]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/d30v/tm-d30v.h
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / gdb / config / d30v / tm-d30v.h
1 /* Target-specific definition for the Mitsubishi D30V
2 Copyright (C) 1997 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #ifndef TM_D30V_H
21 #define TM_D30V_H
22
23 /* Define the bit, byte, and word ordering of the machine. */
24
25 #define TARGET_BYTE_ORDER BIG_ENDIAN
26
27 /* Offset from address of function to start of its code.
28 Zero on most machines. */
29
30 #define FUNCTION_START_OFFSET 0
31
32 /* these are the addresses the D30V-EVA board maps data */
33 /* and instruction memory to. */
34
35 #define DMEM_START 0x20000000
36 #define IMEM_START 0x00000000 /* was 0x10000000 */
37 #define STACK_START 0x20007ffe
38
39 #ifdef __STDC__ /* Forward decls for prototypes */
40 struct frame_info;
41 struct frame_saved_regs;
42 struct type;
43 struct value;
44 #endif
45
46 /* Advance PC across any function entry prologue instructions
47 to reach some "real" code. */
48
49 extern CORE_ADDR d30v_skip_prologue ();
50 #define SKIP_PROLOGUE(ip) \
51 {(ip) = d30v_skip_prologue(ip);}
52
53
54 /* Stack grows downward. */
55 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
56
57 /* for a breakpoint, use "dbt || nop" */
58 #define BREAKPOINT {0x00, 0xb0, 0x00, 0x00,\
59 0x00, 0xf0, 0x00, 0x00}
60
61 /* If your kernel resets the pc after the trap happens you may need to
62 define this before including this file. */
63 #define DECR_PC_AFTER_BREAK 0
64
65 #define REGISTER_NAMES \
66 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
68 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
69 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
70 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
71 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
72 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
73 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
74 "spi", "spu", \
75 "psw", "bpsw", "pc", "bpc", "dpsw", "dpc", "cr6", "rpt_c", \
76 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "eit_vb",\
77 "int_s", "int_m", "a0", "a1" \
78 }
79
80 #define NUM_REGS 86
81
82 /* Register numbers of various important registers.
83 Note that some of these values are "real" register numbers,
84 and correspond to the general registers of the machine,
85 and some are "phony" register numbers which are too large
86 to be actual register numbers as far as the user is concerned
87 but do serve to get the desired values when passed to read_register. */
88
89 #define R0_REGNUM 0
90 #define FP_REGNUM 61
91 #define LR_REGNUM 62
92 #define SP_REGNUM 63
93 #define SPI_REGNUM 64 /* Interrupt stack pointer */
94 #define SPU_REGNUM 65 /* User stack pointer */
95 #define CREGS_START 66
96
97 #define PSW_REGNUM (CREGS_START + 0) /* psw, bpsw, or dpsw??? */
98 #define PSW_SM (((unsigned long)0x80000000) >> 0) /* Stack mode: 0/SPI */
99 /* 1/SPU */
100 #define PSW_EA (((unsigned long)0x80000000) >> 2) /* Execution status */
101 #define PSW_DB (((unsigned long)0x80000000) >> 3) /* Debug mode */
102 #define PSW_DS (((unsigned long)0x80000000) >> 4) /* Debug EIT status */
103 #define PSW_IE (((unsigned long)0x80000000) >> 5) /* Interrupt enable */
104 #define PSW_RP (((unsigned long)0x80000000) >> 6) /* Repeat enable */
105 #define PSW_MD (((unsigned long)0x80000000) >> 7) /* Modulo enable */
106 #define PSW_F0 (((unsigned long)0x80000000) >> 17) /* F0 flag */
107 #define PSW_F1 (((unsigned long)0x80000000) >> 19) /* F1 flag */
108 #define PSW_F2 (((unsigned long)0x80000000) >> 21) /* F2 flag */
109 #define PSW_F3 (((unsigned long)0x80000000) >> 23) /* F3 flag */
110 #define PSW_S (((unsigned long)0x80000000) >> 25) /* Saturation flag */
111 #define PSW_V (((unsigned long)0x80000000) >> 27) /* Overflow flag */
112 #define PSW_VA (((unsigned long)0x80000000) >> 29) /* Accum. overflow */
113 #define PSW_C (((unsigned long)0x80000000) >> 31) /* Carry/Borrow flag */
114
115 #define BPSW_REGNUM (CREGS_START + 1) /* Backup PSW (on interrupt) */
116 #define PC_REGNUM (CREGS_START + 2) /* pc, bpc, or dpc??? */
117 #define BPC_REGNUM (CREGS_START + 3) /* Backup PC (on interrupt) */
118 #define DPSW_REGNUM (CREGS_START + 4) /* Backup PSW (on debug trap) */
119 #define DPC_REGNUM (CREGS_START + 5) /* Backup PC (on debug trap) */
120 #define RPT_C_REGNUM (CREGS_START + 7) /* Loop count */
121 #define RPT_S_REGNUM (CREGS_START + 8) /* Loop start address*/
122 #define RPT_E_REGNUM (CREGS_START + 9) /* Loop end address */
123 #define MOD_S_REGNUM (CREGS_START + 10)
124 #define MOD_E_REGNUM (CREGS_START + 11)
125 #define IBA_REGNUM (CREGS_START + 14) /* Instruction break address */
126 #define EIT_VB_REGNUM (CREGS_START + 15) /* Vector base address */
127 #define INT_S_REGNUM (CREGS_START + 16) /* Interrupt status */
128 #define INT_M_REGNUM (CREGS_START + 17) /* Interrupt mask */
129 #define A0_REGNUM 84
130 #define A1_REGNUM 85
131
132 /* Say how much memory is needed to store a copy of the register set */
133 #define REGISTER_BYTES ((NUM_REGS - 2) * 4 + 2 * 8)
134
135 /* Index within `registers' of the first byte of the space for
136 register N. */
137
138 #define REGISTER_BYTE(N) \
139 ( ((N) >= A0_REGNUM) ? ( ((N) - A0_REGNUM) * 8 + A0_REGNUM * 4 ) : ((N) * 4) )
140
141 /* Number of bytes of storage in the actual machine representation
142 for register N. */
143
144 #define REGISTER_RAW_SIZE(N) ( ((N) >= A0_REGNUM) ? 8 : 4 )
145
146 /* Number of bytes of storage in the program's representation
147 for register N. */
148 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
149
150 /* Largest value REGISTER_RAW_SIZE can have. */
151
152 #define MAX_REGISTER_RAW_SIZE 8
153
154 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
155
156 #define MAX_REGISTER_VIRTUAL_SIZE 8
157
158 /* Return the GDB type object for the "standard" data type
159 of data in register N. */
160
161 #define REGISTER_VIRTUAL_TYPE(N) \
162 ( ((N) < A0_REGNUM ) ? builtin_type_long : builtin_type_long_long)
163
164 /* Writing to r0 is a noop (not an error or exception or anything like
165 that, however). */
166
167 #define CANNOT_STORE_REGISTER(regno) ((regno) == R0_REGNUM)
168
169 void d30v_do_registers_info PARAMS ((int regnum, int fpregs));
170
171 #define DO_REGISTERS_INFO d30v_do_registers_info
172
173 /* Store the address of the place in which to copy the structure the
174 subroutine will return. This is called from call_function.
175
176 We store structs through a pointer passed in R2 */
177
178 #define STORE_STRUCT_RETURN(ADDR, SP) \
179 { write_register (2, (ADDR)); }
180
181
182 /* Write into appropriate registers a function return value
183 of type TYPE, given in virtual format.
184
185 Things always get returned in R2/R3 */
186
187 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
188 write_register_bytes (REGISTER_BYTE(2), VALBUF, TYPE_LENGTH (TYPE))
189
190
191 /* Extract from an array REGBUF containing the (raw) register state
192 the address in which a function should return its structure value,
193 as a CORE_ADDR (or an expression that can be used as one). */
194 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (((CORE_ADDR *)(REGBUF))[2])
195 \f
196
197 /* Define other aspects of the stack frame.
198 we keep a copy of the worked out return pc lying around, since it
199 is a useful bit of info */
200
201 #define EXTRA_FRAME_INFO \
202 CORE_ADDR return_pc; \
203 CORE_ADDR dummy; \
204 int frameless; \
205 int size;
206
207 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
208 d30v_init_extra_frame_info(fromleaf, fi)
209
210 extern void d30v_init_extra_frame_info PARAMS (( int fromleaf, struct frame_info *fi ));
211
212 /* A macro that tells us whether the function invocation represented
213 by FI does not have a frame on the stack associated with it. If it
214 does not, FRAMELESS is set to 1, else 0. */
215
216 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
217 (FRAMELESS) = frameless_look_for_prologue(FI)
218
219 #define FRAME_CHAIN(FRAME) d30v_frame_chain(FRAME)
220 extern int d30v_frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
221 #define FRAME_CHAIN_VALID(chain, thisframe) d30v_frame_chain_valid (chain, thisframe)
222 #define FRAME_SAVED_PC(FRAME) ((FRAME)->return_pc)
223 #define FRAME_ARGS_ADDRESS(fi) (fi)->frame
224 #define FRAME_LOCALS_ADDRESS(fi) (fi)->frame
225
226 #define INIT_FRAME_PC_FIRST(fromleaf, prev) d30v_init_frame_pc(fromleaf, prev)
227 #define INIT_FRAME_PC(fromleaf, prev) /* nada */
228
229 /* Immediately after a function call, return the saved pc. We can't */
230 /* use frame->return_pc beause that is determined by reading R62 off the */
231 /* stack and that may not be written yet. */
232
233 #define SAVED_PC_AFTER_CALL(frame) (read_register(LR_REGNUM))
234
235 /* Set VAL to the number of args passed to frame described by FI.
236 Can set VAL to -1, meaning no way to tell. */
237 /* We can't tell how many args there are */
238
239 #define FRAME_NUM_ARGS(val,fi) (val = -1)
240
241 /* Return number of bytes at start of arglist that are not really args. */
242
243 #define FRAME_ARGS_SKIP 0
244
245
246 /* Put here the code to store, into a struct frame_saved_regs,
247 the addresses of the saved registers of frame described by FRAME_INFO.
248 This includes special registers such as pc and fp saved in special
249 ways in the stack frame. sp is even more special:
250 the address we return for it IS the sp for the next frame. */
251
252 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
253 d30v_frame_find_saved_regs(frame_info, &(frame_saved_regs))
254
255 extern void d30v_frame_find_saved_regs PARAMS ((struct frame_info *, struct frame_saved_regs *));
256
257 #define NAMES_HAVE_UNDERSCORE
258
259 /* DUMMY FRAMES. Need these to support inferior function calls.
260 They work like this on D30V:
261 First we set a breakpoint at 0 or __start.
262 Then we push all the registers onto the stack.
263 Then put the function arguments in the proper registers and set r13
264 to our breakpoint address.
265 Finally call the function directly.
266 When it hits the breakpoint, clear the break point and pop the old
267 register contents off the stack. */
268
269 #define CALL_DUMMY { 0 }
270 #define PUSH_DUMMY_FRAME
271 #define CALL_DUMMY_START_OFFSET 0
272 #define CALL_DUMMY_LOCATION AT_ENTRY_POINT
273 #define CALL_DUMMY_BREAKPOINT_OFFSET (0)
274
275 extern CORE_ADDR d30v_call_dummy_address PARAMS ((void));
276 #define CALL_DUMMY_ADDRESS() d30v_call_dummy_address()
277
278 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
279 sp = d30v_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
280
281 #define PC_IN_CALL_DUMMY(pc, sp, frame_address) ( pc == IMEM_START + 4 )
282
283 extern CORE_ADDR d30v_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR,
284 int, struct value **,
285 struct type *, int));
286 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
287 sp = d30v_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
288 extern CORE_ADDR d30v_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int, CORE_ADDR));
289
290
291 /* Extract from an array REGBUF containing the (raw) register state
292 a function return value of type TYPE, and copy that, in virtual format,
293 into VALBUF. */
294
295 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
296 d30v_extract_return_value(TYPE, REGBUF, VALBUF)
297 extern void
298 d30v_extract_return_value PARAMS ((struct type *, char *, char *));
299
300
301 /* Discard from the stack the innermost frame,
302 restoring all saved registers. */
303 #define POP_FRAME d30v_pop_frame();
304 extern void d30v_pop_frame PARAMS((void));
305
306 #define REGISTER_SIZE 4
307
308 /* Need to handle SP special, as we need to select between spu and spi. */
309 #if 0 /* XXX until the simulator is fixed */
310 #define TARGET_READ_SP() ((read_register (PSW_REGNUM) & PSW_SM) \
311 ? read_register (SPU_REGNUM) \
312 : read_register (SPI_REGNUM))
313
314 #define TARGET_WRITE_SP(val) ((read_register (PSW_REGNUM) & PSW_SM) \
315 ? write_register (SPU_REGNUM, (val)) \
316 : write_register (SPI_REGNUM, (val)))
317 #endif
318
319 #define STACK_ALIGN(len) (((len) + 7 ) & ~7)
320
321 /* Turn this on to cause remote-sim.c to use sim_set/clear_breakpoint. */
322
323 #define SIM_HAS_BREAKPOINTS
324
325 #endif /* TM_D30V_H */