]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/amd64-windows-tdep.c
gdb: pass frames as `const frame_info_ptr &`
[thirdparty/binutils-gdb.git] / gdb / amd64-windows-tdep.c
1 /* Copyright (C) 2009-2024 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "osabi.h"
20 #include "amd64-tdep.h"
21 #include "gdbsupport/x86-xstate.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "regcache.h"
25 #include "windows-tdep.h"
26 #include "frame.h"
27 #include "objfiles.h"
28 #include "frame-unwind.h"
29 #include "coff/internal.h"
30 #include "coff/i386.h"
31 #include "coff/pe.h"
32 #include "libcoff.h"
33 #include "value.h"
34 #include <algorithm>
35
36 /* The registers used to pass integer arguments during a function call. */
37 static int amd64_windows_dummy_call_integer_regs[] =
38 {
39 AMD64_RCX_REGNUM, /* %rcx */
40 AMD64_RDX_REGNUM, /* %rdx */
41 AMD64_R8_REGNUM, /* %r8 */
42 AMD64_R9_REGNUM /* %r9 */
43 };
44
45 /* This vector maps GDB's idea of a register's number into an offset into
46 the Windows API CONTEXT structure. */
47 static int amd64_windows_gregset_reg_offset[] =
48 {
49 120, /* Rax */
50 144, /* Rbx */
51 128, /* Rcx */
52 136, /* Rdx */
53 168, /* Rsi */
54 176, /* Rdi */
55 160, /* Rbp */
56 152, /* Rsp */
57 184, /* R8 */
58 192, /* R9 */
59 200, /* R10 */
60 208, /* R11 */
61 216, /* R12 */
62 224, /* R13 */
63 232, /* R14 */
64 240, /* R15 */
65 248, /* Rip */
66 68, /* EFlags */
67 56, /* SegCs */
68 66, /* SegSs */
69 58, /* SegDs */
70 60, /* SegEs */
71 62, /* SegFs */
72 64, /* SegGs */
73 288, /* FloatSave.FloatRegisters[0] */
74 304, /* FloatSave.FloatRegisters[1] */
75 320, /* FloatSave.FloatRegisters[2] */
76 336, /* FloatSave.FloatRegisters[3] */
77 352, /* FloatSave.FloatRegisters[4] */
78 368, /* FloatSave.FloatRegisters[5] */
79 384, /* FloatSave.FloatRegisters[6] */
80 400, /* FloatSave.FloatRegisters[7] */
81 256, /* FloatSave.ControlWord */
82 258, /* FloatSave.StatusWord */
83 260, /* FloatSave.TagWord */
84 268, /* FloatSave.ErrorSelector */
85 264, /* FloatSave.ErrorOffset */
86 276, /* FloatSave.DataSelector */
87 272, /* FloatSave.DataOffset */
88 268, /* FloatSave.ErrorSelector */
89 416, /* Xmm0 */
90 432, /* Xmm1 */
91 448, /* Xmm2 */
92 464, /* Xmm3 */
93 480, /* Xmm4 */
94 496, /* Xmm5 */
95 512, /* Xmm6 */
96 528, /* Xmm7 */
97 544, /* Xmm8 */
98 560, /* Xmm9 */
99 576, /* Xmm10 */
100 592, /* Xmm11 */
101 608, /* Xmm12 */
102 624, /* Xmm13 */
103 640, /* Xmm14 */
104 656, /* Xmm15 */
105 280, /* FloatSave.MxCsr */
106 };
107
108 #define AMD64_WINDOWS_SIZEOF_GREGSET 1232
109
110 /* Return nonzero if an argument of type TYPE should be passed
111 via one of the integer registers. */
112
113 static int
114 amd64_windows_passed_by_integer_register (struct type *type)
115 {
116 switch (type->code ())
117 {
118 case TYPE_CODE_INT:
119 case TYPE_CODE_ENUM:
120 case TYPE_CODE_BOOL:
121 case TYPE_CODE_RANGE:
122 case TYPE_CODE_CHAR:
123 case TYPE_CODE_PTR:
124 case TYPE_CODE_REF:
125 case TYPE_CODE_RVALUE_REF:
126 case TYPE_CODE_STRUCT:
127 case TYPE_CODE_UNION:
128 case TYPE_CODE_COMPLEX:
129 return (type->length () == 1
130 || type->length () == 2
131 || type->length () == 4
132 || type->length () == 8);
133
134 default:
135 return 0;
136 }
137 }
138
139 /* Return nonzero if an argument of type TYPE should be passed
140 via one of the XMM registers. */
141
142 static int
143 amd64_windows_passed_by_xmm_register (struct type *type)
144 {
145 return ((type->code () == TYPE_CODE_FLT
146 || type->code () == TYPE_CODE_DECFLOAT)
147 && (type->length () == 4 || type->length () == 8));
148 }
149
150 /* Return non-zero iff an argument of the given TYPE should be passed
151 by pointer. */
152
153 static int
154 amd64_windows_passed_by_pointer (struct type *type)
155 {
156 if (amd64_windows_passed_by_integer_register (type))
157 return 0;
158
159 if (amd64_windows_passed_by_xmm_register (type))
160 return 0;
161
162 return 1;
163 }
164
165 /* For each argument that should be passed by pointer, reserve some
166 stack space, store a copy of the argument on the stack, and replace
167 the argument by its address. Return the new Stack Pointer value.
168
169 NARGS is the number of arguments. ARGS is the array containing
170 the value of each argument. SP is value of the Stack Pointer. */
171
172 static CORE_ADDR
173 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
174 int nargs, CORE_ADDR sp)
175 {
176 int i;
177
178 for (i = 0; i < nargs; i++)
179 if (amd64_windows_passed_by_pointer (args[i]->type ()))
180 {
181 struct type *type = args[i]->type ();
182 const gdb_byte *valbuf = args[i]->contents ().data ();
183 const int len = type->length ();
184
185 /* Store a copy of that argument on the stack, aligned to
186 a 16 bytes boundary, and then use the copy's address as
187 the argument. */
188
189 sp -= len;
190 sp &= ~0xf;
191 write_memory (sp, valbuf, len);
192
193 args[i]
194 = value_addr (value_from_contents_and_address (type, valbuf, sp));
195 }
196
197 return sp;
198 }
199
200 /* Store the value of ARG in register REGNO (right-justified).
201 REGCACHE is the register cache. */
202
203 static void
204 amd64_windows_store_arg_in_reg (struct regcache *regcache,
205 struct value *arg, int regno)
206 {
207 struct type *type = arg->type ();
208 const gdb_byte *valbuf = arg->contents ().data ();
209 gdb_byte buf[8];
210
211 gdb_assert (type->length () <= 8);
212 memset (buf, 0, sizeof buf);
213 memcpy (buf, valbuf, std::min (type->length (), (ULONGEST) 8));
214 regcache->cooked_write (regno, buf);
215 }
216
217 /* Push the arguments for an inferior function call, and return
218 the updated value of the SP (Stack Pointer).
219
220 All arguments are identical to the arguments used in
221 amd64_windows_push_dummy_call. */
222
223 static CORE_ADDR
224 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
225 struct value **args, CORE_ADDR sp,
226 function_call_return_method return_method)
227 {
228 int reg_idx = 0;
229 int i;
230 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
231 int num_stack_args = 0;
232 int num_elements = 0;
233 int element = 0;
234
235 /* First, handle the arguments passed by pointer.
236
237 These arguments are replaced by pointers to a copy we are making
238 in inferior memory. So use a copy of the ARGS table, to avoid
239 modifying the original one. */
240 {
241 struct value **args1 = XALLOCAVEC (struct value *, nargs);
242
243 memcpy (args1, args, nargs * sizeof (struct value *));
244 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
245 args = args1;
246 }
247
248 /* Reserve a register for the "hidden" argument. */
249 if (return_method == return_method_struct)
250 reg_idx++;
251
252 for (i = 0; i < nargs; i++)
253 {
254 struct type *type = args[i]->type ();
255 int len = type->length ();
256 int on_stack_p = 1;
257
258 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
259 {
260 if (amd64_windows_passed_by_integer_register (type))
261 {
262 amd64_windows_store_arg_in_reg
263 (regcache, args[i],
264 amd64_windows_dummy_call_integer_regs[reg_idx]);
265 on_stack_p = 0;
266 reg_idx++;
267 }
268 else if (amd64_windows_passed_by_xmm_register (type))
269 {
270 amd64_windows_store_arg_in_reg
271 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
272 /* In case of varargs, these parameters must also be
273 passed via the integer registers. */
274 amd64_windows_store_arg_in_reg
275 (regcache, args[i],
276 amd64_windows_dummy_call_integer_regs[reg_idx]);
277 on_stack_p = 0;
278 reg_idx++;
279 }
280 }
281
282 if (on_stack_p)
283 {
284 num_elements += ((len + 7) / 8);
285 stack_args[num_stack_args++] = args[i];
286 }
287 }
288
289 /* Allocate space for the arguments on the stack, keeping it
290 aligned on a 16 byte boundary. */
291 sp -= num_elements * 8;
292 sp &= ~0xf;
293
294 /* Write out the arguments to the stack. */
295 for (i = 0; i < num_stack_args; i++)
296 {
297 struct type *type = stack_args[i]->type ();
298 const gdb_byte *valbuf = stack_args[i]->contents ().data ();
299
300 write_memory (sp + element * 8, valbuf, type->length ());
301 element += ((type->length () + 7) / 8);
302 }
303
304 return sp;
305 }
306
307 /* Implement the "push_dummy_call" gdbarch method. */
308
309 static CORE_ADDR
310 amd64_windows_push_dummy_call
311 (struct gdbarch *gdbarch, struct value *function,
312 struct regcache *regcache, CORE_ADDR bp_addr,
313 int nargs, struct value **args, CORE_ADDR sp,
314 function_call_return_method return_method, CORE_ADDR struct_addr)
315 {
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 gdb_byte buf[8];
318
319 /* Pass arguments. */
320 sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
321 return_method);
322
323 /* Pass "hidden" argument". */
324 if (return_method == return_method_struct)
325 {
326 /* The "hidden" argument is passed throught the first argument
327 register. */
328 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
329
330 store_unsigned_integer (buf, 8, byte_order, struct_addr);
331 regcache->cooked_write (arg_regnum, buf);
332 }
333
334 /* Reserve some memory on the stack for the integer-parameter
335 registers, as required by the ABI. */
336 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
337
338 /* Store return address. */
339 sp -= 8;
340 store_unsigned_integer (buf, 8, byte_order, bp_addr);
341 write_memory (sp, buf, 8);
342
343 /* Update the stack pointer... */
344 store_unsigned_integer (buf, 8, byte_order, sp);
345 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
346
347 /* ...and fake a frame pointer. */
348 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
349
350 return sp + 16;
351 }
352
353 /* Implement the "return_value" gdbarch method for amd64-windows. */
354
355 static enum return_value_convention
356 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
357 struct type *type, struct regcache *regcache,
358 struct value **read_value, const gdb_byte *writebuf)
359 {
360 int len = type->length ();
361 int regnum = -1;
362
363 /* See if our value is returned through a register. If it is, then
364 store the associated register number in REGNUM. */
365 switch (type->code ())
366 {
367 case TYPE_CODE_FLT:
368 /* floats, and doubles are returned via XMM0. */
369 if (len == 4 || len == 8)
370 regnum = AMD64_XMM0_REGNUM;
371 break;
372 case TYPE_CODE_ARRAY:
373 /* __m128, __m128i and __m128d are returned via XMM0. */
374 if (type->is_vector () && len == 16)
375 {
376 enum type_code code = type->target_type ()->code ();
377 if (code == TYPE_CODE_INT || code == TYPE_CODE_FLT)
378 {
379 regnum = AMD64_XMM0_REGNUM;
380 break;
381 }
382 }
383 [[fallthrough]];
384 default:
385 /* All other values that are 1, 2, 4 or 8 bytes long are returned
386 via RAX. */
387 if (len == 1 || len == 2 || len == 4 || len == 8)
388 regnum = AMD64_RAX_REGNUM;
389 else if (len == 16 && type->code () == TYPE_CODE_INT)
390 regnum = AMD64_XMM0_REGNUM;
391 break;
392 }
393
394 if (regnum < 0)
395 {
396 /* RAX contains the address where the return value has been stored. */
397 if (read_value != nullptr)
398 {
399 ULONGEST addr;
400
401 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
402 *read_value = value_at_non_lval (type, addr);
403 }
404 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
405 }
406 else
407 {
408 /* Extract the return value from the register where it was stored. */
409 if (read_value != nullptr)
410 {
411 *read_value = value::allocate (type);
412 regcache->raw_read_part (regnum, 0, len,
413 (*read_value)->contents_raw ().data ());
414 }
415 if (writebuf)
416 regcache->raw_write_part (regnum, 0, len, writebuf);
417 return RETURN_VALUE_REGISTER_CONVENTION;
418 }
419 }
420
421 /* Check that the code pointed to by PC corresponds to a call to
422 __main, skip it if so. Return PC otherwise. */
423
424 static CORE_ADDR
425 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
426 {
427 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
428 gdb_byte op;
429
430 target_read_memory (pc, &op, 1);
431 if (op == 0xe8)
432 {
433 gdb_byte buf[4];
434
435 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
436 {
437 struct bound_minimal_symbol s;
438 CORE_ADDR call_dest;
439
440 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
441 s = lookup_minimal_symbol_by_pc (call_dest);
442 if (s.minsym != NULL
443 && s.minsym->linkage_name () != NULL
444 && strcmp (s.minsym->linkage_name (), "__main") == 0)
445 pc += 5;
446 }
447 }
448
449 return pc;
450 }
451
452 struct amd64_windows_frame_cache
453 {
454 /* ImageBase for the module. */
455 CORE_ADDR image_base;
456
457 /* Function start and end rva. */
458 CORE_ADDR start_rva;
459 CORE_ADDR end_rva;
460
461 /* Next instruction to be executed. */
462 CORE_ADDR pc;
463
464 /* Current sp. */
465 CORE_ADDR sp;
466
467 /* Address of saved integer and xmm registers. */
468 CORE_ADDR prev_reg_addr[16];
469 CORE_ADDR prev_xmm_addr[16];
470
471 /* These two next fields are set only for machine info frames. */
472
473 /* Likewise for RIP. */
474 CORE_ADDR prev_rip_addr;
475
476 /* Likewise for RSP. */
477 CORE_ADDR prev_rsp_addr;
478
479 /* Address of the previous frame. */
480 CORE_ADDR prev_sp;
481 };
482
483 /* Convert a Windows register number to gdb. */
484 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
485 {
486 AMD64_RAX_REGNUM,
487 AMD64_RCX_REGNUM,
488 AMD64_RDX_REGNUM,
489 AMD64_RBX_REGNUM,
490 AMD64_RSP_REGNUM,
491 AMD64_RBP_REGNUM,
492 AMD64_RSI_REGNUM,
493 AMD64_RDI_REGNUM,
494 AMD64_R8_REGNUM,
495 AMD64_R9_REGNUM,
496 AMD64_R10_REGNUM,
497 AMD64_R11_REGNUM,
498 AMD64_R12_REGNUM,
499 AMD64_R13_REGNUM,
500 AMD64_R14_REGNUM,
501 AMD64_R15_REGNUM
502 };
503
504 /* Return TRUE iff PC is the range of the function corresponding to
505 CACHE. */
506
507 static int
508 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
509 {
510 return (pc >= cache->image_base + cache->start_rva
511 && pc < cache->image_base + cache->end_rva);
512 }
513
514 /* Try to recognize and decode an epilogue sequence.
515
516 Return -1 if we fail to read the instructions for any reason.
517 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
518
519 static int
520 amd64_windows_frame_decode_epilogue (const frame_info_ptr &this_frame,
521 struct amd64_windows_frame_cache *cache)
522 {
523 /* According to MSDN an epilogue "must consist of either an add RSP,constant
524 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
525 register pops and a return or a jmp".
526
527 Furthermore, according to RtlVirtualUnwind, the complete list of
528 epilog marker is:
529 - ret [c3]
530 - ret n [c2 imm16]
531 - rep ret [f3 c3]
532 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
533 - jmp qword ptr imm32 - not handled
534 - rex.w jmp reg [4X ff eY]
535 */
536
537 CORE_ADDR pc = cache->pc;
538 CORE_ADDR cur_sp = cache->sp;
539 struct gdbarch *gdbarch = get_frame_arch (this_frame);
540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
541 gdb_byte op;
542 gdb_byte rex;
543
544 /* We don't care about the instruction deallocating the frame:
545 if it hasn't been executed, the pc is still in the body,
546 if it has been executed, the following epilog decoding will work. */
547
548 /* First decode:
549 - pop reg [41 58-5f] or [58-5f]. */
550
551 while (1)
552 {
553 /* Read opcode. */
554 if (target_read_memory (pc, &op, 1) != 0)
555 return -1;
556
557 if (op >= 0x40 && op <= 0x4f)
558 {
559 /* REX prefix. */
560 rex = op;
561
562 /* Read opcode. */
563 if (target_read_memory (pc + 1, &op, 1) != 0)
564 return -1;
565 }
566 else
567 rex = 0;
568
569 if (op >= 0x58 && op <= 0x5f)
570 {
571 /* pop reg */
572 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
573
574 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
575 cur_sp += 8;
576 pc += rex ? 2 : 1;
577 }
578 else
579 break;
580
581 /* Allow the user to break this loop. This shouldn't happen as the
582 number of consecutive pop should be small. */
583 QUIT;
584 }
585
586 /* Then decode the marker. */
587
588 /* Read opcode. */
589 if (target_read_memory (pc, &op, 1) != 0)
590 return -1;
591
592 switch (op)
593 {
594 case 0xc3:
595 /* Ret. */
596 cache->prev_rip_addr = cur_sp;
597 cache->prev_sp = cur_sp + 8;
598 return 1;
599
600 case 0xeb:
601 {
602 /* jmp rel8 */
603 gdb_byte rel8;
604 CORE_ADDR npc;
605
606 if (target_read_memory (pc + 1, &rel8, 1) != 0)
607 return -1;
608 npc = pc + 2 + (signed char) rel8;
609
610 /* If the jump is within the function, then this is not a marker,
611 otherwise this is a tail-call. */
612 return !pc_in_range (npc, cache);
613 }
614
615 case 0xec:
616 {
617 /* jmp rel32 */
618 gdb_byte rel32[4];
619 CORE_ADDR npc;
620
621 if (target_read_memory (pc + 1, rel32, 4) != 0)
622 return -1;
623 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
624
625 /* If the jump is within the function, then this is not a marker,
626 otherwise this is a tail-call. */
627 return !pc_in_range (npc, cache);
628 }
629
630 case 0xc2:
631 {
632 /* ret n */
633 gdb_byte imm16[2];
634
635 if (target_read_memory (pc + 1, imm16, 2) != 0)
636 return -1;
637 cache->prev_rip_addr = cur_sp;
638 cache->prev_sp = cur_sp
639 + extract_unsigned_integer (imm16, 4, byte_order);
640 return 1;
641 }
642
643 case 0xf3:
644 {
645 /* rep; ret */
646 gdb_byte op1;
647
648 if (target_read_memory (pc + 2, &op1, 1) != 0)
649 return -1;
650 if (op1 != 0xc3)
651 return 0;
652
653 cache->prev_rip_addr = cur_sp;
654 cache->prev_sp = cur_sp + 8;
655 return 1;
656 }
657
658 case 0x40:
659 case 0x41:
660 case 0x42:
661 case 0x43:
662 case 0x44:
663 case 0x45:
664 case 0x46:
665 case 0x47:
666 case 0x48:
667 case 0x49:
668 case 0x4a:
669 case 0x4b:
670 case 0x4c:
671 case 0x4d:
672 case 0x4e:
673 case 0x4f:
674 /* Got a REX prefix, read next byte. */
675 rex = op;
676 if (target_read_memory (pc + 1, &op, 1) != 0)
677 return -1;
678
679 if (op == 0xff)
680 {
681 /* rex jmp reg */
682 gdb_byte op1;
683
684 if (target_read_memory (pc + 2, &op1, 1) != 0)
685 return -1;
686 return (op1 & 0xf8) == 0xe0;
687 }
688 else
689 return 0;
690
691 default:
692 /* Not REX, so unknown. */
693 return 0;
694 }
695 }
696
697 /* Decode and execute unwind insns at UNWIND_INFO. */
698
699 static void
700 amd64_windows_frame_decode_insns (const frame_info_ptr &this_frame,
701 struct amd64_windows_frame_cache *cache,
702 CORE_ADDR unwind_info)
703 {
704 CORE_ADDR save_addr = 0;
705 CORE_ADDR cur_sp = cache->sp;
706 struct gdbarch *gdbarch = get_frame_arch (this_frame);
707 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
708 int first = 1;
709
710 /* There are at least 3 possibilities to share an unwind info entry:
711 1. Two different runtime_function entries (in .pdata) can point to the
712 same unwind info entry. There is no such indication while unwinding,
713 so we don't really care about that case. We suppose this scheme is
714 used to save memory when the unwind entries are exactly the same.
715 2. Chained unwind_info entries, with no unwind codes (no prologue).
716 There is a major difference with the previous case: the pc range for
717 the function is different (in case 1, the pc range comes from the
718 runtime_function entry; in case 2, the pc range for the chained entry
719 comes from the first unwind entry). Case 1 cannot be used instead as
720 the pc is not in the prologue. This case is officially documented.
721 (There might be unwind code in the first unwind entry to handle
722 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
723 entries.
724 3. Undocumented unwind info redirection. Hard to know the exact purpose,
725 so it is considered as a memory optimization of case 2.
726 */
727
728 if (unwind_info & 1)
729 {
730 /* Unofficially documented unwind info redirection, when UNWIND_INFO
731 address is odd (http://www.codemachine.com/article_x64deepdive.html).
732 */
733 struct external_pex64_runtime_function d;
734
735 if (target_read_memory (cache->image_base + (unwind_info & ~1),
736 (gdb_byte *) &d, sizeof (d)) != 0)
737 return;
738
739 cache->start_rva
740 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
741 cache->end_rva
742 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
743 unwind_info
744 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
745 }
746
747 while (1)
748 {
749 struct external_pex64_unwind_info ex_ui;
750 /* There are at most 256 16-bit unwind insns. */
751 gdb_byte insns[2 * 256];
752 gdb_byte *p;
753 gdb_byte *end_insns;
754 unsigned char codes_count;
755 unsigned char frame_reg;
756 CORE_ADDR start;
757
758 /* Read and decode header. */
759 if (target_read_memory (cache->image_base + unwind_info,
760 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
761 return;
762
763 frame_debug_printf ("%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x",
764 paddress (gdbarch, unwind_info),
765 ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
766 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
767
768 /* Check version. */
769 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
770 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
771 return;
772
773 start = cache->image_base + cache->start_rva;
774 if (first
775 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
776 {
777 /* We want to detect if the PC points to an epilogue. This needs
778 to be checked only once, and an epilogue can be anywhere but in
779 the prologue. If so, the epilogue detection+decoding function is
780 sufficient. Otherwise, the unwinder will consider that the PC
781 is in the body of the function and will need to decode unwind
782 info. */
783 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
784 return;
785
786 /* Not in an epilog. Clear possible side effects. */
787 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
788 }
789
790 codes_count = ex_ui.CountOfCodes;
791 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
792
793 if (frame_reg != 0)
794 {
795 /* According to msdn:
796 If an FP reg is used, then any unwind code taking an offset must
797 only be used after the FP reg is established in the prolog. */
798 gdb_byte buf[8];
799 int frreg = amd64_windows_w2gdb_regnum[frame_reg];
800
801 get_frame_register (this_frame, frreg, buf);
802 save_addr = extract_unsigned_integer (buf, 8, byte_order);
803
804 frame_debug_printf (" frame_reg=%s, val=%s",
805 gdbarch_register_name (gdbarch, frreg),
806 paddress (gdbarch, save_addr));
807 }
808
809 /* Read opcodes. */
810 if (codes_count != 0
811 && target_read_memory (cache->image_base + unwind_info
812 + sizeof (ex_ui),
813 insns, codes_count * 2) != 0)
814 return;
815
816 end_insns = &insns[codes_count * 2];
817 p = insns;
818
819 /* Skip opcodes 6 of version 2. This opcode is not documented. */
820 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
821 {
822 for (; p < end_insns; p += 2)
823 if (PEX64_UNWCODE_CODE (p[1]) != 6)
824 break;
825 }
826
827 for (; p < end_insns; p += 2)
828 {
829 int reg;
830
831 /* Virtually execute the operation if the pc is after the
832 corresponding instruction (that does matter in case of break
833 within the prologue). Note that for chained info (!first), the
834 prologue has been fully executed. */
835 if (cache->pc >= start + p[0] || cache->pc < start)
836 {
837 frame_debug_printf (" op #%u: off=0x%02x, insn=0x%02x",
838 (unsigned) (p - insns), p[0], p[1]);
839
840 /* If there is no frame registers defined, the current value of
841 rsp is used instead. */
842 if (frame_reg == 0)
843 save_addr = cur_sp;
844
845 reg = -1;
846
847 switch (PEX64_UNWCODE_CODE (p[1]))
848 {
849 case UWOP_PUSH_NONVOL:
850 /* Push pre-decrements RSP. */
851 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
852 cache->prev_reg_addr[reg] = cur_sp;
853 cur_sp += 8;
854 break;
855 case UWOP_ALLOC_LARGE:
856 if (PEX64_UNWCODE_INFO (p[1]) == 0)
857 cur_sp +=
858 8 * extract_unsigned_integer (p + 2, 2, byte_order);
859 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
860 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
861 else
862 return;
863 break;
864 case UWOP_ALLOC_SMALL:
865 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
866 break;
867 case UWOP_SET_FPREG:
868 cur_sp = save_addr
869 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
870 break;
871 case UWOP_SAVE_NONVOL:
872 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
873 cache->prev_reg_addr[reg] = save_addr
874 + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
875 break;
876 case UWOP_SAVE_NONVOL_FAR:
877 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
878 cache->prev_reg_addr[reg] = save_addr
879 + 8 * extract_unsigned_integer (p + 2, 4, byte_order);
880 break;
881 case UWOP_SAVE_XMM128:
882 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
883 save_addr
884 - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
885 break;
886 case UWOP_SAVE_XMM128_FAR:
887 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
888 save_addr
889 - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
890 break;
891 case UWOP_PUSH_MACHFRAME:
892 if (PEX64_UNWCODE_INFO (p[1]) == 0)
893 {
894 cache->prev_rip_addr = cur_sp + 0;
895 cache->prev_rsp_addr = cur_sp + 24;
896 cur_sp += 40;
897 }
898 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
899 {
900 cache->prev_rip_addr = cur_sp + 8;
901 cache->prev_rsp_addr = cur_sp + 32;
902 cur_sp += 48;
903 }
904 else
905 return;
906 break;
907 default:
908 return;
909 }
910
911 /* Display address where the register was saved. */
912 if (reg >= 0)
913 frame_debug_printf (" [reg %s at %s]",
914 gdbarch_register_name (gdbarch, reg),
915 paddress (gdbarch,
916 cache->prev_reg_addr[reg]));
917 }
918
919 /* Adjust with the length of the opcode. */
920 switch (PEX64_UNWCODE_CODE (p[1]))
921 {
922 case UWOP_PUSH_NONVOL:
923 case UWOP_ALLOC_SMALL:
924 case UWOP_SET_FPREG:
925 case UWOP_PUSH_MACHFRAME:
926 break;
927 case UWOP_ALLOC_LARGE:
928 if (PEX64_UNWCODE_INFO (p[1]) == 0)
929 p += 2;
930 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
931 p += 4;
932 else
933 return;
934 break;
935 case UWOP_SAVE_NONVOL:
936 case UWOP_SAVE_XMM128:
937 p += 2;
938 break;
939 case UWOP_SAVE_NONVOL_FAR:
940 case UWOP_SAVE_XMM128_FAR:
941 p += 4;
942 break;
943 default:
944 return;
945 }
946 }
947 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
948 {
949 /* End of unwind info. */
950 break;
951 }
952 else
953 {
954 /* Read the chained unwind info. */
955 struct external_pex64_runtime_function d;
956 CORE_ADDR chain_vma;
957
958 /* Not anymore the first entry. */
959 first = 0;
960
961 /* Stay aligned on word boundary. */
962 chain_vma = cache->image_base + unwind_info
963 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
964
965 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
966 return;
967
968 /* Decode begin/end. This may be different from .pdata index, as
969 an unwind info may be shared by several functions (in particular
970 if many functions have the same prolog and handler. */
971 cache->start_rva =
972 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
973 cache->end_rva =
974 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
975 unwind_info =
976 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
977
978 frame_debug_printf ("next in chain: unwind_data=%s, start_rva=%s, "
979 "end_rva=%s",
980 paddress (gdbarch, unwind_info),
981 paddress (gdbarch, cache->start_rva),
982 paddress (gdbarch, cache->end_rva));
983 }
984
985 /* Allow the user to break this loop. */
986 QUIT;
987 }
988 /* PC is saved by the call. */
989 if (cache->prev_rip_addr == 0)
990 cache->prev_rip_addr = cur_sp;
991 cache->prev_sp = cur_sp + 8;
992
993 frame_debug_printf (" prev_sp: %s, prev_pc @%s",
994 paddress (gdbarch, cache->prev_sp),
995 paddress (gdbarch, cache->prev_rip_addr));
996 }
997
998 /* Find SEH unwind info for PC, returning 0 on success.
999
1000 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
1001 to the base address of the corresponding image, and START_RVA
1002 to the rva of the function containing PC. */
1003
1004 static int
1005 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
1006 CORE_ADDR *unwind_info,
1007 CORE_ADDR *image_base,
1008 CORE_ADDR *start_rva,
1009 CORE_ADDR *end_rva)
1010 {
1011 struct obj_section *sec;
1012 pe_data_type *pe;
1013 IMAGE_DATA_DIRECTORY *dir;
1014 struct objfile *objfile;
1015 unsigned long lo, hi;
1016 CORE_ADDR base;
1017 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1018
1019 /* Get the corresponding exception directory. */
1020 sec = find_pc_section (pc);
1021 if (sec == NULL)
1022 return -1;
1023 objfile = sec->objfile;
1024 pe = pe_data (sec->objfile->obfd);
1025 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
1026
1027 base = pe->pe_opthdr.ImageBase + objfile->text_section_offset ();
1028 *image_base = base;
1029
1030 /* Find the entry.
1031
1032 Note: This does not handle dynamically added entries (for JIT
1033 engines). For this, we would need to ask the kernel directly,
1034 which means getting some info from the native layer. For the
1035 rest of the code, however, it's probably faster to search
1036 the entry ourselves. */
1037 lo = 0;
1038 hi = dir->Size / sizeof (struct external_pex64_runtime_function);
1039 *unwind_info = 0;
1040 while (lo <= hi)
1041 {
1042 unsigned long mid = lo + (hi - lo) / 2;
1043 struct external_pex64_runtime_function d;
1044 CORE_ADDR sa, ea;
1045
1046 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
1047 (gdb_byte *) &d, sizeof (d)) != 0)
1048 return -1;
1049
1050 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
1051 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
1052 if (pc < base + sa)
1053 hi = mid - 1;
1054 else if (pc >= base + ea)
1055 lo = mid + 1;
1056 else if (pc >= base + sa && pc < base + ea)
1057 {
1058 /* Got it. */
1059 *start_rva = sa;
1060 *end_rva = ea;
1061 *unwind_info =
1062 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
1063 break;
1064 }
1065 else
1066 break;
1067 }
1068
1069 frame_debug_printf ("image_base=%s, unwind_data=%s",
1070 paddress (gdbarch, base),
1071 paddress (gdbarch, *unwind_info));
1072
1073 return 0;
1074 }
1075
1076 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1077 for THIS_FRAME. */
1078
1079 static struct amd64_windows_frame_cache *
1080 amd64_windows_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
1081 {
1082 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1083 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1084 struct amd64_windows_frame_cache *cache;
1085 gdb_byte buf[8];
1086 CORE_ADDR pc;
1087 CORE_ADDR unwind_info = 0;
1088
1089 if (*this_cache)
1090 return (struct amd64_windows_frame_cache *) *this_cache;
1091
1092 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
1093 *this_cache = cache;
1094
1095 /* Get current PC and SP. */
1096 pc = get_frame_pc (this_frame);
1097 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1098 cache->sp = extract_unsigned_integer (buf, 8, byte_order);
1099 cache->pc = pc;
1100
1101 /* If we can't find the unwind info, keep trying as though this is a
1102 leaf function. This situation can happen when PC==0, see
1103 https://sourceware.org/bugzilla/show_bug.cgi?id=30255. */
1104 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1105 &cache->image_base,
1106 &cache->start_rva,
1107 &cache->end_rva)
1108 || unwind_info == 0)
1109 {
1110 /* Assume a leaf function. */
1111 cache->prev_sp = cache->sp + 8;
1112 cache->prev_rip_addr = cache->sp;
1113 }
1114 else
1115 {
1116 /* Decode unwind insns to compute saved addresses. */
1117 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1118 }
1119 return cache;
1120 }
1121
1122 /* Implement the "prev_register" method of struct frame_unwind
1123 using the standard Windows x64 SEH info. */
1124
1125 static struct value *
1126 amd64_windows_frame_prev_register (const frame_info_ptr &this_frame,
1127 void **this_cache, int regnum)
1128 {
1129 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1130 struct amd64_windows_frame_cache *cache =
1131 amd64_windows_frame_cache (this_frame, this_cache);
1132 CORE_ADDR prev;
1133
1134 frame_debug_printf ("%s for sp=%s",
1135 gdbarch_register_name (gdbarch, regnum),
1136 paddress (gdbarch, cache->prev_sp));
1137
1138 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1139 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1140 else if (regnum == AMD64_RSP_REGNUM)
1141 {
1142 prev = cache->prev_rsp_addr;
1143 if (prev == 0)
1144 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1145 }
1146 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1147 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1148 else if (regnum == AMD64_RIP_REGNUM)
1149 prev = cache->prev_rip_addr;
1150 else
1151 prev = 0;
1152
1153 if (prev != 0)
1154 frame_debug_printf (" -> at %s", paddress (gdbarch, prev));
1155
1156 if (prev)
1157 {
1158 /* Register was saved. */
1159 return frame_unwind_got_memory (this_frame, regnum, prev);
1160 }
1161 else
1162 {
1163 /* Register is either volatile or not modified. */
1164 return frame_unwind_got_register (this_frame, regnum, regnum);
1165 }
1166 }
1167
1168 /* Implement the "this_id" method of struct frame_unwind using
1169 the standard Windows x64 SEH info. */
1170
1171 static void
1172 amd64_windows_frame_this_id (const frame_info_ptr &this_frame, void **this_cache,
1173 struct frame_id *this_id)
1174 {
1175 struct amd64_windows_frame_cache *cache =
1176 amd64_windows_frame_cache (this_frame, this_cache);
1177
1178 *this_id = frame_id_build (cache->prev_sp,
1179 cache->image_base + cache->start_rva);
1180 }
1181
1182 /* Windows x64 SEH unwinder. */
1183
1184 static const struct frame_unwind amd64_windows_frame_unwind =
1185 {
1186 "amd64 windows",
1187 NORMAL_FRAME,
1188 default_frame_unwind_stop_reason,
1189 &amd64_windows_frame_this_id,
1190 &amd64_windows_frame_prev_register,
1191 NULL,
1192 default_frame_sniffer
1193 };
1194
1195 /* Implement the "skip_prologue" gdbarch method. */
1196
1197 static CORE_ADDR
1198 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1199 {
1200 CORE_ADDR func_addr;
1201 CORE_ADDR unwind_info = 0;
1202 CORE_ADDR image_base, start_rva, end_rva;
1203 struct external_pex64_unwind_info ex_ui;
1204
1205 /* Use prologue size from unwind info. */
1206 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1207 &image_base, &start_rva, &end_rva) == 0)
1208 {
1209 if (unwind_info == 0)
1210 {
1211 /* Leaf function. */
1212 return pc;
1213 }
1214 else if (target_read_memory (image_base + unwind_info,
1215 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1216 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1217 return std::max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1218 }
1219
1220 /* See if we can determine the end of the prologue via the symbol
1221 table. If so, then return either the PC, or the PC after
1222 the prologue, whichever is greater. */
1223 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1224 {
1225 CORE_ADDR post_prologue_pc
1226 = skip_prologue_using_sal (gdbarch, func_addr);
1227
1228 if (post_prologue_pc != 0)
1229 return std::max (pc, post_prologue_pc);
1230 }
1231
1232 return pc;
1233 }
1234
1235 /* Check Win64 DLL jmp trampolines and find jump destination. */
1236
1237 static CORE_ADDR
1238 amd64_windows_skip_trampoline_code (const frame_info_ptr &frame, CORE_ADDR pc)
1239 {
1240 CORE_ADDR destination = 0;
1241 struct gdbarch *gdbarch = get_frame_arch (frame);
1242 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1243
1244 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1245 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1246 {
1247 /* Get opcode offset and see if we can find a reference in our data. */
1248 ULONGEST offset
1249 = read_memory_unsigned_integer (pc + 2, 4, byte_order);
1250
1251 /* Get address of function pointer at end of pc. */
1252 CORE_ADDR indirect_addr = pc + offset + 6;
1253
1254 struct minimal_symbol *indsym
1255 = (indirect_addr
1256 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1257 : NULL);
1258 const char *symname = indsym ? indsym->linkage_name () : NULL;
1259
1260 if (symname)
1261 {
1262 if (startswith (symname, "__imp_")
1263 || startswith (symname, "_imp_"))
1264 destination
1265 = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1266 }
1267 }
1268
1269 return destination;
1270 }
1271
1272 /* Implement the "auto_wide_charset" gdbarch method. */
1273
1274 static const char *
1275 amd64_windows_auto_wide_charset (void)
1276 {
1277 return "UTF-16";
1278 }
1279
1280 /* Common parts for gdbarch initialization for Windows and Cygwin on AMD64. */
1281
1282 static void
1283 amd64_windows_init_abi_common (gdbarch_info info, struct gdbarch *gdbarch)
1284 {
1285 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
1286
1287 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1288 preferred over the SEH one. The reasons are:
1289 - binaries without SEH but with dwarf2 debug info are correctly handled
1290 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1291 info).
1292 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1293 handled if the dwarf2 unwinder is used).
1294
1295 The call to amd64_init_abi appends default unwinders, that aren't
1296 compatible with the SEH one.
1297 */
1298 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1299
1300 amd64_init_abi (info, gdbarch,
1301 amd64_target_description (X86_XSTATE_SSE_MASK, false));
1302
1303 /* Function calls. */
1304 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1305 set_gdbarch_return_value_as_value (gdbarch, amd64_windows_return_value);
1306 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1307 set_gdbarch_skip_trampoline_code (gdbarch,
1308 amd64_windows_skip_trampoline_code);
1309
1310 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1311
1312 tdep->gregset_reg_offset = amd64_windows_gregset_reg_offset;
1313 tdep->gregset_num_regs = ARRAY_SIZE (amd64_windows_gregset_reg_offset);
1314 tdep->sizeof_gregset = AMD64_WINDOWS_SIZEOF_GREGSET;
1315 tdep->sizeof_fpregset = 0;
1316
1317 /* Core file support. */
1318 set_gdbarch_core_xfer_shared_libraries
1319 (gdbarch, windows_core_xfer_shared_libraries);
1320 set_gdbarch_core_pid_to_str (gdbarch, windows_core_pid_to_str);
1321
1322 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1323 }
1324
1325 /* gdbarch initialization for Windows on AMD64. */
1326
1327 static void
1328 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1329 {
1330 amd64_windows_init_abi_common (info, gdbarch);
1331 windows_init_abi (info, gdbarch);
1332
1333 /* On Windows, "long"s are only 32bit. */
1334 set_gdbarch_long_bit (gdbarch, 32);
1335 }
1336
1337 /* gdbarch initialization for Cygwin on AMD64. */
1338
1339 static void
1340 amd64_cygwin_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1341 {
1342 amd64_windows_init_abi_common (info, gdbarch);
1343 cygwin_init_abi (info, gdbarch);
1344 }
1345
1346 static gdb_osabi
1347 amd64_windows_osabi_sniffer (bfd *abfd)
1348 {
1349 const char *target_name = bfd_get_target (abfd);
1350
1351 if (!streq (target_name, "pei-x86-64"))
1352 return GDB_OSABI_UNKNOWN;
1353
1354 if (is_linked_with_cygwin_dll (abfd))
1355 return GDB_OSABI_CYGWIN;
1356
1357 return GDB_OSABI_WINDOWS;
1358 }
1359
1360 static enum gdb_osabi
1361 amd64_cygwin_core_osabi_sniffer (bfd *abfd)
1362 {
1363 const char *target_name = bfd_get_target (abfd);
1364
1365 /* Cygwin uses elf core dumps. Do not claim all ELF executables,
1366 check whether there is a .reg section of proper size. */
1367 if (strcmp (target_name, "elf64-x86-64") == 0)
1368 {
1369 asection *section = bfd_get_section_by_name (abfd, ".reg");
1370 if (section != nullptr
1371 && bfd_section_size (section) == AMD64_WINDOWS_SIZEOF_GREGSET)
1372 return GDB_OSABI_CYGWIN;
1373 }
1374
1375 return GDB_OSABI_UNKNOWN;
1376 }
1377
1378 void _initialize_amd64_windows_tdep ();
1379 void
1380 _initialize_amd64_windows_tdep ()
1381 {
1382 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_WINDOWS,
1383 amd64_windows_init_abi);
1384 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1385 amd64_cygwin_init_abi);
1386
1387 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1388 amd64_windows_osabi_sniffer);
1389
1390 /* Cygwin uses elf core dumps. */
1391 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_elf_flavour,
1392 amd64_cygwin_core_osabi_sniffer);
1393
1394 }