]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/buildsym.c
04e2cbdec8e6021bf915c34f8f5b97aaf621c38d
[thirdparty/binutils-gdb.git] / gdb / buildsym.c
1 /* Support routines for building symbol tables in GDB's internal format.
2 Copyright (C) 1986-2023 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "buildsym-legacy.h"
21 #include "bfd.h"
22 #include "gdbsupport/gdb_obstack.h"
23 #include "gdbsupport/pathstuff.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "complaints.h"
29 #include "expression.h"
30 #include "filenames.h"
31 #include "macrotab.h"
32 #include "demangle.h"
33 #include "block.h"
34 #include "cp-support.h"
35 #include "dictionary.h"
36 #include <algorithm>
37
38 /* For cleanup_undefined_stabs_types and finish_global_stabs (somewhat
39 questionable--see comment where we call them). */
40
41 #include "stabsread.h"
42
43 /* List of blocks already made (lexical contexts already closed).
44 This is used at the end to make the blockvector. */
45
46 struct pending_block
47 {
48 struct pending_block *next;
49 struct block *block;
50 };
51
52 buildsym_compunit::buildsym_compunit (struct objfile *objfile_,
53 const char *name,
54 const char *comp_dir_,
55 const char *name_for_id,
56 enum language language_,
57 CORE_ADDR last_addr)
58 : m_objfile (objfile_),
59 m_last_source_file (name == nullptr ? nullptr : xstrdup (name)),
60 m_comp_dir (comp_dir_ == nullptr ? "" : comp_dir_),
61 m_language (language_),
62 m_last_source_start_addr (last_addr)
63 {
64 /* Allocate the compunit symtab now. The caller needs it to allocate
65 non-primary symtabs. It is also needed by get_macro_table. */
66 m_compunit_symtab = allocate_compunit_symtab (m_objfile, name);
67
68 /* Build the subfile for NAME (the main source file) so that we can record
69 a pointer to it for later.
70 IMPORTANT: Do not allocate a struct symtab for NAME here.
71 It can happen that the debug info provides a different path to NAME than
72 DIRNAME,NAME. We cope with this in watch_main_source_file_lossage but
73 that only works if the main_subfile doesn't have a symtab yet. */
74 start_subfile (name, name_for_id);
75 /* Save this so that we don't have to go looking for it at the end
76 of the subfiles list. */
77 m_main_subfile = m_current_subfile;
78 }
79
80 buildsym_compunit::~buildsym_compunit ()
81 {
82 struct subfile *subfile, *nextsub;
83
84 if (m_pending_macros != nullptr)
85 free_macro_table (m_pending_macros);
86
87 for (subfile = m_subfiles;
88 subfile != NULL;
89 subfile = nextsub)
90 {
91 nextsub = subfile->next;
92 delete subfile;
93 }
94
95 struct pending *next, *next1;
96
97 for (next = m_file_symbols; next != NULL; next = next1)
98 {
99 next1 = next->next;
100 xfree ((void *) next);
101 }
102
103 for (next = m_global_symbols; next != NULL; next = next1)
104 {
105 next1 = next->next;
106 xfree ((void *) next);
107 }
108 }
109
110 struct macro_table *
111 buildsym_compunit::get_macro_table ()
112 {
113 if (m_pending_macros == nullptr)
114 m_pending_macros = new_macro_table (&m_objfile->per_bfd->storage_obstack,
115 &m_objfile->per_bfd->string_cache,
116 m_compunit_symtab);
117 return m_pending_macros;
118 }
119
120 /* Maintain the lists of symbols and blocks. */
121
122 /* Add a symbol to one of the lists of symbols. */
123
124 void
125 add_symbol_to_list (struct symbol *symbol, struct pending **listhead)
126 {
127 struct pending *link;
128
129 /* If this is an alias for another symbol, don't add it. */
130 if (symbol->linkage_name () && symbol->linkage_name ()[0] == '#')
131 return;
132
133 /* We keep PENDINGSIZE symbols in each link of the list. If we
134 don't have a link with room in it, add a new link. */
135 if (*listhead == NULL || (*listhead)->nsyms == PENDINGSIZE)
136 {
137 link = XNEW (struct pending);
138 link->next = *listhead;
139 *listhead = link;
140 link->nsyms = 0;
141 }
142
143 (*listhead)->symbol[(*listhead)->nsyms++] = symbol;
144 }
145
146 /* Find a symbol named NAME on a LIST. NAME need not be
147 '\0'-terminated; LENGTH is the length of the name. */
148
149 struct symbol *
150 find_symbol_in_list (struct pending *list, char *name, int length)
151 {
152 int j;
153 const char *pp;
154
155 while (list != NULL)
156 {
157 for (j = list->nsyms; --j >= 0;)
158 {
159 pp = list->symbol[j]->linkage_name ();
160 if (*pp == *name && strncmp (pp, name, length) == 0
161 && pp[length] == '\0')
162 {
163 return (list->symbol[j]);
164 }
165 }
166 list = list->next;
167 }
168 return (NULL);
169 }
170
171 /* Record BLOCK on the list of all blocks in the file. Put it after
172 OPBLOCK, or at the beginning if opblock is NULL. This puts the
173 block in the list after all its subblocks. */
174
175 void
176 buildsym_compunit::record_pending_block (struct block *block,
177 struct pending_block *opblock)
178 {
179 struct pending_block *pblock;
180
181 pblock = XOBNEW (&m_pending_block_obstack, struct pending_block);
182 pblock->block = block;
183 if (opblock)
184 {
185 pblock->next = opblock->next;
186 opblock->next = pblock;
187 }
188 else
189 {
190 pblock->next = m_pending_blocks;
191 m_pending_blocks = pblock;
192 }
193 }
194
195 /* Take one of the lists of symbols and make a block from it. Keep
196 the order the symbols have in the list (reversed from the input
197 file). Put the block on the list of pending blocks. */
198
199 struct block *
200 buildsym_compunit::finish_block_internal
201 (struct symbol *symbol,
202 struct pending **listhead,
203 struct pending_block *old_blocks,
204 const struct dynamic_prop *static_link,
205 CORE_ADDR start, CORE_ADDR end,
206 int is_global, int expandable)
207 {
208 struct gdbarch *gdbarch = m_objfile->arch ();
209 struct pending *next, *next1;
210 struct block *block;
211 struct pending_block *pblock;
212 struct pending_block *opblock;
213
214 if (is_global)
215 block = new (&m_objfile->objfile_obstack) global_block;
216 else
217 block = new (&m_objfile->objfile_obstack) struct block;
218
219 if (symbol)
220 {
221 block->set_multidict
222 (mdict_create_linear (&m_objfile->objfile_obstack, *listhead));
223 }
224 else
225 {
226 if (expandable)
227 {
228 block->set_multidict
229 (mdict_create_hashed_expandable (m_language));
230 mdict_add_pending (block->multidict (), *listhead);
231 }
232 else
233 {
234 block->set_multidict
235 (mdict_create_hashed (&m_objfile->objfile_obstack, *listhead));
236 }
237 }
238
239 block->set_start (start);
240 block->set_end (end);
241
242 /* Put the block in as the value of the symbol that names it. */
243
244 if (symbol)
245 {
246 struct type *ftype = symbol->type ();
247 symbol->set_value_block (block);
248 symbol->set_section_index (SECT_OFF_TEXT (m_objfile));
249 block->set_function (symbol);
250
251 if (ftype->num_fields () <= 0)
252 {
253 /* No parameter type information is recorded with the
254 function's type. Set that from the type of the
255 parameter symbols. */
256 int nparams = 0, iparams;
257
258 /* Here we want to directly access the dictionary, because
259 we haven't fully initialized the block yet. */
260 for (struct symbol *sym : block->multidict_symbols ())
261 {
262 if (sym->is_argument ())
263 nparams++;
264 }
265 if (nparams > 0)
266 {
267 ftype->alloc_fields (nparams);
268
269 iparams = 0;
270 /* Here we want to directly access the dictionary, because
271 we haven't fully initialized the block yet. */
272 for (struct symbol *sym : block->multidict_symbols ())
273 {
274 if (iparams == nparams)
275 break;
276
277 if (sym->is_argument ())
278 {
279 ftype->field (iparams).set_type (sym->type ());
280 ftype->field (iparams).set_is_artificial (false);
281 iparams++;
282 }
283 }
284 }
285 }
286 }
287 else
288 block->set_function (nullptr);
289
290 if (static_link != NULL)
291 objfile_register_static_link (m_objfile, block, static_link);
292
293 /* Now free the links of the list, and empty the list. */
294
295 for (next = *listhead; next; next = next1)
296 {
297 next1 = next->next;
298 xfree (next);
299 }
300 *listhead = NULL;
301
302 /* Check to be sure that the blocks have an end address that is
303 greater than starting address. */
304
305 if (block->end () < block->start ())
306 {
307 if (symbol)
308 {
309 complaint (_("block end address less than block "
310 "start address in %s (patched it)"),
311 symbol->print_name ());
312 }
313 else
314 {
315 complaint (_("block end address %s less than block "
316 "start address %s (patched it)"),
317 paddress (gdbarch, block->end ()),
318 paddress (gdbarch, block->start ()));
319 }
320 /* Better than nothing. */
321 block->set_end (block->start ());
322 }
323
324 /* Install this block as the superblock of all blocks made since the
325 start of this scope that don't have superblocks yet. */
326
327 opblock = NULL;
328 for (pblock = m_pending_blocks;
329 pblock && pblock != old_blocks;
330 pblock = pblock->next)
331 {
332 if (pblock->block->superblock () == NULL)
333 {
334 /* Check to be sure the blocks are nested as we receive
335 them. If the compiler/assembler/linker work, this just
336 burns a small amount of time.
337
338 Skip blocks which correspond to a function; they're not
339 physically nested inside this other blocks, only
340 lexically nested. */
341 if (pblock->block->function () == NULL
342 && (pblock->block->start () < block->start ()
343 || pblock->block->end () > block->end ()))
344 {
345 if (symbol)
346 {
347 complaint (_("inner block not inside outer block in %s"),
348 symbol->print_name ());
349 }
350 else
351 {
352 complaint (_("inner block (%s-%s) not "
353 "inside outer block (%s-%s)"),
354 paddress (gdbarch, pblock->block->start ()),
355 paddress (gdbarch, pblock->block->end ()),
356 paddress (gdbarch, block->start ()),
357 paddress (gdbarch, block->end ()));
358 }
359
360 if (pblock->block->start () < block->start ())
361 pblock->block->set_start (block->start ());
362
363 if (pblock->block->end () > block->end ())
364 pblock->block->set_end (block->end ());
365 }
366 pblock->block->set_superblock (block);
367 }
368 opblock = pblock;
369 }
370
371 block->set_using ((is_global
372 ? m_global_using_directives
373 : m_local_using_directives),
374 &m_objfile->objfile_obstack);
375 if (is_global)
376 m_global_using_directives = NULL;
377 else
378 m_local_using_directives = NULL;
379
380 record_pending_block (block, opblock);
381
382 return block;
383 }
384
385 struct block *
386 buildsym_compunit::finish_block (struct symbol *symbol,
387 struct pending_block *old_blocks,
388 const struct dynamic_prop *static_link,
389 CORE_ADDR start, CORE_ADDR end)
390 {
391 return finish_block_internal (symbol, &m_local_symbols,
392 old_blocks, static_link, start, end, 0, 0);
393 }
394
395 /* Record that the range of addresses from START to END_INCLUSIVE
396 (inclusive, like it says) belongs to BLOCK. BLOCK's start and end
397 addresses must be set already. You must apply this function to all
398 BLOCK's children before applying it to BLOCK.
399
400 If a call to this function complicates the picture beyond that
401 already provided by BLOCK_START and BLOCK_END, then we create an
402 address map for the block. */
403 void
404 buildsym_compunit::record_block_range (struct block *block,
405 CORE_ADDR start,
406 CORE_ADDR end_inclusive)
407 {
408 /* If this is any different from the range recorded in the block's
409 own BLOCK_START and BLOCK_END, then note that the address map has
410 become interesting. Note that even if this block doesn't have
411 any "interesting" ranges, some later block might, so we still
412 need to record this block in the addrmap. */
413 if (start != block->start ()
414 || end_inclusive + 1 != block->end ())
415 m_pending_addrmap_interesting = true;
416
417 m_pending_addrmap.set_empty (start, end_inclusive, block);
418 }
419
420 struct blockvector *
421 buildsym_compunit::make_blockvector ()
422 {
423 struct pending_block *next;
424 struct blockvector *blockvector;
425 int i;
426
427 /* Count the length of the list of blocks. */
428
429 for (next = m_pending_blocks, i = 0; next; next = next->next, i++)
430 {
431 }
432
433 blockvector = (struct blockvector *)
434 obstack_alloc (&m_objfile->objfile_obstack,
435 (sizeof (struct blockvector)
436 + (i - 1) * sizeof (struct block *)));
437
438 /* Copy the blocks into the blockvector. This is done in reverse
439 order, which happens to put the blocks into the proper order
440 (ascending starting address). finish_block has hair to insert
441 each block into the list after its subblocks in order to make
442 sure this is true. */
443
444 blockvector->set_num_blocks (i);
445 for (next = m_pending_blocks; next; next = next->next)
446 blockvector->set_block (--i, next->block);
447
448 free_pending_blocks ();
449
450 /* If we needed an address map for this symtab, record it in the
451 blockvector. */
452 if (m_pending_addrmap_interesting)
453 blockvector->set_map
454 (new (&m_objfile->objfile_obstack) addrmap_fixed
455 (&m_objfile->objfile_obstack, &m_pending_addrmap));
456 else
457 blockvector->set_map (nullptr);
458
459 /* Some compilers output blocks in the wrong order, but we depend on
460 their being in the right order so we can binary search. Check the
461 order and moan about it.
462 Note: Remember that the first two blocks are the global and static
463 blocks. We could special case that fact and begin checking at block 2.
464 To avoid making that assumption we do not. */
465 if (blockvector->num_blocks () > 1)
466 {
467 for (i = 1; i < blockvector->num_blocks (); i++)
468 {
469 if (blockvector->block (i - 1)->start ()
470 > blockvector->block (i)->start ())
471 {
472 CORE_ADDR start
473 = blockvector->block (i)->start ();
474
475 complaint (_("block at %s out of order"),
476 hex_string ((LONGEST) start));
477 }
478 }
479 }
480
481 return (blockvector);
482 }
483
484 /* See buildsym.h. */
485
486 void
487 buildsym_compunit::start_subfile (const char *name, const char *name_for_id)
488 {
489 /* See if this subfile is already registered. */
490
491 symtab_create_debug_printf ("name = %s, name_for_id = %s", name, name_for_id);
492
493 for (subfile *subfile = m_subfiles; subfile; subfile = subfile->next)
494 if (FILENAME_CMP (subfile->name_for_id.c_str (), name_for_id) == 0)
495 {
496 symtab_create_debug_printf ("found existing symtab with name_for_id %s",
497 subfile->name_for_id.c_str ());
498 m_current_subfile = subfile;
499 return;
500 }
501
502 /* This subfile is not known. Add an entry for it. */
503
504 subfile_up subfile (new struct subfile);
505 subfile->name = name;
506 subfile->name_for_id = name_for_id;
507
508 m_current_subfile = subfile.get ();
509
510 /* Default the source language to whatever can be deduced from the
511 filename. If nothing can be deduced (such as for a C/C++ include
512 file with a ".h" extension), then inherit whatever language the
513 previous subfile had. This kludgery is necessary because there
514 is no standard way in some object formats to record the source
515 language. Also, when symtabs are allocated we try to deduce a
516 language then as well, but it is too late for us to use that
517 information while reading symbols, since symtabs aren't allocated
518 until after all the symbols have been processed for a given
519 source file. */
520
521 subfile->language = deduce_language_from_filename (subfile->name.c_str ());
522 if (subfile->language == language_unknown && m_subfiles != nullptr)
523 subfile->language = m_subfiles->language;
524
525 /* If the filename of this subfile ends in .C, then change the
526 language of any pending subfiles from C to C++. We also accept
527 any other C++ suffixes accepted by deduce_language_from_filename. */
528 /* Likewise for f2c. */
529
530 if (!subfile->name.empty ())
531 {
532 struct subfile *s;
533 language sublang = deduce_language_from_filename (subfile->name.c_str ());
534
535 if (sublang == language_cplus || sublang == language_fortran)
536 for (s = m_subfiles; s != NULL; s = s->next)
537 if (s->language == language_c)
538 s->language = sublang;
539 }
540
541 /* And patch up this file if necessary. */
542 if (subfile->language == language_c
543 && m_subfiles != nullptr
544 && (m_subfiles->language == language_cplus
545 || m_subfiles->language == language_fortran))
546 subfile->language = m_subfiles->language;
547
548 /* Link this subfile at the front of the subfile list. */
549 subfile->next = m_subfiles;
550 m_subfiles = subfile.release ();
551 }
552
553 /* For stabs readers, the first N_SO symbol is assumed to be the
554 source file name, and the subfile struct is initialized using that
555 assumption. If another N_SO symbol is later seen, immediately
556 following the first one, then the first one is assumed to be the
557 directory name and the second one is really the source file name.
558
559 So we have to patch up the subfile struct by moving the old name
560 value to dirname and remembering the new name. Some sanity
561 checking is performed to ensure that the state of the subfile
562 struct is reasonable and that the old name we are assuming to be a
563 directory name actually is (by checking for a trailing '/'). */
564
565 void
566 buildsym_compunit::patch_subfile_names (struct subfile *subfile,
567 const char *name)
568 {
569 if (subfile != NULL
570 && m_comp_dir.empty ()
571 && !subfile->name.empty ()
572 && IS_DIR_SEPARATOR (subfile->name.back ()))
573 {
574 m_comp_dir = std::move (subfile->name);
575 subfile->name = name;
576 subfile->name_for_id = name;
577 set_last_source_file (name);
578
579 /* Default the source language to whatever can be deduced from
580 the filename. If nothing can be deduced (such as for a C/C++
581 include file with a ".h" extension), then inherit whatever
582 language the previous subfile had. This kludgery is
583 necessary because there is no standard way in some object
584 formats to record the source language. Also, when symtabs
585 are allocated we try to deduce a language then as well, but
586 it is too late for us to use that information while reading
587 symbols, since symtabs aren't allocated until after all the
588 symbols have been processed for a given source file. */
589
590 subfile->language
591 = deduce_language_from_filename (subfile->name.c_str ());
592 if (subfile->language == language_unknown
593 && subfile->next != NULL)
594 {
595 subfile->language = subfile->next->language;
596 }
597 }
598 }
599 \f
600 /* Handle the N_BINCL and N_EINCL symbol types that act like N_SOL for
601 switching source files (different subfiles, as we call them) within
602 one object file, but using a stack rather than in an arbitrary
603 order. */
604
605 void
606 buildsym_compunit::push_subfile ()
607 {
608 gdb_assert (m_current_subfile != NULL);
609 gdb_assert (!m_current_subfile->name.empty ());
610 m_subfile_stack.push_back (m_current_subfile->name.c_str ());
611 }
612
613 const char *
614 buildsym_compunit::pop_subfile ()
615 {
616 gdb_assert (!m_subfile_stack.empty ());
617 const char *name = m_subfile_stack.back ();
618 m_subfile_stack.pop_back ();
619 return name;
620 }
621 \f
622 /* Add a linetable entry for line number LINE and address PC to the
623 line vector for SUBFILE. */
624
625 void
626 buildsym_compunit::record_line (struct subfile *subfile, int line,
627 unrelocated_addr pc, linetable_entry_flags flags)
628 {
629 m_have_line_numbers = true;
630
631 /* Normally, we treat lines as unsorted. But the end of sequence
632 marker is special. We sort line markers at the same PC by line
633 number, so end of sequence markers (which have line == 0) appear
634 first. This is right if the marker ends the previous function,
635 and there is no padding before the next function. But it is
636 wrong if the previous line was empty and we are now marking a
637 switch to a different subfile. We must leave the end of sequence
638 marker at the end of this group of lines, not sort the empty line
639 to after the marker. The easiest way to accomplish this is to
640 delete any empty lines from our table, if they are followed by
641 end of sequence markers. All we lose is the ability to set
642 breakpoints at some lines which contain no instructions
643 anyway. */
644 if (line == 0)
645 {
646 std::optional<int> last_line;
647
648 while (!subfile->line_vector_entries.empty ())
649 {
650 linetable_entry *last = &subfile->line_vector_entries.back ();
651 last_line = last->line;
652
653 if (last->unrelocated_pc () != pc)
654 break;
655
656 subfile->line_vector_entries.pop_back ();
657 }
658
659 /* Ignore an end-of-sequence marker marking an empty sequence. */
660 if (!last_line.has_value () || *last_line == 0)
661 return;
662 }
663
664 subfile->line_vector_entries.emplace_back ();
665 linetable_entry &e = subfile->line_vector_entries.back ();
666 e.line = line;
667 e.is_stmt = (flags & LEF_IS_STMT) != 0;
668 e.set_unrelocated_pc (pc);
669 e.prologue_end = (flags & LEF_PROLOGUE_END) != 0;
670 e.epilogue_begin = (flags & LEF_EPILOGUE_BEGIN) != 0;
671 }
672
673 \f
674 /* Subroutine of end_compunit_symtab to simplify it. Look for a subfile that
675 matches the main source file's basename. If there is only one, and
676 if the main source file doesn't have any symbol or line number
677 information, then copy this file's symtab and line_vector to the
678 main source file's subfile and discard the other subfile. This can
679 happen because of a compiler bug or from the user playing games
680 with #line or from things like a distributed build system that
681 manipulates the debug info. This can also happen from an innocent
682 symlink in the paths, we don't canonicalize paths here. */
683
684 void
685 buildsym_compunit::watch_main_source_file_lossage ()
686 {
687 struct subfile *mainsub, *subfile;
688
689 /* Get the main source file. */
690 mainsub = m_main_subfile;
691
692 /* If the main source file doesn't have any line number or symbol
693 info, look for an alias in another subfile. */
694
695 if (mainsub->line_vector_entries.empty ()
696 && mainsub->symtab == NULL)
697 {
698 const char *mainbase = lbasename (mainsub->name.c_str ());
699 int nr_matches = 0;
700 struct subfile *prevsub;
701 struct subfile *mainsub_alias = NULL;
702 struct subfile *prev_mainsub_alias = NULL;
703
704 prevsub = NULL;
705 for (subfile = m_subfiles;
706 subfile != NULL;
707 subfile = subfile->next)
708 {
709 if (subfile == mainsub)
710 continue;
711 if (filename_cmp (lbasename (subfile->name.c_str ()), mainbase) == 0)
712 {
713 ++nr_matches;
714 mainsub_alias = subfile;
715 prev_mainsub_alias = prevsub;
716 }
717 prevsub = subfile;
718 }
719
720 if (nr_matches == 1)
721 {
722 gdb_assert (mainsub_alias != NULL && mainsub_alias != mainsub);
723
724 /* Found a match for the main source file.
725 Copy its line_vector and symtab to the main subfile
726 and then discard it. */
727
728 symtab_create_debug_printf ("using subfile %s as the main subfile",
729 mainsub_alias->name.c_str ());
730
731 mainsub->line_vector_entries
732 = std::move (mainsub_alias->line_vector_entries);
733 mainsub->symtab = mainsub_alias->symtab;
734
735 if (prev_mainsub_alias == NULL)
736 m_subfiles = mainsub_alias->next;
737 else
738 prev_mainsub_alias->next = mainsub_alias->next;
739
740 delete mainsub_alias;
741 }
742 }
743 }
744
745 /* Implementation of the first part of end_compunit_symtab. It allows modifying
746 STATIC_BLOCK before it gets finalized by
747 end_compunit_symtab_from_static_block. If the returned value is NULL there
748 is no blockvector created for this symtab (you still must call
749 end_compunit_symtab_from_static_block).
750
751 END_ADDR is the same as for end_compunit_symtab: the address of the end of
752 the file's text.
753
754 If EXPANDABLE is non-zero the STATIC_BLOCK dictionary is made
755 expandable.
756
757 If REQUIRED is non-zero, then a symtab is created even if it does
758 not contain any symbols. */
759
760 struct block *
761 buildsym_compunit::end_compunit_symtab_get_static_block (CORE_ADDR end_addr,
762 int expandable,
763 int required)
764 {
765 /* Finish the lexical context of the last function in the file; pop
766 the context stack. */
767
768 if (!m_context_stack.empty ())
769 {
770 struct context_stack cstk = pop_context ();
771
772 /* Make a block for the local symbols within. */
773 finish_block (cstk.name, cstk.old_blocks, NULL,
774 cstk.start_addr, end_addr);
775
776 if (!m_context_stack.empty ())
777 {
778 /* This is said to happen with SCO. The old coffread.c
779 code simply emptied the context stack, so we do the
780 same. FIXME: Find out why it is happening. This is not
781 believed to happen in most cases (even for coffread.c);
782 it used to be an abort(). */
783 complaint (_("Context stack not empty in end_compunit_symtab"));
784 m_context_stack.clear ();
785 }
786 }
787
788 /* Executables may have out of order pending blocks; sort the
789 pending blocks. */
790 if (m_pending_blocks != nullptr)
791 {
792 struct pending_block *pb;
793
794 std::vector<block *> barray;
795
796 for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
797 barray.push_back (pb->block);
798
799 /* Sort blocks by start address in descending order. Blocks with the
800 same start address must remain in the original order to preserve
801 inline function caller/callee relationships. */
802 std::stable_sort (barray.begin (), barray.end (),
803 [] (const block *a, const block *b)
804 {
805 return a->start () > b->start ();
806 });
807
808 int i = 0;
809 for (pb = m_pending_blocks; pb != NULL; pb = pb->next)
810 pb->block = barray[i++];
811 }
812
813 /* Cleanup any undefined types that have been left hanging around
814 (this needs to be done before the finish_blocks so that
815 file_symbols is still good).
816
817 Both cleanup_undefined_stabs_types and finish_global_stabs are stabs
818 specific, but harmless for other symbol readers, since on gdb
819 startup or when finished reading stabs, the state is set so these
820 are no-ops. FIXME: Is this handled right in case of QUIT? Can
821 we make this cleaner? */
822
823 cleanup_undefined_stabs_types (m_objfile);
824 finish_global_stabs (m_objfile);
825
826 if (!required
827 && m_pending_blocks == NULL
828 && m_file_symbols == NULL
829 && m_global_symbols == NULL
830 && !m_have_line_numbers
831 && m_pending_macros == NULL
832 && m_global_using_directives == NULL)
833 {
834 /* Ignore symtabs that have no functions with real debugging info. */
835 return NULL;
836 }
837 else
838 {
839 /* Define the STATIC_BLOCK. */
840 return finish_block_internal (NULL, get_file_symbols (), NULL, NULL,
841 m_last_source_start_addr,
842 end_addr, 0, expandable);
843 }
844 }
845
846 /* Subroutine of end_compunit_symtab_from_static_block to simplify it.
847 Handle the "have blockvector" case.
848 See end_compunit_symtab_from_static_block for a description of the
849 arguments. */
850
851 struct compunit_symtab *
852 buildsym_compunit::end_compunit_symtab_with_blockvector
853 (struct block *static_block, int expandable)
854 {
855 struct compunit_symtab *cu = m_compunit_symtab;
856 struct blockvector *blockvector;
857 struct subfile *subfile;
858 CORE_ADDR end_addr;
859
860 gdb_assert (static_block != NULL);
861 gdb_assert (m_subfiles != NULL);
862
863 end_addr = static_block->end ();
864
865 /* Create the GLOBAL_BLOCK and build the blockvector. */
866 finish_block_internal (NULL, get_global_symbols (), NULL, NULL,
867 m_last_source_start_addr, end_addr,
868 1, expandable);
869 blockvector = make_blockvector ();
870
871 /* Read the line table if it has to be read separately.
872 This is only used by xcoffread.c. */
873 if (m_objfile->sf->sym_read_linetable != NULL)
874 m_objfile->sf->sym_read_linetable (m_objfile);
875
876 /* Handle the case where the debug info specifies a different path
877 for the main source file. It can cause us to lose track of its
878 line number information. */
879 watch_main_source_file_lossage ();
880
881 /* Now create the symtab objects proper, if not already done,
882 one for each subfile. */
883
884 for (subfile = m_subfiles;
885 subfile != NULL;
886 subfile = subfile->next)
887 {
888 if (!subfile->line_vector_entries.empty ())
889 {
890 /* Like the pending blocks, the line table may be scrambled
891 in reordered executables. Sort it. It is important to
892 preserve the order of lines at the same address, as this
893 maintains the inline function caller/callee
894 relationships, this is why std::stable_sort is used. */
895 std::stable_sort (subfile->line_vector_entries.begin (),
896 subfile->line_vector_entries.end ());
897 }
898
899 /* Allocate a symbol table if necessary. */
900 if (subfile->symtab == NULL)
901 subfile->symtab = allocate_symtab (cu, subfile->name.c_str (),
902 subfile->name_for_id.c_str ());
903
904 struct symtab *symtab = subfile->symtab;
905
906 /* Fill in its components. */
907
908 if (!subfile->line_vector_entries.empty ())
909 {
910 /* Reallocate the line table on the objfile obstack. */
911 size_t n_entries = subfile->line_vector_entries.size ();
912 size_t entry_array_size = n_entries * sizeof (struct linetable_entry);
913 int linetablesize = sizeof (struct linetable) + entry_array_size;
914
915 struct linetable *new_table
916 = XOBNEWVAR (&m_objfile->objfile_obstack, struct linetable,
917 linetablesize);
918
919 new_table->nitems = n_entries;
920 memcpy (new_table->item,
921 subfile->line_vector_entries.data (), entry_array_size);
922
923 symtab->set_linetable (new_table);
924 }
925 else
926 symtab->set_linetable (nullptr);
927
928 /* Use whatever language we have been using for this
929 subfile, not the one that was deduced in allocate_symtab
930 from the filename. We already did our own deducing when
931 we created the subfile, and we may have altered our
932 opinion of what language it is from things we found in
933 the symbols. */
934 symtab->set_language (subfile->language);
935 }
936
937 /* Make sure the filetab of main_subfile is the primary filetab of the CU. */
938 cu->set_primary_filetab (m_main_subfile->symtab);
939
940 /* Fill out the compunit symtab. */
941
942 if (!m_comp_dir.empty ())
943 {
944 /* Reallocate the dirname on the symbol obstack. */
945 cu->set_dirname (obstack_strdup (&m_objfile->objfile_obstack,
946 m_comp_dir.c_str ()));
947 }
948
949 /* Save the debug format string (if any) in the symtab. */
950 cu->set_debugformat (m_debugformat);
951
952 /* Similarly for the producer. */
953 cu->set_producer (m_producer);
954
955 cu->set_blockvector (blockvector);
956 {
957 struct block *b = blockvector->global_block ();
958
959 b->set_compunit_symtab (cu);
960 }
961
962 cu->set_macro_table (release_macros ());
963
964 /* Default any symbols without a specified symtab to the primary symtab. */
965 {
966 int block_i;
967
968 /* The main source file's symtab. */
969 struct symtab *symtab = cu->primary_filetab ();
970
971 for (block_i = 0; block_i < blockvector->num_blocks (); block_i++)
972 {
973 struct block *block = blockvector->block (block_i);
974
975 /* Inlined functions may have symbols not in the global or
976 static symbol lists. */
977 if (block->function () != nullptr
978 && block->function ()->symtab () == nullptr)
979 block->function ()->set_symtab (symtab);
980
981 /* Note that we only want to fix up symbols from the local
982 blocks, not blocks coming from included symtabs. That is
983 why we use an mdict iterator here and not a block
984 iterator. */
985 for (struct symbol *sym : block->multidict_symbols ())
986 if (sym->symtab () == NULL)
987 sym->set_symtab (symtab);
988 }
989 }
990
991 add_compunit_symtab_to_objfile (cu);
992
993 return cu;
994 }
995
996 /* Implementation of the second part of end_compunit_symtab. Pass STATIC_BLOCK
997 as value returned by end_compunit_symtab_get_static_block.
998
999 If EXPANDABLE is non-zero the GLOBAL_BLOCK dictionary is made
1000 expandable. */
1001
1002 struct compunit_symtab *
1003 buildsym_compunit::end_compunit_symtab_from_static_block
1004 (struct block *static_block, int expandable)
1005 {
1006 struct compunit_symtab *cu;
1007
1008 if (static_block == NULL)
1009 {
1010 /* Handle the "no blockvector" case.
1011 When this happens there is nothing to record, so there's nothing
1012 to do: memory will be freed up later.
1013
1014 Note: We won't be adding a compunit to the objfile's list of
1015 compunits, so there's nothing to unchain. However, since each symtab
1016 is added to the objfile's obstack we can't free that space.
1017 We could do better, but this is believed to be a sufficiently rare
1018 event. */
1019 cu = NULL;
1020 }
1021 else
1022 cu = end_compunit_symtab_with_blockvector (static_block, expandable);
1023
1024 return cu;
1025 }
1026
1027 /* Finish the symbol definitions for one main source file, close off
1028 all the lexical contexts for that file (creating struct block's for
1029 them), then make the struct symtab for that file and put it in the
1030 list of all such.
1031
1032 END_ADDR is the address of the end of the file's text.
1033
1034 Note that it is possible for end_compunit_symtab() to return NULL. In
1035 particular, for the DWARF case at least, it will return NULL when
1036 it finds a compilation unit that has exactly one DIE, a
1037 TAG_compile_unit DIE. This can happen when we link in an object
1038 file that was compiled from an empty source file. Returning NULL
1039 is probably not the correct thing to do, because then gdb will
1040 never know about this empty file (FIXME).
1041
1042 If you need to modify STATIC_BLOCK before it is finalized you should
1043 call end_compunit_symtab_get_static_block and
1044 end_compunit_symtab_from_static_block yourself. */
1045
1046 struct compunit_symtab *
1047 buildsym_compunit::end_compunit_symtab (CORE_ADDR end_addr)
1048 {
1049 struct block *static_block;
1050
1051 static_block = end_compunit_symtab_get_static_block (end_addr, 0, 0);
1052 return end_compunit_symtab_from_static_block (static_block, 0);
1053 }
1054
1055 /* Same as end_compunit_symtab except create a symtab that can be later added
1056 to. */
1057
1058 struct compunit_symtab *
1059 buildsym_compunit::end_expandable_symtab (CORE_ADDR end_addr)
1060 {
1061 struct block *static_block;
1062
1063 static_block = end_compunit_symtab_get_static_block (end_addr, 1, 0);
1064 return end_compunit_symtab_from_static_block (static_block, 1);
1065 }
1066
1067 /* Subroutine of augment_type_symtab to simplify it.
1068 Attach the main source file's symtab to all symbols in PENDING_LIST that
1069 don't have one. */
1070
1071 static void
1072 set_missing_symtab (struct pending *pending_list,
1073 struct compunit_symtab *cu)
1074 {
1075 struct pending *pending;
1076 int i;
1077
1078 for (pending = pending_list; pending != NULL; pending = pending->next)
1079 {
1080 for (i = 0; i < pending->nsyms; ++i)
1081 {
1082 if (pending->symbol[i]->symtab () == NULL)
1083 pending->symbol[i]->set_symtab (cu->primary_filetab ());
1084 }
1085 }
1086 }
1087
1088 /* Same as end_compunit_symtab, but for the case where we're adding more symbols
1089 to an existing symtab that is known to contain only type information.
1090 This is the case for DWARF4 Type Units. */
1091
1092 void
1093 buildsym_compunit::augment_type_symtab ()
1094 {
1095 struct compunit_symtab *cust = m_compunit_symtab;
1096 struct blockvector *blockvector = cust->blockvector ();
1097
1098 if (!m_context_stack.empty ())
1099 complaint (_("Context stack not empty in augment_type_symtab"));
1100 if (m_pending_blocks != NULL)
1101 complaint (_("Blocks in a type symtab"));
1102 if (m_pending_macros != NULL)
1103 complaint (_("Macro in a type symtab"));
1104 if (m_have_line_numbers)
1105 complaint (_("Line numbers recorded in a type symtab"));
1106
1107 if (m_file_symbols != NULL)
1108 {
1109 struct block *block = blockvector->static_block ();
1110
1111 /* First mark any symbols without a specified symtab as belonging
1112 to the primary symtab. */
1113 set_missing_symtab (m_file_symbols, cust);
1114
1115 mdict_add_pending (block->multidict (), m_file_symbols);
1116 }
1117
1118 if (m_global_symbols != NULL)
1119 {
1120 struct block *block = blockvector->global_block ();
1121
1122 /* First mark any symbols without a specified symtab as belonging
1123 to the primary symtab. */
1124 set_missing_symtab (m_global_symbols, cust);
1125
1126 mdict_add_pending (block->multidict (), m_global_symbols);
1127 }
1128 }
1129
1130 /* Push a context block. Args are an identifying nesting level
1131 (checkable when you pop it), and the starting PC address of this
1132 context. */
1133
1134 struct context_stack *
1135 buildsym_compunit::push_context (int desc, CORE_ADDR valu)
1136 {
1137 m_context_stack.emplace_back ();
1138 struct context_stack *newobj = &m_context_stack.back ();
1139
1140 newobj->depth = desc;
1141 newobj->locals = m_local_symbols;
1142 newobj->old_blocks = m_pending_blocks;
1143 newobj->start_addr = valu;
1144 newobj->local_using_directives = m_local_using_directives;
1145 newobj->name = NULL;
1146
1147 m_local_symbols = NULL;
1148 m_local_using_directives = NULL;
1149
1150 return newobj;
1151 }
1152
1153 /* Pop a context block. Returns the address of the context block just
1154 popped. */
1155
1156 struct context_stack
1157 buildsym_compunit::pop_context ()
1158 {
1159 gdb_assert (!m_context_stack.empty ());
1160 struct context_stack result = m_context_stack.back ();
1161 m_context_stack.pop_back ();
1162 return result;
1163 }