]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-linux-tdep.c
gdb: fix gdbarch_tdep ODR violation
[thirdparty/binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "value.h"
23 #include "gdbtypes.h"
24 #include "gdbcore.h"
25 #include "frame.h"
26 #include "regcache.h"
27 #include "solib-svr4.h"
28 #include "osabi.h"
29 #include "regset.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "breakpoint.h"
33 #include "auxv.h"
34 #include "xml-syscall.h"
35 #include "expop.h"
36
37 #include "aarch32-tdep.h"
38 #include "arch/arm.h"
39 #include "arch/arm-get-next-pcs.h"
40 #include "arch/arm-linux.h"
41 #include "arm-tdep.h"
42 #include "arm-linux-tdep.h"
43 #include "linux-tdep.h"
44 #include "glibc-tdep.h"
45 #include "arch-utils.h"
46 #include "inferior.h"
47 #include "infrun.h"
48 #include "gdbthread.h"
49 #include "symfile.h"
50
51 #include "record-full.h"
52 #include "linux-record.h"
53
54 #include "cli/cli-utils.h"
55 #include "stap-probe.h"
56 #include "parser-defs.h"
57 #include "user-regs.h"
58 #include <ctype.h>
59 #include "elf/common.h"
60
61 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
62 is to execute a particular software interrupt, rather than use a
63 particular undefined instruction to provoke a trap. Upon exection
64 of the software interrupt the kernel stops the inferior with a
65 SIGTRAP, and wakes the debugger. */
66
67 static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
68
69 static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
70
71 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
72 the operand of the swi if old-ABI compatibility is disabled. Therefore,
73 use an undefined instruction instead. This is supported as of kernel
74 version 2.5.70 (May 2003), so should be a safe assumption for EABI
75 binaries. */
76
77 static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
78
79 static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
80
81 /* All the kernels which support Thumb support using a specific undefined
82 instruction for the Thumb breakpoint. */
83
84 static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
85
86 static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
87
88 /* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
89 we must use a length-appropriate breakpoint for 32-bit Thumb
90 instructions. See also thumb_get_next_pc. */
91
92 static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
93
94 static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
95
96 /* Description of the longjmp buffer. The buffer is treated as an array of
97 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
98
99 The location of saved registers in this buffer (in particular the PC
100 to use after longjmp is called) varies depending on the ABI (in
101 particular the FP model) and also (possibly) the C Library.
102
103 For glibc, eglibc, and uclibc the following holds: If the FP model is
104 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
105 buffer. This is also true for the SoftFPA model. However, for the FPA
106 model the PC is at offset 21 in the buffer. */
107 #define ARM_LINUX_JB_ELEMENT_SIZE ARM_INT_REGISTER_SIZE
108 #define ARM_LINUX_JB_PC_FPA 21
109 #define ARM_LINUX_JB_PC_EABI 9
110
111 /*
112 Dynamic Linking on ARM GNU/Linux
113 --------------------------------
114
115 Note: PLT = procedure linkage table
116 GOT = global offset table
117
118 As much as possible, ELF dynamic linking defers the resolution of
119 jump/call addresses until the last minute. The technique used is
120 inspired by the i386 ELF design, and is based on the following
121 constraints.
122
123 1) The calling technique should not force a change in the assembly
124 code produced for apps; it MAY cause changes in the way assembly
125 code is produced for position independent code (i.e. shared
126 libraries).
127
128 2) The technique must be such that all executable areas must not be
129 modified; and any modified areas must not be executed.
130
131 To do this, there are three steps involved in a typical jump:
132
133 1) in the code
134 2) through the PLT
135 3) using a pointer from the GOT
136
137 When the executable or library is first loaded, each GOT entry is
138 initialized to point to the code which implements dynamic name
139 resolution and code finding. This is normally a function in the
140 program interpreter (on ARM GNU/Linux this is usually
141 ld-linux.so.2, but it does not have to be). On the first
142 invocation, the function is located and the GOT entry is replaced
143 with the real function address. Subsequent calls go through steps
144 1, 2 and 3 and end up calling the real code.
145
146 1) In the code:
147
148 b function_call
149 bl function_call
150
151 This is typical ARM code using the 26 bit relative branch or branch
152 and link instructions. The target of the instruction
153 (function_call is usually the address of the function to be called.
154 In position independent code, the target of the instruction is
155 actually an entry in the PLT when calling functions in a shared
156 library. Note that this call is identical to a normal function
157 call, only the target differs.
158
159 2) In the PLT:
160
161 The PLT is a synthetic area, created by the linker. It exists in
162 both executables and libraries. It is an array of stubs, one per
163 imported function call. It looks like this:
164
165 PLT[0]:
166 str lr, [sp, #-4]! @push the return address (lr)
167 ldr lr, [pc, #16] @load from 6 words ahead
168 add lr, pc, lr @form an address for GOT[0]
169 ldr pc, [lr, #8]! @jump to the contents of that addr
170
171 The return address (lr) is pushed on the stack and used for
172 calculations. The load on the second line loads the lr with
173 &GOT[3] - . - 20. The addition on the third leaves:
174
175 lr = (&GOT[3] - . - 20) + (. + 8)
176 lr = (&GOT[3] - 12)
177 lr = &GOT[0]
178
179 On the fourth line, the pc and lr are both updated, so that:
180
181 pc = GOT[2]
182 lr = &GOT[0] + 8
183 = &GOT[2]
184
185 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
186 "tight", but allows us to keep all the PLT entries the same size.
187
188 PLT[n+1]:
189 ldr ip, [pc, #4] @load offset from gotoff
190 add ip, pc, ip @add the offset to the pc
191 ldr pc, [ip] @jump to that address
192 gotoff: .word GOT[n+3] - .
193
194 The load on the first line, gets an offset from the fourth word of
195 the PLT entry. The add on the second line makes ip = &GOT[n+3],
196 which contains either a pointer to PLT[0] (the fixup trampoline) or
197 a pointer to the actual code.
198
199 3) In the GOT:
200
201 The GOT contains helper pointers for both code (PLT) fixups and
202 data fixups. The first 3 entries of the GOT are special. The next
203 M entries (where M is the number of entries in the PLT) belong to
204 the PLT fixups. The next D (all remaining) entries belong to
205 various data fixups. The actual size of the GOT is 3 + M + D.
206
207 The GOT is also a synthetic area, created by the linker. It exists
208 in both executables and libraries. When the GOT is first
209 initialized , all the GOT entries relating to PLT fixups are
210 pointing to code back at PLT[0].
211
212 The special entries in the GOT are:
213
214 GOT[0] = linked list pointer used by the dynamic loader
215 GOT[1] = pointer to the reloc table for this module
216 GOT[2] = pointer to the fixup/resolver code
217
218 The first invocation of function call comes through and uses the
219 fixup/resolver code. On the entry to the fixup/resolver code:
220
221 ip = &GOT[n+3]
222 lr = &GOT[2]
223 stack[0] = return address (lr) of the function call
224 [r0, r1, r2, r3] are still the arguments to the function call
225
226 This is enough information for the fixup/resolver code to work
227 with. Before the fixup/resolver code returns, it actually calls
228 the requested function and repairs &GOT[n+3]. */
229
230 /* The constants below were determined by examining the following files
231 in the linux kernel sources:
232
233 arch/arm/kernel/signal.c
234 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
235 include/asm-arm/unistd.h
236 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
237
238 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
239 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
240
241 /* For ARM EABI, the syscall number is not in the SWI instruction
242 (instead it is loaded into r7). We recognize the pattern that
243 glibc uses... alternatively, we could arrange to do this by
244 function name, but they are not always exported. */
245 #define ARM_SET_R7_SIGRETURN 0xe3a07077
246 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
247 #define ARM_EABI_SYSCALL 0xef000000
248
249 /* Equivalent patterns for Thumb2. */
250 #define THUMB2_SET_R7_SIGRETURN1 0xf04f
251 #define THUMB2_SET_R7_SIGRETURN2 0x0777
252 #define THUMB2_SET_R7_RT_SIGRETURN1 0xf04f
253 #define THUMB2_SET_R7_RT_SIGRETURN2 0x07ad
254 #define THUMB2_EABI_SYSCALL 0xdf00
255
256 /* OABI syscall restart trampoline, used for EABI executables too
257 whenever OABI support has been enabled in the kernel. */
258 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
259 #define ARM_LDR_PC_SP_12 0xe49df00c
260 #define ARM_LDR_PC_SP_4 0xe49df004
261
262 /* Syscall number for sigreturn. */
263 #define ARM_SIGRETURN 119
264 /* Syscall number for rt_sigreturn. */
265 #define ARM_RT_SIGRETURN 173
266
267 static CORE_ADDR
268 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
269
270 /* Operation function pointers for get_next_pcs. */
271 static struct arm_get_next_pcs_ops arm_linux_get_next_pcs_ops = {
272 arm_get_next_pcs_read_memory_unsigned_integer,
273 arm_linux_get_next_pcs_syscall_next_pc,
274 arm_get_next_pcs_addr_bits_remove,
275 arm_get_next_pcs_is_thumb,
276 arm_linux_get_next_pcs_fixup,
277 };
278
279 static void
280 arm_linux_sigtramp_cache (struct frame_info *this_frame,
281 struct trad_frame_cache *this_cache,
282 CORE_ADDR func, int regs_offset)
283 {
284 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
285 CORE_ADDR base = sp + regs_offset;
286 int i;
287
288 for (i = 0; i < 16; i++)
289 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
290
291 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
292
293 /* The VFP or iWMMXt registers may be saved on the stack, but there's
294 no reliable way to restore them (yet). */
295
296 /* Save a frame ID. */
297 trad_frame_set_id (this_cache, frame_id_build (sp, func));
298 }
299
300 /* See arm-linux.h for stack layout details. */
301 static void
302 arm_linux_sigreturn_init (const struct tramp_frame *self,
303 struct frame_info *this_frame,
304 struct trad_frame_cache *this_cache,
305 CORE_ADDR func)
306 {
307 struct gdbarch *gdbarch = get_frame_arch (this_frame);
308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
309 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
310 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
311
312 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
313 arm_linux_sigtramp_cache (this_frame, this_cache, func,
314 ARM_UCONTEXT_SIGCONTEXT
315 + ARM_SIGCONTEXT_R0);
316 else
317 arm_linux_sigtramp_cache (this_frame, this_cache, func,
318 ARM_SIGCONTEXT_R0);
319 }
320
321 static void
322 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
323 struct frame_info *this_frame,
324 struct trad_frame_cache *this_cache,
325 CORE_ADDR func)
326 {
327 struct gdbarch *gdbarch = get_frame_arch (this_frame);
328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
329 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
330 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
331
332 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
333 arm_linux_sigtramp_cache (this_frame, this_cache, func,
334 ARM_OLD_RT_SIGFRAME_UCONTEXT
335 + ARM_UCONTEXT_SIGCONTEXT
336 + ARM_SIGCONTEXT_R0);
337 else
338 arm_linux_sigtramp_cache (this_frame, this_cache, func,
339 ARM_NEW_RT_SIGFRAME_UCONTEXT
340 + ARM_UCONTEXT_SIGCONTEXT
341 + ARM_SIGCONTEXT_R0);
342 }
343
344 static void
345 arm_linux_restart_syscall_init (const struct tramp_frame *self,
346 struct frame_info *this_frame,
347 struct trad_frame_cache *this_cache,
348 CORE_ADDR func)
349 {
350 struct gdbarch *gdbarch = get_frame_arch (this_frame);
351 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
352 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
353 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
354 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
355 int sp_offset;
356
357 /* There are two variants of this trampoline; with older kernels, the
358 stub is placed on the stack, while newer kernels use the stub from
359 the vector page. They are identical except that the older version
360 increments SP by 12 (to skip stored PC and the stub itself), while
361 the newer version increments SP only by 4 (just the stored PC). */
362 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
363 sp_offset = 4;
364 else
365 sp_offset = 12;
366
367 /* Update Thumb bit in CPSR. */
368 if (pc & 1)
369 cpsr |= t_bit;
370 else
371 cpsr &= ~t_bit;
372
373 /* Remove Thumb bit from PC. */
374 pc = gdbarch_addr_bits_remove (gdbarch, pc);
375
376 /* Save previous register values. */
377 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
378 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
379 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
380
381 /* Save a frame ID. */
382 trad_frame_set_id (this_cache, frame_id_build (sp, func));
383 }
384
385 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
386 SIGTRAMP_FRAME,
387 4,
388 {
389 { ARM_LINUX_SIGRETURN_INSTR, ULONGEST_MAX },
390 { TRAMP_SENTINEL_INSN }
391 },
392 arm_linux_sigreturn_init
393 };
394
395 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
396 SIGTRAMP_FRAME,
397 4,
398 {
399 { ARM_LINUX_RT_SIGRETURN_INSTR, ULONGEST_MAX },
400 { TRAMP_SENTINEL_INSN }
401 },
402 arm_linux_rt_sigreturn_init
403 };
404
405 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
406 SIGTRAMP_FRAME,
407 4,
408 {
409 { ARM_SET_R7_SIGRETURN, ULONGEST_MAX },
410 { ARM_EABI_SYSCALL, ULONGEST_MAX },
411 { TRAMP_SENTINEL_INSN }
412 },
413 arm_linux_sigreturn_init
414 };
415
416 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
417 SIGTRAMP_FRAME,
418 4,
419 {
420 { ARM_SET_R7_RT_SIGRETURN, ULONGEST_MAX },
421 { ARM_EABI_SYSCALL, ULONGEST_MAX },
422 { TRAMP_SENTINEL_INSN }
423 },
424 arm_linux_rt_sigreturn_init
425 };
426
427 static struct tramp_frame thumb2_eabi_linux_sigreturn_tramp_frame = {
428 SIGTRAMP_FRAME,
429 2,
430 {
431 { THUMB2_SET_R7_SIGRETURN1, ULONGEST_MAX },
432 { THUMB2_SET_R7_SIGRETURN2, ULONGEST_MAX },
433 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
434 { TRAMP_SENTINEL_INSN }
435 },
436 arm_linux_sigreturn_init
437 };
438
439 static struct tramp_frame thumb2_eabi_linux_rt_sigreturn_tramp_frame = {
440 SIGTRAMP_FRAME,
441 2,
442 {
443 { THUMB2_SET_R7_RT_SIGRETURN1, ULONGEST_MAX },
444 { THUMB2_SET_R7_RT_SIGRETURN2, ULONGEST_MAX },
445 { THUMB2_EABI_SYSCALL, ULONGEST_MAX },
446 { TRAMP_SENTINEL_INSN }
447 },
448 arm_linux_rt_sigreturn_init
449 };
450
451 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
452 NORMAL_FRAME,
453 4,
454 {
455 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
456 { ARM_LDR_PC_SP_12, ULONGEST_MAX },
457 { TRAMP_SENTINEL_INSN }
458 },
459 arm_linux_restart_syscall_init
460 };
461
462 static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
463 NORMAL_FRAME,
464 4,
465 {
466 { ARM_OABI_SYSCALL_RESTART_SYSCALL, ULONGEST_MAX },
467 { ARM_LDR_PC_SP_4, ULONGEST_MAX },
468 { TRAMP_SENTINEL_INSN }
469 },
470 arm_linux_restart_syscall_init
471 };
472
473 /* Core file and register set support. */
474
475 #define ARM_LINUX_SIZEOF_GREGSET (18 * ARM_INT_REGISTER_SIZE)
476
477 void
478 arm_linux_supply_gregset (const struct regset *regset,
479 struct regcache *regcache,
480 int regnum, const void *gregs_buf, size_t len)
481 {
482 struct gdbarch *gdbarch = regcache->arch ();
483 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
484 const gdb_byte *gregs = (const gdb_byte *) gregs_buf;
485 int regno;
486 CORE_ADDR reg_pc;
487 gdb_byte pc_buf[ARM_INT_REGISTER_SIZE];
488
489 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
490 if (regnum == -1 || regnum == regno)
491 regcache->raw_supply (regno, gregs + ARM_INT_REGISTER_SIZE * regno);
492
493 if (regnum == ARM_PS_REGNUM || regnum == -1)
494 {
495 if (arm_apcs_32)
496 regcache->raw_supply (ARM_PS_REGNUM,
497 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
498 else
499 regcache->raw_supply (ARM_PS_REGNUM,
500 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
501 }
502
503 if (regnum == ARM_PC_REGNUM || regnum == -1)
504 {
505 reg_pc = extract_unsigned_integer (
506 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM,
507 ARM_INT_REGISTER_SIZE, byte_order);
508 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
509 store_unsigned_integer (pc_buf, ARM_INT_REGISTER_SIZE, byte_order,
510 reg_pc);
511 regcache->raw_supply (ARM_PC_REGNUM, pc_buf);
512 }
513 }
514
515 void
516 arm_linux_collect_gregset (const struct regset *regset,
517 const struct regcache *regcache,
518 int regnum, void *gregs_buf, size_t len)
519 {
520 gdb_byte *gregs = (gdb_byte *) gregs_buf;
521 int regno;
522
523 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
524 if (regnum == -1 || regnum == regno)
525 regcache->raw_collect (regno,
526 gregs + ARM_INT_REGISTER_SIZE * regno);
527
528 if (regnum == ARM_PS_REGNUM || regnum == -1)
529 {
530 if (arm_apcs_32)
531 regcache->raw_collect (ARM_PS_REGNUM,
532 gregs + ARM_INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
533 else
534 regcache->raw_collect (ARM_PS_REGNUM,
535 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
536 }
537
538 if (regnum == ARM_PC_REGNUM || regnum == -1)
539 regcache->raw_collect (ARM_PC_REGNUM,
540 gregs + ARM_INT_REGISTER_SIZE * ARM_PC_REGNUM);
541 }
542
543 /* Support for register format used by the NWFPE FPA emulator. */
544
545 #define typeNone 0x00
546 #define typeSingle 0x01
547 #define typeDouble 0x02
548 #define typeExtended 0x03
549
550 void
551 supply_nwfpe_register (struct regcache *regcache, int regno,
552 const gdb_byte *regs)
553 {
554 const gdb_byte *reg_data;
555 gdb_byte reg_tag;
556 gdb_byte buf[ARM_FP_REGISTER_SIZE];
557
558 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
559 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
560 memset (buf, 0, ARM_FP_REGISTER_SIZE);
561
562 switch (reg_tag)
563 {
564 case typeSingle:
565 memcpy (buf, reg_data, 4);
566 break;
567 case typeDouble:
568 memcpy (buf, reg_data + 4, 4);
569 memcpy (buf + 4, reg_data, 4);
570 break;
571 case typeExtended:
572 /* We want sign and exponent, then least significant bits,
573 then most significant. NWFPE does sign, most, least. */
574 memcpy (buf, reg_data, 4);
575 memcpy (buf + 4, reg_data + 8, 4);
576 memcpy (buf + 8, reg_data + 4, 4);
577 break;
578 default:
579 break;
580 }
581
582 regcache->raw_supply (regno, buf);
583 }
584
585 void
586 collect_nwfpe_register (const struct regcache *regcache, int regno,
587 gdb_byte *regs)
588 {
589 gdb_byte *reg_data;
590 gdb_byte reg_tag;
591 gdb_byte buf[ARM_FP_REGISTER_SIZE];
592
593 regcache->raw_collect (regno, buf);
594
595 /* NOTE drow/2006-06-07: This code uses the tag already in the
596 register buffer. I've preserved that when moving the code
597 from the native file to the target file. But this doesn't
598 always make sense. */
599
600 reg_data = regs + (regno - ARM_F0_REGNUM) * ARM_FP_REGISTER_SIZE;
601 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
602
603 switch (reg_tag)
604 {
605 case typeSingle:
606 memcpy (reg_data, buf, 4);
607 break;
608 case typeDouble:
609 memcpy (reg_data, buf + 4, 4);
610 memcpy (reg_data + 4, buf, 4);
611 break;
612 case typeExtended:
613 memcpy (reg_data, buf, 4);
614 memcpy (reg_data + 4, buf + 8, 4);
615 memcpy (reg_data + 8, buf + 4, 4);
616 break;
617 default:
618 break;
619 }
620 }
621
622 void
623 arm_linux_supply_nwfpe (const struct regset *regset,
624 struct regcache *regcache,
625 int regnum, const void *regs_buf, size_t len)
626 {
627 const gdb_byte *regs = (const gdb_byte *) regs_buf;
628 int regno;
629
630 if (regnum == ARM_FPS_REGNUM || regnum == -1)
631 regcache->raw_supply (ARM_FPS_REGNUM,
632 regs + NWFPE_FPSR_OFFSET);
633
634 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
635 if (regnum == -1 || regnum == regno)
636 supply_nwfpe_register (regcache, regno, regs);
637 }
638
639 void
640 arm_linux_collect_nwfpe (const struct regset *regset,
641 const struct regcache *regcache,
642 int regnum, void *regs_buf, size_t len)
643 {
644 gdb_byte *regs = (gdb_byte *) regs_buf;
645 int regno;
646
647 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
648 if (regnum == -1 || regnum == regno)
649 collect_nwfpe_register (regcache, regno, regs);
650
651 if (regnum == ARM_FPS_REGNUM || regnum == -1)
652 regcache->raw_collect (ARM_FPS_REGNUM,
653 regs + ARM_INT_REGISTER_SIZE * ARM_FPS_REGNUM);
654 }
655
656 /* Support VFP register format. */
657
658 #define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
659
660 static void
661 arm_linux_supply_vfp (const struct regset *regset,
662 struct regcache *regcache,
663 int regnum, const void *regs_buf, size_t len)
664 {
665 const gdb_byte *regs = (const gdb_byte *) regs_buf;
666 int regno;
667
668 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
669 regcache->raw_supply (ARM_FPSCR_REGNUM, regs + 32 * 8);
670
671 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
672 if (regnum == -1 || regnum == regno)
673 regcache->raw_supply (regno, regs + (regno - ARM_D0_REGNUM) * 8);
674 }
675
676 static void
677 arm_linux_collect_vfp (const struct regset *regset,
678 const struct regcache *regcache,
679 int regnum, void *regs_buf, size_t len)
680 {
681 gdb_byte *regs = (gdb_byte *) regs_buf;
682 int regno;
683
684 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
685 regcache->raw_collect (ARM_FPSCR_REGNUM, regs + 32 * 8);
686
687 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
688 if (regnum == -1 || regnum == regno)
689 regcache->raw_collect (regno, regs + (regno - ARM_D0_REGNUM) * 8);
690 }
691
692 static const struct regset arm_linux_gregset =
693 {
694 NULL, arm_linux_supply_gregset, arm_linux_collect_gregset
695 };
696
697 static const struct regset arm_linux_fpregset =
698 {
699 NULL, arm_linux_supply_nwfpe, arm_linux_collect_nwfpe
700 };
701
702 static const struct regset arm_linux_vfpregset =
703 {
704 NULL, arm_linux_supply_vfp, arm_linux_collect_vfp
705 };
706
707 /* Iterate over core file register note sections. */
708
709 static void
710 arm_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
711 iterate_over_regset_sections_cb *cb,
712 void *cb_data,
713 const struct regcache *regcache)
714 {
715 arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch);
716
717 cb (".reg", ARM_LINUX_SIZEOF_GREGSET, ARM_LINUX_SIZEOF_GREGSET,
718 &arm_linux_gregset, NULL, cb_data);
719
720 if (tdep->vfp_register_count > 0)
721 cb (".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, ARM_LINUX_SIZEOF_VFP,
722 &arm_linux_vfpregset, "VFP floating-point", cb_data);
723 else if (tdep->have_fpa_registers)
724 cb (".reg2", ARM_LINUX_SIZEOF_NWFPE, ARM_LINUX_SIZEOF_NWFPE,
725 &arm_linux_fpregset, "FPA floating-point", cb_data);
726 }
727
728 /* Determine target description from core file. */
729
730 static const struct target_desc *
731 arm_linux_core_read_description (struct gdbarch *gdbarch,
732 struct target_ops *target,
733 bfd *abfd)
734 {
735 CORE_ADDR arm_hwcap = linux_get_hwcap (target);
736
737 if (arm_hwcap & HWCAP_VFP)
738 {
739 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
740 Neon with VFPv3-D32. */
741 if (arm_hwcap & HWCAP_NEON)
742 return aarch32_read_description ();
743 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
744 return arm_read_description (ARM_FP_TYPE_VFPV3);
745
746 return arm_read_description (ARM_FP_TYPE_VFPV2);
747 }
748
749 return nullptr;
750 }
751
752
753 /* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
754 return 1. In addition, set IS_THUMB depending on whether we
755 will return to ARM or Thumb code. Return 0 if it is not a
756 rt_sigreturn/sigreturn syscall. */
757 static int
758 arm_linux_sigreturn_return_addr (struct frame_info *frame,
759 unsigned long svc_number,
760 CORE_ADDR *pc, int *is_thumb)
761 {
762 /* Is this a sigreturn or rt_sigreturn syscall? */
763 if (svc_number == 119 || svc_number == 173)
764 {
765 if (get_frame_type (frame) == SIGTRAMP_FRAME)
766 {
767 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
768 CORE_ADDR cpsr
769 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
770
771 *is_thumb = (cpsr & t_bit) != 0;
772 *pc = frame_unwind_caller_pc (frame);
773 return 1;
774 }
775 }
776 return 0;
777 }
778
779 /* Find the value of the next PC after a sigreturn or rt_sigreturn syscall
780 based on current processor state. In addition, set IS_THUMB depending
781 on whether we will return to ARM or Thumb code. */
782
783 static CORE_ADDR
784 arm_linux_sigreturn_next_pc (struct regcache *regcache,
785 unsigned long svc_number, int *is_thumb)
786 {
787 ULONGEST sp;
788 unsigned long sp_data;
789 CORE_ADDR next_pc = 0;
790 struct gdbarch *gdbarch = regcache->arch ();
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 int pc_offset = 0;
793 int is_sigreturn = 0;
794 CORE_ADDR cpsr;
795
796 gdb_assert (svc_number == ARM_SIGRETURN
797 || svc_number == ARM_RT_SIGRETURN);
798
799 is_sigreturn = (svc_number == ARM_SIGRETURN);
800 regcache_cooked_read_unsigned (regcache, ARM_SP_REGNUM, &sp);
801 sp_data = read_memory_unsigned_integer (sp, 4, byte_order);
802
803 pc_offset = arm_linux_sigreturn_next_pc_offset (sp, sp_data, svc_number,
804 is_sigreturn);
805
806 next_pc = read_memory_unsigned_integer (sp + pc_offset, 4, byte_order);
807
808 /* Set IS_THUMB according the CPSR saved on the stack. */
809 cpsr = read_memory_unsigned_integer (sp + pc_offset + 4, 4, byte_order);
810 *is_thumb = ((cpsr & arm_psr_thumb_bit (gdbarch)) != 0);
811
812 return next_pc;
813 }
814
815 /* At a ptrace syscall-stop, return the syscall number. This either
816 comes from the SWI instruction (OABI) or from r7 (EABI).
817
818 When the function fails, it should return -1. */
819
820 static LONGEST
821 arm_linux_get_syscall_number (struct gdbarch *gdbarch,
822 thread_info *thread)
823 {
824 struct regcache *regs = get_thread_regcache (thread);
825
826 ULONGEST pc;
827 ULONGEST cpsr;
828 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
829 int is_thumb;
830 ULONGEST svc_number = -1;
831
832 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
833 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
834 is_thumb = (cpsr & t_bit) != 0;
835
836 if (is_thumb)
837 {
838 regcache_cooked_read_unsigned (regs, 7, &svc_number);
839 }
840 else
841 {
842 enum bfd_endian byte_order_for_code =
843 gdbarch_byte_order_for_code (gdbarch);
844
845 /* PC gets incremented before the syscall-stop, so read the
846 previous instruction. */
847 unsigned long this_instr =
848 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
849
850 unsigned long svc_operand = (0x00ffffff & this_instr);
851
852 if (svc_operand)
853 {
854 /* OABI */
855 svc_number = svc_operand - 0x900000;
856 }
857 else
858 {
859 /* EABI */
860 regcache_cooked_read_unsigned (regs, 7, &svc_number);
861 }
862 }
863
864 return svc_number;
865 }
866
867 static CORE_ADDR
868 arm_linux_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
869 {
870 CORE_ADDR next_pc = 0;
871 CORE_ADDR pc = regcache_read_pc (self->regcache);
872 int is_thumb = arm_is_thumb (self->regcache);
873 ULONGEST svc_number = 0;
874
875 if (is_thumb)
876 {
877 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
878 next_pc = pc + 2;
879 }
880 else
881 {
882 struct gdbarch *gdbarch = self->regcache->arch ();
883 enum bfd_endian byte_order_for_code =
884 gdbarch_byte_order_for_code (gdbarch);
885 unsigned long this_instr =
886 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
887
888 unsigned long svc_operand = (0x00ffffff & this_instr);
889 if (svc_operand) /* OABI. */
890 {
891 svc_number = svc_operand - 0x900000;
892 }
893 else /* EABI. */
894 {
895 svc_number = regcache_raw_get_unsigned (self->regcache, 7);
896 }
897
898 next_pc = pc + 4;
899 }
900
901 if (svc_number == ARM_SIGRETURN || svc_number == ARM_RT_SIGRETURN)
902 {
903 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
904 update IS_THUMB. */
905 next_pc = arm_linux_sigreturn_next_pc (self->regcache, svc_number,
906 &is_thumb);
907 }
908
909 /* Addresses for calling Thumb functions have the bit 0 set. */
910 if (is_thumb)
911 next_pc = MAKE_THUMB_ADDR (next_pc);
912
913 return next_pc;
914 }
915
916
917 /* Insert a single step breakpoint at the next executed instruction. */
918
919 static std::vector<CORE_ADDR>
920 arm_linux_software_single_step (struct regcache *regcache)
921 {
922 struct gdbarch *gdbarch = regcache->arch ();
923 struct arm_get_next_pcs next_pcs_ctx;
924
925 /* If the target does have hardware single step, GDB doesn't have
926 to bother software single step. */
927 if (target_can_do_single_step () == 1)
928 return {};
929
930 arm_get_next_pcs_ctor (&next_pcs_ctx,
931 &arm_linux_get_next_pcs_ops,
932 gdbarch_byte_order (gdbarch),
933 gdbarch_byte_order_for_code (gdbarch),
934 1,
935 regcache);
936
937 std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx);
938
939 for (CORE_ADDR &pc_ref : next_pcs)
940 pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref);
941
942 return next_pcs;
943 }
944
945 /* Support for displaced stepping of Linux SVC instructions. */
946
947 static void
948 arm_linux_cleanup_svc (struct gdbarch *gdbarch,
949 struct regcache *regs,
950 arm_displaced_step_copy_insn_closure *dsc)
951 {
952 ULONGEST apparent_pc;
953 int within_scratch;
954
955 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
956
957 within_scratch = (apparent_pc >= dsc->scratch_base
958 && apparent_pc < (dsc->scratch_base
959 + ARM_DISPLACED_MODIFIED_INSNS * 4 + 4));
960
961 displaced_debug_printf ("PC is apparently %.8lx after SVC step %s",
962 (unsigned long) apparent_pc,
963 (within_scratch
964 ? "(within scratch space)"
965 : "(outside scratch space)"));
966
967 if (within_scratch)
968 displaced_write_reg (regs, dsc, ARM_PC_REGNUM,
969 dsc->insn_addr + dsc->insn_size, BRANCH_WRITE_PC);
970 }
971
972 static int
973 arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
974 arm_displaced_step_copy_insn_closure *dsc)
975 {
976 CORE_ADDR return_to = 0;
977
978 struct frame_info *frame;
979 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
980 int is_sigreturn = 0;
981 int is_thumb;
982
983 frame = get_current_frame ();
984
985 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
986 &return_to, &is_thumb);
987 if (is_sigreturn)
988 {
989 struct symtab_and_line sal;
990
991 displaced_debug_printf ("found sigreturn/rt_sigreturn SVC call. "
992 "PC in frame = %lx",
993 (unsigned long) get_frame_pc (frame));
994
995 displaced_debug_printf ("unwind pc = %lx. Setting momentary breakpoint.",
996 (unsigned long) return_to);
997
998 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
999 == NULL);
1000
1001 sal = find_pc_line (return_to, 0);
1002 sal.pc = return_to;
1003 sal.section = find_pc_overlay (return_to);
1004 sal.explicit_pc = 1;
1005
1006 frame = get_prev_frame (frame);
1007
1008 if (frame)
1009 {
1010 inferior_thread ()->control.step_resume_breakpoint
1011 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
1012 bp_step_resume).release ();
1013
1014 /* set_momentary_breakpoint invalidates FRAME. */
1015 frame = NULL;
1016
1017 /* We need to make sure we actually insert the momentary
1018 breakpoint set above. */
1019 insert_breakpoints ();
1020 }
1021 else
1022 displaced_debug_printf ("couldn't find previous frame to set momentary "
1023 "breakpoint for sigreturn/rt_sigreturn");
1024 }
1025 else
1026 displaced_debug_printf ("found SVC call");
1027
1028 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1029 location, else nothing.
1030 Insn: unmodified svc.
1031 Cleanup: if pc lands in scratch space, pc <- insn_addr + insn_size
1032 else leave pc alone. */
1033
1034
1035 dsc->cleanup = &arm_linux_cleanup_svc;
1036 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1037 instruction. */
1038 dsc->wrote_to_pc = 1;
1039
1040 return 0;
1041 }
1042
1043
1044 /* The following two functions implement single-stepping over calls to Linux
1045 kernel helper routines, which perform e.g. atomic operations on architecture
1046 variants which don't support them natively.
1047
1048 When this function is called, the PC will be pointing at the kernel helper
1049 (at an address inaccessible to GDB), and r14 will point to the return
1050 address. Displaced stepping always executes code in the copy area:
1051 so, make the copy-area instruction branch back to the kernel helper (the
1052 "from" address), and make r14 point to the breakpoint in the copy area. In
1053 that way, we regain control once the kernel helper returns, and can clean
1054 up appropriately (as if we had just returned from the kernel helper as it
1055 would have been called from the non-displaced location). */
1056
1057 static void
1058 cleanup_kernel_helper_return (struct gdbarch *gdbarch,
1059 struct regcache *regs,
1060 arm_displaced_step_copy_insn_closure *dsc)
1061 {
1062 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1063 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1064 }
1065
1066 static void
1067 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1068 CORE_ADDR to, struct regcache *regs,
1069 arm_displaced_step_copy_insn_closure *dsc)
1070 {
1071 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1072
1073 dsc->numinsns = 1;
1074 dsc->insn_addr = from;
1075 dsc->cleanup = &cleanup_kernel_helper_return;
1076 /* Say we wrote to the PC, else cleanup will set PC to the next
1077 instruction in the helper, which isn't helpful. */
1078 dsc->wrote_to_pc = 1;
1079
1080 /* Preparation: tmp[0] <- r14
1081 r14 <- <scratch space>+4
1082 *(<scratch space>+8) <- from
1083 Insn: ldr pc, [r14, #4]
1084 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1085
1086 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
1087 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1088 CANNOT_WRITE_PC);
1089 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1090
1091 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1092 }
1093
1094 /* Linux-specific displaced step instruction copying function. Detects when
1095 the program has stepped into a Linux kernel helper routine (which must be
1096 handled as a special case). */
1097
1098 static displaced_step_copy_insn_closure_up
1099 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1100 CORE_ADDR from, CORE_ADDR to,
1101 struct regcache *regs)
1102 {
1103 std::unique_ptr<arm_displaced_step_copy_insn_closure> dsc
1104 (new arm_displaced_step_copy_insn_closure);
1105
1106 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1107 stop at the return location. */
1108 if (from > 0xffff0000)
1109 {
1110 displaced_debug_printf ("detected kernel helper at %.8lx",
1111 (unsigned long) from);
1112
1113 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc.get ());
1114 }
1115 else
1116 {
1117 /* Override the default handling of SVC instructions. */
1118 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1119
1120 arm_process_displaced_insn (gdbarch, from, to, regs, dsc.get ());
1121 }
1122
1123 arm_displaced_init_closure (gdbarch, from, to, dsc.get ());
1124
1125 /* This is a work around for a problem with g++ 4.8. */
1126 return displaced_step_copy_insn_closure_up (dsc.release ());
1127 }
1128
1129 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
1130 gdbarch.h. */
1131
1132 static int
1133 arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1134 {
1135 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
1136 || *s == '[' /* Register indirection or
1137 displacement. */
1138 || isalpha (*s)); /* Register value. */
1139 }
1140
1141 /* This routine is used to parse a special token in ARM's assembly.
1142
1143 The special tokens parsed by it are:
1144
1145 - Register displacement (e.g, [fp, #-8])
1146
1147 It returns one if the special token has been parsed successfully,
1148 or zero if the current token is not considered special. */
1149
1150 static expr::operation_up
1151 arm_stap_parse_special_token (struct gdbarch *gdbarch,
1152 struct stap_parse_info *p)
1153 {
1154 if (*p->arg == '[')
1155 {
1156 /* Temporary holder for lookahead. */
1157 const char *tmp = p->arg;
1158 char *endp;
1159 /* Used to save the register name. */
1160 const char *start;
1161 char *regname;
1162 int len, offset;
1163 int got_minus = 0;
1164 long displacement;
1165
1166 ++tmp;
1167 start = tmp;
1168
1169 /* Register name. */
1170 while (isalnum (*tmp))
1171 ++tmp;
1172
1173 if (*tmp != ',')
1174 return {};
1175
1176 len = tmp - start;
1177 regname = (char *) alloca (len + 2);
1178
1179 offset = 0;
1180 if (isdigit (*start))
1181 {
1182 /* If we are dealing with a register whose name begins with a
1183 digit, it means we should prefix the name with the letter
1184 `r', because GDB expects this name pattern. Otherwise (e.g.,
1185 we are dealing with the register `fp'), we don't need to
1186 add such a prefix. */
1187 regname[0] = 'r';
1188 offset = 1;
1189 }
1190
1191 strncpy (regname + offset, start, len);
1192 len += offset;
1193 regname[len] = '\0';
1194
1195 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1196 error (_("Invalid register name `%s' on expression `%s'."),
1197 regname, p->saved_arg);
1198
1199 ++tmp;
1200 tmp = skip_spaces (tmp);
1201 if (*tmp == '#' || *tmp == '$')
1202 ++tmp;
1203
1204 if (*tmp == '-')
1205 {
1206 ++tmp;
1207 got_minus = 1;
1208 }
1209
1210 displacement = strtol (tmp, &endp, 10);
1211 tmp = endp;
1212
1213 /* Skipping last `]'. */
1214 if (*tmp++ != ']')
1215 return {};
1216 p->arg = tmp;
1217
1218 using namespace expr;
1219
1220 /* The displacement. */
1221 struct type *long_type = builtin_type (gdbarch)->builtin_long;
1222 if (got_minus)
1223 displacement = -displacement;
1224 operation_up disp = make_operation<long_const_operation> (long_type,
1225 displacement);
1226
1227 /* The register name. */
1228 operation_up reg
1229 = make_operation<register_operation> (regname);
1230
1231 operation_up sum
1232 = make_operation<add_operation> (std::move (reg), std::move (disp));
1233
1234 /* Casting to the expected type. */
1235 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
1236 sum = make_operation<unop_cast_operation> (std::move (sum),
1237 arg_ptr_type);
1238 return make_operation<unop_ind_operation> (std::move (sum));
1239 }
1240
1241 return {};
1242 }
1243
1244 /* ARM process record-replay constructs: syscall, signal etc. */
1245
1246 static linux_record_tdep arm_linux_record_tdep;
1247
1248 /* arm_canonicalize_syscall maps from the native arm Linux set
1249 of syscall ids into a canonical set of syscall ids used by
1250 process record. */
1251
1252 static enum gdb_syscall
1253 arm_canonicalize_syscall (int syscall)
1254 {
1255 switch (syscall)
1256 {
1257 case 0: return gdb_sys_restart_syscall;
1258 case 1: return gdb_sys_exit;
1259 case 2: return gdb_sys_fork;
1260 case 3: return gdb_sys_read;
1261 case 4: return gdb_sys_write;
1262 case 5: return gdb_sys_open;
1263 case 6: return gdb_sys_close;
1264 case 8: return gdb_sys_creat;
1265 case 9: return gdb_sys_link;
1266 case 10: return gdb_sys_unlink;
1267 case 11: return gdb_sys_execve;
1268 case 12: return gdb_sys_chdir;
1269 case 13: return gdb_sys_time;
1270 case 14: return gdb_sys_mknod;
1271 case 15: return gdb_sys_chmod;
1272 case 16: return gdb_sys_lchown16;
1273 case 19: return gdb_sys_lseek;
1274 case 20: return gdb_sys_getpid;
1275 case 21: return gdb_sys_mount;
1276 case 22: return gdb_sys_oldumount;
1277 case 23: return gdb_sys_setuid16;
1278 case 24: return gdb_sys_getuid16;
1279 case 25: return gdb_sys_stime;
1280 case 26: return gdb_sys_ptrace;
1281 case 27: return gdb_sys_alarm;
1282 case 29: return gdb_sys_pause;
1283 case 30: return gdb_sys_utime;
1284 case 33: return gdb_sys_access;
1285 case 34: return gdb_sys_nice;
1286 case 36: return gdb_sys_sync;
1287 case 37: return gdb_sys_kill;
1288 case 38: return gdb_sys_rename;
1289 case 39: return gdb_sys_mkdir;
1290 case 40: return gdb_sys_rmdir;
1291 case 41: return gdb_sys_dup;
1292 case 42: return gdb_sys_pipe;
1293 case 43: return gdb_sys_times;
1294 case 45: return gdb_sys_brk;
1295 case 46: return gdb_sys_setgid16;
1296 case 47: return gdb_sys_getgid16;
1297 case 49: return gdb_sys_geteuid16;
1298 case 50: return gdb_sys_getegid16;
1299 case 51: return gdb_sys_acct;
1300 case 52: return gdb_sys_umount;
1301 case 54: return gdb_sys_ioctl;
1302 case 55: return gdb_sys_fcntl;
1303 case 57: return gdb_sys_setpgid;
1304 case 60: return gdb_sys_umask;
1305 case 61: return gdb_sys_chroot;
1306 case 62: return gdb_sys_ustat;
1307 case 63: return gdb_sys_dup2;
1308 case 64: return gdb_sys_getppid;
1309 case 65: return gdb_sys_getpgrp;
1310 case 66: return gdb_sys_setsid;
1311 case 67: return gdb_sys_sigaction;
1312 case 70: return gdb_sys_setreuid16;
1313 case 71: return gdb_sys_setregid16;
1314 case 72: return gdb_sys_sigsuspend;
1315 case 73: return gdb_sys_sigpending;
1316 case 74: return gdb_sys_sethostname;
1317 case 75: return gdb_sys_setrlimit;
1318 case 76: return gdb_sys_getrlimit;
1319 case 77: return gdb_sys_getrusage;
1320 case 78: return gdb_sys_gettimeofday;
1321 case 79: return gdb_sys_settimeofday;
1322 case 80: return gdb_sys_getgroups16;
1323 case 81: return gdb_sys_setgroups16;
1324 case 82: return gdb_sys_select;
1325 case 83: return gdb_sys_symlink;
1326 case 85: return gdb_sys_readlink;
1327 case 86: return gdb_sys_uselib;
1328 case 87: return gdb_sys_swapon;
1329 case 88: return gdb_sys_reboot;
1330 case 89: return gdb_old_readdir;
1331 case 90: return gdb_old_mmap;
1332 case 91: return gdb_sys_munmap;
1333 case 92: return gdb_sys_truncate;
1334 case 93: return gdb_sys_ftruncate;
1335 case 94: return gdb_sys_fchmod;
1336 case 95: return gdb_sys_fchown16;
1337 case 96: return gdb_sys_getpriority;
1338 case 97: return gdb_sys_setpriority;
1339 case 99: return gdb_sys_statfs;
1340 case 100: return gdb_sys_fstatfs;
1341 case 102: return gdb_sys_socketcall;
1342 case 103: return gdb_sys_syslog;
1343 case 104: return gdb_sys_setitimer;
1344 case 105: return gdb_sys_getitimer;
1345 case 106: return gdb_sys_stat;
1346 case 107: return gdb_sys_lstat;
1347 case 108: return gdb_sys_fstat;
1348 case 111: return gdb_sys_vhangup;
1349 case 113: /* sys_syscall */
1350 return gdb_sys_no_syscall;
1351 case 114: return gdb_sys_wait4;
1352 case 115: return gdb_sys_swapoff;
1353 case 116: return gdb_sys_sysinfo;
1354 case 117: return gdb_sys_ipc;
1355 case 118: return gdb_sys_fsync;
1356 case 119: return gdb_sys_sigreturn;
1357 case 120: return gdb_sys_clone;
1358 case 121: return gdb_sys_setdomainname;
1359 case 122: return gdb_sys_uname;
1360 case 124: return gdb_sys_adjtimex;
1361 case 125: return gdb_sys_mprotect;
1362 case 126: return gdb_sys_sigprocmask;
1363 case 128: return gdb_sys_init_module;
1364 case 129: return gdb_sys_delete_module;
1365 case 131: return gdb_sys_quotactl;
1366 case 132: return gdb_sys_getpgid;
1367 case 133: return gdb_sys_fchdir;
1368 case 134: return gdb_sys_bdflush;
1369 case 135: return gdb_sys_sysfs;
1370 case 136: return gdb_sys_personality;
1371 case 138: return gdb_sys_setfsuid16;
1372 case 139: return gdb_sys_setfsgid16;
1373 case 140: return gdb_sys_llseek;
1374 case 141: return gdb_sys_getdents;
1375 case 142: return gdb_sys_select;
1376 case 143: return gdb_sys_flock;
1377 case 144: return gdb_sys_msync;
1378 case 145: return gdb_sys_readv;
1379 case 146: return gdb_sys_writev;
1380 case 147: return gdb_sys_getsid;
1381 case 148: return gdb_sys_fdatasync;
1382 case 149: return gdb_sys_sysctl;
1383 case 150: return gdb_sys_mlock;
1384 case 151: return gdb_sys_munlock;
1385 case 152: return gdb_sys_mlockall;
1386 case 153: return gdb_sys_munlockall;
1387 case 154: return gdb_sys_sched_setparam;
1388 case 155: return gdb_sys_sched_getparam;
1389 case 156: return gdb_sys_sched_setscheduler;
1390 case 157: return gdb_sys_sched_getscheduler;
1391 case 158: return gdb_sys_sched_yield;
1392 case 159: return gdb_sys_sched_get_priority_max;
1393 case 160: return gdb_sys_sched_get_priority_min;
1394 case 161: return gdb_sys_sched_rr_get_interval;
1395 case 162: return gdb_sys_nanosleep;
1396 case 163: return gdb_sys_mremap;
1397 case 164: return gdb_sys_setresuid16;
1398 case 165: return gdb_sys_getresuid16;
1399 case 168: return gdb_sys_poll;
1400 case 169: return gdb_sys_nfsservctl;
1401 case 170: return gdb_sys_setresgid;
1402 case 171: return gdb_sys_getresgid;
1403 case 172: return gdb_sys_prctl;
1404 case 173: return gdb_sys_rt_sigreturn;
1405 case 174: return gdb_sys_rt_sigaction;
1406 case 175: return gdb_sys_rt_sigprocmask;
1407 case 176: return gdb_sys_rt_sigpending;
1408 case 177: return gdb_sys_rt_sigtimedwait;
1409 case 178: return gdb_sys_rt_sigqueueinfo;
1410 case 179: return gdb_sys_rt_sigsuspend;
1411 case 180: return gdb_sys_pread64;
1412 case 181: return gdb_sys_pwrite64;
1413 case 182: return gdb_sys_chown;
1414 case 183: return gdb_sys_getcwd;
1415 case 184: return gdb_sys_capget;
1416 case 185: return gdb_sys_capset;
1417 case 186: return gdb_sys_sigaltstack;
1418 case 187: return gdb_sys_sendfile;
1419 case 190: return gdb_sys_vfork;
1420 case 191: return gdb_sys_getrlimit;
1421 case 192: return gdb_sys_mmap2;
1422 case 193: return gdb_sys_truncate64;
1423 case 194: return gdb_sys_ftruncate64;
1424 case 195: return gdb_sys_stat64;
1425 case 196: return gdb_sys_lstat64;
1426 case 197: return gdb_sys_fstat64;
1427 case 198: return gdb_sys_lchown;
1428 case 199: return gdb_sys_getuid;
1429 case 200: return gdb_sys_getgid;
1430 case 201: return gdb_sys_geteuid;
1431 case 202: return gdb_sys_getegid;
1432 case 203: return gdb_sys_setreuid;
1433 case 204: return gdb_sys_setregid;
1434 case 205: return gdb_sys_getgroups;
1435 case 206: return gdb_sys_setgroups;
1436 case 207: return gdb_sys_fchown;
1437 case 208: return gdb_sys_setresuid;
1438 case 209: return gdb_sys_getresuid;
1439 case 210: return gdb_sys_setresgid;
1440 case 211: return gdb_sys_getresgid;
1441 case 212: return gdb_sys_chown;
1442 case 213: return gdb_sys_setuid;
1443 case 214: return gdb_sys_setgid;
1444 case 215: return gdb_sys_setfsuid;
1445 case 216: return gdb_sys_setfsgid;
1446 case 217: return gdb_sys_getdents64;
1447 case 218: return gdb_sys_pivot_root;
1448 case 219: return gdb_sys_mincore;
1449 case 220: return gdb_sys_madvise;
1450 case 221: return gdb_sys_fcntl64;
1451 case 224: return gdb_sys_gettid;
1452 case 225: return gdb_sys_readahead;
1453 case 226: return gdb_sys_setxattr;
1454 case 227: return gdb_sys_lsetxattr;
1455 case 228: return gdb_sys_fsetxattr;
1456 case 229: return gdb_sys_getxattr;
1457 case 230: return gdb_sys_lgetxattr;
1458 case 231: return gdb_sys_fgetxattr;
1459 case 232: return gdb_sys_listxattr;
1460 case 233: return gdb_sys_llistxattr;
1461 case 234: return gdb_sys_flistxattr;
1462 case 235: return gdb_sys_removexattr;
1463 case 236: return gdb_sys_lremovexattr;
1464 case 237: return gdb_sys_fremovexattr;
1465 case 238: return gdb_sys_tkill;
1466 case 239: return gdb_sys_sendfile64;
1467 case 240: return gdb_sys_futex;
1468 case 241: return gdb_sys_sched_setaffinity;
1469 case 242: return gdb_sys_sched_getaffinity;
1470 case 243: return gdb_sys_io_setup;
1471 case 244: return gdb_sys_io_destroy;
1472 case 245: return gdb_sys_io_getevents;
1473 case 246: return gdb_sys_io_submit;
1474 case 247: return gdb_sys_io_cancel;
1475 case 248: return gdb_sys_exit_group;
1476 case 249: return gdb_sys_lookup_dcookie;
1477 case 250: return gdb_sys_epoll_create;
1478 case 251: return gdb_sys_epoll_ctl;
1479 case 252: return gdb_sys_epoll_wait;
1480 case 253: return gdb_sys_remap_file_pages;
1481 case 256: return gdb_sys_set_tid_address;
1482 case 257: return gdb_sys_timer_create;
1483 case 258: return gdb_sys_timer_settime;
1484 case 259: return gdb_sys_timer_gettime;
1485 case 260: return gdb_sys_timer_getoverrun;
1486 case 261: return gdb_sys_timer_delete;
1487 case 262: return gdb_sys_clock_settime;
1488 case 263: return gdb_sys_clock_gettime;
1489 case 264: return gdb_sys_clock_getres;
1490 case 265: return gdb_sys_clock_nanosleep;
1491 case 266: return gdb_sys_statfs64;
1492 case 267: return gdb_sys_fstatfs64;
1493 case 268: return gdb_sys_tgkill;
1494 case 269: return gdb_sys_utimes;
1495 /*
1496 case 270: return gdb_sys_arm_fadvise64_64;
1497 case 271: return gdb_sys_pciconfig_iobase;
1498 case 272: return gdb_sys_pciconfig_read;
1499 case 273: return gdb_sys_pciconfig_write;
1500 */
1501 case 274: return gdb_sys_mq_open;
1502 case 275: return gdb_sys_mq_unlink;
1503 case 276: return gdb_sys_mq_timedsend;
1504 case 277: return gdb_sys_mq_timedreceive;
1505 case 278: return gdb_sys_mq_notify;
1506 case 279: return gdb_sys_mq_getsetattr;
1507 case 280: return gdb_sys_waitid;
1508 case 281: return gdb_sys_socket;
1509 case 282: return gdb_sys_bind;
1510 case 283: return gdb_sys_connect;
1511 case 284: return gdb_sys_listen;
1512 case 285: return gdb_sys_accept;
1513 case 286: return gdb_sys_getsockname;
1514 case 287: return gdb_sys_getpeername;
1515 case 288: return gdb_sys_socketpair;
1516 case 289: /* send */ return gdb_sys_no_syscall;
1517 case 290: return gdb_sys_sendto;
1518 case 291: return gdb_sys_recv;
1519 case 292: return gdb_sys_recvfrom;
1520 case 293: return gdb_sys_shutdown;
1521 case 294: return gdb_sys_setsockopt;
1522 case 295: return gdb_sys_getsockopt;
1523 case 296: return gdb_sys_sendmsg;
1524 case 297: return gdb_sys_recvmsg;
1525 case 298: return gdb_sys_semop;
1526 case 299: return gdb_sys_semget;
1527 case 300: return gdb_sys_semctl;
1528 case 301: return gdb_sys_msgsnd;
1529 case 302: return gdb_sys_msgrcv;
1530 case 303: return gdb_sys_msgget;
1531 case 304: return gdb_sys_msgctl;
1532 case 305: return gdb_sys_shmat;
1533 case 306: return gdb_sys_shmdt;
1534 case 307: return gdb_sys_shmget;
1535 case 308: return gdb_sys_shmctl;
1536 case 309: return gdb_sys_add_key;
1537 case 310: return gdb_sys_request_key;
1538 case 311: return gdb_sys_keyctl;
1539 case 312: return gdb_sys_semtimedop;
1540 case 313: /* vserver */ return gdb_sys_no_syscall;
1541 case 314: return gdb_sys_ioprio_set;
1542 case 315: return gdb_sys_ioprio_get;
1543 case 316: return gdb_sys_inotify_init;
1544 case 317: return gdb_sys_inotify_add_watch;
1545 case 318: return gdb_sys_inotify_rm_watch;
1546 case 319: return gdb_sys_mbind;
1547 case 320: return gdb_sys_get_mempolicy;
1548 case 321: return gdb_sys_set_mempolicy;
1549 case 322: return gdb_sys_openat;
1550 case 323: return gdb_sys_mkdirat;
1551 case 324: return gdb_sys_mknodat;
1552 case 325: return gdb_sys_fchownat;
1553 case 326: return gdb_sys_futimesat;
1554 case 327: return gdb_sys_fstatat64;
1555 case 328: return gdb_sys_unlinkat;
1556 case 329: return gdb_sys_renameat;
1557 case 330: return gdb_sys_linkat;
1558 case 331: return gdb_sys_symlinkat;
1559 case 332: return gdb_sys_readlinkat;
1560 case 333: return gdb_sys_fchmodat;
1561 case 334: return gdb_sys_faccessat;
1562 case 335: return gdb_sys_pselect6;
1563 case 336: return gdb_sys_ppoll;
1564 case 337: return gdb_sys_unshare;
1565 case 338: return gdb_sys_set_robust_list;
1566 case 339: return gdb_sys_get_robust_list;
1567 case 340: return gdb_sys_splice;
1568 /*case 341: return gdb_sys_arm_sync_file_range;*/
1569 case 342: return gdb_sys_tee;
1570 case 343: return gdb_sys_vmsplice;
1571 case 344: return gdb_sys_move_pages;
1572 case 345: return gdb_sys_getcpu;
1573 case 346: return gdb_sys_epoll_pwait;
1574 case 347: return gdb_sys_kexec_load;
1575 /*
1576 case 348: return gdb_sys_utimensat;
1577 case 349: return gdb_sys_signalfd;
1578 case 350: return gdb_sys_timerfd_create;
1579 case 351: return gdb_sys_eventfd;
1580 */
1581 case 352: return gdb_sys_fallocate;
1582 /*
1583 case 353: return gdb_sys_timerfd_settime;
1584 case 354: return gdb_sys_timerfd_gettime;
1585 case 355: return gdb_sys_signalfd4;
1586 */
1587 case 356: return gdb_sys_eventfd2;
1588 case 357: return gdb_sys_epoll_create1;
1589 case 358: return gdb_sys_dup3;
1590 case 359: return gdb_sys_pipe2;
1591 case 360: return gdb_sys_inotify_init1;
1592 /*
1593 case 361: return gdb_sys_preadv;
1594 case 362: return gdb_sys_pwritev;
1595 case 363: return gdb_sys_rt_tgsigqueueinfo;
1596 case 364: return gdb_sys_perf_event_open;
1597 case 365: return gdb_sys_recvmmsg;
1598 case 366: return gdb_sys_accept4;
1599 case 367: return gdb_sys_fanotify_init;
1600 case 368: return gdb_sys_fanotify_mark;
1601 case 369: return gdb_sys_prlimit64;
1602 case 370: return gdb_sys_name_to_handle_at;
1603 case 371: return gdb_sys_open_by_handle_at;
1604 case 372: return gdb_sys_clock_adjtime;
1605 case 373: return gdb_sys_syncfs;
1606 case 374: return gdb_sys_sendmmsg;
1607 case 375: return gdb_sys_setns;
1608 case 376: return gdb_sys_process_vm_readv;
1609 case 377: return gdb_sys_process_vm_writev;
1610 case 378: return gdb_sys_kcmp;
1611 case 379: return gdb_sys_finit_module;
1612 */
1613 case 983041: /* ARM_breakpoint */ return gdb_sys_no_syscall;
1614 case 983042: /* ARM_cacheflush */ return gdb_sys_no_syscall;
1615 case 983043: /* ARM_usr26 */ return gdb_sys_no_syscall;
1616 case 983044: /* ARM_usr32 */ return gdb_sys_no_syscall;
1617 case 983045: /* ARM_set_tls */ return gdb_sys_no_syscall;
1618 default: return gdb_sys_no_syscall;
1619 }
1620 }
1621
1622 /* Record all registers but PC register for process-record. */
1623
1624 static int
1625 arm_all_but_pc_registers_record (struct regcache *regcache)
1626 {
1627 int i;
1628
1629 for (i = 0; i < ARM_PC_REGNUM; i++)
1630 {
1631 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1632 return -1;
1633 }
1634
1635 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1636 return -1;
1637
1638 return 0;
1639 }
1640
1641 /* Handler for arm system call instruction recording. */
1642
1643 static int
1644 arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1645 {
1646 int ret = 0;
1647 enum gdb_syscall syscall_gdb;
1648
1649 syscall_gdb = arm_canonicalize_syscall (svc_number);
1650
1651 if (syscall_gdb == gdb_sys_no_syscall)
1652 {
1653 printf_unfiltered (_("Process record and replay target doesn't "
1654 "support syscall number %s\n"),
1655 plongest (svc_number));
1656 return -1;
1657 }
1658
1659 if (syscall_gdb == gdb_sys_sigreturn
1660 || syscall_gdb == gdb_sys_rt_sigreturn)
1661 {
1662 if (arm_all_but_pc_registers_record (regcache))
1663 return -1;
1664 return 0;
1665 }
1666
1667 ret = record_linux_system_call (syscall_gdb, regcache,
1668 &arm_linux_record_tdep);
1669 if (ret != 0)
1670 return ret;
1671
1672 /* Record the return value of the system call. */
1673 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1674 return -1;
1675 /* Record LR. */
1676 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1677 return -1;
1678 /* Record CPSR. */
1679 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1680 return -1;
1681
1682 return 0;
1683 }
1684
1685 /* Implement the skip_trampoline_code gdbarch method. */
1686
1687 static CORE_ADDR
1688 arm_linux_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1689 {
1690 CORE_ADDR target_pc = arm_skip_stub (frame, pc);
1691
1692 if (target_pc != 0)
1693 return target_pc;
1694
1695 return find_solib_trampoline_target (frame, pc);
1696 }
1697
1698 /* Implement the gcc_target_options gdbarch method. */
1699
1700 static std::string
1701 arm_linux_gcc_target_options (struct gdbarch *gdbarch)
1702 {
1703 /* GCC doesn't know "-m32". */
1704 return {};
1705 }
1706
1707 static void
1708 arm_linux_init_abi (struct gdbarch_info info,
1709 struct gdbarch *gdbarch)
1710 {
1711 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
1712 static const char *const stap_register_prefixes[] = { "r", NULL };
1713 static const char *const stap_register_indirection_prefixes[] = { "[",
1714 NULL };
1715 static const char *const stap_register_indirection_suffixes[] = { "]",
1716 NULL };
1717 arm_gdbarch_tdep *tdep = (arm_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1718
1719 linux_init_abi (info, gdbarch, 1);
1720
1721 tdep->lowest_pc = 0x8000;
1722 if (info.byte_order_for_code == BFD_ENDIAN_BIG)
1723 {
1724 if (tdep->arm_abi == ARM_ABI_AAPCS)
1725 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1726 else
1727 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
1728 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
1729 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
1730 }
1731 else
1732 {
1733 if (tdep->arm_abi == ARM_ABI_AAPCS)
1734 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1735 else
1736 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
1737 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
1738 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
1739 }
1740 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
1741 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
1742 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
1743
1744 if (tdep->fp_model == ARM_FLOAT_AUTO)
1745 tdep->fp_model = ARM_FLOAT_FPA;
1746
1747 switch (tdep->fp_model)
1748 {
1749 case ARM_FLOAT_FPA:
1750 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1751 break;
1752 case ARM_FLOAT_SOFT_FPA:
1753 case ARM_FLOAT_SOFT_VFP:
1754 case ARM_FLOAT_VFP:
1755 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1756 break;
1757 default:
1758 internal_error
1759 (__FILE__, __LINE__,
1760 _("arm_linux_init_abi: Floating point model not supported"));
1761 break;
1762 }
1763 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
1764
1765 set_solib_svr4_fetch_link_map_offsets
1766 (gdbarch, linux_ilp32_fetch_link_map_offsets);
1767
1768 /* Single stepping. */
1769 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
1770
1771 /* Shared library handling. */
1772 set_gdbarch_skip_trampoline_code (gdbarch, arm_linux_skip_trampoline_code);
1773 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
1774
1775 /* Enable TLS support. */
1776 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1777 svr4_fetch_objfile_link_map);
1778
1779 tramp_frame_prepend_unwinder (gdbarch,
1780 &arm_linux_sigreturn_tramp_frame);
1781 tramp_frame_prepend_unwinder (gdbarch,
1782 &arm_linux_rt_sigreturn_tramp_frame);
1783 tramp_frame_prepend_unwinder (gdbarch,
1784 &arm_eabi_linux_sigreturn_tramp_frame);
1785 tramp_frame_prepend_unwinder (gdbarch,
1786 &arm_eabi_linux_rt_sigreturn_tramp_frame);
1787 tramp_frame_prepend_unwinder (gdbarch,
1788 &thumb2_eabi_linux_sigreturn_tramp_frame);
1789 tramp_frame_prepend_unwinder (gdbarch,
1790 &thumb2_eabi_linux_rt_sigreturn_tramp_frame);
1791 tramp_frame_prepend_unwinder (gdbarch,
1792 &arm_linux_restart_syscall_tramp_frame);
1793 tramp_frame_prepend_unwinder (gdbarch,
1794 &arm_kernel_linux_restart_syscall_tramp_frame);
1795
1796 /* Core file support. */
1797 set_gdbarch_iterate_over_regset_sections
1798 (gdbarch, arm_linux_iterate_over_regset_sections);
1799 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1800
1801 /* Displaced stepping. */
1802 set_gdbarch_displaced_step_copy_insn (gdbarch,
1803 arm_linux_displaced_step_copy_insn);
1804 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1805
1806 /* Reversible debugging, process record. */
1807 set_gdbarch_process_record (gdbarch, arm_process_record);
1808
1809 /* SystemTap functions. */
1810 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1811 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1812 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1813 stap_register_indirection_prefixes);
1814 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1815 stap_register_indirection_suffixes);
1816 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1817 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1818 set_gdbarch_stap_parse_special_token (gdbarch,
1819 arm_stap_parse_special_token);
1820
1821 /* `catch syscall' */
1822 set_xml_syscall_file_name (gdbarch, "syscalls/arm-linux.xml");
1823 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1824
1825 /* Syscall record. */
1826 tdep->arm_syscall_record = arm_linux_syscall_record;
1827
1828 /* Initialize the arm_linux_record_tdep. */
1829 /* These values are the size of the type that will be used in a system
1830 call. They are obtained from Linux Kernel source. */
1831 arm_linux_record_tdep.size_pointer
1832 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1833 arm_linux_record_tdep.size__old_kernel_stat = 32;
1834 arm_linux_record_tdep.size_tms = 16;
1835 arm_linux_record_tdep.size_loff_t = 8;
1836 arm_linux_record_tdep.size_flock = 16;
1837 arm_linux_record_tdep.size_oldold_utsname = 45;
1838 arm_linux_record_tdep.size_ustat = 20;
1839 arm_linux_record_tdep.size_old_sigaction = 16;
1840 arm_linux_record_tdep.size_old_sigset_t = 4;
1841 arm_linux_record_tdep.size_rlimit = 8;
1842 arm_linux_record_tdep.size_rusage = 72;
1843 arm_linux_record_tdep.size_timeval = 8;
1844 arm_linux_record_tdep.size_timezone = 8;
1845 arm_linux_record_tdep.size_old_gid_t = 2;
1846 arm_linux_record_tdep.size_old_uid_t = 2;
1847 arm_linux_record_tdep.size_fd_set = 128;
1848 arm_linux_record_tdep.size_old_dirent = 268;
1849 arm_linux_record_tdep.size_statfs = 64;
1850 arm_linux_record_tdep.size_statfs64 = 84;
1851 arm_linux_record_tdep.size_sockaddr = 16;
1852 arm_linux_record_tdep.size_int
1853 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1854 arm_linux_record_tdep.size_long
1855 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1856 arm_linux_record_tdep.size_ulong
1857 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1858 arm_linux_record_tdep.size_msghdr = 28;
1859 arm_linux_record_tdep.size_itimerval = 16;
1860 arm_linux_record_tdep.size_stat = 88;
1861 arm_linux_record_tdep.size_old_utsname = 325;
1862 arm_linux_record_tdep.size_sysinfo = 64;
1863 arm_linux_record_tdep.size_msqid_ds = 88;
1864 arm_linux_record_tdep.size_shmid_ds = 84;
1865 arm_linux_record_tdep.size_new_utsname = 390;
1866 arm_linux_record_tdep.size_timex = 128;
1867 arm_linux_record_tdep.size_mem_dqinfo = 24;
1868 arm_linux_record_tdep.size_if_dqblk = 68;
1869 arm_linux_record_tdep.size_fs_quota_stat = 68;
1870 arm_linux_record_tdep.size_timespec = 8;
1871 arm_linux_record_tdep.size_pollfd = 8;
1872 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1873 arm_linux_record_tdep.size_knfsd_fh = 132;
1874 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1875 arm_linux_record_tdep.size_sigaction = 20;
1876 arm_linux_record_tdep.size_sigset_t = 8;
1877 arm_linux_record_tdep.size_siginfo_t = 128;
1878 arm_linux_record_tdep.size_cap_user_data_t = 12;
1879 arm_linux_record_tdep.size_stack_t = 12;
1880 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1881 arm_linux_record_tdep.size_stat64 = 96;
1882 arm_linux_record_tdep.size_gid_t = 4;
1883 arm_linux_record_tdep.size_uid_t = 4;
1884 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1885 arm_linux_record_tdep.size_flock64 = 24;
1886 arm_linux_record_tdep.size_user_desc = 16;
1887 arm_linux_record_tdep.size_io_event = 32;
1888 arm_linux_record_tdep.size_iocb = 64;
1889 arm_linux_record_tdep.size_epoll_event = 12;
1890 arm_linux_record_tdep.size_itimerspec
1891 = arm_linux_record_tdep.size_timespec * 2;
1892 arm_linux_record_tdep.size_mq_attr = 32;
1893 arm_linux_record_tdep.size_termios = 36;
1894 arm_linux_record_tdep.size_termios2 = 44;
1895 arm_linux_record_tdep.size_pid_t = 4;
1896 arm_linux_record_tdep.size_winsize = 8;
1897 arm_linux_record_tdep.size_serial_struct = 60;
1898 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1899 arm_linux_record_tdep.size_hayes_esp_config = 12;
1900 arm_linux_record_tdep.size_size_t = 4;
1901 arm_linux_record_tdep.size_iovec = 8;
1902 arm_linux_record_tdep.size_time_t = 4;
1903
1904 /* These values are the second argument of system call "sys_ioctl".
1905 They are obtained from Linux Kernel source. */
1906 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1907 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1908 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1909 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1910 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1911 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1912 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1913 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1914 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1915 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1916 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1917 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1918 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1919 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1920 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1921 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1922 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1923 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1924 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1925 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1926 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1927 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1928 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1929 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1930 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1931 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1932 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1933 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1934 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1935 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1936 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1937 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1938 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1939 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1940 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1941 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1942 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1943 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1944 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1945 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1946 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1947 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1948 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1949 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1950 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1951 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1952 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1953 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1954 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1955 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1956 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1957 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1958 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1959 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1960 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1961 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1962 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1963 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1964 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1965 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1966 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1967 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1968 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1969 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1970 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1971
1972 /* These values are the second argument of system call "sys_fcntl"
1973 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1974 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1975 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1976 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1977 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1978
1979 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM;
1980 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 1;
1981 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 2;
1982 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
1983 arm_linux_record_tdep.arg5 = ARM_A1_REGNUM + 4;
1984 arm_linux_record_tdep.arg6 = ARM_A1_REGNUM + 5;
1985 arm_linux_record_tdep.arg7 = ARM_A1_REGNUM + 6;
1986
1987 set_gdbarch_gcc_target_options (gdbarch, arm_linux_gcc_target_options);
1988 }
1989
1990 void _initialize_arm_linux_tdep ();
1991 void
1992 _initialize_arm_linux_tdep ()
1993 {
1994 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1995 arm_linux_init_abi);
1996 }