]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
* arm-tdep.c (thumb_scan_prologue): Don't try to analyze
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include <ctype.h> /* XXX for isupper () */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "dis-asm.h" /* For register styles. */
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "frame-unwind.h"
39 #include "frame-base.h"
40 #include "trad-frame.h"
41 #include "objfiles.h"
42 #include "dwarf2-frame.h"
43
44 #include "arm-tdep.h"
45 #include "gdb/sim-arm.h"
46
47 #include "elf-bfd.h"
48 #include "coff/internal.h"
49 #include "elf/arm.h"
50
51 #include "gdb_assert.h"
52
53 static int arm_debug;
54
55 /* Macros for setting and testing a bit in a minimal symbol that marks
56 it as Thumb function. The MSB of the minimal symbol's "info" field
57 is used for this purpose.
58
59 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
60 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
61
62 #define MSYMBOL_SET_SPECIAL(msym) \
63 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
64 | 0x80000000)
65
66 #define MSYMBOL_IS_SPECIAL(msym) \
67 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
68
69 /* The list of available "set arm ..." and "show arm ..." commands. */
70 static struct cmd_list_element *setarmcmdlist = NULL;
71 static struct cmd_list_element *showarmcmdlist = NULL;
72
73 /* The type of floating-point to use. Keep this in sync with enum
74 arm_float_model, and the help string in _initialize_arm_tdep. */
75 static const char *fp_model_strings[] =
76 {
77 "auto",
78 "softfpa",
79 "fpa",
80 "softvfp",
81 "vfp",
82 NULL
83 };
84
85 /* A variable that can be configured by the user. */
86 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
87 static const char *current_fp_model = "auto";
88
89 /* The ABI to use. Keep this in sync with arm_abi_kind. */
90 static const char *arm_abi_strings[] =
91 {
92 "auto",
93 "APCS",
94 "AAPCS",
95 NULL
96 };
97
98 /* A variable that can be configured by the user. */
99 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
100 static const char *arm_abi_string = "auto";
101
102 /* Number of different reg name sets (options). */
103 static int num_disassembly_options;
104
105 /* We have more registers than the disassembler as gdb can print the value
106 of special registers as well.
107 The general register names are overwritten by whatever is being used by
108 the disassembler at the moment. We also adjust the case of cpsr and fps. */
109
110 /* Initial value: Register names used in ARM's ISA documentation. */
111 static char * arm_register_name_strings[] =
112 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
113 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
114 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
115 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
116 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
117 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
118 "fps", "cpsr" }; /* 24 25 */
119 static char **arm_register_names = arm_register_name_strings;
120
121 /* Valid register name styles. */
122 static const char **valid_disassembly_styles;
123
124 /* Disassembly style to use. Default to "std" register names. */
125 static const char *disassembly_style;
126 /* Index to that option in the opcodes table. */
127 static int current_option;
128
129 /* This is used to keep the bfd arch_info in sync with the disassembly
130 style. */
131 static void set_disassembly_style_sfunc(char *, int,
132 struct cmd_list_element *);
133 static void set_disassembly_style (void);
134
135 static void convert_from_extended (const struct floatformat *, const void *,
136 void *);
137 static void convert_to_extended (const struct floatformat *, void *,
138 const void *);
139
140 struct arm_prologue_cache
141 {
142 /* The stack pointer at the time this frame was created; i.e. the
143 caller's stack pointer when this function was called. It is used
144 to identify this frame. */
145 CORE_ADDR prev_sp;
146
147 /* The frame base for this frame is just prev_sp + frame offset -
148 frame size. FRAMESIZE is the size of this stack frame, and
149 FRAMEOFFSET if the initial offset from the stack pointer (this
150 frame's stack pointer, not PREV_SP) to the frame base. */
151
152 int framesize;
153 int frameoffset;
154
155 /* The register used to hold the frame pointer for this frame. */
156 int framereg;
157
158 /* Saved register offsets. */
159 struct trad_frame_saved_reg *saved_regs;
160 };
161
162 /* Addresses for calling Thumb functions have the bit 0 set.
163 Here are some macros to test, set, or clear bit 0 of addresses. */
164 #define IS_THUMB_ADDR(addr) ((addr) & 1)
165 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
166 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
167
168 /* Set to true if the 32-bit mode is in use. */
169
170 int arm_apcs_32 = 1;
171
172 /* Determine if the program counter specified in MEMADDR is in a Thumb
173 function. */
174
175 int
176 arm_pc_is_thumb (CORE_ADDR memaddr)
177 {
178 struct minimal_symbol *sym;
179
180 /* If bit 0 of the address is set, assume this is a Thumb address. */
181 if (IS_THUMB_ADDR (memaddr))
182 return 1;
183
184 /* Thumb functions have a "special" bit set in minimal symbols. */
185 sym = lookup_minimal_symbol_by_pc (memaddr);
186 if (sym)
187 {
188 return (MSYMBOL_IS_SPECIAL (sym));
189 }
190 else
191 {
192 return 0;
193 }
194 }
195
196 /* Remove useless bits from addresses in a running program. */
197 static CORE_ADDR
198 arm_addr_bits_remove (CORE_ADDR val)
199 {
200 if (arm_apcs_32)
201 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
202 else
203 return (val & 0x03fffffc);
204 }
205
206 /* When reading symbols, we need to zap the low bit of the address,
207 which may be set to 1 for Thumb functions. */
208 static CORE_ADDR
209 arm_smash_text_address (CORE_ADDR val)
210 {
211 return val & ~1;
212 }
213
214 /* Immediately after a function call, return the saved pc. Can't
215 always go through the frames for this because on some machines the
216 new frame is not set up until the new function executes some
217 instructions. */
218
219 static CORE_ADDR
220 arm_saved_pc_after_call (struct frame_info *frame)
221 {
222 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
223 }
224
225 /* A typical Thumb prologue looks like this:
226 push {r7, lr}
227 add sp, sp, #-28
228 add r7, sp, #12
229 Sometimes the latter instruction may be replaced by:
230 mov r7, sp
231
232 or like this:
233 push {r7, lr}
234 mov r7, sp
235 sub sp, #12
236
237 or, on tpcs, like this:
238 sub sp,#16
239 push {r7, lr}
240 (many instructions)
241 mov r7, sp
242 sub sp, #12
243
244 There is always one instruction of three classes:
245 1 - push
246 2 - setting of r7
247 3 - adjusting of sp
248
249 When we have found at least one of each class we are done with the prolog.
250 Note that the "sub sp, #NN" before the push does not count.
251 */
252
253 static CORE_ADDR
254 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
255 {
256 CORE_ADDR current_pc;
257 /* findmask:
258 bit 0 - push { rlist }
259 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
260 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
261 */
262 int findmask = 0;
263
264 for (current_pc = pc;
265 current_pc + 2 < func_end && current_pc < pc + 40;
266 current_pc += 2)
267 {
268 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
269
270 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
271 {
272 findmask |= 1; /* push found */
273 }
274 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
275 sub sp, #simm */
276 {
277 if ((findmask & 1) == 0) /* before push ? */
278 continue;
279 else
280 findmask |= 4; /* add/sub sp found */
281 }
282 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
283 {
284 findmask |= 2; /* setting of r7 found */
285 }
286 else if (insn == 0x466f) /* mov r7, sp */
287 {
288 findmask |= 2; /* setting of r7 found */
289 }
290 else if (findmask == (4+2+1))
291 {
292 /* We have found one of each type of prologue instruction */
293 break;
294 }
295 else
296 /* Something in the prolog that we don't care about or some
297 instruction from outside the prolog scheduled here for
298 optimization. */
299 continue;
300 }
301
302 return current_pc;
303 }
304
305 /* Advance the PC across any function entry prologue instructions to
306 reach some "real" code.
307
308 The APCS (ARM Procedure Call Standard) defines the following
309 prologue:
310
311 mov ip, sp
312 [stmfd sp!, {a1,a2,a3,a4}]
313 stmfd sp!, {...,fp,ip,lr,pc}
314 [stfe f7, [sp, #-12]!]
315 [stfe f6, [sp, #-12]!]
316 [stfe f5, [sp, #-12]!]
317 [stfe f4, [sp, #-12]!]
318 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
319
320 static CORE_ADDR
321 arm_skip_prologue (CORE_ADDR pc)
322 {
323 unsigned long inst;
324 CORE_ADDR skip_pc;
325 CORE_ADDR func_addr, func_end = 0;
326 char *func_name;
327 struct symtab_and_line sal;
328
329 /* If we're in a dummy frame, don't even try to skip the prologue. */
330 if (deprecated_pc_in_call_dummy (pc))
331 return pc;
332
333 /* See what the symbol table says. */
334
335 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
336 {
337 struct symbol *sym;
338
339 /* Found a function. */
340 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
341 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
342 {
343 /* Don't use this trick for assembly source files. */
344 sal = find_pc_line (func_addr, 0);
345 if ((sal.line != 0) && (sal.end < func_end))
346 return sal.end;
347 }
348 }
349
350 /* Check if this is Thumb code. */
351 if (arm_pc_is_thumb (pc))
352 return thumb_skip_prologue (pc, func_end);
353
354 /* Can't find the prologue end in the symbol table, try it the hard way
355 by disassembling the instructions. */
356
357 /* Like arm_scan_prologue, stop no later than pc + 64. */
358 if (func_end == 0 || func_end > pc + 64)
359 func_end = pc + 64;
360
361 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
362 {
363 inst = read_memory_unsigned_integer (skip_pc, 4);
364
365 /* "mov ip, sp" is no longer a required part of the prologue. */
366 if (inst == 0xe1a0c00d) /* mov ip, sp */
367 continue;
368
369 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
370 continue;
371
372 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
373 continue;
374
375 /* Some prologues begin with "str lr, [sp, #-4]!". */
376 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
377 continue;
378
379 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
380 continue;
381
382 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
383 continue;
384
385 /* Any insns after this point may float into the code, if it makes
386 for better instruction scheduling, so we skip them only if we
387 find them, but still consider the function to be frame-ful. */
388
389 /* We may have either one sfmfd instruction here, or several stfe
390 insns, depending on the version of floating point code we
391 support. */
392 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
393 continue;
394
395 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
396 continue;
397
398 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
399 continue;
400
401 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
402 continue;
403
404 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
405 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
406 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
407 continue;
408
409 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
410 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
411 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
412 continue;
413
414 /* Un-recognized instruction; stop scanning. */
415 break;
416 }
417
418 return skip_pc; /* End of prologue */
419 }
420
421 /* *INDENT-OFF* */
422 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
423 This function decodes a Thumb function prologue to determine:
424 1) the size of the stack frame
425 2) which registers are saved on it
426 3) the offsets of saved regs
427 4) the offset from the stack pointer to the frame pointer
428
429 A typical Thumb function prologue would create this stack frame
430 (offsets relative to FP)
431 old SP -> 24 stack parameters
432 20 LR
433 16 R7
434 R7 -> 0 local variables (16 bytes)
435 SP -> -12 additional stack space (12 bytes)
436 The frame size would thus be 36 bytes, and the frame offset would be
437 12 bytes. The frame register is R7.
438
439 The comments for thumb_skip_prolog() describe the algorithm we use
440 to detect the end of the prolog. */
441 /* *INDENT-ON* */
442
443 static void
444 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
445 {
446 CORE_ADDR prologue_start;
447 CORE_ADDR prologue_end;
448 CORE_ADDR current_pc;
449 /* Which register has been copied to register n? */
450 int saved_reg[16];
451 /* findmask:
452 bit 0 - push { rlist }
453 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
454 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
455 */
456 int findmask = 0;
457 int i;
458
459 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
460 {
461 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
462
463 if (sal.line == 0) /* no line info, use current PC */
464 prologue_end = prev_pc;
465 else if (sal.end < prologue_end) /* next line begins after fn end */
466 prologue_end = sal.end; /* (probably means no prologue) */
467 }
468 else
469 /* We're in the boondocks: we have no idea where the start of the
470 function is. */
471 return;
472
473 prologue_end = min (prologue_end, prev_pc);
474
475 /* Initialize the saved register map. When register H is copied to
476 register L, we will put H in saved_reg[L]. */
477 for (i = 0; i < 16; i++)
478 saved_reg[i] = i;
479
480 /* Search the prologue looking for instructions that set up the
481 frame pointer, adjust the stack pointer, and save registers.
482 Do this until all basic prolog instructions are found. */
483
484 cache->framesize = 0;
485 for (current_pc = prologue_start;
486 (current_pc < prologue_end) && ((findmask & 7) != 7);
487 current_pc += 2)
488 {
489 unsigned short insn;
490 int regno;
491 int offset;
492
493 insn = read_memory_unsigned_integer (current_pc, 2);
494
495 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
496 {
497 int mask;
498 findmask |= 1; /* push found */
499 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
500 whether to save LR (R14). */
501 mask = (insn & 0xff) | ((insn & 0x100) << 6);
502
503 /* Calculate offsets of saved R0-R7 and LR. */
504 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
505 if (mask & (1 << regno))
506 {
507 cache->framesize += 4;
508 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
509 /* Reset saved register map. */
510 saved_reg[regno] = regno;
511 }
512 }
513 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
514 sub sp, #simm */
515 {
516 if ((findmask & 1) == 0) /* before push? */
517 continue;
518 else
519 findmask |= 4; /* add/sub sp found */
520
521 offset = (insn & 0x7f) << 2; /* get scaled offset */
522 if (insn & 0x80) /* is it signed? (==subtracting) */
523 {
524 cache->frameoffset += offset;
525 offset = -offset;
526 }
527 cache->framesize -= offset;
528 }
529 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
530 {
531 findmask |= 2; /* setting of r7 found */
532 cache->framereg = THUMB_FP_REGNUM;
533 /* get scaled offset */
534 cache->frameoffset = (insn & 0xff) << 2;
535 }
536 else if (insn == 0x466f) /* mov r7, sp */
537 {
538 findmask |= 2; /* setting of r7 found */
539 cache->framereg = THUMB_FP_REGNUM;
540 cache->frameoffset = 0;
541 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
542 }
543 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
544 {
545 int lo_reg = insn & 7; /* dest. register (r0-r7) */
546 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
547 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
548 }
549 else
550 /* Something in the prolog that we don't care about or some
551 instruction from outside the prolog scheduled here for
552 optimization. */
553 continue;
554 }
555 }
556
557 /* This function decodes an ARM function prologue to determine:
558 1) the size of the stack frame
559 2) which registers are saved on it
560 3) the offsets of saved regs
561 4) the offset from the stack pointer to the frame pointer
562 This information is stored in the "extra" fields of the frame_info.
563
564 There are two basic forms for the ARM prologue. The fixed argument
565 function call will look like:
566
567 mov ip, sp
568 stmfd sp!, {fp, ip, lr, pc}
569 sub fp, ip, #4
570 [sub sp, sp, #4]
571
572 Which would create this stack frame (offsets relative to FP):
573 IP -> 4 (caller's stack)
574 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
575 -4 LR (return address in caller)
576 -8 IP (copy of caller's SP)
577 -12 FP (caller's FP)
578 SP -> -28 Local variables
579
580 The frame size would thus be 32 bytes, and the frame offset would be
581 28 bytes. The stmfd call can also save any of the vN registers it
582 plans to use, which increases the frame size accordingly.
583
584 Note: The stored PC is 8 off of the STMFD instruction that stored it
585 because the ARM Store instructions always store PC + 8 when you read
586 the PC register.
587
588 A variable argument function call will look like:
589
590 mov ip, sp
591 stmfd sp!, {a1, a2, a3, a4}
592 stmfd sp!, {fp, ip, lr, pc}
593 sub fp, ip, #20
594
595 Which would create this stack frame (offsets relative to FP):
596 IP -> 20 (caller's stack)
597 16 A4
598 12 A3
599 8 A2
600 4 A1
601 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
602 -4 LR (return address in caller)
603 -8 IP (copy of caller's SP)
604 -12 FP (caller's FP)
605 SP -> -28 Local variables
606
607 The frame size would thus be 48 bytes, and the frame offset would be
608 28 bytes.
609
610 There is another potential complication, which is that the optimizer
611 will try to separate the store of fp in the "stmfd" instruction from
612 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
613 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
614
615 Also, note, the original version of the ARM toolchain claimed that there
616 should be an
617
618 instruction at the end of the prologue. I have never seen GCC produce
619 this, and the ARM docs don't mention it. We still test for it below in
620 case it happens...
621
622 */
623
624 static void
625 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
626 {
627 int regno, sp_offset, fp_offset, ip_offset;
628 CORE_ADDR prologue_start, prologue_end, current_pc;
629 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
630
631 /* Assume there is no frame until proven otherwise. */
632 cache->framereg = ARM_SP_REGNUM;
633 cache->framesize = 0;
634 cache->frameoffset = 0;
635
636 /* Check for Thumb prologue. */
637 if (arm_pc_is_thumb (prev_pc))
638 {
639 thumb_scan_prologue (prev_pc, cache);
640 return;
641 }
642
643 /* Find the function prologue. If we can't find the function in
644 the symbol table, peek in the stack frame to find the PC. */
645 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
646 {
647 /* One way to find the end of the prologue (which works well
648 for unoptimized code) is to do the following:
649
650 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
651
652 if (sal.line == 0)
653 prologue_end = prev_pc;
654 else if (sal.end < prologue_end)
655 prologue_end = sal.end;
656
657 This mechanism is very accurate so long as the optimizer
658 doesn't move any instructions from the function body into the
659 prologue. If this happens, sal.end will be the last
660 instruction in the first hunk of prologue code just before
661 the first instruction that the scheduler has moved from
662 the body to the prologue.
663
664 In order to make sure that we scan all of the prologue
665 instructions, we use a slightly less accurate mechanism which
666 may scan more than necessary. To help compensate for this
667 lack of accuracy, the prologue scanning loop below contains
668 several clauses which'll cause the loop to terminate early if
669 an implausible prologue instruction is encountered.
670
671 The expression
672
673 prologue_start + 64
674
675 is a suitable endpoint since it accounts for the largest
676 possible prologue plus up to five instructions inserted by
677 the scheduler. */
678
679 if (prologue_end > prologue_start + 64)
680 {
681 prologue_end = prologue_start + 64; /* See above. */
682 }
683 }
684 else
685 {
686 /* We have no symbol information. Our only option is to assume this
687 function has a standard stack frame and the normal frame register.
688 Then, we can find the value of our frame pointer on entrance to
689 the callee (or at the present moment if this is the innermost frame).
690 The value stored there should be the address of the stmfd + 8. */
691 CORE_ADDR frame_loc;
692 LONGEST return_value;
693
694 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
695 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
696 return;
697 else
698 {
699 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
700 prologue_end = prologue_start + 64; /* See above. */
701 }
702 }
703
704 if (prev_pc < prologue_end)
705 prologue_end = prev_pc;
706
707 /* Now search the prologue looking for instructions that set up the
708 frame pointer, adjust the stack pointer, and save registers.
709
710 Be careful, however, and if it doesn't look like a prologue,
711 don't try to scan it. If, for instance, a frameless function
712 begins with stmfd sp!, then we will tell ourselves there is
713 a frame, which will confuse stack traceback, as well as "finish"
714 and other operations that rely on a knowledge of the stack
715 traceback.
716
717 In the APCS, the prologue should start with "mov ip, sp" so
718 if we don't see this as the first insn, we will stop.
719
720 [Note: This doesn't seem to be true any longer, so it's now an
721 optional part of the prologue. - Kevin Buettner, 2001-11-20]
722
723 [Note further: The "mov ip,sp" only seems to be missing in
724 frameless functions at optimization level "-O2" or above,
725 in which case it is often (but not always) replaced by
726 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
727
728 sp_offset = fp_offset = ip_offset = 0;
729
730 for (current_pc = prologue_start;
731 current_pc < prologue_end;
732 current_pc += 4)
733 {
734 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
735
736 if (insn == 0xe1a0c00d) /* mov ip, sp */
737 {
738 ip_offset = 0;
739 continue;
740 }
741 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
742 {
743 unsigned imm = insn & 0xff; /* immediate value */
744 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
745 imm = (imm >> rot) | (imm << (32 - rot));
746 ip_offset = imm;
747 continue;
748 }
749 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
750 {
751 unsigned imm = insn & 0xff; /* immediate value */
752 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
753 imm = (imm >> rot) | (imm << (32 - rot));
754 ip_offset = -imm;
755 continue;
756 }
757 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
758 {
759 sp_offset -= 4;
760 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
761 continue;
762 }
763 else if ((insn & 0xffff0000) == 0xe92d0000)
764 /* stmfd sp!, {..., fp, ip, lr, pc}
765 or
766 stmfd sp!, {a1, a2, a3, a4} */
767 {
768 int mask = insn & 0xffff;
769
770 /* Calculate offsets of saved registers. */
771 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
772 if (mask & (1 << regno))
773 {
774 sp_offset -= 4;
775 cache->saved_regs[regno].addr = sp_offset;
776 }
777 }
778 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
779 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
780 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
781 {
782 /* No need to add this to saved_regs -- it's just an arg reg. */
783 continue;
784 }
785 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
786 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
787 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
788 {
789 /* No need to add this to saved_regs -- it's just an arg reg. */
790 continue;
791 }
792 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
793 {
794 unsigned imm = insn & 0xff; /* immediate value */
795 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
796 imm = (imm >> rot) | (imm << (32 - rot));
797 fp_offset = -imm + ip_offset;
798 cache->framereg = ARM_FP_REGNUM;
799 }
800 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
801 {
802 unsigned imm = insn & 0xff; /* immediate value */
803 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
804 imm = (imm >> rot) | (imm << (32 - rot));
805 sp_offset -= imm;
806 }
807 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
808 {
809 sp_offset -= 12;
810 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
811 cache->saved_regs[regno].addr = sp_offset;
812 }
813 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
814 {
815 int n_saved_fp_regs;
816 unsigned int fp_start_reg, fp_bound_reg;
817
818 if ((insn & 0x800) == 0x800) /* N0 is set */
819 {
820 if ((insn & 0x40000) == 0x40000) /* N1 is set */
821 n_saved_fp_regs = 3;
822 else
823 n_saved_fp_regs = 1;
824 }
825 else
826 {
827 if ((insn & 0x40000) == 0x40000) /* N1 is set */
828 n_saved_fp_regs = 2;
829 else
830 n_saved_fp_regs = 4;
831 }
832
833 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
834 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
835 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
836 {
837 sp_offset -= 12;
838 cache->saved_regs[fp_start_reg++].addr = sp_offset;
839 }
840 }
841 else if ((insn & 0xf0000000) != 0xe0000000)
842 break; /* Condition not true, exit early */
843 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
844 break; /* Don't scan past a block load */
845 else
846 /* The optimizer might shove anything into the prologue,
847 so we just skip what we don't recognize. */
848 continue;
849 }
850
851 /* The frame size is just the negative of the offset (from the
852 original SP) of the last thing thing we pushed on the stack.
853 The frame offset is [new FP] - [new SP]. */
854 cache->framesize = -sp_offset;
855 if (cache->framereg == ARM_FP_REGNUM)
856 cache->frameoffset = fp_offset - sp_offset;
857 else
858 cache->frameoffset = 0;
859 }
860
861 static struct arm_prologue_cache *
862 arm_make_prologue_cache (struct frame_info *next_frame)
863 {
864 int reg;
865 struct arm_prologue_cache *cache;
866 CORE_ADDR unwound_fp;
867
868 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
869 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
870
871 arm_scan_prologue (next_frame, cache);
872
873 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
874 if (unwound_fp == 0)
875 return cache;
876
877 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
878
879 /* Calculate actual addresses of saved registers using offsets
880 determined by arm_scan_prologue. */
881 for (reg = 0; reg < NUM_REGS; reg++)
882 if (trad_frame_addr_p (cache->saved_regs, reg))
883 cache->saved_regs[reg].addr += cache->prev_sp;
884
885 return cache;
886 }
887
888 /* Our frame ID for a normal frame is the current function's starting PC
889 and the caller's SP when we were called. */
890
891 static void
892 arm_prologue_this_id (struct frame_info *next_frame,
893 void **this_cache,
894 struct frame_id *this_id)
895 {
896 struct arm_prologue_cache *cache;
897 struct frame_id id;
898 CORE_ADDR func;
899
900 if (*this_cache == NULL)
901 *this_cache = arm_make_prologue_cache (next_frame);
902 cache = *this_cache;
903
904 func = frame_func_unwind (next_frame);
905
906 /* This is meant to halt the backtrace at "_start". Make sure we
907 don't halt it at a generic dummy frame. */
908 if (func <= LOWEST_PC)
909 return;
910
911 /* If we've hit a wall, stop. */
912 if (cache->prev_sp == 0)
913 return;
914
915 id = frame_id_build (cache->prev_sp, func);
916 *this_id = id;
917 }
918
919 static void
920 arm_prologue_prev_register (struct frame_info *next_frame,
921 void **this_cache,
922 int prev_regnum,
923 int *optimized,
924 enum lval_type *lvalp,
925 CORE_ADDR *addrp,
926 int *realnump,
927 gdb_byte *valuep)
928 {
929 struct arm_prologue_cache *cache;
930
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
934
935 /* If we are asked to unwind the PC, then we need to return the LR
936 instead. The saved value of PC points into this frame's
937 prologue, not the next frame's resume location. */
938 if (prev_regnum == ARM_PC_REGNUM)
939 prev_regnum = ARM_LR_REGNUM;
940
941 /* SP is generally not saved to the stack, but this frame is
942 identified by NEXT_FRAME's stack pointer at the time of the call.
943 The value was already reconstructed into PREV_SP. */
944 if (prev_regnum == ARM_SP_REGNUM)
945 {
946 *lvalp = not_lval;
947 if (valuep)
948 store_unsigned_integer (valuep, 4, cache->prev_sp);
949 return;
950 }
951
952 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
953 optimized, lvalp, addrp, realnump, valuep);
954 }
955
956 struct frame_unwind arm_prologue_unwind = {
957 NORMAL_FRAME,
958 arm_prologue_this_id,
959 arm_prologue_prev_register
960 };
961
962 static const struct frame_unwind *
963 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
964 {
965 return &arm_prologue_unwind;
966 }
967
968 static struct arm_prologue_cache *
969 arm_make_stub_cache (struct frame_info *next_frame)
970 {
971 int reg;
972 struct arm_prologue_cache *cache;
973 CORE_ADDR unwound_fp;
974
975 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
976 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
977
978 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
979
980 return cache;
981 }
982
983 /* Our frame ID for a stub frame is the current SP and LR. */
984
985 static void
986 arm_stub_this_id (struct frame_info *next_frame,
987 void **this_cache,
988 struct frame_id *this_id)
989 {
990 struct arm_prologue_cache *cache;
991
992 if (*this_cache == NULL)
993 *this_cache = arm_make_stub_cache (next_frame);
994 cache = *this_cache;
995
996 *this_id = frame_id_build (cache->prev_sp,
997 frame_pc_unwind (next_frame));
998 }
999
1000 struct frame_unwind arm_stub_unwind = {
1001 NORMAL_FRAME,
1002 arm_stub_this_id,
1003 arm_prologue_prev_register
1004 };
1005
1006 static const struct frame_unwind *
1007 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1008 {
1009 char dummy[4];
1010
1011 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
1012 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1013 return &arm_stub_unwind;
1014
1015 return NULL;
1016 }
1017
1018 static CORE_ADDR
1019 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1020 {
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_prologue_cache (next_frame);
1025 cache = *this_cache;
1026
1027 return cache->prev_sp + cache->frameoffset - cache->framesize;
1028 }
1029
1030 struct frame_base arm_normal_base = {
1031 &arm_prologue_unwind,
1032 arm_normal_frame_base,
1033 arm_normal_frame_base,
1034 arm_normal_frame_base
1035 };
1036
1037 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1038 dummy frame. The frame ID's base needs to match the TOS value
1039 saved by save_dummy_frame_tos() and returned from
1040 arm_push_dummy_call, and the PC needs to match the dummy frame's
1041 breakpoint. */
1042
1043 static struct frame_id
1044 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1045 {
1046 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1047 frame_pc_unwind (next_frame));
1048 }
1049
1050 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1051 be used to construct the previous frame's ID, after looking up the
1052 containing function). */
1053
1054 static CORE_ADDR
1055 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1056 {
1057 CORE_ADDR pc;
1058 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1059 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1060 }
1061
1062 static CORE_ADDR
1063 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1064 {
1065 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1066 }
1067
1068 /* When arguments must be pushed onto the stack, they go on in reverse
1069 order. The code below implements a FILO (stack) to do this. */
1070
1071 struct stack_item
1072 {
1073 int len;
1074 struct stack_item *prev;
1075 void *data;
1076 };
1077
1078 static struct stack_item *
1079 push_stack_item (struct stack_item *prev, void *contents, int len)
1080 {
1081 struct stack_item *si;
1082 si = xmalloc (sizeof (struct stack_item));
1083 si->data = xmalloc (len);
1084 si->len = len;
1085 si->prev = prev;
1086 memcpy (si->data, contents, len);
1087 return si;
1088 }
1089
1090 static struct stack_item *
1091 pop_stack_item (struct stack_item *si)
1092 {
1093 struct stack_item *dead = si;
1094 si = si->prev;
1095 xfree (dead->data);
1096 xfree (dead);
1097 return si;
1098 }
1099
1100
1101 /* Return the alignment (in bytes) of the given type. */
1102
1103 static int
1104 arm_type_align (struct type *t)
1105 {
1106 int n;
1107 int align;
1108 int falign;
1109
1110 t = check_typedef (t);
1111 switch (TYPE_CODE (t))
1112 {
1113 default:
1114 /* Should never happen. */
1115 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1116 return 4;
1117
1118 case TYPE_CODE_PTR:
1119 case TYPE_CODE_ENUM:
1120 case TYPE_CODE_INT:
1121 case TYPE_CODE_FLT:
1122 case TYPE_CODE_SET:
1123 case TYPE_CODE_RANGE:
1124 case TYPE_CODE_BITSTRING:
1125 case TYPE_CODE_REF:
1126 case TYPE_CODE_CHAR:
1127 case TYPE_CODE_BOOL:
1128 return TYPE_LENGTH (t);
1129
1130 case TYPE_CODE_ARRAY:
1131 case TYPE_CODE_COMPLEX:
1132 /* TODO: What about vector types? */
1133 return arm_type_align (TYPE_TARGET_TYPE (t));
1134
1135 case TYPE_CODE_STRUCT:
1136 case TYPE_CODE_UNION:
1137 align = 1;
1138 for (n = 0; n < TYPE_NFIELDS (t); n++)
1139 {
1140 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1141 if (falign > align)
1142 align = falign;
1143 }
1144 return align;
1145 }
1146 }
1147
1148 /* We currently only support passing parameters in integer registers. This
1149 conforms with GCC's default model. Several other variants exist and
1150 we should probably support some of them based on the selected ABI. */
1151
1152 static CORE_ADDR
1153 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1154 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1155 struct value **args, CORE_ADDR sp, int struct_return,
1156 CORE_ADDR struct_addr)
1157 {
1158 int argnum;
1159 int argreg;
1160 int nstack;
1161 struct stack_item *si = NULL;
1162
1163 /* Set the return address. For the ARM, the return breakpoint is
1164 always at BP_ADDR. */
1165 /* XXX Fix for Thumb. */
1166 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1167
1168 /* Walk through the list of args and determine how large a temporary
1169 stack is required. Need to take care here as structs may be
1170 passed on the stack, and we have to to push them. */
1171 nstack = 0;
1172
1173 argreg = ARM_A1_REGNUM;
1174 nstack = 0;
1175
1176 /* The struct_return pointer occupies the first parameter
1177 passing register. */
1178 if (struct_return)
1179 {
1180 if (arm_debug)
1181 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1182 REGISTER_NAME (argreg), paddr (struct_addr));
1183 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1184 argreg++;
1185 }
1186
1187 for (argnum = 0; argnum < nargs; argnum++)
1188 {
1189 int len;
1190 struct type *arg_type;
1191 struct type *target_type;
1192 enum type_code typecode;
1193 bfd_byte *val;
1194 int align;
1195
1196 arg_type = check_typedef (value_type (args[argnum]));
1197 len = TYPE_LENGTH (arg_type);
1198 target_type = TYPE_TARGET_TYPE (arg_type);
1199 typecode = TYPE_CODE (arg_type);
1200 val = value_contents_writeable (args[argnum]);
1201
1202 align = arm_type_align (arg_type);
1203 /* Round alignment up to a whole number of words. */
1204 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1205 /* Different ABIs have different maximum alignments. */
1206 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1207 {
1208 /* The APCS ABI only requires word alignment. */
1209 align = INT_REGISTER_SIZE;
1210 }
1211 else
1212 {
1213 /* The AAPCS requires at most doubleword alignment. */
1214 if (align > INT_REGISTER_SIZE * 2)
1215 align = INT_REGISTER_SIZE * 2;
1216 }
1217
1218 /* Push stack padding for dowubleword alignment. */
1219 if (nstack & (align - 1))
1220 {
1221 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1222 nstack += INT_REGISTER_SIZE;
1223 }
1224
1225 /* Doubleword aligned quantities must go in even register pairs. */
1226 if (argreg <= ARM_LAST_ARG_REGNUM
1227 && align > INT_REGISTER_SIZE
1228 && argreg & 1)
1229 argreg++;
1230
1231 /* If the argument is a pointer to a function, and it is a
1232 Thumb function, create a LOCAL copy of the value and set
1233 the THUMB bit in it. */
1234 if (TYPE_CODE_PTR == typecode
1235 && target_type != NULL
1236 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1237 {
1238 CORE_ADDR regval = extract_unsigned_integer (val, len);
1239 if (arm_pc_is_thumb (regval))
1240 {
1241 val = alloca (len);
1242 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1243 }
1244 }
1245
1246 /* Copy the argument to general registers or the stack in
1247 register-sized pieces. Large arguments are split between
1248 registers and stack. */
1249 while (len > 0)
1250 {
1251 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1252
1253 if (argreg <= ARM_LAST_ARG_REGNUM)
1254 {
1255 /* The argument is being passed in a general purpose
1256 register. */
1257 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1258 if (arm_debug)
1259 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1260 argnum, REGISTER_NAME (argreg),
1261 phex (regval, DEPRECATED_REGISTER_SIZE));
1262 regcache_cooked_write_unsigned (regcache, argreg, regval);
1263 argreg++;
1264 }
1265 else
1266 {
1267 /* Push the arguments onto the stack. */
1268 if (arm_debug)
1269 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1270 argnum, nstack);
1271 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1272 nstack += DEPRECATED_REGISTER_SIZE;
1273 }
1274
1275 len -= partial_len;
1276 val += partial_len;
1277 }
1278 }
1279 /* If we have an odd number of words to push, then decrement the stack
1280 by one word now, so first stack argument will be dword aligned. */
1281 if (nstack & 4)
1282 sp -= 4;
1283
1284 while (si)
1285 {
1286 sp -= si->len;
1287 write_memory (sp, si->data, si->len);
1288 si = pop_stack_item (si);
1289 }
1290
1291 /* Finally, update teh SP register. */
1292 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1293
1294 return sp;
1295 }
1296
1297
1298 /* Always align the frame to an 8-byte boundary. This is required on
1299 some platforms and harmless on the rest. */
1300
1301 static CORE_ADDR
1302 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1303 {
1304 /* Align the stack to eight bytes. */
1305 return sp & ~ (CORE_ADDR) 7;
1306 }
1307
1308 static void
1309 print_fpu_flags (int flags)
1310 {
1311 if (flags & (1 << 0))
1312 fputs ("IVO ", stdout);
1313 if (flags & (1 << 1))
1314 fputs ("DVZ ", stdout);
1315 if (flags & (1 << 2))
1316 fputs ("OFL ", stdout);
1317 if (flags & (1 << 3))
1318 fputs ("UFL ", stdout);
1319 if (flags & (1 << 4))
1320 fputs ("INX ", stdout);
1321 putchar ('\n');
1322 }
1323
1324 /* Print interesting information about the floating point processor
1325 (if present) or emulator. */
1326 static void
1327 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1328 struct frame_info *frame, const char *args)
1329 {
1330 unsigned long status = read_register (ARM_FPS_REGNUM);
1331 int type;
1332
1333 type = (status >> 24) & 127;
1334 if (status & (1 << 31))
1335 printf (_("Hardware FPU type %d\n"), type);
1336 else
1337 printf (_("Software FPU type %d\n"), type);
1338 /* i18n: [floating point unit] mask */
1339 fputs (_("mask: "), stdout);
1340 print_fpu_flags (status >> 16);
1341 /* i18n: [floating point unit] flags */
1342 fputs (_("flags: "), stdout);
1343 print_fpu_flags (status);
1344 }
1345
1346 /* Return the GDB type object for the "standard" data type of data in
1347 register N. */
1348
1349 static struct type *
1350 arm_register_type (struct gdbarch *gdbarch, int regnum)
1351 {
1352 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1353 {
1354 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1355 return builtin_type_arm_ext_big;
1356 else
1357 return builtin_type_arm_ext_littlebyte_bigword;
1358 }
1359 else
1360 return builtin_type_int32;
1361 }
1362
1363 /* Index within `registers' of the first byte of the space for
1364 register N. */
1365
1366 static int
1367 arm_register_byte (int regnum)
1368 {
1369 if (regnum < ARM_F0_REGNUM)
1370 return regnum * INT_REGISTER_SIZE;
1371 else if (regnum < ARM_PS_REGNUM)
1372 return (NUM_GREGS * INT_REGISTER_SIZE
1373 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1374 else
1375 return (NUM_GREGS * INT_REGISTER_SIZE
1376 + NUM_FREGS * FP_REGISTER_SIZE
1377 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1378 }
1379
1380 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1381 static int
1382 arm_register_sim_regno (int regnum)
1383 {
1384 int reg = regnum;
1385 gdb_assert (reg >= 0 && reg < NUM_REGS);
1386
1387 if (reg < NUM_GREGS)
1388 return SIM_ARM_R0_REGNUM + reg;
1389 reg -= NUM_GREGS;
1390
1391 if (reg < NUM_FREGS)
1392 return SIM_ARM_FP0_REGNUM + reg;
1393 reg -= NUM_FREGS;
1394
1395 if (reg < NUM_SREGS)
1396 return SIM_ARM_FPS_REGNUM + reg;
1397 reg -= NUM_SREGS;
1398
1399 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1400 }
1401
1402 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1403 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1404 It is thought that this is is the floating-point register format on
1405 little-endian systems. */
1406
1407 static void
1408 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1409 void *dbl)
1410 {
1411 DOUBLEST d;
1412 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1413 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1414 else
1415 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1416 ptr, &d);
1417 floatformat_from_doublest (fmt, &d, dbl);
1418 }
1419
1420 static void
1421 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1422 {
1423 DOUBLEST d;
1424 floatformat_to_doublest (fmt, ptr, &d);
1425 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1426 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1427 else
1428 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1429 &d, dbl);
1430 }
1431
1432 static int
1433 condition_true (unsigned long cond, unsigned long status_reg)
1434 {
1435 if (cond == INST_AL || cond == INST_NV)
1436 return 1;
1437
1438 switch (cond)
1439 {
1440 case INST_EQ:
1441 return ((status_reg & FLAG_Z) != 0);
1442 case INST_NE:
1443 return ((status_reg & FLAG_Z) == 0);
1444 case INST_CS:
1445 return ((status_reg & FLAG_C) != 0);
1446 case INST_CC:
1447 return ((status_reg & FLAG_C) == 0);
1448 case INST_MI:
1449 return ((status_reg & FLAG_N) != 0);
1450 case INST_PL:
1451 return ((status_reg & FLAG_N) == 0);
1452 case INST_VS:
1453 return ((status_reg & FLAG_V) != 0);
1454 case INST_VC:
1455 return ((status_reg & FLAG_V) == 0);
1456 case INST_HI:
1457 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1458 case INST_LS:
1459 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1460 case INST_GE:
1461 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1462 case INST_LT:
1463 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1464 case INST_GT:
1465 return (((status_reg & FLAG_Z) == 0) &&
1466 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1467 case INST_LE:
1468 return (((status_reg & FLAG_Z) != 0) ||
1469 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1470 }
1471 return 1;
1472 }
1473
1474 /* Support routines for single stepping. Calculate the next PC value. */
1475 #define submask(x) ((1L << ((x) + 1)) - 1)
1476 #define bit(obj,st) (((obj) >> (st)) & 1)
1477 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1478 #define sbits(obj,st,fn) \
1479 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1480 #define BranchDest(addr,instr) \
1481 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1482 #define ARM_PC_32 1
1483
1484 static unsigned long
1485 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1486 unsigned long status_reg)
1487 {
1488 unsigned long res, shift;
1489 int rm = bits (inst, 0, 3);
1490 unsigned long shifttype = bits (inst, 5, 6);
1491
1492 if (bit (inst, 4))
1493 {
1494 int rs = bits (inst, 8, 11);
1495 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1496 }
1497 else
1498 shift = bits (inst, 7, 11);
1499
1500 res = (rm == 15
1501 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1502 + (bit (inst, 4) ? 12 : 8))
1503 : read_register (rm));
1504
1505 switch (shifttype)
1506 {
1507 case 0: /* LSL */
1508 res = shift >= 32 ? 0 : res << shift;
1509 break;
1510
1511 case 1: /* LSR */
1512 res = shift >= 32 ? 0 : res >> shift;
1513 break;
1514
1515 case 2: /* ASR */
1516 if (shift >= 32)
1517 shift = 31;
1518 res = ((res & 0x80000000L)
1519 ? ~((~res) >> shift) : res >> shift);
1520 break;
1521
1522 case 3: /* ROR/RRX */
1523 shift &= 31;
1524 if (shift == 0)
1525 res = (res >> 1) | (carry ? 0x80000000L : 0);
1526 else
1527 res = (res >> shift) | (res << (32 - shift));
1528 break;
1529 }
1530
1531 return res & 0xffffffff;
1532 }
1533
1534 /* Return number of 1-bits in VAL. */
1535
1536 static int
1537 bitcount (unsigned long val)
1538 {
1539 int nbits;
1540 for (nbits = 0; val != 0; nbits++)
1541 val &= val - 1; /* delete rightmost 1-bit in val */
1542 return nbits;
1543 }
1544
1545 CORE_ADDR
1546 thumb_get_next_pc (CORE_ADDR pc)
1547 {
1548 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1549 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1550 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1551 unsigned long offset;
1552
1553 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1554 {
1555 CORE_ADDR sp;
1556
1557 /* Fetch the saved PC from the stack. It's stored above
1558 all of the other registers. */
1559 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1560 sp = read_register (ARM_SP_REGNUM);
1561 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1562 nextpc = ADDR_BITS_REMOVE (nextpc);
1563 if (nextpc == pc)
1564 error (_("Infinite loop detected"));
1565 }
1566 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1567 {
1568 unsigned long status = read_register (ARM_PS_REGNUM);
1569 unsigned long cond = bits (inst1, 8, 11);
1570 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1571 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1572 }
1573 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1574 {
1575 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1576 }
1577 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1578 {
1579 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1580 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1581 nextpc = pc_val + offset;
1582 /* For BLX make sure to clear the low bits. */
1583 if (bits (inst2, 11, 12) == 1)
1584 nextpc = nextpc & 0xfffffffc;
1585 }
1586 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1587 {
1588 if (bits (inst1, 3, 6) == 0x0f)
1589 nextpc = pc_val;
1590 else
1591 nextpc = read_register (bits (inst1, 3, 6));
1592
1593 nextpc = ADDR_BITS_REMOVE (nextpc);
1594 if (nextpc == pc)
1595 error (_("Infinite loop detected"));
1596 }
1597
1598 return nextpc;
1599 }
1600
1601 CORE_ADDR
1602 arm_get_next_pc (CORE_ADDR pc)
1603 {
1604 unsigned long pc_val;
1605 unsigned long this_instr;
1606 unsigned long status;
1607 CORE_ADDR nextpc;
1608
1609 if (arm_pc_is_thumb (pc))
1610 return thumb_get_next_pc (pc);
1611
1612 pc_val = (unsigned long) pc;
1613 this_instr = read_memory_unsigned_integer (pc, 4);
1614 status = read_register (ARM_PS_REGNUM);
1615 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1616
1617 if (condition_true (bits (this_instr, 28, 31), status))
1618 {
1619 switch (bits (this_instr, 24, 27))
1620 {
1621 case 0x0:
1622 case 0x1: /* data processing */
1623 case 0x2:
1624 case 0x3:
1625 {
1626 unsigned long operand1, operand2, result = 0;
1627 unsigned long rn;
1628 int c;
1629
1630 if (bits (this_instr, 12, 15) != 15)
1631 break;
1632
1633 if (bits (this_instr, 22, 25) == 0
1634 && bits (this_instr, 4, 7) == 9) /* multiply */
1635 error (_("Invalid update to pc in instruction"));
1636
1637 /* BX <reg>, BLX <reg> */
1638 if (bits (this_instr, 4, 28) == 0x12fff1
1639 || bits (this_instr, 4, 28) == 0x12fff3)
1640 {
1641 rn = bits (this_instr, 0, 3);
1642 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1643 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1644
1645 if (nextpc == pc)
1646 error (_("Infinite loop detected"));
1647
1648 return nextpc;
1649 }
1650
1651 /* Multiply into PC */
1652 c = (status & FLAG_C) ? 1 : 0;
1653 rn = bits (this_instr, 16, 19);
1654 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1655
1656 if (bit (this_instr, 25))
1657 {
1658 unsigned long immval = bits (this_instr, 0, 7);
1659 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1660 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1661 & 0xffffffff;
1662 }
1663 else /* operand 2 is a shifted register */
1664 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1665
1666 switch (bits (this_instr, 21, 24))
1667 {
1668 case 0x0: /*and */
1669 result = operand1 & operand2;
1670 break;
1671
1672 case 0x1: /*eor */
1673 result = operand1 ^ operand2;
1674 break;
1675
1676 case 0x2: /*sub */
1677 result = operand1 - operand2;
1678 break;
1679
1680 case 0x3: /*rsb */
1681 result = operand2 - operand1;
1682 break;
1683
1684 case 0x4: /*add */
1685 result = operand1 + operand2;
1686 break;
1687
1688 case 0x5: /*adc */
1689 result = operand1 + operand2 + c;
1690 break;
1691
1692 case 0x6: /*sbc */
1693 result = operand1 - operand2 + c;
1694 break;
1695
1696 case 0x7: /*rsc */
1697 result = operand2 - operand1 + c;
1698 break;
1699
1700 case 0x8:
1701 case 0x9:
1702 case 0xa:
1703 case 0xb: /* tst, teq, cmp, cmn */
1704 result = (unsigned long) nextpc;
1705 break;
1706
1707 case 0xc: /*orr */
1708 result = operand1 | operand2;
1709 break;
1710
1711 case 0xd: /*mov */
1712 /* Always step into a function. */
1713 result = operand2;
1714 break;
1715
1716 case 0xe: /*bic */
1717 result = operand1 & ~operand2;
1718 break;
1719
1720 case 0xf: /*mvn */
1721 result = ~operand2;
1722 break;
1723 }
1724 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1725
1726 if (nextpc == pc)
1727 error (_("Infinite loop detected"));
1728 break;
1729 }
1730
1731 case 0x4:
1732 case 0x5: /* data transfer */
1733 case 0x6:
1734 case 0x7:
1735 if (bit (this_instr, 20))
1736 {
1737 /* load */
1738 if (bits (this_instr, 12, 15) == 15)
1739 {
1740 /* rd == pc */
1741 unsigned long rn;
1742 unsigned long base;
1743
1744 if (bit (this_instr, 22))
1745 error (_("Invalid update to pc in instruction"));
1746
1747 /* byte write to PC */
1748 rn = bits (this_instr, 16, 19);
1749 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1750 if (bit (this_instr, 24))
1751 {
1752 /* pre-indexed */
1753 int c = (status & FLAG_C) ? 1 : 0;
1754 unsigned long offset =
1755 (bit (this_instr, 25)
1756 ? shifted_reg_val (this_instr, c, pc_val, status)
1757 : bits (this_instr, 0, 11));
1758
1759 if (bit (this_instr, 23))
1760 base += offset;
1761 else
1762 base -= offset;
1763 }
1764 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1765 4);
1766
1767 nextpc = ADDR_BITS_REMOVE (nextpc);
1768
1769 if (nextpc == pc)
1770 error (_("Infinite loop detected"));
1771 }
1772 }
1773 break;
1774
1775 case 0x8:
1776 case 0x9: /* block transfer */
1777 if (bit (this_instr, 20))
1778 {
1779 /* LDM */
1780 if (bit (this_instr, 15))
1781 {
1782 /* loading pc */
1783 int offset = 0;
1784
1785 if (bit (this_instr, 23))
1786 {
1787 /* up */
1788 unsigned long reglist = bits (this_instr, 0, 14);
1789 offset = bitcount (reglist) * 4;
1790 if (bit (this_instr, 24)) /* pre */
1791 offset += 4;
1792 }
1793 else if (bit (this_instr, 24))
1794 offset = -4;
1795
1796 {
1797 unsigned long rn_val =
1798 read_register (bits (this_instr, 16, 19));
1799 nextpc =
1800 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1801 + offset),
1802 4);
1803 }
1804 nextpc = ADDR_BITS_REMOVE (nextpc);
1805 if (nextpc == pc)
1806 error (_("Infinite loop detected"));
1807 }
1808 }
1809 break;
1810
1811 case 0xb: /* branch & link */
1812 case 0xa: /* branch */
1813 {
1814 nextpc = BranchDest (pc, this_instr);
1815
1816 /* BLX */
1817 if (bits (this_instr, 28, 31) == INST_NV)
1818 nextpc |= bit (this_instr, 24) << 1;
1819
1820 nextpc = ADDR_BITS_REMOVE (nextpc);
1821 if (nextpc == pc)
1822 error (_("Infinite loop detected"));
1823 break;
1824 }
1825
1826 case 0xc:
1827 case 0xd:
1828 case 0xe: /* coproc ops */
1829 case 0xf: /* SWI */
1830 break;
1831
1832 default:
1833 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1834 return (pc);
1835 }
1836 }
1837
1838 return nextpc;
1839 }
1840
1841 /* single_step() is called just before we want to resume the inferior,
1842 if we want to single-step it but there is no hardware or kernel
1843 single-step support. We find the target of the coming instruction
1844 and breakpoint it.
1845
1846 single_step() is also called just after the inferior stops. If we
1847 had set up a simulated single-step, we undo our damage. */
1848
1849 static void
1850 arm_software_single_step (enum target_signal sig, int insert_bpt)
1851 {
1852 static int next_pc; /* State between setting and unsetting. */
1853 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1854
1855 if (insert_bpt)
1856 {
1857 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1858 target_insert_breakpoint (next_pc, break_mem);
1859 }
1860 else
1861 target_remove_breakpoint (next_pc, break_mem);
1862 }
1863
1864 #include "bfd-in2.h"
1865 #include "libcoff.h"
1866
1867 static int
1868 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1869 {
1870 if (arm_pc_is_thumb (memaddr))
1871 {
1872 static asymbol *asym;
1873 static combined_entry_type ce;
1874 static struct coff_symbol_struct csym;
1875 static struct bfd fake_bfd;
1876 static bfd_target fake_target;
1877
1878 if (csym.native == NULL)
1879 {
1880 /* Create a fake symbol vector containing a Thumb symbol.
1881 This is solely so that the code in print_insn_little_arm()
1882 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1883 the presence of a Thumb symbol and switch to decoding
1884 Thumb instructions. */
1885
1886 fake_target.flavour = bfd_target_coff_flavour;
1887 fake_bfd.xvec = &fake_target;
1888 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1889 csym.native = &ce;
1890 csym.symbol.the_bfd = &fake_bfd;
1891 csym.symbol.name = "fake";
1892 asym = (asymbol *) & csym;
1893 }
1894
1895 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1896 info->symbols = &asym;
1897 }
1898 else
1899 info->symbols = NULL;
1900
1901 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1902 return print_insn_big_arm (memaddr, info);
1903 else
1904 return print_insn_little_arm (memaddr, info);
1905 }
1906
1907 /* The following define instruction sequences that will cause ARM
1908 cpu's to take an undefined instruction trap. These are used to
1909 signal a breakpoint to GDB.
1910
1911 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1912 modes. A different instruction is required for each mode. The ARM
1913 cpu's can also be big or little endian. Thus four different
1914 instructions are needed to support all cases.
1915
1916 Note: ARMv4 defines several new instructions that will take the
1917 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1918 not in fact add the new instructions. The new undefined
1919 instructions in ARMv4 are all instructions that had no defined
1920 behaviour in earlier chips. There is no guarantee that they will
1921 raise an exception, but may be treated as NOP's. In practice, it
1922 may only safe to rely on instructions matching:
1923
1924 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1925 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1926 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1927
1928 Even this may only true if the condition predicate is true. The
1929 following use a condition predicate of ALWAYS so it is always TRUE.
1930
1931 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1932 and NetBSD all use a software interrupt rather than an undefined
1933 instruction to force a trap. This can be handled by by the
1934 abi-specific code during establishment of the gdbarch vector. */
1935
1936
1937 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1938 override these definitions. */
1939 #ifndef ARM_LE_BREAKPOINT
1940 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1941 #endif
1942 #ifndef ARM_BE_BREAKPOINT
1943 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1944 #endif
1945 #ifndef THUMB_LE_BREAKPOINT
1946 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1947 #endif
1948 #ifndef THUMB_BE_BREAKPOINT
1949 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1950 #endif
1951
1952 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1953 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1954 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1955 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1956
1957 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1958 the program counter value to determine whether a 16-bit or 32-bit
1959 breakpoint should be used. It returns a pointer to a string of
1960 bytes that encode a breakpoint instruction, stores the length of
1961 the string to *lenptr, and adjusts the program counter (if
1962 necessary) to point to the actual memory location where the
1963 breakpoint should be inserted. */
1964
1965 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1966 breakpoints and storing their handles instread of what was in
1967 memory. It is nice that this is the same size as a handle -
1968 otherwise remote-rdp will have to change. */
1969
1970 static const unsigned char *
1971 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1972 {
1973 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1974
1975 if (arm_pc_is_thumb (*pcptr))
1976 {
1977 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1978 *lenptr = tdep->thumb_breakpoint_size;
1979 return tdep->thumb_breakpoint;
1980 }
1981 else
1982 {
1983 *lenptr = tdep->arm_breakpoint_size;
1984 return tdep->arm_breakpoint;
1985 }
1986 }
1987
1988 /* Extract from an array REGBUF containing the (raw) register state a
1989 function return value of type TYPE, and copy that, in virtual
1990 format, into VALBUF. */
1991
1992 static void
1993 arm_extract_return_value (struct type *type, struct regcache *regs,
1994 gdb_byte *valbuf)
1995 {
1996 if (TYPE_CODE_FLT == TYPE_CODE (type))
1997 {
1998 switch (gdbarch_tdep (current_gdbarch)->fp_model)
1999 {
2000 case ARM_FLOAT_FPA:
2001 {
2002 /* The value is in register F0 in internal format. We need to
2003 extract the raw value and then convert it to the desired
2004 internal type. */
2005 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2006
2007 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2008 convert_from_extended (floatformat_from_type (type), tmpbuf,
2009 valbuf);
2010 }
2011 break;
2012
2013 case ARM_FLOAT_SOFT_FPA:
2014 case ARM_FLOAT_SOFT_VFP:
2015 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2016 if (TYPE_LENGTH (type) > 4)
2017 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2018 valbuf + INT_REGISTER_SIZE);
2019 break;
2020
2021 default:
2022 internal_error
2023 (__FILE__, __LINE__,
2024 _("arm_extract_return_value: Floating point model not supported"));
2025 break;
2026 }
2027 }
2028 else if (TYPE_CODE (type) == TYPE_CODE_INT
2029 || TYPE_CODE (type) == TYPE_CODE_CHAR
2030 || TYPE_CODE (type) == TYPE_CODE_BOOL
2031 || TYPE_CODE (type) == TYPE_CODE_PTR
2032 || TYPE_CODE (type) == TYPE_CODE_REF
2033 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2034 {
2035 /* If the the type is a plain integer, then the access is
2036 straight-forward. Otherwise we have to play around a bit more. */
2037 int len = TYPE_LENGTH (type);
2038 int regno = ARM_A1_REGNUM;
2039 ULONGEST tmp;
2040
2041 while (len > 0)
2042 {
2043 /* By using store_unsigned_integer we avoid having to do
2044 anything special for small big-endian values. */
2045 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2046 store_unsigned_integer (valbuf,
2047 (len > INT_REGISTER_SIZE
2048 ? INT_REGISTER_SIZE : len),
2049 tmp);
2050 len -= INT_REGISTER_SIZE;
2051 valbuf += INT_REGISTER_SIZE;
2052 }
2053 }
2054 else
2055 {
2056 /* For a structure or union the behaviour is as if the value had
2057 been stored to word-aligned memory and then loaded into
2058 registers with 32-bit load instruction(s). */
2059 int len = TYPE_LENGTH (type);
2060 int regno = ARM_A1_REGNUM;
2061 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2062
2063 while (len > 0)
2064 {
2065 regcache_cooked_read (regs, regno++, tmpbuf);
2066 memcpy (valbuf, tmpbuf,
2067 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2068 len -= INT_REGISTER_SIZE;
2069 valbuf += INT_REGISTER_SIZE;
2070 }
2071 }
2072 }
2073
2074
2075 /* Will a function return an aggregate type in memory or in a
2076 register? Return 0 if an aggregate type can be returned in a
2077 register, 1 if it must be returned in memory. */
2078
2079 static int
2080 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2081 {
2082 int nRc;
2083 enum type_code code;
2084
2085 CHECK_TYPEDEF (type);
2086
2087 /* In the ARM ABI, "integer" like aggregate types are returned in
2088 registers. For an aggregate type to be integer like, its size
2089 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2090 offset of each addressable subfield must be zero. Note that bit
2091 fields are not addressable, and all addressable subfields of
2092 unions always start at offset zero.
2093
2094 This function is based on the behaviour of GCC 2.95.1.
2095 See: gcc/arm.c: arm_return_in_memory() for details.
2096
2097 Note: All versions of GCC before GCC 2.95.2 do not set up the
2098 parameters correctly for a function returning the following
2099 structure: struct { float f;}; This should be returned in memory,
2100 not a register. Richard Earnshaw sent me a patch, but I do not
2101 know of any way to detect if a function like the above has been
2102 compiled with the correct calling convention. */
2103
2104 /* All aggregate types that won't fit in a register must be returned
2105 in memory. */
2106 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2107 {
2108 return 1;
2109 }
2110
2111 /* The AAPCS says all aggregates not larger than a word are returned
2112 in a register. */
2113 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2114 return 0;
2115
2116 /* The only aggregate types that can be returned in a register are
2117 structs and unions. Arrays must be returned in memory. */
2118 code = TYPE_CODE (type);
2119 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2120 {
2121 return 1;
2122 }
2123
2124 /* Assume all other aggregate types can be returned in a register.
2125 Run a check for structures, unions and arrays. */
2126 nRc = 0;
2127
2128 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2129 {
2130 int i;
2131 /* Need to check if this struct/union is "integer" like. For
2132 this to be true, its size must be less than or equal to
2133 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2134 subfield must be zero. Note that bit fields are not
2135 addressable, and unions always start at offset zero. If any
2136 of the subfields is a floating point type, the struct/union
2137 cannot be an integer type. */
2138
2139 /* For each field in the object, check:
2140 1) Is it FP? --> yes, nRc = 1;
2141 2) Is it addressable (bitpos != 0) and
2142 not packed (bitsize == 0)?
2143 --> yes, nRc = 1
2144 */
2145
2146 for (i = 0; i < TYPE_NFIELDS (type); i++)
2147 {
2148 enum type_code field_type_code;
2149 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2150
2151 /* Is it a floating point type field? */
2152 if (field_type_code == TYPE_CODE_FLT)
2153 {
2154 nRc = 1;
2155 break;
2156 }
2157
2158 /* If bitpos != 0, then we have to care about it. */
2159 if (TYPE_FIELD_BITPOS (type, i) != 0)
2160 {
2161 /* Bitfields are not addressable. If the field bitsize is
2162 zero, then the field is not packed. Hence it cannot be
2163 a bitfield or any other packed type. */
2164 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2165 {
2166 nRc = 1;
2167 break;
2168 }
2169 }
2170 }
2171 }
2172
2173 return nRc;
2174 }
2175
2176 /* Write into appropriate registers a function return value of type
2177 TYPE, given in virtual format. */
2178
2179 static void
2180 arm_store_return_value (struct type *type, struct regcache *regs,
2181 const gdb_byte *valbuf)
2182 {
2183 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2184 {
2185 char buf[MAX_REGISTER_SIZE];
2186
2187 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2188 {
2189 case ARM_FLOAT_FPA:
2190
2191 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2192 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2193 break;
2194
2195 case ARM_FLOAT_SOFT_FPA:
2196 case ARM_FLOAT_SOFT_VFP:
2197 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2198 if (TYPE_LENGTH (type) > 4)
2199 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2200 valbuf + INT_REGISTER_SIZE);
2201 break;
2202
2203 default:
2204 internal_error
2205 (__FILE__, __LINE__,
2206 _("arm_store_return_value: Floating point model not supported"));
2207 break;
2208 }
2209 }
2210 else if (TYPE_CODE (type) == TYPE_CODE_INT
2211 || TYPE_CODE (type) == TYPE_CODE_CHAR
2212 || TYPE_CODE (type) == TYPE_CODE_BOOL
2213 || TYPE_CODE (type) == TYPE_CODE_PTR
2214 || TYPE_CODE (type) == TYPE_CODE_REF
2215 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2216 {
2217 if (TYPE_LENGTH (type) <= 4)
2218 {
2219 /* Values of one word or less are zero/sign-extended and
2220 returned in r0. */
2221 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2222 LONGEST val = unpack_long (type, valbuf);
2223
2224 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2225 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2226 }
2227 else
2228 {
2229 /* Integral values greater than one word are stored in consecutive
2230 registers starting with r0. This will always be a multiple of
2231 the regiser size. */
2232 int len = TYPE_LENGTH (type);
2233 int regno = ARM_A1_REGNUM;
2234
2235 while (len > 0)
2236 {
2237 regcache_cooked_write (regs, regno++, valbuf);
2238 len -= INT_REGISTER_SIZE;
2239 valbuf += INT_REGISTER_SIZE;
2240 }
2241 }
2242 }
2243 else
2244 {
2245 /* For a structure or union the behaviour is as if the value had
2246 been stored to word-aligned memory and then loaded into
2247 registers with 32-bit load instruction(s). */
2248 int len = TYPE_LENGTH (type);
2249 int regno = ARM_A1_REGNUM;
2250 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2251
2252 while (len > 0)
2253 {
2254 memcpy (tmpbuf, valbuf,
2255 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2256 regcache_cooked_write (regs, regno++, tmpbuf);
2257 len -= INT_REGISTER_SIZE;
2258 valbuf += INT_REGISTER_SIZE;
2259 }
2260 }
2261 }
2262
2263
2264 /* Handle function return values. */
2265
2266 static enum return_value_convention
2267 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2268 struct regcache *regcache, gdb_byte *readbuf,
2269 const gdb_byte *writebuf)
2270 {
2271 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2272 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2273 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2274 {
2275 if (arm_return_in_memory (gdbarch, valtype))
2276 return RETURN_VALUE_STRUCT_CONVENTION;
2277 }
2278
2279 if (writebuf)
2280 arm_store_return_value (valtype, regcache, writebuf);
2281
2282 if (readbuf)
2283 arm_extract_return_value (valtype, regcache, readbuf);
2284
2285 return RETURN_VALUE_REGISTER_CONVENTION;
2286 }
2287
2288
2289 static int
2290 arm_get_longjmp_target (CORE_ADDR *pc)
2291 {
2292 CORE_ADDR jb_addr;
2293 char buf[INT_REGISTER_SIZE];
2294 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2295
2296 jb_addr = read_register (ARM_A1_REGNUM);
2297
2298 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2299 INT_REGISTER_SIZE))
2300 return 0;
2301
2302 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2303 return 1;
2304 }
2305
2306 /* Return non-zero if the PC is inside a thumb call thunk. */
2307
2308 int
2309 arm_in_call_stub (CORE_ADDR pc, char *name)
2310 {
2311 CORE_ADDR start_addr;
2312
2313 /* Find the starting address of the function containing the PC. If
2314 the caller didn't give us a name, look it up at the same time. */
2315 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2316 &start_addr, NULL))
2317 return 0;
2318
2319 return strncmp (name, "_call_via_r", 11) == 0;
2320 }
2321
2322 /* If PC is in a Thumb call or return stub, return the address of the
2323 target PC, which is in a register. The thunk functions are called
2324 _called_via_xx, where x is the register name. The possible names
2325 are r0-r9, sl, fp, ip, sp, and lr. */
2326
2327 CORE_ADDR
2328 arm_skip_stub (CORE_ADDR pc)
2329 {
2330 char *name;
2331 CORE_ADDR start_addr;
2332
2333 /* Find the starting address and name of the function containing the PC. */
2334 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2335 return 0;
2336
2337 /* Call thunks always start with "_call_via_". */
2338 if (strncmp (name, "_call_via_", 10) == 0)
2339 {
2340 /* Use the name suffix to determine which register contains the
2341 target PC. */
2342 static char *table[15] =
2343 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2344 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2345 };
2346 int regno;
2347
2348 for (regno = 0; regno <= 14; regno++)
2349 if (strcmp (&name[10], table[regno]) == 0)
2350 return read_register (regno);
2351 }
2352
2353 return 0; /* not a stub */
2354 }
2355
2356 static void
2357 set_arm_command (char *args, int from_tty)
2358 {
2359 printf_unfiltered (_("\
2360 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2361 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2362 }
2363
2364 static void
2365 show_arm_command (char *args, int from_tty)
2366 {
2367 cmd_show_list (showarmcmdlist, from_tty, "");
2368 }
2369
2370 static void
2371 arm_update_current_architecture (void)
2372 {
2373 struct gdbarch_info info;
2374
2375 /* If the current architecture is not ARM, we have nothing to do. */
2376 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2377 return;
2378
2379 /* Update the architecture. */
2380 gdbarch_info_init (&info);
2381
2382 if (!gdbarch_update_p (info))
2383 internal_error (__FILE__, __LINE__, "could not update architecture");
2384 }
2385
2386 static void
2387 set_fp_model_sfunc (char *args, int from_tty,
2388 struct cmd_list_element *c)
2389 {
2390 enum arm_float_model fp_model;
2391
2392 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2393 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2394 {
2395 arm_fp_model = fp_model;
2396 break;
2397 }
2398
2399 if (fp_model == ARM_FLOAT_LAST)
2400 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2401 current_fp_model);
2402
2403 arm_update_current_architecture ();
2404 }
2405
2406 static void
2407 show_fp_model (struct ui_file *file, int from_tty,
2408 struct cmd_list_element *c, const char *value)
2409 {
2410 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2411
2412 if (arm_fp_model == ARM_FLOAT_AUTO
2413 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2414 fprintf_filtered (file, _("\
2415 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2416 fp_model_strings[tdep->fp_model]);
2417 else
2418 fprintf_filtered (file, _("\
2419 The current ARM floating point model is \"%s\".\n"),
2420 fp_model_strings[arm_fp_model]);
2421 }
2422
2423 static void
2424 arm_set_abi (char *args, int from_tty,
2425 struct cmd_list_element *c)
2426 {
2427 enum arm_abi_kind arm_abi;
2428
2429 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2430 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2431 {
2432 arm_abi_global = arm_abi;
2433 break;
2434 }
2435
2436 if (arm_abi == ARM_ABI_LAST)
2437 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2438 arm_abi_string);
2439
2440 arm_update_current_architecture ();
2441 }
2442
2443 static void
2444 arm_show_abi (struct ui_file *file, int from_tty,
2445 struct cmd_list_element *c, const char *value)
2446 {
2447 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2448
2449 if (arm_abi_global == ARM_ABI_AUTO
2450 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2451 fprintf_filtered (file, _("\
2452 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2453 arm_abi_strings[tdep->arm_abi]);
2454 else
2455 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2456 arm_abi_string);
2457 }
2458
2459 /* If the user changes the register disassembly style used for info
2460 register and other commands, we have to also switch the style used
2461 in opcodes for disassembly output. This function is run in the "set
2462 arm disassembly" command, and does that. */
2463
2464 static void
2465 set_disassembly_style_sfunc (char *args, int from_tty,
2466 struct cmd_list_element *c)
2467 {
2468 set_disassembly_style ();
2469 }
2470 \f
2471 /* Return the ARM register name corresponding to register I. */
2472 static const char *
2473 arm_register_name (int i)
2474 {
2475 return arm_register_names[i];
2476 }
2477
2478 static void
2479 set_disassembly_style (void)
2480 {
2481 const char *setname, *setdesc, *const *regnames;
2482 int numregs, j;
2483
2484 /* Find the style that the user wants in the opcodes table. */
2485 int current = 0;
2486 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2487 while ((disassembly_style != setname)
2488 && (current < num_disassembly_options))
2489 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2490 current_option = current;
2491
2492 /* Fill our copy. */
2493 for (j = 0; j < numregs; j++)
2494 arm_register_names[j] = (char *) regnames[j];
2495
2496 /* Adjust case. */
2497 if (isupper (*regnames[ARM_PC_REGNUM]))
2498 {
2499 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2500 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2501 }
2502 else
2503 {
2504 arm_register_names[ARM_FPS_REGNUM] = "fps";
2505 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2506 }
2507
2508 /* Synchronize the disassembler. */
2509 set_arm_regname_option (current);
2510 }
2511
2512 /* Test whether the coff symbol specific value corresponds to a Thumb
2513 function. */
2514
2515 static int
2516 coff_sym_is_thumb (int val)
2517 {
2518 return (val == C_THUMBEXT ||
2519 val == C_THUMBSTAT ||
2520 val == C_THUMBEXTFUNC ||
2521 val == C_THUMBSTATFUNC ||
2522 val == C_THUMBLABEL);
2523 }
2524
2525 /* arm_coff_make_msymbol_special()
2526 arm_elf_make_msymbol_special()
2527
2528 These functions test whether the COFF or ELF symbol corresponds to
2529 an address in thumb code, and set a "special" bit in a minimal
2530 symbol to indicate that it does. */
2531
2532 static void
2533 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2534 {
2535 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2536 STT_ARM_TFUNC). */
2537 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2538 == STT_LOPROC)
2539 MSYMBOL_SET_SPECIAL (msym);
2540 }
2541
2542 static void
2543 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2544 {
2545 if (coff_sym_is_thumb (val))
2546 MSYMBOL_SET_SPECIAL (msym);
2547 }
2548
2549 static void
2550 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2551 {
2552 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2553
2554 /* If necessary, set the T bit. */
2555 if (arm_apcs_32)
2556 {
2557 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2558 if (arm_pc_is_thumb (pc))
2559 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2560 else
2561 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2562 }
2563 }
2564 \f
2565 static enum gdb_osabi
2566 arm_elf_osabi_sniffer (bfd *abfd)
2567 {
2568 unsigned int elfosabi;
2569 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2570
2571 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2572
2573 if (elfosabi == ELFOSABI_ARM)
2574 /* GNU tools use this value. Check note sections in this case,
2575 as well. */
2576 bfd_map_over_sections (abfd,
2577 generic_elf_osabi_sniff_abi_tag_sections,
2578 &osabi);
2579
2580 /* Anything else will be handled by the generic ELF sniffer. */
2581 return osabi;
2582 }
2583
2584 \f
2585 /* Initialize the current architecture based on INFO. If possible,
2586 re-use an architecture from ARCHES, which is a list of
2587 architectures already created during this debugging session.
2588
2589 Called e.g. at program startup, when reading a core file, and when
2590 reading a binary file. */
2591
2592 static struct gdbarch *
2593 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2594 {
2595 struct gdbarch_tdep *tdep;
2596 struct gdbarch *gdbarch;
2597 struct gdbarch_list *best_arch;
2598 enum arm_abi_kind arm_abi = arm_abi_global;
2599 enum arm_float_model fp_model = arm_fp_model;
2600
2601 /* If we have an object to base this architecture on, try to determine
2602 its ABI. */
2603
2604 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2605 {
2606 int ei_osabi;
2607
2608 switch (bfd_get_flavour (info.abfd))
2609 {
2610 case bfd_target_aout_flavour:
2611 /* Assume it's an old APCS-style ABI. */
2612 arm_abi = ARM_ABI_APCS;
2613 break;
2614
2615 case bfd_target_coff_flavour:
2616 /* Assume it's an old APCS-style ABI. */
2617 /* XXX WinCE? */
2618 arm_abi = ARM_ABI_APCS;
2619 break;
2620
2621 case bfd_target_elf_flavour:
2622 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2623 if (ei_osabi == ELFOSABI_ARM)
2624 {
2625 /* GNU tools used to use this value, but do not for EABI
2626 objects. There's nowhere to tag an EABI version anyway,
2627 so assume APCS. */
2628 arm_abi = ARM_ABI_APCS;
2629 }
2630 else if (ei_osabi == ELFOSABI_NONE)
2631 {
2632 int e_flags, eabi_ver;
2633
2634 e_flags = elf_elfheader (info.abfd)->e_flags;
2635 eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2636
2637 switch (eabi_ver)
2638 {
2639 case EF_ARM_EABI_UNKNOWN:
2640 /* Assume GNU tools. */
2641 arm_abi = ARM_ABI_APCS;
2642 break;
2643
2644 case EF_ARM_EABI_VER4:
2645 arm_abi = ARM_ABI_AAPCS;
2646 /* EABI binaries default to VFP float ordering. */
2647 if (fp_model == ARM_FLOAT_AUTO)
2648 fp_model = ARM_FLOAT_SOFT_VFP;
2649 break;
2650
2651 default:
2652 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2653 arm_abi = ARM_ABI_APCS;
2654 break;
2655 }
2656 }
2657 break;
2658
2659 default:
2660 /* Leave it as "auto". */
2661 break;
2662 }
2663 }
2664
2665 /* Now that we have inferred any architecture settings that we
2666 can, try to inherit from the last ARM ABI. */
2667 if (arches != NULL)
2668 {
2669 if (arm_abi == ARM_ABI_AUTO)
2670 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2671
2672 if (fp_model == ARM_FLOAT_AUTO)
2673 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2674 }
2675 else
2676 {
2677 /* There was no prior ARM architecture; fill in default values. */
2678
2679 if (arm_abi == ARM_ABI_AUTO)
2680 arm_abi = ARM_ABI_APCS;
2681
2682 /* We used to default to FPA for generic ARM, but almost nobody
2683 uses that now, and we now provide a way for the user to force
2684 the model. So default to the most useful variant. */
2685 if (fp_model == ARM_FLOAT_AUTO)
2686 fp_model = ARM_FLOAT_SOFT_FPA;
2687 }
2688
2689 /* If there is already a candidate, use it. */
2690 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2691 best_arch != NULL;
2692 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2693 {
2694 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2695 continue;
2696
2697 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2698 continue;
2699
2700 /* Found a match. */
2701 break;
2702 }
2703
2704 if (best_arch != NULL)
2705 return best_arch->gdbarch;
2706
2707 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2708 gdbarch = gdbarch_alloc (&info, tdep);
2709
2710 /* Record additional information about the architecture we are defining.
2711 These are gdbarch discriminators, like the OSABI. */
2712 tdep->arm_abi = arm_abi;
2713 tdep->fp_model = fp_model;
2714
2715 /* Breakpoints. */
2716 switch (info.byte_order)
2717 {
2718 case BFD_ENDIAN_BIG:
2719 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2720 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2721 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2722 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2723
2724 break;
2725
2726 case BFD_ENDIAN_LITTLE:
2727 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2728 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2729 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2730 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2731
2732 break;
2733
2734 default:
2735 internal_error (__FILE__, __LINE__,
2736 _("arm_gdbarch_init: bad byte order for float format"));
2737 }
2738
2739 /* On ARM targets char defaults to unsigned. */
2740 set_gdbarch_char_signed (gdbarch, 0);
2741
2742 /* This should be low enough for everything. */
2743 tdep->lowest_pc = 0x20;
2744 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2745
2746 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2747 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2748
2749 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2750
2751 /* Frame handling. */
2752 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2753 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2754 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2755
2756 frame_base_set_default (gdbarch, &arm_normal_base);
2757
2758 /* Address manipulation. */
2759 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2760 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2761
2762 /* Advance PC across function entry code. */
2763 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2764
2765 /* Get the PC when a frame might not be available. */
2766 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2767
2768 /* The stack grows downward. */
2769 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2770
2771 /* Breakpoint manipulation. */
2772 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2773
2774 /* Information about registers, etc. */
2775 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2776 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2777 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2778 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2779 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2780 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2781 set_gdbarch_register_type (gdbarch, arm_register_type);
2782
2783 /* Internal <-> external register number maps. */
2784 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2785
2786 /* Integer registers are 4 bytes. */
2787 set_gdbarch_deprecated_register_size (gdbarch, 4);
2788 set_gdbarch_register_name (gdbarch, arm_register_name);
2789
2790 /* Returning results. */
2791 set_gdbarch_return_value (gdbarch, arm_return_value);
2792
2793 /* Single stepping. */
2794 /* XXX For an RDI target we should ask the target if it can single-step. */
2795 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2796
2797 /* Disassembly. */
2798 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2799
2800 /* Minsymbol frobbing. */
2801 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2802 set_gdbarch_coff_make_msymbol_special (gdbarch,
2803 arm_coff_make_msymbol_special);
2804
2805 /* Hook in the ABI-specific overrides, if they have been registered. */
2806 gdbarch_init_osabi (info, gdbarch);
2807
2808 /* Add some default predicates. */
2809 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2810 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2811 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2812
2813 /* Now we have tuned the configuration, set a few final things,
2814 based on what the OS ABI has told us. */
2815
2816 if (tdep->jb_pc >= 0)
2817 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2818
2819 /* Floating point sizes and format. */
2820 switch (info.byte_order)
2821 {
2822 case BFD_ENDIAN_BIG:
2823 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2824 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2825 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2826 break;
2827
2828 case BFD_ENDIAN_LITTLE:
2829 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2830 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2831 {
2832 set_gdbarch_double_format
2833 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2834 set_gdbarch_long_double_format
2835 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2836 }
2837 else
2838 {
2839 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2840 set_gdbarch_long_double_format (gdbarch,
2841 &floatformat_ieee_double_little);
2842 }
2843 break;
2844
2845 default:
2846 internal_error (__FILE__, __LINE__,
2847 _("arm_gdbarch_init: bad byte order for float format"));
2848 }
2849
2850 return gdbarch;
2851 }
2852
2853 static void
2854 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2855 {
2856 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2857
2858 if (tdep == NULL)
2859 return;
2860
2861 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
2862 (unsigned long) tdep->lowest_pc);
2863 }
2864
2865 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2866
2867 void
2868 _initialize_arm_tdep (void)
2869 {
2870 struct ui_file *stb;
2871 long length;
2872 struct cmd_list_element *new_set, *new_show;
2873 const char *setname;
2874 const char *setdesc;
2875 const char *const *regnames;
2876 int numregs, i, j;
2877 static char *helptext;
2878 char regdesc[1024], *rdptr = regdesc;
2879 size_t rest = sizeof (regdesc);
2880
2881 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2882
2883 /* Register an ELF OS ABI sniffer for ARM binaries. */
2884 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2885 bfd_target_elf_flavour,
2886 arm_elf_osabi_sniffer);
2887
2888 /* Get the number of possible sets of register names defined in opcodes. */
2889 num_disassembly_options = get_arm_regname_num_options ();
2890
2891 /* Add root prefix command for all "set arm"/"show arm" commands. */
2892 add_prefix_cmd ("arm", no_class, set_arm_command,
2893 _("Various ARM-specific commands."),
2894 &setarmcmdlist, "set arm ", 0, &setlist);
2895
2896 add_prefix_cmd ("arm", no_class, show_arm_command,
2897 _("Various ARM-specific commands."),
2898 &showarmcmdlist, "show arm ", 0, &showlist);
2899
2900 /* Sync the opcode insn printer with our register viewer. */
2901 parse_arm_disassembler_option ("reg-names-std");
2902
2903 /* Initialize the array that will be passed to
2904 add_setshow_enum_cmd(). */
2905 valid_disassembly_styles
2906 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2907 for (i = 0; i < num_disassembly_options; i++)
2908 {
2909 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2910 valid_disassembly_styles[i] = setname;
2911 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2912 rdptr += length;
2913 rest -= length;
2914 /* Copy the default names (if found) and synchronize disassembler. */
2915 if (!strcmp (setname, "std"))
2916 {
2917 disassembly_style = setname;
2918 current_option = i;
2919 for (j = 0; j < numregs; j++)
2920 arm_register_names[j] = (char *) regnames[j];
2921 set_arm_regname_option (i);
2922 }
2923 }
2924 /* Mark the end of valid options. */
2925 valid_disassembly_styles[num_disassembly_options] = NULL;
2926
2927 /* Create the help text. */
2928 stb = mem_fileopen ();
2929 fprintf_unfiltered (stb, "%s%s%s",
2930 _("The valid values are:\n"),
2931 regdesc,
2932 _("The default is \"std\"."));
2933 helptext = ui_file_xstrdup (stb, &length);
2934 ui_file_delete (stb);
2935
2936 add_setshow_enum_cmd("disassembler", no_class,
2937 valid_disassembly_styles, &disassembly_style,
2938 _("Set the disassembly style."),
2939 _("Show the disassembly style."),
2940 helptext,
2941 set_disassembly_style_sfunc,
2942 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
2943 &setarmcmdlist, &showarmcmdlist);
2944
2945 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2946 _("Set usage of ARM 32-bit mode."),
2947 _("Show usage of ARM 32-bit mode."),
2948 _("When off, a 26-bit PC will be used."),
2949 NULL,
2950 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
2951 &setarmcmdlist, &showarmcmdlist);
2952
2953 /* Add a command to allow the user to force the FPU model. */
2954 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2955 _("Set the floating point type."),
2956 _("Show the floating point type."),
2957 _("auto - Determine the FP typefrom the OS-ABI.\n\
2958 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2959 fpa - FPA co-processor (GCC compiled).\n\
2960 softvfp - Software FP with pure-endian doubles.\n\
2961 vfp - VFP co-processor."),
2962 set_fp_model_sfunc, show_fp_model,
2963 &setarmcmdlist, &showarmcmdlist);
2964
2965 /* Add a command to allow the user to force the ABI. */
2966 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
2967 _("Set the ABI."),
2968 _("Show the ABI."),
2969 NULL, arm_set_abi, arm_show_abi,
2970 &setarmcmdlist, &showarmcmdlist);
2971
2972 /* Debugging flag. */
2973 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2974 _("Set ARM debugging."),
2975 _("Show ARM debugging."),
2976 _("When on, arm-specific debugging is enabled."),
2977 NULL,
2978 NULL, /* FIXME: i18n: "ARM debugging is %s. */
2979 &setdebuglist, &showdebuglist);
2980 }