]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/arm/tm-arm.h
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to make GDB target for an ARM
2 Copyright 1986, 1987, 1989, 1991, 1993, 1997, 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifdef __STDC__ /* Forward decls for prototypes */
21 struct type;
22 struct value;
23 #endif
24
25 #define TARGET_BYTE_ORDER_SELECTABLE
26
27 /* IEEE format floating point */
28
29 #define IEEE_FLOAT
30
31 /* FIXME: may need a floatformat_ieee_double_bigbyte_littleword format for
32 BIG_ENDIAN use. -fnf */
33
34 #define TARGET_DOUBLE_FORMAT (target_byte_order == BIG_ENDIAN \
35 ? &floatformat_ieee_double_big \
36 : &floatformat_ieee_double_littlebyte_bigword)
37
38 /* When reading symbols, we need to zap the low bit of the address, which
39 may be set to 1 for Thumb functions. */
40
41 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
42
43 /* Remove useless bits from addresses in a running program. */
44
45 CORE_ADDR arm_addr_bits_remove PARAMS ((CORE_ADDR));
46
47 #define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
48
49 /* Offset from address of function to start of its code.
50 Zero on most machines. */
51
52 #define FUNCTION_START_OFFSET 0
53
54 /* Advance PC across any function entry prologue instructions
55 to reach some "real" code. */
56
57 extern CORE_ADDR arm_skip_prologue PARAMS ((CORE_ADDR pc));
58
59 #define SKIP_PROLOGUE(pc) { pc = arm_skip_prologue (pc); }
60
61 /* Immediately after a function call, return the saved pc.
62 Can't always go through the frames for this because on some machines
63 the new frame is not set up until the new function executes
64 some instructions. */
65
66 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
67 struct frame_info;
68 extern CORE_ADDR arm_saved_pc_after_call PARAMS ((struct frame_info *));
69
70 /* I don't know the real values for these. */
71 #define TARGET_UPAGES UPAGES
72 #define TARGET_NBPG NBPG
73
74 /* Address of end of stack space. */
75
76 #define STACK_END_ADDR (0x01000000 - (TARGET_UPAGES * TARGET_NBPG))
77
78 /* Stack grows downward. */
79
80 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
81
82 /* !!!! if we're using RDP, then we're inserting breakpoints and storing
83 their handles instread of what was in memory. It is nice that
84 this is the same size as a handle - otherwise remote-rdp will
85 have to change. */
86
87 /* BREAKPOINT_FROM_PC uses the program counter value to determine whether a
88 16- or 32-bit breakpoint should be used. It returns a pointer
89 to a string of bytes that encode a breakpoint instruction, stores
90 the length of the string to *lenptr, and adjusts the pc (if necessary) to
91 point to the actual memory location where the breakpoint should be
92 inserted. */
93
94 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
95 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
96
97 /* Amount PC must be decremented by after a breakpoint.
98 This is often the number of bytes in BREAKPOINT
99 but not always. */
100
101 #define DECR_PC_AFTER_BREAK 0
102
103 /* code to execute to print interesting information about the
104 * floating point processor (if any)
105 * No need to define if there is nothing to do.
106 */
107 #define FLOAT_INFO { arm_float_info (); }
108
109 /* Say how long (ordinary) registers are. This is a piece of bogosity
110 used in push_word and a few other places; REGISTER_RAW_SIZE is the
111 real way to know how big a register is. */
112
113 #define REGISTER_SIZE 4
114
115 /* Number of machine registers */
116
117 /* Note: I make a fake copy of the pc in register 25 (calling it ps) so
118 that I can clear the status bits from pc (register 15) */
119
120 #define NUM_REGS 26
121
122 /* An array of names of registers. */
123
124 extern char **arm_register_names;
125 #define REGISTER_NAME(i) arm_register_names[i]
126
127 /* Register numbers of various important registers.
128 Note that some of these values are "real" register numbers,
129 and correspond to the general registers of the machine,
130 and some are "phony" register numbers which are too large
131 to be actual register numbers as far as the user is concerned
132 but do serve to get the desired values when passed to read_register. */
133
134 #define A1_REGNUM 0 /* first integer-like argument */
135 #define A4_REGNUM 3 /* last integer-like argument */
136 #define AP_REGNUM 11
137 #define FP_REGNUM 11 /* Contains address of executing stack frame */
138 #define SP_REGNUM 13 /* Contains address of top of stack */
139 #define LR_REGNUM 14 /* address to return to from a function call */
140 #define PC_REGNUM 15 /* Contains program counter */
141 #define F0_REGNUM 16 /* first floating point register */
142 #define F3_REGNUM 19 /* last floating point argument register */
143 #define F7_REGNUM 23 /* last floating point register */
144 #define FPS_REGNUM 24 /* floating point status register */
145 #define PS_REGNUM 25 /* Contains processor status */
146
147 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
148
149 #define ARM_NUM_ARG_REGS 4
150 #define ARM_LAST_ARG_REGNUM A4_REGNUM
151 #define ARM_NUM_FP_ARG_REGS 4
152 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
153
154 /* Instruction condition field values. */
155 #define INST_EQ 0x0
156 #define INST_NE 0x1
157 #define INST_CS 0x2
158 #define INST_CC 0x3
159 #define INST_MI 0x4
160 #define INST_PL 0x5
161 #define INST_VS 0x6
162 #define INST_VC 0x7
163 #define INST_HI 0x8
164 #define INST_LS 0x9
165 #define INST_GE 0xa
166 #define INST_LT 0xb
167 #define INST_GT 0xc
168 #define INST_LE 0xd
169 #define INST_AL 0xe
170 #define INST_NV 0xf
171
172 #define FLAG_N 0x80000000
173 #define FLAG_Z 0x40000000
174 #define FLAG_C 0x20000000
175 #define FLAG_V 0x10000000
176
177
178
179 /* Total amount of space needed to store our copies of the machine's
180 register state, the array `registers'. */
181 #define REGISTER_BYTES (16*4 + 12*8 + 4 + 4)
182
183 /* Index within `registers' of the first byte of the space for
184 register N. */
185
186 #define REGISTER_BYTE(N) (((N) < F0_REGNUM) ? (N)*4 : \
187 (((N) < PS_REGNUM) ? 16*4 + ((N) - 16)*12 : \
188 16*4 + 8*12 + ((N) - FPS_REGNUM) * 4))
189
190 /* Number of bytes of storage in the actual machine representation
191 for register N. On the vax, all regs are 4 bytes. */
192
193 #define REGISTER_RAW_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 12)
194
195 /* Number of bytes of storage in the program's representation
196 for register N. On the vax, all regs are 4 bytes. */
197
198 #define REGISTER_VIRTUAL_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 8)
199
200 /* Largest value REGISTER_RAW_SIZE can have. */
201
202 #define MAX_REGISTER_RAW_SIZE 12
203
204 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
205
206 #define MAX_REGISTER_VIRTUAL_SIZE 8
207
208 /* Nonzero if register N requires conversion
209 from raw format to virtual format. */
210 #define REGISTER_CONVERTIBLE(N) ((unsigned)(N) - F0_REGNUM < 8)
211
212 /* Convert data from raw format for register REGNUM in buffer FROM
213 to virtual format with type TYPE in buffer TO. */
214
215 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
216 { \
217 double val; \
218 convert_from_extended ((FROM), & val); \
219 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
220 }
221
222 /* Convert data from virtual format with type TYPE in buffer FROM
223 to raw format for register REGNUM in buffer TO. */
224
225 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
226 { \
227 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
228 convert_to_extended (&val, (TO)); \
229 }
230 /* Return the GDB type object for the "standard" data type
231 of data in register N. */
232
233 #define REGISTER_VIRTUAL_TYPE(N) \
234 (((unsigned)(N) - F0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
235 \f
236 /* The system C compiler uses a similar structure return convention to gcc */
237 extern use_struct_convention_fn arm_use_struct_convention;
238 #define USE_STRUCT_CONVENTION(gcc_p, type) arm_use_struct_convention (gcc_p, type)
239
240 /* Store the address of the place in which to copy the structure the
241 subroutine will return. This is called from call_function. */
242
243 #define STORE_STRUCT_RETURN(ADDR, SP) \
244 { write_register (0, (ADDR)); }
245
246 /* Extract from an array REGBUF containing the (raw) register state
247 a function return value of type TYPE, and copy that, in virtual format,
248 into VALBUF. */
249
250 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
251 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
252 convert_from_extended (REGBUF + REGISTER_BYTE (F0_REGNUM), VALBUF); \
253 else \
254 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE))
255
256 /* Write into appropriate registers a function return value
257 of type TYPE, given in virtual format. */
258
259 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
260 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
261 char _buf[MAX_REGISTER_RAW_SIZE]; \
262 convert_to_extended (VALBUF, _buf); \
263 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
264 } else \
265 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
266
267 /* Extract from an array REGBUF containing the (raw) register state
268 the address in which a function should return its structure value,
269 as a CORE_ADDR (or an expression that can be used as one). */
270
271 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
272
273 /* Specify that for the native compiler variables for a particular
274 lexical context are listed after the beginning LBRAC instead of
275 before in the executables list of symbols. */
276 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
277
278 \f
279 /* Define other aspects of the stack frame.
280 We keep the offsets of all saved registers, 'cause we need 'em a lot!
281 We also keep the current size of the stack frame, and the offset of
282 the frame pointer from the stack pointer (for frameless functions, and
283 when we're still in the prologue of a function with a frame) */
284
285 #define EXTRA_FRAME_INFO \
286 struct frame_saved_regs fsr; \
287 int framesize; \
288 int frameoffset; \
289 int framereg;
290
291 extern void arm_init_extra_frame_info PARAMS ((struct frame_info *fi));
292 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) arm_init_extra_frame_info (fi)
293
294 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
295 CORE_ADDR arm_target_read_fp PARAMS ((void));
296 #define TARGET_READ_FP() arm_target_read_fp ()
297
298 /* Describe the pointer in each stack frame to the previous stack frame
299 (its caller). */
300
301 /* FRAME_CHAIN takes a frame's nominal address
302 and produces the frame's chain-pointer.
303
304 However, if FRAME_CHAIN_VALID returns zero,
305 it means the given frame is the outermost one and has no caller. */
306
307 #define FRAME_CHAIN(thisframe) (CORE_ADDR) arm_frame_chain (thisframe)
308 extern CORE_ADDR arm_frame_chain PARAMS ((struct frame_info *));
309
310 extern int arm_frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
311 #define FRAME_CHAIN_VALID(chain, thisframe) arm_frame_chain_valid (chain, thisframe)
312
313 /* Define other aspects of the stack frame. */
314
315 /* A macro that tells us whether the function invocation represented
316 by FI does not have a frame on the stack associated with it. If it
317 does not, FRAMELESS is set to 1, else 0. */
318 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
319 { \
320 CORE_ADDR func_start, after_prologue; \
321 func_start = (get_pc_function_start ((FI)->pc) + \
322 FUNCTION_START_OFFSET); \
323 after_prologue = func_start; \
324 SKIP_PROLOGUE (after_prologue); \
325 (FRAMELESS) = (after_prologue == func_start); \
326 }
327
328 /* Saved Pc. */
329
330 #define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
331 extern CORE_ADDR arm_frame_saved_pc PARAMS ((struct frame_info *));
332
333 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
334
335 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
336
337 /* Return number of args passed to a frame.
338 Can return -1, meaning no way to tell. */
339
340 #define FRAME_NUM_ARGS(numargs, fi) (numargs = -1)
341
342 /* Return number of bytes at start of arglist that are not really args. */
343
344 #define FRAME_ARGS_SKIP 0
345
346 /* Put here the code to store, into a struct frame_saved_regs,
347 the addresses of the saved registers of frame described by FRAME_INFO.
348 This includes special registers such as pc and fp saved in special
349 ways in the stack frame. sp is even more special:
350 the address we return for it IS the sp for the next frame. */
351
352 struct frame_saved_regs;
353 struct frame_info;
354 void frame_find_saved_regs PARAMS((struct frame_info *fi,
355 struct frame_saved_regs *fsr));
356
357 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
358 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
359
360 \f
361 /* Things needed for making the inferior call functions. */
362
363 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
364 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
365 extern CORE_ADDR
366 arm_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int, CORE_ADDR));
367
368 /* Push an empty stack frame, to record the current PC, etc. */
369
370 void arm_push_dummy_frame PARAMS ((void));
371
372 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
373
374 /* Discard from the stack the innermost frame, restoring all registers. */
375
376 void arm_pop_frame PARAMS ((void));
377
378 #define POP_FRAME arm_pop_frame ()
379
380 /* This sequence of words is the instructions
381
382 mov lr,pc
383 mov pc,r4
384 illegal
385
386 Note this is 12 bytes. */
387
388 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xE7FFDEFE}
389
390 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
391
392 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
393 extern int arm_call_dummy_breakpoint_offset PARAMS ((void));
394
395 /* Insert the specified number of args and function address
396 into a call sequence of the above form stored at DUMMYNAME. */
397
398 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
399 arm_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
400
401 void arm_fix_call_dummy PARAMS ((char *dummy, CORE_ADDR pc, CORE_ADDR fun,
402 int nargs, struct value **args,
403 struct type *type, int gcc_p));
404
405 CORE_ADDR arm_get_next_pc PARAMS ((CORE_ADDR));
406
407 /* Functions for dealing with Thumb call thunks. */
408 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) arm_in_call_stub (pc, name)
409 #define SKIP_TRAMPOLINE_CODE(pc) arm_skip_stub (pc)
410 extern int arm_in_call_stub PARAMS ((CORE_ADDR pc, char *name));
411 extern CORE_ADDR arm_skip_stub PARAMS ((CORE_ADDR pc));
412
413 /* Function to determine whether MEMADDR is in a Thumb function. */
414 extern int arm_pc_is_thumb PARAMS ((bfd_vma memaddr));
415
416 /* Function to determine whether MEMADDR is in a call dummy called from
417 a Thumb function. */
418 extern int arm_pc_is_thumb_dummy PARAMS ((bfd_vma memaddr));
419
420 /* Macros for setting and testing a bit in a minimal symbol that
421 marks it as Thumb function. The MSB of the minimal symbol's
422 "info" field is used for this purpose. This field is already
423 being used to store the symbol size, so the assumption is
424 that the symbol size cannot exceed 2^31.
425
426 COFF_MAKE_MSYMBOL_SPECIAL
427 ELF_MAKE_MSYMBOL_SPECIAL tests whether the COFF or ELF symbol corresponds
428 to a thumb function, and sets a "special" bit in a
429 minimal symbol to indicate that it does
430 MSYMBOL_SET_SPECIAL actually sets the "special" bit
431 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
432 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
433 the "info" field with the "special" bit masked out
434 */
435
436 extern int coff_sym_is_thumb(int val);
437 #define MSYMBOL_SET_SPECIAL(msym) \
438 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
439 #define MSYMBOL_IS_SPECIAL(msym) \
440 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
441 #define MSYMBOL_SIZE(msym) \
442 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
443
444 /* Thumb symbol are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
445 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
446 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
447 MSYMBOL_SET_SPECIAL(msym); }
448
449 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
450 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
451
452 #undef IN_SIGTRAMP
453 #define IN_SIGTRAMP(pc, name) 0