]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/rs6000/tm-rs6000.h
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / gdb / config / rs6000 / tm-rs6000.h
1 /* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1997
3 Free Software Foundation, Inc.
4 Contributed by IBM Corporation.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #ifdef __STDC__ /* Forward decls for prototypes */
23 struct frame_info;
24 struct type;
25 struct value;
26 #endif
27
28 /* Minimum possible text address in AIX */
29
30 #define TEXT_SEGMENT_BASE 0x10000000
31
32 /* Load segment of a given pc value. */
33
34 #define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
35 extern char *pc_load_segment_name PARAMS ((CORE_ADDR));
36
37 /* AIX cc seems to get this right. */
38
39 #define BELIEVE_PCC_PROMOTION 1
40
41 /* return true if a given `pc' value is in `call dummy' function. */
42 /* FIXME: This just checks for the end of the stack, which is broken
43 for things like stepping through gcc nested function stubs. */
44 #define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
45 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
46
47 #if 0
48 extern unsigned int text_start, data_start;
49 extern char *corefile;
50 #endif
51 extern int inferior_pid;
52
53 /* We are missing register descriptions in the system header files. Sigh! */
54
55 struct regs {
56 int gregs [32]; /* general purpose registers */
57 int pc; /* program conter */
58 int ps; /* processor status, or machine state */
59 };
60
61 struct fp_status {
62 double fpregs [32]; /* floating GP registers */
63 };
64
65
66 /* To be used by skip_prologue. */
67
68 struct rs6000_framedata {
69 int offset; /* total size of frame --- the distance
70 by which we decrement sp to allocate
71 the frame */
72 int saved_gpr; /* smallest # of saved gpr */
73 int saved_fpr; /* smallest # of saved fpr */
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
79 int lr_offset; /* offset of saved lr */
80 int cr_offset; /* offset of saved cr */
81 };
82
83 /* Define the byte order of the machine. */
84
85 #define TARGET_BYTE_ORDER BIG_ENDIAN
86
87 /* AIX's assembler doesn't grok dollar signs in identifiers.
88 So we use dots instead. This item must be coordinated with G++. */
89 #undef CPLUS_MARKER
90 #define CPLUS_MARKER '.'
91
92 /* Offset from address of function to start of its code.
93 Zero on most machines. */
94
95 #define FUNCTION_START_OFFSET 0
96
97 /* Advance PC across any function entry prologue instructions
98 to reach some "real" code. */
99
100 #define SKIP_PROLOGUE(pc) \
101 do { \
102 struct rs6000_framedata _frame; \
103 pc = skip_prologue (pc, &_frame); \
104 } while (0)
105
106 extern CORE_ADDR skip_prologue PARAMS((CORE_ADDR, struct rs6000_framedata *));
107
108
109 /* If PC is in some function-call trampoline code, return the PC
110 where the function itself actually starts. If not, return NULL. */
111
112 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
113 extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR));
114
115 /* Number of trap signals we need to skip over, once the inferior process
116 starts running. */
117
118 #define START_INFERIOR_TRAPS_EXPECTED 2
119
120 /* AIX has a couple of strange returns from wait(). */
121
122 #define CHILD_SPECIAL_WAITSTATUS(ourstatus, hoststatus) ( \
123 /* "stop after load" status. */ \
124 (hoststatus) == 0x57c ? (ourstatus)->kind = TARGET_WAITKIND_LOADED, 1 : \
125 \
126 /* signal 0. I have no idea why wait(2) returns with this status word. */ \
127 /* It looks harmless. */ \
128 (hoststatus) == 0x7f ? (ourstatus)->kind = TARGET_WAITKIND_SPURIOUS, 1 : \
129 \
130 /* A normal waitstatus. Let the usual macros deal with it. */ \
131 0)
132
133 /* In xcoff, we cannot process line numbers when we see them. This is
134 mainly because we don't know the boundaries of the include files. So,
135 we postpone that, and then enter and sort(?) the whole line table at
136 once, when we are closing the current symbol table in end_symtab(). */
137
138 #define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
139 extern void aix_process_linenos PARAMS ((void));
140
141 /* Immediately after a function call, return the saved pc.
142 Can't go through the frames for this because on some machines
143 the new frame is not set up until the new function executes
144 some instructions. */
145
146 #define SAVED_PC_AFTER_CALL(frame) read_register (LR_REGNUM)
147
148 /* Address of end of stack space. */
149
150 #define STACK_END_ADDR 0x2ff80000
151
152 /* Stack grows downward. */
153
154 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
155
156 /* This is how arguments pushed onto stack or passed in registers.
157 Stack must be aligned on 64-bit boundaries when synthesizing
158 function calls. We don't need STACK_ALIGN, PUSH_ARGUMENTS will
159 handle it. */
160
161 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
162 sp = push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
163 extern CORE_ADDR push_arguments PARAMS ((int, struct value **, CORE_ADDR,
164 int, CORE_ADDR));
165
166 /* BREAKPOINT_FROM_PC uses the program counter value to determine the
167 breakpoint that should be used */
168 extern breakpoint_from_pc_fn rs6000_breakpoint_from_pc;
169 #define BREAKPOINT_FROM_PC(pcptr, lenptr) rs6000_breakpoint_from_pc (pcptr, lenptr)
170
171 /* Amount PC must be decremented by after a breakpoint.
172 This is often the number of bytes in BREAKPOINT
173 but not always. */
174
175 #define DECR_PC_AFTER_BREAK 0
176
177 /* Say how long (ordinary) registers are. This is a piece of bogosity
178 used in push_word and a few other places; REGISTER_RAW_SIZE is the
179 real way to know how big a register is. */
180
181 #define REGISTER_SIZE 4
182
183 /* Number of machine registers */
184
185 #define NUM_REGS 71
186
187 /* Initializer for an array of names of registers.
188 There should be NUM_REGS strings in this initializer. */
189
190 #define REGISTER_NAMES \
191 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
192 "r8", "r9", "r10","r11","r12","r13","r14","r15", \
193 "r16","r17","r18","r19","r20","r21","r22","r23", \
194 "r24","r25","r26","r27","r28","r29","r30","r31", \
195 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
196 "f8", "f9", "f10","f11","f12","f13","f14","f15", \
197 "f16","f17","f18","f19","f20","f21","f22","f23", \
198 "f24","f25","f26","f27","f28","f29","f30","f31", \
199 "pc", "ps", "cnd", "lr", "cnt", "xer", "mq" }
200
201 /* Register numbers of various important registers.
202 Note that some of these values are "real" register numbers,
203 and correspond to the general registers of the machine,
204 and some are "phony" register numbers which are too large
205 to be actual register numbers as far as the user is concerned
206 but do serve to get the desired values when passed to read_register. */
207
208 #define FP_REGNUM 1 /* Contains address of executing stack frame */
209 #define SP_REGNUM 1 /* Contains address of top of stack */
210 #define TOC_REGNUM 2 /* TOC register */
211 #define FP0_REGNUM 32 /* Floating point register 0 */
212 #define GP0_REGNUM 0 /* GPR register 0 */
213 #define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
214 #define FPLAST_REGNUM 63 /* Last floating point register */
215
216 /* Special purpose registers... */
217 /* P.S. keep these in the same order as in /usr/mstsave.h `mstsave' structure, for
218 easier processing */
219
220 #define PC_REGNUM 64 /* Program counter (instruction address %iar) */
221 #define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
222 #define CR_REGNUM 66 /* Condition register */
223 #define LR_REGNUM 67 /* Link register */
224 #define CTR_REGNUM 68 /* Count register */
225 #define XER_REGNUM 69 /* Fixed point exception registers */
226 #define MQ_REGNUM 70 /* Multiply/quotient register */
227
228 #define FIRST_SP_REGNUM 64 /* first special register number */
229 #define LAST_SP_REGNUM 70 /* last special register number */
230
231 /* Total amount of space needed to store our copies of the machine's
232 register state, the array `registers'.
233
234 32 4-byte gpr's
235 32 8-byte fpr's
236 7 4-byte special purpose registers,
237
238 total 416 bytes. Keep some extra space for now, in case to add more. */
239
240 #define REGISTER_BYTES 420
241
242
243 /* Index within `registers' of the first byte of the space for
244 register N. */
245
246 #define REGISTER_BYTE(N) \
247 ( \
248 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
249 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
250 :((N) * 4) )
251
252 /* Number of bytes of storage in the actual machine representation
253 for register N. */
254 /* Note that the unsigned cast here forces the result of the
255 subtractiion to very high positive values if N < FP0_REGNUM */
256
257 #define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
258
259 /* Number of bytes of storage in the program's representation
260 for register N. On the RS6000, all regs are 4 bytes
261 except the floating point regs which are 8-byte doubles. */
262
263 #define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
264
265 /* Largest value REGISTER_RAW_SIZE can have. */
266
267 #define MAX_REGISTER_RAW_SIZE 8
268
269 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
270
271 #define MAX_REGISTER_VIRTUAL_SIZE 8
272
273 /* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
274
275 #define STAB_REG_TO_REGNUM(value) (value)
276
277 /* Nonzero if register N requires conversion
278 from raw format to virtual format.
279 The register format for rs6000 floating point registers is always
280 double, we need a conversion if the memory format is float. */
281
282 #define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
283
284 /* Convert data from raw format for register REGNUM in buffer FROM
285 to virtual format with type TYPE in buffer TO. */
286
287 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
288 { \
289 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
290 { \
291 double val = extract_floating ((FROM), REGISTER_RAW_SIZE (REGNUM)); \
292 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
293 } \
294 else \
295 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
296 }
297
298 /* Convert data from virtual format with type TYPE in buffer FROM
299 to raw format for register REGNUM in buffer TO. */
300
301 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
302 { \
303 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
304 { \
305 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
306 store_floating ((TO), REGISTER_RAW_SIZE (REGNUM), val); \
307 } \
308 else \
309 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
310 }
311
312 /* Return the GDB type object for the "standard" data type
313 of data in register N. */
314
315 #define REGISTER_VIRTUAL_TYPE(N) \
316 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
317
318 /* Store the address of the place in which to copy the structure the
319 subroutine will return. This is called from call_function. */
320 /* in RS6000, struct return addresses are passed as an extra parameter in r3.
321 In function return, callee is not responsible of returning this address back.
322 Since gdb needs to find it, we will store in a designated variable
323 `rs6000_struct_return_address'. */
324
325 extern CORE_ADDR rs6000_struct_return_address;
326
327 #define STORE_STRUCT_RETURN(ADDR, SP) \
328 { write_register (3, (ADDR)); \
329 rs6000_struct_return_address = (ADDR); }
330
331 /* Extract from an array REGBUF containing the (raw) register state
332 a function return value of type TYPE, and copy that, in virtual format,
333 into VALBUF. */
334
335 /* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
336 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE)) */
337
338 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
339 extract_return_value(TYPE,REGBUF,VALBUF)
340 extern void extract_return_value PARAMS ((struct type *, char [], char *));
341
342 /* Write into appropriate registers a function return value
343 of type TYPE, given in virtual format. */
344
345 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
346 { \
347 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
348 \
349 /* Floating point values are returned starting from FPR1 and up. \
350 Say a double_double_double type could be returned in \
351 FPR1/FPR2/FPR3 triple. */ \
352 \
353 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
354 TYPE_LENGTH (TYPE)); \
355 else \
356 /* Everything else is returned in GPR3 and up. */ \
357 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
358 TYPE_LENGTH (TYPE)); \
359 }
360
361
362 /* Extract from an array REGBUF containing the (raw) register state
363 the address in which a function should return its structure value,
364 as a CORE_ADDR (or an expression that can be used as one). */
365
366 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
367 \f
368 /* Describe the pointer in each stack frame to the previous stack frame
369 (its caller). */
370
371 /* FRAME_CHAIN takes a frame's nominal address
372 and produces the frame's chain-pointer. */
373
374 /* In the case of the RS6000, the frame's nominal address
375 is the address of a 4-byte word containing the calling frame's address. */
376
377 #define FRAME_CHAIN(thisframe) rs6000_frame_chain (thisframe)
378 CORE_ADDR rs6000_frame_chain PARAMS ((struct frame_info *));
379
380 /* Define other aspects of the stack frame. */
381
382 /* A macro that tells us whether the function invocation represented
383 by FI does not have a frame on the stack associated with it. If it
384 does not, FRAMELESS is set to 1, else 0. */
385
386 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
387 FRAMELESS = frameless_function_invocation (FI)
388
389 extern int frameless_function_invocation PARAMS((struct frame_info *));
390
391 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
392 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
393 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
394 #define INIT_FRAME_PC(fromleaf, prev) /* nothing */
395 extern void rs6000_init_extra_frame_info (int fromleaf, struct frame_info *);
396 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) rs6000_init_extra_frame_info (fromleaf, fi)
397
398 /* If the kernel has to deliver a signal, it pushes a sigcontext
399 structure on the stack and then calls the signal handler, passing
400 the address of the sigcontext in an argument register. Usually
401 the signal handler doesn't save this register, so we have to
402 access the sigcontext structure via an offset from the signal handler
403 frame.
404 The following constants were determined by experimentation on AIX 3.2. */
405 #define SIG_FRAME_PC_OFFSET 96
406 #define SIG_FRAME_LR_OFFSET 108
407 #define SIG_FRAME_FP_OFFSET 284
408
409 /* Default offset from SP where the LR is stored */
410 #define DEFAULT_LR_SAVE 8
411
412 /* Return saved PC from a frame */
413 #define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
414
415 extern unsigned long frame_saved_pc PARAMS ((struct frame_info *));
416
417 extern CORE_ADDR rs6000_frame_args_address PARAMS ((struct frame_info *));
418 #define FRAME_ARGS_ADDRESS(FI) rs6000_frame_args_address (FI)
419
420 #define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
421
422
423 /* Set VAL to the number of args passed to frame described by FI.
424 Can set VAL to -1, meaning no way to tell. */
425
426 /* We can't tell how many args there are
427 now that the C compiler delays popping them. */
428
429 #define FRAME_NUM_ARGS(val,fi) (val = -1)
430
431 /* Return number of bytes at start of arglist that are not really args. */
432
433 #define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
434
435 /* Put here the code to store, into a struct frame_saved_regs,
436 the addresses of the saved registers of frame described by FRAME_INFO.
437 This includes special registers such as pc and fp saved in special
438 ways in the stack frame. sp is even more special:
439 the address we return for it IS the sp for the next frame. */
440 /* In the following implementation for RS6000, we did *not* save sp. I am
441 not sure if it will be needed. The following macro takes care of gpr's
442 and fpr's only. */
443
444 extern void rs6000_frame_init_saved_regs PARAMS ((struct frame_info *));
445 #define FRAME_INIT_SAVED_REGS(FI) rs6000_frame_init_saved_regs (FI)
446
447 /* Things needed for making the inferior call functions. */
448
449 /* Push an empty stack frame, to record the current PC, etc. */
450 /* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
451
452 #define PUSH_DUMMY_FRAME push_dummy_frame ()
453 extern void push_dummy_frame PARAMS ((void));
454
455 /* Discard from the stack the innermost frame,
456 restoring all saved registers. */
457
458 #define POP_FRAME pop_frame ()
459 extern void pop_frame PARAMS ((void));
460
461 /* This sequence of words is the instructions:
462
463 mflr r0 // 0x7c0802a6
464 // save fpr's
465 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
466 // save gpr's
467 stm r0, num(r1) // 0xbc010000
468 stu r1, num(r1) // 0x94210000
469
470 // the function we want to branch might be in a different load
471 // segment. reset the toc register. Note that the actual toc address
472 // will be fix by fix_call_dummy () along with function address.
473
474 st r2, 0x14(r1) // 0x90410014 save toc register
475 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
476 oril r2, r2,0x5678 // 0x60425678
477
478 // load absolute address 0x12345678 to r0
479 liu r0, 0x1234 // 0x3c001234
480 oril r0, r0,0x5678 // 0x60005678
481 mtctr r0 // 0x7c0903a6 ctr <- r0
482 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
483 cror 0xf, 0xf, 0xf // 0x4def7b82
484 brpt // 0x7d821008, breakpoint
485 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
486
487
488 We actually start executing by saving the toc register first, since the pushing
489 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
490 the arguments for the function called by the `bctrl' would be pushed
491 between the `stu' and the `bctrl', and we could allow it to execute through.
492 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
493 and we cannot allow to push the registers again.
494 */
495
496 #define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
497 0x90410014, 0x3c401234, 0x60425678, \
498 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
499 0x4def7b82, 0x7d821008, 0x4def7b82 }
500
501
502 /* keep this as multiple of 8 (%sp requires 8 byte alignment) */
503 #define CALL_DUMMY_LENGTH 56
504
505 #define CALL_DUMMY_START_OFFSET 16
506
507 /* Insert the specified number of args and function address into a
508 call sequence of the above form stored at DUMMYNAME. */
509
510 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
511 rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
512 extern void rs6000_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR,
513 int, struct value **,
514 struct type *, int));
515
516 /* Hook in rs6000-tdep.c for determining the TOC address when
517 calling functions in the inferior. */
518 extern CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR));
519
520 /* xcoffread.c provides a function to determine the TOC offset
521 for a given object file.
522 It is used under native AIX configurations for determining the
523 TOC address when calling functions in the inferior. */
524 #ifdef __STDC__
525 struct objfile;
526 #endif
527 extern CORE_ADDR get_toc_offset PARAMS ((struct objfile *));
528
529 /* Usually a function pointer's representation is simply the address
530 of the function. On the RS/6000 however, a function pointer is
531 represented by a pointer to a TOC entry. This TOC entry contains
532 three words, the first word is the address of the function, the
533 second word is the TOC pointer (r2), and the third word is the
534 static chain value. Throughout GDB it is currently assumed that a
535 function pointer contains the address of the function, which is not
536 easy to fix. In addition, the conversion of a function address to
537 a function pointer would require allocation of a TOC entry in the
538 inferior's memory space, with all its drawbacks. To be able to
539 call C++ virtual methods in the inferior (which are called via
540 function pointers), find_function_addr uses this macro to get the
541 function address from a function pointer. */
542
543 #define CONVERT_FROM_FUNC_PTR_ADDR(ADDR) \
544 (is_magic_function_pointer (ADDR) ? read_memory_integer (ADDR, 4) : (ADDR))
545 extern int is_magic_function_pointer PARAMS ((CORE_ADDR));
546
547 /* Flag for machine-specific stuff in shared files. FIXME */
548 #define IBM6000_TARGET
549
550 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
551
552 #define SOFTWARE_SINGLE_STEP_P 1
553 extern void rs6000_software_single_step PARAMS ((unsigned int, int));
554 #define SOFTWARE_SINGLE_STEP(sig,bp_p) rs6000_software_single_step (sig, bp_p)
555
556 /* If the current gcc for for this target does not produce correct debugging
557 information for float parameters, both prototyped and unprototyped, then
558 define this macro. This forces gdb to always assume that floats are
559 passed as doubles and then converted in the callee.
560
561 For the PowerPC, it appears that the debug info marks the parameters as
562 floats regardless of whether the function is prototyped, but the actual
563 values are always passed in as doubles. Thus by setting this to 1, both
564 types of calls will work. */
565
566 #define COERCE_FLOAT_TO_DOUBLE 1