]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/block.c
8d45b6ed97c178bea5120ca29e1ecd93b0bbb347
[thirdparty/binutils-gdb.git] / gdb / block.c
1 /* Block-related functions for the GNU debugger, GDB.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "block.h"
22 #include "symtab.h"
23 #include "symfile.h"
24 #include "gdb_obstack.h"
25 #include "cp-support.h"
26 #include "addrmap.h"
27 #include "gdbtypes.h"
28 #include "objfiles.h"
29
30 /* This is used by struct block to store namespace-related info for
31 C++ files, namely using declarations and the current namespace in
32 scope. */
33
34 struct block_namespace_info
35 {
36 const char *scope;
37 struct using_direct *using;
38 };
39
40 static void block_initialize_namespace (struct block *block,
41 struct obstack *obstack);
42
43 /* See block.h. */
44
45 struct objfile *
46 block_objfile (const struct block *block)
47 {
48 const struct global_block *global_block;
49
50 if (BLOCK_FUNCTION (block) != NULL)
51 return symbol_objfile (BLOCK_FUNCTION (block));
52
53 global_block = (struct global_block *) block_global_block (block);
54 return COMPUNIT_OBJFILE (global_block->compunit_symtab);
55 }
56
57 /* See block. */
58
59 struct gdbarch *
60 block_gdbarch (const struct block *block)
61 {
62 if (BLOCK_FUNCTION (block) != NULL)
63 return symbol_arch (BLOCK_FUNCTION (block));
64
65 return get_objfile_arch (block_objfile (block));
66 }
67
68 /* Return Nonzero if block a is lexically nested within block b,
69 or if a and b have the same pc range.
70 Return zero otherwise. */
71
72 int
73 contained_in (const struct block *a, const struct block *b)
74 {
75 if (!a || !b)
76 return 0;
77
78 do
79 {
80 if (a == b)
81 return 1;
82 /* If A is a function block, then A cannot be contained in B,
83 except if A was inlined. */
84 if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
85 return 0;
86 a = BLOCK_SUPERBLOCK (a);
87 }
88 while (a != NULL);
89
90 return 0;
91 }
92
93
94 /* Return the symbol for the function which contains a specified
95 lexical block, described by a struct block BL. The return value
96 will not be an inlined function; the containing function will be
97 returned instead. */
98
99 struct symbol *
100 block_linkage_function (const struct block *bl)
101 {
102 while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
103 && BLOCK_SUPERBLOCK (bl) != NULL)
104 bl = BLOCK_SUPERBLOCK (bl);
105
106 return BLOCK_FUNCTION (bl);
107 }
108
109 /* Return the symbol for the function which contains a specified
110 block, described by a struct block BL. The return value will be
111 the closest enclosing function, which might be an inline
112 function. */
113
114 struct symbol *
115 block_containing_function (const struct block *bl)
116 {
117 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
118 bl = BLOCK_SUPERBLOCK (bl);
119
120 return BLOCK_FUNCTION (bl);
121 }
122
123 /* Return one if BL represents an inlined function. */
124
125 int
126 block_inlined_p (const struct block *bl)
127 {
128 return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
129 }
130
131 /* A helper function that checks whether PC is in the blockvector BL.
132 It returns the containing block if there is one, or else NULL. */
133
134 static struct block *
135 find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
136 {
137 struct block *b;
138 int bot, top, half;
139
140 /* If we have an addrmap mapping code addresses to blocks, then use
141 that. */
142 if (BLOCKVECTOR_MAP (bl))
143 return addrmap_find (BLOCKVECTOR_MAP (bl), pc);
144
145 /* Otherwise, use binary search to find the last block that starts
146 before PC.
147 Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
148 They both have the same START,END values.
149 Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
150 fact that this choice was made was subtle, now we make it explicit. */
151 gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
152 bot = STATIC_BLOCK;
153 top = BLOCKVECTOR_NBLOCKS (bl);
154
155 while (top - bot > 1)
156 {
157 half = (top - bot + 1) >> 1;
158 b = BLOCKVECTOR_BLOCK (bl, bot + half);
159 if (BLOCK_START (b) <= pc)
160 bot += half;
161 else
162 top = bot + half;
163 }
164
165 /* Now search backward for a block that ends after PC. */
166
167 while (bot >= STATIC_BLOCK)
168 {
169 b = BLOCKVECTOR_BLOCK (bl, bot);
170 if (BLOCK_END (b) > pc)
171 return b;
172 bot--;
173 }
174
175 return NULL;
176 }
177
178 /* Return the blockvector immediately containing the innermost lexical
179 block containing the specified pc value and section, or 0 if there
180 is none. PBLOCK is a pointer to the block. If PBLOCK is NULL, we
181 don't pass this information back to the caller. */
182
183 const struct blockvector *
184 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
185 const struct block **pblock,
186 struct compunit_symtab *cust)
187 {
188 const struct blockvector *bl;
189 struct block *b;
190
191 if (cust == NULL)
192 {
193 /* First search all symtabs for one whose file contains our pc */
194 cust = find_pc_sect_compunit_symtab (pc, section);
195 if (cust == NULL)
196 return 0;
197 }
198
199 bl = COMPUNIT_BLOCKVECTOR (cust);
200
201 /* Then search that symtab for the smallest block that wins. */
202 b = find_block_in_blockvector (bl, pc);
203 if (b == NULL)
204 return NULL;
205
206 if (pblock)
207 *pblock = b;
208 return bl;
209 }
210
211 /* Return true if the blockvector BV contains PC, false otherwise. */
212
213 int
214 blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
215 {
216 return find_block_in_blockvector (bv, pc) != NULL;
217 }
218
219 /* Return call_site for specified PC in GDBARCH. PC must match exactly, it
220 must be the next instruction after call (or after tail call jump). Throw
221 NO_ENTRY_VALUE_ERROR otherwise. This function never returns NULL. */
222
223 struct call_site *
224 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
225 {
226 struct compunit_symtab *cust;
227 void **slot = NULL;
228
229 /* -1 as tail call PC can be already after the compilation unit range. */
230 cust = find_pc_compunit_symtab (pc - 1);
231
232 if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
233 slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);
234
235 if (slot == NULL)
236 {
237 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
238
239 /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
240 the call target. */
241 throw_error (NO_ENTRY_VALUE_ERROR,
242 _("DW_OP_GNU_entry_value resolving cannot find "
243 "DW_TAG_GNU_call_site %s in %s"),
244 paddress (gdbarch, pc),
245 (msym.minsym == NULL ? "???"
246 : MSYMBOL_PRINT_NAME (msym.minsym)));
247 }
248
249 return *slot;
250 }
251
252 /* Return the blockvector immediately containing the innermost lexical block
253 containing the specified pc value, or 0 if there is none.
254 Backward compatibility, no section. */
255
256 const struct blockvector *
257 blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
258 {
259 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
260 pblock, NULL);
261 }
262
263 /* Return the innermost lexical block containing the specified pc value
264 in the specified section, or 0 if there is none. */
265
266 const struct block *
267 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
268 {
269 const struct blockvector *bl;
270 const struct block *b;
271
272 bl = blockvector_for_pc_sect (pc, section, &b, NULL);
273 if (bl)
274 return b;
275 return 0;
276 }
277
278 /* Return the innermost lexical block containing the specified pc value,
279 or 0 if there is none. Backward compatibility, no section. */
280
281 const struct block *
282 block_for_pc (CORE_ADDR pc)
283 {
284 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
285 }
286
287 /* Now come some functions designed to deal with C++ namespace issues.
288 The accessors are safe to use even in the non-C++ case. */
289
290 /* This returns the namespace that BLOCK is enclosed in, or "" if it
291 isn't enclosed in a namespace at all. This travels the chain of
292 superblocks looking for a scope, if necessary. */
293
294 const char *
295 block_scope (const struct block *block)
296 {
297 for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
298 {
299 if (BLOCK_NAMESPACE (block) != NULL
300 && BLOCK_NAMESPACE (block)->scope != NULL)
301 return BLOCK_NAMESPACE (block)->scope;
302 }
303
304 return "";
305 }
306
307 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
308 OBSTACK. (It won't make a copy of SCOPE, however, so that already
309 has to be allocated correctly.) */
310
311 void
312 block_set_scope (struct block *block, const char *scope,
313 struct obstack *obstack)
314 {
315 block_initialize_namespace (block, obstack);
316
317 BLOCK_NAMESPACE (block)->scope = scope;
318 }
319
320 /* This returns the using directives list associated with BLOCK, if
321 any. */
322
323 struct using_direct *
324 block_using (const struct block *block)
325 {
326 if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
327 return NULL;
328 else
329 return BLOCK_NAMESPACE (block)->using;
330 }
331
332 /* Set BLOCK's using member to USING; if needed, allocate memory via
333 OBSTACK. (It won't make a copy of USING, however, so that already
334 has to be allocated correctly.) */
335
336 void
337 block_set_using (struct block *block,
338 struct using_direct *using,
339 struct obstack *obstack)
340 {
341 block_initialize_namespace (block, obstack);
342
343 BLOCK_NAMESPACE (block)->using = using;
344 }
345
346 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
347 ititialize its members to zero. */
348
349 static void
350 block_initialize_namespace (struct block *block, struct obstack *obstack)
351 {
352 if (BLOCK_NAMESPACE (block) == NULL)
353 {
354 BLOCK_NAMESPACE (block)
355 = obstack_alloc (obstack, sizeof (struct block_namespace_info));
356 BLOCK_NAMESPACE (block)->scope = NULL;
357 BLOCK_NAMESPACE (block)->using = NULL;
358 }
359 }
360
361 /* Return the static block associated to BLOCK. Return NULL if block
362 is NULL or if block is a global block. */
363
364 const struct block *
365 block_static_block (const struct block *block)
366 {
367 if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
368 return NULL;
369
370 while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
371 block = BLOCK_SUPERBLOCK (block);
372
373 return block;
374 }
375
376 /* Return the static block associated to BLOCK. Return NULL if block
377 is NULL. */
378
379 const struct block *
380 block_global_block (const struct block *block)
381 {
382 if (block == NULL)
383 return NULL;
384
385 while (BLOCK_SUPERBLOCK (block) != NULL)
386 block = BLOCK_SUPERBLOCK (block);
387
388 return block;
389 }
390
391 /* Allocate a block on OBSTACK, and initialize its elements to
392 zero/NULL. This is useful for creating "dummy" blocks that don't
393 correspond to actual source files.
394
395 Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
396 valid value. If you really don't want the block to have a
397 dictionary, then you should subsequently set its BLOCK_DICT to
398 dict_create_linear (obstack, NULL). */
399
400 struct block *
401 allocate_block (struct obstack *obstack)
402 {
403 struct block *bl = OBSTACK_ZALLOC (obstack, struct block);
404
405 return bl;
406 }
407
408 /* Allocate a global block. */
409
410 struct block *
411 allocate_global_block (struct obstack *obstack)
412 {
413 struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
414
415 return &bl->block;
416 }
417
418 /* Set the compunit of the global block. */
419
420 void
421 set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
422 {
423 struct global_block *gb;
424
425 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
426 gb = (struct global_block *) block;
427 gdb_assert (gb->compunit_symtab == NULL);
428 gb->compunit_symtab = cu;
429 }
430
431 /* Return the compunit of the global block. */
432
433 static struct compunit_symtab *
434 get_block_compunit_symtab (const struct block *block)
435 {
436 struct global_block *gb;
437
438 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
439 gb = (struct global_block *) block;
440 gdb_assert (gb->compunit_symtab != NULL);
441 return gb->compunit_symtab;
442 }
443
444 \f
445
446 /* Initialize a block iterator, either to iterate over a single block,
447 or, for static and global blocks, all the included symtabs as
448 well. */
449
450 static void
451 initialize_block_iterator (const struct block *block,
452 struct block_iterator *iter)
453 {
454 enum block_enum which;
455 struct compunit_symtab *cu;
456
457 iter->idx = -1;
458
459 if (BLOCK_SUPERBLOCK (block) == NULL)
460 {
461 which = GLOBAL_BLOCK;
462 cu = get_block_compunit_symtab (block);
463 }
464 else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
465 {
466 which = STATIC_BLOCK;
467 cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
468 }
469 else
470 {
471 iter->d.block = block;
472 /* A signal value meaning that we're iterating over a single
473 block. */
474 iter->which = FIRST_LOCAL_BLOCK;
475 return;
476 }
477
478 /* If this is an included symtab, find the canonical includer and
479 use it instead. */
480 while (cu->user != NULL)
481 cu = cu->user;
482
483 /* Putting this check here simplifies the logic of the iterator
484 functions. If there are no included symtabs, we only need to
485 search a single block, so we might as well just do that
486 directly. */
487 if (cu->includes == NULL)
488 {
489 iter->d.block = block;
490 /* A signal value meaning that we're iterating over a single
491 block. */
492 iter->which = FIRST_LOCAL_BLOCK;
493 }
494 else
495 {
496 iter->d.compunit_symtab = cu;
497 iter->which = which;
498 }
499 }
500
501 /* A helper function that finds the current compunit over whose static
502 or global block we should iterate. */
503
504 static struct compunit_symtab *
505 find_iterator_compunit_symtab (struct block_iterator *iterator)
506 {
507 if (iterator->idx == -1)
508 return iterator->d.compunit_symtab;
509 return iterator->d.compunit_symtab->includes[iterator->idx];
510 }
511
512 /* Perform a single step for a plain block iterator, iterating across
513 symbol tables as needed. Returns the next symbol, or NULL when
514 iteration is complete. */
515
516 static struct symbol *
517 block_iterator_step (struct block_iterator *iterator, int first)
518 {
519 struct symbol *sym;
520
521 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
522
523 while (1)
524 {
525 if (first)
526 {
527 struct compunit_symtab *cust
528 = find_iterator_compunit_symtab (iterator);
529 const struct block *block;
530
531 /* Iteration is complete. */
532 if (cust == NULL)
533 return NULL;
534
535 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
536 iterator->which);
537 sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
538 }
539 else
540 sym = dict_iterator_next (&iterator->dict_iter);
541
542 if (sym != NULL)
543 return sym;
544
545 /* We have finished iterating the appropriate block of one
546 symtab. Now advance to the next symtab and begin iteration
547 there. */
548 ++iterator->idx;
549 first = 1;
550 }
551 }
552
553 /* See block.h. */
554
555 struct symbol *
556 block_iterator_first (const struct block *block,
557 struct block_iterator *iterator)
558 {
559 initialize_block_iterator (block, iterator);
560
561 if (iterator->which == FIRST_LOCAL_BLOCK)
562 return dict_iterator_first (block->dict, &iterator->dict_iter);
563
564 return block_iterator_step (iterator, 1);
565 }
566
567 /* See block.h. */
568
569 struct symbol *
570 block_iterator_next (struct block_iterator *iterator)
571 {
572 if (iterator->which == FIRST_LOCAL_BLOCK)
573 return dict_iterator_next (&iterator->dict_iter);
574
575 return block_iterator_step (iterator, 0);
576 }
577
578 /* Perform a single step for a "name" block iterator, iterating across
579 symbol tables as needed. Returns the next symbol, or NULL when
580 iteration is complete. */
581
582 static struct symbol *
583 block_iter_name_step (struct block_iterator *iterator, const char *name,
584 int first)
585 {
586 struct symbol *sym;
587
588 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
589
590 while (1)
591 {
592 if (first)
593 {
594 struct compunit_symtab *cust
595 = find_iterator_compunit_symtab (iterator);
596 const struct block *block;
597
598 /* Iteration is complete. */
599 if (cust == NULL)
600 return NULL;
601
602 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
603 iterator->which);
604 sym = dict_iter_name_first (BLOCK_DICT (block), name,
605 &iterator->dict_iter);
606 }
607 else
608 sym = dict_iter_name_next (name, &iterator->dict_iter);
609
610 if (sym != NULL)
611 return sym;
612
613 /* We have finished iterating the appropriate block of one
614 symtab. Now advance to the next symtab and begin iteration
615 there. */
616 ++iterator->idx;
617 first = 1;
618 }
619 }
620
621 /* See block.h. */
622
623 struct symbol *
624 block_iter_name_first (const struct block *block,
625 const char *name,
626 struct block_iterator *iterator)
627 {
628 initialize_block_iterator (block, iterator);
629
630 if (iterator->which == FIRST_LOCAL_BLOCK)
631 return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
632
633 return block_iter_name_step (iterator, name, 1);
634 }
635
636 /* See block.h. */
637
638 struct symbol *
639 block_iter_name_next (const char *name, struct block_iterator *iterator)
640 {
641 if (iterator->which == FIRST_LOCAL_BLOCK)
642 return dict_iter_name_next (name, &iterator->dict_iter);
643
644 return block_iter_name_step (iterator, name, 0);
645 }
646
647 /* Perform a single step for a "match" block iterator, iterating
648 across symbol tables as needed. Returns the next symbol, or NULL
649 when iteration is complete. */
650
651 static struct symbol *
652 block_iter_match_step (struct block_iterator *iterator,
653 const char *name,
654 symbol_compare_ftype *compare,
655 int first)
656 {
657 struct symbol *sym;
658
659 gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
660
661 while (1)
662 {
663 if (first)
664 {
665 struct compunit_symtab *cust
666 = find_iterator_compunit_symtab (iterator);
667 const struct block *block;
668
669 /* Iteration is complete. */
670 if (cust == NULL)
671 return NULL;
672
673 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
674 iterator->which);
675 sym = dict_iter_match_first (BLOCK_DICT (block), name,
676 compare, &iterator->dict_iter);
677 }
678 else
679 sym = dict_iter_match_next (name, compare, &iterator->dict_iter);
680
681 if (sym != NULL)
682 return sym;
683
684 /* We have finished iterating the appropriate block of one
685 symtab. Now advance to the next symtab and begin iteration
686 there. */
687 ++iterator->idx;
688 first = 1;
689 }
690 }
691
692 /* See block.h. */
693
694 struct symbol *
695 block_iter_match_first (const struct block *block,
696 const char *name,
697 symbol_compare_ftype *compare,
698 struct block_iterator *iterator)
699 {
700 initialize_block_iterator (block, iterator);
701
702 if (iterator->which == FIRST_LOCAL_BLOCK)
703 return dict_iter_match_first (block->dict, name, compare,
704 &iterator->dict_iter);
705
706 return block_iter_match_step (iterator, name, compare, 1);
707 }
708
709 /* See block.h. */
710
711 struct symbol *
712 block_iter_match_next (const char *name,
713 symbol_compare_ftype *compare,
714 struct block_iterator *iterator)
715 {
716 if (iterator->which == FIRST_LOCAL_BLOCK)
717 return dict_iter_match_next (name, compare, &iterator->dict_iter);
718
719 return block_iter_match_step (iterator, name, compare, 0);
720 }
721
722 /* See block.h.
723
724 Note that if NAME is the demangled form of a C++ symbol, we will fail
725 to find a match during the binary search of the non-encoded names, but
726 for now we don't worry about the slight inefficiency of looking for
727 a match we'll never find, since it will go pretty quick. Once the
728 binary search terminates, we drop through and do a straight linear
729 search on the symbols. Each symbol which is marked as being a ObjC/C++
730 symbol (language_cplus or language_objc set) has both the encoded and
731 non-encoded names tested for a match. */
732
733 struct symbol *
734 block_lookup_symbol (const struct block *block, const char *name,
735 const domain_enum domain)
736 {
737 struct block_iterator iter;
738 struct symbol *sym;
739
740 if (!BLOCK_FUNCTION (block))
741 {
742 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
743 {
744 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
745 SYMBOL_DOMAIN (sym), domain))
746 return sym;
747 }
748 return NULL;
749 }
750 else
751 {
752 /* Note that parameter symbols do not always show up last in the
753 list; this loop makes sure to take anything else other than
754 parameter symbols first; it only uses parameter symbols as a
755 last resort. Note that this only takes up extra computation
756 time on a match. */
757
758 struct symbol *sym_found = NULL;
759
760 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
761 {
762 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
763 SYMBOL_DOMAIN (sym), domain))
764 {
765 sym_found = sym;
766 if (!SYMBOL_IS_ARGUMENT (sym))
767 {
768 break;
769 }
770 }
771 }
772 return (sym_found); /* Will be NULL if not found. */
773 }
774 }
775
776 /* See block.h. */
777
778 struct symbol *
779 block_lookup_symbol_primary (const struct block *block, const char *name,
780 const domain_enum domain)
781 {
782 struct symbol *sym;
783 struct dict_iterator dict_iter;
784
785 /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK. */
786 gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
787 || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);
788
789 for (sym = dict_iter_name_first (block->dict, name, &dict_iter);
790 sym != NULL;
791 sym = dict_iter_name_next (name, &dict_iter))
792 {
793 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
794 SYMBOL_DOMAIN (sym), domain))
795 return sym;
796 }
797
798 return NULL;
799 }