]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/pa/tm-hppa.h
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 /* Forward declarations of some types we use in prototypes */
25
26 #ifdef __STDC__
27 struct frame_info;
28 struct frame_saved_regs;
29 struct value;
30 struct type;
31 struct inferior_status;
32 #endif
33
34 /* Target system byte order. */
35
36 #define TARGET_BYTE_ORDER BIG_ENDIAN
37
38 /* By default assume we don't have to worry about software floating point. */
39 #ifndef SOFT_FLOAT
40 #define SOFT_FLOAT 0
41 #endif
42
43 /* Get at various relevent fields of an instruction word. */
44
45 #define MASK_5 0x1f
46 #define MASK_11 0x7ff
47 #define MASK_14 0x3fff
48 #define MASK_21 0x1fffff
49
50 /* This macro gets bit fields using HP's numbering (MSB = 0) */
51 #ifndef GET_FIELD
52 #define GET_FIELD(X, FROM, TO) \
53 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
54 #endif
55
56 /* Watch out for NaNs */
57
58 #define IEEE_FLOAT
59
60 /* On the PA, any pass-by-value structure > 8 bytes is actually
61 passed via a pointer regardless of its type or the compiler
62 used. */
63
64 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
65 (TYPE_LENGTH (type) > 8)
66
67 /* Offset from address of function to start of its code.
68 Zero on most machines. */
69
70 #define FUNCTION_START_OFFSET 0
71
72 /* Advance PC across any function entry prologue instructions
73 to reach some "real" code. */
74
75 #define SKIP_PROLOGUE(pc) pc = skip_prologue (pc)
76 extern CORE_ADDR skip_prologue PARAMS ((CORE_ADDR));
77
78 /* If PC is in some function-call trampoline code, return the PC
79 where the function itself actually starts. If not, return NULL. */
80
81 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
82 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
83
84 /* Return non-zero if we are in an appropriate trampoline. */
85
86 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
87 in_solib_call_trampoline (pc, name)
88 extern int in_solib_call_trampoline PARAMS ((CORE_ADDR, char *));
89
90 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
91 in_solib_return_trampoline (pc, name)
92 extern int in_solib_return_trampoline PARAMS ((CORE_ADDR, char *));
93
94 /* Immediately after a function call, return the saved pc.
95 Can't go through the frames for this because on some machines
96 the new frame is not set up until the new function executes
97 some instructions. */
98
99 #undef SAVED_PC_AFTER_CALL
100 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
101 extern CORE_ADDR saved_pc_after_call PARAMS ((struct frame_info *));
102
103 /* Stack grows upward */
104 #define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
105
106 /* elz: adjust the quantity to the next highest value which is 64-bit aligned.
107 This is used in valops.c, when the sp is adjusted.
108 On hppa the sp must always be kept 64-bit aligned*/
109
110 #define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
111 #define NO_EXTRA_ALIGNMENT_NEEDED 1
112
113 /* Sequence of bytes for breakpoint instruction. */
114
115 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
116 #define BREAKPOINT32 0x10004
117
118 /* Amount PC must be decremented by after a breakpoint.
119 This is often the number of bytes in BREAKPOINT
120 but not always.
121
122 Not on the PA-RISC */
123
124 #define DECR_PC_AFTER_BREAK 0
125
126 /* Sometimes we may pluck out a minimal symbol that has a negative
127 address.
128
129 An example of this occurs when an a.out is linked against a foo.sl.
130 The foo.sl defines a global bar(), and the a.out declares a signature
131 for bar(). However, the a.out doesn't directly call bar(), but passes
132 its address in another call.
133
134 If you have this scenario and attempt to "break bar" before running,
135 gdb will find a minimal symbol for bar() in the a.out. But that
136 symbol's address will be negative. What this appears to denote is
137 an index backwards from the base of the procedure linkage table (PLT)
138 into the data linkage table (DLT), the end of which is contiguous
139 with the start of the PLT. This is clearly not a valid address for
140 us to set a breakpoint on.
141
142 Note that one must be careful in how one checks for a negative address.
143 0xc0000000 is a legitimate address of something in a shared text
144 segment, for example. Since I don't know what the possible range
145 is of these "really, truly negative" addresses that come from the
146 minimal symbols, I'm resorting to the gross hack of checking the
147 top byte of the address for all 1's. Sigh.
148 */
149 #define PC_REQUIRES_RUN_BEFORE_USE(pc) \
150 (! target_has_stack && (pc & 0xFF000000))
151
152 /* return instruction is bv r0(rp) or bv,n r0(rp)*/
153
154 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
155
156 /* Say how long (ordinary) registers are. This is a piece of bogosity
157 used in push_word and a few other places; REGISTER_RAW_SIZE is the
158 real way to know how big a register is. */
159
160 #define REGISTER_SIZE 4
161
162 /* Number of machine registers */
163
164 #define NUM_REGS 128
165
166 /* Initializer for an array of names of registers.
167 There should be NUM_REGS strings in this initializer.
168 They are in rows of eight entries */
169
170 #define REGISTER_NAMES \
171 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
172 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
173 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
174 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
175 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
176 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
177 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
178 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
179 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
180 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
181 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
182 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
183 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
184 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
185 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
186 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
187
188 /* Register numbers of various important registers.
189 Note that some of these values are "real" register numbers,
190 and correspond to the general registers of the machine,
191 and some are "phony" register numbers which are too large
192 to be actual register numbers as far as the user is concerned
193 but do serve to get the desired values when passed to read_register. */
194
195 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
196 other r registers. */
197 #define FLAGS_REGNUM 0 /* Various status flags */
198 #define RP_REGNUM 2 /* return pointer */
199 #define FP_REGNUM 3 /* Contains address of executing stack */
200 /* frame */
201 #define SP_REGNUM 30 /* Contains address of top of stack */
202 #define SAR_REGNUM 32 /* Shift Amount Register */
203 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
204 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
205 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
206 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
207 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
208 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
209 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
210 #define IOR_REGNUM 40 /* Interrupt Offset Register */
211 #define SR4_REGNUM 43 /* space register 4 */
212 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
213 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
214 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
215 #define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
216 #define FP0_REGNUM 64 /* floating point reg. 0 (fspr)*/
217 #define FP4_REGNUM 72
218
219 #define ARG0_REGNUM 26 /* The first argument of a callee. */
220 #define ARG1_REGNUM 25 /* The second argument of a callee. */
221 #define ARG2_REGNUM 24 /* The third argument of a callee. */
222 #define ARG3_REGNUM 23 /* The fourth argument of a callee. */
223
224 /* compatibility with the rest of gdb. */
225 #define PC_REGNUM PCOQ_HEAD_REGNUM
226 #define NPC_REGNUM PCOQ_TAIL_REGNUM
227
228 /*
229 * Processor Status Word Masks
230 */
231
232 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
233 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
234 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
235 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
236 #define PSW_X 0x00100000 /* Data Memory Break Disable */
237 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
238 #define PSW_C 0x00040000 /* Code Address Translation Enable */
239 #define PSW_V 0x00020000 /* Divide Step Correction */
240 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
241 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
242 #define PSW_R 0x00000010 /* Recovery Counter Enable */
243 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
244 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
245 #define PSW_D 0x00000002 /* Data Address Translation Enable */
246 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
247 /* Machine Check Interruption Enable */
248
249 /* When fetching register values from an inferior or a core file,
250 clean them up using this macro. BUF is a char pointer to
251 the raw value of the register in the registers[] array. */
252
253 #define CLEAN_UP_REGISTER_VALUE(regno, buf) \
254 do { \
255 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
256 (buf)[3] &= ~0x3; \
257 } while (0)
258
259 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
260 of register dumps. */
261
262 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
263 extern void pa_do_registers_info PARAMS ((int, int));
264
265 #if 0
266 #define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
267 extern void pa_do_strcat_registers_info PARAMS ((int, int, GDB_FILE *, enum precision_type));
268 #endif
269
270 /* PA specific macro to see if the current instruction is nullified. */
271 #ifndef INSTRUCTION_NULLIFIED
272 #define INSTRUCTION_NULLIFIED \
273 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
274 !((int)read_register (FLAGS_REGNUM) & 0x2))
275 #endif
276
277 /* Number of bytes of storage in the actual machine representation
278 for register N. On the PA-RISC, all regs are 4 bytes, including
279 the FP registers (they're accessed as two 4 byte halves). */
280
281 #define REGISTER_RAW_SIZE(N) 4
282
283 /* Total amount of space needed to store our copies of the machine's
284 register state, the array `registers'. */
285 #define REGISTER_BYTES (NUM_REGS * 4)
286
287 /* Index within `registers' of the first byte of the space for
288 register N. */
289
290 #define REGISTER_BYTE(N) (N) * 4
291
292 /* Number of bytes of storage in the program's representation
293 for register N. */
294
295 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
296
297 /* Largest value REGISTER_RAW_SIZE can have. */
298
299 #define MAX_REGISTER_RAW_SIZE 4
300
301 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
302
303 #define MAX_REGISTER_VIRTUAL_SIZE 8
304
305 /* Return the GDB type object for the "standard" data type
306 of data in register N. */
307
308 #define REGISTER_VIRTUAL_TYPE(N) \
309 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
310
311 /* Store the address of the place in which to copy the structure the
312 subroutine will return. This is called from call_function. */
313
314 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
315
316 /* Extract from an array REGBUF containing the (raw) register state
317 a function return value of type TYPE, and copy that, in virtual format,
318 into VALBUF.
319
320 elz: changed what to return when length is > 4: the stored result is
321 in register 28 and in register 29, with the lower order word being in reg 29,
322 so we must start reading it from somehere in the middle of reg28
323
324 FIXME: Not sure what to do for soft float here. */
325
326 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
327 { \
328 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
329 memcpy ((VALBUF), \
330 ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
331 TYPE_LENGTH (TYPE)); \
332 else \
333 memcpy ((VALBUF), \
334 (char *)(REGBUF) + REGISTER_BYTE (28) + \
335 (TYPE_LENGTH (TYPE) > 4 ? (8 - TYPE_LENGTH (TYPE)) : (4 - TYPE_LENGTH (TYPE))), \
336 TYPE_LENGTH (TYPE)); \
337 }
338
339
340 /* elz: decide whether the function returning a value of type type
341 will put it on the stack or in the registers.
342 The pa calling convention says that:
343 register 28 (called ret0 by gdb) contains any ASCII char,
344 and any non_floating point value up to 32-bits.
345 reg 28 and 29 contain non-floating point up tp 64 bits and larger
346 than 32 bits. (higer order word in reg 28).
347 fr4: floating point up to 64 bits
348 sr1: space identifier (32-bit)
349 stack: any lager than 64-bit, with the address in r28
350 */
351 extern use_struct_convention_fn hppa_use_struct_convention;
352 #define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
353
354 /* Write into appropriate registers a function return value
355 of type TYPE, given in virtual format.
356
357 For software floating point the return value goes into the integer
358 registers. But we don't have any flag to key this on, so we always
359 store the value into the integer registers, and if it's a float value,
360 then we put it in the float registers too. */
361
362 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
363 write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
364 if (!SOFT_FLOAT) \
365 write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
366 ? REGISTER_BYTE (FP4_REGNUM) \
367 : REGISTER_BYTE (28)), \
368 (VALBUF), TYPE_LENGTH (TYPE))
369
370 /* Extract from an array REGBUF containing the (raw) register state
371 the address in which a function should return its structure value,
372 as a CORE_ADDR (or an expression that can be used as one). */
373
374 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
375 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
376
377 /* elz: Return a large value, which is stored on the stack at addr.
378 This is defined only for the hppa, at this moment.
379 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
380 because it assumes that on exit from a called function which returns
381 a large structure on the stack, the address of the ret structure is
382 still in register 28. Unfortunately this register is usually overwritten
383 by the called function itself, on hppa. This is specified in the calling
384 convention doc. As far as I know, the only way to get the return value
385 is to have the caller tell us where it told the callee to put it, rather
386 than have the callee tell us.
387 */
388 #define VALUE_RETURNED_FROM_STACK(valtype,addr) \
389 hppa_value_returned_from_stack (valtype, addr)
390
391 /*
392 * This macro defines the register numbers (from REGISTER_NAMES) that
393 * are effectively unavailable to the user through ptrace(). It allows
394 * us to include the whole register set in REGISTER_NAMES (inorder to
395 * better support remote debugging). If it is used in
396 * fetch/store_inferior_registers() gdb will not complain about I/O errors
397 * on fetching these registers. If all registers in REGISTER_NAMES
398 * are available, then return false (0).
399 */
400
401 #define CANNOT_STORE_REGISTER(regno) \
402 ((regno) == 0) || \
403 ((regno) == PCSQ_HEAD_REGNUM) || \
404 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
405 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
406
407 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
408 extern void init_extra_frame_info PARAMS ((int, struct frame_info *));
409
410 /* Describe the pointer in each stack frame to the previous stack frame
411 (its caller). */
412
413 /* FRAME_CHAIN takes a frame's nominal address
414 and produces the frame's chain-pointer.
415
416 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
417 and produces the nominal address of the caller frame.
418
419 However, if FRAME_CHAIN_VALID returns zero,
420 it means the given frame is the outermost one and has no caller.
421 In that case, FRAME_CHAIN_COMBINE is not used. */
422
423 /* In the case of the PA-RISC, the frame's nominal address
424 is the address of a 4-byte word containing the calling frame's
425 address (previous FP). */
426
427 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
428 extern CORE_ADDR frame_chain PARAMS ((struct frame_info *));
429
430 extern int hppa_frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
431 #define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
432
433 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
434
435 /* Define other aspects of the stack frame. */
436
437 /* A macro that tells us whether the function invocation represented
438 by FI does not have a frame on the stack associated with it. If it
439 does not, FRAMELESS is set to 1, else 0. */
440 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
441 (FRAMELESS) = frameless_function_invocation(FI)
442 extern int frameless_function_invocation PARAMS ((struct frame_info *));
443
444 extern CORE_ADDR hppa_frame_saved_pc PARAMS ((struct frame_info *frame));
445 #define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
446
447 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
448
449 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
450 /* Set VAL to the number of args passed to frame described by FI.
451 Can set VAL to -1, meaning no way to tell. */
452
453 /* We can't tell how many args there are
454 now that the C compiler delays popping them. */
455 #define FRAME_NUM_ARGS(val,fi) (val = -1)
456
457 /* Return number of bytes at start of arglist that are not really args. */
458
459 #define FRAME_ARGS_SKIP 0
460
461 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
462 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
463 extern void
464 hppa_frame_find_saved_regs PARAMS ((struct frame_info *,
465 struct frame_saved_regs *));
466
467 \f
468 /* Things needed for making the inferior call functions. */
469
470 /* Push an empty stack frame, to record the current PC, etc. */
471
472 #define PUSH_DUMMY_FRAME push_dummy_frame (&inf_status)
473 extern void push_dummy_frame PARAMS ((struct inferior_status *));
474
475 /* Discard from the stack the innermost frame,
476 restoring all saved registers. */
477 #define POP_FRAME hppa_pop_frame ()
478 extern void hppa_pop_frame PARAMS ((void));
479
480 #define INSTRUCTION_SIZE 4
481
482 #ifndef PA_LEVEL_0
483
484 /* Non-level zero PA's have space registers (but they don't always have
485 floating-point, do they???? */
486
487 /* This sequence of words is the instructions
488
489 ; Call stack frame has already been built by gdb. Since we could be calling
490 ; a varargs function, and we do not have the benefit of a stub to put things in
491 ; the right place, we load the first 4 word of arguments into both the general
492 ; and fp registers.
493 call_dummy
494 ldw -36(sp), arg0
495 ldw -40(sp), arg1
496 ldw -44(sp), arg2
497 ldw -48(sp), arg3
498 ldo -36(sp), r1
499 fldws 0(0, r1), fr4
500 fldds -4(0, r1), fr5
501 fldws -8(0, r1), fr6
502 fldds -12(0, r1), fr7
503 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
504 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
505 ldsid (0,r22), r4
506 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
507 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
508 ldsid (0,r1), r20
509 combt,=,n r4, r20, text_space ; If target is in data space, do a
510 ble 0(sr5, r22) ; "normal" procedure call
511 copy r31, r2
512 break 4, 8
513 mtsp r21, sr0
514 ble,n 0(sr0, r22)
515 text_space ; Otherwise, go through _sr4export,
516 ble (sr4, r1) ; which will return back here.
517 stw r31,-24(r30)
518 break 4, 8
519 mtsp r21, sr0
520 ble,n 0(sr0, r22)
521 nop ; To avoid kernel bugs
522 nop ; and keep the dummy 8 byte aligned
523
524 The dummy decides if the target is in text space or data space. If
525 it's in data space, there's no problem because the target can
526 return back to the dummy. However, if the target is in text space,
527 the dummy calls the secret, undocumented routine _sr4export, which
528 calls a function in text space and can return to any space. Instead
529 of including fake instructions to represent saved registers, we
530 know that the frame is associated with the call dummy and treat it
531 specially.
532
533 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
534 kernels. If the memory at the location pointed to by the PC is
535 0xffffffff then a ptrace step call will fail (even if the instruction
536 is nullified).
537
538 The code to pop a dummy frame single steps three instructions
539 starting with the last mtsp. This includes the nullified "instruction"
540 following the ble (which is uninitialized junk). If the
541 "instruction" following the last BLE is 0xffffffff, then the ptrace
542 will fail and the dummy frame is not correctly popped.
543
544 By placing a NOP in the delay slot of the BLE instruction we can be
545 sure that we never try to execute a 0xffffffff instruction and
546 avoid the kernel bug. The second NOP is needed to keep the call
547 dummy 8 byte aligned. */
548
549 /* Define offsets into the call dummy for the target function address */
550 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
551 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
552
553 /* Define offsets into the call dummy for the _sr4export address */
554 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
555 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
556
557 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
558 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
559 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
560 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
561 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
562 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
563 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
564
565 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
566
567 #else /* defined PA_LEVEL_0 */
568
569 /* This is the call dummy for a level 0 PA. Level 0's don't have space
570 registers (or floating point??), so we skip all that inter-space call stuff,
571 and avoid touching the fp regs.
572
573 call_dummy
574
575 ldw -36(%sp), %arg0
576 ldw -40(%sp), %arg1
577 ldw -44(%sp), %arg2
578 ldw -48(%sp), %arg3
579 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
580 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
581 ble 0(%sr0, %r31)
582 copy %r31, %r2
583 break 4, 8
584 nop ; restore_pc_queue expects these
585 bv,n 0(%r22) ; instructions to be here...
586 nop
587 */
588
589 /* Define offsets into the call dummy for the target function address */
590 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
591 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
592
593 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
594 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
595 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
596
597 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
598
599 #endif
600
601 #define CALL_DUMMY_START_OFFSET 0
602
603 /* If we've reached a trap instruction within the call dummy, then
604 we'll consider that to mean that we've reached the call dummy's
605 end after its successful completion. */
606 #define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
607 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
608 (read_memory_integer((pc), 4) == BREAKPOINT32))
609
610 /*
611 * Insert the specified number of args and function address
612 * into a call sequence of the above form stored at DUMMYNAME.
613 *
614 * On the hppa we need to call the stack dummy through $$dyncall.
615 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
616 * real_pc, which is the location where gdb should start up the
617 * inferior to do the function call.
618 */
619
620 #define FIX_CALL_DUMMY hppa_fix_call_dummy
621
622 extern CORE_ADDR
623 hppa_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR, int,
624 struct value **, struct type *, int));
625
626 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
627 sp = hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
628 extern CORE_ADDR
629 hppa_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int,
630 CORE_ADDR));
631 \f
632 /* The low two bits of the PC on the PA contain the privilege level. Some
633 genius implementing a (non-GCC) compiler apparently decided this means
634 that "addresses" in a text section therefore include a privilege level,
635 and thus symbol tables should contain these bits. This seems like a
636 bonehead thing to do--anyway, it seems to work for our purposes to just
637 ignore those bits. */
638 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
639
640 #define GDB_TARGET_IS_HPPA
641
642 #define BELIEVE_PCC_PROMOTION 1
643
644 /*
645 * Unwind table and descriptor.
646 */
647
648 struct unwind_table_entry {
649 unsigned int region_start;
650 unsigned int region_end;
651
652 unsigned int Cannot_unwind : 1; /* 0 */
653 unsigned int Millicode : 1; /* 1 */
654 unsigned int Millicode_save_sr0 : 1; /* 2 */
655 unsigned int Region_description : 2; /* 3..4 */
656 unsigned int reserved1 : 1; /* 5 */
657 unsigned int Entry_SR : 1; /* 6 */
658 unsigned int Entry_FR : 4; /* number saved */ /* 7..10 */
659 unsigned int Entry_GR : 5; /* number saved */ /* 11..15 */
660 unsigned int Args_stored : 1; /* 16 */
661 unsigned int Variable_Frame : 1; /* 17 */
662 unsigned int Separate_Package_Body : 1; /* 18 */
663 unsigned int Frame_Extension_Millicode:1; /* 19 */
664 unsigned int Stack_Overflow_Check : 1; /* 20 */
665 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
666 unsigned int Ada_Region : 1; /* 22 */
667 unsigned int cxx_info : 1; /* 23 */
668 unsigned int cxx_try_catch : 1; /* 24 */
669 unsigned int sched_entry_seq : 1; /* 25 */
670 unsigned int reserved2 : 1; /* 26 */
671 unsigned int Save_SP : 1; /* 27 */
672 unsigned int Save_RP : 1; /* 28 */
673 unsigned int Save_MRP_in_frame : 1; /* 29 */
674 unsigned int extn_ptr_defined : 1; /* 30 */
675 unsigned int Cleanup_defined : 1; /* 31 */
676
677 unsigned int MPE_XL_interrupt_marker: 1; /* 0 */
678 unsigned int HP_UX_interrupt_marker: 1; /* 1 */
679 unsigned int Large_frame : 1; /* 2 */
680 unsigned int Pseudo_SP_Set : 1; /* 3 */
681 unsigned int reserved4 : 1; /* 4 */
682 unsigned int Total_frame_size : 27; /* 5..31 */
683
684 /* This is *NOT* part of an actual unwind_descriptor in an object
685 file. It is *ONLY* part of the "internalized" descriptors that
686 we create from those in a file.
687 */
688 struct {
689 unsigned int stub_type : 4; /* 0..3 */
690 unsigned int padding : 28; /* 4..31 */
691 } stub_unwind;
692 };
693
694 /* HP linkers also generate unwinds for various linker-generated stubs.
695 GDB reads in the stubs from the $UNWIND_END$ subspace, then
696 "converts" them into normal unwind entries using some of the reserved
697 fields to store the stub type. */
698
699 struct stub_unwind_entry
700 {
701 /* The offset within the executable for the associated stub. */
702 unsigned stub_offset;
703
704 /* The type of stub this unwind entry describes. */
705 char type;
706
707 /* Unknown. Not needed by GDB at this time. */
708 char prs_info;
709
710 /* Length (in instructions) of the associated stub. */
711 short stub_length;
712 };
713
714 /* Sizes (in bytes) of the native unwind entries. */
715 #define UNWIND_ENTRY_SIZE 16
716 #define STUB_UNWIND_ENTRY_SIZE 8
717
718 /* The gaps represent linker stubs used in MPE and space for future
719 expansion. */
720 enum unwind_stub_types
721 {
722 LONG_BRANCH = 1,
723 PARAMETER_RELOCATION = 2,
724 EXPORT = 10,
725 IMPORT = 11,
726 };
727
728 /* We use the objfile->obj_private pointer for two things:
729 *
730 * 1. An unwind table;
731 *
732 * 2. A pointer to any associated shared library object.
733 *
734 * #defines are used to help refer to these objects.
735 */
736
737 /* Info about the unwind table associated with an object file.
738 *
739 * This is hung off of the "objfile->obj_private" pointer, and
740 * is allocated in the objfile's psymbol obstack. This allows
741 * us to have unique unwind info for each executable and shared
742 * library that we are debugging.
743 */
744 struct obj_unwind_info {
745 struct unwind_table_entry *table; /* Pointer to unwind info */
746 struct unwind_table_entry *cache; /* Pointer to last entry we found */
747 int last; /* Index of last entry */
748 };
749
750 typedef struct obj_private_struct {
751 struct obj_unwind_info *unwind_info; /* a pointer */
752 struct so_list *so_info; /* a pointer */
753 } obj_private_data_t;
754
755 #if 0
756 extern void target_write_pc PARAMS ((CORE_ADDR, int))
757 extern CORE_ADDR target_read_pc PARAMS ((int));
758 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
759 #endif
760
761 #define TARGET_READ_PC(pid) target_read_pc (pid)
762 extern CORE_ADDR target_read_pc PARAMS ((int));
763
764 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
765 extern void target_write_pc PARAMS ((CORE_ADDR, int));
766
767 #define TARGET_READ_FP() target_read_fp (inferior_pid)
768 extern CORE_ADDR target_read_fp PARAMS ((int));
769
770 /* For a number of horrible reasons we may have to adjust the location
771 of variables on the stack. Ugh. */
772 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
773
774 extern int hpread_adjust_stack_address PARAMS ((CORE_ADDR));
775
776 /* If the current gcc for for this target does not produce correct debugging
777 information for float parameters, both prototyped and unprototyped, then
778 define this macro. This forces gdb to always assume that floats are
779 passed as doubles and then converted in the callee.
780
781 For the pa, it appears that the debug info marks the parameters as
782 floats regardless of whether the function is prototyped, but the actual
783 values are passed as doubles for the non-prototyped case and floats for
784 the prototyped case. Thus we choose to make the non-prototyped case work
785 for C and break the prototyped case, since the non-prototyped case is
786 probably much more common. (FIXME). */
787
788 #define COERCE_FLOAT_TO_DOUBLE (current_language -> la_language == language_c)