]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/i386/tm-symmetry.h
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / config / i386 / tm-symmetry.h
1 /* Target machine definitions for GDB on a Sequent Symmetry under dynix 3.0,
2 with Weitek 1167 and i387 support.
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
4 Free Software Foundation, Inc.
5 Symmetry version by Jay Vosburgh (fubar@sequent.com).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #ifndef TM_SYMMETRY_H
24 #define TM_SYMMETRY_H 1
25
26 /* I don't know if this will work for cross-debugging, even if you do get
27 a copy of the right include file. */
28 #include <machine/reg.h>
29
30 #include "i386/tm-i386v.h"
31
32 #undef START_INFERIOR_TRAPS_EXPECTED
33 #define START_INFERIOR_TRAPS_EXPECTED 2
34
35 /* Amount PC must be decremented by after a breakpoint. This is often the
36 number of bytes in BREAKPOINT but not always (such as now). */
37
38 #undef DECR_PC_AFTER_BREAK
39 #define DECR_PC_AFTER_BREAK 0
40
41 #if 0
42 /* --- this code can't be used unless we know we are running native,
43 since it uses host specific ptrace calls. */
44 /* code for 80387 fpu. Functions are from i386-dep.c, copied into
45 * symm-dep.c.
46 */
47 #define FLOAT_INFO { i386_float_info(); }
48 #endif
49
50 /* Number of machine registers */
51
52 #undef NUM_REGS
53 #define NUM_REGS 49
54
55 /* Initializer for an array of names of registers.
56 There should be NUM_REGS strings in this initializer. */
57
58 /* Initializer for an array of names of registers. There should be at least
59 NUM_REGS strings in this initializer. Any excess ones are simply ignored.
60 Symmetry registers are in this weird order to match the register numbers
61 in the symbol table entries. If you change the order, things will probably
62 break mysteriously for no apparent reason. Also note that the st(0)...
63 st(7) 387 registers are represented as st0...st7. */
64
65 #undef REGISTER_NAMES
66 #define REGISTER_NAMES { "eax", "edx", "ecx", "st0", "st1", \
67 "ebx", "esi", "edi", "st2", "st3", \
68 "st4", "st5", "st6", "st7", "esp", \
69 "ebp", "eip", "eflags","fp1", "fp2", \
70 "fp3", "fp4", "fp5", "fp6", "fp7", \
71 "fp8", "fp9", "fp10", "fp11", "fp12", \
72 "fp13", "fp14", "fp15", "fp16", "fp17", \
73 "fp18", "fp19", "fp20", "fp21", "fp22", \
74 "fp23", "fp24", "fp25", "fp26", "fp27", \
75 "fp28", "fp29", "fp30", "fp31" }
76
77 /* Register numbers of various important registers.
78 Note that some of these values are "real" register numbers,
79 and correspond to the general registers of the machine,
80 and some are "phony" register numbers which are too large
81 to be actual register numbers as far as the user is concerned
82 but do serve to get the desired values when passed to read_register. */
83
84 #define EAX_REGNUM 0
85 #define EDX_REGNUM 1
86 #define ECX_REGNUM 2
87 #define ST0_REGNUM 3
88 #define ST1_REGNUM 4
89 #define EBX_REGNUM 5
90 #define ESI_REGNUM 6
91 #define EDI_REGNUM 7
92 #define ST2_REGNUM 8
93 #define ST3_REGNUM 9
94
95 #define ST4_REGNUM 10
96 #define ST5_REGNUM 11
97 #define ST6_REGNUM 12
98 #define ST7_REGNUM 13
99
100 #define FP1_REGNUM 18 /* first 1167 register */
101 /* Get %fp2 - %fp31 by addition, since they are contiguous */
102
103 #undef SP_REGNUM
104 #define SP_REGNUM 14 /* (usp) Contains address of top of stack */
105 #define ESP_REGNUM 14
106 #undef FP_REGNUM
107 #define FP_REGNUM 15 /* (ebp) Contains address of executing stack frame */
108 #define EBP_REGNUM 15
109 #undef PC_REGNUM
110 #define PC_REGNUM 16 /* (eip) Contains program counter */
111 #define EIP_REGNUM 16
112 #undef PS_REGNUM
113 #define PS_REGNUM 17 /* (ps) Contains processor status */
114 #define EFLAGS_REGNUM 17
115
116 /*
117 * Following macro translates i386 opcode register numbers to Symmetry
118 * register numbers. This is used by i386_frame_find_saved_regs.
119 *
120 * %eax %ecx %edx %ebx %esp %ebp %esi %edi
121 * i386 0 1 2 3 4 5 6 7
122 * Symmetry 0 2 1 5 14 15 6 7
123 *
124 */
125 #define I386_REGNO_TO_SYMMETRY(n) \
126 ((n)==0?0 :(n)==1?2 :(n)==2?1 :(n)==3?5 :(n)==4?14 :(n)==5?15 :(n))
127
128 /* The magic numbers below are offsets into u_ar0 in the user struct.
129 * They live in <machine/reg.h>. Gdb calls this macro with blockend
130 * holding u.u_ar0 - KERNEL_U_ADDR. Only the registers listed are
131 * saved in the u area (along with a few others that aren't useful
132 * here. See <machine/reg.h>).
133 */
134
135 #define REGISTER_U_ADDR(addr, blockend, regno) \
136 { struct user foo; /* needed for finding fpu regs */ \
137 switch (regno) { \
138 case 0: \
139 addr = blockend + EAX * sizeof(int); break; \
140 case 1: \
141 addr = blockend + EDX * sizeof(int); break; \
142 case 2: \
143 addr = blockend + ECX * sizeof(int); break; \
144 case 3: /* st(0) */ \
145 addr = ((int)&foo.u_fpusave.fpu_stack[0][0] - (int)&foo); \
146 break; \
147 case 4: /* st(1) */ \
148 addr = ((int) &foo.u_fpusave.fpu_stack[1][0] - (int)&foo); \
149 break; \
150 case 5: \
151 addr = blockend + EBX * sizeof(int); break; \
152 case 6: \
153 addr = blockend + ESI * sizeof(int); break; \
154 case 7: \
155 addr = blockend + EDI * sizeof(int); break; \
156 case 8: /* st(2) */ \
157 addr = ((int) &foo.u_fpusave.fpu_stack[2][0] - (int)&foo); \
158 break; \
159 case 9: /* st(3) */ \
160 addr = ((int) &foo.u_fpusave.fpu_stack[3][0] - (int)&foo); \
161 break; \
162 case 10: /* st(4) */ \
163 addr = ((int) &foo.u_fpusave.fpu_stack[4][0] - (int)&foo); \
164 break; \
165 case 11: /* st(5) */ \
166 addr = ((int) &foo.u_fpusave.fpu_stack[5][0] - (int)&foo); \
167 break; \
168 case 12: /* st(6) */ \
169 addr = ((int) &foo.u_fpusave.fpu_stack[6][0] - (int)&foo); \
170 break; \
171 case 13: /* st(7) */ \
172 addr = ((int) &foo.u_fpusave.fpu_stack[7][0] - (int)&foo); \
173 break; \
174 case 14: \
175 addr = blockend + ESP * sizeof(int); break; \
176 case 15: \
177 addr = blockend + EBP * sizeof(int); break; \
178 case 16: \
179 addr = blockend + EIP * sizeof(int); break; \
180 case 17: \
181 addr = blockend + FLAGS * sizeof(int); break; \
182 case 18: /* fp1 */ \
183 case 19: /* fp2 */ \
184 case 20: /* fp3 */ \
185 case 21: /* fp4 */ \
186 case 22: /* fp5 */ \
187 case 23: /* fp6 */ \
188 case 24: /* fp7 */ \
189 case 25: /* fp8 */ \
190 case 26: /* fp9 */ \
191 case 27: /* fp10 */ \
192 case 28: /* fp11 */ \
193 case 29: /* fp12 */ \
194 case 30: /* fp13 */ \
195 case 31: /* fp14 */ \
196 case 32: /* fp15 */ \
197 case 33: /* fp16 */ \
198 case 34: /* fp17 */ \
199 case 35: /* fp18 */ \
200 case 36: /* fp19 */ \
201 case 37: /* fp20 */ \
202 case 38: /* fp21 */ \
203 case 39: /* fp22 */ \
204 case 40: /* fp23 */ \
205 case 41: /* fp24 */ \
206 case 42: /* fp25 */ \
207 case 43: /* fp26 */ \
208 case 44: /* fp27 */ \
209 case 45: /* fp28 */ \
210 case 46: /* fp29 */ \
211 case 47: /* fp30 */ \
212 case 48: /* fp31 */ \
213 addr = ((int) &foo.u_fpasave.fpa_regs[(regno)-18] - (int)&foo); \
214 } \
215 }
216
217 /* Total amount of space needed to store our copies of the machine's
218 register state, the array `registers'. 10 i*86 registers, 8 i387
219 registers, and 31 Weitek 1167 registers */
220
221 #undef REGISTER_BYTES
222 #define REGISTER_BYTES ((10 * 4) + (8 * 10) + (31 * 4))
223
224 /* Index within `registers' of the first byte of the space for
225 register N. */
226
227 #undef REGISTER_BYTE
228 #define REGISTER_BYTE(N) \
229 (((N) < 3) ? ((N) * 4) : \
230 ((N) < 5) ? ((((N) - 2) * 10) + 2) : \
231 ((N) < 8) ? ((((N) - 5) * 4) + 32) : \
232 ((N) < 14) ? ((((N) - 8) * 10) + 44) : \
233 ((((N) - 14) * 4) + 104))
234
235 /* Number of bytes of storage in the actual machine representation
236 * for register N. All registers are 4 bytes, except 387 st(0) - st(7),
237 * which are 80 bits each.
238 */
239
240 #undef REGISTER_RAW_SIZE
241 #define REGISTER_RAW_SIZE(N) \
242 (((N) < 3) ? 4 : \
243 ((N) < 5) ? 10 : \
244 ((N) < 8) ? 4 : \
245 ((N) < 14) ? 10 : \
246 4)
247
248 /* Nonzero if register N requires conversion
249 from raw format to virtual format. */
250
251 #undef REGISTER_CONVERTIBLE
252 #define REGISTER_CONVERTIBLE(N) \
253 (((N) < 3) ? 0 : \
254 ((N) < 5) ? 1 : \
255 ((N) < 8) ? 0 : \
256 ((N) < 14) ? 1 : \
257 0)
258
259 #include "floatformat.h"
260
261 /* Convert data from raw format for register REGNUM in buffer FROM
262 to virtual format with type TYPE in buffer TO. */
263
264 #undef REGISTER_CONVERT_TO_VIRTUAL
265 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
266 { \
267 double val; \
268 floatformat_to_double (&floatformat_i387_ext, (FROM), &val); \
269 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
270 }
271
272 /* Convert data from virtual format with type TYPE in buffer FROM
273 to raw format for register REGNUM in buffer TO. */
274
275 #undef REGISTER_CONVERT_TO_RAW
276 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
277 { \
278 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
279 floatformat_from_double (&floatformat_i387_ext, &val, (TO)); \
280 }
281
282 /* Return the GDB type object for the "standard" data type
283 of data in register N. */
284
285 #undef REGISTER_VIRTUAL_TYPE
286 #define REGISTER_VIRTUAL_TYPE(N) \
287 ((N < 3) ? builtin_type_int : \
288 (N < 5) ? builtin_type_double : \
289 (N < 8) ? builtin_type_int : \
290 (N < 14) ? builtin_type_double : \
291 builtin_type_int)
292
293 /* Store the address of the place in which to copy the structure the
294 subroutine will return. This is called from call_function.
295 Native cc passes the address in eax, gcc (up to version 2.5.8)
296 passes it on the stack. gcc should be fixed in future versions to
297 adopt native cc conventions. */
298
299 #undef STORE_STRUCT_RETURN
300 #define STORE_STRUCT_RETURN(ADDR, SP) write_register(0, (ADDR))
301
302 /* Extract from an array REGBUF containing the (raw) register state
303 a function return value of type TYPE, and copy that, in virtual format,
304 into VALBUF. */
305
306 #undef EXTRACT_RETURN_VALUE
307 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
308 symmetry_extract_return_value(TYPE, REGBUF, VALBUF)
309
310 /* The following redefines make backtracing through sigtramp work.
311 They manufacture a fake sigtramp frame and obtain the saved pc in sigtramp
312 from the sigcontext structure which is pushed by the kernel on the
313 user stack, along with a pointer to it. */
314
315 #define IN_SIGTRAMP(pc, name) ((name) && STREQ ("_sigcode", name))
316
317 /* Offset to saved PC in sigcontext, from <signal.h>. */
318 #define SIGCONTEXT_PC_OFFSET 16
319
320 #endif /* ifndef TM_SYMMETRY_H */
321