.
1409 In particular, handle any rip-relative addressing. */
1410 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1411
1412 write_memory (to, buf, len);
1413
1414 if (debug_displaced)
1415 {
1416 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1417 paddress (gdbarch, from), paddress (gdbarch, to));
1418 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1419 }
1420
1421 return dsc;
1422 }
1423
1424 static int
1425 amd64_absolute_jmp_p (const struct amd64_insn *details)
1426 {
1427 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1428
1429 if (insn[0] == 0xff)
1430 {
1431 /* jump near, absolute indirect (/4) */
1432 if ((insn[1] & 0x38) == 0x20)
1433 return 1;
1434
1435 /* jump far, absolute indirect (/5) */
1436 if ((insn[1] & 0x38) == 0x28)
1437 return 1;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1444
1445 static int
1446 amd64_jmp_p (const struct amd64_insn *details)
1447 {
1448 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1449
1450 /* jump short, relative. */
1451 if (insn[0] == 0xeb)
1452 return 1;
1453
1454 /* jump near, relative. */
1455 if (insn[0] == 0xe9)
1456 return 1;
1457
1458 return amd64_absolute_jmp_p (details);
1459 }
1460
1461 static int
1462 amd64_absolute_call_p (const struct amd64_insn *details)
1463 {
1464 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1465
1466 if (insn[0] == 0xff)
1467 {
1468 /* Call near, absolute indirect (/2) */
1469 if ((insn[1] & 0x38) == 0x10)
1470 return 1;
1471
1472 /* Call far, absolute indirect (/3) */
1473 if ((insn[1] & 0x38) == 0x18)
1474 return 1;
1475 }
1476
1477 return 0;
1478 }
1479
1480 static int
1481 amd64_ret_p (const struct amd64_insn *details)
1482 {
1483 /* NOTE: gcc can emit "repz ; ret". */
1484 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1485
1486 switch (insn[0])
1487 {
1488 case 0xc2: /* ret near, pop N bytes */
1489 case 0xc3: /* ret near */
1490 case 0xca: /* ret far, pop N bytes */
1491 case 0xcb: /* ret far */
1492 case 0xcf: /* iret */
1493 return 1;
1494
1495 default:
1496 return 0;
1497 }
1498 }
1499
1500 static int
1501 amd64_call_p (const struct amd64_insn *details)
1502 {
1503 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1504
1505 if (amd64_absolute_call_p (details))
1506 return 1;
1507
1508 /* call near, relative */
1509 if (insn[0] == 0xe8)
1510 return 1;
1511
1512 return 0;
1513 }
1514
1515 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1516 length in bytes. Otherwise, return zero. */
1517
1518 static int
1519 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1520 {
1521 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1522
1523 if (insn[0] == 0x0f && insn[1] == 0x05)
1524 {
1525 *lengthp = 2;
1526 return 1;
1527 }
1528
1529 return 0;
1530 }
1531
1532 /* Classify the instruction at ADDR using PRED.
1533 Throw an error if the memory can't be read. */
1534
1535 static int
1536 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1537 int (*pred) (const struct amd64_insn *))
1538 {
1539 struct amd64_insn details;
1540 gdb_byte *buf;
1541 int len, classification;
1542
1543 len = gdbarch_max_insn_length (gdbarch);
1544 buf = (gdb_byte *) alloca (len);
1545
1546 read_code (addr, buf, len);
1547 amd64_get_insn_details (buf, &details);
1548
1549 classification = pred (&details);
1550
1551 return classification;
1552 }
1553
1554 /* The gdbarch insn_is_call method. */
1555
1556 static int
1557 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1558 {
1559 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1560 }
1561
1562 /* The gdbarch insn_is_ret method. */
1563
1564 static int
1565 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1566 {
1567 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1568 }
1569
1570 /* The gdbarch insn_is_jump method. */
1571
1572 static int
1573 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1574 {
1575 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1576 }
1577
1578 /* Fix up the state of registers and memory after having single-stepped
1579 a displaced instruction. */
1580
1581 void
1582 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1583 struct displaced_step_closure *dsc,
1584 CORE_ADDR from, CORE_ADDR to,
1585 struct regcache *regs)
1586 {
1587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1588 /* The offset we applied to the instruction's address. */
1589 ULONGEST insn_offset = to - from;
1590 gdb_byte *insn = dsc->insn_buf;
1591 const struct amd64_insn *insn_details = &dsc->insn_details;
1592
1593 if (debug_displaced)
1594 fprintf_unfiltered (gdb_stdlog,
1595 "displaced: fixup (%s, %s), "
1596 "insn = 0x%02x 0x%02x ...\n",
1597 paddress (gdbarch, from), paddress (gdbarch, to),
1598 insn[0], insn[1]);
1599
1600 /* If we used a tmp reg, restore it. */
1601
1602 if (dsc->tmp_used)
1603 {
1604 if (debug_displaced)
1605 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1606 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1607 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1608 }
1609
1610 /* The list of issues to contend with here is taken from
1611 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1612 Yay for Free Software! */
1613
1614 /* Relocate the %rip back to the program's instruction stream,
1615 if necessary. */
1616
1617 /* Except in the case of absolute or indirect jump or call
1618 instructions, or a return instruction, the new rip is relative to
1619 the displaced instruction; make it relative to the original insn.
1620 Well, signal handler returns don't need relocation either, but we use the
1621 value of %rip to recognize those; see below. */
1622 if (! amd64_absolute_jmp_p (insn_details)
1623 && ! amd64_absolute_call_p (insn_details)
1624 && ! amd64_ret_p (insn_details))
1625 {
1626 ULONGEST orig_rip;
1627 int insn_len;
1628
1629 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1630
1631 /* A signal trampoline system call changes the %rip, resuming
1632 execution of the main program after the signal handler has
1633 returned. That makes them like 'return' instructions; we
1634 shouldn't relocate %rip.
1635
1636 But most system calls don't, and we do need to relocate %rip.
1637
1638 Our heuristic for distinguishing these cases: if stepping
1639 over the system call instruction left control directly after
1640 the instruction, the we relocate --- control almost certainly
1641 doesn't belong in the displaced copy. Otherwise, we assume
1642 the instruction has put control where it belongs, and leave
1643 it unrelocated. Goodness help us if there are PC-relative
1644 system calls. */
1645 if (amd64_syscall_p (insn_details, &insn_len)
1646 && orig_rip != to + insn_len
1647 /* GDB can get control back after the insn after the syscall.
1648 Presumably this is a kernel bug.
1649 Fixup ensures its a nop, we add one to the length for it. */
1650 && orig_rip != to + insn_len + 1)
1651 {
1652 if (debug_displaced)
1653 fprintf_unfiltered (gdb_stdlog,
1654 "displaced: syscall changed %%rip; "
1655 "not relocating\n");
1656 }
1657 else
1658 {
1659 ULONGEST rip = orig_rip - insn_offset;
1660
1661 /* If we just stepped over a breakpoint insn, we don't backup
1662 the pc on purpose; this is to match behaviour without
1663 stepping. */
1664
1665 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1666
1667 if (debug_displaced)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "displaced: "
1670 "relocated %%rip from %s to %s\n",
1671 paddress (gdbarch, orig_rip),
1672 paddress (gdbarch, rip));
1673 }
1674 }
1675
1676 /* If the instruction was PUSHFL, then the TF bit will be set in the
1677 pushed value, and should be cleared. We'll leave this for later,
1678 since GDB already messes up the TF flag when stepping over a
1679 pushfl. */
1680
1681 /* If the instruction was a call, the return address now atop the
1682 stack is the address following the copied instruction. We need
1683 to make it the address following the original instruction. */
1684 if (amd64_call_p (insn_details))
1685 {
1686 ULONGEST rsp;
1687 ULONGEST retaddr;
1688 const ULONGEST retaddr_len = 8;
1689
1690 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1691 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1692 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1693 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1694
1695 if (debug_displaced)
1696 fprintf_unfiltered (gdb_stdlog,
1697 "displaced: relocated return addr at %s "
1698 "to %s\n",
1699 paddress (gdbarch, rsp),
1700 paddress (gdbarch, retaddr));
1701 }
1702 }
1703
1704 /* If the instruction INSN uses RIP-relative addressing, return the
1705 offset into the raw INSN where the displacement to be adjusted is
1706 found. Returns 0 if the instruction doesn't use RIP-relative
1707 addressing. */
1708
1709 static int
1710 rip_relative_offset (struct amd64_insn *insn)
1711 {
1712 if (insn->modrm_offset != -1)
1713 {
1714 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1715
1716 if ((modrm & 0xc7) == 0x05)
1717 {
1718 /* The displacement is found right after the ModRM byte. */
1719 return insn->modrm_offset + 1;
1720 }
1721 }
1722
1723 return 0;
1724 }
1725
1726 static void
1727 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1728 {
1729 target_write_memory (*to, buf, len);
1730 *to += len;
1731 }
1732
1733 static void
1734 amd64_relocate_instruction (struct gdbarch *gdbarch,
1735 CORE_ADDR *to, CORE_ADDR oldloc)
1736 {
1737 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1738 int len = gdbarch_max_insn_length (gdbarch);
1739 /* Extra space for sentinels. */
1740 int fixup_sentinel_space = len;
1741 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1742 struct amd64_insn insn_details;
1743 int offset = 0;
1744 LONGEST rel32, newrel;
1745 gdb_byte *insn;
1746 int insn_length;
1747
1748 read_memory (oldloc, buf, len);
1749
1750 /* Set up the sentinel space so we don't have to worry about running
1751 off the end of the buffer. An excessive number of leading prefixes
1752 could otherwise cause this. */
1753 memset (buf + len, 0, fixup_sentinel_space);
1754
1755 insn = buf;
1756 amd64_get_insn_details (insn, &insn_details);
1757
1758 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1759
1760 /* Skip legacy instruction prefixes. */
1761 insn = amd64_skip_prefixes (insn);
1762
1763 /* Adjust calls with 32-bit relative addresses as push/jump, with
1764 the address pushed being the location where the original call in
1765 the user program would return to. */
1766 if (insn[0] == 0xe8)
1767 {
1768 gdb_byte push_buf[32];
1769 CORE_ADDR ret_addr;
1770 int i = 0;
1771
1772 /* Where "ret" in the original code will return to. */
1773 ret_addr = oldloc + insn_length;
1774
1775 /* If pushing an address higher than or equal to 0x80000000,
1776 avoid 'pushq', as that sign extends its 32-bit operand, which
1777 would be incorrect. */
1778 if (ret_addr <= 0x7fffffff)
1779 {
1780 push_buf[0] = 0x68; /* pushq $... */
1781 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1782 i = 5;
1783 }
1784 else
1785 {
1786 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1787 push_buf[i++] = 0x83;
1788 push_buf[i++] = 0xec;
1789 push_buf[i++] = 0x08;
1790
1791 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1792 push_buf[i++] = 0x04;
1793 push_buf[i++] = 0x24;
1794 store_unsigned_integer (&push_buf[i], 4, byte_order,
1795 ret_addr & 0xffffffff);
1796 i += 4;
1797
1798 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1799 push_buf[i++] = 0x44;
1800 push_buf[i++] = 0x24;
1801 push_buf[i++] = 0x04;
1802 store_unsigned_integer (&push_buf[i], 4, byte_order,
1803 ret_addr >> 32);
1804 i += 4;
1805 }
1806 gdb_assert (i <= sizeof (push_buf));
1807 /* Push the push. */
1808 append_insns (to, i, push_buf);
1809
1810 /* Convert the relative call to a relative jump. */
1811 insn[0] = 0xe9;
1812
1813 /* Adjust the destination offset. */
1814 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1815 newrel = (oldloc - *to) + rel32;
1816 store_signed_integer (insn + 1, 4, byte_order, newrel);
1817
1818 if (debug_displaced)
1819 fprintf_unfiltered (gdb_stdlog,
1820 "Adjusted insn rel32=%s at %s to"
1821 " rel32=%s at %s\n",
1822 hex_string (rel32), paddress (gdbarch, oldloc),
1823 hex_string (newrel), paddress (gdbarch, *to));
1824
1825 /* Write the adjusted jump into its displaced location. */
1826 append_insns (to, 5, insn);
1827 return;
1828 }
1829
1830 offset = rip_relative_offset (&insn_details);
1831 if (!offset)
1832 {
1833 /* Adjust jumps with 32-bit relative addresses. Calls are
1834 already handled above. */
1835 if (insn[0] == 0xe9)
1836 offset = 1;
1837 /* Adjust conditional jumps. */
1838 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1839 offset = 2;
1840 }
1841
1842 if (offset)
1843 {
1844 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1845 newrel = (oldloc - *to) + rel32;
1846 store_signed_integer (insn + offset, 4, byte_order, newrel);
1847 if (debug_displaced)
1848 fprintf_unfiltered (gdb_stdlog,
1849 "Adjusted insn rel32=%s at %s to"
1850 " rel32=%s at %s\n",
1851 hex_string (rel32), paddress (gdbarch, oldloc),
1852 hex_string (newrel), paddress (gdbarch, *to));
1853 }
1854
1855 /* Write the adjusted instruction into its displaced location. */
1856 append_insns (to, insn_length, buf);
1857 }
1858
1859 \f
1860 /* The maximum number of saved registers. This should include %rip. */
1861 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1862
1863 struct amd64_frame_cache
1864 {
1865 /* Base address. */
1866 CORE_ADDR base;
1867 int base_p;
1868 CORE_ADDR sp_offset;
1869 CORE_ADDR pc;
1870
1871 /* Saved registers. */
1872 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1873 CORE_ADDR saved_sp;
1874 int saved_sp_reg;
1875
1876 /* Do we have a frame? */
1877 int frameless_p;
1878 };
1879
1880 /* Initialize a frame cache. */
1881
1882 static void
1883 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1884 {
1885 int i;
1886
1887 /* Base address. */
1888 cache->base = 0;
1889 cache->base_p = 0;
1890 cache->sp_offset = -8;
1891 cache->pc = 0;
1892
1893 /* Saved registers. We initialize these to -1 since zero is a valid
1894 offset (that's where %rbp is supposed to be stored).
1895 The values start out as being offsets, and are later converted to
1896 addresses (at which point -1 is interpreted as an address, still meaning
1897 "invalid"). */
1898 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1899 cache->saved_regs[i] = -1;
1900 cache->saved_sp = 0;
1901 cache->saved_sp_reg = -1;
1902
1903 /* Frameless until proven otherwise. */
1904 cache->frameless_p = 1;
1905 }
1906
1907 /* Allocate and initialize a frame cache. */
1908
1909 static struct amd64_frame_cache *
1910 amd64_alloc_frame_cache (void)
1911 {
1912 struct amd64_frame_cache *cache;
1913
1914 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1915 amd64_init_frame_cache (cache);
1916 return cache;
1917 }
1918
1919 /* GCC 4.4 and later, can put code in the prologue to realign the
1920 stack pointer. Check whether PC points to such code, and update
1921 CACHE accordingly. Return the first instruction after the code
1922 sequence or CURRENT_PC, whichever is smaller. If we don't
1923 recognize the code, return PC. */
1924
1925 static CORE_ADDR
1926 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1927 struct amd64_frame_cache *cache)
1928 {
1929 /* There are 2 code sequences to re-align stack before the frame
1930 gets set up:
1931
1932 1. Use a caller-saved saved register:
1933
1934 leaq 8(%rsp), %reg
1935 andq $-XXX, %rsp
1936 pushq -8(%reg)
1937
1938 2. Use a callee-saved saved register:
1939
1940 pushq %reg
1941 leaq 16(%rsp), %reg
1942 andq $-XXX, %rsp
1943 pushq -8(%reg)
1944
1945 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1946
1947 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1948 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1949 */
1950
1951 gdb_byte buf[18];
1952 int reg, r;
1953 int offset, offset_and;
1954
1955 if (target_read_code (pc, buf, sizeof buf))
1956 return pc;
1957
1958 /* Check caller-saved saved register. The first instruction has
1959 to be "leaq 8(%rsp), %reg". */
1960 if ((buf[0] & 0xfb) == 0x48
1961 && buf[1] == 0x8d
1962 && buf[3] == 0x24
1963 && buf[4] == 0x8)
1964 {
1965 /* MOD must be binary 10 and R/M must be binary 100. */
1966 if ((buf[2] & 0xc7) != 0x44)
1967 return pc;
1968
1969 /* REG has register number. */
1970 reg = (buf[2] >> 3) & 7;
1971
1972 /* Check the REX.R bit. */
1973 if (buf[0] == 0x4c)
1974 reg += 8;
1975
1976 offset = 5;
1977 }
1978 else
1979 {
1980 /* Check callee-saved saved register. The first instruction
1981 has to be "pushq %reg". */
1982 reg = 0;
1983 if ((buf[0] & 0xf8) == 0x50)
1984 offset = 0;
1985 else if ((buf[0] & 0xf6) == 0x40
1986 && (buf[1] & 0xf8) == 0x50)
1987 {
1988 /* Check the REX.B bit. */
1989 if ((buf[0] & 1) != 0)
1990 reg = 8;
1991
1992 offset = 1;
1993 }
1994 else
1995 return pc;
1996
1997 /* Get register. */
1998 reg += buf[offset] & 0x7;
1999
2000 offset++;
2001
2002 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2003 if ((buf[offset] & 0xfb) != 0x48
2004 || buf[offset + 1] != 0x8d
2005 || buf[offset + 3] != 0x24
2006 || buf[offset + 4] != 0x10)
2007 return pc;
2008
2009 /* MOD must be binary 10 and R/M must be binary 100. */
2010 if ((buf[offset + 2] & 0xc7) != 0x44)
2011 return pc;
2012
2013 /* REG has register number. */
2014 r = (buf[offset + 2] >> 3) & 7;
2015
2016 /* Check the REX.R bit. */
2017 if (buf[offset] == 0x4c)
2018 r += 8;
2019
2020 /* Registers in pushq and leaq have to be the same. */
2021 if (reg != r)
2022 return pc;
2023
2024 offset += 5;
2025 }
2026
2027 /* Rigister can't be %rsp nor %rbp. */
2028 if (reg == 4 || reg == 5)
2029 return pc;
2030
2031 /* The next instruction has to be "andq $-XXX, %rsp". */
2032 if (buf[offset] != 0x48
2033 || buf[offset + 2] != 0xe4
2034 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2035 return pc;
2036
2037 offset_and = offset;
2038 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2039
2040 /* The next instruction has to be "pushq -8(%reg)". */
2041 r = 0;
2042 if (buf[offset] == 0xff)
2043 offset++;
2044 else if ((buf[offset] & 0xf6) == 0x40
2045 && buf[offset + 1] == 0xff)
2046 {
2047 /* Check the REX.B bit. */
2048 if ((buf[offset] & 0x1) != 0)
2049 r = 8;
2050 offset += 2;
2051 }
2052 else
2053 return pc;
2054
2055 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2056 01. */
2057 if (buf[offset + 1] != 0xf8
2058 || (buf[offset] & 0xf8) != 0x70)
2059 return pc;
2060
2061 /* R/M has register. */
2062 r += buf[offset] & 7;
2063
2064 /* Registers in leaq and pushq have to be the same. */
2065 if (reg != r)
2066 return pc;
2067
2068 if (current_pc > pc + offset_and)
2069 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2070
2071 return std::min (pc + offset + 2, current_pc);
2072 }
2073
2074 /* Similar to amd64_analyze_stack_align for x32. */
2075
2076 static CORE_ADDR
2077 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2078 struct amd64_frame_cache *cache)
2079 {
2080 /* There are 2 code sequences to re-align stack before the frame
2081 gets set up:
2082
2083 1. Use a caller-saved saved register:
2084
2085 leaq 8(%rsp), %reg
2086 andq $-XXX, %rsp
2087 pushq -8(%reg)
2088
2089 or
2090
2091 [addr32] leal 8(%rsp), %reg
2092 andl $-XXX, %esp
2093 [addr32] pushq -8(%reg)
2094
2095 2. Use a callee-saved saved register:
2096
2097 pushq %reg
2098 leaq 16(%rsp), %reg
2099 andq $-XXX, %rsp
2100 pushq -8(%reg)
2101
2102 or
2103
2104 pushq %reg
2105 [addr32] leal 16(%rsp), %reg
2106 andl $-XXX, %esp
2107 [addr32] pushq -8(%reg)
2108
2109 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2110
2111 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2112 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2113
2114 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2115
2116 0x83 0xe4 0xf0 andl $-16, %esp
2117 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2118 */
2119
2120 gdb_byte buf[19];
2121 int reg, r;
2122 int offset, offset_and;
2123
2124 if (target_read_memory (pc, buf, sizeof buf))
2125 return pc;
2126
2127 /* Skip optional addr32 prefix. */
2128 offset = buf[0] == 0x67 ? 1 : 0;
2129
2130 /* Check caller-saved saved register. The first instruction has
2131 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2132 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2133 && buf[offset + 1] == 0x8d
2134 && buf[offset + 3] == 0x24
2135 && buf[offset + 4] == 0x8)
2136 {
2137 /* MOD must be binary 10 and R/M must be binary 100. */
2138 if ((buf[offset + 2] & 0xc7) != 0x44)
2139 return pc;
2140
2141 /* REG has register number. */
2142 reg = (buf[offset + 2] >> 3) & 7;
2143
2144 /* Check the REX.R bit. */
2145 if ((buf[offset] & 0x4) != 0)
2146 reg += 8;
2147
2148 offset += 5;
2149 }
2150 else
2151 {
2152 /* Check callee-saved saved register. The first instruction
2153 has to be "pushq %reg". */
2154 reg = 0;
2155 if ((buf[offset] & 0xf6) == 0x40
2156 && (buf[offset + 1] & 0xf8) == 0x50)
2157 {
2158 /* Check the REX.B bit. */
2159 if ((buf[offset] & 1) != 0)
2160 reg = 8;
2161
2162 offset += 1;
2163 }
2164 else if ((buf[offset] & 0xf8) != 0x50)
2165 return pc;
2166
2167 /* Get register. */
2168 reg += buf[offset] & 0x7;
2169
2170 offset++;
2171
2172 /* Skip optional addr32 prefix. */
2173 if (buf[offset] == 0x67)
2174 offset++;
2175
2176 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2177 "leal 16(%rsp), %reg". */
2178 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2179 || buf[offset + 1] != 0x8d
2180 || buf[offset + 3] != 0x24
2181 || buf[offset + 4] != 0x10)
2182 return pc;
2183
2184 /* MOD must be binary 10 and R/M must be binary 100. */
2185 if ((buf[offset + 2] & 0xc7) != 0x44)
2186 return pc;
2187
2188 /* REG has register number. */
2189 r = (buf[offset + 2] >> 3) & 7;
2190
2191 /* Check the REX.R bit. */
2192 if ((buf[offset] & 0x4) != 0)
2193 r += 8;
2194
2195 /* Registers in pushq and leaq have to be the same. */
2196 if (reg != r)
2197 return pc;
2198
2199 offset += 5;
2200 }
2201
2202 /* Rigister can't be %rsp nor %rbp. */
2203 if (reg == 4 || reg == 5)
2204 return pc;
2205
2206 /* The next instruction may be "andq $-XXX, %rsp" or
2207 "andl $-XXX, %esp". */
2208 if (buf[offset] != 0x48)
2209 offset--;
2210
2211 if (buf[offset + 2] != 0xe4
2212 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2213 return pc;
2214
2215 offset_and = offset;
2216 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2217
2218 /* Skip optional addr32 prefix. */
2219 if (buf[offset] == 0x67)
2220 offset++;
2221
2222 /* The next instruction has to be "pushq -8(%reg)". */
2223 r = 0;
2224 if (buf[offset] == 0xff)
2225 offset++;
2226 else if ((buf[offset] & 0xf6) == 0x40
2227 && buf[offset + 1] == 0xff)
2228 {
2229 /* Check the REX.B bit. */
2230 if ((buf[offset] & 0x1) != 0)
2231 r = 8;
2232 offset += 2;
2233 }
2234 else
2235 return pc;
2236
2237 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2238 01. */
2239 if (buf[offset + 1] != 0xf8
2240 || (buf[offset] & 0xf8) != 0x70)
2241 return pc;
2242
2243 /* R/M has register. */
2244 r += buf[offset] & 7;
2245
2246 /* Registers in leaq and pushq have to be the same. */
2247 if (reg != r)
2248 return pc;
2249
2250 if (current_pc > pc + offset_and)
2251 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2252
2253 return std::min (pc + offset + 2, current_pc);
2254 }
2255
2256 /* Do a limited analysis of the prologue at PC and update CACHE
2257 accordingly. Bail out early if CURRENT_PC is reached. Return the
2258 address where the analysis stopped.
2259
2260 We will handle only functions beginning with:
2261
2262 pushq %rbp 0x55
2263 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2264
2265 or (for the X32 ABI):
2266
2267 pushq %rbp 0x55
2268 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2269
2270 Any function that doesn't start with one of these sequences will be
2271 assumed to have no prologue and thus no valid frame pointer in
2272 %rbp. */
2273
2274 static CORE_ADDR
2275 amd64_analyze_prologue (struct gdbarch *gdbarch,
2276 CORE_ADDR pc, CORE_ADDR current_pc,
2277 struct amd64_frame_cache *cache)
2278 {
2279 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2280 /* There are two variations of movq %rsp, %rbp. */
2281 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2282 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2283 /* Ditto for movl %esp, %ebp. */
2284 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2285 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2286
2287 gdb_byte buf[3];
2288 gdb_byte op;
2289
2290 if (current_pc <= pc)
2291 return current_pc;
2292
2293 if (gdbarch_ptr_bit (gdbarch) == 32)
2294 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2295 else
2296 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2297
2298 op = read_code_unsigned_integer (pc, 1, byte_order);
2299
2300 if (op == 0x55) /* pushq %rbp */
2301 {
2302 /* Take into account that we've executed the `pushq %rbp' that
2303 starts this instruction sequence. */
2304 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2305 cache->sp_offset += 8;
2306
2307 /* If that's all, return now. */
2308 if (current_pc <= pc + 1)
2309 return current_pc;
2310
2311 read_code (pc + 1, buf, 3);
2312
2313 /* Check for `movq %rsp, %rbp'. */
2314 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2315 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2316 {
2317 /* OK, we actually have a frame. */
2318 cache->frameless_p = 0;
2319 return pc + 4;
2320 }
2321
2322 /* For X32, also check for `movq %esp, %ebp'. */
2323 if (gdbarch_ptr_bit (gdbarch) == 32)
2324 {
2325 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2326 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2327 {
2328 /* OK, we actually have a frame. */
2329 cache->frameless_p = 0;
2330 return pc + 3;
2331 }
2332 }
2333
2334 return pc + 1;
2335 }
2336
2337 return pc;
2338 }
2339
2340 /* Work around false termination of prologue - GCC PR debug/48827.
2341
2342 START_PC is the first instruction of a function, PC is its minimal already
2343 determined advanced address. Function returns PC if it has nothing to do.
2344
2345 84 c0 test %al,%al
2346 74 23 je after
2347 <-- here is 0 lines advance - the false prologue end marker.
2348 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2349 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2350 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2351 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2352 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2353 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2354 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2355 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2356 after: */
2357
2358 static CORE_ADDR
2359 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2360 {
2361 struct symtab_and_line start_pc_sal, next_sal;
2362 gdb_byte buf[4 + 8 * 7];
2363 int offset, xmmreg;
2364
2365 if (pc == start_pc)
2366 return pc;
2367
2368 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2369 if (start_pc_sal.symtab == NULL
2370 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2371 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2372 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2373 return pc;
2374
2375 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2376 if (next_sal.line != start_pc_sal.line)
2377 return pc;
2378
2379 /* START_PC can be from overlayed memory, ignored here. */
2380 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2381 return pc;
2382
2383 /* test %al,%al */
2384 if (buf[0] != 0x84 || buf[1] != 0xc0)
2385 return pc;
2386 /* je AFTER */
2387 if (buf[2] != 0x74)
2388 return pc;
2389
2390 offset = 4;
2391 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2392 {
2393 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2394 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2395 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2396 return pc;
2397
2398 /* 0b01?????? */
2399 if ((buf[offset + 2] & 0xc0) == 0x40)
2400 {
2401 /* 8-bit displacement. */
2402 offset += 4;
2403 }
2404 /* 0b10?????? */
2405 else if ((buf[offset + 2] & 0xc0) == 0x80)
2406 {
2407 /* 32-bit displacement. */
2408 offset += 7;
2409 }
2410 else
2411 return pc;
2412 }
2413
2414 /* je AFTER */
2415 if (offset - 4 != buf[3])
2416 return pc;
2417
2418 return next_sal.end;
2419 }
2420
2421 /* Return PC of first real instruction. */
2422
2423 static CORE_ADDR
2424 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2425 {
2426 struct amd64_frame_cache cache;
2427 CORE_ADDR pc;
2428 CORE_ADDR func_addr;
2429
2430 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2431 {
2432 CORE_ADDR post_prologue_pc
2433 = skip_prologue_using_sal (gdbarch, func_addr);
2434 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2435
2436 /* Clang always emits a line note before the prologue and another
2437 one after. We trust clang to emit usable line notes. */
2438 if (post_prologue_pc
2439 && (cust != NULL
2440 && COMPUNIT_PRODUCER (cust) != NULL
2441 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2442 return std::max (start_pc, post_prologue_pc);
2443 }
2444
2445 amd64_init_frame_cache (&cache);
2446 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2447 &cache);
2448 if (cache.frameless_p)
2449 return start_pc;
2450
2451 return amd64_skip_xmm_prologue (pc, start_pc);
2452 }
2453 \f
2454
2455 /* Normal frames. */
2456
2457 static void
2458 amd64_frame_cache_1 (struct frame_info *this_frame,
2459 struct amd64_frame_cache *cache)
2460 {
2461 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2463 gdb_byte buf[8];
2464 int i;
2465
2466 cache->pc = get_frame_func (this_frame);
2467 if (cache->pc != 0)
2468 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2469 cache);
2470
2471 if (cache->frameless_p)
2472 {
2473 /* We didn't find a valid frame. If we're at the start of a
2474 function, or somewhere half-way its prologue, the function's
2475 frame probably hasn't been fully setup yet. Try to
2476 reconstruct the base address for the stack frame by looking
2477 at the stack pointer. For truly "frameless" functions this
2478 might work too. */
2479
2480 if (cache->saved_sp_reg != -1)
2481 {
2482 /* Stack pointer has been saved. */
2483 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2484 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2485
2486 /* We're halfway aligning the stack. */
2487 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2488 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2489
2490 /* This will be added back below. */
2491 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2492 }
2493 else
2494 {
2495 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2496 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2497 + cache->sp_offset;
2498 }
2499 }
2500 else
2501 {
2502 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2503 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2504 }
2505
2506 /* Now that we have the base address for the stack frame we can
2507 calculate the value of %rsp in the calling frame. */
2508 cache->saved_sp = cache->base + 16;
2509
2510 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2511 frame we find it at the same offset from the reconstructed base
2512 address. If we're halfway aligning the stack, %rip is handled
2513 differently (see above). */
2514 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2515 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2516
2517 /* Adjust all the saved registers such that they contain addresses
2518 instead of offsets. */
2519 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2520 if (cache->saved_regs[i] != -1)
2521 cache->saved_regs[i] += cache->base;
2522
2523 cache->base_p = 1;
2524 }
2525
2526 static struct amd64_frame_cache *
2527 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2528 {
2529 struct amd64_frame_cache *cache;
2530
2531 if (*this_cache)
2532 return (struct amd64_frame_cache *) *this_cache;
2533
2534 cache = amd64_alloc_frame_cache ();
2535 *this_cache = cache;
2536
2537 TRY
2538 {
2539 amd64_frame_cache_1 (this_frame, cache);
2540 }
2541 CATCH (ex, RETURN_MASK_ERROR)
2542 {
2543 if (ex.error != NOT_AVAILABLE_ERROR)
2544 throw_exception (ex);
2545 }
2546 END_CATCH
2547
2548 return cache;
2549 }
2550
2551 static enum unwind_stop_reason
2552 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2553 void **this_cache)
2554 {
2555 struct amd64_frame_cache *cache =
2556 amd64_frame_cache (this_frame, this_cache);
2557
2558 if (!cache->base_p)
2559 return UNWIND_UNAVAILABLE;
2560
2561 /* This marks the outermost frame. */
2562 if (cache->base == 0)
2563 return UNWIND_OUTERMOST;
2564
2565 return UNWIND_NO_REASON;
2566 }
2567
2568 static void
2569 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2570 struct frame_id *this_id)
2571 {
2572 struct amd64_frame_cache *cache =
2573 amd64_frame_cache (this_frame, this_cache);
2574
2575 if (!cache->base_p)
2576 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2577 else if (cache->base == 0)
2578 {
2579 /* This marks the outermost frame. */
2580 return;
2581 }
2582 else
2583 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2584 }
2585
2586 static struct value *
2587 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2588 int regnum)
2589 {
2590 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2591 struct amd64_frame_cache *cache =
2592 amd64_frame_cache (this_frame, this_cache);
2593
2594 gdb_assert (regnum >= 0);
2595
2596 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2597 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2598
2599 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2600 return frame_unwind_got_memory (this_frame, regnum,
2601 cache->saved_regs[regnum]);
2602
2603 return frame_unwind_got_register (this_frame, regnum, regnum);
2604 }
2605
2606 static const struct frame_unwind amd64_frame_unwind =
2607 {
2608 NORMAL_FRAME,
2609 amd64_frame_unwind_stop_reason,
2610 amd64_frame_this_id,
2611 amd64_frame_prev_register,
2612 NULL,
2613 default_frame_sniffer
2614 };
2615 \f
2616 /* Generate a bytecode expression to get the value of the saved PC. */
2617
2618 static void
2619 amd64_gen_return_address (struct gdbarch *gdbarch,
2620 struct agent_expr *ax, struct axs_value *value,
2621 CORE_ADDR scope)
2622 {
2623 /* The following sequence assumes the traditional use of the base
2624 register. */
2625 ax_reg (ax, AMD64_RBP_REGNUM);
2626 ax_const_l (ax, 8);
2627 ax_simple (ax, aop_add);
2628 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2629 value->kind = axs_lvalue_memory;
2630 }
2631 \f
2632
2633 /* Signal trampolines. */
2634
2635 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2636 64-bit variants. This would require using identical frame caches
2637 on both platforms. */
2638
2639 static struct amd64_frame_cache *
2640 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2641 {
2642 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2643 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2644 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2645 struct amd64_frame_cache *cache;
2646 CORE_ADDR addr;
2647 gdb_byte buf[8];
2648 int i;
2649
2650 if (*this_cache)
2651 return (struct amd64_frame_cache *) *this_cache;
2652
2653 cache = amd64_alloc_frame_cache ();
2654
2655 TRY
2656 {
2657 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2658 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2659
2660 addr = tdep->sigcontext_addr (this_frame);
2661 gdb_assert (tdep->sc_reg_offset);
2662 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2663 for (i = 0; i < tdep->sc_num_regs; i++)
2664 if (tdep->sc_reg_offset[i] != -1)
2665 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2666
2667 cache->base_p = 1;
2668 }
2669 CATCH (ex, RETURN_MASK_ERROR)
2670 {
2671 if (ex.error != NOT_AVAILABLE_ERROR)
2672 throw_exception (ex);
2673 }
2674 END_CATCH
2675
2676 *this_cache = cache;
2677 return cache;
2678 }
2679
2680 static enum unwind_stop_reason
2681 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2682 void **this_cache)
2683 {
2684 struct amd64_frame_cache *cache =
2685 amd64_sigtramp_frame_cache (this_frame, this_cache);
2686
2687 if (!cache->base_p)
2688 return UNWIND_UNAVAILABLE;
2689
2690 return UNWIND_NO_REASON;
2691 }
2692
2693 static void
2694 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2695 void **this_cache, struct frame_id *this_id)
2696 {
2697 struct amd64_frame_cache *cache =
2698 amd64_sigtramp_frame_cache (this_frame, this_cache);
2699
2700 if (!cache->base_p)
2701 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2702 else if (cache->base == 0)
2703 {
2704 /* This marks the outermost frame. */
2705 return;
2706 }
2707 else
2708 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2709 }
2710
2711 static struct value *
2712 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2713 void **this_cache, int regnum)
2714 {
2715 /* Make sure we've initialized the cache. */
2716 amd64_sigtramp_frame_cache (this_frame, this_cache);
2717
2718 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2719 }
2720
2721 static int
2722 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2723 struct frame_info *this_frame,
2724 void **this_cache)
2725 {
2726 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2727
2728 /* We shouldn't even bother if we don't have a sigcontext_addr
2729 handler. */
2730 if (tdep->sigcontext_addr == NULL)
2731 return 0;
2732
2733 if (tdep->sigtramp_p != NULL)
2734 {
2735 if (tdep->sigtramp_p (this_frame))
2736 return 1;
2737 }
2738
2739 if (tdep->sigtramp_start != 0)
2740 {
2741 CORE_ADDR pc = get_frame_pc (this_frame);
2742
2743 gdb_assert (tdep->sigtramp_end != 0);
2744 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2745 return 1;
2746 }
2747
2748 return 0;
2749 }
2750
2751 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2752 {
2753 SIGTRAMP_FRAME,
2754 amd64_sigtramp_frame_unwind_stop_reason,
2755 amd64_sigtramp_frame_this_id,
2756 amd64_sigtramp_frame_prev_register,
2757 NULL,
2758 amd64_sigtramp_frame_sniffer
2759 };
2760 \f
2761
2762 static CORE_ADDR
2763 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2764 {
2765 struct amd64_frame_cache *cache =
2766 amd64_frame_cache (this_frame, this_cache);
2767
2768 return cache->base;
2769 }
2770
2771 static const struct frame_base amd64_frame_base =
2772 {
2773 &amd64_frame_unwind,
2774 amd64_frame_base_address,
2775 amd64_frame_base_address,
2776 amd64_frame_base_address
2777 };
2778
2779 /* Normal frames, but in a function epilogue. */
2780
2781 /* Implement the stack_frame_destroyed_p gdbarch method.
2782
2783 The epilogue is defined here as the 'ret' instruction, which will
2784 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2785 the function's stack frame. */
2786
2787 static int
2788 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2789 {
2790 gdb_byte insn;
2791 struct compunit_symtab *cust;
2792
2793 cust = find_pc_compunit_symtab (pc);
2794 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2795 return 0;
2796
2797 if (target_read_memory (pc, &insn, 1))
2798 return 0; /* Can't read memory at pc. */
2799
2800 if (insn != 0xc3) /* 'ret' instruction. */
2801 return 0;
2802
2803 return 1;
2804 }
2805
2806 static int
2807 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2808 struct frame_info *this_frame,
2809 void **this_prologue_cache)
2810 {
2811 if (frame_relative_level (this_frame) == 0)
2812 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2813 get_frame_pc (this_frame));
2814 else
2815 return 0;
2816 }
2817
2818 static struct amd64_frame_cache *
2819 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2820 {
2821 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2822 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2823 struct amd64_frame_cache *cache;
2824 gdb_byte buf[8];
2825
2826 if (*this_cache)
2827 return (struct amd64_frame_cache *) *this_cache;
2828
2829 cache = amd64_alloc_frame_cache ();
2830 *this_cache = cache;
2831
2832 TRY
2833 {
2834 /* Cache base will be %esp plus cache->sp_offset (-8). */
2835 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2836 cache->base = extract_unsigned_integer (buf, 8,
2837 byte_order) + cache->sp_offset;
2838
2839 /* Cache pc will be the frame func. */
2840 cache->pc = get_frame_pc (this_frame);
2841
2842 /* The saved %esp will be at cache->base plus 16. */
2843 cache->saved_sp = cache->base + 16;
2844
2845 /* The saved %eip will be at cache->base plus 8. */
2846 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2847
2848 cache->base_p = 1;
2849 }
2850 CATCH (ex, RETURN_MASK_ERROR)
2851 {
2852 if (ex.error != NOT_AVAILABLE_ERROR)
2853 throw_exception (ex);
2854 }
2855 END_CATCH
2856
2857 return cache;
2858 }
2859
2860 static enum unwind_stop_reason
2861 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2862 void **this_cache)
2863 {
2864 struct amd64_frame_cache *cache
2865 = amd64_epilogue_frame_cache (this_frame, this_cache);
2866
2867 if (!cache->base_p)
2868 return UNWIND_UNAVAILABLE;
2869
2870 return UNWIND_NO_REASON;
2871 }
2872
2873 static void
2874 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2875 void **this_cache,
2876 struct frame_id *this_id)
2877 {
2878 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2879 this_cache);
2880
2881 if (!cache->base_p)
2882 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2883 else
2884 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2885 }
2886
2887 static const struct frame_unwind amd64_epilogue_frame_unwind =
2888 {
2889 NORMAL_FRAME,
2890 amd64_epilogue_frame_unwind_stop_reason,
2891 amd64_epilogue_frame_this_id,
2892 amd64_frame_prev_register,
2893 NULL,
2894 amd64_epilogue_frame_sniffer
2895 };
2896
2897 static struct frame_id
2898 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2899 {
2900 CORE_ADDR fp;
2901
2902 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2903
2904 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2905 }
2906
2907 /* 16 byte align the SP per frame requirements. */
2908
2909 static CORE_ADDR
2910 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2911 {
2912 return sp & -(CORE_ADDR)16;
2913 }
2914 \f
2915
2916 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2917 in the floating-point register set REGSET to register cache
2918 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2919
2920 static void
2921 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2922 int regnum, const void *fpregs, size_t len)
2923 {
2924 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2925 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2926
2927 gdb_assert (len >= tdep->sizeof_fpregset);
2928 amd64_supply_fxsave (regcache, regnum, fpregs);
2929 }
2930
2931 /* Collect register REGNUM from the register cache REGCACHE and store
2932 it in the buffer specified by FPREGS and LEN as described by the
2933 floating-point register set REGSET. If REGNUM is -1, do this for
2934 all registers in REGSET. */
2935
2936 static void
2937 amd64_collect_fpregset (const struct regset *regset,
2938 const struct regcache *regcache,
2939 int regnum, void *fpregs, size_t len)
2940 {
2941 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2942 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2943
2944 gdb_assert (len >= tdep->sizeof_fpregset);
2945 amd64_collect_fxsave (regcache, regnum, fpregs);
2946 }
2947
2948 const struct regset amd64_fpregset =
2949 {
2950 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2951 };
2952 \f
2953
2954 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2955 %rdi. We expect its value to be a pointer to the jmp_buf structure
2956 from which we extract the address that we will land at. This
2957 address is copied into PC. This routine returns non-zero on
2958 success. */
2959
2960 static int
2961 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2962 {
2963 gdb_byte buf[8];
2964 CORE_ADDR jb_addr;
2965 struct gdbarch *gdbarch = get_frame_arch (frame);
2966 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2967 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2968
2969 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2970 longjmp will land. */
2971 if (jb_pc_offset == -1)
2972 return 0;
2973
2974 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2975 jb_addr= extract_typed_address
2976 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2977 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2978 return 0;
2979
2980 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2981
2982 return 1;
2983 }
2984
2985 static const int amd64_record_regmap[] =
2986 {
2987 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2988 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2989 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2990 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2991 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2992 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2993 };
2994
2995 void
2996 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2997 {
2998 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2999 const struct target_desc *tdesc = info.target_desc;
3000 static const char *const stap_integer_prefixes[] = { "$", NULL };
3001 static const char *const stap_register_prefixes[] = { "%", NULL };
3002 static const char *const stap_register_indirection_prefixes[] = { "(",
3003 NULL };
3004 static const char *const stap_register_indirection_suffixes[] = { ")",
3005 NULL };
3006
3007 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3008 floating-point registers. */
3009 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3010 tdep->fpregset = &amd64_fpregset;
3011
3012 if (! tdesc_has_registers (tdesc))
3013 tdesc = tdesc_amd64;
3014 tdep->tdesc = tdesc;
3015
3016 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3017 tdep->register_names = amd64_register_names;
3018
3019 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3020 {
3021 tdep->zmmh_register_names = amd64_zmmh_names;
3022 tdep->k_register_names = amd64_k_names;
3023 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3024 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3025
3026 tdep->num_zmm_regs = 32;
3027 tdep->num_xmm_avx512_regs = 16;
3028 tdep->num_ymm_avx512_regs = 16;
3029
3030 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3031 tdep->k0_regnum = AMD64_K0_REGNUM;
3032 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3033 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3034 }
3035
3036 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3037 {
3038 tdep->ymmh_register_names = amd64_ymmh_names;
3039 tdep->num_ymm_regs = 16;
3040 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3041 }
3042
3043 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3044 {
3045 tdep->mpx_register_names = amd64_mpx_names;
3046 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3047 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3048 }
3049
3050 tdep->num_byte_regs = 20;
3051 tdep->num_word_regs = 16;
3052 tdep->num_dword_regs = 16;
3053 /* Avoid wiring in the MMX registers for now. */
3054 tdep->num_mmx_regs = 0;
3055
3056 set_gdbarch_pseudo_register_read_value (gdbarch,
3057 amd64_pseudo_register_read_value);
3058 set_gdbarch_pseudo_register_write (gdbarch,
3059 amd64_pseudo_register_write);
3060 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3061 amd64_ax_pseudo_register_collect);
3062
3063 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3064
3065 /* AMD64 has an FPU and 16 SSE registers. */
3066 tdep->st0_regnum = AMD64_ST0_REGNUM;
3067 tdep->num_xmm_regs = 16;
3068
3069 /* This is what all the fuss is about. */
3070 set_gdbarch_long_bit (gdbarch, 64);
3071 set_gdbarch_long_long_bit (gdbarch, 64);
3072 set_gdbarch_ptr_bit (gdbarch, 64);
3073
3074 /* In contrast to the i386, on AMD64 a `long double' actually takes
3075 up 128 bits, even though it's still based on the i387 extended
3076 floating-point format which has only 80 significant bits. */
3077 set_gdbarch_long_double_bit (gdbarch, 128);
3078
3079 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3080
3081 /* Register numbers of various important registers. */
3082 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3083 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3084 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3085 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3086
3087 /* The "default" register numbering scheme for AMD64 is referred to
3088 as the "DWARF Register Number Mapping" in the System V psABI.
3089 The preferred debugging format for all known AMD64 targets is
3090 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3091 DWARF-1), but we provide the same mapping just in case. This
3092 mapping is also used for stabs, which GCC does support. */
3093 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3094 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3095
3096 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3097 be in use on any of the supported AMD64 targets. */
3098
3099 /* Call dummy code. */
3100 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3101 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3102 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3103
3104 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3105 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3106 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3107
3108 set_gdbarch_return_value (gdbarch, amd64_return_value);
3109
3110 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3111
3112 tdep->record_regmap = amd64_record_regmap;
3113
3114 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3115
3116 /* Hook the function epilogue frame unwinder. This unwinder is
3117 appended to the list first, so that it supercedes the other
3118 unwinders in function epilogues. */
3119 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3120
3121 /* Hook the prologue-based frame unwinders. */
3122 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3123 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3124 frame_base_set_default (gdbarch, &amd64_frame_base);
3125
3126 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3127
3128 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3129
3130 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3131
3132 /* SystemTap variables and functions. */
3133 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3134 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3135 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3136 stap_register_indirection_prefixes);
3137 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3138 stap_register_indirection_suffixes);
3139 set_gdbarch_stap_is_single_operand (gdbarch,
3140 i386_stap_is_single_operand);
3141 set_gdbarch_stap_parse_special_token (gdbarch,
3142 i386_stap_parse_special_token);
3143 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3144 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3145 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3146 }
3147 \f
3148
3149 static struct type *
3150 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3151 {
3152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3153
3154 switch (regnum - tdep->eax_regnum)
3155 {
3156 case AMD64_RBP_REGNUM: /* %ebp */
3157 case AMD64_RSP_REGNUM: /* %esp */
3158 return builtin_type (gdbarch)->builtin_data_ptr;
3159 case AMD64_RIP_REGNUM: /* %eip */
3160 return builtin_type (gdbarch)->builtin_func_ptr;
3161 }
3162
3163 return i386_pseudo_register_type (gdbarch, regnum);
3164 }
3165
3166 void
3167 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3168 {
3169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3170 const struct target_desc *tdesc = info.target_desc;
3171
3172 amd64_init_abi (info, gdbarch);
3173
3174 if (! tdesc_has_registers (tdesc))
3175 tdesc = tdesc_x32;
3176 tdep->tdesc = tdesc;
3177
3178 tdep->num_dword_regs = 17;
3179 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3180
3181 set_gdbarch_long_bit (gdbarch, 32);
3182 set_gdbarch_ptr_bit (gdbarch, 32);
3183 }
3184
3185 /* Return the target description for a specified XSAVE feature mask. */
3186
3187 const struct target_desc *
3188 amd64_target_description (uint64_t xcr0)
3189 {
3190 switch (xcr0 & X86_XSTATE_ALL_MASK)
3191 {
3192 case X86_XSTATE_MPX_AVX512_MASK:
3193 case X86_XSTATE_AVX512_MASK:
3194 return tdesc_amd64_avx512;
3195 case X86_XSTATE_MPX_MASK:
3196 return tdesc_amd64_mpx;
3197 case X86_XSTATE_AVX_MPX_MASK:
3198 return tdesc_amd64_avx_mpx;
3199 case X86_XSTATE_AVX_MASK:
3200 return tdesc_amd64_avx;
3201 default:
3202 return tdesc_amd64;
3203 }
3204 }
3205
3206 /* Provide a prototype to silence -Wmissing-prototypes. */
3207 void _initialize_amd64_tdep (void);
3208
3209 void
3210 _initialize_amd64_tdep (void)
3211 {
3212 initialize_tdesc_amd64 ();
3213 initialize_tdesc_amd64_avx ();
3214 initialize_tdesc_amd64_mpx ();
3215 initialize_tdesc_amd64_avx_mpx ();
3216 initialize_tdesc_amd64_avx512 ();
3217
3218 initialize_tdesc_x32 ();
3219 initialize_tdesc_x32_avx ();
3220 initialize_tdesc_x32_avx512 ();
3221 }
3222 \f
3223
3224 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3225 sense that the instruction pointer and data pointer are simply
3226 64-bit offsets into the code segment and the data segment instead
3227 of a selector offset pair. The functions below store the upper 32
3228 bits of these pointers (instead of just the 16-bits of the segment
3229 selector). */
3230
3231 /* Fill register REGNUM in REGCACHE with the appropriate
3232 floating-point or SSE register value from *FXSAVE. If REGNUM is
3233 -1, do this for all registers. This function masks off any of the
3234 reserved bits in *FXSAVE. */
3235
3236 void
3237 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3238 const void *fxsave)
3239 {
3240 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3242
3243 i387_supply_fxsave (regcache, regnum, fxsave);
3244
3245 if (fxsave
3246 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3247 {
3248 const gdb_byte *regs = (const gdb_byte *) fxsave;
3249
3250 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3251 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3252 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3253 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3254 }
3255 }
3256
3257 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3258
3259 void
3260 amd64_supply_xsave (struct regcache *regcache, int regnum,
3261 const void *xsave)
3262 {
3263 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3265
3266 i387_supply_xsave (regcache, regnum, xsave);
3267
3268 if (xsave
3269 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3270 {
3271 const gdb_byte *regs = (const gdb_byte *) xsave;
3272
3273 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3274 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3275 regs + 12);
3276 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3277 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3278 regs + 20);
3279 }
3280 }
3281
3282 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3283 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3284 all registers. This function doesn't touch any of the reserved
3285 bits in *FXSAVE. */
3286
3287 void
3288 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3289 void *fxsave)
3290 {
3291 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3292 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3293 gdb_byte *regs = (gdb_byte *) fxsave;
3294
3295 i387_collect_fxsave (regcache, regnum, fxsave);
3296
3297 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3298 {
3299 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3300 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3301 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3302 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3303 }
3304 }
3305
3306 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3307
3308 void
3309 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3310 void *xsave, int gcore)
3311 {
3312 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3314 gdb_byte *regs = (gdb_byte *) xsave;
3315
3316 i387_collect_xsave (regcache, regnum, xsave, gcore);
3317
3318 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3319 {
3320 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3321 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3322 regs + 12);
3323 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3324 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3325 regs + 20);
3326 }
3327 }