]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ax-gdb.c
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions
2 Copyright 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /* $Id$ */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "expression.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "frame.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33
34 /* Probably the best way to read this file is to start with the types
35 and enums in ax-gdb.h, and then look at gen_expr, towards the
36 bottom; that's the main function that looks at the GDB expressions
37 and calls everything else to generate code.
38
39 I'm beginning to wonder whether it wouldn't be nicer to internally
40 generate trees, with types, and then spit out the bytecode in
41 linear form afterwards; we could generate fewer `swap', `ext', and
42 `zero_ext' bytecodes that way; it would make good constant folding
43 easier, too. But at the moment, I think we should be willing to
44 pay for the simplicity of this code with less-than-optimal bytecode
45 strings.
46
47 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
48
49
50 \f
51 /* Prototypes for local functions. */
52
53 /* There's a standard order to the arguments of these functions:
54 union exp_element ** --- pointer into expression
55 struct agent_expr * --- agent expression buffer to generate code into
56 struct axs_value * --- describes value left on top of stack */
57
58 static struct value *const_var_ref PARAMS ((struct symbol *var));
59 static struct value *const_expr PARAMS ((union exp_element **pc));
60 static struct value *maybe_const_expr PARAMS ((union exp_element **pc));
61
62 static void gen_traced_pop PARAMS ((struct agent_expr *, struct axs_value *));
63
64 static void gen_sign_extend PARAMS ((struct agent_expr *, struct type *));
65 static void gen_extend PARAMS ((struct agent_expr *, struct type *));
66 static void gen_fetch PARAMS ((struct agent_expr *, struct type *));
67 static void gen_left_shift PARAMS ((struct agent_expr *, int));
68
69
70 static void gen_frame_args_address PARAMS ((struct agent_expr *));
71 static void gen_frame_locals_address PARAMS ((struct agent_expr *));
72 static void gen_offset PARAMS ((struct agent_expr *ax, int offset));
73 static void gen_sym_offset PARAMS ((struct agent_expr *, struct symbol *));
74 static void gen_var_ref PARAMS ((struct agent_expr *ax,
75 struct axs_value *value,
76 struct symbol *var));
77
78
79 static void gen_int_literal PARAMS ((struct agent_expr *ax,
80 struct axs_value *value,
81 LONGEST k, struct type *type));
82
83
84 static void require_rvalue PARAMS ((struct agent_expr *ax,
85 struct axs_value *value));
86 static void gen_usual_unary PARAMS ((struct agent_expr *ax,
87 struct axs_value *value));
88 static int type_wider_than PARAMS ((struct type *type1,
89 struct type *type2));
90 static struct type *max_type PARAMS ((struct type *type1,
91 struct type *type2));
92 static void gen_conversion PARAMS ((struct agent_expr *ax,
93 struct type *from,
94 struct type *to));
95 static int is_nontrivial_conversion PARAMS ((struct type *from,
96 struct type *to));
97 static void gen_usual_arithmetic PARAMS ((struct agent_expr *ax,
98 struct axs_value *value1,
99 struct axs_value *value2));
100 static void gen_integral_promotions PARAMS ((struct agent_expr *ax,
101 struct axs_value *value));
102 static void gen_cast PARAMS ((struct agent_expr *ax,
103 struct axs_value *value,
104 struct type *type));
105 static void gen_scale PARAMS ((struct agent_expr *ax,
106 enum agent_op op,
107 struct type *type));
108 static void gen_add PARAMS ((struct agent_expr *ax,
109 struct axs_value *value,
110 struct axs_value *value1,
111 struct axs_value *value2,
112 char *name));
113 static void gen_sub PARAMS ((struct agent_expr *ax,
114 struct axs_value *value,
115 struct axs_value *value1,
116 struct axs_value *value2));
117 static void gen_binop PARAMS ((struct agent_expr *ax,
118 struct axs_value *value,
119 struct axs_value *value1,
120 struct axs_value *value2,
121 enum agent_op op,
122 enum agent_op op_unsigned,
123 int may_carry,
124 char *name));
125 static void gen_logical_not PARAMS ((struct agent_expr *ax,
126 struct axs_value *value));
127 static void gen_complement PARAMS ((struct agent_expr *ax,
128 struct axs_value *value));
129 static void gen_deref PARAMS ((struct agent_expr *, struct axs_value *));
130 static void gen_address_of PARAMS ((struct agent_expr *, struct axs_value *));
131 static int find_field PARAMS ((struct type *type, char *name));
132 static void gen_bitfield_ref PARAMS ((struct agent_expr *ax,
133 struct axs_value *value,
134 struct type *type,
135 int start, int end));
136 static void gen_struct_ref PARAMS ((struct agent_expr *ax,
137 struct axs_value *value,
138 char *field,
139 char *operator_name,
140 char *operand_name));
141 static void gen_repeat PARAMS ((union exp_element **pc,
142 struct agent_expr *ax,
143 struct axs_value *value));
144 static void gen_sizeof PARAMS ((union exp_element **pc,
145 struct agent_expr *ax,
146 struct axs_value *value));
147 static void gen_expr PARAMS ((union exp_element **pc,
148 struct agent_expr *ax,
149 struct axs_value *value));
150
151 static void print_axs_value PARAMS ((GDB_FILE *f, struct axs_value *value));
152 static void agent_command PARAMS ((char *exp, int from_tty));
153
154 \f
155 /* Detecting constant expressions. */
156
157 /* If the variable reference at *PC is a constant, return its value.
158 Otherwise, return zero.
159
160 Hey, Wally! How can a variable reference be a constant?
161
162 Well, Beav, this function really handles the OP_VAR_VALUE operator,
163 not specifically variable references. GDB uses OP_VAR_VALUE to
164 refer to any kind of symbolic reference: function names, enum
165 elements, and goto labels are all handled through the OP_VAR_VALUE
166 operator, even though they're constants. It makes sense given the
167 situation.
168
169 Gee, Wally, don'cha wonder sometimes if data representations that
170 subvert commonly accepted definitions of terms in favor of heavily
171 context-specific interpretations are really just a tool of the
172 programming hegemony to preserve their power and exclude the
173 proletariat? */
174
175 static struct value *
176 const_var_ref (var)
177 struct symbol *var;
178 {
179 struct type *type = SYMBOL_TYPE (var);
180
181 switch (SYMBOL_CLASS (var))
182 {
183 case LOC_CONST:
184 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
185
186 case LOC_LABEL:
187 return value_from_longest (type, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
188
189 default:
190 return 0;
191 }
192 }
193
194
195 /* If the expression starting at *PC has a constant value, return it.
196 Otherwise, return zero. If we return a value, then *PC will be
197 advanced to the end of it. If we return zero, *PC could be
198 anywhere. */
199 static struct value *
200 const_expr (pc)
201 union exp_element **pc;
202 {
203 enum exp_opcode op = (*pc)->opcode;
204 struct value *v1;
205
206 switch (op)
207 {
208 case OP_LONG:
209 {
210 struct type *type = (*pc)[1].type;
211 LONGEST k = (*pc)[2].longconst;
212 (*pc) += 4;
213 return value_from_longest (type, k);
214 }
215
216 case OP_VAR_VALUE:
217 {
218 struct value *v = const_var_ref ((*pc)[2].symbol);
219 (*pc) += 4;
220 return v;
221 }
222
223 /* We could add more operators in here. */
224
225 case UNOP_NEG:
226 (*pc)++;
227 v1 = const_expr (pc);
228 if (v1)
229 return value_neg (v1);
230 else
231 return 0;
232
233 default:
234 return 0;
235 }
236 }
237
238
239 /* Like const_expr, but guarantee also that *PC is undisturbed if the
240 expression is not constant. */
241 static struct value *
242 maybe_const_expr (pc)
243 union exp_element **pc;
244 {
245 union exp_element *tentative_pc = *pc;
246 struct value *v = const_expr (&tentative_pc);
247
248 /* If we got a value, then update the real PC. */
249 if (v)
250 *pc = tentative_pc;
251
252 return v;
253 }
254
255 \f
256 /* Generating bytecode from GDB expressions: general assumptions */
257
258 /* Here are a few general assumptions made throughout the code; if you
259 want to make a change that contradicts one of these, then you'd
260 better scan things pretty thoroughly.
261
262 - We assume that all values occupy one stack element. For example,
263 sometimes we'll swap to get at the left argument to a binary
264 operator. If we decide that void values should occupy no stack
265 elements, or that synthetic arrays (whose size is determined at
266 run time, created by the `@' operator) should occupy two stack
267 elements (address and length), then this will cause trouble.
268
269 - We assume the stack elements are infinitely wide, and that we
270 don't have to worry what happens if the user requests an
271 operation that is wider than the actual interpreter's stack.
272 That is, it's up to the interpreter to handle directly all the
273 integer widths the user has access to. (Woe betide the language
274 with bignums!)
275
276 - We don't support side effects. Thus, we don't have to worry about
277 GCC's generalized lvalues, function calls, etc.
278
279 - We don't support floating point. Many places where we switch on
280 some type don't bother to include cases for floating point; there
281 may be even more subtle ways this assumption exists. For
282 example, the arguments to % must be integers.
283
284 - We assume all subexpressions have a static, unchanging type. If
285 we tried to support convenience variables, this would be a
286 problem.
287
288 - All values on the stack should always be fully zero- or
289 sign-extended.
290
291 (I wasn't sure whether to choose this or its opposite --- that
292 only addresses are assumed extended --- but it turns out that
293 neither convention completely eliminates spurious extend
294 operations (if everything is always extended, then you have to
295 extend after add, because it could overflow; if nothing is
296 extended, then you end up producing extends whenever you change
297 sizes), and this is simpler.) */
298
299 \f
300 /* Generating bytecode from GDB expressions: the `trace' kludge */
301
302 /* The compiler in this file is a general-purpose mechanism for
303 translating GDB expressions into bytecode. One ought to be able to
304 find a million and one uses for it.
305
306 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
307 of expediency. Let he who is without sin cast the first stone.
308
309 For the data tracing facility, we need to insert `trace' bytecodes
310 before each data fetch; this records all the memory that the
311 expression touches in the course of evaluation, so that memory will
312 be available when the user later tries to evaluate the expression
313 in GDB.
314
315 This should be done (I think) in a post-processing pass, that walks
316 an arbitrary agent expression and inserts `trace' operations at the
317 appropriate points. But it's much faster to just hack them
318 directly into the code. And since we're in a crunch, that's what
319 I've done.
320
321 Setting the flag trace_kludge to non-zero enables the code that
322 emits the trace bytecodes at the appropriate points. */
323 static int trace_kludge;
324
325 /* Trace the lvalue on the stack, if it needs it. In either case, pop
326 the value. Useful on the left side of a comma, and at the end of
327 an expression being used for tracing. */
328 static void
329 gen_traced_pop (ax, value)
330 struct agent_expr *ax;
331 struct axs_value *value;
332 {
333 if (trace_kludge)
334 switch (value->kind)
335 {
336 case axs_rvalue:
337 /* We don't trace rvalues, just the lvalues necessary to
338 produce them. So just dispose of this value. */
339 ax_simple (ax, aop_pop);
340 break;
341
342 case axs_lvalue_memory:
343 {
344 int length = TYPE_LENGTH (value->type);
345
346 /* There's no point in trying to use a trace_quick bytecode
347 here, since "trace_quick SIZE pop" is three bytes, whereas
348 "const8 SIZE trace" is also three bytes, does the same
349 thing, and the simplest code which generates that will also
350 work correctly for objects with large sizes. */
351 ax_const_l (ax, length);
352 ax_simple (ax, aop_trace);
353 }
354 break;
355
356 case axs_lvalue_register:
357 /* We need to mention the register somewhere in the bytecode,
358 so ax_reqs will pick it up and add it to the mask of
359 registers used. */
360 ax_reg (ax, value->u.reg);
361 ax_simple (ax, aop_pop);
362 break;
363 }
364 else
365 /* If we're not tracing, just pop the value. */
366 ax_simple (ax, aop_pop);
367 }
368
369
370 \f
371 /* Generating bytecode from GDB expressions: helper functions */
372
373 /* Assume that the lower bits of the top of the stack is a value of
374 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
375 static void
376 gen_sign_extend (ax, type)
377 struct agent_expr *ax;
378 struct type *type;
379 {
380 /* Do we need to sign-extend this? */
381 if (! TYPE_UNSIGNED (type))
382 ax_ext (ax, type->length * TARGET_CHAR_BIT);
383 }
384
385
386 /* Assume the lower bits of the top of the stack hold a value of type
387 TYPE, and the upper bits are garbage. Sign-extend or truncate as
388 needed. */
389 static void
390 gen_extend (ax, type)
391 struct agent_expr *ax;
392 struct type *type;
393 {
394 int bits = type->length * TARGET_CHAR_BIT;
395 /* I just had to. */
396 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
397 }
398
399
400 /* Assume that the top of the stack contains a value of type "pointer
401 to TYPE"; generate code to fetch its value. Note that TYPE is the
402 target type, not the pointer type. */
403 static void
404 gen_fetch (ax, type)
405 struct agent_expr *ax;
406 struct type *type;
407 {
408 if (trace_kludge)
409 {
410 /* Record the area of memory we're about to fetch. */
411 ax_trace_quick (ax, TYPE_LENGTH (type));
412 }
413
414 switch (type->code)
415 {
416 case TYPE_CODE_PTR:
417 case TYPE_CODE_ENUM:
418 case TYPE_CODE_INT:
419 case TYPE_CODE_CHAR:
420 /* It's a scalar value, so we know how to dereference it. How
421 many bytes long is it? */
422 switch (type->length)
423 {
424 case 8 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref8 ); break;
425 case 16 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref16); break;
426 case 32 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref32); break;
427 case 64 / TARGET_CHAR_BIT: ax_simple (ax, aop_ref64); break;
428
429 /* Either our caller shouldn't have asked us to dereference
430 that pointer (other code's fault), or we're not
431 implementing something we should be (this code's fault).
432 In any case, it's a bug the user shouldn't see. */
433 default:
434 error ("GDB bug: ax-gdb.c (gen_fetch): strange size");
435 }
436
437 gen_sign_extend (ax, type);
438 break;
439
440 default:
441 /* Either our caller shouldn't have asked us to dereference that
442 pointer (other code's fault), or we're not implementing
443 something we should be (this code's fault). In any case,
444 it's a bug the user shouldn't see. */
445 error ("GDB bug: ax-gdb.c (gen_fetch): bad type code");
446 }
447 }
448
449
450 /* Generate code to left shift the top of the stack by DISTANCE bits, or
451 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
452 unsigned (logical) right shifts. */
453 static void
454 gen_left_shift (ax, distance)
455 struct agent_expr *ax;
456 int distance;
457 {
458 if (distance > 0)
459 {
460 ax_const_l (ax, distance);
461 ax_simple (ax, aop_lsh);
462 }
463 else if (distance < 0)
464 {
465 ax_const_l (ax, -distance);
466 ax_simple (ax, aop_rsh_unsigned);
467 }
468 }
469
470
471 \f
472 /* Generating bytecode from GDB expressions: symbol references */
473
474 /* Generate code to push the base address of the argument portion of
475 the top stack frame. */
476 static void
477 gen_frame_args_address (ax)
478 struct agent_expr *ax;
479 {
480 long frame_reg, frame_offset;
481
482 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
483 ax_reg (ax, frame_reg);
484 gen_offset (ax, frame_offset);
485 }
486
487
488 /* Generate code to push the base address of the locals portion of the
489 top stack frame. */
490 static void
491 gen_frame_locals_address (ax)
492 struct agent_expr *ax;
493 {
494 long frame_reg, frame_offset;
495
496 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
497 ax_reg (ax, frame_reg);
498 gen_offset (ax, frame_offset);
499 }
500
501
502 /* Generate code to add OFFSET to the top of the stack. Try to
503 generate short and readable code. We use this for getting to
504 variables on the stack, and structure members. If we were
505 programming in ML, it would be clearer why these are the same
506 thing. */
507 static void
508 gen_offset (ax, offset)
509 struct agent_expr *ax;
510 int offset;
511 {
512 /* It would suffice to simply push the offset and add it, but this
513 makes it easier to read positive and negative offsets in the
514 bytecode. */
515 if (offset > 0)
516 {
517 ax_const_l (ax, offset);
518 ax_simple (ax, aop_add);
519 }
520 else if (offset < 0)
521 {
522 ax_const_l (ax, -offset);
523 ax_simple (ax, aop_sub);
524 }
525 }
526
527
528 /* In many cases, a symbol's value is the offset from some other
529 address (stack frame, base register, etc.) Generate code to add
530 VAR's value to the top of the stack. */
531 static void
532 gen_sym_offset (ax, var)
533 struct agent_expr *ax;
534 struct symbol *var;
535 {
536 gen_offset (ax, SYMBOL_VALUE (var));
537 }
538
539
540 /* Generate code for a variable reference to AX. The variable is the
541 symbol VAR. Set VALUE to describe the result. */
542
543 static void
544 gen_var_ref (ax, value, var)
545 struct agent_expr *ax;
546 struct axs_value *value;
547 struct symbol *var;
548 {
549 /* Dereference any typedefs. */
550 value->type = check_typedef (SYMBOL_TYPE (var));
551
552 /* I'm imitating the code in read_var_value. */
553 switch (SYMBOL_CLASS (var))
554 {
555 case LOC_CONST: /* A constant, like an enum value. */
556 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
557 value->kind = axs_rvalue;
558 break;
559
560 case LOC_LABEL: /* A goto label, being used as a value. */
561 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
562 value->kind = axs_rvalue;
563 break;
564
565 case LOC_CONST_BYTES:
566 error ("GDB bug: ax-gdb.c (gen_var_ref): LOC_CONST_BYTES symbols are not supported");
567
568 /* Variable at a fixed location in memory. Easy. */
569 case LOC_STATIC:
570 /* Push the address of the variable. */
571 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
572 value->kind = axs_lvalue_memory;
573 break;
574
575 case LOC_ARG: /* var lives in argument area of frame */
576 gen_frame_args_address (ax);
577 gen_sym_offset (ax, var);
578 value->kind = axs_lvalue_memory;
579 break;
580
581 case LOC_REF_ARG: /* As above, but the frame slot really
582 holds the address of the variable. */
583 gen_frame_args_address (ax);
584 gen_sym_offset (ax, var);
585 /* Don't assume any particular pointer size. */
586 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
587 value->kind = axs_lvalue_memory;
588 break;
589
590 case LOC_LOCAL: /* var lives in locals area of frame */
591 case LOC_LOCAL_ARG:
592 gen_frame_locals_address (ax);
593 gen_sym_offset (ax, var);
594 value->kind = axs_lvalue_memory;
595 break;
596
597 case LOC_BASEREG: /* relative to some base register */
598 case LOC_BASEREG_ARG:
599 ax_reg (ax, SYMBOL_BASEREG (var));
600 gen_sym_offset (ax, var);
601 value->kind = axs_lvalue_memory;
602 break;
603
604 case LOC_TYPEDEF:
605 error ("Cannot compute value of typedef `%s'.",
606 SYMBOL_SOURCE_NAME (var));
607 break;
608
609 case LOC_BLOCK:
610 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
611 value->kind = axs_rvalue;
612 break;
613
614 case LOC_REGISTER:
615 case LOC_REGPARM:
616 /* Don't generate any code at all; in the process of treating
617 this as an lvalue or rvalue, the caller will generate the
618 right code. */
619 value->kind = axs_lvalue_register;
620 value->u.reg = SYMBOL_VALUE (var);
621 break;
622
623 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
624 register, not on the stack. Simpler than LOC_REGISTER and
625 LOC_REGPARM, because it's just like any other case where the
626 thing has a real address. */
627 case LOC_REGPARM_ADDR:
628 ax_reg (ax, SYMBOL_VALUE (var));
629 value->kind = axs_lvalue_memory;
630 break;
631
632 case LOC_UNRESOLVED:
633 {
634 struct minimal_symbol *msym
635 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
636 if (! msym)
637 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
638
639 /* Push the address of the variable. */
640 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
641 value->kind = axs_lvalue_memory;
642 }
643 break;
644
645 case LOC_OPTIMIZED_OUT:
646 error ("The variable `%s' has been optimized out.",
647 SYMBOL_SOURCE_NAME (var));
648 break;
649
650 default:
651 error ("Cannot find value of botched symbol `%s'.",
652 SYMBOL_SOURCE_NAME (var));
653 break;
654 }
655 }
656
657
658 \f
659 /* Generating bytecode from GDB expressions: literals */
660
661 static void
662 gen_int_literal (ax, value, k, type)
663 struct agent_expr *ax;
664 struct axs_value *value;
665 LONGEST k;
666 struct type *type;
667 {
668 ax_const_l (ax, k);
669 value->kind = axs_rvalue;
670 value->type = type;
671 }
672
673
674 \f
675 /* Generating bytecode from GDB expressions: unary conversions, casts */
676
677 /* Take what's on the top of the stack (as described by VALUE), and
678 try to make an rvalue out of it. Signal an error if we can't do
679 that. */
680 static void
681 require_rvalue (ax, value)
682 struct agent_expr *ax;
683 struct axs_value *value;
684 {
685 switch (value->kind)
686 {
687 case axs_rvalue:
688 /* It's already an rvalue. */
689 break;
690
691 case axs_lvalue_memory:
692 /* The top of stack is the address of the object. Dereference. */
693 gen_fetch (ax, value->type);
694 break;
695
696 case axs_lvalue_register:
697 /* There's nothing on the stack, but value->u.reg is the
698 register number containing the value.
699
700 When we add floating-point support, this is going to have to
701 change. What about SPARC register pairs, for example? */
702 ax_reg (ax, value->u.reg);
703 gen_extend (ax, value->type);
704 break;
705 }
706
707 value->kind = axs_rvalue;
708 }
709
710
711 /* Assume the top of the stack is described by VALUE, and perform the
712 usual unary conversions. This is motivated by ANSI 6.2.2, but of
713 course GDB expressions are not ANSI; they're the mishmash union of
714 a bunch of languages. Rah.
715
716 NOTE! This function promises to produce an rvalue only when the
717 incoming value is of an appropriate type. In other words, the
718 consumer of the value this function produces may assume the value
719 is an rvalue only after checking its type.
720
721 The immediate issue is that if the user tries to use a structure or
722 union as an operand of, say, the `+' operator, we don't want to try
723 to convert that structure to an rvalue; require_rvalue will bomb on
724 structs and unions. Rather, we want to simply pass the struct
725 lvalue through unchanged, and let `+' raise an error. */
726
727 static void
728 gen_usual_unary (ax, value)
729 struct agent_expr *ax;
730 struct axs_value *value;
731 {
732 /* We don't have to generate any code for the usual integral
733 conversions, since values are always represented as full-width on
734 the stack. Should we tweak the type? */
735
736 /* Some types require special handling. */
737 switch (value->type->code)
738 {
739 /* Functions get converted to a pointer to the function. */
740 case TYPE_CODE_FUNC:
741 value->type = lookup_pointer_type (value->type);
742 value->kind = axs_rvalue; /* Should always be true, but just in case. */
743 break;
744
745 /* Arrays get converted to a pointer to their first element, and
746 are no longer an lvalue. */
747 case TYPE_CODE_ARRAY:
748 {
749 struct type *elements = TYPE_TARGET_TYPE (value->type);
750 value->type = lookup_pointer_type (elements);
751 value->kind = axs_rvalue;
752 /* We don't need to generate any code; the address of the array
753 is also the address of its first element. */
754 }
755 break;
756
757 /* Don't try to convert structures and unions to rvalues. Let the
758 consumer signal an error. */
759 case TYPE_CODE_STRUCT:
760 case TYPE_CODE_UNION:
761 return;
762
763 /* If the value is an enum, call it an integer. */
764 case TYPE_CODE_ENUM:
765 value->type = builtin_type_int;
766 break;
767 }
768
769 /* If the value is an lvalue, dereference it. */
770 require_rvalue (ax, value);
771 }
772
773
774 /* Return non-zero iff the type TYPE1 is considered "wider" than the
775 type TYPE2, according to the rules described in gen_usual_arithmetic. */
776 static int
777 type_wider_than (type1, type2)
778 struct type *type1, *type2;
779 {
780 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
781 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
782 && TYPE_UNSIGNED (type1)
783 && ! TYPE_UNSIGNED (type2)));
784 }
785
786
787 /* Return the "wider" of the two types TYPE1 and TYPE2. */
788 static struct type *
789 max_type (type1, type2)
790 struct type *type1, *type2;
791 {
792 return type_wider_than (type1, type2) ? type1 : type2;
793 }
794
795
796 /* Generate code to convert a scalar value of type FROM to type TO. */
797 static void
798 gen_conversion (ax, from, to)
799 struct agent_expr *ax;
800 struct type *from, *to;
801 {
802 /* Perhaps there is a more graceful way to state these rules. */
803
804 /* If we're converting to a narrower type, then we need to clear out
805 the upper bits. */
806 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
807 gen_extend (ax, from);
808
809 /* If the two values have equal width, but different signednesses,
810 then we need to extend. */
811 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
812 {
813 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
814 gen_extend (ax, to);
815 }
816
817 /* If we're converting to a wider type, and becoming unsigned, then
818 we need to zero out any possible sign bits. */
819 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
820 {
821 if (TYPE_UNSIGNED (to))
822 gen_extend (ax, to);
823 }
824 }
825
826
827 /* Return non-zero iff the type FROM will require any bytecodes to be
828 emitted to be converted to the type TO. */
829 static int
830 is_nontrivial_conversion (from, to)
831 struct type *from, *to;
832 {
833 struct agent_expr *ax = new_agent_expr (0);
834 int nontrivial;
835
836 /* Actually generate the code, and see if anything came out. At the
837 moment, it would be trivial to replicate the code in
838 gen_conversion here, but in the future, when we're supporting
839 floating point and the like, it may not be. Doing things this
840 way allows this function to be independent of the logic in
841 gen_conversion. */
842 gen_conversion (ax, from, to);
843 nontrivial = ax->len > 0;
844 free_agent_expr (ax);
845 return nontrivial;
846 }
847
848
849 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
850 6.2.1.5) for the two operands of an arithmetic operator. This
851 effectively finds a "least upper bound" type for the two arguments,
852 and promotes each argument to that type. *VALUE1 and *VALUE2
853 describe the values as they are passed in, and as they are left. */
854 static void
855 gen_usual_arithmetic (ax, value1, value2)
856 struct agent_expr *ax;
857 struct axs_value *value1, *value2;
858 {
859 /* Do the usual binary conversions. */
860 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
861 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
862 {
863 /* The ANSI integral promotions seem to work this way: Order the
864 integer types by size, and then by signedness: an n-bit
865 unsigned type is considered "wider" than an n-bit signed
866 type. Promote to the "wider" of the two types, and always
867 promote at least to int. */
868 struct type *target = max_type (builtin_type_int,
869 max_type (value1->type, value2->type));
870
871 /* Deal with value2, on the top of the stack. */
872 gen_conversion (ax, value2->type, target);
873
874 /* Deal with value1, not on the top of the stack. Don't
875 generate the `swap' instructions if we're not actually going
876 to do anything. */
877 if (is_nontrivial_conversion (value1->type, target))
878 {
879 ax_simple (ax, aop_swap);
880 gen_conversion (ax, value1->type, target);
881 ax_simple (ax, aop_swap);
882 }
883
884 value1->type = value2->type = target;
885 }
886 }
887
888
889 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
890 the value on the top of the stack, as described by VALUE. Assume
891 the value has integral type. */
892 static void
893 gen_integral_promotions (ax, value)
894 struct agent_expr *ax;
895 struct axs_value *value;
896 {
897 if (! type_wider_than (value->type, builtin_type_int))
898 {
899 gen_conversion (ax, value->type, builtin_type_int);
900 value->type = builtin_type_int;
901 }
902 else if (! type_wider_than (value->type, builtin_type_unsigned_int))
903 {
904 gen_conversion (ax, value->type, builtin_type_unsigned_int);
905 value->type = builtin_type_unsigned_int;
906 }
907 }
908
909
910 /* Generate code for a cast to TYPE. */
911 static void
912 gen_cast (ax, value, type)
913 struct agent_expr *ax;
914 struct axs_value *value;
915 struct type *type;
916 {
917 /* GCC does allow casts to yield lvalues, so this should be fixed
918 before merging these changes into the trunk. */
919 require_rvalue (ax, value);
920 /* Dereference typedefs. */
921 type = check_typedef (type);
922
923 switch (type->code)
924 {
925 case TYPE_CODE_PTR:
926 /* It's implementation-defined, and I'll bet this is what GCC
927 does. */
928 break;
929
930 case TYPE_CODE_ARRAY:
931 case TYPE_CODE_STRUCT:
932 case TYPE_CODE_UNION:
933 case TYPE_CODE_FUNC:
934 error ("Illegal type cast: intended type must be scalar.");
935
936 case TYPE_CODE_ENUM:
937 /* We don't have to worry about the size of the value, because
938 all our integral values are fully sign-extended, and when
939 casting pointers we can do anything we like. Is there any
940 way for us to actually know what GCC actually does with a
941 cast like this? */
942 value->type = type;
943 break;
944
945 case TYPE_CODE_INT:
946 gen_conversion (ax, value->type, type);
947 break;
948
949 case TYPE_CODE_VOID:
950 /* We could pop the value, and rely on everyone else to check
951 the type and notice that this value doesn't occupy a stack
952 slot. But for now, leave the value on the stack, and
953 preserve the "value == stack element" assumption. */
954 break;
955
956 default:
957 error ("Casts to requested type are not yet implemented.");
958 }
959
960 value->type = type;
961 }
962
963
964 \f
965 /* Generating bytecode from GDB expressions: arithmetic */
966
967 /* Scale the integer on the top of the stack by the size of the target
968 of the pointer type TYPE. */
969 static void
970 gen_scale (ax, op, type)
971 struct agent_expr *ax;
972 enum agent_op op;
973 struct type *type;
974 {
975 struct type *element = TYPE_TARGET_TYPE (type);
976
977 if (element->length != 1)
978 {
979 ax_const_l (ax, element->length);
980 ax_simple (ax, op);
981 }
982 }
983
984
985 /* Generate code for an addition; non-trivial because we deal with
986 pointer arithmetic. We set VALUE to describe the result value; we
987 assume VALUE1 and VALUE2 describe the two operands, and that
988 they've undergone the usual binary conversions. Used by both
989 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
990 static void
991 gen_add (ax, value, value1, value2, name)
992 struct agent_expr *ax;
993 struct axs_value *value, *value1, *value2;
994 char *name;
995 {
996 /* Is it INT+PTR? */
997 if (value1->type->code == TYPE_CODE_INT
998 && value2->type->code == TYPE_CODE_PTR)
999 {
1000 /* Swap the values and proceed normally. */
1001 ax_simple (ax, aop_swap);
1002 gen_scale (ax, aop_mul, value2->type);
1003 ax_simple (ax, aop_add);
1004 gen_extend (ax, value2->type); /* Catch overflow. */
1005 value->type = value2->type;
1006 }
1007
1008 /* Is it PTR+INT? */
1009 else if (value1->type->code == TYPE_CODE_PTR
1010 && value2->type->code == TYPE_CODE_INT)
1011 {
1012 gen_scale (ax, aop_mul, value1->type);
1013 ax_simple (ax, aop_add);
1014 gen_extend (ax, value1->type); /* Catch overflow. */
1015 value->type = value1->type;
1016 }
1017
1018 /* Must be number + number; the usual binary conversions will have
1019 brought them both to the same width. */
1020 else if (value1->type->code == TYPE_CODE_INT
1021 && value2->type->code == TYPE_CODE_INT)
1022 {
1023 ax_simple (ax, aop_add);
1024 gen_extend (ax, value1->type); /* Catch overflow. */
1025 value->type = value1->type;
1026 }
1027
1028 else
1029 error ("Illegal combination of types in %s.", name);
1030
1031 value->kind = axs_rvalue;
1032 }
1033
1034
1035 /* Generate code for an addition; non-trivial because we have to deal
1036 with pointer arithmetic. We set VALUE to describe the result
1037 value; we assume VALUE1 and VALUE2 describe the two operands, and
1038 that they've undergone the usual binary conversions. */
1039 static void
1040 gen_sub (ax, value, value1, value2)
1041 struct agent_expr *ax;
1042 struct axs_value *value, *value1, *value2;
1043 {
1044 struct type *element;
1045
1046 if (value1->type->code == TYPE_CODE_PTR)
1047 {
1048 /* Is it PTR - INT? */
1049 if (value2->type->code == TYPE_CODE_INT)
1050 {
1051 gen_scale (ax, aop_mul, value1->type);
1052 ax_simple (ax, aop_sub);
1053 gen_extend (ax, value1->type); /* Catch overflow. */
1054 value->type = value1->type;
1055 }
1056
1057 /* Is it PTR - PTR? Strictly speaking, the types ought to
1058 match, but this is what the normal GDB expression evaluator
1059 tests for. */
1060 else if (value2->type->code == TYPE_CODE_PTR
1061 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1062 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1063 {
1064 ax_simple (ax, aop_sub);
1065 gen_scale (ax, aop_div_unsigned, value1->type);
1066 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
1067 }
1068 else
1069 error ("\
1070 First argument of `-' is a pointer, but second argument is neither\n\
1071 an integer nor a pointer of the same type.");
1072 }
1073
1074 /* Must be number + number. */
1075 else if (value1->type->code == TYPE_CODE_INT
1076 && value2->type->code == TYPE_CODE_INT)
1077 {
1078 ax_simple (ax, aop_sub);
1079 gen_extend (ax, value1->type); /* Catch overflow. */
1080 value->type = value1->type;
1081 }
1082
1083 else
1084 error ("Illegal combination of types in subtraction.");
1085
1086 value->kind = axs_rvalue;
1087 }
1088
1089 /* Generate code for a binary operator that doesn't do pointer magic.
1090 We set VALUE to describe the result value; we assume VALUE1 and
1091 VALUE2 describe the two operands, and that they've undergone the
1092 usual binary conversions. MAY_CARRY should be non-zero iff the
1093 result needs to be extended. NAME is the English name of the
1094 operator, used in error messages */
1095 static void
1096 gen_binop (ax, value, value1, value2, op, op_unsigned, may_carry, name)
1097 struct agent_expr *ax;
1098 struct axs_value *value, *value1, *value2;
1099 enum agent_op op, op_unsigned;
1100 int may_carry;
1101 char *name;
1102 {
1103 /* We only handle INT op INT. */
1104 if ((value1->type->code != TYPE_CODE_INT)
1105 || (value2->type->code != TYPE_CODE_INT))
1106 error ("Illegal combination of types in %s.", name);
1107
1108 ax_simple (ax,
1109 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1110 if (may_carry)
1111 gen_extend (ax, value1->type); /* catch overflow */
1112 value->type = value1->type;
1113 value->kind = axs_rvalue;
1114 }
1115
1116
1117 static void
1118 gen_logical_not (ax, value)
1119 struct agent_expr *ax;
1120 struct axs_value *value;
1121 {
1122 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1123 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1124 error ("Illegal type of operand to `!'.");
1125
1126 gen_usual_unary (ax, value);
1127 ax_simple (ax, aop_log_not);
1128 value->type = builtin_type_int;
1129 }
1130
1131
1132 static void
1133 gen_complement (ax, value)
1134 struct agent_expr *ax;
1135 struct axs_value *value;
1136 {
1137 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1138 error ("Illegal type of operand to `~'.");
1139
1140 gen_usual_unary (ax, value);
1141 gen_integral_promotions (ax, value);
1142 ax_simple (ax, aop_bit_not);
1143 gen_extend (ax, value->type);
1144 }
1145
1146
1147 \f
1148 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1149
1150 /* Dereference the value on the top of the stack. */
1151 static void
1152 gen_deref (ax, value)
1153 struct agent_expr *ax;
1154 struct axs_value *value;
1155 {
1156 /* The caller should check the type, because several operators use
1157 this, and we don't know what error message to generate. */
1158 if (value->type->code != TYPE_CODE_PTR)
1159 error ("GDB bug: ax-gdb.c (gen_deref): expected a pointer");
1160
1161 /* We've got an rvalue now, which is a pointer. We want to yield an
1162 lvalue, whose address is exactly that pointer. So we don't
1163 actually emit any code; we just change the type from "Pointer to
1164 T" to "T", and mark the value as an lvalue in memory. Leave it
1165 to the consumer to actually dereference it. */
1166 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1167 value->kind = ((value->type->code == TYPE_CODE_FUNC)
1168 ? axs_rvalue : axs_lvalue_memory);
1169 }
1170
1171
1172 /* Produce the address of the lvalue on the top of the stack. */
1173 static void
1174 gen_address_of (ax, value)
1175 struct agent_expr *ax;
1176 struct axs_value *value;
1177 {
1178 /* Special case for taking the address of a function. The ANSI
1179 standard describes this as a special case, too, so this
1180 arrangement is not without motivation. */
1181 if (value->type->code == TYPE_CODE_FUNC)
1182 /* The value's already an rvalue on the stack, so we just need to
1183 change the type. */
1184 value->type = lookup_pointer_type (value->type);
1185 else
1186 switch (value->kind)
1187 {
1188 case axs_rvalue:
1189 error ("Operand of `&' is an rvalue, which has no address.");
1190
1191 case axs_lvalue_register:
1192 error ("Operand of `&' is in a register, and has no address.");
1193
1194 case axs_lvalue_memory:
1195 value->kind = axs_rvalue;
1196 value->type = lookup_pointer_type (value->type);
1197 break;
1198 }
1199 }
1200
1201
1202 /* A lot of this stuff will have to change to support C++. But we're
1203 not going to deal with that at the moment. */
1204
1205 /* Find the field in the structure type TYPE named NAME, and return
1206 its index in TYPE's field array. */
1207 static int
1208 find_field (type, name)
1209 struct type *type;
1210 char *name;
1211 {
1212 int i;
1213
1214 CHECK_TYPEDEF (type);
1215
1216 /* Make sure this isn't C++. */
1217 if (TYPE_N_BASECLASSES (type) != 0)
1218 error ("GDB bug: ax-gdb.c (find_field): derived classes supported");
1219
1220 for (i = 0; i < TYPE_NFIELDS (type); i++)
1221 {
1222 char *this_name = TYPE_FIELD_NAME (type, i);
1223
1224 if (this_name && STREQ (name, this_name))
1225 return i;
1226
1227 if (this_name[0] == '\0')
1228 error ("GDB bug: ax-gdb.c (find_field): anonymous unions not supported");
1229 }
1230
1231 error ("Couldn't find member named `%s' in struct/union `%s'",
1232 name, type->tag_name);
1233
1234 return 0;
1235 }
1236
1237
1238 /* Generate code to push the value of a bitfield of a structure whose
1239 address is on the top of the stack. START and END give the
1240 starting and one-past-ending *bit* numbers of the field within the
1241 structure. */
1242 static void
1243 gen_bitfield_ref (ax, value, type, start, end)
1244 struct agent_expr *ax;
1245 struct axs_value *value;
1246 struct type *type;
1247 int start, end;
1248 {
1249 /* Note that ops[i] fetches 8 << i bits. */
1250 static enum agent_op ops[]
1251 = { aop_ref8, aop_ref16, aop_ref32, aop_ref64 };
1252 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1253
1254 /* We don't want to touch any byte that the bitfield doesn't
1255 actually occupy; we shouldn't make any accesses we're not
1256 explicitly permitted to. We rely here on the fact that the
1257 bytecode `ref' operators work on unaligned addresses.
1258
1259 It takes some fancy footwork to get the stack to work the way
1260 we'd like. Say we're retrieving a bitfield that requires three
1261 fetches. Initially, the stack just contains the address:
1262 addr
1263 For the first fetch, we duplicate the address
1264 addr addr
1265 then add the byte offset, do the fetch, and shift and mask as
1266 needed, yielding a fragment of the value, properly aligned for
1267 the final bitwise or:
1268 addr frag1
1269 then we swap, and repeat the process:
1270 frag1 addr --- address on top
1271 frag1 addr addr --- duplicate it
1272 frag1 addr frag2 --- get second fragment
1273 frag1 frag2 addr --- swap again
1274 frag1 frag2 frag3 --- get third fragment
1275 Notice that, since the third fragment is the last one, we don't
1276 bother duplicating the address this time. Now we have all the
1277 fragments on the stack, and we can simply `or' them together,
1278 yielding the final value of the bitfield. */
1279
1280 /* The first and one-after-last bits in the field, but rounded down
1281 and up to byte boundaries. */
1282 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1283 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1284 / TARGET_CHAR_BIT)
1285 * TARGET_CHAR_BIT);
1286
1287 /* current bit offset within the structure */
1288 int offset;
1289
1290 /* The index in ops of the opcode we're considering. */
1291 int op;
1292
1293 /* The number of fragments we generated in the process. Probably
1294 equal to the number of `one' bits in bytesize, but who cares? */
1295 int fragment_count;
1296
1297 /* Dereference any typedefs. */
1298 type = check_typedef (type);
1299
1300 /* Can we fetch the number of bits requested at all? */
1301 if ((end - start) > ((1 << num_ops) * 8))
1302 error ("GDB bug: ax-gdb.c (gen_bitfield_ref): bitfield too wide");
1303
1304 /* Note that we know here that we only need to try each opcode once.
1305 That may not be true on machines with weird byte sizes. */
1306 offset = bound_start;
1307 fragment_count = 0;
1308 for (op = num_ops - 1; op >= 0; op--)
1309 {
1310 /* number of bits that ops[op] would fetch */
1311 int op_size = 8 << op;
1312
1313 /* The stack at this point, from bottom to top, contains zero or
1314 more fragments, then the address. */
1315
1316 /* Does this fetch fit within the bitfield? */
1317 if (offset + op_size <= bound_end)
1318 {
1319 /* Is this the last fragment? */
1320 int last_frag = (offset + op_size == bound_end);
1321
1322 if (! last_frag)
1323 ax_simple (ax, aop_dup); /* keep a copy of the address */
1324
1325 /* Add the offset. */
1326 gen_offset (ax, offset / TARGET_CHAR_BIT);
1327
1328 if (trace_kludge)
1329 {
1330 /* Record the area of memory we're about to fetch. */
1331 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1332 }
1333
1334 /* Perform the fetch. */
1335 ax_simple (ax, ops[op]);
1336
1337 /* Shift the bits we have to their proper position.
1338 gen_left_shift will generate right shifts when the operand
1339 is negative.
1340
1341 A big-endian field diagram to ponder:
1342 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1343 +------++------++------++------++------++------++------++------+
1344 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1345 ^ ^ ^ ^
1346 bit number 16 32 48 53
1347 These are bit numbers as supplied by GDB. Note that the
1348 bit numbers run from right to left once you've fetched the
1349 value!
1350
1351 A little-endian field diagram to ponder:
1352 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1353 +------++------++------++------++------++------++------++------+
1354 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1355 ^ ^ ^ ^ ^
1356 bit number 48 32 16 4 0
1357
1358 In both cases, the most significant end is on the left
1359 (i.e. normal numeric writing order), which means that you
1360 don't go crazy thinking about `left' and `right' shifts.
1361
1362 We don't have to worry about masking yet:
1363 - If they contain garbage off the least significant end, then we
1364 must be looking at the low end of the field, and the right
1365 shift will wipe them out.
1366 - If they contain garbage off the most significant end, then we
1367 must be looking at the most significant end of the word, and
1368 the sign/zero extension will wipe them out.
1369 - If we're in the interior of the word, then there is no garbage
1370 on either end, because the ref operators zero-extend. */
1371 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1372 gen_left_shift (ax, end - (offset + op_size));
1373 else
1374 gen_left_shift (ax, offset - start);
1375
1376 if (! last_frag)
1377 /* Bring the copy of the address up to the top. */
1378 ax_simple (ax, aop_swap);
1379
1380 offset += op_size;
1381 fragment_count++;
1382 }
1383 }
1384
1385 /* Generate enough bitwise `or' operations to combine all the
1386 fragments we left on the stack. */
1387 while (fragment_count-- > 1)
1388 ax_simple (ax, aop_bit_or);
1389
1390 /* Sign- or zero-extend the value as appropriate. */
1391 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1392
1393 /* This is *not* an lvalue. Ugh. */
1394 value->kind = axs_rvalue;
1395 value->type = type;
1396 }
1397
1398
1399 /* Generate code to reference the member named FIELD of a structure or
1400 union. The top of the stack, as described by VALUE, should have
1401 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1402 the operator being compiled, and OPERAND_NAME is the kind of thing
1403 it operates on; we use them in error messages. */
1404 static void
1405 gen_struct_ref (ax, value, field, operator_name, operand_name)
1406 struct agent_expr *ax;
1407 struct axs_value *value;
1408 char *field;
1409 char *operator_name;
1410 char *operand_name;
1411 {
1412 struct type *type;
1413 int i;
1414
1415 /* Follow pointers until we reach a non-pointer. These aren't the C
1416 semantics, but they're what the normal GDB evaluator does, so we
1417 should at least be consistent. */
1418 while (value->type->code == TYPE_CODE_PTR)
1419 {
1420 gen_usual_unary (ax, value);
1421 gen_deref (ax, value);
1422 }
1423 type = value->type;
1424
1425 /* This must yield a structure or a union. */
1426 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1427 && TYPE_CODE (type) != TYPE_CODE_UNION)
1428 error ("The left operand of `%s' is not a %s.",
1429 operator_name, operand_name);
1430
1431 /* And it must be in memory; we don't deal with structure rvalues,
1432 or structures living in registers. */
1433 if (value->kind != axs_lvalue_memory)
1434 error ("Structure does not live in memory.");
1435
1436 i = find_field (type, field);
1437
1438 /* Is this a bitfield? */
1439 if (TYPE_FIELD_PACKED (type, i))
1440 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1441 TYPE_FIELD_BITPOS (type, i),
1442 (TYPE_FIELD_BITPOS (type, i)
1443 + TYPE_FIELD_BITSIZE (type, i)));
1444 else
1445 {
1446 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1447 value->kind = axs_lvalue_memory;
1448 value->type = TYPE_FIELD_TYPE (type, i);
1449 }
1450 }
1451
1452
1453 /* Generate code for GDB's magical `repeat' operator.
1454 LVALUE @ INT creates an array INT elements long, and whose elements
1455 have the same type as LVALUE, located in memory so that LVALUE is
1456 its first element. For example, argv[0]@argc gives you the array
1457 of command-line arguments.
1458
1459 Unfortunately, because we have to know the types before we actually
1460 have a value for the expression, we can't implement this perfectly
1461 without changing the type system, having values that occupy two
1462 stack slots, doing weird things with sizeof, etc. So we require
1463 the right operand to be a constant expression. */
1464 static void
1465 gen_repeat (pc, ax, value)
1466 union exp_element **pc;
1467 struct agent_expr *ax;
1468 struct axs_value *value;
1469 {
1470 struct axs_value value1;
1471 /* We don't want to turn this into an rvalue, so no conversions
1472 here. */
1473 gen_expr (pc, ax, &value1);
1474 if (value1.kind != axs_lvalue_memory)
1475 error ("Left operand of `@' must be an object in memory.");
1476
1477 /* Evaluate the length; it had better be a constant. */
1478 {
1479 struct value *v = const_expr (pc);
1480 int length;
1481
1482 if (! v)
1483 error ("Right operand of `@' must be a constant, in agent expressions.");
1484 if (v->type->code != TYPE_CODE_INT)
1485 error ("Right operand of `@' must be an integer.");
1486 length = value_as_long (v);
1487 if (length <= 0)
1488 error ("Right operand of `@' must be positive.");
1489
1490 /* The top of the stack is already the address of the object, so
1491 all we need to do is frob the type of the lvalue. */
1492 {
1493 /* FIXME-type-allocation: need a way to free this type when we are
1494 done with it. */
1495 struct type *range
1496 = create_range_type (0, builtin_type_int, 0, length - 1);
1497 struct type *array = create_array_type (0, value1.type, range);
1498
1499 value->kind = axs_lvalue_memory;
1500 value->type = array;
1501 }
1502 }
1503 }
1504
1505
1506 /* Emit code for the `sizeof' operator.
1507 *PC should point at the start of the operand expression; we advance it
1508 to the first instruction after the operand. */
1509 static void
1510 gen_sizeof (pc, ax, value)
1511 union exp_element **pc;
1512 struct agent_expr *ax;
1513 struct axs_value *value;
1514 {
1515 /* We don't care about the value of the operand expression; we only
1516 care about its type. However, in the current arrangement, the
1517 only way to find an expression's type is to generate code for it.
1518 So we generate code for the operand, and then throw it away,
1519 replacing it with code that simply pushes its size. */
1520 int start = ax->len;
1521 gen_expr (pc, ax, value);
1522
1523 /* Throw away the code we just generated. */
1524 ax->len = start;
1525
1526 ax_const_l (ax, TYPE_LENGTH (value->type));
1527 value->kind = axs_rvalue;
1528 value->type = builtin_type_int;
1529 }
1530
1531 \f
1532 /* Generating bytecode from GDB expressions: general recursive thingy */
1533
1534 /* A gen_expr function written by a Gen-X'er guy.
1535 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1536 static void
1537 gen_expr (pc, ax, value)
1538 union exp_element **pc;
1539 struct agent_expr *ax;
1540 struct axs_value *value;
1541 {
1542 /* Used to hold the descriptions of operand expressions. */
1543 struct axs_value value1, value2;
1544 enum exp_opcode op = (*pc)[0].opcode;
1545
1546 /* If we're looking at a constant expression, just push its value. */
1547 {
1548 struct value *v = maybe_const_expr (pc);
1549
1550 if (v)
1551 {
1552 ax_const_l (ax, value_as_long (v));
1553 value->kind = axs_rvalue;
1554 value->type = check_typedef (VALUE_TYPE (v));
1555 return;
1556 }
1557 }
1558
1559 /* Otherwise, go ahead and generate code for it. */
1560 switch (op)
1561 {
1562 /* Binary arithmetic operators. */
1563 case BINOP_ADD:
1564 case BINOP_SUB:
1565 case BINOP_MUL:
1566 case BINOP_DIV:
1567 case BINOP_REM:
1568 case BINOP_SUBSCRIPT:
1569 case BINOP_BITWISE_AND:
1570 case BINOP_BITWISE_IOR:
1571 case BINOP_BITWISE_XOR:
1572 (*pc)++;
1573 gen_expr (pc, ax, &value1);
1574 gen_usual_unary (ax, &value1);
1575 gen_expr (pc, ax, &value2);
1576 gen_usual_unary (ax, &value2);
1577 gen_usual_arithmetic (ax, &value1, &value2);
1578 switch (op)
1579 {
1580 case BINOP_ADD:
1581 gen_add (ax, value, &value1, &value2, "addition");
1582 break;
1583 case BINOP_SUB:
1584 gen_sub (ax, value, &value1, &value2);
1585 break;
1586 case BINOP_MUL:
1587 gen_binop (ax, value, &value1, &value2,
1588 aop_mul, aop_mul, 1, "multiplication");
1589 break;
1590 case BINOP_DIV:
1591 gen_binop (ax, value, &value1, &value2,
1592 aop_div_signed, aop_div_unsigned, 1, "division");
1593 break;
1594 case BINOP_REM:
1595 gen_binop (ax, value, &value1, &value2,
1596 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1597 break;
1598 case BINOP_SUBSCRIPT:
1599 gen_add (ax, value, &value1, &value2, "array subscripting");
1600 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1601 error ("Illegal combination of types in array subscripting.");
1602 gen_deref (ax, value);
1603 break;
1604 case BINOP_BITWISE_AND:
1605 gen_binop (ax, value, &value1, &value2,
1606 aop_bit_and, aop_bit_and, 0, "bitwise and");
1607 break;
1608
1609 case BINOP_BITWISE_IOR:
1610 gen_binop (ax, value, &value1, &value2,
1611 aop_bit_or, aop_bit_or, 0, "bitwise or");
1612 break;
1613
1614 case BINOP_BITWISE_XOR:
1615 gen_binop (ax, value, &value1, &value2,
1616 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1617 break;
1618
1619 default:
1620 /* We should only list operators in the outer case statement
1621 that we actually handle in the inner case statement. */
1622 error ("GDB bug: ax-gdb.c (gen_expr): op case sets don't match");
1623 }
1624 break;
1625
1626 /* Note that we need to be a little subtle about generating code
1627 for comma. In C, we can do some optimizations here because
1628 we know the left operand is only being evaluated for effect.
1629 However, if the tracing kludge is in effect, then we always
1630 need to evaluate the left hand side fully, so that all the
1631 variables it mentions get traced. */
1632 case BINOP_COMMA:
1633 (*pc)++;
1634 gen_expr (pc, ax, &value1);
1635 /* Don't just dispose of the left operand. We might be tracing,
1636 in which case we want to emit code to trace it if it's an
1637 lvalue. */
1638 gen_traced_pop (ax, &value1);
1639 gen_expr (pc, ax, value);
1640 /* It's the consumer's responsibility to trace the right operand. */
1641 break;
1642
1643 case OP_LONG: /* some integer constant */
1644 {
1645 struct type *type = (*pc)[1].type;
1646 LONGEST k = (*pc)[2].longconst;
1647 (*pc) += 4;
1648 gen_int_literal (ax, value, k, type);
1649 }
1650 break;
1651
1652 case OP_VAR_VALUE:
1653 gen_var_ref (ax, value, (*pc)[2].symbol);
1654 (*pc) += 4;
1655 break;
1656
1657 case OP_REGISTER:
1658 {
1659 int reg = (int) (*pc)[1].longconst;
1660 (*pc) += 3;
1661 value->kind = axs_lvalue_register;
1662 value->u.reg = reg;
1663 value->type = REGISTER_VIRTUAL_TYPE (reg);
1664 }
1665 break;
1666
1667 case OP_INTERNALVAR:
1668 error ("GDB agent expressions cannot use convenience variables.");
1669
1670 /* Weirdo operator: see comments for gen_repeat for details. */
1671 case BINOP_REPEAT:
1672 /* Note that gen_repeat handles its own argument evaluation. */
1673 (*pc)++;
1674 gen_repeat (pc, ax, value);
1675 break;
1676
1677 case UNOP_CAST:
1678 {
1679 struct type *type = (*pc)[1].type;
1680 (*pc) += 3;
1681 gen_expr (pc, ax, value);
1682 gen_cast (ax, value, type);
1683 }
1684 break;
1685
1686 case UNOP_MEMVAL:
1687 {
1688 struct type *type = check_typedef ((*pc)[1].type);
1689 (*pc) += 3;
1690 gen_expr (pc, ax, value);
1691 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1692 it's just a hack for dealing with minsyms; you take some
1693 integer constant, pretend it's the address of an lvalue of
1694 the given type, and dereference it. */
1695 if (value->kind != axs_rvalue)
1696 /* This would be weird. */
1697 error ("GDB bug: ax-gdb.c (gen_expr): OP_MEMVAL operand isn't an rvalue???");
1698 value->type = type;
1699 value->kind = axs_lvalue_memory;
1700 }
1701 break;
1702
1703 case UNOP_NEG:
1704 (*pc)++;
1705 /* -FOO is equivalent to 0 - FOO. */
1706 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
1707 gen_usual_unary (ax, &value1); /* shouldn't do much */
1708 gen_expr (pc, ax, &value2);
1709 gen_usual_unary (ax, &value2);
1710 gen_usual_arithmetic (ax, &value1, &value2);
1711 gen_sub (ax, value, &value1, &value2);
1712 break;
1713
1714 case UNOP_LOGICAL_NOT:
1715 (*pc)++;
1716 gen_expr (pc, ax, value);
1717 gen_logical_not (ax, value);
1718 break;
1719
1720 case UNOP_COMPLEMENT:
1721 (*pc)++;
1722 gen_expr (pc, ax, value);
1723 gen_complement (ax, value);
1724 break;
1725
1726 case UNOP_IND:
1727 (*pc)++;
1728 gen_expr (pc, ax, value);
1729 gen_usual_unary (ax, value);
1730 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1731 error ("Argument of unary `*' is not a pointer.");
1732 gen_deref (ax, value);
1733 break;
1734
1735 case UNOP_ADDR:
1736 (*pc)++;
1737 gen_expr (pc, ax, value);
1738 gen_address_of (ax, value);
1739 break;
1740
1741 case UNOP_SIZEOF:
1742 (*pc)++;
1743 /* Notice that gen_sizeof handles its own operand, unlike most
1744 of the other unary operator functions. This is because we
1745 have to throw away the code we generate. */
1746 gen_sizeof (pc, ax, value);
1747 break;
1748
1749 case STRUCTOP_STRUCT:
1750 case STRUCTOP_PTR:
1751 {
1752 int length = (*pc)[1].longconst;
1753 char *name = &(*pc)[2].string;
1754
1755 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1756 gen_expr (pc, ax, value);
1757 if (op == STRUCTOP_STRUCT)
1758 gen_struct_ref (ax, value, name, ".", "structure or union");
1759 else if (op == STRUCTOP_PTR)
1760 gen_struct_ref (ax, value, name, "->",
1761 "pointer to a structure or union");
1762 else
1763 /* If this `if' chain doesn't handle it, then the case list
1764 shouldn't mention it, and we shouldn't be here. */
1765 error ("GDB bug: ax-gdb.c (gen_expr): unhandled struct case");
1766 }
1767 break;
1768
1769 case OP_TYPE:
1770 error ("Attempt to use a type name as an expression.");
1771
1772 default:
1773 error ("Unsupported operator in expression.");
1774 }
1775 }
1776
1777
1778 \f
1779 #if 0 /* not used */
1780 /* Generating bytecode from GDB expressions: driver */
1781
1782 /* Given a GDB expression EXPR, produce a string of agent bytecode
1783 which computes its value. Return the agent expression, and set
1784 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1785 struct agent_expr *
1786 expr_to_agent (expr, value)
1787 struct expression *expr;
1788 struct axs_value *value;
1789 {
1790 struct cleanup *old_chain = 0;
1791 struct agent_expr *ax = new_agent_expr ();
1792 union exp_element *pc;
1793
1794 old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
1795
1796 pc = expr->elts;
1797 trace_kludge = 0;
1798 gen_expr (&pc, ax, value);
1799
1800 /* We have successfully built the agent expr, so cancel the cleanup
1801 request. If we add more cleanups that we always want done, this
1802 will have to get more complicated. */
1803 discard_cleanups (old_chain);
1804 return ax;
1805 }
1806
1807
1808 /* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1809 string of agent bytecode which will leave its address and size on
1810 the top of stack. Return the agent expression.
1811
1812 Not sure this function is useful at all. */
1813 struct agent_expr *
1814 expr_to_address_and_size (expr)
1815 struct expression *expr;
1816 {
1817 struct axs_value value;
1818 struct agent_expr *ax = expr_to_agent (expr, &value);
1819
1820 /* Complain if the result is not a memory lvalue. */
1821 if (value.kind != axs_lvalue_memory)
1822 {
1823 free_agent_expr (ax);
1824 error ("Expression does not denote an object in memory.");
1825 }
1826
1827 /* Push the object's size on the stack. */
1828 ax_const_l (ax, TYPE_LENGTH (value.type));
1829
1830 return ax;
1831 }
1832 #endif /* 0 */
1833
1834 /* Given a GDB expression EXPR, return bytecode to trace its value.
1835 The result will use the `trace' and `trace_quick' bytecodes to
1836 record the value of all memory touched by the expression. The
1837 caller can then use the ax_reqs function to discover which
1838 registers it relies upon. */
1839 struct agent_expr *
1840 gen_trace_for_expr (scope, expr)
1841 CORE_ADDR scope;
1842 struct expression *expr;
1843 {
1844 struct cleanup *old_chain = 0;
1845 struct agent_expr *ax = new_agent_expr (scope);
1846 union exp_element *pc;
1847 struct axs_value value;
1848
1849 old_chain = make_cleanup ((make_cleanup_func) free_agent_expr, ax);
1850
1851 pc = expr->elts;
1852 trace_kludge = 1;
1853 gen_expr (&pc, ax, &value);
1854
1855 /* Make sure we record the final object, and get rid of it. */
1856 gen_traced_pop (ax, &value);
1857
1858 /* Oh, and terminate. */
1859 ax_simple (ax, aop_end);
1860
1861 /* We have successfully built the agent expr, so cancel the cleanup
1862 request. If we add more cleanups that we always want done, this
1863 will have to get more complicated. */
1864 discard_cleanups (old_chain);
1865 return ax;
1866 }
1867
1868
1869 \f
1870 /* The "agent" command, for testing: compile and disassemble an expression. */
1871
1872 static void
1873 print_axs_value (f, value)
1874 GDB_FILE *f;
1875 struct axs_value *value;
1876 {
1877 switch (value->kind)
1878 {
1879 case axs_rvalue:
1880 fputs_filtered ("rvalue", f);
1881 break;
1882
1883 case axs_lvalue_memory:
1884 fputs_filtered ("memory lvalue", f);
1885 break;
1886
1887 case axs_lvalue_register:
1888 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1889 break;
1890 }
1891
1892 fputs_filtered (" : ", f);
1893 type_print (value->type, "", f, -1);
1894 }
1895
1896
1897 static void
1898 agent_command (exp, from_tty)
1899 char *exp;
1900 int from_tty;
1901 {
1902 struct cleanup *old_chain = 0;
1903 struct expression *expr;
1904 struct agent_expr *agent;
1905 struct agent_reqs reqs;
1906 struct frame_info *fi = get_current_frame (); /* need current scope */
1907
1908 /* We don't deal with overlay debugging at the moment. We need to
1909 think more carefully about this. If you copy this code into
1910 another command, change the error message; the user shouldn't
1911 have to know anything about agent expressions. */
1912 if (overlay_debugging)
1913 error ("GDB can't do agent expression translation with overlays.");
1914
1915 if (exp == 0)
1916 error_no_arg ("expression to translate");
1917
1918 expr = parse_expression (exp);
1919 old_chain = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
1920 agent = gen_trace_for_expr (fi->pc, expr);
1921 make_cleanup ((make_cleanup_func) free_agent_expr, agent);
1922 ax_print (gdb_stdout, agent);
1923 ax_reqs (agent, &reqs);
1924
1925 do_cleanups (old_chain);
1926 dont_repeat ();
1927 }
1928
1929 \f
1930 /* Initialization code. */
1931
1932 _initialize_ax_gdb ()
1933 {
1934 struct cmd_list_element *c;
1935
1936 add_cmd ("agent", class_maintenance, agent_command,
1937 "Translate an expression into remote agent bytecode.",
1938 &maintenancelist);
1939 }